Lectures on Quadratic Forms

By
C.L. Siegel

Tata Institute of Fundamental Research, Bombay
1957
(Reissued 1967)

Lectures on Quadratic Fomrs

By
C.L. Siegel

Notes by

K. G. Ramanathan

No part of this book may be reproduced in any form by print, microffilm of any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5

Tata Institute of Fundamental Research, Bombay 1955-56
(Reissumed 1967)

Contents

1 Vector groups and linear inequalities 1
1 Vector groups 1
2 Lattices 7
3 Characters 10
4 Diophantine approximations 13
2 Reduction of positive quadratic forms 21
1 Ouadratic forms 21
2 Minima of definite forms 27
3 Half reduced positive forms 33
4 Two auxiliary regions 40
5 Space of reduced matrices 47
6 Binary forms 56
7 Reduction of lattices 61
3 Indefinite quadratic forms 67
1 Discontinuous groups 67
2 The \mathfrak{H} - space of a svmmetric matrix 72
3 Geometry of the \mathfrak{n}-space 78
4 Reduction of indefinite quadratic forms 80
5 Binary forms 85
4 Analvtic theorv of Indefinite quadratic forms 99
1 The theta series 99
2 Proof of a lemma 103
3 Transformation formulae 105
4 Convergence of an integral 115
5 A theorem in integral calculus 127
6 Measure of unit group and measure of representation 133
$7 \quad$ Integration of the theta series 142
8 Eisenstein series 148
9 Main Theorem 157
10 Remarks 161

Chapter 1

Vector groups and linear inequalities

1 Vector groups

Let K be the field of real numbers and V a vector space of dimension \underline{n} over K. Let us denote element of V by small Greek letters and elements of K by small Latin letters. The identity element of V will be denoted by $\underline{0}$ and will be called the zero element of V. We shall also denote by $\underline{0}$ the zero element in K.

Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be a base of V so that for any $\xi \in V$

$$
\xi=\sum_{i} \xi_{i} \varepsilon_{i} x_{i}, \quad x_{i} \in K
$$

We call x_{1}, \ldots, x_{n} the coordinates of ξ. Suppose $\varepsilon_{1}^{\prime}, \ldots, \xi_{n}^{\prime}$ is another basis of V, then

$$
\varepsilon_{i}^{\prime}=\sum_{j} \varepsilon_{j} a_{j i}, \quad i=1, \ldots, n
$$

where $a_{j i} \in K$ and the matrix $M=\left(a_{j i}\right)$ is non-singular. If in terms of $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}$

$$
\xi=\sum_{i} \varepsilon_{i}^{\prime} y_{i}, \quad y_{i} \in K
$$

then it is easy to see that

$$
\left(\begin{array}{c}
x_{1} \tag{1}\\
: \\
: \\
x_{n}
\end{array}\right)=M\left(\begin{array}{c}
y_{1} \\
: \\
: \\
y_{n}
\end{array}\right)
$$

Suppose $\alpha_{1}, \ldots, \alpha_{m}$ is any finite set of elements of V. We denote by $L\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ the linear subspace generated in V by $\alpha_{1}, \ldots, \alpha_{m}$. This means that $L\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is the set of elements of the form

$$
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}, \quad x_{i} \in X .
$$

It is clear that $L\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ has dimension $\leqslant \operatorname{Min}(n, m)$.
Let R_{n} denote the Euclidean space of n dimensions, so that every point P in R_{n} has coordinates $x_{1}, \ldots, x_{n}, x_{i} \in K$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be a basis of V and let x_{1}, \ldots, x_{n} be the coordinates of ξ in V with regard to this basis. Make correspond to ξ, the point in R_{n} with coordinates x_{1}, \ldots, x_{n}. It is then easily seen that this correspondence is $(1,1)$. For any $\xi \in V$ define the absolute value $|\xi|$ by

$$
|\xi|^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

where x_{1}, \ldots, x_{n} are coordinates of ξ. Then || satisfies the axioms of a distance function in a metric space. We introduce a topology in V by prescribing a fundamental system of neighbourhoods of ξ to be the set of $\left\{S_{d}\right\}$ where S_{d} is the set of η in V with

$$
\begin{equation*}
|\xi-\eta|<d \tag{2}
\end{equation*}
$$

S_{d} is called a sphere of radius d and center ξ. The topology above makes V a locally compact abelian group. The closure \bar{S}_{d} of S_{d} is a compact set. From (11), it follows that the topologies defined by different bases of V are equivalent.

A subgroup G of V is called a vector group. The closure \bar{G} of G in V is again a vector group. We say that G is discrete if G has no limit points in V. Clearly therefore a discrete vector group is closed.

Suppose G is discrete, then there is a neighbourhood of zero which has no elements of G not equal to zero in it. For, if in every neighbourhood of zero there exists an element of G, then zero is a limit point of G in V. This contradicts discreteness of G. Since G is a group, it follows that all elements of G are isolated in V. As a consequence we see that every compact subset of V has only finitely many elements of G in it.

We now investigate the structure of discrete vector groups. We shall omit the completely trivial case when the vector group G consists only of the zero element.

Let $G \neq\{0\}$ be a discrete vector group. Let $\xi \neq 0$ be an element of G. Consider the intersection

$$
G_{1}=G \cap L(\xi) .
$$

Let $d>0$ be a large real number and consider all the $y>0$ for which ξy is in G_{1} and $y \leqslant d$. If d is large, then this set is not empty. Because G is discrete, it follows that there are only finitely many y with this property. Let $q>0$ be therefore the smallest real number such that $\xi_{1}=\xi \cdot q \in G_{1}$. Let $\beta=\xi x$ be any element in G_{1}. Put $x=h q+k$ where h is an integer and $0 \leqslant k<q$. Then ξx and $\xi_{1} h$ are in G_{1} and so ξk is in G_{1}. But from definition of q, it follows that $k=0$ or

$$
\beta=\xi_{1} h, \quad h \text { integer } .
$$

This proves that

$$
G_{1}=\left\{\xi_{1}\right\}
$$

the infinite cyclic group generated by ξ_{1}.
If in G there are no elements other than those in G_{1}, then $G=G_{1}$. Otherwise let us assume as induction hypothesis that in G we have found $m(\leqslant n)$ elements ξ_{1}, \ldots, ξ_{m} which are linearly independent over K and such that $G \cap L\left(\xi_{1}, \ldots, \xi_{m}\right)$ consists precisely of elements of the form $\xi_{1} g_{1}+\cdots+\xi_{m} g_{m}$ where g_{1}, \ldots, g_{m} are integers. This means that

$$
G_{m}=G \cap L\left(\xi_{1}, \ldots, \xi_{m}\right)=\left\{\xi_{1}\right\}+\cdots+\left\{\xi_{m}\right\}
$$

is the direct sum of m infinite cyclic groups. If in G there exist no other elements than in G_{m} then $G=G_{m}$. Otherwise let $\beta \in G, \beta \notin G_{m}$. Put

$$
G_{m+1}=G \cap L\left(\xi_{1}, \ldots, \xi_{m}, \beta\right)
$$

Consider the elements λ in $G_{m+1} \subset G$ of the form

$$
\lambda=\xi_{1} x_{1}+\cdots+\xi_{m} x_{m}+\beta y, \quad x_{i} \in K
$$

where $y \neq 0$ and $y \leqslant d$ with d a large positive real number. This set C of elements λ is not empty since it contains β. Put now $x_{i}=g_{i}+k_{i}$ where g_{i} is an integer and $0 \leqslant k_{i}<1, i=1, \ldots, m$. Let $\mu=\xi_{1} g_{1}+\cdots+\xi_{m} g_{m}$, then $\mu \in G_{m}$ and so

$$
\lambda-\mu=\xi_{1} k_{1}+\cdots+\xi_{m} k_{m}+\beta y
$$

5 is an element of G_{m+1}. Thus for every $\lambda \in G_{m+1}$ there exists a $\lambda=$ $\lambda-\mu \in G$ with the property

$$
\lambda^{\prime}=\xi_{1} k_{1}+\cdots+\xi_{m} k_{m}+\beta y
$$

$0 \leqslant k_{i}<1, y \leqslant d$. Thus all those λ 's lie in a closed sphere of radius $\left(m+d^{2}\right)^{\frac{1}{2}}$. Since G is discrete, this point set has to be finite. Thus for the λ 's in G the y can take only finitely many values.

Therefore let $q>0$ be the smallest value of y for which $\xi_{m+1}=$ $\xi_{1} t_{1}+\cdots+\xi_{m} t_{m}+\beta q$ is in G. Let

$$
\lambda=\xi_{1} x_{1}+\cdots+\xi_{m} x_{m}+\beta y
$$

be in G_{m+1}. Put $y=q h+k$ where h is an integer and $0 \leqslant k<q$. Then

$$
\lambda-\xi_{m+1} h=\xi_{1}\left(x_{1}-t_{1} h\right)+\cdots+\xi_{m}\left(x_{m}-t_{m} h\right)+\beta k
$$

is in G_{m+1}. By definition of $q, k=0$. But in that case by induction hypothesis $x_{i}-t_{i} h=h_{i}$ is an integer. Thus

$$
\lambda=\xi_{1} h_{1}+\cdots+\xi_{m} h_{m}+\xi_{m+1} h
$$

h_{1}, \ldots, h are integers. This proves that

$$
G_{m+1}=\left\{\xi_{1}\right\}+\cdots+\left\{\xi_{m+1}\right\}
$$

is a direct sum of $m+1$ infinite cyclic groups.
We can continue this process now but not indefinitely since ξ_{1}, \ldots, ξ_{m+1}, \ldots are linearly independent. Thus after $r \leqslant n$ steps, the process ends. We have hence the

6 Theorem 1. Every discrete vector group $G \neq\{0\}$ in V is a direct sum of r infinite cyclic groups, $0<r \leqslant n$.

Conversely the direct sum of cyclic infinite groups is a discrete vector group. We have thus obtained the structure of all discrete vector groups.

We shall now study the structure of all closed vector groups.
Let G be a closed vector group. Let S_{d} be a sphere of radius d with the zero element of G as centre. Let $r(d)$ be the maximum number of elements of G which are linearly independent and which lie in S_{d}. Clearly $r(d)$ satisfies

$$
0 \leqslant r(d) \leqslant n
$$

Also $r(d)$ is an increasing function of d and since it is integral valued it tends to a limit when $d \rightarrow 0$. So let

$$
r=\lim _{d \rightarrow 0} r(d) .
$$

This means that there exists a $d_{0}>0$ such that for $d \leqslant d_{0}$

$$
r=r(d)
$$

We call \underline{r} the rank of G.
Clearly $0 \leqslant r \leqslant n$. Suppose $r=0$, then we maintain that G is discrete; for if not, there exists a sequence $\gamma_{1}, \ldots, \gamma_{n}, \ldots$ of elements of G with a limit point in V. Then the differences $\left\{\gamma_{k}-\gamma_{1}\right\}, k \neq 1$ will form a set of elements of G with zero as a limit point and so in every neighbourhood of zero there will be elements of G which will mean that $r>0$.

Conversely if G is discrete there exists a sphere $S_{d}, d>0$ which 7 does not contain any point of G not equal to zero and containing zero. This means $r=0$. Hence

$$
r=0 \Leftrightarrow G \text { is discrete. }
$$

Let therefore $r>0$ so that G is not discrete. Let d be a real number $0<d<d_{0}$ so that $r(d)=r$. Let S_{d} be a sphere around the zero element of G and of radius d. Let $\alpha_{1}, \ldots, \alpha_{r}$ be elements of G in S_{d} which are
linearly independent. Let $t>0$ be any real number and let $d_{1}>0$ be chosen so that $d_{1}<\operatorname{Min}\left(d, \frac{t}{n}\right)$. Then $r\left(d_{1}\right)=r$. If $\beta_{1}, \ldots, \beta_{r}$ be elements of G which are linearly independent and which are contained in the sphere $S_{d_{1}}$ around the zero element of G, then $L\left(\beta_{1}, \ldots, \beta_{r}\right) \subset$ $L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ since $S_{d_{1}} \subset S_{d}$. But since both have dimension r,

$$
L\left(\beta_{1}, \ldots, \beta_{r}\right)=L\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Since $\beta_{1}, \ldots, \beta_{r}$ are in $S_{d_{1}}$ we have

$$
\left|\beta_{i}\right| \leqslant d_{1} \leqslant \frac{t}{n}, \quad i=1, \ldots, r
$$

Let $\xi \in L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Then by above

$$
\xi=\beta_{1} x_{1}+\cdots+\beta_{r} x_{r}
$$

Put $x_{i}=g_{i}+k_{i}$ where g_{i} is an integer and $0 \leqslant k_{i}<1$. Put $\beta=\beta_{1} g_{1}+$ $\cdots+\beta_{r} g_{r}$. Since $\beta_{1}, \ldots, \beta_{r} \in G, \beta$ will also be in G. Now

$$
\begin{gathered}
|\xi-\beta|=\left|\beta_{1} k_{1}+\cdots+\beta_{r} k_{r}\right| \\
\leqslant\left|\beta_{1} k_{1}\right|+\cdots+\left|\beta_{r} k_{r}\right|<\frac{t}{n} \cdot n=t
\end{gathered}
$$

Since t is arbitrary, it means that in every neighbourhood of ξ there are elements of G. Hence $\xi \in \bar{G}$. But G is closed and ξ is arbitrary in $L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Thus

$$
L\left(\alpha_{1}, \ldots, \alpha_{r}\right) \subset G
$$

We have now two possibilities; $r=n$ or $r<n$. If $r=n$ then $V=L\left(\alpha_{1}, \ldots, \alpha_{r}\right) \subset G \subset V$, which means $G=V$. So let $r<n$. Complete $\alpha_{1}, \ldots, \alpha_{r}$ into a basis $\alpha_{1}, \ldots, \alpha_{n}$ of V. In terms of this basis, any $\gamma \in G$ may be written

$$
\gamma=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}, \quad x_{i} \in K
$$

But $\lambda=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}$ is an element of $L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and so of G. Thus

$$
\delta=\gamma-\lambda=\alpha_{r+1} x_{r+1}+\cdots+\alpha_{n} x_{n}
$$

is in G. Also $\delta \in L\left(\alpha_{r+1}, \ldots, \alpha_{n}\right)$. It is to be noted that γ determines δ uniquely. The δ 's that arise in this manner clearly form a vector group contained in $L\left(\alpha_{r+1}, \ldots, \alpha_{n}\right)$ and isomorphic to the factor group $G-$ $L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. We contend that this subgroup of δ 's is discrete. For, if not let δ_{1}, \ldots be a sequence of elements with a limit point in V. Then in every arbitrary neighbourhood of zero there are elements of the set $\left\{\delta_{k}-\delta_{l}\right\}, k \neq 1$. Since $\delta_{k}-\delta_{l}$ is an element of $L\left(\alpha_{r+1}, \ldots, \alpha_{n}\right)$, this means that the rank of G is $\geqslant r+1$. This contradiction proves our contention. Using theorem it follows that there exist s elements $\delta_{1}, \ldots, \delta_{s}$ is G such that every $\xi \in G$ can be written uniquely in the form

$$
\begin{equation*}
\xi=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}+\delta_{1} g_{1}+\cdots+\delta_{s} g_{s} \tag{*}
\end{equation*}
$$

where $x_{i} \in K$ and g 's are integers. The uniqueness of the above form implies that $\delta_{1}, \ldots, \delta_{s}$ are linearly independent. We have hence the

Theorem 2. Let G be a closed vector group. There exist integers r and $s, 0 \leq r \leq r+s \leq n$ and $r+s$ independent elements $\alpha_{1}, \ldots, \alpha_{r}, \delta_{1}, \ldots, \delta_{s}$ in G such that every element G can be uniquely expressed in the form (*).

It is easy to see that if G is a vector group such that G consists of all elements ξ of the form $(*)$ then G is closed. In particular if $r=0$, we have discrete groups as a special case.

It can be seen that $L\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is the connected component of the zero element in G.

2 Lattices

Let G be a discrete vector group. There exist $r \leq n$ elements $\alpha_{1}, \ldots, \alpha_{r}$ of V such that

$$
G=\left\{\alpha_{1}\right\}+\cdots+\left\{\alpha_{r}\right\}
$$

is a direct sum of r infinite cyclic groups. If $\beta_{1}, \ldots, \beta_{r+1}$ are any $r+1$ elements of G, then there is a non-trivial relation.

$$
\beta_{1} h_{1}+\cdots+\beta_{r+1} h_{r+1}=0
$$

where h_{1}, \ldots, h_{r+1} are integers. For let $\beta_{i}=\sum_{j=1}^{r} \alpha_{j} a_{j i}, i=1, \ldots, r+1$. Then the matrix $A=\left(a_{j i}\right)$ has r rows and $r+1$ columns and is an integral matrix. There exist therefore rational numbers h_{1}, \ldots, h_{r+1} not all zero such that

$$
A \cdot\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{r+1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

This means that there are rational numbers h_{1}, \ldots, h_{r+1} not all zero such that $\beta_{1} h_{1}+\cdots+\beta_{r+1} h_{r+1}=0$. Multiplying by a common denominator we obtain the result stated.

Let us now make the
Definition. A vector group G is said to be a lattice if G is discrete and contains a basis of V.

This means that there exists a basis $\alpha_{1}, \ldots, \alpha_{n}$ of V such that

$$
\begin{equation*}
G=\left\{\alpha_{1}\right\}+\cdots+\left\{\alpha_{n}\right\} . \tag{3}
\end{equation*}
$$

The quotient group $V-G$ is clearly compact. Conversely suppose G is a discrete vector group such that $V-G$ is compact. If $\alpha_{1}, \ldots, \alpha_{r}$ are independent elements of G generating G, complete $\alpha_{1}, \ldots, \alpha_{r}$ to a basis $\alpha_{1}, \ldots, \alpha_{n}$ of V. A set of representatives of $V \bmod G$ is then given by

$$
\alpha=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

where $0 \leq x_{i}<1, i=1, \ldots, r$. Since $V \bmod G$ is compact, it follows that $r=n$. Thus a lattice is a discrete vector group G with $V-G$ compact.

A set of elements $\alpha_{1}, \ldots, \alpha_{n}$ of G generating G is said to be a base of the lattice G. If $\beta_{1}, \ldots, \beta_{n}$ is another base of G then

$$
\begin{align*}
& \left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right) A \tag{4}\\
& \left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\beta_{1}, \ldots, \beta_{n}\right) B
\end{align*}
$$

where A and B are n rowed integral matrices. Because of (4), it follows that $A B=E, E$ being the unit matrix of order n. Thus $|A|= \pm 1,|B|= \pm 1$.

We call a matrix A unimodular if A and A^{-1} are both integral. The unimodular matrices form a group Γ. (4) shows that a transformation of a base of G into another base is accomplished by means of a unimodular transformation.

Conversely if $\alpha_{1}, \ldots, \alpha_{n}$ is a base of G and A is a unimodular matrix, then $\beta_{1}, \ldots, \beta_{n}$ defined by

$$
\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right) A
$$

form again a base of G as can be easily seen. Thus Γ is the group of automorphisms of a lattice.

Let G be a lattice and $\alpha_{1}, \ldots, \alpha_{n}$ a base of it. Let β be any element in G. Then β can be completed into a base of G if and only if

$$
G \cap L(\beta)=\{\beta\}
$$

as is evident from section 1 Let $\beta=\alpha_{1} g_{1}+\cdots+\alpha_{n} g_{n}$ where g_{1}, \ldots, g_{n} are integers. If β can be completed into a base $\beta, \beta_{2}, \ldots, \beta_{n}$ of G then, by above, the transformation taking $\alpha_{1}, \ldots, \alpha_{n}$ to $\beta, \beta_{2}, \ldots, \beta_{n}$ is unimodular. This means that

$$
\left(g_{1}, g_{2}, \ldots, g_{n}\right)=1
$$

Conversely let $\hat{\beta}=\alpha_{1} g_{1}+\cdots+\alpha_{n} g_{n}$ with $\left(g_{1}, \ldots, g_{n}\right)=1$. Let $\beta \in G$
and

$$
G \cap L(\rho)=\left\{\beta_{1}\right\}
$$

where $\beta_{1}=\alpha_{1} t_{1}+\cdots+\alpha_{n} t_{n}$. Since $\beta \in L(\beta)$, it follows that $\beta \in\left\{\beta_{1}\right\}$ and $\beta=\beta_{1} q$ for some integer q. Because of independence of $\alpha_{1}, \ldots, \alpha_{n}$, it follows that q divides $\left(g_{1}, \ldots, g_{n}\right)$. This means that $q=1$, that is

$$
G \cap L(\beta)=\{\beta\}
$$

Therefore β can be completed to a base of G. Hence the
Theorem 3. Let G be a lattice with a base $\alpha_{1}, \ldots, \alpha_{n}$. Let $\beta=\alpha_{1} g_{1}+$ $\cdots+\alpha_{n} g_{n}$ be an element in G. Then β can be completed to a base of G if and only if $\left(g_{1}, \ldots, g_{n}\right)=1$.

From the relation between bases of G and unimodular matrices, we have

Corollary. Let g_{1}, \ldots, g_{n} be n integers. They can be made the first column of a unimodular matrix if and only if $\left(g_{1}, \ldots, g_{n}\right)=1$.

3 Characters

Let G be a vector group. A character χ of G is a real valued function on V with the properties

1) $\chi(\alpha)$ is an integer for $\alpha \in G$
2) χ is continuous on V
3) $\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta), \alpha, \beta \in V$

It follows trivially therefore that

$$
\chi(0)=0 .
$$

Since χ is a continuous function, we have

$$
\lim _{n} \chi\left(\lambda_{n}\right)=\chi(\lambda)
$$

where $\lambda_{1}, \lambda_{2}, \ldots$ is a sequence of elements in V converging to λ.
If p is an integer then $\chi(\omega p)=p \chi(\omega)$. If r is a rational number, say $r=\frac{a}{b}, a, b$ integers, then $b \chi(\omega r)=\chi(\omega a)=a \chi(\omega)$ so that

$$
\chi(\omega r)=r \chi(\omega)
$$

By continuity it follows that if r is real

$$
\chi(\omega r)=r \chi(\omega)
$$

Suppose χ_{1} and χ_{2} are two characters of G. Define $\chi=\chi_{1}+\chi_{2}$ by

$$
\chi(\omega)=\chi_{1}(\omega)+\chi_{2}(\omega)
$$

It is then trivial to verify that χ is a character of G. It then follows that the characters of G form a group G^{*}, called the character group or the dual of G.

Let G be a vector group and \bar{G} its closure. Then

Lemma. G and \bar{G} have the same character group.
Proof. A character of \bar{G} is already a character of G.
Conversely let χ be a character of G. Then χ satisfies properties 2) and 3). We have only to verify the property 1). Let $\omega \in \bar{G}$. Then there is a sequence of elements $\omega_{1}, \omega_{2}, \ldots$ in G with ω as the limit. Since χ is continuous

$$
\lim _{n} \chi\left(\omega_{n}\right)=\chi(\omega) .
$$

But $\chi\left(\omega_{n}\right)$ are all integers. Thus $\chi(\omega)$ is integral. Thus χ is a character of \bar{G}.

The interest in lemma is due to the fact that in order to study the structure of G^{*}, it is enough to consider G^{*} as the dual of the closed vector group \bar{G} whose structure we had investigated earlier.

Let \bar{G} be the closure of the vector group G and G^{*} its character group. By theorem 2 there exists a base $\omega_{1}, \ldots, \omega_{n}$ of V such that

$$
\xi=\omega_{1} x_{1}+\cdots+\omega_{n} x_{n}, \quad x_{i} \in K
$$

belongs to \bar{G} if and only if x_{i} is integral for $r<i \leq r+s$ and $x_{i}=0$ for $i>r+s, r$ and s being integers determined by theorem If $\chi \in G^{*}$ then for $\xi \in V$

$$
\chi(\xi)=x_{1} \chi\left(\omega_{1}\right)+\cdots+x_{n} \chi\left(\omega_{n}\right) .
$$

If however $\xi \in \bar{G}$ then $\chi(\xi)$ is integral. Therefore

$$
\chi\left(\omega_{i}\right)= \begin{cases}0 & i \leq r \\ \text { integer } & r<i \leq r+s \\ \text { arbitrary real } & i>r+s .\end{cases}
$$

Thus for $\xi \in \bar{G}$

$$
\chi(\xi)=\sum_{i=r+1}^{r+s} \chi\left(\omega_{i}\right) \cdot x_{i}
$$

If $\xi \notin \bar{G}$, then because of definition of $\omega_{1}, \ldots, \omega_{n}$ it follows that either at least one of x_{r+1}, \ldots, x_{r+s} is not an integer or at least one of
x_{r+s+1}, \ldots, x_{n} is not zero. Suppose that $\xi=\sum_{i} \omega_{1} x_{i}, x_{r+1} \neq 0(\bmod 1)$.
Define the linear function χ on V by

$$
\chi\left(\omega_{i}\right)= \begin{cases}1 & \text { if } i=r+1 \\ 0 & \text { if } i \neq r+1\end{cases}
$$

Then χ is a character of G and

$$
\chi(\xi)=\chi\left(\omega_{r+1}\right) x_{r+1}=x_{r+1} \not \equiv 0(\bmod 1)
$$

The same thing is true if $x_{r+i} \not \equiv 0(\bmod 1), 1 \leq i \leq s$. Suppose now that $\xi=\sum_{i} \omega_{i} x_{i}$ and one of x_{r+s+1}, \ldots, x_{n} say $x_{n} \neq 0$. Define χ linear on V by

$$
\chi\left(\omega_{i}\right)= \begin{cases}0 & \text { if } i \neq n \\ \frac{1}{2 x_{n}} & \text { if } i=n\end{cases}
$$

Then χ is a character of G and $\chi(\xi)=\frac{1}{2} \not \equiv 0(\bmod 1)$. Hence if $\xi \notin \bar{G}$ there is a character of G which is not integral for ξ. We have thus proved.

Theorem 4. Let $\xi \in V$. Then $\xi \in \bar{G}$ if and only if for every character χ of $G, \chi(\xi)$ is integral.

Let us fix a basis $\omega_{1}, \ldots, \omega_{n}$ of V so that $\omega_{1}, \ldots, \omega_{r+s}$ is a basis of \bar{G}. If $\chi \in G^{*}$ then $\chi\left(\omega_{i}\right)=c_{i}$ where

$$
c_{i}= \begin{cases}0 & i \leq r \\ \text { integer } & r<i \leq r+s \\ \text { real } & i>r+a\end{cases}
$$

If $\left(c_{1}, \ldots, c_{n}\right)$ is any set of n real numbers satisfying the above conditions, then the linear function χ defined on V by

$$
\chi(\xi)=\sum_{i=1}^{n} c_{i} x_{i}
$$

where $\xi=\sum_{i} \omega_{i} x_{i}$, is a character of G. If R_{n} denotes the space of real n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ then the mapping

$$
\chi \rightarrow\left(c_{1}, \ldots, c_{n}\right)
$$

is seen to be an isomorphism of G^{*} into R_{n}. Thus G^{*} is a closed vector group of rank $n-r-s$.

It can be proved easily that $G^{* *}$ the character group of G^{*} is isomorphic to \bar{G}.

4 Diophantine approximations

We shall study an application of the considerations in $\$ 3$ to a problem in linear inequalities.

Let

$$
L_{i}(h)=\sum_{j=1}^{m} a_{i j} h_{j}, \quad(i=1, \ldots, n)
$$

be n linear forms in m variables h_{1}, \ldots, h_{m} with real coefficient $a_{i j}$. Let b_{1}, \ldots, b_{n} be n arbitrarily given real numbers. We consider the problem of ascertaining necessary and sufficient conditions on the $a_{i j}$'s so that given $a>0$ there exist integers h_{1}, \ldots, h_{m} such that

$$
\left|L_{i}(h)-b_{i}\right|<\alpha, \quad(i=1, \ldots, n) .
$$

In order to study this problem, let us introduce the vector space V of all a rowed real columns

$$
\alpha=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right), \quad a_{i} \in K .
$$

V has then dimension n over K. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of V defined by

$$
\alpha_{i}=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{n i}
\end{array}\right), \quad i=1, \ldots, m
$$

and let G be the vector group consisting of all sums $\sum_{i=1}^{m} \alpha_{i} g_{i}$ where g_{i} 's are integers. Let γ be the vector

$$
\gamma=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Then our problem on linear forms is seen to be equivalent to that of obtaining necessary and sufficient conditions that there be elements in G as close to γ as one wishes; in other words the condition that γ be in \bar{G}. Theorem 4 now gives the answer, namely that

$$
\chi(\gamma) \equiv 0(\bmod 1)
$$

for every character χ of G.
Let us choose a basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$ of V where

$$
\varepsilon_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad i=1, \ldots, n
$$

with zero everywhere except at the i th place. Now in terms of this basis

$$
\alpha_{k}=\varepsilon_{1} a_{1 k}+\cdots+\varepsilon_{n} a_{n k}, \quad k=1, \ldots, m
$$

Therefore if χ is a character of G

$$
\chi\left(\alpha_{k}\right)=\sum_{i=1}^{n} a_{i k} c_{i}
$$

where $\chi\left(\varepsilon_{i}\right)=c_{i}, i=1, \ldots, n$. Also $\chi\left(\varepsilon_{k}\right) \equiv 0(\bmod 1)$. Furthermore if c_{1}, \ldots, c_{n} be any real numbers satisfying

$$
\sum_{i=1}^{n} c_{i} a_{i k} \equiv 0(\bmod 1), \quad \mathrm{k}=1, \ldots, \mathrm{~m}
$$

then the linear function χ defined on V by $\chi\left(\varepsilon_{i}\right)=c_{i}$ is a character of G. By theorem 4 therefore

$$
\sum_{i=1}^{n} c_{i} b_{i} \equiv 0(\bmod 1)
$$

We have therefore the theorem due to Kronecker.
Theorem 5. A necessary and sufficient condition that for every $t>0$, there exist integers h_{1}, \ldots, h_{m} satisfying

$$
\left|L_{i}(h)-b_{i}\right|<t, \quad i=1, \ldots, n,
$$

is that for every set c_{1}, \ldots, c_{n} of real numbers satisfying

$$
\sum_{i=1}^{n} c_{i} a_{i k} \equiv 0(\bmod 1), \quad \mathrm{k}=1, \ldots, \mathrm{~m}
$$

we should have

$$
\sum_{i=1}^{n} a_{i} b_{i} \equiv 0(\bmod 1)
$$

We now consider the special case $m>n$. Let $m=n+q, q \geq 1$. Let the linear forms be

$$
\sum_{j=1}^{q} a_{i j} h_{j}+g_{i}, \quad i=1, \ldots, n
$$

in the m variables $h_{1}, \ldots, h_{q}, g_{1}, \ldots, g_{n}$. Then the vectors $\alpha_{1}, \ldots, \alpha_{m} 19$ above are such that

$$
\alpha_{q+i}=\varepsilon_{i}, \quad i=1, \ldots, n
$$

This means that if χ is a character of $G, c_{i}=\chi\left(\varepsilon_{i}\right)$ is an integer. Thus
Corollary 1. The necessary and sufficient condition that for every $t>0$, there exist integers $h_{1}, \ldots, h_{q}, g_{1}, \ldots, g_{n}$ satisfying

$$
\left|\sum_{j=1}^{q} a_{i j} h_{j}+g_{i}-b_{i}\right|<t, \quad i=1, \ldots, n
$$

is that for every set c_{1}, \ldots, c_{n} of integers satisfying

$$
\sum_{i} c_{i} a_{i j} \equiv 0(\bmod 1), \quad \mathrm{j}=1, \ldots, \mathrm{q}
$$

we have

$$
\sum_{i} c_{i} b_{i} \equiv 0(\bmod 1)
$$

We now consider another special case $q=1$. The linear forms are of the type

$$
a_{i} h+g_{i}-b_{i} \quad i=1, \ldots, n
$$

$a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ being real numbers. Suppose now we insist that the condition on b_{1}, \ldots, b_{n} be true whatever b_{1}, \ldots, b_{n} are. This will mean that from above Corollary $c_{1}=c_{2}=\ldots=c_{n}=0$ or, in other words, that a_{1}, \ldots, a_{n} have to satisfy the condition that

$$
\sum_{i} c_{i} a_{i} \equiv 0(\bmod 1), \quad \mathrm{c}_{\mathrm{i}} \text { integral }
$$

if and only if $c_{i}=0, i=1, \ldots, n$. This is equivalent to saying that the real numbers $1, a_{1}, \ldots, a_{1}$ are linearly independent over the field of rational numbers.

Let us denote by R_{n} the Euclidean space of n dimensions and by F_{n} the unit cube consisting of points $\left(x_{1}, \ldots, x_{n}\right)$ with

$$
0 \leq x_{i}<1 \quad i=1, \ldots, n
$$

For any real number x, let $((x))$ denote the fractional part of x, i.o. $((x))=$ $x-[x]$. Then

Corollary 2. If $1, a_{1}, \ldots, a_{n}$ are real numbers linearly independent over the field of rational numbers, then the points $\left(x_{1}, \ldots, x_{n}\right)$ where

$$
x_{i}=\left(\left(h a_{i}\right)\right) \quad i=1, \ldots, n
$$

are dense in the unit cube, if h runs through all integers.

We consider now the homogeneous problem namely of obtaining integral solutions of the inequalities

$$
\left|L_{i}(h)\right|<t, \quad i=1, \ldots, n
$$

$t>0$ being arbitrary. Here we have to insist that h_{1}, \ldots, h_{m} should not all be zero.

We study only the case $m>n$. As before introduce the vector space V of n-tuples. Let $\alpha_{1}, \ldots, \alpha_{m}$ and G have the same meaning as before. If the group G is not discrete, it will mean that the inequalities will have solutions for any t, however small. If however G is discrete then since $m>n$ the elements $\alpha_{1}, \ldots, \alpha_{m}$ have to be linearly integrally dependent. Hence we have integers h_{1}, \ldots, h_{m} not all zero such that

$$
\alpha_{1} h_{1}+\cdots+\alpha_{m} h_{m}=0
$$

We have hence the
Theorem 6. If $m>n$, the linear inequalities

$$
\left|L_{i}(h)\right|<t, \quad i=1, \ldots, n
$$

have for every $t>0$, a non-trivial integral solution.

Bibliography

[1] O. Perron : Irrationalzahlen Chelsea, 1948.
[2] C. L. Siegel : Lectures on Geometry of Numbers, New York University, New York, 1946.

Chapter 2

Reduction of positive quadratic forms

1 Quadratic forms

Let V be a vector space of dimension n over the field K of real numbers. Define an inner product $\xi \eta$ between vectors ξ, η of V by
i) $\xi \eta \in K$
ii) $\xi \eta=\eta \xi$
iii) $\xi(\eta+\zeta)=\xi \eta+\xi \zeta$
iv) $\xi(\eta a)=(\xi \eta) a, a \in K$.

Obviously if $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is a base of V and ξ, η have the expression $\xi=\sum_{i}$ $\varepsilon_{i} a_{i}, \eta=\sum_{i} \varepsilon_{i} b_{i}$ then

$$
\xi \eta=\sum_{i, j=1}^{n} a_{i} b_{j}\left(\varepsilon_{i} \cdot \varepsilon_{j}\right)
$$

If we denote by S the n-rowed real matrix $S=\left(s_{i j}\right), s_{i j}=\varepsilon_{i} \varepsilon_{j}$ then S is symmetric and

$$
\begin{equation*}
\xi \eta=\underline{a}^{\prime} S \underline{b} \tag{1}
\end{equation*}
$$

where $\underline{a}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right), \underline{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$ and \underline{a}^{\prime} denotes the transpose of the column vector \underline{a}. (1) is a bilinear form in the $2 n$ quantities $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. In particular

$$
\xi^{2}=\underline{a}^{\prime} S \underline{a}
$$

is a quadratic form in a_{1}, \ldots, a_{n}.
Suppose that $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}$ is another base of V. Then

$$
\varepsilon_{i}^{\prime}=\sum_{j} \varepsilon_{j} a_{i j} \quad i=1, \ldots, n
$$

and the matrix $A=\left(a_{i j}\right)$ is non-singular. If $S_{1}=\left(\varepsilon_{i}^{\prime} \cdot \varepsilon_{j}^{\prime}\right)$ then one sees easily that

$$
S_{1}=S[A]=A^{\prime} S A
$$

Thus if S with regard to one base is non-singular, then the S corresponding to any other base is also non-singular.

Conversely let S by and real n-rowed symmetric matrix and ε_{1}, \ldots, ε_{n} a base of V over K. Put

$$
\varepsilon_{i} \cdot \varepsilon_{j}=s_{i j} \quad(j, i=1, \ldots, n)
$$

and extend it by linearity to any two vectors of V. Then we have in V an inner product defined.

If $\xi=\sum_{i} \varepsilon_{i} x_{i}$ is a generic vector of V over K,

$$
\xi^{2}=\underline{x}^{\prime} S \underline{x}=S[x]=\sum_{i, j} x_{i} x_{j} s_{i j} .
$$

The expression on the right is a quadratic form in the n variables x_{1}, \ldots, x_{n} and we call S its matrix. The quadratic form is degenerate or nondegenerate according as its matrix S is or is not singular.

Let $\underline{x}^{\prime} S \underline{x}=\sum_{k, l=1}^{n} s_{k l} x_{k} x_{l}$ be a quadratic form in the n variables x_{1}, \ldots, x_{n} and let $s_{1}=s_{11} \neq 0$. We may write

$$
\underline{x}^{\prime} S \underline{x}=s_{1} x_{1}^{2}+2 s_{12} x_{1} x_{2}+\cdots+2 s_{1 n} x_{1} x_{n}+Q\left(x_{2}, \ldots, x_{n}\right)
$$

so that $Q\left(x_{2}, \ldots, x_{n}\right)$ is a quadratic form in the $n-1$ variables x_{2}, \ldots, x_{n}. We now write, since $s_{1} \neq 0$,

$$
\begin{gathered}
\underline{x}^{\prime} S \underline{x}=s_{1}\left(x_{1}+\frac{s_{12}}{s_{1}} x_{2}+\cdots+\frac{s_{1 n}}{s_{1}} x_{n}\right)^{2}-\frac{s_{12}^{2}}{s_{1}} x_{2}^{2}-\ldots \\
-\frac{s_{1 n}^{2}}{s_{1}} x_{n}^{2}+Q\left(x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

We have thus finally

$$
\underline{x}^{\prime} S \underline{x}=s_{1} y_{1}^{2}+R\left(x_{2}, \ldots, x_{n}\right)
$$

where $y_{1}=x_{1}+\frac{s_{12}}{s_{1}} x_{2}+\cdots+\frac{s_{1 n}}{s_{1}} x_{n}$ and $R\left(x_{2}, \ldots, x_{n}\right)$ is a quadratic form in the $n-1$ variables x_{2}, \ldots, x_{n}. If we make a change of variables

$$
\left.\begin{array}{l}
y_{1}=x_{1} \frac{s_{12}}{s_{1}} x_{2}+\cdots+\frac{s_{1 n}}{s_{1}} x_{n} \tag{2}\\
y_{1}=x_{i} \quad i>1
\end{array}\right\}
$$

then we may write

$$
\underline{x}^{\prime} S \underline{x}=\left(\begin{array}{cc}
s_{1} & 0 \\
0 & S_{1}
\end{array}\right)\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

where S_{1} is the matrix of the quadratic form $R\left(x_{2}, \ldots, x_{n}\right)$. Using matrix notation we have

$$
S=\left(\begin{array}{ll}
s_{1} & \underline{q}^{\prime} \tag{3}\\
\underline{q} & S_{2}
\end{array}\right)=\left(\begin{array}{cc}
s_{1} & \underline{0} \\
\underline{0} & S_{1}
\end{array}\right)\left[\begin{array}{cc}
1 & s_{1}^{-1} q^{\prime} \\
\underline{0} & E
\end{array}\right]
$$

where E is the unit matrix of order $n-1, \underline{q}$ is a column of $n-1$ rows and

$$
S_{1}=S_{2}-s_{1}^{-1} \underline{q q^{\prime}}
$$

which, incidentally gives an expression for the matrix of R.
More generally suppose $S=\left(\begin{array}{cc}S_{1} & Q \\ Q^{\prime} & S_{2}\end{array}\right)$ where S_{1} is a k-rowed matrix and is non-singular. Put $\underline{x}=\left(\frac{y}{z}\right)$ where \underline{y} is a column of k rows and \underline{z} has $n-k$ rows. Then

$$
S[\underline{x}]=S_{1}[y]+\underline{y^{\prime}} Q \underline{z}+z^{\prime} Q^{\prime} \underline{y}+S_{2}[\underline{z}],
$$

which can be written in the form

$$
\begin{equation*}
S[x]=S_{1}\left[\underline{y}+S_{1}^{-1} Q z\right]+W[z] \tag{4}
\end{equation*}
$$

where $W=S_{2}-Q^{\prime} S^{-1} Q$. In matrix notation we have

$$
S=\left(\begin{array}{cc}
S_{1} & 0 \tag{5}\\
0 & W
\end{array}\right)\left[\begin{array}{cc}
E & S_{1}^{-1} Q \\
0 & E
\end{array}\right]
$$

the orders of the two unit matrices being evident. In particular, we have

$$
|S|=\left|S_{1}\right||W|
$$

Let S be a real, non-singular, n-rowed, symmetric matrix. It is well known that there exists an orthogonal matrix V such that

$$
S[V]=V^{\prime} S V=D
$$

where $D=\left[d_{1}, \ldots, d_{n}\right]$ is a real diagonal matrix. The elements d_{1}, \ldots, d_{n} of D are called the eigen-values of S. Let \mathscr{L} denote the unit sphere

$$
\mathscr{L}: \underline{x}^{\prime} \underline{x}=1
$$

so that a generic point \underline{x} on \mathscr{L} is an n-tuple $\underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ of real numbers.
Let m and N denote the smallest and largest of the eigen values of S. Then for any \underline{x} on \mathscr{L}.

$$
m \leq S[\underline{x}] \leq M
$$

For, if we put $\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)=y-V^{-1} \underline{x}$, then $\underline{y}^{\prime} \underline{y}=1$ and

$$
S[\underline{x}]=D\left[V^{-1} \underline{x}\right]=D[\underline{y}]=d_{1} y_{1}^{2}+\cdots+d_{n} y_{n}^{2} .
$$

But then

$$
S[\underline{x}]=\left(d_{1}-M\right) y_{1}^{2}+\cdots+\left(d_{n}-M\right) y_{n}^{2}+M \leq M
$$

The other inequality is obtained by changing S to $-S$.

