
Lectures on

Partial Differential Equations
and Representations of Semi-groups

By
L. Schwartz

Tata Institute of Fundamental Research, Bombay
1958



Lectures on

Partial Differential Equations
and Representations of Semi-groups

By
L. Schwartz

Notes by
K. Varadarajan

Tata Institute of Fundamental Research
Bombay

1957



Contents

Introduction iii

I Mixed Problems in Partial Di fferential Equations v

1 Vector valued Distributions 1

2 Vector valued Distributions (Contd.) 7

3 Spaces of distributionsH 11

4 TheE-product of two locally convex Hausdorff spaces 15

5 The Approximation Property 21

6 Operations on Vector valued Distributions 27

7 Multiplicative product of a vector... 33

8 Fourier Transform of a vector valued distribution 39

9 The Laplace transform of vector valued distributions 49

10 Partial Differential Equations - Weak boundary... 55

11 Weak boundary value problems 59

i



ii CONTENTS

12 Topological tensor products 63

13 Topological tensor products (contd.) 69

14 Multiplication of vector valued distributions 75

15 Operations on vector valued distributions (contd.) 81

16 Weak boundary value problems 87

II REPRESENTATIONS OF SEMI-GROUPS 93

17 Representations of semi-groups 95

18 Representations of semigroups (contd.) 103

19 Representations of semi-groups (contd.) 109

20 Representations of semi-groups (contd.) 115

21 Remarks on the representation... 119

Appendix 123



Introduction

Different kinds of problems can be put about partial differential equa-
tions.

a) Local problems, i.e. problems of regularity of solutions when we
know the degree of regularity of the coefficients and the second
member.

b) Boundary value problems. These problems generally have a
physical origin. As an example we have the first boundary value
problem – the famous Dirichlet problem – for the Laplacian. We
have a bounded domainΩ with a smooth boundary inRn; we are
given a functiong in Ω and a functionh on the boundary ofΩ.
The problem is to find a functionf in Ω̄ such that∆ f = g in Ω

and f = h on the boundary ofΩ. (∆ = n∑
i=1

∂2

∂x2
i

).Another prob-

lem is Neumann’s problem for∆: find f such that∆ f = g in Ω

and
∂ f

∂n
= h on the boundary. We can also consider the problem

wherein f is prescribed on a part of the boundary and
∂ f

∂n
on the

rest of the boundary. Under suitable assumption ong andh these
problems have one and only one solution. The problems with a
physical origin are usually well–posed.

c) Mixed problems or initial and boundary value problems. Let
Ω be a bounded domain with a smooth boundaryS. We consider
the problem of heat conduction inΩ. From a physical point of
view, it is clear that the knowledge of the temperature inΩ̄ at time
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0 and that of the temperature at the boundary at every timet > 0
should completely determine the temperature inΩ̄ at any timet.
The corresponding problem is this: given a functionu0(x) in Ω̄
and a functionh(x, t), t ≥ 0, x ∈ S, find a functionu(x, t) such
that

i)
∂u(x, t)
∂t

= ∆u(x, t)
ii) u(x,0) = u0(x) (initial condition)

iii) u(x, t) = h(x, t) for everyt > 0 andx ∈ S (boundary condi-
tion)

Another problem of this type arises when we know the initial tem-
perature of the body and the amount of heat that flows across the
boundary at every subsequence moment. The problem is to find
u(x, t) such that

i)
∂u(x, t)
∂t

= ∆u(x, t)
ii) u(x,0) = u0(x)

iii)
∂u(x, t)
∂n

= h(x, t) (t > 0, x ∈ S).
We shall formulate these problems, or rather weaker versions of
these, in the framework of spaces of distributions and solve them.



Part I

Mixed Problems in Partial
Differential Equations

v





Lecture 1

Vector valued Distributions

Notations. D denotes the space ofC∞ functions with compact supports1
onRN.

E denotes the space of allC∞ functions onRN. S denotes the
space of ‘rapidly decreasing’ functions onRN. All these spaces are pro-
vided with their usual topologies. (See “Theorie des distributions” by L.
Schwartz, Vol. 1 and 2) We denote byD

′,E ′ andS
′ the strong duals of

D ,E andS respectively.D ′, E
′ andS

′ are respectively the space of
distributions onRN, the space of distributions with compact support on
RN and the space of ‘tempered’ distributions onRN.

Definition of a vector valued distribution:
Let E be a locally convex Hausdorff topological vector space. We

will refer to such a space asELC.

Definition 1.1. A linear continuous map fromD to E is defined to be
an E-valued distribution or a distribution with values in E.

Remark . The space ofE-valued distributions depends only on the
bounded sets ofE.

