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Lecture 1

Sheaves. 1

Definition. A sheat? = (S, 7, X) of abelian groupsisamap: S onto,

X, where S and X are topological spaces, such that

1. ris alocal homeomorphism,
2. for each xe X, 771(X) is an abelian group,

3. addition is continuous.

Thatr is a local homeomorphism means that for each ppiatS,
there is an open s& with p € G such thatr|G mapsG homeomorphi-
cally onto some open se{G).

Sheaves were originally introduced by Leray in Comptes Rend
222(1946)p. 1366 and the modified definition of sheaves nad uss
given by Lazard, and appeared first in the Cartan Sem. 19%Xxpase
14,

In the definition of a sheal is not assumed to satisfy any separation
axioms.

S is called the sheaf space,the projection map, an¥ the base
space.

The open sets of S which project homeomorphically onto ogisn s
of X form a base for the open sets of S.

Proof. If pisin an open seil, there exists an oped, p € G such that
7|G mapsG homeomorphically onto an open sdG). ThenH NG is
open,p € HNG c H, andy|H NG mapsH NG homeomorphically onto
m(H N G) open int(G), hence open iX. O

1



2 Lecture 1

7 is a continuous open mapping

Proof. Continuity ofr follows from the fact that it is a local homeomor-
phism, and openness follows from the result proved above. o

The setS, = 771(x) is called the stalk of at x. Sy is an abelian
group. Ifz(p) # n(g), p + qis not defined.
Sy has the discrete topology

Proof. This is a consequence of the fact thwais a local homeomor-
phism. m|

Let S x S be the cartesian product of the sp&with itself and let
S + S be the subspace consisting of those paxs|) for which z(p) =
m(g). Addition is continuousneans thatf : S+ S — S defined by
f(p,g) = p+qis continuous. In other words, |if, q € S andr(p) = 7(q),
then given an ope@® containingp + g, there exist open setd, K with
p € H, g€ K such that ifr € H, se K andxn(r) = n(s), thenr + se G.
We may write this a$l + K c G.

Proposition 1. Zero and inverse are continuous.

(i) Writing Oy for the zero element of the groy, zero is continuous
means thaf : X — S, wheref(x) = Oy, is continuous.

Proof. Let x € X and letG be an open set containinigx) = Ox.
Then there is an open 98t such thatO, € G; ¢ G andn|G; is a
homeomorphism oB; onto opent(G1). SinceOy + Oy = Oy, and
addition is continuous, there exist open sdtsK with Oy € H,
Ox € KsuchthaH +K c G;. LetL = GinHNK, thenL is open,
O € L and#|L is a homeomorphism df onto openrz(L). Then
x = n(Oy) € n(L) and ify € n(L) there exists) € L with 7(q) =Y.
Theng € H, g € K and hencel + q € G1. Butg € Gy, andn|Gy is
1-1; henceg = SynG;. Therefore, sincg+q € SynNGy, q+q = q,
henceq = Oy. Thus ify € (L), f(y) = Oy € L. Thusxis in open
n(L), with f(mr(L)) = L c G. Hencef is continuous. (Incidentally
we have proved that eadBy is contained in an open set which
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consists of zeros only and which projects homeomorphiaailp
an open set oX.) O

(i) Writing- p for the inverse o in the groupS,(y, inverse is contin-
uousmeans thag : S — S whereg(p) = —p is continuous.

Proof. Let p € S, and letG be an open set containing- Then
there exists opeh containingO, ;) and consisting of zeros only.
Sincep+(—p) = Ox(p) and addition is continuous, there exist open
H,K,withpe H,—pe KandH + K c L. Hence ifge H,r e K,
n(r) = n(q), thenq +r = Oy, i.e.r = —g. We may assume that
n|H is a homeomorphism. Let

Hy = (rlH) (x(H) N ©(K N G)),

thenp € Hy, and sincer is open, continuoudl; is open. Then if
g € Hy, there exists € KNG with n(r) = #(q); thenr = —q = g(q). 4
ThusHj is open andy(H1) c G. Henceg is continuous. O

Corollary 1. Subtraction is continuous.
ii. f:S+S — S, wheref(p,q) = p— qis continuous.
Corollary 2. The set of all zeros is an open set.

Example 1.1f X is a topological space, ar@ is an abelian group fur-
nished with the discrete topology, let = (X x G, n, X) wheren(x, g) =
xand &, g1) + (X, g2) = (X, 01 + g2). Each stalkSy is isomorphic tdG.
Axioms a) and c) are easily verified. This sheaf is calleddbiestant
sheafassociated witie.

Example 2.Form the constant sheaf & Z, &, A) where A is the square
{(xy) :0<x<10<0c<yc< 1}, andZis the group of integers.
Then identify & 0) with (1 - x,1) in A to get a Mobius ban&, and
identify (x, 0, n) with (1 - x, 1, —n) in Ax Z to getS. The resulting sheaf
< = (S, 7, X) is the sheaf of “twisted integers” over the Mobius band.
EachSy is isomorphic to the group of integers.
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Example 3.Let X be the sphere of complex numbers. ISgtbe the
additive group of function elements &t each function element being
a power series converging in some neighbourhoos. dfet S = U,Sy
and definer : S —» X by n(Sx) = x. If pis a function element, a
neighbourhood op in S is defined by analytic continuation. Theri =
(S, m, X) is the sheaf ofanalytic function elementsEach component
(maximal connected subset) §fis a Riemann surface without branch
points. The sheaf spa&is Hansdoft.
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Example 4.LetS : {(x,y) : X¥* + y? = 1, x < 1} together with the group 6
of integersZ}. The topology on the former set is the usual induced
topology, and the neighbourhoods for an integee Z are given by
Ga(n) = {n,(xy) : X +y?*=L,a< x< 1} X:{(xy): x¥*+y?>=1}and
letr : S — X be defined byr(n) = (1, 0), 7(x, y) = (x,y). 771(1, 0) is the
groupZ, for other pints k,y) € X, 771(x,y) = (x,y) is regarded as the
zero group. Itis easily verified tha? = (s, 7, X) is a sheaf. Her§& is
locally euclidean, and has a countable base. The set ofrad Z2open
(Corollary[2) and compact but not closed; its closure is ohgact,S

is T1 but not Hausddf thoughX is Hausdoff.

Exercise If Xis aT, or aT; space, space, so%

So far we have only defined sheaves of abelian groups. It is now
quite clear how we can extend the definition to the case whersttlks
are any algebraic systems.

A sheaf of ringds a local homeomorphism : S — X such that
eachr~1(X) is a ring and addition and multiplication are continuous, i

f:S+S — Swheref(p,g) = p+0,
g:S+S — Swhereg(p,g) = p-q,

are continuous.

The sheaf of function elements (Example 3) where multiglica 7
of two function elements in the same stalk is defined to be thmlu
multiplication of power series is a sheaf of rings.

In the sheaf of twisted integers (Example 2) e&ghis isomorphic
to the ringZ, but this sheaf imot a sheaf of rings.

5



6 Lecture 2

A sheaf of rings with units a local homeomorphism : S — X
such that each™(x) is a ring with unit element,land addition, multi-
plication and unit are continuous; i,e.,

f:S+S—->Sf(p.g=p+q

9:5S+S—->Sf(p.g=p-q
h: X — Sh(x) = 14 are continuous.

Example 5.Let A be the ring with elements 0, b, c; where the rules
of addition and multiplication are given by

l1+1=b+b=c+c=0;
l+b=c,l+c=bb+c=1;
b?=b,c?=cbc=ch=0

[The ring A may be identified with the ring of functions defined on
a set of two elements with values in the fielgl]

Let X : {x,k £ x< 1}, S : subspace oK x A abtained by omitting
the points k, 1), (k,b); and letr : S — X, be defined byr(x,a) = x.
Addition and multiplication in a stalk are defined by

(% &) + (X &) = (X, a1 + ap),
(X&) - (X, &) = (X, a1 - &).

Then = (S,n, X) is a sheaf of rings, eacBy is a ring with unit, but
. is not sheaf of rings with unit.

A sheaf of (unitary lefth-modules, where = (A, 7, X) is a sheaf of
rings with unit, is a local homeomorphism: S — X such that each
n~Y(x) is a unitary left A-module and addition, and multiplication by
elements of A(for each x) are continuouys.e.,

f:S+S—>S, f(p,g)=p+aq,
g:A+S—S, g(a, p) =ap

are continuous
A+ Sis the subspace @& S consisting of all pairsg, p) for which

7(a) = 7(p)-
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[If Ris a ring with unit element, we say thM is a unitary, left
R-module if it is a leftR-module, and if 2 m = mfor eachme M.]

Example 6.Let a denote the sheaf of function elements on the complex
sphereX. Let Sy consist of all g, q) of function elements at. LetS =
U Sx. A neighbourhood off, g) is defined by analytic continuation of

xeX

p andqg. In eachSy addition is defined aspg, 1) + (p2, &) = (p1 +
O, 01 + Op); and if a is a function element & define multiplication
asa(p,q) = (a.p,aq). Definer : S — X, byn(p,q) = xif p, qare
function elements at. Then S, n, X) is a sheaf ob-modules.

Any sheafa of rings with unit can be regarded as a sheafaof 9
modules; the product ap fare Ay, p € A being defined as the product
ap inAy.

A sheaf of B-moduleshereB is a ring with unit element is a local
homeomorphismr : S — X such thatr%(x) is a unitary leftB-module
and addition, and multiplication by elements®#are continuous; i.e.,

f:S+S—S, f(pg)=p+40,
Ob:S — S,0v(p) = b.pforeachb e B

are continuous.

Let. = (S,x, X) be a sheaf of B-modules. This is equivalent to
saying that¥ is a sheaf of8-modules, wher® is the constant sheaf
(Xx B, 1, X).

Proof:

B is a ring with unit element. \ B(X x B, 1, X) is a constant sheaf.
< = (S,n, X) is a sheaf of abelian groups.
1) .# is a sheaf of B-modules. 1Y is a sheaf of8-modules.

This means thdb - pis de- This means that(p),b) - pis
fined such tha8y is a uni- defined such th& is a unitary
left B-module. leftx x B module.

2) Addition is continuous. 2) Addition is continuous.

3) Multiplication is continuous  3) Multiplication is comiious
meansthah: BxS —» S meansthaf): (XxB)+S —> S

h(b, p) = b- pis continuous.  g(n(p), b, p) = b.p is continuous.
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To prove the assertion, it is enough to show that the conirafi
h is equivalent to the continuity af. To do this, define : Bx S —
(X x B) + Sas¢(b, p) = (7(p), b, p), thengy = h.¢ is clearly 1-1. We
show thaip is a homeomorphism and the result will follow from this.
base for K x B) + S is formed by the setd) x b) + G whereG projects
homeomaorphically onta(G).

(U xb)+G=(Vxb)+GwhereV = U N n(G)
= (V x b) + H whereH = (7|G)"*V
= (7(H) x b) + H
= ¢(bx H).

Since the setb x H form a base foB x S, it follows that¢ is a homeo-
morphism.

Thus we may identify sheaves of k B, r, X)-modules with sheaves
if B-modules. By abuse of language, we wigdéor the ring as well as
for the constant sheakK(x B, 7, X).

Example 7.Let C be the ring of complex numbers? = (S,r, X) be
the sheaf of function elements on the complex spbeand forc € C,

p € S definec - p to be the usual product of a complex humber with a
power series. Thery’ becomes a sheaf & modules.

Example 8.Let C be the ring of complex humbers? = (S, r, X) be
the sheaf of function elements on the complex spbereorc € C and

(p.q) € S definec(p,q) = (c- p,c- Q).

Then. becomes a sheaf @-modules.

Example 9.Let . = (S, x, X) be any sheaf of abelian groups and4et
be the ring of integers. Fare Zandp € Sdefinen-p=p+---+p(n
times) ifn>0,n-p=-(-n)pif n <0, and 0 p = Oyp). Thus.” may
be considered as a sheafAodules.

Thus sheaves of rings with unit, sheavesBaihodules and sheaves
of abelian groups can be considered as special cases ofeshefa+
modules.
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Sections

Definition. A section of a shedfS, =, X) over an open set i X isa 12
map f: U — S such thatr - f = 1JU wherel|U denotes the identity
function on U. (A map is a continuous function).

By abuse of language, the ima§i@)) is also called a section.
For each open set & X the function f: U — S, where §x) = O
is a section.

Proof. Zero is continuous, ang(0y) = X. O

This section will be called the 0-section (zero section).

Proposition 2. If ¥ = (S,n, X) is a sheaf of abelian groups, the set
of all sections of¥ over a non-empty open set U forms an abelian
groupT'(U, .¥). If .7 is a sheaf of sings with unif;(U, .%) is ring with
unit element. I£¥ is a sheaf ofi-modulesI'(U, %) is a unitary left
I'(U, a)-module. If.¥ is a sheaf of B-module§(U, .) is a unitary left
B-module.

Note. The operations are the usual ones for functiong, d¢fe I'(U, ),
aeI'(U,a),be B, define

(f +9)() = T + 9(x), (fg)(x) = T(x) - 9(x),
@fNx) =ax - f(x),OF)x) =b- f(x).
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The zero element df(U, .¥) is the 0-section oved. If . is a sheaf of
rings with unit, the unit element af(U, ) is the unit section 1 U —
S where 1) = 1.

Proof. The proposition follows from the fact that addition zerogrse,
unit and multiplication (ring multiplication as well as $aamultiplica-
tion) are continuous. m|

Remark. If a = (X x B, 1, X) is a constant sheaf of rings with units, for
each open sdéi c X we can identifyB with the ring of constant sections
fp, b € B wherefy(x) = (x,b) overU. ThenB c I'(U, a) is a subring,
and by restricting the ring of scalars, eddfJ, a)-module becomes a
B-module. 8 need not be the whole 0f{U, a)).

Abuse of¢. If . is a sheaf oh-modules, we agree that the unique
section over the empty setis the 0-section, and the d&fp.s”) = 0.

Example 6.1f . = (S, x, X) is the sheaf of function elements over the
complex spher&, I'(X, .¥) can be identified with the ring of functions,
analytic inU. ThenT'(X,.¥) is the ring of functions, analytic every-
where, hence is isomorphic to the ring of complex numliers

Note.Usually a sheaf” = (S, r, X) may be interpreted as describing
some local property of the spa¥e thenT'(X, .#) gives the correspond-
ing global property.

A section f: U — S is an open mapping

Proof. This is proved using the fact thétis continuous and that is a
local homeomorphism. i

We can now characterise the sectionSof

The necessary and ficient condition that a set G S is a sec-
tion f(U) over some open set & X is that G is open and|G is a
homeomorphism.

Proof. The suficiency is easy to prove. To prove the necessity le¢ a
section ovelJ, then sincef is openf(U) is open. Sincd : U — f(U)
is 1-1, open, continuousg| f(U) : f(U) — U is a homeomorphism o
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We have shown that if f is a section over U then f is a homeomor-
phism of U onto (U).
The sections (U) form a base for the open sets of S.

Proof. We have already proved that the open set§ afthich project
homeomorphically onto open setsXfform a base for the open sets of
S O

The intersection (U) n g(V) of two sections is a section.

Proof. f(U)ng(V) is open and projects homeomorphically onto an open
set of X since each of (U) andg(V) has this property. O

If f: U — S isasection, the sgx: f(x) = O} is open in U.

Proof. {x: f(X) = 04} = n(f(U) n O(V)) (O denotes the 0-section over
U), hence is open ib. O

Definition. If f : U — S is a section, the support of f, denoted as supp
f,is the sefx: f(x) # Ox}. This setis closed in U. If f is a section ovets
X, supp f is a closedsubset of X

Note . Since the sections @ form a base for the open sets $f the
topology of S = USy can be described by specifying the sections. (See
appendix at the end of the lecture).

Leta = (A 7, X) be a sheaf of rings with unit, and Ist = (S, x, X)
andZ = (R, p, X) be sheaves ai-modules (all over the same base space
X).

Definition. A homomorphism h.¥ — Zisamap h: S — R such that
p-h = mand its restriction By = hy : Sy — Ry is an Achomomorphism
for each xe X

This definition includes as a special case the definition ofdmor-
phisms of sheaves @&-modules and sheaves of abelian groups.

Ifh: ¥ — % is a homomorphism, the image of each section is a
section
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Proof. If f : U — S is a section, themnf : U — R, the image of
the sectionf defined by (if)(x) = h(f(x)), is continuous ang(hf) =
Im- f =1U.

(1) his an open mapping
(2) his alocal homeomorphism
i

Proof. (1) If G c Sis open, thelt is a union of sections, hent€G) is
a union of sections dr, hence is open

(2) Eachp € S is contained in some sectioi{U). Sohf(U) is a
section inRandh|f(U) = hfx|f(U), and each of|f(U) : f(U) » U
andhf : U — hf(U) is a homeomorphism. O

Appendix.

A sheaf may be described by specifying its sections as fatl@up-
pose that we are given a spa¥eand mutually disjoint abelian groups
Sy, one for each poink € X. Also suppose that we are given a fam-
ily > = {s} of functions with domain open iX and values inJ,Sy,

s . dom(s) —» UxSy, such that, ifx € dom(s), s(X) € Sx. Suppose
further that

() the images for alk € Y, coveruSy,

(i) if s1(X), s(X) are defined then, for some opdh with x ec
dom(s:) N dom(sy), (s1 + )IU € 3,

(i) if s(xX) = Oy then, for some opel) with x € U c dom(s)s(U)
consists entirely of zeros.

If S = USy with {(U)}, for all s € 3 and open Uc dom(s), as base
for open sets and if(p) = x for p e Sk then(S, =, X) is a sheaf

Proof. Let p € s(U) N 51(U1) and letx = n(p). By (i) there exists
s with s5(X) = —p, by (ii) there exists a neighbourhodd of x with

(s+ o)V € X and by (iii), since §+ s)x = p— p = Ok there is a
smaller neighbourhoo®’ of x with (s + s)(V’) consisting of zeros.
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Similarly there is a neighbourhodd of x with (s; + $)(V}) consisting
of zeros. O

LetW =V'nV], then 6+ 5 + )W = §W = |W. Theng(W) isin 17
the proposed base ampde (W) c s(U) N s;(U;). Therefore the axioms
for a base are satisfied.

Thens: U — Sis continuous. For ik € dom(s) andp = s(X),
any neighbourhoo& of p contains a neighbourhoaos (U;) and again
there is an opeW with p € (W) = 5(W) c s(U;) c G. Hence
s: U — gU) is a homeomorphism, sinceis clearly 1-1 and open.
Thenr|s(U) is the inverse homeomorphism and its imageas open.
Thusr is a local homeomorphism.

Addition is continuous. For ip, g € Sk, with p+q € s(U>) suppose
p € S(U) andq € s1(U1). By (ii) there is a neighbourhood of x with
(s1+ )V € 3. Thenp+q € s2(U2)N(s+51)(V) and hence for somié/,
with x e W c Uy, NV, W = (s+ 51)|W. Thus, ifr € (W), t € s1(W)
andn(r) = n(t), thens(r) + si(t) = (t) € s (U>).
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If (S, 7', X) and §, r, X) are two sheaves @fmodules withS’ c Sand 18
if the inclusion map : S’ — S is a homomorphism, the®’ is an open
subset ofS since i is an open map; further the topology®fris the one
induced fromS. Thenn’ = 7 -i = 7|S" and sincd|S} : S} — Sy is a
homomorphismS; is a sub -Ay - module ofSy.

This suggests the following definition of a subsheaf.

Definition. (S, 7|S’, X) is called a subsheaf @8, r, X) if S” is open in
S and, for each x, 5= S’ N Sy is a sub - A- module of S.

A subsheaf is a sheaf and the inclusion map i is a homomorphism

Proof. For eachp € S’ there exists an open s& p € G c S, with
7|G a homeomorphism. TheB N S’ is open inS’ and @|S)IGN S’ =
nlG N S’ is a homeomorphismS; is anAy-module and the operations
which are continuous i8 are continuous in the subspagé Therefore
(S, 7S, X) is a sheaf. O

Sincei : S — Sisamap, andr-i = 7|S” andi|S} : S} — Sxis
the inclusion homomorphism of the submod8lg it follows thati is a
homomorphism.

The set of all zeros in S is a subsheaf of S

Proof. The set of zeros is open B, and § is a subAy-module ofSy.
O

This sheaf is called the 0-sheaf (zero sheaf) and is usutghtified 19
with the constant sheaff (X x 0, &, X).

15
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Ifh:.¥ — % is a homomorphism of sheaves, the sebfSp e S
such that lgp) = Oy forms a subsheaf”” of . called the kernel of
h(#’ = kerh), and the image set’S= h(S) forms a subsheaf o7
called the image of (@ = imh) .

Proof. (1) Sinceh is continuous and 0 (0 denotes the set of zerdg)in
is open, therefor&’ = h™1(0) is open. Eacls) = S’ N Sy is the
kernel ofh|Sy : Sx — Ry, henceS; is a subAy-module ofSy.

(2) Sincehis an open mas” is open. Eacls) = S NnRis the image
of the homomorphism|Sy : Sx — Ry, henceSY is a sub -Ay -
module ofR.

i

Definition. A homomorphism h.¥ — # is called a monomorphism if
kerh = 0, an epimorphism iim h = R, and and isomorphismkerh = 0
andimh=R.

Definition. A sequence

hj hjs1
= S — S S

of homomorphisms of sheaves is cakedct at¥; if kerhj,; = imh;;
itis calledexactif it is exact at each?].

Ifh:.¥ — % is a homomorphispthe sequence

0 — kerh— .7 5 imh — 0

is exact

Herei : kerh — . is the inclusion homomorphism, amd: &% —
im h is defined byt (p) = h(p). It is a homomorphism. The other two
homomorphisms are, of course, uniquely determined.

Proof. The statement is the composite of the three trivial statésnen
() i:kerh— . is a monomorphism,

(i) kerh = kerh,
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(i) b ;. — imhis an epimorphism.

m]
Definition. A directed setQ, <) is a set®2 and a relation<, such that
1) 1<1 (1eQ),
2) ifA<puandu <vthend < v(A,u,v e Q), 21
3) if A, u € Q, there exists a € Q such thatl < vandu < v.

That is, < is reflexive and transitive and each finite subse®dfas
an upper bound. (We also write> A for A < ).

Example.Let Q be the family of all compact subseafsof the plane let
C < DmeanC c D. Qis then a directed set.

Definition . A direct systemG,, ¢,,} of abelian groups, indexed by a
directed sef, is a systeniG, } o of abelian groups and a syste@,, :
G — Gu}a<u Of homomorphisms such that

(i) ¢a1: Gy — G, is identity,
(i) if A<pu<v, dyudpur = ¢va: Gy — G,.

Thusifd <p <vanda <k<v,theng, ¢, = ddra
The definition of a direct system will be the same even wher@the
s are any algebraic systems.

Definition. Two elements @ G, and be G, of U,.qG, are said to be
equivalent &ob) if for someyv, ¢,,a = ¢,,,b.

This relation is easily verified to be an equivalence retatidhe
equivalence class determined &will be denoted by &).

We will now define addition of equivalence classes. df &énd ()
are equivalence classese G,, b € G,, choose a > 1 and> u and
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define @) + (b) = (¢,2a + ¢y,.b).

Ga Gy
| |
G, G,

N, 7

To show that this does not depend on the choice dfoosey; > A
and> y, letv, > v and> v;. Then

¢vzv(¢v/la + ¢vp b) = ¢vz/la- + ¢vzpb
= ¢vzv1(¢v1/la + ¢vlpb)v

hencep,,a+¢,,b ~ ¢,,,b. Clearly the classf,,a+¢,,b) is independent
of the choice o andb.

If {Ga, 9.1} Is a direct system of abelian groups, the equivalence
classes form an abelian group G called the direct limit of slgetem

Proof. ThatG is an abelian group follows easily from the fact that each
G, is an abelian group. m|

The zero element @&, is the class containing all the zeros of all the
groupsG,.

Clearly, if eachG, is a ring, therG is a ring, and similarly for any
other algebraic system.

The functiong, : G, — G, whereg,a = (a) is a homomorphism
and ifA < u, ¢p¢p/l =¢,.

Proof.

ga(@+b)=(a+b)=(a)+(b) = pra+ pab,
$u($18) = (#.23) = (@) = P2
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Example.Let (N, <) be the directed set of natural numbers. For each
natural numbenletG, = Zand ifn < m, let¢mn : G, — Gm, be defined

mla . o . .
by ¢mna = R The direct limit is isomorphic to the group of rational
numbers.

Example.Let (N, <) be as before. For each natural numbget G,, be
the group of rational numbers modulo 1 and & mlet ¢mn : Gn — Gmy
I
be defined bymna = %. The direct limit is zero.
If {G,, ¢4} is a direct system of abelian groups andlfif : G, — H}
are homomorphisms into an abelian group H withy,fi—¢,, there is

a unique homomorphism f G — H of the limit group G such that
for =T

Proof. Sincef,¢,, = i, all elements of an equivalence class have the
same image itd. Thenf is uniquely determined b¥(¢,a) = f,a. O

For any two equivalence classes, choose representativds in 23
someG,. Then

f(pya1 + ¢,b1) = o, (ar + by)
= f¢>va1 + f¢vb1

sincef¢, = f, is a homomorphism. Thukis a homomorphism.
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Definition. Let S be a unitary left A-module and R a unitary left B4
module; a homomorphism : (A,S) —» (B,R) is a pair (¢’ : A —
B,¢” : S —» R) where

¢’(a+h) =¢'(a) + ¢'(b). ¢'(ab) = ¢'(Q)¢'(b).¢'(1) = Labe A
¢"(s+1) =¢"(9) +¢"(1).¢" (a9 = ¢'(@)¢"(9). s te S,ac A

[Remark. For a homomorphism : (A,S) — (B,R), we sometimes
write only ¢ for both¢’ and¢”.]

Direct systems and direct limits are defined for arbitraigeltaic
systems. Thus if2 is a directed set anf\;, S,, ¢4, 1 € Q, where
ur = (¢,1,1/1:AA—>A;1’¢:;/{:S,{—>S;1)’ is a direct system of unitary modules, the
direct limit consists of a ringh\ with unit element, and a unitary left-
moduleS, and there are homomorphismg : (A, S;) — (A, S) such
that, if A <, dudua = Pa.

The unit element ofA is the equivalence class containing all the
unit elements of alA;, and the zero oA is the class containing all the
zeros. Thus, if 1 = 0, in someA,;, 1 =0 in A and hence for ath € A,
a=1-a=0-a=0,andforallse S, s= 0, and the direct limit consists
of the pair (0,0).

If hy : (A1, Si) — (B,R) are homomorphisms with,imu = hy,
there is a unigue homomorphism (A, S) — (B, R) such that b, = h;
for eacha.

Proof. This is proved exactly as in the last lecture. o 25

21
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Definition. If Q is a directed set, a subs& of Q is said to be a subdi-
rected set of, if, with the induced order relation, it is a directed set.

Definition. A subsef)’ of a directed sef2 is said to becofinalin Q if,
for any elementi- € Q, there exists & € Q' with A < v.

If Q' is cofinal inQ, Q' is a subdirected set
Proof. This is simple. m|

If 3 = {A1, Sa duatapeq is a direct system and §” is a subdirected
set ofQ, then))” = {Ay, Sy, dual, A, u € Q' is also a direct system. Let
(A',S") be its direct limitandy’, : (A, S,) — (A, S’) for 1 € Q. Since,
for A < u € Q' ¢ ¢ = ¢, there is a unique induced homomorphism
(A, S) = (A S)withig), = ¢,.

(AL S2) —2- (An S~ (N, )
bu :

(A.S)

A

If Q" is cofinal inQ, theni: (A", S’) — (A, S) is an isomorphism

Proof. Each classp, a of | J A, has a representative ih) A, and if
Q

AeQY
a,e U Ajanda~ oin Y thena~ oin}'. Thusi’ : A —» Ais an
AeQY
isomorphism. Similarly” : S’ — S is anan isomorphism o

If {Ay, Sy, 4.1} and {By, Ry, 6,1} are direct systems indexed by the
same directed se®, and if {f, : (A,S,) — (B4, R;) are homomor-
phisms such that,,, = 6.f1 : (A,S) — (Bu,Ry), there is a
unique homomorphism f (A,S) — (B, R) of the limit modules such
that f¢,1 =6,f,.

