Lectures on
Complex Analytic Manifolds

by L. Schwartz

Tata Institute of Fundamental Research, Bombay
1955
(Reissued 1963)



Lectures on
Complex Analytic Manifolds

by
L. Schwartz

Notes by
M.S. Narasimhan

No part of this book may be reproduced in any form by
print, microfilm or any other means without written permis-
sion from the Tata Institute of Fundamental Research, Co-
laba, Bombay 5.

Tata Institute of Fundamental Research, Bombay
1955
(Reissued 1963)



Contents

11

19

25

31

35

41

47

51

57

63

69

75



Contents

79

83

91

97

105

113

119

125

131

139

145

153



Lecture 1

Introduction

1
We shall first give a brief account of the problems we shall be consider
ing.

We wish to define a complex analytic manifod{™, of complex
dimensionn and study how numerous (in a sense to be clarified later)
are the holomorphic functions andf@rential forms on this manifold.

If V(V is compact, like the Riemann sphere, we find by the maximum
principle that there are no non-constant holomorphic functiong®n

On the contrary iV = C", the space ofi complex variables, there are
many non-constant holomorphic functions. On a compact complex an-
alytic manifold the problem of the existence of holomorphic functions
is trivial, as we have remarked; but not so the problem of holomorphic
differential forms. On a compact complex manifold there exist a finite
number, say’, of linearly independent holomorphicftérential forms

of degreep. We have to study the relation between these forms and
the algebraic cohomology groups of the manifold i.e., the relation be-
tweenhP and thep" Betti-numberbP of the manifold. It is necessary
not only to study holomorphic functions and forms but also meromor-
phic functions and meromorphic forms. For instance, it is necessary
to go into Cousin’s problem which is a generalization of the problem
of Mittag-Leffier in the plane. [Mittag-Lffler’s problem is to find in the
plane meromorphic functions with prescribed polar singularities and po-
lar developments]. We may look for the same problem on manifolds and
the relation between this problem and the topological properties of the
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2 Lecture 1

manifold. In the case of Stein manifolds the problem always admits of
a solution as in the case of the complex plane.

We thus observe the great variety of problems which can be exam-
ined. The study of these problems can be divided into three fundamental
parts:

1) Local study of functions, which is essentially the study of func-
tions onC". Immediately afterwards one can pose some general
problems for all complex analytic manifolds.

2) The study of compact complex manifolds; in particular, the study
of compact Kahlerian manifolds.

3) The study of Stein manifolds.

We shall examine some properties of compaahkerian manifolds
in detail. Compact Riemann surfaces will appear as special case of these
manifolds. We shall prove the Riemann-Roch theorem in the case of
a compact Riemann surface. We shall not concern ourselves with the
study of Stein manifolds.

Differentiable Manifolds

To start with, we shall work with real manifolds and examine later the
situation on a complex manifold. We shall look upon a complex analytic
manifold of complex dimension as a &-dimensional real manifold
having certain additional properties.

We define an indefinitely éierentiable C*) real manifold of di-
mensionN. (We reserve the symbalfor the complex dimension). It is
first of all a locally compact topological space which is denumerable at
infinity (i.e., a countable union of compact sets). On this space we are
given a family of ‘maps’, exactly in the sense of a geographical map.
Each map is a homeomorphism of an open set of the space onto an open
set inRN, the N-dimensional Euclidean space. [For instancey i 2,
we can imagine the manifold to be the surface of the earth and the image
of a portion of the surface to be a region on the two dimensional page
on which the map is drawn]. We require the domains of these maps to
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cover the manifold so that every point of the manifold is represented by
atleast one pointin the ‘atlas’. We also impose a condition of coherence
in the overlap of the originals of two maps. Suppose that the originals
of the maps have a non-empty intersection; we get a correspondence in
RN between the images of this intersection if we make correspond to
each other the points which are images of the same point of the mani-
fold. We now have a correspondence between two open subsits of
and we demand that this correspondence should be indefinifedyeati-
tiable i.e., defined by means Nfindefinitely diferentiable functions of 4
N variables.

Thus anN-dimensional © manifoldis a locally compact space de-
numerable at infinity for which is given a covering by open sgtsand
for eachU; a homeomorphismp; of U; onto an open setiRN such that
the map

ejog i gi(UinUj) — ¢j(UinUj)

is indefinitely diferentiable.

We call the pair J;, ¢j) a map, and we say that the family of maps
given above defines afterentiable structure on the manifold. We call
the family of maps an atlas. I, ¢) is a map, by composing with
the coordinate functions oRN we getN-functionsxy, ..., xy on U;
the functionsx; are called the coordinate functions and form the local
coordinate system defined by the map¢).

From a theoretical point of view it is better to assume that the atlas
we have is a maximal or complete atlas, in the sense that we cannot add
more maps to the family still preserving the compatibility conditions on
the overlaps. From any atlas we can obtain a unique complete atlas con-
taining the given atlas; we say that two atlases are equivalent or define
the same dferentiable structure on the manifold if they give rise to the
same complete atlas.

We have defined & manifold by requiring certain maps froRlN
to RN to beC® maps; it is clear how we should define real analytic or
quasi-analytic ok-times diferentiable C¥) manifolds.

We shall be able to put on@> manifold all the notions iR\ that 5
are invariant undeC® transformations. For instance we have the notion
of aC™ function on aC* manifoldVN. Let f be a real valued function
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defined onvN. Let (U, ¢) be a map; by restriction of to U we get a
function onU; by transportation we get a function on an open subset of
RN, namely the functiorf o ¢~ on ¢(U) and we know what it means
to say that such a function is@&* function. We definef to be aC*
function if and only if for every choice of the mapJ(y) the function

f o o~ defined onp(U) is aC* function. We are sure that this notion is
correct, since the notion of @™ function onRN is invariant undeC®
transformation. [We can define similai@/° functions on open subsets
of VN (which are also manifolds!)].

If x1,...,X%n are coordinate functions corresponding th ¢) and
ae Uwe define(ﬂ) (ﬂ) to be the partial derivatives of
0X1 a OXN a
f o taty(a).
On aCX manifold we can define the notion of @ function for
p<k.
The space of diferentials and the tangent space at a point.

We have now to define the notions of tangent vector affdrdintial
of a function at a point of the manifold.

We define the dferential of aC* function at a poina of VN. For
aC! function f on RN the diferential at a poing is the datum of the
system of value%ﬂ) yer (ﬂ) . We make an abstraction of this in

0X1 a OXN a
the case of a manifold. L&t be a fixed open neighbourhood containing
a. All C! functions defined on this neighbourhood form a vector space,
in fact an algebra, denoted Is . We say that a functiorf € Eayu
is stationary ag (in the sense of maxima and minima!) if all the first
partial derivatives vanish at the poiat The notion of a function being
stationary at has an intrinsic meaning; for if the partial derivativesat
vanish in one coordinate system they will do so in any other coordinate
system. LetS,y denote the subspace of functions stationarg. atVe
define the space of flierentials at to be the quotient spad&,y/Sau-
If f € Eau its differential ata, (df),, is defined to be its canonical
image in the quotient space. We can prove two trivial properties: its
independence of the neighbourhddahosen and the fact that the space
of differentials is of dimensioi. If we choose a coordinate system
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(X1,...,X%n) ata we have the canonical basidx))s, . .., (dxy)a for the
space of dterentials; in terms of this basis theférential of a function
f has the representation

@e= 3 (). @0

We now proceed to define the tangent space &t x is a vector in
RN we have the notion of derivation aloxg The best way to define this
f(a+tx) - f(a)
t k)
if it exists. If x is the unit vector along thg-axis we have the partial

is to define the derivative of a functidnalongx astlirg

derlvatlona—. Thus inRN a vector defines a derivation. In a maniz

fold, on the other hand, we may define a tangent vector as a derivation.
We may define a tangent vector as a derivation of the algehrawith
values inR%, i.e., as a linear map : Eqy — R which has the dferen-
tiation property:L(f - g) = L(f)g(a) + f(a)L(g). But there will be some
difficulty and we prefer to give a definition which is related directly to
the space of dierentials defined above. When we consider abity
functions these two definitions coincide.

We define a tangent vector or a derivatiom &b be a linear function
Eau — R which is zero on stationary functions. Once again this defini-
tion is independent dfJ; moreover the tangent spaceNsdimensional.

. ) 0
If (X1,...,%N) IS @ coordinate system at (&) are tangent vectors

ata. These are obviously linearly independeﬁt. Leibe any tangent

vector ata. We may write anyC* function f as
of
f="1 i —a)|—
@+ Y025 ) +o
whereg is stationary aa so that we have

L(F) = > L(x) (g—)‘;) or L= L(x) (%)

Thus corresponding to a coordinate system .(.., Xxy) we have the

canonical bas i i of the tangent space at
8Xl 9 8XN g p —_—
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Thus at a poing on the manifoldvN we have twoN-dimensional
vector spaces: the tangent spaca, d,(V) and the space of fierentials
ata, T;(V). They are duals of each other and the duality is given by the
scalar product

(L. dfa) = L(f), LeTaV), (df)acTy(V).

As itis, we first defined the space ofi@irentials at a point and then the
tangent space at that point; as we shall see, it is better to think of the
tangent space as the original space and the spacdfefetitials as its
dual space.



Lecture 2

C* maps, dffeomorphisms. Hfect of a map

9
We define aC* map from aC* manifold U of dimensionp to aC*

manifold V of dimensionq (p andq need not be equal). Lé&b be a
continuous map ob) into V. We say thatd is aC> map if, for every
choice of mapsuy, ¢) in U and {, ) in V such thatu n ®~1(v) is non
empty, the map

Yo®oy ™ pun®H(V)) — (V)

which is a map of an open subsetRff into one inRY, is aC* map.

We can define &% map of oneC™ manifold into another ik < n. If
U, V, WareC* manifolds andp; U — V and¥ : V — W areC*® maps
thenthe mapf o ® : U —» Wis also aC* map. Amapd : U —» V (U,
V C* manifolds) is said to be @ isomorphism or a dieomorphism
if ®is(1,1)and bothd and®’ areC* maps.

Let ® be aC* map of aC* manifoldUP into anotheiIC* manifold
V4. Leta be a point ofU andb = ®(a). We shall now describe how
gives rice to a linear map af,;(U) into Tp(V) and linear map oT (V)
into T;(U). Let us choose an open neighbourhdodf a and an open
neighbourhood of b such thatb(A) c B. If f is aCX function on an
open subset 0¥, f o @ is also aC¥ function on an open subset bf.
We call f o @ the reciprocal image of with respect tab and denote it
by ®~1(f) or ®*(f). Now let f € Epp; the restriction ofd~1(f) to A 10
belongs toE; a. We thus have a natural linear meap? : Epbs — Eaa.
By this map functions stationary htgo over into functions stationary

7
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ata: ®1: Sps — Saa. S0® induces a linear map dp g/Sp g into
Eaa/Saa i.€., @ linear map off;(V) into T;(U). We denote this map
also byd1.

We now give this map in terms of coordinate functioas. .., X, at
aandys,...,Yyq atb. Suppose the map is given gy = ®j(xq, ..., Xp).
®; areC™ functions of ki, ..., Xp). The reciprocal image of the func-
tion f(y1,...,Yq) is the function

(X]_, ey Xp) d f((D]_(X]_, ey Xp), Ce ,ch(X]_, ey Xp))

q
Letdf)y = X (ﬁ) (dyj)p be a diterential ato; then
j=1\9Yj/y

o= 3(20) (%) o

i=1 =1
In particular,

00;
(I)—l ), — it | .
@ = 3 (5] @0s
So in terms of the canonical basthy)p, . . ., (dyg) for T;(V) and the
canonical basisdxy)a, . . ., (dXp)a for T;(U) the linear transformation
ot Ts(V) — T;(U) is given by the Jacobian matrix

()

We have a Jacobian matrix only if we choose coordinate systeias at
andb.

The mapd~! goes in the direction opposite to that of the ndapve
now give a direct transformation. Associated with the linear dap:
Ty (V) = T;(U) we have the transpose of this mé&p T,(U) — Tp(V).
This mapping is called the fierential of the mapping ata. By the
definition of the transpose we have

(O(L), (df)p) = (L, (d(f o D))
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whereL € T4(U); that is, we haveb(L)(f) = L(f o ®) and this gives
a direct description of the map : To(U) — Tp(V), because iL is a
derivation ata, the above formula defines(L) as a linear form orkp,g
which is obviously a derivation. We shall hereafter refer toftedential
as a tangent co-vector.
Invariance of dimension

We now prove the theorem of invariance of dimension: tow dif-
feomorphic manifolds have the same dimension® lis a difeomor-
phism ofU ontoV, and®(a) = b, a € U, we have the linear maps
D : Ta(U) - Tp(V) and¥ : Tp(V) — Ta(U) where¥ denotes the in-
verse of the map : U — V. Since®o¥ =identity and¥o® = identity,
the same relations hold for the associated linear transformaticard
Y. Consequently(U) andT,(V) are isomorphic; st andV have the
same dimension.

Tensor fields and diferential forms

We proceed to examine the question of tensor fields affierdntial
forms. Leta be a point on th&€® manifold V. An element ofTy(V) 12
is called a contravariant vector at an element ofT;(V) is called a
covariant vector a. A tensor ag of contravariant ordep and covariant
orderqis an element of the tensor product

p q
(@ Ta(V)J ® [@ /\T;(V)] .
Thus any tensor of any kind that can be defined on a vector spacecan b
put at a point on the manifold.
p
We call an element of thp th exterior power\ Ty(V), a p-vector at

p
a and an element oh T;(V) a p-covector a@a. If bisa p-covectoch

p q p . gy ;
andw A  ag-covectorwAd (the exterior product ob and Z)isap+q
covector and we have

AT = Cpadad,
w w

The exterior algebra,

N
V) = D ATIV ATaV) = R
0
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over AT;(V) will be of particular interest in the sequel.

All this we have at a point of the manifold. Now we consider the
whole manifold. A vector field (contravariant) oh is a map which
assigns to every poirtof the manifoldV a tangent vecta#(a) ata; 6 is
a map oV into the set of all tangent vectorséfsuch that(a) € T, (V).
Similarly a p times contravarianty times covariant tensor field oviis
a map which assigns to every poabf V a tensor at of contravariant
order p and covariant ordeq. A scalar field is an ordinary real valued
function onV. If we assign to every poird € V a p-covectorw(a) ata
we obtain a dierential formw of degreep onV. w(a) is called the value
of the diferential form at the poind. Associated with a dierentiable
function f we have a dterential form of degree 1 which assigns to every
pointathe diferential off ata, (df),.

We state some trivial properties of tensor fields anfiedential
forms. All tensor fields of a particular kind (of contravariant orger
and covariant ordeg) form a vector space. We can add tensors at each
point and multiply the tensor at each point by a scalar). THewintial
forms of degreg(p = 0,1, ..., N) form a vector space. We can multi-

ply a differential form of degre, cB, and a diferential form of degree

o} g and obtain a dferential form,c?)Ag of degreep + g; we have only
w w

to take at every poird the exterior produaﬁ(a)Aﬂ(a). Thus the space
w
of all differential forms is an algebra.
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“The Tensor Bundles”
14

We have diferent kinds of tensor’s attached at each point Gf.amani-
fold VN. We shall organize the system of tensors of a specified type into
a new manifold.

We first consider the set of all the tangent vectors at all points of
V. We denote this set by (V). We define onTl (V) first a topological
structure and then afiiérentiable structure so thatV) becomes alg-
dimensionalC*-manifold. We do this by means of the fundamental
system of maps defining the manifold structurevor\We choose a map
(U, ). Letxy,..., Xy be the coordinate functions corresponding to this

. 0
map. Leta € U. In terms of the canonical ba S@E a tangent vector

L ata has the representation

= X6 aq),

Let o(a) = (as,...,an) € RN. We can represerit by the point &,

. an, &1, . .., &n) In RN, The set of all tangent vectors at poirts

U are in (11) correspondence with the spag@J) x RN. We carry
over the topology inp(U) x RN to this set (by requiring the map —
(a1,...,an, &1, ..., &n) to be a homeomorphism). This we do for every
map U, ¢). We have now to verify that the topology we introduced is
consistent on the overlaps.

Let (W, y) be another map and, ..., yn the corresponding coordi-

nate functions. Led € U N W andy(a) = (by,...,by). Let the com- 15

11



16

12 Lecture 3

ponents ofL with respect to the canonical basis corresponding to the
map W, ¢) be @1,...,7n). by, ..., by areC® functions of @y, ..., an).

Further
L=>] Ui(aiyi)a
= Zfi ((%)
=226 2 ), o),
so that

n= ij(ayl)

So then areC* functions of @y, ...,an, 1, - . ., én). Hence the map

(@, ....an,&é1,...,én) = (br,....bnu 71, .. 1N)

is aC* map; likewise the map

(bl""’bN97719"'7T]N) - (a].’""aN"fl’""é:N)

is aC* map. In particular the maps are continuous and this proves that
the topology we defined is consistent on the overlaps. Now the above
reasoning shows also that we have in fact definggtf°astructure on
T(V). Of course the atlas we have given is not complete. This is a very
special atlas; in fact any map Wfgives rise to a map in this atlas.

If we have aCK-manifold V we can put onT (V) only a k — 1)
times dtferentiable structure; for, the expressions forhm terms of
the & involve the first partial derivatives which are onlly £ 1) times
differentiable. In particular i¥ is a Ct-manifold T(V) will be only a
topological manifold.

The set of allp-times contra variant ang-times covariant tensors
on aC*® manifoldV can be made similarly into@* manifold

{é T(V)] ® [® T*(V)]
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We also have the manifold mﬁcovectorsXT*(V) which is of dimension

N+ (',\3‘ . The set of all tangent covectors, not-necessarily homogeneous,
(i.e., the union oAT;(V), a € V) can also be endowed withGt® struc-

ture: this manifold AT*(V), is of dimensiorN + 2N,

All these manifolds built fromV/ have quite a special structure; they
have the structure of a vector fibre bundle. We shall not define here
precisely the concept of a fibre bundle.

Let us consider, for exampl&(V). If a€ V, T5(V) is called the fibre
over the pointa. T(V) is the collection of the fibres, each fibre being
a vector space of dimensidd. Actually T(V) is partitioned into the
fibres. T(V) is called the tangent bundle ¥f T(V) is the bundle space
andV the base space. There are two important maps associated with
T(V). One is the canonical projection: T(V) — V which associates
to every tangent vector its origin: If € T4(V), (L) = a. (This map
is the projection of the bundle onto the base). The other map gives the
canonical imbedding d¥ in T(V); this mapV — T(V) assigns to every
pointa € V the zero tangent vector at We can now conside¥ as a
submanifold ofT (V). (This canonical imbedding is possible in any fibrez
bundle in which the fibre is a vector space).

A section of a fibre bundle is a map which associates to every point
a in the base space a point in the fibre ogerA section ofT(V) is a

p
vector field. A section oAT*(V) is a diferential form of degre@. A
tensor field of a definite type is a section of the corresponding tensor
bundle.

C* Tensor fields andC® Differential forms

A C= vector field is an indefinitely dierentiable section of (V) i.e. it
isaC>®mapd : V — T(V) such that fora € V, 8(a) € Ta(V). AC®
differential formis &~ mapw : V — AT*(V) such thatu(a) € AT;(V)
forae V. A C* tensor field is defined similarly.

It is good to come back to the coordinate system and see @i a
vector field looks. Leb be aC™ vector field. Let U, ¢) be a map oV.
Letae U andg(a) = (ay,...,an) € RY. Let the components @fa) in
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terms of the canonical basis (with respectlib()) atabeéy, ..., én.

&=&(@,...,aN)

are functions of4y, ...,an). Thus exactly as ifRN the vector field is
given byN-functions of the coordinates of the origin of the vectom If
is aC* vector field the map

(al,...,aN) - (a]_,...,aN,fl,...,fN)

is aC® map and hence thg's areC* functions of @, ...,ay). Con-
versely if for every choice of the mapl(y) the&'s areC* functions of
(a1,...,an), 0is aC= vector field, since they's are alwaysC> func-
tions of @y, ..., an).

It will be useful in particular to know how to recognize by means
of the coordinate systems whether a givefiedential form isC*®. Let
us consider, for simplicity, a fferential form of degree twczf). Let
(U, ») be a map andy, ..., xy the corresponding coordinate functions.
If a e U, (dX)as---,(dXy)a is the canonical basis far; (V). Once we
know the canonical basis fdr;(V) we also know the canonical basis

2 2
for its second exterior powexT; (V). The canonical basis fokT;(V)
is

{(dx)aA(dx;)a} i < j.
In terms of this basis we write

o@ =Y wij(@) [dx)aA(dx)a.

i<j

. 2 . , , , ,
wij(a) are functions of - w is aC* differential form if and only if for
every choice of the mapX ¢) the functionsw;j areC™ functions.

In terms of the canonical basigx),, we can writew as follows:

w= Za)ij dxAdXx;
i<j
This is not ‘abuse of language’; the expression has a correct meaning

wij is a function i.e., a dierential form of degree zerax; is the difer-
ential of the functionx; i.e., the diferential form of degree one which
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assigns to the poirgtthe diferential %), and we have already defined
the exterior multiplication of two dierential forms.

It is quite remarkable that we can define a manifold structure on the
set of all tangent vectors; a priori there was no relation between tangen
spaces defined abstractly. Also the notion of a vector varying continu-
ously in a vector space which itself varies is a priori extraordinary.