Proof. Since D is bornological (Theorie des distributions, Tome 1,
p. 71) a linear map fromD to E is continuous if and only if it takes
bounded sets ofD into bounded sets ofE. Hence the space ofE-valued
distributions depends only on the bounded sets ofE. In particular if we
replace the topology ofE by the weakened topology, due to the iden-
tity between the bounded sets in the initial topology and the weakened

1



2 1. Vector valued Distributions

topology, we have the space ofE-valued distributions to be the same2

algebraically in the above two cases. �

We denote byD ′(E) the space ofE-valued distributions.Topology
of D ′(E). On D ′(E) we put the topology of uniform convergence on
bounded sets ofD . Since bounded sets ofD are relatively compact,
the topology that we introduce is the same as the topology of uniform
convergence on compact sets ofD .

Examples of vector valued distributions:
Let T be a distribution onRN andÐ→e a fixed vector ofE. TÐ→e defined

by TÐ→e (ϕ) = T(ϕ)Ð→e for everyϕ ∈ D is anE-valued distribution.TÐ→e
maps the whole ofD either into a one-dimensional subspace ofE or
into zero according asÐ→e ≠ 0,T ≠ 0 or one of the quantitiese andT is
zero.

The map(T,Ð→e ) → TÐ→e of D ′xE into D ′(E) is a bilinear map and
hence induces a linear mapi ∶ D ′ ⊗ E → D

′(E). This map ‘i’ is an
injection. For, let{Ð→e ν} be a basis ofE. Any element ofD ′ ⊗ E can be
written as∑Tν ⊗Ð→e ν, Tν ∈ D

′. Now, i(∑Tν ⊗Ð→e ν) = ∑Tν
Ð→e ν. Hence

if i(∑Tν ⊗Ð→e ν) = 0, we have∑Tν
Ð→e ν = 0, or∑Tν(ϕ)Ð→e ν = 0 for every

ϕ ∈ D . The linear independence of theÐ→e ν’s givesTν(ϕ) = 0 for every
ϕ ∈ D . Hence∑Tν ⊗Ð→e ν = 0, which proves that ‘i′ is an injection.

It is easy to see that the image ofD
′ ⊗ E under this injection is

the space of continuous linear maps fromD into E which are of finite
rank, that is to say, which mapD into a finite dimensional subspace of
E. WhenE is finite dimensional, everyE-valued distribution is of finite
rank and soD ′(E) can be identified algebraically withD ′⊗E. WhenE3

is finite dimensional by choosing a basisÐ→e 1, . . . ,
Ð→e m of E we see that

any
Ð→
T ∈ D

′(E) can be written as

Ð→
T = T1

Ð→e 1 + T2
Ð→e 2 +⋯+ Tm

Ð→e m,

whereT1, . . . ,Tm are uniquely determined scalar distributions. Instead
of giving

Ð→
T it suffices to give them-scalar distributionsT1,T2, . . . ,Tm.

Now we give an example of a distribution which can have infinite
rank.
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If f is a complex valued continuous function we know thatf defines
a distribution, also denoted byf , in the following way:

f (ϕ) = ∫
RN

f (x)ϕ(x)dx for every ϕ ∈ D .

We shall now define an analogous vector valued distribution. LetE

be a completeELC. If ϕ ∈ D the function
Ð→
f ϕ defined by

Ð→
f ϕ(x) =

ϕ(x) f (x) is anE-valued continuous function with compact support.E
being complete, the integral∫

RN

f (x)ϕ(x)dx (for the definition of this

integral, see Bourbaki, Integration, Chap.III § 4) is an element ofE.

The mapϕ → Ð→f (ϕ) = ∫
RN

Ð→
f (x)ϕ(x)dx, which is evidently linear,

is anE-valued distribution. We have to prove the continuity of the map

ϕ → Ð→f (ϕ) of D in E. Suppose{ϕn} is a sequence of functions all
having their supports in a fixed compact setK and tending uniformly to
0, together with all their partial derivatives. LetV(K) be the volume of
the compact setK. Then

∫
RN

f (x)ϕ(x)dx ∈mV(K)Ð→f (K)

(Bourbaki, Integration, Chap. III, § 4).

wherem = sup
x∈K
∣ϕ(x)∣ and

³¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹µÐ→
f (K) is the convex, closed envelope of the4

compact set
Ð→
f (K). SinceE is complete

³¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹µÐ→
f (K) is compact.

Hence

∫
RN

Ð→
f (x)ϕn(x)dx ∈mnV(K)

³¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹µÐ→
f (K),

where mn = sup
x∈K
∣ϕn(x)∣. If ϕn tend to 0 uniformly onK, we have

Ð→
f (ϕn)→ 0 in E. This proves the continuity of the mapϕ→Ð→f (ϕ).