More generally we have, for any arbitrary real vector \underline{x}

$$
\begin{equation*}
m \underline{x}^{\prime} \underline{x} \leq S[x] \leq M \underline{x}^{\prime} \underline{x} . \tag{6}
\end{equation*}
$$

If $\underline{x}=\underline{0}$, the statement is obvious. Let $\underline{x} \neq \underline{0}$. Then $t^{2}=\underline{x}^{\prime} \underline{x} \neq 0$. Put $\underline{y}=t^{-1} \underline{x}$. Then $\underline{y}^{\prime} y=1$ and so $m \leq S[\underline{y}] \leq \bar{M}$. Multiplying throughout $\overline{\mathrm{b}}$ y t^{2} we get the result in (6).

We now define a quadratic form $\underline{x}^{\prime} S \underline{x}$ to be positive definite (or simply positive) if $S[\underline{x}]>0$ for all vectors $\underline{x} \neq \underline{0}$. It is positive semi-definite if $S[\underline{x}] \geq 0$ for real $\underline{x} \neq 0$. We shall denote these by $S>0$ and $S \geq 0$ respectively. If $S>0$, then obviously $|S| \neq 0$. For, if $|S|=0$, then there exists $\underline{x} \neq 0$ such that $S \underline{x}=\underline{0}$. Then

$$
0=\underline{x}^{\prime} S \underline{x}>0
$$

which is absurd.
If $S>0$ and $|A| \neq 0$ and A is a real matrix, then $T=S[A]$ is again positive. For, if $\underline{x}=\underline{0}$, the $A \underline{x} \neq y \neq 0$ and so

$$
T[\underline{x}]=S[A \underline{x}]=S[\underline{y}]>0
$$

We now prove two lemmas for later use.
Lemma 1. A matrix S is positive definite if and only if $\left|S_{r}\right|>0$ for $r=1, \ldots, n$, where S_{r} is the matrix formed by the first r rows and columns of S.

Proof. We shall use induction on \underline{n}. If $n=1$, the lemma is trivial. Let therefore lemma be proved for matrices of order $n-1$ instead of n. Let

$$
S=\left(\begin{array}{cc}
S_{n-1} & \underline{q} \\
\underline{q}^{\prime} & a
\end{array}\right)
$$

If $S>0$ then $S_{n-1}>0$ and so $\left|S_{n-1}\right| \neq 0$. We can therefore write

$$
S=\left(\begin{array}{cc}
S_{n-1} & \underline{0}^{\prime} \tag{7}\\
\underline{0} & l
\end{array}\right)\left[\begin{array}{cc}
E & S_{n-1}^{-1} \underline{q} \\
0 & l
\end{array}\right]
$$

so that $|S|=\left|S_{n-1}\right| l$. Induction hypothesis shows that $\left|S_{n-1}\right|>0$ and $l>0$ so that $|S|>0$ and $\left|S_{r}\right|>0$ for all r.

The converse also follows since by hypothesis $|S|>0$ and $\left|S_{n-1}\right|>28$
0 . So $1>0$. But by induction hypothesis $S_{n-1}>0$.
Lemma 2. If $S>0$ and $S=\left(s_{k l}\right)$, then

$$
|S| \leq s_{1} \ldots s_{n}
$$

where $s_{k k}=s_{k}, k=1, \ldots, n$.
Proof. We again use induction on \underline{n}. From the equation (7) we have

$$
|S|=\left|S_{n-1}\right| \cdot l
$$

But $l=s_{n}-\underline{q}^{\prime} S_{n-1}^{-1} \underline{q}>0$ since $S_{n-1}^{-1}>0$ and $s_{n}>0$. If we assume lemma proved for $n-1$ instead of n we get

$$
|S| \leq s_{1} \ldots s_{n-1} l \leq s_{1} \ldots s_{n}
$$

More generally we can prove that if $S>0$ and $S=\left(\begin{array}{cc}S_{1} & S_{12} \\ S_{12}^{\prime} & S_{2}\end{array}\right)$ then

$$
\begin{equation*}
|S| \leq\left|S_{1}\right| \cdot\left|S_{2}\right| \tag{8}
\end{equation*}
$$

It is easy to see that equality holds in (8) if and only if $S_{12}=0$.
Let $S>0$, then s_{1}, \ldots, s_{n} are all positive. We can write as in (3)

$$
S=\left(\begin{array}{cc}
s_{1} & \underline{0} \\
\underline{0} & W
\end{array}\right)\left[\begin{array}{cc}
1 & s_{1}^{-1} \underline{q}^{\prime} \\
\underline{0} & E
\end{array}\right]
$$

But since now $W>0$, its first diagonal element is different from zero and we can write W also in the form (3). In this way we get

$$
S=\left(\begin{array}{ccc}
d_{1} & & 0 \tag{9}\\
& \ddots & \\
0 & & d_{n}
\end{array}\right)\left[\begin{array}{cc}
1, & d_{12}, \ldots, d_{1 n} \\
0, & 1, d_{23}, \ldots, d_{2 n} \\
: & \ldots \ldots . \\
0 & \ldots \ldots .1
\end{array}\right]=D[V]
$$

where $D=\left[d_{1}, \ldots, d_{n}\right]$ is a diagonal matrix and $V=\left(d_{k l}\right)$ is a triangle matrix with $d_{k k}=1, k=1, \ldots, n$, and $d_{k l}=0, k>1$. We can therefore write

$$
S[\underline{x}]=\sum_{k=1}^{n} d_{k}\left(x_{k}+d_{k k+1} x_{k+1}+\cdots+d_{k n} x_{n}\right)^{2}
$$

The expression $S=D[V]$ is unique. For if $S=D_{1}\left[V_{1}\right]$ where D_{1} is a diagonal matrix and V_{1} is triangular, then

$$
D[W]=D_{1}
$$

where $W=V V_{1}^{-1}$ is also a triangular matrix. In this case, it readily follows that $W=E$ and $D=D_{1}$.

In general we have the fact that if

$$
S=\left(\begin{array}{cc}
S & 0 \tag{10}\\
0 & S_{2}
\end{array}\right)\left[\begin{array}{cc}
E & T \\
0 & E
\end{array}\right]
$$

where S_{1} has order k then S_{1}, S_{2} and T are unique.
We call the decomposition (9) of S the Jacobi transformation of S.

2 Minima of definite forms

Let S and T be two real, non-singular n-rowed symmetric matrices. They are said to be equivalent (denoted $S \sim T$) if there exists a unimodular matrix U such that

$$
S[U]=T
$$

Since the unimodular matrices form a group, the above relation is an equivalence relation. We can therefore put the n-rowed real symmetric matrices into classes of equivalent matrices. Evidently, two matrices in a class have the same determinant.

If $S=S^{\prime}$ is real and t is a real number, we say that S represents t integrally, if there is an integral vector \underline{x} such that

$$
S[\underline{x}]=t .
$$

In case $t=0$, we insist that $\underline{x} \neq \underline{0}$. The representation is said to be primitive, if \underline{x} is a primitive vector. Obviously if $S \sim T$ then S and T both represent the same set of real numbers.

If $S>0$, then all the eigen values of S are positive. Let $m>0$ be the smallest eigen value of S. Let $t>0$ be a large real number. Then if
$S[\underline{x}]<t$ then $m \underline{x}^{\prime} \underline{x}<t$ and so the elements of \underline{x} are bounded. Therefore there exist only finitely many integral vectors \underline{x} satisfying

$$
S[\underline{x}]<t .
$$

This means that if \underline{x} runs through all non-zero integral vectors, $S[\underline{x}]$ has a minimum. We denote this minimum by $\mu(S)$. There is therefore an integral \underline{x} such that

$$
S[\underline{x}]=\mu(S) ., \quad \underline{x} \neq \underline{0} .
$$

Moreover \underline{x} is a primitive vector. For if \underline{x} is not primitive, then $\underline{x}=q \underline{y}$ where $q>1$ is an integer, and \underline{y} is a primitive vector. Then

$$
\mu(S)=S[\underline{x}]=q^{2} S[\underline{y}]>S[\underline{y}]
$$

which is impossible. Furthermore if $S \sim T$ then $\mu(S)=\mu(T)$. For, let $S=T[U]$ where U is unimodular. If \underline{x} is a primitive vector such that $\mu(S)=S[\underline{x}]$, then

$$
\mu(S)=S[\underline{x}]=T[U \underline{x}] \geq \mu(T) .
$$

Also if $\mu(T)=T[\underline{y}]$, then

$$
\mu(T)=T[\underline{y}]=S\left[U^{-1} \underline{y}\right] \geq \mu(S)
$$

This proves the contention.
If $S>0$ and t is a real number, then $\mu(t S)=t \mu(S)$. But $|t S|=t^{n}|S|$ so that it seems reasonable to compare $\mu(S)$ with $|S|^{1 / n}$.

We not prove the following important theorem due to Hermite.
Theorem 1. If $\mu(S)$ is the minimum of the positive matrix S of n rows, there exist a constant c_{n} depending only on n, such that

$$
\mu(S) \leq c_{n}|S|^{1 / n}
$$

Proof. We use induction on n.

If $n=1$, then S is a positive real number s. If $x \neq 0$, and integral, then $s x^{2}>s$ unless $x= \pm 1$ so that

$$
c_{1}=1
$$

Let us assume theorem proved for $n-1$ instead of n. Let \underline{x} be the primitive integral vector such that $\mu(S)=S[\underline{x}]$. Complete \underline{x} into a unimodular matrix U. Then $T=S[U]$ has first diagonal element equal to $\mu(S)$. Also $\mu(S)=\mu(T)$ by our remarks above. Furthermore $|S|=|T|$. Therefore in order to prove the theorem we may assume that the first diagonal element s_{1} of S is equal to $\mu(S)$.

$$
\text { Let } \begin{aligned}
S & =\left(\begin{array}{ll}
s_{1} & \underline{q}^{\prime} \\
\underline{q} & S_{1}
\end{array}\right) . \text { Then } \\
S & =\left(\begin{array}{ll}
s_{1} & \underline{0}^{\prime} \\
\underline{0} & W
\end{array}\right)\left[\begin{array}{cc}
1 & s_{1}^{-1} \underline{q}^{\prime} \\
\underline{0} & E
\end{array}\right]
\end{aligned}
$$

where $W=S_{1}-\underline{q} s_{1}^{-1} \underline{q}$! Also $|S|=s_{1}|W|$.
Let $\underline{x}=\binom{x_{1}}{\underline{y}}$ be a vector and let \underline{y} have $n-1$ rows, so that

$$
\begin{equation*}
S[\underline{x}]=s_{1}\left(x_{1}+s_{1}^{-1} \underline{q}^{\prime} \underline{y}\right)^{2}+W[y] . \tag{11}
\end{equation*}
$$

Since $W>0$, we can choose an integral \underline{y} so that $W[\underline{y}]$ is minimum. x_{1} can now be chosen integral in such a manner that

$$
\begin{equation*}
-\frac{1}{2} \leq x_{1}+s_{1}^{-1} \underline{q^{\prime}} \underline{y} \leq \frac{1}{2} \tag{12}
\end{equation*}
$$

using (11) and (12) and induction hypothesis we get

$$
\mu(S) \leq S[\underline{x}] \leq \frac{\mu(S)}{4}+c_{n-1}|W|^{1 /(n-1)}
$$

Substituting for $|W|$ we get

$$
\mu(S) \leq\left(\frac{4}{3} c_{n-1}\right)^{\frac{n-1}{n}}|S|^{\frac{1}{n}}
$$

which proves the theorem.

Using $c_{1}=1$ and computing successively from the recurrence formula $c_{n}=\left(\frac{4}{3} c_{n-1}\right)^{\frac{n-1}{n}}$ we see that

$$
\begin{equation*}
c_{n}=(4 / 3)^{\frac{n-1}{2}} \tag{13}
\end{equation*}
$$

is a possible value of c_{n}. This estimate is due to Hermite.
The best possible value for c_{n} is unknown except in a few cases. We shall show that $c_{2}=\sqrt{\frac{4}{3}}$ and that it is the best possible for $n=2$. From Hermite's estimate (13), we see that for a positive binary matrix S,

$$
\mu(S) \leq\left(\frac{4}{3}\right)^{\frac{1}{2}}|S|^{\frac{1}{2}}
$$

Consider now the positive quadratic from $x^{2}+x y+y^{2}$ whose matrix

$$
S=\left(\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)
$$

For integral x, y not both zero, $x^{2}+x y+y^{2} \geq 1$ so that $\mu(S)=1$. Also $|S|=\frac{3}{4}$. We have

$$
1=\left(\frac{4}{3}\right)^{\frac{1}{2}}|S|^{\frac{1}{2}}
$$

34 which proves that $\sqrt{\frac{4}{3}}$ is the best possible value of c_{2}.
We shall now obtain a 'finer' estimate for c_{n} due to Minkowski. This estimate is better than Hermite's for large values of n. To this end we make the following consideration.

Let R_{n} denote the Euclidean space of n dimensions regarded as a vector space of ordered n-tuples $\left(x_{1}, \ldots, x_{n}\right)$. A point set \mathscr{L} in R_{n} is said to be convex if whenever A and B are two points of it, $\frac{A+B}{2}$, the mid point of the line joining A and B, is also a point of \mathscr{L}. It is said to be symmetric about the origin if whenever x belongs to it, $-x$ also
belongs to it. Obviously if \mathscr{L} is both convex and symmetric, it contains the origin.

If \mathscr{L} is a point set in R_{n} and h is any point in R_{n} we denote by \mathscr{L}_{h} the set of points x such that $x \in \mathscr{L}_{h}$ if and only if $x-h$ is a point of \mathscr{L}. With this notation $\mathscr{L}=\mathscr{L}_{0}$.

If \mathscr{L} is an open, bounded symmetric convex set, the \mathscr{L} has a measure $v(\mathscr{L})$ in the Jordon sense and for $h \in R_{n}$

$$
v(\mathscr{L})=v\left(\mathscr{L}_{h}\right) .
$$

We call a point $P=\left(x_{1}, \ldots, x_{n}\right)$ in R_{n} a lattice point if x_{1}, \ldots, x_{n} are all integers. The lattice points form a lattice in R_{n} considered as a vector group. We shall denote points of this lattice by the letters g, g^{\prime}, \ldots.

The following lemma, due to Minkowski, shows the relationship between convex sets and lattices.

Lemma 3. If \mathscr{L} is an open, bounded, symmetric and convex set of volume $>2^{n}$, then \mathscr{L} contains a lattice point other than the origin.

Proof. We shall assume that \mathscr{L} has no lattice point in it other than the origin and then prove that $v(\mathscr{L}) \leq 2^{n}$.

So let \mathscr{L} have no lattice point in it other than the origin. Define the point set \mathscr{M} by $x \in \mathscr{M}$ if and only if $2 x \in \mathscr{L}$. Then \mathscr{M} is an open, symmetric, bounded and convex set. Also

$$
\begin{equation*}
v(\mathscr{L})=2^{n} v(\mathscr{M}) \tag{14}
\end{equation*}
$$

Consider now the translates \mathscr{M}_{g} of \mathscr{M} by the lattice points. If $g \neq g^{\prime}$ then \mathscr{M}_{g} and $\mathscr{M}_{g^{\prime}}$ are disjoint sets. For, if $x \in \mathscr{M}_{g} \cap \mathscr{M}_{g^{\prime}}$ then $x-g$ and $x-g^{\prime}$ are points of \mathscr{M}. Since \mathscr{M} is symmetric and convex.

$$
\frac{g-g^{\prime}}{2}=\frac{\left(x-g^{\prime}\right)+(g-x)}{2}
$$

is a point of \mathscr{M}. By definition of $\mathscr{M}, g-g^{\prime}$ is a point of \mathscr{L}. But $g \neq g^{\prime}$. Thus \mathscr{L} has a lattice point other than the origin. This contradicts our assumption. Thus the \mathscr{M}_{g} for all g are distinct.

Let ε denote the unit cube, that is the set of points $x=\left(x_{1}, \ldots, x_{n}\right)$ with $0 \leq x_{i}<1, i=1, \ldots, n$. By the property of \mathscr{M}_{g} 's above

$$
\begin{equation*}
\sum_{g} v\left(\mathscr{M}_{g} \cap \varepsilon\right)=v\left(\varepsilon \cap \sum_{g} \mathscr{M}_{g}\right) \leq v(\varepsilon)=1 \tag{15}
\end{equation*}
$$

But $v\left(\mathscr{M}_{g} \cap \varepsilon\right)=v\left(\mathscr{M} \cap \varepsilon_{-g}\right)$ so that by (15)

$$
1 \geq \sum_{g} v\left(\varepsilon \cap \mathscr{M}_{g}\right)=\sum_{g} v\left(\varepsilon_{-g} \cap \mathscr{M}\right)=v\left(\sum_{g} \varepsilon_{-g} \cap \mathscr{M}\right)
$$

But the ε_{-g} cover R_{n} completely without gaps or overlapping when g runs over all lattice points. Hence

$$
v(\mathscr{M}) \leq 1 .
$$

Using (14) our theorem follows.
We can now prove the following theorem due to Minkowski.
Theorem 2. If $S>0$ and $\mu(S)$ is its minimum, then

$$
\mu(S) \leq \frac{4}{\pi} \cdot\left\{\Gamma\left(\frac{n}{2}+1\right)\right\}^{2 / n}|S|^{1 / n}
$$

Proof. In R_{n} let us consider the point set \mathscr{L} defined by the set of $\underline{x}=$ $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ with

$$
S[\underline{x}]<\rho
$$

It is trivially seen to be open and symmetric. Also since $S>0, \mathscr{L}$ is bounded. To see that it is convex, write $S=A^{\prime} A$ and put $A \underline{x}_{1}=\underline{y}_{1}$, $A \underline{x}_{2}=\underline{y}_{2}$. Then a simple calculation proves that

$$
2\left(\frac{y_{1}+y_{2}}{2}\right)^{\prime}\left(\frac{\underline{y}_{1}+\underline{y}_{2}}{2}\right) \leq \underline{y}_{1}^{\prime} \underline{y}_{1}+\underline{y}_{2}^{\prime} \underline{y}_{2}
$$

This shows that \mathscr{L} is a convex set. The volume of \mathscr{L} is

$$
v(\mathscr{L})=\frac{\rho^{n / 2} \pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}|S|^{-1 / 2}
$$

If we put $\rho=\mu(S)$, then \mathscr{L} contains no lattice point other than the origin. Minkowski's lemma then proves theorem 2

Denote the constants in Hermite's and Minkowski's theorems by c_{n} and c_{n}^{\prime} respectively. If we use stirling's formula for the Γ-function in the form

$$
\log \Gamma(x) \sim x \log x .
$$

We get $\log _{s n}{ }^{\prime}=\log \frac{4}{\pi}+\frac{2}{n} \log \Gamma\left(\frac{n}{2}+1\right) \sim \log n$ whereas $\log c_{n}=$ $\frac{n-1}{2} \log 4 / 3 \sim \lambda n$ where λ is an absolute constant. This shows that for large n, Minkowski's estimate is better than Hermite's.

3 Half reduced positive forms

We now consider the space $R_{h}, h=\frac{n(n+1)}{2}$ of real symmetric n-rowed matrices and impose on it the topology of the h-dimensional real Euclidean space. Let \mathscr{P} denote the subspace of positive matrices. If $S \in \mathscr{P}$ then all the principal minors of S have positive determinant. This shows that \mathscr{P} is the intersection of a finite number of open subsets of R_{h} and hence is open.

Let S be a matrix in the frontier of \mathscr{P} in R_{h}. Let S_{1}, S_{2}, \ldots be a sequence of matrices in \mathscr{P} converging to S. Let $\underline{x} \neq \underline{0}$ be any real column vector. Then $S_{k}[\underline{x}]>0$ and hence by continuity $S[\underline{x}] \geq 0$. From the arbitrariness of \underline{x}, it follows that $S \geq 0$. On the other hand let S be any positive semi-definite matrix in R_{h}. Let E denote the unit matrix of order n. Then for $\varepsilon>0, S+\varepsilon E$ is a positive matrix, which shows that in every neighbourhood of S there are points of \mathscr{P}. This proves that the frontier of \mathscr{P} in R_{h} consists precisely of positive semi-definite matrices.

Let Γ denote the group of unimodular matrices. We represent Γ in R_{h} as a group of transformations $S \rightarrow S[U], S \in R_{h}$. Also U and $-U$ load to the same representation in R_{h}. It is easy to see that the only elements in Γ which keep every element of R_{h} fixed are $\pm E$. Thus if we identify in Γ, the matrices U and $-U$ then $S \rightarrow S[U]$ gives a faithful representation of Γ_{0} in $R_{h}, \Gamma_{0}=\Gamma / \pm E$. If U runs over all elements of Γ and $S \in R_{h}, S[U]$ runs through all matrices in the class of S. We shall now find in each class of positive matrices, a matrix having certain 'nice' properties.

Let $T \in \mathscr{P}$ and let \underline{u} run over the first columns of all the matrices in Γ. There \underline{u} are precisely all the primitive vectors. Consider the values $T[\underline{u}]$ as \underline{u} runs over these first columns. Then $T[\underline{u}]$ has a minimum, which is none other than $\mu(T)$. Let this be attained for $\underline{u}=\underline{u}_{1}$. It is obvious that \underline{u}_{1} is not unique for, $-\underline{u}_{1}$, also satisfies this condition. In any case, since $T>0$, there are only finitely many \underline{u} 's with the property $T[\underline{u}]=T\left[\underline{u}_{1}\right]$. Let \underline{u}_{1} be fixed and let \underline{u} run over the second columns of all unimodular matrices whose first column is \underline{u}_{1}. The \underline{u}^{\prime} 's now are not all the primitive vectors (for instance $\underline{u} \neq \underline{u}_{1}$). $T[\underline{u}]$ again has a minimum say for $\underline{u}=\underline{u}_{2}$ and by our remark above

$$
T\left[\underline{u}_{1}\right] \leq T\left[\underline{u}_{2}\right]
$$

Also there are only finitely many \underline{u} with $T[\underline{u}]=T\left[\underline{u}_{2}\right]$. Consider now all unimodular matrices whose first two columns are $\underline{u}_{1}, \underline{u}_{2}$ and determine a \underline{u}_{3} such that $T\left[\underline{u}_{3}\right]$ is minimum. Continuing in this way one finally obtains a unimodular matrix

$$
U=\left(\underline{u}_{1}, \ldots, \underline{u}_{n}\right)
$$

and a positive matrix $S=T[U]$.
$S \sim T$ and by our construction, it is obvious, that S is not unique in the class of T. We shall study the matrices S and U more closely.

Suppose we have constructed the columns $\underline{u}_{1}, \ldots, \underline{u}_{k-1}$. In order to construct the k-th column we consider all unimodular matrices V whose first $k-1$ columns are $\underline{u}_{1}, \ldots, \underline{u}_{k-1}$ in that order. Using the matrix U above which has this property,

$$
U^{-1} V=\left(\begin{array}{cc}
E_{k-1} & A \tag{16}\\
0 & B
\end{array}\right)
$$

where E_{k-1} is the unit matrix of order $k-1$ and A and B are integral matrices. Since U and V are unimodular, B is unimodular. If $\underline{w}=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$ denotes the first column of the matrix $\binom{A}{B}$ then, since B is unimodular

$$
\begin{equation*}
\left(w_{k}, w_{k+1}, \ldots, w_{n}\right)=1 . \tag{17}
\end{equation*}
$$

$40 \quad$ The k-th column y_{k} of V is $U \underline{w}$. Conversely let \underline{w} be any integral column satisfying (17). Then w_{k}, \ldots, w_{n} can be made the first column of a unimodular matrix B of order $n-k+1$. Choosing any integral matrix A of $k-1$ rows and $n-k+1$ columns, whose first column is w_{1}, \ldots, w_{k-1}, we get a matrix V whose first $k-1$ columns are $\underline{u}_{1}, \ldots, \underline{u}_{k-1}$ (by means of the equation (16). Thus the k-th column of all the unimodular matrices with first $k-1$ columns equal to $\underline{u}_{1}, \ldots, \underline{u}_{k-1}$ is of the form $U \underline{w}$, where \underline{w} is an arbitrary integral vector with $\left(w_{k}, \ldots, w_{n}\right)=1$.

Consider the matrix $S=T[U]$. By the choice of \underline{u}_{k}, we have if \underline{w} satisfies (17), then

$$
S[\underline{w}]=T[U \underline{w}] \geq T\left[\underline{u}_{k}\right]=s_{k}
$$

where $S=\left(s_{k l}\right)$. We have thus proved that in each class of T there exists a matrix S satisfying

$$
\left.\begin{array}{rl}
\text { I) } & s_{1}>0 \\
\text { II) } S[\underline{w}] \geq s_{k}, \quad k=1, \ldots, n
\end{array}\right\}
$$

for every integral column $\underline{w}=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$ with $\left(w_{k}, \ldots, w_{n}\right)=1$.
Matrices which satisfy (I) and (II) shall be called half reduced and the subset of \mathscr{P} of matrices S, half reduced, shall be denoted \mathscr{R}_{0}.

In the sequel we shall denote by $\underline{e}_{1}, \ldots, \underline{e}_{n}$, the n columns in order of the unit matrix of order n and by an admissible k-vector \underline{w} we shall understand an integral vector \underline{w} of n rows, satisfying (17). \underline{e}_{k} is clearly an admissible k-vector.

Since \underline{e}_{k+1} is an admissible $k+1$-vector, we have

$$
s_{k+1}=S\left[\underline{e}_{k+1}\right] \geq s_{k}
$$

which shows that

$$
\begin{equation*}
s_{1} \leq s_{2} \leq \ldots \leq s_{n} . \tag{18}
\end{equation*}
$$

Let $\underline{u}=\left(\begin{array}{c}x_{1} \\ \vdots \\ \dot{x}_{n}\end{array}\right)$ be an integral vector with $x_{k}=1, x_{l}=1, x_{i}=0$ for $i \neq k, i \neq l$ and $k<l$. Then \underline{u} is an admissible l-vector and so

$$
s_{k}+2 s_{k l}+s_{l}=S[\underline{u}] \geq s_{l} .
$$

This means that $-2 s_{k l} \leq s_{k}$. Changing the sign of x_{k} we get $2 s_{k l} \leq s_{k}$. Hence

$$
\begin{equation*}
-s_{k} \leq 2 s_{k l} \leq s_{k}, \quad 1 \leq k<l \leq n \tag{19}
\end{equation*}
$$

Remark. Suppose S is a real symmetric matrix satisfying (II). Let S_{1} be the matrix obtained from S by deleting the h_{1}-th, h_{2}-th, ... h_{l}-th rows and columns from S. Then S_{1} also has properties similar to S since we have only to consider such admissible vectors \underline{w} for which the $h_{1}, \ldots, h_{l^{-}}$ th elements are zero.

We now prove the
Theorem 3. Let S be a real, symmetric n-rowed matrix with the property (II). Then $S \geq 0$. If, in addition, it satisfies (I), then $S>0$.

Proof. Suppose $s_{1}=0$. Then by (19) we have

$$
0=-s_{1} \leq 2 s_{1 l} \leq s_{1}=0
$$

which shows that S has the form

$$
S=\left(\begin{array}{ll}
0 & \underline{0}^{\prime} \\
\underline{0} & S_{1}
\end{array}\right)
$$

If $s_{2}=0$, we again have a similar decomposition for S_{1}, since S_{1}, by our remark above, also satisfies II. Thus either $S=0$ or else there is a first diagonal element s_{k}, such that $s_{k} \neq 0$. Then

$$
S=\left(\begin{array}{cc}
0 & \underline{0} \\
\underline{0} & S_{k}
\end{array}\right)
$$

S_{k} having s_{k} for its first diagonal element. We shall now show that $S_{k}>$ 0 . Observe that S_{k} satisfies both I) and II) and therefore for proving the theorem it is enough to show that if S satisfies I and II, then $S>0$.

If $n=1$, the theorem is trivially true. Let therefore theorem proved for $n-1$ instead of n. Put

$$
S=\left(\begin{array}{ll}
S_{1} & \underline{q} \\
\underline{q}^{\prime} & s_{n}
\end{array}\right)
$$

where \underline{q} is a column of $n-1$ rows. S_{1} satisfies I and II and so by induction hypothesis $S_{1}>0$. Also since $s_{n} \geq s_{1}$, therefore $s_{n}>0$.

Let $\underline{x}=\left(\frac{y}{z}\right)$ be a column of n rows, \underline{y} having $n-1$ rows and let z be a real number. Then

$$
S[\underline{x}]=S_{1}\left[\underline{y}+S_{1}^{-1} \underline{q} z\right]+\left(s_{n}-\underline{q}^{\prime} S_{1}^{-1} \underline{q}\right) z^{2}
$$

We assert that $s_{n}-\underline{q}^{\prime} S_{1}^{-1} \underline{q}>0$. For let $s_{n} \leq \underline{q^{\prime}} S_{1}^{-1} \underline{q}$. Then for $\varepsilon>0$ and every $\underline{x} \neq \underline{0}$

$$
\begin{equation*}
S[\underline{x}] \leq S_{1}\left[\underline{y}+S_{1}^{-1} \underline{q} z\right]+\varepsilon z^{2} \tag{20}
\end{equation*}
$$

Consider the quadratic form on the right side of the inequality above. It is of order n, positive and has a determinant $\left|S_{1}\right| \varepsilon$. Therefore we may find a column vector $\underline{x}=\left(\frac{y}{z}\right)$, integral, such that the value of the right side is a minimum and so by Hermite's theorem

$$
S_{1}\left[\underline{y}+S_{1}^{-1} \underline{q} z\right]+\varepsilon z^{2} \leq c_{n}\left|S_{1}\right|^{1 / n} \varepsilon^{1 / n}
$$

Using (20) and observing that s_{1} is the minimum of $S[\underline{x}]$ we get, for this \underline{x},

$$
\begin{equation*}
0<s_{1} \leq S[\underline{x}] \leq c_{n}\left|S_{1}\right|^{1 / n} \varepsilon^{1 / n} \tag{21}
\end{equation*}
$$

Since ε can be chosen arbitrarily small we get a contradiction from (21). Thus $s_{n}-\underline{q}^{\prime} S_{1}^{-1} \underline{q}>0$. This means the $S>0$.

We have thus shown that all matrices satisfying (I) and (II) are in \mathscr{P}.

We prove now the following important theorem due to Minkowski.
Theorem 4. If S is a positive half-reduced matrix, then

$$
1 \leq \frac{s_{1} \ldots s_{n}}{|S|} \leq b_{n}
$$

where b_{n} is a constant depending only on n.
Proof. The left hand side inequality has already been proved in lemma 2 even for all matrices in \mathscr{P}. In order to prove the right hand side inequality we use induction.

Consider now the ratios

$$
\frac{s_{n}}{s_{n-1}}, \frac{s_{n-1}}{s_{n-2}}, \ldots, \frac{s_{2}}{s_{1}}
$$

Since S is half-reduced, all these ratios are ≥ 1. Let $\gamma=\frac{n(n-1)}{4}$. For the above ratios, therefore, one of two possibilities can happen. Either there exists a $k, 2 \leq k \leq n$ such that

$$
\left.\begin{array}{c}
\frac{s_{n}}{s_{n-1}}<\gamma, \frac{s_{n-1}}{s_{n-2}}<\gamma, \ldots, \frac{s_{k+1}}{s_{k}}<\gamma \tag{22}\\
\frac{s_{k}}{s_{k-1}} \geq \gamma
\end{array}\right\}
$$

or that

$$
\begin{equation*}
\frac{s_{n}}{s_{n-1}}, \ldots, \frac{s_{2}}{s_{1}}<\gamma \tag{23}
\end{equation*}
$$

Note that in the case $n=2$, the second possibility cannot occur since then $\gamma=\frac{1}{2}$ and $\frac{s_{2}}{s_{1}} \geq 1$.

Consider (23) first. We have

$$
\frac{s_{1} \ldots s_{n}}{s_{1}^{n}}<\gamma \frac{n(n-1)}{2}
$$

and since

$$
\frac{s_{1} \ldots s_{n}}{|S|}=\frac{s_{1} \ldots s_{n}}{s_{1}^{n}} \cdot \frac{s_{1}^{n}}{|S|}
$$

we get, using Hermite's inequality

$$
\frac{s_{1} \ldots s_{n}}{|S|}<c_{n}^{n} \cdot \gamma \frac{n(n-1)}{2}
$$

which proves theorem.
Suppose now that (22) is true and so $k \geq 2$. Write

$$
S=\left(\begin{array}{cc}
S_{k-1} & Q \\
Q^{1} & R
\end{array}\right)
$$

where S_{k-1} has $k-1$ rows. Let $\underline{x}=\left(\frac{y}{\underline{z}}\right)$ where \underline{y} is a column with $k-1$ rows. We have, by completion of squares

$$
\begin{equation*}
S[\underline{x}]=S_{k-1}\left[\underline{y}+S_{k-1}^{-1} Q \underline{z}\right]+\left(R-Q^{\prime} S_{k-1}^{-1} Q\right)[\underline{z}] \tag{24}
\end{equation*}
$$

Also $\left|R-Q^{\prime} S_{k-1}^{-1} Q\right|=|S| /\left|S_{k-1}\right|$. Choose \underline{z} to be an integral primitive vector such that ($R-Q^{\prime} S_{k-1}^{-1} Q$) [z] is minimum. By Hermite's theorem therefore

$$
\begin{equation*}
\left(R-Q^{\prime} S_{k-1}^{-1} Q\right)[\underline{z}] \leq c_{n-k+1}\left(|S| /\left|S_{k-1}\right|\right)^{1 / n-k+1} \tag{25}
\end{equation*}
$$

Put $\underline{y}+S_{k-1}^{-1} Q \underline{z}=\underline{w}$ so that $\underline{w}=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{k-1}\end{array}\right)$. Choose now \underline{y} to be an integral vector such that

$$
\begin{equation*}
-\frac{1}{2} \leq w_{i} \leq \frac{1}{2}, \quad i=1, \ldots, k-1 \tag{26}
\end{equation*}
$$

By the choice of \underline{z}, it follows that $\underline{x}=\binom{\frac{y}{z}}{z}$ is an admissible k-vector. 46 Hence

$$
\begin{equation*}
s_{k} \leq S[\underline{x}] . \tag{27}
\end{equation*}
$$

Also since S_{k-1} is half-reduced, we get

$$
S_{k-1}[\underline{w}]=\sum_{p, q=1}^{k-1} s_{p q} w_{p} w_{q} \leq \frac{k(k-1)}{8} s_{k-1} .
$$

Using (22) we get

$$
\begin{equation*}
S_{k-1}[\underline{w}] \leq \frac{s_{k}}{2} \tag{28}
\end{equation*}
$$

From (24), (25), (27) and (28) we get

$$
\begin{equation*}
s_{k} \leq 2 c_{n-k+1}\left(|S| / / S_{k-1} \mid\right)^{1 /(n-k+1)} \tag{29}
\end{equation*}
$$

Since

$$
\frac{s_{1} \ldots s_{n}}{|S|}=\frac{s_{1} \ldots s_{k-1}}{\left|S_{k-1}\right|} \frac{\left|S_{k-1}\right|}{|S|} \cdot s_{k}^{n-k+1} \frac{s_{k} \ldots s_{n}}{s_{k}^{n-k+1}}
$$

we get by induction hypothesis on S_{k-1}, that

$$
\frac{s_{1} \ldots s_{n}}{|S|} \leq b_{k-1} \cdot\left(2 c_{n-k+1}\right)^{n-k+1} \cdot \gamma \frac{(n-k)(n-k+1)}{2}
$$

which proves the theorem completely.
The best possible value of b_{n} is again unknown except in a few simple cases. We shall prove that

$$
\begin{equation*}
b_{2}=4 / 3 \tag{30}
\end{equation*}
$$

and it is the best possible value.
Let $a x^{2}+2 b x y+c y^{2}$ be a half-reduced positive form. Then $2 b \leq a \leq$ c. The determinant of the form is $d=a c-b^{2}$. Thus

$$
a c=a c-b^{2}+b^{2} \leq d+\frac{a^{2}}{4} \leq d+\frac{a c}{4}
$$

which gives

$$
\begin{equation*}
a c \leq \frac{4}{3} d \tag{31}
\end{equation*}
$$

Consider the binary quadratic form $x^{2}+x y+y^{2}$. It is half-reduced because if x and y are two integers not both zero, then $x^{2}+x y+y^{2} \geq 1$. The determinant of the form is $3 / 4$. Product of diagonal elements is unity. Hence

$$
1=\frac{4}{3} d
$$

and this shows that $4 / 3$ is the best possible value.

4 Two auxiliary regions

Let \mathscr{R}_{0} denote the space of half-reduced matrices. Define the point set \mathscr{R}_{t}^{*} for $t>b_{n} \geq 1$ as the set of S satisfying

$$
\left.\begin{array}{cc}
0<s_{k}<t s_{k+1} & k=1, \ldots, n-1 \tag{32}\\
-t<\frac{s_{k l}}{s_{k}}<t & 1 \leq k<1 \leq n \\
\frac{s_{1} \ldots s_{n}}{|S|}<t &
\end{array}\right\}
$$

Because of (18), (19) and theorem 4 it follows that

$$
\begin{equation*}
\mathscr{R}_{0} \subset \mathscr{R}_{t}^{*} \tag{33}
\end{equation*}
$$

But what is more important is that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathscr{R}_{t}^{*}=\mathscr{P} \tag{34}
\end{equation*}
$$

This is easy to see. For, if $S \in \mathscr{P}$, let t be chosen larger than the 48 maximum of the finite number of ratios $\frac{s_{k}}{s_{k+1}}, k=1, \ldots, n-1 ; \pm \frac{s_{k l}}{s_{k}}, 1 \leq$ $k<1 \leq n, \frac{s_{1} \ldots s_{n}}{|S|}$ and b_{n}. Then $S \in \mathscr{R}_{t}^{*}$ for this value of t.

Let $S \in \mathscr{R}_{t}^{*}$ and consider the Jacobi transformation of S; namely

$$
S=\left(\begin{array}{ccc}
d_{1} & & 0 \tag{35}\\
& \ddots & \\
0 & & d_{n}
\end{array}\right)\left[\begin{array}{c}
1, t_{12}, \ldots t_{1 n} \\
\ldots \ldots . \\
0 \ldots \ldots 1
\end{array}\right]=D[T]
$$

Then

$$
s_{k l}=d_{k} t_{k l}+\sum_{h=1}^{k-1} d_{h} t_{h k} t_{h l}, \quad 1 \leq k \leq l \leq n
$$

In particular, putting $k=1$, and using the fact that d_{1}, \ldots, d_{n} are all positive, we get

$$
\begin{equation*}
\frac{s_{k}}{d_{k}} \geq 1 \tag{36}
\end{equation*}
$$

Also since $|S|=d_{1} \ldots d_{n}$, we have $\prod_{k=1}^{n} \frac{s_{k}}{d_{k}}=\frac{s_{1} \ldots s_{n}}{|S|}<t$. Since $t>1$, we have

$$
\frac{s_{k}}{d_{k}}<t \quad(k=1, \ldots, n)
$$

Using (32) we get

$$
\begin{equation*}
\frac{d_{k}}{d_{k+1}}=\frac{d_{k}}{s_{k}} \cdot \frac{s_{k}}{s_{k+1}} \cdot \frac{s_{k+1}}{d_{k+1}}<t^{2} \tag{37}
\end{equation*}
$$

Now $s_{1 l}=d_{1} \cdot t_{1 l}$ so that

$$
\left|t_{1 l}\right|=\frac{\left|s_{1 l}\right|}{d_{1}}=\frac{\left|s_{1 l}\right|}{s_{1}} \cdot \frac{s_{1}}{d_{1}}<t^{2}
$$

Let us assume that we have proved that

$$
\begin{equation*}
\text { abs } t_{g l}<u_{0}, \quad 1 \leq g \leq k-1, \quad g<l \leq n \tag{38}
\end{equation*}
$$

for a constant u_{0} depending on t and n. Then

$$
a b s t_{k l} \leq \frac{a b s s_{k l}}{d_{k}}+\sum_{h=1}^{k-1} \frac{d_{h}}{d_{k}} a b s t_{h k} \cdot a b s t_{h l}<u_{1}
$$

because of (37) and (38), u_{1} depending only on t and n. It therefore follows that if u is the maximum of u_{0}, u_{1}, t^{2}, then for the elements of D and T in (35) we have

$$
\left.\begin{array}{cc}
0<d_{k}<u d_{k+1}, & k=1, \ldots, n-1 \tag{39}\\
\text { abs } t_{k l}<u, & k<l .
\end{array}\right\}
$$

We now define $\mathscr{R}_{u}^{* *}$ to be the set of points $S \in \mathscr{P}$ such that if $S=$ $D[T]$ where $D=\left[d_{1}, \ldots, d_{n}\right]$ is a diagonal matrix and $T=\left(t_{k l}\right)$ is a triangle matrix then D and T satisfy (39) for some u. Since the Jacobi transformation is unique, this point set is well defined.

From what we have seen above, it follows that given \mathscr{R}_{t}^{*}, there exists a $u=u(t, n)$ such that

$$
\mathscr{R}_{t}^{*} \subset \mathscr{R}_{u}^{* *}
$$

Conversely one sees easily that given $\mathscr{R}_{u}^{* *}$ there exists a $t=t(u, n)$ such that

$$
\mathscr{R}_{u}^{* *} \subset \mathscr{R}_{t}^{*} .
$$

In virtue of (34, it follows that

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \mathscr{R}_{u}^{* *}=\mathscr{P} . \tag{40}
\end{equation*}
$$

We now prove two lemmas useful later.
Let $S \in \mathscr{P}$ and let t be a real number such that $S \in \mathscr{R}_{t}^{*}$. Let S_{0} denote the matrix

$$
S_{0}=\left(\begin{array}{lll}
s_{1} & & 0 \tag{41}\\
& \ddots & \\
0 & & s_{n}
\end{array}\right)
$$

We prove

Lemma 4. There exists a constant $c=c(t, n)$ such that whatever be the vector \underline{x},

$$
\frac{1}{c} S_{0}[\underline{x}] \leq S[\underline{x}] \leq c S_{0}[\underline{x}] .
$$

Proof. Let P^{-1} denote the diagonal matrix $P^{-1}=\left[\sqrt{s_{1}}, \ldots, \sqrt{s_{n}}\right]$. Put $W=S[P]$. In order to prove the lemma, it is enough to show that if $\underline{x^{\prime}} \underline{x}=1$ then

$$
\frac{1}{c} \leq W[\underline{w}] \leq c
$$

Let $W=\left(w_{k l}\right)$. Then $w_{k l}=s_{k l} / \sqrt{s_{k} s l}$. Because $S \in \mathscr{R}_{t}^{*}$ we have

$$
\begin{equation*}
a b s w_{k l}=a b s \frac{s_{k l}}{s_{k}} \sqrt{\frac{s_{k}}{s_{1}}}<t \cdot c_{1}, \quad k \leq l \tag{42}
\end{equation*}
$$

where c_{1} depends only on t and n. W being symmetric, it follows that the elements of W are in absolute value less than a constant $c_{2}=c_{2}(t, n)$.

