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Siegel’s Modular Functions
The theory of modular functions of degreen is not quite new. The 1

conception of this theory is due to Siegel who gave a first introduction
of this in 1939 (Einfuhrung in die Theorie der Modulfunktionen n-ten
Grades, Math. Ann., Vol 116(1939)). Since then, numerous contribu-
tions have been made by various authors. My desire to give a course on
this special branch of mathematics arose out of more than oneconsider-
ation. Siegel’s modular functions constitute one of the most important
classes of analytic functions of several variables, and we are able to look
forward to far reaching results out of this class. The modular functions
of degreen are connected with the manifolds of the closed Riemann sur-
faces of genusn in just the same way as the elliptic modular functions
are, with the manifolds of Riemann surfaces of genus 1. Moreover we
realise the excellent use of modular forms of degreen in the analytic the-
ory of quadratic forms, first positive quadratic forms and then, indefinite
forms too. But in trying to extend this theory to the case of indefinite
quadratic forms, one meets with new types of functions defined by par-
tial differential equations and one is led to a variety of unsolved prob-
lems in this direction. Finally, the researches of Siegel have becomes
representative of those on a general class of automorphic functions of
several variables.





Chapter 1

The Modular Group of
Degreen

Let f be a closed Riemann surface of genusn; dωi , i = 1, 2, . . . n, a
basis of the Abelian differentials of the first kind onf, andψν, ψ′ν,
ν = 1, 2 . . . n, a canonical system of curves which dissectf into a sim-
ply connected surface bounded by one closed curve. We ask forthe
transformation properties of the periods

qµν =
∫

ψ′µ

dων, pµν = −
∫

ψµ

dων(µ, ν = 1, 2 . . . n)

concerning a replacement ofdων(ν = 1, 2 . . . n) by another basisdω∗ν 2

(ν = 1, 2 . . . n), andψν, ψ′ν respectively by another canonical system of
curvesψ∗ν, ψ

∗
ν(ν = 1, 2 . . . n). We introduce the period matrices

P = (pµν), Q = (qµν), (µ, ν = 1, 2 . . . n),

and letP∗, Q∗ denote the corresponding matrices in the changed sys-
tem. LetLµ, L ′

ν be arbitrary oriented closed curves onf andCµ, C′ν be
arbitrary complex numbers.A homology

r
∑

µ=1

CµLµ ∼
s

∑

γ=1

C′νL
′
nu

3
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means that for every integrable functionF, the equation

r
∑

µ=1

CµF(Lµ) =
r

∑

ν=1

C′νF(L ′
ν ) holds.

For every closed curveL , there exists, as is well known, a repre-
sentation

L ∼
n

∑

µ=1

Cµψµ +

n
∑

ν=1

C′νψ
′
ν

with uniquely determined integersCµ,C′ν(µ, ν = 1, 2 . . . , n). That is
to say that the curves of a canonical system represent a basisof the
homology classes of all closed curves. Thus we have in particular

ψ∗i ∼
∑

µ

(aiµψµ − biµψ
′
µ)

ψ∗
′

i ∼
∑

µ

(−Ciµψµ + diµψ
′
µ)































(1)

with integersaµν, bµν,Cµν, dµν(µ, ν = 1, 2 . . . n). Since the change from
the homology basisψν, ψ′ν, to the basisψ∗ν, ψ

∗
ν′ will always be effected

by a matrix which is unimodular, the determinant of the matrix M =
(

A B
C D

)

with A = (aµν), B = (bµν), C = (Cµν), D = (dµν), denoted by3

|M|, is equal to±1, i.e. |M| = ±1.
Furthermore,

dω∗µ =
n

∑

ν=1

dωνtνµ(µ = 1, 2 . . . n)

with a non-singular matrixT = (tµν)
Now we express the periods

q∗iR =
∫

ψ∗
′

i

, dω∗R ,P
∗
iR = −

∫

ψ∗i

dω∗R
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in terms ofPµν, qµν as follows.

p∗iR = −
∑

µ

(aiµ

∫

ψµ

dω∗R − biµ

∫

ψ′µ

dω∗R)

= −
∑

µν

(aiµtµR

∫

ψµ

dων − biµtνR

∫

ψ′µ

dων)

=

∑

µν

(aiµψµνtνR + biµqµνtνR ,

q∗iR =
∑

µ

(−Ciµ

∫

ψµ

dω∗µ + diµ

∫

ψ′µ

dω∗R)

=

∑

µν

(−CiµtνR

∫

ψµ

dων + diµtνR

∫

ψ′µ

dων)

=

∑

(CiµpµνtνR + diµqµνtνR)

Rewritten in terms of the matrices, these relations give

P∗ = (p∗µν) = (AP+ BQ)T, Q∗ = (q∗µν) = (CP+ DQ)T.

As is well known, a differential of the first kind is uniquely deter-
mined by its periods

∫

ψ′µ

dω(µ = 1, 2 . . . n) so that|Q| , 0. The choice

T = Q−1 is therefore permissible and this leads to the relationsP∗ =
APQ−1

+B = AZ+B, whereZ = PQ−1, andQ∗ = CPQ−1
+D = CZ+n.

If we change only the basis of the differentials and keep the canon-
ical basis unchanged, the above relations lead to the normalized period 4

matricesP∗ = PQ−1
= Z; Q∗ = E(n,n), the unit square matrix of ordern,

as in this case we have

M =

(

A B
C D

)

=

(

E(n,n) o
o E(n,n)

)

= E(2n,2n).

We denote byX,Y, the real and imaginary parts of the matrixZ and
by Z′ the transpose ofZ. From the theory of algebraic functions it is
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known thatZ is a symmetric matrix with a positive imaginary part (i.e.
the quadratic formY ′ YY , for any real vectorY is always positive).
In symbols, these mean

Z = Z’ ; Y, 0. (2)

It is obvious that in the general case (M arbitrary, unimodular;T
arbitrary, non-singular) we have

Z∗ = P∗Q∗
−1
= (AP+ BQ)(CP+ DQ)−1

= (AZ+ B)(CZ+ D)−1

andZ∗ also satisfies the same properties asZ, viz. it is symmetric with
a positive imaginary part.

In the sequel we shall denote byY the set of all symmetric matrices
with a positive imaginary part.

In order to obtain the typical relations for the coefficients of the ma-

trix M =

(

A B
C D

)

we consider the intersection properties of the canoni-

cal systemψν, ψ′ν(ν = 1, 2 . . . n), described by means of the notion of the
characteristic (Kronecker). For every pair of closed curvesL1, L2 on
f, there exists a numberS (L1, L2) called the characteristic ofL1 with
regard toL2, which satisfies the following conditions.

1) S (L1,L2) is an integer depending only on the homology classes of
L1 andL2.

We may now defineS (L1 + L2,L3) asS (L ,L3) whereL ∼5

L1 +L2.

2) S (L1,L2) = −S (L2,L1). This implies the additivity ofS , viz.

S (L1 +L2,L ) = S (L1,L ) +S (L2,L ) (3)

3) For every canonical basisψν, ψν(ν = 1, 2 . . . n) of the homology
classes we have

S (ψµ, ψν) = S (ψ′µ, ψ
′
ν) = 0

S (ψµ, ψ
′
ν) = δµν where (4)

theδ′µνS are the Kroncekerδ′S .
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4) If L1 crossesL2, r times from the right side to the left, andl times
from the left to the right, then

S (L1,L2) = r − ℓ (5)

as far asr andℓ are computable.

As we only intend to sketch the way which leads to the typical re-
lations for M, we do not prove here the existence of a characteristic
(cf:H.Weyl, Die Idee der Riemanns chen Flanche).

From the above properties it is clear that the characteristic defines
a bilinear form on the class of all closed curves and that the matrix
associated with this bilinear form with respect to a canonical basis is

I =

(

o E(n,n)

−E(n,n) o

)

.

If we transform this basis by means of the matrixM, the matrix
associated with the above bilinear form with respect to the transformed
basis is clearlyMIM ′. But M is so chosen that the transformed basis is
again canonical so that the matrix associated with the bilinear form with
respect to the transformed basis should again beI . Hence we conclude
that

MIM ′ = I (6)

This clearly characterisesM, since the matrix associated with the6
above bilinear form with respect to a certain basis can be equal to I if
and only if that basis is canonical. As a consequence of (6) weobtain
the desire characteristic relations as

AD′ − BC′ = E; AB′ − BA′ = 0;CD′ − DC′ = 0 (7)

A matrix M =

(

A B
C D

)

is said to besymplecticif it satisfies the

relation (6) or equivalently the relation (7). We denote byS = Sn the
class of all symplectic matrices. In view of the relations

I−1
= −I

M−1
= −IM ′I (8)
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it is easily seen thatS is a group, called thesymplectic group of degree
n. The integral matricesM ∈ S form a sub-group, called theModular
Group of degree n. We denote the modular group byM = Mn. We may
note that if one replacesM by M′ in (7) one obtains

A′D −C′B = E; A′C −C′A = 0; B′D − D′B = 0 (9)

These relations are equivalent to (7). For, from (8) we have

M′ = I−1M−1I−1

= I−1M−1I (8)′

Clearly I ∈ S. SinceS is a group, the relation (8)′ signifies that
M ∈ S if and only if M′ ∈ S which is precisely the content of our claim
that the relations (7) and (9) are equivalent. In view of (8) we also obtain

M−1
=

(

D′ −B′

−C′ A′

)

(10)

With a view to fixing our ideas, we notice the following aspect
(cf. Siegel,Über die analytische Theorie der quadratischen Formen,
Ann.Math., Vol. 36(1935)). We define two pointsZ, Z∗ ∈ Y to be7

equivalent (with regard toM) if

Z∗ = M〈Z〉 = (AZ+ B)(CZ+ D)−1 (11)

for a suitable matrixM =

(

A B
C D

)

∈ M

Then our earlier discussion shows that to every closed Riemann sur-
face, there corresponds a uniquely determined set of equivalent points
in Y . The converse is not always true. LetY0 be the submanifold ofY
consisting of all sets of equivalent pointsZ, which appear from period
matrices in the manner described above. As Riemann has shown, Y0

is a complex analytic manifold depending on 3n − 3 independent com-
plex variables whenn > 1, whileY depends onn(n+ 1)/2 independent
complex variables. By amoduleof f we shall understand a complex
valued functionf(f) defined on all closed Riemann surfaces of genusn
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and possessing certain analytic properties. For instance,every function
f(Z) meromorphic inY and invariant underM is such a modul. We
call such anf a modular function of degreen, but later we shall give a
precise definition of this concept. The modular functions ofdegreen
constitute a function field. More over we shall prove that this function
field is generated by a special set of modular function

fo(Z), f1(Z), . . . fR(Z),R = n(n+ 1)/2 (12)

The degree of transcendence of this function field isk, that is to say,
the functions (12) satisfy one irreducible algebraic equation

Ao(fo, f1 . . . fk) = 0 (13)

It is possible to find a system of algebraic equations

Aν(fo, f1 . . . fR) = 0, ν = 1, 2 (n− 2)(n− 3)/2 (14)

which give a necessary and sufficient condition forZ to belong toYo.
The field of modular functions will be changed into the field ofthe
moduls by these relations. The field of moduls has the degree of tran-
scendence (n(n+ 1)/2)− ((n− 2)(n− 3)/2) = 3n− 3. Since every closed8

Riemann surface of genusn is biuniquely determined by the values of
fo, f1, . . . fn, the manifolds of all closed Riemann surfaces of genusn rep-
resent an algebraic manifold by (13) and (14). The explicit computation
of these equations is still on unsolved problem.

We proceed to investigate the arithmetic properties of the matrices
M ∈ M. First we consider the more general groupS. Let M ∈ S and

M =

(

A B
C D

)

. We call (AB) the first matrix row ofM and (C,D), the

second. Two complex matricesP, Q are said to from asymmetric pair
if we havePQ′ = QP′. We note that if (P,Q) is a symmetric pair and
|Q| , 0, thenQ−1P is a symmetric matrix.

A matrix A will be called integral if all the elements ofA are in-
tegers. A pair ofn-rowed matricesA, B will be calledcoprime if the
matrix productsGA, GB are integral when and only when the matrixG
is integral. This in particular implies that bothA, B are integral if (A, B)
is coprime.
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Let (C,D) be a coprime pair of matrices and letU1, a n-rowed and
U2, a 2n-rowed unimodular matrix. Then the matricesC1, D1 defined
by (C1D1) = U1(C,D)U2 are coprime too.

Indeed,GC1, GD1 are integral if and only if (GU1C,GU1D)U2 are
integral which in turn is true if and only ifGU1C, GU1D are integral
asU2 is unimodular. Since by assumption (C,D) is a coprime pair, the
above holds if and only ifGU1 and consequentlyG are integral, and this
proves our contention.

We will now chooseU1 andU2 so thatD1 = 0 andC1 becomes a
diagonal matrix with non-negative integers as diagonal elements. The
choice is possible by the elementary divisor theorem. Then,of necessity
C1 = E, as otherwise we can always find a non integral matrixG such
that GC1 is integral, contradicting the fact the pair (C1, 0) is coprime.9

Thus we obtain

(CD)U2 = U −1
1 (C1,D1) = U −1

1 (E, 0) = (U −1
1 , 0)

which shows that the matrix (C,D) is of rankn. This says even more,
viz. that there exist integral matricesX, Y satisfying the relation

CX+ DY = E (15)

Indeed, we have only to defineX, Y by
(

X
Y

)

= U2

(

U1

0

)

and then

CX+ DY = (CD)

(

X
Y

)

= (CD)U2

(

U1

0

)

= E.

The converse is true too, viz. if (C,D) is a pair of integral matrices
for which the equation (15) is solvable for integralX, Y, then (C,D) is a
coprime pair. For, in this case ifG is integral thenGC, GD are trivially
integral, while if GC, GD are integral, thenGCX, GDY are integral
which in turn implies thatGCX+GDY= GE = G is integral.

We now note that matrix rows of a matrixM =

(

A B
C D

)

∈ M consist

of coprime pairs in view of our above inference and relations(7). They
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are trivially symmetric pairs, again a consequence of (7). The partial
converse is also true, viz. every symmetric coprime pair (C,D) is a
second matrix row of some matrixM ∈ M. For, we can determine
integralX, Y such thatCX+ DY = E and then we have only to set

A = Y′ + X′YC, B = −X′ + X′YD.

Then

AB′ − BA′ = (Y′ + X′YC)(−X + D′Y′X) − (−X′ + X′YD)(Y +C′Y′X)

= (X′Y − Y′X) + (X′C′ + Y′D′)Y′X − X′Y(CX+ DY)

= (X′Y − Y′X) + Y′X − X′Y = 0

and 10

AD′ − BC′ = (Y′ + X′YC)D′ − (−X′ + X′YD)C′

= Y′D′ + X′C′ = (CX+ DY)′ = E

which show thatA, B, C, D satisfy (7) and consequently

M =

(

A B
C D

)

∈ M.

Let us inverstigate how far (C,D) determinesM uniquely. LetM,
M1 be two modular matrices with the same second matrix row, sayM =
(

A B
C D

)

,Mi =

(

A1 B1

C D

)

. Then

M1M−1
=

(

A1 B1

C D

) (

D′ −B′

−C A′

)

=

(

E S
0 R

)

whereR= −CB′ + DA′, S = −A1B′ + B1A′.
SinceM1M−i ∈ M (M being a group), it is necessary thatR = E

andS = S′. ThusM1 =

(

E S
0 E

)

M whereS is a symmetric matrix

conversely also, ifM,M1 ∈ M andM1 =

(

E S
0 E

)

M for a symmetric
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matrixS, thenM andM1 have the same second matrix row as is seen by
direct multiplication. LetT be the Abelian sub-group ofM consisting

of all matrices of the form

(

E S
0 E

)

whereS = S′. Then the class of

all modular matrices with different second rows provides a complete
representative system of the set of all right cosets ofT inM.

We proceed to consider another sub-groupA ofM of which T will
be a normal sub-group. This groupA consists precisely of all elements

M ∈ M of the formM−
(

A B
0 D

)

. The conditions (7) will then imply

that AD′ = E and AB′ = BA′. The first condition means thatD′ =
A−1. SinceA, D′ are integral matrices it is now immediate that they are
unimodular, sayA′ = u andD = u−1. Let S = Bu = BA′ = AB′. The
second condition then implies thatS, defined as above, is symmetric.
ThusA is the sub-group ofM consisting precisely of the matrices of the

formM0 =

(

u′ su−1

0 u−1

)

whereS is symmetric andu is unimodular. It is

easily seen thatT is a normal sub-group ofA. Then since the mapping

which taken the matrix

(

A B
0 D

)

∈ M to

(

A 0
0 D

)

is a homomorphism of11

which T is the kernel, it follows thatA/T is isomorphic to the group of
matrices

(

u′ 0
0 u−1

)

, u− unimodular. (16)

Let us decomposeM into right cosets moduloA. The matricesM =
(

A B
C D

)

andM1 =

(

A1 B1

C1 D1

)

belong to the same right coset ofA if and

only ifMoM =M1 for someMo ∈ A.
This implies that

u(C1,D1) = (C,D), u− unimodular, (17)

and henceCD′1 = uC1D′1 = uD1C′1 = DC′1
Thus we have

CD′1 = DC′1. (18)
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On the other hand, ifM,M1 ∈ M be any two matrices for which

(18) holds, thenMM−1
1 =

(

∗ ∗
0 ∗

)

so thatMM−1
1 ∈ A; in other words

M andM1 determine the same right coset ofA. Thus (17) and (18) are
equivalent and either of them gives a necessary and sufficient condition
thatM andM1 belong to the same right coset moduloA. Let us now
define two pairs (C,D), (C1,D1) to beassociatedif

1. Both of them are symmetric co-prime pairs and

2. CD′1 = DC′1

This relation of being associated pairs is reflexive, symmetric and
transitive - in other words, and equivalence relation. We can now say
that in the cosetAM lie exactly those matrices whose second matrix
rows are associated with the second matrix row ofM.

Let {C,D} denote the class of all coprime symmetric pairs of ma-
trices associated with (C,D). Let C be of rankr, O < r ≤ n. By the
elementary divisor theorem, we can can determine unimodular matrices
u1, u2 such that

u1C =

(

C1 0
0 0

)

u′2, |C1| , 0 (19)

HereC1 is ar × r square matrix. 12

In analogy with (19) we write

u1D =

(

D1 D2

D3 D4

)

u−1
2 (19)′

and determine the nature ofDi , i = 1, 2, 3, 4.
SinceCD′ = DC′, we have

(

C1 0
0 0

) (

D1 D3

D2 D4

)

=

(

D1 D2

D3 D4

) (

C′2 0
0 0

)

which givesC1D′1 = D1C′1 andD3 = 0
We now contend thatD4 is unimodular. For, in view of (15) we need

only verify that the pair (D4, 0) is coprime. Let thenGD4 be integral.
Of necessity,G is a matrix with (n − r) columns. We completeG with
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zeros to a matrix (O G) with n columns. From (19) and ((19)′) we
obtain that (O G)u1C and (OG)u1D are integral. But (C,D) is a coprime
pair and consequently (u1C, u1D) is also coprime, so thatG should be
integral. It is now immediate that (D4, 0) is coprime and consequently

D4 is unimodular. Let nowu1 =

(

E D2

0 D4

)

u∗1. Thenu∗1 is unimodular.

Also

u∗1C =

(

E D2

0 D4

)−1

u1C =

(

E −D2D−1
4

0 D−1
4

) (

C1 0
0 0

)

u′2

=

(

C1 0
0 0

)

u′2

and

u∗1D =

(

E −D2D−1
4

0 D−1
4

)

u1D =

(

E −D2D−1
4

0 D−1
4

) (

D1 D2

0 D4

)

u−1
2

=

(

D1 0
0 E

)

u−1
2

We will now show that the pairC1,D1) is coprime. LetGC1,GD1

be integral. Then (G O)u∗1C and (G O)u∗1D are integral. But (C,D) is
a coprime pair and hence also (u∗1C, u∗1D). Hence we conclude thatG
is integral. It is now immediate that (C1,D1) is coprime too. We may
summarise our results into the following statement:

If (C,D) is a coprime symmetric pair with rankC = r, O < r ≤ n,13

there exist square matricesC1, D1 of orderr which again form a coprime
symmetric pair, and unimodular matricesu1, u2 such that

u1C =

(

C1 0
0 0

)

u′2, u1D =

(

D1 0
0 E

)

u−1
2 (20)

We will now fix u2 more precisely. If we replaceu2 in (20) by a

matrixu2

(

u3 0
0 E

)

whereu3 is anr×r unimodular matrix, we still obtain

the same form. This replacement amounts to changingQ to Qu3 where
Q consists of the firstr columns ofu2. We shall call two matricesQ,
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Q1 right associatedif Q1 = Qu3 for some unimodular matrixu3. Let
{Q} denote the class of all matrices right associated withQ. A change of

u1 to u∗1 =

(

u4 0
0 E

)

u1 whereu4 is unimodular carries the pair (C1,D1)

into (u4C1, u4D1) ∈ {C1,D1}. A proper choice ofu3 and will transform
Q into a fixed matrix in the classQ andu4 the pair (C1,D1) into a fixed
pair in {C1,D1}. This settles how forC1, D1 andu1 characteriseC, D in
(20). We may note that the matricesQ which enter into our discussion
are precisely those that can be completed to a unimodular matrix (Q R).
A matrix with this property will be calledprimitive. The elementary

divisors of a primitive matrix are all equal to 1 asu−1
2 Q =

(

E
0

)

shows.

Conversely, if all the elementary divisors ofQ are equal to 1, thenQ
is primitive. For, then we can determine unimodular matrices u2, u3 so

thatQ = u2

(

E
0

)

u3. We writeu2 = (Q1,R1) whereQ1 is r-columned and

obtain

(Q R1) = (Q1u3R1) = u2

(

u3 0
0 E

)

We use the notationQ = Q(n,n) to signify thatQ is a matrix withn
rows andr columns. We will denoteQ(n,n) simply byQ(n). A parametric
representation of all classes{C,D} of coprime symmetric pairsC, D,
with rankC = r, 0 < r ≤ n is give by

Lemma 1. Let Q= Q(n,r) run through a complete representative system14

of all primitive classes{Q} of n×r matrices and let(C1,D1) run indepen-
dently through a complete representative system of all classes{C1,D1}
of coprime symmetric pairs of matrices C1 = C(r)

1 and D1 = D(r)
1 with

rank C1 = r. To every Q we make correspond only one of the matrices,
say u2, obtained by completing Q arbitrarily to a unimodular matrix.
Then we obtain a complete representative system of all classes {C,D}
of coprime symmetric pairs(C,D) where C= C(n), D = D(n) and rank
C = r, in the form

C =

(

C1 0
0 0

)

u′2,D =

(

D1 0
0 E

)

u−1
2 , (21)

different choices of C1, D1, Q Leading to different classes.
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Proof. Only the last part of the Lemma remains to be proved.

Let C =

(

C1 0
0 O

)

u′2,D =

(

D1 0
0 E

)

u−1
2

and

C∗ =

(

C∗1 0
0 0

)

u∗
′

2 ,D
∗
=

(

D∗1 0
0 E

)

u∗
−1

2

and let{C,D} = {C∗,D∗} i.e. to say

C∗D′ − D∗C′ = 0 (22)

�

Then we have to show that{C1,D1} = {C∗1,D∗1} and{Q} = {Q∗} in
an obvious notation.

From (22) we get

(

C∗1 0
0 0

)

u∗
′

2 u−1
2

(

D′1 0
0 E

)

=

(

D∗1 0
0 E

)

u∗
−1

2 u2

(

C′1 0
0 0

)

or with the notation

u∗
′

2 u
′−1
2 =

(

v1 v2

v3 v4

)

, u∗
−1

2 u2 =

(

W1 W2

W3 W4

)

We have

(

C∗1V1D′1 C∗1V2

0 0

)

=

(

D∗W1C′1 0
W3C1 0

)

from which it follows15

that C∗1V2 andW3C′1 and consequentlyV2 andW3 are zero (asC1, C∗1
are nonsingular).

Sinceu∗
−1

2 u2 is unimodular, the above implies thatW1 is unimodular.

Let u2 = (Q R) andu∗2 = (Q∗R∗) whereQ = Q(n,r) andQ∗ = Q∗
(n,r)

. Then

(Q R) = u2 = u∗2

(

W1 W2

W3 W4

)

= (Q∗R∗)

(

W1 W2

0 W4

)

= (Q∗W1∗)

So thatQ = Q∗W1. This in turn implies that{Q} = {Q∗} which
is one of the two results we were after. SinceQ has been assumed to
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run through a representative system of the classes{Q}, it follows that
Q = Q∗ and thereforeu2 = u∗2. This in its implies thatW1 = E and
V1 = E. HenceC∗1D′1 = D∗1C

′
1 or {C1,D1} = {C∗1,D∗1}. If we assume

that just one element is taken from each class{C,D}, then of course we
should haveC1 = C∗1 andD1 = D∗1.

It remains to prove that the class{C,D} does not depend on the man-
ner in whichQ is completed to a unimodular matrix. For this, we sup-
pose in the above thatC1 = C∗1 and D1 = D∗1 and Q = Q∗. Then if
follows thatW1 = E, W3 = 0, V1 = E andV2 = 0. We have to deduce
that{C,D} = {C∗,D∗}, whateverR, R∗ be. Now

C∗D′ − D∗C′ =

(

C∗1 0
0 0

) (

V1 V2

V3 V4

) (

D′1 0
0 E

)

−
(

D1 0
0 E

) (

W1 W2

W3 W4

) (

C′ 0
0 0

)

=

(

C∗1D′1 0
0 0

)

−
(

D∗1C
′
1 0

0 0

)

= 0

This completes the proof.





Chapter 2

The Symplectic group of
degreen considered as a
Group of mappings

Let Z be a point of the manifoldY defined byZ = Z′, Y > 0(Z = X+ iY) 16

andM, a symplectic matrix:M =

(

A B
C D

)

∈ S. We prove that the

transformation

Z→M〈Z〉 = (AZ+ B)(CZ+ D)−1 (23)

is a 1− 1 mapping ofY onto itself. For brevity, we put

P = AZ+ B,Q = CZ+ D

In view of (9) we obtain

1
2i

(P′Q̄− Q′P̄) =
1
2i

(

(Z′A′ + B′)(CZ̄ + D) − (Z′C′ + D′)(AZ̄ + B)
)

=
1
2i

(Z′ − Z̄) =
1
2i

(Z − Z̄) = Y > O

Also the matrixCZ+D is non-singular so that the above mapping is
well defined. For, ifz be anyn-rowed complex column which satisfies

19
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the equationQz = 0, thenQ̄z̄ = 0 andz′Q′ = 0 so that

z′Yz̄ =
1
2i

(z′P′Q̄z̄ − z′Q′P̄z̄) = 0. But Y > 0.

Hence it follows thatz = 0 and this in turn implies thatQ is non-singular.
Let thenZ1 = PQ−1. In view of (9) It follows that

P′Q = (Z′A′ + B′)(CZ+ D) = (Z′C′ + D′)(AZ+ B) = Q′P

in other words,Z1 is a symmetric matrix.
Further

Y1 =
1
2i

(Z1 − Z̄1) =
1
2i

(Z′1 − Z̄1) =
1
2i

(Q
′−1P′ − P̄Q̄−1)

=
1
2i

Q′−1(P′Q̄− Q′P̄)Q̄′−1
= Q′−1YQ̄−1 > 0 (24)

Thus it follows thatZ1 ∈ Y ; in other words, the transformation (23)
takesY into Y .

A simple computation shows thatM1M2〈Z〉 =M1〈M2〈Z〉〉,Mi ∈
S. SinceS is a group implies that the mappingZ → M < Z > is17

actually onto and that this mapping has an inverse.

We showed that|CZ+ D| , o for any

(

A B
C D

)

εS. SpecialisingA,D

to be 0, andB,−C to beE, the above implies that, forZεY

|Z| , 0 (25)

Now for everyZ ∈ Y , Z+ iE also lies inY so that we conclude that

|Z + iE| , o,Z ∈ Y (25)′

We can then introduce the mapping

W = T < Z > with T =

(

E −iE
E iE

)

i.e W= (Z − iE)(Z + iE)−1

LetK be the domain onto whichY in mapped byT. Then

W− iE = (Z − iE)(Z + iE)−1 − E
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= {(Z + iE) − (Z − iE)}(Z + iE)−1
= −2i(Z + iE)−1

so that|W− iE| , 0 AlsoW(Z + iE) = Z − iE i.e i(E +W) = (E −W)Z
so thatZ = i(E − W)−1(E + W). This in particular implies that the
correspondence betweenY andK is 1−1. Also is it easily seen that the
relationsZ = Z′ andW =W′ are equivalent. Now

E −WW̄ = E − (Z + iE)−1(Z − iE)(Z̄ + iE)(Z̄ − iE)−1

= (Z + iE)−1{(Z + iE)(Z̄ − iE) − (Z + iE)(Z̄ + iE)}(Z̄ − iE)−1

= Zi(Z + iE)−1(Z̄ − Z)(Z̄ − iE)−1

= 4(Z + iE)−1Y(Z̄ − iE)−1 > 0

Hencez′(E −W′W̄)z̄ is a hermitian form for any complex columnz.
ThusW = T < Z > satisfies the relations.

W =W′,E −WW̄ > o (26)

We claim that these relations characterise the elements ofK. For, 18

if W is any matrix satisfying relations (26), then the matrixE − W is
non-singular, since the relation (E −W)z = 0 for any complex columnz
implies along with (26) thatz′W = z′ andW̄z̄ = z̄ so thatz′(E−WW̄)z̄ = 0
and consequentlyz = 0. Hence the matrixZ = i(E −W)−1(E +W) is
well defined, and precisely as in the earlier case it can be shown that
Z ∈ H and thatW = T < z >. This allows us to conclude that the
domainK is characterised by the relations (26), viz.W =W′E−WW̄ >

0 for any W ∈ K. This domain is one of the four main types ofE.
Cartan’s irreducible bounded symmetric domains. We may remark in
this connection that the domainY is called thegeneralized upper half
planeand the domainK, thegeneralised unit circle.

We have seen that the symplectic substitutions (24) form a group
of 1 − 1 mappings ofY onto itself. By means of the transformation
W = T < Z > which is a 1− 1 map ofY onto K, the above group
can be transformed into a group of 1− 1 mappings ofK onto itself. In
fact, which corresponds to the mappingZ → M < Z > of Y will be
given byW → M1 < W > whereM < T−1 < W >>= T−1 < M1 <

W >>. In other wordsM1 < W >= TMT−1 < W > (each of the above
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groups will be shown to be full group of analytic homeomorphisms of
the respective domain). Thus to the symplectic matrixM corresponds
the matrixM1 = T MT−1 and to the groupS corresponds the group
S1 = TS T−1. Using (6) which characterises the elements ofS we shall
obtain a characterisation of the elements ofSl. M ∈ S is characterised

byM = M̄,M′IM = I , I

(

0 E
−E 0

)

WithM = T−1M1T the above give

M′1T′−1IT−1M1 = T′−1IT−1

M′1T′−1I T̄−1M̄1 = T′−1I T̄−1















.
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By a simple computation we find that

T−1
=

1
2i

(

iE iE
−E E

)

,−T′−1IT−1
=

i
2

I ,T′−1I T̄−1
=

i
2

H (27)

where

H =

(

E 0
0 −E

)

ThusM1 can be characterised by

M′1IM1 = I ,M′1HM̄,= H

We can replace the second relation, in view of the first, by

IM−1
1 I−1HM̄1 = H or I−1HM̄1 =M1I−1H.

With K = I−1H =

(

0 E
E 0

)

we obtain finally the relations

M′1IM1 = I ,KM̄1 =M1k (28)

The decompositionM1 =

(

A1 B1

C1 D1

)

leads to the relations

B1 = C̄1,D1 = Ā1,A
′
1ĀI −C′1C̄1 = E,A′1C1 = C′1A1 (29)

The relations (28) and (29) are clearly equivalent.
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We now show that the domainsY andK are homogeneous, in other
words, that the groupsS andS1 are transitive in their respective do-
mains. It clearly suffices to prove for one, sayK, and this in turn
only requires the determination of a substitutionM1 which takes the

point 0 to any assigned pointW ∈ K. If M1 =

(

A1 B1

C1 D1

)

, the relation

W =M1 < 0 > implies thatW = B1D−1
1 i.e B1 =WD1. Then in view of

(29) we should haveC1 = WD̄1, A1 = D̄1 andD̄1D1 − D̄1W̄WD1 = E.
ConsequentlyD̄′1(E − W̄′W)D1 = E or D1D̄1 = (E − W̄′W)−1. The last
equation is certainly solvable forD1 asE − W̄′W is positive Hermitian.
If D1 is obtained as any solution of the above equation, then the earlier 20

equations defineA1, B1 andC1 and the matrixM1 =

(

A1 B1

C1 D1

)

will

have the desired properties.
We proceed to establish a result we promised earlier, viz that the

group of symplectic substitutions is the full group of analytic mapping
of the domainY onto itself.

By ananalytic mapping Z→ Z× of Y onto itself, we mean a map-
ping with the following properties

i) it is topological,

ii) Z∗µν = Z∗µν(Z) is a regular function of the independent elements
Zµν(µ ≤ ν) for µν = 1, 2 . . . η

iii) Zµν = Zµν(Z∗) is a regular function of the independent variables
Z∗µν(µ ≤ ν) of Z∗ for µν = 1, 2 . . . η.

Then every symplectic substitutionZ → Z∗ = M < Z > is clearly
and analytic mapping ofY . We prove the converse in the following

Theorem 1. Every analytic mapping ofY onto itself is a symplectic
substitution

In view of the 1− 1 correspondence betweenY andK by means of
the transformationZ → T < Z >, the above will imply a similar result
of the domainK- in fact, it suffices to prove the corresponding result for
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K to infer Theorem 1. Since the groupS1 is transitive with regard toK
we may even assume that the given analytic mapping

Wo→W∗o (30)

whereWo = (ωµν) of K has 0 as a fixed point. LetW = tWo wheret is a
complex variable and let the characteristic roots of the hermitian matrix
W′0W̄ ber1, r2 . . . rn whereo < r1 ≤ r2 ≤ · · · ≤ rn.

It is well known that there exists a unitary matrixu such that

A′W′oW̄oĀ =





















r1 0
r2..

0 rn
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We then have

A′(E −WW̄)Ā = E − tt̄































r1 0
r2

rn

0































> 0

if and only if tt̄rn < 1. But for t = 1 W = Wo and we know that
E −W′oW̄o. Hencern < 1.It is now immediate that if|t| ≤ 1 thenE −
W′W̄ > o and consequentlyW ∈ K. Then to each pointW = t Wo

with |t| ≤ 1 there corresponds an image pointW∗ ∈ K. The mapping
: t → (two)∗ =W∗ is regular function of the single variablet in tt̄rn < 1,
meaning each element ofW∗ is a regular function oft, so that there
exists a power series expansion for the elements ofW∗ in the form

W∗ =
∞
∑

K=1

tKW∗
K

(31)

which converges fortt̄rn < 1 and, a fortiori for,|t| ≤ 11 whereW∗
K

for eachK is a matrix whose elements are functions (polynomials) of
the elements ofWo alone. One the other hand, the elements ofW∗ are
regular functions of the variablestωµν so that they may be developed
into a power series intωµν (about the origin) converging for sufficiently
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small values of the variables. But theωµν occurring inWo ∈ K can all
be shown to be uniformly bounded so that we need only restrict|t| to be
small while theω′µνs may be arbitrary in their domain. Since a power
series expansion (for the elements 0W∗) is unique, it follows that (31)
again is the desired power series and thattKW∗

K
is precisely the aggregate22

of all termsK in it. Consequently, the series

W∗o =
∞
∑

K=1

W∗K (32)

obtained from (31) by specialisingt, converges everywhere inK if we do
not spilt up the polynomials which are elements ofW∗

K
into their single

terms. SinceE −W∗W̄∗ > 0 for tt̄ = 1,we obtain by integration over the
circle tt̄ = 1 that

1
2πi

∫

tt̄=1

(E −W∗W̄∗)
dt
t
> 0 (33)

where by
∫

Adt with any matrix A = (aµν(t)) we mean the matrix
(
∫

aµνdt). Substituting forW∗ the series (31) which converges uniformly
for |t| ≤ 1, termwise integration yields

E −
∞
∑

K=1

W∗
K
W̄∗
K
> 0 (34)

the rest of the terms all vanishing. In particular we have

E −W∗1W̄∗1 > 0 (35)

The elements ofW∗
K

are homogeneous polynomials of degreeK in
ωµν(µ ≤ ν) so that then(n + 1)/2 elements ofW∗1 = (W(1)∗

µν) are liner
functions of the independent elementsωµν(µ ≤ ν). Let D be the de-
terminant of this linear transformation. SinceW∗1 is the linear part of
the power series (32), the functional determinant of then(n + 1)/2 in-
dependent elements ofW∗o with respect to the variablesωµν(µ ≤ ν) at
the pointWo = 0 is alsoD. As the mappingWo → W∗o is invertible it
follows thatD , 0. Also if we replace the mappingWo → W∗o by its
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inverse, the determinant change intoD−1 so that we can, without loss of
generality,assume thatDD̄ ≥ 1.

Consider now the liner mappingϕ : Wo→W∗1. LetK1 the image of
K byϕ. We denote byϑ(K1) the Euclidean volumes ofK andK1, the real
and imaginary parts ofωµν being the rectangular cartesian coordinates.
Then we haveϑ(K1) = DD̄ϑ(K) ≥ ϑ(K). But K1 ⊂ K so thatϑ(K1) ≤
ϑ(K). Hence it follows thatϑ(K) = ϑ(K1) andDD̄ = 1. We are going23

to conclude from this thatK = K1. Our argument is as follows. Let
K∗ = Exterior K = (K̄)c andK∗1 = Ext K1 = (K̄)c the superscript ‘c′

denoting complements, and the bars denoting the closures. SinceK1 ⊂
K andϑ(K1) = ϑ(K) it is immediate thatϑ(Interior (K − K1) = 0) and
consequently.

Int (K − Ki) = 0 (void). A point ofK is then either a point ofK1

or a limit point ofK1 and soK̄ = K̄1. We need only show then that the
boundaryBdK = BdK1. Being a linear map,ϕ is a topological map in
the large so that if it mapsK ontoK1 then it mapsBdK ontoBdK1, Ext.
K onto Ext.K1, andBd. (Ext. K1) ontoBd. (ExtK1). Thus

Bd.K1 = ϕ(Bd.K) = ϕ(Bd.K∗) = Bd.K∗1 = Bd.(K1)c

= Bd.(K̄)c
= Bd.K∗ = Bd.K.

We have incidentally shown thatϕ mapsBd.K onto itself.
We prove in Lemma 2 that any complex symmetric matrix can be

represented in the formWo = u′Pu, u-unitary andP, a diagonal matrix
with diagonal elementsp1, p2 . . . pn wherep2

2, ν− 1, 2 . . . n are the char-

acteristic roots ofWoW̄o. ThenE−WoW̄o = u′
(

E−





















2 0
pν
0





















)

ū so that

Wo ∈ K if and only if p2
ν < 1, ν = 1, 2 . . . n. The boundary points ofK

are therefore precisely those for whichp2
ν ≤ 1, ν = 1, 2 . . . n, the equal-

ity holding for at least oneν. Sinceϕ(Bd.K) = Bd.K it is immediate that
|E −W∗1W̄∗1| = 0 for W0 ∈ Bd.K. In other words,|E −W∗1W̄∗1| considered
a polynomial inpν, ν = 1, 2, . . . n vanishes ifp2

ν = 1 for someν. Hence

it is divisible by
n
∏

ν=1
(1 − p2

ν). Considering the degree of|E −W∗1W̄∗1| in

the p′i swe have|E −W∗1W̄∗1| = c
n
∏

ν=1
(1− p2

ν), c− a constant. The choice24
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of P as 0 leads to the determination ofc to be 1. Hence

|E −W∗1W̄∗1| =
n

∏

ν=1

(1− p2
ν) = |EWoW̄o| (36)

ReplacingWo in (36) by
1
√
λ

Wo, in view of the linearity ofϕ : Wo→
W∗1 we obtain

|λEWoW̄o| = |λE −W∗1W̄∗1|

identically inλ and therefore thatWoW̄0 andW∗1W̄∗1 have the same char-
acteristic roots. Lemma 2 (proved below) will then imply that

W∗1 = u′Wou (37)

for some unitary matrixu. We stop here to prove

Lemma 2. Every complex symmetric matrix Wo admits a representation

of the kind Wo = u′Pu with u′u = E, P=





























p1 0
p2
...

0 pn





























p2
ν being the

characteristic roots of WoW̄o.

Proof. WoW̄o being hermitian, there exists a unitary matrixu1 such that
WoW̄o = u′1P2ū. ThenF = u′−1

1 Wou−1
1 is symmetric and satisfies the

relationFF̄ = P2. Writing F = F1 + iF2 (Fν being real), it follows that
F1F2−F2F1 = 0. Hence by a well know result, an orthogonal matrixQ
can be found which transformF1 andF2 simultaneously into diagonal
matricesQ′F1Q andQ′F2Q. ThenR = Q′FQ is also diagonal. Ifrν,
ν = 1, 2, . . . n be the diagonal elements ofR the relationRR̄ = Q′P2Q
implies thatrνr̄ν(ν = 1, 2, . . . n) are identical withP2

ν(ν = 1, 2, . . . η).
Then we can find a unitary matrixu2 such thatR = u′2pu2. Now Wo =

u′1Fu1 = u′1Q′−1RQ−1u1 = u′1Q′−1u′2pu2Q−1u1. Taking u = u′1Q−1u′2 25

we obtainWo = u′Pu. Clearlyu is a unitary matrix. �

We revert now to the proof of the main theorem. From (34), we have

E −W∗1W̄∗1 −W∗
K
W̄∗
K
> 0 (38)



28 2. The Symplectic group of degreen ....

for K = 2, 3, . . ., and anyWo. Choosing in particularWo = ucis with
o < u < 1 ands= s′ = s̄we get from (37) that

W∗1W̄∗1 = uu′eisuuū′e−isū = u2eise−is
= u2E

But WoW̄o = u2E and form (38)

(1− u2)EW∗
K
− W̄∗

K
> O for K > 1, o < u < 1.

Letting u→ 1 this givesW∗
K
= 0 for K > 1, Woeis, S = S′S̄

Since the elements ofW∗
K

are analytic functions of the elements of
S and they vanish for real values of these elements, it followsthat they
vanish for complexS too. Since the mappingS → Wo = eis maps
a neighborhood of 0 onto a neighborhood ofE so thatW∗

K
= 0 in a

neighborhood ofE, so thatW∗
K
= 0 in a neighborhood of forK > 1,

we conclude thatW∗
K
= 0 identically forK > 1, andW∗o =

∑

W∗
K
= W∗1.

Thus the mappingWo→W∗0 =W∗1 is linear. If now we show that in (37)
the matrixu does not depend onWo, thenW∗1 = u′Wou = M1 < Wo >

whereM1 =

(

u′ 0
0 u−1

)

∈ S1 and our theorem would have been proved.

We proceed to establish this.
Let

W∗1 =W∗1(Wo) =
∑

µ≤γ
ωµνAµν (39)

and introduce
W1 =W1(Wo) =

∑

µ≤γ
ωµνĀµν (40)

whereAµν are constant matrices. Then̄W∗1 = W1(W̄o) and W∗1W̄∗1 =26

u′WoW̄oū = EWoW̄o = E HenceW∗1(Wo)W1(W−1
o ) = E for Wo such

that WoW̄o = E. In particular then, this is true forWo = eis where
S = S′ = S̄ SinceW1 andW∗1 depend analytically upon their arguments,
this relation holds for complex symmetricS too, that is to say identically
in Wo, by an earlier argument.

For convenience, we shall usually writeW2 instead ofWνν andAν
instead ofAνν.
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Let

Woo





















ω1 o
ω2

o ωn





















Wo1 =Wo −Woo.

Employing the Taylor Series Expansion in the neighborhood of
Wo1 = 0 we find

W−1
o = (Woo+Wo1)−1

=W−1
oo (E +Wo1W−1

oo )−1

=W−1
oo −W−1

oo Wo1W−1
oo + · · ·

Using the linearity ofW1 andW∗1 we therefore get

E =W∗1(Wo)W1(W−1
o )

= (W∗1(Woo) +W∗1(W01))(W1(W−1
oo ) −W1(W−1

oo Wo1W−1
oo ) + · · · )

Comparing the terms of degree 0 and 1 we obtain

W∗1(Woo)W1(W−1
oo ) = E (41)

W∗1(Woo)W1(W−1
oo Wo1W−1

oo ) = W∗1(Wo1)W11(W
−1
oo ) (42)

The first equation means
∑n
µ,ν=1ωµω

−1
ν AµĀν = E identically inων,

ν = 1, 2 . . . n
This leads to

AµĀν = 0, µ , ν (43)

Let the ‘u’ which enters in (37) corresponding toWo1 = 0 be denoted 27

by uo

From (37) and (39) we get

n
∑

ν=1

ωνAν = u′oWoouo

From this, in view of (43) we infer that

n
∑

ν=1

ωνω̄νAνĀν = u′oWooW̄ooūo and consequently
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|λE −
n

∑

ν=1

ωνω̄νAνĀν| = |λE −WoW̄oo|

identically inλ. Choosingων = 1 andων = 0 for µ , ν the above gives

|λE − AνĀν| =
∣

∣

∣

∣

∣

λE −





















o o
1

o o





















∣

∣

∣

∣

∣

so that the characteristic roots ofAνĀν are 1, 0, 0 . . . 0. In virtue of
Lemma 2, we can assert the existence of a unitary matrixν such that

A1 = ν
′































1 o
o

o
o o































ν

Without loss of generality we can assumeν = E, as in the alterna-
tive case, we need only consider the mapping ¯νW∗oν̄ insteadW∗o. Then
AνĀν = AνA1 = 0 for ν > 1 by (43) which means that forν > 1

Aν =

(

o o
o B(n.1)

ν

)

Successive application of this argument shows that we may assume

Aν











































o
o

1
o

o











































(ν = 1, 2 . . . n)

Then we shall have
∑n
ν=1 Aν = E and28

W∗1(Woo) =
n

∑

ν=1

ωνAν =Woo and

W∗1(Woo) =
n

∑

ν=1

ωνAν =Woo
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From (44) we then conclude that

W∗1(Wo1) =WooW1(W−1
oo Wo1W−1

oo )Woo

Now W∗1(Wo1) =
∑

µ<ν

ωµνAµν (44)

and WooW1(W−1
oo WoW−1

oo )Wo =

∑

µν

ωµν

ωµων
WooĀµνWoo (45)

A comparison of (44) and (45) yields

Aµν =
1

ωµων
WooĀµνWoo

or ωµωνAµν =WooĀµνWoo (µ < ν).

Since this holds identically inWoo, settingWoo = E, this in particu-
lar implies thatAµν = Āµν i.e Aµν is real, and furtherAµν = aµν(eµν+eνµ)
with real aµν,whereeµν denotes the matrix with 1 at the (µ, νth) place

and 0 else where. SinceAµ
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we have in particularaνν = 1
2.

Now W∗1 =
∑

µ≤νωµνAµν = (a∗µνωµν) with real a∗µν anda∗µν = 1. In
view of (37), the expression|W∗1||Wo|−1 has a constant absolute value.
On the other hand it is a rational function ofωµν. Consequently it is
a constant. Since the productω1ω2 . . . ωn appears in both the deter-
minants with the factor 1, it is immediate that|W∗1| = |Wo|. Since the
matrix (±δµν) is unitary, we can assume thata∗1ν ≥ 0 for ν > 1. The 28

term (ω1ωµων)−1ωω1µωµν has in|W∗1| the coefficient 2a∗µν(1 < µ < ν)
and in|W0|, the coefficient 2. Hencea∗µν = 1(1 < µ < ν). Also the term
(ω1ων)−1ωω2

1ν has in|W∗1| the coefficient,−a∗21ν and in |Wo|, the coef-
ficient −1. Hencea∗1ν = 1 for ν =≥ 1. We already know thata∗νν = 1.
Thus we conclude thatW∗1 = (ωµν) = Wo. In other words we have
shown that with the aid of appropriate symplectic transformations, any
analytic mapWo→W∗o of Y ontoY can be reduce to the identity map
so that the analytic map we started with must itself be symplectic. This
completes the proof of theorem 1.





Chapter 3

Reduction Theory of Positive
Definite Quadratic Forms

By the reduction of a positive definite quadratic from we shall under- 29

stand the reduction of the corresponding matrixY = Y(n) > 0. Inves-
tigations in this direction are needed if we wish to construct a suitable
fundamental domain for the modular group of degreen in Y . Let Y
be the domain of all real symmetric matricesY andP the domain of
all Y > 0 in Y . Two matricesY,Y1 ∈ Y are said to be equivalent if
Y1 = Y[u] = u′Yu for some unimodular matrixu. We consider only the
classes of equivalent positive definite matrices, and the theory of reduc-
tion consists in fixing in each class a typical element, called a reduced
matrix, satisfying certain extremal properties.

Let Y > 0 be a given matrix inY . Choose a primitive column
ũ1 such thatY[ũ1] = ũ′1Yũ1 is a minimum for all primitive (integral)
columns. Such a ˜u1 clearly exists. Consider now all integral column
vectorsũ such that (˜u1ũ) is primitive and choose ˜u = ũ2 so thatY[ũ2]
is a minimum. We can further assume that ˜u1Yũ2 ≥ 0 as otherwise−ũ2

will serve the role of ˜u2 and satisfy this. Continuing in this way, let
ũ1, ũ2, . . . , ũr be already determined so that in particular (˜u1, ũ2 . . . ũr ) is
primitive. Then we choose ˜ur+1 such that

i) ũ′ryũr+1 ≥ 0

33
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ii) ( ũ1ũ2 . . . ũr+1) is primitive and

iii) y[ur+1] is a minimum among those ˜ur+1 satisfying (i) and (ii).

In this way we obtain a unimodular matrixu = (ũ1, ũ2 . . . ũn) with
some extremal properties and we callR= y[u] a reduced matrix

We shall now obtain explicitly the reduction conditions on the ele-30

mentsrµν of a reduced matrixR
Let uK be a unimodular matrix which has the same first (K − 1)

columns asu. Such anuK can be represented by

uK = u

(

E A
0 B

)

whereE = E(K−1), A integral andB, unimodular.LetYK be theKth col-
umn ofu−1uK. Then the first column ofB is formed just by the (n−K+1)
last elementsgK, gK+1 . . . gn of YK so that these elements are coprime.
Conversely ifgK, gK+1 . . .gn by anyn − K + 1 elements which are co-
prime, there exists a unimodular matrixB with these elements precisely
constituting the first column and consequently,a uK too. SinceuYK is
theKth column ofuK we obtain

Y[uYK] = R[YK] ≥ rKK ≡ rK,K = 1, 2 . . . , n;

ũ′
K
YũK+1 = rKK+1 ≥ 0, K = 1, 2 . . . η.

This proves

Lemma 3. In order that R= (rµν) should be a reduced matrix, it is
necessary and sufficient that

R[YK] ≥ rK, rKK+1 ≥ 0, K = 1, 2 . . . n (46)

whereYK denotes an arbitrary integral column whose last n− K + 1
elements are coprime.

While the necessity part has been shown above, the sufficiency is
immediate sinceR= R[E] and this is clearly a reduced matrix by virtue
of the conditions (46).
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In caseYK = ±nK theKth unit vector, the equationK[YK] = KK
holds identically inK so that one of the condition (46) will now be in-
nocuous. We may therefore assume that theYK in Lemma 3 is different31

from ±nR.

Lemma 4. Every reduced matrix R= (rµν) satisfies the following in
equalities

rR ≤ rℓ,K ≤ ℓ (47)

rℓ ≤ 2rKℓ ≤ rℓ,K > ℓ (48)

r1r2 . . . rn < c1 | R | where C1 = C1(n), (49)

viz. a positive number depending only on n.

While (47) is immediate from Lemma 3 by choosingYR = nℓ(ℓ ≥ K
to prove (48) we have only to setYK = nK ± kℓ(ℓ < K) The proof of (49)
will be by induction onn. Clearly (49) is true for the casen = 1. Let
Rℓ denote the matrix which arises fromRby deleting the lastn− ℓ rows
and columns. It is clear thatRℓ > 0. Then by Lemma 3, it will follow
thatRℓ is reduced too. The induction hypothesis will now imply that

r1r2 . . . rn−1 < C2 | Rn−1 |,C2 = C2(n) (50)

We denote byDKℓ the (n − 2) rowed sub-determinant ofRn−1 ob-
tained by deleting the row and column containingeKℓ. ThenDKℓ is the
sum of (n − 2)! terms of the typerν11rν22 . . . rνℓ−1ℓ−1rνℓ+1ℓ+1 . . . rνn−1n−1,
Majorising each term with the help of (48), we get

±DKℓrℓ < C3r1r2 . . . rn−1,C3 = C3(n).

Consequently, in view of (50) we have

±DKℓ | Rn−1 |−1< C2C3r−1
ℓ

We now defineH by

(

Rn−1 H
H ′ rn

)

and setr = rn − R−1
n−1[H ]
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ThenR=

(

Rn−1 0
0 r

)

[

(

E R−1
n−1H

0 1

)

]

| R |= r | Rn−1 |.
Let nowξ′ = (z′xn) be a row withn variable elements. 32

We have

R[ξ] =

(

Rn−1 0
0 r

)

[

(

E R−1
n−1H

0 1

) (

z

xn .

)

]

=

(

Rn−1 0
0 r

)

[

(

z + R−1
n−1H xn
xn

)

]

= Rn−1[z + R−1
n−1H xn] + rx2

n.

The elements ofR−1
n−1 are±DKℓ | Rn−1 |−1 so that by virtue of (47)

and (48) and (50) we have

R−1
n−1[H ] < C2C3

∑ 1
rℓ

rnKrnℓ

< C4rn−1,C4 = C4(n) (51)

Also rn = r +R−1
n−1 [H ] < r +C4rn−1 so thatr1r2 . . . rn < C2 | Rn−1 |

rn < C2

(

1+C4
rn−1

r

)

| R |. We will now show thatrn−1 < C5r, C5 = C5(n)

and then we would have proved (49).
Let

C6 = 4(n− 1)2,C7 = (2n− 2)n−1
= C

n−1
2

6 (52)

LetK be determined such that

rℓ+1 < C6rℓ (53)

for ℓ = n − 2, n − 3, . . .K + 1,K but not forℓ = K − 1 (The statement
will have the obvious interpretation in the border cases corresponding to
K = 0 andK = n− 1). Let xν + aνxn be theνth element ofz+R−1

n−1H xn.
For each integerx′n in the interval 0≤ x′n ≤ Cn−K

7 we determine a set
of n − K integersx′ν, ν = K,K + 1 . . . n − 1 such that 0≤ x′ν + aνx′n < 1
for eachν. Thus corresponding to theCn−K

7 + 1 possible choices forx′n
we obtainCn−K

7 + 1 points in the (n − K) dimensional Euclidean space,
all lying in the half open unit cube 0≤ Yν < 1, ν = K,K + 1, · · · n − 1.33

If we divide this cube into equal cubes each of whose sides is of length
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C−1
7 , there will beCn−K

7 such cubes and consequently, by a well known
principle, one of these cubes contains at least two of the aboveCn K

7 + 1
points. Their difference is clearly a point with coordinates of the form
xν + aνxn, v = K,K + 1, · · · , n− 1 wherex′νsare integers,

| xν + aνxn |< C−1
7 , 0 < xn ≤ Cn−K

7 (54)

In other words we have solved (54) with integralxν, xn, ν = K, K +
1, · · · n− 1. We can assume thatxK, . . . xn are coprime. Now we choose
integersx1, x2 . . . xK−1 such that

1xν + aνxn |< 1, ν = 1, 2, . . .K − 1 (55)

From Lemma 3, we haveR [ξ] ≥ rK. On the other hand, the relation
rK > C6rK−1 and the relations (52) - (55) entitle us to conclude that

R[ξ] = Rn−1[z + R−1
n−1H xn] + rx2

n

< (K − 1)2rK−1 + (K − 1)(n− K)rK−1C−1
7 +

+ (n− K)2C−2
7 Cb−K−1

6 rK + rC2(n−K)
7

≤ (K − 1)(n− 1)C−1
6 rK + (n− K)2C−K6 rK +C2n−2

7 r

ThusrK < C8r, C8 = C8(n) and by (53),rn−1 < C5r. This completes
the proof.

Having thus settled the arithmetical properties of reducedmatrices,
we proceed with their existential nature. We have already seen in the
beginning of this section that given any matrixY = Y(n) > 0 there exists
a unimodular matrixu such thatY[u] is reduced. In other words, for any
matrix Y > 0 there always exists an equivalent reduced matrixR. Such
a matrixR is by no means unique. However, the number of matricesR
equivalent to a given matrixY − Y(n) > 0 is finite and this number is34

bounded by an integer which depends only onn. It is our aim now to
establish this result.

