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Introduction

There are notes of course of lectures on Field theory aimedoat
viding the beginner with an introduction to algebraic esiens, alge-
braic function fields, formally real fields and valuated fiel@hese lec-
tures were preceded by an elementary course on group thesmmigr
spaces and ideal theory of rings—especially of Noetheriagsr A
knowledge of these is presupposed in these notes. In agditie as-
sume a familiarity with the elementary topology of topokajigroups
and of the real and complex number fields.

Most of the material of these notes is to be found in the nofes o
Artin and the books of Artin, Bourbaki, Pickert and Van-dgaerden.

My thanks are due to Mr. S. Raghavan for his help in the writihg
these notes.

K.G. Ramanathan
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Chapter 1

General extension fields

1 Extensions

A field has characteristic either zero or a prime nunyber 1

Let K andk be two fields such thak > k. We shall say thak
is anextension fieldf k andk a subfieldof K. Any field T such that
K o T o kis called anintermediaryfield, intermediate betweek and
K.

If K andK’ are two fields, then any homomorphismkofinto K’ is
either trivial or it is an isomorphism. This stems from thetftnat only
ideals inK are @) andK. Let K have characteristip # 0. Then the
mappinga — aP of K into itself is an isomorphism. For,

(axbP =aP +bP
(ab)p — ap . bp

anda” = b? = (a-h)P = 0 = a = b. In fact for any integee > 1,
a— a” is also an isomorphism df into itself.

Let now Z be the ring of rational integers amda field whose unit
element we denote by The mappingn — me ofZ into K obviously a
homomorphism of the ring into K. The kernel of the homomorphism
is the set omis Z such thame= 0in K. Thisis an ideal irfZ and asZ is
a principal ideal domain, this ideal is generated by intesggm. Now p
is either zero or else is a prime. In the first case it meandtwantains

1



2 1. General extension fields

a subring isomorphic tZ andK has characteristic zero. Therefdfe
contains a subfield isomorphic to the field of rational nurabédn the
second cas& has characteristip and sinceZ/(p) is a finite field ofp
elementsK contains a subfield isomorphic #j(p). Hence the

Theorem 1. A field of characteristic zero has a subfield isomorphic to
the field of rational numbers and a field of characteristic-po has a
subfield isomorphic to the finite of p residue classes of Z togolu

The rational number filed and the finite fieldp€&lements are called
prime fields We shall denote them by. When necessary we shall
denote the finite field op elements by p.

Let K/k be an extension field & We shall identity the elements
of K andk and denote the common unit element by 1. Similarly for the
zero elementK has ovek the structure of a vector space. FerB € K,
le k= a+B €K, la € K. ThereforeK ¢ has ovek a basga,} in
the sense that everye K can be uniquely written in the form

Q:Za,lom a ek
A

anda, = O for almost allA. If the base{a,} consists only of a finite
number of elements we say thahas a finite base ovér The extension
K/k is called afinite or infinite extensiorof k according a¥k has over
k a finite or an infinite base. The number of basis elements Weheal
degreeof K overk and denote it byK : k). If (K : k) = nthen there
existn elementsw, . ..wy in K which are linearly independent ovkr
and everyn + 1 elements oK linearly dependent ovek.

Let K be afinite field ofg elements. ObviouslK has characteristic
p # o. ThereforeK contains a subfield isomorphic 1g,. Call it also
I'p. K is a finite dimensional vector space ogy. Let (K : I'p) = n
Then obviouslyK hasp" elements. Thus

Theorem 2. The number of elements g in a finite field is a power of the
characteristic.

LetK o T o k be a tower of fieldsK/T has a baséx,;} andT/K
has a basés,}. This means that far € K

a = Ztﬁaﬂ
A



2. Adjunctions 3

t, € T andt, = 0 for almost alll. Alsot, being inT we have
th= Z a-/l,uﬂy
u

ay, = 0 for almost allu. Thus
@ = au(@h)
Ap

Thus every element of K can be expressed linearly in terms of
{@,8,}. On the other hand let

D (@iB) =0
Ap
ay, € kanda,, = 0 for almost allA, u. Then

0=>"(> auB)as
O

But ¥, a8, € T and since th¢e,} from a base oK/T we have

Z ayB, = 0 for all A.
A

But {8,} form a base off /k so thata,, = O for all A, .. We have
thus proved thate,3,} is a base oK/k. In particular if K : k) is finite
then K : T) and (T : k) are finite and

(K:k)=(K:T)T:k)
As special casesK(: k) = (T : k) = K =T (T is an intermediary
field of K andk). (K: k) =(K: T)= T =k
2 Adjunctions

Let K/k be an extension filed ari€l, a family of intermediary extension
fields. ThenN K, is again an intermediary field but, in genergl K, 4
3 a



4 1. General extension fields

is not a field. We shall define fany subset ®f K/k the fieldk(S) is
called thefield generated by®verk. Itis trivial to see that

kS)=(T

ToS

i.e., itis the intersection of all intermediary fiel@iscontainingS. k(S)
is said to be got from k bydjunctionof S to k. If S contains a finite
number of elements, the adjunction is said tdibite otherwiseinfinite.
In the former cas&(S) is said to be finitely generated over If (K :
K) < oo then obvioushK is finitely generated ovek but the converse is
not true.

Obviouslyk(SUS) = k(S)(S’) because a rational function 8fUS
is a rational function o8’ overk(S).

Let K/k be an extension field and € K. Consider the rinds[x] of
polynomials inx overk. For anyf(x) € k[x], f(x) is an element oK.
Consider the se¥ of polynomialsf(x) € k[X] for which f(a) = 0. ¢4
is obviously a prime ideal. There are now two possibilitigs= (0),
& # (0). In the former case the infinite set of elements,b?, ...
are all linearly independent ovér We call such an element of K,
transcendentabverk. In the second casé + (0) and sa¥ is a principal
ideal generated by an irreducible polynomigk). Thus 1, d?, ... are
linearly dependent. We call an elemenbf this typealgebraicoverk.
We make therefore the

Definition. Let K/k be an extension field € K is said to be algebraic
over k ifa is root of a non zero polynomial iMkK]. Otherwise it is said
to be transcendental.

If @ is algebraic, the ideal? defined above is called the ideal @f
over k and the irreducible polynomigl(x) which is a generator o
is called the irreducible polynomial af over k. ¢(X) may be made by
multiplying by a suitable element of k. This monic polyndwia shall
call the minimum polynomial af.
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3 Algebraic extensions

Supposer € K is algebraic ovek and ¢(x) its minimum polynomial
overk. Let f(X) € k[x] and f(a) # 0. f(X) andy(X) are then coprime
and so there exist polynomiaigx), h(x) in k[x] such that

fF()9(x) = 1+ e(x)h(¥)

which means thatf(a))™ = g(a) € K[a]. Thusk[e] = k(e). On the
other hand suppose € K such thak[a] = k(e) then there is @(«) in
k[a] such thateg(a) = 1 or thata satisfiesxg(X) — 1 in k[X] so thata is
algebraic. Hence

1) a € K algebraic over k= K|[a] is a field

We now define an extensid{/k to be algebraic ovek if every of K
is algebraic ovek. In the contrary cask is said to be transcendental
extension ok

We deduce immediately

2) K/k algebraic every ring R with k= Rc K is a field

If Ris a ring ande in R thenk[e] c Rthenkla] c R Buta is
algebraic so that ! € k[e] ¢ Rso thatR s a field. The converse
follows from (1).

3) (K: k) < 0o = K/k algebraic.

For let K : k) = nthen for any fore € K, then + 1 elements
1,a,a?,...a" are linearly dependant ovkiso thate is algebraic. 6

The converse is not true

Let K/k be an extension field and € K algebraic ovek. Let ¢(X)
be the minimum polynomial at overk and let degree ap(x) ben.
Then la,d?,...,a" 1 are linearly independent ovkrso that

(k(@) : K) > n.

On the other hand ang in k(e) is a polynomial ine overk. Let
B=by+bia+ -+ bna™. Puty(x) = by + biX+ -+ - + byx™.
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5)
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1. General extension fields

Then

¥(x) = e(x)h(x) + R(X)
whereR(x) = 0 or degR(x) < n. Hencey(a) = 8 = R(a) and so
everyp cab be expressed linearly in terms of/l. .., o" L.

Thus
(k(a) : k) <n.

We have hence

If @ € K is algebraic over Kk(a)/k is an algebraic extension of
degree equal to the degree of the minimum polynomial mfer k

We shall call(k(a) : k) the degree ofr over k

If @ is algebraic over k then for any,k c L c K, « is algebraic over
L.

For, the ideal ofa over k (which is# (0) sincea is algebraic) is
contained in the ideal af in L[X] > K[X].

Therefore

(k(a/) : k) > (L(a) : L)

Note that the converse is not true. Forzdie transcendental ovér
and consider the fielk(Z) of rational functions ofz(k(z) : k) is not

finite. But(k(z) ; k(zz)) is finite aszis a root ofx? — z% overk(z?).

If a1,...,anin K are algebraic over k then(k, . . ., ap) is algebraic
over k
For, putK, = k, Ki = k(ag, ..., @j),
Kn = k(a,...,an)
ThenK;/Ki_1 is algebraic and is a finite extension. Now
(Kn 0 K) = 7i(K; : Ki-1)
which is also finite. HencK, is algebraic ovek.
We deduce immediately
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7) K/T algebraic, T’k algebraic= K/k algebraic.

For if € K, a is a root ofp(X) = X" + a;x™! + --- + a, in T[X].
Thusa is algebraic ovek(a; .. ., ay). Hence

(k(ag, @, ...an, @) : k(ag, az, ...,an)) < .
(k(ag,ap,...,an) 1 K) < o
(k(ag,ap,...,an, @) 1K) < oo

which proves the contention.

If follows that if K/k is any extension, then the debf elementsy
of K algebraic ovek is a fieldL which is algebraic ovek. L is called
thealgebraic closure of k in K

We shall now show how it is possible to construct algebraterex
sions of a field.

If kis a field andy(x) a polynomial ink[X], an elementx of an
extension fieldK is said to beoot of ¢(X) if (@) = 0. It then follows
thato(x), has inK at mostn roots,n being degree ap(X). 8

Let f(x) be an irreducible polynomial ik[x]

The ideal generated bf(X) in k[X] is a maximal ideal sincd(X) is
irreducible. Therefore the residue class rigf k[X]/(f(X)) is a field.
Let o- denote the natural homomorphismkpk] onto K. o- then mapk
onto a subfield oK. We shall identify this subfield witk itself (note
thatk[Xx] and (f (X)) are vector spaces ovk). Let£ in K be the element
into which x goes byo

&=o0X

ThenK = k(¢). In the first plac&(¢) c K. Any element inK is the
image, byo, of an element say(x) in k[x]. But

¢(¥) = h(x)F(x) + ¥ (¥

Sop(é) € K andp(é) = y(£). Buty(x) above has degree degree
of f. Thus

k(é) c K c K[¢] c k()

This shows thakK = k(£) and that K : k) is equal to the degree
of f(X). Also ¢ in K satisfiesf(£) = 0. We have thus proved that for
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every irreducible polynomiaf (x) in k[X] there exists an extension field
in which f(x) has a root.

Let nowg(x) be any polynomial irk[X] and f(x) an irreducible fac-
tor of g(x) in K[X]. Let K be an extension df in which f(x) has a root
& LetinK

90 = (x—=&)"'¥(X).

Theny(X) € kK[X]. We again take an irreducible factor ¢{x) and
constructK” in which ¢/(x) has a root. After finite number of steps we
arrive at a fieldL which is an extension df and in whichg(x) splits
completely into linear factors. Let,,...,an be the distinct roots of
g(x) in L. We callk(as, . .., an) the splitting field of ¢x) in L.

Obviously k(aa,...,an) : K) <nl

We have therefore the important

Theorem 3. If k is a field and {x) € K[X] then f(X) has a splitting field
K and(K : k) < n!, n being degree of (k).

It must be noted however that a polynomial might have sewpilit
ting fields. For instance iD is the quaternion algebra over the rational
number fieldl’, generated by 1, j, k thenT'(i), I'(j), T'(f), T'(k) are all
splitting fields ofx? + 1 in I[x]. These splitting fields are all distinct.

Suppose& andk’ are two fields which are isomorphic by means of
an isomorphismr. Theno can be extended into an isomorphistrof
k[x] on K'[X] by the following prescription

7O ax)= Y (ca)X aek oaek

Let now f(X) be a polynomial irk[X] which is irreducible. Denote
by f7(x), its image irk’[X] by means of the isomorphism. Thenf7(x)
is again irreducible i’[x]; for if not one can by means of* obtain a
nontrivial factorization off (x) in k[X].

Let now a be a root off(x) overk andg a root of f7(x) overk'.
Then

k(@) = KDXA/(F (), K (B) = KX/ (F7(¥)

Let 7 be the natural homomorphism K x] on k'[x]/(f7(X)). Con-
sider the mapping - o onk[X]. Sincec is an isomorphism, it follows
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thatr- & is a homomorphism d{[x] on k’[x]/(F7 (X)). The kernel of the
homomorphism is the set @{x) in k[X] such that

09 € (7).

10

This set is preciselyf(x)). Thus
KDJ/(F(39) = KD/ (F7(x))

By our identification, the above fields contdirandk’ respectively
as subfields so that there is an isomorphjsif k(a) on k’(8) and the
restriction ofu tok is .

In particular ifk = K’, thenk(a) andk(B) arek— isomorphic i.e., they
are isomorphic by means of an isomorphism which is identitk.o/Ne
have therefore

Theorem 4. If f(X) € k[X] is irreducible ande and 8 are two roots of
it (either in the same extension field of k or iffeient extension fields),
k(a) and KpB) are k- isomorphic.

Note that the above theorem is falsd {Kk) is not irreducible irk[x].

4 Algebraic Closure

We have proved that every polynomial okehnas a splitting field. For a
given polynomial this field might very well coincide withitself. Sup-
posek has the property that every polynomialkitas a root irk. Then
it follows that the only irreducible polynomials ovkrare linear poly-
nomials. We make now the

Definition. A fieldQ is algebraically closed if the only irreducible poly-
nomials inQ[x] are linear polynomials.

We had already defined the algebraic closure of a ketdntained
in a fieldK. Let us now make the

Definition. A fieldQ/k is said to be an algebraic closure of k if
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1) Qs algebraically closed
2) Q/k is algebraic. 11
We now prove the important

Theorem 5. Every field k admits, upto k-isomorphism, one and only
one algebraic closure.

Proof. 1) Existence.Let M be the family of algebraic extensiolks,
of k. Partially orderM by inclusion. Let{K,} be a totally ordered
subfamily ofM. PutK = [J K, for K, in this totally ordered family.

Now K is a field; forg; € T(,ﬁz € K meanss; € K, for somea and
B2 € Kg for someg. Thereforesy, B, in K, or Kg whichever is larger
so thatB; + B> € K. Similarlyﬂ]ﬂgl € K. Now K/k is algebraic
since everyl € K is in someK, and so algebraic ovet. Thus
K € M and so we can apply Zorn's lemma. This proves tidtas a
maximal elemen®.Q is algebraically closed; for if not left(x) be an
irreducible polynomial inQ[x] andp a root of f(X) in an extension
Q(p) of Q. Then since®/k is algebraic.Q(p) is an element oM.
This contradicts maximality aR. ThusQ is an algebraic closure of
k.

2) Uniqueness Let k andk’ be two fields which are isomorphic by
means of an isomorphismr. Consider the familyM of triplets
{(K,K’, o).} with the property 1)K, is an algebraic extension of
k, K/, of K', 2) o, is an isomorphism oK, on K/, extendingo. By
theorem¥ M is not empty. We partially orde¥ in the following
manner

i

(K, K", 0)o < (K,K’, 0)g
If1) K, € Kg, K/, C K[;, 2)ogis an extension af,. Let{K,K’, ).}
be a simply ordered subfamily. Pkit= | K,, K’ = UK/,
@ a
These are then algebraic odeandk’ respectively.
12 Definec onK by
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OX = 04X

wherex € K,. (Note that everyx € K is in someK, in the simply
ordered subfamily). It is easy to see tlwats well - defined. Suppose
x € Kg andKg c K, theno, is an extension ofr, and soo, X = ogX.
This proves thatris an isomorphism oK on K’ and extends-. Thus
the triplet K,K’, o) is in M and is an upper bound of the subfamily.
By Zorn's lemma there exists a maximal tripl€,Q’, 7). We assert
thatQ is algebraically closed; for if not lgt be a root of an irreducible
polynomial f(x) € Q[X]. Then f¢(xX) € Q'[] is also irreducible. Lep’
be a root off7(x). Thenr can be extended to an isomorphisraf Q(p)
onQ’(p). Now (Q(p), T is in M and hence leads to a contradiction. Thus
Q is an algebraic closure & Q' of k' andr an isomorphism of2 on
Q' extendingo-.

In particular ifk = k ando the identity isomorphism, thef2 and
Q) are two algebraic closures kfandr is then a k-isomorphism.

Out theorem is completely demonstrated.

Let f(X) be a polynomial irk[x] andK = k(ay, ..., an, a splitting
field of f(X), so thatxy, . .., an are the distinct roots of(x) in K. LetK’
be any other splitting field ang, . . . B the distinct roots off (x) in K”.
Let Q be an algebraic closure &f andQ)’ of K’. ThenQ andQ’ are two
algebraic closures . There exists therefore an isomorphistrof Q
onQ’ which is identity ork. LetoK = Kj. ThenK1 = k(o o, . .., 0a,)-
Sinceay,...an are distinctoa; . .., oca, are distinct and are roots of
f(X). ThusKj is a splitting field off (x) in Q’. This proves that 13

K’ = Kj.

B1,...,Pm are distinct and are roots d¢{x) in Q’. We havem = n
andg; = oay in some order. Therefore the restrictionmofto K is an
isomorphism oK onK’. We have

Theorem 6. Any two splitting fields K, Kof a polynomial {x) in k[X]
are k- isomorphic.

Let K be a finite field ofq elements. Theiwg = P" wheren is an
integer> 1 andp is the characteristic &. Alson = (K : '), I" being
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the prime field. LetK* denote the abelian group of non-zero elements
of K. ThenK* being a finite group of ordeg — 1,

¥ t=1
for all @ € K*. ThuskK is the splitting field of the polynomial
x3 - x
in T[X]. It therefore follows

Theorem 7. Any two finite fields with the same number of elements are
isomorphic.

A finite field cannot be algebraically closed; forfis a finite field
of g elements and a K* the polynomial

f)=x[ [(X-b) +a

beK*

is in K[x] and has no root ifK.

5 Transcendental extensions

We had already defined a transcendental extension as onf wadrie
tains at least on transcendental element.
Let K/k be a transcendental extension aidl. . ., Z, anyn elements
of K. Consider the rindR = K[Xq, ... X,] of polynomials overk in n
variables. Let?” be the subset oR consisting of those polynomials
f(Xg,...Xn) for which
f(Z1,...2y) =0.

% is obviously an ideal oR. If ' = (0) we say thatZ,,...Z, are
algebraically independenover k. If % # (0), they are said to be
algebraically dependent. Any element Kfwhich is algebraic over
K(Za,...,Zn) is therefore algebraically dependentdy. . . Zy,.

We now define a subs&of K to be algebraically independent over
k if every finite subset 08 is algebraically independent ovkr If K/k
is transcendental there is at least one such non emp§/. set
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Let K/k be a transcendental extension and3e$’ be two subset of
K with the properties

i) S algebraically independent ovier
ii) S’ algebraically independent ovk{s)

ThenS andS’ are disjoint subsets ¢ andS US are algebraically
independent ovet. ThatS andS’ are disjoint is trivially seen. Let now
Zy,...Zm€ SandZy,...Z] € S’ be algebraically dependent. This will
mean that there is a polynomiéj

f=1f(Xe..., Xmn)
in m+ n variables with cofficients ink, such that
f(Z1,...,2m Z4,...20) = 0.

Now f can be regarded as a polynomiakig, 1, . . . , Xm.n With coef-
ficients ink(xq, . .., Xm). If all these coéicients are zero thes,, ... Z,,
Z;,...Z; are algebraically independent over If some coéicient is
# 0, thenf(Zy,...Zm, Xmi1, ..., %men) IS @ NON zero polynomial over
k(S) which vanishes fokm.1 = Z;, ... Xmn = Zj, which contradicts the
fact thatS’ is algebraically independent ovi{S). Thusf = o identi-
cally and our contention is proved. 15

The converse of the above statement is easily proved.

An extension fieldK/k is said to be generated by a subktof K if
K/k(M) is algebraic. ObviouslIX itself is a set of generator#\ subset
B of K is said to be d@ranscendence bas# K if

1) Bis a set of generators &f/k
2) B algebraically independent ovier

If K/kis transcendental, then, it contains algebraically inddpat
elements. We shall prove th&t has a transcendence base. Actually
much more can be proved as in
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Theorem 8. Let K/k be a transcendental extension generated by S and
A a set of algebraically independent elements contained.inT8en
there is a transcendence base B of K with

AcBcS

Proof. SinceS is a set of generators &, K/k(S) is algebraic. LeM
be the family of subsets,, of K with

1) AcA,CS
2) A, algebraically independent ovier
i

The setM is not empty sincé is in M. Partially orderM by in-
clusion. Let{A,} be a totally ordered subfamily. PBy = | JA,. Then

B, C S. Any finite subset oB, will be in someA,, for Iargea and so
B, satisfies 2) also. Thus using Zorn’s lemma there exists amaxi
elementB in M. Every elemenk of S depends algebraically da for
otherwiseBU x will be in M and will be larger thaB. Thusk(S)/k(B)
is algebraic. Sinc&/k(S) is algebraic, it follows thaB satisfies the
conditions of the theorem.

The importance of the theorem is two fold; firstly that evesy af
elements algebraically independent can be completed ittanacen-
dence base oK and further more every set of generators contains a
base.

We make the following simple observation. Ltk be an extension,
Za, ... Zm, melements oK which have the property th#t/k(Z, . .. Zn)
is algebraic, i.e., thaty, ..., Zyis a set of generators. & € K thenZ
depends algebraically ofy, ..., Zni.e.,k(Z 2, ..., Zy)/K(Z1, ..., Zy)
is algebraic. We may also remark that if in the algebraictieacon-
nectingZ, Zy, . .. Zm, Z1 occurs then we can say that

KZ Zi, ... Zm)/KZ Zo, . . ., Zi)

is algebraic which means thafZ,, ... Z, is again a set of generators.
We now prove the
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Theorem 9. If K/k has a transcendence base consisting of a finite num-
ber n of elements, every transcendence base has n elements.

Proof. Let Z4,...,Z, and Z,..., 2y be two transcendence bases con-
sisting ofn and m elements respectively. H # mletn < m. Now
K/K(Z1,...,Zn)is algebraicZ; is transcendental ovérand depends al-
gebraically onzy, ..., Z, so that ifZ; appears in the algebraic relation,
by the remark aboveZ;,Z», ..., Z, is again a set of generatoiz, de-
pends algebraically od’, ..., Z,. In this algebraic relation at least one
of Z,...,Z, has to appear sincg,, Z,, are algebraically independent.
If Z, appears the#/, Z,23,..., 2] is a set of generators. We repeat this
processn times, and find, thaZ;,Z),Z;,...,Z} is a set of generators
which means thaZr’Hl, ..., Z},depend algebraically oy, ...,Z,. This 17
is a contradiction. S@ > m. We interchange& andm and repeat the
argument and get < m. This proves thah = m.

The unique integer will be called thedimensiorof K/k.

n = dimg K

It is also called théranscendence degree

A similar theorem is true even K has infinite transcendence base
but we don’t prove it.

Letk ¢ L ¢ K be a tower of extensions and B be a transcen-
dence base of /k and B, that overK/L. We assert thaB;UB; is a
transcendence basel§fk. In the first placeB1U B is algebraically in-
dependent ovet. Now k(B;UB)) is a subfield ol(B,). Every element
in L(By) is a ratio of two polynomials iB, with codficients inL. The
elements ofL are algebraic oveK(B;). ThusL(By) is algebraic over
k(B,UBy). But K/L(B,) is algebraic. Thu¥/k(B1UBj) is algebraic.
This proves our assertion. In particular it proves

Theorem 10. If k c L c K then

dimg K = dimg L + dim_ K.
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A transcendental extensidf/k is said to bepurely transcendental
if there exists a basB with K = k(B). Note that this does not mean that
every base has this property. For instandg ¥ is the field of rational
functions ofx thenx? is also transcendental ovebut k(x?) is a proper
subfield ofk(x).

Let K = k(Xq,... %) andK’ = k(x], ... X;) be two purely transcen-
dental extensions of dimension Consider the homomorphism de-
fined by

of(Xe,... %) = F(Xp,..., %)

Wheref(Xg,..., X)) € K[X1, ..., Xy]. Itis then easy to see that this is
an isomorphism oK on K’. This proves

Theorem 11. Two purely transcendental extensions of the same dimen-
sion n over k k-isomorphic.

This theorem is true even if the dimension is infinite.



Chapter 2

Algebraic extension fields

1 Conjugate elements

Let Q be an algebraic closure &fandK an intermediary field. Le®’ 19
be an algebraic closure &f and so ofk. Then there is an isomorphism
7 of Q" onQ which is trivial onk. The restriction of this isomorphism to
K gives a fieldrK in Q which isk-isomorphic toK. Conversely suppose
K andK’ are two subfields of2 which arek-isomorphic. Since is a
common algebraic closure & andK’, there exists an automorphism
of Q which extends th&-isomorphism oK andK’. Thus

1) Two subfields KK’ of Q/k are k-isomorphic if and only if there exists
a k-automorphisnar of Q such thatoK = K’.
We call two such fieldK andK’ conjugate fields over.k

We define two elements, w’ of Q/k, to beconjugateoverk if there
exists ak-automorphisnu- of Q such that

ow=a

The automorphisms d&® which are trivial onk form a group and so
the above relation of conjugacy is an equivalence relatite. can
therefore put elements 61 into classes of conjugate elements over
k. We then have

17
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2) Each class of conjugate elements over k contains only a finitgber
of elements.

Proof. Let C be a class of conjugate elements amce C. Let f(X)
be the minimum polynomial ob in k[X]. Let o- be an automorphism
of Q/k. Thenow € C. Butow is a root of f7(x) = f(x). Also if
w’ € Cthenw’ = ow for some automorphisrr of Q/k. In that case
ow = «’ is again a root off (x). Thus the elements i@ are all roots of
the irreducible polynomiaf (x). Our contention follows. m|

Notice that ifa, 8 are any two roots, lying i, of the irreducible
polynomial f(x), thenk(a) and k(B) are k-isomorphic. This isomor-
phism can be extended into an automorphisrof hus

Theorem 1. To each class of conjugate elementofhere is associ-
ated an irreducible polynomial in[k] whose distinct roots are all the
elements of this class.

If @ € Q we shall denote b, the class of. C,, is a finite set.

2 Normal extensions

SupposeX is a subfield of2/k and o an automorphism of2/k. Let
oK c K. We assert thatrK = K. For leta € K and denote b, the
set

C,NK

SincesK c K we havera € K soca € C,. Thus
0Cy Ca

C, is a finite set and- is an isomorphism oK into itself.
Thus o
cC, =C,
which meansr € oK. ThusK = oK.
We shall now study a class of fiel#s c Q/k which have the prop-
erty
oK c K,
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for all automorphismsr of Q/k. We shall call such fieldsyormal ex-
tensionsof kin Q.

Let K/k be a normal extension d&f and Q algebraic closure ok
containingK. Leta € K andC, the class ofr. We assert that, c K.
For if B is an element oC,, there is an automorphisin of Q/k for
whichp = oa. SinceoK c K, it follows that3 € K. Now any element
in K is aroot of an irreducible polynomial kjx]. Since all the elements
of C, are roots of this polynomial, it follows that ff(x) is an irreducible
polynomial with one root irk, then all roots off (x) lie in K.

Conversely leK be a subfield of2/k with this property. Let- be
an automorphism af2/k anda/K. Let o be an automorphism ad/k
ande € K. LetC, be the class of. SinceC, c K,oa € K. Buta is
arbitrary inK. Therefore

oK c K

andK is normal. Thus the

Theorem 2. Letkc K c Q. ThenoK = K for all automorphismsr of
Q/k < every irreducible polynomial (&) € k[x] which has one root
in K has all roots in K.

Let f(x) be a polynomial irk[x] and K its splitting field. LetQ be
an algebraic closure d&f. Letas, ..., an be the distinct roots of (x) in 22
Q. Then
K =k(ay,...,an)

Let o be an automorphism @/k. oa; = «; for somej. Thuso
takes the set;, . .., a, onto itself. Since every element Kfis a rational
function ofaq, . . ., an, it follows thatoK c K. Thus

i) The splitting field of a polynomial in[K] is a normal extension of
k.

Let {K,} be a family of normal subfields d®2/k. ThenK, is
trivially normal. Considek(lJ K,). This again is normalasince for
any automorphisna- of Q/k.a

AUk Uor e Uk

a a
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Let now{ f,(X)} be a set of polynomials ik X] andK, their splitting
fields, thenK (| K,) is normal. Also it is easy to see that

c={U)

a

is the intersection of all subfields €f/k in which every one of the
polynomialsf,(x) splits completely. Thus

i) if {f,(X)} is a set of polynomials in[k], the subfield of2 generated
by all the roots of f,(x)} is normal

We also have

i) If K/kis normal and ko L c K then K/L is also normal

For if o is anL- automorphism of2, thenco is also ak-automor-
phism ofQ and sarK c K.

The k—automorphisms of2 form a groupG(Q2/k). From what we
have seen above, it follows that a subfigldf Q/kis normal if and
only if oK = K for everyo € G(Q/k). Now ak— automorphism
of K can be be extended into an automorphisntygk, because
every such automorphism is an isomorphisniKah Q. It therefore
follows

iv) K/k is normal if and only if every isomorphism of K @yk is an
automorphism of K over k.

As an example, lef be the field of rational numbers arfdx) =
x3 — 2. Thenf(X) is irreducible in[X]. Leta = V2 be one of its roots.
I'(e) is of degree 3 ovel and is not normal since it does not contain
p Wherep = ‘1+T‘/‘_3 However the field(«a, p) of degree 6 over is
normal and is the splitting field of — 2.

If K is the field of complex numbers, considéefz) the field of ratio-
nal function of 2 oveK. Consider the polynomia®—zin K(2)[x]. This
is irreducible. Lew = z3 be a root of this polynomial. Thelk(2)(w) is
of degree XK(2) and is the splitting field of the polynomiaf — z
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3 Isomorphisms of fields

Let K/k be an algebraic extension kandW anyextension oK and so
of k. A mappingo of K into W is said to be&k— linear if for a, 8 € K 24

o(la+pB)=ca+op

ocax e Wand ifa € k, o(1a) = Aoa. If o is ak—linear map oK into
W we definexo for a in W by

(a0)B = aop

for 8 € K. This again is &—linear map and so thie-linear maps oK
into W form a vector spac¥ overW.

A k—isomorphismo of K into W is obviously ak-linear map and
soo € V. We shall say, two isomorphismas r of K into W (trivial on
k) aredistinctif there exists at least one € K, w # 0 such that

ow * TW

Let S be the set of mutually distinct isomorphismskofnto W. We
then have

Theorem 3. S is a set of linearly independent elements of V over W.

Proof. We have naturally to show that every finite subse$ i linearly
independent ovalV. Let on the contraryry, .. ., o, be a finite subset of
S satisfying a non trivial linear relation

Zaim =0
i

ai € W. We may clearly assume that no proper subsetgf.., o
is linearly dependent. Then in the above expression;are diferent
from zero. Letw be any element oK. Then

Z ajoiw =0
i
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If we replacew by ww’ we get, sincer;’ sare isomorphisms,

Z Qioiw .ojw = 0
i

for everyw € K. This means that, ..., o, satisfy another linear rela-
tion
Z Qioiw .oiw =0
i

Since the isomorphisms are mutually distinct, we can chagsa
K in such a way that
o1’ # opw’

We then get from the two linear relations, the expression
n-1

o oia;
Z —_— - oj = 0.
— an o' a;

This relation is non trivial since the cfigient of o1 is different
from zero. This leads to a contradiction and our theoremasqd.

Suppose dinv < oo then it would mean thab is a finite set. But
the converse is false. We have however the

Theorem 4. If (K : k) < oo, then dim V= (K : k)
Proof. Let (K : K) = nandws, ..., wn a basis oK/k. O
Consider th&-linear mappingsri, . . ., on defined by
{o-i(wj) =0  i#]
=1 |

Theno,...,on are linearly independent elements \dfover W.
For, lety ajoi = 0, @j € W. Then
|

(Serfn=o

for j = 1,...,n. This proves thatrj = 0. Now leto be anyk-linear

25
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mapping. It is uniquely determined by itffects onws,...,wn. Put
ai = owj and letr be given by

T=0— E Qo
i

Thent(wj) = owj X @ici(wj) = 0 so thatr = 0. Our contention is
established.
From this we obtain the very important

Corollary. If (K : k) < oo then K has inQ/k at most(K : k) distinct
k-isomorphisms.

Let @ € Q. Consider the fiel&(e)/k. Leta@(= a),..., o™ be the
distinct conjugates of overk. An isomorphismo of k(a)/k is deter-
mined completely by itsféect ona. Since every isomorphism comes
from an automorphism d®/k, it follows thatk(a™) are all the distinct
isomorphic images df(a). Thus

1) Number of distinct k-isomorphisms dfdy in Q is equal to the
number of distinct roots i@ of the minimum polynomial af.

Let K/k be an algebraic extension afan algebraic closure d&f
containingK. Let K have the property tha€/k has only finitely many
distinct k-isomorphisms im2. Let K (= K), K@, ... K™ be the dis-
tinct isomorphic fields. Letr € Q and leta have overK exactly m
distinct conjugates®™(= «a),...,o™. This means that iff(X) is the
minimum polynomial ofx over K, then f(x) has inQ, mdistinct roots.
We claim that (@) has ovek exactlymndistinct isomorphisms i®. 27

For, letoi(i = 1,...,n) be thek-isomorphisms defined by

O’iK(l) = K®

Let f7i(x) be the image of the polynomidl(x) in K[x] by means
of the above isomorphism. Let the roots &fi(x) by o), ..., o
these being the distinct ones. There exists then an isonsonph; (j =
1,...,m) extendingo; of KO(a®) on KN (D). Sincei hasn values,
it follows that there are at leasindistinct isomorphisms oK («) over
K.
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Let now o~ be any automorphism d@d/k. LetoK = K0, Then it
takesa!) into a rootal)) of f7(x) = f7i(x) whereo; is the isomor-
phism which coincides witl- on K. Thus since every isomorphism
of K(a) overk comes from an automorphism ©f/k, our contention is
established.

Let nowK = K(w1,...,wn) andK; = k(ws, ..., w;) so thatK, = k
andK, = K. LetK; have overK;_; exactly P; distinct K;_;-isomor-
phisms. TherK/k has exactlyp; - - - pn distinct k-isomorphisms in2.
Hence

2) If K o L o k be a tower of finite extensions and K has ever L,
n distinct L-isomorphisms i@ and L has over k, m distinct k-isomor-
phisms then K has over k precisely mn distinct k-isomorphism

In particular let K : k) < o and letK have inQ exactly K : k)
distinct isomorphisms. Let be any intermediary field. Let be the
number of distinct_-isomorphisms oK andb the number of distinct
k-isomorphisms of..

Then

(K:kj=ab<(K:L)L:Kk) =(K:K)

Buta< (K:L),b<(L:K). Thusa= (K:L)andb=(L:Kk).

