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Introduction

In the theory of modular forms, certain linear operatorsTn have been
used by Hecke, Petersson, Maass and others for deter-miningthe coeffi-
cients of modular forms and of corresponding Dirichlet series. Although
this idea has already brought rich success, one has to bear inmind that
they are only some special correspondences of certain algebraic vari-
eties.

The correspondences which are represented by Hecke’sTn are the
so-called modular correspondences. The latter have also applications
in the theory of complex multiplication, but we shall not speak about
that here. What is common to all these theories, is the general con-
cept of a correspondence which appears as a connection between cer-
tain subgroups of the modular group. This observation at once leads to
a vast generalization of modular correspondences by replacing modular
groups by other groups, say, by groups of units of an order of anormal
simple algebra or of certain quadratic forms. But here, we shall restrict
ourselves to a very special case, that of units of orders in a quaternion
algebra. Our chief task in this connection will be to determine the traces
of the representations ofTn and in some case, we shall give them explic-
itly.

The first three articles are devoted to the necessary algebraic back-
ground and in §4, we study the group of units of a maximal orderJ in
an indefinite quaternion algebra, by exhibiting it as a groupof transfor-
mations of the upper half plane onto itself. It is proved thatthis group
is finitely generated by using the finite sided nature of the fundamen-
tal domainF. The hyperbolic area of this fundamental domain is then
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iv Introduction

computed by using the residue of the zeta function ofJ and from this
the genus ofF by the application of Gauss Bonnet formal.

The second part starts with the definition of correspondences in gen-
eral and modular correspondences in particular. We prove here the Euler
product formula of the Zeta function of the representation of modular
correspondenceTn. We then make a study of the representations ofTn

by Betti groups of a certain Riemann surfaceSJ in §8 and herein we
give a proof of Lefschetz’ fixed point theorem under certain restrictive
assumptions, the application of which is required later. §9deals with
the connections between the ideal theory of quadratic subfields and this
leads to applications in §10, especially the calculation ofthe number
of fixed points ofTn, with due multiplicity which essentially reduces to
the calculation of the trace of the representation ofTn as an endomor-
phism of the first Betti groups ofSJ , by the application of Lefschetz,
fixed point theorem. From this trace formula follow a host of relations
between class numbers of binary quadratic forms.

We then suggest some problems of interest in an appendix on auto-
morphic forms in which we also give the formula for the trace of rep-
resentation ofTn in the space of modular forms, by using Riemann ma-
trix. This leads to a proof of Hecke’s conjecture on the representation of
modular forms byϑ-series.
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Chapter 1

Arithmetic of Quaternion
Algebras

1 Algebraic Background

1. Let k be a field of any characteristic (not necessarily zero). LetQ 1

be an algebra overk, generated by the elements [1, ω,Ω, ωΩ] with the
following multiplication table:

ω2
= p ∈ k,Ω2

= q ∈ k, ωΩ + Ωω = 0.

Q is called a quaternion algebra over k.Then, any elementα ∈ Ω
can be expressed uniquely as

α = ao + a1ω + a2Ω + a3ωΩ

whereai ∈ k. We define thetrace andnormof α as

trace (α) =t(α) = 2a◦ = α + ᾱ ∈ k

norm (α) = n(α) = a2
◦ − pa2

1 − qa2
2 + pqa3

2

= αᾱ = ᾱα ∈ k,

whereᾱ = ao − a1ω − a2Ω − a3ωΩ is called theconjugate of α. If
α ∈ Q, thenα2− (α+ ᾱ)α+ ᾱα = 0, i.e., α2− t(α). α+n(α) = 0; in other
words, each elementα of Q satisfies a quadratic equation overk.

1



2 1. Arithmetic of Quaternion Algebras

Theorem 1. k is the centre ofQ.

Proof. If C is the center ofQ by definitionk ⊂ C. Conversely ifα ∈ C,
thenαβ = βα for all β ∈ Q. �

Let α = ao + a1ω + a2Ω + a3ωΩ and
β = bo + b1ω + b2Ω + b3ωΩ.

Then2

αβ − βα = 0 =⇒ (2q(a3b2 − a2b3) + Ω(2p(a1b3 − a3b1))

ωΩ(2(a1b2 − a2b1)) = 0,

i.e., a3b2 − a2b1 = 0, a1b3 − a3b1 = 0, a1b2 = 0,
i.e., a1 : a2 : a3 = b1 : b2 : b3.
The left hand side being fixed and the right hand side being arbitrary,

this implies thata1 = a2 = a3 = 0,i.e. α = ao ∈ k, i.e.,C ⊂ k.
Using this, we shall show incidentally that our definition ofa quater-

nion algebra is fairly general. More explicitly, any element ω′(∈ Q, < k)
of trace zero and non-zero norm may be taken as the first element of a
basis, [1, ω′,Ω′, ω′Ω′] which we shall construct as follows:

Now,
ω′2 = −n(ω′) = p′ ∈ k.

Let, further moreω′′ be an element linearly independent of 1, ω′

and which does not commute withω′. Suchω′′ always exists, or else
every element ofQ would commute withω′ so thatω′ would belong
to the centre ofQ,i.e.,ω′ ∈ k(by Theorem 1) which is contradictory to
assumption.

DefineΩ′ = ω′ω′′ − ω′′ω′(, 0, by the choice ofω′′).
Then

ω′Ω′ = ω′(ω′ω′′ − ω′′ω′)
= ω′′ω′2 − ω′ω′′ω′

= (ω′′ω′ − ω′ω′′)ω′ sinceω′2 ∈ k

= −Ω′ω′ i.e.ω′Ω′ + Ω′ω′ = 0.
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Furthert(Ω′) = 0; otherwiseΩ′2 = t(Ω′). Ω′ − n(Ω′) implies thatω′3

commutes withΩ′ which is not true.
Thereforet(Ω′) = 0, i.e.,Ω′2 = −n(Ω′) = q′ ∈ k.
Summing up, we have obtained a set [1, ω′,Ω′, ω′Ω′] such that
(i) ω′2 = p′ ∈ k, (ii) Ω′2 = q′ ∈ k, (iii) ω′Ω′ + Ω′ω′ = 0. In

other words, [1, ω′,Ω′, ω′Ω′] is a basis forQ overk.

Theorem 2. If Q has divisors of zero, then Q� M2(k) (total matrix
algebra of order2 over k).

Proof. We will find four elementsε1, ε2, η1, η2 ∈ Q satisfying the fol-
lowing condition:

i) ε2
1 = ε1, ε

2
2 = ε2, ε1ε2 = ε2ε1, ε2 = 1− ε1

ii) η1η2 = ε1, η2η1 = ε2; ε1η1 = η1 = η1ε2, η
2
1 = 0.

ε2η2 = η2 = η2ε1; η2
2 = 0.

Then we can define the mapping

σ :M2(k)→ Q

as σ(ei) = εi ;σ( fi) = ηi ;σ(e) = 1,

where

e1 =

(

1 0
0 0

)

, e2 =

(

0 0
0 1

)

, f1 =

(

0 1
0 0

)

, f2 =

(

0 0
1 0

)

and e=

(

1 0
0 1

)

.

σ is easily seen to be an isomorphism onto. � 4

If α(, 0) ∈ Q is a zero divisor,αy is a zero divisor for ally ∈ Q, so
that n(αy) = 0, for all y ∈ Q. Then there exists at least oney ∈ Q for
which t(αy) , 0, for otherwise,t(αy) = 0 for all y ∈ Q and hence for
y = 1, ω,Ω, ωΩ, would imply thatα = 0.

Let αy = α′ then t(α′′) = 1 whereα′′
α′

t(α′)
(t(α′) , 0). Putting

α′′ = ε1 and 1− ε1 = ε2, we have the equations (i). Considerω′ =
ε1 − ε2(∈ Q). Thenω′2 = ε1 + ε2 = 1, so thatt(ω′) = 0 andn(ω′) , 0.



4 1. Arithmetic of Quaternion Algebras

Hence, as seen before, we have a basis [1, ω′,Ω′, ω′Ω′] for Q over k.
Thent(Ω′) = 0 while n(Ω′) , 0, so thatΩ′ has an inverse.

Defineη1 =
ε1Ω

′

Ω′2
andη2 = ε2Ω

′
= Ω

′.ε1 (sinceΩ′ω′ + ω′Ω′ = 0).

We can easily verify the set of equations (ii ), for example,

η1η2 =
ε1Ω

′

Ω′2
Ω
′ε1 =

ε1Ω
′2ε1

Ω′2
= ε2

1 = ε1,

and similarly others.
2. Q is said to split overK or K is said to be asplitting field of Q5

if QK/K is isomorphic toM2(K).(QK denoting the tensor product ofQ
andK).

Theorem 3. Let Q be a quaternion algebra over a field k of character-
istic zero and let K/k be a quadratic extension of k. Then QK/K splits
if and only if K� K̄ ⊂ Q(K , K̄).

Proof. We may, without loss of generality, assume thatQ is s-field
(skew field) since otherwisek is itself a splitting field. �

1) Let K = k(a) � k(α) = K̄ ⊂ Q(α = σa ∈ Q) (say)).

We will now show thatQK contains divisors and hence thatK splits
QK.

Sinceα2 − t(α).α + n(α) = 0, a2 − t(α).a+ n(α) = 0. In other words,
X2 − −t(α).X + n(α) = (X − a)(X − ā) whereā = σᾱ. Therefore
0 = α2 − t(α).α + n(α) = (α − a)(α − ā), the factorization holding
in QK. Both the factors cannot vanish, for otherwise,α ∈ K, i.e.,
K̄ = K which not so. HenceQK contains divisors of zero and by
Theorem 2,QK/K � M2(K).

2) Let QK/K split, whereK = k(a), a =
√

d. We shall prove that there
existsδ ∈ Q such thatδ2

= d. Thenk(δ) = K̄ � k(
√

d) = K.
By hypothesis, there anε ∈ QK such thatε corresponds to

(

0 1
0 0

)

(in
m2(K)). Hencet(ε) = 0 andn(ε) = 0. If Q = k[1, ω,Ω, ωΩ], then
QK = K[1, ω,Ω, ωΩ], so thatε = (ao+

√
dbo)+(a1+

√
db1)ω+(a2+√

db2)Ω+ (a3+
√

db3)ωΩ with ai , bi ∈ k, i.e., ε = α+
√

dβ;α, β ∈ Q.6
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(α, β , 0). Now t(ε) = t(α) +
√

dt(β) = 0.t(α), t(β) ∈ k. Hence
t(α) = 0 = t(β), since 1,

√
d are linearly independent overk.

Further

n(ε) =
(

α +
√

dβ
) (

ᾱ +
√

dβ̄
)

= (n(α) + dn(β)) +
√

d
(

βᾱ + αβ̄
)

= 0.

As beforen(α) + dn(β) = 0, βᾱ+ αβ̄ = 0. n(α), n(β) , 0, sinceα and
β are not zero divisors). Puttingδ = αβ−1, we have

δ2
= (αβ−1)2

+ αβ−1.αβ−1

=
α · β̄
η(β)

· α · β̄
η(β)

=
−βᾱ
η(β)

· αβ̄
η(β)

=
−η(α)
η(β)

= d.

Hence there exists aδ ∈ Q such thatδ2
= d. Theorem 3 is thus

completely proved.

3. We now state four theorems which we will need in the sequel.
For the same, we shall introduce some notations.ko denotes the rational
number field;k an algebraic number field and̄kY its completion with
respect to aY - adic valuation. (We include the case of extensions of
archimedian valuations also). IfQ/k is a quaternion algebra,QY =

Q.k̄Y , the tensor product ofQ andk̄Y and similarlyKY = Kk̄Y where
K is a quadratic extension ofk.

Theorem 4. a) Q/ � M2(k)⇐⇒ QY
√

kY � M2( ¯kY ) for everyY . 7

b) For every Q/k, there exist only a finite number of primesY such that
Q � m2(k̄Y ).

(These exceptional primes are called “characteristic primes”).
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c) If LY is any quadratic extension of̄kY then LY is a splitting field for
QY .

d) K is a splitting field for Q⇐⇒ KY a splitting field for QY for all
characteristic primes.

We shall not prove theorems 4a, 4b, and 4c, but we will show how
Theorem 4d follows as a simple consequence of Theorem 4a. (For
proofs of Theorem 4a, Theorem 4c, refer[Deuring,“Algebren” page
117, page 113])

(i) Assume thatK is a splitting field forQ.

Then, by theorem 4a, the completion̄KY is a splitting field forQY

for everyY .

α) If KY is a field, then the extensionY of the valuationY from
k to K is unique, so that̄KY = KY and henceKY is a splitting
field for QY = Q · K̄Y = Q · KY = QY .

β) If KY is not a field, thenKY K̄Y1 + K̄Y2 whereK̄Y1 andK̄Y2 are
completions ofK with respect to the extended valuationsY1 and
Y2 of Y from k to K. ThenKY being of rank 2 over̄kY , K̄Y1 and
K̄Y2 are of rank 1 each so that̄KY1 � kY � K̄Y2.

HenceQY1 � QY � QY2. But we know that̄KY 1 and K̄Y2 are8

splitting fields ofQY1 andQY2 respectively, i.e.,kY is a splitting
field of QY , i.e. Y is not a characteristic prime.

Hence we have the fact that ifY is a characteristic primeKY is a
field and by (α), a splitting field forQ.

(ii) Assume thatKY is a splitting field forQY for all characteristic
primesY

α) If Y a characteristic prime, thenKY is a splitting field forQY

and hence a priori, a field. Therefore the extensionY of Y from
k to K is unique andK̄Y = KY so thatQY = QY splits overK̄Y .

β) If Y is not a characteristic prime, then̄kY is a splitting field for
QY , so that (i) ifKY is a field,KY is also a splitting field forQY ,
i.e.,QY splits overK̄Y and (ii) if KY is not a field,KY = K̄Y+K̄Y2
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whereK̄Y1 � KY � K̄Y2, so thatQY1 andQY2 split overK̄Y1and
K̄Y2 respectively.

Therefore in all casesQY splits overK̄Y for everyY and hence
by Theorem 4a,K is a splitting field overQ.

We shall now give a sketch of the proof of Theorem 4b. (k = k◦).
Now,α ∈ Q(α , 0) is a zero divisor⇐⇒ n(α) = 0. Therefore, for
proving thatQ splits overk, i.e. for proving the existence of zero
divisors inQ we merely need to find non-trivial solutions of the
equation

n(α) = a2
o − ρa2

1 − qa2
2 + pqa2

3 = 0.

If α = ao + a1ω + a2Ω + a3ωΩ, ai ∈ k. 9

i) If ρ is a square, choosingao = 0 = a1,−a2
2+ pa2

3 = 0 can be solved
for a2, a3 ∈ k.

ii) If ρ is not a square, letK = k(
√
ρ)

σ
� k(ω) (sinceω2

= ρ).

Thenn(α) = 0 =⇒ n(σζ) − q = 0 whereζ =
ao +

√
ρa1

a2 +
√
ρa3
∈ K.

Hence we have the existence of a solutionζ ∈ K such thatn(σζ) −
q = 0 implies and is implied by the existence of a zero divisor inQ.
(The necessary part follows from the fact that if

ζ = x◦ +
√

p · x1, xo + ωx1 + Ω is a zero divisor).

We shall now take up the proof of Theorem 4b. Letr be a prime, 2
and such thatp, q are r-adic units. This is the case for almost allr. If
ζ = x1+

√
p · x2, n(σζ)−q = 0 =⇒ x2

1− px2
2 = q. We have to findx1, x2

in k̄o
r satisfying this equation

i) If p = p2
1, p1 ∈ k̄o

r , x1 + p1x2 = 1, x1 − p1x2 = q can be solved

non-trivially for

∣

∣

∣

∣

∣

∣

1 −p1

1 p1

∣

∣

∣

∣

∣

∣

, 0.

ii) If p is not an r-adic square,q can be written as

q = y2 or py2, y ∈ k̄o
r .
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Then

a) x2
1 − px2

2 = y2 in which casex1 = y, x2 = 0 are solutions.

b) x2
1 − px2

2 = py2; i.e., 1+ ξ2
2 = pξ2

1, ξ1 =
x1

py
, ξ2 =

x2

y

Choosingξ2 ∈ ko such that 1+ ξ2
2 is a quadratic non-residue modr10

and is anr-adic unit (suchξ2 always exists, or else it would meann+ ξ2
2

is a residue for alln) then there exists aξ1 ∈ k̄◦r such that 1+ ξ2
2 = pξ2

1.
Sincer runs through almost all primes,Qr splits over̄k◦r for almost allr.

4. We now give two examples of quaternion algebras over the ra-
tional number fieldk, and calculate their characteristic primes.

1) Let Q/k be the quaternion algebra with basis (1, ω,Ω, ωΩ) such
thatω2

= −1,Ω2
= −1, (ωΩ)2

= −1.
To find the characteristic primesp, we have only to find those primes

p for which the equationn(ξ) = 0, ξ ∈ Q has no non-trivial solutions in
k̄p.

a) p = ∞(in the usual notation). Then̄k∞ is the field of real numbers.
Therefore, if

ξ = x◦ + x1ω + x2Ω + x3ωΩ, n(ξ) = x2
◦ + x2

1 + x2
2 + x2

3 = 0

has obviously no non-trivial solutions in real numbers, so that∞ is a
characteristic prime forQ.

b) p = 2. k̄p is the field of 2-adic numbers. Then eachxi , 0 ≤ i ≤ 3, has
an expansion of the form

xi = xi◦2
−r
+ xi12−r+1

+ · · · · · ·

so that, multiplying eachxi by a suitable power of 2, we may assume
that the new numbersx′i are all 2−adic integers of which at least one,11

(say)x′o is a 2−adic unit.

Then

n(ξ) = 0 =⇒ x′2◦ + x′21 + x′22 + x′23 = 0
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and x′◦ = x′◦◦ + 2.x◦1 + . . . , x
′
◦◦ , 0.

Let x′′i = xi◦ + 2xi1 + x2xi2. Thenn(ξ) = 0 implies that

x′′2◦ + x′′21 + x′′22 + x′′23 ≡ 0 (mod 8),

where (x′′◦ , 2) = 1 so thatx′′2◦ ≡ 1 (mod 8) and the other squares
x′′21 , x′′22 , x′′23 can be congruent to 0, 1, or 4 mod 8.

Hence

x′′2o + x′′21 + x′′22 + x′′23 ≡ 1+ · · · + · · · + · · · (mod 8)

. 0 (mod 8)

under the above conditions, so thatn(ξ) = 0 cannot be solvable in terms
of 2-adic numbers. In other words,p = 2 is a charac-teristic prime

For the proof of Theorem 4b, we see that only∞ and 2 are charac-
teristic primes forQ overk.

ii) Consider the quaternion algebraQ overk (rational number field)
with basis (1, ω,Ω, ωΩ) such thatω2

= 2,Ω2
= −3 and hence (ωΩ)2

=

6.
Then, if

ξ = x◦ + x1ω + x2Ω + x3ωΩ

n(ξ) = x2
◦ − 2x2

1 + 3x2
2 − 6x2

3.

i) p = ∞. n(ξ) being an indefinite form in thexi − s, n(ξ) = 0 has 12

always a non-trivial solution in real numbers, so thatp = ∞ is not
a characteristic prime.

ii) p = 2. The equationn(ξ) = 0 can be rewritten as

n













xo +
√
−3x2

x1 +
√
−3x3













= 2 = n
(

ξ1 +
√
−3ξ2

)

(say),

= n(µ)

where µ = ξ1 +
√
−3ξ2 ∈ k(

√
−3) = K.
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Since−3 is not a 2-adic square (k̄2(
√
−3) : k̄2) = 2 andn(µ) = µµ̄ =

2 =⇒ µµ̄ ∈ (2)(extended ideal in (̄k2(
√
−3)). (2) being a prime ideal

in (k̄2(
√
−3), eitherµ or µ̄ is in (2), sayµ. Thenµ̄ ∈ ¯(2) = (2), since

2 ∈ k.Thereforeµµ̄ ∈ (2)2 which is impossible, since 2< (2)2, so that
n(µ) = 2 is not solvable. In other words,n(ξ) = 0 is not solvable with
ξ ∈ (k̄2(

√
−3) or p = 2 is a characteristic prime. Similarly it can be

proved thatp = 3 is a characteristic prime and again from the proof of
Theorem 4b, it follows that the only characteristic primes for thisQ are
p = 2 and 3.

5. We shall state and prove

Theorem 5. Wedderburn’s Theorem: LetQ be a quaternion algebra
over the rational number fieldk andα, β ∈ Q. Thenα andβ satisfy
the same quadratic irreducible equation overk (i.e., t(α) = t(β), n(α) =
n(β)), if and only if there exists an elementρ ∈ Q, having an inverse
ρ−1, such thatβ = ρ−1αρ.

Proof. We first prove the converse part.13

i) Let ρ ∈ Q be such thatβ = ρ−1αρ. Nowα satisfies the equation

α2 − t(α).α + n(α) = 0, butβ2
= (ρ−1αρ).(ρ−1αρ) = ρ−1α2ρ,

andρ−1(α2 − t(α).α + n(α))ρ = 0 imply that

β2 − t(α).β + n(α) = 0,

i.e., the irreducible equation satisfied byβ is the same as that satis-
fied byα. In other words,

t(α) = t(β); n(α) = n(β).

ii) For the direct part, we distinguish two cases:

(a)Q
σ
� M2(k); (b)Q � M2(k).
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(a) Denoting the image ofα by σ asασ, let ασ =
(

a b
c d

)

a, b, c, d, ∈ k.
Then there exists a matrixρ1 with elements in a suitable extension
of k, such that

ρ−1
1 ασρ1 =

(

α1 0
0 α2

)

α1. and α2

being the two distinct solutions of the equationx2−t(α).x+n(α) = 0.
Further, sinceβ satisfies the same equation, we have a matrixρ2

such thatρ−1
2 βσρ2 =

(

α1 0
0 α2

)

.

Henceρ−1
1 ασρ1 = ρ

−1
2 βσρ2.

i.e.,ρ−1ασρ = βσ whereρ = ρ1ρ
−1
2 . Of course, the elements ofρ lie 14

in some extension ofk.

(b) If Q � M2(k), then letK be a quadratic extension such thatQK/K
σ1
�

M2(K). (For example, we can takeK � k(ω)). Then, as above,
there exists a matrixρ with elements in an extension ofK, such that
ρ−1ασ1ρ = βσ1.

�

In either case, we have obtained a matrixρ whose elements lie in a
finite extension ofk, sayL (L = k(1, λ1, λ2, . . . , )), satisfying the condi-

tion ρ−1ασ
′
ρ = βσ

′
(sinceQL/L

σ′
� M2(L)). Let ρ′(∈ QL) = σ′−1(ρ).

Then
ρ′ = ρ◦ + λ1ρ1 + λ2ρ2 + · · · , ρ◦, ρ1, . . . ∈ Q.

Substituting inαρ′ = ρ′β we obtain

αρ◦ + λ1αρ1 + · · · = ρ◦β + λ1ρ1β + · · · .

Sinceαρi ∈ Q, expanding each of these in terms of the basis ele-
ments (1, ω,Ω, ωΩ) and using the fact that 1, λ1, λ2, . . . equationsαρ0 =

ρ0β, αρ1 = ρ1β, . . ..
In case (b) for at least onei, ρi , 0, so thatρ−1

i exists and hence
β = ρ−1

i αρi ; ρi ∈ Q.
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In case (a) we use the fact thatn(ρ′) , 0 (sinceρ−1 exists). Now,
n(ρ′) = n(ρ0)+ λ1(ρ1ρ̄0+ ρ0ρ̄1)+ · · ·+ λ2

1n(ρ1)+ · · ·+ λ2
2n(ρ2)+ · · · = 0.

In this quadratic expression inλ1, λ2 . . . we replaceλ1, λ2 · · · by 15

indeterminatesx1, x2 . . . obtaining a quadratic polynomialf (x1, x2, . . .)
with coefficients ink. f does not vanish identically sincef (λ1, λ2, . . .) =
n(ρ′) , 0. Now,k being an infinite field, we can always find a set of el-
ementsλ̄1, λ̄2, . . . ∈ k such thatf (λ̄1, λ̄2, . . .) , 0.

Let ζ = ρ0 + λ̄1ρ1 + · · · ; ζ ∈ Q andn(ζ) = f (λ̄1, . . .) , 0 so thatζ−1

exists.

αζ = αρ0 + λ̄1αρ1 + · · ·
= ρ0β + λ̄1ρ1β + · · · = ζβ, i.e., ζ−1αζ = β

Thus, the proof of our theorem is complete.

2 Orders and Ideals

5. Let k denote the rational number field;O, the ring of rational inte-
gers;k̄p, the p-adic completion ofk andOP, the ring of p-adic integers.

Theorem 1. Let Q/k be a quaternion algebra. Then, four elements
µ1, µ2, µ3, µ4 ∈ Q are linearly independent overk if and only if the dis-
criminant

|t(µiµk)| = D(µ1, µ2, µ3, µ4) , 0.

Proof. Let Q = k[1, ω,Ω, ωΩ] = k[ν1, ν2, ν3, ν4] (say). Then

D(ν1, ν2, ν3, ν4) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 0 0 0
0 2p 0 0
0 0 2q 0
0 0 0 −2pq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=−16p2q2
,0.

Now, we haveµi =
4
∑

ℓ=1
milνl; mil ∈ k, i = 1 to 4 so that16

µiµk =

(

∑

l

milνl

)(

∑

j

mk jν j

)

=

∑

j,l

milνl l jmk j
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i.e., t(µiµk) =
∑

j,l

mil t(γlγ j)mk j.

Denoting by (mk j)T , the transpose of (mk j) we have

(t(µiµk) = (mil )(t(νlν j))(mk j)
T .

Hence

|t(µiµk)| = |t(νlν j)||mik |2,
i.e., D(µ1, . . . , µ4) = −16p2q2|mik |2.

But ν1 · · · ν4 being linearly independent overk, |mik | , 0 implies that
µ1 · · ·µ4 are also linearly independent overk and converselyµ1 · · · µ4

linearly independent implies that|mik | , 0, i.e.,D(µ1 · · · µ4) , 0. �

6. Let Q be a quaternion algebra over the rational number fieldk.
We now define an order inQ.

Definition. An orderJ in Q is a ring of elements of Q with the following
properties:

i) 1 ∈ J,

ii) α ∈ J ⇒ t(α) and n(α) are integers,

iii) J has4 linearly independent generators over k.

We can also define an order alternatively as follows:

2)J is an orderif it is a ring of elements of Q such that i)1 ∈ J, ii) 17

J is a finiteO-module, iii)J has 4 linearly independent generators
over k.

For the equivalence of these two definitions, we shall prove in The-
orem 2 thatJ an order as in(1) is a finite O-module. But for the
converse, namely ifJ is a finiteO-module, thenα ∈ J ⇒ n(α) and
t(α) integral follows from the factα ∈ J ⇒ αJ ⊂ J (for J is a ring),
i.e.,α is an “integer”, i.e.,α satisfies a monic polynomial with integral
coefficients.
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We shall give some examples of orders inQ. Let Q have the ba-
sis [1, ω,Ω, ωΩ] over k whereω2 andΩ2 are integers. Then the finite
O-module [1, ω,Ω, ωΩ] can easily be seen to be an order. Ifω2 and

Ω
2 were not integers, (say)ω2

=
p′

q′
,Ω2

=
p′′

q′′
, then theO-module

[1, q′ω, q′′Ω, q′q′′ωΩ] is an order inQ.
The definition of an order in a quaternion algebraQp over thep-adic

number fieldk̄P is given exactly as above, except that the ring of integers
O is now replaced by the ringOp of p-adic integers.

Theorem 2. An orderJ is a finiteO-module and has 4 linearly inde-
pendent generators overO.

Proof. Let [µ1, . . . , µ4] be a basis ofJ overk.

Thenµiµk =
4
∑

j=1
mj

ikµ j ,m
j
ik ∈ k. Let N be the common denominator

of all thesemj
ik and putNµi = µ′i . Now µ′iµ

′
K =

4
∑

j=1
Nmj

ikµ
′
j. Then

the O-moduleJ ′ = [1, µ′1 . . . , µ
′
4] is actually an order; for by choice18

µ′iµ
′
k ∈ J ′ and henceJ ′ is a ring∋ 1 andJ ′ ⊂ J, so that every element

has integral trace and norm. FurtherJ ′ is of rank 4 overk. �

If J ′ , J, there exists an elementα ∈ J such thatα < J ′.
Consider theO-moduleJ ′′ = [µ′1, . . . , µ

′
4, α, αµ

′
1, . . . αµ

′
4, µ
′
1α · · · µ′4α].

ThenJ ′′ is an order. For,i)1 ∈ J ′′, ii )J ′′ ⊂ J so that every element
of J ′′ has integral trace and norm,iii )J ′′ is of rank 4. Therefore it is
enough to prove thatJ ′′ is a ring.

αµ′i .αµ
′
k = (t(αµ′i ) − (αµ′i )).αµ

′
k

= t(αµ′i ).αµ
′
k − µ̄i

′ᾱα.µ′k ∈ J ′′

sincet(αµi) ∈ O ⊂ J ′′, n(α) is integral andµ̄′i = t(µ′i ) − µ′i ∈ J ′ so that
n(α).µ̄′iµ

′
k ∈ J

′ ⊂ J ′′.O being a principal ideal domain, we know that
the finiteO-moduleJ ′′ has always a linearly independentO-module
basis (say) [ν1 · · · ν4] similarly J ′ = [µ′′1 · · ·µ

′′
4 ].

Now, [ν1 · · · ν4] ⊃ [µ′′1 · · ·µ
′′
i ] ⇒ µ′′i =

4
∑

k=1
mikνk,mik ∈ O i.e.,
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D[µ′′1 · · ·µ′′4 ] = D[ν1 · · · ν4] · |mik |2. In other words, we haveD(J ′) =
(J ′′).|mik |2.D(J ′) andD(J ′′) being integers,D(J ′′)|D(J ′).

Continuing the above construction further we obtain a system of
finite O-modulesJ ′,J ′′,J ′′′, . . . which are also orders, such thatJ ⊃
· · · ⊃ J ′′′ ⊃ J ′′ ⊃ J ′ ⊃ · · · andD(J)| · · ·D(J ′′′)|D(J ′′)|D(J ′). This
sequence must end after a finite stage, so thatJ (n)

= J for somen.
In other words, we have proved thatJ itself is a finiteO-module and
consequently has 4 linearly independentOp-module basis elements.

An orderJ is defined to bemaximalif it is not properly contained 19

in any other order. The above divisibility property of the discriminants
incidentally shows that every order is contained in some maximal order.

Since the above arguments can be carried over top-adic integers
also, any orderJp in Qp/k̄p is a finiteO-module and any order is con-
tained in a maximal order.

Let nowJ = [µ1 · · · µ4] (an integral basis) be an order inQ/k. Then
if ξ ∈ J , ξ = m1µ1 + · · · + m4µ4, µi ∈ O. We associate toJ, an order
Jp in Qp/k̄p such that ifξ ∈ Jp, ξ = m′1µ

′
1 + · · · + m′4µ4,m′i ∈ Op,

i.e.,Jp = [µ1 · · · µ4] (an Op-module). We now establish a connection
betweenJ andJp − s.
J = Q∩J2∩J3∩J5∩· · ·∩Jp∩· · · wherep runs through all primes

andJp is thep-adic extension ofJ. For, if ξ ∈ J , ξ =
4
∑

i=1
miµi ,mi ∈ O.

Thereforemi ∈ k, andµi ∈ Op for all p, i.e.,ξ ∈ Q
⋂

p
Jp.

Conversely ifξ ∈ Q
⋂

pJp, ξ =
4
∑

i=1
m′iµi ,m′i are rationalp-adic in-

tegers for allp and hence are rational integers, i.e.,ξ ∈ J. Therefore
J = Q∩ J2 ∩ J3 ∩ · · · ∩ Jp ∩ · · ·

Theorem 3. J is a maximal order inQ/k ⇔ Jp is maximal order in
Qp/k̄p for everyp.

For the same, we shall prove
J is not maximal⇔ JP is not maximal, for some p.

Proof. i) If J is not maximal,J ⊂ J ′ whereJ ′ is maximal, then there20

existsξ ∈ J ′, which is< J. If J = [µ1 · · · µ4], then Q is generated
by (µ1, . . . , µ4) overk, so thatξ = x1µ1 + · · · + x4µ4 where at least one
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xi (say) x1, is not integral. Letp be a prime dividing the denominator
of x1. Sinceξ ∈ J ′ ⊂ J ′p, theOp-moduleJ ′′p = [Jp, ξJp,Jpξ] is an
order containingJp properly, so thatJp is not maximal.

ii) Conversely, ifJP is not maximal for somep then there exists
ξ ∈ some maximal order, which is< Jp. If Jp = [µ1 · · ·µ4] then Qp is
generated by [µ1 · · ·µ4] over k̄p so that :ξ = x1µ1+ · · ·+ x4µ4 where not
all xi arep-adic integers. �

Let xi = x′i +u′i (u′i -integral) (i = 1 to 4), where somex′i may vanish;
x′i are rational numbers.