Consider now the characteristic polynomial $f(\lambda)=|\lambda E-W|$. By (42) all the coefficients of the polynomial $f(\lambda)$ are bounded in absolute value by a constant $c_{3}=c_{3}(t, n)$. Also since $W>0$, the eigen values of W are bounded by $c_{4}=c_{4}(t, n)$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be these eigen values. Then

$$
\lambda_{1} \ldots \lambda_{n}=|W|=\frac{|S|}{s_{1} \ldots s_{n}}>t^{-1}
$$

which means that there exists a constant $c_{5}=c_{5}(t, n)$ such that

$$
\lambda_{i}>c_{5}(t, n), \quad i=1, \ldots, n
$$

(6) then gives the result of lemma4

Next we prove
Lemma 5. If $S \in \mathscr{R}_{t}^{*}$ and $S=\left(\begin{array}{cc}S_{1} & S_{12} \\ S_{12}^{\prime 2} & S_{2}\end{array}\right)$, then $S_{1}^{-1} S_{12}$ has all its elements bounded in absolute value by a constant depending only on t and n.

Proof. By the Jacobi transformation we have $S=D[T]$. Since $\mathscr{R}_{t}^{*} \subset$ $\mathscr{R}_{u}^{* *}$ for $u=u(t, n)$, the elements of T are $\leq u$ in absolute value. Write

$$
T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
0 & T_{2}
\end{array}\right), \quad D=\left(\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right)
$$

where T_{1} and D_{1} have the same number of rows and columns as S_{1}. We have $S_{1}=D_{1}\left[T_{1}\right]$ and $S_{12}=T_{1}^{\prime} D_{1} T_{12}$ so that

$$
S_{1}^{-1} S_{12}=T_{1}^{-1} T_{12}
$$

Since T_{1} is a triangle matrix, so is T_{1}^{-1} and its elements are $\leq u_{1}$ in absolute value, $u_{1}=u_{1}(t, n)$. The elements of T_{12} are already $\leq u$. Our lemma is proved.

We are now ready to prove the following important
Theorem 5. Let S and T be two matrices in \mathscr{R}_{t}^{*}. Let G be an integral matrix such that 1) $S[G]=T$ and 2) abs $|G|<t$. Then the elements of G are less, in absolute value, then a constant c depending only on t and n.

Proof. The constants c_{1}, c_{2}, \ldots occurring in the following proof depend only on t and n. Also 'bounded' shall mean bounded in absolute value by such constants.

Let $G=\left(g_{k l}\right)$ and let $\underline{g}_{1}, \ldots, \underline{g}_{n}$ denote the n columns of G. We then have

$$
S\left[\underline{g}_{l}\right]=t_{l} \quad l=1, \ldots, n .
$$

Introducing the positive diagonal matrix of lemma 4 we obtain

$$
S_{0}\left[\underline{g_{l}}\right] \leq c_{1} S\left[\underline{g_{l}}\right]=c_{1} t_{l} .
$$

But $S_{0}\left[\underline{g_{l}}\right]=\sum_{k} s_{k} g_{k l}^{2}$ so that

$$
\begin{equation*}
s_{k} g_{k l}^{2} \leq c_{1} t_{1} \quad k, l=1, \ldots, n \tag{43}
\end{equation*}
$$

Consider now the matrix G. Since $|G| \neq 0$, there exists in its expansion a non-zero term. That means there is a permutation l_{1}, \ldots, l_{n} of 1 , $2,3, \ldots, n$ such that

$$
g_{1 l_{1}} g_{2 l_{2}} \ldots g_{n l_{n}} \neq 0
$$

From (43) therefore we get

$$
s_{k} \leq s_{k} g_{k l_{k}}^{2} \leq c_{1} t_{l_{k}} \quad k=1, \ldots, n
$$

Consider now the integers $k, k+1, \ldots$ and $l_{k}, l_{k+1}, \ldots, l_{n}$. All of the 53 latter cannot be $>k$. So there is an $i \geq k$ such that $l_{i} \leq k$. Hence

$$
s_{i} \leq c_{1} t_{l_{i}}
$$

So, since S and T are in \mathscr{R}_{0}^{*},

$$
\begin{equation*}
s_{k} \leq c_{2} t_{k}, k=1, \ldots, n \tag{44}
\end{equation*}
$$

On the other hand

$$
\prod_{k=1}^{n} \frac{t_{k}}{s_{k}}=\frac{t_{1} \ldots t_{n}}{|T|} \cdot \frac{|S|}{s_{1} \ldots s_{n}}|G|^{2}
$$

and all the factors on the right are bounded. Therefore

$$
\prod_{k=1}^{n} \frac{t_{k}}{s_{k}}<c_{3}
$$

Using (44), it follows that

$$
\begin{equation*}
t_{k} \leq c_{4} s_{k}, \quad(k=1,2, \ldots, n) \tag{45}
\end{equation*}
$$

Combining (43) and (45) we have the inequality

$$
\begin{equation*}
s_{k} g_{k l}^{2}<c_{5} s_{l} \quad k, l=1, \ldots, n \tag{46}
\end{equation*}
$$

Let p now be defined to be the largest integer such that

$$
\begin{equation*}
s_{l} \geq c_{5} s_{l}, k \geq p, l \leq p-1 \tag{47}
\end{equation*}
$$

If $p=1$, this condition does not exist. From the definition of p, it follows that for every integer g with $p+1 \leq g \leq n$, there exists a $k_{g} \geq g$ and an $l_{g}<g$ such that

$$
\begin{equation*}
s_{k_{g}}<c_{5} s_{l_{g}} \tag{48}
\end{equation*}
$$

This holds for $p=1$, but if $p=n$, it does not exist.
Let c_{6} be a constant such that

$$
\begin{equation*}
s_{k}<c_{6} s_{l} \quad k \leq l . \tag{49}
\end{equation*}
$$

This exists since $S \in \mathscr{R}_{t}^{*}$. Using (48) and (49) and putting $c_{7}=c_{5} c_{6}^{2}$ we have

$$
\begin{equation*}
s_{g}<c_{7} s_{g-1} \quad g \geq p+1 \tag{50}
\end{equation*}
$$

(49) and (50) give the important inequality

$$
\begin{equation*}
\frac{1}{c_{8}}<\frac{s_{k}}{s_{l}}<c_{8} \quad k \geq p, l \leq p \tag{51}
\end{equation*}
$$

Using (46) and (47), we have if $k \geq p$ and $l \leq p-1$

$$
s_{k} g_{k l}^{2}<c_{5} s_{1} \leq s_{k}
$$

Since $s_{k} \neq 0$, we have $g_{k l}^{2}<1$. But $g_{k l}$ are integers. Hence

$$
\begin{equation*}
g_{k l}=0 \quad k \geq p, \quad l \leq p-1 \tag{52}
\end{equation*}
$$

Let us split G up into 4 parts by

$$
G=\left(\begin{array}{ll}
G_{1} & G_{12} \\
G_{21} & G_{2}
\end{array}\right)
$$

where G_{1} is a square matrix of order $p-1$. (52) then shows that

$$
\begin{equation*}
G_{21}=0 \tag{53}
\end{equation*}
$$

Let now $k \geq p, 1 \geq p$. Then from (51) we have

$$
\begin{equation*}
g_{k l}^{2}<c_{5} \frac{s_{1}}{s_{k}}<c_{5} c_{8} \tag{54}
\end{equation*}
$$

which means that the elements of G_{2} are bounded.
Note that if $p=1$, our theorem is already proved by (54). So we may assume $p>1$.

In order to prove the theorem we use induction. If $n=1$, the theorem is trivially true. Assume theorem therefore proved for $n-1$ instead of n. Split S and T in the form

$$
S=\left(\begin{array}{cc}
S_{1} & S_{12} \\
S_{12}^{\prime} & S_{2}
\end{array}\right) \quad T=\left(\begin{array}{cc}
T_{1} & T_{12} \\
T_{12}^{\prime} & T_{2}
\end{array}\right)
$$

where S_{1} and T_{1} are $p-1$ rowed square matrices. Because $S[G]=T$, we get

$$
\begin{align*}
& S_{1}\left[G_{1}\right]=T_{1} \\
& G_{1}^{\prime} S_{1} G_{12}+G_{1}^{\prime} S_{12} G_{2}=T_{12} \tag{55}
\end{align*}
$$

By considerations above $G_{21}=0$ therefore $|G|=\left|G_{1}\right| \cdot\left|G_{2}\right|$. Since G is integral it follows that abs $\left|G_{1}\right|<t$. Also S_{1} and T_{1} are $p-1$ rowed square matrices which are in $\mathscr{R}_{t, p-1}^{*}$, where $\mathscr{R}_{t, p-1}^{*}$ is the same as \mathscr{R}_{t}^{*} with $p-1$ instead of n. E_{y} induction hypothesis and (55) we see that G_{1} is bounded.

Using the fact that $G_{1}^{\prime} S_{1}=T_{1} G_{1}^{-1}$ we get

$$
G_{12}=G_{1} T_{1}^{-1} T_{12}-S_{1}^{-1} S_{12} G_{2}
$$

Using lemma [5] it follows that the elements of G_{12} are bounded.
Our theorem is completely proved.
In particular,
Corollary. If S and T are in \mathscr{R}_{t}^{*} and $S[U]=T$ for a unimodular U, then $\mathbf{5 6}$ U belongs to a finite set of unimodular matrices determined completely by t and n.

5 Space of reduced matrices

We have seen that given any matrix $T>0$, there exists in the class of T, a half-reduced matrix S. Consider now the 2^{n} unimodular matrices of the form

$$
A=\left(\begin{array}{lll}
a_{1} & & 0 \\
& \ddots & \\
0 & & a_{n}
\end{array}\right)
$$

where $a_{i}= \pm 1$. If S is half-reduced, then $S[A]$ also is half-reduced. For, if $\underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ is an admissible k-vector, then $A \underline{x}=\left(\begin{array}{c} \pm x_{1} \\ \vdots \\ \pm x_{n}\end{array}\right)$ is also an admissible k-vector. Also, the diagonal elements of S and $S[A]$ are the same. We shall choose A properly so that $S[A]$ satisfies some further conditions.

Since $S[A]=S[-A]$, there is no loss in generality if we assume $a_{1}=1$. Denote by $\underline{\alpha}_{1}, \ldots, \underline{\alpha}_{n}$ the n columns of the matrix A. Consider now $\underline{\alpha}_{1}^{\prime} S \underline{\alpha}_{2}$. This equals $a_{2} s_{12}$. If $s_{12} \neq 0$ choose a_{2} so that

$$
a_{2} s_{12} \geq 0
$$

If $s_{12}=0, a_{2}$ may be chosen arbitrarily. Having chosen a_{1}, \ldots, a_{k} consider $\underline{\alpha}_{k}^{\prime} S \underline{\alpha}_{k+1}=a_{k} a_{k+1} S_{k k+1}$. Since a_{k} has been chosen, we choose $a_{k+1}= \pm 1$ by the condition

$$
a_{k} a_{k+1} s_{k k+1} \geq 0
$$

provided $s_{k k+1} \neq 0$. If $s_{k k+1}=0, a_{k+1}$ may be arbitrarily chosen. We have thus shown that in each class of equivalent matrices, there is a matrix S satisfying
a) $s_{1}>0$
B) $s_{k k+1} \geq 0, k=1, \ldots, n-1$.

خ) $S[\underline{x}]-s_{k} \geq 0, k=1, \ldots, n$ for every admissible k-vector.
We shall call a matrix satisfying the above conditions a reduced matrix, reduced in the sense of Minkowski. Let \mathscr{R} denote the set of reduced matrices, then

$$
\begin{equation*}
\mathscr{R} \subset \mathscr{R}_{0} . \tag{56}
\end{equation*}
$$

Since the elements of $S \in \mathscr{P}$ are coordinates of the point S, the conditions β) and γ) above show that \mathscr{R} is defined by the intersection of an infinity of closed half spaces of \mathscr{P}. We shall denote the linear functions in β) and γ) by $L_{r}, r=1,2,3, \ldots$ It is to be noted that we exclude the case when an L_{r} is identically zero. This happens when in
$\gamma), \underline{x}$ is the admissible k-vector equal to $\pm \underline{e_{k}}$. We may therefore say that \mathscr{R} is defined by

$$
\begin{equation*}
\left.\bar{\alpha}) s_{1}>0, \quad \bar{\beta}\right) L_{r} \geq 0 r=1,2,3, \ldots \tag{57}
\end{equation*}
$$

We shall see presently that the infinite system of linear inequalities can be replaced by a finite number of them.

In order to study some properties of the reduced space \mathscr{R}, we first $\mathbf{5 8}$ make some definitions.

Definition. i) S is said to be an inner point of \mathscr{R} if $s_{1}>0$ and $L_{r}(S)>0$ for all r.
ii) It is said to be a boundary point of \mathscr{R} if $s_{1}>0 L_{r}(S) \geq 0$ for all r and $L_{r}(S)=0$ at least for one r.
iii) It is said to be an outer point of \mathscr{R} if $s_{1}>0$ and $L_{r}(S)<0$ at least for one r.

We first show that \mathscr{R} has inner points.
Consider the quadratic form

$$
S|\underline{x}|=x_{1}^{2}+\cdots+x_{n}^{2}+\left(p_{1} x_{1}+\cdots+p_{n} x_{n}\right)^{2}
$$

where p_{1}, \ldots, p_{n} are n real numbers satisfying

$$
0<p_{1}<p_{2} \ldots<p_{n}<1
$$

The matrix $S=\left(s_{k l}\right)$ is then given by

$$
\begin{aligned}
s_{k} & =1+p_{k}^{2}, & & k=1, \ldots, n \\
s_{k l} & =p_{k} p_{l}, & & k \neq l .
\end{aligned}
$$

We assert that S is an inner point of \mathscr{R}. In the first place

$$
s_{1}>0, s_{k k+1}=p_{k} p_{k+1}>0 ; k=1, \ldots, n-1
$$

Next let \underline{x} be an admissible k-vector not equal to $\pm \underline{e_{k}}$. Then at least one of x_{k}, \ldots, x_{n} has to be different from zero. If at least two of then, say x_{j}, x_{1} are different from zero, so that $k \leq 1<j \leq n$, then

$$
S[\underline{x}] \geq x_{1}^{2}+x_{j}^{2}+\cdots \geq 2>1+p_{k}^{2}=s_{k} .
$$

The worst case is when all of x_{k}, \ldots, x_{n} except one are zero. If $x_{k}= \pm 1$ and $x_{1}=0$ for $l>k$, then $x_{i} \neq 0$ for some $i<k$ since $\underline{x} \neq \pm \underline{e_{k}}$ and (then) $S[\underline{x}] \geq 2$. Let $x_{i}=0$ for all i except $i=l>k$ so that $\underline{x}= \pm \underline{e}_{l}$. Then

$$
S[\underline{x}]=1+p_{l}^{2}>1+p_{k}^{2}=s_{k} .
$$

This proves that S is an inner point.
We now prove
Theorem 6. The set of inner points of \mathscr{R} is an open set in \mathscr{P}.
Proof. Let S be an inner point of \mathscr{R}. Then $s_{1}>0$ and $L_{r}>0$ for all r. The inequalities $s_{k k+1}>0$ being finitely many can be satisfied also at all points of a sufficiently small neighbourhood of S. We therefore consider the other infinitely many inequalities. Let S^{*} be a point close to S so that the elements of $S^{*}-S$ are near zero. Let \underline{x} be an admissible k-vector $\neq \pm \underline{e_{k}}$. Consider $S^{*}[\underline{x}]-s_{k}^{*}$ where $S^{*}=\left(s_{k l}^{*}\right)$. Let $\varepsilon>0$ be a real number. We can choose S^{*} close to S so that $\left(S^{*}-S\right)[\underline{x}] \geq-\varepsilon \underline{x^{\prime}} \underline{x}$. Now

$$
\begin{gathered}
S^{*}[\underline{x}]-s_{k}^{*}=\left(S^{*}-S\right)[\underline{x}]+S \underline{x}-s_{k}^{*} \\
\geq-\varepsilon \underline{x}^{\prime} \underline{x}+S[\underline{x}]-s_{k}^{*} .
\end{gathered}
$$

If $\lambda>0$ is the smallest eigen value of S, then we may assume ε small enough so that

$$
S^{*}[\underline{x}]-s_{k}^{*} \geq \frac{\lambda}{2} \underline{x}^{\prime} \underline{x}-s_{k}^{*}
$$

$60 \quad$ There are only finitely many integral vectors \underline{x} with $\frac{\lambda}{2} \underline{x^{\prime}} \underline{x} \leq s_{k}^{*}$. We may therefore choose S^{*} close enough to S such that

$$
S^{*}[\underline{x}]-s_{k}^{*} \geq \frac{\lambda}{2} \underline{x}^{\prime} \underline{x}-s_{k}^{*}>0
$$

for all admissible k-vectors \underline{x}. Doing this for $k=1, \ldots, n$ we see that there is a small sphere containing S and which consists entirely of points S^{*}. These, by our construction, are inner points. This proves our contention.

Consider now the outer points of \mathscr{R}. Let S be one such. Then at least for one $r, L_{r}(S)<0$. Since the L_{r} are linear functions of the coordinates and hence continuous, we may choose a neighbourhood of S consisting of points for all of which $L_{r}<0$. This means that the set of outer points of \mathscr{R} is open. Note that here it is enough to deal with one inequality alone unlike the previous one where one had to deal with all the L_{r} 's.

Let now S be a boundary point of \mathscr{R}. Let S^{*} be an inner point. Consider the points T_{λ} defined by

$$
T_{\lambda}=\lambda S^{*}+(1-\lambda) S
$$

These are points on the line joining S and S^{*} and every neighbourhood of S contains points T_{λ} with $\lambda>0$ and points T_{λ} with $\lambda<0$.

Consider the points T_{λ} with $0<\lambda \leq 1$. These are the points between S and S^{*}. Let L_{r} be one of the linear polynomials defining \mathscr{R}. Now $L_{r}(S) \geq 0$, and $L_{r}\left(S^{*}\right)>0$, for all r. Thus

$$
L_{r}\left(T_{\lambda}\right)=\lambda L_{r}\left(S^{*}\right)+(1-\lambda) L_{r}(S)>0
$$

Hence T_{λ} is an inner point.
Let now T be a point with $\lambda<0$. Since S is a boundary point, there is an r such that $L_{r}(S)=0$. For this r

$$
L_{r}\left(T_{\lambda}\right)=\lambda L_{r}\left(S^{*}\right)<0
$$

which proves that T_{λ} is an outer point.
Since linear functions are continuous, the limit of a sequence of points of \mathscr{R} is again a point of \mathscr{R}. This proves

Theorem 7. \mathscr{R} is a closed set in \mathscr{P} and the boundary points of \mathscr{R} constitute the frontier of \mathscr{R} in the topology of \mathscr{P}.

We now prove the following
Theorem 8. Let S and S^{*} be two points of \mathscr{R} such that $S[U]=S^{*}$ for a unimodular $U \neq \pm E$. Then S and S^{*} are boundary points of \mathscr{R} and U belongs to a finite set of unimodular matrices determined completely by the integer n.

Proof. The second part of the theorem follows readily from the Corollary to Theorem 5 To prove the first part, we consider two cases: (1) U is a diagonal matrix, and (2) U is not a diagonal matrix.

Let U be a diagonal matrix, $U=\left(a_{1}, \ldots, a_{n}\right)$, with $a_{i}= \pm 1$. We may assume, since $S[U]=S[-U]$ that $a_{1}=1$. Let a_{k+1} be the first element $=-1$. Then, with usual notation,

$$
s_{k k+1}^{*}=-s_{k k+1}
$$

But S and S^{*} being points of \mathscr{R} we have

$$
0 \leq s_{k k+1}^{*}=-s_{k k+1} \leq 0
$$

which means that $s_{k k+1}=0=s_{k k+1}^{*}$. Hence S and S^{*} are both boundary points of \mathscr{R}.

Suppose U is not a diagonal matrix and denote its columns by $\underline{u_{1}}$, $\ldots, \underline{u_{n}}$. Let $\underline{u_{k}}$ be the first column different from the corresponding column of a diagonal matrix. Hence $u_{i}= \pm e_{i}, i=1, \ldots, k-1$. (Note that k may very well be equal to 1). Then

$$
U=\left(\begin{array}{ll}
D & * \\
0 & V
\end{array}\right)
$$

where D is a diagonal matrix which is unimodular. V is a unimodular matrix. Furthermore

$$
U^{-1}=\left(\begin{array}{cc}
D^{-1} & * \\
0 & V^{-1}
\end{array}\right)
$$

is unimodular. Let $\underline{w_{k}}$ be the k-th column of U^{-1}. Then $\underline{w_{k}} \neq \pm \underline{e_{k}}$. Now

$$
s_{k}^{*}=S\left[\underline{u_{k}}\right] \geq s_{k}
$$

and

$$
s_{k}=S^{*}\left[\underline{w_{k}}\right] \geq s_{k}^{*}
$$

which proves that $\left.S \underline{\left[u_{k}\right.}\right]-s_{k}=0=S^{*}\left[\underline{w_{k}}\right]-s_{k}^{*}$ and therefore S and S^{*} are boundary points of \mathscr{R}.

Suppose now that S is a boundary point of \mathscr{R}. By Theorem 7 therefore, there exists a sequence of outer points S_{1}, S_{2}, \ldots converging to S.

If the suffix k is sufficiently large, then all the S_{k} 's lie in a neighbourhood of S. Therefore they are all contained in an \mathscr{R}_{t}^{*} for some t. For each k let U_{k} be a unimodular matrix such that $S_{k}\left[U_{k}\right]$ is in \mathscr{R}. Since $\mathscr{R} \subset \mathscr{R}_{t}^{*}$, we have for all sufficiently large k, S_{k} and $S_{k}\left[U_{k}\right]$ are both in \mathscr{R}_{t}^{*}. It follows therefore by Theorem[5] that U_{k} 's belong to a finite set of matrices. There exists therefore a subsequence $S_{k_{1}}, S_{k_{2}}, \ldots$ converging to S such that one unimodular matrix U, among these finitely many, carries $S_{k_{i}}$ into \mathscr{R}. Also $\operatorname{Lim}_{n \rightarrow \infty} S_{k_{n}}=S$ and therefore $\lim S_{k_{n}}[U]=S[U]$ is a point of \mathscr{R}. Since S is a point of \mathscr{R}, it follows from the above theorem that $S[U]$ is also a boundary point of \mathscr{R}. Furthermore $U \neq \pm E$ since S_{k} are all outer points and $S_{k}[U] \in \mathscr{R}$. Hence

Theorem 9. If S is a boundary point of \mathscr{R}, there exists a unimodular matrix $U \neq \pm E$ and belonging to the finite set determined by Theorem 8) such that $S[U]$ is again a boundary point of \mathscr{R}.

By Theorem 8 there exist finitely many unimodular matrices say U_{1}, \ldots, U_{g} which occur in the transformation of boundary points into boundary points. If u_{k} is the k-th column of one of these matrices, then $\frac{u_{k}}{S}$ is an admissible $\overline{k-v e c t o r . ~ S u p p o s e ~ i t ~ i s ~} \neq \pm e_{k}$. Then for all $S \in \mathscr{R}$, $\bar{S}\left[\underline{u_{k}}\right]-s_{k} \geq 0$. Let us denote by $L_{1}, L_{2}, \ldots, L_{h}$ all the linear forms, not identically zero, which result from all the u_{k} 's $k=1, \ldots, n$ occurring in the set U_{1}, \ldots, U_{g}. Let L_{1}, \ldots, L_{h} also include the linear forms $s_{k k+1}$, $k=1, \ldots, n-1$; then from above we see that for a boundary point S of \mathscr{R}, there is an $r \leq h$ such that $L_{r}(S)=0$ (not identically). Also for all points of \mathscr{R}

$$
\begin{equation*}
s_{1}>0, L_{1}(S) \geq 0, \ldots, L_{h}(S) \geq 0 . \tag{59}
\end{equation*}
$$

But what is more important, we have
Theorem 10. A point S of \mathscr{P} belongs to \mathscr{R} if and only if $s_{1}>0$ and $L_{r}(S) \geq 0$ for $r=1, \ldots, h$.

Proof. The interest in the theorem is in the sufficiency of the conditions (59).

Let S be a point of \mathscr{P} satisfying (59). Suppose S is not in \mathscr{R}. Since it is in \mathscr{P}, it is an outer point of \mathscr{R}. Therefore $L_{r}(S)<0$ for some $r>h$.

Let S^{*} be an inner point of \mathscr{R}. Consider the points T_{λ},

$$
T=\lambda S+(1-\lambda) S^{*}
$$

for $0<\lambda<1$, in the open segment joining S and S^{*}. Since the set of inner points of \mathscr{R} is open and S is assumed to be an outer point, there exists a λ_{0} such that $T_{\lambda_{0}}$ is on the frontier of \mathscr{R} and $0<\lambda_{0}<1$. By our remarks above, there exists for $T_{\lambda_{0}}$ an $s \leq h$ such that $L_{s}\left(T_{\lambda_{0}}\right)=0$. This means that

$$
0=L_{s}\left(T_{\lambda_{0}}\right)=\lambda_{0} L_{s}(S)+\left(1-\lambda_{0}\right) L_{s}\left(S^{*}\right)
$$

But $\left(1-\lambda_{0}\right) L_{s}\left(S^{*}\right)>0$ so that $L_{s}\left(T_{\lambda_{0}}\right)>0$. This is a contradiction. Therefore $S \in \mathscr{R}$.

We have therefore proved that \mathscr{R} is bounded by a finite number of planes all passing through the origin. \mathscr{R} is thus a pyramid.

Let now $\overline{\mathscr{R}}$ denote the closure of \mathscr{R} in the space R_{h}. At every point S or $\overline{\mathscr{R}}$ one has, because of continuity of linear functions,

$$
s_{1} \geq 0, \quad L_{r}(S) \geq 0, \quad r=1,2,3, \ldots
$$

If $S \in \overline{\mathscr{R}}$ but not in \mathscr{R}, then $s_{1}=0$. In virtue of the other inequalities, we see that

$$
S=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{1}
\end{array}\right)
$$

S_{1} again has similar properties. Thus either $S=0$ or

$$
S=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{k}
\end{array}\right)
$$

where S_{k} is non-singular and is a reduced matrix of order $r, 0<r<n$. We thus see that the points of \bar{R} which are not in \mathscr{R} are the semi-positive reduced matrices.

Consider now the space \mathscr{P} and the group Γ. If $U \in \Gamma$, the mapping $S \rightarrow S[U]$ is topological and takes \mathscr{P} onto itself. For $U \in \Gamma$ denote by \mathscr{R}_{U} the set of matrices $S[U]$ with $S \in \mathscr{R}$. Because U and $-U$ lead to the same mapping, we have $\mathscr{R}_{U}=\mathscr{R}_{-U}$. Since in every class of matrices there is a reduced matrix we see that

1) $\sum_{U \in \Gamma} \mathscr{R}_{ \pm U}=\mathscr{P}$
where in the summation we identify U and $-U$. Thus the $\mathscr{R}_{ \pm U}$'s cover \mathscr{P} without gaps.

Let U and V be in Γ and $U \neq \pm V$. Consider the intersection of \mathscr{R}_{U} and \mathscr{R}_{V}. Let $S \in \mathscr{R}_{U} \cap \mathscr{R}_{V}$. Then $T_{1}=S\left[U^{-1}\right]$ and $T_{2}=S\left[V^{-1}\right]$ are both points of \mathscr{R}. Moreover $T_{1}=T_{2}\left[V U^{-1}\right]$ and $V U^{-1} \neq \pm E$ so that T_{1} is a boundary point of \mathscr{R}. Since the mapping $S \rightarrow S[U]$ is topological S is a boundary point of \mathscr{R}_{U} and also of \mathscr{R}_{V}. Hence
2) If $U V^{-1} \neq \pm E$ and U and V are unimodular, then \mathscr{R}_{U} and \mathscr{R}_{V} can have at most boundary points in common.

In particular, if $U \neq \pm E, \mathscr{R}$ and \mathscr{R}_{U} can have only boundary points in common. If $S \in \mathscr{R} \cap \mathscr{R}_{U}$ then S and $S\left[U^{-1}\right]$ are in \mathscr{R} and by Theorem $9 U$ belongs to a finite set of matrices depending only on n. If we call \mathscr{R}_{U} a neighbour of \mathscr{R} if $\mathscr{R} \cap \mathscr{R}_{U}$ is not empty, then we have proved
3) \mathscr{R} has only finitely many neighbours.

Let K now be a compact subset of \mathscr{P}. It is therefore bounded in \mathscr{P} and hence there exists a $t>0$ such that $K \subset \mathscr{R}_{t}^{*}$. Suppose \mathscr{R}_{U}, for a unimodular U, intersects K. Let $S \in \mathscr{R}_{U} \cap K$. There is then a $T \in \mathscr{R}$ such that $T[U]=S$. For large $t, \mathscr{R} \subset \mathscr{R}_{t}^{*}$. Then T and S are both in \mathscr{R}_{t}^{*} and $S=T[U]$. Therefore U belongs to a finite set of matrices. Hence there exist a finite number of unimodular matrices, say U_{1}, \ldots, U_{p} such that

$$
K \subset \sum_{i=1}^{p} \mathscr{R}_{U_{i}}
$$

Hence
4) Every compact subset of \mathscr{P} is covered by a finite number of images \mathscr{R}_{U} of \mathscr{R}.

We have thus obtained the fundamental results of Minkowski's reduction theory.

We now give a simple application.
Suppose S is a positive, reduced, integral matrix. Then since $s_{1} s_{2} \ldots$ $s_{n} \leq b_{n}|S|, s_{1}, \ldots, s_{n}$ are positive and b_{n} depends only on n, it follows that for a given $|S|$, there exist only finitely many integer values for s_{1}, \ldots, s_{n}. Also

$$
-s_{k} \leq 2 s_{k l} \leq s_{k}, \quad k<l
$$

so that $s_{k l}$ being integers, there are finitely many values of $s_{k l}$ satisfying the above inequalities. We have therefore the

Theorem 11. There exist only finitely many positive, integral, reduced matrices with a given determinant and number of rows.

Since all matrices in a class have the same determinant, and in each class there is at least one reduced matrix, we get the

Theorem 12. There exist only a finite number of classes of positive integral matrices with given determinant and number of rows.

It has to be noticed, that in virtue of property 3) above, one has, in general, only one reduced matrix in a class.

6 Binary forms

We now study the particular case $n=2$.
Let $S=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ be a positive binary matrix and $\underline{x}=\binom{x}{y}$ a vector. The quadratic form $S[\underline{x}]=a x^{2}+2 b x y+c y^{2}$ is positive definite. By the results of the previous section, we see that, if S is reduced then

$$
\begin{equation*}
a>0, \quad 0 \leq 2 b \leq a \leq c \tag{60}
\end{equation*}
$$

We shall now prove that any matrix S satisfying (60) is reduced.
Let $\underline{x}=\binom{x}{y}$ be an admissible one-vector. If $y=0$, then $x= \pm 1$. If $y \neq$ 0 , then x and y are coprime integers. Consider the value $a x^{2}+2 b x y+c y^{2}$ for admissible one-vectors. We assert that $a x^{2}+2 b x y+c y^{2} \geq a$. In the first case $S[\underline{x}]=a$. In the second case, because of (60)

$$
a x^{2}+2 b x y+c y^{2} \geq a\left(x^{2}-x y+y^{2}\right)
$$

But x and y are not both zero. Thus $x^{2}-x y+y^{2} \geq 1$ which means that $S[\underline{x}] \geq a$.

Let now $\underline{x}=\binom{x}{y}$ be an admissible two-vector. Then $y= \pm 1$. If $x=0$, then $S[\underline{x}]=c$. Let $x \neq 0$, then

$$
S[\underline{x}]=a x^{2} \pm 2 b x+c=c+x(a x \pm 2 b) .
$$

Because of 60, it follows that $x(a x \pm 2 b) \geq 0$. Thus S satisfies conditions I) and II) of half reduction. Also $b \geq 0$. This proves that $S>0$ and reduced.
(60) thus gives the necessary and sufficient conditions for a binary 69 quadratic form to be reduced.

In the theory of binary quadratic forms, one discusses some-times equivalence not under all unimodular matrices, but only with respect to those unimodular matrices whose determinant is unity. We say that two binary matrices S and T are properly equivalent if there is a unimodular matrix U such that

$$
\begin{equation*}
S=T[U], \quad|U|=1 . \tag{61}
\end{equation*}
$$

The properly equivalent matrices constitute a proper class. Note that the properly unimodular matrices form a group. Two matrices S and T which are equivalent in the sense of the previous sections, but which do not satisfy (61) are said to be improperly equivalent. Note that improper equivalence is not an equivalence relation.

In order to obtain the reduction theory for proper equivalence we proceed thus: If $S_{1}=\left(\begin{array}{cc}a_{1} & b_{1} \\ b_{1} & c_{1}\end{array}\right)$ is positive, then there is a unimodular matrix U such that $S=S_{1}[U]=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ satisfies (60). If $|U|=1$ we call S a properly reduced matrix. If $|U|=-1$, then consider W

$$
W=\left(\begin{array}{cc}
1 & 0 \tag{62}\\
0 & -1
\end{array}\right)
$$

Then $V=U W$ has the property $|V|=1$. Now $S[W]=\left(\begin{array}{cc}a & -b \\ -b & c\end{array}\right)$ and we call this properly reduced. In any case we see that S is properly reduced means

$$
\begin{equation*}
a>0, \quad 0 \leq|2 b| \leq a \leq c . \tag{63}
\end{equation*}
$$

If we denote by \mathscr{R} the reduced domain, that is the set of reduced matrices in the old sense and \mathscr{R}^{*} the properly reduced domain, one sees immediately that

$$
\mathscr{R}^{*}=\mathscr{R}+\mathscr{R}_{W}
$$

where W has the meaning in 62 .
We shall now give two applications.
Let $S=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ be a positive integral matrix. Because of conditions (63) and the additional condition (31), it follows that for given $|S|$, there exist only finitely many properly reduced integral matrices. Consider now the case $|S|=1$. Then because of (31),

$$
\begin{equation*}
a c \leq \frac{4}{3} \tag{64}
\end{equation*}
$$

and hence the only integers a, b, c, satisfying (63) and (64) are $a=c=$ $1, b=0$. This proves
i) Every binary integral positive quadratic form of determinant unity is properly equivalent to $x^{2}+y^{2}$.

Let now p be a prime number >2. Let p be representable by the quadratic form $x^{2}+y^{2}$. We assert that then $p \equiv 1(\bmod 4)$. For, if x and y are integers such that

$$
x^{2}+y^{2}=p
$$

then x and y cannot be congruent to each other mod 2. So let x be odd and y even. Then $p=x^{2}+y^{2} \equiv 1(\bmod 4)$.

We will now prove that conversely if $p \equiv 1(\bmod 4)$, the form $x^{2}+y^{2}$ represents p (integrally). For, let ρ be a primitive root $\bmod \mathrm{p}$. There is then an integer $k, 1 \leq k<p-1$ such that

$$
\rho^{k} \equiv-1(\bmod \mathrm{p})
$$

This means that $\rho^{2 k} \equiv 1(\bmod \mathrm{p})$ and by definition of primitive root, we get $k=p-1 / 2$. But $p \equiv 1(\bmod 4)$ so that k is an even integer. Therefore

$$
-1 \equiv\left(\rho^{k / 2}\right)^{2}(\bmod \mathrm{p})
$$

There is thus an integer $b, 1 \leq b \leq p-1$ such that $b^{2} \equiv-1(\bmod \mathrm{p})$. Put $b^{2}=-1+\lambda p, \lambda \geq 1$ an integer.

Consider the binary form $p x^{2}+2 b x y+\lambda y^{2}$. Its determinant is $p \lambda-$ $b^{2}=1$. By the result obtained in i), this form is equivalent to $x^{2}+y^{2}$. But $p x^{2}+2 b x y+\lambda y^{2}$ represents $p,(x=1, y=0)$. Therefore $x^{2}+y^{2}$ represents p. Thus
ii) If p is a prime >2, then $x^{2}+y^{2}=p$ has a solution if and only if $p \equiv 1(\bmod 4)$.

Results i) and ii) are due originally to Lagrange.
Let $S[\underline{x}]=a x^{2}+2 b x y+c y^{2}$ be a real, positive, binary quadratic form. We can write

$$
\begin{equation*}
S[\underline{x}]=a(x-\tau y)(x-\bar{\tau} y) \tag{65}
\end{equation*}
$$

where τ is a root, necessarily complex, of the polynomial $a z^{2}+2 b z+c \quad 72$ and $\bar{\tau}$ is its conjugate. Let $\tau=\xi+i \tau$ have positive imaginary part.

Let $V=\left(\begin{array}{ll}\lambda & \mu \\ \nu & \rho\end{array}\right)$ be a real matrix of unit determinant and consider the mapping

$$
S \rightarrow S[V]
$$

Then $S[V \underline{x}]$ is given by

$$
\begin{equation*}
S[V \underline{x}]=a^{\prime}\left(x-\tau^{\prime} y\right)\left(x-\bar{\tau}^{\prime} y\right) \tag{66}
\end{equation*}
$$

where $a^{\prime}=a(\lambda-v \tau)(\lambda-v \bar{\tau})$ is necessarily real and positive, and

$$
\begin{equation*}
\tau^{\prime}=V^{-1}(\tau)=\frac{\rho \tau-\mu}{-v \tau+\lambda} \tag{67}
\end{equation*}
$$

It is easy to see that τ^{\prime} also has positive imaginary part. Let us also observe that $\tau=\frac{-b+i \sqrt{|S|}}{a}$.

Consider now the relationship between S and τ. If S is given, then (65) determines a τ with positive imaginary part. Now given τ, 65) itself shows that S is determined only upto a real factor. This real factor can be determined by insisting that the associated quadratic forms have a given determinant. In particular, if $|S|=1$ then the τ is uniquely
determined by S and conversely. If $\tau=\xi+i \eta, \eta>0$, then the S is given by

$$
S=\left(\begin{array}{cc}
\eta^{-1} & 0 \tag{68}\\
0 & \eta
\end{array}\right)\left[\begin{array}{cc}
1 & -\xi \\
0 & 1
\end{array}\right]
$$

Let \mathscr{P} denote the space of positive binary forms of unit determinant and \mathscr{G} the upper half complex τ-plane. By what we have seen above the mapping $S \rightarrow \tau$ in (65) is $(1,1)$ both ways. Let Γ denote the group of proper unimodular matrices. It acts on \mathscr{G} as a group of mappings

$$
\tau \rightarrow U(\tau)=\frac{\lambda \tau+\mu}{v \tau+\rho}, \quad U=\left(\begin{array}{ll}
\lambda & \mu \tag{69}\\
v & \rho
\end{array}\right)
$$

of \mathscr{G} onto itself. If we define two points τ_{1}, τ_{2} in \mathscr{G} as equivalent if there is a $U \in \Gamma$ such that $\tau_{1}=U\left(\tau_{2}\right)$, then the classical problem of constructing a fundamental region in \mathscr{G} for Γ, is seen to be the same as selecting from each class of equivalent points one point so that the resulting point set has 'nice' properties.

By means of the $(1,1)$ correspondence, we have established in 68) between \mathscr{P} and \mathscr{G}, we have $S_{1}=S_{2}[U]$ if and only if the corresponding points τ_{1}, τ_{2} respectively satisfy

$$
\tau_{1}=U^{-1}\left(\tau_{2}\right)
$$

We define the fundamental region F in \mathscr{G} to be the set of points τ such that the matrices corresponding to them are properly reduced; in other words, they satisfy 63). For the S in 68), $S[\underline{x}]=\frac{1}{\eta}\left(x^{2}-2 \xi x y+\left(\xi^{2}+\right.\right.$ $\left.\eta^{2}\right) y^{2}$). Therefore F consists of points $\tau=\xi+i \eta$ for which

$$
\begin{align*}
& |2 \xi| \leq 1 \\
& \xi^{2}+\eta^{2} \geq 1 \tag{70}
\end{align*}
$$

This is the familiar modular region in the upper half τ-plane. That it is a fundamental region follows from the properties of the space of reduced matrices in \mathscr{P}. The points P and Q are the complex numbers $\frac{ \pm 1+i \sqrt{3}}{2}$, and so for any point in $F, \eta \geq \frac{\sqrt{3}}{2}$. This means that for a positive reduced binary form $a x^{2}+2 b x y+c y^{2}$ of determinant \underline{d}

$$
\frac{a}{\sqrt{d}} \leq \frac{2}{\sqrt{3}}
$$

which we had already seen in Theorem 1

7 Reduction of lattices

Let V be the Euclidean space of n dimensions formed by n-rowed real columns

$$
\alpha=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) .
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of V so that

$$
\alpha_{i}=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{n i}
\end{array}\right), \quad i=1, \ldots, n .
$$

Denote by A the matrix $\left(a_{k l}\right)$. Obviously $|A| \neq 0$.

Let L be a lattice in V and let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of this lattice. L then consists of elements $\alpha_{1} g_{1}+\cdots+\alpha_{n} g_{n}$ where g_{1}, \ldots, g_{n} are integers. We shall call A the matrix of the lattice.

Conversely if A is any non-singular n-rowed matrix, then the columns of A, as elements of V are linearly independent and therefore determine a lattice.

Let L be the lattice above and let $\beta_{1}, \ldots, \beta_{n}$ be any other base of L and B its matrix, then

$$
B=A U
$$

where U is a unimodular matrix. Also if U runs through all unimodular matrices, then $A U$ runs through all bases of L. We now wish to single out among these bases one which has some distinguished properties.

Let us introduce in V, the inner product $\alpha \cdot \beta$ of two vectors α and β by

$$
\alpha \cdot \beta=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

where $\alpha=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right), \beta=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$. The square of the length of the vector α is given by

$$
\alpha^{2}=a_{1}^{2}+\cdots+a_{n}^{2}
$$

Let A be the matrix of a base $\alpha_{1}, \ldots, \alpha_{n}$ of L. Consider the positive matrix $S=A^{\prime} A$. If S is given A is determined only upto an orthogonal matrix P on its left. For, if $A^{\prime} A=A_{1}^{\prime} A_{1}$ then $A A_{1}^{-1}=P$ is orthogonal. But multiplication on the left by an orthogonal matrix implies a rotation in V about the origin.

