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Lecture 1

Sheaves. 1

Definition. A sheafS = (S, τ,X) of abelian groups is a mapπ : S
onto
−−−→

X, where S and X are topological spaces, such that

1. π is a local homeomorphism,

2. for each x∈ X, π−1(x) is an abelian group,

3. addition is continuous.

Thatπ is a local homeomorphism means that for each pointp ∈ S,
there is an open setG with p ∈ G such thatπ|G mapsG homeomorphi-
cally onto some open setπ(G).

Sheaves were originally introduced by Leray in Comptes Rendus
222(1946)p. 1366 and the modified definition of sheaves now used was
given by Lazard, and appeared first in the Cartan Sem. 1950-51Expose
14.

In the definition of a sheaf,X is not assumed to satisfy any separation
axioms.

S is called the sheaf space,π the projection map, andX the base
space.

The open sets of S which project homeomorphically onto open sets
of X form a base for the open sets of S .

Proof. If p is in an open setH, there exists an openG, p ∈ G such that
π|G mapsG homeomorphically onto an open setπ(G). ThenH ∩ G is
open,p ∈ H∩G ⊂ H, andη|H∩G mapsH∩G homeomorphically onto
π(H ∩G) open inπ(G), hence open inX. �

1



2 Lecture 1

π is a continuous open mapping2

Proof. Continuity ofπ follows from the fact that it is a local homeomor-
phism, and openness follows from the result proved above. �

The setSx = π−1(x) is called the stalk ofS at x. Sx is an abelian
group. Ifπ(p) , π(q), p+ q is not defined.

Sx has the discrete topology.

Proof. This is a consequence of the fact thatπ is a local homeomor-
phism. �

Let S × S be the cartesian product of the spaceS with itself and let
S + S be the subspace consisting of those pairs (p, q) for which π(p) =
π(q). Addition is continuousmeans thatf : S + S → S defined by
f (p, q) = p+q is continuous. In other words, ifp, q ∈ S andπ(p) = π(q),
then given an openG containingp+ q, there exist open setsH, K with
p ∈ H, q ∈ K such that ifr ∈ H, s ∈ K andπ(r) = π(s), thenr + s ∈ G.
We may write this asH + K ⊂ G.

Proposition 1. Zero and inverse are continuous.

(i) Writing Ox for the zero element of the groupSx, zero is continuous
means thatf : X→ S, where f (x) = Ox, is continuous.

Proof. Let x ∈ X and letG be an open set containingf (x) = Ox.
Then there is an open setG1 such thatOx ∈ G1 ⊂ G andπ|G1 is a
homeomorphism ofG1 onto openπ(G1). SinceOx+Ox = Ox, and3

addition is continuous, there exist open setsH, K with Ox ∈ H,
Ox ∈ K such thatH+K ⊂ G1. Let L = G1∩H∩K, thenL is open,
Ox ∈ L andπ|L is a homeomorphism ofL onto openπ(L). Then
x = π(Ox) ∈ π(L) and if y ∈ π(L) there existsq ∈ L with π(q) = y.
Thenq ∈ H, q ∈ K and henceq+ q ∈ G1. But q ∈ G1, andπ|G1 is
1−1; henceq = Sy∩G1. Therefore, sinceq+q ∈ Sy∩G1, q+q = q,
henceq = Oy. Thus ify ∈ π(L), f (y) = Oy ∈ L. Thusx is in open
π(L), with f (π(L)) = L ⊂ G. Hencef is continuous. (Incidentally
we have proved that eachOx is contained in an open set which
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consists of zeros only and which projects homeomorphicallyonto
an open set ofX.) �

(ii) Writing- p for the inverse ofp in the groupSπ(p) inverse is contin-
uousmeans thatg : S→ S whereg(p) = −p is continuous.

Proof. Let p ∈ S, and letG be an open set containing-p. Then
there exists openL containingOπ(p) and consisting of zeros only.
Sincep+ (−p) = Oπ(p) and addition is continuous, there exist open
H, K, with p ∈ H, −p ∈ K andH +K ⊂ L. Hence ifq ∈ H, r ∈ K,
π(r) = π(q), thenq + r = Oπ(q), i.e. r = −q. We may assume that
π|H is a homeomorphism. Let

H1 = (π|H)1(π(H) ∩ π(K ∩G)),

thenp ∈ H1, and sinceπ is open, continuous,H1 is open. Then if
q ∈ H1, there existsr ∈ K∩G with π(r) = π(q); thenr = −q = g(q). 4

ThusH1 is open andg(H1) ⊂ G. Henceg is continuous. �

Corollary 1. Subtraction is continuous.

i.i. f : S + S→ S, where f (p, q) = p− q is continuous.

Corollary 2. The set of all zeros is an open set.

Example 1.If X is a topological space, andG is an abelian group fur-
nished with the discrete topology, letS = (X×G, π,X) whereπ(x, g) =
x and (x, g1) + (x, g2) = (x, g1 + g2). Each stalkSx is isomorphic toG.
Axioms a) and c) are easily verified. This sheaf is called theconstant
sheafassociated withG.

Example 2.Form the constant sheaf (A× Z, π,A) where A is the square
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ 0 ≤ y ≤ 1}, andZ is the group of integers.
Then identify (x, 0) with (1− x, 1) in A to get a Möbius bandX, and
identify (x, 0, n) with (1− x, 1,−n) in A×Z to getS. The resulting sheaf
S = (S, π,X) is the sheaf of “twisted integers” over the Möbius band.
EachSx is isomorphic to the group of integers.
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Example 3.Let X be the sphere of complex numbers. LetSx be the
additive group of function elements atx, each function element being
a power series converging in some neighbourhood ofx. Let S = ∪xSx

and defineπ : S → X by π(Sx) = x. If p is a function element, a5

neighbourhood ofp in S is defined by analytic continuation. ThenS =

(S, π,X) is the sheaf of analytic function elements. Each component
(maximal connected subset) ofS is a Riemann surface without branch
points. The sheaf spaceS is Hansdorff.
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Example 4.Let S : {(x, y) : x2
+ y2

= 1, x < 1} together with the group 6

of integersZ}. The topology on the former set is the usual induced
topology, and the neighbourhoods for an integern ∈ Z are given by
Ga(n) = {n, (x, y) : x2

+ y2
= 1, a < x < 1}; X : {(x, y) : x2

+ y2
= 1} and

letπ : S→ X be defined byπ(n) = (1, 0),π(x, y) = (x, y). π−1(1, 0) is the
groupZ, for other pints (x, y) ∈ X, π−1(x, y) = (x, y) is regarded as the
zero group. It is easily verified thatS = (s, π,X) is a sheaf. HereS is
locally euclidean, and has a countable base. The set of all zeros is open
(Corollary 2) and compact but not closed; its closure is not compact,S
is T1 but not Hausdorff thoughX is Hausdorff.

Exercise. If X is aTo or aT1 space, space, so isS
So far we have only defined sheaves of abelian groups. It is now

quite clear how we can extend the definition to the case where the stalks
are any algebraic systems.

A sheaf of ringsis a local homeomorphismπ : S → X such that
eachπ−1(x) is a ring and addition and multiplication are continuous, i.e

f : S + S→ S where f (p, q) = p+ q,

g : S + S→ S whereg(p, q) = p · q,

are continuous.
The sheaf of function elements (Example 3) where multiplication 7

of two function elements in the same stalk is defined to be the usual
multiplication of power series is a sheaf of rings.

In the sheaf of twisted integers (Example 2) eachSx is isomorphic
to the ringZ, but this sheaf isnot a sheaf of rings.

5



6 Lecture 2

A sheaf of rings with unitis a local homeomorphismπ : S → X
such that eachπ−1(x) is a ring with unit element 1x and addition, multi-
plication and unit are continuous; i,e.,

f : S + S→ S, f (p, q) = p+ q,

g : S + S→ S, f (p, q) = p · q,

h : X −→ S,h(x) = 1x are continuous.

Example 5.Let A be the ring with elements 0, 1,b, c; where the rules
of addition and multiplication are given by

1+ 1 = b+ b = c+ c = 0;

1+ b = c, 1+ c = b, b+ c = 1;

b2
= b, c2

= c, bc= cb= 0

[The ring A may be identified with the ring of functions defined on
a set of two elements with values in the fieldZ2.]

Let X : {x, k ≤ x ≤ 1},S : subspace ofX × A obtained by omitting
the points (k, 1), (k, b); and letπ : S → X, be defined byπ(x, a) = x.
Addition and multiplication in a stalk are defined by

(x, a1) + (x, a2) = (x, a1 + a2),

(x, a1) · (x, a2) = (x, a1 · a2).

ThenS = (S, π,X) is a sheaf of rings, eachSx is a ring with unit, but8

S is not sheaf of rings with unit.
A sheaf of (unitary left)a-modules, wherea = (A, τ,X) is a sheaf of

rings with unit, is a local homeomorphismπ : S → X such that each
π−1(x) is a unitary left Ax-module and addition, and multiplication by
elements of Ax (for each x) are continuous; i.e.,

f : S + S→ S, f (p, q) = p+ q,

g : A+ S→ S, g(a, p) = ap

are continuous.
A+S is the subspace ofA×S consisting of all pairs (a, p) for which

τ(a) = π(p).
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[If R is a ring with unit element, we say thatM is a unitary, left
R-module if it is a leftR-module, and if 1·m= m for eachm ∈ M.]

Example 6.Let a denote the sheaf of function elements on the complex
sphereX. Let Sx consist of all (p, q) of function elements atx. Let S =
⋃

x∈X
Sx. A neighbourhood of (p, q) is defined by analytic continuation of

p andq. In eachSx addition is defined as (p1, q1) + (p2, q2) = (p1 +

q2, q1 + q2); and if a is a function element atx, define multiplication
asa(p, q) = (a.p, a.q). Defineπ : S → X, by π(p, q) = x if p, q are
function elements atx. Then (S, π,X) is a sheaf ofa-modules.

Any sheafa of rings with unit can be regarded as a sheaf ofa- 9

modules; the product ap fora ∈ Ax, p ∈ Ax being defined as the product
ap inAx.

A sheaf of B-moduleswhereB is a ring with unit element is a local
homeomorphismπ : S → X such thatπ−1(x) is a unitary leftB-module
and addition, and multiplication by elements ofB are continuous; i.e.,

f : S + S→ S, f (p, q) = p+ q,

gb : S→ S, gb(p) = b.p for eachb ∈ B

are continuous.
Let S = (S, π,X) be a sheaf of B-modules. This is equivalent to

saying thatS is a sheaf ofB-modules, whereB is the constant sheaf
(X × B, τ,X).

Proof:

B is a ring with unit element. B(X × B, τ,X) is a constant sheaf.
S = (S, π,X) is a sheaf of abelian groups.

1) S is a sheaf of B-modules. 1)S is a sheaf ofB-modules.
This means thatb · p is de- This means that (π(p), b) · p is
fined such thatSx is a uni- defined such thatSx is a unitary
left B-module. leftx× B module.
2) Addition is continuous. 2) Addition is continuous.
3) Multiplication is continuous 3) Multiplication is continuous
means thath : B× S→ S means thatg : (X × B) + S→ S
h(b, p) = b · p is continuous. g(π(p), b, p) = b.p is continuous.
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To prove the assertion, it is enough to show that the continuity of10

h is equivalent to the continuity ofg. To do this, defineφ : B × S →
(X × B) + S asφ(b, p) = (π(p), b, p), thengφ = h.φ is clearly 1-1. We
show thatφ is a homeomorphism and the result will follow from this.A
base for (X× B)+S is formed by the sets (U × b) +G whereG projects
homeomorphically ontoπ(G).

(U × b) +G = (V × b) +G whereV = U ∩ π(G)

= (V × b) + H whereH = (π|G)−1V

= (π(H) × b) + H

= φ(b× H).

Since the setsb× H form a base forB×S, it follows thatφ is a homeo-
morphism.

Thus we may identify sheaves of (X×B, τ,X)-modules with sheaves
if B-modules. By abuse of language, we writeB for the ring as well as
for the constant sheaf (X × B, τ,X).

Example 7.Let C be the ring of complex numbers,S = (S, π,X) be
the sheaf of function elements on the complex sphereX and forc ∈ C,
p ∈ S definec · p to be the usual product of a complex number with a
power series. ThenS becomes a sheaf ofC- modules.11

Example 8.Let C be the ring of complex numbers,S = (S, π,X) be
the sheaf of function elements on the complex sphereX. Forc ∈ C and
(p, q) ∈ S definec(p, q) = (c · p, c · q).

ThenS becomes a sheaf ofC-modules.

Example 9.Let S = (S, π,X) be any sheaf of abelian groups and letZ
be the ring of integers. Forn ∈ Z andp ∈ S definen · p = p+ · · · + p (n
times) ifn > 0, n · p = −(−n)p if n < 0, and 0· p = 0π(p). ThusS may
be considered as a sheaf ofZ-modules.

Thus sheaves of rings with unit, sheaves ofB-modules and sheaves
of abelian groups can be considered as special cases of sheaves ofa-
modules.
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Sections.

Definition . A section of a sheaf(S, π,X) over an open set U⊂ X is a 12

map f : U → S such thatπ · f = 1|U where1|U denotes the identity
function on U. (A map is a continuous function).

By abuse of language, the imagef (U) is also called a section.
For each open set U⊂ X the function f: U → S , where f(x) = 0x

is a section.

Proof. Zero is continuous, andπ(0x) = x. �

This section will be called the 0-section (zero section).

Proposition 2. If S = (S, π,X) is a sheaf of abelian groups, the set
of all sections ofS over a non-empty open set U forms an abelian
groupΓ(U,S ). If S is a sheaf of sings with unit,Γ(U,S ) is ring with
unit element. IfS is a sheaf ofa-modules,Γ(U,S ) is a unitary left
Γ(U, a)-module. IfS is a sheaf of B-modules,Γ(U,S ) is a unitary left
B-module.

Note.The operations are the usual ones for functions. Iff , g ∈ Γ(U,S ),
a ∈ Γ(U, a), b ∈ B, define

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x) · g(x),

(a f)(x) = a(x) · f (x), (b f)(x) = b · f (x).

9
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The zero element ofΓ(U,S ) is the 0-section overU. If S is a sheaf of
rings with unit, the unit element ofΓ(U,S ) is the unit section 1 :U →
S where 1(x) = 1x.

Proof. The proposition follows from the fact that addition zero, inverse,13

unit and multiplication (ring multiplication as well as scalar multiplica-
tion) are continuous. �

Remark. If a = (X × B, τ,X) is a constant sheaf of rings with units, for
each open setU ⊂ X we can identifyB with the ring of constant sections
fb, b ∈ B where fb(x) = (x, b) overU. ThenB ⊂ Γ(U, a) is a subring,
and by restricting the ring of scalars, eachΓ(U, a)-module becomes a
B-module. (B need not be the whole ofΓ(U, a)).

Abuse ofφ. If S is a sheaf ofa-modules, we agree that the unique
section over the empty setφ is the 0-section, and the setΓ(φS ) = 0.

Example 6.If S = (S, π,X) is the sheaf of function elements over the
complex sphereX, Γ(X,S ) can be identified with the ring of functions,
analytic in U. ThenΓ(X,S ) is the ring of functions, analytic every-
where, hence is isomorphic to the ring of complex numbersC.

Note .Usually a sheafS = (S, π,X) may be interpreted as describing
some local property of the spaceX; thenΓ(X,S ) gives the correspond-
ing global property.

A section f: U → S is an open mapping

Proof. This is proved using the fact thatf is continuous and thatπ is a
local homeomorphism. �

We can now characterise the sections ofS.14

The necessary and sufficient condition that a set G⊂ S is a sec-
tion f(U) over some open set U⊂ X is that G is open andπ|G is a
homeomorphism.

Proof. The sufficiency is easy to prove. To prove the necessity letf be a
section overU, then sincef is open f (U) is open. Sincef : U → f (U)
is 1-1, open, continuous,π| f (U) : f (U)→ U is a homeomorphism �
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We have shown that if f is a section over U then f is a homeomor-
phism of U onto f(U).

The sections f(U) form a base for the open sets of S .

Proof. We have already proved that the open sets ofS which project
homeomorphically onto open sets ofX form a base for the open sets of
S �

The intersection f(U) ∩ g(V) of two sections is a section.

Proof. f(U)∩g(V) is open and projects homeomorphically onto an open
set ofX since each off (U) andg(V) has this property. �

If f : U → S is a section, the set{x : f (x) = 0x} is open in U.

Proof. {x : f (x) = 0x} = π( f (U) ∩ 0(U)) (0 denotes the 0-section over
U), hence is open inU. �

Definition. If f : U → S is a section, the support of f , denoted as supp
f , is the set{x : f (x) , 0x}. This set is closed in U. If f is a section over15

X, supp f is a closedsubset of X

Note .Since the sections ofS form a base for the open sets ofS, the
topology ofS = ∪Sx can be described by specifying the sections. (See
appendix at the end of the lecture).

Let a = (A, τ,X) be a sheaf of rings with unit, and letS = (S, π,X)
andR = (R, ρ,X) be sheaves ofa-modules (all over the same base space
X).

Definition. A homomorphism h: S → R is a map h: S→ R such that
ρ·h = π and its restriction h|Sx = hx : Sx→ Rx is an Ax homomorphism
for each x∈ X

This definition includes as a special case the definition of homomor-
phisms of sheaves ofB-modules and sheaves of abelian groups.

If h : S → R is a homomorphism, the image of each section is a
section.
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Proof. If f : U → S is a section, thenh f : U → R, the image of
the sectionf defined by (h f)(x) = h( f (x)), is continuous andρ(h f) =
Π · f = 1|U.

(1) h is an open mapping.

(2) h is a local homeomorphism.

�

Proof. (1) If G ⊂ S is open, thenG is a union of sections, henceh(G) is
a union of sections ofR, hence is open

(2) Eachp ∈ S is contained in some sectionf (U). Soh f(U) is a16

section inR andh| f (U) = h fπ| f (U), and each ofπ| f (U) : f (U) → U
andh f : U → h f(U) is a homeomorphism. �

Appendix.
A sheaf may be described by specifying its sections as follows: Sup-

pose that we are given a spaceX and mutually disjoint abelian groups
Sx, one for each pointx ∈ X. Also suppose that we are given a fam-
ily

∑

= {s} of functions with domain open inX and values in∪xSx,
s : dom(s) → ∪xSx, such that, ifx ∈ dom(s), s(x) ∈ Sx. Suppose
further that

(i) the images for alls∈
∑

cover∪Sx,

(ii) if s1(x), s2(x) are defined then, for some openU with x ∈⊂
dom(s1) ∩ dom(s2), (s1 + s2)|U ∈

∑

,

(iii) if s(x) = 0x then, for some openU with x ∈ U ⊂ dom(s)s(U)
consists entirely of zeros.

If S = ∪Sx with {s(U)}, for all s ∈
∑

and open U⊂ dom(s), as base
for open sets and ifπ(p) = x for p ∈ Sx then(S, π,X) is a sheaf.

Proof. Let p ∈ s(U) ∩ s1(U1) and let x = π(p). By (i) there exists
s2 with s2(x) = −p, by (ii) there exists a neighbourhoodV of x with
(s+ s2)|V ∈

∑

and by (iii), since (s+ s2)x = p − p = 0x there is a
smaller neighbourhoodV′ of x with (s + s2)(V′) consisting of zeros.
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Similarly there is a neighbourhoodV′1 of x with (s1 + s2)(V′1) consisting
of zeros. �

Let W = V′ ∩ V′1, then (s+ s1 + s2)|W = s|W = s1|W. Thens(W) is in 17

the proposed base andp ∈ s(W) ⊂ s(U)∩ s1(U1). Therefore the axioms
for a base are satisfied.

Then s : U → S is continuous. For ifx ∈ dom(s) and p = s(x),
any neighbourhoodG of p contains a neighbourhoods1(U1) and again
there is an openW with p ∈ s(W) = s1(W) ⊂ s(U1) ⊂ G. Hence
s : U → s(U) is a homeomorphism, sinces is clearly 1-1 and open.
Thenπ|s(U) is the inverse homeomorphism and its imageU is open.
Thusπ is a local homeomorphism.

Addition is continuous. For ifp, q ∈ Sx, with p+q ∈ s2(U2) suppose
p ∈ s(U) andq ∈ s1(U1). By (ii) there is a neighbourhoodV of x with
(s1+s2)|V ∈

∑

. Thenp+q ∈ s2(U2)∩(s+s1)(V) and hence for someW,
with x ∈ W ⊂ U2 ∩ V, s2|W = (s+ s1)|W. Thus, if r ∈ s(W), t ∈ s1(W)
andπ(r) = π(t), thens(r) + s1(t) = s2(t) ∈ s2(U2).
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If (S′, π′,X) and (S, π,X) are two sheaves ofa-modules withS′ ⊂ S and 18

if the inclusion mapi : S′ → S is a homomorphism, thenS′ is an open
subset ofS since i is an open map; further the topology onS′ is the one
induced fromS. Thenπ′ = π · i = π|S′ and sincei|S′x : S′x → Sx is a
homomorphism,S′x is a sub -Ax - module ofSx.

This suggests the following definition of a subsheaf.

Definition. (S′, π|S′,X) is called a subsheaf of(S, π,X) if S′ is open in
S and, for each x, S′x = S′ ∩ Sx is a sub - Ax- module of Sx.

A subsheaf is a sheaf and the inclusion map i is a homomorphism.

Proof. For eachp ∈ S′ there exists an open setG, p ∈ G ⊂ S, with
π|G a homeomorphism. ThenG ∩ S′ is open inS′ and (π|S′)|G ∩ S′ =
π|G ∩ S′ is a homeomorphism.S′x is anAx-module and the operations
which are continuous inS are continuous in the subspaceS′. Therefore
(S′, π|S′,X) is a sheaf. �

Sincei : S′ → S is a map, andπ · i = π|S′ and i|S′x : S′x → Sx is
the inclusion homomorphism of the submoduleS′x, it follows that i is a
homomorphism.

The set of all zeros in S is a subsheaf of S.

Proof. The set of zeros is open inS, and 0x is a sub-Ax-module ofSx.
�

This sheaf is called the 0-sheaf (zero sheaf) and is usually identified 19

with the constant sheaf 0= (X × 0, π,X).

15
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If h : S → R is a homomorphism of sheaves, the set S′ of p ∈ S
such that h(p) = 0π(p) forms a subsheafS ′ of S called the kernel of
h(S ′

= kerh), and the image set S′′ = h(S) forms a subsheaf ofR
called the image of h(S ′′

= imh) .

Proof. (1) Sinceh is continuous and 0 (0 denotes the set of zeros inR)
is open, thereforeS′ = h−1(0) is open. EachS′x = S′ ∩ Sx is the
kernel ofh|Sx : Sx→ Rx, henceS′x is a sub-Ax-module ofSx.

(2) Sinceh is an open map,S′′ is open. EachS′′x = S′′x ∩R is the image
of the homomorphismh|Sx : Sx → Rx, henceS′′x is a sub -Ax -
module ofRx.

�

Definition. A homomorphism h: S → R is called a monomorphism if
kerh = 0, an epimorphism ifim h = R, and and isomorphism ifkerh = 0
and im h = R.

Definition. A sequence

· · · → S j−1
hj
−→ S j

hj+1
−−−→ S j+1→ · · ·

of homomorphisms of sheaves is calledexact atS j if kerh j+1 = im h j ;
it is calledexactif it is exact at eachS j.

If h : S → R is a homomorphism, the sequence

0→ kerh
i
−→ S

h
−→ im h→ 0

is exact.20

Herei : kerh→ S is the inclusion homomorphism, andh′ : S →

im h is defined byh′(p) = h(p). It is a homomorphism. The other two
homomorphisms are, of course, uniquely determined.

Proof. The statement is the composite of the three trivial statements:

(i) i : kerh→ S is a monomorphism,

(ii) ker h′ = kerh,
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(iii) h′ : S → imh is an epimorphism.

�

Definition. A directed set (Ω, <) is a setΩ and a relation<, such that

1) λ < λ (λ ∈ Ω),

2) if λ < µ andµ < ν thenλ < ν(λ, µ, ν ∈ Ω), 21

3) if λ, µ ∈ Ω, there exists aν ∈ Ω such thatλ < ν andµ < ν.

That is,< is reflexive and transitive and each finite subset ofΩ has
an upper bound. (We also writeµ > λ for λ < µ).

Example.LetΩ be the family of all compact subsetsC of the plane let
C < D meanC ⊂ D. Ω is then a directed set.

Definition . A direct system{Gλ, φµλ} of abelian groups, indexed by a
directed setΩ, is a system{Gλ}λ∈Ω of abelian groups and a system{φµλ :
Gλ → Gµ}λ<µ of homomorphisms such that

(i) φλλ : Gλ → Gλ is identity,

(ii) if λ < µ < ν, φνµφµλ = φνλ : Gλ → Gν.

Thus ifλ < µ < ν andλ < k < ν , thenφνµφµλ = φνkφkλ.
The definition of a direct system will be the same even when theG′

λ

s are any algebraic systems.

Definition. Two elements a∈ Gλ and b∈ Gµ of ∪λ∈ΩGλ are said to be
equivalent (aσb) if for someν, φνλa = φνµb.

This relation is easily verified to be an equivalence relation. The
equivalence class determined bya will be denoted by (a).

We will now define addition of equivalence classes. If (a) and (b)
are equivalence classes,a ∈ Gλ, b ∈ Gµ, choose aν > λ and> µ and
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define (a) + (b) = (φνλa+ φνµb).

Gλ

�� **TTTTTTTTTTTTTTT Gµ

��ttjjjjjjjjjjjjjjjj

Gν

$$I
IIIII Gν1

zztttttt

Gν2

To show that this does not depend on the choice ofν chooseν1 > λ

and> µ, let ν2 > ν and> ν1. Then

φν2ν(φνλa+ φνµb) = φν2λa+ φν2µb

= φν2ν1(φν1λa+ φν1µb),

henceφνλa+φνµb ∼ φν1µb. Clearly the class (φνλa+φνλb) is independent
of the choice ofa andb.

If {Gλ, φµλ} is a direct system of abelian groups, the equivalence
classes form an abelian group G called the direct limit of thesystem.

Proof. ThatG is an abelian group follows easily from the fact that each
Gλ is an abelian group. �

The zero element ofGλ is the class containing all the zeros of all the22

groupsGλ.
Clearly, if eachGλ is a ring, thenG is a ring, and similarly for any

other algebraic system.
The functionφλ : Gλ → G, whereφλa = (a) is a homomorphism

and ifλ < µ, φµφµλ = φλ.

Proof.

φλ(a+ b) = (a+ b) = (a) + (b) = φλa+ φλb,

φµ(φµλa) = (φµλa) = (a) = φλa.

�
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Example .Let (N,≤) be the directed set of natural numbers. For each
natural numbern let Gn = Z and ifn ≤ m, letφmn : Gn→ Gm be defined

by φmna =
m!a
n!

. The direct limit is isomorphic to the group of rational

numbers.

Example.Let (N,≤) be as before. For each natural numbern, let Gn be
the group of rational numbers modulo 1 and ifn ≤ m let φmn : Gn→ Gm

be defined byφmna =
m!a
n!

. The direct limit is zero.

If {Gλ, φµλ} is a direct system of abelian groups and if{ fλ : Gλ → H}
are homomorphisms into an abelian group H with fµφµλ= fλ , there is
a unique homomorphism f: G → H of the limit group G such that
fφλ = fλ.

Proof. Since fµφµλ = fλ, all elements of an equivalence class have the
same image inH. Then f is uniquely determined byf (φλa) = fλa. �

For any two equivalence classes, choose representativesa1, b1 in 23

someGν. Then

f (φνa1 + φνb1) = fφν(a1 + b1)

= fφνa1 + fφνb1

since fφν = fν is a homomorphism. Thusf is a homomorphism.
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Definition . Let S be a unitary left A-module and R a unitary left B-24

module; a homomorphismφ : (A,S) → (B,R) is a pair (φ′ : A →
B, φ′′ : S→ R) where

φ′(a+ b) = φ′(a) + φ′(b), φ′(ab) = φ′(a)φ′(b), φ′(1) = 1, a, b ∈ A

φ′′(s+ t) = φ′′(s) + φ′′(t), φ′′(as) = φ′(a)φ′′(s), s, t ∈ S, a ∈ A.

[Remark. For a homomorphismφ : (A,S) → (B,R), we sometimes
write onlyφ for bothφ′ andφ′′.]

Direct systems and direct limits are defined for arbitrary algebraic
systems. Thus ifΩ is a directed set and{Aλ,Sλ, φµλ}λ, µ ∈ Ω, where
φµλ = (φ′

µλ:Aλ→Aµ,φ′′µλ:Sλ→Sµ
), is a direct system of unitary modules, the

direct limit consists of a ringA with unit element, and a unitary leftA-
moduleS, and there are homomorphismsφλ : (Aλ,Sλ) → (A,S) such
that, if λ < µ, φµφµλ = φλ.

The unit element ofA is the equivalence class containing all the
unit elements of allAλ, and the zero ofA is the class containing all the
zeros. Thus, if 1λ = 0λ in someAλ, 1= 0 in A and hence for alla ∈ A,
a = 1·a = 0·a = 0, and for alls∈ S, s= 0, and the direct limit consists
of the pair (0,0).

If hλ : (Aλ,Sλ) → (B,R) are homomorphisms with hµφmuλ = hλ,
there is a unique homomorphism h: (A,S)→ (B,R) such that hφλ = hλ
for eachλ.

Proof. This is proved exactly as in the last lecture. � 25

21
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Definition. If Ω is a directed set, a subsetΩ′ ofΩ is said to be a subdi-
rected set ofΩ, if, with the induced order relation, it is a directed set.

Definition. A subsetΩ′ of a directed setΩ is said to becofinal in Ω if,
for any elementλ· ∈ Ω, there exists aν ∈ Ω′ with λ < ν.

If Ω′ is cofinal inΩ,Ω′ is a subdirected set.

Proof. This is simple. �

If
∑

= {Aλ,Sλ, φµλ}λ,µ∈Ω is a direct system and ifΩ′ is a subdirected
set ofΩ, then

∑′
= {Aλ,Sλ, φµλ}, λ, µ ∈ Ω′ is also a direct system. Let

(A′,S′) be its direct limit andφ′
λ

: (Aλ,Sλ)→ (A′,S′) for λ ∈ Ω′. Since,
for λ < µ ∈ Ω′ φµφµλ = φλ; there is a unique induced homomorphism
i : (A′,S′)→ (A,S) with iφ′µ = φµ.

(Aλ,Sλ)
φµλ //

φλ
**UUUUUUUUUUUUUUUUUUUU (Aµ,Sµ)

φ′µ //

φµ

%%KKK
KK

KKK
KK

(A′,S′)

i
��

(A,S)

If Ω′ is cofinal inΩ, then i : (A′,S′)→ (A,S) is an isomorphism.

Proof. Each classφλ a of
⋃

Ω

Aλ has a representative in
⋃

λ∈Ω′
Aλ and if

a, ∈
⋃

λ∈Ω′
Aλ anda ∼ o in

∑

thena ∼ o in
∑′. Thusi′ : A′ → A is an

isomorphism. Similarlyi′′ : S′ → S is anan isomorphism. �

If {Aλ,Sλ, φµλ} and {Bλ,Rλ, θµλ} are direct systems indexed by the26

same directed setΩ, and if { fλ : (Aλ,Sλ) → (Bλ,Rλ) are homomor-
phisms such that fµφµλ = θµλ fλ : (Aλ,Sλ) → (Bµ,Rµ), there is a
unique homomorphism f: (A,S) → (B,R) of the limit modules such
that fφλ = θλ fλ.

(Aλ,Sλ)

fλ
��

φµλ // (Aµ,Sµ)

fµ
��

(Bλ,Rλ)
θµλ

// (Bµ,Rµ)

(Aλ,Sλ)

fλ
��

φλ //

hλ

%%J
JJJJJJJJ

(A,S)

f
��

(Bλ,Rλ)
θλ

// (B,R)
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Proof. Let hλ = θλ fλ : (Aλ,Sλ) → (B,R). Thenhµφµλ = θµ fµφµλ fλ =
θµθµλ fλ = θλ fλ = hλ. Therefore there is a unique homomorphismf :
(A,S)→ (B,R) with fφλ = hλ, i.e. with fφλ = θλ fλ. �

If {Aλ,Sλ, φµλ}, {Aλ,Rλ, θµλ}, {Aλ,Qλ, ψµλ} are direct systems of uni-
tary left modules (with direct limits S , R, Q respectively) indexed by the
same directed setΩ, with φ′

µλ
= θ′

µλ
= ψ′

µλ
: Aλ → Aµ, and if, for each

λ ∈ Ω, Sλ
gλ
−−→ Rλ

fλ
−→ ϕλ is an exact sequence of homomorphisms of Aλ

- modules, and if commutativity holds in

(Aλ,Sλ)
gλ //

θµλ

��

(Aλ,Rλ)

θµλ

��

fλ // (Aλ,Qλ)

ψµλ

��
(Aµ,Sµ) gµ

// (Aµ,Rµ)
fµ

// (Aµ,Qµ)

then the sequence of induced homomorphisms of A-modules

S
g
−→ R

f
−→ Q

is exact. 27

Proof. Consider the following commutative diagram:

(Aλ,Sλ)
gλ //

φµλ

��

(Aλ,Rλ)
fλ //

θµλ

��

(Aλ,Qλ)

ψµλ

��
(Aµ,Sµ)

gµ //

φµ

��

(Aµ,Rµ)
fµ //

θµ

��

(Aµ,Qµ)

ψµ

��
(A,S)

g // (A,R)
f // (A,Q)

(i) im g ⊂ ker f . For if s1 ∈ S, for someλ, φλs = S1, s ∈ Sλ. Then
g(φλs) ∈ im g, and f (gφλs) = ψλ( fλgλs) = ψλ(0) = (0). Hence
gφλs ∈ ker f .
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(ii) ker f ⊂ im g. For if r1 ∈ R, then for someλ, θλr = r1, r ∈ Rλ. Let
θλr ∈ ker f . Then f (θλ)r = 0 = ψλ fλr, this means thatfλr ∼ 0,
hence there exists aµ > λ such that

ψµλ( fλr) = 0 = fµ(θµλr), i.e.θµλr ∈ ker fµ

and kerfµ is equal to imgµ by assumption, hence there must exist
an s∈ Sµ such thatθµλr = gµs, i.e.

(Q.e.d.) θλr = θµθµλr = θµgµs= gθµs∈ im g.

�

Definition. A bihomomorphismf : (A,R,S) → (B,T), where A, B are
commutative rings with unit element, R, S , are unitary A-modules and
T is a unitary B-module, is a pair( f ′ : A→ B, f ′′ : R× S → T) such
that f′′ is bilinear. More precisely,

f ′(a1 + a2) = f ′(a1) + f ′(a2), f ′(a1a2)

= f ′(a1) f ′(a2), f ′(1) = 1, a1, a2 ∈ A,

f ′′(r, a1s1 + a2s2) = f ′(a1) f ′′(r, s1) + f ′(a2) f ′′(r, s2), r ∈ R, s1, s2 ∈ S,

f ′′(a1r1 + a2r2, s) = f ′(a1) f ′′(r1, s) + f ′(a2) f ′′(r2, s), r1, r2 ∈ R, s∈ S.

28

If A = B and f ′ is the identity, we writef : (R,S)→ T.
Given(A,R,S) there exists a unitary A-module R⊗A S and a biho-

momorphismα : (R,S) → R⊗A S where imα generates R⊗A S such
that, for any bihomomorphism f: (A,R,S) → (B,T) there is a unique
homomorphismf̄ : (A,R⊗A S)→ (B,T) with f̄α = f .

The moduleR⊗A S together with the bihomomorphismα is called
a tensor productof R andS over the ringA; it is uniquely determined
upto isomorphism. Hence we can say ’the’ tensor product ofR andS.

Proof. For the proof of the existence of the tensor product, see Bour-
baki, Algebre multilineaire. We give only the proof of uniqueness. �
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(A,R⊗A S)

ᾱ′

��

(A,R,S)

α
55llllllll

α′ ((RRRRRRRR

(A,R⊗′A S)

ᾱ

OO

Let R ⊗′A S and R ⊗A S be two tensor products ofR and S over
A. Then by definition of the tensor product the bihomomorphismα′

induces a homomorphism ¯α′ : (A,R ⊗A S) → (A,R ⊗′A S) such that
ᾱ′ · α = α′. Similarly α induces a homomorphism ¯α such that ¯αα′ = α.
Then ᾱ′ · ᾱ is the identity ofR ⊗′A S, similarly ᾱᾱ′ is the identity of
R⊗A S. Hence ¯α is an isomorphism.