Definingξ′ = x′1µ1+ · · ·+ x′4µ4, ξ = ξ
′
+ ξ′′ whereξ′′ ∈ Jp. Further

ξ′ = ξ − ξ′′ ∈ maximal order containingJp. We shall prove that the
O-moduleM′ = [J , ξ′J ,Jξ′] = [µ′1 · · · µ′4] (say) is actually an order
containingJ properly.

µ′iµ
′
k =

4
∑

j=1
r j
ikµ
′
j wherer j

ik are p-adic integers, since theOp-module

[µ′1 · · ·µ′4] = [Jp, ξ
′Jp,Jpξ

′] is an order. Further they are rational num-

bers sinceQ is generated by (µ′1 · · · µ′4) overk. Thereforer j
ik are rational

p-adic integers. But, their denominators if any, can containonly powers
of p by virtue of ξ′ so thatr j

ik are all rational integers, i.e.,µ′iµ
′
k ∈ M′.

In other words,M′ is a ring. HenceM′ is a finiteO-module of rank 421

overk and also a ring containing 1, so that by our second definition of
an order,M′ is an order. Sinceξ ∈ M′ and< J ,M′ containsJ properly,
i.e.,J is not maximal.

7. We shall now study the maximal orders ofQp in both the cases
i)Qp is a division algebra over̄kp andii )Qp/k̄p � M2(k̄p). In casei) we
have a uniqueness theorem of orders, namely,

Theorem 4. If Qp/k̄P is a division algebra, then there is inQp, only one
maximal orderJp and in factJp = {ν ∈ Qp : n(ν) ∈ Op} .

We shall prove the following two lemmas from which we deduce
the theorem.

Lemma 1. ν ∈ Qp and n(ν) ∈ Op⇒ t(ν) ∈ Op

Lemma 2. Jp = {ν : n(ν) ∈ Op} is a ring.
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1) a) If ν ∈ k̄p, t(ν) = 2ν andn(ν) = ν2.n(ν) ∈ Op ⇒ ν2 ∈ Op, which
means thatν ∈ Op, i.e., t(ν) = 2ν ∈ Op.

b) If ν < k̄p, ν satisfies the irreducible equationx2− t(ν).x+n(ν) = 0.

Given thatn(ν) ∈ Op, if t(ν) < Op, let t(ν) =
µ

pr
, µ, a p-adic

unit andr > 1. Thenν′ = pr .ν satisfiesx′2 − µ.x′ + n(ν)p2r ≡
(x′ − µ)x′ (mod p), (replacingx by

x′

pr ). µ being ap-adic unit,x′

andx′ − µ are coprime modp and hence by Hensel’s lemma, the
above equationx′2 − µ.x′ + n(ν).p2r is reducible ink̄p, which is a
contradiction to the fact that it is irreducible. Thereforet(ν) ∈ Op.

2) Letν1, ν2 ∈ Qp such thatn(ν1) andn(ν2) are inOp. Thenn(ν1)|n(ν2) 22

or n(ν2)|n(ν1). We may assume thatn(ν1)|n(ν2), i.e.,n(ν−1
1 ν2) ∈ Op.

Then by Lemma (1),t(ν−1
1 ν2) is also an integer.

n(ν1 + ν2) = n(ν1(1+ ν−1
1 ν2)) = n(ν1).(1+ ν−1

1 ν2).(1+ ν−1
1 ν2).

Hencen(ν1 + ν2) = n(ν1)(1 + t(ν−1
1 ν2) + n(ν−1

1 ν2)) ∈ Op, (since
n(ν1), t(ν−1

1 ν2), n(ν−1
1 ν2) ∈ Op).

or ν1, ν2 ∈ Jp ⇒ ν1 + ν2 ∈ Jp. ν1ν2 ∈ Jp follows at once, i.e.,Jp is
a ring.

Now, Jp cannot be of rank> 4 since it contains certain rational
multiples of every element ofQp. It cannot be of rank< 4 also, since it
contains all orders. HenceJp is of rank 4. Therefore, by our first def-
inition of an order,Jp is an order and it is obviously the only maximal
order inQp.

Let Q/k
σ
� M2(k). We shall give an example of a maximal order

J and then prove that all maximal orders can be written in the form
µ−1Jµ, µ ∈ Q such thatn(µ) , 0. DefineJ = [µ1, . . . , µ4] the finite
O-module where

µσ1 =

(

1 0
0 0

)

, µσ2 =

(

0 1
0 0

)

, µσ3 =

(

0 0
1 0

)

, µσ4 =

(

0 0
0 1

)
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Then

D(J) = D[µ1 · · ·µ4] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −1.

By our second definition of an order,J is an order, sinceJ is a ring23

containing 1 and a finiteO-module of rank 4. ButD(J) being an unit,
J is a maximal order.

Let µ ∈ Q such thatn(µ) , 0. ConsiderJ ′ = µ−1Jµ = [µ−1µ1, µ,
. . . , µ−1µ4µ]. By means of the isomorphism one sees thatJ ′ is again
a ring containing 1, a finiteO-module of rank 4 and hence an order.
FurtherJ ′ is maximal sinceJ is maximal.

[Analogously, if QP/k̄p
σ
� M2(k̄p), we have the orderJp corre-

sponding toJ, which is again maximal, since−1 is ap-adic unit. Fur-
ther if µ ∈ Qp such thatn(µ) , 0, µ−1Jpµ is an order and also maximal.]

Theorem 5. Let Q/k
σ
� M2(k) and letJ be the maximal order defined

as before andJ ′, any other maximal order. Then there exists aµ ∈ Q
such thatn(µ) , 0 andJ ′ = µ−1Jµ.

Proof. DefineM to be theO-module [l j l′k, j = 1 to 4, k = 1 to 4] if
J = [l j ] andJ ′ = [l′k]. Then we shall prove

i) M = Jµ for a suitableµ ∈ M.

ii) If K = {ξ : Mξ ⊂ M} thenK = J ′ = µ−1Jµ.

i) We shall first prove that there exists aµ ∈ M such thatn(µ) , 0 and
with the additional property thatn(µ)|n(ν) for all ν ∈ M. �

Let µ1, µ2 be any two elements ofM. Let N be chosen sufficiently
large so that

µ′1 = Nµ1 ∼
(

m11 m12

m21 m22

)

andµ′2 = Nµ2 ∼
(

n11 n12

n21 n22

)

wherem′s and n′s are all integers. By applying suitable elementary24
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transformation on the left side,µ′1 goes into

ε1

















m11 m12

m21 m22



















=



















m′11 m′12
0 m′22



















andµ′2 goes into
ε2

















n11 n12

n21 n22



















=



















n′11 n′12
0 n′22



















But n(µ′1).n(ε1) = m′11m
′
22 ⇒ n(µ′1) = m′11m

′
22 sinceε1 is unimodu-

lar. Similarlyn(µ′2) = n′11n
′
22.

Let γ11 = (m′11, n
′
11) andγ22 = (m′22, n

′
22). Then we can find integers

a1, b2, a2, b2 such that

a1m′11+ b1n′11 = γ11, a2m′22+ b2n′22 = γ22.

Now, define

µ′ = α1µ
′
1 + α2µ

′
2

where ασ1 =

(

a1 0
0 a2

)

ε1, α
σ
2 =

(

b1 0
0 b2

)

ε2; (α1, α2 ∈ J)

so thatµ′σ =

(

a1 0
0 a2

) (

m′11 0
0 m′22

)

+

(

b1 0
0 b2

) (

n′11 n′12
0 n′22

)

=

(

γ11 ∗
0 γ22

)

Hencen(µ′) = γ11.γ22 which dividesn(µ′1) andn(µ′2). Sinceµ′ =

α1Nµ1 + α2Nµ2 ∈ J .NM ⊂ NM, µ =
µ′

N
∈ M. From the above, it

implies thatn(µ) dividesn(µ1) andn(µ2). In other wordsn(µ−1µ1) and
n(µ−1µ2) are integers.

If µ3 is a third element ofM, for µ3 andµ we can construct aν ∈ M 25

such thatn(.ν−1µ) andn(ν−1µ3) are integers. By virtue ofµ, n(ν−1µ1)
andn(ν−1µ2) are also integers. Similarly, givenn elementsµi ∈ M(i =
1 to n), we can find an elementµ ∈ M such thatn(µ−1µi) are all integers.

LetM = [ν1 · · · ν4]. If ξ =
4
∑

i=1
xiνi , xi ∈ O then we have

n(ξ) =
4

∑

i=1

n(νi )x
2
i +

4
∑

i, j=1

t(νi ν̄ j)xi x j =
ν

s
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(say) wheres is the common denominator ofn(νi), t(νi ν̄ j) and is fixed
for all ξ ∈ M. Hence we have a g.c.d of alln(ξ), (ξ ∈ M) (say)m. Then,
if d = g.c.d ofn(νi), t(νi ν̄ j), we assert thatd = m. For m is evidently
a multiple ofd. Converselyn(µi), n(µi + µ j) (= n(µi) + n(µ j) + t(µi µ̄ j))
are multiples ofm implies thatt(µi µ̄ j) are multiples ofm, i.e., d is a
multiple of m so thatd = m. Now, choose an elementµ ∈ M such that
n(µ)|n(µ1) andn(µ)|n(µi + µ j) (i, j = 1 to 4, i =, j). Thenn(µ)|d(= m).
But m|n(µ), by definition ofm. Hencen(µ) = m. i.e.,n(µ)|n(µ′) for all
µ′ ∈ M.

Having obtainedµ ∈ M with the property thatn(µ)|n(µ′) for all
µ′ ∈ M, we assert that there exists a basis [µ, µ1, µ2, µ3] for M. For,
if [ ν1 · · · ν4] were some integral base forM,

µ =

4
∑

i=1

aiνi = t
4

∑

i=1

a′i νi

(if all ai are not coprime,t, an integer> 1.)
Now, (a′1, . . . , a

′
4) being a coprime row, it can be completed to a26

unimodular matrixU (say) which, on applying to the basis [ν1 · · · ν4]

gives an integral basis
[

µ

t
, µ1, µ2, µ3

]

forM. But n(µ)|n
(

µ

t

)

⇒ n(µ).λ =

n(µ)

t2
, λ being an integer;

i.e., t2.λ = 1, i.e., t = ±1.

Therefore we have an integral basis [µ, µ1, µ2, µ3].

Consider the module W = Mµ−1
=

[

1, µ, µ−1, µ2µ
−1, µ3µ

−1
]

= [1, ρ1, ρ2, ρ3] (say)

Then we prove thatW = J.
JM ⊆ M⇒ JW ⊆W ⇒ J ⊆W. It is enough to showW ⊆ J.

Let ρ ∈ W, ρ = γ0 + γ1ρ1 + γ2ρ2 + γ3ρ3; γi ∈ O.
Then

n(ρ) = (γ0 + γ1ρ1 + γ2ρ2 + γ3ρ3)(γ0 + γ1ρ̄1 + γ2ρ̄2 + γ3ρ̄3)
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= γ2
0 + γ

2
1n(ρ1) + · · · + γ0γ1t(ρ1) + · · · + γ1γ2t(ρ1ρ̄2) + · · ·

By the choice ofµ, n(ρ) is an integer for everyρ ∈ W and since in the
above, all the coefficients are integers, it follows thatt(ρi) and t(ρi ρ̄K)
are integers. (i, k = 1, 2, 3).

ρiρk = ρi t(ρk) − ρi ρ̄k ⇒ t(ρiρk) = t(ρi)t(ρk) − t(ρi ρ̄k).

i.e., t(ρiρk) is an integer.
i.e.,D(W) = |t(ρiρk)| is an integer and we have the relationD(J) =

|M|2.D(W), whereµi =
3
∑

j=0
mi jρ j(ρ◦) = 1)(mi j ∈ O, for J ⊆ W), and

if J = [µ1 · · · µ4].
But D(J) = −1⇒ |M| = ±1, sinceD(W) is an integer and conse-27

quently M−1 is integral, i.e.,ρ j =
4
∑

i=1
λi jµi ( j = 0to3, ρ0 = 1), λi j ∈ O.

In other words,
W ⊂ J , i.e., J =W.

ThereforeJ = Mµ−1 orM = J. µ.
ii) Let J ′′ = µ−1Jµ = µ−1M ThenMJ ′′ = Mµ−1Jµ = J .M =

JJJ ′ = JJ ′ = M so thatJ ′′ ⊂ K. ButMK = M ⇒ µ−1M ⊂ K =
µ−1M ⇒ J ′K = J ′′. Since 1∈ J ′′K = J ′′ ⇒ K ⊂ J ′′, i.e.,J ′′ = K.
FurtherMJ ′ = M ⇒ J ′ ⊂ K = J ′′ ⇒ J ′ = J ′′ sinceJ ′′ is an order
andJ ′ is a maximal order. Thus we have proved our theorem that any
maximal orderJ ′ = µ−1Jµ, for someµ ∈ Q.

The above theorem holds forQp over k̄p also, i.e., Any maximal
orderJp in Qp/k̄p is of the formµ−1Jpµ for someµ ∈ Qp, whereJp is
the order inQp, corresponding toJ in Q.

8. In the following, we shall introduce ideals for arbitrary orders
and study their multiplicative behaviour. In the first step,we shall deal
with the local case (p-adic case). The global ideals will be defined as
the intersection ofp-adic ideals. This procedure turns out to be con-
venient for our purpose, though from a formal algebraic point of view,
a direct definition (Deuring, Algebraic, p.69) of global ideals mess to
be preferable. For maximal orders, both definitions can be shown to be
equivalent. For non-maximal orders, our definition may be more narrow.
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But just those ideals defined in our way will interest us, for example in
the application to modular functions.

Definition . A left ideal with respect to an orderJ in Qp/k̄p is an Op28

moduleM such thatM = J. µ, µ ∈ Qp such that n(µ) , 0. M can also
be written asM = µ.J ′ whereJ ′ = µ−1Jµ. ThenJ is called theleft
orderofM andJ ′, theright orderofM.

Similarly right idealsνJ can also be defined.
Any left idealJ .µ = µJ ′,J ′ = µ−1Jµ is consequently a right ideal

for the orderJ ′
Product of two ideals. If M = µ. J is a right ideal forJ andM = J.
ν left ideal for the same orderJ, then the productM.N is defined and
is equal toµ. ν. J ′ = J ′′. µν whereJ ′ = ν−1Jν, the right order ofM
andJ ′′ = µ. J. µ−1 the left order ofM.

When multiplication is defined for more than three ideals it is asso-
ciative, as a consequence of the associativity ofQ. Every left (or right)
ideal has an inverse (in the following sense).

If M = J · µ = µ. J ′ defineM−1
= µ−1J = J ′.µ−1. Then the

productM.M−1 is defined andM,M−1
= µ · µ−1. J = J. Further,M−1.

M is also defined andM−1M = µ−1µJ ′ = J ′.

Definition. A groupingis a set G= {A, B, . . .}with a given subset I(G) =
I of elements called unit elements of G and two mappings iℓ and ir of G
into I such that

1. A.B is defined if and only if ir (A) = iℓ(B).29

2. If A.B and B.C are defined, then A(BC) and (AB)C are defined and
are equal.

3. (iℓ(A)).A and A.(ir (A)) are defined and are equal to A.

4. For every A∈ G, there exists A−1 in G such that AA−1 and A−1A are
defined and equal respectively to iℓ(A) and ir (A).

5. If I1 and I2 are elements of I, there exists at least one element A∈ G
such that

iℓ(A) = I1, ir(A) = I2.
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Example of a groupoid
Let G be the set of left and right ideals with respect to the set of all

maximal orders{J j} = I (inQp/k̄p) which we take to be the set of unit
elements, together with the mappingsiℓ, ir given by

iℓ(A) = Jℓ, whereA = Jℓ.µ
and ir (A) = Jr , whereA = µJr .

We now verify that the axioms for a groupoid are satisfied.

1. follows from the definition of multiplication.

2. follows from the associativity of multiplication inQp.

3. iℓ(A)A = Jℓ · Jℓµ = Jℓ · µ = A.

A(ir A) = µ.Jr · J = µ.Jr = A.

4. follows from the definition of the inverse.

5. LetJ1,J2 be two maximal orders, say

J1 = µ
−1
1 Jµ1,J2 = µ

−1
2 Jµ2

where J =
{

α : α �

(

a b
c d

)

, a, b, . . . ∈ Op

}

Take 30

A = J1 · µ−1
1 µ2 = µ

−1
1 µ2 · J1

where J1
= (µ−1

1 µ2)−1 · J1µ
−1
1 µ2 = J2

Theniℓ(A) = J1, ir (A) = J2.
If the idealA is such thatA = Jℓ, µ = µJℓ, i.e.,Jℓ = Jr then we

say thatA is anambiguousideal ortwo-sided.
If Qp/K̄p is a matrix algebra, then since there exists only one max-

imal orderJp, all ideals are two-sided and they form a group with the
unite elementJp.

Definition. An idealM is called anintegralideal ifM ⊂ J1.
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M ⊂ Jℓ ⇔ M ⊂ Jr

(i) LetM ⊂ Jℓ, then sinceJℓM = M,MM ⊂ M. ButM · Jr = M⇒
M ⊂ Jr since ifK = {ξ : Mξ ⊂ M, ξ ∈ Qp}, thenMR = M ⇒
µ−1.MR = µ−1M

i.e., JrK = Jr which implies thatK ⊂ Jr , orM ⊂ R ⊂ Jr .

(ii) If M ⊂ Jr thenM ⊂ Jℓ is similarly proved.

Definition . LetM = Jµ = µJ ′ be an ideal. We define the norm ofM
or be n(M) = (n(µ)), the principal ideal generated by n(µ) overOp.

If M1. M2 is defined, thenn(M1M2) = n(M1). (M2), for, if M1 =

µ1J1, M2 = J1µ2, then sinceM1M2 = µ1µ2J ′1 we haven(M1M2) =
(n(µ1.µ2)) = (n(µ1). n(µ2)) = (n(µ1)).n(µ2)) = n(M1). n(M2))

We will now find all integral ideals of a given maximal order, and31

having norm (pn).
To do this, we consider two cases:

(1) LetQp/k̄p be a division algebra. Then it has a unique maximal order
Jp and there existsπ ∈ Qp such thatπ2

= p (sincek̄p(
√

p) being a
quadratic extension of̄kp, is a splitting field ofQp and by Theorem
3, §1). Furtherπ ∈ Jp sincen(π) = −p.

We now have the

Theorem 6. (i) P = Jpπ is the only integral ideal withn(P) = (p),
and

(ii) Pn
= J · πn is the only integral ideal for whichn(Pn) = (pn).

Proof. (i) Let P1
= Jp.π

′ be another integral ideal such thatn(π1) =
p.u1, u1 a unit, i.e.,n(P ) = (p). ThenP1,P−1

= Jpπ
′π−1. Let

π′π−1
= µ, thenn(µ) =

n(π1)
n(π)

=
p.u1

−p
= u2, a unit. This means

thatµ ∈ Jp and alsoµ−1 ∈ Jp sinceµ−1
=

µ̄

n(µ)
= µ̄. unit, and

µ̄ ∈ Jp. Now

Jpµ ⊆ Jp⇒ Jp ⊆ Jp.µ
−1 ⊆ Jp
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becauseµ−1 ∈ Jp i.e.,Jp = Jp. µ−1 or Jpµ = Jp. SoJp.µ =

Jp =P1P−1, i.e.,P1
=P.

(ii) Let P1
= Jp.π

′ be an integral ideal such thatn(P1) = (pn). Then
P1(Pn)−1

= Jpπ
′. (πn)−1. If µ = π′(πn)−1 thenn(µ) = unit ⇒

µ, µ−1 ∈ Jp as before.

Jpµ = Jp =P1(Pn)−1, i.e.,P1
=Pn.

(2) Let Qp/k̄p � M2(k̄p);Jp = {α : α �

(

a b
c d

)

, a, b, . . . , ∈ Op}. 32

We will now find all the integral ideals ofJp which have the norm
(pn). �

LetMp = Jp.µp be an integral ideal, i.e.,µp ∈ Jp and such that
n(Mp) = (n(µp)) = (pn), i.e.,n(µp) = pn.e, e unit. If εp corresponds to
an integral matrix and such thatn(εp) is a unit, thenε−1

p also corresponds
to an integral matrix, i.e.,ε−1

p ∈ Jp or Jpεp = Jp (becauseεp ∈ Jp),

henceJpεpµp = Jpµp. Now chooseεp such that

εpµp �

(

m11 m12

0 m22

)

then n(εpµp) = m11m12 = n(µp) = e.pn, e unit. Letm22 = e11.pn1,
m22 = e22pn2, wheren1 + n2 = n, ande11, e22 are units.

Now
(

e−1
11 0
0 e−1

22

) (

e11pn1 m12

0 e22pn2

)

=

(

pn1 e−1
11m12

0 pn2

)

= ε′pµp, say.

In the product

(

1 t
0 1

) (

pn1 e−1
11m12

0 pn2

)

=

(

pn1 e−1
11m12+ pn2.t

0 pn2

)

we chooset such that 0≤ m′12 < pn2 = e−1
11m12+ tpn2.

Then by the matrix

(

1 t
0 1

)

, ε′pµp→ ε′′pµp �

(

pn1 m′12
0 pn2

)

.
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NowJpµp = Jpε
′
pµp = Jp.ε

′′
pµp. 33

Therefore the set of all integral ideals with norm (pn) is the set all

Jp.µ : µ �

(

pn1 m′12
0 pn1

)

, n1 + n2 = n, 0 ≤ m′12 < pn2. Furtherµ1 ,

µ2 ⇒ Jp.µ1 , Jpµ2; for, if Jpµ1 = Jpµ2, thenJpµ1µ
−1
2 = Jp, i.e.,

Jpµ = Jp, whereµ = µ1µ
−1
2 . From this we obtainJp = Jp.µ

−1, or
µ−1 ∈ Jp since 1∈ Jp, i.e., n(µ) = unit so that

µ ∼
(

e11 e12

e21 e22

)

(say).

Now µµ2 = µ1 implies that

(

e11 e12

e21 e22

) (

pn1 m12

0 pn2

)

=

(

pn′1 m′12
0 pn′2

)

if µ2 ∼
(

pn1 m12

0 pn2

)

and µ1 ∼
(

pn′1 m′12
0 pn′2

)

Thereforee21pn1 = 0 or e21 = 0 ande11pn1 = pn′1, e22. pn2 = pn′2 imply
thate11 = e22 = 1, i.e,

µ1 ∼
(

1 e12

0 1

) (

pn1 m12

0 pn2

)

=

(

pn1 m12+ e12pn2

0 pn2

)

So, m′12 = m12 + e12pn2 or m12 ≡ m′12 (mod pn2). But, since 0≤
m12,m′12 < pn2 we must havem12 = m′12.

Hence, the number of integral ideals with norm (pn) is equal to 1+34

p + · · · + pn, the number 1 corresponding to the valuesn1 = n, n2 = 0,
the numberp corresponding to the valuesn1 = n− 1, n2 = 1 and so on.

9. We will now extend our results from the local case to the global
case. Let nowQ be a quaternion algebra over the rational number field
k, and letJ be any order inQ. We have already seen thatJ = Q∩J2∩
J3 · · · ∩ Jp ∩ · · ·Analogously, we define left idealsM with respect to
the orderJ asM = Q∩J2µ2∩ · · · ∩Jpµp∩ · · · whereJpµp = Jp for
almost allp. We then have the following

Theorem 7. (i) M is a finiteO−module.
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(ii) Mp = Jp. µp whereMp is the finiteOp−module, with the same
basis elements asM overO

Proof. (i) We may, without loss of generality, assume that

Jpµp ⊇ Jp (A)

for all p. This is explained as follows:
Now,Jpµp = Jp for all except a finite number of primesp, (say)

p1, . . . , pr . So, letJpµp + Jp, p = p1, . . . , pr and letJpµp = [ν1 · · · ν4]
andJp = [L1 L2 L3 L4]. �

We can then writeLi =
4
∑

k=1
mikνk,mik ∈ k̄p. Choosingn sufficiently

large so thatmik.pn are p−adic integers,pn.Li ∈ Jpµp ⇒ Jpµp ⊇
Jp.pn, i.e.,Jpµ

′
p ⊇ Jp, µ′p =

µp

pn .

So we haveJpiµpi ⊇ Jpi whereµ′pi
=
µp

pi ni
.

Let m=
r
∏

i=1
pini = pini upi(say)upi, a pi-adic unit. 35

Then

Jpi

µpi

m
= Jpi ·

µpi

pi ni · upi

= Jpi · µ′pi
(upi )

−1 ⊇ Jpi

for all i, sinceJpiµ
′
pi
⊇ Jpi andupi ∈ Jpi .

If M′ = Q∩ · · · ∩ Jpi

µpi

m
∩ · · · , thenM′ satisfies the condition (A)

and if we prove thatM′ is a finiteO− module, then sinceM = mM′, it
will follow that M itself is a finiteO− module.

Now, we assume thatM itself satisfies condition (A). ThenM ⊇ J.
If M = J, there is nothing to prove, so letM ⊃ J properly, i.e., for
at least onep,Jpµp ⊃ Jp, properly. We shall now show thatM can
be obtained fromJ by a finite number of adjunctions and henceM is a
finite O− module.

Let νp ∈ Jpµp and< Jp = [L1 L2 L3 L4] overOp if J = [L1 · · · L4]
overO. Thenνp = L1n1 + · · · + L4n4, ni ∈ k̄p and at least oneni(say)n1

is not a p adic integer.
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ni = n′i + n′′i , n
′′
i ∈ Op(say). Thenn′1 , 0;n′i are rational,νp =

(

4
∑

j=1
L jn′j

)

+

(

4
∑

j=1
L jn′′j

)

= ν′′p + ν
′′
p so thatν′′p ∈ Jp and ν′p < Jp. If

J ′ = [J , ν′p] thenJ ′p ⊂ Jp ⊂ Jpµp. Again if Jp , Jp.µp, as before

we adjoinν(2)′
p and so on. ButJpµp being a finiteO− module, there

can only be a finite number ofJ ′p betweenJp andJpµp so that we36

reachM(1)
= [J , ν(1)′

p1
, ν(2)′

p1
· · · ν(k)′

p1
] whenceM(1)

p1
= Jp1µp1 (putting

p = p1, one of the primes for which the inclusion is proper). Now,
from the decomposition,J = Q∩pJp we obtain on adjunction of these
elements to each component,

M(1)
= Q

⋂

p,p1

Jp ∩ Jp1 sinceν(i)′
p1
∈ Q

⋂

p,p1

Jp.

Doing the same forM(1) as we did forJ, with respect to primep2, we
obtain the module

M(2)
=

⋂

p,p1,p2

Jp ∩ Jp1µp1 ∩ Jp2µp2

i.e., ifJp2µp2 ⊃ Jp2 properly; consider

M(2)
= [M(1), ν

(1)′
p2 · · · ν

(s)′
p2 ] so that as before, the adjunction of these

elements keepQ,Jp(p , p1, p2) andJp1µp1 fixed and consequently
M(2) has the above form. FurtherM(2)

p2 = Jpnµp2. Proceeding in this
manner, we obtain finallyM(r)

= Q∩Jp1µp1∩· · ·∩Jprµpr

⋂

p,pi ···pr

Jp =

M, by definition.
Thus we have proved thatM is a finiteO− module.

ii (a) For p = pi , i = 1 to r,Mpi = M
i
pi
= Jpi. µpi by constructions

ofM(i)

(b) For p , pi , i = 1 to r,Jpµp = Jp so thatM ⊂ Jpµp = Jp,
i.e.,Mp ⊂ Jp.

FurtherM ⊃ Jm (for some integermwhich is a p- adic unit) so that37

Mp ⊃ Jp. In other wordsMp = Jp = Jpµp.
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Note.From the above theorem we may deduce thatM = Q
⋂

p
Mp, which

is the analogue of the expression for an orderJ in p.19.

Product of ideals
If M = Q

⋂

p
Jpµp andN = Q

⋂

p
J ′pνp are two ideals whereJ ′p =

µ−1
p Jpµp, then the productMN is defined and is equal to the ideal

Q
⋂

p
JpµpJ ′pνp = Q

⋂

p
Jpµpνp.

Theorem 8. If M = [µ1, . . . , µ4],N = [ν1 · · · ν4] are twoideals and the
productMN is defined, thenMN = [· · · ik, . . .] (the product module).

Proof. LetM = Q
⋂

p
Jpµp andM = Q

⋂

p
J ′pνp. Then the ideal prod-

uct R = MN =
⋂

p
Jpµpνp. Let R = [ρ1, ρ2, ρ3, ρ4]. Then Rp =

(MN)p = Jpµνp = JpµJ ′pνp = MpNp i.e., [ρk]p = [µiν j]p ⇒ µiν j =

4
∑

k=1
m(k)

i j ρk,mk
i j ∈ Op for all p. �

We know already thatm(k)
i j ∈ k. Combining these two, we see that

mk
i j ∈ O. In other wordsR = [µi ν j].

We shall consider some special cases of the product of two ideals:

i) M = J ,⇒ MN = N, i.e.,JN = N;J is called the left order ofN.

ii) Defining J ′ = Q
⋃

p
µ−1

p Jpµp, whereµ−1
p Jpµp = Jp for almost

all p, it can be proved as forM, thatJ ′ is a finiteO-module. By 38

definition,J ′ is a ring containing 1 andJ ′ ⊃ MJ for some integer
m so thatJ ′ is of rank 4. Therefore, by our second definition of an
order,J ′ is an order.

Now, if = Q
⋂

p
Jpµp, thenMJ ′ is defined andMJ ′ = M;J ′ is

called the right order forM.

iii) If M = Q
⋂

p
Jpµp, we defined its inverseM−1

= Qµ−1
p Jp (a right

ideal forJ)M−1 can be rewrittenQ
⋂

p
J ′pµ−1

p (a left ideal forJ ′).

ThenMM−1 is defined and= Q
⋂

p
Jp = J.
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SimilarlyM−1M is defined and= J ′.

iv) When the product of more than two ideals is defined, this iseasily
seen to be associative, for letM = Q

⋂

p
Jpµp,N = Q

⋂

p
J ′pνp and

ϑ = Q
⋂

p
J ′′p λp. If (N) and (MN)ϑ are to be defined, thenJ ′p =

µ−1
p Jpµp andJ ′′p = (µpνp)−1Jp(µpνp), so that (MN)ϑ = Q

⋂

p
Jp

µpνpλp.

J ′′p = ν−1
p µ−1

p Jpµpνp = ν
−1
p J ′pνp implies thatNϑ is defined and=

Q
⋂

p
Jpνpλp. ConsequentlyM(Nϑ) is also defined andQ

⋂

p
Jpµpνpλp

i.e., (MN)ϑ = M(Nϑ).
Form the above considerations, it follows at once that the set of

ideals defined above with the set of all ordersJ ′ = Q
⋂

p
µ−1

p Jpµp

(µ−1
p Jpµp =Jp for almost all p), as the class of unit elements forms

a groupoid. This particular choice of orders becomes necessary for the
fifth axiom of the groupoid.
Norm of an ideal : LetM be an ideal,M = Q

⋂

p
Jpµp,Jpµp = Jp for39

almost allp. Then we define the normn(M) of M, to be the principal

ideal
∏

p
(n(µp)) where by this we mean the ideal (

r
∏

i=1
pni

i ) generated over

O .n(µpi ) = pni
i . ui , ) a pi adic unit, andp1, . . . pr being the primes for

whichJpµp , Jp. For primes other thanpi , n(µp) is a unit. We may
also definen(M) = (m) generated overO, where m is the g.c.d of all
n(µ), µ ∈ M.

But if M = [ν1 · · · ν4], then m =g.c.d. of the coefficients of the
quadratic from

n(µ) =
4

∑

i=1

n(νi)x
2
i +

4
∑

i=1

t(νi ν̄ j)xi x j .