C* Differential forms

By a form we shall always mean @ differential form. When we
considerCK differential forms we will state it explicitly. We recall some

fundamental properties of the forms: Lebe ap-form. When we have
a map we have a representatiomr})ifn terms of the canonical basis:

p
w = Z wjln-jpdleA"'Adep‘
j1<...<jp

This is only a local representation; we do not, in general, have a global
representation. The following are the principal properties of the forms.

1. Differentiability.

2. The linear structure: We can add twgp-forms and multiply a
form by a scalar. Allp-forms form a vector space.

3. Algebra structure: We can multiply two formsv andw and ob-
tain the formwAw. The multiplication satisfies the anti-commuta-
tivity rule.

4. The reciprocal image of a form: 20
This is a very important notion. L& andV be twoC*® mani-
folds, andd : U — V aC® map. Supposg is a diferential form
of degreeponV. o gives rise to a dferential form of degre®

onU, (1)‘1(5)), which we call the reciprocal image afby ®. Let
ae€ U and®(a) = b. The value ofw atb is a p-covector,w(b),

ath. @‘1(5)) is the diferential form which assigns to every point
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ae U the p—covectord)‘l(c?)(b)). Itis seen easily that ib is aC*
form ®1(w) is also aC* form.

Any kind of covariant tensor field has a reciprocal image. How-

ever it is in general impossible to define the direct image of con-

travariant tensor field. For it may be that a pome V is the
image of no point ofJ or the image of an infinity of points df.

Of course we can define the direct image of a contravariant tensor

field when® is a difeomorphism.
One of the reasons for the utility offéierential forms is that they

have a reciprocal image. Another is the possibility of exterior

differentiation.

5. Exterior di fferentiation:

To a givenCK differential formd of degreep we associate a fier-
ential formd of degreep+ 1 which is of clas€k; d& s called
the exterior diferential or the coboundary @. The important

point to be noticed is that the exterioffidirential of a diferential
form of degreep is of degreep + 1.

We define the exterior fferentiation by axiomatic properties. We
restrict our attention t&€* forms only. Letg”‘ denote the space of all
C>p-forms on the manifold (ifp # 0,1, ..., N,ga = 0). Thend : ga -
Iogal(p =0,1,...,N) is a map which satisfies the following properties:

1) The operatioml is purely local: if two formsv andw coincide on
an open set), thendw = —dw onU.

2) dis alinear operation:
d(w + w) = dw + dw

d(Aw) = Adw, A a constant.

3) With respect to the structure of algelathas the following prop-
erty:

q q q
d(& A @) = db A @+ (=1)PO A da
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(The sign £1)P in the second term is to be expected as no symbol
can pass over p-form without taking the sign<1)P).

4) d? = 0;i.e.,d(dw) = 0.

5) If f is a form of degree zero i.e., a scalar function, tlagnis
the ordinary diferential of the function which associates to every
pointa the diferential off ata.
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Existence and uniqueness of the exterior €lierenti-
ation. The DGA & (V).

22
We give a sketch of the proof of the existence and uniqueness of

First we assume the existence and prove uniqueness. &iscelocal
operation it is enough to reason on an open subset RN. Let w be a
p form onU andxg, ..., Xy the coordinate functions iRN. Then

w = Z wjl---jpdle Ao A dep.

j1<“.<jp

Letd’ be an operation satisfying conditions [(1) - (5)]. Sirmféés linear
it is sufficient to consider the form

w = wjl...jpdle VANPIRAN dep
By the product rule

’ ’
dw = d(wj,..j,d%j; A...AdX})
— 4 . . . .
= d w]l---]pdxll AN dX]p
. . / . .
+ lede (dle VANPURAAN dXJp)

By property 5df = d’f for a functionf. So
d'(dxj, AL Adxg) =d(dx; AL AdX).
Using the product rule it is seen by induction that
d'(d'xj, A...Ad'Xj,)

19
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p .
= Y DT AL ADXG ADAX) A X AL A DX,
i=1

Sinced’? = 0, this sum is zero. So
4 — . . . .
d'w = dwj, .j, AdXj; A... AdX,.

This proves thatl’ is unique. This formula also shows how we should
try to define the operatiod to prove the existence. We defiddocally
by this formula.

Let (U,¢) be a map andg,..., Xy the corresponding coordinate
functions. Letw be ap form. InU, w can be written as

w = Z wjln-jpdle AN A dep

j<..<jp
In U we define

dw = Z dwjl...jp A de1 Ao A dep.

ji<e<jp

It can be verified that has the properties 1 - 5 1o, It follows from this
and the uniqueness theorem we proved abovedligtlefined intrinsi-
cally on the whole manifold (IJ; andU; are of two maps and;, d;
the exterior diferentiations defined ibj, U; respectively by the above
formula, thend; = d;j in U; N U;j by the uniqueness theorem).

Let us consider some examples.Fh”lwe have 0, 1, 2 and 3 forms.
If fisazeroform,

of of of
df = &dx+ a—ydy+ Edz

In R® the canonical basis for two forms is usually taken tadlge\ dz,
dzA dxanddx A dy. LetAdx+ B dy+ C dzbe a 1-form.

oc 0B
d(Adx+de+Cdz)_(a/—E)dy/\dz
oA 0C oB 0A
+(E—&)d)(/\dx+(&—a—y)d)(/\dy
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If AdyAa dz+ B dzA dx+ C dxA dybe a two form, then
dAAdyAdz= g—':dX/\ dyAdz

and

d(A dyA dz+ B dza dx+ C dxA dy) = (% s B %

ax *ay + ﬁ)dxx\ dyAdz

The exterior derivatives of 0, 1 and 2 forms correspond respéctive
the notions of the gradient of a function, and curl and divergence of
a vector field. The formula@?® = 0 corresponds to curl grad 0 and
divcurl = 0.

p p
We make some remarks on the spa®) of p forms onV. &(V)
0

is an infinite dimensional vector space. For insta#i€¥) is infinite di-
mensional since we can construdE& function taking prescribed val-
ues at arbitrary finite number of points. The space

N p
ENV) =Y EV)
0

is an algebra. (The product of twgf® forms isC*). We shall later put
on & (V) a topological structure so that it becomes a topological vecter
space. &(V) is a graded algebra: it is decomposed into the homoge-

neous pieces%(V) and the multiplication obeys the anti-commutativity
rule. £(V) has an internal operatiah: &(V) — &(V) by which a ho-
mogeneous element of ordpiis taken into a homogeneous element of
orderp + 1 with the propertiesi? = 0 and

q q q
d(& A @) = do A @ + (~1)PH A do.

& (V) has the structure of what is called a graded algebra witlifardi
ential operator (DGA).

We consider the behaviour dfwith respect to mappings of mani-
folds. Let® : U — V be aC*® map of the two manifold&) andV.
Then we have a mappiny® : £(V) — &(U)-®~1is a homomorphism
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of the graded algebré(V) into the graded algebi&(U). We shall now
prove thatb~! is a homomorphism of the DGAs. We have to prove that
@1 commutes with the coboundary operator

ddH(w) = oY(dw)

wherew is a form onV. (Strictly speaking thed’s are diterent). We
shall prove this with the minimum possible calculation. Sideadd~*
have a local character we may assuth@ndV to be open subsets of
Euclidean spaces. Sinde?! : £(V) — &(U) is a homomorphism of
the algebras it is dficient to prove the result for a system of elements
which generates’ (V). If xq,..., Xy are the coordinate functions W,
dx,...,dxy and theC* functions onV generatef' (V). So we have
only to prove in the case whanis a 0-form and whew is a 1-form
which is the dfferential of a function. Lef be a 0-form; the result we
wish to prove is just the definition of the reciprocal image:

®~Y(df) = d(f o ®) by definition
= d(@~L(f)).

Letw = df, f being a functiondw = 0, so® 1(dw) = 0. We have to
prove thatd®~1(d f) = 0; but we have just proved that

d1(df) = d(@1(f)), so thatdd 1(df) = d(dd~(f)) = O.

Change of Variables.

The reciprocal image of a map gives a good method of obtaining the
formula for change of variables. Let us consider for instance polar co
ordinates inR® : x = r Sin@Cosyp, y = r SindSing, z = r Cosp. We
wish to expres®\ dxA dyin terms of polar coordinates. We have a map
®: R = R:O(r,6,¢) = (XY, 2). We have to find the reciprocal image
of A dxA dywith respect tab. Sinced™! preserves products,

O YA dxA dy) = @ HA)D (X A ©7L(dy)
= A(r Sind Cosgp, r Sind Sing, r Cosy)
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= (Sin8 Cosedr + r Cosd Cospdd — r Sind Singdy)
= (Sin8Sinedr + r Cosé Singdd + r Sind Cosedyp)
= A(r? Sind Cosgde A de — r Sir? 6de A dr)

(We usedr A dr =0, —dr A dg = do A dr etc).

Poincaré’s Theorem on diferential forms in RN.

We mention here without proof a theorem of PoirgcaiVe say that a27
p-form & is exact ifd = dpg wherepc:u1 isa@-1)form. Forp =0,
this implies, by convention, thab = 0. Sinced? = 0, a necessary
condition forf) to be exact is thadif) = 0. Poincag’s theorem is that,
in RN, this condition is also dficient ford to be exact, provideg > 1.
Thus a necessary andfBaient condition for ap-form (p > 1) in RN to

be exact is that its exterior derivative is zero.
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Manifolds with boundary

28
The upper hemisphere (with the rim) is an example of a manifold with

boundary. Here the boundary is regular. But in the case of a closed
triangle the boundary has singularities at the vertices. We consider only
manifolds with good boundary. The manifolds that we have defined
earlier are special cases of manifolds with boundary and will be referre
to as manifolds without boundary.

An N-dimensionalC® manifold with boundary is a locally compact
spaceVN, countable at infinity, for which is given two kinds of maps
with the following properties. A map of the first kind maps an open
subset ofV homeomorphically onto an open subsetR), exactly as
in the case of the ordinary manifolds. A map of the second kind maps
an open subset & homeomorphically onto an open subset of the half-
space

(X1, ...,xn), X1 > 0}, in RN,

The domains of the maps cowr In the overlaps the maps are related
by C* functions. (We calculate the -derivatives at points on the hy-
perplanex; = 0 in the positive direction). As in the case of ordinary
manifolds we require the family of maps to be complete.

The notions of2*® functions, tangent vectors,fikrential forms etc.
can be defined as in the case of manifolds without boundary.

Leta € V. An interior tangentlL, ata is defined to be a positive
derivation: if f > 0 is of clas<C! in a neighbourhood adandf(a) = 0, 29
thenL(f) > 0 and there exists at least one functibsuch thatf > 0,

25
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f(a) = 0 andL(f) > 0. An exterior tangent & is a negative derivation:
if f >0, f(a) =0thenL(f) < 0 and there exists at least ohesuch that
f >0, f(a=0andL(f) <O0.

Supposea is a point which is in the interior of the domain of a
map of the first kind, sayl,¢). Let f be a function of clas€?! in
a neighbourhood o& with f > 0 andf(a) = 0. Sincef attains the
minimum ata, by considering the functiofi o ¢~ at ¢(a) we find that
f is stationary aa. SoL(f) = O for any tangent vectar ata. So at
a point which is in the interior of the domain of at least one map of the
first kind there are no interior and exterior tangents. On the other hand,
let a be a point which is mapped by a map of the second kind onto a
point in the hyperplang; = 0: let (U, ¢) be a map of the second kind at
a, (x1,...,Xy) the corresponding coordinate functions asfd) a point
on the hyperplan&; = 0. Then the tangent vector

0 0
=) v )

is an interior tangent vector atif & > 0. (and exterior tangent vector if
. f .
& < 0). For,iff = 0andf(a) =0, L(f) =& (57) since thef o ¢!
1

function is stationary ap(a) on the hyperplane; :aO; L(f) > O soif
& > 0 and for the functiorf = x;3(x3 > 0, x1(a) = 0), L(x1) = é1 > 0.

It follows that a point which is in the interior of the domain of a map
of the first kind is never mapped by a map of the second kind onto a
point in the hyperplang; = 0 and that a point which is mapped by a
map of the second kind onto a point in the hyperplane- 0 is not in
the interior of a map of the first kind.

A point which is in the domain of at least one map of the first kind
is called an interior point. A point which is mapped by a map of the
second kind into a point on the hyperplaxie= 0 is called a boundary
point.

Let VN-1 denote the set of boundary points \éf VN1 is called
the boundary ofv. VN-1is anN — 1 dimensional manifold without

boundary; the maps afN~1 are given by the restriction of the maps of
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the second kind twN-1. Moreover the tangent space\d ! at a point

a € VN-1 can be canonically identified with a subspace of the tangent
space aaito VN,

Oriented manifolds.

Let EN be anN-dimensional vector space over real numbers. The space
N
AEN is one dimensional and is isomorphic R but not canonically.

N
To orientEN is to decide which elements ofEN should be considered
positive and which negative. & # 0 andB # O are two elements of

1'\\IEN, we haveA = aB, aa real number. The non-zero elements?\lﬁ'\‘

fall into two classes defined as follows: two elemeBtand A = aB
belong to the same classaf > 0 and to opposite classesaf < 0.
Selecting one of these two classes as the class of pobltivectors is
called orienting the vector spa&&. A vector space for which a choices1
of one of the two classes has been made is said to be orientgd.i$f

N N
oriented we may orierfE*N in a natural wayAE*N is the dual ofAEN;

N
we say that a non-zero elementArE*N is positive if its scalar product

with any positive vector im’\\IEN iS positive.

We can orient only vector spaces over ordered fields.

Let VN be aC* manifold (with or without boundary). By an orienta-
tion ata poina € VN we mean an orientation of the tangent Spag/).
VN is said to be oriented if we have chosen at every point™an ori-
entation satisfying the following coherence condition. Lé&tf) be any
connected map (i.e., a map whose domain is connected andl. The
differential of the map ata gives rise to an isomorphism @{(V) onto
T@(RY), which can be identified witfR\ itself. Since we have ori-
entedT (V) this isomorphism induces an orientation®h. We require
this induced orientation oRN to be the same for every poiate U.

If a manifold can be oriented it is said to be orientable; otherwise,
non-orientable. Not every manifold is orientable. For example the
Mobius-band (with or without the boundary) is non-orientable. The dif-
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ficulty in non-orientable manifolds is this: LeU(y¢) be a connected
map. We can always choose a coherent orientatidd.if (U’, ¢’) is
another connected map such that U’ is non-empty we can extend
the orientation inJ to U’. In non-orientable manifolds it so happens
that when we continue the orientation like this along certain paths and
come back tdJ we arrive at the opposite orientation.

We can give a description of the orientation which uses only the
maps. Suppos¥N is oriented. Let(,¢) be a map andx, ..., Xn)
the coordinate functions ofX ¢). Then this map determines a unique
orientation inRN. If this induced orientation is not the canonical ori-
entation ofRY (canonical orientation iR\ is the orientation for which
e A... Aey > 0 where €,...,eyN) is the canonical basis fcRN) the
map given by X, X1, X3, ..., Xn) induces the canonical orientation in
RN. Thus it is possible to coverN by the domains of maps which in-
duce orRN the canonical orientation; itf, ¢) and (U’, ¢’) are two maps
which induce orRN the canonical orientation iRN the coherence maps
¢ o ¢’ "t andy’ o ¢! have a positive Jacobian. Conversely if we have
a covering ofvN by the domains of maps all of whose coherence maps
have a positive Jacobian, these maps determine an orientatibh of

Let VN be a manifold with boundary and™-1 its boundary. /N
is orientedVN-1is canonically oriented: th — 1 vectorey_1 tangent

to VN-1 at a pointa € VN1 will be said to be positive ife; being an
exterior tangent vector tgN ata, theN vectore; A en_1 tangent tovN
atais positive.

We consider only orientable manifolds and assume further that a
definite orientation has been chosen for the manifold.

Integration on a Manifold.

Let VN be an oriented manifold (with or without boundary). kebe a
continuousN-form on VN which vanishes outside a compact set. With

w We can associate a real numb§r¢,u called the integral ofv onV
Vv
possessing the following properties:
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1) LetK be a compact set outside of whichis zero. LetU be an
open set containing. Then

o[

U \%

(The orientation orJ is the one induced from the orientation on

V)
2) If w andw’ are two continuoudN-forms vanishing outside com-
pact sets,
fw+w’=fw+fw'; f/lw=/lfw,/l
\% \Y Vv \% \%
a constant.

3) If & : VN — WN is an orientation preservingfiitomorphism of
VN ontoWN andw a continuous\-form onWN, then

-1
fd)a):fw.
\% W

4) If V is an open subset &" with the canonical orientation ¢tV
andw = f dx A ... Adxy, f acontinuous function vanishing
outside a compact set,

Jo= [ [ tan..ax

where the term in the right side denotes the ordinary Riemann
integral of f.

It can be proved that these four properties determine the integral
uniquely.
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Integration on chains.

34
Let\'\/I be an orientedC* manifold without boundary. We shall now

define integrals op-forms on some kind gb-dimensional submanifolds
of \’\{
An elementaryp-chain onV is a pair Vv, ®) whereW is a p-dimen-
p p
sional orientedC* manifold with boundary an® : W — \’\{ isaC®
p

map which is continuous at infinity (i.e., the inverse image of every
compact set o¥/ is a compact set dV). To avoid certain logical diii-
culties we shall assume that all the manifdygsire contained iR, A
p-chain onV is a finite linear combination of elementapychains with
real codficients. Thep-chains evidently form a vector space oter

The support of g-form w is the smallest closed set outside which
the form in zero. Thus it is the closure of the set of pomtuch that
w(@) # 0. The support of an elementary chaigr’,(d)) is the image of

the mapD. The support of an arbitrary chain
I'p= all“pl +-- 4 akl"pk

(wherel'; are distinct elementary chains) is defined to be the union of
the supports ofj, i = 1,2,...,k. The support of a chain is always a
closed set (since the image of every closed set by a map continuous at
infinity is a closed set).

Let & be ap-formonV andI', = (Vp\)/ d)). Let us suppose that thess

31
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intersection of the supports g)fandl“p is compact. Then we define the
integral of& on Tp, [ &, by the formula

I'p
p _1P
fa)=fd)1cu.
Tp vlg

The integral on the right is defined @sl(ap)) has compact support. If
I'p = Y aly (I'pi elementary chains) is an arbitrapychain such that

the intersection of the supportsiof anddis compact define the integral
of & on I'p by:

fc?) = Z aj pr

I'p Fpi

Stockes’ Formula
Let (v|:\)/, ®) be an elementarp-chain. LetV'\/1 denote the boundary of
p_

W oriented canonically an@:DlV'\/1 the restriction of® to V\/1 Then
p p- p-

(V.\/l,CD|V.\/l) is ap — 1 chain. We define this chain to be the boundary
p-1  p-
of the p-chain QQ/ ®). We define the boundary of an arbitrgmychain

by linearity. We denote the boundaryIof by bl',. If b is the operator
which maps a chain to its boundary theh= 0, since the boundary of
a manifold with boundary is a manifold without boundary.

LetI'p be ap-chain andpcf)l a p - 1 form such that the supports of

-1 , ,
I'p andw have a compact intersection. Stokes’ formula asserts that

f Pl f at
Ip

br
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Currents

Currents were introduced by de Rham to put the chains and the forms
in the same stock. Currents are generalizations of distributiori@on
Currents are related tofterential forms just the same way distributions
are to functions.

P
Let &(V) denote the space gi-forms onV. We shall introduce

a topology in£°(V) SO thatg(V) becomes a topological vector space:
We say that the sequence of fon{m%} tends to zero ag — oo, if for
every map (, ¢) and for every compact sé& c U each derivative of
each coéicient Ofcgj [expressed with the help of the coordinate func-
tions (xi, ..., Xn) of the map U, )] tends uniformly to zero op(K) as
j — o0. We may simply describe this topology as the topology of uni-
form convergence of the “cdigcients” of the forms along with all their
derivatives on every compact subseMofConvergence in the sense de-
scribed above is called convergence in the sengg afin the sense of
C™.

Let % denote the space @iHforms with compact support. It is -

p p
cult to introduce a topology oy adapted to th€> structure. LetZx 37
denote the space @i-forms whose supports are contained in the com-

p
pact setk. We considerZk as a topological space with the topology

p
induced froms&’.

A current,T, of degreep (or of dimensiorN — p) is a linear form on
N-p N-p
2 the restriction of which to eveny ¢ (K compact) is continuous. If
1 andy, areN — p forms with compact supports

T(p1 + ¢2) = T(e1) + T(g2)
T(A¢1) = AT (1), A a constant

if ¢ € 2N-P have their supports in the same compacteind if
¢j — 0inthe sense A* asj — oo thenT(gp;) — 0 asj — co.
We shall write(T, ¢) instead ofT (¢).
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Some examples of currents

38
. N-p N-p
1) AC>p-formw defines a current of degree For every (pp €9

we define
p N-p p N-p
(w, ¢ )z\jwa)A 1%

\Y

N—
(up) A (,op has compact support).

We have to verify that ife;} is a sequence dfl — p forms whose
supports are contained in the same compacKsand ifo; — 0
in the sense o€> thenfw A ¢j — 0. By using a partition of

Vv
unity we may assume thé#t is contained in the domain of a map.
Then continuity follows from well-known properties of Riemann
integrals orRN.

If a p-form defines the zero current it can be proved easily that
the form itself is zero. (This is a consequence of the existence of
numerousN — p forms). We can therefore identify@form with

the current it gives rise to.