The identity distribution . The identity map ofD intoD is a continuous
linear map ofD into D , hence it is aD-valued distribution.



4 1. Vector valued Distributions

Definition 1.2. An E-valued distribution
Ð→
T ∶ D → E is said to be of

order m, m an integer≥ 0, if
Ð→
T can be extended into a continuous

map fromD
m to E. (For the definition and the topology ofD

m refer to
“Theorie des distributions”, vol. 1).

One knows that a scalar distribution is locally of finite order. But the
analogous result is in general false for vector valued distributions. For
example, the identity distribution (example (2.3))is of infinite order in
every open subset. In fact, ifi ∶ D → D is of finite order, everyE-valued
distribution,E being a completeELC, will be of finite order. For, let
f ∶ D → E be anE-valued distribution and̃i ∶ Dm→ D be the extension
of i into a continuous linear map ofDm in D . Then f̃ = f ○ ĩ ∶ Dm→ E is
an extension off into a continuous linear map ofDm into E. But given
any open setΩ there exists a distribution onΩ with values inC (field of
complex numbers) which is of infinite order.

SupposeE andF are two locally convex Hausdorff spaces such that5

E is a subspace ofF with a finer topology. It may happen that anE-
valued distribution

Ð→
T which is of infinite order becomes a distribution

of finite order considered as a distribution with values inF. For example
takeE = D andF = D

′. The identity distribution ofD with values in
D is of infinite order. But considered as aD ′-valued distribution it is
given by the indefinitely differentiableD ′-valued function

Ð→
f defined asÐ→

f (a) = δa, δa being the Dirac distribution at′a′. It is easily seen that
Ð→
f

is aC∞, D ′-valued function. We now verify that the distribution given

by
Ð→
f is the same as theD ′-valued distribution ‘i’.

The distribution defined by
Ð→
f maps anyϕ ∈ D into the elementÐ→

f (ϕ) = ∫
RN

f (a)ϕ(a)da of D ′. Now, I claim
Ð→
f (ϕ) is the same as the

elementi(ϕ) of D
′. i(ϕ), considered as an element ofD

′ maps any
ψ ∈ D into the elementϕ(ψ) = ∫

RN

ϕ(a)ψ(a)da of C. To show that

Ð→
f (ϕ) = i(ϕ) we have to show merely

⟨Ð→f (ϕ), ψ⟩ = ϕ(ψ) for every ψ ∈ D .
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Now,

⟨Ð→f (ϕ), ψ⟩ = ⟨∫
RN

Ð→
f (a)ϕ(a)da, ψ⟩ = ∫

RN

⟨Ð→f (a)ϕ(a), ψ⟩da

= ∫
RN

⟨δaψ(a), ψ⟩da= ∫
RN

ϕ(a)⟨δa, ψ⟩da

= ∫
RN

ψ(a)ψ(a)da

= ϕ(ψ).
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Lecture 2

Vector valued Distributions
(Contd.)

Let E and F be two locally convex Hausdorff spaces andu ∶ E → F 6

be a continuous linear map. If
Ð→
T ∶ D → E is anE-valued distribution

u○ Ð→T ∶ D → F is anF-valued distribution.u○ Ð→T is called the image ofÐ→
T by u. The distributionu ○ Ð→T has at least as simple properties as

Ð→
T .

For example, if
Ð→
T is of finite order,u○Ð→T is of finite order. The support

of u ○ Ð→T is contained in that of
Ð→
T . In particular, if

Ð→
T has a compact

support,u ○ Ð→T has a compact support. If
Ð→
T is given by a functionÐ→

f ∶ RN → E, thenu ○ Ð→T is given by the functionu ○ Ð→f ∶ RN → F. This
follows immediately from the equality

u
⎛⎜⎝∫RN

Ð→
f (x)ϕ(x)dx

⎞⎟⎠ = ∫RN

u(Ð→f (x))ϕ(x)dx.

Every distribution
Ð→
T ∶ D → E is a continuous image of the identity

distribution for
Ð→
T = Ð→T ○ I . In this sense the identity distribution is

the worst possible distribution. Suppose
Ð→
T ∈ D ′(E) and←Ðe ′ ∈ E′,E′

denoting the dual ofE. Write forϕ ∈ D , ⟨ϕ∣Ð→T ∣ =Ð→T (ϕ) and⟨ϕ∣Ð→T ∣←Ðe ′⟩ =←Ðe ′(Ð→T (ϕ)). The mapping(ϕ,Ð→T ,←Ðe ′) → ⟨ϕ∣Ð→T ∣←Ðe ′⟩ is a trilinear form

on D ×D
′(E) × E′. ←Ðe ′ ○Ð→T is a scalar distribution and we denote this

distribution by∣Ð→T ∣←Ðe ′⟩.
7



8 2. Vector valued Distributions (Contd.)

