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Chapter 1

Vector groups and linear
inequalities

1 Vector groups
1

Let K be the field of real numbers andV a vector space of dimensionn
overK. Let us denote element ofV by small Greek letters and elements
of K by small Latin letters. The identity element ofV will be denoted
by 0and will be called the zero element ofV. We shall also denote by 0
the zero element inK.

Let ε1, . . . , εn be a base ofV so that for anyξ ∈ V

ξ =
∑

i

ξiεi xi , xi ∈ K.

We call x1, . . . , xn the coordinatesof ξ. Supposeε′1, . . . , ξ
′
n is another

basis ofV, then

ε′i =
∑

j

ε ja ji , i = 1, . . . , n

wherea ji ∈ K and the matrixM = (a ji ) is non-singular. If in terms of
ε′1, . . . , ε

′
n

ξ =
∑

i

ε′i yi , yi ∈ K

1
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then it is easy to see that



x1

:
:
xn


= M



y1

:
:

yn


(1)

Supposeα1, . . . , αm is any finite set of elements ofV. We denote by
L(α1, . . . , αm) the linear subspace generated inV by α1, . . . , αm. This2

means thatL(α1, . . . , αm) is the set of elements of the form

α1x1 + · · · + αmxm, xi ∈ X.

It is clear thatL(α1, . . . , αm) has dimension6 Min(n,m).
Let Rn denote the Euclidean space ofn dimensions, so that every

point P in Rn has coordinatesx1, . . . , xn, xi ∈ K. Let ε1, . . . , εn be a
basis ofV and letx1, . . . , xn be the coordinates ofξ in V with regard
to this basis. Make correspond toξ, the point inRn with coordinates
x1, . . . , xn. It is then easily seen that this correspondence is (1, 1). For
anyξ ∈ V define theabsolute value|ξ| by

|ξ|2 =
n∑

i=1

x2
i

wherex1, . . . , xn are coordinates ofξ. Then| | satisfies the axioms of a
distance function in a metric space. We introduce a topologyin V by
prescribing a fundamental system of neighbourhoods ofξ to be the set
of {Sd} whereSd is the set ofη in V with

|ξ − η| < d (2)

Sd is called a sphere of radiusd and centerξ. The topology above makes
V a locally compact abelian group. The closureSd of Sd is a compact
set. From (1), it follows that the topologies defined by different bases of
V are equivalent.

A subgroupG of V is called avector group. The closureG of G in3

V is again a vector group. We say thatG is discreteif G has no limit
points inV. Clearly therefore a discrete vector group is closed.
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SupposeG is discrete, then there is a neighbourhood of zero which
has no elements ofG not equal to zero in it. For, if in every neighbour-
hood of zero there exists an element ofG, then zero is a limit point ofG
in V. This contradicts discreteness ofG. SinceG is a group, it follows
that all elements ofG are isolated inV. As a consequence we see that
every compact subset ofV has only finitely many elements ofG in it.

We now investigate the structure of discrete vector groups.We shall
omit the completely trivial case when the vector groupG consists only
of the zero element.

Let G , {0} be a discrete vector group. Letξ , 0 be an element of
G. Consider the intersection

G1 = G∩ L(ξ).

Let d > 0 be a large real number and consider all they > 0 for
which ξy is in G1 andy 6 d. If d is large, then this set is not empty.
BecauseG is discrete, it follows that there are only finitely manyy with
this property. Letq > 0 be therefore the smallest real number such that
ξ1 = ξ · q ∈ G1. Let β = ξx be any element inG1. Putx = hq+ k where
h is an integer and 06 k < q. Thenξx andξ1h are inG1 and soξk is in 4

G1. But from definition ofq, it follows thatk = 0 or

β = ξ1h, h integer.

This proves that
G1 = {ξ1},

the infinite cyclic group generated byξ1.
If in G there are no elements other than those inG1, thenG = G1.

Otherwise let us assume as induction hypothesis that inG we have found
m(6 n) elementsξ1, . . . , ξm which are linearly independent overK and
such thatG ∩ L(ξ1, . . . , ξm) consists precisely of elements of the form
ξ1g1 + · · · + ξmgm whereg1, . . . , gm are integers. This means that

Gm = G∩ L(ξ1, . . . , ξm) = {ξ1} + · · · + {ξm}

is the direct sum ofm infinite cyclic groups. If inG there exist no other
elements than inGm thenG = Gm. Otherwise letβ ∈ G, β < Gm. Put

Gm+1 = G∩ L(ξ1, . . . , ξm, β).
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Consider the elementsλ in Gm+1 ⊂ G of the form

λ = ξ1x1 + · · · + ξmxm+ βy, xi ∈ K.

wherey , 0 andy 6 d with d a large positive real number. This setC of
elementsλ is not empty since it containsβ. Put nowxi = gi + ki where
gi is an integer and 06 ki < 1, i = 1, . . . ,m. Let µ = ξ1g1 + · · · + ξmgm,
thenµ ∈ Gm and so

λ − µ = ξ1k1 + · · · + ξmkm + βy

is an element ofGm+1. Thus for everyλ ∈ Gm+1 there exists aλ =5

λ − µ ∈ G with the property

λ′ = ξ1k1 + · · · + ξmkm + βy

0 6 ki < 1, y 6 d. Thus all thoseλ’s lie in a closed sphere of radius
(m+ d2)

1
2 . SinceG is discrete, this point set has to be finite. Thus for

theλ’s in G they can take only finitely many values.
Therefore letq > 0 be the smallest value ofy for which ξm+1 =

ξ1t1 + · · · + ξmtm+ βq is in G. Let

λ = ξ1x1 + · · · + ξmxm+ βy

be inGm+1. Puty = qh+ k whereh is an integer and 06 k < q. Then

λ − ξm+1h = ξ1(x1 − t1h) + · · · + ξm(xm − tmh) + βk

is in Gm+1. By definition of q, k = 0. But in that case by induction
hypothesisxi − tih = hi is an integer. Thus

λ = ξ1h1 + · · · + ξmhm+ ξm+1h

h1, . . . , h are integers. This proves that

Gm+1 = {ξ1} + · · · + {ξm+1}

is a direct sum ofm+ 1 infinite cyclic groups.
We can continue this process now but not indefinitely sinceξ1, . . . ,

ξm+1, . . . are linearly independent. Thus afterr 6 n steps, the process
ends. We have hence the
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Theorem 1. Every discrete vector group G, {0} in V is a direct sum of6

r infinite cyclic groups,0 < r 6 n.

Conversely the direct sum of cyclic infinite groups is a discrete vec-
tor group. We have thus obtained the structure of all discrete vector
groups.

We shall now study the structure of all closed vector groups.
Let G be a closed vector group. LetSd be a sphere of radiusd

with the zero element ofG as centre. Letr(d) be the maximum number
of elements ofG which are linearly independent and which lie inSd.
Clearlyr(d) satisfies

0 6 r(d) 6 n.

Also r(d) is an increasing function ofd and since it is integral valued it
tends to a limit whend→ 0. So let

r = lim
d→0

r(d).

This means that there exists ad0 > 0 such that ford 6 d0

r = r(d).

We callr therank of G.
Clearly 0 6 r 6 n. Supposer = 0, then we maintain thatG is

discrete; for if not, there exists a sequenceγ1, . . . , γn, . . . of elements of
G with a limit point in V. Then the differences{γk − γ1}, k , 1 will
form a set of elements ofG with zero as a limit point and so in every
neighbourhood of zero there will be elements ofG which will mean that
r > 0.

Conversely ifG is discrete there exists a sphereSd, d > 0 which 7

does not contain any point ofG not equal to zero and containing zero.
This meansr = 0. Hence

r = 0⇔ G is discrete.

Let thereforer > 0 so thatG is not discrete. Letd be a real number
0 < d < d0 so thatr(d) = r. Let Sd be a sphere around the zero element
of G and of radiusd. Let α1, . . . , αr be elements ofG in Sd which are
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linearly independent. Lett > 0 be any real number and letd1 > 0

be chosen so thatd1 < Min(d,
t
n

). Then r(d1) = r. If β1, . . . , βr be

elements ofG which are linearly independent and which are contained
in the sphereSd1 around the zero element ofG, thenL(β1, . . . , βr) ⊂
L(α1, . . . , αr ) sinceSd1 ⊂ Sd. But since both have dimensionr,

L(β1, . . . , βr ) = L(α1, . . . , αr).

Sinceβ1, . . . , βr are inSd1 we have

|βi | 6 d1 6
t
n
, i = 1, . . . , r.

Let ξ ∈ L(α1, . . . , αr). Then by above

ξ = β1x1 + · · · + βr xr .

Put xi = gi + ki wheregi is an integer and 06 ki < 1. Putβ = β1g1 +

· · · + βrgr . Sinceβ1, . . . , βr ∈ G, β will also be inG. Now

|ξ − β| = |β1k1 + · · · + βrkr |

6 |β1k1| + · · · + |βrkr | <
t
n
· n = t.

8

Sincet is arbitrary, it means that in every neighbourhood ofξ there
are elements ofG. Henceξ ∈ G. But G is closed andξ is arbitrary in
L(α1, . . . , αr ). Thus

L(α1, . . . , αr ) ⊂ G.

We have now two possibilities;r = n or r < n. If r = n then
V = L(α1, . . . , αr) ⊂ G ⊂ V, which meansG = V. So let r < n.
Completeα1, . . . , αr into a basisα1, . . . , αn of V. In terms of this basis,
anyγ ∈ G may be written

γ = α1x1 + · · · + αnxn, xi ∈ K.

But λ = α1x1 + · · · + αr xr is an element ofL(α1, . . . , αr) and so ofG.
Thus

δ = γ − λ = αr+1xr+1 + · · · + αnxn
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is in G. Also δ ∈ L(αr+1, . . . , αn). It is to be noted thatγ determinesδ
uniquely. Theδ’s that arise in this manner clearly form a vector group
contained inL(αr+1, . . . , αn) and isomorphic to the factor groupG −
L(α1, . . . , αr). We contend that this subgroup ofδ’s is discrete. For, if
not let δ1, . . . be a sequence of elements with a limit point inV. Then
in every arbitrary neighbourhood of zero there are elementsof the set
{δk−δl}, k , 1. Sinceδk−δl is an element ofL(αr+1, . . . , αn), this means
that the rank ofG is > r + 1. This contradiction proves our contention.
Using theorem 1, it follows that there exists elementsδ1, . . . , δs is G
such that everyξ ∈ G can be written uniquely in the form 9

ξ = α1x1 + · · · + αr xr + δ1g1 + · · · + δsgs (∗)

wherexi ∈ K andg’s are integers. The uniqueness of the above form
implies thatδ1, . . . , δs are linearly independent. We have hence the

Theorem 2. Let G be a closed vector group. There exist integers r and
s,0 ≤ r ≤ r + s≤ n and r+ s independent elementsα1, . . . , αr , δ1, . . . , δs

in G such that every element G can be uniquely expressed in theform
(∗).

It is easy to see that ifG is a vector group such thatG consists of all
elementsξ of the form (∗) thenG is closed. In particular ifr = 0, we
have discrete groups as a special case.

It can be seen thatL(α1, . . . , αr) is the connected component of the
zero element inG.

2 Lattices

Let G be a discrete vector group. There existr ≤ n elementsα1, . . . , αr

of V such that
G = {α1} + · · · + {αr}

is a direct sum ofr infinite cyclic groups. Ifβ1, . . . , βr+1 are anyr + 1
elements ofG, then there is a non-trivial relation.

β1h1 + · · · + βr+1hr+1 = 0



8 1. Vector groups and linear inequalities

whereh1, . . . , hr+1 are integers. For letβi =

r∑

j=1

α ja ji , i = 1, . . . , r + 1.

Then the matrixA = (a ji ) hasr rows andr+1 columns and is an integral
matrix. There exist therefore rational numbersh1, . . . , hr+1 not all zero10

such that

A ·



h1
...

hr+1


=



0
...

0



This means that there are rational numbersh1, . . . , hr+1 not all zero such
thatβ1h1 + · · · + βr+1hr+1 = 0. Multiplying by a common denominator
we obtain the result stated.

Let us now make the

Definition. A vector group G is said to be a lattice if G is discrete and
contains a basis of V.

This means that there exists a basisα1, . . . , αn of V such that

G = {α1} + · · · + {αn}. (3)

The quotient groupV − G is clearly compact. Conversely supposeG
is a discrete vector group such thatV −G is compact. Ifα1, . . . , αr are
independent elements ofG generatingG, completeα1, . . . , αr to a basis
α1, . . . , αn of V. A set of representatives ofVmod G is then given by

α = α1x1 + · · · + αnxn

where 0≤ xi < 1, i = 1, . . . , r. SinceVmod G is compact, it follows that
r = n. Thus a lattice is a discrete vector groupG with V −G compact.

A set of elementsα1, . . . , αn of G generatingG is said to be abase
of the lattice G. If β1, . . . , βn is another base ofG then11

(β1, . . . , βn) = (α1, . . . , αn)A (4)

(α1, . . . , αn) = (β1, . . . , βn)B

whereA andB aren rowed integral matrices. Because of (4), it follows
thatAB= E, E being the unit matrix of ordern. Thus|A| = ±1, |B| = ±1.
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We call a matrixA unimodularif A andA−1 are both integral. The
unimodular matrices form a groupΓ. (4) shows that a transformation of
a base ofG into another base is accomplished by means of a unimodular
transformation.

Conversely ifα1, . . . , αn is a base ofG andA is a unimodular matrix,
thenβ1, . . . , βn defined by

(β1, . . . , βn) = (α1, . . . , αn)A

form again a base ofG as can be easily seen. ThusΓ is the group of
automorphisms of a lattice.

Let G be a lattice andα1, . . . , αn a base of it. Letβ be any element
in G. Thenβ can be completed into a base ofG if and only if

G∩ L(β) = {β}

as is evident from section 1. Letβ = α1g1 + · · · + αngn whereg1, . . . , gn

are integers. Ifβ can be completed into a baseβ, β2, . . . , βn of G then, by
above, the transformation takingα1, . . . , αn to β, β2, . . . , βn is unimodu-
lar. This means that

(g1, g2, . . . , gn) = 1.

Conversely let̂β = α1g1+ · · ·+αngn with (g1, . . . , gn) = 1. Letβ ∈ G 12

and
G∩ L(ρ) = {β1}

whereβ1 = α1t1+ · · ·+αntn. Sinceβ ∈ L(β), it follows thatβ ∈ {β1} and
β = β1q for some integerq. Because of independence ofα1, . . . , αn, it
follows thatq divides (g1, . . . , gn). This means thatq = 1, that is

G∩ L(β) = {β}

Thereforeβ can be completed to a base ofG. Hence the

Theorem 3. Let G be a lattice with a baseα1, . . . , αn. Letβ = α1g1 +

· · · + αngn be an element in G. Thenβ can be completed to a base of G
if and only if(g1, . . . , gn) = 1.

From the relation between bases ofG and unimodular matrices, we
have
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Corollary. Let g1, . . . , gn be n integers. They can be made the first col-
umn of a unimodular matrix if and only if(g1, . . . , gn) = 1.

3 Characters

Let G be a vector group. A characterχ of G is a real valued function on
V with the properties

1) χ(α) is an integer forα ∈ G

2) χ is continuous onV

3) χ(α + β) = χ(α) + χ(β), α, β ∈ V

It follows trivially therefore that

χ(0) = 0.

Sinceχ is a continuous function, we have13

lim
n
χ(λn) = χ(λ)

whereλ1, λ2, . . . is a sequence of elements inV converging toλ.
If p is an integer thenχ(ωp) = pχ(ω). If r is a rational number, say

r =
a
b

, a, b integers, thenbχ(ωr) = χ(ωa) = aχ(ω) so that

χ(ωr) = rχ(ω).

By continuity it follows that ifr is real

χ(ωr) = rχ(ω).

Supposeχ1 andχ2 are two characters ofG. Defineχ = χ1 + χ2 by

χ(ω) = χ1(ω) + χ2(ω).

It is then trivial to verify thatχ is a character ofG. It then follows that
the characters ofG form a groupG∗, called thecharacter groupor the
dual ofG.

Let G be a vector group andG its closure. Then
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Lemma.G andG have the same character group.

Proof. A character ofG is already a character ofG. �

Conversely letχ be a character ofG. Thenχ satisfies properties 2)
and 3). We have only to verify the property 1). Letω ∈ G. Then there
is a sequence of elementsω1, ω2, . . . in G with ω as the limit. Sinceχ is
continuous

lim
n
χ(ωn) = χ(ω).

But χ(ωn) are all integers. Thusχ(ω) is integral. Thusχ is a character 14

of G.
The interest in lemma is due to the fact that in order to study the

structure ofG∗, it is enough to considerG∗ as the dual of the closed
vector groupG whose structure we had investigated earlier.

Let G be the closure of the vector groupG and G∗ its character
group. By theorem 2 there exists a baseω1, . . . , ωn of V such that

ξ = ω1x1 + · · · + ωnxn, xi ∈ K

belongs toG if and only if xi is integral forr < i ≤ r + s andxi = 0 for
i > r + s, r andsbeing integers determined by theorem 2. Ifχ ∈ G∗ then
for ξ ∈ V

χ(ξ) = x1χ(ω1) + · · · + xnχ(ωn).

If howeverξ ∈ G thenχ(ξ) is integral. Therefore

χ(ωi ) =



0 i ≤ r

integer r < i ≤ r + s

arbitrary real i > r + s.

Thus forξ ∈ G

χ(ξ) =
r+s∑

i=r+1

χ(ωi ) · xi

If ξ < G, then because of definition ofω1, . . . , ωn it follows that
either at least one ofxr+1, . . . , xr+s is not an integer or at least one of
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xr+s+1, . . . , xn is not zero. Suppose thatξ =
∑
i
ω1xi , xr+1 , 0(mod 1).

Define the linear functionχ onV by 15

χ(ωi) =


1 if i = r + 1

0 if i , r + 1.

Thenχ is a character ofG and

χ(ξ) = χ(ωr+1)xr+1 = xr+1 . 0(mod 1)

The same thing is true ifxr+i . 0(mod 1), 1≤ i ≤ s. Suppose now that
ξ =

∑
i
ωi xi and one ofxr+s+1, . . . , xn sayxn , 0. Defineχ linear onV

by

χ(ωi) =



0 if i , n
1

2xn
if i = n.

Thenχ is a character ofG andχ(ξ) =
1
2
. 0(mod 1). Hence if

ξ < G there is a character ofG which is not integral forξ. We have thus
proved.

Theorem 4. Let ξ ∈ V. Thenξ ∈ G if and only if for every characterχ
of G,χ(ξ) is integral.

Let us fix a basisω1, . . . , ωn of V so thatω1, . . . , ωr+s is a basis of
G. If χ ∈ G∗ thenχ(ωi) = ci where

ci =



0 i ≤ r

integer r < i ≤ r + s

real i > r + a

If (c1, . . . , cn) is any set ofn real numbers satisfying the above condi-
tions, then the linear functionχ defined onV by

χ(ξ) =
n∑

i=1

ci xi
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whereξ =
∑
i
ωi xi, is a character ofG. If Rn denotes the space of real16

n-tuples (x1, . . . , xn) then the mapping

χ→ (c1, . . . , cn)

is seen to be an isomorphism ofG∗ into Rn. ThusG∗ is a closed vector
group of rankn− r − s.

It can be proved easily thatG∗∗ the character group ofG∗ is isomor-
phic toG.

4 Diophantine approximations

We shall study an application of the considerations in§3 to a problem
in linear inequalities.

Let

Li(h) =
m∑

j=1

ai j h j , (i = 1, . . . , n)

ben linear forms inm variablesh1, . . . , hm with real coefficientai j . Let
b1, . . . , bn ben arbitrarily given real numbers. We consider the problem
of ascertaining necessary and sufficient conditions on theai j ’s so that
givena > 0 there exist integersh1, . . . , hm such that

|Li(h) − bi | < α, (i = 1, . . . , n).

In order to study this problem, let us introduce the vector spaceV of
all a rowed real columns

α =



a1
...

an


, ai ∈ K.

V has then dimensionn overK. Letα1, . . . , αn be elements ofV defined 17

by

αi =



a1i
...

ani


, i = 1, . . . ,m
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and letG be the vector group consisting of all sums
m∑

i=1
αigi wheregi ’s

are integers. Letγ be the vector

γ =



b1
...

bn



Then our problem on linear forms is seen to be equivalent to that of
obtaining necessary and sufficient conditions that there be elements in
G as close toγ as one wishes; in other words the condition thatγ be in
G. Theorem 4 now gives the answer, namely that

χ(γ) ≡ 0(mod 1)

for every characterχ of G.
Let us choose a basisε1, . . . , εn of V where

εi =



0
...

1
0
...

0



i = 1, . . . , n

with zero everywhere except at thei th place. Now in terms of this basis

αk = ε1a1k + · · · + εnank, k = 1, . . . ,m

Therefore ifχ is a character ofG18

χ(αk) =
n∑

i=1

aikci

whereχ(εi ) = ci , i = 1, . . . , n. Also χ(εk) ≡ 0(mod 1). Furthermore if
c1, . . . , cn be any real numbers satisfying

n∑

i=1

ciaik ≡ 0(mod 1), k = 1, . . . ,m,
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then the linear functionχ defined onV by χ(εi) = ci is a character ofG.
By theorem 4 therefore

n∑

i=1

cibi ≡ 0(mod 1)

We have therefore the theorem due toKronecker.

Theorem 5. A necessary and sufficient condition that for every t> 0,
there exist integers h1, . . . , hm satisfying

|Li(h) − bi | < t, i = 1, . . . , n,

is that for every set c1, . . . , cn of real numbers satisfying

n∑

i=1

ciaik ≡ 0(mod 1), k = 1, . . . ,m,

we should have
n∑

i=1

aibi ≡ 0(mod 1).

We now consider the special casem> n. Let m= n+ q, q ≥ 1. Let
the linear forms be

q∑

j=1

ai j h j + gi , i = 1, . . . , n

in the m variablesh1, . . . , hq, g1, . . . , gn. Then the vectorsα1, . . . , αm 19

above are such that

αq+i = εi , i = 1, . . . , n.

This means that ifχ is a character ofG, ci = χ(εi) is an integer. Thus

Corollary 1. The necessary and sufficient condition that for every t> 0,
there exist integers h1, . . . , hq, g1, . . . , gn satisfying

∣∣∣∣∣∣∣∣

q∑

j=1

ai j h j + gi − bi

∣∣∣∣∣∣∣∣
< t, i = 1, . . . , n
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is that for every set c1, . . . , cn of integers satisfying
∑

i

ciai j ≡ 0(mod 1), j = 1, . . . , q

we have ∑

i

cibi ≡ 0(mod 1).

We now consider another special caseq = 1. The linear forms are
of the type

aih+ gi − bi i = 1, . . . , n

a1, . . . , an, b1, . . . , bn being real numbers. Suppose now we insist that
the condition onb1, . . . , bn be truewhatever b1, . . . , bn are. This will
mean that from above Corollaryc1 = c2 = . . . = cn = 0 or, in other
words, thata1, . . . , an have to satisfy the condition that

∑

i

ciai ≡ 0(mod 1), ci integral

if and only if ci = 0, i = 1, . . . , n. This is equivalent to saying that20

the real numbers 1,a1, . . . , a1 are linearly independent over the field of
rational numbers.

Let us denote byRn the Euclidean space ofn dimensions and byFn

the unit cube consisting of points (x1, . . . , xn) with

0 ≤ xi < 1 i = 1, . . . , n.

For any real numberx, let ((x)) denote the fractional part ofx, i.o. ((x)) =
x− [x]. Then

Corollary 2. If 1, a1, . . . , an are real numbers linearly independent over
the field of rational numbers, then the points(x1, . . . , xn) where

xi = ((hai )) i = 1, . . . , n

are dense in the unit cube, if h runs through all integers.
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We consider now the homogeneous problem namely of obtaining
integral solutions of the inequalities

|Li(h)| < t, i = 1, . . . , n

t > 0 being arbitrary. Here we have to insist thath1, . . . , hm should not
all be zero.

We study only the casem> n. As before introduce the vector space
V of n-tuples. Letα1, . . . , αm andG have the same meaning as before.
If the groupG is not discrete, it will mean that the inequalities will have
solutions for anyt, however small. If howeverG is discrete then since21

m> n the elementsα1, . . . , αm have to be linearly integrally dependent.
Hence we have integersh1, . . . , hm not all zero such that

α1h1 + · · · + αmhm = 0.

We have hence the

Theorem 6. If m > n, the linear inequalities

|Li(h)| < t, i = 1, . . . , n

have for every t> 0, a non-trivial integral solution.
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Chapter 2

Reduction of positive
quadratic forms

1 Quadratic forms
22

Let V be a vector space of dimensionn over the fieldK of real numbers.
Define an inner productξη between vectorsξ, η of V by

i) ξη ∈ K

ii) ξη = ηξ

iii) ξ(η + ζ) = ξη + ξζ

iv) ξ(ηa) = (ξη)a, a ∈ K.

Obviously ifε1, . . . , εn is a base ofV andξ, η have the expressionξ =
∑
i

εiai , η =
∑
i
εibi then

ξη =

n∑

i, j=1

aib j(εi · ε j).

If we denote byS then-rowed real matrixS = (si j ), si j = εiε j thenS is
symmetric and

ξη = a′S b (1)

21
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wherea =

( a1

...
an

)
, b =


b1

...
bn

 anda′ denotes the transpose of the column

vectora. (1) is a bilinear form in the 2n quantitiesa1, . . . , an, b1, . . . , bn.
In particular

ξ2
= a′S a

is a quadratic form ina1, . . . , an.
Suppose thatε′1, . . . , ε

′
n is another base ofV. Then23

ε′i =
∑

j

ε jai j i = 1, . . . , n.

and the matrixA = (ai j ) is non-singular. IfS1 = (ε′i · ε
′
j) then one sees

easily that
S1 = S[A] = A′S A.

Thus ifS with regard to one base is non-singular, then theS correspond-
ing to any other base is also non-singular.

Conversely letS by and realn-rowed symmetric matrix andε1, . . . ,

εn a base ofV overK. Put

εi · ε j = si j ( j, i = 1, . . . , n)

and extend it by linearity to any two vectors ofV. Then we have inV an
inner product defined.

If ξ =
∑
i
εi xi is a generic vector ofV overK,

ξ2
= x′S x= S[x] =

∑

i, j

xi x j si j .

The expression on the right is a quadratic form in then variablesx1, . . . ,

xn and we callS its matrix. The quadratic form isdegenerateor non-
degenerateaccording as its matrixS is or is not singular.

Let x′S x=
n∑

k,l=1
sklxkxl be a quadratic form in then variablesx1, . . . ,

xn and lets1 = s11 , 0. We may write

x′S x= s1x2
1 + 2s12x1x2 + · · · + 2s1nx1xn + Q(x2, . . . , xn)
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so thatQ(x2, . . . , xn) is a quadratic form in then−1 variablesx2, . . . , xn.24

We now write, sinces1 , 0,

x′S x= s1

(
x1 +

s12

s1
x2 + · · · +

s1n

s1
xn

)2

−
s2
12

s1
x2

2 − . . .

−
s1n

2

s1
x2

n + Q(x2, . . . , xn).

