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Introduction

In these lectures we study the boundary value problemsiassdevith elliptic
equation by using essentially’ estimateqor abstract analogues of such es-
timates. We consider only linear problem, and we do not stbdySchauder
estimates.

We give first a general theory of “weak” boundary value praideor el-
liptic operators. (We do not study thmn-continuousesquilinear forms; of.
Visik [, Lions [[4], Visik-Ladyzeuskaye119]).

We study then th@roblems of regularityfirstly regularity in the interior,
and secondly the more filcult question of regularity at the boundary. We
use the Nirenberg method for Dirichlet and Neumann problentsfor more
general cases we use an additional idea of Aronsazajn-Smith

These results are applied to the study of new boundary prabtée prob-
lems of Visik-Sobojg These problems are related and generalize the problems
of the Italian School (cf. Magenes 11]).

We conclude with the study of the Green’s kernels, some atitios on
unsolved problems and short study of systems. Due to lacknef we have
not studied the work of Schechtér[15] nor the work of Moridiyen-berg[13]
which rots essentially oh? estimates.
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Lecture 1

1 SpacedH(A; Q)

1.1 General notations

We shall recall some standard definition and fix some usualtioot R'(x = 1
(X1, - - ., Xm)) will denote then-dimensional Euclidean spad®,an open set of
R, 2(Q) will be the space of all indefinitely fierentiable functions (written
sometime<C®™ functions) with compact support i@ with the usual topology
of Schwartz. 2’(Q) will be the space of distributions over. L2(Q) will

be the space of all square integrable function€onThe norm of a function

Z € L2(Q) will be denoted by.Z||,. Derivatives of functions o€ will always
P

be taken in sense of distributignaore precisel\DP will stand foré 5
X7 ... OXp"
12 n

wherep = (p1,. .., pn) With p; non-negative integers afpl = p1 + - -+ + py IS
the order oDP. If T € 2/(Q), (DPT, ¢) = (-=1)P(T, DPy).

1.2 SpaceH(A; Q)

A defferential operator with constant d&ieients Ais an expression of the for

A = 3 a,DP wherea, are all constants. The highest integefor which
[pl<m
there exists aay, # 0 for |p| = mwill be called the order of the operatér

Definition 1.1. Let A= {Aq,..., A/} be a system of gferential operator with
constants coficients. By HA; Q) we shall denote the space ofulL?(Q) for
which Au € L?(Q).
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Evidently 2(Q) c H(A; Q). OnH(A; Q) we define a sesquilinear form by

Y
(U VHae) = (U)o + D (AU, AV)o, (1)
i=1
Theorem 1.1. With the norm defined bfz(1),(; Q) is a Hilbert space. 2

Proof. It is evident from the expressiofl(1) that ¢) = (v, u)(u,u) > 0, and
that (u, u) = 0 if and onlyu = 0. So it remains to verify that under the topology
defined by the normH(A; Q) is complete. If{uy} is any Cauchy sequences
in H(A; Q), from (1) it follows that{u,} and{Aju,} are Cauchy sequences in
L2(Q). Hence{u,} and{Aju,} converge tau andv; respectively, say, ih?(Q).
Since the convergence ir?(Q) implies the convergence i@’ (Q), {u,} and
{Aiu,} converge tou andy; in 2'(Q) respectively. Sincéy are continuous
on 2'(Q), Ai(uy) — Ai(u) in 2'(Q). HenceAi(u) = v; which proves that
ue H(A Q). O

Proposition 1.1. If W c Q and for u e H(A; Q), u, denotes the restriction
of u to W, ther(@u,, € H(A; W), and(b) the mapping u— u,, is continuous
mapping of HA; Q) — H(A; W).

1.3 The spaceHy(A; Q).

Definition 1.2. Ho(A; Q) will be the closure of7(Q) in H(A; Q).H(A; Q) will
be the “orthogonal complement” of §4A; Q) in Ho(A; Q).

The following question then naturally arises:
Problem 1.1.When isHg(A; Q) = H(A; Q)?

If A differential operator, leA" denote the dierential operator defined
by (AT, ) = (T,Ap). If A = Y a,DP, then it is easily verified thak* =
Y. (=1)Pa,DP.
Y
Proposition 1.2. Hy (A; Q) is the space of solution in (A, Q) of (1+ } A’A) 3
i=1
T=0.

Proof. T e H}(A; Q) if and onlyT is orthogonal to every € 2(Q), i.e., if and
only if O

(T.¢)o+ ) (AT, Ag) =0
i=1
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for all p € 2(Q), which is equivalent to say that
(T+ Y AAT.p)=0forallg € 2(Q).
or that
(1+ Y AA)T =0.
Some examples.

1) If there is no dferential operatorsi(A; Q) = L?(Q) = Ho(A; Q).

d
2) LetQ =]0,1[,x= X3, A= I H(A; Q) = {u/ue L? and onlyu’ € L?. Then
TeHy(AQ)ifandif T-T” =0, i.e.T = 2e*+ue*. HenceHZ(A; Q) is
space of dimension 2.
d . .
3) LetQ =]0, +oo[, X = X1, A= —.T = 1+ e Xisin L%(Q) is 1 = 0. Hence

dx’
Ha (A; Q) is of dimension 1.

d .
&Ho (A; Q) = {0}, i.e.,

Ho(A Q) = H(A Q).

4) LetQ =]0, +oo[, X = X1, A=

m
In general it can be proved thatg =]0,1[A = dd_xm HZ (A Q) is 2m-
dimensional.

1.4

We recall some properties of Fourier transformations dfithistions. Let¥” be
the space of fastly decreasing function&ih.#” be the dual of? consisting

of tempered distributions. Fdr € . we shall denote the Fourier Transform4

of T by ZT = T. We know thal 2(R") ¢ .” and tha( T}, = [Tl if T € L(R")
(Plancherel’s formula). Alsa#(DPT) = (27i&)PT, whereé = (é1,...,&)

andéP = £ gl Since.Z is linear, it follows that ifA = Y DP is any
Ipi<m

differential operator with consists déeients
Z(AT) = A(21i&)T where
Aj(2ri€) = ) apet o £ (2P

Ipl<sm

=) ap(2rie)P.
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Proposition 1.3. u € H(A/R") if and only if 0 € L?(R") and A(2ri£)0 €
L2(R",j=1,...,N.

This is immediate as € L? & 0 € L2(R") andAju € L? & Aj(27i&)0 €
L2(RM).

Proposition 1.4. Ho(A,R") = H(A,R"), forany A= {Ay, ..., A } with constant
cogficients.

From Propositiofi.I]2 we have € HZ (AR ifand only if T € L2 AT €
L2 and (1+ i A*j‘A,-)T = 0. By taking Fourier transforms, it follows that
=1
T e HX(A R ifand only if T € L2A;T € L2 and (1+ X |A;(27i&)A)T = 0.

But since (1+ 3 |Aj(2ri&)P) # 0,T = 0 a.e., and hencé = 0 which
proves the proposition.

1.5 Extension of functions inHy(A; Q) to R".

Theorem 1.2. There exists one and only one continuous linear mappingil
of Hy(A; Q) into H(A, R") such that if ue 2(Q),0 = u. a.e. inQ.

e(x) if xeQ
0 if X¢ Q.

Theng € 2(R") and|@lhiary) = l¢lHiag). Hencep — @ is a continuous
mapping of 2(Q) with the topology induced b (A; Q) into H(A, R"). This
proves the theorem

Fory € 2(Q), definey =

Definition 1.3. If u € Ho(A; Q), T is called the extension of u td'R

ux), xeQ . .
it is not true that
o, Q

0 € H(A,R"). What that theorefi1l.2 says is thauife Hq(A; Q), thenu €

Ho(A, R"). Thus ifAdix’ Q =]0, 1[ then foru =1, &G is not inL%(R).

Remark. If u € H(A; Q) and we putu(x) =
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1.6
Let Hi(A; Q) be the dual oHy(A; Q).
Theorem 1.3.a) Hy(A; Q) is space of distributions.

b) If T € Hi(A; Q), then there exists a unique @ Hq(A; Q) such that T=
1+ ZAA)g.

¢) The correspondence F g is a topological isomorphism ofJfiA; Q) onto
H.(A; Q).

Proof. Letu — L(u) be a continuous linear form dt,(A; Q). The restrictions
of L to 2(Q) is continuous or(Q) with its usual topology. Hence it define
a distributionT, so thatL(yp) = (T_,¢) forall ¢ € 2(Q). If T. = 0, then
(TL, ) = L(p) = 0 forallp € 2(Q). SinceZ is dense itHo(A; Q),L = 0.
This provesH)(A; Q) ¢ 2(Q). Now, if L € Hi(A; Q) by Riesz’s theorem,
there existg, € Ho(A; Q) such thatL(u) = (g, Ww.(a.0)- Hence for every
v € D(Q), O

L) = (TL )G &) = (G Do + ) (AG. Ao
i=1

=@+ ) AAYG. 9.

HenceT = (1+ X A'A)gandT — 0in H)(A; Q) if and only ifg — 0 in
Ho(A; Q).



Remark. As we shall see later on this theorem constitutes the solaticer-
tain (weak) Dirichlet’s problem.

Proposition 1.5. Every distribution Te H/(A; ) can be written in the form
T =g+ XA fiwith f € L%(Q) and ge Ho(A; ©2) and conversely any distribu-
tion of the above form is in HA; Q).

Since by theorer 1.3, arly € Hy(A; Q) is of the formT = g+ Y A‘Ag, 7
puttingAig = f; we obtain the first part. Converselyst= g+ 3 A"f;, we have
for anyy in 2,(Q),

(SP =@+ ) . (ATP) = (G.9o+ ) (. Ag)o
i=1

Hencep — (s, ¢) is a continuous semi-linear functional &(Q) with the
topology induced byH(A, Q), for, if ¢ — 0in L? andAp — 0in L?, then
(S, ¢y — 0. HenceS € H/(A; Q).

Notice that the above representat®== g + >, A’ fi is not unique

Corollary. A" is a continuous mapping oflinto H)(A; Q).

1.7 Regularization

WhenQ = R, we write simplyH(A), Z instead ofH(A; Q) 2(Q), etc.
Let px be a sequence i such that

1) px =0,
2) [ px=1
Rn

3) Support ofpx c By, rk — 0, By, is the ball of radius.
Such a sequence exists; for jee 2 be such thap > 0, fpdx =1and
the support op is contained in the balk| < 1. We obtain such a function by
1
ae =@ x| <1
X >1

considerin with suitablea to make the integral equal to 1.

. . 1
Let o, = p(kX).ox have their support in the ballg| < Pe Letfp’kdx = ag.

Thenpk(X) = ax.p’(kX) is a sequence of the required type.
Such a sequence is called a regularization sequence. 8

Theorem 1.4. 1) If u € H(A), then Uy € H(A), for ¢ € 2, wherex denotes
the convolution product.



2) u'px — uin H(A), wherepy is a regularization sequence.

Proof. 1) Sinceu € L? andAju € L? for ¢ € 2,u’p € L2 andA(u  ¢) =
ux Ajp € L2, Henceu * pH(A).

2) uxpx — uandAi(uxpx) = A(U) * px — Auin L2. Henceu = px tends tou
in H(A).
m]

1.8 Problem of local type.

In general if UHA; Q) and ¢ € 2(Q), it is not truethat ¢u is in H(A; Q).
The problem of determining fiicient conditions in order thatu should be in
H(A; Q) is the problem of local type.

1.9 Some generalizations.

Beside considering operatois with constant coféicients, we could consider
the case of operators with variable fit@entsA = Y ay(X).DP, ay(X) € £(Q).
(It is also possible, of course, to consider operator with“amooth” coefi-
cients). We could define as aboMgA; Q) to be the space af € L2(Q) such
that Au € L?(Q). Similarly as before we can prove thd(A; Q) is a Hilbert
space. We can consider also then the problem of determiiyj(dy; ). How-
ever, if A are of variable cocientsA (ok = U) # (Aju) = p So that theorefn 1.4
is no longer true.

We could replace.?(Q) by any normal space of distributiors i.e., a 9
spacek such thatz(Q2), c E ¢ 2’(Q) the inclusion being continuous, a
being everywhere dense ih H(A, E, Q) will be the space ofi € E for which
Aju € E. We topologizeH(A, E, Q) in such a way that the mapping— Au

u—u
are continuous frork (A, E, Q) to E. If, for instant,E is a Frechet space, then
H(A, E, Q) also is a Frechet space.
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2 SpaceH™.

21

Definition 2.1. u € H™(Q) < DPu e L?(Q) for |p| < m[D°u = u]. Hence
HM(Q) = H(A; Q), where A= {DP, |p| < m}. If we write|uZ = ¥, |DPul3 and
Ipl=k

lul2= 3 |ul?2, then the norm in Q) is || U ||m.

k<m

By theoren_IlL and propositiofs1L.5 1.3, we have

Theorem 2.1. H™(QY) is a Hilbert space. In order that a distribution T on
Q belongs to H(Q) it is necessary and gficient that T = Y, DPf, for

Iplsm

fp € L2(Q).
We shall writeHJ'(Q) = H"™(Q).

Proposition 2.1. u € H™(R"), if and only ifd € L? and&Pa e L2 for |p| < m.
Or equivalently, if and only if1 + [£|™)0 € L? where|é? = &2 + - + £2.

Regarding the local nature 6f™(Q), we have the

Proposition 2.2. Let u e H™(Q) (respectively IJ(Q)) andy € 2(2). Then
(pu € HMQ) (respectively IJ(Q)), (ii)Ju — ¢.u is a continuous mapping
from H™(Q) to H™(Q) (respectively HY(Q) to HJ()).

This theorem holds actually with € L*(Q) such thaDPy € L™ for |p| <
m.

Let X be a closed set iR". Write H;™ = {T € H™™(R") such that the
support ofT c X}.
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Definition 2.2. X is said to be m-polar if f" = 0, i.e., if they only distribution 11
of H"™(R") with supportin X ig.

We shall see later that iff@ > n, X is void. We shall admit, without proof,

Theorem 2.2. H™(Q) = H{(Q) if and only if[Q is m- polar.

2.2 Extension of functions inHy(A; Q) to R".

Definition 2.3. An open sef2 c R" is said satisfy mextension propertif we
can find a continuous linear mappimgof H™(Q) to HM(R") such thatru = u
a.e. inQ.

There are examples to show that notQll
posses this property. For example in the
casem = 1,n = 2 take the domain in the
figure, which is an open square with the
thickened line removed. Let e a func-
tion as indicated in the figure. Let be Linear | ¢ =1
aC* functions which vanishes outside the
unit circle, is 1 within a smaller circle and
0 < ¢ < 1 elsewhere. Them= ¢uis zero 0 u=0
on the boundary of the given square. We
now prove that it is impossible to find to
find V such thatv = vae. onQ. For, if

V =v, a.e. o, then

ov sometimes outsid@.
— =1, .
ay |pu+ gog—;‘, inQ.

Nowg—; is a measure supported by th thickened line. He%\éeis not a

function.
However, in the following two theorems, it will be proved tis@me usual
domains posses thm-extension property.

Theorem 2.3. LetQ = {x, > 0} = R}. ThenQ has m-extension property for 12
any m

Let .@(ﬁ) be the restrictions of functions &?(R") to Q. We require the
following

Lemma. H™(Q) U 2(Q) is dense in H(Q).
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Assume for the time being this lemma, we shall first complegteroof of
the theorenlLZ]3. It is enough to show thatan be defined continuously on
H™(Q) n 2(). We do this explicitly as follows: Fan € H™(Q) N 2(Q), put

u(x) if x> 0.
m(u(x)) =241 U(X,=Xn) + -+ AnU(X, —72) = V(X)
if Xp < 0.
wherex’ = (X, ..., Xn-1).

We determingl; in order to ensure thatu(x)) € H™(R"). For that we need
verify

(V(X',0) = u(x,0), ied;+--+Adn=1
M o 9™ [ am
awlxn(X,O)— m, l.e., (—1) (/11+"' mel) =1

These equations determinés and it is at once seen thB¥(z(u)) = DPu
for |p| < m, a.e, o and that the mappingis continuous.

Now we prove the lemma.

Letu € H™(Q); for everye> 0, defineu.(x) = u(X, X,+ €). Letv, be the
restriction ofu, to. It is easy to see that — uin H™(Q) ase— 0, and so we 13
need prove only that. for every fixede > 0 can be approximated by functions
of HN(Q) N 2(Q), i.e., we have to prove that given a functione H™(Q,),
wherew, is the domainx, > —a}, w can be approximated dn by functions
of HN(Q) N 2(Q). Let U(x,) be aC> function defined as followd = 0 for
Xn < —a,1forx, > 0,0 <8 < 1, elsewhere. Noww € H™(R") andéw = v
a.e. inQ. However,Z(R") is dense irH™(R"). Hence there exists a sequences
ok € 2(R") such thayp — owin HM(R"). Let ¢k be the restriction ofy to Q.
Thengx € H™(Q) N 2(Q) andgpx — 6w = win HM(Q).

Remark 1.1f Q hasm-extension property, then the above lemma holds, i.e.,
H™Q) N 2(Q) is dense iH™(Q). For, sinceZ is dense irH™(R"), and since
there exists a continuous mappingf H™(Q) in HM(R"), the restrictions of
functions ofZ to Q are dense itH™(Q).

Remark 2. This lemma holds also, for instance, for star-shaped dognain

2.3

Theorem 2.4. Let Q be an open bounded set such that the boundafy f
an (n- 1) dimensional ¢' manifoldI"Q lying on one side df. ThenQ has the
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m-extension property.

Proof. LetZ" be them-dimensional Euclidean space with coordinates. , &,

. J0<g<1 .
and letW be the open rectangle define y< i < i=1,...,n-1. Let
“l<é<l
W, W_, W, denote the subsets &¥ determined by > 0,&, < 0,&, = 0,
respectively. O

_On account of the hypothesis bnthere exists a finite open coveri@g, O; 14

of Q andm-times continuously dierentiable functiong; of W to O; such that

i mapsW_ ontoO; NI, W, ontoO; N[Q andW, ontoO; NI, and furtherQ; N
coverl’and Let @', &) be aC™ partition of unity subordinate to this covering. If

u e H™(Q), thenu = a’'u+ Y, aju andau have their supports i®; respectively.
Now y; defines an isomorphism ¢1™(O;) onto H™(W) and of H™(0; N Q)
ontoH™(W_), which we still denote by;. Hencev; = y;*(au) € H™(W.) and

v; = 0 near the part of the boundary ¥f. which is not contained ig, = O.
Hencev; can be extended t&{ < 0) by putting it equal to zero outsid§_. By
theorenfZRB, there exists; € H™(Z") such thatrv; = vi,a.e. onZ". Let(x,)

. _ 2 1
be aC* function which is 0 forg, > 3 and 1 foré < =,0 < 6 < 1 elsewhere.

Let p(¢) = 0n(v). Pi(¢) has its support i and is zero near the boundary of
W. Let¢i(X) = i(P). Theng(x) € H™(O;) and is zero near the boundary of
O;. Hencen(u) = &, + 3, @i(X) answers the theorem.
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2.4 The mappingy.

Let 22M(Q) = HMQ N 2(Q). For the functionf € s#™(Q), the restriction 15
of f to the boundary” of Q defines a functioryf onT. We wish to know

for what for what spaceX(I') of function onT, this mappingy of J#-(Q)

to X(I') is continuous. Ify is continuous, we can extendto H(Q) if, for
exampleQ has 1-extension property, amd for u € H’(Q) may be considered

as generalized boundary valuewf

Theorem 2.5. LetQ = {x, > 0} so thatT" = {x, = 0}. Let XI) = L?(T) =
L2(R™1). Then u— yu is a continuous mapping 6#1(Q) — L2(I), i.e., there
exists a unique mapping: H(Q) — L2(I") which ons#(Q) is restriction.

\%

Proof. Let X = (Xg,...,%-1). Let &(x,) be a function defined fok,
0, zero forx, > 1, and 0< O(x,) < 1in (0,1). We havelu(x,0)]?

- %(u(x)ﬁ(x)a(xn))dx Hence O

flu(x’,0)|2d>( =—f%(9(xn)u(x)ﬁ(x))dx
R-1 Q

=f9’|u|2dx—f0(§—xuﬁ+ 66—Xu)dx
n n

Q Q

So by Schwartz's inequality,

ou
u(x, 0 2d)(scfuzdx+f—2dx,
fr|( ) ([ 1 Q'axn' )

12
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2
<Cllul?.

This meany is continuous.

Remark. Let A= % ThenH(A; Q) N 2(Q) is dense irtH(A; ), and by the

same method as aboue~ yu is continuous fronH(A; Q) to L2(I'). 16

In the text few propositions, we are going to determine thagenand the
kernel ofy.

We have seen that e H™(R") if and only if u € L? and (1+ |¢™0 € L2.
Generalizing we definel*(R") for non-integew > 0.

Definition 2.4. u € H*(R") if and only if ue L? and (1 + | € |*)0 € L%. On
H*(R"), we put the topology defined by the norm

(U, WHerny = ((1+ [€17)0) L2mn).
Theorem 2.6. LetQ = {x, > 0}. For ue H}(Q), we have
1) yu € H2(I), and
2) u— yuis continuous mapping di(Q) ontoH%(l").
Proof. Leté = (¢1,...,&n 1)n_1 @NdU(E’, X,) = f e 7} & y(x, x,)dX be trun-

Rn—l
cated Fourier transform af(x). Since O

% @ —_ enel (e - _
J(axi)_flufl-(f,xn)J—l,...,n 1,

we have
1) (1+1€Nue LXE, ).
Further, since6—u = ﬂ we have
0Xn 0%y

2) o5 L)
Now, as in theoreri215((¢",0)]> = —fo"“(aﬁe)dm Hence [(1 + |£))|0
r

(&,0)°d¢" = - f(l + |§’|)%(05@)dx < oo by Schwartz’s inequality and(1)
R
and (2).
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Hencey u € Hz(I). ) o
We now prove the second poinf. € Hz(T') of and only if (1+ |£]2)f € 17
L2(Z"). We have to look for a function € H1(Q) such thatyu = f. Let

U, %) = exp(+E Dxa) f(€) for x, > 0,
andu = Z(U(£, x»)). We prove thatiH! andyu = f. The only not com-
. o . au _,
pletely trivial point is to verify that67§L .
n

M 1+ 1) exp(1+ ) F@).