More generally a locally summableform defines a current of
degreep. A differential form of degree is said to be locally
summable if, for every compact s€tcontained in the domaid
ofamap U, ¢), the codficients of the dierential form (expressed

in terms of the map\, ¢)) are summable op(K). If Hisa locally

35
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N-p .
summablep-form and ¢ anN — p form with compact support
_ N- ,
the mtegralfap) A (,op can be defined. Then the scalar product
%

N-— N-
«&¢%=I5A¢R
\Y

defines a current of degrge It can be proved that if a locally
summablep-form defines the zero current thefférential form

is zero almost every where. (Though we have no notion of a
Lebesgue measure on a manifold, the notion of a set of measure
zero has an intrinsic meaning. A set on the manifold will be said
to be of measure zero if its image by every map has Lebesgue
measure zero oRV). So there is a (11) correspondence between
the space of currents of degrpelefined by locally summablp-
forms and the classes of locally summapléorms, a class being

the set of allp-forms almost everywhere equal to the same form.

The second example of a current is of quite fiedent character.
An N - p chainI'y_p defines a current of degrge We define, for

N-p
pe 9

<FN—p’90>: f‘p
Tnp

(Sincey has compact supporﬁ ¢ is defined).

In-p
In this case it can happen that a chBjp is not the zero chain,
nevertheless the integral of evel/— p form onI'n_p is zero.
For this reason we shall consider two chains equivalent if for any
N — p form with compact support the integrals of the form on the
two chains are equal. There is a {} correspondence between
these equivalence classes and the space of currents of degree
defined byN — p chains.

Currents of Dirac.
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This is the generalization of Dirac’s distribution &Y. Let a be
a fixed point onV. The DiracN-current at the poing, (), is
defined by

(6@ ) = ¢(a)
where ¢ is aC® function with compact support. More gener-
ally, Ielt\lpre a fixedN — p vector tangent to the manifold at ¢
being anN — p form with compact support we define

<(5?pr)9 Nﬂzp> = <N)_<p, ‘P(a)>

(¢(a) is the value of the form at). The scalar product on the right
N-p N-p

is given by the duality betweem\ To(V) and A T;(V). This

defines a current of degrge This is called a Dirac current of

degreep.

Partition of Unity

Suppos€gQ;} is an open covering of. Then there exists a system of
C® scalar function$ai} defined onv such that

() >0
(ii) support ofa; c O

(iii) {a;} are locally finite i.e., only a finite number of supportsaf 41
meet a given compact set. (All functioasexcept a finite number
vanish on a given compact set)

(iv) > ai =1 (This sum is finite at every point by condition (iii)).

[If Q; are relatively compact, then have compact supports.]

The functionse; constitute a partition of unity subordinate to the
covering{Q;} — a partition of the function 1 into non-negati* func-
tions with small supports.

This theorem on partition of unity proves the existence of numerous
non-trivial C* functions and forms oN'.
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Support of a current

Let T be a current. We say thatis equal to zero in an open s@tif
(T, ¢) = 0 for every formy with compact support contained éa
Suppose&); is a system of open sets and); = Q. If a currentT

is zero in eveny); thenT = 0 in Q. For, Iet(,oI be a form with compact
support contained if. Applying the theorem on partition of unity we
can decompose the forminto a finite sum of forms having supports in
Q;, as the support af is compact:

¢ = ZWP = Z‘Pi, Suppgi € Q.
consequently

(T,¢) = > (T,@) =0.

This result shows that there exists a largest open set in which a cur-
rent T is zero, namely the union of all open sets in whiths zero.
(This set may be empty). The complement of this set will be called the
support ofT. The support of the current defined by a for@¥)w coin-
cides with the support @b; the support of the current defined by a chain
is not always identical with the support of the chain.

Main operations on currents
1) Addition of two currents and multiplication of a current by a
scalar:

If T, andT, are two currents of degrgewe defineT; + T, and
AT1, (1 a constant) by:

<T1 + T27 ‘10> = <T1’ ‘P) + <T2’ 90>
(T,o) =(T, )

2) Multiplication of a current by a form

Just as in the case of distributions, we can not multiply two cur-
rents. However we can multiply a current by a formdlis a p
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q N-p—q
form ande aq form, we have fop € 2

(w/\a/,tp)zf(w/\a/)/\go
v

- [or@ny

\%
={w,a A @)

and{(w A a, ¢) = (-1)PUa A w, ¢).

p

Now for any currenflT of degreep and anyg-form @ we define 43
p

Tra by:

p p
TAG, & H=(T.an ¢ "¢l 2

. q P P q
We definex A T as (1)P9T A a.

3) The coboundary of a current.

Supposew is a p form andg andN — p — 1 form with compact
support. Sinc&/ is a manifold without boundary Stokes’ formula

yields
fd(a) Ap)=0
Y

Butd(w A ¢) = dw A ¢ + (-1)Pw A dg so that

fdw/\<p:(—1)p+1fw/\dgo
v

\Y
or
(dw, ) = (-1)P"Kw, dg)

Now for any current of degreep we define the coboundad,
which is a current of degrege+ 1, by:

N-p-1
d,T,0) = ()P NT,de), pe 2



40 Lecture 7

Let 2’(V) denote the direct sum of the spaces of currents of de-
gree0,1...,N-2'(V) is a graded vector spacgis a linear map

d: 2(V) - 2(V) which raises the degree of every homoge-
neous element by 1. Moreovef = 0. For, T being a current of

N-p-2
degreep we have, forpe 2
(dd T, ¢) = (-1)P*%(dT, dg)
= (-1)PHH(=1)P**(T, ddy)
=0.

44
Let us consider the coboundary of a current given by a chiqin

(dTN-p. @) = (~1)P*KT, dp)
- (1P [ dg
I

- (—1)p+1f<,o by Stokes’ formula,
r
= (-1)P*bT, ).

So the coboundary of a current given by a chain is the current diyen
the boundary of the chain, but for sign.

Thus the coboundary operator offérential forms and the boundary
operator of chains appear as particular cases of the coboundaatape
of currents.

If T is a current of degrep anda a form, then

d(T Aa) =dT Aa+ (=1)PT A da.



Lecture 8

Currents with compact support

45
If T is a current of degrep andy anN — p form with arbitrary support

and if the supports of andy have compact intersection thén, ¢) can
be defined. In particular it has compact suppofT, ¢) can be defined

for anyC*N-p form. With this definition of T, ¢) T becomes a contin-
uous linear functional opﬁ_p. (i.e., a current of degree with compact
support can be extended to a continuous linear functiongég)a Con-
versely a continuous linear functionialon N@;”‘p defines a current of
degreep by restriction toN.ép. It can be easily shown that this current
has compact support and that

(T, ) = L(p) forevery p e NP
Consequently the space pfcurrentswith compact supports is identical

_ p - N-p
with the dual spacé” of & .

Cohomology spaces of a complex

A complex, E, is a graded vector space with gfdrential operator of
degree 1:

i) Eis avector space (ov&) which is the direct sum of sub-spaces
EP wherep runs through non-negative (sometimes, all) integers.

41
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ii) E has a coboundary operator: there exists an endomorpism
E — E such thatEP c EP*! andd? = 0.

The elements oEP are called elements of degrpe

An elementw € E is said to be a cocycle (or closed)dé& = 0. An
elementw € E is said to be a coboundary if there exists an elenagnt
such thadw = w. LetZ denote the vector space of cocycles &nthe
space of coboundaries. Sindé = 0, B ¢ Z. The spac&/B = H (or
H(E)) is defined to be the cohomology vector spac&oketZP denote
the space of cocycles of degrpeand BP the space of coboundaries of
degreep. The spaceHP is called thepth cohomology vector space of
E and the dimension ofiP, bP, is called thepth Betti number of the
complex. We have

H=> HP

If a complexE is an algebra with respect to a multiplication)(
satisfying the conditions.

i) EP A E9c EP*
i) w1 Awr=(-1)P%; A w1, wy € EP, wp € EY.
III) d(a)l A (/.)2) =dwi A wy — (—l)pa)l A dws, w1 € EP, wy € Eq.

is called a diterential graded algebra. (D.G.A).His a D.G.A.,H(E)
can be endowed with the structure of an algebra. Z@ra subalgebra
of E andBis a two sided ideal aZ. H(E) is known as the cohomology
algebra oft.

Cohomology on a Manifold

Associated with a manifoldN we have a number of complexes and the
corresponding cohomology groups.

i) &) =X EP(V), where&P(V) is the space of alp forms onV.

i) £M(V) = 3 &Pm, where&Pn denotes the space oftimes difer-
entiablep-forms,c?), for which df) is alsom-times diferentiable.
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p p
i) &'(V) =X &'(V), whereé” (V) is the space of currents of degree
p with compact support.

— P P N-p
iv) &™V) =3 &™V) wheres’™(V) is the dual of & ™

v) 2(V) = X 2P(V), where 2P(V) is the space op forms with
compact support.

— P P

vi) 2™(V) = ¥ D™(V). whereD™ (V) is the space ofn times dif-
ferentiable formse, of degreep with compact support for which
dw is alsomtimes diferentiable.

P P
vii) 2'(V) = ¥ 7'(V), whereZ(V) is the space of currents of degree
p.

— b 2 N-p
viii) 2"™(V) = D’™(V), where2’™(V) is the dual space of7 ™(V).

Betti-numbers of &£(RY), &£(SN) and &(TN).

We shall examine the Betti numbers B¥, the N-sphereSN, and the
N-TorusTN.

i) RN. By Poincaé’s theorem a closep-form bisa coboundary if
p>1.
So 48
bP(&(RN)) =0 if p> 1.

If for a zero formf (i.e., aC* function f onRN) df = 0, f is
constant orRN sinceRN is connected. By conventioBq(&£(V))
(the space of boundaries of degree @)
So

B°(&(RY)) = 1.
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ii)
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N-sphereSN (The set of points oiRN*1 defined by the equation

Xt X2 =1).
SinceSN is connected?(£(SN)) = 1.

It can be shown that
bP(&(SN) =0 for 1< p<N-1

and
pN(&(SV)) = 1.

Torus TN. (TN = RN/zN, wherezN is the group of the integral
lattice points inRY).

It can be proved that

bP(& (V) = (E)

In this case we can give the complete structure of the cohomol-
ogy ring. The diferential formsdxg, ...,dxy on RN define N-
differential forms orilN, which we still denote byixy, ..., dxy.

It turns out that the classes of the forms

dx, A...oAdX,, d1<...<lIp

generate the@th cohomology group of N,

We have seen th&f(£(RV)) = 1 andbP(&(RY)) = 0, p > 1. The
Betti numbers oZ(RV) are not the same as those®fRN). There is a
theorem, which we may call Poinés theorem for compact supports,
which asserts that iRV a closedp-form with compact support is the
coboundary of @ — 1 form with compact supportip < N -1 and an

N-form & with compact support is the coboundary offdr 1 form with
compact support if and only if

[w=o0

RN
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(The integral is defined sine has compact support). It follows that
bP(Z2(RV) =0, O<p<N-1
and it can be shown that
bN(Z2(RY)) = 1.

This example shows that there are at least twiedint kinds of co-
homologies on a manifold - the cohomology with compact supports and
cohomology with arbitrary supports. One part of de Rham’s theorem
asserts that, of the cohomologies given by

™" 99,9 E". 8,

only two cohomologies are distinct.






Lecture 9

Topology oné&, &', 2, 9’

50
On &” we introduce the weak topology. The spageand ¥’ are in

duality. In each of the spacé&g and 2’ we introduce the weak topology
(which is a locally convex topology) defined by the other; the topologies
on % and?’ are Hausddt.

We remark that ifF is a topological vector space aiid its dual
with the weak topology, then the dual Bf is F.

de Rham’s Theorem

The first part of de Rham’s theorem.

The first part of de Rham’s theorem gives canonical isomorphisms
between the cohomology vector spacegaogm, 2" andZ’" and also
canonical isomorphisms between the cohomology vector spaée of
g™ & and&" .

For instance, let us considéi(V) and2’ (V). We define the canoni-
cal isomorphism betweddP(£(V)) andHP(2'(V)). If € <E@(V) with
daﬁ)l = 0 it determines a closed currenﬁl of degreep (as the cobound-
ary operator for currents is an extension of the coboundary opdoator
forms). Ifa?l andwpz are cohomologous (i.e., there ipa- 1 form pﬁl

P p p- p p
with w1 —wy = d wl) the currentso; andw, are also cohomologous.
So we have in fact a linear map B (£'(V) into HP(2’(V))). The first
part of de Rham’s theorem asserts that this mapping is an isomorphsgm.

a7



52

48 Lecture 9

That this mapping is (1) means that if a form considered as a current

is the coboundary of a current it is also the coboundary offferdin-

tial form. That the map is onto means that in each cohomology class
of currents there exists a current defined byféedential form (that is,

we have no other cohomology classes of currents than the ones given by
closed diterential forms).

We call the cohomology spaces given by any one of the complexes
&,EM P 7" the cohomology spaces with arbltrary supports The co-
homology spaces given by any one of the compl@e@m &, & are
called the cohomology spaces with compact supports. We shall denote
by HP(V) andH® (V) the pth cohomology spaces with arbitrary supports
and compact supports respectively andoByandbf the dimensions of
HP andH/.

In this connection we shall give an example of a natural homomor-
phism which is not an isomorphism in general. We have an obvious
linear map fromHP(Z(V)) to HP(&(V)). In general this map is neither

(1,1) nor onto. It may happen thatmform & with compact support is
the coboundary of somp — 1 form but not the coboundary of@— 1
form with compact support (as in the caseR¥, p = N); and it may
happen that there are cohomology classeg-fufrms which contain no
forms with compact support.

The second part of de Rham’s theorem: the theorem of closure.

In each of the spaces, & etc., the space of co-cycles is closed: for
if wj = wthendwj — dw. The theorem of closure asserts that in each
of these spaces the space of coboundaries is also closed.

Some consequences of the theorem of closure

Let F be a locally convex topological vector space afdts dual
endowed with the weak topology. Supp@3és a linear sub-space 6.
Let G° be the subspace & orthogonal toG (An element ofGP is a
linear formT on F such thakT, ¢) = O for everyy € G). Let G*° be
the subspace d¢% orthogonal taG°. G is the biorthogonal o. Itis a
simple consequence of Hahn-Banach trleorem(ﬁ%t: G. Similarly
the biorthogonal of a sub-spaGeof F’ is G.

Let furtherH andG be subspaces & such thatH c G; supposeH
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is closed inF. It can be shown that®/GP is canonically the topological
dual ofG/H and conversely.H° andG° are subspaces &f orthogonal
to H andG respectively).

These general considerations along with the closure theorem lead to
two interesting consequences.

i) Orthogonality relation

Let Z be the space of cocycles aBdhe space of coboundaries in
ZN-P. Let furtherZ’ be the space of cocycles aBtthe space of
coboundaries ir7’P. It is trivial to see thaf’ is the orthogonal
space oB. For if dT = 0 then

(T,dyp) = £(dT, ) =0,

N-p-1
conversely iKT,dyp) = O foreveryp € &

dT, ) = (T,dp) =0
N-p-1 )
for everyp € 2 sothatdT = 0. It is also true that the or-53
thogonal space of is B’. To prove this we first notice that the
orthogonal space @' is Z. For, ifo € Z

(dS, ) = (S, dy)

p-1
asdy = 0; conversely if(dS,¢) = 0 for everyS € 2’ then
p-1
(S,dy) = 0 for everyS € 2’ so thatdy = 0. So the biorthogonal

of B" is the orthogonal space @. But the biorthogonal oB’
is the closure oB’ and by the closure theoreBl = B’. So the
orthogonal space & is B'.

Thus the orthogonal space of the space of cocycles is the space of
coboundaries and the orthogonal space of the space of cobound-
aries is the space of cocycles hand%’ and so on).

Poincaré’s duality theorem

By the general result on the topological vector spaces stated above
it follows thatHP = Z’/B’ is canonically the dual dﬁé\"p =Z/B.
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Thus thepth cohomology vector space with arbitrary supports is
canonically the (topological) dual of th&l(- p) th cohomology
vector space with compact supports. This is the Podaglity
theorem.

SupposeHN-P(2(V)) = HYP is finite dimensional. Since the
topology onHYP is Hausdoff it is the usual topology oR®: .
So the topological dual and the algebraic dual—lé\‘r”p are the
same. SdHP is the algebraic dual dﬂé\'_p. Consequently

bP = by .

Itis to be remarked thati P and Hé\'_p are not canonically isomor-
phic but only canonically dual.
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Some applications

54
Since a closed 0-form is a function which is constant on each connected

componentp? is the number of connected component®/ofA closed
0-form with compact support is a function which is constant on each
compact connected component and zero on each non-compact compo-
nent. It follows that

b? = number of compact connected components. By Poataiu-
ality theorem we have

bN = b2 = number of compact connected components,

bY = b? = number of connected components.

Let & be anN-form with compact support. B is to be the cobound-
ary of anN — 1 form with compact support it is necessary anflisient

that (2‘), fy = 0 for every closed O-form (orthogonality relations).Mf
is connected, a closed O-form is a constant function. So, in \¢ase

connected, for to be the coboundary of ad — 1 form with compact
support it is necessary andfBoient that

fc'z“)zo.

%
Similarly we can prove that a necessary anflisient condition for
an N-form & with arbitrary support to be the coboundary ofldn- 1 55

form is that integral oty on every compact connected component of the
manifold should be zero.

51
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The third part of de Rham’s Theorem

The third part of de Rham’s theorem states that it compact all the
Betti numbers oWV are finite.

In the compact case there is néfdirence between cohomology with
compact supports and cohomology with arbitrary supports.piihand
(N - p) th cohomology spaces are canonically the duals of each other
and we have the duality relation for the Betti-numbers:

bP = pN-P

Riemannian Manifolds

An N-dimensional Euclidean vector spaE& overRis anN dimen-
sional vector space ov&with a positive definite bilinear form (or what

is the same, a positive definite quadratic form). There is a scalar product
(x,y) between any two elementsandy of EN which is bilinear and
which has the properties

xy)=(.,%), and &x)>0 for x=#0.

Letey, ..., ey be a basis oEN andg;j = (g, €)). If x= Y xq and
y = Y vig are two vectors oEN we have

(XY) = > Gi%Yj-

A C* manifold VN is called aC* Riemannian manifold if on each tan-
gent space o¥N we have a positive definite bilinear form such that the
twice covariant tensor field defined by these bilinear formsG@&°aen-
sor field. Thus at each tangent space of a Riemannian manifold we have
a Euclidean structure.

The condition that the tensor field defined by the bilinear forms is a
C= tensor field may be expressed in terms of local coordinate systems
as follows: for every choice of the local coordinate system.., Xy

the functions
%@ ((8)(8))
. A% ), \0xj),
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are C* functions in the domain of the coordinate system, the scalar
product ( , ) being given by the bilinear form a(V).

Riemannian structure on an arbitrary C* manifold

We shall now show that we can introduc&€& Riemannian structure

on anyC® manifold. This result is of importance because the results on
a Riemannian manifold which are of a purely topological nature can be
proved for any manifold by introducing a Riemannian structure.

Let V be aC*® manifold. If (U;,¢i) is a map we define a positive
definite quadratic form at eachy(V), a € U; by transporting the fun-
damental quadratic form 46 + - - - + dg)” at Ty (RY) by means of
the isomorphism betweem, (V) andTg,(a)(RN) given by the dfferential
of the mapy ata. Let Q;(a) denote the positive definite quadratic form
in Ta(V) given by the mapU;, ¢;). Let{q;} be a partition of unity sub- 57
ordinate to thgU;}. For ae V, we define a quadratic form im,(V)
by: Q@) = X «i(a)Qi(a) (the summation being over dll; containing
a; only a finite number of;(a) are diterent from zero)Q(a) is a posi-
tive definite quadratic form as th@ (a)s are positive definiteyj(a) > 0
and at least one;j(a) # 0. Since they; are locally finite we can find a
neighbourhoodl of an arbitrary point oV such that

Q@) = > «i(a)Qi(a) (finite sum) for ae U.

whereQj(a) areC* quadratic forms otJ. This proves that the quadratic
forms Q(a) define aC* Riemannian structure owi.

In the above argument we have made essential use of the positive
definiteness of the quadratic form. The same construction would not
succeed if we want to construciG®® indefinite metric with prescribed
signature; for the sum of two quadratic forms with the same signature
may not be a quadratic form with the same signature. In fact, we cannot
put on an arbitraryC™ manifold aC* indefinite metric with arbitrarily
prescribed signature.
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Canonical ICI)Euclidean structures in
T(V) and AT (V)

Let VN be a Riemannian manifold. The positive definite quadratic form
in Ta(V) defines acanonicalisomorphism ofT4(V) onto T;(V). For a
fixedy € Tq and anyx € Ty, (X,Y) is a linear form onl;. We denote this
linear form byy(y). The linear map : y — y(Y) is an isomorphism of
TaontoT;. We have the relation

(X y) = (X, ¥(Y))

connecting the Euclidean structure bpand the duality betweeR, and
T:.

A Euclidean structure i defines a canonical Euclidean structure
in T;(V); we simply transport the positive definite quadratic fornTin
to T, by means of the canonical isomorphigm [Any linear map of
T, to T, defines a canonical bilinear form j;; the canonical bilinear
form in T; may also be defined as the bilinear form given by the map
y~1: T} — T, The quadratic forms iff, and T} are called inverses of
each other. Ifg;;) is the matrix of the quadratic form ifi, with respect
to a basis inT, the matrix of the canonical quadratic form T with
respect to the dual base is the matgx 2.

