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Lecture 1

1 Introduction

The analytical theory of one-parameter semi-groups dedlsthe ex- 1
ponential function in infinite dimensional function spackss a natural
generalization of the theorem of Stone on one-parametetpgrof uni-
tary operators in a Hilbert space.

In these lectures, we shall be concerned with thiEedintiability
and the representation of one-parameter semi-groups afdeolulin-
ear operators on a Banach space and with some of their ajplisao
the initial value problem (Cauchy’s problem) foiffdirential equations,
especially for the diusion equation (heat equation) and the wave equa-
tion.

The ordinary exponential function solves the initial vapreblem:

dy 3
a - a/y’ Y(O) - C

We consider the dliusion equation

ou
— = Au,
ot

m 2
whereA = 3, % is the Laplacian in the Euclidean m-spde®; we
i=1 OX;
wish to find a solutioru = u(x, t),t > 0, of this equation satisfying the
initial conditionu(x,0) = f(x), wheref(xX) = f(xa,...,Xn) is a given

1



2 1. Lecture 1

function of x. We shall also study the wave equation

with the initial data
ou
u(x.0) = (x) and(--)o = 9(¥.

f andg being given functions. This may be written in the vector form

as follows:
afuy_ (0 l\fu v—@
at\v) \A O)\v) " 4t

g(x) .

u(0)
v(0)
Soin a suitable function space the wave equation is of the $arm
as the heat equation -ftkrentiation with respect to the time parameter

on the left and another operator on the right - or again smidahe

. d . . . .
equatlond—i/ = ay. Since the solution in the last case is the exponential

function, it is suggested that the heat equation and the wequation
may be solved by properly defining the exponential functiointfie op-
eratorsA and 2 (I) in suitable function spaces. This is the motivation
for the application of the semi-group theory to Cauchy’sbem.

Our method will give an explanation why in the case of the heat
equation the time parameter is restricted to non-negatiees, while
in the case of the wave equation it may extend betweerandco.

Before going into the details, we give a survey of some of the b
sic concepts and results from the theory of Banach spaceslittmett
spaces.
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2. Normed linear spaces: 5

Definition. A set X is called dinear spac@ver a field K if the following 3
conditions are satisfied:

1) Xis an abelian group (written additively).

2) There is defined a scalar multiplication: to every elemeaf X and
eacha € K there is associated an element of X, denoted Xysuch
that

(@+pB)X=ax+px, a,peK, xeX

a(X+Yy) = ax+ ay, aeK,xyeX
(aB)x = a(BX)
Ix = X, 1 € Kis the unit element of K.

We shall denote by Greek letters the element& @nd by Roman
letters the elements of. The zero ofX and the zero oK will both be
denoted by 0. We have)= 0.

In the sequel we consider linear spaces only over the reabaum
field or the complex number field. A linear space will be saitvéareal
or complex according as the field is the real number field octimeplex
number field. In what follows, by a linear space we always rmeeszal
or a complex linear space.

Definition. A subset M of a linear space X is calledimear subspace
(or a subspackif whenever xy € M anda, 8 € K, thenax + B8y € M.

2 Normed linear spaces:

4
Definition. A linear space X (real or complex) is callecharmed linear

spacef, for every xe X there is associated a real number, denoted by
[|x]|, such that

i) |IXIl > 0and||x]| = 0if and only if x= 0.
i) llax| = |allIX], (o is a scalar anda]| is the modulus of).

iy |Ix+ vl < IX+ [Iyll, X, y € X (triangle inequality).||x|| is called the
norm of x.



A normed linear space becomes a metric space if the dist{og
between two elementsandy is defined byd(x,y) = ||x — y|l. We say
that a sequence of elemerfig} of X converges stronglio x € X, and
write s— lim x, = x (or simply lim x, = X), if lim ||x, — x|| = 0. (This
limit, if it g;f;ts, is unique by tr?g;?iangle ineaagiity).

Proposition. If lim an, = a(an, a € K), s— lim x, = xand s- lim y, =
y, then s- r!mo Bz:;(on =axand s— nIi_r)r;o(xn iﬁyos) =X+Y. i

Proof.

(%0 + Yn) = (X+ W = [[(X0 = X) + (Yo = Y)II
<10 = X + lI(yn = W)II (Triangle inequality)
— 0.
lanXn — aX|| < [laX — anX|| + [lanX — anXnl|

= la — anllIXI] + lanllIX = Xall
— 0. U

Proposition . If s — lim X, = x then lim ||x,]| = |Ix|, i.e., horm is a

n—oo nN—oo
continuous function.

Proof. We have, from the triangle inequality,

111 = lIyll < l1x = Vil;

now takey = x, and letn — oo, O

3 Pre-Hilbert spaces

A special class of normed linear spaces - pre-Hilbert spadlebe of
fundamental importance in our later discussion diiediential equations.
These normed linear spaces in which the norm is defined barquadd-
uct.

Definition. A linear space X is called are-Hilbert spacef for every
ordered pair of element&x, y)(x,y € X) there is associated a number
(real number if X is a real linear space and complex number if 4
complex linear space) such that



4. Example of a pre-Hilbert space 7

i) (x,X) >0and(x, x) = 0if and only if x= 0.

i) (axy) = a(xy), for every numbe.
i) (x,y) = (¥, ¥[(Y, X) denotes the complex conjugate(nfx).]
iv) (X+VY,2 =(%2+(¥,2 XY,z X.

(x,y) is called the scalar product between x and y.

If we defing|x|| = V(X X), a pre-Hilbert space becomes a normed
linear space, as is verified easily using Schwarz’s inetyglioved be-
low

Proposition. i) (X Y)] < [IXIyIl (Schwarz’s inequality)
il) [+ YIZ + [Ix = Y = 231XI7 + 1IYII?) (Euclidean property)

Proof. (i) is easily verified. To prove (i), we observe that, for gvecal 6
numbere,

0 < (X+ a(X, Y)Y, X+ a(X,Y)y)
= (% %) + 22|(% Y)I* + 2% V(Y. V).

This quadratic form inx, being always non-negative should have
non-positive discriminant so that

1%, WI* = IXIZIYI2I(%, y)I? < 0.

If (x,y) = 0,(i) is obviously satisfied; ifX,y) # 0, Schwarz’s in-
equality follows from the above inequality. O

4 Example of a pre-Hilbert space

Let Rbe a domain in Euclideam-spaceE™. Let 2X(R) denote the set of
all complex valued function$(x) = (x4, ..., X,) which are of clas€X

in R(i.e., k times continuously dierentiable) and which have compact
support. These functions form a linear space with the orgifumnction



sum and scalar multiplication. Define the scalar producivbeh two
functionsf andg by

(.9 =y [ DPf()DMg(x)dx ., O0<k<w,
inj<k VR

wheren = (ny,...,Nny) is a system of non-negative integelrg,= Ny +
+nm and

D™ — oin
OXPOXE - OXy

5 Banach spaces

Definition . A normed linear space is called Banach spacef it is
complete in the sense of the metric given by the norm.

(Completeness means that every Cauchy sequence is cartvéfge
{xn} € X is any Cauchy sequence, i.e., a sequdmggefor which || Xy, —
Xnll = 0as mn — oo independently, then there exists an elemeat
such thatr!i_rjg<> IXn — X|| = 0.x is unique).

6 Hilbert space

Definition . A pre-Hilbert space which is complete (considered as a
normed linear space) is called a Hilbert space.

The pre-Hilbert spac&X (R) defined in the last example is not com-
plete

7 Example of Banach spaces

1) Cla,f]: Let [a, B8] be a closed intervatco < @ < B8 < . LetCla, 8]
denote the set of all bounded continuous complex-valuedtifams
X(t) on [a,B]. (If the interval is not bounded, we assume further that
X(t) is uniformly continuous). Defin& + y andax by

(x+y)(t) = x(t) + ¥(1)
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(@X)(t) = a.x(t).
Cla, 8] is a Banach space with the norm given by

IXIl = sup [x(t)|
tefa,]

Converges in this metric is nothing but uniform convergeandhe
whole space.

2) Lp(a,B). (1< p< o). Thisis the space of all real or complex val-
ued Lebesgue functiorfson the open intervaky, ) for which|f (t)|P
is Lebesgue summable over, §); two functionsf andg which are 8
equal almost everywhere are considered to define the sartos véc
Lp(a,B). Lp(a,pB) is a Banach space with the norm:

B 1/p
11l = [ff(t)ﬁ’dt]

The fact that]| || thus defined is a norm follows from Minkowski's
in-equality; the Riesz-Fischer theorem asserts the cdamnmes of
Lp.

3) Lo(a,B): This is the space of all measurable (complex valued) func-
tions f on (o, B) which are essentially bounded, i.e., for evdnge
L.(a, B) there existagp > 0 such thatf(t)| < ¢ almost everywhere.
Define||f]| to be the infimum of such.

(Here also we identify two functions which are equal almastrg-
where).

8 Example of a Hilbert space

Lo(a, B) : La(a, B) (see example (2) above), is a Hilbert space with the
scalar product

B
(f.9) = f f(Ogdt
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9 Completion of a normed linear space

Just as the completeness of the real number field plays arherda
tal role in analysis, the completeness of a Banach spaceplail an

essential role in some of our subsequent discussions. |faye &n in-
complete normed linear space we can always complete it; wandzed

this space in a Banach spaces as an everywhere dense sufnsgaiois

Banach spaces is essentially unique. We have, in fact, the

Theorem.Let X be a normed linear space. Then there existom-
pletenormed linear space (Banach spaces ) X and a norm preserving
isomorphism T of ¥onto a subspace (Xof X which is dense in X in
the sense of the norm topology. (That T is a norm preservinas-
phism means that T is one-to-ondaXg + BYo) = aT(Xg) + BT (Vo) and

IIXIl = [IT(X)]). Such an X is determined uniquely upto a norm preserv-
ing isomorphism

Sketch of the proof: The proof follows the same idea as that utilized
for defining the real numbers from the rational numbers. X.&ie the
totality of all Cauchy sequencds,} c Xq classified according to the
equivalence{xn} ~ {yn} if and only if nI|_>n20 X, — Ynll = 0. Denote by{X,}

the class containingx,}.

If X,§ € XandX = {X},¥ = {yn}, defineX+ § = {X, + yn},aX =
{aXn), [IX| = r!mo [IXall. These definitions do not depend on the particular
representatives fax, § respectively. Finally ifxg € Xg definesT(xg) =

{Xn} where eachx, = xo.
10 Additive operators

Definition. Let X and Y be linear spaces over K. Additive operator
from X to Y is a single-valued function T from a subspace M aoftX i
Y such that

T(ax+BYy) =aTx+BTy, Xye M, a,pBeK.

M is called the domain of T and is denoted4%yT); the set{Zze Y
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such that z= T x for some xe 2(T)} is called the range of T and is
denoted by3(T).

If Y is the space of real or complex numbers (according @ a
real or a complex linear space) amds an additive operator frorX to
Y we say thafl is anadditive functional

Definition. Let X and Y be two normed linear spaces. An additive ap-
erator T is said to becontinuousat Xy € Z(T) if for every sequence
{Xn} € 2(T) with X, — xg we have Tx — TXxy. An additive operator

is said to becontinuous(on 2(T)) if it is continuous at every point of
2(T). Itis easy to see that an additive operator T is continuous on
2(T) if it is continuous at one pointgxe 2(T).

Proposition . An additive operator T: X — Y between two normed
linear spaces is continuous if and only if there exists a mamnber
p > 0such that

ITX| < plix|] forevery xe 2(T)

Proof. The suficiency of the condition is evident, for¥, — xo ||T X —
Txll = IIT (X0 = %)l < @lIXo — %all — O.

Now assume thal is continuous. If there exists np as in the
proposition, then there exists a sequepgg ¢ 2(T) such that|T x,|| >
NliXall. SinceT(0) = 0, x, # 0. Definey, = X,/ VNl|IXall. Then|lynll =

1 . .
? — 0 asn — oo; asT is continuousTy, must tend to zero as— oo.
n

But Ty, = IIT Xl > +/nand soTy,

1 1
Tx, and|[Twall =
NG T VXl

does not tend to zero. This is a contradiction. m]

Let T be an additive operator from a linear spaXento a linear
spaceY. T is one-one if and only ifT x = O impliesx = 0. If T is
one-one it has an inver§e ™, which is an additive operator froiviinto
X with domainw(T), defined by

Tly=x if y=Tx

T-1 satisfies the relations1Tx = xfor xe 2(T)andTTly=y 11
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fory e 2(T™1) = W(T). If X andY are normed linear spaceE,has a
continuous inverse if and only if there exist$ & 0 such thaf|T X| >
d|IX|| for x e 2(T).

The sum of two operatorsT and S, with 2(T), 2(S) c x and
W(T), W(S) c Y is the operator + S), with domain2(T) N 2(S),
defined by:

(T+S)x=Tx+Sx



Lecture 2

1 Linear operators

12
Definition. An additive operator T from a normed linear space X into

a normed linear space Y whose dom#&(T) is the whole space X and
which is continuous is called near operatofrom X to Y. The norm
|IT| of a linear operator is by definitionT|| = ||Tllx = sup [[TX. If

xeX,|Ix|<1
Y is the real or complex numbers (according as X is a real orraglex

linear space) the linear operator T is callediaear functionalon X.

So far we have proved the existence of non-trivial lineacfiomals.
We shall prove the Hahn-Banach extension theorem whichhaile as
a consequence the existence of many linear functionals corraea
linear space.

2 Hahn-Banach lemma
Definition . Let X be a linear space (over real or complex numbers).
A real valued function p on X will be called semi-groufgor a sub-

additive functional) if it satisfies the following conditis

i) p(ax) = |alp(X), for eacha € K and xe X.

i) p(x+y) < p(x)+ p(y) forall x,y € X.
Note that these conditions imply thapgp > O for all x € X.

13



14 2. Lecture 2

3 Lemma (Hahn-Banach)

Let X be a real linear space amoa semi-norm orX. Let M be a (real)
subspace oK and f a real additive functional oM such thatf(x) <

13 p(x) for all x € M. Then there exists a real additive functioralon
X such thatF is an extension off(i.e., F(X) = f(x) for x € M) and
F(X) < p(x) for all x € X.

Proof. By the application of Zorn’s lemma or transfinite inductidris
enough to prove the lemma whehis spanned byM and an element
Xo ¢ M, i.e., when

X={M, X} = {Xx € X, Xx=m+ aXg,me M,a real, Xo ¢ M}.

The representation of an elemerg¢ X in the formx = m+axg, (m e
M, a real) is unique. It follows that if, for any real numbeywe define

F(xX) = f(m) + ac,

thenF(x) is an additive functional oX which is an extension of (x).
We have now to choosein such a way thaF(x) < p(x), x € X, i.e.,

f(m) + ac < p(Mm + axp).
This condition is equivalent to the following two condit&n
f(D)+c<p(P+x) for a>0
{f(_—”;)—cs p(Z-x) for a<o.
To satisfy these conditions, we shall choasich that
f(m) = p(m = xo) < ¢ < p(M” + Xo) — f(m”)
for all nY, m"” € M. Such a choice aof is possible since

f(m) + f(m”’) = f(' + m")
< p(m +m”)
= p(m' — Xo + M” + Xo)
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< p(m' = Xo) + p(M” + Xo).

So f(m) - p(m — xg) < p(M” + Xg) — f(M’), M, m” € M.
So

sup {f(m') - p(m' - xo)} < inf {p(m"” + xo) — f(m")}
meMm =

and we can choose farany number in between. O

4 Hahn-Banach extension theorem for real normed
linear spaces

Theorem.Let X be a real normed linear space and M a real subspace
of X. Given a (real) linear functional f on M, we can extend &f{geal)
linear functional on the whole space X in such a way that themis
preserved:

IFI=NIFlIx = 1l flm-

Proof. Take p(x) = ||fllmlIX|| in the Hahn-Banach lemma. We have
f(X) < p(x) on M and p(x) is subadditive. We then have an additive
functional F(x) on X which is an extension of with F(x) < || f|lmIIXI|
forall x e X. Also —F(X) = F(=X) < [[fllmll = XI| = lIfllmIIX]]. Hence

IFOY < [IflImIIXI.
This shows thaF is a linear functional oiX and||F||x < ||fllm. The

reverse inequality|F||x > ||f|lm, is trivial asF is an extension of. 0O

5 Hahn-Banach extension theorem for complex
normed linear spaces (Bohnenblust-Sobczyk)

Theorem.Let X be a complex normed linear space and M a (complex)
subspace. Given a complex linear functional f on M we camexfeto
a complex linear functional F on X in such a way thi&t|x = || f|lm.
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Proof. A complex normed linear space becomes a real normed linear
space if scalar multiplication is restricted to real nunsband the real
and imaginary parts of a complex linear functional are rieadr func-
tionals. If f(xX) = g(X) + ih(X) (g(X), h(x) real ),g andh are real linear
functionals onM and|lgllm < |Ifllm, lIhllm < [Ifllm. Since, for each

xe M,

g(ix) + ih(ix) = f(ix)
=if(x)
= i(9(x) + ih(x))
= —h(X) +1ig(x),
we haveh(x) = —g(ix), for x e M.
By the Hahn-Banach theorem for real linear spagasn be ex-
tended to a real linear function@lon X with the property|G||x = [|gllm-

Now define
F(X) = G(X) — iG(ix).

F is then a complex linear functional oX. (For complex additivity
notice that

F(ix) = G(ix) — IG(-x) = G(ix) + iIG(2) = iF(X)).
F is an extension of ; for, if x € M,

F(x) = G(x) — iG(ix) = g(X) — ig(ix) = g(X) + ih(x) = f(X).
We have now only to show that the norm is not changed. For this,
writes, forx € X, F(x) = re'®. ThenE'YF(x) is real. So
IF(I = I F(X)] = IF(e™*X)|
=G(e%)| (= since eF(x)is real)
<IIGIl lle™x|
= lglimIIX|

< Iflimx.

16 So||F|lx < |Ifllm and the reverse inequality holds sirfeds an ex-
tension off. O
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6 Existence of non-trivial linear functionals

We consider some consequences of the Hahn-Banach extahsion
rem; we prove the existence of plenty of linear functionalsasormed
linear space.

Proposition. Let X be a normed linear (real or complex) anglx 0 be
an elements of X. Then there exists a linear functiopainfX such that
fo on X such that f(x,) = [|%|l and||fol| = 1.

Proof. Let M be the subspace spannedXyi.e., M = {x|x = aX, for
some numbew}. Define f(X) = a||X|| for X = ax, € M. This is a linear
functional onM and||f|jy = 1. By the Hahn-Banach extension theorem
there exists a linear functiond} on X which extendsf in such a way

that(Ifoll = Ifllm = 1; fo(Xo) = f(%o) = lIXll- m

Remark . For a pre-Hilbert space the existence of such a linear func-
tional is evident; we may také,(x) = (x ﬁ). The additivity of f,

follows from the homogeneity and distributivity of the samaproduct.
The continuity off, is a consequence of Schwarz’s’ inequality.