For m =
∏

p
g.c.p adic divisor of the same coefficients=

∏

p
n(µp), since

n(µp) = g.c.p-adic divisor of the coefficients of the above quadratic form
with x′i s p - adic integers instead of being rational integers, forJpµp =

Mp = [ν1 · · · ν4]p.
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Hence, both the definitions are equivalent.
Integral ideals A left idealM for an orderJ is said to be integral if
M ⊆ J. This is equivalent to saying thatM ⊆ J ′ (right order ofM), for
M ⊆ J ⇒ Mp ⊆ Jp for all p, i.e.,Mp ⊆ J ′p, sinceJ ′p is a right order
forMp. In other words,M ⊆ J ′.
M integral⇒ (n(M)) an integral ideal, since eachn(µ), µ ∈ M ⊂ J

is an integer, the g.c.d. is also an integer. LetJ be maximal order in 40

Q/k, then
J ′ = Q∩ · · · ∩ µ−1

p Jpµp ∩ · · ·

(whereµ−1
p Jpµp = Jp for almost alp), is also maximal; forJ maximal

⇔ Jp maximal for everyp, i.e.,J ′p = µ−1
p Jpµp is maximal for everyp,

orJ ′p is maximal. Conversely, we have the

Theorem 9. If J ′′ is any maximal order, then

J ′′ = Q∩ · · · ∩ J ′′p ∩ · · ·

whereJ ′′p = Jp for almost all p.

Proof. We haveJ ′′ = Q∩ · · · ∩ J ′′p ∩ · · · . SinceJ ′′ is maximal,J ′′p
is maximal for everyp, and hence there exists aµ′′p ∈ Qp, such that
n(µ′′p) , 0 and such thatJ ′′p = µ

′′−1
p Jpµ

′
p. We have now only to show

thatJ ′′p = µ
′′−1
p Jpµ

′′
p = Jp for almost allp. �

LetJ = [L1, . . . , L4],J ′′ = [L′′1 , . . . , L
′′
4 ]. We can write

L′′i =
4

∑

k=1

cikLk, cik ∈ k.

Let p be a prime which does not divide the denominator of anycik.
Thencik are all p- adic integers,i.e.,J ′′p ⊂ Jp. ButJ ′′p is maximal, so
thatJ ′′p = Jp.

Since almost all primesp satisfy the above condition, the proof is
complete.
10. Zeta Function of an OrderJ
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We define the zeta functionζ(s), of an orderJ(wheres is a complex
number for whichR(s) > 1) as

ζ(s) =
∑

M

1

(n(M))2s

whereM runs though all the integral left ideals of the orderJ. Further41

we can write

ζ(s) =
∞
∑

n=1

an

n2s

wherean is the number of integral left ideals forJ with norm n; (The
finiteness ofan will be proved in §3, Lemma 1)

If

n = pr1
1 − −prk

k , thenan = a
(p)
r1
p1
· · · a

(pk)
rk

pk

wherea
(p)
r1
p1

is the number ofpi adic integral left ideals forJpi , with the
norm pr i

i . This follows fromM = Q
⋂

p
Mp established in Theorem 7.

Formally we may write

ζ(s) =
∏

p

( ∞
∑

r=o

a(p)
pr

(pr )2s

)

the product being extended over all rational primesp. This result is a
simple consequence of the equation foran. Actually, one can prove the
convergence of this infinite product in the domain of convergenceζ(s).

We will now restrict ourselves to maximal orders. So letJ be a
maximal order. Then

a(p)
pr =















1 if Qp is a division algebra,

i + p+ · · · pr
=

1−pr+1

1−p , if Qp � M2(k̄p)

Let p1, . . . , pt denote the characteristic primes, which we know to be
finite in number. Then

ζ(s) =
t

∏

i=1

















∞
∑

r=0

1

(pr
i )

2s

















.
∏

p,pi
i=1,...,r



















∞
∑

r=0

1− pr+1

1−p
(pr )2s
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=

t
∏

i=1















1

1− p−2s
i















∏

p,pi

(

1
(1− p−2s)(1− p1−2s)

)

i.e., 42

ζ(s) = ζo(2s)ζo(2s− 1)
t

∏

i=1

(1− p1−2s
i )

where
ζo(s) =

∏

p

(1− p−s)−1

R(s) > 1, is the Riemann zeta function.
In particular, whent = 0, i.e., when there do not exist any character-

istic primes, we have

ζ(s) = ζo(2s).ζo(2s− 1).

Extendingζ(s) to the whole plane (this is possible sinceζo(s) can be
extended), it follows thatζ(s) has a simple pole ats= 1 with the residue

=(ζo(2s))s=1

t
∏

i=1

(

1− 1
pi

)

(res.ζo(2s− 1)s=1)

=
π2

6
.
1
2

∏t
i=1

(

1− 1
pi

)

sinceζo(2s− 1) has the expansion
1

(2s− 1)− 1
+

· · · = 1
2(s− 1)

+ · · · at the point 2s− 1 = 1, i.e., ats= 1

Note. In the special case of ordersJ not necessarily maximal, but sat-
isfying the following conditions

1. Jp is maximal for all characteristic primes.

2. Jp �

(

Op Op

pOp Op

)

for a finite number of primes. 43

3. Jp is maximal (say)=

(

Op Op

Op Op

)

, for the rest,
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We can proved that zeta function for this order is of form

ζ(s) = ζo(2s) ζo(2s− 1)
∏

p

(1+ p1−2s)
∏

p

(1− p1−2s)

where the second product is taken over all characteristic primes, and the
first over the prime for whichJp is of type (2). This is a consequence of

the fact thata(p)
pr = 2.

1− pr+1

1− p
−1, for primes of the type (2) (M.Eichler,

Zur zahlentheorie der Quat.Alg.Uselle’s Journal, 1956,P.132 )
Another application of thep-adic theory we shall see later in the

relations between the ideals of quaternion algebras and there quadratic
subfields.

3 Class of Ideals

11. LetJ be a given, and letM andN be two left ideals forJ. We say
thatM is left equivalent toN, (we writeM ∼ N) is there exist aµ-such
thatn(µ) , 0 andM = Nµ, i.e., if N−1M is a principal ideal. The above
defined relation is evidently an equivalence relation, and we obtain thus
left equivalence classes of left ideals with respect to the orderJ. We
can similarly define right equivalence for right ideals withrespect to the
orderJ and obtain right equivalence classes. We will now prove the
following

Theorem 1. The number of left classes with respect to an orderJ is44

finite and is equal to the number of right classes forJ. Further, this
(say,h which is called the class number) is independent of the orderJ;
(in the class of unit elements of the groupoid of ideals).

Proof. Assuming that the number of left classes in finite, by means of
the mappingM ↔ M−1, the left ideal classes forJ correspond in a
(1, 1) manner to the right ideal classes forJ, and hence the number of
right classes being equal to the number of left classes, is finite. Let now
M1, . . .Mh be a system of representatives for the left classes, then by
axiom 5 for a groupoid, there exists an idealN which hasJ as a right
order, andJ ′ as a left order, whereJ ′ = Q

⋂

p
µ−1

p Jµp, µ
−1
P JPµP = JP
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for almost allp. The productsNM1, . . . ,NMh are then defined and are
left ideals for the orderJ ′. No two of these can be left equivalent, for
if NMi = N.M j̺, wheren(̺) , 0 then we would haveMi = M j̺ which
is a contradiction. Ifh′ denotes the class member forJ ′ this means that
h′ ≥ h. Similarly h ≥ h′, i.e.,h = h′. �

To prove that the number of left classes is finite, we require two
lemmas.

Lemma 1. For any orderJ, there are only a finite numbers of integral
left ideals with a given norm n.

Lemma 2. LetM be a right ideal for a given orderJ. Then there exist
a µ ∈ M such that0 < |n(µ)| < CJ .|n(M)| where CJ is a constant
depending only on CJ .

We will first prove the theorem assuming the lemmas to the true, and 45

then prove the lemmas.

Proof of the theorem.LetM be any left ideal forJ, consequentlyM−1

is a right ideal forJ andMM−1
= J. Applying lemma 2 toM−1 there

exists aµ ∈ M−1, such that

0 < |n(µ)| < CJ .n(M−1) − cJ |n(M)|−1

Consider the left idealN = Mµ,N ⊆ J sinceµ ∈ M−1. This
means thatN is an integral ideal in the left class ofM and |n(N)| =
|n(M).n(µ)| < CJ . Since there are only a finite number of integers in the
interval [−CJ ,CJ ] and since by lemma 1, there exists only a number
of integral left ideals with a given norm, the number ofNs is finite, it
follows that the number of left classes is finite.

Proof of lemma 1. (a) If J is maximal, Lemma 1 has already been
proved to be true. ( §2, Zeta function of an order).

(b) So, one letJ be any order. Then there exists a maximal orderJ̄ for
whichJ ⊂ J̄, i.e.,Jp ⊂ J̄p for all p, J̄p being maximal for allp
becauseJ̄ is so.
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To the idealMp = Jµp we make correspond the ideal̄Mp = J̄pµp

which is again integral sinceµp ∈ Jp ⊂ J̄p. Furthern(M̄p) = n(Mp).
Therefore for proving that there are only a finite number ofMp with a
given norm it suffices to show that only a finite number ofMp corre-
spond to the samēMp.

Let J̄pµ
(i)
i = J̄pµp whereJpµ

(i)
p are the ideals associated with46

J̄pµp. Thenµ(i)
p µ
−1
p = ǫ

−(i)
p , a unit in J̄p. Denote byŌp andOp re-

spectively the unit groups of̄Jp andJp. ThenŌp ⊃ Op and we shall
prove thatOp/Op is finite.

Choosen sufficiently large so thatPn.J̄p ⊂ Jp. (The subsequent
arguments hold good for the global ordersJ ⊂ J̄ ⊂ Q/k also expect
that we have to choose an integerm sufficiently large such thatm. J̄ ⊂
J). This implies that the ring generated by 1,pnJ̄p (say) [1, pnJ̄p] ⊆
Jp for 1 ∈ Jp. Let 2Yp be the group of units{ε} of the ring [1, pn.J̄p]
which are of the typeε = 1(pn.J̄p) ThenŌp ⊇ Op ⊇ 2Yp. Now, the
mapping

Ypα→ pnJ̄p + α, (α ∈ Ōp)

givesa(1, 1) image ofŌp/Yp in the system of residue classes{pn.J̄p +

α}; so thatŌp/Yp is finite which in its turn implies that̄Op/Op is finite

(say) of orderr. We have then the cost decomposition,Ōp =
r
⋃

ν=1
Opην.

Hence ¯ε(i)
p ∈ Op implies that ¯ε(i)

p ∈ Opην (say), i.e.,εi
p = ε

(i)
p ηνi , ε

(i)
p ∈ Op

i.e.,µ(i)
p = ε

(i)
p ηνiµp orJpµ

(i)
p = Jp.(ηνiµp) since, we deduce thatJpµ

(i)
p

are finite in number.
Proceeding to the global case the number of integral left ideals for

the orderJ with norm n is given by
s
∏

i=1
a(i)

p
ri
i

if n = pr1
1 · · · p

rs
s anda(i)

p
ri
i

47

denotes the number of integral left ideals for the orderJpi with norm
pr i

i , which has been proved to be finite in the previous paragraph.
Thus our contention in completely established.

Proof of lemma 2.Let M = Q
⋂

p
µp. Jp = [ν1, ν2, ν3, ν4] andJ =

[L1, L2, L3, L4]. Then, if νi =
∑4

k=1 mikLk,mik ∈ k, we will prove that
absolute value of|mik | = n(M)2. We shall above first that (|mik |)p =
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(n(µp)2)p. Then it would follow that

(n(M)2) =
∏

p

(nµp))2
=

∏

p

(|mik |)p = (|mik |).

i.e.,n(M)2
= |mik |. rational unit= absolute value of|mik |. Sincel̄K ∈ Jp,

we can writeL̄k =
4
∑

l=1
L1clk, clk ∈ Op. Then (t(Li L̄k)) = (t(LiLk))(cik) and

sinceL1, . . . , L̄4 also form a basis forJp overOp, (cik) is p-unimodular,
i.e., |cik | is a p-adic unit. NowD(µpJp) = D(Mp) = |mik |2.D(Jp) from
the basis representation of theνi-s. Since [µpL1, . . . , µpL4] form a basis
for Mp, and sincet(µpLi .µpL j) = n(µp). t(Li L̄ j), we haveD(Mp) =
n(µp)4. |t(Li L̄ j)| = n(up)4. D(Jp)µp. up, a p-adic unit, i.e.,|mik |D(Jp) =
n(µp)4. D(Jp). up, andD(Jp) , 0 so that (|mik |)p = (n(µp)2)p.

Our object now is to findµ ∈ M, µ = ν1t1 · · · + ν4t4 ti ∈ O such
that 0< |n(µ)| < CJ |n(M)|. Let ν = ν1X1 + · · · + ν4X4 Xi ∈ O, be any

element ofM. Substitutingνi =
4
∑

k=1
mikLk in this expression, we obtain48

ν = L1L1 + · · · + L4L4 where

L j =

4
∑

i=1

Ximi j j = 1, . . . , 4

are linear forms inX1, . . . ,X4 with rational coefficients. By Minkowski’s
Theorem on linear forms, since absolute value of|mik | = n(M)2

=

(
√
|n(M)|)4, there exist integerst1, . . . , t4 such that

|L j | =
∣

∣

∣

∣

∣

4
∑

i=1

timi j

∣

∣

∣

∣

∣

<
√

|n(M)|.

If µ = ν1t1 + · · · + ν4t4, thenµ ∈ M, and sincen(µ) =
∑4

i=1 n(Li)L2
i +

∑4
i, j=1,i, j t(Li L̄ j).LiL j we have 0< |n(µ)| < CJ . |n(M)|, whereCJ is a

constant depending only on the orderJ.
12. The quaternion algebras over the rational number fieldk can

be divided into two classes according as the quadratic form given by the
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norm is definite or indefinite. In the first case way that the algebra is
definite, and in the second case that it is indefinite.

If the algebraQ is definite, the class numberh is in general greater
than 1. IfQ is indefinite, it can be proved thath = 1 for maximal orders.
(For a proof see M.Eichler,Math.Zeit, 1938). Furthermore, it can be
proved thath = 1 for even a wider class of orders, i.e., for orders of the
typeJ, where

1. Jp is maximal for almost allp, or without loss of generality,49

Jp �

(

Op Op

Op Op

)

2. Jp is maximal for all characteristic primesp.

3. For the remaining finite number of primes,

Jp �

(

Op Op

pOp Op

)

(For a proof of this, see M.Eichler,Math.Zeit, 1952.
We will give a proof of the above result in a special case.

Note .We call such an order an order of the type(q1, q2), q1, q2 being
the product of primes of types(2) and(3) respectively.

Theorem 2. Let Q/k � M2(k) (i.e., there do not exist any characteristic

primes) and letJ �

(

O O
mO O

)

, m a rational integer be an order ofQ.

Then all left ideals forJ are principal,i.e., h= 1.

We required the following two lemmas:

Lemma 1. LetM = Q
⋂

p
Jpµp be any left ideal forJ; then there ex-

ists a̺ ∈ Q such thatM. ̺ = N is integral, n(̺) , 0 and such that
(n(N),m) = 1.

Lemma 2. An idealN whose norm is coprime to m is necessarily prin-
cipal.
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Assuming the lemmas to be true, we will establish the theorem. By
lemmas 1 and 2, every left idealM for the orderJ is left equivalent50

to a principal ideal, and hence there is only one class, viz.,the class of
principal ideals, i.e.,h = 1.

Proof of lemma 1.Let the primesp for which p|m be denoted by
p1, . . . , pr . We have to find aµ ∈ Q, n(µ) , 0 such thatµp. µ−1 is a
unit inJp for all p|m. If n(µpi) = pni

i ui (ui , a p-adic unit),i = 1, . . . , r,
let n be an integer greater than max (1, n1+ 1− s1, . . . , n+ 1− sr) where
µpi = psi

i . µ′pi
, µ′pi
∈ Jpi . LetJ = [ν1, ν2, ν3, ν4], then we have

µpi =

4
∑

j=1

µ
(i)
pi ν j , µ

( j)
pi ∈ k̄pi , i = 1, . . . , r.

Now by Ostrowski’s Theorem on approximation, for eachj = 1, . . .,
r we can find aµ( j) ∈ k such that

µ( j) ≡ µ( j)
pi

(pn
i .Opi ), i = 1, . . . , r.

Let µ =
4
∑

j=1
µ( j)ν j, thenµ ∈ Q, and we use the notationµ ≡ µp

(mod pnOp), (p = p1, . . . , pr ). Now n(µ) , 0, for otherwise we would
have 0= n(µ) ≡ n(µp)(pnOp), i.e., n(µp) = pn. (somep-adic integer),
p = p1, . . . , pr which is a contradiction to the choice ofn.

Now µpi = psi
i . µ′pi

, µ′pi
∈ Jpi , n = max(1, n+ 1− s1, . . . , nr + 1− sr )

andµ = µpi + pn
i ̺i , ̺i ∈ Jpi . Then

µµ−1
pi
= 1+ pn

i ̺i
µ̄pi

n(µpi )

= 1+ pn
i ̺i

psi
i .µ̄
′
pi

pni
i ui

= 1+ pn+si−ni
i

( µ̄′pi

ui

)

= 1+ piλi , λi ∈ Jpi ,

because
µ̄pi

ui
∈ Jpi , andn+ si −ni ≥ 1 by choice ofn. Henceµµ−1

pi
∈ Jpi 51

also sincen(µµ−1
pi

) is a pi−adic unit, it follows thatµµ−1
pi

is a unit of
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Jpi for i = 1, . . . , r. Consider now the idealMµ−1
= Q

⋂

p
Jpµpµ

−1
=

N′(say), thenN′p = J for all p|m, also for almost allp. Now (n(N′)) =
∏

p(n(N′p)), and sincen(N′p) is a p-adic unit for allp|m, it follows that
n(N′) is coprime tom.

Let q1, . . . , qs be the primes for whichN′p , Jp, then we chooser i

such thatqr i
i N
′
qi
⊆ Jqi . Let n = qr1

1 · · · q
rs
s , thenn.N′qi

⊆ Jqi , i = 1, . . . , s
andn.N′p = n. Jp = J for p , qi . sincen is a p-adic unit. Therefore
the idealM.µ−1n = N′.n = N, orM̺ = N, ̺ = µ−1. n, is integral, and
n(N) = n2. n(N′) is coprime tomsince both factors are coprime tom.

Proof of lemma 2.(1) If m = 1, we know that there existsµ ∈ N such
that n(µ)|n(ν) for all ν ∈ N and then we proved (inTh/5§2) that
N = J. µ, i.e.,N is principal, orh = 1.

(2) m > 1. In this case we proceed in a similar fashion. Consider all
ν ∈ N such that (n(ν),m) = 1. There exist suchν, sincen(N) =
g.c.d. n(ν)ν ∈ N. If there exist two such elementsν1, ν2, then we52

can find unitsε1, ε2 such that

ε1ν1 =

(

∗ ∗
0 ∗

)

, ε2ν2 =

(

∗ ∗
0 ∗

)

We only show how to find the unitε1, and thenε2 can be constructed
in the same way. Let

ε1 =

(

e11 e12

me21 e22

)

, ν1 =

(

n11 n12

m.n21 n22

)

Then

ε1ν1 =

(

∗ ∗
m(e21n11 + e22n21) ∗

)

In order thatε1 be a unit andε1ν1 be of the required form, we must have

e11e22−me21e12 = 1,

e21n11+ e22n21 = 0.
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Pute21 =
n21

(n21, n11)
,−e22 =

n11

(n21, n11
), then (e21, e22) = 1, further

(me21, e22) = 1, because (n11,m.n21) = 1 since (n(ν1),m) = 1, so there
exists integersa andb such thatbe22− ame21 = 1, then putb = e11, a =
e12, and we easily see that the required conditions are satisfied.

Proceeding as before, we obtainν ∈ N such thatn(ν)|n(ν1) andn(ν2).
Continuing thus, since the denominators ofn(ν) are bounded, we obtain
after a finite number of steps, aν ∈ N such thatn(ν) divides the norms
of all elements inN and thenn(ν) = n(N). 53

It is enough to show thatJp.ν = Jp.νp for all p, whereN =
Q

⋂

p
Jpνp, for this would mean that

(J .ν)p = Jp.ν = Jpνp = Np

for all p, i.e.,J .ν = N.
Now ν = Lp. νp, Lp ∈ Jp so thatn(ν) = n(Lp).n(νp). But n(ν) =(p-

adic unit). n(νp) by definition of norm and this means thatn(Lp) =
p-adic unit, i.e.,L−1

p ∈ Jp ⇒ Lp a unit inJp. in other words,Jp.
ν = Jp. νp.

13. We will prove an important lemma concerning an orderJ of
type (q1, q2) presently.

Lemma 3. D(J) = q2
1q2

2.

Proof. We have (D) =
∏

p
(D)p. But for all primes of the type (1) (D)p =

(D(Jp))p = Op so that our purpose, it is enough to consider the primes
dividing q1 andq2. �

(i) In the case of characteristic primesp|q1,Jp is maximal and we
construct a special basis [1, ω,Ω, ωΩ] such that

D(Jp) = D[1, ω,Ω, ωΩ] = p2.u; u, a p-adic unit.
Let K̄ be an unramified quadratic extension ofk̄p and [1, ω] a base

for the maximal order (or the ring of integers in̄K). Then, by theorem
4.c of §1,K̄ is a splitting field forQp and hencēK � K ⊂ Q by theorem
3 of §1 so that we may look upon [1, ω] as an integral base for integers
in K.

Then we choose an elementΩ ∈ Qp such thatΩ2 ∈ k̄p,Ω−1ωΩ = ω̄. 54
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But Ω2 cannot be the norm of an element ofK̄, for then it would mean
that Qp is a matrix algebra. Since every unit ofkp is a norm of an
element ofK̄ and p is not,Ω2

= p. U with U, a unit. We shall now
prove that [1, ω,Ω, ωΩ] is the maximal order inQp. That it is an order,
follows by construction. Further

D[1, ω,Ω, ωΩ] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 t(ω) 0 0
t(ω) t(ω2) 0 0

0 0 2p pt(ω)
0 0 pt(ω) 2p.n(ω)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Now,

D[1, ω] =

∣

∣

∣

∣

∣

∣

t(1.1) t(1.ω)
t(ω.1) t(ω.ω)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2 t(ω)
t(ω) t(ω2)

∣

∣

∣

∣

∣

∣

is ap-adic unit, since the extension is unramified (follows by Dedekind’s
theorem). Furthermore,

∣

∣

∣

∣

∣

∣

t(1.1) t(1, ω̄)
t(ω.1) t(ω, ω̄

∣

∣

∣

∣

∣

∣

= D[1, ω].u; u, ap-adic unit, so that [1, ω,Ω, ωΩ] =

p2. uo beinga p-adic unit. It remains to prove now that [1, ω,Ω, ωΩ] is
maximal. For the same it is enough to show that ifξ = xo + · · · + x3ωΩ

is an element ofQp such thatn(ξ) ∈ Op, then xi are all inOp. Now
ξ = ξ1+ξ2Ω, whereξ1 = xo+x1ω andξ2 = x2+x3ω; n(ξ) = n(ξ1)−pn(ξ2)
is a p-adic integer.

Sinceξ1 ∈ K, eitherξ1 ∈ O (ring of integers inK) or ξ−1
1 ∈ K = (p)55

by virtue of K being unramified, i.e.,ξ1 = p−r1. u1; u1,a unit of O.
Similarly, eitherξ2 ∈ O or ξ2 = p−r2u2; u2, a unit. Thereforen(ξ) =
p−2r1 .n(u1) − p−2r2. n(u2). Sincen(u1) andn(u2) are p-adic units, this
cannot happen. Henceξ1 andξ2 are both inO, i.e., x0, x1, x2, x3 are all
p-adic integers, since [1, ω] forms a base ofO overOp.

(ii) In the case of primesp|q2,

Jp �

(

Op Op

pOp Op

)

so that we have a basis
[(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
p 0

)

,

(

0 0
0 1

)]
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Therefore

D[Jp] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 0 p 0
0 p 0 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −p2
= p2 a p-adic unit.

Hence our assertion is completely established.





Chapter 2

Theory of Units

4 Units

1. Let J be an order in the quaternion algebraQ/k; then a necessary56

and sufficient condition that an elementε in J be a unit inJ is that
n(ε) be a unit inO. It is easy to see that the units inJ form a group
which we denote byOJ . In the case of definite algebrasQ/k, we have
the following

Theorem 1. If Q/k is definite, thenOJ is of finite order.

Proof. LetJ = [L1 · · · L4] andε = e1L1 + . . . + e4L4, a unit inJ.

n(ε) = e2
1n(L1) + · · · + e1e2t(L1L̄2) + · · · = 1.

Q being definite, the quadratic form given by the norm is definite and
consequently the equationn(ε) = 1 with real coefficientse1, . . . , e4 rep-
resent an ellipsoid inR4. Hence there are only a finite number of lattice
points on this surface. In other words there are only a finite number of
integrale1 · · ·e4 for which n(ε) = 1, i.e.,OJ is of finite order. �

Note . In fact, we have the converse part also to be true in this case,
namely, if Q is indefinite,UJ is infinite. (We shall not give the proof
here).

45
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We shall now consider unit groups of order ofQ/k � M2(k). LetJ

be the maximal order

(

O O
O O

)

. Then the group of unitsU =

{ (

a b
c d

)

,

a, b, c, d ∈ O andad− bc = ±, 1
}

is simply the unimodular groupΓ of57

(2, 2) matrices and the subgroupU1 of proper units ofJ (i.e.,ad−bc=
1) is nothing but the modular groupΓ1, which is a normal subgroup of
Γ of index 2.

We know thatΓ1 as a group acting on the upper half plane is discon-
tinuous and we have a fundamental domain (say)D1. If Jo is any order
⊂ J, then the group of proper units ofJo, sayU0 ⊂ U1. Consequently
U0 as a group acting on the upper half plane, is discontinuous and let
D0 be its fundamental domain.

Now, U0 is of finite index inU . Just as we had in thep-adic case
(§3, Proof of lemma 1) we have a coset decomposition

U1 =

h
⋃

i=1

U0εi

Then it can easily be-seen thatD0 can be taken to be
h
⋃

i=1
εiD1; εiD1,

the image ofD1, by means ofεi.
We shall take up the remaining case, namely whenQ is indefinite

and also a division algebra.
If Q = [1, ω,Ω, ωΩ], ω2

= p,Ω2
= q, (ωΩ)2

= −pq, sinceQ is
indefinite, at least one of the threep, q,−pq is positive and we assume
without loss of generality thatp > 0.

SinceQ splits overK � k(
√

p), we have the following isomorphism
of QK ontoM2(K) � M2(k(

√
p)).

1→
(

1 0
0 1

)

, ω→
(√

p 0
0 −√p

)

,Ω→
(

0 1
q 0

)

andωΩ→
(

o
√

p
−q
√

p 0

)

Consequently, any elementξ ∈ Q, ξ = X1+X2ω+ X3Ω+ X4ωΩ has58

the image

(

X1 + X2
√

p X3 + X4
√

p
q(X3 − X4

√
p) X1 − X2

√
p)

)

, i. e.,

(

ξ1 ξ2

qξ̄2 ξ̄1

)

if ξ1 = X1 +
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X2
√

p, ξ2 = X3 + X4
√

p; ξ1, ξ2 ∈ k(
√

p) and ξ̄1, ξ̄2 denote the algebraic
conjugates ofξ1, ξ2 in k(

√
p).

2. We wish to prove the existence of fundamental domains for
unit groups of orders in this case also and for the same, we require the
following two lemmas.

LetJ be an order andJ = [L1 · · · L4]. Consider allξ = L1x1+ · · ·+
L4x4, xi- real andn(ξ) = 1. (n(ξ) means simply the quadratic from with
real variablesx1 · · · x4). Then the setMc is defined as{ξ : |xi | ≤ c} ∩ {ξ :
n(ξ) = 1}. In other words it is the intersection of the cube|xi | ≤ c in R4

with the surfacen(ξ) = 1.

Lemma 1. Let ξ = L1x1 + · · · + L4x4, xi - real and n(ξ) = 1. Then
there exists only a finite number of units (say)ε1 . . . εn so that if for any
ξ ∈ Mc, ξ andεξ ∈ Mc, ε, an unit ofJ, thenε is one ofε1 . . . εn. (This
lemma is true even if Q is not a division algebra ).

Lemma 2. Q/k is a division algebra andξ =
4
∑

j=1
L j x j , x j- real and

n(ξ) = 1. Then there exists a constant C independent ofξ, and a unitε
ofJ, such thatεξ = η ∈ Mc.

Proof of lemma 1.Let η = εξ =
4
∑

j=1
L jy j , ε, a unit ofJ. Then we have

ε = ηξ−1
= η.ξ = L1e1 + · · · + L4e4 (say) whereei ∈ O. Furtherei

are bilinear forms in the coefficients ofξ andη. If ξ andη = εξ ∈ Mc, 59

then |xi | ≤ c, |y j | ≤ c so that|ei | ≤ c′ (c′ depending onc only ), ei

being integers, there can be a finite number of them satisfying the above
condition and hence our lemma.

Proof of lemma 2.Let β = αξ, α ∈ J = [L1 . . . L4]. If α =
4
∑

i=1
αiLi, then

β =
4
∑

i=1
αiLiξ. But Li .ξ =

4
∑

j=1
LiL jX j =

∑

j,k
λ

(k)
i j X jLk if LiL j =

4
∑

k=1
λ

(k)
i j Lk.

i. e., Liξ =

4
∑

k=1

cikLk, cik − real.
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Then we know that|(cik)| = (n(ξ))2. Henceβ =
∑

i,k
aicikLk =

4
∑

k=1
bkLk

if bk =
4
∑

i=1
aicik, bk are linear forms ina1 · · · a4 and their determinant

|cik | = n(ξ)2
= 1.

Applying Minkowski’s Theorem on linear forms tobk, we can find
integral values fora1, . . . , a4 not all zero such that|bk| ≤ 1, k = 1 to 4.

Puttingα =
4
∑

i=1
aiLi (α ∈ J) andβ = αξ we have since|bk| ≤ 1, n(α) =

n(β) < γ, whereγ is a constant. Furthera1 · · ·a4 not all zero imply that
α , 0 and hencen(α) , 0 from the fact thatQ is a division algebra.

Now, α ∈ J and n(α) < γ imply that since there can exist only
a finite number of integral idealsα1J . . . αhJ with norms bounded by
γ, αJ = α jJ, i, e.,α = α jε, ε, a unit ofJ. Thereforeβ = α jεξ, i.e.,
α−1

j β = εξ = η (say ). Since coefficients ofβ are bounded and sinceα j

come from a finite set, the coefficients ofη are bounded (say) are byc,60

and furthern(η) = 1. Henceη ∈ Mc and thus Lemma 2 is proved.

Lemma 3. In Lemmas 1 and 2, we can replace L1 · · · L4 by any four
linearly independent elements k1, . . . k4 of Q/k.

This follows from the fact that [L1 · · · L4] and k1, . . . , k4 are con-
nected by means of non-singular transformation and accordingly the
proofs of Lemmas 1 and 2 go through except for the fact that thecon-
stantc has to be replaced by anotherc′.

Let Q be an indefinite quaternion algebra overk. We shall take

for k1, k2, k3, k4 the matrices

(

1 0
0 0

)

, . . . ,

(

0 0
0 1

)

respectively. (This is

possible even ifQ be a division algebra, because it splits overK ≃
k(
√

p) (p > 0)).
Let H be the space of all (2, 2) real matrices with determinant 1. In

particularH contains all elementsξ of Q with n(ξ) = 1. We now map
H onto the complex upper half planeS.

If ξ =

(

x11 x12

x21 x22

)

with x11x22 − x12x21 = 1, define the mapping

ϕ : H → S by ϕ(ξ) = ξ(i) =
x11i + x12

x21i + x22
.
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Since Im(ξ(i)) =
1

x2
21+ x2

22

, ϕ(ξ) is onto; for

(

a/
√

b
√

b
1/ −

√
b 0

)

(i) = a+ ib.

Lemma 4. The set Mc =

{

(

x11 x12

x21 x22

)

xi j real and |xi j | ≤ c, x11x22 −

x12x21 = 1
}

⊂H is mapped byϕ onto finite part of the upper half plane61

S and conversely, any domain in S consisting of
{

τ : |τ| < C1, Im τ > c2

}

has an inverse contained in Mc for some c.