4 Separability

LetQ be an algebraic closure kfandw € Q. Let ¢(x) be the minimum
polynomial ofw in k. Suppose&k(w)/k has exactly K(w) : k) distinct
k-isomorphisms i). Then from the last article it follows that all the
roots of¢(x) are distinct. Conversely let the irreducible polynongiét)
be of degreen and all itsn roots distinct. Therk(w)/k hasn distinct
k-isomorphismsw being a root ofp(x). But it can have no more.

Let us therefore make the

Definition. An elementy € Q is said to be separably algebraic or sepa-
rable over k if its minimum polynomial has all roots distin€itherwise
it is said to be inseparable.

1) Let Wk be any extension field and € W separable over k. Let L
be an intermediary field. Thanis separable over L.
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2)

3)

4)

5)

For, the minimum polynomial ab overL divides that ovek.

w € Q separable over ks k(w)/k has inQ(k(w) : K) distinct k- 29
isomorphisms.

Let nowK = k(ws, ..., wn) and letws, . .. w, be all separable ovédx
PutK; = k(wg, ..., w) so thatk, = kandK, = K. Now K;_1(wj) and
wj is separable ove_; so thatK; overK;_1 has exactlyK; : Ki_1)
distinctK;_1- isomorphisms. This proves thithas ovek

(Kn 1 Kn-1) ... (K1 1 Ko) = (Kn 1 Ko) = (K 1 K)

distinct k-isomorphisms. If therefore € K, Then by previous ar-
ticle k(w) has exactly K(w) : k) distinct isomorphisms and henae
is separable ovek. Conversely ifK/k is finite and every element
of K is separable ovek, thenK/k has exactly K : k) distinct k-
isomorphisms. Hence

(K : K) < o0, K/k has(K : k) distinct k-isomorphisms=> every
element of K is separable over k

Let us now make the

Definition. A subfield K of)/k is said to be separable over k if every
element of K is separable over k.

From 3) and the definition, it follows that

K/k is separable= for every subfield L of K witliL : K) < oo, L
has exactly(L : K) distinct isomorphisms over k.

K/L, L/k separably algebraie> K/k separable.

For, letw € K. Thenw is separable ovet. Let ws,...,w, be
the codficients in the irreducible polynomial satisfied byoverL. 30
Thenw has overK; = k(ws,...,wn) exactly Ki(w) : Ki) distinct
Ki-isomorphisms. Als&K;/k is finite separable. ThukKi(w) has
overk exactly K1(w) : K) distinct isomorphisms which proves that
w is separable oved. The converse follows from 2).
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6)

7

8)

2. Algebraic extension fields

If {K,} is a family of separable subfields Qfthen

2) VK, and Bk(J K,) are separable.

a) follows easily because every elementkyf is separable ovek.
b) follows since every element &f( J K,,) is a rational function of a
finite number of elements and as Z\ach of these is separabiestiie
follows from 3).

Let K/k be any extension-not necessarily algebraithe set L of
elements of k separably algebraic over K is a field

This is evident. We call the separable closuref kin K.

We had already defined an algebraic elemenb be inseparable if
its minimum polynomial has repeated roots. Let us study Hiare
of irreducible polynomials.

Let f(X) = ag+ai1x+---+apX" be an irreducible polynomial ik[x].

If it has a rootw € Q which is repeated, then is a root of

f1(x) = ag + 2apXx + - - - + g, X" .

Thus f(x)|f1(x) which can happen only if

ia=o0i=1,...,n

Let k have characteristic zero. Them = 0 = a = 0 that isf(x) is
a constant polynomial. Thus

Over a field of characteristic zero, every non constant ineble
polynomial has all roots distinct.

Let nowk have characteristip # o. if pyi theniaj = 0= g = o.
Thus for f1(x) to be identically zero we must haag= o for pyi. In
this case

f(X) =ao+apxP +---

or that f(x) € K[xP]. Let e be the largest integer such thitx)
K[xP] but not ink[x*"']. Consider the polynomia(y) with ¢(x*) =
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9)

10)

f(X). Theng(y) is irreducible ink[y] and ¢(y) hasno repeated roots
Letps,..., Bt be the roots ob(y) in Q. Then

F() = (" = B1)--- (X = By).

Thusn =t - p&. The polynomialx” — ; has inQ all roots identical
to one of them say;. Then

e
X =B = X7~ AdP = (x— a)”

Thus
f(X) = {(X=a1)--- (x— ax)}”

Moreover sinceB; ...B; are distinct,as,...,q; are also distinct.
Hence

Over a field of characteristic g o, the roots of an irreducible poly-
nomial are repeated equally often, the multiplicity abat beingp®,
e>o.

It is important to noteghat (x — a1) ... (X — a¢) is nota polynomial in 32
k[X] andt is not necessarily prime tp.

We callt thereduced degreef f(x) (or of any of its roots ) ang*,
its degree of inseparabilityThus

| Degree of: Reduced degréedegree of inseparability

If w € Q then we had seen earlier tHdtw)/k has as many distinct
isomorphisms i as there are distinct roots & of the minimum

. ki
polynomial ofw overk. If we call the reduced degree egki) as the
reduced degree ab we have

Reduced degree @f = Number of distinct roots of the minimum
polynomial ofw over k.

We may now call a polynomiaeparabléf and only if every root of
it in Q is separable. In particular if(xX) € K[X] is irreducible then
f(X) is separable if one root of it is separable.
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11)

2. Algebraic extension fields

Let w € Q and f(x) the minimum polynomial ofv in k[x]. If t =
reduced degree @, then

() = {(x— w1)... (x— w)}”

n=t-ps Letw; = w. Considera)‘fe = 1. Then

F) = (X =) (X = B)

andpgs, ...B: are separable ovér Consider the field(B1) which is
a subfield ofk(w).8 being of degred overk, (k(31) : k) = t. This
means that

(k(w) : k(B) = p~.

But the interesting fact to note is thlfw) has overk(B) only the
identity isomorphism or thak(w) is fixed by everyk(g)-automor-
phism ofQ/k(B).

Also since every element &{w) is a rational function of overk(g),
it follows that

¥ € k(B)

for everyA € k(w). Thus the integee has the property that for every
A € k(w), 27 € k(B) and there is at least one(for instancew) for
which AP ¢ k(B). eis called theexponenbf w, equivalently ofk(w).
We define the exponent of an algebraic elememwiverk to be the
integere > o such thatz™ is separable but nat” . Hence

Exponent ofa is zeroe « is separable over .k

We shall now extend this notion of exponent and reduced degre

any finite extension.

Ki

Let K/k be finite so thaK = k(w1,...,wn). Put as beford, = Kk,
= k(w1, ..., wj) so thatK,, = K. Let w; have reduced degref and

exponentg overK;_i. Then

(Ki : Ki—1) = dip®
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From the definition ofd;, it follows that the number of distindt-
isomorphisms oK/kisd; ... d,. We put

d=d;---dy
and call it thereduced degreef K/k. Then
K:K=d...p

wheref = e; +--- + e,. We callp' the degree oihseparabilityof K/k.

In order to be able to give another interpretation to thegetd we 34
make the following considerations.

LetQ > K o kand letK/k have the property that evekyautomor-
phism ofQ/k acts like identity orK. Thus ifo € G(Q/K) andw € K,
then

ow =w

All elements ofk have this property. Leb € K, w ¢ k. Then by
definition, w has inQ only one conjugate. The irreducible polynomial
of w has all roots equal. Thus the minimum polynomiat.ofs

m
x? —a

where ac k. i.e.,wP" € k. On the other hand lé¢ be an extension d¢
in Q with the property that for every € K

m
wP ek

for some integem > o. Let o be an automorphism aR/k. Then
cw”" = wP". But

0=cw” - = (cw - a))pm

which shows thatrw = w.  being arbitrary irK, it follows that every
element ofG(Q/K) is identity onK.
Hence forw € Q the following three statements are equivalent

1) cw = wforall o € G(Q/K)
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2) w”" € kfor somem > o depending omw
3) The irreducible polynomial ab overk is of the formxP" — a,a € k.

We call an elemenv € Q which satisfies any one of the aboves
conditions, gurely inseparable algebraic element over k.
Let us make the

Definition . A subfield Kk of Q/k is said to be purely inseparable if
elementw of K is purely inseparable.

From what we have seen above, it follows tKgk is purely insepa-
rable is equivalent to the fact that evéeautomorphism of2 is identity
onkK.

Let K/k be an algebraic extension abhdhe maximal separable sub-
field of K/k. For everyw € K, " is separable for some > o which
means thaw® e L. ThusK/L is a purely inseparable extension field.
This means that eveilyrisomorphism ofL/k can be extended uniquely
to ak-isomorphism oK /k.

Let, in particular,K/k be a finite extension anid the maximal sep-
arable subfield oK. ThenK/L is purely inseparable and/L has no
L-isomorphism other than the identity. Thus the number dfrdisiso-
morphism other than the identity. Thus the number of distis@mor-
phisms ofK/k equals L : k). But from what has gone before

(K:L)=pf"(L:Kk=d.

For this reason we shall callalso thedegree of separabilitpf K/k
and denote it byK : k]. We shall denote the degree of inseparability,
p', by {K : k}. Then

(K :K) = [K : KI{K : K.

Note. In casek has characteristic zero, every algebraic elementloiger
separable.

If Q is the algebraic closure d&fandL the maximal separable sub-
field of Q thenQ/L is purely inseparableQ coincides withL in casek
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has characteristic zero. But it can happen that a proper subfield of
Q.

Let K/k be an algebraic extension ahdhe maximal separable sub-
field. Consider the exponents of all elementKinLet e be the maxi-
mum of these if it exists. we caditheexponenbf the extensiorkK/k. It
can happen thatis finite butK/L is infinite.

If K/k is a finite extension thel/L has degre@' so that the maxi-
mum e of the exponents of elements Kfexists. Ifeis the exponent of
K/kthen

e<f

It can happen that < f. For instance lelt have characteristip # 0
and lete € k be not ap™ power ink. Thenk(a/P) is of degreep over
k. Letg in k be not ap™ power ink. Thenk(a/P, 8¥/P) is of degreep?
overk, 8 ¢ k(et/P) and for everyl € k(a/P, g1/P), AP € k.

We may for instance takigx, y) to be the field of rational functions
of two variables andK = k(x'/P,yP). Then K : k(x,y)) = p? and
AP € k(x,y) for everya € K.

5 Perfect fields

Let k be a field of characteristip > 0. LetQ be its algebraic closure.
Let w € k. Then there is only one element € Q such thaw'? = w.

We can therefore write/X/P without any ambiguity. LekP™ be the field
generated if2/k by the p™ roots of all elements dk. Similarly from 37

kP, ... Let
K = U KP™"

n>0

ObviouslyK is a field; for ifa, 8 € K, a, B € kP™" for some largen.
We denoteK by kP

We shall studykP™" in relation tok andQ . kP is called the root
field of k

Letw € kP, Thenw € kP for somen so thatwP” € k or w is
purely inseparable. On the other handdet Q be purely inseparable.
Thenw”" € k for someni.e.,w € kP~ c kP~ Thus
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1) kP is the largest purely inseparable subfield 6¥/k.

Therefore every automorphism 6f/k is identity onkP ~. The set
of elements of2 which are fixed under all thie- automorphisms of
Q/k form a field called the fixed o5(Q2/k). Since every such ele-
mentw, fixed undeiG(Q/K) is purely inseparable € kP . Hence

2) kP is the fixed field of the group ofkautomorphism of2/k.

Let f(X) be an irreducible polynomial ikP " [x]. We assert that this
is separable. For if not(x) € kP "[xP]. Thus f(x) = a, + ayxP +
.-+ apX"P. Sincea; € kP [XP], itisin somekP™ and sog = biIO for
bi € kP". Hence

f(X) = (bo + bix+ - - + bpx")P
which is contradicts the fact thd{x) is irreducible. Hence

3) Q/kP is a separable extension.
We now make the

Definition. A field k is said to be perfect if every algebraic extension
of k is separable.

It follows from the definition that

1) An algebraically closed field is perfect
2) A field of characteristic zero is perfect.
We shall now prove
3) Afield k of characteristic p- 0 is perfect if and only if ke kP,

Let k have no inseparable extension. Thendoe k, al/P e
also; for, otherwis&(al/P) is inseparable ovet Thusk = kP
... =kP™". The converse has already been proved.

We deduce immediately

=~

4) A finite field is perfect.
For if k is a finite field of characteristip > r thena — aP is an
automorphism ok.
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5) Any algebraic extension of a perfect field is perfect.
For letK/k be algebraic and be perfect. lfw is inseparable over
K, then itis already so ovex:
An example of an imperfect field is the field of rational fuocis
of one variablex over a finite fieldk. For if k has characteristic
p, thenxYP ¢ k(x) andk(x>P) is a purely inseparable extension
overk(x).

Note 1.If @ € Q is inseparable ovek, it is not true that it is inseparable
over every intermediary field, whereas this is true i6 separable. 39

Note 2.If K/kis algebraic andk NkP "~ containsk properly therK is an
inseparable extension. But the converse of this is not thag s, ifK/k
is an inseparable extension, it can happen that there arlememts in
K which are purely inseparable ouerWe give to this end the following
example due to Bourbaki.

Letk be a field of characteristip > 2 and letf(X) by in irreducible

polynomial
f)=xX"+ax"t+... +a,

in K[X]. If ax,..., e are the distinct roots of (x) in Q then
f0 = [(x- ). (x-ap) e 1
wheren = t. - p%. Putg(x) = f(xP). Then
$(9) = {(° - a1) ... (x° — )}’

If B = /P then

$0) = {(X=B1)...(x= )"

andg,...,B; are distinct sincer;...a; are distinct. Suppose(Xx) is

reducible ink[x] and lety/(x) be an irreducible factor ap(x) in K[X].

Then »
Y(x) = {(x= 1) (x- B}
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for u > 0 and¢ < t. (This is because roots @fx) occur with the same
multiplicity). We can write

W) = (P = a1)... (P = )P

(u has to be> 1) since otherwise, it will mean thax € a1) - - - (X—ay) €
K[x]). Now this will mean thap(x) = ¥(x). W(X) in k[xP] so that¢ = t.
Hence

W) = {(x=B1) - (x= )7 u = 1.

Sincey(X) is irreducible and

W(¥) = (P~ a1)... (P —a)}”
we see that — 1 =eoru =e+ 1. Thus

¢ = F(xP) = (¥ (x)}P

Thus if f(xP) is reducible, it is theo™ power of an irreducible poly-
nomial. In this case; = b, b e ki =1,...n.

Conversely ifa; = bip, bi € ki = 1,...n. then f(xP) is reducible.
Hencef (xP) is reduciblef (x) € kP[X].

Letk now be a field of characteristio > 2 given byk = T'(x, y), the
field of rational functions in two variables y over the prime field" if
p elements. Consider the polynomial

f(2) = 2P + x2 +,

in k[Z]. Sincex!P,yY’P do not lie ink, f(2) is irreducible ink. Let be
aroot of f(2). Then k() : k) = 2p. Letg be ink(s%) and not ink such
thatP € k. Thenk(?) > k(8) > k. Also (k(8) : k) = p. In k(B[]
the polynomialf(2) cannot be irreducible, sind&(®) : k(8)) = 2. Itis
reducible and s&(B) will contain x*/P andy/P. But thenk(x/P, y*/P) >
k().

Thus

P = (kTP yYP) k) < (K(B) 1K) < (#) 1K) = 2p

but this is impossible. Thus there is no elemgr k(%) with 8P € k.
All the samek(®) is inseparable.

1
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6) If k is not perfect then®" is an infinite extension of. k
For, if kP~ /k is finite then, sinc&kP ™ = (JkP" we havekP" =
n

kP~(™1) for somen, )
Applying the mappinga — a® we findk = kP™". But this is false. 41
Thus
(kp‘(””) : kp‘”) >1

which proves our contention.

6 Simple extensions

An algebraic extensioK/k is said to besimpleif there is anw € K such
thatK = k(w). Obviously K : K) is finite. We callw a primitive element
of K. The primitive element is not unique fag + 4, 1 € k also is
primitive. We now wish to find conditions when an algebraite@sion
would be simple. We first prove

Lemma. Let kbe an infinite field and, 8 elements in an algebraic clo-
sureQ of k such thate is separable ovek. Then Ka,B) is a simple
extension ok.

Proof. Let f(x) and¢(x) be the irreducible polynomials af andg re-
spectively ink[x], so that

f(X) = (X—a1) - (X—an)
¢(X) = (X=p1) - (X Bm).
mi

Sincea is separablegs, . . . an are all distinct. We shall put = a;,
andg = B1. Construct the linear polynomials

Bi+Xej(i=1....mj=1...,n)

Thesemnpolynomials are i, the algebraic closure &fand since
k is infinite, there exists an elemeik k such that

Bi + Aaj # i, +Aaj,a # J
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Put
y=p1+da1 =6+ A

42 ObviouslyA can be chosen so that# O
Now k(y) c k(a,B). We shall will now show thatr € k(y). From
definition ofy, 8 also will be ink(y) and that will mean

k(y) c k(a,B) k().

In order to do this consider the polynomigly — A.x)in k(y)[X]. Also
it vanishes forx = a. Furthermore by our choice af ¢(y — Aaj) # 0
fori > 1. In the algebraic closur@, therefore,f(x) and¢(y — AX) have
just X — a as a factor. Buff(x) and¢(y — AX) are both polynomials in
K(y)[X]. Sox — a is the greatest common divisor ofy — 1x) and f(X)
in K(y)[X]. Thusa € k(y). Our lemma is demonstrated.

We have therefore

Corollary . If a1,...,a, are separably algebraic an@ € Q then
K(B, a, . ..an) is a simple extension.

We deduce immediately
Corollary. A finite separable extension is simple.

LetT be the field of rational numbers afidw, p) the splitting field
of the polynomialx® — 2 inI'[x]. ThenT(w,p) is simple. A primitive
elementy is given byw + p = y. ThenI'(y) is of degree 6 over. Itis
easy to see thathas ovell” the minimum polynomial

O = 3x = 3)2 + 3x(x + 1)(C — 3x — 3) + 9X®(x + 1)°

Let now K/k be a finite extension antd the maximal separable
subfield ofK/k. Then K : L) = p' the degree of inseparability and
(L : k) = d the reduced degree. If we consider the exponents of ele-
ments ofK, these have a maximugand

e< f.

43 We had given an example ef< f. We shall now prove the
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Theorem 5. If e is the exponent and’ghe degree of inseparability of
finite extension K of k, thene f < K/k is simple.

Proof. LetK = k(w). Let K, be the maximal separable subfieldkofk.
Now (K : Ko) = pf. But p' is degree ofv. Thuse = f O

Let nowK/k be a finite extension anel= f. There exists then a
in K such thaw® is separable and i, but for no,t < e " isin Ko.
ThusK = Ky(w). K, being a finite separable extension by our lemma,
Ko = k(B) for B separable. Thus

K = k(w, ).

Using the lemma again, our contention follows.

We now investigate the number of intermediary fields betwéen
andk whereK is an algebraic extension &f Let us first consider a
simple extensiorK = k(w). Let ¢(X) be the minimum polynomial ab
in K[X]. Let L be any intermediary field. L&t(x) be the minimum poly-
nomial ofw overL. Thenf(X) divides¢(x). Let f(X) have cofficients
ap,...a, in L. PutL¢ the fieldk(ay,...,an). Then f(X) is minimum
polynomial ofw overL;. Thus

(K:L)=(K:Ly)

But L¢ c L. This proves thak = L¢, and so for every intermediary
field there is a unique divisor @f(X). Since¢(X) has inQ only finitely
many factorsK/k has only a finite number of intermediary fields.

We will now prove that the converse is also true. We shallmsdu 44
is infinite.

Let nowK/k be an algebraic extension having only a finite number
of intermediary fields. Let, 8 € K. Consider the elements+ A8 for
A € k. Sincek is infinite, the fieldk(a + A8) are infinite in number and
cannot be all distinct. Letfat = 11, 12 A1 # A7

k(e + 118) = k(e + 128) = k(7).

Thena + 118, a + A28 are ink(y). Thus @1 — 12) € k(y). Hence
B € K(y) becausel; — 1> € k. This means that € k(y).
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Therefore
k(a,B) c k(y) c k(a,B).

Hence every subfield &€, generated by 2 and hence by a finite num-
ber of elements is simple. L& be a maximal subfield ok/k which
is simple. (This exists sincK/k has only finitely many intermediary
fields). LetKg = k(w). Letg € K andB ¢ Kq. Thenk(y) = k(w,B) c K
andKy c k(y) contradicting maximality oKo. ThusB(y) = K. We have
proved

Theorem 6. K/k is simple—= K/k has only finitely many intermediary
fields.

We deduce
Corollary. If K/k is simple, then every intermediary field is simple.

Note 1.We have the fact that K/k is infinite there exist infinitely many
intermediary fields.

Note 2.Theorenlb has been proved on the assumptionkiigan in-
finite field. If k is finite the theorem is still true and we give a proof
later.

7 Galois extensions

Let K/k be an algebraic extension a@dhe group of automorphism of
K which are trivial ork. Let L be the subset of all elements i§fwhich
are fixed byG. L is then a subfield oK and is called thdixed fieldof
G. We shall now consider the class of algebraic extenskofiswhich
are such that the grou@(K/k) of automorphisms oK which are trivial
onk, hask as the fixed field. We call such extensiayadois extensions
the groupG(K/k) itself being called thgalois groupof K/k.

We now prove the

Theorem 7. k is the fixed field of the group of k automorphisms of
K < K/k is a normal and separable extension.
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Proof. Letk be the fixed field of the grou@(K/k) of k-automorphisms
of K. Letw € K. Letwi(= w), ...wn be all the distinct conjugates of
that lie inK. Consider the polynomial

f(X) = (X—w1)-- (X—wn)

If o is an element o&(K/K), o permutesus, . . ., wn SO thats leaves
the polynomialf(x) unaltered. The cdicients of this polynomial are
fixed under all elements @& and hence sindeis the fixed fields, f(x) €
k[X]. Hence the minimum polynomial roots of the minimum polyno-
mial of w, sincews, ...wy are conjugates. Thul(x)/#(X). Therefore
K splitting field of ¢(X), ¢(X) has all roots distinct. Thukk/k is normal
and separable. O

Suppose novwK/k is normal and separable. Consider the group
G(K/K) of k-automorphisms oK. Leta € K. SinceK/k is separable,
all conjugates ofr are distinct. Also sinc&/k is normalK contains all
the conjugates. I& is fixed under all- € G(K/K), thena is a purely
inseparable element &f and hence is ik.

Our theorem is thus proved.

We thus see that galois extensions are identical with eixteriields
which are both normal and separable.

Examples of Galois extensions are the splitting fields ofpamials
over perfect fields.

Let k be a field of characteristie 2 and letk = k(+/a) for a € k
and va ¢ k.(v/a)? = a € k. Every element oK is uniquely of the form
a+ Va-b,abek If oisanautomorphism df which is trivial onk,
then its éfect onK is determined by itsféect on v/a. Now

a = o {(Va?} = o(Va).o(Va)

or thato(va)/ Va = Ais such thant? = 1. Sinced € K, 1 = +1. Thus
o is either th identity or the automorphism

o(Va) = - Ve

ThusG(K/K) is a group of order 2K/k is normal and separable.
We shall obtain some important properties of galois exterssi
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1) If K/k is a galois extension and & L c K, then K/L is a galois
extension also

47 For,K/L is clearly separable. We had already seen that it is normal.
If we denote byG(K/L) the galois group oK overL, thanG(K/L)
is a subgroup o6(K/K).
2) If k c Ly c Ly c KthenG(K/L,) is a subgroup of @/L;). This
is trivial.
3) If {K,} is a family of galois extensions of k containeddthen K,
andk(lJ K,) are galois ¢

This follows from the fact that this is already true for notraad
also for separable extensions.

4) If K/k is galois and Land L’ are two intermediary fields of K&
which are conjugate over, khenG(G/L) andG(K/L’") are conjugate
subgroups of @/k) and conversely

Proof. SincelL andL’ are conjugate ovetlet o be an automorphism of
K/ksothatoL = L'. Lett € G(K/oL). Then for everyw € oL

TW = W

Butw = oo’ for w’ € L. Thus

-1 ’ ’
g ToOw =w

Since this is true for every’ € L, it follows that
o 1G(K/oL)o c G(K/L)

In a similar manner one proves the®(K/L)o ¢ G(K/oL) which
proves our contention. i

Conversely suppose thiaandL’ are two subfields such th&(K/L)
andG(K/L") are conjugate subgroups G{K/k). Let G(K/L) = o1
48  G(K/L)o. Letw € L andt € G(K/L). Theno1ro € G(K/L’) and so



7. Galois extensions 41

o rtow=w

or r(ocw) = ow. This being true for alt, it follows thatow € L for all
win L’. ThusoL’ c L’. We can similarly prove that~'L c L’ which
proves our statement.

In particular letL/k be a normal extension ¢&fwhich is contained
in K. ThenoL = L for all o € G(K/k). This means thaB(K/L) is a
normal subgroup o&(K/k). On the other hand if is any subfield such
thatG(K/L) is a normal subgroup @b(K/k) then by aboverL = L for
all o € G(K/K) which proves that /k is normal. Thus

5) Letkc L c K. ThenL/k is normal< G(K/L) is a normal
subgroup of @K/K)

6) If L/kis normal, therG(K/k) ~ G(L/K)/G(K/L).

Let o € G(K/K) ando the restriction ofr to L. Theno is an auto-
morphism ofL/k so thato- € G(L/k). Now o- — o is a homomorphism
fo G(K/K) into G(L/k). For

otw =0tw = o(tw) = crw forall w € L. Thusor = o7

The homomorphism isntosince every automorphism bfk can be 49
extended into an automorphismfk. Now ¢ is identity if and only if

gw = w

forall w € L. Thuso € G(K/L). Also everyo € G(K/L) has this
property so that the kernel of the homomorphisris{&/L).

Let K/k be a finite galois extension. Every isomorphismkgk in
Q is an an automorphism. Aldé/k being separablek/k has exactly
(K : k) district isomorphisms. This shows that

(K : k) = order ofG.

We shall now prove the converse

7) If G is a finite group of automorphisms of/K having k as the
fixed field then (K k) = order of G



50

42 2. Algebraic extension fields

Proof. Letoy,...,om be thenelements oG andws, ... wne anyn+ 1
elements oK. Denote by the vector space ovéf of n dimensions
formed by n- tuplesds, . .., an). Definen + 1 vectorsQ, ..., Qn,1 by

Qi = (i(wi),...,on(w))i=1,...,n+1

Among these vectors there exists< nvectors linearly independent
overK. LetQ,...,Qn be independent. Then

m
Qm+1:ZaiQi a ek
n=1

This equation gives, for the components of €bes,

m
oewm) = Y ao(@)a =1....n.
1=i

O

Sinceo,...,on form a group therrpo, ..., onon are again the
elementsry, ..., o in some order. Thus

m
rhod(wma) = )| oh(@lono(wi)
i=1
which means
m
Tiwm) = ) on@)ow) i=1....n
i=1
subtracting we have

> (on(@) - ao(w) =0
i=1

which means that

> (on(@) - a)Qi =0
i=1
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From linear independence, it follows that(g;) = a for all i. But
his arbitrary. Thusg; € k. We therefore have by taking; to be the

identity element of5
m
Wmel = Z qjwj
i=1

g are ink, not all zero. Hence
(K:Kk)<n.
But every element of is an isomorphism oK/k. Thus
(K : k) > order ofG = n.

Our assertion is established.

SupposeK/k is a galois extension. For every subfidlaf K/k, the
extensionK/L is galois. We denote its galois group B¢L) and this
is a subgroup o6(K/k). Supposey is any subgroup o6(K/k) and let
F(g) be its fixed field. Ther(g) is a subfield oK. The galois group
G(F(g)) of K/F(g) contains gln general one has only 51

g c G(F(9))

Let now K/k be afinite galois extension. Leg) be a subgroup of
G(K/K) = G andF(g), the fixed field ofg. Then by above

(K : F(g)) = order ofg.

and so
g = G(K/F(9))

If g1 andg, are two subgroups d& with g; < g, thenF(g;) and
F(gp) are distinct. For ifF(g;) andF(g,) are identical, then by above
01 = G(K/F(g2)) = go. We thus have the

Main Theorem(of finite galois theory).Let K/k be a finite galois ex-
tension with galois group G. Let M denote the class of all soilygs
of G and N the class all subfield of/K. Let¢ be the mapping which
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assigns to every subgroupgM, the fixed field Fg) of g in N. Thenp
is a mapping of M onto N which is biunivocal.

In order to restore this property even for infinite extensjome de-
velop a method due originally to Krull.

Let K/k be a galois extension with galois gro@§K/k). For every
w € K, we denote byG,, the galois grougG(K/k(w)). This then is
a subgroup of5(K/k). We makeG(K/K) into a topological group by
prescribing thgG,,} as a fundamental system of neighbourhoods of the
identity elemenge € G(K/k). ObviouslyN\ G, = (e). Foro € N, G, =

oa = aforall @ € K sothato = e. It is(iaasy to verify thatG,,} satisfy
the axioms for a fundamental system of open sets contaihmglentity
elements.

Any open set inG is therefore a union of sets of tygeG,} or a
finite intersection of such. Also singg, are open subgroups they are
closed; for,oG, is open for allo- and hence

U oG,

o#e

is also open. Therefor@, is closed. This proves that the topology on
G makes ittotally disconnected We call the topology o1 the Krull
topology

If gis a subgroup o6, g the closure ofj is also a subgroup. We
now prove the

Lemma. Let g be a subgroup of G a and L its fixed field. Then
G(K/L) =g (the closure of g)

Proof. Let w be an element ik and f(x) its minimum polynomial in

k. Considerf(x) as a polynomial ovek and letL’ be its splitting field
overL. ThenL’/L is a galois extension. The restriction of elements of
g to L” are automorphisms df’ with L as fixed field (by definition of
L). By finite galois theory these are all the elements of theigajroup

of L’/L. This means that every automorphismLéfL comes from an
elements of). m|
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Let o € G(K/L). Let w be any element irkK and G the group
G(K/k(w)). The restriction ofo- to L’ is an automorphism of’ with
L as fixed field. There is thus an element g, which has or_’ the
same fect aso. Hencer o is identity onL’ and sincev € L’ we get

low=w
This means that 1o € G, by definition ofG,,. Hencesc'r € G, 53
ort € 0G,. ButoG, is an open set containing. Therefore since
{oG,} for all G, form a fundamental system of neighbourhoodsrof
we conclude that

o€g.
ThusG(K/L) c g
Let nowo € g. ThenoG,, is a neighbourhood af and so intersects

ginanon empty set. Leb € L. Lett € 0G, N g. Leto’ in G, such
that

oo’ =71
By definition of 7, 7w = w. Buttw = 00’w = w. Thereforeoo’ € G,,.
But o is already is inG,,. Thereforeow = w. Also w being arbitrary
oL=L
which means that € G(K/L). Thus
g c G(K/L)

and our contention is established.

From the lemma, it follows that it is an intermediary field, the
galois groupG(K/L) is a closed subgroup &(K/k). On the other hand
if gis a closed subgroup & andF(g) its fixed field then

G(K/F(@) =g=g
we have hence the fundamental

Theorem 8. Let K/k be a galois extension and/k/k) the galois group
with the Krull - topology. Let M denote the set of closed sobpgs of

G and N the set of intermediary fields of KK Let¢ be the mapping
which assigns to everyg M, the fixed field fg) of g in N. Thernpis a 54
biunivocal mapping of M on N.
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Suppose now thaf/k is a galois extension ardis an intermediary
field. LetG(K/k) andG(K/L) be the galois groups. OB&(K/L) there
are two topologies, one that is induced by the topologys0K/k) and
the other the topology th&(K/L) possesses as a galois extension. If
L’ is a subfield oK/L so thatL’/L is finite, thenG(K/L’) is an open set
in the inherent topology o®(K/L). On the other hanll’ = L(w) since
L’/L is a separable extension.

Thus

G(K/L") c G, N G(K/L)

which proves that the two topologies are equivalent. Herbave used

the fact that a finite separable extensio.a$ simple. We gave already

seen the truth of this statementlifis infinite. In casel is finite it is

proved in the next section. ‘ In a similar manneKifk is galois and. is

a normal extension df in K, then onG(L/Kk) there are two topologies,

one the inherent one and the other the topology of the quagieup

G(K/K)/G(K/L). One can prove that the two topologies are equivalent.
We call an extensioiK/k abelianor solvableaccording as5(K/k)

is abelian or a solvable group. K/k is a galois extension ar@d(K/k)

its galois group with the Krull topology létl denote the closure of the

algebraic commutator subgroup &K/k). H is called the topological

commutator subgroup. Ilf is its fixed field, then sincél is normal,L/k

is a galois extension. Its galois group is isomorphicGidH which is

abelian. From the property of the commutator subgroup Jlivic that

L is themaximal abelian subfield df/k.

8 Finite fields

LetK be a finite field ofj elementsqg = p" wherep is the characteristic
of K. LetI be the prime field op elements. Then

(K:I)=n

K* the group of non-zero elementskfis an abelian group of order
g- 1. Fora € K* we have

% 1l=1
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1 being the unit element &. Theq - 1 elements oK* are roots of

xa-1 _ 1. Also
xat_1= H(X—a/).

aeK*

Leta € K*. Let dbe its order as an element of the finite grdtp
Thena® = 1. Consider the polynomiat® — 1. It has inK* at most_d
roots. Alsod/gq - 1. But

XA 1—1=0d-1)p T 94...)

Sincexd — 1 andx-1-9 + ... both have respectively at mostand
q- 1-droots inK* and they togetheq — 1 roots inK* it follows that
for every divisord of q— 1, x4 — 1 has exactly roots inK*. These roots
from a group of order dif it is cyclic then there is an element of order
dand there are exacthy(d) elements of order.dAlso

D, D =a-1

d/g-1

which proves that for every divisatof g—1 there are(d) > 1 elements 56
of order d Thus
1) The multiplicative group of a finite field is cyclic.

Letk be a finite ofg elements an& a finite extension ok of degree
n. ThenK hasq" elements. Sinc&* is cyclic, letp be a generator
of K*. Then

K = k(p)

which proves

2) Every finite extension of a finite field is simple.

For a finite field of characteristip, a — a* is an automorphism of
K. Sincek hasqg elements we have

al’=a

for everya € k.
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Now a — a¥ is an automorphism df/k which fixes elements .
Call this automorphisnar. o is determined uniquely by itsfect on
a generatop of K*. Consider the automorphisms

These are distinct. For,

olp = o' Hop) = o =
Hencep® = 1 <= ¢ = o( modq") ori = o (Sincei < n). ButK/k
being of degre@ cannot have more thanautomorphisms. We have

The galois group of a finite extension of a finite field is cyclic.
The generatow- of this cyclic group, defined by

ca=al

is called the~robenius automorphism. It is defined without any ref-
erence to a generator Kf.

Let L be an intermediary field dk/k. Then L : k) is a divisor of
(K : k) =n. Ifd = (L : k) thenL hasq® elements. Also sinck/k
has a cyclic galois group, there is one and only one subgrbap o
given order dHence

The number of intermediary fields &f/k is equal to the number of
divisors ofn.



Chapter 3

Algebraic function fields

1 F.K. Schmidt's theorem

Let K/k be an extension field angl, ..., X,41 anyn + 1 elements of 58
K. LetR=K[z,...,zZ,.1] be the ring of polynomials im + 1 variables
overk. Let % be the ideal irR of polynomialsf(z,..., z,.1) with the
property

f(Xl, ey Xn+l) = O

Then clearly? is a prime ideal oR. Also sinceR is a Noetheeian
ring, ¢ is finitely generated. Note tha = (o) if and only if xy,.. .,
Xn+1 are algebraically independent oder# is called theideal of the
setXq, ..., Xps1-

We shall consider the case where thexset. ., x,+1 has dimension
noverk, that is thatk(x, . . ., Xn 1) is of transcendence degre@verk.
We prove

Theorem 1. % is a principal ideal generated by an irreducible polyno-
mial.