We shall call a base B of L reduced if $S_{1}=B^{\prime} B$ is a reduced matrix. Obviously in this case

$$
\begin{aligned}
& 0<\beta_{1}^{2} \leq \ldots \leq \beta_{n}^{2} \\
& \beta_{k} \beta_{k+1} \geq 0, \quad k=1, \ldots, n-1
\end{aligned}
$$

76 From the way reduced matrices are determined we see that a reduced base $\beta_{1}, \ldots, \beta_{n}$ of L may be defined to be a base such that for every set of integers x_{1}, \ldots, x_{n} such that $\left(x_{k}, \ldots, x_{n}\right)=1$ the vector

$$
\beta=\beta_{1} x_{1}+\cdots+\beta_{n} x_{n}
$$

satisfies

$$
\beta^{2} \geq \beta_{k}^{2} \quad(k=1, \ldots, n .)
$$

Also

$$
\beta_{k} \cdot \beta_{k+1} \geq 0(k=1, \ldots, n+1)
$$

If follows therefore that

$$
\beta_{1}^{2} \ldots \beta_{n}^{2} \leq c_{n}\left|A^{\prime} A\right|=c_{n}|A|^{2}
$$

c_{n} being a constant depending only on n. Also abs $|A|$ is the volume of the parallelopiped formed by the vectors $\beta_{1}, \ldots, \beta_{n}$.
consider the case $n=2$.
We have, because of (30)

$$
\begin{equation*}
\beta_{1}^{2} \cdot \beta_{2}^{2} \leq \frac{4}{3}|A|^{2} \tag{72}
\end{equation*}
$$

Let now Θ denote the acute angle between the vectors β_{1} and β_{2}. Since the area of the parallelogram formed by β_{1} and β_{2} on the one hand equals abs $|A|$ and on the other $\sqrt{\beta_{1}^{2} \cdot \beta_{2}^{2}} \cdot \sin \theta$, we see that

$$
\begin{equation*}
\sin ^{2} \Theta \geq \frac{3}{4} \tag{73}
\end{equation*}
$$

Since $0 \leq \Theta \leq \frac{\pi}{2}$, it follows from (73) that

$$
\frac{\pi}{3} \leq \theta \leq \frac{\pi}{2}
$$

Hence for a two dimensional lattice we may choose a basis in such a manner that the angle (acute) between the basis vectors is between 60° and 90°.

Bibliography

[1] C.F. Gauss Disquisitiones Arithmeticae Ges. Werke 1, (1801).
[2] C. Hermite Oeuvres Vol.1, Paris (1905) P. 94-273.
[3] H. Minkowski Geometrie der Zahlen, Leipzig (1896).
[4] H. Minkowski Discontinuitätsbereich für arithmetische Aquivalenz. Ges. Werke, Bd.2, (1911), P.53-100.
[5] C.L. Siegel Einheiten quadratischer Formen Abh. Math. Sem. Hansischen Univ. 13, (1940), P. 209-239.

Chapter 3

Indefinite quadratic forms

1 Discontinuous groups

In the previous chapter we had met with the situation in which a group of transformations acts on a topological space and we constructed, by a certain method, a subset of this space which has some distinguished properties relative to the group. We shall now study the following general situation.

Let Γ be an abstract group and T a Hausdorff topological space on which Γ has a representation

$$
\begin{equation*}
t \rightarrow t \gamma, \quad t \in T, \quad \gamma \in \Gamma \tag{1}
\end{equation*}
$$

carrying T into itself. We say that this representation of Γ is discontinuous if for every point $t \in T$, the set of points $\{t \gamma\}$ for $\gamma \in \Gamma$ has no limit point in T. The problem now is to determine, for a given Γ, all the spaces T on which Γ has a discontinuous representation. For an arbitrarily given group, this problem can be very difficult. We shall, therefore, impose certain restrictions on Γ and T. Let us assume that there is a group Ω, of transformations of T onto itself, which is transitive on T. This means that if t_{1} and t_{2} are any two elements of T, there exists $\omega \in \Omega$ such that

$$
\begin{equation*}
t_{1}=t_{2} \omega . \tag{2}
\end{equation*}
$$

Let us further assume that Γ is a subgroup of Ω. Let t_{0} be a point in T and consider the subgroup Λ of Ω consisting of $\lambda \in \Omega$ such that

$$
\begin{equation*}
t_{0}=t_{0} \lambda \tag{3}
\end{equation*}
$$

If t is any point of T, we have because of transitivity,

$$
t=t_{0} \rho
$$

for some $\rho \in \Omega$. Because of (3), we get

$$
t=t_{0} \Lambda \rho
$$

Conversely if $\rho^{\prime} \in \Omega$ is such that $t=t_{0} \rho^{\prime}$, then $t_{0} \rho^{\prime}=t_{0} \rho$ or $\rho^{\prime} \in \Lambda_{\rho}$. Thus every point $t \in T$ determines a coset Λ_{ρ} of $\Lambda \backslash \Omega$ that is, the space of right cosets of Ω modulo Λ. Conversely if Λ_{ρ} is any coset, then $t=t_{0} \rho$ is a point determined by Λ_{ρ}. Hence the mapping

$$
\begin{equation*}
t \rightarrow \Lambda_{\rho} \tag{4}
\end{equation*}
$$

of T on $\Lambda \backslash \Omega$ is $(1,1)$ both ways. In order to make this correspondence topological, let us study the following situation.

Let Ω be locally compact topological group and T a Hausdorff topological space on which Ω has a representation

$$
\begin{equation*}
t \rightarrow t \omega \tag{5}
\end{equation*}
$$

as a transitive group of mappings. Let us assume that this representation is open and continuous. We recall that (5) is said to be open if for every open set P in Ω and every $t \in T$ the set $\{t \omega\}, \omega \in P$ is an open set in T. Then it follows that the subgroup Λ of Ω leaving $t_{0} \in T$ fixed is not only a closed subgroup but that the mapping (4) of T on $\Lambda \backslash \Omega$ is a homeomorphism.

Let Γ be a subgroup of Ω which has on T a discontinuous representation. Then Γ has trivially a representation in $\Lambda \backslash \Omega$. By the remarks above, the representation

$$
\begin{equation*}
\Lambda \omega \rightarrow \Lambda \omega \rho, \quad \rho \in \Gamma \tag{6}
\end{equation*}
$$

is discontinuous in $\Lambda \backslash \Omega$.
On the other hand, let Λ be any closed subgroup of Ω. Then the representation

$$
\omega^{\prime} \rightarrow \Lambda \omega \omega^{\prime}
$$

of Ω on $\Lambda \backslash \Omega$ is open and continuous. It is clearly transitive. In order, therefore, to find all spaces on which Γ has a discontinuous representation, it is enough to consider the spaces of right cosets of Ω with regard to closed subgroups Λ of Ω.

Suppose Λ is a closed subgroup of Ω and Γ has a discontinuous representation on $\Lambda \backslash \Omega$. Let K be a closed subgroup of Ω contained in Λ. Then Γ has a discontinuous representation on $K \backslash \Omega$. For, if $K \omega$ is a coset such that the set of cosets $\{K \omega \rho\}, \rho \in \Gamma$ has a limit point in $K \backslash \Omega$, then the set $\{\Lambda \omega \rho\}, \rho \in \Gamma$ also has a limit point in $\Lambda \backslash \Omega$ and so (6) would not be discontinuous. In particular, if we take for K the subgroup consisting only of the identity element \underline{e}, then Γ is discontinuous in Ω is clearly equivalent to Γ is a discrete subgroup of Ω.

Thus if there exists some subgroup Λ of Ω such that Γ is discontinuous in $\Lambda \backslash \Omega$, then necessarily Γ has to be discrete. It can be proved that if Ω has a countable basis of open sets, then Γ is enumerable.

Suppose now that Ω is a locally compact group with a countable basis of open sets. Let Γ be a discrete subgroup of Ω. If Λ is any compact, hence closed, subgroup of Ω then it follows that the representation (6) of Γ in $\Lambda \backslash \Omega$ is discontinuous. This can be seen by assuming that for a certain ω, the set $\Lambda \omega \rho_{n}, \rho_{n} \in \Gamma$ has limit point and this will lead to a contradiction because of the discreteness of Γ.

In general the fact (6) is discontinuous in $\Lambda \backslash \Omega$ does not entail that Λ is compact. Let us, therefore, consider the following situation.

Let Ω be a locally compact group possessing a countable basis of open sets. Then there exists in Ω a right invariant Haar measure $d \omega$ which is determined uniquely upto a positive multiplicative factor. Let Γ be a discrete subgroup of Ω. There exists then in Ω a subset F possessing the following properties: 1) $\left.\bigcup_{a \in \Gamma} F a=\Omega, 2\right)$ the sets $\{F a\}$ for $a \in \Gamma$ are mutually disjoint and 3) F is measurable in terms of the Haar measure $d \omega . F$ is then said to be a fundamental set relative to Γ. Note that if F is a fundamental set then so if $F a$ for any $a \in \Omega$ so that a fundamental
set is not unique. 1) and 2) assert that F intersects each coset of $\Gamma \backslash \Omega$ in exactly one point so that F has to be formed in Ω by choosing one element from each coset $\Gamma \backslash \Omega$. The interesting point is that, under the conditions on Ω, this can be done in such a way that the resulting set F is measurable. Let us now assume that

$$
\begin{equation*}
\int_{F} d \omega<\infty . \tag{7}
\end{equation*}
$$

It can then be shown that the value of the integral in (7) is independent of the choice of F. We now state, without proof, the important

Theorem 1. Let Ω be a locally compact topological group with a countable basis of open sets. Let Γ be a discrete subgroup of Ω and F a fundamental set in Ω relative to Γ. Let F have finite Haar measure in Ω. If Λ is any closed subgroup of Ω, then Γ has a discontinuous representation in $\Lambda \backslash \Omega$ if and only if Λ is compact.

The interest in the theorem lies in the necessity part of it.
Let us assume that Ω is, as will be in the applications, a Lie group. Let Γ be a discrete subgroup of Ω. For any closed subgroup Λ of Ω, the dimensions of $\Lambda, \Lambda \backslash \Omega$ and Ω are connected by

$$
\operatorname{dim} \Lambda+\operatorname{dim} \Lambda \backslash \Omega=\operatorname{dim} \Omega
$$

If F is a fundamental set in Ω with regard to Γ and is of finite measure, in terms of the invariant measure in Ω, then by Theorem 1Γ will be discontinuous in $\Lambda \backslash \Omega$ if and only if Λ is compact. In order, therefore, to obtain a space $T=\Lambda \backslash \Omega$ of smallest dimension in which Γ has a discontinuous representation, one has to consider a Λ which is compact and maximal with this property.

Let us consider the following example.
Let Ω be the group of n-rowed real matrices $A \cdot \Omega$ is a Lie group. Let us determine first all compact subgroups of Ω. Let K be a compact subgroup of Ω. If $C \in K$, then $|C|= \pm 1$. For, the mapping $C \rightarrow|C|$ of K into the multiplicative group of real numbers is clearly topological and since K is compact, the set of images $|C|$ is a compact and so bounded
subgroup of the multiplicative group of real numbers. Thus $|C|= \pm 1$. In order to study K therefore, it is enough to study the group Ω_{0} of real matrices A with $|A|= \pm 1$. Let $\{d A\}$ denote the volume measure in Ω_{0} so that

$$
\{d A B\}=\{d A\}
$$

for $B \in \Omega_{0}$. Let \mathscr{M} be an open bounded subset of Ω_{0}. Consider the set

$$
\mathscr{G}=\bigcup_{C \in K} \mathscr{M} C .
$$

Since the sets $\mathscr{M} C$ are open, \mathscr{G} is open. Since K is compact, it follows that \mathscr{G} is bounded. Consider the integral

$$
P=\int_{\mathscr{G}} A^{\prime} A\{d A\} .
$$

Since $A^{\prime} A>0$, it follows that P is positive. Also if C is in K,

$$
\begin{aligned}
P[C] & =\int_{\mathscr{G}} C^{\prime} A^{\prime} A C\{d A\} \\
& =\int_{\mathscr{G}} A^{\prime} A\left\{d A C^{-1}\right\}=P
\end{aligned}
$$

This proves that there exists a $P>0$ such that $P[C]=P$ for $C \in K$. Since $P>0$, there exists $B \in \Omega$ such that $P=B^{\prime} B$. Hence if $Q=B C B^{-1}$ then $Q^{\prime} Q=E$ or Q is orthogonal. Hence $B K B^{-1}$ is a subgroup of the orthogonal group. We have hence proved

Theorem 2. All maximal compact subgroups of Ω are conjugates of the real orthogonal group.

Let \mathscr{P}_{0} denote the space of all positive real n-rowed matrices of determinant 1. Ω_{0} has in \mathscr{P}_{0} a representation $P \rightarrow P[A], P \in \mathscr{P}_{0}$, $A \in \Omega_{0}$ and this representation is both open and continuous. Also Ω_{0} is transitive on \mathscr{P}_{0}. The set of elements $A \in \Omega_{0}$ which fix the matrix E_{n} is precisely the orthogonal group Λ. By our considerations above,
$\Lambda \backslash \Omega_{0}$ is homeomorphic to \mathscr{P}_{0}. So every discrete subgroup Γ of Ω_{0} has discontinuous representation in \mathscr{P}_{0}. We shall consider the subgroup Γ consisting of unimodular matrices. That this is discrete is clear. In the previous chapter we constructed for Γ in $\Lambda \backslash \Omega$ a fundamental domain \mathscr{R}. We shall now construct a fundamental set for Γ in Ω_{0}.

In Ω_{0}, Γ is represented as a group of translations $A \rightarrow A U$. Let us define the point set F_{1} in Ω_{0} to consist of matrices A such that $A^{\prime} A=P$ is reduced in the sense of Minkowski and so is in \mathscr{R}. Clearly if $A \in F_{1}$ then $B A$ is also an element of F_{1} for arbitrary orthogonal B. Because of the properties of \mathscr{R}, the point set F_{1} satisfies

$$
F_{1} \Gamma=\Omega_{0}
$$

Since $P[\pm E]=P$, we shall take the subset F_{0} of F_{1} consisting of A with $a_{11} \geq 0$ where $A=\left(a_{k l}\right)$. It is easy to see from the properties of \mathscr{R}, that F_{0} and $F_{0} \gamma$ for $\gamma \in \Gamma$ have non-empty intersection only for finitely many γ. By removing from F_{0} a suitably chosen set of points, one obtains a fundamental set in Ω_{0} for Γ. Minkowski proved that the volume of F_{0} is finite.

For more details we refer to the papers [6], [7] and [8].

2 The \mathfrak{H} - space of a symmetric matrix

We now consider another important application of the previous considerations.

Let S be a non-singular n-rowed symmetric matrix of signature p, q where $p+q=n$ and $0 \leq p \leq n$. This means that there exists a real matrix L such that

$$
S[L]=S_{0}=\left(\begin{array}{cc}
E_{p} & 0 \tag{8}\\
0 & -E_{q}
\end{array}\right)
$$

Let Ω denote the group of real matrices C such that

$$
\begin{equation*}
S[C]=S \tag{9}
\end{equation*}
$$

Ω is called the orthogonal group of $S . \Omega$ is a Lie group. We shall now determine all compact subgroups of Ω. Let K be a compact subgroup of Ω. Then there exists a positive matrix P such that

$$
\begin{equation*}
P[V]=P, \quad V \in K \tag{10}
\end{equation*}
$$

Since $P>0$ and S is symmetric, there exists a matrix L such that

$$
\begin{equation*}
S[L]=S_{0}, P[L]=\left[d_{1}, \ldots, d_{n}\right]=D, \tag{11}
\end{equation*}
$$

D being a diagonal matrix with positive diagonal elements. Let $B=$ $L^{-1} V L$. Then since $V \in K$

$$
S_{0}[B]=S_{0}, \quad D[B]=D .
$$

Put $T=S_{0} D=D S_{0}$. Then from above we have $T B=B T$. Therefore $T^{2} B=T \cdot T B=T B \cdot T=B T^{2}$. But $T^{2}=D^{2}$. Therefore

$$
\begin{equation*}
B D^{2}=D^{2} B . \tag{12}
\end{equation*}
$$

Let $B=\left(b_{k l}\right)$, then (12) gives

$$
\begin{equation*}
b_{k l} d_{l}^{2}=b_{k l} d_{k}^{2}, \quad l \leq k, \quad l \leq n \tag{13}
\end{equation*}
$$

so that either $b_{k l}=0$ or $d_{l}^{2}=d_{k}^{2}$. In any case since the $d_{k}>0$ for all k, we get

$$
B D=D B .
$$

This means that $D=B^{\prime} D B=B^{\prime} B D$ and as $D>0$, we see that B ir orthogonal.

If Λ is the orthogonal group, then K is a subgroup of $\Omega \cap L \Lambda L^{-1}$. This shows that all maximal compact subgroup of Ω are conjugates of each other and conjugate to $L \Lambda L^{-1} \cap \Omega$ Call this subgroup $\Lambda_{0} \cdot \Lambda_{0}$ is a maximal compact subgroup of Ω.

Put now $P=\left(L L^{\prime}\right)^{-1}$. Then for $V \in \Lambda_{0}$.

$$
P[V]=P .
$$

Also P and S are connected by the relation

$$
\begin{equation*}
P S^{-1} P=S \tag{14}
\end{equation*}
$$

Denote by \mathfrak{H} the space of symmetric matrices $P>0$ satisfying (14) for a fixed S. For any $H \in \mathfrak{G}$ there exists a matrix M such that

$$
\begin{equation*}
H[M]=D, \quad S[M]=S_{0} \tag{15}
\end{equation*}
$$

where D is a diagonal matrix. Because of (14) we see that $D S_{0} D=S_{0}$ or since $D>0, D=E$, the unit matrix. Hence

$$
\begin{equation*}
H=\left(M M^{\prime}\right)^{-1} \tag{16}
\end{equation*}
$$

But from (11), $S[L]=S_{0}$ which proves that $M L^{-1} \in \Omega$ or $M=C L$ for $C \in \Omega$. From (16) therefore

$$
H=P\left[C^{\prime-1}\right]
$$

Conversely for any $C \in \Omega, P[C]=H$ also satisfies (14). Thus the totality of positive solutions H of (14) is given by

$$
H=P[C]
$$

where C runs through all matrices in Ω and P is a fixed solution of (14).
This proves that the representation $H \rightarrow H[C]$ of Ω in \mathfrak{H} is transitive.
Consider now the space of right cosets of Ω module Λ_{0}. If for a H in $\mathfrak{H}, H=P[C]=P\left[C_{1}\right]$, then by definition of $\Lambda_{0}, C C_{1}^{-1} \in \Lambda_{0}$ so that H determines a unique right coset $\Lambda_{0} C_{1}$ of $\Lambda_{0} \backslash \Omega$. Also every right coset determines uniquely an element $H=P\left[C_{1}\right]$ in \mathfrak{H}. By the considerations in the previous section $\Lambda_{0} \backslash \Omega$ and \mathfrak{H} are homeomorphic. Since Λ_{0} is a maximal compact subgroup, every discrete subgroup of Ω has a discontinuous representation in \mathfrak{H}.

We call \mathfrak{G} the representation space of the orthogonal group Ω of S.
We remark that if S is definite, that is $p=0$ or n, Ω is compact and so the \mathfrak{G} space consists only of one point namely S if $S>0$ and $-S$ if $-S>0$.

We shall now obtain a parametrical representation for the space \mathfrak{G} which is defined by

$$
\begin{equation*}
H>0, \quad H S^{-1} H=S \tag{17}
\end{equation*}
$$

Let H be any solution. Put

$$
\begin{equation*}
K=\frac{1}{2}(H+S), \quad-L=\frac{1}{2}(H-S) . \tag{18}
\end{equation*}
$$

Using the matrix M in (15) we have

$$
\left.\left.\begin{array}{rl}
K[M] & =\frac{1}{2}\left(S_{0}+E\right) \\
-L[M] & =\frac{1}{2}\left(E-S_{0}\right) \tag{19}\\
E_{p} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & E_{q}
\end{array}\right)\right\}
$$

which shows at once that $K \geq 0$ and has rank p and $-L \geq 0$ and has rank q. Furthermore because of (17) and (18), we get

$$
\left.\begin{array}{rl}
K S^{-1} K & =K, \quad L S^{-1} L=L \tag{20}\\
K S^{-1} L & =0=L S^{-1} K
\end{array}\right\}
$$

Suppose now that K is any matrix satisfying

$$
\begin{equation*}
K S^{-1} K=K \tag{21}
\end{equation*}
$$

with $K \geq 0$ and K having rank p. Define then two matrices H and L by

$$
H=2 K-S, \quad-L=\frac{H-S}{2} .
$$

Then $K+L=S$ so that by the law of inertia, L has rank $\geq q$. Also because of (21), H satisfies the equation $H S^{-1} H=S$. So $|H| \neq 0 K$ and L satisfy the equation (20). From the equation

$$
S^{-1}[K, L]=\left(\begin{array}{ll}
K & 0 \\
0 & L
\end{array}\right)
$$

and from the signature of S we have rank $L=q$ and $-L \geq 0$. Since $H=K-L$ and $|H| \neq 0$, it follows that $H>0$ or that H is a solution of (17). We have thus reduced the solution of the inhomogeneous problem (17) to that of the homogeneous problem (21). Therefore let $K \geq 0$ be
an n-rowed matrix of rank p. There exists a non-singular matrix F such that

$$
K=F^{\prime}\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right) F
$$

where $D>0$ and has p rows. If G denotes the matrix formed by the first p-rows of F then

$$
K=G^{\prime} D G
$$

and G has rank p. Thus the most general form of a semi-positive matrix K of n-rows and columns and of rank p is

$$
K=Q T^{-1} Q^{\prime}, \quad Q=Q^{(n, p)}
$$

where $T=T^{(p)}>0$, and Q has rank p. Let K satisfy (21). Then

$$
\begin{equation*}
Q\left(T^{-1} Q^{\prime} S^{-1} Q T^{-1}-T^{-1}\right) Q^{\prime}=0 . \tag{22}
\end{equation*}
$$

But since Q has rank p, there is a submatrix of Q of p rows which is non-singular. Using this, it follows from (22) that

$$
T=S^{-1}[Q]>0 .
$$

The most general solution of (21) therefore is given by

$$
K=T^{-1}\left[Q^{\prime}\right], \quad T=S^{-1}[Q]>0 .
$$

We thus obtain the homogeneous parametric representation of \mathfrak{G} by

$$
\begin{equation*}
H=2 K-S, \quad K=T^{-1}\left[Q^{\prime}\right], \quad T=S^{-1}[Q]>0, \quad Q=Q^{(n, p)} \tag{23}
\end{equation*}
$$

It is obvious that Q determines H uniquely whereas if W is a p rowed non-singular matrix, then Q and $Q W$ determine the same H. In order to obtain the inhomogeneous parametrical representation, we consider the special case $S=S_{0}$ given by (8). Let us denote the corresponding H by H_{0}. Write

$$
\begin{equation*}
Q=\binom{Q_{1}}{Q_{2}}, \quad Q_{1}=Q_{1}^{(p, p)} \tag{24}
\end{equation*}
$$

Then

$$
T_{0}=Q_{1}^{\prime} Q_{1}-Q_{2}^{\prime} Q_{2}>0
$$

This means that $\left|Q_{1}\right| \neq 0$. For, if $\left|Q_{1}\right|=0$, there is a column \underline{x} of p rows such that $\underline{x} \neq \underline{0}$ and $Q_{1} \underline{x}=\underline{0}$. Then

$$
0<T_{0}[\underline{x}]=-\underline{x}^{\prime} Q_{2}^{\prime} Q_{2} x \leq 0
$$

which is absurd. We can therefore put

$$
\begin{equation*}
Q=\binom{E}{-X^{\prime}} Q_{1} \tag{25}
\end{equation*}
$$

where $X=X^{(p, q)}$ and E is the unit matrix of order $p \cdot T_{0}>0$ then means (since $|Q| \neq 0$) that

$$
\begin{equation*}
E-X X^{\prime}>0 \tag{26}
\end{equation*}
$$

Thus $K_{0}=T_{0}^{-1}\left[Q^{\prime}\right]$ is given by

$$
K_{0}\left(\begin{array}{cc}
\left(E-X X^{\prime}\right)^{-1} & -\left(E-X X^{\prime}\right)^{-1} X \tag{27}\\
-X^{\prime}\left(E-X X^{\prime}\right)^{-1} & X^{\prime}\left(E-X X^{\prime}\right)^{-1} X
\end{array}\right)
$$

where $E=E_{p}$. In order to compute $H_{0}=2 K_{0}-S_{0}$ we put

$$
W=\left(\begin{array}{cc}
E_{p} & -X \\
-X^{\prime} & E
\end{array}\right), \quad F=\left(\begin{array}{cc}
E_{p} & X \\
0 & E
\end{array}\right)
$$

W and F being n-rowed matrices. We then have

$$
W[F]=\left(\begin{array}{cc}
E & 0 \tag{28}\\
0 & E-X^{\prime} X
\end{array}\right), \quad W\left[F^{\prime}\right]=\left(\begin{array}{cc}
E-X X^{\prime} & 0 \\
0 & E_{q}
\end{array}\right)
$$

Since $T_{0}>0$, 26) shows that $W>0$ and therefore $E-X^{\prime} X>0$. We can therefore write

$$
H_{0}=\left(\begin{array}{ll}
\frac{E+X X^{\prime}}{E-X X^{\prime}} & \frac{-2 X}{E-X X^{\prime}} \tag{29}\\
\frac{-2 X^{\prime}}{E-X X^{\prime}} & \frac{E+X^{\prime} X}{E-X^{\prime} X}
\end{array}\right)
$$

\mathfrak{H}_{0} is thus the space of matrices H_{0} with X satisfying the condition (26). This shows that \mathfrak{H}_{0} has the topological dimension $p q$.

In order to obtain the inhomogeneous parametrical representation for \mathfrak{G} from that of \mathfrak{H}_{0} we observe that if the matrix L is such that $S[L]=$ 92 S_{0}, then $H_{0}=H[L]$.

3 Geometry of the $\mathfrak{5}$-space

Consider the space \mathscr{P} of all positive n-rowed matrices P. Let $P=\left(p_{k l}\right)$ and $d P$ denote the matrix of the differentials $d p_{k l}$. If A is any nonsingular matrix, then $d\left(A^{\prime} P A\right)=A^{\prime} d P A$ so that

$$
\begin{equation*}
d s^{2}=\sigma\left(P^{-1} d P P^{-1} d P\right) \tag{30}
\end{equation*}
$$

where σ denotes the trace, is invariant under the transformations $P \rightarrow$ $P[A]$ of \mathscr{P} into itself. $d s^{2}$ is a quadratic differential form in the $\frac{n(n+1)}{2}$ independent differentials $d p_{k l}$. In order to see that this is a positive definite form, observe that since the group of non-singular matrices acts transitively on \mathscr{P}, it is enough to verify the positivity of (30) at some particular point, say $P=E$. At $P=E$ we see that the quadratic form (30) equals

$$
\sigma\left((d P)^{2}\right)=\sum_{k, l}\left(d p_{k l}\right)^{2}
$$

which is positive. This shows that \mathscr{P} is a Riemannian space with the metric (30).

It can be shown that joining any two points P_{1}, P_{2} of \mathscr{P} there exists one geodesic only. Since P_{1} and P_{2} can be transformed simultaneously into the unit matrix E and a positive diagonal matrix $D=\left[d_{1}, \ldots, d_{n}\right]$, it is enough to show this for points E and D. One can see that if for $0 \leq \lambda \leq 1$

$$
D^{\lambda}=\left(\begin{array}{lll}
d_{1}^{\lambda} & & \\
& \ddots & \\
& & d_{n}^{\lambda}
\end{array}\right)
$$

be defined symbolically then the geodesic line joining E and D consists precisely of these points D^{λ}.

Consider now the \mathfrak{H} space. It is a subspace of \mathscr{P}. The quadratic differential form

$$
d s^{2}=\sigma\left(H^{-1} d H H^{-1} d H\right)
$$

defines in \mathfrak{G} a line element invariant under the mappings $H \rightarrow H[C]$, $C \in \Omega$. It is practical to take

$$
d s^{2}=\frac{1}{s} \sigma\left(H^{-1} d H H^{-1} d H\right)
$$

as the line element. Since this is again positive definite, it follows that \mathfrak{G} is a Riemannian space of $p q$ real dimensions.

One can also express the line element in terms of the parameter X. We obtain

$$
d s^{2}=\sigma\left\{\left(E-X X^{\prime}\right)^{-1} d X\left(E-X^{\prime} X\right)^{-1} d X^{\prime}\right\} .
$$

(28) shows that $\left|E-X X^{\prime}\right|=\left|E-X^{\prime} X\right|$ and so we obtain the invariant volume element under this metric as

$$
d v=\left|E-X X^{\prime}\right|^{-n / 2}\{d X\}
$$

where $\{d X\}=\prod_{a=1}^{p} \prod_{b=1}^{q} d x_{a b}, X=\left(x_{a b}\right)$, is the Euclidean volume element in the $p q$ dimensional X space.

As before one can construct geodesics joining two points H_{1} and H_{2} in \mathfrak{H}. As \mathfrak{H} is a subspace of \mathscr{P} and since the metric on \mathfrak{H} is the induced metric from \mathscr{P} one can construct a geodesic joining the two points H_{1} and H_{2} considered as points of \mathscr{P}. It is interesting to note that all points of the geodesic lie in \mathfrak{H} showing that \mathfrak{G} is a geodesic submanifold of \mathscr{P}. See [7].

The spaces \mathscr{P} and \mathfrak{y} come under a remarkable class of spaces studied by E. Cartan. They are the 'symmetric spaces'. According to E. Cartan a topological space T is said to be symmetric about a point P, if there exists an analytic automorphism σ of T onto itself which has P as the only fixed point and whose square is the identity automorphism. T is said to be a symmetric space, if it is symmetric with regard to every point of T. If the space T is homogeneous, that is if on T there acts a transitive group Ω of analytic automorphisms, then symmetry with regard to one point implies that T is a symmetric space.

Let us now consider the space \mathscr{P} and let $P_{0} \in \mathscr{P}$. Let P be any matrix in \mathscr{P}. Define

$$
P^{*}=P_{0} P^{-1} P_{0} .
$$

Then $P^{*} \in \mathscr{P}$ and $P \rightarrow P^{*}$ is clearly an analytic homeomorphism of \mathscr{P} into itself. Also

$$
P^{* *}=P_{0} P^{*-1} P_{0}=P_{0}\left(P_{0}^{-1} P P_{0}^{-1}\right) P_{0}=P .
$$

By the remark in $\$ 2$ the only solution $P>0$ of $P=P_{0} P^{-1} P_{0}$ is P_{0} itself. Thus \mathscr{P} is symmetric about $P_{0} . P_{0}$ being arbitrary, it shows that \mathscr{P} is a symmetric space.

Consider now the space \mathscr{M} and let H_{0} be a point in it. For any H in \mathfrak{y} define

$$
H^{*}=H_{0} H^{-1} H_{0}
$$

Then H^{*} is also in \mathfrak{G} because

$$
H^{*} S^{-1} H^{*}=H_{0} H^{-1} H_{0} S^{-1} H_{0} H^{-1} H_{0}=S
$$

since H and H_{0} are in \mathfrak{H}. Thus $H \rightarrow H^{*}$ is an analytic automorphism of \mathfrak{H} onto itself and the previous considerations show that \mathfrak{H} is a symmetric space.

The 'symmetrie' $H \rightarrow H^{*}$ is isometric. For,

$$
d H^{*}=d\left(H_{0} H^{-1} H_{0}\right)=-H_{0} H^{-1} d H \cdot H^{-1} H_{0}
$$

as can be seen from differentiating the equation $H H^{-1}=E$. Therefore $d H^{*} \cdot H^{*-1}=-H_{0} H^{-1} d H \cdot H^{-1} H_{0} \cdot H_{0}^{-1} H H_{0}^{-1}=-H_{0} H^{-1} d H H_{0}^{-1}$. Hence

$$
\sigma\left(d H^{*} H^{*-1} d H^{*} H^{*-1}\right)=\sigma\left(d H \cdot H^{-1} \cdot d H H^{-1}\right)
$$

which proves our contention.

4 Reduction of indefinite quadratic forms

Let S be a real, non-singular, symmetric matrix of n-rows. If it has signature p, q with $p q>0$, then there is associated with it a space \mathfrak{H} of positive matrices H satisfying

$$
H S^{-1} H=S
$$

\mathfrak{H} has the dimension $p q>0$.
We now say that S is reduced if the \mathfrak{H} space of S has a non-empty intersection with the Minkowski reduced space \mathscr{R}. Note that this has a meaning since \mathfrak{H} is a subspace of \mathscr{P}. This means that there is at least
one H in the \mathfrak{H} space of S which is reduced in the sense of Minkowski.
Obviously if S is definite, then \mathfrak{G} reduces to the single point $\pm S$ and this definition coincides with that of Minkowski's for definite forms.

We recall that the class of S is defined to be the set of all matrices $S[U]$ where U runs through all unimodular matrices. Our definition shows that for any $S=S^{\prime}$, there exists an element in the class of S which is reduced. For, let H be any element in the \mathfrak{G} space of S. By the Minkowski theory, there exists a unimodular U such that $H[U] \in \mathscr{R}$. Put $H[U]=H_{1}$ and $S[U]=S_{1}$. Then

$$
H_{1} S_{1}^{-1} H_{1}=S_{1}
$$

which shows that the \mathfrak{G} space of S_{1} intersects \mathscr{R} in a non-empty set. Also $S[U]$ is in the class of S.

In general, there will be an infinity of reduced matrices in the class of S. We, however, have the following

Theorem 3. There exist only finitely many integral symmetric reduced matrices with given determinant.

Proof. If S is definite, the theorem is already proved in the last chapter. So let S be indefinite. Let S be reduced in the above sense. Let H be in the \mathfrak{H} space of S which is reduced in the sense of Minkowski. By the Jacobi transformation

$$
H=D[V]
$$

where

$$
D=\left[d_{1}, \ldots, d_{n}\right], \quad V=\left(v_{k l}\right)
$$

where $v_{k k}=1, v_{k l}=0$ if $k>l$. From Minkowski's reduction theory, it 97 follows that there is a constant c depending only on n such that

$$
\begin{aligned}
& 0<d_{k}<c d_{k+1}, k=1, \ldots, n-1 \\
& -c<v_{k l}<c, k \leq 1 \leq n
\end{aligned}
$$

Introduce the matrix W given by

$$
W \equiv\left(w_{k l}\right)=\left(\begin{array}{ccccccc}
0 & . & . & . & . & 0 & 1 \tag{31}\\
0 & . & . & . & . & . & 0 \\
. & . & . & . & . & . & 0 \\
1 & . & . & . & . & . & 0
\end{array}\right)
$$

so that $w_{k l}=0$ if $k+l \neq n+1$ and equal to 1 otherwise. It then follows that

$$
\begin{gathered}
W^{2}=E . \\
\text { Put } D_{1}=D^{-1}[W]=\left[d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right] . \text { Then } \\
d_{n-k+1} d_{k}^{\prime}=1, \quad k=1, \ldots, n,
\end{gathered}
$$

so that

$$
\begin{equation*}
0<d_{k}^{\prime}<c d_{k+1}^{\prime}, \quad k=1, \ldots, n-1 \tag{32}
\end{equation*}
$$

Let $V_{1}=W V_{W}^{\prime-1}$. Then because of the choice of $W, V_{1}=\left(v_{k l}^{\prime}\right)$ is again a triangle matrix. Because the elements of V satisfy the above conditions and W is a constant matrix, we see that there is a constant c_{1}, depending only on n such that

$$
\begin{equation*}
-c_{1}<v_{k l}^{\prime}<c_{1}, \quad 1 \leq k \leq l \leq n . \tag{33}
\end{equation*}
$$

If we put $c_{0}=\max \left(c, c_{1}\right)$ then the matrix $H_{1}=D_{1}\left[V_{1}\right]$ satisfies the condition

$$
\begin{equation*}
H_{1} \in \mathscr{R}_{c_{0}}^{* *} \tag{34}
\end{equation*}
$$

with the notation of the previous chapter. But then

$$
H_{1}=D_{1}\left[V_{1}\right]=D^{-1}\left[W V_{1}\right]=D^{-1}\left[W^{2} V_{W}^{\prime-1}\right]=H^{-1}[W]
$$

Since $H S^{-1} H=S$, we see that if $W S=S_{1}$, then

$$
H=S H^{-1} S=S_{1}^{\prime} H_{1} S_{1}=H_{1}\left[S_{1}\right]
$$

H and H_{1} are both in $\mathscr{R}_{c_{0}}^{* *}$ and so by theorem 5 of the previous chapter, there are only finitely many S_{1} integral and with determinant equal to $|S|$ satisfying the above condition. This proves the theorem.

Since in each class of matrices there is at least one reduced matrix we have

Corollary 1. There exist only finitely many classes of integral matrices with given determinant.

If S is rational, then for a certain integer $a, a S$ in integral. Hence from Theorem 3] we get

Corollary 2. In each class of rational matrices, there exist only finitely many reduced matrices.

Let S be a rational non-singular symmetric matrix and let S be the matrix of an indefinite quadratic form. Let Ω be the orthogonal group of S, that is the group of real matrices C with $S[C]=S$. A unimodular matrix U satisfying the condition

$$
S[U]=S
$$

is said to be a unit of S. The units of S clearly form a group $\Gamma(S)$ called the unit group of S.

Let us consider the \mathfrak{G} space of positive matrices H with $H S^{-1} H=S . \quad 99$ The orthogonal group Ω of S has, in \mathfrak{H}, a representation as a transitive group of mappings

$$
H \rightarrow H[C] \quad C \in \Omega
$$

Since $\Gamma(S)$ is a subgroup of $\Omega, \Gamma(S)$ has a representation in the \mathfrak{G} space. Since the unimodular group Γ is discontinuous in \mathscr{P}, the representation of $\Gamma(S)$ in \mathfrak{G} is discontinuous. Clearly U and $-U$ lead to the same representation. Therefore if we identify $-U$ and U in $\Gamma(S)$, the $H \rightarrow H[U]$, $U \in \Gamma(S)$ gives a faithful and discontinuous representation of $\Gamma(S)$ in \mathfrak{H}. Thus $\Gamma(S)$ is a discrete subgroup of $\Omega . \mathfrak{H}$ will be the space of smallest dimension in which $\Gamma(S)$ is discontinuous. We shall construct for $\Gamma(S)$ in \mathfrak{H} a fundamental domain F.

In the class of the rational non-singular symmetric indefinite S there exist finitely many reduced matrices, say S_{1}, \ldots, S_{l}. Let U_{1}, \ldots, U_{l} be unimodular matrices so that $S_{i}=S\left[U_{i}\right], i=1, \ldots, l$.

Let H be any matrix in the \mathfrak{G} space of S. There exists then a unimodular matrix U so that $H[U] \in \mathscr{R}$. By definition of reduction for indefinite matrices $S[U]$ is reduced. Thus $S[U]$ has to be one of the finitely many S_{1}, \ldots, S_{l}, say S_{k}. Then

$$
S[U]=S_{k}=S\left[U_{k}\right],
$$

or $S\left[U U_{k}^{-1}\right]=S$ which means that $U U_{k}^{-1} \in \Gamma(S)$.
Let us denote by $\mathscr{R}_{U_{k}^{-1}}$ the set of matrices $P\left[U_{k}^{-1}\right]$ for $P \in \mathscr{R}$. Then for the H above $H[U] \in \mathscr{R}$ or $H\left[U U_{k}^{-1}\right] \in \mathscr{R}_{U_{k}^{-1}}$. Since $U U_{k}^{-1}$ is a unit of S and $H \in \mathfrak{G}$, it follows that if $V=U U_{k}^{-1}$ then

$$
H[V] \in \mathfrak{H} \cap \mathscr{R}_{U_{k}^{-1}} .
$$

If we therefore take F as the set

$$
\begin{equation*}
F=\bigcup_{k=1}^{l}\left(\mathfrak{H} \cap R_{U_{k}^{-1}}\right) \tag{35}
\end{equation*}
$$

then for every point H in \mathfrak{G} there is a unit V such that $H[V] \in F$. If for any unit A of S we put F_{A} as the image of F under A we have proved that

$$
\mathfrak{G} \subset \sum_{A} F_{A} .
$$

Note that $F_{A}=F_{-A}$. We shall sketch a proof that F is indeed a fundamental region for $\Gamma(S)$ in \mathfrak{t}.

Let U and V be two units of S such that $U V^{-1} \neq \pm E$ and F_{U} and F_{V} have a non-empty intersection. Then F and $F_{U V^{-1}}$ have a non-empty intersection. We call $F_{U V^{-1}}$ a neighbour of F. Let therefore F_{A} be a neighbour of F so that $A \neq \pm E$ is a unit of S and F_{A} intersects F in a non-empty set. Because of the definition (35) of F we see that $\bigcup_{k=1}^{l}\left(\mathfrak{H} \cap \mathscr{R}_{U_{k}^{-1} A}\right)$ and $\bigcup_{k=1}^{l}\left(\mathfrak{H} \cap \mathscr{R}_{U_{k}^{-1}}\right)$ have a non-empty intersection. (Note that $\mathfrak{G}=\mathfrak{G}[A])$. This means that for two integers $i, j, 1 \leq i, j \leq l, \mathscr{R}_{U_{i}^{-1} A}$ and $\mathscr{R}_{U_{j}^{-1}}$ have a non-empty intersection or

$$
\mathscr{R} \cap \mathscr{R} U_{i}^{-1} A U_{j}
$$

101 is not empty. Now $U_{1}^{-1} A U_{j} \neq \pm E$. For, this means that $A U_{j}= \pm U_{i}$ which is the same thing as $i=j$ or $A= \pm E$. Then $U_{i}^{-1} A U_{j}$ (by Minkowski's theory) belongs to a finite set of matrices depending only on n. Hence F has a finite number of neighbours.

In order to study the points of intersection of F and F_{A} where F_{A} is a neighbour of F, we remark that since \mathscr{R} and \mathscr{R}_{V}, for a unimodular
V, have only boundary points in common, it is enough to show that the boundary points of F relative to \mathfrak{H} are the intersection of the boundaries of $\mathscr{R}_{U_{i}}$ with \mathfrak{H}. This would be achieved if we prove that \mathfrak{H} does not lie on a boundary plane of $\mathscr{R}_{U_{i}}$ for any \underline{i}. For a proof of this non-trivial fact we refer to [8].

In the \mathfrak{H} space we have seen that there is a volume element $d v$ invariant under the mappings $H \rightarrow H[C], C \in \Omega$. In the next chapter we shall prove that

$$
\begin{equation*}
\int_{F} d v \tag{36}
\end{equation*}
$$

if finite except in the case of binary zero form. This will show incidentally that $\Gamma(S)$ is an infinite group if S is not the matrix of a binary zero form. For, one can show, rather easily, that $\int_{\mathfrak{H}} d v$ is infinite.