Proposition 2.1. If
Ð→
T is an E-valued distribution, the map from E′ to

D ′ which takes←Ðe ′ into ∣Ð→T ∣←Ðe ′⟩ is the transpose of the map
Ð→
T ∶ D → E.

Proof. We have7

∣Ð→T ∣Ð→e ′⟩(ϕ) = ⟨ϕ∣Ð→T ∣←Ðe ′⟩ for every ϕ ∈ D

= ⟨Ð→T (ϕ),←Ðe ′⟩E,E′
= ⟨ϕ,

tÐ→
T←Ðe ′⟩.

This proves the proposition. �

Let E be a locally convex Hausdorff topological vector space, we
denote byE′c the dual ofE endowed with the topology of uniform con-
vergence on convex, compact, stable subsets ofE. By Mackey’s theo-
rem (BourbakiEVT, Tome 2, Chapter IV, Theorem 2), the dual ofE′c is
identical withE. Moreover ifE andF areELC andu ∶ E→ F is a con-
tinuous linear map, the transposetu ∶ F′c → E′c is continuous, becauseu
maps convex, compact, stable subsets ofE into convex, compact, stable
subsets ofF.

Now, suppose
Ð→
T ∶ D → E is anE-valued distributiont

Ð→
T ∶ E′c → D ′

is a continuous map forD ′ = D
′
c. Conversely, we have

Proposition 2.2. If u ∶ E′c → D
′ is a continuous linear map, it is the

transpose of a uniquely determined E-valued distribution.

Proof. Let u ∶ E′c → D ′ be a continuous linear map. Thentu ∶ (E′c)′c ←(D ′)′c is a continuous linear map. But(D ′)′c = D , and(E′c)′c has a
topology finer than the topology ofE. [(E′c)′c is algebraically the same
as E by Mackey’s theorem]. To prove that the topology of(E′c)′c is
finer than that ofE, we first remark that the initial topology onE is
the topology of uniform convergence on equicontinuous subsets ofE′.
To prove our assertion, we have only to show that any equicontinuous
subset ofE′ is contained in a convex, compact, stable subset ofE′c. LetA8

be any equicontinuous subset ofE′. Let A
⌢

be the convex, weakly closed
stable envelope ofA. A

⌢

is then weakly compact and equicontinuous. But
on equicontinuous subsets the topology of compact convergence and the
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weak topology coincide. Hence A
⌢

is a compact subset ofE′c. Since the
topology of(E′c)′c is finer than that ofE, tu ∶ E ← D is also continuous.
This proves our proposition, ast(tu) = u. �

The above proposition shows that the vector spacesL (D ,E) and
L (E′c,D ′) are algebraically isomorphic.
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Lecture 3

Spaces of distributionsH

Definition 3.1. A space of distributionsH is, by definition, an ELC 9

which is contained inD ′ as a linear subspace with a finer topology:
that is to say, the injection i∶H → D ′ is continuous.

Definition 3.2. A space of distributionsH is said to be normal ifD is
contained inH with a finer topology andD is dense inH .

Proposition 3.1. If H is a normal space of distributions,

1) the spaceH ′
c is a normal space of distributions, and

2) the spaceH ′
δ (the dual ofH with the topology of uniform con-

vergence of bounded sets ofH ) is a space of distributions.

Proof. The spaceH ′ is first of all a subspace ofD ′. In fact, if T ∈H
′

andT̃ = T∣D (T restricted toD), since the topology ofD is finer than
the topology induced byH , T̃ is a continuous linear functional onD .
HenceT̃ ∈ D ′. The mappingT → T̃ is an injection, for ifT̃ = 0, we have
T = 0 becauseD is dense inH . Thus we see thatH ′ is a subspace of
D ′.

Since the injectionsD → H → D
′ are continuous, we have by

transpositionD ′c ← H
′

c ← (D ′)′c are continuous. ButD ′c = D
′ and(D ′)′c = D . HenceD

′
c ← H

′
c ← D are continuous. Also sinceH →

D
′ is an injection,D is dense inH ′ if we take the weak topology

σ(H ′,H ). Now H ′
c and H ′ with the topologyσ(H ′,H ) have

the same dual (Mackey’s Theorem). It follows therefore that the linear

11



12 3. Spaces of distributionsH

subspaceD which is dense inH ′ in the topologyσ(H ′,H ) is also
dense in the topology ofH ′

c . (See Bourbaki, EVT IV, § 2, no. 3, Cor. 1).10

This completes the proof of (1).
The proof of (2) is, in fact, trivial. The continuity of the injections

D → H → D ′ gives the continuity of the injectionsD ′δ ← H ′
δ ←(D ′)′δ. But D ′δ = D

′ and(D ′)′δ = D . �

The spaceH (E):
Let H be a space of distributions. LetE be anELC.