Proof. Without loss in generality we may assume tRat. . ., X, are al-
gebraically independent ovek and that x,,1 is algebraic over
K(X1,...,Xn), SO that? = (0). O

49
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Consider the degrees of the polynomidlgs, ..., z1) (in #) in

the variablez,, ;. These degrees have a minimum greater than zero since

% # (0), andx,..., X, are algebraically independent overLet ¢ be
a polynomial inZ of smallest degree im,.1. Put

e=AzZ  +AZTT L E A

where Ag, Ay, ..., Ay are polynomials iy, ...z, with codficients in
k. We may assume thatAg, Ay, ...,A; have no common factor in
K[z,...,z]. Forif A(z,...,z) is a common factor ofy,..., A, then

o(z1,....Z01) = A, .. Z0) ea(2s - - -, Zna)

and so, sinceqy, .. ., X, are algebraically independent,

01(X1, .., Xn+1) = O

ande1 will serve our purpose. So we can takeo be a primitive poly-
nomial inz,,; overR =K[z,...,z)].
Clearly ¢ is irreducible inR'. For, if

o=z, 2Zu1) Rz, Zu1)

thengi(Xy, ..., Xns1) = 0 fori = 1 or 2, so that eitheg; or gy isin %
Both cannot have a term ;.1 with non zero cofficient. For then the
degrees iz, 1 of g; of go will both be less that af in z,,1 contradicting
the definition ofg. So oneg;, gy sayg; is independent of,, ;. But this
means thap is not a primitive polynomial.

Thus we have chosen # a polynomialy which os irreducible, of
the smallest degree iy, 1 and primitive inR'[z,,1].

Lety(z,...,z1) be any other polynomial i/ .

SinceF = k(z, ..., z,) is a field,F[z,,1] is a Euclidean ring so that
in F[z.+1] we have

w(zl’ ey Zn+1) = A(Zl’ e Zn+1) SD(Z]_, e Zn+1) + L(Zla R Zn+1)

where A and L are polynomials irg,,10ver F. Here eitherL = o or
degree ol in z,,; is less than that ap. If L # o, then we may multiply
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both sides of the above equation by a suitable polynomial,in ., z,
overk so that

B(Z:I.? ceey Zn)w = C(Zl’ sy Zn+l)90(zl, ey Zn+1) + Ll(Zl, sy Zn+1)

L1 having inz,,; the same degree ds Sincey andy are in%/, it
follows thatL; € . Because of degree &f, it follows that

Ly=L=0.
Thus

B(Z:I.? sy Zn)w = A(le sty Zn+1)90(zl, sy Zn+1)

Sincey is a primitive polynomial, it follows thap dividesy and our
theorem is proved.
We callp the irreducible polynomial of . .. X,;1 over k
Note that sincex,, ... X, are algebraically independent ouverthe
polynomial
¢1(zn11) = (X1, . . . » Xn, Znr1)

overk(xy, ..., Xy) is irreducible inz,, ;.

Letxy,..., Xy 1be of dimensiom overk andy the irreducible poly-
nomial of Xy, ..., X,+1 overk. Let ¢ be a polynomial ire, ..., 7,1 but
not in z.o, ..., zZn1, that is it does not involve,o, ..., zn1 I itS ex-
pression. Consider the field= k(xy, ..., X;1). becauseq, ..., X1 are
algebraically dependenp(X, ..., X+1) = 0), 61

dimgL <i.
Butk(Xs, ..., Xn1) = L(Xis2,. .., Xns1) SO that
dimg k(X, ..., Xnr1) <N —i.
Since dimensions are additive, we have
n=dimgL+dim_k(Xy,..., X)) <i+n—i=n.

Thus L has overk the dimensioni. Sinceg is a polynomial in
2,...,Z41 every one of these variables occurring, with non zero co-
efficients, we get the
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Corollary. If X3, ..., X1 be n+ 1 elements of Kk and have dimension
n, there exist among them-il elements, k n, say ¥, ..., Xi;1 (in some
order) such that kxs, . .. X11) has dimension i over k and every i of them
are algebraically independent.

Let K/k be a transcendental extension with a transcendenceBase
overk. ThenK/k(B) is algebraic. We calK/k an algebraic function
field if

(1) Bis afinite set
(2) K/k(B) is finite algebraic.

Let dimg K = n. There existxq,..., X, in K which form a tran-

scendence base &f/k. If K is an algebraic function field thag/k(xs,

.., Xn) is finite algebraic. HencK = K(Xg,...,Xm),m > n, is finitely
generated. This shows that algebraic function fields anatichd with
finitely generated extensions.

An algebraic function fieldK/k is said to beseparably generated
if there exists a transcendence basg,...,x, of K/k such that
K/k(x1,...,Xy) is a separable algebraic extension of finite degree.
X1,...,%nis then said to be separating baseClearly every purely tran-
scendental extension is separably generated. Alkdak characteristic
zero andK is an algebraic function field, it is separably generated. In
this case every transcendence base is a separating basés fidnlonger
true if k has characteristip # o.

For example, leK = k(x,y) be a function field of transcendence
degree one and let

X —yP =o.

Letk have characteristip # 2. Obviouslyx andy are both transcen-
dental ovek. But K/k(x) is a simple extension generatedyowhich is
a root of

2° — X2

overk(x)[Z] and sincek has characteristip, K/k(X) is purely insepara-
ble. On the other hank/k(y) is separable sincesatisfies ovek(y) the
polynomial

X2 —yP.
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Thusy is separating but not.

An algebraic function field which is not separably generasezhid
to beinseparably generatedThis means that for every bageof K/k.
K/k(B) is inseparably algebraic.

In algebraic geometry and in algebraic function theorys ibf im- 63
portance to know when an algebraic function field is sepgrgbher-
ated. An important theorem in this regard is theofdm 2 due.ko F
Schmidt. We shall first prove a

Lemma.Let k be a perfect field of characteristic # o and K =
K(X1,...,X+1) an extension field of dimension n. Then K is separably
generated.

Proof. Let ¢ be the irreducible polynomial ofy, ..., X,.1 and let it be
a polynomial inz;, ...,z,1 butinz,o,...,z1. Then

So(xlv---vzt"--9xi+1)

is irreducible ovek(x, ..., X1, X+1,..., Xi11) foreveryt, 1 <t <i+1.
At least for onet, ¢(z1,...,%,...,Z41) iS a separable polynomial in
overk(z,...,%_1,...,%y1). For, ifitis inseparable in everg, then

o(21,....2) €KZ, ..., 72 ]

and sincek is perfect, this will mean that(zi, . . ., z1) is the pthpower
of a polynomial ink[z, ..., z.1] which contradicts irreducibility of.
So, for somez, sayz;, we havep(zi, X, ..., Xi+1) is a separable poly-
nomial. Hencex; is separable ovek(xy, ..., X+1) and so overk(x,
..oy Xn1)- But Xo, ..., Xqe1 has dimensiom and our lemma is proved.
O

Corollary. Under the conditions of the lemma, a separating base of n
elements may be chosen from among X, Xn;1.

We are now ready to prove the theorenFdf.Schmidt 64

Theorem 2. Every algebraic function field K over a perfect field k is
separably generated.



65

54 3. Algebraic function fields

Proof. Obviously, the theorem is true i has characteristic zero. So
let k have characteristip # 0. LetK = Kk(xq,..., Xm) and letn be the
dimension ofK/k. Thenm > n. If m = n there is nothing to prove.
Letm = n+gq. If g = 1then lemma 1 proves the theorem. So let us
assume theorem proved fqr- 1 instead ofg > 1. We may assume,
without loss in generality thaty, . . ., X, is a transcendence basekyfk.
Consider the fieldd = k(Xa,..., Xn, Xnr1). It satisfies the conditions
of the lemma. Hence there existelements amongq, ..., Xa.1 Say
X1y« X1, X115 - - - Xnp2 Which from a separating base bfk. Thusx;

is separable ovek(Xa, ..., X_1, ..., Xn+1) and hence over

M = k(Xla ceey Xt—ls Xt+19 Xt+29 ey Xm)

M/k now satisfies the induction hypothesis and so is separahly ge
erated. Sinc&K/M is separable, it follows tha is separably gener-
ated. m]

We could prove even more if we assume as induction hypottiesis
fact that amonga, . . ., Xm there exists a separating base.

2 Derivations

Let R be a commutative ring with unit element & mappingD of R
into itself is said to be derivationof R if

(1) D(a+b) =Da+ Db
(2) D(ab) = aDb+ bDa

for a,b € R. It is said to be a derivationver a subringR’ if for every
ac R, Da=o. Itthen follows that fom € R andx € R

Dax = aDx

The setR, of a € Rwith Da = o is a subring oR and contains e
For,
De=De? =De e+e De=2De;
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soDe=o. If Da= 0, Db = o, then

D(a+b) =Da+Db=0
D(ab) = aDb+ bDa=0

ThusR, is a subring. We calR, thering of constants of the deriva-
tion D.
If Ris afield, therR, also is a field. For, ik € Ry andx # o, then

0=De=Dxx1!=Dxx?t+xDx!?

Thus
Dxl=0

so thatx ! € R,.
D is said to be anon-trivial derivation ofR if there is anx € Rwith
Dx # o. It follows from above that

Theorem 3. A prime field has no non-trivial derivations.

A Derivation D of Ris said to be aextensiorof a derivationD of a
subringR’ of Rif Da = Dafor a € R". We now prove the 66

Theorem 4. If K is the quotient field of an integrity domain R, then a
derivation D of R can be uniguely extended to K.

, . a
Proof. Every element in K can be expressed in the foren= b’ a,
b € R. If an extensiorD of D exists, then

Da = Da
Buta = bcso that
Da = Da = Dbc = bDc + cDb
Therefore

De = Da-cDb 3 bDa- aDb
B b B b2
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If cis expressed in the for%, a’, b’ € Rthenall = baand so

Dab’ + a.Db’ = Dbh.a@’ + bDd

or that
Da’ —cDly  Da-cDb

b’ b
which proves thaDc does not depend on the wayis expressed as
the ratio of two elements frorR. We have therefore only to prove the

. —~ . a
existence oD. In order to prove this, put far = b

— bDa-aDb
be=—p
we should verify that it is a derivation, is independent af thayc is

expressed as ratio of elementsRrand that it coincides witlb on R.
These are very simple. i

Let D41, D, be two deviations oR. DefineD = D1 + D, by Da =
Dia + Doafora e R Then it is easy to verify thdD is a derivation of
R. Furthermore ifa € R defineaD by

(aD)x = a.Dx

By this means, the derivations & from an R module, Suppose
Di,...,D; from a basis of the module of derivationskf
Then every derivatio of Ris of the form

D=ZaDi, a eR
i

Let R be an integrity domain anB, ..., Dy the unique extensions
of Dy, ..., D; respectively td, the quotient, field oR. ThenDs, ..., D,
are linearly independent ovét. For, if

Zliliizo, 1 €K
i
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then write 1 = % g, b € R. We get
i

Multiplying throughout byby, ..., b which is not zero, we get
(X ADi)t = o for everyt € R Therefore}, 4iD; = o which implies
|

thlat/li =o0o0ra =o.

Also, since every derivatioD of K is an extension of a derivation
of R, it follows that the derivations ok from anr-dimensional vector
space ovekK.

Let us now consider the case wh&e- K[xy, ..., Xy] is the ring of
polynomials inn variablesxy, . .., X,. Then mappings

oa .
D; : a—->—,i=1...,n
I _>(9Xi

are clearly derivations dR overk. They form a base of derivations o6s
Rwhich are trivial ork. For, if

> aDi=o  acR

i

then, sinceD;(x;) = ¢jj, we get
0= (ZaiDi)Xj =a,j=1...,n
i
Also, if D is any derivation oR which is trivial onk, then letDx; =
g. Put _
D=D- > aD.
i

Then 3
Dx;j = Dxj — (ZaiDi)xj =0
i

which shows that sincgy, . .., X, generater, D=o.
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SupposeD is any derivation ok and letD be an extension db to R.
Let Dx = . Let Dy be another extension & which has the property
DoXi=a,i=1,...,n.

ThenD — D, is a derivation oR which is trivial onk. But since

(D-Dg)x =0, i=1...,n
it follows thatD = D,. This gives us the

Theorem 5. The derivations of K= k(x, ..., X,), the field of rational
functions of n variables over k which are trivial on k from @i space
of dimension n over K. A basis of this space of derivationsviergby
the n partial derivations

0

Di = —,
| 6X|

1,...,n

Furthermore if D is any derivation of k, there exists only @xéension
D of D to K for which

Dx=a, i=1...,n
where a, ..., a, are any n quantities of K arbitrarily given.

We now consider derivations of algebraic function fields.

Let K = K(xq,...,Xm) be a finitely generated extension lof Put
T = K[Xs,...,X%m]. In order to determine all the derivations Kf it is
enough to determine the derivationsiosinceK is the quotient field of
T. Let D be a derivation ok; we wish to find extensiond of D to K.

Let Rdenote the ring of polynomialdz, ..., zy] in mindependent

variables. For any polynomial(x, ..., Xm) in T, denote by;()—;:i the

. . o . . of
polynomial obtained by substitutingy = x,i = 1,...,min = where

f=f(z,....zn)isiNR

If
F= Y a A
A
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aly, ..., Am €k, put

2= > (Day, ... dmXg* - X
A

Obviously fP is a polynomial inT. If D is an extension of the
derivationD, then clearly

— Mof —
Df = fP+ 3" ——Dx
i=1

foranyf € T. Also Dis determined uniquely by its values &n ..., Xn 70
which generatd . Now Dx; cannot be arbitrary elements 6f For, let
% be the ideal irR of the setxy, ..., Xm.

Then forf(z,...,zn) in %,

f(Xe,...,%Xm) = 0.

Therefore, sincéo = 0, theDx would have to satisfy the infinity
of equations

for everyf in &.
Conversely, supposs, ... Uy aremelements il satisfying

whereDx = u;. Then clearlyD is a derivation ofT and it coincides
with D onk. FurthermoreD does not depend on the wayis expressed
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as a polynomial iy, ..., Xm. For, ifo = a(Xg,..., Xm) = b(X, ..., Xm)
then, sincea— b € % have

oa ob
— b° —u-——u-):o
+ Z (é)Xi i % i
which proves our contention. Hence

Theorem 6. Let K = K(Xg,...,Xn) and D a derivation of k. Let/
be ideal in Kz, ...,z of the set X,...,Xn. Letuw,...,un be any
elements of K. There exists a derlvatllrand only one satisfying

5xi=ui,i=1,...,m

and extending the derivation D in k, if and only if, for everg

and then for every in K,

_ m
Dy = ¢° Za—go'
i=1

The infinite number of conditions above can be reduced to &fini
number in the following manner. Sin€e= K[z, ..., zy] is a hoetherian
ring, the ideal’’ has a finite sefy, ..., fs of generators so thdt € %
may be written

S
=Y Af,  AeR
i=1
Supposefy, ..., fs satisfy the above conditions, then since

fO(x) = Z AP, + Z fOA

of ofi OA:
% Z,: ‘6>5+Zf’ .
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we get
m

of
D —_— ; =
fP(X) + él X U = 0.
We may therefore replace the above by the finitely many ciomdit

fD+Zm:6fu oi=1...,s
i _]: I =4,...,
J.:laxJ

We now consider a few special cases. 72
Let K = k(x) be a simple extension &f Let D be a derivation ok.
We will study extension® of D into K.

(1) Firstletx be transcendental oveér The ideal ofx in k[Z] is zero.
This means that we can prescribe arbitrarily. Thus for every
u € K there exists one and only extensibrwith

Dx=u

(2) Let now x be algebraic ovek. Supposex is inseparable over
k. Let f(2 be the minimum polynomial ok in k[Z. Then f(2)
generates the ideal a@fin k[Z]. But x being inseparabld, (x) = o.
This means thab has to satisfy

f0 = o.

Also, D is uniquely fixed as soon as we assign a value Dx.
This can be done arbitrarily as can be easily seen. Thuséheste
an infinity of extension®.

(3) Finally, letX be separable. Thef(2), the irreducible polynomial
of x overk s such that
f'(x) # 0.

Sincef(2) generates we must have

fP(x) + f/(X)Dx = o,
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or thatDx is uniquely fixed byD.

= _ P
P

(*)

There is thus only one extensionBfto K and it is given by £).
In particular,K has no derivations, except the trivial one, oker
We shall now prove

Theorem 7. In order that a finitely generated extension ¥ k(xy,
.., Xn) be separably algebraic over k, it is necessary angicent that
K have no non-trivial derivations over k.

Proof. If K/k is algebraically separable, then sing€as finitely gener-
ated ovel, it follows thatK = k(x) for somex and the last of the con-
siderations above shows théthas no nontrivial derivations ov&r O

Suppose novK/k has no-trivial derivations. In case = 1, our
considerations above show thatk is separable. Let now > 1 and
assume that theorem is proved for 1 instead oh.

Put

K = K1(Xn) Ky = K(X1, ..., Xn-1).

Then x, is separably algebraic ovét;. For, if not, letx; be in-
separable oveK; or transcendental ovef;. In both cases the zero
derivation inK; can be extended into a non-trivial deri-vationkoton-
tradictions hypothesis ovét.

Thusx, is separable oveK;. This implies, sincéK has no deriva-
tions overk thatK;, and our theorem is proved.

Note that in the theorem above, the fact tkak is finitely generated
is essential. For instance, kfis an imperfect field antk = kP then
K/k is infinite. Also if a € k thena = bP for someb € K. If Dis a
derivation ofK, then

Da=DbP = pb*Db=0

This proves, in particular, that a perfect field of charasterp # o,
has only the trivial derivation.
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If we takeK to be the algebraic closure of the rational number filed
thenK has only the trivial derivation.

Let K = k(x,y) be an algebraic function field of one variable. Let us
assume thax is a separating variable ardX, Y) the irreducible poly-
nomial ofx, y overk. Then if D is a derivation oK overk,

op oy
—Dx+ —Dy=
ox X+ ay y=0

so that if we assume thgis separable oved(x), theng—(’; # oand hence

_
_0x
Dy = 3 Dx
ay

This shows that the ratiDy/Dx is independent ob.
Also, for any rational function(x, y) of x,y
oy oy

Dy = Z-Dx+ —-D
v 154 X+c’)y y

which gives,ifDx # o

0

Dy _ oy oy

Dx odx oOy\%
ay

which is a well known formula in elementary calculus.

We shall now obtain a generalisation of theofdm 7 to algelfuaic-
tion fields.

Let K = k(x,...,Xm) be an algebraic function field of dimension
n, so thato < n < m. Let fy,..., fs be a system of generators of thes
ideal % of polynomialsf(z,...,Zy) in K[X1, ..., Xym] which vanish for

0 . .
X1,...,Xm. Let % for f in K[z, ..., zy] have the same meaning as
i

before.
Denote byM the matrix

of .
M=|— 1,...
(am) =

Il
3
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ji=1...,s

wherei is the row index and the column index. We denote bythe
rank of the matrixM which is a matrix oveK.

Let Vk(D) denote the vector space of derivationskofwhich are
trivial on k. This is a vector space ovir. Denote byl the dimension of
Vk (D) overK. We then have

Theorem 8.

Proof. For any integemp, denote by, the vector space ové¢ of di-
mensionp, generated by p-tuplegy,...,B8p). 5 € K. m|

Let o- denote the mapping
oD = (Dxq,...,DXm)

of V(D) into Wy, This is clearly a homomorphism &f(D) into W,.
The kernel of the homomorphism is the sefor whichDx, = 0;i =
1,...,m. ButsinceK is generated by, ..., Xm, this implies thaD = o.
ThusVy(D) is isomorphic to the subspace\&, formed the vectors

Consider now the vector spad®s and letr be the mapping
(r(ag,...,am) = (a1,...,am)M of Wy, into Ws. Put

O
Bi = ai—:i=1,....s
: Z Jan

=1
so that
(ﬂl,...,ﬂs) = (Ofl,,a’m)M

The rank of the mapping is clearlyy equal to the rank of the
matrix M. It is the dimension of the image hyof W, into Ws. The
kernel of the mapping is the set of ¢4, . . ., am)with
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which, by theorerfll6 is clearly isomorphic to the subspad&pformed
by vectors DXy, ...,DXn), D € V(D). This, by previous considera-
tions, proves the theorem.

We shall now prove the

Theorem 9. With the same notations as before, there ekislements,
say X,..., X of dimension n over k such thatkK(x,, ..., X1) is a sepa-
rably algebraic extension.

Proof. Since the matrixM has rankt, there exists a submatrix &l of
t rows and which is non-singular. Choose notation in such g tiray

this matrix is
((9fj) i=m-t+1,....,m
“\ox )’ j=s-t+1...,s

Notethatt < Min (sm). Let L =Kk(xg,...,%). Then
K = L(X14p,...,Xm). Let D be a derivation oK overL. Then since
fj(X¢, ..., Xm) = 0, we must have, by theorelth 6

m

0
2ox

i=1

But sinceD is zero onL,
Dx =0, i=1,...,I.
Thus
of ol
Z DxI =0.
i= I+1
This means that
DX41 0
Pl & |=|:
DXm o]

But since|P| # o, it follows thatDx.1 = 0...,Dxy = 0 which
shows thaD = o

1



78

66 3. Algebraic function fields

But K = L(X41,...,Xm) is finitely generated ovel. Using theo-
rem[d, it follows thatK/L is algebraic and separable. We get inciden-
tally

n<1

We now prove the important m]

Theorem 10. Let K = Kk(Xg,...,Xn) be of dimension n. Then K is
separably generated over k, if and onhdifn V(D) = n. In that case
there exists, among; X . ., Xm, @ separating base of n elements.

Proof. If V(D) has dimensiom then theorerll9 shows that there exist
elementsx, ..., X, amongXa, . .., Xm SUChK/K(X4, ..., X,) is separably
algebraic. m|

Suppose now thakK/k is separably generated. Lwt,...,y, be
a separating base so thatk(ys,...,yn) is separably algebraick(y;,
.., Yn) hasnlinearly independent derivatiori, . . ., D, overk defined

by
o, ifi#]
D:v: =
Vi {1, if i =

Since K/k(y1,...,Yn) is separably algebraic and finite, it follows

that each oDg,..., Dy has a unique extensiddy, ..., D, to K. Now
D4,..., Dy are linearly independent ové&. For, if

Y aDi=o0a ek,
i

then
Za;li(yj) =oforall j.
i

Hencea; = ofor j = 1,...,n. Let nowD be a derivation oK/k and

let Dy, = &. Put
D= D—ZaiDi.
i
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_ Then 5yi = ofor alli. Therefore sinc&/k(y1,...,Yn) is separable,
D = 0.This proves that

dimVg(D) = n.

and our theorem is completely established.
Let K = k(xq, ..., Xn,Y) Wherek is of characteristiqp # o0 andk is
an imperfect field. Ley be algebraic ovek and be a root of

2’ -t
t € k. ThenK/k is an inseparably generated extension and
dimVg(D)=n+1

wheren is the dimension oK/k.

3 Rational function fields
79

Let us now consider the field = k(x) of rat}onal functions of one
variable. Lety be any element dk. Hencey = (—)):) wheref andg are

polynomials inx overk. Also K is the quotient field of the ring = k[ x]
of polynomials inx.

Assume that {(x), g(x)) = 1, that is that they have no factor in
common. Len be defined by

n = max(degf (x), degg(x)).

If n = o, then clearlyf € k, g € kand soy € k. Let us assume that
n # 0so that at least at least onefoandg is a non-constant polynomial.
nis called the degree of

Let F = k(y) be the field generated ovkbyy.

Thenx satisfies oveF the polynomial

¢(@ = (9 -yd2.
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¢©(2) is not a constant polynomial ovkfy). For, let

1
f@=> az

i=0

m a;,bi ek
9@ = ) b?
i=0

Thenn = max(1 m). The codicient of 2" in ¢(2) is

ai if 1>m
a—-yb if 1=m
—ybm if 1<m

In every case, it follows that singds not ink, ¢(2) is a non-constant
polynomial. Sincep(2) has degrea in z, it follows that

(K:F)<n.

We assert thap(2) is irreducible over. For, if it is reducible over
F[Z, then sinceF = Kk(y), it will be reducible ovekly, 7. So lety(2) =
w1y, 2) va(y, 2) in K[y, Z. Sincey(2) is linear iny it follows that one of
Y101 ¢ has to be independent wf But then since{(2), 9(2)) = 1, ¢(2)
is a primitive polynomial iny overk[Z]. Thereforep(2) is irreducible.
This means that

(K:F)=n

It proves, in particular that is transcendental ovér Hence
Theorem 11. k is algebraically closed in(k).

We can extend it to the case whefe= k(xy,...,Xn) is a purely
transcendental extension of dimension/fe use induction on.nTheo-
rem[I1 proves that = 1, kis algebraically closed ik(x). Let, forn—1
instead oh, instead of, it be proved thak is algebraically closed in the
purely transcendental extensi&(xy,..., X, 1). LetK = k(Xg,..., Xn)
be of dimension n
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Let zin K be algebraic ovek. Thenz € K = Ki(X), K1 =
K(X1,...,%1). Therefore by theorefl1 sin@as algebraic oveKi,
z € K;. By induction hypothesis € k.

Thus

Corollary. If K = k(x1, ..., X)) has dimension n over k, then k is alge-
braically closed in K

It is easy to extend this to the case whKris a purely transcendental
extension of any transcendence degree.

SinceK = Kk(x), we call x ageneratorof K overk. Lety also be a 81
generator so thd = k(y). Then

(k(x) 1 k(y)) =1
which shows by our considerations leading to thedrein 11 that
_ax)
Y= by
wherea(x) and b(x) are coprime and have at most the degree %.in

Thus
_ AX+pu

VX+p
whereq, u, v, p are ink and sincey is transcendental ovég

Ap—puv £ 0.

An automorphism oK which is identity onk, is uniquely fixed by
its effect onx. If it takes x into y thenx andy are related as above. If
x andy are related as above, then the mapping which assigrghe
elementy is an automorphism.

If we consider the group of two rowed non-singular matrieeih
elements irk, then each matrix gives rise to an automorphisniKgi.
Obviously two matricesr andr give rise to the same automorphism if
and only ifo- = At for someAd # oin k. Hence

Theorem 12. The group of automorphisms of K k(x) over K is iso-

morphic to the factor group of the group of two rowed matriogsr k

modulo the group of matricetE, 1 # 0 € k and E is the unit matrix of
order 2.
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We shall call this groupP,.

From theoreni11, it follows that iE is an intermediary field be-
tweenK andk thenL is transcendental ovér But much more is true as
in shown by the following theorem of Luroth.

Theorem 13. If K = k(x) is a simple transcendental extension of k and
kc L cK,L=K(w) for somew € K.

Proof. We shall assume that # k so thatL is transcendental ovex
and contains an elementiranscendental ovérandy by considerations
leading to theoredn11, we hat@k(t) is finite algebraic. Sinck > k(t),
it follows that

(K . L) < o0

Let x satisfy overl the irreducible polynomial
f@Q=2"+a2" 1+ - +a,

whereay,...,a, € Landn = (K : L). At least oneg is not ink sincex
is transcendental ovér Thea/s are rational functions of. So we may
write

bo(X)f(2 = f(x,2) = bo(X)Z" + bi(X)Z™t + - + bn(X) where
bo(X), . .., bn(X) are polynomials irnx and f(x, 2) is a primitive polyno-
mial in z over k[x]. Let m be the maximum of the degrees laf(x),
...bn(X). Letg be not ink. Then

_b(¥
bo(X)
so that degreg; < m. Sinceg; € L andL > k(g), it follows that

n<m

bo(X)”
Letw = h(x)/g(x) where f(x), g(x)) = 1. ThenL > k(w).
Also x satisfies ovek(w) the polynomial

h(2) - wg(2)

Let us writew instead ofg;. Thenw =
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so that sincd (2) is irreducible, it follows thatf (2) dividesh(z) — wg(2),
which is a polynomial of degree min z Let us therefore write

F(x.2) ¢(x 2)c1(x)

"A WA= B0 9
whereg(X, 2) is a primitive polynomial inz overk[x]. We therefore get
on substituting thev = @
9(¥)
g(x)c1(x)

h(z)g(x) - 9(h(¥) = f(x 2e(x 2).

bo(X)Co(X)*

The left hand side being a polynomial inandz, f and ¢ being
primitive polynomials inz overk[x], it follows that

h(2)g(x) - 9(h(¥) = F(x, Dp1(x.2)

wheregi(x,2) € k[x,Z. We now compare degrees iiandz on both
sides of the above identity. On the right hand side the ddgreés > m
since one oby(X), ..., by (X) has degreen. Therefore the left side has
degree inx > m. But the degree irx equals degree o < m. Thus
degree ofv = m. Since the left side is symmetrical Zrmnd x,it follows
that it has degremin z. Thereforep; has to be independent &f

Henceh(2) — wg(2) = f(2¢(2), ¢(2) being independent of. This
can happen only ip(2) is a constant. This proves that

n=m.
Now (K : k(w)) = m= (K : L) andL > k(w). Thus 84
L = k(w)

and our theorem is proved.

The analogue of Luroth’s theorem fidr= k(x, . .., X,) is not known
forn> 1.

Let K = k(X) and letG be a finite granite group of automorphism of
K/k. If L is the fixed field ofG, thenK/L is a finite extension of degree
equal to order of5. By Luroth’s theoreni = k(y) for somey. Thus

degreey = order ofG.
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For instance, le® be the finite group of automorphismskf= k(x)
defined by

1 1 1 X
X>XX—>1-XX—>—-X>1-—,Xx— , X —
X X 1-x x—-1

This is a group of order 6 and the fixed field will k€/) wherek(y)
consists of all rational functionf(x) of x with

(0= 11 = 1) = 11~ 3) = f(2=) = F().

We have only to find a rational function of degree 6 which §iats
the above conditions. The function

(% - x+1)°
X2(x — 1)?

f(X) =

satisfies the above conditions andysse f(X).

Theorem 14. If G is any finite subgroup of Fof linear transformations

ax+b
% —
cx+d
a, b, ¢, d € k, ad— bc # O then there exists a rational functior(¥) such
that every functiorp(Xx) which is invariant under G is a rational function
of f(x). f(X) is uniquely determined up to a linear transformation

AF(X) + u
V(X)) +p
Au,vpek, Ap—puv+0.

We now consider the case of a rational function figld= Kk(x,
... Xn) of nvariables. LeiG be a finite group of automorphisms Kf
which are trivial onk and letL be the fixed field ofG. Clearly L has
transcendence degreeverk. It is not known except in simple cases,
whetherL is a purely transcendental extensionkodr not. We shall,
however, consider the the case whe&rés the symmetric group on
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symbols. SdG ~ S;,. Let G operate orK in the following manner. -
is an element 08,, theno is a permutation

( 1,2.3,...,n )
g = .
01,02,03,...,0n
We defines- onK by

oXi =X%Xs: 1,...,n

We then obtain a faithful representation®f on K and we denote
this group again bys,. An element ofk which is fixed undelS,, and
which therefore is irL is called asymmetric functiomf xq,.. ., X,. Ob-
viously

(K:L)=n!

and the galois group df/L is Sp. 86
Consider the polynomial

f(2 =@2-%)...(2— Xn).

Since every permutation [, leavesf (2) fixed, it follows thatf(2)
L[Z. Let us write

f=2"-92"1+ 72—+ (D)"s,

where
S= > Xy
1<ti<tr<...<ti<n
The quantitiess,, ..., s, are called theelementary symmetric func-
tionsof xg,...X,. PutLy = K(s1,...,S,). ThenL; c L. Also f(2) is a
polynomial inL1{z} and is irreducible over itf (2) is separable anH is
the splitting field off(2) overL;. ThusK/L; is galois. Sincef(2) is of
degreen
(K:Ly)<n!

SincelL o L;, it follows thatL = L; and
L=K(ss,...,S).

We have therefore the
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Theorem 15. Every rational symmetric function of X. ., X, is a ratio-
nal function over k of the elementary symmetric functions. s, s,.

Incidentally sincel./k has dimensiom, the elementary symmetric
functionssy, ..., s, are algebraically independent over



Chapter 4

Norm and Trace

1 Norm and trace
87

Let K/k be a finite extension and lefy, . . ., w, be a base oK/k so that
everyw € K may be written

w= Z qiwi
i
g € k. By means of the regular representation
w— A,
whereA,, = (g;j) is ann- rowed square matrix with

wwi:Zajwj i=1...,n
j

the fieldK becomes isomorphic to the subalgebra formed\pyn the
algebramp(K) of n rowed matrices ovelt. We denote byNk kw, Sk/kw
thenormandtracerespectively ofv € K overk and they are defined by

Nk /kw = |Ayl
Sk/kw = traceA,,.

75
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Defined as such, it follows that

Nk/kww' = Ngjkw . Nk ko'’
SK/k(CU + cu’) = SK/ka) + SK/kCU,

for w, v’ € K. Obviouslyw — Nk w is @ homomorphism oK* into
K* and similarlyw — Sk kw is @ homomorphism oK*, the additive
group, intok™*.

Letw],...,wy be any other basis &f/k. Then

w w1
=P
’

wn wn

‘I—"

whereP is a nhon-singular matrix im,(k). Since

w1 w1
wWn wWn
it follows that
’ ’
W, Wy
w|:|=PAP?
wy Wy

which shows that by means of the new basis the matrix assdciaty
is B, where
B, =PAP-1

and then we have

| By | = Al
TraceB, = TraceA,,.

This shows thalNk kw andSk kw are invariantly defined and do not
depend on a basis #f/k.
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We write
fiik(X) =| XE— A, |
and call it thecharacteristic polynomiabf w. Obviously fx(0) =
(-1)" | A, | so that
Nk/kw = (=1)" fk/k(0) = (-1)"an. 1)
We also see easily that
SK/ka) = - (2)
where
fK/k(X) = Xn + alx”‘l +---+ay

a,....an €k

Letk c L c K be a tower of finite extensions. LeK(: L) = m
and letQq,...,Qny be a basis oK/L. Similarly let L : k) = nand let 89
w1,...,wn be abase ob/k. Then 1Q1, ..., wnQm) is a base oK/k.
Letw € L and consider the matrix @f by the regular representation of
K/k in terms of the basaJ;1Qy, ..., wnQm). Call it A,.

Then it is trivial to see that

a matrix of mn rows and columns. Therefore

Nicjkw =| Ay | (N k)
Skkw = (K L)Sk/kw

Also the characteristic polynomials afas belonging td. and toK
respectively ardy (x) and fx «(x) and they are related by

fi(®) = (FL() D, 3

In particular letL = k(w). Thenfy(X) is the minimum polynomial
of w. We, therefore, have the
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Theorem 1. If K/k is a finite extension an@d € K, ¢(X) its minimum
polynomial over k and (i) its characteristic polynomial, then

f(%) = (¢()’
where r= (K : k(w)).

From our formulae above, it follows that we can compute themo
and trace ofv in K from a knowledge of its minimum polynomial.

Let now K/k be a finite extension and an element oK. Let
[K : k(w)] = m, [k(w) : K] = n’ be the degrees of separability of
K overk(w) andk(w) overk respectively. TherK/k hasm'n” distinct
k-isomorphisms in an algebraic closuieof k. Let {oy;}, |=3 1, be
these isomorphisms and let notation be so chosemwthat ., oim, have
the same the samdfect onk(w). Then we may take11,0712,...,0v1
as a complete system of distinct isomorphismg(af)/k in Q.