5 Binary forms

We shall now study the case of binary quadratic forms systematically.
Let $a x^{2}+2 b x y+c y^{2}$ be a real binary quadratic from whose matrix

$$
S=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

is non-singular and let $a \neq 0$. Write

$$
S[\underline{x}]=a x^{2}+2 b x y+c y^{2}=a\left(x-\tau_{1} y\right)\left(x-\tau_{2} y\right)
$$

where $\tau_{1}+\tau_{2}=-\frac{2 b}{a}, \tau_{1} \tau_{2}=c / a$. Thus τ_{1} and τ_{2} are roots of the equation

$$
\begin{equation*}
a \lambda^{2}+2 b \lambda+c=0 \tag{37}
\end{equation*}
$$

If $|S|=a c-b^{2}>0$, then τ_{1} and τ_{2} are both complex. If $|S|<0$, then τ_{1} and τ_{2} are real.

Let

$$
L=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

be the matrix of the linear transformation $x \rightarrow \alpha x+\beta y, y \rightarrow \gamma x+\delta y$. Then

$$
S[L \underline{x}]=a^{\prime}\left(x-\tau_{1}^{\prime} y\right)\left(x-\tau_{2}^{\prime} y\right)
$$

where $a^{\prime}=a\left(\alpha-\tau_{1} \gamma\right)\left(\alpha-\tau_{2} \gamma\right)$. We shall assume that $a^{\prime} \neq 0$. We have then

$$
\begin{equation*}
\tau_{i}^{\prime}=\frac{\delta \tau_{i}-\beta}{-\gamma \tau_{i}+\alpha} i=1,2 \tag{38}
\end{equation*}
$$

This shows that the transformation $S \rightarrow S[L]$ results in transformation (38) in the roots of the equation (37), the matrix of the transformation for the roots being $|L| L^{-1}$.

We shall now consider the case $a e-b^{2}<0$ so that $S[\underline{x}]$ is an indefinite binary form. Our object is to study the \mathfrak{H} space of S. This is the set of two-rowed symmetric matrices H satisfying

$$
H>0, \quad H S^{-1} H=S
$$

If C is a non-singular matrix such that $S\left[C^{-1}\right]=S_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, then by our considerations before, H can be obtained from the H_{0} satisfying

$$
H_{0} S_{0}^{-1} H_{0}=S_{0}
$$

by taking $H=H_{0}[C]$. This space \mathfrak{H}_{0} of H_{0} has the parametrical representation

$$
H_{0}=\left(\begin{array}{cc}
\frac{1+y^{2}}{1-x^{2}} & \frac{2 x}{1-x^{2}} \\
\frac{2 x}{1-x^{2}} & \frac{1+x^{2}}{1-x^{2}}
\end{array}\right), \quad|x|<1
$$

We put

$$
H_{0}=\left(\begin{array}{ll}
p & q \\
q & p
\end{array}\right)
$$

then $\left|H_{0}\right|=p^{2}-q^{2}=1$.
In the second chapter we had associated uniquely with every positive matrix of determinant 1 a point z in the upper half of the complex z plane. If z is the representative point for H_{0}, then $z=\xi+i \eta, \eta>0$ and

$$
z=\frac{-q}{p}+\frac{i}{p}
$$

104 which, in terms of the parameter x is

$$
\begin{equation*}
z=\frac{1}{i} \frac{x-i}{x+i} \tag{39}
\end{equation*}
$$

(39) shows that z lies on the semi-circle in the upper half plane with unit radium around the origin as centre. Since the linear transformation (39) takes the points $x=-1,0,1$ into the points $z=1, i,-1$ it follows that as x runs through all x in the interval $(-1,1), z$ traces the above semi-circle of unit radius. We may take this semi-circle as the \mathfrak{H}_{0} space.

From our general results we see that the line element is

$$
\begin{equation*}
d s=\frac{d x}{1-x^{2}} \tag{40}
\end{equation*}
$$

so that the distance between two points z_{1}, z_{2}, with values of the parameters x_{1}, x_{2} respectively, is

$$
\begin{equation*}
\delta\left(z_{1}, z_{2}\right)=\int_{x_{1}}^{x_{2}} d s=\frac{1}{2} \log \left(\frac{1+x_{2}}{1-x_{2}}: \frac{1+x_{1}}{1-x_{1}}\right) \tag{41}
\end{equation*}
$$

From (39), z determines x uniquely, namely

$$
\begin{equation*}
x=\frac{1}{i} \frac{z-i}{z+i} \tag{42}
\end{equation*}
$$

so that

$$
d x=\frac{2 d z}{(z+i)^{2}}
$$

and hence the distance $\delta\left(z_{1}, z_{2}\right)$ is also

$$
\begin{equation*}
\delta\left(z_{1}, z_{2}\right)=\frac{1}{4} \log \left(\frac{z_{2}+1}{z_{2}-1}: \frac{z_{1}+1}{z_{1}-1}\right) \tag{43}
\end{equation*}
$$

In Poincare's model of non-Euclidean geometry, See [11], the dis- 105 tance $\delta_{0}\left(z_{1}, z_{2}\right)$ between two points z_{1}, z_{2} in the upper half plane is given by

where z_{3} and z_{4} are the points in which the unique circle through z_{1} and z_{2} orthogonal to the real line, intersects the real line: $z_{1}, z_{2}, z_{3}, z_{4}$ being in cyclical order and $D\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is the cross ratio

$$
D\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{z_{1}-z_{3}}{z_{1}-z_{4}}: \frac{z_{2}-z_{3}}{z_{2}-z_{4}} .
$$

With this notation we see that (43) can be written as

$$
\begin{equation*}
\delta\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \left[D\left(z_{1}, z_{2},-1,1\right)\right] \tag{45}
\end{equation*}
$$

Let us now go back to the \mathfrak{G} space. This consists of points $H=H_{0}[C]$. We shall assume $|C|=1$. For if not, we interchange the columns of C which merely means taking $-S$ instead of S. By (38) it follows that

the \mathfrak{G} space is precisely the semi-circle on τ_{1}, τ_{2} as diameter, where τ_{1}, τ_{2} are the roots of (37). The equation of this semi-circle is, as can be seen

$$
\begin{equation*}
a\left(\xi^{2}+\eta^{2}\right)+2 b \xi+c=0 \tag{46}
\end{equation*}
$$

with centre on the real line at the point $-\frac{b}{a}$ and radius $\sqrt{\frac{\|S\|}{a}}$.
In the previous chapter we had seen that the modular region F de-
fined by

$$
\begin{gathered}
z \bar{z} \geq 1 \\
-\frac{1}{2} \leq \xi \leq \frac{1}{2}
\end{gathered}
$$

is a fundamental region for the proper unimodular group. Analogous to our definition of reduction of indefinite form in the last section, we define a binary form $S[\underline{x}]$ reduced if its \mathfrak{G} space intersects F in a nonempty set. Since transformations in the upper half plane are by means of matrices of determinant unity, this can be called proper reduction. Since the \mathfrak{H} space is given by (46), the fact that S is reduced means that at least one of the vertices P, Q lies within the circle 46. Since P, Q are the points $\frac{ \pm 1+i \sqrt{3}}{2}$ we see that if S is reduced, then

$$
a\left(\xi^{2}+\eta^{2}\right)+2 b \xi+c \leq 0
$$

where $\xi= \pm \frac{1}{2}$ and $\eta=\frac{\sqrt{3}}{2}$. This gives

$$
\begin{equation*}
a \pm b+c \leq 0 \tag{47}
\end{equation*}
$$

We may assume $a>0$. For, if $a<0$ (we have already assumed it is not equal to zero) there exists a properly unimodular matrix U such
that the first diagonal element of $S[U]$ is positive. In this case, we have since $a+c \leq|b|$ we get

$$
\frac{1}{4}(4 a-2|b|)^{2}+3 b^{2}=(2|b|-a)^{2}+3 a^{2}=4 d+4\left(a^{2}-a|b|+a c\right) \leq 4 d
$$

where $d=\|S\|$. This gives at once

$$
a^{2} \leq \frac{4}{3} d, \quad b^{2} \leq \frac{4}{3} d, \quad 3 a c \leq d
$$

which at once shows that the number of integral properly reduced forms of given determinant is finite.

It is to be noted that the reduction conditions above are not the same as those of Gauss.

Let us now construct a fundamental region for the unit group in this \mathfrak{H} space. Before doing this, we shall first study the structure of the unit group $\Gamma=\Gamma(S)$ of S.

Let $S[\underline{x}]=a x^{2}+b x y+c y^{2}$ be a form representing integers for integral values of x and y. Then

$$
S=\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

is a semi-integral matrix. Let

$$
b^{2}-4 a c=d
$$

$d>0$ and not a square. Then $S[\underline{x}]$ is not a zero form. Also let $(a, b, c)=$ 1. Since $S[\underline{x}]$ is not a zero form, neither \underline{a} nor c is zero. We shall consider the proper group of units U of S, namely the group $\Gamma_{0}=\Gamma_{0}(S)$ of unimodular matrices U such that

$$
\begin{equation*}
S[U]=S, \quad|U|=1 \tag{48}
\end{equation*}
$$

Clearly Γ_{0} is a subgroup of Γ of index 2 . Let $U=\binom{\alpha \beta}{\gamma \delta}$ be an element of Γ_{0}. Let τ_{1}, τ_{2} be the roots of

$$
\begin{equation*}
a \lambda^{2}+b \lambda+c=0 \tag{49}
\end{equation*}
$$

108 Then it can be seen that the mapping $S \rightarrow S[U]$ keeps τ_{1} and τ_{2} fixed. Thus

$$
\tau_{i}=\frac{\delta \tau_{i}-\beta}{-\gamma \tau_{i}+\alpha}, i=1,2
$$

which means that τ_{1} and τ_{2} are again roots of the polynomial

$$
\begin{equation*}
\gamma \lambda^{2}+(\delta-\alpha) \lambda-\beta=0 \tag{50}
\end{equation*}
$$

(49) is irreducible in the rational number field since otherwise τ_{1} and τ_{2} will both be rational and so $\sqrt{\|S\|}$ is rational, which is a contradiction to our assumption that $S[\underline{x}]$ is not a zero form. Therefore (49) and (50) give

$$
\begin{equation*}
\frac{\gamma}{a}=\frac{\delta-\alpha}{b}=\frac{-\beta}{c}=q \tag{51}
\end{equation*}
$$

where q is an integer. If $U \neq \pm E$ then $\gamma \neq 0, \beta \neq 0$. Let us put $\delta+\alpha=p$. Then

$$
\begin{equation*}
\delta=\frac{p+b q}{2}, \quad \alpha=\frac{p-b q}{2} \tag{52}
\end{equation*}
$$

Since $\alpha \delta-\beta \gamma=1$, we get the relation $\frac{p^{2}-q^{2} b^{2}}{4}+q^{2} a c=1$ or

$$
\begin{equation*}
p^{2}-d q^{2}=4 \tag{53}
\end{equation*}
$$

which is the well-known Pell's equation. Thus every unit of S in Γ_{0} gives rise to a solution of Pell's equation. Conversely every solution of (53) gives rise to a unit U of S, as can be seen from (51) and (52). This unit is

$$
U=\left(\begin{array}{cc}
\frac{p-b q}{2} & -c q \\
a q & \frac{p+b q}{2}
\end{array}\right)
$$

Consider the representation $H \rightarrow H[U], U \in \Gamma_{0}$ in the \mathfrak{G} space. Let the representative point of H_{0} be z_{0} on the semi-circle which defines the \mathfrak{H} space. Denote by w_{0} the point $H_{0}[U]$. Let z be any variable point on this semi-circle and w the image by the transformation $H \rightarrow H[U]$. If $U=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \beta\end{array}\right)$ then

$$
w_{0}=\frac{\delta z_{0}-\beta}{-\gamma z_{0}+\alpha}, \quad W=\frac{\delta z-\beta}{-\gamma z+\alpha} .
$$

Because of the fact that U fixes both τ_{1} and τ_{2} and cross-ratio is unaltered by linear transformation, we see that

$$
\frac{z-\tau_{1}}{z-\tau_{2}}: \frac{z_{0}-\tau_{1}}{z_{0}-\tau_{2}}=\frac{w-\tau_{1}}{w-\tau_{2}}: \frac{w_{0}-\tau_{1}}{w_{0}-\tau_{2}}
$$

or that

$$
\begin{equation*}
\frac{w-\tau_{2}}{w-\tau_{1}}=\mu \frac{z-\tau_{2}}{z-\tau_{1}} \tag{54}
\end{equation*}
$$

where $\mu=D\left(w_{0}, z_{0}, \tau_{1}, \tau_{2}\right)$. But equation (54) shows that $\mu=D(w, z$, τ_{1}, τ_{2}), which means that μ is a constant independent of the point z. This shows that in the non-Euclidean geometry of ours, the mapping $H \rightarrow H[U]$ corresponds to a translation. Also (See [11]) the quantity μ
110 has the property that if λ_{1} and λ_{2} are the eigen values of the matrix of the transformation

$$
\begin{equation*}
w=\frac{\delta z-\beta}{-\gamma z+\alpha} \tag{55}
\end{equation*}
$$

then, by proper ordering of λ_{1} and λ_{2} we have

$$
\mu=\frac{\lambda_{1}}{\lambda_{2}}
$$

and therefore the non-Euclidean distance $\delta_{0}(z, w)$ is given by

$$
\delta_{0}(z, w)=\log \frac{\lambda_{1}}{\lambda_{2}}
$$

where $\lambda_{1} \geq \lambda_{2}$. Now λ_{1} and λ_{2} are characteristic roots of the mapping (55) and hence they satisfy

$$
\lambda^{2}-(\alpha+\delta) \lambda+1=0
$$

which shows that

$$
\lambda_{1}, \lambda_{2}=\frac{\alpha+\delta}{2} \pm \sqrt{\left(\frac{\alpha+\delta}{2}\right)^{2}-1}
$$

Substituting from (52), $\alpha+\delta=p$, we get

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=\frac{p \pm q \sqrt{d}}{2} \tag{56}
\end{equation*}
$$

where p and q are the unique solutions of Pell's equation corresponding to the unit U.

Let R be the field of rational numbers and $R(\sqrt{d})$ the real quadratic field. The element ε of $R(\sqrt{d})$ defined by

$$
\varepsilon=\frac{p+q \sqrt{d}}{2}
$$

where p and q are a solution of Pell's equation, is a unit of norm 1 . This is seen from the fact that ε is a root of

$$
\lambda^{2}-p \lambda+1=0
$$

(If d is square-free the converse is also true).
In (56), the quantities λ_{1}, λ_{2} are ε and ε^{-1} in some order. If U is changed to U^{-1} or to $-U$, then ε gets changed to ε^{-1} or $-\varepsilon$ respectively. We therefore choose among the four quantities $\varepsilon,-\varepsilon, \varepsilon^{-1},-\varepsilon^{-1}$, one (and there is only one in general), call it ε^{*} which is such that

$$
\varepsilon^{*} \geq 1
$$

and put

$$
\delta_{0}(z, w)=\log \varepsilon^{* 2} .
$$

(Note that $\lambda_{1} / \lambda_{2}=\varepsilon^{* 2}$ with $\lambda_{1} \geq \lambda_{2}$). This will then mean that the translation in the \mathfrak{H} space is by the amount

$$
\delta(z, w)=\log \varepsilon^{*}
$$

Since the representation of Γ_{0} in \mathfrak{H} is discontinuous it follows that the translations form a discrete subgroup in the group of non-Euclidean motions on \mathfrak{H}. There is thus a U_{0} and a corresponding ε_{0}^{*} such that $\log \varepsilon_{0}^{*}$ is the smallest. Hence any U will be of the form

$$
U= \pm U_{0}^{n} \quad(n=0, \pm 1, \ldots)
$$

Similarly any ε which arises from a U in Γ_{0} is of the form

$$
\varepsilon= \pm \varepsilon_{0}^{* n} \quad(n=0, \pm 1, \ldots)
$$

If instead of S being semi-integral, it was rational symmetric we could, by multiplying it by an integer, make it integral satisfying the condition $(a, b, c)=1$. But this multiplication does not affect the unit group. Hence the

Theorem 4. The group of proper units of an indefinite, binary, non-zero, rational quadratic form is an infinite cyclic group whose elements stand in $a(1,1)$ correspondence with the solutions of Pell's equation.

Let $S=\left(\begin{array}{cc}a & b \\ b & c\end{array}\right)$ be a rational symmetric, non-singular indefinite matrix and let $S[\underline{x}]$ be not a zero form. Let the

semi-circle $A L B$ denote the \mathfrak{G} space of the matrix S so that A and B are points on the real axis with coordinates τ_{2} and $\tau_{1}, \tau_{2} \neq \tau_{1}$. Furthermore since $S[\underline{x}]$ is not a zero form, the quantities τ_{1} and τ_{2} are irrational. Let \mathscr{R} denote the fundamental region of the proper unimodular group in the upper half z-plane. Let U_{1}, \ldots, U_{g} be the finitely many reducing properly unimodular matrices. If \mathfrak{G}_{U} for $U=U_{1}, \ldots, U_{g}$ denotes the image of \mathfrak{H} under the transform $H \rightarrow H[U]$ (this means for the points z on \mathfrak{H} the transformation $z \rightarrow \frac{\varepsilon_{z}-\beta}{-\gamma z+\alpha}, U=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$), then

$$
G=\sum_{i=1}^{g}\left(\mathfrak{S}_{U_{i}} \cap \mathscr{R}\right)_{U_{i}^{-1}}
$$

is a point set on \mathfrak{H} and is a fundamental region for Γ_{0} in \mathfrak{G}. It is important to notice that $\mathfrak{G}_{U_{i}}$ does not lie completely on the boundary of \mathscr{R}. For then $\mathfrak{S}_{U_{i}}$ would have to be the unit circle or one of the lines $\xi= \pm 1 / 2$.

In the first case this would mean that

$$
\frac{\delta z-\beta}{-\gamma z+\alpha}= \pm 1
$$

where $z=\tau_{1}$ or τ_{2}. This is the same as saying τ_{1} and τ_{2} are rational, which they are not. Then same happens if the second case is true.

This shows that none of the $\operatorname{arcs}\left(\mathfrak{H}_{U_{i}} \cap \mathscr{R}\right)_{U_{i}}$ has an end point at τ_{1} or τ_{2}. Hence G is compact. Its volume therefore in the measure induced by the invariant metric is finite.

Bibliography

[1] E. Cartan : Sur une classe remarquable d^{\prime} espaces de Riemann, Bull. Math. Soc. France, Tome 55 (1927) P. 114-134.
[2] Fricke-Klein : Vorlesungen über die theorie der Modul- 114 funktionen, Bd.1, Leipsig (1890), P.243-269.
[3] C. F. Gauss : Disquisitiones Arithmeticae.
[4] C. Hermite : Oeuvres, Tome 1, Paris (1905), P.164-293.
[5] L. Pontrjagin : Topological groups, Princeton (1940).
[6] C. L. Siegel : Discontinuous groups, Annals of Math., 44 (1943), P. 674-689.
[7] C. L. Siegel : Some remarks on discontinuous groups, Annals of Math., 46(1945), P.708-718.
[8] C. L. Siegel : Einheiten quadratischer Formen, Abh. aus. dem. Math. Semi. Hansischen Univ., 13(1940), P.209-239.
[9] C. L. Siegel : Indefinite quadratische Formen und Funktionentheorie I, Math. Annalen, 124 (1951), P.17-54.
[10] C. L. Siegel : The average measure of quadratic forms with given determinant and signature, Annals of Math., 45(1944), P.667-685.
[11] C. L. Siegel : Ausgewählte Fragen der Funktionentheorie II Göttingen, 1953.
[12] A. Weil : L'intégration dans les groupes topologiques et ses applications, Paris (1940).

Chapter 4

Analytic theory of Indefinite quadratic forms

1 The theta series

Let

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=a_{11} x_{1}^{2}+\cdots+a_{n n} x_{n}^{2}+b_{1} x_{1}+\cdots+b_{n} x_{n}+c=0 \tag{1}
\end{equation*}
$$

be a Diophantine equation with integral coefficients. Let S denote the matrix of the homogeneous part. We consider integral linear homogeneous transformations

$$
x_{i} \rightarrow \sum_{j=1}^{n} q_{i j} x_{j}, \quad i=1, \ldots, n
$$

where the matrix $Q=\left(q_{i j}\right)$ is unimodular. Let the resulting function be $Q\left(x_{1}, \ldots, x_{n}\right)$. Then $f=0$ has an integral solution if and only if $Q=0$ has an integral solution.

Suppose the matrix S has rank $r, 0<r<n$ so that $|S|=0$. Let p be a primitive vector such that $S \underline{p}=\underline{0}$. Let U be the unimodular matrix with \underline{p} as its first column. Then

$$
S[U]=\left(\begin{array}{ll}
0 & \underline{0}^{\prime} \\
\underline{0} & S_{1}
\end{array}\right) .
$$

We may repeat the process with S_{1} instead of S. Finally therefore we arrive at a unimodular matrix V so that

$$
S[V]=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{r}
\end{array}\right)
$$

$\left|S_{r}\right| \neq 0$. Put now

$$
\left(b_{1}, b_{2}, \ldots, b_{n}\right) V=\left(c_{1}, \ldots, c_{n}\right) .
$$

116 If c_{1}, \ldots, c_{n-r} are zero it means that by a unimodular transformation we can bring f into a quadratic form in r-variables. Suppose now that c_{1}, \ldots, c_{n-r} are not all zero. Since they are integers, there exists a unimodular matrix V_{1} of $n-r$ rows such that

$$
\left(c_{1}, \ldots, c_{n-r}\right) V_{1}=(0,0, \ldots, d) .
$$

Put now

$$
V_{2}=\left(\begin{array}{cc}
V_{1} & 0 \\
0 & E_{r}
\end{array}\right) .
$$

Then $S\left[V V_{2}\right]=S[V]$ and $f\left(x_{1}, \ldots, x_{n}\right)$ becomes transformed into

$$
\begin{aligned}
\varphi\left(x_{n-r}, \ldots, x_{n}\right) & =d_{11} x_{n-r+1}^{2}+\cdots d_{r r} x_{n}^{2} \\
& +d x_{n-r}+d_{1} x_{n-r+1}+\cdots+d_{r} x_{n}+d^{\prime} .
\end{aligned}
$$

This is the form into which f can, in general, be transformed by unimodular transformation.

We shall hereafter assume $|S| \neq 0$ and that the quadratic form is integral valued, that is, that for x_{1}, \ldots, x_{n} integral, $f\left(x_{1}, \ldots, x_{n}\right)$ is an integer. This means

$$
\begin{equation*}
\text { a) } S \text { is semi-integral } \tag{2}
\end{equation*}
$$

that is that its diagonal elements are integers and twice the non-diagonal elements are integers. (1) can now be written in the form

$$
S[\underline{x}]+\underline{b^{\prime}} \underline{x}+c=S\left[\underline{x}+\frac{1}{2} S^{-1} \underline{b}\right]+c-\frac{1}{4} S^{-1}[\underline{b}] .
$$

If we put $t=c-\frac{1}{4} S^{-1}[\underline{b}]$ and $2 S \underline{a}=\underline{b}$, then (1) takes the simple form

$$
\begin{equation*}
S[\underline{x}+\underline{a}]-t=0 . \tag{3}
\end{equation*}
$$

$$
\beta) 2 S \underline{a} \text { is integral. }
$$

We shall therefore consider the diophantine problem in which the left side is $S[\underline{x}+\underline{a}]$. Clearly and rational number t which can be represented by $S[\underline{x}+\underline{a}]$ satisfies

$$
\begin{equation*}
t \equiv S[\underline{a}](\bmod 1) \tag{5}
\end{equation*}
$$

Consider the diophantine equation $S[\underline{x}+\underline{a}]=t$ under the conditions (2) and (4). If $S>0$, the number of integral solutions, denoted $A(S, \underline{a}, t)$, is finite. We now form the generating series

$$
\begin{equation*}
\sum_{t} A(S, \underline{a}, t) e^{2 \pi i t z} \tag{6}
\end{equation*}
$$

where $z=\xi+i \eta, \eta>0$. It follows that

$$
\begin{equation*}
\sum_{t} A(S, \underline{a}, t) e^{2 \pi i t z}=\sum_{\underline{x} \equiv-\infty}^{\infty} e^{2 \pi i S[x+a] z} \tag{7}
\end{equation*}
$$

and since $S>0$, the series on the right of (7) converges. The right side of (7) is a so-called theta series studied extensively by Jacobi. In particular if $S=E_{4}$, the unit matrix of order 4 and $\underline{a}=\underline{0}$, we have

$$
\sum_{t=0}^{\infty} A_{4}(t) e^{2 \pi i t z}=\left(\sum_{x=-\infty}^{\infty} e^{2 \pi i x^{2} z}\right)^{4}
$$

where $A_{4}(t)$ is the number of integral solutions of

$$
\begin{equation*}
t=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \tag{8}
\end{equation*}
$$

It was conjectured by Fermat and proved by Lagrange that for every
$t \geq 1$, (8) has a solution. Jacobi proved, by using the theory of Elliptic theta series, that

$$
A_{4}(t)=8 \sum_{\substack{d / t \\ 4 \nmid d}} d
$$

Since for every t, unity divider t, we find that $A_{4}(t) \geq 1$, for all $t \geq 1$. This, besides proving Lagrange's theorem, is a quantitative improvement of it.

If S is indefinite, $A(S, \underline{a}, t)$, if different from zero, is infinite. This means that the right side of (7) diverges. It is therefore desirable to define an analogue of $A(S, \underline{a}, t)$ for indefinite S. To this end we shall introduce the theta series.

Let $z=\xi+i \eta, \eta>0$ be a complex parameter. Let S be n-rowed symmetric and H any matrix in the representation space \mathfrak{G} of the orthogonal group of S. Then $H>0$ and $H S^{-1} H=S$. Put

$$
\begin{equation*}
R=\xi S+i \eta H \tag{9}
\end{equation*}
$$

Then $R=z K+\bar{z} L$ where $K=\frac{1}{2}(S+H), L=\frac{1}{2}(S-H) . R$ is now a complex symmetric matrix whose imaginary part ηH is positive definite. Let \underline{a} be a rational column satisfying (4). Put $\underline{y}=\underline{x}+\underline{a}, \underline{x}$ being an integral column. Define

$$
\begin{equation*}
f_{\underline{a}}(z, H)=\sum_{\underline{y} \equiv a(\bmod 1)} e^{2 \pi i R[\underline{y}] Z} \tag{10}
\end{equation*}
$$

where the summation runs over all rational columns $\underline{y} \equiv \underline{a}(\bmod 1)$. Since $H>0$, 10 is absolutely convergent for every $H \overline{\text { in }} \mathfrak{H}$.

For our purposes, it seems practical to consider a more general function $f_{\underline{a}}(z, H, \underline{w})$ defined by

$$
\begin{equation*}
f_{\underline{a}}(z, H, \underline{w})=\sum_{\underline{y} \equiv \underline{a}(\bmod 1)} e^{2 \pi i R[\underline{y}]+2 \pi i \underline{y} \underline{\varphi}^{\prime} \bar{\omega}} \tag{11}
\end{equation*}
$$

where \underline{w} is a complex column of n rows of elements w_{1}, \ldots, w_{n}. It is clear that $f_{\underline{a}}(z, H, \underline{w})$ are still convergent. (11) is the general theta series.

It is to be noticed that if $S>0$, (10) coincides with (7).
Consider now all the rational vectors \underline{a} which satisfy (4), namely that $2 S \underline{a}$ is integral. It is clear that there are only finitely many such \underline{a} incongruent $(\bmod 1)$. The number l of such residue classes is clearly at most equal to

$$
\begin{equation*}
d=a b s 2|S| \tag{12}
\end{equation*}
$$

Let $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{l}$ be the complete set of these l residue classes incongruent $(\bmod 1)$. For each class \underline{a}_{i} form the function $f_{\underline{a}_{i}}(z, H, \underline{w})$. We denote
by $f(x, H, \underline{w})$ the functional vector

$$
f(z, H, \underline{w})=\left(\begin{array}{c}
f_{\underline{a}_{1}}(z, H, \underline{w}) \tag{13}\\
\vdots \\
f_{\underline{a}_{1}}(z, H, \underline{w}
\end{array}\right) .
$$

2 Proof of a lemma

Let $P>0$ be an n-rowed real matrix and $\underline{u}=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)$ a column of n real numbers. The function

$$
f\left(u_{1}, \ldots, u_{n}\right)=\sum_{\underline{x}} e^{-\pi P[\underline{x}+\underline{u}]}
$$

where \underline{x} runs through all integral n-rowed columns, is a continuous function of the n-variables u_{1}, \ldots, u_{n} and has in each variable the period 1 . It has the fourier series

$$
\sum_{\underline{l}} c_{\underline{l}} e^{2 \pi i \underline{l}^{\prime} \underline{u}}
$$

\underline{l} running through all integral n-rowed vectors and

$$
\begin{equation*}
c_{\underline{l}}=\int_{\sigma} f\left(u_{1}, \ldots, u_{n}\right) e^{-2 \pi i l^{\prime} \underline{u}} d u_{1} \ldots d u_{n} \tag{14}
\end{equation*}
$$

where σ is the unit cube in the n dimensional space R_{n} of u_{1}, \ldots, u_{n}.
Since $P>0$, we can write $P=M^{\prime} M$ for a non-singular M. Put

$$
\begin{equation*}
M \underline{u}=\underline{v}, \quad M^{\prime-1} \underline{l}=\underline{k} . \tag{15}
\end{equation*}
$$

Then

$$
c_{\underline{l}}:|P|^{-\frac{1}{2}} \int_{R_{n}} e^{-\pi \underline{y^{\prime}} \underline{\underline{-}}-2 \pi i \underline{k}^{\prime} \underline{v}} d \underline{v}
$$

where we take the positive value of the square root. If $\underline{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$ and $\underline{k}=\left(\begin{array}{c}k_{1} \\ \vdots \\ k_{n}\end{array}\right)$, then $\underline{v}^{\prime} \underline{v}=v_{1}^{2}+\cdots+v_{n}^{2}$ and $\underline{k}^{\prime} \underline{v}=k_{1} v_{1}+\cdots+k_{n} v_{n}$ so that

$$
\begin{equation*}
c_{\underline{l}}=|P|^{-\frac{1}{2}} e^{-\pi P^{-1}[\underline{l l}}\left(\int_{-\infty}^{\infty} e^{-\pi t^{2}} d t\right)^{n} \tag{16}
\end{equation*}
$$

That the value of the integral on the right of (16) is unity is seen as follows: In the first place from the uniform convergence of the series $f\left(u_{1}, \ldots, u_{n}\right)$, it follows that

$$
\begin{equation*}
\sum_{\underline{x}} e^{-\pi P[\underline{x}+\underline{u}]}=|P|^{-\frac{1}{2}} \lambda^{n} \sum_{\underline{l}} e^{-\pi P^{-1}[\underline{l}]+2 \pi i \underline{l}^{\prime} \underline{u}} \tag{17}
\end{equation*}
$$

121 where

$$
\lambda=\int_{-\infty}^{\infty} e^{-\pi t^{2}} d t
$$

Secondly, λ is independent of P and so putting $n=1, P=1$ and $u=0$, we see from (17) that $\lambda=1$.

Suppose now that in (17), u_{1}, \ldots, u_{n} are complex variables. Since $f\left(u_{1}, \ldots, u_{n}\right)$ is absolutely convergent which moreover is uniformly convergent in every compact subset of the n-complex space of u_{1}, \ldots, u_{n}, it follows that $f\left(u_{1}, \ldots, u_{n}\right)$ is an analytic function of the n-complex variables u_{1}, \ldots, u_{n}. The same is true of the right side of (17) also. Since (17) holds for all real u_{1}, \ldots, u_{n}, it holds, by analytic continuation, for complex u_{1}, \ldots, u_{n} also.

Suppose now that P is a complex symmetric matrix $P=X+i Y$ whose real part X is positive definite. Then P^{-1} also has this property. For, since X and Y are real symmetric and $X>0$, there exists a nonsingular real C such that

$$
X=C^{\prime} C, \quad Y=C^{\prime} D C
$$

where $D=\left[d_{1}, \ldots, d_{n}\right]$ is a real diagonal matrix with diagonal elements d_{1}, \ldots, d_{n}. Now $P=X+i Y=C^{\prime}(E+i D) C$ so that

$$
\begin{equation*}
P^{-1}\left[C^{\prime}\right]=\left[\frac{1-i d_{1}}{1+d_{1}^{2}}, \ldots, \frac{1-i d_{n}}{1+d_{n}^{2}}\right] \tag{18}
\end{equation*}
$$

which shows, since C is real, that the real part of P^{-1} is positive definite symmetric. Incidentally we have shown that P is non-singular.

If we now take u_{1}, \ldots, u_{n} to be fixed complex numbers, then $f(P)=\mathbf{1 2 2}$ $\sum_{\underline{x}} e^{-\pi[\underline{x}+\underline{u}]}$ is an analytic function of the $\frac{n(n+1)}{2}$ complex variables constituting the matrix P. Since (17) is true for P real, by analytic continuation, it is true also if P is complex symmetric with positive real part. For $|P|^{-\frac{1}{2}}$ one takes that branch of the algebraic function which is positive for real P. We thus have the

Lemma 1. Let P be a complex n-rowed symmetric matrix with real part positive. Let \underline{u} be any complex column. Then

$$
\sum_{\underline{x}} e^{-\pi P[\underline{x}+\underline{u}]}=|P|^{-\frac{1}{2}} \sum_{\underline{x}} e^{-\pi P^{-1}[\underline{x}]+2 \pi i \underline{x}^{\prime} \underline{u}}
$$

where \underline{x} runs through all integral columns and $|P|^{-\frac{1}{2}}$ is that branch of the algebraic function which is positive real P.

3 Transformation formulae

We now wish to study the transformation theory of the theta series defined in (11), under the modular substitutions

$$
z \rightarrow z_{M}=\frac{\alpha z+\beta}{\gamma z+\delta}, \quad M=\left(\begin{array}{cc}
\alpha & \beta \tag{19}\\
\gamma & \delta
\end{array}\right), \quad|M|=1
$$

where M is an integral matrix. Since H will be fixed throughout this section we shall write $f_{\underline{a}}(z, \underline{w})$ instead of $f_{\underline{a}}(z, H, \underline{w})$. Following Hermite, we first consider the case $\gamma \neq 0$, and write

$$
\begin{equation*}
\frac{\alpha z+\beta}{\gamma z+\delta}=\frac{\alpha}{\gamma}+\gamma^{-2} z_{1}, \quad-z_{1}^{-1}=z_{2}, \quad z_{2}=z+\frac{\delta}{\gamma} \tag{20}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=f_{\underline{a}}\left(\frac{\alpha}{\gamma}+\gamma^{-2} z_{1}, \underline{w}\right) . \tag{21}
\end{equation*}
$$

Denote by R_{M} the matrix R in (9) with z replaced by z_{M}, then

$$
R_{M}=\frac{\alpha}{\gamma} S+\gamma^{-2} R_{1}
$$

where

$$
\begin{equation*}
R_{1}=z_{1} \frac{S+H}{2}+\bar{z}_{1} \frac{S-H}{2} \tag{22}
\end{equation*}
$$

By definition of $y, \underline{y}-\underline{a}$ is integral. We may therefore write $\underline{v}-\underline{a}=$ $\underline{x} \gamma+\underline{g}$ where y belongs to the finite set of residue classes of integral vectors $(\bmod \gamma)$. When \underline{x} runs through all integral vectors and g through a complete system of $(\underline{\bmod } \gamma)$ incongruent integral vectors, then \underline{y} runs through all rational vectors $\equiv \underline{a}(\bmod 1)$. We have therefore

$$
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=\sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i \frac{\tilde{\gamma}}{\gamma}[\underline{\underline{\gamma}}+\underline{a}]} \sum_{\underline{x}} e^{2 \pi i\left(\gamma-\gamma^{-2} R_{1}[\underline{x} \gamma+\underline{g}+\underline{a}]+\underline{w}^{\prime}(\underline{w} \gamma+\underline{g}+\underline{a})\right)}
$$

R_{1} being non-singular, we can complete squares in the exponent in the inner sum and obtain,

$$
\left.\begin{array}{l}
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=e^{-\frac{\pi i}{2} R_{1}^{-1}[\underline{w} \gamma]} \sum_{\underline{g}(\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma} S[\underline{g}+\underline{a}]} \tag{23}\\
\sum_{\underline{x}} e^{2 \pi i R_{1}\left[\underline{x}+\underline{(g}+\underline{a} \gamma^{-1}+R_{1}^{-1} \underline{w} \gamma / 2\right]}
\end{array}\right\}
$$

In order to be able to apply lemma 1 to the inner sum in (23) we first compute R_{1}^{-1}. Since S and H are symmetric and $H>0$, there exists a real non-singular C such that

$$
S=C^{\prime}\left(\begin{array}{cc}
E_{p} & 0 \\
0 & -E_{q}
\end{array}\right) C, H=C^{\prime} C .
$$

124 Then R_{1} is given by

$$
R_{1}=C^{\prime}\left(\begin{array}{cc}
z_{1} E_{p} & 0 \tag{24}\\
0 & -\bar{z}_{1} E_{q}
\end{array}\right) C
$$

where z_{1} is given by (20). It readily follows that

$$
\begin{equation*}
-R_{1}^{-1}=-z_{1}^{-1} \frac{S^{-1}+H^{-1}}{2}-\bar{z}_{1}^{-1} \frac{S^{-1}-H^{-1}}{2} \tag{25}
\end{equation*}
$$

Using (20), we finally have

$$
\begin{equation*}
-R_{1}^{-1}=\left(\frac{\delta}{\gamma} S+R\right)\left[S^{-1}\right] \tag{26}
\end{equation*}
$$

Applying lemma 1 to the inner sum we now find

$$
\left.\begin{array}{l}
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=\left|-2 i R_{1}\right|^{-\frac{1}{2}} e^{-\frac{\pi i}{2} R_{1}^{-1}[w \gamma]} \sum_{\underline{g}(\bmod \gamma)} e^{\left.2 \pi i \frac{\alpha}{\gamma} S \underline{\underline{g}}+\underline{a}\right]} \tag{27}\\
\sum_{l} e^{\frac{\pi i}{2}\left(\frac{\delta}{\gamma} S+R\right)\left[S^{-1} \underline{l}\right]+2 \pi i \underline{l}{ }^{\prime}\left((\underline{g}+\underline{a}) \gamma^{-1}+R_{1}^{-1} \underline{w} \frac{\gamma}{2}\right)}
\end{array}\right\}
$$

where the square root has to be taken according to the prescription in lemma It follows then, using (24), that

$$
\begin{equation*}
\left|-2 i R_{1}\right|^{-\frac{1}{2}}=\epsilon d^{-\frac{1}{2}}\left(z+\frac{\delta}{\gamma}\right)^{\frac{p}{2}}\left(\bar{z}+\frac{\delta}{\gamma}\right)^{\frac{q}{2}} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon=e^{\frac{\pi i}{4}(q-p)} \tag{29}
\end{equation*}
$$

is an eighth root of unity and d is given by (12).
In order to simplify the inner sum in (27), we prove the following
Lemma 2. If \underline{a} and \underline{b} are two rational columns such that $2 S \underline{a}$ and $2 S \underline{b} \mathbf{1 2 5}$ are integral, α, γ, δ integers such that $\alpha \delta \equiv 1((\bmod) \gamma)$ and x is any integral column, then

$$
\sum_{\underline{g}(\mathrm{mod}) \gamma)} e^{\frac{2 \pi i}{\gamma}\left\{\alpha S[\underline{g}+\underline{a}]-2(\underline{x}+\underline{b})^{\prime} S(\underline{g}+\underline{a})+\delta S[\underline{x}+\underline{b}]\right\}}
$$

is independent of \underline{x}.

Proof. We have only to consider the exponent in each term $(\bmod \gamma)$. In the first place we have

$$
\begin{gathered}
\alpha S[\underline{g}+\underline{a}]=\alpha S[\underline{g}+\underline{a}-\delta \underline{x}]+2 \alpha \delta \underline{x}^{\prime} S(\underline{g}+\underline{a})-\alpha \delta^{2} S[\underline{x}] \\
\delta S[\underline{x}+\underline{b}]=\delta S[\underline{b}]+\delta S[\underline{x}]-2 \underline{b}^{\prime} S(\underline{g}+\underline{a}-\delta \underline{x})+2 \underline{b^{\prime}} S(\underline{g}+\underline{a}) \\
2(\underline{x}+\underline{b})^{\prime} S(\underline{g}+\underline{a})=2 \underline{b^{\prime}} S(\underline{g}+\underline{a})+2 \underline{x}^{\prime} S(\underline{g}+\underline{a}) .
\end{gathered}
$$

Using the fact that $\alpha \delta \equiv 1((\bmod) \gamma)$ we see that the exponent in each term is congruent $(\bmod \gamma)$ to

$$
\alpha S[\underline{g}+\underline{a}-\delta \underline{x}]-2 \underline{b^{\prime}} S(\underline{g}+\underline{a}-\delta \underline{x})+\delta S[\underline{b}] .
$$

Since now δ and \underline{x} are fixed and g runs over a complete system of residue classes $(\bmod \gamma)$, it follows that $\underline{g}-\delta \underline{x}$ also runs through a complete system $(\bmod \gamma)$. This proves the lemma.