(ALS) 2 (AnS)  (ALSY) -2~ (AS)

N

(Bi,Ry) o (Bu.RY) (Bx, Ry o (B,R)
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Proof. Leth, = 6,f; : (AA,SA) - (B, R) Thenhﬂqu = 9# fp¢,u/1 fi =
0,0,., = 0,1 = h;. Therefore there is a unique homomorphigm
(A,S) — (B,R)with f¢, = hy, i.e. with f¢, = 0, f,. O

If {A1, Sa, dual, (AL R 61}, (AL, Qa, ¥4} are direct systems of uni-
tary left modules (with direct limits S, R, Q respectivehdexed by the
same directed s&®, with¢/ , = ¢, = ¢, , : Ay = A, and if, for each

f
1eQ, S, N R, BN ©, is an exact sequence of homomorphisms of A
- modules, and if commutativity holds in

g f;
(A1, S1) — (AL R) —— (A1, Q)
eu/l eu/l lﬁ;u

(Aus S) —5~ (AR — (A, Qu)
then the sequence of induced homomorphisms of A-modules
S>R—->Q
is exact 27

Proof. Consider the following commutative diagram:

(A, S1) —2= (A, RY) N (A1, Qi)
[ Our Yua

(A )~ (A R) — (A Q)
% " wﬂl
(AS) —1~ (AR ——(AQ

() img c kerf. Forif s, € S, for someq, ¢,5 = S1, s€ S,. Then

9(¢a9) € img, and f(g¢,9) = va(fagss) = ¥a(0) = (0). Hence
go.s € kerf.
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(i) ker f cimg. Forifry € R, then for somel, 6,y =ry,r € R;. Let
0,r € kerf. Thenf(8,)r = 0 = y, f,r, this means thaf,r ~ 0,
hence there existsia> A such that

Yua(far) = 0= £,(6uar),1.€.0,,r € kerf,

and kerf, is equal to ing, by assumption, hence there must exist
anse S, such that,,r = g,s, i.e.

(Q.e.d.) 0ir = 60,0,,r = 6,9,S=06,S€img.

O

Definition. A bihomomorphismf : (A,R,S) — (B, T), where A, B are
commutative rings with unit elemerR, S, are unitary A-modules and
T is a unitary B-module, isa pafff’ : A— B,f” : RxS — T) such
that f is bilinear. More precisely,

f'(ay + ap) = f'(a) + f'(a), f'(a1a2)
= f'(a)f'(a). f'() = Laj,ap € A,
f7(r,as + apsp) = f'(a)f”(r, 1) + f'(a)f’(r, ), r e R s, €S,
f(agr1 + agro, 8) = f'(ag) f”(r1, 9) + f'(a2)f”(r2, 9),r1,r, e R se S.

If A= Bandf’is the identity, we writef : (R,S) —» T.

Given(A, R, S) there exists a unitary A-moduled S and a biho-
momorphismr : (R'S) - R®a S where imx generates ®a S such
that, for any bihomomorphism :f(A,R,S) — (B, T) there is a unique
homomorphisnt : (A,R®a S) — (B, T) with fa = f.

The moduleR®a S together with the bihomomorphismis called
atensor producbof R andS over the ringA,; it is uniquely determined
upto isomorphism. Hence we can say 'the’ tensor produ& afidsS.

Proof. For the proof of the existence of the tensor product, see-Bour
baki, Algebre multilineaire. We give only the proof of unepess. o
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(A,R®AS)

a

(ALR'S) 7| |a

(A,R®, S)

Let R®), S andR®a S be two tensor products d® and S over
A. Then by definition of the tensor product the bihomomorphism
induces a homomorphisma’ - (A,R®a S) — (A,R®), S) such that
@ -a = . Similarly & induces a homomorphismsuch thatva’ = «.
Thenco” - a is the identity ofR®), S, similarly ae’ is the identity of
R®a S. Hencea is an isomorphism.

If we identity R®), S with R®a S under this isomorphismy” will 29
coincide witha

Example .Let A be a commutative ring with unit elemer, a uni-
tary A-module, and consideA itself as a unitaryA-module. Define
a: (AAS) - (AS)asa(a s) = as Thena is verified to be a biho-
momorphism. Iff : (A, A, S) — (B, T) is any bihomomorphism, define
the homomorphisnf : (A,S) — (B,T)asf’a = f’a, f”s= f"(1,9).
Then

f7a(a, 9 = f7(a9 = f”(L a9 = f'@)F" (19 = f(a 9.

Thus fe = f, andS with the bihomomorphisna : (A,S) — Sis the
tensor producA ®a S.
Similarly S @ A = S with a(s, @) = as
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Definition. A homomorphisng : (A,R,S) — (B, P, Q) consists of ho- 30
momorphism$A, R) — (B, P) and(A, S) — (B, Q) (in the sense already
defined), where the homomorphism-AB is the same in both cases.

A homomorphismyp : (AR, S) — (B, P, Q) induces a map : Rx
S — P x Q. We now consider the following diagram:

(ARxS)—2 = (B,Px Q) —~ (C,T xU)
| T |

Hereg, 6 are the induced maps andggs, y the bihomomorphisms in-
cluded in the definition of tensor products. Further, the borarphism
¢ induces a unique homomorphispras indicated, such tha = B¢,
and similarlygg = y6. From the uniqueness, we hawe = sbarg. If ¢
is the identity ther also is the identity.

The operator of taking the tensor product commutes with fezas
tion of taking the direct limit

Proof. Let {A;, Ry, Sa, ¢ua)auca be a direct system, where eaghis a
commutative ring with unit elemenR, andS, are unitaryA;-modules
andg,, : (A, R1,Sa) = (A, Ry, S,) are homomorphisms. Then, since
¢, is the identity andb,a = b = bya - ¢a(d < u < v), the system
{A1,R1®a, Sy, @A} is a direct system. Let its direct limit be denoted by

(A.Q). o

27
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Pua ¢
(AL R, S) —— (A, R, S,) —

(AARS)

(A/h R, ®a, S/l) T (A/b R,u ®A,l S,u) $—> (A’ Q)

We define a bhihomomorphisp: (AR S) — (A, Q) as
B(r, ) = daca(ra, S,

wherer, and s, are respresentatives ofe R, s € S, for the samel.
Since
Guu(BaT 1 uaS1) = Budaaa(ra, $1) = paaa(r s, 1)
B (R S) —» Qisindependent of the choice of representatives. For a
suitable choice of representatives,
B(r,bs+cs) = graa(r, ;s + &1S)
= ga((ba - @a(ra, s1) + €1 - aa(ra, )
= ¢a(ba) - paa(ra, S)) + a(C)draa(ra, s))
=b-p(r,9 +c-p(r,9)
and similarly
Br+cr',s)=b-Br,s)+c-B(r',s)

Thusg : (R S) — Qis verified to be a bihomomorphism. Clearly im
B generate®), for, eachg € Q has a representativg in someR, ®a, Sy
and, since imy, generate®R; ®, Sy, G = XX, a&. a(ri, s), & € Ay,
rreRy, s€S,. Then

K K
q= Z d@)paaa(ri, s) = Z d(&)B(Pari, $aS)
i=1 i=1
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which proves that inB generate®.

We now show tha@) together with the bihomomorphisp: (R, S)
— Qis the tensor produd®®a S. To do this, letf : (AR, S) — (B, T)
be any bihomomorphism, then for eathf¢, : (A, Ri,Sa) — (B, T)is
also a bihomomorphism, hence it induces a unique homonsnpfyi :
(A1, Ri®a, S2) — (B, T) where for eachl < p, fupr - @1 = fuaudur =
foupua = T = fray. Hence, since inyv, generateR, ®a, Sy, fudua =
fa. Therefore there is a unique homomorphism(A, Q) — (B, T) with
fe, = fi. Then

TA(1,9) = fgaaa(ra, 1) = faaa(ra, 1) = foulra, s0) = 101, 9);
and the proof of the statement is complete.

Presheaves.

Let Q be the set of all open sets ¥f with the order relatiom, i.e.
U o Vs equivalent to saying thdd < V. thenU > U and ifU > V
andV > WthenU > W and givenU, V there existaN = U NV with
U > W,V > W; henceQ is a directed set.

Definition. A presheaf of modules over a base space X is a direct system
{Au, Su, ¢vu} indexed by, such that(As, Sy) = (0, 0), where¢ is the
empty set.

For a presheaf oveX, the index sef2 is always the family of all
open sets oK.

The definition of a presheaf includes, as a special casegfiratobn 33
of a presheaf oB-modules, presheaf of rings with unit element and a
presheaf of abelian groups.

Example 10.Let X be the complex spherdy, the ring of all functions
analytic inU if U is a non-empty open set adg = O; and, if f € Ay
andU o V, letgyy f = |V, i.e. ¢yy is the restriction homomorphism.
Then{Ay, ¢vu} is a presheaf of rings with unit element.

Presheaf of sectionsLet a be a sheaf of ringwith unitand.” a sheaf

of a-modules. For each opd, the ringT’(U, .¥) is a unitaryl'(U, a)-
module. IfV c U, let

¢VU : (F(U’ C(), F(U’ e5”)) - (F(V, a)’ r(\/v y))
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denote the restriction homomorphism. By conventidqsh,a) = o, T’
(¢, .7) = owhereg denotes the empty set. THIEU, a), I'(U, .¥), ¢vu}
is a presheaf denoted by, (), and is called the presheaf of sections of
(a, ).

For eachx € X let Q4 denote the family of all open subsets Xf
containingx. ThenQy is a subdirected set @. If {Ay, Su,¢vu}isa
presheaf, let A«, Sx) denote the direct limit of the subsystem
{Au, Su, ¢vu} indexed byQy, and letgyy : (Au,Su) — (Ax Sx) be
the homomorphism which sends each element into its equivalelass.
If a € Ay, its imagegyua = ay is called thegermof a atx; similarly
for s € Sy. We will denote bya : U — [J A4 the function for which

X
a(x) = ay, and similarly fors: U — |JSx. For eachW c U we write

aw = a(W) = {ayx : xe W}, and simila)r(ly forsy.

[For instance, in ExampledLO, ff is analytic inU, x € U the germ
fy is the class of those functions each of which coincides Withsome
neighbourhood ok.]

Let A = UxAx, S = Uy Sx. Definer : A - X, n:S - Xby
7(Ay) = X, 1(Sx) = x. Thenta: U — U, ns: U — U are the identity
maps orJ.

We can takday}y, a € Ay as abase for open sets in.Aor, {ay}
coversA and if p € ay N by, X = 7(p), we havep = ay = by with
ac Ay,be Ayandxe UnV. Then for somaVN with xeWc U NV,
dwu a = ¢pwy b = c say. Since

dxud = dxwdwua = dxwC = dxwdwvb = ¢xyb for eachx e W,

we havecy = aw = bw. Thenp € cw = aw = bw c ay N by. Similarly
the setq sy} form a base for open sets $
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With the notations introduced in the last lecture, we prove 35

Proposition 3. If {Ay, Su, ¢vu} is a presheaf of modules over the space
X, thena = (A, 7, X) is a sheaf of rings with unit and” = (S, r, X) is a
sheaf ofa-modules.

Proof. If ae Ay,a: U — Ais continuous. For, iy € by with b € Ay,
there existg € Ay with x e W c U n'V such thaa(W) = ay = cw =
bw c by. Alsoa: U — Ais an open mapping since, for op¥nc U,
av = (¢vud)y is open by definition. m|

Hencea : U — ay being 1-1 is a homeomorphism and the inverse
7lay : ay — U is a homeomorphism @y onto the open sdf.

Similarly s: U — Sis continuous and|sy : sy — U is a homeo-
morphism. Thus andn are local homeomorphisms.

For eachx € X, 71(x) = Ay is a ring with unit element, and (x) =
Sy is a unitary leftA,-module.

Addition is continuousfor if ay, by € Ax (with a € Ay, b € Ay,
x € UnNU;) anday + by € cy, with c € Ay,, then for someéwN with
xe W c UnUzn Uy ¢wua + dwu, b = dwu,C. Thusay € aw,
by € by and for anyp € ay, q € by with 7(p) = 7(g) = y say, we have
p+q=ay+by=cyeCy,.

The unit is continuoydor if 1y € Ay is the unit element oA, and
1, € by, then for someé/ with x e V c U, ¢yyb is the unit element of
Av. Thenby c by and consists of the unit elementgftry € V.

Similarly the other operations afand.” are continuous. 36

31



37

32 Lecture 7

We remark thaty, sy - -- aresectionsand that such sections form
a base for open sets 8f S.

Remark. The “sheaves” introduced originally by Leray were actually
presheaves with the indexing $etonsisting of the family of all closed
sets instead of the family of all open sets.

Example 11.Let X be the circlglzZ = 1; for each open sdil of X let
Sy be the abelian group of all integer valued functiontliand letgyy
be the restriction homomorphism. This system is a preshedftlze
induced sheaf has Example 4 as a subsheaf.

Example 12.Let X be the real line, an&y the R module R denotes
the ring of real numbers) of all real indefinitelyfidirentiable functions

in U and letgyy denote the restriction homomorphism. This system is
a presheaf and the sheaf sp&cef the induced sheaf is not Hauséor

Let (a,.%) be a sheaf,d ;77) its presheaf of sections and ()
the sheaf determined by,(¥). We show thatd’,.’) and @,.¥) are
canonically isomorphic.

(a,)
7 ~
v AN
s N
e h N\

(a,) (a,')

If x e Uandf € T'(U,a), lethyf = f(X) € Ac. Similarly, if
seT(U,.¥), lethyys= 5(X) € Sx. Then

hXU : (F(U, a)’r(U7y)) - (AX7 SX)

is a homomorphism and, ¥€ V c U, hyy¢vy = hyy. Then there is an
induced homomorphisth : (- - -, S}) — (Ax, Sx) with hygxu = hyu.

In fact hy is an isomorphism. For ip € Ay, then there is some
sectionf : U —» Awith f(x) = p, then

p="f(X)=hxf =hxpxuf €imhy,
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and if p” € A, with hyp’ = O, choose a representatives I'(U, a) for p'.
Thenf(x) = hyyf = hyp’ = O. Hence, for somé&/, with x e V c U,
fIlV = 0. Therefore

P =¢xuf = dxvopvuf = pxvOv = (O).

Thushy : Al — Ay is an isomorphism and similarly : S} — Sy
is an isomorphism.
Leth: (A',S") — (A, S) be given byh|(A}, S}) = hy. If T e (U, a)

and fy is the induced section idl, given by f(X) = ¢« f, then
hf(X) = hef(X) = hedyu f = hey f = F(X)

and thush(f_(U)) = f(U). The same holds & € T'(U, .¥).

Thush is an isomorphism of stalks for eachand, since it maps
sectionfy onto sectionsf(U), h is a local homeomorphism and hence
is continuous. Thul: (¢/..) — (a,.¥) is a sheaf isomorphism.

We identify(a’, ") with (a, .) under this isomorphism. 38

If a € A htais the class of all section§ : U — A where f(U)
containsa, and similarly forn!s.

Definition. If 33" = {A{}, S{,, ¢\,,} and 3 = {Ay, Su, ¢vu} are preshea-
ves over X, a homomorphism:£ >’ — 3 is a systenify} of homo-
morphisms {§ : (A}, S{;) — (Au, Su) such that §¢{,, = ¢vu fu, that
is, the following diagram is commutative.

(A, S)) 2o (A, 1)

ful fvl

(Au, Su) e (Av, Sv).

Let («/,."), (0,.) be the sheaves determined By, >. Then
the homomorphism f >’ — Y induces a sheaf homomorphism: f
(«,. ) - (a, ).

Proof. For eachx, {fy}xeu induces a homomorphisrfy : (A}, S}) —
(Ax, Sx), with fy¢l, = ¢xufu and these homomorphisify define a
functionf : (A',S’) — (A, 9). O
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If for & € A}, fu@ = a, then

ax = ¢xua = oxu fud = fxgi @ = fx(@).

Thusf(af;) = ay andf is alocal homeomorphism, hence is continuous.
Hencef is a sheaf homomorphism, and this completes the proof.

Let >, be a presheaf which determines the sheafA), (a,.) the
presheaf of sections and' (.’) the sheaf determined by it. The func-
tions fy : (Au,Su) — (F(U, a),F(U,jﬁ)) (where fya is the section
a: U — Adetermined by, and similarly forfy s), determine a homo-
morphism,f = {fy} : 3 — (a,.%). In general, the homomorphisiin
is neither an epimorphism nor a monomorphism, hence oblyioud a
isomorphism.

The induced homomorphisnm: fa, .) — («/, %) is the identifying
isomorphism ht.

Proof. Leta € A and suppose tha = ¢,ub, b € Ay. f(a) is the class
at x containing fyb which is a section withfyb)(X) = ¢xub = a. Thus
f(a) is the clas$* a of all sectiong : U — Awith g(x) = a. O

f

Yo
I /// I
Y - ¢ \
@9 @
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" f :
Proposition 4. If 3/ LN > — > is an exact sequence of homomo#o
phisms of presheaves, i.e. if each sequence

g f
(Au, Sy) — (Au, Su) — (Au, SU)

f
is exact, then the induced sequerfééi < — " of sheaves is also
exact.

Proof. The sequencedA(, S}) — (Ax, Sx) — (Ax, SY) are exact by a
property of the direct limit. O

Induced homomorphism of presheaves of sectidhs?”’, . are
sheaves ofi-modules andy : ./ — .¥ is a homomorphism, there
is a homomorphisng . .’ — . of the presheaves of sections with
ou : (U, ") - I'(U, ) defined bygy (f) = gf. This homomorphism
takes all sections througti € S’ into sections througlys. Thus, with
the usual identificatiorg inducts the sheaf homomorphigm s’ — s.
Quotient Sheaves.

Proposition 5. If . is a sheaf of a-modules ang” is a subsheaf of
<, there is a unique shea#””, whose stalks are the quotient modules
S{ = Sx/S;, such that . .¥ — .” where |Sy = jx : Sx — S is the
natural homomorphism, is a sheaf homomorphism.

" is the quotient shea¥#” = . /.7".

Proof. If S” = (JySx/S is to have a topology such that: . — 41
" is a sheaf homomorphisn®” must be covered by sections which

35
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are imagejf(U) of sections of.#, and this uniquely determines the
topology of S”. This topology has the property that a $&bf S” is
open if and only ifi 1V is open. Thus”” if it exists, is unique. m]

'Y, ") is a subF(U, a)-module ofl'(U, .%) and letg\y|T(U, .7”)
= ¢y, LetS]) = T'(U,~)/I(U,.#”) and letjy : I'(U,.) — S[] be
the natural homomorphism. Léf,, : S| — S{; denote the homomor-
phism induced byyy. Then}” = {Ay, S{}, ¢} is a presheaf and the

R S
sequence G- (a,.’) — (a,.%) EN > — 0 is exact, where 0 is the
presheafAy, Oy, ...}. Then the induced sequence of sheaves

0.5 98 97 0,

where.”” is the sheaf determined By, is exact. That is, for eack
the sequence

058,58 58/ >0
is exact. Thusjyx induces an isomorphisBy/S; — S}, and if we

identify S with Sy/S;, jx : Sx — Sx/S% is the natural homomorphism.
Thus a sheat””” having the required properties exists.

Definition. A homomorphismf : (a,.) — (%, %) consists of maps
f”: A- Bandand f' : S —» R, commuting with the projections, such
that the restrictions f= f’|Ax — Bxand f = f”|Sx : Sy — Ry give a
homomorphismf= (fy, f') : (Ax, Sx) = (Bx, Rx).

If f : (a.¥) - (8B,R) is a sheaf homomorphism and.#’, %’
are subsheaves o¥’, # respectively such that($’) c R/, there are
induced homomorphisms

f:(@.7") = (B.%), " :(@.7]7") = (B. %],

with fi = if’, f”] = jf, where i denotes the inclusion homomorphism
and j the natural homomorphism of a sheaf onto a quotientfshea

Proof. The result is clear for stalks, and the fact ttigt f”” are homo-
morphisms follows from the fact they are continuous. m|
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Example 13.Let X be the circlelz = 1, let.¥ be the constant sheaf
(X x Z, 7, X) of integers ovelX and let.”” be the subsheaf obtained by
omitting the points (In) for n # 0. Then.”/.” is isomorphic to the
sheaf of Example 4.

Example 14.Let X be the complex plane. L& be the additive abelian
group of functions analytic itJ, let S| be the multiplicative abelian
group of non-vanishing analytic functions thand letjy : Sy — §{j
be the homomorphism defined by f = €¥'. The systenjy} gives
a homomorphism of presheaves and there is an induced expErsm
of sheaves

0-Z2—->9Y—>9"->0

whereZ is the constant sheaf of integers. An element@f,.&) is a 43
function analytic in the whole plane.

More generally, in this examplX can be replaced by a complex
analytic manifold.

Tensor products of sheaves.
Let a, #Z be sheaves afommutative rings with unit elemelet 7,
% be sheaves af-modules and leff be a sheaf of4-modules.

Definition. A bihomomorphismf : (a, %, %) — (%4,9) consists of
maps f: A— B, f” : R+S — T, which commute with the projections,
such that, for each x X, the restriction § : (Ax, Rx, Sx) — (Bx, Tx) is

a bihomomorphism.

IfreT(U, %), seT'(U,~) there is a sectioh: U — T defined by
t(x) = f7(r(x), s(x)). Thatt is a map follows from the fact that it is the
composite of the two maps

fI/
U=U+U5R+S—>T:

whereU + U is the set of pointsx x), x € U. We writet = f//(r, s).
Then fy : (Au,Ru,Su) — (Bu,Ty) whereAy = I'(U,q), etc., is a
bihomomaorphism, as follows from the property at each.g.

fi(ar, )(¥) = £ ((@r)(x). s() = £ (@(r(x). s(x)
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= (a(x)). 17 (r (3. s(x)) = (f;(@)(X- 5 (r. 9)(¥)
= (f; (@15 (r. 9)(X)

and similarly the other properties can be proved. Cle&jlgommutes
44  with the restriction of functionsfy¢yy = 6vu fu.

(Au,Ru,Su) L, (Bu, Tu)

w|

(Av,Rv,Sv) Vi (Bv, Tv)
¢xv 9xv

(Ax, RX? Sx) T> (Bx, Tx)

Also fxpxu(r,s) = f(r(x),s(X)) = fu(r,9)(X) = Oxufulr,9); ie.,
fxdxu = Oxufu. Thus the bihomomorphisnfi is determined by the
system of bihomomorphismdy}.

Proposition 6. If a is a sheaf of commutative rings with unit, asgl
. are sheaves of-modules, there exists a she&f of a-modules and
a bihomomorphismr : (Z,.¥) — 2 with im ax generating Q for
each x, such that if £ (a, Z,.) — (4, #) is any bihomomorphism
there is a (uniqgue) homomorphistm: (a, 2) — (£, #) with f.a = f.
The sheaf? together with the bihomomorphismis called the tensor
productZ®,.¥ and is unique upto isomorphism. Eack Qgether with
ay : (Rx, Sx) — Qx is the tensor product R4, Sx. The sections @)
where @x) = Zik=1 ax(ri(¥), s(X) with r; € T(U,a), 5 € I'(U,.¥) and
0 < k < o0, form a base for the open sets@f=  J; Qx = Ux Rx®a, Sx.

45  Proof. Let {Ay,Ru, Su, ¢vu} be the presheafa_(,%T,,Y_) i.e., Ay =
F(U, (1), etc. For eacIaSVU, ¢l/U . (Au, Ru, Su) - (Av, Rv, Sv) there is
an induced homomorphis#yy : (Au, Ru ®a, Su) — (Av, Ry ®a, Sv)
and the systen{AU, Ru ®a, Su,q?vu} is a presheaf determining some
sheaf ¢, 2). m|

Since tensor products and direct limits commute, for eathere is
a unigue induced bihomomorphismy, : (Ry, Sx) — Qx With axdxy =
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q?xuau and Qy together withay is the tensor produd®y ®a, Sx. An
arbitrary element| = Z!‘Zl ay(ri, s) € Ry ®a, Su determines a section
qu : U — Qwhere

k

k
qu(X) = #xuq = Z dxuau(ri, S) = Z axpxu(ri, S)
i=1

i=1

k
= Z ax(ri(x), s(x))
i=1

and such sections from a base @r

If f:(0,%,7) — (%, _¢)is any bihomomorphism, there is an
induced homomorphisnify} : (a,%Z,.) — (%, #) of presheaves.
Then, if fy : (Au, Ry ®a, Su) — (Bu, Tu) is the homomorphism in-
duced byfy,

{fu} : {AU, Ru ®a, SU,¢VU} - {%’ j} is a homomorphism of

presheaves which induces a homomorphism(a, 2) — (%, #) of
sheaves. Then

(Au.Ru, SU) — 22 (Av, Ry, Sy) —2 = (A, Ry, Sy)

P RNRN
QRU ®a Su) > (Av. Ry ®a, Sv) 2> (A Q
T

6 Ox
(Bu, Ty) ————— (Bv, Tv) ———— (Bx, Tx)

46
f;ax¢xu (r,s) = 6w fTJCVU (r,s) =6xufu(r, s) = fxdxu(r, S);
thus fyay = fxand hencd -a = f. Since imy generate&®a, Sy = Qx,

fx is uniquely determined byy; hencef is unique. Tha anda are
unique upto isomorphism is proved in the usual manner.

Corollary. If ¢ : (a,Z, ©) — (%, 3, U) is a homomorphism, there is a
unigue induced homomorphism: (o, Z ®, -) — (£, I % U) with
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da =

(0 %,) —— (8.3, U)

‘| |s

(a,%®ay$(%73 ®,B(L()7
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1 Cohomology groups of a space with cdicients in

a presheaf
47
Definition. A covering (an indexed coveringli}ic; of a space X is a
system of open sets whose union is X.

Definition. If >, = {Sy,pvu} is a presheaf of A-module where A is a
fixed ring with unit element, a g-cochair(gf= 0,1,...) of a covering
2 = {Ui}ic with values inY, is an alternating function of & 1 indices
with

f(io,i1,...,ig) € Sy, N--- N Uj,
or more briefly {o) € Sy, whereo is the simplexd, ..., ig. In partic-
ular f(io,i1,...,iq) = 0if Uj; n--- N Uj, = ¢. (A function f is called
alternating if
(i) f(io,i1,...,ig) = Oif any two ofig,...,iq are the same,
(i) f(jo,j1,---»g) = =f(io.i1,...,ig) according as the permutation
jo, ..., jqOfio,...,iqis even or odd).

We will often write p(V, U) for pyy.
Theg-cochains ofZ with values iny, form anA-moduleC%%, ).
Forg < 0, we defineC%%, ) = 0.

41
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Definition. The coboundary®'f (or simplysf) of f € CH(%,Y) is
the function or(q + 1)-simplexes defined by

q+1
(09 1) (@) = > (-Dlp(Us, Usjo) F9j0r),
j=0
48 Wheredjo = ig,..., ijy..u igqel = 105+ Ij-151j41s- - »iqe1 IS the j-th

face ofo =i, ..., Ig.1.
If f e CY%,Y), thensf e CH*Y(%,Y).

Proof. It is suficient to verify thatf is an alternating function, e.g.,

5f(i1, ios ) iq+l) = p(UO'7 Uﬁlo') f(é)lO') _p(UO'7 UﬁoO') f(GOO')
q+1

j=2

= _p(UO" U(’)ojcr) f(aOO') + p(UO'a U(')la')f(alo—)
q+1

= > DIp(Ug, Ugjo) Flios it - - gea)
=2
= ~5f(ioyit, .. iger)

and, ifig = i1,

0f(io,it,...,igr1) = p(Ue, Ugor) F(0007) — p(Uer, Up, o) £ (010°0)
=0,

whereo = o, ..., Ig1. O
It follows, sincep(U, Uyjs) is @ homomorphism, that
s¥LCw, Y ) - C¥ N, )

is a homomorphism. One verifies by computation #%#tsdf = 0 for
f e CT1(%, ), using the fact that fof < k

akajO'I5k(io,...,ij,...,ik+1,...,iq+1)=io,...,ij,...,ik+1,...,iq+1
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= ajak+lo-.

49 (The computation is carried out at the end of the lecture).
Thus iné% c kers% ! in the sequence

0o )y L@ ) -
Sert@, ) S e, )

The quotient moduléi%(%, Y) = kers%*1/im 69 is called theg-th
cohomology module & with cogficients in the preshedf,.

The elements of the modulg%(%,Y)) = kers™! are calledg-
cocyclesand the elements of the moduBd(7, Y) = imé9 are called
g-coboundariesSinceB%(%, }’) = 0, we haveH°(%, >)) ~ Z°(% , ).

Definition. A covering””” = {Vj}je is said to be a refinement of the
covering% = {Uilie if for each je J there is somed | with V; c U;.