By our considerations abovi,),k(X) is the polynomial ofw as
well as the characteristic polynomial af in k(w)/k. If fx(X) is the
characteristic polynomial ab in k, then

fie k() = (Figuyk () KD (4)

Now, because of the properties of the isomorphismjs

n

ﬁ ﬁ(x - Ojjw) = H(X — )" 5)

i=1 j=1 i=1

But since fy)/k(X) is the minimum polynomial oy, we have

fiw)k(X) = {H(X - O'ilw)}

i=1

{k(w):k}

where{k(w) : k}, as usual, denotes the degree of inseparability(©j
overk. Using [3) we get

{kk} "
{ﬂ(x— m,-(w)} = {H(x - crilw)}
i i=1

m’{K:k}
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But{K : k} = {K: k(w)} - {k(w) : k} so that

(KK}
{l_[(x - U'ijw)} = {fiq ()
i

which proves that 91

KK
i) = {g«x _ crw)} 6)

whereo runs through all the distinct isomorphismskg®) in Q. Using

@) and 2) we get
{K:k}
Nk/kw = {]—[ w(r} (7)

w? is a conjugate ofy. Similarly

Skkw = {K 1k} Y . (8)

If K/kis inseparable, thefK : k} = p',t > 1 so that for everw € K
SK/ka) =0.

On the other hand, suppos$€Kk is finite and separable. Let;,
...,oq be all the distinct isomorphisms Kf/k in Q, an algebraic closure
of K. Thenn = (K : k) and sincery, ..., oy are independeri-linear
functions ofK/k in Q, it follows that

o=01++0p

is a non - trivialk—linear function ofK/k in Q. Therefore there exists a
w € K such thatrw # 0. But by formulal(B),

ow=wt+ ...+ " = Skiw

so that we have the
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Theorem 2. A finite extension Kk is separable, if and only if there exist
in K an element whose trace over k in not zero.

In casek has characteristic zero, kihas characteristipf n= (K : 92
k), the unit element 1 ik has tracet o. In order to obtain an elemeat
in K with Sk/kw # 0, in every case we proceed thus:

Let K/k be separable and = k(e) for an elementr. Let¢(X) be its
irreducible polynomial ovek and

e(¥) = (x=aa)--- (X = an).

It follows then that

xn-1 |

o) Lyl x—a

Comparing cofficients ofx"* on both sides we get
n-1

a B
2@y L

a,n—l
If we putw =

¢'(a)

and observe that'(a) € K, we get

SK/Ka) =1

Using formula [(B), it follows that ik c L c K is a tower of finite
extensions and € K, then

Nk/kw = Nik(Nk/Lw)
Sk/kw = S k(Sk/Lw)

We now give a simple application of formuld (7) to finite fields
Letk be afinite field ofy = p? elements so thaiis the characteristic
of k. Let K be a finite extension df so that K : k) = n. ThenK has
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g" elements. The galois group Kf/k is cyclic of order n. Letr be the
Frobenius automorphism. Then fore K,

W’ =Y.

The norm ofw is

SinceK* hasq" - 1 elements,
' 1=1

for all @ € K*. SinceK* is a cyclic group, the number of elementsii
with
q' -1

a/q_l =1

is preciselyq” — 1/ — 1, sinceq — 1 dividesq" — 1.
Now w — Nkjkw is a homomorphism oK* into k* and the kernel
of the homomaorphism is the set ofin K* with
q'-1
1= NK/kawq_l.

By the first homomorphism theorem we have, sikithas onlyg—1
elements, the

Theorem 3. If K/k is finite and k is a finite field, then every non-zero
element of k is the norm of exac{l{* : k*) elements of K.

It is clear that this theorem is not in general trud i an infinite
field.
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2 Discriminant

Let K/k be a finite extension and, . .., wn a basis oK/k. Supposer 94
is ak-linear map oK into k, that is

o(w) ek
oclw+ ) =cw+ oo
o) = A5(w)

wherew, w’ € K, 1 € K. Let M? denote the matrix
M7 = (o (wiw]))

of n rows and columns. We denote By ko (w1, ..., wn) its determi-
nant and call it ther- discriminant of the basis,...,wn of K/k. If
Wy, .., 0p is another basis, then

w] w1
=P

wh wn

whereP is ann rowed non-singular matrix with elementskn
If P=(pij)then
W =) pij wj
j

so that
r(whwp) = ) PaiPbjo(wiw))
i,

which proves that
Dﬁ/k(wi’ AR a)l/’]) = |P|2D?/k(0)1, ey U_)n).

ThereforeD‘}g/k = 0ifitis zero for some basis.
We now prove
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Theorem 4. If wy, ..., wn is a basis of Kk ando a k-linear map of K
into k, then
D‘é/k(wl, ...,on) =0

if and only ifo is the zero linear mapping.

Proof. If o is the zero linear map, that is, one that assigns to every

elementw in K, the zero element, thel'r)g/K = 0. Now let D?/k =0.

This means that the matriM“ with elements irk has determinant zero.
Therefore there existy, . . ., ay in k, not all zero, such that

al 0

This means that

n

ZO‘(win’)aj =0; 1=1,...,n
j=1

If we putz =} ajwj. then we have
j

o(wi)=0,i=1,...,n
O

Let w be any element if. Sinceay,...,a, are not all zeroz # 0
and so put
% =bjwi + - + brwn, b € k.

Theno(w) = ‘T(g . z) = Y bio(wi2) = o. This proves thair is the
|

trivial map.
The mappingv — Sk kw is also ak-linear map ofK into k. For a
basiswsy, ..., wn of K/k we call

Di/k(@i, . .. wn) = [(Sk/k (wiw)))|

thediscriminant of the basie1, ... wn. Using theorerll2 and theordih 4,
we get
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Theorem 5. Discriminant of a base of K is not zero if and only if Kk
is separable.

96 Let K/k be finite separable. Let,..., oy be the distinck-isomor-
phisms ofK overkin Q. Then

Skkw = Z w7,
i

Therefore
g1 g2 0n 2
Wi, WS, ..., Wy
Dkjk(wi, ..., wn) = : . 9)
01 On
L

SinceK/k is finite separableK = k(w) for somew. Also 1, w, w?,
..,w" 1 form a base oK/k and we have

DL w,...,o" 1) =

n—l)O']_
2

Also, D(L, w, ...,w"1)/D(w1,...,wy) is the square of an element
of k. The determinant

n—l)a'n

is the called Van-der-Monde determinant. We &(l, w, ...,w" ) is
thediscriminantof w and denote it bYDk k(w).

Let f(X) be the minimum polynomial ofv. Then f(x) = (X —
w’?)...(X—w"). Sincef’(w) # 0, we have

f'(w) = (W — W) (W — W?)..... (W7 — ™)

and is an element &f. We call it thedifferentof w and denote itlk /k(w).
Also the Vander - monde determinant shows that
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Di/k(w) = (=1)"™ 12Ny e (djkw)

SupposeK/k is a finite galois extension. Lets, ..., o be the dis-
tinct automorphisms dk/k. We shall now prove

Theorem 6. If k contains sgficiently many elements, then there exists
in K an elementv such thatw??, ..., w’" form a basis of K over k.

Proof. It w € K such that
D(w’t,...,w"") #0
thenw??, ..., w"" form a base oK/k. For,if

Zaaaf’i =0, ai,...,aneck
i

not all zero, then since, ..., o, form a group

Zaiaf’if’i =0, j=1,...,n
i

Therefore from the expressidd (9) Dk k(w?, ..., w’™), it follows

that
a (0]

(Skk(@™ W) | =
a,) o

or thatD(w?, ..., w"") = owhich is a contradiction. We have therefore
to find anw with this property. Put

W =X e+ Xewn's =12,
wherexy, ..., X, are indeterminates andh, . .., wn is abasis oK/k O
Then

SK/k(w(ri w(rj) = W1 w(rlo'j’ T4 NIy

= Z Sk/k(wa' ng)XaXb.
ab
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Then Dk k(w?, ..., w") defined as the determinant of the matriss
(Sk k(w7 w?)) is a polynomial inxy, . .., X, with cosfficients ink.

In order to prove thaDg k(w?,...,w") is non-zero polynomial,
notice that by definition,

o1 o1 01 o1
w w{t, wyt, , wpt) (X
) on on on ’
wn U_)l . 0)2 s ...5 Wn Xn

so that ifw’* = 1 andw” = ofori > 1, thenxy,..., X, are not all
zero and for this set of values @&, ..., x5, the polynomialDg (w”?,
...,w’") has a value: o, as can be see from the fact that

Di/k(@, .., =i

Therefore ifk has stficiently many elements, there exist valuekin
of Xy, ..., X, not all zero, such thddk (w2, ..., w"") # 0.

This proves the theorem

In particular, ifk is an infinite field, there exists a basekfk con-
sisting of an element and its conjugates. Such a base is®did &
normal base

The theorem is also true kfis a finite field.
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Composite extensions

1 Kronecker product of Vector spaces

Let V; andV, be two vector spaces over a fididandV; x Vs, their
cartesian product. NV is any vector space ovégr a bilinear function
f(x,y) onV1 x Vs is, by definition, a function oiV; x V, into W such
that for everyx € Vi the mappingly : y — f(xy) is a linear function
onV; into W and for everyy € V, the functionuy : x — f(x,y) is a
linear function orv; to W.

A Vector spacel overk is said to be &ronecker producbr tensor
product ofV; andV, overk, if there exists a bilinear functiahionVyxV,
into T such that

1) T is generated by(V1 x V5)
2) if V3 is any vector space ovér then for every bilinear functiop on

V1 %XV, into V3 there exists a linear functianon T into V3 such that
o6 = .

This is shown by the commutative diagram

V]_><V2 d
S

T

V3

We shall now prove the

87

99
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Theorem 1. For any two vector spaces;\and \, over k there exists
one and upto k-isomorphism only one Kronecker product Ticdnd
V, over k.

Proof. The uniqueness is easy to establish. ForTleand T, be two
vector spaces satisfying the conditions 1) and 2). Thebe generated
by 6:(V1 x Vo) and T, by 6»(V1 X V). Leto be the linear map of;
into T, such that-- 6, = 6, andr the linear map off, into T, such that
76, = 01. Sinced (V1 x Vo) generate§, we see that - o is identity
onT;. Similarly o - 7 is identity onT,. Thuso andr are isomorphisms
onto. i

We now prove the existence of the spdce
Let V be the vector space formed by finite linear combinations

Z axy(%,Y)

ayy € kand ,y) € V1 xVa. Every bilinear functionf onVy xV, into V3
can be extended into a linear functiérof V into V3 by the prescription

fz Z axy(X, y)) = Z axyf(x.y)

Let W be the subspace &f generated by elements of the type

(x+xhy) = (xy) - (x4y)
(xy+y) - (xy) - (xy"
(axy) —a(x.y)

(%, by) = b(x, y)

wherex, xt € Vi; y, y* € Vp anda, b € k. W is independent o¥/s.
Also if f is a bilinear function oV, x Vs, its extensionf onV vanishes
on W. Furthermore iff is any linear function o/ vanishing onWw,
its restriction toV1 x Vs is a bilinear function. It is then clear that the
space of bilinear functions ovy x V, is isomorphic to the space of linear
functions onV which vanish orW. If o is any linear function ov/W
into V3 and @ the natural homomorphism & on V/W theno - 6 is a
linear function oV vanishing orW. Also o — o - @ is an isomorphism
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of the space of linear functions YW into V3 on the space of linear
functions onV vanishing on. @ s clearly a bilinear function ok; xV,
into T = V/W and furthermore, by definition &f, V/W is generated by
0(V1 x V). ThusT is the required space.

By takingk itself as a vector space ovierwe have

Theorem 2. The space of bilinear functions on ¥V, into k is isomor-
phic to the dual of the Kronecker product T.

We denote by:1® V- the kronecker product space. When there is
no doubt about the field over which the kronecker productkenave
will simply write V,®Vo.

If T = Vi®V2 we denote byx®y the element inT which corre-
sponds to X, y) by the bilinear functiord on Vi x V, into T. Since
0(V1 x V) generated, every element of is of the form

Dlay®y) ayek

Clearly
X®0 = 0¥y = 0X0
(x+xH®y = xRy + X'®y
XR(Y +Y') = X®Y + xRy
axRy = a(x®y)
X® by = b(x®y)
with obvious notations. 102
From our considerations it follows that in order to definerepédr
function onVi®V; it is enough to define it on elements of the type
X®y. Also for every such linear function, there is a bilineardtion on
Vl X V2.
It is easy to see that the mappirR®y — yRx of V1@V, to Vo®V1
is an isomorphism onto.
Suppose now that; andV; are duals oV, andV; respectively over
k. If o € V] andt € V; and we define forx, y) € Vi x V; the function

o.1(X,y) = oX.1Y,

theno.7 is a bilinear function oy, x V» into k. We shall now prove the
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Theorem 3. If {X,} is a base of Yover k and{ys} a base of Y over Kk,
then{x,®y;} is a base of Y®V- over k.

Proof. We first prove thatx,®ys} are linearly independent ovir For
all 3 a,s(%,®yp) = o for a,z € k, a,s = o for all but a finite number of
a, 5. By the method of constructing the tensor product, it fobavat
2 aup(Xe» Yp) is an element ofV. Leto andr be elements of; andV;
defined respectively by

ocX)=1 ifa=vy
=0 otherwise

) =1 if B=¢
=0 otherwise

O

Theno - 7 is a bilinear function orV/; x Vo and hence vanishes on
W. Thus

71( ) aup(x®Yp)) = 0.

But the left side equala,s. Thus all the cofficientsa,z vanish.
Next any element of/;®V- is a linear combination of elements of
the typex®y, x € V1, y € Vo. But thenx = 3 a, %, andy = ', bgys so

that x®@y = (3 a)®( > beys)

which equals}; a,b(x,®ys). Our theorem is proved.
We have incidentally the

Corollary. If V1 and s are finite dimensional over k then
dimVi®V, = dimV; - dim V.

Also since the dual 0¥} is isomorphic in a natural manner with
when dimV is finite, we get
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Corollary. If V; and s are finite dimensional over k therm® V- is
isomorphic to the dual of the space of bilinear functions @xV- into
K.

Let now A; and A, be two associative algebras over a fikldWe
can form the Kronecker produét = A;®A> of the vector spaces;
and A, overk. We shall now introduce a multiplication in#®so as to
make it into an associative algebra.

In order to do this, observe that the multiplication defined to be 104
a bilinear function oA x Ainto A. SinceA is generated by elements of
the typex®y, it is enough to define this bilinear function on elements of
the type ¢ z%) in Ax Awherez = x®y andz = x!®y*. Put

fzZ) =z 7' = x- X'®y - y-.

Now since & Yy) — xxX'®yy" is a bilinear function o x A, into
A, by our previous consideratioas— z-z* is a linear function o into
A. Similarly 8 — z- Z} is a linear function orA. This proves thaf is
bilinear and that the multiplication so defined distribuaeslition. That
the multiplication is associative is trivial to see.

A'is called theKronecker product algebra

We obtain some very simple consequences from the definition.

a) If e; ande, are respectively the unit elements of the algel#as
andA; thene;®e; is the unit element oA RA,.

For, sinceA = A1®A; is generated by elemenk®)y, it is enough
to verify (x®y)(e1®e) = (e1®e)(X®yY). But this is trivial.

B) If Ay hasxy,...,Xn as a base ovec and A, hasyy,...,y, as a
base ovek then ®y;) is a base oA;®A; overk. Furthermore if the
multiplication tables for the bases are

t
xx; = > &%
t

vy = > by

t/
then 105
(Xp®Yg) (% ®ys) = > Al bl (i ®y,.)
Au
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v) If A; and A, have unit elements; ande, respectively then the
mappings

X = XRXe»
y — ey

are isomorphisms of\; and A, into A. Thus A contains subalgebras
isomorphic toA; andA;.

An important special case is the one where one of the algébeas
field. LetAbe an algebra ovérandK an extension field df. Let Ahave
unit elemente; andK the unit elemeng,. Form the Kronecker product
A®K overk. ThenA®K contains subalgebrals andK; isomorphic to
A andK respectively. For any®t in AQK we have

XRt = xBe.e1Rt = e Rt.XxVe;

so thatA; andK; commute. Also every element 8f%K is of the form
2. au8(%.Rtg) where{x, } is a base ofA overk and{ts} a base oK over
k. But this expression can be written

DD ap(er®tp) ) (xe®e).
B

a

This shows thaA®K is an algebra oveK; with the basgx,®ey}.
If we identify A; with A andK; with K thenA®K can be considered as
an algebra ovekK, a basis ofA overk serving as a base &®K over
K. A®K is then called thalgebra got from A by extending the ground
field k to K We shall denote it byAk.

It is clear thatAk is commutative if and only iA is a commutative
algebra.

Note Even ifAis a field overk, Ax neednotbe a field oveK.

Let I' be the rational number field arftb = I'(Vd) the quadratic
field overI'. LetI” be the real number field and consider the Kronecker
productA = TQI overI'. Lete, & be a basis of ;, overI" with the
multiplication table,

€=e, =g =6, &=dea.
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The elements df, are of the formae; + bey, a, binI'. The elements
of A are of the formae; + be, witha, b eT.
Let firstd > 0. Then[',®I is not an integrity domain. For,

(Vde + &)(Vde, - &) = 0.

_ Itcan however be seen thatis then the direct sum of the two fields
AT andul” where

1 & 1 &
=S+ —=), p=5E1-—)
2 Vd 2 Vd
Letd < 0. ThenAis a field. For ifae; + be; # o, thena? — db? # o.

Putf = Then

_a __-b
a2—db2’g_ a2 —d?’
(aey + bey)(fe, + ge) = ey.

2 Composite fields

Let K; and K, be two extension fields df. SupposeK; and K, are
both contained in an extension figddof k. Then the composite df;
andK; is the field generated ovdrby K; andK,. In general, given 107
two fieldsK; andK, which are extensions &, there does not exist an
extension fieldQ containing both. Suppose, however, there is a field
Q/k which contains k-isomorphic imageq, K2 of K; andKj5, then
a composite 0K; andK; is defined to be the fieldg(K{ U K7). A
composite extensiaof K; andK; is therefore given by a triplety, o, 1)
consisting of 1) and extension field of k and 2) isomorphisms-, t
of K1 andK; respectively inQQ which are identity ork. The composite
extension is thek(K{ UK3). We wish to study these various composites
of K1 andK,.

If Q' is another extension df ando”’, 1’ two k-isomorphisms of
K1 and K respectively inQ’ thenk(K¢ U KY) is another composite
extension. We say that these two composite extensiorsgaiiealentif
there exists a k-isomorphismof k(K¢ U KJ) onk(K$" U KY') such that

o =o' ut="1.
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Obviously this is an equivalence relation and we can talk cihas
of composite extensions.

If k(K7 U KJ) is a composite extension we denote R{KT U K7)
the ring generated ovérby K{ andK? in Q. This ring is, in general,
different fromk(K{ U K?). B

Let nowK = Ki®Kj> be the Kronecker product d¢f; andK,. K
contains subfields isomorphic #; and K,. We shall identify these
subfields withK; andK; respectively. Let novk(K{ U K7) be a com-
posite extension anB(K{ U KJ) the ring of the composite extension.
Define the mapping of K into R(K{ U K7) by

‘P( Z axy(x®y)) = Z axyXO-yT,

whereay, € k. Theng coincides witho on Ky and with 7 on Ko.
Sinceo andr are isomorphisms, it follows thatis ak-homomorphism
of K on R(K{ U K7). SinceQ is a field, it follows that kernel of the
homomorphism is a prime ide& of K. Thus

K/9 ~ RKJ UK3).

If k(K" U K3) is another composite extension, thedefined ear-
lier, is an isomorphism oR(KS U K3) on R(KY" U KI'). Consider the
homomorphisny defined above. Define onK by ¢ = u - ¢. We have

SZ(Z axy(x®y)) = ,U( Z axyXO-yT) = Z axyX 'yT'.

Thenyis a homomorphism &k onR(KS UKZ). But, sinceu is an
isomorphism, it follows thap has¥ as the kernel. Thus the prime ideal
¢ is the same for a class of composite extensions.

Conversely, if two composite extensions correspond to Hraes
prime ideal ofK, it can be seen that they are equivalent.

We have, now, only to prove the existence of a composite sixign
associated with a prime ideal ¢f. Let% be a prime ideal oK and
¢ + K. SinceK has a unit element, a prime idedl# K always exists.
Let A be the integrity domain

A=K/¥9
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109
Let ¢ be the natural homomorphism & on A. ThenK¢ and K¢
are subfields ofA. SinceK is generated by elements of the tyx®y,
KY andK?, are diferent from zero. Clearh = R(K{ U K%). Hence
the quotient field ofA is a composite extension. Hence for every prime
ideal¢ = K, there exists a composite extension. We have hence proved
the

Theorem 4. The classes of composite extensions pfakd K, stand
in (1,1) correspondence with the prime idédl# K of the Kronecker
productK of K; and Ky over k.

Consider now the special case wh&gk is algebraic Letk(K{ U
K7) be a composite extension. Then

K(KS U K3) > R(KS UKE) > KY.

Since every element &f; is algebraic ovek, k(K{ UK?) is algebraic
overK{. This means thaR(K{ U K7) is a field and so coincides with
k(K U K3). Thus

Theorem 5. If K/k is algebraic, then every prime ide# # K of K is
a maximal ideal.

Let K/k be an algebraic extension ahgk any extension. The Kro-
necker produckK = K®yL is the extended algebr&}, of K by extend-
ing kto L. K is thus an algebra (commutative) olerlf ¢ is a prime
of K, then by above, it is a maximal ideal aKd¥ gives a compos-
ite extension. Sinc& is an algebra ovek we may regard /¥ as an
extension field of..

Letnow, ..., %y bemdistinct maximal ideals df?, none of them 110
equal toK. Letl; = K/%4 be a composite extension. Form the direct

sum algebra
At
i

as a commutative algebra overWe shall now prove
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Theorem 6.

YiK/% =K/ N

Proof. We shall construct a homomorphismof K on >i Lij and show
that the kernel i$) 4. O
|

_Inorder to do this let us denote by the natural homomorphism of
K onL; (this is identity onL), i = 1,...,m. If x € K, thenoix € L.

Definep onK by
$() = > oix
i
That this is a homomorphism df is easily seen; for, ik, y € K
p(x+y) = ZO’i(Xﬂ/) = ZO’iX+ Z‘Tiy: PX+ @Y.
i i i
() = ) i) = D (@Xowy) = (O XY oY) = oxey.
| | | |

The kernel of the homomorphism is seto$uch thatpx = 0. Thus
oiX = 0so thatx € & for all i. Hencex € N;%. But everyy € Nj% has
the propertypy = 0. Thus the kernel is precisefy) 4.

|
We have only to prove that the homomorphisnoiga. B
To this end, notice that for ea¢h = 1,..., m, there is &; € K with

b €Y, j#I
¢4

For, since% and¥j, | # i are distinct, there ig; € ¢; which is
not in%;. Puth; = [] a;. Thenb; satisfies above conditions singgis
i#]
maximal.
Let now 3’ ¢; be an element in the direct sum,e L;. By definition

|
of b
o i
cf,-bi{ 0 Mi#i
#0 ifj=i
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Sincel, is afield, there exist% # oin L; such that
XiO'ibi = 0.

i being a homomorphism &€ onL;, lety;, € K with oy; = X. Put
c= Z biy;
i

Then

w(© =D > jby) = >
] i

which proves the theorem completely.

Suppose in particulaK/k is finite. ThenK, has ovell the degree
(K : k). Since, for a maximal idea? # K, K/¥¢ has ovelL at most the
degreeK : k), we get

1<(K/%:L)<(K:Kk i=1...,m

This means thak has only finitely many maximal ideals and

K @G = K_g
I ; /

the summations running through all maximal ideal&of 112
ThusK andL have ovek only finitely many inequivalent composite
extensions.

3 Applications

Throughout this sectiof will denote an algebraically closed extension
of k andK andL will be two intermediary fields betwee2 andk. A
composite ofK andL in Q will be the field generated ovérby K and
L. It will be denoted byKL.

LetK be the Kronecker product ovkof K andL. There is, then, a
homomorphismp of K onR(K U L) given by

90( Z axy(x®y)) = Z AxyX Y.
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Suppose that this homomorphism is an isomorphislﬁmﬁtoR(Ku
L). This means that

Z axy(x®Y) = 0 = Z AyX-y=0

or that every set of elements Kfwhich are linearly independent ovier
are also so over. Incidentally, this gives

KNnL =k

Conversely, supposk and L have the property that every set of
elements oK which are linearly independent ovkrare also so over
L. Then the mapping is an isomorphism oK on R(K U L). For, if
2. axyXy = 0 we expresx andy in terms of a base df/k and a base of

K/k giving
Z baﬁxayﬁ =0
113 But this means alb,; are zero. Therefore is an isomorphism.

It shows that every set of elementslofvhich are linearly indepen-
dent overk are also so oveK.

We call two such fieldd andK linearly disjoint over k Note that
L N K = k. We deduce immediately

1) If L and K are are linearly disjoint over k then any intermegia
field of K/k and any intermediary field of/k are also linearly disjoint

Suppose now thad{/k is algebraic. Then every prime idealskofis
maximal. Let, in additionK andL be linearly disjoint ovek. SinceK
is isomorphic taR(K U L), it follows that () is a maximal ideal. Hence
K is a field. Thus

2) If K/k is algebraic and K and L are linearly disjoint over k, there
exists but one class of composite extensions of K and L over k

LetK/k be a finite extension. Then, for some maximal idéaK /<
is isomorphic taKL. SinceK /¥ may be considered as an extension field
of L,weget K/¥4 : L)< (K:K),thatis

(KL:L)<(K:Kk)

Clearly if ¥ = (0), equality exists, and theld andL are linearly
disjoint overk. The converse is true, by above considerations. Hence,
in particular,
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) If (K: k) =mand(L : k) = n, then
(KL:Kk)<mn

equality occurs if and only if K and L are linearly disjointenk. 114
We now consider the important cad€/k galois By the consid-

erations above, it follows th&L/k is algebraic oveL. SinceQ is a

algebraically closed, it contains the algebraic closur&bf Let o be

an isomorphism oKL in Q, which is identity onL. Its restriction toK

is an isomorphism oK in Q. But Q contains the algebraic closure of

K and hencerK = K. SinceKL is generated bK andL, it follows

thatoKL c KL. HenceKL/L is a galois extension.K(L/L is already

separable since elementskofare separable ové).

Q

|
K/ \L
~

KnL

N
k
We now prove the

Theorem 7. If K/k is a galois extension and L, any extension of k then
G(KL/L) =~ G(K/K n'L)

Proof. Inthe first place, we shall prove thidtandL are linearly disjoint
overK n L. For this, it is therefore enough to prove that every finite se
V1,...,Ym Of elements oL which are linearly independent ovirn L,
are also so oveK. m|

If possible, letys,...,ym be dependent ovef so that} xy; = 0,
xi € K. Let us assume that,...,ym are dependent ovdf but no
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proper subset of them is linearly dependent d¢emherefore, all the;
are diferent from zero.
We may assumg; = 1. Leto be an element dB(KL/L). Then 115

0=0'(ZXiYi)=ZO'Xi-O'Yi

By subtraction we get, sinael = 1,

0= (%~ Xy

i#l

This means thax; = oX, i = 2,...,m. But, sinceo is arbitrary in
G(KL/L), it follows thatx; € L. Butx € K. Thusy, ..., Yymare linearly
dependent ol NL which is a contradiction. Hend€ andL are linearly
disjoint overK N L.

Therefore, KL is isomorphic to the Kronecker product Kfand L
overK nL.

Supposer is any L-automorphism oKL. Its restriction toK is
an automorphism oK and leaveK N L fixed. Consider the mapping
o — o of G(KL/L) into G(K/K N L). This is clearly a homomorphism.
If o is identity element o6(K/KNL), theno is identity onK. Since itis
already identity orl, itis identity onKL. Thus,G(KL/L) is isomorphic
to a subgroup of5(K/K n L). To see that this isomorphism is onto
G(K/K n'L), let teG(K/K N L). Any element ofKL may be written
(sinceK andL are linearly disjoint) in the from,

D XaYa

wherex, are linearly independent elementskobverK nL andy,, € L.
This expression is unique. Extemdo 7 in G(KL/L) by defining

T (Z xaya] = D Yat(%).

116 This is well defined; for, if}, Y.7(X,) = 0, then, sincgx,} are
linearly independent ovek N L, {r(X,)} are also linearly independent



3. Applications 101

overK N L and sinceK andL are linearly disjoint oveK N L, all y, are
zero. Thug is an automorphism dfL/L.

Our theorem is thus proved.

In particular, ifK andL are both galois extensionslofndKNL = k
then, by above,

G(KL/L) =~ G(K/K)
G(KL/K) =~ G(L/k)
Also, sinceKL/k is algebraic, let- be an isomorphism (trivial on

k) of KL in Q. Since its restrictions oK andL are auto morphisms, it
follows thatKL/k is a galois extension. We now prove

Theorem 8. G(KL/K) is isomorphic to the direct product of(&/k) and
G(L/K).

Proof. (K/k) andG(KL/L) are isomorphic and for every elementn
G(K/K), by the previous theorem, we have the extensipan element
of G(KL/L) determined uniquely by-. Similarly, if 7 € G(L/k), T
denotes its unique extension into an elemer®@L/k).

KL

We now consider the mapping
(o,7) > o1

of the direct producG(K/K) - G(L/K) into G(KL/K).
Supposet is an element of5(KL/K). Its restrictiond to K is an 117
element ofG(K/k). Consideri;. Now /111/1 is identity onK. By the
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isomorphism ofG(KL/k) andG(L/K), this defines a unique elemeunt
of G(L/k). Hence _
A = 1.

Thus the mapping above is a mapping of the direct proGky/ k) -
G(L/K) ontoG(KL/k). We have only to prove that is a homomorphism
to obtain the theorem. It is clearly seen thas identity if and only if
A1 andy are identity.

Let o, o’ be two elements dB(K/k) andr, v’ in G(L/k). Let2 and
u be the unique elements @(KL/k) defined by

A=ot, u=0o’,7.

Consider to elementyu. Its restriction toK is oo’ and its restriction
toListr’. Thus
Au=oo’ 7T
which proves that the mapping is a homomorphism.
The theorem is now completely proved.



Chapter 6

Special algebraic extensions

1 Roots of unity

118
Consider the polynomiat™ — 1 in k[k], wherek is a field. Letk have

characteristicp. If p = o, thenx™ — 1 is a separable polynomial over
k, whereas ifp # o, the derivative ox™ — 1 is mX™* which is zero,

if pdividesm. If p + m, thenx™ — 1 is a separable polynomial over
k. Therefore, lem > o be an arbitrary positive integer, kfhas charac-
teristic zero andn, an integer prime t, if k has characteristip # 0.
Thenx™ - 1 is a separable polynomial oveand it hasmroots inQ, an
algebraic closure df. We call thesem roots, themth roots of unity

If p andt are mth roots of unity theno™ = 1 = ™. Therefore
(pr)" = pMM =1, (p™H)™ = (o™ = 1 which shows that theth roots
of unity from a group. This grou@, is abelian and of ordemn.

Let nowd/m. Any root of x4 — 1 in Q is also a root ok™ — 1.If p is
anmth root of unity such thap? = 1, thenp is a root ofxd — 1. Since
xd — 1 has exactlyd roots inQ, it follows thatG, has the property that
for every divisord of m, the order ofGn, there exist exactld elements
of Gy, whose orders dividd. Such a grouisy, is clearly a cyclic group.
Hence

The mth roots of unity form a cyclic group,®f order m. 119

There exists, therefore, a genergtanf G,.. p is called aprimitive
mth root of unity Clearly, the number of primitiveith roots of unity is

103
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¢(m). All the primitive mth roots of unity are given by? with 1 < a <
m, (&, m) = 1, p a fixed primitivemth roots of unity.

Let Q be an algebraically closed field. Letandn be two positive
integers which are arbitrary, § has characteristic zero and, primeaxo
if Q has characteristip # 0. If p is anmth root of unity andr annth
root of unity, then

(o7)™ = pMN. M = 1,

so thator is anmnth root of unity. This shows that the roots of unity in
Q form a groupH(Q2). We now determine the structure df

Theorem 1. If Q has characteristic zero, then H is isomorphic to the
additive group of rational numbers mdgdwhereas, if2 has character-

istic p # o, H is isomorphic to the additive group of rational numbers
%‘, (@b)=1 ptb, mod 1
Proof. Let R denote the group (additive) of rational numbers anck

v2 < v3--- the sequence of natural numbersifhas characteristic
zero, whereas, €2 has characteristip # 0, let R denotes the rational
numbersg, (b,a) =1, pt bandvy < v» < v3--- the sequence of

natural numbers prime tp. Put

Mn =V1-:Vn.

Denote, byH,, the group ofin, the roots of unity in. Since every
integerm(p 1 m, if Q has characteristip) divides someu,, if follows

that
H= U Hn.
n

SinceH, is cyclic, we can choose a generatgrof Hy, is such a way
that

’Vn+1

Pn =P pi1-
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, . a , . ,
Any x in R may be written as— wherea is an integer. Define the
Hn
mappingo as follows

oX = p8,
so thato is a function onR with values inH. The mapping is well

defined: for ifx = £ thenuma = upb. Supposenm > n; then
Hm

b=avpi1--vm

so thatp? = p&™1*"m = p2 by choice ofpn. We now verify thato is a

. a b .
homomorphism oRonH. If x—,y = — are inRandm > n, then
HMn HMm

avni1--vm+ b
o(x+y) = (FRE) = et
m
which equal?2 - p2 = ox- oy. Also, since any root of unity is in some
. a
Hn, itis of the formpj§ so that, forx = —, o-x = p3. We have, therefore,

Hn
to determine the kernel of the homomorphism. Itis the setiofR such
that
ox=1

a . .
If x=—, then 1= o-x = p§ so thatluyla and sox is an integer. The 121

Hn
converse being trivial, it follows that the kernel is pretysthe additive
group of integers and our theorem is established.

2 Cyclotomic extensions

Letk be a field and™ — 1 a separable polynomial kjx]. This implies,
in casek has characteristip # o, that p does not dividem. Let p
be a primitivemth root of unity inQ, an algebraic closure & Then
K = Kk(p) is the splitting field ofx™ — 1 in Q. Therefore,K/k is a
separable, normal extension. L@&the its galois group. I&r € G, o is
determined by itsféect onp. Sincep is a primitivemth root of unity, so
is op. For,
(ap)" = (™) = 1;
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soop is a root of unity. Also, if fp)t = 1, theno(o!) = 1. Sinceo is
an automorphism, it follows that = 1 orm/t. Thus

op=p",(v,vm) =1

If o, T are inG, letop = p”, (v,m) = L andrp = p* (u,m) = 1.
Then
o1(p) = o(tp) = o(p*) = p”
which shows thatrr = 7o or thatG is abelian.
Consider now the mapping

g:o—v

whereop = p”, (v,m) = 1. This is clearly a homomorphism & into
the multiplicative group prime residue classes mmadThe kernel of
the mappingy is set ofo- with op = p.
122 But thenot = t for all t € K, so that by, galois theoryr is the
identity.
Let us call extensiolK = k(p) acyclotomic extensioof k. We then
have proved the

Theorem 2. The Cyclotomic extension(®/k is an abelian extension
whose galois is isomorphic to a subgroup of the group of prieseue
classes mod m whereo™ = 1 andp is a primitive mth root of unity.

LetT be the prime field contained ik ThenT'(p) is a subfield of
k(o) = K. LetG be the galois groug/k.