In the inner sum in (27), \underline{l} runs through all integral vectors, so that we may write

$$
\frac{1}{2} S^{-1} \underline{l}=-(\underline{x}+\underline{b})
$$

where \underline{x} is an integral column and \underline{b} is one of the finitely many representatives $\underline{a}_{1}, \ldots, \underline{a}_{n}$ of the residue classes $(\bmod 1)$ given in (13). Also when \underline{x} runs through all integral vectors and \underline{b} through these residue class representatives, $-(\underline{x}+\underline{b})$ runs through all rational columns of the type $\frac{1}{2} S^{-1} \underline{l}$. We have thus

$$
\left.\begin{array}{l}
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=1-\left.2 i R_{1}\right|^{-\frac{1}{2}} e^{\left.-\frac{\pi i}{2} R_{1}^{-1} \underline{\underline{W}} \gamma\right]} \\
\sum_{\underline{b}} \sum_{\underline{x}} \sum_{\underline{g}(\bmod) \gamma)} e^{\frac{2 \pi}{\gamma}\left\{\alpha S[\underline{\underline{g}}+\underline{a}]-2(\underline{x}+\underline{b})^{\prime} S(\underline{g}+\underline{a})+\delta S[\underline{x}+\underline{b}]\right\}} \\
e^{2 \pi i R[\underline{[}+\underline{b}]+2 \pi i(\underline{x}+b)^{\prime} S R_{1}^{-1} \underline{w} \gamma}
\end{array}\right\}
$$

Let us use the abbreviation

$$
\begin{equation*}
\lambda_{\underline{a b}}(M)=\sum_{g((\mathrm{mod}) \gamma)} e^{\frac{2 \pi}{\gamma}\left\{\alpha S[\underline{z}+\underline{a}]-2 \underline{b}^{\prime} S(\underline{(}+a)+\delta S[\underline{b}]\right\}} \tag{30}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
f_{\underline{a}}\left(z_{M}, \underline{w}\right)=1-\left.2 i R_{1}\right|^{-\frac{1}{2}} e^{-\frac{\pi i}{2} R_{1}^{-1}[\underline{w} \gamma]} \\
\sum_{b} \sum_{\underline{x}} \lambda_{\underline{a}, \underline{b}}(M) e^{2 \pi i R[\underline{x}+b]+2 \pi i(\underline{x}+\underline{b})^{\prime} S R_{1}^{-1} \underline{w} \gamma} \tag{31}
\end{gather*}
$$

Let us now define the vector $\underline{w}_{M, z}$ by

$$
\begin{equation*}
-S R_{1}^{-1} \underline{w}_{M, z}=\underline{w} \gamma^{-1} \tag{32}
\end{equation*}
$$

Using (22) for R_{1} we get

$$
\begin{equation*}
\underline{w}_{M, z}=\left(\frac{1}{\gamma z+\delta} K+\frac{1}{\gamma \bar{z}+\delta} L\right) S^{-1} \underline{w} . \tag{33}
\end{equation*}
$$

With this definition of $\underline{w}_{M, z}$ we see that

$$
R_{1}^{-1}\left[\underline{w}_{M, z} \gamma\right]=R_{1}\left[S^{-1} \underline{w}\right] .
$$

Use now the abbreviation

$$
\begin{equation*}
\rho(M, z, \underline{w})=e^{-\frac{\pi i}{2} R_{1}\left[S^{-1} \underline{w}\right]} ; \tag{34}
\end{equation*}
$$

then substituting $\underline{w}_{M, z}$ for \underline{w} in (27), we get the formula

$$
\left.\begin{array}{rl}
f_{\underline{a}}\left(z_{M}, \underline{w}_{M, z}\right)= & \epsilon d^{-\frac{1}{2}}\left(z+\frac{\delta}{\gamma}\right)^{p / 2}\left(\bar{z}+\frac{\delta}{\gamma}\right)^{q / 2} \\
& \sum_{\underline{b}} \lambda_{\underline{a}, \underline{b}}(M) f_{\underline{b}}(z, \underline{w}) \rho(M, z, \underline{w}) \tag{35}
\end{array}\right\}
$$

Till now we considered the case $\gamma \neq 0$. Let now $\gamma=0$. Then

$$
M=\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)
$$

and $\alpha \delta=1$. Also $z_{M}=\frac{\alpha z+\beta}{\delta}=z+\alpha \beta$. The definition of $\underline{w}_{M, z}$ given in (33) is valid even if $\gamma=0$. Thus

$$
e^{-2 \pi i \alpha \beta S[\underline{a}]} f_{\underline{a}}\left(z_{M}, \underline{w}_{M, z}\right)=\sum_{\underline{x}} e^{2 \pi i R[\underline{x}+\underline{\alpha} \alpha]+2 \pi i(\underline{x}+a)^{\prime} \underline{w}_{M, z}} .
$$

Since $\alpha= \pm 1, \alpha \underline{x}$ also runs through all integral vectors and so

$$
\begin{equation*}
f_{\underline{a}}\left(z_{M}, \underline{w}_{M, z}\right)=e^{2 \pi i \alpha \beta S[\underline{[\underline{a}]}} f_{\underline{a} \alpha}(z, \underline{w}) \tag{36}
\end{equation*}
$$

$\underline{a} \alpha$ being again some one of the $\underline{a}_{1}, \ldots, \underline{a}_{l}$ determined by \underline{a} and α.
For any two rational columns $\underline{a}, \underline{b}$ with $2 S \underline{a}$ and $2 S \underline{b}$ integral, let us define

$$
e_{\underline{a b}}= \begin{cases}1 & \text { if } \underline{a} \equiv \underline{b}(\bmod 1) \\ 0 & \text { otherwise }\end{cases}
$$

Define now the l-rowed matrix $G(M, z)$ by

$$
G(M, z)=\left\{\begin{array}{l}
\epsilon d^{-\frac{1}{2}}\left(z+\frac{\delta}{\gamma}\right)^{\frac{p}{2}}\left(\bar{z}+\frac{\delta}{\gamma}\right)^{\frac{q}{2}}\left(\lambda_{a b}(M)\right), \text { if } \gamma \neq 0 \tag{37}\\
\left(e_{a a_{\alpha}} e^{2 \pi i \alpha \beta S[\underline{a}]}\right), \text { if } \gamma=0
\end{array}\right.
$$

Also put

$$
\rho(M, z, \underline{w})= \begin{cases}e^{-\frac{\pi i}{2} R_{1}\left[S^{-1} w\right]} & \text { if } \gamma \neq 0 \tag{38}\\ 1 & \text { if } \gamma=0\end{cases}
$$

128 We then have the following fundamental formula for the vector $\underline{f}(z, M$, w) defined in (13):

Theorem 1. If $M=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$ is any modular matrix and $z_{M}=\frac{\alpha z+\beta}{\gamma z+\delta}$, then

$$
\underline{\left.f\left(z_{M}, \underline{w}_{M, z}\right)=G(M, z) \underline{f(z, \underline{w}) \rho(M, z, \underline{w})} .{ }^{2}\right)}
$$

where $\underline{w}_{M, z}$ is defined by (33) and $G(M, z)$ and $\rho(M, z, \underline{w})$ by (37) and (38) respectively.

We shall now obtain a composition formula for the l-rowed matrices $G(M, z)$.

Let M and M_{1} be two modular matrices

$$
M=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right), \quad M_{1}=\left(\begin{array}{cc}
\alpha_{1} & \beta_{1} \\
\gamma_{1} & \delta_{1}
\end{array}\right), \quad M M_{1}=\left(\begin{array}{ll}
\alpha_{2} & \beta_{2} \\
\gamma_{2} & \delta_{2}
\end{array}\right)
$$

By the definition of z_{M}, it follows that

$$
\begin{equation*}
\left(z_{M_{1}}\right)_{M}=z_{M M_{1}} \tag{39}
\end{equation*}
$$

From definition (33), it follows that

$$
\left.\begin{array}{rl}
\left(\underline{w}_{M_{1}, z}\right)_{M, z M_{1}}= & \left(\frac{1}{\gamma z_{M_{1}}+\delta} K+\frac{1}{\gamma \bar{z}_{M_{1}}+\delta} L\right) S^{-1} \\
& \left(\frac{1}{\gamma_{1} z+\delta_{1}} K+\frac{1}{\gamma_{1} \bar{z}+\delta_{1}} L\right) S^{-1} \bar{w}
\end{array}\right\}
$$

Using the properties of the matrices K and L we get

$$
\left(\underline{w}_{M_{1}, z}\right)_{M, z_{M_{1}}}=\left(\frac{1}{\gamma_{2} z+\delta_{2}} K+\frac{1}{\gamma_{2} \bar{z}+\delta_{2}} L\right) S^{-1} \underline{w}
$$

which gives the formula

$$
\begin{equation*}
\underline{w}_{M M_{1}, z}=\left(\underline{w}_{M_{1}, z}\right)_{M, z_{M_{1}}} \tag{40}
\end{equation*}
$$

Using the definition of R_{1} and of $\underline{w}_{M, z}$ we get

$$
\begin{equation*}
R_{1}\left[S^{-1} \underline{w}\right]=-\underline{w}^{\prime} S^{-1} \underline{w}_{M, z} \gamma \tag{41}
\end{equation*}
$$

Let us now assume, for a moment, that $\gamma, \gamma_{1}, \gamma_{2}$ are all different from zero. Using definition (38) let us write

$$
\rho\left(M_{1}, z, \underline{w}\right) \cdot \rho\left(M, z_{M_{1}}, \underline{w}_{M_{1}, z}\right)=e^{-\frac{\pi i}{2} \varphi} .
$$

Then using (41), it follows that

$$
-\rho=\underline{w}^{\prime} S^{-1}\left\{\gamma_{1}+\left(\frac{1}{\gamma_{1} z+\delta_{1}} K+\frac{1}{\gamma_{1} \bar{z}+\delta_{1}} L\right) \gamma S^{-1}\right.
$$

$$
\left.\left(\frac{1}{\gamma z_{M_{1}}+\delta} K+\frac{1}{\gamma \bar{z}_{M_{1}}+\delta} L\right) S^{-1}\right\} \underline{w}_{M_{1}}, z
$$

Using again the properties of K and L we obtain

$$
-\varphi=\underline{w}^{\prime} S^{-1} \gamma_{2}\left(\frac{\gamma_{1} z+\delta_{1}}{\gamma_{2} z+\delta_{2}} K+\frac{\gamma_{1} \bar{z}+\delta_{1}}{\gamma_{2} \bar{z}+\delta_{2}} L\right) S^{-1} \underline{w}_{M_{1}, z}
$$

which is seen to be equal to

$$
\underline{w}^{\prime} S^{-1} \gamma_{2} \underline{w}_{M M_{1}, z} .
$$

By (41) therefore we get the formula

$$
\begin{equation*}
\rho\left(M_{1}, z, \underline{w}\right) \cdot \rho\left(M, z_{M_{1}}, \underline{w}_{M_{1}, z}\right)=\rho\left(M M_{1}, z, \underline{w}\right) \tag{42}
\end{equation*}
$$

We can now release the condition on $\gamma, \gamma_{1}, \gamma_{2}$. If some or all of them are zero, then using definition (38), we can uphold (42). Thus (42) is true for any two modular matrices M, M_{1}.

If we now use theorem \mathbb{W} we have

$$
\begin{equation*}
\underline{f}\left(z_{M M_{1}}, \underline{w}_{M M_{1}, z}\right)=G\left(M M_{1}, z\right) \underline{f}(z, \underline{w}) \rho\left(M M_{1}, z, \underline{w}\right) . \tag{43}
\end{equation*}
$$

Using (39) and (40) we have

$$
\underline{f}\left(z_{M M_{1}}, \underline{w}_{M M_{1}, z}\right)=G\left(M, z_{M_{1}}\right) \underline{f\left(z_{M_{1}}, \underline{w}_{M_{1}, z}\right) \rho\left(M, z_{M_{1}}, \underline{w}_{M_{1}, z}\right), ~}
$$

which again gives the formula

$$
\begin{gather*}
\underline{f}^{\left.\underline{z_{M M_{1}},}, \underline{w}_{M M_{1}, z}\right)=} \\
=G\left(M, z_{M_{1}}\right) G\left(M_{1}, z\right) \underline{f}(z, \underline{w}) \rho\left(M, z_{M_{1}}, \underline{w}_{M_{1}, z}\right) \rho\left(M_{1} z, \underline{w}\right) \tag{44}
\end{gather*}
$$

Using (42), (43) and (44) and observing that $\rho\left(M M_{1}, z, \underline{w}\right) \neq 0$, we get the matrix equation

$$
\begin{equation*}
\left(G\left(M M_{1}, z\right)-G\left(M, z_{M_{1}}\right) G\left(M_{1}, z\right)\right) \underline{f}(z, \underline{w})=\underline{0} . \tag{45}
\end{equation*}
$$

We remark that the 1-rowed matrix on the left hand side of equation (45) is independent of \underline{w}. Let us now prove

Lemma 3. The l functions $f_{\underline{a}_{1}}(z, \underline{w}), \ldots, f_{\underline{a}_{1}}(z, \underline{w})$ are linearly independent over the field of complex numbers.

Proof. By definition $f_{\underline{a}}(z, \underline{w})=\sum_{\underline{x}} e^{2 \pi i R[\underline{x}+\underline{a}]+2 \pi i \underline{w}^{\prime}(\underline{x}+\underline{a})}$ so that it is a fourier series in the n variables w_{1}, \ldots, w_{n}. We may write

$$
f_{\underline{a}}(z, \underline{w})=\sum_{\underline{r}} c_{r} e^{2 \pi \underline{w^{\prime}} \underline{r}}
$$

where \underline{r} runs through all rational vectors $\equiv \underline{a}(\bmod 1)$. If $\alpha_{1}, \ldots, \alpha_{r}$ be complex numbers such that

$$
\sum_{i=1}^{l} \alpha_{i} f_{\underline{a}_{i}}(z, \underline{w})=0
$$

then by uniqueness theorem of fourier series, every fourier coefficient must vanish. But since $\underline{a}_{1}, \ldots, \underline{a}_{l}$ are all distinct (mod 1), it follows that the exponents in the l series $f_{\underline{a}}(z, \underline{w})$ are all distinct. Hence $\alpha_{i}=0, i=$ $1, \ldots, n$, and our lemma is proved.

Using (45) and lemma 3 it follows that the l-rowed matrix on the left of (45) is identically zero. Hence the

Theorem 2. For any two modular matrices M, M_{1} we have the composition formula

$$
G\left(M M_{1}, z\right)=G\left(M, z_{M_{1}}\right) G\left(M_{1}, z\right)
$$

Let $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ be a modular matrix so that

$$
M^{-1}=\left(\begin{array}{cc}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right)
$$

Let us assume that $\gamma \neq 0$. Let as before $\underline{a}, \underline{b}$ be two rational columns chosen from the set $\underline{a}_{1}, \ldots, \underline{a}_{l}$. We shall prove

$$
\begin{equation*}
\overline{\lambda_{\underline{a} \underline{b}}(M)}=\lambda_{\underline{b} \underline{a}}\left(M^{-1}\right) \tag{46}
\end{equation*}
$$

where $\lambda_{\underline{a} \underline{b}}(M)$ is the sum defined in (30).
In order to prove (46), put $t=\lambda_{\underline{a} \underline{b}}^{\underline{b}}(M)$ and $t^{\prime}=\lambda_{\underline{b} \underline{a}}\left(M^{-1}\right)$. Because of lemman we have

$$
t=\sum_{\underline{y}((\bmod) \gamma)} e^{\frac{2 \pi i}{\gamma}\left\{\alpha S[\underline{y}+\underline{a}]-2(\underline{y}+\underline{b})^{\prime} S(\underline{x}+\underline{a})+\delta S[\underline{x}+\underline{b}]\right\}}
$$

Taking the sum over all integral $\underline{x}(\bmod \gamma)$ we have

$$
\mathrm{t} . \mathrm{abs} \gamma^{n}=\sum_{\underline{x}((\mathrm{mod}) \gamma)} \sum_{\underline{y}(\mathrm{mod}) \gamma)} e^{\frac{2 \pi i}{\gamma}\left\{\alpha S[\underline{y}+\underline{a}]-2(\underline{y}+\underline{b})^{\prime} S(\underline{x}+\underline{a})+\delta S[\underline{x}+\underline{b}]\right\}}
$$

Interchanging the two summations we have

$$
t a b s \gamma^{n}=\sum_{\underline{y}((\bmod) \gamma)} \sum_{\underline{x}(\mathrm{mod}) \gamma)} e^{-\frac{2 \pi i}{-\gamma}\left\{S S[\underline{x}+\underline{b}]-2(\underline{x}+\underline{a})^{\prime} S(\underline{y}+\underline{b})+\alpha S[\underline{y}+\underline{a}]\right\}}
$$

132 But by lemma 2 again we see that the inner sum is independent of \underline{y} and equal to $\overline{t^{\prime}}$, the complex conjugate of t^{\prime}. Thus

$$
t a b s \gamma^{n}=\overline{t^{\prime}} a b s \gamma^{n}
$$

and since $\gamma \neq 0$, it follows that $\bar{t}=t^{\prime}$ and (46) is proved.
In the composition formula of theorem 2 let us put $M_{1}=M^{-1}$. Then $G(E, z)=E$ is the unit matrix of order 1 . From the definition of $G(M, z)$ we have

$$
\begin{aligned}
G\left(M^{-1}, z\right) & =\epsilon d^{-\frac{1}{2}}\left(z-\frac{\alpha}{\gamma}\right)^{\frac{p}{2}}\left(\bar{z}-\frac{\alpha}{\gamma}\right)^{\frac{q}{2}}\left(\lambda_{\underline{a}} \underline{b}\left(M^{-1}\right)\right) \\
G\left(M, z_{M^{-1}}\right) & =\epsilon d^{-\frac{1}{2}}\left(\gamma^{-1}(-\gamma z+\alpha)\right)^{\frac{p}{2}}\left(\gamma^{-1}(-\gamma \bar{z}+\alpha)\right)^{\frac{q}{2}}\left(\lambda_{\underline{a b}}(M)\right)
\end{aligned}
$$

Let us put

$$
\begin{equation*}
\Lambda(M)=\epsilon d^{-\frac{1}{2}} a b s \gamma^{-\frac{n}{2}}\left(\lambda_{\underline{a} b}(M)\right) \tag{47}
\end{equation*}
$$

Then we get from the previous equations

$$
\Lambda(M) \cdot \overline{\Lambda(M)}^{\prime}=E
$$

which shows that $\Lambda(M)$ is unitary.
In case $\gamma=0$, from (37), $G(M, z)$ is clearly unitary. We therefore put

$$
\begin{equation*}
\Lambda(M)=G(M, z), \quad \text { if } \gamma=0 \tag{48}
\end{equation*}
$$

Let us now put $\underline{w}=\underline{0}$ in theorem 1 Then $\rho(M, z, \underline{w})=1$ so that if we write as in $\S \underline{1} \underline{f}(z, H)$ instead of $\underline{f}(z, H, \underline{w})$, when $\underline{w}=\underline{0}$, we get

$$
\begin{equation*}
\underline{f}\left(z_{M}, H\right)=G(M, z) \underline{f}(z, H) . \tag{49}
\end{equation*}
$$

Using the definitions (47) and (48), we get
Theorem 3. If $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a modular matrix, then

$$
\left(\gamma_{z}+\delta\right)^{-\frac{p}{2}}(\gamma \bar{z}+\delta)^{-\frac{q}{2}} \underline{f}\left(z_{M}, H\right)=\Lambda(M) \underline{f}(z, H)
$$

where $\Lambda(M)$ is a certain unitary matrix and the radical scalar factors on the left side are taken with their principal parts.

We remark that we introduced the vector \underline{w} only to prove the composition formula in theorem 2 Hereafter we will have only $\underline{f}(z, H)$, the column consisting of ${\underline{g_{i}}}_{i}(z, H)$ defined in (10).

From the composition formula we get

$$
\begin{equation*}
\Lambda\left(M M_{1}\right)=\Lambda(M) \cdot \Lambda\left(M_{1}\right) \tag{50}
\end{equation*}
$$

which shows that the mapping $M \rightarrow \Lambda(M)$ is a unitary representation of the modular group.

4 Convergence of an integral

Let S be the matrix of a quadratic form and let S be non-singular and semi-integral. Let S have signature p, q so that $p+q=n$. Let us assume that $p q>0$. With S we had associated the \mathfrak{G} space of matrices H with $H>0, H S^{-1} H=S$. Let Γ be the group of units of S. Let \underline{a} denote a rational column vector with $2 S \underline{a}$ integral. Denote by $\Gamma_{\underline{a}}$ the group of units of S satisfying

$$
\begin{equation*}
U \underline{a} \equiv \underline{a}(\bmod 1) \tag{51}
\end{equation*}
$$

$\Gamma_{\underline{a}}$ is obviously a subgroup of Γ of finite index. Let U_{1}, \ldots, U_{s} denote a complete system of representatives of left cosets of $\Gamma \bmod \Gamma_{\underline{a}}$ so that

$$
\Gamma=\sum_{i=1}^{s} U_{i} \Gamma_{\underline{a}}, \quad s=\left(\Gamma: \Gamma_{\underline{a}}\right)
$$

134 Denote by F a fundamental region of Γ in \mathfrak{G} and by F_{k} the image by U_{k} of F in \mathfrak{G}. Put

$$
F_{\underline{a}}=\bigcup_{k} F_{k}
$$

then it is easy to verify that $F_{\underline{a}}$ is a fundamental domain for $\Gamma_{\underline{a}}$ in \mathfrak{H}.
For every H in \mathfrak{G} we had defined the theta series

$$
f_{\underline{a}}(z, H)=\sum_{\underline{y} \equiv \underline{a}(\bmod 1)} e^{2 \pi i R[\underline{y}]}
$$

so that regarded as a function of $H, f_{\underline{a}}(z, H)$ is a function on the manifold \mathfrak{H}. If $U \in \Gamma_{\underline{a}}$ then

$$
f_{\underline{a}}(z, H[U])=\sum_{\underline{y} \equiv \underline{a}(\bmod 1)} e^{2 \pi i(\xi S+i \eta H[U])[\underline{y}]}
$$

Writing $S[U]$ instead of S and observing that $U \underline{y} \equiv U \underline{a} \equiv \underline{a}(\bmod 1)$ and that $U \underline{y}$ runs through all rational columns $\equiv \underline{a}(\bmod 1)$ if \underline{y} does, we have

$$
\begin{equation*}
f_{\underline{a}}(z, H[U])=f_{\underline{a}}(z, H) \tag{52}
\end{equation*}
$$

so that we may regard $f_{\underline{a}}(z, H)$ as a function on $F_{\underline{a}}$. Let $d v$ be the invariant volume measure in the \mathfrak{H} space. We shall now prove that

$$
\int_{F_{\underline{a}}} f_{\underline{a}}(z, H) d v
$$

converges, in particular, if $n>4$ and that

$$
\begin{equation*}
\int_{F_{\underline{a}}} f_{\underline{a}}(z, H) d v=\sum_{\underline{y}=\underline{a}(\bmod 1)} \int_{F_{\underline{\underline{a}}}} e^{2 \pi i R \underline{[y]}]} d v \tag{53}
\end{equation*}
$$

For proving this it is enough to show that the series of absolute values of the terms of $f_{\underline{a}}(z, H)$ converges uniformly in every compact subset of $F_{\underline{a}}$ and that the integral over $F_{\underline{a}}$ of this series of absolute values converges.

Because of the property (52) and the invariance of the volume measure it is enough to consider the integral over F instead of $F_{\underline{a}}$. By our method of construction

$$
F=\bigcup_{k}\left(\mathfrak{H} \cap \mathscr{R}_{k}\right)
$$

where \mathscr{R}_{k} is obtained from the Minkowski fundamental domain \mathscr{R}. It is therefore enough to consider the integral

$$
\int_{\mathfrak{H} \cap \mathscr{R}} f_{\underline{a}}(z, H) d v
$$

and prove (53) for $\mathfrak{G} \cap \mathscr{R}$ instead of $F_{\underline{a}}$.
The general term of the integrand is $e^{2 \pi i R[\underline{y}]}$ and its absolute value is

$$
e^{-2 \pi \eta H[\underline{x}+\underline{a}]}
$$

where $\eta>0, H>0$ is reduced in the sense of Minkowski, \underline{x} an integral column and \underline{a} a rational column with $2 S \underline{a}$ integral. If $H=\left(h_{k l}\right)$ then H being reduced, there exists a constant c_{1}, such that

$$
H[\underline{y}]>c_{1}\left(h_{1} y_{1}^{2}+\cdots+h_{n} y_{n}^{2}\right)
$$

\underline{y} being a real column with n elements y_{1}, \ldots, y_{n}. Therefore

$$
\prod_{i=1}^{n} \sum_{y_{i}} e^{-2 \pi c_{1} \eta h_{i} y_{i}^{2}}
$$

is a majorant for the sum of the absolute values of the terms of $f_{\underline{a}}(z, H)$. Since, for a constant $c_{2}>0$,

$$
\sum_{t=-\infty}^{\infty} e^{-c_{2} h t^{2}}<c_{3}\left(1+h^{-\frac{1}{2}}\right)
$$

where $h>0$ is a positive real number and c_{3} is a constant depending on c_{2}, it follows that it is enough to prove, for our purpose, the convergence of

$$
\begin{equation*}
\int_{\mathfrak{Y} \cap \mathscr{R}} \prod_{k=1}^{n}\left(1+h_{k}^{-\frac{1}{2}}\right) d v \tag{54}
\end{equation*}
$$

If D is any compact subset of $\mathfrak{H} \cap \mathscr{R}$, then because H is reduced, $\prod_{k=1}^{n}\left(1+h_{k}^{-\frac{1}{2}}\right)$ is uniformly bounded in D. This will prove (53) as soon as (54) is proved.

The proof depends on an application of Minkowski's reduction theory.

Consider any element $H=\left(h_{k l}\right)$ in $\mathfrak{G} \cap \mathscr{R}$ and consider the products $h_{k} h_{n-k}, k=1,2, \ldots, n-1$. There exists an integer r

$$
\begin{equation*}
0 \leq r \leq \frac{n}{2} \tag{55}
\end{equation*}
$$

such that

$$
\begin{align*}
& h_{k} h_{n-k} \geq \frac{1}{4} \quad r<k<n-r \tag{56}\\
& h_{r} h_{n-r}<\frac{1}{4} \tag{57}
\end{align*}
$$

If $r=0$, 57) is empty and if $r=\frac{n}{2}$ (which implies that n is even) (56) is empty. Let us denote by M_{r} the subset of $\mathfrak{G} \cap \mathscr{R}$ consisting of those H which have the same integer r associated with them. Clearly $\mathfrak{G} \cap \mathscr{R}=\bigcup_{r} M_{r}$. It is enough therefore to prove that for every r,

$$
\int_{M_{r}} \prod_{k=1}^{n}\left(1+h_{k}^{-\frac{1}{2}}\right) d v
$$

converges.
We first obtain a parametrical representation for the matrices H in M_{r}.

Let $K=\frac{H+S}{2}=\left(u_{k l}\right)$ and $-L=\frac{H-S}{2}=\left(v_{k l}\right)$; then K and $-L$ are non-negative matrices so that

$$
\pm u_{k l} \leq \sqrt{u_{k} u_{1}}, \quad \pm v_{k l} \leq \sqrt{v_{k} v_{1}}
$$

where for a real number $g, \pm g$ denotes its absolute value. Since $K+L=$ S we get

$$
\pm s_{k l} \leq \sqrt{u_{k} u_{l}}+\sqrt{v_{k} v_{l}}
$$

But since $u_{k}+v_{k}=h_{k}$ we obtain, by using Schwarz's inequality,

$$
\pm s_{k l} \leq \sqrt{h_{k} h_{1}}
$$

H being reduced we get for $k \leq r, l \leq n-r$, using (57),

$$
\begin{equation*}
\pm s_{k l} \leq \sqrt{h_{k} h_{1}} \leq \sqrt{h_{r} h_{n-r}}<\frac{1}{2} \tag{58}
\end{equation*}
$$

Since S is a semi-integral matrix, it follows that

$$
s_{k l}=0, \quad k \leq r, \quad l \leq n-r
$$

We have therefore a decomposition of S into the form

$$
S=\left(\begin{array}{ccc}
0 & 0 & P \tag{59}\\
0 & F & Q \\
P^{\prime} & Q^{\prime} & G
\end{array}\right)
$$

where P is an r-rowed non-singular matrix. It has to be noted that if $r=0$, then

$$
\begin{equation*}
S=F \tag{60}
\end{equation*}
$$

and if $r=\frac{n}{2}(n$ is then even $)$,

$$
S=\left(\begin{array}{cc}
0 & P \tag{61}\\
P^{\prime} & G
\end{array}\right)
$$

We now put $S^{*}=S[C]$ where

$$
S^{*}=\left(\begin{array}{ccc}
0 & 0 & P \tag{62}\\
0 & F & 0 \\
P^{\prime} & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ccc}
E & -P^{\prime-1} Q^{\prime} & -\frac{1}{2} P^{\prime-1} G \\
0 & E & 0 \\
0 & 0 & E
\end{array}\right)
$$

We split up H also in the same fashion, by the Jacobi transformation, $H=H_{0}\left[C_{0}\right]$ where

$$
H_{0}=\left(\begin{array}{ccc}
H_{1} & 0 & 0 \tag{63}\\
0 & H_{2} & 0 \\
0 & 0 & H_{3}
\end{array}\right), \quad C_{0}=\left(\begin{array}{ccc}
E & L_{1} & L_{2} \\
0 & E & L_{3} \\
0 & 0 & E
\end{array}\right)
$$

where H_{1} and H_{3} are r-rowed symmetric matrices. Put

$$
C_{0} C=L=\left(\begin{array}{ccc}
E & Q_{1} & Q_{2} \tag{64}\\
0 & E & Q_{3} \\
0 & 0 & E
\end{array}\right)
$$

If we put $H^{*}=H[C]$, then since $S^{-1}[H]=S$, it follows that $S^{*-1}\left[H^{*}\right]=S^{*}$. Using the matrix L we have

$$
\left(L S^{*-1} L^{\prime}\right)\left[H_{0}\right]=S^{*}\left[L^{-1}\right] .
$$

Substituting for the various matrices above, we get

$$
\begin{align*}
F^{-1}\left[H_{2}\right] & =F \tag{65}\\
H_{3} P^{-1} H_{1} & =P^{\prime} \tag{66}\\
Q_{3} & =-F^{-1} Q_{1}^{\prime} P \tag{67}\\
Q_{2} & =\left(A-\frac{1}{2} F^{-1}\left[Q_{1}^{\prime}\right]\right) P \tag{68}
\end{align*}
$$

139 where A is a skew symmetric matrix of r-rows. It is obvious that if $H_{1}, H_{2}, H_{3}, Q_{1}, Q_{2}$ and Q_{3} satisfy the above conditions, then the corresponding H is in \mathfrak{G}. We therefore choose the parameters for the M_{r} space in the following manner: We have H_{1} is arbitrary, r-rowed and positive. From this H_{3} is uniquely fixed. Q_{1} is an arbitrary matrix of r-rows and $n-2 r$ columns. Q_{3} is then determined uniquely. Choose A to be arbitrary skew symmetric. Then (68) determines $Q_{2} . H_{2}$ is now a positive matrix satisfying (65). Thus the parameters are H_{1}, Q_{1}, A and the parameters required to parametrize the space of positive H_{2} satisfying (65). A simple calculation shows that the number of parameters is

$$
\begin{equation*}
\frac{r(r+1)}{2}+r(n-2 r)+\frac{r(r-1)}{2}+(p-r)(q-r) \tag{69}
\end{equation*}
$$

We now compute the volume element in terms of these parameters. The metric in the \mathscr{H} space is

$$
d s^{2}=\frac{1}{8} \sigma\left(H^{-1} d H H^{-1} d H\right)
$$

We substitute for H in terms of these new parameters. We denote differentiation by (\cdot) dot. Since C is a constant matrix we get

$$
\begin{align*}
d s^{2} & =\frac{1}{8} \sigma\left(H^{*-1} d H^{*} H^{*-1} d H^{*}\right) \tag{70}\\
\text { As } H^{*} & =H_{0}[L] \text { we get } \\
H^{*-1} \dot{H}^{*} & =H_{0}^{-1}\left[L^{\prime-1}\right]\left(\dot{H}_{0}[L]+\dot{L}^{\prime} H_{0} L+L H_{0} \dot{L}\right) .
\end{align*}
$$

This gives the expression

$$
\left.\begin{array}{rl}
\sigma\left(H^{*-1} \dot{H}^{*}\right)^{2} & =\left\{\sigma\left(H_{0}^{-1} \dot{H}_{0} H_{0}^{-1} \dot{H}_{0}\right)+4 \sigma\left(H_{0}^{-1} \dot{H}_{0} \dot{L} L^{-1}\right\}\right. \tag{71}\\
& +2 \sigma\left(\dot{L} L^{-1} \dot{L} L^{-1}\right)+2 \sigma\left(H_{0}\left[\dot{L} L^{-1}\right] H_{0}^{-1}\right)
\end{array}\right\}
$$

We shall now simplify the expression on the right of (71). Since
$L=C_{0} C$ and C is a constant matrix, we get

$$
\dot{L} L^{-1}=\left(\begin{array}{cccc}
0 & \dot{Q}_{1} & \dot{Q}_{2} & -\dot{Q}_{1} Q_{3} \\
0 & 0 & & \dot{Q}_{3} \\
0 & 0 & & 0
\end{array}\right)
$$

which shows that

$$
\begin{equation*}
\sigma\left(\dot{L} L^{-1} \dot{L} L^{-1}\right)=0, \quad \sigma\left(H_{0}^{-1} \dot{H}_{0} \dot{L} L^{-1}\right)=0 \tag{72}
\end{equation*}
$$

Using the expression for H_{0} in we get

$$
\sigma\left(H_{0}^{-1} \dot{H}_{0} H_{0}^{-1} \dot{H}_{0}\right)=\sum_{i=1}^{3} \sigma\left(H_{i}^{-1} \dot{H}_{i} H_{i}^{-1} \dot{H}_{i}\right)
$$

Differentiating (66) with regard to the variables H_{1} and H_{3} we get

$$
\dot{H}_{3} P^{-1} H_{1}+H_{3} P^{-1} \dot{H}_{1}=0
$$

which shows that $H_{1}^{-1} \dot{H}_{1}=-P^{\prime-1} \dot{H}_{3} H_{3}^{-1} P^{\prime}$ and therefore

$$
\begin{equation*}
\sigma\left(H_{1}^{-1} \dot{H}_{1} H_{1}^{-1} \dot{H}_{1}\right)=\sigma\left(H_{3}^{-1} \dot{H}_{3} H_{3}^{-1} \dot{H}_{3}\right) \tag{73}
\end{equation*}
$$

Using the expressions for $\dot{L} L^{-1}$ and H_{0}, we obtain

$$
\begin{aligned}
\sigma\left(H_{0}\left[\dot{L} L^{-1}\right] H_{0}^{-1}\right) & =\sigma\left(H_{1}\left[\dot{Q}_{1}\right] H_{2}^{-1}\right)+\sigma\left(H_{1}\left[\dot{Q}_{2}-\dot{Q}_{1} Q_{3}\right] H_{3}^{-1}\right) \\
& +\sigma\left(H_{2}\left[\dot{Q}_{3}\right] H_{3}^{-1}\right)
\end{aligned}
$$

Differentiating 67) and with regard to the variables Q_{1}, Q_{2}, Q_{3}, we get

$$
\begin{align*}
& \dot{Q}_{3}=-F^{-1} \dot{Q}_{1}^{\prime} P \\
& \dot{Q}_{2}=\left(\dot{A}-\frac{1}{2} \dot{Q}_{1} F^{-1} Q_{1}^{\prime}-\frac{1}{2} Q_{1} F^{-1} \dot{Q}_{1}^{\prime}\right) P \tag{74}
\end{align*}
$$

We now introduce the matrix B defined by

$$
B=\frac{1}{2}\left(\dot{Q}_{1} F^{-1} Q_{1}^{\prime}-Q_{1} F^{-1} \dot{Q}_{1}^{\prime}\right)
$$

141 We can then write

$$
\dot{Q}_{2}-\dot{Q}_{1} Q_{3}=(\dot{A}+B) P
$$

We have finally, except for a positive constant, the metric in the space M_{r}

$$
\begin{align*}
d s^{2}=\sigma\left\{\left(H_{2}^{-1} \dot{H}_{2}\right)^{2}\right\} & +2 \sigma\left\{\left(H_{1}^{-1} \dot{H}_{1}\right)^{2}\right\}+4 \sigma\left(H_{1}\left[\dot{Q}_{1}\right] H_{2}^{-1}\right) \\
& +2 \sigma\left(H_{1}[\dot{A}+B] H_{1}\right) \tag{75}
\end{align*}
$$

The determinant of the quadratic differential form

$$
2 \sigma\left\{\left(H_{1}^{-1} \dot{H}_{1}\right)^{2}\right\}+4 \sigma\left(H_{1}\left[\dot{Q}_{1}\right] H_{2}^{-1}\right)+2 \sigma\left(H_{1}[\dot{A}+B] H_{1}\right)
$$

is given by

$$
\begin{equation*}
2^{r(n-r-1)}\left|H_{1}\right|^{n-2 r-2}\left|H_{2}\right|^{-r} \tag{76}
\end{equation*}
$$

If $d v_{2}$ denotes the invariant volume measure in the space of H_{2}, satisfying (65), then we have to prove

$$
\begin{equation*}
\int_{M_{r}} \prod_{k=1}^{n}\left(1+h_{k}^{-\frac{1}{2}}\right)\left|H_{1}\right|^{\frac{n-2 r-2}{2}}\left|H_{2}\right|^{-\frac{r}{2}}\left\{d H_{1}\right\}\left\{d Q_{1}\right\}\{d A\} d v_{2} \tag{77}
\end{equation*}
$$

is convergent.
The constants c_{3}, \ldots appearing in the sequel all depend only on n and S. Moreover 'bounded' shall mean bounded in absolute value by such constants.

Since $|S| \neq 0$, at least one term in the expansion of $|S|$ does not vanish. This means there is a permutation

$$
\binom{1,2, \ldots, n}{l_{1}, l_{2}, \ldots, l_{n}}
$$

such that $s_{k_{k}} \neq 0, k=1, \ldots, n$.
Since S is semi-integral, $\pm s_{k l_{k}} \geq \frac{1}{2}$ which shows that

$$
\begin{equation*}
h_{k} h_{l_{k}} \geq s_{k l_{k}}^{2} \geq \frac{1}{4} \tag{78}
\end{equation*}
$$

Consider now the integers $1,2, \ldots, a$ and the corresponding integers $l_{1}, \ldots, l_{a}, a \leq n$. At least one of the latter, say $l_{t} \leq n-a+1$. Therefore

$$
t \leq a, \quad l_{t} \leq n-a+1 .
$$

Since H is reduced, $h_{t} \leq h_{a}, h_{l_{t}} \leq h_{n-a+1}$. Using (78) we get

$$
\begin{equation*}
h_{a} h_{n-a+1} \geq \frac{1}{4}, \quad a=1, \ldots, n . \tag{79}
\end{equation*}
$$

Let us consider the identity

$$
\prod_{k=1}^{n}\left(h_{k} h_{n-k+1}\right)=\prod_{k=1}^{r}\left(h_{k} h_{n-k+1}\right)^{2} \cdot \frac{\prod_{k=r+1}^{n}\left(h_{k} h_{n-k+1}\right)}{\prod_{k=1}^{r}\left(h_{k} h_{n-k+1}\right)}
$$

Since $r \leq n-r$, it follows using (56)

$$
\frac{\prod_{k=r+1}^{n}\left(h_{k} h_{n-k+1}\right)}{\prod_{k=1}^{r}\left(h_{k} h_{n-k+1}\right)} \geq c_{3} h_{n-r}^{2}
$$

Therefore we obtain

$$
\prod_{k=1}^{n}\left(h_{k} h_{n-k+1}\right) \geq c_{3} h_{n-r}^{2} \prod_{k=1}^{r}\left(h_{k} h_{n-k+1}\right)^{2}
$$

Using (79) and the fact that H is reduced, we get the inequality

$$
\begin{equation*}
h_{n-r} \leq c_{4} \tag{80}
\end{equation*}
$$

Since H is reduced, $H_{0} \in \mathscr{R}_{c}^{*}$ for a $c>0$ depending only on n and S. It follows from (80), therefore, that the elements of H_{1} and H_{2} are bounded. Also from (79) and (80), it follows that

$$
\begin{equation*}
h_{k} \geq c_{5} \quad r<k \leq n \tag{81}
\end{equation*}
$$

which shows that the elements of H_{2}^{-1} are bounded.
From equations (63) and (64) we get

$$
Q_{1}=L_{1}-P^{\prime-1} Q^{\prime}, \quad Q_{2}=L_{2}-\frac{1}{2} P^{\prime-1} G
$$

Since P, Q and G are constant matrices and L_{1}, L_{2} have bounded elements (since H is reduced), it follows that the elements of Q_{1} and Q_{2} are bounded.

From the definition of A in (68), it follows that its elements are also bounded. From (80) and the fact that H is reduced we get

$$
\begin{equation*}
h_{1} \leq h_{2} \leq h_{3} \ldots \leq h_{r} \leq c_{4} \tag{82}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\prod_{k=1}^{r}\left(1+h_{k}^{-\frac{1}{2}}\right) \leq c_{6}\left(h_{1} \ldots h_{r}\right)^{-\frac{1}{2}} \tag{83}
\end{equation*}
$$

We therefore finally see that it is enough to prove

$$
\int\left|H_{1}\right|^{\frac{n-2 r-2}{2}}\left(h_{1} \ldots h_{r}\right)^{-\frac{1}{2}}\left\{d H_{1}\right\}
$$

converges, H_{1} being reduced and satisfying (82). $d H_{1}=\prod_{1 \leq i \leq j \leq r} d h_{i j}$. Since $-h_{i} \leq 2 h_{i j} \leq h_{i}, i<j$, it follows that the variation of $h_{i j}$ is h_{i}. Therefore it is enough to prove that the integral

$$
\int\left(h_{1} \ldots h_{r}\right)^{-\frac{1}{2}}\left(h_{1} \ldots h_{r}\right)^{\frac{n}{2}-r-1} h_{1}^{r-1} \ldots h_{r-1} d h_{1} \ldots d h_{r}
$$

extended over the set $0<h_{1} \leq h_{2} \leq h_{3} \ldots \leq h_{r} \leq c_{4}$ converges. We $\mathbf{1 4 4}$ make a change of variables

$$
\left.\begin{array}{l}
h_{1}=s_{1} \ldots s_{r} \tag{84}\\
h_{2}=s_{2} \ldots s_{r} \\
h_{r}=s_{r}
\end{array}\right\}
$$

The integral then becomes transformed into

$$
\begin{equation*}
\int s_{1}^{\lambda_{1}} \ldots s_{r}^{\lambda_{\gamma}} \cdot \frac{d s_{1} \ldots d s_{r}}{s_{1} \ldots s_{r}} \tag{85}
\end{equation*}
$$

where since $s_{k}=\frac{h_{k}}{h_{k+1}}, 0<s_{k}<\operatorname{Min}\left(1, c_{4}\right)$ and $\lambda_{k}=k\left(\frac{n-k}{2}-1\right)$, $k=1, \ldots, r$.

Now $\lambda_{k} \geq \frac{n-r}{2}-1, k=1,2, \ldots, r$ so that if $n-r-2>0$, the integral obviously converges. If $n>4$, since $r \leq \frac{n}{2}$, this condition is satisfied and the integral converges.

Now the maximum value of r is $\leq \operatorname{Min}(p, q)$. Let $n=4$ and $S[\underline{x}]$ be not a quaternionic form, i.e., it is not the norm of a general element of a quaternion algebra over the field of rational numbers. In that case the maximum value of r is 0 or 1 so that $n-r-2>0$ and the integral converges. If $n=3$ and $S[\underline{x}]$ is not a zero form, then $r=0$ and $n-r-2>$ 0 .