If # is a refinement of/, choose a function : J — | with V; C
U.(j)- Then there is a homomorphism

™ CY, Z) — CY, Z)

defined by
7 1(0) = p(Vor, Ur(e) f (70)
whereo = jo,..., jg andro = 7(jo), ..., (jq)-
T commutes witld since

o+1
¥t £(0) = > (=1 p(Ver, Vo)t 1 (01c)
k=0
g+1
= > (-1Yp(Ver, Vike )V, Ur(oyer)) F (r(01c),
k=0
g+1

= > (~1Ko(Ver, Urgorn) f (r(00),
k=0

65 (o) = p(Vr, Uz )5 F (70)
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q+1

= Z(—l)kp(vo-, UTO')p(UTO'7 Uﬁkw') f(é)kTU')a
k=0
q+1

- Z(—l)kp(vg, Ugro) f (OkTor)
k=0

50 andtdko = dxro. Hence there is an induced homomorphism,

Ty HYZ,Y) = HY, ).

The homomorphismy 4 : HY(%, ) — HY(#7, X)) is independent
of the choice ofr.

Proof. Lett:J — |, 7 : J — | be two such choices. Let the skbe
linearly ordered and define the function

KL cd(z, ) - e, )

by
g-1
K@) = > (~1)"p(Ver, Ury) (o)
h=0
foro = jo,..., jg-1 With jo < j1 < -+ < jg-1, Where

ThO = T(j()), e ’T(jh)’T’(jh)’ e ’T/(jq_l)’

and letkd-1f be alternating. Thek9 ! is a homomorphism, since
pVe,Uzr o) SUTh(r — Sy_q is @a homomorphism. O

51 Using the facts that, for = jo, j1,..., jo
i =dtne1 (0<i<h<qg-1),
Thdi = dipath - (0<h<i<aq),
Onth-1=0ntn (L<h<q),

doto =7, Oq1Tq=T,

one finds that
SIKALf + KISHLE = ¢/ f — £t 1,
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(The computation is given at the end of the lecture.)

This holds forg = 0 with the obvious meaning & : Co(%, Y) —
0. Thus ifr e HY(%, ) is represented by a cocycfe 7’*f —r*fisa
coboundary and 4t is uniquely determined.

If the covering# is a refinement o/ and# is a refinement o?/,
thenty ywtyay = Tyq9 andryq is the identity.

Proof. If # = {W},k is arefinement o#, chooser; : K — J so that
Wk € Vyk. ThenWg € Vo € U andry @ K — | can be chosen to
berr;. Then

(1177 1)(0) = p(Wer, Ve, o) (77 F)(710)
= p(Wor, Ve,0)p(Vry0rs Urry o) F(7107)
= p(Wir, Uryo) f(720)
= (13 f)(0).

Thustj7* = 73 and so for the induced homomorphisms, 52
Tyt U = THU Hq(%,Z) — HYw, Z).

Similarly, for the refinement/ of %,t : | — | can be chosen to be

the identity, hence 4 : HY(% ,Y) — HY (%, Y) isthe identity. O s

(1) 6Ms9=0. (20K + KT = 7 — 7t
q+1 _
(1) ")) = D (~Dp(Us, Uso) (03 F)(0j0r)
j=0
g+l - a
= 31 > (=1*0(Usr. Usirdo(Usior Vo) F (Bhdjor)
j=0 k=0

(_1)j+kp(ua'v U(')j(')k+1a') f(ajak+10')+

M~
I

q+1

q
D D 0(Us, Ugio) f(0k0j0)

j=k+1 k=0
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=0

g
) K@) = D (1p(Ver, Vi) K )(3i0r)
i=0

o
=

(~1)*"0(Ver, Ugg0) f (tn0i )

o

D= 1M
M=
T
= O

)
o
=y
I

o

(_l)i+hp(VO" U(')i Th+10') f (al Th+10—)

qg g1
£ 3 1 (Ve Usmye) F@142700)
i=h+1 h=0

7
AN

Mo

(_l)i+h_lp(va'v U(’)i‘rha') f(aiThO-)

I
o
T
o]
2 o
AN
T
AN

(=1) "2V, Ugzyo) T (01 7h07) (K692 £) (o)

+

-
>
¥

N
>0
T

o

(-1)"p(Ver, Uryo) (67 )(7her)

o
e
=

(=1)""0(Ver, Ugiryo) f (8i7ner), (69T + K969 £)(0)

I
o

9
p(VO'a U(')h‘rh()') f (ahThO—) - Z p(VO" U(')ml‘rha') f (ah+1ThO—)
h=0
o+1

p(VO'a U(')h‘rh()') f (ahThO—) - Z p(VO" U(')h‘l'h—la') f (ahTh_]_O')
h=1

(VO" U(')OTOO') f(é)OTOO-) - p(VO" U(’)q+1Tq0') f(6q+17q0')
(VO" UT’O’) f (T/O-) - p(VO'v UTO') f(TO-)
7 f)(o) - (" )(0).

DM 1= IPMs DM

7
o

T D

Il
—~
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Leth = {hy} : £ — 3 be a homomorphism of presheaves, i.e., eagh
hy : S, — Sy is a homomorphism and, ¥ c U, hypy,, = pvuhu.
We define, for eacly > 0, the mapping

ht:CY%,x) - C%%. )

by (h* f)(o) = hy, f(c). Then,h* is a homomorphism since eabh,
is @ homomorphism.
h* commutes witla

Proof.

(h* 6% £)(0) = hy, (67 F)(0)
g+l

= hu(r Z(—l)jpl(UU, Uajg) f(ﬁjO’),
j=0

g+1
and YT F)(@) = Y (~1))p(Us, Ugyor) (07 £)(0j0)

j=0
(J]+l -

= > (-1Yp(Uq, Us o)y, o (907)
j=0
J q+1 '

= hy, D (10 (Us, Ugo) F(0j0)

j=0

a7
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Q.e.d.
Hence H induces a homomorphismyh: HY(%,Y’) - HY (%, ). h*
commutes with™* m|

Proof.

("7 f)(0) = h, (7" F) (o)
= hy,p'(Ver, Ure) f ()
= p(Veo. Uro)hy,, (7o)
= (r*h* )(0).

Hence ytyw = tyahy @ HY(%Z,2') — HY(#,Y), i.e., the
following diagram is commutative. ]

HI% , 3)) —“> HA(%, 5)

TW?/\L lTWﬂZZ

HQ(W’ Z,) h—W> HQ(W’ Z)

If > n D 5 >’ is a sequence of homomorphisms of presheaves,
then gh induces a homomorphism
(gh)* : CY. Z) - CY(% . i)
such that{gh)* = g*h* and, if h is the identity, his the identity.
Proof.
(g f)(o) = (ghu, f(0)

= gu, hu, f(0)
=(g"h" )(0).

If his the identity, i.e., if eaclny is the identity, theni" f)(o) =
hu, f(o) = f(o); soh* is the identity, g.e.d. m|
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If one has the commutative diagram of homomorphisms of gash
ves, i.e.gh = h;gi, then

ey

s I

17
12

g'h* = (gh)" = (h1g1)" = hig;.
and henc@y hy = higy Q19 .

. i h
If % = {Uijlie is a covering and the sequengg& — 3 EA 7 of 57
homomorphisms of presheaves is exact, then the sequence

iz ) S cw. ) S e, y)
is also exact.

Proof. (i) If f € CY(%,Y)is an element of inh*, clearly f € kerg*,
hence imh* c kerg"*.

(i) Linearly order the index sek, and letf € CY9%, ) be an ele-
ment of kerg*. Thenf(o) € kergy, = imhy, for eachg-simplex
o, hence there is an elementin the module corresponding to
the open set,, of the presheakl’, such thaty, (r) = f(o). If
o = (io,...,ig) Withip < --- < ig, define the functiort on o by
tlo) =r. If 0’ = (jo...., ]g) is a permutation obr = (io,...,iq)
definet ono”’ by t(¢”’) = +t(o) according ag~’ is an even or odd
permutation ofo-. If o is ag-simplex in which two indices are
repeated, defingo) to be zero. It then follows thate C4(%,%’)
and it is easily verified that* (t) = f, hence keg* c imh*.

m|

If the sequenc® — Y’ iR 3 EN > — 0 of homomorphisms of
presheaves is exact, there is an induced homomorphism

Su Hq(%,i) - H‘W%,Z).
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Proof. Since the homomorphisms, j* commute with the homomor-
phismg, there is commutativity in the following diagram:

()

) ) )
0——CUZ, Y) — = CUU, ) — > CY . 5") — 0
) ) )
0—>C¥I(#,5) > CI (%, 35) —CH(#%,5") —0

0 0 0

O

Since the sequence & Y’ — > — Y” — 0 is exact, each
row of the diagram is an exact sequence of homomorphisms. We w
construct a homomorphisis : Z4(%,Y”) — H%Y(%,Y’) which is
zero onBY(7%, Y."”), and henc& will induce a homomorphism from
HY(%,3") —» H¥ N %, 3)).

To do this, letr € Z%(% ,%”), and choose € C4%, }) with j*s =
r. Sincedj*s = j*6s = 6r = 0,6s € kerj* and by exactness, there is
a uniquet € CH*Y(%,x’) with i*t = §s. Theni*ét = di*t = §6s = 0,
hencest = 0. Letr e H¥(%, ') be the element represented thylo
show thatr is unique. letsy, t; be the result of a second such choice,
thenj*(s—s) =r—-r =0ands— s =i*uforauniqueu € CY%,%).
Then sinca™* is a monomorphism and

iT(t—t1) = 6(s— 1) = iTu=i*6u,

hencet — t; = 6u. Thust andt; represent the same elemente
H*Y(%,x).

Letr =0(r). If r = ary + bry, € Z%%,%”), suppose that; = j*s,
sy = ity and thatry, = j*s, 0% = ity, and letry = 6(ry), 72 = 6(r2)
be the elements representedthyandt,. Then sincej*, § andi* are
homomorphisms,

r=j"(as +bs),é(@s + bsg) =i"(aty + bty)
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and, sinceat; + bty representsir; + bry, we have
6(r) = af(ry) + bo(rz).

Thusé : Z9(% ,X") — H¥(%,¥’) is a homomorphism.

If r e B(%,%"), letr = §,. For somew € C+Y(%,Y)v = jtw.
Then j*(6w) = 6j*w = r and there exists a uniquee CH*(%,x)
with i*t = §(6w) = 0, hencet = 0; i.e.,0(r) = 0. Thus# induces a
homomorphism

Sy HU(%,2") - HY Y (%, 3)).

Q.e.d.
Ty 9, COmMmutes witld, , i.e., the following diagram is commuta-
tive.

HI%, 5)") — 2 Hal (7, 3)

TWﬂZ/l lTW@/

RV, Z") —5~ HY (7, 3))
Proof. v* commutes withj*, ¢, i". O

fo— >’ —'> > EN >’ — Qs exact, then the sequence

’

0— HO[%,Z] SRR Hq[%z)l_zz)
el )3

is exact.

Proof. The exactness of this sequence is the result of six propestieso
the form kerc im and imc ker. Each can be easily verified i) ( (See
Eilenberg-Steenrod, Foundations of Algebraic Topology,28). 0O
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f0o-y 5yLy »0ando— 3, 53 55y o
are exact sequence, and if:h(3", >, >") — (X1, 21, 27) is a ho-
momorphism commuting with i, j;,iand i, then ky, commutes with
Oy .

Proof. The homomorphisnht commutes with the homomaorphisns,
¢ andit, g.e.d. m|

With the same assumptions as in the above statement, wedleen h
the following commutative diagram, in which each row is éxac

0> U, 5) > - = M. 5) % . 5) 5 o 5 v gy > -

hay l "oy l h l L \L oy l

i14 119 019
0= HO,5}) = -+ = HIU%, 3, X Hi(, 50) 2 HI(, 37) S Hav @, 5) = -

Definition. A proper covering of X is a set of open sets whose union is
X.

A proper coveringZ = {U} of X may be regarded as an indexed
covering{Uy}, .4, if each open set of the covering is indexed by itself.
Every coveringU;},., has a refinement which is a proper covering, e.g.,
the set of all open setd such thaty = U; for somei € I.

Let Q be the set of all proper coverings ¥fand letZ < # mean
that? is a refinement o#/. ThenQ is a directed setfor 1) % < % 2)
if 7 < and® < ¥ then trivially % < % and 3) given’z, # there
exists? with 7z < W, W < W, e.qg,# may be chosen to consists of
all open set®W with W=unV for someU € %,V € #.

(There is no set adll indexed coverings).

The system{H %, X)), twu )y yeq IS then a direct system. Its
direct limit HI(X, }) is called theg-th cohomology module (over A) of
X with codficients inY,. Letty : HY%, ) — HY(X, Y) denote the
usual homomaorphism in to the direct limit.

Ifh:Y — > isahomomorphism of presheaves, there is a induced
homomorphism

h* s HIX, >7) = HAX, Y with h'zy, = /0y,
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Proof. This follows from the fact thaly, vy 9 = Ty a/hy .
Q.ed. O

i j .
IfO - > — 3 — »” — Ois an exact sequence of presheaves,
there is an induced exact sequence

0> HO(X,3') = = HIX Z') = HIX X)) > HIX ") > H¥YX, 3') >

Proof. This is a consequence of the fact that the direct limits otexa
seqguences is again an exact sequence. O

ifh:QQ22Y") - (2121, 27) is a homomorphism of exace2
sequence of presheaves

0 21 11 21 J1 3_/ 0

and h commutes with i, j;,j j1 then the following diagram, wheré€ s
the homomorphism induced from h, is a commutative diagram.

s HIX YY)~ HI(x S) — HI(x, 57) — HOI(x, 5) —= -

h* l/ h* l h* l h* l
i7 i1 &3

== HIX, 25) —= HI(X, 2q) —= HIX, 37) —= HFL(X X)) —= -+

Proof. The result is a consequences of the fact thatcommutes with
i, jc// andé%. O
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If the codticient presheaf is the presheaf of sections of some sheab3
of A-modules, we writeC%(% ,.¥) instead ofCY9(%,.7) etc. Then, if
U, = Ui, N---NU;, is called thesupportof the simplexo = i, ..., ig,
ag-cochainf € CY(%,.7) is an alternating function which assigns to
eachg-simplexo a section over the support of

If 27 = {U;}i € | is any covering of X, (% ,.%) is isomorphism to
(X .%).

Proof. A 0-cochain belonging t€°(%,.¥) is a system {)ic|, eachf;
being a section of” overU;. In order that this cochain be a cocycle,
it is necessary and flicient thatfi — f; = O over U; n Uj; in other
words, that there exist a sectidne I'(X, ) which coincides withf;
on U; for eachi € |I. Thus there is an isomorphisty, : T'(X, ) —
2%, ) - H %, 7). m|

Proposition 7. HO(X,.#) can be identified witl(X, .%).

Proof. Sincety 4 ¢y = ¢y, there is an induced isomorphisen :
[(X,.7) - HO(X, .#) with T4 ¢4 = ¢. Ahomomorphisnh: . — .7}
of sheaves induces a homomorphifimy} of the presheaves of section
and hence induced homomorphigm., h* with commutativity in - O

I(X,.%) % WO, ) —“= HO(X, .)

W

(X, 1) —% HO% . #1) —“> HO(X, .71)

55



64

65

56 Lecture 11

Thus we can identifyr’(X, .) with H°(X,.#) under¢ if we also
identify hy : T(X,.&”) — T'(X,.#1) with h* : H°(X,.¥) — H°(X, ~1).

Definition. A system{Aj};, of subset of a space X is called finite if | is
finite, countable if | is countable. The system is said to ballg finite

if each point xe X has a neighbourhood V such thatVA; = ¢ expect
for a finite number of i. (This finite number may also be zero).

We notice that a locally finite systefy},., is always point finite.
(A system{Aj},., of subsets oK is said to be point finite if each point
X € X belongs toA; for only a finite number of).

If {Ai}ic, s locally finite, so is(Bj};, if J ¢ | and eactB; c Aj. If
{Ai}i, is locally finite, so is{Ai},.,, whereA; denotes the closure &,
andU_,IAi = UIAT. In particular, if each is closed, so i$j| A

le le IS
Definition . The orderof a systemA}ic; of subsets of X is1if A; is
the empty set for eachei |. Otherwise the order is the largest integer n
such that for - 1 values of ie I, the A's have a non-empty intersection,
and it is infinity if there exists no such largest integer.

Definition. Thedimension ofX, denoted as dirX, is the least integan
such that every finite covering of has a refinement of order n, and
the dimension is infinity if there is no such integer.

Definition. A space X is calleschormal, if for each paiE, F of closed
sets ofX with E N F = ¢, there are open se@ HwithE c G, F c H
andG N H = ¢.

Definition. A coveringZ = {Ui}ic| of the space X is calleshrinkable
if there is a refinement?” = {V,}ic) of % with V; c U; for eachi € I.

X is normal if and only if every locally finite covering of X &imk-
able.

Proof. See S. Lefschetz, Algebraic Topology, p.26. m|

If X is normal,dim X < n if and only if every locally finite covering
of X has a refinement of ordern.
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Proof. See C.H.Dowker, Amer.Jour of Math. (1947), p.211. O

Definition. A space X is callegparacompact if every covering ofhas
a refinement which is locally finite.

If X is paracompact and normatlimX < n if and only if every
covering of X has a refinement of ordem.

Proof. (i) SinceX is paracompact, every covering X¥fhas a locally
finite refinement and sinck¥ is normal and dinX < n, using the
above result, every locally finite covering has a refineméotder 66
< n, thus every covering has a refinement of order.

(i) Since every covering oK has a refinement of ordern, in partic-
ular, every locally finite ofX has a refinement of ordern, hence,
sinceX is normal, using the above result, we obtained dim.

m]

Remark. Since a paracompact Haustf@pace is normal, (see J. Dieu-
donne, Jour. de Math. 23, (1944), p.(66), this result haidparticular,
whenX is a paracompact Hausdbspace.

If a coveringz of X has a refinemer¥” of order< n, then it has a
proper refinemen¥” of order< n.

Proof. If # = {Vj}jes has order< n, let % be the proper covering
formed by all open set#/ such that, for som¢ € j, W = Vj. Then?”
has ordex nand is a refinement o¥ . O

If X is paracompact and normal ardim X < n, then HI(X,>) =0
for g > n and an arbitrary preshea¥..

Proof. Replace the directed s@tof all proper coverings aX by the co-
final sub-directed se®’ of all proper covering of ordet n. If 7 € ¢/,
g>nandf e CY%, ), thenf(Ug,Uy,...,Ug) € SuUgnnug =S¢ =0
for any g + 1 distinct open sets of/. If the open setd)g, Uy, ..., Uq
are not all distinct, therf(Ug,Uy,...,Ug) = 0 since f is alternat-
ing. HenceCY%%,3)) = 0 and hence alsbl9(%, ) = 0. Therefore
HY(X,>) =0,q> n. O
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If 3 is a presheaf which determines the zero sheaf, th{iX}') =
0.

Proof. For any element; € HO9(X, Y choose a representative
fePw,Y)SHY%,Y), whereZ is some proper covering of, so
thatty f = . For eachx € X choose an open sé&t = 7(X) such
thatx € 7(X) € . Since}, determines the O-sheaf, one can choose
an open seVy such thatx € Vyx c 7(X) and p(Vy, (X)) f(r(X)) = O.
Then? = {Vy},x is a refinement ofZ, and, for eactx, (=" f)(x) =
o(Vx, 7(X) f(r(X)) = O, hencer*f = 0. If # is a proper refinement
of #, chooser, : # — X so that eactW c V. w) and r1)" f =
7y7°f = 0. Thusty4 f = 0and hencey = 74 f = ty7y9 f = 0.
HenceH®(X, })) = 0. m|

This result is not true in general for the higher dimensiaaélomol-
ogy groups. However, if the spa&eis assumed to b@aracompact and
normal, we will prove the result to be true for the higher dimenslona
cohomology groups.
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Proposition 8. If X is paracompact and normal and ¥ is a presheaf 68
which determines the zero sheaf, th&( >)) = Ofor all g > 0.

Proof. Let f € CY%, Y)) whereZ = {Ui}ic is any locally finite cov-
ering. SinceX is normal, we can shrinkz to 7', # = {W}ici with
W c U;. For eachx € X choose a neighbourhoad, of x such that the
following conditions are satisfied: O

a) If xe Uj, Vx c U,

b) If xe W, Vx c W,

c) if x¢ W, Ve N Wi = ¢,

d) if xe Ui, n---nUi, =Ug, py, f(0) =0

Conditions a) and b) can be satisfied, for the coverigigand #
being locally finite, eacl is contained only in a finite number of sets of
the coverings. To see that condition c) can be satisfied idenall W,
for whichx ¢ Wi. The union of these sets is the closed si#cés locally
finite, andx is in the open complement of this union. Next, by condition
a), Vx c U, and since}, determines the 0-sheaf, we can chobge
small enough so that d) is satisfied. We can thus always chgosmall
enough so that the above conditions are fulfilled.

If the V are chosen as above, the cover{ig},  is a refinement 69
of 7. Choose the functiom : X — | so thatx € W), then by b),
Vy C W-,-(X) C UT(X). Then

(o) = 7 (X0, ..., Xgq) = p(Ver, Ug) F (T (X0), - - -, T(Xg))-

59
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If Vi, = ¢, " f(0) = 0. If V,, # ¢ thenV,, meets eacNyj, hence
meets eachlV;(x;) and hence by c), € Wy(x;). Then sincex, € Wy(x;) C
U+(x), by @)Vy, C Uy for eachj and hencé/y, c U. Hence

T 1(0) = pv, Uy, F(70) = py,vpve, Uro) T (7o)
= 0 byd).

Thust* f(o) = 0 for all o, hencer* f = 0.

If 711 is a proper covering anfle CY9(%4, })), there is a locally finite
refinementZ of %4 (sinceX is paracompact). Then there is a refine-
ment? of % (found as above), a proper refinemé#t of # (exis-
tence of#; is trivial) and a functionry : #1 — %4 with V c 71(V) for

V € %1 such thatr] f = 0. Hence every element of |J H%%, )
(Z1proper)
is equivalent to zero, i.e., the direct linkit3(X, >°) consists only of zero.

Example 15.Let X be the space with four pointg b, ¢, d and let a
base for the open sets be the sat%,(d), (b, c,d), (), (d). Let}’ be the
presheaf for whiclsy = z, the group of integers, il = (c,d); andSy =
0 otherwise. The homomorphismgy are the obvious ones. Thén
determines the 0-sheaf, bHtl(X, Y)) = Z. The spaceX paracompact
but not normal.

If0— .7 R 54 EN " is an exact sequence of sheaves, then

0 I(U,.#) % 1(U,.7) % ru, .7

is exact and hence _ _ _
09— -7
is exact

Proof. We will show that for kerjy < imiy (the rest is trivial). Let

f e kerjy. Thenx e U, jf(X) = (ju f)(X) = Ox and hence by exactness,
f(x) = ip’ for somep’ € S. Thusf(U) c i(S’). Buti : §" - i(S') is
homeomorphism. Theg: U — S’, whereg(x) = 171f(x), is a section
of S’ overU, andf =iyg. O
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One cannot in general complete the sequence

0-TI'U,)->TIU,.¥)-IU, ")
by a zero on the right as the following example shows.
Example 16.Let X be the segmenix : 0 < x < 1}. LetG be the 4-
group with elements (g, b, c. Let.¥ be the subsheaf of the constant
sheafG = (Xx G, m, X) formed by omitting the point (&), (0, ¢), (1, b),
(1,¢). Let.” be the subsheaf of” formed by omitting all the points
(x,@), (x,b). Let.”” = (X x Zomr,X) and letj : .¥ — " be the 71
homomorphism induced by: G — Z, wherej(@) = j(b) = 1, j(¢c) =
j(0) = 0. The the sequence
0757k o Lo

is exact, but the sequence

0-T(X,)>TX,Y)->TX.Y")—>0, ie,

0—.0O0—0—s2—0
is not exact.

fo— >’ iR D EN > is an exact sequence of presheaves, there is

an image presheaf,; c > and a quotient presheaf Q such that the
sequences

O- Z —I> Z £> Z -0,
0
0O- Z —|> Z N Q-0
0
are exact. These sequences are ‘natural’ in the sense thaisifa ho-
momorphism of exact sequences, commuting with i and j:

i

0—>3 ——5%—=>3"

Lo

’ J ”
0 21 : Zl 1
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then there are induced homomorphisnisohthe exact cohomology se-
guences

e HIX T e HIX E) 5 HA(X ) % He (3

O

L= HI(X, 3 5 HA(X 3) 2 HI(X 57 ) —% HOIL(X, 5) —= -
and

e HI(X S8~ HIX, 7Y L HA(X, Q) —% HAL(X, 37) —> - -

o

- — HI(X, $1o) > HI(X, £7) == HI(X, Q1) = HFL(X, 57) — ---

commuting with’, j¢, &5 andi*, j*, 6* respectively.

Proof. If 3" = {S[}.p{}, letSy, = imjy. Thensincg : >, — > isa
homomorphismp{j ; mapsimjy intoimjy. Hence, writingS;; = im jy
andQu = S{j/S}),, there are induced homomorphisgf§,, andpvu
with comutativity in m|

. i =
SU Jou S/O/U U S/Lj Ju QU

Pvul p{,’vul p(}UJ/ pvul

jov lv J_V
Sv Sov Sy Qv

Clearly the system$.g = {S[.ppyy} @dQ = {Qu,pvu} are
presheaves and the sequences

0-Y53rbhs 50

and - ~
o-x5ybhooo
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are exact. Sinck commutes with, j,

O Z/ i Z J Z,/ SU Ju S/U/
J{h’ lh J/h” hul lhﬁ
’ I J 144 j 144
0 Y= —= X S 2~ Sy,
h() mapsS), = imjy into ST, = imjiy. Hence there are induceds

homomorphisméy ;, hy with comutativity in

j i it
SU ouU S/O/U U SG Ju QU

S
SlU Jou Si’ou V] S;_/U Ju Qlu ‘

Sinceh is a homomorphism of presheavég, commutes withpyy

andh(j with p{j ;. Hence, sincgouy and jy are epimorphisms anghu,

ju commute withp andh, h7, and commutes witlp, , andhy with
pvu, i.e., the diagrams given below are commutative:

o
Sou - Sov Qu al Qv
e N
Pvu Py
Sy —= Sy S — Sy
hSu hy hy hov hy G l l“(/’ hy
Sw ﬂ; Siv Sy ﬂ; S
s Povu s Puy
10U 1ov Qu Quv

Thush, hy, h”, h are homomorphisms of presheaves commuting
with jo, 1, .

Zioé,iz,,JQ

vk

J i J
i —= 21 7 Q1
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74 Thus{h} is a homomorphism of the exact sequences

i

’ Jo 77
0 2 > 0 0

1

0—=3) — =3 L3 0

commuting withi and j,, and a homomorphism of the exact sequences

0—>3§ — >3 —=Q——0
hgl h/fl hl
0— ¥ —%{ —~Q—0

commuting withi and j. Therefore the induced homomorphisms of
the exact cohomology sequences commute withig, 65 andi*, j*,
6" respectively.
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Example 17.Let X consist of the natural numbers together with twes
special pointsp andq. Each natural number forms an open set. A
neighbourhood op (resp.q) consists ofp (resp;q) together with all but

a finite number of the natural numbers. 1Sk = Z if U consists of all
but a finite number of the natural numbers andl i€ U is another such
set, letp,, : Z — Z be the identity. IfU is an open set not containing
all but a finite number of the natural numbers or if it contagither p
orq, letSy = O and letp,,, p,, be the zero homomorphisms. Then
> = {Su,p,,} is a presheaf determining the 0-sheaf, Hi(X, Z) = Z.
The spaceX is T1 and paracompact but not normal.

Example 18.Let R be a set with cardinal numbe#7 let S = 2R be the
set of all subsets dR and letT = 25 be the set of all subsets & If

r e R letr’ € T be the largest subset &, which is such that, each
of its elements considered as a subseR gbntains the elements Let
R c T consists of alt, forallr e Rand letT; = T - R.

Let X be a space consisting of (1) all elementg R and (2) all
triples ¢,ry,r2) witht € Ty, ry, r, € Randry # ro. Each point{(,rq,ro)
is to form an open set. Neighborhoods of pointsf the first kind are
setsN(r; s, ..., %), whereo < k < oo andsy,..., & € S, consisting
of r together with all pointst(rq,rp) with r € (r1,r2) and, for each 76
i=1,...,k eitherr e 5 etorr ¢ 5 ¢ t. [cf. Bing's Example G,
Canadian Jour, of Math. 3 (1951) p.184].