K = k(o)

/

k

')

e

r
Let o be inG ando the restriction obr to I'(p). Sinceo is identity
onk andop is again a primitive root of unity, it follows that is an
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automorphism of (p)/T. It is easy to see that the mapping— o is an
isomorphism ofG into the galois group of (0)/T".

We shall therefore confine ourselves to studying the galmisof
T(o)/T.

First, letI” be the rational number field apda primitive mthroot of
unity. LetI'(o) be the cyclotomic extension. Lé{(x) be the primitive
integral polynomial which is irreducible ifi[x] an whichp satisfies.
Thenf(X) is a monic polynomial. For, sinc&x) dividesx™ 1,

X" — 1= f(X)y(X).

Ww(X) has rational ca@cients and sa@/(x) = Ez,lll(x) wherey(X) is a 123
primitive integral polynomial and andb are integers. From the the
theorem of Gauss on primitive polynomials it follows tH#xk) is monic.

Let p be a prime not dividingn. Let ¢(X) be the minimum polyno-
mial (which is monic and integral) gi?. We assert thaf(x) = ¢(X).
For, if not, f(x) ande(X) are coprime and so

X" — 1= f(X) - ¢(X) - h(x).

for some monic integral polynomial¥x).
Consider the polynomiad(xP). It hasy as a root and sé(x) divides
¢(xP). Hence

o(x°) = £(X)g(x),

g(x), again, a monic and integral polynomial. Considering theva
mod p we get

FOI9(¥) = ¢(xP) = (¢(x))P(mod p)

so that f(x) divides ¢(x))P( mod p). If t(x) is a common factor of
f(x) and ((p)( mod p) then (x))? divides x™ — 1 mod p, which is
impossible, sincg + mandx™ - 1 does not have as a factor. Thus our
assumptionf (x) # ¢(X) is false.

This means that, for every primg + m, pP is a root of f(x). If
(v,m) = 1, thenv = p1pz2--- p1r Wherepy,.. ., p; are primes not dividing
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m. By using the above fact successively, we see that, for evérym) =
1,p” is a root of f(X). Therefore

e = || (x=p") (1)
(v;m)=1

divides f(X). But ¢n(X) is fixed under all automorphisms &{p)/r so
that f(X) = ¢m(X). We have proved the

Theorem 3. If T is the field of rational numbers angdis a primitive mth
root of unity, then the galois group of the cyclotomic exi@m$ (o)/T
is isomorphic to the group of prime residue classesod m. The irre-
ducible polynomialpm(x) of p is given by(d).

om(X) is called thecyclotomic polynomiabf orderm. Its degree is
¢(m). In order to be able to obtain an expressiondgfx) in terms of
polynomials oveil’, we proceed thus.

We introduce the Mobius function defined as follows:

It is a functionu(n) defined for all positive integermssuch that

1) ud)=1
2) u(pr---p) = (-1) wherepsy, ..., p; are distinct primes.
3) u(m) = oif p?/m, p being a prime.
From this, one deduces easily
4) p(m) - p(n) = p(mn) for (m,n) = 1.
For, one has to verify it only fom = py---p;, N = 1 ---q1 Where

p’sandq’sare all distinct primes. Thea(m) = (-1)!, u(n) = (-1)!
andu(mn) = (1)1,

We now prove the following simple formula
5)
> u(d) =oif m>1

dm

=1lifm=1

the summation running through all divisatof m.
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If m = 1, the formula reduces t@l(1). So, let > 1. Letm =
plt--- pf* be the prime factor decomposition wf Any divisord of m
is of the formp®* - .- p* whereo < by < &, i = 1,....,t. In view of (@),
it is enough to consider divisois of m for whicho < bj < 1. In that

case,
t

D) = O =o.
dm i=0
Let now f(n) be a function defined on positive integers, with values
in a multiplicative abelian group. Le&j(n) also be such a function. We
then have the Mobius inversion formula,

dflr{ f(d) =g(n) = f(n) = g(g(d))”(g)

Supposq] f(d) = g(n). Then
din

[Tea@y® = [T([7 fea) .

din din di|§

Changing the order products, we get

[ [(Fe) Dl

di|n dl%

using formula[(b), we obtain the inversion formula. The case fol-
lows in the same way.

Consider now the integers mad Divide them into classes in the
following manner. Two integers, b are in the same class if and only if

(am) = (b, m).

Let d/mandCy, the class of integers a ( mat) witrrln(a, m) =d. 126
Thenais of the formdA where (, a) = 1. ThusCy haw(a) elements.

The classe€y, for dim, exhaust the set of integers mod If pis a
primitive mthroot of unity, then

m
XM—1= ]—[(X—pt).
t=1



110 6. Special algebraic extensions

In view of the above remarks, we can write

xM—1= ]—[(l_[(x—pt)).

dm teCyqy

Butif t € Cq, p' = p™, (4, m) =landsg'isa primitive%1 th root
of unity. Using the definition ofmn(X), if follows that

X"-1=] ]

By the inversion formula we get

en(9 = [10¢ - 27

Comparison of degrees on both sides gives the formula
_ m < ()
e(m)= ) du(g)=m) ==
dm dm

We may computem(X) for a few special values af. Letm=p, a
prime number. Then

xP -1

=xP-1+---+x+1
x—1

¢p(X)

If m= pq, the product of two distinct primes, then

(¢ 1)x- 1)
Ppa(¥) = P-D)A-1)

Let us now consider the case wHeis the prime filed o elements.
127  Obviously, T'(0)/T is a cyclic extension. If we define the cyclotomic
polynomial as before, it is no longer irreducible oV§x]. For instance,
let p=5andm=12. Then

(X2 1)@ - 1)

A2
(x5—1)(x4—1)_X4 X2+ 1.

¢12(X) =
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Also
X* =¥ +1=(¢=2x-1)(2 +2x— 1) (mod 5)

Therefore,I'(p)/T" has degree< ¢(m). It is obvious sincd (p)/T
is cyclic, that, forgm(X) to be irreducible, the group of prime residue
classes modan should be cyclic. We shall prove

Theorem 4. If T is the prime filed of characteristic # o0 and pt m,the
cyclotomic polynomiabn(X) is irreducible, if and only if the group of
prime residue classes mod m is cyclic and p is a generatori®ttitlic

group.

Proof. We already know thal'(p)/T is cyclic. If ¢m(X) is irreducible,
thenT'(p)/T" has orderp(m). Let o be the Frobenius automorphism of
I'(p)/T. Then
p7 = pP,

p being the number of elements In The (M) automorphisms
1, 0,02,...,0¢M-1 gre distinct. Hence

pupPop™ P
are all distinct, which means, p, p%,..., pA(M-1 are distinct modn.
Therefore,p is a generator of the multiplicative group of prime residue
classes moan. O

The converse is trivial.

The theorem is true, if, instead bfbeing the prime filed op ele- 128
mentsI' is a finite filed ofq elements. Then has to be a generator of
the group of prime residue classes nmod

If Rm denotes the group of prime residue classes mpthenRy
is cyclic, if and only if

m=22a=12 or m=qg® or 2,

whereq is a prime. Thusn has necessarily to have one of these forms.
We now use the irreducibility afq(x) over the rational number field
to prove a theorem dedderburn
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Theorem 5. A division ring with a finite number of elements is a filed.

Proof. Let D be the division ring andt its centre. Therk is a field. D
being finite, letk haveq elements. ID is of rankn overk, thenD has
g" elements. We shall prove that 1. m|

Let D1 be a subalgebra dd overk. Let D; have rankm over k.
ThenD; hasq™ elements. BuD] is a sub group oD* so thatq™ — 1
dividesq" — 1. This means thatin. For, ifn = tm+ yx, 0 < u < m; then

q"-1=a'@m-1)+ (" - 1)

so thatg™ — 1jg* — 1 which cannot happen unlegs= 0. Thus every
subalgebra ob has rankd dividing n.

Let x € D. Consider they € D such thatxy = yx. They form a
subalgebra ovek. Therefore, the number gfin D* which commute
with x form a group of ordeq® - 1, for somed dividing n. This group
is the normaliser ok. Hence, the number of distinct conjugates (in the
sense of group theory) ofin D* is

q' - 1o - 1.

For the finite grouD*, we have
D" =K'+ » D},
X

where Dy, is the set of all conjugates of Comparing number of ele-
ments on both sides

-1=q-1+> -1/ -1
d

for some divisorgl of n.

Sincepn(X)|X" — 1, we see thapn(q), which is an integer, divides
q" — 1. Also¢"(x) dividesx" — 1|x@ — 1 for anyd|n, d # n. Therefore,
¢n(q) dividesq — 1. But

en(@) > (g - 1)7"

which shows thah # 1.
This proof is due tdernst Witt
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3 Cohomology

Let G be a finite group and\ an abelian group on whic acts as a
group of left operators. LeA be a multiplicative group. We denote ele-
ments ofG by o, 7,p, ..., and elements oA by a,b,c,.... We denotes
by a” the dfect ofo- ona. Then

(ab)” = a”b”
(aT)O' — aO'T

130

Let 1 be the unit element &&. Denote byG", n > 1 the Cartesian
product ofG with itself n times.

A function onG" with values inA is said to be am dimensional
Cochainor, simply, am cochain. This functiorf(xy, ..., X,) has values
in A. We denote by ary,..., o, the element inA which is the value
taken by then cochain for valuesry, . .., o, of its variables. We denote
the function also, byao,...,on If aoy,...,0n andboy, ..., o are
two functions, we define their product by

Similarly

is called the inverse dd, _,. With these definitions, the cochains
form a groupC"(G, A) or simplyC".

We defineC°(G, A), the zero dimensional cochains, to be the group
of functions with constant values, that is functiayson G such that

a =a

is the same for all- € G. It is then clear tha€® is isomorphic toA.
We now introduce a coboundary operadan the following manner.
d(= dp) is a homomorphism of" into C™* defined by

A5y, oni = aacrl ----- on
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..... n=1
131
Forn > o, we define the groupZ™(G,A) and B™G,A) in

the following manner. Z"(G, A) is the kernel of the homomorphism

cn M el gnd B"1(G, A) is the homomorphic image. The elements

of Z"(G, A) are calledn dimensional cocyclesr n-cocycles and the
elements ofB™1(G, A) aren + 1-dimensional coboundariesr n + 1
coboundaries. The homomorphighias the property

00 = identity 2

which proves thaB™1(G, A) is a subgroup oZ™(G, A) and we can
form for everyn > o the factor groupH"(G, A) the n-dimensional co-
homology group We verify (2) only in caseé = o and 1 which are the
ones of use in our work.

The coboundary of a zero cochain is a one cochain given by

(o

aa:a(,:%. 3)

Its coboundary, by definition is
as - aj
Substituting from[(B), we ged, ; = 1 which verifies[[R) fom = o.
We define the zero coboundary, that is the elemen®P(@, A), to
be the function with value 1 on alt € G. ThusB°(G, A) consists only
of the identity. An element iZ°(G, A) will be the constant function a
with

doa=ay,, =

a’=a
for all o-. Hence
132 H°(G, A) is isomorphic with the set of a A with the property & =
aforall o e G.
A one dimensional cocycle is a functieg for whichda, = 1. But
ar - a7l
arr

0a, =
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Therefore, the elements #i(G, A) are functionsa, with
a-a7 = Ao

A one coboundary is, already, a functign of the forma“ /a. It is,
certainly, a one cocycle.

For our purposes, we shall need also #aglitive cohomologyin-
stead of the multiplicative cohomology above. We regard #owas
an additive, instead of a multiplicative, group. TheR(G, A*) is an
additive abelian group. We define the coboundary operator as

Ary,.omer = aa()'l ..... on

.....

_ AC 1 n+1
- a(r; Onel + Z(_l) Qg Ti- 1,01, T 1 Te1. T (_1) Qg

As before, a zero cochain is a constant functiorand its coboun-
darya, is
da=a,=a —-a

A one cochairg,, is a cocycle if
da, =0
which is the same thing as
ar +a7 = agr.

Exactly as before, we see thdf(G, A), the zero dimensional addi-
tive cohomology group is isomorphic to the set of elemernitsA& with 133
a” = aforall o.

We now consider the case whéris a cyclic group. Letr be a gen-
erator ofG so that 10,02, ...,0" ! are all the elements @&. Taking
multiplicative cohomology, i, is a one cocycle, then

Ay = a:d,
or a; = ar,/a;. Substituting forr successively I, .. ., o1 we get

a1
a1+o-+ +0 =1

7
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We denoteaj*‘”"'“fml by Na, and call it thenorm of &. Thus, if
a, is a cocycle, then,
Na, = 1L
Conversely, supposeigan element irA with

I’]—l:l

Na= al+o-+..+0' =1

We can define a cocycla, such thata, = a. For lety = o, for

somev. Put
a, = a1+(r+~-~+(rv‘1

Obviously,a, = a. Also, a, is a cocycle. For, if = o

aydrl = a1+0'+---+a'y’l(a1+0'+---+a-y’*1)a-v

J
_ a1+(r+~-~+(TV‘1+UV+-~-+(TV+V -1

= a14T~

In a similar manner, for additive cohomology, we hayg = a. +a;
134 wherea, is a cocycle. IfG is cyclic, on substituting I, ... ;o1 for
T, we get
Sa, :a;u+af,+--~+a§m1 = 0.
We call S g, the spur or traceof a,. If a is any element oA, with
traceSa=a+a” +---+a” = o, then the cocycle

y—1
a,=a+a’ +---+a’

whereu = ¢, has the property
ar =a

We now apply the considerations above, in the followingagian.
K/k is a finite galois extension with galois gro@ ThenG acts on
K* and also the additive groug™ as a group of operators. We might,
therefore, consider the cohomology groug®(G, K*), H(G, K*),...
andH°(G, K*), HY(G, K*) ... etc. As beforeH(G, K*) andH(G, K+)
are isomorphic to subgroups Kff andK* with a” = afor all o. This,
by galois theory, shows
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Theorem 6. H°(G, K*) is isomorphic to kand H(G, K*) is isomorphic
to k*.

But what we are interested in, is the following importantcifesn
due toArtin.

Theorem 7. The group H(G, K*) and H'(G, K*) are trivial.

Proof. Let us first consider multiplicative cohomology.df is a cocy-
cle, we have to prove that it is a coboundary. The elements. .. of
G are independerk-linear mappings oK into Q, the algebraic closure.
Hence, if @,) are elements ak*,

S
o
is a non-trivialk-linear map ofK into Q. Therefore, there existséa# 0 135

in K such that
Z a,0” #o.
(on

Putb™ = Y a,6” = ¥ a,6". Then

(b7 =) &

T

Therefore a
NS

Since @) is a cocycle, we get

% = Zaﬁe‘” = Za,ef =pb L

Thus

which is a coboundary.
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Consider now the additive cohomologi/k being finite and sepa-
rable, there existad € K such that

DT =Skpo=1

(o

Put now
a, being an additive cocycle. Then
b7 =) ale.

T

Buta, =a,-1=3),a, 6 sothat
a,—b" =) (a, + a0 = ) At = b

which proves thah, = b” — b is a coboundary.
Our theorem is completely proved.
136 We apply the theorem in the special case wh@gtie cyclic. Leto
be a generator d&. If &, is a cocycle then, in multiplicative theory

n-1

a(])._+o‘+-~-+o‘ =1

or Nk/ka, = 1. Similarly in additive cohomology,

n-1

ar+a +---+a. =0

or Sk/ka, = 0.
Using theoreni]7, we obtain 'theorem 90’ Idfibert.

Theorem 8. If K/k is a finite cyclic extensiony, a generator of the
galois group of Kk and a and b two elements of K witlxNa = 1 and
Sk kb = O respectively, then

a:Cl—a'
b=d —d

for two elements c, d in K.
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4 Cyclic extensions

Let K/k be a cyclic extension of degree Putm = np?, (n,p) = 1if p
is the characteristic df; otherwise, lem = n.

Let G be the galois group d{/k. It has only one sub-group of order
p?. Let L be its fixed field. TherK/L is cyclic of degregp® andL /k is
cyclic of degreen prime top. Letp be a primitiventh root of unity and
k(o) the cyclotomic extension. The composke= Lk(p) is cyclic over
k(o) and of degree prime tp. We shall see tha overL andF over
k(o) can be described in a simple manner.

We shall, therefore, consider the following case, first.

K/k is a cyclic extension of degreaaandp + m, if k has character- 137
istic p # o; otherwisemis an arbitrary integer. Alsd contains all the
mthroots of unity. We then have the theoremLafgrange

Theorem 9. K = k(w) where W" € k.
Proof. Letp be a primitivemthroot of unity. p is in k. O

Hence, sincé/k has degree,
Nkkp =pm =1
By Hilbert's theorem, therefore, if- is a generator of the galois
group ofK/k, then there is aw € K such that

a)l—O' =p.

Sincep is a primitivemthroot of unity,w, w”, w”", . . . are all distinct
and are conjugates of. Hence our theorem.

w satisfies a polynomial™ — a, a € k. If K = k(w’), wherew’ also
satisfies a polynomiat™ — b, b € k,then

wlo’ — a)/ .p+’
wherep! is a primitivemthroot of unity and sot(m) = 1.
Now

a)/ o B w/ .pt a)/

o] T wtpt T ot
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which shows that
w=w-c cek

We shall callx™ — a anormed polynomialWe have, then, the

Corollary. If k(w) = K = k(w’), wherew and «’ are roots of nhormed
polynomials, then

138  where(t,m) = 1 and ce k.

We consider the special case,= g, a prime number. Le/k be a
cyclic extension of degreg LetK = k(a) and leta; = (a),a2,...,aq
be the irreducible polynomial af overk. Supposer is a generator of
the galois group oK/k.

Let notation be so chosen that

g a a a
@y = @2,y =@s,..., Q= &g, A = AL

Sincek contains thajth roots of unity and evergth root of unity
p # 1is primitive, we construct theagrange Resolvent

w=w(a,p)=ai+pax+--- +pq_laq.

Then
W’ =az+pag+ - +pq_2aq +p4 ey

which shows thaiv” = p~1w. HenceK = k(w). Also,
(@97 = o

which proves thai? € k andw satisfies a normed polynomial.
In particular, ifk has characteristi¢ 2, andK/k has degree 2, then

K = k(yd)

ford e k.

The polynomialxd —afor a € ks, thus, either irreducible and, then,
a root of it generates a cyclic extension, or elge;- a is a product of
linear factors irk.
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We study the corresponding situation wh€mas characteristip #
oandK/k is a cyclic extension of degrgg, t > 1.

We first consider cyclic extensions of degnee

Let K/k be a cyclic extension of degreeando, a generator of the
galois group ofK/k. Letu be a generic element of the prime fidld
contained irk.

Introduce the operata#x = xP — x. Then

P(X+ u) = PX.

Also, the onlya in k satisfying Za = o are the elements df and
these are all the roots aPx = o.
The element 1 itk has the property

Skik1l=o0,
so that by Hilbert’'s theorem, there is ane K such that
1=0" - w.
Therefore, sinc&/k has degre®,
K = k(w).

In order to determine the polynomial of whiehis a root, consider
Pw.
(Pw)’ = P’ = Pw+1)= Pw

which shows thatZw € k. If we put Zw = «, thenw is a root the
irreducible polynomial
xXP—x—a

in K[X]. w is a root of the polynomial and” = w + 1. Sinceo is a
generator of the galois group Kf/k, the roots ofxP — x — a arew, w +
1,...,0o+p-1

A polynomial of the typex? — x — @, @ € k is called anormed
polynomial

SupposeK = k(w’) wherew’ also satisfies a normed polynomiah4o
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Thenw',w’ +1,...,0" + p— 1 are the roots of this normed polynomial.
So
W’ =w+h o<h<p-1

Now w’ — hw satisfies
(W -hw)? = -ho” =" +h-—hw-h=0w"-how
which shows that’ — hw € k. We have, hence, the

Theorem 10. If K/k is cyclic of degree p and, a generator of the ga-
lois group of K/k, then K= k(w) wherew satisfies a normed polynomial
XP —x—aink[X] andw” = w + 1. If K = k(o) andw’ also satisfies a
normed polynomial, then

W = pw+a,
u el and ac k.

In order to be able to construet, we proceed thus. Let be an
element inK with
Skia = 1.

Letai(= @), ..., apbe the roots of the irreducible polynomial which
a satisfies ovek. Construct the resolvent
—w=a1+ 20+ -+ (p-Lap-1+ pap.
Let notation be so chosen that
af =az,ag = ag,...,ag_l = ap,ag = aj.
Then
-0’ =ax+ 23+ -+ (p-1ep

and saw” —w = a1+ a2+ - -+ ap = 1. ThereforawP —w =t for some
tin k. This gives the normed polynomial.

It should be noticed that, here, we use additive conomoldugreas,
in caseK/k has degreen prime to p, we used multiplicative cohomol-
ogy. Furthermore, in the second case, wighk is of degreep, the
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elements of” serve the same purpose as the roots of unity in the first
case.
If k has characteristic 2 artd/k is a separable extension of degree
2, then
K = k(w)

wherew? — w € k.

Observe, also, that any polynomidl — x — a, for @ € k, is either
irreducible overk and so generates a cyclic extension dueor splits
completely into linear factors ik. For, if w is a root ofxP — x — a then,
foruerl’, w+ uis also aroot.

Just as we denote a rootxf —a by {«, we shall denote, far € k,

by %, aroot ofx? — x — a. It is obvious that% is p valued and ifw is

a
one value ofﬁ, all the values are
w,w+l...,0+p-1

We now study the case of cyclic extension of degoten > 1.

Let K/k be a cyclic extension of degrg®' and o, a generator of
the galois grougs of K/k. SinceG is cyclic of orderp”, it has only
one subgroup of ordgrand hence, there exists a unique subfietdf K
such thaK/L is cyclic of degregp andL/k is cyclic of degregp™! = m.

Let us assume that> 2.

o™Mis of orderp and hence is a generator of the galois grou df. 142

ThusK = L(w) where
c"w=w+1

andw satisfies?w = a € L.
Putocw —w = B. Theno™B = o(c™w) — c™w = B which shows that
B e L. Also,

m-1

SLKB=B+p7+ 47
Substituting the value ¢f, we get

SLKB = (w — w) + (2w - ow) + - + ("w — o™ W)

=c"w-w=1
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Hences has the property
Syks=1
It is easy to see that is notk. For,
PB=0(Pw)- Pw=0ca-a«a

ande in k would mean?B = oor g € I'. This means tha_ 3 = o.

We now proceed in the opposite direction. Ldbe cyclic of degree
p™1 > 1 overk. We shall construct an extensi#which is cyclicover
k and containd. as a proper subfield. Let be a generator of the galois
group ofL/k.

Let us choosg € L, such that

SukB =1
Now S|k (Z2B) = Z(SLkB8) = 0 which shows that
PB=ca—-a
143 for somea in L. Also, « is not ink. We claim that forl € k,
XP—Xx—a-2 4)

is irreducible overL[x]. For, if it is not irreducible, it is completely
reducible inL. Letw be aroot ofxP — x—a — Ain L. Then

WwP-—w=a+A
This means that
Pow—w) = 0(Pw) - Pw=ca—-a=PB.

Thus
Plow—-w-p)=0

orcw—-w—pB = p. SinceS| (cw—-w) = oandSy u = o, it follows that
S8 = 0, which is a contradiction. Thus fot € k, @) is irreducible
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in L[X]. Let w be a root of this irreducible polynomial for someThen
K = L(w)/L is cyclic of degreep.

Let o denote an extension of to an isomorphism oK/k in Q, the
algebraic closure df. Theno is not identity onL. SinceZw = a + A4
andA € k, we get

oc(Pw) =oa+ A
Now
Plow - w) =0(Pw) - Pw=ca—-a=28

and, again, we have
Plow-w-p)=0

or thatocw = w + B + u which shows thatr is an automorphism df/k.
If tis any integer,

Fwz=w+B+ + -+ +1u

144
This shows that 1, 72, .. .,o_-lon_1 have all diferent d€fects onw,
so that they are distinct automorphisms Kofk. But, sinceK/k has
degreep", it follows thatK/k is cyclic of degreep”. We have, hence,
the important

Theorem 11. If k is a field of characteristic p and admits a cyclic ex-
tension K of k containing L and of degre®&,pn > n, for every m.

In fact, if k is an infinite field, we may veryl over k and obtain
an infinity of extensionK over k with the said property. It follows
theorentID.

Corollary. Ifkis afield of characteristic p and admits a cyclic extensio
of degree p for some n> 1, then its algebraic closure is of infinite
degree over it.
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5 Artin-Schreier theorem

We had obtained, in the previous section, fiisient condition on a field
so that its algebraic closure may be of infinite degree ovéWé would
like to know if there are field& which are such that their algebraic
closures are finite over them. The complete answer to thistiqueis
given by the following beautiful theorem dueAetin andSchreier

Theorem 12. If Q it an algebraically closed field and K is a subfield
such that

1<(Q:K)<
then K has characteristic zero afd= K(i), where i is a root of X+ 1.
Proof. The proof is as follows:-

1) K is a perfect field. For if noKP™~ c Q andKP™ is of infinite
degree oveK. This shows tha€/K is a finite separable extension.
Since itis is trivially normal, it is galois extension. Lebe the order
of the galois groupss of Q/K.

2) If pis the characteristic df, thenp 1 n (if p # 0). For, if p/n, then
G has a subgroup of ordgr generated by an element LetL be
the fixed field of this subgroup. The®/L is a cyclic extension of
degreep. By corollary of theoreri 11 it follows th&®/L has infinite
degree. This is a contradiction.

Therefore, the orden of G is prime to the characteristic &, if
different from zero.

3) Letqgbe a prime dividingh. Thenqg # p. LetL now be the fixed field
of a cyclic subgroup o6, of orderq.

ThenQ/L is cyclic, of orderg. Now L contains the primitive gth root
p of unity. For, if not sincep satisfies an irreducible polynomial of
degreeg - 1, it follows thatL(p)/L has degreg — 1. But

(L(p) - DI(Q: L)
which means that(p) = L. By theoreniD, therefore
Q = L(w1)
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4)

5)

9=wel.

wherea)l =

Any irreducible polynomial oveL is either linear or of degreq. 146
For, if t is its degree and, a root of it thent = (L(«) : L) divides

g. Thus, every polynomial ih[X] splits in L into product of linear
factors and of factors of degreg

Consider, in particular, the polynomia‘l|2 - w. In Q, we can write

X = w = m,(x— 1t Vo) (5)

whereu runs through alb? th roots of unity. Since@® : L) > 1, the
polynomial x* — w has, inL[x], an irreducible factor of degreg
Since this factor is formed bg of the linear factors on the right of
@), this factor is of the form

X3+ + ew,

¢ being ag?th root of unity. We assert that this is a primitigéth
root of unity. For if not, it is either 1 or a primitive gth roof unity.
Sinces{w € L, it would then follow that{w € L. Therefore we get

Q= L(e).

LetT be the prime field contained ih. Consider the field ().

Let I'(¢) contain theg’th but notg’*! roots of unity. This integer
certainly exists. For, il has characteristic zero = 2. If L has
characteristicp (and this is diferent fromq, from (@)), thenI'(s)
containsp’ elements wherd is the smallest positive integer with
pf = 1( modd?). If g is the largest power af dividing pf — 1 then
I'(¢) contains they’th, but not they’** the roots of unity. 147

Let p be a primitiveq’+1th root of unity. Therp satisfies a polyno-
mial of degreeq(irreducible) over.. ThusT'(p) is of degreeq over
I'(p) N L. Now, p being a primitiveq’*'th root of unityp9 is aq’th
root of unity and so is contained Ir{¢). But all the roots ofx — p¢
areg“+'th roots of unity. Thusd — p9 s the irreducible polynomial
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of p overI'(¢). Hence
I'(p)

I(e) T(p)NL

.

and (o) : T'(e)) = q = (I'(p) : (T(p) N L).

If T is a finite field, thenI{(0)/T is cyclic and it cannot have two
distinct subfield$ (¢) andI'(p) N L over which it has the same degree.
Sincee ¢ L, it follows thatT'() andI'(p) N L are distinct and sd;
has characteristic zero. In this case it odd,I'(0)/T is cyclic and
the same thing holds. Thug= 2. We know, then that = 2. If i
denotes a fourth root of unity, then

Q = L().

6) Form above, it follows that = 2! for somet andK does not contain
the 4th root of unity. Nowt = 1, for if not, lett > 1. LetM be a
subfield ofL such thatil : M) = 2. Then Q : M(i)) = 2 and, by
above consideration$/(i) cannot contain 1 which is a contradiction.
So

K(i) = Q.

We shall make use of this theorem in the next chapter. o

6 Kummer extensions

We now study the structure of finite abelian extensions ofld kieWe
use the following notation:-

kis a field of characteristip, not necessarily o.

nis a positive integer not divisible byif p # o, otherwise arbitrary.

a, the group of non-zero elementslofA generic element af will
also be denoted, following Hasse and Witt,day
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a" is the group of nth powers of elementsaof
w, a subgroup ofr containinga” and such that

(w:a") < oo. (6)

Let k contain the nth roots of unityVe shall establish(l, 1) corre-
spondence between abelian extensionk aff exponent dividingh and
subgroupsv of « satisfying [6).

Let K be an extension field obtained frdaby adjoining tok the nth
roots of all the elements @f. We shall obtain some properties kof

Sincew/a" is a finite group, letly,..., A in w, form a system of
generators ofv moda". Then anyw € w is of the form

w=23. . 2"
whereay, ..., a are integers. Puhi = 47" i = 1,...,t. ThenA; is
uniguely determined up to multiplication by an nth root oftynwhich
is already ink. This means that

K = k(A1 .., A

149
Therefore
1) K/k is afinite extensian

EachA; is a root of a polynomial of the form" — ;. This polyno-
mial, by the condition om, is separable ovet. Also, X" — 4; splits
completely inK. Thus

2) K/k is a finite galois extension and is the splitting field of tioéyp
nomial

t
£ = [ [~ )
i=1

over Hx].

Let us denote bw the group generated by, ..., At anda. LetG
denote the galois group &f/k. In the first place,
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3) A/ = wjen. (These are isomorphic groups)

Consider the homomorphisa — A" of A into itself. It takesy into
a". The kernels il anda are both the same. Sinceis taken to
w by this homomorphism, it follows that/a ~ w/a". Incidentally,
therefore A/a is a finite group.

We shall now prove the important property,

4) G is isomorphic tav/a".
(This proves thaK/k is a finite abelian extension.)
In order to prove this, consider the 'pairingt, A) of G andA, given
by
(o, A) = AF7, (7)
150 o € G, A € A. Because of definition oA,
An
A = =1
(O—’ ) (An)(r

Thus ¢, A) is an nth root of unity. Also,

A A A A A
(O—T’A):A”T:F:(F) = A - (@A) (A
Furthermore,
AN A N
(o, AN) = = = (o, A)(o, A).

(ANA)T ~ AT AT
Thus ¢, A) defined by[(F7) is a pairing.
Let G, be the subgroup d& consisting of alb- with (o, A) = 1, for
all A. SinceA is generated by, Ao, ..., A, @ We get

Aj = Af—.

ButAj,..., A generatK. Therefored = g7 for all 8 € K.

By galois theoryg = 1. ThusG, = (1).

Let A, be the subgroup of alh with (o, A) = 1, for all 0. For
the same reason as beforg, = . Thus, by theorem on pairing; is
isomorphic toA /.. @) is thus proved.
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Observe, now, that sing€” c «, it follows theG is an abelian group
whose exponent divides

We will denoteK symbolically byK = k(~/w).

We shall now prove

Theorem 13. Let K/k be a finite extension with abelian galois group G
of exponent dividing n, then K k({/w) for a sub groupw c a with
w /N finite.

Proof. Let A denote the group of non-zero elementkokith the prop- 151
erty A" € « for A € A. Then, by considering the homomorphism
A — A", it follows that

A/a = w/an9

wherew = A". We shall prove thak = k(¥@). In order to prove this,
it suffices to prove that
G=~ W/eN. (8)

O

For, in that case, construct the figddd/w). Because of the properties
of K, it follows thatK > k(Vw). But, by the previous resultsk({w) :
k) = order ofw/,n = order ofG.

Hence

K = k(Vw).

We shall, therefore, provgél(8). _
Let G+ denote the dual dB. For everyA in A, define the function

xa (o) = AT

onG into A. SinceA" € a, it follows thatya (o) is annth root of unity.
Also,

A A[(AY A A
XA(O_T):AUT:F AT :F'F:XA(O')'XA(T)

so thaty, is a character oB.
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Let y be any character db. Since the exponent d& dividesn,
x"(0) = 1 for all . Thereforey (o) is an nth root of unity and hence is
an element ok. Also, sincey is a character ob,

x(o7) = x(o)x(7)

which equalsy(o) - (x(7))?. Thusy(o) is a one cocycle and, by theo-
remld,

x(o) =B+
for B € K. But (y(0))" = 1 so that
ﬂn — (ﬂﬂ)O‘

for all o or 8" € a. This means, by definition ofthatﬁ €A.

Consider the mapping — ya of A into G*. This is, trivially a
homomorphism. By above, it is a homomorphism onto. The kevhe
the homomorphism is set of for which y (o) = 1 for all o-. That is

A=A7

for all o. By galois theoryA € a. But every element i satisfies this
condition. Thusy is precisely the kernel, and

A =G

SinceG is a finite abelian groupg; ~ G* and our theorem is com-
pletely proved.
We call a finite abelian extensidf/k, aKummer extensioif

1) k contains the nth roots of unity 1 n, if p(# o) is characteristic of
K,

2) K/k has a galois Galois group of exponent dividimgvhat we have
then proved is

Theorem 14. The Kummer extensions of k stand(inl) correspon-
dence with subgroups of & with w/,n finite.
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7 Abelian extensions of exponenp
We had introduced earlier the operat#rwhich is defined by
Px=xP-x

Let k be a field of characteristip and denote bk* the additive
group ofk. Thena — P« is a homomorphism dk* into itself. The
kernel of the homomorphism is precisely the set of elemants, ithe
prime field of characteristip, contained irk.

If @ € k, we denote by%, a root of the polynomiakP — x — a.

Obviously% is p valued. Also,

a+p B )

7 27

Let us denote by?k*, the subgroup dk* formed by elements?a,
a € k*. Letw be a subgroup df* with the properties,

k* > w> 2kt

w/ o+ 18 finite.

Let K be the extension field d€, formed by adjoining tk all the
elements%, fro @ € w. We denote

K = k(%).
We then obtain in exactly the same way as before
1) K/kis a finite abelian extension.
2) The galois grougs of K/k is isomorphic withw/ g+ .

3) Gis an abelian group of exponept For the proofs, we have to use
additive, instead of multiplicative, pairing and the prapedd).
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Suppose, now, on the other hakdk is a finite abelian extension ofi54
exponentp, wherep is the characteristic df.

Then
w

)

wherew is a subgroup ok* with w/22k* finite. For the proof of this,
we have to use additive instead of multiplicative, cohorggloFor, let
G be the galois group ok/k andG* its character group. Denote, by
A, the additive subgroup df* formed by elementd with A € k*.
Denote, byw, the groupZA. Then

K = k(

A = W) pke

Definey (o) by
xa(o) =A-A7.

Then
P(a(0)) = PN - (PN)).

But, ZA € k* by definition. HenceZ?(ya (o)) = o.
Therefore,ya(o) is an element of". The rest of the proof goes
through in the same way and we have the

Theorem 15. If k has characteristic g 0, the finite abelian extensions
K/k of exponent p stand in(A 1) correspondence with subgroupsof
k™ such thatw/ K" is finite, and then K= k(3).