Proposition. Let X be a normed linear space. Let M be a subspace and
Xo an element X such that ¢ inI/I IXo — M| > 0. Then there exists
me

a linear functional § on X such that fx) = 0 for every xe M and
fo(Xo) = 1.

Proof. Let M, = {XX = m+ aX,,me M}. Definef(x) = a for x=m+
aX, € My(m e M). f is additive onM,, vanishes orM and f(x,) = 1.
Also f is continuous oM, if @ # 0, then

X=m+aX # 0(me M), and 17

£ = lal = IXI/IXI
= [eIIXI/IIm + axo
= [IXll/IIXo = (=m/a)||
< dIXI(-m/a € M);
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if @ =0, f(x) = 0 and the inequalityf (x)| < d~2||x|| is still valid. If f,
is a linear functional orX which is an extension of, then f, satisfies
the requirements of the proposition. m|

7 Orthogonal projection and the Riesz representa-
tion theorem

Definition. Let x and y be two elements of a pre-Hilbert space X; we
say that x is orthogonal to y (written x y) if (x,y) = 0. If x L y then
y L X;if X L X, then x= 0.

Let M be a subset of a pre-Hilbert space; we denotéd/bBythe set
of elementsx € X such thatx L y for everyy e M.

Theorem.Let M be a closed liner subspace of a Hilbert space X. Then
any % € X can be decomposed uniquely in the forgn=xm+ n,m €

M,n € M+, (mis called theorthogonal projectiorof x, on M and is
denoted by B x.).

Proof. The uniqueness of the decomposition is clear from the faatt th
an element orthogonal to itself is zero. To prove the exgstenf the
decomposition we may assurbe = X andx, ¢ M (if X, € M we have
the trivial decomposition witim = 0). Letd = JQIA [[Xo — m||; sinceM is
closed and, ¢ M, d > 0. Let{m} c M be a minimizing sequence, i.e.,
klmo X — my]| = d. {my} is a Cauchy sequence; for

M = Mall? = 11(% — My) = (X0 — M)II?

= 2(I1% — Mll? + 1% — M) = 112X — Mk — my1>
((Euclidean property ))

Mg + My

= 2(1%0 — Myl% + X0 — M%) — 4% — > 112
my + My

< 2(1%0 = Myl* + 1% = my* - 4d*(as—=—— € M)

— 2(d? + d?) — 4d® = asm n — .

18 By the completeness of the Hilbert space there exists amdegle
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m € X with I(Iim Im-my| = 0; in factm € M, asM is closed. Also

IXo — M| = d. Write X, = m+ (X, — m). Puttingn = xo — mwe have to
show thatn € M*. Letm’ € M. Since, for any reak, m+ ant € M we
haved? < ||xo — m—an||? = |In— an|]2 = (n — am’, n — an)

= [Inl? = a(n, M) — a(n, ) + &?[In7|1%.
Since||n||? = d?, this gives, for any reat,
0 < —2aZ(n, M) + |||

SoZ(n,n) = 0 for everym’ € M. Replacingnt by im” we have
Zm(n,m) = 0, for everym? € M. Thus f,m’) = 0 for eachnt e
M. O

n

Remark.If X, ¢ M, thenn # 0 and fy(x) = (X’W

conditions of the last proposition.

) satisfies the

Theorem RieszLet X be a Hilbert space and f a linear functional on
X. Then there exists a unique elemenbf X such that

f(X¥) = (X y1)
for every xe X.

Proof. Uniqueness:If (X, y1) = (X, Y2) for everyx, (X,y1 — y2) = 0 for 19
everyx; choosingx = y; — y» we findy; —y» = 0.

Existence:Let M be the zero manifold of, i,e,.,M = {x|f(X) = 0}.
Sincef is additive,M is a linear subspace and sintés continuousMv
is closed. The theorem is evidenthNf = X. i.e., if f(X) = 0 onX; in
this case we need only takg = 0. So supposé # X. Then there
exists, by the last theorem, an elemgnt: 0 such thay, is orthogonal
to every element oM. Define

_ )

= a2
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y¢ meets the condition of the theorem. First, foe M, f(X) = (X, yz)
sincef(x) = 0 for x € M andy; € M*. For element of the form

X = ayp.

f(yo) ]

(% y1) = (@Yo, Y1) = (a o2

af(yo) = f(ayo)
f(X).
Sincef islinear and X, y¢) is linear and X, y;) is linear inx, to show

that f(X) = (x, yz) for eachx € X it is enough to show thaX is spanned
by M andys,. If x € X, write, noting thatf (ys) # O,

_ _f®
" T +(X f(yf)yf)'
(( ) y is of the formay,. The second term is an elementMf since
il )
( ) = Fy¥ =2 :
Remark.

1= Tlysll.



Lecture 3

1 The Conjugate space (dual) of a normed linear
space

Let X be a normed linear space. LKt be the totality of all linear 20
functionals onX. X* is a linear space with the operations defined by:

(f+9)(X) = F(X) + g f,ge X", xe X
@f)(¥) = a.f(X).

X*is a Banach spacavith the norm

Ifll = suplf(X)| (f e X*, xeX).

lIX<1

We call the Banach spac€ the conjugate spaceof X.

2 The Resonance Theorem

Lemma Gelfand. Let p(x) be a semi-norm on a Banach space X. Then
there exists a number > o such that

p(x) < pl|X| for all x € X

if and only if g(X) is lower semi - continuous. (Lower semi - continuity
means this); for any xe and any& > 0, there exists & = 6(x,&E) > 0
such that px) > p(Xo) — & for ||[X — Xo|| < 6.

21
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Proof. i) Supposep(x) < g||X| for all x € X, ¢ > 0; then

P(Xo) = P(Xo — X+ X) < p(Xo — X) + P(X)
< plIX = Xoll + p(X)
<p(X) + e if X=Xl < E/p = 6.

i) Conversely assume tha(x) is lower semi - continuous.

To prove that there is@ > 0 such thap(x) < g||x|| for everyx € X
21 it is suficient to show thap(x) is bounded, say by?;, in some

closed spher& of positive radius K = {X| [|Xx — Xo|| < ¢}. For if

x € X with ||X]] < 6, thenx, andx, + X both belong t&K and hence

P(X) = P(=Xo + Xo + X) < P(=X0) + P(Xo + X)
= p(Xo) + P(Xo + X)
< 291;

if xis an arbitrary element of

X%\ XX
X) = _— | = — D—
P& p( 5 ||x||) 5 P

<22 (asun—len - 6) and choosg = 291/0.

Now we assume thai(x) is unbounded in every closed sphere of
positive radius and derive a contradiction. Let

Ko = {X|lIX = Xoll < 6,6 > O};

there exists in interior point; of K, such thatp(x;) > 1. By the lower
semi - continuity ofp, there exists a closed sphéfe = {x; X=X <

01 < 1,61 > O}, K1 c Kg such thatp(x) > 1 for eachx € K;. By a
repetition of this argument we may choose a sequence ofcchpdweres
Kn = {X]IX = Xl < 6n < 1/n,6, > O}, nrunning through all positive
integers, such that, c K,,_; andp(x) > nfor eachx € K,,. Form,m’ >
N, SiNCeXm, Xy € Kn, we havelXm — Xyl < [IXm = Xall + [IXp — Xall <
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20, < 2/n; SO X, is a Cauchy sequence. Sinéas complete there exists
an X, € X such thats — r!im Xn = Xoo. AS|[Xm — Xnll £ 6, for m> n, we

have, passing to the limit§X. — Xnll < dn. SOX» € () Kp; this would
n=1
mean thatp(X.,) (which is a real number) is greater than every positive

integern, which is absurd. O

The Resonance theoremtet X be a Banach space aig(n=1,2,...) 22
a sequence of normed linear spaces. Let, for each, be a linear
operator fromX to Y,. Then the boundedness of the sequerf€sx||}

for everyx € X impels the boundedness of the sequeliig||}.

Proof. For eachx € X, sup||Ta(X)|| is finite as{||Tn(X)||} is bounded.
n
Definep(X) = sup||To(X)Il; p(X) is a semi-norm orX. p(X) is also lower

semi-continuomjs since it is the supremum of the sequenacentihcious
functions{||T,|l}. Consequently, by Gelfand’s lemmp(x) < ¢||x|| (for
somegp > 0) for suchx € X; so||Th(X)| < pl|/X|| for eachn and each
x € X. Thus||Ty|| < 9. O

Corollary. Let X be a Banach space Y a normed linear space {&pd
a sequence of linear operators form X to Y. Assume th:r:]ltrs Th(X) €

Y exists for each x X. If we define T = s— |lim Ty(X) then T is a
N—oo
linear operator from X to Y aniT|| < lim ||Tnll.

n—oo

T is evidently additive. By the Resonance theorém(X)|| < pl|X||
(p > 0);saIT(X)I < elIxl, i.e., T is continuous. Further|TyX| <
ITallllX|l; sOIIT NI < lim |[TxlllX. Hencel[T|| < lim [Tyl

n—oo

3 Weak convergence

Definition. Let X be a normed linear space; we say that a sequence.
{Xn} € X converges weakly taxe X (and write wlim x, = X) if, for
n—oo

every linear functional f on X, we ha\r{'em f(Xn) = f(X0).
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Proposition. i) w- r!im Xn, if it exists, is unique.
i) s—1im X, = X implies w—lim X, = Xw.
(The converse is not true in general).
i) ifw—1im X5 = X thenlim [|Xp|| > Xwo.
n—oo

Proof. (i) Letw—Ilim X, = X, W—lim X, = X, # X,,. By the Hahn
-Banach theorem there exists a linear functiohain X such that
f(Xo — X)) # 0i.e., f(Xs) # T(X,,). But by the condition of weak
limit we must havef (X.,) = r!mo f(xn) = F(X).

(ii) This follows form the inequality:
[T (X0) = F(Xa)l = F(Xeo = Xn) < Il X0 = Xall,
for eachf € X*.

(i) Let fo e X* with ||f]] = 1 andfo(Xe) = [[Xeoll-
Then
Xl = fo(Xeo) < lim [fo(Xn)l

< lim || foll [1%nll
= lim [Ixqll.

n—oo

4 A counter-example

We shall now show by an example that weak convergence doésnot
ply strong convergence in general. Consider the sequisitant} in

L»(0,1) (real). This sequence converges weakly to zero. Since, by

the Riesz theorem, any linear functional is given by theascptod-
1

uct with a function we have to show thﬁtf (t) sinnrtdt — O, for each
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f € L»(0,1). But By Bessel’s inequality,

s 1 2 1
Z| f f(t) sinnatdt]” < f ()2t
=1 YO0 0

1
sof f(t) sinnrtdt — 0 asn — oo. But{sinnxt} is not strongly conver-

0
gent, since

1
|| sinnat — sinmat||2 = f | sinnzt — sinmt|?dt
0

=2forn#m.






Lecture 4

1 Local weak compactness of a Hilbert space

24
Theorem. Let{x,} be a bounded sequence of elements of a Hilbert space

(i.e., Xl € C<oo,n=1,2,...); then we can choose a subsequence of
{xn} which converges weakly to an element of X.

Proof. Let M be the closed linear space spannedxXy. (M is the clo-
sure in the sense of the norm of the set of all finite linear doatlmns

> ajx of the elements;}). M is separable, there exists a countable set
of elementdyn} which is dense itM. We may take for example, the ra-
tional linear combinations dfx} if X is real and ifX is complex, linear
combinations ofx;} with codficients of the fornp+iq, p, qrational. O

For eachyx from {y,} the sequencf(x,, Y«)} is bounded |(X,.yk)| <
IXalllvkll < Cliykll- By the Bolzano - Weierstrass theorem and a diagonal
process we can find a subsequefxg of {x,} such thaf(x;, yx)} con-
verges for everk. Actually {(x;,, 2)} converges for eacke X. To prove
this, letz = y + w wherey = Pyz w € M+. Then §n,2) = (X,,y) and
we have to prove thd{x,, y)}(y € M) is convergent. We have

(% = %> W) = [(Xr = X, Y = Yk + Y|
< (e = Xav, Vi)l + 10 = Xme, Y = Vi
< (% = Xav, Vi)l + X0 = Xme, Y = Yill
< (% = Xav, Vi)l + 2CIly — Vil

Since{(xn, Yk)} is convergent andly} is dense inM, it follows that 25

27
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(Xn,y) is a Cauchy sequence; 0, Y)} is convergent. Defing(2) =
r!l_rgo and|f(2)| = 9(2| = nI/iLnoo|(xn.,z)| < Cl|Z|, f(2) is continuous. By
the Riesz theorem there exists and elemente X such thatf(z) =
(z %) for eachz € X. Since limn’ — co(Xn, 2) = (X, 2) for eachz €
X w— Mrgo X, = X (by Riesz’s Theorem)

We mention without proof that ,(a,8), 1 < p < oo is locally
weakly compact. Bult(a, B), L. (@, 8) andCl[a, 8] are not locally weak-
ly compact.

We next prove a theorem which will be needed in the study of
Cauchy’s problem.

2 Lax-Milgram theorem

Let B(u, v) be a bilinear functional on a real Hilbert spa¥such that
() there exists @ > 0 such thatB(u, v)| < g||ulllv]| for all u,v € X,

(i) there exists @ > 0 such thab]ul|®> < B(u, u) for eachu € X.
Then there exists a linear opera®from X to X such that

(u,v) = B(U,SVv
and||S|| < 6L

Proof. Let V be the set of elementsfor which there exists an element
v* such that ¢,v) = B(u,v*) for all u € X. (V is non-empty; Oc V).

V* is uniquely determined by. For, if w € X be such thaB(u,w) = 0
for all u, thenw = 0 ass|w?|| < B(w,w) = 0 or|w]| = 0. V is a linear
subspace. We have an additive oper&owith domainV, defined by
Sv=vV*. Sis continuous;

SlISV? < B(SYSY = (SyV) < [IS VIVl

so that||SV| < 67V (if |[Sv| = O this is trivially true). MoreoveV
is closed subspace of. For, ofv, € V andv, — v € X, thenSy, is
a Cauchy sequences and so has a liritout (u,v,) — (u,v) and by



2. Lax-Milgram theorem 29

(i) B(u,Sw) — B(u,v*) so that (,v) = B(u,Vv*) for eachu; sov € V.
The proof will be complete if we show th& = X. SupposeV # X.
Then there existas € X such thatv # 0 and (v,v) = O for eachv € V.
Consider the functional, as

IF(2)] = 1B(z W)l < pliZllIwll.

So by Riesz’s theorem, there exist®, € X such thatB(z, w) =
(z w) for eachz e X. Sow € V andSw = w. So

SlIwi? < B(w, w) = (W, w)
= 0,
i.e., w=0

which is a contradiction. m]
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Semi-group Theory
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Definition. Let{T¢}=0 be a one-parameter family of linear operators oav
a Banach space X into itself satisfying the following cdonda:

(1) T{Ts = Tus, To = 1,1 denoting the identity operator on X (Semi
-group property).

(2) s— tI|nt1 Tix = Ty, X < 0 and each » X(strong continuity).
—lo

(3) there exists a real numbgr> 0 such thaf|T;|| < € for t > 0.

We call such a familyT;} a semi groupof linear operators ohormal
typeon the Banach space X, or simplygami - group

Remark. The third condition may look a bit curious but it is nothing bu
a restriction of the order dfT¢|| neart = 0, because we can prove the
following.

Proposition. The two conditiongl) and (2) imply the following:
(3) fim tLlog||Till = ¢ < co(p May be-co).
(4) | Tt is bounded in any bounded interjl ty], 0 < ty < oo.

Proof. We first prove (4). Supposl:|| is unbounded in some inter-
val [0,1,],0,< t; < c. Then there would exist a sequenigg (n =
11,2,...) such thaf|T || > nando < r!im th = e < t, < . Since

{lITt, I} is unbounded, by the resonance theorfff, x||} is unbounded
at least for onex € X; but by strong continuitys — lim Ty x = Ty_Xx for
n—oo

eachx € X. This is a contradiction.
To prove (3), let p(t) = log|[T¢ll, p(t) < oo (May be—). Since 28
ITeesll = NITe TSl < Tl Tsll, we havep(t + s) < p(t) + p(s). Let

pinft~Lp(t). is either finite or-co. We shall show that lim ex-
>0 t—oot~1p(t)

ists and is equal t@. Assume, firstyp is finite. Choose for ang > o,
a number > o0in such a way thap(a) < (p + &)a. Letn be an integer
such thana<t< (n+ 1)a
Then
p® _ pnd  plt-n3

< —<
VST ST t




34

nap(@ , p(t—n3
t a t
< ?(p+8)+ p(t—tna).

: t—na : .
Lettingt — oo, 2 n ) tends to zero since(t — na) is bounded

from above (since, as we have proved abdMeg]| is bounded in any
finite interval of s). Thustlimt‘lp(t) = . The casg = —o can be

treated similarly. i




Lecture 5

1 Some examples of semi-groups
29

| In C[o, =] [ the space of bounded uniformly continuous functions
on the closed interval [@o]] define{T},., by
(Tex)(s) = x(t + s) (x € C).

{T:} is a semi-group. Condition (1) is trivially verified. (2) folvs
from the uniform continuity ok, as

ITeX — Ty, XI| = sup|x(t + s) — X(to + 9)I.
>0

Finally ||T¢]| = 1 and so (3) is satisfied wii = 0.
In this example, we could repla¢g0, ] by C[—o0, c0].

[I On the space&[o, =] (or C[—o0, o0]), define{Ti}t > 0
(Te)(s) = €'X(9)

whereg is a fixed non-negative number. Again (1) is trivial; for (2)
we havel|Tix — T x| = [ — €| supy Ix(9). Trivially [[T¢|| = €.

Il Consider the spac€[—wo, co]. Let

1
Ni(u) = —e‘“z/Zt, —oco<U<oo,t>0,

V2nt
35
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(the normal probability density). Defir{@},., on C[—co, o] by:

(To)(S) = _Z Ni(s— u)x(u)du, fort>0
X(s) fort=0

EachT; is continuous:

(o)

||TtX||<||X”th(S u)du = (I, anNt(S u)du= 1.

—00

Moreover it follows from this that condition (3) is valid vai3 = 0.
By definition T, = | and the semi-group propertyTs = Ti s iS a
consequence of the well -known formula concerning the Ganss
distribution.

1 g W /2+) _ (“ w2 e2t'

o) o

(Apply Fubini’s theorem). To prove the strong continuitgnsider
t,tp > O witht # tg. (The casd, = 0) is treated in a similar
fashion). By definition

(o)

(TX)(9) = (T X)(9) = f {Nt(s— U)X(U) — Ny (S u)x(u)}du

—00

The mtegralf = —— e W/2ty(y)du becomes, by the change of
t

varlabIeT = f Z/2y(s— itz)dz Hence

(o9

(TS - () (9) = [ Na@ {x(-5vE) - X5~ Vied)}dz X9

—00
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being uniformly continuous oroo, o, for anye > 0 there exists
a numbers = 6(¢) > 0 such thaix(s;) — x(2)| < & whenever
|s1 — $| < 6. Now, splitting the last integral
I(Tex)(s) — (Te. X)(S)
< [ M@Xs- VB - xs- Vizdz
[Viz- Viod<o
+ f N1(2)(...)dz
| Viz— VEZ>5
< 8fN1(z)dz+ 2|1l f N1(2)dz

| Viz- Vioz>6
=&+ 2|X| f

[
21

The second term on the right tends to Qtast,| — 0, because the31

integralf N1(2dzconverges. Thus

—00

lim  sup |(Tex)(9) - (TpX)(9)] < &.