We have thus finally

x′S x= s1y2
1 + R(x2, . . . , xn)

wherey1 = x1+
s12

s1
x2+ · · ·+

s1n

s1
xn andR(x2, . . . , xn) is a quadratic form

in then− 1 variablesx2, . . . , xn. If we make a change of variables

y1 = x1
s12

s1
x2 + · · · +

s1n

s1
xn

y1 = xi i > 1


(2)

then we may write

x′S x=

(
s1 0
0 S1

)


y1
...

yn



whereS1 is the matrix of the quadratic formR(x2, . . . , xn). Using matrix
notation we have

S =


s1 q′

q S2

 =
(
s1 0
0 S1

) [
1 s−1

1 q′

0 E

]
(3)

whereE is the unit matrix of ordern−1, q is a column ofn−1 rows and 25

S1 = S2 − s−1
1 qq′;

which, incidentally gives an expression for the matrix ofR.
More generally supposeS =

(
S1 Q
Q′ S2

)
whereS1 is ak-rowed matrix

and is non-singular. Putx =
(
y
z

)
wherey is a column ofk rows andzhas

n− k rows. Then

S[x] = S1[y] + y′Qz+ z′Q′y+ S2[z],
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which can be written in the form

S[x] = S1[y+ S−1
1 Qz] +W[z] (4)

whereW = S2 − Q′S−1Q. In matrix notation we have

S =

(
S1 0
0 W

) [
E S−1

1 Q
0 E

]
(5)

the orders of the two unit matrices being evident. In particular, we have

|S| = |S1| |W|.

Let S be a real, non-singular,n-rowed, symmetric matrix. It is well
known that there exists an orthogonal matrixV such that

S[V] = V′S V= D

whereD = [d1, . . . , dn] is a real diagonal matrix. The elementsd1, . . . ,

dn of D are called the eigen-values ofS. Let L denote the unit sphere26

L : x′ x = 1

so thata generic pointx on L is ann-tuple x =

( x1

...
xn

)
of real numbers.

Let m andN denote the smallest and largest of the eigen values ofS.
Then for anyx onL .

m≤ S[x] ≤ M

For, if we put


y1

...
yn

 = y− V−1x, theny′y = 1 and

S[x] = D[V−1x] = D[y] = d1y2
1 + · · · + dny2

n.

But then

S[x] = (d1 − M)y2
1 + · · · + (dn − M)y2

n + M ≤ M.

The other inequality is obtained by changingS to −S.
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More generally we have, for any arbitrary real vectorx

mx′ x ≤ S[x] ≤ Mx′x. (6)

If x = 0, the statement is obvious. Letx , 0. Thent2 = x′x , 0. Put
y = t−1x. Theny′y = 1 and som ≤ S[y] ≤ M. Multiplying throughout

by t2 we get the result in (6).
We now define a quadratic formx′S xto bepositive definite(or sim-

ply positive) ifS[x] > 0 for all vectorsx , 0. It is positive semi-definite
if S[x] ≥ 0 for realx , 0. We shall denote these byS > 0 andS ≥ 0
respectively. IfS > 0, then obviously|S| , 0. For, if |S| = 0, then there 27

existsx , 0 such thatS x= 0. Then

0 = x′S x> 0

which is absurd.
If S > 0 and|A| , 0 andA is a real matrix, thenT = S[A] is again

positive. For, ifx = 0, theAx, y , 0 and so

T[x] = S[Ax] = S[y] > 0.

We now prove two lemmas for later use.

Lemma 1. A matrix S is positive definite if and only if|Sr | > 0 for
r = 1, . . . , n, where Sr is the matrix formed by the first r rows and
columns of S .

Proof. We shall use induction onn. If n = 1, the lemma is trivial. Let
therefore lemma be proved for matrices of ordern− 1 instead ofn. Let

S =


Sn−1 q
q′ a



If S > 0 thenSn−1 > 0 and so|Sn−1| , 0. We can therefore write

S =

(
Sn−1 0′

0 l

) [
E S−1

n−1q
0 l

]
(7)

so that|S| = |Sn−1|l. Induction hypothesis shows that|Sn−1| > 0 and
l > 0 so that|S| > 0 and|Sr | > 0 for all r. �
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The converse also follows since by hypothesis|S| > 0 and|Sn−1| > 28

0. So 1> 0. But by induction hypothesisSn−1 > 0.

Lemma 2. If S > 0 and S= (skl), then

|S| ≤ s1 . . . sn

where skk = sk, k = 1, . . . , n.

Proof. We again use induction onn. From the equation (7) we have

|S| = |Sn−1| · l.

But l = sn − q′S−1
n−1q > 0 sinceS−1

n−1 > 0 andsn > 0. If we assume
lemma proved forn− 1 instead ofn we get

|S| ≤ s1 . . . sn−1l ≤ s1 . . . sn.

More generally we can prove that ifS > 0 andS =
( S1 S12

S′12 S2

)
then

|S| ≤ |S1| · |S2| (8)

It is easy to see that equality holds in (8) if and only ifS12 = 0.
Let S > 0, thens1, . . . , sn are all positive. We can write as in (3)

S =

(
s1 0
0 W

) [
1 s−1

1 q′

0 E

]

But since nowW > 0, its first diagonal element is different from zero29

and we can writeW also in the form (3). In this way we get

S =



d1 0
. . .

0 dn





1, d12, . . . , d1n

0, 1, d23, . . . , d2n

: . . . . . .

0 . . . . . .1


= D[V] (9)

whereD = [d1, . . . , dn] is a diagonal matrix andV = (dkl) is a triangle
matrix with dkk = 1, k = 1, . . . , n, anddkl = 0, k > 1. We can therefore
write

S[x] =
n∑

k=1

dk(xk + dk k+1xk+1 + · · · + dknxn)2
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The expressionS = D[V] is unique. For if S = D1[V1] whereD1 is
a diagonal matrix andV1 is triangular, then

D[W] = D1

whereW = VV−1
1 is also a triangular matrix. In this case, it readily

follows thatW = E andD = D1.
In general we have the fact that if

S =

(
S 0
0 S2

) [
E T
0 E

]
(10)

whereS1 has orderk thenS1, S2 andT are unique.
We call the decomposition (9) ofS the Jacobi transformationof

S. �

2 Minima of definite forms
30

Let S and T be two real, non-singularn-rowed symmetric matrices.
They are said to beequivalent(denotedS ∼ T) if there exists a uni-
modular matrixU such that

S[U] = T.

Since the unimodular matrices form a group, the above relation is an
equivalence relation. We can therefore put then-rowed real symmetric
matrices intoclassesof equivalent matrices. Evidently, two matrices in
a class have the same determinant.

If S = S′ is real andt is a real number, we say thatS represents t
integrally, if there is an integral vectorx such that

S[x] = t.

In caset = 0, we insist thatx , 0. The representation is said to be
primitive, if x is a primitive vector. Obviously ifS ∼ T thenS andT
both represent the same set of real numbers.

If S > 0, then all the eigen values ofS are positive. Letm > 0 be
the smallest eigen value ofS. Let t > 0 be a large real number. Then if
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S[x] < t thenmx′x < t and so the elements ofx are bounded. Therefore
there exist only finitely many integral vectorsx satisfying

S[x] < t.

This means that ifx runs through all non-zero integral vectors,S[x] has
a minimum. We denote this minimum byµ(S). There is therefore an31

integralx such that

S[x] = µ(S)., x , 0.

Moreoverx is a primitive vector. For ifx is not primitive, thenx = qy
whereq > 1 is an integer, andy is a primitive vector. Then

µ(S) = S[x] = q2S[y] > S[y]

which is impossible. Furthermore ifS ∼ T thenµ(S) = µ(T). For, let
S = T[U] whereU is unimodular. Ifx is a primitive vector such that
µ(S) = S[x], then

µ(S) = S[x] = T[Ux] ≥ µ(T).

Also if µ(T) = T[y], then

µ(T) = T[y] = S[U−1y] ≥ µ(S).

This proves the contention.
If S > 0 andt is a real number, thenµ(tS) = tµ(S). But |tS| = tn|S|

so that it seems reasonable to compareµ(S) with |S|1/n.
We not prove the following important theorem due toHermite.

Theorem 1. If µ(S) is the minimum of the positive matrix S of n rows,
there exist a constant cn depending only on n, such that

µ(S) ≤ cn|S|1/n

Proof. We use induction onn. �
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If n = 1, thenS is a positive real numbers. If x , 0, and integral,32

thensx2 > sunlessx = ±1 so that

c1 = 1.

Let us assume theorem proved forn− 1 instead ofn. Let x be the primi-
tive integral vector such thatµ(S) = S[x]. Completex into a unimodular
matrixU. ThenT = S[U] has first diagonal element equal toµ(S). Also
µ(S) = µ(T) by our remarks above. Furthermore|S| = |T |. Therefore
in order to prove the theorem we may assume that the first diagonal
elements1 of S is equal toµ(S).

Let S =


s1 q′

q S1

 . Then

S =

(
s1 0′

0 W

) [
1 s−1

1 q′

0 E

]

whereW = S1 − qs−1
1 q! Also |S| = s1|W|.

Let x =
(
x1
y

)
be a vector and lety haven− 1 rows, so that

S[x] = s1(x1 + s−1
1 q′y)2

+W[y]. (11)

SinceW > 0, we can choose an integraly so thatW[y] is minimum. x1

can now be chosen integral in such a manner that

−
1
2
≤ x1 + s−1

1 q′y ≤
1
2

(12)

using (11) and (12) and induction hypothesis we get 33

µ(S) ≤ S[x] ≤ µ(S)
4
+ cn−1

∣∣∣W
∣∣∣1/(n−1)

Substituting for|W| we get

µ(S) ≤
(
4
3

cn−1

) n−1
n

|S|
1
n

which proves the theorem.
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Usingc1 = 1 and computing successively from the recurrence for-

mulacn =

(
4
3

cn−1

) n−1
n

we see that

cn = (4/3)
n−1

2 (13)

is a possible value ofcn. This estimate is due toHermite.
The best possible value forcn is unknown except in a few cases. We

shall show thatc2 =

√
4
3

and that it is the best possible forn = 2. From

Hermite’s estimate (13), we see that for a positive binary matrix S,

µ(S) ≤
(
4
3

) 1
2

|S|
1
2 .

Consider now the positive quadratic fromx2
+ xy+ y2 whose matrix

S =

(
1 1

2
1
2 1

)

For integralx, y not both zero,x2
+ xy+ y2 ≥ 1 so thatµ(S) = 1. Also

|S| = 3
4

. We have

1 =

(
4
3

) 1
2

|S|
1
2

which proves that

√
4
3

is the best possible value ofc2.34

We shall now obtain a ‘finer’ estimate forcn due toMinkowski. This
estimate is better than Hermite’s forlarge values ofn. To this end we
make the following consideration.

Let Rn denote the Euclidean space ofn dimensions regarded as a
vector space of orderedn-tuples (x1, . . . , xn). A point setL in Rn is

said to beconvexif wheneverA andB are two points of it,
A+ B

2
, the

mid point of the line joiningA and B, is also a point ofL . It is said
to besymmetricabout the origin if wheneverx belongs to it,−x also
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belongs to it. Obviously ifL is both convex and symmetric, it contains
the origin.

If L is a point set inRn andh is any point inRn we denote byLh

the set of pointsx such thatx ∈ Lh if and only if x− h is a point ofL .
With this notationL = L0.

If L is an open, bounded symmetric convex set, theL has a mea-
sureν(L ) in the Jordon sense and forh ∈ Rn

ν(L ) = ν(Lh).

We call a pointP = (x1, . . . , xn) in Rn a lattice pointif x1, . . . , xn are
all integers. The lattice points form a lattice inRn considered as a vector
group. We shall denote points of this lattice by the lettersg, g′, . . ..

The following lemma, due toMinkowski, shows the relationship be-
tween convex sets and lattices.

Lemma 3. If L is an open, bounded, symmetric and convex set of vol-35

ume> 2n, thenL contains a lattice point other than the origin.

Proof. We shall assume thatL has no lattice point in it other than the
origin and then prove thatν(L ) ≤ 2n. �

So letL have no lattice point in it other than the origin. Define the
point setM by x ∈ M if and only if 2x ∈ L . ThenM is an open,
symmetric, bounded and convex set. Also

ν(L ) = 2nν(M ). (14)

Consider now the translatesMg of M by the lattice points. Ifg , g′

thenMg andMg′ are disjoint sets. For, ifx ∈Mg ∩Mg′ thenx− g and
x− g′ are points ofM . SinceM is symmetric and convex.

g− g′

2
=

(x− g′) + (g− x)
2

is a point ofM . By definition ofM , g− g′ is a point ofL . But g , g′.
ThusL has a lattice point other than the origin. This contradicts our
assumption. Thus theMg for all g are distinct.



32 2. Reduction of positive quadratic forms

Let ε denote the unit cube, that is the set of pointsx = (x1, . . . , xn)
with 0 ≤ xi < 1, i = 1, . . . , n. By the property ofMg’s above

∑

g

ν(Mg ∩ ε) = ν(ε ∩
∑

g

Mg) ≤ ν(ε) = 1 (15)

But ν(Mg ∩ ε) = ν(M ∩ ε−g) so that by (15)

1 ≥
∑

g

ν(ε ∩Mg) =
∑

g

ν(ε−g ∩M ) = ν(
∑

g

ε−g ∩M ).

But theε−g coverRn completely without gaps or overlapping wheng36

runs over all lattice points. Hence

ν(M ) ≤ 1.

Using (14) our theorem follows.
We can now prove the following theorem due toMinkowski.

Theorem 2. If S > 0 andµ(S) is its minimum, then

µ(S) ≤
4
π
·
{
Γ

(n
2
+ 1

)}2/n
|S|1/n

Proof. In Rn let us consider the point setL defined by the set ofx =( x1

...
xn

)
with

S[x] < ρ

It is trivially seen to be open and symmetric. Also sinceS > 0, L is
bounded. To see that it is convex, writeS = A′A and putAx1 = y

1
,

Ax2 = y
2
. Then a simple calculation proves that

2
(y1 + y2

2

)′ (y
1
+ y

2

2

)
≤ y′

1
y

1
+ y′

2
y

2
.

This shows thatL is a convex set. The volume ofL is

ν(L ) =
ρn/2πn/2

Γ(n
2 + 1)

∣∣∣S
∣∣∣−1/2

If we put ρ = µ(S), thenL contains no lattice point other than the37

origin. Minkowski’s lemma then proves theorem 2. �
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Denote the constants in Hermite’s and Minkowski’s theoremsby cn

andc′n respectively. If we use stirling’s formula for theΓ-function in the
form

logΓ(x) ∼ x log x.

We get log ’̧n = log
4
π
+

2
n

logΓ
(n
2
+ 1

)
∼ logn whereas logcn =

n− 1
2

log 4/3 ∼ λn whereλ is an absolute constant. This shows that

for largen, Minkowski’s estimate is better than Hermite’s.

3 Half reduced positive forms

We now consider the spaceRh, h =
n(n+ 1)

2
of real symmetricn-rowed

matrices and impose on it the topology of theh-dimensional real Eu-
clidean space. LetP denote the subspace of positive matrices. If
S ∈ P then all the principal minors ofS have positive determinant.
This shows thatP is the intersection of a finite number of open subsets
of Rh and hence is open.

Let S be a matrix in the frontier ofP in Rh. Let S1,S2, . . . be a
sequence of matrices inP converging toS. Let x , 0 be any real
column vector. ThenSk[x] > 0 and hence by continuityS[x] ≥ 0. From
the arbitrariness ofx, it follows thatS ≥ 0. On the other hand letS be
any positive semi-definite matrix inRh. Let E denote the unit matrix of
ordern. Then forε > 0, S + εE is a positive matrix, which shows that
in every neighbourhood ofS there are points ofP. This proves that the38

frontier ofP in Rh consists precisely of positive semi-definite matrices.
Let Γ denote the group of unimodular matrices. We representΓ in

Rh as a group of transformationsS → S[U], S ∈ Rh. Also U and−U
load to the same representation inRh. It is easy to see that the only
elements inΓ which keep every element ofRh fixed are±E. Thus if we
identify in Γ, the matricesU and−U thenS → S[U] gives a faithful
representation ofΓ0 in Rh, Γ0 = Γ/ ± E. If U runs over all elements
of Γ andS ∈ Rh, S[U] runs through all matrices in the class ofS. We
shall now find in each class of positive matrices, a matrix having certain
‘nice’ properties.
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Let T ∈P and letu run over the first columns of all the matrices in
Γ. Thereu are precisely all the primitive vectors. Consider the values
T[u] as u runs over these first columns. ThenT[u] has a minimum,
which is none other thanµ(T). Let this be attained foru = u1. It is
obvious thatu1 is not unique for,−u1, also satisfies this condition. In
any case, sinceT > 0, there are only finitely manyu’s with the property
T[u] = T[u1]. Let u1 be fixed and letu run over the second columns of
all unimodular matrices whose first column isu1. Theu’s now arenotall
the primitive vectors (for instanceu , u1). T[u] again has a minimum
say foru = u2 and by our remark above39

T[u1] ≤ T[u2]

Also there are only finitely manyu with T[u] = T[u2]. Consider now all
unimodular matrices whose first two columns areu1, u2 and determine
a u3 such thatT[u3] is minimum. Continuing in this way one finally
obtains a unimodular matrix

U = (u1, . . . , un)

and a positive matrixS = T[U].
S ∼ T and by our construction, it is obvious, thatS is not unique in

the class ofT. We shall study the matricesS andU more closely.
Suppose we have constructed the columnsu1, . . . , uk−1. In order to

construct thek-th column we consider all unimodular matricesV whose
first k − 1 columns areu1, . . . , uk−1 in that order. Using the matrixU
above which has this property,

U−1V =

(
Ek−1 A

0 B

)
(16)

whereEk−1 is the unit matrix of orderk − 1 andA and B are integral

matrices. SinceU andV are unimodular,B is unimodular. Ifw =

( w1

...
wn

)

denotes the first column of the matrix
(
A
B

)
then, sinceB is unimodular

(wk,wk+1, . . . ,wn) = 1. (17)
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Thek-th columny
k

of V is Uw. Conversely letw be any integral column40

satisfying (17). Thenwk, . . . ,wn can be made the first column of a uni-
modular matrixB of ordern− k+ 1. Choosingany integral matrixA of
k−1 rows andn−k+1 columns, whose first column isw1, . . . ,wk−1, we
get a matrixV whose firstk − 1 columns areu1, . . . , uk−1 (by means of
the equation (16)). Thus thek-th column of all the unimodular matrices
with first k − 1 columns equal tou1, . . . , uk−1 is of the formUw, where
w is an arbitrary integral vector with (wk, . . . ,wn) = 1.

Consider the matrixS = T[U]. By the choice ofuk, we have ifw
satisfies (17), then

S[w] = T[Uw] ≥ T[uk] = sk

whereS = (skl). We have thus proved that in each class ofT there exists
a matrixS satisfying

I) s1 > 0

II) S[w] ≥ sk, k = 1, . . . , n



for every integral columnw =

( w1

...
wn

)
with (wk, . . . ,wn) = 1.

Matrices which satisfy (I) and (II) shall be calledhalf reducedand
the subset ofP of matricesS, half reduced, shall be denotedR0.

In the sequel we shall denote bye1, . . . , en, then columns in order
of the unit matrix of ordern and by anadmissible k-vectorw we shall
understand an integral vectorw of n rows, satisfying (17).ek is clearly 41

an admissiblek-vector.
Sinceek+1 is an admissiblek+ 1-vector, we have

sk+1 = S[ek+1] ≥ sk

which shows that
s1 ≤ s2 ≤ . . . ≤ sn. (18)

Let u =

( x1

...
xn

)
be an integral vector withxk = 1, xl = 1, xi = 0 for

i , k, i , l andk < l. Thenu is an admissiblel-vector and so

sk + 2skl + sl = S[u] ≥ sl .



36 2. Reduction of positive quadratic forms

This means that−2skl ≤ sk. Changing the sign ofxk we get 2skl ≤ sk.
Hence

−sk ≤ 2skl ≤ sk, 1 ≤ k < l ≤ n (19)

Remark . SupposeS is a real symmetric matrix satisfying (II). LetS1

be the matrix obtained fromS by deleting theh1-th, h2-th,. . . ,hl-th rows
and columns fromS. ThenS1 also has properties similar toS since we
have only to consider such admissible vectorsw for which theh1, . . . , hl-
th elements are zero.

We now prove the

Theorem 3. Let S be a real, symmetric n-rowed matrix with the prop-
erty (II) . Then S≥ 0. If, in addition, it satisfies(I), then S> 0.42

Proof. Supposes1 = 0. Then by (19) we have

0 = −s1 ≤ 2s1l ≤ s1 = 0

which shows thatS has the form

S =

(
0 0′

0 S1

)

If s2 = 0, we again have a similar decomposition forS1, sinceS1, by
our remark above, also satisfies II. Thus eitherS = 0 or else there is a
first diagonal elementsk, such thatsk , 0. Then

S =

(
0 0
0 Sk

)

Sk havingsk for its first diagonal element. We shall now show thatSk >

0. Observe thatSk satisfies both I) and II) and therefore for proving the
theorem it is enough to show that ifS satisfies I and II, thenS > 0. �

If n = 1, the theorem is trivially true. Let therefore theorem proved
for n− 1 instead ofn. Put

S =


S1 q
q′ sn
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whereq is a column ofn − 1 rows. S1 satisfies I and II and so by43

induction hypothesisS1 > 0. Also sincesn ≥ s1, thereforesn > 0.

Let x =
(y
z

)
be a column ofn rows,y havingn− 1 rows and letzbe

a real number. Then

S[x] = S1[y+ S−1
1 qz] + (sn − q′S−1

1 q)z2.

We assert thatsn− q′S−1
1 q > 0. For letsn ≤ q′S−1

1 q. Then forε > 0 and
everyx , 0

S[x] ≤ S1[y+ S−1
1 qz] + εz2 (20)

Consider the quadratic form on the right side of the inequality above. It
is of ordern, positive and has a determinant|S1|ε. Therefore we may
find a column vectorx =

(
y
z

)
, integral, such that the value of the right

side is a minimum and so by Hermite’s theorem

S1[y+ S−1
1 qz] + εz2 ≤ cn|S1|1/nε1/n.

Using (20) and observing thats1 is the minimum ofS[x] we get, for this
x,

0 < s1 ≤ S[x] ≤ cn|S1|1/nε1/n (21)

Sinceε can be chosen arbitrarily small we get a contradiction from (21).
Thussn − q′S−1

1 q > 0. This means theS > 0.
We have thus shown that all matrices satisfying (I) and (II) are in

P.
We prove now the following important theorem due toMinkowski. 44

Theorem 4. If S is a positive half-reduced matrix, then

1 ≤ s1 . . . sn

|S|
≤ bn

where bn is a constant depending only on n.

Proof. The left hand side inequality has already been proved in lemma
2 even for all matrices inP. In order to prove the right hand side
inequality we use induction. �
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Consider now the ratios

sn

sn−1
,

sn−1

sn−2
, . . . ,

s2

s1
.

SinceS is half-reduced, all these ratios are≥ 1. Letγ =
n(n− 1)

4
. For

the above ratios, therefore, one of two possibilities can happen. Either
there exists ak, 2≤ k ≤ n such that

sn

sn−1
< γ,

sn−1

sn−2
< γ, . . . ,

sk+1

sk
< γ

sk

sk−1
≥ γ


(22)

or that
sn

sn−1
, . . . ,

s2

s1
< γ (23)

Note that in the casen = 2, the second possibility cannot occur since

thenγ =
1
2

and
s2

s1
≥ 1.

Consider (23) first. We have45

s1 . . . sn

sn
1

< γ
n(n− 1)

2

and since
s1 . . . sn

|S|
=

s1 . . . sn

sn
1

·
sn
1

|S|

we get, using Hermite’s inequality

s1 . . . sn

|S|
< cn

n · γ
n(n− 1)

2

which proves theorem.
Suppose now that (22) is true and sok ≥ 2. Write

S =

(
Sk−1 Q
Q1 R

)
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whereSk−1 hask − 1 rows. Letx =
(
y
z

)
wherey is a column withk − 1

rows. We have, by completion of squares

S[x] = Sk−1[y+ S−1
k−1Qz] + (R− Q′S−1

k−1Q)[z] (24)

Also |R− Q′S−1
k−1Q| = |S|/|Sk−1|. Choosez to be an integral primitive

vector such that (R− Q′S−1
k−1Q)[z] is minimum. By Hermite’s theorem

therefore

(R− Q′S−1
k−1Q)[z] ≤ cn−k+1(|S|/|Sk−1|)1/n−k+1 (25)

Puty+ S−1
k−1Qz= w so thatw =

( w1

...
wk−1

)
. Choose nowy to be an integral

vector such that

−1
2
≤ wi ≤

1
2
, i = 1, . . . , k− 1. (26)

By the choice ofz, it follows that x =
(
y
z

)
is an admissiblek-vector. 46

Hence
sk ≤ S[x]. (27)

Also sinceSk−1 is half-reduced, we get

Sk−1[w] =
k−1∑

p,q=1

spqwpwq ≤
k(k− 1)

8
sk−1.

Using (22) we get

Sk−1[w] ≤
sk

2
(28)

From (24), (25), (27) and (28) we get

sk ≤ 2cn−k+1(|S|/|Sk−1|)1/(n−k+1) (29)

Since
s1 . . . sn

|S|
=

s1 . . . sk−1

|Sk−1|
|Sk−1|
|S|
· sn−k+1

k
sk . . . sn

sn−k+1
k
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we get by induction hypothesis onSk−1, that

s1 . . . sn

|S|
≤ bk−1 · (2cn−k+1)n−k+1 · γ

(n− k)(n− k+ 1)
2

which proves the theorem completely.
The best possible value ofbn is again unknown except in a few sim-

ple cases. We shall prove that

b2 = 4/3 (30)

and it is the best possible value.
Let ax2

+2bxy+cy2 be a half-reduced positive form. Then 2b ≤ a ≤
c. The determinant of the form isd = ac− b2. Thus47

ac= ac− b2
+ b2 ≤ d +

a2

4
≤ d +

ac
4

which gives

ac≤ 4
3

d (31)

Consider the binary quadratic formx2
+ xy+ y2. It is half-reduced

because ifx andy are two integers not both zero, thenx2
+ xy+ y2 ≥ 1.

The determinant of the form is 3/4. Product of diagonal elements is
unity. Hence

1 =
4
3

d

and this shows that 4/3 is the best possible value.

4 Two auxiliary regions

Let R0 denote the space of half-reduced matrices. Define the point set
R∗t for t > bn ≥ 1 as the set ofS satisfying

0 < sk < tsk+1 k = 1, . . . , n− 1

−t <
skl

sk
< t 1 ≤ k < 1 ≤ n

s1 . . . sn

|S|
< t



(32)
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Because of (18), (19) and theorem 4, it follows that

R0 ⊂ R
∗
t . (33)

But what is more important is that

lim
t→∞

R
∗
t =P (34)

This is easy to see. For, ifS ∈ P, let t be chosen larger than the48

maximum of the finite number of ratios
sk

sk+1
, k = 1, . . . , n−1; ±

skl

sk
, 1 ≤

k < 1 ≤ n,
s1 . . . sn

|S|
andbn. ThenS ∈ R∗t for this value oft.

Let S ∈ R∗t and consider the Jacobi transformation ofS; namely

S =



d1 0
. . .

0 dn





1, t12, . . . t1n

· · · · · ·
0 . . . . . . 1

 = D[T] (35)

Then

skl = dktkl +

k−1∑

h=1

dhthkthl, 1 ≤ k ≤ l ≤ n.