Proof. Now |xi j | < c =⇒ |x11i + x12| < 2c and|x12i + x22| < 2c. Further
0 ≤ d < |x21i + x22| < 2 c, for

∣

∣

∣(x22− x21i)(x11i + x12)
∣

∣

∣ =

∣

∣

∣(x22x12+ x11x21) + i
∣

∣

∣ ≤ C′

implies that if
∣

∣

∣x21i + x22

∣

∣

∣ were arbitrarily small,|x11i + x12| would in-
crease arbitrarily, which is not true. �

Hence Im(ξ(i)) =
1

∣

∣

∣(x21i + x22)
∣

∣

∣

2
>

1
c2

so thatMc is mapped onto

a finite part of the upper half plane. Conversely ifτ =
x11i + x12

x21i + x22
is

such thatx11x22 − x12x21 = 1, |τ| < c1 and Imτ > c2, then
1

x2
21+ x2

22

>

c2 =⇒
∣

∣

∣x21

∣

∣

∣ < c3,
∣

∣

∣x22

∣

∣

∣ < c3. Further
x2

11+ x2
12

x2
21+ x2

22

< c2
1 =⇒ x2

11 + x2
12 <

c2
1

c2
=⇒

∣

∣

∣x11

∣

∣

∣ < c4,
∣

∣

∣x12

∣

∣

∣ < c4. Choosingc = max(c3, c4), it follows that
∣

∣

∣xi j | < c, i, j = 1, 2. From here onwards, we shall use the notationMc for
the image ofMc by means ofϕ, in the upper half planeS. If ξ, η ∈ H ,

then we shall prove thatϕ(ηξ)− (ηξ)(i) = η(ξ(i)). For, letξ =

(

x11 x12

x21 x22

)
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andη =

(

y11 y12

y21 y22

)

. Then

(ηξ)(i) =
(y11x11+ y12x21)i + (y11x12+ y12x22)
(y21x11+ y22x21)i + (y21x12+ y22x22)

=

y11

(

x11i+x12
x21i+x22

)

+ y12

y21

(

x11i+x12
x21i+x22

)

+ y22

=
y11ξ(i) + y12

y21ξ(i) + y22

ξ(i) being a point of the upper half planeS and sinceH acts as a group62

of mapping onS,
y11ξ(i) + y12

y21ξ(i) + y22
= η(ξ(i)). Thus we have the important

passage from a mapping ofH : ξ → ηξ to a mapping of the upper half
plane: ξ(i) → η(ξ(i)) by means ofϕ. This enables us to carry over our
lemmas forH to those forS, as follows:

Lemma 1′ Given a finite domainMc in S, there exists only a finite num-
ber of unitsε1, . . . , εn in orderJ of Q such that ifτ andε(τ) are inMc(ε,
a unit ofJ) thenε is one ofε1 · · · εn.

Lemma 2′ If Q is a division algebra, then there exists anMc in S such
that for anyτ ∈ S, we can find at least one unitε of J such thatε(τ) ∈
Mc.

If H is the group of proper units of an orderJ in Q O ⊂ H and
using the lemma 1′ we shall construct a fundamental domain forO in
S. We will further prove using lemma 2′ that Dis bounded in the case
of a division algebraQ and in generalD has only a finite number of
neighbours.

Note.One may also proceed alternatively for proving the existence of a
fundamental domain forO in S , as follows: IfL is the inverse image
of the point i, by means ofϕ, in H , thenL̄ is the proper orthogonal
group and consequently a compact subgroup of the topological group

H . Then it can be proved that the mapping f:
H

L → S defined by

f (ξL) = ϕ(ξ) = ξ(i) is one-one open and continuous. The latter part63

follows from the fact thatϕ is open and continuous. From Lemma 1′, we
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obtainO is discrete inH andL̄ being compact, it follows thatO has a

discontinuous representation in
H

L .
H

L being homeomorphic to S , this

implies thatO acts as a discontinuous group of mapping on the upper
half plane S and thus we have the existence of a fundamental domain
for O in S .

We shall now sketch a method of constructing of a fundamentaldo-
main for the groupO in S. For the same we consider the upper half
planeS as a metric space with the hyperbolic metricd, i.e., d(x, y) is
invariant under the group of hyperbolic motions.

Choose a pointτ in S, which is not a fixed point for anyε , 1(ε ∈
O). Such aτ exists, for if not, then forτ ∈ S there would exist anε ∈ O
such thatε(τ) = τ. If τ ∈ Mc, thenε(τ) = τ ∈ Mc. But suchǫ − s are
infinite in number, a contradiction to Lemma 1.

Considerτ andε(τ), ε , 1, ε ∈ O. Sinceτ , ε(τ), we can draw the
perpendicular bisector of the hyperbolic line joiningτ andε(τ). Then
the hyperbolic planeS is divided into two half -planes, one consisting of
points nearer toτ thanε(τ), the other vice-versa. Carrying out a similar
construction for allε(, 1) of O, we finally obtain a domainD, which is
the intersection of all open half planes containing the point τ. In other
wordsD consists of points which are nearer toτ than to any otherε(τ). 64

ThatD is non-empty follows from Lemma 1′. We shall prove now that
D is a fundamental domain (except for some boundary points) for O in
S. Accordingly, we shall verify the following:

i) D∩ εD = (φ) for everyε(, 1) ∈ O. (εD denotes the image ofD by
means of the transformationε).

ii)
⋃

ε∈O
εD = S.
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Proof. i) If D ∩ εD , (φ) for someε, there exists aσ ∈ D ∩ εD so
thatσ andε−1(σ) ∈ D. Sinceε preserves the hyperbolic distance,
we have

d(τ, ε−1(σ)) < d(ε−1(τ), ε−1(σ)) = d(τ, σ)

and d(τ, σ) < d(ε(τ), σ) = d(τ, ε−1(σ))

which are contradictory.

ii) Let ρ be any point ofS. Then there exists at least oneε(τ) which
is nearer toρ thanε′(τ), ε′ , ε. For, if not, in a neighbourhood of
ρ we would have an infinity ofε(τ) which contradicts Lemma 1′.
Thereforeρ lies in εD. If ε(τ) andη(τ) are equidistant fromρ and
are nearer toρ than any otherε′(τ) (ε , ε, η) is from ρ, thenρ lies
on the boundary ofεD andηD. Thus, we have the second assertion.

�

Theorem 1. In case Q is a division algebra, the fundamental domain D
is bounded

Proof. If not, there will be a boundary pointτ of D on the real line (τ65

can be the point at∞ as well). Let{τi} be a sequence of elements ofD
havingτ as a limit point and choose a subsequence{τni } converging toτ.
Then, by Lemma 2′, there exists anMc for whichεni (τni ) ∈ Mc; εni ∈ O.
Furtherεni (τni ) ∈ εni D so thatεni (τni ) ∈ Mc ∩ εni D. But Mc ∩ εD is
non-empty only for a finite number ofε ∈ O from Lemma 1′, so that
εni (τni ) ∈ Mc ∩ εD for ni ≥ no (say), for a fixedε. �

Now, εni (τni ) = ε(λi), λi ∈ D =⇒ τni = λi since no two distinct
points ofD are equivalent. Thereforeεni = ε.

Sinceτni → τ, ε(τni) → ε(τ). But ε(τni ) ∈ Mc so thatε(τ) ∈
Mc for Mc is closed. This is contradictory to Lemma 4 forε is a real
transformation andτ is a real point.

Theorem 2. D has only a finite number of neighbours in either case
whetherQ is a matrix or division algebra.
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From this it would follow that there are only a finite number ofεiD,
εi ∈ O which have boundary points in common withD. In other words
there exists a fundamental polygonD with a finite number of sides.

Proof. SupposeD does not have a finite number of neighbours. Then it
has an infinite number, i. e.,D has an infinite number of sides{ci} (say).
Let εi(τ) be the reflections ofτ at theseci respectively. Then we have to
distinguish two cases. �

(i)
{

εi(τ)
}

have a finite limit pointτ (say)

(ii)
{

εi(τ)
}

have a limit point at infinity (i. e., real).

In case (i) we choose a subsequence
{

εni (τ)
}

(say) which converges66

to τ. Then we may select a neighbourhoodN of τ contained in some
Mc. By the nature ofτ, there exists an infinity ofεni (τ) inside N and
hence inMc, which is contradictory to Lemma 1′.

In case (ii), we easily see that this arises only ifQ is a matrix algebra,
sinceD is bounded otherwise, by (b). ThenU is a subgroup of the
modular groupΓ1, so that if the coset decomposition given byΓ1 =
n
∑

i=1
U .εi we may get a fundamental domain forU asF =

n
∑

i=1
εiD1,D1

being a fundamental domain for the modular groupΓ1. D and F are
topologically equivalent and we know thatF has only a finite number of
sides and in fact only a finite number (sayn) of real boundary points or
parabolic cusps (a parabolic cusp is a fixed point of infinite order), since
D1 has∞ as the only parabolic cusp.

5 Topological Properties of Units

3. We have already seen that the fundamental domainD has only a
finite number of neighboursε1D1, . . . , εnD say. In this connection we
have the

Theorem 1. The unitsε1, . . . , εn generate the whole groupO.
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Proof. Let P be a point ofD, andQ a point ofεD. Join P and Q by
an arc. This are is contained inMc for somec, andMc intersects only
finite number ofηD′ − s, η ∈ U , so that the arePQ is covered by a
finite number of theηD′s. Then the neighbours of anyηD are given by
ηεiD, i = 1, . . . , n. �

We can go fromD to εD as follows:67

D, εi1D, εi1.εi2D, . . . , εi1.εi2 · · · εikD = εD,

where i1, . . . , ik lie between 1 andn. This meansε = εi1 · · · εik. (It
may be remarked here that there exist certain relations betweenε1 . . . , εn

which we will later obtain explicitly).

(i) In the case thatQ is a division algebra the fundamental domain
D is bounded, and by identifying the pairs of equivalent sideswe
obtain a closed surface which we denote bySJ . This surface can
also be seen to be the same as the upper half plane moduloO, i, e,.
H /L moduloO which is the same as the space of double cosets
U ξL. It can also be seen thatS is an infinite sheeted covering
surface ofSJ

(ii) In the case whenΩ is a matrix algebra, we have at most a finite
number of parabolic cusps, and the surfaceSJ is obtained by iden-
tification of pairs of equivalent sides together with the adjunction
of these cusps.

(iii) SJ as a manifold is orientable.

This follows from the fact that theε′s considered as hyperbolic
motions have positive determinant.

(iv) Canonical form for the surfaceSJ

In the fundamental domainD is denoted bya1 · · ·an where ai

are the sides, then we wish to obtain this in the canonical from
a1c1c−1

1 b1c2c−1
2 a−1

1 · · · b−1
1 · · · ckc−1

k · · · agb−1
g wherea−1

1 is the side
equivalent toa1 with the opposite orientation.
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Figure a fundamental domain for the whole modular group in canon-
ical form.

(There may be more than one pairc1c−1
1 betweena1, b1 and similarly 68

at other places also). The surface obtained from this reduced from is
then called the canonical form forSJ

The canonical from is obtained in two steps.

(i) Reduction ofelliptic vertices. (i, e,. the vertices which are fixed
points of elliptic transformations).

Let τ be a vertex which is a fixed point, i. e.,τ is the intersection of
a pair of equivalent sides, sayc1 andεc1. We have the following
two possibilities in the orientation of the sides.

(a) (b)

Case (a) is ruled out since the orientation ofεc1 induced by the
orientation ofc1 would be opposite to that already present inεc1

We have then only the case (b), and in this case we may consider
c1(εc)−1 as an inseparable unit.

(ii) Having dispensed with the case of elliptic vertices we now con-
sider the polygonD as one without fixed points. We now employ
the classical procedure to obtain canonical forma1b1a−1

1 b−1
1 · · ·ag

bga−1
g b−1

g . [For this see C. L. Siegel, Ausgewahlte Fragen der
Funktionentheorie,I (Göttingen). Pages 106 - 110, or Nevanlinna,
“ Uniformisierung”, Chapter 7 §3].
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However, in our case, there do not exist free sides even in thecase69

of a matrix algebra.
Combining both (i) and (ii), the required canonical form is obtained.
We now have the

Theorem 2. If εa is the transformation which takes a to the side a−1(εa ∈
U ), we have the following relations:

I εbgε
−1
ag
ε−1

dg
εag · · · εb1ε

−1
a1
εb1εa1 · ηck · · · ηc1 = 1;

andηni
ci
= 1 for all i.

II (a) If Q is a division algebra, and ifτ is a parabolic vertex, or
cusp and ifετ(τ) = τ, thenετ is of infinite order. Hereηci = B−1

i εci Bi

andB′i sare products of theε′a andε′bs.

Proof. To prove I we split it into two cases:
Let no fixed points exists betweenP1 andP5. Consequently we have

the following relations:

εa1(P1) = P4, εa1(P2) = P3,

εb1(P3) = p4, εb1(P2) = P5,

i, e,. ε−1
a1
.ε−1

b1
εa1(P1) = P2

and hence εb1.ε
−1
a1
ε−1

b1
εa1(P1) = P5.

Assuming that there are no fixed points, and proceeding as above,
we obtain

εbgε
−1
ag
ε−1

bg
εag · · · εb1ε

−1
a1
ε−1

b1
εa1(P1) = P1,
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and sinceP1 is not a fixed point, we have 70

εbgε
−1
ag
ε−1

bg
εag · · · εb1ε

−1
a1
ε−1

b1
εa1 = 1.

(ii) In the case that there exist elliptic vertices, we may suppose, for
example, that one such lies betweena1 andb1. In this case we have

εa1(P1) = P6, εa1(P2) = P5,

εc1(P3) = P3, εc1(P2) = P4,

εb1(P4) = P7, εb1(P5) = P6,

i.e., εb1εc1ε
−1
a1
ε−1

b1
εa1(P1) = P7.

�

Proceeding in this manner, we obtain

εbgε
−1
ag
ε−1

bg
εag · · · εbkεckε

−1
ak
ε−1

ak
εak · · · εb1.εc1ε

−1
a1
ε−1

b1
εa1 = 1.

With an obvious notation, we write the above equation in the form

Ak+1εckAkεck−1 · · ·A2εc1A1 = 1.

We may rewrite this as follows:

Ak+1 ·Ak · ·A1(Ak · ·A1)−1εck(Ak · ·A1) · ·(A2A1)−1εc2(A2A1) ·A−1
1 εc1A1 = 1.
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Let ηci = (AiAi−1 · ·A1)−1εci (Ai · ·A1), then the above relation can be
written in the form

εbgε
−1
ag
ε−1

bg
εaġ̇εb1ε

−1
a1
ε−1

b1
εa1ηck · · · ηc1 = 1.

Let now the transformationsεc1, . . . , εck haveτ1, . . . , τk as their fixed
points (we suppose that noτi is a cusp ). We can then find a neighbour-
hood ofτi which is contained in someMc. If now εci is not of finite
order, thenεci , ε

2
ci
, . . . , are all distinct, andεn

ci
(τi) = τi for all n, and this71

contradicts Lemma 1. Henceεci is of finite orderni , and then we have

εn1
c1
= · · · = εnk

ck = 1.

From this equation it follows thatηn1
c1 = · · · = η

nk
ck = 1. (b) Since

the above argument breaks down in the case of a parabolic vertex or a
rational fixed pointτo, (τo , 0,∞), we cannot conclude thatεc which
fixesτo is of finite order. We now prove that it is necessarily of infinite
order.

Sinceτo , ∞, we obtain a transformationη such thatη(τo) = ∞.

We only have to takeη =

(

−1/τo 0
1 −τo

)

.

Thenηεcη
−1
= ε′c hasη(τo) = ∞ as fixed pointε′c must then neces-

sarily have the formε′c =

(

a b
0 d

)

, and on multiplication by

(

±1 0
0 ±1

)

,

we may assume thata > 0, d > 0.
Furtherε′c , 1, for otherwiseεc = 1. Supposeεn

c = 1. Then

ε′nc = 1 =

(

1 0
0 1

)

=

(

an Bn

0 dn

)

, i. e.,an
= dn

= 1, ora = d = 1, for a > 0

andd > 0. Now Bn = nb = 0 implies thatb = 0, or ε′c = 1 which is a
contradiction.

Theorem 3. (1) For any twoεci , εc j, η
−1εci .η , εc j for anyη.

(2) If ε has the fixed pointτ, then there exists anη such that

η−1εη = εci for some i.



6. The Hyperbolic Area of the Fundamental Domain 59

Proof. 1. η−1εciη hasη−1(τi) as fixed point, andεcj hasτ j as fixed72

point, and in order to prove 1, we need only to show thatη−1(τi) ,
τ j . But this since the elliptic verticesτi andτ j belong to the same
fundamental domain, and hence they cannot be equivalent.

2. Letη−1 be the transformation which takesτ into the fundamental
domain; then sinceε(τ) = τ, η−1εη hasη−1(τ) as fixed point, i. e.,
it leaves a point of the fundamental domain fixed, this means that
η−1εη = εci for somei.

�

6 The Hyperbolic Area of the Fundamental Domain

(We shall see from the calculation that the hyperbolic area is indepen-
dent of the choice of the fundamental domain).

4. Let Q be an indefinite quaternion algebra over the rational num-
ber fieldk. LetJ be an order inQ, with class number 1 and we suppose
that there exists at least one unitε ofJ such thatn(ε) = −1. This allows
us write any integral idealM = Jα and wheren(α) > 0, for if n(α) < 0,
we may writeJα = J · ǫα andn(εα) > 0)0).

The zeta-function of the orderJ is now given by

ζ(s) =
∑

M

1

(n(M))2s
=

∑

n(α)≥1

1

(n(α))2s

(the summation extending over allα ∈ J such that no twoα-s are left
associate with to the unit groupa of J).

We shall now consider an orderJ of the type (q1, q2). ThenJ has 73

class number 1 and contains a unit of norm−1, namely

(

1 0
0 −1

)

(in case

q1 = 1). For such an orderJ, we saw that the zeta-function was given
by (§2, 10, Zeta -function of an Order).

ζ(s) = ζ0(2s) ζ0(2s− 1)
∏

p|q1

(1− p1−2s)
∏

p|q2

(1+ p1−2s)
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whereζ0(s) is the Riemann zeta - function. Thenζ(s) has a simple pole

at s = 1 with residue
π2

12
∏

p|q1

(

1− 1
p

)

∏

p|q2

(

1+
1
p

)

. Since we have
∏

p|q1q2
p =

√
|D| (by Lemma 3 of §3), the above may be written as

Lt
s→1

(s− 1)ζ(s) =
π2

12
√
|D|

∏

p|q1

(p − 1)
∏

p|q2

(p + 1). We shall now try to

obtain this residue is an alternative manner.
LetJ = [L1 . . . L4]. If ξ ∈ Q, thenξ = L1x1+ · · ·+ L4x4Xi , rational.

We can look uponξ as a point (x1, . . . , x4) of R4, the Euclidean space of
four dimensions. Then all the lattice points ofR4 correspond to elements
of J. By the above correspondence, every unitη of J such thatn(η) =
1 gives rise to a linear transformation of the spaceR4 and obviously
this group of transformations is discontinuous onR4. Hence we may
construct a fundamental domainF for Q in R4. This is also be obtained
from a fundamental domainD we constructed forQ in the upper half,
in §4, by the inverse mappingϕ−1; (ϕ : R4→ S).

F is a cone and in caseQ is a division algebra, this fundamental
domainF is of finite volume. Though in the case matrix algebra,F
stretches out to infinity, the volume is< ∞ in both cases.

From the definition of the fundamental domainF, we may write74

ζ(s) =
∑

n(ξ)≥1

1

(n(ξ))2s

ξ ∈ lattice points ofF

We shall now prove the following:

Lt
s→1

(s− 1)ζ(s) = Lt
s→1

(s− 1)
∫

· · ·
∫

n(ξ)
F
≥1

dx1 . . . dx4

(n(ξ))2s

(i) Let Q be a division algebra.
Then the fundamental domainF is bounded by a finite number of

smooth surfaces and letS = F ∩ n(ξ) ≤ 1. If St is the domain obtained
by expandingS in the ratio 1 :t1/4, i.e.,St = (n(ξ) ≤

√
t) ∩ F, then we

have, by a classical theorem, ifzt denotes the number of lattice points of
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St (for St is compact), then

Lt
s→1

Zt

t
=

∫

· · ·
∫

nF (ξ)≤1

dx1 . . .dx4 = Volume ofS.

[Refer Weber,Lehrbuch der Algebra, II, P, 712]. But by a theorem of
Dirichlet, if (T(

√
t)) denotes the number of integral ideals with norm

≤
√

t, then Lt
t→∞

T(
√

t)
t = Lt

s→1
(s− 1)(ζ(s)). [Refer, Ibid, P. 724].

Now it is easily seen thatT(
√

t) = zt so that combining the above
two, we obtain the following:

Lt
s→1

(s− 1)ζ(s) =
∫

· · ·
∫

n(ζF )≤1

dx1 · · ·dx4.

By a transformation of co-ordinates from (x1 . . . x4) to (x, y, t, ϕ) we
can prove that the above integral reduces to

∫

· · ·
∫

t2≤1

f dxdy dφ.t3dt =

(∫

f (x, y, ϕ)dxdydϕ

)

1
4

The same transformation when applied to
∫

· · ·
∫

n(ξ)F≥1

dx− 1 . . . x4

(n(ξ))2s
leads 75

to
∫

· · ·
∫

t2≥1

f (x, y, ϕ).
t3

t4s
dxdy, dϕdt so that

Lt
s→1

(s− 1)
∫

· · ·
∫

n(ξ)F≥1

dx1 . . . dx4

(n(ξ))2s

=

(∫

f (x, y, ϕ)dxdydϕ

)

Lt
s→1

(s− 1)
∫

t2≤1

dt

t4s−3

=

(∫

f dxdydϕ

)

Lt
s→1

(s− 1)
4s− 4

=

(

1
4

∫

f dxdydϕ

)
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where f (x, y, ϕ) does not interest us here.

=

∫

· · ·
∫

n(ξ)F≤1

dx1 . . . dx4

= Lt
s→1

(s− 1)ζ(s)

(ii) In the case ofQ being a matrix algebra, the same considerations
are not valid so that we consider truncated domainsFc = ϕ

−1(Dc) where

Dc =
{

τ : 0 <
1
c
≤ Im τ ≤ c

} ∩ D and then makec → ∞. Dc and

Fc ∩ n(ξ) ≤ 1 are compact.
Let ζc(s) be the zeta-function corresponding to the truncated domain

Fc.

i.e., ζc(s) =
∑

n(ξ)≥1
ξ∈ lattice points ofEc

1

(n(ξ))2s

Now, applying (i) for the functionζ(c)(s),

Lt
s→1

(s− 1)ζ(c)(s) = Lt
s→1

(s− 1)
∫

· · ·
∫

n(ξ)Fc≥1

dx1 . . . dx4

(n(ξ))2s

= Lt
s→1

(s− 1)Lc(say).

ζ(c)(s) and Lc being monotone increasing with the limits existing uni-76

formly in sasc→ ∞, in the equality Lt
c→∞

Lt
s→1

(s−1)ζ(c)(s) = Lt
c→∞

Lt
s→1

(s−
1)Lc, the limits can be interchanges on both sides, so that

Lt
s→1

(s− 1) Lt
c→∞

ζ(c)(s) = Lt
s→1

(s− 1) Lt
c→∞

Lc.

Lt
c→∞

Lc = Lt
c→∞

∫

· · ·
∫

n(ξFc)≥1

dx1 . . . dx4

(n(ξ))2s

=

∫

· · ·
∫

n(ξF )≥1

dx1 . . . dx4

(n(ξ))2s
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and Lt
c→∞

ζ(c)(s) = ζ(s).

Hence we have, finally

Lt
s→1

(s− 1)L(s) = Lt
s→1

(s− 1)
∫

· · ·
∫

n(ξ)F≥1

dx1 . . . dx4

(n(ξ))2s

Our problem now is to evaluate the integral

Lt
s→1

(s− 1)
∫

· · ·
∫

n(ξF )≥1

dx1dx2dx3dx4

n(ξ)2s

Any elementξ ∈ Q can be written as

ξ = L1x1 + · · · + L4x4 �

(

ξ1 ξ2

qξ̄2 ξ̄1

)

=

(

y11 y12

y21 y22

)

(say).

Making the change of coordinates fromx1, . . . , x4 to y11, . . . , y22 we
obtain

dx1 · · · dx4 =

∣

∣

∣

∣

∣

∂(xi)
∂(yik)

∣

∣

∣

∣

∣

.dy11 · · · dy22.

If ξ is an integer and 2n(ξ) =
∑

i,k
fikxi xk, then | fik| = D(τ), where

J = [L1, . . . , L4].
But 2n(ξ) = 2(y11y22 − y21y12) in the new coordinate system, and

the determinant of this quadratic form is 1, and 1=
∣

∣

∣

∣

fik
∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(xi)
∂(yik)

∣

∣

∣

∣

∣

2
. This 77

means that
∣

∣

∣

∣

∣

∂(xi)
∂(yik)

∣

∣

∣

∣

∣

=
1
√
|D|

.

We may now write

Lt
s→1

(s− 1)ζ(s) =
1
√
|D|

∫

· · ·
∫

n(ξF )≥1

dy11 · · · dy22

n(ξ)2s
; n(ξ) = y11y22− y21y12.

We now make another change of coordinates from which it is easier
to compute the value of the integral. Consider the transformation

(

y11 y12

y21 y22

)

→ τ = x+ iy =
y11i + y12

y21i + y22
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Since n(ξ) > 0, we have Im(τ) > 0. Now

x+ iy =
(y12y22+ y11y21) + i(y11y22− y21y12)

(y2
21+ y2

22)

that is, x =
y11y22 + y21y12

y2
21+ y2

22

; y =
y11y22− y12y21

y2
21+ y2

22

= t2 ( say )

that is, y2
21+ y2

22 =
t2

y
.

Now put

y21 =
−t
√

y
sinϕ,Y22 =

−t
√

y
cosϕ.

Solving fory11, y12 from the simulations equations

y11 cosϕ + y12 sinϕ = t
√

y,

−y11 sinϕ + y12 cosϕ =
tx
√

y
,

we have

y12 = t
√

ysinϕ +
tx
√

y
cosϕ,

y11 = t
√

ycosϕ +
tx
√

y
sinϕ.

Writing these equations in the matrix form, we have78

(

y11 y12

y21 y22

)

=















√
y x√

y

0 1√
y















(

cosϕ sinϕ
− sinϕ cosϕ

) (

t 0
0 t

)

(1)

We denote the Jacobian
∣

∣

∣

∣

∣

∂(yik)
∂(x, y, ϕ, t)

∣

∣

∣

∣

∣

of the transformation by

J(x, y, ϕ, t). J(x, y, ϕ, t). has the following three properties

1. J(x, y, ϕ, t) = t3J1(x, y, ϕ).

2. J1(x, y, ϕ) = J1(x, y).
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3. J(x, y)dxdy= ̺1dω, wheredω is thedω, where is the hyperbolic
are element, and̺1 is a constant independent of the algebra.

That property 1 is true is seen by direct computation.

As for 2, multiplying (1) on the right by

(

cosψ sinψ
− sinψ cosψ

)

the yi j ’s

undergo a linear transformation with determinant 1, and we have

J1(x, y, ϕ + ψ) = J1(x, y, ϕ)

for everyψ. HenceJ1(x, y) = J1(x, y, ϕ).
To prove 3, it is enough to show that the are elementJ1(x, y)dxdyis

invariant with respect to all hyperbolic motions.

Let τ be replaced by
z11τ + z12

z21τ + z22
= h(τ), say, wherez11, . . . , z22 are

real and

∣

∣

∣

∣

∣

∣

z11 z12

z21 z22

∣

∣

∣

∣

∣

∣

= 1. Theyik then undergo a linear transformation of

determinant 1. Thereforedy11 · · · dy22 = Jdxdydϕdt is invariant. Hence

Lt
s→1

(s− 1)ζ(s) = Lt
s→1

(s− 1)
1
√
|D|

∫

· · ·
∫

t2F≤1

J(x, y)dxdydydϕdt2

t4s
· t

2

2

Making the transformationt2→ t, we see that the above equals 79

Lt
s→1

(s− 1)
ρ1

2
√
|D|

∞
∫

1

dt

t2s−1

2π
∫

0

dS

∫

D

∫

dω,

whereDis the fundamental domain in the upper half plane obtained as
the image ofF under the map (1). Now

Lt
s→1

(s− 1)
̺1π

2(s− 1)
√
|D|

∫

D

∫

dω =
ρ1π

s
√
|D|

∫

D

∫

dω.

But the left hand side being the residue of the zeta-functionat s= 1
its value is given by

π2

|2
√
|D|

∏

p|q1

(p− 1)
∏

p|q2

(p+ 1)
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and hence ̺

∫ ∫

D

dω =
∏

p|q1

(p− 1)
∏

p|q2

(p+ 1)

where̺ =
6ρ1

π
.(From this it follows that the hyperbolic area of the

fundamental domain is independent of the choice of the fundamental
domain).

5. From the above expression for the area, we will find a relation
between the genus and the hyperbolic are ofD using the Gauss Bonnet
formula.

The Gauss-Bonnet formula can be stated as follows; For a simply
connected domainD in the plane bounded by a closed curveC com-
posed ofk smooth arcs making at the vertices exterior anglesα1, . . . , αk,

∫ ∫

D

dω =
∫

c

Kds− 2π +
k

∑

i=1

αi ;

whereK represents the geodesic curvature of the arcs. Applying this80

formula to the fundamental polygonD in the hyperbolic plane, we see
that

∫ ∫

D

dω =
k

∑

i=1

αi − 2π.

for
∫

C

Kds = 0 sinceC consists of pair of equivalent sides oppositely

oriented.
We have now to consider the following two cases:
1. D has no elliptic vertices. Since the anglesβ1, . . . together make

up a full neighbourhood of one point in the closed surfaceSJ obtained
by identification of pairs of equivalent sides, we have

∑

i
βi = 2π, and

herek = 4g, hence we obtain

[H]
∫ ∫

D

dω =
∑

i

(π − βi) − 2π

= 4gπ − 4 = π(g− 1).
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2. D has elliptic varieties.
Let the number of elliptic verities betweena1 andb1 beh1, between

a2 andb2 beh2, and so on. Here is included the case in which some of
the elliptic vertices are parabolic cusps. In this case (π − β1) must be
replace by

(π − γ1) +

(

π − 2π
n1

)

+ (π − γ2) +

(

π − 2π
n2

)

+ · · · + (π − rh1+1)

= π −
h1+1
∑

i=1

γi + 2π
h1
∑

i=1

(

1− 1
ni

)

wheren1, . . . are the orders of the substitutions leaving the respective81

vertices fixed. In the case of a parabolic cusp, the angle
2π
ni

has to be

replaced by 0.
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We have therefore

∫ ∫

D

dω =
∑

h=h1,h2,...

















π −
h+1
∑

i=1

γi

















+ 2π
∑

e.v.

(

1− 1
n1

)

= 4π(g− 1)+ 2π
∑

e.v.

(

1− 1
ni

)

where e.v. stands for elliptic vertices including those which are parabolic

cusps in which case
1
ni

has to be replaced by 0. In the final form, we

obtain

ρ
x

D

dω = ρ















4π(g− 1)+ 2π
∑

e.v.

(

1− 1
ni

)















=

∏

p|q1

(p− 1)
∏

p|q2

(p+ 1).

Since the constantρ is independent of the algebra, we can obtain
its value by considering the particular case whereQ is a matrix algebra,

J =
(

O O
O O

)

, and thenO is the modular group. Hereq1 = 1, q2 =

1andD is the fundamental domain for the modular group. The elliptic

vertices arei, −1
2 +

√
3

2 i, ∞ (∞ begin a parabolic cup). The orders of
the corresponding hyperbolic motions are 2, 3,∞ respectively, Further
g = 0, since the closed surfacesJ is here the sphere. Hence we obtain

ρ

{

−4π + 2π

(

1− 1
2
+ 1− 1

3
+ 1

)}

= 1, or ρ =
3
π
.
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Thus we arrive the complete formula

g = 1− 1
2



















∑

e.v.

(

1− 1
ni

)

+

∑

parabolic cusps

1+
1
12

∏

p|q1

(p− 1)
∏

p|q2

(p+ 1)



















.





Chapter 3

Theory of Correspondences

7 Correspondences

1. In this article we shall define so - called correspondences ofRiemann 82

surfaces, and study a class of special correspondences of the surfacessJ
to be defined below. They are certain operators and form a ring. In §7
We shall study various representations of this ring. These representa-
tions are of topological, function theoretical or of arithmetical nature.
We shall determine the traces of some of them and this will load to sev-
eral interesting arithmetical results.

LetS andS′ be two closed Riemann surfaces and letf be an analytic
(algebraic) mapping. in general multi-valued, ofS onto S′. If P is a
point of S, then f (P) is a set of points ofS, then f (P) is a set of points
P′1, . . . ,P

′
d,., of S′, said to thisf we associate the correspondence which

we may write as

C : C(P) = P′1 + · · · + P′d, ( formal sum ;

where it may happen that someP′i is equal to someP′j.

If for P′ ∈ S′, f −1(P′) consists ofP1,P2, . . . ,Pd, then f −1 gives rise
to the correspondence

C∗ : C∗(P′) = P1 + · · ·Pd.