0 —00<S<00

Since& > 0 was arbitrary, we have proved the strong continuity at
In this example we can also replaCgo, co] by Lp[0,0]1 < p <

oo, Consider, for examplk;[o, «]. In this case||T;X|| < f[f N¢

—00 —00

(s— u)x(u)lds|du < ||X||, applying Fubini’s theorem.

As for the strong continuity, we have

(Tex)(s) — (T, (Il
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oo 0

:f‘le(z){x(s— Vi2) - x(s - Vio2)| dZds

-0 —00

(o0

f N1(2)

—00

f|x(s— Vitz) - x(s— fz)|d%dz

SinceN1(2) f IX(s— Vi2) — x(s— Vi2)lds < 2|X|IN1(2), we may

apply Lebesgue s dominated convergence theorem. We then ha

!L_mto I(TeX)(S) — (T X)(S)ll

(o0

f N1(2) {yjrp f IX(— Vt2) - X(s - \/EZ)IdS} dz=0,

—00

by the continuity in mean of the Lebesgue integral.

IV ConsiderC[-co, co]. Let A > 0, > 0. Define{Ti}.o

(9 = & Z s
{T¢} is a semi-group. Strong continuity follows from:

| (TX(9) - TuX)(9) I< IIXle™ Z @o°_ Z (o)

(3) is satisfied wittg = 0. To verify (1)

(o9

S W his k- 1
k=0

oA (W) (AP
" ‘)Z p! l %W (s—pw)

(Tulto9)(9) = e*WZ ()

e AW+) Z —(Aw+ A)PT(A+ at)Pf(s— pu)
p= 0
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= (TwtX)(9).

2 The infinitesimal generator of a semi-group

Definition. Theinfinitesimal generatorA of a semi-grougl; is defined
by:
Ax=s—lim h™(Ty - I)x,
im (Th=1)

i.e., as the additive operatdrwhose domain is the set

D(A) = {x| s— |ri1?3 h™1(Th - 1)x exists} and for x € 2(A),
Ax = s—limh™(T, = x.
hlo

2(A) is evidently non- empty; it contains at least zero. Actyall
2(A) is larger. We prove the

Proposition. Z(A) is dense in X (in the norm topology ).

Proof. Let¢n(s) = ne"s. Introduce the linear operat@;,, defined by

(o)

CppX = f¢n(s)Tsxds for xe X andn > 83,
0

the integral being taken in the sense of Riemann. (The argimace-
dure of defining the Riemann integral of a real or complexedlfunc- 33
tions can be extended to a function with values in a Banactespsing
the norm instead of absolute value ). The convergence ohtegral is

a consequence of the strong continuityT@fin sand the inequality,

Il en(9)TsX lI< Nnd=™A)S | x || .
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The operatoiC,, is a linear operator whose norm satisfies the in-
equality

(o)

l¢nll<n fe(‘f”ﬂ)Sds: 1/1-pB/n.

0

We shall now show tha3(C,,) € Z(A) (I¥(C,,,) denotes the range
of C,,) for eachn > g and that for eaclx € X, s— I|m Cy. X = X; then

U WC,,) will be dense inX and a-portionz(A) WI|| be dense inX. We

n>g
have
h™(Th - 1)Cpyx=h"1 f on(9)ThTsxds— ht f on(9)Tsxds
0 0

(The change of the ordgrhf fTh - is justified, using the additiv-

ity and the continuity ofT}, by apprOX|mat|ng the integral by Riemann
sums). Then

h™(Th - 1)Cpyx =t f on(9)Thesxds—ht f on(9)Tsxds

[o0) (o)

=ht f ¢n(s—h)Tsxds—h™t f on(9)Tsxds
0 0
( by a change of variable in the first integral ).

_pt f (en(S— ) — gn(9))Texds

h
=ht f on(9)Tsxds
0

34 By the strong continuity ofpn(9)Tsx in s, the second term on the
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right converges strongly tegn(0)Tox = —nx, ash | 0.

bt f {en(S— ) — gn(9))Texds
h

= f—ga;](s— ®h)Tsxds(0 < ® < 1) ( by the mean value theorem)
h

(9] (o)

h
- f —o(ITexds+ f G(IToxds+ f (@4(9) - h(s— 6h)) Texds
0

0 h

h
But, [ ¢)(s)Tsxds— O ash | 0 and
0

(o)

I [ tei(9 - (s M| Toxds
h
< n2 f | e—n(S—Gh) _ e—ns| eBS || X ” ds
h

< n?(e®" - 1) fe(ﬂ—ms | x|l ds— 0 ash | 0.(8 < n).
h

Thus we have proved tha(C,, ) € Z(A) and

| AC,,x = n(C,, — 1)x]

asyy, = —ngn. Next, we show thas — r!im C,,(X) = xfor eachx € X.
We observe that

[ee) (o)

C%x—x:fne‘”sTsxds—fne‘”sxds(asfne‘”sds: 1)
0

0 0
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= nfe‘”S[Tsx— x]ds
0

Approximating the integral by Riemann sums and using tlaagfie
inequality we have

(o9

| CouX =Xl <N fe‘”sn Tx—X || ds

0
0 )
:nf---+nf---,6>0
0 P
=11+ I, say.

Given& > 0, by strong continuity, we can choosé & 0 such that
| Tsx — X ||< & for 0 < s< §; then

1) )
Ilsanfe‘”sdss én fe‘”sds:a.
0 0

For a fixeds > 0, using the majorization condition in the definition
of a semi-group,

P e(n+ﬁ)s b @ ns1®
Izsnfe‘”s(e“+1)IIXIIdS=IIXII [n ] — I x| [n ]
n 5 n
o

- 0

Each of the terms on the right tends to zermas . Sol, < &,
for n > ng. ThusC,, x — xasn — co.

Remark. That Z(A) is dense inX can be proved more easily. But we
need the considerations given in the above proof for latgrgse.

Definition. For x € X define RTx by
DiTix = s— lim h™Y(Teen — TO)X

if the limit exists.
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Proposition. If x € 2(A) then xe 2(Dy) and DTix = ATix = T{AX.
Proof. If x e Z(A), we have, sincd; is a linear operator,

Ti:AX

Tes—limh™(Th - |
ts—lim (Th = 1)x

s—lim h (T, Ty, = T)x
m (TiTh — Th)

s—lim h™(Teh = TOX
hl0 ( t+h t)

=s—Ilimh(Th - NTix = ATix.
hlo (Th )Tt t g

Thus, ifx € Z(A), thenTix € Z(A), andT{AX = ATiX = S— 36
Iti{r(]) h=1(Twh — Ty)X. We have now proved that the strong right derivative

of Tyx exists for eachx € Z(A). We shall now show that the strong left
derivative exists and is equal to the right derivative. Fus,ttake any
f € X*. For fixedx, f(T; X) is a continuous numerical function (real or
complex - valued ) o > 0. By the above.f(T; x) has right derivative
d* f(Tt X)
——— and

dt

d* £ (Te X)

i = TATY) = f(T A,

But f(T; A X is a continuous function. It is well-known that if one
of the Dini-derivatives of a numerical function is ( finitedahcontinu-
ous, then the function is filerentiable ( and the derivative, of course, is
continuous ). Sd(T¢X) is differentiable irt and

f(Tex—X) = f(Ttx) — f(ToX)

_ f d+f(§TSX) ds= f F(TAXdS

(fresf

0

= f
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However, if every linear functional vanishes on an elemest X,
thenx = 0 ( by Hahn - Banach theorem ). Consequently,
t
T X—X= fTsAxds
0

for eachx € Z(A). SinceTs is strongly continuous i, it follows from
this, thatTy is strongly derivable:

DiTix=s- PI'IImO h_l(Tt+h - Tt)X

t+h
=s—limh? T<Axds
h—0 t

= T{AX



Lecture 6

Theorem .For n > g, the operator(l — n"tA) admits of an inverse 37
Jn = (I = n™A) "1 which is linear and satisfies the relation

Jux = n [ €"Texds, for xe X (i.e., & = C,, Alsol| Jn [I< (1-
0

n—1g)~L.

Proof. We first show thatl(— n"tA)~! exists [i.e., (- n~tA)is one
-one]. If (I — n"1A) is not one-one, there will existy € 2(A) such
that]| xo = 1 and ( = n2A)xg = 0, i.e., A = nxy. Let fy be
a linear functional orX such thatl| fo ||I= 1 andfp(xg) = 1. Define
o) = fo(Tixg) = 1. Definep(t) = fo(TiXp). Sincexg € Z(A), ¢(t) is
differentiable and

de(t
Sgi) = fo(DiTiXs) = fo(TtAX) = fo(TinX,)

=nf(TiX)
= ne(t).

O

Solving this diferential equation with the initial conditiop(0) = 1
we gety(t) = €™. On the other hand we have

[ () =] fo(Texo) [ <Il fo Il NI Tell 1l %ol
< &

sinceyp(t) = € andn > g8 this is impossible. Sa (- n™1A)™! exists.

45
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SinceA C,,x = n(C,, — I)x, we have [, — n"*A)C,, x = x for all
x € X. So ( —n~tA) maps®(Cy,) € Z(A) on toX; thus ( —n~tA) maps 38
2(A) in a one-one manner on. It follows that.#(C,,) Z(A) and
(I -ntA)t = C,. ButC,, is a linear operator and we have already
proved that| C,, lI< (1 - n-1g)™L.

Corollary.

M(C,,) = Z(A)
Adx=n(Jh-1)X xe X
Adx = JnAx=n(Jn = )X, X Z(A)
s— lim Jyx =X, X€ X,

Nn—oo

DiTix = s— lim h™l(Ten — T)x = ATix = TLAX X € Z(A).

1 The resolvent set and the spectrum of an additive
operator on a Banach space

We may state our theorem in the terminology of spectral theor

Let A be an additive operator ( with domai#i(A)) from a Banach
spaceX into X. Let A be a complex numben (s assumed to be realX
is a real space ). Regarding the inverse of the additive tpetd — A)
there are various possibilities.

(1) (A1 — A) does not admit of an inverseg., there exists ax # 0
such thatAx = Ax. We then calll an eigenvalue oA and x an
eigenvectombelonging to the eigenvalue In this case we also say
thatA is in the point-spectrunof A.

(2) When @I — A)~! exists there are three possibilities:

(i) 2((1 = A1) is not dense ifX. ThenA is said to be in the
residual spectrunof A.

(i) 2((A - A1) is dense inX but (11 — A)~ is not continuous.
In this casel is said to be in theontinuousspectrum.
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(i) 2((1 - A™) is dense inX and @l — A)~! is continuous in
2((Al = A™1). Then @l — A~ can be extended uniquely to
a linear operator on the whole spaXe In this casel is said
to be in the resolvent setthe inverse {I — A~ is called the
resolvent

The complement of the resolvent set in the complex planen(tird
real line if X is real) is called the spectrum &f

The first part of the theorem proved above says thd jfis a semi-
group of normal type|((T; |l< €*) any numben > g is in the resolvent
set of the infinitesimal generaté.

2 Examples

Using these results we now determine the infinitesimal geoes of the
semi-groups we considered earlier.
I : C[0,00]: (TtX) (S) = X(t+9)

Writing Yn(S) = (InX)(Ss) we have

(o)

Yn(S) =N f e Mx(t + s)dt

0

(o)

=n f e "Ix(t)dt :

S

(9]

yi(s) = —ne S Ix(s) + n? f e (=9 y(t)dt
S

= —nX(s) + Nyn(s)

Comparing this with the general formula

(AdX)(s) = n((In — )x)(9)
or Ayn(S) = Nyn(s) — nX(s)
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we have Ayn(9) = Yn(9).

Forn> B,MW(J,) = 2(A). Soify e 2(A), y(9) exists and belongs
to C[0, oo] and
(AY)(s) = Y'(9).
Conversely lef(s) andy’(s) both belong taC[0, oo]; we shall show
thaty € 2(A) and Ay)(s) = y'(s). For definex(s) by

y'(s) —ny(s) = —nx(9).

Putting nX)(S) = yn(9), we have, as shown above,
Y(8) — Nyn(s) = —nX(s).
Writing w(s) = Y(S) — Yn(S), we obtain
w'(s) —nw(s) =0

or w(s) = Ce'. Butw(s) € C[0, o] and this is possible only i€ = 0.
Hencey(s) = yn(s) € 2(A) and so Ay)(s) = y'(s). Thus the domain of
the infinitesimal generatdkis precisely the set of functionse C[0, o]

and for such a functiody = y’. We have thus characterized théfeli-
ential operator— as the infinitesimal generator of the semigroup asso-

ciated with the translation hly

Il. In this we give the characterization of the second deidveas the
infinitesimal generator of the semi-group associated vhiehGaussian
distribution. The space 8[—0, o] and

[ L2 .
(TeX)(s) = _{O Vot © x(v)dv if t>0

X(s)if t=0.

We have

(o0

yn(9) = (InX)s = f X(V) { f %e‘m‘(* V)z/tht} dv
0

—00
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(o0

- fx(v) {fz\/_\/zﬁe—UZ—(S—V)zn/Zo—zdo_} dv
0

—00

(changet = o?/n)

Assuming for moment the formula

. S—
fe‘("2+°/f’2)da = ﬁe‘zc, c>0, withc= \/ﬁl v l,
0 2 V2

we get

(o)

(9 = [ x) (VArze Yo av

—00

(9]

- \/ﬁ/2fX(V)€mls_v|=§2 [f+f]

X(v) being continuous we canfirentiate twice and we then obtain

Ya(s) = ”{ f x(v)e 2 Vv-9)dy — f x(V)e~ ‘/%(H)dv}

Yo () = n{—X(S) - X(s) + ZvﬁfX(V)e_ Van(v-9) gy

S
+V2n f x(v)e ‘/E”(S“’)dv}
= =2nX(s) + 2nyx(9).
Comparing this with the general formula

(A9 = (AR = (I~ Dx}(9
= (9 - X(9)
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we find thatAy,(s) = %y{{(s). Forn > B,W(J,) = Z(A). Thus if
y € 2(A),y’(9) exists and belongs tG[—co, o] and further Ay)(s) =
%y”(s). Conversely, ley(s) andy”(s) both belong t&C[—co, o0]. Define
X(s) by

Yy’ (9) — 2ny(s) = —2nX(s).

42 Puttingyn(s) = (InX)(s), we have, as shown above,
Yr () — 2nyn(S) = —2nX(9).
So, ifw(s) = yn(s) - ¥(9),
w"(8) — 2nw(s) = 0.
This w(s) = Clems + Coe” Vans,

This function cannot be bounded unless b6thandC, are zero.

1
Hencey(s) = yn(9). Soy(s) € Z(A) and QAyY)(s) = Ey”(s).
2
Thus the diferential operaton%d—2 is the infinitesimal generator of

the semi-group associated with the Gaussian process.
We now prove the formula

f e @+l gy = \r/,e2 ¢ 0,
0

We start with the formula

(9]

fe‘xzdx = /2.
0
Puttingx = o — ¢/o, we have
N7 = fe‘(‘r‘c/“)z(l +c/o?)do

2
e
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= & f e @) (1 4 ¢/o?)dor

\c
=e* fe_(”2+cz/”2)d0'+fe_(o'zmz/o'z)c/o-zdo-
N e

Settingo- = ¢/t in the last integral

\/77_.[ — eZC fe—(0'2+020'2)d0__ fe_(cz/t2+t2)dt
Ve Ve

:eche((’2+°2/(’2>d(r.
0

51






Lecture 7

1 The exponential of a linear operator

Example Ill. In C[-0, o] consider the semi-group associated wits
Poison process, viz.,

(ApX

(Tx)(s) = e Z x(s ki) A, >0

% (A~
K

kO

Sincee™ =1, we have

(M) (8) = X(9) _ Z (ﬂt)k( X(s—

t - X(9)

—At

= S (s - k) - X(9)
LS ) (x5 k) x(9).

Ast | 0 the first term on the right tends uniformly with respecsto
to A(x(s— u) — X(9)); the absolute value of the second term is majorized

el = (/lt)
by 2| x| e > o which tends to zero as| 0. Thus for any
k=2

X € C[—c0, 0], we haveAXx = A(X(s— u) — X(9)). So in this case the
infinitesimal generator is théinear operator defined by:

(AX)(8) = A[X(s— 1) — X(9)],

53
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for x € C[—o0, o0].

This is the diference generator.

We now intend to represent the original semi-grquig by its in-
finitesimal generator. We expect, by analogy with the cagbebrdi-
nary exponential function, the result to be given by

Tix= exptA)x

But in generalA is not defined over the whole space. So if we at-

, @ (tA)K
tempt to define (expA)x by a power seriesy’ %x, we encounter
k=0 K

some dificulties. First, we have to choosdorm () 2(A) and we do
k

not know how big this space is. Even if we do thig, it will béhdult to
prove the convergence of the series, let alone its conveegeT{X. So
we proceed to define the exponential in another way. As a mtpa
to the definition of the exponential function of an additiyeecator - not
necessarily linear - we consider the exponential of a liop@rator.

Proposition. Let B be a linear operator from the Banach space X into
k

.2 B . .
X. Then for each x X, s— lim WX exists ; denote this byxpBx.

n—oo k=0 !
ThenexpB is a linear operator andl expB ||< exp(| B ||).

k
Proof. We have| BX |I< (|| BI¥) (k> 0). %xisaCauchy sequence;
k=0 K!

for | > j we have

>3-

k=0

J
k=0

B L BN o 1Bl
wl =12 w2 %
k=j+1 j+1
) | BI .
and< ¥, 75 o || x|l is convergent. So, by the completeness of the
xRk o
spaces— lim ermsts; and the convergence is uniform in every
Nn—oo k=0 |

spherd| x ||< M; the above inequality shows that

Il expB (i< exp(l BIl) Il X1l
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So expBis a linear operator and
| expB |I< exp(l B)).

Remark. In a similar manner one can prove the following: Let a se-
guence of linear operatofS,}, on a linear normed space

X with values in a Banach spacé be a Cauchy sequence, i.e45
limnmlISn — Smll = 0. Then there exists a linear opera®iforms X
toY such tha’E1 lim||S, — S|l = 0 and||S|| < lim ||Spl|.

=00 n—oo
Theorem.Let B and C be two linear operators from a Banach space X
into X. Assume that B and C commute, i.e.,BCB. Then

1) expB.expC = Eexp B+ C)

h)B — B .
expt + N)B — expt x exists and has the value

2) Diexp¢B)x = s—r!im
B(exptBx) = (exptB).Bx.