In particular, puttingk = 1, and using the fact thatd1, . . . , dn are all
positive, we get

sk

dk
≥ 1. (36)

Also since|S| = d1 . . .dn, we have
n∏

k=1

sk

dk
=

s1 . . . sn

|S|
< t. Sincet > 1,

we have
sk

dk
< t (k = 1, . . . , n).

Using (32) we get

dk

dk+1
=

dk

sk
· sk

sk+1
· sk+1

dk+1
< t2. (37)

Now s1l = d1 · t1l so that

|t1l | =
|s1l |
d1
=
|s1l |
s1
·

s1

d1
< t2
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Let us assume that we have proved that 49

abs tgl < u0, 1 ≤ g ≤ k− 1, g < l ≤ n (38)

for a constantu0 depending ont andn. Then

abs tkl ≤
abs skl

dk
+

k−1∑

h=1

dh

dk
abs thk · abs thl < u1,

because of (37) and (38),u1 depending only ont and n. It therefore
follows that if u is the maximum ofu0, u1, t2, then for the elements of
D andT in (35) we have

0 < dk < udk+1, k = 1, . . . , n− 1

abs tkl < u, k < l.


(39)

We now defineR∗∗u to be the set of pointsS ∈ P such that ifS =
D[T] where D = [d1, . . . , dn] is a diagonal matrix andT = (tkl) is a
triangle matrix thenD andT satisfy (39) for someu. Since the Jacobi
transformation is unique, this point set is well defined.

From what we have seen above, it follows that givenR∗t , there exists
au = u(t, n) such that

R
∗
t ⊂ R

∗∗
u

Conversely one sees easily that givenR∗∗u there exists at = t(u, n) such
that

R
∗∗
u ⊂ R

∗
t .

In virtue of (34), it follows that

lim
u→∞

R
∗∗
u =P . (40)

50

We now prove two lemmas useful later.
Let S ∈ P and lett be a real number such thatS ∈ R∗t . Let S0

denote the matrix

S0 =



s1 0
. . .

0 sn


(41)

We prove
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Lemma 4. There exists a constant c= c(t, n) such that whatever be the
vector x,

1
c

S0[x] ≤ S[x] ≤ cS0[x].

Proof. Let P−1 denote the diagonal matrixP−1
= [
√

s1, . . . ,
√

sn]. Put
W = S[P]. In order to prove the lemma, it is enough to show that if
x′x = 1 then

1
c
≤W[w] ≤ c.

�

Let W = (wkl). Thenwkl = skl/
√

sksl. BecauseS ∈ R∗t we have

abs wkl = abs
skl

sk

√
sk

s1
< t · c1, k ≤ l (42)

wherec1 depends only ont andn. W being symmetric, it follows that
the elements ofW are in absolute value less than a constantc2 = c2(t, n).

Consider now the characteristic polynomialf (λ) = |λE −W|. By
(42) all the coefficients of the polynomialf (λ) are bounded in absolute
value by a constantc3 = c3(t, n). Also sinceW > 0, the eigen values51

of W are bounded byc4 = c4(t, n). Let λ1, . . . , λn be these eigen values.
Then

λ1 . . . λn = |W| =
|S|

s1 . . . sn
> t−1

which means that there exists a constantc5 = c5(t, n) such that

λi > c5(t, n), i = 1, . . . , n.

(6) then gives the result of lemma 4.
Next we prove

Lemma 5. If S ∈ R∗t and S =
( S1 S12

S′12 S2

)
, then S−1

1 S12 has all its ele-
ments bounded in absolute value by a constant depending onlyon t and
n.
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Proof. By the Jacobi transformation we haveS = D[T]. SinceR∗t ⊂
R∗∗u for u = u(t, n), the elements ofT are≤ u in absolute value. Write

T =

(
T1 T12

0 T2

)
, D =

(
D1 0
0 D2

)

whereT1 andD1 have the same number of rows and columns asS1. We
haveS1 = D1[T1] andS12 = T′1D1T12 so that

S−1
1 S12 = T−1

1 T12.

SinceT1 is a triangle matrix, so isT−1
1 and its elements are≤ u1 in

absolute value,u1 = u1(t, n). The elements ofT12 are already≤ u. Our
lemma is proved. �

We are now ready to prove the following important52

Theorem 5. Let S and T be two matrices inR∗t . Let G be an integral
matrix such that1) S[G] = T and2) abs|G| < t. Then the elements of G
are less, in absolute value, then a constant c depending onlyon t and n.

Proof. The constantsc1, c2, . . . occurring in the following proof depend
only on t andn. Also ‘bounded’ shall mean bounded in absolute value
by such constants. �

Let G = (gkl) and letg
1
, . . . , g

n
denote then columns ofG. We then

have
S[g

l
] = tl l = 1, . . . , n.

Introducing the positive diagonal matrix of lemma 4, we obtain

S0[gl ] ≤ c1S[gl ] = c1tl .

But S0[gl ] =
∑
k

skg2
kl so that

skg
2
kl ≤ c1t1 k, l = 1, . . . , n (43)

Consider now the matrixG. Since|G| , 0, there exists in its expan-
sion a non-zero term. That means there is a permutationl1, . . . , ln of 1,
2, 3, . . . , n such that

g1l1g2l2 . . . gnln , 0.
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From (43) therefore we get

sk ≤ skg
2
klk
≤ c1tlk k = 1, . . . , n.

Consider now the integersk, k + 1, . . . andlk, lk+1, . . . , ln. All of the 53

latter cannot be> k. So there is ani ≥ k such thatl i ≤ k. Hence

si ≤ c1tli .

So, sinceS andT are inR∗0,

sk ≤ c2tk, k = 1, . . . , n. (44)

On the other hand

n∏

k=1

tk
sk
=

t1 . . . tn
|T |

· |S|
s1 . . . sn

|G|2

and all the factors on the right are bounded. Therefore

n∏

k=1

tk
sk
< c3.

Using (44), it follows that

tk ≤ c4sk, (k = 1, 2, . . . , n). (45)

Combining (43) and (45) we have the inequality

skg
2
kl < c5sl k, l = 1, . . . , n. (46)

Let p now be defined to be the largest integer such that

sl ≥ c5sl , k ≥ p, l ≤ p− 1. (47)

If p = 1, this condition does not exist. From the definition ofp, it
follows that for every integerg with p+ 1 ≤ g ≤ n, there exists akg ≥ g
and anlg < g such that

skg < c5slg (48)
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This holds forp = 1, but if p = n, it does not exist. 54

Let c6 be a constant such that

sk < c6sl k ≤ l. (49)

This exists sinceS ∈ R∗t . Using (48) and (49) and puttingc7 = c5c2
6 we

have
sg < c7sg−1 g ≥ p+ 1 (50)

(49) and (50) give the important inequality

1
c8

<
sk

sl
< c8 k ≥ p, l ≤ p (51)

Using (46) and (47), we have ifk ≥ p andl ≤ p− 1

skg
2
kl < c5s1 ≤ sk.

Sincesk , 0, we haveg2
kl < 1. Butgkl are integers. Hence

gkl = 0 k ≥ p, l ≤ p− 1 (52)

Let us splitG up into 4 parts by

G =

(
G1 G12

G21 G2

)

whereG1 is a square matrix of orderp− 1. (52) then shows that

G21 = 0. (53)

Let nowk ≥ p, 1 ≥ p. Then from (51) we have

g2
kl < c5

s1

sk
< c5c8 (54)

which means that the elements ofG2 are bounded.55

Note that if p = 1, our theorem is already proved by (54). So we
may assumep > 1.
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In order to prove the theorem we use induction. Ifn = 1, the theorem
is trivially true. Assume theorem therefore proved forn − 1 instead of
n. Split S andT in the form

S =

(
S1 S12

S′12 S2

)
T =

(
T1 T12

T′12 T2

)

whereS1 andT1 arep − 1 rowed square matrices. BecauseS[G] = T,
we get

S1[G1] = T1

G′1S1G12+G′1S12G2 = T12
(55)

By considerations aboveG21 = 0 therefore|G| = |G1| · |G2|. SinceG
is integral it follows that abs|G1| < t. Also S1 andT1 are p − 1 rowed
square matrices which are inR∗t,p−1, whereR∗t,p−1 is the same asR∗t
with p−1 instead ofn. Ey induction hypothesis and (55) we see thatG1

is bounded.
Using the fact thatG′1S1 = T1G−1

1 we get

G12 = G1T−1
1 T12− S−1

1 S12G2.

Using lemma 5, it follows that the elements ofG12 are bounded.
Our theorem is completely proved.
In particular,

Corollary. If S and T are inR∗t and S[U] = T for a unimodular U, then 56

U belongs to a finite set of unimodular matrices determined completely
by t and n.

5 Space of reduced matrices

We have seen that given any matrixT > 0, there exists in the class ofT,
a half-reduced matrixS. Consider now the 2n unimodular matrices of
the form

A =



a1 0
. . .

0 an





48 2. Reduction of positive quadratic forms

whereai = ±1. If S is half-reduced, thenS[A] also is half-reduced.

For, if x =

( x1

...
xn

)
is an admissiblek-vector, thenAx =


± x1

...
± xn

 is also an

admissiblek-vector. Also, the diagonal elements ofS andS[A] are the
same. We shall chooseA properly so thatS[A] satisfies some further
conditions.

SinceS[A] = S[−A], there is no loss in generality if we assume
a1 = 1. Denote byα1, . . . , αn then columns of the matrixA. Consider
nowα′1Sα2. This equalsa2s12. If s12 , 0 choosea2 so that

a2s12 ≥ 0.

If s12 = 0, a2 may be chosen arbitrarily. Having chosena1, . . . , ak con-
siderα′kSαk+1 = akak+1skk+1. Sinceak has been chosen, we choose
ak+1 = ±1 by the condition

akak+1skk+1 ≥ 0,

providedskk+1 , 0. If skk+1 = 0, ak+1 may be arbitrarily chosen. We57

have thus shown that in each class of equivalent matrices, there is a
matrix S satisfying

α) s1 > 0

β) skk+1 ≥ 0, k = 1, . . . , n− 1.

γ) S[x] − sk ≥ 0, k = 1, . . . , n for every admissiblek-vector.

We shall call a matrix satisfying the above conditions areduced ma-
trix, reduced in the sense ofMinkowski. LetR denote the set of reduced
matrices, then

R ⊂ R0. (56)

Since the elements ofS ∈ P are coordinates of the pointS, the
conditionsβ) andγ) above show thatR is defined by the intersection
of an infinity of closed half spaces ofP. We shall denote the linear
functions inβ) andγ) by Lr , r = 1, 2, 3, . . .. It is to be noted that we
exclude the case when anLr is identically zero. This happens when in
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γ), x is the admissiblek-vector equal to±ek. We may therefore say that
R is defined by

α) s1 > 0, β) Lr ≥ 0 r = 1, 2, 3, . . . (57)

We shall see presently that the infinite system of linear inequalities can
be replaced by a finite number of them.

In order to study some properties of the reduced spaceR, we first 58

make some definitions.

Definition. i) S is said to be aninner pointof R if s1 > 0 and
Lr(S) > 0 for all r.

ii) It is said to be aboundary pointof R if s1 > 0 Lr (S) ≥ 0 for all r
and Lr(S) = 0 at leastfor one r.

iii) It is said to be anouter pointof R if s1 > 0 and Lr(S) < 0 at least
for one r.

We first show thatR hasinner points.
Consider the quadratic form

S|x| = x2
1 + · · · + x2

n + (p1x1 + · · · + pnxn)2

wherep1, . . . , pn aren real numbers satisfying

0 < p1 < p2 . . . < pn < 1.

The matrixS = (skl) is then given by

sk = 1+ p2
k, k = 1, . . . , n

skl = pkpl , k , l.

We assert thatS is an inner point ofR. In the first place

s1 > 0, skk+1 = pkpk+1 > 0;k = 1, . . . , n− 1.

Next let x be an admissiblek-vector not equal to±ek. Then at least one
of xk, . . . , xn has to be different from zero. If at least two of then, sayx j,
x1 are different from zero, so thatk ≤ 1 < j ≤ n, then

S[x] ≥ x2
1 + x2

j + · · · ≥ 2 > 1+ p2
k = sk.
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The worst case is when all ofxk, . . . , xn except one are zero. Ifxk = ±1 59

andx1 = 0 for l > k, thenxi , 0 for somei < k sincex , ±ek and (then)
S[x] ≥ 2. Let xi = 0 for all i excepti = l > k so thatx = ±el. Then

S[x] = 1+ p2
l > 1+ p2

k = sk.

This proves thatS is an inner point.
We now prove

Theorem 6. The set of inner points ofR is an open set inP.

Proof. Let S be an inner point ofR. Thens1 > 0 andLr > 0 for all
r. The inequalitiesskk+1 > 0 being finitely many can be satisfied also
at all points of a sufficiently small neighbourhood ofS. We therefore
consider the other infinitely many inequalities. LetS∗ be a point close
to S so that the elements ofS∗ −S are near zero. Letx be an admissible
k-vector, ±ek. ConsiderS∗[x] − s∗k whereS∗ = (s∗kl). Let ε > 0 be a
real number. We can chooseS∗ close toS so that (S∗ − S)[x] ≥ −εx′x.
Now

S∗[x] − s∗k = (S∗ − S)[x] + S x− s∗k
≥ −εx′x+ S[x] − s∗k.

If λ > 0 is the smallest eigen value ofS, then we may assumeε small
enough so that

S∗[x] − s∗k ≥
λ

2
x′x− s∗k.

There are only finitely many integral vectorsx with
λ

2
x′x ≤ s∗k. We may60

therefore chooseS∗ close enough toS such that

S∗[x] − s∗k ≥
λ

2
x′x− s∗k > 0

for all admissiblek-vectorsx. Doing this fork = 1, . . . , n we see that
there is a small sphere containingS and which consists entirely of points
S∗. These, by our construction, are inner points. This proves our con-
tention. �
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Consider now the outer points ofR. LetS be one such. Then at least
for oner, Lr(S) < 0. Since theLr are linear functions of the coordinates
and hence continuous, we may choose a neighbourhood ofS consisting
of points for all of whichLr < 0. This means that the set of outer points
of R is open. Note that here it is enough to deal with one inequality
alone unlike the previous one where one had to deal with all the Lr ’s.

Let now S be a boundary point ofR. Let S∗ be an inner point.
Consider the pointsTλ defined by

Tλ = λS∗ + (1− λ)S.

These are points on the line joiningS andS∗ and every neighbourhood
of S contains pointsTλ with λ > 0 and pointsTλ with λ < 0.

Consider the pointsTλ with 0 < λ ≤ 1. These are the points between
S andS∗. Let Lr be one of the linear polynomials definingR. Now
Lr(S) ≥ 0, andLr(S∗) > 0, for all r. Thus

Lr (Tλ) = λLr (S
∗) + (1− λ)Lr(S) > 0.

HenceTλ is an inner point. 61

Let nowT be a point withλ < 0. SinceS is a boundary point, there
is anr such thatLr (S) = 0. For thisr

Lr (Tλ) = λLr (S
∗) < 0

which proves thatTλ is an outer point.
Since linear functions are continuous, the limit of a sequence of

points ofR is again a point ofR. This proves

Theorem 7. R is a closed set inP and the boundary points ofR
constitute the frontier ofR in the topology ofP.

We now prove the following

Theorem 8. Let S and S∗ be two points ofR such that S[U] = S∗ for
a unimodular U, ±E. Then S and S∗ are boundary points ofR and U
belongs to a finite set of unimodular matrices determined completely by
the integer n.
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Proof. The second part of the theorem follows readily from the Corol-
lary to Theorem 5. To prove the first part, we consider two cases: (1)U
is a diagonal matrix, and (2)U is not a diagonal matrix. �

Let U be a diagonal matrix,U = (a1, . . . , an), with ai = ±1. We may
assume, sinceS[U] = S[−U] that a1 = 1. Letak+1 be the first element
= −1. Then, with usual notation,

s∗kk+1 = −skk+1.

But S andS∗ being points ofR we have62

0 ≤ s∗kk+1 = −skk+1 ≤ 0

which means thatskk+1 = 0 = s∗kk+1. HenceS andS∗ are both boundary
points ofR.

SupposeU is not a diagonal matrix and denote its columns byu1,

. . . , un. Let uk be the first column different from the corresponding col-
umn of a diagonal matrix. Henceui = ±ei , i = 1, . . . , k− 1. (Note thatk
may very well be equal to 1). Then

U =

(
D ∗
0 V

)

whereD is a diagonal matrix which is unimodular.V is a unimodular
matrix. Furthermore

U−1
=

(
D−1 ∗
0 V−1

)

is unimodular. Letwk be thek-th column ofU−1. Thenwk , ±ek. Now

s∗k = S[uk] ≥ sk

and
sk = S∗[wk] ≥ s∗k

which proves thatS[uk] − sk = 0 = S∗[wk] − s∗k and thereforeS andS∗

are boundary points ofR.
Suppose now thatS is a boundary point ofR. By Theorem 7, there-

fore, there exists a sequence of outer pointsS1, S2, . . . converging toS.63
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If the suffix k is sufficiently large, then all theSk’s lie in a neighbour-
hood ofS. Therefore they are all contained in anR∗t for somet. For
eachk let Uk be a unimodular matrix such thatSk[Uk] is in R. Since
R ⊂ R∗t , we have for all sufficiently largek, Sk andSk[Uk] are both in
R∗t . It follows therefore by Theorem 5, thatUk’s belong to a finite set of
matrices. There exists therefore a subsequenceSk1, Sk2, . . . converging
to S such that one unimodular matrixU, among these finitely many, car-
riesSki into R. Also Lim

n→∞
Skn = S and therefore limSkn[U] = S[U] is a

point of R. SinceS is a point ofR, it follows from the above theorem
thatS[U] is also a boundary point ofR. FurthermoreU , ±E sinceSk

are all outer points andSk[U] ∈ R. Hence

Theorem 9. If S is a boundary point ofR, there exists a unimodular
matrix U , ±E and belonging to the finite set determined by Theorem
8, such that S[U] is again a boundary point ofR.

By Theorem 8, there exist finitely many unimodular matrices say
U1, . . . ,Ug which occur in the transformation of boundary points into
boundary points. Ifuk is thek-th column of one of these matrices, then
uk is an admissiblek-vector. Suppose it is, ±ek. Then for allS ∈ R,
S[uk] − sk ≥ 0. Let us denote byL1, L2, . . . , Lh all the linear forms, not
identically zero, which result from all theuk’s k = 1, . . . , n occurring in 64

the setU1, . . . ,Ug. Let L1, . . . , Lh also include the linear formsskk+1,
k = 1, . . . , n− 1; then from above we see that for a boundary pointS of
R, there is anr ≤ h such thatLr (S) = 0 (not identically). Also for all
points ofR

s1 > 0, L1(S) ≥ 0, . . . , Lh(S) ≥ 0. (59)

But what is more important, we have

Theorem 10. A point S ofP belongs toR if and only if s1 > 0 and
Lr(S) ≥ 0 for r = 1, . . . , h.

Proof. The interest in the theorem is in thesufficiencyof the conditions
(59). �

Let S be a point ofP satisfying (59). SupposeS is not inR. Since
it is in P, it is an outer point ofR. ThereforeLr(S) < 0 for somer > h.
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Let S∗ be an inner point ofR. Consider the pointsTλ,

T = λS + (1− λ)S∗

for 0 < λ < 1, in the open segment joiningS andS∗. Since the set of
inner points ofR is open andS is assumed to be an outer point, there
exists aλ0 such thatTλ0 is on the frontier ofR and 0< λ0 < 1. By our
remarks above, there exists forTλ0 an s≤ h such thatLs(Tλ0) = 0. This
means that

0 = Ls(Tλ0) = λ0Ls(S) + (1− λ0)Ls(S
∗).

But (1− λ0)Ls(S∗) > 0 so thatLs(Tλ0) > 0. This is a contradiction.
ThereforeS ∈ R.

We have therefore proved thatR is bounded by a finite number of65

planes all passing through the origin.R is thus a pyramid.
Let nowR denote the closure ofR in the spaceRh. At every point

S or R one has, because of continuity of linear functions,

s1 ≥ 0, Lr(S) ≥ 0, r = 1, 2, 3, . . .

If S ∈ R but not inR, thens1 = 0. In virtue of the other inequalities,
we see that

S =

(
0 0
0 S1

)
.

S1 again has similar properties. Thus eitherS = 0 or

S =

(
0 0
0 Sk

)

whereSk is non-singular and is a reduced matrix of orderr, 0 < r < n.
We thus see that the points ofRwhich are not inR are the semi-positive
reduced matrices.

Consider now the spaceP and the groupΓ. If U ∈ Γ, the mapping
S → S[U] is topological and takesP onto itself. ForU ∈ Γ denote by
RU the set of matricesS[U] with S ∈ R. BecauseU and−U lead to the
same mapping, we haveRU = R−U . Since in every class of matrices
there is a reduced matrix we see that
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1)
∑

U∈Γ
R±U =P

where in the summation we identifyU and−U. Thus theR±U ’s66

coverP without gaps.

Let U andV be inΓ andU , ±V. Consider the intersection ofRU

andRV. Let S ∈ RU ∩RV. ThenT1 = S[U−1] andT2 = S[V−1]
are both points ofR. MoreoverT1 = T2[VU−1] andVU−1

, ±E
so thatT1 is a boundary point ofR. Since the mappingS→ S[U]
is topologicalS is a boundary point ofRU and also ofRV. Hence

2) If UV−1
, ±E and U and V are unimodular, thenRU and RV

can have at most boundary points in common.

In particular, if U , ±E, R and RU can have only boundary
points in common. IfS ∈ R ∩RU thenS andS[U−1] are inR

and by Theorem 9,U belongs to a finite set of matrices depending
only onn. If we callRU aneighbourof R if R∩RU is not empty,
then we have proved

3) R has only finitely many neighbours.

Let K now be a compact subset ofP. It is therefore bounded in
P and hence there exists at > 0 such thatK ⊂ R∗t . SupposeRU ,
for a unimodularU, intersectsK. Let S ∈ RU ∩ K. There is then
a T ∈ R such thatT[U] = S. For larget, R ⊂ R∗t . ThenT and
S are both inR∗t andS = T[U]. ThereforeU belongs to a finite
set of matrices. Hence there exist a finite number of unimodular
matrices, sayU1, . . . ,Up such that

K ⊂
p∑

i=1

RUi

Hence 67

4) Every compact subset ofP is covered by a finite number of im-
agesRU of R.

We have thus obtained the fundamental results of Minkowski’s
reduction theory.
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We now give a simple application.
SupposeS is a positive, reduced,integralmatrix. Then sinces1s2 . . .

sn ≤ bn|S|, s1, . . . , sn are positive andbn depends only onn, it follows
that for a given|S|, there exist only finitely many integer values for
s1, . . . , sn. Also

−sk ≤ 2skl ≤ sk, k < l

so thatskl being integers, there are finitely many values ofskl satisfying
the above inequalities. We have therefore the

Theorem 11. There exist only finitely many positive, integral, reduced
matrices with a given determinant and number of rows.

Since all matrices in a class have the same determinant, and in each
class there is at least one reduced matrix, we get the

Theorem 12. There exist only a finite number of classes of positive in-
tegral matrices with given determinant and number of rows.

It has to be noticed, that in virtue of property 3) above, one has, in
general, only one reduced matrix in a class.

6 Binary forms
68

We now study the particular casen = 2.
Let S =

(
a b
b c

)
be a positive binary matrix andx =

(
x
y

)
a vector. The

quadratic formS[x] = ax2
+2bxy+cy2 is positive definite. By the results

of the previous section, we see that, ifS is reduced then

a > 0, 0 ≤ 2b ≤ a ≤ c. (60)

We shall now prove thatanymatrix S satisfying (60) is reduced.
Let x =

(
x
y

)
be an admissible one-vector. Ify = 0, thenx = ±1. If y ,

0, thenx andy are coprime integers. Consider the valueax2
+2bxy+cy2

for admissible one-vectors. We assert thatax2
+ 2bxy+ cy2 ≥ a. In the

first caseS[x] = a. In the second case, because of (60)

ax2
+ 2bxy+ cy2 ≥ a(x2 − xy+ y2).
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But x andy are not both zero. Thusx2 − xy+ y2 ≥ 1 which means that
S[x] ≥ a.

Let nowx =
(
x
y

)
be an admissible two-vector. Theny = ±1. If x = 0,

thenS[x] = c. Let x , 0, then

S[x] = ax2 ± 2bx+ c = c+ x(ax± 2b).

Because of (60), it follows thatx(ax± 2b) ≥ 0. ThusS satisfies condi-
tions I) and II) of half reduction. Alsob ≥ 0. This proves thatS > 0
and reduced.

(60) thus gives the necessary and sufficient conditions for a binary 69

quadratic form to be reduced.
In the theory of binary quadratic forms, one discusses some-times

equivalence not under all unimodular matrices, but only with respect to
those unimodular matrices whose determinant is unity. We say that two
binary matricesS andT areproperly equivalentif there is a unimodular
matrix U such that

S = T[U], |U | = 1. (61)

The properly equivalent matrices constitute aproper class. Note that
the properly unimodular matrices form a group. Two matricesS andT
which are equivalent in the sense of the previous sections, but which do
not satisfy (61) are said to beimproperly equivalent.Note that improper
equivalence isnot an equivalence relation.

In order to obtain the reduction theory for proper equivalence we
proceed thus: IfS1 =

(
a1 b1
b1 c1

)
is positive, then there is a unimodular

matrix U such thatS = S1[U] =
(

a b
b c

)
satisfies (60). If|U | = 1 we call

S aproperly reducedmatrix. If |U | = −1, then considerW

W =

(
1 0
0 −1

)
(62)

ThenV = UW has the property|V| = 1. NowS[W] =
(

a −b
−b c

)
and we

call this properly reduced. In any case we see thatS is properly reduced 70

means
a > 0, 0 ≤ |2b| ≤ a ≤ c. (63)
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If we denote byR the reduced domain, that is the set of reduced
matrices in the old sense andR∗ the properly reduced domain, one sees
immediately that

R
∗
= R +RW

whereW has the meaning in (62).
We shall now give two applications.
Let S =

(
a b
b c

)
be a positiveintegral matrix. Because of conditions

(63) and the additional condition (31), it follows that for given |S|, there
exist only finitely many properly reduced integral matrices. Consider
now the case|S| = 1. Then because of (31),

ac≤ 4
3

(64)

and hence the only integersa, b, c, satisfying (63) and (64) area = c =
1, b = 0. This proves

i) Every binary integral positive quadratic form of determinant unity
is properly equivalent to x2 + y2.

Let now p be a prime number> 2. Let p be representable by the
quadratic formx2

+ y2. We assert that thenp ≡ 1(mod 4). For, ifx and
y are integers such that

x2
+ y2
= p

thenx andy cannot be congruent to each other mod 2. So letx be odd71

andy even. Thenp = x2
+ y2 ≡ 1(mod 4).

We will now prove that conversely ifp ≡ 1(mod 4), the formx2
+y2

representsp (integrally). For, letρ be a primitive root mod p. There is
then an integerk, 1 ≤ k < p− 1 such that

ρk ≡ −1(mod p).

