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Lecture 1

1 Introduction

The analytical theory of one-parameter semi-groups deals with the ex- 1

ponential function in infinite dimensional function spaces. It is a natural
generalization of the theorem of Stone on one-parameter groups of uni-
tary operators in a Hilbert space.

In these lectures, we shall be concerned with the differentiability
and the representation of one-parameter semi-groups of bounded lin-
ear operators on a Banach space and with some of their applications to
the initial value problem (Cauchy’s problem) for differential equations,
especially for the diffusion equation (heat equation) and the wave equa-
tion.

The ordinary exponential function solves the initial valueproblem:

dy
dt
= αy, y(0) = C.

We consider the diffusion equation

∂u
∂t
= ∆u,

where∆ =
m
∑

i=1

∂2

∂x2
i

is the Laplacian in the Euclidean m-spaceEm; we

wish to find a solutionu = u(x, t), t ≥ 0, of this equation satisfying the
initial condition u(x, 0) = f (x), where f (x) = f (x1, . . . , xn) is a given

1



2 1. Lecture 1

function ofx. We shall also study the wave equation

∂2u

∂t2
= ∆u,−∞ ≤ t ≤ ∞

with the initial data

u(x, 0) = f (x) and
(∂u
∂t

)

t=o = g(x),

f andg being given functions. This may be written in the vector form2

as follows:
∂

∂t

(

u
v

)

=

(

0 I
∆ 0

)(

u
v

)

, v =
∂u
∂t

with the initial condition
(

u(0)
v(0)

)

=

(

f (x)
g(x)

)

.

So in a suitable function space the wave equation is of the same form
as the heat equation - differentiation with respect to the time parameter
on the left and another operator on the right - or again similar to the

equation
dy
dt
= αy. Since the solution in the last case is the exponential

function, it is suggested that the heat equation and the waveequation
may be solved by properly defining the exponential functionsof the op-

erators∆ and

(

0 I
∆ 0

)

in suitable function spaces. This is the motivation

for the application of the semi-group theory to Cauchy’s problem.
Our method will give an explanation why in the case of the heat

equation the time parameter is restricted to non-negative values, while
in the case of the wave equation it may extend between−∞ and∞.

Before going into the details, we give a survey of some of the ba-
sic concepts and results from the theory of Banach spaces andHilbert
spaces.



Part I

Survey of some basic
concepts and results from the

theory of Banach spaces

3





2. Normed linear spaces: 5

Definition. A set X is called alinear spaceover a field K if the following 3

conditions are satisfied:

1) X is an abelian group (written additively).

2) There is defined a scalar multiplication: to every elementx of X and
eachα ∈ K there is associated an element of X, denoted byαx, such
that

(α + β)x = αx+ βx, α, β ∈ K, x ∈ X

α(x+ y) = αx+ αy, α ∈ K, x, y ∈ X

(αβ)x = α(βx)

1x = x, 1 ∈ Kis the unit element of K.

We shall denote by Greek letters the elements ofK and by Roman
letters the elements ofX. The zero ofX and the zero ofK will both be
denoted by 0. We have 0.x = 0.

In the sequel we consider linear spaces only over the real number
field or the complex number field. A linear space will be said tobe real
or complex according as the field is the real number field or thecomplex
number field. In what follows, by a linear space we always meana real
or a complex linear space.

Definition . A subset M of a linear space X is called alinear subspace
(or a subspace) if whenever x, y ∈ M andα, β ∈ K2 thenαx+ βy ∈ M.

2 Normed linear spaces:
4

Definition. A linear space X (real or complex) is called anormed linear
spaceif, for every x∈ X there is associated a real number, denoted by
||x||, such that

i) ||x|| ≥ 0 and ||x|| = 0 if and only if x= 0.

ii) ||αx|| = |α|||x||, (α is a scalar and|α| is the modulus ofα).

iii) ||x+ y|| ≤ ||x|| + ||y||, x, y ∈ X (triangle inequality).||x|| is called the
norm of x.
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A normed linear space becomes a metric space if the distanced(x, y)
between two elementsx andy is defined byd(x, y) = ||x − y||. We say
that a sequence of elements{xn} of X converges stronglyto x ∈ X, and
write s− lim

n→∞
xn = x (or simply lim

n→∞
xn = x), if lim

n→∞
||xn − x|| = 0. (This

limit, if it exists, is unique by the triangle inequality).

Proposition. If lim
n→∞

αn = α(αn, α ∈ K), s− lim
n→∞

xn = x and s− lim
n→∞

yn =

y, then s− lim
n→∞

αnxn = αx and s− lim
n→∞

(xn + yn) = x+ y.

Proof.

||(xn + yn) − (x+ y)|| = ||(xn − x) + (yn − y)||
≤ ||(xn − x)|| + ||(yn − y)|| (Triangle inequality)

→ 0.

||αnxn − αx|| ≤ ||αx− αnx|| + ||αnx− αnxn||
= |α − αn|||x|| + |αn|||x− xn||
→ 0. 2

Proposition . If s − lim
n→∞

xn = x then lim
n→∞
||xn|| = ||x||, i.e., norm is a5

continuous function.

Proof. We have, from the triangle inequality,
∣

∣

∣||x|| − ||y|| ≤ ||x− y||;

now takey = xn and letn→ ∞. �

3 Pre-Hilbert spaces

A special class of normed linear spaces - pre-Hilbert spaces-will be of
fundamental importance in our later discussion of differential equations.
These normed linear spaces in which the norm is defined by scalar prod-
uct.

Definition . A linear space X is called apre-Hilbert spaceif for every
ordered pair of elements(x, y)(x, y ∈ X) there is associated a number
(real number if X is a real linear space and complex number if Xis a
complex linear space) such that
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i) (x, x) ≥ 0 and(x, x) = 0 if and only if x= 0.

ii) (αx, y) = α(x, y), for every numberα.

iii) ( x, y) = (y, x)[(y, x) denotes the complex conjugate of(y, x).]

iv) (x+ y, z) = (x, z) + (y, z) x, y, z∈ X.

(x, y) is called the scalar product between x and y.
If we define||x|| =

√
(x, x), a pre-Hilbert space becomes a normed

linear space, as is verified easily using Schwarz’s inequality proved be-
low

Proposition. i) |(x, y)| ≤ ||x||||y|| (Schwarz’s inequality)

ii) ||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2) (Euclidean property)

Proof. (ii) is easily verified. To prove (i), we observe that, for every real 6

numberα,

0 ≤ (x+ α(x, y)y, x+ α(x, y)y)

= (x, x) + 2α|(x, y)|2 + α2|(x, y)|2(y, y).

This quadratic form inα, being always non-negative should have
non-positive discriminant so that

|(x, y)|4 − ||x||2||y||2|(x, y)|2 ≤ 0.

If ( x, y) = 0, (i) is obviously satisfied; if (x, y) , 0, Schwarz’s in-
equality follows from the above inequality. �

4 Example of a pre-Hilbert space

Let Rbe a domain in Euclideanm-spaceEm. LetDk(R) denote the set of
all complex valued functionsf (x) = f (x1, . . . , xn) which are of classCk

in R(i.e., k times continuously differentiable) and which have compact
support. These functions form a linear space with the ordinary function
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sum and scalar multiplication. Define the scalar product between two
functions f andg by

( f , g)k =

∑

|n|≤k

∫

R
D(n) f (x)D(n)g(x)dx , 0 ≤ k < ∞,

wheren = (n1, . . . , nm) is a system of non-negative integers,|n| = n1 +

+nm and

D(n)
=

∂|n|

∂xn1
1 ∂xn2

2 · · · ∂xnm
m

5 Banach spaces

Definition . A normed linear space is called aBanach spacesif it is
complete in the sense of the metric given by the norm.

(Completeness means that every Cauchy sequence is convergent: if7

{xn} ⊂ X is any Cauchy sequence, i.e., a sequence{xn} for which ||xm −
xn|| → 0 as m, n→∞ independently, then there exists an element x∈ X
such thatlim

n→∞
||xn − x|| = 0.x is unique).

6 Hilbert space

Definition . A pre-Hilbert space which is complete (considered as a
normed linear space) is called a Hilbert space.

The pre-Hilbert spaceDK(R) defined in the last example is not com-
plete

7 Example of Banach spaces

1) C[α, β]: Let [α, β] be a closed interval−∞ ≤ α < β ≤ ∞. LetC[α, β]
denote the set of all bounded continuous complex-valued functions
x(t) on [α, β]. (If the interval is not bounded, we assume further that
x(t) is uniformly continuous). Definex+ y andαx by

(x+ y)(t) = x(t) + y(t)
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(αx)(t) = α.x(t).

C[α, β] is a Banach space with the norm given by

||x|| = sup
t∈[α,β]

|x(t)|

Converges in this metric is nothing but uniform convergenceon the
whole space.

2) Lp(α, β). (1 ≤ p < ∞). This is the space of all real or complex val-
ued Lebesgue functionsf on the open interval (α, β) for which | f (t)|p
is Lebesgue summable over (α, β); two functions f andg which are 8

equal almost everywhere are considered to define the same vector of
Lp(α, β). Lp(α, β) is a Banach space with the norm:

|| f || =























β
∫

α

| f (t)|pdt























1/p

The fact that|| || thus defined is a norm follows from Minkowski’s
in-equality; the Riesz-Fischer theorem asserts the completeness of
Lp.

3) L∞(α, β): This is the space of all measurable (complex valued) func-
tions f on (α, β) which are essentially bounded, i.e., for everyf ∈
L∞(α, β) there existsa℘ > 0 such that| f (t)| ≤ ℘ almost everywhere.
Define|| f || to be the infimum of such℘.

(Here also we identify two functions which are equal almost every-
where).

8 Example of a Hilbert space

L2(α, β) : L2(α, β) (see example (2) above), is a Hilbert space with the
scalar product

( f , g) =

β
∫

α

f (t)g(t)dt.
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9 Completion of a normed linear space

Just as the completeness of the real number field plays a fundamen-
tal role in analysis, the completeness of a Banach space willplay an
essential role in some of our subsequent discussions. If we have an in-
complete normed linear space we can always complete it; we can imbed
this space in a Banach spaces as an everywhere dense subspaceand this
Banach spaces is essentially unique. We have, in fact, the

Theorem.Let X0 be a normed linear space. Then there exists acom-
pletenormed linear space (Banach spaces ) X and a norm preserving
isomorphism T of X0 onto a subspace X′0 of X which is dense in X in9

the sense of the norm topology. (That T is a norm preserving isomor-
phism means that T is one-to-one, T(αx0 + βy0) = αT(x0) + βT(y0) and
||x|| = ||T(x)||). Such an X is determined uniquely upto a norm preserv-
ing isomorphism

Sketch of the proof: The proof follows the same idea as that utilized
for defining the real numbers from the rational numbers. LetX be the
totality of all Cauchy sequences{xn} ⊂ X0 classified according to the
equivalence:{xn} ∼ {yn} if and only if lim

n→∞
||xn−yn|| = 0. Denote by{xn}

the class containing{xn}.
If x̃, ỹ ∈ X and x̃ = {xn}, ỹ = {yn}, define x̃ + ỹ = {xn + yn}, αx̃ =

{αxn}, ||x̃|| = lim
n→∞
||xn||. These definitions do not depend on the particular

representatives for ˜x, ỹ respectively. Finally ifx0 ∈ X0 definesT(x0) =
{xn} where eachxn = x0.

10 Additive operators

Definition. Let X and Y be linear spaces over K. Anadditive operator
from X to Y is a single-valued function T from a subspace M of X into
Y such that

T(αx+ βy) = αT x+ βTy, x, y ∈ M, α, β ∈ K.

M is called the domain of T and is denoted byD(T); the set{z|z ∈ Y
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such that z= T x for some x∈ D(T)} is called the range of T and is
denoted byW(T).

If Y is the space of real or complex numbers (according asX is a
real or a complex linear space) andT is an additive operator fromX to
Y we say thatT is anadditive functional.

Definition. Let X and Y be two normed linear spaces. An additive op-10

erator T is said to becontinuousat x0 ∈ D(T) if for every sequence
{xn} ⊂ D(T) with xn → x0 we have T xn → T x0. An additive operator
is said to becontinuous(on D(T)) if it is continuous at every point of
D(T). It is easy to see that an additive operator T is continuous on
D(T) if it is continuous at one point x0 ∈ D(T).

Proposition . An additive operator T: X → Y between two normed
linear spaces is continuous if and only if there exists a realnumber
℘ > 0 such that

||T x|| ≤ ℘||x|| for every x∈ D(T)

Proof. The sufficiency of the condition is evident, for ifxn→ x0 ||T x0−
T xn|| = ||T(x0 − xn)|| ≤ ℘||x0 − xn|| → 0.

Now assume thatT is continuous. If there exists no℘ as in the
proposition, then there exists a sequence{xn} ⊂ D(T) such that||T xn|| >
n||xn||. SinceT(0) = 0, xn , 0. Defineyn = xn/

√
n||xn||. Then ||yn|| =

1
√

n
→ 0 asn→ ∞; asT is continuousTyn must tend to zero asn→ ∞.

But Tyn =
1

√
n||xn||

T xn and ||Tyn|| =
1

√
n||xn||

||T xn|| >
√

n and soTyn

does not tend to zero. This is a contradiction. �

Let T be an additive operator from a linear spaceX into a linear
spaceY. T is one-one if and only ifT x = 0 implies x = 0. If T is
one-one it has an inverseT−1, which is an additive operator fromY into
X with domainw(T), defined by

T−1y = x i f y = T x.

T−1 satisfies the relationsT−1T x = x for x ∈ D(T) andTT−1y = y 11
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for y ∈ D(T−1) = W(T). If X andY are normed linear spaces,T has a
continuous inverse if and only if there exists aδ > 0 such that||T x|| ≥
δ||x|| for x ∈ D(T).

The sum of two operatorsT and S, with D(T),D(S) ⊂ x and
W(T),W(S) ⊂ Y is the operator (T + S), with domainD(T) ∩ D(S),
defined by:

(T + S)x = T x+ S x.



Lecture 2

1 Linear operators
12

Definition . An additive operator T from a normed linear space X into
a normed linear space Y whose domainD(T) is the whole space X and
which is continuous is called alinear operatorfrom X to Y. The norm
||T || of a linear operator is by definition:||T || = ||T ||X = sup

x∈X,||x||≤1
||T x||. If

Y is the real or complex numbers (according as X is a real or a complex
linear space) the linear operator T is called alinear functionalon X.

So far we have proved the existence of non-trivial linear functionals.
We shall prove the Hahn-Banach extension theorem which willhave as
a consequence the existence of many linear functionals on a normed
linear space.

2 Hahn-Banach lemma

Definition . Let X be a linear space (over real or complex numbers).
A real valued function p on X will be called asemi-group(or a sub-
additive functional) if it satisfies the following conditions:

i) p(αx) = |α|p(x), for eachα ∈ K and x∈ X.

ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Note that these conditions imply that p(x) ≥ 0 for all x ∈ X.

13
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3 Lemma (Hahn-Banach)

Let X be a real linear space andp a semi-norm onX. Let M be a (real)
subspace ofX and f a real additive functional onM such thatf (x) ≤
p(x) for all x ∈ M. Then there exists a real additive functionalF on13

X such thatF is an extension off (i.e., F(x) = f (x) for x ∈ M) and
F(x) ≤ p(x) for all x ∈ X.

Proof. By the application of Zorn’s lemma or transfinite induction,it is
enough to prove the lemma whenX is spanned byM and an element
x0 < M, i.e., when

X = {M, x0} = {x|x ∈ X, x = m+ αx0,m ∈ M, α real , x0 < M}.

The representation of an elementx ∈ X in the formx = m+αx0, (m ∈
M, α real) is unique. It follows that if, for any real numberc, we define

F(x) = f (m) + αc,

thenF(x) is an additive functional onX which is an extension off (x).
We have now to choosec in such a way thatF(x) ≤ p(x), x ∈ X, i.e.,

f (m) + αc ≤ p(m+ αx0).

This condition is equivalent to the following two conditions:


















f
(

m
α

)

+ c ≤ p
(

m
α
+ x0

)

for α > 0

f
(

m
−α

)

− c ≤ p
(

m
−α − x0

)

for α < 0.

To satisfy these conditions, we shall choosec such that

f (m′) − p(m′ − x0) ≤ c ≤ p(m′′ + x0) − f (m′′)

for all m′,m′′ ∈ M. Such a choice ofc is possible since

f (m′) + f (m′′) = f (m′ +m′′)

≤ p(m′ +m′′)

= p(m′ − x0 +m′′ + x0)
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≤ p(m′ − x0) + p(m′′ + x0).

So f (m′) − p(m′ − x0) ≤ p(m′′ + x0) − f (m′′),m′,m′′ ∈ M.
So14

sup
m′∈M

{

f (m′) − p(m′ − x0)
}

≤ inf
m′′∈M

{

p(m′′ + x0) − f (m′′)
}

and we can choose forc any number in between. �

4 Hahn-Banach extension theorem for real normed
linear spaces

Theorem.Let X be a real normed linear space and M a real subspace
of X. Given a (real) linear functional f on M, we can extend f toa (real)
linear functional on the whole space X in such a way that the norm is
preserved:

||F || = ||F ||X = || f ||M .

Proof. Take p(x) = || f ||M ||x|| in the Hahn-Banach lemma. We have
f (x) ≤ p(x) on M and p(x) is subadditive. We then have an additive
functionalF(x) on X which is an extension off with F(x) ≤ || f ||M ||x||
for all x ∈ X. Also−F(x) = F(−x) ≤ || f ||M || − x|| = || f ||M ||x||. Hence

|F(x)| ≤ || f ||M ||x||.

This shows thatF is a linear functional onX and||F ||X ≤ || f ||M . The
reverse inequality,||F ||X ≥ || f ||M , is trivial asF is an extension off . �

5 Hahn-Banach extension theorem for complex
normed linear spaces (Bohnenblust-Sobczyk)

Theorem.Let X be a complex normed linear space and M a (complex)
subspace. Given a complex linear functional f on M we can extend f to
a complex linear functional F on X in such a way that||F ||X = || f ||M .
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Proof. A complex normed linear space becomes a real normed linear15

space if scalar multiplication is restricted to real numbers and the real
and imaginary parts of a complex linear functional are real linear func-
tionals. If f (x) = g(x) + ih(x) (g(x), h(x) real ),g andh are real linear
functionals onM and ||g||M ≤ || f ||M , ||h||M ≤ || f ||M . Since, for each
x ∈ M,

g(ix) + ih(ix) = f (ix)

= i f (x)

= i(g(x) + ih(x))

= −h(x) + ig(x),

we haveh(x) = −g(ix), for x ∈ M.
By the Hahn-Banach theorem for real linear spacesg can be ex-

tended to a real linear functionalG onX with the property||G||X = ||g||M .
Now define

F(x) = G(x) − iG(ix).

F is then a complex linear functional onX. (For complex additivity
notice that

F(ix) = G(ix) − iG(−x) = G(ix) + iG(z) = iF (x)).

F is an extension off ; for, if x ∈ M,

F(x) = G(x) − iG(ix) = g(x) − ig(ix) = g(x) + ih(x) = f (x).

We have now only to show that the norm is not changed. For this,
writes, forx ∈ X, F(x) = reie. ThenE−iθF(x) is real. So

|F(x)| = |e−iθF(x)| = |F(e−iθx)|
= |G(e−iθx)| (= since e−iθF(x)is real).

≤ ||G|| ||e−iθx||
= ||g||M ||x||
≤ || f ||M x.

So ||F ||X ≤ || f ||M and the reverse inequality holds sinceF is an ex-16

tension off . �
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6 Existence of non-trivial linear functionals

We consider some consequences of the Hahn-Banach extensiontheo-
rem; we prove the existence of plenty of linear functionals on a normed
linear space.

Proposition. Let X be a normed linear (real or complex) and xo , 0 be
an elements of X. Then there exists a linear functional fo on X such that
fo on X such that fo(xo) = ||xo|| and || fo|| = 1.

Proof. Let M be the subspace spanned byxo, i.e., M = {x|x = αxo for
some numberα}. Define f (x) = α||xo|| for x = αxo ∈ M. This is a linear
functional onM and|| f ||M = 1. By the Hahn-Banach extension theorem
there exists a linear functionalfo on X which extendsf in such a way
that || fo|| = || f ||M = 1; fo(xo) = f (xo) = ||xo||. �

Remark . For a pre-Hilbert space the existence of such a linear func-

tional is evident; we may takefo(x) = (x,
xo

||xo||
). The additivity of fo

follows from the homogeneity and distributivity of the scalar product.
The continuity offo is a consequence of Schwarz’s’ inequality.

Proposition. Let X be a normed linear space. Let M be a subspace and
xo an element X such that d= inf

m∈M
||xo − m|| > 0. Then there exists

a linear functional fo on X such that fo(x) = 0 for every x∈ M and
fo(xo) = 1.

Proof. Let M◦ = {x|x = m+ αx◦,m ∈ M}. Define f (x) = α for x = m+
αx◦ ∈ M◦(m ∈ M). f is additive onM◦, vanishes onM and f (x◦) = 1.
Also f is continuous onM◦: if α , 0, then

x = m+ αx◦ , 0(m ∈ M), and 17

| f (x)| = |α| = α||x||/||x||
= |α|||x||/||m+ αxo||
= ||x||/||xo − (−m/α)||
≤ d−1||x||(−m/α ∈ M);
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if α = 0, f (x) = 0 and the inequality| f (x)| ≤ d−1||x|| is still valid. If fo
is a linear functional onX which is an extension off , then fo satisfies
the requirements of the proposition. �

7 Orthogonal projection and the Riesz representa-
tion theorem

Definition . Let x and y be two elements of a pre-Hilbert space X; we
say that x is orthogonal to y (written x⊥ y) if (x, y) = 0. If x ⊥ y then
y ⊥ x; if x ⊥ x, then x= 0.

Let M be a subset of a pre-Hilbert space; we denote byM⊥ the set
of elementsx ∈ X such thatx ⊥ y for everyy ∈ M.

Theorem.Let M be a closed liner subspace of a Hilbert space X. Then
any xo ∈ X can be decomposed uniquely in the form xo = m+ n,m ∈
M, n ∈ M⊥. (m is called theorthogonal projectionof xo on M and is
denoted by PM x◦).

Proof. The uniqueness of the decomposition is clear from the fact that
an element orthogonal to itself is zero. To prove the existence of the
decomposition we may assumeM , X andxo < M (if xo ∈ M we have
the trivial decomposition withn = 0). Letd = inf

m∈M
||xo −m||; sinceM is

closed andxo < M, d > 0. Let{mk} ⊂ M be a minimizing sequence, i.e.,
lim
k→∞
||xo −mk|| = d. {mk} is a Cauchy sequence; for

||mk −mn||2 = ||(xo −mn) − (xo −mk)||2

= 2(||xo −mn||2 + ||xo −mk||2) − ||2xo −mk −mn||2
((Euclidean property ))

= 2(||xo −mn||2 + ||xo −mk||2) − 4||xo −
mk +mn

2
||2

≤ 2(||xo −mn||2 + ||xo −mk||2 − 4d2( as
mk +mn

2
∈ M)

→ 2(d2
+ d2) − 4d2

= asm, n→ ∞.

By the completeness of the Hilbert space there exists and element18
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m ∈ X with lim
k→∞
||m− mk|| = 0; in fact m ∈ M, as M is closed. Also

||xo −m|| = d. Write xo = m+ (xo −m). Puttingn = x0 −m we have to
show thatn ∈ M⊥. Let m′ ∈ M. Since, for any realα,m+ αm′ ∈ M we
haved2 ≤ ||xo −m− αm′||2 = ||n− αm′||2 = (n− αm′, n− αm′)

= ||n||2 − α(n,m′) − α(m′, n) + α2||m′||2.

Since||n||2 = d2, this gives, for any realα,

0 ≤ −2αR(n,m′) + α2||m′||2.