0Xn

Hence

00

[ 155 Pa%, = @@ [ expt(a s

[o]

= L+ lalfE)P.
. 1 ou 2 C .
Sincef € Hz2 ('), we havef|—| dxis finite.
o 0%

Theorem 2.7.y u=0if and only ifu € H(Q).

Proof. (@) u € HY(Q) = u = 0 for we haveu = lim ¢y in HY(Q)gx €
2(Q).yu = lim y(g) in LAT) = 0.

(b) Conversely to prove thatu = 0 impliesu € H}J(Q) we require the
O

Lemma.LetQ = {x, > O}, u € HL(Q),¢ € 2(Q). Thengu € HY(Q), and
y(¢u) = ¥(¢)y(u).

Proof. We know.7#%(Q) is dense irH!(Q). Hence there existg € 71(Q),
such thatu, — uin HY(Q). Now, ¢ux — ¢u in HY(Q) and sincey(ouy) =
¥(¢)y(u), we havey(gu) = y(¢)y(u). o

Coming back to the proof of the theorem, &k) be aC* function 1 on 18
the unit ball, 0 outside another ball, andGa(x) < 1 else-where. Then if we
defineaj(x) = a(x/j), we haveaju — uin H(Q). Hence if we prove that
aju e Hé(Q), we shall have proved that € HI(Q). Sincea;u has compact
support, and since(a;u) = ajyu = 0, this means, we may assume, that in
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addition toyu = 0,u has compact support 0. Let O«(xn) be a function
defined forx, > 0,

0 forO< x, < 1/k
O(X) =<linear for I/k < x, < 2/k
1 for x, > 2/k.

ThenOgu € HL(R"). By regularization, we may assume thau € Hé(Q).
We now provegiu — uin H(Q). We have

ou ou
- = —forl<i<n-1.
Qka x Xi(gk(u»_) % orrL<i<n

ou ou .
We have to prove then th@{I(Xn)U+9k6—X - E; that is to sayg, (X,)u —
n
0. Now

; 0 forx, < 1/kandx, > 2/k
0 =
) {k for 1/k < x, < 2/k

Furtheru(x, x,) = fx" @(x t) dt. Hence

|Mﬂm#sm]wﬁﬂﬂm%t
< 2/kf (x t)2dtif x, > 2/k
2/k.C if X, > 2/k (1)

Also
2/k

f 16, () PIU(X , X)) Pd X, = f |6 uf*dx

<2kfdxnf

d)(

dtfd)g1

(by changing the order of integration)

19
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2/ka

u

<4 — 2d .

< f|axn| X
0

Hencef|9|’(u|2dx—> 0 by (@), which completes the proof.

Thus we see thatl/(Q) is the space of functions which are weakly zero on
the boundary.

The above results can be generalized to sp&td$)). LetQ = {x; >
0}; u € HM(Q), if and only if DP(u) € H(Q), for |p| < m— 1. HenceyDPu can
be defined as above fip| < m— 1. we have the

Theorem 2.8. u € HJ(Q) if and only ify(DPu) = O for [p| < m— 1.
In fact, we can say something more,
Exercise.Letu € HI(Q) andu € D, with |q| arbitrary.

Then
y(D}}.u) = D, (yu).

2.5

Let Q be an open set dr" such that §)Q has 1-extension property, anid) (
the boundary" of Q is an f1 — 1) dimensionalC! manifold. In the cas€ is
bounded i) implies @). OnT we have an intrinsic measure. We denote by
L2,.(I') the space of square summable functions on every compdtiith
respect to this measure.

Theorem 2.9. Under the above hypothesis on(i.e.) 20
a) Q possessekextension property
b) I'is an(n- 1) dimensional ¢ manifold,

there exists a unique continuous map HY(Q) — L2

ioc(I') which on functions
of 2#1(Q) coincides with the restriction tb.

Proof. Form (a) it follows thats#’(Q) is dense ins#’(Q) and hence the
unigueness will follow from the existences. Letbe any compact of. We
observe that by using@! partition of unity the problem is reduced to a local
one, that is to say, we may assume that the suppogt ef #1(Q) is con-
tained in an open set 0 and that there exists a homeomorghésnin theorem
4. Further we may assume, without loss of generality, Faat 0. Leta
be aC* function inR" with compact support in 0 and which is 1 gi. Then
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awst € H(Z" (in the notation of theorefid.4), anduy~* € L2(W,). Since
v defines an isomorphism &f(I';) into L2(Wo), w(yaus™) € L?(T2). Now
onT’, we haveyu = y(yaus1) which proves thay is continuous mapping of
2H(Q) into L?(T"2) which completes the proof. |

Remark. A complete generalization of theorémI2.7 is due to N. Arojms{fd.



Lecture 5

3 General Elliptic Boundary Value Problems

3.1 General theory.

We formulate at the beginning certain problems on topolgiector spaces 21
and solve them. Later on we shall show how these answers alfl bs in
solving many of the classical boundary value problems figpted differential
equations.

As a matter of notation, we shall write c B, whereA and B are two
topological vector spaces to mean the injectio® — B is continuous or that
the topologyA is finer than the topology induced I8,

Let V be a Hilbert space over complex numbers. We shall denotaj\py
the norminV. Let Q be a locally convex topological vector space such that

1) Vc QandV is dense irQ;

2) OnQ an involution (i.e., an anti-linear isomorphism of ordeojw§ — fis
given which leave¥ invariant;

3) LetV be given a continuous sesquilinear foafu, v)(i.e., a(iu,v) = 1a
(u,v), anda(u, Av) = Aa(u,v). Let Q' be the dual space @p. On Q’
an involution is induced by the given one @ by the following formula
< f,g>=<f,g>.

We raise now the

Problem 3.1.Give f € QY does there existae V such that

4) a@,v)=<f,v>forallveV.

18
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We shall show later that large classes of elliptic problearstee put in this
form.

Definition 3.1. The space Nvill consists of all ue V such that the mapping 22
v — a(u, v) is continuous on V with thimpology ofQ.

Since V is dense in Q we can extend this mapping to Q. Hencedoy e
u € N we have an Ag Q' such that

5 a(u,v) =<AuVv>.

The mappingA : N — Q' is linear. OnN we introduce the upper bound
topology to make the mapping — V andA : N — @ continuous. We
ask now the

Problem 3.2.Is the mappincA ontoQ’?

Lemma 3.1. Problem 1 is equivalent to problem 2.

Proof. Let f € Q" and letu be a solution of problem 1, i.ea(u,Vv) =< f,V >.
Hence the mapping— a(u, V) =< f,V > is continuous oW with the topology
of Q. Henceu € N. Further< Au, v >= a(u,v) =< f,v > forallv e V, and
sinceV is dense iMQ, Au = f. Conversely, lef € Q' be given andi € N be
such thatAu = f. Thena(u,v) =< Au,v>=< f,v>, forallve V,i.e.,uisa
solution of problem 1. O

3.2

We now consider certain fiicient handy condition so thak should be an
isomorphism olN onto Q’

Definition 3.2. We shall say that the sesquilineauav) is elliptic on V, or is
V-elliptic, if there exists ar > 0 such that

Ref@(u, u)) > alul? for all u € V.

Theorem 3.1. Let \, Q, a(u, v) be as given irfg B1. If au, v) is V-elliptic, then
A is anisomorphisnmof N onto Q.

Proof. Let 23
1 R
a(u,v) = E[a(u, V) +ia(v,u)]

and a(u,v) = %i[a(u, v) — a(v, u)].
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Thenay(u, v) anday(u, v) are hermitian and

a(u,v) = ag(u,v) + iax(u, v).
Put [u,Vv] = ai(u,Vv).

Sincela(u, v)| < Cluly|Vvlv, it follows that [u, u] < C|u|\2,. On account of the
V-ellipticity, [u, u] = Rea(u, u) > euZ. Hence the formy, v] defines orV an
Hilbertian structure equivalent to the one defined tpy)y . O

Now, anyf € QO defines a continuous semi-linear functionvwand hence
there existK f such that

< f,Uu>=[Kf,V], Ke.Z(Q.V).

For a fixedu € V, the mappingr — ay(u,V) is a semi-linear continuous
mapping orV, hence
az(u,v) = [Hu, V].

FurtherH is hermitian for the scalar product defined . For [Hu, V] =
az(u, V) = az(v, u) = [Hv, u] = [u, Hv].

Hence a(u,v) = [u,v] +i[Hu,V],
and we have to solve a(u,v) =< f,v>=[Kf,v],
ie., 1+ iH)u = Kf.

From Hilbert space theory, we know thaHfis hermitian (1+ iH) is non-
singular. Hence
u=(1+iH)Kf,

which proves thaA is an isomorphism.
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n 9%u
3.3 Examples:A+ 4,4 >0,A =} —-
i=1 0%

LetQ be an open set iR" andH(Q), H}(Q) be as defined before. Letbe a 24
closed subspace of' such thaHj c V c H. The metric orV is one induced

by H! : (u,v)y = (u,v)1. Let Q be L?(Q) with the involutionf — f. Then

V c Qand is dense iQ. OnV consider the sesquilinear form

a(u,v) = (U, V)1 + (u,v), 21 > 0.
Thena(u, v) is continuous oV x V and
Re@a(u, u)) = ulj + AIulf = min(L )(Ju + u)
=alull?, a>0.

Hencea(u, v) is V-elliptic. Hence, for a giverf € L?(Q) = Q' we have
u € V such thata(u,v) =< f,v > for all v € V. We determineN and A
explicitly in this case.

Proposition 3.1.
1) A=-Au+Aauforue NA>0

ueV,Aue L? and

2)ueNe
(-Au,v)p = (u,v); forall veV.

Proof. We knowu € N if and only if u € V and the mapping — a(u, V)
is continuous or with the topology ofQ. Further since(u, v) is V-elliptic,

21
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for f € L2 there existai € N such thata(u,v) =< Au v >=< f,v >. Let
V=ype 2(Q). Then

(U, ‘10)1 + /l(U, ‘10)0 = (AU, ‘10)0

Au Ay d°u
Now, u, =2—,—| =< -X—,0>
(U ¢h (axi axi)o %2 4
=< -AU, ¢ >.

Hence< —Au,¢ > +2 < U, >=< AU ¢ >=< f,o >forallp € 2(Q). 25
This meansA = —A + 1 and-Au + Au = f. Sincef € L? andu € L? we have
Au € L?. Further, ifu € N, a(u, v) =< Au, v > and hence

(U, V)1 + AU, V)o = (=AU, V)o + (U, Vo
which gives 0, V)1 = (-Au, v)o.
Conversely ifu satisfies the above conditions, sineau + Au € L? the

mappingv — a(u,v) = (U, V)1 + 4(u, vV)o = (—Au + Au, V), is continuous orv
in the topology induced b@). Henceu € N. O

Now we give aformalinterpretation ofs € N. The correct meaning of this
interpretation will be brought out later on. Assuming theibdaryl” of Q to
be smooth, we have, by a formal Green’s formula,

(—Au,v)oz—fAu.de:f@\Tdow(u,v)l
Q an

r

Where% is the normal derivative. Howeverif € N, by propositior.31L, we

have
(=Au,Vv)p = (U, V)1.

N ou_
Henceu € N implies [ —nvdo- =0.
We now take particular casesdfand interpret this formal result.

1) LetV = H. u e H'is not a boundary condition, neither 481 € L2.
ou_ . .
However,f%vd = 0 for everyv € H!, is a boundary condition, and
Tr

. ou . Lo I
formally this mean% = 0, i.e.,,u € N implies the normal derivative
vanishes.
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2) LetV = H}.u e H} impliesu = 0 on the boundary, and hence is a boundarys
. . . ou_, .
condition.Au € L? is not a boundary condition agﬁ%vdo- is always zero
r
forve H}.

3) LetI'; be the subset df and defineV to consist of functioru € H! such
thatyu = 0 onI'1.V is a closed subspace Bift. u € N if and only ifu € V,
that is to sayyu = 0 onT'y; this is a boundary conditiomyu € L? which

is not a boundary condition, arﬁ%?do- = 0forveV, butsinceyv=0
r

. ou_ . .
onTy, this meansf %vdo- = 0 for all v € V. This means again formally
r-Q

ou o ou
an = 0 onI" - T';. So formally the condition ist = 0 onT"; and% =0on
I'-T;.

We call 1), 2) and 3) weak homogeneous, Neumann, Dirichlétraixed
Dirichlet-Neumann problems respectively.
We may state the above results in the

Theorem 3.2.If 2 > 0, Q an arbitrary open set in R then the equatiorAu+
Au = f with f € L?(Q) has a unique solution with homogeneous boundary
data.

Remarks . Non-homogeneous problem&orresponding to the homogeneous
problems considered above, we may consider non-homogsoees in which
not necessarily vanishing boundary values are prescrid&edshall show for-
mally that this can be reduced to a homogeneous case togégthexr problem

of first order partial dierential equation.

Problem 3.3.GivenF € L2 andG € V such thatAG € L2 determineu such 27
that—-AU + AU = F andU — G € N.

Theorem 3.3. Problen:3:B admits a unique solution for- 0.
Proof. Putu = U — G. Then we have to seaksuch that
—Au+Au=F - (-A+ )G = f, say.
Sincef € L?, there exists unique € N by theorenZ3R. O

In the casé/ is as in examples 1), 2) and 3) respectively, this me%gnen

U aG .
IG=Uonl'andU = GonI; and% = o onI — T respectively. The
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above solution of problefnd.3 implies then that if we wish ébedimineU with

u . L
(?9_n’ U, given on the boundary, we have only to determBe L? satisfying
oG

AG e L2 andaﬁ—Lr: = an andU = G on the respective parts of the boundary.

Remark. If we takeV = H}, Q = H™* so thatQ’ = H™! we have

Theorem 3.4. Given a distribution Te H™%, there exists a unique solution

U € HJ such that-Au+ Au=T.

Remark. Roughly speaking we may say that the boundary conditiongare

troduced by means of the following two conditiona)y € V, (b)(—Au, Vv)p =

(u,v)1. The two extreme cases df% (Dirichlet) andH* (Neumann) wherein,

in the first case, only € V is the boundary condition, and in the second

one, £Au,V)o = (u,V); is the boundary condition. The conditione V may
be considered to bstableand the other onanstable Heuristically this may

be justified as follows: if we consider smooth functionsHA(Q) such that

% = 0, on completion this property no longer holds, so we may k#ydon-

dition is unstable, while in the second case, the completiemooth functions
vanishing on boundary still possesses this property in &eresense.

Exercise 1.With the hypothesis as in theordm13.1a{l, v) is V-elliptic, the
existence ol € V such thata(u,v) =< f,v > forallv € V and anyf € Qf
can be carried on the following lines: Since the mappings< f,v > and
v — a(u,V) are continuous ol with the topology induced b@, there exists
K f andAf in V such that

a(u,v) = (Au,v)y < f,v>= (Kf,v)y.

Hence to solve the problem we requibe = Kf. This is proved if we
proveA is an isomorphism o¥ ontoV.

28

Exercise 2.The same results as in theorEml 3.1 is true on a weaker assumpti

that
la(u, V)| > auZ, @ > 0.
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3.4

Hitherto we considered the particular case whetec V c HY. Now we shall 29
consider a more general case in whighc V ¢ Q ¢ 2, 2 beingdensén Q,
but not necessarily iN. Involution inQ is as before, vizf — f.

Leta(u, v) be a continuous sesquilinear formgnin this situation the op-
eratorA and the spach associated witl(u, v) can be characterized in another
way as follows. For a fixed € V, the mapping — a(u, ¢) forp € Z is a con-
tinuous semi-linear form o (Q) and hence defines an elemeviti € 2'(Q)
so that< &/'u, ¢ >= a(u, ¢).

This defines a mapping/ : V —» 2’(QQ). Letn be the space afl € V
such that §)<’u € Q and p) < «/u,¢ >= a(u,v) forallv € V. Onn we
introduce the topology so as to make both the injectien V and the mapping
& . n — Q continuous.

Theorem 3.5.7 = N and for ue’ N, &/u = Au.

Proof. 1) Letu € N. Thenv — a(u,V) is a continuous semilinear form on
V with the topology induced b anda(u,v) =< Au,v > with Au € Q.
This holds in particular iV = ¢ € 2(Q). Hencea(u,y) =< Au, ¢ >=<
U, > forall ¢ € 2(Q). This means¥u = Auand thatevu € Q'. Hence
< U, v>=< Au,v>=a(u,v) forall ve Vand sou e M.

2) Conversely, leu € M. Thena(u,v) =< «/u,v > for allv € V and
“u = f € Q. Hencea(u,v) =< f,v > so that the mapping — a(u,v) 30
is continuous orV with the topology induced by). Henceu € N and
u=f=Au
O

25
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Remark. In practice it is the operato# that is known a priori and\ is the
restriction ofe/to N. We agree however to denoté by A itself.

Generalizations.

Letv be an integer. IE is a topological vector space, let beE x...xE,
the topology orE” being the product topology. L&t Q be such thaz(Q)” c
V c QZ’'(Q2)". Leta(u,v) be a continuous sesquilinear form ¥ As in
before, we can define the operatere Z(V, 2”"). The operator? on 2(Q)
may be considered to be a generalisation éedéntial systems.

General examples:

a) An interesting example of the above kind would be whéiis the set of
functions continuous on a given discrete seRih The solutions of this
problem may be considered to be finitéfeience approximation to bound-
ary value problems.

b) LetQ be an open set iR" and Ay, ..., A, be diferential operators with
constant cofficients. LetV be such thaH?(A, Q) c V c H(A Q). Let
Q=L?%Q). ThenZ(Q) c V c Q c 2'(Q) andZ(Q) is dense imM. Let

)= ) [ A WATIX+ [ golguidx

ji=1

with go, gij € L*(€). a(u,v) is a continuous sesquilinear form & The 31
corresponding operatey = 3} A/(gijAj) + do.

3.5 Green’s kernel.

We have proved that in the caa@y, v) is V-elliptic, the operatoA is an iso-
morphism ofN onto Q’. Let G be theinverse operatoof A. G is then an
isomorphism ofQ” onto N. The restriction ofG to 2(Q) is then a continu-
ous mapping of2(Q) into 2’(Q2) and conversely the restriction Gfto 2(Q)
definesG uniquelyZ is dense inQ’'.

Now, L. Schwartz’s kernel Theoreifl[3] states that any continuoasimg
of 7 into 7’ is defined by an element 68’ (Qyx Qy), the space of distributions
onQy X Qy.

ThusG defines an elemef@,y € 27 (Qx x Qy).

Definition 3.3. Gy, defined above is called the Green’s kernel of the form
a(u,v)on V.
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3.6 Relations with unbounded operators.

Let Q be an open set iR".V, Q be two vector spaces not necessarily of dis-
tributions, Q being a Hilbert space and c Q. Let a(u,Vv) be a continuous
sesquilinear form ol. As we have seen already i§i€1), this defines a space
N and an operatof : N — Q by identifying@ andQ. This operatoin the
topology induced on N by @ an unbounded operator.

Leta*(u,v) = a(v,u). OnV, a*(u, V) is a continuous sesquilinear form. Let
the spacesl and operatoA associated witla*(u, v) be denoted byN* andA*, 32

ie., ueN* o v- A(UV)
is continuous oV with the topology induced b) and
a'(u,v) =< A'u,v>= (A"U,v)o.

We shall give a theorem establishing relationships betwsenl concepts
associated with the unbounded operatorsidntl andA*.

Theorem 3.6. Suppose there exisis> 0 such that

Rea(u,v) + AV > ojuii forall ueV.

Then
(1) Nisdenseim.
(2) Aisclosed. (definitions will be recalled

(3) Aisthe adjoint ofA. | in the course of proof)

Proof. We first prove thafA is closed. We have to prove thatuf € Da (the
domain of definition ofA) and ifu, — uin Q andAu, — f in Q, thenu € Da
andAu= f. O

a(u, V) + A(u,Vv) is a continuous sesquilinear form &hand the space and
the operator associated with it akeand A + A respectively. By assumption
this form is V-elliptic and hence by theordmBA + 1 is an isomorphism ol 33
onto@ = Q.

Now, (A + A)u, — f + Auin Qand hence
Un = (A+ ) XA+ Dup — (A+ )X + A) in N.

Henceu, — (A+ 2)7Y(f + Au) in Q also and sa = (A + 2)~(f + Au), and
u € N. FurtherAu, — Auin Q and scAu = f. HenceA s closed.

Now we prove thaN is dense irQ. We need proveif € Qand {, f)g =0
forallue N. Thenf = 0. Since A+ 1) is an isomorphism ol ontoQ, there
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existsw € N such that A + 1)w = f. Hence (A + A)w,u)g = O forallu e N.
But
((A+ 2w, u)g = (Aw, U)Q + A(w, u)Q = a(w, u) + A(W, U)g.

Takingu = win particular, we get
0 = Re a(w, w) + w3 > oIW’Q.

Hencew = 0 and sof = 0.

Now we prove that the adjoint @k is A*. The domain of the adjoinA of
A consists olu € Q such that the mapping — (Av, u)g is continuous orN
with the topology induced b®. SinceN is dense inQ, this mapping can be
extended to a linear form o@ and hence by Riesz’z theorem we hauee Q
such that

(A, U)g = (v,Au)g for veDs and ueDg

This definesA on Dj.
Since

(Av,u)q = a(v, u) = a*(u,v) = (A"u,V)q
=(v,A'u)g for veN and ueN-", (1)

we haveN* € Dz, andA = A* on N*. We need only prove no®z c N*.

Letu € Dz, then there existsy € N* such that & + 2)u, = (A+ A)u, since
A* + 2is an isomorphism olN* onto Q on account of V-ellipticity ofa*(u, v).
Now, for allv e N

((A+ )V, U)g = (V, (A+ Du)g = (v, (A +2)Ug)g
= a(V, Uo) + A(V, Uo)q(bY(1))
= (AV, Up) + A(V, Up)g sincev e N and by definition ofA.