For setsU c X of cardinal number 2 and consisting of points
of the second kind, lIeBy, = Z and, ifV c U is another such set, let

65
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pyy - Z — Z be the identity. IfU is an open set containing any point
of the first kind or consisting of at most one point, & = 0. Then

> = {Su,pvu} is a presheaf determining the O-sheaf, HUEX, >)) # 0

(although dimX = 0). X is a completely normal, Hausdbspace but
is not paracompact. (A spaceis said to be completely normal if each
subspace oK is normal).

f0— .75 .75 97 5 0is an exact sequence of sheaves, let

S Z Q, be the image and quotient presheaves in 32 4 7L o
for which the sequences

0—- <7_—|> ,7_]—0> %’ — 0,
O—)j%'—hﬁ'—kd—) 0,
are exact. The@ determines the zero sheaf

Proof. An arbitrary element of a stal@y of the induced sheaf has the
formp,, juf wherex e U and f € I'(U,.””). Sincej maps.# onto
<, there is an open sdt x € V c U, for which f[Vim jy. Then
e, f=1fVeim jy =imiy and by exactnesp,p;/, f = 0. Hence

pxuiuf = pxvovuiuf = ﬁxvj_vp(}u f=0.
Therefore the sheaf determined @is the O-sheaf. m|

Note .In example[db, iflo(U,.”) = imjy, we havel'z(U, ") =
I'(U,.7”) for all U expectX, butTo(X,.7”) = 0, I'o(X,.") = Z».
ThusQx = Z», Qu = 0 for all smallerU, and thusQ determine the
0-sheaf.

Proposition 9. If X is paracompact and normal anddf— .’ Lol
<" — 0is an exact sequence of sheaves, there is an exact cohomology
sequence

0— HO(X,.#") — --- — HIX,.7") 5
HAX,.7) 5> HAX,.77) 5 HIL(X,.97) = |
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Ifh:(¥,%,%") - (Y1, 5,.%"1) is ahomomorphism of exact
sequences, commuting with i and j,

i j

0 57 54 57 0
|
0 B, 0

the induced homomorphisms &f the cohomology sequences commute
with i*, j* andé§*, i.e. the following diagram is commutative:

= HY(x, ) —> HI(X,.7) i HI(x,.77) 2 HI(X,.77) —= -+
n*l n*l h*l/ n*l
C = HO(X, 27) L HA(X, Sp) —= HI(X, #77) 5 HOY(X, 7)) —> -

Proof. As before, if,7_(;’, Q denote the image and quotient presheaves
in the exact sequence of presheaves of sections

we obtain the exact sequence of presheaves 78

and

O—>¢7_”—i>¢7_”—j>(§—>o,

From these exact sequences of presheaves we obtain theifgllo
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exact cohomology sequences:

HA-2(X,

&l
I
o

()7.*
c = HA(X,.P) = HI(X,.7) —2= HA(X, .77) o HA(X,.7) —> - --
\ ' /
h e
HI(X, .7")
i*

H9(X,Q) = 0

SinceQ determine the 0-sheaf, by PropositionH8}(X, Q) = 0 for
all g > 0 and hence, by exactness,is an isomorphism. Hence if
6 = 853i%)7 - HAX, #") — H¥L(X,.#”), the cohomology sequence

0 — H°(X,.7") - H(X,.) - H°(X,.¥") — ---
oo HIX,.7") = HI(X,.7) » HI(X, ") - HI (X, .7") — -
is exact.

Next, since the homomorphisimcommutes withi and j, the in-
duced homomorphisth of presheaves also commutes withnd j:

79

— j

0 R

PR
Jo

Hence, the induced homomorphidmof the cohomology modules

commutes withi*, j5, i* andé;. Thus in the exact cohomology se-
quencesh* commutes with*, j* ands®.
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Note.If X is not paracompact and normal, in geneFais not an iso-
morphism, to be precise, the cohomology sequence is notedefdne
does, however, have the exact sequence

0— H°(X,.7") — HO(X, ) — H(X, .") —
H(X, .7") - HY(X,.7) - HY(X, .7")

as one sees from the exact sequences



0=H°(X,Q)

|

i o m % i io
0 —= HO(X, ") L= HO(X, .7) —2 HO(X,.) =2 H(X,.9") = H1(X, .7) —= H1(X, .72)

Sl

HO(X, .#")

HO(X, Q) = 0.

S

HY(X,.7")

0.

£T aInjoa]
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The following examples show that Proposit[dn 9 is not trnegeén- 80
eral,unless the space is both paracompact and normal.

Example 19.Let X consist of the unit segmehtwvith the usual topology
and of two pointsp andg. A neighbourhood ofp (resp. ) consists
of p (resp. q) together with the whole of. Let.¥’, ., %" be the
sheaves?”’, .7, . of Example[Ib ovel together with zeros ap
andg. A neighbourhood of p (resp. @) consists of the zeros over a
neighbourhood op (resp.q). Then there is an exact sequence

00 ' .71 97 50

wherei, j correspond to those in Examgel 16. Sindé(X,.”) =
H2(X,.#”) = 0 andH(X,.#”) = Z5, there is no exact cohomology
sequence. The spa&eis paracompact but not normal.

Example 20.Let X consists of a sequence of copigf the unit seg-
ment together with two special poingsandg. A neighbourhood ofp
(respq) consists ofp (resp. q) together with all but a finite number of
the segment$,. Let G be the 4-group and let” be the subsheaf of
(X x G, &, X) consisting of zero ap andq and on eacHh, a copy of
the sheafy of ExampleIb. Let”” be the subsheaf oi(x Zy, x, X)
formed by omitting the pointsp( 1), (g, 1) and let the homomorphism
j:.7 — . beinduces by : G — Z, as defined in Example]l6. Then
there is exact sequence

0o ' 5.7 97 50

but HY(X,.7) = H?(X,.#") = 0 while HY(X,.#”) # 0. Thus there is 81
no exact cohomology sequence. The spaceparacompact ant; but
not normal.

Example 21.Let R, S, T; be as in ExamplEZ18. LeX be the space
consisting of (1) the elementse R and (2) segmentsy,r, wherenis a
natural numbett € Ty, r; andr, are inR, andry # ro. Neighbourhoods
of the pointsr are setdN(r; n, sy, ., &) wheren is a natural number and
S1,...,S € S, consisting ofr together with all segmentisyy,r, With
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m > n, r € (ry,rp) and, for eachi = 1,...,k, eitherr € 5 € tor
res ¢t.

Let G be the 4-group and le?” be the subsheaf oiX(x G, x, X)
consisting of zero at eaghand a copy of the shea¥’ of Exampld_Ib on
eachlpy,r,. Let.”” be the subsheaf oK(x Z,, 7, X) formed by omitting
(r, 1) for all r, and let the homomorphism: .¥ — #” be induced by
j : G = Zy as mentioned before. Then there is an exact sequence

09 > 9—>9">0

but HY(X, ) = H3(X,.#’) = 0 while H(X,.#”) # 0. Thus again,
there is no exact cohomology sequeneis a perfectly normal Haus-
dorff space but is not paracompact ¢paceX is said to be perfectly
normal if, for each closed s& of X there is a continuous real valued
function defined orX and vanishing orC but not at pointx € X — C.
Perfectly normal spaces are completely normal.)



Lecture 14

Definition. A resolutionof a sheafs of A-modules is an exact sequence
of sheaves A-modules

e o dl 1 —1 dd
09> 9° 5 9 5 ... 4 5 g9, ...
such that (X, % =0,p2>1,9=0.
There are than induced homomorphisms
d° o & —1y @ d +1
0—>TI(X .S —- - >T(XS) > TX ) —T(X,SH) - -

for which imd? c kerd*1, i.e.,d%1d? = 0. TheA-modulesl(X, .7
(k = 0) together with the homomorphisna§ form a formal cochain
complex denoted bF(X, ). Let theq— th cohomology module of the
complexI'(X,.7) be denoted bHIT'(X,.7) = kerdd*!/im dd.

Example 22.Let X be the unit segmer{tx t0S X< 1}, and let¥ be

the subsheaf of the constant shéaformed by omitting the points (0,1)
and (1,1). A resolution

1
1 025905 9150

of ¢ is obtained by identifyingZ with the sheaf¥”’” of Example_Ib and
taking .7, .7, i, j for #°, .71, e db. (ThatHP(X,.#9) =0, p = 1,
g = 0 can be verified.) The induced sequence

0->I(X,.7° ->I(X,.7)—>0

73
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0-0-52,—-0.

Another resolution
e dt d?
2) 009> .9° > ' 9250

of ¢ is obtained by taking, .7° as before,?! = Z,+7,, /% = Z,,d* =
kj wherek(x, 1) = (x, (L 0)), andd? with d?(x, (1, 1)) = d2(x, (0, 1)) =
(%, 1).

Another resolution

1
3) 0-vS 90 L 91 50

of ¢ is obtained by taking”° to be subsheaf of, formed by omitted
(0,1), withe: ¥ — .#° as the inclusion homomorphism and withas
the natural homomorphism onto the quotient shedf= .7°/4.

Yet another resolution

1
@) 0-9S5 905 9150

of ¢ is obtained by taking”°® = Z, and.#! = .7°/¥.
In each cas&l'I'(X,.”) = Zo, HPI'(X,.#) = 0, p > 1.

Example 23.Let X be the sphere? + y? + 72 = 1, and let¥ be the
constant sheat,. LetZ denote the constant shegf+ Z, withi : 4 —
Z defined byi(1) = (1,1). Let#’ c % consist of all zeros together
with ((x,Y,2),(0,1)) forz< 0; let.° = Z/%’ and letj : Z — .° be
the natural homomorphism. Let= ji : 4 — ¥°.

Let 3, be the quotient shea#°/e(¥) and leth : .¥° — 3, be the
natural homomorphism. The stalks ®f are Z, on the equator and 0
elsewhere.

Let 3 be the quotient sheaf &% consisting ofZ, + Z, on the equa-
tor and O elsewhere. ldentif§, with the subsheaf of consisting of
all zeros and all ¢y, 0),(1,1)), and letk : 3, — J be the inclusion
homomorphism. Le%’ be fory > 0 and (k. y, 0), (1,0)) fory < 0. Let
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" = 3/F and letl : I — .1 be the natural homomorphism. Let

dt = 1kh: .7° - 71 Let.¥? = .91/ 4.7° and letd? be the natural

homomorphism. Then from the diagram:

0 0
L%/ S/
% So—k>3
i .
/ ’/, )
g L. g0 d g —Es o2

we see that
e Odl 1d2 2
0¥ ¥° > " — >0

is a resolution of¢ and the induced sequence

0 - I'(X,.7°) - I'(X,.Y) - I'(X,.¥?%) - 0

O—)Zz+Zz—>Zz+Zz—>Zz+Zz—>o

and
HOr(X, ) = H’['(X, &) = Zo, HT(X,.#) = 0

Proposition 10. If X is paracompact normal and if
€ o -1 &
059> %5 ... 5 L4 5 9 5...
is a resolution of¢, there is a uniquely determined isomorphigm

HIr(X,.) — HI(X, 9).
If

e dt _1 dd
O—>%—><71°—><711—>---—>qu1—><71q—>---

85
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is a resolution of another she& and if
h:(@,7°.7%..) = (4,52, 7..)

is @ homomorphism commuting withoé, d?, ..., then the induced ho-
momorphism K commutes withy.

HIT(X, %) —— HY(X, ¥)

qu(xv yl) 7 Hq(xa gl)

Proof. The homomorphisnh* : H9(X,¥4) — HI(X, %) is the usual
induced homomorphism. Now, sinbecommutes withd9, g =2 1, halso
commutes with the homomorphisms

di: (X, 2% - 1(X,.7% (q = 1),
and hence there is an induced homomorphism
h* : HIT(X, ) = HIT(X, 7).
m

Let39 = imdY = kerd®?! c .9 then there are exact sequences

e ds
059> .° 353150
(1) iq dq+1
0395 7925391 50 (g2 1)

wherei? is the inclusion homomorphism amf is the homomorphism
induced byd? : i9dJ = d9. Sinceh commutes withd, h maps3® in 3?,
and commutes with d,.
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i dg+1

0 3 s 3oL 0,

|

i dq+1 1
0 3 S =3 0.

Hence the induced homomorphidm of the corresponding exact
cohomology sequences also commutes also commuteselyitlt, &
andi*, dg, 5* respectively.

. dt . .
Case 1.q=0. Since 0—» ¥ S 90 5, olis exact, so is the se-87

1
quence 0— T(X,%) > T(X,.7%) 5 I(X.71). ThenHY(X,.#) =
kerd! = ime, buteis a monomorphism an(X, ¢) = H°(X, %), hence
e: H°(X,¥4) - H°T(X,.¥) is an isomorphism commuting withi. Let
n= el

Case 2.g > 0. The exact cohomology sequence corresponding to that
exact sequences (1) fqr— 1 (wherei® = 4) is

fg-1 q i
0 - (X 354 5 rx, .ot %, (X, 3% 5 HY(X, 3% > 0 -
sinceH(X,.791) = 0. Thuss* induces an isomorphism
§* 1 T(X,3%)/imdf — HY (X397 (4 2 1).

Since imi9 = kerdd*! = kerd%1, the monomorphisrifl induces an
isomorphism

i9: 1(X, 39)/im dd — imi9/im d9
= kerd®*/im dd
= HI(X,.7).

Thus we have an isomorphism

S (9L HIN(X,.#) —» HY(X,3%Y) (g = 1)
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commuting withh*, sinceh* commutes withs* and §*) 2.

0

dg .
I(X, .74 1) ——T(X, 3% —Z> H(X, ;1) —=0

Riq

(X, .79

1
dgﬂ N

0 =T (X3 —# T(X, 7).

Also, the exact cohomology sequences corresponding ta(itiin

dgPrhy . ja-py:
0 &2,y gaety 2 ek gy £ g

forl< p<qgand

dé* " o
02, HI (X 5Y) 5 HIX 9) S50 for p=gq
Thus we have isomorphismg £ 1),

(i) —-1 s
HIr(X, ) sy, HY(X 341 = - > HYY(X 3Y) 2, HI(X, 9)

commuting withh*. Let n be the composite of these isomorphisms,
n: HIC(X, ) — HY(X, 9).

Theorem 1(Uniqueness theorem])f X is paracompact normal, and if
e dt dd
059> 9° 57 5. 5 741, o0, ... ,
1 q
0oy Sl st Sortd g,

are two resolutions of the same shé&abf A-modules, there is a canon-
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ical isomorphism
¢ : HIT(X, ) —» HIT(X, 7).

Moreover, if h: (79,71, .72,..) - (72, 7L 72,...) is a homo-
morphism commuting with @, d?, . . .,

dt o? dd

yo yl . yq—l yq
0——9¥ h h h h
\ ylo qt yll d2 yffl dd {qu
then the induced homomorphism
h* : HIC(X, ) —» HT(X, .7)
is the isomorphisng.
Proof. We have the canonical isomorphismsy1,
HOr(X,.7) 5 HI(X, ) <& HIT(X, .71);
letg = 771117. O

There is commutativity in the diagram:

HIT(X,.%) ——= HY(X, 9)

‘| N

HIT(X, 1) —=—= HY(X, 9),

where the homomorphish* on the right is the identity. Hence the
homomorphisnh* on the left is equal tg; 'y = ¢.
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We now given example to show that the uniqueness theoreshifail90
more general spaces.

Example 24.Let X consist of the unit segmemt= {x : 0 < x < 1}
together with two point$, g. A neighbourhood op (resp. ) consists
of p (resp.q) together with all ofl . Let¥ be the subsheaf of the constant
sheafZ, formed by omitting the pointsp( 1), (@, 1), (0, 1), (L 1). Let
#° be the subsheaf of the constant sh&af Z, formed by omitting
(p. @), (g, @) for all a # 0 and (0(1,0)), (0.(1,1)), (1(0,1)), (1 (1,1)).
Let . be the subsheaf &, formed by omitting ¢, 1). Let.#? have
the stalkZ, at p and O elsewhere; a neighbourhood pfX) consists of
(p, 1) together with all the zeros over Then there is a resolution

1 2 3
0w 9oL ot g2 8
and the corresponding sequence
dt d? d®
0 - I'(X,.7°) — I'(X, 1) — I'(X,.#?) — 0
is
0-0-50—-2,—0;
SOH?T(X,.¥) = Z,.
There is also a resolution 91
1
095250

81
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whereeis an isomorphism; theHPI'(X, #) = 0O for all p. There is even
a homomorphisnin, commuting withe, d*, . . .,

.0 yl yZ 0.
[The spaceX is not hormal.]

Definition . A sheaf” of A-modules is called fine if for every closed
set E in X and open set G in X with € G, there is a homomorphism
h:.¥ — . such that

) h(s)=s if n(s)eE,
i) h(9 =0y9 if n(9¢G
example of a fine sheaf.

Example 25.For each open subsét of X, let Sy be the A-module

of all functionsf : U — A. If V c U, definep,, to be restriction
homomorphism. Let” be the sheaf of germs of functions determined
by the preshea}, = {Sy,p,,}. If E ¢ G with E closed ands open, let

hy : Sy — Sy be defined by

(hu H)(¥) = () xc(X)
wherex € U andy is the characteristic function @&.
(xec(®=1cA if xeGyc(X)=0eA if x¢G).
Then{hy} : > — > is a homomorphism. Ih: .¥ — ¥ is the

induced homomorphisniy(s) = sif z(s) € E andh(s) = 0 if n(s) ¢ G,
hence the sheaf is fine.
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Exercise.If M is any non-zerd-module and the spacéis normal, the
constant sheal{yM, r, X) is fine if and only if dimX < 0.

Note. The set of all endomorphisnts. .7 — . forms an A-algebra, in
general, non commutative, wherg h, is the composite endomorphism.
The identity 1 . — % is the unit element of the algebra.

If ¥ = (S, X)is a sheaf ani; is a subset 0K, let X; andS; =
n~1(X1) have the induced topology. The®( 7|S1, X1) is a sheaf called
therestriction of . to X;.

If X is normal, the restriction of a fine sheaf to any closed set C
is fine

Proof. Let E be any closed subset 6fandG any open subset & with

E c G. ExtendG to an open seil of X, G = HN C. Then, sinceX is
normal,E closed inX, H open inX with E c H, there is an open subset
Vof Xwith E c V c V c H. Since.¥ is fine, there is a homomorphism
h: ¥ — .7 with

h(s)=s if 7(s) € E,
= Oy if 7(s) € X — V.

93
Then if . is the restriction of to C, h|S; : S; — S; is a homo-
morphismh; : .1 — .1 and we have

hi(s) =h(s) = s if 7(s) € E
= Oys) if7()eC-GcC-GcX-HcX-V.

O

Proposition 11. If X is normal,% = {Uj}is @ locally finite covering of

X, and if the restriction of” to eachU; is fine (in particular, if.¥ is
fine), there is a systefh }ic; of homomorphisms | .¥ — % such that

i) for each i € | there is a closed set;Ec U; such thatli(Sx) =
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i) >1; =1
il
(1 denotes the identity endomorphisth— .¥).

Proof. Using the normality ofX, we shrink the locally finite covering
% = {Ui}ie to the coveringZ {Vi}ie| with V; c U; and we further shrink
the locally finite coveringZ to the coveringz = {Wi}ic; with Wi C V;.
Since the restriction”; of . to U; is fine, there is a homomorphism
g : . — S with
gi(s) =s it n(s) € W,
= Oy if 7(9) € Ui - Vi

Let the homomorphisrh; : .7 — . be defined by

h(s) =gi(s) if n(s)eUi
= Un(y if ﬂ(S)EX—Ui.

(This definition is consistent, sin@g(s) = Oy onU; - U;). This
hi : ¥ — . is continuous and is a homomorphism with

hi(s)=s if n(s)eW,
=Oqy If 7(9)eX-Vi

Let the setl of indices be well ordered and define the homomor-
phismsl : . —» .¢ by

1 {n(l - hj)] hi,
j<i
where the product is taken in the same order as that of thedgadi O

Each pointx € X has a neighbourhool, meetingU; for only a
finite number of,, sayiy, io,...,iqgWith i <iz <--- <igq. If 7(s) € Ny,

II(S) = (l - hll) e (1 - hik,l)hik(s)’i = ik7 k = l’ ) q’
= Oygfor all otheri.
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Clearlylj(Sx) c Sx andlj|Sx : Sx — Sy is a homomorphism. The
functionl; is continuous on eacti1(N,) and coincides on the overlaps
of two such neighbourhoods, henge . — . is continuous. Thus
li : & — ¢ is a homomorphism, and

hi(Sx) =0y X¢ \7i,

hence B li(Sy) = Oy, X ¢ V.
TakeE; = V; c Uj. Letn(s) € Ny; then for soméyg, 1 < k £ q,
n(s) € W, and hencd;, (s) = s. Hence 95

(-hy)---(1-h)(s) =0.
Therefore

Z Li(s) = hiy () + (1 = hyy)hia() + -+ - + (L = hyy) - - - (L = hig,)hig (9)
iel
=s—(1-hi)---(1-hi,)()
=s
Note. The homomorphismk are usually not uniquely determined and

they cannot therefore be expected to commute with othendieeno-
morphisms.
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Let {li}ic| be a system of endomorphisms of a fine sheaforrespond- 96
ing to a locally finite coveringU;}ic; of a normal spacX. Eachl; gives
a homomorphisni;(U) : I'(U,.¥) — T'(U,.¥) for each operlJ and
> 1i(U) has a meaning and is the identity endomorphisni'@&f.&).

iel
E\Iso li determines a homomorphism

i(U) : T(Ui N U,.%) - I(U,.)
defined by

(WM =li(gx)  if xeuiny,
=0 if xe (X-U;j)nU.

One verifies that the following diagrams are commutative.

AE)

ru,.s) —Y . ru,.») U nu,#) 2. ru,.s)
p(uimu,y)l y lp(uimu,m p(uinv,uinwl lpvu
T(UiNU,.%) —— T(U; N U,.%) U nV,.2) 2o rv,.2)

li(UinU)

If X is normal,.7 is fine and% = {Ui}i¢ is a locally finite covering
of X, then W(%,) —» Oforq = 1.

Proof. Letkd! : CY(%,.¥) —» CH+L(%,.7) for q = 1 be the homo-
morphism defined by

K@) = D (U (F (o),

i€l

87
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whereio = i, io,...,ig-1if 0 =lo,...,ig-1. (This infinite sum of sec-
tions is finite neglecting zeros, in some neighbourhood ohgmint.)
Using the fact thaby(ic) = o anddj(io) = idj-1(c) for j > 0, one
verifies that

SIKILE 4 KAsTHLE = f,

(The computation is given at the end of the lecture.)
Hence each cocycléis a coboundary.e.d. m|

Proposition 12. For a fine sheaf” over a paracompact, normal space
X, HIX, .#)=0forg=1

Proof. HA(X,.) = 0 g = 1 for each locally finite covering” of the
spaceX. Since the spacX is paracompact, this means ti#t(X, ) =
0,g=1. m]

Corollary . If X is paracompact and normal, any exact sequence of
sheaves

1
0y Sl gt ga
where each”9(q = 0) is fine, is a resolution a¥.

Definition. A sheat? is called locally fine, if for each open U and each
x € U, there is an open V with & V c U such that the restriction of”
toV is fine.

If X normal, a fine shea#” is locally fine.
Proof. The restriction of¥ to an arbitrary closed set is fine. m|

Proposition 13. If X is paracompact normal, a locally fine sheaf is
fine.

Proof. Let E c G, with E closed and5; open. IfG, = X — E then
{Giliz12 is a covering ofX. Since.” is locally fine, for eachx € G;,
there is an opeWy with x € V c G; such that the restriction of” to
Vy is fine. SinceX is paracompact, there is a locally finite refinement
% {Uj}jes of {Vi)xex, hence7 is also a refinement df5;}. If U;j c Vy,



Lecture 16 89

thenU; c Vy, andVy, being closed irX, is normal. Since the restriction

of . to Vy is fine, the restriction of” to U; is also fine. Now by

proposition 11, there exist endomorphisimsuch that}; |; = 1 andl;
jed

is zero outside a closed s&f c U;. Choose the function : J — (1, 2)
so thatU; c G.(j) and let

= > 1, i=12

(j)=i
Thenli + 1> =1 and

li(9=0ifn(9eX- | JUjox-G.
(=i

Hence
(9 =0 if (9 eX-Gy

and
l1(s)=s if n(9eX -Gy =E.

I1 thus gives the required function, and this completes thefprao

Corollary . If X is paracompact and normal, any exact sequence of
sheaves

1
0oy oo, gt ga

where each”9(q = 0) is locally fine, is a resolution o¥. 99

The following examples shows that, in more general spaces)diss
need not coincide with local fineness.

Example 26.Let X have pointsa, b, ..., h with base for open sets con-
sisting of (f), (g), (h), (d, f.h), (e;g,h), (c, f,g), (b,e g,h), (a,d,e f,
g, h). Let.¥ be the subsheaf of the constant shédormed by omitting
(c,1), (f,1). Then.” is fine but not locally fine. In facly = (c, f,g) is
the least open set containiegand the restriction of” toV = X — (h)

is not fine. K is not normal.)
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Example 27.Let T be the space of ordinal numbetso; with the usual
topology induced by the order. Létbe the space or ordinal numbers
< wp and letX be the subspace dfXAformed by omitting the point
(w1, wo). Let.# be the constant she@b over X. Then.¥ is locally
fine, for every point has a closed neighbourhood which is ab@and
zero dimensional. But” is not fine. IfB is the set of even numbers,
thenB c A. LetE = w3 xBandG = T x B. ThenE ¢ G c X
with E closed ands open. There is no endomorphism.gf which is
the identity onE and is zero outsid&. (X in neither paracompact nor
normal.)

Example 28.The spacév of Quart. Jour. Math. 6 (1955), p. 101 is nor-
mal and locally zero dimensional but not zero dimensiondderéfore
the constant sheds is locally fine but not fine. 1 is not paracompact).

SIKILf 4 KIS E = f,

q
S (@) = D (~1)Yp(Ur, Up o) (T )(90)
j=0

o

= 2 - Dlo(Us. Ug ) Z 11Uy 0) £ (0;0)

j=0
= > (- le(ug)p(u.m io,0) f(0;0).
j=0

k5% = Z l1(U) (0™ ) (i0r)

o

g+1

= iUo) ) (-D)p(Uic Ug o) F@jir)
i j=0

= i(Ua)p(Uio, Ug) f(o)

q+1

+ ) liuo) _Zl(—l)ipw o, Uid10) f (i0j107)
| =
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= Y iU @) D 11(Us) D (1) p(Ui,, Uigo) F(i007).
i i j=0

s8I (o) + KIsTL = ol (U) (o) = (o)

91
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In this and the next lecture, we shall give a proof of de Rhah&srem. 102
Let X be an indefinitely dterentiable C*) manifold of dimension

n, which is countable at infinity (i.e) a countable union of gaut sets);

we assume thaX is a Hausddt space. TherX is paracompact and

normal. (Dieudonne, Jour. de Math. 23 (1944)). TheS¥U) of all

C> (alternating) diferential p-forms on an open séi forms a vector

space over the field of real numbers. Exterioffatientiation gives a

homomorphisnd®,

dP: &P HU) - £P)
with dP*1dP = 0. In particular, there is a sequence
0% oo L 1) = - D orex) o - L ey 5 0
with im dP c kerdP*!. Let
HP(& (X)) = kerdP*t/ im dP.
This vector space of the closgeforms modulo the deriveg-forms
is called thep-th de Rham cohomology vector spaiféhe manifoldX.
If V c U, the inclusion map: V — U induces a homomorphism
pu =17 EPU) - EP(V)
which commutes withd. Thus the systen®P? = {&P(U),p,,} is a 103

93
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presheaf which determines a sh&ap, called the sheaf of germs of
p-forms, and
dP: &Pt eP

is a homomorphism of presheaves which induces a homomanphis
dP: QP — QP

There is a constant preshe®, p,,,} whereR is the filed of real
numbers ang,, : R — Ris the identity. This presheaf determines the
constant sheaR. There is a homomorphise: R — £°(U), (£°(U) is
the space o€* functions onU) whereeg(r) is the function onJ with
the constant valug, and furthere commutes withp,,,. Thus, there is an
induced sheaf homomorphisat R — Q°. Hence, we have a sequence
of homomorphisms of sheaves

e dt dP
0-R5Q°— ... 5 QP S0P 5

L]

with dP*1dP = 0.
There is a homomorphism

{fU} : {gp(U)vpvu} - Q_D,

(QP denotes the presheaf of sectiongd), where the image of an el-
ement of&£’P(U) is the section oved which it determines if2P. Then
d commutes withfy and, in particular, withfy. Thus we have the com-
mutative diagram:

P — = EP(X)

a lfx

(X, QP 1) -~ r(x, QP).