SoR(n,m′) = 0 for everym′ ∈ M. Replacingm′ by im′ we have
I m(n,m′) = 0, for everym′ ∈ M. Thus (n,m′) = 0 for eachm′ ∈
M. �

Remark . If xo < M, thenn , 0 and fo(x) = (x,
n

||n||2
) satisfies the

conditions of the last proposition.

Theorem Riesz.Let X be a Hilbert space and f a linear functional on
X. Then there exists a unique element yf of X such that

f (x) = (x, yf )

for every x∈ X.

Proof. Uniqueness:If ( x, y1) = (x, y2) for everyx, (x, y1 − y2) = 0 for 19

everyx; choosingx = y1 − y2 we findy1 − y2 = 0.
Existence:Let M be the zero manifold off , i,e,.,M = {x| f (x) = 0}.

Since f is additive,M is a linear subspace and sincef is continuousM
is closed. The theorem is evident ifM = X. i.e., if f (x) = 0 on X; in
this case we need only takeyf = 0. So supposeM , X. Then there
exists, by the last theorem, an elementy0 , 0 such thatyo is orthogonal
to every element ofM. Define

yf =
f (yo)

||yo||2
Yo.
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yf meets the condition of the theorem. First, forx ∈ M, f (x) = (x, yf )
since f (x) = 0 for x ∈ M andyf ∈ M⊥. For elementsx of the form
x = αy0.

(x, yf ) = (αyo, yf ) =













α,
f (y0)
||y0||2

y0













= α f (yo) = f (αyo)

= f (x).

Since f is linear and (x, yf ) is linear and (x, yf ) is linear inx, to show
that f (x) = (x, yf ) for eachx ∈ X it is enough to show thatX is spanned
by M andyo. If x ∈ X, write, noting thatf (yf ) , 0,

x =
f (x)
f (yf )

yf +

(

x− f (x)
f (yf )

yf

)

.

f (x)
f (yf )

fy is of the formαyo. The second term is an element ofM, since

f

(

x− f (x)
f (yf )

yf

)

= f (x) − f (x)
f (yf )

yf = 0. �

Remark.
|| f || = ||yf ||.



Lecture 3

1 The Conjugate space (dual) of a normed linear
space

Let X be a normed linear space. LetX∗ be the totality of all linear 20

functionals onX. X∗ is a linear space with the operations defined by:

( f + g)(x) = f (x) + g(x) f , g ∈ X∗, x ∈ X

(α f )(x) = α. f (x).

X∗ is a Banach spacewith the norm

|| f || = sup
||x||≤1
| f (x)| ( f ∈ X∗, x ∈ X).

We call the Banach spaceX∗ the conjugate spaceof X.

2 The Resonance Theorem

Lemma Gelfand.Let p(x) be a semi -norm on a Banach space X. Then
there exists a number℘ > o such that

p(x) ≤ ℘||x|| for all x ∈ X

if and only if p(x) is lower semi - continuous. (Lower semi - continuity
means this); for any x◦ ∈ and anyE > 0, there exists aδ = δ(x,E) > 0
such that p(x) ≥ p(xo) − E for ||x− xo|| ≤ δ.

21
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Proof. i) Supposep(x) ≤ ℘||x|| for all x ∈ X, ℘ > 0; then

p(xo) = p(xo − x+ x) ≤ p(xo − x) + p(x)

≤ ℘||x− xo|| + p(x)

≤ p(x) + ǫ, if ||x− x0|| ≤ E/℘ = δ.

ii) Conversely assume thatp(x) is lower semi - continuous.

To prove that there is a℘ > 0 such thatp(x) ≤ ℘||x|| for everyx ∈ X
it is sufficient to show thatp(x) is bounded, say byP1, in some21

closed sphereK of positive radius (K =
{

x| ||x − xo|| ≤ δ
}

. For if
x ∈ X with ||x|| ≤ δ, thenxo andxo + x both belong toK and hence

p(x) = p(−xo + xo + x) ≤ p(−x0) + p(xo + x)

= p(xo) + p(xo + x)

≤ 2℘1;

if x is an arbitrary element ofX

p(x) = p

(

||x||
δ

xδ
||x||

)

=
||x||
δ

p
xδ
||x||

≤ 2P1

δ
||x||

(

as|| xδ
||x||
|| = δ

)

and choose℘ = 2℘1/δ.

Now we assume thatp(x) is unbounded in every closed sphere of
positive radius and derive a contradiction. Let

Ko = {x
∣

∣

∣||x− xo|| ≤ δ, δ > 0};

there exists in interior pointx1 of Ko such thatp(x1) > 1. By the lower

semi - continuity ofp, there exists a closed sphereK1 =

{

x; ||x− x1|| ≤

δ1 < 1, δ1 > 0
}

,K1 ⊂ Ko such thatp(x) > 1 for eachx ∈ K1. By a

repetition of this argument we may choose a sequence of closed spheres
Kn =

{

x; ||x − xn|| ≤ δn < 1/n, δn > 0
}

, n running through all positive
integers, such thatKn ⊂ Kn−1 andp(x) > n for eachx ∈ Kn. Form,m′ >
n, Sincexm, x′m ∈ Kn, we have||xm − x′m|| ≤ ||xm − xn|| + ||x′m − xn|| ≤
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2δn < 2/n; soxn is a Cauchy sequence. SinceX is complete there exists
an x∞ ∈ X such thats− lim

n→∞
xn = x∞. As ||xm − xn|| ≤ δn for m> n, we

have, passing to the limits,||x∞ − xn|| ≤ δn. Sox∞ ∈
∞
⋂

n=1
Kn; this would

mean thatp(x∞) (which is a real number) is greater than every positive
integern, which is absurd. �

The Resonance theorem:Let X be a Banach space andYn(n = 1, 2, . . .) 22

a sequence of normed linear spaces. Let, for eachn, Tn be a linear
operator fromX to Yn. Then the boundedness of the sequences

{

||Tnx||
}

for everyx ∈ X impels the boundedness of the sequence
{

||Tn||
}

.

Proof. For eachx ∈ X, sup
n
||Tn(x)|| is finite as{||Tn(x)||} is bounded.

Definep(x) = sup
n
‖Tn(x)‖; p(x) is a semi-norm onX. p(x) is also lower

semi-continuous since it is the supremum of the sequence of continuous
functions

{

||Tn||
}

. Consequently, by Gelfand’s lemma,p(x) ≤ ℘||x|| (for
some℘ > o) for suchx ∈ X; so ||Tn(x)|| ≤ ℘||x|| for eachn and each
x ∈ X. Thus||Tn|| ≤ ℘. �

Corollary. Let X be a Banach space Y a normed linear space, and
{

Tn
}

a sequence of linear operators form X to Y. Assume that s− lim
n→∞

Tn(x) ∈
Y exists for each x∈ X. If we define Tx = s− lim

n→∞
Tn(x) then T is a

linear operator from X to Y and||T || ≤ lim
n→∞
||Tn||.

T is evidently additive. By the Resonance theorem,||Tn(x)|| ≤ ℘||x||
(℘ > 0); so||T(x)|| ≤ ℘||x||, i.e., T is continuous. Further,||Tnx|| ≤
||Tn||||x||; so ||T x|| ≤ lim ||Tn||||x|. Hence||T || ≤ lim

n→∞
||Tn||.

3 Weak convergence

Definition . Let X be a normed linear space; we say that a sequence.
{xn} ⊂ X converges weakly to x∞ ∈ X (and write wlim

n→∞
xn = x∞) if, for

every linear functional f on X, we havelim
n→∞

f (xn) = f (x∞).
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Proposition. i) w− lim
n→∞

xn, if it exists, is unique.

ii) s− lim xn = x∞ implies w− lim xn = x∞.

(The converse is not true in general).

iii) if w − lim
n→∞

xn = x∞ thenlim ||xn|| ≥ x∞.23

Proof. (i) Let w− lim xn = x∞, w− lim xn = x∞,, x′∞. By the Hahn
-Banach theorem there exists a linear functionalf on X such that
f (x∞ − x′∞) , 0 i.e., f (x∞) , f (x′∞). But by the condition of weak
limit we must havef (x∞) = lim

n→∞
f (xn) = f (x′∞).

(ii) This follows form the inequality:

| f (x∞) − f (xn)| = f (x∞ − xn) ≤ || f || ||x∞ − xn||,

for eachf ∈ X∗.

(iii) Let fo ∈ X∗ with || f || = 1 and fo(x∞) = ||x∞||.
Then

||x∞|| = fo(x∞) ≤ lim | fo(xn)|
≤ lim || fo|| ||xn||
= lim

n→∞
||xn||.

�

4 A counter-example

We shall now show by an example that weak convergence does notim-
ply strong convergence in general. Consider the sequence{sinnπt} in
L2(0, 1) (real). This sequence converges weakly to zero. Since, by
the Riesz theorem, any linear functional is given by the scalar prod-

uct with a function we have to show that
1
∫

◦
f (t) sinnπtdt → 0, for each
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f ∈ L2(0, 1). But By Bessel’s inequality,

∞
∑

n=1

∣

∣

∣

∫ 1

0
f (t) sinnπtdt

∣

∣

∣

2 ≤
∫ 1

0
| f (t)|2dt;

so
1
∫

0

f (t) sinnπtdt → 0 asn→ ∞. But {sinnπt} is not strongly conver-

gent, since

|| sinnπt − sinmπt||2 =
∫ 1

0
| sinnπt − sinmπt|2dt

= 2 for n , m.





Lecture 4

1 Local weak compactness of a Hilbert space
24

Theorem.Let{xn} be a bounded sequence of elements of a Hilbert space
(i.e., ||xn|| ≤ C < ∞, n = 1, 2, . . .); then we can choose a subsequence of
{xn} which converges weakly to an element of X.

Proof. Let M be the closed linear space spanned by{xn}. (M is the clo-
sure in the sense of the norm of the set of all finite linear combinations
∑

αi xi of the elements{xi }). M is separable, there exists a countable set
of elements{yn} which is dense inM. We may take for example, the ra-
tional linear combinations of{xi} if X is real and ifX is complex, linear
combinations of{xi}with coefficients of the formp+iq, p, q rational. �

For eachyk from {yn} the sequence
{

(xn, yk)
}

is bounded ;|(xn.yk)| ≤
||xn||||yk|| ≤ C||yk||. By the Bolzano - Weierstrass theorem and a diagonal
process we can find a subsequence{x′n} of {xn} such that

{

(x′n, yk)
}

con-
verges for everyk. Actually {(x′n, z)} converges for eachx ∈ X. To prove
this, letz = y + ω wherey = PMz, ω ∈ M⊥. Then (xn, z) = (xn, y) and
we have to prove that{(xn, y)}(y ∈ M) is convergent. We have

|(xn′ − xm′ , y)| = |(xn′ − xm′ , y− yk + yk)|
≤ |(xn′ − xm′ , yk)| + |(xn − xm., y− yk)|
≤ |(xn′ − xm′ , yk)| + ||xn − xm., y− yk||
≤ |(xn′ − xm′ , yk)| + 2C||y− yk||.

Since{(xn, yk)} is convergent and{yk} is dense inM, it follows that 25

27
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(xn, y) is a Cauchy sequence; so{(xn, y)} is convergent. Defineg(z) =
lim
n→∞

and | f (z)| = |g(z)| = lim
n′→∞

|(xn., z)| ≤ C||z||, f (z) is continuous. By

the Riesz theorem there exists and elementx∞ ∈ X such thatf (z) =
(z, x∞) for eachz ∈ X. Since limn′ → ∞(xn, z) = (x∞, z) for eachz ∈
X,w− lim

n→∞
x′n = x∞ (by Riesz’s Theorem)

We mention without proof thatLp(α, β), 1 < p < ∞ is locally
weakly compact. ButL(α, β), L∞(α, β) andC[α, β] are not locally weak-
ly compact.

We next prove a theorem which will be needed in the study of
Cauchy’s problem.

2 Lax-Milgram theorem

Let B(u, v) be a bilinear functional on a real Hilbert spaceX such that

(i) there exists a℘ > 0 such that|B(u, v)| ≤ ℘||u||||v|| for all u, v ∈ X,

(ii) there exists aδ > 0 such thatδ||u||2 ≤ B(u, u) for eachu ∈ X.

Then there exists a linear operatorS from X to X such that

(u, v) = B(u,S v)

and||S|| ≤ δ−1.

Proof. Let V be the set of elementsv for which there exists an element
v∗ such that (u, v) = B(u, v∗) for all u ∈ X. (V is non-empty; 0∈ V).26

v∗ is uniquely determined byv. For, if w ∈ X be such thatB(u,w) = 0
for all u, thenw = 0 asδ||w2|| ≤ B(w,w) = 0 or ||w|| = 0. V is a linear
subspace. We have an additive operatorS with domainV, defined by
S v= v∗. S is continuous;

δ||S v||2 ≤ B(S v,S v) = (S v, v) ≤ ||S v||||v||

so that||S v|| ≤ δ−1||v|| (if ||S v|| = 0 this is trivially true). MoreoverV
is closed subspace ofX. For, of vn ∈ V andvn → v ∈ X, thenS vn is
a Cauchy sequences and so has a limitv∗; but (u, vn) → (u, v) and by
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(i) B(u,S vn) → B(u, v∗) so that (u, v) = B(u, v∗) for eachu; so v ∈ V.
The proof will be complete if we show thatV = X. SupposeV , X.
Then there existsw ∈ X such thatw , 0 and (w, v) = 0 for eachv ∈ V.
Consider the functional, as

|F(z)| = |B(z,w)| ≤ ℘||z||||w||.

So by Riesz’s theorem, there exists,w′ ∈ X such thatB(z,w) =
(z,w′) for eachz ∈ X. Sow′ ∈ V andS w′ = w. So

δ||w||2 ≤ B(w,w) = (w,w′)

= 0,

i.e., w = 0

which is a contradiction. �





Part II

Semi-group Theory

31
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Definition. Let {Tt}t≥0 be a one-parameter family of linear operators on27

a Banach space X into itself satisfying the following conditions:

(1) TtTs = Tt+s,To = I , I denoting the identity operator on X (Semi
-group property).

(2) s− lim
t→t0

Ttx = Tt◦ x ≤ 0 and each x∈ X(strong continuity).

(3) there exists a real numberβ ≥ 0 such that||Tt || ≤ eβt for t ≥ 0.

We call such a family{Tt} a semi groupof linear operators ofnormal
typeon the Banach space X, or simply asemi - group.

Remark. The third condition may look a bit curious but it is nothing but
a restriction of the order of||Tt || neart = 0, because we can prove the
following.

Proposition. The two conditions(1) and(2) imply the following:
(3′) lim

t→∞
t−1 log ||Tt || = ℘ < ∞(℘ may be−∞).

(4) ||Tt || is bounded in any bounded interval[0, to], o < to < ∞.

Proof. We first prove (4). Suppose||Tt || is unbounded in some inter-
val [0, to], 0, < to < ∞. Then there would exist a sequence{tn} (n =
11, 2, . . .) such that‖Ttn‖ ≥ n ando ≤ lim

n→∞
tn = t∞ ≤ t◦ < ∞. Since

{||Ttn ||
}

is unbounded, by the resonance theorem,
{||Ttn x||} is unbounded

at least for onex ∈ X; but by strong continuity,s− lim
n→∞

Ttn x = Tt∞ x for

eachx ∈ X. This is a contradiction.
To prove (3′), let p(t) = log ||Tt ||, p(t) < ∞ (may be−∞). Since 28

||Tt+s|| = ||TtTs|| ≤ ||Tt ||||Ts||, we havep(t + s) ≤ p(t) + p(s). Let
℘ inf

t>0
t−1p(t). is either finite or−∞. We shall show that lim

t→∞t−1p(t)
ex-

ists and is equal to℘. Assume, first,℘ is finite. Choose for anyE > o,
a numbera > o in such a way thatp(a) ≤ (℘ + E)a. Let n be an integer
such thatna≤ t < (n+ 1)a.

Then

℘ ≤ p(t)
t
≤ p(na)

t
+

p(t − na)
t
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≤ na
t

p(a)
a
+

p(t − na)
t

≤ na
t

(℘ + E) +
p(t − na)

t
.

Letting t → ∞, p(t − na)
t

tends to zero sincep(t − na) is bounded

from above (since, as we have proved above,||Ts|| is bounded in any
finite interval of s). Thus lim

t→∞
t−1p(t) = ℘. The case℘ = −∞ can be

treated similarly. �



Lecture 5

1 Some examples of semi-groups
29

I In C[o,∞] [ the space of bounded uniformly continuous functions
on the closed interval [0,∞]] define

{

Tt
}

t≥0 by

(Tt x)(s) = x(t + s) (x ∈ C).

{

Tt
}

is a semi-group. Condition (1) is trivially verified. (2) follows
from the uniform continuity ofx, as

||Ttx− Tto x|| = sup
s≥0
|x(t + s) − x(to + s)|.

Finally ||Tt || = 1 and so (3) is satisfied withβ = 0.

In this example, we could replaceC[0,∞] by C[−∞,∞].

II On the spaceC[o,∞] (or C[−∞,∞]), define
{

Tt
}

t ≥ 0

(Ttx)(s) = eβtx(s)

whereβ is a fixed non-negative number. Again (1) is trivial; for (2)
we have||Tt x− Tt◦ x|| =

∣

∣

∣eβt − eβto
∣

∣

∣ sups |x(s)|. Trivially ||Tt || = eβt.

III Consider the spaceC[−∞,∞]. Let

Nt(u) =
1
√

2πt
e−u2/2t,= ∞ < u < ∞, t > 0,

35
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(the normal probability density). Define
{

Tt
}

t≥0 onC[−∞,∞] by:

(Tt x)(s) =























∞
∫

−∞
Nt(s− u)x(u)du, for t > 0

x(s) for t = 0

EachTt is continuous:30

||Ttx|| ≤ ||x||
∞

∫

−∞

Nt(s− u)du= ||x||, as

∞
∫

−∞

Nt(s− u)du= 1.

Moreover it follows from this that condition (3) is valid with β = 0.
By definitionTo = I and the semi-group propertyTtTs = Tt+s is a
consequence of the well -known formula concerning the Gaussian
distribution.

1
√

2π(t + t′)
e−u2/2(t+t′ )

=
1
√

2πt

1
√

2πt′

∞
∫

−∞

e
−(u−v)2

2t e
−v2
2t′ dv.

(Apply Fubini’s theorem). To prove the strong continuity, consider
t, to > 0 with t , t0. (The caseto = 0) is treated in a similar
fashion). By definition

(Ttx)(s) − (Tto x)(s) =

∞
∫

−∞

{

Nt(s− u)x(u) − Nto(s− u)x(u)
}

du.

The integral
∞
∫

−∞

1
√

2πt
e−(s−u)2/2tx(u)du becomes, by the change of

variable
s− u
√

t
= z,

1
√

2π

∞
∫

−∞
e−z2/2x(s−

√
tz)dz. Hence

(Tt x)(s) − (Tt0 x) (s)) =

∞
∫

−∞

N1(z)
{

x
(

−s
√

tz
)

− x(s−
√

toz)
}

dz x(s)
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being uniformly continuous on−∞,∞, for anyε > 0 there exists
a numberδ = δ(ε) > 0 such that|x(s1) − x(s2)| ≤ ε whenever
|s1 − s2| ≤ δ. Now, splitting the last integral

|(Tt x)(s) − (Tt◦ x)(s)|

≤
∫

|
√

tz−
√

toz|≤δ

N1(z)|x(s−
√

tz) − x(s−
√

t◦zdz

+

∫

|
√

tz−
√

t◦z|>δ

N1(z)(. . .)dz

≤ E
∫

N1(z)dz+ 2||x||
∫

|
√

tz−
√

toz>δ

N1(z)dz

= E + 2||x||
∫

|z|>| δ√
t−
√

t0|

The second term on the right tends to 0 as|t − to| → 0, because the31

integral
∞
∫

−∞
N1(z)dzconverges. Thus

lim
t→to

sup
−∞<s<∞

|(Ttx)(s) − (Tt0 x)(s)| ≤ E.

SinceE > 0 was arbitrary, we have proved the strong continuity at
t = to of Tt.

In this example we can also replaceC[o,∞] by Lp[o,∞] 1 ≤ p <

∞. Consider, for exampleL1[o,∞]. In this case,||Ttx|| ≤
∞
∫

−∞

[ ∞
∫

−∞
Nt

(s− u)|x(u)|ds
]

du≤ ||x||, applying Fubini’s theorem.

As for the strong continuity, we have

(Tt x)(s) − (Tto x)(s)||
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=

∞
∫

−∞

∣

∣

∣

∣

∣

∞
∫

−∞

N1(z)
{

x(s−
√

tz) − x(s−
√

toz)
}

dz|ds

≤
∞

∫

−∞

N1(z)





















∞
∫

−∞

|x(s−
√

tz) − x(s−
√

toz)|ds





















dz

SinceN1(z)
∞
∫

−∞
|x(s−

√
tz) − x(s−

√
toz)|ds ≤ 2||x||N1(z), we may

apply Lebesgue’s dominated convergence theorem. We then have

lim
t→t◦
||(Tt x)(S) − (Tt0 x)(S)||

∞
∫

−∞

N1(z)



















lim
t→to

∞
∫

−∞

|x(−
√

tz) − x(s−
√

toz)|ds



















dz= 0,

by the continuity in mean of the Lebesgue integral.

IV ConsiderC[−∞,∞]. Let λ > 0, µ > 0. Define
{

Tt
}

t≥0

(Ttx)(s) = e−λt
∞
∑

k=0

(λt)k

k!
x(s− kµ).

{Tt} is a semi-group. Strong continuity follows from:

| (TtX)(s) − Tt0X)(s) |≤ ‖x‖|e−λt
∞
∑

k=0

(λt)k

k!
− eλt0

∞
∑

k=0

(λt0)k

k!
| = 0.

(3) is satisfied withβ = 0. To verify (1)32

(Tw(ttx))(s) = eλw
∞
∑

l=0

(λw)l

l!

















e−λt
∞
∑

k=0

(λt)k

k!
f (s− kµ − 1µ)

















= e−λ(w+t)
∞
∑

p=0

1
p!

















p!
p

∑

1=0

(λw)1(λt)p−1

1! p− 1!
f (s− pµ)

















= e−λ(w+t)
∞
∑

p=0

1
p!

(λw+ λt)p f (λ + λt)p f (s− pµ)
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= (Tw+t x)(s).

2 The infinitesimal generator of a semi-group

Definition. Theinfinitesimal generatorA of a semi-groupTt is defined
by:

Ax= s− lim
h↓0

h−1(Th − I )x,

i.e., as the additive operatorA whose domain is the set

D(A) =

{

x | s− lim
h↓0

h−1(Th − I )x exists

}

and for x ∈ D(A),

Ax= s− lim
h↓o

h−1(Th − I )x.

D(A) is evidently non- empty; it contains at least zero. Actually
D(A) is larger. We prove the

Proposition. D(A) is dense in X ( in the norm topology ).

Proof. Let ϕn(s) = ne−ns. Introduce the linear operatorCϕn defined by

Cϕn x =

∞
∫

0

ϕn(s)Tsxds for x ∈ X andn > β,

the integral being taken in the sense of Riemann. (The ordinary proce-
dure of defining the Riemann integral of a real or complex valued func- 33

tions can be extended to a function with values in a Banach space, using
the norm instead of absolute value ). The convergence of the integral is
a consequence of the strong continuity ofTs in sand the inequality,

|| ϕn(s)Tsx ||≤ ne(−n+β)s | x || .

�
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The operatorCϕn is a linear operator whose norm satisfies the in-
equality

|| ϕn ||≤ n

∞
∫

0

e(−n+β)sds= 1/1− β/n.