Hence for alv € N, ((A+2)v, u—Ug)g = 0. Since A+ 1) is an isomorphism
of N ontoQ@’, this meansl — up = 0, i.e.,u € N*, which completes the proof.
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4 Complements onH™(Q)

4.1 Estimates onH{'(Q).

Theorem 4.1. LetQ be a bounded open set i RThen there exists as 0
such thafulo < clul; for all ueH3(Q).

Proof. Since2(Q) is dense irtH! we need prove the inequality for= e
(Q). Lety = ¢ onQ and 0 outside& in R".
SinceQ is bounded, we have

X1 Xy

5 P P

o(X) = f G P X, Xe)dt = f 6—:’(01(t,x2,...,xn)dt
oo a

wherea and b are such thaf) is contained in the region determined by

Ja, b[ xR 2. o

By Schwartz’s inequality

b
N 0
POIP < (1 - a) f 122 €%, )P
X1
a

b
0
<(b-a) f 221 K X
a

~ 0 0
Hence | [p(X)Pdx < (b—a)? fab |6—)";|2d>g and sdylo < (b— a)|6—)":l| < Clgly
as it was to be proved.

29

34
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Remarks.

(1) From the above proof it is seen that the theorem remairesaven ifQ is
bounded only in any one direction.

(2) The theorem is not true fdd1(Q). Thus, for instance, if we take = 1,
thenueH(Q) and|ulo = measure of anfillj; = 0, so there does not exists
such thatulp < clul;.

(3) The theorem may remain true however for some spdcasch thatHl ¢ 35
V c H. Thus ifQ is as shown in the figure ard = ueH?! such that
u(0, x2) = 0, then|ulp < cluls.

T2

T

(4) If ue HJ(Q), then|ulo < clulm, [ulk < clulm, fork <m- 1.

Applications: We have already proved that for Dirichlet problenys &
Hé(Q)) the operator-A + 1 associated with the forma(u, v) = (u, v)1 + A(u, V),
is an isomorphism ofil ontoHg?! for A > 0. We now prove the

Theorem 4.2.1f Q is bounded, therA + A is an isomorphism of Honto H;!
for A > —a for certaina > 0.

Proof. We look for values oft for which a(u, v) is V-elliptic,

ie., Rea(u, u) = [uf? + AJul3 > ylul2.
. . 1
SinceQ is boundedul? > §|u|§ for somec > 0, and

UIZ + AUl = Uiz + (A — e)lul + elul
> (1+ (A - €)A)ul? + €lul3
> v||ull? for positiveyif 1+ (1 — €)c® > 0,

_ -1+ ec? _ _ 1-¢?
e, > e Choosinge suficiently small, we haver = = such

that fora > —a, a(u, v) is V-elliptic and thus the theorem is proved. O




4. Complements oH™(Q) 31

Theorem 4.3. For everye > 0, there exists @) such thatulZ < eul2 + c(e)|ul3
for all ueHJ(©2) and 0)< k < m— 1.

Proof. Letu be the function defined iR” which is equal tawonQ an 0 else- 36
where. We have thejolm, = |ulm. Letu = .%(u) be the Fourier transform aof.
By Plancherel’s theorem

0 = > @0 [ 1P = G} =
p=k 7n

To verify the stated inequality it is enough to prove that o O there
existsc(e) such that

(2m)* f |£7070¢ < (21)Me f (¢2M0I%dé + () f 07 dé,

e, [leatde < [ (e 2erms —(‘Z’ff))anmzdg.

This will be true if
16% < elé®™ + cy(e) for k<m-—1.

Sincek < m- 1, for anye; > 0, €% < ]£°™ for large values of and for
remaining necessarily bounded valueg g§|* — e|¢/?™ is bounded byCi (e)
say. m]

Remark. The status of this theorem isftérent from that of the theoreml4
for it may be sometime true fdd™(Q2) also. As we shall see later, this is
connected with the problem of m-regularity. For exampl®, i#]0, 1[, theorem
3 holds forueH™(Q).

4.2 Regularity of the function in H™(Q).

Theorem 4.4. If 2m > n, H™(Q) c £°(Q) algebraically and topologically.

Proof. Let ueH™(Q2). We need prove that for evepe2(Q), v = upes°(Q).
Sincev vanishes near the boundary®@f the functionvis in HJ(R"). LetV be
the Fourier transform of,” O

then (1+ |£/™)¥eL?. Now, 37

- me L
v=(2+14 )v.1+|§|m.
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Since 2n > n,

f| 1 g O(f r dr) <

= e 00,
1+gm g 1+
Z 0

Henceuel!. That is to say is continuous.
If now u — 0in H’(Q) we havev"— 0in L.
Hencev — 0in £°(Q2) and sou — 0in &°

Remark. Better results valid for more general classes of domainslaeeto

. . 1 1 1
Soboléf. A typical resultis ifn > 3, thenueH’(Q) = u e Lq(Q),E1 =50

for certainQ. (viz., Deny-Lions[[f] and also Schwar{d [1]).

4.3 Reproducing kernels.

Let v be a closed subspace Bf"(Q) such thatHJ(Q) ¢ V ¢ H™(Q) and
Q = L%(Q). Leta(u,v) be a continuous sesquilinear from ¥n Assume now
2m > n. Hence in each class of functionsV, there exists aniquecontinuous
functionvy(say). Then, for fixedeQ, the mapping/ — vy(y) is a continuous
semilinear form orV. Hence by Riesz’s theorem, there exigtpeV such that
Vo(Y) = (K(y), V)v. The mappiny — k(y) is weakly continuous mapping i
into V.

Definition 4.1. k(y) is called reproducing kernel in V (Aronszad [2]).
If a(u, v) is V-elliptic we have by theorein 3.1

Lemma 4.1. For every ¥Q there exists unique(g)eV such that &(y),v) =
(k(y), v)vy and the mapping y» g(y) of Q@ — V is weakly continuous.

We now relate th&/ valued functiorg(y) with the Green’s operat@(u, v)
in V. For everyeV, we have

a(g(y). v) = v(y).

Hence, for anyeZ(Q), a(e(y)g(y). v) = ¢(y)V(Y).
Integrating over, [ a(p(y)g(y), V) = (¢, V)o. Hence
Q

al | ay)e(y)dy, V] = (¢, V)o
J

38
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Wheref ai)e(y) by is a weak integral. Now sincu, v) is V-elliptic, given

Q
ve2(Q), there existaleV such thatAu = ¢, a(u,v) = (g, v), for all veV, and
u = Gg. Hence

Gy =u= f a)e(y)dy.
Q

Theorem 4.5. LetQ be an open set in'Rand2m > n. Let VQ, a(u, v) be as
above. Then @ = fg(y)go(y) dy where ¢y)V, and is given by @(y), v) = v(y).
Q

This is a particular case of Schwartz’s kernel theorem.

The kernelGyy defined by the operat@ in B3 isg(y)(X).

There is yet another way of defining thevalued functiorg(y). LetQ =
L2(Q) N £°(Q2). On Q we put the upper bound topology bf ands°. Since
2m> nanyV such thaHJ(Q) c V c HM(Q) is contained ire°(Q2), and hence
in Q. Further sincez(Q) is hence inQ. If a(u, v) is a continuous sesquilinear
V-elliptic from onV, from theoren{311 it follows that there exists a space
N c V and an operatoh, such that is an isomorphism o ontoQ’.

Now 39

Q = (LX(Q) + (£°()
= L2(Q) + £°(Q)

wheree°(Q) is the space of measures with compact support.
Let G be the inverse operators & G is an isomorphism of) onto N.
Theng(y) = G(dy).

Remark. G as defined here, has slightlyfidirent meaning from the one defined
previously, but the abuse of language is justified since bbthese are inverse
of the restriction of the same operatet: V — %', see§ B4.
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5 Complete Continuity.
5.1

We recall the definition of a completely continuous operat@t E andF be 40
two Hilbert spaces, then a continuous linear mappingf E into F is said to

be completely continuous if for any sequenge— 0 weakly inE, U(u,) — 0
strongly inF or equivalently for bounded s&in E, U(B) relatively compact.

Theorem 5.1. LetQ be a bounded open set i RThen the injection HQ) —
L%(Q) is completely continuous.

Proof. We have to prove that ify — 0 in H3(Q2) weakly, theru, — 0 strongly
in L2(Q). Let Gy be the extension af to R" equal tou, onQ and 0 elsewhere.
Thenu, — 0 weakly inH}(R") and hence weakly ih?(R"). Let Gk be the
Fourier transform oy, i.e., G(&) = (ux, €¢),. SinceQ is bounded for
everyé, e ¢ L2(Q) and hence for fixed, 0x(¢) — 0. Furtheruy is weakly
bounded inH}(Q) and hence bounded H1(Q). So|ulo < Co,lUl1 < €.
Hence, by Schwartz’s inequalifik(£)| < c;. O

To proveu, — 0 strongly inL? we need provqlﬂk(f)lzdf — 0. Now
[rageras = [ ageras+ [ ot
l€1<R l€1=R

Given anye> 0 we shall prove that we can chodieo large that the second
term is less thar /2, and then that we can chodggsuch that fok = k,, the
first term is less thar /2. This will complete the proof. Now 41

34
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1
1+

f 0@ = f (1 + PP
[¢1>R [é1>R
1

1+R2

dé

<

f (1+ [P0 P
[é1>R

[lull1 . _Gs
T1+R2 T 1+ R

C
We chooseR so that—?‘2 <€ /2.

+
Next since we have proved above thaf¢)| < ¢ and that for every,
0x(¢) — 0, observing that; is integrable or¢| < R, by Lebesgue bounded
convergence theorem, it follows that

f 10(&) Pz — 0
<R

5.2

We have seen that {d is bounded, the injection dfi}(Q) into L(Q) is com-
pletely continuous. It is not true that the injection ldf(Q) into L?(Q) is
always completely continuous. (For a necessary afiic&nt condition, see
Deny-Lions[1]).

However we have the

Theorem 5.2. If Q is bounded and hak-extension property, then the injection
HY(Q) — L?(Q) is completely continuous.

Proof. Let O be a relatively compact open set containfhg Let ug be a se-
quence weakly converging to 0 Q) andruy be extensions ofi to R".
Sincer is continuous fromH(Q) to H(R"), n(ux) converge to 0 weakly in
HY(R"), and hence the restrictions ofuy) to 0 also converge to 0 weakly in
H(0). i

Let ® be a function inZ(0) which is 1 onQ. Then®u, € H1(0). Since 0 42
is bounded by theorem3@x(uy) — 0 strongly inL?(0), and hencel, — 0
strongly inL?(Q).

Corollary. If Qis bounded and has m-extension property, then the injecfion
H™(Q) into L(Q) is completely continuous.
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5.3 Applications

Let V be such thaHl(Q) c V c HY{(Q) anda(u,v) = (u,v);. The operator
A associated witta(u, v) is —A. We wish to show how wheg is bounded
and has 1-extension property, Fredholm theory can be apjalieonsider the
solutions of A — A)u = f for f € L2(Q).
We recall the Riesz- Fredholm theorem for completely catirs operator.
LetH be a Hilbert space anilbe a Hermitian and a completely continuous
operator oH into H. Then

1) A-ul is anisomorphism ofl onto itself except for countable valuesiof
sayuo > pp = - -- such thay, — 0. u, are called eigenvalues 8t

2) The kernel ofA — up, is finite dimensional. It is called the eigenspace corre-
sponding tqu, and its dimension is called the multiplicity of.

3) If wy,,...wy, is an orthonormal base for the eigenspace thed from an
orthonormal system and aryye H can be written ag = h + 2Z(y, Wn)Wh,
whereh is a solution ofAh = 0.

Hence if we assume thath = 0 impliesh = 0, we have 43
4) (w,) forms a complete orthonormal system and
AY = Zpin(Y, Wn)Wh.

Hence A — )X = y has a unique solution for gl except those which are
eigenvalues and the solution is given by

Z (y, Wn foru # un

andify = upx = 3 W)
nzm MUm — Hn

Wm + h, wherehy, is such that A — un)h, = 0

We know that the problem of finding € N such that £A — A)u = f for
f € L2(Q) is to findu € N such that, v); — A(u, V)o = (f,V)o forallve V.

Let [u,V] = (u, V)1 + (U, V), SO that we have to consider, ] — (1 + 1)(u, V)o
for all v € V. Now the semilinear mapping — (f, V), is continuous orV,
hence there exist3f € V such that J f,v] = (f,Vv),. Jis then a continuous
mapping ofL?> — V. Let J; be the restrictiod to V. We have to consider then

[u,v] = (A + D)[Ju, V] = [If,v] forall v,

. g 1
€. - -—— where= ——.
ie., @1— = i 1w ere o1
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Lemma. J; is a completely continuous mapping of V into V.

. . J . .
Proof. J is the composite o — L? = L2. SinceQ is bounded and has
1-extension property, the injection — L? is completely continuous. Hence
J; is completely continuous. O

Further g1u,Vv) = (u,Vv),. HenceJ;u = 0 impliesu = 0, and trivially J; is 44
Hermitian.
Applying the theorem of Riesz-Fredholm quoted abalfe; u is an iso-
. 1
morphism ofV ontoV exceptforu = py - -1 ---. Letd, = -1+ —. Letw,

Mn
be orthonormal set of eigenvalues. We have proved then

Theorem 5.3.

(1) —A - 2is anisomorphism of N» L? expect ford = A3 - -- A, - - - such that
“1< 1< << Az -0, Ay > o0,

(2) —Aw, = Aw, and w, is a complete orthonormal system in V and complete
orthogonal in 2

(3) i complete orthonormal inA(|wn|IZ = 1) and so(1 + An)Wn|* =

V1+ A,
1.

(4) wy is complete orthogonal in N.
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6 Operators of order 2
6.1

Hitherto we considered the problems in which #helliptic from a(u, v) was 45
given a priori and then we solved boundary value problem#hf®ioperatoA
associated with the for(u, v). Now we with to consider the natural converse

Problem. Given a diterential operatof, determine the spac®sandV-elliptic
formsa(u, v) onV such that

1) (Au,¢) = a(u, p) forallu e V andy € 2(Q)
2) a(u,v) is V-elliptic.

Stated in this general from the problem has not been contplstéved,
even in the case of fierential operator of order 2; however, several results,
depending on the domaid, cosdficients ofA, V anda(u, v) are know and we
give some of these.

We shall always consider the case whén- H’(Q2). We take a second
order diterential operatoA in the form

S d d N
A= igl % (gij(X)a_Xi) + Z gi(x)a_xi +00(X), Gij, 0i, Qo In L(Q).

A more general form would be); ay(x)DP which reduces to the above if
Ipl<2

ap(x) are regular enough.

38
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We associate with the form
n —
ou ov ou _ _
a(u,v)=i;lfgija—xja—xidx+2fgia—xiv+fgouv
T Q Q

and consider the ellipticity of this form. Another kind ofsgiilinear from will

be considered later. We observe that with the same operatera forms can 46
be associated in the above fashion, merely by rearrangmgplerator. For
instance, let

The associated forms are

a(uv)—ﬂﬂ +ﬂﬂ +ﬂﬂ and
e 6X1’(9X1 o 6X2’(9X2 o 6X2’6X1 0’

(2] (2220 b 2.2
X1 0Xq N 00X X% N 2 0X1 9% N
(-2
2 (9X1’ %o
which are diferent.
Let (u, v)g be the leading part ai(u, v),

ou 6v
(UV)g = f
0 ]Zl 95, 7%

To determine whea(u, v) is elliptic, we have to investigate when
Re(, u)g > alu? for all u € V and for somer > 0.

6.2

Theorem 6.1. Let Q be a bounded open set i ig); be constants and \&
H(Q). A necessary and gicient condition that

Re, u)g > |ul? for all u € HY(Q) (1)

is that
> (@i + Gi)pi i for all complex(p). 2)
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Proof.

(a) NecessityLetu(x) = Zn‘, piX;. Because& is boundedi(x) € HY(Q). Hence
i=1
by (@)

Re{zgfgupiﬁdX]ZaZIpilzgfdx,

ie. Re(X gjpiPi) = o X Ipif? which is [2).
(b) Syficiency From [2) we have 47

Y0+ 3 eI (= a Y IS0 e,

Integrating over
Z f(gu + gu dX> aul?

ie., Re(, u)g > alul. o

Theorem 6.2. LetQ = R", and g; be constant. Then a necessary anglisient
condition in order that[{ll) holds is that

RG(Z gijgigj) > aZ§i2 for real & and for somer > 0 (3)

(We observel2y= @), but converse is not true, e.g., the example quoted
above).

Proof. By Fourier transform
Wy = 0, [ 2rg0ZrEadE

~ax? [ ) ayeejore

Hencelll) is equivalent to

Re{ f Z§i§j|0(§)|2d§] > alé?0(&)[%d¢ for all u e H* (4)
]
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Let p() = Re(X gjj&i&)) — .
Form [4), 1) is equivalent to

f P()I0)de > 0 (5)

We have to prove5) holds if and onlyf(¢) > 0.

Suficiency is trivial. To see the necessityFf,) < 0, P(£) < 0in a certain
neighbourhood and then to obtain a contradiction we neesluake Fourier 48
transform of which has support in this neighbourhood.

The following problem however is not answered:xife H(Q), (Q) of
capacity> 0 is {@) necessary in order thit (1) holds foe H(Q).

6.3V = H}(Q), g constant.

Theorem 6.3. Let V = H}(Q) and g; be constant. A necessary angf&ient
condition in order that

Re(U, U)g > |ul? for all u € H(Q) for somea > 0 (6)

is that
Re(Y gyir) > o 3P forall & €2 ™

Proof. In order to apply theoreliid.2 we prove that (6) implies thhthdlds
for u € HY(R") = HY(R"). We require a lemma. We may assume without loss
of generality that the origin is i®. Further, we observelQ = R". O

Lemma 6.1. @) holds if and only iRe(u, u)g > dJul? for all u € H3(<) for all
A.

Proof. Letu € Hé(Q). Defineu,(x) = u(ax) for x € Q. O

Itis easily seen that, € HL. From [8) we get

S 25
Re[zfg”axj A% ] Zf A% (8)
Q
U au(/lx)
Since % (x) = % , from (@) we get

Re{z f 5U(ﬁ><) 3U(ﬂ><) ] 5 f' u
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PuttingAx =y, we get the required inequality and lemrhal6.1) is proved.49
Returning to the proof of theorem, lete 2(R"). There existsl such that
K c 1Q. Theng € 2(R"). and hence € H}(1Q). This means

Re [, u)g > alul?, forall g € 2(R").
SinceZ(R") is dense irtH}(R"), we have proved
Re [U,u)g > alul? for all u € HY(R").

TheorenL &R then giveEl(7).

6.4
Some problems with variable cfieients :V = Hé(Q).

Theorem 6.4. LetQ be any open set inRand g; be continuous.
If
Re, U)g > a|ul? forall u e H3(Q), (9)

Rez gij (X)éiéj = a Z
i

Proof. Given anye> 0, let B be a neighbourhood of, such that

then

fi’ forall (&) eR".

(U, U)gex) — (U, U)gl <€ |uf? for all u e HY(B).

We need choos8, such thaqgi,—(x) - gij(XO)’ are stfficiently small. [®)

gives then
Re(, U)g > (a— € |uff) for all u € Hg(Bc).

From theorerfi 613, it follows that

Re) gij(0)aé) = (- &) D IaP.
Since this is true for arbitrarily smadl, we have

Re) gij(x)éié; > (- &) D Il

Regarding the dticiency of the above condition, we have O
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Theorem 6.5. Garding’s inequality. IfReXg;&iéj > aZ|&? for somea > 0 50
for all x € Q andQ is bounded then there exists> 0 such that

Re, U)g + AJulZ > oul? for all u € H2(Q).
We do not prove this. For a proof, see Yosidal [21].
We have a general flicient condition

Theorem 6.6. If 2(gij + Jji))p;pi > aZ|pi|?) for somea > 0 and pcomplex ee.
in Q, then
ReU, u)g > a|ul? for all u € HY(Q).

Having seen some cases when &e(u)y) > aluli we see Now some ex-
amples when dierent formsa(u, v) giving rise to the same operatérareV-
elliptic.

1) Leta(u,V) = (U, V)g + (QoU, V)o With go(X) = 8 > 0.

Then
Re@(u, u)) > alul? + Blugl® > min(a, B)Iull3.

Hencea(u, v) is V-elliptic for anyV such thaH} c V c H2.

2) Leta(u,v) = (u,V)g + (QoU, V)o + Z(gi%,v) ,gi real constantsgo(x) >
! 0

B > 0. LetV = H}Q). LetV = H}(Q). We first observe that for

ue Hé(Q) Re(u,%) = 0. For, if¢p € 2(Q), by integration by parts

(6—"0,90) = (tpa—‘p_) and since
[0} [0}

% 0%
o), (5o, e )
Rel —, ===, + |, —
(6Xi‘po axi‘po (paxio

we have Ref, g—)‘f) =0forally € 2(Q). SinceZ(Q) is dense irtH(Q)we
i

have the result fou € H}(Q). Hence Ref(u, u)) = Re(U, U)g + R(QoU, U).
Hencea(u, v) is H1(Q) elliptic.
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6.5
We now consider another kind of sesquilinear forms givirsg tio the same 51
no9 0 0 0
A = — (a: _ - _ . .
operator LjZ:l %, (Gij(x) axi) +0i(x) ax P9 * %o(X)
Let Q be an open set with the bounddhhaving aC(n — 1) dimensional

pieceX. Letyu be the extension of functions iH'(Q) to 3 as defined ir§
Z3a

On HY(Q) consider the sesquilinear form

a(u,v) = (u,v)g + Z (gi g—: v) + Z(gou, V)o + f v Uy udo,

M)

wheredo is the intrinsic measure ai. The operator associated with it is the
sameA as before. To consider the ellipticity of this from we regugome
definitions.

Definition 6.1. Let Q be a bounde@onnectedpen set; we shall say th&x
is of Nykodym type if there exists a constant@)P> 0 such that the following
inequality holds for all ue H(Q).

f|u|2dx—ﬁ’fude(Q)|ulf (1)
Q

The inequality[[IL) is called Poincare inequality. We admithaut proof
the

Theorem 6.7. Every Q with “smooth boundary” is of Nykodym type. (For
proof, see Denyi|7]).