A Euclidean Structure iff; also defines canonical Euclidean struc-

tures inRTa and XT;. Let ey,...,ey be an orthonormal basis if,
(with respect to the quadratic form defining the Euclidean structure).
Now, a positive definite quadratic form is uniquely determined if we
specify a basis®;, .. ., Xy) as a system of orthonormal basis; the matrix
of the quadratic form with respect to this basis is the identity matrix. We

p
take inAT, the positive definite quadratic form for which the elements
e, A... A&, i1 <...<lipforman orthonormal basis. This quadratic
form (', ) is intrinsic; for we havexg A ... A Xp, Y1 A ... AYp)

(X1,¥1) ... (X1,¥p)

(Xp; Y1) :: : (xp;yp)
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for x;, y; € Ta and determinant on the right is intrinsically defined.
The canonical isomorphism: T, — T; has a canonical extension

p p
y : ATa — AT}, which is also an isomorphism. This isomorphism

p
defines the canonical Euclidean structurein;.
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The star operator

60
The star operator is defined for a Euclidemrentedvector space; this

operator associates to evgmiwector an N — p) vector.
Let us considef;(V) with the canonical Euclidean structure given
by the Riemannian structure ah Let T;(V) be oriented. We first de-

N
fine the star £) operator on O - vectors i.e., scalarAT;(V) is a one
dimensional space in which the class of positive vectors has been cho-

N N
sen. AT;(V) has a canonical Euclidean structure. ket AT;(V) be

PP
the unique positive vector of length 1. We defirffe= 7. For € AT,
we definexs as the N — p) vector which satisfies the relation

&.5) = & A (7).

p
for everycri e AT;. There exists one and only one element with this
property. We choose an orthonormal basis...,ey in T; such that

€1 A ... A ey > 0and define: on the basis elemengg A ... A g (i1 <

P
... <lip) of AT} by:
(@, A ... ANE) =€Bg A ABy,

whereky, ..., ky_p are the indices complementaryitg. . .,ip ande is
the sign of the permutation

(1 2.0, N
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p
we definex on the whole ofAT; by linearity. It is immediate that this is
the only operation having the property

&.B) =& np)

We writex~18 = (-1)PN-P) « g, It is easily verified that

* % E = (-1)P(N-P)g,
. . . p N-p .

Thex operator gives an isomorphism Aff; onto A T;. This iso-
morphism carries an orthonormal basis into an orthonormal basis and
hence preserves scalar products.

If AandB are two vectors ifR® with the natural orientation,(AA B)
(+ operation with respect to the natural Riemannian structuR®)ris
what is usually called the vector product Afand B. In R? the star
operation for vector is essentially rotation through an angke

The star operator on differential forms

We suppose thatN is a oriented Riemannian manifold. Theperation

is then defined on eac%T;(V).

Suppose now thab is a diferential form of degreg. By taking
at every point the N — p covectorsw(a) we get a diferential form of
degreeN — p, which we denote byw. If wis aC*® p-form xw is a
C*(N - p) form. In particular we have thBl-form «1. ThisN form,
denoted byr, defines the volume element on the Riemannian manifold.
If X1,...,Xn is alocal coordinate system for whidxg A ... Adxy >0
then

T=+0-dxgA... AdXy,

where /g is the positive square root of the determingmif the matrix
(gij)-
The star operator on filerential forms, defined above, gives an iso-
p N-p
morphism, called the star isomorphism, betwegemand & and also
p N-p
between and & .
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The global scalar product of twoC*-forms

We define the scalar product of tweformsa andg when the support
of eithera or 8 is compact by:

(Cl,ﬁ) = (a’,ﬁ)aT
/

((a, B)a is the scalar product of the-covectorsa(a) andg(a) ata; t is
the volume element of the Riemannian manifold). We have

@p)= [ans
Vv
= (@, +B)
= (+ 1, B)

The * operator on currents
Let T be a current. We definel by:

-1
T, =(T, x¢).

We then have . 63
(= T,y = (T, *p).

The star operator on currents is the transpose of the opérladieffined
on forms with compact support.

The Riemannian scalar product of ap-current and
a p-form

We define the scalar product of a curr@ndf degreep and ap-form ¢
by:

(T, @) = (T, =p)
if the support of eithe or ¢ is compact. We shall call this scalar
product the Riemannian scalar product betw&emnde.
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The star coboundary operatord

We define the operat@r (“del”) on currents. IfT is a current of degree
p we definedT, a current of degrep — 1, by:

@T.%) = (T.d%)

d is the adjoint of the operatatwith respect to the Hilbertian structure
defined by the Riemannian scalar product. We have

(TP, ¢) = (T, dy)
= (% T, dg)
= D)V PN E T, )
= OV PG R d F T, )
= (DN PId ¥ Tog)

so that
P _
aT = (~INPLad ¥ T

and
P
OT = (1P« 1d«T.

Fromd? = 0 it follows thatd®> = 0. The operatop defines a new
differential graded structure i’. The operator is also defined for the
spaces?, & and 2.

We now have a new cohomology, tReohomology.

This cohomology is not dlierent from the cohomology that we al-
ready have. Consider, for instane@, We define an isomorphism be-
t\NeenH’;‘p(cg’) and H(’j’(éa). Supposev is anN — p form with dw = 0.

Then+ +d * w = 0. Sincex is an isomorphisndl Y w=0ord+w=0
i.e., *w is closed. The mapping — «* induces an isomorphism be-
tweenH’;‘p(éa) and I—(ij(é").
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The Laplacian A
We define the operatay by:
—A =dd + ad.

This is a diferential operator of the second ordér.preserves de-
grees. Sinceld andad are self-adjointA is self-adjoint:

(AT, ) = (T, Ap).

and Ad commute:Ad = ddd = dA. A andg also commute.A also
commutes with:
*A=Ax.
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The operator A on functions

65
Letxs,..., Xy be alocal coordinate system such tatA.. . Adxy > 0;
letgij = (% aix and @) the matrix inverse to the matrix(). Let
i ]

> wjdx; be a 1-form. We calculat@(}’ w;dx;)
]

B[Z a)jde] = —_>x<1d*[z a)jde]
i i
Now *w;jdX; = wj * dXj. Suppose

*dX; =Zaijdxl/\.../\d/xi/\.../\de;
i

from the relation
(dX, dXj)T = dxc A *dX;

we obtain
g vadx A ... A dxy = (1) L@kjdx AL A dxy

so thatwyj = (-1)<"1g*) /@,

d[* [Z deXj]] = d[z:(—l)i_legij VIdx AL Ad/X AL A dXy
j i,

63
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= S22 (g v
= 0%

AdXg AL Ad/X AL AdXy
o .

Z —(wjd! Vo)

-1
For N forms = = %. Hence

*d*(Zdexj]_

(
= =3 L wig' o)
V40X 197 Ve

wig! va)r

2

ﬂl
s> 3s

&l

Finally
0 .
widXi —(wijd" Vg
[Z j J] ~ o .Zjl ox wid' V)
We shall now calculatau whereu is a 0-form. We have

ou=0,Au=-gdu and du:Z‘Jta—dxJ
Xj

By the calculation made above we find that
1 9 [ i _ou
Au= » ——|g \/Q—]
IZJ: /0 0% 0X;
This is the well-known Laplace operator on functions. In particular if

VN = RN with the natural metric and the natural orientation, the matrix
(gij) is the unit matrix and

Au:zig.
i

0%
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The elliptic character of A. Harmonic forms

In the case of a partial fferential equation of the second order an elliptic

operator is usually defined by considering the nature of the quadratic

form given by the coficients of the derivatives of the second order.

However it is found more convenient to define an elliptic operator by

intrinsic properties of the operator. This definition is valid for systemsaaf

differential equations and also foifléirential equations of higher order.
A local or differential operatoD is defined to be a linear continuous

operator on currentd) : 2’ — 2’) taking forms into form& and hav-

ing the local characteDT (T a current) is known in an open setif T

is known inQ. A differential operatobD is called an elliptic operaIErif

the following condition is satisfied: [T is a current such thdT = «

is aC® form, in an open se®@ thenT itself is aC*® form in Q. If D

is elliptic every solution of the homogeneous equatioh = 0 is aC*

form. The operator

d m m-1
D=(&) +a.1($() +“'+am,aj€£’
&2 8?
on the distributions irR is elliptic. In R? the operator— + — is
ox2  9y?
92 0?
elliptic while the wave operatoF— — — is not elliptic. The function
ox2  9y?

w(xy) = f(x+Yy) + g(x—y) wheref andg are continuous is a solution
of the wave equation (as a distribution), even though the functions may
not be diterentiable.

We shall admit without proof the important theorem which states
that the operataa is elliptic.

From the elliptic character af we can deduce that s elliptic on 68

0 0 0
2’d =00n2’. So—-A = ddon2’. Now if D; andD are diferential
operators andD, D5 is elliptic thenD, is an elliptic operator (but not

LActually this condition is superfluous; it can be proved that it is a conseguef
the other conditions.

2In current literature such fierential operators are referred to as hypoelliptic oper-
ators.
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necessarilyD1). For letD,T = a be aC* form; sinceD1D,T = Diq,
D1 is aC*® form andD; D> is elliptic it follows thatT is aC> form.

0
SinceA = —dd is elliptic, d is elliptic on 2.

A form w which satisfies the equatiaxw = 0 is called a harmonic
form.

Compact Riemannian manifolds

We shall assume henceforth thatis a compact, oriented Riemannian
manifold.

If V is compact every harmonic form is closed andosed. (This
result is false whelW is not compact; for example, a closed O-form in
RN is a constant while there exist non-constant harmonic functions). For
let w be a harmonic form

(Aw, w) = (ddw, w) + (0dw, w)
= (0w, dw) + (dw, dw).

Since Qw,dw) = 0, (dw,dw) > 0 and Aw,w) = O it follows that
(0w, dw) = 0 and fw,dw) = 0. But if f is a continuous non-negative
function such thayf fr = 0thenf = 0. Since the Riemannian scalar

v
product is positive definite it follows that

do=0 and dw =0.

The Hilbert space of square summable forms

We now define the Hilbert spac#’? of square summable fiierential
forms of degree.

A form w is said to be measurable if its deients are measurable
on every map.

An element of 77 is a class, a class consisting of all measurable
forms which are equal almost every-where to a fastfor which (w, w)

= f(w, w)at is finite. If w andw are elements of7 then W, w) is
Y
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defined and this defines a positive definite scalar produgt’inWe can
prove thats# is complete with respect to the norm given by the scalar
product. Sos7 is a Hilbert space.
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Intrinsic characterization of 7
70

¢, considered as a topological vector space, is intrinsically attached to
the manifold i.e.,7Z is independent of the Riemannian metric. We shall
now give an intrinsic characterization g¢.

Supposeal is the domain of a local coordinate systed..., Xy
andK a compact set contained ih. Supposev is a measurablp form
such that ¢, w) < o. Suppose

w=Zw|dX|

onU. (I is a system op indices written in the increasing order). Let
further

(@,0)a = )" g”@w (@)ws(d).

If m(a) is the smallest eigen value of the matrgt¥(a)), m(a) is a con-
tinuous function inK and hence has a lower boung in K; m; > 0,
since @' (a)) are positive definite. Since,

29 @wi(@w(@) = m@) ) [wi(@)]
1,J 1,J

it follows that

(v, w) = f[z g”anau} \gdx ... dxy

K 1,J

69
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2lef2|w||2dx1...de
K

whereC > 0 is the lower bound ofy/gin K. Thus, if w, w) < o,

fZ|w||2dX1...dXN < 00,

K
71

Conversely, suppose is a measurabl@-form such that for every
compactK contained in the domaid of a map

fZ|a)||2dX1...dXN < 00,
K

then w,w) < . We choose a finite covering of the manifold by do-
mainsU, of maps and a partition of unityy,} subordinate to the cover-
ingU,. LetK, be the support ak,. Then, with the obvious notation,

(w,w) = | (W, W)ar
I

=Y f g7 @DVl gD .. dx).

/lU1

Let M;(a) be the greatest eigenvalue gf{(a)®). The functionsM,,
a, and /g are bounded i, so that

(w,w) < ZC/lf Iwﬁ)l dX?...dx),C, aconstant,

< 00.
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Thus the elements of# can be characterized as classes, a class
being the set of all measurable forms almost everywhere equal to a form
whose co#icients are square summable on every compact set contained
in the domain of a map.

A simple application of the Fisher-Riesz theorem would now show
that.sZ is complete.

It may be remarked convergence#f implies convergence i&’.

Decomposition of.77

We shall now decompose the spa#éinto the direct sum of three fun-
damental spaces which are mutually orthogonal Agbe the subspace
of the elements € 7 such thatAw = O (in the sense of currents). It
follows from the elliptic character of that 77 is exactly the space of
harmonic forms. Sincd andd are continuous operators on currents,
7 is closed. In fact we shall see later thé{ is finite dimensional.

4

Jw=0

dw =0

Ay

3!

We defines# to be the space of elememdss 77 such thatg, @) = 73
0 for everyp € 2 with dp = 0. 7 is a closed subspace because of the
continuity of the scalar product. We shall now give another interpreta-
tion of the space’s. If w € 7% then{w, =¢) = 0 for every=p such that
d(x¢) = 0 orw is orthogonal to alN — p forms which are closed. By
the orthogonality theorem is the coboundary of a current. Now let’
be the subspace of element®f .77 for whichdw € 57 (the 7#’s have
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different degrees). Theth operates on??’arlgthis gives a cohomol-
ogy. There is a natural homomorphismk§.72’) into H(Z’). Another

de Rham’s theorem states that this homomorphism is an isomorphism

onto. This implies, in particular, thati € /7 is the coboundary of a
current it is also the coboundary of an element 7. So.% is the
space of forms of# which are coboundaries of forms £’

Ho =d N A

We defines#3 to be the space of elementss 7 such thatg, ¢) =
0 for everyp € 2 with dp = 0. 743 is closed. lfw € 723, *w € % and
therefore= dw, w € 7. So0.743 is the space of forms a## which are
star coboundaries of forms o#:

3 =0 NI

We shall prove that7i, .7 and.7# are mutually orthogonal . Sup-
posex € 77 andg € . Then

(@.8) = (a,dw),w € A
= (0a, w) sincea is aC™ form
=0 asda =0.

Similarly 71 and .73 are orthogonal. To prove tha¥s and .73 are
orthogonal we shall first prove that

H=d29 and =09

EvidentlydZ c % and as## is closedd? c %. If s + dZ
as .7 is a closed subspace we can find a vedtar %, 4 # 0 such
thatA is orthogonal ta 2 or (1, dy) = O for everyp € & or (04,¢) =0
for everyp € 2. This implies thabA = 0. AlreadydaA = 0 sinced is
derived. Sal € 7 andA € J7%5. As 74 andJ are orthogonak = 0;
this proves# = d2. Similarly 74 = 9. If o, € 9

(de, 4B) = (dda, ) = 0

i.e.,dZ anddZ are orthogonal. SincdZ = % anddZ = 4 it
follows that.s73 and.7# are orthogonal.
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We next show that#, 7% and.7# spans#’. Supposew is orthog-
onal to.77% and.773; then @, da) = 0O for everya € 2 or (dw, ) = 0 for
everya € Z or dw = 0; similarlydw = 0. Hencew € 7. This proves
that

I = JA + 5 + 3.

We denote byr, m, andrs the projections ow?i, 575 and.7# respec- 75
tively.

J0 + 75 is the orthogonal of73 or 09, so.s71 + 74 is the space of
formsw with dw = 0 (in the sense of the currentsyi +.743 is the space
of formsw with dw = 0 and.7% + .77 is the space of forms orthogonal
to the space of harmonic forms.

Cohomology and harmonic forms. Hodge’s theo-
rem

In every cohomology class @ forms there exists one and only one
harmonic form. Letw be a representative of the cohomology class;
w € S+ 7. mwis a harmonic form and,w which is the coboundary
of a current is the coboundary of a form by de Rham’s theorem. As

W — MW = Mow

w andmiw are cohomologous. Soyw is a harmonic form belonging
to the class ofv. If w1 andw, are two harmonic forms in the same
cohomology classy1 — wy € 944 N 7% = 0 or w1 = w». Thus we have,
in fact, a canonical isomorphism between the cohomology spaCe® of
forms and the space of harmonic forms. The dimension of the space
of harmonic forms of degrep is the pth Betti number of the manifold
which is finite by the third part of de Rham’s theorem.
Supposew € 75; thenw = dw, w € 5. There is one and only76
one choice of the primitiveo which belongs tas4. For, if w = do,
0 € I putw = n30; thenw = dw. If w = dw1 = dw,, w1, W2 € 43,
d(w1—w2) = 0, which implies thatv1 — w» € 73N 57 so thatw = w».
Similarly any element 073 is the star coboundary of one and only
one element of#. In both the cases the choice of the unique primitive
is linear but not yet continuous.
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Now letw € J%; w = do, § € 4. Butd = dw, w € 7. Conse-
quently for every

w € 365, w = dow, w € Fb5.

Thisw is unique. Every element of 7% is thus expressed in one and
only one way in the form

w =didw,w € 5.

However, forw € 4%, ddw = 0 so thatdd = —A. So any fornw € %
can be written uniquely in the form

w=-Aw,w € .

Similarly every form in.#3 is uniquely expressible as the Laplacian
of an element of773. As a consequence every form orthogonal to all
the harmonic forms is the Laplacian of one and only one element of
J+903. Conversely ifw is the Laplacian of an element, then it belongs
to I + 3.

We have thus completely solved the equatidds = A, X = A
andA X = Ain . The equatiordX = A'is solvable ifA € 4. If
A € J there exists a unique solutiof € s73. Any general solution
is given byX = Xp+ closed form. The equatiofiX = A is solvable if
A € 7745 and there exists a unique solutidp € 7. A general solution
is obtained byX = Xo+ closed form. The equatioAX = A is solvable
if A e 7% + 73, there exists a unique solution orthogonal to the space
of harmonic forms and a general solution is obtained by adding to this
particular solution any harmonic form. These results constitute Hodge’s
theorem.
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Green’s Operator G

78
Suppos € %4+ .743. We know that there exists a unigMes 7%+ 743
such that-AX = A. We write X = GA; we then have an operator
G : A > GAon % + 73 with the property-AG = | onHy + 5743. (I
is the identity operator). & € 75 + 23 andAa € 7% + 573 we have
—GAa = a. We extends to the whole spaceg?’ by puttingGa = 0 for
a € 4. G . I — I is an operator which is zero aff7 and which
leaves the space®? and.7z; invariant. We shall prove a little later that
G is continuousG is called the Green’s operator.

Letw € 5. We can writew uniquely as
w=mw+w,w € J5+ JA.
Butw = ~AGw = —AGw asw € 7% + 7 andG = 0 onJ#4. So
w = mow — AGuw.
Thus we have the formula

| =m - AG
= +do + ddG.

Sincel = 7y + mp + 73, it follows thatr, = dOG andrz = ddG.

75
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Decomposition of 7

79
7 has certain fundamental defectk;0 andA do not operate on?’.

But these operators operate &n We now conside.

G operates or7. For letw be aC* form. w = mw — AGw or
AGw = mw - w. Sincerw—w is aC> form it follows from the elliptic
character oA thatGw is aC* form. xr; evidently operates ofy. Since
mp = doG andnrz = 0dG, n andrrs also operate o

Let

DN=9NIA, D=9 NI, TP3=DN I3

2, is the space of all harmonic form&, = d2 and 23 = 02 by de
Rham’s theorem.%1, 2, and &3 re closed subspaces 6f. (2 = &
has a genuine topology). The linear mapsr, andrz from & onto the
space1, Y-, Y5 respectively have the following properties:

7Z'i7l'j=O for i+ j
7Ti2=7'l'i

[ =T +mo + 3,

Consequently? is the direct sum of the closed subspaces,
92, and 3. For any elemeny € 2 we have the decomposition for-
mula:

w = mw + doGw + dGw.

Continuity of G

Let F be a Féchet space i.e., a complete topological vector space with
a denumerable basis of neighbourhoods of 0. Banach’s closed graph
theorem states that if alinear m@a F — F is discontinuous then there
exists a sequence of elemepts— 0 such thaGgj tends to a non-zero
elementy. So in order to prove that a linear m@pof a Fiechet space

into itself is continuous it is dticient to show thap; — 0 andGy; — 6
together imply thad = 0. [We can give an example of a normed vector
space in which the closed graph theorem is not true Hla¢ the space

of polynomials in the closed interval (D) with the topology of uniform
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. d .
convergence in (@) (Norm f = Maxye(o,1) | f(X)]). The operaton& isa
discontinuous operator on this space, as a sequence of polynomials may
tend uniformly to zero in (A1) while their derivatives may not. However
the closed graph theorem is not true for this operator; for if a sequence

dp;
of polynomialsP; — 0 uniformly in (Q 1) andd—xJ — 6 uniformly in
(0,1), we must have = 0. Here the space is not complete. In fact the
completion ofE in the norm defined above is the space of continuous
. . . L d
functions in (Q1) (Weierstrass approximation theorem) aaq)f(jcan not

be extended to this space].

We shall now use the closed graph theorem to prove the continuity
of Gin 2. 2 is a Fechet space. (In generdl is a Féchet space;81
here since the manifold is compagt= &). Let {¢j} be a sequence of
elements of7 such thatp; — 0 andGy; — 6; we have to show that
6 = 0. Write

¢j = mgj — AGy)
1 is continuous inZ. Forifw e 9

mw = Z(‘“’ 6i) Ok
K

whereé is an orthonormal base for7i. If ¢j — ¢ in Y(pj,0k) —
(¢, 6k). Therefore ifp; — 0in 2, mr1p; — 0in 2. Now sinceGyj — 6
and A is continuousAGy; — A6. SoAf = 0 oré € 7, already
0 € Jt5 + 3, consequently = 0.