Given any quadratic formY[ξ], by the method of completion of
squares, it can always be rewritten uniquely as

Y[ξ] = d1(x1 + b12x2 + . . . b1n×n)2
+
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+d2(x2 + b23x3 + . . .b2nxn)2

+ . . . . . . . . .

+dnx2
n

and,Y > 0 if and only if thed′i sare positive. This shows that any matrix
Y > 0 has a unique representation in the form

γ = D[B] (56)

whereD is a diagonal matrix (δµνdµν) with the diagonal elementsdνν ≡
dν, all positive; andB is a matrix (bµν) with bµµ = 1 andbµν = 0 for µ >
ν. A matrix B = (bµν) whose elements satisfy the above conditions will
be referred to as atriangular matrix. Assume now thatY is a reduced
matrix R= (rµν). From (56) we will have

rℓ = dℓ +
ℓ−1
∑

ν=1

dνb
2
νℓ, ℓ = 1, 2, . . . , n

and | R | = d1d2 . . . dn.

In view of (49), this implies that

1 ≤ rℓ
dℓ
≤

n
∏

ν=1

rν
dν

< C1 (57)

and consequently, with the help of (47) we have forK ≤ ℓ

0 <
dK
dℓ

< C1
rK
rℓ
≤ C1 (58)

We use these to prove that in the case of reduced matricesY repre-
sented in the form (56), theb′µνs have an upper bound depending only
on n. The proof is by induction onu. Assume then that±bPℓ < C9.
C9 = C9(n) for p = 1, 2, . . .K − 1 andℓ > p. By means of the relation35

rKℓ = dKbKℓ +
K−1
∑

p=1

dpbpKbpℓ,



39

Our assumption will imply in view of (57), (58) that forℓ > K,

±bKℓ ≤
rK

2dK
+

K−1
∑

p=1

dp

dK
C2

9 <
1
2

C1 + (n− 1)C1C
2
9 = C10(n).

Thus assuming the result forp = 1, 2, . . .K − 1, ℓ > p, we have
established it forp = K, ℓ > p and by the principle of induction, this
completes the proof. We have now proved

Lemma 5. Let D = (δµνdµν) be a diagonal matrix and B= (bµν) a
triangular matrix such thatγ = D[B] > 0 is reduced. Then

dν < C11dν+1, ν = 1, 2, . . . n− 1, (59)

±bµν<C11, µ < ν,C11 = C11(n),

The possible converse to this is false, viz. ifD∗, B∗ be two other
matrices whose elements satisfy (59) (with the same constant C11) and
D∗ is diagonal whileB∗ is triangular, we cannot conclude thatR∗ =
D∗[B∗] is a reduced matrix. In this direction, however, we have

Lemma 6.

I f D∗ = (δµνd
∗
µν), d

∗
νµ ≡ d∗µ > 0; B∗ = (b∗µν)

a triangular matrix and G integral matrix with| G |, 0 such that
D∗[B∗G] is reduced, then the elements of G all lie between two bounds
which depend only onµ and n− µ being a common upper bound for the

absolute values of
d∗ν

d∗ν + 1
, ν = 1, 2, . . . , n− 1, bµν(ν > µ) and | G | and

n being the order of D∗ or b∗.

Proof. We again resort to induction, this time on it. Forn = 1 the lemma
is clearly true. SinceD∗[B∗G] is reduced have by (56),D∗[B∗G] = D[B] 36

for some diagonal matrixD and triangular matrixB. Let G = (gµν),
B∗GB−1

= Q = (qµν), B∗
−1
= (βµν) Then we haveD∗[Q] = D and

D[Q−1] = D∗ and thereforedℓ =
∑n
K=1 d∗

K
qz
Kℓ

(ℓ = 1, 2, . . . , n) Conse-
quently, �
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d∗
K
q2
Kℓ ≤ dℓ,K, ℓ = 1, 2, . . . n. (60)

SinceG = B∗
−1

QBandB, B∗ are triangular matrices, we have

gKℓ =
n

∑

λ=K

ℓ
∑

λ=1

βKλqλλℓλℓ;K, ℓ = 1, 2, . . . n

Hence

d∗
K
gz
Kℓ
= d∗
K
(

n
∑

λ=K

n
∑

λ=1

βKλqλλℓλℓ)
2

By assumption theℓ′∗s are bounded, byµ so that theβ′s which are
rational functions of theℓ′∗sare also bounded, and by Lemma 5, theℓ′s
are bounded, in both the cases the bound depending only onµ andn.

We can therefore write

d∗
K
g2
Kℓ < µ

∗(
n

∑

χ=K

ℓ
∑

λ=ℓ

qχλ)
2d∗
K
, µ∗ = µ∗(n)

< µ∗(
∑

qχλqχ′λ′d
∗
K
), χχ′ ≥ K

Majorisingqχλqχ′λ′ by (q2
χλ
+q2

χ′λ′) andq2
χλ

d∗
K
(χ ≥ K) by q2

χλ
d∗χ, with

the aid of (59), we getd2
K
g2
Kℓ
< µ∗1

∑

(q2
χλ

d∗χ + q2
χ′λ′d

∗
χ′) and using (60),

we have finally,
d∗
K
g2
Kℓ < µ1dℓKℓ = 1, 2, . . .N (61)

(µ1 and theµ′νs that occur subsequently in the course of the proof are
positive constants depending onlyµ andR).

Replacing the equation xxxxxD[Q−1] = D∗ and repeating the ear-37

lier arguments we have
dK f 2
Kℓ < µ2d∗ℓ (62)

where (fµν) = G−1.
Since| ( fµν) |=| G−1 |, 0 there exists a permutation of the indices

1, 2, . . . into ℓ1, ℓ2 . . . , ℓn with
n
∏

K=1
fKℓK , 0 Since| G | fKℓK is an integer,

its absolute value is at least 1. Hence 1/ fKℓK is bounded by the absolute
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value of | G | and a fortiori byµ. Consequently, from (62) we have
dK < µ3d∗

ℓK
,K = 1 · · · n. Among the (n − K + 1) indicesℓK, ℓK+1 . . . ℓn,

there should be at least one not exceedingK so that

min(dK, dK+1, . . . dn) < µmax(d∗1, d
∗
2, . . . d

∗
K
)

and hence, by means of (59) and the analogous assumption on the d∗
′
s

We havedK < µ4d∗
K
,K = 1, 2 . . . n. The relation (61) now allows us to

conclude that
dKg2

Kℓ < µ5dℓ,K, ℓ = 1, 2, . . . n (63)

Let p denote the largest number among 1, 2, . . . n such that the rela-
tion dK ≥ µ5dℓ holds forK = p, p + 1, . . . n andℓ = 1, 2, . . . p − 1. For
eachg amongp+ 1, p+ 2, . . . n there exists then aK = K(g) ≥ q and an
ℓ = ℓg < g with dK < µ5dℓ ( with the appropriate interpretation for the
border casesp = 1, n). In view of (59) we have then

dg < µ6dg−1, g = p+ 1, p+ 1, . . . n (64)

(59) and (64) together imply thatdℓ | dK is a bounded quotient for

ℓ,K = p, p+ 1, . . . n. i.e. dℓ < µ7dλ

and consequently, from (63).

g2
Kℓ < µ5µ4, ℓ = p, p+ 1, . . . , n

By choice ofp, dK ≥ µ5dℓ, ℓ = 1, 2, . . . , p−1 andK = p, p+1, . . . n. 38

Also gKℓ is an integer for eachK, ℓ. Hence (63) can hold only ifgKℓ = 0
for these indices, viz.K = p, p+ 1, . . . n; ℓ = 1, 2, . . . p− 1.

ThusG is a a matrix of the type

G =

(

G1 G12

0 G2

)

where the elements ofG2 = G(n−p+1)
2 are bounded by aµ8. In casep = 1,

the proof of Lemma 6 is already complete. In the alternative case, we
write, analogous toG,

D =

(

D1 0
0 D2

)

, D∗ =

(

D∗1 0
0 D∗2

)
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B =

(

B1 0
0 B12

)

, B∗ =

(

B∗1 B∗12
0 B∗2

)

and obtain
D∗1[B∗1G1] = D1[B1] (65)

by equating

D∗[B∗G] =

(

D∗1[B∗1G1] ∗
∗ ∗

)

andD[B] =

(

D1[B1] ∗
∗ ∗

)

By assumptionD∗[B∗G] is reduced so that in particularD∗1[B∗1G1] is
reduced. It is now immediate that our assumptions onD∗, B∗ andG are
also true ofD∗1, B∗1 andG1, so that by induction assumption the elements
of G1 are all bound. What remains then to complete the proof is onlyto
show that the elements ofG12 are bounded.

From the matrix relation

G′1D∗1[B∗1]G12+G′1B∗
′

1 D∗1B∗12G2

with the help of (65), we getG12 = G1B∗
′

1 B12− B∗
′−1

1 B∗12G1,

As the elements of all the matrices occurring on the right side are39

bounded, the same is true of the elements ofG12, and in all these cases
the bound depends only onµ andn. The proof is now complete. Lem-
mas 5 and 6 now yield

Lemma 7. If Y = Y(n) > 0 is a reduced matrix andU, a unimodular
matrix such that Y[U] is also reduced, then the elements ofU all lie
between bounds which depend only on n.

As an immediate consequence, we infer that, equivalent to a given
matrix Y > 0 there exists only a finite number of reduced matrices, and
further, this number is bounded by a constant which depends only upon
n.

We now proceed to determine the structure of the spaceR of the
reduced matrices and its relationship to the spacep of all real positive
symmetric matrices. We first observe thatp is an open domain in the
spaceY of all real symmetric matrices. For ifGK ∈ Y ,GK < PK =
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1, 2, . . ., and if GK → G ∈ Y , then for eachK, there exists a vector
E which may be supposed to be of length 1 withGK[EK] ≤ 0. Then a
subsequenceEνK clearly converges to a vectorE , again of length 1, and

G[E ] = lim
K

GνK [E νK] ≤ 0

whenceG < P. This certainly implies thatP is an open do main. Let
now G be a boundary point ofP so thatG < P. Then there exists a
sequenceyK ∈ P with yK → G. SinceγK[E ] > 0 for everyE , 0, we
getG[E ] ≥ 0 for E , 0. AlsoG[E ] = 0 for at least oneE , as otherwise
G will belong toP. Every symmetric matrixG with this property, viz.,
G[E ] ≥ 0 for everyE , 0, the equality holding for at least one suchE ,
shall be calledsemi positive. We can now state that any boundary point
of P is semi positive. Conversely too, every semi positive matrix G is a 40

boundary point ofP, sinceG+ ∈ E lies inP for every∈> 0 butG < P.
InP, we now consider the domainR of all reduceγ > 0. LetR= (Rµν)
be a point ofR. This means by Lemma 3 that

R[YK] ≥ rKK ≡, nKK+2 ≥ 0 (46)′

for any integralYK whose lastn − K + 1 elements are coprime,K =
1, 2, . . . n− 1.

Interpreting the
1
2

n(n+1) independent elements ofRas the cartesian

coordinates in the Euclidean space of the same dimension, the above
inequalities define a cone with the apex at the origin. We shall show that
much more is true.

Let Ro be a boundary point ofR. Then eitherRo ∈ P in which case
it is positive orR0 ∈ BdP in which case it is semi positive. Consider first
the case whenR0 is positive. Then it satisfies (46) and also there exists
a sequenceyK > 0 in Y such thatyK < K andyK → Ro. We represent
Ro according to (56) in the formRo = D[B] with a diagonal matrixD =
(dµν dµν) and a triangular matrixE = (bµν). The transformation (rµν)→
(dν, bµν) defines a topological mapping of a neighbourhood ofRo on to a
neighbourhood of (dν, bµν) (where, in the indices forb, we assumeµ < ν.
We representyK in the same way, viz.yK = DK[BK], and in view of the
topological character of the above mapping, we conclude that DK → D
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andEK → B. SinceD[P] is reduced, the elements ofD, B satisfy (59)
and the same is therefore true of the elements ofDK, BK for sufficiently
largeK. Let uK be unimodular such thatyK[uK] is reduced. yK < R
by assumption so thatu , K. Lemma 6 then shows that for sufficiently
largeK, dK belongs to a finite set of matrices and in particular, there exist41

an infinity ofK′s for which theU′
K

s are the same, say,UK = U , ±E.
AsK→ ∞ through this sequence of values, we have

Ro[U] = lim
K
γK[U] ∈ R

since eachyK[U] ∈ R andR is easily seen to be a closed set. Thus
what we have shown is that ifRo is a positive boundary point ofR,
there exists a unimodular matrixu , ±E such that

Ro[U] ∈ K. (66)

IndeedRo[U] is a boundary point ofR and this, we proceed to :
establish. More generally we show thatif Ro,R1 ∈ R andK1 = Ko[U]
for some unimodular matrixU , ±E, then both Ro and R1 are boundary
points ofR.

Assume first thatU is not a diagonal matrix. LetY1,Y2, . . .Yn

be the columns ofU and letYK be the first column which is different
form ±nK (If no suchYK exists, thenU would be diagonal, contrary
to assumption). Then theKth column YK of U−1 has also the same
property. Let us writeRo = (rµν), R1 = (Sµν). Then we have

SK = Ro[Y ] ≥= R1[YK] ≥ SK

Hence the equality holds throughout and

Ro[YK] = rK = SK = R1[SK]

If Ro is an interior point ofR, then the strict inequality must hold
in (46) for all YK. As we have shown the equality to hold for oneYK it
follows thatRo ∈ BdR. The same is of course true ofR1 too. We stop
here to make the following remark.

From Lemma 7, it is clear thatYK andSK belong to a finite set of
primitive vectors. So (66) allows us to conclude that from the infinite
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set of inequalities ((46)′) definingR, it is possible to determine a finite42

subset such that at least one of this finite set of inequalities reduces to an
equality in the case of any positive boundary point ofR. In other words,
the positive boundary points ofR all lie on finite number of planes and
these planes bound a convex pyramidE containingR. Of course we
have still the case whenU is a diagonal matrix to settle, to complete
the proof. In this case all diagonal elements are±1, the sign changing
at least once. Let then the sign change for the first time from theqth to
(q+ 1)th element. By changingU to −U if necessary, we shall have

Sqq+1 = Y ′
q+1R0Yq = x′q+1R0xq = −rqq+1.

But due to one of the reduction in equalitiesrqq+1 ≥ 0,Sqq+1 ≥ 0.
Hence it follows that

rqq+1 = 0 = Sqq+1 (67)

It is immediate thatRo andR1 are again boundary points ofR and
one of the inequalities in (46) reduces to an equality. Now our earlier
remark is unreservedly valid.

We now show the interior ofR is non void. Consider a compact
setL ⊂ P with non null interior. Then its interior is of the highest
dimension, viz.n(n + 1)/2. Lety ∈ L . Then by (56) we can represent
y in the formy = D[B] and then, sinceL is compact the ratiosdν | dν+1

and±bµν are bounded byµ ( say ),µ depending only onL . So now,
if we determine a unimodularU such thaty[U] is reduced, then by
Lemma 6, the elements ofU are all bounded, the bound depending
only onL andn : in other words, even though they′s belonging toL
may be infinite, there are only a finite number ofU′s such thaty[U] is
reduced. IfR has no interior points, then they[U]′s are all boundary
points ofR and hence belong to a finite set of planes. This would then43

mean that a finite number of planes is mapped by a finite set ofU′s on
to a set of dimensionn(n+ 1)/2 which is clearly impossible. Hence we
conclude thatR has interior points.

Let now R be an interior point ofR. We consider the segment
(1 − λ)T + λR, 0 ≤ λ ≤ 1 whereT < E but T ∈ R. Our aim is to
show that such aT is semi positive. SinceE is a convex set, all the
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points on the above segment are points ofE and all, except possibly
T, are interior points ofE . On this line there exists a boundary point
Ro of R. Ro cannot be positive as otherwiseRo would lie on one of
the planes which boundE so that it is a boundary point ofE too, and
consequentlyRo = T ∈ R - a contradiction to the choice ofT. Hence
R0 is semi positive. The characteristic roots of a semi positive matrix
are all≥ 0 and one at least among them is zero. Hence| Ro |= o so that
writing Ro = (ro

µν) and approachingRo through a sequence of matrices
R= (rµν) ∈ R we obtain, in view of the reduction conditions, viz.

± 2r1ν ≤ r1 ≤ r2 ≤ . . . ≤ rn,

r1r2 . . . rn < C1 | R |→ C1 | R0 |= 0

thatro
1ν = 0, ν = 1, 2, . . . n

But Ro = (1−λoT)+λoR for someλ0, 0 ≤ λ0 ≤ 1; we have therefore
in particular

0 = (1.λo)t1ν + λ0r1ν, ν = 1, 2, . . . n

We may consider the above as linear equations in the variableλ so

that the determinant

∣

∣

∣

∣

∣

∣

t1ν r1ν

t11 r11

∣

∣

∣

∣

∣

∣

= 0 orb1ν = tµ
r1ν

r11
ν = 2, . . . n.

But Γ is a given point andR is an arbitrary point in the segment. We
therefore conclude thatt11 = 0 = t1ν and then from an earlier equation
λ0 = 0. ThusT = R and hence is semi positive. We have therefore43

shown thatε −R consists of semi positive boundary points ofR. Con-
versely, any such point lies inε −R since an arbitrary neighborhood of
this point includes exterior points ofR. Now we obtain the main result
of Minkowski’s reduction theory, viz.

Theorem 2. The spaceR of the reduced matrices y> 0 is a convex
pyramid with the vertex at the origin. IfU runs over all unimodular
matrices, wherein−U will not be considered as different fromU, then
the images ofR under the group of mappings y→ y[U] cover the
spaceP of all symmetric matrices y< 0 without over lapping (except
for boundary points). In other words,R is a fundamental domain inP
for the group of mappings Y→ Y[U] acting on it.

Further, R has a non void interior and its boundary lies on a finite
set of planes.



Chapter 4

The Fundamental Domain of
the Modular Group of
Degree n

The tools now at our disposal enable us to construct a fundamental do- 44

main in the generalised upper half plane for the modular group acting
on it. We need a few preliminaries.

We first prove that given any pointZ ∈ Y there exists only a finite
number of classes{C,D} of coprime symmetric pairsC, D for which the
absolute value of| CZ+ D |, written as|| CZ + D ||, has a given upper
boundK, i.e. such that|| CZ + D ||≤ K. Let r denote the rank ofC.
We employ the parametric representation of (C,D) given by Lemma 1.
Then

C = U1

(

C1 0
0 0

)

U′2,D = U1

(

01 0
0 E

)

U−1
2 (68)

whereU2 = (QR), Q = Q(n,r)

We have then

CZ+ D = U1

{

(

e1 0
0 0

)

U′2ZU2 +

(

D1 0
0 E

)

}

U−1
2 and

U′2ZU2 =

(

Q′

R′

)

Z(QR) =

(

Z[Q] Q′ZR
R′ZQ Z[R]

)

47



48 4. The Fundamental Domain of the Modular Group of Degree n

ThusCZ+ D = U1

(

C1Z[Q] + D1 ∗
0 E

)

u−1
2 and

| CZ+ D | =| U1 || U2 |−1| C1Z[Q] + D1 |= ± | C1Z[Q] + D1 |
= ± | C1 || Z[Q] + P | whereP = C−1

1 D1

We shall subsequently need this relation

| CZ+ D |= ± | C1 |
∣

∣

∣Z[Q] + P | (69)

We may observe thatP is a rational symmetric matrix which uni-
quely determines and is uniquely determined by the class{C1,D1}. For
if C−1

0 D0 = C−1
1 D1 = P, thenD0C′1 = C0D′1 which means that{C0,D0}

= {C1,D1}, while if A, B is any pair in the class{C1,D1}, then A =45

UC1, B = UD1, for some unimodularU, andA−1B = C−1
1 D1 = P.

What is more, whileP = C−1
1 D1 is rational symmetric for any coprime

symmetric pair (C1,D1), conversely too, any rational symmetric matrix
P is of the above form. We need to only observe that in this case,we
can choose unimodular matricesU3,U4 such that

U3PU4 =

(

δµν
aν
bν

)

, viz. a diagonal matrix with the diagonal ele-

mentsaν/bν , ν = 1, 2, . . . n whereaν, bν are coprime integers withℓν > O
and then, definingC1 = (δµνbν)U−1

3 , D1 = (δµνaν)U4, we haveP =
C−1D1.

We now return to the representation (68) ofC,D. Let X,Y denote
the real and imaginary parts ofZ. SinceQ in the above representation
can always be replaced byQU3, U3-unimodular, while preserving the
form of (68), we can assume thatY[Q] is reduced. Let then

S = X[Q] + P

T = Y[Q]















(70)

and latF(r) a real matrix withT[F] = E,S[F] = H = (δµνbν). Then
(S + iT )[F] = H + iE and (S + iT ) = (H + iE)[F−1]

Now |Z[Q] + P| = |S + iT | = |T |
r

∏

ν=1

(i + hν) and
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||Z[Q] + P||2 = |T |2
r

∏

ν=1

(l + h2
ν). Hence it follows that

||CZ+ D||2 = |C1|2|T |2
r

∏

ν=1

(1+ h2
ν) (71)

By assumption||CZ+D|| ≤ K ; also,C1 being integral,|C1| > 1,
and trivially 1+ h2

ν > 1. (71) now implies that|T | is bounded. ButT is
reduced so that one of the inequalities (47-49) will imply that

r
∏

ν=1
Y[Y ] < Q1|T | where we denoteQ = Y1Y2Yn) Since each of the

factorY[Yν] has a positive lower bound, visY[Y ν] ≥ λY ′
ν Yν ≥ λ > o 46

whereλ denotes the smallest characteristic root ofY, we conclude from
the above that each factorY[Yν] is bounded. As a consequence, the
Y ′
ν S belong to a finite set of primitive columns and there are only a

finite number of possible choices forQ. In particular, therefore, the
elements ofT = Y[Q] are bounded and sinceT = F′−1F−1 the same is
true of the elements ofF too. Also, the number of distinctT′s being
finite, |T | has a positive lower bound and being an integer,|C1|2 ≥ 1 so
that we infer from (71) that theh′νs and what is the same, the matrixH
are bounded. But

S + iT = (H + iE)[Γ−1] and we already know thatF−1 is bounded.
HenceS + iT = Z[Q] + P is bounded and so alsoP = S − ×[Q] Since
|C1|P is integral and|C1| is bounded as is seen from the relation

|C1|2|T |2
r

∏

ν=1

(1+ h2
ν) < K

it follows that the number of distinctP′s occurring here is finite. We
know however that distinct classes{C1,D1} correspond to distinctP′s
so that the number of distinct classes{C1,D1} occurring are finite. As
we have shown already that the number of classes{Q} is also finite we
conclude that the number of classes{C,D} in our discussion, viz. those
which satisfy||CZ + D|| < K for a givenK > O is finite and this was
what we were after.

Let Y, Y∗ be the imaginary parts of two pointsZ, Z∗ ∈ Y which
are equivalent with regard toM. We callZ∗ higher than Zif we have
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|Y∗| > |Y|. If Z∗ = (AZ + B)(CZ + D)−1, then we have from (24) that
Y∗ = (ZC′ + D′)−1Y(CZ̄ + D)−1 so that

|Y∗| = |Y|
∣

∣

∣CZ+ D
∣

∣

∣

−2
(72)

ThusZ∗ is higher thanZ if and only if ||CZ + D|| ≥ 1 where we47

assumeZ∗ = (AZ + B)(CZ + D)−1 As a consequence we have that in
each class of equivalent points there exist at least one highest point. For,
in the alternative case, there would exist a sequence of equivalent points
ZK,

ZK = XK + iYK = (AKZ1 + BK)(CKZ1 + DK)
−1

(

AKBK
CKDK

)

∈ M

such that|Y1| < |Y2| < . . .ad inf. and this will imply in its turn by (72)
that

1 > ||CZZ1+D2|| > ||C3Z1+D3|| > . . . ad inf. In other words we end
up with the conclusion that an infinite number of classes{CK,DK} have
the property that||CKZ1 + DK|| < 1 a contradiction to an earlier result.
Now we state

Theorem 3. The domainf defined by the following inequalities rep-
resents a fundamental domain inY with regard toM. We denote
Z = x+ iy, X = (xµν), Y = (yµν) and then Z∈ F is defined by

(i) ||CZ+ D|| ≥ 1 for all coprime symmetric pairs C, D,

(ii)

Y[yK] ≥ yKK,

yKK+1 ≥ 0,

K = 1, 2, . . .

























(Minkowski’s reduction conditions) where yK

is an arbitrary integral column with its last n− k + 1 elements
coprime.

(iii) −1
2
≤ xkℓ ≤

1
2
,K, ℓ = 1, 2, . . . n

AlsoF is a connected and closed set which is bounded by a finite
number of algebraic surfaces.
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Proof. We first show that given any pointZ ∈ Y , F contains an equiv-48

alent pointZ1 = M < Z >. In fact, since we know that any class of
equivalent points contains a highest point, we can assume that Z is a
highest point and then||CZ+D|| ≥ 1 for all coprime symmetric pairsC,

D. If now M =

(

U′ SU−1

0 U−1

)

whereU is unimodular andS an integral

symmetric matrix to be specified presently, we shall have
Z1 = Z[U] + S,Y1 = Y[U] = U′YU andX1 = X[U] + S where

we assumeZ1 = X1 + iY1. We can determineU such thatY1 = Y[U]
is reduced and thenS can be chosen such thatX1 satisfies the last of the
three conditions in the theorem. The first condition is then automatically
ensured as|Y1| = |Y| so thatZ1 is a highest point asZ is. TheZ1 thus
determined clearly serves. �

Further, no two distinct interior points ofF can be equivalent. For

let Z,Z1 ∈ Int.F andZ1 = M < Z >,M =

(

A B
C D

)

. Then, in the condi-

tions stipulated in theorem 3 forZ, we have strict inequality throughout
except in the cases where these reduce to identities inZ, viz. when
YK = ±nK and (C,D) = (0,U−1), U being unimodular. NowZ1 =

(AZ+ B)(CZ+ D)−1 so that

(−C′Z1 + A′)(CZ+ D) = E (73)

SinceZ ∈ F and (C,D), (−C′,A′) are coprime symmetric, we have
||CZ+ D|| ≥ 1 and|| −C′Z1 + A′|| ≥ 1. Since their product is equal to 1
by (73), we conclude that the equality holds in both cases. Ittherefore
follows that (C,D) is one among the exceptional pairs singled out earlier,49

viz. C = o, D = U−1 for some unimodular matrixU. Then from (73)
we have

Z1 = Z[U] + S

A = D′−1
= U′















(74)

where we writeS = BU. In particular, writingZ1 = X1 + iY1 we have
X1 = X[U] + S, Y1 = Y[U]. SinceY andY1 are both reduced matrices
andY is an interior point ofR, theorem 2 states thatU = ±E. Then
X1 = X + S and condition (iii) of theorem 3 will require thatS = O.
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ThusY1 = Y andX1 = X and consequentlyZ1 = Z. We have therefore
shown that two points ofF can be equivalent only if both are boundary
points ofF , a property typical of a fundamental domain and this settles
the first part of theorem 3.

We now show thatF is a closed set. LetZK ∈ F ,K = 1, 2, . . . , and
ZK → Z. Clearly the conditions (i) and (iii) are satisfied byZ as they
are true of eachZK. Condition (ii) also would be fulfilled byZ except
that we do not know from the factYK > o for eachR, that Y > o.
We shall show that this is so. More generally we show that|Y| has a
positive lower bound for allY such thatZ = X + iY ∈ F . If (C(r)

1 , D(r)
1 )

is any coprime pair with|C1| , o andQ(n,r), a primitive matrix, then the
pair (C,D) given by (68) is always symmetric and coprime so that for
(69) we have||CZ + D|| = ||C1Z[Q] + D1|| ≥ 1. Choosing in particular

C1 = E(r),D1 = o andQ =

(

E(r)

0

)

, we have||CZ+ D|| = ||Zr ||,Zr being

the matrix which results whenZ is deprived of its last (n− r) rows and
columns and this is true for eachr. If now ZǫF , then ||CZ + D|| ≥ 150

by one of the condition ofF so that we can conclude that||Zr || ≥ 1
for eachr and everyZǫF . In particular, settingr = 1, this means that
||Z1|| = |Z11| ≥ 1 which in its turn implies by reason of|X11|. being less

than or equal to
1
2

that

y11 ≥
1
2

√
3 (75)

wherex11+ iy11 = Z11

In view of the reduction conditions (47 - 49) we have

yn
11 ≤

n
∏

r=1
yrr < C1|Y| and the above inequality now implies the de-

sired result. Specifically we have

|Y| > C−1
1 (

1
2

√
3)n > o (76)

for everyZ = X + iy ∈ F
The proof of the connectedness ofF is a bit more involved.
let (C,D) be a given coprime symmetric pair and use the represen-
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tation (69) forC,D. We recall the following notation.

P = C−1
1 D1,S = X[Q] + P,T = Y[Q],T[F] = E,S[F] = R= (δµνhν)

We further introduceZ1 = X + iλY with λ ≥ 1. Then we have, as in
deriving (71),

Z[Q] +C−1
1 D1 = (H + iE)[F−1],Z1[Q] +C−1

1 D1 = (H + iλE)[F−1],

||CZ+ D||2 = |C1|2|T |2
r
∏

ν=1
(1+ hν)2 and

||CZ1 + D||2 = |C1|2|T |2
r

∏

ν=1

(λ2
+ h2

ν) (71)′

51

It is immediate that||CZ1 + D|| ≥ ||CZ+ D|| and thatZ ∈ F implies
thatZ1 ∈ F for λ ≥ 1, Z1 = X + iλY.

We now ask how to chooseλ such thatZ1 = X + iλY ∈ F for two
matricesX,Y which satisfy the condition (iii) and condition (ii) respec-
tively of theorem 3, and we show that this will be fulfilled ifλ is chosen
sufficiently large-specifically if

λ ≥ C1

y11
,C1 = C1(n) (77)

Let λ satisfy the above condition (77). Then from ((71)′) we have
||CZ1 + D||2 ≥ λ2r |T |2 so that

||CZ1 + D|| > λr |T | = λr |Y[Q]|

As in earlier contexts we can assume thatT = Y[Q] is reduced
by an appropriate choice ofQ. Then, in view of (47 - 49),|T | ≥
C−1

1

r
∏

ν=1
Y[yν] ≥ C−1

1 yr
11 ≥ λ−r where we denoteQ = (y1y2 . . . yr ) and

assume without loss of generality thatC1 > 1. Hence||CZ1 + D|| ≥
λr |T | ≥ 1 for all symmetric coprime pairs (C,D) and this is precisely
what ensures us thatZ1 ∈ F

Let nowZν ∈ F , Zν = Xν + iYν, ν = 1, 2, and letλo ≥ 2C1/
√

3 join
Z1 andZ2 by the polygon consisting of

Z = X1 + iλY1, 1 ≤ λ ≤ λo, (78)
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Z = (1− λ)(X1 + iλ0Y1) + λ(X2 + iλoY2), o ≤ λ ≤ 1, (79)

Z = X2 + iλY2, i ≤ λ ≤ λo (80)

52

We prove that this polygon lies completely inF . The result we
proved above and (75) together imply that the lines defined by(78) and
(80) both lie inF . It remains then to consider only the line determined
by (79). Sincey1, y2 are reduced, andR is convex, (1− λ)Y1+ λY2 ∈ R
for 0 ≤ λ ≤ 1. Also sincex1, x2 satisfy the condition (iii) of theorem 3,
so does (1− λ)x1 + λx2, o ≤ λ ≤ 1. Hence, in view of our earlier result,
Z = {(1 − λ)x1 + λx2} + iλo{(1 − λ)y1 + λy2} belongs toF providedλo

satisfies (77). We shall show that it does. This is in fact immediate since

λo ≥
2C1√

3
=

C1

(1− λ)
√

3
2 + λ

√
3

2

≥CI/(1− λ)y′11+ λy′′11

It follows therefore that the pointsZ in (79) all belong toF . We can
now conclude thatF is a connected set.

Our assertion concerning the boundary ofF still remains to be set-
tled. Specifically, we have got to show that the boundary ofF consists
of a finite number of algebraic surfaces. First we note that every positive
matrixY satisfies the inequality

|y| ≤ y11y22..ynn (81)

where we assumey = (yµν)53

For we can writey = R′K with a non-singular real matrixK =
(W1W2 · · ·Wn) Then it is known that

|K|2 ≤
n

∏

ν=1

W ′
ν Wν =

n
∏

ν=1

yνν

But |K|2 = |Y| and this proves what is desired. We proceed to de-
termine a lower bound for the smallest characteristic rootλ of a positive
reduced matrixY. Let λ1, λ2, · · · , λn denote the characteristic roots of



55

Y and letYν denote the matrix which arises fromY by deleting itsνth

row and column. It is known then that the characteristic roots ofY−1

areλ−1
ν , ν = 1, 2, . . . , n. Denoting byσ(A), the trace of a square matrix

A, we have from (49), (81) and (47)

1
λ
= max

ν

1
λν
≤ 1
λ1
+

1
λ2
+ · · · 1

λν
= σ(Y−1)

=

n
∑

ν=1

|yν|
|y| ≤ CI

n
∑

ν=I

y11y22 . . . yν−1yν−1 · yν+1yν+1 . . . ynn

y11 · y22 . . . ynn

= C1

n
∑

ν=1

1
yνν
≤ nC1

y11
(82)

Thus if y > o is reduced andy = (yµν) and if λ be the minimum of
the characteristic roots ofy, then

λ ≥ y11/nC1 (82)

If now Z = X + iY ∈ F theny11 ≥
1
2

√
3 from (75) so that in this

case
λ ≥
√

3/2nC1,C1 = C1(n) (83)

Let Z ∈ Bd · F and letZK → Z,ZK < F . To eachZK we can 54

determine an equivalent pointWKǫF say,WK = (AKZK + BK)(CKZK +
D−1
K

). Then
(

AK BK
CK DK

)

, ±
(

E o
o E

)

Case. i: Let CK , O for an infinity of indices. By passing to a sub-
sequence, we may assume this to be true for allC′

K
s. Also, since their

ranks belong to the finite set 1, 2, . . . n, we can assume allCK, s to be of
the same rankr > o. To each class{CK,DK}, we determine the corre-
sponding classes{C(r)

o ,D(r)
o } and{Q(n,r)} with |Co| , 0, given by Lemma

1. Both classes{Co,Do} and{Q} depend onK though the notation is not
suggestive. Then from (70) and (71) we have

||CKZK + DK||2 = ||CoZK[Q] + Do||2
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= |Co|2|T |2
r

∏

ν=1

(1+ h2
ν) (84)

whereT = yK[Q], S = xK[Q] +C−1
o Do,

xK + iyK = ZK,T[F] = E

andS[F] = H = (δµνhν)
As usual we assume thatT is reduced. Lety1, y2, . . . yr be the colu-

mns ofC. ThenT = (U ′
νYKUν) so that by (49),

r
∏

ν=1

YK[Uν] < C1|⊤| (85)

As is well known, the smallest characteristic rootλ(K) of yK is given55

by
λ(K)
= min
E′E=1

YK[E] (E − real column ).

Sinceλ(K) is a continuous function ofYK andYK → Y we have
lim
K
λ(K)

= λ the smallest characteristic root ofY, and furtherλ ≥
√

3/2nC1, from (83), so that

λ(K) ≥
√

3/4nc1 (86)

for sufficiently largek. We shall be concerned only with thesek′s in the
rest of the proof. Then we have

YK[Uν] ≥ λ(K)U ′
νUν ≥ λ(K) ≥

√
3/4nC1

and therefore from (85),

|⊤| >
(

√
3

4n

)r
C−r−1

1 > o (87)

ClearlyWK satisfies the relation

(−C′
K
WK + A′

K
)(CKZK + DK) = E
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and sinceWK ∈ F we have|| −C′
K
WK + A′

K
|| ≥ 1

We therefore conclude that||CKZK + DK|| ≤ 1 Hence

1 ≥ ||CKZK + DK||2 = |Co|2|⊤|2π(1− h2
ν)

which implies that|Co| is bounded as|⊤| and (1+ h2
ν) have positive

lower bounds as a result of (87). By appealing to (84) and (87)we then
conclude that|Co|, |⊤|, h1, h2, . . . hr all lie between bounds which do not
depend uponK andZ. Since

√
3

4nc1
U ′

νUν ≤ λ(K)U ′
νUν ≤ Y[Uν]

≤ C1|⊤|
∏

µ,νYK[Uµ]
≤ (

4n
√

3
)r−1Cr

1|⊤|

the vectorUν is bounded. This proves that the matrixQ belongs to a 56

finite set of matrices which does not depend onZ. Since the diagonal
elementsUνYRUν of T are bounded as a consequence of (84) and (87)
andT > 0, it follows that all the elements ofT are bounded and this in its
turn, in view of the relationsT = E[F−1]; S = H[F−1] implies that the
elements ofF−1 andS are bounded. Now we observe that|xR |x(R)

µν | ≤ 1
2

andxR → x = (xµν) so that|xµν| ≤
1
2

and consequentlyX is bounded.

But S = xR[Q]+C−1
o Doi.e.C−1

o = δ− xR[Q]. The above then shows that
P = C−1

o Do is bounded; in their words only a finite number of choices
exist forP. But we know thatP determines the class{Co,Do} uniquely.
Hence the number of choices for{Co,Do} is also finite. As we have
already shown that the number of classes{Q} is finite, it follows that the
number of distinct classes{CR ,DR} is finite; in other words the classes
{CR ,DR} are equal for an infinity ofk′s.We shall denote this common
class by{C,D}. Then, taking the appropriate sequence ofk′s,

||CZ+ D|| = lim
R
||CRZR + DR || ≤ 1, as||CRZR + DR || ≤ 1

for eachk.
SinceZ ∈ f, we have the reverse inequality and the equality results.

Hence in this caseZ ∈ Bd.f satisfies the equation

||CZ+ D|| = 1 (88)
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for some out of a finite number of paris (C,D) which are not mutually56

equivalent.

Case ii: SupposeCK = O for all sufficiently largek′s. Considering only
thesek′s, we have

WK = ZK[UK] + SK

with a unimodular matrixUK and a symmetric integral matrixSK as in
(74). If VK be the imaginary part ofWK, thenYK[UK] = VK ∈ R. We
wish to show that the number of [uK]′s is finite. Since the imaginary part
Y of Z belongs toR, representingY in the formY = D[B], D = (δµνdν),

and B = (bµν), we have from (59) that
dν

dν+1
, bµν are all bounded by

C11 = C11(n). But YK → Y so that representingYK analogous toY
asyK = DK[BK], DK = (δµνd

(K)
ν , and,BK = (ℓ(K)

µν ). we haveDK → D

andBK → B. We therefore deduce that the ratiosd(K)
ν /d(K)

ν+1 and(ℓ(R)
µν ).

are bounded, say, by 2C11. Lemma 6 now implies that there can be
only a finite number ofU ′

R s with yR [UR] = DR [BRUR] reduced, in
other words, for an infinity ofk′s, theU ′

R are the same, sayUR = U .
As R → ∞ through the sequence of these values, we havey[U ] =
limR yR [U ] and since eachyR [U ] ∈ R and Y > 0, it follows that
y[U ] ∈ R. But we already know thaty ∈ R and this, by theorem 2, is
possible only if bothY andY[U ] belong to the boundary ofR. Hence

y[UR ] = YR (89)

whereUR is the first column ofU such thatUR , ±H R provided57

such aUR exists. This is therefore true ifU is not a diagonal matrix.
Let nowU be a diagonal matrix. Two cases arise, viz. eitherU ,

±E orU = ±E. In the former case it follows, as in (68) that

YRR+1 = 0 (90)

for somek. In the latter case, taking the k’s for whichUR = U = ±E
we haveWR = ZR + SR with SR , O asWR ∈ f while ZR < f. Then
the condition (i) of theorem 3 for the elements off implies that

xµν = ±
1
2

(91)
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for at least one pair (µ, ν).
Thus any pointZ ∈ Bd, f satisfies one or the other of the system of

equations (88) - (91), in other words,Z satisfies one of a finite set of
equalities, and each one of them defines an algebraic surface. It there-
fore follows that a finite number of algebraic surfaces boundf and this
completes the proof of theorem 3.

We insert here the following remarks for future reference. Agroup
of symplectic matrices shall be calleddiscreteif every infinite sequence
of different elements of the group diverges, or equivalently any compact
subset of it contains only finitely many distinct elements. The modular
group of degreen is then clearly discrete.

We shall call a group of symplectic substitutionsdiscontinuousin 58

Y , if for everyz ∈ Y , the set of images ofz relative to the given group
has no limit point inY . Concerning the modular group then, we have

Lemma 8. The modular group of degree n is discontinuous inYn

The proof is by contradiction. Letz1, z2 · · · be a sequence of equiva-
lent points, all different, converging to a pointz∈ Y . ThenZR = MR <

Z1 > for someMR =

(

AR BR

CR DR

)

∈ Mn

Let zR = xR + YR andZ = X + iY.
ThenYR = (Z̄′1C

′
RD−1

R y1(CRz1 + DR)2 by (24). If Y1 = R′R this
givesYR = Ω̄

′
Ω with Ω = R(CRZ1 + DR)−1. Also y′R s are bounded

asYR → Y, and it follows thatΩ is bounded. This in its turn implies
that (CRZ1 + DR)−1 is bounded. Also||CRz1 + DR || is bounded as
||CRZ1 + DR ||2 = |Y1|/|YR | from (72). We therefore infer thatCRZ1 +

DR is bounded. Considering the real and imaginary part separately this
implies thatCRand hence alsoDR are bounded and consequently also
AR andBR as the relationZR(CRZ1+DR) = ARZ1+ BR shows. Thus
the M′R s are all bounded forK = 1, 2, . . . and therefore for an infinity
of k′s the M′R s are identical, and for thesek′s the Z′R s are identical,
contradicting our assumption. This proves the Lemma.





Chapter 5

Modular Forms of Degreen

The possible of developing a modular form into a Fourier series rests 59

upon a general theorem in complex function theory. First of all we have
to deal with the following facts.

Let E be the Gaussian plane. A subsetK of direct productE n
=

E × E × · · · × E (n times) shall be called aReinhardt domainwith zero
centre, when the following conditions are satisfied.

1) R is a domain in the sense of function theory, viz. an open connected
non empty set.

2) R is invariant under the group of transformations (Z1,Z2 · · ·Zn) →
(Z1eiϕ1,Z2eiϕ2, . . .Z1eiϕn)ϕν- real. We now stare

Lemma 9. Let R be a Reinhardt domain with(o, o · · · o) and
f (Z1,Z2, . . . ,Zn)a functions regular inR. Then we can develop f into a
power series

f (Z1,Z2, . . .Zn) =
∑∞
ν1,ν2,·,νn=−∞ oν1ν2···νn.0Zν1

n Zν2
2 · · ·Z

νn
n

This representation is valid in the whole domainR and the power
series converges uniformly on the manifold|Zν| = rν, ν = 1, 2, . . . n when
(r1, r2, . . . , rn) ∈ R.

Proof. We first prove the Lemma in the special case of the domain

R :|Zν |<ρν,1≤ν≤h

61
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o < σν < |Zν| < ρν, h < ν ≤ n.

Consider the contracted domain60

|Zν| < ρ′ν < ρν (1 ≤ ν ≤ h)

o < σν < σ
′
ν < |Zν| < ρ′ν < ρν(h < ν ≤ n).

LetL1
ν be the circle|Zν| < σ′ν, h < ν ≤ n assigned with the negative

sense of rotation and letL1
ν be the circle|Zν| = ρ′ν(1 ≤ ν ≤ n) assigned

with the positive sense of rotation. Then we have by mean of the Cauchy
integral formula,f (Z1,Z2, . . .Zn)=

= (
1

2πi
)n

∫

L2
1

· · ·
∫

L2
h

∫

L2
h+1

· · ·
∫

L2
n+L2

n

f (ζ1, . . . ζ1)
(ζ1 − Z1) · (ζ1 − Zn)

ds1 · d

=

2
∑

νh+1,...νn=1

((
1

2πi
)n)

∫

L2
1

∫

L2
h

νh+1
∫

h+1

·
ν,h
∫

n

f (ζ1, . . . ζ1)
(ζ1 − Z1) · (ζ1 − Zn)

ds1 · dζ

By expanding the quotient 1/ρν −Zν as a convergent power series as
in the one variable case of eachν, a simple argument shows that every
integral in the above sum is expressible as a power series, a typical term
of which contains non negative powers of

Z1,Z2 · · ·Zh,Z±1
h+1,Z

±1
h+2, . . .Z

±1
n where inZ±1

r (r ≥ h + 1) the upper
sign holds in cases whereνr = 2 and the lower sign holds in cases
whereνn = 1. Clearly, the coefficients of these power series do not
depend upon the choice ofρ1

ν, σ
1
ν. The uniform convergence as stated in

the Lemma is immediate from a consideration of the derived series as in
the one variable case.

In the general case of any Reinhardt domain with center (0, 0, . . . 0)61

by the result shown above, in every subsetR′ ⊂ R of the type|Zνi | = ρi ,
1 ≤ i ≤ h,

0 < σν < |Zν| < ρν, ν , ν1, ν2 · · · νh,

there exists a representation off (Z1,Z2, . . .Zn) as a power series with the
desired properties. We need then only prove that two representations
in two subsetsR′1, R′2 are identical in their intersection and then the
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representation in any two subsetsR′1,R′′1 are identical as we can always
find a sequence of such subsets, viz.

R′1 = R1,R2, . . .Rm = R′′

with Ri ⊂ Ri+1 non empty for any two indicesi, i + 1. But for any two
such subsetsR′i ,R′2 their intersectionR′2 ∩ R′2 is again a subset of the
same type and it is then immediate that the power series representing
f (Z1,Z2, . . .Zn) in the two sets are identical. Lemma 9 now follows.

Let K be given integer andM =

(

A B
C D

)

, a symplectic matrix. We

introduce the notation

f (Z)|M = f (M < Z >); CZ+ DK1 (92)

where f (Z) is an arbitrary function defined onY . It is easy to see that
( f (Z)|M1)|M2 = f (Z)|(M1M2). We now fix the conception of a modular
form by the following. �

Definition. A modular form of degree n≥ 1 and weightK, is a function
f (Z) satisfying the following conditions.

1) f(Z) is defined inY and is a regular function of the
n(n+ 1)

2
inde- 62

pendent elements Zµν (µ ≤ ν) of Z.

2) f(Z)|M = f (Z) for M ∈ M

3) In this case n= 1, f (Z) is bounded in the fundamental domainF on
Y relative to M.

We shall show later that the last condition is a consequence of the
earlier conditions in the casen > 1.

Considering a matrixM of the form M =

(

E S
O E

)

∈ M whereS
is an integral symmetric matrix, we infer from condition (2)above that
f (Z + S) = f (Z) for an integral symmetric matrixS; in other words a
modular form is a periodic function of period 1 in each of the variables.
Henceg(ζµν) = f (e2piiZµν) is a single valued regular function in the
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domain into whichY is mapped by the mappingζµν = f (e2piiZµν viz.
the domain defined by the inequalitiesζµν = ζνµ , O, (−ℓoc|ζµν|) > O. It
is easy to see that this is a Reinhard domain and then Lemma 9 assures us
of a power series representation forg(ζµν) valid throughout this domain.
This power series can be looked upon as a Fourier series off (Z) and can
be written in the form

f (Z) =
∑

T

a(T)e2πiσ(TZ) (93)

whereT = (tµν) runs over all rational symmetric matrices such thattµµ
and 2bµν(µ , ν) are integral. Such matrices are calledsemi integral. To
verify the above fact, we need only observe that

σ(TZ) =
n

∑

µ,ρ=1

tµρZρµ =
n

∑

µ=1

tµµZµµ + 2
∑

µ<ν

tµνZµν

so that63

e2πiσ(TZ)
= e2πi(

∑n
ν=1 tµµ+2

∑

µ<ν tµνZµν)

=

n
∏

µ=1

ζ
tµν
µν

∏

µ<ν

ζ
ztµν
µν

The condition (2) in the definition of a modular form yields inthe
case of the modular substitutionZ1 = Z[U],U-unimodular the trans-
formation formula

f (Z1) = |U|−K f (Z). (94)

Observing that the trace of a matrix product is invariant under a
cyclic change in the succession of the factors and in particular σ(AB) =
σ(BA) for any two matricesA, B, we obtain

f (Z1) =
∑

T

a(T)e2πiσ(TZ[U])

=

∑

T

a(T)e2πiσ(TU′ZU)

=

∑

T

a(T)e2πiσ(UTU′Z)
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=

∑

T

a(T[U′−1])e2πiσ(TZ)

On the other hand,

|U′|−K f (Z) =
∑

T

|U′|−Kα(T)e2πiσ(TZ)

A comparison of coefficients by mean of (94) now yields

|U|Ka(T[U′−1]) = a(T)

whereU is an arbitrary unimodular matrix. ReplacingU byU′−1 we 64

get
a(T[U]) = |U|Ka(T) (95)

The special choiceU = −E leads to

a(T) = (−1)nKa(T) (96)

This proves that modular forms not vanishing identically can exist
only in the casenK ≡ 0(2). Also we deduce from (95) that forproperly
unimodular matricesi.e.U such that|U| = 1,

a(T[U]) = a(T) (97)

We apply these results to prove.

Lemma 10. A modular form f(Z) which is bounded in the fundamental
domainF of Y relative to M has a representation of the form

f (Z) =
∑

T≥O

a(T)e2πiσ(TZ) (98)

and conversely any modular form representable by (98) and infact any
series (98) which converges everywhere inY is bounded inF .

We prove the direct part first. We shall denote byH the cube−1
2
≤

xµν ≤
1
2

(µ ≤ ν) and put [dx] =
∏

µ≤ν
dxµν
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Since the Fourier series off (Z) converge uniformly inH , we obtain

a(T) =
∫

· · ·
∫

H

f (Z)e−2πiσ(TZ)[dx]

and consequently65

a(T)e−2πσ(Ty)
=

∫

· · ·
∫

H

f (Z)e−2πiσ(T x)[dx]

whereZ = X + iY ∈ Y
Let yo be a reduced matrix such thatσ(Tyo) < O for some fixedT.

By (77), if λ is chosen sufficiently large, the largeness depending only
on yo thenZ = X + iλYo ∈ F for x ∈ H andy-reduced. With such a
choice ofλ, the assumption| f (Z)| < C for Z ∈ F implies by means of
the relation

a(T)e−2πγσ(Tyo)
=

∫

· · ·
∫

X

f (Z)e−2πiσ(Tyo)[dx]

that
|a(T)|e−2πλσ(Tyo) ≤ C.ϑoℓH = C.

As λ→ ∞ our assumptionσ(Tyo) < 0 implies that

a(T) = 0 (99)

Let nowY be an arbitrary positive matrix withσ(Ty) < 0 and choose
a unimodular matrixU such thaty = yo[U′], yo ∈ R, the space of
reduced matrices. Then we have

0 > σ(Ty) = σ(Tyo[U′]) = σ(T[U]yo)

and (99) and (95) now imply that

a(T[U]) = ±a(T) = 0

for thoseT for which there exist positive matricesY with σ(Ty) < 0.
Hence it is sufficient that the matrixT in the Fourier series (93) runs
only over those matrices with the propertyσ(Ty) ≥ 0 for all y > 0.
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Let R = R(n) be any nonsingular real matrix,R = (µ1,W2, . . .Wn)66

and lety = RR′. ThenY > 0 and the above implies for the matricesT oc
curing in (93) thatσ(Ty) = σ(T[R]) =

∑n
ν=1 T[Wν] ≥ 0. This is true of

all non-singular real matricesRandσ(T[R]) is a continuous function of
R so that it is true of singular matrices too with real elements. In other
wordsT[ε] ≥ 0 for all real columnE and what is the same,T ≥ 0. This
settles the first part of the Lemma.

Conversely we have to prove that the sum of a Fourier series (98)
which converges everywhere inY is bounded inF . The matricesT
occurring in (98) are all semi integral matrices which are further posi-
tive. Let T = RR′,R = (W1,W2 · · ·Wn)-real and letZ = X + iY ∈ F .
The characteristic roots ofy have by (83) a positive lower boundC =√

3
2nc1

,C1 = C1(n). Hence

σ(Ty) = σ(y[R]) =
n

∑

ν=1

y[Wν] ≥ C
n

∑

ν=1

W ′
ν Wν

= Cσ(R′R) = Cσ(T).

The convergence of the series (93) at the particular pointZ =
iC
2

E

implies that|a(T)|e−πCσ(T) < C for all T, whereC is a suitable
constant. If nowZ ∈ F then

|a(T)e−πCσ(TZ) | = |a(T)|e−πCσ(Ty)

≤ |a(T)|e−πCσ(T)

≤ C e−πCσ(T)

and consequently, 67

| f (Z)| = |
∑

T≥0

a(T)e2πiσ(TZ) |

≤ |
∑

T≥0

a(T)e2πσ(Ty) |

≤
∑

T≥0

C e−πcσ(T)
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The last sum is independent ofZ and we will be through if only we
show that this series is convergent. The convergence of thisseries is a
consequence of the fact that the number of semi integral matricesT ≥ 0
whose trace (which is always an integer) is equal to a given integral
valuet increases at most as a fixed power oft ast → ∞. For itσ(T) = t,
T ≥ 0− semi integral, then writingT = (tµν) we havetνν ≤ t for all
indicesν so that the number of possible choices for allt′ννs together is
atmost (t + 1)n. SinceT ≥ 0 we havetνν ≤ tµµtνν ≤ (t + 1)2 so that
±2tµν ≤ 2(t + 1) and the number oft′µνs for a given (µ, ν) consistent with
this inequality is at most 4t + 1. It therefore follows that the number of
T′ satisfying our requirements can be majorised by

(t + 1)n(4t + 1)n(n−1)/2 ≤ C1tn+n(n−1)/2
= C1tn(n+1)/2

C1 being suitable positive constant. We can now estimate

∑

T≥0

C e−πcσ(T)
= C

∞
∑

t=0

∑

T semi integral,

e−πct

≤ C C1

∞
∑

t=0

e−πcttn(n+1)/2

and the last sum is clearly convergent. The proof of Lemma 10 is now68

complete.
We now apply Lemma 10 to show that every modular form is bounded

in the fundamental domainF of the modular group. In casen = 1 this
is true by the definition of a modular form. Assumen > 1. Since the
Fourier series of a modular form may be considered as a power series,
the convergence of such a series is absolute. Hence every partial series
of (93), viz

∑

T∈K a(T)e2πiσ(T>.) whereK denotes an arbitrary set of
semi integral matrices, converges absolutely. LetT be a fixed matrix
such thata(T) , 0 andkT the set of matricesT1 = T[U] whereU de-
notes an arbitrary proper unimodular matrix. Thena(T1) = a(T) by (95)
and the series

g(Z,T) =
∑

T1∈kT

e2πiσ(T1Z) (100)
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converges absolutely. We shall show that this is possible only if T ≥ 0.
Let ν(T,m) denote the number of matricesT1 ∈ kT with σ(T1) = m. We
shall use the abbreviationt for e2π.

From (101) we get

g(i.e, T) =
∑

T1∈kT

e−2piσ(T1)
=

∞
∑

m=−∞
ν(T,m)t−m

≥
∞
∑

m=1

ν(T,−m)tm ≥
∞
∑

m=1

ν(T,−m),

If T � 0 we shall show thatν(T,−m) ≥ 1 for an infinity of m′s
and this will provide a contradiction as we know that the series (100)
is convergent. IfT � 0 we can find an integral columnY such that 69

T[Y] < 0. LetU = E + h(h1Y, h2Y · · · βnY) with integersh, hi , i =
12, . . . n. SinceU − E has rank 1, we contend

that |U| = 1+ trace{h(h1,Y, h2Y, . . . hnY)}
= 1+ hσ(h1Y, h2Y, . . . , hny).

To verify this we need only observe that while for any matrixA we
have

|tE + A| = tn + σ(A)tn−1
+ · · · ,

if A is of rank 1, the coefficient of tn−2 and lower powers oft which
depend on subdeterminants ofA all vanish and consequently|tE + A| =
tn + σ(A)tn−1,

In particular, choosingt = 1 we obtain|E + A| = 1+ σ(A) which is
precisely what we desired.