If $r=0$, then all elements of H in M_{0} are bounded and the integral over M_{0} converges. This shows that if $n=2$ and $S[\underline{x}]$ is not a zero form, the integral again converges.

In particular, we have
145 Theorem 4. If $n>4$ the integral

$$
\int_{F_{\underline{a}}} f_{\underline{a}}(z, H) d v
$$

converges and

$$
\int_{F_{\underline{\underline{a}}}} f_{\underline{a}}(z, H) d v=\sum_{\underline{y}} \int_{F_{\underline{\underline{a}}}} e^{2 \pi i R[\underline{y}]} d v .
$$

Let us now consider the integral $\int_{F_{\underline{a}}} d v$. In order to prove it is finite, it is enough to prove $\int_{M_{r}} d v$ is finite for every r. Thus we have to prove

$$
\begin{aligned}
& \int h_{1}^{\frac{n-4}{2}} \ldots h_{r}^{\frac{n-2 r-2}{2}} d h_{1} \ldots d h_{r} \\
& 0<h_{i} \leq h_{2} \leq \ldots \leq h_{r} \leq c_{4}
\end{aligned}
$$

is finite. By the same change of variables we see that instead of λ_{k}, one has $\mu_{k}=k\left(\frac{n-k-1}{2}\right)$ so that since $\mu_{k} \geq \frac{n-k-1}{2}$, the integral converges if $n-r-1>0$. Since $r \leq \frac{n}{2}$, the integral converges if $n>2$. If $n=2$ and $r=0$, then again the integral converges. If $n=2$ and $r=1$, $S[\underline{x}]$ is a binary zero form and we had see in the previous chapter that $\int_{F} d v$ diverges. We have thus proved
Theorem 5. If $S[\underline{x}]$ is not a binary zero form

$$
\int_{F_{\underline{a}}} d v
$$

converges.

5 A theorem in integral calculus

For out later purposes we shall prove a theorem on multiple integrals.
Let R_{m} denote the Euclidean space of m dimensions with x_{1}, \ldots, x_{m} forming a coordinate system. Let

$$
y_{k}=f_{k}\left(x_{1}, \ldots, x_{m}\right), k=1, \ldots, n
$$

be n differentiable functions with $n \leq m$. Let a_{1}, \ldots, a_{n} be n real numbers and let F be the 'surface' determined by the n equations

$$
y_{k}=a_{k} \quad k=1, \ldots, n .
$$

Let us moreover assume that the functional matrix

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}\right) \quad\left\{\begin{array}{l}
i=1, \ldots, n \\
j=1, \ldots, m
\end{array}\right.
$$

has the maximum rank n at every point of F. Introduce $m-n$ differentiable functions y_{n+1}, \ldots, y_{m} of x_{1}, \ldots, x_{m} so that the Jacobian

$$
J=\left|\left(\frac{\partial y_{i}}{\partial x_{j}}\right)\right| \quad i, j=1, \ldots, m
$$

is different from zero at every point of F. The y_{n+1}, \ldots, y_{m} are the local coordinates of the 'surface' F. Let Δ denote the absolute value of J and put

$$
\begin{equation*}
d \omega=\Delta^{-1} d y_{n+1} \ldots d y_{m} \tag{86}
\end{equation*}
$$

The properties of Jacobians show that $d \omega$ is independent of the choice of y_{n+1}, \ldots, y_{m}. We shall denote $d \omega$ symbolically by

$$
\begin{equation*}
d \omega=\frac{\{d x\}}{\{d y\}} \tag{87}
\end{equation*}
$$

and take $d \omega$ as the measure of volume on 'surface' F.
In case $m=n$, because of the conditions on the Jacobian, the point set F is zero dimensional and we define $d \omega$ to be the measure which assigns to each point the measure $\frac{1}{\Delta}$.

As an example put $m=2$, and consider in R_{2} the point set F defined by

$$
y_{1}=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad y_{1}=1
$$

Then $\frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{2}}$ cannot both vanish at any point of F. Choose now y_{2} as

$$
y_{2}=\tan ^{-1} \frac{x_{2}}{x_{1}}
$$

The Jacobian is

$$
=\left|\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right|=\frac{1}{y_{1}}
$$

and the volume element on the circle $F: x_{1}^{2}+x_{2}^{2}=1$ is

$$
d \omega=y_{1} d y_{2}
$$

Let $X=X^{(r, s)}$ be a real matrix of r rows and s columns with elements $x_{k l}$ constituting a coordinate system in $R_{r s}$. We denote by

$$
\{d X\}=\prod_{k=1}^{r} \prod_{l=1}^{s} d x_{k l}
$$

the Euclidean volume element in $R_{r s}$. If however $X=X^{\prime}$ is r-rowed symmetric, then

$$
\{d X\}=\prod_{1 \leq k \leq l \leq r} d x_{k l}
$$

Let V be a k-rowed real non-singular symmetric matrix with signature $\alpha, k-\alpha$. Let F be a rectangular matrix with k-rows and β columns so that the matrix T defined by

$$
V[F]=T
$$

is non-singular and has signature $\alpha, \beta-\alpha$. Obviously $\alpha \leq \beta \leq k$. Let W be a fixed matrix of $\beta+\lambda$ rows and of signature $\alpha, \beta+\lambda-\alpha$. Then $\beta+\lambda \leq k$. Let D be the 'surface consisting of real matrices X of k rows and λ columns satisfying

$$
V[F, X]=W
$$

If we write

$$
W=\left(\begin{array}{ll}
T & Q \\
Q^{\prime} & R
\end{array}\right)
$$

then D is the surface defined by the equations

$$
\left.\begin{array}{l}
F^{\prime} V X=Q \tag{88}\\
X^{\prime} V X=R
\end{array}\right\}
$$

In conformity with our previous notation, let the volume element on the 'surface' D be denoted by

$$
\frac{\{d X\}}{\{d Q\}\{d R\}}
$$

We have then the following
Theorem 6. $\int_{D} \frac{\{d X\}}{\{d Q\}\{d R\}}=\frac{\rho_{k-\beta}}{\rho_{k-\beta}-\lambda}\|V\|^{\frac{-\lambda}{2}}\|T\|^{\frac{\beta-k+1}{2}}\|W\|^{\frac{k-\beta-\lambda-1}{2}}$
where $\rho_{h}=\prod_{i=1}^{h} \frac{\pi^{i / 2}}{\Gamma(i / 2)}$ and $\rho_{0}=1$. Also if $\beta=0,\|T\|$ has to be taken 149 equal to 1 .

Proof. First let $\beta>0$. Denote by I the integral

$$
I=\|V\|^{\frac{\lambda}{2}}\|T\|^{-\frac{\beta-k+1}{2}}\|W\|^{-\frac{k-\beta-\lambda-1}{2}} \int_{D} \frac{\{d X\}}{\{d Q\}\{d R\}}
$$

Let C be a k-rowed non-singular matrix. Consider the transformation,

$$
X \rightarrow C X, \quad F \rightarrow C F, \quad V \rightarrow V\left[C^{-1}\right]
$$

This leaves W unaltered. Also

$$
\{d(C X)\}=\|C\|^{\lambda}\{d X\}
$$

which shows that I is unaltered. We shall choose C in such a manner that the resulting integral can be easily evaluated.

Since F has rank β, there exists a matrix C_{0} such that

$$
C_{0} F=\binom{E_{\beta}}{0}
$$

E_{β} being the unit matrix of order β. Since $V[F]=T$ is non-singular, we have

$$
V\left[C_{0}^{-1}\right]=\left(\begin{array}{cc}
T & L \\
L^{\prime} & N
\end{array}\right)=\left(\begin{array}{cc}
T & 0 \\
0 & M
\end{array}\right)\left[\begin{array}{cc}
E & T^{-1} L \\
0 & E
\end{array}\right]
$$

As V has signature $\alpha, k-\alpha$, it follows tht $-M>0$. Put $-M=P^{\prime} P$, where P is non-singular. Then

$$
V\left[C_{0}^{-1}\right]=\left(\begin{array}{cc}
T & 0 \\
0 & -E_{k-\beta}
\end{array}\right)\left[\begin{array}{cc}
E & T^{-1} L \\
0 & P
\end{array}\right]
$$

We now choose C so that

$$
C=\left(\begin{array}{cc}
E_{\beta} & T^{-1} L \\
0 & P
\end{array}\right) C_{0}
$$

A simple computation of determinants now shows that I reduces to

$$
\|T\|^{-\frac{\beta-k-\lambda+1}{2}}\|W\|^{-\frac{k-\beta-\lambda-1}{2}} \int_{D} \frac{\{d X\}}{\{d Q\}\{d R\}}
$$

where D is now the domain defined by $X=\binom{X_{1}}{X_{2}}, X_{1}=X_{1}^{(\beta, \lambda)}$ satisfying

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
T & 0 \\
0 & -E_{k-\beta}
\end{array}\right)\left[\begin{array}{cc}
E & X_{1} \\
0 & X_{2}
\end{array}\right]=\left(\begin{array}{cc}
T & Q \\
Q^{\prime} & R
\end{array}\right)=W \tag{89}\\
Q=T X_{1}, \quad R=X_{1}^{\prime} T X-X_{2}^{\prime} X_{2} .
\end{array}\right\}
$$

Completing squares, we get

$$
\left(\begin{array}{cc}
T & 0 \tag{90}\\
0 & -E
\end{array}\right)\left[\begin{array}{cc}
E & X_{1}-T^{-1} Q \\
0 & X_{2}
\end{array}\right]=\left(\begin{array}{cc}
T & 0 \\
0 & R_{1}
\end{array}\right)
$$

where

$$
\begin{equation*}
R_{1}=-X_{2}^{\prime} X_{2} \tag{91}
\end{equation*}
$$

and $-R_{1}>0$.

$$
\begin{aligned}
& \text { Now }\{d X\}=\left\{d X_{1}\right\}\left\{d X_{2}\right\} \text { and from } \\
& \qquad\left\{d X_{1}\right\}=\|T\|^{-\lambda}\{d Q\}
\end{aligned}
$$

Also (90) shows that

$$
\|W\|=\|T\|\left\|R_{1}\right\| .
$$

Therefore I reduces to

$$
\left\|R_{1}\right\|^{-\frac{(k-\beta-\gamma-1)}{2}} \int_{D} \frac{\left\{d X_{2}\right\}}{\left\{d R_{1}\right\}}
$$

where D is the domain defined by X_{2} satisfying (91).
Let G be a non-singular matrix such that

$$
\left.\begin{array}{rl}
X_{2} G & =Y \tag{92}\\
R_{1}[G] & =-S
\end{array}\right\}
$$

Then $\{d Y\}=\|G\|^{k-\beta}\left\{d X_{2}\right\}$ and $\{d S\}=\|G\|^{\lambda+1}\left\{d R_{1}\right\}$ so that if we choose G such that $R_{1}[G]=-E_{\lambda}$, then in order to prove the theorem it is enough to prove

$$
\begin{equation*}
\int_{D} \frac{\{d Y\}}{\{d S\}}=\frac{\rho_{k}}{\rho_{k-\lambda}} \tag{93}
\end{equation*}
$$

where we have written k instead of $k-\beta$ and D is the domain of Y with

$$
\begin{equation*}
Y^{\prime} Y=S, \quad S=E_{\lambda} \tag{94}
\end{equation*}
$$

Note that (93) is a special case of the theorem we want to prove, namely with $V=E_{k}, W=E_{\lambda}, \beta=0$.

In order to prove (93) we shall use induction on λ. Assume theorem 6 to have been proved for $\lambda-1 \geq 1$. Let be an integer $0<\beta<\lambda$. Put

$$
Y=\left(Y_{1}^{(k, \beta)}, Y_{2}^{(k, \lambda-\beta)}\right)
$$

and

$$
S=\left(\begin{array}{cc}
T & Q \\
Q^{\prime} & R
\end{array}\right)
$$

where $T=Y_{1}^{\prime} Y_{1}, Q=Y_{1}^{\prime} Y_{2}, R=Y_{2}^{\prime} Y_{2}$. Then $\left\{d Y_{1}\right\}\left\{d Y_{2}\right\}=\{d Y\}$ and $\{d S\}=\{d T\}\{d Q\}\{d R\}$. Assume now Y_{1} fixed. Varying Y_{2} we get

$$
\int_{D} \frac{\{d Y\}}{\{d S\}}=\int \frac{\left\{d Y_{1}\right\}}{\{d T\}} \frac{\left\{d Y_{2}\right\}}{\{d Q\}\{d R\}}
$$

152 Induction hypothesis works and hence

$$
\int_{D} \frac{\{d Y\}}{\{d S\}}=\frac{\rho_{k-\beta}}{\rho_{k-\lambda}} \int \frac{\left\{d Y_{1}\right\}}{\{d T\}}
$$

with $T=Y_{1}^{\prime} Y_{1}$. Again induction hypothesis works since $0<\beta<\lambda$ and we have

$$
\int \frac{\left\{d Y_{1}\right\}}{\{d T\}}=\frac{\rho_{k}}{\rho_{k-\beta}}
$$

(93) is thus proved. In order to uphold induction, we have to prove (93) in case $\lambda=1$ that is

$$
\begin{equation*}
\int_{D} \frac{\{d X\}}{\{d t\}}=\frac{\rho_{k}}{\rho_{k-1}} \tag{95}
\end{equation*}
$$

where D is the space

$$
x_{1}^{2}+\cdots+x_{k}^{2}=t, \quad t=1
$$

We now use induction on k. For $k=1$, the proposition is trivial; so let $k>1$ and (95) proved for $k-1$ instead of k. Introducing x_{1}, \ldots, x_{k-1} as a coordinate system on D we get

$$
\int \frac{\{d \underline{x}\}}{\{d t\}}=\int \frac{\left\{\left(d x_{1} \ldots d x_{k-1}\right)\right\}}{x_{k}}
$$

since $2 x_{k} d x_{k}=d t$ and we consider only positive values of x_{k}. Now

$$
x_{k}=(1-u)^{\frac{1}{2}}
$$

where $u=x_{1}^{2}+\cdots+x_{k-1}^{2}$. We therefore have

$$
\int \frac{\left\{d x_{1} \ldots d x_{k}\right\}}{d t}=\int(1-u)^{-\frac{1}{2}} \frac{d x_{1} \ldots d x_{k-1}}{d u}
$$

153 By induction hypothesis,

$$
\frac{d x_{1} \ldots d x_{k-1}}{d u}=\frac{\pi^{\frac{k-1}{2}}}{\Gamma\left(\frac{k-1}{2}\right)} u^{\frac{k-1}{2}-1}
$$

Therefore we get

$$
\int \frac{\{d x\}}{d t}=\int_{0}^{1}(1-u)^{-\frac{1}{2}} u^{\frac{k-1}{2}-1} d u \frac{\pi^{\frac{k-1}{2}}}{\Gamma\left(\frac{k-1}{2}\right)}
$$

Evaluating the beta integral, we get the result.
The case $\beta=0$ is also contained in the above discussion
Theorem 6 is now completely demonstrated.

6 Measure of unit group and measure of representation

Let S be the matrix of a non-degenerate real quadratic form with signature $p, q,(p+q=n)$. Let Ω denote the orthogonal group of S, hence the group of real matrices Y with

$$
S[Y]=S,
$$

Ω is then a locally compact group and there exists on Ω a left invariant Haar measure determined uniquely upto a positive multiplicative constant. Instead of Ω we shall consider the surface $\Omega(W)$ consisting of all solutions Y of the matrix equation

$$
S[Y]=W,
$$

where W is a fixed matrix, non-singular and of signature p, q. Clearly if Y_{1} and Y_{2} lie in $\Omega(W), Y_{1} Y_{2}^{-1} \in \Omega$ so that $\Omega(W)$ consists of all $C Y$ where Y is a fixed solution of $S[Y]=W$ and C runs through all elements in Ω. According to the previous section, we can introduce on $\Omega(W)$, a volume measure

$$
\begin{equation*}
\frac{\{d Y\}}{\{d W\}} \tag{96}
\end{equation*}
$$

The surface $\Omega(W)$ has the property that the orthogonal group of S acts as a transitive group of left translations

$$
\begin{equation*}
Y \rightarrow C Y \tag{97}
\end{equation*}
$$

$C \in \Omega$, on it. Also the measure (96) defined above is invariant under these left translations. Since Ω and $\Omega(W)$ are homeomorphic and $\Omega(W)$ is locally compact, (96) is the Haar measure in $\Omega(W)$ invariant under (97).

It is practical to consider on $\Omega(W)$ the measure

$$
\begin{equation*}
\|S\|^{-\frac{1}{2}}\|W\|^{\frac{1}{2}} \frac{\{d Y\}}{\{d W\}} \tag{98}
\end{equation*}
$$

instead of (96), for the following reason. (96) already has the invariance property under the transformations (97). Consider now the mapping

$$
\begin{equation*}
Y \rightarrow Y P, \quad W \rightarrow W[P] \tag{99}
\end{equation*}
$$

where P is an n-rowed non-singular matrix. Since $\{d(Y P)\}=\|P\|^{n}\{d Y\}$ and $\{d W[P]\}=\|P\|^{n+1}\{d W\}$, it follows that (98) remains unaltered by the transformations (99). Thus (98) is independent of W which means, we can choose for W a matrix suitable to us. In particular, if $W=S$, (98) gives the Haar measure on Ω required for our purposes.

Let now S be a rational matrix and \mathfrak{H} the representation space of the unit group of S. The unit group $\Gamma(S)$ of S is a discrete subgroup of Ω and is represented in \mathfrak{H} by the mapping $H \rightarrow H[U], H \in \mathfrak{H}, U \in \Gamma(S)$. We constructed in \mathfrak{G} for $\Gamma(S)$ a fundamental domain F. By theorem [5it follows that, if $S[x]$ is not a binary zero form,

$$
\begin{equation*}
V=\int_{F} d v<\infty \tag{100}
\end{equation*}
$$

where $d v$ is the invariant volume element in \mathfrak{H}.
$\Gamma(S)$ being a discrete subgroup of Ω, there exists a fundamental set F_{0} for $\Gamma(S)$ in Ω. By means of the translation $Y \rightarrow C Y, C \in \Omega$, we construct a fundamental set \widetilde{F} for $\Gamma(S)$ in $\Omega(W)$. Let $\mu(S)$ denote

$$
\begin{equation*}
\mu(S)=\|S\|^{-\frac{1}{2}}\|W\|^{\frac{1}{2}} \int_{\widetilde{F}} \frac{\{d Y\}}{\{d W\}} \tag{101}
\end{equation*}
$$

It is to be noted that the value of $\mu(S)$ is independent of the way \widetilde{F} is constructed. Since (98) is independent of $W, \mu(S)$ is actually the Haar measure of the fundamental set F_{0} for $\Gamma(S)$ in Ω. We call $\mu(S)$, the measure of the unit group $\Gamma(S)$.

It is to be noticed that the mappings $H \rightarrow H\left[{ }^{ \pm} U\right]$ are identical in \mathfrak{H}, whereas for $U \in \Gamma(S)$, the representations $Y \rightarrow U Y$ and $Y \rightarrow-U Y$ are distinct in $\Omega(W)$. We now prove the important

Theorem 7. If $\rho_{h}=\prod_{k=1}^{h} \frac{\pi^{k .2}}{\Gamma(k / 2)}$, then $\mu(S)$ and V are connected by the relation

$$
2 \mu(S)=\rho_{p} \rho_{q}\|S\|^{-\left(\frac{n+1}{2}\right)} V
$$

provided S is not the matrix of a binary zero form.
Proof. In order to prove this we consider the homogeneous as well as the inhomogeneous parametrical representation of the \mathfrak{H} space. In the homogeneous parametrization H in \mathfrak{H} is given by

$$
\begin{equation*}
H=2 K-S, \quad K=T^{-1}\left[Z^{\prime} S\right], \quad T=S[Z]>0 \tag{102}
\end{equation*}
$$

where $Z=Z^{(n, p)}$ is a real matrix. Z determines H uniquely, but H determines Z only upto a non-singular p-rowed matrix factor on the right. Let us put as before

$$
S=S_{0}\left[C^{-1}\right]
$$

where $S_{0}=\left(\begin{array}{cc}E_{p} & 0 \\ 0 & -E_{q}\end{array}\right)$. Let

$$
Z=C\binom{E_{p}}{X} L
$$

with $X=X^{(q, p)}$, and $|L| \neq 0$. The inhomogeneous parametrical representation is given by

$$
\begin{equation*}
T_{0}=E-X^{\prime} X>0 \tag{103}
\end{equation*}
$$

with X real and

$$
\begin{equation*}
T=T_{0}[L] \tag{104}
\end{equation*}
$$

Let W be a symmetric n-rowed matrix of signature (p, q) and having the form

$$
W=\left(\begin{array}{cc}
T & Q \tag{105}\\
Q^{\prime} & R
\end{array}\right), \quad T=T^{(p)}>0
$$

$\Omega(W)$ will now be the space of solutions Y,

$$
Y=\left(Y_{1} Y_{2}\right), \quad Y_{1}=Y_{1}^{(n, p)}, \quad Y_{2}=Y_{2}^{(n, q)}
$$

satisfying $W=S[Y]$ so that

$$
\begin{equation*}
T=S\left[Y_{1}\right]>0, \quad Q=Y_{1}^{\prime} S Y_{2}, \quad R=S\left[Y_{2}\right] \tag{106}
\end{equation*}
$$

157 Every Y_{1} satisfying (106) determines a H in \mathfrak{H} uniquely by (102. Since with $Y_{1}, U Y_{1}$ also is a solution where $U \in \Gamma(S)$, we construct a fundamental set \widetilde{F} in $\Omega(W)$ to be the set consisting of those Y_{1} for which the corresponding H determined by (102) lie in F, the fundamental domain for $\Gamma(S)$ in \mathfrak{H}. It is easy to verify that \widetilde{F} is actually a fundamental set.

Now

$$
\{d Y\}=\left\{d Y_{1}\right\}\left\{d Y_{2}\right\} ; \quad\{d W\}=\{d T\}\{d Q\}\{d R\}
$$

Let Y_{1} be fixed so that the corresponding H which it determines in in \mathfrak{H} is in F. Let now Y_{2} satisfy (106). We then have

$$
Z \mu(S)=\|S\|^{-\frac{1}{2}}\|W\|^{\frac{1}{2}} \int_{\tilde{F}\left(Y_{1}\right)} \frac{\left\{d Y_{1}\right\}}{\{d T\}} \int_{D} \frac{\left\{d Y_{2}\right\}}{\{d Q\}\{d R\}}
$$

where D is the domain determined by Y_{2} satisfying (106) with Y_{1} fixed and $\widetilde{F}\left(Y_{1}\right)$ is the set of Y_{1} which determine H in F. For the inner integral we apply theorem 6 and so

$$
2 \mu(S)=\rho_{q}\|S\|^{-\frac{q+1}{2}}\|T\|^{\frac{1-q}{2}} \int_{\widetilde{F}\left(Y_{1}\right)} \frac{\left\{d Y_{1}\right\}}{\{d T\}}
$$

Now X and L determine Y_{1} uniquely, X satisfying (103) and L satisfying (104). Thus

$$
\left\{d Y_{1}\right\}=\|C\|^{p}\|L\|^{q}\{d X\}\{d L\}
$$

Expressing L in terms of T_{0} (104), we get

$$
2 \mu(S)=\rho_{q}\|S\|^{-\frac{n+1}{2}}\|T\|^{\frac{1}{2}} \int_{F\left(Y_{1}\right)}\left|T_{0}\right|^{-\frac{q}{2}} \frac{\{d X\}\{d L\}}{\{d T\}}
$$

But since $T=T_{0}[L]$ we get

$$
\int \frac{\{d L\}}{\{d T\}}=\rho_{p}\left\|T_{0}\right\|^{-p / 2}\|T\|^{-\frac{1}{2}}
$$

We therefore finally have the formula

$$
2 \mu(S)=\rho_{p} \rho_{q}\|S\|^{-\frac{n+1}{2}} \int\left|T_{0}\right|^{-\frac{n}{2}}\{d X\}
$$

From the form of T_{0} we see that the integral has the value V and our theorem is proved.

Let now S be the matrix of a non-degenerate, rational quadratic form of signature p, q so that $p+q=n$. Let t be a rational number represented by S so that

$$
\begin{equation*}
S[\underline{y}]=t \tag{107}
\end{equation*}
$$

for an integral column \underline{y}. It is obvious that with $\underline{y}, U \underline{y}$ is also a solution of (107) where U is a unit of S. We shall associate with a given solution \underline{y} of (107) a real number $\mu(\underline{y}, S)$ called the measure of the representation \bar{y}, which will allow us to generalize, later, to indefinite forms the notion of "number" of representations.

Let W be the real symmetric matrix of signature p, q given by

$$
W=\left(\begin{array}{ll}
t & q^{\prime} \\
\underline{q} & R
\end{array}\right)
$$

We consider all the real solutions $Y_{0}=Y_{0}^{(n, n-1)}$ satisfying

$$
\begin{equation*}
S[Y]=W \tag{108}
\end{equation*}
$$

where $Y=\left(\underline{y} Y_{0}\right)$. Let $\Omega(\underline{q}, R)$ be the surface determined by Y_{0}. Thus Y_{0} satisfies

$$
\begin{equation*}
\underline{q}^{\prime}=\underline{y}^{\prime} S Y_{0}, \quad R=S\left[Y_{0}\right] \tag{109}
\end{equation*}
$$

W being a fixed matrix. Clearly $\Omega(\underline{q}, R)$ is a locally compact topological space.

Let $\Omega(\underline{y})$ be the subgroup of the orthogonal group of S consisting of those matrices V in Ω with

$$
\begin{equation*}
V \underline{y}=\underline{y} . \tag{110}
\end{equation*}
$$

Then $\Omega(y)$ is a locally compact topological group. Since with $Y, V Y$ for $V \in \Omega(\underline{y})$ is also a solution of (108), it follows that the mapping

$$
\begin{equation*}
Y_{0} \rightarrow V Y_{0} \tag{111}
\end{equation*}
$$

gives a representation of $\Omega(\underline{y})$ in $\Omega(\underline{q}, R)$. Clearly this representation is faithful. Also since W is $\overline{f i x e d}$, the representation (111) of $\Omega(\underline{y})$ on $\Omega(\underline{q}, R)$ is transitive on $\Omega(\underline{q}, R)$. We introduce the volume element

$$
\begin{equation*}
\|S\|^{-\frac{1}{2}}\|W\|^{\frac{1}{2}} \frac{\left\{d Y_{0}\right\}}{\{d \underline{q}\} d R\}} \tag{112}
\end{equation*}
$$

which is clearly invariant under the mappings (111). Thus (112) gives the left invariant Haar measure in the locally compact space $\Omega(\underline{q}, R)$.

The volume element (112) introduced above has another property. Let P be a real matrix of the form

$$
P=\left(\begin{array}{ll}
1 & p^{\prime} \\
\underline{P_{0}} & P_{0}
\end{array}\right)
$$

where $\left|P_{0}\right| \neq 0$ so that P is non-singular. Consider the transformation

$$
\left.\begin{array}{l}
Y \rightarrow \underline{y p^{\prime}}+Y_{0} P_{0} \tag{113}\\
W \rightarrow W[P]
\end{array}\right\}
$$

160 Then

$$
\begin{aligned}
\left\{d\left(\underline{y p^{\prime}}+Y_{0} P_{0}\right)\right\} & =\left\|P_{0}\right\|^{n}\left\{d Y_{0}\right\} \\
\left\{d W\left[P_{0}\right]\right\} & =\left\|P_{0}\right\|^{n+1}\{d W\}
\end{aligned}
$$

which shows that the transformations (113) leave (112) unaltered. Thus (112) is independent of W and we may therefore choose W a particular way suitable to us.

Put $Y=\left(\underline{y} Y_{1} Y_{2}\right)$ where $Y_{1}=Y_{2}^{(n, p)}, Y_{2}=Y_{2}^{(n, q-1)}$ and write

$$
W=\left(\begin{array}{cc}
W_{1} & Q \\
Q^{\prime} & R_{1}
\end{array}\right), \quad W_{1}=W_{1}^{(p+1)}
$$

where

$$
W_{1}=S\left[\underline{y} Y_{1}\right]=\left(\begin{array}{ll}
t & \underline{v^{\prime}} \tag{114}\\
\underline{v} & T
\end{array}\right)
$$

We now choose W so that

$$
\begin{equation*}
\left|W_{1}\right| \neq 0, \quad T>0 \tag{115}
\end{equation*}
$$

Since T has p rows and columns and S has signature p, q, it follows that W_{1} has signature $p, 1$.

The subgroup $\Gamma(\underline{y})$ of units U of S with $U \underline{y}=\underline{y}$ is a discrete subgroup of $\Omega(\underline{y})$ and so the representation (111) with $\bar{V} \in \Gamma(\underline{y})$ is discon-
 discrete subgroup $\Gamma(y)$. We define the measure $\mu(\underline{y}, S)$ of the representation \underline{y} by

$$
\begin{equation*}
\mu(\underline{y}, S)=\|S\|^{-\frac{1}{2}}\|W\|^{\frac{1}{2}} \int_{\widetilde{F}(\underline{y})} \frac{\left\{d Y_{0}\right\}}{\{d \underline{q}\}\{d R\}} \tag{116}
\end{equation*}
$$

We shall first show how to construct the fundamental region $\widetilde{F}(y)$. Let Y be a solution of the equations (115), (114). According to (102), this determines uniquely a H in the \mathfrak{H} space. If $U \in \Gamma(\underline{y})$, then $U Y_{1}$ determines the point $H\left[U^{-1}\right]$ in \mathfrak{H}. Let $F(y)$ be the fundamental region in \mathfrak{H} for the discrete subgroup $\Gamma(y)$ of $\Gamma(\bar{S})$, the unit group of S. This $F(\underline{y})$ can be constructed as follows: Let $\Gamma(S)$ be written as a union of left cosets modulo $\Gamma(\underline{y})$,

$$
\Gamma(S)=\sum_{i} U_{i} \Gamma(\underline{y})
$$

Let F be the fundamental region for $\Gamma(S)$ in \mathfrak{H}. Let $F(\underline{y})=\bigcup_{i} F\left(U_{i}\right)$. Then $F(\underline{y})$ is the required region. Since $Y_{0}=\left(Y_{1}, Y_{2}\right)$ we define $\widetilde{F}(\underline{y})$ to be the set of Y_{0} for which the Y_{1} determines a point in $F(\underline{y})$. It can
be easily verified that $\widetilde{F}(\underline{y})$ determined in this manner is a fundamental region for $\Gamma(\underline{y})$ in $\Omega(\underline{q}, R)$.

Because of (109) and (114) we may write,

$$
\underline{q}=\binom{\underline{v}}{\underline{v}_{1}}, \quad R=\left(\begin{array}{cc}
T & T_{1} \tag{117}\\
T_{1}^{\prime} & R_{1}
\end{array}\right)
$$

Then

$$
\begin{aligned}
\{d \underline{q}\} & =\{d \underline{v}\}\left\{d \underline{v}_{1}\right\} \\
\{d R\} & =\{d T\}\left\{d T_{1}\right\}\left\{d R_{1}\right\}
\end{aligned}
$$

Since $\left\{d Y_{0}\right\}=\left\{d Y_{1}\right\}\left\{d Y_{2}\right\}$ we fix Y_{1} so that the H that it determines in \mathfrak{G} is in $F(\underline{y})$ and integrate over the space of Y_{2} which clearly is determined by

$$
S\left[\underline{y} Y_{1}, Y_{2}\right]=\left(\begin{array}{cc}
W_{1} & Q \\
Q^{\prime} & R_{1}
\end{array}\right)
$$

Since

$$
\frac{\left\{d Y_{2}\right\}}{\{d Q\}\left\{d R_{1}\right\}}=\frac{\left\{d Y_{2}\right\}}{\left\{d \underline{v}_{1}\right\}\left\{d T_{1}\right\}\left\{d R_{1}\right\}}
$$

We have, on using theorem 6

$$
\begin{equation*}
\mu(\underline{v}, S)=\rho_{q-1}\|S\|^{-q / 2}\left\|W_{1}\right\|^{1-\frac{q}{2}} \int \frac{\left\{d Y_{1}\right\}}{\{d \underline{v}\}\{d T\}} \tag{118}
\end{equation*}
$$

where the domain of integration is over those Y_{1} which determine points H in $F(\underline{y})$. Since $T>0$, 114 now gives

$$
W=\left(\begin{array}{cc}
t-w & \underline{0}^{\prime} \\
\underline{T} & T
\end{array}\right)\left[\begin{array}{cc}
1 & 0^{\prime} \\
T^{-1} \underline{v} & E
\end{array}\right]
$$

where $w=T^{-1}[\underline{v}]$. Since $T>0$ and W_{1} has signature $(p, 1)$, it follows that

$$
\left.\begin{array}{rl}
w-t & >0 \tag{119}\\
w & \geq 0
\end{array}\right\}
$$

Substituting $\left|W_{1}\right|=(t-w)|T|$, we get from (118)

$$
\begin{equation*}
\mu(\underline{y}, S)=\rho_{q-1}\|S\|^{-q / 2}\|T\|^{1-\frac{q}{2}}(w-t)^{1-\frac{q}{2}} \int \frac{\left\{d Y_{1}\right\}}{\{d \underline{v}\}\{d T\}} \tag{120}
\end{equation*}
$$

We now remark that w depends only on the H which Y_{1} determines in \mathfrak{H}. For,

$$
w=T^{-1}[\underline{v}]=T^{-1}\left[Y_{1}^{\prime} S \underline{y}\right]=T^{-1}\left[Y_{1}^{\prime} S\right][\underline{y}]
$$

But from (102), $T^{-1}\left[Y_{1}^{\prime} S\right]=\frac{H+S}{2}$ so that

$$
2 W=(H+S)[\underline{y}]=H[\underline{y}]+t
$$

or that

$$
\begin{equation*}
w=\frac{H[\underline{y}]+t}{2} \tag{121}
\end{equation*}
$$

Let now $g(w)$ be an integrable function of w to be chosen later. Multiply both sides of (120) by $g(w)(w-t)^{\frac{q}{2}-1}$ and integrate over the \underline{v} space satisfying

$$
T^{-1}[\underline{v}]=w>t
$$

We then get, by applying theorem 6and using

$$
\{d \underline{v}\}=\frac{\{d \underline{v}\}}{d w} \cdot d w
$$

the result

$$
\begin{align*}
& \rho_{1} \mu(\underline{y}, S) \int_{w>\operatorname{Max}(0, t)} g(w) w^{\frac{p}{2}-1}(\omega-t)^{\frac{q}{2}-1} d w \\
& =\rho_{p-1} \rho_{q-1}\|S\|^{-q / 2}\|T\|^{-\frac{1}{2}-\frac{q}{2}} \int g(w) \frac{\left\{d Y_{1}\right\}}{\{d T\}} \tag{122}
\end{align*}
$$

The function $g(w)$ has to be so chosen that the integrals are convergent. We will see later that this can be done. The domain of integration for the integral on the right of (122) is over that set of Y_{1} which determine H in $F(\underline{y})$. Since every H in $F(\underline{y})$ determines a Y_{1}, we see that we have to apply the analysis in the proof of theorem[7to obtain

Theorem 8. Let $\mu(\underline{y}, S)$ be the measure of the representation \underline{y} of $S[\underline{y}]=$ t. Then
$\mu(\underline{y}, S) \int_{\substack{w>0 \\ w>t}} g(w) w^{\frac{p}{2}-1}(w-t)^{\frac{q}{2}-1} d w=\rho_{p-1} \rho_{q-1}\|S\|^{-\frac{n}{2}} \int_{F(\underline{y})} g\left(\frac{H[\underline{y}]+t}{2}\right) d v$
164 where $g(w)$ is an integrable function making the integrals converge and $d v$ is the invariant volume element in the \mathfrak{G} space.

7 Integration of the theta series

We shall hereafter assume that $n>4$.
Let us denote by $V_{\underline{a}}$ the volume of the fundamental region $V_{\underline{a}}$ for $\Gamma_{\underline{a}}$ in the \mathfrak{G} space so that

$$
V_{\underline{a}}=\int_{F_{\underline{a}}} d v
$$

$F_{\underline{a}}$ is finite by theorem[5] We put

$$
\begin{equation*}
\varphi_{\underline{a}}(z)=V_{\underline{a}}^{-1} \int_{F_{\underline{a}}} f_{\underline{a}}(z, H) d v \tag{123}
\end{equation*}
$$

Then by theorem 4

$$
\varphi_{\underline{a}}(z)=V_{\underline{a}}^{-1} \sum_{\underline{y} \equiv \underline{a}(\bmod 1)} \int_{F_{\underline{a}}} e^{2 \pi i R[\underline{y}]} d v
$$

If $\underline{a} \equiv \underline{0}(\bmod 1)$, then $\underline{y} \equiv \underline{0}$ is a possible value of \underline{y} and then we have the term

$$
\begin{equation*}
V_{\underline{a}}^{-1} \int_{F_{\underline{a}}} d v \tag{124}
\end{equation*}
$$

By definition of $V_{\underline{a}}$, the value of (124) is unity. Let us therefore put

$$
\gamma_{\underline{a}}= \begin{cases}1 & \text { if } \underline{a} \equiv \underline{0}(\bmod 1) \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+V_{\underline{a}}^{-1} \sum_{\substack{\underline{y} \equiv \underline{a}(\bmod 1) \\ \underline{y} \neq \underline{0}}} \int_{F_{\underline{\underline{a}}}} e^{2 \pi i R[\underline{\underline{0}}]} d v .
$$

Let us call two rational vectors \underline{y}_{1} and \underline{y}_{2} associated, if there exists a matrix U in $\Gamma_{\underline{a}}$ such that $\underline{y}_{1}=U \underline{y}_{2}$. Otherwise they are said to be nonassociated. For any \underline{y} consider the subgroup $\Gamma_{\underline{a}}(\underline{y})$ of $\Gamma_{\underline{a}}$ with $U \underline{y}=\underline{y}$. We can write

$$
\begin{equation*}
\left.\Gamma_{\underline{a}}=\sum_{k} U_{k} \Gamma_{\underline{a}} \underline{y}\right) \tag{125}
\end{equation*}
$$

as a union of left cosets. $U_{k} \underline{y}$ then run through all vectors associated with \underline{y}. Because of uniform convergence, we can write

$$
\varphi_{a}(z)=\gamma_{a}+\sum_{\underline{y}}^{\prime} \sum_{k} V_{\underline{a}}^{-1} \int_{F_{\underline{\underline{a}}}} e^{2 \pi i R\left[U_{k} \underline{\underline{y}}\right]} d v
$$

where the accent indicates that we should sum over all non-associate vectors \underline{y} with $\underline{y} \neq \underline{0}$ and $y \equiv \underline{a}(\bmod 1)$. Since the volume element $d v$ has the invariance property we may write

$$
\varphi_{\underline{a}}(z)=\gamma_{a}+\sum_{\underline{y}}^{\prime} \sum_{k} V_{\underline{a}}^{-1} \int_{\left.F_{\underline{a}} \underline{U} U_{k}\right]} e^{2 \pi i R[\underline{y}]} d v
$$

where $F_{\underline{a}}\left[U_{k}\right]$ is the image of the fundamental region $F_{\underline{a}}$ by the transformation $H \rightarrow H\left[U_{k}\right]$. Because of (125) a fundamental region $F(\underline{y})$ for $\Gamma_{\underline{a}}(\underline{y})$ in \mathfrak{H} is given by

$$
F(\underline{y})=\sum_{k} F_{\underline{a}}\left[U_{k}\right] .
$$

Consider the group $\Gamma_{\underline{q}}(y)$. Now $-E$ is not an element of $\Gamma_{\underline{a}}(\underline{y})$ since that means $-\underline{y}=\underline{y}$ or $\underline{y}=\underline{0}$. But $-E$ may be in $\Gamma_{\underline{a}}$. This means that $-\underline{a} \equiv \underline{a}\left(\bmod ^{-} 1\right)$ or $2 \underline{a} \equiv \underline{0}(\bmod 1)$. In this the $U_{k}{ }^{\prime}$'s in (125) may be so chosen that with $U_{k},-U_{k}$ is also a representative of a coset. Since
$H \rightarrow H[U]$ and $H \rightarrow H[-U]$ define the same mapping in the \mathfrak{H} space, it shows that if $2 \underline{a} \equiv \underline{0}(\bmod 1)$, the $F_{\underline{a}}\left[U_{k}\right]$ give a double covering of the fundamental region $\bar{F}(\underline{y})$. So let us define

$$
j_{\underline{a}}= \begin{cases}2 & \text { if } 2 \underline{a} \equiv \underline{0}(\bmod 1) \\ 1 & \text { if } 2 \underline{a} \not \equiv \underline{0}(\bmod 1)\end{cases}
$$

Then we can write

$$
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+j_{\underline{a}} \sum_{\underline{y}} V_{\underline{a}}^{-1} \int_{F(\underline{y})} e^{2 \pi i R[\underline{y}]} d v
$$

Let us now put in theorem 8

$$
g(w)=e^{2 \pi i t \bar{z}-4 \pi \eta w}
$$

and use the abbreviation

$$
\begin{equation*}
h_{t}(z)=e^{2 \pi i t \bar{z}} \int_{w>\max (0, t)} w^{\frac{p}{2}-1}(w-t)^{\frac{q}{2}-1} e^{-4 \pi \eta w} d w \tag{126}
\end{equation*}
$$

then, since (126) converges for $p>0, q>0, \eta>0$, we get

$$
\begin{equation*}
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{j_{\underline{a}}}{V_{\underline{a}}} \sum_{\underline{y}}^{\prime} \frac{\mu(\underline{y}, S)}{\rho_{p-1} \rho_{q-1}}\|S\|^{\frac{n}{2}} h_{t}(z) \tag{127}
\end{equation*}
$$

It can be shown that for each rational number $t \neq 0$, the number of non-associate representations

$$
S[\underline{y}]=t, \quad \underline{y} \equiv \underline{a}(\bmod 1)
$$

is finite. If $t=0$, one has to consider only non-associate primitive representations. If therefore we put

$$
\begin{equation*}
M(S, \underline{a}, t)=\sum_{\underline{y}} \mu(\underline{y}, S) \tag{128}
\end{equation*}
$$

$\mathbf{1 6 7}$ where the summation runs on the right through the finitely many non-
associate representations of $S[\underline{y}]=t$, we can write (127) in the form

$$
\begin{equation*}
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{j_{\underline{a}}}{V_{\underline{a}}} \frac{\|S\|^{n / 2}}{\rho_{p-1} \rho_{q-1}} \sum_{t=S[\underline{a}](\bmod 1)} M(S, \underline{a}, t) h_{t}(z) \tag{129}
\end{equation*}
$$

Just as we defined $\mu(S)$ in theorem 7 for the unit group Γ, we can define $\mu_{\underline{a}}(S)$ for the subgroup $\Gamma_{\underline{a}}$ of Γ also. $\Gamma_{\underline{a}}$ is a subgroup of finite index $\left(\Gamma: \Gamma_{\underline{a}}\right)$ in Γ. Let

$$
\Gamma=\sum_{U} U \Gamma_{\underline{a}}
$$

be a decomposition of Γ into left cosets mod $\Gamma_{\underline{a}}$. If F is a fundamental region for Γ, then

$$
F_{\underline{a}}=\sum_{U} F[U]
$$

is a fundamental region for $\Gamma_{\underline{a}}$. Since U and $-U$ give rise to the same mapping in \mathfrak{H} space, we have to consider whether $-E$ belongs to $\Gamma_{\underline{a}}$; i.e., $2 \underline{a} \equiv \underline{0}(\bmod 1)$, which means that U and $-U$ are in the same coset and so

$$
V_{\underline{a}}=\left(\Gamma: \Gamma_{\underline{a}}\right) V .
$$

If however $2 \underline{a} \not \equiv \underline{0}(\bmod 1)$, then U and $-U$ belong to different cosets and so $\sum_{U} F[U]$ gives a double covering of $F_{\underline{a}}$. Thus

$$
V_{\underline{a}}=\frac{1}{2}\left(\Gamma: \Gamma_{\underline{a}}\right) V .
$$

Using the definition of $j_{\underline{a}}$ we get

$$
\frac{\mu(S)}{V}=\frac{\mu_{\underline{a}}(S)}{V_{\underline{a}}} \cdot \frac{j_{\underline{a}}}{2}
$$

If we denote $\mu(S, \underline{a}, t)$ the quantity

$$
\begin{equation*}
\mu(S, \underline{a}, t)=\frac{M(S, \underline{a}, t)}{\mu_{\underline{a}}(S)} \tag{130}
\end{equation*}
$$

We get, on using theorem 7 the final formula

$$
\begin{equation*}
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t=S[\underline{\underline{q}}(\bmod 1)} \mu(S, \underline{a}, t) h_{t}(z) \tag{131}
\end{equation*}
$$

We call $M(S, \underline{a}, t)$ the measure of representation of t by $S[\underline{x}+\underline{a}]$. (131) is the analogue, for indefinite forms, of the generating function (6).