If we identity R⊗′A S with R⊗A S under this isomorphism,α′ will 29

coincide withα

Example .Let A be a commutative ring with unit element,S a uni-
tary A-module, and considerA itself as a unitaryA-module. Define
α : (A,A,S) → (A,S) asα(a, s) = as. Thenα is verified to be a biho-
momorphism. Iff : (A,A,S)→ (B,T) is any bihomomorphism, define
the homomorphismf̄ : (A,S) → (B,T) as f̄ ′a = f ′a, f̄ ′′s = f ′′(1, s).
Then

¯f ′′α(a, s) ∗ ¯f ′′(as) = f ′′(1, as) = f ′(a) f ′′(1, s) = f ′′(a, s).

Thus f̄α = f , andS with the bihomomorphismα : (A,S) → S is the
tensor productA⊗A S.

Similarly S ⊗A A = S with α(s, a) = as.
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Definition . A homomorphismφ : (A,R,S) → (B,P,Q) consists of ho- 30

momorphisms(A,R)→ (B,P) and(A,S)→ (B,Q) (in the sense already
defined), where the homomorphism A→ B is the same in both cases.

A homomorphismφ : (A,R,S) → (B,P,Q) induces a mapφ : R×
S→ P× Q. We now consider the following diagram:

(A,R× S)
φ //

α

��

βφ

OOOOOOOOOOOO
(B,P× Q) θ //

β

��

(C,T × U)

γ

��
(A,R⊗A S)

φ̄

// (B,P⊗B Q)
θ̄

// (C,T ⊗C U)

Hereφ, θ are the induced maps andα, β, γ the bihomomorphisms in-
cluded in the definition of tensor products. Further, the homomorphism
φ induces a unique homomorphism̄φ as indicated, such that̄φα = βφ,
and similarlyφ̄β = γθ. From the uniqueness, we haveθφ = δbarφ. If φ
is the identity then̄φ also is the identity.

The operator of taking the tensor product commutes with the opera-
tion of taking the direct limit.

Proof. Let {Aλ,Rλ,Sλ, φµλ}λ,µ∈Ω be a direct system, where eachAλ is a
commutative ring with unit element,Rλ andSλ are unitaryAλ-modules
andφµλ : (Aλ,Rλ,Sλ) → (Aµ,Rµ,Sµ) are homomorphisms. Then, since
φ̄λλ is the identity and̄φνλ = φνµφµλ = φ̄νλ · φ̄νλ(λ < µ < ν), the system
{Aλ,Rλ ⊗Aλ Sλ, φ̄µλ} is a direct system. Let its direct limit be denoted by
(A,Q). �

27
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(Aλ,Rλ,Sλ)
φµλ //

αλ

��

(Aµ,Rµ,Sµ)
φµ //

αµ

��

(A,R,S)

β

��

f

%%JJJ
JJJ

JJJ
J

(B,T)

(Aλ,Rλ ⊗Aλ Sλ)
φ̄µλ

// (Aµ,Rµ ⊗Aµ Sµ)
φ̄µ

// (A,Q)
f̄

99tttttttttt

31

We define a bihomomorphismβ : (A,R,S)→ (A,Q) as

β(r, s) = φ̄λαλ(rλ, sλ),

whererλ and sλ are respresentatives ofr ∈ R, s ∈ S, for the sameλ.
Since

φ̄µαµ(φµλrλ, φµλsλ) = φ̄µφ̄µλαλ(rλ, sλ) = φ̄λαλ(rλ, sλ),

β : (R,S) → Q is independent of the choice of representatives. For a
suitable choice of representatives,

β(r, bs+ cs′) = φ̄λαλ(rλ, bλsλ + cλs′λ)

= φ̄λ((bλ · αλ(rλ, sλ) + cλ · αλ(rλ, s
′
λ))

= φ̄λ(bλ) · φ̄λαλ(rλ, sλ) + φλ(cλ)φ̄λαλ(rλ, s
′
λ)

= b · β(r, s) + c · β(r, s′)

and similarly

β(br + cr′, s) = b · β(r, s) + c · β(r′, s)

Thusβ : (R,S)→ Q is verified to be a bihomomorphism. Clearly im
β generatesQ, for, eachq ∈ Q has a representativeqλ in someRλ⊗Aλ Sλ

and, since imαλ generatesRλ ⊗Aλ Sλ, qλ =
∑k

i=1 ai . αλ(r i , si), ai ∈ Aλ,
r i ∈ Rλ, si ∈ Sλ. Then

q =
k

∑

i=1

φλ(ai)φ̄λαλ(r i , si) =
k

∑

i=1

φλ(ai)β(φλr i , φλsi)



Lecture 6 29

which proves that imβ generatesQ.32

We now show thatQ together with the bihomomorphismβ : (R,S)
→ Q is the tensor productR⊗A S. To do this, letf : (A,R,S)→ (B,T)
be any bihomomorphism, then for eachλ, fφλ : (Aλ,Rλ,Sλ)→ (B,T) is
also a bihomomorphism, hence it induces a unique homomorphism f̄λ :
(Aλ,Rλ ⊗Aλ Sλ)→ (B,T) where for eachλ < µ, f̄µφ̄µλ · αλ = f̄µαµφµλ =
fφµφµλ = fφλ = f̄λαλ. Hence, since imαλ generatesRλ⊗Aλ Sλ, f̄µφ̄µλ =
f̄λ. Therefore there is a unique homomorphism̄f : (A,Q)→ (B,T) with
f̄ φ̄λ = f̄λ. Then

f̄β(r, s) = f̄ φ̄λαλ(rλ, sλ) = f̄λαλ(rλ, sλ) = fφλ(rλ, sλ) = f (r, s);

and the proof of the statement is complete.

Presheaves.
LetΩ be the set of all open sets ofX, with the order relation⊃, i.e.

U ⊃ V is equivalent to saying thatU < V. thenU ⊃ U and if U ⊃ V
andV ⊃ W thenU ⊃ W and givenU,V there existsW = U ∩ V with
U ⊃W, V ⊃W; henceΩ is a directed set.

Definition. A presheaf of modules over a base space X is a direct system
{AU ,SU , φVU} indexed byΩ, such that(Aφ,Sφ) = (0, 0), whereφ is the
empty set.

For a presheaf overX, the index setΩ is always the family of all
open sets ofX.

The definition of a presheaf includes, as a special case, the definition 33

of a presheaf ofB-modules, presheaf of rings with unit element and a
presheaf of abelian groups.

Example 10.Let X be the complex sphere,AU the ring of all functions
analytic inU if U is a non-empty open set andAφ = O; and, if f ∈ AU

andU ⊃ V, let φVU f = f |V, i.e. φVU is the restriction homomorphism.
Then{AU , φVU} is a presheaf of rings with unit element.

Presheaf of sections.Let a be a sheaf of ringswith unit andS a sheaf

of a-modules. For each openU, the ringΓ(U,S ) is a unitaryΓ(U, a)-
module. IfV ⊂ U, let

φVU : (Γ(U, a), Γ(U,S ))→ (Γ(V, a), Γ(V,S ))
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denote the restriction homomorphism. By conventionΓ(φ, a) = o, Γ
(φ,S ) = o whereφ denotes the empty set. Thus{Γ(U, a), Γ(U,S ), φVU}

is a presheaf denoted by (ā, S̄ ), and is called the presheaf of sections of
(a,S ).

For eachx ∈ X let Ωx denote the family of all open subsets ofX
containingx. ThenΩx is a subdirected set ofΩ. If {AU ,SU , φVU} is a
presheaf, let (Ax,Sx) denote the direct limit of the subsystem
{AU ,SU , φVU} indexed byΩx, and letφxU : (AU ,SU) → (Ax,Sx) be
the homomorphism which sends each element into its equivalence class.
If a ∈ AU , its imageφxUa = ax is called thegermof a at x; similarly
for s ∈ SU . We will denote by ¯a : U →

⋃

x
Ax the function for which34

ā(x) = ax, and similarly fors̄ : U →
⋃

x
Sx. For eachW ⊂ U we write

aW = ā(W) = {ax : x ∈W}, and similarly forsW.
[For instance, in Example 10, iff is analytic inU, x ∈ U the germ

fx is the class of those functions each of which coincides withf in some
neighbourhood ofx.]

Let A =
⋃

x Ax, S =
⋃

x Sx. Defineτ : A → X, π : S → X by
τ(Ax) = x, π(Sx) = x. Thenτā : U → U, πs̄ : U → U are the identity
maps onU.

We can take{aU }U , a ∈ AU as abase for open sets in A. For, {aU }

coversA and if p ∈ aU ∩ bV, x = τ(p), we havep = ax = bx with
a ∈ AU , b ∈ AV andx ∈ U ∩ V. Then for someW with x ∈W ⊂ U ∩ V,
φWU a = φWV b = c say. Since

φxUa = φxWφWUa = φxWc = φxWφWVb = φxVb for eachx ∈W,

we havecW = aW = bW. Thenp ∈ cW = aW = bW ⊂ aU ∩ bV. Similarly
the sets{sU} form a base for open sets inS.
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With the notations introduced in the last lecture, we prove 35

Proposition 3. If {AU ,SU , φVU} is a presheaf of modules over the space
X, thena = (A, τ,X) is a sheaf of rings with unit andS = (S, π,X) is a
sheaf ofa-modules.

Proof. If a ∈ AU , ā : U → A is continuous. For, ifax ∈ bV with b ∈ AV,
there existsc ∈ AW with x ∈ W ⊂ U ∩ V such that ¯a(W) = aW = cW =

bW ⊂ bV. Also ā : U → A is an open mapping since, for openV ⊂ U,
aV = (φVUa)V is open by definition. �

Henceā : U → aU being 1-1 is a homeomorphism and the inverse
τ|aU : aU → U is a homeomorphism ofaU onto the open setU.

Similarly s̄ : U → S is continuous andπ|sU : sU → U is a homeo-
morphism. Thusτ andπ are local homeomorphisms.

For eachx ∈ X, τ−1(x) = Ax is a ring with unit element, andπ−1(x) =
Sx is a unitary leftAx-module.

Addition is continuous, for if ax, bx ∈ Ax (with a ∈ AU , b ∈ AU1,
x ∈ U ∩ U1) andax + bx ∈ cU2 with c ∈ AU2, then for someW with
x ∈ W ⊂ U ∩ U2 ∩ U2, φWUa + φWU1 b = φWU2c. Thusax ∈ aW,
bx ∈ bW and for anyp ∈ aW, q ∈ bW with τ(p) = τ(q) = y say, we have
p+ q = ay + by = cy ∈ cU2.

The unit is continuous, for if 1x ∈ Ax is the unit element ofAx and
1x ∈ bU , then for someV with x ∈ V ⊂ U, φVUb is the unit element of
AV. ThenbV ⊂ bU and consists of the unit elements 1y for y ∈ V.

Similarly the other operations ofa andS are continuous. 36

31
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We remark thataU , sU · · · aresectionsand that such sections form
a base for open sets ofA, S.

Remark . The “sheaves” introduced originally by Leray were actually
presheaves with the indexing setΩ consisting of the family of all closed
sets instead of the family of all open sets.

Example 11.Let X be the circle|z| = 1; for each open setU of X let
SU be the abelian group of all integer valued functions inU and letφVU

be the restriction homomorphism. This system is a presheaf and the
induced sheaf has Example 4 as a subsheaf.

Example 12.Let X be the real line, andSU the R module (R denotes
the ring of real numbers) of all real indefinitely differentiable functions
in U and letφVU denote the restriction homomorphism. This system is
a presheaf and the sheaf spaceS of the induced sheaf is not Hausdorff.

Let (a,S ) be a sheaf, (̄a, S̄ ) its presheaf of sections and (a′,S ′)
the sheaf determined by (ā, S̄ ). We show that (a′,S ′) and (a,S ) are
canonically isomorphic.

(ā, )̄

""F
F

F
F

(a, )

<<z
z

z
z

(a′, ′)hoo

If x ∈ U and f ∈ Γ(U, a), let hxU f = f (x) ∈ Ax. Similarly, if
s∈ Γ(U,S ), let hxU s= s(x) ∈ Sx. Then

hxU : (Γ(U, a), Γ(U,S ))→ (Ax,Sx)

is a homomorphism and, ifx ∈ V ⊂ U, hxVφVU = hxU. Then there is an37

induced homomorphismhx : (· · ·′x ,S
′
x)→ (Ax,Sx) with hxφxU = hxU.

In fact hx is an isomorphism. For ifp ∈ Ax, then there is some
section f : U → A with f (x) = p, then

p = f (x) = hxU f = hxφxU f ∈ imhx,
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and if p′ ∈ A′x with hxp′ = O, choose a representativef ∈ Γ(U, a) for p′.
Then f (x) = hxU f = hxp′ = O. Hence, for someV, with x ∈ V ⊂ U,
f |V = o. Therefore

p′ = φxU f = φxVφVU f = φxVOV = (O).

Thushx : A′x → Ax is an isomorphism and similarlyhx : S′x → Sx

is an isomorphism.
Let h : (A′,S′) → (A,S) be given byh|(A′x,S

′
x) = hx. If f ∈ Γ(U, a)

and fU is the induced section ina′, given by f̄ (x) = φxU f , then

hf̄ (x) = hx f̄ (x) = hxφxU f = hxU f = f (x)

and thush( f̄ (U)) = f (U). The same holds ifs∈ Γ(U,S ).
Thush is an isomorphism of stalks for eachx and, since it maps

section fU onto sectionsf (U), h is a local homeomorphism and hence
is continuous. Thush : (a′.S )→ (a,S ) is a sheaf isomorphism.

We identify(a′,S ′) with (a,S ) under this isomorphism. 38

If a ∈ A, h−1a is the class of all sectionsf : U → A where f (U)
containsa, and similarly forh−1s.

Definition. If
∑′
= {A′U ,S

′
U , φ

′
VU} and

∑

= {AU ,SU , φVU} are preshea-
ves over X, a homomorphism f:=

∑′ →
∑

is a system{ fU} of homo-
morphisms fU : (A′U ,S

′
U) → (AU ,SU) such that fVφ′VU = φVU fU , that

is, the following diagram is commutative.

(A′U ,S
′
U)

φ′VU //

fU
��

(A′V,S
′
V)

fV
��

(AU ,SU)
φVU

// (AV,SV).

Let (a′,S ′), (a,S ) be the sheaves determined by
∑′,

∑

. Then
the homomorphism f:

∑′ →
∑

induces a sheaf homomorphism f:
(a′,S ′)→ (a,S ).

Proof. For eachx, { fU}x∈U induces a homomorphismfx : (A′x,S
′
x) →

(Ax,Sx), with fxφ′xU = φxU fU and these homomorphismfx define a
function f : (A′,S′)→ (A,S). �
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If for a′ ∈ A′U , fUa′ = a, then

ax = φxUa = φxU fUa′ = fxφ
′
xUa′ = fx(a

′
x).

Thus f (a′U) = aU and f is a local homeomorphism, hence is continuous.
Hencef is a sheaf homomorphism, and this completes the proof.

Let
∑

be a presheaf which determines the sheaf (a,S ), (ā, S̄ ) the39

presheaf of sections and (a′,S ′) the sheaf determined by it. The func-

tions fU : (AU ,SU) →
(

Γ(U, a), Γ(U,S )
)

(where fUa is the section

ā : U → A determined bya, and similarly for fU s), determine a homo-
morphism, f = { fU} :

∑

→ (ā, S̄ ). In general, the homomorphismf
is neither an epimorphism nor a monomorphism, hence obviously not a
isomorphism.

The induced homomorphism f: (a,S )→ (a′,S ′) is the identifying
isomorphism h−1.

Proof. Let a ∈ A and suppose thata = φxUb, b ∈ AU . f (a) is the class
at x containing fUb which is a section with (fUb)(x) = φxUb = a. Thus
f (a) is the classh−1 a of all sectionsg : U → A with g(x) = a. �

∑ f //

���
�
�

(ā, s̄)

���
�
�

(a, s)
f

h−1
//

::u
u

u
u

u
(a′, s′).
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Proposition 4. If
∑′

g
−→

∑ f
−→

∑′′ is an exact sequence of homomor-40

phisms of presheaves, i.e. if each sequence

(AU ,S
′
U)

gU
−−→ (AU ,SU)

fU
−−→ (AU ,S

′′
U)

is exact, then the induced sequenceS ′
g
−→ S

f
−→ S ′′ of sheaves is also

exact.

Proof. The sequences (Ax,S′x) → (Ax,Sx) → (Ax,S′′x ) are exact by a
property of the direct limit. �

Induced homomorphism of presheaves of sections. If S ′, S are
sheaves ofa-modules andg : S ′ → S is a homomorphism, there
is a homomorphism ¯g : S̄ ′ → S̄ of the presheaves of sections with
ḡU : Γ(U,S ′)→ Γ(U,S ) defined by ¯gU( f ) = g f . This homomorphism
takes all sections throughs′ ∈ S′ into sections throughgs′. Thus, with
the usual identification, ¯g inducts the sheaf homomorphismg : s′ → s.
Quotient Sheaves.

Proposition 5. If S is a sheaf of a-modules andS ′ is a subsheaf of
S , there is a unique sheafS ′′, whose stalks are the quotient modules
S′′x = Sx/S′x, such that j: S → S ′′ where j|Sx = jx : Sx → S′′x is the
natural homomorphism, is a sheaf homomorphism.

S ′′ is the quotient sheafS ′′
= S /S ′.

Proof. If S′′ =
⋃

x Sx/S′x is to have a topology such thatj : S → 41

S ′′ is a sheaf homomorphism,S′′ must be covered by sections which

35
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are imagej f (U) of sections ofS , and this uniquely determines the
topology ofS′′. This topology has the property that a setV of S′′ is
open if and only if j−1V is open. ThusS ′′ if it exists, is unique. �

Γ(U,S ′) is a sub-Γ(U, a)-module ofΓ(U,S ) and letφVU|Γ(U,S ′)
= φ′VU. Let S′′U = Γ(U,S )/Γ(U,S ′) and let jU : Γ(U,S ) → S′′U be
the natural homomorphism. Letφ′′VU : S′′U → S′′V denote the homomor-
phism induced byφVU. Then

∑′′
= {AU ,S′′U , φ

′′
VU} is a presheaf and the

sequence 0→ (ā, S̄ ′)
f
−→ (ā, S̄ )

j
−→

∑′′ → 0 is exact, where 0 is the
presheaf{AU , 0U , . . .}. Then the induced sequence of sheaves

0→ S ′ i
−→ S

i
−→ S ′′ → 0,

whereS ′′ is the sheaf determined by
∑′′, is exact. That is, for eachx,

the sequence

0→ S′x
ix
−→ Sx

jx
−→ S′′x → 0

is exact. Thusjx induces an isomorphismSx/S′x → S′′x , and if we
identify S′′x with Sx/S′x, jx : Sx→ Sx/S′x is the natural homomorphism.
Thus a sheafS ′′ having the required properties exists.

Definition . A homomorphismf : (a,S ) → (B,R) consists of maps
f ′ : A→ B and and f′′ : S→ R, commuting with the projections, such42

that the restrictions f′x = f ′|Ax → Bx and f′′x = f ′′|Sx : Sx → Rx give a
homomorphism fx = ( f ′x, f ′′x ) : (Ax,Sx)→ (Bx,Rx).

If f : (a,S ) → (B,R) is a sheaf homomorphism and ifS ′, R′

are subsheaves ofS , R respectively such that f(S′) ⊂ R′, there are
induced homomorphisms

f ′ : (a,S ′)→ (B,R′), f ′′ : (a,S /S ′)→ (B,R/′R)

with f i = i f ′, f ′′ j = j f , where i denotes the inclusion homomorphism
and j the natural homomorphism of a sheaf onto a quotient sheaf.

Proof. The result is clear for stalks, and the fact thatf ′, f ′′ are homo-
morphisms follows from the fact they are continuous. �
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Example 13.Let X be the circle|z| = 1, let S be the constant sheaf
(X × Z, π,X) of integers overX and letS ′ be the subsheaf obtained by
omitting the points (1, n) for n , o. ThenS /S ′ is isomorphic to the
sheaf of Example 4.

Example 14.Let X be the complex plane. LetSU be the additive abelian
group of functions analytic inU, let S′′U be the multiplicative abelian
group of non-vanishing analytic functions inU and let jU : SU → S′′U
be the homomorphism defined byjU f = e2πi f . The system{ jU} gives
a homomorphism of presheaves and there is an induced exact sequence
of sheaves

0→ Z→ S → S ′′ → 0

whereZ is the constant sheaf of integers. An element ofΓ(X,S ) is a 43

function analytic in the whole plane.

More generally, in this exampleX can be replaced by a complex
analytic manifold.

Tensor products of sheaves.
Let a, B be sheaves ofcommutative rings with unit elementlet R,

S be sheaves ofa-modules and letJ be a sheaf ofB-modules.

Definition . A bihomomorphismf : (a,R,S ) → (B,J) consists of
maps f′ : A→ B, f′′ : R+S→ T, which commute with the projections,
such that, for each x∈ X, the restriction fx : (Ax,Rx,Sx) → (Bx,Tx) is
a bihomomorphism.

If r ∈ Γ(U,R), s ∈ Γ(U,S ) there is a sectiont : U → T defined by
t(x) = f ′′(r(x), s(x)). Thatt is a map follows from the fact that it is the
composite of the two maps

U = U + U
r,s
−−→ R+ S

f ′′
−−→ T;

whereU + U is the set of points (x, x), x ∈ U. We write t = f ′′U (r, s).
Then fU : (AU ,RU ,SU) → (BU ,TU) whereAU = Γ(U, a), etc., is a
bihomomorphism, as follows from the property at eachx, e.g.

f ′′U (ar, s)(x) = f ′′((ar)(x), s(x)) = f ′′(a(x)r(x), s(x)
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= f ′(a(x)). f ′′(r(x), s(x)) = ( f ′U(a))(x). f ′′U (r, s)(x)

= ( f ′U(a). f ′′U (r, s))(x),

and similarly the other properties can be proved. ClearlyfU commutes
with the restriction of functions;fVφVU = θVU fU .44

(AU ,RU ,SU)
fU //

φVU

��

(BU ,TU)

θVU

��
(AV,RV,SV)

fV
//

φxV

��

(BV,TV)

θxV

��
(Ax,Rx,Sx) fx

// (Bx,Tx)

Also fxφxU(r, s) = f (r(x), s(x)) = fU(r, s)(x) = θxU fu(r, s); i.e.,
fxφxU = θxU fU . Thus the bihomomorphismf is determined by the
system of bihomomorphisms{ fU}.

Proposition 6. If a is a sheaf of commutative rings with unit, andR,
S are sheaves ofa-modules, there exists a sheafQ of a-modules and
a bihomomorphismα : (R,S ) → Q with im αx generating Qx for
each x, such that if f: (a,R,S ) → (B,J ) is any bihomomorphism
there is a (unique) homomorphism̄f : (a,Q) → (B,J ) with f̄ .α = f .
The sheafQ together with the bihomomorphismα is called the tensor
productR⊗aS and is unique upto isomorphism. Each Qx together with
αx : (Rx,Sx) → Qx is the tensor product Rx ⊗Ax Sx. The sections q(U)
where q(x) =

∑k
i=1 αx(r i(x), si(x)) with ri ∈ Γ(U, a), si ∈ Γ(U,S ) and

o < k < ∞, form a base for the open sets ofΩ =
⋃

x Qx =
⋃

x Rx⊗Ax Sx.

Proof. Let {AU ,RU ,SU , φVU} be the presheaf (̄a, R̄, S̄ ) i.e., AU =45

Γ(U, a), etc. For eachφVU, φVU : (AU ,RU ,SU) → (AV,RV,SV) there is
an induced homomorphism̄φVU : (AU ,RU ⊗AU SU)→ (AV,RV ⊗AV SV)

and the system
{

AU ,RU ⊗AU SU , φ̄VU

}

is a presheaf determining some

sheaf (a,Q). �

Since tensor products and direct limits commute, for eachx, there is
a unique induced bihomomorphismαx : (Rx,Sx) → Qx with αxφxU =
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φ̄xUαU and Qx together withαx is the tensor productRx ⊗Ax Sx. An
arbitrary elementq =

∑k
i=1αU(r i , si) ∈ RU ⊗AU SU determines a section

qU : U → Ω where

qU(x) = φ̄xUq =
k

∑

i=1

φ̄xUαU(r i , si) =
k

∑

i=1

αxφxU(r i , si)

=

k
∑

i=1

αx(r i(x), si (x))

and such sections from a base forQ.
If f : (a,R,S ) → (B,J ) is any bihomomorphism, there is an

induced homomorphism{ fU} : (ā, R̄, S̄ ) → (B̄, J̄ ) of presheaves.
Then, if f̄U : (AU ,RU ⊗AU SU) → (BU ,TU) is the homomorphism in-
duced byfU ,

{

f̄U
}

:
{

AU ,RU ⊗AU SU , φVU

}

→

{

B̄, J̄
}

is a homomorphism of

presheaves which induces a homomorphismf̄ : (a,Q) → (B,J ) of
sheaves. Then

(AU ,RU ,SU)
φVU //

αU

��
rrrrrrrrrrrr

(AV,RV,SV)
φxV //

αV

��

fV

PPPPPPPPPPPP
(Ax,Rx,Sx)

fx

HHHHHHHHHH

αx

��

%%LLLLLLLLLLLL (AU ,RU ⊗AU SU)
φVU //

f̄U
��

(AV,RV ⊗AV SV)

f̄V
��

φxV // (Ax,Qx)

f̄x
��vvnnnnnnnnnnnn

{{ww
ww

ww
ww

ww
w

(BU ,TU)
θVU // (BV,TV)

θxV // (Bx,Tx)

46

f̄xαxφxU(r, s) = θxU f̄UαU(r, s) = θxU fU(r, s) = fxφxU(r, s);

thus f̄xαx = fx and hencēf ·α = f . Since imαx generatesRx⊗AxSx = Qx,
f̄x is uniquely determined byfx; hence f̄ is unique. ThatQ andα are
unique upto isomorphism is proved in the usual manner.

Corollary. If φ : (a,R,S) → (B,J,U) is a homomorphism, there is a
unique induced homomorphism̄φ : (a,R ⊗a S ) → (B,J ⊗B U) with
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φ̄α = βφ

(a,R, )

φ

��

φ // (B,J,U)

β

��
(a,R ⊗a S

φ̄ // (B,J ⊗βU),
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1 Cohomology groups of a space with coefficients in
a presheaf

47
Definition . A covering (an indexed covering){Ui}i∈I of a space X is a
system of open sets whose union is X.

Definition . If
∑

= {SU , ρVU} is a presheaf of A-module where A is a
fixed ring with unit element, a q-cochain f(q = 0, 1, . . .) of a covering
U = {Ui}i∈I with values in

∑

is an alternating function of q+ 1 indices
with

f (io, i1, . . . , iq) ∈ SUio
∩ · · · ∩ Uiq

or more briefly f(σ) ∈ SUσ
whereσ is the simplex io, . . . , iq. In partic-

ular f (i0, i1, . . . , iq) = 0 if U i0 ∩ · · · ∩ Uiq = φ. ( A function f is called
alternating if

(i) f (i0, i1, . . . , iq) = 0 if any two of i0, . . . , iq are the same,

(ii) f ( j0, j1, . . . , jq) = ± f (i0, i1, . . . , iq) according as the permutation
j0, . . . , jq of i0, . . . , iq is even or odd).

We will often writeρ(V,U) for ρVU.
Theq-cochains ofU with values in

∑

form anA-moduleCq(U ,
∑

).
Forq < 0, we defineCq(U ,

∑

) = 0.

41
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Definition . The coboundaryδq+1 f (or simplyδ f ) of f ∈ Cq(U ,
∑

) is
the function on(q+ 1)-simplexes defined by

(δq+1 f )(σ) =
q+1
∑

j=0

(−1) jρ(Uσ,U∂ jσ) f (∂ jσ),

where∂ jσ = i0, . . ., î j , . . ., iq+1 = i0, . . ., i j−1, i j+1, . . . , iq+1 is the j-th48

face ofσ = io, . . . , iq+1.

If f ∈ Cq(U ,
∑

), thenδ f ∈ Cq+1(U ,
∑

).

Proof. It is sufficient to verify thatf is an alternating function, e.g.,

δ f (i1, io, . . . , iq+1) = ρ(Uσ,U∂1σ) f (∂1σ) − ρ(Uσ,U∂oσ) f (∂oσ)

+

q+1
∑

j=2

(−1) jρ(Uσ,U∂ jσ) f (i1, io, . . . , î j , . . . , iq+1)

= −ρ(Uσ,U∂o jσ) f (∂oσ) + ρ(Uσ,U∂1σ) f (∂1σ)

−

q+1
∑

j=2

(−1) jρ(Uσ,U∂ jσ) f (io, i1, . . . , î j , . . . , iq+1)

= −δ f (io, i1, . . . , iq+1)

and, if io = i1,

δ f (io, i1, . . . , iq+1) = ρ(Uσ,U∂oσ) f (∂oσ) − ρ(Uσ,U∂1σ) f (∂1σ∂)

= 0,

whereσ = io, . . . , iq+1. �

It follows, sinceρ(Uσ,U∂ jσ) is a homomorphism, that

δq+1 : Cq(U ,
∑

)→ Cq+1(U ,
∑

)

is a homomorphism. One verifies by computation thatδq+1δq f = 0 for
f ∈ Cq−1(U ,

∑

), using the fact that forj ≤ k

∂k∂ jσ = δk(io, . . . , î j , . . . , ik+1, . . . , iq+1) = io, . . . , î j , . . . , ˆik+1, . . . , iq+1
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= ∂ j∂k+1σ.

(The computation is carried out at the end of the lecture).49

Thus inδq ⊂ kerδq+1 in the sequence

0→ Co(U ,
∑

)
δ′

−→ C′(U ,
∑

)→ · · ·

→ Cq−1(U ,
∑

)
δq

−→ Cq(U ,
∑

)
δq+1

−−−→

The quotient moduleHq(U ,
∑

) = kerδq+1/ im δq is called theq-th
cohomology module ofU with coefficients in the presheaf

∑

.
The elements of the moduleZq(U ,

∑

) = kerδq+1 are calledq-
cocyclesand the elements of the moduleBq(U ,

∑

) = im δq are called
q-coboundaries. SinceBo(U ,

∑

) = 0, we haveHo(U ,
∑

) ≈ Zo(U ,
∑

).

Definition . A coveringW = {V j} j∈J is said to be a refinement of the
coveringU = {Ui}i∈I if for each j∈ J there is some i∈ I with V j ⊂ Ui.

If W is a refinement ofU , choose a functionτ : J → I with V j ⊂

Uτ( j). Then there is a homomorphism

τ+ : Cq(U ,
∑

)→ Cq(W ,
∑

)

defined by
τ+ f (σ) = ρ(Vσ,Uτ(σ)) f (τσ)

whereσ = j0, . . . , jq; andτσ = τ( j0), . . . , τ( jq).
τ+ commutes withδ since

δq+1τ+ f (σ) =
q+1
∑

k=0

(−1)kρ(Vσ,V∂kσ)τ+ f (∂kσ)

=

q+1
∑

k=0

(−1)kρ(Vσ,V∂kσ)ρ(V∂kσ,Uτ(∂kσ)) f (τ(∂kσ)),

=

q+1
∑

k=0

(−1)kρ(Vσ,Uτ(∂kσ)) f (τ(∂kσ),

τ+δq+1 f (σ) = ρ(Vσ,Uτσ)δ f (τσ)
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=

q+1
∑

k=0

(−1)kρ(Vσ,Uτσ)ρ(Uτσ,U∂kτσ) f (∂kτσ),

=

q+1
∑

k=0

(−1)kρ(Vσ,U∂kτσ) f (∂kτσ)

andτ∂kσ = ∂kτσ. Hence there is an induced homomorphism,50

τW U : Hq(U ,
∑

)→ Hq(W ,
∑

).

The homomorphismτW U : Hq(U ,
∑

)→ Hq(W ,
∑

) is independent
of the choice ofτ.

Proof. Let τ : J → I , τ′ : J → I be two such choices. Let the setJ be
linearly ordered and define the function

kq−1 : Cq(U ,
∑

)→ Cq−1(W ,
∑

)

by

(kq−1 f )(σ) =
q−1
∑

h=0

(−1)hρ(Vσ,Uτhσ) f (τhσ)

for σ = j0, . . . , jq−1 with j0 < j1 < · · · < jq−1, where

τhσ = τ( j0), . . . , τ( jh), τ′( jh), . . . , τ′( jq−1),

and letkq−1 f be alternating. Thenkq−1 is a homomorphism, since
ρ(Vσ,Uτhσ) : SUτhσ

→ SV−σ is a homomorphism. �

Using the facts that, forσ = j0, j1, . . . , jq,51

τh∂i = ∂iτh+1 (0 ≤ i ≤ h ≤ q− 1),

τh∂i = ∂i+1τh (0 ≤ h < i ≤ q),

∂hτh−1 = ∂hτh (1 ≤ h ≤ q),

∂0τ0 = τ
′, ∂q+1τq = τ,

one finds that
δqkq−1 f + kqδq+1 f = τ′+ f − τ+ f .
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(The computation is given at the end of the lecture.)
This holds forq = 0 with the obvious meaning ofk−1 : C0(U ,

∑

)→
0. Thus ifr ∈ Hq(U ,

∑

) is represented by a cocyclef , τ′+ f − τ+ f is a
coboundary andτW U r is uniquely determined.

If the coveringW is a refinement ofW andW is a refinement ofU ,
thenτW W τW U = τW U andτU U is the identity.

Proof. If W =
{

Wk
}

k∈K is a refinement ofW , chooseτ1 : K → J so that
Wk ⊂ Vτ1k. ThenWk ⊂ Vτ1k ⊂ Uττ1k andτ2 : K → I can be chosen to
beττ1. Then

(τ+1τ
+ f )(σ) = ρ(Wσ,Vτ1σ)(τ+ f )(τ1σ)

= ρ(Wσ,Vτ1σ)ρ(Vτ1σ,Uττ1σ) f (ττ1σ)

= ρ(Wσ,Uτ2σ) f (τ2σ)

= (τ+2 f )(σ).

Thusτ+1τ
+
= τ+2 and so for the induced homomorphisms, 52

τW W τW U = τW U : Hq(U ,
∑

)→ Hq(W ,
∑

).

Similarly, for the refinementU of U , τ : I → I can be chosen to be
the identity, henceτU U : Hq(U ,

∑

)→ Hq(U ,
∑

) is the identity. �
53

(1) δq+1δq
= 0. (2)δqkq−1

+ kqδq+1
= τ′+ − τ+.

(1) (δq+1δq f )(σ) =
q+1
∑

j=0

(−1) jρ(Uσ,U∂ jσ)(δq f )(∂ jσ)

=

q+1
∑

j=0

(−1) j
q

∑

k=0

(−1)kρ(Uσ,U∂ jσ)ρ(U∂ jσ,U∂k∂ jσ) f (∂k∂ jσ)

=

k
∑

j=0

q
∑

k=0

(−1) j+kρ(Uσ,U∂ j∂k+1σ) f (∂ j∂k+1σ)+

q+1
∑

j=k+1

q
∑

k=0

(−1) j+kρ(Uσ,U∂k∂ jσ) f (∂k∂ jσ)
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= 0

(2) (δqkq−1 f )(σ) =
q

∑

i=0

(−1)iρ(Vσ,V∂iσ)(kq−1 f )(∂iσ)

=

q
∑

i=0

q−1
∑

h=0

(−1)i+hρ(Vσ,Uτh∂iσ) f (τh∂iσ)

=

h
∑

i=0

q−1
∑

h=0

(−1)i+hρ(Vσ,U∂iτh+1σ) f (∂iτh+1σ)

+

q
∑

i=h+1

q−1
∑

h=0

(−1)i+hρ(Vσ,U∂i+1τhσ) f (∂i+1τhσ)

=

h−1
∑

i=0

q
∑

h=0

(−1)i+h−1ρ(Vσ,U∂iτhσ) f (∂iτhσ)

+

q+1
∑

i=h+2

q−1
∑

h=0

(−1)i+h−1ρ(Vσ,U∂iτhσ) f (∂iτhσ)(kqδq+1 f )(σ)

=

q
∑

h=0

(−1)hρ(Vσ,Uτhσ)(δq+1 f )(τhσ)

=

q
∑

h=0

q+1
∑

i=0

(−1)i+hρ(Vσ,U∂iτhσ) f (∂iτhσ), (δqkq−1 f + kqδq+1 f )(σ)

=

q
∑

h=0

ρ(Vσ,U∂hτhσ) f (∂hτhσ) −
q

∑

h=0

ρ(Vσ,U∂h+1τhσ) f (∂h+1τhσ)

=

q
∑

h=0

ρ(Vσ,U∂hτhσ) f (∂hτhσ) −
q+1
∑

h=1

ρ(Vσ,U∂hτh−1σ) f (∂hτh−1σ)

= ρ(Vσ,U∂0τ0σ) f (∂0τ0σ) − ρ(Vσ,U∂q+1τqσ) f (∂q+1τqσ)

= ρ(Vσ,Uτ′σ) f (τ′σ) − ρ(Vσ,Uτσ) f (τσ)

= (τ′+ f )(σ) − (τ+ f )(σ).