We shall now show thatW(Cϕn) ⊆ D(A) (W(Cϕn) denotes the range
of Cϕn) for eachn > β and that for eachx ∈ X, s− lim

n→∞
Cϕn x = x; then

⋃

n>β
WCϕn) will be dense inX and a-portionD(A) will be dense inX. We

have

h−1(Th − I )Cϕn x = h−1

∞
∫

0

ϕn(s)ThTsxds− h−1

∞
∫

0

ϕn(s)Tsxds

(The change of the orderTh

∞
∫

0

· =
∞
∫

0

Th · · · is justified, using the additiv-

ity and the continuity ofTh, by approximating the integral by Riemann
sums). Then

h−1(Th − I )Cϕn x = h−1

∞
∫

0

ϕn(s)Th+sxds− h−1

∞
∫

0

ϕn(s)Tsxds

= h−1

∞
∫

0

ϕn(s− h)Tsxds− h−1

∞
∫

0

ϕn(s)Tsxds

( by a change of variable in the first integral ).

= h−1

∞
∫

h

{ϕn(s− h) − ϕn(s)}Tsxds

= h−1

h
∫

0

ϕn(s)Tsxds.

By the strong continuity ofϕn(s)Tsx in s, the second term on the34
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right converges strongly to−ϕn(0)T0x = −nx, ash ↓ 0.

h−1

∞
∫

h

{ϕn(s− h) − ϕn(s)}Tsxds

=

∞
∫

h

−ϕ′n(s− Θh)Tsxds(0 < Θ < 1) ( by the mean value theorem )

=

∞
∫

0

−ϕ′n(s)Tsxds+

h
∫

0

ϕ′n(s)Tsxds+

∞
∫

h

{ϕ′n(s) − ϕ′n(s− θh)}Tsxds.

But,
h
∫

0

ϕ′n(s)Tsxds→ 0 ash ↓ 0 and

||
∞

∫

h

{

ϕ′n(s) − ϕ′n(s− Θh)
}

Tsxds ||

≤ n2

∞
∫

h

| e−n(s−θh) − e−ns | eβs || x || ds

≤ n2(enΘh − 1)

∞
∫

h

e(β−n)s || x || ds→ 0 ash ↓ 0.(β < n).

Thus we have proved thatW(Cϕn) ⊆ D(A) and

ACϕnx = n(Cϕn − I )x

asϕ′n = −nϕn. Next, we show thats− lim
n→∞

Cϕn(x) = x for eachx ∈ X.

We observe that

Cϕnx− x =

∞
∫

0

ne−nsTsxds−
∞

∫

0

ne−nsxds, ( as

∞
∫

0

ne−nsds= 1)
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= n

∞
∫

0

e−ns[Tsx− x
]

ds.

Approximating the integral by Riemann sums and using the triangle
inequality we have

|| Cϕn x− x || ≤ n

∞
∫

0

e−ns || Tsx− x || ds

= n

δ
∫

0

· · · + n

∞
∫

δ

· · · , δ > 0

= I1 + I2, say.

GivenE > 0, by strong continuity, we can choose aδ > 0 such that35

|| Tsx− x ||< E for 0 ≤ s≤ δ; then

I1 ≤ En

δ
∫

0

e−nsds≤ En

∞
∫

0

e−nsds= E.

For a fixedδ > 0, using the majorization condition in the definition
of a semi-group,

I2 ≤ n

∞
∫

δ

e−ns(eβs
+ 1) || x || ds=|| x ||

[

n
e(n+β)s

−n

]∞

δ

− || x ||
[

n
e−ns

n

]∞

δ

Each of the terms on the right tends to zero asn → ∞. So I2 ≤ E,
for n > n0. ThusCϕn x→ x asn→ ∞.

Remark . ThatD(A) is dense inX can be proved more easily. But we
need the considerations given in the above proof for later purpose.

Definition. For x ∈ X define DtTtx by

DtTtx = s− lim
h→0

h−1(Tt+h − Tt)x

if the limit exists.
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Proposition. If x ∈ D(A) then x∈ D(Dt) and DtTtx = ATtx = TtAx.

Proof. If x ∈ D(A), we have, sinceTt is a linear operator,

TtAx= Tt s− lim
h↓0

h−1(Th − I )x

= s− lim
h↓0

h−1(TtTh − Tt)x

= s− lim
h↓0

h−1(Tt+h − Tt)x

= s− lim
h↓0

h−1(Th − I )Ttx = ATtx. 2

Thus, if x ∈ D(A), then Ttx ∈ D(A), andTtAx = ATtx = s − 36

lim
h↓0

h−1(Tt+h−Tt)x. We have now proved that the strong right derivative

of Tt x exists for eachx ∈ D(A). We shall now show that the strong left
derivative exists and is equal to the right derivative. For this, take any
f ∈ X∗. For fixedx, f (Tt x) is a continuous numerical function (real or
complex - valued ) ont ≥ 0. By the above.f (Tt x) has right derivative
d+ f (Tt x)

dt
and

d+ f (Tt x)
dt

= f (ATt x) = f (Tt A x).

But f (Tt A x) is a continuous function. It is well-known that if one
of the Dini-derivatives of a numerical function is ( finite and ) continu-
ous, then the function is differentiable ( and the derivative, of course, is
continuous ). Sof (Tt x) is differentiable int and

f (Tt x− x) = f (Ttx) − f (T0x)

=

t
∫

0

d+ f (Tsx)
ds

ds=

t
∫

0

f (TsAx)ds

= f





















t
∫

0

A x ds





















.
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However, if every linear functional vanishes on an elementx ∈ X,
thenx = 0 ( by Hahn - Banach theorem ). Consequently,

Tt x− x =

t
∫

0

Ts Axds.

for eachx ∈ D(A). SinceTs is strongly continuous ins, it follows from
this, thatTt is strongly derivable:

DtTtx = s− lim
h→0

h−1(Tt+h − Tt)x

= s− lim
h→0

h−1
∫ t+h

t
TsAxds

= TtAx.
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Theorem .For n > β, the operator(I − n−1A) admits of an inverse 37

Jn = (I − n−1A)−1 which is linear and satisfies the relation

Jnx = n
∞
∫

0

e−nsTsxds, for x∈ X (i.e., Jn = Cϕn Also || Jn ||≤ (1 −

n−1β)−1.

Proof. We first show that (I − n−1A)−1 exists [i.e., (I − n−1A) is one
-one]. If (I − n−1A) is not one-one, there will existx0 ∈ D(A) such
that || x0 ||= 1 and (I − n−1A)x0 = 0, i.e., Ax0 = nx0. Let f0 be
a linear functional onX such that|| f0 ||= 1 and f0(x0) = 1. Define
ϕ(t) = f0(Ttx0) = 1. Defineϕ(t) = f0(Tt x0). Sincex0 ∈ D(A), ϕ(t) is
differentiable and

dϕ(t)
dt
= f◦(DtTtx◦) = f◦(TtAx◦) = f◦(Ttnx◦)

= n f◦(Ttx◦)

= nϕ(t).

�

Solving this differential equation with the initial conditionϕ(0) = 1
we getϕ(t) = ent. On the other hand we have

| ϕ(t) |=| f0(Ttx0) | ≤|| f0 || || Tt || || x0 ||
≤ eβt;

sinceϕ(t) = ent andn > β this is impossible. So (I − n−1A)−1 exists.

45
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SinceA Cϕn x = n(Cϕn − I )x, we have (In − n−1A)Cϕn x = x for all
x ∈ X. So (I −n−1A) mapsW(Cn) ⊆ D(A) on toX; thus (I −n−1A) maps 38

D(A) in a one-one manner ontoX. It follows thatM (Cϕn) D(A) and
(I − n−1A)−1

= Cϕn. But Cϕn is a linear operator and we have already
proved that|| Cϕn ||≤ (1− n−1β)−1.

Corollary.

M(Cϕn) = D(A)

AJnx = n(Jn − I )X, x ∈ X.

AJnx = JnAx= n(Jn − I )x, x ∈ D(A)

s− lim
n→∞

Jnx = x, x ∈ X,

DtTtx = s− lim
h→0

h−1(Tt+h − Tt)x = ATtx = TtAx, x ∈ D(A).

1 The resolvent set and the spectrum of an additive
operator on a Banach space

We may state our theorem in the terminology of spectral theory.
Let A be an additive operator ( with domainD(A)) from a Banach

spaceX into X. Letλ be a complex number (λ is assumed to be real ifX
is a real space ). Regarding the inverse of the additive operator (λI − A)
there are various possibilities.

(1) (λI − A) does not admit of an inverse,i.e., there exists anx , 0
such thatAx = λx. We then callλ an eigenvalue ofA and x an
eigenvectorbelonging to the eigenvalueλ. In this case we also say
thatλ is in the point-spectrumof A.

(2) When (λI − A)−1 exists there are three possibilities:

(i) D((λI − A)−1) is not dense inX. Thenλ is said to be in the
residual spectrumof A.

(ii) D((λI − A)−1) is dense inX but (λI − A)−1 is not continuous.39

In this caseλ is said to be in thecontinuousspectrum.
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(iii) D((λI − A)−1) is dense inX and (λI − A)−1 is continuous in
D((λI − A)−1). Then (λI − A)−1 can be extended uniquely to
a linear operator on the whole spaceX. In this caseλ is said
to be in the resolvent set; the inverse (λI − A)−1 is called the
resolvent.

The complement of the resolvent set in the complex plane (or in the
real line if X is real) is called the spectrum ofA.

The first part of the theorem proved above says that if{Tt} is a semi-
group of normal type (|| Tt ||≤ eβt) any numberλ > β is in the resolvent
set of the infinitesimal generatorA.

2 Examples

Using these results we now determine the infinitesimal generators of the
semi-groups we considered earlier.

I : C[0,∞] : (Ttx) (s) = x(t + s)

Writing yn(s) = (Jnx)(s) we have

yn(s) = n

∞
∫

0

e−ntx(t + s)dt

= n

∞
∫

s

e−n(t−s)x(t)dt :

y′n(s) = −ne−n(s−s)x(s) + n2

∞
∫

s

e−n(t−s)x(t)dt

= −nx(s) + nyn(s)

Comparing this with the general formula

(AJnx)(s) = n((Jn − I )x)(s)

or Ayn(s) = nyn(s) − nx(s)
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we have Ayn(s) = y′n(s).

For n > β,W(Jn) = D(A). So if y ∈ D(A), y′(s) exists and belongs40

to C[0,∞] and
(Ay)(s) = y′(s).

Conversely lety(s) andy′(s) both belong toC[0,∞]; we shall show
thaty ∈ D(A) and (Ay)(s) = y′(s). For definex(s) by

y′(s) − ny(s) = −nx(s).

Putting (Jnx)(s) = yn(s), we have, as shown above,

y′n(s) − nyn(s) = −nx(s).

Writing ω(s) = y(s) − yn(s), we obtain

ω′(s) − nω(s) = 0

or ω(s) = Cens. Butω(s) ∈ C[0,∞] and this is possible only ifC = 0.
Hencey(s) = yn(s) ∈ D(A) and so (Ay)(s) = y′(s). Thus the domain of
the infinitesimal generatorA is precisely the set of functionsy ∈ C[0,∞]
and for such a functionAy = y′. We have thus characterized the differ-

ential operator
d
dt

as the infinitesimal generator of the semigroup asso-

ciated with the translation byt.
II. In this we give the characterization of the second derivation as the

infinitesimal generator of the semi-group associated with the Gaussian
distribution. The space isC[−∞,∞] and

(Tt x)(s) =























∞
∫

−∞

1√
2πt

e−(s−v)2/2t x (v) dv if t > 0

x(s) if t = 0.

We have41

yn(s) = (Jnx)s=

∞
∫

−∞

x(v)



















∞
∫

0

n
√

2πt
e−nt−(s−v)2/2tdt



















dv
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=

∞
∫

−∞

x(v)



















∞
∫

0

2
√

n
√

2π
e−σ

2−(s−v)2n/2σ2
dσ



















dv

(change:t = σ2/n)

Assuming for moment the formula

∞
∫

0

e−(σ2
+c/σ2)dσ =

√
π

2
e−2c, c > 0, with c =

√
n
| s− v |
√

2
,

we get

yn(s) =

∞
∫

−∞

x(v)
(√

n/2e−
√

2n|s−v|
)

dv

=
√

n/2

∞
∫

−∞

x(v)e−
√

2n|s−v|
=

√
2

2





















s
∫

−∞

· · · +
∞

∫

s

· · ·





















x(v) being continuous we can differentiate twice and we then obtain

y′n(s) = n



















∞
∫

s

x(v)e−2
√

n(v−s)dv−
s

∫

−∞

x(v)e−
√

2n(s−v)dv



















y′′n (s) = n



















−x(s) − x(s) + 2
√

n

∞
∫

s

x(v)e−
√

2n(v−s)dv

+

√
2n

s
∫

−∞

x(v)e−
√

2n(s−v)dv



















= −2nx(s) + 2nyn(s).

Comparing this with the general formula

(Ayn)(s) = (AJnx)(s) = n
{

(Jn − I )x
}

(s)

= n(yn(s) − x(s))
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we find thatAyn(s) =
1
2

y′′n (s). For n > β,W(Jn) = D(A). Thus if

y ∈ D(A), y′′(s) exists and belongs toC[−∞,∞] and further (Ay)(s) =
1
2

y′′(s). Conversely, lety(s) andy′′(s) both belong toC[−∞,∞]. Define

x(s) by
y′′(s) − 2ny(s) = −2nx(s).

Puttingyn(s) = (Jnx)(s), we have, as shown above,42

y′′n (s) − 2nyn(s) = −2nx(s).

So, ifω(s) = yn(s) − y(s),

ω′′(s) − 2nω(s) = 0.

Thisω(s) = C1e
√

2ns
+C2e−

√
2ns.

This function cannot be bounded unless bothC1 andC2 are zero.

Hencey(s) = yn(s). Soy(s) ∈ D(A) and (Ay)(s) =
1
2

y′′(s).

Thus the differential operator
1
2

d2

dt2
is the infinitesimal generator of

the semi-group associated with the Gaussian process.
We now prove the formula

∞
∫

0

e−(σ2
+c2/σ2)dσ =

√
π/2e−2c, c > 0.

We start with the formula

∞
∫

0

e−x2
dx=

√
π/2.

Puttingx = σ − c/σ, we have

√
π

2
=

∞
∫

√
c

e−(σ−c/σ)2
(1+ c/σ2)dσ
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= e2c

∞
∫

√
c

e−(σ2
+c2/σ2)(1+ c/σ2)dσ

= e2c



























∞
∫

√
c

e−(σ2
+c2/σ2)dσ +

∞
∫

√
c

e−(σ2
+c2/σ2)c/σ2dσ



























Settingσ = c/t in the last integral

√
π

2
= e2c



























∞
∫

√
c

e−(σ2
+c2σ2)dσ −

∞
∫

√
c

e−(c2/t2+t2)dt

= e2c

∞
∫

0

e(σ2
+c2/σ2)dσ.





Lecture 7

1 The exponential of a linear operator

Example III . In C[−∞,∞] consider the semi-group associated with43

Poison process, viz.,

(Ttx)(s) = e−λt
∑ (λt)k

k!
x(s− kµ) λ, µ > 0

Sincee−λt
∞
∑

k=0

(λt)k

k!
= 1, we have

(Tt x) (s) − x(s)
t

=
e−λt

t

∞
∑

k=0

(λt)k

k!
(x(s− kµ) − x(s))

=
e−λt

t
(x(s− kµ) − x(s))

+
e−λt

t

∞
∑

k=2

(λt)
k!

(x(s− kµ) − x(s)).

As t ↓ 0 the first term on the right tends uniformly with respect tos
to λ(x(s− µ) − x(s)); the absolute value of the second term is majorized

by 2 || x || e−λt

t

∞
∑

k=2

(λt)k

k!
which tends to zero ast ↓ 0. Thus for any

x ∈ C[−∞,∞], we haveAx = λ(x(s− µ) − x(s)). So in this case the
infinitesimal generator is thelinear operator defined by:

(Ax)(s) = λ[x(s− µ) − x(s)],

53
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for x ∈ C[−∞,∞].
This is the difference generator.
We now intend to represent the original semi-group{Tt} by its in-

finitesimal generator. We expect, by analogy with the case ofthe ordi-
nary exponential function, the result to be given by

Ttx = exp(tA)x.

But in generalA is not defined over the whole space. So if we at-

tempt to define (expt A)x by a power series
∞
∑

k=0

(tA)k

k!
x, we encounter

some difficulties. First, we have to choosex form
∞
⋂

k=0
D(Ak) and we do44

not know how big this space is. Even if we do this, it will be difficult to
prove the convergence of the series, let alone its convergence toTtx. So
we proceed to define the exponential in another way. As a preparation
to the definition of the exponential function of an additive operator - not
necessarily linear - we consider the exponential of a linearoperator.

Proposition . Let B be a linear operator from the Banach space X into

X. Then for each x∈ X, s− lim
n→∞

∞
∑

k=0

Bk

k!
x exists ; denote this byexpBx.

ThenexpB is a linear operator and|| expB ||≤ exp(|| B ||).

Proof. We have|| Bk ||≤ (|| B ||k) (k ≥ 0).
∑

k=0

Bk

k!
x is a Cauchy sequence;

for l > j we have

∥

∥

∥

∥

l
∑

k=0

Bk

k!
−

j
∑

k=0

Bk

k!

∥

∥

∥

∥

=

∥

∥

∥

∥

1
∑

k= j+1

Bk

k!

∥

∥

∥

∥

1
∑

j+1

‖B‖
k!

k

and<
∑(∞)

k=0

|| B ||k

k!
|| x || is convergent. So, by the completeness of the

space,s− lim
n→∞

∞
∑

k=0

Bk

k!
x exists; and the convergence is uniform in every

sphere|| x ||≤ M; the above inequality shows that

|| expB ||≤ exp(|| B ||) || x || .

�



1. The exponential of a linear operator 55

So expB is a linear operator and

|| expB ||≤ exp(|| B ||).

Remark . In a similar manner one can prove the following: Let a se-
quence of linear operators{Sn}, on a linear normed space

X with values in a Banach spaceY be a Cauchy sequence, i.e.,45

limn,m ||Sn − Sm|| = 0. Then there exists a linear operatorS forms X
to Y such that lim

n→∞
||Sn − S|| = 0 and‖S‖ ≤ lim

n→∞
‖Sn‖.

Theorem.Let B and C be two linear operators from a Banach space X
into X. Assume that B and C commute, i.e., BC= CB. Then

1) expB. expC = E exp (B+C)

2) Dt exp(tB)x = s− lim
h→∞

exp(t + h)B− exptB
h

x exists and has the value

B(exptBx) = (exptB).Bx.

Proof. i) If β and℘ are complex numbers, we have

∞
∑

j=0

(tβ) j

j!

∞
∑

l=0

(t℘)l

l!
=

t(β + ℘)m

m!
(t > 0);

for, by the absolute convergence of each of the series on the left
and the commutativity ofβ and℘ we may arrange the product on
the left to be equal to the power series on the right. A similarproof
holds whenβ and℘ are replaced by commuting linear operatorsB
andC on a Banach space.

ii) Since tB andhBcommute, we have by 1)

exp(t + h)B = exp(tB). exp(hB) = exp(hB). exptB.

So,

exp(t + h)B− exptB
h

=
exptB(exp(hB) − I )

h

=
exp(hB) − I

h
exptB.
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iii) follows since

∥

∥

∥

∥

exp(hB) − I
h

− B
∥

∥

∥

∥

=

∥

∥

∥

∥

∞
∑

k=2

(hB)k

k!

∥

∥

∥

∥

≤
∞
∑

k=2

Bk

k!
hk−1 → 0, ash→ 0.

�

2 Representation of semi-groups
46

Theorem.Let A be the infinitesimal generator of a semi-group{Tt}.

Then for eachy ∈ X

Tty = s− lim
n→∞

exp(tAJn)y

uniformly in any bounded interval of t. (Jn is the resolvent (I −
n−1A)−1, n > β).

Proof. (tAJn) = nt(Jn − I ) is a linear operator and so exp(tAJn) can be
defined. SincentI andntJn commute we have

(exptAJn) = exp(−ntI). exp(ntJn)

= exp(−nt). exp(ntJn).

�

Since||Jn|| ≤ 1/(1− βn−1) (n > β), we have

||exp(tAJn)|| ≤ exp(−nt)||exp(ntJn)||
≤ exp(−nt) exp(ntJn||)
≤ exp(−nt) exp(nt/1− βn−1)

= exp(tB/(1− βn−1))

If x ∈ D(A), DtTt x = ATtx = TtAxand hence

Ds
{

exp[(t − s)AJn)]Tsx
}

= exp((t − s)AJn)TsAx− exp((t − s)AJn).AJn.Tsx.
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SinceTtTs = TsTt(= Tt+s),

Jn = n
∫ ∞

o
e−ntTtdt

is the limit of Riemannian sums each of which commutes with each Ts;
so Jn commutes with eachTs so thatAJn = n(Jn − I ) commutes with
eachTs. Now

Ttx− exp(tAJn)x = [exp((t − s)AJn)Tsx]t
s=o

Since exp((t − s)AJn)Ts(A − AJn)x is strongly continuous ins, we 47

have, forx ∈ D(A),

Ttx− exp(tAJn)x =
∫ t

o
Ds

{

exp((t − s)AJn)Tsx
}

ds

=

∫ t

o
exp((t − s)AJn)Ts(A− JnAx) ds

(asAJnx = JnAx, asx∈ D(A))

So

||Tt x− exp(tAsnx)|| ≤
∫ t

o
|| · · · ||ds

≤
∫ t

o
||exp(t − s)AJn||||Ts||||Ax− JnAx||ds

≤ ||Ax− JnAx||
∫ t

o
exp

β(t − s)

1− βn−1
expβsds

For each fixedto > 0 andn > β, the integral is uniformly bounded
for 0 ≤ t ≤ to asn(> β) → ∞ ; also we know that for eachx ∈ X,
s− lim

n→∞
Jnx = x. Thus

Tts= s− lim
n→∞

exp(tAJnx) uniformly
if x∈D(A)

in 0 ≤ t ≤ to,

We now prove the formula for arbitraryy ∈ X. SinceD(A) is dense
in X, givenε > 0 we can findx ∈ D(A) such that||y− x|| ≤ ε. Then
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||Tty− exp(tAJny)|| ≤ ||Tty− Ttx|| + ||Tt x− exp(tAJnx)||
+ ||exp(tAJn)x− exp(tAJn)y||
≤ exp(βt)ε + ||Ttx− exp(tAJn)x||

+ exp

(

t

1− n−1β

)

ε.

Sincex ∈ D(A), the middle term on the right tends to zero asn→ ∞48

uniformly in any bounded interval oft. So

lim
n→∞
||Tty− exp(tAJn)y|| ≤ 2 exp(βt)ε,

andε being arbitrary,

Tty = s− lim
n→∞

(exptAJn)y, y ∈ X,

uniformly in any bounded interval of t

Remark. The above representation of the semi-group was obtained in-
dependently ofE. Hille who gave many representations in his book.
One of them reads as follows:

Tt x = s− lim
n→∞

(

I − tA
n

)−1

x

uniformly in any bounded interval oft. It also shows the exponential
character of the representation.



Lecture 8

1 An application of the representation theorem

In C[o,∞] consider (Ttx)(s) = x(t + s). By the representation theorem 49

(Tt x)(s) = x(t + s) = s− lim
n→∞

exp (tAJnx)(s)

= s− lim
n→∞

∞
∑

m=o

tm

m!
(AJn)mx(s)

uniformly in any bounded interval. From this we get an operation the-
oretical proof of the Weirstrass approximation theorem. Let z(s) be a
continuous function on the closed interval [0, α], 0 < α < ∞. Let
x(s) ∈ C[o,∞] be such thatx(s) = z(s) for s ∈ [0, α] (such functions
trivially exist). Puts= 0 in the above formula

(Tt x)(0) = x(t) = s− lim
n→∞

∞
∑

m=o

tm [(AJn)mx] (0)
m!

uniformly in [0, α]. Thus shown thatz(s) is the uniform limit of polyno-
mials on [0, α].

2 Characterization of the infinitesimal general of a
semi-group

We next wish to characterize the infinitesimal generator of asemi-group
by some of the properties we have established. First we provethe

59



60 8. Lecture 8

Proposition . Let A be an additive operator on a Banach space X into
itself with the following properties:

(a) D(A) is dense in X;

(b) there exists aβ ≥ 0 such that for n> β the inverse Jn = (I −n−1A)−1

exists as a linear operator satisfying

||Jn|| ≤ (1− n−1β)−1 (n > β).