This means thatρ2k ≡ 1(mod p) and by definition of primitive root, we
getk = p−1/2. But p ≡ 1(mod 4) so thatk is an even integer. Therefore

−1 ≡ (ρk/2)2(mod p).
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There is thus an integerb, 1 ≤ b ≤ p− 1 such thatb2 ≡ −1(mod p). Put
b2
= −1+ λp, λ ≥ 1 an integer.
Consider the binary formpx2

+ 2bxy+ λy2. Its determinant ispλ −
b2
= 1. By the result obtained in i), this form is equivalent tox2

+ y2.
But px2

+ 2bxy+ λy2 representsp, (x = 1, y = 0). Thereforex2
+ y2

representsp. Thus

ii) If p is a prime> 2, then x2 + y2
= p has a solution if and only if

p ≡ 1(mod 4).

Results i) and ii) are due originally toLagrange.
Let S[x] = ax2

+ 2bxy+ cy2 be a real, positive, binary quadratic
form. We can write

S[x] = a(x− τy)(x− τy) (65)

whereτ is a root, necessarily complex, of the polynomialaz2
+ 2bz+ c 72

andτ is its conjugate. Letτ = ξ + iτ have positive imaginary part.
Let V =

(
λ µ
ν ρ

)
be a real matrix of unit determinant and consider the

mapping
S→ S[V].

ThenS[Vx] is given by

S[Vx] = a′(x− τ′y)(x− τ′y) (66)

wherea′ = a(λ − ντ) (λ − ντ) is necessarily real and positive, and

τ′ = V−1(τ) =
ρτ − µ
−ντ + λ

. (67)

It is easy to see thatτ′ also has positive imaginary part. Let us also

observe thatτ =
−b+ i

√
|S|

a
.

Consider now the relationship betweenS andτ. If S is given, then
(65) determines aτ with positive imaginary part. Now givenτ, (65)
itself shows thatS is determined only upto a real factor. This real factor
can be determined by insisting that the associated quadratic forms have
a given determinant. In particular, if|S| = 1 then theτ is uniquely
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determined byS and conversely. Ifτ = ξ+ iη, η > 0, then theS is given
by

S =

(
η−1 0
0 η

) [
1 −ξ
0 1

]
(68)

Let P denote the space of positive binary forms of unit determinant73

andG the upper half complexτ-plane. By what we have seen above the
mappingS → τ in (65) is (1, 1) both ways. LetΓ denote the group of
proper unimodular matrices. It acts onG as a group of mappings

τ→ U(τ) =
λτ + µ

ντ + ρ
, U =

(
λ µ

ν ρ

)
(69)

of G onto itself. If we define two pointsτ1, τ2 in G asequivalentif
there is aU ∈ Γ such thatτ1 = U(τ2), then the classical problem of
constructing a fundamental region inG for Γ, is seen to be the same
as selecting from each class of equivalent points one point so that the
resulting point set has ‘nice’ properties.

By means of the (1, 1) correspondence, we have established in (68)
betweenP andG , we haveS1 = S2[U] if and only if the corresponding
pointsτ1, τ2 respectively satisfy

τ1 = U−1(τ2).

We define the fundamental regionF in G to be the set of pointsτ such
that the matrices corresponding to them are properly reduced; in other

words, they satisfy (63). For theS in (68),S[x] =
1
η

(x2 − 2ξxy+ (ξ2
+

η2)y2). ThereforeF consists of pointsτ = ξ + iη for which

|2ξ| ≤ 1

ξ2
+ η2 ≥ 1

(70)
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This is the familiar modular region in the upper halfτ-plane. That 74

it is a fundamental region follows from the properties of thespace of
reduced matrices inP. The pointsP andQ are the complex numbers
±1+ i

√
3

2
, and so for any point inF, η ≥

√
3

2
. This means that for a

positive reduced binary formax2
+ 2bxy+ cy2 of determinantd

a
√

d
≤

2
√

3
,

which we had already seen in Theorem 1.

7 Reduction of lattices

Let V be the Euclidean space ofn dimensions formed byn-rowed real
columns

α =



a1
...

an


.

Let α1, . . . , αn be a basis ofV so that

αi =



a1i
...

ani


, i = 1, . . . , n.

Denote byA the matrix (akl). Obviously|A| , 0.
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Let L be a lattice inV and letα1, . . . , αn be a basis of this lattice.L
then consists of elementsα1g1+ · · ·+αngn whereg1, . . . , gn are integers.
We shall callA thematrix of the lattice.

Conversely if A is any non-singularn-rowed matrix, then the75

columns ofA, as elements ofV are linearly independent and therefore
determine a lattice.

Let L be the lattice above and letβ1, . . . , βn be any other base ofL
andB its matrix, then

B = AU

whereU is a unimodular matrix. Also ifU runs through all unimodular
matrices, thenAU runs through all bases ofL. We now wish to single
out among these bases one which has some distinguished properties.

Let us introduce inV, the inner productα · β of two vectorsα andβ
by

α · β = a1b1 + · · · + anbn

whereα =

( a1

...
an

)
, β =


b1

...
bn

. The square of the length of the vectorα is

given by
α2
= a2

1 + · · · + a2
n.

Let A be the matrix of a baseα1, . . . , αn of L. Consider the positive
matrix S = A′A. If S is givenA is determined only upto an orthogonal
matrix P on its left. For, ifA′A = A′1A1 thenAA−1

1 = P is orthogonal.
But multiplication on the left by an orthogonal matrix implies a rotation
in V about the origin.

We shall call a baseB of L reducedif S1 = B′B is a reduced matrix.
Obviously in this case

0 < β2
1 ≤ . . . ≤ β

2
n

βkβk+1 ≥ 0, k = 1, . . . , n− 1.

From the way reduced matrices are determined we see that a reduced76

baseβ1, . . . , βn of L may be defined to be a base such that for every set
of integersx1, . . . , xn such that (xk, . . . , xn) = 1 the vector

β = β1x1 + · · · + βnxn
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satisfies
β2 ≥ β2

k (k = 1, . . . , n.)

Also
βk · βk+1 ≥ 0(k = 1, . . . , n+ 1).

If follows therefore that

β2
1 . . . β

2
n ≤ cn|A′A| = cn|A|2

cn being a constant depending only onn. Also abs|A| is the volume of
the parallelopiped formed by the vectorsβ1, . . . , βn.

consider the casen = 2.
We have, because of (30)

β2
1 · β

2
2 ≤

4
3
|A|2 (72)

Let nowΘ denote the acute angle between the vectorsβ1 andβ2.
Since the area of the parallelogram formed byβ1 andβ2 on the one hand

equals abs|A| and on the other
√
β2

1 · β
2
2 · sinθ, we see that 77

sin2
Θ ≥

3
4

(73)

Since 0≤ Θ ≤
π

2
, it follows from (73) that

π

3
≤ θ ≤ π

2
.

Hence for a two dimensional lattice we may choose a basis in such a
manner that the angle (acute) between the basis vectors is between 60◦

and 90◦.
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Chapter 3

Indefinite quadratic forms

1 Discontinuous groups
78

In the previous chapter we had met with the situation in whicha group
of transformations acts on a topological space and we constructed, by
a certain method, a subset of this space which has some distinguished
properties relative to the group. We shall now study the following gen-
eral situation.

Let Γ be an abstract group andT a Hausdorff topological space on
whichΓ has a representation

t → tγ, t ∈ T, γ ∈ Γ (1)

carryingT into itself. We say that this representation ofΓ is discontin-
uous if for every point t ∈ T, the set of points{tγ} for γ ∈ Γ has no
limit point in T. The problem now is to determine, for a givenΓ, all the
spacesT on whichΓ has a discontinuous representation. For an arbitrar-
ily given group, this problem can be very difficult. We shall, therefore,
impose certain restrictions onΓ andT. Let us assume that there is a
groupΩ, of transformations ofT onto itself, which istransitiveon T.
This means that ift1 andt2 are any two elements ofT, there existsω ∈ Ω
such that

t1 = t2ω. (2)

67
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Let us further assume thatΓ is a subgroup ofΩ. Let t0 be a point inT
and consider the subgroupΛ of Ω consisting ofλ ∈ Ω such that79

t0 = t0λ. (3)

If t is any point ofT, we have because of transitivity,

t = t0ρ

for someρ ∈ Ω. Because of (3), we get

t = t0Λρ.

Conversely ifρ′ ∈ Ω is such thatt = t0ρ′, thent0ρ′ = t0ρ or ρ′ ∈ Λρ.
Thus every pointt ∈ T determines a cosetΛρ ofΛ\Ω that is, the space of
right cosets ofΩ moduloΛ. Conversely ifΛρ is any coset, thent = t0ρ
is a point determined byΛρ. Hence the mapping

t → Λρ (4)

of T onΛ\Ω is (1, 1) both ways. In order to make this correspondence
topological, let us study the following situation.

LetΩ be locally compact topological group andT a Hausdorff topo-
logical space on whichΩ has a representation

t → tω (5)

as a transitive group of mappings. Let us assume that this representation
is open and continuous. We recall that (5) is said to beopenif for every
open setP in Ω and everyt ∈ T the set{tω}, ω ∈ P is an open set in
T. Then it follows that the subgroupΛ of Ω leaving t0 ∈ T fixed is
not only a closed subgroup but that the mapping (4) ofT onΛ\Ω is a
homeomorphism.

Let Γ be a subgroup ofΩ which has onT a discontinuous represen-80

tation. ThenΓ has trivially a representation inΛ\Ω. By the remarks
above, the representation

Λω→ Λωρ, ρ ∈ Γ (6)
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is discontinuous inΛ\Ω.
On the other hand, letΛ be any closed subgroup ofΩ. Then the

representation
ω′ → Λωω′

of Ω onΛ\Ω is open and continuous. It is clearly transitive. In order,
therefore, to find all spaces on whichΓ has a discontinuous representa-
tion, it is enough to consider the spaces of right cosets ofΩ with regard
to closed subgroupsΛ of Ω.

SupposeΛ is a closed subgroup ofΩ andΓ has a discontinuous
representation onΛ\Ω. Let K be a closed subgroup ofΩ contained in
Λ. ThenΓ has a discontinuous representation onK\Ω. For, if Kω is
a coset such that the set of cosets{Kωρ}, ρ ∈ Γ has a limit point in
K\Ω, then the set{Λωρ}, ρ ∈ Γ also has a limit point inΛ\Ω and so (6)
would not be discontinuous. In particular, if we take forK the subgroup
consisting only of the identity elemente, thenΓ is discontinuous inΩ is
clearly equivalent toΓ is adiscretesubgroup ofΩ.

Thus if there exists some subgroupΛ of Ω such thatΓ is discontin-
uous inΛ\Ω, then necessarilyΓ has to be discrete. It can be proved that
if Ω has a countable basis of open sets, thenΓ is enumerable.

Suppose now thatΩ is a locally compact group with a countable ba-81

sis of open sets. LetΓ be a discrete subgroup ofΩ. If Λ is any compact,
hence closed, subgroup ofΩ then it follows that the representation (6)
of Γ in Λ\Ω is discontinuous. This can be seen by assuming that for a
certainω, the setΛωρn, ρn ∈ Γ has limit point and this will lead to a
contradiction because of the discreteness ofΓ.

In general the fact (6) is discontinuous inΛ\Ω does not entail that
Λ is compact. Let us, therefore, consider the following situation.

Let Ω be a locally compact group possessing a countable basis of
open sets. Then there exists inΩ a right invariant Haar measuredω
which is determined uniquely upto a positive multiplicative factor. LetΓ
be a discrete subgroup ofΩ. There exists then inΩ a subsetF possessing
the following properties: 1)

⋃
a∈Γ

Fa = Ω, 2) the sets{Fa} for a ∈ Γ are

mutually disjoint and 3)F is measurable in terms of the Haar measure
dω. F is then said to be afundamentalset relative toΓ. Note that ifF
is a fundamental set then so ifFa for anya ∈ Ω so that a fundamental
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set is not unique. 1) and 2) assert thatF intersects each coset ofΓ\Ω
in exactly one point so thatF has to be formed inΩ by choosing one
element from each cosetΓ\Ω. The interesting point is that, under the
conditions onΩ, this can be done in such a way that the resulting setF
is measurable. Let us now assume that

∫

F

dω < ∞. (7)

It can then be shown that the value of the integral in (7) is independent82

of the choice ofF. We now state, without proof, the important

Theorem 1. LetΩ be a locally compact topological group with a count-
able basis of open sets. LetΓ be a discrete subgroup ofΩ and F a funda-
mental set inΩ relative toΓ. Let F have finite Haar measure inΩ. If Λ
is any closed subgroup ofΩ, thenΓ has a discontinuous representation
in Λ\Ω if and only ifΛ is compact.

The interest in the theorem lies in thenecessitypart of it.
Let us assume thatΩ is, as will be in the applications, a Lie group.

Let Γ be a discrete subgroup ofΩ. For any closed subgroupΛ of Ω, the
dimensions ofΛ, Λ\Ω andΩ are connected by

dimΛ + dimΛ\Ω = dimΩ.

If F is a fundamental set inΩ with regard toΓ and is of finite measure,
in terms of the invariant measure inΩ, then by Theorem 1,Γ will be
discontinuous inΛ\Ω if and only if Λ is compact. In order, therefore,
to obtain a spaceT = Λ\Ω of smallest dimension in whichΓ has a
discontinuous representation, one has to consider aΛ which is compact
and maximal with this property.

Let us consider the following example.83

Let Ω be the group ofn-rowed real matricesA · Ω is a Lie group.
Let us determine first all compact subgroups ofΩ. Let K be a compact
subgroup ofΩ. If C ∈ K, then|C| = ±1. For, the mappingC→ |C| of K
into the multiplicative group of real numbers is clearly topological and
sinceK is compact, the set of images|C| is a compact and so bounded
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subgroup of the multiplicative group of real numbers. Thus|C| = ±1.
In order to studyK therefore, it is enough to study the groupΩ0 of real
matricesA with |A| = ±1. Let {dA} denote the volume measure inΩ0 so
that

{dAB} = {dA}

for B ∈ Ω0. Let M be an open bounded subset ofΩ0. Consider the set

G =

⋃

C∈K
MC.

Since the setsMC are open,G is open. SinceK is compact, it follows
thatG is bounded. Consider the integral

P =
∫

G

A′A{dA}.

SinceA′A > 0, it follows thatP is positive. Also ifC is in K,

P[C] =
∫

G

C′A′AC{dA}

=

∫

G

A′A{dAC−1} = P

This proves that there exists aP > 0 such thatP[C] = P for C ∈ K. 84

SinceP > 0, there existsB ∈ Ω such thatP = B′B. Hence ifQ = BCB−1

thenQ′Q = E or Q is orthogonal. HenceBKB−1 is a subgroup of the
orthogonal group. We have hence proved

Theorem 2. All maximal compact subgroups ofΩ are conjugates of the
real orthogonal group.

Let P0 denote the space of all positive realn-rowed matrices of
determinant 1.Ω0 has inP0 a representationP → P[A], P ∈ P0,
A ∈ Ω0 and this representation is both open and continuous. AlsoΩ0

is transitive onP0. The set of elementsA ∈ Ω0 which fix the matrix
En is precisely the orthogonal groupΛ. By our considerations above,
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Λ\Ω0 is homeomorphic toP0. So every discrete subgroupΓ of Ω0 has
discontinuous representation inP0. We shall consider the subgroupΓ
consisting of unimodular matrices. That this is discrete isclear. In the
previous chapter we constructed forΓ in Λ\Ω a fundamental domainR.
We shall now construct a fundamental set forΓ in Ω0.

In Ω0, Γ is represented as a group of translationsA → AU. Let us
define the point setF1 in Ω0 to consist of matricesA such thatA′A = P
is reduced in the sense of Minkowski and so is inR. Clearly if A ∈ F1

thenBA is also an element ofF1 for arbitrary orthogonalB. Because of
the properties ofR, the point setF1 satisfies

F1Γ = Ω0.

SinceP[±E] = P, we shall take the subsetF0 of F1 consisting ofA with85

a11 ≥ 0 whereA = (akl). It is easy to see from the properties ofR, that
F0 andF0γ for γ ∈ Γ have non-empty intersection only for finitely many
γ. By removing fromF0 a suitably chosen set of points, one obtains a
fundamental set inΩ0 for Γ. Minkowski proved that the volume ofF0

is finite.
For more details we refer to the papers [6], [7] and [8].

2 TheH - space of a symmetric matrix

We now consider another important application of the previous consid-
erations.

Let S be a non-singularn-rowed symmetric matrix of signaturep,
q wherep + q = n and 0≤ p ≤ n. This means that there exists a real
matrix L such that

S[L] = S0 =

(
Ep 0
0 −Eq

)
(8)

LetΩ denote the group of real matricesC such that

S[C] = S. (9)
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Ω is called theorthogonal groupof S. Ω is a Lie group. We shall now
determine all compact subgroups ofΩ. Let K be a compact subgroup of
Ω. Then there exists a positive matrixP such that

P[V] = P, V ∈ K (10)

SinceP > 0 andS is symmetric, there exists a matrixL such that 86

S[L] = S0,P[L] = [d1, . . . , dn] = D, (11)

D being a diagonal matrix with positive diagonal elements. Let B =
L−1VL. Then sinceV ∈ K

S0[B] = S0, D[B] = D.

PutT = S0D = DS0. Then from above we haveT B = BT. Therefore
T2B = T · T B= T B · T = BT2. But T2

= D2. Therefore

BD2
= D2B. (12)

Let B = (bkl), then (12) gives

bkld
2
l = bkld

2
k, l ≤ k, l ≤ n (13)

so that eitherbkl = 0 or d2
l = d2

k. In any case since thedk > 0 for all k,
we get

BD = DB.

This means thatD = B′DB = B′BD and asD > 0, we see thatB ir
orthogonal.

If Λ is the orthogonal group, thenK is a subgroup ofΩ ∩ LΛL−1.
This shows that all maximal compact subgroup ofΩ are conjugates of
each other and conjugate toLΛL−1 ∩ Ω Call this subgroupΛ0 · Λ0 is a
maximal compact subgroup ofΩ.

Put nowP = (LL′)−1. Then forV ∈ Λ0.

P[V] = P.

Also P andS are connected by the relation 87
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PS−1P = S. (14)

Denote byH the space of symmetric matricesP > 0 satisfying (14)
for a fixedS. For anyH ∈ H there exists a matrixM such that

H[M] = D, S[M] = S0 (15)

whereD is a diagonal matrix. Because of (14) we see thatDS0D = S0

or sinceD > 0, D = E, the unit matrix. Hence

H = (MM′)−1. (16)

But from (11),S[L] = S0 which proves thatML−1 ∈ Ω or M = CL for
C ∈ Ω. From (16) therefore

H = P[C′−1].

Conversely for anyC ∈ Ω, P[C] = H also satisfies (14). Thus the
totality of positive solutionsH of (14) is given by

H = P[C]

whereC runs through all matrices inΩ andP is a fixed solution of (14).
This proves that the representationH → H[C] of Ω in H is transitive.
Consider now the space of right cosets ofΩ moduleΛ0. If for a

H in H, H = P[C] = P[C1], then by definition ofΛ0, CC−1
1 ∈ Λ0

so thatH determines a unique right cosetΛ0C1 of Λ0\Ω. Also every
right coset determines uniquely an elementH = P[C1] in H. By the
considerations in the previous sectionΛ0\Ω andH are homeomorphic.88

SinceΛ0 is a maximal compact subgroup, every discrete subgroup ofΩ

has a discontinuous representation inH.
We callH therepresentation spaceof the orthogonal groupΩ of S.
We remark that ifS is definite, that isp = 0 or n, Ω is compact and

so theH space consists only of one point namelyS if S > 0 and−S if
−S > 0.

We shall now obtain a parametrical representation for the spaceH
which is defined by

H > 0, HS−1H = S. (17)
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Let H be any solution. Put

K =
1
2

(H + S), −L =
1
2

(H − S). (18)

Using the matrixM in (15) we have

K[M] =
1
2

(S0 + E) =

(
Ep 0
0 0

)

−L[M] =
1
2

(E − S0) =

(
0 0
0 Eq

)


(19)

which shows at once thatK ≥ 0 and has rankp and−L ≥ 0 and has rank
q. Furthermore because of (17) and (18), we get

KS−1K = K, LS−1L = L

KS−1L = 0 = LS−1K.

 (20)

Suppose now thatK is any matrix satisfying

KS−1K = K (21)

with K ≥ 0 andK having rankp. Define then two matricesH andL by 89

H = 2K − S, −L =
H − S

2
.

ThenK + L = S so that by the law of inertia,L has rank≥ q. Also
because of (21),H satisfies the equationHS−1H = S. So|H| , 0 K and
L satisfy the equation (20). From the equation

S−1[K, L] =

(
K 0
0 L

)

and from the signature ofS we have rankL = q and−L ≥ 0. Since
H = K − L and|H| , 0, it follows thatH > 0 or thatH is a solution of
(17). We have thus reduced the solution of the inhomogeneousproblem
(17) to that of the homogeneous problem (21). Therefore letK ≥ 0 be
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ann-rowed matrix of rankp. There exists a non-singular matrixF such
that

K = F′
(
D 0
0 0

)
F

whereD > 0 and hasp rows. IfG denotes the matrix formed by the first
p-rows ofF then

K = G′DG

andG has rankp. Thus the most general form of a semi-positive matrix
K of n-rows and columns and of rankp is

K = QT−1Q′, Q = Q(n,p)

whereT = T(p) > 0, andQ has rankp. Let K satisfy (21). Then90

Q(T−1Q′S−1QT−1 − T−1)Q′ = 0. (22)

But sinceQ has rankp, there is a submatrix ofQ of p rows which is
non-singular. Using this, it follows from (22) that

T = S−1[Q] > 0.

The most general solution of (21) therefore is given by

K = T−1[Q′], T = S−1[Q] > 0.

We thus obtain the homogeneous parametric representation of H by

H = 2K − S, K = T−1[Q′], T = S−1[Q] > 0, Q = Q(n,p) (23)

It is obvious thatQ determinesH uniquely whereas ifW is a p-
rowed non-singular matrix, thenQ andQW determine the sameH. In
order to obtain the inhomogeneous parametrical representation, we con-
sider the special caseS = S0 given by (8). Let us denote the corre-
spondingH by H0. Write

Q =

(
Q1

Q2

)
, Q1 = Q(p,p)

1 (24)
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Then
T0 = Q′1Q1 − Q′2Q2 > 0.

This means that|Q1| , 0. For, if |Q1| = 0, there is a columnx of p rows
such thatx , 0 andQ1x = 0. Then

0 < T0[x] = −x′Q′2Q2x ≤ 0

which is absurd. We can therefore put

Q =

(
E
−X′

)
Q1 (25)

whereX = X(p,q) andE is the unit matrix of orderp·T0 > 0 then means 91

(since|Q| , 0) that
E − XX′ > 0. (26)

ThusK0 = T−1
0 [Q′] is given by

K0

(
(E − XX′)−1 −(E − XX′)−1X
−X′(E − XX′)−1 X′(E − XX′)−1X

)
(27)

whereE = Ep. In order to computeH0 = 2K0 − S0 we put

W =

(
Ep −X
−X′ E

)
, F =

(
Ep X
0 E

)

W andF beingn-rowed matrices. We then have

W[F] =

(
E 0
0 E − X′X

)
, W[F′] =

(
E − XX′ 0

0 Eq

)
(28)

SinceT0 > 0, (26) shows thatW > 0 and thereforeE − X′X > 0.
We can therefore write

H0 =



E + XX′

E − XX′
−2X

E − XX′

−2X′

E − XX′
E + X′X
E − X′X


(29)

H0 is thus the space of matricesH0 with X satisfying the condition
(26). This shows thatH0 has the topological dimensionpq.

In order to obtain the inhomogeneous parametrical representation
for H from that ofH0 we observe that if the matrixL is such thatS[L] = 92

S0, thenH0 = H[L].
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3 Geometry of theH-space

Consider the spaceP of all positiven-rowed matricesP. Let P = (pkl)
and dP denote the matrix of the differentialsdpkl. If A is any non-
singular matrix, thend(A′PA) = A′dPAso that

ds2
= σ(P−1dPP−1dP) (30)

whereσ denotes the trace, is invariant under the transformationsP →
P[A] of P into itself. ds2 is a quadratic differential form in the

n(n+ 1)
2

independent differentialsdpkl. In order to see that this is a positive def-
inite form, observe that since the group of non-singular matrices acts
transitively onP, it is enough to verify the positivity of (30) at some
particular point, sayP = E. At P = E we see that the quadratic form
(30) equals

σ((dP)2) =
∑

k,l

(dpkl)
2

which is positive. This shows thatP is a Riemannian space with the
metric (30).

It can be shown that joining any two pointsP1, P2 of P there exists
one geodesic only. SinceP1 andP2 can be transformed simultaneously
into the unit matrixE and a positive diagonal matrixD = [d1, . . . , dn],
it is enough to show this for pointsE and D. One can see that if for
0 ≤ λ ≤ 1

Dλ
=



dλ1
. . .

dλn



be defined symbolically then the geodesic line joiningE andD consists93

precisely of these pointsDλ.
Consider now theH space. It is a subspace ofP. The quadratic

differential form
ds2
= σ(H−1dHH−1dH)

defines inH a line element invariant under the mappingsH → H[C],
C ∈ Ω. It is practical to take

ds2
=

1
s
σ(H−1dHH−1dH)
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as the line element. Since this is again positive definite, itfollows that
H is a Riemannian space ofpq real dimensions.

One can also express the line element in terms of the parameter X.
We obtain

ds2
= σ{(E − XX′)−1dX(E − X′X)−1dX′}.

(28) shows that|E − XX′| = |E − X′X| and so we obtain the invariant
volume element under this metric as

dv= |E − XX′|−n/2{dX}

where{dX} =
p∏

a=1

q∏
b=1

dxab, X = (xab), is the Euclidean volume element

in the pqdimensionalX space.
As before one can construct geodesics joining two pointsH1 andH2

in H. AsH is a subspace ofP and since the metric onH is the induced
metric fromP one can construct a geodesic joining the two pointsH1

andH2 considered as points ofP. It is interesting to note that all points
of the geodesic lie inH showing thatH is a geodesic submanifold ofP. 94

See [7].
The spacesP andH come under a remarkable class of spaces stud-

ied by E. Cartan. They are the‘symmetric spaces’. According to E.
Cartan a topological spaceT is said to be symmetric about a pointP, if
there exists an analytic automorphismσ of T onto itself which hasP as
the only fixed point and whose square is the identity automorphism. T
is said to be a symmetric space, if it is symmetric with regardto every
point of T. If the spaceT is homogeneous, that is if onT there acts
a transitive groupΩ of analytic automorphisms, then symmetry with
regard to one point implies thatT is a symmetric space.

Let us now consider the spaceP and letP0 ∈ P. Let P be any
matrix inP. Define

P∗ = P0P−1P0.

ThenP∗ ∈P andP→ P∗ is clearly an analytic homeomorphism ofP

into itself. Also

P∗∗ = P0P∗−1P0 = P0(P−1
0 PP−1

0 )P0 = P.
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By the remark in§2, the only solutionP > 0 of P = P0P−1P0 is P0

itself. ThusP is symmetric aboutP0. P0 being arbitrary, it shows that
P is a symmetric space.

Consider now the spaceM and letH0 be a point in it. For anyH in
H define

H∗ = H0H−1H0.

ThenH∗ is also inH because95

H∗S−1H∗ = H0H−1H0S−1H0H−1H0 = S

sinceH andH0 are inH. ThusH → H∗ is an analytic automorphism of
H onto itself and the previous considerations show thatH is a symmetric
space.