Definition 3.3. The spaceH (E) consists of all E-valued distributionsÐ→
T which have the following property.t

Ð→
T ∶ E′c → D

′ maps actually
E′c into H and is a continuous map of E′c into H . We haveH (E)≈L (E′c,H ).
Definition 3.4. Let H be any linear subspaces ofD ′. We say that

an E-valued distribution
Ð→
T belongs scalarly toH if tÐ→T ∶ E′c → D

′

actually maps E′ into H . In other words, for every←Ðe ′ ∈ E′, we have

⟨Ð→T ,←Ðe ′⟩ ∈H .

Definition 3.5. We say that a space of distributionsH has theE- prop-
erty, if for every locally convex, Hausdorff, complete vector space any E-

valued distribution
Ð→
T which scalarly belongs toH belongs toH (E).

Proposition 3.2. If H has theE-property, every subspace ofH with
the induced topology has also theE-property.

Proof. Let K be a linear subspace ofH with the induced topology.LetÐ→
T be anE-valued distribution, withE a completeELC, satisfying⟨Ð→T ,←Ðe ′⟩ ∈ K for every←Ðe ′ ∈ E′. We have to show that

Ð→
T ∈ K (E). In11

other words, we have to show thattÐ→T ∶ E′c → D
′ takesE′c into K

and is continuous. Now⟨Ð→T ,←Ðe ′⟩ ∈ K for every←Ðe ′ merely means that
tÐ→T (←Ðe ′) ∈K for every←Ðe ′ ∈ E′. HencetÐ→T ∶ E′c → D ′ mapsE′c into K .

SinceK ⊂H andH has theE-propertytÐ→T ∶ E′c →H is continuous.

Now, the topology ofK is the induced topology andt
Ð→
T (E′c) ∈ K .

HencetÐ→T ∶ E′c →K is continuous. �
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Proposition 3.3. SupposeH satisfies the following conditions

(1) H is a normal space of distributions.

(2) H has a fundamental system ofD
′-closed neighbourhood of0

in H , that is to say,H has a fundamental system of neighbour-
hoods of0 which are closed in the topology induced fromD ′.

(3) The bounded sets ofH are relatively compact. ThenH has theE-property.

Proof. Let E be any completeELC and let
Ð→
T be anyE-valued distri-

bution scalarly belonging toH , that is to say,t
Ð→
T ∶ E′c → D ′ mapsE′c

into H . SincetÐ→T ∶ E′c → D
′ is continuous,t

Ð→
T ∶ E′c →HD ′ is continu-

ous, whereHD ′ is the spaceH with the topology induced byD ′. The
topology onH is finer than the topology induced byD ′. To prove the
E-property we have to show thattÐ→T ∶ E′c →H is continuous. Accord-

ing to (2), if we prove thatt
Ð→
T
−1(W) is a neighbourhood of 0 inE′c for

any convex, stable neighbourhoodW of 0 in H which isD
′ closed, it

will follow that tÐ→T ∶ E′c →H is continuous. SinceW is D
′-closed and

sincetÐ→T ∶ E′c →HD ′ is continuous,t
Ð→
T
−1(W) is closed inE′c.

tÐ→T −1(W) 12

is a convex, stable set ofE′c. SinceW is absorbing,t
Ð→
T
−1(W) is also ab-

sorbing. Sincet
Ð→
T
−1(W) is a convex closed set inE′c it is also closed

in E′ with the weak topology and since it is convex, stable, absorbing
and weakly closed, it is a neighbourhood of 0 in the strong topology on
E′, that is inE′δ. HencetÐ→T ∶ E′δ → H is continuous. The injection
H → D ′ is continuous. Hence the transposeD → H ′

c is continuous
and the image is dense inH ′

c . Because of (3) we haveH ′
δ = H

′
c .

Also
Ð→
T ∶ H ′

δ → (E′δ)′δ is continuous. LetE′′ be the bidual ofE. The
topologyE of uniform convergence on equicontinuous subsets ofE′ is
coarser than the topology of(E′δ)′δ. Hence

Ð→
T ∶H ′

δ → E′′
E

is continuous.
Hence the compositeD → H

′
δ → E′′E is continuous. The image ofD

by the composite is contained inE and onE, E′′E induces onE the same
topology as the initial topology ofE. Since the image ofD is dense in
H
′
δ , the image ofH ′

δ in E′′E is contained in the closure ofE in E′′E . But



14 3. Spaces of distributionsH

E being complete we have
Ð→
T ∶H ′

δ → E′′E mapsH ′
δ in E. The topology

of E being the one induced byE′′E , we have
Ð→
T ∶H ′

δ =H
′

c → E contin-

uous. Hencet
Ð→
T ∶ E′c → (H ′

c )′c is continuous. But(H ′
c )′c is the same

asH with a finer topology. Thereforet
Ð→
T ∶ E′c →H is continuous. �

This proves our proposition.