Similarly it can be proved thds is continuous in#.

Self-adjointness ofG
We shall now show tha is self-adjoint in77;

(G, ¥) = (0. GY). .4 € A
If we putGy = @ andGy = 8 we have

W =my —AB and ¢ = m1p — Aa
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so that

(Ge.¥) = (a.¥)
= (o, 1Y) — (@, AB)

and

(o, GyY) = (¢.8)
= (ﬂl‘p’ﬁ) - (Aa’ﬁ)

Since @, my) = (m19,p) = 0 (@, B € H2 + 3 while my, mp € )
we have only to prove thatr( AB) = (Aa, 8). But this is evident whet
ory (and hencer or B) is aC* form. So we have the relatioG(, ) =
(¢, Gy) wheng or v is aC* form. Since? is dense insZ andG is
continuous we obtain

(Ge.y) = (0, GY), @,y € H.

G is hermitian positive Gy, ¢) > 0 and Gy, ¢) = 0 if and only if¢ is
harmonic. For ilGy = «

Gy, ¢) = (a, m1p — Aa)
= (o, —Aa)
>0

and Gy, ¢) = 0ifand only if A = 0 orAg = 0.
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Decomposition of 2’
83
We shall now extend the operat@rto 2’. For a currenfT we define

GT by:

(GT,¢) = (T,Gy).
(This definition is consistent) Singg is continuous ory, it is easy to
verify thatGT is continuous or7. For if ¢; — 0in &, Gyp; — 0 and
(GT, ) = (T,Gypj) — 0. The operato6 is continuous or’ endowed
with the weak topology. For iT; — 0 in the weak topology, for a fixed
v € 2 (GTj,¢) = (Tj,Gp) — 0. We define the operators, 7> andns
on 2’ by:

T = | + AG
mp = doG, 3 = 0dG.

The operatorgy, o andrs verify the relations:

7Ti7Tj=0 for i # j
7ri2 = T
| = T + o + ;3.
2' is the direct sum of7; (the space of harmonic forms¥; = d2’
andz; = 07'. For a curren we have the decomposition formula

T =m1T +doGT + 9dGT.

79
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Commutativity of an operator with A, r; and G

84
If an operatorA : ¥ — % commutes withA it also commutes with

m1 andG. If AAw = AAw we have to show that;Aw = Ariw and
GAw = AGuw. If m1Aw = w, w is characterised by the properties:

) Aw=0
i) Aw — w = An for somen € 2.
We shall verify thato = Ari1w also possesses these properties.
Aw = AAriw = AAmiw =0
asmiw is a harmonic form;
Aw - w = Aw - Atiw
= Alw — mw)
= A(Ary')
= A(AT').
SorAw = Ariw - w1 = GAw is characterised by:
i) —Aw1 = Aw — mAw
i) mw1=0
We shall show tha; = AGw has these properties.
—AAGw = -AAGw
= Alw - mw)
= (Aw — m1Aw) (asA andr; commute)
85 and
11AGw = Ar1Gw
=0.

The operatorn commutes with each of the operatarsd, A, *, 71,
o, m3, G. Consequentlyr; andG also commute with each of these
operators.
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Operators on currents as operators on cohomology
spaces

SupposeA is an operator on currents with the following properties:

. 0 .
i) for every cohomology class there exists at least one element of
the class such tha& is closed.

ii) If ais a coboundary anfl is closed, therAa is a coboundary.
Then we can definé on the cohomology vector spaces intrinsi-

0 .

cally: for each cohomology class we choose a representative
. 0

a such thatAa is closed and map onto the cohomology class

determined byAa. Of course, this definition makes no use of any
particular metric.

If there exists at least one Riemannian metric on the manifold for
which A andA commute then the conditions i) and ii) are verified.

In a cohomology clasg we choose the harmonic form Then
A is closed, in fact, harmonicAAe = AAa = 0. To verify the
second condition we notice that a necessary affitgnt condi-
tion for a closed elemei to be a coboundary is thajw = 0. If
a is a coboundary and « is closed,

mAax = Ariw (asA andr; commute)
=0.

SoA operatesntrinsically on the cohomology spaces. 86

[We may simply identify the cohomology space with the space of
harmonic forms and leA operate on the space of harmonic forms. (A
operates on the space of harmonic formé&asndA commute).]

Complex differential forms on a manifold

Let VN be aC*® manifold. Just as we considered real val@sd func-
tions onVN we may also consider complex-valuget functions onvN;
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a complex valued€® function is of the formp = f + ig wheref andg
are real value€® functions.

At a pointa of VN we can define the space offfigirentialsT;(VN)
with respect to the complex valued functions, just the same way we
did in the case of real valued functions. The spage/N) is of com-
plex dimensionN. (Henceforth,T:(VN) will always denote the space
of complex diferentials af. HoweverT,(VN) will only denote the real
tangent space af). Now if F is a vector space over the reals, the space
F + iF is called the complexification df; the complex dimension of
F + iF is equal to the real dimension &f. We shall always consider
Tx(VN) as the complexification of the space of reafelientials ata.

Similarly the spaceF{T;(V) will be considered as the complexification
of the real tangenp-covectors ad. Thus an elemenb € T;(V) has the
canonical decomposition = w; +iwy Wherew, andw, are real tangent
p-covectors aa.

If a complex vector space is obtained as the complexification of a
real vector space, we have the notion of complex conjugate in this space.
Forif G = F +iF is the complexification of the real vector spdeany
elementw € G has the canonical decompositian= w1 + iw2 where
w1, w2 € F; the complex conjugate @f is the elemendv; — iwy.

The manifoIdKTf\](V) of all KT;(V) is a C* manifold with real
dimensionN + (7).

We extend the operatods 9, A to the complex dierential forms by
linearity d(w1 + iw?) = dw1 + idw, and a scalar product in the space
of real diferentials at canonically to a Hermitian scalar product in its
complexification i.e., i ;(V). We extend: by anti-linearity:

*(a)]_ + ia)z) = *W1 — i * w2

so that the relation
(o,B)r=aA =B

is preserved. The space of (complex) square summable forms becomes
a Hilbert space over complex numbers.



Lecture 16

Real vector spaces with al-Structure

88
SupposeG™ is a vector space over the complex numbésscan also

be considered as a vector space over the real numbees,. If, e, is

a basis ofG" overC, theney, ..., ey, iey,...,ie, is a basis of5 overR.
The multiplication byi is a linear transformation @&, considered as a
vector space oveR, whose square isl, wherel is the identity map.
The vectorse andie are dependent whe@ is considered as a vector
space oveC but are independent ov& To avoid confusion we shall
introduce the notion of a real vector space with-structure.

A 2n-dimensional real vector spaGalong with a linear transfor-
mationJ : G — G with J% = —| will be a called a real vector space with
a J-structure.

(A real vector spac& with a J-structure can be considered as a
vector space over complex numbers by defining

(@ +ip)e=ae+ple

wherea andg are real numbers argis an element oG).

Let G be a real vector space withJastructure ands + iG its com-
plexification; the operatad is extended canonically 8 + iG by defin-
ing:

JX+iY) = IX+iIY, X, YeG

J is a linear transformation on the complex vector spaceiG. (We 89
notice that the operationsand multiplication byi are diferent onG +

83
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iG; if xis a vector inG, Jxis a vector inG while ix is a vector iniG).
The operatod onG + iG has the eigen valuesand—i.

Jis an isomorphism o6 + iG onto itself. Canonically we have an
isomorphism of the dual space Gf+ iG, (G + iG)*, onto itself con-
tragradient taJ (this isomorphism is the inverse of the transposd)of
We denote this operator on the dual space alsd.by « € G + iG and
B e (G+iG)" then

(@, B) = (Ja, IB)
(Ja,B) = (@, I = ~(a, IB).

J is also defined canonically on the exterior products®f(iG)*. On
the p-th exterior product we have

J? = (-1)PI.
0 0
Th t d—
e opera orsaz_ an azj
0 1( 0 .0 )
— ==\t
0zy  2\0x; oy
We have
0 0 0
— = + =
oxj 0z 0z

o (2 _ 9
6y,-_ 0zj 0z

The reason for such a definition is as follows. If we take an analytic
function of 2h real variables«, v, ..., Xn, Yn it can be extended to an

) 0 0 . . .
We now define the operator%? and — on differentiable functions on
j :

C"/(z,..., Z,), Zj = X; + iy; are the coordinate functions @f'). A priori they do
not make sense. We define

U A
(92j_2 (9Xj 6yj ’
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analytic function of & complex variables, which we still denote &y,
Y1, .., %n, Yn. Consider

Zj = Xj +1yj, Zj = Xj — Y]

as h-independent complex variables (H&jedoes not mean the com-
plex conjugate of;; this is so only ifx; andy; are real). By changing
the variablesx;, y; to zj, z; we get the above expressions for the par-
tial derlvatlvesa— andaT Thus these relations are true for analytic
functions of real varlables prolonged into the complex field. So we take
these as general definitions.

We have

0

0
a_zj(zk) = ik, a_zj(zj) =0

9 i are the complex derlvatlonsﬁ andﬂ are defined for any 91
0z 0Z 0z; 97,
dlfferentlable functiorf.

Suppose is aC* function onC", We have

ot
df-> = de+Za—dyJ

But this may be written as

df = olzJ + Z olzJ

f f L ,
(Hereg—Z andaT are the complex derivatives dfdefined abovedz

: .
anddz; are the diferentials of the functiong; andz;). Thus we have
an expression for df as though andz; were independent variables.
Similarly the formula for the coboundary of af@irential form continues

to hold as thouglz; andz; were independent variables.
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Holomorphic functions on C"

If fisacomplex valued function defined on an open suQsgtC’ we
say thatf is holomorphic inQ if

im f(z+ ) - f(z),
(-0 ¢
exists at every poirg of Q. We know that iff is holomorphic it satisfies
: f
the Cauchy rule; the Cauchy rule can be erttel%%s: 0. Conversely,

if fisC’ andaa—; = 0, f is holomorphic. So a holomorphic function
of one complex variable may be defined a8a&function of x andy for
which 66—; = 0. (We may say that a holomorphic function is independent

of 2). For functions of several variables we adopt a similar definition.
We say that a complex valued functidndefined on an open subset
of C" is holomorphic iff is aC® function with respect to therreal

coordinates and

of :
—=0(=212...,n).
62] (J td ’n)

Transformation formulae

Suppose we have aftBomorphism

(Zly--'azn) _>(§la"'9§n)

between two open subsets@f given by the functiongyx = (X1, Y1,
... X Yn), k= 1,...,n. We then have the following formulae:

_ o 0y -
dZy = Z(a—z'j‘dzj + a—z'j‘dzj).
J
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In particular if the/; are holomorphic functions &, . . ., z, we have
_ N Yy,

ok . . : I :
(Herei is the ordinary partial derivative @k with respect ta; de- 93

i
fined in the theory of holomorphic functions; and thus our notation is
coherent). In this case we also have

_ Al
=Y (a—i)dzj

I
o 0L 0
0z; B Zk: 0zj 0k
0 _ 00
0z; - 0z, @Zk'

Canonical complex structure onR?"

Let (X4, ..., Xon) be the coordinate functions d&". We shall identify
R?" with C" by the map

(Xl’,XZn) - (219,Zn)
where
Zj = Xgj-1t+ iX2j(j =12...,n)

We thus have a canonical complex structureR8h If (ey, ..., en) is
the canonical basis fd®?" then the canonical complex structure A%
is given by thel operator defined by:

Joi1=ej,Jej=-e-1(j=1...,n)

Let U be an open subset &" and® : U — R®" be aC™ map. 94
In terms of the canonical complex coordinatesRShwe may give this
map by:
(z1,....20) = ({1, .. dn)
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We say that the mag is complex analytic (with respect to the canoni-
cal complex structure oR?") if 1, ..., ¢n are holomorphic functions of
(z1,...,2Z).

Complex analytic manifolds

A complex analytic manifoldy(®™, of complex dimensiom is a C*
manifold of real dimensionr2with an atlag{(Ui, ¢;i)} (which is incom-
plete with respect to th€> structure) having the following property:
for any two mapsU;, ¢i) and Uj, ¢;) of the atlas, the map

giogit 1 ei(UinU)) - ¢j(UinUj)

is complex analytic (with respect to the canonical complex structure on
R2"). We assume that the atlas is complete with respect to the complex
analytic structure.

Some examples of complex analytic manifolds

i) C". The simplest example of a complex analytic manifol€ts
itself.

i) The Riemann spherg8?. ConsiderS? as the one point compacti-
fication of C! : S? = C1 U o0. Take for one map the identity map
of CL. For the second map take the magefined by

(@ =1z z#
{(0) =0

in the complementary set of 0. The intersection of these two
maps is the complement of the points 0 andhnd here” = 1/z
is a holomorphic function of.

It is known that the only spheres on which we may have a com-
plex analytic structure ar8? andS®. On S? we have a complex
analytic structure. FaB® we do not know.
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iii) The complex projective spacd”C"

The right generalization of the Riemann sphere isrtiiimen-
sional complex projective spacBC". The n-dimensional com-
plex projective space is defined as follows. We t&ke! and
omit 0. InC™! — (0) we introduce an equivalence relation two
pointsz = (z,...,zy1) andz = (z7,...,7,,,) are equivalent if
Z =Az(i=1,...,n+1)(Z = 12) for somed # 0. The quotient
space ofC™! — (0) by this relation (with the quotient topology)
is the n-dimensional complex projective spadeC" - PC" is a
compact complex analytic manifold of complex dimensiniwe
introduce complex analytic coordinate systemB@Y as follows.
For a fixedi consider the set of poingin PC" whose represen-
tatives inC™?! are of the form#y, . .., Zns1), z # 0.

Then the mapping 96

Z Z 1 Zjy1 Zn+l)
a-|—,...,—,—,...,—|.
zZ z 0z Z

gives a map. The maps obtainedfer 1,2,...,n+ 1 coverPC"
and are related by holomorphic functions on the overlaps.

iv) The complex torus.
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The operator J

97
We now pass on to some intrinsic properties of a complex analytic man-

ifold V(™ of complex dimensiom. The (real) tangent space Yoat a,
Ta(V), is a vector space of dimension @verR. We shall now introduce
on Ta(V) an intrinsicJ-structure. Take a map atinto R?". This map
gives an isomorphism betwedi(V) andR?". In R" we have aJ cor-
responding to the canonical complex structur&if; by the canonical
isomorphism betweefi,(V) andR?" (given by the map) we also have
aJin Ta(V). We shall now prove that thid in T,(V) is intrinsic. If
local coordinates, . .., z,) and (1, . . ., {n) we have to prove thatand

% ¢ are the same. To prove this we consider the complexification of
Ta(V), Ta(V) +iTa(V). We extend] and _# to Ty(V) +iTa(V); J and
Z are operators iifa(V) + iT4(V) with eigenvalues:i. To prove that]
and_# are the same it is $iicient to show that the corresponding eigen
spaces are the same. From the relations

YA IR (R B
oz] o0z’ 0z oz

it follows that for J the eigenspace corresponding to the eigenviisie
the space spanned by

o 9
0z 0z,
and the eigen-space correspondingtds the space spanned by 98

91
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o 9.
0z’ 0z,
for # the corresponding spaces are spanned by
0 0 q 0 0

—,...,—— an —_— ..,
6] 9n 04 a¢n

respectively. Since the maps are related on the overlaps by holomorphic
functions we have the relations

o 0L 0
0z; B ; dzj 04
K 0z 0
0y 44 0L 07

0 _ 00
0z; 0z, aZk’
9 o7 9
AP
g <]

these relations show that the eigen spacé ahd _¢ corresponding to
the eigen valuesand—i are the same.

J operates on the space of tangent covectors real or complex; we
have the relationddz = —idz Jdz = idz. J also operates on the
space of tangery-covectors (real or complex) at consequentlyl op-
erates on the spacefidirential forms. In fact] is a real operator i.e.]
takes real dterential forms into real dlierential forms. For forms of
degreeP we have

J2 = (-1)°I

Bigradation for di fferential forms

A differential formw is said to be of bidegree or of typp, @) if in every
map,w has the form

w= Z wjlmjpkl-ukqdzjl A A dep AdZ AL A d2kq~
j1<<jp
ki<...<kq
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This definition is correct since if two maps overlap and a form defined
in the overlap be of typep;q) in one of the maps it is also of type
(p, q) in the other map. (This follows easily from the fact that the maps
are related by holomorphic functions on the overlapsis called thez
degree and| thez degree otw.

Any differential formw of total degree can be uniquely written in

the form
(p,9)

w= Z w
p+g=r

(p.9)
where w is a form of bidegree, q).

Holomorphic functions and forms

100
A (complex valued) functiorf on V™ is said to be holomorphic if is

holomorphic on every map; this definition is correct as a holomorphic
function of n holomorphic functions or€" is again holomorphic. A
holomorphic diferential form of degree is a form of type f, 0) whose
codficients in every map are holomorphic.

The operatorsd, and d;

Supposew is a form of bidegreef, g). A priori dw is the sum of forms

of all bidgree ¢, s) withr + s= p+ g+ 1. However we shall show that
dw is the sum of a form of bidegre@ ¢ 1,q) and a form of bidegree
(p,q+1). Let

w= Zw‘leZ\] A dZx
JK

inamap.J = (ji,...,Jjp), K = (Ki, ..., kg) denote a system of indices
in

dw = > dwkdz A dz

Owik _
= Z 72 dz Adzy A dZk
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dwik _
+ Z 72 dz; A dzy A dz;
Here the first form is of bidegreg@ 1, ) and the second of bidegree
(p, g + 1); therefore these two forms have an intrinsic meaning. Thus
(p.g+1)

d(%f') _ (palq) + B

intrinsically, wherex andg are forms of bidegreep 1, g) and (p, g+1)
respectively. We now define the operatdsandd; by:

dw=qa dw=4.

We have
dw = dow + dsw.

We observe that, in a mag@,w involves only the partial derivatives with
respect tae while dzw involves only the partial derivatives with respect
toz-d; increases the degree correspondinglig one whiled; increases
the degree correspondingzdy one.

We extend the operatods andd; to all forms by linearity.

We shall now consider some propertiesdefandd; - d, andd; are
complex operators (& is reald,w is complex).d; is of type (1 0) and
d; is of type (Q1). [An operator is said to be of type, §) if it takes a
form of bigradation p, g) into a form of bigradationfg+r, g+ s)]. These
operators are local operators; they are lineaw i§ a form of degree
we have the formulae:

A A D) = g A @ + (1) w A 0,
G(w A D) = thw A & + (1) w A G

Itis enough to prove this for homogeneous forms. We tikeA w)
and decompose it:

pg St — -
d(w Aw) =dw Ao+ (-1)""% A do
= (G A B + (“1)Pw A )
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+ (thw A @ + (=1)P* %0 A dh);

the first term is of bidegreep(+ s+ 1,q + t) while the second is of
bidegree p + s,q + t + 1) and this proves the result.
Further we have the relations

dzdz = O, dzdz = O and dzdz + dzdz = 0
For, from the relations
(d;+d)(d, +0p) =d? =0

we obtain

To conclude the above relations from this we have only to observe that
for any form FZZ? the formsd,d,w, (d,0zw + dd,w) and dzdbw are of
different bidegrees namely of the bidegrees @,q), (p+ 1,q+ 1) and

(p, g+ 2) respectively.

zand zcohomologies

103
We have now two new coboundary operatdssandd; and hence two

new cohomologies andzcohomologies. We shall confine our attention
to thez cohomology; this will give all the information about holomor-
phic forms. We shall see that the construction of holomorphic forms
depends on thecohomology. We shall denote by%(£(V)) the space
ZP9/BP9 whereZP9 and BP9 are the subspaces &™9(V) (the space
of forms of bidegree, g)) consisting oz cocycles an& coboundaries
respectively.

Similarly we have the spade!%(Z(V)).

Intrinsic characterization of holomorphic forms

Let w be aC* form of type (p, 0); a hecessary and féigient condition
for w to be holomorphic is that

dsw = 0.
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Let

in a map.

: . . 0
In w is holomorphicwk are holomorphic; henc%a% = 0 anddyw = 0.
1
If dsw =0
0
Z %dzl Adz = 0;
ki 74

104 in the sum on the left side all the terrd®; A dz are diferent (i.e., if
(K, 1) # (K’,I"), dzy A dzc # dzp A dzc). cOnsequently‘Z“’?K — 0. This
1
proves that thevk are all holomorphic.

Holomorphic forms and z cohomology

Let us now consider the spab%”o(é’(V)) : H_f’o(éa(V)) is just the space
of (p,0) forms which arez cocycles (since ap,0) from which isz
coboundary is trivial). i.e.Hzp’O(g(V)) is the space of holomorphig-

forms. Similarly HZF”O(.@(V)) is the space of holomorphic forms with
compact support. A holomorphic form with compact support is zero on
each non-compact connected component.