54
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Let h = {hU } : Σ′ →
∑

be a homomorphism of presheaves, i.e., each55

hU : S′U → SU is a homomorphism and, ifV ⊂ U, hVρ
′
VU = ρVUhU .

We define, for eachq ≥ 0, the mapping

h+ : Cq(U ,Σ′)→ Cq(U ,
∑

)

by (h+ f )(σ) = hUσ
f (σ). Then,h+ is a homomorphism since eachhUσ

is a homomorphism.
h+ commutes withδ

Proof.

(h+δq+1 f )(σ) = hUσ
(δq+1 f )(σ)

= hUσ

q+1
∑

j=0

(−1) jρ′(Uσ,U∂ jσ) f (∂ jσ),

and (δq+1h+ f )(σ) =
q+1
∑

j=0

(−1) jρ(Uσ,U∂ jσ)(h+ f )(∂ jσ)

=

q+1
∑

j=0

(−1) jρ(Uσ,U∂ jσ)hU∂ jσ f (∂ jσ)

= hUσ

q+1
∑

j=0

(−1) jρ′(Uσ,U∂ jσ) f (∂ jσ)

47
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Q. e. d.
Hence h+ induces a homomorphism hU : Hq(U ,Σ′) → Hq(U ,

∑

). h+

commutes withτ+ �

Proof.

(h+τ+ f )(σ) = hVσ (τ+ f )(σ)

= hVσρ
′(Vσ,Uτσ) f (τσ)

= ρ(Vσ,Uτσ)hUτσ
f (τσ)

= (τ+h+ f )(σ).

Hence hW τW U = τW U hU : Hq(U ,Σ′) → Hq(W ,
∑

), i.e., the56

following diagram is commutative. �

Hq(U ,
∑′)

hU //

τW U

��

Hq(U ,
∑

)

τW U

��
Hq(W ,

∑′)
hW

// Hq(W ,
∑

).

If
∑′ h
−→

∑ g
−→

∑′′ is a sequence of homomorphisms of presheaves,
then gh induces a homomorphism

(gh)+ : Cq(U ,

′
∑

)→ Cq(U ,

′′
∑

)

such that(gh)+ = g+h+ and, if h is the identity, h+ is the identity.

Proof.

((gh)+ f )(σ) = (gh)Uσ
f (σ)

= gUσ
hUσ

f (σ)

= (g+h+ f )(σ).

If h is the identity, i.e., if eachhU is the identity, then (h+ f )(σ) =
hUσ

f (σ) = f (σ); soh+ is the identity, q.e.d. �
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If one has the commutative diagram of homomorphisms of preshea-
ves, i.e.,gh= h1g1, then

∑ h //

g1

��

∑′

g

��
∑′′

1 h1

// ∑′′

g+h+ = (gh)+ = (h1g1)+ = h+1g+1 ,

and hencegU hU = h1U g1U .

If U = {Ui}i∈I is a covering and the sequence
∑′ h
−→

∑ g
−→

∑′′ of 57

homomorphisms of presheaves is exact, then the sequence

Cq(U ,

′
∑

)
h+
−−→ Cq(U ,

∑

)
g+
−−→ Cq(U ,

′′
∑

)

is also exact.

Proof. (i) If f ∈ Cq(U ,
∑

) is an element of imh+, clearly f ∈ kerg+,
hence imh+ ⊂ kerg+.

(ii) Linearly order the index setI , and let f ∈ Cq(U ,
∑

) be an ele-
ment of kerg+. Then f (σ) ∈ kergUσ

= imhUσ
for eachq-simplex

σ, hence there is an elementr in the module corresponding to
the open setUσ, of the presheafΣ′, such thathUσ

(r) = f (σ). If
σ = (i0, . . . , iq) with i0 < · · · < iq, define the functiont onσ by
t(σ) = r. If σ′ = ( j0, . . . , jq) is a permutation ofσ = (i0, . . . , iq)
definet onσ′ by t(σ′) = ±t(σ) according asσ′ is an even or odd
permutation ofσ. If σ is a q-simplex in which two indices are
repeated, definet(σ) to be zero. It then follows thatt ∈ Cq(U ,Σ′)
and it is easily verified thath+(t) = f , hence kerg+ ⊂ imh+.

�

If the sequence0 →
∑′ i
−→

∑ j
−→

∑′′ → 0 of homomorphisms of
presheaves is exact, there is an induced homomorphism

δU : Hq(U ,

′′
∑

)→ Hq+1(U ,

′
∑

).
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Proof. Since the homomorphismsi+, j+ commute with the homomor-
phismδ, there is commutativity in the following diagram:
(∗)

δ
��

δ
��

δ
��

0 // Cq(U ,
∑′)

i+ //

δ

��

Cq(U ,
∑

)

δ

��

j+ // Cq(U ,
∑′′) //

δ

��

0

0 // Cq+1(U ,
∑′)

i+ //

δ

��

Cq+1(U ,
∑

)
j+ //

δ

��

Cq+1(U ,
∑′′) //

δ

��

0

�
58

Since the sequence 0→
∑′ →

∑

→
∑′′ → 0 is exact, each

row of the diagram is an exact sequence of homomorphisms. We will
construct a homomorphismθ : Zq(U ,

∑′′) → Hq+1(U ,
∑′) which is

zero onBq(U ,
∑′′), and henceθ will induce a homomorphism from

Hq(U ,
∑′′)→ Hq+1(U ,

∑′).
To do this, letr ∈ Zq(U ,Σ′′), and chooses ∈ Cq(U ,

∑

) with j+s=
r. Sinceδ j+s = j+δs = δr = 0, δs ∈ ker j+ and by exactness, there is
a uniquet ∈ Cq+1(U ,Σ′) with i+t = δs. Theni+δt = δi+t = δδs = 0,
henceδt = 0. Letτ ∈ Hq+1(U ,Σ′) be the element represented byt. To
show thatτ is unique. lets1, t1 be the result of a second such choice,
then j+(s− s1) = r − r = 0 ands− s1 = i+u for a uniqueu ∈ Cq(U ,Σ′).
Then sincei+ is a monomorphism and

i+(t − t1) = δ(s− s1) = δi+u = i+δu,

hencet − t1 = δu. Thus t and t1 represent the same elementτ ∈
Hq+1(U ,Σ′).

Let τ = θ(r). If r = ar1 + br2 ∈ Zq(U ,Σ′′), suppose thatr1 = j+s1,
δs1 = i+t1 and thatr2 = j+s2, δs2 = i+t2, and letτ1 = θ(r1), τ2 = θ(r2)
be the elements represented byt1 and t2. Then sincej+, δ and i+ are59

homomorphisms,

r = j+(as1 + bs2), δ(as1 + bs2) = i+(at1 + bt2)
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and, sinceat1 + bt2 representsaτ1 + bτ2, we have

θ(r) = aθ(r1) + bθ(r2).

Thusθ : Zq(U ,Σ′′)→ Hq+1(U ,Σ′) is a homomorphism.
If r ∈ Bq(U ,Σ′′), let r = δv. For somew ∈ Cq−1(U ,

∑

)v = j+w.
Then j+(δw) = δ j+w = r and there exists a uniquet ∈ Cq+1(U ,Σ′)
with i+t = δ(δw) = 0, hencet = 0; i.e., θ(r) = 0. Thusθ induces a
homomorphism

δU : Hq(U ,Σ′′)→ Hq+1(U ,Σ′).

Q.e.d.
τW ,U commutes withδU , i.e., the following diagram is commuta-

tive.

Hq(U ,
∑′′)

δU //

τW U

��

Hq+1(U ,
∑′)

τW U

��
Hq(W ,

∑′′)
δW

// Hq+1(W ,
∑′)

Proof. τ+ commutes withj+, δ, i+. �

If 0→
∑′ i
−→

∑ j
−→

∑′′ → 0 is exact, then the sequence

0→ H0















U ,

′
∑















→ · · · → Hq















U ,

′
∑















iU
−−→

Hq
(

U ,
∑

) jU
−−−→ Hq















U ,

′′
∑















δU

−−−→ Hq+1















U ,

′
∑















is exact.

Proof. The exactness of this sequence is the result of six properties of 60

the form ker⊂ im and im⊂ ker. Each can be easily verified in (∗). (See
Eilenberg-Steenrod, Foundations of Algebraic Topology, p. 128). �
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If 0 →
∑′ i
−→

∑ j
−→

∑′′ → 0 and 0 →
∑′

1
i1
−→

∑

1
j1
−→

∑′′
1 → 0

are exact sequence, and if h: (
∑′,

∑

,
∑′′) → (

∑′
1,

∑

1,
∑′′

1 ) is a ho-
momorphism commuting with i, j, i1, and j1, then hU commutes with
δU .

Proof. The homomorphismh+ commutes with the homomorphismsj+,
δ andi+, q.e.d. �

With the same assumptions as in the above statement, we then have
the following commutative diagram, in which each row is exact.

0 // H0(U ,
∑′) //

hU

��

. . . // Hq(U ,
∑

)
iU //

h′
U

��

Hq(U ,
∑

)
jU //

hU

��

Hq(U ,
∑′′)

δU //

h′′
U

��

Hq+1(U ,
∑′)

h′
U

��

// . . .

0 // H0(U ,
∑′

1) // . . . // Hq(U ,
∑′

1)
i1U // Hq(U ,

∑

1)
j1U// Hq(U ,

∑′′
1 )

δ1U// Hq+1(U ,
∑′

1) // . . .

Definition. A proper covering of X is a set of open sets whose union is
X.

A proper coveringU = {U} of X may be regarded as an indexed
covering

{

UU
}

U∈U if each open set of the covering is indexed by itself.
Every covering

{

Ui
}

i∈I has a refinement which is a proper covering, e.g.,
the set of all open setsU such thatU = Ui for somei ∈ I .

LetΩ be the set of all proper coverings ofX and letU < W mean61

thatW is a refinement ofU . ThenΩ is a directed set, for 1) U < U 2)
if U < W andW < W then triviallyU < W and 3) givenU , W there
existsW with U < W , W < W , e.g,W may be chosen to consists of
all open setsW with W = ∪ ∩ V for someU ∈ U , V ∈ W .

(There is no set ofall indexed coverings).
The system

{

Hq(U ,
∑

), τW U
}

U ,W ∈Ω is then a direct system. Its
direct limit Hq(X,

∑

) is called theq-th cohomology module (over A) of
X with coefficients in

∑

. Let τU : Hq(U ,
∑

) → Hq(X,
∑

) denote the
usual homomorphism in to the direct limit.

If h :
∑′ →

∑

is a homomorphism of presheaves, there is a induced
homomorphism

h∗ : Hq(X,
′

∑

)→ Hq(X,
∑

)with h∗τU = τU hU .
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Proof. This follows from the fact thathU τW U = τW U hU .
Q.e.d. �

If O →
∑′ i
−→

∑ j
−→

∑′′ → O is an exact sequence of presheaves,
there is an induced exact sequence

0 // H0(X,
∑′) // · · · // Hq(X,

∑′) // Hq(X,
∑

) // Hq(X,
∑′′) // Hq+1(X,

∑′) // · · ·

Proof. This is a consequence of the fact that the direct limits of exact
sequences is again an exact sequence. �

If h : (
∑′,

∑

,
∑′′) → (

∑′
1,

∑

1,
∑′′

1 ) is a homomorphism of exact62

sequence of presheaves

0 // ∑′ i //

h′

��

∑ j //

h
��

∑′′ //

h′′

��

0

0 // ∑′
1

i1 // ∑
1

j1 // ∑′′
1

// 0

and h commutes with i, j, i1, j1 then the following diagram, where h∗ is
the homomorphism induced from h, is a commutative diagram.

. . . // Hq(X,
∑′)

i∗ //

h∗

��

Hq(x,
∑

)
j∗ //

h∗

��

Hq(x,
∑′′)

δ∗ //

h∗

��

Hq(x,
∑′) //

h∗

��

. . .

. . . // Hq(X,
∑′

1)
i∗1 // Hq(X,

∑

1)
j∗1 // Hq(X,

∑′′
1 )

δ∗1 // Hq+1(X,
∑′

1) // . . .

Proof. The result is a consequences of the fact thathU commutes with
iU , jU andδU . �
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If the coefficient presheaf is the presheaf of sections of some sheafS 63

of A-modules, we writeCq(U ,S ) instead ofCq(U , S̄ ) etc. Then, if
Uσ = Uio ∩ · · · ∩Uiq is called thesupportof the simplexσ = io, . . . , iq,
a q-cochain f ∈ Cq(U ,S ) is an alternating function which assigns to
eachq-simplexσ a section over the support ofσ.

If U = {Ui}i ∈ I is any covering of X, Ho(U ,S ) is isomorphism to
Γ(X,S ).

Proof. A 0-cochain belonging toC0(U ,S ) is a system (fi)i∈I , each fi
being a section ofS over Ui. In order that this cochain be a cocycle,
it is necessary and sufficient that fi − f j = O over Ui ∩ U j; in other
words, that there exist a sectionf ∈ Γ(X,S ) which coincides withfi
on Ui for eachi ∈ I . Thus there is an isomorphismφU : Γ(X,S ) →
Z0(U ,S )→ H0(U ,S ). �

Proposition 7. H0(X,S ) can be identified withΓ(X,S ).

Proof. Since τW U φU = φW , there is an induced isomorphismφ :
Γ(X,S )→ H0(X,S ) with τU φU = φ. A homomorphismh : S → S1

of sheaves induces a homomorphism{hU } of the presheaves of section
and hence induced homomorphismhU ′ , h∗ with commutativity in �

Γ(X,S )
φU //

hX

��

H0(U ,S )
τU //

hU

��

H0(X,S )

h∗

��
Γ(X,S1)

φU // H0(U ,S1)
τU // H0(X,S1)

55
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Thus we can identifyΓ(X,S ) with Ho(X,S ) underφ if we also64

identify hx : Γ(X,S )→ Γ(X,S1) with h∗ : Ho(X,S )→ Ho(X,S1).

Definition. A system
{

Ai
}

i∈I of subset of a space X is called finite if I is
finite, countable if I is countable. The system is said to be locally finite
if each point x∈ X has a neighbourhood V such that V∩ Ai = φ expect
for a finite number of i. (This finite number may also be zero).

We notice that a locally finite system
{

Ai
}

i∈I is always point finite.
(A system

{

Ai
}

i∈I of subsets ofX is said to be point finite if each point
x ∈ X belongs toAi for only a finite number ofi).

If
{

Ai
}

i∈I is locally finite, so is
{

B j
}

j∈J if J ⊂ I and eachB j ⊂ A j. If
{

Ai
}

i∈I is locally finite, so is
{

Āi
}

i∈I , whereĀi denotes the closure ofAi ,
and

⋃

Ai
i∈I
=

⋃

i∈I
Āi. In particular, if eachAi is closed, so is

⋃

i∈I
Ai

Definition . Theorderof a system{Ai}i∈I of subsets of X is−1 if Ai is
the empty set for each i∈ I. Otherwise the order is the largest integer n
such that for n+1 values of i∈ I, the A′i s have a non-empty intersection,
and it is infinity if there exists no such largest integer.

Definition. Thedimension ofX, denoted as dimX, is the least integern
such that every finite covering ofX has a refinement of order≤ n, and65

the dimension is infinity if there is no such integer.

Definition . A space X is callednormal, if for each pairE, F of closed
sets ofX with E ∩ F = φ, there are open setsG, H with E ⊂ G, F ⊂ H
andG∩ H = φ.

Definition. A coveringU = {Ui}i∈I of the space X is calledshrinkable
if there is a refinementW = {Vi}i∈I of U with V̄i ⊂ Ui for eachi ∈ I .

X is normal if and only if every locally finite covering of X is shrink-
able.

Proof. See S. Lefschetz, Algebraic Topology, p.26. �

If X is normal,dim X ≤ n if and only if every locally finite covering
of X has a refinement of order≤ n.
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Proof. See C.H.Dowker, Amer.Jour of Math. (1947), p.211. �

Definition. A space X is calledparacompact if every covering ofX has
a refinement which is locally finite.

If X is paracompact and normal,dim X ≤ n if and only if every
covering of X has a refinement of order≤ n.

Proof. (i) SinceX is paracompact, every covering ofX has a locally
finite refinement and sinceX is normal and dimX ≤ n, using the
above result, every locally finite covering has a refinement of order 66

≤ n, thus every covering has a refinement of order≤ n.

(ii) Since every covering ofX has a refinement of order≤ n, in partic-
ular, every locally finite ofX has a refinement of order≤ n, hence,
sinceX is normal, using the above result, we obtained dim≤ n.

�

Remark. Since a paracompact Hausdorff space is normal, (see J. Dieu-
donne, Jour. de Math. 23, (1944), p.(66), this result holds,in particular,
whenX is a paracompact Hausdorff space.

If a coveringU of X has a refinementW of order≤ n, then it has a
proper refinementW of order≤ n.

Proof. If W = {V j} j∈J has order≤ n, let W be the proper covering
formed by all open setsW such that, for somej ∈ j, W = V j. ThenW
has order≤ n and is a refinement ofU . �

If X is paracompact and normal anddim X ≤ n, then Hq(X,
∑

) = 0
for q > n and an arbitrary presheaf

∑

.

Proof. Replace the directed setΩ of all proper coverings ofX by the co-
final sub-directed setΩ′ of all proper covering of order≤ n. If U ∈ Ω′,
q > n and f ∈ Cq(U ,

∑

), then f (U0,U1, . . . ,Uq) ∈ SUo∩···∩Uq
= Sφ = 0

for any q + 1 distinct open sets ofU . If the open setsU0,U1, . . . ,Uq

are not all distinct, thenf (U0,U1, . . . ,Uq) = 0 since f is alternat-
ing. HenceCq(U ,

∑

) = 0 and hence alsoHq(U ,
∑

) = 0. Therefore
Hq(X,

∑

) = 0, q > n. �
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If
∑

is a presheaf which determines the zero sheaf, then Ho(X,
∑

) =67

0.

Proof. For any elementη ∈ H0(X,
∑

) choose a representative
f ∈ z0(U ,

∑

)SH0(U ,
∑

), whereU is some proper covering ofX, so
that τU f = η. For eachx ∈ X choose an open setU = τ(x) such
that x ∈ τ(x) ∈ U . Since

∑

determines the 0-sheaf, one can choose
an open setVx such thatx ∈ Vx ⊂ τ(x) and ρ(Vx, τ(x)) f (τ(x)) = 0.
ThenW =

{

Vx
}

x∈X is a refinement ofU , and, for eachx, (τ+ f )(x) =
ρ(Vx, τ(x)) f (τ(x)) = 0, henceτ+ f = 0. If W is a proper refinement
of W , chooseτ1 : W → X so that eachW ⊂ Vτ1(W) and (ττ1)+ f =
τ+1τ

+ f = 0. ThusτW U f = 0 and henceη = τU f = τW τW U f = 0.
HenceHo(X,

∑

) = 0. �

This result is not true in general for the higher dimensionalcohomol-
ogy groups. However, if the spaceX is assumed to beparacompact and
normal, we will prove the result to be true for the higher dimensional
cohomology groups.



Lecture 12

Proposition 8. If X is paracompact and normal and if
∑

is a presheaf 68

which determines the zero sheaf, the Hq(X,
∑

) = 0 for all q ≥ 0.

Proof. Let f ∈ Cq(U ,
∑

) whereU = {Ui}i∈I is any locally finite cov-
ering. SinceX is normal, we can shrinkU to W , W = {Wi}i∈I with
W̄i ⊂ Ui. For eachx ∈ X choose a neighbourhoodVx of x such that the
following conditions are satisfied: �

a) If x ∈ Ui, Vx ⊂ Ui,

b) If x ∈Wi, Vx ⊂Wi ,

c) if x < W̄i, Vx ∩Wi = φ,

d) if x ∈ Uio ∩ · · · ∩Uiq = Uσ, ρVxUσ
f (σ) = 0

Conditions a) and b) can be satisfied, for the coveringsU andW
being locally finite, eachx is contained only in a finite number of sets of
the coverings. To see that condition c) can be satisfied, consider all W̄i

for which x < W̄i . The union of these sets is the closed sinceW is locally
finite, andx is in the open complement of this union. Next, by condition
a), Vx ⊂ Uσ, and since

∑

determines the 0-sheaf, we can chooseVx

small enough so that d) is satisfied. We can thus always chooseVx small
enough so that the above conditions are fulfilled.

If the Vx are chosen as above, the covering
{

Vx
}

x∈X is a refinement 69

of U . Choose the functionτ : X → I so thatx ∈ Wτ(x), then by b),
Vx ⊂Wτ(x) ⊂ Uτ(x). Then

τ+ f (σ) = τ+ f (xo, . . . , xq) = ρ(Vσ,Uσ) f (τ(xo), . . . , τ(xq)).

59
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If Vσ = φ, τ+ f (σ) = 0. If Vσ , φ thenVxo meets eachVx j, hence
meets eachWτ(xj ) and hence by c),xo ∈ W̄τ(xj ). Then sincexo ∈ W̄τ(xj ) ⊂

Uτ(xi ), by a)Vxo ⊂ Uτ(xi ) for each j and henceVxo ⊂ Uτ(σ). Hence

τ+ f (σ) = ρVσUτ(σ) f (τσ) = ρVσVx0
ρVx0

Uτ(σ) f (τσ)

= 0 by d).

Thusτ+ f (σ) = 0 for allσ, henceτ+ f = 0.
If U1 is a proper covering andf ∈ Cq(U1,

∑

), there is a locally finite
refinementU of U1 (sinceX is paracompact). Then there is a refine-
mentW of U (found as above), a proper refinementW1 of W (exis-
tence ofW1 is trivial) and a functionτ1 : W1 → U1 with V ⊂ τ1(V) for
V ∈ W1 such thatτ+1 f = 0. Hence every element of

⋃

(U1proper)
Hq(U1,

∑

)

is equivalent to zero, i.e., the direct limitHq(X,
∑

) consists only of zero.

Example 15.Let X be the space with four pointsa, b, c, d and let a
base for the open sets be the sets (a, c, d), (b, c, d), (c), (d). Let

∑

be the
presheaf for whichSU = z, the group of integers, ifU = (c, d); andSU =

0 otherwise. The homomorphismsρVU are the obvious ones. Then
∑

70

determines the 0-sheaf, butH1(X,
∑

) = Z. The spaceX paracompact
but not normal.

If 0→ S ′ i
−→ S

j
−→ S ′′ is an exact sequence of sheaves, then

0→ Γ(U,S ′)
iU
−−→ Γ(U,S )

jU
−−→ Γ(U,S ′′)

is exact and hence
0→ S̄ → S̄ → S̄ ′′

is exact

Proof. We will show that for ker jU ⊂ imiU (the rest is trivial). Let
f ∈ ker jU . Then,x ∈ U, j f (x) = ( jU f )(x) = 0x and hence by exactness,
f (x) = ip′ for somep′ ∈ S′x. Thus f (U) ⊂ i(S′). But i : S′ → i(S′) is
homeomorphism. Theng : U → S′, whereg(x) = 1−1 f (x), is a section
of S′ overU, and f = iUg. �



Lecture 12 61

One cannot in general complete the sequence

0→ Γ(U,S ′)→ Γ(U,S )→ Γ(U,S ′′)

by a zero on the right as the following example shows.

Example 16.Let X be the segment{x : 0 ≤ x ≤ 1}. Let G be the 4-
group with elements 0,a, b, c. Let S be the subsheaf of the constant
sheafG = (X×G, π,X) formed by omitting the point (0, a), (0, c), (1, b),
(1, c). Let S ′ be the subsheaf ofS formed by omitting all the points
(x, a), (x, b). Let S ′′

= (X × Z2π,X) and let j : S → S ′′ be the 71

homomorphism induced byj : G → Z2 where j(a) = j(b) = 1, j(c) =
j(0) = 0. The the sequence

0→ S ′ i
−→ S

j
−→ S ′′ → 0

is exact, but the sequence

0→ Γ(X,S ′)→ Γ(X,S )→ Γ(X,S ′′)→ O, i.e.,

0 −→ O −→ O −→ Z2 −→ O

is not exact.

If 0→
∑′ i
−→

∑ j
−→

∑′′ is an exact sequence of presheaves, there is
an image presheaf

∑′′
0 ⊂

∑′′ and a quotient presheaf Q such that the
sequences

O→
′

∑ i
−→

∑ jo
−→

′′
∑

0

→ 0,

O→
′′

∑

0

ī
−→

′′
∑ j̄
−→ Q→ 0

are exact. These sequences are ‘natural’ in the sense that ifh is a ho-
momorphism of exact sequences, commuting with i and j:

0 // ∑′ i //

h
��

∑ j //

h
��

∑′′

h
��

0 // ∑′
1

i // ∑
1

j // ∑′′
1
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then there are induced homomorphisms h∗ of the exact cohomology se-
quences

. . . // Hq(X,
∑′)

i∗ //

h∗

��

Hq(X,
∑

)
j∗0 //

h∗

��

Hq(X,
∑′′

0 )
δ∗0 //

h∗

��

Hq+1(X,
∑′) //

h∗

��

. . .

. . . // Hq(X,
∑′

1)
i∗ // Hq(X,

∑

1)
j∗0 // Hq(X,

∑′′
1 0)

δ∗0 // Hq+1(X,
∑′

1) // . . .

and72

. . . // Hq(X,
∑′′

0 )
ī∗ //

h∗

��

Hq(X,
∑′′)

j̄∗ //

h∗

��

Hq(X,Q)
δ̄∗ //

h∗

��

Hq+1(X,
∑′′

0 ) //

h∗

��

. . .

. . . // Hq(X,
∑′′

10)
ī∗ // Hq(X,

∑′′
1 )

j̄∗ // Hq(X,Q1)
δ̄∗ // Hq+1(X,

∑′′
10) // . . .

commuting with i∗, j∗0, δ∗0 and ī∗, j̄∗, δ̄∗ respectively.

Proof. If
∑′′
= {S′′U , ρ

′′
VU}, let S′′oU = im jU . Then sincej :

∑

→
∑′′ is a

homomorphism,ρ′′VU mapsim jU into im jV. Hence, writingS′′oU = im jU
andQU = S′′U/S

′′
oU, there are induced homomorphismsρ′′oVU and ρ̄VU

with comutativity in �

SU
joU //

ρVU

��

S′′oU

¯iU //

ρ′′oVU
��

S′′U
j̄U //

ρ′′VU
��

QU

ρ̄VU

��
SV

joV // S′′oV
īV // S′′V

j̄V // QV .

Clearly the systems
∑′′

o = {S
′′
oU, ρ

′′
oVU} and Q = {QU , ρ̄VU} are

presheaves and the sequences

O→ Σ′
i
−→ Σ

j
−→ Σ′′o → O

and

O→ Σ′′o
ī
−→ Σ′′

j̄
−→ Q→ O
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are exact. Sinceh commutes withi, j,

0 // ∑′ i //

h′

��

∑ j //

h
��

∑′′

h′′

��
0 // ∑′

1
i1 // ∑

1
j1 // ∑′′

1

SU
jU //

hU

��

S′′U

h′′U
��

S1U
j1U // S′′1U

h′′U mapsS′′oU = im jU into S′′1oU = im j1U . Hence there are induced73

homomorphismsh′′oU, h̄U with comutativity in

SU
joU //

hU

��

S′′oU
īU //

h′′oU
��

S′′U
j̄U //

h′′U
��

QU

h̄U

��
S1U

joU // S′′1oU
īU // S′′1U

j̄U // Q1u .

Sinceh is a homomorphism of presheaves,hU commutes withρVU
andh′′U with ρ′′VU. Hence, sincejoU and j̄U are epimorphisms andjoU,
j̄U commute withρ andh, h′′oU and commutes withρ′′oVU and h̄U with
ρ̄VU, i.e., the diagrams given below are commutative:

S′′oU

ρ′′oVU //

h′′oU

��

S′′oV

h′′oV

��

SU

ρVU //

hU

��

joU

^^=======
SV

hV

��

joV

@@�������

S1U

ρVU //

jo

����
��

��
�

S1V

jo

��=
==

==
==

S′′1oU

ρ′′oVU // S′′1oV

QU

ρ̄VU //

h̄U

��

QV

h̄V

��

S′′U
ρ′′VU //

h′′U

��

j̄U

^^<<<<<<<
S′′V

h′′V

��

j̄V

AA�������

S′′1U

ρ′′VU //

j̄

����
��

��
�

S′′1V

j̄

��<
<<

<<
<<

Q1U

ρ̄VU // Q1V

Thus h, h′′o , h′′, h̄ are homomorphisms of presheaves commuting
with jo, ī, j̄.

∑ jo //

h
��

∑′′
o

ī //

h′′o
��

∑′′ j̄ //

h′′

��

Q

h̄
��

∑

1
jo // ∑′′

1o
ī // ∑′′

1
j̄ // Q1 .
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Thus{h} is a homomorphism of the exact sequences74

0 // ∑′ j //

h′

��

∑ jo //

h
��

∑′′
o

//

h′′o
��

0

0 // ∑′
1

i // ∑
1

jo // ∑′′
1o

// 0

commuting withi and jo, and a homomorphism of the exact sequences

0 // ∑′′
o

ī //

h′′o
��

∑′′ j̄ //

h′′

��

Q

h̄
��

// 0

0 // ∑′′
1o

ī // ∑′′
1

j̄ // Q1 // 0

commuting with ī and j̄. Therefore the induced homomorphisms of
the exact cohomology sequences commute withi∗, j∗o, δ∗o and ī∗, j̄∗,
δ̄∗ respectively.
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Example 17.Let X consist of the natural numbers together with two75

special pointsp and q. Each natural number forms an open set. A
neighbourhood ofp (resp.q) consists ofp (resp;q) together with all but
a finite number of the natural numbers. LetSU = Z if U consists of all
but a finite number of the natural numbers and ifV ⊂ U is another such
set, letρVU : Z → Z be the identity. IfU is an open set not containing
all but a finite number of the natural numbers or if it containseither p
or q, let SU = O and letρVU , ρUW be the zero homomorphisms. Then
∑

= {SU , ρVU } is a presheaf determining the 0-sheaf, butH1(X,Z) = Z.
The spaceX is T1 and paracompact but not normal.

Example 18.Let R be a set with cardinal numberN1 let S = 2R be the
set of all subsets ofR and letT = 2S be the set of all subsets ofS. If
r ∈ R, let r′ ∈ T be the largest subset ofS, which is such that, each
of its elements considered as a subset ofR contains the elementsr. Let
R′ ⊂ T consists of allr, for all r ∈ R and letT1 = T − R′.

Let X be a space consisting of (1) all elementsr ∈ R and (2) all
triples (t, r1, r2) with t ∈ T1, r1, r2 ∈ R andr1 , r2. Each point (t, r1, r2)
is to form an open set. Neighborhoods of pointsr of the first kind are
setsN(r; s1, . . . , sk), whereo ≤ k < ∞ and s1, . . . , sk ∈ S, consisting
of r together with all points (t, r1, r2) with r ∈ (r1, r2) and, for each 76

i = 1, . . . , k, eitherr ∈ si ∈ t or r < si < t. [cf. Bing’s Example G,
Canadian Jour, of Math. 3 (1951) p.184].

For setsU ⊂ X of cardinal number≥ 2 and consisting of points
of the second kind, letSU = Z and, if V ⊂ U is another such set, let

65
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ρVU : Z → Z be the identity. IfU is an open set containing any point
of the first kind or consisting of at most one point, letSU = 0. Then
∑

=

{

SU , ρVU

}

is a presheaf determining the 0-sheaf, butH′(X,
∑

) , 0

(although dimX = 0). X is a completely normal, Hausdorff space but
is not paracompact. (A spaceX is said to be completely normal if each
subspace ofX is normal).

If 0 → S ′ i
−→ S

j
−→ S ′′ → 0 is an exact sequence of sheaves, let

S̄ ′′
o, Q̄, be the image and quotient presheaves in0→ S̄ ′ i

−→ S
j
−→ S ′′

for which the sequences

0→ S̄
i
−→ S̄

jo
−→ S̄ ′′

o → 0,

0→ S̄ ′′
0

ī
−→ S̄ ′′ j̄

−→ Q̄→ 0,

are exact. Then̄Q determines the zero sheaf.

Proof. An arbitrary element of a stalkQk of the induced sheaf has the
form ρ̄xU

¯jU f wherex ∈ U and f ∈ Γ(U,S ′′). Since j mapsS onto
S , there is an open setV, x ∈ V ⊂ U, for which f |V im jV. Then
ρ′′

VU
f = f |V ∈ im jV = im īV and by exactness̄jVρ′′VU

f = 0. Hence

ρ̄xU j̄U f = ρ̄xVρ̄VU j̄U f = ρ̄xV j̄Vρ
′′
VU f = 0.

Therefore the sheaf determined bȳQ is the 0-sheaf. �77

Note . In example 16, ifΓo(U,S ′′) = im jU , we haveΓo(U,S ′′) =
Γ(U,S ′′) for all U expectX, but Γo(X,S ′′) = 0, Γo(X,S ′′) = Z2.
Thus Q̄X = Z2, Q̄U = 0 for all smallerU, and thusQ̄ determine the
0-sheaf.

Proposition 9. If X is paracompact and normal and if0→ S ′ i
−→ S

j
−→

S ′′ → 0 is an exact sequence of sheaves, there is an exact cohomology
sequence

0→ Ho(X,S ′)→ · · · → Hq(X,S ′)
i∗
−→

Hq(X,S )
j∗
−→ Hq(X,S ′′)

δ∗

−→ Hq+1(X,S ′)→ .
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If h : (S ′,S ,S ′′)→ (S ′
1,S1,S

′′
1) is a homomorphism of exact

sequences, commuting with i and j,

0 // S ′ i //

h
��

S
j //

h
��

S ′′ //

h
��

0

0 // S ′
1

i // S1
j // S ′′

1
// 0

the induced homomorphisms S∗ of the cohomology sequences commute
with i∗, j∗ andδ∗, i.e. the following diagram is commutative:

. . . // Hq(x,S ′)
i∗ //

h∗

��

Hq(X,S )
j∗ //

h∗

��

Hq(x,S ′′)
δ∗ //

h∗

��

Hq+1(X,S ′) //

h∗

��

. . .

. . . // Hq(X,S ′
1) i∗ // Hq(X,S1)

j∗ // Hq(X,S ′′
1 ) δ∗ // Hq+1(X,S ′

1) // . . .

Proof. As before, ifS̄ ′′
o , Q̄ denote the image and quotient presheaves

in the exact sequence of presheaves of sections

0→ S̄ ′
i
−→ S̄

j
−→ S̄ ′′,

we obtain the exact sequence of presheaves 78

0→ S̄ ′
i
−→ S̄

j0
−→ S̄ ′′

0 → 0,

and

0→ S̄ ′′
ī
−→ S̄ ′′

j̄
−→ Q̄→ 0,

�

From these exact sequences of presheaves we obtain the following
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exact cohomology sequences:

��
Hq−1(X, Q̄) = 0

δ̄∗

��
. . . // Hq(X,S ′)

i∗ // Hq(X,S )
j∗o //

j∗ %%LLLLLLLLLL Hq(X, S̄ ′′
o )

δ∗o //

ī∗

��

Hq+1(X,S ′) // . . .