Nowσ(h1Y, h2Y, . . . hnY) is a linear form in theh′sand forn > 1,
there exists a non trivial integral solution of the equation

σ(h1Y, h2Y, . . . hnY) = 0

and then
∑n
ν=1 h2

ν > 0.
With theseh′νsand the free variableh we compute

σ(T1) = σ(T[U])
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= σ{T[E + h(h1Y, h2Y, . . . hnY)]}
= {T + hT(h1Y, h2Y, . . . hµY)

+ h′kiYβνY, . . . hnY′π + h2T[h1Y, ·hnY]}
= σ(T) + 2hσ(λ(h1Y, h2Y, . . . hnY)) + h2σT[(h1Y, . . . , hnY)]

= σ(T) + 2hσ(T(hY , . . .hnY)) + ρ2T[Y]
n

∑

ν=1

h2
ν

Choosingh suitable, this shows clearly thatσ(T[U]) = −m, |U| =70

1 is solvable for an infinite number of positive integersm and this is
equivalent to sayingν(T,−m) ≥ 1 for an infinity ofm′s. Thus we have
shown that, for the series (101) to converge absolutely, we must have
T ≥ 0 and this in its turn implies that only suchT′s occur in the series
(93) representingf (Z). Lemma (10) implies thatf (Z) is bounded inf.
We have now proved

Theorem 4. Every modular form is bounded in the fundamental domain
F of the modular group acting onY .

We proceed to show that the modular forms of negative weight (K <

0) must necessarily vanish identically.
Let f(Z) be a modular form of degreen and weightK. Then as a

result of (72) it is easy fo see thath(Z) = |Y|K/2| f (Z)| is invariant under
all modular substitutions, viz.

h(M < Z >) = h(Z) (101)

for M ∈ M. If we assumeK < 0, then by theorem (4)f(Z) is bounded
in F and by (76)|y| has a positive bound inF . It follows therefore that
h(Z) is bounded inF and hence also throughoutY . Let thenh(Z) ≤ C
for Z ∈ Y .

By means of the representation

a(T)e−2πσ(Ty)
=

∫

· · ·
∫

H

f (Z)e−2πiσ(T x)[dx]
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we conclude that

|a(T)|e−2πσ(Ty) ≤ sup
x∈H

Z=x+ty

| f (Z)| = C |λ|−K/2.

and letting∈→ 0 the limit process yield thata(T) = 0. We then have 71

Theorem 5. A modular form of negative weight vanishes identically.
We can therefore assume in the sequel that the weightK of a modular
formF is non negative. Later on we shall show that ifK = 0 thenF is
necessarily a constant.

We now introduce an operator which maps the modular forms of
degree n> 1 into those of degree n− 1 with the same weight. This
operators will be denoted byφ and the image ofF (Z) under will be
denoted byF (Z)|φ. The use of this operator will be particularly felt in
such cases where proofs are based on induction on n

We write, in place like these, where we are concerned with modular
forms of different degrees,

Y = Yn,F = Fn,M = Mn.

It is straight forward verification that ifZ ∈ Yn the matrixZ1 arising
from Z by cancelling its last row and column belongs toYn−t and if

Z1 ∈ Yn−1 then the matrixZ =

(

Z1 0
0 iλ

)

∈ yn providedλ > 0

We can then form the functionf

(

Z 0
0 iλ

)

define for everyZi ∈ yn−1

andf, a modular form of degreen−1. We shall show that lim
λ→∞
f

(

Z C
0 cλ

)

exists, denoted byf (Zt) and this will be the modular formf (z)|φ of
degreen− 1 and weightK.

LetL be a compact subset ofyn−1 andZ1 = X1 + iY1 ∈ L.
We show first that for anyT1 ≥ 0, 72

σ(T1y1) ≥ λσ(T1) (102)

whereγ = γ(L) > 0. We need only consider the caseσ(T1) > 0 as
otherwiseT1 = (0) and the inequality reduces to a trivial equality. Then
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by reason of homogeneity of both sides inT1, we can assumeσ(T1) = 1
The equations:

σ(T1) = 1,T1 ≥ 0,Z1 ∈ L ⊂ Yn−1

define a compactZ1,T1-set and on this set,σ(T1Y1) is a function, con-
tinuous inT1 andY1-If we show that this function is positive at every
point, then it has a positive minimumγ in this set and we would have
proved (102). LetR = Rn−1

, 0 be determined withT1 = RR′ and let
R= (W1,W2, . . .Wn−1).

Thenσ(T1Y1) = σ(Y1[R]) =
∑n−1 ν = 1y1[Wν], and the last sum

is positive asY1 > 0 and at least one of the columns is nonzero. This
settles our contention. Since the Fourier series

f (Z) =
∑

T≥0

a(T)e2πiσ(TZ)

converges everywhere and in particular at the pointZ =
i
2
γE, we have

|a(T)| ≤ C eπγσ(T) for T ≥ 0 and a certain positive constantC .

Writing Z =

(

Zi 0
0 tλ

)

,Z1 ∈ L and decomposingT analogously

asT = (tµν) =

(

T1 µ

ν tnn

)

we get from the above that

|a(T)|e2πiσ(TZ) ≤ C eπνσ(T)e−2πσ(YT)

= C eπλσ(T)e2π(σ(T1y1)+λtnn)

= C eπγσ(T1)−2πσ(T1y1)−π(2λ−γ)t)nn

≤ C e−piγσ(T1)−πγtnn

= C e−piγσ(T)

assumingλ ≥ γ. Thus if Z1 ∈ L, λ ≥ γ(L),Z =

(

Z1 0
0 tλ

)

then73

|a(T)|e2πiσ(TZ)! ≤ C −piγσ(T)
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It is now immediate that the series

f (Z) =
∑

T≥0

α(T)e2piiσ(Tz)

which is majorised byC
∑

T≥0 e−piγσ(T) independent ofZ, converges
uniformly for Z1 in every compact domainL ⊂ Yn−1 andλ ≥ γ(L).
Then

lim
λ→∞
f(Z) = lim

λ→∞
f

(

Z1 0
0 ℓλ

)

=

∑

T≥0

a(T) lim
λ→∞

e2πiσ(TZ)

=

∑

T≥0

a(T) lim
λ→∞

e2πiσ(T1Z2)−2πλtnn

In the last series, the terms involvingT for which tnn > 0 vanish in
the limit and only there terms for whichtnn = 0 survive. We than obtain

lim
λ→∞
f(Z) = f1(Z1)

=

∑

T≥0tnn=0

a(T)e2πi5(T1z1)

∑

Tν0≥0

a(T1)e2πiσ(T1,z1) (103)

where by definitiona(T1) = a

(

T1 0
0 0

)

73

It is clear that tfi(Zi) is regular inYn−1 as the corresponding Fourier
series converges uniformly in every compact subset ofYn−1. Further
f1(Z2) is bounded in the fundamental domainfn−1 as in the series (103)
only thoseT′1s occur which are semi positive. It remains to show that
f1(Z1) is actually a modular form of degreen− 1 and weightR

Let M1 =

(

A1 B1

C1 D1

)

∈ Mn−1 We completeM1 to a modular matrix

M of degreen as follows.

M =

(

A B
C D

)

whereA =

(

A1 o
o 1

)

, B =

(

B1 0
0 0

)
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C =

(

C1 0
0 0

)

, andD =

(

D1 0
0 1

)

If the Z =

(

Z1 0
0 ℓλ

)

, L1 ∈ Yn−1 we haveM < Z >= (AZ+ B)(CZ+

D)−1
=

=

{(

AI 0
0 1

) (

z1 0
0 iλ

)

+

(

B1 0
0 0

)}

{

⋆
}−1

=

(

A1Z1 + B1 0
0 iλ

) (

CiZi + 01 0
0 1

)−1

=

(

A1Z1 + B1 0
0 iλ

) (

(CiZi + 01)1 0
0 1

)−1

=

(

M1 < Z1 > 0
0 iλ

)
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Also |CZ + D1 = |C1Z1 + D1|. Hence we obtain from the relation
f (M < Z >)|CZ+ D1−R = f , z) that

(

M1 < Z1 > 0
0 λ

)

|C1Z1 + D1|R = f

(

Z1 0
0 λ

)

which asλ→ ∞ yields

f1(M1〈Z1〉)|C1Z1 + D1|−R = f1(Z1),

That is to sayf1(Z1)|M1 = f1(Z1) for M1 ∈ Mn−1 and it is immediate
that f1(Z1) is a modular form of degreen− 1 and weightR.



Chapter 6

Algebraic dependence of
modular forms

We are interested here in the question: when a modular form ofdegreen 75

vanishes identically, in other words, when two when two given modular
forms of the same degree are identical. The following theorem provides
a useful criterion in this direction.

Theorem 6. Let sn denote the least upper bound ofσ(Y−1) for Y−1 such
that X+ iY ∈ fn and let

f(Z) =
∑

T≥0

a(T)e2πiσ(TZ)

be a modular form of degree n and weight k≥ 0. If a(T) = 0 for T

such thatσ(T) ≤ R

4π
sn (i.e. if a certain finite set of Fourier coefficients

vanish), then f(z) vanishes identically.

Proof. First we note that{sn}, n = 1, 2, . . . , is an increasing sequence.
For, we know from (82) that

σ(y−1) ≤ na
yM
≤ 2nC1√

3
for Z = x+ oy ∈ Fn.

�

75
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In particular then,Sn ≤
2nc1√

3
< ∞ Let now Z1 ∈ Fn−1. We claim

thatZ =

(

Z1 0
0 M

)

∈ Fn providedλ s sufficiently large. We prove this as

follows. LetZ = x+ iyu,Z1 = x1 + y1 Theny =

(

y1 0
0 λ

)

= (ym) say.

We have to verify the reduction condition of Minkowski forY. Let

YR =

(

Y ∗
R

gn

)

be a primitive column with the integersg1, g2, · · ·gn as

elements. Then we have

y[YK] = y1[YK] + λg2
n

76

If gn = 0, thengK, gk+1 · · · gn−1 are themselves coprime and then
Y1[yK] ≥ yK B asy1 is reduced andk is necessarily less thann. It then
follows thatY[YK] = y1[YK] ≥ yKK If yn , 0, theny[YK] = y[YK] +
λgK+λ, so thaty[YK] ≥ yKK provided we chooseλ ≥ gn−1, n−1 Trivially
yKK+1 ≥ o for all k as this is true ofy1.

It is now immediate that if

λ ≥ yn−1,n−1 (104)

theny =

(

y1 0
0 λ

)

satisfies Minkowski’s reduction cond

itions. Clearly, sincey1 is reduced modulo 1,χ is also reduced mod-
ulo l. It only remains therefore to verify thatZ is a highest point in the
set of all points which are equivalent toZ relative toMn providedλ is
sufficiently large; in other words

‖CZ+ D‖ ≥ 1

As in (71) we have , in the usual notations in (70),

‖CZ+ D‖2 = |C1|2|T |2
r

∏

ν=1

(1+ h2
ν)

and to infer that‖CZ + D‖2 ≥ 1 it suffices to ensure ourselves that
‖T‖ ≥ 1.
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As usual, we assume thatT is reduced. Then by (49),C1|T | >77
r
∏

ν=1
y[yν], Q = (y1, y2, . . . yr ) = (Q∗y′) (say) whereY′ = (q1, q2, . . .qr ) is

the last row ofQ and letQ∗ = (y∗1, y
∗
2, . . . y

∗
r ) whereyν = (y∗ν, qν). Then

Y[yν] = Y1[y∗ν] +λq∗r and by (83), since the smallest characteristic rootλ

of λ1 is at most equal to

√
3

2(n− 1)C1
= C, we havey1 = y∗ν| ≥ Cy∗νy

∗
ν with

a positive constantC = 1 which depends only onu. Hence choosing
λ ≥ C, we have

y[U ] = y1[U ∗ν] + λq2
n ≥ C(y∗ν, y

∗
ν + y2

ν) = cy′νyν ≥ C

sinceU ′
ν Uν ≥ being a primitive vector.

Thus

y[ην] ≥














c, in any case

λ, if qν = C

Hence ifxxxx, o at least oneqν , ∗∗∗∗∗ so that one of the factors
of the product ***** is greater than or equal toλ while the others are
at least equal toC. Consequently ***** and a fortiri ***** if U , 0.
This means that|T | ≥ xxxxxxxchoosingλ with λ ≥ max∗ ∗ ∗ ∗ ∗ and
this in its turn implies that||CZ+ 0|| ≥ 1 as desired. If however *****
then ***** is itself primitive and *****. The pair {C1,C2} and *****
then determine a class ***** of coprime symmetric pairs of ordern−1.
A simple consideration shows that

||CoZ1 + Do||2 = |Co|2|T |2
r

∏

ν=1

(1+ h2
ν) = ||CZ+ D||2.

SinceZi ∈ fn−1, ||CoZ1+D2|| ≤ 1- the same is therefore true of||CZ+D|| 78

too. Thus ifλ ≥ max(yn−1,n1,C,C1C1−n andZi ∈, then

Z =

(

Zi 0
0 λ

)

∈ fn. (105)

LetZ1 ∈ Fn−1 be chosen such thatσ(γ−1
1 ) ≥ s−εn−1 whereZ1 = X1+iy1

andε is a given positive number.
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Then, ifZ = × + iy is determined by (105) we havey =

(

Zi 0
0 λ

)

and

σ(y−1) = σ−1
1 ) = 1/λ.

NowSn ≥ σ(y−1) = σ(y−1)+1/λ ≥ Sn−1+1/λ − ε. Since this is true
for all λ ≥ max∗ ∗ ∗ ∗ ∗ lettingλ→ ∞ we obtain thatsn ≥ sn−1 − ε

The arbitrariness of∈ now implies thatzn ≥ sn−1, in other words,
the sequence ***** is monotone increasing.

We shall need one more fact for proving our theorem, viz. thatif
T = T(n) is a semi positive matrix, and 0< rankT = n < η then there
exists a positive matrixTi = T(n)

= T1 and a unimodular matrixV such
that

T[V] =

(

T(n)
1 0
0 0

)

T(r)
1 > 0. (106)

Indeed, due to our assumption we have|T | = 0 so that there exists
a rational columnW with T[W]. Clearly we can assumeW to be
primitive. ThenW can be completed to a unimodular matrixVo with79

W as the last column and thenT[Vo] = (t(o)
µν ) is a matrix all the elements

of whose last row and column vanish; in fact,t(o)
nn = 0 sinceT[W] = 0

and thent(o)
nν = 0 = (t(o)

νn = 1, 2, . . . n asT ≥ 0. Let then

T[V] =

(

T0 0
0 0

)

To = T′o = t(n−1)
o ≥ 0

If r = n−1, then clearlyTo > 0 and we are through. In the alternative
case we can repeat the above withT0 in the place ofT and this can be
continued until we arrive atT1 = T(r)

1 satisfying (106).
We now take up the proof of the main theorem. The proof is by

induction onn. We assume that eithern = 1 or if n > 1 then the theorem
is true for all modular forms of degreen− 1. With this assumption onn
we shall prove that the theorem is true for modular forms of degreen.

Let
f (Z) =

∑

T≥0

a(T)e2πiσ(TZ) (107)

In the second case, viz. whenn > 1 we have

f (Z)|φ =
∑

T1≥0

a(T1)e2πiσ(TZ)
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where

a(T1) = a

(

T1 0
0 0

)

If σ(Ti) <
K

4π
sn−i thenσ

(

T1 0
0 0

)

= σ(T1) < kνSn−1 and our hy- 80

pothesis now implies thata(T1) = a

(

T1 0
0 C

)

= 0. In other words,

f (z)|φ satisfies the conditions of Theorem 6 so that, due to our assump-
tion f (z)|φ ≡ 0 as it is a modular form of degreen − 1. This means

that a(T) = 0 for T such that|T | = 0 For, by (106),T =

(

T1 0
0 C

)

[u],

U-unimodular, and by (95), sinceT1 ≥ 0,

±a(T) = a

(

T1 0
0 C

)

= a(T1) = 0 (108)

For n = 1, the above is true by one of the assumptions in Theorem
6. Thus in any case|T | = 0 impliesa(T) = 0 so that in (107) only those
T′swith T > 0 survive; in other words

f (Z) =
∑

T>0

a(T)e2πiσ(TZ)

We now wish to prove a preliminary result, viz. ifZ = x, iy ∈ Fn

then

lim
|y|→∞

|y|K/2
∫

(Z) = 0 (109)

Let y = (yµν),T = (tµν) > 0 and introducey1, T1 by requiring that
y = y1[K], T1 = T[K] = [K] whereK = (δµν

√
yµν). Thenf = y[K−1]

is a matrix of the type

(

11∗
∗ 1

)

and is positive. Hencey1 is a bounded

matrix with |y2| = |y|(y11, y22, ynn)1 ≥ C−1
1 > 0 as a result of (49). These

show thaty1 belongs to a compact subsety of the space of all positive
symmetric matrices, which set depends only uponn.

According to (102) we then have

σ(Ty) = σ(T1[k−1]y1[K]) = σ(T1y1)
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≥ γσ(T1) = γ
γ

∑

ν=1

yννtνν (110)

with a positive constantγ depending only onn. Since the series (107)81

converges everywhere and in particular at the pointz =
√

3
2

γ

2 iE we get

that a(T)e−
√

3
2 πγσ(T) is bounded, and by multiplyingf(Z) by a constant

factor if necessary, we can assume the bound to be 1. We may now
estimate the general term of (107) as follows :

|a(T)e2πiσ(TZ) | ≤ e
√

3
2 πγσ(T)−2πσ(TY)

= e−
√

3
2 (t11 + t22+ · · · tnn− 2πσ(TY)

≤ eπγ(
∑n
ν=1 tνν)−2πγ(

∑n
ν=1 tνµyνµ)

e−πγ(
∑n
ν=1 tννyνν).

In the above we have made use of (75) and (110).

Since
n
∑

ν=1
tννyνν ≥ n n

√
∏n

ν=1 tνµyνν and |y| ≤
n
∏

ν=1
yνν by (81),Y being

positive, we have from the above

|a(T)e2πiσ(TZ) | ≤e−πγn n
√

nπn
ν=1tννyνν

≤ e−πγn n
√

|Y| n√t11t22, . . . tnn

SinceK ≥ 0 for a suitable constantC we have

|Y|K2 eπnγ2
n√|Y| < C

and then|Y|K2 f(Z) =
∑

T>0
|Y|K2 a(T)e2πiσ(TZ) is majorised by the series

C
∑

T>0
e

−πγn
2

n
√
|γ| n√t11t22...tnn

The last series converges by arguments as in pages (66 - 67) since the82

number of semi integral positive matricesT = (tµν) with t11t22 . . . tnn = t

for a givent, can be estimated byC t
n(n+1)

2 , viz. a fixed power oft and
then, the last series is further majorised by the convergentseries

C
∞
∑

t=1

C1tn(n+1)/2e−Tγ/2∗∗∗∗∗
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It now turns out that forZ ∈ Fn

|Y|K/2F (x) = 0(e−e∗∗∗∗∗ (111)

with some∈> 0 as |y| → ∞ and this, in particular, implies (109). If
h(Z) = |y|K/2|F (Z)|, Theorem (4) and (109) imply thath(Z) is bounded
in the fundamental domain. But we know from (101) thath(Z) is invari-
ant under modular substitutions and theh(Z) is bounded throughout its
domain. Since furtherh(Z) is continuous inY it attains its maximum;
in other words there exists a pointZν ∈ such thath(Z) ≤ h(Zo) for z∈ Y .
Considerh(Z) in a neighbourhood ofZo. Let z = x − ly be a complex
variableZ = Zo − zE andt = ezπiz.

Let g(t) = F (z)e−λσ(Z) with λ determined by

ηλ

2π
= 1+ [k/4πsn] where [x]

denotes the integral part ofx, viz. the largest integer not exceedingx.
Using our assumption thata(T) = 0 if σ(T) < K

4π sn we have

g(t) =
∑

σ(T)> K4π sn

a(T)e2πiσ(TZ)−iλσ(z)

=

∑

σ(T) K4πSn

a(T)e2πiσ(Tzo)tσ(T)e−iλσ(z)

=

∑

σ(T) K4πSn

a(T)e2πiσ(Tzo)−iλσ(zo)tσ(T)− λn
2π

83

Here the exponentσ(T) − λn
2π

>
K

4π
Sn − [

K

4π
Sn] − 1 ≥ −1 which

means, asσ(T) − λn
2π

is an integer, thatσ(T) − λn
2π
≥ 0.

This shows that the functiong(t) is regular in a circle|t| ≤ ρ and we
can assumeρ > 1 by choosingy < 0 with its absolute value sufficiently
small.

By the maximum principle, there exists then a pointt1 with |t1| =
ρ > 1 such that|g(t1)| ≥ |g(1)|. If the z-point corresponding tot1 is
denoted byz1, we have

|g(t)| = |f(Z)|eλσ(y)
= h(z)|y|K2 eλσ(y)
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and puttingt = 1 the above now implies that

h(zo)|Yo|
K
2 eλσ(yo) ≤ h(z1)|Yo|

K
2 eλσ(y1)

whereZ1 = Zo + z1E, y1 = yo + yE,
∫ −2πy

= |t1| = ρ.

y = − 1
2π

logρ

Let h(zo) = sup
z∈y

h(z) = M (say). Then the above yields

M ≤ M|y|K2 |y0|
K
2 eσ(y1−yo)

= Meψ(y) (112)

where84

ψ(y) = λny− K
2

log(|y1||yo|−1)

= ψ(y) λny− K
2

log |E|yγ−1
o

Now ψ(0) = 0 andψ′(o) = λnK2σ(γ−1
o )

≥ λn− K
2

sn

= 2π(
λn
2π
− K

4π
sn) > 0.

Hence it follows thatψ(y) is monotone increasing in a neighbour-
hood ofy = 0 so that it is negative for sufficiently smally < 0. But
ψ(y) < 0 implies from (112) thatM = 0 which in its turn means that
h(z) and consequentlyf (z) vanishes identically. The proof of theorem 6
is now complete.

The above theorem has several interesting consequences. Inthe first
instance it implies thatall modular forms of weight0K = 0) are nec-
essarily constants. For if F (z) = a(o) +

∑

T,0
a(T)e2πiσ(TZ) be such a

form, thenF (Z)− a(0) is a form satisfying the conditions of theorem 6.
Hence it follows from theorem 6 thatF (Z) − a(o) ≡ 0, in there words
F (Z) ≡ a(o). We therefore assume in the sequel thatk > 0.
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Now consider modular formsF (Z) of degree 1(n = 1) and weight

K ≤ δ. Then from (75) we deduce thatS1
2
√

3
. Thenσ(T) ≤ K

4π
S1

implies thatσ(T) ≤ 2
π

2
√

3
=

4

π
√

3
< 1 which in its turn means that

σ(T) = 0 assigma(T) is an integer, and consequentlyT = 0. Hence if

f(z) = a(0)+
∑

T,0

a(T)e2πiδ(TZ)

and if a(0) = 0, then the conditions of theorem 6 are satisfied so that by85

its conclusion,f(z) ≡ 0. In other words, modular forms of degree 1 and
weightK ≤ 8 are uniquely determined by their ‘first’ Fourier coefficient
a(0). It is now immediate that any two modular forms of degree 1and
weightK ≤ 8 are proportional and what is the same, a modular form
of degree 1 and weightK ≤ 8 is unique, except for multiplication by
a constant. Indeed, the same result is true of modular forms of degree
2 too. For ifZ = x + iy ∈ f2 and f (Z) is a modular form of degree 2
and weightK ≤ 8 , then writingY = (yµν) we have, by Minkowski’s
reduction conditions,

0 ≤ 2y12 ≤ yy11 ≤ y22

and then|Y| = y11y22− y2
12 ≥

3
4

y11y22.

Sincey11 ≥
√

3
2

by (75), this means that

σ(Y−1) =
y11+ y22

|Y| ≤ 4
3

(
1

y11
+

1
y22

) ≤ 8
3

1
y11
≤ 16

3
√

3

so thats2 ≤
16

3
√

3
. Also

K

4π
s2 ≤

2
π
≤ 32

3
√

3
< 2 and then, σ(T) <

K

4π
s2

implies thatσ(T) < 2 This means that at least one of the two diagonal
elements and consequently one of the elementst12, t21 whereT = (tµν)
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also vanish. Then it is clear that|T | = o. Then assumptiona(o) = o will
imply by our earlier result on modular forms of degree 1 thatf(Z)|φ ≡ 0
and then as in (106) and (108), we havea(T) = 0 for |T | = 0. In
other words if we assumea(0) = 0 then the conditions of theorem 6 are86

satisfied and we are able to conclude thatf(Z) ≡ 0. It now follows as in
the earlier case thatevery modular form of degree 2 and weight R≤ 8 is
uniquely determined by the first Fourier coefficient a(0).

The above results are for the moment hypothetical. In other words,
their significance is based on the assumption that modular forms of the
desired degree, not vanishing identically actually exist.Their existence
we prove later, by constructing the so calledEisenstein Series.

An interesting application of theorem 6 is to prove the algebraic
dependence of any set of sufficiently large number of modular forms.
Specifically we state

Theorem 7. Let h = n(n+1)
2 + 2 and let fν(Z) be a modular form de-

gree n and weightKν > 0, ν = 1, 2, . . . h. Then there exists an isobaric
algebraic relation

∑

Cν1ν2, . . . ν2f
1fν2Z .f

νh
h = 0 (113)

not all of whose coefficients vanish, the summation extending over all
integersνi ≥ o with the property

h
∑

l=1

νεKi = mKiK2,Kh (114)

where m is an integer which depends only upon n

We may remark that the product of two modular forms of weight
k andℓ is a modular form of weightKK, their degrees being the same
. Consequently all the power productsfν1

1 f
µ2
2 . . . , f

µh

h that occur in (113)
are modular forms of the same weight in view of (114) and hencethe
nameisobaric for the relation (113).

Proof. All modular forms of degreen and weightk form a linear space86

mn
K
. By means of theorem 6 we infer that this space is of finite dimension
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αn(K). In factαn(K). is at most equal to the number of solutions of the
relationσ(T) ≤ (K)

4π Sn with semi positive integral T’s, a rough upper

estimation of which is provided byK)
4πS

∗∗∗∗∗
n by arguments as at the end

of page (66); in other words we have

dη(K)(
K)
4π

Sn + i)n(n+1)/2 (115)

We now find a lower estimation of the number of possible power
productsF = fν1

1 f
ν2
2 , . . . f

νh
h subject to the conditions �

µi ≥ C, i = 1.2 . . . 2 and integral,
h

∑

i=1

νiKi = ηKiK2, . . .Khm= m(n)



























(116)

Let us assume for the moment thatm is divisible by 2h− 2.
Let (x1, x2, ∗ ∗ ∗ ∗ ∗) be a system of integers with

o ≤ xν ≤ ∗ ∗ ∗ ∗ ∗ (117)

whereK = K1K2 · · ·Kh. The number of such systems is clearlyH∗∗∗∗∗
There exists then one coset moduloK1 which contains the sums

K1x1K2x2 + . . .Kr−1xh−1(mod)Kn for at leastH−1
Kh
+ 1 different systems

*** as otherwise, the total number of different systems (x1, x2, . . . xh−1)
could be at mostH − 1/Kh, Kh = H − 1 while actually there areH such 87

systems. Consider then the systems (x1, x2, . . . xh−1) corresponding to
this coset. Let (ξ1, ξ2, . . . ξh−1) denote a fixed system among these and
let (η1, η2, . . . ηh−1) a variable system. Then clearly we have

h−1
∑

i=1

kiηi −
h−1
∑

i=1

Kiξi ≡ o modKh (118)

We shall further assumeo ≤ ξi < Ki , l = 1, 3, . . . h− 1
We introduce nowνi = ηiKh − ξi ,= 1, 2, . . . h − 1 andνh =

m−k
ηn
−

1
hk

(
∑h−1

i=1 Kiνi
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We shall verify that the systemh{ν} satisfies the conditions (116).
Clearly ν1, ν2, . . . νh−1 are non negative and integral. Also using (117)
we have

νh =
mK
Kh
− 1
Kh

h−1
∑

i=1

(Kiηi + Ki(Kh − ξi)) (119)

≤ mK
Kh
− 1
Kh

h−1
∑

i=1

− mK
2h− 2

−
h−1
∑

i=1

−Ki

= mK/2Kh −
h−1
∑

i=1

−Ki

=
(h− 1)K
Kh

−
h−1
∑

i=1

−Ki ≥ 0

The last but one of these relations is a consequence of the fact that
m is divisible by 2h − 2 and a fortiori m

2 ≥ h − 1 while the last step
is immediate by observing thatKkh

≥ Ki0 = 1, 2, . . . h − 1.νhνh is cer-87

tainly integral as seen from (119) by means of (118). We have there-
fore shown that each system (η1, η2, . . . ηh−1) leads to a permissible sys-
tem of exponentsν1, ν2, . . . νh. Consequently,the number of possible
power productsfν11 f

ν2
2 · · · f

νh
h is at least as great as the number of the sys-

tems (η1, η2, . . . ηh−1) which is at leastH−1
Kh
+ 1. DenotingH−1

Kh
by q we

have proved that there exist at leastq + 1 modular forms of the kind
fν11 f

ν2
2 · · · fνhh
Therefore, in case

q ≥ dn(mK) (120)

there exists a non trivial relation
∑

Cnu1ν2 · · · νhf
ν1
1 · · · f

νh
h = 0

with constant coefficientsCν.
As a result of (115), (120) will be satisfied provided we haveq ≥

(mK
π

sn + 1)2−2 which in turn will be true if

q ≥ mh−8(
K
π

Sn + 1)h−2 (121)
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SinceH =
h
∏

ν=1
(1+ mK

(2,p,−2)Kν
) we have

q =
H − 1
Kh

≥
h

∏

ν=1

(1+
mK

(2, p,−2)Kν
)

=
mh−1Kh−2

(2h− 2)h−1

Hence (121) is certainly satisfied if

mh−1Kh−z

(2h− 2)h−1
≥ mh−z(

K
π

Sn + 1)h−z

i.e. if m≥ (2h− 2)h−1(
S n
π
+ 1)h−2,

Obviously, consistent with this requirement, the assumption thatm is 88

divisible by 2h− 2 is permissible and theorem 7 is established.





Chapter 7

The symplectic metric

The paragraph deals with the symplectic metric inY defined by a pos- 89

itive quadratic differential form which is invariant under all symplectic

substitutions. LetZ1, Z2 ∈ Y andM =

(

A B
C D

)

∈ Sn. Let Z∗ν = M <

Zν >, ν = 1, 2. A simple computation yields by means of the relation

Z∗ν = (AZν + B)(CZν + D)−1
= (ZνC

′
+ D′)−1(ZνA

′
+ B′)

and the typical relations for a symplectic matrix established in §1, the
formulae

Z∗2 − Z∗1 = (Z1C
′
+ D′)−1(Z2 − Z1)(CZz+ D)−1

Z∗2 − Z̄∗1 = (Z̄1C
′
+ D′)−1(Z2 − Z̄1)(CZ2 + D)−1

Z̄∗2 − Z̄∗1 = (Z̄1C
′
+ D′)−1(Z̄2 − Z̄1)(CZ̄2 + D)−1 (122)

Z̄∗2 − Z̄∗1 = (Z1C
′
+ D′)−1(Z̄2 − Z1)(CZ̄2 + D)−1

Now for any pointsZ1,Z2 ∈ Y it is easily seen thatZ2 − Z̄1 and
Z̄2−Z1 also belong toY and by (25), everyZ ∈ Y is nonsingular. Thus
the inverses (Z∗2− Z̄∗1)−1(Z̄∗2−Z∗1)−1 exist. From (122) we now obtain that

(Z∗2 − Z∗1)(Z∗2 − Z̄∗1)−1(Z̄∗2 − Z̄∗1)(Z̄∗2 − Z̄∗1)−1 (123)

= (Z1C
′
+ D′)−1̺(Z1,Z2)(Z1C

′
+ D′)

89
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where

̺(Z1,Z2) = (Z2 − Z1)(Z2 − Z̄1)−1(Z̄2 − Z̄1)(Z̄2 − Z1)−1 (124)

It is immediate from (123) and (124) that the characteristicroots90

of ̺(Z1,Z2) for any twoZ1, Z2 ∈ Y are invariant under the symplec-
tic mappingZν → M < Zν >,M ∈ Sn. In particular it follows that
σ(̺(Z1,Z2)) is an invariant function ofZ1, Z2 meaning

σ(̺(Z1,Z2)) = σ(̺(M < Z1 >,M < Z2 >)),M ∈ Sn (125)

For any matrixZ, we definedZ the matrix of the differentials as
dZ = (dZµν) whereZ = (Zµν). For two matricesZ1,Z2 the following
relations are easily verified.

1) d(Z1 + Z2) = dZ1 + dZ2 (126)

2) d(Z1 + Z2) = dZ1.Z2 + Z1dZ2

As a consequence of (2) above we have, if|Z| , 0,

0 = d(E) = d(ZZ−1) = dZZ−1
+ Z · dZ−1 so that

dZ−1
= Z−1dZ · Z−1 (126)′

With these preliminaries about differentials, we once again take up
the main thread. In (124), we specializeZ1, Z2 asZ1 = Z, Z2 = Z + dZ
and obtain

ρ(Z,Z + dZ) =
1
4

dZY−1dZ̄y−1,Z = X + iY. (127)

From (125) it now follows that

dS 2
= σ(dZ.Y−1d̄ZY−1) (128)

is an invariant quadratic defferential form in the elementsdXµν, dYµν of
dX, dY respectively. We may also considerd′s2 as a hermitian form91

in the elementsdZµν of dZ. Further, if R be a real matrix such that
Y−1

= RR′ and if Ω = (ωµν) = R′dZR thenΩ = Ω′ and dS 2
=

σ(R′dZRR′d̄ZR) = σ(Ω′Ω̄) =
∑

µ,νωµνΩ̄µν ≥ 0. If now
∑

µ,νωµνω̄µν =
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0 thenΩ = 0 and this will require thatdZ = 0 asR , 0. Thusds2 > 0
if dZ , 0 and what is the same,ds2 > 0 represents a positive quadratic
form. Now we can considerY as a Riemannian space with the funda-
mental metric given byds2, called thesymplectic metric. The decom-
positiondZ = dX− dY yields

ds2
= σ{(dX+ dY)Y−1(dX− dY)Y−1}
= σ{(dXY−1)dXY−1

+ (dY− Y−1dYY−1}

taking only the real part, since the imaginary part has got tovanish as
ds2 > 0. Thus we get

ds2
= σ(Y−1dX)2

+ σ(Y−1dY)2 (129)

as expression which is well known in the casen = 1.
We now carry over these results to the generalized unit circle, which

we may recall is the setK of W′ssatisfying the condition

W =W′,E −W′W̄ > 0 (2b)′

we know that we can mapY into K by means of the mapping

W = (Z − iE)(Z + iE)−1
= (Z + iE)−1(Z − iE),

If W1, W2 correspond toZ1, Z2 we have

W2 −W1 = 2i(Z1 + iE)−1(Z2 − Z1)(Z2 + iE)−1

E − W̄1W2 = −2i(Z̄1 − iE)−1(Z2 − Z̄1)(Z2 − iE)−1

W̄2 − W̄1 = −2i(Z̄1 − iE)−1(Z̄2 − Z̄1)(Z̄2 − iE)−1 (130)

E −W1W̄2 = 2i(Z1 + iE)−1(Z̄2 − Z1)(Z̄2 − iE)−1

and then 92

(W2−W1)(E−W̄1W2)−1(W̄2−W̄1)(E−W1W̄2)−1
= (Z1+ iE)−1̺(Z1,Z2)(Z1+ iE)

In particular therefore, the matrix represented by the leftside has
the same characteristic roots as̺(Z1,Z2) and hence also the same trace.
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SettingZ1 = dZ, Z2 = Z + Z we haveW1 = W, W2 = W+ dW and then
from the above, and from (127), (128) we have

ds2
= 4σ(̺(Z,Z + dZ))

= 4σ(dW(E − W̄W)−1dW̄(E −WW̄)−1) (131)

This provides another useful expression fords2

We observe at this stage that given two pointsZ1, Z2 ∈ Y we can
always find a symplectic substitution which bringsZ1, Z2 into the special
position

Z1 = iE,Z2 = iD = i(δµνδν ) 1 ≤ d1 ≤ d2 ≤ · · · ≤ dn

For, in view of the 1−1 correspondence betweenY andK it suffices
to determine a permissible substitution which takes two assigned points

W1, W2 into 0 and a special pointsD1 = (δµν,
dν − 1
dν + 1

) and in view of93

the homogenity of the spaceK it suffices to determine a mapping which
leaves the origin fixed and takes a given pointW into a point of the
type D1 viz, a diagonal matrix with positive diagonal elements in the
increasing order. This we know is possible by Lemma 2 by a mapping
of the kind

W→ u′Wu, u− unitary,

and this settles our claim,
We now introduce a parametric representation for positive matrices

y > 0. We choose matricesF = F(r), G = G(r) andH = H(r,n−r) wherer
is a fixed integer in 1≤ r < n to satisfy

y =

(

F 0
0 G

)

[

(

E Hnr

0 E

)

]

=

(

F FH
H′E G+ F[H]

)

(132)

Such a choice is always possible as a comparison of the two ex-
tremes shows. Also from (132) it is clear thatY > 0 is equivalent with
F > 0, G > 0. By means of (132) we also have

y−1
=

(

F−1
+G−1[H′] HG−1

−G−1H′ G−2

)
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and obtain by a simple computation, using properties (126),((126)′),
that

σ(y−1dy)2
= σ(F−1dF)2

+ σ(G−1dG)2
+ 2σ(G−1dH′FdH) (133)

We wish to remark at this stage that all terms in (133) are positive 94

quadratic forms in the appropriate elements; a possible doubt can only
be about the last term but by specialisingdF, dG it is easily seen that the
last term represents a positive quadratic form in the elements ofdH.

We proved to consider the existence and uniqueness of geodesic
lines inY and we prove the following

Theorem 8. Given any two points Z1, Z2 ∈ Y there exists a uniquely
determined geodesic line joining them. The length s(Z1,Z2) of this
geodesic line is given by

s(Z1,Z2) =

√

√

n
∑

ν=1

(log
1+ λν
1− λν

)2 (134)

whereλ2
ν , ν = 1, 2, . . . , n are the characteristic roots of

ρ(Z1,Z2) = (Z2 − Z1)(Z2 − Z̄1)−1(Z̄2 − Z̄1)(Z̄2 − Z1)−1.

In the special case Z1 = iE, Z2 = iD = l(δµν) a parametric repre-
sentation of the geodesic line given by

Z = Z(t) = (δµνd
t
ν; 0 ≤ ε ≤ 1

Proof. Since we know that there always exists a symplectic substitu-
tion which takesZ1, Z2 into iE, iD and that the characteristic rootsλ2

ν

of ρ(Z1,Z2) are invariant under such a substitution, it clearly suffices
to prove the theorem for these special values ofZ1, Z2 Assume for a
moment that a geodesic line joiningZ1 = iE to Z2 = iD exists with
a parametric representationZ = Z(t), 0 ≤ t ≤ 1 such that the elements
Zµν = Zµν(t) have continuous derivatives with respect tot. We shall show 95

that such a line is unique. Also, in the course of the proof we explicitly
determine whatZ(t) is. Then the existence of a geodesic line with the
desired properties is immediate - in fact, the curve represented byZ(t)
which we have explicitly determined is the desired geodesicline. �
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We shall denote the differential coefficient with respect tot as
d
dt

(∗) = (∗̇) By means of (128) and (133) we have

s(Z1,Z2) =
∫ Z2

Z1

(ds2)1/2
=

∫ 1

0

{

σ(Z)−1Z̄Y−1}1/2dt

=

∫ 1

0

{

σ(Y)−1ZY−1Z̄
}1/2dt

=

∫ 1

0

{

σ(Y−1x)2
+ σ(Y−1y)2}1/2dt

=

∫ 1

0

{

σ(Y−1x)2
+ σ(F−1Ḟ)2

+ σ(G−1Ġ)2

+ 2σ(G−1)Ḣ1FḢ)
}1/2dt

≥
∫ 1

0

{

σ(F−1Ḟ)2
+ σ(G−1Ġ)2}dt

We claim that the last inequality is actually a equality. Forotherwise,

in the equationZ(t) =

(

F(t) C
0 G(t)

)

we will have a curve joiningZ1 and

Z2 whose length will be actually
∫ 1

0
{σ(F−1Ḟ)2

+ σ(G−1Ġ)2}dt < s(Z1,Z2)

contradicting our assumption. But then, the equality can hold in the
above when and only when

Ẋ = 0 = Ḣ (135)

We therefore conclude that (135) holds identically int, which means
that X ≡ 0 ≡ H asX(0) = 0 = H(0) then the parametric representation96

of our geodesic line is given by

Z(t) = i

(

F(t) 0
0 G(t)

)

(136)

whereF = F(r), G(n−r) and r is arbitrary with 1≤ r < n. Accord-
ing to the permissible casesr = 1, 2, . . . , n − 1 the same geodesic line
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will admit of (n− 1) formally different representations so that it follows
from (136) thatZ(t) is necessarily a diagonal matrixZ(t) = i(δµνyµν(t))
Consequently we obtain

s(Z1,Z2) =
∫ 1

0

√

√

√ k
∑

ν=1

Y 2
ννY

−2
νν dt =

∫ 1

0

√

√

n
∑

ν=1

Y 2
ννdt

puttingnµν = logYνν. In then dimension Euclidean space withnνν, ν =
1, 2, . . . n as rectangular cartesian coordinates,s(Z1,Z2) then represent
the Euclidean length of our curve. But in this case we know that the
curve of shortest length is the straight line segment joining the points
corresponding toZ1, Z2. Hence we conclude that

logYνν(t) = ηνν(t) = t logd2 (ν = 1, 2, n)0 ≤ t ≤ 1.

In other words we have the parametric representation of the geodesic
line joining Z1 = iE, Z2 = iD = i(δµνdν) as

Z(t) = i(δµν dt
ν), 0 ≤ t ≤)

Now we compute the characteristic rootsλ2
ν of (iE, iD)

̺(iE, iD) = (D − E)(D + E)−1(D − E)(D + E)−1

=
(

δµν(
dν − 1
dν + 1

)2)

so thatλ2
ν = (

dν − 1
dν + 1

)2. Consequently±λν =
dν − 1
dν + 1

which means that 97

(

log
1+ λν
1− λν )2)

= (logdν)2.

We know thats(Z1,Z2) is the Euclidean length of the segment join-
ing (0, 0, . . . 0) and (logd1, . . . logdn).

Hences(Z1,Z2) =
( n
∑

ν=1

(logdν)
2
)1/2

=

{ n
∑

ν=1

(log
1+ λν
1− λν

)2
}1/2
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and the proof is complete.
Having thus obtained the ’shortest distance’s(Z1,Z2) between any

two pointsZ1,Z2 we wish to remark that thesymplectic spheredefined
as the set of pointsZ with Z ∈ Y , s(Z,Z0) ≤ r − Z0 being a fixed point
in Y − is a compact set. Certainly we can assume thatZ0 = iE.

Then

s(Z, iE) =
{ n
∑

ν=1

(log
1+ λν
1− λν

)2
}1/2
≤ r (137)

whereλ2
ν are the characteristic roots ofρ(Z, iE). But

̺(Z, iE) = (Z − iE)(Z + iE)−1(Z̄ + iE)(Z̄ − iE)−1
=WW̄

whereW is the point the in the Generalised unit circle which corre-
sponds toZ under the usual mapping and we know from (26) thatWW̄ <

E. We therefore conclude thatλ2
ν < 1, ν = 1, . . . r. From (137) it is98

clear thatλν cannot be arbitrarily close to 1 so that we should have
λ2
ν ≤ 1 − δ < 1 for someδ > 0. ThenWW̄ ≤ (1 − δ)E and the set

of W′s consistent with this inequality is clearly compact. Therefore the
same is true of the correspondingZ set too and hence also of our sym-
plectic sphere.

We add here one more result for future reference, viz.

Lemma 11. Given a point Z0 ∈ Y there are at most a finite number of
modular substitution which have Zo as a fixed point.

Proof. We first observe that the modular group is discrete and hence
also countable. LetM , ±E be any modular substitution. Then the
equationM < Z >= Z define for a givenM a complex analytic manifold

of dimension less than
n(n+ 1)

2
. Consider now all analytic manifolds

of this kind, viz those formed by the fixed points of a given modular
substitution. In view of the above fact, given any pointZo ∈ Y there
always exist pointsZ in any neighbourhood ofZo with M < Z >, Z for
anyM ∈ Mn, M , ±E. If now Mk < Z0 >= Z0 for an infinity ofK′s, say
K = 1, 2 . . . , andMK , ±MlK , ℓ then choosingZ with M < Z >, Z
for any M different from±E we haveM−1

K
< Z >, Z for ℓ , K i.e.

MK < Z >, Mℓ < Z > for , K. On the other hand,S (MK < Z >
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,Z0) = S (MK < Z >,MK < Zν >) = S (Z,Z0). Consequently the
pointsMK < Z >, K = 1, 2, are all distinct and lie on a compact subset
of Y so that they have at least one limit point contradicting Lemma 8.
We therefore conclude thatMK are identical after a certain stage and the
Lemma is proved. �

We are now on the look out for the invariant volume element of99

the symplectic geometry. We make a few preliminary remarks.Let
R = (rµν) denote a variablen− rowed symmetric matrix andΩ = (ωµν)

a n × n square matrix. LetS = (sµν) = R[Ω] and let
∂(S)
∂(R)

denote the

functional determinant of then(n + 1)/2 independent linear functions
Sµν(p ≤ ν) with respect to the independent variablesrµν(µ≤ν). Then
∂(S)
∂(R)

, C if and only if the mappingR→ S is 1− 1. But this mapping

is 1−1 when and only when|Ω| , 0. For, while the one way implication
is trivial, viz. when|Ω| , 0 the mappingR→ S is actually invertible
asR = S[Ω−1], to realize the converse, we argue that if|Ω| = 0 there
exists a rowXXXXXwith WΩ = 0. The choice of hasR = νν leads
to R[Q] = Ω′RΩ = 0 withoutR being zero, verifying that the mapping

R→ S = R[Ω] is not 1− 1. It therefore follows that
∂(S)
∂(R)

= 0 when

and only when|Ω| = 0. In other words, considered as polynomials in

then2 variablesΩµν,
∂(S)
∂(R)

and |Ω| have the same zeros. Since|Ω| is an

irreducible polynomial in thesen2 variable, we conclude by means of a

well known algebraic result that
∂(S)
∂(R)

= C|Ω|n+1 with a constantC , 0.

The index (n + 1) in the right side is suggested by a comparison of the
degrees of both sides inωµν. The special choiceΩ = E yields to the
determinationC = 1. Thus we have

∂(S)
∂(R)

= |Ω|n+1 for S = R[Ω]. (138)

Let now M =

(

A B
C D

)

∈ ZY and consider the symplectic substitu-
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tion Z→ Z∗ = M < Z >. One of the relations 122 gives

Z∗2 − Z∗1 = (Z1C
′
+ D′)−1(Z2 − Z1)(CZ2 + D)−1

and it then follows that100

dZ∗ = (ZC′ + D)−1dZ(CZ+ D)−1)

The computation of the functional determinant
∂(Z∗)
∂(Z)

requires only

the knowledge of the linear relation betweendZ anddZ∗ given by the
last formula. By means of (138) we then get

∂(Z∗)
∂(Z)

= (C + D)−n−1 (139)

DecomposingZ, Z∗, Z̄, Z̄∗ into their real and imaginary parts we get

Z = X + iY,Z∗ = X∗ + iY∗

Z̄ = X + iY, Z̄∗ = X∗ + iY∗

and it is immediate that

∂(Z, Z̄)
∂(X,Y)

=
∂(Z∗, Z̄∗)
∂(X∗,Y∗)

FromZ∗ = M < Z > andZ̄∗ = M < Z̄ > we then obtain using (139)
and (72) that

∂(X∗,Y∗)
∂(X,Y)

=
∂(X∗,Y∗)
∂(Z∗,Z∗)

∂(Z∗, Z̄∗)

∂(Z, Z̄)

∂(Z, Z̄)
∂(X,Y)

=
∂(Z∗, Z̄)

∂(Z, Z̄)
=
∂(Z, Z̄∗)
∂(Z)

∗

= ||CZ+ ν||2r2
= (

Z∗

Z
)

It now follows that the volume element101

dv= |y|n−1[dx][dy] (140)



99

with















[dx] = πµ≤νdrµν
[dy] = πµ≤νdyµν

is invariant relative to symplectic substitutions.
We supplement our above results with the following two lemmas.

Lemma 12. If Z, Z∗ ∈ Yn and Z1,Z∗1 ∈ Yr denote the matrices which
arise from Z, Z∗ by deleting their last(n− 2) rows and columns, where
r ≤ n then

s(Z1,Z
∗
1) ≤ s(Z,Z∗) (141)

Proof. Since we know that the geodesic lines are uniquely determined,
it clearly suffices to prove the corresponding inequality fords, viz. ds1 ≤
ds in an obvious notation. In other words we need only show that

σ(y−1
1 dy1)2

+ σ(x2
1dx1)2 ≤ σ(y−1dy)2

+ σ(y−1dx)2

whereZ = Z(n)
= x+ iy andZ1 = Z(r)

1 = x1+ iy1. We use the parametric

representation we had for positive matrices to writey =

(

y∗1
x∗

) [(

E H
0 E

)]

and appeal to (133) to infer thatσ(y−1dy)2 ≥ σ(y−11dx1)2
�

SinceX =

(

x∗1
x∗

)

we also have, as in the above case,σ(y−1dx)2 ≥

σ(y−1
1 dx1)2

The desired result is now immediate. 101

Lemma 13. If Z,Z∗ ∈ yn and Z1 = X1 + y1, Z∗1 = X∗1 + LY∗1 be as in the
previous Lemma, and ifS (Z,Z∗) ≤ ̺ then there exist positive constants

Mν = Mν(̺ν)ν = 1, 2 with
1

M1
≤
σ(Y∗1)

σ(Y1)
≤ M1,

1
M2
≤
|Y∗1|
|Y1|
≤ M2.

Proof. Since the conditions(Z,Z∗) ≤ ̺ implies by Lemma 12 that
s(Z1,Z∗1) ≤ ̺ we need only consider the caser = n. In view of the
interchangeability ofY and Y∗ it clearly suffices to prove one part of
each of the two sets of inequalities. Let thenW be an orthogonal ma-
trix (WW′ = E) so determined thaty∗[W] = D = (δµν, dν), dν > cν =
1, 2, . . . n. Let Z̃ = (Z − X∗)[WD−1] = X̃+ andZ̃∗ = (Z∗ − X∗)[WD−1] =
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iy∗[WD−1] = iE. Sinces is invariant under symplectic substitutions, we
haves(Z̃, iE) = s(Z̃, Z̃∗) = s(Z,Z∗) ≤ ̺

In other wordsZ̃ belongs to a symplectic sphere which we know is
a compact subset ofYn and consequently

σ(Ỹ) ≤ m1(n, ̺),
1

m2
≤ (ỹ) ≤ m2(n, ̺) (142)

with suitable constantsMν ν = 1, 2. Also |Ỹ| = |y|Wd−1| = |y|D−1,2
=

|y|Y∗. Then (142) implies that

1
M2
≤ |y||y∗ |−1 ≤ M2

Further, ify[W] = H = (hµν) then

σ(Ỹ) = σ(H[D−1]) =
n

∑

ν=1

hνν
d2
ν

≥
∑n
ν=1 hνν

∑n
ν=1 d2

ν

=
σ(H)
σ(Y∗)

=
σ(y)
σ(y∗)

.

(142) again implies now thatσ(γ)σ(y∗)−1 ≤ m1(n, ̺) and as remarked102

earlier, the interchange ofy andy∗ leads to the other half of our inequal-
ity. The lemma is thus established. �



Chapter 8

Lemmas concerning special
integrals

We need to settle some special integrals to be applied subsequently in 103

our consideration of the Poincare′-theta series. First we generalize Eu-
ler’s well knownΓ-integral

∞
∫

o

e−tyy−s−1
= Γ(s)t−s, t > o,Re.s> o

to the case of a matrix variable.

Lemma 14. If T = T(n) > 0 and Re.s>
n− 1

2
, we have

∫

γ=γ(n)>o

e−σ(Tγ)|y|s− n+1
2 [dy] = π

n(n−1)
4

n−1
∏

ν=o

Γ(s− ν/2)|T |−s (143)

The proof is by induction onn. We first observe that it suffices to
consider only the caseT = E, as in the general case, we can write
T = RR′ and changing the variabley in the above integral toy∗ = y[R]

101
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we shall have
∂(y∗)
∂(y)

= |R|n+ℓ by (138) so that

|y∗| n+1
2 [dy∗] = |[R]|−n+ℓ2[dy] = |y|−n+ℓ2|R|−n−1∂(y∗)

∂(y)
[dy]

= |y|−n+ℓ2[dy]

and|y|s = |y∗|s|T |−s asy = y∗[R−1].
Then the integral we had, transforms into

|T |−s
∫

y∗>o

e−σ(y∗)|y∗|s− n+ℓ
2 [dy∗]

and what we claimed is now immediate. We shall assume then that
T = E. Let

Y =

(

y1 Y
Y ′ ynn

)

−
(

y1 o
o y

) [(

E w
o 1

)]

.

The above is a special case of our representation (132) wherewe104

have setr = n− 1. The following relations are immediate.

ynn = y+ y1[w]

= y1[w]















(144)

Clearly then, the functional determinant

∂(y)
∂(y1, y,w)

=
∂(y1, ynn)
∂(y1, y,w)

is of the type
E 0 0
* 1 *
* 0 y1

so that

∂(y)
∂(y1,Y,W )

= |y1| (145)

Also |y| = |y1|Y, σ(y) = σ(y1) + Y + y1[W ], and y > o when
and only wheny1 > o andY > o all these being immediate con-
sequences of (144). Hence we have, writingd[W ] = πn−1

ν=1dϑν there
W ′
= (ϑ1.ϑ2, . . . ϑn−1),
∫

y>0

e−σ(y) |y|s− n+1
2 [dy] =

∫

y1>o

∫

y>o

∫

W

e−σ(y1)−y−y1[W ]
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|y1|s−
n−1

2 Y s− n+1
2 [dW ]dY [ny1]

= y(s− n+ 1
2

)
∫

y1>o

e−σ(y1)|y1|s−
n−1

2

(

W
e−y1[W ][dW ]

)

[dy1]

= π
n−1

2 y(s− n− 1
2

)
∫

y1>o

e−σ(y1)|y1|s−
(n−2)+1

2 [dy1]

observing
that, if we writey = R′RonY = (w1,w2, . . .wn−1) = (RW ) then the 105

integral within the parenthesis, upto a factor, reduces to

∫

ew2
1−w2

n−1dw1 . . . dwn−1 =

(

α
∫

σ

e−w2
dw

)n−1
=

(

π1/2
)n−l

.

By the induction assumption, the last integral, viz.

∫

y1>o

e−σ(y1)|dy1| = π
n−1

2 , n−2
2

n−2
∏

ν=0

y(S0ν/2).

Substituting this in the above we get

∫

y>0

e−σ(y) |y|S− n+1
2 [dy] = Π

n
2 .

n−1
2

n−1
∏

ν=0

y(S − ν/2)

and the proof is complete.
With Rn denoting space of all reduced matricesy = yn > 0 we state

Lemma 15. Let f(y) be a real and continuous functions on the ray y≥ o

and let s+
n− 2

2
> 0 . Then

∫

y∈Kn
|y|≥t

f (|y|)|y|s[dy] =
n+ 1

2
ϑn,

1
∫

0

f (y)ys+ n−1
z dy (146)

whereϑn is a certain positive constant, depending only on n.
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Proof. We first prove the lemma in the special case whenf (y) ≡ 1 and
s= o. Then (146) reduces to

∫

y∈Kn
||y|≤t|

[dy] = ϑnt
n+ 1

2
(146)′

If only we know that the integral on the left of ((146)′), exists then in
view of its homogenity in the variablesy, ((146)′) certainly holds with
ϑn =

∫

y∈Kn
|y|≤L

[dy]. �

We shall now show that the integral106

yn(t) =
∫

y∈K
|y|≤∈

[dy] exists.

Towards this end, we approximateyn(t) by the following integral
yn(δ, t) =

∫

y∈Kn
yl l≥δ

|y ≤∈ [dy] whereδ denotes a small positive number. The

above requirements iny will imply, in view of the reduction conditions
that ally′ννsare bounded as

δ ≤ yi1 ≤ . . . ≤ ynn.Π
n
ν=1yνν ≤ c, |λ| ≤ Cit

and as a consequence, all they′Nns are bounded. In other words the do-
main of integration forJn(s, ∈) is finite (i.e. Jn(δ, ∈)) is a proper integral
) so thatJn(δ, ∈) certainly exists. We need then only show thatJn(δ, ∈)
has a limit as

∫

→ o and then this limit is obviouslyJn(δ, ∈). Specif-
ically we show that if 0< δ < δ′ , then the differenceJn(δ, ∈), Jn(δ, ∈)
(which is positive ) can be made arbitrarily small by takingδ sufficiently
small. This difference is representable as the integral.