Lecture 4

The E-product of two locally
convex Hausdorff spaces

Let L andM be two locally convex Hausdorff vector spaces. We shall13

define a spaceLEM.

Definition 4.1. LEM is the set of bilinear forms on L′c×M′c hypocontin-
uous with respect to the equicontinuous subsets of L′ and M′. (For the
definition of hypocontinuity, see Bourbaki, E.V.T., Chap. III, § 4). LEM
is a linear space. We put on LEM the topology of uniform convergence
on products of equicontinuous subsets of L′ and M′.

Let E ∈ LEM, l′ ∈ L′ andm′ ∈ M′. Write E (l′,m′) = ⟨l′∣E ∣m′⟩ For
any fixedm′ ∈ M′ the mappingl′ → ⟨l′∣E ∣m′⟩ is a continuous linear form
onL′c and hence defines an element ofL which we denote by∣E ∣m′⟩. The
mappingm′ → ∣E ∣m′⟩ is a continuous, linear map ofM′c in L. That it is
linear is trivial. To show that it is continuous we have to only show that
if m′ → 0 ∣E ∣m′⟩ → 0 in L. Now ∣E ∣m′⟩ → 0 if for l′ lying in an equicon-
tinuous subset ofL′ we have⟨l′∣E ∣m′⟩ → 0 uniformly. But this is half of
the hypocontinuity assumption onE . Hencem′ → ∣E ∣m′⟩ is a continu-
ous linear map ofM′c into L. ThusE defines an element ofL (M′c, L).
Similarly, using the other half of the hypocontinuity hypothesis, we can
show thatE determines an element ofL (L′c,M). In fact this is nothing
but the transpose of the linear mapM′c → L that corresponds toE .

Let us denote byE ′ the continuous linear map ofM′c into L that 14

15



16 4. TheE-product of two locally convex Hausdorff spaces

corresponds toE . ThenE ′(m′) is that element ofL which satisfies
E ⟨l′,m′⟩ = ⟨l∣E ∣m′⟩ = ⟨E (m′), l′⟩L, L′. Conversely suppose thatη ∶
M′c → L is a continuous linear map.
Then the bilinear mapη ∶ L′c×M′c → C defined byη(l′,m′) = ⟨η(m′), l′⟩
is hypocontinuous with respect to the products of equicontinuous sub-
sets ofL′c and M′c. First we show that ifl′ lies in an equicontinuous
subset ofL′ and m′ → 0, ⟨η(m′), l′⟩ → 0 uniformly. Sinceη is con-
tinuous,η(m′) → 0 in L and hence⟨η(m′), l′⟩ → 0 uniformly if l′ lies
in an equicontinuous subset ofL′. The transposetη ∶ L′c → M is also
continuous for(M′c)′c is finer thanM. This gives the other half of the
hypocontinuity, namely, ifm′ lies in an equicontinuous set ofM′ and
l′ → 0 in L′,

⟨η(m′), l′⟩ = ⟨m′, tη(l′)⟩ → 0

uniformly.
Thus we see thatLEM ≈ L (M′c, L) algebraically. Similarly we

haveLEM ≈L (L′c,M) algebraically.
Topologies onL (M′c; L) and L (L′c; M).

On both these spaces we put theE-topology which we define below.

Definition 4.2. Let E and F be two ELC. TheE-topology on the space
L (E′c,F) is the topology of uniform convergence on equicontinuous
subsets of E′.

Proposition 4.1. The algebraic isomorphisms between the three spaces
LEM,LE(L′c,M) andLE(M′c, L) are topological isomorphisms.

We shall prove the isomorphism LEM ≈ LE(M′c, L) is topological,15

the other case being similar to this.
Let E ∈ LEM andE

′ the corresponding element inLE(M′c, L). We
showE → 0 in LEM ⇐⇒ E ′ → 0 in LE(M′c, L). Now,E → 0 in LEM
if and only if for l′ ∈ P,m′ ∈ Q,P and Q being arbitrary equicontinuous
sets of L′ and M′ respectively, we haveE (l′,m′) → 0 uniformly. E

′

tends to0, if and only if for m′ in any equicontinuous subset, say R
of M′, E

′(m′) → 0 in L or for l′ in any equicontinuous set S of L′,⟨E ′(m′), l′⟩ → 0 uniformly. This is precisely equivalent toE (l′,m′) → 0
uniformly for(l′,m′) ∈ P×Q,P and Q any equicontinuous subsets of L′
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and M′ respectively. HenceE → 0 in LEM ⇐⇒ E ′ → 0 in LE(M′c, L).
This proves proposition 4.1.