44
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Another interpretation of the inequalifd (1 ) is obtaineddiserving that

2 1 2
f|u| dx— —me@‘fudx{

is the minimum of + c,|, for all constants.
For

2 — —
|u+c|0=|u|§+cfudx+ cfudx+ Icl> mesQ

el [l [ 2o of

Thus [1) means Infi + ¢i2 < P(Q)|ul2.

Theorem 6.8. LetQ be a domain of Nykodym type with the boundaagn—1)
dimensional ¢ manifold. Then the form

a(u,v) = (u,v)g + fyU)/_VdO'
r
is VV-elliptic on H(Q).
Proof. Since Reg(u,u)) = Re@(u,u))g + [hyul’doe > alufZ + [yul’do to
r

prove theV-ellipticity of a(u, v) it is enough to prove that there existga 0
such that

2 2 2
aluP + f hyui2do < AllUIE,

or that

2 2 2
fl)’ul do + ulf = Ballully-

Let[u,v] = (u,v)1 + fyUy_vda. [u, V] is a continuous sesquilinear form on
HY(Q) since [, u] = 0 implies|ul? = 0 and [ |y udo- = 0, we haveu = ¢, a
constant fotu]? = 0 andc = 0 for [ [yu® = 0. Thatis to sayd, u] = 0 implies
u = 0. In fact, we have the O

Lemma.[u, V] defines a Hilbertian structure on k).

Assuming the lemma for a moment, we see that on account ofidsed
graph theorem, the two normg[u,v] and +/(u,v)y are equivalent. Hence
[u, u] > Bllull2 which was to be proved.

52
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To complete the proof we have to prove the lemma, i.e., thdeuthe
scalar product [JHX(Q) is complete.

Let ux be a Cauchy sequence for the scalar product [ ]. T%%hi = 53
i
1,...,n, andyuy are Cauchy sequencedif{Q), andL?(I") respectively. Hence

pi fi,i =1,...,nin L2(Q) andyu, — gin L(T). SinceQ is of Nykodym
typle from [1), we have

1
U — ——| | udx??dx< Pu?

f|k mesQ|f X212 dx < PluP

Q
. 2 2 1
ie., | U — ¢l < Plugl; where ¢ = ———— U dx

mesQ
Q

Sinceuy is a Cauchy sequence Irf(Q), ux — ¢ is a Cauchy sequence in
L%(Q). Henceu,— ¢k — vin L2(Q) andg—)\; = lim % = f,. Henceux—cx — v
' i
in HY(Q) and soy(ux — ¢) — vin L?(T). Sinceyux — gin L?(),c — cC.
Howeveruy = (ux — ¢) + . Henceuy — v+ cin HY(Q) under the norm [],
which proves the lemma.

6.6 Formal interpretation:

If Qis of Nykodym type with a smootm(- 1) dimensional boundary, we
have just proved that the forafu, v) = (u, V)q + (yu, yV)o is elliptic onH(Q).
The operatoA that it defines iA = — )} aix (gij(x)%) andu € N implies

i i
a(u,v) = (Au,v), for all v € V. Now formally,

fAqux:a(u,v)+fﬂ\7do-
ona

Q

0 0 .
Wherea—u = 2 G 6_xu cosf, %), (n, ) being the angle between the outer
TIA j

normal andx;. Thusu € N implies formallyﬂ =0.

ona

6.7 Complementary results.

Boundary value problems of oblique type o= {x, > 0}. For general theory, 54
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see Lions[[®]. Lel be the boundary a2 : {x, = 0}. We recall the definition
of the space$i?(I) for « real defined in§ Z8. H*(Q) = {f L?()} such that
a+ |§|”)f e L¥(D), wheref is the Fourier transform of. We have proved in
[Z34, that there exists a unique mappingH* (Q) — HZ(I') which on2(Q)
is the restriction td” and this mapping isnto.

Theorem 6.9. The dual of H(T) is H™(T).

Proof. Let.7 (H(I')) be the space of Fourier transformsttff(I'). .7 (H*(I'))
consists of functiond e L?) such that (1+ |£%)f € L?(T). Hence its

dual consists of functiong “e L?(') such that1+ 7 g e LX), ie,
(L+ ) § € L?(Q). Hence the dual of7(H™*(I)) is .Z (H™*(I")) which
proves the theorem. O

n-1 0 . .
LetA = Y aj Ix with «; real constantsWe callA atangential operatar
i=1 i

Lemma 6.2. A is a continuous linear mapping ofﬁ-ﬂl") into H'Tl(l").

. 0 . : . .
Proof. It is enough to prove thayxi is a continuous linear mapping from
HZz(I) into H-2(") or thatﬂ’(aixi) is continuous from.Z(Hz(I)) into

F(H4(D). Letf e HAD). Then (1+ 6))f € L2(T), and soF (Z_;) )

|
2ri& f € H3(I). Since the mapping — &gis continuous, fron (Hz (I'))
into ﬂ(H*%(l")) the proof is complete. O

From lemmd &R we see thadyu, V) is defined for allu,v € H(Q).
Further we have the

Lemma 6.3. Re(Ay u,y u) = Oforallu € H(Q). For by Fourier transform 55
0 _ . -
Re<6_>q yuy)=Re [ 27i&|yaPde
Leta(u,Vv) = (u, V)1 + AU, V)o + (A y u, V) foru,v € H(Q). From lemma
62, we see that(u, v) is a continuous sesquilinear form et (Q).

Lemma 6.4. If 1> 0,a(u,V) is H}(Q) elliptic. For Re(a(u, u)) = |ul? + AJul3 >
min(4, 1)l[ullz.

From theorerfi 311, we have the
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Theorem 6.10. The operator associated wit{@a V) is —A + 1 and—-A + 1 is
an isomorphism from N ontc?(Q).

To get a formal interpretation of the problem, we have to beeu € N
meansu € N if and only if

(=2 + Du,V)o = (U, V)1 + (A y U, yU)o + A(U, V)o.
By Green'’s formula, €A u,v)g = (U, V)1 + fr 66—):\7 Henceu € N implies

formally g—xu(xl, ..., %n, 0) = Ay u, a condition of oblique derivative.
n
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6.8

Upto now we considered problems in which the spdeeas a closed subspace 56
of HY(Q). We wish to consider now some cases in whiths not closed in
HY(Q).

LetQ = {x, > 0}, " be the boundary g andy be the mapping afl}(Q) —
H2(") as defined i§Z24. LetV = u € HL(Q) such thaty u € HY(I). OnV
we introduce the norm

LUl = U + Iy Ul (1)
Lemma 6.5. (@) defines on V a Hilbert structure.
Remark. V is not closed irH(Q).

OnV consider the sesquilinear form
a(u,v) = (u,v)1 + A(u, V)o + (yu, yV)1,4 > 0.

Lemma 6.6. a(u, v) is continuous on V and is elliptic far> 0. Let Q= L?(Q).
Then by theorefn3.1(a v) determines a space N and an operator A which is
an isomorphism of N onto?L To see what A is we observéuav) = (Au, V)
forall oy =v € 2(Q). Then 4u,¢) = (—A U+ AU, ¢)o. Hence A= —a + A.
Furtheru € Nifandonlyifue V,—-au € L%(Q)and(Au, V), = a(u, V) for
allv € V.

To interprefformally u € N we see that from above we have

(=2 U, V)o + AU, V)o = (U, V)1 + AU, V)o + (Y U,y V)

49
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forallv € V. Applying Green’s formula

ou

9%,

n-1 2
(X,0)yvdX = —Za—z vuvdX, wherex' = xg,...,%n_1),
v = 0%

forallv € V. Henceu € N if and only if(??u = —AxU(X,0).

n
Before leaving the study of second order equations, we altadts con- 57
nections with the theory of semi-groups and to mixed prollem

a) LetV be such that}(Q) c V ¢ HY(Q) andQ = L*(Q). Leta(u,v) be
a continuous sesquilinear form. Then by theofem 3.1, a sNaceV and
an operatoA € .Z(N,L?) is defined. If onN we consider the topology
induced byL?(Q), A is an unbounded operator with domain If a(u, v)
is elliptic, it is easily proved that there existsso that A + 1)l has an
inverse A+ 1)~ bounded in norm by 1 when > &, Ais an infinitesimal
generator of a regular semi-group.

b) In mixed boundary value problems we have to consider th@fing prob-
lem: A family of sesquilinear forms

(a(u,v. 1) = f > %(X’t)g—;j 3_:

are given wherey;(t) are continuous functions froRto L* with the weak
topology of dual. Lev = H}(Q) andQ = L?(Q) and let for every, a(u, v)
beV-elliptic. Then for everyt, a space\(t) and an operatoi\(t) is defined
such thatA(t) is an isomorphism oN(t) onto L?(Q). If f € L?Q) and
u(t) € N such thatAwu(t) = f, thenu(t) is acontinuoudunction fromR
intoV.

7 Operators of order 2m

7.1

Definition 7.1. An operator A= 3(-1)PIDP(apq(X)D%), apq € L¥(Q) is called
uniformly elliptic in Q if there exists am > 0 such that

Re Z apg(X) €PN > a (Z & 2) forallx € Qand¢ e R
i-1

[Pl lgl=m
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We admit without proof (for a proof, see Yosida[21]).
Theorem 7.1. Garding’s inequality.

If Qis bounded and\ is uniformly elliptic, then there exists &> 0 such
that

Re a(p, ¢) + Ayl > allgl? forallg € 2(Q) @)

where a(u,v):Z f apg(X)DIUDP dx (3)
Q

7.2 Applications to the Dirichlet’s problem.
Theorem 7.2. If Q is bounded and A is uniformly elliptic, then
a) (A+ 2)is anisomorphism of fi(Q2) onto H™(Q) for A large enough;

b) (A+2)is anisomorphism for all except for a countable systetn ... ., Ap;
such thatl, — 0.

Proof. (A+2) is the operator associated wifu, v) + A(u, v), which on account
of Garding’s inequality is elliptic ol7'(€2), for larged. Hence by theorefn 3.1,
A + A is an isomorphism oHJ'(Q2) onto H"™(Q). Further since the injection
HM(Q) — L2 is completely continuous, we have the second assertion. O

7.3

To consider other boundary value problems and speciallyN#gw@nann prob-
lem it is useful to introduce the motion of-regularity.

Let K™(Q) be the space of ali € L?(Q) such thatDPu € L?( ) for
Ipl = m. OnK™M(Q) we define the nornulZ,. = [ul? + ul3.K™(Q) is a Hilbert
space. TriviallyH™(Q2) c K™( ). However, the inclusionan be strict

Definition 7.2. Q is said to be m-regular if Q) = K™(Q2) algebraically.

For instanceQ2 = R" is m-regular forH™(R") = K™(R") as is seen easily
by Fourier transformation.

Theorem 7.3. If Q is m-regular, then there exists a constant ¢ such that

U2 < c(ul +u2)fork=1,...,m-1. (4)

58
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Proof. The injection ofH™(Q) into K™(Q) is onto and continuous. Hence by
the closed graph theorem, it is an isomorphism. Anfiulig, < ¢ (|u|§ +ul2),
which implies the inequalitie§l4). O

Now the problem arises whether [l (4) holfsis m-regular or not. If[{¥)
holds the inclusion mapping is continuous, one to one, anigiige is closed.
We have to prove then th&t™(Q) is dense irK™(Q2). This is still an unsolved
problem.

we admit following theorems without proof.

Theorem 7.4. Every open set with smooth boundary is m-regular.

Theorem 7.5. If the injection H(Q) — L?(Q) is completely continuous, then
Qis m-regular.

Definition 7.3. Q is strongly m-regular, if (a) it is m-regular, and (b) for aye
e> 0, there exists a(g) such that

lul2 <€ |u2 +c(e) udfork=1,...,m-1 (5)
forallu e H™Q).
Proposition 7.1. Q = R"is strongly m-regular for every m.

Proof. By Plancherele’s theorem, we have to prove that giveneang there
existsc(€) such that

|wﬁe\fmeﬁgfwfstf(aam+c@mm%§

fork=1,...,m-1,i.e.[&%* <e |&*™+c(e) fork = 1,...,m—1, which follows
from elementary considerations. O

We do not know however if there existsregular domain which are not 60
stronglym-regular.

Theorem 7.6. If the injection H(Q) — L?(Q) is completely continuous, then
Q is strongly m-regular.

Proof. By theoren_Zb, we see th@tis m-regular. We have now to prove the
inequality [®). If it is not true there exists @a» 0 and a sequeneg € H™M(Q)
and a sequenag — oo such that

Uil ze |uil, + clul3.
u4
Letvy = —————. Thenv; € K™(Q) = H™(Q). 0
(luilZ, + luilo) 2
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Further

) luil3

2
Vi, =€ +(Ci—
Mk 2€ +6- o o

andc/ = ¢j— €— co.

Hence
2 2
IVi|* >€ +C/|vilg. (6)

Now |vi|? + [vi|3, = 1, so thaty; are bounded itH™(Q) and hencevi|x < C.

From [B) it follows that|vj]* < . — 0in L?(Q). There-

i
fore there exists a sequengeconverging weakly to 0 itH™1(Q). Since the
injection of HY(Q) into L%(Q) is completely continuous, — O strongly in
H™(Q), i.e.,|Vlk — 0 which contradictd6).
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7.4 Applications

Leta(u,v) = ¥ pq<m | @pgDYU)DP v dxwith apg € L
and
A(u,v) = Z gD (U) DP v dx
IpLIgl=m
be the leading part ai(u, v).

Theorem 7.8. Let (a)Q be strongly m-regular an¢b) ReA(u, u) > a|ul?, for
somex > 0 and for all u e H™(Q). Then there exist$ such thaiRe a(u, u) +
Alul3 > Bllull3 for someB > 0, and for allu € H™.

Proof. We have
Re a(u,Vv) = Re A(u, u) + Re p(u, u)
where

o(u,v) = Z faquqquv dx|ql < mand|p| + gl < 2m- 1.
Ipl<m,
m}

Every term ofp(u, V) is majorized bycl|ullml|ullm-1 and so Rep(u,u) <
Callul mllullm-1. Hence

Re a(u, u) > alulf, — ¢y [[ullm lIullm-1.
We have then to prove that we can fihguch that there exisfssatisfying

2 2 2
X = aulf, — Cyl|ullm [lullm-1 + Alulg = Bllullf, 1)

54
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SinceQ is strongly m-regular, using definition for ame 0, there exists
c(€) such thatjullm-1 <€ [|ullm+c(€)lulo. Hencecy||ullmllullm-1 < €1 € [lUllZ+C(e 62
Nullmlulo- SinceQ is m-regular alsdjul|y, is equivalent tqu|m + |ul,. Hence
Cllullmllullm-r < ¢2 € (ulm + [Ul3) + C/(€)(Ulmlulo + [UlY). SoX > alul? -

1
c2 € (Julz+ul2) — ¢ (€)(ulmlulo + [ul3 + Jul3. Now 2ulmlulo < €1 [ulZ, + e—llwé

for anye;. Hence

XZ(CL’—CZ E—%(e)

/7 1
Julf, + (1= ¢”(€) + Z)Iula.
€1
First we choose so thata — ¢, €= 5. This determineg(€) andc’(€).
Then we choose; so small thate; ¢’ (e) < a/4, and them so large that

1
-c’(e)+ — > 0.
©+ >

ThenX > Bi(lul?, + |ul?) and by m-regularity of2, X > gl|ul|?, as it was
required to be proved.

8 Regularity in the Interior
8.1

Having established the existence and uniqueness of wealias® of certain
elliptic differential equations, we turn now to consider their reguylgritblem,
that is to say, to see whether in the equathan= f suficient regularity off
will imply some regularity ofu. First, we shall investigate whenis regular in
the interior of the given domaif? and next we shall consider wheris regular
in Q in some sense.

To formulate the problem of interior regularity, we shalijuére some defi-
nitions of new spaces.

We recall having defined i 27, thatH™" (Q) = (H"(€2))’, for positiver.
If 0 is an open set i and ifu is a function inQ, up will denote the restriction
ofuto 0.

Definition 8.1. LetQ be an open set inRZ" = H| () for any integer r, 63
consists of functions u which for any relatively comp@et Q are such that
Up € H'(0), rinteger> 0or <O.

Let K,, be an increasing sequence of closures of relatively congyzen
sets @ coveringQ. Let p, = ||ug,|lr be the norms |rHr of up,. py,s are semi-
norms in.Z". On.¢" we put the locally compact topology determined by the
semi-normspn.
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Definition 8.2. K" r, any integer will denote the space ofai H" with compact
support.

OnK" we put the natural inductive limit topology. A sequeng&onverges
in K" if all u, have their supports in a fixed compdcand allu, — 0in H (A)
. We see easilyZ) = K.

Proposition 8.1. &7(Q) = | K'(Q) algebraically.
reZ

Proof. By definitionu K" () c &” (). We have to prove only thatT € &’
thenT € K' for somer. Now by a theorem of SchwartZ, € &’(Q) implies

T = ) DPf, wheref, are continuous and have a compact support. Hence
Ipl<u

fo € L2(Q) and by theored@2 T, € H#(Q). This means thal € K'(Q),
wherer = —pu. O

Proposition 8.2. Let B= }, b, (X) DP with b, € &. Then B is a continuous
Ipl<u
linear mapping of7, &, ', & into itself and also a continuous linear mapping

of Z"(Q) into £ #(Q) and K (Q) into K'*#(Q).
Remark. It is not true, however, thd is continuous fronH" to H .

Proof. The first assertion is trivial and the last one follows if weye the 64
middle one. Letf € Z'(Q). Sincebp, € & onQ, bys and their derivatives
are bounded on 0 so that it is enough to prove ¥atf € H "#(0). We
may assume 0 to be an open set with smooth boundauy<If andr > 0 we
have the result from the definition. gf > r, then by integration by parts for
g € H*"(0).

(D' f,0) = (-1y"(D* f,D"" g)
exists and henc®™ f is a continuous linear function oH*~" (0), i.e., D*
f e H(0). O

8.2 Statements of theorems

Let
A= " (-1)PDP(ap()DY. apq € & (Q) (1)
[pllgi<m

Definition 8.3. A is uniformly elliptic in Q if given any compact k& Q we
have anxk > 0 such that

Re (Z apq(X)E pfq) > alé®forallx € Kandall
é&=(,....6) e R (2)
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Remark. If Aiis uniformly elliptic, Garding’s inequality (Theorel T .is)true
on every compadt.

Let
B= Z bp(X) DP,b, € £(Q) (3)

Ipl<u
Definition 8.4. B is elliptic inQ if ), bp(X)éP = Owith¢ € R", implies¢ = 0.
We see at once that a uniformly elliptic operator is ellipfite converse,

o . o .0 . ...
however, is inexact. For example, inthe case2,B = I + |67 is elliptic,
1 2
but evidently is not uniformly elliptic being not of even erd

In this and the next lecture, we shall prove the following tlveorems on 65
the regularity in the interior.

Theorem 8.1. Let A be a uniformly elliptic operator of ord&m in Q. If for
someTe 2/(Q),AT e £'(Q) for some fixed r, then € .Z +2™(Q).

Theorem 8.2. Let B be an elliptic dferential operator of ordep in Q. If for
someTe 72'(Q),BT e £'(Q) for some fixed r, then Te £"*#(Q).

From these theorems, the regularity in the classical seilséllows by
the

Corollary. Let B be an elliptic operator of ordeg. If for some T € 2/,
BT € & thenT e &.

ForBT € & meansBT e ¢ forall u. Hence by the theorems
T e Z"™* for everyr. Hence all the derivatives af will be functions which
meansl € &.

Before proving these theorems, we shall establish someeations be-
tween elliptic and uniformly elliptic operators. Using g we shall prove
that theoreni 811 implies theordm18.2, and then we shall gcoupselves in
the proof of theorer 81 1.

Proposition 8.3. Let n > 3. If B is elliptic, then B is of even order (See
Schechterl[15]).

Letx € Qand Z bp(X)£P = Q(¢), ThatB is elliptic at x means that

Ipl=
only real zero ofQ(¢) is 5 0. We proveQ(¢) must be of even degree. By a
non-singular linear transformation, if necessary, we mespmet, has degree
M.

Let& = (£1,...,&n-1) # O be a point inR™! ¢ ¢". Let Q(&,) be the 66
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polynomial in&, obtained by substitutings(, ..., &-1) by &. ThenQ(&,) has
n complex roots all of which have imaginary pat0O, for otherwise £, &)
would be a real non-trivial zero d(¢). Letn, andx_ be number of roots
of Q(&,), with positive and negative imaginary parts respectiv€ly account
of homogeneity ofQ(¢) if we put&” = —¢, the number of positive roots of
Q(¢”, &) will be n_ and negative roots will be,. Let&,&” be joined by
an are not passing through the origin which is possible tsxay 1 > 2.
From a classical theorem the roots @f¢,) can be continued frond’ to &”
continuously. Now at no point on the af& ¢’ cané, be real on account of
ellipticity. So the positive roots at' are continued into positive roots &t.
Hencer, = n_ andu = 7, + n_ = 21, is even.

Proposition 8.4. Let B be an elliptic dferential operator with real cofcients.
Then B is uniformly elliptic irf.

Proof. Let Y, by(X)¢P = P(x,&). SinceB is elliptic, P(x,&) = 0 implies
Ipl=n
& = 0. Hence orj¢| = 1, P(x, &) for fixed x keeps same sign which we may

assume> 0. HenceL > a for fixed x. If now K is any compactP(x, &)

(48
is continuous on the compaitx |¢| = 1 and henceP(X|—f) >aforallx € K
and all¢ # 0. If we put—¢ for £ we get the inequality multiplied by}
henceu is even. O

Proposition 8.5. Theoreni 8] Theoreni 8P

Proof. LetB= Y bp(x)DP. PutB= 3 by(X)DP. Let
IpI<p Ipl<u

A=BB= > by(x)b,() DP D+
[pl=lgl=p

O

A is of even order and iP(x,¢) is its associated form, theR(x, &) =
IZby(X)¢ PI2. Further sinceB is elliptic, A also is. By propositiof_8l4A
is then uniformly elliptic. Let nowlT € 2’ such thatBT € .#'. Hence
AT=BBT e ¥ *. Iftheoren81 is true, theh € Z"** proving theorem
8.
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8.3

We now proceed to prove the theorEml8.1. First we prove a leofrinda-
mental character which will help to establish an inductivegedure to prove
the theorem.