Hq(X,S ′′)

δ∗

88qqqqqqqqqq

j̄∗

��
Hq(X, Q̄) = 0

��

SinceQ̄ determine the 0-sheaf, by Proposition 8,Hq(X, Q̄) = 0 for
all q ≥ 0 and hence, by exactness,ī∗ is an isomorphism. Hence if
δ∗ = δ∗o(ī∗)−1 : Hq(X,S ′′)→ Hq+1(X,S ′), the cohomology sequence

0→ Ho(X,S ′)→ Ho(X,S )→ Ho(X,S ′′)→ · · ·

· · · → Hq(X,S ′)→ Hq(X,S )→ Hq(X,S ′′)→ Hq+1(X,S ′)→ · · ·

is exact.
Next, since the homomorphismh commutes withi and j, the in-79

duced homomorphismh of presheaves also commutes withi and j:

0 // S̄ ′
i //

h
��

S̄
j //

h
��

S̄′′

h
��

0 // S̄ ′
1

i // S̄1
// S̄ ′′

1 .

Hence, the induced homomorphismh∗ of the cohomology modules
commutes withi∗, j∗o, ī∗ and δ∗o. Thus in the exact cohomology se-
quences,h∗ commutes withi∗, j∗ andδ∗.
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Note. If X is not paracompact and normal, in general,ī∗ is not an iso-
morphism, to be precise, the cohomology sequence is not defined. One
does, however, have the exact sequence

0→ Ho(X,S ′)→ Ho(X,S )→ Ho(X,S ′′)→

H1(X,S ′)→ H1(X,S )→ H1(X,S ′′)

as one sees from the exact sequences
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0

��

0 = Ho(X, Q̄)

��
0 // Ho(X,S ′) i∗ // Ho(X,S )

j∗o //

j∗ &&MMMMMMMMMMM
Ho(X,S ′′

o )
δ∗o //

ī∗

��

H1(X,S ′)
i∗ // H1(X,S )

j∗o //

j∗ &&LLLLLLLLLL
H1(X,S ′′

o )

ī∗

��
Ho(X,S ′′)

88qqqqqqqqqqq

��

H1(X,S ′′)

Ho(X, Q̄) = 0.
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The following examples show that Proposition 9 is not true, in gen- 80

eral,unless the space is both paracompact and normal.

Example 19.Let X consist of the unit segmentI with the usual topology
and of two pointsp and q. A neighbourhood ofp (resp. q) consists
of p (resp. q) together with the whole ofI . Let S ′, S , S ′′ be the
sheavesS ′, S , S ′′ of Example 16 overI together with zeros atp
andq. A neighbourhood of 0p (resp. 0q) consists of the zeros over a
neighbourhood ofp (resp.q). Then there is an exact sequence

0→ S ′ i
−→ S

j
−→ S ′′ → 0

where i, j correspond to those in Example 16. SinceH1(X,S ) =
H2(X,S ′) = 0 andH1(X,S ′′) = Z2, there is no exact cohomology
sequence. The spaceX is paracompact but not normal.

Example 20.Let X consists of a sequence of copiesIn of the unit seg-
ment together with two special pointsp andq. A neighbourhood ofp
(respq) consists ofp (resp. q) together with all but a finite number of
the segmentsIn. Let G be the 4-group and letS be the subsheaf of
(X × G, π,X) consisting of zero atp and q and on eachIn a copy of
the sheafS of Example 16. LetS ′′ be the subsheaf of (X × Z2, π,X)
formed by omitting the points (p, 1), (q, 1) and let the homomorphism
j : S → S ′′ be induces byj : G→ Z2 as defined in Example 16. Then
there is exact sequence

0→ S ′ i
−→ S

j
−→ S ′′ → 0

but H1(X,S ) = H2(X,S ′) = 0 while H1(X,S ′′) , 0. Thus there is 81

no exact cohomology sequence. The spaceX is paracompact andT1 but
not normal.

Example 21.Let R, S, T1 be as in Example 18. LetX be the space
consisting of (1) the elementsr ∈ Rand (2) segmentsIntr1r2 wheren is a
natural number,t ∈ T1, r1 andr2 are inR, andr1 , r2. Neighbourhoods
of the pointsr are setsN(r; n, s1, ., sk) wheren is a natural number and
s1, . . . , sk ∈ S, consisting ofr together with all segmentsImtr1r2 with
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m > n, r ∈ (r1, r2) and, for eachi = 1, . . . , k, either r ∈ si ∈ t or
r < si < t.

Let G be the 4-group and letS be the subsheaf of (X × G, π,X)
consisting of zero at eachr and a copy of the sheafS of Example 16 on
eachIntr1r2. LetS ′′ be the subsheaf of (X×Z2, π,X) formed by omitting
(r, 1) for all r, and let the homomorphismj : S → S ′′ be induced by
j : G→ Z2 as mentioned before. Then there is an exact sequence

0→ S ′ → S → S ′′ → 0

but H1(X,S ) = H2(X,S ′) = 0 while H1(X,S ′′) , 0. Thus again,
there is no exact cohomology sequence.X is a perfectly normal Haus-
dorff space but is not paracompact. (A spaceX is said to be perfectly
normal if, for each closed setC of X there is a continuous real valued
function defined onX and vanishing onC but not at pointx ∈ X − C.
Perfectly normal spaces are completely normal.)
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Definition. A resolutionof a sheafG of A-modules is an exact sequence82

of sheaves A-modules

0→ G
e
−→ S o d1

−−→ S 1→ · · · → S q−1 dq

−−→ S q→ · · ·

such that Hq(X,S q) = 0, p ≧ 1, q ≧ 0.

There are than induced homomorphisms

0
do

−→ Γ(X,S o)
d1

−→ · · · → Γ(X,S q−1)
dq

−→ Γ(X,S q)
dq+1

−−−→ Γ(X,S q+1)→ · · ·

for which imdq ⊂ kerdq+1, i.e.,dq+1dq
= 0. TheA-modulesΓ(X,S k)

(k ≧ 0) together with the homomorphismsdq form a formal cochain
complex denoted byΓ(X,S ). Let theq− th cohomology module of the
complexΓ(X,S ) be denoted byHq

Γ(X,S ) = kerdq+1/ im dq.

Example 22.Let X be the unit segment
{

x : o ≦ x ≦ 1
}

, and letG be

the subsheaf of the constant sheafZ2 formed by omitting the points (0,1)
and (1,1). A resolution

(1) 0→ G
e
−→ S o d1

−−→ S 1→ 0

of G is obtained by identifyingG with the sheafS ′ of Example 16 and
taking S ,S ′′, i, j for S o, S 1, e, d1. (That Hp(X,S q) = 0, p ≧ 1,
q ≧ 0 can be verified.) The induced sequence

0→ Γ(X,S o)→ Γ(X,S ′)→ 0

73
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is 83

0→ 0→ Z2→ 0.

Another resolution

(2) 0→ G
e
−→ S o d1

−−→ S 1 d2

−−→ S 2→ 0

of G is obtained by takinge, S o as before,S 1
= Z2+Z2, S 2

= Z2, d1
=

k j wherek(x, 1) = (x, (1, 0)), andd2 with d2(x, (1, 1)) = d2(x, (0, 1)) =
(x, 1).

Another resolution

(3) 0→ G
e
−→ S o d1

−−→ S 1→ 0

of G is obtained by takingS o to be subsheaf ofZ2 formed by omitted
(0,1), withe : G → S o as the inclusion homomorphism and withd1 as
the natural homomorphism onto the quotient sheafS 1

= S o/G .
Yet another resolution

(4) 0→ G
e
−→ S o d1

−−→ S 1→ 0

of G is obtained by takingS o
= Z2 andS 1

= S o/G .
In each caseH1

Γ(X,S ) = Z2, Hp
Γ(X,S ) = 0, p > 1.

Example 23.Let X be the spherex2
+ y2

+ z2
= 1, and letG be the

constant sheafZ2. LetR denote the constant sheafZ2+Z2 with i : G →
R defined byi(1) = (1, 1). Let R′ ⊂ R consist of all zeros together84

with ((x, y, z), (0, 1)) for z< 0; let S o
= R/R′ and let j : R → S o be

the natural homomorphism. Lete= ji : G → S o.

Let Io be the quotient sheafS o/e(G ) and leth : S o → Io be the
natural homomorphism. The stalks ofIo areZ2 on the equator and 0
elsewhere.

Let I be the quotient sheaf ofR consisting ofZ2 + Z2 on the equa-
tor and 0 elsewhere. IdentifyIo with the subsheaf ofI consisting of
all zeros and all ((x, y, 0), (1, 1)), and letk : Io → I be the inclusion
homomorphism. LetI′ be fory > 0 and ((x, y, 0), (1, 0)) for y < 0. Let



Lecture 14 75

S ′
= I/I′ and let l : I → S 1 be the natural homomorphism. Let

d1
= 1kh : S o → S 1. Let S 2

= S 1/d1S o and letd2 be the natural
homomorphism. Then from the diagram:

0

��

0

��
R′

��

I′

��
R

j

��

Io
k // I

��
G

i
>>}}}}}}}} e // S o

h

==|||||||| d′ // S ′ d2
// S 2

we see that

0→ G
e
−→ S o d1

−−→ S 1 d2

−−→ S 2→ 0

is a resolution ofG and the induced sequence

0→ Γ(X,S o)→ Γ(X,S 1)→ Γ(X,S 2)→ 0

is 85

0→ Z2 + Z2→ Z2 + Z2→ Z2 + Z2→ 0

and
Ho
Γ(X,S ) = H2

Γ(X,S ) = Z2,H
1
Γ(X,S ) = 0

Proposition 10. If X is paracompact normal and if

0→ G
e
−→ S o→ · · · → S q−1 dq

−−→ S q→ · · ·

is a resolution ofG , there is a uniquely determined isomorphismη :
Hq
Γ(X,S )→ Hq(X,G ).
If

0→ G1
e
−→ S o

1
d1

−−→ S 1
1 → · · · → S q−1

1

dq

−−→ S q
1 → · · ·
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is a resolution of another sheafG1 and if

h : (G ,S o,S 1, . . .)→ (G1,S
o
1 ,S

1
1 , . . .)

is a homomorphism commuting with e, d1, d2, . . ., then the induced ho-
momorphism H∗ commutes withη.

Hq
Γ(X,S )

η //

h∗

��

Hq(X,G )

h∗

��
Hq
Γ(X,S1)

η
// Hq(X,G1) .

Proof. The homomorphismh∗ : Hq(X,G ) → Hq(X,G1) is the usual86

induced homomorphism. Now, sinceh commutes withdq, q ≧ 1, h also
commutes with the homomorphisms

dq : Γ(X,S q−1)→ Γ(X,S q) (q ≧ 1),

and hence there is an induced homomorphism

h∗ : Hq
Γ(X,S )→ Hq

Γ(X,S1).

�

Let zq = im dq
= kerdq+1 ⊂ S q; then there are exact sequences

(1)
0→ G

e
−→ S o d1

o
−−→ z1→ 0

0→ zq
iq
−→ S q dq+1

o
−−−→ zg+1→ 0 (q ≧ 1)























whereiq is the inclusion homomorphism anddq
o is the homomorphism

induced bydq : iqdq
o = dq. Sinceh commutes withd, h mapszq in zq1,

and commutes withi, do.

0 // G
e //

h
��

S o
d1

o //

h
��

z1 //

h
��

0,

0 // G1
e // S o

1
d1

o // z11
// 0,
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0 // zq
iq //

h
��

S q
dq+1

o //

h
��

zq+1 //

h
��

0,

0 // z
q
1

iq // S q
1

dq+1
o // z

q+1
1

// 0.

Hence the induced homomorphismh∗ of the corresponding exact
cohomology sequences also commutes also commutes withe∗, d∗o, δ
andi∗, d∗o, δ∗ respectively.

Case 1. q = 0. Since 0→ G
e
−→ S o d1

−−→ S 1 is exact, so is the se-87

quence 0→ Γ(X,G )
e
−→ Γ(X,S o)

d1

−−→ Γ(X,S 1). ThenHo(X,S ) =
kerd1

= ime, bute is a monomorphism andΓ(X,G ) = Ho(X,G ), hence
e : Ho(X,G )→ Ho

Γ(X,S ) is an isomorphism commuting withh∗. Let
η = e−1.

Case 2.q > 0. The exact cohomology sequence corresponding to that
exact sequences (1) forq− 1 (wherezo = G ) is

0→ Γ(X, zq−1)
iq−1

−−→ Γ(X,S q−1)
dq

o
−→ Γ(X, zq)

δ∗

−→ H1(X, zq−1)→ 0→ · · ·

sinceH1(X,S q−1) = 0. Thusδ∗ induces an isomorphism

δ∗ : Γ(X, zq)/imdq
o → H1(X, zq−1) (q ≧ 1).

Since imiq = kerdq+1
o = kerdq+1, the monomorphismiq induces an

isomorphism

iq
∗

: Γ(X, zq)/ im dq
o → im iq/ im dq

= kerdq+1/ im dq

= Hq
Γ(X,S ).

Thus we have an isomorphism

δ∗(iq
∗

)−1 : Hq
Γ(X,S )→ H1(X, zq−1) (q ≧ 1)
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commuting withh∗, sinceh∗ commutes withδ∗ and (i∗)−1.

0

��
Γ(X,S q−1)

dq
o //

dq
''NNNNNNNNNNN
Γ(X, zq) δ∗ //

iq

��

H1(X, zq−1) // 0

Γ(X,S q)

dq+1
o

��

dq+1

''NNNNNNNNNNN

0 // Γ(X, zq+1)
iq+1

// Γ(X,S q+1).

88

Also, the exact cohomology sequences corresponding to (1) contain

0
(dq−p+1

o )∗
−−−−−−−→ Hp−1(X, zq−p+1)

δ∗

−→ Hp(X, zq−p)
(iq−p)∗
−−−−−→ 0

for 1 < p < q and

0
d1∗

o
−−→ Hq−1(X, z1)

δ∗

−→ Hq(X,G )
e∗
−→ 0 for p = q.

Thus we have isomorphisms (q ≧ 1),

Hq
Γ(X,S )

δ∗(iq
∗
)−1

−−−−−−→ H1(X, zq−1)→ · · · → Hq−1(X, z1)
δ∗

−→ Hq(X,G )

commuting withh∗. Let η be the composite of these isomorphisms,
η : Hq

Γ(X,S )→ Hq(X,G ).

Theorem 1(Uniqueness theorem). If X is paracompact normal, and if

0→ G
e
−→ S o d1

−−→ S 1→ · · · → S q−1 dq

−−→ S q→ · · · ,

0→ G
e
−→ S o

1
d1

−−→ S 1
1 → → S q−1

1

dq

−−→ S q
1 → · · · ,

are two resolutions of the same sheafG of A-modules, there is a canon-89
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ical isomorphism

φ : Hq
Γ(X,S )→ Hq

Γ(X,S1).

Moreover, if h : (S o,S 1,S 2, . . .) → (S o
1 ,S

1
1 ,S

2
1 , . . .) is a homo-

morphism commuting with e, d1, d2, . . .,

S o d1 //

h

��

S 1
d2 //

h

��

. . . // S q−1
dq //

h

��

S q //

h

��

. . .

0 // G

e

>>||||||||

e
  @

@@
@@

@@
@

S o
1

d1
// S 1

1
d2

// . . . // S q−1
1

dq
// S q

1
// . . .

then the induced homomorphism

h∗ : Hq
Γ(X,S )→ Hq

Γ(X,S1)

is the isomorphismφ.

Proof. We have the canonical isomorphismsη, η1,

HQ
Γ(X,S )

η
−→ Hq(X,G )

η1
←−− Hq

Γ(X,S1);

let φ = η−1
1 η. �

There is commutativity in the diagram:

Hq
Γ(X,S )

η //

h∗

��

Hq(X,G )

h∗

��
Hq
Γ(X,S1)

η1 // Hq(X,G ),

where the homomorphismh∗ on the right is the identity. Hence the
homomorphismh∗ on the left is equal toη−1

1 η = φ.
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We now given example to show that the uniqueness theorem fails in 90

more general spaces.

Example 24.Let X consist of the unit segmentI = {x : o ≦ x ≦ 1}
together with two pointsp, q. A neighbourhood ofp (resp.q) consists
of p (resp.q) together with all ofI . LetG be the subsheaf of the constant
sheafZ2 formed by omitting the points (p, 1), (q, 1), (0, 1), (1, 1). Let
S o be the subsheaf of the constant sheafZ2 + Z2 formed by omitting
(p, a), (q, a) for all a , 0 and (0, (1, 0)), (0, (1, 1)), (1, (0, 1)), (1, (1, 1)).
Let S 1 be the subsheaf ofZ2 formed by omitting (q, 1). Let S 2 have
the stalkZ2 at p and 0 elsewhere; a neighbourhood of (p, 1) consists of
(p, 1) together with all the zeros overI . Then there is a resolution

0→ G
e
−→ S o d1

−−→ S 1 d2

−−→ S 2 d3

−−→ 0

and the corresponding sequence

0→ Γ(X,S o)
d1

−−→ Γ(X,S 1)
d2

−−→ Γ(X,S 2)
d3

−−→ 0

is
0→ 0→ 0→ Z2→ 0;

soH2
Γ(X,S ) = Z2.

There is also a resolution 91

0→ G
e
−→ Ro d1

−−→ 0

81
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wheree is an isomorphism; thenHp
Γ(X,R) = 0 for all p. There is even

a homomorphismh, commuting withe, d1, . . .,

Ro d1
//

h

��

0 //

��

0 //

��

0

0 // G

e
=={{{{{{{{

e
  B

BB
BB

BB
B

S o d1
// S 1 // S 2 // 0.

[The spaceX is not normal.]

Definition . A sheafS of A-modules is called fine if for every closed
set E in X and open set G in X with E⊂ G, there is a homomorphism
h : S → S such that

i) h(s) = s if π(s) ∈ E,

ii) h(s) = 0π(s) if π(s) < Ḡ

example of a fine sheaf.

Example 25.For each open subsetU of X, let SU be theA-module
of all functions f : U → A. If V ⊂ U, defineρVU to be restriction
homomorphism. LetS be the sheaf of germs of functions determined
by the presheaf

∑

= {SU , ρVU }. If E ⊂ G with E closed andG open, let
hU : SU → SU be defined by

(hU f )(x) = f (x) χG(x)

wherex ∈ U andχG is the characteristic function ofG.92

(χG(x) = 1 ∈ A if x ∈ G, χG(x) = 0 ∈ A if x < G).

Then {hU } :
∑

→
∑

is a homomorphism. Ifh : S → S is the
induced homomorphism,h(s) = s if π(s) ∈ E andh(s) = 0 if π(s) < Ḡ,
hence the sheaf is fine.
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Exercise.If M is any non-zeroA-module and the spaceX is normal, the
constant sheaf (XχM, π,X) is fine if and only if dimX ≤ 0.

Note.The set of all endomorphismsh : S → S forms an A-algebra, in
general, non commutative, whereh1·h2 is the composite endomorphism.
The identity 1 :S → S is the unit element of the algebra.

If S = (S, π,X) is a sheaf andX1 is a subset ofX, let X1 andS1 =

π−1(X1) have the induced topology. Then (S1, π|S1,X1) is a sheaf called
therestrictionof S to X1.

If X is normal, the restriction of a fine sheafS to any closed set C
is fine.

Proof. Let E be any closed subset ofC andG any open subset ofC with
E ⊂ G. ExtendG to an open setH of X, G = H ∩C. Then, sinceX is
normal,E closed inX, H open inX with E ⊂ H, there is an open subset
V of X with E ⊂ V ⊂ V̄ ⊂ H. SinceS is fine, there is a homomorphism
h : S → S with

h(s) = s if π(s) ∈ E,

= 0π(s) if π(s) ∈ X − V̄.

93

Then ifS1 is the restriction ofS to C, h|S1 : S1 → S1 is a homo-
morphismh1 : S1→ S1 and we have

h1(s) = h(s) = s if π(s) ∈ E

= 0π(s) if π(s) ∈ C − Ḡ ⊂ C −G ⊂ X − H ⊂ X − V̄.

�

Proposition 11. If X is normal,U = {Ui}iεIa locally finite covering of
X, and if the restriction ofS to eachŪi is fine (in particular, ifS is
fine), there is a system{l i}i∈I of homomorphisms li : S → S such that

i) for each i ∈ I there is a closed set Ei ⊂ Ui such that1i(Sx) =
0x if x < Ei ,
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ii)
∑

i∈I
11 = 1.

(1 denotes the identity endomorphismS → S ).

Proof. Using the normality ofX, we shrink the locally finite covering
U = {Ui}i∈I to the coveringU {Vi}i∈I with V̄i ⊂ Ui and we further shrink
the locally finite coveringU to the coveringU = {Wi}i∈I with W̄i ⊂ Vi.
Since the restrictionSi of S to Ūi is fine, there is a homomorphism
gi : Si → Si with

gi(s) = s if π(s) ∈ W̄i ,

= oπ(s) if π(s) ∈ Ūi − V̄i .

Let the homomorphismhi : S → S be defined by94

hi(s) = gi(s) if π(s) ∈ Ūi ,

= 0π(s) if π(s) ∈ X − Ui .

(This definition is consistent, sincegi(s) = 0π(s) on Ūi − Ui). This
hi : S → S is continuous and is a homomorphism with

hi(s) = s if π(s) ∈ W̄i ,

= 0π(s) if π(s) ∈ X − V̄i .

Let the setI of indices be well ordered and define the homomor-
phismsl i : S → S by

1i



















∏

j<i

(1− h j)



















hi ,

where the product is taken in the same order as that of the indices. �

Each pointx ∈ X has a neighbourhoodNx meetingUi for only a
finite number ofi, sayi1, i2, . . . , iq with i1 < i2 < · · · < iq. If π(s) ∈ Nx,

l i(s) = (1− hi1) · · · (1− hik−1)hik(s), i = ik, k = 1, . . . , q,

= 0π(s)for all otheri.
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Clearly l i(Sx) ⊂ Sx and l i |Sx : Sx → Sx is a homomorphism. The
function l i is continuous on eachπ−1(Nx) and coincides on the overlaps
of two such neighbourhoods, hencel i : S → S is continuous. Thus
l i : S → S is a homomorphism, and

hi(Sx) = 0x, x < V̄i ,

hence l i(Sx) = 0x, x < V̄i.
TakeEi = V̄i ⊂ Ui. Let π(s) ∈ Nx; then for someik, 1 ≦ k ≦ q,

π(s) ∈Wik and hencehik(s) = s. Hence 95

(1− hi1) · · · (1− hiq)(s) = 0.

Therefore
∑

i∈I

1i(s) = hi1(s) + (1− h11)hi2(s) + · · · + (1− hi1) · · · (1− hiq−1)hiq(s)

= s− (1− hi1) · · · (1− hiq)(s)

= s.

Note.The homomorphismsl i are usually not uniquely determined and
they cannot therefore be expected to commute with other given homo-
morphisms.
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Let {l i}i∈I be a system of endomorphisms of a fine sheafS correspond- 96

ing to a locally finite covering{Ui}i∈I of a normal spaceX. Eachl i gives
a homomorphisml i(U) : Γ(U,S ) → Γ(U,S ) for each openU and
∑

i∈I
l i(U) has a meaning and is the identity endomorphism ofΓ(US ).

Also l i determines a homomorphism

l̄ i(U) : Γ(Ui ∩ U,S )→ Γ(U,S )

defined by

(l̄ i(U)g)(x) = l i(g(x)) if x ∈ Ui ∩U,

= 0 if x ∈ (X − Ui) ∩ U.

One verifies that the following diagrams are commutative.

Γ(U,S )
l i (U) //

ρ(Ui∩U,S )

��

Γ(U,S )

ρ(Ui∩U,S )

��
Γ(Ui ∩U,S )

l i (Ui∩U)
//

l̄ i (U)
77nnnnnnnnnnnn

Γ(Ui ∩ U,S )

Γ(Ui ∩ U,S )
l̄ i (U) //

ρ(Ui∩V,Ui∩U)

��

Γ(U,S )

ρVU

��
Γ(Ui ∩ V,S )

l̄ i (V) // Γ(V,S )

If X is normal,S is fine andU = {Ui}i∈I is a locally finite covering
of X, then Hq(U ,S )→ 0 for q ≧ 1.

Proof. Let kq−1 : Cq(U ,S ) → Cq−1(U ,S ) for q ≧ 1 be the homo-
morphism defined by

(kq−1 f )(σ) =
∑

i∈I

l̄ i(Uσ)( f (iσ)),

87
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whereiσ = i, io, . . . , iq−1 if σ = io, . . . , iq−1. (This infinite sum of sec-
tions is finite neglecting zeros, in some neighbourhood of each point.)97

Using the fact that∂o(iσ) = σ and∂ j(iσ) = i∂ j−1(σ) for j > 0, one
verifies that

δqkq−1 f + kqδq+1 f = f .

(The computation is given at the end of the lecture.)
Hence each cocyclef is a coboundaryq.e.d. �

Proposition 12. For a fine sheafS over a paracompact, normal space
X, Hq(X,S ) = 0 for q ≧ 1

Proof. Hq(X,S ) = 0 q ≧ 1 for each locally finite coveringU of the
spaceX. Since the spaceX is paracompact, this means thatHq(X,S ) =
0, q ≧ 1. �

Corollary . If X is paracompact and normal, any exact sequence of
sheaves

0→ G
e
−→ S o d1

−−→ · · · → S q−1 dq

−−→ S q→ . . . ,

where eachS q(q ≧ 0) is fine, is a resolution ofG .

Definition. A sheafS is called locally fine, if for each open U and each
x ∈ U, there is an open V with x∈ V ⊂ U such that the restriction ofS
to V̄ is fine.

If X normal, a fine sheafS is locally fine.

Proof. The restriction ofS to an arbitrary closed set is fine. �

Proposition 13. If X is paracompact normal, a locally fine sheafS is98

fine.

Proof. Let E ⊂ G1, with E closed andG1 open. IfG2 = X − E then
{Gi}i=1,2 is a covering ofX. SinceS is locally fine, for eachx ∈ Gi,
there is an openVx with x ∈ Vx ⊂ Gi such that the restriction ofS to
V̄x is fine. SinceX is paracompact, there is a locally finite refinement
U {U j} j∈J of {Vx}x∈X, henceU is also a refinement of{Gi}. If U j ⊂ Vx,
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thenŪ j ⊂ V̄x, andV̄x, being closed inX, is normal. Since the restriction
of S to V̄x is fine, the restriction ofS to Ū j is also fine. Now by
proposition 11, there exist endomorphismsl j such that

∑

j∈J
l j = 1 andl j

is zero outside a closed setE j ⊂ U j. Choose the functionτ : J→ (1, 2)
so thatU j ⊂ Gτ( j) and let

l i =
∑

τ( j)=i

l j , i = 1, 2.

ThenI1 + I2 = l and

l i(s) = 0 if π(s) ∈ X −
⋃

τ( j)=i

U j ⊃ X −Gi .

Hence
l1(s) = 0 if π(s) ∈ X −G1

and
l1(s) = s if π(s)εX −G2 = E.

l1 thus gives the required function, and this completes the proof. �

Corollary . If X is paracompact and normal, any exact sequence of
sheaves

0→ G
e
−→ S o d1

−−→ . . .S q−1 dq

−−→ S q · · · ,

where eachS q(q ≧ 0) is locally fine, is a resolution ofG . 99

The following examples shows that, in more general spaces, fineness
need not coincide with local fineness.

Example 26.Let X have pointsa, b, . . . , h with base for open sets con-
sisting of (f ), (g), (h), (d, f , h), (e, g, h), (c, f , g), (b, e, g, h), (a, d, e, f ,
g, h). LetS be the subsheaf of the constant sheafZ2 formed by omitting
(c, 1), (f , 1). ThenS is fine but not locally fine. In fact,V = (c, f , g) is
the least open set containingc and the restriction ofS to V̄ = X − (h)
is not fine. (X is not normal.)
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Example 27.Let T be the space of ordinal numbers≦ ω1 with the usual
topology induced by the order. LetA be the space or ordinal numbers
≦ ωo and letX be the subspace ofTXA formed by omitting the point
(ω1, ωo). Let S be the constant sheafZ2 over X. ThenS is locally
fine, for every point has a closed neighbourhood which is normal and
zero dimensional. ButS is not fine. If B is the set of even numbers,
then B ⊂ A. Let E = ω1 × B andG = T × B. ThenE ⊂ G ⊂ X
with E closed andG open. There is no endomorphism ofS which is
the identity onE and is zero outsidēG. (X in neither paracompact nor
normal.)

Example 28.The spaceM of Quart. Jour. Math. 6 (1955), p. 101 is nor-100

mal and locally zero dimensional but not zero dimensional. Therefore
the constant sheafZ2 is locally fine but not fine. (M is not paracompact).101

δqkq−1 f + kqδq+1 f = f .

δqkq−1 f (σ) =
q

∑

j=0

(−1) jρ(Uσ,U∂ jσ)(kq−1 f )(∂ jσ)

=

q
∑

j=o

(−1) jρ(Uσ,U∂ jσ)
∑

i

Ī i(U∂ jσ) f (i∂ jσ)

=

q
∑

j=0

(−1) j
∑

i

l̄1(Uσ)ρ(Uiσ,U j∂ jσ) f (i∂ jσ).

kqδq+1
=

∑

i

l̄1(Uσ)(δq+1 f )(iσ)

=

∑

i

l̄ i(Uσ)
q+1
∑

j=0

(−1) jρ(Uiσ,U∂ j iσ) f (∂ j iσ)

=

∑

i

l̄ i(Uσ)ρ(Uiσ,Uσ) f (σ)

+

∑

i

l̄ i(Uσ)
q+1
∑

j=1

(−1) jρ(U jσ,Ui∂ j−1∂) f (i∂ j−1σ)
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=

∑

i

l i(Uσ) f (σ)
∑

i

l̄ i(Uσ)
q

∑

j=0

(−1) j+1ρ(Uiσ ,Ui∂ jσ) f (i∂ jσ).

δqkq−1 f (σ) + kqδq+1
= σi l i(Uσ) f (σ) = f (σ)
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In this and the next lecture, we shall give a proof of de Rham’stheorem. 102

Let X be an indefinitely differentiable (C∞) manifold of dimension
n, which is countable at infinity (i.e) a countable union of compact sets);
we assume thatX is a Hausdorff space. ThenX is paracompact and
normal. (Dieudonne, Jour. de Math. 23 (1944)). The setE p(U) of all
C∞ (alternating) differential p-forms on an open setU forms a vector
space over the field of real numbers. Exterior differentiation gives a
homomorphismdp,

dp : E p−1(U)→ E p(U)

with dp+1dp
= 0. In particular, there is a sequence

0
do

−−→ E o(X)
d1

−−→ E 1(X)→ · · ·
dp

−−→ E p(X)→ · · ·
dn

−−→ E n(X)
dn+1

−−−→ 0

with im dp ⊂ kerdp+1. Let

Hp(E (X)) = kerdp+1/ im dp.

This vector space of the closedp-forms modulo the derivedp-forms
is called thep-th de Rham cohomology vector spaceof the manifoldX.

If V ⊂ U, the inclusion mapi : V → U induces a homomorphism

ρVU = i−1 : E p(U)→ E p(V)

which commutes withd. Thus the systemE p
= {E p(U), ρVU } is a 103
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presheaf which determines a sheafΩp, called the sheaf of germs of
p-forms, and

dp : E p−1→ E p

is a homomorphism of presheaves which induces a homomorphism

dp : Ωp−1 −→ Ωp.

There is a constant presheaf{R, ρVU} whereR is the filed of real
numbers andρVU : R→ R is the identity. This presheaf determines the
constant sheafR. There is a homomorphisme : R→ E o(U), (E o(U) is
the space ofC∞ functions onU) wheree(r) is the function onU with
the constant valuer, and furtherecommutes withρVU . Thus, there is an
induced sheaf homomorphisme : R→ Ωo. Hence, we have a sequence
of homomorphisms of sheaves

0→ R
e
−→ Ωo d1

−−→ · · · → Ωp−1 dp

−−→ Ωp→ . . . ,

with dp+1dp
= 0.

There is a homomorphism

{ fU } : {E p(U), ρVU } → Ω̄
p,

(Ω̄p denotes the presheaf of sections ofΩp), where the image of an el-
ement ofE p(U) is the section overU which it determines inΩp. Then104

d commutes withfU and, in particular, withfx. Thus we have the com-
mutative diagram:

E p−1(X)
dp

//

fX
��

E p(X)

fX
��

Γ(X,Ωp−1)
dp

// Γ(X,Ωp).

If a p-form ω ∈ E p(X) is not zero, there is some pointx ∈ X at
which it does not vanish, and henceρxXω , 0. Thus fXω , 0, i.e., fX
is a monomorphism. (In the same way,fU is a monomorphism for each
open setU.) fX is also onto, hence an isomorphism. For, ifg ∈ Γ(X,Ωp),
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then sinceΩp is the sheaf of germs ofp-forms, for eachx ∈ X there is a
neighbourhoodUx of x and ap-formωx defined onUx such that section
g and the section determined byωx coincide onUx. Then{Ux} forms a
covering forX, and since the section determined byωx andωy coincide
onUx∩Uy, using the fact thatfU is a monomorphism for each open set
U, we see that the formsωx andωy themselves coincide onUx ∩ Uy;
hence they define a global fromω, such thatfX(ω) = g. Thus fX gives
an isomorphism of the sequences:

0 // E o(X) d1
//

fX
��

. . . // E p−1(X)
dp

//

fX
��

E p(X) //

fX
��

. . .

0 // Γ(X,Ωo) d1
// . . . // Γ(X,Ωp−1)

dp
// Γ(X,Ωp) // . . .

Hence there is an induced isomorphism of the cohomology vector 105

spaces:
f ∗X : Hq(E (X))→ Hq

Γ(X,Ω) (q ≧ 0).

Poincare’s lemma. The sequence

0→ R→ Ωo d1

−−→ · · · → Ωp−1 dp

−−→ Ωp→ · · ·

is exact.

Proof. We have to prove that for each pointa ∈ X, the sequence

0→ Ra
e
−→ Ωo

a

d1

−→ · · · → Ω
p−1
a

dp

−−→ Ω
p
a · · ·

is exact, where the subringRa of Ωo
a, consisting of the germs of constant

functions at a, is identified with the filedR of real number. Choose
a coordinate neighbourhoodW of a with coordinates (x1, . . . , xn) and
suppose thata = (0, . . . , 0). ThenΩp

a is the direct limit of the system
{

E p(U), ρVU

}

aεU′ whereU belongs to the cofinal set of those spherical
neighbourhoodsx2

1 + · · · + x2
n < r2 which are contained inW. �

For each suchU, let

h : E o(U)→ R
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and kp−1 : E p(U)→ E p−1(U) (p ≧ 1)

be the homomorphisms defined by

h( f ) = f (0, . . . , 0),

and

kp−1( f (x1, . . . , xn)dxi · · · dxip)

=(
∫ 1

0
f (tx1, . . . , txn)tp−1dt) ·

P
∑

j=1

(−1) j−1xi j dxi1 . . . d̂xi j . . . dxip

respectively. (The formula on the right is an alternating function of106

i1, . . . , ip; h andkp−1 are then extended by linearity toE o(U) andE p(U)
respectively.) One now verifies that

eh+ k0d1
= 1,

dpkp−1
+ kpdp+1

= 1 (p ≧ 1),

where 1 denotes the identity map.
(The computation is carried out at the end of the lecture.)
Thus f ∈ kerd′ implies that f ∈ im e andω ∈ kerdp+1 implies that

ω ∈ im dp. Hence kerd1
= im e and kerdp+1

= imdp, since already
im e⊂ kerd1 and imdp ⊂ kerdp+1. Hence the sequence

0→ RU
e
−→ E o(U)

d1

−−→ . . .E p−1(U)
dp

−−→ E p(U)→ . . .

is exact, and since exactness is preserved under direct limits, therefore
the limit sequence

0→ Ra
e
−→ Ωo

a
d1

−−→ · · · → Ω
p−1
a

dp

−−→ Ω
p
a → . . .

is exact,q.e.d.
The sheafΩp is fine.

Proof. Since the spaceX is paracompact and normal, by Proposition 13
(Lecture 16), it is enough to prove that the sheafΩp is locally fine. Let
U be an open set ofX, and leta ∈ U. �
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We may assume that̄U is compact and that it is contained in some107

coordinate neighbourhoodN of a. Let V be an open subset witha ∈ V
andV̄ ⊂ U. We will now prove that the restrictionΩp

V̄
of Ωp to V̄ is fine.