Proof. i) If Bandg are complex numbers, we have

Z(tﬁ)lz(tp)' W™ ),
1=0

m!

for, by the absolute convergence of each of the series orethe |
and the commutativity g8 andgp we may arrange the product on
the left to be equal to the power series on the right. A singtaof
holds wherpB andg are replaced by commuting linear operatBrs
andC on a Banach space.

i) SincetB andhB commute, we have by 1)
expt + h)B = exp¢B). exphB) = exghB). exptB.

So,

expt + h)B—exptB  exptB(exphB) - 1)
h - h
_ exphB) - |
B h

exptB.
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iii) follows since

HeXpdﬂB)—l ” HZ(hB)k” ikl h“! - 0, ash — 0.

O

2 Representation of semi-groups

46
Theorem. Let A be the infinitesimal generator of a semi-grduip.

Then for eacly € X
Ty = s- lim exptAd)y

uniformly in any bounded interval of t(J, is the resolventI(—
n~tA)1 n>p).

Proof. (tAJ,) = nt(J, — 1) is a linear operator and so exfd,) can be
defined. Sincatl andntJ, commute we have

(exptAdy) = expntl). expntdy)
= expEnt). expntd,).

Since||Jnll < 1/(1 = gn~Y) (n > B), we have

| exptAJy)Il < expEnt)l|expntdy)|
< exp(nt) expftd,|)
< explnt) expft/1 - Bn1)

= exptB/(1-pn™)
If xe 2(A), DiTix = ATix = T{Axand hence

Ds{exp[t — 9)AR)ITsx} = exp(t — )A) TsAXx— exp(t — S)AJ).AJ. Tsx.
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SlnceTth = TsTt(: Tt+s),

Jn = nf e "T.dt
(o]

is the limit of Riemannian sums each of which commutes witthda;
so J, commutes with eachi so thatAJ, = n(J, — 1) commutes with
eachTs. Now

Tex — exptAd)x = [exp(t — AR TsXs,

Since exp(— 9AI)Ts(A — AJy)X is strongly continuous irs, we 47
have, forx € 2(A),

Tix — exptAd)x = ft DS{ exp(t - s)AJn)Tsx}ds

_ f exp(t - SAT)T(A— JnAX ds
(asAdx = JnAx asxe Z2(A))

So
t
ITex — exptAsX)|| < f I|---llds
(o]

t
< f lexpt — SARIITLIAX = JAX(dS

< |AX— JnA>q|f exp A "Z S exppsds

For each fixed, > 0 andn > g, the integral is uniformly bounded
for0 <t < t,asn(> B) —» o ; also we know that for eack € X,
s— lim Jyx = x. Thus

n—oo

TiS=s- I|m exptAJ,x) uniformly in 0 <t <t
if xe2(A)

We now prove the formula for arbitragye X. SinceZ(A) is dense
in X, givene > 0 we can findx € Z(A) such thatly — x|| < &. Then
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Ty — exptAY)Il < [ITey — TeXl| + [[TeX — exptATX)||
+ [lexptAdn)x — exptAd)YIl
< exp@t)e + [[Tex — exptAdy) x|

t
L)

Sincex € Z(A), the middle term on the right tends to zeraas oo
uniformly in any bounded interval af So

+ exp(

1im [Ty — exptAJ)Il < 2 expBt)e,
ande being arbitrary,
Ty =s- r!im (exptAd)y,y € X,

uniformly in any bounded interval of t

Remark. The above representation of the semi-group was obtained in-
dependently ofe. Hille who gave many representations in his book.

One of them reads as follows:
. tA\ 1
Tix=s-lim (I - —)
n—oo n

uniformly in any bounded interval df It also shows the exponential
character of the representation.



Lecture 8

1 An application of the representation theorem
In C[o, oo] consider TX)(s) = x(t + S). By the representation theorem 49

(TeX)(s) = X(t+ ) = s— Iim exp tAJX)(9)
=s- I|m Z (A‘Jn)mx(s)

uniformly in any bounded interval. From this we get an operathe-
oretical proof of the Weirstrass approximation theoremt #(e) be a
continuous function on the closed interval ¢0,0 < a < oo. Let
X(s) € C[o, ] be such that(s) = z(s) for s € [0, a] (such functions
trivially exist). Puts = 0 in the above formula

(Tex)(0) = X(t) = s- lim Z w

uniformly in [0, ¢]. Thus shown that(s) is the uniform limit of polyno-
mials on [Q «].

2 Characterization of the infinitesimal general of a
semi-group

We next wish to characterize the infinitesimal generators&rai-group
by some of the properties we have established. First we pihaeve

59
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Proposition. Let A be an additive operator on a Banach space X into
itself with the following properties:

(@) 2(A) is dense in X;

(b) there exists # > 0 such that for n> g the inverse = (I -n~tA)™!
exists as a linear operator satisfying

Il < @ =n~'B) 7 (n > B).
50 Then we have
i) Al x=n(J,—-1x xe X
i) Adx=Jh Ax=n(Jn - 1)X,x € Z(A)
i) s— r![go JaX = X, for x € X.
Proof. i) and ii) are evident. To prove iii) let € Z(A). O
Theny = J,y — n"tJ,Ayand hence

lly = Jnyll < n 21 3nllIIAWI
<ni(1-n'B) Ayl - 0ash — co.

Let x € X. SinceZ(A) is dense inX, givene > 0, there exists
y € 2(A) such thatly — X|| < . We then have

[IX = InXI| < [IX=YI+ Iy = IVl + [[Iny — InXI|
<e+lly-Jdwll+ @ -np) e

As|ly - Jnyll = asn — oo,
lim [[X = JnX|| < &,
n—oo

ande being arbitrary positive numbaii) is proved.
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Theorem. An additive operator A with domai#(A) dense in a Banach
space X and with values in X is the infinitesimal generator wfiguely
determined semi-groufi;} with || T;|| < € if (and only if ), for n >
B, the inverse J = (I — n"2A)! exists as a linear operator satisfying
19l < (1= 1B~

Proof. We putTt(”) = (exptAJ,). We have

I < expEnt) exp@t]|Jull)

Bt

< exp———,
pl— n-1g

DTVx= AJLTVx=TWALX x € X,

t
and TOx - x= f TOAL X ds 0
(0]

It is easy to se€dnJm = Jmdn; SOAJ = n(Jn — |) commutes with 51
Tt(m) = expfAJn). Thus, as in the proof of the representation theorem,
we have, for ani € 2(A),

=T =) [ DfTTxas

= |l f TOTM(AT, - AJ)x dg) (@DTMx = TMAIX)

Bt-9 Bs
1-nig expl_ m*lﬂds

t
< 1(ImA - JnA)X“f exp
(0]

So _lim [[T™x - T"x| = 0 uniformly in any finite interval ot.
m,n—o0
Lety € X. Givene > 0, there existx € Z(A) such thafly — x| < e.
Then
Ty = 1OV = Ty = T + T x - TVX)
+ T x = Ty

gt
T E.

t
<exp _A e+ TMx - TV + exp
1-mig 1
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SomIL_m IT™My - T < £. 2 expgt) uniformly in any finite inter-

val oft. Therefore, by the completenessXfs— lim Ty = Tyy exist

and the convergence is uniform in any bounded interval of

By the resonance theoreilt is a linear operator; sinc§t(”) are
strongly continuous imand the convergence is uniform in any bounded
interval oft, T; is strongly continuous it Also,

I Tell < r!im ||Tt(”)|| (Cor. to response theorem )
< expfBt)

We now prove thal;Ts = Ti.s(T = 1, evidently).
SinceT" T = TN

- t+s?

I TeesX = TeToXll < [TessX — TOXI + T - TOTO )

t+s
+ITOTOx - TOTx + ITOTex - T T

Bt

< [ Teesx = T+ expl_—n_lﬁuTé”) - T

+ITO(TsX) = Te(TsX)ll
— 0 asn— oo.

Finally let A’ be the infinitesimal generator of the semi-grolp
We shall show tha®\ = A. For this it is enough to prove th&( is
an extension of (i.e., x € Z(A) impliesx € Z(A’) andA’x = AX).
For, | — n"tA")(n > B) mapsZ(A’) onto X in a one-one manner; by
assumptionl(— n~*A) mapsZ(A’) onto X in a one-one manner; but on
2(A), (I =n1A) = (I = n"1A") and hencez(A) = 2(A). To prove that
A is an extension of\, we start with the formula

t
TOx—x= f TOAJxds x € X.

o

If xe 2(A)

ITsAX— TOAIX < ITAx= TOAX + ITOAX- TOATXI

S
< |I(Ts - TE)AX| + exp ]fn_lnAx— JnAX|
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(Adx = JhAX if Xxe Z(A)).

As n — oo the first on the right tends to zero, uniformly in any
bounded interval o, the second term also tends to zero, uniformly in

B

, S . .
any bounded interval cf, as expm stays in such an interval anc3

we know that
S— r!im Jy=v,ye X

Hence
t
Tix—x=s— lim (T"x—-x) = s— lim f TOAJX ds
N—ooo N—ooo o
t
= f s— lim (TYAJX)ds
o N—oo

t
= f TsAxds
(o]

(using the uniformly of convergence in,{t]). Therefore

Tix— X

s— lim = ToAXx= AX

n—oo
i.e., ifxe Z(A) thenx e Z(A’) andA’x = Ax.
The uniqueness of the semi-grotiii} with A as the infinitesimal
generator follows from the representation theorem for sgnmiips pro-
ved earlier.






Lecture 9

1 Group of operators

We add certain remarks which will be useful for the applmatf semi- 54
group theory to Cauchy’s problem. The first of these relatesondi-
tions under which a semi-group becomes a group; this willdmdul in
connection with the wave equation.

Definition. A one parameter familyT .,<t<c Of linear operators T of
a Banach space X is called a group of linear operators of ndryjge
(or simply a group) if the following conditions are satisfies

) TiTs = Tevs, To = | (group property)
i) s— rI]mg Tix = Ty, X for each xe X and , € (—co, o0)
—1o
iif) there exists @ > 0 such that for all t

Tl < €.

Tix— X

(The infinitesimal generator of a group is defined By = I:[g ).
Theorem. Let A be an additive operator from a Banach space X into X
such thatZ(A) is dense in X. A necessary angf&ient condition that

A be the infinitesimal generator of a groupi$ that there exists g > 0
such that for every n witmm| > 8 the inverse J = (I - N"tA)~! exists as
linear operator with||Jn|| < 8/(1 — In~1B).
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Proof. Necessity Let {T;} be a group. Consider the two semi-groups
{Ttso {Tt}t>0 whereT; = T_;. The infinitesimal generator of the semi-

group{Ti}=o coincides with the infinitgsimal generatérof the group;
let A’ be the infinitesimal generator §f:} O

If we show thatA” = —A the proof of the necessity part will be
complete. Leix e Z(A’). Then

 Th-
s—lim . “x=A'x.
nl0

Puttingx, = h™(Th — 1)x, we have

IThXn — A'X|| < [[ThXn — TRA'X]| + [[ThA X — A'X]|
< [IThllllXy = A'XI| + [IThA'X = A'X]|.
< (expBh)lIxn — A'XI| + [[ThA'X = A'X]|
— 0ash ] 0.

Thus forx € 2(A)
—Ax=s-lim h1(1-T)=s-Ilim T
im (I = Th) im Thxn
=A'X

Hencex € 2(A’) impliesx € Z(A) andA’x = —Ax. Similarly it is
proved that ifx e 2(A), thenx € 2(A’) andA’x = — — Ax. SOA’ = —-A.

sufficiency: We can construct two semi -grouphk}io and{'ﬂ}t>0 as
follows: -

Tix=s—lim TOx=s- lim - exp tAJ)x

n—oo

= —s— lim exp(t(l - A - 1]1x)

Tix=s-— lim expt - AJ.)x=s- lim exp (f[(l + ntA) ™ - I]%)

If we show thaff;T; = T;T; = I, then

(o0 <t < )

2 {Tt fort>0
T =

“1f, fort<o
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will be a group withA as the infinitesimal generator.
56 SinceJ, = (I —n"tA)~t commutes withl_, = (I + n"tA)~1 we have

(-ntAT+ 1 +ntA)t
=[(1 +ntA) + (1 —n A - ntA) 21 +nta)?
=2(1 -n A +nta)t
=2(I -n2A?%)7L,

SinceJx mapsX onto the dense subspaggA) of X, JnJ.n = (I —
n~tA%)~1 mapsX onto a dense subspa&gA?). Moreover

I =0 2A) < 130l d-nll < (1= B/) (1 - 'g)_l
=@-p )
ThereforeA? is the infinitesimal generator of a semi-group @*g}.
exptA?)x = s— lim exptAZ(l — m1A%)1x

=s- lim expPt[(I — mtA%)™1 — 1])x

the convergence being uniformfifin any finite interval oft.
We have

ITFx - TOTOx) < Tfox - TOT o) + ITOFox - TOTOx

< (T - T) Toxil + exp( ) ITex = TOx)

1-n1g
— 0ash — o,

uniformly int in any bounded interval df

That the first on the right tends to zero uniformitim any bounded
interval oft may be proved as follows: Let®t < t; < o0. (to > 0). For
anye > 0, we can findy, ..., t, 0 < ty,...,t < t; such that

inf || Tex— TyXl| < &,
1<i<k

(by the strong continuity of; in t). 57
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Now
(T =T Fxi50G=12....K

uniformly int for 0 < t < t,, and hence, choosirtgproperly for given
t, we have

I(Te = O TeX) < 1T = TOT X1 + 1T = TO) ()t - To)xil

< (Tt - T Ty Xl +

ex Pt
pﬂt + expm E.

So the right side tends to zero uniformly i<t < t,.
Since

TOTPx = exp(nt[(1 - A+ (1 + n7tA) ! - 21 ) x
= exp(sﬁt.n2 (1 = n2A2) 7t - I]) X,
we have
TTix=s- lim exp(%.nz[(l —n2A)1-1])x)
the convergence being uniform in any bounded interval dhus
TiTix = exp(QA?x) = x.

Similarly
T{TiXx= X

Remark. For an alternative proof of the above theorem, BeeHille:
Une généralisation du problem de CauchAgn. de 1’ Institut Fourier
4 (1952), p.37 (Théoreme 4).



Lecture 10

1 Supplementary results

We shall now prove some results which supplement our eadmrits; 58
these will be useful in applications.

Theorem. 1. For a semi-group{T} the infinitesimal generator A may

be defined by

. Th-=1
w—lim h X.

hlo

Th—|

i.e., if A is the operator withz(A) = {xlw - Irl]rln X exists} and
(o]

Ax=w— lim X, thenA = A.
hlo h

2. If {T}t=o is a family of linear operators on a Banach space X such
that T.s = TiTs, To = | and || Ty|| < €%, 8 > 0 then the following two
conditions are equivalent:

(i) strong continuity of 7, i.e., w— tI|nt1 Tix =Ty, xforeach$ >0
and xe X.
(i) weak right continuity at £ 0, i.e., w— |rl1£n Tix = X, for xe X.
0}
3. The infinitesimal generator is a semi-group is a closed ofmera

PROOF. It is evident thatA is an extension of A. We shall show that A
is an extension oA, i.e., if xe 2(A), then xe Z(A) and Ax= Ax. If
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X€ I(A),

. Tun—T
w—=lim L
hlo

Th—|

X=T; [W— lim x] = T{AX
hlo

(For, if w—limpo X, =y, andT is a linear operator, thew —
Img Tx = Ty;infact, if f € X*, f(y) = f(TY)is alinear functional oiX,
aslfy)l < IFIITyll < IFILITI I, and f(Ty) = £(Tx,) = fy— fx, — 0
ash ~l 0). So, ifx € 2(A), f(T;x) has right derivative%f(Ttx) =
f(T:AX) (t = 0), which is continuous for > 0, by the strong continuity
of T;¢. Therefore the derivativ%d—tf(Ttx) exists for eacit > 0 and is
continuous.

So
t ~
f(Tix—=x) = f(Tex) = f(X) = f f(TsAXds
(0]
t
= f(f TsAxd%, for eachf € X*.
(o]
Continuously, by the Hahn-Banach theorem,

t
TiX—X= f TsAx ds
(0]

SinceT; is strongly continuous ihit follows that

Ti— |

s—Ilim X = ToAx = Ax

tlo
Thus if x € 2(A), thenx € Z(A) andAx = Ax.
PROOF. Evidently (i) implies (ii). T prove that (ii) implies (i), let x
be a fixed element of X. We shall show thawtilrtn TiXo = Ty, %o for

each t> 0. Consider the function(® = TiX,. Fort, > 0, x(t) is right
continuous atg, as W—Itilrp TiXo = w—Iri]En ThTi, %o X(t) has the following
0 (0]

three properties:
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(a) x(t) is weakly measurable, i.e., for anyefX*, f(x(t)) is measurable
(since a right continuous numerical function is measurable

(b) IIX(V)|l is bounded in any bounded interval of t.

(c) there exists a countable set M {x,} such that &) (t > 0) is con- 60
tained in the closure of M.

To prove €), let {t} be the totality of positive rational numbers.
Consider finite linear combinations$ ayX(tx) whereay are rational num-
bers ifXis real and ifX is complexay = ax +iby with ax andby rational.
These elements form a countable bét= {x,}. The closure oM, M,
containsx(t), for eacht > 0.

For, if not, letty > 0 be a number such thaft,) does not belong
to M.M is a closed linear subspaceXf By the Hahn-Banach theorem,
there exists alinear function&j on X such thatfo(x(to)) # 0 andfy(x) =
0 for X' € M. Take a sequendg | t, (t, positive rational). By the weak
right continuity ofx(t) att,,

fo(X(t)) = fo(X(to))-

But fo(x(t)) = 0 and fo(x(t)) # 0. We have thus arrived at a
contradiction.

We next prove a result, due td. Dunford (On one parameter
group of linear transformations, Ann, of Math., 39(193#9 — 573),
according of which the propertieg)( (b) and €) listed above imply
the strong continuity ofi(t). First we show thaf|x(t)|| is measurable
int. Let f, € X* be such thatfo(x,) = |Ixall and ||fs]] = 1. Let
f(t) = supfa(x(t)); since eachf,(x(t)) is measurablef(t) is measur-

able intr.]zéutux(t)n = f(t); for
F(t) > [Fa(XO)] = [Ta(Xn)l = [Ta(X(t) = Xn)I
> [[Xall = [IX(t) = Xall

and x(t) is in the closure of the se¥l so that f(t) > ||x(t)||; since 61
(X1 < IX@OI, F(t) < IO Thus f(t) = [Ix®)Il and[Ix(t)Il is mea-
surable.
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By a similar argument|x(t) — X,|| is measurable imn for eachn. it
follows, using €), that the half-line [0< t < o0) can be represented, for
each integem, as a countable union of measurable s,

[0,0) = ) Sma» S = {tlIX(®) = xall <
n=1

If we define
n-1
Su1 = Sm1.---»Sn = Smn = ) She
k=1

we have a decomposition of,[&) into disjoint measurable se&g, ,(n =
1,2,...) such that|x(t) — X/l < mtin S ..