Examples of theE-product of a space of distributions and anELC.

1) D ′EE ≈LE(E′c,D ′) ≈LE(D ; E) (by proposition 4.1).

But we haveD ′(E) ≈ LE(D ; E) topologically for inD , consid-
ered as the dual ofD ′, bounded sets are equicontinuous.

2) S ′EE ≈ LE(S ; E) ≈ L (E′c,S ′) and S ′(E) ≈ S ′EE for
S
′(E) ≈ LE(S ; E) topologically sinceS

′,S are Montel
spaces.

3) OMEE ≈LE(E′c;OM).
(For the definition of the spacesS ,S ′,OM ,Oc,O

′
M ,O

′
c refer:

Theorie des distributions, Tome ii).

4) E
′(E) ≈LE(E ; E) andE

′EE ≈LE(E ; E) ≈LE(E′c,E ′).
Covariance property of theE-product. 16

Let u ∶ L1 → L2 and v ∶ M1 → M2 be continuous linear maps,
L1,M1, L2 and M2 being locally convex Hausdorff topological vector
spaces. We shall now see how withu andv a continuous linear map, say
uEv ∶ L1EM1→ L2EM2 can be associated. There are, in fact, three ways
of defining this map according as we consider the three forms of writing
theE-product, namelyL1EM1,LE(M′c, L1) andLE(L′1c,M1).
Definition 4.3 1. Let(l′2,m′2) ∈ L′2×M′2 andE ∈ L1EM1. Let(uEv)(E )
be the bilinear formη defined by

η(l′2,m′2) = E (tu(l′2), tv(m′2)).
We now prove thatη ∈ L2EM2. For this we have to only prove hypocon-
tinuity of η with respect to the equicontinuous subsets of L′

2c and M′2c.
Suppose l′2 lies in an equicontinuous subset of L′2. Then there exists a
neighbourhood U2 of 0 in L2 such that∣⟨l2, l′2⟩∣ < 1 for l2 ∈ U2. Since u
is continuous, U1 = u−1(U2) is a neighbourhood of0 in L1 and for any
l1 in U1 we have∣⟨l1, tu(l′2)⟩∣ = ∣⟨u(l1), l′2⟩∣. But u(l1) = l2 ∈ U2.
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Hence∣⟨l1, tu(l′2)⟩∣ < l for every l1 ∈ U1. Hence the set{tu(l′2)∣l′2 ∈
an equicontinuous subset of L′2} is an equicontinuous subset of L′1. Let
m′2 → 0 in M′2c. Then since tv ∶ M′2c → M′1c is continuous,tv(m′2)→0 in
M′1c. HenceE

(tu(l′2); tv(m′2))→0 uniformly if l′2 lies in an equicontinu-
ous subset of L′2 and m′2 → 0 in M′2c. Similarly we prove the other part
of the hypocontinuity.

Thusη ∈ L2EM2. The mappingE → η is denoted by uEv.17

Definition 4.3 2. Let E ∈ LE(M′1c, L1). Let u ∶ L1 → L2 and v ∶ M1 →
M2 be continuous linear maps. Then tv

M′1c↑
M′2c

and
L1↓
L2

u are continuous linear

maps.E ∶ M′1c → L1 is continuous linear. The compositeη = u ○ E ○ tv ∶
M′2c → L2 is a continuous linear map and henceη ∈ L (M′2c, L2). With
E ∈LE(M′1c, L1) we associate the elementη ∈LE(M′2c, L2).
Definition 4.3 3. Let E ∈ LE(L′1c,M1). tu ∶ L′1c ← L′2c,v ∶ M1 →
M2 continuous. Hence the compositeη = v ○ E ○ tu ∶ L′2c → M2 is a
continuous linear map. WithE ∈LE(L′1c,M1) we associate the element
η ∈LE(L′2c,M2).
Proposition 4.2. The above three definitions give one and the same el-
ementη of L2EM2 ≈LE(M′2c, L2) ≈LE(L′2c,M2).
Proof. Let us, for the sake of clarity, denote the elements got from def-
initions 4.3 (1), 4.3 (2) and 4.3 (3) byη1, η2 andη3. Our assertion will
be proved if we show

η1(l′2,m′2) = ⟨η2(m′2), l′2⟩L2,L′2
= ⟨η3(l′2),m′2⟩M2,M′2

.