8 Solvable extensions

We propose to study now the main problem of the theory of algeb
equations, namely the ‘solution’ of algebraic equationsdulicals

155 k will denote a field of characteristig,(p = oor p # 0), Q will be its
algebraic closure ama ny, ny, . . . integers> o which are prime ta, if k
has characteristip # 0, otherwise arbitrary. An element € Q will be
said to be a@imple radicaloverk if " € k, for some integen. k(w)/k
is then said to be simple radical extensiork(w)/k is clearly separable.
If wis arootofx? — x—a, for ac k, w is called asimple pseudo radical
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overk.k(w)/k is apseudo radical extensioand is separable. In fact, it
is a cyclic extension ovek. This situation occurs, only i # o.

An extension fieldK/k is said to be @jeneralized radical extension
if it is a finite tower

k=KocKicKyc---cKpn=K

whereK;/K;j_1 is either a simple radical or a simple pseudo radical ex-
tension. Every element K is called a generalized radical A typical

element would be
n n as
a+ Zlap+— +.
\/ P

Clearly,K/k is a separable extension. A generalized radical exten-
sion is called aadical extensiorif K;/K;_; is a simple radical extension
for everyi. A typical element oK would, then be

”%;al + Rlag+---.

Let f(x) be a polynomial irk[X] and let it be separable. L&t be
its splitting field. ThenK/k is a galois extension. The galois group
G of K/k is called thegroup of the polynomial (). The polynomial
f(X) is said to besolvable by generalized radicalf K is a subfield 156
of a generalized radical extension. It is, then, clear thatrbots of
f(X) are generalized radicals. In order to prove the main timeaieout
solvability of a polynomial by generalized radicals, wetfypgove some
lemmas.

Lemma 1. Every generalized radical extension is a subfield of a gener-
alized radical extension which is galois, with a solvabléogagroup.

Proof. Let K/k be a generalized radical extension so that
k=KocKic---cKp=K,

whereK;/K;_1 is a simple radical or simple pseudo radical extension.
LetK; = Ki_1(wj). Then eithercui” € Kj_; for somen; or Zw; € Ki_;.
Let (K : k) = n. PutN = n, if k has characteristic zero; otherwise, let

n=N-p%



136 6. Special algebraic extensions

a=>o,(p,N) = 1. Letp be a primitive Nth root of unity. m|

Let Ly = Ko(p). Thel1/K, is a simple radical extension. Since
K1 = Ko(w1), putLy = Koo, w1). ThenL; is the splitting field of the
polynomial kN —1)(x" —a;) or (xXN-1)(#x—a;) depending on whether
w1 is a simple radical or a simple pseudo radical. In any chsgis
a galois extension. Furthermore

Lo = Li(w1)

so thatL,/L1 is cyclic, since, whem; is a simple radicall.; contains
157  the requisite roots of unity. Lety, ..., o, be the distinct automorphisms
of Ly/Kg. Put

¢
f() = | Jx®-a5),
i=1

if wy is a simple radical withu,? = a, and

l

) = | [(2x-a),

i=1

if wy is a simple pseudo radical witl?w, = ap.
Thenf(X) is a polynomial irk[x]. Let L3 be its splitting field. Then
L3 is galois overk. Also, Lz is splitting field of f(X) over L3 so that
Lz/L, is either a Kummer extension or else, an abelian extension of
exponentp. In this way, one constructs a galois extensionf k such
that
Lo=kclLiclyclzc---CLm1CT=VLnp,

wherel/Li_; is either a kummer extension or an abelian extension of
exponentp. Clearly, Lij/Li_1 and, henceT/k is a generalized radical
extension. LeG;,i = 0,1,2,..., mbe the galois group of/L;. Then

is a normal series. Further, by our constructi@®y,,/G; is the galois
group ofL;/Li_; and hence, abelian. Thus,is a solvable group. The
lemma is thus proved.
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Lemma 2. If K/k is a finite solvable extension, then K is a subfield of a
generalized extension over k.

Proof. Let G be the galois group dk/k andG solvable. Letn be the
order of G and put
n= pN

with the same connotation, as before. pdie a primitive Nth root of 158
unity andL = k(o). ThenL/k is a simple radical extension. L&t be

a composite oK andL. ThenM/L is a galois extension with a galois
group which is isomorphic to a subgroup®fand hence, solvable. Let
G, be the galois group dfl/L and let it have a composition series

Go2G1D---2Gp=(e.
O

Then Gj/Gi,1 is a cyclic group of prime degree. Léf, = L,
L1,...Lm = M be the fixed fields 065, G, . . ., Gy, respectively. Then
Li/Li_1 is a cyclic extension of prime degree. Sirige; contains the
requisite roots of unityl; is a simple radical or a simple pseudo radical
extension ofL;_;. ThenM/k is a generalized radical extension and our
lemma is proved.

We are, now, ready to prove

Theorem 16. A separable polynomial (k) € k[X] is solvable by gener-
alized radicals if and only if its group is solvable.

Proof. Let K be the splitting field off (x) and G the galois group of
K/k. Supposef(X) is solvable by generalized radicals. Thknc L
whereL/k is galois and by lemmi 1, has solvable galois grblup_et
G, be the galois group df/K ThenH/Gg is isomorphic tds and soG
is solvable. m|

Let, converselyG be solvable. Then, by lemnid &, is contained
in a generalized radical extension andf¢g) is solvable by generalized
radicals.

We can easily prove 159
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Corollary. A separable polynomial (K) € k[x] is solvable by radicals
if and only if its splitting field has a solvable galois groufpoder prime
to the characteristic of k, if gierent from zero.

Letk be a field. The polynomial
f(X) = X" = xo XML+ xox™ 2 4 (=) X,

wherexa, ..., Xn are algebraically independent overis said to be the
general polynomiabf the mth degree ovekt. It is so called, because
every monic polynomial of degrem overk is obtained by specializing
the values ofkq, ..., xmto beink. LetL = K(Xq,..., Xm). Letyi,...,Ym
be roots off (x) overL. Then

f() = (x=y1) -+ (X = Ym)

andys,...,Yym are distinct. The splitting fiel&(ys, ..., ym) of f(X) over
L is a galois extension whose galois group is isomorphigtoHence,
the general polynomial of the mth degree okdias a group isomorphic
to the symmetric group om symbols.

But,S, is not solvable, ifm > 4, so that in virtue of theorem L6, we
have the theorem dibel

Theorem 17. The group of the general polynomia(x) of the mth de-
gree is isomorphic to the symmetric group, 8n m symbols and hence,
for m> 4, f(x) is not solvable by generalized radicals.

We shall now explicitly show how to obtain the roots of a payn
mial of degree< 4 in terms of generalized radicals.

Let f(X) be a general polynomial of degrezoverk and letK be
the splitting field.K/k has the groufsm,. Letys,...,ym be the roots of

f(X). Put
D= [o-w)
i<j
ThenD is fixed under all permutations I8, and, henceD € k.

If we assume that the characteristic lofs # 2, thenk(VD) is a ga-
lois extension ok and K/k( VD) has the galois group isomorphic to
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the alternating group om symbols. D called thediscriminant of the
polynomial f(x).
Let us, first, consider the general polynomial of the secagtat

f(X) = (X=y)(X=¥2) = X2 — XX+ Xo.

Then
Y1+ Y2 = X1, Y12 = Xo.

Suppose, now, thathas characteristi¢ 2. Then
D = (1 - ¥2)% = (Y1 + ¥2)? — dy1y2 = X — 4xe.
Also,y1 + Yo = X1,y1 — y» = = VD so that

X1+\/6 Xl—\/B
y1= 5 V2= >

andK = k(D) is the splitting field off (x) and is a radical extension.
Let, now,k have characteristic 2. Theq # o, sincef(X) is separa-

. . X
ble. Putx;x instead ofx. Then the polynomiak? — x + “ has roots)ﬁ

X2 X1
. . X
and%. But this is a normal polynomial so thatif= X—2 then 161
1 12

—X/1 —X/l+x
Y1 = 19,3/2— 15 1

and thusk(i) is a pseudo radical extension and is splitting field of
f(x).

We shall now study cubic and biquadratic polynomials.

Let, first,k have characteristie: 2 or 3. Letm = 3 or 4 and

f(X) = X" = xoxX™ 4o (1)

be the polynomial of the mth degree whose rootsyase. ., ym.

X1 . .
If we put x + L instead ofx, we get a polynomial whose roots are

X . .
Y1 — El e Ym— El and which lacks the terms "1,
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We shall, therefore, take the polynomiflx) in the form
f(X) = X"+ XM + L+ (= 1) X
If y1,...,Yym are the roots, then

Yi+Y2+...+Ym=0.

Also ,Dm = [1(yi - yj)z. A simple computation shown that

i<j
D3 = —4% - 2753
and

Dy = 16X3%4 — H5X5 — 1285X5 + 144%X5%
—27%3 + 256%;.

If K is the splitting field off (x) overL = k(xq, ..., Xm) thenL( VD)
is the fixed field of the alternating grouls,, and L(VD)/L is a radi-
cal extension. In order to study the extenskfi( \/5), let us, first,
take the casen = 3. The symmetric group on 3 symbolS;, has the
composition series

S3D>A3D (e)

K/L(VD) is thus a cyclic extension of degree 3. lgebe a primitive
cube root of unity and leM = L(VD, p). LetN = KM be a composite
of KandM. ThenKM/M has degree 1 or 3, accordingass in K or
not. In the first caseM = K. In the second casé&M/M is a cyclic
extension of degree 3 ovét and M contains the cube roots of unity.
ThusKM = M({/w), for somew € M. In order of determine thie, we
use Lagrange’s method.

KM is the splitting field oveM of the polynomialx® + xox— x3. Let
V1, Y2, Y3 be roots of this polynomial. Put

W =Y1+pYs +p%Ys
W' = Y1+ p?Ya + pYa.
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27 . .
Thenw?® = S+ 3VD(p - 2). Changingp into p? we getw’s.
Hence

27 1
w zpai/?X3+3\/5(p— E)

and we have a similar expression of. Herea > o. In order to de-
termine_a we use the fact thabw’ = —3%; and so, choosing the root
of unity o2 for w arbitrarily, the root of unity in the expression fof is
uniquely determine. Now

Y1+Y2+Y3=0
Y1+ pYy2 +PZY3 =w
Y1+ p%Y2 + pys = o

11 1
1 p p?
1 0% p

is non-singular, the values gf, y», y3 are uniquely determined - M is 163
a radical ofL and contain.
Consider, now, the polynomial of the fourth degree

and since the matrix

f(X) = X + %X° — XgX + Xa

whose roots argy, Yo, Y3, Ya With y1 + Yo + Y3+ Y4 = 0. The galois group
of the splitting fieldK/k is S4. This has the composition series

S4D>A4DBsDCyD (6.

Let Ky, Kp, K¢ be the fixed fields af4, B; andC,4 respectively. Now
Ay is the alternating grouB, the group consisting of the permutations

(1), (12)(34) (13)(24) (14)(23)
andCy, is the group of order 2 formed by

(1) (12)(34)
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Ka = k(VD) and is of degree 2 ovée Now Ky,/K, is of degree 3
and is cyclic. Henc&}, = K4(0) whered € K is an element fixed b,
but not byA4. Such as elements, for instance, is

01 = (Y1 + Y2)(Y3 + Ya).

0, has 3 conjugates, 6,, 63 obtained frony, by operating or¢,, by
representatives of cosets&f/B4. Thus

02 = (Y1 + Y3)(Y2 + Ya)
03 = (Y1 + Ya)(Y2 + Y3).

Consider the polynomial

¢(X) = (X = 1)(X = 62)(X = 63).

It is fixed underA4 and so, its coficients are irk,. A simple com-
putation shows that

P(X) = X3 — 2% + (%5 — AXg)X + X5.

¢(x) is called thereducing cubicor the cubic resolvent By the
method adopted for the solution of the cubicpifs a primitive cube
root of unity andM = Kj(p), thenKy,M, the composite, is a radical
extension ok in which 8y, 85, 85 lie.

Kc/Kyp is of degree 2 and sk = Kp(a) whereq is fixed undemB,,
but not byC4. such as element is

a=Y1+Yo

Now a? = (y1 +¥2)® = —(y1 + Y2)(¥3 + Ya) = —61. ThusK; =
Ko(v—=61). Hence, ifKyM = Kg, thenKgy(a) is a radical extension df
containinga. Put now

T = Ky(a,B)

wheres = y1 +y3 = v/—63. ThenT is a radical extension dfcontaining
K. The indeterminacy signs in taking the square roots&fand—63
can be fixed by observing that

(Y1 + Y2)(y1 + Y3) (Y1 + Ya) = Xa.
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we now have

Yi+Y2= V=01,Y3+Ya=—+-01
Yi+Y3= V-02,Y2+Ya=—+-02
Y1+Ya= N-03,Y2+Yy3=—+-03.

for whichyy, y», y3, Y4 can be obtained. We have, hence, proved 165

Theorem 18. If K has characteristict 2 or 3, then the cubic and bi-
quadratic polynomials over k can be radicals.

Let us, now, assume thiathas characteristi®. Letx3+ Xy X2 + Xo X+
X3 be a cubic polynomial ani, its splitting field. K/k has the galois
groupSs. LetL be the fixed field.K/k has the galois groufs. Let L
be the fixed field oAz. Then

L = k(VD)

where
D = (y1 — ¥2)2(y2 — ¥3)2(¥s — y1)2.

K/L is now a cyclic extension of degree 3 and sikd®s character-
istic 3,K = L(w), where

w3 —w—a=0
for somea € L. ThusK is a generalized radical extension. We shall
now determinev anda and therefromy;, y» andys.
In order to do this, we have to consider two cases,= o, and
X1 # 0.
Let, first,x; = 0. Theny; + Yy, + y3 = 0. Let o be a generator of the
galois group fak/L and let notation be so chosen that

Y1 = Y2, Y5 =VY3,¥3 =VY1.

SinceSk/Ly1 = y1 +Y] + y‘l72 = 0, by Hilbert's theorem, there is.&
in K such that
Y1 = A7 — A
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Also 166

X2 = Y1Y2 + Y2Y3 + Yay1 = Z(/V — DT =A%) = (A + A7 + 272,

Sincex, # o (otherwise, polynomials is not separable), we see that
Xp = —t2, for somet € L. The polynomial, therefore, has the form

X3 — t?X + Xa.

Put nowtx for x. Then the polynomiak® — x + x3/t> has root%,
Y2 Y3

T Letw = x3/t3. Then

w w
—, y2:t_

P P
and thus the roots are all obtained.
The indeterminacy in the sign bfloes not cause anyficulty; for,

if we use t) instead oft, then, observing tha{% = % we see that

w
y1 =t +1, y3:t§+2t

—W —W —W
1= —tﬁ,)@ = _tﬁ -ty = _tﬁ +1

so thaty, andys get interchanged.
We now consider the casg # o.
Putx + ainstead ofx. Then the new polynomial is

X2+ XX + X(Xo + 2X18) + X3 + Xoa + @° + &

Choose a0 thatx, + 2x;a = 0. For this value of gu = X3 + Xoa +
a’ + a° # o; for, otherwise, the polynomial will be reducible and the
roots areo, 0, —x;. The roots of this new polynomial ayg — a, y» — a,
y3—a

Let now%( be written forx, then the polynomial is reduced 18 +

X 1 . . 1 1
A+ = Weareinthe previous case. The roots, now-are—, ,
I yi—a y2—a

X 1
I -t2= 2L telLandy = —, thenK = L(l) and the roots
y3—-a 7 ut3 P
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Y1, Y2, y3 are given by

1 1
y1=a+t—L,y2=a+—y3=a+
E@

t+t5 2t+t

Since the characteristic is 3, the biquadratic polynonaalloe taken
in the form
X+ XX + XgX + X

The proof is similar to the old one except th&f/K, is a cyclic
extension of degree 3 and &g = K, 2 ) for a suitablew in Ka. TO
find w, we use the foregoing method. One finds &b a generalized
radical extension.

We now consider the case whérdas characteristi@. In this case,
the cubic polynomial cab be taken in the ford + xox + x3. Lety, y»,
y3 be the roots. Then

Yi+Y2+Y3=0

and thereforg? + y3 = y3 and so on. Put

Vi Y2 Y
Y2 Y3 W1
o =R BN
Y1 Y2 V3
Then
oYY+ Y3) + Ya(Ys + V2) + Ya(Y2 + Y3)
w+w = =1,

Y1Y2Yy3

which shows thatv ¢ k, because ,then, it will be symmetric and equal
to «’. Thusk(w) is a quadratic subfield dk. A simple computation
shows thatw andw’ = w + 1 are roots of

X — X+ .

K/k(w) is cyclic of degree 3 and one uses the method of Lagrange
to obtain a generalized radical extension.



146 6. Special algebraic extensions

Suppose now thaf(x) is a polynomial of degree 4. Left(x) =
X* + x13 + XoX2 + X3X + X4. We have to consider two cases. Let, first,
X1 = 0. Then the rootys, Yo, Y3, Y4 satisfy
Yi+Y2+Yy3+Ys=0.

As before, put
61=(1+Y2)(Ys+VYa), 62=....,63="--"
The reducing cubic is then
@(X) = X> + XX + Xa.

Furthermored; + 6> + 65 = 0. Put now
7
w1, % b
O 63 01
Thenw is fixed underA4 but not underS,. Also Ky = k(w) is a
simple pseudo radical extension.

Now Kp/Kj is a cyclic extension of degree 3 and has to be solved
by Lagrange’s methods. Furthét; /Ky is of degree 2. Put now

¥ Y4
wp = ——, _
Y1Y2Ya Y1Y2Yy3

a)'lz
Then

w1+ = Y3+ Vs _ (a+y)lys+ya) _ 61
! Y1Y2Yy3Yya Y1Y2Yy3Yya X4

We assume # 0. Thend; # o. If we put

Xqw))
01 °

_ Xqwq
w2 =—,
61

wy =
169 thenw; + w) = 1 andK; = Kp(w2).
In similar mannerK = K¢(w3) where

X Y1
w3z =—, ——.
02 Y2Y3ya
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Suppose, how, thaty # 0. Then, as before, we construct the field
Kp. In order to exhibitK. as a pseudo radical extensionky, observe
thaty; + y» is fixed undeiCy4 but not undeiB,. Also

(V1 +Y2)? = (V1 + Y2)(¥3 + Ya + X1) = 61 + X1 (Y1 + Y2)

which shows that

K, = Kb(Y1 +Y2)‘

X1

Similarly, K = Kc(yl i y3).
X1

Our contentions are completely established.






Chapter 7

Formally real fields

1 Ordered rings

170
A commutative rincRis said to bevrderedif there is an ordering relation

> (greater than) such that
(1) foreveryae R, a>0,a=00r-a> o.
1) aabeRa>ob>0=a+b>o0ab>o0.

We may then defina > bbya—-b > o. If a> b, then, for anycin
R a+c>b+candifc> o,ac> bc.

If —a > o, we shall say a isiegativeand ifa > o, a said to be
positive We denote “ds negative” bya < o.

Let us denote, by, the set of elementa € Rwith a > 0. Then,
from the definition or ordered ring, we have

A)P+PcP
A)P-PCP
A3)P N (=P) = (0)
AP U (-P) =R

whereP + P denotes the set of elementsRdf the forma+b, a, b € P;
—P denotes the set of elements, a € P - P shall be called the set of

149
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non-negative elements of. R’he only element which is both positive
and negative is zero. Clearly, Kis a any subseP of R satisfying the
four conditions above again determine an ordeRon

Two elementsa, b € R, a # 0 # b are said to have theameor
opposite signsccording agb > oorab < o.

Let nowR be an ordered ring with unit element 1. lae¢ R, a # o.
Thena? = a-a = (-a) - (-a), so thata? > o for a # oin R. More
generally, every finite sum of squares of elementR isfpositive. These
elements will be contained in the set of non-negative elési@nevery
order ofR.

SinceR has a unit element 1 and & 1, we have 1> o. Also,
n-1=21+1---+1,ntimes son > o. This proves

1) An ordered ring with unit element has characteristic o

Leta # 0, b # 0 be elements oR. Thena or —a is positive.
Similarly b or —b is positive. Henceab or —ab is positive which
proves thatb # o. Therefore

2) An order ring is an integrity domain

We define an ordered field to be an ordered ring whose non-zero
elements form a multiplicative commutative group. We have

3) If k is an ordered field, its positive elements form a multigtive
group.
For, if X € k, X > 0; thenxx! > o. If —x"1 > 0, then—-xx1 > 0
which contradictsx 'x > 0. Thusx! > o and (3) is proved.
Supposer andR’ are two ringsR c R'. If R is ordered, clearly
R is ordered by means of the induced order. If howeRris
ordered, it may not be possible, in all cases, to extend tlisro
to R'. However, in case, it is always possible, namely

4) If K is the quotient field of an ordered ring R then the order in R
can be uniquely extended ta K

Proof. Let R have an order. It is an integrity domain. Any elements

. a
x € K is of the formx = B,a,be R, b # 0. Letx # 0. Thena # o.
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definex > o by ab > o. Then this defines an order K. In the first

place, the definition does not depend on the way expressed in the

form i‘. Supposex = %. Thenab' = ab. Sinceb’ # o, multiplying

both sides of this equality biyt', we have
ab-b2=a'by - b

[m}
’

. . i
Sinceab > 0, b2 > 0, b? > o, it follows thata’b’ > o, thatis— > o.

b/
. a
In order to prove tha#,..., A4 are satisfies, lex = b > 0 and
al
y= o > 0. Thenab > oanda’b’ > o.
by = ab’ +a'b
Y= "o

Now (aby + a’b)bly = ab- b’? + &b’ - b%. Sinceab > o, a'b’ > o,
b? > o, b’? > o, it follows that @by + a’b)bb’ > o or x+y > 0. In similar
mannerxy > o.

Supposex > oandy > oandx +y = o; thenx = o, y = 0. For, if

a c ad + bc
oY= a,thenabz o,cd>oandx+y = hd

ad+ bc = 0. Thusabd? + cdt? = o, which means that since all elements
areinR,ab=o0,cd=o0,i.e.a=0=CcC.

If x e R, thanx = a_b' If x = o, thenba? = o orb = o, so that the

order coincides oR Witafll the given order iR

That the extension is unigue can be, trivially, seen.

Since every ordered field has characteristic zero, it costaisub- 173
field isomorphic td", the rational number fielll has thus induced order.
We shall now prove

= 0, so that

X =

(5) T can be ordered in one way only

For, if Z denotes the set of integers, thHeérs the quotient field oE.
OnZ, there is only one order sinceloand hencen = 1+1+---+1 > 0.
Thus, all natural integers have to be positive.
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2 Extensions of orders

Hereafter, we consider ordered fieklSOur main task will be the study
of extensions of orders ikto extension field& of k. For this purpose,
we introduce the notion of positive formon k.

Let k be an ordered field. A polynom@ a.x g; € k, is said to be

anm-ary formoverk. It is said to beposmvelf g >0i=1...m An
mrary form is said to representak, if there existay, ..., am in k such

that
Z aa’ = a
i

Clearly a positive form represents zero, onlyif ..., am = 0. Let
k be an ordered field and/k, an extension field. We shall prove

Theorem 1. K has an order extending the order in k, if and only if,
every positive form over Kk is still positive in K.

Proof. We have only to prove the fiicient. To this end, consider the
family M of subsetgM,} of K having the following properties. Denote,
by S, the set of elements i of the form

> aa?,
i
a € kanda > oandq; € K. (¢; can be all zero also). O

Then
1) M,>S 2) Mg+ M, cM,
3) MM, c M, 4) Myn (—M,) = (o).

This family is not empty, sinc8 satisfies this condition. In the usual
way, we makeM a partially ordered set and obtain a maximalReWe
have now to show that

PU(-P)=K

and therP will determine an order. Let # o be an elements df which
is not inP. Define
Q=P-xP
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as the set of elements of the foamn xb, a, b € P. ObviouslyQ satisfies
@. To see thaQ satisfies (2), observe thataf— xb, c — xd are inQ
then

(@a—xh) + (c—xd) = (a+c) — x(b + d);

but a, b, ¢, d being inP which is an element oM, a+ ¢, b+ d are
in P. In a similar wayQ satisfies (3). ThaQ satisfies (4) can be seen
as follows: Leta— xbandc — xd be inQ with a, b, ¢, d, in P. Let
(a+c)—x(b+d)=0. Thenb+d=o. For, ifb+d # o, then

a+c 1
X = brd- (a+ c)(b+d)m

and so is an element &f, which is a contradiction. Hende+d = 0 175
and, thereforea + ¢ = 0. Sincea, b, c, d are all inP, it follows that
a=b=c=d=0. ThusQ € M. ButQ > P so that, by maximality of
P, Q = P. This means thatx € P or x e —P. The theorem is therefore
proved.

If T is the field of rational numbers amdis a positive integer, then

a. i .
nN=1+1+---+1.1Ifr= b is a positive rational number, then

a_ ab 1+1.--+1
bR
so that every positive rational number is a sum of squares Sftows
that every positive form over can be put in the forme + - - - + X2.
If kis an ordered field thely o? = 0, e; € k implies thata; = 0,

|
i =1,.... Onthe other hand, K has the property thaX, aiz =0,qi €k
impliesa; = 0, thenn = 1+1+- - -+1 # 0 so that k has characteristic zero.
Since every positive form ovdtis essentially of the typs? + - - - + X3,
we have the
Theorem 2. k is ordered if and only i} a,iz =0, aj = kimpliesa; = 0,

|

i=12,....

It is obvious that, if, in a field, )y @? = 0, with a1, as, ... not all

-1=> B2

zero, then
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176 B € k. A field in which -1 is not a sum of squares is calleda-
mally real field From theorenll2, it follows that formally real fields are
identical with ordered fields.

We shall, now, prove the following application of theorEm 1.

Theorem 3. Let k be a formally real field with a given order andxj,

an irreducible polynomial ink«]. Let a, b be two elements in k such that
f(a)f(b) < 0. Supposer is a root of f(x) in Q, an algebraic closure of
k. Then K= k() is ordered with an order which is an extension of the
given order in k.

Proof. Let f(x) be of degrea. Then every element ik(a) is a polyno-
mial in @ of degreen — 1 with codficients ink. If k(«) is not ordered
with an order extending that i then there is a positive form kwhich

represents-1. That s,

~1= ) alp(a)?,
i
g > 0 ink. This means that, iR[X],

1+ Z ailei(¥)? = Fw(X).

Since f(x) has degrea and left side has degree2n - 2, y/(X) has,
at most, the degree— 2. O

We now use induction on. If n = 1, these is nothing to prove.
Assume theorem proved far 1 instead of. Letg(x) be in irreducible
factor ofy/(x). Theng(x) has degree n— 2. Now

0<1+ Z ailei(@))? = f(@y(a)

0<1+ Z aifei(b))> = o)y (b).

177 Sincef(a)f(b) < 0, it follows thaty(a)y(b) < 0. Therefore, at least
one irreducible factor, sag(x), of ¥(X) has the propertg(a)g(b) < 0.
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If B8 is a root ofg(x) in Q, theng(8) = f(8) = 0. But by induction
hypothesisk(B) has an order extending the given ordekirHence

0=1+ Zaa{sm(ﬁ)}z >0,

which is a contradiction. Thus our theorem is completelywpdo
Suppose is an ordered field, let us denote, |y theabsolute value
of ae khy

0 ifa=0
laj =<{a ifa>0
-a ifa<D0.

It is then easy to prove that

[ab = |a] |b],
la+ bl <|al + |b|.

Let f(X) = X" + ayx™! + .- + &, be a polynomial ink[x]. Put
M = max(l|ai| +--- + |an|). If t # 0 € kand|t| > M, then

M) =l+at 4+ +at">0

which shows that" and f (t) have the same sign.
Suppose nowf(x) is irreducible and of odd degree. ThenMfis
defined as above,
f(M)f(-M) < 0.

Therefore, by theorelld 3, ff is a root of f (x) in an algebraic closure of
k, thenk(B) has an order extending thatkn

If a € kanda > 0, then the polynomiak? — a changes sign ik. 178
For, @+ 1)*> > aand-a < 0. Thus

((@+1)? - a)(0-a) < 0.

Therefore k(+/a) has an order extending the given ordekin



179

156 7. Formally real fields

3 Real closed fields

We had seen above that, under certain circumstances, anaéeld
k can be extended to a finite algebraic extensiok &fe shall consider,
now, a class of fields calleckal closedfields defined as followsk is
said to be real closed, if

1) kis ordered

2) k has no proper algebraic extensiinwith an order extending that
in k.

Before we establish the existence of such fields, we shadlimbt
some of their properties. We first prove

Theorem 4. For a formally real field k, the following properties are
equivalent:

1) k(i) is algebraically closed, i being a root of x 1.
2) kisreal closed.

3) Every polynomial of odd degree over k has a root in k andyever
positive element of k is a square in k.

Proof. 1 = 2. k(i) being of degree 2 ovek, there are no intermediary
fields, so thatk being ordered, ankl(i) being algebraically close#t,has
no ordered algebraic extension.

2 = 3. Supposef(x) is a polynomial of odd degree. Then it
changes sign ilk. Hence an irreducible factor df(x), also of odd de-
gree, changes sign la If « is a root of this irreducible factor, thesa)
is ordered with an order extending thatkinHencea € k. If a> 0 ink,
thenx? — a changes sign ik. Thus va € k.

3 = 1. The poof of this part consists of three steps. Firstlyreve
element ofK = k(i) is a square. For, let + bi be an element oK, a,

b e k. Put

a+ib = (c+id)?
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wherec andd have to be determined k Since 1, form a base oK/k
we get
?-d*=a 2cd=h.

Therefore, ¢ + d?)? = a® + b%. Buta® + b? > 0 in k and, since every
positive element is a square, there i a 0 in k such that

+d?= A
Solving forc? andd?, we have

A+a
=", 2=

But, sinced? = a2 + b?, it follows thatd > |a, 1 > |bl. Therefore

/l%a >0, /l%a > 0. Therefore

A+a de + A—a

2’ 2

C==

exist ink. The arbitrariness in the signs oandd can be fixed from the
fact that 2cd = b. O

This proves that every quadratic polynomial okehas a root in 180
K. For, if ax’ + bx + ¢ € k[x], then, in an algebraic closure ¢,

-b+ Vb2 - 4ac .
0= VT reits rootsd # 0). But Vb2 — 4ace K.

Thezasecond step consists in showing that every polynomikjxh
has a root irk. Let f(x) be ink[X] and letN be its degred\ = 2" - q, q
odd. We shall use induction an If n = 0, thenN = g, and so whatever
odd numbeq be, f(X) has a root already ik. Let us, therefore, assume
proved that every polynomial of degre& 2y, whereq' is odd, with
codficients ink has a root irK. Let f(x) be of degreeN = 2" - g, q odd.
Letas,...,a; be the distinct roots of (X) in an algebraic closure df.
Letu € k be an element to be suitably chosen later. Put

Aj() = Aij = i + o) +paiaji, =1, 10 # .
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Consider now the polynomial

a9 = [ ]0x= ).
i#]
. N(N - 1) el

This has degreez— =2"".q,q odd. Also, by every per-
mutation of the symbols,1..,t, the polynomial goes over into itself.
Thuse,(x) € K[X]. Since its degree satisfies the induction hypothesis,
for everyu € k, there is an andaj such thattjj(u) € K. Sincek is
an infinite field, there exist, ', u # p’ and both ink such that;j (u)
and;j(u") for two integers and j are inK. This means thatia; and,
hence,a; + aj are inK. The polynomialx? — x(a; + @j) + ajaj is a
polynomial inK[x]. By what we proved above, both its roots arekin
Thus our contention is proved.

The third step consists in proving that every polynomiakKify],
has a root inK. For, let f(X) be a polynomial inK[x]. Let o be the
generating automorphism &f/k. It is of order 2. Denote byf7(x)
the polynomial obtained fronfi by applyingo on the coéicients off.
Theny = f(X)f7(x) is a polynomial irk[X]. The second step shows that
¢ has a rootr in K. Furthermore ifx is a root ofy, a” is also a root of
¢, SO that eitherr is a root off(X) or o is a root of f(x).

We have thus proved theordin 4 completely.

We deduce from this an important corollary due Aetin and
Schreier

Corollary 1. If Qis an algebraically closed field and K a subfield such
thatl < (Q : K) < o, then K is real closed.

Proof. We had already proved thKt(i) = Q and thatk has characteris-
tic zero. By virtue of theorefl 4, it is enough to prove tKas formally
real. Every element dR is of the forma + ib, a, b € K. Also

a+ib = (c+id)?,
for c, din K, sinceQ is algebraically closed. Thus

a+b? = (c®+d)>
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Hence every sum of two squares and, hence, of any number of
squares is a square. Therefore

_12231.2

is impossible irK. By theoreniR, thereforés is formally real. o 182

This proves that the real closed fields are those and onlg tivbich
are such that their algebraic closures are finite over them.
We have again

Corollary 2. A real closed field has only one order.

For, the set of positive elements coincides with the set o&sep of
the elements of the field.

This shows that, if on ordered field has two distinct orderias
algebraic extensions which are ordered. It must be remerdtbat if
a field has only one order, it is not necessarily real closdud rational
number field, for example, has only one order.

Supposk is a real closed field. Then every irreducible polynomial
in k[X] is of degree one or two. Suppo$€x) is a polynomial irk[x] and
a, bin k such that

f(a)f(b) <O.

Then one of the irreducible factoggx) of f(X) must have the property
that p(@)p(b) < 0. If « is a root ofp(X), thenk(e) is ordered. But,
k being real closedy € k. ¢(x) must be a linear polynomial. Thus
¢(X) = Xx—a and

@-a)b-—a)<0

which means that lies betweera andb. Hence the

Theorem 5. If k is a real closed field, () a polynomial in kx], a, b in
k such that {a)f(b) < 0, then there is a rootr of f(x) in k between a
and b.

Furthermore, we had seen that there ishrin k depending only 183
on the coéicients of f(x) such thatf(a) has the same sign a8, n =
degf(X), if |a] > M. This shows
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All the roots of {x) that lie in k lie betweer:M.

Letk be a real closed field anf{x) a polynomial ink[x]. Let f’(x)
be its derivative. Pupg = f, ¢1 = f’. Sincek[X] is a Euclidean ring,
define, by the Euclidean algorithm, the polynomials

wo=A1 p1——-¢2
p1=RA2 p2——¢3

Yr-1= A ("I

It is then well-known thapy (X) is the greatest common divisor @f
andei. The sequencey, ¢1, . . ., ¢r Of polynomials ink[x], is known as
the Sturmian polynomial sequence

Let a € k be such thatpg(a) # 0. Theng,(a) # 0. Consider the
set of elementgg(a), ¢1(a),...,¢r(a) in k. The non-zero ones among
them have a sign. Denote, hya), the number of changes of sign in the
sequence of elements,

SOO(a')? QO]_(a), - Pr (a‘)a

in this order, taking only the non-zero elements. A very intgat theo-
rem due tdSturmis

Theorem 6. Let b and ¢ be two elements of k,<bc and¢g(b) # 0,
wo(c) # 0. Letw(b) and w(c) denote the number of changes of sign in
the Sturmian sequence for the values b and c. ThHahhas precisely
w(b) — w(c) distinct roots in k between b and c.

Proof. Sincegr(b) # 0, ¢r(c) # 0, we may divide all the Sturmian
polynomials by, (X) and obtain the sequengg(X), ¢1(X), ... ¢r_1(X),
or(X)(= 1). Nowp(X) has no multiple roots. For, if is a root of f(X)
of multiplicity t, then

eo(¥) = (x—)'y1(x), Ya(a) #0
e1(%) = tx = @)Y (¥) + (x = @)y (x)
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so that & — @)™ is the highest power of of — «, that dividespi(X).
Hence

@o(X) = (X — a)yr2(X)
1(X) = ty2(X) + (X = a)y3(X),

Wwo(X) andy3(X) being polynomials ovek. Note thaty(X) is not the
derivative ofgg(x). We shall drop the ‘bars’ on thg’s and write them
aseo, ¢1,...,¢r-1,¢9r = 1 andgg having no multiple roots. Note that
w(b) or w(c) is not altered by doing the above. O

The finite number of polynomialgg, ¢1, . . ., ¢r_1 have only finitely
many roots betweeb andc. By means of these roots, we shall split the
interval (b, c) into finitely many subintervals, the end points of which
are these roots. We shall study how the functiga) changes as ains
frombtoc.