Let E ⊂ G with E closed andG open inV̄. ExtendG to an open
setH ⊂ U, so thatG = V̄ ∩ H. ThenŪ is covered by a finite number
of spherical neighbourhoodsSi contained inN, such thatS̄i either does
not meetE or is contained inH.

For eachi, choose an indefinitely differentiable functionfi which
is positive insideSi and vanishes out sideSi . We construct one such

function as follows: For the spherical neighbourhood
n
∑

j=1
(x j −bi j )2 < r2

i ,

let

gi(r) = 0 (r ≧ r i),

=

∫ r i

r
exp

{

1

(t − r i
2 )(t − r i)

}

dt (
r i

2
≦ r ≦ r i),

=

∫ r i

r i/2

exp

{

1

(t − r i
2 )(t − r i)

}

dt (0 ≦ r ≦
r i

2
)

and definefi by

fi(x1, . . . , xn) = gi(

√

√

√ n
∑

j=1

(x j − bi j )2.

Let ϕ1(x) =
∑

fi(x), summed for alli for which S̄i meetsE and let
ϕ2(x) =

∑

fi(x), summed for all the remainingi. Thenϕ1+ϕ2 is positive
in U and, if

θ(x) = ϕ1(x)/(ϕ1(x) + ϕ2(x)),

θ is indefinitely differentiable inU, is zero outsideH and is constant, 108

equal to 1, in a neighbourhood ofE.
Let h : E p(W) → E p(W), for openW ⊂ U be defined byh(ω) =

θ · Ω. Thenh is a homomorphism commuting withρYW, Y open inU,
Y ⊂ W. Henceh induces a homomorphismh : Ωp(U) → Ωp(U) for
which

h(ωb) = ωb if b ∈ E,
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h(ωb) = 0b if b ∈ V̄ − Ḡ ⊂ U − H.

(ωb denotes the germ determined byω atb ∈ U.)

Proposition 14. There is an isomorphism

η f ∗X : Hp(E (X))→ HP(X,R).

Proof. By the corollary to Proposition 12, the exact sequence

0→ R
e
−→ Ωo d1

−−→ · · · → Ωp−1 dp

−−→ Ωp→ . . .

is a resolution of the constant sheafR and hence, by Proposition 10,
there is an isomorphism

η : Hp
Γ(x,Ω)→ Hp(X,R);

but we already have (as proved in the earlier part of this lecture) an
isomorphism

f ∗X : Hp(E (X))→ Hp
Γ(X,Ω).

�

(1)eh+ k0d1
= 1. (2)dpkp−1

+ kpdp+1
= 1 (p ≧ 1).109

(1) If f (x) = f (x1, . . . , xn) ∈ E 0(U),

eh f(x) = f (0, . . . , 0) andd1 f (x) =
n

∑

i=1

Di f (x)dxi , (∗),

hencekod1 f (x) =
∑n

i=1

∫ 1
0 Di f (tx)dt · xi =

∫ 1
0

d
dt

f (tx)dt = f (x) −

f (0), thuseh f(x) + kod1 f (x) = f (x).

(2) If ω = f (x1, . . . , xn)dxi1 · · · dxip,

dpkp−1
= dp(

{

∫ 1

0
f (tx)tp−1dt

}

·

p
∑

j=1

(−1) j−1xi j dxi1 · · · dx̂i j · · ·dxip
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=

{

(
n

∑

i=1

(
∫ 1

0
Di f (tx)tpdt)) ·

p
∑

j=1

(−1) j−1xi j dxi1 · · ·dx̂i j . . . dxip

}

+ (
∫ 1

0
f (tx)tp−1dt) · pdxi1 · · · dxip.

kpdp+1ω = kp(
n

∑

i=1

Di f (x)dxidxi1 · · · dxip)

n
∑

i=1

(
∫ i

0
Di f (tx)tp · dt)

{

xidxi1 · · ·dxip

−

p
∑

j=1

(−1) j−1xi j dxidxi1 · · · dx̂i j · · ·dxip

}

.

(∗) Di denotes partial derivation with respect to thei - th variable con-
cerned.

Thusdpkp−1ω + kpdp+1ω 110

= (
∫ 1

0
f (tx)p · tp−1dt)dxi1 . . .dxip

+

n
∑

i=1

∫ 1

0
Di f (tx)tp · dt · xidxi1 . . . dxip

=

{

f (tx)tp
]1

0
−

∫ 1

0

n
∑

i=1

Di f (tx) · xit
pdt

}

dxi1 . . .dxip

+

n
∑

i=1

∫ 1

0
Di f (tx) · tpdt · xidxi1 . . .dxip

= f (x)dxi1 . . . dxip

= ω.
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Let sp be a fixedp-simplex in Euclideanp-spaceRp, with vertices 111

a0, a1, . . . , ap, i.e. sp is the convex set spanned by pointsa0, . . . , ap

which are in general position. We may assume thatao is the origin
anda1, . . . , ap are unit points of a coordinate axes inRp, and thatsp−1 is
the face oppositeap in sp.

Definition . A differentiable singular p-simplex in a C∞ manifold X is
a C∞− map t : sp → X. The image,im t, is called the support of the
singular simplex t. The j-th face∂ jt is the composite map tdj : sp−1→ X
where dj : sp−1 → sp is the linear map which maps ao, . . . , ap−1 into
ao, . . . , â j , . . . , ap.

The support of∂ jt is contained in the support oft.

Definition . A differentiable singular p-cochain in an open set U⊂ X
is a real valued function of differentiable p-simplexes with supports in
U; f (t) ∈ R if suppt⊂ U.

The setSp
U of of all differentiableP− cochains inU forms a real

vector space. There is a restriction homomorphismρVU : SP
U → Sp

V for

V ⊂ U and a coboundary homomorphismdp : Sp−1
U → Sp

U defined by

(dp f )(t) =
p

∑

j=0

(−1) j f (∂ jt).

The homomorphismsρVU anddp commute, andimdo ⊂ kerdp+1.

101
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In particular, there is a sequence

0→ So
X

d1
−−→ S1

X → · · · → Sp−1
X

dp

−−→ Sp
X → . . .

with dp+1dp
= 0, i.e., imdp ⊂ kerdp+1. Let112

Hp(SX) = kerdp+1/imdp.

This vector space is called thep−th cohomology vector space of X
based on differentiable singular cochains.

Since a singular 0-simplex may be identified with the point which is
its support,So

U can be identified with the vector space of all functions
f : U → R. The vector spaceE o(U) of C∞− functions onU is a
subspace ofSo

U , and the spaceRof constant functions onU is a subspace
of E o(U), i.e.,R⊂ E o(U) ⊂ So

U .

The presheaf
{

Sp
U , ρVU

}

determines a sheafS p and sinceρVU com-

mutes withdp and with the inclusion homomorphisme : R→ S0
U , there

are induced homomorphisms

0→ R
e
−→ S 0 d1

−−→ · · · → S p−1 dp

−−→ S p→ . . .

Here the constant sheafR is identified with the sheaf of germs of
constant functions.

There is a homomorphism

{

gU
}

:
{

Sp
U , ρVU

}

→ S̄ p,

where the image of an element ofSp
U is the section which it determines.

Thend commutes withgU and, in particular, withgX. Then we have the
commutative diagram:

0 // So
X

//

gX

��

. . . // Sp−1
X

dp
//

gX

��

Sp
X

//

gX

��

. . .

0 // Γ(X,S o) // . . . // Γ(X,S p−1)
dp

// Γ(X,S p) // . . .

113

The induced homomorphism g∗X : Hp(SX) → Γ(X,S )is an iso-
morphism for each p.
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Proof. For each coveringU of X, let Sp
U denote the vector space of

all real valued functions of differentiablep−simplexes, which are de-
fined for each simplext with suppt contained in some open set ofU .
dpmapsSp−1

U
into Sp

U
and, if W is a refinement ofU , there is the ob-

vious restriction homomorphismgW U : Sp
U
→ Sp

W
commuting with

dp. Then
{

Sp
U
, gW U

}

is a direct system and it can be proved, using a

method similar to the one used in the proof of Proposition 8 (Lecture
12), that its direct limit isΓ(X,S p). �

The induced homomorphismsg∗W U : Hp(SU U ) → Hp(SW ) are
isomorphisms. (See Cartan Seminar, 1948-49, Exposé 8,§3.). Hence
g∗U : Hp(SU ) → Hp

Γ(X,S ) is an isomorphism and, in particular, tak-
ing U as the covering by one open setX,

g∗X : Hp(SX)→ Hp
Γ(X,S )

is an isomorphism,q.e.d.
The sequence

0→ R
e
−→ S → · · · → S p−1 dp

−−→ S p→ . . .

is exact.

Proof. It is sufficient to show that 114

0→ R
e
−→ S0

U → · · · → Sp−1
U

dp

−−→ Sp
U → . . .

is exact for a cofinal system of neighbourhoodsU of each pointa ∈ X.
For this system, take the spherical neighbourhoodsU contained in a
coordinate neighbourhoodN of a. The result is proved using the conical
homotopy operator. (See Cartan Seminar, 1948-49, Expose 7,§6 ; his
formula should be replaced by

y(λ0, . . . . . . λp+1) = φ(λ0)x (λ1/(1− λ0), . . .) λ0 , 1,

= 0 λ0 = 1;

where the indefinitely differentiable functionφ is chosen so that 0≦
φ(λ)0) ≦ 1 for 0 ≦ λ0 ≦ 1, φ(0) = 1 andφ(λ0) = 0 for λo in some
neighbourhood of 1.) �
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The sheafS p is fine.

Proof. Let E ⊂ G with E closed andG open. DefinehU : Sp
U → Sp

U by

(hU f )(t) = f (t) if supp t ⊂ G

= 0 otherwise.

Then hU is a homomorphism commuting withρVU and induces a
homomorphismh : S p→ S p such thathx : Sp

x → Sp
x is the identity if

x ∈ G, and is zero ifx ∈ X − Ḡ. ThusS p is fine,q.e.d. �

Now let hU : E p(U)→ Sp
U be the homomorphism defined by115

(hUω)(t) =
∫

sp

t−1ω,

wheret−1ω is the inverse image of the formω by t. Clearly hU com-
mutes withρVU , hence induces a homomorphismh : Ωp → S p with
commutativity in

E p(U)
ρxU //

hU

��

Ω
p
x

hx

��
Sp

U

ρxU // Sp
x .

Hence there is an induced homomorphismh : Γ(X,Ωp)→ Γ(X,S p)
with commutativity in

E p(X)
fX //

hX
��

Γ(X,Ωp)

h
��

Sp
X

gX // Γ(X,S p).

hU commutes with dp.

Proof.

(hU dpω)t =
∫

sp

t−1(dpω)
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=

∫

sp

dp(t−1ω) ( sincedp commutes witht−1)

=

p
∑

j=0

(−1) j
∫

dj sp

t−1ω( by Stokes’ theorem forsp),

=

p
∑

j=0

(−1) j(hUω)∂ jt

= (dphUω)t.

ThushX induces a homomorphismh∗X : Hp(E (x)) → Hp(SX). Also 116

the homomorphismsh : Ωp → S P and hence the induced homomor-
phismsh : Γ(X,Ωp) → Γ(X,S P) commute withdp, and thus there
are induced homomorphismsh∗ : Hp

Γ(X,Ω) → Hp
Γ(X,S ). There is

commutativity in

Hp(E (X))
f ∗X //

h∗X
��

Hp
Γ(X,Ω)

h∗

��
Hp(SX)

g∗X // Hp
Γ(X,S ).

The homomorphism h∗ is an isomorphism. �

Proof. We have the two resolutions

Ω
0 //

h

��

. . . //
Ω

p−1 dp
//

h

��

Ω
p //

h

��

. . .

0 // R

e
>>}}}}}}}}

e   A
AA

AA
AA

A

S 0 // . . . // S p−1 dp
// S p // . . .

of R. The homomorphismh commutes withdp, and commutativity in
the triangle follows from the fact thatR ⊂ Ωo → S o and e, h and
e are inclusion homomorphisms. Henceh∗ is the isomorphism of the
uniqueness theorem,q.e.d. �
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Theorem 2(de Rham). The homomorphism

h∗X : Hp(E (X))→ Hp(SX)

is an isomorphism.

Proof. The following diagram is commutative :

Hp(E (X))
f ∗X //

h∗X
��

Hp
Γ(X,Ω)

h∗

��
Hp(SX)

g∗X // Hp
Γ(X,S ).

117

Since f ∗X, g∗X, andh∗ are isomorphisms, and the above diagram is
commutative, we haveh∗X = g∗−1

X h∗ f ∗X. Therefore,h∗X is an isomorphism.
�
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Definition. A double complex K is a system of A−modules (A is a com-118

mutative ring with unit element
{

Kp,q
}

, indexed by pairs(p, q) of inte-

gers, together with homomorphisms d1 and d2 with

dp,q
1 : Kp−1,q→ Kp,q, dp,q

2 : Kp,q−1→ Kp,q,

dp+1,q
1 · dp,q

1 = 0, dp,q+1
2 dp,q

2 = 0,

dp+1,q
2 dp+1,q−1

1 + dp+1,q
1 dp,q

2 = 0,

(i.e., d1 and d2 are differential operators of bi degree (1, 0) and (0,
1) respectively, which anticommute. Usually we omit the superscripts
attached to d1 and d2.) We have then the anticommutative diagram:

�� �� ��
. . . // Kp−1, q−1

d2 //

d1

��

Kp−1, q

d1

��

d2 // Kp−1, q+1 //

d1

��

. . .

. . . // Kp,q−1
d2 //

��

Kp,q d2 //

��

Kp,p+1 //

��

. . .

(Each row and column of a double complex forms a (single) complex
with the homomorphisms d2 and d1 respectively.)

Definition. A subcomplex L of K is a system of submodules Lp,q ⊂ Kp,q

stable under d1 and d2; thus d1(Lp−1,q) ⊂ Lp,q and d2(Lp,q−1) ⊂ Lp,q. 119

107
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If L is a subcomplex of a double complexK, then clearlyK/L =
{

Kp,q/Lp,q
}

with the homomorphisms induced byd1 andd2 is again a

double complex.
Let Zp,q

1 (K) be the kernel ofd1 : Kp,q → Kp+1,q and letBp,q
1 (K) be

the image ofd1 : Kp−1,qKp,q. Sinced2
1 = 0, Bp,q

1 ⊂ Zp,q
1 ⊂ Kp,q.

Now d1(ZP−1,Q)1 = 0 ∈ Zp,q
1 and, since d1d2(Zp,q−1

1 )

= −d2d1(Zp,q−1
1 ) = 0, d2(Zp,q−1

1 ) ⊂ Zp,q
1 . ThusZ1(K) =

{

Zp,q
1

}

is a

subcomplex ofK.
Also d1(BP−1,q

1 ) = 0 ∈ Bp,q
1 and d2(Bp,q−1

1 ) = d2d1(Kp−1,q−1) =

−d1d2(Kp−1,q−1) ⊂ Bp,q
1 . Thus B1(K) =

{

Bp,q
1

}

is a subcomplex of

Z1(K). LetH1(K) = Z1(K)/B1(K) with H1(K) =
{

Hp,q
1 (K) = Zp,q

1 /Bp,q
1

}

.

In the double complexH1(K), the homomorphism induced byd1 is the
trivial (zero) homomorphism.

. . . // Hp−1,q−1
1

d2 // Hp−1,q
1

d2 // Hp−1,q+1
1

// . . .

. . . // Hp,q−1
1

d2 // Hp,q
1

d2 // Hp,q+1
1

// . . .

Similarly if Zp,q
2 = kerd2 andBp,q

2 = im d2 there is a double complex

H2(K) with H2(K) =
{

Hp,q
2 (K) = Zp,q

2 |B
p,q
2

}

. In H2(K), the homomor-

phism induced byd2 is the trivial homomorphism.

�� �� ��
Hp−1,q−1

2

d1

��

Hp−1,q
2

d1

��

Hp−1,q+1

d1

��

Hp,q−1
2

��

Hp,q
2

��

Hp,q+1
2

��
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120

In particular, there is a double complexH2(H1(K)), which we write

asH12(K) =
{

Hp,q
12 (K)

}

, whereHp,q
12 =

{

Zp,q
12 Bp,q

12

}

andZp,q
12 = kerd2 :

Hp,q
1 → Hp,q+1

1 ; B12 = im d2 : Hp,q−1
1 → Hp,q

1 . In the double complex
H12(K), the induced homomorphismsd1 and d2 are the trivial homo-
morphisms.

Similarly there is a double complex

H21(K) =
{

Hp,q
21 (K)

}

= H1(H2(K)).

Notations. In terms of the more usual notation,Hp,q
12 (K) = Hq

II (H
p
I (K))

andHp,q
21 (K)) = Hp

I (K)(Hq
II (K)).

To the double complexK =
{

Kp,q, d1, d2

}

we can now associate the

(single) complex
{

Kn, d
}

Kn being the direct sumKn
=

∑

p+q=n
Kp,q (each

Kn is anA−module) with the differential operatord = d1+d2 : Kn−1→

Kn. (d is a homomorphism andd2
= d2

1 + d1d2 + d2d1 + d2
2 = 0).

· · · → Kn−1 dn

−−→ Kn dn+1

−−−→ Kn+1→ · · ·

Thus imdn ⊂ kerdn+1 and there are cohomology modulesHn(K) =
kerdn+1/imdn.

Definition . A homomorphismf : K → L (of bidegree(r, s)) of double 121

complexes is a system of homomorphisms f: Kp,q→ Lp+r,q+s.

Definition. A map f : K → L of double complexes is a homomorphism
of bidegree (0, 0), which commutes with d1 and d2.

Clearly a mapf : K → L induces homomorphisms

f + : Hp,q
1 (K)→ Hp,q

1 (L), f ∗ : Hp,q
12 (K)→ Hp,q

12 (L)

and f ∗ : Hp,q
21 (K)→ Hp,q

21 (L)

Also, f determines obvious homomorphismsf : Kn → Ln which
commute withd = d1 + d2 and there are induced homomorphismsf ∗ :
Hn(K)→ Hn(L)
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Definition. A sequence

· · · → Kr−1
hr
−→ Kr

hr+1
−−−→ Kr+1→ · · ·

of homomorphisms of bidegree (0, 0) of double complexes is called exact
if, each pair(p, q), the sequence

· · · → Kp,q
r−1→ Kp,q

r → Kp,q
r−1→ · · ·

is exact.

Given an exact sequence of maps of double complexes

0→ K′
i
−→ K

j
−→ K′′ → 0,

there is an exact cohomology sequence

· · · → Hn(K′)
i∗
−→ Hn(K)

j∗
−→ Hn(K′′)

d∗
−−→ Hn+1(K′)→ · · ·

Proof. The sequences122

0→ K′n
i
−→ Kn j

−→ K′′n→ 0

are clearly exact for each eachn, andd commutes withi and j. Then,
using the standard arguments of Lecture 10, we obtain the result. �

Definition. Two maps of double complexes, f: K → L and g : K → L
are calledhomotopic( f ◦g) if there exist homomorphisms h1 : Kp+1,q→

Lp,q and h2 : Kp,q+1→ Lp,q (i.e., h1 and h2 are homomorphisms K→ L
of bidegree (−1, 0) and (0,−1) respectively) such that

d1h1 + h1d1 + d2h2 + h2d2 = g− f ,

d1h2 = −h2d1, d2h1 = −h1d2.

(Homotopy of maps is obviously an equivalence relation.)
Homotopic maps f:→ L and g : K → L induce the same homo-

morphisms
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(i) f ∗ = g∗ : Hp,q
12 (K)→ Hp,q

12 (L),

(ii) f ∗ = g∗ : Hp,q
21 (K)→ Hp,q

21 (L),

(iii) f ∗ = g∗ : Hn(K)→ Hn(L).

Proof. Let (h1, h2) be the pair of homomorphismsK → L which express
the homotopy betweenf andg. Sinceh2, like d2, anticommutes with
d1, there are induced homomorphisms

h+2 : Hp,q+1
1 (K)→ Hp,q

1 (L).

Further, since 123

d1h1 + h1d1 = g− f − d2h2 − h2d2,

h1 expresses the homotopy ofg and f + d2h2 + h2d2 from a column
complex ofK to the corresponding column complex ofL. �

Hence

f + + d2h+2 + h+2d2 = g+ : Hp,q
1 (K)→ Hp,q

1 (L),

i.e., d2h+2 + h+2d2 = g+ − f +.

Thush+2 expresses the homotopy ofg+ and f + from a row complex

of
{

Hp,q
1 (K)

}

to the corresponding row complex of
{

Hp,q
1 (L)

}

.

Hence

f ∗ = g∗ : Hp,q
12 (K)→ Hp,q

12 (L). This proves (i).

The proof of (ii) is carried out in a similar manner, using theother
anti-commutativityd2h1 = −h1d2.

To prove (iii), leth = h1 + h2 : Kn+1→ Ln. Then

dh+ hd= (d1 + d2)(h1 + h2) + (h1 + h2)(d1 + d2)

= (d1h1 + h1d1 + d2h2 + h2d2) + (d1h2 + h2d1) + (d2h1 + h1d2)

= g− f .

Thush is a homotopy of the complexes
{

Kn} and
{

Ln}, and we obtain
f ∗ = g∗ : Hn(K)→ Hn(L).
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Note . In the double complexes which occur in the usual applications,
one has commutativityd1d2 = d2d1, d1h2 = h2d1 and d2h1 = h1d2 124

rather than anti-commutativity. The commutative case can be trans-
formed into the anti-commutative case and vice versa by replacing d2

by (−1)Pd2 : Kp,q−1 → Kp,q andh2 by (−1)Ph2 : Kp,q−1 → Kp,q. These
substitutions do not change kerd2, im d2, etc., and so the cohomology
modulesHp,q

1 , Hp,q
12 , etc., remain unchanged. But ifK is a commutative

double complex,Kn, d, Hn(K) are understood to refer to the associated
anticommutative double complex.
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Definition . If Ω is a directed set, adirect system of double complexes125
{

Kλ, φµλ

}

λ,µ∈Ω
is a system of double complexes Kλ and maps

φµλ : Kλ → Kµ (λ < µ),

such that

(i) φλλ is the identity,

(ii) φνµφµλ is homotopicto φνλ for λ < µ < ν.

If
{

Kλ, φµλ

}

is a direct system of double complexes, there are unique-

ly determined direct limits:

(i) Hp,q
12 (K) = direct limit {Hp,q

12 (Kλ), φ∗µλ},

(ii) Hp,q
21 (K) = direct limit{Hp,q

21 (Kλ), φ∗µλ},

(iii) Hn(K) = direct limit{Hn(Kλ), φ∗µλ}.

Proof. (i) The system
{

Hp,q
12 (Kλ), φ∗µλ

}

is a direct system, as

(a) φ∗
λλ

is the identity, sinceφλλ is the identity,

(b) φ∗νµφ
∗
µλ
= (φνµφµλ)∗ = φ∗νλ, since homotopic maps induce the same

homomorphism on the cohomology groups.

�

113
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The proofs of (ii) and (iii) are carried out in a similar manner.

Definition . We say that a system{Kλ} of double complexes is bounded
on the rightif there is some integer m, such that Kp,q

λ
= 0 whenever126

q > m (for all p andλ). The system is saidto be bounded on the left
(resp.above, below) if there is an integer m such that Kp,q

λ
= 0 whenever

q < m (resp. p< m, p > m).

Proposition 15. If
{

Kλ, φµλ

}

is a direct system of double complexes

which is bounded above or on the right and if Hp,q
12 (K) = 0 for all p

and q, then Hn(K) = 0 for all n.

Proof. Let α ∈ Hn(K), let αλ be its representative in someHn(Kλ) and
let aλ ∈ Zn(Kλ) represent the classαλ. Let aλ = ap,q

λ
+ ap−1,q+1

λ
+ . . .,

wherep+ q = n and the sum terminates witham,n−m
λ

(resp.an−m,m
λ

). �

Sinceaλ ∈ Zn(Kλ), daλ = (d1 + d2)aλ = 0, i.e.,

daλ = d1ap,q
λ
+ (d2ap,q

λ
+ d1ap−1,q+1

λ
) + · · · ,

and the sum being direct, we haved1ap,q
λ
= 0 andd2ap,q

λ
+d1ap−1,q+1

λ
= 0.

Thusap,q
λ
∈ Zp,q

1 (Kλ) andd2ap,q
λ
∈ Bp,q+1

1 (Kλ). Therefore,ap,q
λ

represents
an element ofZp,q

12 (Kλ). SinceHp,q
12 = 0, there is someµ > λ such

that ap,q
µ = φµλa

p,q
λ

represents an element ofBp,q
12 (Kµ). Thus, for some

b ∈ Zp,q−1
1 (Kµ), a

p,q
µ − d2b ∈ Bp,q

1 (Kµ), and henceap,q
µ = d2b + d1c for

somec ∈ Kp−1,q
µ .

Let aµ = φµλaλ and let

eµ = aµ − d(b+ c)

= aµ − d1b− d2b− d1c− d2c

= aµ − ap,q
µ − d2c ( sinced1b = 0)

= (ap−1,q+1
µ − d2c) + ap−2,q+1

µ + · · ·

= ep−1,q+1
µ + ap−2,q+2

µ + · · ·

whereep−1,q+1
µ = ap−1,q+1

µ −d2c. Then sinceeµ andaµ represent the same127
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classαµ ∈ Hn(Kµ), they represent the same elementα ∈ Hn(K). The
reason for choosing this representativeeµ is the fact that its (p, q)− th
component is zero. Continuing thus, after a finite numberk of steps for
a suitableρ, α is represented byeρ = −d2c′, consisting of a single term

in Kp−k,q+k
ρ . Continuing the construction still further, since the system of

double complexes is bounded above or to the right, after a finite number
of steps, we obtain a representativeeν = −d2c′′ = 0, i.e.,α is represented
by 0 ∈ Zn(Kν) for a suitableν. Henceα = 0.

Proposition 15-a. If
{

Kλ, φµλ

}

is a direct system of double complexes

which is bounded below or on the left, and if Hp,q
21 (K) = 0 for all p and

q then Hn(K) = 0 for all n.

Proof. This is carried out exactly as in Proposition 15, except thatwe
eliminate the component ofaλ with highest second degreeq instead of
the one with highest first degree, and−d1c plays the role of−d2c. �

Proposition 16. If
{

Kλ, φµλ

}

is a direct system of double complexes

which is bounded above or on the right and if Hp,q
12 (K) = 0 except (at

most) for p= 0, then there exist isomorphismsθ : Hq(K)→ Ho,q
12 (K) for

all q.

If another direct system
{

Klambda, φµλ
}

is bounded above or on the

right with Hp,q
12 (K′) = 0 except for p= 0 and if hλ : K′

λ
→ Kλ are maps

with hµφ′µλ = φµλhλ, then there are induced homomorphisms 128

h∗ : Hq(K′)→ Hq(K) and h∗ : Ho,q
12 (K′)→ Ho,q

12 (K)

commuting with the isomorphismsθ.

Hq(K′) θ //

h∗

��

H0,q
12 (K′)

h∗

��

Hq(K) θ // H0,q
12 (K).
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Proof. Let Lλ be the subcomplex

Lλ :

�� ��
. . . // K−1,q−1

λ

��

// K−1,q
λ

//

��

. . .

. . . // Z0,q−1
1

//

��

Z0,q
1

//

��

. . .

0 0

of Kλ, with Lp,q
λ
= Kp,q

λ
for p < 0;Lp,q

λ
= 0 for p > 0 andLo,q

λ
=

Zo,q
1 (Kλ). SinceLλ is stable underd1 andd2, it is a subcomplex ofKλ.

Let Mλ be the subcomplex

Mλ :

�� ��
. . . // K−1,q−1

λ

��

// K−1,q
λ

//

��

. . .

. . . // B0,q−1
1

//

��

B0,q
1

//

��

. . .

0 0

of Lλ, with Mp,q
λ
= Lp,q

λ
= Kp,q

λ
for p < 0; Mp,q

λ
= Lp,q

λ
= 0 for p > 0129

andMo,q
λ
= Bo,q

λ
(Kλ). SinceMλ is stabled1 andd2, it is a subcomplex

of Lλ. �

Sincehλ : K′
λ
→ Kλ commutes withd1 andd2, we havehλ : L′

λ
→

Lλ andhλ : M′
λ
→ Mλ. Thus there are induced mapshλ : K′

λ
/L′

λ
→

Kλ/Lλ andhλ : L′
λ
/M′

λ
→ Lλ/Mλ which commute withi and j in the



Lecture 20 117

exact sequences

0 // L′
λ

i //

hλ
��

K′
λ

j //

hλ
��

K′
λ
/L′

λ
//

hλ
��

0

0 // Lλ
i // Kλ

j // Kλ/Lλ // 0,

and

0 // M′
λ

i //

hλ
��

L′
λ

j //

hλ
��

L′
λ
/M′

λ
//

hλ
��

0

0 // Mλ
i // Mλ

j // Lλ/Mλ
// 0.

Henceh∗
λ

commutes withd∗, i∗ and j∗ in the exact cohomology se-
quences:

. . . // Hn−1(K′λ/L
′
λ)

d∗ //

h∗
λ

��

Hn(L′λ)
i∗ //

h∗
λ

��

Hn(K′λ)
j∗ //

h∗
λ

��

Hn(K′λ/L
′
λ) //

h∗
λ

��
. . . // Hn−1(Kλ/Lλ)

d∗ // Hn(Lλ)
i∗ // Hn(Kλ)

j∗ // Hn(Kλ/Lλ)

and

. . . // Hn(M′λ)
i∗ //

h∗
λ

��

Hn(L′λ)
j∗ //

h∗
λ

��

Hn(L′λ/M
′
λ)

d∗ //

h∗
λ

��

Hn+1(M′λ) //

h∗
λ

��

. . .

. . . // Hn(Mλ)
i∗ // Hn(Lλ)

j∗ // Hn(Lλ/Mλ)
d∗ // Hn+1(Mλ) // . . .

In the direct limit, we have the following commutative diagram 130
where each row is exact.

(A1) · · · // Hn−1(K′/L′)
d∗ //

h∗

��

Hn(L′)
i∗ //

h∗

��

Hn(K′)
j∗ //

h∗

��

Hn(K′/L′) //

h∗

��

. . .

(A2) · · · // Hn−1(K/L)
d∗ // Hn(L)

i∗ // Hn(K)
j∗ // Hn(K/L) // . . .

and

(B1) · · · // Hn(M′)
i∗ //

h∗

��

Hn(L′)
j∗ //

h∗

��

Hn(L′/M′)
d∗ //

h∗

��

Hn+1(M′) //

h∗

��

. . .

(B2) · · · // Hn(M)
i∗ // Hn(L)

j∗ // Hn(L/M)
d∗ // Hn+1(M) // . . .
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The quotient double complexKλ/Lλ is

Kλ/Lλ : 0

��

0

��
. . . // K0,q−1

λ
/Z0,q−1

1
//

��

K0,q/Z0,q
1

//

��

. . .

. . . // K1,q−1
λ

//

��

K1,q
λ

//

��

. . .

and since the sequence 0→ Ko,q
λ
/Zo,q

1 → K1,q
λ

is exact, we have
H1(Kλ/Lλ):

0

��

0

��
. . . // H1,q−1

1 (Kλ) //

��

H1,q
1 (Kλ) //

��

. . .

. . . // H2,q−1
1 (Kλ) //

��

H2,q
1 (Kλ) //

��

. . .

131

ThusHp,q
12 (Kλ/Lλ) = 0 for p ≦ 0, and is equal toHp,q

12 (Kλ) for p > 0,

henceHp,q
12 (K/L) = direct limit

{

Hp,q
12 (Kλ/Lλ)

}

= 0 for p ≦ 0, and

by hypothesis is also zero forp > 0, hence is zero for all pairs (p, q).
SinceKλ/Lλ is bounded above or to the right, by Proposition 15, we
haveHn(K/L) = 0 for all n. Thus, in the sequence (A2), we see that
i∗ : Hn(L)→ Hn(K) is an isomorphism.
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Again, since the sequenceK−1,q
λ
→ Bo,q

1 → 0 is exact, we have for

H1(Mλ) :

�� ��
. . . // H−1,q−1

1 (Kλ) //

��

H−1,q
1 (Kλ) //

��

. . .

0 0

Thus,Hp,q
12 (Mλ) = 0 for p > 0 and is equal toHp,q

12 (Kλ) for p < 0,

henceHp,q
12 (M) = direct limit

{

Hp,q
12 (Mλ)

}

is equal to zero forp ≥ 0,

and by hypothesis, is also zero forp < 0, hence is zero for all pairs
(p, q). As before, the conditions of Proposition 15 being satisfied, we 132

haveHn(M) = 0 for all n. Thus, in the sequence (B2), we see that
j∗ : Hn(L)→ Hn(L/M) is an isomorphism.

The quotient double complexLλ/Mλ is given by

Lλ/Mλ : 0

��

0

��
. . . // H0,q−1

1 (Kλ) //

��

H0,q
1 (Kλ) //

��

. . .

0 0

Thus (Lλ/Mλ)q
= Ho,q

1 (Kλ) andd = d2 : Ho,q−1
1 (Kλ) → Ho,q

1 (Kλ).
HenceHq(Lλ/Mλ) = Ho,q

12 (Kλ); similarly Hq(L′
λ
/M′

λ
) = Ho,q

1 (K′
λ
). Fur-

thermore, in the limit we haveHq(L/M) = Ho,q
12 (K) andHq(L′/M′) =

Ho,q
1 (K′).

From the sequences (A1), (A2), (B1), (B2), we have the commutative



120 Lecture 20

diagram :

Hq(K′)

h∗

��

Hq(L′)i∗oo j∗ //

h∗

��

Hq(L′/M′)

h∗

��

= H0,q
12 (K′)

h∗

��

Hq(K) Hq(L)i∗oo j∗ // Hq(L/M) = H0,q
12 (K).

Then there is an isomorphism

θ : Hq(K)→ Ho,q
12 (K),

whereθ = j∗(i∗)−1 : Hq(K) → Hq(L) → Hq(L/M) = Ho,q
12 (K), θ

being an isomorphism since we have proved that each ofi∗ and j∗ is an133

isomorphism.
Further, form (I ), we have obviously commutativity in the following

diagram :

Hq(K′) θ //

h∗

��

H0,q
12 (K′)

h∗

��

Hq(K) θ // H0,q
12 (K).

Proposition 16-a. If
{

Kλ, φµλ

}

is a direct system of double complexes

which is bounded below or on the left and if Hp,q
21 (K) = 0 except for

q = 0, then there exist isomorphismsθ : Hp(K)→ Hp,o
21 (K) for all p.

If another direct system
{

K′
λ
, φ′

µλ

}

is bounded below or on the left

with Hp,q
21 (K′) = 0 except for q= 0, and if hλ : K′

λ
→ Kλ are maps with

hµφµλ = φµλhλ, then there are induced homomorphisms

h∗ : Hp(K′)→ Hp(K) and h∗ : Hp,o
21 (K′)→ Hp,o

21 (K)

which commute withθ.

Remark . In particular, all the propositions proved in this lecture are

true for a double complexK =
{

Kp,q
}

satisfying the conditions stated

in the propositions. We have only to replace theφµλ by the identity map
K → K.
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Example 29.Let 134

Kp,q
= Z (ring of integers) ifq ≧ 0 andp = −q or − q− 1,

= 0 otherwise.

Forq ≧ 0, letd1 : K−q−1,q→ K−q,q and

d2 : K−q−1,q→ K−q−1,q+1

be the identity isomorphisms ofZ onto itself. The other homomor-

phisms are all the trivial homomorphisms. ThenK =
{

Kp,q
}

is a double

complex with

Hp,q
21 (K) = Hp,q

2 (K) = Z if ( p, q) = (0, 0),

= 0 otherwise ;

Hp,q
12 (K) = Hp,q

1 (K) = 0 for all (p, q),

and

Hn(K) = Z if n = 0,

= o otherwise.

This double complex is bounded below and on the left, but is un-
bounded above and on the right.
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Introduction of the family Φ
135

LetΦ be a family of paracompact normal closed subsets of a topological
spaceX such that

(1) if F ∈ Φ, then every closed subset ofF is inΦ,

(2) if F1, F2 ∈ Φ, thenF1 ∪ F2 ∈ Φ,

(3) if F ∈ Φ, there is an openU with F ⊂ U andŪ ∈ Φ.