Let us now consider the functional vector

$$
\varphi(z)=\left(\begin{array}{c}
\varphi_{a_{1}}(z) \tag{132}\\
\vdots \\
\varphi_{\underline{a}_{\mathfrak{l}}}(z)
\end{array}\right)
$$

$\underline{a}_{1}, \ldots, \underline{a}_{l}$ having the same meaning as before. Let $d=a b s 2 S$ and $\bar{\Gamma}$ the subgroup of units U in Γ satisfying

$$
U \equiv E(\bmod \mathrm{~d}) .
$$

Since for every $\underline{a}_{i}, 2 S \underline{a}_{i}$ is an integral vector, it follows that

$$
\Gamma \underline{a}_{i} \supset \bar{\Gamma}, \quad(i=1,2, \ldots, 1) .
$$

Also $\Gamma / \bar{\Gamma}$ is a finite group. If F_{0} is a fundamental region for $\bar{\Gamma}$ in \mathfrak{H} and \bar{V} its volume then because of invariance of volume element we have

$$
\varphi_{\underline{a}}(z)=\bar{V}^{-1} \int_{F_{0}} f_{\underline{a}}(z, H) d v .
$$

Let now $\underline{\mu}(S, t)$ and $\underline{\gamma}$ denote the vectors

$$
\underline{\mu}(S, t)=\left(\begin{array}{c}
\mu\left(S, \underline{a}_{1}, t\right) \\
\vdots \\
\mu\left(S, \underline{a}_{1}, t\right)
\end{array}\right), \quad \underline{\gamma}=\left(\begin{array}{c}
\gamma_{a_{1}} \\
\vdots \\
\gamma_{\underline{a}}
\end{array}\right)
$$

169 where $\mu(S, \underline{a}, t)$ is defined by (130) and $\gamma_{\underline{a}}=0$ or 1 according as $\underline{a} \equiv$ $\underline{0}(\bmod 1)$ or not. Then from (49) and (131) we have the

Theorem 9. Let $n>4$ and $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ be a modular matrix. Then

$$
\varphi(z)=\underline{\gamma}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t} \underline{\mu}(S, t) h_{t}(z)
$$

satisfies

$$
\underline{\varphi}\left(z_{M}\right)=G(M, z) \underline{\varphi}(z) .
$$

The function $h_{t}(z)$ introduced in 126 can be expressed in terms of the confluent hypergeometric function $h(\alpha, \beta, \eta)$ defined by

$$
\left.h(\alpha, \beta, \eta)=\int_{0}^{\infty} w^{\alpha-1}(w+1)^{\beta-1} e^{-w \eta}\right) d w
$$

where α and β are complex numbers with positive real parts and η is a positive real parameter. $h(\alpha, \beta, \eta)$ is a solution of the second order differential equation

$$
\eta \frac{d^{2} h}{d \eta^{2}}+(\alpha+\beta+\eta) \frac{d h}{d \eta}-\alpha h=0
$$

From the definition of $h_{t}(z)$ we have

$$
h_{0}(z)=\int_{0}^{\infty} W^{n / 2-2} e^{-4 \pi w \eta} d w
$$

which reduces to the Γ-integral. We have hence

$$
\begin{equation*}
h_{0}(z)=(4 \pi \eta)^{1-n / 2} \Gamma\left(\frac{n}{2}-1\right) \tag{134}
\end{equation*}
$$

Let now $t<0$. Changing, in (126), the variable w to $-t w$ we get easily

$$
\begin{equation*}
h_{t}(z)=e^{2 \pi i t \bar{z}}(-t)^{n / 2-1} h(p / 2, q / 2,-4 \pi t \eta) \tag{135}
\end{equation*}
$$

In case $t>0$, we make a change of variable $w \rightarrow w t+t$. One then obtains

$$
\begin{equation*}
h_{t}(z)=e^{2 \pi i t \bar{z}} t^{n / 2-1} h(q / 2, p / 2,4 \pi t \eta) \tag{136}
\end{equation*}
$$

If we put $h_{t}(z)=u(\xi, \eta)=u$ as a function of the two real variables ξ and η, then u satisfies the partial differential equation

$$
\begin{equation*}
\Delta u=0 \tag{137}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\eta\left(\frac{\partial^{2}}{\partial \xi^{2}}+\frac{\partial^{2}}{\partial \eta^{2}}\right)+\frac{n}{2} \frac{\partial}{\partial \eta}+i \frac{(q-p)}{2} \frac{\partial}{\partial \xi} \tag{138}
\end{equation*}
$$

The interesting fact to be noticed is that the differential operator Δ is independent of t. Since $\underline{\varphi}(z)$ in theorem 9 is a linear function in $h_{t}(z)$ we see that

$$
\begin{equation*}
\Delta \underline{\varphi}(z)=\underline{0} \tag{139}
\end{equation*}
$$

It is to be noted also that $\underline{f}(z, H)$ is not a solution of the differential equation (137).

8 Eisenstein series

Let $M=\left(\begin{array}{l}\alpha \\ \gamma \\ \gamma\end{array}\right)$ be a modular matrix. By (30), for any two vectors $\underline{a}, \underline{b}$ among $\underline{a}_{1}, \ldots, \underline{a}_{l}$ we have

$$
\lambda_{\underline{a b}}(M)=\sum_{\underline{g}((\bmod) \gamma)} e^{\frac{2 \pi i}{\gamma}\left(\alpha S[\underline{g}+\underline{a}]-2 \underline{b^{\prime}} S(\underline{g}+\underline{a})+\delta S[\underline{b}]\right)}
$$

Let us consider the case $\underline{b}=\underline{0}$ which is a possible value of a_{1}, \ldots, a_{l}. Then

$$
\lambda_{\underline{a}, \underline{0}}(M)=\sum_{\underline{g}(\bmod) \gamma)} e^{\frac{2 \pi i}{\gamma} \alpha S[\underline{g}+\underline{a}]}
$$

171 which is an ordinary Gaussian sum. It is to be noted that $\lambda_{\underline{a}, \underline{0}}(M)$ depends only on the first column of the matrix M and is independent of β and δ.

Let G denote the group of proper unimodular matrices and G_{0} the subgroup consisting of all modular matrices with $\gamma=0$. Let

$$
\begin{equation*}
G=\sum_{M} M G_{0} \tag{141}
\end{equation*}
$$

be a decomposition of G as a sum of left cosets modulo G_{0}. If M and M_{1} belong to the same left coset, then

$$
M_{1}^{-1} M=\left(\begin{array}{cc}
\pm 1 & * \\
0 & \pm 1
\end{array}\right)
$$

so that the values of $\lambda_{\underline{a}, \underline{0}}(M)$ and $\lambda_{\underline{a}, \underline{0}}\left(M_{1}\right)$ are equal. Also since G_{0} contains the matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, we may choose the representatives in (141) so that $\gamma \geq 0$.

Let $\underline{g}(M, z)$ denote the first column of the matrix $G(M, z)$ defined in (37). Let M have $\gamma>0$. Then because of theorem 2 we have

$$
\begin{gather*}
\left.\underline{g}\left(M, z_{M^{-1}}\right)=\epsilon^{-1} d^{-\frac{1}{2}} \gamma^{-n / 2}(\gamma z-\alpha)^{-p / 2}(\gamma \bar{z}-\alpha)^{-q / 2}\left(\begin{array}{cc}
\lambda_{a_{1}} & \underline{0} \\
\vdots & \\
\lambda_{\underline{a_{l}}} & \underline{0}
\end{array}\right)\right\} \tag{142}\\
\underline{g}(E, z)=\gamma
\end{gather*}
$$

We now form the series

$$
\underline{\psi}(z)=\sum_{M} \underline{g}\left(M, z_{M^{-1}}\right)
$$

the sum taken over all representatives in 141. $\psi(z)$ is a vector of func- $\mathbf{1 7 2}$ tions $\psi_{\underline{a}_{1}}(z), \ldots, \psi_{\underline{a}_{l}}(z)$ where

$$
\begin{align*}
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} & \sum_{\substack{(\alpha, \gamma)=1 \\
\gamma>0}} \gamma^{-n}\left(z-\frac{\alpha}{\gamma}\right)^{-p / 2}\left(\bar{z}-\frac{\alpha}{\gamma}\right)^{-q / 2} \tag{143}\\
& \sum_{\underline{g}((\bmod) \gamma)} e^{\left.2 \pi i \frac{\alpha}{\gamma} S \underline{g}+\underline{a}\right]}
\end{align*}
$$

In order to prove the absolute convergence of the above series for $\psi_{\underline{a}}(z)$, observe that by (47) and (48), $\lambda(M)$ is unitary and so it is enough to prove the convergence of

$$
\sum_{(\alpha, \gamma)=1}\left|\gamma_{z}-\alpha\right|^{-\frac{n}{2}}
$$

It is well-known that this converges for $n>4$. The convergence is even uniform in every compact subdomain of the z-plane.

From theorem 2 we have

$$
\underline{g}\left(M M_{1}, z_{M_{1}^{-1}}\right)=G(M, z) \underline{g}\left(M_{1}, z_{M_{1}^{-1}}\right)
$$

If M is fixed and M_{1} runs through a complete system of representatives in 141, then $M M_{1}$ also runs through the representatives in 141. This gives

$$
\begin{equation*}
\underline{\psi}\left(z_{M}\right)=G(M, z) \underline{\psi}(z) . \tag{144}
\end{equation*}
$$

Thus $\underline{\psi}(z)$ also satisfies the same transformation formula as $\underline{\varphi}(z)$. We shall now obtain a fourier expansion for the function $\psi_{\underline{a}}(Z)$. To $\overline{\bar{\varphi}}$ this end we first prove

Lemma 4. Let $a>1, b>1$ be two real numbers and

$$
E(z)=\sum_{k=-\infty}^{\infty}(z-k)^{-a}(\bar{z}-k)^{-b}
$$

Then

$$
E(z)=\frac{i^{b-a}(2 \pi)^{a+b}}{\Gamma(a) \Gamma(b)} \sum_{-\infty}^{\infty} e^{2 \pi i \bar{z}} \int_{\max (0,1)}^{\infty} u^{a-1}(u-1)^{b-1} e^{-4 \pi \eta u} d u
$$

$173 \quad$ where $z=\xi+i \eta, \eta>0$.
Proof. Since $a+b>2$, it follows that $E(z)$ is absolutely convergent and is also uniformly convergent in every bounded domain of the z-plane. It is clearly periodic of period 1 in ξ. Hence

$$
E(z)=\sum_{l=-\infty}^{\infty} e^{2 \pi i l \xi}\left(\int_{0}^{1} \sum_{-\infty}^{\infty}(z-k)^{-a}(\bar{z}-k)^{-b} e^{-2 \pi i l \xi} d \xi\right)
$$

This shows that the fourier coefficient equals

$$
\int_{-\infty}^{\infty} z^{-a} \bar{z}^{-b} e^{-2 \pi i l \xi} d \xi
$$

By means of the substitution $\xi \rightarrow-i \xi$ we get for this fourier coefficient the integral

$$
i^{b-a-1} \int_{-i \infty}^{i \infty}(\eta-\xi)^{-a}(\eta+\xi)^{-b} e^{-2 \pi l \xi} d \xi
$$

We now write ξ instead of $\xi+\eta$ obtaining thus the integral

$$
i^{b-a-1} e^{2 \pi i \eta} \int_{\eta-i \infty}^{\eta+i \infty} \xi^{-b}(2 \eta-\xi)^{-a} e^{-2 \pi l \xi} d \xi
$$

In order to evaluate the integral above we use the Γ-integral and obtain

$$
\begin{equation*}
\frac{1}{\Gamma(a)} \int_{\eta-i \infty}^{\eta+i \infty} e^{-2 \pi l \xi} \xi^{-b}\left(\int_{0}^{\infty} u^{a-1} e^{-(2 \eta-\xi) u} d u\right) d \xi \tag{145}
\end{equation*}
$$

We can change the order of integration and hence the above integral equals

$$
\frac{1}{\Gamma(a)} \int_{0}^{\infty} u^{a-1} e^{-2 \eta u}\left(\int_{\eta-i \infty}^{\eta+i \infty} \xi^{-b} e^{\xi(u-2 \pi l)} d \xi\right) d u
$$

We now use the well-known Weierstrass' formula in Γ-functions, namely

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{-b} e^{\lambda x} d x= \begin{cases}\frac{\lambda^{b-1}}{\Gamma(b)} & \text { if } \lambda>0 \\ 0 & \text { if } \lambda \leq 0\end{cases}
$$

where $c>0, b>0$.
From this formula, it follows that the integral in (145) equals

$$
\frac{2 \pi i}{\Gamma(a) \Gamma(b)} \int_{u>\max (0,2 \pi, l)} u^{a-1}(u-2 \pi l)^{b-1} e^{-2 \eta u} d u
$$

We once again make a change of variable u to $2 \pi u$. We then obtain the fourier coefficient as given in the lemma.

Actually the lemma can be seen to be true for $a>0, b>0$ and $a+b>1$. In particular, if we put $a=p / 2$ and $b=q / 2$ and use the definition of $h_{t}(z)$ in (126) and ϵ in (29), we obtain the formula

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(z-k)^{-p / 2}(\bar{z}-k)^{-q / 2}=\frac{(2 \pi)^{n / 2} \varepsilon}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{1=-\infty}^{\infty} h_{l}(z) \tag{146}
\end{equation*}
$$

Let us now consider the expression for $\psi_{\underline{a}}(z)$, namely

$$
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} \sum_{\substack{(\alpha, \gamma)=1 \\ \gamma>0}} \gamma^{-m}\left(z-\frac{\alpha}{\gamma}\right)^{-p / 2}\left(\bar{z}-\frac{\alpha}{\gamma}\right)^{-q / 2} \cdot \sum_{\underline{g}(\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma} S[\underline{g}+\underline{a}]}
$$

Put $D=2 d$. We shall prove that $\psi_{\underline{a}}(z)$ has the period D in ξ.

$$
\begin{gathered}
\psi_{\underline{a}}(z+D)=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} \sum_{(\alpha, \gamma)=1} \gamma^{-n}\left(z+D-\frac{\alpha}{\gamma}\right)^{-p / 2}\left(\bar{z}+D-\frac{\alpha}{\gamma}\right)^{-q / 2} \\
\gamma>0 \sum_{\underline{g}((\bmod) \gamma)} e^{\left.2 \pi i \frac{\alpha}{\gamma} S \underline{g}+\underline{a}\right]}
\end{gathered}
$$

But since $2 S \underline{a}$ is integral, it follows that $D S[\underline{a}]$ is an integer. Hence

$$
D S[\underline{g}+\underline{a}] \equiv 0(\bmod 1)
$$

We may therefore write

$$
\begin{gathered}
\psi_{\underline{a}}(z+D)=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} \sum_{(\alpha, \gamma)=1} \gamma^{-n}\left(z+D-\frac{\alpha}{\gamma}\right)^{-p / 2}\left(\bar{z}+D-\frac{\alpha}{\gamma}\right)^{-q / 2} \\
\left.\gamma>0 \cdot \sum_{\underline{g}(\bmod) \gamma)} e^{2 \pi i}\left(\frac{\alpha}{\gamma}-D\right) S \underline{g}+\underline{a}\right]
\end{gathered}
$$

Since $\frac{\alpha}{\gamma}+D$ runs through all rational fractions when $\frac{\alpha}{\gamma}$ does so, we see that

$$
\psi_{\underline{a}}(z+D)=\psi_{\underline{a}}(z)
$$

Because of absolute convergence we can write the series for $\psi_{\underline{a}}(z)$ in the following way: We put all rational numbers $\frac{\alpha}{\gamma}$ into residue classes modulo D. If $0 \leq \frac{\alpha}{\gamma}<D$ is a fixed rational number with $(\alpha, \gamma)=1$, then all rational numbers in the class of $\frac{\alpha}{\gamma}$ are obtained in the form $\frac{\alpha}{\gamma} \pm k D$ where k runs through integers. Thus

$$
\begin{gather*}
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} \sum_{0 \leq \frac{\alpha}{\gamma}<D} \gamma^{-n} D^{-\frac{n}{2}} \sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma} S[\underline{q}+\underline{a}]} \\
\sum_{k=-\infty}^{\infty}(\zeta-k)^{-\frac{p}{2}}(\bar{\zeta}-k)^{-\frac{q}{2}} \tag{147}
\end{gather*}
$$

where $\zeta=\left(z-\frac{\alpha}{\gamma}\right) D^{-1}$. Using (146) we get

$$
\begin{align*}
\psi_{\underline{a}}(z)= & \gamma_{\underline{a}}+\frac{d^{-\frac{1}{2}}(2 \pi)^{n / 2}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{0 \leq \frac{\alpha}{\gamma}<D} \gamma^{-n} D^{-n / 2} \tag{148}\\
& \sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma} S \underline{\underline{g}+\underline{a}]}} \sum_{l=-\infty}^{\infty} h_{l}\left(D^{-1}\left(z-\frac{\alpha}{\gamma}\right)\right)
\end{align*}
$$

Using (126) we have

$$
h_{l}\left(D^{-1}\left(z-\frac{\alpha}{\gamma}\right)\right)=D^{n / 2-1} e^{-2 \pi i \frac{\alpha}{\gamma} \frac{l}{D}} h_{l / D}(z)
$$

We may therefore write (148) in the form

$$
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{l=-\infty}^{\infty} h_{1 / D}(z) \sum_{0 \leq \frac{\alpha}{\gamma}<D} D^{-1} \gamma^{-n}
$$

$\sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i\left(S[\underline{g}+\underline{a}]-\frac{l}{D}\right) \frac{\alpha}{\gamma}}$
We now contend that the inner sum is zero if

$$
S[\underline{a}]-\frac{l}{D} \not \equiv 0(\bmod 1)
$$

For, from (147), it is obvious that instead of the summation over $0 \leq$ $\frac{\alpha}{\gamma}<D$, we could equally well have the summation range as $1 \leq \frac{\alpha}{\gamma}<$ $\stackrel{\gamma}{D}+1$. This means that the expression

$$
\begin{equation*}
\sum_{0 \leq \frac{\alpha}{\gamma}<D} D^{-1} \gamma^{-n} \sum_{\underline{g}(\text { mod }) \gamma)} e^{2 \pi \pi \frac{\alpha}{\gamma}\left(S[\underline{g}+\underline{a}]-\frac{l}{D}\right)} \tag{149}
\end{equation*}
$$

is unaltered by changing $\frac{\alpha}{\gamma}$ into $\frac{\alpha}{\gamma}+1$. But this change multiplies (149) by

$$
e^{2 \pi i\left(S[\underline{a}]-\frac{l}{D}\right)}
$$

This proves our contention. We can therefore write

$$
\begin{gathered}
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t=S[\underline{\underline{q}](\bmod 1)}} h_{t}(z) \\
\sum_{0 \leq \frac{\alpha}{\gamma}<D} D^{-1} \gamma^{-n} \sum_{\underline{g}(\bmod) \gamma)} e^{2 \pi i \frac{\underline{\alpha}}{\gamma}(S[\underline{g}+\underline{a}]-t)}
\end{gathered}
$$

177
We can now write all numbers $0 \leq \frac{\alpha}{\gamma}<D$ in the form $\frac{\alpha}{\gamma}+r$ where $0 \leq \frac{\alpha}{\gamma}<1$ and $r=0,1,2, \ldots, D-1$. Because of the property of the expression (149) we get finally the

Theorem 10. The function $\psi_{\underline{a}}(z)$ has the expansion

$$
\begin{aligned}
\psi_{\underline{a}}(z)= & \gamma_{\underline{a}}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t=S[\underline{a}](\bmod 1)} h_{t}(z) \\
& \sum_{0 \leq \frac{\alpha}{\gamma}<1} \gamma^{-n} \sum_{\underline{g}(\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma}(S[\underline{[g}+\underline{a}]-t)}
\end{aligned}
$$

The expression

$$
\begin{equation*}
\beta_{t}=\sum_{0 \leq \frac{\alpha}{\gamma}<1} \gamma^{-n} \sum_{\underline{g}(\text { mod }) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma}(S[\underline{\underline{g}}+\underline{a}]-t)} \tag{150}
\end{equation*}
$$

is a so-called 'singular series'. Series of this type were studied by Hardy and littlewood in their researches on Waring's problem. We shall now give some properties of this singular series.

Let $q>0$ be an integer. Put

$$
f_{q}=\sum_{\gamma \mid q}\left(\sum_{0 \leq \frac{\alpha}{\gamma}<1} \gamma^{-n} \sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma}(S[\underline{\underline{g}}+\underline{a}]-t)}\right)
$$

Since $q=\gamma s$ where s is an integer, we may take the inner summation over a complete residue system modulo q. Then each of the terms will be repeated s^{n} times. This gives

$$
f_{q}=q^{-n} \sum_{\lambda=0}^{q-1} \sum_{\underline{g}(\bmod \mathrm{q})} e^{\left.\frac{2 \pi i \lambda}{q}(S \underline{[g}+a]-t\right)}
$$

Interchanging the two summations above we have

$$
\begin{equation*}
f_{q}=q^{-n} \sum_{\underline{g}(\bmod \mathrm{q})}\left(\sum_{\lambda=0}^{q-1} e^{\left.\frac{2 \pi i \underline{i}(S[\underline{q}+a]-t)}{q}\right)}\right. \tag{151}
\end{equation*}
$$

Because of the well-known formula

$$
\sum_{\mu=0}^{q-1} e^{\frac{2 \pi i \lambda_{\mu}}{q}}= \begin{cases}0 & \text { if } q \nmid \lambda \\ q & \text { if } q \mid \lambda\end{cases}
$$

We see that the inner sum in (151) vanishes if the congruence

$$
\begin{equation*}
S[\underline{x}+\underline{a}] \equiv t(\bmod \mathfrak{q}) \tag{152}
\end{equation*}
$$

has no solution. If it has a solution \underline{g}, then the inner sum has the value q. Thus

$$
\begin{equation*}
f_{q}=\frac{A_{0}(S, \underline{a}, t)}{q^{n-1}} \tag{153}
\end{equation*}
$$

where $A_{q}(S, \underline{a}, t)$ is the number of incongruent solutions mod q of the congruence (152). It will then follow from the definition of β_{t} that if
$q \rightarrow \infty$ through a sequence of integers $q_{1}, q_{2}, q_{3}, \ldots$ such that every natural number divides all but a finite number of these q 's,

$$
\begin{equation*}
\beta_{t}=\lim _{q \rightarrow \infty} f_{q}=\lim _{q \rightarrow \infty} \frac{A_{q}(S, \underline{a}, t)}{q^{n-1}} \tag{154}
\end{equation*}
$$

From the definition of $A_{q}(S, \underline{a}, t)$ and the Chinese-remainder theorem, it follows that

$$
A_{q}(S, \underline{a}, t) \cdot A_{q^{\prime}}(S, \underline{a}, t)=A_{q q^{\prime}}(S, \underline{a}, t)
$$

for two coprime integers q, q^{\prime}. This shows that $f_{q}=\frac{A(S, \underline{a}, t)}{q^{n-1}}$ is a multiplicative arithmetic function. In order to compute f_{q} for a given q, it is enough to compute f_{q} for $q=p^{l}$ where p is a prime number and $l>0$ is an integer.

If $q=p^{l}, l>0$ and p a prime number, it can be shown that

$$
\delta_{p}(S, \underline{a}, t)=\lim _{l \rightarrow \infty} \frac{A_{q}(S, \underline{a}, t)}{q^{n-1}}
$$

179 exists. In fact, if l is sufficiently large the value of $\frac{A_{q}(S, \underline{a}, t)}{q^{n-1}}$ is independent of l. This shows that $\delta_{p}(S, \underline{a}, t)$ is really a rational number. Furthermore for all except a finite number of primes (for instance, for $p \nmid 2 d$)

$$
\delta_{p}(S, \underline{a}, t)=\frac{A_{p}(S, \underline{a}, t)}{p^{n-1}} .
$$

this enables us to compute $\delta_{p}(S, \underline{a}, t)$ for almost all primes p. From the fact that $\delta_{p}(S, \underline{a}, t)$ exists for every p one can construct the product

$$
\delta(S, \underline{a}, t)=\prod_{p} \delta_{p}(S, \underline{a}, t) .
$$

It is proved in the analytic theory of quadratic forms that the product above converges and is different from zero only if every factor is different from zero. Moreover

$$
\begin{equation*}
\beta_{t}=\delta(S, \underline{a}, t) \tag{155}
\end{equation*}
$$

This gives an arithmetical meaning for β_{t} namely that $\beta_{t}>0$ if and only if $A_{q}(S, \underline{a}, t) \neq 0$ for every integer $q>1$. For a proof of these statements see [2].

It should be noticed that since $\psi_{\underline{a}}(z)$ is a linear function in $h_{t}(z)$ and as $h_{t}(z)$ is a solution of the equation (137), the function $\psi_{\underline{a}}(z)$ and hence the vector $\psi(z)$ defined in 1143 is a solution of the differential equation

$$
\begin{equation*}
\Delta \underline{\psi}(z)=\underline{0} . \tag{156}
\end{equation*}
$$

The series $\psi_{\underline{a}}(z)$ are called the Eisenstein series. The vector $\psi(z)$ of Eisenstein series and the vector $\underline{\varphi}(z)$ satisfy the same differential equation and have the same transformation formula with regard to modular substitutions.

9 Main Theorem

We shall now prove the main theorem of the analytic theory of indefinite quadratic forms, namely,

Theorem 11. If $n>4$ and S is a rational symmetric matrix which is semi-integral, of signature $p, q, p+q=n, p q>0$ and \underline{a} a rational vector with $2 S \underline{a}$ integral, then for $t \equiv S[\underline{a}](\bmod 1)$

$$
M(S, \underline{a}, t)=\mu_{\underline{a}}(S) \prod_{p} \delta_{p}(S, \underline{a}, t)
$$

the product running over all primes p.
Proof. The series

$$
\varphi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{\pi^{\frac{n}{2}}\|S\|^{-1 / 2}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t} \frac{M(S, \underline{a}, t)}{\mu_{\underline{a}}(S)} h_{t}(z)
$$

and

$$
\psi_{\underline{a}}(z)=\gamma_{\underline{a}}+\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t} \beta_{t} h_{t}(z)
$$

are fourier series in the real part ξ of z. In order to prove theorem 11] it is enough to prove that

$$
\begin{equation*}
\varphi_{\underline{a}}(z)-\psi_{\underline{a}}(z)=0 \tag{157}
\end{equation*}
$$

Then from (155) and the uniqueness theorem of fourier series, it would follow that the coefficients of $\varphi_{\underline{a}}(z)-\psi_{\underline{a}}(z)$ are zero and the theorem is proved.

We shall therefore prove 157.
Let $\underline{\chi}(z)$ be the vector

$$
\underline{\chi}(z)=\left(\begin{array}{c}
\chi_{\underline{a}_{1}}(z) \\
\vdots \\
\chi_{a_{l}}(z)
\end{array}\right)
$$

where

$$
\chi_{\underline{a}}(z)=\varphi_{\underline{a}}(z)-\psi_{\underline{a}}(z)
$$

If we put $\alpha_{t}=\frac{M(S, \underline{a}, t)}{\mu_{\underline{a}}(S)}$, then

$$
\begin{equation*}
\chi_{\underline{a}}(z)=\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)} \sum_{t} \quad\left(\alpha_{t}-\beta_{t}\right) h_{t}(z) \tag{158}
\end{equation*}
$$

It is to be noticed that $\chi_{\underline{a}}(z)$ lacks the constant term. From theorem 9 and (144) we have

$$
\begin{equation*}
\underline{\chi}\left(z_{M}\right)=G(M, z) \underline{\chi}(z) \tag{159}
\end{equation*}
$$

The Unitary matrix $\Lambda(M)$ is defined in \S 3by

$$
G(M, z)= \begin{cases}(\gamma z+\delta)^{p / 2}(\gamma \bar{z}+\delta)^{q / 2} \Lambda(M) & \text { if } \gamma \neq 0 \\ \Lambda(M) & \text { if } \gamma=0\end{cases}
$$

If we put $z_{M}=\xi_{M}+i \eta_{M}$, then

$$
\begin{equation*}
\eta_{M}=\frac{\eta}{|\gamma z+\delta|^{2}} \tag{160}
\end{equation*}
$$

Let us now prove some properties of the function $h_{t}(z)$ introduced in (126). In the first place

$$
\begin{equation*}
h_{t}(z) \sim e^{2 \pi i t \xi}(4 \pi \eta)^{1-n / 2} \Gamma(n / 2-1) \text { for } \eta \rightarrow 0 \tag{161}
\end{equation*}
$$

This can be proved easily: For, if $t=0$, then

$$
h_{0}(z)=(4 \pi \eta)^{1-n / 2} \Gamma(n / 2-1)
$$

as was seen in 134. Let now $t>0$. Let us make the substitution $\mathbf{1 8 2}$ $w \rightarrow \frac{w}{4 \pi \eta}$ in the integral for $h_{t}(z)$. Then

$$
e^{-2 \pi i t \xi} h_{t}(z)=\int_{w>4 \pi \eta t}(4 \pi \eta)^{1-n / 2} w^{p / 2-1}(w-4 \pi \eta t)^{q / 2-1} e^{-w} d w
$$

But when $\eta \rightarrow 0$

$$
\int_{w>4 \pi \eta t} w^{p / 2-1}(w-4 \pi \eta t)^{q / 2-1} e^{-w} d w \sim \Gamma(n / 2-1) .
$$

This proves 161. The case $t<0$ is dealt with in a similar fashion.
In case $\eta \rightarrow \infty$ we have

$$
\left.\begin{array}{lll}
h_{t}(z) \rightarrow 0 & \text { if } \quad t \neq 0 \tag{162}\\
h_{t}(z) \eta^{n / 2-1} \rightarrow 0 & \text { if } \quad t=0
\end{array}\right\}
$$

This is easily seen from the expression for $h_{t}(z)$ and (134). In fact, if $t \neq 0, h_{t}(z) \rightarrow 0$ exponentially as $\eta \rightarrow \infty$.

Let us now consider the equation (158) for $\chi_{\underline{a}}(z)$. The function $h_{t}(z)$ is monotonic and decreasing in η for fixed ξ. This means that the series for $\chi_{\underline{a}}(z)$ is uniformly bounded in the whole of the fundamental region of the modular group in the z plane. Let $\omega_{\underline{a}}(z)=\eta^{n / 4} \chi_{\underline{a}}(z)$. Since $n>4$ and (162) holds with $h_{t}(z) \rightarrow 0$ exponentially as $\eta \rightarrow \infty, t \neq 0$, it follows that $\omega_{\underline{a}}(z)$ is bounded, uniformly in ξ, in the fundamental region of the modular group in the upper half z plane.

Let $\omega(z)$ be the vector

$$
\underline{\omega}(z)=\left(\begin{array}{c}
\omega_{\underline{a}_{1}}(z) \\
\vdots \\
\omega_{a_{1}}(z)
\end{array}\right)=\eta^{n / 4} \underline{\chi}(z)
$$

Then because of (160) and the transformation formula (159) for $\underline{\chi}(z)$ it follows that, if M is a modular matrix,

$$
\begin{equation*}
\left|\omega_{\underline{a}_{i}}\left(z_{M}\right) \leq \sum_{j}\right| \theta_{i j}| | \omega_{\underline{a}_{j}}(z) \mid \quad(i=1, \ldots, l) \tag{163}
\end{equation*}
$$

where $\Lambda(M)=\left(\theta_{i j}\right)$. But $\Lambda(M)$ is a unitary matrix so that $\left|\theta_{i j}\right| \leq 1$. This means that

$$
\left|\omega_{\underline{a}_{i}}\left(z_{M}\right)\right| \leq \sum_{j}\left|\omega_{\underline{a}_{j}}(z)\right|
$$

From what we have seen above, it follows that $\omega_{\underline{a}}(z)$ is bounded in the whole of the upper half z-plane.

Now $\varphi_{a}(z)$ and $\psi_{a}(z)$ are fourier series in the real variable ξ and have the period $2 d=D$. The fourier coefficient of $\chi_{\underline{a}}(z)=\varphi_{\underline{a}}(z)-\psi_{\underline{a}}(z)$ is

$$
\begin{equation*}
\frac{1}{D} \int_{0}^{D} \chi_{\underline{a}}(z) e^{-2 \pi i t \xi} d \xi \tag{164}
\end{equation*}
$$

which clearly equals

$$
\begin{equation*}
\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)}\left(\alpha_{t}-\beta_{t}\right) h_{t}(i \eta) \tag{165}
\end{equation*}
$$

Since $n>4$ and $\eta^{n / 4} \chi_{\underline{a}}(z)$ is bounded in the upper half z plane, it follows that

$$
\begin{equation*}
\frac{1}{D} \eta^{n / 4-1} \int_{0}^{D} \eta^{n / 4} \chi \underline{a}(z) e^{-2 \pi i t \xi} d \xi \rightarrow 0 \tag{166}
\end{equation*}
$$

184 as $\eta \rightarrow 0$. On the other hand the expression on the left of (166) is, in virtue of (164), (165), equal to

$$
\left.\frac{\pi^{n / 2}\|S\|^{-\frac{1}{2}}}{\Gamma(p / 2) \Gamma(q / 2)}\left(\alpha_{t}-\beta_{t}\right) h_{t}(i \eta)\right)^{\frac{n}{2}-1}
$$

Because of 161

$$
h_{t}(i \eta) \eta^{n / 2-1} \sim(4 \pi)^{1-n / 2} \Gamma(n / 2-1) \neq 0
$$

as $\eta \rightarrow 0$. Because of (166) therefore, it follows that

$$
\alpha_{t}-\beta_{t}=0 .
$$

Our theorem is thus completely proved.
Going back to the definitions of $\varphi_{\underline{a}}(z)$ in (123) and $\psi_{\underline{a}}(z)$ in (143) we have the partial fraction decomposition

Theorem 12. If $n>4$, then

$$
\begin{gathered}
V_{\underline{a}}^{-1} \int_{F_{\underline{a}}} f_{\underline{a}}(z, H) d v= \\
=\gamma_{\underline{a}}+\epsilon^{-1} d^{-\frac{1}{2}} \sum_{\substack{(\alpha, \gamma)=1 \\
\gamma>0}} \gamma^{-n}\left(\sum_{\underline{g}((\bmod) \gamma)} e^{2 \pi i \frac{\alpha}{\gamma} S[\underline{g}+\underline{a}]}\right)\left(\underline{z}-\frac{\alpha}{\gamma}\right)^{-\frac{p}{2}}\left(\bar{z}-\frac{\alpha}{\gamma}\right)^{-\frac{q}{2}}
\end{gathered}
$$

10 Remarks

Let us consider the main theorem. The right hand side is a product extended over all the primes and is zero if and only if at least one factor is zero. The left hand side is different from zero only if the equation

$$
\begin{equation*}
S[\underline{x}+\underline{a}]=t \tag{167}
\end{equation*}
$$

has an integral solution. Thus the main theorem shows that 167 has an integral solution if and only if

$$
S[\underline{x}+\underline{a}] \equiv t(\bmod \mathrm{~m})
$$

has a solution for every integer $m>1$. Because of the definition of $\delta_{p}(S, \underline{a}, t)$ we may also say that if S is indefinite and $n>4$, then 167) has an integral solution if and only if (167) is true in p-adic integers for every p. In the case $t=0$, this is the Meyer-Hasse theorem. But our main theorem is a quantitative improvement of the Meyer-Hasse theorem, in as much as it gives an expression for the measure of representation of t by $S[\underline{x}+\underline{a}]$.

The method of proof consisted in first obtaining a 'generating function' $f(z)$ for the Diophantine problem (167) and then constructing a function $E(z)$, the Eisenstein series, which behaves like $f(z)$ for all modular substitutions. In other words, we construct a function $E(z)$ which behaves like $f(z)$ when z approaches, in the upper half plane, a rational point on the real axis. This idea was originally used by Hardy and Ramanujan in the problem of representation of integers by sums of k squares. The generating function $f(z)$ here was the theta series

$$
f(z)=\left(\sum_{1=-\infty}^{\infty} e^{2 \pi i l^{z} z}\right)^{k}
$$

The function $E(z)$ is constructed in the same way as here and Hardy and Ramanujan showed that for $k=5,6,7,8$

$$
f(z)=E(z) .
$$

But for $k=9, f(z) \neq E(z)$. It is remarkable that in the case of indefinite forms, one has equality if $k>4$. One does not have, in general, for representation of integers by definite forms, a formula like that in theorem 11 One can obtain a modified formula by introducing a genus of forms. If $S>0$ is an integral matrix, the genus of S consists of all integral matrices $P>0$ which are such that for each integer $m>1$ there is an integral matrix U with

$$
S[U] \equiv P(\bmod \mathrm{~m}), \quad(|\mathrm{U}|, \mathrm{m})=1 .
$$

It is then known that a genus consists of a finite number of classes. Let S_{1}, \ldots, S_{a} be representatives of the finitely many classes in the genus of S. If $T>0$ is any k-rowed integral matrix, we can define for each i, $i=1, \ldots, a$ the number, $A\left(S_{i}, T\right)$, of representations

$$
S_{i}[X]=T .
$$

If $E\left(S_{i}\right)$ denotes the order of the unit group of S_{i} (this being finite since $S_{i}>0$) we can form

$$
\bar{A}(S, T)=\frac{\sum_{i=1}^{a} \frac{A\left(S_{i}, T\right)}{E\left(S_{i}\right)}}{\sum_{i=1}^{a} \frac{1}{E\left(S_{i}\right)}}
$$

the average measure of representation of T by a genus of S. Just as in (154) we can define for each p,

$$
\delta_{p}(S, T)=\lim _{1 \rightarrow \omega} \frac{A_{p^{l}}(S, T)}{p^{l \lambda}}
$$

where $\lambda=n k-\frac{k(k+1)}{2}$. This is finite, rational and $\prod_{p} \delta_{p}(S, T)$ converges if $k \leq n$. The main theorem would then be

$$
\begin{equation*}
\bar{A}(S, T)=c \prod_{c} \delta_{p}(S, T) \tag{168}
\end{equation*}
$$

c being a constant depending on n and k.
A similar formula, with suitable restrictions, exists if S and T are indefinite also.

One might ask if our theorem 12 could be extended to the cases $n=$ $2,3,4$. In case $n=4$, and $S[\underline{x}]$ is not a quaternion zero form, then one can prove that $f(z)=E(z)$. The method is slightly more complicated. The differential operator Δ, or slight variants of it, which we had not used in our main theorem, plays an important role here. In case $n=2$ and 3 it can be proved that our main theorem is false.

Generalizations of the main theorem may be made by considering representations not of numbers, but of rational symmetric matrices. One can generalize the results by considering instead of the domain of rational integers, the ring of integers in an algebraic number field or more generally an order in an involutorial simple algebra over the rational number field. The bibliography gives the sources for these generalizations.

Bibliography

[1] C. L. Siegel : Additive theorie der-Zahlkörper II Math. Ann. $88 \mathbf{1 8 8}$ (1923) P. 184-210.
[2] C. L. Siegel : Über die analytische theorie der quadratischen Formen, Annals of Math. 36 (1935) P. 527-606; 37 (1936) P. 230-263; 38 (1937) P. 212-291.
[3] C. L. Siegel : Über die zeta funktionen indefiniter quadratischen Formen, Math. Zeir 43 (1938) P. 682-708; 44 (1939) P. 398-426.
[4] C. L. Siegel : Einheiten quadratischer Formen Abhandlungen. Math. Sem. Hansischen. Univ. 13 (1940) P. 209-239.
[5] C. L. Siegel : Equivalence of quadratic forms Amer. Jour. of Math. 63 (1941) P. 658-680.
[6] C. L. Siegel: On the theory of indefinite quadratic forms, Annals of Math. 45 (1944) P. 577-622.
[7] C. L. Siegel : Indefinite quadratische Formen and Modulfunktionen, Courant. Anniv. Volume (1948) P. 395-406.
[8] C. L. Siegel : Indefinite quadratische Formen and Funktionentheorie, Math. Annalen, 124 (1951) I, P. 17-54; II ibid P. 364-387.
[9] C. L. Siegel : A generalization of the Epstein zeta-function, Jour. 189 Ind. Math. Soc. Vol. 20 (1956) P. 1-10.
[10] C. L. Siegel : Die Funktionalgleichungen einiger Dirichletscher Reihen, Math. Zeit 63 (1956) P. 363-373.
[11] H. Weyl : Fundamental domains for lattice groups in division algebras Festschrift to A. Speiser, 1945.