Lemma 8.1. Let A be a uniformly elliptic gferential operator of ordePm. Let
u € £™MQ) and let Aue .#~™1 (usually Aue .#~™only). Thenue ™,

Proof. We prove the lemma in two steps. In the first one it will be shohat
it is enough to prove the lemma assumifignd Au to have compact support,
for which the assertion will be proved in the second step. O

Step 1. The lemma is equivalent to “if ue K™ and Aue K-™1, then ue
Km+ln_

The direct part is evident. To prove the converseylet ™ be such that
Au € ™1 Foranyy € 2(Q),v=¢u € £ NowAu= AlpU) =
Au+ > DP DY u.

[pl < 2m, |gf < 2m-1

Since for|gl < 2m— 1,D% € =™ and by assumptiorAu € Z~™1, it

follows thatAv € ™1, Sincey has compact suppory,and Av are in

K-™1 Henceve K™ Since this is true for every € 2(Q),v € ™1,
Now we prove the

Step 2. If u € K™and Aue K™™1, then ue K™,

u .
We have to prove tha% € H™(Q). A general method to prove this, here
and in later occasions, will be to estimate th&atience quotients af. Let

59
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1 . . o
h = (h,0,...,0) andu’(x) = n u(x + h) — u(x) which exists ifh is small
enough. Now we establish the following:

a) A" — (AU = (1) PDP (ah, Du(x + h)).
b) A(u") is bounded irk ™.
c) u"is bounded irH™.

Assuming for a moment tha), b), c) are proved, we complete the proof
of the lemma. Since is bounded irH™, it is a weakly compact and hence

there exist$y — 0 such that™ — gweakly inH™(Q). On the other hand,

ut KR 7. Henceﬂ =g € H™ ie,u € H™L Sinceu has
0 Xi 0 Xi

compact supporty € K™1,

Now the proven), b), c).

a) We verify easily that¢f)"—a f" = oM f(x+h). Applying this term by term
in (Au)" — A(u") we obtain @).

b) On account ofg), to prove thatA(u") is bounded inK ™ it is enough to

prove that Au)" and each on(a*F‘,quu(x+ h)) are bounded itH~™. Since
- a9 _ . ag
— K m+1 K-m h
Au=ge o € and since Au)" — %

vergent sequence iK™ and so is bounded, Further, sina%q e C* as

(Au)" is a con-

0 .
h— 0, a',‘)q - aTapq(x) € C* uniformly on every compact set. Also
1

DYu(x+h) — Du(x) in L2. Henceall,D%u(x+ h) converge in_2. SinceDP
are derivatives of order than or equalnp Dp(aququ(x + h)) converge in
H~™, and hence itK™™. This proveslf).

c) Since by b), A(u") is bounded, we have
(AL U™ < AU -0l U
< crl|ulm
On account of Garding’s inequality, we have 70
Re a(u”, u") + Au"3 > ellu"|3,

on every compact set. As— 0, we may assume that ail have their support
in a fixed compact set. Hence

h2 hp2 h
Ul < AUl + Callulim.
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. ou . .
Sinceu € K™ u" - & in L2 and sdu"|, is bounded. Further we have

c?

h 1, ¥ h2
cylju < —=+ —||u"|5..
1[[U" [ m 5 2|| Il

Hence < luMI2 < cs which provesu is bounded, and this completes the

proof of lemmd&lL.

Lemma 8.2. Let ue .#™, and Aue "™+, Then ue £™*! for every
non-negative integer j.

Proof. Lemmd&.L proves the lemma for the cgse0; assuming it proved for
integers uptqg = 1, we proveitforj. Since?™i*1 c ™I Au e g™+l
implies thatAu € #~™1 and hence by induction hypothesis tiat ™.
Now D Au— A Du = A’'uwhereA’ is a ditferential operator of ordem2 Since
Au € L™i*l D Aue ¥ ™I and sincau € ™I Au € ¥™I. Hence
A(Du) € "™ ButDu € £Masue ™I j > 1. Hence by lemm@3d.1,
Du e .Z™l ie,ue L™+, O

LemmdB.P can be putin a slightly better form of
Lemma 82, Letue .#™and Aue .Z', then ue £+,

For, ifr < —m, the lemmais trivial and if > -mwe haver = -m+ j and
lemma 82’ follows at once from lemmiag.2.

Now we complete the proof of theordmB.1. We have to provetiae 2 71
andA T e &', thenT € £™*?™ Let 0,0, be two relatively compact
open sets such th&@® c O; c Q. On account of a theorem of Schwartz,
To = X, DPf, where f, are continuous in with support contained@®. By
theorenZZN T, € H#(0). Now A™# wherea is the Laplacian is on account
of theorenZLB is an isomorphism Bf**#(0) ontoH;™?*. Hence there exists
u € H™A(0) such thab™* u = To. Applying lemma &’ to A™#, we have
u € .£?™5(0) as the order of is 2(m+ ), To € £, andu € £™#(0).
Now (A To) = (A aA™P u) € £"(0). The order oB = A A™# is 4m+ 23 and
B is uniformly elliptic. Asu € Z?™# andBu € .#", applying lemm&8I2, we
haveu € "M% Hencel = A™Pu e £,

8.4 Some remarks.

We remark that theorem 8.2 implies theoilend 8.1 triviallyuto in the course
of the proof, we proved theoref 8.1, before proving thedr&n Bhis raises



62

a vague question what properties which are true for unifprfliptic differ-
ential equations can be upheld for the elliptic ones. Fdaimse, we know for
Dirichlet’s problem for bounded domains with smooth bouydéredholm’s
alternative holds if the operator is uniformly elliptic. the casen = 2, we
have the following counter example of BicadizE [4].

Consider the Dirichlet problem in the unit circle for the ogter A =

1{a .o\
=|—+i—|. Ais elliptic but i t uniformly elliptic, for th i-
4(6x+|6y) is elliptic but is not uniformly elliptic, for the associ
ated form hag? — 52, as its real part. We prove that the spaceistich that

Au = 0,u = 0 on the boundary is not finite dimensional and hence that-Frez2

2
holm alternative does not holdu = 0 meansa—u =0, whereg_ = i +i i
072 0z dx dy

and hencc%—; is holomorphic in the unit circle. Henee= f + zgwheref and

g are holomorphic in the unit circle. But= 0 on the boundaryz = 1 . Hence
0 = zu= z f +gonthe boundary, and henge= —zf everywhere ag and
g are holomorphic in the unit circle. Thus= (1 — zZ) f(2) is a solution of the
above problem for any holomorphf¢z) which shows that the space wbuch
thatAu = 0,u = 0, on the boundary, is not finite dimensional.

For complementary results, see Schechier [15] and a fartimzppaper by
Agmon, Douglis, Nirenberg.
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9 Regularity at the boundary.

In the last lecture we dealt with the regularity in the inber local regularity 73
of the solutions of the elliptic dierential equations. Now we wish to consider
the regularity of the solutions iQ2. In a sense such solutions can be extended to
the boundary. These should not be confused with problem&ichdboundary
values to be attained are given. These will be consideredgengral set up
under the name of Visik-Sobolev problems.

9.1

Theorem 9.1. LetQ be a bounded open set i Rith a boundary which is an
n — 1 dimensional © manifold. Let

a(u,v) = Z faququDPvdx

[pl.lgl<m

with apq € & (Q) be given such thaRe @(u,u)) > « ||ull? for somea > 0
andforallu e H™(Q). Let V= H™Q) and Q= L?(Q) and let A and N be as
determined in theore® 1. If f € L?(Q)and u € N is such that Au= f, then
u e H™Q).

Remark . If we do not take any condition on the boundary (ag.,€ N)
then we can assert only that € _#?™(Q) and cannot assert in general that
u e H™MQ).

The proof of this theorem is fairly complicated and will b@ken in several
steps.

63
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Step 1. First we reduce the problem to one in a cube in the followiny:wa
Let Q be a finite covering by relatively compact open sets of thenbaty I’

. . — O0<g<1,
such that there exists®Chomeomorphismg; of O to W = 6= 74
-l<e <n
. O<g<1, .
i = 1,...n—-1such thaty; maps0, N Q onto W, = i =
O<e <1

1,...,n=1andI' N O; onto W, = {W n {&, = O}}. Since the regularity is the
interior of u € H™(Q) has been already proved to prove thatas H>M(Q),

it remains only to prove the restrictions of u tg,@e., b, € H?™(O)). The
homeomorphismg; define isomorphisms of MO; N Q) onto H"(W,). Let
u,vi € HM™W,). Define a(u,v) = a(y(u1),y 1(v1)). (We drop i from
the syfix). This definition is possible as A is an operator of locaktymore
precisely

a(y ). (v (v) = f apq(¥) DYWL (U)DP(p T (v)dx

(o}

ap(u,v) is a continuous sesquilinear form on™W,). Now by theoreri 311,
a(u,v) = (f,v)o forallv e H™(Q). Let, in particular, v vanish near the
boundary of O-T n O, and have its support in O. Theuav) — ay(u,v) =
(f,v)o. Hence if y is in H™(W,), and vanishes, near the boundary of WT,
then

a(y(u),v) = ((f), V)o, wheny(f) e L*(W.).

If we prove now thaty(u) € H2M(We) for everye> 0, whereWs =

1- i inki i
0 €€ ze , then by an obvious shrinking argument, we will have proved
<€ <

the theorem.

9.2

Step 2. Thus our problem is reduced to the following one. L& = {0 <
x <1},i=1,...,n, be n-dimensional cube iMRLet qu, V) = ) fapq(x)un
m

DPudx with g € &£(Q) be an elliptic form on H(W). Let f ¢ L%(Q) and
u € H™(w) be such that for every ¥ H™(Q) which is zeroneab Q- >, we 75
have

a(u,v) = (f,v)o. (1)
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Then we have to prove that e H2M(Q¢) for everye> 0, where

of = € <x <1-¢i=1...,n-1
"lo<x <1 '

We shall prove this in two steps. First we consider the déviea of u
in the direction parallel to¢, axis, which we call tangential derivatives and
denote them byP(u) with p = (py,..., pn_1,0). By an induction argument
and considering dierence quotients as in the previous lecture, we shall prove
that‘IIDp u € HM(Q). In the next section we shall conside§' u.

pl=m
Proposition 9.1. Under the hypothesis of the reduced problenf uD e

[pl=m

H™(Q).
Proof. If u € H™QQ) is such thatv = 0 neardQ — Y, then we denote by
V() = %[v(x + h) — v(X)] which is defined for sfiiciently smallh, where
h=(h,0,...,0). We note two simple identities relating.

1. f, u"vdx+ [, uv’dx= 0 whereuandv both vanish neadQ - 3.
2. @ M=au"+a"ux-h).

Let ¢ be a function inZ(Q) vanishing neabQ — 3. uis in H™(Q) and
vanishes near the boundary. Using Leibnitz’s formula, #i€en at once that to
proveu € HM(Q), it is enough to show thdd.(¢u) € H™(Q). We shall prove
first that ¢ u)™" is bounded. O

Let 76
b(u, V) = a(¢ u, v) — a(v, pu)
= Z f bpq(X) d% DPv dx (2)
1

|pl<m.[gl<m.[pl+|gi<2m-

wherebpq(X) are products of derivatives of with aj,;s, and so vanish near
0Q - Y, and are inZ(Q). Using [1) and(R), we have

alpu) ™" v) = [a((@ )" V) + a(gu, V] = b(u V) = (V). (3)
Now we prove three lemmas.

Lemma 9.1. | a((¢ u) ™™, v) + a(¢ u,V")| < c1 [|ullm.
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Lemma 9.2. | b(u,V") | < ¢ [MIm.
Lemma 9.3. | (f,¢ Vo | < Cg [Vm-
Using these in[{3) witlv = (¢ u)~" and using ellipticity condition, we have
@@ I <call (@u)™ lim

Hence ¢ u)™" is bounded inH™. Since bounded sets iH™ are weakly
compact, there exists a sequetesuch that ¢ u)™™ converges weakly to a

functiong € H™. However sinceq u)™" — ;9_)1: in 2, we havea—)l(J e H™

1
This proves the propositignd.1, tHat u € H™. It remains to prove the above
lemmad1[TP arldd.3.

Proof of Lemma 9.1. a((¢ u)™", v)) + a(¢u, V") consists of sums of terms like
X = f a(x) D¢ u)™" DPv dx+ f a(x)D%¢ u) DPVh dx
Ipl=mal=m Ipl=m/gl=m

= fa(x) DY%¢ u) " DPv dx— f((a(x)Dq(qﬁ u)) DP v dx

- f a(x) D¢ 1) DPV dx— f [a() D% 1) ™
+a "(x)D%¢ u)(x — h)] DPv dx

- fa’h DY($ u)(x — h)DPv dx

Sincea™" are bounded and translations are continuod$rand|gl < m, 77
we have, by using Schwartz’s lemma.

IX| < c|DPVlp < CafVIm.

Proof of Lemma 9.2. By definition,b(u, V") = Zfbpq(x)unDPv”dx If |pl <
Ipl<m.jgl<m|pl-+lgl<2m-1

m-— 1, then asv € Hm,W is bounded inL2. If |p = m we have
lal < m~ 1, and [ bpg(x)DUDPVdx = — [(bpqD%) "DPvdx and since
bpq € 2(Q) andu € H™(Q), we have pqD%)™" bounded inL?; so that
at any rateb(u, V)| < c/|V||m.

Proof of Lemma 9.3. This follows easily, for a®t — 0,v" — D,vin L? and
hence €, pv")o < clIDVl2 < clVlim.
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9.3

We continue with the proof of theordm®.1. Having proved that € H™(Q¢) 78
we proceed to prove now the

Proposition 9.2. DPu € H™(Q¢) for [p| < m.

We prove this by induction. Assume it to have been provegferd,...,
r—1; we prove it forp = r. Let¢ be as before i7(Q2) vanishing neadQ — 3.
To prove thaDiu € HM(QF), it is enough to prove thatDiu € HM(Q), wherep
is as in propositiof @l 1. This will follow from the weak congbaess argument
used previously if we prove thapD*u) " is bounded irH™(Q) and this itself
will follow on account of ellipticity if we have proved that

la((¢DFu) ™", V)l < clVlim. (1)
To prove[[1), we write as before

a((¢Du) ™", v) = (a(¢Dru) ", V) + a((¢Dru), V') — a(D*u, V") — b(Dfuv)
where b(u, v) = a(¢u, v) — a(ugv).

We prove now in the following three lemmas saying that eadheterms
above is bounded iH™(Q).

Lemma 9.4. [a((¢D4u)™", v) + a(¢DAu, V)| < c1l[Vilm.
Lemma 9.5. [a(¢ D ugv™)| < C4f|Vl|m.

Lemma 9.6. |b(¢Dfuv)| < calVilm.

67
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We begin withf3¥. The expression to be estimated consissaimis of
terms like

X = f ((X)DP(¢D"u) "DV + (x)dP(4D*u)Davhd x

= f((a[Dp(¢DLU)7h — (aDP(¢D}U)) "DWVdx by using 1)
= fa‘th(;SDrTu(x— h)Dav by using (2)

Sincelr| = k-1, by induction hypothesi®’ u(x—h) is bounded irH2M(Q¢) 79
anda~"DP(¢D"u(x — h)) in L2 as|p| < m, which prove§3}4.
Now we prove[Tb. We hava(DlugV") = a(Diugv") — (1)< a(u
Dy (gu)")+ (1) *a(u, D (e)").
From 9.2, we have
a(u, Di(¢v)") = (f, DL@V)Mo, forfrj =k—-1<m-1,

and hencéa(u, D' (¢v)")| < c|MIm.
It remains to consider the firstfiierence, which consists of finite sum of
terms

Z= f aDID uDPoVdX— (1)< 1 f aDID! uDPoVIdx
lgl<m|pl<mr=k-1 lgl<m|pl<m,rj=k-1

By induction hypothesis, ifgf < m - 1, and|p| < m - 1, DP¢v" and
DP(D'¢v " are bounded i?. So we consider the terms whepg= [g] = m.
Now

f aDIUDP(DLgv)dx = (-1)<? f D! (eD%)D9vhd x
and terms irZ with |p| = |gl = mbecome
> f D'~ DIuDIgVd X
=1

which proves thalZ| < c||Vi|m.
Finally we provd@li(D"u, V") is a sum of terms likg @DID uDPgvdx.
If |p| < m-1, sincev" are bounded i™, DP\V" are bounded ih?. If |p| = m-1, 80

f BDD uDIgvhdx = — f (8DYD" u) "DPvdx
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andV" are bounded in.?. Hence in any case
Ib(DLu, V)] < c|Vlim.

Upto now we followed the proof given by Nirenbefg [2]. In th@léwing,
the proof will be slightly more complicated than his, butlvitove slightly
more. Another proof is briefly indicated in Browdgi [5].

9.4

We still require a few preparatory lemmas before taking @yttoof proper of
the theorem.

Lemma 9.7. LetQ =]0, 1[" be n-cube and & L2(Q) be such that Pu € L?
m

where O" = A exactly m-th derivatives in each variable). Thea t1™(Q).
OxX"
i

Remark. This lemma is related to the theory abercive formsof Aronszajn
.

This lemma will be proved in two steps.

(@) We prove firsD¥ € L2(Q)for |k < m— 1.
Let K™(Q) be the space af € L2 such thaD¥u € L%(Q). This is a space
of typeH(Q, A) and hence is a Hilbert space with its usual norm. By using
Fourier transforms, we see that 6{Q2) the K™ metric andH™ metric are
equivalent. Hence the closure B{Q) in K™(Q) is HJ(Q2). From prop.
L3, we have

K™(Q) = Ho'(@ @ 7,

wheref € 7 if and only ifZ(—l)mDime + f = 0. Now as the operator
> (-1)"D?M is uniformly elliptic, we havef € £(Q).
To prove (a) we have to prove, sﬁa};f(xl, LX) e LP(Q), fes@n 81
K™. From a classical inequality, we have

1-€e 1-€e
fD';f(xl,...,xn)wxl < cf(|f|2+|Dlmf|2)dx1,

€

wherec is independent of. Integrating over the remaining variables, we
have

fD'if(xl,...,xn)Fdxs cf(|f|2+ IDI'f[%)dx
Qe

Qe
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for everye> 0. Hence

fD'if(Xl, . X)Pdx < clluZmfor f € 2.

QE
We have proved then if € K™(Q), thenD¥u € L2 for all |k < m— 1.
Corollary. If & € 2(Q) and ue !™, thend'u € ]™.

This follows at once from Leibnitz's formula, and (a). Nowetsecond
step is to prove

(b) Let

o - -1<x1<1
O<x <1

Then for everyu € K™(Q), there existd) € K™(Q’) such that) = ua. e.
onQ.

Assuming this for a moment, we finish the proof of the lemmapl¥ng
(b) to each of variables;, we get an open cub® such thatQ N Q and
such that for every € K™(Q), there existd) € K™(Q) with U = ua.e. on
Q. Let ¢ be a function inZ(Q) which is 1 onQ. Then by the corollary
to (a),0U € K™(Q) and having compact support is Hj'(Q2). Hence its
restriction toQ which isu is in H™(Q).

Now to prove b), we require
2(Q) is dense iK™(Q).
We may obviously assum@ =] — 1,1[". Letu € K™(Q) and define

(c

~

vi(X) = v(tx), fort < 1 for all x € Q such thatx € YQ'

Let u; be the restriction of; to Q. Then it is easily seen that as— 82
L w(x) — u(s) in K™(©2). Hence to proved) it is enough to prove that each
u(x) can be approached by functions 2{Q2). SinceQ c ', let 6 be a
function in 2(Q) which is 1 onQ. Thenw = 6v,(X)K™(Q’) and has compact
support. Hence» € HJ(Q') and sow = lim ¢y in HTY(Q') whereg, € 2(Q).
Hence restrictions afy to Q converge tau. = restriction ofw to Q in KM(Q).

Now we prove ). It is enough to define a map fro#(Q) to K™(Q')
which is continuous inZ(Q) with the topology ofK™(Q2). Letu(x) € 2(Q)
and letQ’ be as in ). Define

U(X) = {u(x) in Q.

ALU(X, —=Xq) + -+ - + Au(X — 32)
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wherex’ = (X, ..., X,-1) and &', x,) € Q" — Q. We find 4; suitably so that all
the Derivatives ofJ onX are well defined. (SeglZH). This mappingi — U

of £(Q) with the topology oK™(Q2) to K™(Q') is seen at once to be continuous.
This finishes the poof of lemnia®.7.

Q

L/

Q/
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9.5 Completion of the proof of theorenT 311

We are now in a position to complete the proof of theofem 9.dr @oblem 83
is to prove that ifu is such thatiu = f € H™(Q€), thenu € H2™(Q¢) for every

e> 0, whereA = 2(-1)PIDP(apqD%) with apq € 2(Q). We have already proved
thatDPu € L?(Q) for |p| < m. We now have to considdPu. We denote the
derivatives with respect t&, by Dy. In this part of proof only ellipticity ofA is
required, andoundary conditions will not be necessakjfe write alsaQ for

QF.

Now
Au=>'(-1)™DJg+ > (XDyDPu (1)
r<m-1,|p|<2m-r
where g= Z (X)DPu = B(X)Dy'u + - - 2)

[pl<m
We prove now
Lemma 9.8. ReB(x) > a > 0.
Lemma 9.9. g € HM(Q).
Lemma 9.10. DJ™!u € L%(Q).

Using these lemmas and lemnfiad 9.7, since already it is ptba¢BP u e
H™(Q), for |p| < m, we have the

Corollary 1. ue H™(Q).

Proof of the lemma 9.8 It is easily checked tha&(x) = a,,(x), p = (O,...,
0,m). Since R&ap(X)éPLd > aé?™, takingé = (0,...,0,1), we have
ReB(X) = apq(X) > @ > 0.