For example, ifX is paracompact and normal,Φ can be taken to
the family of all closed subsets ofX, and, if X is locally compact and
Hausdorff, thenΦ can be taken to be the family of all compact sets ofX.

Sections with supports in the familyΦ. If S is a sheaf ofA− mod-

ules, the set of all sectionsf ∈ Γ(X,S ) such that suppf =
{

x : f (x) ,

0x

}

is in Φ, forms anA− module (if suppf1 ∈ Φ and suppf2 ∈ Φ then

supp (f1 ± f2) ⊂ (supp f1 ∪ supp f2) is in Φ), a submodule ofΓ(X,S ),
which we denote byΓΦ(X,S ).

Any homomorphismh : S 1 → S of two sheaves ofA− modules
induces a homomorphism

h : ΓΦ̄(X,S ′)→ ΓΦ̄(X,S ),

since a homomorphism of sheaves decreases supports (i.e., supph f ⊂
supp f ).

123
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Definition . A Φ- covering ofX is a locally finite proper coveringU 136

such that, if X< Φ, there is aspecialopen set U∗ ∈ U with
⋃

U∈U −(U∗)
Ū ∈

Φ.

Remark. If X < Φ, U∗ is unique, and is not the empty set, for otherwise,
in each case,X would belong toΦ. If X ∈ Φ, aΦ- covering is just a
locally finite proper covering ofX.

TheΦ- coverings of X form a subdirected setΩ∗ of the directed set
of all locally finite proper coverings of the space X.

Proof. (i) If X ∈ Φ,Ω∗ is the directed set of all locally finite proper
coverings ofX.

(ii) If X < Φ andU , W are any twoΦ- coverings ofX, let W =

{

W :

W = U∩V
}

for someU ∈ U and someV ∈ W with W∗ = U∗∩V∗.

ThenW is a locally finite proper covering ofX and
⋃

W∈W −(W∗)

W̄ = (
⋃

U∈U −(U∗)

Ū) ∪ (
⋃

V∈W −(V∗)

V̄)

is in Φ, since each set contained in brackets is inΦ. ThusW is a
Φ-covering which is a common refinement ofU andW .

�

Remark. If U andW are twoΦ coverings with special setsU∗ andV∗
thenU∗ ∩ V∗ is not empty, and ifW is refinement ofU , thenV∗ ⊂ U∗
and V∗ is not contained in any otherU ∈ U . In particular, ifW is
equivalent toU , thenV∗ = U∗.

Cohomology groups with supports in the familyΦ. If U is aΦ-137

covering and
∑

a presheaf ofA- modules, we define

Cp
Φ

(

U ,
∑

)

= Cp
(

U ,
∑

)

for p > 0,

and Cp
Φ

(

U ,
∑

)

⊂ Co
(

U ,
∑

)

for p = 0,
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whereCp
Φ

(U ,
∑

) is the submodule ofCo (U ,
∑

) consisting of those zero
cochains which assign toU∗ the zero ofSU∗ . Then we have a mapping

δp : Cp−1
Φ

(

U ,
∑

)

→ Cp
Φ

(

U ,
∑

)

.

Let 138

Hp
Φ

(

U ,
∑

)

= kerδp+1/ im δp.

ThenHp
Φ

(U ,
∑

) is called thep− th cohomology module of the cov-
ering U with coefficients in the presheaf

∑

and supports in the family
Φ.

If a Φ- coveringW is a refinement ofU , for each choice of the
functionτ : W → U , τ(V∗) = U∗. We then have the mapping (Lecture
9)

τ+ : Cp
Φ

(

U ,
∑

)

→ Cp
Φ

(

W ,
∑

)

(p ≧ 0).

τ+ induces the homomorphism

τW U : Hp
Φ

(

U ,
∑

)

→ Cp
Φ

(

W ,
∑

)

with τU U = identity, andτW W τW U = τW U if U < W < W . Thus
{Hp
Φ

(U ,
∑

) , τW U } is a direct system ofA-modules.
Let
Hp
Φ

(X,
∑

) = direct limit
{

Hp
Φ

(U ,
∑

) , τW U

}

U ,W ∈Ω∗
. Hp
Φ

(X,
∑

) is

called thep-th cohomology module of the space X with coefficients in
the presheaf

∑

and supports in the familyΦ.
The result analogous to Proposition 7 (Lecture 11) is true inthis

case.

Proposition 7-a If S is a sheaf of A-modules, Ho
Φ

(X,S ) = ΓΦ(X,S ).

Proof. We can identifyHo
Φ

(U ,S ) = Zo
Φ

(U ,S )(see Lecture 11) with
the submodule ofΓΦ(X,S ) consisting of the sectionsf with suppf ⊂
X − U∗

⋃

U∈S−(U∗)
Ū ∈ Φ; then suppf ∈ Φ. If W is a refinement ofU ,

sinceV∗ ⊂ U∗, we haveX − U∗ ⊂ X − V∗, hence

τW U : Ho
Φ

(U ,S )→ Ho
Φ

(W ,S )
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is the inclusion homomorphism. ThusHo
Φ

(X,S ) can be identified with
a submodule ofΓΦ(X,S ) i.e.,Ho

Φ
(X,S ) ⊂ ΓΦ(X,S ).

If f ∈ ΓΦ(X,S ), let U∗ = X − suppf , and letU be an open set
containing suppf with Ū ∈ Φ. ClearlyU =

{

U,U∗
}

is aΦ-covering
(with special setU∗) and the cochaing defined by

g(U) = f |U; g(U∗) = 0

is the cocycle inZo
Φ

(U ,S ) = Ho
Φ

(U ,S ) which is identified withf ∈
ΓΦ(X,S ). ThusΓΦ(X,S ) ⊂ Ho

Φ
(X,S ), henceHo

Φ
(X,S ) = ΓΦ(X,S ).

�

Given a sequence of homomorphisms of presheaves139

· · · →

q−1
∑ dq

−−→

q
∑ dq+1

−−−→

q+1
∑

→ · · ·

with im dq ⊂ kerdq+1(i.e., d2
= 0) for eachΦ-coveringU the system

{kp,q
U
= Cp

Φ

(

U ,
∑q) with the homomorphisms

δ : Cp
Φ

(U ,

q
∑

)→ Cp
Φ















U ,

q
∑















and d :Cp
Φ

















U ,

q−1
∑

















→ Cp
Φ















U ,

q
∑















forms a double complex denoted by KU = CΦ
(

U ,
∑q).

Proof. Any homomorphism
∑′ d
−→

∑

of two presheaves induces a ho-

momorphism ofCp
Φ

(

U ,
∑′) d
−→ Cp

Φ
(U ,

∑

) commuting with the cobou-
ndary operatorδ. We haveδ2

= 0, and by hypothesisd2
= 0. Fur-

ther dδ = δd; so we have the commutative case of a double complex,
q.e.d. �

For each pairU , W of Φ- coverings for whichW is a refinement of
U chooseτ : W → U with V ⊂ τ(V); if W = U , let τ : U → U be
the identity and let

φW U = τ
+ : Cp

Φ
(U ,

q
∑

)→ Cp
Φ















W ,

q
∑















.
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CΦ(
∑

) =
{

CΦ
(

U ,
∑

)

, φW U

}

U ,W ∈Ω∗

is a direct system of double complexes.
(If U < W , φW U = τ+, for an arbitrary butfixed choice ofτ :

W → U if W , U , andτ : U → U is the identity.) 140

Proof. Since δ and d commute withφW U , φW U : CΦ(W ,
∑

) →
CΦ(U ,

∑

) is a map of double complexes, and by constructionφU U

is the identity. �

If W is aΦ- refinement ofW , φW U φW U corresponds to a possible
choice ofτ : S → U . Since for all possible choices ofτ, τ(W∗) = U∗,
the homotopy operatork (see Lecture 9)

k : Cp















U ,

q
∑















→ Cp−1















W ,

q
∑















mapsC1
Φ

(

U ,
∑q)
= C1 (

U ,
∑q) into Co

Φ

(

W ,
∑q). Thus we have two

homomorphismsk : Cp
Φ

(

U ,
∑q) → Cp−1

Φ

(

W ,
∑q) and the trivial ho-

momorphismCp
Φ

(

U ,
∑q)→ Cp

Φ

(

W ,
∑q−1

)

such that

δk+ kδ = φW W φW U − φW U ,

and further,d commutes withk. HenceφW U φW U is homotopic to

φW U , hence
{

CΦ(U ,
∑

), φW U

}

is a direct system.
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Proposition 8-a. If
∑

is a presheaf which determines the zero sheaf,141

then Hp
Φ

(X,
∑

) = 0 for all p ≧ 0.

Proof. Let f ∈ Cp
Φ

(U ,
∑

). Then
⋃

U∈U −(U∗)
Ū ∈ Φ, and hence has

neighbourhoodsG, H with Ḡ ⊂ H; Ḡ, H̄ ∈ Φ. Shrink the covering

U ′
=

{

U − (U∗),U∗ ∩ H̄
}

of H̄ to a coveringW ′
=

{

WU
}

U∈U ′ with

W̄U ⊂ U. For eachx ∈ H choose a neighbourhoodVx of x such that

a) if x ∈ U, Vx ⊂ U ∩ H,

b) if x ∈WU , Vx ⊂WU ∩ H,

c) if x < W̄U ,Vx ∩WU = φ,

d) if x ∈ Uo ∩ . . . ∩ Up = Uσ, ρVxUσ
f (σ) = 0,

and letV∗ = X −
⋃

U∈U −(U∗)
Ū. �

Then
{

V∗,Vx

}

x∈H
is a refinement ofU . Chooseτ : H ∪ (∗) → U

such thatx ∈Wτ(x) andτ(∗) = U∗. Then it can be verified thatτ+ f = 0.

The covering
{

Vx∩Ḡ
}

x∈H
of Ḡ has a locally finite refinement{Yi}i∈I .

Let U1 be the proper covering consisting ofV∗ together with allV such
that V = Yi ∩ G for somei ∈ I . ThenW1 is aΦ- covering which is a

refinement of
{

V∗,Vx

}

x∈H
. Hence there is a functionτ1 : W1→ U with

V ⊂ τ1(V) and such thatτ+1 f = 0. ThereforeHp
Φ

(X,
∑

) = 0, q.e.d.

129
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Let142

· · · → S q−1 dq

−−→ S q dq+1

−−−→ S q+1 → · · ·

be a sequence of homomorphisms of sheaves ofA-modules with imdq ⊂

kerdq+1. LetBq
= im dq, zq = kerdq+1 andH q

= zq/Bq.
There is an induced sequence of homomorphisms of presheaves

· · · → S̄ q−1 dq

−−→ S̄ q dq+1

−−−→ S̄ q+1 → · · ·

with im dq
= B̄

q
o ⊂ B̄

q and kerdq+1
= z̄q. Also there is an induced

sequence of homomorphisms

· · ·Cp
Φ

(

U ,S q−1
) dq

−−→ Cp
Φ

(

U ,S q) dd+1

−−−→ Cp
Φ

(

U ,S q+1
)

→ · · ·

whereCp
Φ

(U ,S q) = Cp
Φ

(

U , S̄ q
)

, with im dq
= Cp

Φ

(

U , B̄q
)

and

kerdq+1
= Cp

Φ
(U , zq). Then Hp,q

2 CΦ (U ,S ) = Cp
Φ

(U , zq) /Cp
Φ

(

U , B̄
q
o

)

.
Let ψ : zq → H q be the natural homomorphism. There is an in-

duced homomorphismψ : z̄q→H q with ψ(B̄q
o) = 0.

Hence there is an induced homomorphism

ψ : Cp
Φ

(U , zq)→ Cp
Φ

(U ,H q),

which commutes withδ andφW U such thatψ(Cp
Φ

(U , B̄q)) = 0.
Hence there are induced homomorphisms :

ψ : Hp,q
2 CΦ(U ,S )→ Cp

Φ
(U ,H q),

ψ∗ : Hp,q
21 CΦ(U ,S )→ Hp

Φ
(U ,H q),

ψ∗ : Hp,q
21 CΦ(S )→ Hp

Φ
(X,H q).

The homomorphismψ∗ : Hp,q
21 CΦ(S ) → Cp

Φ
(X,H q) is an isomor-143

phism.

Proof. The exact sequence

0→ β̄
q
o→ z̄

q→ z̄q/B̄
q
o→ 0
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gives rise to an exact sequence

0→ Cp
Φ

(U , B̄
q
o)→ Cp

Φ
(U , zq)→ Cp

Φ
(U , z̄q/B̄

q
o)→ 0.

Hence the induced homomorphism

Hp,q
21 CΦ(U ,S ) = Cp

Φ
(U , zq)/Cp

Φ
(U , B̄

q
o)→ CpΦ(U , z̄q/B̄

q
o)

is an isomorphism. Therefore

Hp,q
21 CΦ(U ,S )→ Hp

Φ
(U , z̄q/B̄

q
o)

and hence the homomorphisms

(1) Hp,q
21 CΦ(S )→ Hp

Φ
(X, z̄q/B̄q

o) · · ·

are isomorphisms. �

The exact sequence

0→ B̄q
o→ B̄

q→ B̄q/B̄
q
o→ 0

gives rise to an exact sequence

0→ Cp
Φ

(U , B̄
q
o)

i
→ Cp

Φ
(U , B̄q)

j
→ Cp

Φ
(U , B̄q/B̄

q
o)→ 0

andi, j commute withδ. Hence there is an exact cohomology sequence144

· · · → Hp−1
Φ

(U , B̄q/B̄
q
o)

δ∗

−→ Hp
Φ

(U , B̄
q
o)

i∗
−→

Hp
Φ

(U ,Bq)
i∗
−→ Hp

Φ
(U , B̄q/B̄

q
o)→ .

Sincei, j andδ commute withφW U , there is an exact cohomology
sequence of the direct limits

· · · → Hp−1
Φ

(X, B̄q/B̄
q
o)→ Hp−1

Φ
(X, B̄q

o)→

Hp
Φ

(X, B̄q)→ Hp
Φ

(X, B̄q/B̄
q
o)→ · · ·



132 Lecture 22

The presheafB̄q/B̄
q
o determines the 0-sheaf and henceHp

Φ
(X,

B̄
q/B̄

q
o) = o for all p. Hence, by exactness,

i∗ : Hp
Φ

(X, B̄q
o)→ Hp

Φ
(X, B̄q

o)

is an isomorphism.
From the exact sequences of homomorphisms

0 // B̄
q
0

//

��

z̄q //

��

z̄q/B̄
q
0

//

��

0

0 //
B̄

q // z̄q // z̄q/B̄q // 0,

one obtains exact sequences of homomorphisms

Hp
Φ

(X, B̄q
0) //

��

Hp
Φ

(X, zq) //

��

Hp
Φ

(X, z̄q/B̄q
0) //

���
�
�

Hp+1
Φ

(X, B̄q
0) //

��

Hp+1
φ

(X, zq)

��
Hp
Φ

(X, B̄q) // Hp
Φ

(X, zq) // Hp
Φ

(X, z̄q/B̄q) // Hp+1
Φ

(X, B̄q) // Hp+1
Φ

(X, zq)

where four of the vertical homomorphisms are isomorphisms.Hence,
by the “five” lemma (see Eilenberg-Steenrod, Foundations ofAlgebraic
Topology, p. 16), the homomorphism

(2) Hp
Φ

(X, zB̄q
o)→ Hp

Φ
(X, zqB̄q) · · · · · ·

is an isomorphism.145

Next, the exact sequence

0→ Bq→ zq→H q→ 0

gives rise to an exact sequence

0→ B̄q→ z̄q→ H̄ q.

Let H̄ q
o be the image of̄zq in H̄ q. Then there is an exact sequence

0→ z̄q/B̄q→ H̄ q→ H̄ q/H̄ q
o → 0
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and the presheafH̄ q/H̄ q
o determines the 0-sheaf. HenceHp

Φ
(X,

H̄ q/H̄ q
o ) = 0, and in the exact cohomology sequence, the homomor-

phism

(3) Hp
Φ

(X, H̄ q/B̄q)→ Hp
Φ

(X, H̄ q) · · · · · ·

is an isomorphism.
Thenψ∗ is the composite isomorphism

Hp,q
21 CΦ(S )→ Hp

Φ
(X, z̄q/B̄q

o)→ Hp
Φ

(X, z̄q/B̄q)→ Hp
Φ

(X, H̄ q).

Definition. We say that the degrees of{S q} are bounded below if there
is an integer m such thatS q

= 0 for q < m.
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Definition. TheΦ- dimension of a space X,Φ − dim X, is sup
F∈Φ

dim F. 146

Φ − dim X ≦ n if and only if everyΦ- covering has aΦ- refinement
of order≦ n.

Proof. Necessity. Let Φ − dim X ≦ n and letU be aΦ-covering of
X. Let G be a neighbourhood of

⋃

U∈U −(U∗)
Ū with Ḡ ∈ Φ. ThenU ′

=

{

(U − (U∗))∩Ḡ,U∗∩Ḡ
}

forms a locally finite covering of̄G. SinceḠ is
normal and dimḠ ≤ n, the coveringU ′ (see Lecture 11) has a (locally
finite) proper refinementW ′ of order≤ n. Let V∗ be the union ofX − Ḡ
and those elementsW ′ which are contained inU∗ ∩ Ḡ together withV∗
form aΦ- coveringW of order≤ n which is aΦ- refinement ofU . �

Sufficiency. Let F ∈ Φ and letU be a finite proper covering ofF. Let
G be an open set withF ⊂ G andḠ ∈ Φ. Extend eachU ∈ U to an open
setV of G with V∩ F = U. These sets together withV∗ = X− F form a
Φ- coveringW of X. ThenW has aΦ− refinementW of order≦ n and
{W ∩ F}W∈W is a refinement ofU of order≦ n. Thus dimF ≦ n, and
henceΦ − dim X ≦ n.

Note.The paracompactness of the sets ofΦ was not used in this proof.

Example . In ExampleM (see C. H. Dowker, Quart. Jour. Math 6147

(1955), p. 115) letΦ be the family of all paracompactsets ofM (the
space is also denoted byM). ThenΦ − dim M = 0 and dimM = 1.

Remark. It is always true thatΦ − dim X ≤ dim x.

135



136 Lecture 23

Proposition 17. Let

· · · → S q−1 dq

−−→ S q dq+1

−−−→ S q+1 → · · ·

be a sequence of homomorphisms of sheaves of A−modules withim dq
=

kerdq+1 for q , 0 and im d0 ⊂ kerd1 and letG = kerd1/ im d0. If
Φ − dim X is finite or if the degrees of{S q} are bounded below there is
an isomorphismη : HpCΦ(S )→ Hp

Φ
(X,G ).

If

· · · → S
′q−1 dq

−−→ S
′q dq+1

−−−→ S
′q+1→ · · ·

is another such sequence (withG ′ isomorphic toG and identified with
G ) and if h : S ′q → S q are homomorphisms commuting with dq such
that the induced homomorphism h: G ′ → G is the identity, then there
are induced homomorphisms h∗ : HPCΦ(S ′) → HPCΦ(S ) with com-
mutativity in

HpCΦ(S ′)
η //

h∗

��

Hp
Φ

(X,G )

h∗= identity
��

HpCφ(S )
η // Hp

φ
(X,G ).

Proof. If the degrees of{S q} are bounded below, thenCp
Φ

(U ,S q) = 0

for q < n for somen, and so the system
{

CΦ(U ,S ),ΦW U

}

U ,W ∈Ω∗
is

bounded on the left. IfΦ−dim X ≤ m, then there is a cofinal directed set148

Ω
′
∗, consisting ofΦ−coverings of order≦ m. If U ∈ Ω′∗, CP

Φ
(U ,S q) =

0 for p > m; thus the system
{

CΦ(U ,S ),ΦW U

}

U ,W ∈Ω′∗

is bounded

below. �

If q , 0, we haveH q
= 0, and by a result in Lecture 22, we have

Hp,q
21 CΦ(S ) ≈ Hp

Φ
(χ,H ) = 0, henceHp,q

21 CΦ(S ) = 0. Therefore by
Proposition 16-a, there is an isomorphism

θ : HpCΦ(S )→ Hp,o
21 CΦ(S ).
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Also for q = 0, there is an isomorphism (see Lecture 22)

ψ∗ : Hp,o
21 CΦ(S )→ Hp

Φ
(x,G ).

Let η be the composite isomorphism

η = ψ∗θ : HPCΨ(S )→ HP
Ψ

(X,G ).

Next, the homomorphismsh : S ′q → S q induce homomorphisms
h : CP

Φ
(U ,S ′q) → CP

Φ
(U ,S q) which commute withd, δ andφW U ,

and hence give rise to mapsh : CΦ(U ,S ′) → CΦ(U ,S ) which
commute withφW U . Therefore, there are induced homomorphismsh∗

which commute withθ,

HpCΦ(S ′) θ //

h∗

��

Hp,0
21 CΦ(S ′)

h∗

��

HpCΦ(S ) θ // Hp,0
21 CΦ(S ).

Sinceh commutes withdq, h mapsz′q into zq andB′q intoBq, hence 149

induces a homomorphismh : H ′q → H q, and there is commutativity
in

Cp
Φ

(U , z′q)
ψ //

h
��

Cp
Φ

(U ,H ′q)

h
��

Cp
Φ

(U , zq)
ψ // Cp

Φ
(U ,H q),

whereψ is the homomorphism induced by the natural homomorphisms
z′q→H ′q andzq→H q. Therefore there is commutativity in

Hp,q
21 CΦ(S ′)

ψ∗ //

h∗

��

Hp
Φ

(X,H ′q)

h∗

��
Hp,q

21 CΦ(S )
ψ∗ // Hp

Φ
(X,H q).
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Therefore, takingq = 0, we see thath∗ commutes withη = ψ∗θ.

HpCΦ(S ′) θ //

h∗

��

Hp,0
21 CΦ(S ′)

ψ∗ //

��

Hp
Φ

(X,G )

h∗= identity
��

HpCΦ(S ) θ // Hp,0
21 CΦ(S )

ψ∗ // Hp
Φ

(X,G ).
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EveryΦ covering is shrinkableas is shown by the following result. 150

Let {Ui}i∈I be a locally finite covering of space X with some i∗ ∈ I
such thatŪi is normal for i∈ I − (i∗). Then there is a refinement{Vi}i∈I
with V̄i ⊂ Ui .

Proof. The union of the locally finite system{Ūi}i∈I−(i∗) of normal closed
sets is normal and closed andX − Ui∗ ⊂

⋃

i,i∗
Ui ⊂

⋃

i,i∗
Ūi with X − Ui∗

closed and
⋃

i,i∗
Ui open. Hence there are open setsG, H with X−Ui∗ ⊂ G,

Ḡ ⊂ H, H̄ ⊂
⋃

i,i∗
Ui . Let Vi∗ = X − Ḡ, thenV̄i∗ ⊂ X −G ⊂ Ui∗ . �

Since{H̄ ∩ Ui}i∈I−(i∗) is a covering ofH̄ and the closed subset̄H of
⋃

i,i∗
Ūi is normal, there is a covering{Pi}i∈I−(i∗) of H̄ with P̄i ⊂ H̄ ∩ Ui.

Let Vi = H ∩Pi for i ∈ I − (i∗). ThenVi is open,V̄i ⊂ Ui and
⋃

i,i∗
Vi = H.

Then{Vi}i∈I is a covering ofX andV̄i ⊂ Ui for all i ∈ I q.e.d.
If S is a fine sheaf and if C⊂ U ⊂ X with C closed, U open and̄U

normal, then the restriction ofS to C is fine.

Proof. This result is proved in the same way as in the case (see Lecture
15) thatX is normal except that the open setH is to be replaced by its
intersection withU if necessary, so thatH ⊂ U. �

Proposition 11-aIf {Ui}i∈I is a locally finite covering of a space X with151

some i∗ ∈ I such thatŪi is normal for i ∈ I − (i∗), and if S is a sheaf
whose restriction to each closed subset C of each Ui, i ∈ I − (i∗) is fine

139
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(in particular this is true ifS is fine), then there is a system{l i}i∈I of
homomorphisms li : S → S such that

(i) for each i∈ I there is a closed set Ei ⊂ Ui such that1i(Sx) = 0x if
x < Ei,

(ii)
∑

i∈I
l i = 1.

Proof. Shrink to a covering{Wi}i∈I with W̄i ⊂ Vi, V̄i ⊂ Gi , Ḡi ⊂ Ui ,
whereWi, Vi andGi, are open. Using the fineness of the restriction of
S to Ḡi. one constructs homomorphismshi : S → S i , i∗, (actually
the homomorphisms arehi : SḠi

→ SḠi
, and we extend these by zero

outsideḠi; SḠi
denotes the restriction ofS to Ḡi) with

hi(s) = s if π(s) ∈ W̄i ,

= 0π(s) if π(s) ∈ X − V̄i .

Let the setI − (i∗) be well-ordered and define

l i =
(
∏

j<i

(1− h j)
)

hi (i , i∗),

l i∗ =
∏

{ j ∈ I−(i∗)}

(1− h j).

(In a neighbourhood of each point ofX, l i , i ∈ I , is only a finite152

product.) Thenl i : S → S is a homomorphism. LetEi = V̄i for
i , i∗; then ifπ(s) ∈ X − V̄i, we havel i(s) = 0π(s) sincehi(s) = 0π(s). Let
Ei∗ = X −

⋃

i∈I−(i∗)
Wi; thenEi∗ ⊂ Wi∗ ⊂ Ui∗ . If π(s) ∈ X − Ei∗ , then, for

somei ∈ I − (i∗), π(s) ∈Wi and hencehi(s) = s; so l i∗(s) = 0π(s). �

If π(s) = x, choose a neighbourhoodNx of x meeting at most a finite
number of the setsUi, i ∈ I−(i∗), say, fori = i1, . . . , iq with i1 < · · · < iq.
Then

∑

i∈I

l i(s) = hi1(s) + (1− hi1)hi2(s)

+ (1− hi1) . . . (1− hiq−1)hi1(s)
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+ (1− hi1) . . . (1− hiq) (s)

= s,

and this completes the proof.
Let

· · · → S q−1 dq
−−→ S q dq+1

−−−→ S q+1→ · · ·

be a sequence of homomorphisms of sheaves withdq+1dq
= 0. Such a

sequence of sheaves is called acomplexof sheaves.

Definition. A complex of sheaves{S q} is calledhomotopically fine, if,
for each locally finite covering{Ui}i∈I with some i∗ ∈ I such thatŪi is
normal for i ∈ I − (i∗), there exist homomorphisms hq−1 : S q → S q−1 153

and a family{lqi }i∈I of endomorphisms ofS q such that

(i) for each i∈ I there is a closed set Eqi ⊂ Ui such that lqi (Sq
x) = 0x if

x < Eq
i ,

(ii)
∑

i∈I
lqi = 1+ dqhq−1

+ hqdq+1.

If eachS q is fine, then the sequence{S q} is homotopically fine.

Proof. Takinghq
= 0, this result follows immediately from Proposition

11-a. �

If the sequence{S q} is homotopically fine, andU is a locally fi-
nite covering satisfying the conditions of the previous definition, then
Hp,q

12 CΦ(U ,S ) = 0 for all p > 0. (This result is trivially true for p< 0)

Proof. As in the proof of Proposition 12, there are induced homomor-
phismslqi (U) : Γ(U,S q) → Γ(U,S q) induced bylqi , and homomor-
phisms

kp−1 : Cp
Φ

(U ,S q)→ Cp−1
Φ

(U ,S q) (p > 0)

such that

δpkp−1 f (σ) + kpδp+1 f (σ) =
∑

i∈I

lqi (Uσ) f (σ)

= f (σ) + dqhq−1 f (σ) + hqdq+1 f (σ)
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Thusδk f + kδ f = f + dh f + hd f. and hence 154

δk+ kδ = 1+ dh+ hd : Cp
Φ

(U ,S q)→ Cp
Φ

(U ,S q).

Sinced andh commute withδ, there are induced homomorphisms

dq : Hp
Φ

(U ,S q−1)→ Hp
Φ

(U ,S q),

h+
q

: Hp
Φ

(U ,S q+1)→ Hp
Φ

(U ,S q).

Now, Hp,q
1 CΦ(U ,S ) = Hp

Φ
(U ,S q) and, from the homotopyk we

have

dh+ + h+d = 0− 1 : Hp,q
1 CΦ(U ,S )→ Hp,q

1 CΦ(U ,S )

is homotopic to zero and henceHp,q
12 CΦ(U ,S ) = 0. �
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Proposition 18. If the complex of sheaves{S q} is homotopically fine, 155

there is an isomorphismρ : HqCΦ(S )→ Hq
ΓΦ(X,S ).

If the complex of sheaves{S ′q} is also homotopically fine, and h:
S ′q→ S q are homomorphisms commuting with dq, then h∗ commutes
with ρ.

HqCΦ(S ′)
ρ //

h∗

��

Hq
ΓΦ(X,S ′)

d∗

��
HqCΦ(S )

ρ // Hq
ΓΦ(X,S ).

Proof. The systemCΦ(U ,S ) = {(Cp
Φ

(U ,S q))} of double complexes
is bounded above byp = 0. Since (see Lecture 24)Hp,q

12 CΦ(S ) = 0 for
p > 0, andHp,q

12 CΦ(S ) = 0 trivially for p < 0, by Proposition 16, there
is an isomorphism

θ : HqCΦ(S )→ Ho,q
12 CΦ(S ).

Sinceh : Cp
Φ

(U ,S ′q) → Cp
Φ

(U ,S q) commutes withd, δ and
φW U , h : CΦ(U ,S ′) → CΦ(U ,S ) is a map of double complexes
which commutes withφW U . Thereforeh∗ commutes withθ. �

SinceΓΦ(X,S q) = Ho
Φ

(X,S q) = dir lim Ho
Φ

(U ,S q) and the ho-
momorphismτU : Ho

Φ
(U ,S q) → ΓΦ(X,S q) commutes withdq, there

are induced homomorphisms

τ∗U : Hq Ho
Φ

(U ,S )→ Hq(ΓΦ(X,S ),

τ∗ : dir lim Hq Ho
Φ

(U ,S )→ Hq
ΓΦ(X,S ).

143
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156

Since the operation of forming cohomology groups commutes with
the operation of forming direct limits, (see Cartan - Eilenberg, Homo-
logical Algebra, Proposition 9.3∗, p. 100),τ∗ is an isomorphism, and
sinceh commutes withτU , h∗ commutes withτ∗.

Now,

Ho,q
1 CΦ(U ,S ) = Ho

Φ
(U ,S q),

Ho,q
12 CΦ(U ,S ) = HqHo

Φ
(U ,S ),

Ho,q
12 CΦ(S ) = dir lim Hq Ho

Φ
(U ,S ).

Thus we have an isomorphism

τ∗ : Ho,q
12 CΦ(S )→ Hq

ΓΦ(X,S )

which commutes withh∗. Let ρ = τ∗θ be the composite isomorphism
thenρ commutes withh∗.

HqCΦ(S ′) θ //

h∗

��

Ho,q
12 CΦ(S ′) τ∗ //

h∗

��

Hq
ΓΦ(X,S ′)

h∗

��
HqCΦ(S ) θ // H0,q

12 CΦ(S )
τ∗ // Hq

ΓΦ(X,S ).

Theorem 3(Uniqueness Theorem). Let

· · · → S q−1 dq

−−→ S q dq+1

−−−→ S q+1 → · · ·

be a homotopically fine complex of sheaves of A−modules withim dq
=157

kerdq+1 for q , 0 and im do ⊂ kerd1 and letH o
= kerd1/ im do. Let

{S ′q} be another such complex withH ′o isomorphic toH o.
If Φ − dim X is finite or the degrees of{S ′q} and{S q} are bounded

below, then any isomorphismλ : H ′o→H o induces an isomorphism

φλ : Hq
ΓΦ(X,S ′)→ Hq

ΓΦ(X,S )

and if {S ′′q} is another such complex andµ : H o → H ′′o is an
isomorphism, then

φµλ = φµφλ : Hq
ΓΦ(X,S ′)→ Hq

ΓΦ(X,S ′′).
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If h : S ′q → S q are homomorphisms (for each q) commuting with
dq, and if the induced homomorphism h: H ′o → H o is an isomor-
phism, then the homomorphism h∗ : Hq

ΓΦ(X,S ′)→ Hq
ΓΦ(X,S is the

isomorphismφh.

Proof. Since the hypotheses of Propositions 17 and 18 are satisfied,
there are isomorphisms

η : HqCΦ(S )→ Hq
Φ

(X,H o),

ρ : HqCΦ(S )→ Hq
ΓΦ(X,S ).

Sinceλ : H ′o→H o is an isomorphism, so is

λ∗ : Hq
Φ

(X,H ′o)→ Hq
Φ

(X,H o).

Let φλ be the isomorphismρη−1λ∗ηρ−1. Since (µλ)∗ = µ∗λ∗, φµλ = 158

φµφλ.

Hq
ΓΦ(X,S ′)

φλ

��

HqCΦ(S ′)
η //ρoo Hq

Φ
(X,H ′0)

λ∗

��
Hq
ΓΦ(X,S )

φµ

��

HqCΦ(S )
η //ρoo Hq

Φ
(X,H 0)

µ∗

��
Hq
ΓΦ(X,S ′′) HqCΦ(S ′′)

η //ρoo Hq
Φ

(X,H ′′0).

If h : S ′q → S q are homomorphisms commuting withdq and
inducing an isomorphismh : H ′o → H o, then it follows from the
commutative diagram:

Hq
ΓΦ(X,S ′)

φh h∗

��

HqCΦ(S ′) //

h∗

��

oo Hq
Φ

(X,H ′0)

h∗

��
Hq
ΓΦ(X,S ) HqCΦ(S ) //oo Hq

Φ
(X,H 0),

thatφh = h∗ : Hq
ΓΦ(X,S ′)→ Hq

ΓΦ(X,S ). �
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Singular chains
159

Definition. Let Tp be the set of all singular p- simplexes in X. Asingular
p-chain with integer coefficients is a function c: Tp → Z such that
ct = c(t) is zero for all but a finite number of t∈ Tp. It is usually written
as a formal sum

∑

t∈T
ct · t. Thesupportof c is the union of the supports

t(sp) of those simplexes t for which ct , 0. The boundary of the p - chain
c is the(p− 1)-chain

∂p−1c =
∑

t∈Tp

ct

p
∑

j=o

(−1) j∂ j t.

The singularp-chains ofX form a free abelian groupCp(X,Z) and
∂p−1 : Cp(X,Z) → Cp−1(X,Z) is a homomorphism with∂p−1∂p = 0;
∂p−1 decreases support, i.e., supp∂p−1c ⊂ suppc .

If W = {Vi}i∈I is a covering ofX, let Cp(X,Z,W ) be the subgroup
of Cp(X,Z) consisting of chainsc such thatct = 0 unless suppt ⊂ Vi

for somei ∈ I . Let j : Cp(X,Z,W ) → Cp(X,Z) be the inclusion ho-
momorphism. Since∂p−1 decreases supports, there is an induced homo-
morphism∂p−1 : Cp(X,Z,W ) → Cp−1(X,Z,W ) which commutes with
j.

It is known (Cartan Seminar, 1948-49, Exposé 8,§3) that there is a
subdivisionconsisting of homomorphismsr : Cp(X,Z) → Cp(X,Z,W )
such that

(i) rc = c if c ∈ Cp(X,Z,W ), 160

147
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(ii) supprc = suppc.

Further, there is ahomotopy hp+1 : Cp(X,Z) → Cp+1(X,Z) such
that

(iii) ∂php+1c+ hp∂p−1c = jrc − c,

(iv) hp+1 jc = 0,

(v) supphp+1c ⊂ suppc.

Let I be well-ordered, letj i(t) = t if suppt ⊂ Vi but suppt 1 Vk for
all k < i and let j i(t) = 0 otherwise. This defines a homomorphism

j i : Cp(X,Z,W )→ Cp(X,Z),

with j =
∑

i∈I
j i and suppuic ⊂ Vi ∩ suppc.