Therefore the strongly measurable step-function (i.e.ountably
valued function taking each of its values exactly on a mesdsarset)

X"(t) = x, fort € Sp

converges to(t) asm — oo uniformly in [0,t), Thusx(t) is a strongly
measurable function, a strongly measurable function baifumnctional
which is the uniform limit of a sequence of strongly measleatiep
functions. We may then define the Bochner integrat(of by:

B B
fx(t)dt =s— lim fx(m)(t)dt,o <a<B<o

a a

B
( f xM(t)dt may be defined, as in the case of the ordinary Lebesgue inte-

a
gral, as the strong limit of finitely valued functions, eaakihg each of
its values exactly on a measurable set). We have

B B
Il f x(t)dt|] < f [IX(t)||dt.

62 LetO<a<n<pB<é—e<é(e>N0).
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Since
X(é:) = T§XO = Tan—nXO = T,]X(é: - 77),
we have
B B
6-axO) = [ x@dn= [T~ nan

the integrals being Bochner integrals. So

el
(B - Q)iX(E + £) - X)) = f T (X(E + & — 1) — X - n))dhn.

a

Thus
é-a
IB—al IXE€ + &) - Xl < SUIE')BIIT;;II IX(T £ £) — X(7)lldr
as<ns
&

But the right side tends to zero ag 0. (This we see by approximat-
ing x(¢), in bounded interval, uniformly with bounded. finitely uabl
strongly measurable functions. For, then the result isgedto the case
of numerical measurable step functions.) TR( is strongly continu-
ous for¢ > 0.

To prove the strong continuity &= 0 we proceed as follows: For
positive rational, since

TeX(tk) = Tety Xo = Tery Xo = X(€ + t),
we have, using the continuity fgr> 0 proved above,

s—Ilim Tex(ty) = X(ty).
m eX(tk) = X(t)

It follows that s — Isi?c} TeXn = Xn for eachx,; alsox(t),t > 0, in

particularx(0) = Xo, belongs toM (M = {x}). It follows therefore,
from the inequalities,

IX(€) = Xoll < [[TeXn = Xall + X0 = Xoll + ITe(Xo — Xn)l
< I TeXn = Xall + [1Xn = Xoll + sup [ Tell.[1Xo = Xnll,

0<é<1

that r!”‘llm X(é) = Xo i.e., T¢ is strongly continuous &t = 0.
0}
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PROOF . An additive operator A (with domaiw(A)) is said to be
closed if it possesses the following property:{Xf} is a sequence of
elements of7(A) such that s- r!im Xn = Xand s- r!im Ax, =Y, then x

belongs taZ(A) and Ax=y. Evidently a linear operator is closed.

At
To prove (3) lek > B. ThenJy = (I — M is a linear operator. Let
{xn} be a sequence;, € Z(A) such thats — r!im Xn = X, S— r!im AX, =
. A o
y. Thens-— r!lm (xn - FX”) = X-— )E/ By the continuity ofJy, s —

r![)n Jk(xn—%xn) = Jk(x—z), i.e., X = Jk(x—%). Sox(e 2(A).

(-3 f

we haveAx=y.

Remark. It is to be noted that the theory has been extendedTigs:
satisfying
Tth = Tt+s

and the strong continuity infor t > 0.



Lecture 11

1 Temporally homogeneous Markdf process on a
locally compact topological space

Let R be a locally compact topological space, countable at igfinlle 64
consider inR ’a probabilistic movement’. Suppose that for each triple
(t, x, E) consisting of a real numbér> 0, a pointx € R and Borel set

E c Rthere is given a real numbé(t, x, E) such that the following
conditions are satisfied.

i) P(t,xE)>0,P(txR) =1

i) for fixed t andx, P(t, x, E) is a countably additive set function on
the Borel sets

i) for fixed t andE, P(t, x, E) is a Borel measurable function in

iv) Pt +sxE) = [Pt xdyP(sy,E)t;s> 0. (Chapman - Kol-
R
mogordf relation).

The functionP(t, x, E) is called theransition probability this gives
the probability that, in this process, a poiite R is transferred
to the Borel seE aftert units of time. We say then that there is
given atemporally homogeneous MagK@rocesson R (temporal
homogeneity means that the motion does not depend on tied init
time but only on the time elapsed).
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2 Brownian motion on a homogeneous Rieman-
nian space

Next, we wish to define the ‘spatial homogeneity’ of the pssce

65 We assume thaR is ann-dimensional, orientable connect&@s®
Riemannian space such that the (full) group of isometdas R,
which is a Lie group, is transitive oR (i.e., for each paix,y € R
there exists an isomet§* such thaG*x = y. The proces®(t, x, E)
is calledspatially homogeneolé

v) P(t, x, E) = P(t, S*x, S*E) for eachS* € G,x € R E c R. Atem-
porally and spatially homogeneous Mafikprocess orR is called
a Brownian motioron R, if the following condition, known as the
continuity condition ofLindeberg is satisfied.

vi) limt2 f P(t, x,dy) = O, for everye > 0 andx € R.
Ho disxy)>e

Proposition. Let C[R] denote the Banach space of bounded uniformly
continuous real valued functiongX) on R, with the norm

If]l = suplf(X)I.
XeR

Define

[P xdyf(y. ift>o0
(TeF)(x) =4R
Then T defines a semi -group of normal type ifiR.

Proof. We have by conditioni],

ITe f(X)| < sup|f(y)l.
yeR
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If we define a linear operatd® by (S f)(x) = f(S*X),S* € G, we
haveT:S = ST;. For,

(STH() = (Tt F)(S™X)
= fP(t, S*x, dy) f(y)
= fP(t, S*x, d(S*y)) f(S™y)
- [P xdpf(s'y) = (s .
If S* € G be such thaB*x = xt, we have 66
(TeF)(X) = (TeF)(X) = (TeF)(¥) - (ST F)(X)
= Ty(f = S H)(X).

By the uniform of continuity off(x) and the above equality, we
see thatT; f)(X) is uniformly continuous and bounded. The semi-group
property follows easily from Fubini’s theorem and the ChapriKolmo-
gofft relation (T, = | by definition).

To prove the strong continuity, it is enough by and earlieotem,
to verify weak right continuity at = 0. Since the conjugate space of
C[R] is the space of measures of finite total variation, it is @ioto
show thattlli(r)’r(th(x)) = f(X) boundedly inx.

Now

(Tt F)(x) = F(X)| =|fP(t, x dy[f(y) ~ (3] by(i)
R

R
- | f P(t. X dy[F(y) - FO0]] + | f P(t, % dy[F(Y) — F0]|
d(xy)<e dis(xy)>e
§| R Ik f P(t, x, dy)

dis(xy)>e
<1l
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The first term on the right tends to zeroas» 0 and, for fixede,
the second term tends to zero boundedlx st | O (by (vi), and the
spatial homogeneity). Thu& lifh; f)(X) = f(X) boundedly inx.

(0]

Theorem.Let X, be a fixed point of R. Let us assume that the isotropy
group G, = {S*|S* € G, S*X, = %o} is compact(G,, being a closed sub-

67  group of Lie group, is a Lie group). Let A be the infinitesimahgrator
of T;. Then

(i) if f € 2(A) n C? (C? denoting the set of twice continuously dif-
ferentiable functions), then, for a coordinate systed - - x") at
Xo,

9% f

X0X)

(adapting the summation convention), where

(AH(%) = & (%) % B (%)

a (%) = lim 1 f (X = X))P(t, X0, dX)
(0]
dis(Xp,X)<e
500 <lm e [ (¢ = X)X - P X009
(0]
dis(Xp,X)<e
the limits existing independently offBaiently smalle > 0.
(i) The setZ(A) n C?is 'big’ in the sense that, for any function

with compact support there exist§xf € Z(A) N C? such that

f 2f L :
f(xo),a—., 8' T are arbitrarily near respectively

Proof.

Step 1.Letg(x) be aC> function with compact support.
If f e 2(A),the convolution

(feg)X) = fG (S, 0)a(S; ¥y
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(Sy denotes a generic element®fand dy a fixed right invariant Haar
measure ort) is C* and belongs taZ(A). (The integral exists since
the isotropy group is compact agchas compact support). By the uni-
form continuity of f and the compactness of the supporigofre can

k
approximate the integral by Riemann surgsf (S}, X)C; uniformly in
i=1
k
x:(feg)(x) =s- r!im 2 (S5 XCi.
— 00 |:1
SinceT:S = ST, S commutes withA, i.e., if f € Z(A), thenS fe 68
2(A) andAS f= S Af. Puttingh(x) = (Af)(X), (h € C[R]).

A[Z f(sy x)ci] = ) (A, HXC

i=1

m
-

and the right hand side tends to® g)(X) = (Af ® g)(X). SinceA is
closed, it follows thatf ® g € 2(A), andA(f ® g) = Af ® g. SinceRis

a homogeneous space of the Lie grd@sigby the closed subgrou,)
we can find a coordinate neighbourhddf x, and for eactx € U an
elementS*(x) € G such that i[S*x = X, ii) S*(X)%, depends analytically
on the coordinate functions - - - x". by the right invariance of the Haar
measure,

(feg) ()= fG fF(SyS"(¥)%)9(SyS™(X)Xo)dy

_ fG F(S%)0(S; S (9 %)y, X € U.

The function on the right side {8* in a neighbourhood af, and
P g(S;S* ()%
O(x1)% . . . (GxM)0n

Hn+-+0h
a(xl)fh <+« (OXM)n

foat) = [ 1S






Lecture 12

1 Brownian motion on a homogeneous Riemannian

space (Contd.)

69
Proof.

Step 2.Remarking thatZ(A) is dense inC[R] and choosingf andg
properly we obtain

(@) there exisC* functionsF1(x),...,F"(x) € 2(A) such that the Ja-
IF'(X,....F"(¥)
oL, ..., x)

(b) there exists € function Fo(X) € 2(A) such that

cobian > 0 atXo.

LA I A VRN
XXy

We can usé&2(x), ..., F"(X) as coordinate functions in a neighbour-
hoodd(xo, X) < &; we denote these new local coordinatesy (. . , Xn).
SinceF'(x) € 2(A),

o TE )~ Fi(Y)
tlo t
exists and= AF' ()
AF)09 = lim [ P(t 30, X () - F(3c)
R
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ﬂwrlbfl%mﬂmﬁw—me
d(x,%0)<e

independent of > O, by Lindeberg’s condition. So, for the coordinate
functionsxt---x", (X = F'),

. -1 i — i
|tlﬂ;lt f(x Xo)P(t, X, dX) = &(Xo)

d(x.%0)<e

independent o > 0. SinceF, € 2(A), we have, using Lindeberg'’s
condition,

(AFo)() = im [ Pt 0. dI(F(Y) - Folo)
R

- lim j“Pm&AMHm—amm
d(x,%)<e

=lim
tlo

. OF

rlj‘w—waﬁmmm
d(x,%0)<e

8°F,

! M—@M—%ﬂ
d(X—£S£

X=Xo+ O(X— X0 < OL

70 The first term on the right has a Iinﬁt(xo)Z—Z); hence by the posi-
tivity of P, and ),

n

limgot™t f Z(xi—xio)zP(t, Xo, dX) < 00 *)

d(x,%o0)<e i=1

Step 3.Let f € 2(A) N C2. Then, expandingd (x) — f(Xo),

TH00) -~ %) _

t .fH@—H&W&&ﬂﬁ
R
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_ f F(X) — F(Xo))P(t, X0, dX)

d(x,%0)>&
-1 i iy Of
+t (X = Xp) 75 P(t, %o, dX)
23
d(x,%0)<e
1 Dol o 0% f
+t (X =) = X)———Plt X0, 0
d(x,%0)<e %00%o
e f (X — X)X — )G (£)P(t. Xo. ¥
d(x,%0)<e

= Ca(t, &) + Calt, &) + Cs(t, &) + Calt, &), say,
whereC;j () — 0 ase | 0. We know thattlincl(t, g) = 0 for fixed 71
o

£ > 0 (Condition (vi)) andtiincz(t, g) = d(xo):—fi, independently of
0 Xo
smalle. By (+) and Schwarz's inequalit;t/llirm(t, g) = 0, boundedly in
(0]
t > 0. Also the left side has a finite limit a9 0. So the dierence

— lim
|Imtl0C3(t, 8) - Ec;g(t, 8)

can be made arbitrarily small by takirg> 0 small. But by §), Sch-

warz’s inequality and\j), the diference is independent of smalb 0.

Thus finite limit ItilmC3(t, ) exists independently of small> 0. Since
(0}

we may choosé& € 2(A) N C* such that
H*F
OXOX,
is arbitrarily nearm;;  «jj being constants, it follows, by an argument
similar to the one above that

(.ji=1...,n)

finite limit f (= x) (X - X(j))p(t’ %o, %) = bl (%)
d(x%0)<e
, : . o°F
exists and linCs(t, &) = b (xg) ——.
to 0%
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This completes the proof of the theorem. m|
Remark. i) We haveb'!(x) = b'l(x) and
bl (x0)éi¢j > 0. (¢ireal) for ,
(X = %) =g = (D6 - &)

72 i) bi(x) is a contravariant tensor:
= X 9%
bl == = (x,.... X" . X
p axl( ) = ( )
X" 9?xM
and am = aS—— +b¥ .
axs Oxkox

This follows from the equality

gi P O e @ O
%A% axm XL xS

[since each is (Af)(X0)].



Part Il

Regularity properties of
solutions of linear elliptic
differential equations
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Lecture 13

The results proved in this part will be needed in the appboatf the 73
semi-group theory to Cauchy’s problem.

1 Strong differentiability

Let R be a subdomain oE™. We denote byC*(R) the space of in-
definitely diferentiable functions iR and by 2*°(R) the space oC*
functions inR with compact support. We denote hy(R)qc the space
of locally square summable functions R (i.e., functions inR which
are square summable on every compact subsi}.oA function u(x) €
L2(R)ioc is said to bek-times strongly dierentiable inR (or of orderk
in R) if for every subdomairr; of Rrelatively compact iR there exists
a sequencen(X)(= ung,(X) ) of C* functions inRy, such that

lim f|u — Uy/?dx=0
n—oo

Ry

and lim f|D(S)un - DOy Pdx=0 for|g <k
Ry

n,l1—-oco

Then there exists, fdg < k, functions
ud(x) = ugl) € Ly(Ry) such that

lim f|u(s)(x) - D(S)un(x)|2dx: 0.
Ry
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usl)(x) is determined independently of the approximating seqgeienc
74 up; for we have, for eac™ function ¢ with compact support ifR;

f oYU (X)dx = lim f () DU (x)dx

Rl R1

= lim (-1)% [ un(x)D@p(x)dx
e

= (-1 | u()DYp(x)dx
|

and C* functions with compact support iR; are dense iny(Ry). It
also follows that, forlg < k, there exists a function ihy(R)joc, de-
noted byD®u(x), such that for each subdoma relatively compact
in R, D®u(x) coincides Withu(RSl)(x) almost everywhere iR;. D®u(x)
is called the strong derivative afcorresponding to the derivatidd(®.

2 Weak solutions of linear dfferential operators

Let

n
L= > DW&"D) & (x) e C*(R), & =a™ for |o| = ol =n,

lol=lo=0

be a linear dierential operator irR with C* codficients. Letf €
L2(R)ioec. A function u € Ly(R)oc Will be said to be a weak solution
of the equatiorLu = f if for every ¢ € *(R) we have

fL*goudx:fgofdx

R R

whereL* is the adjoint ofL:

n
L* = Z (—1)eHrIp@grrp@),
lol=lo|=0
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3 Elliptic operators

Friedrichs - Lax - Nirenberg, theorem: Let L be elliptic inRin the 75
sense that there exists a const@pt> 0 such that

m n
o el TN ()ET - g > Co [Z ff]
lol=lorl=n i=1
for everyx € Rand every real vecto&y, . .., &n). Then ifu, is a weak
solution ofLu = f and if f is of orderpin R, thenu, is of order 2y + p
inR.
Sobolev's lemma: If up(X) is of orderk in R, then, fork > m/2 +
o, ho(X) is equal almost everywhere (®) to a function which igr times
continuously diferentiable.
Weyl-Schwartz theorem: Let L be an elliptic operator iR, andu, a
weak solution olLu = f. If f is indefinitely diferentiable inR, thenu,
is almost everywhere equal to an indefinitelyfelientiable function in
R.

This theorem is an immediate consequence of the Friedrielxs L

Nirenberg theorem and Sobolev’s lemma.

4 Fourier Transforms:

For the proofs we need the following facts about Fouriersfams:
Plancherel's theorem: Let f(X) € Lo(E™), X = (X1, ..., %n). Then the
functions

0= [ 109exp-2rixy) dxxy = 3 xy)
|X<n
converge in thd_,-norm to a functionp(ys, ..., Yyn) € L, and the trans- 76
formation.# defined by.Z7 f = ¢(y) = nIim f f(X) exp2rix.y)dxis
_)oolxlsn

a unitary transformation df, onto itself. (i.e., &# f, #g) = (f,g), for
f,ge Ly ontoL,). The inverseZ 1 of .# is given by

Fe0 = Im. [ ¢(6) explartyxdy
yi<n
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% (f) is called the Fourier transform dt

As regards the Fourier transform of the derivatives, we hévé
in Lo(E™) is also inCK(E™) andD® f(x) € Lo(E™) for |§ < k, (DO =
G II9SE--- Ox, |9 = T ), then

(ZDE)y) = [ [(riy)*i.Z(F)).
j=1

Proof of Sobolev's lemma: Let R; be any relatively compact subdo-
main of R anda(x) aC* function with compact support iR such that
a(X) = 1 onRy. Sinceuy, is assumed to be of ordérthere exists a
sequencgun} of C* functions inR; such that

lim Z f|l5(5)uo - D(S)un|2dx =0.
|515le

We have, using Leibnitz’s formula,

lim > f B au, — DY auy|*dx =0,

n—oo

[si<k

Let (i, (resp.up) denote the function iE™ defined by:

509 — aUn(X), X € Support ofw
"1l o x e E™ - suppe;

77 similar definition forus(= aue in supp.«). Since the Fourier transform
is a unitary transformation, we have

lim 12D, — .ZDO|oem = 0.
But, as remarked eatrlier,
(7 DBy)(y) = (27i)%y3* - ymrUn(y)
whereLNJn = Zn; also since% is unitary,

lim 1Un = Uollo.g,, = 0, whereU, = .7 (tlo).



4. Fourier Transforms: 91

Therefore there exists a subsequefrégof {n} such that for almost
allye EM

lim U (y) = Uo(y)  (pointwise limit)
n’ —oo
n —oo
where Lj(()S) - ZDO,,

Thus for aimost all y e E™, Uq(y)y? - - - yS(2ri)s = UP(y), I8l < k.
We shall now show thaltio(y) - y* - - - yav is integrable orE™ pro-
m

videdk > g + o0, whereo = |g 3, g;. We have
j=1

Dol -y =~ [1 ay yﬁkﬂ).
1+|X0, yak/2 —

Now, in polar coordinates

dy=dyi - - - dym = r™drdQm1

y?l Am

(Qm-1 is the surface of unit sphere EM). So is square

m

1+]3 y7k2
i=1
integrable inlZ > a(Z € EM if2|g - 2k+ m-1 I< -1, i.e., ifk >
m
%1+ . Already we know thalo(y)(1+ Y, y?)¥/2 is square integrable in78
i=1

14 > . SoUq(y)yy" - ym » begin the product of two square integrable
functions, is integrable ifZ > a. We see also thalo(y)y" - - - yir is
integrable inZ < a.