∫

y∈Kn,|y|≤∈,δ≤y11≤δ

[dy] (147)
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If we write λ =
(

y11 x
x yi

)

, yi = y(n−1)
i , then the domain of integration

on (147) is contained in the following domain

′δ ≤ yii ≤ δ

|y2v| ≤
1
2

yi1ν = 2, 3, . . . , , .

|yi > 0|

as the inequalitiesyi1|yi | ≤ yi1y22 · · · ≤ ci |λ| ≤ t which are consequences107

of (81) and (49), show. Denoting the last domain asL , we have, in
view of the induction hypothesis ,

∫

L

[dy] =
∫

δ≤y11≤δ

∫

|yiν≤1\2|y11
ν=2.3,n

∫

y1∈Kn−1
|r i |≤C,t\y11

[dy, ]dy, z..dyi ndyi i

= ϑn−1

∫

y<y11δ

∫

|y11|≤1/2y11|

(C1t
y11

n/2)

dy12 . . . dy1ndyii

= ϑn−1

∫

δ≤y11≤δ

(C1t
y11

)
n/2

dy12 . . . , dy1ndy11

= (ci)
n\2ϑn−1

∫

δ′≤y11≤δ

yn/2−1
11 dy11 <∈′

if δ is sufficiently small, ((146)′) now follows.
It is also clear that the existence of

∫

y∈Kn
|y|≤t

[dy] which we proved above

already implies the existence of the integral on the left side of (146), tak-
ing into consideration the continuity onf (y) in y ≥ 0, so that it remains
only to establish the equality of the two side of (146). Let usintroduce
the following truncated integral

I (a, t) =
∫

y∈Kn
a≤|y|≤t

f (|y|)|y|s[dy]
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and observe that

I (a, t + h) − I (a, t) = I (t, t + h) =
∫

y∈Kn
t≤|y|≤t+ℓ

f (|y|)|y|A[dy]

By a mean theorem, in view of the continuity of the functionf (y).y2108

in the closed interval [t, t,K], the last integral is equal to

f (t + ϑh)(t + ϑ + h)s
∫

y∈Kn,t≤|y|≤t,h

[dy]

with a certainϑ in the interval [0,1]
Thus we have from ((146)′),

I (a, t + h) − I (a, t) = f (t + ϑ|)(t + ϑ)s
{

J(t + h) − 7(t)
}

ϑ

= f(t + ϑh)(t − ϑh)s{(t − h)
n+1

2 − t
n+ 1

2
}ϑn

and therefore

lim
h→0

I (a, t + R) − I (a, t)
h

= f (t)tsϑn lim
h
→ o

(t + hn+1
2 )t n+1

2

h

=
n+ 1

2
ϑn f (t)ts

+
n− 1

2

The limit in the left side is clearly equal to
∂(t(0.t))
∂t

. It now follows

that

I (a, t) =

t
∫

a

∂I (a, t)
∂t

dt =
n+ 1

2
ϑn

∫ t

o
f (t)ts

+
n+ 1

2
dt

and sinces+
n+ 1

2
> 0 by assumption, lettinga → 0, and sinces+

n+ 1
2

> 0 by assumption, lettinga→ 0, what results is precisely what

we wanted. We single out important special cases of (146), viz.
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1) Choosingf (t) ≡ 1 in the above, (146) yields that

∫

y∈Kn
|y|≤t

|y|s[dy] =
n+ 1

2
ϑn

∫ t

o
ys+ n−1

2 xy=
n+ 1

2s+ n+ 1

ϑnτnts+ n+1
s provideds+

n+ 1
2

> 0. (148)

2) Setting f (y) = e−ayd
(a, 0, ∂ > 0) in the above, and lettingt → ∞

in (146), that the limit exists is seen by considering the right side and 109

we get
∫

y∈Kn

e−a|y|d |y|s[dy] =
2+ 1

2
2n

y
∫

0

e−ay∂ys+ n−1
2 dy

=
n+ 1
2d

ϑn|(
s
2
+

n+ 1
2d

)d−s∂−n+1
2d (149)

provideda > 0, ∂ > 0 ands+
n+ 1

2
> 0C.

It is remarkable that all integrals which we use and need for acon-
sideration of the Poincare’ series are easily computed as seen from the
above.





Chapter 9

The Poincare’ Series

This section is devoted to the construction of modular formsin the shap 110

of the Poincare’ series. LetT ≥ 0 be a semigroup of modular matrices
of the form

(

u Sou′−1

o u′−1

)

(150)

whereu is a unit of T meaningT[u] = T, andSo is symmetric and
integral. LetV(T) denote a set of modular matrices which constitutes a
complete system of representatives of the left cosets ofM moduloA(T).
Then

M =
∑

S∈V(T)

A(T)S (151)

With k standing for aneven integer, we introduce the Poincare’ series as

g(Z,T) =
∑

S∈V(T)

e2πσ(TS<z>)|cz+ D|−K (152)

where we assumeS =

(

A B
C D

)

First we note that the Poincare’ series does not depend on thechoice
of V(T). For, this only requires that (152) is left invariant if we replace
the matricesS occurring in (152) byMS where

M =

(

u Sou′−1

0 u′−1

)

is a matrix of the type occurring in (150). Due to111

109
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this replacementσ(TS < Z >) will go over intoσ(T MS < Z >) and

σ(T MS < Z >) = σ{T(S < Z > [u′] + So)}
= T(S < Z > [u′] + So)

= σ(T[u]S < Z >) + σ(TSo)

= σ(TS < Z >) + σ(TSo)

sinceu is a unit ofT. Also

σ(TSo) =
∑

µ,ν

tµνs
o
νµ =

∑

tµµso
µµ −

∑

µ<ν

tµν2so
µν

so thatσ(TSo) is an integer asSo = (so
µν) is semintegral. It therefore

follows that the exponential factors occurring in (152) areleft unaltered
by such a replacement. The same is trivially true of the otherfactor
|cZ+D|K as it goes over into|u−1cZ+u−1D| = |u′|K|cZ+D|K = |cZ+D|K,
u being unimodular andk being an even integer. It is immediate that
g(Z,T) is independent of the choice ofV(T). We now contend that

g(Z,T)|M = g(Z,T)| (153)

for any M =

(

Ao Bo

Co Do

)

∈ M where

g(Z,T)|M = g(M < Z >,T)|C0Z + D0|−K

For,g(Z,T)|M = ∑

S∈V(T) e2πi(σ(TS)<Z>) |C0Z + D0|−K

=

∑

S∈V(T)M

e2π(σ(TS)<Z>)|cZ+ D|−K

= g(Z,T)

sinceV(T)M represents a set of representatives of the left cosets of112

A(T) in M in view of V(T) doing so. What is more,g(Z,T) depends
only on the equivalence class ofT. In other words a replacement ofT
by T[y] whereV is unimodular but arbitrary, does not affectg(Z,T). We
may remark are this stage that all our considerations are formal for the



111

present.V being any unimodular matrix, the groupA(T[V]) consists of
all modular matrices

(

u1 S1u′−1
1

0 u−1
1

)

with (T[v])[u1] = T[V]

andS1 = S′1 (integral). This means that if we introduce

u = vu1v−1,S = vS1v′ andR=

(

v C
0 v−1

)

thenR ∈ M and, withT[u] = T,

R

(

u1 S − 1u−1
1
′

0 u−1
1

)

R−1
=

(

u S u′−1

0 u−1′

)

.

An argument in the reverse direction is also valid and thus weobtain

RA(T[v])R−1
= A(T) (154)

From (151) we have

M =
∑

S∈V(T)

A(T)S =
∑

S∈V(T[v])

A(T[v]S)

so that using (154) 113

M = RMR−1
=

∑

S∈V(T[v])

RA(T[v])R−1RS R−1

=

∑

S∈RV(T[v])R−1A(T)S

.

ThusRV(T[v])R−1 is a set of the kindV(T) and multiplication on
the right by a modular substitution will again lead to a set ofthe same
kind so thatRV(R[v]) is itself a set of the typeV(T). Now

g(Z,T[V]) =
∑

S∈V(T[v])

e2πσ(T[v]S<Z>) |cZ+ D|K.
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Since

σ(T[v]S < Z >) = σ(TS < Z > [v]) = σ(TRS< Z >)

we conclude by arguments as in earlier contexts that

g(Z,T[v]) = g(Z,T) (155)

whereV is an arbitrary unimodular matrix.
We are heading towards the proof of the absolute and uniform con-

vergence of the Poincare’ series (152) in every compact subset of Y
provided

K > min(2n, n+ 1+ rankT) (156)

and then for suchR′s, g(Z,T) is a regular function inY . The absolute
convergence will in particular justify all our earlier considerations which
were hitherto formal and then by means of (153), we would haveproved
that g(Z,T) represents a modular form of degreen > 1 and weightk.
The casen = 1 requires some further consideration.114

In view of (155) and (106), it suffices to consider the convergence
of the Poincare’ series in the special case when

T =

(

T1 0
0 0

)

,T1 = T(r)
1 > 0. (157)

If u is a unit ofT, we decomposeu analogous toT asu =

(

u1 u2

u3 u4

)

and use the relationT[u] = T to infer thatu2 = 0 andT1[u1] = T1. Let
us denote byAr (r ≥ 0) the group of modular matrices

M =

(

u S0u′−1

0 u′−1

)

(158)

with u =

(

E(r) o
u3 u4

)

u- unimodular andSo symmetric integral. IfT be

as in (157) which it is throughout our subsequent discussion, thenAr is
actually a sub-group ofA(T) of finite index (A(T) : Ar). In fact, if ε(T1)
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denotes the number of units ofT1 = T(r)
1 for r > 0 and denotes unity if

r = 0, then
(A(T) : Ar ) = ε(T1).

Let Vr be a set of representatives of the left cosets ofAr in M so that

M =
∑

S∈Vr

ArS, r ≥ 0. (159)

It is clear that to eachS ∈ V(T) there correspondsε(T1) elements
of Vr sayS1,S2, . . .Sε(T1) all of which belong to the same left coset of115

A(T) in M and consequently,

g(Z,T) =
1

ε(T1)

∑

SεVr

e2πσ(TS<Z>)|cZ+ D|−K,S =
(

A B
C D

)

By (159),M =
∑

S∈Vo
A0S so that if we assume

Ao =
∑

R ArR, then M =
∑

RS ArRS. Comparing this with (159)
we conclude thatVr is obtained as all possible productsRS whereR
runs through a set of representatives of left cosets ofAr in Ao andS run
through all the elements ofVo. In view of an earlier result (pp. 11) we
can take forVo the set of all matrices whose second matrix rows con-
stitute a class of coprime symmetric mutually non-associated pairs. We

now determine a representative system forR. If Rν =

(

uν ∗
0 ∗

)

, ν = 1, 2

are two matrices which belong to the same coset ofA in Ao then there

exists a matrixM =

(

u Sou−1

ou−1

)

of the type occurring in (158) with

MR1 = R2. This is easily seen to mean thatuu1 = u2 and consequently

u′1u′ = u′2. Sinceu =

(

E(r) u3

o u4

)

the above givesu1
′
(

E(r) u3

o u4

)

= u2
′. If

u′ν = (p(r,r)w), ν = 1.2, such an equation can hold only whenp1 = p2.
It is now easy to infer that ifP = P(r,r) runs through all primitive matri-
ces and to eachP we make correspond a unique matrixu∗ obtained by
completingP to a unimodular matrix in an arbitrary way, then the class116

of all matrices

R=

(

u∗ o
o u∗

′−1

)

(161)
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provides a compete representative system of the left cosetsof Ar in Ao.
We now have

g(Z,T) =
1

ε(T1)

∑

R

∑

∗∗Vo

e2πiσ(TRS<Z>)|CZ+ D|−K

where (C,D) which should strictly denote the second matrix row of the
productRS can be assumed to be the second matrix row ofS in view
of the special form (161) ofR. Since to each primitiveP = P(n,r) we
have corresponded a uniqueR, the summation in the last series can be
regarded as one over the set ofP′s instead of theR′s. In fact the general
term of the last series depends only onP and not on the rest of the
columns ofR as the equations

σ(TRS< Z >) = σ{T(S < Z >)[u′∗]}
= σ{T[u∗]S < Z >}
= σ(T1[P′]S < Z >)

show. We have thus shown that

g(Z,T) =
1

∈ (T1)

∑

P

∑

S∈Vo

e2πiσ(T1[P′]S<Z>)|CZ+ S|−K (162)

whereS =

(

A B
C D

)

We proceed to construct a suitable fundamental domain forAr in Y .
We use the parametric representation (132) fory > o as

y =

(

y1 o
o y2

) [(

E y
o E

)]

(132)′

wherey1 = y(r)
1 , y2 = y(n−r)

2 andv = V(r,n−n).117

The substitution (158) takesZ = X − iy ∈ Y into

Z[u′] + So = X[u′] + So + i

(

y1 o
o y2

) [(

E o
o y2

) (

E u3
′

o u4
′

)]

= X[u′] + So + i

(

y1 o
o y2

) [(

E u3
′
+ vu4

′

o u4
′

)]
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= X[u′] + So + i

(

y1 o
o y2[u1

′]

) [(

E u3
′
+ vu4

o u4
′

)]

Comparing this with

Z = X + iy = × + i

(

y1 o
o y2

) [(

E V
o E

)]

we deduce that a transformation of the type (158) effects the following
changes.

× → ×[u′] + So y1→ y1

Y2→ y2[u4
′]. V → u3 + Vu4

′















. (163)

We need a few notations. We shall denote by

1) KK,n−n the set of all matricesV = V(K,n−n)
= (ϑmν) satisfying the

conditions:−1
2
≤ ϑµν ≤ +

1
2

for all µ, ν,

2) Kn the set of all matrices× = x(n) with

× = ×′,−1
2
≤ ×µν ≤ +

1
2
, µ, ν = 1, 2, . . . r

3) Kn′ the set of all reduced positive matricesy − y(n) (in the sense of
Minkowski)

By an appropriate choice ofu4 in (158), we can obtainy2[u4
′] in 118

(163) as a reduced matrix, in other wordsY2[u4
′] ∈ Kn−n and in general,

uΛ is uniquely determined. We can then choose an integral matrix u3

such that in (163),u3vu4
′ ∈ KK,n−n andu3 is also uniquely determined

in general. The choice ofu3 andu4 fixesu and then we can chooseSo

such that [u′] + So ∈ Kn. In generalSo is also uniquely determined.
These considerations prompt us to define a fundamental domain yu for
A2 onK as the set ofZ.

Z = × + iy = × + i

(

y1 o
o y2

) [(

E V
o E

)]

where

× ∈ yWn, y2 ∈ Kn−n,V ∈ yn−n. (164)
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For purposes of proving the convergence of the Poincare’ series, we
in fact consider a majorant of it, viZ. the series

h(Z,T) =
1

ε(TZ)

∑

S∈Vn

e−2πσ(TyS)|y2|h/2 (165)

which arises from (??) by replacing each term of (??) by its absolute
value multiplied by a factor|y|K = |y|K/2 ||CZ + D||K where we denote
S < Z >= ×S + y2. The absolute or uniform convergence of the above
series implies the corresponding fact for the Poincare’ series. In the
sequel therefore, we shall concern ourselves with this new series.

We first prove the uniform convergence ofh(Z,T) on special com-
pact subsets ofY , viz. the symplectic spheres and the general case will
immediately follow. LetZ0 ∈ Y be fixed and letKo denote the symplec-119

tic spheres(Z,Z) ≤ 1
2
ρ Assumeρ to be so chosen thatKo does not have

a non empty intersection with any of theS(Ko)Y without being iden-
tical with it, S denoting an arbitrary modular substitution. The validity
of this assumption is an immediate consequence of the modular group
being discontinuous onY (cf. Lemmas 8). LetZ, Z∗ be arbitrary points
of Kν. Then we haves(Z,Z∗) ≤ ρ ands(s< Z >), S < Z∗ >≤ S, S ∈ M.
With a view to obtaining a convergent majorant forh(Z∗T) which does
not depend onZ∗ ∈ Ko we work out the following estimations.

If Z = × + iy andy =

(

rnr
∗y

)

with y1 = y(r)
1 then in view of the special

form (157) forT we have

σ(Ty) = σ(T1y1).

Let R = R(n) be a real matrix such thaty = RR′ and letwν, u =
1, 2, . . . r denote the columns ofR. E denoting any real column, letµ1 =

minν=1 r1[∈] andµ2 = µε=1T1[ε], Then we haveσ(T1Y2) = σ(T1(ε)) =
ν
∑

ν=1
σ(Γ1[Wν]). Also

µ1σ(y1) = µ1

r
∑

ν=1

4′νWν ≤
r

∑

ν=1

T1[Wν]
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≤ Γ2

r
∑

ν=1

W′νWν = µ2σy1

so that
Γ1σ(y1) ≤ (Ty) ≤ µνσ(yλ)

ReplacingZ by Zν = xr
+ 0yν, yν =

(

zν(µ)
ν yr

)

.
we have from the above

µ1σ(yν1) ≤ σ(T j2) ≤ µ2σ : yν1

SinceS (Z,Z∗ = ̺), by means of Lemma 13, we have 120

1
m1
≤
σ(y∗1)

σ(y1)
≤ m1

Combining all these it results that

σ(Ty∗) ≥ µ1σ(y∗1) ≥ µ1

m1
σ(y1) ≥ mσ(Ty′,m〉0

The interchange ofy andy∗ leads to an inequality in the opposite
direction and we have

m≤ σ(Ty∗)
σ(Ty)

≤ 1
m

The assumption onZ,Z∗ used to prove the above inequalities are
also true ofS〈Z〉, S〈Z∗〉, S ∈M so that, writing

S〈Z〉 = xs + tYs,S〈Z∗〉 = λ∗s + iy∗s

we also have

m≤ σ(Ty∗s)

σ(Tys)
≤ 1

m

From Lemma 13 we have an estimate for|y∗s|/|ys| viz.

1
mZ
≤ |y

∗
s|
|ys|
≤ ms

and consequently|y∗s|k/Z ≤M |xs|k/Z with M = mk/Z
s .
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The general term of (165) allows then the following estimation for
Z ∈ Eo, viz

e−2πσ(Ty∗s)|y∗s|k/2 ≤M e−2πmσ(Tys,)|ys|k/2

On integration, the above yields

e−2πσ(Ty∗s)|y∗s|k/2 ≤
M

ko

∫

y∈Ro

e−2πmσ(Tys,)|ys|k/2|ys|n−1dxTo

whereko is the volume ofEo and is given by

ko =

∫

ko

|y|−n−1[dx][dy] −
∫

Z∈Eo

|yZ|n[dx][dy]

Hence it follows that121

h(Z∗,T) ≤ M

ko

1
ε(T1)

∑

ε∈Vr

∫

Z∈E2

∈−2πmσ(Tys) |ys|k/Z−n−1[dxs][dys]

=
M

ko

1
ε(T1)

∑

S∈Vr

∫

Z∈∈〈E2〉

∈−2πmσ(Ty) |y|k/Z−n−1[dx][dy]01∈s

(166)

We now break the integral
∫

s〈E,o〉

e−2πmσ(Ty)|y|k/Z−n−1[dx][dy]

into a sum of integrals the domain for each of which can be brought into
a subset of the fundamental domain′o′n of An by means of an appro-
priate substitution inAn. Noting that the integrated above is invariant
under the substitutions ofAn we would have then expressed the above
integral as a sum of integrals, all taken over appropriate subsets ofyo

n.
This is done as follows. Sinceyo

n is a fundamental domain forAn in ξ

we haveξ =
⋃

M ∈An

M 〈yO
n 〉. Hence

S〈Ko〉 = ̺〈Ko〉 ∩ Y
⋃

M ∈An

̺〈Ko〉 ∩ M〈yo
n〉
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Let s〈Ko〉∩M∼s 〈yo
n〉 be non empty forν = 1, 2, . . . , as, the suffix S in

M∞s , as denoting that these depend onS. (It is not difficult to show that
µs is finite in each case but we do not need this). Let further

L (ν)
s = S〈K̃〉 ∩ M(ν)

∈ 〈yo
n〉, ν = 1,R, . . . ,Rs.

ThenS〈R〉 = ∪a
ν=1L

(ν)
S . If L (ν)

s = M(ν)−I 〈L (ν)
y 〉, thenL (ν)

s ⊂ L
for eachλ and we have clearly

∫

S〈Ko〉

e−2πmσ(Ty) |y|K2−n−1[dx][dy]

=

as
∑

ν=I

∫

L
S (ν)

e−2πmσ(Ty) |y|K2−n−1[dx][dy]

and consequently, from (166) 122

h(Z∗,T) ≤ µ

Joε(T1)

∑

SεVr

as
∑

ν=1

∫

L (ν)
S

e−2πmσ(Ty)|y|K2−n−1[dx][dy] (167)

We certainly know that the union ∪
S∈Vr

ν=1,2...as

L (ν)
S is contained inyo

r .

But something more is true, viz. this union is actually contained in the
set ofZ = × + iy defined by:

Z ∈ yr , |y| ≤ t

if t is chosen sufficiently large. For|y| is invariant under the substitutions
in Ar and then we need only prove that|y| ≤ t for

Z = × + τy ∈ ∪as
ν=1L

(ν)
S = S.

Consider now the set of points{S < Z0 > /S ∈ Vr}. Being a set
of equivalent points it has a highest point in it, saySi < Z0 >. Then if
Si < Z0 >= ×os+ iyos, we have||yosi || ≥ ||yos|| for everyS ∈ vr Let Z
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be an arbitrary point isS < K0 >. Then (Z, s < Z0 >) ≤ 1
2
P so that by

Lemma 13
1

m2
≤ |y||yos|

≤ m2,m2 = n2(ρ, n).

Thus |y| ≤ m2|yos| ≤ m2|yosi | = t (say). Then with thist (which
is a fixed number) we have that

⋃

s∈Vr
u=1,2...0S

is contained in the set ofZ′s123

defined by:Z ∈ rr , |y| ≤ t If now ∈0 denotes the number of modular
matricess having Z0 as a fixed point, viz.s < Z0 >= Z0, we know
from Lemma 11 that∈0 is finite and we want to show that every point
of yr appears at moste2

0 times in the union
⋃

s∈Vr
u=1,2,

Lνsas
In other words, we

have got to show that if∃ denotes the set of all pairs (ν, s) with Z ∈ L(ν)
s

where>, is a fied point infr , then this set has at moste2
0 elements. If

(ν, s), (ν0, s0) be two pairs inf, thenZ ∈ Mν−1

s 〈L
(ν)
s 〉 ⊂ m(ν)−1

s s〈K0〉 and

similarly Z ∈ M
(ν)−1

0
s0 〈L

(ν0)
s0 〉 ⊂ M(ν)−1

s0 s0〈K0〉. This means that the two

spheresM(ν)−1

s S〈K0〉,M(ν0)−1

s0
〈K0〉 have one point in common and hence

the spheres themselves are identical. In particular, theircentres are equal
so that

M(ν0)−1

s0 S0〈Z0〉 = M(ν)−1

S S〈Z0〉.i.e.Z0 = S−1
0 M(ν0)

s0 M(ν)−1

s S〈Z0〉.

Keeping (ν0,S0) fixed, we have now produced for each pair (ν,S) ∈
f a substitutionS−1

0 M(ν0)
s0

M(
sν)
−1
s S which hasZ0 as a fixed point and

which consequently belongs to a finite set ofe0 elements. It easily fol-124

lows then that the possible choices for (ν,S) are at moste2
0 in number.

Turning to our seriesh(Z∗,T) and its majorant in (167), we can now
state that

h(Zm,T) ≤ M
J0 ∈ (T1)

∑

s∈vr

as
∑

ν=1

∫

Z∈L(ν)
s

|y|≤t

e−2πmσ(Ty)|y|R2 − n− 1[dx][dy]

≤
Me2

0

J0 ∈ (T1)

∫

Z∈yr
|y|≤t

e−2πmσ(Ty) |y|R2 − n− 1[dx][dy]
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=
Me2

0

J0 ∈ (T1)
F(mT1, t)(say)

It only remains therefore to investigate under what conditions the
last integralF(mT1,T) exists. First we treat the case 0< r < n. In this
case we have the parametric representation fory > 0 from (132) as

y =

(

y1 o
o y2

) [(

E v
o E

)]

wherey1 = y1(r), y2 = y(n−r)
2 , ν = ν(r,n−r) and if Z = × + iy ∈ yr then

× ∈ XXXXXρn, ν ∈ Kρr,n−r andy2 ∈ Kn−r As with (145), we can show

that
α(y)

α(y1, y2, ν)
= |y1|n−r and consequently

[dy] = |y1|n−r [dy1][dy2][dv]

(We may remark that in [dν] we have the product of the differentials of
all the r(n − r) elements ofV asν is not in general symmetric). Also
|y| = |y1||y2|andσ(Ty) = σ(T1y1). Hence

F(mT1, t) ≡
∫

Z∈Lr
|y|≤t

ϕ−Zamσ(Ty)|y|k/Z−n−1[d×][dy]

=

∫

×∈Kϕn.ν∈Kϕn,n.r,|y1||y2|≤t
y1>0,y2∈Kn−r |y1||y2|≤t

e−2πmσ(Tiyi )|yi |K/2,n−1[dx][dyi ][dyi ][dy]

=

∫

yi>0,y2∈Kn−r
|yi ||y2|≤t

e−2πmσ(Tiyi )|yi |K/2−r−1|y2|K/2−n−1[dyi ][dy2]

since the above integrand is independent of×, ν and the volumes ofKϕn,
Kϕr , n − r which are the domains for×, ν are both unity. Thus, using
(146) and (143) we can now state that

F(mTi , t) =
∫

yi>0

e−2πme(T,yi )|yi |K/2−m−1
(

∫

y2∈Kn−r
|y2|≤t/|yi |

|y2|K/2−r−e[iy2]
)

[dyi ]
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=
n− r + 1
K − n− r − 1

ϑn−r t
K−n−r−1

2

∫

yi > 0e−2πmσ(Tiyi )|yi |
n− r − 1

2
[dyi ]

=
n− r + 1
K − n− r − 1

ϑr−r t
K−n−r−1

2 π
n(r−1)

4 (2πm)
−rt
2 |r |−n/2

r−1
∏

ν=a

r(
n− ν

2
)

providedk > n+ r + 1.
In particular we have shown the existence ofF(mTi t) under the as-

sumptionk > n + r + 1 0 < r < n. We now discuss the border cases
r = 0, n.

Let r = 0. Then using (146)125

F(mTi , t) =
∫

×∈nϕn,y∈Kn,|y|≤t
|y|K/2−n−1[d×][dy]

=

∫

y∈Kn,|y|≤t
|y|H/2−n−1[dy]

=
n+ 1
K − n− 1

ϑnt
K−n−r−1

2

providedk > n+ 1 Let nowr = n. Then

F(mTi , t) =
∫

×∈Kϕn,y>0,|y|≤t

e−2πmσ(Ty) |y|K/2−n−1[d×][dy]

≤
∫

y>0
e−2πmσ(Ty)|y|K/2−n−1[dy]

= π
n(n−1)

4 (2πm)
n(n+1−K

2 |T | n+1−K
2 πn

ν=i⌈(
K − n− ν

2
)

providedk > 2n.
It follows that in any case providedk > min(2n, n + r + 1), r =

rankT the Poincare’ seriesg(Z,T) converges absolutely and uniformly
in a neighbourhood of every pointZeyand hence also in every compact
subset ofy.

Since by our assumptionk is an even integer, the above condition on
k actually simplifies into

k > n+ 1+ rankT.
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In the casen = 1, we can say something more. In fact, the Poincare’
series in this case has a convergent majorant which does not depend
on Z ∈∈n so thatg(Z,T) is actually bounded in⌈n. This result is a
consequence of the following

Lemma 16. Letµ, ϑ,×, y be real numbers, and let|x| ≤ b and y≥ δ > 0 126

for suitable constantsC , ξ. If Z = x+ iy, then

|µZ + ϑ| ≥∈ |νi + ϑ| (168)

with a certain positive constant∈=∈ (δ,C .

If µ2
+ν2
= 0, (168) is trivially true so that we can assumeµ2

+ν2 > 0.
Then, due to the homogenity of (168) inµ, ν we can in fact assume that
µ2
+ ν2

= i. The proof is by contradiction. If the Lemma were not true,
there exists sequencesZn = µn + iyn, un, ϑn, n = 1, 2 . . . , with µ2

n + ν
2
n =

|xn| ≤ E , yn ≥ δ and finally|un2n + ϑn|2 = (νnyn)2
+ (νnxn + ϑn)2 < 1/n.

So, in particularu2
n < 1/ny2

n ≤ 1/nδ2 so thatun → 0XXXXXn→ ∞
This implies, since|xn| ≤ ζ that unxn → o and consequentlyϑn → o.
But this is impossible asu2

n + ϑ
2
n = 1 1 for everyn. This proves our

Lemma.
Reverting to the Poincare’ series in the casen = 1, we have

g(Z,T) =
1

ε(T1)

∑

o1Vn

eZ,∗∗∗∗∗|eZ+ D1

If r = 1, the above series is majorised by the series

1
ε(t)

∑

S oV1

e2πtoy|c2− D1−R

obtained by taking absolute values termwise and in the alternative case,
vie, r = 0, it is injorised by

∑

S gVo

|cL+ D1

For Z ∈ δ1 , whence|x| ≤ ζ = 1/2 and|y| ≥ δ =
√

3/2, Z = x + y, 127

either of these has the convergent majorantζ
∑ |ei + d1−K independent

of Z by means of Lemma 15.
We one summarize our results into the following
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Theorem 9. The Poincare, series (152), Viz.

g(Z,T) =
∑

S∈V(T)

e2πσ(TS<Z>)|CZ|D1K,S =

(

A B
C D

)

converges absolutely and uniformly in every compact subsetof Y and
represent a modular form of weight k forK ≡ o(2), k > n + 1+ rankT,
where T stands for an arbitrary semi integral semi positive matrix.

Later, we shall prove that Poincare’ series actually generates all
modular forms of degreen and weightk providedk ≡ 0(2) andk > 2n.
This proof requires a new tool, viz, the metrization of modular forms
and the next section is devoted this topic.



Chapter 10

The metrization of Modular
forms of degree

In §.5 we defined modular forms of degreen ≥ 1 and weightk and we 128

set up an operatorφ which maps the linear spaceM (n)
K

of such forms

intoM(n−1)
K

whenn > 1. With a view to facilitating the statement of our
subsequent results we agree to call constants modular formsof degree
0 and a given weightk and extend the domain ofφ to includeM (1)

K
by

specifying that for modular formsf (Z) ∈M 1
K

, f (Z)/φ = a, (o), viz, its
‘first’ Fourier coefficient . We can now state that

M (n)
K

∣

∣

∣

∣

∣

φ ⊂M (n−1)
K

, n ≥ 1.

It is of interest to investigate when the reverse inclusion is also true,
viz, when the inclusion relation above is actually a relation of equal-
ity. This turns out to be true in all the cases where the Poincare’ series
g(Z,T) which depend onk andn have been proved to exist (as modu-
lar forms of degreen and weightk), as we shall see subsequently . A
modular form of degreen > 0 shall be called acusp formif

f (Z)|φ ≡ o

Any modular form of degree 0 shall by definition be a cusp form
too. If f (Z), g(Z) be two modular forms of degreen ≥ 0 and weightk,

125
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of which at least one is a cusp form, we define a scalar product (f , g) by

( f , g) =























∫

fn

f (Z)g(Z) |y|K−n−1[d×][dy], f nn > o,Z − x+ y

f ḡ, if n = 0
x (169)

We prove the existence of the right side of (169) to make our defini-129

tion meaningful. Let, of the two,g(Z) be a cusp form.
It follows from (111) that

|g(Z)| ≤ ζe−2∈Y |y| for Z = χ+ ∈ y ∈ Fn

with certain constants∈, ζ0. Clearly f (Z) and∈−∈
√
|y| |y|K−n−1 are boun-

ded in fn. We have therefore only to prove the existence of the integral
∫

fn

e∈u
√
|y|[dy][dx].

Since fn is contained in the set ofzXXXXXdefined by:

Z = x+ iy, χ ∈Mn, y ∈ Kn

the above integral is majorised by
∫

y∈Kn

ε−∈u
√
|y|[dy] and this integral, we

know, exists by (149).
We also observe that the integrandf (Z, g, Z̄)|y|K−n−1[dx][dy] is in-

variant with respect to the modular substitutions, as the product g(Z)
f (Z)|y|K anddy = |y|−n−1[dχ][dy] are so, and consequently it is permis-
sible to replace the domain of integrationfn occurring in the right side
of (169) by any other fundamental domain forMn

The cusp forms of degreen and weightk constitute a linear space
y(n)
K

, a sub space ofM (n)
K

. We define the orthogonal spacey(n)
K

of y(K)
K

in

M (n)
K

in the usual way, is the set of forms inM ()
K

, which are orthogonal

to all the forms iny(n)
K

in the sense of our inner product. It is well known130

thatM (n)
K

is the direct sum ofy(n)
K

and(n)
K

i.e.

M (n)
K
= y(n)
K
+N (n)

K
.

A much finer decomposition ofM (n)
K

is given in
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Theorem 10.There exists a uniquely determined representation ofM (n)
K

as a direct sum
M (n)
K
= y(n)

R0 + y(n)
K1 + · · · + y(n)

Kn (170)

with
y(n)
Kn ⊂ y(n)

K

for ν < n and y(n)
Kν
⊂ N (n)

K
, y(n)
Ko& ⊂ y(n−1)

R′′ (171)

Proof. We first remark that the mappingφ is 1− 1 onN (n)
K

. �

Indeed, due to linearity ofφ, this is ensured iff (Z) ∈ N (n)
K

, f (Z)φ ≡
0 together imply thatf (Z) ≡ 0, but this is immediate as, in this case,
f (Z) ∈ N (n)

K
oy(n)
K
= (0).

Also the theorem is innocuous in the casen = 0. We now base
our proof on induction onn. We therefore assume giveny(n−1)

Kν
, ν = 1,

2 · · · (n−1) satisfying (170)- (171) withn replaced byn−1. Lety(n)
Kν

(ν <

n) denote the linear space allf (Z) ∈ N (n)
K

such thatf (Z) φy(n−1)
Kν

.

Sinceφ is invertible onN (n)
K

, ȳ(n)
K

can be characterized by the rela-
tions:

ȳ(n)
Kν
⊂ N (n)

K
, ȳ(n)
Kν
|φ = N (n)

K
|φ ∩ y(n−1)

Kν

By assumption 131

M (n−1)
K

=

n−1
∑

ν=o

yn−1
Kν

so that

N (n)
K
|& = N (n)

K
|& ∩M (n−1)

K
=

(n−1)
∑

ν=o

N (n)
K
|& ∩ y(n−1)

Kν

=

n−1
∑

ν=o

y(n)
Kν
|φ

where all the sums occurring are direct.
Sinceφ is 1− 1 onN (n)

K
this means that

N (n)
K
=

n−1
∑

ν=o

¯y(n)
Kν
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and then

M (n)
K
= N (n)

K
+ y(n)
K
=

n−1
∑

ν=o

ȳ(n)
Kν
+ y(n)
K

again all the sums direct. The last decomposition has clearly all the
desired properties.

It remains to show that decomposition is unique .
Let M (n)

K
=

∑n
ν=o y(n)

Kν
be another decomposition satisfying (171).

Then we have forν < n,

y(n)
Kν
|φ ⊂ N (n)

K
|φ ∩N (n−1)

Kν
= ȳ(n)
K
|ϕ

and bothy(n)
Kν

, ȳ(n)
Kν

are contained inN (n)
K

on whichφ is 1− 1. Hence

y(n)
Kν
⊂ ȳ(n)
Kν

for ν < n, and by assumption,y(n)
Kν
⊂ y(n)
K

. Since
∑n
ν=o y(n)

Kν
=

∑n
ν=o ȳ(n)

Kν
+ yn
K

and both sums are direct, it easily follows thaty(n)
Kν
= ȳ(n)
Kν

for ν < n andy(n)
Kν
= y(n)
Kν

.
The proof of theorem 10 is now complete.
As a consequence of (171) we deduce that132

y(n)
Kν
|ϕn−ν ⊂ y(n−1)

Kν
|ϕn−ν−1 ⊂ y(n−1)

Kν
|ϕn−ν−1 · · · ⊂ y(n)

Kν
= y(n)
K
.

This means in words thaty(n)
Kν
|ϕn−ν consists of cusp forms of degree

ν. Furtherφn−ν is 1− 1 ony(n)
Kµ

for µ ≤ ν ≤ n and in particular ony(n)
Kν

.

For, we need only show that the conditionsf (Z) ⊂ y(n)
Kµ

, f (Z)|φn−ν
= o,

µ ≤ ν ≤ n, together imply thatf (Z) ≡ o. Since in the caseν = n, the
assertion is trivial, we assumeν < n. We resort to induction onn.

Let g(Z) = f (Z)|φ. Then our assumption implies in view of (171)
that

g(Z) ∈ y(n−1)
Kµ

, g(Z)|φn−1−ν
= o

The induction assumption then implies thatg(Z) = 0 which in its
turn means thatf (Z) = 0 as we know thatφ is 1− 1 on N (n)

K
and in

particular ony(n)
Kµ
⊂ N (n)

K
(µ < n).

We shall now introduce a scalar product for arbitrary pairs of mod-
ular forms. In view of theorem 10, we have a decomposition forany
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modular form f (Z) ∈M (n)
K

as

f (Z) =
n

∑

ν=o

fν(Z), f (Z), fν ∈ y(n)
Kν
, ν = 0.1.2 · · · n,

and this decomposition in unique. Letg(Z) be another form inM (n)
Kν

and

let g(Z) =
∑n
ν=o gν(2), gν(2) ∈ y(n)

Kν
.

Then we define the scalar product (f (Z), g(Z)) as

( f (Z), g(Z)) =
n

∑

ν=o

( fν(Z)|ϕn−νgν(2)|ϕn−ν) (172)

where the scalar product occurring in the right side have themeaning 133

given earlier. Ifg(Z) is a cusp form, theng(Z) = gn(Z) and all but the
last term vanish in the summation on the right side of (172). Thus (172)
reduces in this case to: (f (Z), g(Z)) = ( fn(Z), gn(Z)), the right side being
interpreted in the sense of (169). This proves the consistency of our
present definition of the scalar product (f (Z), g(Z)) with the earlier ones
given by (169) whenever applicable. Also it is clear from (172) that
(p, g) = (g, p) and that the assumption (f , f ) = 0 impliespν(Z)|φn−ν

= 0
for o ≤ ν ≤ n and consequentlyfν, ν ≤ n and f =

∑n
ν=o fν vanish

identically.
We thus conclude that the metric which (172) gives rise, to, is a

positive hermitianmetric.
Let us compute the scalar product ((f ,Z), g(Z)) whereg(Z) is rep-

resented by the Poincare’ seriesg(Z,T) and f (Z) is a cusp form, i.e.
f (Z) ∈ y(n)

K
. We assume of course that the Poincare’ series converges.

Since f (Z) is a cusp form, we have from (111) that

f (Z) = 0(r−2m n
√
|y|) for Z = x+ y ∈ fn

wherem is a suitable positive constant. Hence

|y|R/2| f (Z)| ≤ Me−m n
√
|y| for Z ∈ fn

with a sufficiently largeM. Since |y|R/2| f (Z)| = h(Z) is invariant by
(101) and|y| does not increase when we replaceZ ∈ fn by an equivalent
point with respect toMn, it follows that 134
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|y|k/2| f (Z)| ≤ M ∈n n√iy′ for >∈ Yr .

We require these facts to prove that the function

ρ(Z) ∈2πσ(Tε) |y|k−r−1 with T =

(

T(n)
1 o
o o

)

,T(n)
1 > o is abso-

lutely integrable over the fundamental domainyr of the groupsAn. This
is certainly true as a result of our above assertions if the integral.

G(Tℓ,m) =
∫

yn

e−Zπσ(χy)−m n
√
|y||y|k/2 − n− 1, k×][dy] (173)

exists. We shall show that this integral does exist.
First we consider the case 0< r < n. In this case we can use the

usual parametric representation fory > o as

Y =

(

y1 o
o yw

) [(

E v
o E

)]

Transforming (173) in terms of the new variables and carrying out
the integrations with suspect tox andv as in earlier contexts, we have

G(T,m) =
∫

y1>o
y2∈Kn−r

∈−Zπσ(T1y1−m n
√
|y1| n
√
|y2||y1|k/2−r−1 |y2|k/2−r−1[dy1][dy2]

=

∫

y1>o

e2πσ<T1y1>|y1|k/2−r−1























∫

y2oKn−r

em n
√
|y1| n
√
|y2||y2|k/2−n−1[dy2]























[dy]

=
n(n− r + 1)

2
ϑn−rm

−n(k− n− n− 1
2 χ

(

n(k − r − r − 1
2

)

×
∫

y1>o

∈2πσ<T1y1> |y2|k−n−r2[dy1]

=
n(n− r + 1

2
ϑn−rm

−n(k−n−r−1
2 y

(

n(k − n− r − 1
2

)

Π
r(r−o/4

(2Π)r0/2|T | 12 V k−2
ν−o y

(n− u
2

)
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The last two relations which are consequences of (149) and (143)135

are true providedk > n+ r + 1.
We shall now turn to the border casesr = o, n. In the first case, viZ.

r = o

G(T1,m) =
∫

y∈Kn

e−m n
√
|y| |y|k/2−r−1[dy]

=
n(n+ 1)

2
ϑny

(n(k − n− o
2

m−
n(k−n−1

2

providedk > n+ 1 and in the alternative case whenr = n,

G(T1m) =
∫

y>o

e2πσ(Ty)−m n
√
|y||y|k/2−n−1[dy]

≤
∫

y>o

e−2πσ(Ty) |y|k/2−n−1[dy]

= Π

n(n− 1
4 (2π)

n(n+ 1− k
2 |T |

n+ 1− k
2 ∗ ∗ ∗ ∗nν=1χ(

k − n− ν
2

providedk > 2n.
The conditions in all these cases under which we have proved (173)

to exist are precisely those under which we proved the Poincare’ series
to exist and in particular we have shown that the integral

H(T1, ρ) =
∫

Z∈yr

ρ(Z)e2πiσ(TZ̄)|y|k/2−n−1[dx][dy] (174)

exists providedk ≡ 0(2) andk > n + 1 + r, wherer = rank T. We
observe that the integrand inH(T1, f is invariant under the substitutions
in Ar so that we can choose for the domain of integration any conve-
nient fundamental domain ofAr in the place ofyr . In fact we compute 136

H(T2,K) by choosing “yr ” in two different ways and this will lead us to
an interesting result.

From the definition ofAr(r ≥ 0) it is clear that, whileA0 contains
with everyM, -M too,Ar for r > ocontains at most one of the matrices
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M, -M. So we may assume thatVr in the casen > o contains−S with
S. ThenUS∈Vr S < Sn > is a fundamental domain forAr which is
covered but once ifr = o, while it is covered twice ifr > 0.

Let us introduce

δr =















1. if r = 0

2. if r > 0

and obtain from (174), in view of the invariance of the integrand appear-
ing in it under the substitutions inAr ,

H(T1, f) =
1
δr

∑

S∈Vr

∫

S∈S<fn>

f(Z) ∈−2πiσ(TZ̄) |y|k−n−1[dx][dy]

=
1
Sr

∑

S∈Vr

∫

Z∈fn

f(S < Z >)e−2πσ(TS<Z>) |ys|k−n−1[dxs][dys]

where we assumeS < Z >= Xs + iys

Sincedv = |y|−n−1[dx][dy] is the invariant volume element, using
(92) and (??) we get

H(T1, f) =
1
δr

∑

S∈Vr

∫

Z∈δn

f(S < Z > e−2πiσ(TS<Z>)|cZ

+ D|−2k|y|k−n−1[dx][dy]

=
1
δr

∑

S∈Vr

∫

Z∈δr

f(S < Z >)|cZ+ d|−ke−2πiσ(TS<Z>)|cZ̄

+ D||y|K−n−1[dx][dy]

=
1
δr

∑

S∈Vr

∫

Z∈Sn

ρ(Z)e−2πiσ(TS<Z>)|cZ̄ + D|−K|y|K−r−1[dx][dy]

=
1
δr

∫

Z∈fn

f(Z)|y|K−n−1(
∑

S∈Vr

e−2πiσ(TS<Z>)|cz̄

+ D|−K[dx][dy]

=
ε(T1)
δr

∫

Z∈fn

f(Z)g(Z,T|y|K−n−1[dx][dy]
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=
ε(T1)
δr

(f(Z), g(z,T)) (175)

137

On the other hand we can computerH(T1, f) directly as follows :
The part of the integral involving× in (174) is clearly

∫

×∈n0n

f(Z)e−2πiσ(TZ̄)[ax] = e−4πe(Ty)
∫

×∈δSr

f(z)e−2πiσ(TZ)

= e−△πσ(Ty)a(T)

wherea(T) is the Fourier coefficient of f (z) with respect to the exponent
- matrix T.

But a(T) = 0 by (108) if |T | = 0 since by assumptionf (z) is a cusp
form so that, in particular ifK < K, H(T1, f and consequently the scalar
product (f(Z)g(z,T)) vanish. Assume then thatr = n. Then

H(T1, f) =
∫

×∈xyw
y>o

f(Z)e−2πσ(Tz)[dx]e−△πσ(Ty) |y|K−n−1[dy]

= a(T)
∫

y>o

e−4πσ(Ty)|y|K−n−1[dy]

= a(T)π

n(n− 1)
4 (4π)

n(n+ 1
2

−nK
n

∏

ν=s

y(K − n+ ν
2
|T |n+12 (176)
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Comparing with (175) we get

Theorem 11. If f(Z) ∈ y(n)
K

and K ≡ 0(2),K > n + 1+ rank T, then
( f (z)g(z,T)) is equal to















2
ε(T)a(T)π

n(n−1
4 (4π)

n(n+1
2 −nK∏n

ν=1 y(K − n+ν
2 )|T | n+1

2 −Kfor T > o

o for T = o

where a(T) represents the Fourier coefficient of f(z) with respect to the
exponent matrix T.

We generalize the above result to the case off (z) ∈ yK(ν ≤ n) in the
next section.





Chapter 11

The representation theorem

Our aim in this section is to establish a result we promised earlier at the 139

end of§9, viz. that the Poincare series actually generate all modular
form of degreen under suitable assumptions. As a first step we compute

Y (Z,T)|Y . Let z∗ ∈ Yn−1 and x ∈ Y so thatZ =

(

Z 0
0 r

)

cYn. For

fixedZ∗ let ϕ(z) = g(Z,T). Thenϕ(z) is a modular form of degree 1 and

weightk. For, if the matrix

(

a b
c d

)

is a modular substitution of degree 1

and we set

A =

(

E 0
0 a

)

= A(n), B =

(

0 0
0 b

)

= B(n)

C =

(

0 0
0 c

)

= C(n),D =

(

0 0
c d

)

= D(n)

thenM =
(

A B
C D

)

∈ Mn Also

M(Z) = (AZ+ B)(CZ+ o) =

(

Z 0
0 N < z>

)

where (177)

N(z) = (az+ b)(az+ d)−1

135
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so that the mappingz→ M < z > is equivalent with the pair of map-
pings:

Z∗ → Z∗, z→ (az+ b)(cz+ d)−1

Besides, we have also|CZ+ D| = cz+ d so that from (177)

ϕ(z) = g(Z,T) = g(z,T)|M = g(M < z> T)|CZ+ D|−K

= ϕ

(

az+ b
cz+ d

)

(cz+ d)−K

= ϕ(z)
∣

∣

∣

(

a b
c d

)

(178)

Clearlyϕ(Z) is regular in the fundamental domainf1 of M1 It only140

remains then to verify thatϕ(Z) is bounded inf1. This is obvious at least
in the case ofZ∗ ∈ fn−1 since in this caseZ ∈ fn when the imaginary part
Y of z is sufficiently large, andg(z,T), being a modular form of degree
n, is bounded infn.

The general case does not present any difficulty either, as in this case
there exists a substitution

M1 =

(

A1 B1

C1 D1

)

∈ Mn−1 so thatM1 < Z∗ >∈ fn−1 and if we set

A =

(

A1 o
o 1

)

, B =

(

B1 o
o o

)

,C =

(

C1 o
o o

)

andD =

(

D1 o
o 1

)

then

M =

(

A B
C D

)

∈ M1,M < z>=

(

M1 < z> o
o z

)

and|CZ+ D| = |c, z∗ + D1|.

Finally ϕ(Z) = g(z,T) = g(z,T)|M
= g(M < z> T)|cz+ D|−K

= g

((

MI < Z∗ > o
o z

)

,T

)

|C1z∗ +D1|−K.

The term to the extreme right is bounded asM1 < Z∗ >∈ fn−1 and
thenϕ(z) is clearly bounded. It is now immediate thatϕ(z) is a modular
form of degree 1 and weightk.

Let S =

(

A B
C D

)

be an arbitrary modular substitution of degreen141
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(we shall stick to this notation throughout this section). It is easy to see
that the matrixAZ

+ B depends linearly inz and furtherz appears only
in its last column. The same is true of (CZ + D) too so that|CZ + D|
is a linear function ofz, say |cz+ D| = cz+ D. It follows then that
|CZ+ D|(CZ+ D)−1 too is a matrix whose elements are linear inz and
which has its last row independent ofz; consequently

|CZ+ D|S < Z >= |CZ+ D|(AZ+ B)(cz+ D)−1 (179)

is also linear inz. Let then

σ(TS < Z >=
az+ b
cz+ d

with |CZ + D| = cz+ d wherea, b, c, d are

all complex numbers not depending onz. We shall denote byLS the

matrix

(

a b
c d

)

defined as above. SinceZ ∈ Yn we have|CZ + D| , o

and hencecz+ d , 0. SinceImLS < Z >= Im
ax+ b
cz+ d

≥ 0 for Z ∈ Y1 it

follows that eithero = o in which case
a
d

is real and
a
d
≥ 0 or if c , 0

thenIm− d
c
≥ 0. The Poincare’ series (152) now takes the form

ϕ(z) = g(Z,T) =
∑

S∈V(T)

e
2πi

az+ b
cz+ d (cz+ d)−K. (180)

We construct a suitableV(T) as follows. Let△ be the cyclic group
generated by the modular substitution

G =





















E(n)

(

o o
o 1

)

o E(n)





















The mappingZ → G < Z > leavesZ∗ fixed and takesz into z+ 1. 142

With the notation

ωS(Z) = e2πiσ(TS<Z>) |CZ+ D|−K

= e2πiσ(TZ) |S,S =
(

A B
C D

)
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we haveωSG ∈ (Z) = e2πiσ(TZ)|SG

= e
2πi

az+ b
cz+ d (cz+ d)−K |

(

1 o
o 1

)

= e
2πi

a(z+ d) + d
c(z+ c) + d (c(z+ b) + d)−K

where we recall

(

a b
c d

)

= LS.

Let
M =

∑

S∗∈V∗(T)

A(T)S∗.

If nS denotes the set of the exponentst with the property that
(S∗GS∗−1)t

= S∗GtS∗−1 ∈ A(T), then it is easily seen that the products
S∗Gt with S∗ ∈ V∗(T)t = t mod nS constitute a set of the typeV(T).
So we obtain from (180) that

ϕ(Z) =
∑

S∈V∗(T)

∑

t mod nS

ωSGt(z) =
∑

S∈V∗(T)

ϕ(z) (181)

where

ϕK(z) =
∑

t mod nS

ωSGt(Z)

=

∑

t mod nS

e
2πi

a(z+ t) + b
a(z+ t) + d (c(z+ b) + d)−K

=

∑

t mod nS

e2πcLS<z+b>(c(z+ t) + d)−K (182)

It is obvious thatϕS(z+ 1) = ϕS(z) in other words, the functions142

ϕS(z)(S ∈ V ∗ (T) and consequentlyϕ(z) are periodic with period 1.
Hence we can introduce the new variableS =∈2πiz and thenϕS(Z) = λ(S)

andϕ(z) = λ(S) are single valued functions ofS. We shall see that they
are also regular in|S| < 1.
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We first prove thatc , 0 when and only whennS = 0. Indeed if

c = 0 then
a
d

is real and> 0 so that all the terms occurring in the right

side of (182) have the same absolute value, independent oft, and this in
its turn means that the series in the right of (182) is actually a finite sum
as we know the series to converge and consequentlynS , 0. Conversely,
if nS , 0 thenωS(z) = ωSn

S
(z) or

e2πiLS<z>(cz+ d)−K = e2πLS<+nS(c(z+ nS) + d)−K

so that

e2πiLS<Z+nS−π∗∗LS<z>
=

(

c(z+ bS + d
cz+ a

)K

.

The right side of the last equality is meromorphic inz and this can
be said of the left side only when 0= 0. This proves our assertion.

We shall now appeal to Lemma 16 to show that

lim
y→r

ϕS(z) =
∑

t mod nS

lim
y→∞

e2πiLS<Z+b>(c(z− t) + d)−K (183)

provided the limits in the right side all exist. This is trivially true if 143

nS > o as in this case we face only a finite sum in (183). In the case
nS = o the right side of (183) is actually an infinite series,t ranging
from −∞ to +∞, but in this case we show that the right side of (182)
has a convergent majorant not depending onz in a domain of the type
|x| ≤ ϕ,Y ≥ δ > o wherex+ iy = zand this will validate our taking the
limit in (183) under the summation sign.

SinceImLS < z+ t >≥ o we have

|e2πiLS<z+t>| ≤ I .

Also |c(z+ t)+d| ≥∈ ic(c+ t)+d| for |x| ≤ E , y ≥ δ > o with a certain
positive∈=∈ (E , δ). For, since by assumptionnS = o, we havec , 0

and then the above inequality is equivalent with|z+ t +
d
c
| ≥∈ |c+ c+

d
c
|

or equivalent with|x + t + p + c(y + q)| ≥∈ |c + p + c(i + q) where we
write d/c = p+ ν, i.e. with

∣

∣

∣

x+ i(y+ q)
1+ q

+
p+ t
1+ q

∣

∣

∣ ≥ ε
∣

∣

∣c+
p+ t
1+ q

∣

∣

∣
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and the last inequality is clearly true by Lemma 15. Thus we obtain 144

∣

∣

∣e2πiLS<z+t>(c(z+ c) + d)−K
∣

∣

∣ ≤∈−K |c(+() + d|−K

and consequently
∞
∑

t=−∞
∈−K |c(i + t) + d| provides a convergent majorant

we were after.
Reverting to our functionsϕS(ζ) = ϕS(z) and x(S) = ϕ(z) we ob-

serve that they are regular in|ζ | < 1. The only point of doubt is the
origin but all these functions are bounded in a neighbourhood of the ori-
gin −ϕ(z) is so because it is a modular form and theϕS(z)r are so in
view of their having a convergent majorant not depending onzas shown
earlier. Hence the origin is also free from being a singularity for any of
these functions. We can therefore conclude that

χ(o) = lim
y→∞

ϕ(z), χS(o) − lim
y→∞

ϕS(z) (184)

Since the Poincare’ series converges uniformly in every compact
subset ofY , in particular

χ(ζ) =
∑

S V∗(T)

χ∞(ζ)

converges uniformly on|ζ | = ρ(o < ρ < 1).
Cauchy’s integration formula then yields that145

χ(o) =
1
2
πi

∫

|ζ |=S

ψ(ζ)
ζ

oζ =
∑

S∈V∗(T)

1
2πi

∫

|ζ |=ρ

ψS(ζ)
ζ

αζ =
∑

S∈V∗(T)

χS(o)

(185)

The results (184) and (185) together imply that

lim
y→∞

ϕ(z) =
∑

S∈V∗(T)

lim
y→∞

ϕS(z) (186)

and coupled with (183) this gives

g(Z,T)|φ = lim
y→∞

g(Z,T)
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=

∑

S∈V(T)

lim
y→∞

e2πiσ(TS<Z>)|cz+ D|−K (187)

with S =

(

A B
C D

)

provided the limits occurring in the right all exist and

the series converges absolutely. To computeg(Z,T)|φ therefore, and this
was the purpose with which we set out in the beginning of this section,
we need only compute

lim
y→∞

e2πiσ(TS<2>)|CZ+ D|−K,S ∈ V(T).

For this purpose we use the representation (162) which can berewrit-
ten as

g(z,T) =
1

∑

(T, )

∑

p

e2πiσ(T1S<z>[p]) |cz+ D|−K (162′)

whereT =

(

T1 o
o o

)

,T1 = TK1 > o, r being the rank ofT and S = 146
(

A B
C D

)

and the summation forP runs over all primitive matricesρ =

ρ(n,r) while that forS runs over all the elements ofVo, viz. a complete
set of modular matrices whose second rows are non associated.