We may view the correspondence as follows:

71
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Let S′′ be the Riemann surface of the multi-valued functionf , then
S′′ is compact and is covering surface of bothS andS′ with d′ andd
sheets respectively. Letπ1 andπ2

be the corresponding projection maps. Thenf (P) = π2π
−1
1 (P) is the set83

of pointsP′1, . . .P
′
d, and similarly f −1(P′) = π1π

−1
2 (P′). (It is easily seen

that both f and f −1 are onto).
As an example of a correspondence we consider the following fig-

ure:
Hered′ = 2, d = 3.
In the case thatS′ is homomorphic toS, we show that we can make

the set of correspondences ofS onto itself into a ring. So letν be a ho-
momorphism ofS′ onS, i.e,S′ν = S. If C is a correspondence between
S and S′ defined byC(P) = P′1,+ . . . + P′d′ then the correspondence
νC : S→ S is defined by

C(P) = (P′1)ν + · · · + (P′d′)
ν.

For such correspondence we can can define addition, ( in fact,addi-
tion, can be such defined for any two correspondences betweenS and
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S′ ) and multiplication in the following way: LetD1,D2 be two cor-
respondences fromS → S. Then we define (D1 + D2)(P) = D1(P) +
(D2)(P), (D1D2)(P) = D1(D2(P)), and for any rational integern, (nD)
(P) = n.D(P) so that (D1 − D2) = D1 + (−1)D2). There exists a zero
correspondence, it maps eachP on the empty se, and the unit element
is the identity map. Multiplication is associative and distributive with
respect to addition, so that the correspondence ofS onS form a ringR.

We now prove the existence of an involution inR. Consider the 84

mappingC→ C∗ which is a 1−1 mapping ofR ontoR. This mapping
has the properties

1. (C1 +C2)∗ = C∗1 +C∗2

2. (C1C2)∗ = C∗2C
∗
1

3. C∗∗ = C,

so that it is an involution inR.
(This involutorial anti-automorphism is named after Rosati.)
2. We will now study the correspondence fromSJ → SJ , where

JandJ ′ are orders inQ/k. ( For explanations and notations, see§5).
To be precise, letQ be an indefinite quaternion algebra over the rational
number fieldk, andJ an order inQ. Let QJ denote the proper unit

group ofJ , thenQJ =

{(

α β

γ δ

)

= ε, n(ε) = 1

}

, whereα, . . . , δ lie

in a real quadratic extension ofk which is isomorphic to a subfield ofQ.
Each elementǫ of QJ gives rise to a linear transformationsz→ ε(z), ε ∈
QJ .

Remark. Since±ε ∈ QJ give rise to the same element ofΓJ , ΓJ is not
a faithful representation ofQJ . It can be proved thatΓJ is a faithful
representationQJ/(±E).

The closed Riemann surfaceSJ associated with the groupQJ can
be considered as the compactifications of the quotient spaceof the up-
per half plane moduloΓJ , i.e., SJ :

{

ΓJ .z, z in the upper half plane
}

.
Similarly if J ′ is another order, we have the surfaceSJ ′ , and we will 85

consider some special correspondences betweenSJ andSJ .
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SinceOJ ∩ OJ ′ is of finite index in bothOJ andOJ ′ (for a proof
under similar situation, seeP.46). sayd′ andd, the same holds forΓJ
andΓJ ′ . Consequently we have the coset decompositions.

ΓJ =
d′
∑

i=1

ΓJ ∩ ΓJ ′ǫi =
d

∑

i=1

(ΓJ ∩ ΓJ ′)ε′i

Let SJ∩J ′ be the surface associated withO ∩ OJ , so thatSJ∩J ′ :
{ΓJ ∩ ΓJ ′z}, andSJ ∩ J ′, is a covering surface of bothSJ andSJ ′
sheetsd′ andd respectively. Then the points lying overΓJ .z are pre-
cisely

ΓJ ∩ ΓJ ′ .zi , zi = εi(z), i = 1, . . . , d′.

The correspondenceCSJ→SJ′ is defined as

CSJ→SJ′ (ΓJ .Z) =
d′
∑

i=1

ΓJ ′zi

C∗ is given by
C∗SJ′→SJ

(ΓJ ′ · z) =
∑d

i=1 ΓJ · ε′i (z).

We now restrict our attention to ordersJ ′,J such thatJ ′ � J so
that there existsν ∈ Q such thatJ = ν−1

ΓJν. ThenΓJ ′ = ν−1
ΓJν and

CSJ→J , (τJ .Z)z=
∑d

i=1 v−1
ΓJν .Zi, and

νCSJ → SJ ′(ΓJ .z) =
d′
∑

i=1

ΓJ · νǫiz,
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sinceΓJ .νǫ j = ΓJ · νεi , ε, ε ∈ ΓJ (for from a later lemma, it would
follow thatJνεiε = Jνε j) we can look uponνCSJ→SJ′ as a correspon-86

dence ofSJ with itself, i.e.,

C(ΓJ · z) =
d′
∑

i=1

ΓJ · νεi · ΓJ · z,

so thatC =
d′
∑

i=1
ΓJ · νεi may be considered as an operator onSJ .

Therefore correspondences can be written as left operators
3. Before defining modular correspondences, we shall prove an im-

portant lemma, which will enable us to pass from the topological aspect
of correspondences to its algebraic counterpart. An element ν ∈ J is
said to be primitive if there exists no rational integert > 1 such that
ν

t
∈ J.

Lemma. LetJ be an order of the type(q1, q2) and nχ|q1, q2. If J ′ =
ν−1Jν andΓJ =

d
∑

i=1
ΓJ ∩ ΓJ .εi, then all primitive (integral ) left ideals

with norm n are of the formJνεi(i = 1 to d′)

Proof. For such an orderJ, the class number is 1, so that every ideal is
principal. �

We shall not prove the lemma in its most general form but for sim-
plicity, assume that there are no characteristic primes, i.e.,q1 = 1. We

may then take the orderJ =
(

O O
q2O O

)

(q2 being square free).

Let µ be a primitive left ideal for the orderJ with normn, so that in

the reduced form,µ = J
(

n1 n2

0 n3

)

; n1, n3 = n n1 > 0 andn3 > 0, n2

is reduced modulon3, µ being primitive (n1, n2, n3, ) = 1.
For our lemma, it is enough to show that there exists a unitε such

that 87

ε

(

n1 n2

0 n3

)

=

(

n 0
0 1

)

εi; For

(

n 0
0 1

)
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being a primitive element with normn, ε′ν =

(

n 0
0 1

)

ǫ j for someε′ and

ε j, so thatJ
(

n1 n2

0 n3

)

= Jνε−1
j ·εi. In fact, we shall only prove that there

exists unitsε, η, ∈ ΓJ such thatε

(

n1 n2

0 n3

)

=

(

n 0
0 1

)

η for, then writing

η = η◦εi , η◦ ∈ ΓJ ∩ ΓJ ′ ,
(

n 0
0 1

)

η◦ = ε◦

(

n 0
0 1

)

, ǫ· ∈ ΓJ we have

ε−1
◦ ε

(

n1 n2

0 n3

)

=

(

n 0
0 1

)

εi .

Let (n2, n3) = n4. Then (n1, n4) = 1. Choosingγ such that (γ, n3) =
1, we see thatq3n1γ andn4 being coprime, we may find a unimodular

matrix.

(

a b
q2n1γ n4

)

. With this matrix, we form the product

(

n 0
0 1

) (

a b
q1n1γ n4

)

=

(

n1n3a nb
q2n1γ n4

)

.

Again, since (a, q2, n1γ) = 1, i.e., (a, q2γ) = 1 and (q2γ., n3) = 1, there

exists a unimodular matrix

(

A B
−q2γ n3

)

so that

(

A B
−q2γ n3a

) (

n1n3a nb
q2n1γ n4

)

=

(

n1 Anb+ Bn
0 n3

)

∼
(

n1 Bn4

0 n3

)

where “∼” means that each matrix goes over into the other by multipli-88

cation on the left by a unit of the type

(

1 t
0 1

)

, t begin a multiple ofn3.

Further
(

n1 Bn4

0 n3

)

∼
(

n1 n2

0 n3

)

for we may choose forγ, then element given by

γ
n2

n4
.q2 + Λn3 = 1
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(q2.
n2

n4
and n3 are co-prime, since (n, q2) = 1 implies (n3, q2) = 1).

Incidentally (q2γ, n3) = 1 is satisfied. Now,Bq2γ + An3a = 1 implies
that

B(1− Λn3) + An3a.
n2

n4
=

n2

n4
⇒ Bn4 ≡ n2 (mod n3)

which is what we required.
We have yet to show that any primitive idealJµ of normn can occur

only once amongJνεi , i = 1 tod′. For, ifJνε = Jνε′, ε, ε′ two among
ε1, . . . , εd, then it follows thatνε = ε′′νε′, i.e., εε′−1

= ν−1ε′′ν ∈ ΓJ ′
and also inΓJ so thatεε′−1 ∈ ΓJ ′ ∩ ΓJ . The units that give rise to
the same ideal lie in the same coset moduloΓJ ∩ ΓJ ′ , and conversely.
Therefore there can be onlyd′ distinct ideals of the typeJνεi , i = 1 to
d′.

Let ν be a primitive element of normn, (n, q1q2) = 1 of the order
J. LetJ ′ = ν−1Jν, then we have the correspondence ofSJ onto itself
defined by

Cn =

d′
∑

i=1

ΓJνεi

(ǫi as defined in the above lemma). By the above lemma, 89

Cn =

d′
∑

i=1

ΓJ · νi

whereJνi , i = 1, . . . , d′ are precisely all the primitive integral ideals of
norm n. (We may defineCn even when (n, q1q2) , 1). We callCn a
primitive modular correspondence. A modular correspondence Tn, for
(n, q1q2) = 1, is defined by

Tn =

∑

i

ΓJ · µi

whereJµi runs over all the integral left ideals with normn. (We know
that this number is finite). We can now write

Tn =

∑

t2/n

Cn

t2
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for if µ ∈ J is an element whose norm isn, then we can writeµ = νt, t ≥
1, andν is primitive n(ν) = n/t2 and then

ΓJµ = ΓJ , νt = ΓJ .ν

as an operator. Conversely ifν is a primitive element of norm
n

t2
then

µ = ν.t is an element of normn, andΓJ .νt = ΓJν as an operator.
4. Some properties of Tn : Let T∗n denote the inverse operator ofTn.

Then

1) T∗n = Tn (This will imply that the ring of operatorsTn is commuta-
tive).

2) Tn.Tm = Tnm if (n,m) = 1.

3) Tps · Tpt =
min(s,t)

∑

σ=o
pσ.Tps+ t − 2σ

4) Tn.Tm =
∑

d|(n,m) d.
Tnm

d2

for anyn,m. We shall prove these now.90

1) We shall show first thatC∗n = Cn and this will imply thatT∗n = Tn,
for sinceTn =

∑

t2|n
Cn/t2, we have

T∗n =
∑

t2|n
C∗n/t2 =

∑

t2|n
C n

t2
= Tn.

Proof of Cn = C∗n.
Let τ, σ be two complex variables in the upper half plane.
By definitionCn(ΓJτ) =

∑

i
ΓJνiτ. The elements inC∗n(ΓJ )σ con-

tain thoseΓJ .τ for which Cn(ΓJτ) containsΓJ .σ, i.e., If ΓJτ ∈ C∗n
(ΓJσ) thenΓJσ = ΓJντ for someν ∈ J of norm n. This means that
εσ = ντ or ν̄εσ = n(ν).τ or ΓJ , ν̄εσ = ΓJ .τ as an operator in the com-
plex plane. By lemma in para 3, asε runs overΓJ , J ν̄ε runs over all
primitive leftJ- ideals of normn. Hence

C∗n(ΓJσ) +
∑

ΓJ · νσ = Cn(ΓJσ)
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and by symmetry, the other way, so thatCn = C∗n.
2) Tn.Tm = Tnm if (n,m) = 1.
Let Tn =

∑

i
ΓJ .νi , n(J νi) = n and

Tm =

i
∑

k

ΓJ · µk, n(Jµk) = m

hence Tn.Tm =

∑

i,k

ΓJνiΓJµk =

∑

i,k

ΓJνiµk.

Since the number of integral ideals of normn.m is
∑

d|nm
d =

∑

d|n
d.

∑

d′|m
d′ (for (n,m) = 1) (this follows from the factorization of ideals), and

conversely since any integral idealJνiµk is of norm n.m if we prove
that all these are distinct, our proof will be finished. So consider any 91

two idealsJνiµk,Jνi′µk′ , where i , i′ or k , k′. If k , k′, let p
be a prime dividingm, then (Jνiµk)p = Jpµk, becausen(νi) = n and
(n,m) = 1, i.e.,n is a p-adic unit orνi is a unit inJp.

Similarly (Jνi , µk′)p = Jpµk′ . Now, sincek , k′,Jpµk , Jpµk′ ⇒
Jνiµk , Jνi′µk′ . If k = k′, i , i′,Jpνi , Jpνi′ , for at least onep|n (for,
otherwiseJpνi = Jpνi′ , for all p,⇒ Jνi = Jνi′), and thenµk = µk′ is
a unit inJp,⇒ Jpµiµk , Jpνi , µk′ ; for otherwiseJpνi = Jpνi′ .

3) Tps.Tpt =
min(s,t)

∑

σ=o
pσ.Tps+ t − 2σ

We will first prove that

Tps.Tp = Tps+1 + p.Tps−1

and then obtain the required result by induction.
Let

Tps =

∑

i

ΓJ .νi , n(Jνi ) = ps

and Tp =

∑

k

ΓJµk, n(Jµk) = p;

so that Tps.Tp =

∑

i,k

ΓJνiµk =

∑

primitive

+

∑

imprimitive

.
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Because an integral ideal of prime power norm is uniquely decom-
posable into prime factors if it is primitive, there occur, among theJνiµk

all integral primitive left ideals of normps+1 exactly once. But, ifJνiµk92

is imprimitive it means that
νiµk

p
∈ J, i.e.,νiµk = ν

′
i .p = ν

′
i µ̄kµk ⇒ νi =

ν′i µ̄k. Since the number of integral left ideals of normp is p + 1, there
occur amongJνiµk, all idealspν′iJ of norm ps+1, (p + 1) times each.
Therefore,Tps.Tp = Cps+1 + (p+ 1)Tps−1.

Next, we have
Tps+1 = Cps+1 + Tps−1.

For,

Tps+1 =

∑

prim. part

+

∑

impr. part

= Cps+1 +

∑

pΓJη

where the second sum is taken over all integral idealsη with norm ps−1.
The above sum therefore equalsCps+1 + Tps−1.

From both the formulae, it follows that

Tps = Tps+1 + p.Tps−1

We now use complete induction ont, i.e., assuming the result to be
true forn ≤ t, we prove it true fort + 1. (Without loss of generality, we
assume thatt ≤ s). Now,

Tps.Tpt =

t
∑

σ=o

pσ.Tps+t−2σ .

Multiplying both sides byTp, and substituting we have

Tps(Tpt+1 + p.Tpt−1) =
t

∑

σ=o

pσ(Tps+t+1−2σ + p.Tps+1−1−2σ )

TpsTpt+1 = −p.Tps.Tpt−1 +

t
∑

σ=o

pσTps+t+1−2σ +

t
∑

σ=o

pσ+1Tps+t−1−2σ
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= −p















t−1
∑

σ=o

pσ.Tps+t−1−2σ















+
′′ ′′

+ · · ·

=

t
∑

σ=o

pσ.Tps+t+1−2σ + pt+1Tps−1−t

=















∑t+1
σ=o pσ.Tps+t+1−2σ , if t < s.

∑t
σ=o pσ.Tps+t+1−2σ , if t = s,

becauseTp−1 = 0 by convention. 93

Therefore, in either case,

Tps.Tpt+1 =

min(s,t+1)
∑

σ=o

pσ.Tps+t+1−2σ

Tn.Tm =

∑

d|n,md.Tnm/d2 (4)

This follows as a direct consequence of the properties (2) and (3).
We may now define the operatorTn for (n, q1q2) > 1. Firstly, we shall
defineTp, p|q1q2 and then extend it ton.

1. p|q1. In this case,Jp is a maximal order in the division algebraQp,
so that there exists only one integral ideal

PJpπ = Jpπ̄ = π̄Jp = πJp

with norm p and hence the idealJπ = π̄J is the only integral ideal
with normP.

We defineTp = ΓJπ = π̄ΓJ . ConsequentlyTp.Tp = ΓJππ̄ΓJ = I .
Also Tps.Tp = ΓJπs.ΓJπ = ΓJπs+1

= Tps+1.

2. p
∣

∣

∣q2. Jp �

(

Op O
pOp Op

)

. We defineTpn =
∑

ν
ΓJν whereJν are 94

ambiguous ideals with normpn. But we have already shown that
actually there is only one such ambiguous ideal. NowJν = νJ,

whereν =

(

0 1
p 0

)

. HenceJνs
= νsJ andn(νs) = ps. From this,

we may deduce that there exists only one integral ambiguous ideal of
norm ps.
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As before

Tps.Tp = ΓJ .ν
s.ΓJ .ν = ΓJ .ν

s+1
= Tps+1 .

Hence

Tp.Tp = Tp2 = ΓJ · ν2
= ΓJ

(

p 0
O p

)

= I .

Note: We may deduce some interesting results from the above multi-
plicative properties ofTn, regarding the representations of the ring of
operatorsR of Tn.

5. Let R(Tn) be the representation matrix ofTn of some fixed de-
gree. Then, we have the following product formulae from (2) and (3).

1) If n,mare coprime toq1q2 and (n,m) = 1, thenR(TnTm) = R(Tnm).

2) If pχq1q2,R(Tps.Tp) = R(Tps+1) + p.R(Tps−1).

For p
∣

∣

∣q1q2, from the facts thatTp2 = I andTps.Tp = Tps+1, we have
R(Tp.Tp) = R(Tp2) = I andR(Tps.Tp) = R(Tps+1).

Consider now theζ-function associated with this representation, as
follows:

ζR(s) =
∞
∑

n=1

(R(Tn))
ns .

A special representation is the one-rowed matrixR(Tn) = R1(Tn) =95

number of integral ideals with normn =
∑

d|n
d (if (n, q1q2) = 1).

Hence

ζ′R1
(s) =

∑

(n,q1q2)=1

∑

d|n d

ns

(omitting in ζR1 thosen which are divisible byq2).
This is easily seen to be the same as theζ- function, associated with

the orderJ but for those terms, corresponding to the factors ofq2. We
have seen thatζR1(s) possesses a functional equation. But it is still an un-
solved problem whetherζR(s) for an arbitraryR, possesses a functional
equation.
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We shall prove, using the multiplicative properties ofR(Tn) thatζ(s)
possesses an Euler product. It is easily seen that

ζR(s) =
∞
∑

n=1

R(Tn)
ns =

∏

p

(I +
R(Tp)

ps +
R(Tp2)

p2s
+ · · ·

i) In casep ∤ q1q2, we shall show that

∞
∑

n=o

R(Tpn)

pn,S
= (I − R(Tp)p−s

+ p1−2s)−1.

For,
(

I +
R(Tp)

ps +
R(Tp2)

p2s
+ · · ·

)

(I − R(Tp).p−s
+ p1−2s)

=

∞
∑

n=o

R(Tpn)

pns
−
∞
∑

n=o

R(Tpn+1).p−(n+1)s

−
∞
∑

n=o

R(Tpn−1).p−(n+1)s+1
+

∞
∑

n=o

R(Tpn).p−ns+1−2s

= I +
∞
∑

n=1

R(Tpn).p−ns−
∞
∑

n=o

R(Tpn+1).p−(n+1)s

−
∞
∑

n=1

R(Tpn−1).p−(n+1)s+1
+

∞
∑

n=1

R(Tn−1
p )p−ns+1−s

= I .

ii) p
∣

∣

∣q1q2. 96

∞
∑

n=0

R(Tpn).p−ns
= I + R(Tp).p−s

+ R(Tp2).p−2s
+ · · ·

= I + R(Tp).p−s
+ p−2s

+ R(Tp).p−3s
+ · · ·

= (1+ p−2s
+ p−4s · · · )(I + R(Tp)p−s)

=
I + R(Tp).p−s

1− p−2s
.
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Hence we have the Euler product

ζR(s) =
∏

p
∣

∣

∣q1q2

I + R(Tp).p−s

1− p−2s

∏

p+q1q2

(I − R(Tp).p−s
+ p1−2s)−1

8 Representations of the Modular Correspondence
by the Betti Groups

6. The chief task hereafter will be the determination of the traces of
certain representationsR(M), (M, the ring of correspondences orTn op-
erators ) because the traces determine the representationsuniquely. For
someR(M), the calculation of the trace leads to topological consider-
ations, for others traces are not yet known. For example, we shall be
concerned with the trace of the representation ofTn by the Betti groups
of SJ .

Let SJ be the Riemann surface associated with an orderJ andS′J
a homeomorph ofSJ . Let C be a correspondence ofSJ , onto itself
defined by means of the covering surfaceS′′. It is easy to see from
the definition of a correspondence, thatC takes cycles to cycles and
boundaries to boundaries, so thatC induces an endomorphism of the
Betti groups of dimension 0, 1 and 2.

Let Tn be a modular correspondence. ThenTn =
∑

t2/n
c n

t2
C−s being97

primitive correspondences and hence can be looked upon as topological
mappings ofSJ onto itself. Now, if we extend the notion of covering
surface to include disconnected pieces also, thenTn may also be looked
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upon as a correspondence in the topological sense. By the above para-
graph,Tn induces an endomorphism of the Betti groupsBr(S), r = 0,
1, 2 ; consequently, we have the traces of these endomorphisms, (say)
tro(Tn), tr1(Tn) andtr2(Tn). Here,tr1(Tn)= number of sheets ofS′′ over
S = number of sheets ofS′′ over S′, both being equal sinceTn = T∗n.
Further

tro(Tn) = tr2(Tn) =
∑

d|n
d if (n, q1q2) = 1).

For calculatingtr1(Tn), we apply Lefschetz’s fixed-point theorem,
namely

Theorem.
The number f(Tn) of fixed
points of Tn with due mul-
tiplicity



















= tro(Tn) − tr1(Tn) + tr2(Tn)

= 2
∑

d|n
d − tr1(Tn).

We will calculate explicitly the left hand side so that we obtain
tr1(Tn) at once by the above equation.

7. We shall sketch a proof of Lefschetz’s fixed - point theorem98

in our case whereTn are multi-valued analytic orientation preserving
mappings, by defining the multiplicities suitably, as the original proof is
rather lengthy and is not found in elementary text-books on topology.

We may define the multiplicity of a fixed pointΓJ .τo, for a branch
ΓJνi. This branch in the neighbourhood of this point can be expanded
as,

τi = νi(τ) = νi(τ
o) + c1(τ − τo)

a
b + c2(τ − τo)

a+1
b + · · ·

= τo
+ c1(τ − τo)

a
b + c2(τ − τo)

a+1
b + · · ·

(sinceνi(τo) = τo), whereτ is a local uniformizing parameter andb
being the common denominator of all the exponents. Furtherc1 , 0.
The multiplicity ofΓJτo as a fixed point is min.(a, b).

The general plan of the proof is to define a special linear mapping
ϕ on the image of (a triangulation of )SJ , by means ofTn, so that the
mappingϕ(Tn) is homotopic toTn. Furtherϕ has to be boundary pre-
serving. Since the number of fixed points is invariant under homotopic
deformations, it is enough to calculate this number forϕ(Tn).
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We first cut upSJ into a finite number of trianglesτ2
i (superscript

meaning dimension), the fixed points being among the vertices. We
may choose the triangulation so fine that the following conditions are
satisfied:

Let {τ j
i } ( j − 0, 1, 2) denote the simplices of the triangulation.

1) The imageTn(τ2
i ) consist of a number of simply connected domains99

τ̄2
ik bounded by Jordan curves without double points.

2) All images of each vertex are situated in the interior of some other
triangle, except for the fixed points.

3) All images of all points of aτ2
i lie in such trianglesτ2

k which have no
point in common withτ2

i , except for thoseτ2
i which contain a fixed

point.

Let Tn(τr
i ) =

∑

k
τ̄r

ik whereτ̄r
ik are, by (1), simply connected domains

(r = 2), arcs of curves (r = 1) and points (r = o). We shall now define a
linear mappingϕ on τ̄r

ik so that

ϕn(τr
i ) = φ(Tn(τr

i )) =
∑

k

ϕ(τ̄r
ik)

The definition ofϕ(σr) (r = 0, 1, 2) (σr are cycles ¯τr
ik) differs ac-

cording asσr contains a fixed point or not.
i) Suppose first thatσr does not contain a fixed point.

Then

ϕ(σ2) =
1
3

∑

j

ε jτ
2
j

whereε j is the number of vertices ofτ2
j lying in σ2.

ϕ(σ1) =















0 if N lies entirely inside aτ2
i .

1
6

(

τ′1 + τ
′
2 + · · · + τ′4

)

if σ′ crosses one boundary

once between twoτ2
i , the sides being denoted as in the figure

Finally

ϕ(σo) =
1
3

(τo
k,1 + τ

o
k,2 + τ

o
k,3
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whereτo
k, j are the vertices of a triangleτ2

k in whichσo lies.

By linearity, 100

ϕ(σr
1 + σ

r
2) = ϕ(σr

1) + ϕ(σr
2) (*)

ϕ is extended to allσr . (r = 0, 1, 2).

We need not defineϕ(σr) for r = 0, 1 whenσr has a point in com-
mon with a vertexτo

i because of the assumptions made on.p.99

It is verified easily that the above definition ofϕ onσr(r = 0, 1, 2) is
consistent with linearity. It is also seen that

ϕ(Bd(σr)) = Bd(ϕ(σr)).

For example, whenr = 1, Bdσ1
= A2 − A1 and

ϕ(Bdσ1) = ϕ(A2) − ϕ(A1)

=
1
3

(B2+ 6 B3+ 6 B4− 6 B3− 6 B4 − B1)

=
1
3

(B2 − B1).
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Now,ϕ(σ′) =
1
6

(τ′1 + τ
′
2 + τ

′
3 + τ

′
4) so that

Bdϕ(σ′) =
1
6

(6 B4 − B1+ 6 B3 + B1 + B2− 6 B3 + B2− 6 B4)

=
1
3

(B2 − B1),

i.e., (Bd(ϕ(σ1
= ϕ(Bd(σ1).

It is to be noted that the above definition ofϕ is not to be applied if
Bdσr passes through a vertex of aτ2

i , which case we deal with later.
Then, we have the following lemma (ifσ′ does not pass through a

fixed point).

Lemma . For a closed curveσ′ without double points (in the usual101

sense),ϕ(σ′) is a cycle homotopic withσ′, (the triangulation being suf-
ficiently fine).

Proof. If the τ2
i are sufficiently small, then the strip of simplices through

whichσ′ passes does not contain any double points. Thenϕ(σ′) can be
obtained as follows: (2 arrows indicating traversed twice in the same
direction).

ϕ(σ′) =
1
3

[

(P1P2) + (P2P3) + · · · + (P′1P′2) + (P′2P′3)

+ · · · + (P′1P1) + (P1P′4) + (P′4P2) · · ·
]
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and the lemma follows.σ′ passing through a fixed point will be
taken up in case (ii ) after definingϕ in the neighbourhood of a fixed
point. (ii ) σr (r = 0, 1, 2) contains a fixed point P(say). �

Because of linearity, it suffices to defineϕ for suchσν which are
contained in the union of allτ2

i havingP as a vertex and this is called
the star ofP.

We then defineϕ(σ2) =
1
6

∑

j
ǫ jτ

2
j whereε j is the number of sides

originating fromP which pass throughσ2. 102

Applying the linearity property (∗) we can assume without loss of
generality thatσ′ has no common points exceptP with anyτ′i, j( j = 1, 2)

(τ2
i being the triangles through whichσ′ passes) originating fromP. We

then define

ϕ(σ′) =
1
3

(

τ′i,1 + τ
′
i,2

)

;

τ′i, j being the sides originating fromP of τ2
i through whichσ′ passes.

Finally ϕ(P) = P.
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As before, consistency with linearity is verified and also the com-
mutativity with the boundary mapping. Now, the above lemma is valid
even ifσ′ passes through a fixed point, with the above definition and is
easily seen to be true.

We have then in either caseϕ(Tn(σr )) ∼ Tn(σr) (r = 0, 1, 2). For
r = 0 and 2, this follows from the definition ofϕ which is homotopic to
the identity, and forr = 1, ϕ(σ′) ∼ σ′ from our lemma.

It can be seen that at this stage the condition thatσ′ should not have
double points can be dropped for otherwise we can split it into pieces
in each of which there is no double point, and the above relation holds
good for the sum.

SinceBd(Tn(τr
i )) = Tn(Bd(τr

i )) andBd(ϕ(σr)) = ϕ(Bd(σr)) we have
Bd(ϕn(τr

i )) = ϕn(Bd(τr
i )).

This enables us to apply the Euler-Poincar’e-Hopf formula

so(ϕn) − s1(ϕn) + s2(ϕn) = f (ϕn) = tπo(ϕn) − tπ1(ϕn) + tπ2(ϕn)

(σi denoting the traces of endomorphisms in the chain groups).
We knowTn ∼ ϕn so that f (Tn) = f (ϕn). Therefore it is enough to103

compute for the linear mappingsϕn, the number

f (ϕn) = so(ϕn) − s1(ϕn) + s2(ϕn).

Because of the condition (3) on the triangulation, it is enough to
consider the effect of ϕn on the simplicesτr

i belonging to the stars of
fixed points.

From the expansion,τi = τo+c1(τ−τ)
a
b+c2(τ−τ)

a+ 1
b +· · · , c1 , 0,

it is seen that star ofP is mapped “b” times on Riemann surface of “a”
sheets lying over the neighbourhood ofP, the ramification (of order a)
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being atP. In casea = b, and|c1| = 1, the mapping is approximately a
rotation and the image of the star ofP is of the same size as the star of
P. If a > b or a = b and|c1| < 1, the image of the star ofP lies entirely
inside of the star ofP. If a < b or a = b and |c1| > 1, the image of
the star ofP lies entirely outside the star ofP. We shall treat the above
cases one by one.
i) a = b and|c1| = 1.

Let the image ofτ′i be the dotted line ¯τ′i . We may subdivide the star
of P so fine (τ̄′i need not be straight lines) that ¯τ′1 lies inside a sector
both of whose sides differ from τ′i . By such a procedure, we have, by
definition of traces

so(ϕn) = b, s1(ϕn) = 0, s2(ϕn) = 0

regarding the star ofP. The first one follows from the fact thatϕn maps 104

P, “b′′ times on itself. Hence the multiplicity of the fixed pointP is given
by

so(ϕn) − s1(ϕn) + s2(ϕn) (restricted to the starP)

= b− 0+ 0 = b = min(a, b).

ii) a > b or a = b and|c1| < 1.
In this case, the image of the star ofP lies completely inside the

star of P and we may deformϕn homotopically so as to make almost
all images ¯τ2

ik of τ2
i , sectors with an angle nearly zero atP and the rest

covering almost an angle 2π. Further, we may take these to lie inτ2
1

(say) in a sufficiently small neighbourhood (see figure).
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2

1

3

1
2

3
3

21

(The broken lines show the ¯τr
ik ).

(a = 3, b = 2),

Only “a′′ of the τ̄2
ik (with i , 1) are sectors of an angle nearly 2π.

By our definition ofϕ, the coefficient ofτ2
i in ϕn(τ̄2

ik) is 0 or
1
3

according

asτ̄2
ik is a small or large sector.

Hence the contribution of the star ofP to s2(ϕn) is
a
3

.

For s′(ϕn), by definition ofϕ in the neighbourhood of fixed point,105

the coefficient ofτ′i, j in ϕn(τ′i, j) is 0 or
1
3

according asi , 1 or i = 1.

Furthermore, for each sideτ1
i,3 of τ2

i opposite toP sayτ1
i , ϕ(τ̄1

ik) = 0

or
1
3

times the boundary of the star ofP according as ¯τi
ik is small or

large. Hence the contribution of the star ofP to s′(ϕn) is (a+ 2b)/3.
Lastly ϕ(P) = b.P. and for other verticesτo

i,k of the trianglesτ2
i , ϕ

(τ̄o
ik, j ) =

1
3

(sum of the vertices ofτ2
i ). Hence the contribution toso(ϕn)

of these is
2b
3

, i.e., in the star ofP, so(ϕn) = b+
2b
3

.

Therefore

s0(ϕn) − s1(ϕn) + s2(ϕn) =
a
3
−

(

a
3
+

2b
3

)

+

(

b+
2b
3

)

= b = min(a, b).

(iii) a < b or a = b and|c1| > 1.
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Here the image lies completely outside the star ofP. For simplicity,
we consider only one large triangle. This is cut up into threeparts as
shown in the diagram. For a large ¯τ2

ik, the coefficients ofτ2
i in ϕ(τ̄2

ik) is 1
and for small sectors, the coefficient is zero. So the contribution of the
neighbourhood ofP to s2(ϕn) is a.