Then we have50

i) AJnx = n(Jn − I )x, x ∈ X

ii) AJnx = Jn Ax= n(Jn − I )x, x ∈ D(A)

iii) s− lim
n→∞

Jnx = x, for x ∈ X.

Proof. i) and ii) are evident. To prove iii) lety ∈ D(A). �

Theny = Jny− n−1JnAyand hence

||y− Jny|| ≤ n−1||Jn||||Ay||
≤ n−1(1− n−1β)−1||Ay|| → 0 asn→ ∞.

Let x ∈ X. SinceD(A) is dense inX, given ε > 0, there exists
y ∈ D(A) such that||y− x|| ≤ ε. We then have

||x− Jnx|| ≤ ||x− y|| + ||y− Jny|| + ||Jny− Jnx||
≤ ε + ||y− Jny|| + (1− n−1β)−1ε.

As ||y− Jny|| → asn→ ∞,

lim
n→∞
||x− Jnx|| ≤ ε,

andε being arbitrary positive number,iii ) is proved.
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Theorem.An additive operator A with domainD(A) dense in a Banach
space X and with values in X is the infinitesimal generator of auniquely
determined semi-group{Tt} with ||Tt || ≤ eβt if (and only if ), for n >
β, the inverse Jn = (I − n−1A)−1 exists as a linear operator satisfying
||Jn|| ≤ (1− n−1β)−1.

Proof. We putT(n)
t = (exptAJn). We have

‖T(n)
t ‖ ≤ exp(−nt) exp(nt||Jn||)

≤ exp
βt

1− n−1β
,

DtT
(n)
t x = AJnT(n)

t x = T(n)
t AJnx, x ∈ X,

and T(n)
t x− x =

∫ t

o
T(n)

s AJnx ds. 2

It is easy to seeJnJm = JmJn; so AJn = n(Jn − I ) commutes with 51

T(m)
t = exp(tAJm). Thus, as in the proof of the representation theorem,

we have, for anyx ∈ D(A),

||T(m)
t x− T(n)

t x|| = ||
∫ t

o
Ds

{

T(n)
t−sT

(m)
s x

}

ds||

= ‖
∫ t

o
T(n)

t−sT
(m)
s (AJm− AJn)x ds|| (asDsT

(m)
s x = T(m)

s AJmx)

≤ ||(JmA− JnA)x||
∫ t

o
exp

β(t − s)
1− n−1β

. exp
βs

1−m−1β
ds

So lim
m,n→∞

||T(m)
t x − T(n)

t x|| = 0 uniformly in any finite interval oft.

Let y ∈ X. Givenε > 0, there existsx ∈ D(A) such that||y − x|| ≤ ε.
Then

‖T(m)
t y− T(n)

t y‖ = ||T(m)
t y− T(n)

t x|| + ‖T(m)
t x− T(n)

t x‖
+ ||T(n)

t x− T(n)
t y‖

≤ exp

(

βt

1−m−1β

)

ε + ‖T(m)
t x− T(n)

t x‖ + exp
βt

1− n−1β
ε.
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So lim
m,n→∞

||T(m)
t y−T(n)

t y|| ≤ ε. 2 exp(βt) uniformly in any finite inter-

val of t. Therefore, by the completeness ofX, s− lim
n→∞

T(n)
t y = Tty exist

and the convergence is uniform in any bounded interval oft.
By the resonance theoremTt is a linear operator; sinceT(n)

t are
strongly continuous int and the convergence is uniform in any bounded
interval of t,Tt is strongly continuous int. Also,

||Tt || ≤ lim
n→∞
||T(n)

t || (Cor. to response theorem )

≤ exp(βt)

We now prove thatTtTs = Tt+s(T = I , evidently).52

SinceT(n)
t T(n)

t = T(m)
t+s,

||Tt+sx− TtTsx|| ≤ ||Tt+sx− T(n)
t+sx|| + ||T(n)

t+sx− T(n)
t T(n)

s x||
+ ‖T(n)

t T(n)
s x− T(n)

t Tsx|| + ||T(n)
t Tsx− TtTsx||

≤ ||Tt+sx− T(n)
t+s|| + exp

βt

1− n−1β
‖T(n)

s − Tsx‖

+ ||T(n)
t (Tsx) − Tt(Tsx)||

→ 0 as n→ ∞.

Finally let A′ be the infinitesimal generator of the semi-groupTt

We shall show thatA′ = A. For this it is enough to prove thatA′ is
an extension ofA (i.e., x ∈ D(A) implies x ∈ D(A′) and A′x = Ax).
For, (I − n−1A′)(n > β) mapsD(A′) onto X in a one-one manner; by
assumption (I − n−1A) mapsD(A′) ontoX in a one-one manner; but on
D(A), (I − n−1A) = (I − n−1A′) and henceD(A) = D(A′). To prove that
A′ is an extension ofA, we start with the formula

T(n)
t x− x =

∫ t

o
T(n)

s AJnxds, x ∈ X.

If x ∈ D(A)

||TsAx− T(n)
s AJnx|| ≤ ||TsAx− T(n)

s Ax|| + ||T(n)
s Ax− T(n)

s AJnx||

≤ ||(Ts − T(n)
s )Ax|| + exp

βs

1βn−1
||Ax− JnAx||
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(AJnx = JnAx, if x ∈ D(A)).

As n → ∞ the first on the right tends to zero, uniformly in any
bounded interval ofs; the second term also tends to zero, uniformly in

any bounded interval ofs, as exp
βs

1− βn−1
stays in such an interval and53

we know that
s− lim

n→∞
Jny = y, y ∈ X.

Hence

Ttx− x = s− lim
n→∞

(T(n)
t x− x) = s− lim

n→∞

∫ t

o
T(n)

s AJnx ds

=

∫ t

o
s− lim

n→∞
(T(n)

s AJnx)ds

=

∫ t

o
TsAxds

(using the uniformly of convergence in [o, t]). Therefore

s− lim
n→∞

Ttx− x
t

= ToAx= Ax.

i.e., if x ∈ D(A) thenx ∈ D(A′) andA′x = Ax.
The uniqueness of the semi-group{Tt} with A as the infinitesimal

generator follows from the representation theorem for semi-groups pro-
ved earlier.





Lecture 9

1 Group of operators

We add certain remarks which will be useful for the application of semi- 54

group theory to Cauchy’s problem. The first of these relates to condi-
tions under which a semi-group becomes a group; this will be useful in
connection with the wave equation.

Definition. A one parameter family Tt −∞<t<∞ of linear operators Tt of
a Banach space X is called a group of linear operators of normal type
(or simply a group) if the following conditions are satisfies:

i) TtTs = Tt+s,To = I (group property)

ii) s− lim
n→t0

Ttx = Tto x for each x∈ X and to ∈ (−∞,∞)

iii) there exists aβ ≥ 0 such that for all t

||Tt || ≤ eβ|t|.

(The infinitesimal generator of a group is defined by:Ax= lim
t↓o

Tt x− x
t

).

Theorem.Let A be an additive operator from a Banach space X into X
such thatD(A) is dense in X. A necessary and sufficient condition that
A be the infinitesimal generator of a group Tt is that there exists aβ ≥ 0
such that for every n with|n| > β the inverse Jn = (I −N−1A)−1 exists as
linear operator with||Jn|| ≤ β/(1− |n|−1β).

65
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Proof. Necessity. Let {Tt} be a group. Consider the two semi-groups
{Tt}t≥o ,

{

T̂t

}

t≥o
whereT̂t = T−t. The infinitesimal generator of the semi-

group{Tt}t≥0 coincides with the infinitesimal generatorA of the group;
let A′ be the infinitesimal generator of

{

T̂t

}

�

If we show thatA′ = −A the proof of the necessity part will be55

complete. Letx ∈ D(A′). Then

s− lim
n↓0

T̂h − I
h

x = A′x.

Puttingxn = h−1(T̂h − I )x, we have

||Thxh − A′x|| ≤ ||Thxh − ThA′x|| + ||ThA′x− A′x||
≤ ||Th||||xh − A′x|| + ||ThA′x− A′x||.
≤ (expβh)||xh − A′x|| + ||ThA′x− A′x||
→ 0 ash ↓ 0.

Thus forx ∈ D(A′)

−Ax= s− lim
n↓0

h−1(I − Th) = s− lim
n↓0

Thxh

= A′x.

Hencex ∈ D(A′) implies x ∈ D(A) andA′x = −Ax. Similarly it is
proved that ifx ∈ D(A), thenx ∈ D(A′) andA′x = −−Ax. SoA′ = −A.

sufficiency: We can construct two semi -groups{Tt}t≥o and
{

T̂t

}

t≥o
as

follows:

Ttx = s− lim
n→∞

T(n)
t x = s− lim

n→∞
exp (tAJn)x

= −s− lim
n→∞

exp(nt[(I − n−1A)−1 − I ]x)

T̂tx = s− lim
n→∞

exp(t − AJ−n)x = s− lim
n→∞

exp (nt[(I + n−1A)−1 − I ]x)

If we show thatT̂tTt = TtT̂t = I , then

ˆ̂Tt =















Tt for t ≥ 0

T̂−t for t ≤ 0
(−∞ < t < ∞)
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will be a group withA as the infinitesimal generator.
SinceJn = (I − n−1A)−1 commutes withJ−n = (I + n−1A)−1 we have56

(I − n−1A)−1
+ (I + n−1A)−1

= [(I + n−1A) + (I − n−1A)](I − n−1A)−1(I + n−1A)−1

= 2(I − n−1A)−1(I + n−1A)−1

= 2(I − n−2A2)−1.

SinceJk mapsX onto the dense subspaceD(A) of X, JnJ−n = (I −
n−1A2)−1 mapsX onto a dense subspaceD(A2). Moreover

||(I − n−2A)−1|| ≤ ||Jn||||J−n|| ≤ (1− β/n)−1
(

1− β
n

)−1

= (1− β2/n2)−1.

ThereforeA2 is the infinitesimal generator of a semi-group exp(tA2).

exp(tA2)x = s− lim
m→∞

exp(tA2(I −m−1A2)−1)x

= s− lim
m→∞

exp(m2t[(I −m−1A2)−1 − I ])x

the convergence being uniform int in any finite interval oft.
We have

||TtT̂tx− T(n)
t T̂(n)

t x|| ≤ ||TtT̂tx− T(n)
t T̂tx|| + ||T(n)

t T̂tx− T(n)
t T̂(n)

t x||

≤ ||
(

Tt − T(n)
t

)

T̂tX|| + exp

(

βt

1− n−1β

)

||T̂t x− T̂(n)
t x||

→ 0 asn→ ∞,

uniformly in t in any bounded interval oft.
That the first on the right tends to zero uniformly int in any bounded

interval oft may be proved as follows: Let 0≤ t ≤ to < ∞. (to > 0). For
anyε > 0, we can findt1, . . . , tk, 0 ≤ t1, . . . , tk ≤ to such that

inf
1≤i≤k

||T̂kx− Tti x|| ≤ ε,

(by the strong continuity ofTt in t). 57
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Now
||(Tt − T(n)

t )T̂ti x|| → 0 (i = 1, 2, . . . , k)

uniformly in t for 0 ≤ t ≤ to, and hence, choosingti properly for given
t, we have

||(Tt − t(n)
t )T̂tX|| ≤ ||(Tt − T(n)

t T̂ti x|| + ||(Tt − T(n)
t )(T̂)t − T̂ti )x||

≤ ||(Tt − T(n)
t )T̂ti x|| +

[

expβt + exp
βt

1− n−1 − β

]

ε.

So the right side tends to zero uniformly in 0≤ t ≤ to.
Since

T(n)
t T̂(n)

n x = exp
(

nt
[

(I − n−1A)−1
+ (I + n−1A)−1 − 2I

])

x

= exp
( st

n
.n2

[

(I − n−2A2)−1 − I
]

)

x,

we have

TtT̂tx = s− lim
n→∞

exp(
2t
n
.n2[(I − n−2A2)−1 − I ])x)

the convergence being uniform in any bounded interval oft. Thus

TtT̂tx = exp(0.A2x) = x.

Similarly
T̂tTtx = x.

Remark . For an alternative proof of the above theorem, seeE. Hille:
Une généralisation du problèm de Cauchy,Ann. de 1’ Institut Fourier,
4 (1952), p.37 (Théorème 4).



Lecture 10

1 Supplementary results

We shall now prove some results which supplement our earlierresults; 58

these will be useful in applications.

Theorem.1. For a semi-group{Tt} the infinitesimal generator A may
be defined by

w− lim
h↓o

Th − I
h

x.

i.e., if Ã is the operator withD(Ã) =

{

x|w− lim
h↓o

Th − I
h

x exists

}

and

Ãx= w− lim
h↓o

Th − I
h

x, thenÃ = A.

2. If {Tt}t≥o is a family of linear operators on a Banach space X such
that Tt+s = TtTs,To = I and ||Tt || ≤ eβt, β ≥ 0 then the following two
conditions are equivalent:

(i) strong continuity of Tt, i.e., w− lim
t→to

Ttx = Tto x for each to ≥ 0

and x∈ X.

(ii) weak right continuity at t= 0, i.e., w− lim
h↓o

Ttx = x, for x∈ X.

3. The infinitesimal generator is a semi-group is a closed operator.

PROOF. It is evident thatÃ is an extension of A. We shall show that A
is an extension of̃A, i.e., if x∈ D(Ã), then x∈ D(A) and Ax= Ãx. If

69



70 10. Lecture 10

x ∈ D(A),

w− lim
h↓o

Tt+h − Tt

h
x = Tt

[

w− lim
h↓o

Th − I
h

x

]

= TtAx.

(For, if w − limh↓o xh = y, and T is a linear operator, thenw −
lim
h↓o

T xh = Ty; in fact, if f ∈ X∗, f̂ (y) = f (TY) is a linear functional onX,59

as| f̂ (y)| ≤ || f || ||Ty|| ≤ || f || ||T || ||y||, and f (Ty) − f (T xh) = f̂ y− f̂ xh→ 0

as h ↓ 0). So, if x ∈ D(Ã), f (Tt x) has right derivative
d+

dt
f (Tt x) =

f (TtÃx) (t ≥ 0), which is continuous fort ≥ 0, by the strong continuity

of Tt. Therefore the derivative
d
dt

f (Tt x) exists for eacht ≥ 0 and is

continuous.
So

f (Ttx− x) = f (Tt x) − f (x) =
∫ t

o
f (TsÃx)ds

= f

(∫ t

o
TsÃ x ds

)

, for eachf ∈ X∗.

Continuously, by the Hahn-Banach theorem,

Ttx− x =
∫ t

o
TsÃx ds.

SinceTt is strongly continuous int it follows that

s− lim
t↓o

Tt − I
t

x = ToÃx= Ãx.

Thus if x ∈ D(Ã), thenx ∈ D(A) andÃx= Ax.

PROOF. Evidently (i) implies (ii). To prove that (ii) implies (i), let xo
be a fixed element of X. We shall show that w− lim

t↓to
Ttxo = Tto xo for

each t≥ 0. Consider the function x(t) = Ttxo. For to ≥ 0, x(t) is right
continuous at to, as w−lim

t↓to
Ttxo = w−lim

h↓o
ThTto xo. x(t) has the following

three properties:
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(a) x(t) is weakly measurable, i.e., for any f∈ X∗, f (x(t)) is measurable
(since a right continuous numerical function is measurable).

(b) ||x(t)|| is bounded in any bounded interval of t.

(c) there exists a countable set M= {xn} such that x(t) (t ≥ 0) is con- 60

tained in the closure of M.

To prove (c), let {tk} be the totality of positive rational numbers.
Consider finite linear combinations

∑

αkx(tk) whereαk are rational num-
bers ifX is real and ifX is complexαk = ak+ ibk with ak andbk rational.
These elements form a countable setM = {xn}. The closure ofM, M̄,
containsx(t), for eacht ≥ 0.

For, if not, let t0 ≥ 0 be a number such thatx(to) does not belong
to M̄.M̄ is a closed linear subspace ofX. By the Hahn-Banach theorem,
there exists a linear functionalfo onX such thatfo(x(to)) , 0 andfo(x) =
0 for x′ ∈ M̄. Take a sequencet′k ↓ to ( t′k positive rational). By the weak
right continuity ofx(t) at to,

fo(x(t′k))→ fo(x(to)).

But fo(x(t′k)) = 0 and fo(x(to)) , 0. We have thus arrived at a
contradiction.

We next prove a result, due toN. Dunford (On one parameter
group of linear transformations, Ann, of Math., 39(1938), 569− 573),
according of which the properties (a), (b) and (c) listed above imply
the strong continuity ofx(t). First we show that||x(t)|| is measurable
in t. Let fn ∈ X∗ be such thatfn(xn) = ||xn|| and || fn|| = 1. Let
f (t) = sup

n≥1
fn(x(t)); since eachfn(x(t)) is measurable,f (t) is measur-

able int. But ||x(t)|| = f (t); for

f (t) ≥ | fn(x(t))| ≥ | fn(xn)| − | fn(x(t) − xn)|
≥ ||xn|| − ||x(t) − xn||

and x(t) is in the closure of the setM so that f (t) ≥ ||x(t)||; since 61

| fn(x(t)| ≤ ||x(t)||, f (t) ≤ ||(t)||. Thus f (t) = ||x(t)|| and ||x(t)|| is mea-
surable.
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By a similar argument,||x(t) − xn|| is measurable int for eachn. it
follows, using (c), that the half-line [0≤ t < ∞) can be represented, for
each integerm, as a countable union of measurable setsSm,n,

[0,∞) =
∞
⋃

n=1

Sm,n,Sm,n =
{

t|||x(t) − xn|| ≤ m−1
}

If we define

S′m,1 = Sm,1, . . . ,S
′
m,n = Sm,n −

n−1
⋃

k=1

S′m,k,

we have a decomposition of [0,∞) into disjoint measurable setsS′m,n(n =
1, 2, . . .) such that||x(t) − xn|| ≤ m−1 in S′m,n.

Therefore the strongly measurable step-function (i.e., a countably
valued function taking each of its values exactly on a measurable set)

xm(t) = xn for t ∈ S′m,n

converges tox(t) asm→ ∞ uniformly in [0, t), Thusx(t) is a strongly
measurable function, a strongly measurable function beinga functional
which is the uniform limit of a sequence of strongly measurable step
functions. We may then define the Bochner integral ofx(t) by:

β
∫

α

x(t)dt = s− lim
,→∞

β
∫

α

x(m)(t)dt, 0 ≤ α < β < ∞

(
β
∫

α

xm(t)dt may be defined, as in the case of the ordinary Lebesgue inte-

gral, as the strong limit of finitely valued functions, each taking each of
its values exactly on a measurable set). We have

||
β

∫

α

x(t)dt|| ≤
β

∫

α

||x(t)||dt.

Let 0≤ α < η < β < ξ − ε < ξ (ε > 0).62
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Since
x(ξ) = Tξxo = TηTξ−ηxo = Tηx(ξ − η),

we have

(β − α)x(ξ) =

β
∫

α

x(ξ)dη =

β
∫

α

Tη(ξ − η)dη,

the integrals being Bochner integrals. So

(β − α){x(ξ ± ε) − x(ξ)} =
∫ β

α

Tη{x(ξ ± ε − η) − x(ξ − η)}dη.

Thus

|β − α| ||x(ξ ± ε) − x(ξ)|| ≤ sup
α≤η≤β

||Tη||
ξ−α
∫

ξ−β

||x(τ ± ε) − x(τ)||dτ

But the right side tends to zero asε ↓ 0. (This we see by approximat-
ing x(ξ), in bounded interval, uniformly with bounded. finitely valued
strongly measurable functions. For, then the result is reduced to the case
of numerical measurable step functions.) Thusx(ξ) is strongly continu-
ous forξ > 0.

To prove the strong continuity atξ = 0 we proceed as follows: For
positive rationaltk, since

Tξx(tk) = Tξttk xo = Tξ+tk xo = x(ξ + tk),

we have, using the continuity forξ > 0 proved above,

s− lim
ξ↓0

Tξx(tk) = x(tk).

It follows that s− lim
ξ↓0

Tξxn = xn for eachxn; also x(t), t ≥ 0, in

particular x(0) = xo, belongs toM̄ (M = {xn}). It follows therefore,
from the inequalities,

||x(ξ) − xo|| ≤ ||Tξxn − xn|| + ||xn − xo|| + ||Tξ(xo − xn)||
≤ ||Tξxn − xn|| + ||xn − xo|| + sup

o≤ξ≤1
||Tξ ||.||xo − xn||,

that lim
ξ↓o

x(ξ) = xo i.e.,Tξ is strongly continuous atξ = 0. 63
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PROOF . An additive operator A (with domainD(A)) is said to be
closed if it possesses the following property: if{xn} is a sequence of
elements ofD(A) such that s− lim

n→∞
xn = x and s− lim

n→∞
Axn = y, then x

belongs toD(A) and Ax= y. Evidently a linear operator is closed.

To prove (3) letk > β. ThenJk =

(

I − A
k

)−1

is a linear operator. Let

{xn} be a sequence,xn ∈ D(A) such thats− lim
n→∞

xn = x, s− lim
n→∞

Axn =

y. Then s − lim
n→∞

(

xn −
A
k

xn

)

= x − y
k

. By the continuity ofJk, s −

lim
n→∞

Jk

(

xn −
A
k

xn

)

= Jk

(

x− y
k

)

, i.e., x = Jk

(

x− y
k

)

. So x(∈ D(A).

Since
(

I − A
k

)

x =
(

I − A
k

)

Jk

(

x− y
k

)

= x− y
k
,

we haveAx= y.

Remark. It is to be noted that the theory has been extended for{Tt}o<t

satisfying
TtTs = Tt+s

and the strong continuity int for t > 0.



Lecture 11

1 Temporally homogeneous Markoff process on a
locally compact topological space

Let R be a locally compact topological space, countable at infinity. We 64

consider inR ′a probabilistic movement’. Suppose that for each triple
(t, x,E) consisting of a real numbert > 0, a pointx ∈ R and Borel set
E ⊂ R there is given a real numberP(t, x,E) such that the following
conditions are satisfied.

i) P(t, x,E) ≥ 0, P(t, x,R) = 1

ii) for fixed t and x, P(t, x,E) is a countably additive set function on
the Borel sets

iii) for fixed t andE,P(t, x,E) is a Borel measurable function inx

iv) P(t + s, x,E) =
∫

R

P(t, x, dy) P(s, y,E) t, s > 0. (Chapman - Kol-

mogoroff relation).

The functionP(t, x,E) is called thetransition probability; this gives
the probability that, in this process, a pointx ∈ R is transferred
to the Borel setE after t units of time. We say then that there is
given atemporally homogeneous Markoff processon R (temporal
homogeneity means that the motion does not depend on the initial
time but only on the time elapsed).

75
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2 Brownian motion on a homogeneous Rieman-
nian space

Next, we wish to define the ‘spatial homogeneity’ of the process.
We assume thatR is an n-dimensional, orientable connectedC∞65

Riemannian space such that the (full) group of isometriesG of R,
which is a Lie group, is transitive onR (i.e., for each pairx, y ∈ R
there exists an isometryS∗ such thatS∗x = y. The processP(t, x,E)
is calledspatially homogeneousif

v) P(t, x,E) = P(t,S∗x,S∗E) for eachS∗ ∈ G, x ∈ R,E ⊂ R. A tem-
porally and spatially homogeneous Markoff process onR is called
a Brownian motionon R, if the following condition, known as the
continuity condition ofLindeberg, is satisfied.

vi) lim
t↓o

t−1
∫

dis(x,y)>ε

P(t, x, dy) = 0, for everyǫ > 0 andx ∈ R.

Proposition . Let C[R] denote the Banach space of bounded uniformly
continuous real valued functions f(x) on R, with the norm

|| f || = sup
x∈R
| f (x)|.