72
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Proof of the lemma 9.9 On account of lemmB™d.7, it is enough to prove (a)
DJ'g € L¥(Q), (b) Dig € LX(Q), |4 = m.

a) follows from [1) forAu € L? andD}Dfu = D;DE(Dﬂ/u) € L?(Q), s4
Irf<m-=1,|p =2m-r|g +r < m|g'| < mfor by propositiorfIP,
DY ue H™Q) and|gl +r <m.

b) follows from [2) sincewe haelg= Y  aDPD{uandD’ue
p m m
H™(Q) by propositio IP.

Proof of lemma9.10 From (2), we have

D,g = D[ + (D,B)Du + Z a(X)DPu.

[pI<m+1,|pnl<m

From lemmdIID,g € L% DJu € L asu € HM(Q) and the last sum is
in L? as seen in lemn{ad.9. Now, by lemmal9.8, we Hafe'u € L.

Thus, having proved that € H™(Q). There are two ways in which we
could possibly carry the induction. However, the easier ohproving that
ue H™KQ) = u e H™1(Q) does not work for if we tak®k"'g we get

terms like > aDyD} about which we cannot say anything at once
p<k+1|pl<m:ph<m-1
unlesk = 0.

We proceed in a slightly eierent way. We prove first

a) D{DJ"!u e L2(Q) with |4] = k, and

b) assumind{D{"*!p, € L*(Q) for ] < k—p+1, we prove thab* K" *!u
L2 for |u| < k- p.
(a) From[2) we have

D!D,g=pDIDJ* U+ > aDPu.
[pl<m+k+1,pa<m
By lemma@PD?Dyg € L2. Sincek + 1 < m, andp, < m, DPu= D/D% 85
with |g] < m. Hence the last sum is i?, andD}DJ*!u € L*(Q) as Re3(x) >

a>0.
b) Again from [2),

DYD§" g = BDADI u + > aDu.

lal<m{l+ [ +Llgnl<mp
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We havelgl < m+ 1k + 1,|gs| < m+ p; hence by induction hypothesis,
the sum is inL2(Q). Sincelu| +p +1 < k+1 < m D™D{"g € L2 Hence
DYDJ™*"**u e L2 This proveD2™u € L2,

Since we have already prov&@fu € L2, |p| < 2m, by lemmd3J7, we have
u e H2M(Q).

9.6 Other results.

Theorenf @1l is but a first step in considering the regulatitg@boundary. We
prove now the

Theorem 9.2. Hypothesis being same as in theoem 9.1, & H*(Q) and
Au = f, then ue HZ™k(Q).

Theoren 31 corresponds to the cése 0. The proof of this theorem is
similar in its development to the proof of theorEml9.1. Hngtmaking use of
local mappings we prove that it is enough to make the proofiencase of a
cube ]Q 1[".

Next to proveu € H2™k we have to provédPu and Dj"u are in H™(Q)
for |p| < m+ kandp, < m+ k respectively. The third step not involving the
boundary conditions is essentially the same as in the puewionsiderations.
We consider briefly the second step by proving the

Lemma 9.11. DPu e H™(Q¢) for |p| < m+ k. 86

We have proved this lemma flar= 0; we assume it to be true for1., k—
1, and prove it fokk. As before we consider theftirence quotientsD{u)™"
with |r| = m+ k + 1, and prove that they are boundedHf(Q¢). It is actually
enough to show thaiQ'u)™" is bounded where € 2(Q) vanishing near
0Q — Y. As before, we consider the identity

a((#Du) ™) = a((¢DLu) ™, v) + a(@DLu, V") - b(Dfu, ) - a(Diu, ¢v")

whereb(u, v) = a(¢u, v) — a(u, ¢v).

By induction hypothesis we may assume tRdlu € H™(Q¢) for |p| <
m + k — 1. Using this and almost the same manipulation as in prdpasit
81, we prove thaa((¢D'u)™", v) + a(¢D"u, V") andb(D"u, V) are bounded in
HM(Q*) by c||Vllm. To provea(Du, V") is bounded we write

a(Du, ¢v") = [a(Diu, ¢v") + (~1)"a(u, DY(sW)")]
+ (-1)"*a(u, D (V)"
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The first sum is proved to be bounded again by the same metkdbese
used in propositiof 1. However, to pros, D' ¢V") is bounded, we cannot
use at once(u, DLgv") = (f, D ¢V, for D2v is not necessarily itH™(Q) for
lgl < r. However, by regularization, it is seen that swahatD% € H™(Q) for
lgl < r are dense itH™(Q). It is enough then to prova(D'u, $v") is bounded
for suchv’s and then we hawau, D' (¢V"))o, Ir| = m+k—1. Now, sincef € HX
we can integrate the last expressketimes by parts and obtain 87

a(u, DY(gV)") = [(-1)K(D¥F, DI (ev)")
< cVo < Cl[Vlm

Having proved then tha((¢D"u)™", v) is bounded byc|V|m in HM(Q) by
puttingv = ¢(D'u)~", we obtain, as usual, by ellipticity, thib(D"u)"||m < ¢
and by now standard arguments tBgt"tu e H™(Q°).

From theorenl”Zl4 we havd’(Q) c £°(Q) if ap > n. Further ifQ has
p-extension property from theordm W (Q) c £°(Q). Hence, by using the-
orem[3.2, we have the

Theorem 9.3. Under the hypothesis of theordm]9.12K > n, then u is in
E2M(Q).

In this caseau is ausualsolution of Neumann problem.

Remarks. Analogous proof applies for Dirichlet's problem. Now theegtion
arises for what spaceé such thatH] c V c H™ can we apply the above
methods for proving regularity at the boundary. One of thecial steps in
above proof was the manipulation offfdirence quotients” and hence the

subspace oY consisting of functions which vanish near the bound#y—
¥ must be invariant for translations. For spadégiven by conditions like
{ au dku
U —, ..., ——
on Ok

spaced/ c H™ m > 2, determined by conditions like(x)u +[>’(x)6a—u =0on

=0k <n- 1}, this condition is satisfied. However, for

¥, this condition is obviously not satisfied. Neverthelesshgnging a little
the method of proof the regularity theorems have been prbyetronsza jn- 88

Smith for the spaceg given by conditions likex(x)u +,8(x):—xu = 0. We shall
consider these methods in later lectures. "

9.7 An application of theorem[3.1..

Let AandN be as in theorefid.1. ON we consider the metrig|y = ||Ullm +
|Aul, and onH2™N N, the metrid|ullom + ||Ullm+ AU, Which defines oiH2™N N
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the upper bound topology. The inclusion mappi®'n N — N is continuous
and since from theoreMd.1 it is onto, it is an isomorphismmdée

llullom + llullm + [AUlo > c(lIullo + IAU).
e, [Aulo + [Ullm = ¥"llUll2m.

This is equivalent to
|AUG + [Ulo 2 ¥'[lullom,

in the case of stronglgn-regular open sets (which is the case in thedremh 9.1).
This is proved directly by Ladyzenskya for the case- 2, and by Guseva

for the general case. [ ]. To obtain the regularity at the loiauy from these

inequalities, one has to prove moreover a non-trivial dgriseorem.
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9.8 Regularity at the boundary in the case of problem of
oblique type

LetQ = {x, > 0}. In § Z4, we have defined mapof H(Q) ontoH%(l"). Let 89

ou
AU = X I whereq; arereal constants, and let(u, v) = (U, V)1 + (U, V)o+ <

i

Ayu,yv > with 2 > 0 be a sesquilinear form od(Q2). In § &4, we have
proved that the forma(u, v) is H1(Q) elliptic and that the operat@¥ associated
with itis —a + 1. We gave there a formal interpretation of the spidc&low we
prove some regularity theorems justifying the formal iptetation in regular
cases.

Theorem 9.4.If f € L? and ue N is such that Au= f, then ue HY(Q).

As it is by now usual we consider the filirence quotients"(x) =
u(x + h) — u(x)
h

ply that:—; e Hl fori = 1,...,n- 1. Next we consider%]. We know
i n

a(u,v) = (f, V), for all v e HY(Q). Hencea(u, V") = (f, V"), for all v e H}(Q).

Sincea(u, v) has constant cdécients we have(u,V") = —a(u™,v). Hence

a(u™ v) = (f,v"), and so|a(u‘h,v)| < Vo < cVll1. Takingv = u™ we have

allu™ < Jau™ u™| < cllu™ly . Hencellu™l; < c. Next—Au+ Au = f
2

andAu = Z—X;+ tangential derivatives. Sincgu € L%, u e L% f € L2 and

and prove that they are bounded Kt(Q2). This will im-

. o . d%u _
as has been proved the tangential derivative ate? iwe havea—xﬁ e L?, this
complete the proof that e H1(Q).
The same proof can be adopted to prove the 90
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Corollary. If f € HX, then ue H<*2,

If k is large enough, sayk2> n, then we have proved in th&t*(Q) c
&°(Q). Hence for X > n+2, u e £%(Q). Hence the formal interpretation given
§ 6.4 foru € N is a genuine one and we have K2 n+ 2 and if f € H and

. - ou
u € Nis such thatAu = f, thenu satisfiesAyu = Lt
n

9.9 Regularity at the boundary for some more problems.

In the § [£.86.8 we have considered the case whémonsists ofu € H1(Q)
such thatyu € HY(I), the topology orV being given by the norrully + ||yulls.

If a(u,v) = (u,v)1 + A(u, V), + (yu,yv) with 1 > 0, then we have proved that
a(u, v) is V-elliptic, that the operator defined &u, v) is —A + 1 and that the

boundary value problem solved formallnga;al:—(x’, 0) = Aru. We prove now
n
the

Theorem 9.5.If f € L? and ue N is such that Au= f, then ue H(Q) and
yu e HY(D).

Proof. First of all we observe thaf is closed for translations, i.eu,e V =
V! e V for sufficiently smallh. Now we knowa(u, v) = (f, V), for all v e V and
hencea(u, V") = (f,V"),. Sincea(u, v) is with constant caicients—a(u™, v) =
+a(u,v") = (f,v"o. Hencela(u™v)| < clvllv. Puttingv = u™ we obtain
Iu"2 + Jlyu™2 < cllu™l;. Henceu" andyu" are bounded so that as usual,
D.u e Hl(ZQ) andD.yu € HY(I'). Further since-Au € L? andD,u € H}(Q),

u
we havegT € L2. Henceu € H(Q). o
n
Corollary. If f € HX, then ue H**. 91

For sufficiently largek, e.g., 2k > n, we haveH* c £°. Hence foik > g+1,
the formal boundary condition becomes a genuine one, anchve h

ou
—(X,0)- AT'u = 0.
0Xn (x.0) !

10 Visik-Soboldf Problems
10.1

In a sense these problems generalize non-homogeneousdrgwadlie prob-
lems, e.g., such ones in which solutions/f = f are sought which would



10. Visik-Soboldér Problems 79

attain in some sense boundary values given a priori. Howseirare not until
late this aspect of the problem will be evident from the wayshall formu-
late the problem, and since the hypothesis we shall havesiarasin order
to ensure the existence and the uniqueness of solutionaetibe obvious, in
this lecture we prefer to discuss the development of thelpmoland deduce
theorems as consequences thereof.

Let Q be an open set iR" andV be such thaHT(Q) ¢ V c H™().

LetQ = L2(Q) anda(u,v) = ¥ [ QapDIDPvdx+ some surface integrals
Iplidl<m
for u,v € V. (However in the sequel we shall drop surface integrals @is th

inclusion only complicates the technical details. ). Asledren31l, we
define the space¥ and the operatok = 3, ,q<m(=1)PDP(apqDY).

We shall assuma(u, v) to be V-elliptic, i. e. ,Ja(u, u)] > a|ull?, . for some
@ > 0 and allu c V. In this case it is known thak is an isomorphism oN
ontoL?. Leta’(u,v) = a(v,u). Then|a*(u,u)| > ellull3 forallu € V and the 92
operatorA* = Y (-1)P(DPagp(x)DY) it defines is an isomorphism &f* onto
Q=L2

Suppose now there existg;p € 7~ (R") such thateryq = apg onQ and let
' = 3 (-1)PIDP(pq(X)DY). We remark that thougA is elliptic, <7 need not
be elliptic. Let forf € L2(Q),u € N be such thau = f. Let f andibe the
extensions of andu respectively obtained by defining them to be zero outside
Q. Of course, we do not haweli = f. The diferences7u — f is given by the

Proposition 10.1. If u € N be such that Ag= f, then for every = H?™(R")
such that y € N* we have< «7u— f,v>= 0, where y is the restriction of v
to Q.

Proof. < /u— f,V>=< i, &*v> - < f,v> forve HZ"(R"). o
Now sinceu vanishes outsid®, we have

<0, a"v>=(u, A'Vq)o = (A*Vg, Up).

Sincevp € N* we have(A*vq, U)o = ¢a*(Vo,U) = a(u,Va) = (AU Vo)o.
Further< f,v >= (f,vq) asf vanishes outsid®. Hence

< l-f,V>=<Au- f,v>=0, forve H*(R")

such thawg € N*.

Now arises the converse problem. ket L?(R") be such that the support
of wis contained i and let there exist € L?(Q) such thak .&/w—f,v>=0
for all ve H™(R") such thaty, € N*. Does there exiat € N such thatv = {i
andAu = f. Letu, € N be the solution oAu, = f. By propositio IO <
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o Uo—f,V>= 0forve H"(R" such thaty € N*. Hence< &7 —w—{ip, U >= 0, 93
i.e., < —(w- ), «*v >= 0. Since andij have their support if2, the above
meansw — U, & * Vo) = 0.

In order to havev - @i, = 0, we have to secure thatvg be dense i?(Q).
A* being an isomorphism df* ontoL?(Q2) we must consider when the solution
x € N* of Ax = gis restriction of av € H?™(R"). This would follow @) if we
should apply the theory @f@. Then it would follow thatx € H*™(Q), and )
if Q had 2n-extension property, then there would exist H*™(R"), such that
(mX)q = X.

In other words, for everg e L%(Q) there exists/, such thatA*v, = g if
the above two conditions are satisfied. We have proved then th

Proposition 10.2. Besides the hypothesis of Proposificn10.1. , assume
1) A‘u = g with ue N* and ge H° implies ue H2"(Q),
2) Q has2m-extension property, and

3) there is givene H°(R") such that the support ab contained inQ and
< gw-f,v>=0forallve H®(R") such that y € N*. Then wy, U, € N
being the solution of Au= f.

Remarks. SinceZ is dense irL2(Q) instead of assuming the theory 9B, it
would be enough to assume thisitx = g, g € 2(Q) impliesx € H2M(Q).

(2) Itis not known whether (1) and (2) in proposition 10.2 ix@ependent
or not, or whether (2) is a consequence of (1) . The condi®rcén be put
more succinctly by making the following

Definition 10.1. M° is the subspace of H™(R") consisting of distribution T 94
such thatc T,v>= 0for all v e H*™(R") such that y € N*.

It is easily seen thaM® is a closed subspace &f2"(R") and that the
support ofT € M? is contained irf. We may summarize the proposition10.1
andI0.P in the following.

Theorem 10.1. Under the hypothesis of Propositibn10.1 &nd10.2 the bound-
ary value problem “Given fe L2(Q), find ue N such that Au= 7 is equiva-
lent to “Given f e L?(Q), find w € H°(R") such thatezw — f € M°”.

10.2

Now the second formulation has an advantage over the firsth@tét can be
generalized. In the first instance we notice that insteafdwé could take any



10. Visik-Soboldér Problems 81

Te H52"ﬂ and raise the problem

Problem 10.1.GivenT € HZ*" does there exist € L*(R") with the support
in Q such that?#w - T € M°.

Similarly a much general problem could be formulated by deg§mew
spacesvi®.

Definition 10.2. MX is the subspace of #+?™(R"), k being a non-negative
integer, such that T,v >= 0 for all v € H*2™(Q) with v € N*.

Lemma 10.1. MK is a closed subspace of K2m,

Proof. We prove only that the support @ € MX is contained in the other
assertion being then obvious. ¢fe 2(cQ), takev = ¢. Thenvy = 0, and
hence is inN*. Then< T,¢ >=< T,vq >= 0. Hence the support of is
contained inQ. If now ¢ € 2(Q), then again lev = . Nowv € H<2"(R")
andvg = ¢ € N*. Hence< T,¢ >= 0. This proves that the support ofis
contained irT". O

We have now the

Problem 10.2.GivenT e H-(*2M does there exidt € H™(R") with support
in Q such thatezU — T € MX. ForK = 0 we get the problefiId.1

1H-M(Q) consists ol € H-™(R") such that the support ofc Q
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The problem of formulated in the last lecture would loosdriterest if 7U 96
were not independent of the extensighof A that we have chosen. We prove
that in fact this is the case for some kinds of domains.

Let & and.«’ be two extensions of. Lete Hg__zk' We have ther« U
—/ U,V = (U., (o7 — a/*)v > for v e H*2N(R"). Sinces’* = o/* onQ,w =
(o = —a/*)vis such thatvg = 0. Now in order thaty'u = &7’U it is sufficient
to assume some sort of density of { — .o7*)v, for v e H<2M(R") in HX(R"), i.
e. , ofw € HX(R") such thaing = 0. This can be done by having the following
definition.

Definition 10.3. Q is k-syficiently regular if we H(R") is such that w = 0.
Then there exists g HX(cQ) such that= §.

Assuming them to be stfficiently regular, we havey* — &/*'v = w =
lim i in H&([Q) with ¢; € 2([Q). But sinceu = 0 on [, (U, ¢;) = 0. Hence
(o7 — 7*)U, V) = 0 for all v e H*?M(R"), and sow/u = &7’ U.

Definition 10.4. If Q is k-syficiently regular, the problem will be called Visik-
Sobolg problems.
10.3

We prove now the uniqueness and existence theorem for tlile-Sdbolet
problems.

Theorem 10.2.
(1) LetQ be a domain in Rsuch that

(a) Q has k and k- 2m extension property;
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(b) Qis k and k+ 2m syficiently regular.

(2) LetV be suchthat f{Q) c V c H™(Q) and gu, v) be a sesquilinear form 97
on V satisfying &,V) > al|ull3 and such that there exist8pq € Z1(Q)
such thatezpg = Opg 0N Q.

(3) Let the operator Adefined by &u, v) = a(v, u) be such that 2u € H¥(Q)
imply u e H<2™ Then Visik-Sobofgproblem admits a unique solution
i. e.,given Te H*2M(Q, there exists a unique @ H™(Q) such that
Au-T e MK,

Proof. To prove this theorem we shall require some lemmas. H&(®))’ be

the dual ofH¥(Q2). We do not identify H*(Q))’ with any space of distributions
for 2(Q) is not dense in general iHX(Q). We know the restriction map —

vo of HX(R") into HX(Q) is continuous. The transpose of this mapping is a
mapping ofHX(Q)) into (HX(R")) = (HX(R") = (HX(R") = HX(R"), given
explicitly by (m, T, V) = (Tvg) forv e HKX(R"). Further ifvg =0,(mT,Vv) =0,

i. e.,mT = 0on [Q so that the support of is contained iM2. Henceny is a
continuous mapping oH*(2))" into HZ*. O

Using (1) - (a), and (b) of the theorem we prove the fundamenta
Lemma. The mapping T- zT of (H¥(Q2))’ into H=* is an isomorphism.

Proof. We build explicitly the inverse. On account of threextension property
of Q, there exists a continuous mapping> P(u) of HX(Q) into H¥(R"), with
Pu=ua. e. onQ. LetS € Hék. Then the semi-linear form — (S, Pu)

is continuous orHX(Q) and hence defines an elemess € (HX(Q))’ so that
(S, P(u)) = (wS) (U)

The mapping — wiS is obviously continuous. The lemma will be provedss
if we prove

a) a_)k - T =T, andb) m@ks =S. m}

a) We havevrT (U) = (nT, Pu) = T((Pu)a) = T(U).
b) Forv e HYR") we have

(S, V) = (@kS)(Va) = (S, P(Va)).

Letw = P(v) we have to prove

(S,W) = (S, V).
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Letg = w-v; we haveg € HX(R" andga = Wq = 0. By 1b) we have
g = hwith h e HJ(Z(Q). Hence

(5.9 = (S. 7 = lIm(S. y). pj € 7(€ Q)

sincel € HZ*.

Hence(S,w) = (S, vy which completes the proof of lemma. To complete
the proof of the theorem, givefi € H*2™(Q) we have to determing e
HK)g such thatezV — T € MK; (&7u— T,V) = 0 forv € H**?™(R") such that
Vo € N*; or suchaU that

U, &) = (T, V). (1)

By hypothesis 1)), (b), on account of the above lemma, there exist iso-
morphismswi, wis2m 0of HyX and Hé‘“zm) into (HX(Q))’ and H*2M(Q))’ re-
spectively. LetvoyU = U, wxsomT =t. Then

(U, V) = (U, o/ *V) = U((/*V)) = U(A*Vq)

and(T, V) = {(mxs2mt, V) = t(Vq), so that from[{IL) our problem will be solved if
givent = w,omT We can determina e (HX(Q))’ such that

u(A*vg) = t(Vg), for all ve H*?™(R") such thawq € N*. 2)

We prove that the problem can be still simplified in as much ameed 99
prove [2) only fow € H**™(Q) € Nx. Indeed on account ok 2m) extension
property ofQ, w e H**2M(Q) N N* is avg whenv = P(w). Hence our problem
is reduced to: Giveh= wy.omT determineu € (H¥(Q))’ such that

u(A V) = t(v) for all ve H<*2M(Q) N N*.

Now we use (3). Lef € H. ThenA*v = f has a unique solutio®* f € N*
which on account of the hypothesis (3) of the theorem KKP?™(Q). If f — 0
in HYQ),G*f — 0in H*2™(Q). Hence by the closed graph theore®i,is a
continuous mapping af* into H<*2M(Q) n N* in the topology ofH*2M(Q).
Sincet (H*2M(Q))' f — t(G*f) is a continuous semi-linear mapping BHK(Q)
and hence there exists a unique (HX(Q))’ such that

u(A"v) = u(f) = t(G*f) = t(V).

Remark. U depends continuously oh



Lecture 20

10.4 Application.

We now consider some applications of the above theory bringut how the 100
usual non-homogeneous boundary value problems are gartease of Visik-
Soboldf problems.