A representation forVo is given by Lemma 1 as follows.
Let {co,Do} run through a complete set of non associated coprime

symmetric pairs of square matrices of orders(1 ≤ s ≤ n) with |co| , o
and let{Q} run through a complete set of non right associated primitive
matricesQ = Q(n,r). Let (CoDo) be completed to a modular matrix
(

Ao Bo

Co Do

)

∈ Mr andQ to an unimodular matrixu = (QR) in any one

arbitrary way and set

A =

(

Ao o
o E

)

u′, B =

(

Bo o
o o

)

u−1,

C =

(

Co o
o o

)

u′, D =

(

Do o
o E

)

u−1

with E = En−r .
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The resulting matricesS =

(

A B
C D

)

as s runs through all integers

| ≤ r ≤ n together with the unit matrixE = E(2n) corresponding to the
cases= rankC = o form a class of the desired type. We can now write
((162′)) using (69) asg(z,T) = 1

ε(T,)

∑

ρ e2πiσ(T,Z[ρ])

1
∑

(T, )

n
∑

r=1

∑

ρ

∑

ρCo,Do
{Q}

e2πiσ(T,S<z>[ρ]) |c, z[Q] + Do|−K (188)

We introduce againZ =

(

Z∗ o
o z

)

with Z = X + iy, z = x + iy,Z∗ =147

X∗ + iy∗ and denoteQ asQ = (Ymν = (Y1Y2 · · ·Yr . We assume without
loss of generality thaty[Q] is reduced. LetQ∗ denote the matrix arising
from Q by deleting its last row and letQ∗ = (Y ∗

1 · · ·Y ∗
r .

Then using (47 - 49) we have

||CoZ[Q] + Do|| ≥ |Y[Q]| ≥ 1
c1
πr
ν=1Y[Yν] =

1
c1

Y r
ν=1(Y∗LY ∗

o ) + yqz
nν)

(189)
with a certain constantc1 > o.

It is clear from (189) that ifqn1qn2 · · · qnr) , (oo· · · o) then ||CoZ
[Q] + Do|| → ∞ asy→ x and consequently

lim
y→∞

e2πiσ(T1S<z>[P] |CoZ[Q] + Do|−K = o

The alternative case, viz.qn1qn2 · · · qnr) = (oo· · · o) can occur only
if s < n. For, if s = n, thenQ is a primitive square matrix and hence is
itself unimodular and its last row cannot therefore consistof all zeros.

Let thens < n andqn1qn2 · · · qnr) = (oo· · · o) so thatQ =

(

Q∗

o

)

. Then

Q∗ is itself primitive and can be completed to a unimodular matrix u∗ =

(Q∗R∗). The choiceR=

(

R∗o
o 1

)

is permissible and thenu =

(

u∗ o
o 1

)

A simple computation yields that148

s〈Z〉 = (AZ+ B)(CZ+ D)−1
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=

{(

A0 0
0 E

) (

Q′

R′

)

Z +

(

B0 0
0 0

)

(QR)−1
}

×
{(

00 0
0 0

) (

Q′

R′

)

Z +

(

D0 0
0 E

)

(QR)−1
}−1

=

{(

A0 0
0 E

) (

Q′

R′

)

Z(QR) +

(

B0 0
0 0

)}

×
{(

C0 0
0 0

) (

Q′

R′

)

Z(QR) +

(

D0 0
0 E

)}−1

=

(

A0Z[Q] + B0 A0Q′ZR
R′ZQ Z[A]

) (

C0Z[Q] + D0 C0Q′ZA
R′ZQ E

)−1

=























A0Z∗[Q∗] + B0 A0Q∗
1
Z∗R∗ 0

R∗
1
Z∗Q∗ Z∗[R∗] 0
0 0 0













































C0Z∗[Q∗] + D0 C0Q∗
1
Z∗R∗ 0

0 E 0
0 0 1























2

=

(

S∗〈Z∗〉 0
0 Z

)

whereS∗ represents a modular substitution of degreen − 1 which has
the same relationship to the classes{C0,D0}, {Q∗} asS has, to{C0,D0}
and{Q}. This means that

S∗ =

(

A∗ B∗

C∗ D∗

)

with

A∗ =

(

A0 0
0 E

)

u∗
′
, B∗ =

(

B0 0
0 0

)

u∗
−1

C∗ =

(

C0 0
0 0

)

u∗
′
, D∗ =

(

D0 0
0 0

)

u∗
−1

,

whereu∗ = (Q∗R∗) andE = E(n−1−s). 149

Writing S〈Z〉 = X3 + S YS andS∗〈Z∗〉 = X∗S∗ + S Y∗S∗ we have

YS =

(

Y∗S∗ 0
0 y

)

and |C0Z[Q] ∗ D0| = |C0Z∗[Q∗] + D0| Let P = (Pµν) =

(yn, y2, . . . , yn) andP∗ = (y∗n, y
∗
2, . . . , y

∗
n) be the matrix arising fromP by
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deleting its last row. From (102) we have

σ(τ,Ys[P]) ≥ yσ(Ys[P]) = y
r

∑

ν=1

YS[Yν]

= y
r

∑

ν=1

(Y∗S∗ [Y
∗
ν ] + YP2

µν)

with a positive constanty = y(τ1). Henceσ(τ,Ys[P]) → ∞ asy → ∞
and consequently limy→∞ ∈2πs∈(T1S〈Z〉[P])

= 0 provided (Pn1,Pn2, .Pnr) ,
(00, .0).

Thus in this case too, the general term

e2πsσ(τ1S〈Z〉[P]) |C0Z[Q] + D0|−k of ((162′))

tends to zero asy → ∞. The only case which remains to be settled
is when both (qn1, qn2., qns) and (pn1, pn2., pnr) are the respective zero
vectors simultaneously. In this case we have seen thats < n and by

an analogous reasoningr < n andP =

(

P∗

0

)

,Q =

(

Q∗

0

)

so thatP∗ and

Q∗ are themselves primitive. Further the general term of the Poincare
series ((162′)) does not involveZ in this case as the relationsS〈Z〉[P] =
(

s∗〈Z∗〉 0
0 Z

) (

P∗

0

)

= S∗〈Z∗, [P∗] and |C0Z[Q] + D0| = |C0Z∗[Z∗] + D0|

show. Trivially then does the limit lim
y→∞

e2πiσ(τ1S〈Z〉[P]) |C0Z[Q] + D0|−k150

exist in this case too. We have therefore shown that whenQ ,

(

Q∗

0

)

or P ,

(

P∗

0

)

and in particular when eitherr = n or s = n, the general

term of the Poincare’ series ((162′)) tends to zero asy→ ∞ while in the

alternative case viz. whenQ =

(

Q∗

0

)

,P =

(

P∗

0

)

simultaneously, whence

r < n ands< n, it assumes as the limit

e2πiσ(τ1S∗〈Z∗〉[P∗]) |C◦Z∗[Q∗] +D◦|−k, being in fact independent ofz in this
case. Sinceg(Z,T)|φ = limy→∞ g(Z,T)
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we can now state thatg(Z,T)|φ = 0 in caser = n > 1 and

g(Z,T)|φ = 1
ε(T1)

∑

e2πiσ(T1Z∗[P∗])
+

1
ε(T1)

p∗n−1
∑

S =1

∑

p∗

∑

{Cω,00}
{Q∗}

e2πiσ(T1S∗〈Z∗〉[P∗]) |C0Z∗[Q∗] + D0|−k

= g(Z∗,T∗)

in caser < n whereT∗ = T∗(n−1)
=

(

T1 0
0 0

)

, viz. the matrix which

arises fromT on depriving it of its last row and column.g(Z∗,T∗) is
then just the Poincare’ series obtained from ((162′)) on replacingn by
n − 1. We may define formallyg(Z,T) = 1 for n = 0 so as to validate
the above results for alln ≥ 1 and state

Theorem 12. Let T =

(

T1 0
0 0

)

, T1 = T(r)
2 > 0, T = T(r)n > 0 and

k ≡ 0(2), k > n+ r + 1. Let g(Z,T) be a Poincare series of degree n and
weight k and let Z∗ · T∗ the matrix which arises from Z, T by depriving
them of their last row and column. 151

Then

g(Z,T)|φ =














g(Z∗,T∗) , for r < n

0 , for r = n
(190)

The theorems 11 and 12 lead to interesting consequences. An im-
mediate consequence is that the Poincare’ seriesg(Z,T) with T > 0
generate the spaceP (n)

K
of all cusp forms. For, from (190) we know

that such ag(Z,T) belongs toP (n)
K

If f(n)
k , denotes the space generated

by g(Z,T),T > 0 andK(n)
k , the orthogonal space off(n)

K
in P (n)

K
, then

P (n)
K
= f

(n)
K
+R

(n)
K

, the sum being direct. Iff(Z)εR(n)
K

thenf(Z)εP (n)
K

and
is therefore a cusp form. This means thata(T) = 0 for |T | = 0 in the
standard notation by (108), while ifT > 0, (f(Z), g(Z,T)) = 0, as then
f(Z) ∈ K(n)

K
andg(Z,T) ∈ f(n)

K
so that from Theorem 11 we have again

a(T) =
1
C

(f(Z), g(Z,T)) = 0.
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Thus all the Fourier coefficientsa(T) of f(Z) vanish andf(Z) ≡ 0.
This means thatR(n)

K
= 0 and consequentlyP (n)

K
= f

(n)
K

. We now go a
step further and prove

Theorem 13. The Poincare’ series g(Z,T) with rank T= r (fixed) gen-
erateP (n)

Kr (r ≤ n) provided k≡ 0(2) and k> n+ r + 1.

Proof. The caser = n was just now settled. Assume than thatr <152

n. Let f(n)
km denote the space generated byg(Z,T) with rank T = r <

n and apply induction onn. From theorem 11 it easily follows that
f
(n)
Kr ⊂ M (n)

K
and due to induction assumptionf(n)

Kr |φ = P (n−1)
Kr . Since by

construction,P (n)
K r |φ ⊂ P (n−1)

Kr andφ is 1− t on M (n)
K

it follows that

P (n)
kn |φ ⊂ P (n−1)

Kr = f
(n)
Kn|φ and consequentlyP (n)

Kr ⊂ f
(n)
Kn. The reverse

inclusion is also immediate as is seen from the relation

f
(n)
Kr |φ ⊂M (n)

K
|φ ∩P (n−1)

Kr =P (n)
Kr |φ

establishing thereby theorem 13. In conjunction with Theorem 11 this
yields �

Theorem 14. The Poincare’ series g(Z,T) generateM (n)
k , the space of

all modular form of degree n and weight k provided k≡ 0(Z), k > 2n
(the usual condition for the convergence of g(Z,T)).

This is precisely the representation theorem we were looking for.
Further sincef(n)

K
|φ = P (n)

K
and we have shown thatf(n)

Kn = f
(n)
Kr = P (n)

Kr
we have

P (n)
Kr |P =P |n−1|

Kr (K ≡ 0(Z),K > n+ r + 1) (191)

Repeated application of (191) yields that

P (n)
Kr |φ

n−r
=P (n)

Kr +P (n)
K

(K ≡ (2)K = n+ r + 1)

We know thatφn·r is 1− 1 onP (n)
K,r and we therefore infer that153

rankP (n)
Kr = rankP (r)

K

In particular takingr = 0, P (0)
K

is the space of all constants so

that rankP (n)
Ku = rank P (0)

K
= 1(k ≡ 0(2), k > n + 1). P (n)

K,u is thus
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generated by a single elementg(Z, 0), the so calledEinstein Serieswhich
converges forK > n + 1 ≡ 0(2), and represents a modular form not
vanishing identically under these conditions. Setting nowr = 1, P (1)

K
is

the space of all cusp forms of the (classical) elliptic modular forms and
from a well known result

rankP(1)
K
=















[

K
12

]

− 1, if K ≡ Z(12),K > n+ 2,
[

K
12

]

, if K , 2(12),K ≡ 0(Z),K > n+ 2

and the same is therefore true of rankP (n)
Kl .

We proceed to generalize the fundamental metric formula given in
Theorem 11.

Let f(Z) ∈ P (n)
Kr , 0 ≤ r ≤ n. If rank T = s, theng(τ,T) ∈ P (n)

K,s and
we state that

(

P(Z), g(Z,T)
)

= 0 yr , s
while if r = swe have in conformity with (172),

( f (Z), g(Z,T)) = ( f (Z)|φr−r .g(Z)|φn−r )

We can apply theorem 11 to the scalar product in the right side
above, as follows. Assumer > 0 and assume for a moment thatT =
(

f , 0
0 0

)

, y1 = y(r)
1 > 0.

Then, as a result of theorem 12,g(Z,T)|ϕn−r
= g(Z1,T1) whereZi 154

denotes the matrix arising fromZ by deleting its last (n − r) rows and
columns andT1 is as defined above. Hence, by means of theorem 11,

(f(Z), g(Z,T)) = (f(Z)|ϕn−r , g(Z,T)|ϕn−r )

= (f(Z)|ϕn−r , g(Z1,T1))

=
2

∈ (T1)
Q(T1)π

n(n− 1)
4(4π)

r(r + 1)
K

− rK

× πKn=1y(K − r + ν
2

)|T1|
n+ 1

2
− K

where the Fourier coefficient a(T) of f(Z)|ϕn−r is identical with

a

(

T1 0
0 0

)

= a(T), the Fourier coefficient of f(Z) In the case of a gen-

eralT we can always assume thatT =

(

T1 0
0 0

)

[U] with an appropriate
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unimodular matrixU. Then△(T) = |T2| and∈ (T1) are uniquely deter-
mined byT and we have as above

(f(Z), g(Z,T)) =
K

∈ (T)
a(T)π

r(n− 1)
4 (4π)

n(r+1)/K−rKx×πr
ν=1y(K−

r + ν
K

)(△(T))
n+ 1
K − K ,

our specific assumptions beingK ≡ 0(2),K > n + r + 1, rankT = r ≥
1, f(Z) ∈ P (n)

Kr , g(Z,T) ∈ P (n)
Kn . The case whenr = s = 0 still remains.

In this caseT = (0) and (f(Z), g(Z, 0)) = (f(Z)|ϕ(n), g(Z, 0)|ϕn) as an
immediate consequence of our definition. Nowf(Z)|ϕn is a modular
form of degree 0 and hence is equal toC : (0) while with regard to
g(Z, 0)|ϕn we can be a bit more specific and state thatg(Z, 0)|ϕn

= 1 as
is easily verified by a consideration of the Eisenstein series of degree 1155

Hence (f(Z), g(Z, 0)) = a(0). We thus have

Theorem 15. AssumeK ≡ 0(2), K > n + r + 1 rank T = r and f(Z) ∈
P (r)
Kr . Then

(f(Z), g(Z,T)) =























2
∈(T) a(T)π r(n−1)

4 (4π)

r(r+1)
2 nK ∏

ν=1
for r>0

y(K − r+ν
K

)(△(T))
r+1
2

a(0) for r = 0

where a(T) denotes the Fourier coefficient off(Z) corresponding to the
matrix T.



Chapter 12

The field of modular
Functions

We shall need the following generalization of Lemma 16, viz. 156

Lemma 17. Let Z= X − iy ∈ Yn, σ(xx′) ≤ m1, σ(y−1) ≤ m2. Then

||CZ+ D|| ≥∈0 ||Ci + D|| (193)

with a certain positive constant∈n=∈0 (n,m,m2), where(C D) is the
second matrix row of an arbitrary symplectic is matrix

Proof. We prove the lemma in stages. �

First we show that ifλ1, λ2, . . . , λn is a set of real numbers with
0 < λ1 ≤ λ2 ≤ · · · ≤ λn andR(n,m)

= (rµ,ν = (W1W2 · · ·Wm)), S(n,m)
=

(Sµν) = (σ1σ2 · · ·σm) with m≤ n be real matrices such thatsµν = λµrµν
then

(λn−m+1λn−m+2 · · ·λn)−2|P′
µPν| ≤ |W ′

µWν|
≤ (λ1, λ2, . . . , λn)−2|P′

µPν|, µ, ν = 1, 2, . . . ,m (194)

By a well known development of a determinant, we have

|λµWν| =
∑

1≤ρ1<ρ2<···<ρm<n

∣

∣

∣

∣

∣

∣

∣

∣

∣

rs,i · · · rs2,m

· · · · · · · · ·
rs,r · · · rsm,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

149
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=

∑

1≤ρ1<ρ2<···<ρm<r

(λρ1λρ2, . . . λρn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ss,i · · ·Ss2,m

· · · · · · · · ·
Ss,r · · ·Ssm,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Also

|P′
µPν| =

∑

1≤ρ1<ρ2<···<ρm<n

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ss,i · · ·Ss2,m

· · · · · · · · ·
Ss,r · · ·Ssm,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(194) is now immediate.
We next prove that ify = y(n) > 0,T = T(n)

= T′ real, andσ(y−1) ≤157

m2, then
||T + iy|| ≥ ε1||T + LE||, ∈1 (n,mν) > 0 (195)

Determine an orthogonal matrixW such that|y[W] = D2 with
D = (δµνλν), 0 < λ1 ≤ λ2 ≤ λn and set

T[W] = S = (Sµ,ν),Q = S[D−1] = (qµ,ν) Then
|Y| = |D|2 = (λ1λ2 · · ·λn)2 Also Sµ,ν = λµλνqµν
and

||T + iy||2 = ||T[W] + iy[W]||2 = ||S + iD2||2

= ||Q+ iE||2|D|4 = ||Q+ iE||2|Y|2

= |Q+ iE||Q− iE||Y|2 = |Q′Q+ E||Y|2 (196)

Let Q = (U1U2 · · ·Un)S = (∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) and introduce

R = (W1W2 · · ·Wn) = (rµν) whereU2 =
1
λν

Wν, ν = 1, 2, . . . n Then we

haveSµ,ν = λµλνqµν = λµrµν so that the result (194) is now applicable
(with the obvious changes). Then

1Q′Q+C1 = 1+
n

∑

ν=1

∑

µ1<µ2<µ2

|M′µS
nµK |

= 1+
n

∑

ν=1

∑

µ1<···<µ2

(λµ1λµ2λµ2)
−21W ′

µ2
W ′
µK
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≥ 1+
n

∑

ν=1

(λn−ν+1 · · · λn)−2
∑

µ<···µ[ν]

|1µµgWµK |

≥ 1+
n

∑

ν=1

(λn−ν+1 · · · λn)−4
∑

µ<···µ2

|PµgPµK | (197)

Since by assumptionσ(y−1) ≤ m2 all characteristic rootsλnu2 of
y have positive lower bound which depends only onm2 so that for a 158

suitable constantε1 = ε1(n1m2) we have

(λ1λ2 . . . λmµ)4 > ε2
1, µ = 0 = 1, 2, , n (198)

The in view of (196) - (198) we have

‖T + iy‖2 = |Q′Q+ iE||Y|2

= |Q′Q+ E|(λ1λ2 . . . λn)r

≥ ε2
1(1+

n
∑

µ=2

∑

m1>,<mλ

|ymy, ymK |)

= ε2
1|s′s+ E| = ε2

1|s+ iE||s− iE|
= ε2

1|T+; E|| T − iE|ε2
1|| = T + iE||2

Hence||T + iY|| > ε4iE|| as desired. We now contend that under the
assumptionσ(xx′) ≤ m1, wherex = x(n)

= x′ ands= s(n) = s′ real, we
have

||x+ s+ iE|| ≥
∑

2

||s+ iE|| (199)

with a certain positive constant
∑

2 =
∑

2(n1m2). This only means that
the quotient||x+ s+ iE||/||s+ iE|| has a positive lower bound and this is
certainly ensured if we show thatL = log || × +s+ CE|| - log ||S + ℓE||
is bounded. By the mean value theorem of the differential calculus we
have

L =
∑

1≤µ≤ν≤n

ξµν
∂ log ||S∗ + iE||

∂S ∗
µν

/

S∗=S+µx

with × = (xµν), S∗ = (S ∗
µν) and 0 < ϑ < 1. Also the assumption159
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σ(xx′) ≤ m2 entitles us to conclude that±χµν < C , µ, ν = 1, 2 · · · n.
Hence

= |L| ≤ C
∑

1≤ν≤ν≤n

∣

∣

∣

∣

∣

∂ log‖S∗ + iE‖
∂s∗µν

∣

∣

∣

∣

∣

S∗=S+ϑχ

= C
∑

1≤ν≤ν≤n

∣

∣

∣

∣

∣

∂ log |S∗ + iE|
∂s∗µν

∣

∣

∣

∣

∣

S∗=S+ϑχ

= C
∑

1≤ν≤ν≤n

∣

∣

∣

∣

∣

Re
{

|S∗ + iE−1∂|S∗ + iE|
∂s∗µν

}

∣

∣

∣

∣

∣

S∗=S+ϑχ

=≤ C
∑

1≤ν≤ν≤n

∣

∣

∣

∣

∣

|S∗ + iE1−1∂|S∗ + iE|
∂s∗µν

∣

∣

∣

∣

∣

S∗=S+ϑχ
(200)

Let W = (ωµν be an orthogonal matrix such that

W′S∗w = D = (δµνdν), dν) ≥ o.

ThenW′(S∗ + iE)w = D + iE, or equivalently

(S∗iE)−1
=W(D + iE)−1W′ (201)

Let (S∗ + iE)−1
= (ωµν) and observe that the diagonal elements of

D + iE have the lower bound 1 as they are of the form 1/dν+i , dν ≥ o.
Thenωµν =

∑

̺
ωµS ¯d3 + iω̺ν from (201) so that, considering absolute

values, (ωµνω̄µν)1/2 ≤ ∑n
ρ=1 |ωµρωµρ| and consequently±ωµν ≤ 1. From

(200) we have then

|L| ≤ C
n

∑

µν=1

(ωµνω̄µν)
1/2 ≤ C n3

In other wordsL is bounded and this is precisely what we wanted to
show.

We are now in position to face the main Lemma. We first prove it in160

the case when|c| , o. What we want to show is then that‖CZ + D‖ ≥
εo‖Ci+D‖ or equivalently‖Z+C−1D‖ ≥ εo‖iE+C−1D‖. With Z = X+iY,
this is the same as‖χ + C−1D + iY‖ ≥ εo‖C−1D + iE‖. In other words



153

‖T + iY‖ ≥ εo‖S+ iE‖ with T = χ+C−1D andS = C−1D. An appeal to
(195) which is by way legitimate, yields‖T + iY‖ ≥ εi‖T + iE‖ and then
in view of (199),‖T + iY‖ε1‖T + iE‖ ≥ ε1ε2‖S+ iE‖. Settingε1ε2 = εo

we have the desired result.
The general case can be reduced to the above case as follows. If

(CD) is the second matrix rowλ the symplectic matrixM, then (D,C) is

the second matrix row ofM1 = M

(

o −E
E o

)

andM1 is again symplectic

matrix. Hence in particular|DZ − C1 , o an consequently|DS + C|
does not vanish identically inS = S′. We can therefore determine a
sequence of real symmetric matricesSK such that lim

K→∞
SK = (o) while

|DSK+C|,o. Then, in view of the truth of our Lemma for a special case
we established above,
‖(DSK +C)Z + D‖ ≥ εo‖(DSK +C)i + D‖.
Proceeding to the limit asK → ∞ we get the desired result. This

completes the proof of Lemma 17.
With these preliminaries we proved to define the field of modular

functions. It looks quite plausible and natural for one to define a modular
function as a meromorphic function inYn which is invariant under the
group of modular substitutions and which behave a specified manner as
we approach the boundary ofρn.

It is also true that with this definition, the modular functions con- 161

stitute a field. But unfortunately, it has not been found possible to de-
termine the structure of this function field expect in the classical case
n = 1. With a view to getting the appropriate theorem on their algebraic
dependence we are forced to give a (possibly more restrictive) defini-
tion as follows:- Amodular function of degree nis a quotient of two
modular forms of degreen both of which have the same weight. It is ob-
vious that such a function is meromorphic inYn and is invariant under
modular substitutions. However, it is not known whether theconverse
is also true. We shall be subsequently concerned with determining the
structure of the field of all modular function of degreen. Specifically

we shall prove the existence of
n(n+ 1)

2
modular functions of degreen

which are algebraically independent.
Let fK be a modular form degreen and weightK not vanishing iden-
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tically. Such a form exists forK ≡ 0( mod 2),K > n+1, as for instance
fµ(z) = g(z.o) = gK(Z, o) is one such. We introduce the series

M(λ) =
∑

{C,D}
(λ − fKo)|CZ+ D|K)−1 (202)

whereλ denotes a complex variable, and (C,D) runs over a complete
set of non-associated coprime symmetric pairs. Since a Poincare’ series
converges uniformly in every compact subset ofY , M(λ) represents a
meromorphic function ofλ with all poles, simple. AssumefKρK , 0 in
a neighbourhood of 0.

Then in such that neighbourhood we have162

−M(λ) =
∑

{C,D}
f(z)−1|cz+ D|−K(1− λ

fK(z)|2+ D|K )−1

=

∑

{C,D}

∞
∑

m=1

λm−1(fK(z)|cz+ D|K)−n

= −
∞
∑

m=1

(fK(2))−m{
∑

{C,D}

1

|cz+ D|K
}λm−1

=

∞
∑

m=1

ϕm(z)λm−1

with ϕm(z) = gmK(z, e)/f(2)m.
ϕm(z) is clearly invariant under the modular substitutions so that two

pointsZ andZ1 which are equivalent with respect toMn define the same
function M(λ). A partial converse is also true, viz :-

Lemma 18. Provided Z does not lie on certain algebraic surfaces which
have the property that any compact subset ofY is intersected by only
a finite number of them, the equationsϕm(z) = ϕm(z1) for m = 1, 2, . . .
imply the equivalence of Z and Z1 with respect to M.

Proof. Due to the invariance property ofϕm(z), we may assume that
z, z, ε5, and in view of the proviso in our lemma, we can further assume
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thatz ∈ interiorF as the boundary ofF is composed of a finite number
of algebraic surfaces. We then have

|CZ+ D| > L, |CZ+ D| ≥ 1 (203)

for {C,D} , {0,E} . The poles ofM(λ) are clearly at the pointsf(π)|CZ+ 163

D|K and then the first of the inequalities (203) implies that among these
is a point nearest to the origin, viz.fK(Z) corresponding to the choice
{C,D} = {0,E} and the residue ofM(λ) at this point is

1. Due to one of our assumptions,M(λ) is an invariant function ofλ
for change ofZ to Z1 so that the poles of the sameM(λ) (corre-
sponding toZ) are also given by.f(I1)|CZ1+D|K. A consideration
of the existence of a pole ofM(λ) nearest to the origin atfK(Z)
with residue 1 implies now by means of (203) that

|CZ1 + D| > 1 for {C,D} , {0,E} and thatfK(Z1) = fK(z).

As the poles permute among themselves by a change ofZ to Z1 it
follows that

fK(Z)|CZ+ D|K = fK(Z1)|C1Z1 + D|K

and consequently
|CZ+ D| =∈ |C1Z1 + D1|. (204)

for a certain permutation{C1,D1} of all classes{C,D} , {0,E} where∈
denotes aKth root of unity which may depend onC, D, Z, Z1. �

If L is any compact subset ofF we can show that,Z being arbitrary
in L andZ1 arbitrary inF , there exists only a finite number of classes
{C1,D1} consistent with (204) for any given class{C,D}.

The proof is as follows:
Let K be so determined that|CZ + D| ≤ K for Z ∈ XXXX fixed.

With appropriate choices of the constantsm1, m2, a domain of the type
σ(xx′) ≤ πm1F (y−1) ≤ 12 contains (in an obvious notation) so thatZ1 164

can be assumed to lie in one of these domains. Then by Lemma 17,

K ≥ ||CZ+ D|| = ε||c, zi + D1|| ≥ εεo||C1i + D1||
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whereε = εo(n,m1m2) > o. In other words, the determinant|C1i + D1|
is bounded (byK/εo) so that, by an earlier argument (p. 44), the number
of possible choices for{C1,D1} is finite. This settles our claim.

Assume now that rankC = 1. Then|CZ+ D| = CZ[g] + d whereg
is a primitive column and (c, d) is a pair of coprime integers. Also from
Lemma 1, we shall have|C,Z1+D1| = |C2Z2+D2| with Zz = Z1[θz]θz =

θ
n,m
z , primitive andC2 = Cn

z |C2| , 0, r denoting the rank ofC1. From
(204) we then have

CZ[η] + d =∈ |C2Zz+ D2| (205)

where to repeat our assumptions,η denotes an arbitrary primitive col-
umn, (c, d) denotes a pair of coprime integers, (Cr

2,D
r
2) denotes a co-

prime symmetric pair of matrices with|C2| , 0 and finallyZ2 stands for
Z1 transformed with a certain primitive matrixθ(n,m)

z . Keepingη fixed,
we choose (c, d) = (1, 1) and (0, 1) successively and obtain from (205),
the relations

Z[η] + 1 =∈2 |c2z2 + D2|, z2 = z1[θ(n,m)
2 ]

Z[η] + 1 =∈3 |c3z3 + D3|, z3 = z1[θ(n,m)
3 ] (205)′

which by subtraction yields

∈2 |C2Z2 + D2|− ∈3 C3Z3 + D3 = 1 (206)

whereC3 = C(s)
3 , D3 = D(s)

3 form a pair of coprime symmetric matrices165

with |C3| , 0, Q(n,s)
3 denotes a primitive matrix and∈2, ∈3 stand forkth

roots of unity.
Let nµ,ν be the column having 1 in theµth andνth places and 0 else-

where. Then

Z[ηµ,ν] =















Zµµ if µ = ν

Zµ,µ + Zνν + 2Zµµ if µ , ν
(207)

Choosingηµ,ν in the place ofη in (205)′, we find from the relation
Z[η] = ε3|C3Z3 + D3| that all the elements ofZ can be represented as



157

polynomials in the elements ofZ1 and the coefficients of these polyno-
mials belong to a finite set of numbers. To realize the last part, we need
only observe that the columnsηµν are finite in number and so are the
pairs (C3,D3) as the pairs (C1,D1) are so for a given (C,D). Consider
now the equation (206), viz.

∈2 |C2Z2 + D2|− ∈3 |C3Z3 + D3| = 1

This is an equation inZ1 and all the coefficients belong to a finite set
of numbers which means that the number of possible such that equations
is finite. We can then assume that above holds identically inZ1 as in the
alternative case, the finite number of (non identical) relations in Z im-
ply a finite number of relations among theZ′µνswhich are representable

as polynomials in the
n(n+ 1)

2
independent elements ofZ1 which in its

turn means thatZ lies on a certain finite set of algebraic surfaces- a pro-
viso already assumed in the statement of Lemma. Rewriting the above 166

equation then, in the form

|Z2 + P2| − α|Z3 + P3| = β (208)

with αβ , 0, P2 = C−1
2 D2 andP3 = C−1

3 D3, and comparing the terms
of the highest degree in this identity inZ1 we getr = sand|Z2| = α|Z3|.
The last is again an identity inZ1. ReplacingZ1 by Z1[µ1] whereµ1 is
unimodular, and then transformingZ2. Z3 with a unimodular matrixµ2

it results that
|Z1[µ1Q2µ2]| = α|Z1[µ1Q3µ2]| (209)

We can assumeU1,U2 to be so chosen thatU1Q2U2 =

(

E(r)

0

)

Writing U1Q3U2 analogously asU1Q3U2 =

(

R
S

)

with a square ma-

trix R = R(r), and choosingZ1 =

(

E(r)0
00

)

we obtain from (208) that

α|R|2 = 1. In particular this means that|R| , 0 and then we can deter-
mine a non-singularν such that

R′−1S′S R−1
= ν′Hν, ν = ν(r),H = (δµ,νhν).
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The choiceZ1 =

(

λν′ν0
0E

)

with a variableλ leads by means of (209)

to the relations

λr |ν|2 = |Z1|u1Q2u2| = λ|Z1[u1Q3u2]|
= L|λR′ν′νR+ S S| = |λν′ν + R−1S S R−1|

= |λν′ν + ν′Hν| = |λE + H||ν|2 =
r

∏

ν=1

(λ + hν)|ν|2

Comparing the extremes which provide an identity inλ, we deduce167

thatH = 0 and therefore thatS = 0.
With Z∗ = Z1[U1Q2U2], (208) yields

|Z′ + P2[u2]| − |Z′ + P3[u2R−1]| = β|u2|2 = β1 , 0

identically inZ∗. ReplacingZ∗ by Z ∗ +P2[u2] we obtain

|Z ∗ | − |Z ∗ −P1| = β1 (210)

identically inZ∗ with a certain symmetric matrixP.

SettingP = W′
(

E(t) 0
0 0

)

K and Z∗ = λW′W with |W| , 0 and a

variableλ, (210) yields

λr |w|2 − (λ + 1)tλr−t|w|2 = β1

identicallyλ. 0f necessity then,r = t = 1 and consequentlyR(r)
= ±1.

Since we know thatα|R2| = L, this means thatα = 1. Also C2 = C(r)
2

andD2 = D(r)
2 reduce to pure numbers and from (206).

∈2 |C2Z2 + D2| ∈3 |C3Z3 + D3| = 1.

Considering the terms of the highest degree in the elements of Z1 we
get that

∈2 C2Z2|θ2|− ∈3 C3Z1[θ3] = 0

Also

u1θ3u3 =

(

R
S

)

=

(

R
0

)

=

(

E
0

)

R= ±
(

E
0

)

= ±u1Q2u2



159

so thatQ3 = ±Q2. The last relation now gives

ε2C2 − ε3C3 (211)

ChoosingZ1 = 0 in (206), (210) implies that 168

ε2D2 − ε3D3 = 1 (212)

SinceCν, Dν are integers (U = 2, 3) it follows from (211) - (212)
that∈2, ∈3 are rational numbers and being roots of unity are therefore
equal to±1. We can assume without loss of generality that∈2, ∈3= 1.
It is now to be inferred from (206)- (207) that the elementsZµν of Z are
linear functions of the elementsSµν of Z1 with coefficients all belonging
to a finite set of numbers, say

Zµν = aµν +
∑

̺,σ

aµν,̺σζ̺σ (213)

SinceZ = Z′ andZ1 = Z′1 we may assume in the above thataµν =
aνµ and aµνσ̺ = aµν,̺σ. Choosing in (205),c = 1, d = 0 andη =
(q1q2 · · ·qn)′ from among a given finite set of primitive columns, and
setting (C2,D2) = (C1, d1) a pair of coprime integers (we have already
shown thatC2, D2 are pure numbers) andZ2 = Z3[µ2] with Q2 =

(p1p2, pn), the p′i sbeing coprime we conclude from (213) that

∑

µν,̺σ

aµν,̺σζζσqµqν +
∑

µ,ν

aµ,νqµqν = C1

∑

̺σ

ζ̺,σp̺pσ + d1 (214)

The possible choices forc1, c2, pν(ν = 1, 2, . . . n) are finite in num-
ber so that, by an earlier argument (p. 156) we can assume, in view of
the proviso in our Lemma that (214) is an identity in theζ′s. Then (214)
implies that

∑

µ

∑

µ,ν

aµν,̺σqµqν = C1p̺pσ (215)

and,C1 , 0 as we know that rankC2 = 1. This shows that the symmet-169

ric matrix (Q̺σ) = (
∑

µ,ν aµν,̺σqµqν) has the rank 1 for each primitive
columng. Taking a sufficiently large number ofg, s, the truth of our
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above statement for all these will imply that (Q̺σ) has rank 1 identi-
cally in g and consequently all sub-determinants of two rows and two
columns vanish. In particular, for all̺, σ

Q̺̺Qσσ = 0 (216)

and all these are algebraic conditions.
We shall say polynomialsF, G to be equivalent, writtenF ∼ G, if

they differ only by a constant factor. Let us assume thatQ11 , 0 and
QKλ , 0. Then from (216),QKkaλλ , 0, Q1K , 0 andQ1λ , 0. Thus all
QH K, aλλ, a1K, a1λ differ from 0.

Two cases arise now.

Case. i: Let Q11 have no square divisor. Then from (216)Q11QHx −
̺2

1K = 0 and it immediate that

Q11 ∼ Q1K ∼ QHX ∼ Qλλ ∼ QHλ.

This means thatQ̺σ = C̺CσQ with Q =
∑

µ,ν qµqν and then, from
(213), Qµν,̺σ = C̺Cσ andZµν = aµν + Cµ,νξ with ξ =

∑

̺σ C̺Cσζ̺σ
Sinceaµν,Cµν belong to a finite set of numbers, these equations repre-
sent a finite number of algebraic surfaces, and the assumptions of our
theorem permit us to exclude this case

Case. ii: Let us assume then thatQ11 assume then thatQ11 is not square
free. ThenQ11 ∼ L2

1, whereL, denotes a linear from. Then using (216)170

Qnn ∼ L2
K
, Qλλ ∼ L2

λ
and Qnλ ∼ LnLλ where theL′s are again linear

forms. By suitably normalizing these forms we can assume that

anλ = LnLλ.

Let LK =
∑

µ
ℓµnqµ (Theb′ s may be complex constants).

Then
Qnλ =

∑

µν

ℓµnℓνλqµqν =
∑

µν

aµν,nλqµqν

and being an identity in theq′s, this gives

aµν,nλ = ℓµνℓνλ (217)
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In other words
Z = Z1[B] + A (218)

with certain matricesA = (Qµν), B = (ℓµν) which belong to a finite set.
It remains only to show thatB is unimodular andA is integral and then
the Lemma would have been established.

Let us choosey = yµν in (215) and then we obtain

aµν,̺σ + aµν,̺σ + Zaµν,̺σ = Cµνpµν,̺pµν,σ(µ , ν)

andaµν,̺σ = Cµpµpµσ with integersCµν, pµν̺, Cµ, pµσ whereCµνCµ ,

0. Forσ = ̺ these yield in particular, by means of (217),

(ℓµσ + ℓνσ)2
= Cµνp

2
µνσ(µ , ν)

andℓ2
µσ = Cµp2

µσ.
Hence it follows that 171

√

Cµνpµνσ =
√

Cµpµσ +
√

Cνpνσµ , ν (219)

and squaring,

Cµνp
2
µνσ = Cµp2

µσ +Cνp2
νσ + 2

√

CµCνpνσ, µ , ν. (220)

If at least one productpµσpνσ , 0(µ , ν) thenCµCν is clearly the
square of a rational number. This is also true ifpµσpνσ = 0 for all µ,
ν(µ , ν) as thenCµνC[µ] andCµνC[ν] are square of rational numbers as
is seen from (220). In particular the numbersc1, c2, . . . cn have all the
same sign. SinceZ ∈ Y andA is a real symmetric matrix,|Z − A| , 0
and consequently from (218),|B| , 0. It turns by means of (218) that
Z1 also belongs to a compact subset off asZ does by assumption. This
means that all that we have proved above forZ hold also forZ1 Since
we can assumeZ1 = Z[B′] + A+ whereB∗ = B−1 in view of the proviso
in our lemma, this in particular means that a representationof the kind
B = (πµpµν) can be found forB−1 too, sayB−1

=
√

Cµp′µν. Since
BB−1

= E, from the above representation forB, B−1 we have
√

C1C2CnC′1C
′
2Cn|pµν||p′µν| = 1
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and as all thec′s andp′s are integers this gives

C1C2 · · ·CnC”1C
′
2 · · ·C′n = 1, |pµν| = ±1.

We know that allc′s are of the same sign and thereforec1 = c2 =172

· · · · · · = cn = 1.
It is now immediate thatB is unimodular.
We now specialize (C,D) in (204) to beE, 0 respectively and obtain

from (218) that

ε|C1Z1 + D1| = |Z| = |Z1[B] + A| = |Z1 + A[B−1]|

This again can be assumed to be an identity inZ1 and we conclude
thatε|C1| = 1, so that|C1| = ±1. Then

|Z1 + A[B−1]| = ε|C1Z1 + D1| = Z1 +C−1
1 D1|

ReplacingZ1 +C−1
1 D1 in the above byZ1 we get

|Z1| = |Z1 +C−1
1 D1 − A[B−1]|

identically in Z1 and as a consequence,A[B−1] = C−1
1 D1 or

A = C−1
1 D1[B1]C1 is a unimodular matrix as we have shown earlier

and this means thatC−1
1 D1 and consequentlyA are integral. Thus, from

(218),Z = Z1[u] + A with a unimodularu and integralA, in other words
Z andZ1, are equivalent with regard toM. By assumptionZ is an inte-
rior point of f andZ1 ∈ ξ and thereforeZ andZ1 coincide. This proves
Lemma 18.

We now prove that any maximal set of algebraically independent

functions in the sequence{ϕµ(Z)}, ν = 1, 2, . . ., consists of
n(n+ 1)

2
ele-

ments. Let such that a set comprise of the functionsλq(z) = ϕνa(z)a,=
1, 2, . . .. We first show that theλ′asare at leastn(n+1)/2 in number. For
if their number is aq < n(n + 1)/2, thenλλ · · · λqϕm are algebraically
dependent for each m. In other words, there exists a polynomial Fm(t)173

- which we may assume to be irreducible of one variable over the in-
tegrityed main generated byλa(z), a = 1, 2, . . . q, such thatFm(ϕm) = 0,
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m = 1, 2, . . . identically inZ. These polynomials being separable, their
discriminantsDm(m = 1, 2, . . .) are all polynomials inλ1, λ2, . . . λq not
vanishing identically. By Lemma 18, it is possible to find a bounded
domainG ⊂ f viz. an open connected non-empty subset off such that
the conditionϕm(z) = ϕm(z1), m ≥ 1,Z ∈ G , z, ∈ f will automatically
imply thatZ = Z1. We now construct a sequence of sub-domains ofG
as follows. LetG1 ⊂ G be so determined thatD1 , 0 for anyZ ∈ G1.
Then letG2 ⊂ G1 be such thatD2 , 0 for anyz ∈ G2. This may be
continued and there exists at least one pointZo which belongs to every
Gm so thatDK(zo) , 0 for anyK.

Consider now the equations

λo(z) = λo(Zo), a = 1, 2, . . . q, (221)

These define an analytic manifold of complex dimension at least
n(n + 1)/2 − q > 0. Thus inG there exists an analytic curve through
Zo on which (221) is satisfied at every point. It is then immediate that
functionsλa(z) are all constants on this curve. This means as a con-
sequence that the functionsϕm(z) are also constants on this curve, For
the polynomialsZm(t) have all their coefficients on this curve and being
separable their zeros are all distinct. In a sufficiently small neighbour-
hood ofZo on this curve we should then haveϕm(z) = ϕm(zo) for every
m and by the choice ofG which contains this curve we haveZ = Z1.In 174

other words the curve reduces to a point- an obvious contradiction to
the assumption that the dimension of the manifold defined by (221) is
positive. Consequently the suppositionq < n(n + 1)/2 is not tenable.
We now show that the number ofλ′scannot exceedn(n+ 1)/2. For if it
does, letq > n(n+1)/2 and consider the modular formsfk, gνaK = f

νa
K
λa,

a = 1, 2, . . . q. These are at leastn(n + 1)/2 + 2 in number so that, by
theorem 7, these satisfy a non trivial isobaric algebraic relation

∑

Cµ1µ2···µq+1g
µ1
ν1K

gµ2
ν2K
· · · gµq

νqK
f
µq+1

K
= 0

with µi ≥ 0 and
∑

µ1ν1+µ2ν2+µq+1 = λ (λ being a fixed number). From
the above relation it is immediate that

∑

Cµ1µ2···µq+1λ
µ1
1 λ

µ2
2 · · ·λ

µq
q =

=

∑

Cµ1µ2···µq+1

(g∋1K

f
ν1
K

)µ1(g∋2K

f
ν2
K

)µ2

· · ·
(g∋qK

f
νq

K

)µq
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=
1

fλ
K

(

∑

Cµ1µ2···µq+1g
µ1
ν1K

gµ2
ν2K

g
µq
νq f

µq+1

K

)

= 0

In other words we have established a non trivial relation among the
λ′sso that cannot be independent - thus providing a contradiction. Thus

q 6 〈n(n+ 1)
2

we conclude that

q =
n(n+ 1)

2

We are now equipped with the relevant preliminaries needed to es-
tablish the main result of this section viz.

Theorem 16. The field of modular functions of degree n is isomor-175

phic to an algebraic function field of degree of transcendence
n(n+ 1)

2
.

That is to say, every modular function of degree n is a rational function

of
n(n+ 1)

2
+ 1 special modular functions. These functions are alge-

braically dependent but every
n(n+ 1)

2
of them are independent.

Proof. Let q =
n(n+ 2)

2
and let

Ka(z) = ϕνa(z) = gνaK(z)(fK(z))−νa, a = 1, 2, . . . , q

with fK(z) = gK(z, o) be a set of algebraically independent modular func-
tions. The existence of such a set has already been shown. We first prove
that the (q+ 1) Eisenstein seriesgK(z, o), gνaK(z, o) are algebraically in-
dependent. For, let

m
∑

µ=0

Lµ(z) = 0 (222)

with
Lµ(z) =

∑

µo···µq

C(µ)
µoµ1···µq

gµo

K
gµ1
νqK
· · ·gµq

νqK
, µc ≥ 0,

µ + µ1ν1 + · · · µqνq = µ, be any algebraic relation among theg′s. We
wish to show that such a relation cannot be non trivial. Firstwe shall
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show thatLµ(z) = 0 for eachµ. Applying the modular substitution
Z→ (AZ+ B)(CZ+ D)−1 to (222) we obtain

m
∑

µ=0

|CZ+ D|µ|ZLµ(z) = 0 (223)

identically inZ for all symmetric coprime pairs{C,D}. We can choose
Cν,Dν1ν = 1, 2, . . .m such that|CνZ + Dnu| are all different. �

Then we shall have from (223) a system of linear equations inLµ(Z) 176

whose determinant is nonzero. This requires thatLµ(Z) = 0 for µ =
0, 1, 2, . . .m. Thus

∑

µo,µ1,...µq

Cµo,µ1,...µqg
µo

K
gµ1
ν1K
· · · gµq

νqK
= 0, µ = 1, 2, . . .m

where

µo +

q
∑

q=1

µcνc = µ

Dividing Lµ(Z) by gµ
K
= gµo

K
+

∑q
i=1 µ1ν1 the above yields that

∑

C(K)
µo,µ1,...µq

λ
µ1
1 λ

µ2
2 · · ·λ

µq
q = 0 and consequentlyC(µ)

µo,µ1,...µq
= 0 for all

indices. Thus we have shown thatgK, gνaK, a = 1 · · · q are all indepen-
dent.

Let nowλ(Z) be an arbitrary modular function andλ(Z) =
f(Z)
g(Z)

a

representation ofλ as the quotient two modular formsf , g of the same

weightℓ. Since any
n(n+ 1)

2
+2 modular forms are algebraically depen-

dent by theorem 7, this is true in particular of the two sets
f, gK, gν1K · · · gνqK andg, gK, gν1K, . . . gνqK and there exist nontrivial iso-
baric relations

ϕ(f) =
∑

Cµν̺1···̺qf
µgµ
K
gµ1

νqK
= 0

ϕ(g) =
∑

dµν̺1···̺qg
µgν
K
g
µq

νqK
= 0

with all exponents non negative satisfying the condition

µℓ + (ν + ρ1ν1 + · · · + ρννν)K = mℓν1ν2 · · · ννKq+l
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a certain integerm= m(n). It is immediate that 177

µ ≤ mν1ν2 · · · ννKq+1

so that the polynomialsϕ(t) andψ(t) are of bounded degree. We can
assume without loss of generality thatψ(0) , 0, ψ(0) , 0. In ϕ(t) we
replacet by tg and letψ1(8) = ϕ(tg). The resultant ofϕ(g) andψ1(g)
(as polynomials in 8) is a polynomial int denoted byσ(t) say. Since
ϕ(0) , 0, ψ(ϕ , 0) it follows thatσ(0) , 0, in other words,σ does
not vanish identically. Furtherϕ(g) = 0 and{ψ1(g)}t=λ = ϕ( f ) = 0 so
thatψ andψ1 have a common zero at the pointλ. Henceσ has a zero
too at this point. The degree ofσ is clearly bounded (for varyingλ ) as
the degrees ofϕ andψ are bounded. Also, the coefficients ofσ are all
isobaric polynomials ofgK, gνqrk, in other words, all of them are modular
forms of the same weight. It is clear then as in earlier contexts that, for
a suitableλ, g−λ

K
σ(t) = σ1 has coefficients all of which can be written as

polynomials inχ1, λq and thenσ1 satisfies the following conditions:

i) the degree ofσ1 is bounded with respect toλ

ii) σ1 . 0, and specifically,σ1(0) , 0

iii) σ1(λ) = 0.

Let now λ = λo be so chosen that it is a zero of an irreducible
polynomial F(t) which has all the above properties ofσ11 and whose
degree int is maximal (with regard toλ). The existence ofλo is easily
proved. Then theq + 1 modular functionsλo, λ1, λq generate the field178

of all modular functions. For ifK = R[λ1, . . . , λq] is the field generated
by λ1, . . ., λq and K[λo] that generated byλo, λ1, . . . λq and if λ is an
arbitrary modular function then

K ⊂ K[λo] ⊂ K[λo, λ].

All these are finite extensions overK andλ being algebraic overK,
the last is clearly a simple extension overK, say,K[λ1]. Then, unless
K[λo] = K[λ∗1], the irreducible equation overK satisfied byλ1 will have
a degree higher than that of the irreducible equation thatλo satisfies-a
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contradiction to the choice ofλo. HenceK[λo] = K[λo, λ
∗] and conse-

quentlyλ∗ is a rational function ofλo, λ, . . . , λq. The proof of Theorem
16 is now complete.





Chapter 13

Definite quadratic forms and
Eisenstein series

A first access to the theory of modular forms of degreen was provided 179

by Siegel’s work on quadratic forms. The main result of this theory can
be expressed in the shape of an analytic identity between Theta series
and Eisenstein series. A brief account of their relationship is given in
this section confining ourselves to positive quadratic forms. We may
remark that we shall prefer to speak of symmetric matrices rather than
of quadratic forms.

We first formulate without proof the main result of Siegel’s theory.
This requires a few preliminaries. LetS = S(m) andT = T(n) denote
positive integral matrices, and letm≥ n. Denote byα(S,T) the number
of integralXm,n such thatS[X] = T and letα(ε,S) be denoted byε(s).
By αq(S,T) we shall mean the number of integral matricesXm,n distinct
modulo q such thatS[X] ≡ T( mod q). We shall say thatS and T
belong to thesame classif S[u] = y for some unimodular matrixU and
we shall denote by (S) a special matrix in the class ofS. If m= n and if
to every integerq > 0, there exists a pair of integral matricesχ, y such
thatS(χ) ≡ T andT(y) ≡ S( mod q), then we say thatS is related to
T, in symbols:S nT. The set of all matrices related toS shall be called
thegenusof S. It is well known that the genus of every positive integral
matrix decomposes into a finite number of distinct classes (If a given

169
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genus containsS, it contains the class ofS also). We now introduce the
measureµ(S) of the genus containingS as

µ(S) =
∑

(SK)n(S)

1/ε(SK) (224)

Finally let180

α∞ =
π(2m−n+1)

y(m−n+1
2 )y(m−n+2

2 ) · · · y(m
2 )
|S| −1

2 |T |m−n−1
2 (225)

and

αo(S,T) =
1

µ(S)

∑

(SK)r(S)

α(SK,T)
ε(SK)

(226)

The last expression is called themean representation number of T
by the genus of S.

We now quote Siegel’s main result in

Theorem 17. Let S= S(n),T = T(n) with m> n+ 1 be positive integral
matrices. Then

αo(S,T) = α∞(S,T) lim
K→∞

αq(S,T)
mnn(n+1)

2

, q = K! (227)

We proceed to express thee q-adic representation numberαq(S,T)
by means of the Gauss sums.

Let W(n) be a rational symmetric matrix andd the smallest positive
integer such that the quadratic formd,W[ε] has all integral coefficients.
We shall call sucha′′d′′, thedenominator of W[ε]. We now introduce
the generalized Gauss sum g(S,W) for any integral symmetric matrix
S(m) and rational symmetric matrixW(n) as follows.

g(S,W) =
∑

A

e2πiσ(S[A]W) (228)

where in the summation,A = A(m,n) runs through a complete set of inte-181

gral matrices which are all distinct modd, d denoting the denominator
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of W[ε]. We have get to show that the sum in (228) does not depend
on the choice of the representatives of the cosets modd. This will be
fulfilled if we prove the invariance of this sum for a replacement ofA by
A+ dBwhereB is an arbitrary integral matrix. In this case we have

σ(S[A+ dB]W) − σ(S[A]W) = d2σ(S[B]W) + dσ(B′S AW)

+ dσ(A′S BW)

= d2σ(S[B]W) + 2dσ(B′S AW).

SinceS[B] is integral and symmetric anddW is semi integral, it
follows thatd, σ(S[B]W) ≡ 0( mod 1) and similarly, sinceB′S Aand
2dW are integral, 2dσ(B′S AW) ≡ 0(1). Hence

e2πiσ(S[A+dB]W)
= e2πiσ(S[A]W)

and the desired result is immediate.
A useful estimate forg(S,W) when|S| , 0 is given by

Lemma 19. Let S = S(m) be a nonsingular integral symmetric matrix,
W = W(n) a rational symmetric matrix and d the denominator of the
quadratic form W[ε]. Then

|g(S,W| ≤ 2m/2||S||n/2dmn−m/2 (229)

Proof.
|g(S,W)|2 = g(S,W)g(S,W)

=

∑

A1,A2 mod d

e2πiσ(S[A1]W)−2πiσ(S[A2]W)

� 182

Keeping A2 fixed we first sum overA1 and this we can do after
replacingA1 by A1 + A2 We then get

|g(S,W)2
=

∑

A1,A2 mod d

e2πiσ(S[A1+A2]W)−2πiσ(S[A2]W)

=

∑

A1,A2 mod d

e2πiσ{(A′1S2+A2S A1+S[A1]W)}
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=

∑

A1 mod d

e2πiσ(S[A1]W)
∑

A2 mod d

e2πiσ(2A1
2S A1W)

=

∑

A1 mod d

e2πiσ(S[A1]W)
∑

A2 mod d

e2πiσ(A1
2W1) (230)

whereW1 = 2S A1W
If W1 = (ωµν) andA2 = (aµν) then

σ(A′2W1) =
∑

µν

aµνωµν

and
∑

A2 mod d

e2πiσ(A1
2W1)
=

∑

aµν mod d

e2πiΣµ,νaµνωµν

=

∏

µ,ν

(
∑

aµν mod d

e2πiΣµ,νaµνωµν)

By a standard result, the sum within the parenthesis ofd or 0 accord-
ing asωµν is or is not an integer. Hence, the inner sum in the right side
of (230) is 0 if at least oneωµν is not integral anddmn in the alternative
case. Thus

|g(S,W)|2 = dmn
∑

A mod d
2S A1W−integral

e2πiσ(S[A1]W) ≤ dmnL (231)

whereL denotes the number of cosets modA1 such that 2S A1W is183

integral.
We now wish to estimateL. For this we can assume thatS andW

are both diagonal matrices. For, in the alternative case, wecan find
unimodular matricesUl ,Vl , i = 12, with U1SU2 = D = (dµνdν),
V1WV2 = H = (δµνRν). Then, ifA3 = U−1

2 A1V−1
1 ,A3 runs over a com-

plete representative system of matrices modd asA1 does and 2DA3H
is integral when and only when 2S A1W is integral. Consequently the
replacement ofS, W by D, H, viz. diagonal matrices, will not interfere
with our estimation forL. We assume then thatS and W are diago-
nal matrices,S = (δµνsν), W = (δµνων) and that 2S A1W is integral. If
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A1 = (aµν) this means that

aµν2dωνsν = 2sνaµνdν ≡ 0( mod 1),

1 ≤ µ ≤ m, 1 ≤ ν ≤ n

Since 2dων is an integer, it is obvious that the number of distinct
cosets modd is just (d, 2dsµων) viz. the greatest common divisor ofd
and 2dsµων. Hence

L =
∏

µν

(d, 2dsµων) ≤
∏

µ,ν

{(d, 2dων)|sµ|}

≤ ||S||n
n

∏

ν=1

(d, 2dων)
m ≤ ||S||n{(d, 2dω1, 2dω2, 2dω2)dn−1}n

≤ ||S||n(2dn−1)m (232)

In stating the above inequalities we have used the fact that 184

(g, g1, . . . , gq)gq−1 ≥∏q
ν=1(g, gn) for anyq+1 integersg, gi (l −1, q) and

this is easily proved by induction onq. Combining (231) and (232) we
get
|G(S,W)|2 ≤ ||S||ndmn(2dn−1)m and (229) is immediate. We obtain

now a representation of the right side of (227) by an infinite series.