If a p-form w € &P(X) is not zero, there is some poirte X at
which it does not vanish, and henggww # 0. Thusfxw # 0, i.e., fx
is a monomorphism. (In the same wdy, is a monomorphism for each
open set.) fx is also onto, hence anisomorphism. Fog & I'(X, QP),
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then sinceQP is the sheaf of germs gi-forms, for eachk € X there is a
neighbourhoodJy of x and ap-form wy defined orlJy such that section

g and the section determined hy; coincide onUy. Then{U,} forms a
covering forX, and since the section determineddyandwy coincide
on Uy N Uy, using the fact thafy is a monomorphism for each open set
U, we see that the formsy andwy themselves coincide ody N Uy,
hence they define a global from such thatfx(w) = g. Thus fx gives
an isomorphism of the sequences:

dt dP

0——&°(X) EPH(X) &P(X)

a 1 a

O_>F(X’QO) L)..._>F(X’Qp—l) LF(X,QF’) ...

Hence there is an induced isomorphism of the cohomologyoveaibs
spaces:
fy : HY(&(X)) - HIT(X, Q) (9= 0).

Poincare’s lemma. The sequence
dt dp
05R->Q° ... QL 5P ...
is exact
Proof. We have to prove that for each pomt X, the sequence

1
0—- Rag di—> —>Q§_1d—p>§2§---

is exact, where the subririgy of Q3, consisting of the germs of constant
functions at_ais identified with the filedR of real number. Choose
a coordinate neighbourhodd/ of a with coordinates X, ..., X,) and
suppose thaa = (0,...,0). ThenQ} is the direct limit of the system
{EP(U), pyy ey WhereU belongs to the cofinal set of those spherical
neighbourhoods? + - - - + X3 < r2 which are contained ikv. O

For each suclJ, let

h: &°U) - R
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and  kP1:&PWU) > PHU)  (p2 1)
be the homomorphisms defined by
h(f) = f(0,...,0),
and

KPL(f (X0, ..., Xo)dX -+ dX,)

1 P _ .
:(fo F(t, . b)) - Y (1) dx, ... dx ... dx,
=1

106  respectively. (The formula on the right is an alternatingchion of
i1,...,ip; handkP~1 are then extended by linearity &(U) and&P(U)
respectively.) One now verifies that

eh+ Kod! = 1,
dPkPL 4 kPPl =1 (p2 1),
where 1 denotes the identity map.
(The computation is carried out at the end of the lecture.)
Thus f € kerd’ implies thatf € imeandw € kerd?*! implies that

w € imdP. Hence ked! = ime and kedP*! = imdP, since already
im e c kerd! and imdP c kerdP*!. Hence the sequence

e d* dp
0> Ry - &°U) > ... HU) — &PU) - ...

is exact, and since exactness is preserved under direts,litherefore
the limit sequence

e d* _q dP
O—>Ra—>Qg—>---—>le—>Qg—>,,,

is exact,g.e.d.
The sheafdP is fine.

Proof. Since the spacX is paracompact and normal, by Proposifiah 13
(Lecture[d®), it is enough to prove that the sh@éfis locally fine. Let
U be an open set of, and leta e U. O
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107 We may assume that is compact and that it is contained in some
coordinate neighbourhodd of a. LetV be an open subset withe V
andV c U. We will now prove that the I‘eS'[I‘IC'[IOﬁp of QP to V is fine.

Let E c G with E closed and5 open 1\ ExtendG to an open
setH c U, so thatG = V n H. ThenU is covered by a finite number
of spherical neighbourhood; contained inN, such thaS; either does
not meetkE or is contained irH.

For eachi, choose an indefinitely fierentiable functionf; which
is positive insideS; and vanishes out sidg;. We construct one such

n
function as follows: For the spherical neighbourhopdx; —bij)? < r?,
j=1

let
gi(r)=0 r=r
I r
:feXp{(t——(t—r} Eé <),
I r
:fmzexp{ )(t—r } 0=r=3)

and definef; by

fi(X1, ..., Xn) = Gi( Z(Xj - bij)>.
Jj:l

Let p1(x) = X, fi(x), summed for all for which S; meetsE and let
e2(X) = 2 fi(X), summed for all the remainirig Thene; +¢> is positive
in U and, if

0(X) = ©1()/(1(X) + @2(x)),

6 is indefinitely diferentiable inU, is zero outsideH and is constant, 108
equal to 1, in a neighbourhood Bf

Leth : &P(W) — &P(W), for openW c U be defined byh(w) =
6 - Q. Thenhis a homomorphism commuting wigh,,, Y open inU,
Y c W. Henceh induces a homomorphisim : QP(U) — QP(U) for
which

h(ws) = wp if b€ E,
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h(wp) = Opif be V-G cU-H.
(wp denotes the germ determined byatb € U.)
Proposition 14. There is an isomorphism
nfy : HP(E(X)) —» HP(X,R).
Proof. By the corollary to Proposition-12, the exact sequence

e d! dp
05RSQ°— ... Q1 50 .

is a resolution of the constant sheRfand hence, by Propositidnll10,
there is an isomorphism

n: HP(x, Q) —» HP(X,R);

but we already have (as proved in the earlier part of thisutegtan
isomorphism
fy : HP(&(X)) = HPI(X, Q).

(L)eh+Kodt = 1. (2)dPkP-t + kPdP*L = 1 (p = 1).

(1) If £(X) = f(x,..., %) € V),

ehf(x) = f(0,...,0) andd f(x) = i D; f(x)dx, (+),

i=1

d
hencek®d! f(x) = X1, [ Dif(tx)dt - x = fold—t f(x)dt = F(X) —
f(0), thuseh f(x) + k°d f(x) = f(X).

(@) fw=f(X,..., %)dX, ---dx,,

1 p _
dpkp—lzdp({f f(tx)tp‘ldt}-Z(—l)“lxijdxl---dﬁij---dxip
0 =
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n 1 P -
= Di f(t)tPdD) - » (-1) %, dx;, - dK; ... dx,
Q[ orrenrran DN a0k |
+ (fl f(tx)tP1dt) - pdx, - - dx,.
0

n
KPP+l = kp(Z Dif (x)dxdx, - - dx;,)
i=1

ianl(foi Di f(tx)tP - dt){xid)ql...d)qp

p
— Z(_l)l_lxijd)(id)ql .. d)’Z|J .. d)qp}
=

(+) Dj denotes partial derivation with respect to theth variable con-
cerned.
ThusdPkP1w + kPdP+iw

1
= (fo ftx)p - tPdt)dx, ... dx,

n A1
+Zf0 Di F(O)P - dt - dlx, . .. dx;,
i=1
1 1n
:{f(tx)tp] —f ZDif(tx)-xitpdt}dxl...d)qp
0 Jo im

n A1
+2fo Dif(tx)-tpdt-xidxil...d>qp
1=

= f(x)d>q1...d><ip

= w.

110
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Let sP be a fixedp-simplex in Euclideanp-spaceRP, with vertices 111
ag,ay,...,ap, i.e. s is the convex set spanned by poimds. .., a,
which are in general position. We may assume thats the origin
anday, .. ., ap are unit points of a coordinate axesRf, and thats”! is

the face oppositay in sP.

Definition . A differentiable singular p-simplex in a’Cmanifold X is
aC®-mapt: sP » X. The imageimt, is called the support of the
singular simplex t. The j-th faegt is the composite map td sP1 — X
where g : s — sPis the linear map which mapsaA..,ap-1 into
ag, ..., 4qj,...,ap.

The support ob;t is contained in the support of

Definition . A differentiable singular p-cochain in an open setdJ X
is a real valued function of gerentiable p-simplexes with supports in
U; f(t) e Rif supptc U.

The setSS of of all differentiableP— cochains inU forms a real
vector space. There is a restriction homomorphign: SB - S\‘j for

V c U and a coboundary homomorphigih : 88‘1 - SS defined by
p .
(@HO) = ) (1107,
=0

The homomorphismg,,, anddP commute, andmd® c kerdP*!.

101
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In particular, there is a sequence

d —1 dP
O—>S?(—1>S§<—>---—>S§l—>S§—>...

with dP*1dP = 0, i.e., imdP c kerdP*l. Let
HP(Sx) = kerdP*/imdP.

This vector space is called the-th cohomology vector space of X
based on dierentiable singular cochains.

Since a singular 0-simplex may be identified with the poinichlis
its support,SP, can be identified with the vector space of all functions
f : U - R The vector spacé™®(U) of C*- functions onU is a
subspace 0B}, and the spacR of constant functions od is a subspace
of £°(U), i.e.,Rc &°(U) c S.

The preshea{SS,p\,u} determines a sheaf’? and sincep,,, com-
mutes withdP and with the inclusion homomorphiser R — Sg, there
are induced homomorphisms

0RO ot L o,

Here the constant she&is identified with the sheaf of germs of
constant functions.
There is a homomorphism

{gU} : {SB’pvu} - jp’

where the image of an eIementS{I_’J is the section which it determines.
Thend commutes witlgy and, in particular, witlgyx. Then we have the
commutative diagram:

-1 dpP p
0 SK e sb Sk

gxl gxl gxl

0—=TI(X, %) —= - —=T(X,.7P 1) Lo [(X, #P) — ...

The induced homomorphisnj g HP(Sx) — I'(X,.%)is an iso-
morphism for each p.
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Proof. For each coveringZ of X, let SE;/ denote the vector space of
all real valued functions of dlierentiablep—simplexes, which are de-
fined for each simplex with suppt contained in some open set @f.
dpmaps%‘l into S and, if # is a refinement ofZ, there is the ob-

u
vious restriction homomorphismy ; : SY — S}, commuting with

dP. Then{Sg/,gW%} is a direct system and it can be proved, using a
method similar to the one used in the proof of Proposition &cfure
12), that its direct limit ig'(X, .P). O

The induced homomorphisngs,, : HP(Sy %) — HP(Sy) are
isomorphisms. (See Cartan Seminar, 1948-49, Expo§8.8, Hence
g, : HP(S%) — HPI(X, ) is an isomorphism and, in particular, tak-
ing Z as the covering by one open stt

gy : HP(Sx) — HPI(X, .¥)
is an isomorphismg.e.d.
The sequence
05RS 7ot Lo,
is exact.

Proof. It is suficient to show that 114
p
05R5S) st L sP o

is exact for a cofinal system of neighbourhoddi®f each pointa € X.
For this system, take the spherical neighbourhoddsontained in a
coordinate neighbourhodd of a The result is proved using the conical
homotopy operator. (See Cartan Seminar, 1948-49, Expo$@ ;7his
formula should be replaced by

y(/IOa ------ /1p+1) = ¢(/10)X (/11/(1 - /10), .. ) Ao # 1,
=0 Ao = 1;

where the indefinitely dierentiable functioryp is chosen so that &
#()o) < 1for0 =< 2o £ 1, ¢(0) = 1 andg(1p) = O for A, in some
neighbourhood of 1.) O
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The sheaf”P is fine.
Proof. Let E c G with E closed ands open. Defindy : SB - SB by

(hy )(t) = f(t) ifsupptc G
=0 otherwise.

Thenhy is a homomorphism commuting wiih,, and induces a
homomorphisnh : P — 7P such thath : SP — SPis the identity if
x € G, and is zero ix € X — G. Thus.”P is fine,q.e.d. m|

Now lethy : &P(U) — S{} be the homomorphism defined by
(hyw)(t) = ft_lw,
sh

wheret 1w is the inverse image of the form by t. Clearlyhy com-
mutes withp,,, hence induces a homomorphism QP — P with
commutativity in

£P(U) %QQ

S

Pxuy
Sy —=—Sk.

Hence there is an induced homomorphisml’(X, QP) — I'(X, #P)
with commutativity in

EP(X) —2=T(X, QP)

S

sk — 2 1(x,.#P).
hy commutes with &

Proof.

(hy dPw)t = f 1 (dPw)

sP
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= f dP(t1w) ( sinced® commutes witht ™)
P

S
p
- Z(—l)j f t~1w( by Stokes’ theorem fosP),
j=0 djsP
p .
= ) (D(huw)ijt
i=0
- (dPhyw)t.

Thushy induces a homomorphisti, : HP(&'(X)) — HP(Sx). Also 116
the homomorphismb : QP — .#P and hence the induced homomor-
phismsh : T(X,QP) — I'(X,.#P) commute withdP, and thus there
are induced homomorphisnig : HPT'(X, Q) — HPI'(X,.¥). There is
commutativity in

HP(£(X)) — %~ HPT(X, Q)
h*xl l“*
HP(Sy) — 2 HPL(X..7).
The homomorphism*hs an isomorphism. O

Proof. We have the two resolutions

QO Qp—l dP QP
S
0——R h h h
N
yOﬁ...Hyp—lLypH...

of R. The homomorphisnh commutes withdP, and commutativity in
the triangle follows from the fact thd® c Q° — .° ande, h and
e are inclusion homomorphisms. Henlgeis the isomorphism of the
uniqueness theorerg,e.d. O
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Theorem 2(de Rham) The homomorphism
hy : HP(£(X)) — HP(Sx)
is an isomorphism.

Proof. The following diagram is commutative :

HP(£ (X)) — %= HPT(X, ©)

HP(Sx) — > HPI(X, ).
117
Since fy, gy, andh* are isomorphisms, and the above diagram is

commutative, we haviey, = g *h* ;. Thereforeh; is an isomorphism.
O
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Definition. A double complex K is a system of Aodules (A is a com-118
mutative ring with unit elementK P9}, indexed by pairgp, g) of inte-
gers, together with homomorphismsahd ¢ with
dpd: KPHa  kPa g9 KPS KPP
dP9.dPh =0, dPMdP9 =0,
d£)+l,qd][-)+l,q—1 + df+1,qd§,q =0,
(i.e., d and @ are djferential operators of bi degree (1, 0) and (O,

1) respectively, which anticommute. Usually we omit theemqguipts
attached to dand ¢.) We have then the anticommutative diagram:

d d
s KPLGl 2 p1g — s KP-LOHl — .

dq dq dp

d d
S KPOl 2 S KPA 2 Pl — .

(Each row and column of a double complex forms a (single) ¢exnp
with the homomorphisms énd d respectively.)

Definition. A subcomplex L of K is a system of submodul$ ¢ KP4
stable under gdand c; thus d (LP~9) c LP9 and ¢(LP91) c LPA. 119

107
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If L is a subcomplex of a double compl& then clearlyK/L =
Kpﬁq/vaq} with the homomorphisms induced loly andd, is again a

double complex.

Let ZPY(K) be the kernel ofi, : KP4 — KP*14 and letBM(K) be
the image ofi; : KP~19KP9. Sinced? = 0, B c ZP ¢ KP4,

Now ch(zP19; = 0 e ZP% and, since dldz(Zf’q_l)
= —thth(ZP¥h) = 0, dp(zPY) c ZP9 Thuszy(K) = {zf’q} is a
subcomplex oK.

Also dy(Bf ™ = 0 € B> and dy(BP* ™) = dody(KP-10Y) =

—thdp(KP1°) ¢ BPY. ThusBy(K) = {Bf’q} is a subcomplex of
Z1(K). LetH;(K) = Z4(K)/By(K) with H(K) = {Hf’q(K) =2z Bf’q}-

In the double complex;(K), the homomorphism induced lay is the
trivial (zero) homomorphism.

e H][-)—l,q—l a2 Hf—l,q dy Hf_l,qﬂ_ o
_ d d
[ H][_)sq 1 2 H][_),q 2 Hf’q+1 .

Similarly if Z) = kerd, andB5® = im d, there is a double complex
Ho(K) with Ha(K) = {Hqu(K) _ z;%egs‘*}. In Hy(K), the homomor-
phism induced byl is the trivial homomorphism.

H p—l,q—l H p—l,q H p_]_’q+]_
2 2
di d; th
HPa-1 HP-a HPa+l

2 2
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120
In particular, there is a double complebs(H;(K)), which we write

asHio(K) = {Hf’zq(K)} whereHP! = {Zfqufzq} andzb = kerd, :

HPY - Hf’q”; B = imdy : HPT 1, H>. In the double complex
H12(K), the induced homomorphisnty andd, are the trivial homo-
morphisms.

Similarly there is a double complex

Haa(K) = {HE(K)} = Hi(H2(),
Notations. In terms of the more usual notatiod,»'(K) = H;} (HP(K))
andH2(K)) = HP(K)(H}} (K)).
To the double compleK = {Kp’q, di, dz} we can now associate the
(single) comple>{K”,d}Kn being the direct surk" = > KPd (each
p+q=n

K" is anA— module) with the dierential operatod = dy +d, : K1 —
K". (d is a homomorphism antf = d? + dyd, + dody + d3 = 0).

dn+l

dn
o KM S K= KM S

Thus imd" c kerd™! and there are cohomology moduld§(K) =
kerd™1/imd".

Definition. A homomorphismf : K — L (of bidegreg(r, s)) of double 121
complexes is a system of homomorphismd& P9 — P70+,

Definition. Amap f : K — L of double complexes is a homomorphism
of bidegree (0, 0), which commutes withahd .

Clearly a mapf : K — L induces homomorphisms
f+ t HPAK) - HPY(L), £ 0 HE(K) - HE(L)
and 1 HYA(K) - HEA(L)

Also, f determines obvious homomorphisrhs K" — L" which
commute withd = d; + d,> and there are induced homomorphisfiis:
H(K) — HN(L)
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Definition. A sequence

h hri1
o Kg o Ky = Kpg o -

of homomaoarphisms of bidegree (0, 0) of double complexedlésiexact
if, each pair(p, g), the sequence

p.q p.q p.q
.._)Krl_)Kr _)Krl_)...
is exact.

Given an exact sequence of maps of double complexes
0— K’—i> K—j> K” -0,
there is an exact cohomology sequence
oo HKY) D ) D Hngeny S ey S -
122 Proof. The sequences
0— KM, K”—j> K" -0

are clearly exact for each eanhandd commutes with and j. Then,
using the standard arguments of Lecture 10, we obtain thét.res o

Definition. Two maps of double complexes; K - Land g: K —» L
are calledhomotopic( f og) if there exist homomorphisms hK P14 —
LP9and hp : KP4 — LPA (j.e., h and hp are homomorphisms K> L
of bidegree €1, 0) and ©, —1) respectively) such that

dlhl + hldl + d2h2 + h2d2 =0- f,
dihy = —hydy, drhy = —hyda.

(Homotopy of maps is obviously an equivalence relafion.
Homotopic maps f— L and g: K — L induce the same homo-
morphisms
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(i) f*=g HRL(K) - HD(L),
(i) =g H2Y(K) - HRA(L),
(i) f* =g : HY(K) — H(L).

Proof. Let (hy, hy) be the pair of homomorphisnis — L which express
the homotopy betweefi andg. Sinceh,, like dp, anticommutes with
d1, there are induced homomorphisms

hs : HPP(K) — HPY(L).
Further, since 123
dihy + hidy = g— f = dohp — hod,

h, expresses the homotopy gfand f + dxh, + hod, from a column
complex ofK to the corresponding column complexlaof O

Hence
f*+doh3 + hjdy = g* : HPY(K) - HDY(L),
i.e., dzhz + h;dz = g+ - f*.
Thush] expresses the homotopy @f and f* from a row complex
of {Hf’q(K)} to the corresponding row complex {jﬂf’q(L)}.
Hence
f* = g* : HP(K) — HEY(L). This proves ).

The proof of (ii) is carried out in a similar manner, using titber
anti-commutativityd,h; = —hyds.
To prove (iii), leth = hy + hy : K™ — L". Then
dh+ hd = (dy + d)(hy + h2) + (hy + hy)(dy + dp)
= (dihy + hady + dohp + hadp) + (dihy + hpds) + (dzhy + hidp)
=g-f.

Thushis a homotopy of the complex¢k"} and{L"}, and we obtain
f* =g : HY(K) - H"(L).
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Note.In the double complexes which occur in the usual application
one has commutativitghd, = dodi, dih, = hod; anddxh; = hdy, 124
rather than anti-commutativity. The commutative case cartréans-
formed into the anti-commutative case and vice versa byaoam d,

by (-1)Pd : KP9-1 — KP4 andh, by (-1)°h, : KP4 — KPA, These
substitutions do not change kéy, imd,, etc., and so the cohomology
modulesH!, HTY!, etc., remain unchanged. Butfis a commutative
double complexK", d, H"(K) are understood to refer to the associated
anticommutative double complex.
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Definition. If Q is a directed set, airect system of double complexes2s
{K,l, ¢,M} is a system of double complexegs ad maps
AueQ)

Gua - Ki— K}l (A <),
such that

() ¢ is the identity,

(i) ¢yupua is homotopicto ¢, for A < p < v.

If {KA, ¢M} is a direct system of double complexes, there are unique-
ly determined direct limits:

(i) Hy(K) = direct limit {HPY(K2), 67 ),
(i) HRA(K) = direct limitHE3(K,). 67, ),
(i) HM(K) = direct limitH"(K,). 47, ).
Proof. (i) The system{Hf’zq(Kﬂ), ¢;A} is a direct system, as

(@) ¢, is the identity, sincg,, is the identity,

(b) By = (Pvudua)” = ¢, since homotopic maps induce the same
homomorphism on the cohomology groups.

113
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The proofs of (ii) and (iii) are carried out in a similar manne

Definition. We say that a systefi,} of double complexes is bounded

126 on the rightif there is some integer m, such thaf’?(: 0 whenever
g > m (for all p andd). The system is saith be bounded on the left
(resp.above, beloyif there is an integer m such tha‘glplf@ = Owhenever
g<m(resp. p<m,p>m).

Proposition 15. If {Kﬁ,qw} is a direct system of double complexes

which is bounded above or on the right and if}{K) = 0 for all p
and g, then H(K) = Ofor all n.

Proof. Leta € H"(K), let a,; be its representative in som&'(K,) and

leta, € Z"(K,) represent the class,. Leta, = ai'? + af‘l’q” +...,

wherep + g = nand the sum terminates widf]""" (resp.a, """). O

Sincea, € Z"(K,), da, = (d; + dy)a, =0, i.e.,

day = dia?% + (dha?? + chal Py 4.

and the sum being direct, we ha@"™ = 0 andd,a®%+d;a’ % = 0.

Thusal® € ZP9(K,) andd,a)" € B]‘;’q”(KA). Thereforea®? represents
an element onE;,Z(KA). SinceH,' = 0, there is som@ > A such
thatal™ = ¢,,a}" represents an element Bf,(K,). Thus, for some

b e ZPYY(K,), a9 — dob € BPY(K,), and hencef} = dyb + dic for
somec € Kﬁ_l’q.

Leta, = ¢,,a, and let

g =a,-db+c
=a, —dib-dob-dic-doc

=a,—ay%-dyc (sincedsb = 0)

G —dye) + @)

_ aP-Llo+l | op-20+2
=g, +ay, +

-1,g+1 —2,0+1
O+ ol

p-1,0+1

127 wheree/'f_l’q+1 =a, —doc. Then sinces, anda, represent the same
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classa, € H"(K,), they represent the same elemene H"(K). The
reason for choosing this representate/eis the fact that its g, o)— th
component is zero. Continuing thus, after a finite nunibef steps for
a suitablep, a is represented bg, = —dc’, consisting of a single term
in Kpp‘k"“k. Continuing the construction still further, since the systof
double complexes is bounded above or to the right, afterta fimimber
of steps, we obtain a representatiye= —d,¢” = 0, i.e.,a is represented
by 0 € Z"(K,) for a suitablev. Hencea = 0.

Proposition 15-a. If {Kﬁ,qw} is a direct system of double complexes

which is bounded below or on the left, and f}{K) = 0 for all p and
g then H'(K) = Ofor all n.

Proof. This is carried out exactly as in Propositiod 15, except tat
eliminate the component @f, with highest second degreginstead of
the one with highest first degree, and;c plays the role of-d,c. O

Proposition 16. If {Kﬂ,qb,m} is a direct system of double complexes

which is bounded above or on the right and iff{K) = 0 except (at
most) for p= 0, then there exist isomorphisrs HY(K) — H7,\(K) for
all g.

If another direct syster{1K|ambda¢M} is bounded above or on the

right with H5'(K”) = 0 except for p= 0and if h, : K, — K, are maps
with h.¢’ | = ¢,..hs, then there are induced homomorphisms 128

h* : HY(K") - HY(K) and K : H{7(K") = H5(K)
commuting with the isomorphismis

HI(K") —= H2(K")

0
HI(K) —== H2(K).
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Proof. LetL, be the subcomplex

Ly:
-1,0-1 -14q
K/l K/l
0,0-1 0,9
Zl Zl
0 0

of Ky, with LR = KP9for p < O;LP = 0 for p > 0 andL$? =
Z7(Ky). SlnceLA is stable unded,; anddz, it is a subcomplex oKﬁ
Let M, be the subcomplex

M, :
K/ll,q—l K/;1,q .
S Bqu_l ng
0 0

of Ly, with Mé’q = LM =KMforp<O;MP =P =0forp>0
andM$% = B 9(K,). SlnceMl is stabled; anddz, |t is a subcomplex
of L/l O

Sinceh, : K’ — K; commutes wittd; andd,, we haveh, : N

L, andhy : M} — M,. Thus there are induced maps : K /L’
Ka/La andhy o L)/M) — La/M, which commute with andj in the
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exact sequences

0— L —= Kf —L- KL ——0
ml h{l ml
0 Ly — > Ky —> K/l —> 0,
and
0— =M, — L iym o

|

0 M, ——> M, — > L;/M; —=0.

Henceh’, commutes withd*, i* and j* in the exact cohomology se-
guences:

e H(K L) e HO(L) —s HO(K]) — s HO(K) /L) ——
hjl h}l “XL hﬁl
e HL(K /L)~ HR(L) — = HI(K,) —— H(Ky/Ly)

and
s HY(MY) s H(L) — L HY (LMY — s Hr (M) ——
hf‘l “f?l hﬁl hgl
o HY(M,) — > HP(L,) — > H(Ly/M,) — Hrvi(M,) — -

In the direct limit, we have the following commutative diagr 130
where each row is exact.

o
1

(Al)"' _— Hn—l(K//L/) & Hn(L') Hn(K') I’ Hn(K'/L’)

ST P

i ]

(A)- - —— HMY(K/L) ———> HN(L) H"(K) H(K/L) —— -

and

(B HIMY) — > HI(LY) — > ML /M) —s v () —> .
h*l h*l h*l h*l

(B2)- - HAM) — > HI(L) —> H(L/M) —2 > W (M) —> .
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The quotient double complex, /L, is

K,l/L,l . 0 0

and since the sequence-8 K79/23% — Kj’q is exact, we have
H1(K,/Ly):

- HITHKY) —= Hy (K —— -

- HITH(KY) —= HyY(Ky) — -

131
ThusHJ,(Ka/L,) = 0for p < 0, and is equal tiiD;'(K,) for p > 0,

henceH/(K/L) = direct limit {Hf’zq(Kﬁ/LA)} =0forp £ 0, and

by hypothesis is also zero fqr > 0, hence is zero for all pairp{(q).
SinceK,/L, is bounded above or to the right, by Propositioh 15, we
haveH"(K/L) = O for all n. Thus, in the sequencé{), we see that

i* : HY(L) — H"(K) is an isomorphism.
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Again, since the sequen¢€; La_, B}9 — 0 s exact, we have for

Hi(M,) :

e HEPTHG) - H(K )

Thus,HP(M,) = 0 for p > 0 and is equal tdi2(K,) for p < 0,
henceH (M) = direct limit {Hf’zq(Mﬁ)} is equal to zero fop > 0,

and by hypothesis, is also zero fpr< 0, hence is zero for all pairs
(p,q). As before, the conditions of Propositibnal 15 being satisfige 132
have H"(M) = 0O for all n. Thus, in the sequencéy), we see that

i* : HY(L) — H"(L/M) is an isomorphism.

The quotient double compldx; /M, is given by

L,l/M,l: 0

- HPTHK) —— HYY(KY) —— -

Thus La/M)® = HXY(Ky) andd = dp : HYTH(Ky) — HIY(K)).
HenceHY(L,/M,) = Hf’lzq(K,l); similarly HI(L’,/M*) = HYY(K"). Fur-
thermore, in the limit we havel9(L/M) = H3;(K) and HY(L'/M") =
HT9(K").

From the sequencesy), (A2), (B1), (B2), we have the commutative
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diagram :

HI(K”) <— H(L") — HI(L'/M) HOS(K")

R

HI(K) <— HY(L) —L= HY(L/M) HO(K).

Then there is an isomorphism
61 HY(K) — HH(K),

whered = j*(i*)™! : HY(K) - HYL) - HIL/M) = H(K), 6
being an isomorphism since we have proved that eacharfd j* is an
isomorphism.