Now, the sidesτ1
ik( j = 1, 2) of τ2

i originating inP are divided into 106

two parts. The sidesτ(1)
1, j have coefficients

1
2

in ϕ(τ̄1
ik, j), so that the con-

tribution from these isb while other sides ofτ2
i have no contribution.

Lastly, the only contribution toso(ϕn) of the star ofP is given byP
and that isb. Hence we obtain

so(ϕn) − s1(ϕn) + s2(ϕn) = a− b+ b = a = min(a, b).

For the full tracesso, s1 and s2, summing up, for each fixed point
the multiplicity being min(a, b), we obtain finally the result that

the number of fixed points

with due multiplicity















= so(ϕn) − s1(ϕn) + s2(ϕn).





Chapter 4

Ideal Theories in Q and in
Quadratic Subfields

The following considerations serve as a tool for calculating the number 107

of fixed points of correspondences. Besides, there are otherapplica-
tions.

9 Connections Between Ideals inQ and in Quad-
ratic Subfields

1. We consider an orderJ of the type (q1, q2) for which we know that
the class number is 1. Further, for such an order, any left integral ideals

M such that (n(M), q2) = 1 can be written in the formM = J
(

n1 n2

0 n3

)

(hereq1 = 1), n2 being reduced modn3. But, suppose (n(M), q2) ,
1. Thenn(M) = pr .u, p|q2 and u, a p-adic unit. We consider in the
following structure ofMp for p|q2.

Theorem 1. ForMp = Jp.ν, we have the following normal forms.i.e.,

(1) There exists a unitε ofJp such that

εν =

(

pa c
0 pb

)

, r = a+ b and c is reduced mod pa.

or

95
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(2) There exists a unitε′ ofJp so thatε′ν =

(

0 pa

pb+1 c

)

, r = a+ b+ 1

and c is reduced mod pa+1.

Proof. Let the generatorν be

(

n11 n12

pn21 n22

)

. We now distinguish two

cases:

(i)
n21

n11
is a p-adic integer, or

(ii)
n21

n11
is not a p-adic integer.

�

Case (i) .Our object is to find a unitε =

(

e11 e12

pe21 e22

)

such thatεν is of108

type1).

Now

εν =

(

e11 n11+ e12 pn21 e11n12+ e12n22

p(e21n11+ e22n21) pe21 n12+ e22n22

)

Letting n11 = ps.u1 and puttinge21 =
n21

ps we havee22 = −
n11

ps . Since

pe21 ande22 are coprime as p-adic integers (e22 being a unit) this row
can be completed to a p-unimodular matrixε. Now

εν =

(

pa.u/1 c
′

0 pb.u′2

)

.

Again
(

u′−1
1 0
0 u′−1

2

)

εν =

(

pa c
0 pb

)

,

a + b = r. For reducingc mod pa, we may multiply

(

pa c
0 pb

)

to the

left by a unit

(

1 t
0 1

)

for a suitablet.
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Case (ii).n11 = ps.u1 and n21 = p1.u2 (say). Now, by hypothesis, s> 1.
Putting

e11 = p.
n21

pl+1
, e12 = −n11

1

pl+1
,

we may complete(e11 e12) to a unimodular matrixε belonging toJp

and we have

εν =

(

0 u′2.p
a

u′1.p
b+1 c′

)

, a+ b+ 1 = r.

As before,

(

u′−1
2 0
0 u′−1

2

)

εν =

(

0 pa

pb+1 c

)

and on multiplication to 109

the left by a unit of the form

(

1 0
pt 1

)

, we can reducec mod pa+1.

Note: As a consequence, the number of integral ideals with respectto
the orderJp, (p|q2) with norm pr

= number of ideals in the first normal
form + number in the second normal form, and this is evidently given
by

(pr
+ pr−1

+ · · ·+1)+(p+ p2
+ · · ·+ pr ) = 2(1+ p+ · · ·+ pr )−1 = 2.

1− pr+1

1− p
−1.

(This result was assumed in§2).
Using the above normal form, we shall now find the structure ofall

integral ambiguous ideals for the orderJp; p|q2.

Theorem 2. If Jpπ = πJp is an ambiguous ideal forJp, then either

Jpπ = Jp

(

pr 0
0 pr

)

or Jpπ = Jp

(

0 pr

pr+1 0

)

according as n(π) is an

even or odd power of p.

Proof. Let πo =

(

0 1
p 0

)

. ThenJpπo = πoJp, for, if x ∈ Jp,

π−1
o xπo =

(

0 1
p

1 0

) (

x11 x12

px21 x22

) (

0 1
p 0

)

=

(

x22 x21

px12 x11

)

∈ Jp.

Further, since
(

pr 0
0 pr

)

= pr
(

1 0
0 1

)

and

(

0 pr

pr+1 0

)

= pr
(

0 1
p 0

)

,
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�

the corresponding idealsJp

(

pr 0
0 pr

)

andJp

(

0 pr

pr+1 0

)

are am-110

biguous.

I) Let π be of the first normal form, i.e.,π =

(

pa c
0 pb

)

, c reduced

mod pb, anda + b = s. Then we shall prove thata = b so thats = 2r
andc = 0.

Jpπ = πJp =⇒ π−1xπ ∈ Jp

for any x ∈ Jp. i.e.,

(

pa −p−ac−b

0 p−b

) (

x11 x12

px21 x22

) (

pa c
0 pb

)

=

(

x11− p1−bx21c p(x11c− p1−bc2x21+ pbx12− cx22)
p1+a−bx21 p1−bx21c+ x22

)

is inJp.
Consequently, we have

i) (1 + a− b) ≥ 1 =⇒ a ≥ b

ii) x11− p1−bx21c = λ, a p-adic integer and alsop−ac(x11− p1−bcx21)+
p−a(pbx12 − cx22) = λ1, a p-adic integer. i.e.,cλ + pbx12 − cx22 =

pa.λ1 =⇒ c(λ − x22) = pb.λ′1 sincea ≥ b(λ′1 an integer ).

Choosingx11, x21 andx22 in such a manner thatλ − x22 is a p-adic
unit, we conclude thatpb|c =⇒ c = 0, sincec is reduced modpb.

iii) Putting c = 0, pb−ax12 an integer=⇒ b ≥ a.

From (i) and (iii) we concludea = b = r.

II) If π is of the second normal form,π =

(

0 pa

pb+1 c

)

, c reduced

mod pa+1a+ b+ 1 = s.

Jpπ = πJp =⇒ πoJpπ = πoπJp.

But111
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πoJ = Jpπo so that

Jpπoπ = πoπJp andπoπ =

(

0 1
p 0

) (

0 pa

pb+1 c

)

=

(

pb+1 c
0 pa+1

)

which is of the first normal form, sincec is reduced modulepa+1, and
(a+ 1)+ (b+ 1) = s+ 1. By (i)s+ 1 is even and= 2r + 2 (say) so that
s= 2r + 1 anda = b = r, c = 0. In other words,

(

0 pr

pr+1 c

)

.

Note.We had assumed this lemma in §7 for defining Tp when p|q2.

2. Now, we shall consider quadratic subfieldsK of Q and connect
the ideal theory ofK with that ofQ.

Let K = k(
√

d) (d without square factor) be a quadratic sub-field of
Q andOo the maximal order inK (the ring of all integers). Then we
know thatOo = [1, ωo] where

ωo =















√
d if d . 1 (mod 4)

1+
√

d
2 if d ≡ (mod 4)

If O be any order inK (i.e., a subring ofOo), thenO has a basis
[1, fωσ], f , a rational integer. Thisf , we call theconductorof the order
O. If Do denotes the discriminant of the orderOo andD that ofO, then
D = f 2Do and since

Do















4d if d . 1 (mod 4)

d if d ≡ 1 (mod 4)

i.e., Do ≡ 0, 1 (mod 4),D ≡ 0, f 2 (mod 4) =⇒ D ≡ 0, 1 (mod 4) 112

(since f 2 ≡ 0, 1 (mod 4)).
We now prove the following :

Lemma 1. Given a quadratic subfield K⊂ Q, we can find an orderJ
of Q such thatJ ⊃ Oo.
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Proof. Let Oo = [1, ωo]. Consider an elementΩ ∈ Q and < K, so
that (1, ωo,Ω,Ωωo) are linearly independent overk. Then we prove that
J = [1, ωo,mΩ,mΩωo] is an order for a sufficiently large integerm.

For,mcan be chosen so large thattr(mΩ), tr(mΩωo) andn(mΩ) are
integers. Now, it is enough to show thatmωoΩmωoΩωo andmΩωoΩ

lie in J. This can be shown as follows:

mωoΩ = Ω (mωo) = (tr(Ω) −Ω)(tr(mωo) −mωo)

= tr(Ω) −Ω tr(mωo) − tr(mωo) − tr(Ω)mωo +mΩωo

is an element ofJ, since each component lies inJ. Hence the conjugate
of mωoΩ also lies inJ. Similarly others. �

Note .The above lemma can be proved in the same way even if k is
replaced byk̄p and Q by Qp. If Kp = K ⊗ k̄p, then the max. order in
Kp = [1, ωo] (i.e., thatOp-module generated by1, ωo).

Definition. 1) If K ⊂ Q andO ⊂ J ,O is optimally imbeddedin J if
J ∩ K = O.

It follows immediately from the definition thatO is optimally imbed-
ded inJ if and only if Op is so inJp for everyp.

Definition . Consider rational integers, D≡ 0, 1 (mod 4). We define a113

modified Legendre symbol for these as follows:

{D
p

}

=



























1 if D
p2 integral and≡ 0, 1 (mod 4)

0 if p|D but not the former case
(

D
p

)

if p ∤ D.

Theorem 3. Let K be a quadratic subfield of Q andO, an order in K
with discriminant D. Then there exists an orderJ in Q of type(q1, q2)
in whichO is optimally imbedded, if and only if,

∏

p|q1

({

D
p

}

− 1

)

∏

p|q2

({

D
p

}

+ 1

)

, 0.
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We shall first prove the theorem in the local case and then extend
it to the global case, i.e., for everyp, there exists and orderJp of type
(q1, q2) containingOp optimally, under the above condition and vice-
versa.

We split the proof into there parts.
(i) p|q1, (ii ) p ∤ q1q2, (iii ) p|q2.

Case (i).P/q1. (a) Given thatOp ⊂ Jp optimally, to prove

{

D
p

}

, 1.

Let Oo be the unique maximal order inK, so thatO ⊂ O◦. Since
Op ⊂ Oop ⊂ Jp, (Jp here is the unique maximal order inQp) and both
the imbeddings being optimal,Op = [1, fωo]p = Oop = [1, ωo]p or p ∤

f . Now,
D

p2
=

f 2Do

p2
=

f 2d

p2
or

4 f 2d

p2
, according asd ≡ 1 (mod 4) or

d . 1 (mod 4). (Do is the discriminant ofOo andK = k(
√

d)), d being

square-free, in either case, (except for the latter one, when p = 2)
D

p2
is

not an integer. In casep = 2, whend . 1 (mod 4),
D

p2
= f 2d . 1, 0

(mod 4) for 2∤ f => f 2 ≡ 1 (mod 4) andf 2d ≡ 0 (mod 4)=⇒ 4|d 114

which is impossible.

Hence we have

{

D
p

}

= 0 or

(

D
p

)

.

Now that

(

D
p

)

, 1, in case

{

D
p

}

=

(

D
p

)

. 1

b) Conversely, if

{

D
p

}

, 1, to prove thatOp ⊂ Jp optimally. Since

we know thatOp ⊂ Oop ⊂opt Jp, it is sufficient to prove thatOp = Oop

or p ∤ f .

Supposep| f , D

p2
=

f 2Do

p2
≡ 0, 1 (mod 4) forDo ≡ 0, 1 (mod 4).

But this would mean that

{

D
p

}

= 1, which contradicts our hypothesis.

1For,

(

D
p

)

=

(

Do

p

)

, 1, in case

{

D
p

}

=

(

D
p

)

.
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Case (ii). p ∤ q1q2. Given an orderJp ∼
(

Op Op

Op Op

)

, to show that there

always exists an orderJ ′p ∼ Jp such thatOp ⊂ J ′p optimally.

Proof. Let Op = [1, ω]p, ω = fωo. Without loss of generality we may

takeω =

(

0 b
c e

)

jb, c, e ∈ k̄p. �

If (b, c, e) = 1,Op ⊂ Jp optimally vice-versa. In order to secure
this, we will consider the element

ω′ = πr
(

0 b
c e

)

π−r
=

(

0 p−rb

prc e

)

whereπ =

(

1 0
0 p

)

and r being chosen a positive or negative integer so as to make one
amongp−rb, prc, a unit. Thus (p−rb, prc, e) = 1, implies that [1, ω′]p ⊂
Jp optimally or [1, ω]p ⊂ π−rJpπ

r(∼ Jp) optimally.

Case (iii) . (a) p|q2. Given thatJp ∼
(

Op Op

pOp Op

)

andOp ⊂ Jp opti-115

mally. To show that

{

D
p

}

, −1.

Proof. If Op = [1, ω]p andω =

(

0 b
pc e

)

, ω satisfies the equationλ2 −

eλ − pbc= 0. ThenD = e2
+ 4pbc. �

We have now two cases to consider

α)p|D, β)p ∤ D.

In α),

{

D
p

}

is either 1 or 0, so that we are through.

In β)

{

D
p

}

=

(

D
p

)

andD = e2
+ 4 pbc≡ e2 (mod p)) shows that

(

D
p

)

= 1, i.e.,

{

D
p

}

, −1, in either case.

Before going to the converse part of the above, we shall provea
lemma which will be useful in the sequel.
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Lemma 2. Letω′, ω′′(∈ Qp) satisfy the same quadratic polynomial over
k̄p. Then, if[1, ω′′]p ⊂ Jp optimally, [1, ω′]p is optimally imbedded in
an order isomorphic withJp.

Proof. a) By Wedderburn’s Theorem, there exists anα ∈ Qp such that
α−1ω′′α = ω′ so that [1, ω′′]p ⊂ Jp optimally implies that [1, ω′]p ⊂
α−1Jpα = J ′p ∼ Jp optimally.

b) Conversely, let us suppose that

{

D
p

}

, −1. To prove that the order

Op ⊂ Jp ∼ Jp =

(

Op OP

pOp Op

)

optimally.

�

Let Op = [1, ω]p whereω =

(

0 b
c e

)

, b, c, e ∈ k̄p. Here again, we

have two cases to distinguish:

(α)p ∤ D, (β)p|D.

In case (α),

{

D
p

}

=

(

D
p

)

= 1 and in (β),

{

D
p

}

= 1 or 0.

(α) D being a quadratic residue modp,
√

D is ap-adic integer. Now, 116

ω satisfies the equation












ω − e−
√

D
2

























ω − e+
√

D
2













= 0,

sinceD = d2
+ 4bc. If p , 2,

e
2

and

√
D

2
being p-adic integers (e =

trω ∈ Op).ω′ = ω − e−
√

D
2

∈ Op.

In p = 2,D being a quadratic residue mod 8,

√
D

2
is a 2-adic integer

and so is
e
2

so thatω′ = ω − e−
√

D
2

∈ O2.

Hence the above equation can be written in the formω′ = (ω′ −
√

D) = 0. Now, if ω′′ =

(

0 0
pc′

√
D

)

wherec′ is a unit then [1, ω′′]p ⊂
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Jp optimally and furtherω′′, ω′ satisfy the same equation, so that by117

our lemma, we are through.
(β)p|D. i) p ∤ e, in which case, [1, ω]p ⊂ Jp optimally.

ii) p|e. Firstly, let us suppose

{

D
p

}

= 0. Now, sinceD = e2
+

4bc, p|e =⇒ p|4bc, or p|b.c if p , 2. Let e = p.s andb.c = p.n, so

that if ω′ =

(

0 b′

pc′ p.s

)

whereb′c′ = n and one amongb′, c′ is a unit.

Then [1, ω′]p ⊂ Jp andω′, ω satisfy the same equation. Our lemma is
applicable and we are through.

In casep = 2, p2|D so that this will be discussed in the following :

Secondly,

{

D
p

}

= 1 or
D

p2
integral and≡ 0, 1 (mod 4). Now,

D

p2
=

e2
+ 4bc

p2
is an integer andp|e imply that p2|4bc or p2|bc if p , 2.

Let bc = p2.n ande = p.s. Then the elementω′′ =

(

0 b
pc p.s

)

where

one amongb, c is a unit, is such that [1, ω′′]p ⊂ Jp optimally andω′′, ω
satisfy the same equation. The application of our lemma gives the re-
quired result. Even ifp = 2, the above argument can be applied, for

D
4
=

e2

4
+ bc= 0, 1 (mod 4)=⇒ bc≡ 0, 1 (mod 4).

Sincep|bc, being even,bc ≡ 0. (mod 4) orp2|bc, which is essen-
tially what we require in the above.

Thus the proof is complete for the local case. For going from the
local to the global case, we distribute the primes into 2 classes.

1) p|q1q2 f , 2) p ∤ q1q2 f .

Class (1).Let these primes being finite in number bep1, . . . , pm. Then,
by what has already been proved, there exists an orderJpν for eachν
such thatOpν ⊂ Jpν optimally. If we callJpν∩Q = Jν, thenJνpν = Jpν
so that we may writeOpν ⊂ Jνpν

.

Class (2).These primes which constitute almost allp, we denote bypo.
By our previous lemma, there is a maximal orderJo such thatOo ⊂
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Jo(Oo being the maximal order inK). ThereforeOopo ⊂ Jopo and since
po ∤ f ,Opo = Oopo ⊂ Jopo optimally.Jopo = µ

−1
po
Jpoµpo (say).

Consider nowJ = Q
⋂

pν
Jνpo . J is an order ofQ for which (J)pν =

Jpν and (J)po = Jpo, i.e.,J is an order of type (q1, q2) andOp ⊂ (J)p

optimally for everyp, implies thatO ⊂ J optimally, by a previous
lemma.

Thus our theorem is completely established.

Theorem 4. LetJ1 andJ2 be2 orders in Q, of type(q1, q2),O an order 118

of a subfield K of Q, optimally imbedded in bothJ1 andJ2. Then there
exists an idealU of O such thatJ1O = OJ2.

Conversely,if O ⊂ J1 optimally and if J1U = U J2, thenO ⊂
J2 optimally.

Proof. The second part is rather easy and we shall do it first. �

Now,J1U = J1(U O) = (J1U )O = U J2O = U J2 implies
thatO ⊂ J2. If this imbedding were not optimal,Op ⊂ O′p ⊂0pt

(J2)p for

at least onep.
Up being principal is isOpαp ( say ) and (J1Up = (J1)pαp and

similarly (U J2)p = αp(J2)p so that

(J1U )p = (U J2)p⇒ α−1
p (J1)pαp = (J2)p.

Then,O′p ⊂ (J2)p optimally⇒ αpO
′
pα
−1
p ⊂ (J1)p optimally which

is a contradiction to the fact thatO ⊂ J1 optimally, sinceOp , αp

O′pα
−1
p .

For the first part, we observe that it is sufficient to prove it in the
local case, for, then it would imply that there existβp ∈ Op such that
(J1)pβp = βp(J2)p for every p andβp are units for almost allp. Then
the required ideal will be givenU = ⋂

p
Opβp.

For proving the theorem in the local case, we split the primesinto
three parts.

i) p | q1, ii) p ∤ q1q2, iii) p | q2.

Case (i).p | q1. This in trivial, for (J1)p = (J2)p = Jp so thatβp = 1. 119
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Case (ii) .p ∤ q1 q2. Without loss of generality we may assume that

(J1)p =

(

Op Op

Op Op

)

; now sinceJ2p ≃ J1p,there existsα ∈ Qp such that

J2p = α−1J1pα. We will reduceα to a normal formα′ =

(

1 0
0 pr

)

by

multiplication by units ofJ1p on the left and right, sayα′ = ε−1
1 αε−1

2 ,
i.e., α = ε1α

′ε2 thenJ1pα = J1pα
′ε2 and J2p = ε−1

2 (α1−1J1pα
′)

ε2 = ε
−1
2 J ′2p ε2; whereJ ′2p = α

′−1J1pα
′.

Let O′p = ε2Opε
−1
2 , then

Op ⊂
0pt
J1p⇒ O′p ⊂0pt

ε2J1pε
−1
2 = J1p,

Op ⊂
0pt
J2p⇒ O′p ⊂0pt

ε2J2pε
−1
2 = J ′2p,

The conditions of the theorem being satisfied forJ1p,J ′2p,O
′
p, we show

that there exists anOp -idealU ′
p such that

J1pU
′

p = U ′
pJ ′2p,

from this we would obtain on puttingU ′
p = ε2Upε

−1
2 thatJ1pε2Upε

−1
2

= ε2Upε
−1
2 . ε2J2pε

−1
2 ; i.e.,J1pUp = ε2UpJ2p, or J1pUp = UpJ2p

sinceε2 is a unit inJ1p.
Therefore we may assume thatα itself is of the form120

α =

(

1 0
0 pr

)

,J2p =

(

Op prOp

p−rOp Op

)

.

Now,

Op =
[

1, ω
]

p with ω =

(

0 b
c d

)

.

Sinceω is optimally contained inJ1p ( i.e., Op ⊂ J1p optimally)
we have (b, c, d) = 1 and sinceω is optimally contained inJ2p, we have
(p−1b, prc, d) = 1. It is enough to findβ ∈ Op such that

J1pβ = βJ2p (1)
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Now (1) will be satisfied ifβα−1
= ε is a unit inJ1p. For, then

J1pβ = J1pα = βα
−1J1pα = βJ2p.

So letβ = u+ vω, u, v ∈ Up, then

β =

(

u 0
0 u

)

+

(

0 vb
vc vd

)

=

(

u vb
vc u+ vd

)

so that βα−1
=

(

u vb
vc u+ vd

) (

1
o p−r

)

=

(

u p−rvb
vc p−r (u+ vd)

)

Putv = 1, u = −d + pr . u1, then

|βα−1| = (−d + pru1)u1 − p−rbc.

If

(i) (d, p) = 1, we can chooseu1 such that|βα−1| = unit.

(ii) (d, p) , 1, i.e., p | d, then (p−rbc, p) = 1, and takingu1 = 0, 121

| βα−1 | is again a unit.

Case (iii). p | q2. We assumeJ1p =

(

Op Op

pOp Op

)

, and sinceJ2p � J1p

there is anα ∈ Qp such thatJ1pα = αJ2p. We have already seen that
by multiplication on the left by a unit inJ1p, α can be reduced to one of
the normal forms

η1α =

(

pa c
0 pb

)

c reduced mod pb,

or

(

0 pa

pb+1 0

)

c reduced mod pa+1, η1 − unit.

It is enough to consider the first normal form, for ifη1α is in the
second normal form, by multiplication on the left by

π =

(

0 1
p 0

)

we obtain
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πη1α =

(

0 1
p 0

) (

0 pa

pb+1 c

)

=

(

pb+1 c
0 pa+1

)

so that by suitable multiplication on the left and right by powers ofπ,
we may assume thatα = πr1η1απ

r2 has the same norm asα, and that it
is in the first normal form.

We have now to consider the following cases:

(i) b = 0. If b = 0, thenc = 0, and

πr1η1απ
r2 =

(

pa 0
0 1

)

.

By multiplication on the right byπ and on the left byπ−1, we have
(

0 1
p

1 0

) (

pa 0
0 1

) (

0 1
p 0

)

=

(

1 0
0 pa

)

(ii) a = 0. πr1η1απ
r2 =

(

1 c
0 pb

)

, and we have122

πr1η1απ
r2

(

1 −c
0 pb

)

=

(

1 0
0 pb

)

(iii) a > 0, b > 0. We may assume that (c, p) = 1, otherwiseα|p in-
stead ofα would serve the same purpose. Multiplying on the left

by a unit, and on the right byπ−1, we obtain

(

1 c′

0 pb′

)

, and again

multiplying on the right by

(

1 −c′

0 1

)

, we arrive at

(

1 0
0 pb′

)

.

Hence in all cases,α is of the formα = ε1π
r1

(

1 0
0 pr

)

πr2ε2. The

transformed orders will now be of the form

J ′2p = ε2π
r2J2p.π

−r2ε−1
2 , ε2 unit inJ1p.

O′p = ε2π
r2Opπ

−r2ε−1
2 , then since
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Op ⊂
0pt
J1p, we haveO′p ⊂0pt

J ′2p, also

O′p ⊂
0pt
J1p sinceJ1p = ε2π

r2J1pπ
−r2ε−1

2

As in case (ii) we change notations and prove the theorem under the
assumption

α =

(

1 0
0 pr

)

;

Op =
[

1, ω
]

p is optimally imbedded inJ1p =

(

Op Op

Op Op

)

and inJ2p =

(

Op pr Op

p1−r Op Op

)

. ω is optimal inJ1p ⇒ (b, c, d) = 1, again sinceω is 123

optimal inJ2p⇒ (p−rb, pr .c, d) = 1. As before we takeβ = u+ω,ω =
(

0 b
pc d

)

and show thatβ can be so chosen thatβα−1 is a unit ofJ1p.

Now as before| βα−1| = (−d+ pru1)u1 − p1−rb.c; whereu = −d+ pru1.

(i) If ( p, d) = 1, thenu1 can be chosen such that| βα−1 |= unit.

(ii) If ( p, d) = p, i.e., p | d; we considerβ(πα)−1, if we put u1 =

0, (−d + ω)(πα)−1
=

(

−d b
pc 0

)



















1 0

0
1
p





































0
1
p

1 0



















=



















p−rb
−d
p

0 c



















or

|(−d + ω)(πα)−r | = p−rb.c.

Now since (p−rb, p) = 1, and (c, p) = 1, we have (p−rbc, p) = 1,
i.e., p−rbc is a p−adic unit, so thatβ = ǫπα, ǫ, unit inJ1p. In this case,
again we haveJ1pβ = J1pπα = πJ[1p]α = παJ2p = βJ2p. In order to
complete the proof of the theorem, we have only to show thatβ is a unit
of Op for almost allp and it is enough to verify this in the casep ∤ q1q2.

This is secured by taking among the primesp ∤ q1q2, only those for
which bothb andc arep-adic units. Then

| β |= |
(

u b
c u+ d

)

| = pr .u1(pr .u1 − d) − bc

is always ap− adic unit. Or,β is a unit ofOp.
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Thus inJ1pβp = βpJ2p, βp is a unit for almost allp so that the
global idealO =

⋂

p
Opβp serves our purpose.

Remark. The theorem proved above is a very important one for our fur-124

ther applications and it has been proved in various connections and in
various forms by several mathematicians dating from Legendre, Gauss,
Minkowski and Emmy Noether to Hasse, Chevalley and Siegel. Cheval-
ley and Hasse proved an analogous result in the theory of algebras while
Siegel required a similar form for the theory of quadratic forms.

3. LetO be an order of a quadratic subfieldK of Q optimally imbed-
ded in an orderJ of Q of type (q1, q2). Let D denote the discriminant
of O. We have then the following

Theorem 5. An ambiguous prime idealν with norm p is generated by

anO -ideal U if and only if

{

D
p

}

= 0.

Proof. Since all global ideals are defined as intersections of localones,
it is sufficient to prove the theorem for thep-adic case. �

For the proof in the local case, we have three possibilities :
(i) p ∤ q1q2, (ii) p|q1, (iii) p|q2.

Case (i).p+q1q2. In this case, we shall prove that there do not exist any
proper (i.e., ϑp , Jp.pr ) ambiguous idealsϑp at all so that the above
problem does not arise.

Jp �

(

Op Op

Op Op

)

; if ϑp = Jpπ is ambiguous, and if we assumeπ

to be without loss of generality, of the form,π =

(

pa c
0 pb

)

a + b = s; c

reducedmodpp, thenJpπ = πJp implies that125

(

p−a −cp−(a+b)

0 p−b

) (

x1 x2

x3 x4

) (

pa c
0 pb

)

=

(

p−ax1 − cx3p−(a+b) p−ax2 − cx4p−(a+b)

p−bx3 p−bx4

) (

pa c
0 pb

)
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=

(

x1 − cx3p−b cp−ax1 − c2x3p−(a+b)
+ pb−ax2 − cx4p−a

pa−bx3 cp−bx3 + x4

)

must be an integral matrix for allx1, x2, x3, x4 ∈ Op. Choosingx3 to be
a unit,a ≥ b andx1 to be divisible byp, pb|c, which impliesc = 0 since
c is reduced modulopb. Hence, if we further choosex2 to be a unit,

b ≥ a so thata = b andc = 0, i.e., π =

(

pr 0
0 pr

)

wherea = b = r and

2r = s. Henceϑp = Jp.pr .

Case (ii). p|q1. If O◦ is the maximal order of K,

Op ⊂ Oop ⊂ Jp⇒ Op = Oop and

{

D
p

}

=

(

D
p

)

, 1,

by theorem 1. Therefore if

(

D
p

)

=
Do

p
= 1, where Do is the discriminant

of O0 so that Kp is unramified over̄kp which implies that there cannot

exist anyO j p-ideal generatingϑp. On the other hand, if

(

D0

p

)

= 0, then

Kp is ramified over̄kp, there exists anOp -idealUp such that pOp = U2
p

and N(Up) = p and by the uniqueness of such an idealϑp = Jp. Up.

Case (iii). p|q2. Again, by theorem 1,
{D

R

}

, −1.

a)
D

p2
integral and≡ 0, 1 (mod 4). Op =

[

1, prω
] ⊂

0pt
Jp whereOop = 126

[

1, ω
]

( say ). Letϑp = Jpδ, δ ∈ Op, thenn(δ) = p andδ = a+bprω ;
a, b ∈ Op. Hencen(δ) is either a unit or≡ 0 (mod p2) in either case
we obtain a contradiction.

b)

{

D
p

}

=

(

D
p

)

= 1.

Letϑp = Jpαp, αp ∈ Op; we, may assume without loss of generality

Op =

[

1,

(

0 b
pc d

)]

. Since there is only one ambiguous prime ideal of

norm p, namelyJpπ,Jpαp = Jpπ or αpπ
−1 is a unit ofJp.
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Now, D = d2 − 4pbc and p ∤ D ⇒ p ∤ d so that ifαp ∈ Op,

i.e., αp = u+ vω whereω =

(

0 b
pc d

)

thenαpπ
−1
=

(

bv u/p
u+ vd cv

)

is

a unit⇒ p|u andp|u+ vd, i.e., p|vd or p|v. In other words,|αpπ
−1| ≡

0(modp) so thatαpπ
−1 cannot be a unit.

c)

{

D
p

}

= 0.

(

D

p2
. 0, 1 (mod 4)

)

.

D = d2 − 4pbc ≡ 0 (mod p) ⇒ d ≡ 0 (mod p). Further p ∤

bc for otherwise,
D

p2
≡ d2

p2
(mod 4) and≡ 0, 1 (mod 4) which is a

contradiction to the hypothesis.

Considerωπ−1
=

(

0 b
pc d

) (

0 1/p
1 0

)

=

(

b o
d c

)

is a unit ofJp by

virtue of p|d, p ∤ bc so thatJpω = Jpπ. In other words, the unique
ambiguous prime ideal of normp is ϑp = Jpω.

Note.Letϑ be an ambiguous ideal with norm n and let n= p̺1
1 · · · p

̺k

k .
Then we know thatϑ =

⋂

p
εp; ϑp = Jp for almost all p and for the rest

n(ϑpi) = pU
i .

ϑp being ambiguous for all primesp ∤ q1q2, ϑp is a rational ideal;127

i.e.,ϑp = Jpλp; λp, a p-adic number and sinceϑp = Jp for almost all
p, λp is a p-adic unit for all but a finite number ofp ∤ q1q2. Among
the primespi that occur in the factorization ofn, let p1 · · · pl (suitably
rearranged) by those which divideq1q2 and for these,ϑpi = Jpiπ

̺i
i

(i = 1 to l) wheren(πi) = pi so that we may write symbolicallyϑ =
J .r.δ̺1

1 · · · δ
̺l

l whereδi = Jpiπi(pi/q1q2n) and r is a rational number.
SinceJpiπ

2
i = Jpi .pi, the indices̺ 1 . . . ̺l can be reduced mod 2; i.e.,

̺i = 0, 1.
From the above factorization we immediately deduce that thetotal

number of proper ambiguous ideals i.e., upto multiplication by a rational
number ) is 2x, x being the number of primesp|q1q2.

From theorem 3, deduce that 2x′ is the number of ambiguous ideals
generated by means ofO− ideals wherex′ is the number of primesp for
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which

{

D
p

}

= 0 among those which divideq1q2. Therefore the order of

the quotient group is 2x−x′
=

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1+

{

D
p

})

.

4. We shall now prove the last theorem of this section, which
sums up previous ones and which will be applied later for computing
the traces of correspondences.