Define

(Tt f )(x) =



















∫

R

P(t, x, dy) f (y), if t > 0.

f (x), if t = 0.

Then Tt defines a semi -group of normal type in C[R].

Proof. We have by condition (i),

|Tt f (x)| ≤ sup
y∈R
| f (y)|.

�
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If we define a linear operatorS by (S f)(x) = f (S∗x),S∗ ∈ G, we
haveTtS = S Tt. For,

(S Tt f )(x) = (Tt f )(S∗x)

=

∫

P(t,S∗x, dy) f (y)

=

∫

P(t,S∗x, d(S∗y)) f (S∗y)

=

∫

P(t, x, dy) f (S∗y) = (TtS f)(x).

If S∗ ∈ G be such thatS∗x = x1, we have 66

(Tt f )(x) − (Tt f )(x′) = (Tt f )(x) − (S Tt f )(x)

= Tt( f − S f)(x).

By the uniform of continuity of f (x) and the above equality, we
see that (Tt f )(x) is uniformly continuous and bounded. The semi-group
property follows easily from Fubini’s theorem and the Chapman-Kolmo-
gorff relation (To = I by definition).

To prove the strong continuity, it is enough by and earlier theorem,
to verify weak right continuity att = 0. Since the conjugate space of
C[R] is the space of measures of finite total variation, it is enough to
show that lim

t↓o
(Tt f (x) ) = f (x) boundedly inx.

Now

|(Tt f )(x) − f (x)| =
∣

∣

∣

∫

R

P(t, x, dy)[ f (y) − f (x)]
∣

∣

∣ by(i)

=

∣

∣

∣

R
∫

d(x,y)≤ε

P(t, x, dy)[ f (y) − f (x)]
∣

∣

∣ +

∣

∣

∣

∫

dis(x,y)>ε

P(t, x, dy)[ f (y) − f (x)]
∣

∣

∣

≤
∣

∣

∣ · · · · · · · · · · · · | + 2|| f ||
∫

dis(x,y)>ε

P(t, x, dy)

≤ 1.
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The first term on the right tends to zero asε → 0 and, for fixedε,
the second term tends to zero boundedly inx ast ↓ 0 (by (vi), and the
spatial homogeneity). Thus lim

t↓o
(Tt f )(x) = f (x) boundedly inx.

Theorem.Let xo be a fixed point of R. Let us assume that the isotropy
group Go =

{

S∗|S∗ ∈ G,S∗xo = xo
}

is compact.(Go, being a closed sub-
group of Lie group, is a Lie group). Let A be the infinitesimal generator67

of Tt. Then

(i) if f ∈ D(A) ∩ C2 (C2 denoting the set of twice continuously dif-
ferentiable functions), then, for a coordinate system(x1 · · · xn) at
xo,

(A f)(xo) = ai(xo)
∂ f

∂xi
o
+ bi j (xo)

∂2 f

∂xi
o∂x j

o

(adapting the summation convention), where

ai(xo) = lim
t↓o

t−1
∫

dis(xo,x)≤ε

(xi − xi
o)P(t, xo, dx)

bi j (xo) = lim
t↓o

t−1
∫

dis(xo,x)≤ε

(xi − xi
o)(x j − x j

o)P(t, xo, dx)

the limits existing independently of sufficiently smallε > 0.

(ii) The setD(A) ∩ C2 is ’big’ in the sense that, for any C2 function
with compact support there exists f(x) ∈ D(A) ∩ C2 such that

f (xo),
∂ f

∂xi
o
,
∂2 f

∂xi
o∂x j

o

are arbitrarily near respectively

g(xo),
∂g

∂xi
o
,

∂2g

∂xi
o∂x j

o

.

Proof.

Step 1.Let g(x) be aC∞ function with compact support.
If f ∈ D(A), the convolution

( f ⊗ g)(x) =
∫

G
f (S∗yx)g(S∗yx)dy,
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(S∗y denotes a generic element ofG and dy a fixed right invariant Haar
measure onG) is C∞ and belongs toD(A). (The integral exists since
the isotropy group is compact andg has compact support). By the uni-
form continuity of f and the compactness of the support ofg we can

approximate the integral by Riemann sums
k
∑

i=1
f (S∗yi

x)Ci uniformly in

x : ( f ⊗ g)(x) = s− lim
n→∞

k
∑

i=1
f (S∗yi

x)Ci .

SinceTtS = S Tt, S commutes withA, i.e., if f ∈ D(A), thenS f ∈ 68

D(A) andAS f = S A f. Puttingh(x) = (A f)(x), (h ∈ C[R]).

A















m
∑

i=1

f (S∗yi
x)Ci















=

m
∑

i=1

(ASyi f )(x)Ci

=

m
∑

i=1

(Syi A f)(x)Ci

=

m
∑

i=1

h(S∗yi
x)Ci

and the right hand side tends to (h ⊗ g)(x) = (A f ⊗ g)(x). SinceA is
closed, it follows thatf ⊗ g ∈ D(A), andA( f ⊗ g) = A f ⊗ g. SinceR is
a homogeneous space of the Lie groupG (by the closed subgroupGo)
we can find a coordinate neighbourhoodU of xo and for eachx ∈ U an
elementS∗(x) ∈ G such that i)S∗x = xo ii) S∗(x)xo depends analytically
on the coordinate functionsx1 · · · xn. by the right invariance of the Haar
measure,

( f ⊗ g) (x) =
∫

G
f (S∗yS∗(x)xo)g(S∗yS∗(x)xo)dy

=

∫

G
f (S∗yxo)g(S∗yS∗(x)xo)dy, x ∈ U.

The function on the right side isC∞ in a neighbourhood ofxo and

∂q1+···+qn

∂(x1)q1 · · · (∂xn)qn
f ⊗ g(x) =

∫

G
f (S∗yxo)

∂q1+···+qng(S∗yS∗(x)xo

∂(x1)q1 · · · (∂xn)qn
dy

�





Lecture 12

1 Brownian motion on a homogeneous Riemannian
space (Contd.)

69
Proof.

Step 2.Remarking thatD(A) is dense inC[R] and choosingf and g
properly we obtain

(a) there existC∞ functionsF1(x), . . . , Fn(x) ∈ D(A) such that the Ja-

cobian
∂(F1(x), . . . , Fn(x))

∂(x1, . . . , xn)
> 0 atxo.

(b) there exists aC∞ functionFo(x) ∈ D(A) such that

(xi − xi
o)(x j − x j

o)
∂2F

∂xi
o∂x j

o

≥
n

∑

i=1

(xi − xi
o)2.

We can useF1(x), . . . , Fn(x) as coordinate functions in a neighbour-
hoodd(xo, x) < ε; we denote these new local coordinates by (x1, . . . , xn).

SinceF i(x) ∈ D(A),

s− lim
t↓o

TtF i(x) − F i(x)
t

exists and= AFi(x)

(AFi)(x) = lim
t↓o

t−1
∫

R

P(t, xo, dx)(F i (x) − F i(xo))

81
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= lim
t↓o

t−1
∫

d(x,xo)≤ε

P(t, x, dx)(F i (x) − F(xo))

independent ofε > 0, by Lindeberg’s condition. So, for the coordinate
functionsx1 · · · xn, (xi

= F i),

lim
t↓o

t−1
∫

d(x,xo)≤ε

(xi − xo)P(t, xo, dx) = ai(xo)

independent ofε > 0. SinceFo ∈ D(A), we have, using Lindeberg’s
condition,

(AFo)(xo) = lim
t↓o

t−1
∫

R

P(t, xo, dx)(F(x) − Fo(xo))

= lim
t↓o

∫

d(x,xo)≤ε

P(t, xo, dx)(F(x) − Fo(xo))

= lim
t↓o























t−1
∫

d(x,xo)≤ε

(xi − xi
o)
∂Fo

∂xi
o

P(t, xo, dx)

+ t−1
∫

d(x−xo)≤ε

(xi − xi
o)(x j − x j

o)

(

∂2Fo

∂xi∂x j

)

P(t, xo, dx)

x = xo + Θ(x− xo0 < Θ1.

The first term on the right has a limitai(xo)
∂Fo

∂xi
o

; hence by the posi-70

tivity of P, and (b),

lim t↓ot−1
∫

d(x,xo)≤ε

n
∑

i=1

(xi − xi
o)2P(t, xo, dx) < ∞ (*)

Step 3.Let f ∈ D(A) ∩C2. Then, expandingf (x) − f (xo),

Tt f (xo) − f (xo)
t

= t−1
∫

R

f (x) − f (xo)P(t, xo, dx)
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= t−1
∫

d(x,xo)>ε

f (x) − f (xo))P(t, xo, dx)

+ t−1
∫

d(x,xo)≤ε

(xi − xi
o)
∂ f
∂xo

i

P(t, xo, dx)

+ t−1
∫

d(x,xo)≤ε

(xi − xi
o)(x j − x j

o)
∂2 f

∂xi
o∂x j

o

P(t, xo, dx)

+ t−1
∫

d(x,xo)≤ε

(xi − xi
o)(x j − x j

o)Ci j (ε)P(t, xo, dx)

= C1(t, ε) +C2(t, ε) +C3(t, ε) +C4(t, ε), say,

whereCi j (ε) → 0 asε ↓ 0. We know that lim
t↓o

C1(t, ε) = 0 for fixed 71

ε > 0 (Condition (vi)) and lim
t↓o

C2(t, ε) = ai(xo)
∂ f

∂xi
o
, independently of

smallε. By (∗) and Schwarz’s inequality lim
t↓o

C4(t, ε) = 0, boundedly in

t > 0. Also the left side has a finite limit ast ↓ 0. So the difference

lim t↓oC3(t, ε) − lim
t o

C3(t, ε)

can be made arbitrarily small by takingε > 0 small. But by (∗), Sch-
warz’s inequality and (vi), the difference is independent of smallε > 0.
Thus finite limit lim

t↓o
C3(t, ε) exists independently of smallε > 0. Since

we may chooseF ∈ D(A) ∩C∞ such that

∂2F

∂xi
◦∂xi
◦

(i, j = 1, . . . , n)

is arbitrarily nearαi j αi j being constants, it follows, by an argument
similar to the one above that

finite limit
∫

d(x,xo)≤ε

(xi − xi
o) (x j − x j

o)P(t, xo, dx) = bi j (xo)

exists and lim
t↓o

C3(t, ε) = bi j (xo)
∂2F

∂xi
o∂x j

o

.
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This completes the proof of the theorem. �

Remark. i) We havebi j (x) = bi j (x) and

bi j (xo)ξiξ j ≥ 0, (ξireal), for ,

(xi − xi
o)(x j − x j

o)ξiξ j =
(
∑

(xi − xi
o)ξi

)2

ii) bi j (x) is a contravariant tensor:72

b̄i j
= bkl ∂x̄i

∂xk
.
∂x̄ j

∂x1
(x1, . . . , xn)→ (x̄1, . . . , x̄n)

and ām
= as∂x̄m

∂xs + bkl ∂
2x̄m

∂xk∂xl
.

This follows from the equality

b̄i j ∂2 f

∂x̄i
o∂x̄ j

o

+ ām ∂ f
∂x̄m = bk1 ∂2 f

∂xk∂1
+ as ∂ f

∂xs

[since each is= (A f)(xo)].



Part III

Regularity properties of
solutions of linear elliptic

differential equations
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Lecture 13

The results proved in this part will be needed in the application of the 73

semi-group theory to Cauchy’s problem.

1 Strong differentiability

Let R be a subdomain ofEm. We denote byC∞(R) the space of in-
definitely differentiable functions inR and byD∞(R) the space ofC∞

functions inR with compact support. We denote byL2(R)loc the space
of locally square summable functions inR, (i.e., functions inR which
are square summable on every compact subset ofR). A functionu(x) ∈
L2(R)loc is said to bek-times strongly differentiable inR (or of orderk
in R) if for every subdomainR1 of R relatively compact inR there exists
a sequenceun(x)(= un,R1(x) ) of C∞ functions inR1, such that

lim
n→∞

∫

R1

|u− un|2dx= 0

and lim
n,1→∞

∫

R1

|D(s)un − D(s)u1|2dx= 0 for |s| ≤ k.

Then there exists, for|s| ≤ k, functions

u(s)(x) = u(s)
R1
∈ L2(R1) such that

lim
n→∞

∫

R1

∣

∣

∣u(s)(x) − D(s)un(x)
∣

∣

∣

2
dx= 0.
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u(s)
R1

(x) is determined independently of the approximating sequence
un; for we have, for eachC∞ functionϕ with compact support inR174

∫

R1

ϕ(x)u(s)(x)dx= lim
n→∞

∫

R1

ϕ(x)D(s)un(x)dx

= lim
n→∞

(−1)|s|
∫

R1

un(x)D(s)ϕ(x)dx

= (−1)|s|
∫

R1

u(x)D(s)ϕ(x)dx

andC∞ functions with compact support inR1 are dense inL2(R1). It
also follows that, for|s| ≤ k, there exists a function inL2(R)loc, de-
noted byD̃(s)u(x), such that for each subdomainR1 relatively compact
in R, D̃(s)u(x) coincides withu(s)

R1
(x) almost everywhere inR1. D̃(s)u(x)

is called the strong derivative ofu corresponding to the derivationD(s).

2 Weak solutions of linear differential operators

Let

L =
n

∑

|ρ|=|σ|=o

D(ρ)aρσD(σ), aρ,σ(x) ∈ C∞(R), aρ,σ = aσ,ρ for |σ| = |ρ| = n,

be a linear differential operator inR with C∞ coefficients. Let f ∈
L2(R)loc. A function u ∈ L2(R)loc will be said to be a weak solution
of the equationLu = f if for everyϕ ∈ D∞(R) we have

∫

R

L∗ϕudx=
∫

R

ϕ f dx

whereL∗ is the adjoint ofL:

L∗ =
n

∑

|ρ|=|σ|=o

(−1)|ρ|+|σ|D(σ)aρ,σD(ρ).
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3 Elliptic operators

Friedrichs - Lax - Nirenberg, theorem: Let L be elliptic in R in the 75

sense that there exists a constantCo > 0 such that

∑

|ρ|=|σ|=n

ξ
ρ1
1 · · · ξ

ρm
m aρ1···ρm;σ1···σm(x)ξσ1

1 · · · ξ
σm
m ≥ Co















m
∑

i=1

ξ2
i















n

for everyx ∈ R and every real vector (ξ1, . . . , ξm). Then if uo is a weak
solution ofLu = f and if f is of orderp in R, thenuo is of order 2n+ p
in R.
Sobolev’s lemma: If uo(x) is of orderk in R, then, fork > m/2 +
σ, ho(x) is equal almost everywhere (inR) to a function which isσ times
continuously differentiable.
Weyl-Schwartz theorem: Let L be an elliptic operator inR, anduo a
weak solution ofLu = f . If f is indefinitely differentiable inR, thenuo

is almost everywhere equal to an indefinitely differentiable function in
R.

This theorem is an immediate consequence of the Friedrichs Lax-
Nirenberg theorem and Sobolev’s lemma.

4 Fourier Transforms:

For the proofs we need the following facts about Fourier transforms:
Plancherel’s theorem: Let f (x) ∈ L2(Em), x = (x1, . . . , xn). Then the
functions

φn(y) =
∫

|x|≤n

f (x) exp(−2πix.y) dx (x.y =
∑

xiyi)

converge in theL2-norm to a functionϕ(y1, . . . , yn) ∈ L2 and the trans- 76

formationF defined byF f = ϕ(y) = lim
n→∞

∫

|x|≤n

f (x) exp(−2πix.y)dx is

a unitary transformation ofL2 onto itself. (i.e., (F f ,Fg) = ( f , g), for
f , g ∈ L2 ontoL2). The inverseF−1 of F is given by

F
−1ϕ(x) = lim

n→∞

∫

|y|≤n

ϕ(y) exp(2πiy.x)dy
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F ( f ) is called the Fourier transform off .
As regards the Fourier transform of the derivatives, we have: if f

in L2(Em) is also inCk(Em) andD(s) f (x) ∈ L2(Em) for |s| ≤ k, (D(s)
=

∂s1+···+sn/∂xs1
1 · · · ∂xsm

m , |s| =
∑n

i=1 sj), then

(FD(s) f )(y) =
m

∏

j=1

(2πiy j)
s j.F ( f )(y).

Proof of Sobolev’s lemma: Let R1 be any relatively compact subdo-
main ofR andα(x) aC∞ function with compact support inR such that
α(x) ≡ 1 on R1. Sinceuo is assumed to be of orderk there exists a
sequence{un} of C∞ functions inR1 such that

lim
n→∞

∑

|s|≤k

∫

R1

∣

∣

∣D̃(s)uo − D(s)un

∣

∣

∣

2
dx= 0.

We have, using Leibnitz’s formula,

lim
n→∞

∑

|s|≤k

∫

∣

∣

∣D̃(s)αuo − D(s)αun

∣

∣

∣

2
dx= 0.

Let ũn (resp.ũo) denote the function inEm defined by:

ũ(x)
n =















αun(x), x ∈ Support ofα

0 x ∈ Em− suppα;

similar definition forũo(= αuo in supp.α). Since the Fourier transform77

is a unitary transformation, we have

lim
n→∞
||FD(s)ũn − F D̃(s)ũo||o,Em = 0.

But, as remarked earlier,

(FD(s)ũn)(y) = (2πi)sys1
1 · · · y

sm
m Ũn(y)

whereŨn = F ũn; also sinceF is unitary,

lim
n→∞
||Ũn − Ũo||o,Em = 0, whereŨo = F (ũo).
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Therefore there exists a subsequence{n′} of {n} such that for almost
all y ∈ Em

lim
n′→∞

Ũn′(y) = Ũo(y) (pointwise limit)

lim
n′→∞

Ũn′(y)ys1
1 · · · y

sm
m (2πi)|s| = Ũ |s|o = Ũ(s)

o (y)

where Ũ(s)
o = F D̃(s)ũo.

Thus for almost all y ∈ Em, Ũo(y)ys1
1 · · · y

sm
m (2πi)|s| = Ũ(s)

o (y), |s| ≤ k.
We shall now show that̃Uo(y) · yq1

1 · · · y
qm
m is integrable onEm pro-

videdk >
m
2
+ σ, whereσ = |q|

m
∑

j=1
q j . We have

Ũo(y)yq1
1 · · · y

qm
m =

yq1
1 · · · y

qm
m

1+ |∑m
i=1 y2

i |k/2
Ũo(y)















1+ |
m

∑

i=1

y2
i |

k/2















.

Now, in polar coordinates

dy= dy1 · · ·dym = rm−1drdΩm−1

(Ωm−1 is the surface of unit sphere inEm). So
yq1

1 · · · y
qm
m

1+ |
m
∑

i=1
y2

i |k/2
is square

integrable in|z| > α(Z ∈ Em) if 2|q| − 2k + m− 1 < −1, i.e., if k >
m
2
+σ. Already we know thatUo(y)(1+

m
∑

i=1
y2

i )k/2 is square integrable in78

|z| > α. SoUo(y)yqm

1 · · · y
qm
m , begin the product of two square integrable

functions, is integrable in|z| > α. We see also thatUo(y)yq1
1 · · · y

qm
m is

integrable in|z| ≤ α.

Thus if k >
m
2
+ |q|,Uo(y)yq1

1 · · · y
qm
m is integrable overEm.

Supposek >
m
2
+ σ, (σ > 0 integer). ThenŨo(y) ∈ L2 ∩ L1

so that (F−1Ũo)(y) =
∫

Em

Ũo(y) exp(2πiy.x)dy, a.e on Em; i.e.,ũo(x) =
∫

Em

Ũo(y) exp(2πiy.x)dya.e. on Em.
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Let |q| ≤ σ(k >
m
2
+ σ); then

D(q)
x

{

Ũo(y) exp(2πi.y.x)
}

= Ũo(y)
m

∏

j=1

(2πiy j )
qj exp 2πiy.x

and
∣

∣

∣Ũo(y)
m

∏

j=1

(2πiy j )
qj exp 2πiyx

∣

∣

∣ ≤
∣

∣

∣Ũo(y)
m

∏

j=1

(2πiy j)
qj
∣

∣

∣

and
∣

∣

∣Ũo(y)
m
∏

j=1
(2πiy j )qj

∣

∣

∣ is a function independent ofx and summable (as

a function ofy) over Em. ThereforeDq(x)ũo(x) exists andD(q)ũo(x) =
∫

Em

Ũo(y)
m
∏

j=1
(2πiy j )qj (exp 2πiy.x)dy.

This representation also shows thatD(q)ũo(x) is continuous. Thus
ũo(x) is σ-times continuously differentiable; souo(x) isσ-times contin-
uously differentiable inR1.



Lecture 14

1 Garding’s inequality

For the proof of the Friedrichs - Lax - Nirenberg theorem, we need 79

Garding’s inequality Let R1 be a relatively compact subdomain ofR
and letL be a linear elliptic differential operator inR. There existα > 0
andδ > 0 such that forϕ ∈ D∞(R1),

(ϕ + α(−1)nL∗ϕ, ϕ) ≥ δ||ϕ||2n

where ||ϕ||2n =
∫

R1

∑

|s|≤n

|D(s)ϕ|2dx.

Before proving the theorem, we prove a preliminary

Proposition. (i) Define forϕ ∈ D∞(R1)

|||ϕ|||2j =
∑

|s|= j

∫

R1

∣

∣

∣D(s)ϕ
∣

∣

∣

2
dx.

Then for j< n there exists a positive constant ej,n such that

|||ϕ||| j ≤ ej,n|||ϕ|||n

(ii) lim
α↓o

sup
ϕ∈D∞(R1)















α||ϕ||2n−1

||ϕ||2o + α||ϕ||2n
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(iii) There exists positive constantsµ andµ′ such that forϕ ∈ D∞(R1)
∑

|ρ|=|σ|=n

(Dσaρ,σDρϕ, ϕ) ≥ µ|||ϕ|||2n − µ′||ϕ||n−1||ϕ||n

Proof. (i) Let80

ϕ̃(x) =















ϕ(x) x ∈ R1

0 x ∈ Em − R1

Then

ϕ̃(x) = ϕ̃(x1, . . . , xm) =

xs
∫

−∞

∂(x1, . . . , xs−1, t, xs+1, . . . , xm)
∂t

dt

Hence by Schwarz’s inequality

|ϕ̃(x)|2 ≤ L
∞
∫

−∞

∣

∣

∣

∂ϕ̃

∂xs

∣

∣

∣

2
dxs, whereL is the diameter ofR1. So

∫

R1

|ϕ|2dx=
∫

R1

φ̃|2dx

≤ L.
∫

R1

dx1 · · ·dxm



















∞
∫

−∞

∣

∣

∣

∂ϕ̃

∂xs

∣

∣

∣

2
dxs



















= L2
∫

R1

∣

∣

∣

∂ϕ

∂xs

∣

∣

∣

2
dx

Therefore

||ϕ||2o ≤ L2|| ∂ϕ
∂xs
||2o.

By repeated application of this inequality we get (i).

(ii) Since

FD(s)ϕ̃(y) =
m

∏

j=1

(2πiy j )
sjφ(y), (φ = F φ̃)
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andF is a unitary transformation inL2, we obtain

|||φ|||2l =
∑

|s|=1

∫

Em

|FD(s)ϕ̃|2dx

= (2π)2l
∑

|s|=1

∫

Em

m
∏

j=1

y
2sj

j |Φ(y)|2dy.

Since
α
∑

|s|≤n−1
∏m

j=1 y
2sj

j

1+ α
∑

|t|≤n
∏m

j=1 y
2t j

j

tends to zero uniformly iny asα ↓ 0. 81

(iii) is proved.