Lemma 20. Let W = W(n) run through a complete set of rational ma-
trices for which the quadratic forms W[∈] are distinct modulo1 and let
d denote the denominator of W[∈]. Then

lim
K→∞q

αq(S,T)

mn− n(n+1)
2

=

∑

W

d−mng(S,W)e−2πiσ(WT), q = K! (233)

where S= S(m) > 0,T = T(n) > o,m> n2
+ n+ 2 and the series onthe

right side of (233) converges absolutely.
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Proof. We first show that

q
n(n+1)

2 αq(S,T) =
∑

W

∑

A

e2πiσ{(S[A]−T)W} (234)

whereA runs through all integral matrices distinct modq andW runs
over all rational matrices such that the quadratic formsW[∈] are distinct
mod 1 andqW[∈] has all its coefficients integral. LetS[A] − T = R =

(rµν) andW = (
1
2

(1+ δµν)ωµν) �

Then
∑

W

e2πiσ(RW)
=

∑

ωµν mod 1
qωµν− integral,µ≤ν

e2π
∑

µ≤νrµνωµν

=

∏

µν

(
∑

ωµν mod 1
qωµν≡0(1)

e2πirµνωµν)

185

The sum inside the parenthesis is well known and is equal toq or 0
according asq is or is not a divisor ofqµν. It is now immediate that

∑

W

e2πiσ(RW)
=















qnm+1
2 , i f S[A] ≡ T( mod q)

0 , otherwise

The right side of (234), by a change of the order of summation

clearly reduces then toq
n(n+ 1)

2
αq(S,T) and (234) is established.

Since
∑

A mod q

e2πiσ(S[A]W)
= (

q
d

)n
∑

A mod d

e2πiσ(S[A]W)

= (
q
d

)ng(S,W),

the right side of (234) can be rewritten asqmn∑

W
d−mng(S,W)e−2πiσ(TW).

Hence (234) now reads as

q
n(n+1)

2 αq(S,T) = q−mn
∑

W[ε] mod 1
qE[ε]≡0(1)

d−mng(S,W)e−2πiσ(TW) (235)
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This is true for every integralq = K! and asK→ ∞ the right side of
(235) is just

∑

W[∈] mod 1
d−mng(S,W)e−πiσ(TW) provided this infinite series186

converges. We shall show that this converges absolutely andthen we
would have proved Lemma 20. We proceed thus the number of quadratic
forms W[∈] which are distinct mod 1 and have a given denominator
d can be roughly estimated from above bydn(n+1)/2. Hence the series
under question can be majorised by

∞
∑

d=1

d
n(n+1)

2 d−mng(S,W)

which again can be further majorised by means of (229)

K
∑∞

d=1 d

n(n+ 1)
2

−
m
2 with a suitable constantK. The last series is clea-

rly convergent under our assumption onm,n viz. m > n2
+ n + 2 or

m
2
− n(n+ 1)

2
> 1, and then the absolute convergence of the right side

of (233) which we wanted to establish is immediate.
We wish to have a partial sum representation for the infinite sum

∑

τ>0
integral

|T |
ρ−

n+ 1
2 e2πiσ(TZ)(ρ > n+ 1) in Lemma 21 and as a preliminary,

we quote Poisson’s Summation Formula, viz. that if f is any function
defined on the spaceL of all symmetric matricesY, andT runs through
all symmetric integral matrices whileF runs through all symmetric semi
integral matrices, then under suitable conditions,

∑

T

f(T) =
∑

F

∫

L

f(y)e−2πiσ(Fy) [dy] (236)

A formal proof of (236) may be furnished as follows.
If f (y) =

∑

T f(T + y) theng(y) is a periodic function ofy and can be
expanded in a Fourier series 187

g(y) =
∑

F a(F)e2πiσ(Fy) If H denotes the unit cube inL , then
α(F) =

∫

H

g(y)e−πiσ(Gy)[dy]. Replacingg(y) by its infinite sum
∑

T f

(T+Y) and changing the order of summation and integration (whichcan
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be justified under suitable conditions) we have

a(F) =
∑

T

∫

T

f(T + y)e−2πiσ(Fy) [dy]

=

∑

t

∫

H

f(T + y)e−2πiσ(F(T+y)) [dy]

=

∑

T

∫

T+H

f(y)e−2πiσ(Fy) [dy]

=

∫

L

f(y)e−2πiσ(Fy) [dy]

Then
∑

T

f(T) = g(0) =
∑

F

a(F) =
∑

F

∫

L

f(y)e−2πiσ(Fy) [dy]

and this establishes (246).
We apply this result in

Lemma 21. Let Z ∈ fgn, ρ > n+ 1 and let T(n) run through all positive
integral matrices while F(n) runs through all semi integral matrices.

Then
∑

T

|T |ρ− n+1
2 e2πiσ(TZ)

= π
n(n− 1)

4
y(ρ)y(ρ − 1

2
).y(ρ − n− 1

2
)
∑

F

|1πi(F − Z)|−ρ

(237)
where we put|2πL(F − Z)|−ρ = e−ρ log |2πi(F−Z)| and understand by log
|2πL(F − Z)| that branch of the logarithm which is real for

Proof. We first note that sinceF is real andZ ∈ Yn, |2πl(F − Z)| , 0 so188

that the right side of (237) makes sense. Let us introduce thefunction
f(y)(y− symmetric) as

f(y) =



























|y|p− n+1
2 e2πiσ(yz),

, i f y > 0

−0, otherwise

and state that Poisson’s summation formula is valid for thisfunction. �
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Then
∑

T

f(T) =
∑

T>0

|T |p− n+1
2 e2πiσ(TZ)

which is precisely the left side of (237) and by (236) this is equal to

∑

F

∫

L

f(y)e−2πiσ(Fy) [dy] =
∑

F

∫

y>0

|y|p− n+1
2 e2πiσ(y(Z−F)) [dy]

By Lemma 14 we have
∫

y>0

|y|p− n+1
2 e2πiσ(y(Z−F))

= π
n(n−1)

4 y(ρ)y(ρ − 1
2

)y(ρ − n− 1
2

)|2πi(F − Z)|−ρ

and then (237) is immediate. We may note that the convergenceof the
right side of (237) forρ > n+ 1 is a consequence of the convergence of
the Eisenstein series in this case. The proof of Lemma 21 is complete. In
the following Lemma we are concerned with a parametric representation
for integral matricesG with a given rankr.

Lemma 22. Let 1 ≤ r ≤ n ≤ m where r, n, m are all integral. Let
B = Bn,m run over all integral matrices of rank r and a= an,m run over
a complete set of right non associated primitive matrices.

Then every integral matrix G rank r is obtained as the matrix prod- 189

uct QB once and only once.

Proof. Let G be an integral matrix of rankn with suitable unimodular
matricesU1, andU2 and a non-singular matrixD = D|r | we shall have

G = U1

(

00
00

)

U2. Writing U1 = (Q∗) whereQ = Q(n,r) andU2 = (R
∗ )

whereR= R(n,m) we have

G = (a∗)
(

D0
00

)

(R
∗ ) = QDR= QB DR= B

�

SinceR is primitive andD nonsingular we conclude thatB is inte-
gral, and by choiceQ is primitive. We may observe that we can sub-
sequently replaceQ by any given element of the equivalence class of
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Q by absorbing the right factor (unimodular) introduced thereby, into
B. To prove the uniqueness of the representationG = QB we proceed
thus. LetQ1QB = Q2B2 whereQν, Bν are matrices in the same sense
asQ, B are. We determineR1 such thatU = (Q1R1) is unimodular and
putU−1Q2 = (A

H) with A = A(r). Then sinceU−1Q1B1 = U−1Q2B2 we
have on substitution,

(

E(r)

0

)

B1 =

(

A(r)

H

)

B2 or B1 = AB2 and 0= HB2 Since rankB2 = r

the last condition implies thatH = 0 and consequentlyA is unimodular.
SinceQ2 = U(A

0) = (Q1R1)(A
0 ) it now follows thatQ2 = Q1, A = E, and

it is immediate thatB1 = B2 by one of the earlier conditions.
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190

Missing page 190
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We now introduce thatϑ seriesϑ(S Z) for anyS = S(m) > 0 integral,191

andZ ∈ Yn with m≥ n. By definition

ϑ(S,Z) =
∑

G

eπiσ(S[G]Z) (238)

where the summation forG is extended over all integralG = G(m,n). It is
obvious that the series in (238) is convergent, and it is alsoobvious that
ϑ(S,Z) is aclass invariantof S, in other wordsϑ(S,Z) = ϑ(S,Z) if S∗

is any element of the class ofS. Besides the class invariantϑ(S,Z), we
consider also thegenus invariant

f(S,Z) =
1

µ(S)

∑

(SK)r(S)

ϑ(SK,Z)
ε(SK)

(239)

This definition off is analogous to the definition (226) of the mean
representation number ofT by the genus ofS.

Now ϑ(S,Z) can be rewritten as

ϑ(S,Z) = 1+
n

∑

r=1

∑

G−integral
rankG=r

eπiσ(S[G]Z)

By Lemma 22,G′ has a representation of the formG′ = QB′ where
Q = Q(n,r) is a primitive matrix andB = B(m,n) is an integral matrix of
rankr. Then

σ(S[G]Z) = σ(S[BQ′]Z) = σ(S[B]Z|Q)

and consequently

ϑ(S,Z) = 1+
n

∑

r=1

∑

Q,B

eπiσ(S[B]Z)[Q]

Introducing192

χ(S,Z) =
∑

G

eπiσ(S[G]Z) (240)
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where the sum extends over all integralG with rankG = n (i.e. maximal
rank) the above series forϑ(S,Z) can be written as

ϑ(S,Z) = 1+
n

∑

r=1

∑

Q

χ(S,Z[Q])

Since

χ(S,Z) =
∑

G

eπiσ(S[G]Z)
=

∑

T(n)>0

integral

α(S,T)eπiσ(TZ)

it follows that

ϑ(S,Z) = 1+
n

∑

r=1

∑

Q,T

α(S,T)eπiσ(TZ[Q]) (241)

T = T(r) > 0, integral,Q = Q(n,n) primitive,
and consequently

f(S,Z) = 1+
n

∑

r=1

∑

Q,T

α(S,T)eπiσ(TZ[Q])

We now apply Siegel’s main result (227) and then (233) in an obvi-
ous way to obtain that, form> n2

+ n+ 2,

f(S,Z) = 1+
n

∑

r=1

∑

Q,T

α∞(S,T)
(

lim
K→ν

αq(S,T)

qmn−r(r+µ/xxxx)

)

× eπiσ(TZ[Q])

= 1+
n

∑

r=a

∑

T,Q

π
r(2m−r+l)

4

y(m−r+1
2 )y( m−r+1

2)···y( m
2 )

|S| −r
2 |τ|m− r

2

×
∑

w

dmng(s.w)eπσ(TZ[Q] − 2w) w=wr rations
W[ε] mod 1

= 1+
n

∑

r=1

∑

Q

ππ(2m(−r+1/4))

y(m−r+1
2 )y(m−r+1

2 ) . . . y(−r
2 )
|S|−r

2
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×
∑

w

g(S,w)
∂mr

∑

τ

m− r + 1
2

eπσ(τiσ(Tz[Q]−2w))

the last result being obtained by a change of the order of summation the 193

justification for which will appear subsequently. By means of Lemma
21 we finally get

f (S, z) = 1+
n

∑

r+1

|S| −r
2

∑

Q

∑

W

g(S,W)
dmr

∑

F

|Π(2 f+2w−Z[(Q)])ym
2 F = F(r)

semi integral
It is obvious that every quadratic form ofr variables with rational

coefficients has a representation of the form (F +W)[∈]above and con-
versely, so that, in view ofW[∈] and (F+W)[∈] having the same denom-
inatord andg(S,W) being invariant for a replacement ofW by (F +W)
we can finally write

f (s, z) = 1+
n

∑

r+1

|S|−r
2

∑

Q

∑

W

g(S,W)
dmr |πi(dW− Z[Q]))| −m

2 (242)

whereW = W(r) now runs overall rational matrices. More explicitly we
obtain194

Lemma 23. Let W(r) run over all rational symmetric matrices and Qn,r

run over a complete set of non right associated primitive matrices. Then

f (s, z) = 1+
n

∑

r=a

c
−r
w

∑

W,Q

d
−r
2 g(s,w)|z|Q| − 2w| −m

2 (243)

provided m> n2
+ n+ 2 where d denotes the denominator of W[∈].

The reduction from (242) to (243) is straightforward and immediate.
It remains only to show that the double series.

∑

W,Q
α−mrg(S,W)|Z[Q] −

2W|−m
2 converges absolutely, to justify our earlier formal manipulations

with this series. In the caser = n, we haveQ = E and this series reduces
to

∑

W(n)
d−mng(S,W)|Z − 2W|−m

2 . SinceZ is fixed and||Z − 2W|| ≥ |Y| the
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absolute convergence of this series can be clearly made to depend on
that of

∑

Wn
d−mng(S,W) and the latter series does converge absolutely

under our assumptionm> n2
+ n+ 2, by means of Lemma 20. We have

then only to consider the case 1≤ r < n. Given the point,Z, we can
always assumeQ so chosen thaty[Q] is reduced. We can determine a
real non-singular matrixF(r) and a diagonal matrix,H = (δ(µν)) so that
Z[Q] − 2W = (H + iE)[F] and then

x[Q] − 2W = h[F] + y[Q] = F′F and|Y[Q]| = |F |2 (244)

If Q = (qµν) = (G1G2 . . .G ), q = maxµν ±qµν andh = maxν ±hν we
have from (47-49), 195

|Z|[Q] − 2W = |Y[Q]|
r

∏

ν=q

(i + hν) and

Ci |Y[Q]| ≤
∏

[

ν = 1]rY[G ′ν,Gν] (245)

whereC1, denotes a positive constant depending only uponn and λ
denotes the smallest characteristic root ofY . In stating the last of these
inequalities we have only to observe thatG ′νGν ≥ 1. If Q is a given
primitive matrix t, a given integer, we ask for the number of quadratic
forms W[∈] with rational coefficients and with a given denominatord,
consistent with the inequalityt − 1 ≤ h ≤ t. From the relations (244) it
is easy to see that this number has the upper estimate (dtq2)r(r+1)/2.

By lemma (19)

g(s,W) < ℓdmn−m/2 and

||Z[Q] − 2w|| = |(y[Q])|Πr
ν=1(i + hν)| ≤ b1t|y[Q]| with

appropriate constantsb, b1, so that the absolute convergence of the series
under consideration can be reduced to the convergence of theseries .

∞
∑

d=1

∞
∑

t=1

∑

Q

(dtq2)r(r+1)/2d−mrdmr−m
2 t−

m
2 |y[Q]|
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=

∞
∑

d=1

∞
∑

t=1

(dt)r(r+1)/2−m
2

∑

Q

qr(r+1)|y[Q]|−m
2

=

















∞
∑

d=1

d
r(r+1)

2 −m
2

















2
∑

Q

qr(r+1)|y[Q]|−m
2

The series within the parenthesis is clearly convergent under our196

assumptionm > n(n + 1) + 2 > r(r + 1) + 2 so that we need only

confine ourselves to the seriesΣQqr(r+s)|y[Q]|
′
−m
2 . From (245) it is

clear that this last series, but for a constant multiplier, is majorised by

ΣQ|y|[Q] |
r(r + 1)

2
−

m
2 , and this in turn is further majorised by a constant

multiple of

ΣGν,0(
r

∏

ν=1

))
r(r+1)

2 = (
∑

G,1

(G ′G ))
r(r+1)

2
−m
2 )r

The number of integral columnsG , 0 witht2 ≤ G ′G < (t + 1)2

wheret is a given integer, is of the order oftn−1 so that the last series
can be compared with

∑∞
t=1 tn−1+r(r+1)−m

The series converges sincem> n2
= (n− 1)n+ n ≥ (r + 1)+ n and

the proof of Lemma 23 is complete.
We now transform series (243) for the genus invariant in another

form by means of the calculus matrices. Towards this effect, we put
−2W = C−1

1 D1 whereC(r)
1 ,D(r)

1 denote symmetric coprime matrices with
|C1| , 0. The relation betweenW and the class{C1,D1} is bi-unique as
we have seen in pp. 44. According to Lemma 1, there is also is a 1− 1
correspondence between the classes

{

Cr
1Dr

1

}

,
{

Q(r,r)} with |C1| , 0, and
the classesCr

1Dr
1 with rankC = r. Since from (69),

|Z[Q] − 2W| = |Z[Q] +C−1
1 = |C−1

1 CZ|Cz+ D| (246)

we conclude from (243) that197

f (s, z) =
∑

{

C(n),D(n)
}

h(c.d)|Czz+ D|
n
2
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with appropriate coefficientsh(C,D)and it only remains to determine
useful expressions forh(C,D) .

We stop her to establish

Lemma 24. Let C(r)
l be an integral non-singular matrix and q a positive

multiple of|C1|. If Gm,r runs through a complete set of integral matrices
distinct mod. q the GC1 runs through exactly qmn||C1||−m of them , each
of these appearing the same number of times. i.e.,||C1|| times.

Proof. We can assume thatC1i is a diagonal matrix , as otherwise there
exists unimodular matricesu1, u2 such that the productu1, Cu2 is a
diagonal matrixC∗1 and then the productsG1C1 = G1u−1

1 C∗1u−1
2 and

G2C1 = G2u−1
1 C∗1u−1

1 are distinct mod.q for two matricesG∗1, G∗2
which are themselves distinct mod.q. This in particular implies that
for the purpose of determining the number of matricesGC distinct
mod .q it is immaterial whether we argue withC1 or C∗1. We there-
fore assume thatC1 is a diagonal matrix,C1 = (δµνC{ν}), C{ν} > 0. Let
G = (gµν) andG∗ = (g∗µν) and assumeGC1 ≡ G ∗ C1(modq). Then
gµνCν ≡ gµνCν( mod .q), µ = 1, 2, . . . ,mν = 1, . . . r. �

By assumption|C1| is a divisor ofq and a fortiori , eachCν is a 198

divisor ofq. It therefore follows from the above congruence that

gµν ≡ g∗µν(q|cν) (247)

The number of productsG∗C1 which are congruent toGC1 (mod ·q)
is then just the number of solutions of the congruence (247) and this
number is clearlyΠµ nucν = ||C1||m. Consequently , the number of prod-
uctsGC1 distinct mod · q is exactlyqmr||Ci ||−m, amr being the total
number ofG = G(m,r) distinct mod · q and the Lemma is proved.

Before resuming the main thread we note the following : -
If A, G are integral matrices , then

σ(S[A+GC1]C
−1D1)pσ(S[A]C−1

1 D1)

= σ(C′i G
′SGDi) + σ(C′1G

′S AC−1
1 Di) + σ(A′SGDi)

= σ(C′i G
′SGDi) + Di) + 2σ(A′SGDi)

= σ(S[G]GiC
′
i ) + 2σ(A′SGDi) (248)
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In stating the above relations we have only made use of the fact that
C−1

1 D1 is a symmetric matrix.
Consider now the sum

∑

A mod (2Ci )|
e−πσ(S[A]C−1

1 D1) (249)

where the sum is extended over a complete set of integral matrices A199

such that no two of them differ by a matrix of the formG2C1 having
2C1 as a right divisor. It is immediate from (248) that the sum (249) is
independent of the choice of representatives A mod.(2C1|). Two cases
arise.

Case. i: Suppose that the congruenceσ(s[G]DiC′i ) ≡ 1( mod .2) is
solvable for an integralG. Then for thatG, a replacement ofA by A +
GC1 changes the sign of each term of the sum (249) as is seen from
(248) while the sum itself is left unaltered due to such a replacement. It
therefore follows that in this case

∑

A mod (2C1)|eπiσ(S[A]C−1
i D1)

= 0 (250)

Case. ii: Suppose on the other handσ(S[G]D1C′1) ≡ 0( mod .2) for
every integralG. Then the general term of (249) depends only onA
mod (Cν and we can write the sum as

∑

A mod (2Ci |)
eπiσ(S[A]C−1

1 D1)
= 2mr

∑

A mod (2Ci |)
eπiσ(S[A]C−1

1 D1) (251)

Let us now consider the Gaussian sums

g(S,w) = g(s,
1
2

C−1Di)

=

∑

mod .d

e−πiσS[A]C−1
1 Di

The denominatord of the quadratic formW[ε] =
1
2

(C−1
i D1)[ε] is

obviously a divisor of 2|C1| and let us assume that|2Ci | dividesq. Then
A ≡ A∗( mod .q) implies thatA − A∗ ≡ ( mod .12Ci |) in other words200
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(A− A∗)|2Ci | ≡ 0( mod .1) andA ≡ A∗ mod .(2Ci)|.
Thus we obtain that

g(s,−1
2

C−1
1 Di) =

∑

A mod .d

eσ(S[A]C−1
i D1)e−πiσ(S[A]C−1

i Di )

= (
d
q

)mr
∑

A mod q

e−πiσ(S[A]C−1
i D1)

= (
d
q

)mr
∑

A mod (2Ci )

∑

B mod q
B≡A mod (2ci )|e

πiσ(S[B]C−1
1 Di )

= (
d
q

)mreπiσ(S[B]C−1
1 Di )

∑

A mod (2Ci )

∑

B mod q
B≡A mod (2ci )|

s̈ince the termeπiσ(S[B]C−1
1 Di)is invariant for a replacement ofB by

B∗ ≡ B mod (2, ci )| and in particular for a replacement ofB by A. In
order to compute the inner sum we putB = A + 2GCi with an integral
G. If G runs over all cosets mod.q we obtain according to Lemma 24,
qmr||2C−m

i distinct cosets.B mod .q, each one of them||2C1||m times.
The inner sum is thus equal toqmr||2Ci ||−m and we obtain that

dmrg(S − 1
2

C−1
1 D1) = ||2C||−m

∑

A mod (2C1)

eπiσ(S[A]C−1
1 Di)

In view of (250) - (251) it then turns out that 201

dmrg(S − 1
2

C−1
1 D1) =















0, or

||Ci ||−m∑

A mod (2C1) eπiσ(S[A]C−1
1 Di )

(252)

according as the congruenceσ(S[G]DiC;i ) ≡ 1(12) is solvable for an
integralG or not.

From lemma (23) and (246) we now obtain

Theorem 18. Let C(m), D(r) runs over a complete set of non associated
coprime symmetric pairs of matrices and let m> n2

+ n+ 2. Then

f (S, z) =
∑

C,D

h(S,C,D)(CZ+ D1)m/2 (253)
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where h(s, oE) = 1 and for C, 0,

h(S,C,D) =















i6mr/2−r
2 ||Ci ||−m

2

∑

A mod (ci ), oreπiσ(S[A]C−1
1 Di )

0
(254)

according as the congruenceσ(S[G]DiC′1) ≡ 1(2) is not or is solvable

for an integral matrix G where
{

C(r)
1 D(r)1

}

denotes the unique class which
corresponds to

{

C,D
}

by lemma 1.

We have now expressed Siegel’s main theorem on the theory of mod-
ular forms in the shape of an analytic identity. It can be shown that
h(S,C,D) in (253) depends only on the cosets ofC and D mod 4|5|
and consequently

f (s, z) =
∑

{C,D} mod 4|5|
h(S.C.D)

∑

{C,D}
C≡C| mod 4|S|)

D≡Dc

|CZ+ D|−m/2

In other wordsf (S,Z) is expressed as a finite linear combination of202

the sums
∑

{C.D}
C≡CoD≡Do( mod 4|5|)

of the Einstein series which converges form> 2n+2. The fourth power
of these sums represent forms of degreen and weight 2m with respect
to the congruence group M(4|S|) consisting of all modular matrices,

M ≡
(

E 0
0 E

)

( mod .4|S|)

The same is also true of the fourth power of the Theta- seriesϑ(S, z)
A more detailed account of these results, in particular forn = 1, one

finds in a paper of Siegel. “Über die analytische theorie der quadratis-
chen formen.” Ann. Math. 36(1935), 527 - 606.



Chapter 14

Indefinite Quadratic forms
and modular forms

We proceed to investigate how far the results of the last section can be 203

carried over to the case of indefinite quadratic forms. The very first
concept we introduced in the last section was that of the representation
numberα(S,T) which stood for the number of integral solutions of the
matrix equationS[x] = T whereS = S(m) and T = T(m) are given
positive integral matrices. The problem of determining thenumber of
integral matricesx(m,n) satisfying the above equation in the case of an
indefiniteS is much more difficult. In fact an indefinite rational sym-
metric matrixS is known to have in general an infinity of units, viz.
unimodular matricesu with S[u] = s. If now G is one integral solutions
of the equationS[X] = τ so isuG for every unitu of S so that the num-
ber of integral solutions of this equation will in general then be no more
meaningful, and we therefore replace it by the concept ofrepresentation
measures. If we divide the set of all integral solutionsG of S[G] = T
into equivalence classes, stipulating that two differentG′s, sayG1, G2

belong to the same class if and only ifG2 = uG1 for some unituor S, the
resulting number of distinct classes can be shown to be finite. To each
to these classes we attach a positive weight in a particular way and then
the sum of these weights for all the classes will yield the representations
measuresαA(S,T). The following considerations are more general in

189
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so far as they treat the notion of representation measureαA(S,T) for the
set of solutions of the inhomogeneous equationS[G+ A] = T.204

Let S = S(m) be a real non-singular matrix and let (p, q) be the
signature ofS. That is to say, for a suitable non-singular matrixC we
have

S = So[C] with So =
(

−Σ(p) 0
0 Σ

(p)

)

While (p.q) is uniquely determined byS, C is not necessarily uni-
que. Let us setG = C ∈, ∈= (xu) andG = (ym)

Then we haveS[∈] = −y2
1 − y2

2 − −y2
p + y2

p+1 + y2
p+1, p+ q, p + q =

m BesidesS[∈], we also consider the positive formP[∈] = y2
1 + y2

2 +

quady2p+q .
We call the symmetric matrixP defined by the above equation, a

majorant ofS. This majorant is not unique as it evidently depends on
the choice ofC. However, any majorantP of S is easily seen to be
characterized by the relation

PS−1P = S,P > 0 (255)

The equation (255) is clearly invariant under the simultaneous trans-
formationS → S[V], P → P[V] whereV is an arbitrary non singular
real matrix. It is then immediate that the majorantsPo of So defined by

PoS−1
o Po = So,Po > 0 (255′)

yield all the majorantsP of S in the formP = Po[C] whereC, So have
the same meaning as before. To determine a parametric representations
for the solutions of (255) it therefore suffices to consider the special case205

(255′). In the border casesp = 0 orq = 0 we should have clearlySo = E
andSo = −E respectively so that the only possible solutions of (255)
areP = S andP = −S in the respective cases. Forpq> 0, a parametric
representation for the solutionsPo of (255′) is given by

Po = 2K − So,K = Y−1[x′S0], y = So[x] > 0 (256)

whereX is any real matrix of the typexµν with rank x = q and the
solutions of (255) are given byP = Po[C], Po, being represented by
(256). Writingx′ = (W1W1) with and we observe that

y = So[X] = (W′,W′2)S(W1
W2

) =W′1W1 +W′2W2
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so that the conditionY > 0 in (256) in particular implies thatW′2W2 > 0
and consequently|W2| , 0. It is easy to see that two matricesX1,X2

yield the same point in (256) if and only ifX2 = X1H with a non-
singular matrixH. We can therefore assume in (256) by replacingX by
XW1

2 = (W
E ) with W = W1W1

2 that X is always of the normalized form
X = (W

E ) Given,X, Po is uniquely determined in (256) but not necessarily
is the converse true in general. HoweverPo does determineW uniquely,
in other wordsX is uniquely determined byPo if we stipulate thatX is
always of the above normalized form. What is more, the transformation
from W to P = Po[C] can be easily shown to be bi rational. Specially
with x = (W

E ) we have

P = C
(

( E+WW′
E−WW′ −2w(E−W−W)1

−2w(E−W−W)1 E+WW′E−WW′

)

C,E −WW> 0 (257)

Let u =
(

A B
C D

)

with A = A(p) be a real matrix which transformsSo 206

into itself, i.e.,So[u] = So. Then the transformationX→ uX has onP0

andW the effect

Po→ Po[u−1],W→ u < w >= (AW+ B)(CW+ D)−1 (258)

The transformationsW→ W∗ = u < W > constitute a group 1− 1
transformations of the domainsE−W′W > 0 onto itself and in this group
we have a sub-group formed by the units ofSo viz., those among theu′s
which are further unimodular. This group of units can be shown to be a
discontinuous group acting on the spaceE−W′W > 0 and an immediate
question is about a fundamental domain for this group or one of its sub
groups and the volume of the fundamental domain in an appropriate
sense. Towards this effect we note that the spaceE −W′W > 0 can be
considered as a Riemannian space with a metric, invariant relative to the
transformation (258), given by

8ds2
= σ(p−1dp)2

= σ(P−1
o dPo)

= σ((E −WW′)−1dW(E −W′W)−1dW′) (259)

The invariant volume element in this metric can also be computed
to be

dϑ = |E −WW′1
m
2 [dW] (260)
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All these considerations are valid for every real matrixSwith signa-
ture p, q. We now restrict the domain ofS to suit our needs.

Consider the inhomogeneous equation207

S[G+ A] − T = 0,G = G(m,n) integral (m≥ n) (261)

and require that the left side of this equation should represent an integral
valued matrix with the elements ofG as variables, via., a matrix whose
elements are polynomials in the elements ofG with integral coefficients.

This means the following requirements onS, A andT

(i) S is semi integral

(ii) S Ais integral forn > 1 and 2S Ais integral forn = 1

(iii) T ≡ S[A]( mod 1)i.e., S[A] − T is integral.

Confining ourselves to the above case, let us introduce the theta se-
ries

fA(Z,P) =
∑

B≡( mod 1)

e2πiσ(S[B]x+iP[B]y), z= x+ iy (262)

where P denotes an arbitrary majorant ofS. In the casep = 0 we
should haveP = S and thenfA(Z,P) represents a theta series in the
usual sense. The caseq = 0 presents no new difficulty either so that we
confine our attention to the casepq > 0. SincefA(Z,P) depends only
upon the cosetA( mod 3) andA[ε] has a bounded denominator, it is
clear that we only we have a finite number of different seriesfA(Z,P)
corresponding to a given majorantP of S. Let f(Z,P) denote the column
with the f(Z,P)′s as elements in a certain order. Due to an arbitrary

unimodular substitutionM =

(

A B
C d

)

∈ M on f (Z,P), one obtains208

|CZ+ D|− P
2 |CZ̄ + D|−

q
2 f (M < Z >, ρ) = LM f (Z,P) (263)

with a non-singular matrixLM . The matricesLM belong to the modu-
lar group in casep ≡ q ≡ o( mod 2), and (263) is quite meaningful for
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positive definiteS too. Finally, it can be shown thatLM is the unit ma-

trix for M ≡
(

E o
o E

)

(mod λ) for a suitable integerλ, so that the matri-

cesLM define a representative system for the quotient groupM/M(λ)
whereM(λ) denotes the main congruence group to the levelλ i.e. M(λ)

consists of the substitutionsM satisfying the congruenceM ≡
(

E o
o E

)

(mod λ)
In the group of unitsU of S, viz. unimodular matricesU with

S[U] = S, let yA(S) be the sub group defined byUA ≡ A( mod 1).
We denote byFA(S) a fundamental domain inE −W′W > o relative to
this sub-group and introduce the volume

VA(S) =
∫

FA(S)

dϑ (264)

onFA(S) computed with the volume element (260). This volume can be
shown to be finite in all cases with one exception-the exceptional case
being one for whichm is 2 and

√
−|S| is rational. From (262) it is easily

seen that
FA(Z,P[U]) = F (Z,P) (265)

forU ∈ yA(S) Therefore it makes sense to form the integral mean value209

gA(Z,S) =
1

VA (S)

∫

FA(S)

fK(Z,P)dV (266)

This integral certainly exists provided 2n < m− 2
It is remarkable that the columnG (Z, s) with elementsgA(Z, s) (in

some order) also satisfies a transformation formula of the same kind as
ρ(Z,P) does in (263).

Specifically we have

|Cz+ D|−
p
2 |CZ̄ + D|−

q
2 G (M < Z >,S) = LMG (Z,S) (267)

DevelopinggA(Z,S) into a Fourier series there results an expansion
which differs from the usualϑ- series expansion (241) for the definite
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case only in so far as the representation numbersα(S,T) in (241)
are to be replaced by the representation measures,αA(S,T) and the ex-
ponential functione−2πσ(tY[Q] ) by certain generalized confluent hyper
geometric functions.

If we replace the representation measures in the Fourier series of
gA(z, s) by the products of thep-adic solution densities, consequent on a
main theorem of Siegel concerning indefinite quadratic forms, we obtain
a new representation ofgA(z,S) which yields a partial fraction decom-
position of the kind

gA(Z,S) =
∑

C,D

hA(C,D,S)|CZ+ D|
−p
2 |CZ̄ + D|

−q
2 (268)

where (C,D) runs over a complete set of non associated symmetric co-
prime pairs andhA(C,D,S) denotes a certain sum of the kind (254). As
against the definite case we have in (268) not only a means of expressing
Siegel’s main theorem as an analytic identity but actually it permits us to
prove Siegel’s result by analytical means. Towards this effect, one has to210

show that the Eisenstein series on the right of (268) have thesame trans-
formation properties relative to the modular substitutions asgA(z,S) and
that the Eisenstein series can be developed into a Fourier series of the
same kind as that ofgA(z,S). These facts coupled with some special
properties of the generalized confluent hyper geometric function yield,
as M.Koecher could prove (unpublished) that the two sides of(268) are
identical upto a constant factor, which factor becomes 1 after a suitable
normalization.

Now the question presents itself whether functions of the type (268)
which no longer depend analytically on the elements ofZ can be char-
acterized in any way. As we shall see in the next section, sucha char-
acterization is possible by a system of partial differential equations with
the invariance properties we have got to require of them. Another fact
which appears at the outset in the casen = 1 can also be reasonably
fused into this differential equation-theory. It concerns the following
problem:-

In the casen = 1 if we apply the Mellin’s transform to Siegel’s
zeta functions of indefinite quadratic forms with the signature (p, q) we



195

obtain a function of the type
∑

(C,D)

hA(C,D,S)|cz+ D|−α|cz̄+ D|−β (269)

instead of (268), with certain exponentsα, β which satisfy the relations

α ≡ P/2, β ≡ q/2( mod 1), d + β = 1/2(p+ q)

We now ask for a process which yields a direct correspondencebe-
tween the type (268) and (269) without the use of Dirichlit series. We 211

shall in the following section that such a correspondence can be defined
through certain differential operators.

For further details on some of the points raised in this section we
refer to

1. H.Maass, Die Differentialgleichungen in der Theorie der ellipti-
ochen Modulfunktionen, Math. Ann. 125(1953), 235-263.

2. C.L.Siegel, On the theory of indefinite quadratic forms, Ann.
Math. 45(1944), 577-622.

3. ′′ ′′ , Indefinite quadratische Formen und Modulfunksionen,
Studies Essays, Pres. to Courant, New York 1948, 395-406.

4. ′′ ′′ , Indefinite quaderatische Formen und Funtionen theoie
I, Math. Ann. 124(1951), 17-54.





Chapter 15

Modular Forms of degreen
and differential equations

Let Z = (zµν) and Z̄ = (z̄µν) and consider the elementszµν, z̄µν as in- 212

dependent complex variables. We shall require however thatzµν + z̄µν
and i(zµν, Z̄µν) are real. Letα, β be arbitrary complex numbers. By
|CZ+ D|−α and|CZ̄ + D|−β whereZ ∈ Y , and (C,D) represents the sec-
ond matrix row of a symplectic substitution we always understand the
functionse−αlog|CZ+D| ande−α log |CZ̄+D| with the principal value for the
logarithm defined by

logz= log |z| + i argz, log |z| real ,−π < argz≤ π

for complex numbersz, o
We now ask for differential operatorsΩαβ which annihilate the

Eisenstein series

g(Z, Z̄, α, β) =
∑

C,D

h(C,D)|CD+ D|−α|CZ̄ + D|−β (270)

for an arbitrary choice of the constantsh(C,D) where (C,D) denotes
the second matrix row of a modular substitution or more generally of a
symplectic substitution of degree,n. Thus we have to require that

Ωαβ|CZ+ D|−α|CZ̄ + D|−β = o (271)

197
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for all pairs (C,D) such that rank (C,D) = n, CD′ = DC′

We shall also demand that the manifold of the functions satisfying

Ωαβ f (Z, Z̄) = o (272)

is invariant relative to the transformations213

f (Z, Z̄)→ f (Z, Z̄)|M = |CZ+ D|−α|CZ̄ + D|−β f (M < Z >,M < Z̄ >)
(273)

for any M =

(

A B
C D

)

∈ S In other words if f (z, z̄) is a solution of

(271) so is f (z, z̄)|M. In view of this requirement, (272) now takes a
particularly simple form. Prima facie, there is no loss of generality if
we assume (271) to hold only for pairs (C,D) with |C| , O as the sub-
manifold defined by|C| = 0 in the manifold of all (C,D)′s occurring in
(271) is one of lower dimension. Then withP = C−1

1 D1 we haveP = P′

and (271) is equivalent with

Ωαβ|Z + P|−α|Z̄ + P|−β = o (271)

If we further assume that (272) is left invariant by the transforma-
tions (273) as we did, and in particular by the transformations

f (z, z̄) → f (z, z̄)|M whereM =

(

E −P
o E

)

then (271) can be further

simplified into
Ωαβ|z|−α |z̄|−β = o (274)

and this is the equivalent form of (271) we sought for.
In order to construct the operatorsΩαβ with the desired properties

we introduce the matrix operators

∂

∂z
= (eµν

∂

∂zµν
),
∂

∂z̄
= (eµν

∂

∂z̄µν
) (275)

with eµν =
1
2

(1+ δµν) and

Kα = αE + (z− z̄)
∂

∂z
Λβ = −βE + (z− z̄)∂/∂z̄ (276)
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Then214

Ωαβ = Λβ− 1
2 (n+1)kα+α(β− 1

2 (n+1))E (277)

has the desired properties as we shall see presently.
We also show thatΩαβ and

Ω̃αβ = Kα− 1
2 (n+m)Λβ + β(d − 1

2
(n+m))E (278)

annihilate the same functions.
We first prove the following formulae.














Ωαβ = (Z − Z̄)((Z, Z̄) ∂
∂Z̄

)′ ∂
∂Z + α(Z − Z̄) ∂

∂Z̄
− β(Z, Z̄) ∂

∂Z

Ω̃αβ = (Z − Z̄)((Z, Z̄) ∂
∂Z )′ ∂

∂Z̄
+ α(Z − Z̄) ∂

∂Z̄
− β(Z, Z̄) ∂

∂Z

(279)

We may remark here concerning the use of
∂

∂Z
f (Z, Z̄) = (

∂

∂zµν
f )

that as an operator
∂

∂zµν
f = f

∂

∂zµν
+
∂ f
∂zµν

while in other places
∂

∂zµν
f =

∂ f
∂zµν

. The meaning of the symbol will be clear from the context.

We take up the proof of (279). We first need to establish the identi-
ties

∂

∂z
(z− z̄) =

n+ 1
2

E + ((z− z̄)
∂

∂z
)′

∂

∂z̄
(z− z̄) = −n+ 1

2
E + ((z− z̄)

∂

∂z̄
)′ (280)

Indeed by a simple transformation we have

∂

∂z
(z− z̄) = (

∑

̺=1

(eµ̺
∂

∂zµ̺
(z̺ ν − z̺̄ ν))

= (
n

∑

̺=1

(z̺ ν − z̺̄ ν)eµ̺
∂

∂zµ̺
+ (

n
∑

̺=1

eµ̺δµ̺)

= (
n

∑

̺=1

(z̺ µ − zµ̺)e̺ ν

∂

∂z̺ν
) +

n+ 1
2

δµν)
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= (
n

∑

̺=1

(zµ̺ − z̄µ̺)e̺ ν

∂

∂z̺ν
) +

n+ 1
2

E

= ((z− z̄)
∂

∂z
)′ +

n+ 1
2

E

215

The other half of (280) follows on similar lines.
Now considerΩαβ. By means of (280) we have

Ωαβ =

{

− (β − n+ 1
2

)E + (z− z̄)
∂

∂z̄

}{

αE + (z− z̄)
∂

∂z̄

}

+ α(β − n+ 1
2

)E

= (z− z̄)
∂

∂z̄
(z− z̄)

∂

∂z
+ α(z− z̄)

∂

∂z̄
− (β − n+ 1

2
)(z− z̄)

∂

∂z

= (z− z̄)((z− z̄)
∂

∂z̄
)′
∂

∂z
+ α(z− z̄)

∂

∂z̄
) − β(z− z̄)

∂

∂z̄

which is the first part of (279). The proof of the other part is exactly
similar.

We now show thatΩαβ annihilates the Eisenstein series (270). A
formula proof only requires that it annihilates each term of(270) sepa-
rately, in other words that (271) is true. LetA = (aµν) be a square matrix
the elements of which belong to a commutative ring, andAµν the alge-
braic minor corresponding toaµν. With Ã = (Aνµ) we have in general
AÃ = |A|E.

Then

∂

∂z
|z|−α = (eµν

∂

∂zµν
|z|−α) = −α|z|−α−1(eµν

∂

∂zµν
|z|)

= −α|z|−α−1(zµν) = −α|z|−α−1z̃

∂

∂z̄
|z̄|−β can be similarly computed and we have216

∂/∂z|z|−α = −α|z|−α−1
z̃

∂/∂z̄|z|−β = −β|z̄|−β−1z̃















(281)

Since from (279)
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(z− z̄)−1
Ωαβ = ((z− z̄)∂/∂z̄)′

∂

∂z
+α

∂

∂z̄
−β ∂

∂z
it follows by means of (281)

that

(z− z̄)−1
Ωαβ|z|−α |z̄|−β = − αβ|z|−α|z̄|−β−1z̃+ αβ|z|−α−1|z̄|−βz̃

− α((z− z̄)
∂

∂z̄
)′|z|−α−1z̃|z̄|−β.

The last term on the right can be rewritten as

−α((z − z̄)
∂

∂z̄
|z|−β)′|z|−α−1z̃ with the terms outside the parenthesis

not depending on ¯z. Using (281) this is easily seen to be equal to
αβ|z|−α−1|z̄|−β−1z̄(z− z̄)z̃

Thus

(z− z̄)−1
Ωαβ|z|−α|z̄|−β = −αβ|z|−α|z̄|−β−1z̄+

+ αβ|z|−α−1|z̄|−βz̃+
+ αβ|z|−α−1|z̄|−β−1Z̃(z− z̄)z̃

and the right side is now easily seen to vanish, there by establishing 217

(271). Since ((z− z̄)
∂

∂z̄
)′
∂

∂z
is the transpose of ((z− z̄)

∂

∂z
)′
∂

∂z̄
we verify

without difficulty that

Ω̃αβ = (z− z̄)((z− z̄)−1
Ωαβ)

′

and this says thatΩαβ and Ω̃αβ annihilate the same functions as we
wanted them to do.

We have still to prove the invariance of the manifold formed by the
solutions of

ΩαβF (z, z̄) = o (272)′

under the transformations

f (z, z̄)→ f ∗(z, z̄) = |cz+ D|−α|cz̄+ D|−β f (M < z> M < z̄>) (273)′

whereM =

(

A B
C D

)

∈ S. The proof is rather long and mainly consists

in securing the following operator identity:

|cz+ D|−α|cz̄+ D|−βΩ∗αβ|cz+ D|α|cz̄+ D|β = (zc′ + D′)−1((cz+ D)Ω′αβ)
′

(282)
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whereΩ∗
αβ

is the operator which results fromΩαβ on replacingz, z̄ by
Z∗ = M < Z >, Z̄ = M < z̄> respectively.

Assuming (282) for a moment, to obtain our main result, we argue
as follows:-

We have to show that, under (272),Ωαβf∗(z, z̄= o
This is equivalent to showing that the right side of (282), orequiva-

lently, the left side annihilatesf∗(z, z̄.
The left side of (282) applied tof ∗(z, z̄ gives218

|cz+ D|−α|cz̄+ D|−βΩ∗αβ f (z∗, z̄∗)

and this clearly vanishes under (272). This proves the desired result. We
have then only to establish (282).

By means of the general rule relating to any three square matrices
M1, M2, M3 which are such that the elements ofM1. commute with
those ofM2, viz.

(M1M2)′ = M′2M′2, (M1(M2M3)
′)′ = M2(M1M′3)′

σ(M1M2) = σ(M2M1)















(283)

It is possible to reduce the proof of (282) to showing that



















((cz+ D) ∂
∂z)
′|cz+ D|α = |cz+ D|α((cz+ D) ∂

∂z)
′
+ α|cz+ D|αc′

((cz+ D) ∂
∂z)
′|cz̄+ D|β = |cz̄+ D|β((cz̄+ D) ∂

∂z̄)
′
+ β|cz̄+ D|βc′

(284)
It suffices of course to establish the first part of (284) and that too un-

der the assumption|C| , 0 as in the alternative case, the corresponding
(C,D)′s form a sub-manifold of lower dimension as stated earlier.

In this case, (284) can be reduced to its special form corresponding
to C = E, D = o viz.

(z
∂

∂z
)′|z|α(z

∂

∂z
) + α|z|αE

or equivalently

(z
∂

∂z
)′|z|α(z

∂

∂z
) + α|z|αE
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by a substitution of the formZ→ Z + S with an appropriate symmetric219

matrixS, and the last relation is immediate by a proof analogous to that
of (281).

To deduce (282) as a consequence of (283) and (284) one need first

to determine the transformation properties of the operators
∂

∂z
,
∂

∂z̄
rela-

tive to symplectic substitutions. Let

(

A B
C D

)

denote a symplectic matrix

and let

z∗ = (AZ+ B)(cz+ D)−1, z̄∗ = (AZ̄ + B)(cz̄+ D)−1

From (122) we deduce that

αz∗ = (zc′ + D′)−1dz(cz+ D)−1, αz̄∗ = (z̄c′ + D′)−1dz̄(cz̄+ D)−1

If f = f (z, z̄) is an arbitrary function ofz, z̄ its total differentialα f
can be represented in the form

d f = σ(dz
∂

∂z
f ) + σ(dz̄

∂

∂z̄
f ) (285)

on the one hand, and on the other,

d f = σ(dz∗
∂

∂z∗
f ) + σ(dz̄

∂

∂z̄∗
, f )

= σ

{

dz(cz+ D)−1(
∂

∂z
f )(zc′ + D′)−1

}

+ σ

{

dz̄(cz̄+ D)−1(
∂

∂z̄∗
f )(z̄c′ + D′)−1

}

Comparing the last with (285) one deduce that

∂

∂z
f = (cz+ D)−1(

∂

∂z∗
f )(zc′ + D′)−1

∂

∂z̄
f = (cz̄+ D)−1(

∂

∂z̄∗
f )(z̄c′ + D′)−1
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Consequently we have the operator identities

∂

∂z∗
= (cz+ D)((cz+ D)(

∂

∂z
)′

∂

∂z̄∗
= (cz̄+ D)((cz̄+ D)(

∂

∂z̄
)′



























(286)
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With these preliminaries we take up the proof of (282). For conve-
nience we shall denote the product|cz+ D|α|cz̄ + D|β by ϕ. Then by
means of (283), (284), (286) and (122) we have

Ω
∗
αβ
α =

{

(z∗ − z̄∗)(z∗ − z̄∗)(
∂

∂z̄∗
)′

∂

∂Z∗
+ α(z∗ − z̄∗)

∂

∂z̄∗
− βz∗ − z̄∗)

∂

∂z̄∗

}

=(zc′ + D′)−1(z− z̄)(cz̄+ D)−1
{

(z− z̄)((cz̄+ D)
∂

∂z̄
)′
}

((cz+ D)
∂

∂z̄
)′α

+

{

α(zc′ + D′)−1(z, z̄)((cz̄+ D)
∂

∂z̄
)′ − β(z̄c′

+ D′−1(z− z̄)((cz+ D)
∂

∂z̄
)
}

α

=|cz+ D|α(zc′ + D′)−1(z, z̄)(cz̄+ D)−1

{

(z, z̄)((cz̄+ D)
∂

∂z̄
)′
}

|cz̄+ D|β((cz+ D)
∂

∂z
)

+ α|cz+ D|α(zc′ + D′)−1(z, z̄)(cz̄+ D)−1
{

(z, z̄)((cz̄+ D)
∂

∂z̄
)′
}

|cz̄+ D|βc′

+ αϕ(zc′ + D′)−1(z, z̄)((cz̄+ D)
∂

∂z̄
)′ + αβϕ(zc′ + D′)−1(z, z̄)c′

− βϕ(zc′ + D′)−1(z, z̄)((cz̄+ D)
∂

∂z̄
)′

− αβϕ(z̄c′ + D′)−1(z, z̄)c′

= ϕ(zc′ + D′)−1(z, z̄)(cz̄+ D)−1
{

(z− z̄)((cz̄+ D)
∂

∂z̄
)′
}

((cz+ D)
∂

∂z̄
)′

+ βϕ(zc′ + D′)−1(z, z̄)(cz̄+ D)(c(z− z̄)((cz̄+ D)
∂

∂z̄
)′

+ αϕ(zc′ + D′)−1(z, z̄)(cz̄+ D)
{

(c(z− z̄)((cz̄+ D)
∂

∂z̄
)′
}

+ αβϕ(zc′ + D′)−1(z, z̄)((cz̄+ D)−1c(z, z̄)c′

+ αψ(zc′ + D′)−1(z, z̄)((cz̄+ D)
∂

∂z̄
)′ + αβϕ(zc′ + D′)−1(z− z̄)c′ + ..

− βϕ(z̄C′ + D′)−1(z− z̄)((cz+ D)
∂

∂z
)′ − αβϕ(z̄C′ + D′)−1(z− z̄)C′
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Collecting the like terms together it is seen that the terms involving
αβϕ together and to zero while those involvingϕ, αϕ andβϕ by them-
selves, all survive. These terms ultimately turn out to be respectively

(ZC′ + D′)−1(Z − Z̄)((z− Z̄)
∂

∂z
)′((CZ+ D)

∂

∂z
)′,

αϕ(ZC′ + D′)−1(z− Z̄)((CZ+ D)
∂

∂z
)′ and

−βϕ(ZC′ + D′)−1(Z − Z̄)((CZ+ D)
∂

∂z
)′

Thus

Ω
∗
αβϕ = ϕ(zc′+D′−1, (z−z̄)

{

((z−z̄)
∂

∂z̄
)′+α((cz+D)

∂

∂z̄
)′−β((cz+D)

∂

∂z̄
)′
}

It then follows that
{

cz− z̄)−1(zc′ + D′, ζαβϕ
}′
= ϕ(cz+ D)

{

((z− z̄)
∂

∂z

}′
+

+αϕ(cz+ D)
∂

∂z̄
− βϕ(cz+ D)

∂

∂z

=ϕ(cz+ D)
{

((zz̄)′
∂

∂z
)′
∂

∂z
+ α

∂

∂z
− β ∂

∂z

}′

=ϕ(cz+ D)
{

(z− z̄)−1
Ωαβ

}′

Consequently
[

(cz+ D)−1
{

(z− z̄)−1(zc′ + D′)Ω∗αβϕ
}′]′
= ϕ(z− z̄)−1

Ωαβ

or
[

(cz+ D)−1
{

(zc′ + D′)Ω∗αβϕ
}′]′
= ϕΩαβ

Hence finally 222

ϕ−1
Ω
∗
αβϕ = (zc′ + D′)−1

(

(cz+ D)Ω′αβ

)′
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and this precisely is the assertion of (282). The proof is nowcomplete.

Let us introduce the variablesX, Y asx =
1
2

(z+ z̄) andY = 1
2ℓ

(Z, Z̄

and define
∂

∂x
,
∂

∂y
as in (275) withZ = (zµ) replaced byX = (xµν) and

Y = (yµν) respectively. One then obtains the transformation formulae

∂

∂z
=

1
2

(
∂

∂x
− ∂

∂Y ),
∂

∂z
=

1
2

(
∂

∂x
+

∂

∂Y ),

∂

∂zµν
=

1
2

(
∂

∂xµν
− ℓ ∂

∂yµν
),
∂

∂zµν
=

1
2

(
∂

∂xµν
+ ℓ

∂

∂yµν
)































(287)

Consider the operator∆ defined by

∆ = −σ(z, z̄)
(

(z, z̄)
∂

∂z̄

)′ ∂

∂z
(288)

In terms ofX andY, ∆ takes the form

∆ = −σ
{

(Y(y
∂

∂x̄
)′
∂

∂x
+Y(Y ∂

∂Y )′
∂

∂Y )
}

(289)

This is immediate from the relations

−σ(z− z̄)
(

(z− z̄)
∂

∂z̄

)′ ∂

∂z
= σY

(

Y(
∂

∂x
+Y ∂

∂y
)
)′( ∂

∂x
− ∂

∂Y )
)

= σ

{

Y(Y ∂

∂x
)′
∂

∂x
+Y(Y ∂

∂y
)′
∂

∂y

}

+ σ

{

Y(Y ∂

∂y
)′
∂

∂x
− Y(Y ∂

∂x
)
∂

∂y

}

and the fact that

S = (Y ∂

∂Y )′
∂

∂x
(Y ∂

∂x
)′
∂

∂y
is a skew symmetric matrix so that

σ(YS) = o
One interesting fact about∆ is its invariance relative to the symplec-223

tic substitutions. Let the substitutionZ, Z̄ → Z∗, Z̄∗ carry ∆ into ∆∗

whereZ∗ = (AZ + B)(CL + D) and Z̄∗ = (AZ̄ + B)(CZ̄ + D)−1 with
(

AB
CD

)

∈ S. We observe from (122) that

Z∗ − Z̄∗ = (ZC1
+ D′)−1(Z, Z̄)(C, Z̄ + D)−1
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= (Z̄C′ + D)−1(Z, Z̄)(CZ+ D)−1 (122)′

Consequently, by means of (286) and (283) we have

∆
∗f = −σ(Z∗ − Z̄∗)

(

(Z∗Z̄∗)
∂

∂Z̄∗
) ∂

∂Z∗
f

= −σ(ZC+ D)−1(Z − Z̄)(CZ̄ + D)−1
{

(CZ̄ + D′)−1(Z − Z̄)

(

(CZ̄ + D)
∂

∂Z̄

)′} × {(CZ+ D)(
∂

∂z
f)(ZC′ + D′)

}

= −σ(Z − Z̄)(CZ̄ + D)−1
{

(ZC′ + D′)−1(Z − Z̄)((CZ̄ + D)
∂

∂z̄
)′
}

×
{

(CZ+ D)(
∂

∂z
f)

}

= −σ(Z − Z̄)
(

(ZC′ + D′)−1(Z − Z̄)
∂

∂Z
)′(CZ+ D)(

∂

∂z
f)

= −σ(Z − Z̄)
(

(ZC′ + D′)−1(Z − Z̄)
∂

∂z
f
)

= ∆f

and it is immediate that∆∗ = ∆
We with to identify∆ with the Laplace Beltrami operator associ-

ated with the symplectic metric. We may recall that the Laplace Bel-
trami operator in a Riemannian space with co-ordinate systemsχ1, χ2 ·
χN and the fundamental metric formds2

=
∑

µ,ν
gµ,νdχµdχν is given by

∑

µ,ν

1
√

g
∂

∂χµ

(√
ggµν

∂

∂χν

)

whereg = g(gµν) and (gµν)(gµν) = E. With 224

respect to a geodesic co-ordinate system at a given point, this operator
takes in this point the simple form

∑

µ,ν

gµ,ν
∂2

∂λN∂χν
(290)

and can be easily computed. The Laplace Beltrami operator inany Rie-
mannian space is invariant relative to the movements of the space. In
particular the Laplace Beltrami operator associated with the symplectic
metric is invariant under symplectic movements. As this hasbeen shown
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to be true of∆ also, to prove the equivalence of the two, it suffices to
verify that they define the same operator at a special point. We choose
this special point to beZ = (E = Z̄). At this point let us introduce the co-
ordinate systemW, W̄ by W = (Z−1E)(Z+1E)−1, W̄ = (Z̄+iE)(Z̄−(E)−1

which is a geodesic one relative to the symplectic metric. Analogous
(286) we have

∂

∂Z
=
−1
Z

(W−E)
(

(W−E)
∂

∂W

)′ ∂

∂Z̄
=

1
2

(W̄−E)
(

(W̄−E)
∂

∂W̄

)′
(291)

It terms ofW, W̄ we have

∆ = σ(E −WW̄)
(

(E −WW̄)
∂

∂W̄

)′ ∂

∂W

The special pointZ = iE = −Z̄ transforms intoW = 0 = W̄ and to
compute the Laplace Beltrami operator at this point, one needs only to
determine the coefficients of the fundamental metric form

ds2
= 4σ

(

dW(E −WW̄)−1dW̄(E −WW̄)−1
)

at this point. Then in (290) one obtains the same operator as∆. We225

proceed to consider modular forms associated with arbitrary sub-groups
of the symplectic group. LetG be a group of symplectic substitutions
andν(M) a multiplicator systemof G(M ∈ G)α, β being arbitrary com-
plex numbers, a functionf(Z, Z̄) is said to be a modular form of the type
(G, α, βϑ)

if

(i) f(Z, Z̄) is regular in the domain whereZ + Z̄ is real and
1
2i

(Z − Z̄)

is real and positive

(ii) Ωαβf(Z, Z̄) = 0

(iii)

f(Z, Z̄|M = ν(M)f(Z, Z̄),M ∈ G, (292)



209

Some restriction on the behaviour off(Z, Z̄) on the boundary ofY is
perhaps necessary but we assume none. We shall denote by{G, α, β, ν}
the linear space of all modular forms of the type (G, α, β, ν). It is an easy
consequence of our definition that for every symplectic substitution M,

{G, α, β, ν}|M = {M−1GMα, β, ν∗} (293)

with an appropriate multiplicator systemν∗ depending onM, where the
left side just means the set of allf(Z, Z̄)|M for f(Z, Z̄) ∈ {G, α, β, ν}

We would like to treat the question, whether it is possible toset
up a correspondence between{G, α, β, ν} and{G, α ± 1, β ∓ 1, ν}. Such
a correspondence, we shall see, will be defined by certain differential 226

operators. Consider the Eisenstein series (270), viz.

g(Z, Z̄, α, β) =
∑

C,D

h(C,D)|CZ+ D1−α|CZ̄ + D|−β (270)′

and introduce differential operatorsMα, Nβ with the properties

Mαg(Z, Z̄, α, β) = εn(α)g(Z, Z̄, α + 1, β − 1)

Nβg(Z, Z̄, α, β) = εn(β)g(Z, Z̄, α + 1, β − 1)















(294)

where

εn(λ) = λ(λ − 1
2

) · · · (λ − n− 1
2

). (295)

The truth of (294) for allg(Z, Z̄) or equivalently for all coefficients
h(C,D) in (270)′ clearly requires that

Mα|CZ+ D|−α|CZ̄ + D|−β = εn(α)|CZ+ D|−α−1|CZ̄ + D|−β+1,

and as in earlier contexts, it suffices to suffices to require this for (C,D)
with |C| , 0. Then by a replacement of the formZ → Z + S with a
suitable symmetric matrixS, the above can be reduced, assuming that
Mα is invariant for such a replacement, to

Mα|Z|−α|Z̄|−β = εn(α)|Z|−α−1|Z̄|−β+1



210 15. Modular Forms of degreen and differential equations

If further we are sure that inMα only
∂

∂Zµν
appears explicitly and it

is independent of
∂

∂Zµν
as will be the case, then the last relation simpli-

fies further into
Mα|Z|−α = εn(α)|Z|−α−1|Z̄| (296)

It is now our task to constructMα with these required properties,227

viz:-

(i) Mα depends only on
∂

∂Zµν
and does not involve

∂

∂Z̄µν

(ii) Mα is invariant relative to a replacement ofZ by Z + S with an
arbitrary symmetric matrixS. (297)

(iii) Mα satisfies (296)

For arbitrary integersI ≤ L1 < L2 < · · · < lh ≤ n, 1 ≤ k1 < k2 <

kh ≤ n we get
(

l1, l2 · · · lh
k1, k2 · · · kh

)

z

= |Ziµkν|

[

l1l2 · · · lh
k1k2 · · · kh

]

z

= |eiµkkν
∂

∂zνµ lν
|







































(298)

Also let

sh(Z − z̄,
∂

∂z
) =

∑

1≤l1<···<lh≤n
1≤k1<···<kh≤n

(

l1l2 · · · lh
k1k2 · · · kh

)

z−z̄

[

l i l2 · · · l l
k1k2 · · · kh

]

z

(299)

for h = 1, 2, . . . n andso(Z − z̄,
∂

∂z
) = 1

Finally we introduce

Mα

n
∑

h=0

εn(α)
εh(α)

sh(Z − Z̄,
∂

∂z
)(εo(α) = 1) (300)

That Mα satisfies the first two conditions in (297) is a matter of
easy verification. Besides, in the casen = 1, Mα is identical withKα
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introduced earlier. The proof thatMα satisfies (296) is a consequence of
the following result

[

l1l2 · · · lh
k1k2 · · · kh

]

Z

|Z|−α = (−1)hεh|α||Z|−α−1
(

l1l2 · · · lk
k1k2 . . . kh

)

Z

(301)

where

(

l1l2 · · · lh
k1k2 · · · kl

)

Z

denotes the algebraic minor of

(

l1l2 · · · lh
k1k2 · kh

)

Z

. 228

This minor differs from the determinant of the submatrix which
arises fromZ on cancelling the rows and column corresponding to the
indices l1, l2, . . . lh and k1, k2, . . . kh respectively by the sign
(−1)l1+l2+k1+k2···kh. In the caseh = n, we define the algebraic minor
to be 1. The relation (301) can be proved by resorting to induction of f
but we leave it here for fear of the length of such a proof. Certainly a
simpler proof of (301) will be desirable.