If O is an order of a subfieldK ⊂ Q such that ifO ⊂
0pt
J andε, a unit

of J, thenε−1Oε ⊂
0pt
J. Thus, with each orderO ⊂

0pt
J, a whole class

of orders
{

ε−1Oε
}

is optimally contained inJ. Of course,ε−1Oε ⊂
ε−1 Kε ∼ K. We shall restrict our attention to only proper classes of
orders

{

ε−1Oε; n(ε) = +1
}

.

Theorem 6. The number of proper classes of orders
{

ε−1Oε
}

optimally 128

imbedded in an orderJ of type(q1, q2) (where class number of ideals
is 1) and isomorphic to a given orderO◦ ⊂ K ⊂ Q (Q indefinite and K,
imaginary ) is equal to the following product

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1+

{

D
p

})

h(D),

D being the discriminant ofO◦ and h(D), the class number ofO◦-ideals.

Proof. O◦ is the given fixed order, optimally imbedded inJ andO, any
other order, isomorphic toO◦, and optimally imbedded inJ. Since the
class number ofJ-ideals is 1, there exists anα ∈ Q such thatO =
αO◦α−1. �

Now, definingJ ′ = α−1Jα, we find that

O ⊂
0pt
J ⇒ α−1Oα ⊂

0pt
J ′ or O◦ ⊂

0pt
J ′.

O◦ being contained optimally in bothJ andJ ′ of type (q1, q2), by our
previous theorem, there exists anO◦ -idealU such thatJU = U J ′.
In other words,JU α−1α = U α−1Jα orJU α−1

= ϑ is an ambiguous
J−ideal. Without loss of generality, we may assume thatϑ contains in
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its decomposition, no ideal generated by anO◦ -ideal, for if ϑ = bϑ′ b
is generated by anO◦ -ideal, we may combineb with U with haveϑ′

instead ofϑ.
We now make correspond to the pair (O ,O◦), the pair of ideals

(ϑ,U ). α is not uniquely determined by the conditionαO◦α−1
= O.

In fact

i) α can be replaced byαµ, µ ∈ K, in which caseU → U µ and
ϑ→ ϑ.

ii) α can even be replaced byαµω whereω ∈ Q and∞−1Kω = Kσ, σ129

being the only automorphism ofK/k different from the identity, so
thatω−1O◦ω = O◦ andO → O.

But here forU , we cannot take the idealU ′ω−1µ−1 ( whereJU ′
=

U ′J ′′; J ′′ = (αµω)−1J(αµω)) since it is no longer anO◦ -ideal.
U ∼ U /⇒ there existsµ′ ∈ K such thatU µ′ = U , in which case
ϑ′ = JU ′. ω−1µ−1α−1

= JU µ′. ω−1µ−1α−1
= ϑ = JU α−1 if

and only ifη = µ′ω−1µ−1 is a unit ofα−1Jα = J ′.
Consequently, if we now make correspond to every pair of classes

of orders ((O), (O◦)) (O optimally imbedded inJ and isomorphic to
O◦) the pair (ϑ, (U )) ((U ) denoting the class ofO◦ -ideals equivalent to
U , andϑ is an integral ambiguousJ -ideal not divisible by anJ-ideal
generated by anO◦ -ideal ), then to a pair ((O), (O◦)) there correspond
exactly one or two pairs (ϑ, (U )) according as there does or does not
exist a unit of the typeµ′ω−1µ−1 in J ′.

We shall now consider the converse map. Let (ϑ, (U )) be a pair,ϑ
ambiguous and (U ), anO◦ -ideal class such that there exists anα ∈ Q
such thatJU = ϑα. We may suppose thatϑ does not contain any
O◦ - ideal. Then, we associate to the pair (ϑ, (U )) the pair (O ,O◦)
whereO = αO◦α−1. Now, ϑα = JU , holds even if we replaceα
by εα, ε being a unit ofJ. But thenO → εαO◦α−1ε−1

= εOε−1 so130

that εOε−1 would properly be equivalent withO only if there exists a
proper unitε+ such thatεOε−1

= ε+Oε
−1
+

. Therefore, the mapping
(ϑ,U )) → ((U , (O◦))((O) being the proper class ofO) is in general
two - valued or single-valued if and only if there does not exist or does
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exist a unitε ∈ J of norm−1 with the property thatεOε−1
= ε+Oε

−1
+

for a unitε+ of norm 1.
We now observe the following :
The existence ofη = µ′ω−1µ−1, a unit inJ ′ ⇐⇒ the existence ofε,

a unit ofJ with n(ε) = −1 such thatεOε−1
= ε+Oε

−1
+ for someε+ a

unit ofJ with norm 1.
Now, n(η) = n(µ′)(µ′)(n(ω))−1n(µ−1) = n(µ′′). (n(ω))−1 if µ′′ = µ′.

µ−1 ∈ Q. Thereforen(η) andn(ω) are of the same sign. Butn(ω) is
< 0 for otherwise,K = k(δ) with δ2 < 0 implies thatn(δ) > 0 and if
n(ω) > 0, thenQ = k

[

1, δ, ω, δω
]

would be definite, contradictory to our
hypothesis. Thereforen(η) = −1. Let ε be any unit ofJ of norm−1.
Then, ifε+ = εαηα−1, we have

ε+Oε
−1
+ = εαηα

−1Oαη−1α−1ε−1
= εαηO◦η

−1α−1ε−1

= εOε−1( since ηO◦η
−1
= O◦).

Conversely, if for anε of norm−1, εOε−1
= ε+Oε

−1
+ then take for

η = α−1εε+α.
We may therefore conclude the following:
The direct mapping ((O), (O◦)) → (ϑ, (U )) is single valued if and

only if the inverse mapping is single-valued. The sets beingfinite, com-
bining this fact with both the mappings by an enumerative argument, 131

we obtain a 1− 1 correspondence in the above. The classes of orders
(O) which are optimally imbedded inJ and isomorphic with (O◦) is
equal to the number of pairs ((O), (O◦)) which in turn is thus equal to
the number of pairs, (ϑ, (U )). But by the deduction from Theorem 5,
the number of ambiguous ideals not containingO◦ - ideals is given by

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1+

{

D
p

})

and the number of ideal classes{U } is h(D), so that the required number
is given by

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1+

{

D
p

})

h(D).
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Note. If Q is definite, the above arguments have to be slightly modified
and the number of units ofJ being finite, we can show by a slightly
different argument, that the number of classes is given by

number of units inJ
2

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1− +
{

D
p

})

h(D)

(if again, the class number ofJ -ideals is 1).

10 Applications, Especially to the Calculation of the
Number of Fixed Points of a CorrespondenceTn

5. We shall first take up the number of elliptic vertices of the funda-
mental domain of the proper unit group of an orderJ of type (q1, q2) of
an indefinite quaternion algebraQ over the rational number fieldk. We
will take up the calculation of parabolic cusps, later, since this does not
require any of the theorems we have proved so far.

1. If τ is an elliptic vertex andε(τ) = τ, thenε is a transformation132

of finite order,εn
= 1 (say). Butε ∈ Q satisfiesε2− s. ε+1 = 0. Now, if

D is the discriminant of this equation, thenε lies in the fieldK = k(
√

D)
andD < 0 implies thatn = 3, 4 or 6. Whenn = 4,D = −4 and when
n = 3 or 6,D = −3. If O =

[

1, ε
]

, thenO is a maximal order optimally
contained inJ andD(O) = D.

As we have already seen in §5, to an elliptic vertexτ of δ (actually
Γ.τ), there corresponds a classη−1εη (n(η) = 1, η ∈ Γ) and to each
such class, there corresponds the proper class of ordersη−1Oη. It is
easily seen that this correspondence is one-one so that the number of
elliptic vertices is equal to the number of isomorphic classes of orders
(O), optimally contained inJ. By theorem 4, this number is given by

∏

p|q1

(

1−
{

D
p

})

∏

p|q2

(

1+

{

D
p

})

h(D),D = D(O).

i) If n = 4, D = −4 and this number is
∏

p|q1

(

1−
(

−4
p

))

∏

p|q2

(

1+

(

−4
p

))

.1
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since the modified Legendre symbol is the ordinary Legendre sym-
bol andh(D) = 1.

ii) If n = 3 or 6,D = −3 and this number is then

∏

p|q1

(

1−
(

−3
p

))

∏

p|q2

(

1+

(

−3
p

))

.1

for the same reason as before.

Representation of a Natural Number as a Sum of
Three Squares.

6 Let d be a negative rational integer andK = k(
√

d) (−d squarefree
). Let Q = k(1, i, j, k) be the Hamiltonian quaternion algebra over the133

rational number fieldk. ThenQ is definite andK ⊂ Q.

Now, the orderJ = (i, j, k,
1+ i + j + k

2
) is maximal inQ so that

q2 = 1. The only characteristic prime ofQ is 2 and the class number of
J is 1. The units inJ are 24 in number and are given by

±1,±i,± j,±k,
±1± i ± j ± k

2
.

For the maximal orderO◦ = [1, ω] ⊂ K, ω =
√

d if d . 1 (mod 4)

andω =
1+
√

d
2

if d ≡ 1 (mod 4). Taking the basis representation of

ω, we have

i) ω = X1i + X2 j + X3k , if d . 1 (mod 4), or

ii) ω =
1+ X1i + X2 j + X3k

2
, if d ≡ 1 (mod 4).

But, in either case,

X2
1 + X2

2 + X2
3 = −d.
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It is easily seen that every representation of−d as a sum of three
squares as above as above, is in one-one correspondence witha class of
orders (O), isomorphic with the class (O◦) and optimally contained in
J, so that this number is given by (from Note to Theorem 4, §9)

12(1− (
D
2

))h(D), D = D(O◦) = 4d or d

according asd . 1 (mod 4) ord ≡ 1 (mod 4).
7. We shall now take up the third application, namely the calcula-

tion of fixed points of a correspondenceTn. The fixed points are of two
typed, i) finite and ii) infinite. Firstly, we shall consider the finite ones,
i.e., pointsΓJ .τ on SJ where Imτ > 0. In case

n = m2,Tn =

∑

n(Jνi )=m

ΓJ .νi = T∗n + ΓJ .mwhereT∗n =
∑

Jνi,Jm

ΓJνi .

For ΓJ .m, all points are fixed points and Lefschetz’ theorem is not134

applicable, so that we consider onlyT∗n. In casen , m2, if ΓJτ◦ is a
fixed point, thenΓJ .ν(ΓJ .τ◦) = ΓJν(τ◦) = ΓJ (τ◦) or ν(τ◦) = ε(τ◦) for
someν of norm n andε ∈ ΓJ . In other words,ε−1ν(τ◦) = τ◦. Since
ΓJ .ε−1ν = ΓJν, without loss of generality, we may takeν(τ◦) = τ◦.

Let ν =

(

a b
c d

)

; a, b, c, d are all real andn(ν) = n. t(ν) = a+ d = +t

(say).

Now, ν(τ◦) = τ◦ ⇒
aτ◦ + b
cτ◦ + d

= τ◦ or τ◦ satisfies the equationτ2 −
a− d

c
τ − b/c = 0. Since Imτ◦ > 0, it follows that the discriminant of

this equation
t2 − 4n

c2
< 0 so thatt2−4n < 0 is a necessary condition for

a solution ofν(τ) = τ existing in the finite part of the upper half plane. If
ν′ = u+ vν, u andv rational, thenν′(τ) = τ has the same set of solutions
asν(τ) = τ.

Associate to anyν(∈ Q) of norm n such thatν(τ◦) = τ◦ the order
O = J ∩ k(ν), which, by definition, is optimally imbedded inJ.

Now,

ντ◦ = τ◦ ⇒ η−1ν (η(τ◦)) = η(τ◦) if η ∈ ΓJ
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so that
(

ΓJ .η
−1νη

)

(

ΓJ .τ◦
)

= ΓJ .ητ◦ = ΓJτ◦

Therefore to one fixed pointΓJ .τ◦, we may make correspond a whole

class of orders
{

η−1Oη; η ∈ ΓJ
}

, which are optimally imbedded inJ,

and which contain aν of normn.
Conversely, given a class of orders

{

η−1Oη; O = J ∩ k(ν)
}

(for 135

which D(O) = ∆ < 0 andO containing aν of normn), then the solution
of ν(τ) = τ is a fixed point.

So we have now a one-one correspondence between finite fixed
pointsΓJ .τ◦ and classes of quadratic subfieldsK of Q for which there
is aν ∈ K ∩ J, of normn and discriminant ofK is < 0.

Let O = J ∩ K =

[

1,
x+ ν

f

]

; x, f integers andf > 0.

Here t = tr(ν) satisfies (t2 − 4n) < 0 and∆ =
t2 − 4n

f 2
≡ 0, 1

(mod 4). Byt, f andn, the class ofO is uniquely determined and we
have as many fixed points as there are such isomorphic classeswith a
negative discriminant. By Theorem 4 of §9, the number of suchclasses
is given by the following sum over all admissible∆,

∑

t, f
∆<0

∏

p|q1

(

1−
{

∆

p

})

∏

p|q2

(

1+

{

∆

p

})

h(∆).

Let W(∆) denote the number of unitsinO .(O ⊂ K and K being
imaginary, this is finite). Then, for all unitsε ∈ O , ν andεν have dif-
ferent traces but correspond to the same fixed point (except for tr(ν) =
0, ε = −1) so that we would have counted each fixed pointW(∆) times
in the above sum, with the exception of thoseν for which tr(ν) = 0 in
which case the fixed points belonging toνwould have been counted only
1
2

W(∆) times (since here for the unitε = −1, εν = ν̄). Even with this

correction the above sum would not yet be the number of fixed points,
as the following consideration shows:

The sum would be the correct number of fixed points, if aΓJτ◦
occurs only in one branchΓJνi of the correspondenceTn =

∑

i
ΓJ .νi
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But, in fact ΓJ .τ◦ may be fixed by more than one branchΓJ .νi. 136

Let ΓJ .ν1, ΓJ .ν2 be two branches fixingΓJ .τ◦. Let O1 =

[

1,
x1 + ν2

f2

]

andO2 =

[

1,
x2 + ν2

f2

]

be the orders associated with these two branches.

Then, if (t2, f2) , (t1, f1), the fixed pointΓJ .τ◦ would have been counted
twice in the above sum, as it should be. But it may happen that (t1, f1) =
(t2, f2), i.e., t1 = t2 and f1 = f2 and yetΓJ .ν1 , ΓJ .ν2. In other words,
ν1 = ν̄2 andν1 , εν2(ε, a proper unit). Therefore the number of fixed
points ofTn is twice the above sum except for the termst = 0 which
should be kept unchanged. So the number of fixed points is finally given
by,

F =
∑

t, f

∏

p|q1

(

1−
{

∆

p

})

∏

p/q2

(

1+

{

∆

p

})

h(∆)
ω(∆)

(*)

(∆ = (T2−4n) f −2 ≡ 0, 1 (mod 4) and whereω(∆) =
1
2

number of units

of O(∆) =
1
2

W(∆).

ii) n = m2. In this case, we haveTn = T∗n+ΓJ .m. We only calculate
the number of fixed points ofT∗n. The considerations are the same as
above with the exception that thoseν = ε.m must not be counted forε,
a unit ofO.

ε = ±1 would thatt = ±2m⇒ t2 − 4n = 0 which had already been
excluded. Butε may be a third, fourth or sixth root of unity.

a) ε4
= 1.t(ν) = mt(ε) = 0 since eitherε2 − 1 = 0 or ε2

+ 1 = 0. f = m
and (t2−4n) f −2

= −4 so thath(−4) = 1 andω(−4) = 2. The number137

of fixed points of order 4 is given by (∗) with these special values.

i.e., =
1
2

∏

p|q1

(

1−
(

−4
p

))

∏

p|q2

(

1+

(

−4
p

))

b) ε3
= 1 or ε6

= 1. Eitherε2
+ ε + 1 = 0 or ε2 − ε + 1 = 0, so that

t(ν) = mt(ε) = ±mand f = m; (t2 − 4n) f −2
= −3. Furtherh(−3) = 1

andω(−3) = 3 in either case. The number of fixed points of order 3
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and 6 is given by 2(∗) since both are equal.

i.e., =
2
3

∏

p|q1

(

1−
(

−3
p

))

∏

p|q2

(

1+

(

−3
p

))

.

Hence the total number of fixed points ofT∗n is obtained by subtract-
ing the above terms from (∗). In other words, it is given by

∑

t, f
f>0 integral

∏

p|q1

(

1−
{

∆

p

})

∏

p/q2

(

1+

{

∆

p

})

h(∆)
ω(∆)

− 1
2

∏

p/q1

(

1−
(

−4
p

))

.

∆ = (t2 − 4n) f −2 ≡ 0, 1 (mod 4)
∏

p/q2

(

1+

(

−4
1p

))

− 2
3

∏

p|q1

(

1−
(

−3
p

))

∏

p|q2

(

1+

(

−3
p

))

− 2
√

n < t < 2
√

n

8. We shall now compute all the parabolic cusps of fundamental
domainD of the proper unit groupOJ of an orderJ of the type (q1, q2)
(hereq1 = 1 since otherwise,D is bounded). In fact, ifk is the number

of prime divisors ofq2, these cusps are the pointsτ = i∞, 1
q′
, q′|q2(q′ ,

q2); 2k in number.
The proof consists of two parts: (i) these points are inequivalent with

respect to the groupOJ or ΓJ . (ii) any rational cusp is equivalent to one
these by means os elements ofΓJ .

(i) a) The pointsτ = i∞ and
1
q′
, q′|q2(q′ , q2) are inequivalent. 138

If not, there will exist

(

a b
q2c d

)

∈ OJ such that
aτ + b

q2cτ + d
=

1
q′

((τ

being the pointsi∞), i.e.,
a

q2c
=

1
q′

which is impossible sinceq′ is a

proper divisor ofq2 anda, c are integers.

b) The points
1
q′

and
1
q∗

(q′ , q∗) are inequivalent. Letq2 = q′q′′.

Supposing
a+ bq′

q2c+ dq′
=

1
q∗

which⇒ a+ bq′

cq′′ + d
=

q′

q∗
, i.e., q∗(a + bq′) =
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q′(cq′′+d). Therefore there existsp|q∗ which divides eitherq′ or cq′′+d.
But (cq2, d) = 1⇒ (cq′′, d) = 1, so that ifp|q′ in which casep|q′′ and
p|cq′′ + d, which is not possible simultaneously.

Henceq∗|q′- Without loss of generality, we could have assumedq∗ ≥
q′ or else we can argue with the inverse transformation. Thus wearrive
at a contradiction unlessq∗ = q′.

(ii) Any parabolic cusp (which is of the form
α

β
, (α, β) = 1) is

equivalent toi∞, 1
q′

; q′|q2.

(a) Let
α

β
be a parabolic cusp (α, β) = 1. If q2|β let β = q2c. Then

α

β
∼

i∞ for
ατ + b

q2cτ + d
=

α

q2c
if τ = i∞; (b, d) being chosen in such a way

that

(

α b
q2c d

)

∈ ΓJ which is possible, since (α, β) = (α, q2c) = 1.

(b) q2 ∤ β. Let (β, q2) = q′ andβ = q′β′′. Then (β′′, q2) = 1;q2 = q′q′′.

Our object is to find

(

a b
q2c d

)

∈ ΓJ such that
aα + bβ

q2cα + dβ
=

1
q′

.

(α, β) = 1 and (αq′′, β′′) = 1 ⇒ there exists integersa◦, b◦, c◦, d◦
such thata◦α + b◦β = 1 andc◦q′′α + d◦β′′ = 1 orq2c◦α + d◦β = q′.139

Now q′′cα + dβ′′ = 1 if q′′c = q′′c◦ + q′′tβ′′ andd = d◦ − q′′tα,
with arbitraryt. We determinet in such a way thatd ≡ α (mod q′).
This is possible because (αq′′, q′) = 1.

Now, a◦α ≡ 1 (modq′) andd ≡ α (mod q′) imply that a◦d ≡ 1
(mod q′).

Similarly a◦, b◦ may be replaced bya = a◦ + sβ andb = b◦ − sα.

We chooses in such a way that

∣

∣

∣

∣

∣

∣

a b
q2c d

∣

∣

∣

∣

∣

∣

= 1. For the same, we have

∣

∣

∣

∣

∣

∣

a b
q2c d

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a q′b
q′′c d

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a◦ + sβ q′(b◦ − sα)
q′′c d

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a◦ q′b◦
q′′c d

∣

∣

∣

∣

∣

∣

+ s

∣

∣

∣

∣

∣

∣

β −qα
q′′c d

∣

∣

∣

∣

∣

∣

= a◦d − q2b◦c+ q′s( sinceq2cα + dβ = q′).
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a◦d ≡ 1 (modq′)⇒ a◦d− q2b◦c ≡ 1 (modq′) = 1− sq′ (say). Thuss
can be determined.

Collecting the above results, we have

∣

∣

∣

∣

∣

∣

α b
q2c d

∣

∣

∣

∣

∣

∣

= 1; aα + bβ = 1 and

q2cα + dβ = q′ and thus

aα + bβ
q2cα + dβ

=
1
q′
.

After having found the parabolic cusps, we have still got to compute
the multiplicity of each such fixed point.

a) The pointτ = i∞. In this case, the local uniformiser is given by
ζ = e2πiτ

i)
√

n . 0 (mod 1). LetTn =
∑

i
ΓJνi , whereνi =

(

n1 n2

0 n3

)

n1, n3 >

0;n1n3 = n and 0≤ n2 < n3.

Now, νi(τ) =
n1

n3
τ +

n2

n3
and the local uniformiserζ is mapped into 140

ζi = ζ(νi(τ)) = e
2πi

n1τ + n2

n3 = ζ

n1

n3 e2πin2/n3 Let (n1, n3) = d and

n1 = n′1d, n3 = dn′3. Thenζi = ζ

n′1
n′3 .e2πin2/dn3 Consider the func-

tionse2πγ/n′3.ζn′1/n
′
3(0 ≤ r < n′3). These are all analytic continuations

of one another and they represent one branch of the correspondence
Tn and we have for the multiplicity for this branch min(n′1, n

′
3). But

0 ≤ n2 < d.n′3 implies that we haved branches with the same
n′1, n

′
3 and the total multiplicity corresponding to these branchesis

dmin(n′1, n
′
3) = min(n1, n3). This being the same for all branches

whenevern1, n3 range through divisors ofn such thatn1n3 = n, we
obtain for the totally multiplicity of the fixed pointΓJ .τ, 2

∑

d|n
d<
√

n

d.

ii)
√

n ≡ 0 (mod 1). Ifn = m2, Tn = T∗n + ΓJm. The above argument
applies forT∗n and we have multiplicity 2

∑

d|n
d<
√

n

d and corresponding
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to the termΓJ .m, we haveζi = e2πin2/m.ζm/m and a similar argument
as in (i) shows the multiplicity to bem, but it is actually onlym− 1
since we should not take into account the term correspondingto

n2 = 0, i.e.,

(

m 0
0 m

)

this being the identity map.

Hence the total multiplicity is here given by,

2
∑

d|n
d<
√

n

d +
√

n− 1.

(b) τ =
1
q′
, q′|q2; q′ , q2.

Firstly, we shall calculate the local uniformising parameter atΓJ .
1
q′

141

and then see that the multiplicity is exactly the same as thatfor i∞.

If λ =

(

1 0
−q′ 1

)

, thenλ

(

1
q′

)

= ∞. We wish to fine a primitive

transformationρ ∈ ΓJ such thatρ(
1
q′

) =
1
q′

. Letσ be a transformation

fixing ∞, i.e., σ =

(

1 s
0 1

)

and all the transformationsλ−1σλ fix
1
q′

.

Now,

λ−1σλ =

(

1 0
q′ 1

) (

1 s
0 1

) (

1 0
−q′ 1

)

=

(

1− q′s s
−q′2s 1+ q′s

)

is an element ofΓJ implies thatq′′|s (whereq′′ =
q2

q′
) and since we

require a primitive transformation of this type, we may takes= q′′.

Consider nowζ = e
2πi
λ(τ)
q′′ ; τ, a point in a neighbourhood of

1
q′

.

Now,
1
q′′
λρ(τ) =

1
q′′
σλ(τ) =

1
q′′

λ(τ) + q′′

1
=
λ(τ)
q′′
+1, by our choice of

σ, so thatζ remains unaltered. In other words,ζ takes any neighbour-

hood ofΓJ .
1
q′

in SJ to the unit circle and hence is a local uniformiser

atΓJ .
1
q′

.
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Let Tn =
∑

iΓJ .νi; νi =

(

n1 n2

0 n3

)

; n1, n3 > 0; n1n3 = n.0 ≤ n2 < n3.

(In casen is a square,T∗n has to be considered). IfΓJ .νi

(

1
q′

)

=

ΓJ .
1
q′

thenνi

(

1
q′

)

= εi

(

1
q′

)

; ε−1
i νi

(

1
q′

)

=
1
q′

.

Call ν′i = ε
−1
i νi. Since nowλ

(

1
q′

)

= ∞, thenλν′iλ
−1
= µi fix ∞, and

hence are of the form

(

s1 s2

0 s3

)

ν′i = µiλ =

(

1 0
q′ 1

) (

s1 s2

0 s3

) (

1 0
−q′ 1

)

=

(

s1 − s2q′ s2

q′(s1 − s2q′) − q′s3 s3 + q′s2

)

in J implies that (s1 − s2q′) − s3 ≡ 0 (modq)′′. Such ans2 can always 142

be found out since (q′, q′′) = 1. ands2 takes each residue class mods3

exactly once.

We shall prove that as
{

Jν′i
}

run through a system of distinct integral

left ideals of normn,
{

Jν′i
}

also run through a system of distinct integral

ideals of normn; forJν′i = Jν′j ⇒ for primesp|n (and hencep ∤ q1q2),

(Jµi)p = Jpλν
′
iλ
−1
= Jpν

′
iλ
−1
= Jpλν

′
jλ
−1
= Jpµ j

(for λ is a unit ofJp).
For primesp ∤ n, (Jν′i )p = Jp = (Jν′j)p and also (Jµi)p = Jp =

(Jµ j)p.
Hence in all cases

Jν′i = Jν′j ⇐⇒ (Jν′i )p

= (Jν′j)p⇐⇒ (Jµi)p = (Jµ j)p⇐⇒ Jµ = Jµ j .

The local uniformising parameterζ at
1
q′

goes over toν′i

(

1
q′

)

and in
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fact

ν′i (ζ
′
q) = e2πiλ(ν′i (τ))/q

′′
= e2πiµiλ(τ)/q′′

= e2πi
S1
S3

λ(τ)
q′′ e

2πi
S1

S3q′′ = ζ
S1/S3
q′ e2πiS2/S3q′′

So,ζq′ behave similar toζ∞ under the correspondences and the sum of
multiplicities of the branches is the same as that forζ∞.

The parabolic cusps being 2k2 in number, the number of parabolic143

cusps with due multiplicity is given by 2
∑

d|n
d<
√

n

d + γn

whereγn =















0 if
√

n . 0 (mod 1)
√

n− 1 if
√

n ≡ 0 (mod 1).

(i) If
√

n . 0 (mod 1) we had obtained by Lefschetz’ fixed point
theorem,tr1(Tn) = 2

∑

d/n
d- (number of finite fixed points ofTn) -

(number of infinite fixed points ofTn).

i.e., tr1(Tn) = 2
∑

d|n
d −

∑

t,r
f>o,∆=(t2−4n) f −2≡0,1 (mod 4)

−2
√

n<t<2
√

n

∏

1−|q1

(

1−
{

∆

µ

})

h(∆)
ω(∆)

−

































2k2+1
∑

α/n
α<
√

n

































(ii) If
√

n ≡ 0 (mod 1),Tn = T∗n + ΓJ .mso that (in caseq1 = 1).

tr1(Tn) = tr1(T∗n) + tr1(T∗n) + 2g. By the application of Lefschetz’
fixed point theorem for the mappingT∗n,

total number of fixed points (finite and
infinite) of T∗n with due multiplicity

}

= 2

















∑

d|n
d − 1

















− tr1(T∗n).
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Therefore

tr1(T∗n) = 2
∑

d|n
d − 2− (finite fixed points) - (infinite fixed points)

= 2
∑

d|n
d − 2−

∑

t, f

∏

p|q1

(

1−
{

∆

p

})

∏

p|q2

(

1+

{

∆

p

})

h
ω

(∆)

+
1
2

∏

p|q1

(

1−
(

−4
p

))

∏

p|q2

(1+

(

−4
p

)

+
2
3

∏

p|q1

(

1−
(

−3
p

))

∏

p|q2

(

1+

(

−3
p

))

− 2k2

































2
∑

d|n
d<
√

n

d +
√

n− 1

































( in caseq1 = 1).

From §6, we have a formula for genus and using the expression for 144

the number of elliptic vertices we obtain forg,

2g = 2− 1
2

∏

p|q1

(

1−
(

−4
p

))

∏

p|q2

(

1+

(

−4
p

))

− 2
3

∏

p|q1

(

1−
(

−3
p

))

∏

p|q2

(

1+

(

−3
p

))

− 2k2 +
1
6

∏

p|q1

(p− 1)
∏

p|q2

(p+ 1).

On adding the above two, we obtain finally

tr1(Tn) = 2
∑

d|n
d − (2k2+1

∑

dn
d<
√

n

d, in caseq1 = 1)

−
∑∏

p|q1

(1−
{

∆

p

}

)
∏

p|q2

(

1+

{

∆

p

})

h
ω

(∆) + γn

whereγn =































0 if
√

n . (mod 1)

(−2k2
√

n, in caseq1 = 1)+ 1
6

∏

p|q1

(p− 1)
∏

p|q2

(p+ 1),

if
√

n ≡ 0 (mod 1).
Of course, all these formulae hold good only forn such that

(n, q1.q2) = 1.
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Note. (i) In case g= 0, this trace is always0. So the trace formula
implies relations between the class numbers h(∆) of different imag-
inary quadratic fields. An example is given in the case q1 = q2 = 1,
whereΓ is the full modular group.

2
∑

d|n
d≥
√

n

−
∑

∆=(t2−4n) f 2

h(∆)
ω(∆)

+ γn = 0,

whereγn =















0 if
√

n . 0 (mod 1)

−
√

n+ 1
6 if

√
n ≡ 0 (mod 1)

(ii) One may obtain other class number relations among which the
following one is most remarkable:

∑

t≡ n+1
2 (mod 2)

h
ω

(t2− 4n) f −2) =
1
3

∑

d|n
d−

∑

d|n
d≤
√

n

∗d(n ≡ 1 (mod 2))

(M. Eichler, Jour. of the Ind. Math. Soc., 1956).

Using the above two relations, one can compute the class numbers145

of imaginary quadratic fields, by a recursion scheme.

(iii) These and similar class number relations are quoted in Dickson’s
“History of the Theory of Numbers”, Vol. III, Chap. VI. They
have been proved by application of the theory of elliptic modular
function. Here we have seen that they originate from the topo-
logical background of that theory. The topological methodsare
even more powerful since they lead also to class number relations
derived from quaternion algebras Q� M2(k) which cannot be ob-
tained from the theory of modular functions.

Our consideration from a natural branch of algebraic numbertheory,
which contains yet a number of open problem. One of these is the inves-
tigation of the algebraic geometric aspects of the correspondencesTn of
those algebraic curves which are uniformized by the groupsΓJ . In case
of ΓJ being the classical modular group, these investigations lead to the
theory of complex multiplication.
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Another question is the following one: the eigenvalues of the repre-
sentations ofTn by the first homology group, are integers from a totally
real algebraic number field. What is the meaning of this field?

In case ofQ � M2(k) it has been proved (M. Eichler, Quaternare
Formen und die Rienannsche Vermutung fur die Kongruenzzetafunk-
tion, Archiv der Mathematik,V, 1957, p.355− 366) that the absolute

values of the eigenvalues ofTn, for n, a prime are≤ 2n

1
2, up to a finite

number of exceptions at most. For an arbitraryn, there exists for every

ε > 0, a constantCε such that values are≤ Cεn

1
2
+ε

.





Chapter 5

Automorphic Forms

11 Automorphic Forms

1. Let Γ be a group of (2, 2) real matrices

(

a b
c d

)

such thatad− bc> 0. 146

Furthermore, assume thatΓ considered as a group of transformations on
the upper half plane, is a “discontinuous group of the first kind”, i.e., it
possesses a fundamental domainF, which is bounded by a finite number
of sides and has only a finite number of parabolic cusps.

Definition. An automorphic formϕ(τ) belonging to the groupΓ and of
degree−2 f (2 f integral) is a meromorphic functionϕ(τ) in Im τ > 0,
with the property that

ϕ(τ) = ϕ

(

aτ + b
cτ + d

) (

ad− bc

(cτ + d)2

) f

for

(

a b
c d

)

∈ Γ.