(iv) Whenan1,...,nm; n′1,...,n
′
m(x) with

∑

ni =

∑

n′i = n

are constant we have by partial integration and Fourier transform
∑

|ρ|=|σ|=n

D(σ)aρ,σD(ρ)ϕ, ϕ) =
∑

|ρ|=|σ|=n

(−1)naρ,σ(Dρϕ,Dσϕ)

=

∫

Em

∑

|ρ|=n
|σ|=n

(2π)2nyρ1
1 · · · y

ρm
m aρ1···ρm,σ1···σmyσ1

1 · · · y
σm
m

≥ Const
∫

Em

∑

|s|=n

|ys1
1 · · · y

sm
m |2 |Fϕ(y)|2dy|Fϕ|2dy

(making use of the ellipticity)

= Const.
∫

Em

∑

|s|=n

|D(s)ϕ|2dx

≥ Const|||ϕ|||2n.

If aρ,σ(x), (|ρ| = |σ| = n) are non-constant, put

ε = sup
ρ,σ;x′ ,x′′∈R1

|aρ,σ(x′) − aρ,σ(x′′)|.
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�

Note thatε may be taken to be arbitrarily small if we chooseR1

sufficiently small. Letxo be a fixed point ofR1. Putaρ,σ(xo) = aρ,σo .
Let ϕ ∈ D∞(R1). We have

∑

|ρ|=|σ|=n

(−1)n(aρ,σDρϕ ,Dρφ)

=

∑

|ρ|=|σ|=n

(−1)n(aρ,σo Dρϕ,Dσϕ)0 +

∑

(−1)n[((aρ,σ − aρ,σ0 )Dρϕ,Dσϕ)o];

|
∑

(−1)n(aρ,σ − aρ,σo )Dρϕ,Dσϕ)o ≤ ε
∑

|ρ|=|σ|=n

||Dρϕ||o||Dσϕ||0

≤ Constϕ|||ε|||2n.

So
∑

|ρ|=|σ|=n

(−1)n(aρ,σDρϕ,Dσφ) ≥ C1|||ϕ|||2n − Constε|||ϕ|||2n

≥ C3|||ϕ|||2n(C3 > 0).

if we choose,R1 sufficiently small. This result enables us to deduce82

(iii ) for the general case. For anyη > 0, R1 can be covered by a finite
number, sayN, of open spheresS1,S2, . . . ,SN of radiusη/2. LetS′i be
the sphere of radiusη concentric withSi. Letϕi(x) ∈ C∞(Em) satisfy

ϕi(x) > 0 for x ∈ Si , ϕi(x) = 0 for x < S′i andϕi(x) ≥ 0 for x ∈ Em.
Then

hi(x) = (ϕi(x)/
N

∑

j=1

ϕ j(x) )
1
2

satisfies hi(x) ∈ C∞(R1), hi (x) ≥ 0and
N

∑

j=1

h j(x) ≡ 1 or R.

Thus

(−1)n
∑

|ρ|=|σ|=n

(aρ,σDρϕ,Dρϕ)o
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=

N
∑

j=1

A j =

N
∑

j=1

(−1)n
∑

|ρ|=|σ|=n

(aρ,σh jD
ρϕ, h jD

(σ)ϕ)o

is such that

A j = (−1)n



















∑

|ρ|=|σ|=n

(aρ,σDρh jϕ,D
(σ)h jϕ)o − Rj



















where, by Leibnitz’s formula,

Rj =

∑

|ρ′|or |σ′ |<n

(cρ
′σ′Dρ′ϕ,Dσ′ϕ)o

with bounded functionsCρ′,σ′ . Thus, by Schwarz’s inequality,

|Rj | ≤ a j ||ϕ||n−1||ϕ||n (a j = constant> 0).

For sufficiently smallη > 0, we have, by the result obtained already,

(−1)n
∑

|ρ|=|σ|=n

(aρ,σDρϕ,Dσϕ )o

≤
n

∑

j=1

(λ j |||h j |||2n − a j ||ϕ||n−1||ϕ||n) (λ j = Const> 0)

Moreover, we have, by the same reasoning as above,

||| h jϕ |||2n ≥
∫

R

h2
j (x)

∑

| ̺ |=n

| D(̺)ϕ(x) |2dx− b j || ϕ ||n−1 || ϕ ||n

with constantb j > 0. Therefore, by putting 83

λ = min(λ j),
N

∑

j=1

(λ j b j + a j) = λ
′,

we have

(−1)n
∑

| ̺ |=|σ|=n

(aρ,σD(ρ)φ,D(σ)φ)o ≥ λ ||| ϕ|||2n − λ′ || ϕ ||n−1 ||ϕ ||n
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Proof of Garding’s inequality: We have, by integration by parts and
from part (iii ) of the above proposition, forα > 0.

(ϕ + α(−1)n L∗ϕ, ϕ)o ≥ (ϕ, ϕ)o + α(µ ||| ϕ |||2n − µ′ || ϕ ||n−1 || ϕ ||n)

+

∑

|̺|<n|σ|≤n

(C̺,σ D(̺)ϕ,D(σ)ϕ)o

whereC̺,σ are boundedC∞ functions inR1. Then by (i) and Schwarz’s
inequality

(ϕ + α(−1)nL∗ϕ, ϕ) ≥ ||ϕ||2o + α{µ|||ϕ|||2n − η||ϕ||n−1||ϕ||n}

with some positive constantη. Hence for anyτ > 0 we have, remember-
ing

||| ϕ ||2n = || ϕ ||2n −
∑

s<n

|| ϕ ||2s

and using (i),

(ϕ + α(−1)nL∗ϕ, ϕ) ≥ || ϕ ||20
+ α

{

µ || ϕ ||2n − µ′′ || ϕ ||2n−1 −
η

2

(

|| ϕ ||2n−1 τ + || ϕ ||
2
n τ
−1

)

}

Then by takingτ−1 > 0 so small that (µ − η/2τ−1) > 0 andα > 0
sufficiently small we obtain Garding’s inequality by (ii ).



Lecture 15

1 Proof of the Friedrichs - Lax - Nirenberg theorem

To prove the Friedrichs - Lax - Nirenberg theorem, we need three lem- 84

mas:

Lemma 1. If uo is of order i in R1 and if D̃(s)uo is of order j in R, for
all s with |s| ≤ i, then uo is of order i+ j in R1. If uo is of order i+ j in
R, thenD̃(s)uo is of order j for |s| ≤ i.

Lemma 2. Let R1 be a relatively compact subdomain of R and let uo ∈
L2(R1). Then for any positive integer s

(I + (−△)s)h = uo (△ is the Laplacian)

has weak solution of order2s in R1.

Lemma 3. Let uo ∈ L2(R1) be of order n in R1 and

|(L∗ϕ, uo)| ≤ Const||ϕ||n−1, for all ϕ ∈ D
∞(R1)























(ϕ, ψ)o =

∫

R1

ϕψ̄ d x; || ϕ ||2k =
∑

|s|≤k

∫

R1

|D(s)ϕ|2 dx























Thenuo is of ordern+ 1 in R1.
Assuming these lemmas for a moment, we shall give aProof of the

Friedrichs - Lax - Nirenberg theorem

99
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First Step 1. If uo ∈ L2(R1) is of ordern in R1 and satisfies|(L∗ϕ, uo)| ≤
Const||ϕ||n− j for all ϕ ∈ D∞(R1), thenuo is of ordern+ j in R1. This is
proved by induction onj. The result is true forj = 1 (Lemma 3). Let us
assume thatj > 1 and that the result is true forj − 1 Suppose

|(L∗ϕ, uo)| ≤ Const||ϕ||n− j ;

since||ϕ||n− j ≤ ||ϕ||n−( j−1), uo is of order (n+ j −1) in R1 by the inductive85

assumption. For any first order derivationD, we have|(L∗Dϕ, uo)|Const
||Dϕ||n− j ≤ Const||ϕ||n− j+1. Sinceuo is of ordern+ 1, we have

(L∗Dϕ, uo) =
∑

|̺|,|σ|≤n

(

(−1)|ρ|+|σ|D(σ) aρ,σ D(̺) D φ, uo

)

=

∑
(

(−1)|̺|D D̺ϕ, a̺,σ D̃σ uo

)

=

∑
(

(−1)|̺|+1 D̺ϕ,D(a̺,σ, D̃σuo)
)

=

∑
(

(−1)|̺|+1 D̺ϕ, (D a̺,σ)D̃σ uo

)

+

∑
(

(−1)|̺|+1 D̺ϕ, a̺,σ D̃σD̃ uo

)

=

∑
(

(−1)|̺|+1 D̺ϕ, (D a̺,σ) D̃σ uo

)

− (L∗ ϕ, D̃ uo).

Sinceuo is of order (n+ j − 1) we see by partial integration that

|(L∗ϕ, D̃ uo)| ≤ |(L∗Dϕ, uo)| + Const||ϕ||2n − (n+ j − 1)

≤ Const||ϕ||n−( j−1)

By Lemma 1,D̃ uo is of order≥ n+ j −1 ≥ n+ j −2 ≥ n (as j ≥ 2).
Hence by the induction assumptioñDuo is of ordern + j − 1. So, by
lemma 1uo is of ordern+ j.

Second Step 1(Friedrich’s theorem ). Let uo ∈ L2(R1) be a weak solu-
tion of Lu = f and f be orderp in R1. If uo is of ordern in R1, thenuo

is of order 2n+ p in R1.

Proof. This holds forp = 0. For, from (L∗ϕ, uo)o = (ϕ, f )o, we have

|(L∗ϕ, uo)o| ≤ Const||ϕ||o = Const||ϕ||n−n.
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So, by the first stepuo is of ordern+ n = 2n. Supposep = 1. We have,86

as above,

(L∗ϕ, D̃ uo)o = −(D L∗ϕ, uo) = (−1)|̺|+|σ|+1(Dσ D a̺,σ D̺ϕ, uo)o

= (−1)|ρ|+|σ|+1 (D(σ) a̺,σ D̺ D ϕ, uo)

+ (−1)|̺|+|σ|+1 (Dσ(D a̺,σ)D̺ϕ, uo)o

= (L∗ Dϕ, uo)o + (ϕ, L̃′uo),

whereL′ is a differential operator of degree 2n.

(L∗ϕ, D̃uo) = (Dϕ, f )o + (ϕ, L̃′uo)

= −(ϕ, D̃ f ) + (ϕ, L̃′uo)

(since f is of order 1 at least; the casep = 0 is already proved). Thus

|(L∗ϕ,D uo)o| ≤ Const||ϕ||o = Const||ϕ||n−n

and D̃ uo is of order 2n − 1 ≥ n. So by the first step,̃D uo is of order
n + n = 2n. By Lemma 1,uo is of order 2n + 1. For p > 1, we may
repeat the argument. �

Third Step 1. Let uo ∈ L2(R1) be a weak solution ofL u = f and f be
of orderp in R1. Thenuo is of order 2n+ p in R1.

Proof. Let ho of order 2n be a weak solution of

(I + (−A)n)h = uo.

ho exists by Lemma 2. Thenho of order 2n is a weak solution of

L(I + (−△)n)h = f ;

L(I + (−△)n) is an elliptic operator of order 4n. f being of orderp, ho is 87

of order 4n+ p, by the second step. Hence, by Lemma 1,

uo = (I + (−△)n)ho

is of order 4n+ p− 2n = 2n+ p. �





Lecture

1 Proof of Lemma 3

Let Rbe a bounded domain ofEm. Let uo of ordern satisfy 88

|(L∗ϕ, u0)0 | |
n

∑

|ρ|=|σ|=0

(D(σ) aρ,σ D(̺) ϕ, u0)0

≤ Const||ϕ||n−1 for all ϕ ∈ D∞(R)

Let R2 ⊂ R1 ⊂ R,R2,R1 being subdomains, such that the closure of
R1 in R is compact. Letζ ∈ D∞ with ζ(x) = 1 onR2. Let

vh(x) =
v(xh) − v(x)

h
, xh
= (x1 + h, x2, . . . , xm),

h sufficiently small. Then, as will be proved below,

|| vh ||n ≤ Const ( for all sufficiently smallh).

Since the Hilbert spaceHn(R) (completion ofD∞(R) by the norm
|| ||n) is locally weakly compact, there exists a sequence{hi} with lim

i→∞
hi = 0 such that for|k| ≤ n

weak lim
i→∞

vhi = v̂

weak lim
i→∞

D̃kvhi = v(k)

exist inL2(R1). We shall show that

v̂ = D̃1 v (D1 = ∂/∂x1
)
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v(k)
= D̃1D̃(k)

v = D̃(k) D̃1 v

proving thatD̃1 v is of ordern in R1. Similarly D̃i v(i = 2, . . . ,m) will
be of ordern in R1. Thus by lemma 1,v is of ordern+1 in R1 and hence
u is of ordern + 1 in R. That v̂ = D̃1 v may be proved as follows: For
anyϕ ∈ D∞(R1) we have,θ being a real number such that 0< θ < 1,

(ϕ, v̂)o = lim
i→∞

(ϕ, vhi )o

= lim
i→∞

(ϕ−hi , v)

= lim
i→∞

(ϕx1(x
−θhi ), v(x))o

= lim
i→∞

(ϕ(x(−θhi )), D̃1v(x))o

= (ϕ,D1v)o.

We have also89

(D̃k v)h
= D̃k vh

and thus, inL2,

vk
= weak lim

i→∞
D̃k vhi = w− lim

i→∞
(D̃k v)hi

= D̃1 D(k) v.

We prove that

||vh||m ≤ Const (for all smallh).

We shall make use of Garding’s inequality for the 2n order elliptic
differential operatorL∗: there exist constantsC1, C2 andC3 such that

C1||ϕ||2n ≤ (L∗ϕ, ϕ)o +C2||ϕ||2o
|(L∗ϕ, ψ)| ≤ C3||ϕ||n ||ψ||n, ϕ, ψ ∈ D

∞(R).

Now,

(L∗ϕ, vh)o = (−1)|̺| (D̺ϕ, a̺,σ D̃(σ) (ζ uo)h)o

= (−1)|̺| (D̺ϕ, a̺,σ (D̃(σ) ζ uo)h)o
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= (−1)|̺| (D(̺)ϕ, a̺,σ (ζ.D̃σuo)o (*)

+ (−1)|̺| Cσ,σ′ (D̺ϕ, a̺,σ
[

Dσ′ζ D(σ−σ′) uo

]h

o
(|σ′| ≥ 1)

by applying the Leibnitz formula.
On the other hand, we have, for any functionw of order j in R with 90

support completely interior toR
||wh||J−1,R1 ≤ ||w|| j , for sufficiently small |h|, because, for any ap-

proximating functions{ui} ≤ C∞(R)

|| wh || j−1,R1 = lim
i→∞
|| uh

i || j−1,R1

= lim
i→∞
|| ux1 (x(θh)) || j−1,R1

≤ || w || j,R = || w || j .

Thus the absolute value of the second term on the right of (∗) is by
Schwarz’s inequality≤ Const || ϕ ||n || u ||n = Const|| ϕ ||n. Since

(e f)h(x) = eh(x) f (xh) − e(x) f h(x),

we have

(−1)|̺|(D̺ϕ, a̺,σ (ζ.D̃(σ) uo)h)o

=(−1)|̺| (D̺ϕ, [(a̺,σ ζ.D̃σ uo)h − (a̺,σ)h ζ(xh).D̃σ uo(xh)])o

=(−1)|̺| ((D̺ϕ)−h, a̺,σζ D̃σ uo)o

+(−1)|̺|+1 (D̺ϕ, (a̺,σ)h ζ(xh) D̃σ uo (xh))o

The absolute value of the second term on the right is 91

≤ Const|| ϕ ||m.

We have also

(−1)|̺| ((D̺ϕ)−h, a̺,σ ζ D̃σ uo)o

=(−1)|̺| (D̺ϕ−h, a̺,σ ζ D̃σ uo)o

=(−1)|̺| (a̺,σζ D̺ ϕ−h, D̃σ uo)o
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=(−1)|̺| (a̺,σ D̺ ζ ϕ−h, D̃σ uo)o

=(−1)|̺| C̺,̺′ (a̺,σ (D̺′ζ D(̺−̺′)ϕ−h), D̃σ uo)o (|̺′| ≥ 1).

The absolute value of the second term on the right is

≤ Const|| ϕ−h ||n−1 ≤ Const|| ϕ||n−1.

Therefore, by applying the original hypothesis,

|(L∗ϕ, (ζ uo)h)o| ≤ |(L∗ζ ϕ−h, uo)| + Const||ϕ||n
≤ Const||ζϕ−h ||n−1 + Const ||ϕ||n
≤ K || ϕ ||n,K a positive constant.

Thus lettingϕ tend, in|| ||n, to (ζ uo)h, we have

C1||(ζ uo)h||2n ≤ K||(ζ uo)h||n +C2||(ζ uo)h||o

Since||(ζ uo)h||o ≤ Const||ζ uo||1, the right hand side being indepen-
dent ofh, we must have

||(ζ uo)h||n ≤ Const ( independent ofh).



Lecture 17

1 Proof of Lemma 2

We define 92

ũo (x) =















uo(x) if x ∈ R1

0 if x ∈ Em − R1.

Let Uo(y) = (F ũo)(y). Then

ho(x) = F
−1 Uo (Y)

1+ (
∑m

j=1 (2πy j)2)s
(x)

satisfies the conditions of the lemma. In the first place,

ho(x) =
∫

|y|≤n

Uo (y)

1+ (
∑m

j=1 (2πy j)2)s
exp (2π

√
−1 yx)dy

is C∞(Em). For, sinceUo(y) ∈ L2(Em),

Uo (y)
1+ (

∑m
j=1 (2πy j)2)s

m
∏

j=1

(2π
√
−1 y j)

kj exp (2π
√
−1 yx)

is, for any set of integersk j ≥ 0, integrable over|y| ≤ n and majorised
uniformly in x by a summable function (iny). So

∂k1+···+km

∂x1
k1 · · · ∂xn

kn
hn(x) =

∫

|y|≤n































Uo(y)
m
∏

j=1
(2π
√
−1 y j)k j

1+ (
∑

j=1 (2π yi)2)s































exp(2π
√
−1 yx)dy
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Moreover, for|k| ≤ 2s, the function under the curly brackets{· · · }
is in L2 (Em), so that for|k| ≤ 2s,D(k) hn (Ex). converges inL2(Em)
Thereforeho(x) is of order 2s in Em.

Next for anyϕ ∈ D∞(Em), we have, by partial integration,
∫

Em

(I + (−△)s) ϕ(x) ho(x) dx= lim
n→∞

∫

Em

(I + (−△)s)ϕ(x) hn(x) dx

= lim
n→∞

∫

Em

ϕ(x) (I + (−△)s) hn(x) dx

=

∫

Em

ϕ(x) (F−1 Uo) (x) dx

This proves thatho is a weak solution inEm of (I + (−△)s) h = ũo =93

F−1Uo. Thusho is a weak solution inR1 of (I + (−△)s)h = uo.

2 Proof of Lemma 1

In the proof of Lemma 1 we have to make use of the notion of “regular-
isation” or “mollifiers”. Let j(x) ∈ C∞(Em) such that

i) j(x) ≥ 0,

ii) j(x) = 0, for |x| ≥ 1

iii)
∫

Em

j(x) dx= 1.

Let for ε > 0
jε(x) = ε−n j(x/ε)

We have then

i) jε(x) ≥ 0,

ii) jε(x) = 0, for |x| ≥ ε

iii)
∫

Em

jε(x) dx= 1.
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Let R1 be a relatively compact subdomain ofR ⊂ Em andu(x) ∈
L2(R1). Let R2 be a subdomain relatively compact inR1. Let d > 0 be
the distance betweenR2 and the boundary ofR1. Let ε > 0 be such that
ε < d. For x ∈ R2, define

(Jε u)(x) =
∫

R1

jε(x− y)u′(y) dy.

((Jε u)(x) is called regularisation ofu(x) and the operatorsJε are called 94

mollifiers). Let

||v||2o,Ri
=

∫

Ri

|v|2dx.

We then have

i) || Jε u ||o,R2 ≤ || u ||o,R1

ii) lim ε↓o || Jε u− u ||o,R2 = 0

iii) ( Jε u)(x) is C∞ in R2 and ifh is of orderi in R1,

then
D(s) (Jε u)(x) = (Jε D̃s u)(x) for |s| ≤ i

in R2.
Proof of (iii): We have, for each derivationD(s),

(D(s)
x Jε u)(x) =

∫

R1

D(s)
x jε(x− y) u(y) dy.

Supposeu is of order i in R. We have then, for|s| ≤ i, by partial
integration,

∫

R1

D(s)
x jε (x− y) u(y) =

∫

R1

(−1)|s|{D(s)
y jε (x− y)} u(y) dy

∫

R1

jε (x− y) D̃(s) u(y) dy
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since, for eachx ∈ R2, jε(x− y) considered as a function ofy, has com-
pact support inR1.
Proof of (ii): We have, forx ∈ R2,

∫

R1

jε (x− y) dy= 1. Hence

(Jε u)(x) − u(x) =
∫

R1

jε (x− y) (u(y) − u(x)) dy.

By Schwarz’s inequality
∫

R2

| (Jε u)(x) − u(x) |2 dx

≤
∫

R2

dx























∫

R1

jε (x− y) dy
∫

R1

jε(x− y)| u(y) − u(x)|2 dy























=

∫

R2

dx
∫

R1

jε (x− y) | u(y) − u(x)|2 dy

≤
∫

R2

dx
∫

|z|<ε

jε (z) |u(x− z) − u(x)|2 dz

=

∫

|z|<ε

jε (z)























∫

R2

| u(x− z) − u(x)|2 dx























dz

Since
∫

R2

| u(x− z) − u(x)|2 dx tends to zero as|z| → 0, (ii ) is proved.95

Proof of (i): We have, by calculations similar to the above calculations,

|| Jε u ||2o,R2
=

∫

R2

dx
∫

R1

jε (x− y) | u(y) |2 dy

≤
∫

|z|<ε

jε(z)























∫

R2

|u(x− z) |2 dx























dz

≤
∫

|z|<ε

jε(z)























∫

R2

| u(x) |2 dx























dz
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= || u ||2o,R1
.

Proof of Lemma 1.Let u be of order inR1 and letD̃(s) u be of orderj
in R1 for eachswith |s| ≤ i. Then for|t| ≤ j,

D(t) D(s) Jε u = D(t) Jε D̃(s) u = Jε D̃t D̃(s) u (|s| ≤ i)

by (iii). Hence by (ii),u is of orderi + j, in R1.

Next letu be of orderi + j in R1. Since

D(t) Jε D̃(s) u = Jε D̃(t) D̃(s) u (|t| ≤ j, |s| ≤ i)

we see by (ii ) that D̃(s)u is of order j in R1.





Part IV

Application of the
semi-group theory

to the Cauchy problem for
the diffusion and wave

equations
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Lecture 18

1 Cauchy problem for the diffusion equation

Let Rbe a connected n-dimensional oriented Riemannian space with the 96

metric
ds2
= gi j (x) dxi dxj .

Let A be a second order linear partial differential operator inRwith
C∞ coefficients:

(A f)(x) = bi j (x)
∂2 f

∂xi ∂x j
+ ai(x)

∂ f
∂xi

(x)c(x) f (x);

we assume thatbi j is a symmetric contravariant tensor andai(x) satisfies
the transformation rule

a−i
= ak ∂x̄i

∂xk
+ bkl ∂2x̄i

∂xk∂xl

[(x1, . . . , xn) → (x̄1, . . . , x̄n)] so that the value (A f)(x) is determined
independent of the choice of the local coordinates. We further assume
thatA is elliptic in the strong sense that there exist positive constantsµ

andλ(0 < λ < µ) such that

µ gi j (x) ξi ξ j ≥ bi j (x) ξi ξ j ≥ λgi j (x)ξi ξ j

for every real vector (ξi , . . . , ξn) and everyx ∈ R.
We consider the Cauchy problem in the large onR for the diffusion

equation: to findu(t, x) (x ∈ R) such that














∂u
∂t = A u (t, x), t > 0

u(0, x) = f (x), f (x) being a given function onR.
(**)
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We shall first give a rough sketch of our method of integration. We97

wish to integrate the equation in a certain function spaceL(R) which is a
Banach space (i.e., we want to obtainu(t, x) such thatu(t, . . .) ∈ L(R) for
eacht ≥ 0); we assume thatL(R) containsD∞(R), the space ofC∞ func-
tions with compact support, as a dense subspace. (Examples:Lp(R), 1 ≤
p < ∞; C(R) if R is compact). We determine an additive operatorAo

such that: (i) C∞(R) ⊃ D(Ao) ⊃ D∞(R), if f ∈ D(Ao) Ao f = A f.(ii )
the smallest closed extension̄Ao of Ao exists andĀo is the infinitesimal
generator of a semi groupTt on L(R). We then have



















Dt Tt f = s− lim
h→o

Tt+h−Tt f
h = Āo Tt f (= Tt Āo f ), t ≥ 0

To f = f .