Let l i = j ir : Cp(X,Z) → Cp(X,Z). Then suppl ic ⊂ Vi ∩ suppc.
Let 1=

∑

i∈I
l i =

∑

j ir = jr . Sincer j = 1 : Cp(X,Z,W ) → Cp(X,Z,W ),

l2 = j(r j )r = jr = l. Further, sincejr = l, we have

∂php+1 + hp ∂p−1 = l − 1,

and supplc ⊂ suppc.
If U is open, letCp(X,Z)U be the set of chainsc ∈ Cp(X,Z) such that

U does not meet suppc. ThenCp(X,Z)U is a subgroup ofCp(X,Z); let
SpU = Cp(X,Z)/Cp(X,Z)U . Since∂p−1, hp+1, l i and l decrease supports,
there are induced homomorphisms

∂p−1 : SpU → Sp−1,U′ hp+1 : SpU → Sp+1,U′

l i : SpU, andl : SpU → SpU.

161

If V ⊂ U thenCp(X,Z)U ⊂ Cp(X,Z)V and there is an induced epi-
morphismρVU : SpU → SpV which commutes with∂p−1, hp+1, l i and
l. Then{SpU, ρVU } is a presheaf which determines a sheafSp called the
sheaf of singularp-chains. There are induced sheaf homomorphisms

∂p−1 : Sp→ Sp−1, hp+1 : Sp→ Sp+1,
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l i : Sp→ Sp, andl : Sp→ Sp,

with
1+ ∂php+1 + hp∂p−1 = l =

∑

i∈I

l i .

If c ∈ Cp(X,Z) andU = X − V̄i then, since suppl i(c) ⊂ Vi , l i(c) ∈
Cp(X,Z)U . Thereforel i : SpW → SpW is the zero homomorphism for
each openW ⊂ U. Hencel i(Spx) = 0x for all x ∈ X − V̄i.

Definition. If G is a sheaf of A−modules, the sheafSp ⊗Z G is a sheaf
of A-modules called thesheaf of singularp - chains with coefficients in
G .

Let S p
= Sk−p ⊗Z G for some fixed integerk and letdp+1 : S p→

S p+1, hp−1 : S p → S p−1, l i : S p → S p and l : S p → S p be the
homomorphisms induced by∂k−p−1, hk−p+1, l i and l. Then 162

1+ dphp−1
+ hpdp+1

= l =
∑

l i ,

andl i(S
p
x)0x for all x ∈ X − V̄i .

The sequence· · · → S p−1 dp

−−→ S p dp+1

−−−→ S p+1 → · · · is homotopi-
cally fine.

Proof. Let U = {Ui}i∈I be a locally finite covering withi∗ ∈ I such
that Ūi is normal fori ∈ I − (i∗). ShrinkU to a coveringW = {Vi}i∈I
with V̄i ⊂ Ui. Construct the homomorphismshp−1 : S p → S p−1,
l i : S p→ S p (as above) such that

1+ dphp−1
+ hp dp+1

=

∑

i∈I

l i ,

andl i(S
p
x) = 0x if x < V̄i. Thus we can takeEi = V̄i. �

Definition. Let CΦp (X,G ) = ΓΦ(X,Sp ⊗Z G ); this A− module is called
the module ofsingularp - chains ofx with coefficients inG . Let HΦp (X,
G ) = ker∂p−1/im ∂p in the sequence

· · · → CΦp+1(X,G )
∂p
−−→ CΦp (X,G )

∂p−1
−−−→ CΦp−1(X,G )→ · · ·



150 Lecture 26

where the homomorphism∂p : CΦp+1(X,G ) → CΦp (X,G ) is the one
induced by the homomorphism∂p : Sp+1 → Sp. The A− module
HΦp (X,G ) is called the p-th singular homology module of the space X
with coefficients in the sheafG , and supports in the familyΦ.

An element of a stalkSpx can be written uniquely in the form
∑

t∈Tp

ct·t163

wherect ∈ Z, ct = 0 if x is not in the closure of the support oft, suppt,
andct = 0 except for a finite number oft.

An element of a stalkSqx⊗Z Gx can be written uniquely in the form
∑

x∈Tp

gt · t wheregt ∈ Gx, gt = 0 if x < suppt andgt = 0 except for a finite

number oft.
An element ofCΦp (X,G ) can be written uniquely in the form

∑

t∈Tp

γt ·

t whereγt is a section ofG over suppt, γt = 0 except for a set of
simplexes whose supports form a locally finite system and theset of
pointsx such that, for somet, γt(x) is defined and, 0x is contained in
a set ofΦ. (A section over a closed setE is a mapγ : E → G such that
πγ : E→ E is the identity.)

Definition . An n - manifold is a Hausdorff space X which is locally
euclidean, i.e., each point x∈ X has a neighbourhood which is homeo-
morphic to an open set in Rn.

If X is an n-manifold, thenΦ − dimX = n.

Proof. SinceX can be covered by open sets whose closures are homeo-
morphic to subsets ofRn, X is locally n-dimensional. Then each closed
setE ∈ Φ is locally of dimension≤ n andE is paracompact and nor-
mal, hence dimE ≤ n. Further, any non-empty setE ∈ Φ has a closed
neighbourhood̄V ∈ Φ andV̄ contains a closed set homeomorphic to the164

closure of an open set inRn. Hence dimV̄ ≧ n; thusΦ− dim X = n, and
this completes the proof. �

In the sequence· · · → Sp+1
∂p
−−→ Sp

∂p−1
−−−→ Sp−1→ · · ·

Let Hp = ker∂p−1/ im ∂p; Hp is called thep - the singular homol-
ogy sheaf in X.
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If X is an n-manifold, the p-th singular homology sheaf in X islo-
cally isomorphic with the p-th singular homology sheaf in Rn.

Proof. Let x0 ∈ U1 ⊂ X whereU1 is open inX and let f : U1 → U′1
be a homeomorphism onto an open setU′1 ⊂ Rn. Choose an open set
V with xo ∈ V, V̄ ⊂ U1 and letU2 = X − V̄, U′2 = Rn − f (V̄). Then
{U1,U2} is a covering ofX, and there is the homotopy defined above,

∂h+ h∂ = l1 + l2 − t,

with l2(Spx) = 0 for x ∈ V. HenceHp(S ) is isomorphic withHp(l1S )
in V. But f : U1 → U′1 takesl1(Sp) into l′1(S ′

p) whereS ′
p is the sheaf

of singularp− chains inRn andl′1 is the corresponding homomorphism
for the covering{U′1,U

′
2} of Rn. In f (V),Hp(l′1S

′) is withHp(S ′). �

Using triangulations ofRn, one can verify, forRn, thatHp = o for
p , n and Hn is isomorphic with the constant sheaf (Rn × Z, π,Rn).
One uses a homotopy which does not decrease supports and which does 165

not induce a sheaf homotopy. The isomorphism is not a naturalone but
depends on the choice of an orientation forRn.

In ann-manifoldX,Hp = 0 for p , n andHn is locally isomorphic
with Z. LetJ = Hn; if J is isomorphic withZ the manifold is called
orientable, otherwise the manifold is said to benon-orientableandJ is
called the sheaf of twisted integers overX. Example 2 is the restriction
ot the Möbius band of the sheaf of twisted integers over the projective
plane.

If S p
= Sn−p ⊗Z G on an n-manifold X, thenH p(S ) for p , 0

andH o(S ) = J ⊗Z G .

Proof. SinceSpx is a free abelian group, so are the subgroupsZpx and
Bpx. Also, Hpx being either 0 orZ, is free. It is known (Cartan Seminar,
1948-49, Expose 11) that if

0→ F → F → F′′ → 0

is an exact sequence of abelian groups andF′′ is without torsion and if
G is an abelian group, then the induced sequence

0→ F′ ⊗G→ F ⊗G→ F′′ ⊗G→ 0
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is exact. From the following commutative diagram of exact sequences,
one can see that

Hp(S ⊗ G ) = ker∂p−1/ im ∂p ≈ zp ⊗ G /Bp ⊗ G ≈Hp ⊗ G .

ThusH p(S ) = Hn−p ⊗ G = O for p , O andH p(S ) = J ⊗ G166

for p = O. �

0

��
0 Bp ⊗ G

��

oo Sp+1 ⊗ G

∂p

��

oo zp+1 ⊗ Goo 0oo

0

��||
zp ⊗ G //

��

Sp ⊗ G //

∂p−1

��

Bp−1 ⊗ G //

��

0

0

zzvv
vv

vv
vv

vv

Hp ⊗ G

��
pp

zp−1 ⊗ G

��

xxqqqqqqqqqqq

0 Sp−1 ⊗ G

xxqqqqqqqqqq

Bp−2 ⊗ G

{{vvvvvvvvv
Hp−1 ⊗ G

��
0 0

Q.e.d.
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Proposition 19. If X is an n- manifold, there is an isomorphism:

η−1 : HΦn−p(X,G )→ Hp
Φ

(X,J ⊗Z G ).

Proof. SinceCΦn−p(X,G ) = ΓΦ(X,Sn−p ⊗z G ) = Γ
Φ̄

(X,S p), HΦ̄n−p(X,
G ) = Hp

Γ
Φ̄

(X,S ). And, sinceH o(S ) = J ⊗z G , Hp
Φ

(X,J ⊗z G ) =
Hp
Φ

(X,H o). By proposition 17 and 18, there are isomorphisms

η : HpCΦ(S )→ Hp
Φ

(X,H o),

ρ : HpCΦ(S )→ Hp
ΓΦ(X,S ).

Thusηρ−1 is the required isomorphism. �

This proposition is part of the Poincare duality theorem.





Lecture 27

Given any sheafG of A-modules, there exists an exact sequences of167

sheaves

O→ G
e
−→ S o d1

−−→ S 1→ · · · → S q−1 dq

−−→ S q→ · · ·

where eachS q(q ≥ O) is finite.

Proof. For each open setU of X, let Sq
U(q = O, 1, . . .) be the abelian

group of integer valued functionsf (x0, . . . , xq) of q+ 1 variablesx0, . . .

xq ∈ U. If V is an open set withV ⊂ U, the restriction of the functions
f gives a homomorphismρVU : Sq

U → Sq
V. There is a homomorphism

dq+1
U : Sq

U → Sq+1
U defined by

dq+1 f (xo, . . . , xq+1) =
q+1
∑

j=o

(−1) j f (xo, . . . , x̂ j , . . . , xq+1).

If e : Z→ So
U is the inclusion homomorphism of the constant func-

tions onU, the sequence

O→ Z
e
−→ So

U
d1

−−→ · · · → Sq−1
U

dq

−−→ Sq
U → · · ·

is exact (Cartan Seminar 1948-49, Expose 7,§8). ClearlyρVUdq+1 f =
dq+1ρVU f and ρVU commutes withe. The presheaves{Sq

U , ρVU }(q =
0, 1, . . .) determine sheavesS q and there is an induced exact sequence

O→ Z
e
−→ So

U
d1

−−→ · · · → Sq−1
U

dq

−−→ Sq→ · · ·

155
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It is easily verified that each abelian groupSp
U is without torsion,

and this property is preserved in the direct limit. Hence each stalkSq
x = 168

dir lim{Sq
U , ρVU }x∈U is without torsion, i.e., the sheavesS q are without

torsion. Therefore the sequences of sheaves ofA-modules

O→ Z ⊗Z G
e
−→ S o ⊗Z G

d1

−−→ · · · → S q−1 ⊗Z G
dq

−−→ S q ⊗Z G → · · ·

is exact, (this follows from the fact that ifO→ F′ → F → F′′ → O is
an exact sequence of abelian group,F′′ is without torsion, andG is an
abelian group, then the sequence

O→ F′ ⊗G→ F ⊗G→ F′′ ⊗G→ O

is exact), that is, the sequence

(1) 0→ G
e
−→ S o ⊗Z G

d1

−−→ · · · → S q−1 ⊗Z G
dq

−−→ S q ⊗Z G → · · ·

is exact.
We now show thateach of the sheavesS q ⊗Z G is a fine sheaf. To

do this, letE ⊂ G with E closed andG open and leth : Sq
U → Sp

U be
the homomorphism defined by

h f(xo, . . . , xq) = f (xo, . . . , xq) if xo, . . . , xq ∈ U ∩G,

= 0 otherwise.

Thenh commutes withρVU and induces a homomorphismh : S q→

S q for which hx : Sq
x → Sq

x is the identity ifx ∈ Ḡ, andh(Sq
x) = 0x if

x ∈ X − Ḡ. There is then an induced homomorphismh : S q ⊗Z G →
S q⊗Z which is the identity on the stalksSq

x ⊗Z Gx for x ∈ G and zero
onSq

x ⊗Z Gx for x ∈ X − Ḡ. ThusS q ⊗Z G is fine, and the sequence (1)169

is a fine resolution ofG .
We now give a definition of the cochains of a covering of a space

X coefficients in a sheafG and support in aΦ-family and also give an
alternative definition of the cohomology groups ofX with coefficients
in G and supports in the familyΦ. We then prove Leray’s theorem on
acyclic coverings. �
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Definition. Let Cp
Φ

(U ,G ), for an arbitrary coveringU = {Ui}i∈I be the
Cp(U ,G ) consisting of those cochains f such that the closure of the set
supp f = {x : f (io, . . . , ip)(x) is defined for someσ = (io, . . . , ip) and
, 0x}, belongs to the familyΦ. (If p = 0, this definition does not agree
with the previous one even whenU is a Φ̄-covering.)

Then, since the homomorphisms

δp+1 : Cp(U ,G )→ Cp+1(U ,G )

τ+ : Cp(U ,G )→ Cp(W ,G )

decrease supports, they induce homomorphisms

δp+1 : Cp
φ
(U ,G )→ Cp+1

Φ
(U ,G )

and
τ+ : Cp

Φ
(U ,G )→ Cp

φ
(W ,G )

respectively. Hence there are cohomology moduleHp
Φ

(U ,G ) and ho-
momorphismsτW U : Hp

Φ
(U ,G ) → Hp

Φ
(W ,G ). For p = 0, Ho

Φ
(U , 170

G ) = ΓΦ(X,G ) for every coveringG , and

τW U : ΓΦ(X,G )→ ΓΦ(X,G )

is the identity. Using the directed setΩ of all proper covering of
X, {Hp

Φ
(U ,G ), τW U }U ,W ∈Ω is a direct system. The direct limit of this

system will be denoted byHp
Φ

(X,G ). This module also is called thep- th
cohomology module of the space X with coefficients in the sheafG and
supports in the familyΦ. (This cohomology module is isomorphic with
that previously defined by means ofΦ-coverings, Lecture 21.) There are
homomorphisms into the direct limits,τU : Hp

Φ
(U ,G )→ Hp

Φ
(X,G ).

Let X be aparacompact normalspace,G a sheaf ofA-modules over
X, and letU = {U} be locally finite proper covering ofX where each
U ∈ U is anFσ set. (U is indexed by itself.) LetΦσ be the set of all
intersectionE ∩ Uσ with E ∈ Φ. SinceUσ is an openFσ set inX,Uσ

is paracompact and normal. Hence eachE ∩ Uσ ∈ Φσ is paracompact
and normal. One easily verifies thatΦσ is aΦ-family in Uσ. We now as
sume the following conditions on the familyΦ and the coveringU .
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(i) For some infinite cardinal numberm, the union of fewer thanm
elements ofΦ is contained in a set belonging toΦ. (If X ∈ Φ,
choosemgreater than the number of closed sets ofX; if Φ is family
of compact sets, letm= No.)

(ii) Each set inΦmeets fewer thanm sets of the coveringU .171

(iii) Each U ∈ U is an Fσ sets, i.e., is a countable union of closed
subsets ofX.

(iv) For eachUσ = Uo ∩ · · ·Up, Hp
Φσ

(Uσ,G ) = 0 for q > 0; hereG
denotes the restriction ofG to Uσ

(A coveringU is calledacyclic is conditions (iv) is satisfied.)

Under the conditions(i), (ii), (iii), (iv) stated above, the homomor-
phismτU : Hp

Φ
(U ,G )→ Hp

Φ
(X,G ) is an isomorphism.

Proof. Let

O→ G
e
−→ S o d1

−−→ · · · → S q−1→ dqS q→ · · ·

be any fine resolution ofG . Then there is a system{(Cp
Φ

(U ,S q))}U ∈Ω′
of double complexes, whereΩ′ is the cofinal directed set of all locally
finite proper coverings ofX. This system is bounded above byp = 0
and on the left byq = 0. �

SinceX is normal,S q is fine andU is locally finite, there is a
homotopy (see Lecture 16)

kp−1 : Cp(U ,S q)→ Cp−1(U ,S q) (p > 0).

Sincekp−1 decreases supports, it induces a homomorphism

kp−1 : Cp
Φ

(U ,S q)→ Cp−1(U ,S q) (p > 0),

with δpkp−1
+ kpδp+1

= 1. HenceHp
Φ

(U ,S q) = 0 for p > 0, and for172

p = 0, Ho
Φ

(U ,S q) = ΓΦ(X,S q). Hence

HO,q
12 CΦ(U ,S ) = Hq

ΓΦ(X,S ).
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Thus we have the isomorphisms indicated below (see Lecture 20):

Hq
ΓΦ(X,S )

≈

��

H0,q
12 CΦ(U ,S )

��

≈oo HqCΦ(U ,S )

��

≈oo

Hq
ΓΦ(X,S ) H0,q

12 CΦ(S )
≈oo HqCΦ(S ).≈oo

SinceS q is fine andX is normal,S q is locally fine, hence its re-
striction toUσ is locally fine. ButUσ is paracompact and normal, so
that the restriction ofS q to Uσ is fine. Hence there is an isomorphism
(see Proposition 17 and 18, lectures 23 and 25 respectively),

ηρ−1 : Hq
ΓΦσ(Uσ,S )→ Hq

Φσ
(Uσ,G ).

Hence by condition (iv),Hq
ΓΦσ(Uσ,S ) = 0 for q > 0, Ho

ΓΦ(Uσ,S ) ≈
Ho
Φσ

(Uσ,G ) = ΓΦσ(Uσ,G ).

If f ∈ Cp
Φ

(U ,S q) (q > O) anddq+1 f = O, then (dq+1 f )(Uo, . . . ,

Up) = O in eachUσ = Uo ∩ · · · ∩ Up. SinceHq
ΓΦσ(Uσ,S ) = 0(q >

0), there is a sectiong(Uo, . . . ,Up) ∈ ΓΦσ(Uσ,S
q−1) with dg(Uo, . . . ,

Up) = f (Uo, . . . ,Up) (chooseg(Uo, . . . ,Up) = 0 if f (Uo, . . . ,Up) = 0.
There is then a cochaing ∈ Cp(U ,S q−1)) with dg = f , (see p.57).
Since f ∈ Co

Φ
(U ,S q), suppf is contained in a set belonging toΦ and 173

hencef (σ) is different from zero on fewer thanm setsUσ. Theng(σ)
is different from zero on fewer thanm setsUσ and hence suppg is the
union of fewer thanm set{x ∈ Uσ : g(σ)(x) , 0, each of which is in
Φσ and hence has its closure inΦ. Hence suppg is contained in a set
belonging toΦ andg ∈ Cp

Φ
(U ,S q−1). HenceHp,q

2 Cφ(U ,S ) = 0(q >
0).

Since the sequences

0→ Cp(U ,G )
e
→ Cp(U ,S o)

d1

→ Cp(U ,S 1)

is exact, if f ∈ Cp
Φ

(U ,S O) and d1 f = 0, then f = e(g) for some
g ∈ Cp(U ,G ) and clearlyg ∈ Cp

Φ
(U ,G ). Thus

Hp,o
2 CΦ(U ,S ) ≈ Cp

Φ
(U ,G ) andHp,0

21 CΦ(U ,S ) ≈ Hp
Φ

(U ,G ).
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Thus we have the isomorphism indicated below:

HpCΦ(U ,S ) ≈ //

��

Hp,0
21 CΦ(U ,S )

��

≈ // Hp
Φ

(U ,G )

τU

��
HpCΦ(S ) ≈ // Hp,0

21 CΦ(S )
≈ // Hp

Φ
(X,G ).

Combining this diagram with the previous one, we see that theho-
momorphismτ : Hp

Φ
(U ,G )→ Hp

Φ
(X,G ) is an isomorphism. Q.e.d

In particular, we have proved the following proposition (Cartan Sem-
inar, 1953-54, Expose 17, p.7).

Proposition 20. If U is a locally finite proper covering of a paracom-174

pact normal space X by open Fσ sets, and ifG is a sheaf of A-modules
such that Hq(Uσ,G ) = O(q > O) for every Uσ = Uo ∩ · · · ∩ Uk(k =
O, 1, . . .), then

τU : Hp(U ,G )→ Hp(X,G )

is an isomorphism.

In the case thatΦ is the family of all compact sets ofX, we writeHp
∗

instead ofHp
Φ̄

.

Proposition 20(-a). If U is a locally finite proper covering of a locally
compact and paracompact Hausdorff space by open Fσ sets with com-
pact closures, and ifG is a sheaf of A-modules such that Hp(Uσ,G ) =
O(q > O) for every

Uσ = Uo ∩ · · · ∩ Uk(k = 0, 1, . . .)

then
τσ : Hp

∗ (U ,G )→ Hp
∗ (X,G )

is an isomorphism.

Note. It is no restriction to assume thatU is a proper covering. IfW
is any covering, there is an equivalent proper coveringU with the open
sets. ThenτW U andτU ,W are isomorphisms.
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Direct sum of modules
175

Definition . Thedirect sumof a system{Mi}i∈I of A-modules is an A-
module whose elements are systems{mi}i∈I , usually written as formal
sums

∑

i mi where mi ∈ Mi and mi
= Q for all but a finite number of i.

The operations in M are defined by

∑

i

mi
1 +

∑

i

mi
2 =

∑

i

(mi
1 +mi

2), a
∑

i

mi
=

∑

i

ami ,

where
∑

i mi
1 ∈ M,

∑

i mi
2 ∈ M,

∑

i mi ∈ M and a∈ A.

Clearly there is a homomorphismp j :
∑

i Mi → M j defined by
p j(

∑

i mi) = mj and a homomorphismh j : M j →
∑

i Mi defined by

pih j(mj) = 0 for i , j, p jh j (mj) = mj ,mj ∈ M j .

A system of homomorphism(g′, gi) : (A,Mi) → (B,Ni), i ∈ I, in-
duces a homomorphism(g′, g) : (A,

∑

i Mi) → (B,
∑

i Ni) where
g(

∑

i mi) =
∑

i gi(mi). There is commutativity in

(A,M j)
hj

//

(g′,gj )
��

(A,
∑

i Mi)
pj

//

(g′,g)
��

(A,M j)

(g′,gj )
��

(B,N j)
hj

// (B,
∑

i Ni)
pj

// (B,N j).

161
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Proof. Let
∑

i mi
1 ∈

∑

i Mi,
∑

i mi
2 ∈

∑

i Mi,
∑

i mi ∈
∑

i Mi and leta ∈ A.
Then

g(
∑

i

mi
1 +

∑

i

mi
2) = g(

∑

i

(mi
1 +mi

2) =
∑

i

gi(mi
1 +mi

2)

176

=

∑

i

(gi(mi
1) + gi(mi

2)) =
∑

i

gi(mi
1) +

∑

i

gi(mi
2)

= g(
∑

i

mi
1) + g(

∑

i

mi
2)

g(a
∑

i

mi) = g(
∑

i

ami) =
∑

i

gi(ami)

∑

i

g′(a)gi (mi) = g′(a)
∑

i

gi(mi)

= g′(a)g(
∑

i

mi).

gi p j(
∑

i

mi) = g jmj
= p j(

∑

i

gimi)

= p jg(
∑

i

mi)

pkghj (mj) = gkpkh j(mj) = gk(0) = 0 for k , j

and
p jghj(mj) = g j p jh j(mj) = g j(mj),

hence
ghj (mj) = h jg j(mj), mj ∈ M j .

The operation of forming the direct limit commute with the operation of
forming the direct sum. �

Proof. Let {Aλ,Mi
λ
, φ′

µλ
, φi

µλ
}λ,µ∈Ω (Ω a directed set) be a direct system

for eachi ∈ I . Let the direct limits be (A,Mi) with homomorphisms
(φ′
λ
, φi

λ
) : (Aλ,Mi

λ
) −→ (A,Mi). There are induced homomorphisms

(φ′µλ, φµλ) : (Aλ,
∑

i

Mi
λ)→ (Aµ,

∑

i

Mi
µ)
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for which φνµφµλ = φνλ, λ < µ < v and φλλ is the identity. Thus177

{Aλ,
∑

i Mi
λ
, φ′

µλ
, φ′

µλ
}λ∈Ω is direct system. Let its direct limit be (A,M)

with homomorphisms

(φ′λ, φλ) : (Aλ,
∑

i

Mi
λ)→ (A,M).

(Aλ,Mi
λ
)

φi
µλ //

hi
λ

��

(Aµ,Mi
µ)

φi
µ //

hi
µ

��

(A,Mi)

��
hi

}}

(Aλ,
∑

i Mi
λ
)

φµλ //

φ′′
λ ++VVVVVVVVVVVVVVVVVVVVVV

(Aµ,
∑

i Mi
µ)

φµ //

φ′′µ

&&NNNNNNNNNN
(A,M)

φ′′

��
(A,

∑

i Mi)

The system of homomorphisms (φi
λ
, φi

λ
) : (Aλ,Mi

λ
) → (A,Mi) in-

duces a homomorphism (φ′
λ
, φ′′

λ
) : (Aλ,

∑

i Mi
λ
) → (A,

∑

i Mi). Since for
λ < µ,

φ′′µφµλ(
∑

i

mi
λ) = φ

′′
µ (

∑

i

φi
µλm

i
λ) =

∑

i

φi
µφ

i
µλm

i
λ

=

∑

i

φi
λm

i
λ = φ

′′
λ (

∑

i

mi
λ),

thereforeφ′′µ φµλ = φ
′′
λ

and there is an induced homomorphismφ′′ : M →
∑

i Mi. �

If
∑

i mi ∈
∑

i Mi thenmi
= 0 except for a finite number ofi, say

i1, . . . , ik. Then, for someλ, eachmi j has a representativem
i j

λ
∈ M

i j

λ
; let

mi
λ
= 0 for i < (i1, . . . , ik). Then

∑

i mi
λ
∈

∑

i Mi
λ

and
∑

i mi
= φ′′

λ

∑

i mi
λ
=

φ′′φλ
∑

i mi
λ
. Thusφ′′ is an epimorphism. 178

To show thatΦ′′ is a monomorphism, letm ∈ M andφ′′(m) = 0.
Choose a representative

∑

i mi
λ

of m. Thenmi
λ
= 0 except for a finite

number ofi, sayi = i1, . . . , ik. Since

0 = φ′′(m) = φ′′λ (
∑

i

mi
λ) =

∑

i

φi
λm

i
λ,
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therefore eachφi j
λ

m
i j

λ
= 0. Now chooseµ so that eachφ

i j

µλ
m

i j

λ
= 0.

Thenm is represented by 0 in
∑

i Mi
µ and hencem = 0. Thusφ′′ is an

isomorphism. We identityM with
∑

i Mi under the isomorphismφ′′.

Direct sum of sheaves

Let a be a sheaf of rings with unit and let{S i}i∈I be a system of
sheaves ofa-modules. Then there is a unique sheafS whose stalks
are the direct sums

∑

i∈I
Si

x such that the homomorphisms hj
x : S j

x → Sx

determine a sheaf homomorphism hj : S j → S .

ThisS is called thedirect sumof the sheavesS i and is denoted by
S =

∑

i∈I
S i.

Proof. Uniqueness. If s=
∑

i si ∈
∑

i Si
k with si

= 0 except fori1, . . . , ik,
choose a neighbourhoodU of x and sectionsf j : U → Si j , j = 1, . . . , k
such thatf j(x) = Si j . Let f : U → S(=

⋃

x

∑

i∈I
Si

x) be defined byf (y) =
∑

j hi j f j(y). Sincehi j is a sheaf homomorphism, the composite function

U
f j
−→ Si j

hi j
−−→ S

is a section and hencef is a section. Since179

f (x) =
∑

j

hi j f j(x) =
∑

j

hi j si j =

∑

i

si
= s,

the section goes throughs. Thus, since such section coverS, they
uniquely determine the topology ofS. �

ExistenceFrom the presheaves of sections (¯a, S̄ i) = {AU ,Si
U , ρ

′
VU
, ρi

VU
}

whereAU = Γ(U, a) andSi
U = Γ(U,S

i). Then{AU ,
∑

i Si
U , ρ

′
VU
, ρVU }

(whereU runs through the directed set of all the open sets ofX) is a
presheaf. It determines a sheaf (a,S ) and there is a homomorphism
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h j
U : S j

U →
∑

i Si
U with commutativity in

(AU ,S
j
U)

hj
U //

(ρ′
VU

, ρ
j
VU )

��

(AU ,
∑

i Si
U)

(ρ′
VU
, ρVU )

��
(AV,S

j
V)

hj
V // (AV,

∑

i Si
V).

180

Hence there is an induced sheaf homomorphismh j : S j → S .
The stalk (Ax,Sx) of (a,S ) is the direct limit of the direct system
{AU ,

∑

i Si
U , ρ

′
VU
, ρVU }x∈U which is identified with the direct sum of the

direct limits (Ax,Si
x) = dir lim{AU ,Si

U , ρ
′
VU
, ρi

VU
}x∈U . ThusSx =

∑

i Si
x

and the required sheaf exists,q.e.d.
There is also a homomorphismpi

U :
∑

i Si
U → S j

U (as defined in the
beginning of the lecture) with commutativity in

(AU ,
∑

i Si
U)

pj
U //

(ρ′
VU
, ρVU )

��

(AU ,S
j
U)

(ρ′
VU

, ρ
j
VU )

��
(AV,

∑

i Si
V)

pj
V // (AV,S

j
V)

Hence there is a sheaf homomorphismp j : S → S j which is
clearly onto. Ifs=

∑

i si ∈ S, it is easily verified thatp j(s) = sj , hence
p jh j (sj) = sj andp jhi(sj) = 0 if i , j.
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Given homomorphisms gi : S i → T (i ∈ I ), there is an induced homo-181

morphism g:
∑

i∈I
S i → T with ghi

= gi .

Proof. If s=
∑

i si ∈ Sx, letg(s) =
∑

igi
(si) ∈ Tx.Theng|Sx : Sx → Tx is

clearly a homomorphism. Choose an open setU and sectionsf j : U →
Si j so that the section defined byf (y) =

∑

hi j f (y) goes throughs. Then
g f(y) =

∑

gi j f j(y) andg f being the sum of a finite number of sections,
is a section. Thusg is continuous and is a sheaf homomorphism. �

Note.Sincea itself is a sheaf ofa-modules, there is, for anyI , a direct
sum

∑

i∈I
a where each direct summand isa. This is again a sheaf ofa

-modules.

If S is a sheaf ofa-modules over a spaceX, andaY is the restriction
of a to a subsetY, then clearly the restrictionSY of S to Y is a sheaf of
aY-modules.

Definition. The following properties of sheavesS of a- modules over a
space X are called property(a1) and property(a) :

Property (a1). There is a covering{U j} j∈J of X, and for eachj ∈ J,
there is an index setI j and an epimorphismφ j :

∑

i∈I j

aU j → SU j .

Property (a). There is a covering{U j} j∈J of X, and for eachj ∈ J,

there is a natural numberk j and an epimorphismφ j :
∑kj

i=1 aU j → SU j . 182

167
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S has property(a1) if and only if each point x∈ X has a neigh-
bourhood U such that the sections inΓ(U,S ) generateSU . (That is,
for eachy ∈ U ands∈ Sy, s=

∑k
j=1 a j

y f j(y) for some finite numberk of

elementsa j
j ∈ Ay and sectionsf j ∈ Γ(U,S ).)

Proof. Necessity.Let S have property (a1). Since{U j} is a covering,
x ∈ U j for some j; let U = U j . Then there is an index setI and an
epimorphismφ :

∑

i∈I
aU → SU . �

Let f i
= φhi1 : U → S where 1 is the unit section inaU ,

U
1
−→ aU

hi

−→
∑

i∈I

aU
φ
−→ SU .

Then if s ∈ SU , s= φ(
∑

i ai
y) for someai

y ∈ Ay with ai
y = Oy except

for a finite number ofi, sayi = i1, i2, . . . , ik. Then

k
∑

j=1

a
i j
y fi j (y) =

k
∑

j=1

a
i j
yφhi j 1y =

k
∑

j=1

φhi j a
i j
y 1y

= φ(
k

∑

j=1

hi j a
i j
y ) = φ(

∑

i∈I

ai
y) = s.

Sufficiency. For eachx ∈ X, there is a neighbourhoodUx of x such
that the sections overUx generateSUx. Then{Ux}x∈X is a covering of
X. Let Ix be the set of sectionsΓ(Ux,S ). For each sectioni ∈ Ix,
there is a sheaf homomorphismφi

x : aUx → SUx given, fora ∈ Ay, by
φi

x(a) = a · i(πa).
Then there is an induced homomorphism183

φx :
∑

iεIx

aUx → SUx.

Then fors∈ Sy andy ∈ Ux,

s=
k

∑

j=1

a j
yi j(y) =

k
∑

j=1

φ
i j
x (a j

y) ∈ φx(
∑

i∈Ix

aUx).
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Thusφx is an epimorphism.

S has property(a) if and only if each point x has a neighbourhood
U such that some finite number of sections fi ∈ Γ(U,S ) (i = 1, . . . , k)
generateSU .

Proof. Similar to the proof given above. �

It is clear that (a) implies (a1), i.e., each sheaf with property (a) has
property (a1). The sheaf

∑

i∈I
a has property (a1) and

∑k
i=1 a has property

(a). In particular, the sheafa of a-modules has property (a).
If Si , i = 1, . . . , k are sheaves ofa- modules with property(a1)

(resp.(a)), then the direct sum
∑k

i=1 ai has property(a1) (resp(a)).

Proof. Clear.
Statements (1), (2), (3), (4), (5), (6), (Lectures 29, 30, 31,) are re-

quired to prove Serre’s theorem on coherent sheaves, (see the next lec- 184

ture for the definition of coherent sheaves), i.e., if 0→ S ′ → S →

S ′′ → 0 is an exact sequence of sheaves, and if two of them are coher-
ent, then the third is also coherent.
(1) If f : S ′ → S is an epimorphism andS ′ has property(a1)
(resp (a)), thenS has property(a1) (resp (a)). �

Proof. Clear. �

Example . If M is a finitely generatedA- module, the constant sheaf
M has property (a) with respect to the constant sheafA. If a constant
sheaf is a sheaf ofa- modules, then it has property (a1). If X is the unit
segment 0≤ x ≤ 1, the subsheafS of the constant sheafZ2 obtained
by omitting (1, 1) does not have property (a1) either as a sheaf ofZ-
modules or as a sheaf ofZ2 -modules. With the sameX, the sheafS of
germs of functionsf : X → Z2, considered as a sheaf ofZ2 -modules,
has property (a1) but not property (a). But, consideringS as a sheaf
of rings with unit, it has property (a) with respect to itself, The sheaf
a of germs of analytic functions in the complex plane has property (a)
as a sheaf ofa- modules, but as a sheaf ofC- modules (whereC is the
field of complex numbers) it does not even have property (a1). For, there
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are natural boundaries for analytic functions, e.g., letf be an analytic
function in|z| < 1, with |z| = 1 as natural boundary. Ifa has property (a1)
as a sheaf ofC-modules, then by considering a point on the boundary,
we see thatf can be continued to a neighbourhood of this boundary
point and this is a contradiction.



Lecture 30

Definition. The following properties of sheavesS of a- modules over a 185

space X are called property(b1) and property(b).

Property (b1). For each open set U of X and each homomorphism
f :

∑

i∈I
aU → SU , ker f has property(a1) as a sheaf ofaU- modules.

Property (b). For each open set U of X and each homomorphism f:
∑k

i=1 aU → SU , ker f has property(a) as a sheaf of aU- modules.

Note.Since (a1) and (a) are local properties, properties (b1) and (b) are
equivalent to the following properties (b′1) and (b′) respectively.

Property (b′1). For each neighbourhood V of each point x∈ X, there
exists an open set U, x∈ U ⊂ V, such that for each homomorphism
f :

∑

i∈I
aU → SU , ker f has property(a1) as a sheaf ofaU- modules.

Property (b′). For each neighbourhoodV of each pointx ∈ X, there
exists an open setU, x ∈ U ⊂ V such that for each homomorphism

f :
k
∑

i=1
aU → SU , ker f has property (a) as a sheaf ofaU-modules.

Thus (b1) and (b) are also local properties. The sheaf kerf is called 186

the sheaf of relationsbetween the sectionsfi : U → SU , where fi =
f hi1,

U
1
−→ aU

hi

−→
∑

i∈I

aU
f
−→ SU .