The ‘symmetrie’H → H∗ is isometric. For,

dH∗ = d(H0H−1H0) = −H0H−1dH · H−1H0,

as can be seen from differentiating the equationHH−1
= E. Therefore

dH∗ ·H∗−1
= −H0H−1dH·H−1H0 ·H−1

0 HH−1
0 = −H0H−1dHH−1

0 . Hence

σ(dH∗H∗−1dH∗H∗−1) = σ(dH · H−1 · dHH−1)

which proves our contention.

4 Reduction of indefinite quadratic forms

Let S be a real, non-singular, symmetric matrix ofn-rows. If it has
signaturep, q with pq > 0, then there is associated with it a spaceH of
positive matricesH satisfying

HS−1H = S.

H has the dimensionpq> 0.
We now say thatS is reducedif the H space ofS has a non-empty

intersection with the Minkowski reduced spaceR. Note that this has a
meaning sinceH is a subspace ofP. This means that there isat least
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oneH in theH space ofS which is reduced in the sense of Minkowski.
Obviously ifS is definite, thenH reduces to the single point±S and this96

definition coincides with that of Minkowski’s for definite forms.
We recall that the class ofS is defined to be the set of all matrices

S[U] where U runs through all unimodular matrices. Our definition
shows that for anyS = S′, there exists an element in the class ofS
which is reduced. For, letH be any element in theH space ofS. By the
Minkowski theory, there exists a unimodularU such thatH[U] ∈ R.
PutH[U] = H1 andS[U] = S1. Then

H1S−1
1 H1 = S1

which shows that theH space ofS1 intersectsR in a non-empty set.
Also S[U] is in the class ofS.

In general, there will be an infinity of reduced matrices in the class
of S. We, however, have the following

Theorem 3. There exist only finitely many integral symmetric reduced
matrices with given determinant.

Proof. If S is definite, the theorem is already proved in the last chapter.
So letS be indefinite. LetS be reduced in the above sense. LetH be
in theH space ofS which is reduced in the sense of Minkowski. By the
Jacobi transformation

H = D[V]

where
D = [d1, . . . , dn], V = (vkl)

wherevkk = 1, vkl = 0 if k > l. From Minkowski’s reduction theory, it 97

follows that there is a constantc depending only onn such that

0 < dk < cdk+1,k = 1, . . . , n− 1

− c < vkl < c, k ≤ 1 ≤ n.

Introduce the matrixW given by

W ≡ (wkl) =



0 . . . . 0 1
0 . . . . . 0
. . . . . . 0
1 . . . . . 0


(31)



82 3. Indefinite quadratic forms

so thatwkl = 0 if k+ l , n+ 1 and equal to 1 otherwise. It then follows
that

W2
= E.

PutD1 = D−1[W] = [d′1, . . . , d
′
n]. Then

dn−k+1d′k = 1, k = 1, . . . , n,

so that
0 < d′k < c d′k+1, k = 1, . . . , n− 1. (32)

�

Let V1 = WV′−1
W . Then because of the choice ofW, V1 = (v′kl) is

again a triangle matrix. Because the elements ofV satisfy the above
conditions andW is a constant matrix, we see that there is a constantc1,
depending only onn such that

−c1 < v′kl < c1, 1 ≤ k ≤ l ≤ n. (33)

If we put c0 = max(c, c1) then the matrixH1 = D1[V1] satisfies the
condition

H1 ∈ R
∗∗
c0

(34)

with the notation of the previous chapter. But then98

H1 = D1[V1] = D−1[WV1] = D−1[W2V′−1
W ] = H−1[W].

SinceHS−1H = S, we see that ifWS= S1, then

H = S H−1S = S′1H1S1 = H1[S1].

H andH1 are both inR∗∗c0
and so by theorem 5 of the previous chapter,

there are only finitely manyS1 integral and with determinant equal to
|S| satisfying the above condition. This proves the theorem.

Since in each class of matrices there is at least one reduced matrix
we have

Corollary 1. There exist only finitely many classes of integral matrices
with given determinant.
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If S is rational, then for a certain integera, aS in integral. Hence
from Theorem 3 we get

Corollary 2. In each class of rational matrices, there exist only finitely
many reduced matrices.

Let S be a rational non-singular symmetric matrix and letS be the
matrix of an indefinite quadratic form. LetΩ be the orthogonal group
of S, that is the group of real matricesC with S[C] = S. A unimodular
matrix U satisfying the condition

S[U] = S

is said to be aunit of S. The units ofS clearly form a groupΓ(S) called
theunit groupof S.

Let us consider theH space of positive matricesH with HS−1H = S. 99

The orthogonal groupΩ of S has, inH, a representation as a transitive
group of mappings

H → H[C] C ∈ Ω.

SinceΓ(S) is a subgroup ofΩ, Γ(S) has a representation in theH space.
Since the unimodular groupΓ is discontinuous inP, the representation
of Γ(S) in H is discontinuous. ClearlyU and−U lead to the same repre-
sentation. Therefore if we identify−U andU in Γ(S), theH → H[U],
U ∈ Γ(S) gives a faithful and discontinuous representation ofΓ(S) in H.
ThusΓ(S) is a discrete subgroup ofΩ. H will be the space of smallest
dimension in whichΓ(S) is discontinuous. We shall construct forΓ(S)
in H a fundamental domainF.

In the class of the rational non-singular symmetric indefiniteS there
exist finitely many reduced matrices, sayS1, . . . ,Sl . Let U1, . . . ,Ul be
unimodular matrices so thatSi = S[Ui ], i = 1, . . . , l.

Let H be any matrix in theH space ofS. There exists then a uni-
modular matrixU so thatH[U] ∈ R. By definition of reduction for
indefinite matricesS[U] is reduced. ThusS[U] has to be one of the
finitely manyS1, . . . ,Sl , saySk. Then

S[U] = Sk = S[Uk],
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or S[UU−1
k ] = S which means thatUU−1

k ∈ Γ(S).
Let us denote byRU−1

k
the set of matricesP[U−1

k ] for P ∈ R. Then 100

for theH aboveH[U] ∈ R or H[UU−1
k ] ∈ RU−1

k
. SinceUU−1

k is a unit

of S andH ∈ H, it follows that if V = UU−1
k then

H[V] ∈ H ∩RU−1
k
.

If we therefore takeF as the set

F =
l⋃

k=1

(H ∩ RU−1
k

) (35)

then for every pointH in H there is a unitV such thatH[V] ∈ F. If for
any unitA of S we putFA as the image ofF underA we have proved
that

H ⊂
∑

A

FA.

Note thatFA = F−A. We shall sketch a proof thatF is indeed a funda-
mental region forΓ(S) in H.

Let U andV be two units ofS such thatUV−1
, ±E andFU and

FV have a non-empty intersection. ThenF andFUV−1 have a non-empty
intersection. We callFUV−1 a neighbourof F. Let thereforeFA be
a neighbour ofF so thatA , ±E is a unit ofS and FA intersectsF
in a non-empty set. Because of the definition (35) ofF we see that

l⋃
k=1

(H∩RU−1
k A) and

l⋃
k=1

(H∩RU−1
k

) have a non-empty intersection. (Note

thatH = H[A]). This means that for two integersi, j, 1 ≤ i, j ≤ l, RU−1
i A

andRU−1
j

have a non-empty intersection or

R ∩RU−1
i AU j

is not empty. NowU−1
1 AU j , ±E. For, this means thatAU j = ±Ui101

which is the same thing asi = j or A = ±E. Then U−1
i AU j (by

Minkowski’s theory) belongs to a finite set of matrices depending only
on n. HenceF has a finite number of neighbours.

In order to study the points of intersection ofF andFA whereFA

is a neighbour ofF, we remark that sinceR andRV, for a unimodular



5. Binary forms 85

V, have only boundary points in common, it is enough to show that the
boundary points ofF relative toH are the intersection of the boundaries
of RUi with H. This would be achieved if we prove thatH does not lie
on a boundary plane ofRUi for any i. For a proof of this non-trivial fact
we refer to [8].

In theH space we have seen that there is a volume elementdv in-
variant under the mappingsH → H[C], C ∈ Ω. In the next chapter we
shall prove that ∫

F

dv (36)

if finite except in the case of binary zero form. This will showinciden-
tally thatΓ(S) is an infinite group ifS is not the matrix of a binary zero
form. For, one can show, rather easily, that

∫

H

dv is infinite.

5 Binary forms

We shall now study the case of binary quadratic forms systematically.
Let ax2

+ 2bxy+ cy2 be a real binary quadratic from whose matrix102

S =

(
a b
b c

)

is non-singular and leta , 0. Write

S[x] = ax2
+ 2bxy+ cy2

= a(x− τ1y)(x− τ2y)

whereτ1 + τ2 = −
2b
a

, τ1τ2 = c/a. Thusτ1 and τ2 are roots of the

equation
aλ2
+ 2bλ + c = 0. (37)

If |S| = ac− b2 > 0, thenτ1 andτ2 are both complex. If|S| < 0, thenτ1

andτ2 are real.
Let

L =

(
α β

γ δ

)
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be the matrix of the linear transformationx → αx + βy, y → γx + δy.
Then

S[Lx] = a′(x− τ′1y)(x− τ′2y)

wherea′ = a(α − τ1γ)(α − τ2γ). We shall assume thata′ , 0. We have
then

τ′i =
δτi − β
−γτi + α

i = 1, 2. (38)

This shows that the transformationS → S[L] results in transformation
(38) in the roots of the equation (37), the matrix of the transformation
for the roots being|L|L−1.

We shall now consider the caseae− b2 < 0 so thatS[x] is an indefi-103

nite binary form. Our object is to study theH space ofS. This is the set
of two-rowed symmetric matricesH satisfying

H > 0, HS−1H = S.

If C is a non-singular matrix such thatS[C−1] = S0 =
(

1 0
0 −1

)
, then by

our considerations before,H can be obtained from theH0 satisfying

H0S−1
0 H0 = S0

by takingH = H0[C]. This spaceH0 of H0 has the parametrical repre-
sentation

H0 =



1+ y2

1− x2

2x

1− x2

2x

1− x2

1+ x2

1− x2


, |x| < 1.

We put

H0 =

(
p q
q p

)
;

then|H0| = p2 − q2
= 1.

In the second chapter we had associated uniquely with every positive
matrix of determinant 1 a pointz in the upper half of the complexz-
plane. If z is the representative point forH0, thenz = ξ + iη, η > 0
and

z=
−q
p
+

i
p
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which, in terms of the parameterx is104

z=
1
i

x− i
x+ i

(39)

(39) shows thatz lies on the semi-circle in the upper half plane with unit
radium around the origin as centre. Since the linear transformation (39)
takes the pointsx = −1, 0, 1 into the pointsz= 1, i, −1 it follows that as
x runs through allx in the interval (−1, 1), z traces the above semi-circle
of unit radius. We may take this semi-circle as theH0 space.

From our general results we see that the line element is

ds=
dx

1− x2
(40)

so that the distance between two pointsz1, z2, with values of the param-
etersx1, x2 respectively, is

δ(z1, z2) =

x2∫

x1

ds=
1
2

log

(
1+ x2

1− x2
:

1+ x1

1− x1

)
(41)

From (39),z determinesx uniquely, namely

x =
1
i

z− i
z+ i

(42)

so that

dx=
2dz

(z+ i)2

and hence the distanceδ(z1, z2) is also

δ(z1, z2) =
1
4

log

(
z2 + 1
z2 − 1

:
z1 + 1
z1 − 1

)
(43)

In Poincare’s model of non-Euclidean geometry, See [11], the dis- 105

tanceδ0(z1, z2) between two pointsz1, z2 in the upper half plane is given
by
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δ0(z1, z2) = log[D(z1, z2, z3, z4)]

wherez3 andz4 are the points in which the unique circle throughz1 and
z2 orthogonal to the real line, intersects the real line:z1, z2, z3, z4 being
in cyclical order andD(z1, z2, z3, z4) is the cross ratio

D(z1, z2, z3, z4) =
z1 − z3

z1 − z4
:

z2 − z3

z2 − z4
.

With this notation we see that (43) can be written as

δ(z1, z2) =
1
2

log[D(z1, z2,−1, 1)] (45)

Let us now go back to theH space. This consists of pointsH = H0[C].
We shall assume|C| = 1. For if not, we interchange the columns ofC
which merely means taking−S instead ofS. By (38) it follows that

theH space is precisely the semi-circle onτ1, τ2 as diameter, where
τ1, τ2 are the roots of (37). The equation of this semi-circle is, ascan be
seen

a(ξ2
+ η2) + 2bξ + c = 0 (46)

with centre on the real line at the point−
b
a

and radius

√
||S||
a

.

In the previous chapter we had seen that the modular regionF de-106
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fined by

zz≥ 1

−1
2
≤ ξ ≤ 1

2

is a fundamental region for the proper unimodular group. Analogous
to our definition of reduction of indefinite form in the last section, we
define a binary formS[x] reducedif its H space intersectsF in a non-
empty set. Since transformations in the upper half plane areby means
of matrices of determinant unity, this can be calledproper reduction.
Since theH space is given by (46), the fact thatS is reduced means that
at least one of the verticesP, Q lies within the circle (46). SinceP, Q

are the points
±1+ i

√
3

2
we see that ifS is reduced, then

a
(
ξ2
+ η2

)
+ 2bξ + c ≤ 0

whereξ = ±1
2 andη =

√
3

2
. This gives

a± b+ c ≤ 0. (47)

We may assumea > 0. For, if a < 0 (we have already assumed it
is not equal to zero) there exists a properly unimodular matrix U such
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that the first diagonal element ofS[U] is positive. In this case, we have
sincea+ c ≤ |b| we get

1
4

(4a− 2|b|)2
+ 3b2

= (2|b| − a)2
+ 3a2

= 4d + 4(a2 − a|b| + ac) ≤ 4d

whered = ||S||. This gives at once107

a2 ≤ 4
3

d, b2 ≤ 4
3

d, 3ac≤ d

which at once shows that the number of integral properly reduced forms
of given determinant is finite.

It is to benotedthat the reduction conditions above are not the same
as those of Gauss.

Let us now construct a fundamental region for the unit group in this
H space. Before doing this, we shall first study the structure of the unit
groupΓ = Γ(S) of S.

LetS[x] = ax2
+bxy+cy2 be a form representing integers for integral

values ofx andy. Then

S =

(
a b/2

b/2 c

)

is a semi-integral matrix. Let

b2 − 4ac= d.

d > 0 and not a square. ThenS[x] is not a zero form. Also let (a, b, c) =
1. SinceS[x] is not a zero form, neithera nor c is zero. We shall
consider the proper group of unitsU of S, namely the groupΓ0 = Γ0(S)
of unimodular matricesU such that

S[U] = S, |U | = 1. (48)

ClearlyΓ0 is a subgroup ofΓ of index 2. LetU =
(
α β
γ δ

)
be an element

of Γ0. Let τ1, τ2 be the roots of

aλ2
+ bλ + c = 0. (49)
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Then it can be seen that the mappingS→ S[U] keepsτ1 andτ2 fixed.108

Thus

τi =
δτi − β
−γτi + α

, i = 1, 2.

which means thatτ1 andτ2 are again roots of the polynomial

γλ2
+ (δ − α)λ − β = 0 (50)

(49) is irreducible in the rational number field since otherwiseτ1 andτ2

will both be rational and so
√
||S|| is rational, which is a contradiction

to our assumption thatS[x] is not a zero form. Therefore (49) and (50)
give

γ

a
=
δ − α

b
=
−β
c
= q (51)

whereq is an integer. IfU , ±E thenγ , 0,β , 0. Let us putδ+α = p.
Then

δ =
p+ bq

2
, α =

p− bq
2

(52)

Sinceαδ − βγ = 1, we get the relation
p2 − q2b2

4
+ q2ac= 1 or

p2 − dq2
= 4 (53)

which is the well-known Pell’s equation. Thus every unit ofS in Γ0

gives rise to a solution of Pell’s equation. Conversely every solution of
(53) gives rise to a unitU of S, as can be seen from (51) and (52). This109

unit is

U =



p− bq
2

−cq

aq
p+ bq

2



Consider the representationH → H[U], U ∈ Γ0 in theH space. Let
the representative point ofH0 bez0 on the semi-circle which defines the
H space. Denote byw0 the pointH0[U]. Let z be any variable point on
this semi-circle andw the image by the transformationH → H[U]. If
U =

(
α β
γ β

)
then

w0 =
δz0 − β
−γz0 + α

, W =
δz− β
−γz+ α

.
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Because of the fact thatU fixes bothτ1 andτ2 and cross-ratio is unal-
tered by linear transformation, we see that

z− τ1

z− τ2
:

z0 − τ1

z0 − τ2
=

w− τ1

w− τ2
:

w0 − τ1

w0 − τ2

or that
w− τ2

w− τ1
= µ

z− τ2

z− τ1
(54)

whereµ = D(w0, z0, τ1, τ2). But equation (54) shows thatµ = D(w, z,
τ1, τ2), which means thatµ is a constant independent of the pointz.
This shows that in the non-Euclidean geometry of ours, the mapping
H → H[U] corresponds to a translation. Also (See [11]) the quantityµ

has the property that ifλ1 andλ2 are the eigen values of the matrix of110

the transformation

w =
δz− β
−γz+ α

(55)

then, by proper ordering ofλ1 andλ2 we have

µ =
λ1

λ2

and therefore the non-Euclidean distanceδ0(z,w) is given by

δ0(z,w) = log
λ1

λ2

whereλ1 ≥ λ2. Now λ1 andλ2 are characteristic roots of the mapping
(55) and hence they satisfy

λ2 − (α + δ)λ + 1 = 0

which shows that

λ1, λ2 =
α + δ

2
±

√
(
α + δ

2

)2

− 1.

Substituting from (52),α + δ = p, we get

λ1, λ2 =
p± q

√
d

2
(56)
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wherep andq are the unique solutions of Pell’s equation corresponding
to the unitU.

Let R be the field of rational numbers andR(
√

d) the real quadratic
field. The elementε of R(

√
d) defined by

ε =
p+ q

√
d

2

wherep andq are a solution of Pell’s equation, is a unit of norm 1. This111

is seen from the fact thatε is a root of

λ2 − pλ + 1 = 0.

(If d is square-free the converse is also true).
In (56), the quantitiesλ1, λ2 areε andε−1 in some order. IfU is

changed toU−1 or to−U, thenε gets changed toε−1 or −ε respectively.
We therefore choose among the four quantitiesε, −ε, ε−1, −ε−1, one
(and there is only one in general), call itε∗ which is such that

ε∗ ≥ 1

and put
δ0(z,w) = logε∗2.

(Note thatλ1/λ2 = ε∗2 with λ1 ≥ λ2). This will then mean that the
translation in theH space is by the amount

δ(z,w) = logε∗.

Since the representation ofΓ0 in H is discontinuous it follows that
the translations form a discrete subgroup in the group of non-Euclidean
motions onH. There is thus aU0 and a correspondingε∗0 such that logε∗0
is the smallest. Hence anyU will be of the form

U = ±Un
0 (n = 0,±1, . . .)

Similarly anyε which arises from aU in Γ0 is of the form

ε = ±ε∗n0 (n = 0,±1, . . .)
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If instead ofS being semi-integral, it was rational symmetric we112

could, by multiplying it by an integer, make it integral satisfying the
condition (a, b, c) = 1. But this multiplication does not affect the unit
group. Hence the

Theorem 4. The group of proper units of an indefinite, binary, non-zero,
rational quadratic form is an infinite cyclic group whose elements stand
in a(1, 1) correspondence with the solutions of Pell’s equation.

Let S =
(

a b
b c

)
be a rational symmetric, non-singular indefinite ma-

trix and letS[x] be not a zero form. Let the

semi-circleALBdenote theH space of the matrixS so thatA andB
are points on the real axis with coordinatesτ2 andτ1, τ2 , τ1. Further-
more sinceS[x] is not a zero form, the quantitiesτ1 andτ2 are irrational.
Let R denote the fundamental region of the proper unimodular group in
the upper halfz-plane. LetU1, . . . ,Ug be the finitely many reducing
properly unimodular matrices. IfHU for U = U1, . . . ,Ug denotes the113

image ofH under the transformH → H[U] (this means for the pointsz

onH the transformationz→
εz− β
−γz+ α

, U =
(
α β
γ δ

)
), then

G =
g∑

i=1

(HUi ∩R)U−1
i

is a point set onH and is a fundamental region forΓ0 in H. It is important
to notice thatHUi does not lie completely on the boundary ofR. For
thenHUi would have to be the unit circle or one of the linesξ = ±1/2.
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In the first case this would mean that

δz− β
−γz+ α

= ±1

wherez = τ1 or τ2. This is the same as sayingτ1 andτ2 are rational,
which they are not. Then same happens if the second case is true.

This shows that none of the arcs (HUi ∩R)Ui has an end point atτ1

or τ2. HenceG is compact. Its volume therefore in the measure induced
by the invariant metric is finite.
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Chapter 4

Analytic theory of Indefinite
quadratic forms

1 The theta series
115

Let

f (x1, . . . , xn) = a11x2
1 + · · · + annx2

n + b1x1 + · · · + bnxn + c = 0 (1)

be a Diophantine equation with integral coefficients. LetS denote the
matrix of the homogeneous part. We consider integral linearhomoge-
neous transformations

xi →
n∑

j=1

qi j x j , i = 1, . . . , n

where the matrixQ = (qi j ) is unimodular. Let the resulting function be
Q(x1, . . . , xn). Then f = 0 has an integral solution if and only ifQ = 0
has an integral solution.

Suppose the matrixS has rankr, 0 < r < n so that|S| = 0. Let p
be a primitive vector such thatS p= 0. Let U be the unimodular matrix
with p as its first column. Then

S[U] =

(
0 0′

0 S1

)
.

99



100 4. Analytic theory of Indefinite quadratic forms

We may repeat the process withS1 instead ofS. Finally therefore we
arrive at a unimodular matrixV so that

S[V] =

(
0 0
0 Sr

)

|Sr | , 0. Put now

(b1, b2, . . . , bn)V = (c1, . . . , cn).

If c1, . . . , cn−r are zero it means that by a unimodular transformation116

we can bringf into a quadratic form inr-variables. Suppose now that
c1, . . . , cn−r are not all zero. Since they are integers, there exists a uni-
modular matrixV1 of n− r rows such that

(c1, . . . , cn−r )V1 = (0, 0, . . . , d).

Put now

V2 =

(
V1 0
0 Er

)
.

ThenS[VV2] = S[V] and f (x1, . . . , xn) becomes transformed into

ϕ(xn−r , . . . , xn) = d11x2
n−r+1 + · · · drr x2

n

+ dxn−r + d1xn−r+1 + · · · + dr xn + d′.

This is the form into whichf can, in general, be transformed by uni-
modular transformation.

We shall hereafter assume|S| , 0 and that the quadratic form is
integral valued, that is, that forx1, . . . , xn integral, f (x1, . . . , xn) is an
integer. This means

α) S is semi-integral (2)

that is that its diagonal elements are integers and twice thenon-diagonal
elements are integers. (1) can now be written in the form

S[x] + b′x+ c = S[x+
1
2

S−1b] + c−
1
4

S−1[b].

If we put t = c− 1
4S−1[b] and 2S a= b, then (1) takes the simple form

S[x+ a] − t = 0. (3)
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Obviously117

β) 2S ais integral. (4)

We shall therefore consider the diophantine problem in which the left
side isS[x+a]. Clearly and rational numbert which can be represented
by S[x+ a] satisfies

t ≡ S[a](mod 1). (5)

Consider the diophantine equationS[x+a] = t under the conditions
(2) and (4). IfS > 0, the number of integral solutions, denotedA(S, a, t),
is finite. We now form thegenerating series

∑

t

A(S, a, t)e2πitz (6)

wherez= ξ + iη, η > 0. It follows that

∑

t

A(S, a, t)e2πitz
=

∞∑

x≡−∞
e2πiS[x+a]z (7)

and sinceS > 0, the series on the right of (7) converges. The right
side of (7) is a so-calledtheta seriesstudied extensively byJacobi. In
particular ifS = E4, the unit matrix of order 4 anda = 0, we have

∞∑

t=0

A4(t)e2πitz
=


∞∑

x=−∞
e2πix2z


4

whereA4(t) is the number of integral solutions of

t = x2
1 + x2

2 + x2
3 + x2

4. (8)

It was conjectured byFermatand proved byLagrangethat for every 118

t ≥ 1, (8) has a solution. Jacobi proved, by using the theory of Elliptic
theta series, that

A4(t) = 8
∑

d/t
4∤d

d.

Since for everyt, unity divider t, we find thatA4(t) ≥ 1, for all t ≥ 1.
This, besides proving Lagrange’s theorem, is a quantitative improve-
ment of it.
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If S is indefinite,A(S, a, t), if different from zero, is infinite. This
means that the right side of (7) diverges. It is therefore desirable to
define an analogue ofA(S, a, t) for indefiniteS. To this end we shall
introduce the theta series.

Let z= ξ+ iη, η ≻ 0 be a complex parameter. LetS ben-rowed sym-
metric andH any matrix in the representation spaceH of the orthogonal
group ofS. ThenH > 0 andHS−1H = S. Put

R= ξS + iηH. (9)

ThenR = zK + zL whereK = 1
2(S + H), L = 1

2(S − H). R is now a
complex symmetric matrix whose imaginary partηH is positive definite.
Let a be a rational column satisfying (4). Puty = x + a, x being an
integral column. Define

fa(z,H) =
∑

y≡a(mod 1)

e2πiR[y]Z (10)

where the summation runs over all rational columnsy ≡ a(mod 1).
SinceH > 0, (10) is absolutely convergent for everyH in H.

For our purposes, it seems practical to consider a more general func-119

tion fa(z,H,w) defined by

fa(z,H,w) =
∑

y≡a(mod 1)

e2πiR[y]+2πiy′ω (11)

wherew is a complex column ofn rows of elementsw1, . . . ,wn. It is
clear thatfa(z,H,w) are still convergent. (11) is the general theta series.

It is to be noticed that ifS > 0, (10) coincides with (7).
Consider now all the rational vectorsa which satisfy (4), namely

that 2S a is integral. It is clear that there are only finitely many sucha
incongruent (mod 1). The numberl of such residue classes is clearly at
most equal to

d = abs2|S|. (12)

Let a1, a2, . . . , al be the complete set of thesel residue classes incongru-
ent (mod 1). For each classai form the functionfai

(z,H,w). We denote
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by f (x,H,w) the functional vector

f (z,H,w) =



fa1
(z,H,w)
...

fal
(z,H,w


. (13)

2 Proof of a lemma

Let P > 0 be ann-rowed real matrix andu =

( u1

...
un

)
a column ofn real

numbers. The function

f (u1, . . . , un) =
∑

x

e−πP[x+u]

wherex runs through all integraln-rowed columns, is a continuous func-120

tion of then-variablesu1, . . . , un and has in each variable the period 1.
It has the fourier series ∑

l

cle
2πil ′u

l running through all integraln-rowed vectors and

cl =

∫

σ

f (u1, . . . , un)e−2πil ′udu1 . . . dun (14)

whereσ is the unit cube in then dimensional spaceRn of u1, . . . , un.
SinceP > 0, we can writeP = M′M for a non-singularM. Put

Mu = v, M′−1l = k. (15)

Then

cl : |P|−
1
2

∫

Rn

e−πy′v−2πik′vdv
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where we take the positive value of the square root. Ifv =

( v1

...
vn

)
and

k =


k1

...
kn

, thenv′v = v2
1 + · · · + v2

n andk′v = k1v1 + · · · + knvn so that

cl = |P|−
1
2 e−πP−1[l]



∞∫

−∞

e−πt2dt



n

(16)

That the value of the integral on the right of (16) is unity is seen as
follows: In the first place from the uniform convergence of the series
f (u1, . . . , un), it follows that

∑

x

e−πP[x+u]
= |P|−

1
2λn

∑

l

e−πP−1[l]+2πil ′u (17)

where121

λ =

∞∫

−∞

e−πt2dt.