Further, form (), we have obviously commutativity in the following
diagram :

HI(K") —= H2%(K")

HI(K) —= HOA(K).

Proposition 16-a. If {K,l,qb,m} is a direct system of double complexes

which is bounded below or on the left and i§;{K) = 0 except for
q = 0, then there exist isomorphisris HP(K) — HJ:’(K) for all p.

If another direct systenﬁK’,gb}’M} is bounded below or on the left
with H3;}(K”) = 0 except for g= 0, and if hy : K} — K, are maps with
... = ¢uaha, then there are induced homomorphisms

h*: HP(K’) - HP(K) and K : HD’(K") - HyP(K)
which commute with.
Remark . In particular, all the propositions proved in this lecture a
true for a double compleK = {Kp’q} satisfying the conditions stated

in the propositions. We have only to replace #he by the identity map
K- K.
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Example 29.Let 134
KP4 = Z (ring of integers) iff > 0 andp = —qor —q -1,
= 0 otherwise.
Forg 2 0, letd; : K419 — K=%9 and
d? - K-9-14 _, K-o-la+l
be the identity isomorphisms & onto itself. The other homomor-

phisms are all the trivial homomorphisms. Then= {Kp’q} is a double
complex with

HEA(K) = HY(K) = Z if (p.q) = (0.0),
= 0 otherwise ;
HY(K) = HPY(K) = 0 for all (
12 =M = P, q),

and

H"(K)=Zif n=0,
= 0 otherwise.

This double complex is bounded below and on the left, but is un
bounded above and on the right.
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Introduction of the family @

135
Let ® be a family of paracompact normal closed subsets of a tojpalbg

spaceX such that

(1) if F € @, then every closed subset Bfis in O,

(2) if F1, Fo € @, thenFy U F; € D,

(3) if F € @, there is an opel) with F c U andU € ®.

For example, ifX is paracompact and normab, can be taken to
the family of all closed subsets of, and, if X is locally compact and
Hausdoff, then® can be taken to be the family of all compact setXof

Sections with supports in the family. If . is a sheaf ofA— mod-
ules, the set of all sectionse I'(X,.#) such that supg = {x Cf(X) #

Oy is in @, forms anA— module (if suppf, € ® and suppf, € ® then

supp (1 = f2) c (suppfy U supp$) is in @), a submodule of (X, .¥),
which we denote by ®(X, .¥).

Any homomorphismh : .71 — .7 of two sheaves oA— modules
induces a homomorphism

h:TO(X,.7") - TO(X,.),

since a homomorphism of sheaves decreases supportsypphfsc
suppf).
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Definition . A ®- covering ofX is a locally finite proper coveringZ 136

such that, if X¢ @, there is aspecialopensetUYe ZZwith |y Ue
Ue-(U.)
0.

Remark. If X ¢ @, U, is unique, and is not the empty set, for otherwise,
in each caseX would belong tod. If X € ®, a ®- covering is just a
locally finite proper covering oX.

The®- coverings of X form a subdirected $@t of the directed set
of all locally finite proper coverings of the space X

Proof. (i) If X € @,Q, is the directed set of all locally finite proper
coverings ofX.

(i) If X ¢ ® and%, # are any twoD- coverings ofX, let # = {W :
W = UmV} forsomeU € % and som¢&/ € # with W, = U.NV,.
Then” is a locally finite proper covering of and

L w=( |J vuc |J v

We#/ —(W.) UeZ—(U.) Ve —(V.)

is in @, since each set contained in brackets i®inThus? is a
®-covering which is a common refinement#f and 7.
O

Remark. If 2 and#? are two® coverings with special setd, andV,
thenU, NV, is not empty, and it# is refinement of%, thenV, c U,
and V., is not contained in any othdd € %/. In particular, if # is
equivalent tozZ, thenV, = U,..

137 Cohomology groups with supports in the family If % is a ®-
covering andy, a presheaf oA- modules, we define

CQ(%Z) = Cp(%,Z) for p > 0,

and Cg(%,Z)cCO(%,Z) forp=0,
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whereC? (%, ) is the submodule &€° (%, ) consisting of those zero
cochains which assign 19.. the zero ofSy,. Then we have a mapping

sPichHw, y))~Ch(%.))).

Let 138
Ho (02/ Z) = kersP*1/im 6P.

Thean (%, Y) is called thep— th cohomology module of the cov-
ering % with cogficients in the preshedf, and supports in the family
(O}

If a ®- covering”? is a refinement ofZ, for each choice of the
functiont : # — % ,7t(V.) = U,.. We then have the mapping (Lecture

T :C@(%,Z)%Cg(W,Z) (pz0)

7t induces the homomorphism

Ty HY (% Z) - Cyg (W Z)

with T9,9, = identity, andry w1ty 9 = Ty f % < W < W . Thus
{Hg (%,Y),mye)}is adirect system o-modules.

Let

HP (X, ) = direct |imit{Hg(@/,z),TW}w D) is

called thep-th cohomology module of the space X withjforents in
the preshea}, and supports in the familgp.

The result analogous to Propositibh 7 (Lectliré 11) is truéhis
case.

Proposition 7-alf .7 is a sheaf of A-modules,}X,.”) = T'o(X,.¥).

Proof. We can identifyH2 (%, ) = Z3(% ,.”)(see Lectur&1) with
the submodule ofF (X, %) consisting of the sections with suppf c

X-U, U U e ®;then suppf € @. If # is arefinement of%/,
Ues—(U.)
sinceV, c U,, we haveX — U, c X -V,, hence

Ty . Hg(%,Y) - Hg(W,Y)
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is the inclusion homomorphism. Th#g (X,.#) can be identified with
a submodule of (X, ) i.e.,HZ (X, ) c T'o(X, ).

If feTp(X.Y), letU, = X — suppf, and letU be an open set
containing supgd with U € ®. Clearly% = {U, U,} is a®-covering
(with special setJ,) and the cochaig defined by

g(U) = flU;0(U.) =0

is the cocycle irZd(%,.”) = HY(% ,.#) which is identified withf €
Lo(X,.7). ThusT'e(X, ) € HY(X, ), henceH (X, ) = T'o(X,.7).
i

Given a sequence of homomorphisms of presheaves

dd
Lyeye
with im o c kerd®1(i.e, d? = 0) for eachd-covering% the system
kA = Cl (%, x% with the homomorphisms

w
S5 cg(%,Z) -CP [@/ Zq:]
q-1 q
and d:C} [%Z} —Ch [@/Z)

forms a double complex denoted by K= Co (%, 39).

dq+1 q+l

Proof. Any homomorphismy,’ N > of two presheaves induces a ho-

momorphism o’Cg (%,>)) g, Cg (% , Y)) commuting with the cobou-
ndary operatos. We haves? = 0, and by hypothesig® = 0. Fur-
therds = 6d; so we have the commutative case of a double complex,
g.ed. m|

For each pairz, % of ®- coverings for which# is a refinement of
% chooser : W — % withV c t(V), if # =% ,letr: % — % be
the identity and let

q g
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C@(Z) = {Cq’ (%’ Z) ’ ¢W%}ﬂz/ WeQ

is a direct system of double complexes.
(f % < W, ¢y = v+, for an arbitrary bufiixed choice ofr :
W — Uit W +%,andr . % — % is the identity.) 140

Proof. Since s and d commute with¢y o, ¢y : Co(#,>) —
Co(%,Y) is a map of double complexes, and by construction,
is the identity. ]

If # is a®- refinement of?’, ¢y 9 ¢4 corresponds to a possible
choice ofr : . —» % . Since for all possible choices of r(W,) = U.,
the homotopy operatde (see Lectur€l9)

q

k:cp[@/,Z) - cp—l[% Zq")

mapsC} (%, 3% = Ct(%,¥9) into C (#, %%). Thus we have two
homomorphisms : CP (%, 39 — CP™H (%, 2% and the trivial ho-
momorphismCP (%, 3.9) — CP (7/ Zq‘l) such that

OK+KS =dyywodyu —dwu,

and further,d commutes withk. Henceg¢y 9 ¢4 is homotopic to
Sy, hence{C@(% , ), ¢W;/} is a direct system.
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Proposition 8-a. If Y is a presheaf which determines the zero shead1
then H (X, ¥) = Oforall p 2 0.

Proof. Let f € CP(#,Y). Then |J U e @, and hence has
UeZ/~(U.)

neighbourhoodss, H with G c H; G,H € ®. Shrink the covering
U = {% - (U.), U, n I—T} of H to a covering#”’ = (W}, With
WU c U. For eachx € H choose a neighbourhodd, of x such that

a) ifxeU,VycUnH,

b) if xe Wy, Vx c Wy N H,

c) if x¢ Wy, Vx N\WU = ¢,

d) if xeUgn...nUp=Ug, pyu, f(o) =0,

andletv, =X- | U. O
Ue#—(U.)

Then{v*,vx} is a refinement of7. Chooser : HU (x) » %

xeH

such thatx € Wiy Eandr(*) = U,. Then it can be verified that" f = 0.
The covering{VXmG_} of G has a locally finite refinemefit; }ic; .

H
Let %4 be the proper coJéring consisting \éf together with alV such

thatV = Y; n G for somei € |. Then”#; is a®- covering which is a
refinement oi{v*,vx} . Hence there is a functiony : #1 — % with

xeH

V c 71(V) and such that} f = 0. ThereforeH (X, 3) = 0, g.e.d.

129
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Let
q o+1
..._>5M—1d_>5ﬁqd_>yqﬂ_>
be a sequence of homomorphisms of sheavésrmbdules with imd? c
kerd®?®. LetBY = imd9, 39 = kerd®! and.s#9 = 39/BY.
There is an induced sequence of homomorphisms of presheaves

g1 9T g AT T

with im d9 = B_g c BY and kerd™! = 39. Also there is an induced
sequence of homomorphisms

”'qu) (%’yq—l) ﬂ Cg (%’yQ) ﬂ CE) (%’yqﬂ) ...

where C} (%,.7%) = Cb(%.9), with im d9 = CJ(%,BY) and
kerd! = CP(%.,39). ThenH}Ce(%.,) = C{(%.3%/C{
(#.B3).

Lety : 39 — 229 be the natural homomorphism. There is an in-
duced homomorphism : 39 — 9 with y(BJ) = 0.

Hence there is an induced homomorphism

v Cl(% 3% — Co(w, ),

which commutes witlé and¢y 4 such tham(cg(% ,BY) = 0.
Hence there are induced homomorphisms :

v HYCo (%, ) - Ch(w , ),
v HYICo(% , ) —» HY(w , ),
W - HRICH () — HE(X, 9.

The homomorphisms : H)'Co () — CE (X, 5#79) is an isomor-
phism.

Proof. The exact sequence

0- 83— 39— 3/BI->0
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gives rise to an exact sequence
0— CP(%,Bg) — Co(%,3% — CP(%.,3%/Bg) — .
Hence the induced homomorphism
HYCo(% , #) = CY (% ,3%)/Ch(%  BY) — C™ (% ,37/BY)
is an isomorphism. Therefore
H3'Co(% ,.7) — Hy(% , 3%/B3)
and hence the homomorphisms
(1) HECo(7) = H(X.39/Bg) - -
are isomorphisms. O
The exact sequence
0-BI->BI-BYBI-0
gives rise to an exact sequence
0— CP(%.BY > CP(# . BY 5 CP( . BYBY) — 0
andi, j commute withs. Hence there is an exact cohomology sequerncea
o HE Y BYBY D WP, BY D
i _
Ho (%, BY — HE (%, BY/B3) — .

Sincei, j andé commute withgy 4, there is an exact cohomology
sequence of the direct limits

= HY (X BY/BG) — HY (X Bg) — o
Ho (X, BY) - HE (X, BY/Bg) — -
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_ The presheafB9/Bg determines the O-sheaf and henbg (X,
BY/BJ) = ofor all p. Hence, by exactness,

i HP(X, BY) — HP (X, BY)

is an isomorphism.
From the exact sequences of homomorphisms

0 B} 3 3/Bq 0
0 B 3 39/%¢ 0,

one obtains exact sequences of homomorphisms

HP (X, BY) —— H(X.39) ——= HP(X,39/BY) —— HE (X, BY) —— Hgﬂ(x, 39)

T T T

Ho(X BY) —— HP(X,39) ——= HP(X.39/BY) —— HP**(X, BY) — HP"Y(X, 39)

where four of the vertical homomorphisms are isomorphisiience,
by the “five” lemma (see Eilenberg-Steenrod, Foundationslgébraic
Topology, p. 16), the homomorphism

@ HP(X, 3BY) — HE(X, 3989 - - -

is an isomorphism.
Next, the exact sequence

0-BY9—>39—> 7950
gives rise to an exact sequence
0- BY— 3 - #9.
Let ji%q be the image of? in 9. Then there is an exact sequence

0— 39/BY - #9 > #9420
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and the presheab#9/.#; determines the O-sheaf. Hen¢tl(X,
2975 = 0, and in the exact cohomology sequence, the homomor-
phism

©) HE (X, #9/B%) — HE(X, #9) - .

is an isomorphism.
Theny™* is the composite isomorphism

HPICH(.7) — HE(X, 3/BY) — HE(X, 39/BY9) — HE (X, 59).

Definition. We say that the degrees {o¥9} are bounded below if there
is an integer m such tha#’? = 0 for g < m.
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Definition. The®- dimension of a space Xb — dim X, issupdimF. 146
Fed
® — dim X £ nif and only if everyd- covering has ab- refinement
of order< n.

Proof. Necessity Let ® — dimX < n and let% be a®-covering of

X. LetG be a neighbourhood of |J U with G € ®. Then%’ =
UeZ-(U.)

(% - (U*))NG, U, NG} forms a locally finite covering oB. SinceG is
normal and dinG < n, the coveringZ’ (see Lectur€1) has a (locally
finite) proper refinemern#”’ of order< n. Let V. be the union oK - G
and those element” which are contained i), N G together withV,
form a®- covering# of order< nwhich is a®- refinement ofZ. o

Sufficiency. Let F € ® and let% be a finite proper covering d¥. Let
G be an open set with c G andG € ®. Extend eacly € % to an open
setV of Gwith VN F = U. These sets together with = X - F form a
®@- covering? of X. Then#” has ad- refinement#” of order< nand
{W N Flwey is arefinement oz of order< n. Thus dimF £ n, and
henced - dimX £ n.

Note. The paracompactness of the set®ofas not used in this proof.

Example .In ExampleM (see C. H. Dowker, Quart. Jour. Math 647
(1955), p. 115) letd be the family of all paracompactsets bf (the
space is also denoted ). Then® — dimM = 0 and dimM = 1.

Remark. It is always true tha — dim X < dimx.
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Proposition 17. Let

—>(7q1—>(7q—>(7q+1

be a sequence of homomorphisms of sheaves aiddules withm d¥ =
kerd®?! for g # 0 andimd® c kerd! and let¥ = kerd'/imd°. If
® — dim X is finite or if the degrees ¢f79} are bounded below there is
an isomorphismy : HPCo () = HE (X, 9).

If

_hqul_)yq_)yqﬂ

is another such sequence (witi isomorphic to and identified with
%) and if h: 9 — %9 are homomorphisms commuting withslich
that the induced homomorphism: ¥’ — ¢ is the identity, then there
are induced homomorphismé hHPCq(.#”) — HPCo(.#) with com-
mutativity in

HPCy(.#") —— HE (X, %)
h* lh*: identity

HPCy(.7) —= HJ(X,9).

Proof. If the degrees of.#4} are bounded below, th@ng(%, SN =0

for q < nfor somen, and so the syster{c@(%,Y),QW%} is
U W eQ,
bounded on the left. b—-dim X < m, then there is a cofinal directed set

Q! consisting ofdb—coverings of ordeg m. If % € Q, CP(% 79 =

0 for p > m; thus the systen{c(p(%,,?),q)wg/} is bounded
U WeQ,
below. m]

If g # 0, we have’9 = 0, and by a result in LectufeR2, we have
Hg’lqc(p(j) ~ chy,jf) =0, henceHg’quq,(Y) = 0. Therefore by
Proposition 16-a, there is an isomorphism

0 : HPCo () - HY Co ().
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Also for q = 0, there is an isomorphism (see Lecturk 22)
¥* it HYCo(#) - HE (X 9).
Let  be the composite isomorphism
n =y HPCy(¥) - HE(X. 9).
Next, the homomorphisnis: .9 — .9 induce homomorphisms
h:Cl(%, 79 — CE(%,.79) which commute withd, § and ¢y %,
and hence give rise to maps : Co(%,.’) — Co(%,.) which

commute withgy 4 . Therefore, there are induced homomorphigrns
which commute witho,

HPCy(.7") —= HPOC4 (7

“"L l“"

HPCy(.7) — = H2OCy(.2).

Sinceh commutes withd?, h maps3’¥ into 39 andB’? into BY, hence 149
induces a homomorphisim;: 77’9 — 279, and there is commutativity
in

I w 4

| G

Co@ .3 —2>Clw , ),

wherey is the homomorphism induced by the natural homomorphisms
379 — 7’9 and3" — 9. Therefore there is commutativity in

H2IC,(.7") L HE (X, #19)

h*l | lh*

¥
HYCo () —— HY (X, 779).
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Therefore, taking) = 0, we see that* commutes withy = ¢*0.

HPCo(#") —L HEC(#7) L HY(X.9)

h* [ l lh*: identity

HPCo(.#) —= HECy () ——> HE(X. 9).
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Every® covering is shrinkablas is shown by the following result. 150
Let{Ui}ici be a locally finite covering of space X with someil

such thatU; is normal for i€ | — (i.). Then there is a refinemef}ic
with V; c U;.

Proof. The union of the locally finite syste{nTi}id_(i*) of normal closed
sets is normal and closed aXd- U;, ¢ U U; ¢ J Uj with X — Uj*
i#i, i#i,
closed and J U;j open. Hence there are open $B1$1 with X-U;, c G,
_ _ 1#1, _ _
GcH,Hc U U LetV,, = X-G, thenV;,, c X-GcU;.. O
i,
Since{H N Ui}ic1_(,) is a covering oH and the closed subskt of
U Ui is normal, there is a covering;}ic|,) of H with P; ¢ H N U;.
11 —
LetVi=HNP;foriel—(i.). ThenV;isopenV; c UjandJ V; = H.
_ i,
Then{Vi}ic is a covering oX andV, c U; for alli € | g.e.d. _
If .7 is afine sheaf and if @ U c X with C closed, U open and

normal, then the restriction of” to C is fine

Proof. This result is proved in the same way as in the case (see leectur
[[3) thatX is normal except that the open d¢tis to be replaced by its
intersection withJ if necessary, so thai c U. O

Proposition 11-alf {Uj}i¢| is a locally finite covering of a space X withi51

some j € | such thatU; is normal forie | — (i), and if . is a sheaf
whose restriction to each closed subset C of eagh €1 — (i.) is fine

139
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(in particular this is true if.# is fine), then there is a systef}ic, of
homomorphisms t . — . such that

(i) foreach i€ | there is a closed setE- U; such thatl;(Sy) = Oy if
X ¢ Ej,
@iy Xi=1.
i€l
Proof. Shrink to a coveringW}ic; with W, ¢ Vi, Vi ¢ G, G; c U,
whereW,, V; andG;, are open. Using the fineness of the restriction of
% 10 Gj. one constructs homomorphisms: . —» .7 i # i., (actually

the homomorphisms afg : .5 — .75, and we extend these by zero
outsideG;; .7, denotes the restriction o’ to G;) with

hi(s) =s if n(s) e W,
= Oy if 7(S) € X = Vi.

Let the set — (i) be well-ordered and define

= (] Ja-np)h =i,
j<i

=[] @a-n.
lie1-0)

(In a neighbourhood of each point & I, i € I, is only a finite
product.) Then; : ¥ — . is a homomorphism. LeE = V; for
| #1,; then ifr(s) € X - V;, we havdi(s) = O sinceh(s) = O). Let

Ei, =X- U W,;thenE, c W, c U;,. If n(s) € X - E;,, then, for
iel=(i.)

somei € | - (i.), 7(s) € W and hencé(s) = s, sol; (S) = Oxy). m|

If 7(s) = X, choose a neighbourhodd), of x meeting at most a finite
number of the sets;, i € I -(i.), say, fori = iy,...,igwithiy <--- <ig.
Then

219 = hiy(9)+ (2 - hhiy(9)
iel

+ (1= hiy)...(1-hi,_)hi (9
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+(@-hy)...(1-h) (9
=5

and this completes the proof.
Let

-1 da dt 1
...ﬁyq ﬁyq%yq-'— ﬁ...

be a sequence of homomorphisms of sheaves afithd® = 0. Such a
sequence of sheaves is calledeamplexof sheaves.

Definition. A complex of sheavgs”9} is calledhomotopically fingif,

for each locally finite coveringU;}ic; with somej € | such thatU; is
normal forie | — (i,), there exist homomorphism&h : 9 — .79 1 153
and a family{l?}id of endomorphisms o9 such that

(i) for eachie | there is a closed set Ec U; such that }(S§) = 0 if
x¢ E,
(i) X1 =1+dihd-1 4+ hdga+l,
iel
If each.#9 is fine, then the sequen¢e”’9} is homotopically fine

Proof. Takingh® = 0, this result follows immediately from Proposition
11-a. |

If the sequencé¢.9} is homotopically fine, and” is a locally fi-
nite covering satisfying the conditions of the previousrisdn, then
H>'Co(%,.7) = Ofor all p > 0. (This result is trivially true for p< 0)

Proof. As in the proof of Propositiof—12, there are induced homomor-
phisms|}(U) : T(U,.#9) — T(U, .79 induced byl?, and homomor-
phisms

kKt Chw, % - Chiw.,. 7% (p>0)
such that

5PKPLE (o) + KPP () = 3 19(U,) (o)
i€l

= (o) + d9h9 1 f (o) + h9dH L £ (o)
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Thusskf + kof = f + dhf + hdf. and hence 154
ok+ks=1+dh+hd:Co(%, 7% - Cl(%,.79).
Sinced andh commute withy, there are induced homomorphisms

d¥: HE (%, 7% - HE (%, .79),
W HE (7, 7% - WY, 7).

Now, HPCo(%,.) = HY(% , %) and, from the homotopk we
have

dh* + h'd=0-1:HMCy(%, %) -» H}Co(%, .7)

is homotopic to zero and hene&,'Co (% ,.%) = 0. O
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Proposition 18. If the complex of sheavés”9} is homotopically fine, 155
there is an isomorphism : HIC¢ () — HYT ¢ (X, .%).

If the complex of sheavegs”’9} is also homotopically fine, and h
"9 — 9 are homomorphisms commuting with then i commutes
with p.

HICH(.7") —2> HITy(X, )

‘| o

HICy(.7) —Z> HIT (X, .%).

Proof. The systenCqy(%,.%) = {(Cg(%,yq))} of double complexes
is bounded above by = 0. Since (see LectulER#)!;'Cqo () = 0 for
p > 0, andH},'Cq(.7) = 0 trivially for p < 0, by Propositiofi16, there
is an isomorphism

6 : HICo(7) - Hi3yCo ().

Sinceh : CH(%, 7% — CP(%,79%) commutes withd, § and
dya,h : Co(Z,") - Co(%,.) is a map of double complexes
which commutes withp,, 4, . Thereforeh* commutes witho. O

Sincelg(X,.79) = HZ (X, = dir lim H3 (% ,.~9) and the ho-
momorphismey, : HY (% ,.79) — To(X,.#9) commutes witld9, there
are induced homomorphisms

Ty HIHG(%, ) —» H(To(X, 7)),
o dirlim HYHG (%, ) - HIT (X, .57).
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156
Since the operation of forming cohomology groups commuiés w
the operation of forming direct limits, (see Cartan - Eilerdy Homo-
logical Algebra, Proposition 9:3p. 100),t* is an isomorphism, and
sinceh commutes withey,, h* commutes withe*.
Now,
HYCo(%, 7) = Ho(% , ),
HY5'Co(%, ) = HIHY(% , .7),
HI5'Co () = dir im HY H3(%, 7).

Thus we have an isomorphism
T 1 HICo(#) = HIT (X, .7)

which commutes with*. Letp = t*60 be the composite isomorphism
thenp commutes with*.

HICq(.7") —> H35Co(#") — = HIg(X, .7
wl wl wt
HIC() — > HICy(#) — = HITo(X,.7).
Theorem 3(Unigueness Theorem) et

-1 4 dart +1
--.ﬁyq ﬁyq%yq ﬁ...

be a homotopically fine complex of sheaves-efodules withm d% =
kerd®! for q # 0 andim d® c kerd! and let.#° = kerd!/im d°. Let
{-#’9} be another such complex wit#’’° isomorphic ta7#°.

If ® —dim X is finite or the degrees ¢&*’9} and{.%”9} are bounded
below, then any isomorphism: #’° — ° induces an isomorphism

¢ HITo(X,.7") = HIT(X, %)

and if {79} is another such complex and : »#° — ”° is an
isomorphism, then

$ur = duda : HCo(X, 77) — HICo(X, 7).
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If h: .9 - %9 are homomorphisms (for each q) commuting with
d9, and if the induced homomorphism:h7#’° — ° is an isomor-
phism, then the homomorphisrh:iHH ¢ (X, .7") — HT ¢ (X, .7 is the
isomorphismpy,.

Proof. Since the hypotheses of Propositidng 17 18 are satisfied,
there are isomorphisms

1 HIC() = H (X, £°),
o HICy(.”) — HITx(X,.7).

Sinced : #’° — #°is an isomorphism, so is
A T Hg (X, #7°) — Hg (X, #°).

Let ¢, be the isomorphismy 11 np~t. Since f1)* = u*A*, ¢0 = 158
¢u¢/l-

HIC (X, .5") <f— HICq(.7#") — L= HI(X, 270

- -

HITp(X,.) <t HICH(.) —— HI(X, #°)

HIC (X, ") <-— HICo(.7"") — 1= Ha (X, 2£""0).

If h: % —» 9 are homomorphisms commuting wit¥ and
inducing an isomorphisnh : J#’° — J#°, then it follows from the
commutative diagram:

HIC (X, .7") =<—— HICq(#") — Hy (X, 7£7°)
¢hth* Lh* lh*
HIC(X,.) =<—— HIC(#) —= Ha (X, #9),

thatgn = h* 1 HITg(X,.%") — HICe(X,.%). O
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Singular chains

159
Definition. Let T, be the set of all singular p- simplexes in XsiAgular

p-chainwith integer cogficients is a function ¢ T, — Z such that
Ct = c(t) is zero for all but a finite number ofd T,. It is usually written
as a formal sum}, ¢; - t. Thesupportof c is the union of the supports

teT
t(sp) of those simeplexes t for which£ 0. The boundary of the p - chain
cis the(p — 1)-chain

P
dp-1C = Z ¢ ) (-1)ot.
o

teT, =

The singularp-chains ofX form a free abelian grou,(X, Z) and
Op-1 : Cp(X,Z2) — Cp_1(X, Z) is a homomorphism witldp_10, = 0,
Jp-1 decreases support, i.e., SUjp1C C suppc .

If # = {Viliel is a covering ofX, let Cp(X, Z, #) be the subgroup
of Cp(X, Z) consisting of chaing such thatc; = 0 unless supp c V;
for somei € 1. Letj : Co(X,Z, %) — Cp(X, Z) be the inclusion ho-
momorphism. Sincé_; decreases supports, there is an induced homo-
morphismod,_1 : Co(X,Z, %) — Cp_1(X,Z, %) which commutes with
j-

It is known (Cartan Seminar, 1948-49, Expos&3®) that there is a
subdivisionconsisting of homomorphisnrs: Cp(X,Z) — Cy(X,Z, %)
such that

(i) rc=cifceCy(X,Z %), 160
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(i) supprc = suppc.
Further, there is @omotopy B.1 : Cp(X,Z) — Cp1(X, Z) such
that

(i) dphpy1C+ hpdp-1C = jrc —c,

(V) hpaic =0,

(V) supphp,1C C suppc.

Let | be well-ordered, lef;(t) = t if suppt c V; but suppt ¢ Vi for
all k < i and letjj(t) = 0 otherwise. This defines a homomorphism

with j = 3 ji and suppiic C V; N suppc.

iel
Let Iiez Jir 1 Cp(X,Z2) — Cp(X,Z). Then suppic c Vi N suppc.
Letl= Y1l =Xjir=jr. Sincerj =1:Co(X,Z#) = Co(X,.Z W),

il

12 = j(rj)r = jr = |. Further, sincgr = |, we have

and suppc c suppc.