LetV be such thaH}(Q) c V ¢ HY(Q). anda(u, V) = (u, V)1 + A(u, v), for
A > 0. The operatoA associated witka(u, v) is then by§ B3F — A + 1. Let
&/ = —A + A. Sincea(u,Vv) is hermitianA = A" andn = N*. Visik-Sobolef
problem reads now fol° as: GivenT € H=? determineJ € L?(Q) such that
—AU+ Av—T €°. From theorenlZI0l2, it follows that this problem admits a
solution, say for example, & has smooth boundary.

Now we take a particulaf = f + S wheref e L?(Q) andS € H-2. Since
the support ofe7u — T is in T restricting toQ we seeAu = f whereu = Ug.
Further(zZU — T, V) = 0 for all v e H2(R") such that/, € N*. Hence for such
v,

(=AU + AU,V = (T, W = (f, V) + (S, W)
= (~(aU) + U), V) + (S, V).

Formally, by Green'’s formula,

(-aU +/1U,\7>=f—(A+/I)U\7dx=fU(—A+/l)\7dx
Q

Q
=fu.(—A+/l)\7dx=—fu%da+f@\nga+f(—A+/l)uVde
Q on an o

and((-au+ Au), V) = [ (-4 + uvdx
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Hence the original problem is formally equivalent to: giver H~2, find
ou_

u € L?(Q) such thatf —V- ua—\i do = (S, V) wherev € H?(R") such that
T\on on
Vo € N*.
We now take some particular casesSof 101

1) Letgandh e L(I). If ¢ € Z(R") the mappings — [ gedo - fhg—"od
n
is a continuous linear mapping an(R") with the topology ofH?(R"). For
if ¢ = 0in H?R"), ? — 0 in HY(R") and since the mapping from
n

HY(R") to L2(I') is continuous, [. ggdo andfrh(é—‘p)d(r tend to zero in
on
L2(Q). Hence this mapping defin&e H=3(T'). Then (1) reads

ou_  ov _ ov
fr(%v—u%)do-_frgvd—frh%do- (2)

ov ou_ _
a) V = HY(Q). Then% = 0 and (1) meang; %vdo- = J.gvdo for all v.

Let now

ou .
Hence% = g, onT'. Hence the problem solved is

ou
- = f,Z =gonl.
A A u+u gon 3)

b) V = H(Q). Thenyv = 0, and [2) becomes
—AU+Au= f, u=honT. 4)

2) Another example would be to talges H"¥%(Q2) andh € H-2(). Then the

mappinge — (g, ) — (h,y(%> is continuous orZ(R") with the topology

of H2(R") for as we shall prove later o — 0in H¥3(Q) andy(i—"p) -0

n

in H2(Q), asg — 0 in H2(R"). This defines & € H-(I"). With this S and

a) V = H%, the formal problem solved isau + Au = f, % =ge H*%(cp).

b) V=Hz,... —Au+Au=f,u=heH Q).

These are the problems studied by the Italian School. Tineipal prob-
lem is to give a precise meaning fd (%), (4) and so on. (See M= 1].
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11 Aronszajn and Smith Problems

11.1 Complements orH™(Q)

In § 24, we have defined a mappip®f H1(Q) ontoHz(I') whereQ = {x, > 102
o} andl’ = {X, = 0}. Now we prove the

Proposition 11.1. LetQ = {x, > 0} andI' = {x, = 0}. Then the mapping
maps H'(Q) onto H™2(I') for all m.

Proof. We denoted = (X1,..., X-1), Xn = ¥, & = (é1,...,én-1)- O

Here we shall prove that the mapping is into. That it is ontt feilow
from a more general theorem to be proved later on. Sfhégem-extendible
and sincey on 2(Q), the restrictions of functions(x', y) of Z(R") is u(x, 0),
it is enough to prove that the mapping— u(x’, 0) is a continuous mapping
of 2(R") with the topology ofHJ'(R"), into H™2(T"). This we do by using
Fourier transform.

Let.#(u(x) = u(¢) = fe‘z”ix-u(x)dx be the Fourier transform af Then

u(x) = [ ™ v(£)d¢ and sou(x,0) = [ €% (£, &)dédé,. Hence

FLU(X.0) = f W En)den. 1)

We have now to prove that the mappisf(u) = vﬁx/(y(x',O)) is contin-
uous from.7(2) with the topology ofH(m) into .7 (H™2(I)) or thatv —
(1 + €™ 2).Z, (u(xX, 0)) is continuous fromZ () with the topology ofi™
into L.

Hence we have to prove, usifg (1), that

[a@riaemiae

Now 103

| [ vee' e

| e e,

? cc f (1 + P ok

= ‘fv(g’,gn)(1+ ™)L+ 14™) — 1dén[?

dén
(1+1m)>

R ST W -
= Cf(1+ |§~‘|2)m fM (1 + €M) dén. (2)

1The author’s thanks are due to Professors Aronszajn andh$mniending him an unpublished
manuscript concerning these problems.

< f W EP(L + ™),
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Putting

N [ o

(L+a )™
Hence from[(R) and{3),

Jarigrms| [ v eoce|

712m-1
e [T

<c f V(L + ey 2de

f V(L + 6™y 2de,

as was to be proved.

Now, if u e H™(Q), we have§7u € H™1(Q) and by the above proposition,
n

y(aa_xu) € H™2(I'). Hence we have the
n

Corollary. yy(u) = y(D)j,u) e H™ i~z forj=1,...,m-1.

Now, lety(u) = (yoU, . . ., ym-1U) andF = H™2(I") x ... x H™i-2(T") with
the product Hilbertia an structure.

Theorem 11.1. The mapping u-» ?(u) of H™(Q) onto F with kernel H'(Q).

From the above proposition, it follows thatmapsH™(Q) into F and that

its kernel isHJ'(Q). To prove thaty is onto it is enough to show that ff =
O,...,fj,...,0) € F with fj € H™i=2(I"), then there exista € HM(Q) such
thaty;u = fj andyu =0fork # jandk < m-1.

Taking Fourier transforms int, with & = (&1,...,&-1) we have to find
v(¢',y) such that

1) (1+1&IMVE,Y) € L2(Y).
2) DJV(¢,y) € L?(¢".y), and

3) (a)D)v(#.0) = f(¢)
(b) Dv(#,0) = O fork # jk <m—1.
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PUL  4(ey) = Yl €),

Lett = (1 +1€|)y. Then put

VE,Y) = ¢ )L+ ant + - + amjoat™ 7).
By direct computation, we have
Dkg(&,0)= Ofork < j - 1, Dy¢(&',0) = fj(¢), and

DJ7.0)= CL D)1 +1€) (e

HenceDkv(¢, 0) = 0, fork < j — 1, Dj(¢’,0) = fj(¢), and
Dy v, 0) = Cl (- 1/@+ €)' FiO)+ (+ DC), _ (1+ 1)1+ 1€ ) (&)

@1, ...,am-j-1 are determined bgn— j — 1 conditions thaD)j,”v(g’, 0) = 0 for

I=1,...,m-j-1.ay...,amj-1 are then well-determined independent of

’ ey
g.e.g., (j_+ Dag = _Cj+1 and so on.
It remains to verify

(@) 1+ IMtp(E’.y) € L> fork<m-j -1, and
(b) D(t“6(¢",y) € L2.

(@) We have to consid(}g(ﬂ +1&|MKp(, y)'o.

f (14 1P| i)

= f @+ P )P+ 1€12)de f ) a

+ |é‘;/|2j+2k+l

2 . ,
(1 + |§,|2k)d§,f y2]+2ke—(1+|.f |)ydy
0

tj+2ke—tdt
by putting (1+ [¢’|)y = t.
<c f (1+ |&P™2Yf(&)Pde’ < o0, sincefj € H™I73(T).
b) We have to considddT\(t“yle- €Dy fj(£")). This is a sum of terms

(L + 1)y 1@+ ™ e Y @) forr =1,k
1=1,...j.
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Hence we have to consider

f(1+ |§/|)2k—2r(1+ |§/|)ZWZI|ﬂ|2d§/ fy2j+2|+2k72re72(1+|§’|y)dy

- 1
=j11+wm“”aAw$Dm*Hm%¥}1+g®m4nﬂawl

t2i-2+2-2 g2t hy puttingt = (1 + |&])y

<c f (L+ 1) 24 fj2de < oo,

which proves the theorem.
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11.2 Aronszajn-Smith Problems

We prove a lemma which will be required often. 106

Lemma 11.1.LetQ =]0, 1L"andl’ = {QN{x, = 0}}. Let F= Hm‘%(l")x...x
H2(). Let f, be a bounded set in F such that ajl fiave their support in a
fixed compact s€}f, in I'. Then there exists a bounded sgtin H™(Q) such

that yv, = f,,y being as defined in 11.1 above, and=0 nearéQ — 3.
Proof. By TheorenITlly : H™(Q) — F is onto with kerneH™. Hence
7 induces an isomorphisrﬁl of HM/H{" onto F. Sincef, is a bounded set

—-1 . .
in F, ¥ (f,) is bounded inH™/H". Therefore we can choose a bounded
setw, € H™M such thatyw, = f. Nextlety € Z(Q) be zero neadQ — >
ande = 1 on}. Thenv, = ¢v, are bounded, vanish neéf) — )’ and

Yo = Y(@©)7(We) = Ty =

In § @, we considered regularity at the boundary of some problens
lated to the operatoA defined by a sesquilinear fora(u, v) on V such that
H' < V ¢ H™ Now we take up a particular example of défdient spac¥'. In
this case the technique usedsiBl is not at once applicable. Since the prelimi-
nary step of using local maps is at any rate permissible wenas€ =]0, 1[".
Further to avoid technical details, we assume that 2. Letd be the subspace
of H2(Q) consisting of functions

a) vanish neabQ - 3,

b) Bu= 0 on where

ou 4 ou
Bu= - (x.0)+ Zl @ (X)7(X, 0) + ao(X)u(x. 0)
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with ao, . .., an-1 € Z(£). 107

Leta(u,v) = 3 [ apg(X)DIUDPVdxwith apq € &(Q).
Iplid<
Let Rea(u, u) > a||u||§ for all u € ¢. In this case according to the theory of
§ B, as transformed by local maps asgirfor a givenf € L2(Q), there exists
u € N such that(u, v) = (f, v), for all v € . We prove now

Theorem 11.2. Let u € H2(Q) with Bu= 0 and &u,V) = (f,Vv), for all v €
9, f € L2. Then ue H*(Q¢) for everye> 0.

Proof. Though a shorter proof by induction is possible in order todout the
significance of the method we give a direct proof. Since dftefing proved
that D?u € H?for |p| < 2, to proveDjlu e H? no use of boundary conditions
need be made as §9, to prove the theorem, we have to prd¥8u € H? for
|pl < 2. Further ifp € 2Q), ¢ = 0, nea™ — 3, to proveDu e H? for |p| < 2,

it is enough to prov®P(¢u) € H2 for |p| < 2. We break this in two steps. o

Step 3. DX(¢u) € H2.

As usual we need prove™") is bounded irH?(Q) by cl|ull,, and for this
we consider((¢u) ™", v).

Lemma 11.2. |a(¢u)™",v)| < c|Vil2.
We write
a((pu)™",v) = [a((pu) ™", V) + a(pu, V)] - b(u, V") - a(u, ¢v")

whereb(u, v) = a(¢u, v) — a(u, ¢v).

As in §@, we can estimata((¢u) ", v) + a(¢u, v-") andb(u, v) by almost the
same methods. It remains to be proved 1!1(31, ¢vh| < c[|vll2. We cannot put 108
a(u, ov") = (f, V"), ast? is not necessarily closed for translations. However by
“correcting”v" with a “compensating” function" we prove thafa(u, gv")| <
c|[vilo. More precisely we prove the

Lemma 11.3. There exists win H?(Q) such that
(@) oV —wp € 9
() liwhll2 < clvilz.
Assuming for a moment the lemraZll.3, we prove lefima 11.2.&¥e h

a(u, V") = a(u, V"' — i) + a(u, w).
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SincepV" — wi, € 9, a(u, oV — wh) = (f, oV — Wh)o.
Hence|a(u, oV - Wh)‘ < | flolgV" — Whlo < C(IVil1 + Whlo) < clVila.

Furtherla(u, wh)| < cliwhll2 < cvilo, whence the lemnfaT1.2.
Now we prove lemmBZITl.3. We have to fing such that

oV —wh e, i.e.,Bl@V' —wpy) =0,

(X 0) + @o(X)Wh(X', 0) = B(4V").

This holds |f67(x ,0) = B(¢vh), andwy(x’,0) = 0.
n

If we prove thatB(¢v") is bounded irHz by ¢'||Vil,, by using lemm&TT1,
we can findw, bounded byc||vlo, such thatwy, = 0 andy;w, = B(¢V") which
will prove the lemma. Now

B(@V") = gn + kn

where gn(X,0) = ¢(X,0)BV,
and ky(x,0)= 6 (x oWV(x, O)+Z (x 0)a;V'(X, 0).
Sinceyp has compact support &) have support in a fixed compact.

0
Further sincev € H?, we haveV'(x,0) € H¥(IT) and smceaT"D are 109
h

smooth, we havk,(x) € H¥2(I'). Now ash — 0,V(x’,0) — D.v(X,0), hence
ki is bounded by|vil, in H2(T).

It remains to see thai;, is bounded inH%(I“) by c||vll>. SinceBv = 0,
(BV)" = 0, and since

BY =BV + > ar%(x’ +h,0) +afv(x +h,0)

we havegy = BV = —¢(x’,0)(2a (x +h,0) + alv(x’ + h,0)).

Ash — 0, a are uniformly bounded an% are bounded irH%(I“) as

translations are continuous.

This proves then tha(¢V") is bounded irH%(F) and the proof of lemma
LT3 and hence that of lemaTll.2 is complete.

Now we are in a position to prove the

Lemma 11.4. [|(¢u)™|> < c.
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We cannot prove this as i@ by takingv = (¢u)™" in lemmalTLR, and
using ellipticity for @u)™" does not necessarily belong#o We again correct
this by

Lemma 11.5. There exists we H?(Q) such that
a)(#u) " - wh € # and Blwhllz < cllull = ¢

(since u is fixed).

To prove this we noteg) ™" = pu™ + ¢pu"(x — h) and from lemm#&113,
there existsy;, such thatpu™ — wy, € 9, and|whll> < cllullz. We have only to
look then forwﬁ]z) such that

¢~ "u(x - h) - w? e 9, and
W2 < cllull.

We have to find/vﬁ]z) bounded inH?(Q2) by c]jull> and such that 110

w2(x,0) = ¢™"u(X — h,0)
aWh ’ _ i —h ’_ _
aXn (X s O) - aXn (¢ U(X h» Xn)Xn - 0

Hence, by lemm&111 sudf) as required above exist and the lemma

[I13 is proved.
To prove lemm&TTl4 consider now

a((pu)™ — W, (pu) ™" — W) = a(eu) ™, (pu) ™" — wp,).a(w, (gu) " — W),
=Xnh— Yh.

By lemmdITP, we have

IXel < cli(eu) ™"~ wil2
Yil < el ll2ll(eu) ™ = Will2 < ¢ll(gu — Wi3.
On account of ellipticityla((gu) ™" — wf,, (gu) ™" — W) > all(pu) ™" — w|I2.

Hencell(¢u) ™" — w/|l> < c and sincdw{ > < ¢ we get the lemma. This
completes the first step of the proof, vizPu € H3(Q), |p| = 1.
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11.3

Now we come to the 111
Second stepWe wish to prove4D,u) " is bounded irH2(Q). To do this we
considera((¢D-u)™", v) and prove the

Lemma 11.6. |a((¢DTu)*“,v)| < c|Vllz for v € ¢ such that Qu € H2.

Proof. We write

a((¢D-u)™" V) = a((¢D-u) ", v + a(¢Drauu V') — b(D.u, V")
- a(D-u, p\").

As in the previous cases, we have straight forward estimatespt for
a(D-u, V). Now

a(DTu7 ¢Vh) = a(D‘ru’ ¢Vh) + a(u, DT(¢Vh)) - a(u’ DT(¢Vh))

which exists sincd,v € H2. Again as in the previous cases, only non-trivial
part is to prove thd‘a(u, DT(¢vh))| < c|vll2. O

To do this we have to corre€, (¢\v") by the
Lemma 11.7. There exists we H?(Q), w, = 0 neardQ — 3 such that
) Do(pV") —wh € 9.
i) [Whll1 < clVIl2.

i) |a(u, wh)| < clivilz.

95
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Admitting this for a moment, we have
a(u, D(¢V")) = a(u, wp) + a(u, D (V") — W)
= a(u’ Wh) + (f’ DT(¢Vh) - Wh)

and we have the lemniaIl.6 as usual.
So we have to prove now lemria’ll. 7w have to verify

i) Then we can write :

n-1
i 0
B(Wh) = BD-(¢V") = f, + ; Digy, Di = o SV
We shall prove that one can chooﬁeandgih such that 112

a) f, have their supportin a fixed compact and are boundetﬁijf) by c|[v]|2.

b) g € H¥%(Q), and are bounded iHZ(Q) by c|)vil, with support in a fixed
compact.

Assuming (a) and (b) we prove the#, satisfying (i), (ii), and (iii) can
be found. For by (a) and lemm& N1, there exig}se H*(Q) such that
wo(x'.0) = 0, 6%\/\@(%,0) = fy, w2 are bounded irH?(Q) by cllvil; andw
vanish neabQ —nz. Similarly on account of (b) and lemrilaTlL.1, there exists
W, € H*(Q) with wj (x,0) = 0, %w‘h(x’,O) = g, W, bounded inH?(Q) by
clvil andwi, = 0 neardQ - 3. Settingw, = WP + Y Diwi, we see that (i)
and (ii) are at once satisfied. Further to verify (iii) we h#ﬁ(&l\/\ﬂ < c|Vl2
and it remains to estima&u, Diw}). But sinceD,u € H? and sincenj, = 0
neardQ — 3, by integration by parts, we g{ﬂ(u, Divv"h)| < c[vl2.

We have still to verify (a) and (b), we indicate which partsB§D.(¢V"))

are to be taken af, and which agih and prove each time that they are bounded
by c||v||2 in the appropriate spaces. We have

B(D-(¢V") = B((D:¢)V") + B(¢D,V")
BOV) = OBV + [5-D.0)V + 3 o )V

and
BV = — ZQP%(X' +h,0), since 8V)" = 0.
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Then we takeB((D.¢)V") as part offy; it is Hz and is bounded bgi|V|2.
Now B(¢(DV") = ¢B(D,V") + S—Z(x’, 0DV + 3 aig—‘i D,V 113
We consider each of the summands separately :

9 oy~ o [2.0)_ (5,2
son-o {220 p2)e

We take Drg—:i)vh as part off, and it is seen that it satisfieg)( For

D, (;—ivh) we take it as part oD.g.. It is also seen thag satisfies (b).
d¢
0% 0
Now since Bv)" = 0, we have

Similarly we considerZ: D,V It remains only to considesB(D\").
i

#B(DNV") = —¢ (Z D.a ‘;—f - DTao) W),
and they are to be taken as partgipfThis completes the proof of lemrial .6.
To complete the proof of the theorem, we require the
Lemma 11.8. ||D.(¢) Ml» < c.
Again we require correctiong; as follows:
Lemma 11.9. There exists yve H*(Q) vanishing neapQ — 3, and such that
(1) De(pu) " - W, €9
(2) Iwjllz < c.

Assuming the existence of suel and considering
a(DT(¢u)*h - Vv;v DT(¢u7h - \Nh)

and using the ellipticity o&(u, u) we obtain lemmRZ1Il8, as in the lemmall.4,
after observing that lemnfa_I1.6 can be applied thoughD-(¢u) ™" — w;, is
such thaD,v ¢ [H?(Q). To see this last point we prove thati#nv’'s such that
D.v € H%(Q) are dense.

Letv e ¢ andv(X,0) = f. Lety € 2(Q) be such thap, f in H¥2(I'), and

0
lety, = - Zaa—z — Aoy -
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. . . = ov
Now it is possible to find/, € H2(Q)N9(Q) such that, (X', 0) = ¢,, e 114
n
¢a,V = 0 neardQ - 3, andv, — vin H2. By the choice ofy,, v belongs ta?
and the result follows.

To prove lemm&I119, we observe
(pu) ™ = pu™ + ¢ Mu(X - h, x,), and
D:(¢u)™" = (D)™ + D™ + (Dep™"U(X — h, Xn) + ¢~ "Deui(x— h).
We first definen} such that
a) (D¢ Mu(x—h) +¢ "D u(x—h) —w! € ¢, and
b) w2 < c.
To verify (a) we choosevy; so that

Wi(X, 0) = ((Dr¢))"u(x = h) + "D u(x — h))y, = 0.

dwp(X,0) ({9 \™" Iy
and T_((E) ux—-2a)+a¢ 6—Xnu(x—/l) Xn =0

SinceD-u € H?(Q) the right hand side in the first expression ieHA%(T),
and is bounded. Similarly the one in the second expressiiori-ié (I, and is
bounded, and by lemniaTl.1 the existenceis proved. Next we fintv? so
that

a) D4)u™"—w2 € ¥ and
b) IW2ll> < c.

The existence of such? is assured by lemn{a_I1.4. Finally we defing
so that

a) oD.u™" - wg € ¥ and
b) w32 < c.
To verify (a), we should havB(¢(Dru™) = Bwi. But

“hyy _ hy, 9% 1 h 9¢ 5
B(D,u™) = ¢B(Dru™) + 22 ~Deu + 7 D"

SinceBu= 0 andD.Bu = 0, we have 115
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n-1
B(D:u) + )" (Dre)Diu + (Drarg)u = 0.
i=1

Hence on the support @f,

(B(D:)) ™" + Z((Drai)DiU)fh +((Dradu) ™" =0, ie.,
(BOA™+ D o "D u(x—h) + Y (D@ Di) ™" + ((Drao)) ™ = 0;

so that we have to find? satisfying

BW) = —¢ > o7"D;u(x—h) = ¢ > ((Dri)Diu) " — ¢((Drro)u) ™"
0 0
+ 6—:iDTu‘h + Z ai + a—f:DTu‘h = gh.

Hence it is enough to finv!/ﬁ such that

wWi(x,0)=0
Z—‘Axf“(x’, 0) = gn defined above.