Thus ifk > g +1al, Uo(Y)y;" - - - yr is integrable oveE™.
Supposek > %1+ o, (c > 0 integer). ThenJo(y) € Lo N Ly
so that @ ~2Uo)(y) = [ Uo(y) exp(2riy.X)dy,a.e on E™; i.e.lp(X) =
Em

[ Uo(y) exp(2riy.X)dyae. on E™.
Em
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Let|q < o(k > g + o); then

DS {Uo(y) exp(2ri.y.x)} = Uo(y) H(ZFin)qj exp 2riy. X
=1

and 1Go) | [(2riy))® exp 2riyx| < |Goy) | [ (2riy))*]

=1 =1

~ m
and|Uo(y) I1 (27riy,-)qi| is a function independent afand summable (as
j=1

a function ofy) over E™. ThereforeD9(x)ilo(x) exists andD@{iy(X) =
~ m . . -
J Uoly) [ (27iy;)* (exp 2y x)dy.
Em j=
This representation also shows tif{i,(x) is continuous. Thus
0o(X) is o-times continuously dierentiable; say(X) is o-times contin-
uously diferentiable irR;.



Lecture 14

1 Garding’s inequality

For the proof of the Friedrichs - Lax - Nirenberg theorem, weah 79
Garding’s inequality Let R; be a relatively compact subdomain Rf
and letL be a linear elliptic dierential operator ifR. There existr > 0
andé > 0 such that fop € 2°(Ry),

(¢ +a(-1)"L"¢.¢) > llll;
where 2 = f > ID9gPdx

Ry [si<n
Before proving the theorem, we prove a preliminary

Proposition. (i) Define foryp € 2*(Ry)

|||¢|||,?=Z f IDOg[*dx

Isl=] R
Then for j< n there exists a positive constant'euch that

llelllj < €llllin

allell?_, }

llgll3 + allell3

(i) lim sup {

@0 pe7(Ra)

93
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(i) There exists positive constaptandy’ such that forp € 2°°(R;)

D, (D7D, ¢) 2 ulliplliy — 1 llln-lel
lpl=lorl=n

80  Proof. (i) Let
50 = {¢<x) xe Ry

xe EM-R;
Then
xs
SZ(X):&(XLW’Xm):fa(xl,...,xs_lb'i,xgl,...,xm)dt

—00

Hence by Schwarz’s inequality

PP <L [ |g—;’f|2dxs, wherelL is the diameter oR;. So
—00 S
IS f 3dx
Ry
‘L fdxl { I }

0p |2
_12 [ |2¥
-1 f 5 ax
Ry
Therefore 5
el < L2222,
Xs

By repeated application of this inequality we gt (

(i) Since
m ~
ZD9g() = | |@riy)ewm). (¢ = 79)

j=1
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and.7 is a unitary transformation ih,, we obtain

gl = > f |7 DO gdx

|$=1Em
i 2
)
- @ Y, [ [ [y oomedy
S=1gm j=1

Since )
s
a Zlqsn—l HT:l yj' :

2t
l+a Z|t|Sn n',n:l yj :
tends to zero uniformly iy asa | O.

(iii) is proved.
(iv) Whena--m: M.-Min(x) with
Z n = Z n =n
are constant we have by partial integration and Fouriesfoam

D7DV g) = ) (-1)'&(D ¢, D)

lol=lo=n lol=lol=n
— f Z (zﬂ)Znyil . %’\maplmpm,o‘l"ﬂ'myi'l . yﬁ:\m
Em|phn
lorl=n
> Const [ ) iy 17 )Py Ty
Em|3:n

(making use of the ellipticity)

= Const f > IDYgPdx
EM [si=n

> Constllll[2.

If &7(X), (lo| = |o| = n) are non-constant, put

e= sup [@7(X)-a” (xX").

.0 X X"€Ry

81
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O

Note thate may be taken to be arbitrarily small if we chooRe
sufficiently small. Letx® be a fixed point oR;. Puta?7(x°) = ag*.
Letp € 2°(Ry). We have

D (1) D, D)

lpl=lo|=n
= ), (F1&7Dp,D7¢)o+ > (-1)I(& - &7)D ¢, D7¢)ol;
lol=lo|=n
| D D@7 -8 )De, D)o < ) ID’¢llD¢llo
lpl=lo|=n

< Constyl||e]l|3.
So

Y, (C1@7D¢,D7¢) 2 Cillipli} - Constellli
lol=lol=n

> Cylll¢llI3(Cs > 0).

82 if we choose,R; suficiently small. This result enables us to deduce
(i) for the general case. For any> 0, R; can be covered by a finite
number, saN, of open sphereS,, S, ..., Sy of radiusy/2. LetS] be
the sphere of radiug concentric withS;. Let ¢j(x) € C*(E™) satisfy

@i(X) > 0forx e Sj,¢i(x) = 0forx ¢ S/ andy;(x) > 0 for x € E™.
Then

N
hi(X) = @/ Y. ¢i(9)?
=1

N
satisfies hi(X) € C®(Ry), hi(X) > Oand Z hi(X) = 10rR.
j=1

Thus

(-1)" ) (@7Dp, D),
lpl=lr=n
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N
- Z A
=1

N
DD DT (@ 7hiDPg,h D),
j=1 lol=lerl=n

is such that

A =(-1)”{ > (@7 Drhip, D(U)hj@o—Rj}

lol=lor|=n

where, by Leibnitz’'s formula,

Ri= >, (@7D6D"g)

lo’lorlo’|<n
with bounded function€”-". Thus, by Schwarz’s inequality,
IRjl < ajliglin-1llglln  (aj = constant> 0).

For suficiently smallp > 0, we have, by the result obtained already,

(-1" > (@D, D)

lol=lorl=n

< > (Allihjlliz - ajligln-allelln) (4; = Const> 0)

n
=1
Moreover, we have, by the same reasoning as above,
Ity lE> 100 Y 109603 Pdx-by g sl
R

lol=n

with constanb; > 0. Therefore, by putting 83

N
A= min(/lj),Z(/lj bj+aj) =21,
=

we have

D" D> @7D¥g, D)o = ANl @l = A 1l lln-a Il I

l o |=lol=n



98 14. Lecture 14

Proof of Garding’s inequality: We have, by integration by parts and
from part {ii) of the above proposition, far > 0.

(@ +a(-1)"L*¢, )0 = (@, 9)o + au ll @ 12 = 1/ 1 @ lIn-1 1l @ IIn)
+ D, (€27 DY D),

lol<nieri<n

whereC¢7 are bounded® functions inR;. Then by () and Schwarz’s
inequality

(0 + a(=1)"L"p,9) > llgll2 + atlllelliz = nliglin-1llplln}

with some positive constant Hence for anyt > 0 we have, remember-
ing
Hela=leld->" el
s<n

and using (i),

(¢ +a(-1)"L"p.0) >l ¢ I3
+ a{u lella—u" @iz g - g (lela s+l r—l)}

Then by takingt™ > 0 so small that/ — n/2t™1) > 0 anda > 0
suficiently small we obtain Garding’s inequality biy)(



Lecture 15

1 Proof of the Friedrichs - Lax - Nirenberg theorem

To prove the Friedrichs - Lax - Nirenberg theorem, we neeéettem- 84
mas:

Lemma 1. If ue is of order i in R and if I5(s)uo is of order jin R, for
all s with|g < i, then w is of order i+ jin Ry. If ug is of order i+ jin
R, thenD(s)y, is of order jfor|g <.

Lemma 2. Let R, be a relatively compact subdomain of R and lgk&u
L>(Ry). Then for any positive integer s

(I + (=2)®h=u, (a isthe Laplacian
has weak solution of ordets in R;.
Lemma 3. Let y, € L»(Ry) be of order nin Rand

I(L*¢, o)l < Constlglln-1, forall ¢ € 7°(Ry)

(o= [ widxiielR=, [IDUP ox

R ls<k g

Thenu, is of ordern + 1 in Ry.
Assuming these lemmas for a moment, we shall gifRFaof of the
Friedrichs - Lax - Nirenberg theorem

99
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First Step 1.1f up € Lo(Ry) is of ordernin Ry and satisfief{L*¢, Up)| <
Constlglln-j for all ¢ € 2°(Ry), thenu, is of ordern + j in Ry. This is
proved by induction or). The result is true fof = 1 (Lemmd3B). Let us
assume that > 1 and that the result is true fgr— 1 Suppose

I(L* ¢, o)l < Constlglin-j;

sincellglin-j < llgln-(j-1), Yo is of order i+ j — 1) in Ry by the inductive
assumption. For any first order derivatibnwe havg(L*De, uy)| Const
ID¢lIn-j < Constlgln-j+1. Sinceu, is of ordern + 1, we have

(L*Dg, Ug) = Z ((_1)Ipl+lcr| D) g7o D© D &, Uo)

lohlorl<n
= Z ((-1)9'D D2p, a2 B Uo)
= Z ((_1)|@|+1 D%, D(a [~)(,u0))
= 3 (-1 Do, (D @)D w)
+ 3 (-1 Do, 7 576 wo)
= Z ((_1)Igl+1 D2, (D a%7) B” Uo) (L 0.5 w).
Sinceu, is of order M we see by partial integration that

I(L*¢, D Uo)| < (L*Dg, Ug)| + Constlgllzn — (N + j — 1)
< Constlelln—(j-1)

By Lemmdl,D u,is of order> n+j—-1>n+j-2>n(asj > 2).
Hence by the induction assumpti@u, is of ordern + j — 1. So, by
lemmallu, is of ordern + j.

Second Step XFriedrich’s theorem.)Let u, € L»(R;) be a weak solu-
tion of Lu = f and f be orderpin R;. If ug is of ordern in Ry, thenuy
is of order 21+ pin Ry.

Proof. This holds forp = 0. For, from (*¢, Uo)o = (¢, f)o, We have

I(L* ¢, Uo)ol < Constlgllo = Constlglln-n.
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1. Proof of the Friedrichs - Lax - Nirenberg theorem 101
So, by the first step, is of ordern + n = 2n. Suppose = 1. We have,
as above,

(L*@, D Ug)o = —(D L*p, Ug) = (-1)¢H7*1(D7 D a2 D%, Ug)o
— (_1)Ip|+|<7|+1 (D(‘T) a%? D? D ¢, Up)
+ (-1)eH L (D7(D a27) D%, Ug)o
= (L* Dy, U)o + (¢, L' Uo),

wherel’ is a diferential operator of degree2

(L*907 ISUO) = (DQD’ f)O + (QD’ I:/UO)
= _(QD’ Df) + (QD’ L/UO)

(sincef is of order 1 at least; the cage= 0 is already proved). Thus
I(L*%, D Uo)ol < Constlgllo = Constlelin-n

andD u, is of order 21— 1 > n. So by the first stepD u, is of order
n+n = 2n. By Lemmall,u, is of order 22+ 1. Forp > 1, we may
repeat the argument. O

Third Step 1. Let uy € L»(Ry) be a weak solution of u = f and f be
of orderpin R;. Thenu, is of order 21+ pin R;.

Proof. Let h, of order 21 be a weak solution of
(I + (FA)Mh = uo.
ho exists by Lemm@&l2. Theln, of order 21 is a weak solution of

L(l + (=A)")h = f;

L(I + (—=A)") is an elliptic operator of ordem¥ f being of ordem, hyis 87

of order 4 + p, by the second step. Hence, by Lenitha 1,
Uo = (I +(=2)"ho

isoforder©+ p—-2n=2n+p. m|






Lecture

1 Proof of Lemma 3

Let Rbe a bounded domain &™. Let u, of ordern satisfy 88

n

I(L*¢,uo)o | | Z (D) & DO ¢, ug)g
lol=lo|=0

< Constlg|ln-1 forall ¢ € D*(R)

Let R, ¢ Ry ¢ R Ry, Ry being subdomains, such that the closure of
R; in Ris compact. Let € 2> with /(X) = 1 onRy. Let

hy _
Vi(x) = th(x),xh = (X1 +h, X, ..., Xm),
h suficiently small. Then, as will be proved below,

IV |l < Const  ( for all sfiiciently smallh).

Since the Hilbert spackl,(R) (completion of2*(R) by the norm
Il lln) is locally weakly compact, there exists a sequefigewith lim
|—00

h; = 0 such that fotk| < n
weaklim V¥ =¥
|—00
weaklim DK = v
|—00

exist inL,(R;). We shall show that
U=D1V(D1=0/s,)

103
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v = 5,60 = bW By v

proving thatD; v is of ordern in Ry. Similarly D; v(i = 2, ..., m) will
be of ordemin R;. Thus by lemmélly is of ordern+ 1 in R; and hence
uis of ordern + 1 in R. ThatV = D; v may be proved as follows: For
anyy € 2°(R;) we havep being a real number such thak® < 1,

(¢, 9o = lim (p.V")o
- ili_(?o("o_hi’v)
= 1im (o, (), (X))
= Iim ((xX“™), D1v(¥))o
= (¢, D1V)o.

89 We have also
(D* W) = Dk

and thus, in_o,
VK = weak lim DKV = w— lim (DX W)
=D, DW v,
We prove that
IM']lm < Const (for all smalh).

We shall make use of Garding’s inequality for the @&der elliptic
differential operatoL.*: there exist constants;, C, andC3 such that

Callgl? < (L@, ¢)o + Callgll2
I(L*¢, )| < Callglin 11, @4 € Z°(R.

Now,

(L@, V)0 = (-1)¢ (D%, a7 D (£ ug)"o
= (-1)¢ (D%, a7 (D) £ ug)"),o
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= (-1)' (DY, &> (£.57Uo)o *)
+(-1)¢ c7 (D%, @ [D7 ¢ D) uo]z (o' > 1)

by applying the Leibnitz formula.

On the other hand, we have, for any functiwrof order j in Rwith 90
support completely interior tB

||vvh||3_1R1 < |wllj, for suficiently small |h|, because, for any ap-
proximating functiongu;} < C*(R)

: h
W -1k, = lim (Ul [lj—1r,
|—00
: 6h
= lim [ ug, (<) llj_1,
|—00
< lwlljr = llwllj.

Thus the absolute value of the second term on the right)dg(by
Schwarz’s inequalit Const|| ¢ [|n || U|ln = Const| ¢ ||n. Since

eHN(x) = €'(x) F(X") - e(x) (%),
we have

(-1)?/(D%. a7 (£.D) up)")o
=(-1)? (D%, [(a%” £.D” )" — (8%7)" £(X").D” Up(x")])o
=(-1)? ((0%) ", @7¢ B” U)o
+H(=1)** (D%, (@) £(x") B o (X))o
The absolute value of the second term on the right is 91
< Const| ¢ [Im.
We have also
(-1 (D%) ™. @7 £ D" U)o
=(-1)¢ (D% ", a7 ¢ D” Ug)o
=(-1)' (@*7¢ D? ™", D7 Uo)o
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=(-1)' (@7 D? £ ™", D7 Uo)o
=(-1) C' (2 (D¢ D™, B U)o (10l 2 1)
The absolute value of the second term on the right is
< Constl ™" [ln-1 < Const| ¢lin-1.
Therefore, by applying the original hypothesis,

I(L*@. (£ U)ol < I(L7¢ @™, Uo)l + Constlelln
< Const|Z¢™" |ln-1 + Const il
< K| ¢ lln, K a positive constant

Thus lettinge tend, in|| ||, to (¢ Uo)", we have

Call(¢ uo)"I2 < KII(Z Uo)"lIn + Call(¢ Uo)lo

Sincel|(¢ up)"lo < Const|Z uoll1, the right hand side being indepen-
dent ofh, we must have

(¢ uo)"In < Const (independent d).



Lecture 17

1 Proof of Lemma 2

We define
if R
o (9 = {000 TXER
0 if xe EM-Ry.

Let Ug(y) = (F0o)(y). Then
Uo (Y)
1+ (EN, ry)d)s

satisfies the conditions of the lemma. In the first place,

_ Uo (¥) —
ho(X) = f oy (zﬂyj)z)sexp (2t V-1 yx)dy

ho(x) = .Z 71

(%)

lyi<n

is C®(E™). For, sincely(y) € Lo(E™),

Uo () : _
21 V=1 y;)ki xnvV-1
L+ (ZT @) H( NP e (FVELYR

is, for any set of integerk; > 0, integrable ovely| < n and majorised
uniformly in x by a summable function (iy). So

Ua(y) ﬁl (2xV=1y;)s

1+ (Zjar (2ry)?)®

ak1+-»-+km

—_— exp(2r V-1 yx)d
I axk P( yX)dy

= [

lyl<n

107
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Moreover, forlk| < 2s, the function under the curly brackefs - }
is in L, (E™), so that forlk] < 2s,D® h, (EX). converges irL,(E™)
Thereforehy(X) is of order Zin E™.

Next for anyp € 2°(E™), we have, by partial integration,

[ 0+ e o9 dx=lim [ 1+ (200 hu(x) o

EM EM
 fim f (%) (1 + (=2)%) ha(x) dx
Em
- f () (71 Uo) () dx
Em
93 This proves thah, is a weak solution ife™ of (I + (-2)%) h =T, =

Z~1U,. Thush, is a weak solution iRy of (I + (—2)%)h = .

2 Proof of Lemma 1

In the proof of Lemm&l1 we have to make use of the notion of ‘tlegu
isation” or “mollifiers”. Let j(x) € C*(E™) such that

) j(¥) =0,
i) j(x)=0,for|x>1
i) [ j(¥) dx=1.
Em
Letfore >0

jo(¥) =" j(X/8)
We have then

) je(x) >0,
i) jo(X)=0,for|x >¢

i) [ () dx= 1.
Em
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Let R; be a relatively compact subdomain Rfc E™ andu(x) €
L>(Ry). Let R, be a subdomain relatively compactia. Letd > 0 be
the distance betwedR, and the boundary d®;. Lete > 0 be such that
e < d. Forx € Ry, define

(3 V() = f (X~ YU () dy.
Ry

((J; u)(x) is called regularisation af(x) and the operatord, are called 94
mollifiers). Let
Mg = f VZdx
R

We then have
) I Je Ullogr, < Ullor,
i) limgoll Ju—ullor, =0
i) (Jz u)(x) iIsC* in Ry and ifh is of orderi in Ry,

then
DO (J, u)(x) = (I, DS u)(X) for | < i

in Ro.
Proof of (iii): We have, for each derivatidn(®,

(0P 3, u)(x) = f DY j,(x - ) uEy) dy.
Ry

Supposau is of orderi in R. We have then, forg < i, by partial
integration,

f DY j, (x—y) uly) = f (1)5(DY . (x—y)} u(y) dy
Ry

Ry

f i (x—y) B u(y) dy
Ry
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since, for eachx € Ry, j.(X —y) considered as a function gf has com-
pact support irR;.
Proof of (ii): We have, forx € Ry, f je (x—y)dy= 1. Hence

Ry

(J= U)(X) — u(x) = f j= (X=1) (u(y) — u(x) dy.
Ry

By Schwarz's inequality

f | (3 W) - u(¥) 2 dx
R>

< f dx l Rf jo (x—y) dy Rf (X~ y)I U(y) — UX? dy

R2

_ f dx f jo (x—y) | U(Y) - UCYP dy
R> Ry

sfdxf i (@ u(x—2) — u(x) dz

Ro |Z<e
= [ i@ [ 10x-2- w0 oxf a2
|z<e R
95 Since [ | u(x - 2) — u(x)? dxtends to zero aig — O, (ii) is proved.