ϕ(τ) is an integral form if it is regular in the upper half plane including
the parabloiccusps of F.

By virtue of the transformation formula ofϕ(τ), one can associate
to ϕ(τ), the differentialϕ(τ).dτ f , of degreef , on the Riemann surface
obtained by identifying the sides ofF and adjoining the cusps.

We shall now give some examples of automorphic forms.
1. Poincare Series

131
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The seriesϕ(τ) =
∑



















a b
c d



















∈Γ

1

(cτ + d)2 f
◦ f

(

aτ + d
cτ + d

)

for a suitable

f (τ), is called a Poincare theta-seriesand is an automorphic form of
degree−2 f for the groupΓ.

Some special cases of Poincare Series are discussed in147

(i) H. Weyl - Die Idee der Riemannschen Fläche, 1955, (Page 151)

(ii) Ford - Automorphic Functions

(iii) C. L. Siegel - Ausgewahlte Fragen der Funktionentheorie-I I
(Göttingen) (Page 50). One of the important special cases of Poin-
care Series is the so-called Einstein series, for whichf (τ) ≡ 1.
It was first studied by Hecke (Theorie der Eisensteinschen Reihe
Hamburger Abhandlungen, 1927), in the case of principal congru-
ence subgroups of the modular group.

2. Theta-series.

2. Let F(X) =
4 f
∑

i,k=1
fikXiXk be a positive definite quadratic form in

an even number 4f of variables, with integral coefficients and further
fii ≡ 0 (mod 2), (−1)2 f | fik | = a square. Consider now the series

ϑF(τ) =
∑

X integral

eπiτF(X ).

Then this convergent series defines an automorphic form of degree

−2 f for the groupΓ(q) : (

(

a b
c d

)

modular andc ≡ (mod q)) whereq

is the smallest integer for whichq.( fik)−1 is integral with even diagonal
elements. That it is a modular from was proved by Hermite.

The above series can obviously be written in the from:ϑ(τ) =
∞
∑

n=1
cne2π in c, cn being the number of representations ofn by

1
2

F(X).

When F is definite,cn is finite, and from the theory of modular cor-
respondences, we can get some information aboutcn.

3. One can also form a theta series with weights which are homoge-148
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neous polynomials of a certain type. Consider

ϑ(τ,Pν, F) =
∑

X integral

Pν(X)eπiτF(X )

whereP(X1 . . .X4 f ) is a homogeneous polynomial of degreeν in 4 f

variables and satisfies the Laplacian
∑

i,k
fik

∂2Pν
∂Xi∂Xk

= 0 associated with

the form F(X). Then it was proved by B. Schoeneberg (Math. An-
nalen, 1939, Vol. 116, Das Verhalten von mehrfachen thetareihen fur
Modulsubstitutionen) that the series represent a modular form of degree
-(2 f + ν) for the groupΓ(q), q being defined as before.

3. We may also define theta-series associated withF(X) with inte-
gral coefficient from a totally real algebraic number fieldK.

But now, this will be an automorphic form with respect to a sub-
group of the corresponding Hilbert group. For example, in a particular
case, whenK = k(

√
d), d > 0,

ϑ(τ1, τ2) =
∑

X integral inK

e2πi(τ1F(X̄)+τ2F(X)

(X being a vector with 4f components andν → ν̄ denoting the non
identity automorphism ofK/k).

It can be shown then thatϑ(τ1, τ2) converges absolutely and uni-
formly in Im τ1 > 0, Im τ2 > 0.

Definition. An analytic functionϕ(τ1, τ2)of 2 complex variables, mero-
morphic inIm τ1 > 0, Im τ2 > 0, is automorphic formof degree−2 f for

the group

(

a b
c d

)

with a, b, c, d integers in K and ad− bc, a unit of K)), 149

if

ϕ(τ1, τ2) = ϕ(ε(τ1), ε̄(τ2)).
1

(γτ1 + δ)2 f (γ̄τ2 + δ̄)2 f

where ε =

(

α β

γ δ

)

∈ Γ.



134 5. Automorphic Forms

It can be shown then that the above defined theta-series is an au-
tomorphic form of degree−2 f for a subgroup of the Hilbert modular
group ofK. Such forms are called Hilbert modular forms.

4. Now, letϑ(τ1, τ2) be an arbitrary Hilbert modular form of degree
−2 f (with respect to the whole Hilbert modular group).

We shall now reduceϑ(τ1, τ2) to an automorphic formϕ(τ) in one
variableτ, by the following procedure.

Putting τ1 = τ and τ2 =
−1
τ
, r > 0, a rational number so that

Im(τ1) > 0 implies Im(τ2) > 0, we shall replaceτ1, τ2 by τ′ = ε(τ)

andτ′′ = ε̄(
−1
rτ

). We then seek for conditions onε such thatτ′′ = − 1
rτ′

.

In other words,

ᾱ
(

− 1
γτ
+ β̄

)

γ̄(− 1
γτ

) + δ̄
=
−(γτ + δ)
γ(ατ + β)

or,±
(

γβ̄ −ᾱ
γδ̄ −γ̄

)

=

(

−γ −δ
γα γβ

)

so thatε =

(

α β̄

γβ̄ −ᾱ

)

. If r is an integer and ifα, β are also integers, then

ε is a unit in some order of an indefinite quaternion algebra defined by

Q = [1, ω,Ω, ωΩ]

with ω2
= d > 0 andΩ2

= r > 0. We shall call the unit group of

this order byΓ. Define nowϕ(τ) = ϑ(τ,
−1
γτ

). τ−2 f , thenϕ(τ) is an

automorphic from of degree - 4f with respect to the groupΓ, for150

ϕ(ε(τ)) = ϑ

(

ε(τ),− 1
γε(τ)

)

(ε(τ))−2 f

= ϑ

(

ε(τ), ε̄

(

− 1
γτ

))

(ε(τ))−2 f

= ϑ

(

τ,− 1
γτ

)

(γτ + δ)2 f
(

γ̄

(

−1
γτ

)

+ δ̄

)2 f

(ε(τ))−2 f

= ϑ

(

τ,− 1
γτ

)

(γτ + δ)2 f
(

β

τ
+ α

)2 f ( (γτ + δ)
(ατ + β)

)2 f
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= ϑ

(

τ,− 1
γτ

)

(γτ + δ)4 f τ−2 f

= ϕ(τ) (γτ + δ)4 f

The Hilbert modular formϑ(τ1, τ2) being periodic of periodsα, ᾱ(α
being an integer inK = k(

√
d)(d > 0)) it has a series expansion of the

form

ϑ(τ1, τ2) =
∑

ν,γ̄>0
v∈θ−1

cγe
2πi(τ1γ+τ2ν̄)(θ is the different ofK)

so that on replacingτ1 = τ, τ2 = −
1
rτ

, we have

ϑ

(

τ,− 1
γτ

)

=

∑

v,v̄>o
γ∈θ−1

Cγe
2πi(vτ−ν̄( 1

γτ
))

Consider the substitutionτ → λ(τ) whereλ =

(

ε 0
0 ε−1

)

. Then

ϑ(ε2τ1, ε̄
2τ2) = ϑ(τ1, τ2) implies that

∑

ν

cνe
πi(τ1ε

2ν+τ2ε̄2ν)
=

∑

ν

cνε−2e2πi(τ1ν+τ2ν̄)

=

∑

ν

cνe
2πi(τ1ν+τ2ν̄)

and by uniqueness of the expansion, on comparison of coefficients,cν =
cνε−2 for every unitε of K.

We may therefore write 151

ϑ

(

τ,− 1
rτ

)

=

∑

(ν)

c(ν)Pν(τ)

where (γ) denotes the class of allνε−2 andPν(τ) =
∑

ε
e2πi(νε2τ−τε2 1

rτ ) the

summation overε running over all powers ofε◦, the fundamental unit
of K.
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From the definition ofPν(τ), we have the following product formula,

Pν(τ).Pµ(τ) =
∞
∑

s=−∞
Pν+µε◦2s(τ)

whereε◦ is the fundamental unit ofK. For,

Pν(τ) =
∞
∑

n=−∞
e2πi

(

νε2n
◦ τ − ν̄ε2n

◦

(

1
rτ

))

and Pµ(τ) =
∞
∑

m=−∞
e2πi

(

µε2m
◦ τ − µε2m

◦ .

(

1
rτ

))

,

so that

Pν(τ)Pµ(τ) =
∑

n,m

e2πi((νε2n
◦ +µε

2m
◦ )τ−(νε2n

◦ +µε
2m
◦ )( 1

rτ ))

=

∞
∑

s=−∞

∑

n

e2πi((ν+µε2s
◦ )ε2n

◦ (τ)−(ν+µε2s
◦ )ε−2n

◦ ( 1
rτ ))

=

∞
∑

s=−∞
Pν+µε2s

◦
(τ) whereε2s

◦ .ε
2n
◦ = ε

2m
◦ .

If Γ denotes the unit group of an order of the quaternion algebra
Q we introduced before, then we had seen that the functionf (τ) =

τ−2 fϑ

(

τ,− 1
rτ

)

is an automorphic form of degree−4 f for Γ.

Now, the above expression forϑ

(

τ,
−1
rτ

)

leads at once to the follow-

ing:
ϕ(τ) = τ−2 f

∑

(ν)

c(ν)pν(τ)

with Pν − s having the above property. A natural question arises now152

namely, is it true thatanyfrom ψ(τ) for the groupΓ has an expansion of
the above type and if so, is such an expansion unique? This question is
still unsolved.
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Petersson metric.

5. We shall now introduce the inner product (ϕ, ψ) in the space of au-
tomorphic forms of degree−2 f , which was first defined by Peterson in
1939 (Math. Annalen, Vol. 116, page 406). IfQ is a division algebra,ϕ
andψ may be arbitrary, but in case ofQ being a matrix algebra or when
Γ is a subgroup pf the module of the modular group, eitherϕ or ψ must
be a cusp form. (This condition becomes necessary for the convergence
of the integral we are going to define). For two such forms,ϕ, ψ,

(ϕ, ψ) =
∫

F
ϕ(τ)ψ(τ) y2 f dxdy

y2

whereF is a fundamental domain in the hyperbolic plane for the con-
cerned group.

Now, if F1 is any domain in the hyperbolic plane and if we replace
F1 by εF1, then the above integral taken overF1 or εF1 is the same

whereε =

(

a b
c d

)

∈ Γ. For

(ϕ, ψ) =
∫

F1

ϕ(τ).ψ(τ).y2 f dx dy

y2

=

∫

F1

ϕ(ε(τ))

(

ad− bc

(cτ + d)2

) f

(ψ(ε)(τ))













ad− bc

(cτ + d)2













f

y2 f

.

(

|cτ + d|2
ad− bc

) f
dx′ dy′

y′2

where y′ = Im(ε(τ)) = Im τ.
ad− bc

|cτ + d|2 = y.
ad− bc

|cτ + d|2

=

∫

εF1

ϕ(τ)ψ(τ).y2 f .
dx′ dy

y′2
, τ′ = ε(τ).

153

Thus, if the fundamental domain is split up asF = F1∪ · · · ∪Fn and
if F′ = ε1F1∪ · · · ∪ εnFn whereεi ∈ Γ, then (ϕ, ψ) taken overF or F′ is
the same.
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12 Representation ofTn by Automorphic Forms

6. Let Tn =
∑

i
Γ jνi , νi =

(

ai bi

ci di

)

with n(γi) = n. If ϕ(τ) is an automor-

phic form fo degree−2 f for the groupΓτ, we define

ϕ(τ).Tn = nf .
∑

i

ϕ(
aiτ + bi

ciτ + di
).(ciτ + di)

−2 f
= ψ(τ) (say).

Thenψ(τ) is again an automorphic form of degree−2 f for the group
Γτ. Further one can show that an integral forms goes to an integral
forms byTn and a cusp form to a cusp form. The cusp forms are of
special interest to us. Now, since the cusp forms of degree−2 f form a
finite dimensional vector space, letϕ1(τ), . . . , ϕd(τ) be one basis for the
same.Then

ϕi(τ).Tn =

d
∑

j=1

ci jϕ j(τ) (say) or

























ϕ1(τ)
...

ϕd(τ)

























Tn = (ci j )

























ϕ1(τ)
...

ϕd(τ).

























In order words, this gives rise to a representation of the ring of mod-
ular correspondences
math f rakR= {Tn}, namelyTn→ (ci j ) = Rf (Tn).

We shall now prove that the above representation matrix is hermitian154

if we choose the basisϕ1, . . . , ϕd to be orthonormal with respect to the
Petersson metric. It is enough to show that

(ϕ ◦ Tn, ψ) = (ϕ, ψ ◦ Tn).

For, thenϕ1, . . . , ϕd being orthonormal, (ϕi , ϕ j) = δi j , so that if

ϕi ◦ Tn =

d
∑

j=1

mi jϕ j , then

(ϕi ◦ Tn, ϕk) = (ϕi , ϕk ◦ Tn) implies that
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∑

j

mi jϕ j , ϕk



















=



















ϕi ,
∑

j

mmk jϕ j



















or mik = m̄ki.

i.e., the matrix (mi j ) is hermitian so that all its eigen-values are real.
Now, because of the product formula forTn, it is sufficient to prove that

(ϕ ◦ Tp, ψ) = (ϕ, ψ ◦ Tp)

(ϕ ◦ Tp, ψ) =
∑

i

∫

F
ϕ(νi(τ)).ψ(τ).y2 f dxdy

y2
(ciτ + di)

−2 f

whereF is a fundamental domain forΓ.

If Γ(p) be the group of matrices

(

α β

γ δ

)

∈ Γ with the property
(

α β

γ δ

)

≡
(

1 0
0 1

)

(mod p)

(ϕ ◦ Tp, ψ)Γ =
1

g(p)
(ϕ ◦ Tn, ψ)Γ(p)

whereg(p) is the index ofΓ(p) in Γ.
Nowϕi(τ) = ϕ(νi(τ)).(ciτ+di)−2 f is an automorphic forms of degree

−2 f for the groupν−1
i Γνi and sinceg(p) is also the index ofΓ(p) is each 155

ν−1
i Γνi, we have

(ϕ ◦ Tp, ψ) =
1

g(p)

∑

i

(ϕi , ψ)Γ(p).

On replacingτ by ν−1
i (τ) = ν̄i(τ) and observing that for a suitable

system ofνi , whenνi runs over a system of non-associated integral ele-
ments ofJ of norm p, ν̄i also does the same, we obtain

1
g(p)

∑

i

(ϕi , ψ)Γ(p) =
1

g(p)

∑

i

(ϕ, ψi)Γ(p)

whereψi =
ψ(ν̄i(τ))

(−ciτ + ai)2 f
. Then

1
g(p)

∑

i

(ϕ, ψi)Γ(p) =
1

g(p)
(ϕ, ψ ◦ Tp)Γ(p) = (ϕ, ψ ◦ Tp)
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Consider integral modular formsϕ(τ) of degree−2 f = −2. Then
ϕ(τ)dτ = du becomes a differential holomorphic at all points of the sur-
faceSJ except perhaps at the vertices and cusps. In the neighbourhood
of an elliptic vertex of ordern, for the differentialdu to be holomorphic,

we required that
ϕ(τ)

(τ − τ◦)n−1
be holomorphic, since

ϕ(τ).d(τ − τ◦) =
ϕ(τ).d(τ − τ◦)n

n(τ − τ◦)n−1
.

In the neighbourhood of the cusps, for example, at∞, ϕ(τ)dτ =
ψ(τ)d(e2πiτ) (e2πiτ is the local uniformizer) and for the differentialdu
to be holomorphic we require thatψ(τ) be holomorphic orϕ(τ)e2πiτ be
holomorphic. In other words,ϕ(τ) must have a zero at∞.

Similarly at all cusps. Therefore we can look upon the space of156

cusp forms of degree−2 belonging to the groupΓJ as the space of
differentials of the first kind on the surfaceSJ . The space of cusps forms
being invariant underTn, we have a representation ofTn in the space of
differentials of the first kind onSJ . We shall now find explicitly the
trace of this representation.

Let ϕ1(τ)dτ, . . . , ϕg(τ)dτ be a base for the space of differentials of
the first kind andc1, . . . , c2g be a system of representatives of a basis for

the first homology group. Then, settingν j =

(

a j b j

c j d j ,

)

∫

ci

ϕk(τ).Tndτ =
∑

j

∫

ci

ϕk

(

a jτ + b

c jτ + d j

)

.d

(

a jτ + b

c jτ + d j

)

=

∑

i

∫

ν j (ci )

ϕk(τ)dτ =
∫

ci .Tn

ϕk(τ)dτ.

Let ϕk(τ) ◦ Tn =
g
∑

t=1
mktϕt andci ◦ Tn =

2g
∑

j=1
c j Mi j with M ji integers.

Then
g
∑

t=1
mktrti =

2g
∑

j=1
rk jM ji whereR=

(

∫

ci

ϕk(τ)dτ)
)

= (rki) is the period

matrix (Riemann matrix) ofSJ . From above we have

mR= RM or mR= R̄M
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since the elementsM are integers.

On denoting the (2g, 2g) matrix
(R
R

)

(R̄denoting the conjugate ofR)

by p, we have

(

m 0
0 m̄

)

P = PM or 2tr(m) = tr(M), sinceP is known to 157

be non-singular. In other words,

2tr1(Tn) = tr1(T)n.

Note .Even when2 f > 2 (but Γ has to be the full modular group),
a formula for tr(Rf (Tn)) has been found by Selberg (Report of the In-
ternational Colloquium on Zeta-sanctions, page85). In our case, this
method gives

tr(Rf (Tn)) =
1

nf−1

[

− 2k2+1
∑

d|n
d≤
√

n

d2 f−1−
∑

t, f

∏

p|q1

(

1−
{

∆

p

})

∏

p|q2

(

1+

{

∆

p

})

h(∆)
ω(∆)

· η
2 f−1− η̄2 f−1

η − η̄

whereη =
1
2

(t +
√
∆).

(The trace need not be an integer).





Appendix I

1. We shall, in this appendix, discuss a certain algebraic cohomol- 158

ogy and obtain a mapping forms of degree−2 f on certain cohomology
classes.

Let ϕ(τ) be an automorphic form of degree−2 f with respect to a

groupΓ of matrices

(

a b
c d

)

(a, b, c, d real).

ConsiderΦ(τ) =
1

(2 f − 2)!

∫ τ

τ0
(τ − σ)2 f−2ϕ(σ)dσ where τ◦ is a

fixed point in Im(τ) > 0. The integral exists and by direct verification
d2 f−1

Φ(τ)

dτ2 f−1
= ϕ(τ).

Let nowα =

(

a b
c d

)

∈ Γ. Then, we have, on puttingσ = α(σ),

Φ(α(τ)).
(cτ + d)2 f−2

(ad− bc) f−1
=

1
(2 f − 2)!

τ
∫

α−1(τ◦)

(aτ + b
cτ + d

− aσ′ + b
cσ + d

)2 f−2
·

ϕ(σ)
(cσ′ + d)2 f

(ad− bc) f

(cτ + d)2 f−2

(ad− bc) f−1

ad− bc

(cσ′ + d)2
dσ′

=
1

(2 f − 2)!

τ
∫

α−1(τ◦)

(τ − σ)2 f−2ϕ(σ′)dσ′

=
1

(2 f − 2)!

























τ
∫

α−1(τ◦)

+

τ
∫

τ◦
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= C(α; τ) + Φ(τ)

whereC(α; τ) = 1
(2 f−2)!

τ
∫

α−1(τ◦)

(τ − σ′)2 f−2ϕ(σ′)dσ′ and hence a polyno-

mial of degree≤ 2 f − 2.

Defining Φ(τ).α = Φ(α(τ))
(cτ + d)2 f−2

(ad− bc) f−1
and159

C(τ).α = C(α(τ))
(cτ + d)2 f−2

(ad− bc) f−1
(*)

we may write the above asΦ(τ).α = C(α; τ) + Φ(τ). In other words,

C(α, τ) = Φ(τ).α − Φ(τ),

and consequently forα, β ∈ Γ,

C(αβ; τ) = Φ.αβ − Φ = (Φ.α − Φ).β + (Φ.β − Φ)

= C(α; τ).β + u(β; τ).

We may now assume for the same of simplicity that the elementsof
Γ have determinant 1.

We shall now go into the algebraic meaning behind these formulae.
LetM be a representation module of the groupΓ. A mappingα →

C(α) of Γ into the representation modulem we shall call a 1-cochain,
and if this cochain satisfies the equation

C(αβ) = C(α).β +C(β),

then it is closedor a 1-cocycle. Special cocyclesC(α) = m.(α − 1),
(m being fixed element ofM and 1 denotes the unit matrix) are called
coboundaries. Now, the cocycles forms an additive groupZ and the co-
boundaries from a subgroupB of Z and the quotient groupZ/B is the
first cohomology groupof Γ inM and its elements are calledcohomology
classes.

Take forM, the vector space of polynomial of degree≤ 2 f − 2 and160

the representation ofΓ in m defined as above by (∗). Then, associated
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with everyϕ(τ) we have the following mappingϕ(τ) → {C(α, τ)} and
the cochainC(α) : α → C(α; τ) is a cocycle, as we had seen already.
Thus, to a modular form of degree−2 f , there corresponds a cocycle
C(α). This cocycle still depends on the constantτ0 occurring in the
definition ofΦ(τ). A change ofτ◦ would add a coboundary toC(α), for,
suppose

Φ1(τ) =
1

(2 f − 2)!

τ
∫

τ1

(τ − σ)2 f−2ϕ(σ)dσ

=
1

(2 f − 2)!























τ◦
∫

τ1

+

τ
∫

τ◦

· · ·























= p(τ) + Φ(τ) wherep(τ) =
1

(2 f − 2)!

τ◦
∫

τ1

(τ − σ)2 f−2ϕ(σ)dσ

is a polynomial inτ of degree≤ 2 f − 2. Therefore

Φ1 ◦ α = p(τ).α + Φ(τ).α

and if Φ1 ◦ α − Φ1 = C1(α; τ),

thenC1(α; τ) = p(τ).(α−1)+C(α; τ) orC1(α; τ)−C(α; τ) = p(τ).(α−1)
which shows that the cocycleC1(α) −C(α) is a coboundary.

Consequently, we have now a well-defined mappingϕ(τ) → (a
cohomology class). We may even prove that this mapping is onto.
For, letC be a representative of the cohomology classC̄ andC(α) (for
α ∈ Γ) = C(α; τ), a polynomial of degree≤ 2 f − 2.

Consider now the seriesψ(τ) =
∑

α∈τ

c(α; τ)

(cτ + d)2n
e2πiµα(τ), (µ a positive

integer). Then the series converges forn sufficiently large (only ifΓ is 161

the unit group ofJ =
(

O O
q2O O

)

), and ifβ =

(

a′ b′

c′ d′

)

∈ Γ, we have

(ψ(τ).β)(c′τ + d′)−2n
= ψ(β(τ)).(c′τ + d′)2 f−2−2n

=

∑

α∈Γ

C(α; τ).β

(C′′τ + d′′)2n
e2πiµαβ(τ)
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whereαβ =

(

a′′ b′′

c′′ d′′

)

∈ Γ,C being a cocycle,

(ψ(τ).β)(c′τ + d′)−2n
=

∑

αβ∈Γ

C(αβ; τ)

(C′′τ + d′′)2n
e2πiµαβ(τ)

−C(β; τ)
∑

αβ

e2πiµαβ(τ)

(C′′τ + d′′)2n

= ψ(τ) −C(β; τ)χ(τ)

χ(τ) being a genuine Poincare series, is modular form of degree−2n.

PuttingΦ(τ) =
ψ(τ)
χ(τ)

, we obtain

ψ(β(τ))
χ(β(τ))

(c′τ + d′)2 f−2
= Φ(τ) −C(β; τ).

In other words,

Φ(τ) · β = Φ(τ) −C(β; τ).

On differentiatingΦ(τ), (2 f −1) times and callingϕ(τ) =
d2 f−1

Φ(τ)

dτ2 f−1

we have the required modular formϕ(τ) of degree−2 f (ϕ(τ)) will have
poles in general) and we easily see thatC is the cocycle associated with
ϕ(τ). Again, it is to be noted that the formϕ(τ) is independent of the
representative cocycleC in the classC̄.

We have thus established a two-way mapping (not necessarilyone-162

one), between the space of modular forms of degree−2 f , and with have
the property that they have no logarithmic singularities and the coho-
mology classes defined above.

Remarks. (1) In the above correspondence, though the mappingϕ →
C̄ is unique, the converse mappinḡC −→ ϕ is not uniquely de-
fined. For securing one-one nature, we take the space of classes of
forms of degree−2 f modulo(2 f − 1)th

.̄.
derivatives of forms of de-

gree+(2 f − 2), because the periods of the integrals of these deriva-
tives are0. The rank of the modulo of integral forms taken mod-
ulo the space of(2 f − 2)th derivatives of forms of degree2 f − 2
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can be calculated by application of Riemann-Roch theorem (Refer
M.Eichler, Eine Verallgemienerung der Abelsche Integral,Mathen-
atische Zeitschrift,1957).

(2) The above procedure can be generalized to forms not necessarily
integral but the singularities must be such that no logarithmic terms
can occur. (Ibid).

2. We now study the behaviour ofC(α) under the correspondences
Tn. Let νi be defined as usual andα ∈ ΓJ . Thenνiα = α

′ν j , α
′ ∈ ΓJ ,

with j andα′ depending oni andα. We defined now,

Ψ(τ) = Φ(τ).Tn =

dn
∑

i=1

Φ(τ).νi

=

dn
∑

i=1

(Ciτ + di)2 f−2

(aidi − bici) f−1
Φ

(

(aiτ + bi)
(ciτ + di)

)

.

To the pairi, α, there existj = j(i, α) andα′ = α′(i, α), such that
νiα = α

′ν j . Consequently,

Ψ(τ).α =
dn
∑

i=1

(Φ(τ).α′).ν j = C′(α; τ) + Ψ(τ) with

C′(α) =
dn
∑

i=1

C(α′).ν j = C(α).Tn (definition).

ThusTn are made endomorphisms of the first cohomology group of163

ΓJ in the moduleM of polynomial of degree≤ 2 f − 2. We have only
to show thatC′(α) is closed ifC(α) is closed and that coboundaries are
mapped onto coboundaries. Indeed, ifC(α) = C(α − 1), then

C′(α) =
∑

i

C.(α′ − 1)ν j =

∑

i

C.(νiα − ν j) =















∑

i

C.νi















(α − 1)

Now νiαβ = α
′νiβ = α

′β′νk (say). Then

C′(αβ) =
∑

i

C(α′β′).νk
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=

∑

i

(C(α′).β′ +C(β′)).νk

=

∑

i

C(α′)νi .β +
∑

i

C(β′)νk

or in other words,C′(αβ) = C′(α).β + C′(β) where one has to bear in
mind that j andk are function ofi which assume all values from 1 todn.

It is easy to verify that the above-defined endomorphisms arein fact
independent of the special choice of theνi.

Then, the natural question is to ask for the trace of this endomor-
phisms and this has been calculated even for more general discontin-
uous groupsΓ, by M.Eichler (Verallegemeinerung der Ablesche Inte-
grale, Mathematische Zeitschrift, 1957)
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3. We shall now speak about some ideas of Heche and their possible 164

generalizations.

Let Γ(Q) =

{(

a b
c d

)

with c ≡ 0(Q) andΓ1(Q) =

{(

a b
c d

)

≡
(

1 0
0 1

)

(mod Q)
}

be subgroups of the modular group. It can easily be seen

thatΓ(Q)/Γ1(Q) � multiplicative groups of prime residue classes mod-
ulo Q. (This quotient group can also be interpreted asG(K1/K) where
G(K1/K) denotes the Galio group of the fieldK1 of functions invariant
underΓ1(Q) overK, field of functions invariant underΓ(Q)).

Consider the space of modular forms of degree−2 f for the groups
Γ1(Q). Let ϕ1(τ), . . . , ϕα(τ) form a basis of this space. Then, for every
α ∈ Γ(Q),

ϕi(τ).α =
d

∑

j=1

Ci j (α)ϕ j(τ)

gives a representationα → ci j (α) of the quotient groupΓ(Q)/Γ1(Q).
This finite group being abelian, this representation splitsinto one- di-
mensional ones so that for a suitable basisψ1(τ), . . . , ψd(τ), we have

ψi(τ).α = χi(α).ψi(τ),

and the representation is given byα → χ(α) =

























χ(α) · · · 0
...

0 · · · χα(α)

























;χi − s

denoting characters of the groupΓ(Q)/Γ1(Q).
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In this connection, the study of formsϕ with a given character, was
made by Hecke (Uber Modulfunktionen und die DirichlerschenReihen
mit Eulerscher Produktentwicklug,I andII , Math. Annalen, 1937.) For
example, it can be shown that the theta-series

ϑF(τ) =
∑

X
eπiτX ′FX

where X′FX is a positive definite even quadratic form, is a modular165

form with the characterχ(a) =
( (−1)f |F |

a

)

(we denoteχ(α) by χ(a)

whereα =

(

a b
c d

)

).

The modular correspondencesTn are defined as in Hecke’s paper
and this ring of operator takes holomorphic forms to holomorphic forms
and cusp forms to cusp forms.

4. Let ϕ1(τ), . . . , ϕα(τ) be basis of forms of degree−2 f with respect
to the the groupΓ1(Ω) with characterχ. Then we have

























ϕ1(τ)
...

ϕd(τ).

























Tn = Rf (Tn).

























ϕ1(τ)
...

ϕd(τ).

























or if ϕ(τ) =

























ϕ1(τ)
...

ϕd(τ).

























ϕτ.Tn = Rf (Tn).ϕ(τ).

Now, let the Fourier expansion ofϕ(τ) be
∞
∑

n=◦
cne2πinτ/Q cn being col-

umn vectors.
Considerϕ(τ).Tp, p a prime. By definition,Tp =

∑

i
Γ(Q).νi and for

νi , we may take
{(

p 0
0 1

)

,

(

1 r
0 p

)

0 ≤ r < p

}

so that ϕ(τ).Tn = χ̄(p)
∞
∑

n=0

pf cne2πi npτ/Q
+ 1

p−1
∑

r=◦

∞
∑

n=0

1

pf cn
e2πi n

α
n
Q

t+r
p

= χ̄(p)pf
∞
∑

n=0

cn

p
e2πi npτ/Q

+ p1− f
∞
∑

n=0

cnpe
2πinτ/Q
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with the prescription thatcn/p = 0 if p ∤ n. 166

But ϕ(τ).Tp = Rf (Tp).ϕ(τ) =
∞
∑

n=0
Rf (Tp).cne2πi npτ/Q and on com-

paring the coefficients ofe2πiτ/Q on both sides, we obtain the famous
formula fo Hecke,

Rf (Tp).c1 = p1− f .cp or cp = pf−1Rf (Tp).c1

Using the product formula forTn, we may obtain the same for arbi-
trary n, as:Cn = nf−1Rf (Tn).c1.

This helps us to pass from zeta-functions associated withRf (Tn) to
those associated with modular forms; for, if

ζR(s) =
∞
∑

n=1

Rf (Tn)

ns andζM(s) =
∞
∑

n=1

cn

ns, thenζM(s) = nf−1c1ζR(s).

In the case of subgroup of the modular group we have a functional
equation forζM(s) obtained from the behaviour ofϑ(τ) (in this particular
case) under the substitutionτ→ −1

τ
and this gives a functional equation

for ζR(s). But for groups of orders of division algebras, this is an open
problem.

5. We now make one more application of our modular correspon-
dences.

Consider the theta-seriesϑ(τ) =
∑

X
eπiτX′FX with a positive form

X′FX. This is a modular form for a suitable subgroup of the modu-
lar group. There is a nature question whether every modular form can
be expressed as a linear combination of such theta-series. The general
question is still unsolved. But, in a special case, Hecke conjectured in
1936 that all integral modular forms of degree−2 and stufeq(a prime)
can be expressed as a linear combination of theta-series associated with 167

quaternary forms. We succeeded in proving this conjecture,a couple of
years ago, (M.Eichler, Crelle’s Journal, 1956, Uber Darstellbarkeit von
Modulformen durch Thetareihen) and proof is based on the equality of
the trace of the representation of correspondenceTn, by means of cusp
forms of degree−2 and stufeq and by means ofϑ-series associated
with norm forms of a difinite quaternion algebra. Even in case2 f > 2,
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Hecke’s conjecture can be generalized by considering theϑ-series with
spherical harmonies and if we use Selber’s trace formula andcompare
the two traces, we obtain the following result; all cusp forms of stufeq
(a prime) are representable as a sum of cusp forms for the whole modu-
lar group and generalizedϑ-series with spherical harmonics for definite
quaternion algebras of discriminantq2.
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