ThusTt f is a kind of solution of (∗∗). Next, we shall show that,
if the initial function f (x) is prescribed suitably [e.g.,iff ∈ D∞(R) or
more generally, ifAk

o f ∈ D(Ao) for all integersk ≥ o], there exists
a functionu(t, x) definitely differentiable int and x such thatTt f (x) =
u(t, x) almost everywhere in (0,∞] × R, the measure inR being the one
given by

√
g d x1, . . . , d xn, andu(t, x) will be a solution of (∗∗).

In carrying out this procedure, we have to solve an equation of the

form
(

u− Ao

m

)

u = f , f is given andu is to be found fromD(Ao). This is

a kind of boundary value problem connected with the ellipticdifferential
operatorA.

Theorem. If R is compact, the equation98















∂u
∂t = Au= bi j (x) ∂2u

∂xi∂xj + ai(x) ∂u
∂xi , t > 0

u(0, x) = f (x) ∈ D∞(R), ( f (x) given)

admits of a solution C∞ in (t, x). This solution can be represented in the
form

u(t, x) =
∫

R

P(t, x, dy) f (y)

where P(t, x,E) is the transition probability of a Markoff process on R.
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The proof will be preceded by two lemmas.
We take forL(R) the Banach spaceC(R) of continuous functions

with || f || = sup
x
| f (x)|.D∞(R) is dense inL(R). The operatorA◦ is defined

as follows:

D(A◦) = D
∞(R) andA◦ f = A f for f ∈ D

∞(R).

Lemma 1. For any f ∈ D∞(R) and and any m> 0, we have

max
x

h(x) ≥ f (x) ≥ min
x∈R

h(x)

where h(x) = f (x) − (A◦ f )(x)
m

.

Proof. Let f (x) attain its maximum atx◦. We choose a local coordinate
system atx◦ such thatbi j (x◦) = δi j (Kronecker delta). �

(Such a choice is possible owing to the positive definitenessof
bi j ξiξ j . Then

h(x◦) = f (x◦) −m−1(A◦ f )(x◦)

= f (x◦) −m−1ai(x◦)
∂ f

∂xi
◦
−m−1

Σ
n
i=1

∂2 f

∂(xi
◦)2

= f (x◦).

since we have, at the maximum pointx◦, 99

∂ f

∂xi
◦
= 0 and

n
∑

i=1

∂2 f

∂xi2
◦
≤ 0.

Thus max
x

h(x) ≥ f (x). Similarly we havef (x) ≥ min
x

h(x).

Corollary. The inverse(I−m−1A◦)−1 exists for m> 0and||(I−m−1A◦)−1

|| ≤ 1. Further ((I −m−1A◦)−1h)(x) ≥ 0 if h(x) ≥ 0. Also

(I −m−1A◦)
−1.1 = 1.

Lemma 2. The smallest closed extension̄A◦ of A◦ exists.
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Ā◦ f is defined and equal toh if there exists a sequence{ fk} ⊂ D∞(R)
such thats− lim

k→∞
fk = f ands− lim

k→∞
A◦ fk = h.

Ā◦ f is determined uniquely byf . For if { fk} ⊂ D∞(R) be such that
lim
k→∞

fk = 0 and lim
k→∞

A◦ fk = h, then we musth = 0.

For by Green’s integral theorem,R being compact,

∫

R

fkA∗gdx=
∫

R

gA fkdx,

for everyg ∈ D∞(R) so that, in the limit,

0 =
∫

R

ghdx, for everyg ∈ D
∞(R); soh = 0.

To prove that the resolvent (I −m−1A◦)−1 exists as a linear operator
in C(R), for m large, it will be sufficient to show, in view of the Corollary
to Lemma 1 and the fact that̄A◦ is closed, that the range of (I −m−1A◦)
is dense inC(R). We shall show that for anyh ∈ D∞(R) we can find
f ∈ D(R) such that (I − m−1A◦) f = h (m large). To this purpose, we
need

2 Garding’s inequality

For u, v ∈ D∞(R), define100

(u, v)0 =

∫

R

uvdx (||u||2◦ = (u, u)◦)

(u, v)1 = (u, v)0 +

∫

R

gi j ∂u
∂xi

∂v
∂x j

dx (||u||21 = (u, u)1)

Then there existsγ > 0 andδ > 0 such that for all sufficiently large
m> 0,

B′(u, v) =
((

I − A∗
m

)

u, v
)
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satisfies

|B′(u, v)| ≤ γ||u||1||v||1
δ||u||21 ≤ B′(u, u) for all u, v ∈ D

∞(R).

This lemma can be proved by partial integration.
Let H◦ be the Hilbert space of square summable functions inR. We

haveD∞(R) ⊂ H◦(R). Let A1 be the operator inH◦ with domainD∞(R)
defined by:A1 f = A◦ f , f ∈ D∞(R). As in Lemma 2, the closure ofA1

in H0, Ā1, exists. We show now that the range of (I − A1

m
) is dense in

H◦, for m large. If (I − A
m

)D∞ were not dense inH◦, there will exists

an elementf , 0 in H◦ which will be orthogonal to (I − A
m

)D∞. This

mean thatf is a weak solution of
(

I − A∗
m

)

f = 0.

By the Wey1-Schwartz theorem,f may be considered to be in
D∞(R). By Garding’s inequality, assumingm to be sufficiently large,

δ|| f ||21 ≤
(

I − A∗

m
f , f

)

= 0. So f = 0.

Since the range of
(

I − A1

m

)

is everywhere dense inH◦,

(

I − Ā1

m

)−1

is

defined everywhere inH◦. So for everyh ∈ D∞(R), we can findf◦ ∈ H◦

such thatf◦ is a weak solution of
(

I − A
m

)

f = h.

Again by the Weyl-Schwartz theorem,f will be in D∞(R). Thus 101

we see that for largem the resolventJm =

(

I − Ā◦
m

)−1

exists as a linear

operator onL(R) and satisfies||Jm|| ≤ 1 (also, (Jmh)(x) ≥ 0 if h(x) ≥
0; Jm.1 = 1). Consequently, (see Lecture 8)̄A◦ is the infinitesimal
generator of a uniquely determined semi-group

Tt = exp(tĀ◦) = s− lim exp(tm(Jm − I )).

We have further

||Tt || ≤ 1, (Tt f )(x) ≥ 0 if f (x) ≥ 0, Tt.1 = 1.
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If f ∈ D∞(R), we have

DtTt f = Ā◦Tt f = TtĀ◦ f = TtA◦ f

D2
t Tt f = Ā◦TtA◦ f = TtA

2
◦ f

: :

Dk
t Tt f = TtA

k
◦ f ,

for k ≥ 0, sinceAk
◦ f ∈ D∞(R) for integral k ≥ 0. By making use

of the strong continuity ofTt in t we see that (D2
t + Ā)kTt f is locally

square summable on the product space (0,∞) × R. Since (
∂2

∂t2
+ A)k

is an elliptic operator, it follows the Friedrichs-Lax-Nirenberg theorem
that (Tt f )(x) is almost everywhere equal to a functionu(t, x) indefinitely
differentiable in (t, x) for t ≥ 0.
Proof of the latter part of the theorem:

|u(t, x)| = |(Tt f )x| ≤ ||Tt f || ≤ || f ||

Henceu(t, x) is, for fixed (t, x) a linear functional off ∈ L(R).
Therefore there existsP(t, x,E) such that

u(t, x) =
∫

R

P(t, x, dy) f (y).

The non-negativity ofu(t, x) for f (x) ≥ 0 implies thatP(t, x,E) is ≥ 0.
SinceTt1 = 1, we must haveP(t, x,R) = 1.
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1 The Cauchy problem for the wave equation

We consider the Cauchy problem for the ‘wave equation’ in them- 102

dimensional Euclidean spaceEm:















∂2u(t,x)
∂t2 = Au(t, x), x ∈ Em

u(0, x) = f (x), ut(0, x) g(x), f , g, given ,

where A = ai j (x)
∂2

∂xi ∂x j
+ bi(x)

∂

∂xi
+ c(x)

is a second-order elliptic operator. This problem is equivalent to the
matricial equation







































∂
∂t















u(t, x)

v(t, x)















=















0 I

A 0





























u(t, x)

v(t, x)















(I = identity ).















u(o, x)

v(o, x)















=















f (x)

g(x)















(1)

We may apply the semi-group theory to integrate (1), by consider-
ing, in a suitable Banach-space the “resolvent equation”

[(

I o
o I

)

− n−1

(

o I
A o

)] (

u
v

)

=

(

f
g

)
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for large|n| (n, integral) and obtaining the estimate

||
(

u
v

)

|| ≤ (1+ |n−1|β)||
(

f
g

)

||

with a positiveβ independent ofu, f andg. As a matter of fact, the es-

timate implies (see Lecture 9) that

(

0 I
A 0

)

is the infinitesimal generator

of agroup {Tt}−∞<t<∞ and

Tt

(

f (x)
g(x)

)

=

(

u(t, x)
v(t, x)

)

will give a solution of (1) if the initial functionsf (x) andg(x) are pre-103

scribed properly.
We have the

Theorem.Suppose that the coefficients ai j (x), bi (x) and c(x) are C∞ and
that there exists a positive constantλ such that

ai j (x)ξiξ j ≥ λ
∑

i

ξ2
i

(x ∈ Em, (ξ1, . . . , ξm) ∈ Em). Assume further that

η = max















sup
x,i, j
|ai j (x)|, sup

x,i, j,k

∣

∣

∣

∣

∣

∣

∂ai j

∂xk

∣

∣

∣

∣

∣

∣

sup
x;i, j,k,s

∣

∣

∣

∣

∣

∣

∂2ai j

∂xk ∂xs

∣

∣

∣

∣

∣

∣

, sup
x;i
|bi(x)|, sup

x;i,k

∂bi

∂xk
, sup

x
|c(x)|















is finite. Then there exists a positive constantβ such that for sufficiently
smallα◦, the equation(1) is solvable in the following sense: for any pair
of C∞ functions

{

f (x), g(x)
}

on Em for which Ak f ,Akg and their partial
derivatives are square integrable (for each integer k≥ 0) over Em, the
equation(1) admits of a C∞ solution u(t, x) satisfying the “energy in-
equality”

((u− α◦Au, u)◦ + α◦(ut, ut)◦)
1
2 ≤ exp(β|t|(( f − α◦A f, f )◦ + α◦(g, g)◦)

1
2
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Proof. The proof will be carried out in several steps.
First step: Let H be the space of real-valuedC∞ functions inEm for
which

|| f ||1 =



















∫

Em

| f |2dx+
∑

i

∫

Em

| fxi |2dx



















1
2

< ∞,

and letH̃1(Em) be the completion ofH with respect to the norm|| ||1. The 104

completion ofH with respect to|| f ||◦ =














∫

Em

| f |2dx















1
2

will be denoted

by H̃◦(Em).H̃◦(Em) and H̃1(Em) are Hilbert spaces; actuallỹH◦(Em) =
H◦(Em) = L2(Em).

One can prove that there existsχ > 0 andα◦ > 0 such that for
0 < α < α◦ there correspondγ > 0 andδα > 0 satisfying

δα|| f ||21 ≤














( f − αA f, f )◦ for f ∈ H,A f ∈ H◦
( f − αA∗ f , f )◦ for f ∈ H A∗ f ∈ H◦.

|( f − αA f, g)◦| ≤ (1+ αγ)|| f ||1|||g||1 for f , g ∈ H,A f ∈ H◦.

|( f − αA∗ f , g)◦| ≤ (1+ αγ)|| f ||1|||g||1 for f , g ∈ H; A∗ f ∈ H◦.

|(a f, g)◦ − ( f ,Ag)◦| ≤ χ|| f ||1||g|||◦, for f , g ∈ H; A f,Ag ∈ H◦.

(The proofs of these inequalities will be given in the next lecture). �

Thus the bilinear form

B∧α(u, v) = (u− αA∗u, v)◦ for u, v ∈ H,A∗u ∈ H◦

can be extended to a bilinear functionalBα(u, v) on H1 satisfying















δα||u||21 ≤ Bα(u, u)

|Bα(u, v)| ≤ (1+ αγ)||u||1||v||1.

Second step:Let 0< α ≤ α◦. For any f ∈ H, the equationu−αAu= f
admits of a uniquely determined solutionu(x) = uf (x) ∈ H.
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Proof. The additive functionalF(u) = (u, f )◦ is bounded onH1, be-
cause

|F(u)| = |(u, f )◦ | ≤ ||u||◦ || f ||◦ ≤ ||u||1|| f ||◦.

So, by Riesz’s representation theorem, there exists a uniquely deter-105

minedv( f ) ∈ H̃1 such that

(u, f )◦ = (u, v( f ))1.

By the Lax-Milgram theorem (see lecture 4) as applied to the bilin-
ear formBα(u, v) in H̃1, there corresponds a uniquely determined ele-
mentS v( f ) in H̃1 such that

(u, f )◦ = (u, v( f ))1 = Bα(u,S v( f )), for u ∈ H1.

u◦ = S v( f ) is a weak solution of the equationu− αAu= f , i.e., for each
u ∈ D∞(R) we have (u, f )◦ = (u − αA∗u,S v( f ))◦. In fact, let{vk} ⊂ H
be a sequence such thatvk → S v( f ) in H̃1; then, for

u ∈ D
∞(R), Bα(u,S v( f )) = lim

n→∞
Bα(u, vn)

= lim
n→∞

(u− αA∗u, vn)

= (u− αA∗u,S v( f )).

Since f is C∞ in Em andA is elliptic, u◦ = S v( f ) is almost everywhere
equal to aC∞ function (Weyl- Schwartz theorem). We thus have a solu-
tion u◦ ∈ H of the equationu−αAu= f . The uniqueness of the solution
follows from the inequalities given in the first step. �

Third step: If the integern is such that|n|−1 is sufficiently small, then
for any pair of functions{ f , g} with f , g ∈ H andA f ∈ H◦, the equation

[(

I 0
0 I

)

− n−1

(

0 I
A 0

)] (

u
v

)

=

(

f
g

)

(2)

or

u− n−1v = f
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v− n−1Au= g

admits of a uniquely determined solution{u, v} u, v ∈ H. Moreover, we106

have

[

Bα◦(u, u) + α◦(v, v)
] 1

2 ≤ (1+ |n|−1β)(Bα◦( f , f ) + α◦(g, g)◦)
1
2

with a positive constantβ.

Proof. Let u1, v1 ∈ H be such that

u1 − n−2Au1 = f v2 − n−2Av2 = g.

(See the second step). Then

u = u1 + n−1v2 v = n−1Au1 + v2

satisfies (2).
We have

Au= n(v− g) ∈ H ⊂ H◦, Av= n(Au− A f) ∈ H◦.

We may therefore apply the inequalities of the first step.
Thus by (2),

( f − α◦A f, f )◦ = (u− n−1v− α◦A(u− n−1v), u− n−1v)◦

= (u− α◦Au, u)◦ − 2n−1(u, v)◦ + α◦n
−1(Au, v)◦

+ α◦n
−1(Av, u)◦ + n−2(v− α◦Av, v)◦

and

α◦(g, g)◦ = α◦(v− n−1Au, v− n−1Au)◦

= α◦(v, v)◦ − α◦n−1(v,Au)◦ − α◦n−1(Au, v)◦ + α◦n
−2(A A)◦

Hence 107

Bα◦( f , f )◦ + α◦(g, g)

≥Bα◦(u, u) + α◦(v, v)◦ − 2|n|−1(u, v)◦ − α◦|n|−1|(Av, u)◦ − (Au, v)◦|
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≥Bα◦(u, u) + α◦(u, v)◦ − 2|n−1| ||u||1||v||◦ − α◦|n|−1χ||u||1||v||◦
≥Bα◦(u, u) + α◦(v, v)◦

− |n−1|
{

||u||21τ + τ
−1||v||2◦ +

α◦
2
χ(||u||21τ + τ

−1||v||2◦)
}

(τ > 0)

Thus, by takingτ > 0 sufficiently large and then taking|n| suffi-
ciently large, we have the desired inequality. �

Fourth step: The product spacẽH1 × H̃◦ is a Banach space with the
norm

||(u
v)|| = [Bα◦(u, u) + α◦(v, v)]

1
2

We define now an operatorO in H̃1 × H◦ : the domain ofO consists of
the vectors (uv) ∈ H1 × H◦ such thatu, v ∈ H andA(u− n−1v) ∈ H◦ and
v− n−1Au∈ H and on such elementsO(u

v) is defined to be
(

0 I
A 0

) (

u
v

)

.

The third step shows that for sufficiently large|n|, the range of the

operator

(

I 0
0 I

)

− n−1O coincides with the set pairs (f
g) such thatf , g ∈

H,A f ∈ H◦; such vectors (fg) are dense in the Banach spaceH̃1 × H̃◦. It
follows that the smallest closed extension̄O of is such that

(I − n−1
Ō), I =

(

I 0
0 I

)

admits, for sufficiently large|n|, of an inverseIn = (I −n−1Ō)−1 which108

is linear operator oñH1 × H◦ satisfying

||In|| ≤ (1+ β|n−1|).

So, there exists a uniquely determinedgroup {Tt}−∞<t<∞ with Ō as
the infinitesimal generator and such that

||Tt || ≤ exp(βt),

strong lim
h→o

Tt+h − Tt

h
( f
g) = ŌTt(

f
g) = TtŌ( f

g) if ( f
g) ∈ domain ofŌ (See

Lecture 9).



Lecture 20

1 Cauchy problem for the wave equation (contin-
ued)

Fifth step: If f and g satisfy the conditions of the theorem, i.e., if109

Ak f ∈ H,Akg ∈ H(k = 0, 1, . . .), we have

Ō
k
(

f
g

)

= O
k
(

f
g

)

∈ H̄1 × Ho(k = 0, 1, . . .),

i.e., (fg) is in the domain of every power of̄Ok. So, referring to step 4,
we find that vectors

(

v(t, x)
v(t, x)

)

= Tt

(

f (x)
g(x)

)

are in the domain of every power ofO :

Ō
k
(

u(t, x)
v(t, x)

)

∈ H̄1 × Ho.(k = 0, 1, 2, . . .)

Thus, for integralk ≥ 0, u(t, x) is for t fixed, a weak solution of the
equation

Aku = f (k), with f k ∈ L2(Em)

Ak is an elliptic operator of order 2k and k may be taken arbitrarily
large. We see therefore by the Friidrichs-Lax-Nirenberg theorem and
Sobolev’s lemma, thatu(t, x) is C∞ in x (for fixed t). And the same
statement holds forv(t, x).

127
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Since||Tt ||expβ(|t|) we see that

||u(t, x)||21 + ||v(t, x)||2o ≤ Const. exp(2β|t|)
{

|| f ||21 + ||g||
2
0

}

.

This, combined with the strong continuity ofTt in t, shows that
u(t, x) and v(t, x) are locally square summable in the product space
(−∞ < t < ∞)×Em. And we have, for the second order strong derivative
∂2

t ,
∂2

t u(t, x) = Au(t, x)

so that (∂2
t + A)u = 2Au, (∂2

t + A)ku = (2A)ku,.110

Since
∂2

∂t2
+ A is an elliptic operator in (−∞ < t < ∞) × Em, we see

thatu(t, x) is almost everywhere equal to a functionC∞ in (t, x).
The proof of the first step is obtained by the

Lemma. Let f, g ∈ H and A f ∈ Ho. Then

(A f, g)o = −
∫

ai j ∂ f
∂xi

∂g
∂x j

dx− ∂ai j

∂x j

∂ f
∂xi

g d x+
∫

bi ∂ f
∂xi

g d x+
∫

c f g.

And we can also partially integrate the second and the third terms

on the right, so that the first order derivatives of
∂ f
∂xi

shall be eliminated,

and the integrated terms are nought.

Proof. From A f ∈ Ho andg ∈ H we see thatai j ∂2 f
∂xi∂x j

.g is integrable

overEm. Thus, by Fubini theorem,

∫

Em

ai j ∂2 f
∂xi∂xi∂x j

g d x= lim
δ→+∞

∫ ∞

−∞
dx2 · · ·dxm

δ1
∫

ε1

ai j ∂2 f
∂xi∂x j

g d x1

δ1
∫

ε1

ai j ∂2 f
∂xi∂x j

gdx1 =

[

ai j ∂ f
∂xi

g

]x1=δ1

x1=ε1

−























δ
∫

ε1

ai j ∂ f
∂x j

∂g
∂xi

dx1

+

δ
∫

ε

∂ai j

∂xi

∂ f
∂x j

gdx





















+

∂1
∫

ε1

∑

i, j,1

ai j ∂2 f
∂xi∂x j

gdx1.
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= k1(δ1, ε1, x2, . . . , xm) + k2(δ1, ε2, x2, . . . , xm) + k3(δ1, ε1, x2, . . . , xm)

By Schwarz’s inequality, we have
∣

∣

∣

∞
∫

−∞
dx2 . . .dxmk1

∣

∣

∣

≤ η
∑

j

∞
∫

−∞

dx2 . . .dxm

∣

∣

∣

∂ f (δ1, x2 . . . , xm)2

∂x j

∣

∣

∣ ·
∞

∫

−∞

dx2 . . .dxm|g(δ1, x2.xm)2)
1
2

+ similar terms pertaining toε1 instead ofδ1. 111

Since

∫

Em

g2dx=

∞
∫

−∞

dx1

∫ ∞

−∞
· · ·

∫

−∞
|g(x1, x2, . . . , xm)2dx2, . . . , dxm,

∫

Em

| ∂ f
∂x j
|2dx=

∫

dx1

∞
∫

−∞
∫

|| ∂ f
∂x j

(x1, x2, . . . , xm)|2dx2 . . . dxm,

we see there exists{δ(n)
1 } and{ε(

1n)} such that

lim
δ

(n)
1 →∞
ε

(n)
1 →∞

∫

k1(ε(n)
1 , δ

(n)
1 , x2, . . . , xm)dx2 . . . dxm = 0.