If U is open, IeCp(X, Z)y be the set of chainse Cy(X, Z) such that
U does not meet sugp ThenCy(X, Z)y is a subgroup o€y(X, Z); let
Spu = Cp(X,Z2)/Cp(X, Z)y. Sincedp_1, hp,1, li and | decrease supports,
there are induced homomorphisms

Op-1: Spu = Sp-1u’ hpi1 - Spu = Sperur

161
If V c U thenCp(X,Z)y c Cp(X,Z)v and there is an induced epi-
morphismp,,, : Spu — Spv Which commutes wittdp_1, hp.1, li and
l. Then{Spu, p,,} is a presheaf which determines a shegfcalled the
sheaf of singulap-chains. There are induced sheaf homomorphisms

ap—l:yp—ﬂyp—l,hpﬂ:yp—)ypﬂ,
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with
i€l
If ¢ € Cp(X,Z) andU = X -V, then, since suph(c) c V;, li(c) €
Cp(X,Z)y. Thereforel; : Spw — Spw is the zero homomorphism for
each opeW c U. Henceli(Spy) = O for all x e X - V.

Definition. If ¢ is a sheaf of A modules, the sheaf, ®; ¢ is a sheaf
of A-modules called thgheaf of singulap - chains with cofficients in
9.

Let /P = AA_p®z ¥ for some fixed integek and letdPtl : P -
FPHL pp-l s e Pl P s P andl ;P — P be the
homomorphisms induced @_p_1, hk_p+1, i and I. Then 162

1+dPhP L+ PP = = ),

andl;(SR)o, for all x e X — V.

dP P+t . .
The sequence - —» .7P1 — P — Pl _, ... is homotopi-
cally fine

Proof. Let %7 = {Ui}ici be a locally finite covering with, € | such
thatU; is normal fori € | - (i.). Shrink7% to a covering?” = {Vi}ic|
with V; ¢ U;. Construct the homomorphisni®—?1 : .7P — .#P-1
li : /P — P (as above) such that

1+ dPhPt 4 hP gPtt = 3,
i€l
andli(SP) = 04 if x ¢ Vi. Thus we can takg; = V. O

Definition. Let cg’(x, 9) = I'o(X, Sp ®z ¥); this A- module is called
the module oingularp - chains ofx with codficients in¥. Let Hg’(x,
) = kerdp-1/im 9 in the sequence

9p

Op-
> CLL(X D) D CRX D) =5 CE (X D) - -

p+1
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where the homomorphisid, : cg’+l(x,§4) — Cp(X.9) is the one
induced by the homomorphisty : .%p.1 — 7. The A- module
Hg’(X, ) is called the p-th singular homology module of the space X
with cogficients in the shed¥, and supports in the famikp.

An element of a stall§ 5 can be written uniquely in the forny, ¢t
teTp

wherec; € Z, ¢, = 0 if xis not in the closure of the support bfsuppt,
andc; = 0 except for a finite number of
An element of a stall§qx ®z Gx can be written uniquely in the form
> -t whereg € Gy, g¢ = 0 if x ¢ suppt andg; = 0 except for a finite

XeTp
number oft.

An element otg’(x, %) can be written uniquely in the forn}, v; -
teTp

t wherey; is a section of¢ over suppt, y; = O except for a set of
simplexes whose supports form a locally finite system ands#teof

points x such that, for somg y:(X) is defined andt Oy is contained in
a set ofd. (A section over a closed sBtis a mapy : E — G such that
ny : E — E is the identity.)

Definition. An n - manifold is a Hausdgt space X which is locally
euclidean, i.e., each point« X has a neighbourhood which is homeo-
morphic to an open set in'R

If X is an n-manifold, the® — dimX = n.

Proof. SinceX can be covered by open sets whose closures are homeo-
morphic to subsets d®", X is locally n-dimensional. Then each closed
setE € @ is locally of dimension< n andE is paracompact and nor-
mal, hence dinkE < n. Further, any non-empty sét € ® has a closed
neighbourhood/ € ® andV contains a closed set homeomorphic to the
closure of an open set R'. Hence dimV = n; thus® — dim X = n, and
this completes the proof. m|
Op Op-1

In the sequence - —» 1 — S — Fp1— -

Let 77, = kerdp-1/imdp; H#; is called thep - the singular homol-
ogy sheaf in X
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If X is an n-manifold, the p-th singular homology sheaf in Xois
cally isomorphic with the p-th singular homology sheaf h R

Proof. Let xp € U; ¢ X whereU; is open inX and letf : Uy — U]
be a homeomorphism onto an open ¥gtc R". Choose an open set
V with X, € V,V c Uy and letU; = X -V, U, = R" - f(V). Then
{U1, Uy} is a covering ofX, and there is the homotopy defined above,

oh+hd=11+1 -1,

with 12(Spy) = 0 for x € V. HencesZ,(.) is isomorphic with77;(11.7)
inV. Butf : Up — U] takesl1(#p) into I7(-#;) where.# is the sheaf
of singularp- chains inR" andl is the corresponding homomorphism
for the coverindU’, Uz} of R In f(V), 7#,(1,") is with o4,(7"). O

Using triangulations oR", one can verify, foRR", that.7¢;, = o for
p # nand .7 is isomorphic with the constant shed®"(x Z, r, R").
One uses a homotopy which does not decrease supports arudoes 165
not induce a sheaf homotopy. The isomorphism is not a nabmebut
depends on the choice of an orientation Rir

In ann-manifold X, 77, = 0 for p # nand.J; is locally isomorphic
with Z. Let g = 4 if J is isomorphic withZ the manifold is called
orientable otherwise the manifold is said to ben-orientableand 7 is
called the sheaf of twisted integers overExampld® is the restriction
ot the Mobius band of the sheaf of twisted integers over tiogeptive
plane.

If 7P = S p®z% onan n-manifold X, thewz’P(”) for p # 0
and () =J ®z9.

Proof. SinceSy is a free abelian group, so are the subgrodpsand
Bpx. Also, Hpx being either 0 oZ, is free. It is known (Cartan Seminar,
1948-49, Expose 11) that if

O-F—-F—-F’'"->0

is an exact sequence of abelian groups Bfids without torsion and if
G is an abelian group, then the induced sequence

0O-F®G-oF®G—-F'9G—-0
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is exact. From the following commutative diagram of exacfusaces,
one can see that

166 Thus#P(Y) = - p @9 = Ofor p+ Oand.#P(Y) =T Y
for p= 0. ]

9p

p®Y

yp®g—>Bp_1®g—>O

o p-1 /

ki

p

-~

Bp2®% Hp 109

e

0 0
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Proposition 19. If X is an n- manifold, there is an isomorphism:
1 HE (X 9) - HP (X %
77 " n—p( ) ) - (D( aj®z )

Proof. SinceC® ,(X,%) = To(X, Fnp ® %) = Tg(X, #P), HE (X,
9) = HPT 4(X,.). And, since#°() = T ®, 9, HY(X. T ®, %) =
Hg(x, 2¢°). By propositior Il anf18, there are isomorphisms

n: HPCo(.) —» HE (X, 7°),
p HPCo () — HPT o (X, .%7).

Thusnp! is the required isomorphism. O

This proposition is part of the Poincare duality theorem.
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Given any sheaf/ of A-modules, there exists an exact sequences16f
sheaves

e o dl 1 —1 da
0% > 9% 5 ... 5 LI 5 9, ...
where each”%(q > O) is finite.

Proof. For each open sdéi of X, let Sg(q = 0,1,...) be the abelian
group of integer valued function(Xo, . . ., Xq) of g + 1 variablesxo, . . .

Xg € U. If Vis an open set witV c U, the restriction of the functions
f gives a homomorphism,, : S}, — Sy. There is a homomorphism

di*: s — s defined by

g+1

A (X, Xg1) = D (1) F(Xor s Ry Xge1)-

j=0
If e: Z — SJ is the inclusion homomorphism of the constant func-
tions onU, the sequence
1 a
0525535 5sit sl

is exact (Cartan Seminar 1948-49, Exposé8), Clearlyp, ,d%!f
d¥*1p,, f andp,, commutes withe. The presheavetS),p,,}(q
0,1,...) determine sheaveg’¥ and there is an induced exact sequence

e dt _1 dd
O—>Z—>SB—>~-—>Sgl—>Sq—>---

155
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It is easily verified that each abelian gro&@ is without torsion,
and this property is preserved in the direct limit. HencehestalkS) = 168
dir Iim{Sﬂ,p\,U}xeu is without torsion, i.e., the sheaves? are without
torsion. Therefore the sequences of sheavesmiodules

1 q
0520,95 0,9 % .. & s9lg,9 L sg,q ...

is exact, (this follows from the fact that® - F* - F - F” — Qis
an exact sequence of abelian groly, is without torsion, ands is an
abelian group, then the sequence

O-F®G—-oF®G—->F'®@G—-=0

is exact), that is, the sequence

1 q
L 095 9,95 .. L grig, 0 gig, g ...

is exact.

We now show thagach of the sheave®9 ®, ¥ is a fine sheafTo
do this, letE c G with E closed ands open and leh : S| — Sf) be
the homomorphism defined by

hf(Xo,.... Xq) = f(Xo,.... X9) If Xo,...., %€ UNG,
= 0 otherwise.

Thenh commutes witlp,,, and induces a homomorphidm .9 —
9 for which hy : S§ — S¥is the identity ifx € G, andh(SJ) = 0y if
X € X — G. There is then an induced homomorphiem.7% ®; ¥ —
99z which is the identity on the stalks] ®, G, for x € G and zero
onSY®; Gy for x e X - G. Thus.”9®; ¢ is fine, and the sequend@ (1)
is a fine resolution o .

We now give a definition of the cochains of a covering of a space
X codficients in a shea¥ and support in a&-family and also give an
alternative definition of the cohomology groupsXfwith codficients
in ¢ and supports in the familp. We then prove Leray’s theorem on
acyclic coverings. m|
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Definition. Let Cg(%,%), for an arbitrary coveringZ = {Ui}ic| be the
CP(% ,%) consisting of those cochains f such that the closure of the se
suppf={x: f(io...,ip)(X) is defined for some- = (io,...,ip) and

# Oy}, belongs to the family. (If p = 0, this definition does not agree
with the previous one even whén is a ®-covering.)

Then, since the homomorphisms

sPL P, 9) - CP* YU, @)
™ CPU,9) > CP(W,9)

decrease supports, they induce homomorphisms
sPChw.9) - CY (w9

and
I CH (%, 9) - CL . 9)

respectively. Hence there are cohomology mOCngG(% ,¥%) and ho-
momorphismsry ¢, : HY(%,%9) — HL(W.¥). Forp = 0, H3(%, 170
9) =To(X,¥) for every covering?, and

Ty . F(D(X, g) - F(b(x, g)

is the identity. Using the directed s&t of all proper covering of
X, {Hg(%,g),TW%}ﬁ//’yyeg is a direct system. The direct limit of this
system will be denoted b‘ylg(x, ). This module also is called the th
cohomology module of the space X withfiognts in the shea# and
supports in the famil. (This cohomology module is isomorphic with
that previously defined by means®fcoverings, Lecture21.) There are
homomorphisms into the direct limitsy, : H)(%,%) — HE (X, 9).

Let X be aparacompact normadpace¥ a sheaf ofA-modules over
X, and letzz = {U} be locally finite proper covering ok where each
U e % is anF, set. Z is indexed by itself.) Letd, be the set of all
intersectionE N U, with E € ®. SinceU, is an operF, setinX, U,
is paracompact and normal. Hence e&ch U, € @, is paracompact
and normal. One easily verifies thhg. is ad-family in U,.. We now as
sume the following conditions on the famiy and the coveringZ” .
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() For some infinite cardinal numben, the union of fewer tham
elements of® is contained in a set belonging ®. (If X € @,
choosangreater than the number of closed setXpf @ is family
of compact sets, leh = _43.)

171 (i) Each setin® meets fewer tham sets of the covering” .

(i) EachU € % is anF, sets, i.e., is a countable union of closed
subsets oK.

(iv) For eachU, = Uo N ---Up, Hy (U, %) = 0 forq > 0; here?
denotes the restriction éf to U,

(A covering? is calledacyclicis conditions (iv) is satisfied.)

Under the conditiongi), (ii), (iii), (iv) stated above, the homomor-
phismry, : Hg(%,%) - Hg(x, %) is an isomorphism.

Proof. Let

1
0@ S 9oL, L grl L qaga, ..

be any fine resolution o¥. Then there is a systet(C(‘I’)(@/, SNy er
of double complexes, whe®’ is the cofinal directed set of all locally
finite proper coverings oK. This system is bounded above py= 0
and on the left byy = 0. m|

Since X is normal, Y is fine and% is locally finite, there is a
homotopy (see Lectufell6)

kPt Ch%, s - CP Y w, 7% (p>0).
SincekP1 decreases supports, it induces a homomorphism
kPt:chw, 7% - cP i, 7% (p>0)

172 with 6PkP1 + kP6P*1 = 1. HenceH}(%,.#%) = 0 for p > 0, and for
p=0,H(%, 79 =Te(X .79). Hence

HOCo(% , ) = HITo(X, ).



Lecture 27 159

Thus we have the isomorphisms indicated below (see LeCti)re 2

HICp(X, ) <—— HYCy(% , /) <—— HICo(% . .57)

] |

HICp(X, ) <——— HisICo(.#) <——— HICo(.7).

Since.”% is fine andX is normal,.#1 is locally fine, hence its re-
striction toU,; is locally fine. ButU, is paracompact and normal, so
that the restriction of”9 to U,, is fine. Hence there is an isomorphism
(see Proposition”17 afidl18, lectufes 23[add 25 respectively)

ot Ho, (Uy,.9) = Hg (Us, 9).

Hence by condition (iv)HT ¢, (U, .#) = 0forq > 0, HT'y(Us, .¥) ~
Hgtr(Ug, 9)=To, (Us,9).

If fe Cg(%,yq) (q > O) andd®1f = O, then @1 f)(U,,...,
Up) = OineachU, = UgN---N Uy, SinceHYT g, (U, ) = 0(q >
0), there is a sectiog(Uo, . . ., Up) € Tp, (Uy, #91) with dg(Uo, .. .,
Up) = f(Uo,...,Up) (chooseg(Uo,...,Up) = 0if f(Ug,...,Up) = 0.
There is then a cochaig € CP(%,.79 1)) with dg = f, (see p.57).
Sincef € C3 (% ,.9), suppf is contained in a set belonging ®and 173
hencef (o) is different from zero on fewer tham setsU,.. Theng(o)
is different from zero on fewer tham setsU,. and hence supg is the
union of fewer thamm set{x € U, : g(o))(X) # 0, each of which is in
@, and hence has its closure dn Hence supg is contained in a set
belonging to® andg € C} (%, .#%1). HenceH)Cy(%, 7) = 0(q >
0).

Since the sequences

1
0—CP(u, ) S cPw,.7°) S cher, Y

is exact, if f € CH(%,#°) andd*f = 0, thenf = &(g) for some
g€ CP(%,¥) and clearlyg € C}(%.¥). Thus

HY°Co(% , ) = CO(% %) andHE Co(% , ) ~ HE(U . 9).
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Thus we have the isomorphism indicated below:

HPCo(% , ) —> H3 Co(% . ) —— HY(% . %)

HPCo(#) —— HPOCy () ——= HY (X, 9).

Combining this diagram with the previous one, we see thahthe
momorphismr : HY(%,%) — HY (X, ¥) is an isomorphism. Q.ed

In particular, we have proved the following proposition (@a Sem-
inar, 1953-54, Expose 17, p.7).

Proposition 20. If % is a locally finite proper covering of a paracom-
pact normal space X by open,fsets, and i/ is a sheaf of A-modules
such that H(U,,%) = O(q > O) for every U, = Ug N --- N Uy(k =
0,1,..), then

o HP(%,9) — HP(X ¥)

is an isomorphism.

In the case thab is the family of all compact sets of, we writeH?
instead ofH (%.

Proposition 20(-a). If % is a locally finite proper covering of a locally
compact and paracompact Hausgtspace by open Fsets with com-
pact closures, and i# is a sheaf of A-modules such thab®,, %) =
O(g > O) for every

Ur=Ugn---NUk=0,1,...)

then
Ty ! Hf(%,g) N Hf(X,g)

is an isomorphism.

Note. It is no restriction to assume th@ is a proper covering. 1%
is any covering, there is an equivalent proper covefingvith the open
sets. Themry 4 andry » are isomorphisms.
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Direct sum of modules
175

Definition. The direct sumof a system{M'}ic; of A-modules is an A-
module whose elements are systdm$;c;, usually written as formal
sumsY; m where e M' and m = Q for all but a finite number of i.
The operations in M are defined by

Zmi1+an2:Z(mi1+mi2), aZm‘:Zarﬁ,

wherey,; m, € M, ¥;m, € M, 3, ' € M and a€ A.

~ Clearly there is a homomorphisp/ : ¥; M' — M! defined by
p!(Z; M) = m and a homomorphisih : M! — . M' defined by

p'hi(m) = 0 fori # j, p'hi(m) = ml,m e MJ.

A system of homomorphisf',g') : (A, M') — (B,N'), i € I, in-
duces a homomorphisrfy’,g) @ (A XiM') — (B, % N') where
g m) = ¥, d(m). There is commutativity in

(A M) — (A, Zi M) —— (A, M)
(9’,9j)l (g’,g)l (g’,gj)l

(BN —- (B, 3, Ni) 2 (B, Ni),

161
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Proof. Let 3y mi € 3 MY, 3im, € 33 MY, ¥mi e 3 M and leta € A.
Then

0, M+ M) =9, + ) = ) g + 1)
176
=@M +dm) = ) dmh)+ ) d(mb)
= gI(Z m) + (> M) | |
glay m)= 9(2 ant) = 29‘<am)
| > §@() = 5@ 2, g
. g @g(),m). |
dp(Q,m)=gm = ;j(z gm)
. plg(> m) |
p'ghl(m) = g"pkhi"(m") =g‘0) = 0fork # |

p'gh!(m') = g'p'h}(m) = g'(m’),
gh'(m’) = h!g’(m’), m' e M.

The operation of forming the direct limit commute with them@tion of
forming the direct sum. m]

Proof. Let {Ay, M, ¢;A,¢LJ}MEQ (Q a directed set) be a direct system

for eachi € I. Let the direct limits be 4, M') with homomorphisms
(97, 4") : (A1, M) — (A, M'). There are induced homomorphisms

(B 02) T (At ) M) = (A ) M)
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177 for which ¢,,¢0 = ¢va,4 < p < v andg,, is the identity. Thus
{AL, X M'ﬁ,¢l’d,¢/’m}ﬂeg is direct system. Let its direct limit beA( M)
with homomorphisms

(@7 ¢2) © (An, Z M) — (A M).

B

(A, M) s (A M) (A, Mi)

L

(An 2 M) 2 (A, S M) 2 (AM)

¢;l, l 7
o \ ¢ _
(A2 M)
The system of homomorphismg'(¢') : (A, M}) — (A, M') in-

duces a homomorphismg’(, ¢7) : (Ar, i M) — (A, 2 M. Since for
A< u,

Bidua (M) = /() M) = D A
= ) S =873, m).

thereforep, ¢,1 = ¢// and there is an induced homomorphigfh: M —
Zi M. O

If ym € 3 M thenm' = 0 except for a finite number of say
i1,....ik. Then, for somel, eachm'i has a representative; € M}; let
m, = 0fori ¢ (i1,....ik). Thenk;m, € ¥ M} andy; m = ¢7 3im), =
¢" ¢ 2 M. Thusg” is an epimorphism.

To show thatd” is a monomorphism, leth € M and¢”(m) = 0.
Choose a representative, m"ﬂ of m. Then m"ﬁ = 0 except for a finite
number ofi, sayi =i,..., ik Since

0=¢"(m) = ¢7{(),m) = ) o,

178
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therefore eachﬁg mﬁ = 0. Now chooseu so that eachbjjﬁmy = 0.
Thenmis represented by 0 i};; ML and hencen = 0. Thus¢” is an
isomorphism. We identityl with >>; M' under the isomorphism”.

Direct sum of sheaves

Let a be a sheaf of rings with unit and I¢t7'}ic; be a system of
sheaves ofi-modules. Then there is a unique shedfwhose stalks
are the direct sum_sjI S! such that the homomorphism$ hS) — Sy

le

determine a sheaf homomorphisin: b — .7.

This. is called thedirect sumof the sheaves”' and is denoted by
S =y S

i€l

Proof. Uniquenessif s= ¥ s € 3; Sl with § = 0 except foiiy, .. ., ik,

choose a neighbo_urhoddzl of x and sectiond; : U — Sii, ji=1...,k
such thatfj(x) = S'i. Letf : U — S(= U X, S}) be defined byf(y) =
X iel

2 hii fi(y). Sinceh'i is a sheaf homomorphism, the composite function

fJ' i hij
U—Si—S

is a section and hendeis a section. Since
f) =Y hifi=>si=>d=5
j j i

the section goes through Thus, since such section cov8r they
uniguely determine the topology & m|

ExistenceFrom the presheaves of sec_tioasﬁ) = {Au. S}, 0.0,
whereAy = I'(U,a) andS; = T'(U,.#"). Then{Ay, 3 Sy, 0., Pvu}
(whereU runs through the directed set of all the open setX)fs a
presheaf. It determines a sheaf .¢’) and there is a homomorphism
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th ; SEJ — ¥ Si, with commutativity in

. hi .
(Au, S{)) — (Au. X Syy)
(p</U’p\j/U)l/ L(pQU’pVU)
. h ,
(Av,S)) —> (Av, Zi S\).
_ _ 180
Hence there is an induced sheaf homomorphigm ! — .&.
The stalk A, Sy) of (a,.%) is the direct limit of the direct system
{Au, X Sb,p\'/u,pvp}xeu which is identified With the direct sum of 'the
direct limits (A, Sb) = dirlim{Ay,S!;,p! .0 Ixeu. ThusSy = 3; S}
and the required sheaf existge.d.

There is also a homomorphisp), : 3 S}, — Sﬂj (as defined in the
beginning of the lecture) with commutativity in

(Au. % Sy) —= (Au,S))
(P(/U,pvu)l | l(p’vu,pjvu)
) .
(Av, Zi Sy) — (Av, S)

Hence there is a sheaf homomorphigm: . — .1 which is
clearly onto. Ifs= 3} s € S, itis easily verified thap!(s) = s/, hence
p'h!(s!) = ¢ andp’h'(s)) = 0if i # j.
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Given homomorphisms g.&' — Z(i € ), there is an induced homo-181
morphismg ¥, .7" — .7 with gH = g.

i€l
Proof. If s= 3 s € Sy, letg(s) = Yig () € Tx.ThengSy : Sy — Tyis
clearly a homomorphism. Choose an open$eind sectiond; : U —
S'i so that the section defined liyy) = 3 h'i f(y) goes througts. Then
af(y) = 2 di; fj(y) andgf being the sum of a finite number of sections,
is a section. Thug is continuous and is a sheaf homomorphism. o

Note. Sincea itself is a sheaf ofi-modules, there is, for anly a direct
sum Y, a where each direct summandds This is again a sheaf af
i€l

-modules.

If .7 is a sheaf ofi-modules over a spacg anday is the restriction
of a to a subseY, then clearly the restrictior¥i, of . to Y is a sheaf of
ay-modules.

Definition. The following properties of sheaves of a- modules over a
space X are called propertya;) and property(a) :

Property (a;). There is a coveringU;}jc; of X, and for eachj € J,
there is an index sét and an epimorphism; : 3 ay; — S;-

ielj

Property (a). There is a coveringUj}jc; of X, and for eachj € J,
there is a natural numbéy and an epimorphisrg; : .kil ay; = Sy, 182
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. has property(a;) if and only if each point x X has a neigh-
bourhood U such that the sectionsIi(U, .#) generate”y;. (That is,
for eachy e U andse Sy, s= Z'j‘:la)',fj(y) for some finite numbek of

elementsa} € Ay and sectiond; € I'(U, .¥).)
Proof. NecessityLet.” have propertyd;). Since{U;} is a covering,

x € Uj for somej; let U = Uj. Then there is an index sétand an
epimorphismg : 3 ay — A. O

i€l
Let fl = ¢h'l : U — S where 1 is the unit section i,
U i) ay l) ay i) yu.
i€l

Thenifse A, s= ¢(3; &) for somea), € A, with al, = Oy except

for a finite number of, sayi = i1, i,...,ik. Then
ko k k
D.af0) = ajehily = ) ghiajl,
=1 =1 =1

k
=40

hia)) = ¢() &) = s
j=1 il
Sufficiency. For eachx € X, there is a neighbourhoody of x such
that the sections ovedy generate#;,. Then{Uy}xex is a covering of
X. Let |4 be the set of sectionB(Uy,.¥). For each sectiom € Iy,
there is a sheaf homomorphisph : ay, — A, given, fora € Ay, by
oL(a) = a-i(na).

Then there is an induced homomorphism

¢x:ZaUx—><5ﬁUX-

iely

Then fors € Sy andy € Uy,

k koo
S= Z a{,ij(y) = Z ¢I>é (ayj/) € ¢X(Z aUx)'
=1 =1

iely
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Thusgy is an epimorphism.

- has property(a) if and only if each point x has a neighbourhood
U such that some finite number of sectiong I'(U,.¥) (i = 1,...,K)
generatesy.

Proof. Similar to the proof given above. O

Itis clear that §) implies @,), i.e., each sheaf with propertg)(has
property @1). The sheaf}, a has propertyd;) and Zik:l a has property

|
(@). In particular, the shléafof a-modules has property (a).
If A4,i = 1,...,k are sheaves of- modules with propertya;)
(resp.(@)), then the direct surﬁ)!‘:1 a; has property(a;) (resp(a)).

Proof. Clear.

Statements (1), (2), (3), (4), (5), (6), (Lectuie3 29, [30) ate re-
quired to prove Serre’s theorem on coherent sheaves, (sg@ih lec- 184
ture for the definition of coherent sheaves), i.e., HF0.Y’' — ¥ —
<" — 0 is an exact sequence of sheaves, and if two of them are coher-
ent, then the third is also coherent.

Q) If f : . — % is an epimorphism and”’ has property(a;)
(resp (a)), then has property(a;) (resp (a)). O

Proof. Clear. m]

Example.If M is a finitely generated\- module, the constant sheaf
M has property (a) with respect to the constant siealff a constant
sheaf is a sheaf ai modules, then it has propertg{. If X is the unit
segment (< x < 1, the subsheaf” of the constant sheaf, obtained
by omitting (1, 1) does not have propertg; ) either as a sheaf -
modules or as a sheaf 85 -modules. With the sam¥, the sheaf” of
germs of functionsf : X — Z5, considered as a sheaf &f -modules,
has property d;) but not property 4). But, considering? as a sheaf
of rings with unit, it has propertya) with respect to itself, The sheaf
a of germs of analytic functions in the complex plane has priyp@)
as a sheaf of- modules, but as a sheaf 6f modules (wher&€ is the
field of complex numbers) it does not even have propexty. (For, there



170 Lecture 29

are natural boundaries for analytic functions, e.g.,fléte an analytic
function in|z < 1, with|Z = 1 as natural boundary. éfhas propertyd;)

as a sheaf o€-modules, then by considering a point on the boundary,
we see thatf can be continued to a neighbourhood of this boundary
point and this is a contradiction.



Lecture 30

Definition. The following properties of sheave? of a- modules over a 185
space X are called properi§p;) and property(b).

Property (b;). For each open set U of X and each homomorphism
f:>ay — A, ker f has propertfa;) as a sheaf ofiy- modules.

iel
Property (b). For each open set U of X and each homomorphism f
z:‘zlau — U, ker f has property(a) as a sheaf of @- modules.

Note. Since &1) and @) are local properties, propertids; | and ) are
equivalent to the following propertie®() and @) respectively.

Property (b}). For each neighbourhood V of each pointexX, there
exists an open set U, & U c V, such that for each homomorphism
f:>ay — A, kerf has property(a;) as a sheaf ofiy- modules.

iel
Property (b’). For each neighbourhood of each pointx € X, there
exists an open sdfi, x € U c V such that for each homomorphism

k
f: 3 ay — A, kerf has propertyd) as a sheaf ofy-modules.

IThus 1) and @) are also local properties. The sheaf kés called 186
the sheaf of relationdetween the section : U — A, wheref; =
fh'1,

1 hi f
Uu-> ay — ay — yu.
i€l

The sheaf of relations between the sectidns described by the
following result.

171
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The element ofker f)y for x € U are the element§; a of which
ziafi(x) =0.