Secondly,λ is independent ofP and so puttingn = 1, P = 1 and
u = 0, we see from (17) thatλ = 1.

Suppose now that in (17),u1, . . . , un are complex variables. Since
f (u1, . . . , un) is absolutely convergent which moreover is uniformly con-
vergent in every compact subset of then-complex space ofu1, . . . , un, it
follows that f (u1, . . . , un) is an analytic function of then-complex vari-
ablesu1, . . . , un. The same is true of the right side of (17) also. Since
(17) holds for all realu1, . . . , un, it holds, by analytic continuation, for
complexu1, . . . , un also.

Suppose now thatP is a complex symmetric matrixP = X + iY
whose real partX is positive definite. ThenP−1 also has this property.
For, sinceX andY are real symmetric andX > 0, there exists a non-
singular realC such that

X = C′C, Y = C′DC
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whereD = [d1, . . . , dn] is a real diagonal matrix with diagonal elements
d1, . . . , dn. Now P = X + iY = C′(E + iD)C so that

P−1[C′] =


1− id1

1+ d2
1

, . . . ,
1− idn

1+ d2
n

 (18)

which shows, sinceC is real, that the real part ofP−1 is positive definite
symmetric. Incidentally we have shown thatP is non-singular.

If we now takeu1, . . . , un to be fixed complex numbers, thenf (P) = 122
∑
x

e−π[x+u] is an analytic function of the
n(n+ 1)

2
complex variables con-

stituting the matrixP. Since (17) is true forP real, by analytic continua-
tion, it is true also ifP is complex symmetric with positive real part. For
|P|− 1

2 one takes that branch of the algebraic function which is positive
for realP. We thus have the

Lemma 1. Let P be a complex n-rowed symmetric matrix with real part
positive. Let ube any complex column. Then

∑

x

e−πP[x+u]
= |P|−

1
2

∑

x

e−πP−1[x]+2πix′u

where xruns through all integral columns and|P|− 1
2 is that branch of

the algebraic function which is positive real P.

3 Transformation formulae

We now wish to study the transformation theory of the theta series de-
fined in (11), under the modular substitutions

z→ zM =
αz+ β
γz+ δ

, M =

(
α β

γ δ

)
, |M| = 1 (19)

whereM is an integral matrix. SinceH will be fixed throughout this
section we shall writefa(z,w) instead offa(z,H,w). FollowingHermite,
we first consider the caseγ , 0, and write

αz+ β
γz+ δ

=
α

γ
+ γ−2z1, −z−1

1 = z2, z2 = z+
δ

γ
(20)
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Clearly 123

fa(zM ,w) = fa

(
α

γ
+ γ−2z1,w

)
. (21)

Denote byRM the matrixR in (9) with z replaced byzM , then

RM =
α

γ
S + γ−2R1

where

R1 = z1
S + H

2
+ z1

S − H
2

(22)

By definition ofy, y− a is integral. We may therefore writev− a =
xγ + g wherey belongs to the finite set of residue classes of integral
vectors (modγ). Whenx runs through all integral vectors andg through
a complete system of (modγ) incongruent integral vectors, theny runs
through all rational vectors≡ a(mod 1). We have therefore

fa(zM ,w) =
∑

g((mod)γ)

e2πi α
γ

S[g+a]
∑

x

e2πi(γ−2R1[xγ+g+a]+w′(wγ+g+a))

R1 being non-singular, we can complete squares in the exponentin
the inner sum and obtain,

fa(zM ,w) = e−
πi
2 R−1

1 [wγ]
∑

g((mod)γ)

e2πi α
γ

S[g+a]

∑

x

e2πiR1[x+(g+a)γ−1
+R−1

1 wγ/2]


(23)

In order to be able to apply lemma 1 to the inner sum in (23) we first
computeR−1

1 . SinceS andH are symmetric andH > 0, there exists a
real non-singularC such that

S = C′
(
Ep 0
0 −Eq

)
C,H = C′C.

ThenR1 is given by124

R1 = C′
(
z1Ep 0

0 −z1Eq

)
C (24)



3. Transformation formulae 107

wherez1 is given by (20). It readily follows that

−R−1
1 = −z−1

1
S−1
+ H−1

2
− z−1

1
S−1 − H−1

2
. (25)

Using (20), we finally have

−R−1
1 =

(
δ

γ
S + R

)
[S−1] (26)

Applying lemma 1 to the inner sum we now find

fa(zM ,w) = | − 2iR1|−
1
2 e−

πi
2 R−1

1 [wγ]
∑

g(modγ)

e2πi α
γ

S[g+a]

∑

l

e
πi
2

(
δ
γ
S+R

)
[S−1l]+2πil ′((g+a)γ−1

+R−1
1 wγ

2 )


(27)

where the square root has to be taken according to the prescription in
lemma 1. It follows then, using (24), that

| − 2iR1|−
1
2 = ǫd−

1
2

(
z+

δ

γ

) p
2
(
z+

δ

γ

) q
2

(28)

where
ǫ = e

πi
4 (q−p) (29)

is an eighth root of unity andd is given by (12).
In order to simplify the inner sum in (27), we prove the following

Lemma 2. If a and bare two rational columns such that2S aand2S b 125

are integral,α, γ, δ integers such thatαδ ≡ 1((mod) γ) and x is any
integral column, then

∑

g((mod)γ)

e
2πi
γ

{
αS[g+a]−2(x+b)′S(g+a)+δS[x+b]

}

is independent of x.



108 4. Analytic theory of Indefinite quadratic forms

Proof. We have only to consider the exponent in each term (modγ). In
the first place we have

αS[g+ a] = αS[g+ a− δx] + 2αδx′S(g+ a) − αδ2S[x]

δS[x+ b] = δS[b] + δS[x] − 2b′S(g+ a− δx) + 2b′S(g+ a)

2(x+ b)′S(g+ a) = 2b′S(g+ a) + 2x′S(g+ a).

Using the fact thatαδ ≡ 1((mod)γ) we see that the exponent in each
term is congruent (modγ) to

αS[g+ a− δx] − 2b′S(g+ a− δx) + δS[b].

Since nowδ andx are fixed andg runs over a complete system of residue
classes (modγ), it follows that g − δx also runs through a complete
system (modγ). This proves the lemma.

In the inner sum in (27),l runs through all integral vectors, so that
we may write

1
2

S−1l = −(x+ b)

wherex is an integral column andb is one of the finitely many repre-
sentativesa1, . . . , an of the residue classes (mod 1) given in (13). Also
when x runs through all integral vectors andb through these residue
class representatives,−(x + b) runs through all rational columns of the
type 1

2S−1l. We have thus

fa(zM ,w) = | − 2iR1|−
1
2 e−

πi
2 R−1

1 [Wγ]

∑

b

∑

x

∑

g((mod)γ)

e
2πi
γ

{
αS[g+a]−2(x+b)′S(g+a)+δS[x+b]

}

e2πiR[x+b]+2πi(x+b)′S R−1
1 wγ
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Let us use the abbreviation

λab(M) =
∑

g((mod)γ)

e
2πi
γ

{
αS[g+a]−2b′S(g+a)+δS[b]

}
(30)
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Then we have

fa(zM ,w) = | − 2iR1|−
1
2 e−

πi
2 R−1

1 [wγ]

∑

b

∑

x

λa,b(M)e2πiR[x+b]+2πi(x+b)′S R−1
1 wγ (31)

Let us now define the vectorwM,z by

−S R−1
1 wM,z = wγ−1. (32)

Using (22) forR1 we get

wM,z =

(
1

γz+ δ
K +

1
γz+ δ

L

)
S−1w. (33)

With this definition ofwM,z we see that

R−1
1 [wM,zγ] = R1[S−1w].

Use now the abbreviation

ρ(M, z,w) = e−
πi
2 R1[S−1w]; (34)

then substitutingwM,z for w in (27), we get the formula

fa(zM ,wM,z) = ǫd
− 1

2

(
z+

δ

γ

)p/2 (
z+

δ

γ

)q/2

∑

b

λa,b(M) fb(z,w)ρ(M, z,w)


(35)

�

Till now we considered the caseγ , 0. Let nowγ = 0. Then 127

M =

(
α β

0 δ

)
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andαδ = 1. AlsozM =
αz+ β
δ
= z+αβ. The definition ofwM,z given in

(33) is valid even ifγ = 0. Thus

e−2πiαβS[a] fa(zM ,wM,z) =
∑

x

e2πiR[αx+aα]+2πi(x+a)′wM,z.

Sinceα = ±1,αx also runs through all integral vectors and so

fa(zM ,wM,z) = e2πiαβS[a] faα(z,w) (36)

aα being again some one of thea1, . . . , al determined bya andα.
For any two rational columnsa, b with 2S aand 2S bintegral, let us

define

eab =


1 if a ≡ b(mod 1)

0 otherwise.

Define now thel-rowed matrixG(M, z) by

G(M, z) =


ǫd−

1
2

(
z+ δ

γ

) p
2
(
z+ δ

γ

) q
2 (λab(M)), if γ , 0(

ea aαe
2πiαβS[a]

)
, if γ = 0

(37)

Also put

ρ(M, z,w) =


e−

πi
2 R1[S−1w] if γ , 0

1 if γ = 0
(38)

We then have the following fundamental formula for the vector f (z,M,128

w) defined in (13):

Theorem 1. If M =
(
α β
γ δ

)
is any modular matrix and zM =

αz+ β
γz+ δ

, then

f (zM ,wM,z) = G(M, z) f (z,w)ρ(M, z,w)

where wM,z is defined by(33) and G(M, z) and ρ(M, z,w) by (37) and
(38) respectively.
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We shall now obtain a composition formula for thel-rowed matrices
G(M, z).

Let M andM1 be two modular matrices

M =

(
α β

γ δ

)
, M1 =

(
α1 β1

γ1 δ1

)
, MM1 =

(
α2 β2

γ2 δ2

)

By the definition ofzM , it follows that

(zM1)M = zMM1 (39)

From definition (33), it follows that

(wM1,z
)M,zM1

=

(
1

γzM1 + δ
K +

1
γzM1 + δ

L

)
S−1.

(
1

γ1z+ δ1
K +

1
γ1z+ δ1

L

)
S−1w.



Using the properties of the matricesK andL we get

(wM1,z
)M,zM1

=

(
1

γ2z+ δ2
K +

1
γ2z+ δ2

L

)
S−1w

which gives the formula

wMM1,z
= (wM1,z

)M,zM1
. (40)

Using the definition ofR1 and ofwM,z we get 129

R1[S−1w] = −w′S−1wM,zγ (41)

Let us now assume, for a moment, thatγ, γ1, γ2 are all different
from zero. Using definition (38) let us write

ρ(M1, z,w) · ρ(M, zM1,wM1,z
) = e−

πi
2 ϕ.

Then using (41), it follows that

−ρ = w′S−1
{
γ1 +

(
1

γ1z+ δ1
K +

1
γ1z+ δ1

L

)
γS−1
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(
1

γzM1 + δ
K +

1
γzM1 + δ

L

)
S−1

}
wM1

, z

Using again the properties ofK andL we obtain

−ϕ = w′S−1γ2

(
γ1z+ δ1

γ2z+ δ2
K +

γ1z+ δ1

γ2z+ δ2
L

)
S−1wM1,z

which is seen to be equal to

w′S−1γ2wMM1,z
.

By (41) therefore we get the formula

ρ(M1, z,w) · ρ(M, zM1,wM1,z
) = ρ(MM1, z,w) (42)

We can now release the condition onγ, γ1, γ2. If some or all of
them are zero, then using definition (38), we can uphold (42).Thus (42)
is true for any two modular matricesM, M1.

If we now use theorem 1 we have

f (zMM1,wMM1,z
) = G(MM1, z) f (z,w)ρ(MM1, z,w). (43)

Using (39) and (40) we have

f (zMM1 ,wMM1,z
) = G(M, zM1) f (zM1 ,wM1,z

)ρ(M, zM1,wM1,z
)

which again gives the formula130

f (zMM1 ,wMM1,z
) =

= G(M, zM1)G(M1, z) f (z,w)ρ(M, zM1,wM1,z
)ρ(M1z,w) (44)

Using (42), (43) and (44) and observing thatρ(MM1, z,w) , 0, we get
the matrix equation

(G(MM1, z) −G(M, zM1)G(M1, z)) f (z,w) = 0. (45)

We remark that the 1-rowed matrix on the left hand side of equation
(45) is independent ofw. Let us now prove
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Lemma 3. The l functions fa1
(z,w), . . . , fa1

(z,w) are linearly indepen-
dent over the field of complex numbers.

Proof. By definition fa(z,w) =
∑
x

e2πiR[x+a]+2πiw′(x+a) so that it is a

fourier series in then variablesw1, . . . ,wn. We may write

fa(z,w) =
∑

r

cre
2πiw′r

wherer runs through all rational vectors≡ a(mod 1). Ifα1, . . . , αr be
complex numbers such that

l∑

i=1

αi fai
(z,w) = 0

then by uniqueness theorem of fourier series, every fouriercoefficient
must vanish. But sincea1, . . . , al are all distinct (mod 1), it follows that
the exponents in thel seriesfa(z,w) are all distinct. Henceαi = 0, i =
1, . . . , n, and our lemma is proved. �

Using (45) and lemma 3, it follows that thel-rowed matrix on the 131

left of (45) is identically zero. Hence the

Theorem 2. For any two modular matrices M, M1 we have the compo-
sition formula

G(MM1, z) = G(M, zM1)G(M1, z)

Let M =
(
α β
γ δ

)
be a modular matrix so that

M−1
=

(
δ −β
−γ α

)

Let us assume thatγ , 0. Let as beforea, b be two rational columns
chosen from the seta1, . . . , al . We shall prove

λa b(M) = λb a(M−1) (46)
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whereλa b(M) is the sum defined in (30).
In order to prove (46), putt = λa b(M) andt′ = λb a(M−1). Because

of lemma 2, we have

t =
∑

y((mod)γ)

e
2πi
γ

{
αS[y+a]−2(y+b)′S(x+a)+δS[x+b]

}

Taking the sum over all integralx(modγ) we have

t.absγn
=

∑

x((mod)γ)

∑

y((mod)γ)

e
2πi
γ
{αS[y+a]−2(y+b)′S(x+a)+δS[x+b]}

Interchanging the two summations we have

t absγn
=

∑

y((mod)γ)

∑

x((mod)γ)

e−
2πi
−γ {δS[x+b]−2(x+a)′S(y+b)+αS[y+a]}

But by lemma 2 again we see that the inner sum is independent ofy and132

equal tot′, the complex conjugate oft′. Thus

t absγn
= t′absγn

and sinceγ , 0, it follows thatt = t′ and (46) is proved.
In the composition formula of theorem 2, let us putM1 = M−1.

ThenG(E, z) = E is the unit matrix of order 1. From the definition of
G(M, z) we have

G(M−1, z) = ǫd−
1
2

(
z−

α

γ

) p
2
(
z−

α

γ

) q
2

(λa b(M−1))

G(M, zM−1) = ǫd−
1
2 (γ−1(−γz+ α))

p
2 (γ−1(−γz+ α))

q
2 (λab(M))

Let us put
Λ(M) = ǫd−

1
2 absγ−

n
2 (λab(M)). (47)

Then we get from the previous equations

Λ(M) · Λ(M)
′
= E
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which shows thatΛ(M) is unitary.
In caseγ = 0, from (37),G(M, z) is clearly unitary. We therefore

put
Λ(M) = G(M, z), if γ = 0. (48)

Let us now putw = 0 in theorem 1. Thenρ(M, z,w) = 1 so that if
we write as in§ 1, f (z,H) instead off (z,H,w), whenw = 0, we get

f (zM ,H) = G(M, z) f (z,H). (49)

Using the definitions (47) and (48), we get

Theorem 3. If M =
(
α β
γ δ

)
is a modular matrix, then

(γz + δ)
− p

2 (γz+ δ)−
q
2 f (zM ,H) = Λ(M) f (z,H)

whereΛ(M) is a certain unitary matrix and the radical scalar factors133

on the left side are taken with their principal parts.

We remark that we introduced the vectorw only to prove the com-
position formula in theorem 2. Hereafter we will have onlyf (z,H), the
column consisting offai

(z,H) defined in (10).
From the composition formula we get

Λ(MM1) = Λ(M) · Λ(M1) (50)

which shows that the mappingM → Λ(M) is a unitary representation of
the modular group.

4 Convergence of an integral

Let S be the matrix of a quadratic form and letS be non-singular and
semi-integral. LetS have signaturep, q so thatp+q = n. Let us assume
that pq > 0. With S we had associated theH space of matricesH with
H > 0, HS−1H = S. Let Γ be the group of units ofS. Let a denote
a rational column vector with 2S a integral. Denote byΓa the group of
units ofS satisfying

Ua ≡ a(mod 1) (51)
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Γa is obviously a subgroup ofΓ of finite index. LetU1, . . . ,Us denote a
complete system of representatives of left cosets ofΓmodΓa so that

Γ =

s∑

i=1

UiΓa, s= (Γ : Γa).

Denote byF a fundamental region ofΓ in H and byFk the image byUk134

of F in H. Put
Fa =

⋃

k

Fk;

then it is easy to verify thatFa is a fundamental domain forΓa in H.
For everyH in H we had defined the theta series

fa(z,H) =
∑

y≡a(mod 1)

e2πiR[y]

so that regarded as a function ofH, fa(z,H) is a function on the manifold
H. If U ∈ Γa then

fa(z,H[U]) =
∑

y≡a(mod 1)

e2πi(ξS+iηH[U])[y]
.

Writing S[U] instead ofS and observing thatUy ≡ Ua ≡ a(mod 1) and
thatUy runs through all rational columns≡ a(mod 1) ify does, we have

fa(z,H[U]) = fa(z,H) (52)

so that we may regardfa(z,H) as a function onFa. Let dv be the invari-
ant volume measure in theH space. We shall now prove that

∫

Fa

fa(z,H)dv

converges, in particular, ifn > 4 and that
∫

Fa

fa(z,H)dv =
∑

y≡a(mod 1)

∫

Fa

e2πiR[y]dv (53)
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For proving this it is enough to show that the series of absolute values of
the terms offa(z,H) converges uniformly in every compact subset ofFa

and that the integral overFa of this series of absolute values converges.135

Because of the property (52) and the invariance of the volumemea-
sure it is enough to consider the integral overF instead ofFa. By our
method of construction

F =
⋃

k

(H ∩Rk)

whereRk is obtained from the Minkowski fundamental domainR. It is
therefore enough to consider the integral

∫

H∩R

fa(z,H)dv

and prove (53) forH ∩R instead ofFa.

The general term of the integrand ise2πiR[y] and its absolute value is

e−2πηH[x+a]

whereη > 0, H > 0 is reduced in the sense of Minkowski,x an integral
column anda a rational column with 2S aintegral. If H = (hkl) thenH
being reduced, there exists a constantc1, such that

H[y] > c1(h1y2
1 + · · · + hny2

n)

y being a real column withn elementsy1, . . . , yn. Therefore

n∏

i=1

∑

yi

e−2πc1ηhiy2
i

is a majorant for the sum of the absolute values of the terms offa(z,H).
Since, for a constantc2 > 0,

∞∑

t=−∞
e−c2ht2 < c3(1+ h−

1
2 )
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whereh > 0 is a positive real number andc3 is a constant depending on136

c2, it follows that it is enough to prove, for our purpose, the convergence
of ∫

H∩R

n∏

k=1

(1+ h
− 1

2
k )dv (54)

If D is any compact subset ofH ∩ R, then becauseH is reduced,
n∏

k=1
(1+ h

− 1
2

k ) is uniformly bounded inD. This will prove (53) as soon as

(54) is proved.
The proof depends on an application of Minkowski’s reduction the-

ory.
Consider any elementH = (hkl) in H∩R and consider the products

hkhn−k, k = 1, 2, . . . , n− 1. There exists an integerr

0 ≤ r ≤
n
2

(55)

such that

hkhn−k ≥
1
4

r < k < n− r (56)

hrhn−r <
1
4

(57)

If r = 0, (57) is empty and ifr = n
2 (which implies thatn is even)

(56) is empty. Let us denote byMr the subset ofH ∩ R consisting of
thoseH which have the same integerr associated with them. Clearly
H ∩R =

⋃
r

Mr . It is enough therefore to prove that for everyr,

∫

Mr

n∏

k=1

(1+ h
− 1

2
k )dv

converges.
We first obtain a parametrical representation for the matrices H in137

Mr .

Let K =
H + S

2
= (ukl) and−L =

H − S
2
= (vkl); thenK and−L are

non-negative matrices so that

±ukl ≤
√

uku1, ±vkl ≤
√

vkv1
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where for a real numberg, ±g denotes its absolute value. SinceK + L =
S we get

±skl ≤
√

ukul +
√

vkvl .

But sinceuk + vk = hk we obtain, by using Schwarz’s inequality,

±skl ≤
√

hkh1.

H being reduced we get fork ≤ r, l ≤ n− r, using (57),

±skl ≤
√

hkh1 ≤
√

hrhn−r <
1
2

(58)

SinceS is a semi-integral matrix, it follows that

skl = 0, k ≤ r, l ≤ n− r.

We have therefore a decomposition ofS into the form

S =



0 0 P
0 F Q
P′ Q′ G

 (59)

whereP is an r-rowed non-singular matrix. It has to be noted that if
r = 0, then

S = F (60)

and if r =
n
2

(n is then even),

S =

(
0 P
P′ G

)
(61)

138

We now putS∗ = S[C] where

S∗ =



0 0 P
0 F 0
P′ 0 0

 , C =



E −P′−1Q′ −1
2P′−1G

0 E 0
0 0 E

 (62)
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We split upH also in the same fashion, by the Jacobi transformation,
H = H0[C0] where

H0 =



H1 0 0
0 H2 0
0 0 H3

 , C0 =



E L1 L2

0 E L3

0 0 E

 (63)

whereH1 andH3 arer-rowed symmetric matrices. Put

C0C = L =



E Q1 Q2

0 E Q3

0 0 E

 (64)

If we put H∗ = H[C], then sinceS−1[H] = S, it follows that
S∗−1[H∗] = S∗. Using the matrixL we have

(LS∗−1L′)[H0] = S∗[L−1].

Substituting for the various matrices above, we get

F−1[H2] = F (65)

H3P−1H1 = P′ (66)

Q3 = −F−1Q′1P (67)

Q2 = (A−
1
2

F−1[Q′1])P (68)

whereA is a skew symmetric matrix ofr-rows. It is obvious that if139

H1, H2, H3, Q1, Q2 andQ3 satisfy the above conditions, then the cor-
respondingH is in H. We therefore choose the parameters for theMr

space in the following manner: We haveH1 is arbitrary, r-rowed and
positive. From thisH3 is uniquely fixed. Q1 is an arbitrary matrix of
r-rows andn− 2r columns.Q3 is then determined uniquely. ChooseA
to be arbitrary skew symmetric. Then (68) determinesQ2. H2 is now a
positive matrix satisfying (65). Thus the parameters areH1, Q1, A and
the parameters required to parametrize the space of positive H2 satis-
fying (65). A simple calculation shows that the number of parameters
is

r(r + 1)
2

+ r(n− 2r) +
r(r − 1)

2
+ (p− r)(q− r). (69)
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We now compute the volume element in terms of these parameters.
The metric in theH space is

ds2
=

1
8
σ(H−1dHH−1dH).

We substitute forH in terms of these new parameters. We denote differ-
entiation by (•) dot. SinceC is a constant matrix we get

ds2
=

1
8
σ(H∗−1dH∗H∗−1dH∗) (70)

As H∗ = H0[L] we get

H∗−1
•

H
∗
= H−1

0 [L′−1](
•

H0[L] +
•

L
′
H0L + LH0

•

L).

This gives the expression

σ(H∗−1
•

H
∗
)2
=

{
σ(H−1

0

•

H0H−1
0

•

H0) + 4σ(H−1
0

•

H0

•

LL−1
}

+ 2σ(
•

LL−1
•

LL−1) + 2σ(H0[
•

LL−1]H−1
0 )


(71)

We shall now simplify the expression on the right of (71). Since 140

L = C0C andC is a constant matrix, we get

•

LL−1
=



0
•

Q1

•

Q2 −
•

Q1Q3

0 0
•

Q3

0 0 0



which shows that

σ(
•

LL−1
•

LL−1) = 0, σ(H−1
0

•

H0

•

LL−1) = 0. (72)

Using the expression forH0 in (63) we get

σ(H−1
0

•

H0H−1
0

•

H0) =
3∑

i=1

σ(H−1
i

•

HiH
−1
i

•

Hi).

Differentiating (66) with regard to the variablesH1 andH3 we get
•

H3P−1H1 + H3P−1
•

H1 = 0
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which shows thatH−1
1

•

H1 = −P′−1
•

H3H−1
3 P′ and therefore

σ(H−1
1

•

H1H−1
1

•

H1) = σ(H−1
3

•

H3H−1
3

•

H3) (73)

Using the expressions for
•

LL−1 andH0, we obtain

σ(H0[
•

LL−1]H−1
0 ) = σ(H1[

•

Q1]H−1
2 ) + σ(H1[

•

Q2 −
•

Q1Q3]H−1
3 )

+ σ(H2[
•

Q3]H−1
3 ).

Differentiating (67) and (68) with regard to the variablesQ1, Q2,
Q3, we get

•

Q3 = −F−1
•

Q
′
1P

•

Q2 = (
•

A− 1
2

•

Q1F−1Q′1 −
1
2

Q1F−1
•

Q
′
1)P (74)

We now introduce the matrixB defined by

B =
1
2

(
•

Q1F−1Q′1 − Q1F−1
•

Q
′
1).

We can then write141
•

Q2 −
•

Q1Q3 = (
•

A+ B)P.

We have finally, except for a positive constant, the metric inthe
spaceMr

ds2
= σ

{
(H−1

2

•

H2)2
}
+ 2σ

{
(H−1

1

•

H1)2
}
+ 4σ(H1[

•

Q1]H−1
2 )

+ 2σ(H1[
•

A+ B]H1). (75)

The determinant of the quadratic differential form

2σ
{
(H−1

1

•

H1)2
}
+ 4σ(H1[

•

Q1]H−1
2 ) + 2σ(H1[

•

A+ B]H1)

is given by
2r(n−r−1)|H1|n−2r−2|H2|−r (76)
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If dv2 denotes the invariant volume measure in the space ofH2, satisfy-
ing (65), then we have to prove

∫

Mr

n∏

k=1

(1+ h
− 1

2
k )|H1|

n−2r−2
2 |H2|−

r
2 {dH1}{dQ1}{dA}dv2 (77)

is convergent.
The constantsc3, . . . appearing in the sequel all depend only onn

andS. Moreover ‘bounded’ shall mean bounded in absolute value by
such constants.

Since |S| , 0, at least one term in the expansion of|S| does not
vanish. This means there is a permutation

(
1, 2, . . . , n

l1, l2, . . . , ln

)

such thatsklk , 0, k = 1, . . . , n. 142

SinceS is semi-integral,±sklk ≥ 1
2 which shows that

hkhlk ≥ s2
klk
≥ 1

4
(78)

Consider now the integers 1, 2, . . . , a and the corresponding integers
l1, . . . , la, a ≤ n. At least one of the latter, saylt ≤ n− a+ 1. Therefore

t ≤ a, lt ≤ n− a+ 1.