1) No two consecutive functions of the Sturmian serigg(x), 185
v1(X), ..., ¢r—1(X) can vanish at one and the same point, inside the
interval (0,c). For, supposd < a < candyi(a) = 0 = ¢j,1(a),
O<i+1<r.Then

¢i(X) = Aigiz1(X) — ¢ir2(X)
so thatyi,2(@) = 0, and, so on, finally,(a) = 0. Bute,(a) = 1.

2) Inside any one of the intervals, each function keeps atantsign;
for, if any function changed sign then, by theorgm 5, theraldibe
a zero inside this interval.

Let ddenote an end point of an interval ahdndR the intervals to
the left ofd and to the right ofl, havingd as a common end point.

3) Suppose is a zero ofp; forO< 1L < r. Then

vi-1 =A@l — i1,

so thaty_1(d) = —¢111(d) and none of them is zero byl (1). Because
of (2), ¢_1 has inL the same sign as dt Similarly in R. The same
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is true ofy,1. Thus, whatever sigp; might have inL andR, the
function w(a) remains constant whengmes fromL to R crossing a
zero ofg, 0< 1 <.

4) Let nowd be a zero ofpg. Thend is not a zero ofp;. We have

po(x) = (x— d)y(X)
e1(x) = my(x) + (x - d)yra(x),

wherem is an integer> 0, ¥(X) andy1(X) are polynomials ovek,
andy(d) # 0. At d, ¢1(d) has the same sign a@gd).

In L, ¢p has the sign ofp(a) = (a — d)y(a). Buta—d < 0, so that
¢o has the sign ofy(a). In L, p1(a) has the same sign g@gd). Also
w(X) has no zero .. Hencep;(a) has the same sign g¢a). Therefore
in L, ¢o andg; have opposite signs. IR, exactly the opposite happens,
namelygg(a) = (a—d). ¢(d), a—d > 0. Hencepg and 1 have the
same sign irR. Thusw(a) is lessened by 1, wheneverceosses a zero
of po(X) and remains constant in all other cases.

Our theorem is, thus, completely proved.

We make the following remark.

Remark. Suppose is a formally real field and
fO)=x"+arx" 1+ +ay,,

a polynomial ink[x]. Let, as beforeM = max(l|as] + --- + |an).
Suppose there exists a real closed algebraic extersiohk with an
order which is an extension of the given ordekinf(x) can, then, be
considered as a polynomial IK[X] and, as seen earlief,(X) has no
roots inK outside the interval{M, M). The number of these distinct
roots is thus independent K.

We now prove

Theorem 7. Let k be an ordered field its algebraic closure. Suppose
there exist two real closed subfields K, &f Q/k with orders extending
the given order in k. Then K and*kare k isomorphic.
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Proof. 1) Let f(X) be a polynomial irk[x] and a;, ..., a; the distinct

roots of f(x) in K. Letaj,...,af be the distinct roots of (x) in
K*. PutL = k(ag,...,a) andL" = k(aj,...,e). Sincel/k is
finite, L = k(&) for someé in K. Supposep(X) is the minimum
polynomial of¢é in K[X]. Let &* be a root ofp(x) in K*. Thenk(¢) and
k(&*) arek-isomorphic. Ifp is this isomorphism, thepé = £*. But
k() = L = k(a,...,a). Hencepay, ..., pa; will be distinct roots
of f(X) in K*. ThusL* = k(¢*). Hence

L~L"

2) Supposer(X) is any polynomial ink[X], B1,...,8s its distinct roots

in K. Letg],...,B¢ be the corresponding roots K. Consider all
the positive quantities amom — S8j, i # j. Their square roots exist
in K. Lety(X) be a polynomial irk[X], among whose roots are these
square roots and Ié, ..., dq be the roots ofy(x) in K, ¢3,...,d;
the corresponding roots iK*. Then, from above,

F:k(ﬁl,...,ﬂs, 61,,69)2
= KBy, B Op,.-.,09) = F".

Let 7 be this isomorphism. Let notation be such that

(Bi) =B
7(6i) = 6;.

Supposgsi > Bj. Theng; — Bj > 0 so thaig; — Bj = 67, for somet.
Also, 7(B; - Bj) = B; —ﬂ}k But

(i - Bj) = 7(67) = 6.
Hences: —[3}* = 5;*2 > 0, which proves that
B > B;.

The isomorphismr betweenF andF* preserves order between thess
roots ofp(X) in K.
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3) In order, now, to construct the isomorphism betw&eand K*, we
remark that any such isomorphism has to preserve orderif Foirs
this isomorphism and > g in K, thena — 8 = 62 so that

oa-p) = o(6%) = (o(6))* > 0

so thatoa > o8. We shall, therefore, construct an order preserving
map which we shall show to be an isomorphism.

4) Leta be an element i, h(x) its minimum polynomial ovek. Let
a1, ...,a; be the distinct roots ofi(x) in K and let notation be so
chosen thatr,< a2 < ... < at. Leta = aj. Letay,...,a; be the
distinct roots ofh(x) in K* and, again, let the notation be such that

* * *
@] <ay<...<a;.

Define, nowo onK by
oa =q;.

Let « andpB be two elements oK and let f(x) be a polynomial in
k[X]n whose roots irK area, B, a + B, af, . ... Construct the fields
F andF* and thek-isomorphismr of F on F*. Sincer preserves
order of roots off (X), it preserves order of roots of the factor f)
which hasa as its root. Similarly of the factor having as a root.
Hence

(1) = o(@), 7(B) = o(B). (@ +p) =o(a+p)1(ap) = o(ap).

Henceo(a + B) = oca + 0B, o(¢f) = oa - oB. Thusc is an isomor-

phism ofK into K*. We have similarly an isomorphiseri of K* into

K. Thuso - o* is identity onK*. HenceK andK* arek-isomorphic.
i

Corollary. The only automorphism of K over k is the identity.

We shall now prove the theorem regarding the existence dof rea
closed fields, namely
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Theorem 8. If k is an ordered field with a given order ar(d, its al-
gebraic closure, there exists R, upto k-isomorphism, only one real
closed field K with an order extending the given order in k.

Proof. LetV be the family of formally real subfields 6%/k which have
an order extending that ik V is not empty, sincé € V. We partially
orderV by inclusion. Let{k,} be a totally ordered subfamily &f. Let
Ko = Uks. ThenKg is a field which is contained iWv. This can be

easily geen. By Zorn's lemma, there exists a maximal elefdantV.

K has an order extending the ordekiriro prove thaK is real closed, let
f(X) be a polynomial of odd degree oviér It changes sign. Therefore
there is an irreducible factor, also of odd degree, whictmgbka sign

in K. This factor must have a root i. Else, by theorenil3 there
exists an algebraic extension with an order extending thatThis will
contradict maximality oK. In a similar way, every positive element of

K is a square. By theorel X is real closed. IK andK* are two real
closed subfields with orders extending thak,then, by theorer 7, they190
arek-isomorphic. O

Suppose now thdt is a perfect field and, its algebraic closure.
Let G be the galois group d2/K. If G has elements of finite order (not
equal to identity), leK be the fixed field of the cyclic group generated
by one of them. Thentf : K) is finite and by Artin-Schreier theorem
this order has to be two. Thus any element of finite ordeg ihas to
have the order two. Furthermore, in this cdses, an ordered field.

On the other hand, ik is an ordered field anf, its algebraic clo-
sure, there exists, then by theorEn 8, a real closed subfigiilg say
K. This means thab has an element of order 2. Moreover no two ele-
ments of order 2 commute. Fordf 8 are of order 2 and commute, then
1, a, B, aB is a group order 4 which must have a fixed fielduch that
(Q: L) = 4. This is impossible, by Artin-Schreier theorem. Hence the

Theorem 9. If k is a perfect fieldQ its algebraic closure and G the
galois group ofQQ/k then G has elements of finite order if and only if k
is formally real. Also, then, all these elements have ordan@ no two

of them commute.
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4 Completion under an order

Let k be a formally real field with a given order. We had defined a
function|| on k with values ink such that

labl = [a] - |bl,
la+ bl < [al +[b].

This implies that
lal — bl < |a—bl.

Also a — |a] is a homomorphism df* into the set of positive ele-
ments ofk. The function|| defines a metric on the fiekl We define
a Cauchy sequende k to be a sequencey, ..., an,.) of elements ok
such that foreverye > 0 in k, there exists)y, an integer such that

| an — am < &,n,m> ng.
Obviously, ifm> ng + 1,
|am| = |@m — @no — @nol < & + [An, |,

so that all elements of the sequence frogronwards have a value less
than a certain positive element kf

A Cauchy sequence is said to bauall sequencdf, for everye > 0
in k, there is an integaty = ny(g) such that

|an|<e, n>ng.
The sum and product of two Cauchy sequence is defined as follow

(al,az, .. ) + (bl, bz, .. ) = (al + bl,az + b2, .. )
(a1, @p,...) — (b, b2,...) = (a1 + by, a2 + bp,...)

and it is easy to verify that the Cauchy sequencdsform a ringR and
the null sequences, an idedl of R. We assert that” is a maximal
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ideal. For, let &1,...) be a Cauchy sequence knwhich is not a null
sequence. Then there existd & 0 in k and an integen such that

|am|> 4, m>n. 1)

For, if not, for everye > 0 and integen, there exist an infinity of 192
m > n for which| ay, |[< €. Since @y, ...) is a Cauchy sequence, there
existsng = np(e) such that

|am1_amz|<3, m19m2>n0

Let mp > ng such thatay,| < . Then, for allm > mg,

|am| < [am — amy | + | amy < 2¢

which proves thatd, .. .) is a null sequence, contradicting our assump-
tion.

Let 1 be the unit element & Then the sequence,(...) is a
Cauchy sequence and is the unit elemerniRinLetc = (a,...) be in
Rbut not in%. Let mbe defined as if]1). Then = (0,0,...0,a;},
a;nld, ...)is also a Cauchy sequence. For,det 0 andn, an integer so
that

| anl - an2 |< &, N1, N2 > No.

Then

1 1 1

8, an,| |8nllan]

if ng, np > max(m, ng). Alsocc; = (0,0,0,...,1,1,...) which proves
thatcg = (1,1, 1,... (mod?). This proves that? is a maximal ideal
and, therefore,

|an2 - an2| < %a

1) R/% is a fieldk.

k is called thecompletionof k under the given order. For every
a € k, consider the Cauchy sequerge- (a,a,...). Thena — ais a
non-trivial homomorphism of into k. _

Sincek is a field, this is an isomorphisnk thus contains a subfield193
isomorphic tok. We shall identify it withk itself.
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(2) kis an extension field of k

We shall now make an ordered field with an order which is the
extension of the order ik. To this end, define a sequernce (ay,...,)
of Rto bepositiveif there is ans > 0 and amg = ng(e) such that

an,>&, N>nNp.
If b= (by,...)is anull sequence, then
bnl < &/2, n>m=me).

If p> maxm,ng), then
ap+bp>e/2

which shows that + b is also a positive sequence. The definition of
positive sequence, therefore, depends only on the residsge mod? .

Let P denote the set of residue classes containing the positive se
quences and the null sequence. We shall show Rhaétermines an
order ink

First, letc; andc, be two positive sequences. There exist> 0,
g7 > 0 and two integers; andn, such that

ap > Ey, p>ny,
bp > Eo, P> ng;

if p> max(y,ny), then
ap+bp >81+82,

so thatc; + ¢; is a positive sequence &+ P c P. In a similar manner,
PPcP.

Let nowc = (ay,...) be not a null sequence. Therand—c cannot
both be positive. For then, there exist’ both positive and integers
n’ such that

ap > &, p>n
-ap>¢&, p>n
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If p> max@,nt), then
O=ap-ap>e+& >0,

which is absurd. ThuB N (-P) = (0).

Suppose now that = (az,...) is not a null sequence. Suppose it
is not positive. Then-c = (—ag, —ay,...) is a positive sequence. For,
otherwise, for every and everyn,

—ap<eg  p>n
But, c being not positive, we have
ap<e p>n.
¢ being a Cauchy sequence, there exigta/ith
lap—agl <&, p,g>no.
Hence, ifp > max(g, n1),
[apl < lap — gl + |ag| < 2
which means that is a null-sequence. This contradiction proves that
PU(-P) =k
We therefore see that 195
3) k is an ordered field with an order extending the order.in k

We shall denote the elememat(...) in Eby a and write

a= lim a.

Nn—oo

Then, clearly, given any > 0, there exist$y such that the element
a - (an,) in k has all its elements, from some index on, less tham
absolute value. This justifies our notation. One clearly has

limay +limb, =lima, + by.
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lim a,. lim by = lim a4 + b,.
lima, .. an
- =lim —,
lim by ! b,

if (by, by, ...) is not a null sequence. _

If T is the rational number field, it is ordered and the complelion
under this unique order is called themal number field

This method of construction of the real number field goes liack
Cantor.

5 Archimedian ordered fields

Ordered fields can be put into two classes.
Afield kis said to bearchimedian orderedf, for every two elements
a, bink,a> 0,b> 0 there exists an integersuch that

nb>a

and, similarly, there is an integarwith ma> b.
We may state equivalently that, for evexy- 0, there is an integear
with
n>a

A field k is said to benon-archimediarordered if there exista > 0
such that
a>n

for every integen.
I', the rational number field is archimedian ordered. Consiutzw,
the ringI’ [X] of polynomials. For

f(X) =apX"+a X" 1+ +a,a0# 0

definef(x) > 0, if ag > O as a rational number. That this is an order can
be verified easily. Also the order is non-archimedian beeaus

X% +1>n,
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for every integen. This order can be extendedIt¢x).

This examples shows that an archimedian ordé&rdan be extended
into a non-archimedian order in an extension field whichaegcenden-
tal overk. That this is not possible in algebraic extensions is shoyn b

Theorem 10. If k is archimedian ordered and /K is algebraic with
an order extending the order in k, the extended order in K igimg
archimedian.

Proof. Leta be> 0in the extended order ig. Let f(X) = x"+a;x" 1+

.-+ ap be the minimum polynomial af in k[X]. Consider the quantities197
1-a,i=1,...,n. Theyareirkand sinc&k and is archimedian ordered,
there exists an integér> 0 such that

t>1-a,i=1,...,n.
We now assert that < t. For if @ > t, then
0=f(@)=a"+aa"t+... +a,

>a"+ (@ T+, H)A-1)

>a"+ (@ 1+, +1)(1-0a)=1,

which is absurd. Our theorem is proved.

We had already introduced the real number field. It is clearthi-
median ordered. In fact, the completion of an archimedialered field
is archimedian. We can prove even more, as shown by ]

Theorem 11. Every complete archimedian ordered field is isomorphic
to the field of real numbers.

Proof. Let K be an archimedian ordered field. It has a subfield isomor-
phic toT, the field of rational numbers. We shall identify it withit
self. Letk be the completion dt. Then

koT.
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In order to prove the inequality the other way round, Rebe the
ring of Cauchy sequences kand %, the maximal ideal formed by
null sequences. We shall show that every residue claBg#f can be
represented by a Cauchy sequence of rational numbers. foterket
¢ = (a1, a,...) be a positive Cauchy sequencekinSincek is archime-

198 dian ordered, there exists, for evargreater than a certam, an integer
A, such that
An<nag <1+ A4,

which means that

-
n

1
< -.
n

Am A .
Letd = (0,0,0,... ﬁm mm—:l) be a sequence of rational num-

bers. Lete > 0 be any positive quantity iR. There exists, then, an
integert such thatst > 1, sincek is archimedian ordered. Then, for
n>tandm,
An
2 - ;| <e

which shows that — d € %/, which proves thak c T.
We shall now prove the important

Theorem 12. The real number field is real closed.

Proof. We shall show that every polynomial which changes sigﬁin
has a root i i

Letb < ¢ be two elements df and f(x) a polynomial in[[x] with

f(b) > 0 andf(c) < 0. We define two sequences of rational numbers

bg, by, by, ... andcy, ¢y, Cy, . . . in the following way. Define the integers

Ao, A1, Ao, ... inductively in the following mannerdg = 0, and having

definedlg, A1, ..., An_1, An is defined as the largest integer such that

(c—b)a

f(b + Tn

We shall putb, = b + w and since we warb, to be an

increasing sequence, we shall, in addition, require that

An
— < A1+ 1.
2 n-1

)=>0.
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199
That such a sequence can be found is easily seen. Put now

c-b

Cn:bn+ 2n.

Thency, ¢, ... is a decreasing sequence
bSbnSbn+1SCn+1SCnSC.

Also (b,) and ¢,) are Cauchy sequences; for,

c-b
| Bea = bn I< onel
Furthermore, the sequenag ¢ by) is a null sequence. For,

c-b
Cn:bn: 2n

There is, therefore, am betweerb andc such that
a =limb, =limc,.

By definition of A, f(cn) < 0 andf(b,) > o.
Therefore

f(a) = lim f(bn) = 0, f(e) = lim f(cn) < O.

This shows thaf (@) = 0. Hencel is real closed.
We have the

Corollary. I'(j) is algebraically closed.

I['(i) is the complex number field. We have thus proved the ‘funda-
mental theorem of algebra’.

The algebraic closure df in T is called the field ofeal algebraic
numbers and is real closed






Chapter 8

Valuated fields

1 Valuations
200

Let k be a field. Avaluation on k is a function|| on k with values
in the real number field satisfying

(1) 101=0

(2) |lal>0,ifa#0
() labl=lal-|b]
(4) la+bl<lal+|b]

where_aand bare elements iR. It follows thata —| a | is a homomor-
phisms ofk* into the multiplicative group of positive real numbers. If
we denote by 1 the unit elementlqfthen

|11=1 2% |=|112=| 1]~ | 1]

so that] 1 |= 1. If Z is a root of unity, say an say ann th root of unity,
then

1=p"=lp]"
and sd p |= 1. Thus means that-1 |= 1 and so, fola € k,

|-al=lal.

175
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Also, sincea=a- b+ b, we get
lal|-|blca-Db].

A valuation is said to be trivial ifa|= 1 for alla # 0.
Two valuationd |; and| |, are said to bequivalentf for everya # 0
in k,

lali<1l=lal<],
lali=1=lal=1

201
It is obvious that the above relation between valuations isquiv-
alence relation. All valuations equivalent to a given véhraform an
equivalence class of valuations.
If || is a valuation then, for @ ¢ < 1,| 1 |°is also a valuation. We
shall now prove

Theorem 1. If |1 and||; are equivalent valuations, there exists a real
number ¢> 0 such that
lali=|al;

for all a € k.
Proof. Let us assume thdl is non-trivial. Then||, is also non-trivial.

Also, there exists & € ksuch that b 1> 1,| b |,> 1. Letae k, a# 0.
Then| a|; and| b |; being positive real numbers.

bl
lah=|bl

whereAd = Iogl_all' O
log | b1

We approximate to the real rmmb@rfrom below and from above
by means of rational numbers. Lﬁt < A. Then

m/n

lal> bl



2. Classification of valuations 177

. a" . . .
which means thatﬁ |1> 1. Sincel|; and||; are equivalent, this means

that

m/n
lal>bp".

In a similar manner, ip/q > 4, then
lal<|blp.

202
This means that i% -1 andap — A,then

lal=|blj.
Therefored = Iog|a|2. This shows tha*Ioglall = Iog|b|2'
| b|09|b|2 loglal, ~ log|bl,
Puttingc = Igg : b :1 and observing that > 0, our theorem follows.
2

2 Classification of valuations

A valuation is said to barchimedianif for every a € k, there exists an
integer n= n(a) (that is ne, ifeis the unit element dk) such that

lal<in].

(Compare this with archimedian axiom in ordered fields).

A valuation ofk which is not archimedian is said to lb@n-archi-
median We shall deduce a few simple consequences of these defini-
tions.

1) || is archimedian— there exists an integer n in k such that|> 1.

Proof. If || is archimedian, there existseak with | a |[> 1 and an
integern with | n |>| a|. This means that

[nl> 1



178 8. Valuated fields

Let|| be a valuation and, a rational integer so thah |> 1. Let aany
element ofk. If | a|< 1, then clearly a|< |n|. Let| a|> 1. Since
archimedian axiom holds in real number fields, we have aménte
m with

lal</n|-m.

203

If m = 1, there is nothing to prove. So let > 1. Thenm =| n |
logm
(1=
log|n|
m <| n “=| # |. Therefore

> 0). Letu be a positive integer greater thanThen

lal<in]-m</np*t
and our assertion is proved.
We deduce

2) || non-archimedian—| n |< 1, for every integer nin k.

This shows at once that

3) All the valuations of a field of characteristic p are non-droedian.

We now prove the important property

4) | is an non-archimedian valuation if and only if for every antki

la+bl< Max(al,|b]).

Proof. If || is a non-archimedian valuation, then for every integer
n,| n|< 1. Letm be any positive integer. Then

@+b"=a"+Ma™b+...+b"
so that

la+b|"<ja|™+|a™Yb|+...+|b™
< (m+1)Max(|al™|b|™).
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Takingmth roots and makingn — co we get
la+b|< Max(|al,| bl).
The converse is trivial, sinden |=| 1+ ---+ 1 |< 1. O
We deduce easily 204
5) If || is non-archimedian anfla |#| b |, then
la+bl=Max(allbl).
Proof. Let, for instance}a|>| b|. Then

la+b|< Max(al|bl)=|al

Alsoa=a+ b-Db, so that

lal< Max((a+bl,|b]).

But, since| a|>| b|,|] a+b|>| b]|. Thus| a|<| a+ b |and our
contention is proved. O

More generally, we have, ffa; [>| a; |, j # 1, then
|lai+ax+...aq =l a1 |.

In the case of non-archimedian valuations, many times,afmbled
exponential valuations used. It is defined thus: | is an non-archi-
median valuation, define the functigroy

|lal=-log|alp, a=#0.

This has a meaning sin¢a |[o> 0 fora # 0. We introduce a quantity
oo which has the property

0 4+ 00 = 00

00+ a= o0
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for any real numbea and
— =0

00
for any real numbea. Then|| satisfies
1) |10|= o

2) | alis areal number

3) labl=lal+|b]

4) la+bl|> Min(lal,| b]).

205 Then|1] = 0, |o| = 0 for a root of unityp and the valuation is trivial
if |a] = 0 fora # 0. For two valuationgl; and||> which are equivalent

laly = clalz,

¢)0 being a real number.

3 Examples

First, letI” be the finite field ofj elements. Every element bf satisfies
the polynomialxd—! — 1. Therefore, any valuation onT is trivial.

Let nowT be the field of rational numbers.

Let|| be an archimedian valuation dh It is enough to determine its
effect on the set of integers In There is an integan such thatn| > 1.
Let mbe any positive integer. Then

N=ag+am+---+ an,

logn
logm

wheret < [ ] 0 < a < m. Therefordaj| < g < mso that

In| < m(t + 1) max(1 |m").
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Replacen by n", wherer is a positive integer. Then again, we have

= logn = t
r(r— r
N <mr(r ogm +1)r max(1 |m[).

Makingr — oo, we get

logn
In < max(L [m{Bem).
This proves that, sinca| > 1,

logn

In < jmjlogm

and|m| > 1. 206

Now we can repeat the argument withand n interchanged and

thus obtain
logn

Iml < njlogm
Combining the two inequalities we get

login| _ log|m|
logn ~ logm’

Sincemis arbitrary, it follows that
m = m°

wherec > 0 is a constant. Obviously, the valuation is determined by
its effect on positive integers. From the definition of equivalenicis
equivalent to the ordinary absolute value induced by thquenbrder in
I.

Let now|| be a non-trivial non-archimedian valuation. It is enough
to determine its ffect onZ, the ring of integers.

Since|| is non-trivial, consider the sé¥ of a € Z with |a] < 1. #
is an ideal. For,

la < 1,]b < 1= |a+ b < Max(al, |b]) < 1.
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Also, if |a| < 1 andb € Z, then
labl = |a/|b] < 1.

Furthermore, ifab € %/, then|abl < 1. But|ab = |a||b| and|al < 1,
|b| < 1, since valuation is non-archimedian. Hefae< 1 which means
that? is a prime ideal. Thug = (p) generated by a primp. Since, by
definition of ', M < 1 & p/n, we have, ifn= p'-ng, (N, p) = 1,

Inl = |pl".
207 a
If we denotelp| by ¢, 0 < ¢ < 1, then for any rational numb%r, the
value is
a
5=

where%l = p”% where @,p) = 1 = (b, p) and A a rational integer.
This valuations is called thp-adic valuation

Thus with every non-archimedian valuation, there is asdedi a
prime number. Conversely, Igtbe any prime number and latbe any
integer,n = p*-ng, 1> 0, where @y, p) = 1. Put

In=[p* ,0<|p<Ll

Then|| determines a non-archimedian valuationToriurther, ifp
andq are distinct primes, then the associated valuations ageivedent.
For, if ||, and||q are the valuations, then

ldp =1 |ldg<1

We shall denote the valuation associated with a pririgy [|p. Then
we have the

Theorem 2. The ordinary absolute valuation and the p-adic valuation
by means of primes p form a complete system of in-equivaérdtions
of the rational number field.
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We shall denote the ordinary absolute valuation|by
Let us consider the case of a function fiéddover a ground field
k and letL be the algebraic closure &fin K. L is called thefield of
208 constantsof the function fieldK. The valuations orK that we shall
consider shall always be such that

la =0

for a € k. (We consider exponential valuation). Hence valuations of
function fields are always non-archimedian, since the pfieié is con-
tained ink.

Let, now,a be inL. Thena satisfies the equation

o + alan_l

+ oo+ an =0
whereay, ..., a, € k. If || is a valuation oK then
l™ > min(a|™ 2, .., 12)).

From this, it follows thate| > 0. Also, since l« is algebraic,
|| < 0. Hence for alkv € L

la] = 0.

Thus the valuation is trivial on the field of constants.

We shall consider the simple case whire- k(x), x transcendental
overk. HereL = k. Let|| be a valuation and lék| < 0. Let f(X) =
aoX" + -+ - + ay be ink[x]. Then

f(x) > min(x", [}, ..., |1)).
Therefore
f(X) = nx.
This means that, iR(X) = % is an element oK, then

IR()I = (degh(x) — degg(x))(IX).

We denote this valuation Hj,.
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Suppose now thak| > 0. As in the case of rational integers, con-
sider the subse? of k[x] consisting of polynomiald (x) with |f(x)| >
0. Then, since for everyg(x) in K[X], [¢(X)| > O, it follows that# is a
maximal ideal generated by an irreducible polynonp@t). As in the 209
case of the rational number field

IR(X)| = Ap(X)|

whereR(X) = {p(x)}ﬁ% whereA(x) and B(x) are prime top(x) and
A is a rational integer. If we denote, Wiy, this valuation and put

A = ordpxR(X), then
IR(X)| = cordgyx R(X)

wherec = [p(X)px) > 0. Every irreducible polynomial also gives rise to
a valuation of this type. Hence

Theorem 3. A complete system of inequivalent valuations ©f) ks
given by the valuations induced by irreducible polynomialk[x] and
the valuation given by the fiierence of degrees of humerator and de-
nominator of {x) in k(x).

4 Complete fields

Let k be a field and| a valuation of it. The valuation function defines
onk a metric and one can complétainder this metric. The method is
the same as in the previous chapter and we give here thesragtibut
proofs.

A sequenced;, ay, ...) of elements ok is said to be a Cauchy se-
quence if for every > 0, there exists an integar= n(e) such that

|an1_an2|<8 ,Ny, N2 >N,
Itis a null sequence if for every > 0, there is an integer such that

laml < &, m> n.
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The Cauchy sequences form a commutative Rand the null se-
guences a maximal ided’, therein. The quotierkt = R/# is called
the completion ok under||. The mappinga — (a,a,a,...) is an iso-
morphism ofk in k and we identify this isomorphic image wikhtself.

We extend tk the valuatiorj| in k, in the following manner. The real
number fieldl" is complete under the valuation induced by the unique
order on it. So, ifa € k, thena = (a1, ay,...), a Cauchy sequence of
elements ok. Put

lal = r![jgo [anl

That this is a valuation follows from the properties of lisin I.
Also, the extend valuation is archimedian or non-archimedaccord-
ing as the valuation ik is archimedian or non-archimedian.

For instance, if| onk is non-archimedian and

a=(ag,a,...)
b=(by,by,...)

are two elements df, then
a+b=(ag+by,ap+by,...)
and
la+ bl — Max(al, [bl) = lim (lan + bn| — Max(anl, [bnl))

which is certainly< 0,
k is thus a complete valuated field _
It may also be seen that the elementk afe dense ik in the topol- 211
ogy induced by the metric. _
Letc, + ¢ + c3 + -+ - be a series ifk. We denote by5, the partial
sum
Sp=C+C+:---+Cp.

We say that; + ¢, + --- + € + - - - IS convergenif and only if the
sequence of partial sungs, S», ..., Sy, ... converges. This means that,
for everye > 0, there exists an integer= n(¢) such that

ISy = Sml = [Cme1 + - + G| <&, mm > n.
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Obviouslycy, o, . .. is a null sequence ik.

In case the valuation is non-archimedian, we have the faligw
property:-

1) The series ¢+ ¢y + -+ + € + --- IS convergent if and only if
C1,Cp,. .. Is a null sequence

Proof. We have only to prove the fiiciency of the condition. Suppose
thatc, — 0; then, for largen andm,

ISh = Sml = [Cm+1 + Cmy2 + -+ - + Ci

< max(Cmsl, - - -, ICnl)

and so tends to zero. This proves the contention. m|

Note that this theorem is false, in case the valuation isiauetian.

Letk be a field and| a valuation on ita — |al is a homomorphism
of k* into multiplicative group of positive real numbers. K&fk) denote
this homomorphic image. This is a group which we callthkie group
of k for the valuation. Ifk is the completion ok by the valuation irk,
thenG(K) is value group ok.

Supposd| is an archimedian valuation. Thdnhas characteristic
zero and containk, the rational number field as a subfield. On is
the ordinary absolute value. Sinkeontaind’, the field of real numbers,
it follows that

1) G(K) is the multiplicative group of all positive real numbers.

Also, because of the definition of the extended valuatiofolibws
thatG(Kk) is dense in the grou@(k).

We shall now assume thits a non-archimedian valuation. We con-
sider the exponential valuation. Th&(k) is a subgroup of the addi-
tive group of all real numbers. We shall now prove

2) G(K) = G(K).

Proof. For, let 0+ a € k. Thena = (a1, ...) is a Cauchy sequence,
not a null sequence ik By definition,

laf = lim [an|
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Now a, = a, — a + a so that

|an| > min(a, — al, |al).

But, for n large,|a, — al > |al so thatja,| = |al and our contention is
established. O

G(K) being an additive subgroup of the real number field is either
dense or discrete. The valuation is then called dense aretisac-
cordingly. In the second case, there exisia k with smallest pos- 213
itive value|n| - |z] is then the generator of the infinite cyclic group
G(K) - m is called auniformising parameterlt is clear thatr is not
unique. For, ifu € k with |u] = 0, then|unr| = |z| andur is also a
uniformising parameter.

Consider ink the set¢ of elementsa with |a > 0.4 is then an
integrity domain. For,

la > 0,|b| > 0= |a+ bl > Min(|al, |b]) > 0.

Also |ab = |al + |b] > 0. We call & the ring of integersof the

valuation. Consider the sét of elementsa € k with |a] > 0. Then

% is a subset o’ and is a maximal ideal i@. For, ifa € r and

b e %, thenjab = |a + |b] > 0. Also, ifa € r but not in%/, then

la| = 0 and|a!| = 0 so that if% is an ideal i@ containing?, then

% =% or7 =r. We call%, theprime divisor of the valuatian
Since? is maximal,r/% is a field. We callr/? the residue class
field.

Exactly the same notions can be definedKole denote by’ the
ring of integers of the valuation so théat is the set ofa € k with
lal > 0.% is the maximal ideal in7, hence the set di € k with
lal > 0. Also ¢'/% is the residue class field. Clearly

YW =W Nr

We now have
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2)

3)

4)

5)

Everya e k(E) has the propertyaer(r)ora™ ¢ Z?/(@_).

This is evident since i ¢ 6’(67), la] < 0 so thata 1| > 0 and hence 214
alew ().

0(0) is integrally closed in ).

Proof. We should prove that every in k(k) which is a root of a
polynomial of the type" + agx™1 + -+ + @, a,...,a, € O(0), is
already in0'(©). For, suppose

"+a" 4+ +ay=o0

anda ¢ 0(0). Thena™ € Z(%). Therefore

1=—(aqat+aa2+ - +a™)

and so

0=|1 > min(ae™Y,...lane™) > 0
which is absurd m|
Every element v is the limit of a sequence of elementsdtand

conversely.

Proof. Leta= (as,...,an,...) be inﬁ_,al,...,an,... in k. Then, as
we saw earlier, for diiciently largen

lan| = |al.

But|al > 0 so thatia,| > 0. Thus, for stficiently largen, all a;s are
in . Converse is trivial.

We now prove O

There is a natural isomorphism &f/% on 6_’/@_.
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Proof. The elements of//% are residue classes+ %, a e r. We
now make correspond &+ ¢ the residue class+ %'. Thena+ %

is an element of//% . The mappinga+ % — a+% is a homomor-
phism (non-trivial) of /% into U/%/. Since both are fields, this
is an isomorphism into. In order to see that it is an isomanphof
O|% onto 0|%, leta+ % be any residue class /% . By (4)
therefore, given anil > 0, there exista € U with

la-a>N>0

ora-aec . If we then takea + %, thena + % is the image of
a+ % . This proves that the mapping is an isomorphism onto.o

(5) enables us to choose, lintself, a set of representatives 757@ ,
the residue class field. We shall denote this se#tgnd assume that
it contains the zero element &f. Also it has to be observed that, in
general,Z is not a field It is not even an additive group.

We now assume thaf is adiscrete valuation Let 7 in ¢ be a uni-
formising parameter. Then clearly

Y = ()
is a principal ideal. Lea e k. Then|al/|n| is a rational integer, since
G(K) is an infinite cyclic group. Pug|/|x| = t. Thenlar™! = 0. If
we call elementsi in k with |u] = O, units, then

a=mu

whereu is a unit.
Let Z be the set defined above aad U. Then

a=ay mod @_)
with ag € Z. This means that(- ag)z ! is an integer (irﬁ). 216

(@-ag)r ™t = ay(mod?),
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wherea; € Z. Then

a= ag + ayr(mod??)

In this way, one proves by induction that
a=ag+aum+ -+ amrm(mod)yy ™1

whereag, ay,...,am € #Z. Putby = ag + ayr + - - - + amm™.
Thena = bp(mod# ™1) which means that

a—by >m+1

Consider the series
bo + (by — bo) + (b2 — by) + -

Then, sincdm.1 — bm = amr™ L, we see thabm,1 — bm| increases
indefinitely. Hence the above series converges. Also, stecale-
ments are integers,

b=Dbg+ (by—bo)+ (b2 —by) +---

is an element of7.
Sincebg + (by — bg) + - - - + (b — bm-1) = b, it follows that

b = lim b,
m

Thus we have

a= lim by =ag+ayr+amm?+---
m—oo

By the very method of construction this expression fas anique,
once we have chose# andn.