Consider the spacg? = Z &PA of C* forms ofz degreeq. Z &

is a complex with the cﬂferentlal operatod;. This gives rise to the
cohomology groupsizq. z Ois the space holomorphic forms.
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The canonical orientation of a complex manifold

105
We shall now show that a complex analytic manifalt? (considered

as a &-dimensional real manifold) is orientable and has a canonical
orientation. The orientation 0" is determined by the maps giving the
complex analytic structure ov?"; we have to verify that two such maps,
considered as real coordinate systems, have a positive Jacobian on the
overlaps. To prove this, letq, ...,z,) — ({1, ...,<n) be a holomorphic

map of C" to C". Let D be the Jacobian aofy, ..., with respect to
Z,...,Zy letfurtherz = x +iyi, & = & + in; andJ the Jacobian of the
functions €1,m1, ..., &n, nn) With respect toXy, V1, . . ., Xn, Yn). We shall

prove that) = |D|?. Now d¢; = d¢; + idn anddZ; = d& — id i so that

1 _
dé‘:i N dT]| = _Edg/\ dZ;',

Similarly

-1 .
dx Ady = Edz A dziq

We have

dérAdni AL ADéEnAdy,  dia AdE A ... AdEy AdE,
:dxlAdyl/\.../\dxn/\dyn - dz Adzz A ... AdZ A dZ,
daA .. AdinAdEL A ... AdE,
- dzzA...AdZyAdZL A ... AdZ,
= DD = |DJ?

97
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as B B 106
dip A ... Adé _D dii Ao Adg, 5.

daA...Andz, dziA...AdZ,
In the case of our mafd3 # 0 and thereford > 0.

Currents

We shall now define bigradation for currents and the operadtatsand
d; on currents.
A currentT is said to be of bidegree(q) if

T.2y=0

whenever p,q) # (n—r,n—ys). (rgbs is a form of bidegreer(s)). A current

[SXe!

T of bidegree f, g) can be considered as a continuous linear functional
n—-p.n—q

on 2 ,the space of forms of bidegree € p,n — g) with compact

support.
We define the operataron currents by:

AT, 9y = (T, I ).
We do this because, whenis a form we have

(Jw, ) = (w, I p).

Writing J-1¢ = ¢, we have to prove that

jﬁwAJ¢:j;m¢'0rthWA¢%ifWAW

JwAyY)=wAy

but

sincew Ay is a form of degreerandJ = | on a form of degreer® (In

general

JW = (Ci)Pi%w = i9Pw).
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We defined, andd; on currents by:
P9 n-p-1n-
<dZT ’ n p(;,n q> - (_1)p+q+1<-|-, d7§0>

P.9 n—pn-g-
@ T, PH N = (CL)PIUT, dyg).

These relations are true for forms. In fact wheis a form of total
degreep we have

fdza) Ag=(-1)P*t fa) A .
\%

\Y

For, ¢ is of type o — 1, n) so that
GwAe)=0 and d(w A ¢)=d(wA @)

By Stokes’ formulaf d(w A ¢) = 0; hencef d,(w A ¢) = 0 or
v v

f (G A ¢) + (~1)Pw A dog) = O).
Vv

We now have some more cohomologies and there is need to puioge
some kind of de Rham’s theorems. It can be proved that tedomolo-
gies of ¥’ and&’ are the same and those @fand&” are the same.

Ellipticity of the system d/0zk
]
We shall show that th in C"is elliptic i.e., if
e shall show that t esystegaZ; in C"is elliptici.e., i

oT
— = k=1,2,...,n
7 ax ( )
whereT is a current andy areC*® forms thenT is aC® form. We have
o _1(o 9
0z 2\dx Oy
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i—li+|i
OX« 0¥k

ii_l(a_z+3_2]

070z 4\0x2  Oy?

so that

90 _A
- 0z 0z« 4

whereA is the usual Laplacian iR".
. T - .
SlncegTzk = ax € &, AT € &. By the elliptic character ol\, T is
C™.
It follows in particular that a distributio onC" which satisfies the

Cauchy relations

oT

—=0k=212...,n

5 = O )
is a holomorphic function. Similarly if a curreiit of bidegree p, 0) on
C" satisfies the system of partialidirential equations

oT

—=0k=12...,

72 ( n)

thenT is a holomorphic form of degree

Ellipticity of d; on 27

Let V(™ be a complex analytic manifold. T is a current of degreeero
andd;T = « is aC* form, thenT is aC® function. For, in a map, the
relationd;T = « implies
oT
o
where ay are C* functions. By the result proved earlidr is a C*®
function.

g

p,0
As a consequence we obtain thafifis a current of bidegregy(0)

g p.0
such that; T = 0thenT is a holomorphic form.
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J-Hermitian forms
110

Let G2" be a vector space ov&with a J-structure. A positive definite
J-Hermitian form onG is a mapH of G x G into the complex numbers
with the following properties:

1) HisR-bilinear.

2) HAXY) = —H(X, JY) = iH(X,Y) for X, Y € G (HenceH(JX
JY) = H(X,Y)).
3) H(X, X) > 0forX 0.

The real part of the positive definite Hermitian fornx, ) = Rl
H(X,Y), defines a Euclidean structure@ SinceH(X,Y) is invariant
underJ, (X, Y) is also invariant unded:

(IXIY) =(XY)

Since X X) = 0 the vectorsX and JX are orthogonal with respect
to the Euclidean structure. From the relatidJ X Y) = iH(X,Y), we
have

AXY) =-ImH(X)Y).

Hence
HXY) =(Y)+ilmH(XY)
=(XY)=-i(IXY)
= (X, Y) +i(X JY).

This shows thaH is completely determined by its real part. X,(Y) is
a positive definite quadratic form d& which is invariant unded this 111
determines a positive definiteHermitian form onG if we set

H(X Y) = (X, Y) +i(X, JY).

Since X X) =0, ()X Y) is an anti-symmetric bilinear form da.
2
This defines an elemef of AG* (G* is the dual ofG) by the formula

QX AY)=([XY),XYeG.
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G can be considered (canonically) as a vector space over complex
numbers, as we have already remarkeduif (.., un), (v1,...,Vn) are
the coordinates of the vectots andV of G with respect to a complex

basis €1,...,€n).,

H(U,V) = )" gjkUj% gjk = Gy (9ij) > O.
ik
Let us compute& in terms of this basix2 is given by

Q.U AV) = _H(U,V); H(V,U)

__HU,V)-H,V)
B 2i
1 -
=5 D g — Tevy).
X

If (e, ...,e;) is the dual basis ofe, ..., en)

uj, Uk
Vi, Vk

(e]‘A‘e;,U AV) =

112  sothat 1
Q=- D 0Kk€ A&

If we choose an orthonormal bases (. . ., e,) for the hermitian form,
1 5 =*
Q= ~o Z SN

Hermitial Manifolds

Let V(™ be a complex analytic manifold. At each tangent SpBg¥/)
we have a canonical-structure.V®™ will be called a Hermitian mani-
fold if on eachT,4(V) we have a positive definité-Hermitial form such
that the twice covariant tensor field defined by these form€Ps tensor
field.
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On every complex analytic manifold we can put a Hermitian struc-
ture, just the same way we introduced a Riemannian structuredsh a
manifold.

In a Hermitian manifoldv(®™ the real part of the)-Hermitian form
on eachl,(V) gives rise to a Riemannian structure on the manifold; the
imaginary part gives rise to a re@P° differential formQ of bidegree
(1,1).

If in a coordinate systenx, .. ., z,) the Hermitian form is given by

Z gjkdzdz,
then in this map, 113
1 -
Q= o Z gjkdz A dz.

If Tis the volume element associated with the Riemannian structure we
have the relatio®" = nlr. For, if (z,...,z), zj = X; +iyj, is a local
coordinate system ate V in which the Hermitian form ad is given by

>.(dz)a(dz),, we have,
1 i
Q0 =5 ) (02a 1 (@20n

= D (dxJa A (dya
Q= (dx1)a A (dys)a A ... A (dX)a A (dyn)a A NI
= nlr,.

Kahlerian Manifolds

A Hermitian manifold is called a Kahlerian manifolddf2 = 0.

There exist manifolds with an infinity of Hermitian structures but
with no Kahlerian structure.

For a compact Kahlerian manifold,

b?P > 1.
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To prove this we notice that

an:fn!T>O.

\% \

Q"is a cocycle but not a coboundary, sinﬁ@“ # 0. It follows that the
v

formsQP(1 < p < n), which are cocycles, are not coboundaries. Hence
the 2p-th cohomology groups areftérent form zero ob?? > 1.
Sinceb*(S8) = 0, if S8 is a complex analytic manifold it is not
Kahlerian.
Every complex analytic manifold of complex dimension 1 is Kahle-
rian because and 2-form is closed.



Lecture 19

Some more operators

115
Let

d = —id, + id;

Then _
d=JdJ?

For, if W'is a form of bidegreef, g), Jw = 19 Pw andJ 1w = iP % so
that

Jd,J 1w = ia-(P+Djp-ag .,

thus
Jd,Jt = —id,
and similarly
J&J ™t =id,
so that
d=JdJ?t

d is the transform ofi by the automorphisnd. SinceJ andd are real
operators (i.e., take real forms into real forrEEi$ a real operator. Now
we can decompose the operatdysindd; into real and imaginary parts
as follows:

1, ~
d, = 5(d+id)

105
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1 L~
d= Q(d —id).

We have evidentlgld = 0 anddd + dd = 0.
The operatorg, anddz are the adjoints (with respect to the Rieman-
nian structure) of the operatadls andd; respectively:

(dza, ) = (@, 3)
(dza, ) = (@, 32B)

the scalar product being the global Riemannian scalar prodyig.an
operator of type {1, 0) while d; is an operator of type (6-1). If d is
the adjoint ofd

6 = |az - |(92,
we have

8y = %(a-i'é)

dy = 1(a+i’5)

zZ— 2 .

The following relations are easily verified:

8232 = 0, 8262 = O, 6262 + (97(92 = O
99 = 0,00 = 0,00 + 39 = .
We now introduce two more operatotsandA. L is simply multi-
plication byQ : Lw = Q A w.
L is an operator of type (1). A is the adjoint ofL. We have
A=x1lx.

For

(A, ) = (. LB)

:f_l*a//\Lﬂ
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ZJ“Z;X§XE
:f(L_*la/)/\,B
:f_*l[*L_*la]/\,B
= (+L ¥ a. )

= (+L*a.p)

We have used above the fact tliéats a real form of degree 2. 117

Commutativity relations in a Kahlerian manifold

We shall now consider the commutativity properties of the operators on
a Kahlerian manifold. _
L commutes with the operatods d, d, andd;; we denote this by

Jd.d. d,, d;

For,
d(Q A w)=QAdw as dQ = 0;

since

andd,Q andd;Q2 are forms of bidegree (2) and (12) we haved,QQ = 0
andd;Q = 0; it follows that

d(Q A w) = QA dw
Gz(Q A w) = QA Gz

By taking the adjoints we find that 118
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~L does not commute with, 5, 0z andods. A does not commute with
d, d, d, anddz

Low = Q A dw, JILw=9d(Q A w)

and we have no rule for th& of a product so that it is not possible to
compare_g anddL directly. We have the following formula which gives
the defect of commutativity af andA: writing
[A,d] = Ad-dA we have
[A.d] = -3

(ConsequenthA andd do not commute). This formula follows from
the following formulae:

[A,dy] = 5
[A,dy] = —id,

which we shall prove in the next lecture. From these relations we have
at once
[A,d] =0.

119 By taking the adjoints we find that

[L,d] =d
[L,8,] = id;
[L,85] = —id,
[L,d] = —d.

We shall derive some important formulae from the above formulae.

dd = d(dA — Ad)
= —dAd
ad = (dA - Ad)d

= dAd.
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Adding we find that L

do+od=0
i.e.,d andd anti-commute (In a Riemannian structwt@ndd have no
commutativity relation; in the case of éllerian manifoldl andd anti-
commute). We have further the following formulae:

dd+dd=0
80 + 00 = 0
do+ad=0
ad+dd=0

0,0y + cbd, = 0
0,05 + 0307 =0
dyd5 + 350, = 0
9,05 + 0y = .

We now consideA. 120
do = (dz + dz)(02 + 95)
= 007 + 0707 + d,07 + 070,
By addition,
—A = —A— A,
where

- AZ = dzaz + azdz
— Az = O07 + 0705

SinceA; and A; are pure operators (i.e., operators of typgOjd A is
also a pure operator; in other wordsdoes not change the bigradation.
If
A=do+od
then _
—A=-A— Ay



110 Lecture 19

so that
A=A.
121  However,
A=JAJ
So
A=JIAJt
i.e., JandA commute.
Moreover,
1 ~ 1 ~
d,0, = Q(d +id) - é(a —id)
1 —_— = =
= Z[da +do +ido — idd]
and L
O, = 510 + od +i6d — iad]
so that _
A A
A= ————.
T4 4
Similarly
A A
=gty
Consequently
A=Az
and

A=2A,=2As=A

This formula shows that can be obtained in terms df andds alone
or in termsd; andos alone.
We shall now see that commutes with all the operators we have
introduced. LeP"s be the projection of the space of forms on the space
122  of forms of bidegreer( s). (P"S maps a form on its homogeneous com-
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ponent of bidegree(s)). SinceA is a pure operators commutes with
P"S. A commutes with_.

diL — Ldd = doL — dLa + dLd — Ldd
=d[a,L] +[d, L]d
=—dd

(d andL commute a®2 is a closed form of even degree). Similarly
[d,L] = —dd

and hence
[-A,L] =0.

SinceA andL commute A andA also commute. From the relation
AQAW)=QAAw

we see that if a fornaw is harmonic the form2 A w is also harmonic.
In particular the form itself is harmonic. In fact2 is = closed (it is
already closed). To prove this we observe that

[Ld]=d

or
QA dw - QA w) = dw

(In general we do not have a formula for #hef a product of two forms;
however this formula gives an expression for éhef the product of a
differential form byQ). Takingw = 1, we find thaivQ2 = 0. ThusQ is 123
closed with respect td, dd,, d;, 9; andos.

Sinced = JdJ, A commutes withd; hence commutes with.
SinceA commutes withd, a 0 and5, A commutes withd,, d3, 9, and
0s. ThatA commutes withd, and d; is very important, as this result
connects harmonic forms withandz cohomologies.

Thus in a Kahlerian manifoldA commutes with all the operators, in
particular withd, andds.
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In the case of a compactalerian manifold we have a decomposi-
tion of ¥ (andZ’) as the direct sum of the space of harmonic forms, the
space ok (or 2) coboundaries and the spacezdfespz) star cobound-
aries. For we have the decomposition

| =m + AG;
replacingA by the new expressions we have

| = n1+a'56 +5EG,
I =71 + 2dzazG + Zazde,
| =m + 2d767G + Zazde

These formulae will have important consequences in connection with
thez andz cohomologies.
A, G, m
*a da 87 ﬂl’ Gy L) ‘]’ Pr’se L7 A’ a:g’ d27 di’ aZ’ 62

Holomorphic forms on a Kahlerian manifold

We have seen that every holomorphic form@his harmonic. In an
arbitrary Hermitian manifold it is not true that every holomorphic form
is harmonic. However in a Kahlerian manifold every holomorphic form
is harmonic. To prove this we use the fact that

A= 2A§, Az = dzaz + 62d§

If a form FZZ? is holomorphic, therd,w = 0 and thereforé;d;w = O;
sinceg; decreases thedegree by 19;w = 0 and hencakosw
ThereforeAw = 0.

[
©
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Proof of the formula [A,d;] =103

125
To prove the bracket relation

[A,d] =i0;

in the case of a Khlerian manifold, we first verify this relation in the
case ofC" with the canonical Khlerian metric

Zn: dzdz,.
k=1

In this case 1
Q=—— dz A dz..
= Zk: 2 A dZ

The real part of the Hermitian form is given by
D (A + dyp).
k

The Euclidean structure given by the metric on the real tangent space
at a pointa induces a Euclidean structure on the real co-tangent space
ata. We extend this Euclidean structure to a Hermitian structure in
the complex co-tangent vector space. Thes@ctorsdx, dy, ..., dX,,

dy, form an orthonormal basis for the real cotangent vector space; the
vectorsdz, dz, ..., dz, dz,, form an orthogonal basis for the complex
co-tangent vector space; each of these vectors is of legtasdz, = 126
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dxc+idy, anddz, = dx—idyk. The vectoidz; A dz is of length V2i+k
wherej andk are the number of elementsJrandK.

We shall now introduce some elementary operator€iirand ex-
press the operators, d, d; etc. in terms of these operators. The opera-
tor

e = dzA

operates on forms by multiplying every form on the leftdy - e is an
operator of the type (D). & is the operator

dzA.

& is an operator of the type (D). ix andiy are defined to be the adjoints
of ec and@, respectivelyiy is an operator of the type-(, 0) while iy is
an operator of the type (61). We shall prove that the linear operaipr
is given by the formula

ix[wdzy Adz] =0
ik[w A dz Adzy Adzk] = 20 A dzy A dzk

(J is a set of indices without the inddg. (this amounts essentially
to the suppression afz). We shall verify that the operator defined by
these formulae is the adjoint ef. For any two formsy andg we shall
verify that

(&a. B)a = (. ikB)a-

Itis sufficient to verify these for the elementary formsi.e., to verify that
(exa’dzy A dzx,8'dz. A dZy)a = (@'dzy A dZ, ik8'dz. A dZy)a

or
(&xdzy A dzk,dz A dzw)a = (dZy A dZk, ikdZ A dZy)a.

The element$dZ; A dzg} are orthogonal. The right and left sides both
vanish except wheh = k+ J andM = K. In this case both the sides
are equal to 2"+S wherer ands are the number of indices ihandK
respectively.
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We shall now introduce two more elementary operators:
0 = 0
0

(9:—, = —.
k 0% k 2

We can prove that the adjoint 8f is —d and the adjoint ofy is —dx in a

similar way. We can express all the operators in tiénl€rian structure
by means of these operators. We have

1 _
L =5 2.6&
1 o-. . -
A= 5 Z ikik (taking the adjoint).

d, = Z Ok& = Z edk(ex and dx commute)

Now we can prove the bracket relation. We have
Ad, = Z L
z = T 16,
k|
d,A = Z L o6
2\ = > 1€11klk-
k|
Sinced; commutes withy andiy,
1, ;.
Ad, = Z E(’)ﬂklkel.
k|
e; andix do not commute. Fdk # 1ike; = —eyik So that

1 - 1 -
= 01ikiker = — = 01ike1ik
kZ; 2i kzl: 2i
k#1 k=#1
1 -
= Z zalellklk.
k1
k#1
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Now 129
ikQ( + a<ik =2
(asikex is zero for a term which contairmz, as factor whileiy is zero
in the contrary case). So
1, -, 1, - . 2.
—Oklkik& = —=Okik&xl — Ok
2Ikkka< 2Ikkekk+2|kk
1 -
= —Ok&ikik — 10kik.
5 kEIklk klk
Consequently,

1, -,
Adz = Z Eallklkel
k,1

1 - . . -
= Z zalellklk— I Zakuk
k1

which proves the bracket relation.

We shall now derive the bracket relation in the case of an arbitrary
Kahlerian manifold by using a theorem offdrential geometry.

Suppose we have two™ tensor fieldsp ande’ of the same kind on
aC> manifoldV. We shall say thad, &’ coincide upto the ordan at

130 a pointa € V if the codficients as well as the partial derivatives upto
ordermof the codficients of® and®’ coincide ag. This has an intrinsic
meaning: for if the property is true for one mapasit is true for any
other map at. Let nowV be a Riemannian manifold with the field of
positive-definite quadratic form@Q. Leta be a point ofV. According to
a theorem of Riemannian geometry we can find ancfifefield Q' of
positive definite quadratic forms defined in a neighbourhood sifich
that Q and Q' coincide upto the first order @ and such tha@)’ gives
the Euclidean structure in a neighbourhooddi.e., there exists a map
in which
Q = Z5ijd)q'de

wheredjj is the Kronecker Symbol)Q’ is said to be an osculating Eu-
clidean structure fo ata.
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We now consider the analogous question for Hermitian manifolds.
Suppose &£ manifold V" has two diferent complex structures, (1)
and (2). We shall say that the complex structures (1) and (2) coincide
ata € V2" upto ordem if for every functionf holomorphic in (1) the
field (dy)af is zero upto ordem ata. Equivalently, we may say that
the structures (1) and (2) coincide upto ordeat a if the intrinsic J-
operators); andJ, coincide upto ordemon the tangent space atLet
V(" be a Hermitian manifold. Le#l denote the field of Hermitian forms
giving the Hermitian structure arfd the associated exterior 2-form. Let31
abe a point oV®™. Is it possible to find a Hermitian structurd; onV
(with the same underlyinG> structure a&) such that

i) the two analytic structures coincide upto order hat

ii) the fields of Hermitian form$d andH’ coincide upto order 1 at
a.

iif) H’ is the canonical hermitian structure 6A for some map a&?.
There is one trivial necessary condition. {}f is the exterior 2-
form corresponding tdd’, Q andQ’ coincide upto order 1 &
so thatdQ anddQ’ coincide ata; butdQ’ = 0 ata. Therefore,
dQ(a) = 0 is a necessary condition. This condition can also be
proved to be sfiicient; this is the diicult part. In particular in a
Kahlerian manifold there exists an osculating Hermitian structure
at every point.

Let V(W be a Kahlerian manifold. Aa € V(™ we choose an
osculating Hermitian structure. The operatdrgorresponding
to the two structures coincide atup to order 1. The operators
d = JdJ ! coincide ata. Sinced; is a linear combination of
andd the operatorsl, coincide ata; similarly the operatorsi;
coincide ata. The operatorg coincide upto order 1 & and the
operators A, d;] coincide ata. The operators); also coincide at
a. Since we have proved the relation

[A,dj] =i0;

for the canonical Hermitian structure@¥ the same relation holds132
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also for any Kahlerian manifold.

The relation
[A’ d?] = _iaz

is proved similarly.