Proof. For each elemeny, g, only a finite number of the; being dif-
ferent from zero, we have

Za - Zq:hilaj and
=1
q q
(O a) = hia)= > fhia)
= =

q q
= > a i) = > & fi ()
=1 j=1
= > afi(),
i
and this completes the proof. m|

If we start with a systenfifi}ic| of sections of¥” over an open sef,
then eachf; defines a homomorphism (again denotedffyf; : ay —
U wherefi(@) = a- fj(X), a € Ax. Then the systerfifi} of homomor-
phisms defines a homomorphisit }, ay — 74, and the sheaf kefr

iel

is called thesheaf of relationdetween the sectiorfs: U — .A;.
187 (2 If . has propertylg;) (resp ©)), then every subsheaf of
has propertylt;) (resp 0)).

Proof. Clear. O

Definition. A sheat¥ of a- modules is called coherent if it has proper-
ties(a) and (b).

Note.If . is a coherent sheaf, the#y is coherent for each open set
U. Coherence is a local property, i.e., if each point has aeigrhood

U such that# is coherent, ther? is coherent. If we define a sheaf

to be offinite typeif, for eachx € X, there is an open sé&t, x € U, such
that each stalk af#, is generated by the sarfiaite number of sections
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f1,..., fx overU; it is then easily verified that conditiona)(and () for
coherence are equivalent to the following conditions:

(i) The sheat? is of finite type.

(iiy If fq,..., fy are any finite number of sections .6f over any open
setU, then the sheaf of relations between these finite number of
sections is of finite type.

Example 30.Let a be the constant shed@h on 0 < x < 1, let#Z be

the subsheaf obtained by omitting (1, 1) and$€ébe the quotient sheaf
with stalksZ, at 1 and zero elsewhere. Then the natural homomorphism
a — . has kernelZ and% does not have propertyy). Hence.” has
neither p;) nor ().

Example 31.Let A be the ring of ExamplEl5, with elements O,lc, 188
such thato? = b, ¢ = ¢, bc = cb = 0. Leta be the subsheaf of the
constant sheah on 0< x < 1 obtained by omitting () and (1 c). Let

. be the constant she@$ on which 1 and: of A operate as the identity
andb operates as zero. The shedfof relations for the section 1 &,
consists of 0 andx( b) for x < 1. If U is a connected neighbourhood of
1, the only homomorphism afy, into % is the zero homomorphism.
ThusZ does not havea)) and.# has neitherlf;) nor (0).

Example 32.Let A be the ringZ[y1, y», . . .] of polynomials in infinitely
many variables with integer cficients. Leta be the constant she#f

on 0 < x < 1 and let.¥ be the constant shedf on which all the in-
determinates, Vo, . . ., operate as zero. The sheaf of relations for the
section 1 oZ is the constant sheaf formed by the ideal of all polynomi-
als without constant terms. This ideal is not finitely getetahence?
does not havel). However, for every homomorphisin: 3’ ay — S,

i€l
ker f is constant on each componentlfand hence hasE propertsy .
Thus.¥ has p;) but not ).

) If0— . i> 72 7 S 0is an exact sequence of sheaves
of a - modules such tha?” has(a;) (resp(a)) and.”” has(b;) (resp
(b)), then.” has(ay) (resp(a)).
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Proof. If . has @1), eachx € X has a neighbourhood for which
there is an epimorphism : Z ay — A. Sincege : Z ay = Sy isa

homomorphism and”” has bl) kerge has &y). Hence for some open
setV with x e V c U, there is a homomorphism

BTSN
jed iel

such that imy = (kerge¢)y. Hence, since is an epimorphism ingy =
(kerg)v, and therefore iy = (im f)y. Then, sincef is a monomor-
phism, there is an epimorphism

gy : Z ay = A

jed

Thus.” has @1). Similarly if . has @) and.¥"” has p), then.¥’

has @). m|

2ay Y Fay

jed |e|

N2,
f
0 7 2 0
Q.e.d.
f

4) fO0 - .7 — . % 97 — 0is an exact sequence of

sheaves ofi- modules such that”” and.”" have(b;) (resp (b)) then
. also has(b;) (resp )).

Proof. Let.”” and.¥” have p;) and let¢ : Z ay — Sy be agiven

homomorphism. Sinceg”” has b1), kergg has 611) and hence for each
x € U, there is an open s®twith x € V c U and a homomaorphism,

w:ZaVeZaV

jed i€l
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such that imy = (kerg¢)yv. Then imgy c (kerg)y = (im f)y and hence
there is a homomorphism

GZZaV—uS”\;
jed

with 0 = ¢yr. Since.” ahs 1), kerd has ;) and there is an open set
W with x e W c V, and a homomorphism

UZZ(IW_)Z(IW

keK jed
such that imy = (kerf)w. O
2. aw
keK
/
2, ay
jed yn
PN
o LT

i€l
AR
f g
0 S’ 54 S

To show that¥ has 1) it is enough to show that iman = (ker¢)w.

For any element € > aw,
keK

¢ymn(r) = f¢n(r) = £(0) = 0.

0

191
Thus imyn c (ker¢)w. Next, for any elemenp € (ker¢)w, we
havep € (kergg¢)w = (imy)w. chooseg € } aw such thaty(q) = p;
jed

then
() = Fou(q) = f1¢(p) = F10) = 0.
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Thusq € (ker@)w = imn, and hence = y(q) € imyn. Thus imyn =
(kerg)w and.” has by). Similarly if &/ and.”” have p), it can be
proved that also haslf).
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If f : . — " is an epimorphismg : ¥ ay — .7/ a homomor- 192
phism, and if x is a point of the open set U, then there existspan set
V with xe V c U and a homomorphism

k k
/S Za\, — . such that fp:¢|2av.
i=1 i=1
Proof. Sincef : . — %" is an epimorphism, each of the sections:
oh'l:U - .7, i =1,...,k is locally the image of a section .
Hence there is an open 34twith x € V; c U and a sectiow; : Vi —» %

such thatfn; 6i|Vi. Lety; : ay, —» A, be the homomorphism defined
by yi(a) = a-nin(a) These homomorphismsg induce a homomorphism

K
/g Z ay — yV
=
whereV = N, Vi. Then, if YK & € 3X, ay, we have

fw(Za)—f(Za n.n(a.))—za. 6 - (&)

k
= ) & oh'n(a) = Z«zsh'

i=1

e, fy =gl 2K, av. O

177
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f
(5) f0— .7 - .72 9”7 S 0is an exact sequence of sheaves
of a- modules such that”” has property(a) and . has property(b),
then.”””” has property(b).

Proof. LetU be an open set and lgt: ¥X, ay — .7/ be a homomor-
phism. Sincgy : .¥ — %" is an epimorphism, by the result proved
above, ifx € U, there is an open s&t with x € V ¢ U and a homo-
morphismy : Z!‘zl ay — A such thagy = ¢| Z!‘Zl ay. Since.”” has
property @), there is an open s&V with x € W c V and an epimor-
phismz : Z}ZM aw — Ay Theny and fn induce a homomorphism
0: Zilzl ay — yw O

We also have the projection homomorphisms ZLl aw — Zik:l
awandp’ : 1, aw — X, aw such tha® = yp + fyp'.

| P | P k
Dicke1 W = Xj_g W —> g Ow

R P

00— 'w R yp—— 0

The second square forms a commutative diagram gacegyp +
gfnp’ = gyp = ¢p and hencep maps kep into kerp. Actually, p maps
kerg ontokerg, for, if a € kerg, thengya = ¢a = 0 and by exactness
there existd € ./}, such thatfb = ya. Sincer is an epimorphism, there
existsc € Z!=k+1 aw such thatyc = —b. Thené(a+c) = ya+ fnc=0
andp(a+ ¢) = a. Thusp maps kew. Since.” has p) kerd has @), and
sincep| kerd : kerd — ker¢ is an epimorphism, kef has @). Hence
<" has p).

The corresponding statement, wita  and ) in place of &) and
(b), is not true as the following example shows.

Example 33.Let X be the union of the sequence of circlgs= {(x, y) :

X2 +y? = x/n}, n=1,2,.... leteach stalk of be the ringZ[x, %o, .. ]
of polynomials in infinitely many variables, with cfieients inZ, and
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let a be constant except that, on going around the ciGlex, and x,
interchange.

More precisely, lel, be the automorphism of the rirg x4, xo,. which
interchanges, and—x,. If U is open inX andU c C,, let Ay be the
ring of functionsf defined onU and with values irZ[xs, X, . ..] such

that f is constant on each componentlbiot containin % 0) and, if
. (1 1
a componenw of U contalns(ﬁ,o), f(xy) = f(ﬁ,o) for (x,y) e W

andy < 0 andf(x,y) = Tnf (%O) for (x,y) € Wandy > 0. If U is

not contained in ang,, let Ay be the ring of functions, constant on each
component ofJ, with values in

Z[Xnys Xnps - - -] C© Z[Xa, X2, .. .]

. 1
whereng, ny, . . ., are those values offor which = 0) ¢ U.

If VcUletp, : Au = Ay be given byp,, f = f|V. Leta be the
sheaf of rings determined by the preshgdi, o, }.

Let .7 be the sheaf of ideals formed by polynomials with even coeés
ficients, thens is generated by the section given by the polynomial 2.
Let

S = a/ﬂ = Zz[X]_, X2, .. .],

then
0¥ >5a—->9">0

is exact. Then, as sheavesaamodules,.# has propertiesa) and @),
a has p) and p1) and.”” has p) butnot (by).

f
(6) f0— .7 - .72 9" - 0is an exact sequence of sheaves
of a-modules such tha?”’ and.””” have propertya), then.# has prop-
erty (a).

Proof. Since.””” has propertyd), for each poini there is a neighbour-
hoodU of x and an epimorphism : Z!‘zl ay — #j. There is an open
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setW with x € W c U, a homomorphisny : Z!‘zl aw — Ay, an epi-
morphismp : Zikzkﬂ aw — #y and homomorphismg, p, p’ as in the
previous proof. Ifs e Ay, there is soma e Z!‘Zl aw such thatpa = gs
Theng(s-— ya) = 0, and by exactness, for sorhes .%},s—ya = fh.
Then for somec € X, ., aw, b = ncands = ya+ fic = 6(a + o).
Henced, ZLl aw — Ay is an epimorphism, and hencé has property
(@. i

The corresponding statement, with in place of @), is not true as
the following example shows.

Example 34.Let X = |, Cy as in Exampl€33. Let = Z and let.#,
be a sheaf which is locallg,, but on going around the circlg,, 1 and
3interchange. Let/; be the subsheaf with stalks consisting of 0 and 2;
it is the constant sheak. Let .", = %/ n; this is alsoZ,. Then
the sequence

0-.n—> - .S"n—0

is exact. Let
S =2 S S = S =20
Then the sequence
09 > 9¥—>9">0

is exact. Since?”’ and.”” are constant sheaves, they have property
(a1) but. does not have propertg).

Statements (1), (2), (3), (4), (5), (6) (Lectuke$ 29,[30, @bye the
following proposition due to Serre.

f
Proposition 21. If 0 -» &% — .¢¥ % & - 0is an exact sequence
of sheaves of-modules and if two of them are coherent (i.e., possess
property (a) and (b)), then the third is also coherent.

Corollary. If .4, i =1,...,k are coherent sheaves @f modules, then
YK, 7 is coherent
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Proof. Since the sequence of sheaves
0- A -, 7 -ls 0

is exact, the result follows by induction. m]
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Let.” and.¥ be sheaves ai- modules and let”” have propertya). 198
If f and g are two homomorphisms 6f’ — ., the set of points x for
which S} = g|S} is an open set

Proof. Let W be the set of points for which f|S} = g|S} and letx, €
W. Since.#” has propertyd), there is an epimorphism

k
gb:ZaU — .7y
i=1

for some neighbourhood of x,. Then since, € W, fghlly, = gohlly,
(Jj =1,...,Kk), and hence for some open 8§t with xo € V; c U,
fph!l=gphll:V; - S.
f
veliaLyk ot T

~—7
9

LetV = NI, V). If £ & € 35 A with x e V, then
k k _ k _
6> a) = fo(>_ha) =) afehly
i=1 i=1 i=1
k _ k
= > agghLc=gp() | a).
i=1 i=1

183
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Hencefgl XK, ay = gol XK, ay and, sincep is an epimorphism,
fl”'v = gl"v. Thusx, € V c W with V open. Henc&V is an open
set.

The following result deals with the extension of stalk honepm
phisms.

Let.’, . be sheaves af- modules such tha#”’ is coherent and
< has property(a). At a point xe X, let f : S, — Sy be a homo-
morphism of A modules. Then there is a neighbourhood U of x and a
homomorphism f .’y — . whose restriction to Sis fx.

Proof. Since.” and.¥ have propertyd), there is a neighbourhodd/
of x and epimorphisms

aw = 'w,

¢

e 10

1l
=

and 0: ay — Aw.

I

For eachj = 1,...,p, choose an eleme®’  a/ € »% A, such

that q
H(Z a].j) = fughll)
i=1
and choose sections

q
nj ZVJ' - Z:CLVj
i=1

with x € Vj ¢ W, Vj open, such thapj(X) = %1, a].j, j=1,...,p. Let
the homomorphism
q
gj - Qy; — Z Qy;
i=1

be defined byj(a) = a- nj(r(a)). Then, fora € A,

a
0gj(@) = 0a-n;(9) =a-6()_ a)
i=1
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=a- fhll, = fyghi(a).

200
Then the homomorphismg;}j = 1,...,p, induce a homomor-

phism
q
g: Zav - Za\,

p
i=1 i=1

whereV = mjpzlvj, such thatig| 2.7, Ac = fxo.

1 p ¢
ZrkzlaU —>Zj:1au —>5ﬁlj ——0
|
g fxl f
Y
%
T —— A

Since.¥’ has propertylf), there is an open sdtwith x e Y Cc V,
and homomorphism

r p

/8. Z ay — ay

k=1 =1

such that imy = kerg. Then

Z Ay = fypy

k=1

leﬁ

S aco
k=1

by exactness. Hence by the previous result, there is an apé&hwsith
x € U c Y, such that the homomorphis@g¢| Y1 u coincides with
the zero homomorphism. Therefaiginduces a homomorphism

p
f:{ZaU]/imzp—usﬁU.

=1

We can identify this quotientﬂ{f’:1 ay)/imy with .’y so thaty 201
becomes the natural homomorphism; thieis a homomorphisnt :
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Sy — Sy with f¢ = eg| Zle ay. If se S} sinceg is an epimorphism
there is some elemel}}’; a; € 7 ; Acsuch thas = ¢(3}_, a)). Then

P P
f(9) = f6(> | &) = (> &)
j=1 j=1
p
= (), a) = f(9);
j=1

i.e., the restriction of to S} is fy, g.e.d. O

Let Y c X and either, let x be paracompact and normal and Y
closed, or, let X be hereditarily paracompact and normalt k€, .
be sheaves af- modules over X such tha¥”’ is coherent and¥ has
property (). If f : 7’y — ., is @ homomorphism of sheavesaf
modules, there exists an open set U witkt YJ, and a homomorphism
g:.%, — Jusuchthat s = f.
Proof. By the previous result, for each poipte Y there is an open set
Vy in X with x € Vy and a homomorphismy : 'y, — A, such that

Py|Sy = f|S§,. Then by the first result of this lecture, the set of points of
Vy N'Y at which¢y = f is open inY. Hence there is a s&¥, open inX
with ye Wy C Vy such thatpy ylwymy =f y,WyﬂY- O

We now show that there are systef@}ic; and{Hi}ic; of open sets
of X such that, ifG = | Gj,
iel
(i) HiNGc G,
(ii) the system{G;} is locally finite inG,

(i) Y c UHi,

i€l

(iv) eachG; is contained in somey.
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(1) If X is paracompact and normal aidis a closed subset o,
then the coverindX — Y,W}ycy of X has a locally finite refine-
ment{Gj}jcj, and the coveringGj}jc; can be shrunk to a covering
{Hj}jes with Hj c G;. Letl c J be the set of indices for which
GjnY is notempty. Then, fore I, G; is not contained iXX - Y and
hence is contained in sonw,. ClearlyY c [JH; and conditions

(i), (ii), (iii), (iv) are satisfied. «

(2) If X is hereditarily paracompact and normal, thén= yUYWy is
(S

paracompact and normal. Then there is a locally finite refergm
{Gi}ic Of the coveringWy}ycy of G. SinceG is normal, the covering
{Gi}ie of G can be shrunk to a coverirdfi}ic; with H; N G c G;.
The setsG;, H;i being open irG are open inX. Conditions (i), (ii),
(i), (iv) are thus satisfied.

SinceG; is contained in som&\y, there are homomorphismsg :
S — Sg such thatlﬁi|c7/GimY = f|¢§”’Gmy. Let Ej; be the set of 203
pointsx € Hj N Hj N G at whichyi|S), # v|S}; thenE;; is closed inG.
LetE = | Ejj; itis the union of a locally finite system of closed sets in

I
G, hencejis closed is. LetU = G - E, thenU is open inG, hence
open inX, andY c U.

Letg : .Yy — S be defined as follows: Fax € I—T. NU let
oISy = ¥ilS}. This gives a consistent definition gfandg is continuous
on each closed séi’gimu of a locally finite system irg, (These closed
sets covef§)). Thusgis a sheaf homomorphism ag”’y = f.

The above result for the case wh¥nparacompact and normal is
more useful in applications. In particular, the above rssate when
both.#” and.¥ are coherent sheaves@fmodules.

Example 35.Let T be the space of ordinal numbetsv; with the topol-
ogy induced by the order, 1€ be the space of ordinal numbetsw,
and letX = TxQ. ThenX is compact Hausdérand hence paracompact
normal. LetY; = (T — (w1)) X wo, Y2 = w1 X (Q—(wo)) andY = Y1 UY>.
Leta = . = .¥ = Zp, then.¥ is coherent. Lef : A — %A be the
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homomorphism which is the identity ofh and is zero orY,, There is
no extension off over an open set containing

LetY c X, and let¥ be a coherent sheaf afmodules over X. Then
the restriction.# is a coherent sheaf of, modules

Proof. Since.” has propertyd), for eachy € Y there is an open s&V
of X with y € W and an epimorphism : Zip:l aw — Ay. Then the
restriction9| SE o away ¢ 20 away — HAway is an epimorphism. Thus
S has propertyd). m|

To prove that¥4 has propertylf), let 9; Zik:l awny — Awvny be a
homomorphism wher@/ is an open set iiX, and lety e WN'Y. Choose
a sectionfi Vi = S,(i = 1,...,Ky € V,, throughgh'l, € S, and let
V= ﬂ, 1Vi. Thereis a homomorphism : YK, ay — A defined by
¢ Zl(lal Zklafﬂ(a) If 18 € 2 Ay then
¢ Yict 1afiy) =Sk aoh e T ha =g 38 a.

Slnce the set of points of where¢’ = ¢ is open inY, there is

an open seG of X withy e G c VNnW, such tha‘rqb’| 2!‘:1 agny =

¢| Z!‘Zl agny. Since.” has property lf), there is an open séi with
y € U c G, and a homomorphism

1 k
Vi Z ay — Z ay
i=1 i=1
such that the sequence

k

Zl:au lLZZGU (Lyu

i=1 i=1

is exact. Thenify = ¢’

1 k
Z ayny — Z ayny 2, LUny

i=1 i=1

Z, -, auny, the sequence

is exact. Thus#, has propertykj).
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Definition. A sheafa of rings with unit is called acoherent sheaf of 205
rings if it is coherent as a sheaf of -modules, i.e., it has propéoly
(Property (a) is trivially satisfied.)

If ais coherent and” is a sheaf ofi- modules, the” is coherent
if and only if for each point x there is an open set U with i, and an
exact sequence

| k
ay iZaU i>L5ﬂu — 0.
i=1 i=1
Proof. Necessitylf .# is coherent, propertyaj implies the existence
of ¢ and propertylf) implies the existence aof. O

Syficiency Sincea is coherentgy is coherent inJ for each open
setU and so arey;_; ay and3¥_; ay. As the image of;_; ay, im y
has property &), and as a subsheaf Q}"j‘zl ay, imy has property k).
Thus imy is coherent, and there is an exact sequence

k
0-imy — Zau - Su — 0.
i=1
Hence, since two of the sheaves are coherent, the tid), is
coherent for a neighbourhood of each poirand hence? is coherent.

Example 36.In the ringB = Z[y, X1, X2, . . .] of polynomials in infinitely
many variables with integer ciients, letl be the ideal generateccoe
by yxi,y%,... and letA = B/I. Then multiplication byy gives a

189
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homomorphismf : A — A whose kernelC consists of polynomials
in Z[ X1, X2, . ..] without constant terms. Then th moduleC is not
finitely generated. Hence X is a consisting of one point, the constant
sheafA is not a coherent sheaf of rings.

Example 37.Let X = {x: 0 < x < 1} and letF be the ring of functions

f . X — Z4 for which f(x) = f(1) forx > 0 andf(0) = f(1) mod 2.
There are eight functions iR. Leta be the sheaf of germs of function
in F. Let g be the (constant) global section defined by the function
g: X — Zywhereg(0) = 2 andg(x) = 0 for x > 0. The sheaf#

of relations for this section is obtained by omitting frenthe germs at

0 of functionsf with f(0) = 1 or 3. Then the sections &F over any
connected neighbourhodd of 0 contain only the germs of even valued
functions, hence do not genera#,;. Thus% does not haveaj) and
hencea has neitherlg;) nor (b).

The sheaf of germs of analytic functions in the complex pigrze
coherent sheaf of rings

Proof. Let a be the sheaf of germs of analytic functions in the complex
place, and letf,..., fx be sections ofi over a neighbourhoodl) of

a pointz,, i.e., fj is an analytic function irlJ. We can writefi(2) =
(z—2,)"gi(2) whereg; does not vanish a, and hence does not vanish in
a neighbourhood/; of z,, z, € V; c U. LetV = ﬂiKzl V. LetZ be the
sheaf of relations between the sectidi¥,i = 1,...,k. We will show
thatZ is finitely generated iv. m|

Let P = C[Z be the ring of polynomials irz with complex coef-
ficient and letM be the submodule (ove?) of the direct sumyX , P
consisting of elementspg, ..., pk) for which Z!‘zl pi(2d(z - z)" = 0.
SinceP is a euclidean ring an@!‘zl P is finitely generated oveP, the
submoduleM is finitely generated ovep. (See van der Waerden , Mod-
ern Algebra, Vol, I, p. 106). Letrg, ..., p}), j = 1,....1, be a system of
generators foM. Letr)(2) = p/(2)/6i(2); then each/(2),i = 1,...,k
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is an analytic function irv, and

k k

N@6@ =) l@E-2)"=0 (=1....).
=1 i=1

Thus for eachj, the section determined by/(...,r})) is in 2. We
will show that these sections generafe

Letz!‘zl tiz,, fiz, = O be a relation between germszate V, i.e., let
ti(2),i = 1,...,k, be analytic functions & such thatZ!‘:l ti(@fi (2 =0.
Thenzik:l ti(20i(2d(z- z)"™ = 0. Letn = max(ny, ..., k) and suppose
thatng = n. We can write

(99 = (z-2)"6@+s@. (=1....k-1)
whereq;(2) is analytic atzy ands(2) = 0 of zy # z, and is a polynomial 208
of degree less thamif z; = z,. Then
(@%@, . ... k(K@) =
q(@(z-2)",0,...,0,—(z— )™ + - -
+ -100.....(2-2)", ~(2-2)"* + (91D, - . -, %(?)
wheresc(2) is the analytic function defined by

k-1

%@ = k@u@ + ) 4@ - 2)"
i=1

Now, ((z - 2)",0,..., 0,—(z - zp)™, etc. are inM and by direct
verification we haw@]ik:‘ll 5(2)(z— )" = 0. Sincesy(2), ..., % 1(2), are
polynomials, it follows that(s)(z - z,)", is a polynomial.

() If z1 # 29, thensy(2), ..., sk-1(2) are all zero and

k=1

%@ = k@@ + ) | 4@ E-2)",
i=1

k-1
(Z- 20)"5(d) = L@AD)(Z-2)" + Y Gi(2)(z - 2)"(Z- )"
i=1
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k-1
= k@u@z-2)"+ ) i(Q5@ - 2)"
i=1

=0,
hences(2) = 0,

(i) If zy = 9, thensc(2) has a series expansidif’ a;(z— zp)" and on
multiplication by ¢ — z,)" this series has a finite number of terms.
Hences(2) is already a polynomial.

In either case,t{(2)g1(2,...,w(2gk(2) is a linear combination of
elements oM with codficients analytic a;. Hence

I . .
@0, . ...k @%@) = > hi@PL@. ..., D),
=1

whereh;j(2) is analytic atz;. Then

[
0@, %@) = > h@CI@,....ri).
=1

Thus the shea#? of relations is generated by a finite number of
sections, hence the shesdik coherent.

This result is a special case of Oka’s theorem, Cartan Sepdioal -
52, Expose 15§5. The following proposition on the extension of co-
herent sheaves is based on Expose§19pof the same seminar.

Proposition 22. Let Y c X and either, let X be paracompact and normal
with Y closed, or, letX be hereditarily paracompact and naltniet a
be a coherent sheaf of rings with unit over X and.#étbe a coherent
sheaf ofay- modules over Y. Then there is an open set U with ¥,
and a coherent shedf of ay- modules over U whose restriction to Y is
isomorphic ta¥ .

Proof. Since.” is coherent, there is a coverifig; N Y}jc; of Y, where
Vj is open inX, and for eachj € J an exact sequence
| v ¢
i i
Z anmY - anﬁY — ijﬂY - 0.
i=1 i=1
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O
210

From the properties oX there exist systens{G;}ic; and{H}ic; of
open sets oK such that, ifG = U;G;,

(i) HiNGcG;,

(i) the system(Gili¢ is locally finite inG,
(i) Y c UiH;,
(iv) eachG; is contained in som¥j,

For the first case, we can assume that €gdbk anF - setinX, hence
G and all intersectionsw'r‘zleir areF,-sets and hence are paracompact
and normal. In the second case, all subsetX afe paracompact and
normal.

Since eacl; is contained in som¥|, there are exact sequences

j i K i

i
E agny — § agny — ijﬂY - 0.
i=1 r=

EitherG; is paracompact and normal wi@) N Y closed inG; or Gj
is hereditarily paracompact and normal, and the she@kggx(;i and
Z'f:l ag; are coherent. Hence (see Lectliré 32) there is an opel set
with G; n'Y c G{ c Gj and an extension

li ki
7 .
VYo  Y
r=1 r=1

of y;. For the first case we may assume t@ats also anF- set. Let
S = (ZL ag;)/imy’. Then, if¢’ is the natural homomorphism, the

sequence
li

L ,
ZGG{LZag{i}yi—)O

r=1 r=1

is exact, i.e., 211
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ki
O—>im1//—>ZaGi/—>,7' -0
r=1

is exact and hence”'is coherent. There is an isomorphism
g yii’ﬁY - yGi’ﬂY-

There are open setd/ with H n'Y c H/, H' NG’ c G/ where

= JG/. For the first caseG’ and all mtersectlonswq G’ areF,
il
sets, hence are paracompact and normal.

Fori, j € |, there is an open s@;j,G.’mG’ﬂY C G.J - G’mG’ anda

homomorphism; : Yé” — /¢, such thatfij|.73 = g g,| Gy
For the first case, we may assume BGatis anF,, set. Then there is an
open seGj; with G/ NG| N Y c G/; c Gjj N Gji such thatf; ; |‘§ﬁj.’.mY

ij

is the identity andfj i y@. -y~ is the identity. LetEj; = Hj n H’j N
(e Gi’j), thenE;j is closed inG’.

Fori, j, k € | there is an open s@i, G| N G] NG, NY cGjk C
Gi’ N G’j N G’k’ such thatfij fjk|Gijk = fik||Gijk- LetEjjk = Hi’ N Hi’ N HI'(ﬂ
(G’ - Gijk), thenEjj is closed inG'.

Let E = (Ui Eij) U(Uijk Eix) and letU = (G' — E) n (Ui H)).
ThenE is closed inG” andU is open withY c U. Over eactH/ n'U

there is a sheaV};,mU, over eachH/ n HinU there is an isomorphism

’ i . J
fiJ' = fij| 'yHi’mHmeU

i
H/NH U - yHi'mHanu

andf = (fi’j)‘l. Further, over eachl/ N H! N H; N U these isomor-

phisms are consistent, i.ef; fi = fi. Then by identification there is

determined a shedf overU such thaUH/mU is identified with.#” U

Then the isomorphismg : .7\, , — YH(QY induce an |somorph|sm

H/AY
g:Jvy — 7. Since each”! 'l is coherent.J is coherent.
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