If ae E, ant € ¢ for some rational integdr Hence we have
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6) Every element &n k has the unique expression

a, € Z andrin Oisa generator of?. tis a rational integer.

If t > 0, we shall call

-1
h@) = > an"
n=-—t
the principal partof a. If t < 0 we puth(a) = 0. Clearly,h(a) is an
elementirk. Alsoa-h(a) € 0.

We now study the two important examples of the rational numbe
field and the rational function field of one variable.

Let I" be the field of rational numbers. We shall denote|hythe
ordinary absolute value and jy the p-adic value forp, a prime. If
ais an integera = p'ny, (p,ny) = 1.
We put

lalp = Alog p

and
|alee = absolute value of a.

It is then clear that each of the non-archimedian valuat@fi is
discrete. Let us denote by, the completion of" by the archimedian
valuation and by, the completion of" by the p-adic valuationI'y,
is clearly the real number field.

If O, denotes the set of integersIof and# the prime ideal of the
valuation then

Y =(p)

Asetof representatives 6f, mod % is given by the integers @,2, 218
.., p—1as can be easily seen. Hence, by (6),
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7) Every ac I'p is expressed uniquely in the form

8)

a= ) ap"

n=—

whereg; =0,1,2,...,p- 1.
The elements o, are called thep-adic numbers of Hensel

As before, we denote, by,(a), the principal part of at p. Clearly
a - hp(a) is ap-adic integer.

Let abe a rational numbela € Up & [alp > O, that isa = tE)
(b,c) = 1 andcis prime top. Since only finitely many primes divide
b andc, it follows thata € U}, for almost allp, that is except for a
finite number ofp. Hencehp(a) = O for all except a finite number of
primes. Hence for any a
> hy(@)
p

has a meaning. Als@ — hp(a) is a rational number whose denom-
inator is prime top. Hencea — }; hy(a) is a rational number whose

p
denominator is prime to every rational integer. Hence

For every rational number a

a- )" hy(a) = 0(mod1)
p

This is the so-callegartial fraction decompositiorof a rational
number.

Let now k be an algebraically closed field atd = k(x) the field
of rational functions of one variable. All the valuations are non-
archimedian. Every irreducible polynomial kffX] is linear and of
the formx — a. With everya € k there is the valuatioil, associated,
which is defined by

|f(x)|a =4,
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where f(x) € k[x], f(X) = (x— a)'¢(X), p(a) # 0. If we denote by
|l the valuation by degree df(x), then, forf(x) € k[X],

[f (Xl = —degf(X)

Let K5 andK,, denote the completions, respectively,kofat ||; and
llo. If 5 and@,, are the set of integers &, andK.,, %, and %,
the respective prime divisors, then

1
Ya=1{x-ah T ={ ).

Itis clear, then, that,/ %3 andU /%, are both isomorphic tkand
sinceK containsk, we may take itself as a set of representatives of
the residue class field. Any elemehin K is uniquely of the form

f= Z an(x—a)",
n=—t
an € k. Similarly, if ¢ € Ky,

¢ = Z bhx~".

n=—

As before, if we denote b, (f) andh.(f) the principal parts of
f € K for the two valuations, then

> ha(f) + heo(f)

has a meaning sindg(f) = 0 for all but a finite number of a
If we definep € K to be regular ag(w) if ¢ € U4(Uw), then for 220

f eK,
f - ha(f)

wherea may be infinity also, is regular at alh € k and also for the
valuation||,. Such an element, clearly, is a constant. Hence
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9) If f € Kthen
f - Z ha(f) = constant
a

Conversely, it is easy to see that there exists, up to aniegldibn-
stant, only onef € K which is regular for ala € k exceptay, .. ., an
(one of which may beo also) and with prescribed principal parts at
theseg;. 9) gives the partial fraction decomposition of the rationa
function f.

5 Extension of the valuation of a complete
non-archimedian valuated field

We shall study the following problem. Suppdsé compute under a
valuation||. Can this valuation be extended, and if so in how many
ways, to a finite algebraic extensi#hof k ?

We prove, first

Lemma 1. Let k be a field complete under a valuatifyrand K a finite
algebraic extension of k. Let;,...,wn be a basis of Kk. Let|| have
an extension to K and

n
aV = Zaiva)i, aiV € ka
i=1
v=123,... beaCauchy sequence in K. Thgpia= 1,2,...,n
are Cauchy sequence in K.

Proof. We consider the Cauchy sequeriag},
m
ay = Z aywi, ay €,k
i=1
1 < m < nand we shall prove that tHey,} are Cauchy sequenceskn
We use induction om. Clearly, ifm=1,
@y = Qw1

and{ay} is a Cauchy sequence K if and only if {a;,} is a sequence in
K. O
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Suppose we have proved our statemennier 1 > 1, instead oimn.
Write

m-1
ay = diywj + Amvwm.
i=1
If {any} is @ Cauchy irk, then{a, — anwwm} is @ Cauchy sequences
in K and induction hypothesis works. Let us assume #hgtis not a
Cauchy sequence ki This means that there existd & 0 and for every
v, an integem, such that
My >V

and
[amity — amd > A.

Consider now the sequen@®} in K with
Ay, — Qy
Ay, — amv

Because of the above property, we see {Bgtis a null sequence in
K.
Now

Bv =

1 iUy — g
v v
B — ¢ _§ Wi
Y izl(amﬂv_amv) I

and{By — wm} is a Cauchy sequence K. Induction hypothesis now222

works and so, if
||m (M) = bi,
V=0 \ @y, — Gmy

then
—Wm = Z biwi, bi e k.
i=1

This is impossible becauss, . . ., wn are linearly independent over
k. Therefore{an,} is a Cauchy sequence and our Lemma is thereby
proved.

We shall now prove the following theorem concerning exemsif 223
valuation.
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Theorem 4. If the valuation|| of a complete field k can be extended to a
finite extension K, then this extension is unique and K is ¢etepnder
the extended valuation.

Proof. ThatK is complete under the extended valuation is easy to see.
For, if {ay} is a Cauchy sequence Khand

ay = Z aywi, ay ek,
i

by the lemma, théa;, }'s are Cauchy sequences. So, if

lim &, = bj €k,

Voo
then
lim ay = > w1 lim ay = ) b
i i
which is again irK. m|

We shall now prove that the extended valuation is unique.
From the lemma, it follows that ife,} is a null sequence iK and
ay = Y, aywi, gy € K, then thea,'s are null sequences

|
In particular, ifa € K and|a| < 1 in some extension the valuation
| in k, thena,a?, a3, ... is a null sequence iK. If o™ = Zagm)wi,
1

ai(m) ek, thenai(m),i =1,...,nare null sequence ik
If @ =3 Xwjis ageneral element of, ..., x,. Put

o=

i=1
then Nk ka' is the same polynomial iwﬁt), i =1,....,nasNgxa' is in
X1,...,%Xy. Ifnow |a| < 1, is an extended valuation, then th(%t)} are
null sequences. Hendéa, Ne? is a null sequences ik, But No! =
(Na)! so that Na), (N@)?, ..., is s a null sequence k This means that
INa| < 1. We have, thus, proved thatdfin K is such thate| < 1 is an
extended valuation, théNa| < 1 ink.
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In a similar manner, ife| > 1, then|Na| > 1. Thus we gefNa| =
1=|a =1

n

Let nowg be inK and write = Iikl_ wheren = (K : k)
(07

(Na)"

ThenNg = (Na)y™*

Thus

INB| = 1.
By the above, it means thigf = 1 in the valuation. Hence
lal = VINe/|

showing that the value af in the extended valuation is unique fixed. 224

Our theorem is thus completely proved.

In order to prove that an extension of the valuation is pdssive
shall consider the case where is complete under adiscrete
non-archimedian valuation. Leét be the ring of integer®/, the prime
divisor of the valuation and’/#/, the residue class field. We shall now
prove the celebrated lemma ddensel

Lemma 2. Let f(X) be a polynomial of degree m #i[ X], go(X), @ monic
polynomial of degree e 1 and hy(x), a polynomial of degre& m—r
both with cogicients in& such that

1) (%) = go(X)ho(x) (Mod?)
2) g(x) and hy(x) are coprime mod %

Then there exists polynomial§xy and H(X) in &[X] such that

9(x) = go(X)
h(x) = ho(x)} (mod ),
g(x) has the same degree ag(®) and f(X) = g(x) - h(x).

Proof. We shall now construct two sequences of polynomials
9o(X), 91, (%), . .. andho(x), h1, (X), . . . satisfying

On(¥) = gn-2(X)( mod Z")
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hn(X) = hp_1(X)( mod #")
fn(¥) = gn(¥ha(Xx)(  mod 2™

on(X) is a monic polynomial of degraeandh,(x) of degree< m—r. All
the polynomials have cdiécients ind'. m|

The polynomials are constructed inductively. Foe 0, go(x) and
ho(X) are already given and satisfy the conditions. Assume naw th
0o(X), ..., 0n-1(X) and hy(X),...,h,_1(X) have been constructed so as
satisfy the requisite conditions.

Sincegn-1(X) = go(X)(Mod#’) and h,_1(X) = ho(x)(mod#’) and
do(X) andhy(X) are coprime mod?, there exists, for any polynomial
fn(X) in 0[X], two polynomialsL(x) and M(x) with

fa(¥) = L(X¥)gn-1(X) + M(X)hn-1(x) (ModZ).

L(x) andM(X) are clearly not uniquely determined. We can repliag
by L(X) + A(X)hy_1(X) andM(X) by M(X) + A(X)gn-1(X).
Let 7 be a generator of the principal ide&l. By induction hypoth-
esis,
fn(¥) = 77(F(X) = Gn-1(hn-1(X))

is an integral polynomial, so i[X]. Sinceg,_1(X) has degree and is
monic andh,_1(X) degree< m—r, itis possible to chooskl(x) andL(X)
so thatM(X) has degree: r andL(x) degree< m—r. Put now

On(X) = Gn-1(X) + 7" M(x),
hn(X) = hn_1(X) + 7"L(X).

Thengn(X) is monic and of degree sinceM(X) has degree r.h,(X)
has degree&c m—r. Now f(X) — gn(X)hn(X) = f(X) = gn-1(X)hn-1(X) —
"(Gn-1(X)L(X) + hp_1(XM(X))( mod ™) By choice of L(x) and
M(X), it follows that

f(%) = gn(3)hn(x)(mod# ™).

We have thus constructed the two sequences of functionsidiut
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9(%) = Go(X) + (91(¥) = Go(X)) + - - + (Gn(X) — Gn-1(X)) + - --
h(x) = ho(X) + (N1(X) = o(X)) + - + (ha(X) = hn1(X)) + - -

Sincegn(X) — gn-1(X) = 0(mod:"), it follows that the correspond-
ing codficients of the sequence of polynomiajs(x), gi(X), ... form
Cauchy sequences i#fi. Sincek is complete and

9(X) = lim gn(x),

it follows thatg(x) € U[X]. It is monic and is of degree. In a similar
way, b(X) € U[X] and has degreg m—r.

Also sincef(X) — gn(X)hn(X) = 0(mody™1), it follows that the coef-
ficients of (f (X) — gn(X)hn(X)) form null sequences. Hence

F() = lim ga(x)An(x) = hn(x) = 9(Xx)N(X)

and our lemma is proved.
We now deduce the following important .

Lemma 3. Let f(x) = X"+a;x"1+- - .+a, be anirreducible polynomial
K[X] , k satisfying hypothesis of lemida 2. Thér)fe £[X] if and only
ifaye 0.

Proof. Itis clearly enough to prove the Siciency of the condition. Let
an € U, and ifay, ..., a,_1 (some or all of them) are not i, then there
is a smallest power?, a > 0, of = such that

72 f(X) = boX" + by X" + - + by

is a primitive polynomial in0[x]. Also, nowb, = 0( mod%). and 227
at least one oby,...,b,_1 is not divisible by#'. Let b, be the first
codficient from the right not divisible by. Then

72 = (bpX +---b)Xx""(mod%)

Sinceb; £ 0( mod %), Hensel's lemma can be applied and we see
that 72f(x) is reducible ind[x]. Thus f(X) is reducible ink[x] which
contradicts the hypothesis. The lemma is therefore estsdli O
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We are now ready to prove the important theorem concernitenex
sion of discrete non-archimedian valuations, namely

Theorem 5. Let k be complete under a discrete non-archimedian valua-
tion || and K a finite algebraic extension over k. Theran be extended
uniquely to K and then for any in K,

||

1
= m“\'K/kaL

Proof. Because of Theorefd 4, it is enough to prove that the function
defined orK by

1
|| = m“\lK/kafl

is a valuation function. Clearly|Q| = oo; || is a real number fow # 0.
Also,

B = ol + |l

We shall now prove that
la + B > min(|el, |8]).

If @ orBis zero, then the above is trivial. So let: 0,8 # 0. Since
‘%‘ or ‘/_g‘ is> 0, it is enough to prove thatff| > 0,|1+ 1| > O. O
a
Let f(X) = X"+ a;x™ 1 + ... + ay, be the minimum polynomial of
in K overk, Then

N2 = ((=1)"am) KO,

Also, NA+ 1) = (-1)"A+ag -+ an)®KD)_ |f N2 > 0,
then|am| > 0 which , by lemmd13, means thit],...,|an. Hence
IN(1 + 2)| = 0. Our theorem is proved.

Incidentally it shows that the extended valuation is discedso.
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6 Fields complete under archimedian valuations

Suppose is complete under an archimedian valuation. Tkéas char-
acteristic zero and contains, as a subfield, the compl&tiofthe ratio-
nal number field. barT'(i) is, then, the complex number field. Every
complex number is to the form + ib, a, b € I'. OnT, we have the
ordinary absolute value. Definelifi) the function

12l = (& + b?)?

wherez = a+ ib. Itis, then, easy to verify thatis a valuation orf(i)
which extends the valuation in. Also, by theorenil4, this is the only
extension of the ordinary absolute value. We consider teelca T'(i)
and prove the theorem @&f. Ostrowski.

Theorem 6. Let k o 1:(i) be the complex number field and let k be a
field with archimedian valuation and containimgi). If the valuation in
k is an extension of the valuationfii), then k= I'(i).

Proof. If k # (i), leta e k but not in['(i). Denote by the valuation in 229
k. Considetla — Z for all k = I'(i). Sincela— 21 > 0, we have

p:g-%-bla—zlso.

There exists, therefore, a sequenegs. ., z,,.. of complex num-
bers such that

lim |a— 2z, = p.
N—ooo
|

Butz, = z, — a+ aand s0z,| < |z, — & + |a which shows that the
|z,|, for largen, are bounded. We may therefore, choose a subsequence
z,,7,,...converging to a limit poink, such that

p=limja-z]|=la-z|

We have thus proved the existence @han 1:(i) such thab = a- 2z,
has|b| = p. Since, by assumptiom, ¢ I'(i) we have

bj=p >0.
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o, by definition, beingy.l.b., it follows that
lb-272>p

for z € T(i).
Consider the set of complex numbemwith |z < p. Letn > 0 be an
arbitrary rational integer anel a primitive nth root of unity. Then

b"—2"=(b-2)(b-¢2)...(b—&"12).
230 Therefore
b-zZp"t<b-Zb-e7...lb—e"17 =" -2
<o+ 12" = p"(1 + (2.
P
Hence .
b-7 S,O(l+ %)
P
But|Z < p and asm s arbitrary, it follows thatb — Z < p.
We therefore have
Z2<p=Ib-2Z=p.

We now prove that for every integen > 0, b —m2 = p if |7 < p.
For, suppose we have proved this for- 1 instead ofm, then we can
carry through the above analysis whil- (m— 1)z instead ob, then we
can carry through the above analysis with (m — 1)z instead o and
then we obtainb — mZ = p.

Suppose now that is anycomplex number. Then there is an integer

z
m > 0 such thata| < p. Therefore

zZ
‘b—ma‘—“)—z'l—p
NowZ =Z —b+band so

IZ|<|lb-Z|+b <20
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which shows that all complex numbers are bounded in absglte.
This is a contradiction. Hence our assumption tdtl’'(i) is false .
The theorem is thereby proved,
Before proving theorerl 7 which gives a complete characttoa
of all complete fields with archimedian valuation, we shatiye a cou-
ple of lemmas.

Lemma 4. Let k be complete under an archimedian valuaticend 1 231
in k such that X + 1 is irreducible in §x]. Then|1 + 4] > 1.

Proof. If possible, let|l + 4] < 1. We construct, by recurrence, the

sequencey, 1, Cy, . . ., in k, defined as follows: -
Co=1
1+2
Cn+l:_2_ n:O,l,Z,...
Cn

It, then, follows thatc,| > 1. For, if we have proved it upto,_s,
then

1+
ICn| = 2 — | | >1
|Cn-1
Thusc, does not vanish for any. Also,
|1+ A||lch — Ch-1]
[Chs1 — Cnl = - = < plch — Cn-al

|CnllCn-1]
wherep = |1 + 1| < 1. This means that the series
Co+(C1—Co)+(C2—Cy) +---
converges irk. Let it converge ta in k. Then

c=1limcy+---+(ch—0On1) = lim c,.
nN—oo

Nn—oo

_— 1+2 .
Therefore, by definition af,,, we getc = —2— % But this means

that—1 = ¢ + 2c + 1 = (c + 1)? which contradicts the fact® + A is
irreducible ink[x].
We now prove the O
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Lemma 5. If k is complete under an archimedian valuatiginthen this
valuation can be extended t@k

Proof. If i € k, there is nothing to prove. Létz k. Then every element
of k(i) is of the forma + ib, a, b € k.
232 The norm fromk(i) tok of « = a+ibis

Na = a° + b%.
By theorent®, therefore, it is enough to prove that
lal = I(a® + b?)?|

: . . . b? .
is a valuation ork(i). By puttingA = p in the lemmd}4, we see that

|a® + b?| > a°. Therefore

I(1+a)?+b? < 1+|a+b? + 24

<1+a%+b? +2\/m
= L+ Via? + b2
This shows that
1+ a| <1+]a
and our lemma is proved. m|

We now obtain a complete characterization of complete aretlian
fields, namely,

Theorem 7. The only fields complete under an archimedian valuation
are the real and complex numbers fields.

Proof. khas characteristic zero and since it is complete, it costtia
field I' of real numbers. Ik containsI” properly, then we assert thiat
containsi. For,k(i), by lemmdb, is complete andi) containsI'(i) and,
by theoreniB, B

k(i) = T°(i).
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Therefore
I({i)=k(i)>k>T.

But ([(i) : T) = 2 so thak = k(i) = I'(i).
We have thus found all complete fields with archimedian v#na

7 Extension of valuation of an incomplete field

Supposek is a complete field under a valuatigrand letQ be its alge- 233
braic closure. Thefi can be extended t@Q by the prescription

o] = [N/,

where Norm is takes forrk(a) overk andn = (k(a) : k). It is clear that
it defines a valuation function. For, &f is a subfields of2 andK/k is
finite andK containsa then, by properties of norms,

1
lal = [Nk/ka|m,

wherem = (K : k). So, ifa andg are inQ, we may take foK a field
containinga andg and with K : K) finite.

Furthermore, defined as such, the valuatiortois dense because,
if |o| > 1, thenje" has value as near 1 as one wishes, by increasing
sufficiently. Also, for evenyn, o'/Mis in Q.

Also, leto be an automorphism @&/k, ande in Q. Then, by defi-
nition of norm,

Na = N(oa)

so thatla| = |oa|. Thus all conjugates of an element have the same
value.

We shall now study how one can extend a valuation of an incetapl
field to an algebraic extension.

Letk be a field anK a finite algebraic extension of it. Létbe a
valuation ofk andk the completion ok under this valuation. Let # k. 234
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k

Suppose it is possible to extefido K. Let K be the completion of
K under this extended valuation. Sinke> K D k, it follows thatK
containskK andk and therefore the composikk. Thus

K > Kk.
On the other handkk/k is a finite extension, sinck/k is finite.

Sincek is complete Kk is complete alsoKk containsk and hence its
completionK under this extended valuation. Thus

K = Kk.

Thus if the valuation can be extended, then the completid& by
this extended valuation is a composite extensioK aidk.

Suppose now tha® is an algebraic closure & Q, then, contains
an algebraic closure &€ We have seen above that the given valuation
of k can be extended tQ. Leto be an isomorphism oK/k into Q.
The valuation ink can be extended t@K - k which is a subfield of2.
Therefore, there is a valuation orK. Define now, forx in K,

lalo = |oal

where|| is the extension of onk to oK - k, which extension is unique.
It is now trivial to see thall, is a valuation orK and extend§ onk.
Hence every isomorphism & into Q which is trivial onk, gives
rise to a valuation oK.
235 We now inverstigate when two isomorphisms give rise to thmesa
valuation onK. Let o andt be two isomorphisms df/k into Q giving
the same valuation oK. oK andrK are subfields of2 and they have



7. Extension of valuation of an incomplete field 207

the same valuation. Thys= or~1 is an isomorphism ofK onto oK
which preserves the valuation oK. Now y is identity onk and so ork.
SincecK -Kis the completion ofrK, it follows thaty is an isomorphism
of the composite extensionsKk andrKk. Hence, ifo- andr give rise
to the same valuation dR, the corresponding composite extensions are
equivalent.

Suppose now that andr are isomorphisms oK into Q such that
the composite extensionsKk andrKk are equivalent. There exists then
a mappingu of 7Kk on oKk which is identity ork and such that

Ut =0

o induces a valuatiofi; on K such thatle|; = |oa| andt induces a
valuation|l; on K such thafal, = |ral. Butu is such thaura = oa or
oa andra are conjugates ovdrin Q. Hence

loa| = |Ta|

or |1 = |l> which shows thatr, T give the same valuation dA.
We have hence the

Theorem 8. A valuation|| of k can be extended to a finite extension K
of k only in a finite number of ways. The number of these extensif 236
| to K stand in a (1, 1) correspondence with the classes of ceitgo
extensions of K ank

From what we have already seen, the number of distinct coitepos
extensions oK andk is at mostK : k).

We apply these to the case whére- T, rational number field and
K/T finite so thatK is an algebraic number filed. From theor&in 2,
it therefore follows thatk has at mostK : TI') distinct archimedian
valuations and that all the non-archimedian valuationK afvhich are
countable in number, are discrete.

In a similar manner, iK is an algebraic function field of one variable
over a constant fileld, then all the valuations df are non-archimedian
and discrete. This can be seen from the fact tha&fK is transcenden-
tal overk, thenK/k(x) is algebraic and one has only to apply theorems
B and3.
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Abelian groups

1 Decomposition theorem

237
All the groups that we deal with here are abelian. Before ipgpthe

main decomposition theorem for finite abelian groups wel giralve
some lemmas.

Lemma 1. If a, b are elements in G and have orders m and n respec-
tively and(m, n) = 1, then ab has order mn.

Proof. Clearly ift is the order ofab, timn, since
(ab)mn = (am)n(bn)m — e’
e being unit element oB. Alsoa' = bt. Thus
e= atm — b—tm
so thatn/t. Similarly mjt. Hencet = mn O

Lemma 2. Let p be a prime number dividing the order n of the group
G. Then there is, in G, an element of order p.

Proof. We use induction om. Let abe an element i of orderm. If
plm, thena™P has orderp and we are through. Suppopef m. Let H
be the cyclic group generated by &@/H has then orden/m which is

divisible by p. Since%m, induction hypothesis applies, so that there is

a cosetHb of orderp. If b has ordett thenb' = e and so Hb)' = H
which means thap|t and sdb"/P has orderp. O

209
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Lemma 3. Let G be a finite group and the maximum of the orders of
elements of G. Then
=e

foralla e G.

Proof. Let b be an element of ordet. Let abe any element i and
let u be its order. To prove the lemma, it is enough to prove giat If
not, there is a primg which dividesu to a higher power than it does
A. Let p" be the highest power gf dividing  and p® the highest power
dividing 2. Thenr > s. We will see that this leads to a contradictiorz

u

Since— andp' are coprimeagr has the ordep’. Similarly b?* has

A
orderE. By lemmd1,
c=av -b"
A . . o
has orderp’. — > 4, which contradicts the definition of. Hencey|A.

Lemmadg® anfll3 show thain wheren is the order of the group and
thatA andn have the same prime factorkis called theexponenof the
finite groupG.

A setay, ..., a, of elements of a finite grou@ are said to bénde-
pendentf

a)f ..
impliesa® =e i=1,...,n
If G is a finite group and is a direct product of cyclic groups
...,Ghand ifa,i = 1,...,nis a generator 06G;, thenay,...,a, are
independent elements & They are said to form baseof G.
We shall now prove

A= e

Theorem 1. Let G be a finite group of order n. Then G is the di-
rect product of cyclic groups G...,G, of ordersAy,..., 4 such that
Aildi—,i=2,...,1, 2, > 1.

Proof. We prove the theorem by induction on the ordesf the group
G. Let us therefore assume theorem proved for groups of eraelet
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G have ordem. Supposel; is the exponent ofs. If 21 = n, thenG
is cyclic and there and there is nothing to prove. Let theeefg < n.
There is an elemert of orderd;. LetG; be the cyclic group generated

by a;. G/G; has order/l1 < n. Hence induction hypothesis works on
1
G/Gl. O

G/G1 is thus the direct product of cyclic grou, ..., W, of order
Ao, ..., Ay respectively andy|2_1]...|12. Let Hj be a generator oi\,.
ThenH; = G,b; for someb; in the coset;. Let the elemeniy; in G have
ordertj. Thentj|1; by lemmdB. But

i _ pliet —
Hi = biG! = G

which proves thatj|1;. ThusA|4_1]...|1;.
Letnowb" = a}. Putx =i~z where §, A1) = 1 and all the prime
factors ofz divide 1;. Choosay; prime to1; such that

uyi = 1(moday).
Thenbi‘”i = aj. Since/; is the exponent o6, 240
e= b = (alt)/
: )

Sincea; has ordenl; this means thatj|z,i = 2,3,...,1.
Put now
a = pli a;Z//li
| .
Sincey; is prime to4; and so tod;, the cosetr; = Gg; is also a
generator of\,. ThusG,ay, ...,G1a is a base 06/G;.
Let & have orderfi. Then
fiz/ 2

e=a'=b"a;

This means that
ufi _ ~fizi/a
b'' =a .

Therefore by definition offy, A;|u; f;. But (uj4;) = 1. Hencei;| f;.
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On the other hand
Ai _ Ui dig=z _
' =b'"a" =e
Hencefi = 1;. We have thus elements, ..., a in G which have
ordersiy, ..., 4 satisfying4,|4,_41]. . .|11.
We maintain thaty, ..., a; are independent elements®f For, if

a'...a'=e
thenay? - ---- &' = a"* which means thak,?...F" = G;. But since
F,,...,F are independentjilvi, i = 2,...,l. But this will mean that

a' = eorAyjva.

SinceAd; ... 4 = n, if follows thatay, ..., a form a base of5 and
the theorem is proved.

Let G be a group of group of orderand letG be direct product of
cyclic groupsGi, Gy, ..., G of ordersA,, . .., 4. We now prove

Lemma 4. Lety be a divisor of n. The number(}) of elements & G
with
a'=e

is given by
¢

NG = [ ]Ge ).

=1
Proof. Letay,...,a be a base of so thatg is of orderd;. Anyae G
has the form

a= a;-(l e a1X| .
If & = e thene = a}--- . Sinceay, ..., & is a base, this means that
xiu = 0(modyy), i = 1,4,1. Hencex; has precisely, 4i) possibilities
and our lemma is proved.
We can now prove the m]

Theorem 2. If G is the direct product of cyclic groupsiG.. G, of
ordersAs, ..., 4 respectively with|1,_1] - - - |1, and G is also the direct
product of cyclic groups H..., Hy of ordersus, ..., um respectively
with gmlum-1| - - - |1, then m= 1 and

Ai=p,i=1..,1
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Proof. Without loss in generality ldt> m. Letay, ..., a be a base ob
in the decompositios; x G, X - - - X Gy. Since the number of elements
awith & = eis independent of the decomposition

4 m
NG = [ [ ) = | [ )
1=1 j=1

Put nowu = 1. ThenN(u) = A7. But since f, uj) < p, it follows
thatA! < AT, so thatl < m. This proves

[ =m.
O

Also it follows that each factorig, u;) = A, or A¢u,. Inverting the
roles ofA andu we get

Ae = pe.

Suppose now it is proved that,; = ugs1,...,41 = p1. Then by
puttingu = Aq, we have

q
N(ﬂ) = /lg-/lq+l <Ay = n(ﬂq,ﬂj)/lqﬂ < Ag.

=1

By the same reasoning as before, it follows that 1 and we are,
therefore, through.

For this reason, the integens, ..., A are called thecanonical in-
variantsof G. From theoremEl1 arid 2 we have tBerollary Two finite
groups G and Gare isomorphic if and only if they have the same canon-
ical invariants.

2 Characters and duality

243
Let G be a group, not necessarily abelian ahd cyclic group. A ho-

momorphismy of G into Z is called acharacterof G. Thus

x@)x(b) = x(ab).
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If we denote the unit element & by e and that oZ by 1, then

x(e =1

The characte), defined byyq(a) = 1 for alla € G is called the
Principal character.
If y1 andy» are two characters, we define their prodyct y1y2 by

x(@) = x1(a)x2(a)

and the inverse of1 by

x1'@ = (@)™

Under this definition, the characters form a multiplicatateelian
groupG* called thecharacter groupof G.

Sincey is a homomorphism, denote l§y, the kernel of the ho-
momorphismy of G into Z. ThenG/G, is abelian. Denote bii the
subgroup of given by

H=(1G, xeG.
X

Then clearlyG/H is abelian.

We callZ anadmissible groufior G if H consists only of the identity
element. This means first th@tis abelian and furthermore that given
any two elements, b in G there exists a charactgrof G such that, if
a+bh,

x(@) # x(b).

If y is a character o6, theny can be considered as a character of
G/Go wherey is trivial on G, by definingy(Gga) = x(a), Goa being a
coset ofG moduloGe. In particular, the elements @& can be consid-
ered as characters Gf/H. MoreoverZ is now an admissible group for
G/H.

We now prove the

Theorem 3. If G is a finite abelian group and Z is an admissible group
for G, then G is finite and G is isomorphic to'G
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Proof. In the first placeZ is a finite group. For, i€ G, a # ¢, there is
a charactey such that
x(@ # 1

If Gis of ordem, theny(a") = (y(a))" = 1 so thaj(a) in an element
of Z of finite order. Since is cyclic it follows thatZ is finite. O

From this it follows thaG* is finite.

Since {(a))" = 1 for everyy and every athere is no loss in gener-
ality if we assume that is a cyclic group of orden.

In order to prove the theorem let us first assume @ a cyclic
group of ordem. Let abe a generator o6 and ba generator of the
cyclic groupZ of order n Define the charactgr; of G by 245

x1(@) = b.

Since agenerate$ any character is determined uniquely by its ef-
fect on a y1 is an element of orderin G*. Let y be any character @.
Let

x(@) = b

for some integen. Consider the charactgr=y -XI“.

x@) = (a(@) ™ x(@ =b™ b =1

which shows that = y,, is the principal character. Hen& is a cyclic
group of ordem and the mapping

a— y1

establishes an isomorphism@fon G*.

Let nowG be finite non-cyclic abelian of ordex G is then a direct
product of cyclic group§s, ..., Gy of ordersiy, .. ., A respectively. Let
g; be a generator db; so thata, ..., a is a base 06. Sinced,, ..., 4
divide n, we define | characteng, x», ..., x| of G by

xi(@)=1 j=#i
xi(@) =Dby i=1,...,1,
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wherebj is an element irZ of order ;. These characters are then inde-
pendent elements of the abelian grasip For, if x3* - x|' = xo, then,
for any ac G,

XYi@)...xi@ =1

Taking for asuccessivelyy, . .., a we see thai;|ti and sgy1, ..., xi
are independent.

Let y be any character 6. Theny is determined by itsféect on
ai,....a. Lety(a) = s. Sincea" = e (y(&))" = 1. But (&))" =
s'. Thuss' = 1. Z being cyclic, there exists only one subgroup of
order4;. Thus

x(@)=s="0",
for some integep;(mod 4;). Consider the charactg’rEXXI’“ sy It
us clear thag(a;) = 1 for all i so thaty™= x, or
H H
X=X1Xp

ThusG* is the product of cyclic group generated by ..., xy1. By

Corollary to theorerfil2, it follows th&® andG* are isomorphic.

Corollary. If G is a finite group and Gits character group, then what-
ever may be Z,
OrderG" < OrderG.

Proof. For, if H is the subgroup db defined earlier, the®/H is abelian
and finite, sinceés is finite. AlsoZ is admissible foxG/H. Furthermore
every character db can be considered as a characteGgH, by defi-
nition of H. Hence by theoreifd 3 i

OrderG* < OrderG/H < OrderG.
Let us now go back to the situation wheees finite abelian an@
ia admissible foG. ThenG ~ G*. Let us define o6 x G* the function

(@x) =x(a).

For a fixedy, the mappinga — (a, y) is a character o6 and so an
element ofG*. By definition of product of character, it follows that, for
fixed g the mapping

a:xy—(ax)
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is a homomorphism oB* into Z and hence a character Gf, Let G**
denote the character group®f. By Corollary above,

OrdelG*™* < OrdeG* = OrdelG.
Consider now the mapping
cra—a

of G into G**. This is clearly a homomorphism. #is identity, then
(a,x) = 1 forall y. But sinceZ is admissible fof, it follows thata = e.
Henceo is an isomorphism o6 into G**. Therefore we have

Theorem 4. The mapping a> a is a natural isomorphism of Gon G*

Note that the isomorphism @& onG* is not natural

Under the conditions of theorelh 3, we c@ll the dual ofG. Then
G* is the dual ofG* and theorerfll4 shows that the dual3fis naturally
isomorphic toG. Theorem# is called thduality theoremfor finite
abelian groups.

3 Pairing of two groups

Let G andG’ be two groupsgo,o’,..., elements ofc’ andr,7/,...,

elements ofG’. Let Z be a cyclic group. Suppose there is a functiaas

(o, 7) onG x G’ into Z such that for every-, the mapping
Ao i T > (0,7)

is a homomorphism d&’ into Z and for everyr, the mapping
pr 1o = (0,7)

is @ homomorphism o0& into Z, ThusA, andu, are characters d&’
andG respectively. We then say th@tandG’ arepairedto Z and that
(o, 7) is a pairing.

For everyo, let G/, denote the kernel i’ of the homomorphism

A,. Put
H' =G,
o
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for all o € G. ThenG’/H’ is abelian. AlsoH’ is the set ofr in G’ such
that
(oo7) =1

for all o € G. Define in a similar way the subgroup of G.
We are going to prove

Theorem 5. If G/H is finite, then so is GH’ and both are then isomor-
phic to each other.

Proof. From fixedo, consider the function

Xo(7) = (0, 7).
O

This is clearly a character @&’. By definition ofH’, it follows that
for eacho, y.- is a character o&’/H’.
Consider now the mapping

0 = Xo

of G into (G’/H’)*. This is again a homomorphism Gfinto (G’'/H’)*.
The kernel of the homomorphism is the setooffor which y, is the
principal character o&’/H’. By definition ofH, it follows thatH is the
kernel. Hence

G/H ~ asubgroup of &' /H")*. 1)

In a similar way
(G'/H") =~ a subgroup ofG/H)". 2
Let nowG/H be finite. Then by Corollary to theordh 3,
ord(G/H)* < ordG/H.
By (@), this means that
orderG’/H’) < orderG/H.

Reversing the roles d& andG’ we see thaG/H andG’/H’ have
the same order](1) and (2) together with theofém 3 provent@rém.
If, in particular, we takes* for G’, thenH’ = (y,) and so we have
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Corollary. If G is any group, G its character group and if &H is finite
then
G/H = G".
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