SinceH is reduced,ht ≤ ha, hlt ≤ hn−a+1. Using (78) we get

hahn−a+1 ≥
1
4
, a = 1, . . . , n. (79)

Let us consider the identity

n∏

k=1

(hkhn−k+1) =
r∏

k=1

(hkhn−k+1)2 ·

n∏
k=r+1

(hkhn−k+1)

r∏
k=1

(hkhn−k+1)
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Sincer ≤ n− r, it follows using (56)

n∏
k=r+1

(hkhn−k+1)

r∏
k=1

(hkhn−k+1)
≥ c3h2

n−r

Therefore we obtain

n∏

k=1

(hkhn−k+1) ≥ c3h2
n−r

r∏

k=1

(hkhn−k+1)2

Using (79) and the fact thatH is reduced, we get the inequality

hn−r ≤ c4. (80)

SinceH is reduced,H0 ∈ R∗c for a c > 0 depending only onn and143

S. It follows from (80), therefore, that the elements ofH1 andH2 are
bounded. Also from (79) and (80), it follows that

hk ≥ c5 r < k ≤ n (81)

which shows that the elements ofH−1
2 are bounded.

From equations (63) and (64) we get

Q1 = L1 − P′−1Q′, Q2 = L2 −
1
2

P′−1G.

SinceP, Q andG are constant matrices andL1, L2 have bounded ele-
ments (sinceH is reduced), it follows that the elements ofQ1 andQ2

are bounded.
From the definition ofA in (68), it follows that its elements are also

bounded. From (80) and the fact thatH is reduced we get

h1 ≤ h2 ≤ h3 . . . ≤ hr ≤ c4 (82)

and therefore
r∏

k=1

(1+ h
− 1

2
k ) ≤ c6(h1 . . . hr )

− 1
2 (83)
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We therefore finally see that it is enough to prove

∫
|H1|

n−2r−2
2 (h1 . . .hr )

− 1
2 {dH1}

converges,H1 being reduced and satisfying (82).dH1 =
∏

1≤i≤ j≤r
dhi j .

Since−hi ≤ 2hi j ≤ hi , i < j, it follows that the variation ofhi j is hi .
Therefore it is enough to prove that the integral

∫
(h1 . . . hr )

− 1
2 (h1 . . .hr )

n
2−r−1hr−1

1 . . . hr−1dh1 . . . dhr ,

extended over the set 0< h1 ≤ h2 ≤ h3 . . . ≤ hr ≤ c4 converges. We 144

make a change of variables

h1 = s1 . . . sr

h2 = s2 . . . sr

hr = sr


(84)

The integral then becomes transformed into

∫
sλ1
1 . . . s

λγ
r ·

ds1 . . .dsr

s1 . . . sr
(85)

where sincesk =
hk

hk+1
, 0 < sk < Min(1, c4) andλk = k

(
n− k

2
− 1

)
,

k = 1, . . . , r.

Now λk ≥
n− r

2
− 1, k = 1, 2, . . . , r so that ifn − r − 2 > 0, the

integral obviously converges. Ifn > 4, sincer ≤ n
2

, this condition is

satisfied and the integral converges.
Now the maximum value ofr is ≤ Min(p, q). Let n = 4 andS[x]

be not a quaternionic form, i.e., it is not the norm of a general element
of a quaternion algebra over the field of rational numbers. Inthat case
the maximum value ofr is 0 or 1 so thatn− r − 2 > 0 and the integral
converges. Ifn = 3 andS[x] is not a zero form, thenr = 0 andn−r−2 >
0.
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If r = 0, then all elements ofH in M0 are bounded and the integral
overM0 converges. This shows that ifn = 2 andS[x] is not a zero form,
the integral again converges.

In particular, we have

Theorem 4. If n > 4 the integral145
∫

Fa

fa(z,H)dv

converges and
∫

Fa

fa(z,H)dv =
∑

y

∫

Fa

e2πiR[y]dv.

Let us now consider the integral
∫

Fa

dv. In order to prove it is finite,

it is enough to prove
∫

Mr

dv is finite for everyr. Thus we have to prove

∫
h

n−4
2

1 . . . h
n−2r−2

2
r dh1 . . .dhr

0 < hi ≤ h2 ≤ . . . ≤ hr ≤ c4

is finite. By the same change of variables we see that instead of λk,

one hasµk = k

(
n− k− 1

2

)
so that sinceµk ≥

n− k− 1
2

, the integral

converges ifn− r − 1 > 0. Sincer ≤
n
2

, the integral converges ifn > 2.

If n = 2 andr = 0, then again the integral converges. Ifn = 2 andr = 1,
S[x] is a binary zero form and we had see in the previous chapter that∫

F

dv diverges. We have thus proved

Theorem 5. If S[x] is not a binary zero form
∫

Fa

dv

converges.
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5 A theorem in integral calculus
146

For out later purposes we shall prove a theorem on multiple integrals.
Let Rm denote the Euclidean space ofmdimensions withx1, . . . , xm

forming a coordinate system. Let

yk = fk(x1, . . . , xm), k = 1, . . . , n,

ben differentiable functions withn ≤ m. Let a1, . . . , an ben real num-
bers and letF be the ‘surface’ determined by then equations

yk = ak k = 1, . . . , n.

Let us moreover assume that the functional matrix
(
∂ fi
∂x j

) 
i = 1, . . . , n

j = 1, . . . ,m

has the maximum rankn at every point ofF. Introducem− n differen-
tiable functionsyn+1, . . . , ym of x1, . . . , xm so that the Jacobian

J =

∣∣∣∣∣∣

(
∂yi

∂x j

)∣∣∣∣∣∣ i, j = 1, . . . ,m

is different from zero at every point ofF. Theyn+1, . . . , ym are the local
coordinates of the ‘surface’F. Let∆ denote the absolute value ofJ and
put

dω = ∆−1dyn+1 . . . dym. (86)

The properties of Jacobians show thatdω is independent of the choice
of yn+1, . . . , ym. We shall denotedω symbolically by

dω =
{dx}
{dy}

(87)

and takedω as the measure of volume on ‘surface’F. 147

In casem = n, because of the conditions on the Jacobian, the point
set F is zero dimensional and we definedω to be the measure which

assigns to each point the measure
1
∆

.
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As an example putm= 2, and consider inR2 the point setF defined
by

y1 =

√
x2

1 + x2
2, y1 = 1.

Then
∂y1

∂x1
,
∂y1

∂x2
cannot both vanish at any point ofF. Choose nowy2 as

y2 = tan−1 x2

x1

The Jacobian is

=

∣∣∣∣∣
∂(y1, y2)
∂(x1, x2)

∣∣∣∣∣ =
1
y1
.

and the volume element on the circleF : x2
1 + x2

2 = 1 is

dω = y1dy2.

Let X = X(r,s) be a real matrix ofr rows andscolumns with elements
xkl constituting a coordinate system inRrs. We denote by

{dX} =
r∏

k=1

s∏

l=1

dxkl

the Euclidean volume element inRrs. If howeverX = X′ is r-rowed
symmetric, then

{dX} =
∏

1≤k≤l≤r

dxkl

Let V be ak-rowed real non-singular symmetric matrix with signa-148

tureα, k − α. Let F be a rectangular matrix withk-rows andβ columns
so that the matrixT defined by

V[F] = T

is non-singular and has signatureα, β − α. Obviouslyα ≤ β ≤ k. Let
W be a fixed matrix ofβ + λ rows and of signatureα, β + λ − α. Then
β + λ ≤ k. Let D be the ‘surface consisting of real matricesX of k rows
andλ columns satisfying

V[F,X] =W.
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If we write

W =

(
T Q
Q′ R

)

thenD is the surface defined by the equations

F′VX = Q

X′VX = R

 (88)

In conformity with our previous notation, let the volume element on
the ‘surface’D be denoted by

{dX}
{dQ}{dR}

.

We have then the following

Theorem 6.
∫

D

{dX}
{dQ}{dR}

=
ρk−β

ρk−β − λ
||V|| −λ2 ||T ||

β−k+1
2 ||W||

k−β−λ−1
2

whereρh =
h∏

i=1

πi/2

Γ(i/2)
and ρ0 = 1. Also if β = 0, ||T || has to be taken 149

equal to1.

Proof. First letβ > 0. Denote byI the integral

I = ||V||
λ
2 ||T ||−

β−k+1
2 ||W||−

k−β−λ−1
2

∫

D

{dX}
{dQ}{dR}

Let C be ak-rowed non-singular matrix. Consider the transformation,

X→ CX, F → CF, V → V[C−1].

This leavesW unaltered. Also

{d(CX)} = ||C||λ{dX}

which shows that I is unaltered. We shall chooseC in such a manner
that the resulting integral can be easily evaluated. �
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SinceF has rankβ, there exists a matrixC0 such that

C0F =

(
Eβ

0

)

Eβ being the unit matrix of orderβ. SinceV[F] = T is non-singular, we
have

V[C−1
0 ] =

(
T L
L′ N

)
=

(
T 0
0 M

) [
E T−1L
0 E

]

As V has signatureα, k − α, it follows tht −M > 0. Put−M = P′P,
whereP is non-singular. Then

V[C−1
0 ] =

(
T 0
0 −Ek−β

) [
E T−1L
0 P

]

We now chooseC so that

C =

(
Eβ T−1L
0 P

)
C0

A simple computation of determinants now shows that I reduces to150

||T ||−
β−k−λ+1

2 ||W||−
k−β−λ−1

2

∫

D

{dX}
{dQ}{dR}

whereD is now the domain defined byX =
(
X1
X2

)
, X1 = X(β,λ)

1 satisfying

(
T 0
0 −Ek−β

) [
E X1

0 X2

]
=

(
T Q
Q′ R

)
=W

Q = TX1, R= X′1TX− X′2X2.


(89)

Completing squares, we get
(
T 0
0 −E

) [
E X1 − T−1Q
0 X2

]
=

(
T 0
0 R1

)
(90)

where
R1 = −X′2X2 (91)
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and−R1 > 0.

Now {dX} = {dX1}{dX2} and from (89)

{dX1} = ||T ||−λ{dQ}

Also (90) shows that
||W|| = ||T || ||R1||.

Therefore I reduces to

||R1||−
(k−β−γ−1)

2

∫

D

{dX2}
{dR1}

whereD is the domain defined byX2 satisfying (91).
Let G be a non-singular matrix such that 151

X2G = Y

R1[G] = −S

 (92)

Then{dY} = ||G||k−β{dX2} and{dS} = ||G||λ+1{dR1} so that if we choose
G such thatR1[G] = −Eλ, then in order to prove the theorem it is enough
to prove ∫

D

{dY}
{dS}

=
ρk

ρk−λ
(93)

where we have writtenk instead ofk− β andD is the domain ofY with

Y′Y = S, S = Eλ. (94)

Note that (93) is a special case of the theorem we want to prove,
namely withV = Ek, W = Eλ, β = 0.

In order to prove (93) we shall use induction onλ. Assume theorem
6 to have been proved forλ − 1 ≥ 1. Let be an integer 0< β < λ. Put

Y =
(
Y(k,β)

1 ,Y(k,λ−β)
2

)

and

S =

(
T Q
Q′ R

)
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whereT = Y′1Y1, Q = Y′1Y2, R = Y′2Y2. Then{dY1}{dY2} = {dY} and
{dS} = {dT}{dQ}{dR}. Assume nowY1 fixed. VaryingY2 we get

∫

D

{dY}
{dS}

=

∫
{dY1}
{dT}

{dY2}
{dQ}{dR}

Induction hypothesis works and hence152

∫

D

{dY}
{dS}

=
ρk−β

ρk−λ

∫
{dY1}
{dT}

with T = Y′1Y1. Again induction hypothesis works since 0< β < λ and
we have ∫

{dY1}
{dT}

=
ρk

ρk−β

(93) is thus proved. In order to uphold induction, we have to prove (93)
in caseλ = 1 that is ∫

D

{dX}
{dt}

=
ρk

ρk−1
(95)

whereD is the space

x2
1 + · · · + x2

k = t, t = 1.

We now use induction onk. Fork = 1, the proposition is trivial; so
let k > 1 and (95) proved fork− 1 instead ofk. Introducingx1, . . . , xk−1

as a coordinate system onD we get
∫ {dx}
{dt}
=

∫
{(dx1 . . . dxk−1)}

xk

since 2xk dxk = dt and we consider only positive values ofxk. Now

xk = (1− u)
1
2

whereu = x2
1 + · · · + x2

k−1. We therefore have
∫
{dx1 . . . dxk}

dt
=

∫
(1− u)−

1
2
dx1 . . .dxk−1

du



6. Measure of unit group and measure of representation 133

By induction hypothesis,153

dx1 . . . dxk−1

du
=

π
k−1
2

Γ(k−1
2 )

u
k−1

2 −1

Therefore we get

∫
{dx}
dt
=

1∫

0

(1− u)−
1
2 u

k−1
2 −1du

π
k−1
2

Γ(k−1
2 )

Evaluating the beta integral, we get the result.
The caseβ = 0 is also contained in the above discussion
Theorem 6 is now completely demonstrated.

6 Measure of unit group and measure of represen-
tation

Let S be the matrix of a non-degenerate real quadratic form with signa-
ture p, q, (p + q = n). LetΩ denote the orthogonal group ofS, hence
the group of real matricesY with

S[Y] = S,

Ω is then a locally compact group and there exists onΩ a left invariant
Haar measure determined uniquely upto a positive multiplicative con-
stant. Instead ofΩ we shall consider the surfaceΩ(W) consisting of all
solutionsY of the matrix equation

S[Y] =W,

whereW is a fixed matrix, non-singular and of signaturep, q. Clearly if
Y1 andY2 lie inΩ(W), Y1Y−1

2 ∈ Ω so thatΩ(W) consists of allCYwhere
Y is a fixed solution ofS[Y] =W andC runs through all elements inΩ.
According to the previous section, we can introduce onΩ(W), a volume 154

measure
{dY}
{dW}

(96)
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The surfaceΩ(W) has the property that the orthogonal group ofS
acts as a transitive group of left translations

Y→ CY (97)

C ∈ Ω, on it. Also the measure (96) defined above is invariant under
these left translations. SinceΩ andΩ(W) are homeomorphic andΩ(W)
is locally compact, (96) is the Haar measure inΩ(W) invariant under
(97).

It is practical to consider onΩ(W) the measure

||S||−
1
2 ||W||

1
2
{dY}
{dW}

(98)

instead of (96), for the following reason. (96) already has the invariance
property under the transformations (97). Consider now the mapping

Y→ YP, W→W[P] (99)

whereP is ann-rowed non-singular matrix. Since{d(YP)} = ||P||n{dY}
and {dW[P]} = ||P||n+1{dW}, it follows that (98) remains unaltered by
the transformations (99). Thus (98) is independent ofW which means,
we can choose forW a matrix suitable to us. In particular, ifW = S,
(98) gives the Haar measure onΩ required for our purposes.

Let nowS be a rational matrix andH the representation space of the
unit group ofS. The unit groupΓ(S) of S is a discrete subgroup ofΩ155

and is represented inH by the mappingH → H[U], H ∈ H, U ∈ Γ(S).
We constructed inH for Γ(S) a fundamental domainF. By theorem 5 it
follows that, ifS[x] is not a binary zero form,

V =
∫

F

dv< ∞ (100)

wheredv is the invariant volume element inH.
Γ(S) being a discrete subgroup ofΩ, there exists a fundamental set

F0 for Γ(S) in Ω. By means of the translationY → CY, C ∈ Ω, we
construct a fundamental set̃F for Γ(S) in Ω(W). Let µ(S) denote

µ(S) = ||S||−
1
2 ||W||

1
2

∫

F̃

{dY}
{dW}

(101)
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It is to be noted that the value ofµ(S) is independent of the waỹF is
constructed. Since (98) is independent ofW, µ(S) is actually the Haar
measure of the fundamental setF0 for Γ(S) in Ω. We call µ(S), the
measure of the unit groupΓ(S).

It is to be noticed that the mappingsH → H[±U] are identical inH,
whereas forU ∈ Γ(S), the representationsY→ UY andY→ −UY are
distinct inΩ(W). We now prove the important

Theorem 7. If ρh =
h∏

k=1

πk.2

Γ(k/2)
, thenµ(S) and V are connected by the

relation

2µ(S) = ρpρq||S||−( n+1
2 )V

provided S is not the matrix of a binary zero form. 156

Proof. In order to prove this we consider the homogeneous as well as
the inhomogeneous parametrical representation of theH space. In the
homogeneous parametrizationH in H is given by

H = 2K − S, K = T−1[Z′S], T = S[Z] > 0 (102)

whereZ = Z(n,p) is a real matrix. Z determinesH uniquely, butH
determinesZ only upto a non-singularp-rowed matrix factor on the
right. Let us put as before

S = S0[C−1]

whereS0 =
( Ep 0

0 −Eq

)
. Let

Z = C

(
Ep

X

)
L

with X = X(q,p), and |L| , 0. The inhomogeneous parametrical repre-
sentation is given by

T0 = E − X′X > 0 (103)

with X real and
T = T0[L] (104)
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Let W be a symmetricn-rowed matrix of signature (p, q) and having
the form

W =

(
T Q
Q′ R

)
, T = T(p) > 0 (105)

Ω(W) will now be the space of solutionsY,

Y = (Y1Y2), Y1 = Y(n,p)
1 , Y2 = Y(n,q)

2

satisfyingW = S[Y] so that

T = S[Y1] > 0, Q = Y′1S Y2, R= S[Y2] (106)

EveryY1 satisfying (106) determines aH in H uniquely by (102). Since157

with Y1, UY1 also is a solution whereU ∈ Γ(S), we construct a funda-
mental set̃F in Ω(W) to be the set consisting of thoseY1 for which the
correspondingH determined by (102) lie inF, the fundamental domain
for Γ(S) in H. It is easy to verify that̃F is actually a fundamental set.�

Now

{dY} = {dY1}{dY2}; {dW} = {dT}{dQ}{dR}.

Let Y1 be fixed so that the correspondingH which it determines in
in H is in F. Let nowY2 satisfy (106). We then have

Zµ(S) = ||S||−
1
2 ||W||

1
2

∫

F̃(Y1)

{dY1}
{dT}

∫

D

{dY2}
{dQ}{dR}

whereD is the domain determined byY2 satisfying (106) withY1 fixed
andF̃(Y1) is the set ofY1 which determineH in F. For the inner integral
we apply theorem 6 and so

2µ(S) = ρq||S||−
q+1

2 ||T ||
1−q

2

∫

F̃(Y1)

{dY1}
{dT}

Now X andL determineY1 uniquely,X satisfying (103) andL satis-
fying (104). Thus

{dY1} = ||C||p||L||q{dX}{dL}.
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ExpressingL in terms ofT0 (104), we get

2µ(S) = ρq||S||−
n+1

2 ||T ||
1
2

∫

F(Y1)

|T0|−
q
2
{dX}{dL}
{dT}

But sinceT = T0[L] we get 158

∫
{dL}
{dT}

= ρp||T0||−p/2||T ||−
1
2

We therefore finally have the formula

2µ(S) = ρpρq||S||−
n+1

2

∫
|T0|−

n
2 {dX}

From the form ofT0 we see that the integral has the valueV and our
theorem is proved.

Let nowS be the matrix of a non-degenerate, rational quadratic form
of signaturep, q so thatp+q = n. Let t be a rational number represented
by S so that

S[y] = t (107)

for an integral columny. It is obvious that withy, Uy is also a solution
of (107) whereU is a unit ofS. We shall associate with a given solution
y of (107) a real numberµ(y,S) called themeasure of the representation
y, which will allow us to generalize, later, to indefinite forms the notion
of “number” of representations.

Let W be the real symmetric matrix of signaturep, q given by

W =


t q′

q R



We consider all the real solutionsY0 = Y(n,n−1)
0 satisfying

S[Y] =W (108)

whereY = (y Y0). LetΩ(q,R) be the surface determined byY0. ThusY0

satisfies
q′ = y′S Y0, R= S[Y0] (109)
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W being a fixed matrix. ClearlyΩ(q,R) is a locally compact topological159

space.
LetΩ(y) be the subgroup of the orthogonal group ofS consisting of

those matricesV in Ω with
Vy= y. (110)

ThenΩ(y) is a locally compact topological group. Since withY, VY for
V ∈ Ω(y) is also a solution of (108), it follows that the mapping

Y0→ VY0 (111)

gives a representation ofΩ(y) in Ω(q,R). Clearly this representation
is faithful. Also sinceW is fixed, the representation (111) ofΩ(y) on
Ω(q,R) is transitive onΩ(q,R). We introduce the volume element

||S||−
1
2 ||W||

1
2
{dY0}
{dq}{dR}

(112)

which is clearly invariant under the mappings (111). Thus (112) gives
the left invariant Haar measure in the locally compact spaceΩ(q,R).

The volume element (112) introduced above has another property.
Let P be a real matrix of the form

P =

(
1 p′

0 P0

)

where|P0| , 0 so thatP is non-singular. Consider the transformation

Y→ yp′ + Y0P0

W→W[P]

 (113)

Then160

{d(yp′ + Y0P0)} = ||P0||n{dY0}

{dW[P0]} = ||P0||n+1{dW}

which shows that the transformations (113) leave (112) unaltered. Thus
(112) is independent ofW and we may therefore chooseW a particular
way suitable to us.
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PutY = (yY1Y2) whereY1 = Y(n,p)
2 , Y2 = Y(n,q−1)

2 and write

W =

(
W1 Q
Q′ R1

)
, W1 =W(p+1)

1

where

W1 = S[yY1] =

(
t v′

v T

)
(114)

We now chooseW so that

|W1| , 0, T > 0. (115)

SinceT hasp rows and columns andS has signaturep, q, it follows that
W1 has signaturep, 1.

The subgroupΓ(y) of units U of S with Uy = y is a discrete sub-
group ofΩ(y) and so the representation (111) withV ∈ Γ(y) is discon-
tinuous inΩ(q,R). Let F(y) be a fundamental region inΩ(q,R), for this
discrete subgroupΓ(y). We define the measureµ(y,S) of the represen-
tationy by

µ(y,S) = ||S||−
1
2 ||W||

1
2

∫

F̃(y)

{dY0}
{dq}{dR}

(116)

161

We shall first show how to construct the fundamental regionF̃(y).
Let Y be a solution of the equations (115), (114). According to (102),
this determines uniquely aH in theH space. IfU ∈ Γ(y), thenUY1

determines the pointH[U−1] in H. Let F(y) be the fundamental region
in H for the discrete subgroupΓ(y) of Γ(S), the unit group ofS. This
F(y) can be constructed as follows: LetΓ(S) be written as a union of
left cosets moduloΓ(y),

Γ(S) =
∑

i

UiΓ(y).

Let F be the fundamental region forΓ(S) in H. Let F(y) =
⋃

i F(Ui).

ThenF(y) is the required region. SinceY0 = (Y1,Y2) we defineF̃(y)
to be the set ofY0 for which theY1 determines a point inF(y). It can
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be easily verified that̃F(y) determined in this manner is a fundamental
region forΓ(y) in Ω(q,R).

Because of (109) and (114) we may write,

q =

(
v
v1

)
, R=

(
T T1

T′1 R1

)
(117)

Then

{dq} = {dv}{dv1}

{dR} = {dT}{dT1}{dR1}

Since{dY0} = {dY1}{dY2} we fix Y1 so that theH that it determines162

in H is in F(y) and integrate over the space ofY2 which clearly is deter-
mined by

S[yY1,Y2] =

(
W1 Q
Q′ R1

)

Since
{dY2}
{dQ}{dR1}

=
{dY2}

{dv1}{dT1}{dR1}

We have, on using theorem 6,

µ(v,S) = ρq−1||S||−q/2||W1||1−
q
2

∫
{dY1}
{dv}{dT}

(118)

where the domain of integration is over thoseY1 which determine points
H in F(y). SinceT > 0, (114) now gives

W =

(
t − w 0′

0 T

) [
1 0′

T−1v E

]

wherew = T−1[v]. SinceT ≻ 0 andW1 has signature (p, 1), it follows
that

w− t > 0

w ≥ 0

 (119)



6. Measure of unit group and measure of representation 141

Substituting|W1| = (t − w)|T |, we get from (118)

µ(y,S) = ρq−1||S||−q/2||T ||1−
q
2 (w− t)1− q

2

∫
{dY1}
{dv}{dT}

(120)

We now remark thatw depends only on theH which Y1 determines
in H. For,

w = T−1[v] = T−1[Y′1S y] = T−1[Y′1S][y]

But from (102),T−1[Y′1S] =
H + S

2
so that 163

2W = (H + S)[y] = H[y] + t

or that

w =
H[y] + t

2
(121)

Let nowg(w) be an integrable function ofw to be chosen later. Mul-
tiply both sides of (120) byg(w) (w−t)

q
2−1 and integrate over thev space

satisfying
T−1[v] = w > t.

We then get, by applying theorem 6 and using

{dv} =
{dv}
dw
· dw

the result

ρ1µ(y,S)
∫

w>Max(0,t)

g(w)w
p
2−1(ω − t)

q
2−1dw

= ρp−1ρq−1||S||−q/2||T ||−
1
2−

q
2

∫
g(w)
{dY1}
{dT}

(122)

The functiong(w) has to be so chosen that the integrals are convergent.
We will see later that this can be done. The domain of integration for
the integral on the right of (122) is over that set ofY1 which determine
H in F(y). Since everyH in F(y) determines aY1, we see that we have
to apply the analysis in the proof of theorem 7 to obtain
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Theorem 8. Letµ(y,S) be the measure of the representation yof S[y] =
t. Then

µ(y,S)
∫

w>0
w>t

g(w)w
p
2−1(w− t)

q
2−1dw= ρp−1ρq−1||S||−

n
2

∫

F(y)

g


H[y] + t

2

dv

where g(w) is an integrable function making the integrals converge and164

dv is the invariant volume element in theH space.

7 Integration of the theta series

We shall hereafter assume thatn > 4.
Let us denote byVa the volume of the fundamental regionVa for Γa

in theH space so that

Va =

∫

Fa

dv.

Fa is finite by theorem 5. We put

ϕa(z) = V−1
a

∫

Fa

fa(z,H)dv (123)

Then by theorem 4,

ϕa(z) = V−1
a

∑

y≡a(mod 1)

∫

Fa

e2πiR[y]dv

If a ≡ 0(mod 1), theny ≡ 0 is a possible value ofy and then we have
the term

V−1
a

∫

Fa

dv (124)

By definition ofVa, the value of (124) is unity. Let us therefore put

γa =


1 if a ≡ 0(mod 1)

0 otherwise.
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Then we have165

ϕa(z) = γa + V−1
a

∑

y≡a(mod 1)
y.0

∫

Fa

e2πiR[y]dv.

Let us call two rational vectorsy
1

andy
2

associated, if there exists
a matrixU in Γa such thaty

1
= Uy

2
. Otherwise they are said to be non-

associated. For anyy consider the subgroupΓa(y) of Γa with Uy = y.
We can write

Γa =

∑

k

UkΓa(y) (125)

as a union of left cosets.Uky then run through all vectors associated
with y. Because of uniform convergence, we can write

ϕa(z) = γa +

∑′

y

∑

k

V−1
a

∫

Fa

e2πiR[Uky]dv

where the accent indicates that we should sum over all non-associate
vectorsy with y , 0 andy ≡ a(mod 1). Since the volume elementdv
has the invariance property we may write

ϕa(z) = γa +

∑′

y

∑

k

V−1
a

∫

Fa[Uk]

e2πiR[y]dv

whereFa[Uk] is the image of the fundamental regionFa by the trans-
formationH → H[Uk]. Because of (125) a fundamental regionF(y) for
Γa(y) in H is given by

F(y) =
∑

k

Fa[Uk].