The sheaf of relations between the sectionsfi is described by the
following result.

171
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The element of(ker f )x for x ∈ U are the elements
∑

i ai of which
∑

i ai fi(x) = 0.

Proof. For each element
∑

ai , only a finite number of theai being dif-
ferent from zero, we have

∑

ai =

q
∑

j=1

hi j ai j and

f (
∑

ai) = f (
q

∑

j=1

hi j ai j ) =
q

∑

j=1

f hi j (ai j )

=

q
∑

j=1

ai j f hi j (lx) =
q

∑

j=1

ai j fi j (x)

=

∑

i

ai fi(x),

and this completes the proof. �

If we start with a system{ fi}i∈I of sections ofS over an open setU,
then eachfi defines a homomorphism (again denoted byfi) fi : aU →
SU where fi(a) = a · fi(x), a ∈ Ax. Then the system{ fi} of homomor-
phisms defines a homomorphismf :

∑

i∈I
aU → SU , and the sheaf kerf

is called thesheaf of relationsbetween the sectionsfi : U → SU .
(2) I f S has property (b1) (resp (b)), then every subsheaf ofS187

has property (b1) (resp (b)).

Proof. Clear. �

Definition. A sheafS of a- modules is called coherent if it has proper-
ties(a) and(b).

Note. If S is a coherent sheaf, thenSU is coherent for each open set
U. Coherence is a local property, i.e., if each point has a neighbourhood
U such thatSU is coherent, thenS is coherent. If we define a sheafS
to be offinite typeif, for eachx ∈ X, there is an open setU, x ∈ U, such
that each stalk ofSU is generated by the samefinite number of sections
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f1, . . . , fk overU; it is then easily verified that conditions (a) and (b) for
coherence are equivalent to the following conditions:

(i) The sheafS is of finite type.

(ii) If f1, . . . , fk are any finite number of sections ofS over any open
setU, then the sheaf of relations between these finite number of
sections is of finite type.

Example 30.Let a be the constant sheafZ2 on 0 ≤ x ≤ 1, let R be
the subsheaf obtained by omitting (1, 1) and letS be the quotient sheaf
with stalksZ2 at 1 and zero elsewhere. Then the natural homomorphism
a→ S has kernelR andR does not have property (a1). HenceS has
neither (b1) nor (b).

Example 31.Let A be the ring of Example 5, with elements 0, 1,b, c, 188

such thatb2
= b, c2

= c, bc = cb = 0. Let a be the subsheaf of the
constant sheafA on 0≤ x ≤ 1 obtained by omitting (1, b) and (1, c). Let
S be the constant sheafZ2 on which 1 andc of A operate as the identity
andb operates as zero. The sheafR of relations for the section 1 ofZ2

consists of 0 and (x, b) for x < 1. If U is a connected neighbourhood of
1, the only homomorphism ofaU into RU is the zero homomorphism.
ThusR does not have (a1) andS has neither (b1) nor (b).

Example 32.Let A be the ringZ[y1, y2, . . .] of polynomials in infinitely
many variables with integer coefficients. Leta be the constant sheafA
on 0 ≤ x ≤ 1 and letS be the constant sheafZ on which all the in-
determinatesy1, y2, . . ., operate as zero. The sheaf of relations for the
section 1 ofZ is the constant sheaf formed by the ideal of all polynomi-
als without constant terms. This ideal is not finitely generated, henceS
does not have (b). However, for every homomorphismf :

∑

i∈I
aU → SU ,

ker f is constant on each component ofU and hence has property (a1).
ThusS has (b1) but not (b).

(3) If 0→ S ′
f
−→ S

g
−→ S ′′ → 0 is an exact sequence of sheaves

of a - modules such thatS has (a1) (resp (a)) andS ′′ has (b1) (resp
(b)), thenS ′ has(a1) (resp(a)).
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Proof. If S has (a1), eachx ∈ X has a neighbourhoodU for which189

there is an epimorphismφ :
∑

i∈I
aU → SU . Sincegφ :

∑

i∈I
aU → S ′′

U is a

homomorphism andS ′′ has (b1), kergφ has (a1). Hence for some open
setV with x ∈ V ⊂ U, there is a homomorphism

ψ :
∑

j∈J

aV →
∑

i∈I

aV

such that imψ = (kergφ)V. Hence, sinceφ is an epimorphism imφψ =
(kerg)V, and therefore imφψ = (im f )V. Then, sincef is a monomor-
phism, there is an epimorphism

f −1φψ :
∑

j∈J

aV → S ′
V.

ThusS ′ has (a1). Similarly if S has (a) andS ′′ has (b), thenS ′

has (a). �

∑

j∈J
aV ψ //

∑

i∈I
aV

φ

��

gφ

!!C
CC

CC
CC

C

0 // S ′
f // S

g // S ′′ // 0

Q.e.d.

(4) If 0 → S ′
f
−→ S

g
−→ S ′′ −→ 0 is an exact sequence of

sheaves ofa- modules such thatS ′ andS ′′ have(b1) (resp (b)) then
S also has(b1) (resp (b)).

Proof. Let S ′ andS ′′ have (b1) and letφ :
∑

i∈I
aU → SU be a given

homomorphism. SinceS ′′ has (b1), kergφ has (a1) and hence for each190

x ∈ U, there is an open setV with x ∈ V ⊂ U and a homomorphism,

ψ :
∑

j∈J

aV →
∑

i∈I

aV
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such that imψ = (kergφ)V. Then imφψ ⊂ (kerg)V = (im f )V and hence
there is a homomorphism

θ :
∑

j∈J

aV → S ′
V

with f θ = φψ. SinceS ′ ahs (b1), kerθ has (a1) and there is an open set
W with x ∈W ⊂ V, and a homomorphism

η :
∑

k∈K

aW →
∑

j∈J

aW

such that imη = (kerθ)W. �

∑

k∈K
aW

η

vvmmmmmmmmmmmmmmmmm

ψη

��











∑

j∈J
aV

ψ !!B
BB

BB
BB

B

θ

����
��

��
��

��
��

��
��

��
��

∑

i∈I
aU

φ

||xxxx
xxxx gφ

##G
GG

GG
GG

GG

0 // S ′
f // S

g // S ′′ // 0

To show thatS has (b1) it is enough to show that imψη = (kerφ)W.
For any elementr ∈

∑

k∈K
aW,

φψη(r) = fφη(r) = f (0) = 0.

191

Thus imψη ⊂ (kerφ)W. Next, for any elementp ∈ (kerφ)W, we
havep ∈ (kergφ)W = (imψ)W. chooseq ∈

∑

j∈J
aW such thatψ(q) = p;

then
θ(q) = f −1φψ(q) = f −1φ(p) = f −1(0) = o.
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Thusq ∈ (kerθ)W = im η, and hencep = ψ(q) ∈ imψη. Thus imψη =
(kerφ)W andS has (b1). Similarly if S ′ andS ′′ have (b), it can be
proved thatS also has (b).
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If f : S → S ′′ is an epimorphism,φ :
∑k

i=1 aU → S ′′
U a homomor- 192

phism, and if x is a point of the open set U, then there exists anopen set
V with x∈ V ⊂ U and a homomorphism

ψ :
k

∑

i=1

aV → SV such that fψ = φ|
k

∑

i=1

aV.

Proof. Since f : S → S ′′ is an epimorphism, each of the sectionsθi =

φhi1 : U → S ′′, i = 1, . . . , k, is locally the image of a section inS .
Hence there is an open setVi with x ∈ Vi ⊂ U and a sectionηi : Vi → S
such thatfηi θi |Vi. Let ψi : aVi → SVi be the homomorphism defined
byψi(a) = a·ηiπ(a) These homomorphismsψi induce a homomorphism

ψ :
k

∑

i=1

aV → SV

whereV =
⋂k

i=1 Vi. Then, if
∑k

i=1 ai ∈
∑k

i=1 aV, we have

fψ(
k

∑

i=1

ai ) = f (
k

∑

i=1

ai · ηiπ(ai)) =
k

∑

i=1

ai · θi · π(ai)

=

k
∑

i=1

ai · φhi1π(ai) =
k

∑

i=1

φhiai

= φ(
k

∑

i=1

ai),

i.e., fψ = φ|
∑k

i=1 aV. �

177



178 Lecture 31

(5) If 0→ S ′
f
−→ S

g
−→ S ′′ → 0 is an exact sequence of sheaves193

of a- modules such thatS ′ has property(a) and S has property(b),
thenS ′′ has property(b).

Proof. Let U be an open set and letφ :
∑k

i=1 aU → S ′′
U be a homomor-

phism. Sinceg : S → S ′′ is an epimorphism, by the result proved
above, ifx ∈ U, there is an open setV with x ∈ V ⊂ U and a homo-
morphismψ :

∑k
i=1 aV → SV such thatgψ = φ|

∑k
i=1 aV. SinceS ′ has

property (a), there is an open setW with x ∈ W ⊂ V and an epimor-
phismη :

∑1
i=k+1 aW → S ′

W. Thenψ and fη induce a homomorphism
θ :

∑1
i=1 aW → SW. �

We also have the projection homomorphismsp :
∑l

i=1 aW →
∑k

i=1
aW andp′ :

∑1
i=1 aW →

∑l
i=k+1 aW such thatθ = ψp+ fηp′.

∑l
i=k+1 aW

η

��

fη

%%KKKKKKKKKK

∑l
i=1 aW

p //

θ

��

p′oo ∑k
i=1 aW

φ

��

ψ

yyttttttttt
t

0 // S ′
W

f // SW
g // S ′′

W
// 0

The second square forms a commutative diagram sincegθ = gψp+
g fηp′ = gψp = φp and hencep maps kerθ into kerφ. Actually, p maps
kerθ ontokerφ, for, if a ∈ kerφ, thengψa = φa = 0 and by exactness
there existsb ∈ S ′

W such thatf b = ψa. Sinceη is an epimorphism, there
existsc ∈

∑l
i=k+1 aW such thatηc = −b. Thenθ(a+ c) = ψa+ fηc = 0

andp(a+ c) = a. Thusp maps kerφ. SinceS has (b) kerθ has (a), and194

sincep| kerθ : kerθ → kerφ is an epimorphism, kerφ has (a). Hence
S ′′ has (b).

The corresponding statement, with (a1) and (b1) in place of (a) and
(b), is not true as the following example shows.

Example 33.Let X be the union of the sequence of circlesCn =

{

(x, y) :

x2
+ y2

= x/n
}

, n = 1, 2, . . .. let each stalk ofa be the ringZ[x1, x2, . . .]

of polynomials in infinitely many variables, with coefficients inZ, and
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let a be constant except that, on going around the circleCn, xn and -xn

interchange.

More precisely, letTn be the automorphism of the ringZ[x1, x2,. which
interchangesxn and−xn. If U is open inX andU ⊂ Cn, let AU be the
ring of functions f defined onU and with values inZ[x1, x2, . . .] such

that f is constant on each component ofU not containing

(

1
n
, 0

)

and, if

a componentW of U contains

(

1
n
, 0

)

, f (x, y) = f

(

1
n
, 0

)

for (x, y) ∈ W

andy < 0 and f (x, y) = Tn f

(

1
n
, 0

)

for (x, y) ∈ W andy > 0. If U is

not contained in anyCn let AU be the ring of functions, constant on each
component ofU, with values in

Z[xn1, xn2, . . .] ⊂ Z[x1, x2, . . .]

wheren1, n2, . . ., are those values ofn for which

(

1
n
, 0

)

< U.

If V ⊂ U let ρVU : AU → AV be given byρVU f = f |V. Let a be the
sheaf of rings determined by the presheaf{AU , ρVU }.

Let I be the sheaf of ideals formed by polynomials with even coef-195

ficients, thenI is generated by the section given by the polynomial 2.
Let

S ′′
= a/I = Z2[x1, x2, . . .],

then
0→ I → a→ S ′′ → 0

is exact. Then, as sheaves ofa-modules,I has properties (a) and (a1),
a has (b) and (b1) andS ′′ has (b) but not (b1).

(6) If 0→ S ′
f
−→ S

g
−→ S ′′ → 0 is an exact sequence of sheaves

of a-modules such thatS ′ andS ′′ have property(a), thenS has prop-
erty (a).

Proof. SinceS ′′ has property (a), for each pointx there is a neighbour-
hoodU of x and an epimorphismφ :

∑k
i=1 aU → S ′′

U . There is an open
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setW with x ∈ W ⊂ U, a homomorphismψ :
∑k

i=1 aW → SW, an epi-
morphismη :

∑k
i=k+1 aW → S ′

W and homomorphismsθ, p, p′ as in the
previous proof. Ifs∈ SW, there is somea ∈

∑k
i=1 aW such thatφa = gs.

Theng(s− ψa) = 0, and by exactness, for someb ∈ S ′
W, s− ψa = f b.

Then for somec ∈
∑k

i=k+1 aW, b = ηc and s = ψa + fηc = θ(a + c).
Henceθ,

∑l
i=1 aW → SW is an epimorphism, and henceS has property196

(a). �

The corresponding statement, with (a1) in place of (a), is not true as
the following example shows.

Example 34.Let X =
⋃∞

n=1 Cn as in Example 33. Leta = Z and letSn

be a sheaf which is locallyZ4, but on going around the circleCn, 1 and
3 interchange. LetS ′

n be the subsheaf with stalks consisting of 0 and 2;
it is the constant sheafZ2. Let S ′′

n = Sn/S
′
n; this is alsoZ2. Then

the sequence
0→ S ′

n→ Sn→ S ′′
n→ 0

is exact. Let

S ′
= Σ

∞
n=1S

′
n,S = Σ

∞
n=1Sn,S

′′
= Σ

∞
n=1S

′′
n.

Then the sequence

0→ S ′ → S → S ′′ → 0

is exact. SinceS ′ andS ′′ are constant sheaves, they have property
(a1) butS does not have property (a1).

Statements (1), (2), (3), (4), (5), (6) (Lectures 29, 30, 31)prove the
following proposition due to Serre.

Proposition 21. If 0 → S ′
f
−→ S

g
−→ S → 0 is an exact sequence

of sheaves ofa-modules and if two of them are coherent (i.e., possess
property (a) and (b)), then the third is also coherent.

Corollary. If Si , i = 1, . . . , k are coherent sheaves ofa- modules, then197
∑k

i−1 Si is coherent



Lecture 31 181

Proof. Since the sequence of sheaves

0→ Sk → Σ
k
i−1Si → Σ

k−1
i=1 Si → 0

is exact, the result follows by induction. �
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Let S ′ andS be sheaves ofa- modules and letS ′ have property(a). 198

If f and g are two homomorphisms ofS ′ → S , the set of points x for
which f|S′x = g|S′x is an open set.

Proof. Let W be the set of pointsx for which f |S′x = g|S′x and letxo ∈

W. SinceS ′ has property (a), there is an epimorphism

φ :
k

∑

i=1

aU → S ′
U

for some neighbourhoodU of xo. Then sincexo ∈W, fφh j lxo = gφh j lxo

( j = 1, . . . , k), and hence for some open setV j, with x0 ∈ V j ⊂ U,

fφh j1 = gφh j1 : V j → S.

V
1 // aV

hj
// ∑k

i=1 aV
φ // S ′

V

g
99

f
%%
SV

�

Let V =
⋂k

j=1 V j. If
∑k

i−1 ai ∈
∑k

i−1 Ai with x ∈ V, then

fφ(
k

∑

i=1

ai) = fφ(
k

∑

i=1

hiai) =
k

∑

i=1

ai fφhi1x

=

k
∑

i=1

aigφhi1x = gφ(
k

∑

i=1

ai).

183
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Hence fφ|
∑k

i=1 aV = gφ|
∑k

i=1 aV and, sinceφ is an epimorphism,
f |S ′

V = g|S ′
V. Thusxo ∈ V ⊂ W with V open. HenceW is an open

set.
The following result deals with the extension of stalk homomor-199

phisms.
Let S ′,S be sheaves ofa- modules such thatS ′ is coherent and

S has property(a). At a point x∈ X, let f : S′x → Sx be a homo-
morphism of Ax modules. Then there is a neighbourhood U of x and a
homomorphism f: S ′

U → SU whose restriction to S′x is fx.

Proof. SinceS ′ andS have property (a), there is a neighbourhoodW
of x and epimorphisms

φ :
p

∑

j=1

aW → S ′
W,

and θ :
q

∑

j=1

aW → SW.

For eachj = 1, . . . , p, choose an element
∑q

i=1 a j
i ∈

∑q
i=1 Ax such

that

θ















q
∑

i=1

a j
i















= fxφh j l′x

and choose sections

η j : V j →

q
∑

i=1

aV j

with x ∈ V j ⊂ W,V j open, such thatη j(x) =
∑q

i=1 a j
i , j = 1, . . . , p. Let

the homomorphism

g j : avj →

q
∑

i=1

avj

be defined byg j(a) = a · η j(π(a)). Then, fora ∈ Ax,

θg j(a) = θ(a · η j(x)) = a · θ(
q

∑

i=1

a j
i )
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= a · fxφh j1x = fxφh j (a).

200

Then the homomorphisms{g j} j = 1, . . . , p, induce a homomor-
phism

g :
p

∑

i=1

av →

q
∑

i=1

av

whereV = ∩p
j=1V j, such thatθg|

∑p
i=1 Ax = fxφ.

∑r
k=1 aU

ψ //
∑p

j=1 aU
φ //

g

��

S ′
U

//

ffx

���
�
�

0

∑q
i=1 aU

θ // SU

SinceS ′ has property (b), there is an open setY with x ∈ Y ⊂ V,
and homomorphism

ψ :
r

∑

k=1

aY →

p
∑

j=1

aY

such that imψ = kerφ. Then

θgψ

∣

∣

∣

∣

∣

∣

∣

r
∑

k=1

Ax = fxφψ

∣

∣

∣

∣

∣

∣

∣

r
∑

k=1

Ax = 0

by exactness. Hence by the previous result, there is an open set U with

x ∈ U ⊂ Y, such that the homomorphismθgψ
∣

∣

∣

∣

∑r
k=1 aU coincides with

the zero homomorphism. Thereforeθg induces a homomorphism

f :



















p
∑

j=1

aU



















/ imψ→ SU .

We can identify this quotient (
∑p

j=1 aU)/ imψ with S ′
U so thatφ 201

becomes the natural homomorphism; thenf is a homomorphismf :
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S ′
U → SU with fφ = θg

∣

∣

∣

∣

∑p
j=1 au. If s∈ S′x sinceφ is an epimorphism

there is some element
∑p

j=1 a j ∈
∑p

j=1 Ax such thats= φ(
∑p

j=1 a j). Then

f (s) = fφ(
p

∑

j=1

a j) = θg(
p

∑

j=1

a j)

= fxφ(
p

∑

j=1

a j) = fx(s);

i.e., the restriction off to S′x is fx, q.e.d. �

Let Y ⊂ X and either, let x be paracompact and normal and Y
closed, or, let X be hereditarily paracompact and normal. Let S ′, S
be sheaves ofa- modules over X such thatS ′ is coherent andS has
property (a). If f : S ′

y → Sy is a homomorphism of sheaves ofay
modules, there exists an open set U with Y⊂ U, and a homomorphism
g : S ′

U → SU such that g|S′y = f .

Proof. By the previous result, for each pointy ∈ Y there is an open set
Vy in X with x ∈ Vy and a homomorphismφy : S ′

vy → SVy such that

φy

∣

∣

∣

∣

S′y = f
∣

∣

∣

∣

S′y. Then by the first result of this lecture, the set of points of
Vy ∩ Y at whichφy = f is open inY. Hence there is a setWy open inX

with y ∈Wy ⊂ Vy such thatφy

∣

∣

∣

∣

S ′
Wy∩Y = f

∣

∣

∣

∣

S ′
Wy∩Y. �

We now show that there are systems{Gi}i∈I and{Hi}i∈I of open sets202

of X such that, ifG =
⋃

i∈I
Gi,

(i) H̄i ∩G ⊂ Gi ,

(ii) the system{Gi} is locally finite inG,

(iii) Y ⊂
⋃

i∈I
Hi ,

(iv) eachGi is contained in someWy.
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(1) If X is paracompact and normal andY is a closed subset ofX,
then the covering{X − Y,Wy}y∈Y of X has a locally finite refine-
ment{G j} j∈ j, and the covering{G j} j∈J can be shrunk to a covering
{H j} j∈J with H̄ j ⊂ G j. Let I ⊂ J be the set of indices for which
G j ∩Y is not empty. Then, fori ∈ I , Gi is not contained inX−Y and
hence is contained in someWy. Clearly Y ⊂

⋃

i∈I
Hi and conditions

(i), (ii), (iii), (iv) are satisfied.

(2) If X is hereditarily paracompact and normal, thenG =
⋃

y∈Y
Wy is

paracompact and normal. Then there is a locally finite refinement
{Gi}i∈I of the covering{Wy}y∈Y of G. SinceG is normal, the covering
{Gi}i∈I of G can be shrunk to a covering{Hi}i∈I with H̄i ∩ G ⊂ Gi.
The setsGi, Hi being open inG are open inX. Conditions (i), (ii),
(iii), (iv) are thus satisfied.

SinceGi is contained in someWy, there are homomorphismsψi :

S ′
Gi → SGi such thatψi

∣

∣

∣

∣

S ′
Gi∩Y = f

∣

∣

∣

∣

S ′
Gi∩Y. Let Ei j be the set of 203

pointsx ∈ H̄i ∩ H̄ j ∩G at whichψi |S′x , ψ j |S′x; thenEi j is closed inG.
Let E =

⋃

i, j
Ei j ; it is the union of a locally finite system of closed sets in

G, hence is closed inG. Let U = G − E, thenU is open inG, hence
open inX, andY ⊂ U.

Let g : S ′
U → SU be defined as follows: Forx ∈ H̄i ∩ U let

g|S′x = ψi |S′x. This gives a consistent definition ofg, andg is continuous
on each closed setS′

H̄i∩U
of a locally finite system inS′U (These closed

sets coverS′U). Thusg is a sheaf homomorphism andg|S ′
Y = f .

The above result for the case whenX paracompact and normal is
more useful in applications. In particular, the above results are when
bothS ′ andS are coherent sheaves ofa−modules.

Example 35.LetT be the space of ordinal numbers≤ ω1 with the topol-
ogy induced by the order, letQ be the space of ordinal numbers≤ ωo

and letX = T×Q. ThenX is compact Hausdorff and hence paracompact
normal. LetY1 = (T − (ω1))×ωo, Y2 = ω1× (Q− (ωo)) andY = Y1∪Y2.
Let a = S ′

= S = Z2, thenS is coherent. Letf : SY → SY be the
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homomorphism which is the identity onY1 and is zero onY2, There is
no extension off over an open set containingY.

Let Y⊂ X, and letS be a coherent sheaf ofamodules over X. Then
the restrictionSY is a coherent sheaf ofay modules.

Proof. SinceS has property (a), for eachy ∈ Y there is an open setW204

of X with y ∈ W and an epimorphismθ :
∑p

i=1 aW → SW. Then the

restrictionθ
∣

∣

∣

∣

∑p
i=1 aW∩Y :

∑p
i=1 aW∩Y → SW∩Y is an epimorphism. Thus

SY has property (a). �

To prove thatSY has property (b), let θ;
∑k

i=1 aW∩Y → SW∩Y be a
homomorphism whereW is an open set inX, and lety ∈W∩Y. Choose
a sectionfi : Vi → S, (i = 1, . . . , k)y ∈ Vi, throughφhi1y ∈ Sy and let
V =

⋂k
i=1 Vi. There is a homomorphismφ′ :

∑k
i=1 aV → SV defined by

φ′
∑k

i=1 ai =
∑k

i=1 ai fiπ(ai). If
∑k

i=1 ai ∈
∑k

i=1 Ay, then
φ′

∑k
i=1 ai =

∑k
i=1 ai fi(y) =

∑k
i=1 aiφhi1yφ

∑k
i=1 hiai = φ

∑k
i=1 ai .

Since the set of points ofY whereφ′ = φ is open inY, there is

an open setG of X with y ∈ G ⊂ V ∩ W, such thatφ′
∣

∣

∣

∣

∑k
i=1 aG∩Y =

φ
∣

∣

∣

∣

∑k
i=1 aG∩Y. SinceS has property (b), there is an open setU with

y ∈ U ⊂ G, and a homomorphism

ψ′ :
1

∑

i=1

aU →

k
∑

i=1

aU

such that the sequence

1
∑

i=1

aU
ψ′

−−→

k
∑

i=1

aU
φ′

−→ SU

is exact. Then ifψ = ψ′
∣

∣

∣

∣

∑1
i=1 aU∩Y, the sequence

1
∑

i=1

aU∩Y
ψ
−→

k
∑

i=1

aU∩Y
φ
−→ SU∩Y

is exact. ThusSY has property (b).
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Definition . A sheafa of rings with unit is called acoherent sheaf of 205

rings if it is coherent as a sheaf of -modules, i.e., it has property(b)
(Property (a) is trivially satisfied.)

If a is coherent andS is a sheaf ofa- modules, thenS is coherent
if and only if for each point x there is an open set U with x∈ U, and an
exact sequence

l
∑

i=1

aU
ψ
−→

k
∑

i=1

aU
φ
−→ SU → 0.

Proof. Necessity. If S is coherent, property (a) implies the existence
of φ and property (b) implies the existence ofψ. �

Sufficiency. Sincea is coherent,aU is coherent inU for each open
setU and so are

∑l
i=1 aU and

∑k
j=1 aU . As the image of

∑l
i=1 aU , im ψ

has property (a), and as a subsheaf of
∑k

j=1 aU , imψ has property (b).
Thus imψ is coherent, and there is an exact sequence

0→ imψ→

k
∑

i=1

aU → SU → 0.

Hence, since two of the sheaves are coherent, the third,S )U, is
coherent for a neighbourhood of each pointx and henceS is coherent.

Example 36.In the ringB = Z[y, x1, x2, . . .] of polynomials in infinitely
many variables with integer coefficients, letI be the ideal generated206

by yx1, yx2, . . . and let A = B/I . Then multiplication byy gives a
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homomorphismf : A → A whose kernelC consists of polynomials
in Z[x1, x2, . . .] without constant terms. Then theA- moduleC is not
finitely generated. Hence ifX is a consisting of one point, the constant
sheafA is not a coherent sheaf of rings.

Example 37.Let X = {x : 0 ≤ x ≤ 1} and letF be the ring of functions
f : X → Z4 for which f (x) = f (1) for x > 0 and f (0) = f (1) mod 2.
There are eight functions inF. Let a be the sheaf of germs of function
in F. Let g be the (constant) global section defined by the function
g : X → Z4 whereg(0) = 2 andg(x) = 0 for x > 0. The sheafR
of relations for this section is obtained by omitting froma the germs at
0 of functions f with f (0) = 1 or 3. Then the sections ofR over any
connected neighbourhoodU of 0 contain only the germs of even valued
functions, hence do not generateRU . ThusR does not have (a1) and
hencea has neither (b1) nor (b).

The sheaf of germs of analytic functions in the complex planeis a
coherent sheaf of rings.

Proof. Let a be the sheaf of germs of analytic functions in the complex
place, and letf1, . . . , fk be sections ofa over a neighbourhoodU of
a point zo, i.e., fi is an analytic function inU. We can write fi(z) =
(z−zo)ngi(z) wheregi does not vanish atzo and hence does not vanish in207

a neighbourhoodVi of zo, zo ∈ Vi ⊂ U. Let V =
⋂K

i=1 Vi. Let R be the
sheaf of relations between the sectionsfi |V, i = 1, . . . , k. We will show
thatR is finitely generated inV. �

Let P = C[z] be the ring of polynomials inz with complex coef-
ficient and letM be the submodule (overP) of the direct sum

∑k
i=1 P

consisting of elements (p1, . . . , pk) for which
∑k

i=1 pi(z)(z − zo)ni = 0.
SinceP is a euclidean ring and

∑k
i=1 P is finitely generated overP, the

submoduleM is finitely generated overp. (See van der Waerden , Mod-
ern Algebra, Vol, I, p. 106). Let (p j

1, . . . , p
j
k), j = 1, . . . , l, be a system of

generators forM. Let r j
i (z) = p j

i (z)/gi (z); then eachr j
i (z), i = 1, . . . , k,
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is an analytic function inV, and

k
∑

i=1

r j
i (z) fi(z) =

k
∑

i=1

p j
i (z)(z− zo)ni = 0 ( j = 1, . . . , l).

Thus for eachj, the section determined by (r j
i , . . . , r

j
k) is in R. We

will show that these sections generateR.
Let

∑k
i=1 tiz1, fiz1 = 0 be a relation between germs atz1 ∈ V, i.e., let

ti(z), i = 1, . . . , k, be analytic functions atz1 such that
∑k

i=1 ti(z) fi (z) = 0.
Then

∑k
i=1 ti(z)gi (z)(z− zo)ni ≡ 0. Letn = max(n1, . . . , nk) and suppose

thatnk = n. We can write

ti(z)gi (z) = (z− zo)nqi(z) + si(z), (i = 1, . . . , k− 1)

whereqi(z) is analytic atz1 andsi(z) ≡ 0 of z1 , zo and is a polynomial 208

of degree less thann if z1 = zo. Then

(t1(z)g1(z), . . . , tk(z)gk(z)) =

q1(z)((z− zo)n, 0, . . . , 0,−(z− zo)n1 + · · ·

+ qk−1(z)(0, . . . , (z− zo)n,−(z− zo)nk−1 + (s1(z), . . . , sk(z))

wheresk(z) is the analytic function defined by

sk(z) = tk(z)gk(z) +
k−1
∑

i=1

qi(z)(z− z0)ni .

Now, ((z − z0)n, 0, . . . , 0,−(z − z0)n1, etc. are inM and by direct
verification we have

∑k−1
i=1 si(z)(z−z0)ni ≡ 0. Sinces1(z), . . . , sk−1(z), are

polynomials, it follows thatsk(s)(z− zo)n, is a polynomial.

(i) If z1 , z0, thens1(z), . . . , sk−1(z) are all zero and

sk(z) = tk(z)gk(z) +
k−1
∑

i=1

qi(z)(z− z0)ni ,

(z− z0)nsk(z) = tk(z)gk(z)(z− z0)n
+

k−1
∑

i=1

qi(z)(z− z0)n(z− z0)ni



192 Lecture 33

= tk(z)gk(z)(z− z0)n
+

k−1
∑

i=1

ti(z)gi (z)(z− z0)ni

≡ 0,

hencesk(z) ≡ 0,

(ii) If z1 = z0, thensk(z) has a series expansion
∑∞

r=0 ar (z− z0)r and on
multiplication by (z− zo)n this series has a finite number of terms.
Hencesk(z) is already a polynomial.

In either case, (t1(z)g1(z), . . . , tk(z)gk(z)) is a linear combination of209

elements ofM with coefficients analytic atz1. Hence

(t1(z)g1(z), . . . , tk(z)gk(z)) =
l

∑

j=1

h j(z)(p
j
1(z), . . . , p j

k(z)),

whereh j(z) is analytic atz1. Then

(t1(z), . . . , tk(z)) =
l

∑

j=1

h j(z)(r
j
1(z), . . . , r j

k(z)).

Thus the sheafR of relations is generated by a finite number of
sections, hence the sheafa is coherent.

This result is a special case of Oka’s theorem, Cartan Seminar, 1951-
52, Expose 15,§5. The following proposition on the extension of co-
herent sheaves is based on Expose 19,§1, of the same seminar.

Proposition 22. Let Y⊂ X and either, let X be paracompact and normal
with Y closed, or, letX be hereditarily paracompact and normal. Let a
be a coherent sheaf of rings with unit over X and letS be a coherent
sheaf ofaY- modules over Y. Then there is an open set U with Y⊂ U,
and a coherent sheafJ of aU- modules over U whose restriction to Y is
isomorphic toS .

Proof. SinceS is coherent, there is a covering{V j ∩ Y} j∈J of Y, where
V j is open inX, and for eachj ∈ J an exact sequence

l j
∑

i=1

aV j∩Y

ψ j
−−→

kj
∑

i=1

aV j∩Y
φ j
−−→ SV j∩Y → 0.
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�
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From the properties ofX there exist systems{Gi}i∈I and {Hi}i∈I of
open sets ofX such that, ifG = ∪iGi,

(i) H̄i ∩G ⊂ Gi,

(ii) the system{Gi}i∈I is locally finite inG,

(iii) Y ⊂ ∪iHi,

(iv) eachGi is contained in someV j,

For the first case, we can assume that eachGi is anFσ set inX, hence
G and all intersections∩k

r=1Gir areFσ-sets and hence are paracompact
and normal. In the second case, all subsets ofX are paracompact and
normal.

Since eachGi is contained in someV j , there are exact sequences

l j
∑

i=1

aGi∩Y
ψi
−→

ki
∑

r=1

aGi∩Y
φ j
−−→ SG j∩Y → 0.

EitherGi is paracompact and normal withGi ∩ Y closed inGi or Gi

is hereditarily paracompact and normal, and the sheaves
∑li

r=1 aGi and
∑ki

r=1 aGi are coherent. Hence (see Lecture 32) there is an open setG′i
with Gi ∩ Y ⊂ G′i ⊂ Gi and an extension

ψ′ :
li

∑

r=1

aG′i
→

ki
∑

r=1

aG′i

of ψi . For the first case we may assume thatG′i is also anFσ- set. Let

S i
= (

∑ki
r=1 aG

′
i
)/ imψ′. Then, ifφ′ is the natural homomorphism, the

sequence
li

∑

r=1

aG′i

ψ′

−−→

ki
∑

r=1

aG′i

φ′

−→ S i → 0

is exact, i.e., 211
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0→ imψ′ →

ki
∑

r=1

aG′i → S i → 0

is exact and henceS i is coherent. There is an isomorphism

gi : S i
G′i∩Y → SG′i∩Y.

There are open setsH′i with H̄i ∩ Y ⊂ H′i , H̄′i ∩ G′ ⊂ G′i where
G′ =

⋃

i∈I
G′i . For the first case,G′ and all intersections∩q

r=1G
′
i areFσ

sets, hence are paracompact and normal.
For i, j ∈ I , there is an open setGi j , G′i∩G′j∩Y ⊂ Gi j ⊂ G′i∩G′j , and a

homomorphismfi j : S j
Gi j
→ S i

Gi j
such thatfi j

∣

∣

∣

∣

S j
Gi j∩Y = g−1

i g j

∣

∣

∣

∣

S j
Gi j∩Y.

For the first case, we may assume thatGi j is anFσ set. Then there is an

open setG′i j with G′i ∩G′j ∩ Y ⊂ G′i j ⊂ Gi j ∩G ji such thatfi j f ji

∣

∣

∣

∣

S j
G′i j∩Y

is the identity andf ji fi j
∣

∣

∣

∣

S j
Gi j∩Y. is the identity. LetEi j = H̄′i ∩ H̄′ j ∩

(G′ −G′i j ), thenEi j is closed inG′.
For i, j, k ∈ I there is an open setGi jk , G′i ∩G′j ∩G′k ∩ Y ⊂ Gi jk ⊂

G′i ∩G′j ∩G′k, such thatfi j f jk |Gi jk = fik |
∣

∣

∣Gi jk . Let Ei jk = H̄′i ∩ H̄′i ∩ H̄′k∩
(G′ −Gi jk ), thenEi jk is closed inG′.

Let E = (
⋃

i, j Ei j )
⋃

(
⋃

i, j,k Ei jk ) and letU = (G′ − E) ∩ (
⋃

i H′i ).212

ThenE is closed inG′ andU is open withY ⊂ U. Over eachH′i ∩ U
there is a sheafS i

H′i∩U ; over eachH′i ∩ H′j ∩U there is an isomorphism

f ′i j = fi j

∣

∣

∣

∣

∣

∣

S i
H′i∩H′j∩U : S j

H′i∩H′j∩U → S i
H′i∩H′j∩U

and f ′i j = ( f ′i j )
−1. Further, over eachH′i ∩ H′j ∩ H′k ∩ U these isomor-

phisms are consistent, i.e.,f ′i j f ′jk = f ′ik. Then by identification there is

determined a sheafJ overU such thatJH′i∩U is identified withS i
H′j∩U .

Then the isomorphismsgi : S i
H′i∩Y → SH′i∩Y induce an isomorphism

g : JY → S . Since eachS i
H′i∩U is coherent.J is coherent.
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