Ro
Proof of (i): We have, by calculations similar to the above calculations,

! JsunaRZ:fdxf o (x=y) | u@) 12 dy

Ry Ry
< [ 1@ [ nx-2Pdx az
[2<e Ro

< [ @] [ 1uw Pax dz

|Z<e R>
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2
= ulg,

Proof of Lemma 1. Let u be of order inR; and letD® u be of order;
in Ry for eachswith |g <i. Then for|t| < j,

DO D® 3. u=DO J. D9 u=J, D' DO u(g <i)
by (iii). Hence by (ii),u is of orderi + j, in Ry.
Next letu be of ordetli + j in Ry. Since
DO 3, D& u=3,D9 DO u(t| < j,I19 <i)

we see byi{) thatD®u s of orderj in Ry.






Part IV

Application of the
semi-group theory
to the Cauchy problem for
the diffusion and wave
equations
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Lecture 18

1 Cauchy problem for the diffusion equation

LetRbe a connected n-dimensional oriented Riemannian spahkédheit 96
metric o
ds = g, (X) dX dxl.
Let A be a second order linear partiatférential operator ifR with
C®> codficients:
i 0%f i of
AH)(X) = bT(X)—— + a(X)— (X)c(xX) (X):
(AN = B () 7= + @ ()77 (9o F(9
we assume thdd! is a symmetric contravariant tensor aai(k) satisfies
the transformation rule

a

_ ok OX X

T A% OxKoX

[(X1,..., %) — (X1,...,%n)] so that the value Af)(X) is determined
independent of the choice of the local coordinates. We éurdssume
that A is elliptic in the strong sense that there exist positive consgants
andA(0 < A < y) such that

pd () & & 2019 & & = 49 (94 ¢
for every real vector4, . .., &) and everyx € R.

We consider the Cauchy problem in the largeRofor the ditfusion
equation: to findu(t, X) (x € R) such that

M=Au(t,x, t>0
u(0, x) = f(x), f(x) being a given function oR.

)

115
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We shall first give a rough sketch of our method of integratidfe
wish to integrate the equation in a certain function sgg&® which is a
Banach space (i.e., we want to obta(h x) such thau(t, . ..) € L(R) for
eacht > 0); we assume that(R) contains2*(R), the space of* func-
tions with compact support, as a dense subspace. (Exaniplgd; 1 <
p < o0;C(R) if Ris compact). We determine an additive operaigr
such that: i) C*(R) > Z(Ao) > Z°(R), if T € Z(Ao) At = Af.(ii)
the smallest closed extensidg of Ay exists andd is the infinitesimal
generator of a semi grou on L(R). We then have

Dtth:s—rIjLnoT““;r:‘f:ATOTt f(=Ti Ay f),t>0
To f = f.

ThusT:f is a kind of solution of £x). Next, we shall show that,
if the initial function f(X) is prescribed suitably [e.g.,if € 2*°(R) or
more generally, ifAX f € 2(A,) for all integersk > 0], there exists
a functionu(t, x) definitely diferentiable int and x such thafTf(x) =
u(t, x) almost everywhere in (60] x R, the measure iR being the one
given by /g d X, ...,d %, andu(t, x) will be a solution of ).

In carrying out this procedure, we have to solve an equatidheo

form (u - %) u = f, f isgiven anduis to be found fronZ(A,). This is

a kind of boundary value problem connected with the elligttBerential
operatorA.

Theorem. If R is compact, the equation

X Ox)

W= Au=Db1(x) Pu_ d(x.t>0
u(0, x) = f(x) € 2°(R), (f(x) given)

admits of a solution € in (t, X). This solution can be represented in the
form

ut) = [ P xdyio)
R
where Rt, x, E) is the transition probability of a Markg process on R.
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The proof will be preceded by two lemmas.
We take forL(R) the Banach spac€(R) of continuous functions
with || f]] = sup|f(X)|.2°(R) is dense irL(R). The operatoA, is defined
X

as follows:
2(A) = 2°(R) andA. f = Af for f € 2%(R).
Lemma 1. For any fe 2*(R) and and any m- O, we have

mflxh(x) > f(x) > r)r(1€iFra1 h(x)

(AN

where fx) = f(x) - o

Proof. Let f(x) attain its maximum ax,. We choose a local coordinate
system ak, such thab'!(x,) = ¢;; (Kronecker delta). O

~ (Such a choice is possible owing to the positive definiterafss
b&¢é;. Then

h(x.) = f(x.) = m (A, f)(x)

. of 92 f
= f(x) - mta (x)— — mix" :
(XO) (XO)C,)XL IZla(XL)Z
= f(X).
since we have, at the maximum poiqat 99

N 52
a—fi:OandZa f2 <O0.
9% -1 0%

Thus maxh(x) > f(x). Similarly we havef (x) > mxin h(x).
X

Corollary. The inversél—-m A,)™* exists for m> 0 and||(I -m1A,)™1
| < 1. Further (I = m™tA,)"th)(x) > 0if h(x) > 0. Also

(-mia)ti=1

Lemma 2. The smallest closed extensie_ugl of A, exists.
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A, f is defined and equal toif there exists a sequen¢} c Z*(R)
such thats — I(Iim f« = f ands— I(Iim A fk = h.

A, f is determined uniquely by. For if { fi} ¢ 2=(R) be such that
I(Iim fk=0 andklion fx = h, then we mush = 0.

For by Green'’s integral theorerR,being compact,

fka*ng:ngfkdx
R R

for everyg € 2%(R) so that, in the limit,

0= fghdx for everyg € 2*(R); soh =0.
R

To prove that the resolvent £ mA,)~ exists as a linear operator
in C(R), for mlarge, it will be sdficient to show, in view of the Corollary
to Lemmdl and the fact tha, is closed, that the range df £ mA,)
is dense iNC(R). We shall show that for ang € 2*°(R) we can find
f € 2(R) such that [ — m™A,)f = h (mlarge). To this purpose, we
need

2 Garding’s inequality

Foru,v e 2*(R), define

(U v)o = f uvdx  (llull? = (u, u)o)

R

ii Ou ov 2
(@v)s = @vo+ [ 6155 S dx (U = )
R

Then there existg > 0 ands > 0 such that for all sfliciently large

m> 0,
B'(u,v) = ((I - A—n;k)u v)
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satisfies

1B"(u, V)| < ¥llullalVlla
SlIull? < B'(u,u) forall u,ve 2*(R).
This lemma can be proved by partial integration.
Let H, be the Hilbert space of square summable functiorR. iie

have2*(R) c H,(R). Let A; be the operator i, with domainZ*(R)
defined by:A; f = A f, f € 2°(R). As in Lemmd2R, the closure &

: — A, . .

in Ho, A1, exists. We show now that the range bfH ﬁl) is dense in
A . . .

H,, formlarge. If ( — E)@"" were not dense i, there will exists

. . : A .
an elementf # 0 in H, which will be orthogonal tol(— a)@"". This

, . A
mean thatf is a weak solution ofl — o~ f=0.

m
By the Weyl-Schwartz theorent, may be considered to be in
2%°(R). By Garding’s inequality, assumirgto be sificiently large,

SIIFIIZ < (I _A, f) =0. Sof=0.
m
A A\t
Since the range ({ﬁ - ﬁl) is everywhere dense ., (| — ﬁl is
defined everywhere iH,. So for everyh € 2*(R), we can findf, € H,

such thatf, is a weak solution ofl — % f=nh
Again by the Weyl-Schwartz theorenfi, will be in *(R). Thus 101

Ao . .
we see that for largen the resolvent),, = (I — - exists as a linear

operator onL(R) and satisfiegJm|| < 1 (also, mh)(X) > O if h(x) >
0; Jn.l = 1). Consequently, (see Lecture 8) is the infinitesimal
generator of a uniquely determined semi-group

T = exptA.) = s— limexptm(Jm — 1)).
We have further

ITd <1, (TeF)(X) = 0if F(x) >0, Tel=1
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If fe2*(R),we have

DiTif = ATif = TAf = TIAf
DT f = A T.A. f = T,AZf

DT f = T,A,

for k > 0, sinceA‘f € 2%(R) for integralk > 0. By making use

of the strong continuity off; in t we see that@? + A)XT;f is locally
. 92

square summable on the product spaced0x R. Since €= + A)K

is an elliptic operator, it follows the Friedrichs-Lax-Mitberg theorem

that (T; f)(X) is almost everywhere equal to a functiafh, X) indefinitely
differentiable inf, x) for t > 0.

Proof of the latter part of the theorem:

lu(t, X)| = [(Te )X < [T f) < 1]

Henceu(t, X) is, for fixed ¢, X) a linear functional off € L(R).
Therefore there exist3(t, x, E) such that

u(t. %) = f P(t, x, dy) ().

R

The non-negativity ofi(t, x) for f(x) > 0 implies thatP(t, x, E) is > 0.
SinceT;1 = 1, we must hav®(t, x, R) = 1.



Lecture 19

1 The Cauchy problem for the wave equation

We consider the Cauchy problem for the ‘wave equation’ in rre 102
dimensional Euclidean spa&&™

at?

Py _ Aut,x), xeEM
u(o, x) = f(x), u(0,x) g(x), f,g, given,

82
0% 8Xj

where A=al(x) + loi(x)ai)q +c(X)

is a second-order elliptic operator. This problem is edamato the
matricial equation

P ut,x)} (0 T)fut.x)}, . .

& (v(t, x)]_(A 0) (v(t, X))(I = identity ).
[u(o, x)] ~ (f(x))

v(0,%)) g

We may apply the semi-group theory to integrate (1), by aw@rsi
ing, in a suitable Banach-space the “resolvent equation”

o )l o=

121

(1)
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for large|n| (n, integral) and obtaining the estimate

(o)1= et g

with a positiveg independent ofl, f andg. As a matter of fact, the es-
timate implies (see Lecture 9) tr(ag (I)) is the infinitesimal generator

of agroup{T¢}_co<t<co @and

T (f(x)) 3 (u(t, x))
o)~ Wt %
will give a solution of (1) if the initial functionsf(x) andg(x) are pre-

scribed properly.
We have the

Theorem. Suppose that the cfiieients & (x), b'(x) and ¢x) are C* and
that there exists a positive constahsuch that

dl(6ig; 2 4 ) &

(xe EM (é1,...,&m) € E™). Assume further that

max{ supla’l (x)|, sup ik
n= > v
Xi.j %, bk | 0%

2.4

- ob
,suplb'(x)l,sur)@, supIC(x)l}
X

X;i X;i,K

sup
Xi, j.K,S

OXi OXs

is finite. Then there exists a positive constasuch that for sfficiently
smalla,, the equatior(1) is solvable in the following sense: for any pair
of C* functions{ f(x), g(X)} on E™ for which Af, Akg and their partial
derivatives are square integrable (for each integer I0) over E", the
equation(1) admits of a C° solution ut, x) satisfying the “energy in-
equality”

(U= asAu, U)o + ao(u, ut)c)% < exp@Itl((f — a.Af, ), + as(9, 9)0)%
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Proof. The proof will be carried out in several steps.
First step: Let H be the space of real-valu€f® functions inE™ for

which
3
||f||1={Eflflzdx+2f|f>q|2dx} < oo,

m I Em
and letH;(E™) be the completion dfi with respect to the nortf|j;. The 104
1
2
completion ofH with respect td|f||, = {f |f|2dx} will be denoted
Em
by H.(E™).H,(E™) and H1(E™) are Hilbert spaces; actuallf,(E™) =
H.(E™ = Lo(E™).
One can prove that there exigts> 0 anda, > 0 such that for
0 < a < a, there correspong > 0 and¢,, > 0 satisfying

, [(f-aAf f), for feH,AfeH,
Ol flIf < . «
(f —aA*f, f), forfeH AfeH.,.
I(f —aAf,g)ol < (1+ay)lIfllallglls for f,ge H,Af € Ho.
I(f —aA™f,9)ol < (1 + ay)lifllalliglly for f,ge H; A*f € H,.
I(af, ). — (f,AQ)s| < xIIflllidlllo, for f,g e H; Af,Age H..

(The proofs of these inequalities will be given in the nextlee). 0O
Thus the bilinear form
Bl (u,v) = (u— aA'u,V), foru,ve H,A"u e H,
can be extended to a bilinear functiorgl(u, v) on H; satisfying

Sellul? < Bu(u, U)
[Be(U, V)| < (1 + ay)llullz] V.

Second steplet0< a < a,. For anyf € H, the equationu— aAu = f
admits of a uniquely determined solutia(x) = us(x) € H.
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Proof. The additive functionaF(u) = (u, f), is bounded orH,, be-
cause
IFU) = 1(u, ol < lUllsllIfllo < llullallfllo-

So, by Riesz’s representation theorem, there exists a elyigieter-
minedv(f) € Hy such that

(U, f)o = (U v(f))1.

By the Lax-Milgram theorem (see lecture 4) as applied to ilie-b
ear formB,(u, V) in Hy, there corresponds a uniquely determined ele-
mentS \( f) in Hy such that

(U, f)o = (U, v(f))1 = By (u, Sf)), for ue Hy.

U, = S\f) is a weak solution of the equatian- «Au = f,i.e., for each
ue 2°(R) we have (, f), = (u- aA*y,S\(f))o. In fact, let{w} c H
be a sequence such that— S\(f) in Hy; then, for

ue 77(R), Bo(u, SUF)) = lim By(u, vn)
= r!im (u—aA'u,vyp)

(u— aA'u, S\f)).

Sincef is C® in E™ andA is elliptic, u, = S\f) is almost everywhere
equal to &C* function (Weyl- Schwartz theorem). We thus have a solu-
tion u, € H of the equationu—aAu = f. The uniqueness of the solution
follows from the inequalities given in the first step. ]

Third step: If the integern is such thatn|~! is sufficiently small, then
for any pair of functiong f, g} with f,g € H andAf € H,, the equation

o - (& ol - (o @

or
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v-ntAu=g

106 admits of a uniquely determined soluti¢um v} u,v € H. Moreover, we
have

[Ba. (U U) + ao (v, V)]? < (1+ INB)(Ba, (F. ) + ao(g. 9).)?
with a positive constarg.

Proof. Letuy, v1 € H be such that
—2 _ —2 _
Ui —n<Auy = f Vo — N “Aw, = @.
(See the second step). Then
_ -1 _nl
U=Up+N "V v=n"Aluy + Vo

satisfies (2).
We have

Au=n(v-g)e HcH,, Av=n(Au-Af)e H..

We may therefore apply the inequalities of the first step.
Thus by (2),

(f —aoAf, f)o = (U—n"v— a,A(u-ntv), u-ntv),
= (U — @AU U), — 2n71(U, V) + aon (AU, V),
+ aon YAV, U)o + N2V — oAV, V),

and

Qo (g, g)o = CKO(V - n_lAUa A\ n_lAU)o
= ao(V, V)o — N 1V, AU)o — aoN H(AU V) + 2N 2(A A),

Hence 107

Bao(f, f)o + ao(Q, )
>Bao (U, U) + o(V, V)o — 2N (U, V)o — aolnl H(AY, u)s — (At V)|
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>Bao(U, U) + (U, V)o — 2072 [lUllzlVlle — aoln[™Lyllull(IVIlo
>Ba, (U, U) + a6 (V, V)o

-1 2 “1 g2 , %o 2 1112
i |{||u||1r+r M2 + Sx(uiEr + 7 ||v||o)}(r>0)

Thus, by takingr > 0 suficiently large and then takinf| suffi-
ciently large, we have the desired inequality. o

Fourth step: The product spacél; x H, is a Banach space with the
norm .
G = [Ba, (U, U) + @o(V, V)] 2

We define now an operatar in H; x H, : the domain ofZ consists of
the vectorsY) € Hy x H, such thau,v € H andA(u — n!v) € H, and
v-n~1Aue H and on such elementg(!) is defined to be

0 I\(u
A 0OJ\v]’
The third step shows that for Siciently large|n|, the range of the
operator((l) ?) - n~1¢ coincides with the set pairé)(such thatf,g €

H, Af € H,; such vectorsé() are dense in the Banach spatex H.. It
follows that the smallest closed extensi@rof is such that

= I 0
(7 —nlo), J:(O |)

admits, for séiciently largein, of an inverses, = (. — n1£)~! which
is linear operator ol x H, satisfying

Al < (1+BIn7Y).

So, there exists a uniquely determing@up {Ti} _co<t<co With 0 as
the infinitesimal generator and such that

Il < expft),

stronghnmy(g) = oT(l) = Ti6() if () € domain ofé (See
—0
Lecture 9).



Lecture 20

1 Cauchy problem for the wave equation (contin-
ued)

Fifth step: If f andg satisfy the conditions of the theorem, i.e., ifo9
Af e H,A\ge H(k=0,1,...), we have

ﬁ—k(;) = ﬁk(;) € HyxHo(k=0,1,...),

ie., G) is in the domain of every power @, So, referring to step 4,
we find that vectors
(v(t, x)) (f(x))
=T,
v(t, X) a(x)
are in the domain of every power 6f :

(Ut X)) T _
7 (v(t, % € Hy xHo(k=0,1,2,..)
Thus, for integrak > 0, u(t, ) is for t fixed, a weak solution of the

equation
Au= 00 with ¥ e Ly(EM)

AKX is an elliptic operator of orderkkand k may be taken arbitrarily
large. We see therefore by the Friidrichs-Lax-Nirenbemgotkm and
Sobolev’s lemma, that(t, x) is C* in x (for fixed t). And the same
statement holds for(t, x).

127
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Since||T¢|| expB(t]) we see that
llut, )1 + (e, )13 < Const exp(Bith {11 11§ + lIgl3)} -

This, combined with the strong continuity d% in t, shows that
u(t, X) and v(t,x) are locally square summable in the product space
(o0 <t < 00)xE™. And we have, for the second order strong derivative
a2,

d2u(t, X) = Au(t, X)
so that 62 + A)u = 2Au, (82 + A)u = (2A)Ku,.
2

Sincea—2 + Ais an elliptic operator in{co <t < c0) x E™, we see
thatu(t, X) is almost everywhere equal to a functiGf? in (t, x).

The proof of the first step is obtained by the

Lemma. Let f,g € H and Afe Ho. Then

N ij
(Af,g)oz—fdlg—;%dx (;ixaf fb'—gd x+fcfg.
i i

And we can also patrtially integrate the second and the tremins
, ' .0 .
on the right, so that the first order derlvatlvesgfri shall be eliminated,

and the integrated terms are nought.