Lecture 20
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Compact Manifolds with a Kahlerian structure
133

Let V be a compact complex analytic manifold. We shall assume that
there exists a Khlerian metric orV. From this assumption we shall
derive some intrinsic properties ¥fi.e., properties oV which depend
only on the complex analytic structure ¥fbut not on any particular
Kahlerian metric.

Let H™9 denote the quotient space of the space of dfosed
forms of bidegreer(s), by the space of forms of bidegree §) which
are coboundaries (not necessarily of homogeneous forms). Theththe
cohomology spacelP is the direct sum of the space™9,r + s = p.
To prove this we observe that, B$9 commutes witm, P(~9 operates
canonically (i.e., independent ofaklerian metric) orHP (see lecture
15). To define this map, we choose in each cohomology class the har-
monic form,w, belonging to this class; sinéeand P commute, each
homogeneous component of the harmonic form is harmonic and hence
closed. Thus the homogeneous components of the harmonic form define
cohomology classes a9 is the map which maps the cohomology
class ofw into the cohomology class determined by thes{ component
of w. If p~SH is the image oH by P(~9, P(*H may be identified with
the space of harmonic forms of bidegreges| and

HP = " PO9H,

But P"9H is just the spacel ™9 defined above and hence 134
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HP = Z H(9

r+s=p

This decomposition is intrinsic; but we have used harmonic forms to
prove this.
If we define the double Betti numbbf-9 to be the dimension of the
spaceH ™9 we have
bP = Z p(r-9)

r+s=p

Since the mapping — @, which assigns to every form its complex
conjugate, induces an isomorphism léf-9 onto H", we find that
b9 = p(SN: so, whenp is oddbP is the sum of numbers which are
pairwise equal and hend® is even. So the Betti numbers for odd di-
mensions are even. Moreowdf "9 is dual to the space "9 so that
b(-r:1=9 = h(~) Thus we have

b(r,s) — b(s,r) — b(n—r,n—s) — b(n—sn—r)

We can also prove th&éP is even for oddp by introducing a canon-
ical complex structure on theth cohomology spack P® formed from
thereal forms alone. HP is the complexification oHP® and the com-

135 plex dimension oHP is equal to the real dimension &f"®]. Since
J commutes withA, J operates canonically oHP®). Sincep is odd
J?2 = —| andJ gives a complex structure daP®. So the (real) dimen-
sion of HP® is even; and hends® is even.

The next result on the Betti-numbers is the following:

b9 > p=L5D if r t s<n+1

(From this it follows at once thdi® > bP=2 if p < n+ 1). To prove this
we need the following result: the map

r-1s-1 r,s
Q: A TiV) - ATL(V)

(multiplication byQ) is one to one (i.eQ A w = 0 if and only ifw = 0)
providedr + s < n+ 1. SinceL commutes withA, L gives a map of
the space of harmonic forms of bidegree-(1, s— 1) into the space of
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harmonic forms of bidegree,(s); by the algebraic result stated above
this map is one to one if+ s < n + 1; consequentp( 151 < prs if

r+s<n+1.
r-1s-1 r,s
Themap: A - A
r-1,s-1 rs .
We shall now prove that the m&p: A — A is one to one for

r+s<n+1. SinceQ is an operator of type (1) it is suficient to prove

that
g-2 q
Q: A > A

is one to one fog < n+ 1. This would follow if we prove that the map136
n-p n+p
QP A - A
is one to one fop > 1. For,ifgq<n+1,g-2=n- p, forsomep > 1
and
QANw=0=20PA0w=0=2w=0

since
n-p n+p
QP A - A
n-p n+p
is one to one. SinceA and A are of the same dimension it is enough

to show that the magP is onto. Let &1, Y1, ..., Xn, Yn) be a basis for
the space of real fferentials at such that

Q= :E: Xi A\Y
n+p
Putx AY; = ai. The elements ofA are generated by elements of the
form xa A yg, Where the set of indice& and B have at leasp indices
in common. Consequently it is ficient to prove that these elements
w = Xa A yg are divisible byQP. We may assume that

(I.)=(11/\.../\ap+s/\xc/\yD

where the indice€ and D have no elements in common. Since the
transformationx, — Yk, Yk — —x« for indicesk in D does not fectQ
we may assume that is of the form

(Yl/\/\ap+s/\Xp+s+1/\/\Xn_s
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Since 137

(the exponent represents power with respect to the exterior prodigct),
have

w

m =(a’]_+"'+a’p+s)p+s/\Xp+s+1/\.../\Xn_S
=(@1+ - +@p+ap1t+-+apist o+ ang)P®

A Xp+S+1 VANPIAN Xn_s

Ifwe puty = apsi1+---+an

w
m = (Q—')/)p+s/\ Xp+s+1 A... A Xnp=s

S
= [P (p+ 9Py 4ot (—1)5('[’;' )Qpﬂ.
1
/\Xp+s+1/\/\Xn_s

asy®! = 0. The left side containin@P as a factor.

The spaceH (9

We shall now show that the spatfP? is just the space of holomor-
phic differential forms of degrep. A closed diferential form of degree
(p, 0) iszclosed (by homogeneity) and hence holomorphic; and a holo-
morphic form (of degre@) is harmonic and hence closed. On the other
hand, since a holomorphicftikrential form is harmonic, a closed dif-
ferential form of bidegreep, 0) cannot be a coboundary unless it is the
zero form.

From this we derive at once a majorant (in terms of ptfe Betti-
number) for the number of linearly independent holomorgkforms.
Since

bP = pPO) 4 ... + p©OP  gnd bPO) = pO.P)

we have
2b(P9) < bP(for p # 0)
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For differential forms of degree 1 we have

bl — b(l,O) + b(O,l)
= 2p-0)

i.e., the dimension of the space of holomorphitatiential forms of de-
gree 1 is equal to half the first Betti number.

Compact Riemann Surfaces

A complex analytic manifold of complex dimension 1 is usually called
a Riemann surface. We can always introduceadliérian metric on a
Riemann surface. Le¥® be a compact, connected Riemann surface;
b? = b% = 1. Letb! = 2g. The numbeg (= half the first Betti number)

is called the genus of the Riemann surface. The number of linearly
independent holomorphic forms of degree 1 is equal to the genus of the
surface, by what we have seen. Since there giedependent 1-cycles
andg independent holomorphic 1-forms the periods of a holomorphic
1-form cannot be prescribed arbitrarily on a basis of 1-cycles. Mewe

it can be proved that there exists a unique holomorplffeintial form 139
with prescribed real parts of the periods.

The Riemann spher&?, is of genus zero. So there are no holomor-
phic differential forms of degree 1 apart from the O-form. Of course,
this can be proved directly. Let be a holomorphic 1-form 082. w
can be written ag(2)dzin the plane, wherd(2) is an entire function in
the plane. Using the map given byzlat co we find thatf(1/2). 1/7
should be holomorphic at the origin.

If

Q=) a?' then {117 =) ijz
so thatf(1/2). 1/° has a pole at the origin unle$s= 0.

Next we consider a torus with the complex structure induced from
C!. Here the genus is 1. So theffdrentialdz (which is well defined on
the torus) is, but for a constant multiple, the only holomorphic 1-form
on the torus.
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All other compact Riemann surfaces can be considered as the quo-
tient spaces of the unit circle by certain Fuchsian groups.
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The identity betweend, z and z cohomologies: de

Rham theorem (Compact Kahlerian manifolds)

140
We shall now prove that the cohomology spaces defined by the operators

d, d,, d; andd are canonically isomorphic. That the ordinary cohomol-
ogy and thez cohomology are the same will be of importance in the
study of holomorphic and meromorphic forms on a compathlrian
manifold.

We shall give the proof in the case of the ordinary cohomology and
the Z cohomology. LetH be a cohomology space with respectdo
and Hs the corresponding cohomology space. We have a canonical

mapping fromH to Hs. In each cohomology clas% (with respect to

d) we choose a formy, which isz closed and map the classto thez
cohomology class determined hy In eachd-cohomology class such

a form exists, the harmonic form belonging to the class. We have to
verify that if a form,a, which is ad-coboundary i closed them is az
coboundary. Since is ad-coboundaryra; = 0. By the decomposition
formula

a = ma + 2d:05Ga + 2050:Ga
= 2007

so thatw is az coboundary. The mapping so defined is actually an
isomorphism. For the spac¢#; can be identified with the space of har-
monic forms and we know that the spadealso can be identified with141
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the space of harmonic forms. We have thus a canonical isomorphism
betweend andz cohomologies, which is independent of thatierian
metric.

Thus thez cohomology for a compact complex analytic manifold
with a Kahlerian metric is just the ordinary cohomology. The first and
third parts of de Rham'’s theorem facohomology for such manifolds
follow immediately. The projections, o7 = 2d;—3;G, m3z are contin-
uous and the image spaces corresponding to these projections are closed
because they are kernels. This proves the second part of de Rham’s
theorem foiz cohomology.

de Rham theorems forzcohomology of an arbitrary
complex analytic manifold

The first part of de Rham’s theorem fbcohomology in the case of an
arbitrary manifold was proved only recently. The third part of de Rham’s
theorem is also true: theBetti-numbers are finite for a compact mani-
fold. However it is not true in general that the spaceg edboundaries

are closed. On the other hand if we assume that all the Betti-numbers
are finite this theorem can be restored.

The complex projective space

Let PC" denote the complex projective spacenoflimensionsPC" is
a compact Khlerian manifold (see the appendix). Algebraic manifolds
imbedded without singularities IRC" are also compact#&hlerian man-
ifolds. (In general it is true that a complex analytic manifold regularly
imbedded in a Khlerian manifold is a Khlerian manifold). FoPC"
we havebP = 1 for evenp andbP = 0 for oddp. The formQX (Q is the
exterior 2-form associated with theaKlerian metric) gives an element
# 0 of the pth cohomology space.

In this connection we shall state another part of de Rham’s theo-
rem (arbitraryC*® manifold, d-cohomology). This part of de Rham
theorem states that each cohomology class of currents contains a cy-
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cle (closed chain) and that a cycle which is the coboundary of a current
is the boundary of a chain. We shall also make use of de Rham’s cor-
respondence between cohomology of forms and homology of chains in
which exterior products of cohomology classes correspond to algebraic
intersections of homology classes.

Let PC"! be a hyperplane d?C" - PC" ! is a cycle.PC"! deter-
mines an elementq 0) of the 2nd cohomology class (of currents). So
Q is homologous (in the sense of the currents} t®C"* wherek is a
real numberQ ~ k- PC"1. Actually k > 0. For,

an — <Q, Qn—1> — k f Qn—l
pCn pC-1

SincePC" andPC"! are Kahler manifolds (with the associated exterior
2-formQ),

fQ”>O and f Q"1>0 sothat k> 0.
pCn pcn-1

Consideringn hyperplanes in general position (whose intersection is43
point PC°) we find that
Q" ~ K"PC°
~ k"x point (as a chain or current).

Therefore
f Q" =KYPC’, 1) = K".
pCn
So
k= . f on.
pCn
If we choose the Khlerian metric whose associated 2-form is

Q' =Q/n fQ”
PC
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we haveQ’P ~ PC"P. In other words if the associated 2-fohof a
Kahlerian metric satisfies the relation

Q=1
PC

then
QP ~ PC™P,

The volume ofPC" with respect to the volume element given by such a
metric isn!.

The Betti numbers oPC" verify, of course, all the properties of the
Betti numbers of a compactdflerian manifold. We have

pP=ptt=. . =p"=1

and all the other double Betti-numbers are zero. In partidaffdr= 0

for p # 0. So on the complex projective space there are no holomorphic
differentials of any degree except the degree zero (in which case the
holomorphic forms are constant functions).

Example of a compact complex manifold which is
not Kahlerian

Let us consider irC" the shell between the two spheres of radii 1 and
2: (1< 4 < 2). Identify the two points on the spheres which are on the
same radius.

Let us denote by the space obtained after this identification. Let
G denote the properly discontinuous group of analytic automorphisms
of (C" - 0) consisting of the homothetic transformations.

(z,....22) = (Za, ..., 2%z)

k running over all integers, positive, negative or zevas a fundamen-
tal domain for this group. Since we can always introduce a complex
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analytic structure in the quotient space obtained from a properly discon-
tinuous groupy can be endowed with a natural analytic structives
compact.V is not Kahlerian fom > 1. It can be proved that, for > 1,

p° =btl =1,
b'=0 for 2<i<2(n-1).
bt =10"=1

Forn > 3, the Betti-numberbP are not greater than 1 for evgn For 145
n > 2 odd dimensional Betti numbers are not even.

If P(z1,...,2) andQ(z, ..., z,) are homogeneous polynomials of
the same degrd&(z, ..., z,)/Q(z, ..., z,) defines a meromorphic func-
tion onV. In this connection we may remark that there exist compact
complex analytic manifolds which admit of no non-constant meromor-
phic function. Examples are provided by certain torii.
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Cousin’s Problem
146

Cousin’s problem for meromorphic functions in the complex plane is
Mittag-Leffler's problem. Mittag-Léler’s problem in the plane is as fol-
lows: Given a discrete set of points in the plane and polar developments
at each of these points, construct a function meromorphic in the whole
plane having the given points as poles and the given developments as
the polar developments. We know that this problem always admits of a
solution. Leta; be the given points and

Cia . Ci2 R Ci, pi
(z-a) (z-&) (z—a)P
be the polar developmentat Then we can find polynomid);(z) such

that the series 1
Ye(;25)-ew

coverges absolutely and uniformly on every compact set not containing
anyone of they. The limit function gives a solution of the problem. The
solution is unique upto an additive entire function. The indeterminacy
in the problem is thus an entire function.

Let us consider the corresponding problem on the Riemann sphere.

Pi(l/z-a&) =

We have a finite number of poinggand polar developmeng (%

ata # oo and a polar developmeR(2) (a polynomial without constant
term) ateo. Then the function

Pi(l/z- &) + P(2)

131
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is meromorphic on the Riemann sphere and has the prescribed devel-
opment at the given points. The solution is unique upto an additive
constant. The method of construction of the solution corresponds to the
classical decomposition of a rational function into partial fractions.
We want to consider similar problems on complex analytic mani-
folds. We shall first define a meromorphic function.
Suppose we consider {@" a ‘function’ ¢ = Mz, z) which is

15 e e Zn)
the quotient of two holomorphic functiorfsandg. The variety of poles

is the set of zeros a@f(z, . . ., z,). The variety of poles is not, in general,

a true manifold; if all the partial derivatives gfvanish at a point this
point is a singular point for this variety. (For example the variety defined
by Z + 75 + Z = 0 has a singularity at the origin). We shall call the set
of zeros of an analytic function an analytic subset. At points where the
analytic subsets defined by the zeros of the functibasdg intersect

the quotientf /g is indeterminate. (In the case= 1, if f andg are
coprime at a poing it is impossible to have(a) = 0 andg(a) = 0
simultaneously. However fan > 2 this is possible; for example the
functionsz; andz, are coprime at the origin and vanish simultaneously
at the origin). So the functiofi/g is defined only in the complement of
certain analytic subsets. It can be shown that an analytic subset is a set
of measure zero. Itis not good to define a meromorphic functiof®n

to be the quotient of two holomorphic functions @f¥; as then the only
meromorphic functions on a compact complex analytic manifold would
be constants! These considerations lead to the following definition of a
meromorphic function on a complex analytic manifold.

A meromorphic functiongp, on a complex analytic manifold is a
complex valued function defined almost everywhere on the manifold
such that for every poird of the manifold there exists a neighbourhood
U, of asuch that, ifJ,, ¢ is almost everywhere equal to the quotient of
two holomorphic functions defined everywhereldg

A meromorphic form of degrep is a field of covectors defined al-
most everywhere on the manifold such that every point has a neighbour-
hood in which the form is almost everywhere equal to the quotient of a
holomorphic form of degrep by a holomorphic function.

Suppose we are given an open coveridg) ©f the manifold and in
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everyU; a meromorphic dferential formcgi of degreep such that the
form wij = wi — wj is almost everywhere ibj N U; equal to a holo-
morphic form defined everywhere ly; = U; N U;. These constitute
a Cousin’s datum. Cousin’ s problem is to find a meromorphic form

& on the whole manifold such tha — wj is a holomorphic form in
Ui (i.e., w — wj) is almost everywhere equal to a holomorphic form de-
fined everywhere itJ;). The indeterminacy of the problem is evidently49
an additive holomorphic form (defined over the whole manifold).
are “singular parts” ofv in U;. Cousin’s datum for the Mittag-l{Ber's
problem is the following: With eacl we associate an open s#tsuch
thatU; N Uj is empty fori # j. In U; we take forw; the meromor-
phic function given by the polar development. In the complementary
setUq of the pointsa; we take the functiomwg = 0. All these together
constitute the Cousin datum for the Mittagftier problem.

We now wish to formulate the Cousin datum and problem in terms
of currents. Ifn = 1, a meromorphic function (or a form) can be con-

sidered as a current. [@! the functionm defines a current in the

usual manner. But the functi ! k > 1, is not summable in an
| Tkt /
neighbourhood o&. However if we take the Cauchy principal value,

defines a current: for evetye &

1 L pdx dy
<(z—a)'<’<p>_|e|—rpo ff (z-a)k

|z-aj>e

1
(- a)k

This enables us to consider meromorphic functions or forms as currents
whenn = 1; considering meromorphic functions and forms as currents
in this way leads to good solutions of problems on a compact Riemann
surface. However, it becomediitiult to associate canonically a current
with an arbitrary meromorphic function in higher dimensions. If the an-
alytic subset defined by the singularities is a true manifold it is possible
to associate canonically a current with the meromorphic function. In tse
case of a general meromorphic function it has not yet been possible to
associate canonically a current with the meromorphic function.
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We shall introduce currents in the problem in some other way. We

can find currentgl? (of bidegree p,0)) in U; such thafl; — Tj = wjj (as
a current) inUj;. The indeterminacy in the choice of theis a current
defined on the whole manifold. 8 is a current on the whole manifold
T/ = Ti + S also possess the same property: - ij = wijj in Ujj,
conversely ifT; andT; are two systems of currents such thaand T/
are defined irJ; and

Ti-Tj=wij in Uj,

T - ij =wjj In Ujj,
there exists a currer@ on the whole manifold such tha’ = T; + S.
We define the currer® by ‘piecing’ together the current§; defined in

Ui by Sj = T/ — T;. The currentsS; define a single current on the whole
manifold as we have, ibjj,

Si-Sj=(T-T)-(T{-T))
=(M-TH-(Ti-T)

= Wij — Wij
=0
151 To find the current3; we proceed as follows. We choose a partition

of unity {«;} subordinate to the covering syste¢lh}. We put

Ti = Z akwik

(the summation being over &lfor which U; n Uy is non-empty) where
akwik is theC® form defined inU; as:

akwik, 1IN Uj N Ug
akWik =
KK 0 in Uj n (complement of support afy)

The definition ofakwix is consistent, as

akwik = 0 on U nUxn (complement of support afy).
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T; is aC® form in U;. Now
Ti-Tj= Za’k(wik —wi) in Ujj.

ax(wik — a)jk) is zero OUtSidéJijk =UinUjn Uk
In Ujjx we have the relation

Wjj + Wik + Wi =0

and, inUjx, the relation
wik + wki = 0

so that 152

= Wij, in Uij as Zak:l'
k

This result is a particular case of a more general one. Suppose we
have an open coverindy;} and a system of currents; defined inU;; =
Ui N Uj such that

Wi + Wik + ki =0 in UinU; N Uk
J J J
and wjj + wji =0 in Ujj.

Then it is possible to find a system of currefitsn U; such that
T -Tj=wj in U
andT; is given explicitly by

Ti = Z akWik
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whereay is a partition of unity subordinate to the coveridg If w;; are
C> forms, T; also can be chosen to B&° forms.

[One can also consider the following problem which is more gess3
eral: given an open coverind;} and a system of holomorphic forms
wij In Ujj such that

wij +wik +wk =0 in Ujj

and
wij +wj =0 in U,
to find holomorphic form#y; in U; such that
hi - hj = Wij in Uij]

By means of the currenfg we define a current of bidegree, ()
defined on the whole manifold. We pBt = d;T; in U;. In Uj;,

R —Rj = d(T; - Tj) = dzwij = 0

(aswij is holomorphic). So the currer define a single current defined
p,1
on the whole manifold, which we denote §y. Since the current®

arez closed, the currenlcif\’1 is also closed. FiRl is locally a coboundary
but need not be a coboundary in the large). If we repfdceby a
system{T/} having the same properties&s T = T; + S, S a current
defined on the whole manifold, th&"corresponding tal; would be

FI)f\’l + dzS. So we can associate canonically with the Cousin datum a
wholez cohomology class of bidegree,(l). Thisz cohomology class
is the ‘obstruction’ to the solution of Cousin’s problem.

154 We shall prove that in order that Cousin’s problem be solvable it is
necessary and fiicient that th& cohomology class associated with the
Cousin datum is the zero class. Suppose Cousin’s problem is solvable
and letw be a solution. Let furthew — w; = h;, hj holomorphic inU;.
TakeTi = —hi. In Uij,

Ti—Tj =—hi+hj
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= —(w - wi) + (w - wj)
= Wi — Wj
= wjj.

d,-Ti=-dhj=0

So the current of bidegree,(1) associated with the system is zero,

or thez cohomology class associated with the Cousin datum is the zero
class. Conversely if the associaedohomology class is the zero class,
Cousin’s problem is solvable. In this case we can finduch that the

p.1
associateR is zero (we may have to adjust tBesuitably). That is, we
find Tj such that

T; —Tj = Wij in Uij and dzTi =0.