Assuming (301) we proceed to establish (296). It is immediate from
(301) that

sh(Z, Z̄,
∂

∂z
)|Z|−α = (−1)hεh(α)|Z|d−1

∑

1≤i1<lh≤n

Dl1l2...lh

where

Dli l2···lh =
∑

1≤k1<k2<···kh

(

l1, l2 . . . lh
k1k2 · · · kh

)

Z−Z̄

(

l1, l2 . . . lh
k1k2 · · · kh

)

By a standard development of a determinant (Laplace’s decomposi-
tion theorem) it is clear thatDl1,l2···l2 is the determinant of then- rowed
matrix which arises fromZ on replacing its rows with the indices
l1, l2, . . . l2 by the corresponding rows ofZ− Z̄. We split up this resulting
matrix into a sum of matrices each row of which is upto a constant sign 229

a row of eitherZ or Z̄, and the summands which result are 2h is number.
Let∆g1g2...gr denote the determinant of the matrix which arises from

Z on replacing its rows with the indicesg′′g2, . . . gn by the corresponding
rows ofZ̄. For a given∆g1g2...gn to appear in the above decomposition of
Di1,i2,...ih it is necessary and sufficient that the set (f , r2 . . . gr ) is a subset
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of the set of indices (l1l2 . . . l0) so that a fixed determinant∆g1g2...gr oc-

curs in the above decomposition ofDl1l2...lh for a fixedh exactly

(

n− r
h− r

)

times, and the sign which it takes is (−i)r . Consequently we have

∑

1≤i1<···<lh≤n

Di1,i2,...uh =

h
∑

r=0

∑

1≤r1<

(−1)r
(

n− n
h− r

)

∆g1g2,...g

=

h
∑

r=0

(−1)r
(

n− n
h− r

)

An

with
An =

∑

1≤g1<···<gn≤n

∆y,g2ϕr > 0 andAo = |Z|

ClearlyAn = |Z̄|. Then

Mα|Z|−α =
n

∑

h=0

εn(α)
εh(α)

sh(Z − Z̄,
∂

∂z
)|Z|−α

= εn(α)|Z|−α−1
n

∑

h=0

(−1)h
h

∑

h=0

(−1)h
(

n− n
h− r

)

An

= εr (a)|Z|−α−1
n

∑

r=0

( n
∑

h=n

(−1)h−r
(

n− n
h− r

) )

An

The sum within the parenthesis can be rewritten as
r−n
∑

h=0
(−1)h

(n−1
h ) and230

this latter sum is equal to 0 or 1 according asn−r > 0 orn−r = 0 0.
The above now reduces to

Mα|Z|−α = εn(α)|Z|−α−1An = εn(α)|Z|−α−l |Z̄|

as was desired. The deduction of the first half of (294) at thisstage is
similar to the deduction from (274) of the corresponding result for (270).

We have still to introduce the operatorNβ. We introduce the operator
λ by the requirement

λf(z, z̄) = f(−z̄− z) (302)
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and setNβ = λMβλ. It is immediate that forn = 1 we haveNβ = −∧β
while we hadMα = Kα in this case. It is easily seen thatNβ satisfies the
second half of (294) in view ofMα satisfying the first half. In general it
can be conjectured that

(Nβ−1Mα − εn(α)εn(β − 1)){G, α, β, ν} = 0

(Mα−1Nβ − εn(β)εn(α − 1)){G, α, β, ν} = 0 (303)

Mα{G, α, β, ν} ⊂ {G, α + 1, β − 1, ν}
Nβ{G, α, β, ν} ⊂ {G, α + 1, β − 1, ν}

This has been proved however only in the casen = 1 and 2 and the 231

proof makes use of certain operator identities.
We turn new to a different problem, viz. that of finding a Fourier de-

velopment for modular function defined in (292). Net much progress has
so has been recorded in this direction. We assume that the given group

G contains symplectic substitutions of the form

(

E O
0 E

)

(S Symmetric),

say, as is the case withM. If f(z, z̄) ∈ {G, α, β, ν} andf(z, z̄) =
∑

T
α(y, <

πT) ∈2πiσ(Tχ), the summation forT being over all semi-integral matri-
ces, the hypothesis, viz.Ωα,βf = 0 implies thatΩαβ annihilates each
term of the above sum.

Thus Ωαβ0αz2πTeπiσ(Tχ) which on replacing 2πT by T gives
Ωαβeiσ(Tχ)a(y,T)T0. This represents a system of differential equations-
here we can considerT to be an arbitrary real symmetric matrix-for the
functionsa(y,T), and we have to determine all the solutions of this sys-
tem which are regular iny > 0. Only in the casen = 2 some real
progress has been achieved and the main result in this case isthat lin-
ear space{αβT} of the solutions is finite dimensional forT such that
|T | , 0. Before we give a detailed account of the results in this case
it will be useful to make the following remarks on a special parametric
representation of the matricesy(z) > 0

Every 2 X 2 positive matrixy has a parametric representation of the
form

Y =
√

|y|
(

(x2
+ y2)y−1xy−1

xy−1g1

)

(304)
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and the requirementy > 0 is equivalent withy > 0. LetZ = X + iy.Or232

the surface|y| = L, the correspondencey → y is y − 1. This surface
can be considered as a Riemannian surface, as iny > 0 we have the
fundamental metric formds2

= σ(y−1τy)2. Relative to this metric, the
mappingsy→UyU,U unimodular, are movements (and the quadratic
form ds2 is invariant relative to these movements). The space|y| = 1 is
nothing else than the hyperbolic plane in this metric. For ifω =

√

|y| it
can be shown that

ds2
= Z

(

dω2

ω2
+

dx2
+ dy2

y2

)

(305)

On |y| = 1 we havedω = 0 and then in (305) one has clearly the
fundamental metric form for the hyperbolic plane. IfU is a proper
unimodular matrix (ϕ|U| = 1) theny→ UyU′ andZ → U < Z > are
representations of the same hyperbolic movement. We shall have more
to say one the determinantal surface|y| = 1 later.

For the special casen = 2 we are considering, we state the following
specific results. Introducex, y by (304) and setU = (τ(y0))2 − 4|yτ |

Case iT = 0.
In this case the solutionsa(y, 0) can be written as233

a(y, 0) = ϕ(x, y)|y| 12(1α+β)
+C1|y|

3
2−d−β

+ 02 (306)

whereϕ(x, y) represents an arbitrary regular solution iny > 0 of the
wave equation

y2(ϕχχ + ϕyy) − (α + β − 1)(α + β − 2)ϕ = 0

andC1, C2 are arbitrary constants. This is the general solution forα+β ,
3
2
, 2, 1. The singular casesα+β =

3
2
, 2, 1 are those at which at least two

of the three exponents
1
2

(1− α − β),
3
2
− α − β, 0 occurring in (306) are

equal and require some modifications. We exclude these caseshere.
Case ii: T ≥ 0, rankτ = T.

Here we shall have

a(y,T) = ϕ(u)i|y| 32−α−β + ψ(u) (307)
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whereϕ(u) andψ(u), denote confluent hypergeometric functions satis-
fying the differential equations

Uϕ′′ + (3− α − β)ϕ′ + (α − β −U)ϕ = 0

Uψ′′ + (α + β)ψ′ + (α − β − u)ψ = 0

We have two independent solutions each forUϑ and the dimension
of {α, βT} is consequently equal to 4 in this case. Here again (307)

is the general solution forα + β ,
3
2

and we exclude the exceptional234

case from our considerations. We remark that the conditionT ≥ 0 is
irrelevant here. We can also takeT ≥ 0 and in general,

{α, β,T} = {β, α,−T}.

Case iii T > 0
This is the first, general case we are dealing with in so far as the

solutionsa(y,T) here depend on functions of more than one variable
(unlike theϕ andψ of the earlier case). We have in this case

a(y,T) =
∞
∑

ν−0

gx(u)ϑν, (|ν| < u2) (308)

the functionsgν(U) are defined recursively by

4(ν + 1)2µgν+1 +Ug
′′
ν + 2(2ν + α + β)g

′
ν + (2α − 2β − u)gν = 1U ≥ 0

and

go(v) = u1−α−βψ(U), ψ(U) =
1
u
ϕ(u)

ϕ
′′
=

(

1+
2(β − α)
U +

(α + β + 1)(α + β − 2)
U2

)

ϕ.

Every possible functiongν(U) leads to a series (308) converging in
the whole domainy > 0 so that the dimension of{α, β,T} is easily seen
to be 3. As in the earlier case we can also considerT with −T > 0
Case iv: rank T = 2, T indefinite
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This is the last case and we have here

a(y,T) =
∞
∑

ν=0

hν(α)uν, (u2 < ν) (309)

The functionshν(ϑ) are recursively defined by235

(ν + 2)(u+ 1)hν+2 + 4νh
′′
ν + 4(α + β + ν)h1

ν − ℓν = 0, ν ≥ 0

and

8ν2h
′′
o + 4(α + 3β + 3o)ϑp

′′
o(4(α + β)3

+ 2(α + β − 1)− 2ν)h
′
o+

−(α + β)ho = (α, β)hi

8νh
′
i + (α − β)r j = (β − α)ho

Every permissibleho, h1 leads to a series (309) which converges in
y > 0 and the dimension of{α, β,T} is four.

It remains to study these functionsa(y,T). These are generalisations
of the confluent hypergeometric functions of 2 variables. Wecan also
obtain them in the following way. We develop the Eisenstein series.
∑ |CZ+ D|−α|CZ̄ + D|−β as a power series,

∑

|CZ+ D|−α|CZ̄ + D|−β =
∑

T

a(y, 2πT) ∈kπiσ(Tχ) m

If we compute the coefficients by means of the Poisson summation
formula, we obtain representations ofa(y, 2πT) by integrals. It is de-
sirable to give a characterisation of these special functions a(y2πT) ∈
{α, β2πT} and this has to be done by studying the behaviour of these
functions in neighbourhood of the boundary of the domainy > 0.

For a detailed account of some of the topics treated in this section236

we refer to :-

H. Maass,Die Differentialgleichungen in der Theorie der Siegelachen
Modul functionen, Math. Ann. 126 (1553), 44-68.



Chapter 16

Closed differential forms

Our aim in this section is to generalise to the case of non-analytic forms 237

some of the concepts associated with the analytic forms of Grenzkreis
group of the first kind considered by Petersson, and study their applica-
tions to the space of symplectic geometry. LetG denote a Grenzkreis
group of the first kind. With respect to a multiplicator system ϑ, let
< G,K, ϑ > denote the space of all analytic forms ofG of weightK-
analytic in the usual sense, viz. that the only singularities if any, are
poles in the local uniformising variables of the Riemann surface f de-
fined by G (We can assume thatf is a closed Riemann surface). In
conjunction with< G,K, ϑ > we have got to consider also the space
< G, 2 − K, 1/ϑ >, a sort ofadjoint to the first. Forr ≥ 2 the weight
of g(z) ∈< G, 2 − K, 1/ϑ > is zero or negative so that its dimension (
= - weight) is positive or zero. Since it is known that an automorphic
form of zero or positive dimension which is everywhere regular van-
ishes identically, it follows that in this caseg(z) is uniquely determined
by its principal parts if all the principal parts are zerog(z) itself is iden-
tically zero. The question now arises whether there always exists an
automorphic form of a given weight 2− K with arbitrarily given princi-
pal parts. While this is true forK = 2 in the case of the Gaussian sphere-
a Riemann surface of genus zero-this is not unreservedly true either if
K > 2 or if the genus is strictly positive. Nevertheless it is possible to
give a necessary and sufficient condition for the given principal parts to

217
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satisfy, in order that they should be all the principal partsof an auto-238

morphic form of weightK of G. We state this condition presently. For
f (z) ∈ 〈G, K, µ andg(z) ∈ 〈G, 2− K, 1/µ〉 introduce

ω(f, g) = f(z)y(z)dz (310)

which is a closed meromorphic differential form on the Riemann surface
defined byG. Thatω(f, g) is invariant relative toG is immediate if we
observe that the productf(z)g(z) is an automorphic form of weight 2 (the
sum of the weights off andg) while dzbehaves as an automorphic form
of weight−2, and the multiplicator systems forf, g areν and 1/ϑ re-
spectively. Iff denotes a fundamental domain ofG in Y1, by integrating
ω(f, g) over the boundary off it is easily seen that

∑

Z∈f
Residueω(f, g) = 0 (311)

On the left side of (311) we face only a finite sum as we assume
that the Riemann surface is closed and there is only a finite number
of singularities in the fundamental domainf. For K > 2, asf(z) runs
over a basis ofeverywhere regular form in 〈G,K, µ the left side of
(311) depends only on the principal parts ofg(z) ∈ 〈G, 2− K. 1/µ〈 and
the conditions (311) themselves are called theprincipal part conditions.
These are necessary and sufficient for the existence of a formg(z) with
assigned principal parts.

We now wish to generalise the notion ofω(f, g) to the case of the
linear spaces{G, α, β, µ} of non analytic automorphic forms of degree239

n, and in particular we have to settle when two such spaces can be con-
sidered adjoint like the spaces〈G, K, µ〉 and〈G, 2− K, 1/µ〉. The two
important properties ofω(f, g)〈 are

(i) it is completely invariant relative toG

(ii) it is closed.

The last condition is trivial in the earlier case of analyticforms and
is not so in the present case.
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First we have to introduce the concept of the dual differential forms
in the ring of exterior differential forms. Consider a Riemannian man-
ifold R in which local complex coordinatesY ′

= (Z1,Z2, . . . ,Zn), z̄ =
(z̄, z̄z, . . . , z̄n) are introduced such that a neighbourhood of each point is
mapped pseudo conformally onto a neighbourhood of the origin of the
corresponding coordinate space. We considerz and z̄ as formally inde-
pendent complex variables, and the above means that if

z∗
′
= (z∗1z∗2, . . . , z

∗
n), z̄∗

′
= (z̄∗1, z̄

∗
2, . . . , z̄

∗
n)

is any other system of complex coordinates at the given pointthen we
have

z∗ = f(z), z̄∗ = f̄(z̄) (312)

with the elements of the columnsf(z), f̄z̄ representing regular functions
of (z1, z2, . . . , zn), (z̄1, z̄2, . . . , z̄n) respectively, which vanish atzz̄ = 0.
In the local co-ordinate system the metric fundamental formds2 is a
Hermitian form and let us assume

ds2
= dz′Gdz̄ (313)

with a Hermitian metricG.
In the ring of exterior differential forms let us introduce 240

[dz] = dz1dz2 . . .dzn,

[dz̄] = dz̄1dz̄2 . . .dz̄n,

ων = (−1)ν−1dz1 . . . dzν−1dzν+1 . . . dzn

ω̄ν = (−1)ν−1dz̄1 . . . dz̄ν−1αz̄ν+1 . . . dz̄n (314)

Then
[dz] = dz2ω2; [dz̄] = dz̄, ω̄ν (315)

Denote withW , W̄ the columns with the elementsων, ω̄ν respec-
tively, i,e.

W ′
= (ω1, ω2, . . . ωn); W̄ ′

= (ω̄1, ω̄2, . . . ω̄n) (316)
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Consider a differential formθ fo degree 1. It can be represented as

θ = Y ′dz +U ′dz̄ (317)

whereY , U are columns with functions ofzz̄ as elements. We also
introduce the dual form

θ̃ = |G|(Y ′Ḡ−1W [dz] +U ′G−1W [dz̄]) (318)

We shall show that̃θ is uniquely defined byθ or what is the same, it
does not depend on the local coordinate system. We have only to prove
that θ̃ is invariant relative to the pseudo conformal mappings of the kind
(313), in thez∗, z̄∗ systemθ have the representation

θ = Y ∗′dz∗ +U ∗′dz̄∗

From (313) we have, with a certain non singular matrixT,241

dz∗ = Tdz,Tdz̄∗ = T̄dz̄

and then
Y = T′Y ∗ andU = T̄′U ∗

A simple computation shows that

T′W ∗
= |T |W , T̄′W̄ ∗

= |T̄ |W̄ ;

[T′z∗] = |T |[dz], [dz̄∗ ] = |T̄ |[dz̄]

where the elements with a star denote the corresponding elements in the
new coordinate systemz∗, z̄∗. Besides, we also have

ds2
= dz′Gdz̄ = dz∗

′
G∗dz̄∗

and it is easy to deduce that

T′G∗T̄ = G

The invariance of (318) relative to the transformations (313) is now
immediate. If

∂

∂z
, (

∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zn
),
∂

∂z̄
, (

∂

∂z̄1
,
∂

∂z̄2
, · · · , ∂

∂z̄n
) (319)
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we have

dθ̃ = dz̄′
∂

∂z̄
|G|Y ′Ḡ−1W̄ [dz] + dz′

∂

∂z
|G|U G−1W [dz̄]

=
∂

∂z̄

′
|G|G−1Y [dz̄][dz] +

∂

∂z
|G|G−1U [dz][dz̄]

= {(−U ∂

∂z̄

′
|G|G−1)Y +

∂

∂z

′
|G|G−1U }[dz][dz̄] (320)

We therefore infer that the condition for the form̃θ to be closed is 242

that

(−1)n
∂

∂z̄

′
|G|G−1Y +

∂

∂z

′
|G|G−1U = 0 (321)

We now compute the invariant volume element in the metric (312).
Let zν = r2+ iyν, z̄ν = rν + iyν(ν = 1.2 · · · n) andz = ε+ iY , z̄ = E+ iY .
Thendzνdz̄ν = −zidxνdy so that [dz][dz̄] and [dE][dY ] differ only by
a constant factor. Using the transformation formulae for these differ-
ential forms for a change of coordinate systems and the transformation
properties of|G| it is easily seen that|G|[dz][dz̄] is invariant for the co-
ordinate transformations. This is therefore true of|G|[dE][dY ] and this
is precisely then the invariant volume element, viz.

dU = |G|[dE][dY ] (322)

We wish to interpret these results in the spaceY of symplectic ge-
ometry. The fundamental metric form here is

ds2
= σ(dzy−1dz̄y−1), z= z+ iy, z̄= x− iy

If we set|y|y−1
= (yµν), thenyµν is just the algebraic minor ofYµν in

y = (†µν) and we have

dS 2
= |y|−2

∑

µ,ν
̺,σ

dzµνyν̺dz̺̄ σyσµ

= |y|−2
∑

µ≤ν
̺,σ

1
eµν

dzµνyν̺dz̺̄ σyσµ
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= |y|−2
∑

µ≤ν
̺≤σ

1
2eµνe̺ σ

(yµσyν̺ + yνσy̺σ)dzµνdz̺̄ σ

=

∑

µ≤ν,̺≤σ
Gµν,̺σdzµνdz̺̄ σ (323)

with

Gµν,̺σ =
1

2eµνe̺ σ

|y|−2(yµσyν̺ + yνσy̺σ) (324)

If G = (Gµν,̺σ) and G−1
= (Gµν,̺σ), we find from the relation

GG−1
= E that

Gµν,̺σ = 1
2

(Yµ̺Yνσ +YµσYν̺) (325)

243

The transformations we have to consider are the symplectic substi-
tutions

Z∗ = (AZ+ B)(CZ+ D)−1, Z̄∗ = (AZ̄ + B)(CZ̄ + D)−1

and these are pseudo conformal mappings ofY in the sense of (313).
Let us introduce as in the earlier case,

[dz] =
∏

µ≤ν
dzµν, [dz̄] =

∏

µ≤ν
dz̄µν

with the lexicographical order of the factors and

ωµν = ±
∏

̺≤σ
(̺,σ),(µ,ν)

dz̺ σ = ωνµ for µ ≤ ν,

ω̄µν = ±
∏

̺≤σ
(̺,σ),(µ,ν)

dz̺̄ σ = ω̄νµ

the ambiguous sign being fixed in each by stipulating that244

[dz] = dzµνωµν; [dz̄] = dz̄µνω̄µν (326)

In the place ofW , W̄ we introduce

Ω = (eµνωµν, Ω̄ = (eµνω̄µν. (327)
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As before we start with a differential form of degree 1 given by

θ = σ(pdz) + σ(θdz̄) (328)

wherep, θ aren−rowed symmetric with functions as elements. We have
to compute the dual form̃θ.

In the earlier notation,

θ̃ = (Y′Ḡ−1W̄ [dz] +U ′G−1W [dz̄]). ((318)′)

|G| can be fixed as follows. We know that the invariant volume element
in symplectic geometry is

dϑ = |y|−n−1[dx][dy]

From (321) it is also given by

dϑ = |G|[dE][dY ].

A comparison of the two shows that|G| is equal to a constant multi-245

ple fo |Y|−n−1 and this constant factor can be assumed to be 1 for the pur-
poses of̃θ. Then|G| = |Y|−n−1. We now compute the productY ′θ̃−1Ȳ .

Y′Ḡ−1W̄ =

∑

µ≤ν
̺≤σ

1
eµν

Pµν
1
2

(Yµ̺Yνσ +Yµ̺Yν̺)ω̺̄σ

=

∑

µ≤ν
̺≤σ

Pµν
1
2

(Yµ̺Yνσ +Yµ̺Yν̺)ω̺̄σ

=

∑

µ,ν;̺,σ

eµνPµνYµ̺Yνσω̺̄σ = σ(ypyΩ̄)

The other productU ′G−1W similarly reduces toσ(yθyΩ̄) and from
(318) we have

θ̃ = |Y|−n−1(σ(ypyΩ̄)[dz] + σ(yθyΩ)[dz̄]). (329)

Then form (320) we will have for the differential ofθ̃,

dθ̃ = {(−1)
n(n+1)

2 σ(
∂

∂z
ypy|Y|−n−1) + σ(

∂

∂z
yθy|Y|−n−1)}[dz][dz̄]. (330)



224 16. Closed differential forms

We now specialiseθ by appropriate choices ofP andQ and investi-
gate in detail the cases in whichdθ̃ vanishes.

Let {α, β} denote the linear space of all regular functionsf(z, z̄) in Y
which satisfy the differential equation (272). Letα, β; α′, β′ be complex
numbers, arbitrary for the present, and choose

f = f(z, z̄) ∈ {α, β},G = G(z, z̄) ∈ {α′, β′} (331)

246

We then set

p = E|Y|yy−1GKαf,Q = |Y|yy−1FΛβG (332)

where we assume

E2
= 1, y = α + α′ = β + β′ (333)

and the differential operatorsKα andΛβ are defined by (276). With this
P andQ, (328) definesθ, and we set

ω(f, g) = θ (334)

We shall study the behaviour of this differential form relative to the
symplectic substitutions

z∗ = (az+ B)(cz+ B)−1, z̄∗ = (az̄+ B)(cz̄+ B)−1.

The replacement ofz, z̄by z∗, z̄∗ in any operator or function shall in
general be denoted by putting a star (∗) over it and in particular

f∗ = f(z∗, z̄∗),G∗ = G(z∗, z̄∗)

If M =

(

A B
C D

)

is any symplectic metric, we also introduce

f(z, z̄)|M = |cz+ D|−α|Cz̄+ D|−βf(z∗, z̄∗)
G(z, z̄)|M = |cz+ D|−α′ |Cz̄+ D|−β′G(z∗, z̄∗)
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and for any differential formµ(z, z̄),

µ(z, z̄)|M = µ(z,∗ z̄∗) (335)

247

By means of (286), (122)′ and (284) we have

(z∗ − z̄∗)
∂

∂z∗
f = (z̄C′ + D′)−1(z, z̄)((cz+ D)

∂

∂z
)′

|ez+ Dα||cz̄+ D|β(f|M)

= |ez+ Dα||cz̄+ D|β(z̄C′ + D′)−1(z, z̄)((cz+ D)

{αC′ + ((cz+ D)
∂

∂z
)′}(f|M)

= |ez+ Dα||cz̄+ D|β(z̄C′ + D′)−1[{α(zc′ + D′)

− α(z̄c′ + D′)}(f|M) + (z− z̄
∂

∂z
f|M)(zc′ + D′)]

and

K∗αf
∗
= |Cz+ Dα||cz̄+ D|β(z̄C′ + D′)−1(Kαf|M)(zc′ + D′)

Further,

dz∗ = (zc′ + D′)−1dz(zc+ D)−1

Y∗−1
= (cz+ D)Y−1(z̄c′ + D′)

|Y ∗ν | = |Y|y|cz+ D|−y|Cz̄+ D|−y

and this yields

|Y∗|yy ∗−1 g∗(K∗αf
∗)dz∗ = (cz+ D)|Y|yY−1(g|M)(kαf|M)dz(cz+ D).

In our notation (355) the left side is just

(|Y|yY−1G(Kαf)dz)|M = (
1
E pdz)|M

Hence we deduce that 248
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σ(
1
E pdz)|M = σ{(cz+ D)|y|yy−1(g|M)(K − αf|M)dz(cz+ D)−1

= σ{|y|yy−1(giM)(Kαf|M)dz}

One proves analogously that

σ(Qdz̄) = σf|Y|yy−1{|M)(ΛβG|M|dz̄)}

and then it is immediate that

ω(f,G)|M = ω(f|M.G|M). (336)

This is naturally true of the dual form ˜ω(f,G) also so that

ω̃(f,G)|M = ω̃(f|M.G|M). (337)

Let us now computedω̃(f,G) form (330). In doing this we shall
need the following identity

((z− z̄)
∂

∂z̄
)′ = {((z− z̄)

∂

∂z̄
)′W}y− 1

2
σ(yw)E − 1

2
w′y (338)

whereW = (ωµν) denote an arbitrary matrix its elements all functions.
In fact, since

e̺ µ

∂Yν,µ
∂z̺̄ ,µ

= − 1
4i

(∂̺τ∂µν + ∂̺ν∂µτ)

we have

((z− z̄)
∂

∂z̄
)′(wy) = (

∑

ϕ

(zν̺ − z̄ν̺)e̺ µ

∂

∂z̺̄ ,µ

(
∑

τ

ωµτYτν)

= (
∑

̺στ

(zν̺ − z̄σ̺)e̺ µ

∂

∂z̺̄ ,µ

(
∑

τ

ωµτYτν)

= [((z− z̄)
∂

∂z̄
)′W]y− 1

4i
(
∑

̺στ

(z̺ σ − z̺̄ σ)ωστ(δ̺τδµν + δµτδ̺ν)

= [((z− z̄)
∂

∂z̄
)′W]y− 1

4i
σ((z− z̄)W)E 1

4i
W′(z, z̄)
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which is just another form of (338).249

Similarly one obtains the analogous identity, viz.

((z− z̄)
∂

∂z
)′(Wy) = [(z− z̄)

∂

∂z
)′Wy]y+

1
2
σ(yW)E +

1
2

W′Y (339)

Finally one also has

EyP|y|−n−1
= α|y|µ−n−1yfG + |y|µ−n−1G(z− z̄)(

∂

∂z
f)y

yθ|y|−n−1
= β|y|µ−n−1yfG + |y|µ−n−1F (z− z̄)(

∂

∂z
G)y



























(340)

Using (280) and (338-340) we can now state that

ε
∂

∂z̄
yP|y|−n−1

=

=α

{

− y− n− 1
2ℓ

|y|y−n−1y−1
+ |y|y−n−1 ∂

∂z̄

}

y f g+

+

{

− y− n− 1
2ℓ

|y|y−n−1y−1
+ |y|y−n−1 ∂

∂z̄

}

g.(z− z̄)(
∂

∂z
f )y

=
dℓ
2

(y− n− 1)|y|(y− n− 1) f gE− (y− n− 1)|y|(y− n− 1)g(
∂

∂z
f )+

− dℓ
2
|y|(y−n−1)

{

− n+ 1
2

E +
(

(z− z̄)
∂

∂z̄

)}

f g+

+ |y|(y−n−1)(
∂

∂z̄
g)(z− z̄)(

∂

∂z̄
f )y

+ g|y|(y−n−1)
{

− n+ 1
2

E +
(

(z− z̄)
∂

∂z̄

)′}
(
∂

∂z
f )y

=
di
2

(y− n+ 1
2

)|Y|y−n−1fGE − (y− n
2

)|y|yn−1G(
∂

∂z
f)+

=
di
2

(y− n+ 1
2

)|Y|y−n−1fGE − (y− n
2

)|y|yn−1G(
∂

∂z
f)+

α|y|yn−1G(
∂

̺z
f)y+ α|Y|y−n−1f(

∂

∂z
G)Y+

2i|y|y−n−1(
∂

∂z
G)y(

∂

∂z
G )Y

+ G|y|y−n−1[{((Z − Z̄,
∂

∂z̄
)′
∂

∂z
f}y− 1

2
σ(y

∂

∂z
f)E]
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=
αi
2

(y− n+ 1
2

)|y|y−n−1fGE − (y− n
2
− β)|y|y−n−1G(

∂

∂z
f)y+

+ α|y|y−n−1f(
∂

∂z
G)y+ 2i|y|yn−1(

∂

∂z̄
)y(

∂

∂z
f)y+

− 1
2
|y|y−n−1Gσ(y

∂

∂z
f)E (341)

250

In stating the last relation we have used the fact that

((z− z̄)
∂

∂z̄
f)
∂

∂z
f = −α ∂

∂z̄
f + β

∂

∂z
f

which is easily proved.

We have similar lines the dual formula also, viz.
∂

∂z
yQ|y|y−n−1

= (β′(y− n+ 1
2

)|y|y−n−1fGE + (y− n
2
− y)|y|y−n−1f(

∂

∂z̄
G)y+)

−β′G|y|y−n−1((
∂

∂z
f)y+ 2i|y|y−n−1((

∂

∂z
f)y((

∂

∂z̄
)y

+
1
2
|y|y−n−1fσ(y(

∂

∂z̄
G)E (342)

In view of our assumption (333), settingE = −(−1)
n(n+ 1)

2
we now251

obtain that

dω̃(f,G) =
in
2

(β′ − α)(y− n+ 1
2

)|y|y−n−1fG[dz][dZ̄] (343)

In particular we shall have

dω̃(fG ) = 0 (344)

in the two cases

y =
n+ 1

2
α′ =

n+ 1
2
− α, β′ = n+ 1

2
− β (345)

and
y = α + β, α′ = β, β′ = α (346)
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We shall look into these cases a little more closely.
Let f ∈ {G, α, β, µ}, G ∈ {G, α′, β′, µ′} where we can assumeu′ =

1/ν. From (336) and (337) it is seen that the differential formsω(f, g)
andω̃(f, g) are invariant relative to the substitutions ofG. With regard
to the case (346) we can now make the following remark, viz. ifα, β
are real and|µ| = 1, the linear spaces{G, α, β, µ} and{G; β, α, 1/µ} are
mapped onto each other by the involution

f(z, Z̄) = G(z, z̄) = f̄(z̄, z).

Indeed, iff(z, z̄) ∈ {G, α, β, µ} thenΩαβf(z, z̄) = 0 so that, taking com-

plex conjugates,ΩβαG(z, z̄) = 0 On the other hand, ifM =

(

A C
B D

)

∈ G,

then

f(M〈z̄〉)|cz+ D|−α|cz̄+ D|−β = ϑ(M)f(zz̄),

f̄(M〈z̄〉,M〈z̄〉)|Cz̄+ D|−α|Cz̄+ D|−β = µ̄(M)f̄(z̄, z).

252

This means thatG(z̄, z)|M = 1
µ
(M)G(z, z̄) and our assertion is proved.

We can now state ifα, β are real and|µ| = 1 then

ω̃( f (z, z̄), Ḡ(z̄, z))|M = ω̃( f (z, z̄), Ḡ(z̄), z)

dω̃( f (z, z̄), Ḡ(z̄, z))















(347)

for all f (z, z̄), G(z, z̄) ∈ {G, dβ, µ}.
Applications of (347) have so far been made only in the case when

n = 1. The next case of interest will be whenn = 2. In this case, an
explicit expression for ˜ω(f,G) can be given as follows. LetLq denote
the intersection of the fundamental domainf of the modular group of
degreen with the domain defined by|y| ≤ q. In either of the cases (345),
(346) whencedω̃ = 0, we will have

∫

Kq

ω(f,G) = 0
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whereRq denotes the boundary ofQq. In view of the invariance prop-
erties ofω(f,G) set out earlier, this reduces to

∫

fq

ω(f,G) = 0 (348)

wherefq denotes that part ofRq which lies on|y| = q. While this is all253

true for anyn, in the case ofn = 2, we have the parametric representation
(304) for matricesy > 0, viz.

y = u

[

(x2
+ y2)y−1xy−1

xy−1y−1

]

, u > 0, y > 0;u =
√

|y|

One 7q of course we shall havedu= 0 and then it can be shown that

ω̃( f , g) = 4u2ν−2
{

i(x2
+ y2)y−1∂( f g)

∂x1
+ iy−1∂( f g)

∂x12
+ iy−1∂( f g)

∂x22

+ g
∂ f
∂u
− f

∂g
∂u
+ z(α − β)u−1 f g

}

dxudx12y
−2dxdy (349)

The explicit computation of the integral on the left side of (348)
appears to be possible only by a detailed knowledge if the Fourier ex-
pansions of the formsf andg.

The following reference pertain to the subject matter of this section:-

1. H. Mass Über eine neue Art von nichtanalytischen automorphen
Funktionen and die Bestimming Dirichlet scher Reihen durch
Funktionalgleichungen, Math. Ann. 121 (1949), 141 - 193.

2. H. Petersson, Zur analytischen Theorie der Grenzkeris gruppen,
Teil I bis TeilV, Math. Ann 115 (1938), 23 - 67, 175-204, 518-
572, 670-709, Math. Zeit 44(1939), 127-155.
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3. H. PeterssonKonstruktion der Modulformen and der zu gewissen
Grenzkreisgruppen gehorigen automorphen Formen von positiver
reeller Dimension and die vollstandinge Bestimmning ihrer
Fourie - koeffizienten, Sitz. Ber Akad. Wiss. Heidelberg 1950,
Nr. 8



Chapter 17

Differential equations
concerning angular
characters of positive
quadratic forms

The notion of angular characters was first introduced by Hecke in the 255

study of algebraic number fields. These are functionsu defined on the
non zero elements of a give algebraic number fieldK such that

1. u(α) = u(rαε) for rational numbersr , 0 and units∈ of K

2. For a givenα ∈ K, α , 0, the set of valuesu(α) (for the different
u′s) and the normNα of α determine the principal ideal (α) of α

It is possible to realise the angular charactersu (α) with the variable
α as solution of a certain eigen value problem and this enablesus to
carry out certain explicit analytic computations withu(α). Analogous
considerations can be developed for positive quadratic forms. Here we
ask for functionsu(y) defined on the space of positive matricesy = y(n)

which are invariant relative to the transformationsy→ ry[u] wherer is
a positive real number andu, an unimodular matrix, such that the deter-
minant|y| and the set of all valuesu(y) for a giveny determine uniquely

231
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the class of matricesy[u] which are equivalent withy. It can be expected
that suitable functionsu(y) appear again as solutions of an eigen value
problem. The use of such angular characters will be particularly felt
in determining a set of Dirichlet series equivalent with a give modular
form of degreen in analogy with a theory of Hecke. A satisfactory treat-
ment of the theory of angular characters for positive quadratic forms has256

so far been possible only in the casen = 2. We now make our above
statements precise.

Consider a space ofn real coordinatesyν > 0, ν = 1.2 . . . n, and the
linear differential operatorsΩ in this space,

Ω =

∑

Cν1ν1 . . . νn
∂ν1

∂yν2
2

. . .
∂νn

∂yνn
n

(350)

We shall denote byψ the set of all such operatorsΩ which are in-
variant relative to the group of mappings

Yν → Y ∗
ν = aνyν, ν = 1, 2 . . . n

where therea′νS are arbitrary positive real numbers. Given any alge-
braic number fieldK− for simplicity we assumeK to be totally real -
we can associate withK a space ofn real coordinates as follows. Let
the dimension ofK over the field of rationals ben, and forα ∈ K, let
α(1), α(2), . . . α(n) denote the conjugates ofα. We then setYν = |α(ν)|, ν =
1, 2 . . . n, |α(ν)| denoting the absolute value ofα(ν).

The angular characters ofK are functions u(α) = u(α(1), . . . α(ν)) of
n real variables which depend only on the absolute values
|α(1)|, |α(2)|, . . . |α(n)| of the variables, and which satisfy the following
conditions:-

1. u is an eigen function of every differential operatorΩ ∈P

2. u is invariant relative to the mappingsYν → rYν wherer is an
arbitrary positive real number.

3. u is invariant relative to the unit group ofK

We shall look into these defining properties ofu a little more closely.257
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Clearly all the operatorsYν

∂

∂yν
, ν = 1, 2 . . . n lie in ψ, and it is easily

seen that these operators actually generateψ, meaning that any operator
in ψ is a polynomial of the type

σν1ν2..νnaν1ν2...νn(Y1
∂

∂y1
)ν1 . . . (Yn

∂

∂yn
)νn

with constant coefficient aν1ν2...νn. Then the first condition onu re-

duces to the requirement thatu is an eigen function of eachYν

∂

∂yν
, ν =

1, 2 . . . n, in other words that

(Yν

∂

∂yν
+ λν)u = 0, ν = 1, 2 . . . n

with appropriateλ′νs. Hence we conclude that

u = C
n

∏

ν=1

Y −λν
ν (351)

The second condition onu requires thatu is homogeneous of degree
0 in Y1,Y2, . . .Yn and then

n
∑

ν=1

yν
∂

∂Yν
u = 0 (352)

form which it follows that
∑n
ν=1 λν = 0

We now come to the last condition onu. It is well known that any
unit of K is a power product ofn − 1 fundamental unitsE1,E2 . . .En−1

multiplied by a certain root of unity. Hence the last condition only
amounts to requiring thatu is invariant under the mappings
Yν → Yν|E (ν)

µ |, µ = 1, 2 . . . n− 1. Then

n
∏

ν=s

(yν|E (ν)
µ |)λν =

n
∏

ν=s

y−λνν so that

n
∏

ν=1

|E (ν)
K |
−λν = 1, µ = 1, 2, . . . n− 1
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Together with (352) this can be written as 258

n
∑

ν=1

λν = 0

n
∑

ν=1

λν log |ε(n)
µ | = 2Kµπi

}

iµ = 1, 2, . . . n− 1

For a given set of integersKµ thesen equations define uniquely the
n eigen valuesλ1, λ2 . . . λn and hence alsou by (351). Varying systems
of K′sdetermine the differentu′s.

We now generalise these considerations for positive quadratic forms
or what is the same for positive matrices. Hereψ will stand for the set of
all linear differential operatorsΩ on the space of positive matricesY(n)

which are invariant relative to the group of mappingsT → Y[R],Rbeing
an arbitrary non singular matrix. As in the earlier case we can show that

the operatorsσ(Y
∂

∂Y
)K ∈ ψ,K = 1, 2 . . . n and they generateψ where as

usual,
∂

∂y
= (eµ,ν

∂

∂yµ,ν
). Let Y∗ = Y[R],Rnon singular. For an arbitrary

function f (y) we have for the total differential,

d f = σ(dy
∂

∂y
f ) = σ(dy∗

∂

∂y∗
f )

Also dy∗ = (dy)[R] so that

σ(dy
∂

∂y
f ) = d f = σ(dy∗

∂

∂y∗
f ) = σ(dyR

∂

∂y∗
f R′)

and consequently,

∂

∂y
= R

∂

∂y∗
R′

∂

∂y∗
=

∂

∂y
[R−1]

Then

(Y∗
∂

∂y∗
)∗R′(Y

∂

∂y
)RR−1,K = 1, 2, . . . n, (353)

and259
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σ(Y∗
∂

∂y∗
)K = σ(Y

∂

∂y
)K (354)

This proves thatσ(Y
∂

∂y
)K ∈ ψ,K = 1, 2 . . . n. Consider now any

operatorΩ ∈ ψ. As a linear operator it is of the form

Ω = Ω(y,
∂

∂y
) =

∑

R1

CR1(y)
n

∏

µ,ν=1

∂µν

∂ysµν
µν

̺µν≥0integral,

andR1 = (̺µν) = R′1.
SinceΩ is invariant relative to the mappingY → y∗ = y[R],R non-

singular, we have

Ω(Y[R],
∂

∂y
[R−1]) = Ω(y,

∂

∂y
), |R| , 0 (355)

Let Y0 by an arbitrary point an letV be such thatY0[V] = E. Let u
be an arbitrary orthogonal matrix (u′u = E) and setR= Vu. Then

Y0[R] = (Yo[V])[u] = E. (356)

Let f (y) be an arbitrary function and define

g(y) = Ω(y
∂

∂y
) f (y) (357)

With Y∗ = y[V] we have
∂

∂y∗
=

∂

∂y
[V−1] so that

∂

∂y
[R−1] = (

∂

∂y
[V−1])[u] =

∂

∂y∗
[u]

Then from (355), (356) and (357) we have

g(y0) = {Ω(y0,
∂

∂y
) f (y)}y=yo

= {Ω(E,
∂

∂y∗
[u]) f (y∗[V−1])}y∗=E (358)

260
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Since this is true for all orthogonal matricesu we conclude that the
right side of (358) is independent ofu, in other words,

Ω(E,
∂

∂y∗
[u]) = Ω(E,

∂

∂y∗
),

or equivalently,

Ω(E,
∂

∂y
[u]) = Ω(E,

∂

∂y
) (359)

Since the ring generated by the differential operators
∂

∂yµν
is isomor-

phic with the polynomial ring generated byYµν under the isomorphism

Yµν ↔ eµν
∂

∂yµν
, the truth of (359) for every orthogonal matrixu is equiv-

alent with the relation

ω(E,Y[u]) = ω[E, y]

for theseu′s. In particular, choosingu such thatY[u] = Λ = (δµν, ) we
shall have

Ω(E,Λ) = Ω(E,Y) (360)

The left side is a symmetric function of theλ′νs, ν = 1, 2 . . . n in fact
symmetric polynomial in theλ′νsso that it is a polynomial of the ‘power
sums’

∑n
ν=1 λ

K
ν = σ(Λ)K),K = 1, 2 . . .. ThusΩ(E, y) = Ω(E,Λ) =

P(G(Λ) . . . σ(Λ)n), a polynomial with constant coefficients. Sinceu is
orthogonal andy[u] = Λ we haveσ(Λ) = σ(y[u]) = σ(y), and then

Ω(E,Y) = P(σ(y), σ(y)2, . . . σ(y)n), (361)

whereP is a polynomial with constant coefficients.261

Then form (358),

g(y0) = {Ω(E,
∂

∂y∗) f (y∗[V−1]
}y∗=E

= {P(σ(
∂

∂y∗)
, σ(

∂

∂y∗
)2, . . . σ(

∂

∂y∗
)ns(y∗[V−1]}y∗=E
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Comparing the two operatorsσ(y∗
∂

∂y∗
)K and σ(

∂

∂y∗
)K, and in

particular their highest degree terms at the pointy∗ = E, we can write

g(y0) = {P(σ(y∗
∂

∂y∗
), . . . σ(y∗

∂

∂y∗
)n f (y∗[V−1]}y∗=E

+{Ω∗(y∗ ∂
∂y∗

) f (y∗[V−1])}y∗−E

where the degree ofΩ∗ in
∂

∂y∗
is smaller than that ofΩ in

∂

∂y∗
. Due to

the invariance of the operatorsσ(Y
∂

∂y
)K for the mappingsy → Y∗, the

above gives

g(y0) = {P(σ(y
∂

∂y
), . . . σ(y

∂

∂y
)n f (y[V]}y=y0

+{Ω1(y
∂

∂y
) f (y)}y=y0

with Ω1 having the same degree in
∂

∂y
asΩ∗ in

∂

∂y∗
and sincey0 is

arbitrary by choice,

g(Y) = P(σ(y
∂

∂y
), . . . σ(y

∂

∂y
)n f (y) + Ω1(y

∂

∂y
) f (y).

Sinceg(y) = Ω(y,
∂

∂y
) f (y) and the above is true for every function262

f (y) it is immediate that

Ω(y,
∂

∂y
) = P(σ(y

∂

∂y
), σ(y

∂

∂y
)2 . . . σ(y

∂

∂y
)n)+Ω1(y

∂

∂y
)

where the degree ofΩ1 in
∂

∂y
is less than thatΩ in

∂

∂y
) and P is a

polynomial with constant coefficients. By resorting to induction on the

degree ofΩ in
∂

∂y
we conclude thatΩ(

∂

∂y
) is a polynomial in σ(y

∂

∂y
)K,

R = , . . . n, and this was what we set out to prove.
We now define the angular characters as functionsu(y) which satisfy

the following requirements.
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(1) u is an eigen function of each operatorΩ ∈ ψ

(2) u is homogeneous of degreeo in y, in other words,u(ry) = u(y) for
every realr > 0,

(3) u is invariant relative to the group of mappingsy→ y[u] whereu is
an arbitrary unimodular matrix.

(4) u is square integrable over a fundamental domain of the group of
mappingsy→ y[u], u unimodular, in the determinant surface|y| = 1
with a certain invariant volume elementdϑ1.

Let us examine the consequences of these defining propertiesof u.

Since we have shown thatψ is generated by the elementsσ(y
∂

∂y
)K,K =

1, 2 . . . n, the first condition onu can be replaced by a system of differ-
ential equations

(σ(y
∂

∂y
)K + ηK)u(y) = 0k = 1, 2 . . . n (362)

The second condition is then nothing else but the requirement that263

η1 = 0. The third condition means thatu is a kind of automorphic
function, and it is a pertinent question as to the existence of non-trivial
solutions of (362) which satisfy the second and third condition above.
We shall subsequently show that such non trivial solutionsu always ex-
ist. But these special functionsu fail to be angular characters in that they
do not need the fourth requirement.

The equation in (362) corresponding toK = 2 is of particular inter-

est, as in this caseσ(y
∂

∂y
)K = σ(y

∂

∂y
)2 can be proved to be theLaplace

Beltramioperator of the spacey > 0, considered as a Riemannian space
relative to the metric

drs
= σ(y−1dy)2 (363)

We prove this as follows. The Laplace - Beltrami operator is invari-
ant relative to the transformationsy → y[R], R non-singular which are

movements of the spacey > 0, and the operatorσ(y
∂

∂y
)2 is also invari-

ant relative to these transformations as is seen from (354).In view of
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the transitivity of the group of movements then, it suffices to show that
the two operators are equal at the special pointγ = E. At this point we
choose the coordinate system

x = (−y+ E)(y+ E)−1 (364)

The substitutiony→ x is a 1− 1 mapping of the spacey > 0 onto
the spaceE − x′x > 0, x′ = x, and a simple computation shows that

ds2
= 4σ((E − xx′)−1dx)2 (365)

264

It is then immediate that our coordinate system atE is a geodesic
one. Clearly the pointy = E corresponds tox = 0. By means of the
relations

∂

∂y
= −1

2
(E + x)((E + x)

∂

∂x
)′ (366)

∂

∂x
x =

n+ 1
2

E + (x
∂

∂x
)′

∂

∂x
(x
∂

∂x
) = (x

∂

∂x
∂

∂x
)′ +

1
2
∂

∂x
+

1
2
σ(

∂

∂x
)E

which are easily proved, we obtain that atx = 0

(y
∂

∂y
)2
=

1
4

{

∂

∂x
∂

∂x
+

1
2
∂

∂x
+

1
2
σ
∂

∂x
E − n+ 1

2
∂

∂x

}

,

and then

σ(y
∂

∂y
)2
=

1
4
σ
∂

∂x
)2
=

∑

µ,ν

e2
µν

∂2

∂x2
µν

=
1
4

∑

ν

∂2

∂x2
µν

+
1
8

∑

µ<ν

∂2

∂x2
µν

.

On the other hand, atx = 0, we have

ds2
= 4σ(dx)2

= 4
∑

ν

dx2
νν + 8

∑

µ<ν

dx2
µν
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and we can then conclude from (290) thatσ(y
∂

∂y
)2 is identical with the

Laplace - Beltrami operator atx = 0 and hence also at any other point.
We are also interested in the determinant surface|y| = 1 and we can

introduce the Laplace - Beltrami operator∆1 in this surface. We wish
to determine the relationship between∆ and∆1. We first observe that in265

(363).
dr2
= dz log |y| (367)

For,−d2log|y| = −d(d log |y|) = −d(
1
|y|d|y|)

= d(
1
|y| , σ(

∂

∂y
|y|) = −d(σ(dyy−1))

= −d(σ(ydy−1)) = σ((dy−1)dy)

= −σ(−y−1dyy−1dy) = σ(y−1dy)z

= ds2

The relationship between∆ and∆1 is now provided by the following
general lemma, viz.