Consider the groupΓa(y). Now−E is not an element ofΓa(y) since
that means−y = y or y = 0. But −E may be inΓa. This means that 166

−a ≡ a(mod 1) or 2a ≡ 0(mod 1). In this theUk’s in (125) may be
so chosen that withUk, −Uk is also a representative of a coset. Since
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H → H[U] and H → H[−U] define the same mapping in theH space,
it shows that if 2a ≡ 0(mod 1), theFa[Uk] give a double covering of the
fundamental regionF(y). So let us define

ja =


2 if 2a ≡ 0(mod 1)

1 if 2a . 0(mod 1).

Then we can write

ϕa(z) = γa + ja
∑

y

V−1
a

∫

F(y)

e2πiR[y]dv

Let us now put in theorem 8

g(w) = e2πitz−4πηw

and use the abbreviation

ht(z) = e2πitz
∫

w>max(0,t)

w
p
2−1(w− t)

q
2−1e−4πηwdw, (126)

then, since (126) converges forp > 0, q > 0, η > 0, we get

ϕa(z) = γa +
ja
Va

′∑

y

µ(y,S)

ρp−1ρq−1
||S||

n
2 ht(z) (127)

It can be shown that for each rational numbert , 0, the number of
non-associate representations

S[y] = t, y ≡ a(mod 1)

is finite. If t = 0, one has to consider only non-associate primitive
representations. If therefore we put

M(S, a, t) =
∑

y

µ(y,S) (128)

where the summation runs on the right through the finitely many non-167
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associate representations ofS[y] = t, we can write (127) in the form

ϕa(z) = γa +
ja
Va

||S||n/2

ρp−1ρq−1

∑

t≡S[a](mod 1)

M(S, a, t)ht(z) (129)

Just as we definedµ(S) in theorem 7 for the unit groupΓ, we can
defineµa(S) for the subgroupΓa of Γ also. Γa is a subgroup of finite
index (Γ : Γa) in Γ. Let

Γ =

∑

U

UΓa

be a decomposition ofΓ into left cosets modΓa. If F is a fundamental
region forΓ, then

Fa =

∑

U

F[U]

is a fundamental region forΓa. SinceU and−U give rise to the same
mapping inH space, we have to consider whether−E belongs toΓa;
i.e., 2a ≡ 0(mod 1), which means thatU and−U are in the same coset
and so

Va = (Γ : Γa)V.

If however 2a . 0(mod 1), thenU and−U belong to different cosets
and so

∑
U

F[U] gives a double covering ofFa. Thus

Va =
1
2

(Γ : Γa)V.

Using the definition ofja we get

µ(S)
V
=
µa(S)

Va
·

ja
2

If we denoteµ(S, a, t) the quantity 168

µ(S, a, t) =
M(S, a, t)

µa(S)
(130)
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We get, on using theorem 7, the final formula

ϕa(z) = γa +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t≡S[a](mod 1)

µ(S, a, t)ht(z) (131)

We call M(S, a, t) the measure of representationof t by S[x + a].
(131) is the analogue, for indefinite forms, of the generating function
(6).

Let us now consider the functional vector

ϕ(z) =



ϕa1
(z)
...

ϕal
(z)


(132)

a1, . . . , al having the same meaning as before. Letd = abs2S andΓ the
subgroup of unitsU in Γ satisfying

U ≡ E(mod d).

Since for everyai , 2S ai is an integral vector, it follows that

Γai ⊃ Γ, (i = 1, 2, . . . , 1).

Also Γ/Γ is a finite group. IfF0 is a fundamental region forΓ in H and
V its volume then because of invariance of volume element we have

ϕa(z) = V
−1

∫

F0

fa(z,H)dv.

Let nowµ(S, t) andγ denote the vectors

µ(S, t) =



µ(S, a1, t)
...

µ(S, a1, t)


, γ =



γal
...

γal



whereµ(S, a, t) is defined by (130) andγa = 0 or 1 according asa ≡169

0(mod 1) or not. Then from (49) and (131) we have the
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Theorem 9. Let n> 4 and M=
(
α β
γ δ

)
be a modular matrix. Then

ϕ(z) = γ +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t

µ(S, t)ht(z)

satisfies
ϕ(zM) = G(M, z)ϕ(z).

The functionht(z) introduced in (126) can be expressed in terms of
the confluent hypergeometric functionh(α, β, η) defined by

h(α, β, η) =

∞∫

0

wα−1(w+ 1)β−1e−wη)dw

whereα andβ are complex numbers with positive real parts andη is
a positive real parameter.h(α, β, η) is a solution of the second order
differential equation

η
d2h

dη2
+ (α + β + η)

dh
dη
− αh = 0.

From the definition ofht(z) we have

h0(z) =

∞∫

0

Wn/2−2e−4πwηdw

which reduces to theΓ-integral. We have hence

h0(z) = (4πη)1−n/2
Γ

(n
2
− 1

)
. (134)

Let now t < 0. Changing, in (126), the variablew to −tw we get
easily

ht(z) = e2πitz(−t)n/2−1h(p/2, q/2,−4πtη) (135)

170

In caset > 0, we make a change of variablew→ wt + t. One then
obtains

ht(z) = e2πitztn/2−1h(q/2, p/2, 4πtη). (136)
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If we put ht(z) = u(ξ, η) = u as a function of the two real variablesξ
andη, thenu satisfies the partial differential equation

∆u = 0 (137)

where

∆ = η

(
∂2

∂ξ2
+
∂2

∂η2

)
+

n
2
∂

∂η
+ i

(q− p)
2

∂

∂ξ
(138)

The interesting fact to be noticed is that the differential operator∆
is independentof t. Sinceϕ(z) in theorem 9 is a linear function inht(z)
we see that

∆ϕ(z) = 0 (139)

It is to be noted also thatf (z,H) is not a solution of the differential
equation (137).

8 Eisenstein series

Let M =
(
α β
γ δ

)
be a modular matrix. By (30), for any two vectorsa, b

amonga1, . . . , al we have

λab(M) =
∑

g((mod)γ)

e
2πi
γ

(αS[g+a]−2b′S(g+a)+δS[b])

Let us consider the caseb = 0 which is a possible value ofa1, . . . , al .
Then

λa,0(M) =
∑

g((mod)γ)

e
2πi
γ
αS[g+a]

which is an ordinary Gaussian sum. It is to be noted thatλa,0(M) de-171

pends only on the first column of the matrixM and is independent ofβ
andδ.

Let G denote the group of proper unimodular matrices andG0 the
subgroup consisting of all modular matrices withγ = 0. Let

G =
∑

M

MG0 (141)
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be a decomposition ofG as a sum of left cosets moduloG0. If M and
M1 belong to the same left coset, then

M−1
1 M =

(
±1 ∗
0 ±1

)

so that the values ofλa,0(M) and λa,0(M1) are equal. Also sinceG0

contains the matrix
(
−1 0
0 −1

)
, we may choose the representatives in (141)

so thatγ ≥ 0.
Let g(M, z) denote the first column of the matrixG(M, z) defined in

(37). LetM haveγ > 0. Then because of theorem 2 we have

g(M, zM−1) = ǫ−1d−
1
2γ−n/2(γz− α)−p/2(γz− α)−q/2



λa1
0

...

λal
0



g(E, z) = γ



(142)

We now form the series

ψ(z) =
∑

M

g(M, zM−1)

the sum taken over all representatives in (141).ψ(z) is a vector of func- 172

tionsψa1
(z), . . . , ψal

(z) where

ψa(z) = γa + ǫ
−1d−

1
2

∑

(α,γ)=1
γ>0

γ−n
(
z−

α

γ

)−p/2 (
z−

α

γ

)−q/2

(143)

∑

g((mod)γ)

e2πi α
γ

S[g+a]

In order to prove the absolute convergence of the above series forψa(z),
observe that by (47) and (48),λ(M) is unitary and so it is enough to
prove the convergence of

∑

(α,γ)=1

|γz− α|−
n
2
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It is well-known that this converges forn > 4. The convergence is even
uniform in every compact subdomain of thez-plane.

From theorem 2 we have

g(MM1, zM−1
1

) = G(M, z)g(M1, zM−1
1

)

If M is fixed andM1 runs through a complete system of representatives
in (141), thenMM1 also runs through the representatives in (141). This
gives

ψ(zM) = G(M, z)ψ(z). (144)

Thusψ(z) also satisfies the same transformation formula asϕ(z). We
shall now obtain a fourier expansion for the functionψa(Z). To this end
we first prove

Lemma 4. Let a> 1, b > 1 be two real numbers and

E(z) =
∞∑

k=−∞
(z− k)−a(z− k)−b

Then

E(z) =
ib−a(2π)a+b

Γ(a)Γ(b)

∞∑

−∞
e2πilz

∞∫

max(0,1)

ua−1(u− 1)b−1e−4πηudu.

where z= ξ + iη, η > 0.173

Proof. Sincea+ b > 2, it follows thatE(z) is absolutely convergent and
is also uniformly convergent in every bounded domain of thez-plane. It
is clearly periodic of period 1 inξ. Hence

E(z) =
∞∑

l=−∞
e2πilξ



1∫

0

∞∑

−∞
(z− k)−a(z− k)−be−2πilξdξ

 .

This shows that the fourier coefficient equals

∞∫

−∞

z−az−be−2πilξdξ.
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By means of the substitutionξ → −iξ we get for this fourier coefficient
the integral

ib−a−1

i∞∫

−i∞

(η − ξ)−a(η + ξ)−be−2πlξdξ.

We now writeξ instead ofξ + η obtaining thus the integral

ib−a−1e2πiη

η+i∞∫

η−i∞

ξ−b(2η − ξ)−ae−2πlξdξ.

In order to evaluate the integral above we use theΓ-integral and
obtain

1
Γ(a)

η+i∞∫

η−i∞

e−2πlξξ−b



∞∫

0

ua−1e−(2η−ξ)udu

 dξ (145)

We can change the order of integration and hence the above integral
equals

1
Γ(a)

∞∫

0

ua−1e−2ηu



η+i∞∫

η−i∞

ξ−beξ(u−2πl)dξ

du

We now use the well-known Weierstrass’ formula inΓ-functions, 174

namely

1
2πi

c+i∞∫

c−i∞

x−beλxdx=


λb−1

Γ(b) if λ > 0

0 if λ ≤ 0

wherec > 0, b > 0. �

From this formula, it follows that the integral in (145) equals

2πi
Γ(a)Γ(b)

∫

u>max(0,2π,l)

ua−1(u− 2πl)b−1e−2ηudu.

We once again make a change of variableu to 2πu. We then obtain the
fourier coefficient as given in the lemma.
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Actually the lemma can be seen to be true fora > 0, b > 0 and
a + b ≻ 1. In particular, if we puta = p/2 andb = q/2 and use the
definition ofht(z) in (126) andǫ in (29), we obtain the formula

∞∑

k=−∞
(z− k)−p/2(z− k)−q/2

=
(2π)n/2ε

Γ(p/2)Γ(q/2)

∞∑

1=−∞
hl(z) (146)

Let us now consider the expression forψa(z), namely

ψa(z) = γa + ǫ
−1d−

1
2

∑

(α,γ)=1
γ>0

γ−m

(
z− α

γ

)−p/2 (
z− α

γ

)−q/2

·
∑

g((mod)γ)

e2πi α
γ

S[g+a]

PutD = 2d. We shall prove thatψa(z) has the periodD in ξ.

ψa(z+ D) = γa + ǫ
−1d−

1
2

∑

(α,γ)=1

γ−n
(
z+ D − α

γ

)−p/2 (
z+ D − α

γ

)−q/2

γ > 0
∑

g((mod)γ)

e2πi α
γ

S[g+a]

But since 2S ais integral, it follows thatDS[a] is an integer. Hence175

DS[g+ a] ≡ 0(mod 1)

We may therefore write

ψa(z+ D) = γa + ǫ
−1d−

1
2

∑

(α,γ)=1

γ−n
(
z+ D − α

γ

)−p/2 (
z+ D − α

γ

)−q/2

γ > 0 ·
∑

g((mod)γ)

e2πi
(
α

γ
− D

)
S[g+ a]

Since
α

γ
+ D runs through all rational fractions when

α

γ
does so, we see

that
ψa(z+ D) = ψa(z).
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Because of absolute convergence we can write the series forψa(z) in

the following way: We put all rational numbers
α

γ
into residue classes

moduloD. If 0 ≤ α

γ
< D is a fixed rational number with (α, γ) = 1, then

all rational numbers in the class of
α

γ
are obtained in the form

α

γ
± kD

wherek runs through integers. Thus

ψa(z) = γa + ǫ
−1d−

1
2

∑

0≤ α
γ
<D

γ−nD−
n
2

∑

g((mod)γ)

e2πi α
γ

S[g+a]

∞∑

k=−∞
(ζ − k)−

p
2 (ζ − k)−

q
2 (147)

whereζ =

(
z− α

γ

)
D−1. Using (146) we get

ψa(z) = γa +
d−

1
2 (2π)n/2

Γ(p/2)Γ(q/2)

∑

0≤ α
γ
<D

γ−nD−n/2

∑

g((mod)γ)

e2πi α
γ

S[g+a]
∞∑

l=−∞
hl

(
D−1

(
z−

α

γ

)) (148)

176

Using (126) we have

hl

(
D−1

(
z−

α

γ

))
= Dn/2−1e−2πi αγ

l
D hl/D(z).

We may therefore write (148) in the form

ψa(z) = γa +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∞∑

l=−∞
h1/D(z)

∑

0≤ α
γ
<D

D−1γ−n

∑

g((mod)γ)

e2πi
(
S[g+a]− l

D

)
α
γ

We now contend that the inner sum is zero if

S[a] − l
D
. 0(mod 1)
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For, from (147), it is obvious that instead of the summation over 0 ≤
α

γ
< D, we could equally well have the summation range as 1≤

α

γ
<

D + 1. This means that the expression

∑

0≤ α
γ
<D

D−1γ−n
∑

g((mod)γ)

e2πi α
γ

(
S[g+a]− l

D

)
(149)

is unaltered by changing
α

γ
into

α

γ
+ 1. But this change multiplies (149)

by

e2πi(S[a]− l
D )

This proves our contention. We can therefore write

ψa(z) = γa +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t≡S[a](mod 1)

ht(z)

∑

0≤ α
γ
<D

D−1γ−n
∑

g((mod)γ)

e2πi α
γ

(S[g+a]−t)

We can now write all numbers 0≤
α

γ
< D in the form

α

γ
+ r where177

0 ≤
α

γ
< 1 andr = 0, 1, 2, . . . ,D − 1. Because of the property of the

expression (149) we get finally the

Theorem 10. The functionψa(z) has the expansion

ψa(z) = γa +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t≡S[a](mod 1)

ht(z)

∑

0≤ α
γ
<1

γ−n
∑

g((mod)γ)

e2πi α
γ

(S[g+a]−t)

The expression

βt =

∑

0≤ α
γ
<1

γ−n
∑

g((mod)γ)

e2πi αγ (S[g+a]−t) (150)
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is a so-called ‘singular series’. Series of this type were studied by Hardy
and littlewood in their researches on Waring’s problem. We shall now
give some properties of this singular series.

Let q > 0 be an integer. Put

fq =
∑

γ|q


∑

0≤ αγ<1

γ−n
∑

g((mod)γ)

e2πi α
γ

(S[g+a]−t)



Sinceq = γs wheres is an integer, we may take the inner summation
over a complete residue system moduloq. Then each of the terms will
be repeatedsn times. This gives

fq = q−n
q−1∑

λ=0

∑

g(mod q)

e
2πiλ

q (S[g+a]−t)

Interchanging the two summations above we have

fq = q−n
∑

g(mod q)


q−1∑

λ=0

e
2πiλ

q (S[g+a]−t)

 (151)

Because of the well-known formula 178

q−1∑

µ=0

e
2πiλµ

q =


0 if q ∤ λ

q if q|λ

We see that the inner sum in (151) vanishes if the congruence

S[x+ a] ≡ t(mod q) (152)

has no solution. If it has a solutiong, then the inner sum has the value
q. Thus

fq =
A0(S, a, t)

qn−1
(153)

whereAq(S, a, t) is the number of incongruent solutions mod q of the
congruence (152). It will then follow from the definition ofβt that if
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q → ∞ through a sequence of integersq1, q2, q3, . . . such that every
natural number divides all but a finite number of theseq’s,

βt = lim
q→∞

fq = lim
q→∞

Aq(S, a, t)

qn−1
(154)

From the definition ofAq(S, a, t) and the Chinese-remainder theo-
rem, it follows that

Aq(S, a, t) · Aq′(S, a, t) = Aqq′(S, a, t)

for two coprime integersq, q′. This shows thatfq =
A(S, a, t)

qn−1
is a

multiplicative arithmetic function. In order to computefq for a givenq,
it is enough to computefq for q = pl wherep is a prime number and
l > 0 is an integer.

If q = pl , l > 0 andp a prime number, it can be shown that

δp(S, a, t) = lim
l→∞

Aq(S, a, t)

qn−1

exists. In fact, ifl is sufficiently large the value of
Aq(S, a, t)

qn−1
is in-179

dependent ofl. This shows thatδp(S, a, t) is really a rational number.
Furthermore for all except a finite number of primes (for instance, for
p ∤ 2d)

δp(S, a, t) =
Ap(S, a, t)

pn−1
.

this enables us to computeδp(S, a, t) for almost all primesp. From the
fact thatδp(S, a, t) exists for everyp one can construct the product

δ(S, a, t) =
∏

p

δp(S, a, t).

It is proved in the analytic theory of quadratic forms that the product
above converges and is different from zero only if every factor is differ-
ent from zero. Moreover

βt = δ(S, a, t) (155)
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This gives an arithmetical meaning forβt namely thatβt > 0 if and only
if Aq(S, a, t) , 0 for every integer q> 1. For a proof of these statements
see [2].

It should be noticed that sinceψa(z) is a linear function inht(z) and
asht(z) is a solution of the equation (137), the functionψa(z) and hence
the vectorψ(z) defined in (143) is a solution of the differential equation

∆ψ(z) = 0. (156)

The seriesψa(z) are called the Eisenstein series. The vectorψ(z) of 180

Eisenstein series and the vectorϕ(z) satisfy the same differential equa-
tion and have the same transformation formula with regard tomodular
substitutions.

9 Main Theorem

We shall now prove the main theorem of the analytic theory of indefinite
quadratic forms, namely,

Theorem 11. If n > 4 and S is a rational symmetric matrix which is
semi-integral, of signature p, q, p+ q = n, pq > 0 and aa rational
vector with2S aintegral, then for t≡ S[a](mod 1)

M(S, a, t) = µa(S)
∏

p

δp(S, a, t)

the product running over all primes p.

Proof. The series

ϕa(z) = γa +
π

n
2 ||S||−1/2

Γ(p/2)Γ(q/2)

∑

t

M(S, a, t)

µa(S)
ht(z)

and

ψa(z) = γa +
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t

βtht(z)
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are fourier series in the real partξ of z. In order to prove theorem 11, it
is enough to prove that

ϕa(z) − ψa(z) = 0. (157)

Then from (155) and the uniqueness theorem of fourier series, it would
follow that the coefficients ofϕa(z) − ψa(z) are zero and the theorem is181

proved. �

We shall therefore prove (157).
Let χ(z) be the vector

χ(z) =



χa1
(z)
...

χal (z)



where
χa(z) = ϕa(z) − ψa(z).

If we putαt =
M(S, a, t)

µa(S)
, then

χa(z) =
πn/2||S||− 1

2

Γ(p/2)Γ(q/2)

∑

t

(αt − βt)ht(z) (158)

It is to be noticed thatχa(z) lacks the constant term. From theorem 9
and (144) we have

χ(zM) = G(M, z)χ(z). (159)

The Unitary matrixΛ(M) is defined in§ 3 by

G(M, z) =


(γz+ δ)p/2(γz+ δ)q/2

Λ(M) if γ , 0

Λ(M) if γ = 0.

If we put zM = ξM + iηM, then

ηM =
η

|γz+ δ|2
(160)
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Let us now prove some properties of the functionht(z) introduced in
(126). In the first place

ht(z) ∼ e2πitξ(4πη)1−n/2
Γ(n/2− 1) for η→ 0. (161)

This can be proved easily: For, ift = 0, then

h0(z) = (4πη)1−n/2
Γ(n/2− 1)

as was seen in (134). Let nowt > 0. Let us make the substitution182

w→ w
4πη

in the integral forht(z). Then

e−2πitξht(z) =
∫

w>4πηt

(4πη)1−n/2wp/2−1(w− 4πηt)q/2−1e−wdw

But whenη→ 0
∫

w>4πηt
wp/2−1(w− 4πηt)q/2−1e−wdw∼ Γ(n/2− 1).

This proves (161). The caset < 0 is dealt with in a similar fashion.
In caseη→ ∞ we have

ht(z)→ 0 if t , 0
ht(z)ηn/2−1 → 0 if t = 0

}
(162)

This is easily seen from the expression forht(z) and (134). In fact, if
t , 0, ht(z)→ 0 exponentially asη→ ∞.

Let us now consider the equation (158) forχa(z). The functionht(z)
is monotonic and decreasing inη for fixed ξ. This means that the series
for χa(z) is uniformly bounded in the whole of the fundamental region
of the modular group in thez plane. Letωa(z) = ηn/4χa(z). Sincen > 4
and (162) holds withht(z)→ 0 exponentially asη→∞, t , 0, it follows
thatωa(z) is bounded, uniformly inξ, in the fundamental region of the
modular group in the upper halfzplane.

Letω(z) be the vector

ω(z) =



ωa1
(z)
...

ωal
(z)


= ηn/4χ(z)
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Then because of (160) and the transformation formula (159) for χ(z) it 183

follows that, if M is a modular matrix,

|ωai
(zM) ≤

∑

j

|θi j ||ωaj
(z)| (i = 1, . . . , l) (163)

whereΛ(M) = (θi j ). ButΛ(M) is a unitary matrix so that|θi j | ≤ 1. This
means that

|ωai
(zM)| ≤

∑

j

|ωaj
(z)|

From what we have seen above, it follows thatωa(z) is bounded in the
whole of the upper halfz-plane.

Nowϕa(z) andψa(z) are fourier series in the real variableξ and have
the period 2d = D. The fourier coefficient ofχa(z) = ϕa(z) − ψa(z) is

1
D

D∫

0

χa(z)e−2πitξdξ (164)

which clearly equals

πn/2||S||− 1
2

Γ(p/2)Γ(q/2)
(αt − βt)ht(iη) (165)

Sincen > 4 andηn/4χa(z) is bounded in the upper halfz plane, it
follows that

1
D
ηn/4−1

D∫

0

ηn/4χa(z)e−2πitξdξ → 0 (166)

asη → 0. On the other hand the expression on the left of (166) is, in184

virtue of (164), (165), equal to

πn/2||S||− 1
2

Γ(p/2)Γ(q/2)
(αt − βt)ht(iη)η

n
2−1

Because of (161)

ht(iη)η
n/2−1 ∼ (4π)1−n/2

Γ(n/2− 1) , 0
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asη→ 0. Because of (166) therefore, it follows that

αt − βt = 0.

Our theorem is thus completely proved.
Going back to the definitions ofϕa(z) in (123) andψa(z) in (143) we

have the partial fraction decomposition

Theorem 12. If n > 4, then

V−1
a

∫

Fa

fa(z,H)dv=

= γa + ǫ
−1d−

1
2

∑

(α,γ)=1
γ>0

γ−n


∑

g((mod)γ)

e2πi α
γ

S[g+a]



(
z− α

γ

)− p
2
(
z− α

γ

)− q
2

10 Remarks

Let us consider the main theorem. The right hand side is a product
extended over all the primes and is zero if and only if at leastone factor
is zero. The left hand side is different from zero only if the equation

S[x+ a] = t (167)

has an integral solution. Thus the main theorem shows that (167) has an
integral solution if and only if

S[x+ a] ≡ t(mod m)

has a solution for every integerm ≻ 1. Because of the definition of185

δp(S, a, t) we may also say that ifS is indefinite andn > 4, then (167)
has an integral solution if and only if (167) is true inp-adic integers
for every p. In the caset = 0, this is the Meyer-Hasse theorem. But
our main theorem is a quantitative improvement of the Meyer-Hasse
theorem, in as much as it gives an expression for the measure of repre-
sentation oft by S[x+ a].
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The method of proof consisted in first obtaining a ‘generating func-
tion’ f (z) for the Diophantine problem (167) and then constructing a
functionE(z), the Eisenstein series, which behaves likef (z) for all mod-
ular substitutions. In other words, we construct a functionE(z) which
behaves likef (z) whenz approaches, in the upper half plane, a ratio-
nal point on the real axis. This idea was originally used by Hardy and
Ramanujan in the problem of representation of integers by sums of k
squares. The generating functionf (z) here was the theta series

f (z) =


∞∑

1=−∞
e2πil2z


k

The functionE(z) is constructed in the same way as here and Hardy and
Ramanujan showed that fork = 5, 6, 7, 8

f (z) = E(z).

But for k = 9, f (z) , E(z). It is remarkable that in the case of indef-
inite forms, one has equality ifk ≻ 4. One does not have, in general,186

for representation of integers by definite forms, a formula like that in
theorem 11. One can obtain a modified formula by introducing agenus
of forms. If S > 0 is an integral matrix, the genus ofS consists of all
integral matricesP ≻ 0 which are such that for each integerm> 1 there
is an integral matrixU with

S[U] ≡ P(mod m), (|U|,m) = 1.

It is then known that a genus consists of a finite number of classes. Let
S1, . . . ,Sa be representatives of the finitely many classes in the genus
of S. If T > 0 is anyk-rowed integral matrix, we can define for eachi,
i = 1, . . . , a the number,A(Si ,T), of representations

Si[X] = T.

If E(Si ) denotes the order of the unit group ofSi (this being finite since
Si > 0) we can form

A(S,T) =

a∑
i=1

A(Si ,T)
E(Si)

a∑
i=1

1
E(Si)
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the average measure of representation ofT by a genus ofS. Just as in
(154) we can define for eachp,

δp(S,T) = lim
1→ω

Apl (S,T)

plλ

whereλ = nk − k(k+ 1)
2

. This is finite, rational and
∏
p
δp(S,T) con-

verges ifk ≤ n. The main theorem would then be

A(S,T) = c
∏

c

δp(S,T) (168)

c being a constant depending onn andk. 187

A similar formula, with suitable restrictions, exists ifS andT are
indefinite also.

One might ask if our theorem 12 could be extended to the casesn =
2, 3, 4. In casen = 4, andS[x] is not a quaternion zero form, then one
can prove thatf (z) = E(z). The method is slightly more complicated.
The differential operator∆, or slight variants of it, which we had not
used in our main theorem, plays an important role here. In case n = 2
and 3 it can be proved that our main theorem is false.

Generalizations of the main theorem may be made by considering
representations not of numbers, but of rational symmetric matrices. One
can generalize the results by considering instead of the domain of ratio-
nal integers, the ring of integers in an algebraic number field or more
generally an order in an involutorial simple algebra over the rational
number field. The bibliography gives the sources for these generaliza-
tions.
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