0
Then by the ellipticity ofd; (on 2’), T; is a holomorphic fornh;. Then
a solution is given by the form = w; — hi. In Ujj, wj — hi = wj — hj so
thatw is a meromorphic form well-defined on the manifold.

p.1 p.1
Let R be the current defined byR = d&;Ti in U;. If R = d;S, a 155
solution of the Cousin’s problem is given by the fown

w=wi+S-T; in U

In a compact khlerian manifoldl andz cohomologies coincide and
with a Cousin datum we have an ordinary cohomology class.

As an example let us consider the Riemann sphere. bleted; so
bl = 0. So Cousin’s problem for meromorphic functions is solvable
for any Cousin datum.
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Cousin’s Problem onC"

It has been proved recently that 0F (the complem-space)—lép’q) =0

for g > 0. So Cousin’s problem for meromorphic forms is solvable in

C" for any Cousin datum.

Cousin’s problem on a compact Kahlerian mani-
fold: pseudo-solution

We can give a more explicit solution in the case of a compdtti&rian

p.1
manifold. A necessary andficient condition forR to be az cobound-
ary is thatr1R = 0. (This gives a system @P-! linear conditions foR).
Now

R= 7T]_R+ 2dza§GR+ 262deR
= m R+ 2d70,GR
We can choos8& = 25-GR

Then
w=wji+20GR-T; in U;

is a solution of the Cousin’s problem. Even in the case when Cousin’s

problem has no solutiom; defined as above makes sense. Evdnére
currents, (2;GR- T;) is aC* form; for

02(20;,GR~Ti) = 2d;0,GR—- d,T;

139
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= (2d:0;GR- R)
=-mR

mRis aC® form and (9;GR - T;) is a current of bidegreep(0); by
the ellipticity of d;, (20,GR- T;) is aC® form. w is thus a sum of a
meromorphic form and &* form. When Cousin’s problem is solvable
(20;GR - T;) is a holomorphic form and is a solution of Cousin’s
problem. In any case, we call a pseudo-solution. When Cousin’s
problem is solvable, the pseudo-solution is actually a solution.

Cousin’s problem onPC"

For p # 1 Cousin’s problem has a solution for any Cousin datum, since
bPl = 0 for p # 1. The solution is unique ip > 2 and is determined
upto an additive constant whgn= 0, as holomorphic dierentials of
degreep > 1 are zero and those of degree zero are constantg £dr,
for Cousin’s problem to be solvable it is necessary arficgent thatR
be orthogonal to all closed@™ forms of bidegreer(— 1, n—1). ButQ"1
is a generator of the cohomology classes of bidegneei,n - 1). So
the condition is

(RQ™) =0.

When the solution exists, the solution is unique.

Cousin’s problem on a compact Riemann Surface

We shall now consider Cousin’s problem on a compact Riemann sur-
face, which we assume to be connected. We shall first consider the
Cousin’s problem for meromorphicftrential forms of degree 1. For

11
Cousin’s problem to be solvable, it is necessary arfiicsent that R

11

(R is a current of the associated cohomology class) be orthogonal to all

closed zero forms i.e., constants: or

(R,1)=0.



Lecture 24 141

We shall now interpret this condition in terms of residues. dhdie a
meromorphic dierential form of degree 1. We define the residue of
w at a polea of w, denoted by Resv, as follows: We choose a local
coordinate systenz) ata- w = f(2)dz wheref(z) is a meromorphic
function ofz. Then Regw is defined to be the residue 6z dzat z(a).
This definition is intrinsic. If we choose a regular cu@gecontained in
the domain of a map, winding arouadnce in the positive sense

Res(f(2)d2) = % f f(2)dz
C

_1f
T o) @

C

Since the Riemann surface has no boundary, the sum of the residues
of a meromorphic dierential of degree 1 is zero. This gives a trivial
necessary condition on the Cousin datum, for Cousin’s problem to be
solvable. We shall see that this condition is alsfiisient.

Letay,...,an be a finite number points given on the Riemann sur-
face. At eacta we have a mapWa, ¢a) such thawv; N W, is empty for
a # b. LetU, be a neighbourhood @ such thatU, ¢ W, andga(Ua)
is a closed disc. In eadN, we are given a meromorphic form of degress9
1, wa, having a pole only a&. Let Ug be the complement of the set of
pointsay,...,am. In Ug we putwg = 0. With this Cousin datum we
associate current& in Uz andTg in Ug defined as follows:

where .
_ (OFY in Ua
~ |0 outsideU,.

The formw, has discontinuities along the boundaryf; but w; is
locally summable ifJg and defines a current ldg. In Uy N Uy,

Ta—To=wa=wa
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The current
R- T, in Ug

~ |dsTo in Ug
is the “obstruction”.R = 0 in U,. SinceTy is of bidegree (10), d;Tg =
dTp =. If ¢ is aC®™ function with compact suppoih Ug (i.e., if the
support ofp does not contain the poings),

10
(dzTo, ) = (dTo, ¢)
= (To, dyp)

= (= ) @a,dp)
:—fowa/\dgo
a v

) Uf f d(wa)
=) f wap.
a bU,

Consequently

R= Z(bUa) A wa

in Ug and this relation is also true ;. [wa is aC® form in a neigh-
bourhood of the support &ifU,. So multiplication ofbU, by w, is pos-
sible]. Now the necessary andficient condition for Cousin’s problem
to have a solution is

(R1)=0
or
waa:O
& bU,
i.e.,

Z Res w; = 0.
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In particular if we takew, without residues a solution of the problem
always exists.

The indeterminacy in the solution is a holomorphiftetiential form 161
of degree 1. Thus in this problem we have one condition of compatibility
andg degrees of indeterminacy.

If we choose a ihlerian metric on the Riemann surface, an explicit
solution is given by

_ Jwa+20;GRin U,
"~ |20,GR+ Y @a in Uy.

We may write

W= Ba+20,G[ ) {bUa A wal]
2 a

asw, = w, in Uy, This expression has always a meaning and gives
a solution of the Cousin’s problem when the problem is solvable. The
general solution of Cousin’s problem is given by

W= ) @a+20:G]) (bUa A wa)] +h
a a

whereh is a holomorphic dierential form of degree 1 on the Riemann
surface.

Cousin’s problem for meromorphic functions
(Compact Riemann Surface)
Here in eaclJ, we have a meromorphic functiol instead of a mero-

morphic diferential form. InUg we take the functiorfy = 0. Let f, be
the function defined on the surface by

£ fa in U,
0 outsideU,

We consider the currenf; = 0 in Uz and Ty = -3 f; in Ug. Let 162



163

144 Lecture 24

01
R be the associated current of bidegregl{0 If 1<’p0 is aC* form with
compact support iJg

(G;To, @) = —(T, tp)
= <Z fa dze)
a

Consequently,

0,1
R =) (bUa)fa.
a

A necessary and fiicient condition for this Cousin’s problem to have
a solution is thaR be orthogonal (with respect 1o, )) to all harmonic
forms of bidegree () i.e.,R be orthogonal to all holomorphic forms

of degree 1 or
Z f fn=0

for every holomorphic forni of degree 1.

For Cousin’s problem for meromorphic functions we havimde-
pendent compatibility conditions and 1 degree of indeterminacy while
for Cousin’s problem for meromorphic forms we had one compatibility
condition andy degress of indeterminacy. This suggests a sort of duality
between Cousin’s problems for meromorphic functions and forms. This
duality will be made precise in the theorem of Riemann-Roch.

The above results prove the existence of lots of meromorphic func-
tions and forms on a compact Riemann surface.



Lecture 25

Some applications

164
Before proving the Riemann-Roch theorem we shall make some appli-
cations of the existence theorems proved above.

We shall first prove that every compact connected Riemann Surface,
V, of genus zero is analytically homeomorphic to the Riemann sphere,
S2. Since the genus &f is zero, there are no compatibility conditions on
any Cousin’s problem for meromorphic functions. So we can construct
a meromorphic functionf, having a simple pole at a poiatand regu-
lar elsewhere. Every meromorphic function on a compact (connected)
Riemann surface assumes every valu83rthe same number of times.

So f assumes every value B? exactly once and mapé conformally
onto S?.

In the case of a torugy(= 1) there is no distinction between mero-
morphic functions and meromorphic forms of degree 1 (because of the
existence ofdz). Evidently, the problem of finding an elliptic func-
tion with prescribed periods and singularities is a problem of finding
a meromorphic function or a meromorphidtdrential of degree 1 with
prescribed singularities on a torus. Therefore our theorem vyields the
existence of elliptic functions for which singularities are prescribed in
the fundamental parallelogram with the restriction that the sum of the
residues at the singularities is zero. The function is determined uniquely
upto an additive constant by the singularities. In particular if we pre-
scribe the principal part/¥° at the origin and choose the constant ternss
in the Laurent development at the origin to be zero, we obtain the Weier-

145
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strassZ-function.

The Riemann-Roch Theorem

Let V(D be a compact connected Riemann Surface of ggnusdivi-
sorD onV is a formal linear combination of points &f with integer
codficients such that all but a finite number of @oaents are zero:

D= Za’pp_ Zﬁqq;

p, g are points oV, ap, Bq integersap > 0,54 > 0. The degree of the
divisor D is defined to be the intege¥ (@, — . Bq). We writeA = ) ap,

B = . 8q. Meromorphic functionf onV is said to be a multiple of the
divisor D if at every pointp f has a zero of order ap and at every
pointq, f has a pole of ordex 4. For example irC! a functionf is a
multiple of the divisorD if and only if

f=h[ [z-p*"(@z-a"q

whereh is an entire function. To find a meromorphic function which is
a multiple of a given divisor is to find a meromorphic function for which
the maximum number of poles with the maximum order at each pole and
the minimum number of zeros with the minimum order at each zero are
prescribed. Since the order of a zero or a pole of a meromorpfiier-di
ential form of degree 1 has an invariant meaning we can similarly define
what it means to say that affiirential form is a multiple oD. (The

order is defined by means of a map). t?a(D) denote the dimension of
the vector space of the meromorphic function which are multipld3 of

andr%(D) that of the vector space of the meromorphiatiential forms
which are multiples oD.
The Riemann-Roch theorem asserts that

M(-D) - m(D) =d—g+1

(d is the degree of the divis®; —D is the inverse oD).
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To prove the Riemann-Roch theorem let us first congidemero-
morphic functions which are multiples eD. The singular part of such
a function at a poinp can be written in a map as

fo= > Cipl/z,

j<ap
(zp is the function defining the map). The singular pafisgive a

Cousin’s datum. If we denote by}j[] a pseudo-solution (which de-
Z

p
pends on the choice df; and the metric) associated with the Cousin

1 . . , , :
datum—j, a pseudo-solution associated with the Cousin dafiyia
z
P

1
w= ) Cipl=1+C

p.j<ap Zp

and this gives the general (true) solution when the Cousin problem 1sas
a solution.
As conditions for the Cousin datum to be compatible we obtain

- CipRes(h/z) =0.(r=12.....9)

p.j<ap

where{h,} is a basis for the space of holomorphic forms of degree 1.
(The minus sign on the left side is introduced for later convenience). To
write the condition that the solution has a zero of ordeg8g atq it is
suficient to write that the product @b by dzq/z‘é has zero residue at

for k < Bq. This residue exists b is a meromorphic form, otherwise it

is defined by
1 dz

— w_
2im
0, A
So we obtain the equations
d
% =0

Z CJ"I)2l7r 25 [_] 2I7r 25
bUq

p.J<ap
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for everyq and for everyk < 8. We have heré + 1 unknownsCj
andC, andg + B equations:

gv=12,...,0) - B(g,k < By).
(A= aeB=) pd)

Next let us considethe meromorphic forms of degrdewhich are
multiples of D.The singular part of such aftirential in a map aj can

be written as
dz
2 dkay
0.k<Bq 25

A general pseudo-solution of the associated Cousin problem is
dz

D tka E + > eh,

0.K<Bq
If we write down the condition for the solution of the Cousin problem
to exist, we obtain

Z dk q Reg [déq} =0.

0,k<Bq

That the solution should have a zero of order, at p gives the condi-
tions h

+ Z e Resb(hv/zg)) =0.

ok [1]%
.0 ~; i
aK 2 ZL Z‘é

bUp

In this case we havB + g unknownsdyq ande,, andA + 1 equations
(compatibility condition andA(p, j < «p) equations). We shall now
show that the systems of equations

P Cj,p% Reﬁa(hv/zlp) =0(v=1,...,0),
Dzt dﬁ[i]& 9% _ g
N J,PZmeq z‘; le Zmbgq 25
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and
2. dkgReg [%“] =0
1 {Z quz.lnf [zg]JrZevRe%( )} 0

0.k<Bq

are transposes of each other. We have only to verify (the rest of the

verification being trivial) that
‘fl dzq]_deq{l}
il 21" ) & |4
bU, 2P z‘a bU Z‘a %

p q

Now,

5l 7 Z
d bUqg A d
HEE
(Refer to the last lecture).
SlnceiJ = 0 onbUq and% = 0 onbUj, is remains only to verify 170
Zp p
that
bUqg A d
_ f_ aZG( qz‘a Zq)
bU, %
= f Zqzaze (bupi)
0 ol
bUq
or

- ((bUp)ij, 260G (qu A d%q))

Zp

o) oo g
= (20,G|bUp - = |,bUg A =2).
z Z



171

150 Lecture 25

If we put

d
S:bUp-i and T:qu/\—zq.
z

p %

We have to verify that

11 2 0
—(S,0,GT) =(T,9GS)

Write
20,GS=U, 20,GT=V

We have then
S=mS+dUT=mT+d\V.

(asS andT arezclosed). So we have to verify that
—(mS+dU,V) =(U,mT + d;V).

Now (m1S,V) = 0 asm1S is harmonic and/ is ad; coboundary. Simi-
larly (U, 7;T) = 0. It remains to show that

—(d:U,V) = (d;V, U).

We define the set of singularities of a currdnto be the smallest
closed subset of the manifold in the (open) complement of whiéh
an indefinitely dfferentiable form (such a set exists, forTifis a form
in a family of open subsets then it is a form in their union). Now let
S andT be two currents whose sets of singularities have no common
point; then it is possible to give a meaning({® T). It is possible to
find decompositions.

S:S]_+82,T=T1+T2

whereS; and T, areC*® forms andS; andT; are currents whose sup-
ports have no common point. (For example, let & + 8 be a partition
of unity subordinate t€F, CG whereF andG are the supports &
andT respectively. We may take, = 8S, S, = aS, T1 =T, =T). By
definitionwe put:

(S, T) =(S1,T2) +(S2, T1) +(S2, To);
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each bracket on the right side has a meaning s#cend T, areC*
forms (S1, T1) is not written; we take it by definition to be zero which

is natural because the supportssodndT have no common point). This
definition is correct provided we prove i) it is independent of the choice
of the choice of the decompositions®fandT and ii) it gives the usual
result if S or T is a form. Suppose we have another decompostion

T/(i = 1,2). Itis suficient to prove that the decompositiofs T; and

Si, T{ give the same result; for then the decompositiBpsT; andsS;,

T/ will also give the same result for an analogous reason. We have to
show that

(S1,T5—T2) +(S2, T; = T1) +(S2, T5 - T2)

is zero. The last two brackets can be added by linearity be@uisea

C® form and their sum igS;, 0) = 0. It remains to prove thadB;, T, -

T2) = 0. We shall add tgS;, T; — Ta) the expressioS;, T — Ta)
which has a meaning becaugg— Ty is a form (T} — T1) + (T - To)

is the O form and’; — T is a form) and which is equal to zero since the
supports ofS; andT] — T; have no common point. But now the sum
(S1,T{ = T1) +(S1, T, — Tp) is equal, by linearity, tgS,0) = 0. So

(S1, T5=T2) = 0. This proves (i). (ii) is trivial because § is a form we

may take the decompositiéd= 0+S; T = T +0. Now we have proved

the existence of the expression when the sets of singularit®@aot T

have no common point. (We did not pay any attention to the question of
supports, assuming the manifold to be compact; if the manifold is not
compact, we have to assume further that the intersection of the supports
of S andT is compact). That the sets of singularities®&ndT have 173
no common point can be expressed in the following way: every point
of the manifold has an open neighbourhood in which one at least of the
currentsS andT (not necessarily the same one) is a form. In this case
the properties of dierentiation such as the formula

(6;S,T) = (-1)P*(S, 0, T)

(S is of total degreep) remain obviously valid as is seen immediately
by means of a decompositié@, T; of S, T. In our case since the sets
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of singularities ofU andV have no common point

—(d:U,V) = (d;V,U)
or  —(S,8,GT) = (T,5,GS)

Thus the systems (1) and (1) are transposes of each other. Tworsyste
which are transposes of each other have the sameprarnk number of
unknowns - degree of indeterminacy. So we have

(A+1)—M(-D) = (B + g) — (D)

or

M(-D) — (D) = (A—B) - g+1
=d-g+1

This completes the proof of the Riemann-Roch theorem.

Let D be a positive divisoD = 3’ app, ap > 0. All the differentials
of degree 1 which are multiples &f are holomorphic. Now an holo-
morphic diferential form of degree 1 has exactly-22 zeros. (This can
be proved by using Poindgls theorem on vector fields or deduced from

the Riemann Roch theorem). Consequently, it, > 2g - 2, r%(D) =0
and
M(-D) =d—g+1(d > 2g-2)

i.e., if we give a sfiicient number of poles thgconditions of compati-
bility are all independent.
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K ahlerian structure on the complex

projective space

175
The unit spher&2™1 in C" can be considered in a natural way as a fibre

bundle ovePC" with circles as fibres (it is a point 0fS?"*! the points
€z, g real, will constitute the fibre througd).

We shall first determine how operates on the tangent spaces of
PC". Letr : S?™1 — PC" denote the projection map. We shall denote
the diferential ofr also byx. The diferential mapr maps the tangent
bundle ofS?*1 onto that ofPC". Let X = 7U, U tangent ta5*™*1, be a
vector tangent t&C", say ata. J is uniquely determined by:

(IX dfy =i(X df)
(IX dfy = —i(X, df)

for every f holomorphic in a neighbourhood &f If z,.1 # 0, z/zy1 IS
a local coordinate system; we may supposedHzlongs to the domain
of this coordinate systend.is uniquely determined by:

(IX d(z/z041)) = KX, d(z/ Z042))
(IX d(z/z041)) = —i(X d(2zc/Zn+1))-

(ug, ..., un) being the coordinates &f, let (U) denote the vector whose
coordinates ard(s, .. ., iuy). The vectorr(iU) has the properties 176

(r(iV), d(z/zn+1)) = (U, d(z/zn+1)) = KX d(z/Zn41));

153
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and(n(iU), d(zc/zn+1)) = —IKX, d(z/zn+1))-
Therefore
n(iv) = IX

So, to findJX we multiply U by i and take its image by.
Consider now the form

w= Z Zdz%
of bidegree (10) in C™1. Put
H= Z dzdz — wa.

This Hermitian form orC™? induces or52*1 a semi-definite Hermi-
tian form. To prove that this form is semi-definite 881, letU =
(Us, ..., un) be a vector tangent 1821 atz € S?™1, z = (z,...,z).
By Schwarz’s inequality

| > Zud <12 U] = U

(sincezis on the unit sphere). Similarly

| D20 < UL
H(U,U) = > udi - ()" i) (D adi) > 0.

MoreoverH(U,U) = 0 if and only if ux = uz, u complex. Actually
u = id, whereA is real. For, sinceis onS?™! andU is tangent to the
unit sphere at

So

> (@ + 2d0) = 0
or
(> 2@)+m=0 or Ru=0.
ThusH(U,U) = 0 ifand only ifU = idz Areal i.e., if and only ifU is
tangent to the fibre, that isif(U) = 0.
If U is tangent to the fibre @andV = (vi,...,Vyn) iS any vector
tangent ta&S2"1 atz, H(U, V) = 0. For by Schwarz’s inequality

IH(U, V)| < YH(U,U)H(V,V) =0
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MoreoverH is invariant under the operatiozs— €fz 0 real. These
two facts imply thatH defines quadratic formd on tangent spaces of
PC" (if X andY are tangent td*C" at a we choose vectorsl andV
tangent taS?™! at some point inr~%(a) such thattU = X andzV = Y
and defineH (X, Y) = H(U, V). The two properties proved above imply
that this definition definell invariantly).

H areJ Hermitian forms.

i) Evidently H is R-bilinear

i) HAIXY) = —H(X,JY) =iH(XY)

For,
HIX Y) = H(iU, V) = iH(X,Y)

as we have seen thaX = #(iU). Similarly

H(X, JY) = —iH(X,Y)

i) H(X,X) > 0 for X # 0. This follows from the fact that(U,U) = 178
0 if and only if U is tangent to the fibre. It remains to prove that
the exterior formQ associated with is closed. IfQ is the form
associated withd,

—2iQ=Zdzk/\ﬁ—wAa

=—-dw-wAow

Q = 771Q. But onS?™!, & = —w: for, the relation

Y aa=1

Z(&Mk +7d2 =0

Consequently-2iQ = dw; soQ is closed.

yields

Now dQ is the reciprocal image afQ; thereforeQ is also closed.
This proves thaPC" is Kahlerian.
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It may be remarked that even thoughis a coboundarfz is not a
coboundary, (aPC" is Kahlerian!);w is not a reciprocal image.

Another method to prove th&C" is Kahlerian would be to consider
PC" as symmetric space with respect to the unitary gradpl. Since
U™1is compact we may construct an invariant Hermitian metric by the
averaging process. The associated 2-férwill be an invariant form.
But in a symmetric space any invariant form is closed.
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