Lemma 25. Let R be a domain in the space if n real coordinates
y1, y2, . . . yn, and x = x(y1, y2, . . . yn), a positive homogeneous func-
tion on K of degree K > 0. Denote by M the surface defined by
x(y1, y2, . . . yn) = 1. Let R, M be considered as Riemann space rel-
ative to the metric ds2 = d2ϕ whereϕ = − log x, and let∆,∆1 de-
note the Laplace Beltromi operator in R and M respectively. If h1 =

h1(y1, y2, . . . yn) is an arbitrary function in M and

h = h1(
y1

n
√

x
,

y2

K
√

x
, . . .

yn

K
√

x
)

the homogeneous function of degree 0 in R which extends h1 then we266

have
∆1h1 = ∆h (368)

Proof. We chose inRa special coding system (x1, x2, . . . xn) as follows.
Let yµ = ψµ(x1, x2, . . . xn−1)(1 ≤ µ ≤ n) be a parametric representation
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of the surfaceM so that in particular, rank (
∂ϕµ

∂xν
) = n − 1. Then the

equations
yµ = yµ(x1, x2, . . . xn−1)xn, i ≤ µ ≤ n (369)

define the desired coordinate system (x1, x2, . . . xn). To prove our as-

sertion we need only show that the square matrix (
∂ϕµ

∂xν
) has the rankn

Since
∂ϕµ

∂xν
=
∂ϕµ

∂xν
×n for ν < n and

∂ϕµ

∂xν
= ϕµ, ϕ = 1, 2 . . . n, it suffices

to show that the homogeneous linear equations

n−1
∑

ν=1

ξν
∂ϕµ

∂xν
× n+ ξnϕµ = 01≤ µ ≤ n (370)

admit of only the trivial solution. Sincex(ϕ1, ϕ2 . . . ϕn) = 1 identically
in x1, x2, . . . xn−1, we have

n
∑

µ=1

∂X
∂ϕν

(ϕ)
∂ϕµ

∂xν
= 0, 1 ≤ ν < n (371)

�

Besides,
n

∑

µ=1

∂λ

∂ϕν
(ϕ)ϕµ = Kλ(ϕ) > 0 (372)

by a standard result on homogeneous functions. Multiplyingboth sides
of (371) byξxnand of (372) byξ and adding, we obtain in view of (370)267

thatξKλ(ϕ) > o whence it follows thatξn = o Since we know that rank

(
∂ϕµ

∂xν
) = n − 1,µ=1,2,...n

ν=1,2,...n−1, we conclude from (370) thatξo = o for all

ν = 1, 2, . . . n. We have now shown that (369) gives a parametric rep-
resentation of the whole spaceR in terms of that in|v|. Let us compute
fundamental metric formds2 in this special coordinate system. We have

ds2
= d2ϕ = d(

n
∑

ν=1

∂ϕ

∂xν
dxν) =

n
∑

µ,ν=1

∂2ϕ

∂xµ
∂

dxµ
xν dxν
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=

∑

µ,ν

dxµdxν (373)

with gµν =
∂zϕ

∂xµ ∂xν

(1 ≤ µ, ν ≤ n)

Also

∂ϕ

∂xν
=
∂(− logχ
∂xν

= −1
χ

∂(χ(y)
∂xν

= −1
2

n
∑

µ=1

∂χ(y)
∂yµ

∂yµ
∂xν

= −1
χ

n
∑

µ=1

∂χ(y)
∂yµ

∂ϕµ

∂xν
xn (374)

Sinceχ is homogeneous of degreeK in y1, y2, . . . yn,
∂χ

∂yµ
is homoge-

neous of degreeK−1 in y1, y2, . . . yn Also, all they′sare linear functions

in χn and it then follows from (374) that
∂ϕ

∂xν
is a homogeneous function

of degreeo in xn for ν < n. In other words, forν < n,
∂ϕ

∂χν
is independent

of xn and consequently
gnν = gνn = o (375)

for these values ofν.
Also,268

∂ϕ

∂xn
= −1

χ

n
∑

µ=1

∂χ(y)
∂yµ

∂yµ
∂xn

= −1
2

∑

µ

∂χ(y)

∂yµ

yµ
xn
= −−K

xn

so that

gnn =
∂2ϕ

∂x2
=
K

x2
n
. (376)

Then from (373),ds2 is given by

ds2
=

n−1
∑

µ,ν=1

gµνdxµdxν +
K

x2
n
dx2

n. (377)
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On N of course we havexn = 1 so thatdxn = o, and then

ds2
=

n−1
∑

µ,ν=1

gµνdxµdxν (378)

gives the metric form.
Let (gµν) (µ, ν < n) denote the inverse of the matrix (gµν) and let

g denote the determinant of (gµν). Since
∂ϕ

∂xν
is independent ofxn for

ν < n it follows that gµν(µ, ν < n) and consequentlyg are independent
of xn. Then by the definition of△, using (375) and (376), we have

△ = 1
√

ggnn

n
∑

µ,ν=1

∂

∂xµ
(
√

ggnng
µν ∂

∂xν
)

1
√

ggnn

∂

∂xn

√
ggnn

x2
n

K

∂

∂xn

=
1
√

g

n−1
∑

µ,ν=1

∂

∂xµ
(
√

ggµν
∂

∂xν
) +

1
K

xn
∂

∂xn
χn

∂

∂xn

= △1 +
1
K

(xn
∂

∂xn
)2 (379)

Sinceh(y1, y2, . . . yn) = h1

(

y1
K
√
χ
, . . .

yn
K
√
χ

)

by assumption and 269

K
√
χ =

K
√

χ(ϕ.xn) = xn
K
√

χ(ϕ) = xn (380)

in an obvious notation, we obtain

h(y1, y2, . . . yn) = h1(ϕ1, ϕ2 · · ·ϕn)

and
∂h
∂xn
=
∂h1

∂xn
= o. It now follows from (379) that△h = △1h1 and

Lemma 25 is proved. Finally we remark that ifdϑ, dϑ1 denote the in-
variant volume elements ofR and H relative to the metrics (377) and
(378) respectively, then

dϑ =
√

ggnn

n
∏

ν=1

dxν =

√
K

xn

√
g

n
∏

ν=1

dxν,
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dϑ1 =
√

g
n−1
∏

ν=1

dxν

so thatdϑ anddϑ1 are connected by the relation,

dϑ =
√
Kx−1

n dxndϑ1 (381)

We now interpret (368) and (381) in the particular spacey > o. In
view of (367) we can state

Lemma 26. Let △ denote the Laplace-Beltrami operator of the space
y > o relative to the metric ds2 = σ(y−1dy)2 and △1 the Laplace-
Beltrami operator of the determinant surface|y| = 1 relative to the in-
duced metric. If h1(y) is an arbitrary function on this surface and h(y)
the homogeneous function of degree0 on the whole space y> 0 defined
by h(Y) = h1(|Y|1/nY) then we have△h = △1h1.270

This is how (368) reads in the spacey > 0. We now take up (381).
The fundamental metric in the space of real matricesy = y(n) was given
by ds2

= σ(y−1dy)2, and theL − 1 transformations of this space onto
itself which leave the metric invariant are given byy→ y∗ = y[R] with
an arbitrary real non singular matrixR. From (138) we know that

∂(y∗

∂(y)
= |R|n+1

= |y∗| n+1
2 |y|− n+1

2

and then then |y|
−

n+ 1
2 [dy] is left invariant by the transformations

y → y∗. It follows that the invariant volume elementdϑ in this case is
given by

dϑ =
√

C|y|− n+1
2 [dy]

with an arbitrary constantC. We fix C by requiringdϑ in the standard
form, viz. dϑ =

√
gπp≤νdyµν in the usual notation. Theng = c|y|(n+1)

and in particular aty = E we haveg = C. But at this point

ds2
= σ(dy)2

=

n
∑

µ=1

dy2
µµ + 2

∑

µ<ν

dy2
µν
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so that the matrix (grs) whose determinant isg is diagonal withη of

the diagonal elements 1 and the rest
η(n− 1

2
as 2. Thus, atY = E,

g = zn(n−1)/2 and this is then the value forc Thus

dϑ = 2n(n−1)/4|y|− n+1
2 [dy] (382)

From (381) we haveχ−1
n dxndϑ1 =

1
√
K

dϑ whereχn is given by

(380), viz.χn =
K
√

χ(y). In the present case,χ(y) = |y| andK = n so that
xn = n

√

|y| = y (say), and then from (381) and (382),

y−1dydϑ1 =
1
√

n
2n(n−1)/4|y|− n+1

2 [dy] =
1
√

n
dϑ. (383)

271

We can now compute the volume of the fundamental domain of the
unimodular group acting on the determinant surface|y| = 1. If K denotes
the space of all reduced matrices, this volume is given byVn =

∫

y1∈K
dϑ1.

Now

VnΛ(
n(n+ 1

2
=

∞
∫

o

e−yy
n(n+1

2 −1dy
∫

y1∈K
|y1|=1

dϑ1

=

∫

y∈K

e
n
√
|y||y| n+1

2 y−1dydϑ1

=
1
√

n
2n(n−1)/4

∫

y∈K

e−
n
√
|y|[dy].

The last integral has already been explicitly computed in (149) and
putting it in, we have

Vn =
n+ 1

2

√
n2n(n−1)/4ϑn (384)

In particular we have shown that the volume of the fundamental
domain is finite. We can therefore state that ifu(y) is homogeneous
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of degree 0, is invariant relative to the modular group and satisfies the
equations (362) and if furtherU is bounded in the fundamental domain,
thenU is square integrable and is hence an angular character.

We return now to the question of existence of solutions of (362) and272

examine how far they meet the other three requirements for anangular
character. We first observe that ifU(y) is a solution of (362) with the
set of eigen valuesλ1, λ2, . . . λn, thenU is a homogeneous function of
degree−λ1 so that|Y|λ1|nU(y) is homogeneous of degree 0. We show
presently that for every solutionU(y) of (362), |Y|sU(y) (for an arbi-
trary complex constants) is also a solution with certain eigen values
λ∗1, λ

∗
2, . . . λ

∗
n depending ons and then in particular|y|λ1|nU(y) will be a

solution of (362) withλ∗1 = o. In other words, given anyU(y) which
satisfies the first condition for an angular character, we candetermine
one which, besides the first, fulfills the second condition too.

That |Y|sU(y) is a solution of (362) is an immediate consequence of
the following operator identity,

(Y
∂

∂y
)K|y|s =

K
∑

ν=0

sν
(K

ν

)|y|s(y ∂
∂y

)K−ν (385)

where we remark that|Y| is to be treated as an operator. ForK = 1 it is
directly verified that

(y
∂

∂y
|y|s = |y|sy ∂

∂y
+ s|y|sE,

and then (385) is proved by induction onK. One also obtains the analo-
gous identity

(

(y
∂

∂y
)′
)K|y|s =

K
∑

ν=0

sν
(K

ν

)|y|s((y ∂
∂y

)′
)K−ν (386)

and this we need later.
We now show that (362) has non trivial solutions which are invariant273

relative to the unimodular substitutionsy→ y[U]. We decomposey,
∂

∂y
as

y =

(

y1 y3

y3 y2

)

,
∂

∂y
=













∂
∂y1

1
2

∂
∂y3

1
2

∂
∂y3

∂
∂y2
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with y1 = yr
1, o < r < n, and prove by induction onK that

(

y
∂

∂y
)K|y1|−s

= (−1)Ks
(

s− n− r
2

)K−1|y1|−s
(

E o
y′3y−1

1 o

)

. (387)

Indeed,

(

y
∂

∂y
)|y1|−s

= −s|y1|−s−1y
∂

∂y
|y1|

= −s|y1|−s−1y

(

|y1|y−1
1 o

o o

)

= −s|y1|−s
(

E o
y′3Y−1

1 o

)

and then we have only to assume (387) for a particular value ofK ≥ 1
and prove it for the next higher value.

Now

(y
∂

∂y
)K+1|y1|−s

= (−1)Ks(s− n− r
2

)K−1y
∂

∂y
|y1|−s

(

∈ 0
y′3y−1

1 0

)

(388)

by the induction assumption. Also,

∂

∂y
|y1|−s

(

E o
y′3y−1

1 o

)

=













∂
∂y1

1
2

∂
∂y3

1
2

∂
∂y3
, ∂

∂y2













(

|y1|−sE o
|y1|−sy′3y −1

1 o

)

=

=

(

−s|y1|−sy−1
1 +

1
2 |y1|−s( ∂

∂y3
y′3)y−1

1 o
o o

)

= |y1|−s
(

−sy−1
1 +

1
2(n− r)Ey−1

1 o
o o

)

= −(s− n− r
2

)|y1|−s
(

y−1
1 o
o o

)

.

274

Putting this in (388) we have

(y
∂

∂y
)K+1|y1|−s

= (−1)K+1s(s− n− r
2

)K|y1|−s|y2|−sy

(

y−1
1 o
o o

)
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= (−1)K+1s(s− n− r
2

)K|y1|−s
(

E, o
y′3y−1

1 o

)

and the proof of (387) is now complete.
It follows from (387) that
{

σ(y
∂

∂y
)K + λK

}

|y1|−s
= o, λK = rs(

n− r
2
− s)K−1;K ≥ 1. (389)

In other words we have shown that|y1|−s is a solution of (362) be-
longing to the set of eigen values.

ηK = rs(
n− r

2
− s)K−1,K = 1, 2, . . . n. (390)

But itself |y1|−s is not invariant relative to the unimodular substitu-
tions; in fact ifU = (QR) is any unimodular matrix withQ = Q(n,r),

then due to a transformationy→ y[U] of y, y1 = y
[

E(r)
o

]

goes over into275

(y[U]
[

E(r)
o

]

= y[Q], and |y2|−s goes into|y[Q]|−s. However it is easily

seen from (389) that|y[Q]|−s also satisfies the same equation with the
same set of eigen values and then

E (y, s) =
∑

Q

|y[Q]|−s (391)

whereQ runs through a complete representative system of the classes
{Qn,r} of primitive matrices is again a solution of (362) belongingto the
above system of eigen values (390). Of course, we haveE (y[U], s) =
E (y, s) for any unimodular matrixU; in other wordsE (y, s) is a solution
of (362), which is invariant relative to the unimodular transformations.

The functionE (y, s) is a generalisation of the usual Epstein’s zeta
function. It follows from (387) that

{

(y
∂

∂y
)2
+ (s− n− r

2
)(y

∂

∂y
)

}

|y1|−s
= o

and hence we can conclude that
{

(y
∂

∂y
)2
+ (s− n− r

2
)(y

∂

∂y
)

}

E (y, s) = o (392)
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It is possible to characteriseE (y, s) as a solution of (392), whose
Fourier coefficients (in a certain sense) have specified properties.

Finally we prove that for every solutionU(y) of (362),U∗(Y) =
U(Y−1) also satisfies a differential equation of the same kind,

{

σ(y
∂

∂y
)K + λ∗

K

}

U∗(y) = o,K = 1, 2, . . . n,

whereλ∗
K
,K = 1, 2, . . . n are uniquely determined by the eigen value s276

λ1, λ2, . . . λn of U. We need a few operator identities as preliminaries.

Let y
∂

∂y
= △ = (ωµν). We prove first that

ωµνωxλ = ωµλωµν +
1
2
δνµ −

1
2
δλµωµν (393)

Sinceeµν
∂yxλ

∂yµν
=

1
2

(δµν,xλ + δµ,ν,λν), δµν,xλ = δµxδνλ

We have

ωµνωxλ =
(

n
∑

ρ=1

yµρeρν
∂

∂yρν

)(

n
∑

σ=1

yxσeσλ
∂

∂
yσλ

)

=

n
∑

ρ,σ=1

yµρeρν
∂

∂yρν
yxσeσλ

∂

∂yσλ

=

n
∑

ρ,σ=1

yµρyxσeρν
∂

∂yσλ

1
2

n
∑

ρ,σ=1

yµρyµρ(δρν,xσ + δρν,σ)eσλ
∂

∂yσλ

=

n
∑

ρ,σ=1

yxσeσλ
∂

∂
yσλyµρeρν

∂

∂
yρν

1
2

n
∑

ρ,σ=1

yµρ(δρ,νxσ + δρν,σx)

eσλ
∂

∂yσλ
− 1

2

n
∑

ρ,σ=1

yxσ(δσλ,µρ + δσλ,ρµeρν
∂

∂
yρν

= ωxλωµν +
1
2

yµxeνλeνλ
∂

∂yνλ
+

1
2
δνλωµν

+
1
2

yxµeλν
∂

∂yλν
− 1

2
δλµωxν
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= ωxλωµνt
1
2
δνxωµλ −

1
2
δλµωµν,

and (393) is established.277

We use (393) to show that for any operator matrixA = (αµν),

σ(△KA) =
∑

νν2···νK+1

ων2ν3 · · ·ωνg−1νgων1ν2ωνgνg+1 · · ·ωνKνK+1ανK+1ν1

− 1
2
σ(Λg−2)(ΛK+g+1A) +

n
2
σ(ΛK−1A) (394)

The proof is by induction onj. For j = 2 (394) is obviously true.
Assume thenj ≥ 2. By means of (393), the induction assumption gives
that

σ(ΛKA) =
∑

ν1,nu2···νK+1

ων1ν2···ωνKνK+1ανK+1ν1

=

∑

ν1,ν2,...νK+1

ων2ν3 · · ·ωνgνg+1ων1,ν2ωνg+1νg+2 · · ·ωνKνK+1ανK+1ν1

+
1
2

∑

ν1,ν2,...νK+1

ων2ν3 · · ·ωνg+1νgδnu2νgων1νg+1ωνg+1

ωνg+1νg+2 · · ·ωνKνK+1ανK+1ν1

− 1
2

∑

ν1,ν2,...νK+1

ων2ν3 · · ·ωνg−1νg+1ν1ωνgν2

ωνg+1νg+2 · · ·ωνKνK+1αK+1ν1

− 1
2
σ(Λg−2)σ(ΛK−g+1A) +

n
2
σ(ΛK−1

Λ)

=

∑

ν1,ν2,...νK+1

ων2ν3 · · ·ωνgνg+1ων1ν2ωνg+1νg+2 · · ·ωνKνK+1ανK+1ν1

− 1
2
σ(Λg−1σ(ΛK−g

Λ) +
n
2
σ(ΛK−1A)

and this proves (394). Puttingj = k+ 1 in (394) we obtain that278

σ(ΛKA) =
∑

ν1,ν2,...νK+1

ων2ν3 · · ·ωνKνK+1ων1ν2ανK+1ν1
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1
2
σ(ΛK−1)σ(A) +

n
2
σ(ΛK−1A)

= σ(ΛK−1(Λ′A′)) − 1
2
σ(ΛK−1)σ(A) +

n
2
σ(ΛK−1A).

Choosing forA the special operator matrix
(

(Λ′)ℓ
)′ this yields,

σ(ΛK
(

(Λ′)ℓ
)′
= σ(ΛK−1((Λ′)ℓ+1)′

)

− 1
2
σ(ΛK−1)σ(Λ′)ℓ

n
2
σ(ΛK−1((Λ′)ℓ

)′ (395)

As a consequence of (395) we can conclude by induction onK that

σ(ΛK = σ(Λ′)K +
∑

ν1ν2···νr
ν1+···+νr<K

eKν1ν2..νr
σ(Λ′)νsσ(Λ′)ν2 · · ·σ(Λ′)νr (396)

Inverting this system of equations one also has

σ(Λ′)K = σ(ΛK) +
∑

ν1ν2···νn
ν1+···+νr<K

dKν1ν2..νn
σ(Λ)ν1σ(Λ)ν2 · · ·σ(Λ)νr (397)

with certain constant coefficientsdk
ν1ν2...νr

. 279

Let nowy∗ = y−1 andU∗(y) = U(y∗). Thendy∗ = −y−1dyy−1, and
for any functionϕ we have

dϕ = σ(dy
∂

∂y
ϕ) = σ(dy∗

∂

∂y∗
ϕ) = −σ(dyy−1(

∂

∂y∗
ψ)y−1)

and consequently

∂

∂y
ϕ = −y−1(

∂

∂y∗
ϕ)y−1, on y

∂

∂y
= −(y∗

∂

∂y∗
)′.

Replacingy by y∗ in (397) we can state now that

σ(y
∂

∂y
)KU∗(y) = (−1)Kσ

(

(y∗
∂

∂y∗
)
)KU(y∗)

= (−1)K



























σ(χ∗
∂

∂y∗
)K +

∑

ν1ν2···νr
ν1+νr<K

dKν1ν2···νr
σ(y∗

∂

∂y∗
)ν1 · · ·σ(y∗

∂

∂y∗
)νr



























U(y∗)
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= (−1)K



























−λK +
∑

ν1ν21···νr
ν1+···+νr<K

(−1)rdKν1ν2···νr
λν1λν2 · · ·λνr



























U(y∗)

= −λ∗KU∗(y)

with

λ∗
K
(−1)K



























∑

ν1ν2···νr
ν1+···+νr<K

(−1)rdKν1ν2···νn
λν1λν2 · · ·λνr



























(398)

A detailed calculation shows that

σ(Λ′) = σ(Λ), σ(Λ′)2
= σ(Λ)2

σ(Λ′)3
= σ(Λ)3 − n

2
σ(Λ)2

+
1
2

(σ(Λ))2,

σ(Λ′)4
= σ(Λ)4 − nσ(Λ)3

+
1
2
σ(Λ)σ(Λ)2

+
1
2

+
1
2
σ(Λ)2σ(Λ)

n2

4
σ(Λ)2 − n

4
(σ(Λ))2

and it follows then that280

λ∗1 = λ1, λ
∗
2, λ
∗
3 = −λ3 +

n
2
λ2 +

1
2
λ2

1,

λ∗4 = λ4 − nλ3 − λ1λ2 +
n2

4
λ2 +

n
4
λ2

1.

It would be of interest to determine the cases when we shall have
λ∗ν = λν for eachν.

When all is said and done, the question remains still open whether
angular characters according to our definition actually exist. We only
know that if we are given one angular character we can obtain others
from it; for instance, ifU(y) is angular character then so isU∗(y) =
U(y−1). For n > 2 the existence question is still a problem. Forn = 2
however, the angular characters are completely determinedand they are
just solutions of the wave equations relative to the modulargroup.

Let us introduce the operatorsHK by

HK =
1
2

(σ(y
∂

∂y
)K + σ

(

(y
∂

∂y
i)K

)

(399)
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and observe in view of (397) that 281

HK = σ(y
∂

∂y
)K +

1
2

∑

ν1ν2···νr
ν1+···+νr<K

dν1ν2···νrσ(y
∂

∂y
)ν1 · · ·σ(y

∂

∂y
)νr

for K = 1, 2 · · · n.

It is easily seen that by means of thesen equations,σ(y
∂

∂y
)K,K =

1.2. · · · n can be expressed in terms of theH′
K

s.
It follows therefore thatHK,K = 1.2 · · · n also generate the space of

invariant (linear) differential operators asσ(y
∂

∂y
)K − K = 1.2 · · · n do.

The angular charactersU(y) are then eigen functions of these operators
HK,K = 1.2 · · · n, and in place of (362) we have an equivalent system of
differential equations forU(y), viz.

(HK + µKU(y) = o,K = 1.2, . . . n (400)

with certain eigen valuesµK(K = 1.2 · · · n) which are uniquely deter-
mined by the eigen valuesλK of U(y) and conversely. We shall give an
interesting integral formula (407) involving these operators.

First we have to generalise the method of partial integration. LetA =
(aµν), B = (ℓµν) be arbitrary matrices whose elements are all functions

of the elements ofy We know thatdϑ = 2n(n−1)/4|y|
−

n+ 1
2 [dy] is the

volume element in the space of matricesy > o, invariant relative to the
transformationsy→ y[R], |R| , 0. Let

ωµν = ±
∏

ρ,σ,µ,ν

dyρσ,

the ambiguous sign being determined by the requirement that

dyµνωµν = [dY]and let

Ω = 2n(n−1)/4|Y|− n+1
2 Y(eµνωµν),

a matrix of differential forms of degreen(n+1)
2 − 1. We wish to prove 282
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that
∫

G

B{Y ∂

∂Y
A}dϑ = −

∫

G

{Y(
∂

∂Y
)′B′}′Adϑ +

∫

ℓG

BΩA (401)

whereG denotes a compact domain with a given orientation andbg is
its boundary, assumed to be piece wise smooth. Now

B(y
∂

∂Y
A) + ((Y

∂

∂Y
)′B′)A =

= (
∑

ρστ

)ℓµρyρσeστ(
∂

∂yστ
aτν)) + (

∑

ρστ

eρτ(
∂

∂Yρτ
ℓµσ)aτν)

= (
∑

ρστ

yρσeρστ(ℓµσ
∂

∂Yρτ
aτν + aτν

∂

∂Yρτ
ℓµσ)) (402)

Also

d(BΩA) = d(B2n(n+1)/4)|Y|− n+1
2 Y(eµνωµν)A)

= 2n(n+1)/4d(
∑

ρστ

ℓµν|Y|−
n+1

2 yρσrστωστaµν)

= 2n(n+1)/4(
∑

ρστ

eστ
∂

∂yστ
|Y|− n+1

2 yρσ)ωστ)

= 2n(n+1)/4(
∑

ρστ

eστ
∂

∂yστ
(ℓµρaτν|Y|−

n+1
2 yρσ)ωστ)[dY]

= (
∑

ρστ

yρσeστ
∂

∂yστ
(ℓµρaτν)dϑ+

+ 2n(n−1)/4(
∑

ρστ

eστℓµρaτν
∂

∂yστ
(|Y|− n+1

2 yρσ )[dy] (403)

283

We shall show that
∑

σ eστ
∂

∂yστ
(|Y|
−

n+ 1
2

yρσ
) = 0, and then the last

term on the right side of (403) vanishes. LetYµν denoted the algebraic
minors of the elements ofY so that|Y|Y−1

= (Yµν)
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Then

∑

σ

eστ
∂

∂yστ
(|Y|− n+1

2 yρσ ) =

=
n+ 1

2
|Y|− n+1

2

∑

σ

Yστyρσ +
∑

σ

|Y|− n+1
2 δρτeστ

=
n+ 1

2
|Y|− n+1

2 δρτ +
n+ 1

2
|Y| n+1

2 δρτ = 0

as desired. (403) now reduces, in view of (402), to

d(BΩA) = (
∑

ρστ

yρσeρσ
∂

∂στ
(ℓµρaτν))dϑ

= (B(Y
∂

∂Y
A) + ((Y

∂

∂Y
)′B′,A)dϑ

and then, applying Stoke’s formula by which
∫

G

dω =
∫

ℓG

ω

for an arbitrary exterior differential from,ω we have
∫

G

B(Y
∂

∂Y
A)dϑ = −

∫

G

((Y
∂

∂Y
)′B)′Adϑ +

∫

ℓG

BΩA.

More generally we can show that 284

∫

G

{

(y
∂

∂y
)KA′

}

dϑ = (−1)K
∫

G

{

(y
∂

∂y
)′)KB′

}

Adϑ +
K−1
∑

ϑ=0

(−1)ν

∫

ℓG

{

((y
∂

∂y
)νB′

}

Ω

{

Y(
∂

∂y
)K−1−ν

}

(404)

For K = 1, (404) reduces to (401) proved above and then (404) is
established by restoring to introduction onK
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SettingA = ϕE andB = ψE in (404) whereϕ andψ are arbitrary
functions, and taking the trace of both sides, we obtain that

∫

G

ψσ(y
∂

∂y
)Kϕdϑ = (−1)K =

∫

G

ψσ(y
∂

∂y
)′)Kψdϑ +

K=1
∑

ν=0

(−1)ν

∫

ℓG

σ

{

((y
∂

∂
)ν)

}

Ω

{

(y
∂

∂y
)K−1−νϕ

}

(405)

Interchangingϕ andψ and replacingν byK−1−ν in (405) we obtain
by transposition that

∫

G

ψσ((y
∂

∂y
)′)Kψdϑ = (−1)K =

∫

G

ψσ(y
∂

∂y
)Kψdϑ +

K
∑

ν=0

(−1)ν

∫

ℓG

σ

{

(y
∂

∂
)ν
}

Ω

{

((y
∂

∂y
)′)K−1−ν

}

ϕ (406)

It follows by addition, from (405) and (406) that

∫

G

ψHKψdϑ = (−1)K
∫

G

ϕHKψdϑ +
1
2

K−1
∑

ν=0

(−1)ν

∫

ℓG

σ

{

((y
∂

∂y
)′)νψ

}

Ω

{

(y
∂

∂y
)K−1−νϕ

}

+
1
2
Σ
K−1
ν=0 (−1)ν

∫

ℓG

σ

{

(
∂

∂y
)νψ

}′
Ω

{

((y
∂

∂y
)′)K−1−νϕ

}

(407)

whereHK is defined in (399).285

By means of the formula (407) one can prove the orthogonal rela-
tions for angular characters. For we require a special representation for
the scalar product of the angular characters given below. Let u, ũ, be
two angular characters and introduce the scalar product (u, ũ) by

(u, ũ) =
∫

yi∈K|y1|=1

u(r1)ũ(y1)dϑ1 (408)
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Then,

(u, ũ) =
∫

y1∈K
|y1|=1

u(y1)ũ(y1)dϑ1

e
∫

1

y−1dy, y = |y|1/n

=

∫

y∈K
i≤|y|≤en

u(y)ũy−1dydϑ1

=

∫

y∈K
i≤|y|≤en

u(y)ũ(y)dϑ

We now take forG in (407) the domain{y ∈ K, 1, |y| ≤ en} .
This domain is not compact and this presents some difficulty. We

have to approximate this by compact domainsG i = 1, 2, . . ., apply (407)
to eachGi and resort to a limiting process. Of course all this needs286

justification.
A detailed account of some of the results quoted in this section one

finds in the following references.

1. E. Hecke , Eine neue Art von Zetafunktionen und ihre Beziehungen
Zur Verteilung der Primzahlen, math.Zeit. 1 (1918), 357-376.

2. W. Roelcke , Über die Wellengleichung bei Grenzkreisgruppen er-
ster Art, Act. Math (in print).





Chapter 18

The Dirichlet series
corresponding to modular
forms of degreen

We wish to determine a set of Dirichlet series which is equivalent with a 287

given modular form of degreen. We need as pre liminaries the follow-
ings the following lemma and a host of other operator identities.

Lemma 27. Let f(Z) =
∑

TgeOa(T)e2πiσ(TZ) (T semi integral) (98) be a
modular from of degree n and weightK ≡ (2). Then

|a(T)| ≤ ϑo|T |K (409)

for T > o with a certain constantϑo

Proof. In view of (95) both sides of (409) are invariant relative to amod-
ular substitutionT → T[u].Hence we need prove (409) only forT > o
which are further reduced. Clearlya(T) has the integral representation,

a(T) =
∫

H

f (× + iT−1)e2πiσ(T×i−1)
[d×]

as in (pp.64) and then

|a(T)| ≤ max
×εH
| f (× + iT−1)|e2πn

259
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Hence to infer (401) we need only prove that

| f (× + iT−1)| ≤ C1|T |K

and this again is ensured from (49) as by assumptionT is reduced pro-
vided we show that288

|f(× + iT−1)| ≤ C2(t11t22 . . . tnn)
K (410)

where we assumeT = (tµν) �

We now prove (410). LetZ ∈ Yn and determineM

(

A B
C D

)

∈ Mn

such thatZ1 = M < Z >∈ fn Let N

(

S −E
E D

)

∈ Mn andZaN−1 < Z >=

(−Z + S)−1.

ThenZ1 = MN < Zo > andMN =

(

∗ ∗
cs+ d −ε

)

by the property of

modular forms we havef(Zo) = | − z+ s|Kf(z), andf(z1) = |(cs+ D)zo −
Co| f (zo) and consequently

f(z) = | − z+ s|−K|(cs+ D)zo −C|f(z1) (411)

ChooseS = (Sµν) as an integral symmetric matrix with±Sµν ≤ n
and|cs+D| , 0. Such a choice is clearly possible as|CS+D| is a polyno-
mial of degree almostn. Not vanishing identically in the elementsSµν

of S. SinceC, S, D are all integral matrices, we have then in particular

‖CS+ D‖ ≥ 1. (412)

Let Y,Yo denote the imaginary parts ofZ,Zo. Since||Z+S|| ≥ |Y| for
any real symmetric matrixS and|Yo| = |Y||−Z+S|−2 for zo = (−Z+S)−1

as is seen from (72) we conclude from (411) - (412) that289

| f (Z)| ≤ C3|| − z+ s||K||zo − (cs+ D)−1c||−K

≤ C3|| − z+ s||−K|yo|−K

= C3|| − Z + S||K|y|−K| (413)
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If now elements ofX are reduced modulo 1 as in (410) andY =
T−1,T > 0, and semi integral, then the elements of−X and of B =
−X + S are bounded , and

(−Z + S)y−1
= (BT − iE),Z = × + iY (414)

The elements of (BT − iE) are of the form
∑

Cµνtρν − iρµν and the
absolute value of{∑Cµνtρν − iρµν} is at most equal toC4tνν astνν ≥ 1.
Hence||BT − iE|| ≤ C5t11t12 . . . tnn and (410) now follows as a conse-
quence of (413) and (414).

Let us split up the series on the right of 98′ according to the rank of
T and write

f(iy) =
n

∑

r=0

fr(y), fn(y) =
∑

t≥0
ranKT=r

a(T)e2πσ(TY).

SetY = yY1, y > 0 and|Y1| = 1, and introduce the integral

R(S ,Y1) =

∞
∫

o

fn(yY1)ynS −1dy (415)

R(S ,Y1) is a function on the determinant surface|Y1| = 1 and is
invariant relative to the unimodular substitutions, viz.

R(S ,Y1[u]) = R(S ,Y1)

for any unimodular matrixu. Let u(y) be any angular character and let290

ξ(S , u) =
∫

Y1εK
|Y1|=1

R(S ,Y1)u(Y1)dϑ1 (416)

where as usual,K is the space of reduced matrices.
Sincey−1dydϑ1 =

1√
n
dϑ from (383), we have

ξ(S , u) =
∫

Y1εK
|Y1|=1

∞
∫

y=0

fn(Y)u(Y)|Y|n−1ydydϑ1
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=
1
√

n

∫

YεK

fn(Y)u(Y)|Y|S dϑ

In this we substitute forfn(Y) its representation by a series and in-
tegrate termwise. All these and the subsequent transformations can be
justified if u(Y) is bounded and the real part ofs is sufficiently large, and
we assume this to be the case. Then

ξ(S , u) =
1
√

n

∑

T>o

a(T)
∫

YεK

e−2πσ(TY)u(Y)|Y|S dϑ (417)

In the right side (417) we have a sum of the type
∑

T>o
F(T) whereT

runs over all semi integral matrices.
If { T } denotes the class of all matricesT[u] for a given T(u)

(-unimodular) then in general we have

∑

T

> 0F(T) =
∑

{T}

1
ε(T)

∑

u

FF(T[u])

where∈ (T) denotes the number of units ofT, i.e., of unimodular ma-
tricesu with T[u] = T this number is finite asT > 0 andu runs over all291

unimodular matrices while{T} runs over all distinct classes of positive
semi integral matricesT. Since by assumptionK ≡ 0(2) we have from
(95) thata(T[u]) = a(T) and then from (417),

ξ(S , u) =
1
√

n

∑

{T}

a(T)
ε(T)

∑

u

∫

YεK

e−2πσ(T[u]Y)u(Y)|Y|S dϑ

=
1
√

n

∑

{T}

a(T)
ε(T)

∑

u

∫

YεK

e−2πσ(T[u′]Y)u(Y[u′])|Y[u′]|S dϑ

=
1
√

n

∑

{T}

a(T)
ε(T)

∫

Y>0

e−2πσ(TY)u(Y)|Y|S dϑ

The substitutionY[R] → Y whereT = RR′ then yields

ξ(S , u) =
2
√

n

∑

{T}

a(T)
ε(T)
|T |S

∫

Y>o

e−2πσ(Y)
u1(Y)|Y|S dϑ (418)
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where
u1(Y) = u(Y[R−1])

Where

W(S , u1) =
∫

Y>o

e−2πσ(Y)
u1(Y)|Y|S dϑ (419)

that gives

ξ(S , u) =
2
√

n

∑

{T}

a(T)
ε(T)
|T |S W(S , u1) (420)

We may remark thatu1 is a solution of (362) belonging to the same
set of eigen values asu and ifu is bounded so isu1. We have to compute292

W(S , u1) and before we do this we need some preparations. For an
arbitrary function matrixA = (aµν) we prove that

(Y
∂

∂Y
)′AY= (Y(Y

∂

∂Y
)′A)′)′ → 1

2
A′Y+

1
2
σ(AY)E (421)

Indeed we know that

eρµ
∂y
∂yρµ

=
1
2

(δρτδµν + δρνδµτ)

and then

(Y
∂

∂Y
)′AY= (

∑

ρ

yνρeρµ
∂

∂yρµ
)(
∑

τ

aµτyτν)

= (
∑

ρστ

)yσρeσµ
∂

∂yρµ
aστyτν)

= (
∑

ρστ

yµτyσρeρν
∂

∂yρν
aστ)

′
+

1
2

(
∑

ρστ

yσρaστδρτδµν)

+
1
2

(
∑

ρστ

yσρaστδρτδµν)

= (Y((Y
∂

∂Y
)′A)′)′ +

1
2
σ(AY)E +

1
2

A′Y.
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By induction onK and by means of (421) one easily proves now that

(Y
∂

∂Y
)′YK =

K

2
YK +

1
2

K
∑

ν=1

σ(Yν)YK−ν(K ≥ 1) (422)

A direct computation yields that293

(Y
∂

∂Y
)′σ(YK) = KYK(K > 0) (423)

and

(Y
∂

∂Y
)′e−2πσ(Y)

=−2πe
−2πσ(Y)

Y (424)

By repeated applications of (422) – (424) we obtain that

((Y
∂

∂Y
)′)Ke−2πσ(Y)

(−2π)KYK + e−2πσ(Y)

∑

ν1+···+νr+ν<K

aKν1ν2...νrν
νσ(Yν1) . . . σ(Yνr)Yν (425)

with certain constant coefficients aKν1ν2...νrν. Taking traces, we have
σ((Y ∂

∂Y)′)Ke−2πσ(Y)
= e−2πσ(Y){(−2π)K +

∑

ν1+···+νS<K

mathscrCKν1ν2...νS
σ(Yν

1) . . . σ(YνS )} and this is easily generalised (by in-
ductions onρ) to the following result, viz.

σ((Y
∂

∂Y
)′)νρσ((Y

∂

∂Y
)′)νρ−1 . . . σ((Y

∂

∂Y
)′)ν1e−2πσ(Y)

=e2πσ(Y)
{

(−2π)ν1+···+νρ
σ(Yν1) . . . σ(Yνρ) + Cν1ν2...νρ(Y)

}

(426)

with

C (Y)
ν1ν2...νρ =

∑

µ1...µr
µ1+···+µr<ν1+···+νρ

C
ν1ν2...νρ
µµ2...µr σ(Yµ1)σ(Yµ

2) . . . σ(Yµ
r )

The interesting fact is that the terms on the right side of (426) are294

all homogeneous (of different degrees) and the first term is of the high-
est degree, vizν1 + ν2 + · · · + νρ while the degrees of the other terms
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are strictly less. TheC Kν1ν2...νr
′S ande

ν1...νρ
µ1...µr

′S occurring above are all
constants.

We now return to the integral formula (405) and specialise that func-
tionsϕ andψ occurring there asϕ = u1(Y), ψ = f(Y)|Y|S whereu1(Y) is
a bounded solution of the differential equation system (362) andf is an
arbitrary function at our disposal. ForG we now take the whole domain
Y > 0. By a suitable choice off (Y) we can obtain the integral over
the whole domain as a limit of integrals over appropriate subdomainsG
such that in the limit, the integrals over the boundary ofG vanish. If
λ1 . . . λn are the eigenvalues ofu1(Y), using (383) we obtain- from (405)
for K ≥ n that

− λK
∫

Y>o

f(Y|Y|S u1(Y)dϑ) =

= (−1)K
∫

Y>o

u1(Y)σ((Y
∂

∂Y
)′)K|Y|S f (Y)dϑ

= (−1)K
K

∑

ν=o

S ν(Kν )
∫

Y>o

{σ((Y
∂

∂Y
)′)K−νf(Y)}|Y|S u1(Y)dϑ

= (−1)K
K

∑

ν=o

S K−ν(Kν )
∫

Y>o

{σ((Y
∂

∂Y
)′)K−νf(Y)}|Y|S u1(Y)dϑ (427)

Finally by induction onρ we obtain by means of (427) that for in-295

dicesK1,K2, . . . ,Kρ ≥ n

λK1
λK2

. . . λKρ

∫

y>o

f(Y)|Y|S u1(Y)dϑ =

(−1)K1,K2+···+Kρ+ρ
K1
∑

ν1=0

K2
∑

ν2=0

· · ·
Kρ
∑

νρ=0

[∗]

where

[∗] = S K1+K2+···+Kρ−ν1−ν2...νρ

{

(K1
ν1

)(K2
ν2

) . . . (
Kρ
νρ )
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×
∫

Y>o

{σ((Y
∂

∂Y
)′)νρσ((Y

∂

∂Y
)′)νρ−1 . . . σ((Y

∂

∂Y
)′)ν1f(Y)}|Y|S

×u1(Y)dϑ} (428)

choosing in particularf(Y) = e−2πσ(Y) and assuming that the real part
of S is sufficiently large, all the above steps can be justified, and using
(426) we finally obtain that

λK1λK2 · · · λKρe2πσ(Y)
|Y|Ku1(Y)dϑ

= (−1)K1+K2+···+Kρ−nu1−ν2−···−νρ
∑

ν1=0

K2
∑

ν2=0

· · ·
Kρ
∑

ν
ρ=0

(K1
ν1

)(K2
ν2

) · · · (Kρνρ )S K1+···+Kρ−ν1...νρ[∗]

where

[∗] = (−2π)ν1+ν2+···+νρ
∫

Y>o

e−2πσ(Y)
σ(Yν1) . . . σ(Yνρ)|Y|S u1(Y)0

+

∑

µ1...µr
µ1+···+µr<ν1+···νρ

C
ν1ν2...νρ
µ1µ2...µ2

∫

Y>0

e−2πσ(Y)
σ(Yµ1) . . .

σ(Yνr )|Y|Ku1(y)dϑ (429)

296

Introduce againy andY1 in place ofY by

Y = yY1, |Y| = yn, y > o

and denotes as usual bydϑ1 the invariant volume element of the deter-
minant surfaceY1 > 0|Y1| = 1. Then from (383)

dϑ =
√

ny−1dydϑ1.

In the sequel we consider only homogeneous functionsu1(Y) of de-
gree 0 i.e., we assumeλ1 = 0. In (429), after the above substitutions,
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the integral iny is ay integral. Carrying out this integration overy we
obtain that

∫

Y>o

e−2πσ(Y)σ(Yν1) . . . (σ(Yνρ)|Y|S u1(y)dϑ

=
√

ny(nS + ν1 + · · · + νρ)(2π)nS −ν1···νρ

×
∫

Y1>0

(σ(Y1))−nS −ν1···vνρσ(Yν1
1 ) . . . σ(Y

νρ

1 )u1(y1)dϑ1

Let

Jν1ν2...νρ(S , u1) =
Λ(nS + ν1 + · · · + νρ)

Λ(nS )

×
∫

Y1>O

u1(Y1)(σ(Y1))−nS −ν1−···−νρσ(Yν1
1 ) . . . σ(Y

νρ

1 )dν1 (430)

and 297

J(S , u1) =
∫

Y1>O

u1(Y1)(σ(Y1))−nS dν1 (431)

Then (429) implies that

λK1λK2 . . .K(S , u1) = (−1)K1+···+Kρ+ρ
K1
∑

ν1=O

K2
∑

ν2=O

. . .

. . .

Kρ
∑

νρ=O

(

K1

ν1

) (

K2

ν2

)

. . .

(

Kρ

νρ

)

S K1 + · · · + Kρ − ν1 − · · · − νρ×

×{(−1)ν1+···+νρJν1···νρ(S , u1) +
∑

µ1...µr
µ1+···+µr<ν1+···+νρ

C
ν1ν2...νρ
µ1µ2...µr (2π)−µ1−···−µrJµ1...µr (S , u1) (432)

We therefore obtain for the integral corresponding to the indices
(ν1, ν2 . . . νρ) = (K1,K2, . . .Kρ) a representation of the kind

JK1K2···Kρ(S , u1) = (−1)ρλK1λK2 . . . λKρJ(S , u1)
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∑

µ1...µr
µ1+···+µr<K1+...+Kρ

Pµ1µ2...µr

K1K2...Kρ
(S )Jµ1µ2...µr (S , u1) (433)

wherePµ1...µr

K1...Kρ
is either 0 or is a polynomial inS of degree atmostK1 +298

K2 + · · · + Kρ − µ1 − µ2 − · · ·µr . Since the coefficientsC
ν1ν2...νρ
µ1µ2...µr

by their
very definition, do not depend on the eigen valuesλ1, λ2 . . . λn, this is
true also of the polynomialsP

µ1...µρ

K1...Kρ
(S ). The method of induction on

K1 + K2 + · · · + Kρ yields by virtue of (433) that

JK1K2...Kρ(S , u1) = qK1K2...Kρ(S )J(S , u1) (434)

whereqK1Kρ(S ) is again either 0 or is a polynomial inS of degree at
mostK1 + K2 + · · · + Kρ. We now show that

qK1K2...Kρ(S ) = nρS K1+···+Kρ + lower powers ofS , (435)

in other words thatqK1···Kρ(S is of degree exactlyK1 + · · · + Kρ and
that the coefficient of the highest degree term is preciselynρ. The proof
is again by induction onK1 + · · · + Kρ. If K1 + · · · + Kρ = O whence
K1 = K2 = · · · = Kρ = O we have obviouslyqK1...Kρ = nρ, ensuring that
the start is good. Assume now thatK1 + · · · + Kρ > O and

qµ1µ2...µr (S ) = nrS µ1+···+µr + lower powers ofS . (436)

for
µ1 + µ2 + · · · µr < K1 + K2 + · · · + Kρ.

If

qK1K2...Kρ(S ) = CS K1+···Kρ+ lower powers ofS (437)

we have to show thatC = nρ.
The application of (434) – (437) in (432) yields a polynomialiden-

tity. The powerS K1+K2+···+Kρ appears only on one side of this identity so
that the coefficient of this power must necessarily vanish. This requires299

that

K1
∑

ν1=O
ν1+···+νρ<K1+···+Kρ

· · ·
Kρ
∑

νρ=O

(−1)ν1+···+νρ
(

K1

ν1

)

· · ·
(

Kρ

νρ

)

nρ
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+ (−1)K1+···+KρC = O

Since this equation determinesC uniquely and if we substituteC by
nρ this equation is satisfied - at least oneKν being greater than 0 - we
conclude thatC = nρ.

We observe more over that the coefficient of S K1+···+Kρ−1 in
qK1K2...Kρ(S does not depend on the eigen valuesλ1, λ2 . . . λn. While
this is evident in caseK1+· · ·+Kρ = 1, as in this caseqK1...Kρ(S ) = nρS ,
the general result follows by induction on applying (434) in(433).

Now for any positive matrixY, |Y| is a rational function of the sums
of powers of the characteristic rootsλ1, λ2 · · ·λn of Y, and by a standard
result on elementary symmetric functions, it is then a rational function of
σ(Yν)(=

∑n
µ=1 λ

ν
µ), ν = 1, 2, . . . n. In particularσ(Yn) can be expressed

as a function of|Y| andσ(Yν), ν < n. If we takeY = Y1 with |Y1| =
1, thenσ(Yn

1) is a function ofσ(Yν
1), ν < n, and this function can be

determined to be of the form

σ(Yn
1) = (−1)n+1n+

∑

ν1···νn<n
ν1+···+νr=n

dν1ν2···νrσ(Yν1
1 ) · · ·σ(Yν1

1 ) (438)

with constant coefficientsdν1ν2...νr . 300

Now by definition

Jn(S , u1) =
Λ(nS + n)
Λ(nS )

∫

Y1>O

u1(Y1)(σ(Y1))−nS −rσ(Yn
1)dν1 (439)

and using (438) we have

Jn(S , u1) = (−1)n+1n
Λ(nS + n)
Λ(nS )

J(S + 1, u1)

+

∑

ν1ν2...νr<n
ν1+···+νr=n

dν1ν2...νrJν1ν2...νr (S , u1)

Hence

Λ(nS + n)
Λ(nS )

J(S + 1, u1) = q(S )J(S , u1) (440)
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with

q(S ) = (−1)n+1 1
n

(qn(S ) −
∑

ν1...νr<n
νρ+···+νr=n

dν1···νr qν1···νr (S (441)

q(S ) is polynomial inS of degreen. The powerS n appears inq(S )
with the coefficient

(−1)n+1 1
n
(

n−
∑

ν1···νr<n
νρ+···+νr=n

dν1ν2...νr nr )

and it is immediate from (438) (settingY1 = E) that this coefficient is301

exactly equal to 1. Henceq(S ) can be factored as

q(S ) = (S − d1)(S − d2) · · · (S − dn) (442)

with certain complex constantsd1, d2 . . .dn, and from our earlier state-
ments concerning the coefficient of S ν1+ν2+···+νρ−S in qν1ν2...νρ(S ) we
infer that the coefficient ofS n−1 in q(S ) viz. ±L1+L2+ · · ·+dn does
not depend on the eigen valuesλ1 . . . λn. By means of the functional
equation forΛ(S ), viz. Λ(S + 1) = SΛ(S we finally obtain from
(440) that

J(S + 1, u1) =
(S − α1) · · · (S − αn)

nnS (S + 1
n) · · · (S + n−1

n )
J(S , u1) (443)

We shall use this transformation formula for computingΛ(S , u1)
explicitly, by a method which Huber developed recently for the case
n = 2. Clearly the function

G(S ) =
Λ(S − d1)Λ(S − d2) . . .Λ(S − dn)

nnSΛ(S )(S + 1
n) . . .Λ(S + n−1

n )
(444)

satisfies the same transformation formula asΛ(S , u1) does in (443) so
that, if we set

H(S , u1) =
J(S , u1)

G(S )
(445)
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thenH(S , u1) is a periodic function ofS and

H(S + 1, u1) = H(S , u1) (446)

For values ofS for which the real part ofS is sufficiently large,302

J(S , u1) andG(S ) are regular functions ofS and then this is true also
of H(S ). SinceH(S ) is further periodic, it is an entire function. We
wish to show that this entire function is actually a constantdepending
only uponu1(E). For this we need some asymptotic formulae.

It is well known that

Λ(S − α) ∼
√

2πS S −α− 1
2 e−S (S → ∞)

and it follows that

G(S ) ∼ n−nS S −α1−α2−···−αn− n−1
2 (S → ∞)I . (447)

We shall now determine the value of the sumα1 + α2 + · · · + αn.
We know that this sum is independent of the eigen valuesλ1, λ2 . . . λn,
in other words it is independent of the functionu1. We can then choose
u1 ≡ 1 and obtain by means of Lemma 14 in view of (383) that

(2π)−nS + n(n−1)
4 Λ(S )Λ(S − 1

2
) · · ·Λ(S − n− 1

2
) =

∫

Y>O

e−2πσ(Y)|Y|S dν

=
√

n
∫

Y1>O

∫

Y>O

e−2πyσ(Y1)ynS −1dydϑ1

=
√

n(2π)−nS
Λ(S , 1).

Hence 303

J(S , 1) = (2π)
n(n−1)

4
Λ(S )Λ(S − 1

2) · · ·Λ(S − n−1
2 )

√
nΛ(nS )

Since by the Gaussian multiplication formula,

Λ(nS ) =
nnS − 1

2

(2π)(n−1)/2
Λ(S )Λ(S 1

n
) · · ·Λ(S − n− 1

n
) (448)
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the above gives that

J(S , 1) = (2π)
(n+2)(n−1)

4
Λ(S )Λ(S − 1

2 · · ·Λ(S − n−1
2 )

nnS (S )Λ(S + 1
2) · · ·Λ(S + n−1

n )
(449)

and consequently

J(S + 1.1)
J(S , 1)

=
S (S − 1

2) · · · (S − n−1
n )

nnS (S + 1
n) · · · (S + n−1

n )

A comparison with (443) now shows that

α1 + α2 + · · · + αn =
n(n− 1)

4
. (450)

Substituting this in (447) we have

G(S ) ∼ n−nS S −n+z)(n−1)/4 (S → ∞) (451)

and in particular, the asymptotic value ofG(S ) is independent of the
eigen valuesλ1, λ2 . . . λn.

Also it follows from (449) that

J(S , 1) ∼ (2π)n+2)(n−1)/4n−nS S −(n+2)(n−1)/4 (452)

and against (451) this gives304

J(S , 1) ∼ (2π)(n+2)(n−1)/4G(S )(S → ∞) (453)

It is also clear from (451) that

G(S + K) ∼ n−nS G(K) (K→ ∞) (454)

where we letK to tend to∞ through all rational values. With
ω(Y) = u1(Y)(σ(Y)

n )−S we can now state from (446) thatH(S +K, u1) =
H(S , u1) for every integerK. If now S → ∞ through all rational
values, say, it is clear in view of (454) that

H(S , u1) = lim
K→∞

H(S + K, u1) = lim
K→∞

J(S + K, u1)
G(S + K)
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= lim
K→∞

J(S + K, u1)

n−nS G(S )
(455)

Now

nnSJ(S + K, u1) = nnS

∫

Y1>O

σ(Y1)−nS −nKu1(Y)dϑ1

=

∫

Y1>O

u1(Y)(
σ(Y)

n
)S (σ(Y1))−nKdϑ1 = J(K, ω).

Hence we conclude from (455) by means of (454) that

H(S , u1) = lim
K→∞

J(K, ω)
G(K)

= (2π)(n+2)(n−1)/4 lim
K→∞

J(K, ω)
J (K, 1)

(456)

We now prove for continuous and bounded functionsω(Y) that 305

lim
K→∞

J(K, ω)
J(K, 1)

= ω(E) (457)

In view of the linearity ofJ(K, ω) in ω we can further assume that
ω(E) = 0 as in the alternative case we need only argue with the function
ω(Y) − ω(E) in the place ofω(Y). Representingσ(Y) and |Y| in terms
of the characteristic roots ofY one easily sees thatσ(Y) ≥ n

√
|Y| for

Y > 0. In particular,σ(Y1) ≥ n for Y1 > 0, |Y1| = 1, and the equality
is true only forY1 = E. This implies that ifσ(Y1) → n andY1 → A
thenσ(A) = n and consequentlyA = E. Hence givenε > 0 we can find
δ = δ(ε) > 0 such that|ω(Y1)| <∈ for σ(Y1) < n(1+ δ). Let |ω(Y1)| ≤ ϑ
for all Y1. (By assumptionω is bounded).

Then,

J(K, ω)
J(K, 1)

=

∫

y1>O

ω(Y1)σ(Y1)−nKdϑ

∫

Y1>O

σ(Y1)−nKdϑ1
,

and hence

∣

∣

∣

∣

∣

J(K, ω)
J(K, 1)

∣

∣

∣

∣

∣

≤ ε

∫

σ(Y1)≤n(1+δ)

(σ(Y1)−nKdϑ1

∫

Y1>O

(σ(Y1))−nKdϑ1
+ ϑ

∫

σ(Y1)>n(1+δ)

(σ(Y1))−nKdϑ1

∫

Y1>O

(σ(Y1))−nKdϑ1
· · ·
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≤ ε + ϑ(1+ δ)−
nK
2 n−

nK
2
J(K2 , 1)

J(K, 1)

306

From (452) we have

n−
nK
2
J(K2 , 1)

J(K, 1)
∼ 2(N+2)(N−1)/4(K→ ∞)

and then
∣

∣

∣

∣

∣

J(K, ω)
J(K, 1)

∣

∣

∣

∣

∣

∼ 2ε for K ≥ KO(ε)

In other words,

lim
K→∞

J(K, ω)
J(K, 1)

= O = ω(E).

Applying (457) in (456) we obtain that

H(S , u1) = (2π)(n+2)(n−1)/4ω(E).

Butω(E) − µ1(E) and thus

H(S , u1) = (2π)(n+2)(n−1)/4u1(E). (458)

After all these, we are in a position to face the integralW(S , u1) in
(419). We have

W(S , u1) =
∫

y>O

e−2πσ(Y)u1(Y)|Y|S dϑ

=
√

n(2π)−nS
Λ(nS )J(S , u1)

=
√

n(2π)−nS
ΛG(nS )H(S , u1) · · ·

= (2π)−nS
Λ(nS )n−nS Λ(S − d1) · · ·Λ(S − dn)

Λ(S )Λ(S + 1
n) · · ·Λ(S + n−1

n )

(2n)
(n + 2)(n)

4√
nu1
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307

We know from (418) thatu1(E) = u(T−1) = u∗(T) in the notation
in (p. 251). Using again the Gaussian multiplication formula (448) the
above gives that

W(S , u1) = (2π)−nS + n(n−1)
4 Λ(S − d1) · · ·Λ(S − dn)u∗(T) (459)

Then from (420)

ξ(S , u) =
2
√

n

∑

{T}

a(T)
ε(T)
|T |−S W(S , u1)

=
2
√

n
(2π)−nS + n(n−1)

4 Λ(S − d1) · · ·Λ(S − dn)D(S , u) (460)

where

D(S , u) =
∑

{T}

a(T)u∗(T)
ε(T)

|T |−S . (461)

The next question is whether the functionD(S , u) defined by the
above Dirichlet series for values ofS whose real parts are sufficiently
large, can be continued analytically in the whole plane. We have

ξ(S , u) =
1
√

n

∫

y∈K

fn(Y)u(Y)|Y|S dϑ.

We can take in the place ofK a domain which is invariant relative
to the transformationY → Y−1. Since the volume elementdϑ is also 308

invariant relative to this transformation we can write

ξ(S , u) =
1
√

n

∫

Y∈K
|Y|≥1

fn(Y−1)|Y|−S u∗(Y)dϑ

+
1
√

n

∫

Y∈K
|y|≥1

fn(Y)|Y|S u(Y)dϑ (462)
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By the transformation formula for modular forms we havef(−Z−1) =
|Z|Kf(Z) and in particular,f(iY−1) = inK|Y|Kf(iY). Then,

n
∑

r=o

fr (Y
−1) = f(iY−1) = inK|Y|K

n
∑

r=o

fr (Y)

and consequently

fn(Y−1) = inK|Y|Kfn(Y) +
n−1
∑

r=o

(

inK|Y|Kfr(Y) − fr(Y−1)
)

Substituting this in (462) we have

ξ(S , u) =
1
√

n

∫

Y∈K
|Y|≥1

fn(Y){inK|Y|K−S u∗(Y) + |Y|S u(Y)}dϑ +
n−1
∑

r=o

1
√

n

∫

Y∈A
|Y|≥1

(

inK|Y|Kfr(Y) − fr (Y−1)
)|Y|−S u∗(Y)dϑ (463)

Here we have assumed that the order of summation and integration
can be inverted. We now compute explicitly the integral corresponding
to r = o in the sum on the right side of (463). Withfo(Y) = ao, this
reduces to

a(o)
√

n

∫

Y∈K
|Y|≥1

(

inKyn(K−S ) − y−nS )

u∗(Y1)
√

ny−1dydϑ1

= a(o)
∫

Y1∈K
|Y1|=1

u∗(Y1)dϑ1

(

inK

n(S − K)
− 1

nS

)

= −a(o)(1, u∗)
n

(

1
S
+

inK

K −S

)

(464)

where (1, u∗) is the scalar product of the two angular characters intro-309

duced in (408).
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The first term on the right side of (463) is an entire function of S .
In the special cases whenn = 1, 2, all the other integrals occurring there
can be shown to be meromorphic inS and it will follow that in these
casesξ(S , u) and consequentlyD(S , u)′ can be continued analytically
in the whole domain. It is quite likely that this is true for arbitrary n too.
Further, due to a transformation

S → K −S , u→ u∗,

the first integral on the right side of (463) gets multiplied by a factorinK. 310

Forn = 1, 2, it is known that all the integrals occurring on the right side
of (463) have the above property so that in these cases we have

ξ(K −S , u∗) = inKξ(S , u) (465)

It is to expected that this transformation formula is also valid in the
general case and our conjectures are further supported (1) by the fact
that one of the integrals computed in (464) (corresponding to r = 0)
verifies all these properties.
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