SinceD;u € H4(Q),g, € H¥2() and is bounded iH2(I'). Hence by
lemmdITIL we have the existence of swﬁh This completes the proof of the
theorenITDP.

Final Remarks.

(1) By using StampanhiaTL7] and Liorid [6], Campanéio [6] has/ed the
regularity at the boundary for Picone problems.

(2) For another method for Dirichlet conditions with comgtaodficients in
two dimensions, and very general conditions on the boundagyAgmon

.



Lecture 23

12 Regularity of Green’s Kernels
12.1

In § B3 we have defined Green'’s kernel of the operétassociated with an 116
elliptic sesquilinear frona(u, v) onV such thaHJ(Q) c V c H™(Q), Q being
L%(Q) say. We recall thad(u, v) beginV elliptic, Ais an isomorphism dfl onto
Q. HenceA™ = G is an isomorphism of) ontoN. Since2(Q) is dense in
Q, by Schwartz’s kernel theoreAr! = G is given byGyy € 2'(Qxx Qy).Gyy
is called the kernel of the operatar
Leta*(u,v) = a(v, u); a*(u, V) is alsoV elliptic and defines a spad¢* and
an operato”*. Let its kernel beG’;(,y. If Txy € 2'(Qy, Qy), thenTy , will be
defined by setting on the everywhere denseZ@,) x Z2(Qy) in Z(Qy x Qy).

Tyx(@(X) - ¥(y)) = Txy(W(Xe(y))-
We denoteZ(Qy) by Dy, 2(Qx x Qy) by 2y, and so on. We have the

Proposition 12.1. Gy = Gy x-

Let g,y € 2(Qy). We have to verify thatGe, ¥y = (p, G*y). Let Gy =
ue N andG*y =w e N*. Thenp = Auandy = A*w. Hence we have to verify
that(u, A*w) = (A, w). This follows since{u, A*w) = a*(w, u) = a(u,w) =
(AU, W).

Definition 12.1. An element Gy in 2’(Qx x Qy) will be called akernel

Definition 12.2. A kernel is semi-regular, with respect to x, if s given by 117
a C* function ofQy into Zy. We write it then as )y or Gy(x).

100
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Definition 12.3. A kernel is regular if it is semi-regular with respect to x and
y.

Definition 12.4. A kernel is very regular if it is regular and a T function
outside the diagonal.

If Gxy is semi-regular it is an element 6482, = &£(x, %,). Hence it
defines a mappinG : 2y — &; given byf G(X)yp(y)dy € &(X) for ¢(y) € 2.
Conversely by Schwartz’s kernel theorem, any linear map@in 2y, — &x is
given by a semi-regular kernel.

We now with to consider conditions aa(u, v) so that the kerneByy be
very regular.

Definition 12.5. A partial differential operator A defined i with C* coef-
ficients is said to byypo-ellipticif for s € 2'(Q)(AS), € &(6) implies that
S e 0, for every0 c Q.

For example, ifa(u, v) is V elliptic, Q is bounded with smooth boundary,
then by the results df@, it follows thatA is hypo-elliptic.

Theorem 12.1. Let |a(u,u)| > a|u|\2, and the operators A and*Abe hypo-
elliptic. Then G is very regular.

Proof. First we proveGyy is regular. We knows is an isomorphism o€y
ontoN. Lety € 2(Q). ThenGy = u € N andAu = ¢. By hypo-ellipticity
of A it follows thatu € &. HenceG defines a mapping a#(€2) ontoN N &.
By closed graph theorem this mapping is continuous and h8cbevartz's
kernel theorem is given by a semi-regular keiGgk)y. HenceG,, = G*(x)y.
Similarly, sinceA" is hypo-ellipticG;, = G*(X)y. But by proposition 12.1, 118
Gxy = Gy x and hencé&yy = G;(y). This shows thaGy, is regular. O

To complete the proof we have to show that outside the didgioisa C*
function.

LetO; andO, c Q be two open sets such tHatnNO, = ¢. LetT € &7 (0%).
Thenf Gx(y)Tydu is defined and is an element of, saySy such thalAS = T.
RestrictingA, S, T to O sinceT = 0 onO; by hypo-ellipticity of A on Oy, we
haveS QO € £(0y). HenceT — fGX(y)Tydy is a mapping of6”(0O;) onto
&(04), which on account of the closed graph theorem, is contiaublignce

Ge L((a@'(OQ); (9@(01) =~ 69(01)695(01 = (9@(91 X 92).

That is to sayG is C* in O; x O,. SinceO; andO;, are any two open set
such thatD; N O, = ¢, G is aC* function outside the diagonal.
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Remark. For a more detailed study, see Malgrarige [12].
2. The extension of the mappil@: Q' — N.

Under the hypothesis of theorém 2Gldefines an algebraic isomorphism
of @Nn&ontoNN&. Forif f e @ Nn& andGf = u6¥N . ThenAu = f.
Hence by hypo-ellipticity ofA it follows thatu € &. Converselyifue Nn &,
thenAu= f € @ N & andGf = u. If we could apply closed graph theorem,
then it would follow thatG is a topological isomorphism @ N & ontoNN &,
the intersections being given as usual the upper bounddgpor his is so, for
example, ifQ is a Banach space. We have then the

Theorem 12.2.If the closed graph theorem is applicableGZ(Q'N&, NN&) 119
and is an isomorphism. Similarly*Ge .Z2(Q' n &, N N &) and is an isomor-
phism.

12.2

Now we wish to consider the transpoSe Let us first consider the Dirichlet
problem so thaV = H' = Q- 2(Q) is dense inv andN = V. Hence by
transposings we have an isomorphist® : V' +&” — V' +&”. However since
2(Q) is not always dense iN, the dual ofN is not a space of distributions and
hence we do not consider directly the transpoiGoHere the sums of locally
convex topological vector spageandB subspaces of an algebraic vector space
F is topologized as follows : we consider the mappiadj — a+bof Ax B
onto A + B and put onA + B the finest locally convex topology such that this
mapping is continuous. & is the kernel, the + B~ A x B/Z.

Theorem 12.3. Under the hypothesis of theordm 2.1, if further, for every
S € Q N &’ there exists a sequengg € 2(Q) such thatp, > S in @ N &7,
then G: @ — N can be extended by continuity to &’ + & — N + &”.

Proof due to L. Schwartz (unpublished). We define flessbn Q + &’. G

is already defined oY’. By theorenIZl1 is very regular and is given by
fG(X)ycp(tp)dytp(cp) € Q@ We cannot use this at once to define it & for
then the integral itself is not if”. We proceed then as follows : Lefx,y) €
&(Qy x Qy) be a function with support in a neighbourhood of diagonal an
equal to 1 in another neighbourhood of diagonal. Let

Hxy = a(X, y)Gxy = H(X)y = Hx(y).

HenceH,y is regular. It is easily seen, sinGyy is aC> function outside 120
the diagonal thalHyy — 5(X)y = L(X, y) € &(Qx x Qy). Now letT € &'(€)
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with compact supporK say. Sincefp(x)yT =T, we haveT = LT + AHT
where

LTy = fL(x, y)Tydye &.
(H,T)x = fo(y)Tydye 9.

But the supports of the mappiryg— Hx(y) andy — L(X,y) are contained
in the support ofr(x, y). By choosing the support of near enough the diagonal,
we may have the support 6fT andLT in any arbitrary neighbourhood of the
support ofT. HenceHT € & andLT € 2. We defineGT = HT + GLT ¢
& + N. We have to verify that ifp € 2(Q), thenG(¢) = G(y). This follows as
in general
AGT =AHT+AGLT =T - LT +LT =T.

If o € 2(Q),Gp = Hp + GLp € Z+y cny andAGy = ¢. SinceAis an
isomorphismGy = Ge.

Now G is continuous fron, (Q) into & + N. This proves thaG does not
depend orr andG can be extended 1§’ (Q2) so thatG : £7(Q) —» &'(Q) + N
is continuous.

We denote nowG be G itself. G defines then a continuous mappifg
fromQ x € — N+ ¢€ byog(f,s) = Gf + GS. If we proved is zero on the
kernel of Q@ x & — Q + &”, we shall have proved thatdefines a mapping
Gof Q@ +€€ — N+ & asrequired. Leff € @ andS € &’ such that
f +S = 0. Hencef € Q' n &’. By assumption (2), there exista € 2(Q)
which converges i)’ and&” to f. Hence -¢, converges t& in & and we
haveGf + GS = lim(Ggn + G(¢n)) = 0. 121

Corollary. We have G = |g+s and GA = In.s Where by,gs and Iy, s are
the identity maps Q+ &” and N+ &” respectively.

For
AGf+GS)=f+AGS=f+S

andG.A(u+S)=GAu+GAS=u+GAS
SinceGAS = S on 2(Q) itis so on&”. This proves the

Theorem 12.4. Under the hypothesis of theorém 2.3, A is a topological iso-
morphism from N+ 8’ to Q' + &”.

The uniqueness @(Yy) is given by the following
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Theorem 12.5. Under the hypothesis of theordm 12.3, foeyQ, Gk(y) is
defined as the solution of

AX(GX(y) = 6x(y)
Gx(y) e N+ &".

Considery — 0x(y) € &(Qy, &'(Qy)). Let G(6x(y)) = Gx(y). Theny €
Gy(y) is aC* function fromQ — N + € we haveA,(G«(y)) = x(y), andGy(y)
is the only distribution to verify the equation ¥+ &”.
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12.3 Study at the boundary.

Definition 12.6. We say that @, v) is regular at the boundary if & N is such 122
that au,v) = 0 for every ve V vanishing outside a neighbourhood of some
compact Kc Q then u is C° in a neighbourhood df.

If V.= HI(Q) or H(Q) anda(u,v) = 3 apqDIDPv then the results on
regularity at the boundary d&f @ state that under the conditions specified in
theorenf3la(u, v) is regular at the boundary.

Theorem 12.6. Under the hypothesis of theorém 2.3, if furth@n,a) is reg-
ular at the boundary, then for fixed @«(y) is C* in a neighbourhood of.

This means in this cag8(x, y) for fixedy is a usual function in a neigh-
bourhood of" satisfying usual boundary conditions.

By theorenIZI5G,(y) = G(dx(y)) = S + uwith S € &” andu € N. Hence
Au+ AS = 54(y), i.e.,Au= x(y) —AS =T for T € &”. LetK be the support
of T, which on account of the splitting proved in theorem12.1 lsamaken in
any arbitrary neighbourhood gf

Let € V such thatv = 0 in neighbourhood oK. Now by regularization
we can findp, vanishing on the support efsuch thafl = lim ¢, in &’. Then
(Au, V) = lim{gn, V). Hencea(u,v) = 0 for all v € V vanishing in a neighbour-
hood ofK. By regularity at the boundary &€, u is C* in a neighbourhood of
. This completes the proof of the theorem.
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13 Regularity at the Boundary Problems for Gen-
eral Decompositions.

13.1

Hitherto we considered boundary value problems fdiedéntial operators in 123
the spaceH™(Q). For this we obtained\ as the operator associated with a
form a(u,v) on H™(Q) is the space of typél({A}, Q) where {A} stands for

the systenD®. More generally we consider now what problems are solved
by consideringA as the operator associated with sesquilinear fafasv) on
spaceH({A}, Q). That this solves now problems can be seen from the fol-
lowing example. LetA = A% + 1. Consider orH(A, Q) the sesquilinear
form a(u,v) = (Au,Av), + (U,Vv)o. The operatoA associated witla(u, v) is

A? + La(u,V) is H(A, Q) elliptic and hence fof € Q whereQ is such that
H(A, Q) is dense im, we haveu € N such thatAu = f.

Firstly we observe that?(Q) may be contained it (A, Q) strictly. For
example, if2 is a domain such that for a givéne Hg—zz, there exist& H° such
that—AU — T € M?, i.e., for which Visik-Sobol#& problem is soluble, then
there exists1 € H(A, Q) such thau ¢ HY(Q). For, letT € H=* be defined by
(T, ) = fr f(yp)do for f € LAT) and such thaf ¢ Hz(I") = y(H(Q)).

Now if U is the corresponding solution, latbe its restriction ta2. We
haveu € L?(Q) and-Au = uby § 10. Hencau € H(A, Q) : If uwere inH(Q),
thenyu = f would be inH%(I“) contrary to the assumption. Another more
elementary example can be given for a circle. It is easy tattoat examples
such that € L? andAu = 0, butyu ¢ H®. Thus Hadamard’s classical example
with u = 3 a,r"é™ with suitablea, is of this type.

However it is true thaH2(Q) = H(A,Q). For, by Plancherel's formula, 124
the two norms are equivalent ga(Q?). This raises in fact the question : To
determine the conditions oy andQ so thatH(A; Q) = H™(Q) wherem =
highest of orders of the operatoks

Now we interpret formally the boundary value problems thatsolved on
V € H(A, Q). We write first of all Green’s formula

fA%de:f%.\Td(r—fAu.%do-+fAu.K/dx (1)
r Tr

a) LetV = Ho(A, Q). SinceHy(A, Q) = H2(Q) no new problem is solved.

b) V = H(A, Q). Givenf € QY there existal € N such that(u, v) = (f, v), for
allv e V. Further
(A>+u=f 2)
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Hence [ (A%u - Avidx + J,uvdx= [(f - v)dx
Using ) and[(R),

Au _
ﬁ%.vw+peAu.%d=0forallvev

. A
Formally this meanau = 0, and% =0.

¢) V = Closure inH(A, Q) of continuous function withu = 0. Thenu € N
impliesur = 0 andAur = 0.

. : . .. 0u
d) V = Closure inH(A, Q) of continuous function Wltha—n =0Thenue N
r
ou 0Au
implies— =0and—— =0.
P onr onr
. . pu 0Au
However, problems in whic o= OandAu=0oru=0 andﬁ =0are

not solved by this method.
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Now we consider the regularity at the boundary of solutiomsistermined. 125
This means we want to determine whethef iE H(Q) impliesu € HX(Q).

The solution of this problem in full generality is not knowmough it would

be desirable to know it, for in that case, for laigaeak solutions would be
usual ones. We shall show that this is the case with certaohdd operators in

Q = {x, > 0} with constant coficients. Let

Q = {x, > 0} andBu = DJ'u + D{,”‘l/\lu+ D;”‘2A2u+---+/\mu,

whereAn, are partial diferential inxy, ..., X,-1 operators with constant coef-
ficients of order< k. LetV = H(B,Q) anda(u,v) = (Bu, BV), + (U, V), be
a sesquilinear form oW, a(u,v) is V-elliptic. LetQ = L?(Q). If f € L?(Q),
by § B, there existai € N such thata(u,v) = (f,Vv), for all v € V. Further
(B*B + 1)u = f. To consider the regularity afwe consider first its tangential
derivatives and next the normal ones.

Proposition 13.1. Let D$f e L?for all |p| < u for any positive integes. Then
DPu and BOu are in L2 for |p| < u. Let Vi(x) = %(v(x + h) — v(x)) where

h=(0,...,h,...,0),h, = 0. Since B is with constant cgieients, ¥ € V if
v € V. Hence &,V") = (f,V"),,i.e,(Bu BV, + (u, V"), = (f, V"), for all
v € V. Since B is with constant cfieients

(BH", BV) + (U™, V)o = (f ", V)o. (1)

Putting v=u™,
IBU™Z + Ju™2 < CIfFMolu™.

If D, f in L2, BuMandu" are bounded ih2 which mean®8D,uandD,u e 126
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L2. Lettingh — 0 in ),
(B(D.u), BV)o + (D;U, V)o = (D; f, V).

If now D?’)f € L% we can repeat the process proving thaff € L2, then
D*uandBD!u € L2. Now we consider normal derivatives.

Theorem 13.1. Letu = m. Under the hypothesis of propositibn—13.1cu
H™(Q).

We use the
Lemma 13.1. LetQ = {y > 0}. Consideru such that

DPue L? for |p| < k
DyDPue L2 for|pl<k-1
(1) ) ] and
Dy !DfueL? for|p <1
(2) DMueH™k

ThenDk e L2,

If we denote byE(Q) the space defined by all the conditions above, the
lemma mean&(Q) = HX(Q). In general, i.e., for arbitrar@, HY(Q) c E(Q).
This lemma should hold foR2 with smooth boundary, though as yet it is not
proved.

Assuming the lemma for a moment, we complete the proof ofitherem.

We haveBu = DJu + Dg” + Dg” AL U+ -+ ApU.

From proposition 13 DPu € L2 and DPBu € L? for |p| < m. Hence
AkU € HO(Q) andD™ X A u e H™™1, Hence by lemmBE13.1

Dyu e L2
Next we consideb,Buwhich is inL2. 127
D.Bu=DJ'D;u+ D™ Ay DU+

This givesD{'D.u € H™™. ButDP(D.u)L?,|p| < 1. By lemmd I3 again
DyD,u€ L2

Proceeding similarly we obtai{ju € L2. Henceu € H¥Q). Now we
prove ifQ = {x, > 0}, thenE(Q) = HX(Q).

Lemma 13.2.1f Q = R", H* = E(R").
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Let by Fourier transformatiomy, ..., X,-1 go into&y, ..., &1 andXx, into
én. Actually we need use onlp?u € L?p| < kandD{'u € H-™X(Q);
ie.,
7|™G 2

1+1890el? and —————
(b T+

(1)

We may also assunma > k. We have to conclude tht 0 € L2. Now we
use the following inequality

™
1+ [&m™K + [p|m-k

Il < ca(L+1¢) + e
For thenpkCi € L? by (). To prove the inequality we have to prove that
Il + 1™ NER + 1™ < en(L+ YL+ ™+ ™) + calnl™
Sincem > k, |7* < c3l7I™1 + ¢. Hence we need prove

™+ ™M < ca(L + 1) (L + 1™ + ™) + colpl™

kp (m-K)q p a1 1
R NS GE S|
P g p (¢

Henceln™ + €™ Kk < |/™ + |€/™ . This is trivially less than right hand
side of the inequality.

But |¢™ ¥yl <

Lemma 13.3.1f p € D..(Q) and ue E(Q), thenpu € E(Q). This follows from
the definition of EQ) itself.

Lemma 13.4. E(R"Q, i.e., restrictions of ER") to Q is dense in EQ). 128
Letw(x) = u(X,y+t)fort > 0. Let y = u(X)|Q. v, — uin E(Q). Let

0 fory < -t

oly) =141 fory>1  p(y) € Z1(Q)
0<y<1 elsewhere

ou; € V by lemm@&T313, an@u,)Q = v,. The extensiopt, of su; are in E(R")
and their restrictions yare dense in E2).

Lemma 13.5. E(Q) N .@(ﬁ) is dense in EQ).

From lemmd1314, we need prove thatiif v with u € E(R") thenu can
be approached by function froB(Q) N 2(Q). Foru = lim Ux pn With p, — 6.
The restrictions ob) x p, — u.

To complete the proof of the lemrhaIB.1, then, we prove
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Lemma 13.6. Letue E(Q) N @(s_z). Then

U(¥) = {u(x), X >0

is in E(R") for suitabled’s.

If we prove this sinc&(Q) N 2(Q) is dense irE(Q), we have a continuous
mappingr : E(Q) — E(R") = HXR"). HenceE(Q) c H"(Q) which proves

thatHX(Q) = EX(Q). A’sare determined so that gn= O oy ~ should be equal

from above and below. A simple argument shows that&’ (R").

14 Systems
14.1

We shall consider briefly systems. We shall denote in thislarH™(Q) by 129
H™ Let HM = H™ x ... x H™ with the usual product Hilbert structures.

In H™ the closure of §(Q))” is Hg" x - -- x HM. An element oH™(Q) we
denote byu = (uy, ..., u,) with u; € H™. LetV be such thad™ c V c H™.

Let

a(u,v) = Z fapwu(x)unﬂDvadx/l =1,...,v
u=1
be a sesquilinear form withyg 4, € L*(€2) and

apgau =0, if |p| > my or|gl > m,.

This last condition assures theg, v) is continuous otV x V.

If a(u, U) > a|ul? for all u € V and fore > 0 and ifQ = L2 then from the
general theory o[, there exists a spadeand an operatok which establishes
an isomorphism oN ontoQ’ so that

(AU, ) = a(U, p) for ¢ € (Z(Q))",

e, (Aligy)+--+(AUgy) = ¥ [ @pg,D%,Ddx
Hence .
Ai(d) = ) (~1)PDP(apqy,D%,)
P.q.u
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Hence the theory solves theffdirential systems
AU =f.

The variety of boundary value problems solved is much larger., ifv =
2,my = mp andV may be defined as consisting ofi (u,) such thatyu; = yus.

14.2

We now give, following Nirenberg[13] an example which pretsea little 130
strange behaviour. We take= 2,v = 2,m; = 1,mp = 3. We writex; = X
andx, =y, so thatV = H! x H3. Let Ly, My, L3, M3, N, be the diferential
operators the order of which is equal to the index. Let
a(u,Vv) = (Dxuy, Dxv1) + (Dyus, Dyva) + (U, Livi)+

+ (—D):?Uz, DyV]_) + (L3U2,V1) + (Dyul, D§V2)+

+ (Ul, M;Vz) + (D)g(l,lg, Din) + (D§U2, D§V2)+

+ 3(DZDyUz, DDyV2) + 3(DxDjuz, DDV,

+ (Mauz, N3v2).

Lemma 14.1. If Q is three strongly regular,
a(u, v) + A(u, v)
elliptic for A large enough. The system A associated w{th\g is
A1(U) = —(D2 + DZ)uy + Lyu + Dus + Laup

Ao(U) = —Djus + Mauy — (DS + DS + 3DZDj)u; + NgMauy.

From the underlined term in the operator it would look likefase have
to assumer; € H? andu, € H?. While existence and uniqueness in ensured
in H! x H3 itself, i.e., we require four conditions on boundary whilerh the
differential equation it looks as if we require five conditionsrtﬁera(ﬁ, V) is
not elliptic onH? x H3. This happens because in computation of the real part
of a(u, V) the terms involvingDZus, 9., (~D3uz, Dyvi1) + (Dyur, Diwp) = e,
give zero real part as they are of the fozmz. To see that the form gl x H3
is straight forward by using the definition of strong regitlaand the above
remarks.
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