L 0% f
Proof. FromAf € Hy andg € H we see thaa'
OXi0X

-.g is integrable
i

overE™. Thus, by Fubini theorem,

2
ij - Ij
fa 8x.8x.axjgdx 6—I>rpoof - dxmf |<9 j
E™M
At Xl o1 ;9 ag
al dx = f —=dx
f dxx 0T Xl . % %

&1
ij
(oall ot
0% <9xJ

gdx.

amam



1. Cauchy problem for the wave equation (continued)

= Kk1(61, €1, X2, . . ., Xm) + K2(01, €2, X2, . . ., Xm) + K3(d1, €1, X2, . . ., Xm)
By Schwarz's inequality, we haje[ dx. ... dxnki|
3f(51, X2. .., Xm)?
<nz]lfd ox E fde  dXlg(51. X2 Xm)?)?
+ similar terms pertaining te; instead of;.
Since
fgzdxzfdxlf f |g(X1aX2a---’Xm)de27~~~aden9
fl—lzdx fdxlf fH_(XL X, .. Xm)2dX . . . A,
=
we see there emsté(”)} and{e n) } such that
I|m fk (g( ),6(1”),x2,...,xm)dx2...dxm =0.
5 —00
of ag
On the other hand, smcbga— g € Ho, we see that
j X1
5I|m sz(sl, 01, X2, ..., XWOdX2, o OXm
1—00
£1—>—00
ij of 09 l of
= — dx =k
f{ E)xJ 0Xq axl 0X; ax Jldx=ke
Em
is finite, Thus,
f o a oo gdx=ke+ I|m f ka(el”, 60, %o, ..., X)dXe . .. dXm
X

8 —)00

111
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Hence
5
i‘l j#1
is integrable overoco < X < oo(i = 2,...,m). o
Hence

ks = 5@ f dx.. dxmk3(s(”),6(1”), Xo - -+ Xm)

—>—00

(n)

(n)
— 1 IJ
i ool fox | e
(n) T (n) i,j#1
112 However
5(”)
...... dX _ |]
{ f lfz <9x.<9x,J
(n) i,j#1
5(”) 5
Xo=02
of ag
Xm —g] +f_a21__
~(nf)‘ Xo=¢&2 5 GXJ 6X2
5(")
8a21 8f
- —gdxldxz
J % (9XJ ‘ (n) 0 Ijﬂza Xi0X;

we have

5(") -
‘f dxs.. dxm 612’7ng1
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fg dxdxs. . ]

2 1 1)
and|g|, there eX|st§(2), )

<nZ(de1dX3,. d)(fn‘

2
and so, by the integrability oB™ of g—:

j
(|1I)m fdx3 dxmf

uniformly with respect t@; ande;.
We have also

such that
x2=61(1)

dX]_ =0
ax; ]X2=£2(1)

5(”)
lim lim fdx3 - 0% dxq
5(”)_>00 52—)00 ()

(n)

o2 .
cof ag o9& og
2299 Y9 Y
f[ & OXj 0%y 0% GdeXZ
g2
2 0f 09 0a® og
= —— - ———g]d
f( o OXj 0%y 0% axjg X
Em
Therefore

i of ag dall 8f
A s | |
f ax.axJ |o;12 8x, 0X; |o;lz X axJ

O )
+ lim lim fdx;; - dXm 0 ﬁ). 12 a—ajgdxldxz

5(n)—>c>o 5(1 —00

(n) (1) %

——00 g5 —>—00

Repeating the process, we get the Lemma.
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Lecture 21

1 Integration of the Fokker-Planck equation

We consider the Fokker-Planck equation 114
au(t, x)
5 =AUt x), t=>0
(AD) = — (Vo9& (9 f (%) - ——(g(X)b'(X)f(X))

m ax'c')xl \/_6 X

in a relatively compact subdomaiy(with a smooth boundary) of an ori-

entedn-dimensional Reimannian space with the metr# = g;j (X)dx

dx. As usual the volume element Ris defined bydx = /g(x)dx!
--dX". whereg(x) = det@i;(x)). We assume that the contravariant ten-

soral(x) is such thaell&¢; > 0 for 2 & > 0,& real. The functions
=1
obey, for the coordinate transformatmn—> X, the transformation rule

%X
<9x'<<9xs

n 23 k ks
(%) = b+ ().

We assume thagj(x), & (x) andb'(x) areC™ function of the local
coordinatesc = (xt- - - x™.

Suggested by the probabilistic interpretation of the FolManck
equation due t@\. Kolmogorov, we shall solve the Cauchy problem in
the spacd.1(R).
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Green'’s integral formula:

Let A* be the formal adjoint oA,

A IJ()ax'axl I( )ﬂ

Let G be a subdomain dR with a smooth boundaryG. Then we
obtain by partial integration Green’s formula:

f thOY(AH () = FOI(A h)(x)}dx
G

ijéiggﬁﬁﬁ_vaﬁwuﬂamn%ﬁumuws

G

. f h )
+ f \/gﬁa”(x)(h(x)%—f(x)%)cosh,x‘)ds
G

115 wheren denotes the outer normal at the poindf G andds denotes
the hypersurface area 66.

Remark. If al(x) cosf, X) cosf, x)) > 0 atx € G we may define the
transversal (or conormal) directiorat x by

dx
Va(¥)aii (x) cosf, xi)

—dv(i=12...,m)

so that we hava/g(x)dj(x)(h(x)g—); - f(x)g—;)cosh, x)dS
of oh
= (h(x)a - f(X)a_v)dS'

We considerA to be an additive operator defined on the totality of
D(A) of C* functions f(x) in RUIR with compact supports satisfying
the following boundary condition:

0 al
9092 (05 - cos ) + Jgg_xj N

.cosf, X)f(x) = 0.
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(WhenR is a subdomain of the euclidean spd€® and A is the
LaplacianA the above condition is nothing but the co called “reflecting
barrier condition”)

of
% - Y
sincev andn coincide in this case)D(A) is dense in the Banach space
L1(R).
To discuss the resolvent é&fwe begin with 116

Lemma 1. Let f(x) € D(A) be positive (or negative) in domain GR
such that {x) vanishes oG - dR, (i.e., {X) vanishes on the part of
0G not contained iMR). Then we have the inequality

f(Af)(x)dxs 0 [resp fAf(x)dxz 0].
G

G

Proof. Takingh = 1 in Green’s formula and remembering the boundary
condition onf(x), we obtain

f(Af)(x)dx = f %ds
G

dG-0R
<O.
i
Corollary. For f € D(A) we have for any > 0 || f —a AT ||| f ||

Proof. Leth(x) = 1, -1 or 0 according a$(x) is> 0,< 0 or= 0. Since
the conjugate space bi(R) is the space of essentially bounded function
k(x) with the norm

Il k"= essential sufik(x)|,
xeR

we have

I f—oflAf||th(x){f(x)—a/‘lAf(x)}dx
R
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:flf(x)ldx—a‘lzf(Af)(X)dX

i B

whereP (resp.N) is connected domain in which(x) > 0 (resp.< 0)
such thatf (x) vanishes odP(resp.oN). m|

Lemma 2. The smallest closed extensiamf A exists and for any > 0
the operator(l — o~1A) admits of a bounded inverse, 3 (I —atA)™
with norm< 1.

Proof. The existence of follows from Green’s formula. For iffi} €
D(A) be such that strong liffk = 0, strong limAfg = h, then fore €
2°(R),

lim f {oAf — fA"o) dx = 0, (or)
R

f¢phdx: 0. Soh=0.

The other part of the lemma follows from the corollary of leenm
. O

Lemma 3. A is the infinitesimal generator of a semi-groupi L1(R)
if and only if for syficiently largea the range{(l —a 1A f, f € D(A)} of
the operator(l — a1A) is dense in k(R). Moreover, if this condition is
satisfied, then ,Jis a transition operator, i.e., if () > Oand f € L1(R),
then(J, f)(X) > 0 and

Rf (3 F)(9dlx = Rf f(x)dx

Proof. The first part is evident. Then latter part may be proved as fol
lows: For anyg(x) > 0 of L1(R) there exists a sequen¢&(x)} c D(A)
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such thas—lim f, = f exists ands—lim(fy—a *Af) = f—a Af = g.
By the boundary condition of, we have

f(fk — o tAf)dx = f fidx
R R

(Puth(x) = 1 in Green’s formula). So in the limit we have

fgdx:ffdx
R

Also, by the Corollary to Lemmid 1,

f|fk—a/_lAfk|dXZf|fk|dX,
and hence f|g|dxzf|f|dx

Therefore by the positivity ofj(x) 118

ff(x)dx:fg(x)dx:flg(x)ldxzflf(x)ldx

proving thatJ, is a transition operator. O

Therefore the semi-group

Tiu = stronglim exp(tAJ,)u

a— 00

= stronglim exp(at(J, — 1)u)

a—00

is a semi-group of transition operators.






Lecture 22

1 Integration of the Fokker-Planck equation
(Continued)

Before going into the proof of the lierentiability of the operator-theo-119
retical solutionu(t, X) = (T{u)(x) we shall discuss the question of the
denseness of the range of the set

{1 =o' f. f e D(A)}.

If the range of [ — a1A) were not dense ih1(R), there will exists
he M(R) = L1(R)*, h # 0 such that

f(| — o 1A)f.hdx=0, f € D(A).
R

his a weak solution of the equatioh£ a~1A*)h = 0. Sinceh € L»(R)
andA* is elliptic, his almost everywhere equal to a boundd solution

of (I — @ A*)h = 0. Let{R} be a monotone increasing sequence of
domainsc R with smooth boundary such thaRy tends todR very
smoothly. Then we have

O:fh(l —a‘lA)fdx—ff(l — o 1A")hdx
Rk R

—al f(hf — fA*h)dx
R

139
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f\/_”( ——f—)cosh x)dS

J
+f(a‘/_dj \/_b']cosh ¥) f(h(x)ds} .
Rk

By the boundedness bfand the boundary condition di we have

I!iiwgof{fdlaxj ( \/_dj \/_b'] }cosh,xi)hd5=0.

[

120 Thereforeh must satisfy the boundary condition

lim f NGEL faa—:j cosf, X)dS = 0 for everyf € D(A).
ORm

Such a bounded solutiamof (I - o 1A")h = 0 is identically zero
and hencé is the infinitesimal generator of a semi-grotiggn L1(R) in
either of the following cases:

() Ris compact (without boundary).

(i) Ris a half-line ir a finite closed interval on the real line afg=
d?/dx.

Proof. (i) At a maximum (or minimum) pointx, of h(x) we must
haveA*h(x,) < 0 (resp.> 0) so that the continuous solutidix)
of A"h = ah cannot have either a positive maximum or a negative
minimum.

(i) The boundary condition foh is g—: = 0 and the general solution
of A*h = ahis
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h = CeVe* — Cye Vax
dh

&ch\/EX+C2\/E—e‘/EX

- h o
so that the vanishing 037( at two points implies that; = C, = 0. And

_ h s .
the vanishing Oﬁll_x at one point implies eithe€; = C, = 0 orC; and
C, # 0. The latter contingency contradicts the boundedness of

, 0
A parametrix for the operator _(E + A*)

Let I'(P,Q) = r(P,Q)? be the square of the shortest distance be-
tween the point® andQ according to the metridr? = a;dxdx, where
(aij) = (@7)71. We have the
Theorem. For any positive k we may construct a parametrix (f, Q, 121
0
t—1)for —(— + A*) of the form
or

k
He(P,Q.t—7) = (t—7)"™? exp{— Z((Ft)’ S)) D uP Q- T)‘} :
’ i=0

where y(P, Q) are C* functions in a vicinity of P and;(P,P) = 1, we
have

( ; AB) H(P,Q,t — 1) = (t — 7)k™2 exp(—

T

I'(P.Q)
4t -1)

) C(P.Q)

Ck(P, Q) being C* functions in a vicinity of P.

Proof. We introduce the normal coordinateg® of the pointQ = (x*,
..., XM in suitable neighbourhood &.

1(d
v =@l ()

Letdr? = a;j(y)dy dy’. We first show that when we apply the oper-

ator X
9 9
A*:A — y_- I_-
V' =a 8yi6+ﬂ6y'+e
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on a functionf (', y) (I is function ony) we have,

0% f ?f g of
A =A5m +Y grge + Mar +NO

L9%f Of
Nf = IJ i T I—. f
()=« oyidy +’88y'+e

O

(The diterentiations have to be performed as tholigdndy were
independent variables). To prove this, we need the welsknfmrmu-

lae:

I(P.Q) = aij(O)y'y’ 1)
ij(y)y = aij(O)y!.
122 Define
TS L
ay YTt arayi
Then
dydyl T Gy \ayi Tar ayi) T ar\ayl T ar ay; ) ay
0% N 9 f ar ot 0°T
CAyayl  dyor gyl or gy dyi
1 ar 1 or o
c’)Fc’)yJ ay' oz ayl oy
So, by (1)
2
—f f
ded J +,B ay +e
;O oL\ & f jor o%f of
20/ + M— + N(f
( oy 8y1)8F2+ ayiagar T Mar N
2
—41"6 f +4y0‘ +Mﬂ+N(f)

aroy” ~ or
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Now applying the above formula tdyx, we have

[
1=
N Rew!

(t _ T)i—Z—m/Z exp(_

AR 2= r))”‘

- 2exp(- et fy 2+ Tl - N

whereu_; = 0, N(u_;) = 0. Since

9 : i r m . T
Tgeth= 2 e~ g -2+ a5s)

the theorem will be prove d if we can choagesatisfying the relations

j m . M
y”g—uy(', + (—5 +i+ Z)Ui = N(Ui-1),
Ui (P, Q) beingC®* in a vicinity of P with u_; = 0 andu,(P,P) = 1. To 123
see that we may choose sughputy” = n? sand transform the equation
as an ordinary dierential equation irs containing the parameters

du m . Ny
Tt (_E +i+ Z)U' = N(Ui-1).

Choose .

ool [ -3+ H)od

o

U, isC* nears = o, because of the order relatidh = 2m+ o(s). Define
u; successively by the formula

S
u(P,Q) = u.s? f ST IN(UiZ)ds( = 1,2, ..., K).






Lecture 23

1 Integration of the Fokker-Planck equation
(Contd.) Differentiability and representation
of the operator-theoretical solution

f(t. ) = (Tt F)(%), f € Li(R)

Lemma 1.1. Let h(x,7) be C* in (x,7)X € Rt > 7 > 0, and vanish 124
outside a compact coordinate neighbourhood of P (independer).
Then

f F(y. ) h(y, dy = f £(y. o)h(y. o)y
R

f dr f {a F(y.7)-h(y. ) + £y, )ah(y‘)} y

whered, f(y, 1) = strongélirg{f(y,r +6) - f(y, 7))o %

Proof. f(y, ) h(y, ) is weakly diferentiable with respect toin L1(R)
and the weak derivative is

(9h(y, 7)

9 F(y, ) h(y, 7) + £(y. 7)

145
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Corollary. We have

f (y. ) (y, dy = f £(y. o)h(y. o)y
R R

t ohy,7)
+fodr{fRf(y,T)( - +Ayh(y,r))}dy

Proof. By Lemma[LlL, the right hand side is

t
- j; dT{ f(y.7) (__ahg: D _ Khy. T))

— h(y.7) (0, Ty ) = AT, t)} dy

o dh(y, 7
= fo dr j; {a,f(y,r)h(y,r)+f(y,r) = }dy

t —
+ fo dr fR {F(.ASh(Y. 7) - hy, DA F(y, )} dy.

125 We have, by the definition of the smallest closed extension

[ {76980 ) - h A 6. ) dy
= im [ (DR - by Ay ) dy

wheres—Ilim fi = f, s—lim Ay f, = Af. The integral on the right is zero,
by Green'’s formula and the fact tHawvanishes near the bounda¥iR.
We take forh(y, 7) the function

h(yv T) = h(Q’ T) = Hk(Pv Q?t +é&— T)6(P7 Q)6(P0a P);

hereP, is a point ofR, £ a positive constant and{P, Q) = «(r(P, Q))
wherea(r) is C® function ofr such that 0< a(r) < 1,a(r) = 1 for
r <2 pand= 0forr > 5. n > 0 is chosen so small that the poit



1. Integration of the Fokker-Planck equation (Contd.) .... 147

satisfyings(Po, P) 6(P, g)0 are contained in a compact coordinate neigh-
bourhood ofP,. We then have

f(Q’ t)Hk(P’ Q’ ‘9)6 (P07 P) 0 (Pv Q)dQ
=f(Q,0)H(P.Q,t + £) 6 (Po, P)6 (P, QdQ  (2)

t
_fdef(Q,T)Kk(P,Q,Hg—T)dQ
where

Kk(PRQt+e—-1) = —(% +A*Q)Hk(P,t+g—5)(P0, P)s (P, Q)

If kis chosen such th&t— g > 2, then by lemmBETD K (P, Q,t +

g — 1) is for r(Po, P) < 2715, devoid of singularity even if + ¢ — 7 = 0.
We now show that the left side of (2) tendsag 0 to f(P,t) in the
vicinity of Pq.

fR 5(Po, P)APF(Q. O HK(P, Q. £)6(P. Q)dQ
_§(PY f H(P. Q.£) 6 (P. Q)dQ

<C

[ 11(Q.1) - f(P, t)|dP]|Hk(P, Q. £)dQ
(Po,Q)<2y7 \ r(Po,P)<n
2

5C1f~~~f(f|f(z+s”a°12§,t)— f(z,t)|dzex{-%]d§1.--dgn

(Z---ZMand & +y5, ..., Z" + y™ are coordinates d? andC,C, are 126
constants). The inner integral on the right converges 90, to zero

boundedly by Lebesgue’s theorem.
There exists therefore a sequenieg with & | 0 such that

(P im [ H(P. Q) 6(R. QdQ= [ F(Q.OH(R. Q0P Qdy
t
- [ o [ 1Q@0K(RQ1-1dQ
0 R
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almost everywhere with respect®ain the vicinity of P,. Hencef (P, t)
may be considered to be continuouslyfelientiable once ih > o and
twice in P in vicinity of Py if

im fR HK(P, Q, £)5(P, Q)dQ

is positive and twice continuously féiérentiable inP in the vicinity of
Po. Now,

. T m/2 m
Iﬂf“'k(ﬁ Q.&)6(P,QdQ = Iiﬂgfg r(%?ss( x|

for £ > 0. Hence, putting
dS = oy )Yy y = etel i [ H(P.Q.)0(R QI
“tim [ [ expeay (e o @hdet o ce”

glo
—-<el/2£<S

= 7"2(p((0))? ((0))?
= 72(g(P)) /(a(P))*?

127 whereg(P) = detG;j;j(P)) anda/(P) = det(;j(P)).
Thus in the vicinity ofP,, f(P,t) is equivalent to

gy Lo [ 1(QOHUP.Q.DS(R.QQ
—fthff(q,T)Kk(P,Q,t—T)dQ
6] R

So it is diferentiable once ihand twice inP. Moreover, we have
|f(P,t)] < Const|f(Q,0). Therefore there exisigP, Q,t) bounded in
Q, such that

f(P.t) = f p(P.Q.H1(Q.0)dQ
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