On the other hand, sincef , g
∂ f
∂x j

,
∂g
∂x1
∈ Ho, we see that

lim
δ1→∞
ε1→−∞

∫

k2(ε1, δ1, x2, . . . , xm)dx2, . . . , dxm

=

∫

Em

{ − ai j ∂ f
∂x j

∂g
∂x1
− ∂i j

∂x1

∂ f
∂x j

g
}

dx= k2

is finite, Thus,
∫

ai j ∂2 f
∂xi∂x j

gdx= k2 + lim
δ(n)→∞
ε

(n)
1 →−∞

∫ ∞

−∞
k3(ε(n)

1 , δ
(n)
1 , x2, . . . , x)dx2 . . . dxm
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Hence
δ

(n)
1

∫

ε
(n)
1

∑

i, j,1

ai j ∂2 f
∂xi∂x j

gdx1

is integrable over−∞ < xi < ∞(i = 2, . . . ,m). �

Hence

k3 = lim
δ

(n)
1 →∞
ε

(n)
1

→−∞

∫ ∞

−∞
dx2 . . . dxmk3(ε(n)

1 , δ
(n)
1 , x2, . . . , xm)

= lim
δ

(n)
1 →∞
ε

(n)
1

→−∞

lim
δ2→∞
ε2
→∞

∫

dx3 . . . dxm



























δ2
∫

ε2

dx2

δ
(n)
1

∫

ε
(n)
1

∑

i, j,1

ai j ∂2 f
∂xi∂x j

gdx1



























However112

{

· · · · · ·
}

=

δ
(n)
1

∫

ε
(n)
1

dx1

δ2
∫

ε2

∑

i, j,1

−ai j ∂2 f
∂xi∂xi j

dx2

=

δ
(n)
1

∫

ε
(n)
1

dx1























[

a2 j ∂ f
∂x j

g

]x2=δ2

x2=ε2

+

δ2
∫

ε2

−a2 j ∂ f
∂x j

∂g
∂x2

dx2

−
δ2

∫

ε2

∂a2 j

∂x2

∂ f
∂x j

gdx2





















+

δ
(n)
1

∫

ε
(n)
1

δ2
∫

ε2

∑

i, j,1,2

∂2 f
∂xi∂x j

gdx1dx2

we have

∣

∣

∣

∣

∣

∣

∣

∫ ∞

−∞
dx3 . . . dxm

∫ δ
(n)
1

ε
(n)
1

a2 j ∂ f
∂x j

gdx1

∣

∣

∣

∣

∣

∣

∣
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≤ η
∑

j















∫

dx1dx3, . . .dxm

∣

∣

∣

∣

∣

∣

∂ f
∂x j

∣

∣

∣

∣

∣

∣

2 ∫

g2dx1dx3 . . . dxm















1
2

and so, by the integrability onEm of

∣

∣

∣

∣

∣

∣

∂ f
∂x j

∣

∣

∣

∣

∣

∣

2

and|g|2, there existsδ(1)
(2), ε

(1)
(2)

such that

lim
δ

(1)
2 →∞
ε

(1)
2 →∞

∫

dx3 . . . dxm

δ1
∫

ε1

[

a2 j ∂ f
∂x j

g

]x2
=δ1(1)

x2=ε2(1)

dx1 = 0

uniformly with respect toδ1 andε1.
We have also

lim
δ

(n)
1 →∞

ε
(n)
1 →−∞

lim
δ2→∞
ε2→−∞

∫

dx3 · · · dxm

∫ δ
(n)
1

ε
(n)
1

dx1























δ2
∫

ε2

[

−a2 j ∂ f
∂x j

∂g
∂x1
− ∂a2 j

∂x2

∂g
∂x j

dx2

]























=

∫

Em

(

−a2 j ∂ f
∂x j

∂g
∂x2
− ∂a2 j

∂x2

∂g
∂x j

g

)

dx.

Therefore 113

∫

ai j ∂2 f
∂xi∂x j

gdx= −
∫

∑

i or j=1,2

ai j ∂ f
∂xi

∂g
∂x j

dx−
∫

∑

i or j=1,2

∂ai j

∂xi

∂ f
∂x j

gdx

+ lim
δ

(n)
1 →∞

ε
(n)
1 →−∞

lim
δ

(1)
2 →∞

ε
(1)
2 →−∞

∞
∫

−∞

dx3 · · ·dxm

∫ δ
(k)
1

ε
(k)
1

∫ δ
(1)
2

ε
(1)
2

∑

i, j,1,2

ai j ∂2 f
∂xi∂x j

gdx1dx2

Repeating the process, we get the Lemma.





Lecture 21

1 Integration of the Fokker-Planck equation

We consider the Fokker-Planck equation 114

∂u(t, x)
∂t

= Au(t, x), t ≥ 0

(A f)(x) =
1

√

g(x)

∂2

∂xi∂x j
(
√

g(x)ai j (x) f (x)) − 1
√

g(x)

∂

∂xi
(g(x)bi (x) f (x))

in a relatively compact subdomainR(with a smooth boundary) of an ori-
entedn-dimensional Reimannian space with the metricds2

= gi j (x)dxi

dxj . As usual the volume element inR is defined bydx =
√

g(x)dx1

· · ·dxn. whereg(x) = det(gi j (x)). We assume that the contravariant ten-

sor ai j (x) is such thatai j ξiξ j > 0 for
m
∑

i=1
ξ2

i > 0, ξi real. The functions

obey, for the coordinate transformationx→ x̄, the transformation rule

b̄i(x̄) =
∂x̄

∂xk
bk
+

∂2x̄

∂xk∂xs
aks(x).

We assume thatgi j (x), ai j (x) andbi(x) areC∞ function of the local
coordinatesx = (x1 · · · xm).

Suggested by the probabilistic interpretation of the Fokker-Planck
equation due toA. Kolmogorov, we shall solve the Cauchy problem in
the spaceL1(R).
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Green’s integral formula:

Let A∗ be the formal adjoint ofA;

A∗ = ai j (x)
∂2

∂xi∂x j
+ ai(x)

∂

∂xi
.

Let G be a subdomain ofR with a smooth boundary∂G. Then we
obtain by partial integration Green’s formula:

∫

G

{h(x)(A f)(x) − f (x)(A∗h)(x)}dx

=

∫

∂G















∂
√

g(x)ai j (x)

∂x j
−

√

g(x)bi(x)















cos(n, xi) f (x)h(x)dS

+

∫

∂G

√

g(x)ai j (x)

(

h(x)
∂ f
∂x j
− f (x)

∂h
∂x j

)

cos(n, xi)dS

wheren denotes the outer normal at the pointx of ∂G andds denotes115

the hypersurface area of∂G.

Remark. If ai j (x) cos(n, xi ) cos(n, x j ) > 0 at x ∈ ∂G we may define the
transversal (or conormal) directionν at x by

dxi
√

g(x)ai j (x) cos(n, x j )
= dν(i = 1, 2, . . . ,m)

so that we have
√

g(x)ai j (x)(h(x)
∂ f
∂xi
− f (x)

∂h
∂x j

) cos(n, xi )dS

= (h(x)
∂ f
∂v
− f (x)

∂h
∂v

)dS.

We considerA to be an additive operator defined on the totality of
D(A) of C∞ functions f (x) in RU∂R with compact supports satisfying
the following boundary condition:

√

g(x)ai j (x)
∂ f

∂x j
cos(n, xi) +















∂
√

g(x)ai j (x)

∂x j
−

√

g(x)ai(x)















.

. cos(n, xi ) f (x) = 0.
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(When R is a subdomain of the euclidean spaceEm and A is the
Laplacian∆ the above condition is nothing but the co called “reflecting
barrier condition”)

∂ f
∂n
= O,

sinceν andn coincide in this case).D(A) is dense in the Banach space
L1(R).

To discuss the resolvent ofA we begin with 116

Lemma 1. Let f(x) ∈ D(A) be positive (or negative) in domain G⊆ R
such that f(x) vanishes on∂G − ∂R, (i.e., f(x) vanishes on the part of
∂G not contained in∂R). Then we have the inequality

∫

G

(A f)(x)dx≤ 0





















resp.
∫

G

A f(x)dx≥ 0





















.

Proof. Takingh ≡ 1 in Green’s formula and remembering the boundary
condition onf (x), we obtain

∫

G

(A f)(x)dx =
∫

∂G−∂R

∂ f
∂ν

ds

≤ 0.

�

Corollary. For f ∈ D(A) we have for anyα > 0 ‖ f − α−1A f ‖≥‖ f ‖.

Proof. Let h(x) = 1,−1 or 0 according asf (x) is > 0, < 0 or= 0. Since
the conjugate space ofL1(R) is the space of essentially bounded function
k(x) with the norm

‖ k ‖∗= essential sup
x∈R
|k(x)|,

we have

‖ f − α−1A f ‖ ≥
∫

R

h(x)
{

f (x) − α−1A f(x)
}

dx
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=

∫

| f (x)|dx− α−1
∑

i

∫

Pi

(A f)(x)dx

+ α−1
∑

i

∫

Nj

(A f)(x)dx

whereP (resp.N) is connected domain in whichf (x) > 0 (resp.< 0)
such thatf (x) vanishes on∂P(resp.∂N). �

Lemma 2. The smallest closed extensionÃ of A exists and for anyα > 0
the operator(I − α−1Ã) admits of a bounded inverse, Jα = (I − α−1Ã)−1

with norm≤ 1.

Proof. The existence of̃A follows from Green’s formula. For if{ fk} ⊆117

D(A) be such that strong limfk = 0, strong limA fk = h, then forϕ ∈
D∞(R),

lim
∫

R

{

ϕA fk − fkA∗ϕ
}

dx= 0, (or)

∫

ϕhdx= 0. Soh = 0.

The other part of the lemma follows from the corollary of lemma
1. �

Lemma 3. Ã is the infinitesimal generator of a semi-group Tt in L1(R)
if and only if for sufficiently largeα the range{(I −α−1A) f , f ∈ D(A)} of
the operator(I − α−1A) is dense in L1(R). Moreover, if this condition is
satisfied, then Jα is a transition operator, i.e., if f(x) ≥ 0 and f ∈ L1(R),
then(Jα f )(x) ≥ 0 and

∫

R

(Jα f )(x)dx =
∫

R

f (x)dx.

Proof. The first part is evident. Then latter part may be proved as fol-
lows: For anyg(x) ≥ 0 of L1(R) there exists a sequence{ fk(x)} ⊂ D(A)
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such thats− lim fk = f exists ands− lim( fk−α−1A fk) = f −α−1Ã f = g.
By the boundary condition onfk, we have

∫

R

( fk − α−1A fk)dx=
∫

R

fkdx,

(Puth(x) ≡ 1 in Green’s formula). So in the limit we have
∫

R

gdx=
∫

f dx.

Also, by the Corollary to Lemma 1,
∫

| fk − α−1A fk|dx≥
∫

| fk|dx,

and hence
∫

|g|dx≥
∫

| f |dx.

Therefore by the positivity ofg(x) 118

∫

f (x)dx=
∫

g(x)dx =
∫

|g(x)|dx ≥
∫

| f (x)|dx

proving thatJα is a transition operator. �

Therefore the semi-group

Ttu = strong
α→∞

lim exp(tÃJα)u

= strong
α→∞

lim exp(αt(Jα − I )u)

is a semi-group of transition operators.
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1 Integration of the Fokker-Planck equation
(Continued)

Before going into the proof of the differentiability of the operator-theo-119

retical solutionu(t, x) = (Ttu)(x) we shall discuss the question of the
denseness of the range of the set

{

(I − α−1A) f , f ∈ D(A)
}

.

If the range of (I − α−1A) were not dense inL1(R), there will exists
h ∈ M(R) = L1(R)∗, h , 0 such that

∫

R

(I − α−1A) f .hdx= 0, f ∈ D(A).

h is a weak solution of the equation (I − α−1A∗)h = 0. Sinceh ∈ L2(R)
andA∗ is elliptic, h is almost everywhere equal to a boundedC∞ solution
of (I − α−1A∗)h = 0. Let {Rk} be a monotone increasing sequence of
domains⊆ R with smooth boundary such that∂Rk tends to∂R very
smoothly. Then we have

0 =
∫

Rk

h(I − α−1A) f dx−
∫

R

f (I − α−1A∗)hdx

= α−1
∫

Rk

(h f − f A∗h)dx

139
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= α−1























∫

∂Rk

√
gai j

(

h
∂ f
∂x j
− f

∂h
∂x j

)

cos(n, xi)dS

+

∫

Rk













∂
√

gai j

∂x j
− √gbi













cos(n, xi) f (x)h(x)dS























.

By the boundedness ofh and the boundary condition onf , we have

lim
k→∞

∫

∂Rk











√
gai j ∂ f

∂x j
+













∂
√

gai j

∂x j
− √gbi













f











cos(n, xi)hdS= 0.

Thereforeh must satisfy the boundary condition120

lim
k→∞

∫

∂Rm

√
gai j f

∂h

∂x j
cos(n, xi )dS = 0 for every f ∈ D(A).

Such a bounded solutionh of (I − α−1A∗)h = 0 is identically zero
and hencēA is the infinitesimal generator of a semi-groupTt in L1(R) in
either of the following cases:

(i) R is compact (without boundary).

(ii) R is a half-line ir a finite closed interval on the real line andA =
d2/dx2.

Proof. (i) At a maximum (or minimum) pointx◦ of h(x) we must
haveA∗h(x◦) ≤ 0 (resp.≥ 0) so that the continuous solutionh(x)
of A∗h = αh cannot have either a positive maximum or a negative
minimum.

(ii) The boundary condition forh is
∂h
∂n
= 0 and the general solution

of A∗h = αh is
�
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h = C1e
√
αx −C2e−

√
αx

dh
dx
= C1

√
αx+C2

√
α − e

√
αx

so that the vanishing of
dh
dx

at two points implies thatC1 = C2 = 0. And

the vanishing of
dh
dx

at one point implies eitherC1 = C2 = 0 or C1 and

C2 , 0. The latter contingency contradicts the boundedness ofh.

A parametrix for the operator −
(

∂

∂τ
+ A∗

)

Let Γ(P,Q) = r(P,Q)2 be the square of the shortest distance be-
tween the pointsP andQ according to the metricdr2

= ai j dxidxj , where
(ai j ) = (ai j )−1. We have the

Theorem.For any positive k we may construct a parametrix Hk (P, Q, 121

t − τ) for −
(

∂

∂τ
+ A∗

)

of the form

Hk(P,Q, t − τ) = (t − τ)−m/2 exp

















−Γ(P,Q)
4(t, τ)

k
∑

i=0

ui(P,Q)(t − τ)i

















,

where ui (P,Q) are C∞ functions in a vicinity of P and ui(P,P) = 1, we
have

(

− ∂
∂τ
− A∗Q

)

Hk(P,Q, t − τ) = (t − τ)k−m/2 exp

(

− Γ(P,Q)
4(t − τ)

)

Ck(P,Q)

Ck(P,Q) being C∞ functions in a vicinity of P.

Proof. We introduce the normal coordinates*yσ of the pointQ = (x1,

. . ., xm) in suitable neighbourhood ofP.

yσ = {Γ(P,Q)}
1
2

(

dxσ

dr

)

P=Q

Let dr2
= αi j (y)dyidyj . We first show that when we apply the oper-

ator

A∗ = Ay∗ = αi j ∂
2

∂yi∂
+ βi ∂

∂yi
+ e
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on a functionf (Γ, y) (Γ is function ony) we have,

A∗y = 4Γ
∂2 f

∂Γ2
+ 4yσ

∂2 f
∂Γ∂σ

+ M
∂ f
∂Γ
+ N( f )

N( f ) = αi j ∂2 f

∂yi∂y j
+ βi ∂ f

∂yi
+ e f

�

(The differentiations have to be performed as thoughΓ andy were
independent variables). To prove this, we need the well-known formu-
lae:

Γ(P,Q) = αi j (0)yiy j (1)

αi j (y)yi
= αi j (0)y j .

Define122
d

dyi
f (y, Γ) =

∂ f

∂y j
+
∂ f
∂Γ
.
∂Γ

∂y j
.

Then

d2

dyidyj
{ f (y, Γ)} = ∂

∂yi

(

∂ f

∂y j
+
∂ f
∂Γ
· ∂Γ
∂y j

)

+
∂ f
∂Γ

(

∂ f

∂y j
+
∂ f
∂Γ
.
∂Γ

∂y j

)

∂Γ

∂yi

=
∂2 f

∂yi∂y j
+

∂2 f

∂yi∂Γ
.
∂Γ

∂y j
+
∂ f
∂Γ

∂2
Γ

∂yi∂y j

+
∂2 f

∂Γ∂y j

∂Γ

∂yi
+
∂2 f

∂Γ2
.
∂Γ

∂y j

∂Γ

∂yi

So, by (1)

αi j
d2 f

dyidyj
+ βi d

dyi
f + e f

=

(

αi j ∂Γ

∂yi

∂Γ

∂y j

)

∂2 f

∂Γ2
+ 2αi j ∂Γ

∂y j

∂2 f

∂yi∂Γ
+ M

∂ f
∂Γ
+ N( f )

= 4Γ
∂2 f

∂Γ2
+ 4yσ

∂2 f
∂Γ∂yσ

+ M
∂ f
∂Γ
+ N( f ).
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Now applying the above formula toHk, we have

−A∗yHk =

k
∑

i=0

Γ

4
(t − τ)i−2−m/2 exp

(

− Γ

4(t − τ)

)

ui

+

k
∑

i=0

(t − τ)i−1−m/2 exp

(

− Γ

4(t − τ)

) {

yσ
∂ui

∂yσ
+

M
4

ui − N(ui−1)

}

− (t − τ)k−m/2 exp

(

− Γ

4(t − τ)

)

N(uk)

whereu−1 = 0,N(u−1) = 0. Since

− ∂
∂τ

Hk =

k
∑

i=0

(t − τ)i−1−m/2 exp
(

− Γ

4(t − τ)

)

ui

(

− m
2
+ i +

Γ

4(t − τ)

)

the theorem will be prove d if we can chooseui satisfying the relations

yσ
∂ui

∂yσ
+

(

−m
2
+ i +

M
4

)

ui = N(ui−1),

ui(P,Q) beingC∞ in a vicinity of P with u−1 = 0 andu◦(P,P) = 1. To 123

see that we may choose suchui , putyσ = ησsand transform the equation
as an ordinary differential equation inscontaining the parametersη:

dui

ds
+

(

−m
2
+ i +

N
4

)

ui = N(ui−1).

Choose

u◦ = exp





















−
s

∫

◦

s−1
(

−m
2
+

M
4

)

ds





















.

ui is C∞ nears= ◦, because of the order relationM = 2m+o(s). Define
ui successively by the formula

ui(P,Q) = u◦s
−1

s
∫

◦

si−1u−1
◦ N(ui−1)ds(i = 1, 2, . . . , k).





Lecture 23

1 Integration of the Fokker-Planck equation
(Contd.) Differentiability and representation
of the operator-theoretical solution

f (t, x) = (Tt f )(x), f ∈ L1(R)

Lemma 1.1. Let h(x, τ) be C∞ in (x, τ) x ∈ R, t ≥ τ ≥ 0, and vanish 124

outside a compact coordinate neighbourhood of P (independent of τ).
Then

∫

R
f (y, t) h(y, t)dy =

∫

R
f (y, o)h(y, o)dy

+

∫ t

o
dτ

∫

R

{

∂τ f (y, τ).h(y, τ) + f (y, τ)
∂h(y, τ)
∂τ

}

dy

where∂τ f (y, τ) = strong lim
δ→0
{ f (y, τ + δ) − f (y, τ)} δ−1.

Proof. f(y, τ) h(y, τ) is weakly differentiable with respect toτ in L1(R)
and the weak derivative is

∂τ f (y, τ) h(y, τ) + f (y, τ)
∂h(y, τ)
∂τ

�

145
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Corollary. We have

∫

R
f (y, t) h(y, t)dy =

∫

R
f (y, o)h(y, o)dy

+

∫ t

o
dτ

{∫

R
f (y, τ)

(

∂h(y, τ)
∂τ

+ A∗yh(y, τ)

)}

dy

Proof. By Lemma 1.1, the right hand side is

= −
∫ t

o
dτ

{

f (y, τ)

(

−∂h(y, τ)
∂τ

− A∗yh(y, τ)

)

− h(y, τ) (∂τ f (y, τ) − Āy f (y, t)

}

dy

=

∫ t

o
dτ

∫

R

{

∂τ f (y, τ)h(y, τ) + f (y, τ)
∂h(y, τ
∂τ

}

dy

+

∫ t

o
dτ

∫

R

{

f (y, τ)A∗yh(y, τ) − h(y, τ)Āy f (y, τ)
}

dy.

�

We have, by the definition of the smallest closed extensionĀ,125

∫

R

{

f (y, τ)A∗yh(y, τ) − h(y, τ)Āy f (y, τ)
}

dy

= lim
k→∞

∫

R

{

fk(y, τ)A
∗
yh(y, τ) − h(y, τ)Ay fk(y, τ)

}

dy

wheres− lim fk = f , s− lim Ay fk = Ā f . The integral on the right is zero,
by Green’s formula and the fact thath vanishes near the boundary∂R.

We take forh(y, τ) the function

h(y, τ) = h(Q, τ) = Hk(P,Q, t + ε − τ)δ(P,Q)δ(Po,P);

herePo is a point ofR, ε a positive constant andδ(P,Q) = α(r(P,Q))
whereα(r) is C∞ function of r such that 0≤ α(r) ≤ 1, α(r) = 1 for
r ≤ 2−1η and= 0 for r ≥ η. η > 0 is chosen so small that the pointQ
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satisfyingδ(Po,P) δ(P, q)0 are contained in a compact coordinate neigh-
bourhood ofPo. We then have

f (Q, t)Hk(P,Q, ε)δ (Po,P) δ (P,Q)dQ

= f (Q, 0)Hk(P,Q, t + ε) δ (Po,P) δ (P,Q)dQ (2)

−
∫ t

o
dτ

∫

f (Q, τ) Kk(P,Q, t + ε − τ)dQ

where

Kk(P,Q, t + ε − τ) = −
(

∂

∂τ
+ A∗Q

)

Hk(P, t + ε − δ) (Po,P) δ (P,Q)

If k is chosen such thatk − m
2
≥ 2, then by lemma 1.1,Kk(P,Q, t +

ε − τ) is for r(Po,P) ≤ 2−1η, devoid of singularity even ift + ε − τ = 0.
We now show that the left side of (2) tends asε ↓ 0 to f (P, t) in the
vicinity of Po.
∫

R
δ(Po,P)dP| f (Q, t)Hk(P,Q, ε)δ(P,Q)dQ

− δ(P, t)
∫

Hk(P,Q, ε) δ (P,Q)dQ|

≤ C
∫

(Po,Q)≤2η























∫

r(Po,P)≤η

| f (Q, t) − f (P, t)|dP























|Hk(P,Q, ε)dQ

≤C1

∫

· · ·
∫

(

∫

| f (z+ ε f rac12ξ, t) − f (z, t)|dzex













−
Σξ2

i

4













dξ1 · · ·dξn

((z1 · · · zm) and (z1
+ y1, . . . , zm

+ ym) are coordinates ofP andC,C1 are 126

constants). The inner integral on the right converges asε ↓ 0, to zero
boundedly by Lebesgue’s theorem.

There exists therefore a sequence{εi} with εi ↓ 0 such that

f (P, t) lim
i→∞

∫

Hk(P,Q, εi) δ(P,Q)dQ=
∫

R
f (Q, 0)Hk(P,Q, t)δ(P,Q)dy

−
∫ t

0
dτ

∫

R
f (Q, τ)Kk(P,Q, t − τ)dQ
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almost everywhere with respect toP in the vicinity of Po. Hencef (P, t)
may be considered to be continuously differentiable once int > o and
twice in P in vicinity of Po if

lim
ε↓o

∫

R
Hk(P,Q, ε)δ(P,Q)dQ

is positive and twice continuously differentiable inP in the vicinity of
Po. Now,

lim
ε↓o

∫

Hk(P,Q, ε) δ(P,Q)dQ= − lim
ε↓o

∫

εm/2 exp
r(P,Q)≤ξ

(

Γ(P,Q)
4

)

dQ

for ξ > 0. Hence, putting

ds2
= ℘i j (y)dyidyj , yi

= ε
1
2ξi , lim

ε↓o

∫

R
Hk(P,Q, ε)δ(P,Q)dQ

= lim
ε↓o

∫

· · ·
∫

−ζ≤ε1/2ξ≤S

exp(−αi j (0)ξiξ j)℘ (0)
1
2 dξ1 · · ·dξn

= πm/2(℘((0))
1
2 (α(0))

1
2

= πm/2(g(P))
1
2/(α(P))1/2

whereg(P) = det(Gi j (P)) andα(P) = det(αi j (P)).127

Thus in the vicinity ofPo, f (P, t) is equivalent to

πm/2g(P)−
1
2α(P)

1
2

{

∫

R
f (Q, 0)Hk(P,Q, t) δ (P,Q)dQ

−
∫ t

o
dτ

∫

R
f (q, τ)Kk(P,Q, t − τ)dQ

So it is differentiable once int and twice inP. Moreover, we have
| f (P, t)| ≤ Const|| f (Q, 0)|. Therefore there existsρ(P,Q, t) bounded in
Q, such that

f (P, t) =
∫

ρ(P,Q, t) f (Q, 0)dQ.
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