Now, η1(l′2,m′2) = E
(tu(l′2)′ tv(m′2)) (i)

⟨η2(m′2), l′2⟩L2,L′2
= ⟨u○ E ○ tv(m′2), l′2⟩L2,L′2= ⟨E tv(m′2)′ tu(l′2)⟩L1,L′1

= E (tu(l′2)′ tv(m′2)) (ii)
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Similarly ⟨η3(l′2),m′2⟩M2,M′2
= E

(tu(l′2)′ tv(m′2)) (iii)

A comparison of (i), (ii), and (iii) gives the required proposition. �18

Proposition 4.3. If u ∶ L1 → L2 and v ∶ M1 → M2 are injections uEv ∶
L1EM1→ L2EM2 is also an injection.

Proof. We have to show that(uEv)E1 = 0⇒ E1 = 0. Now (uEv)E1 =⟨tu(l′2)∣E1∣tv(m′2)⟩. Sinceu andv are injections,tu(L′2) andtv(M′2) are
dense inL′1 andM1. HenceE1 which is a separately continuous bilinear
form, is zero on the producttu(L′2) × t(M′2) wheretu(L′2) and tv(M′2)
are dense subspaces ofL′1 andM′1. HenceE1 = 0. (See Bourbaki, EVT,
Chap. III, § 4, No. 3).

In fact, one can even show that ifu ∶ L1 → L2 andv ∶ M1 → M2 are
monomorphisms,uEv ∶ L1EM1 → L2EM2 is a monomorphism. That is
to say if we assume thatu ∶ L1 → u(L1) is a topological isomorphism
with the topology induced onu(L1) by L2 andv ∶ M1 → v(M1) is a
topological isomorphism with the topology induced byM2, thenuEv ∶
L1EM1 → uEv(L1EM1) is a topological isomorphism with the induced
topology.

Also we haveL ⊗ M ⊂ LEM. The topology onL ⊗ M induced by
LEM is called theE-topology and provided with this topologyL⊗M is
denoted byL⊗

E
M �

Proposition 4.4. If L and M are complete, LEM is complete.

Proof. Let (E j) be a Cauchy filter onLEM. This Cauchy filter gives rise
to a Cauchy filter, which also we denote by(E j), onLE(L′c,M). Since
M is complete it follows that there exists a linear mapE ∶ L′c → M such
thatE j converges toE uniformly on every equicontinuous subset ofL′.
Similarly (E j) defines a Cauchy filter onLE(M′c, L) which also we de- 19

note by(E j) and this defines a linear mapE ′ ∶ M′c → L. Also trivially E

andE
′ are transposes of each other. Now, every equicontinuous subset

of L′ is contained in a compact (forL′c), convex, equicontinuous subset
of L′. Since the restriction ofE to every equicontinuous subset ofL′

is continuous, it follows that the image of every equicontinuous subset
of L′ by E is contained in a compact convex subset ofM. This proves
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thatE ′ ∶ M′c → L is continuous. SimilarlyE ∶ L′c → M is continuous.
ConsequentlyE ∈ LEM. �



Lecture 5

The Approximation Property

Definition 5.1. We say that an ELC L has the approximation property20

if L′ ⊗ L is dense inLc(L, L).
Trivially if the identity map I ∶ L → L is adherent to L′ ⊗ L in

Lc(L, L), L has the approximation property. In fact, if I is adherent
to L′⊗L in Lc(L, L), we have L′⊗M dense inLc(L,M) for every ELC
M.

The spacesD ,D ′,E ,E ′,Dm, L′, (D ′)(o),S ,S ′,OM and O
′
c have

all the approximation property. It is not known whetherD
′m with the

strong topology has the approximation property or not.

Proposition 5.1. If L or M has the approximation property, we have
L⊗M dense in LEM. If for every ELCM, L⊗M is dense in LEM, then
L has the approximation property.

Assume that L has the approximation property. We have to prove
that continuous linear maps from M′c → L of finite rank are dense in
LE(M′c, L). Since L has the approximation property, we can find a filter(v j) of maps of finite rank of L into L converging to the identity map in
Lc(L; L), i.e., the filter(v j) converges uniformly to I on compact discs
of L (disc= convex, stable subset). Let u∈ LE(M′cL) = LEM. Since
every equicontinuous subset of M′ is contained in a compact disc of M′c,
the filter(v j ○ u) converges uniformly on equicontinuous subsets of M′

c
to u. Also vj ○ u are maps of finite rank of M′c in L. Hence the required
result follows.

Conversely, suppose L⊗M is dense in LEM for every ELCM. Tak- 21

21
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ing for M the space L′c, we have L⊗ L′c dense in LEL′c. The topology
of (L′c)′c is finer than that of L, though algebraically they are the same.
Hence I ∶ (L′c)′c → L is continuous and hence it can be approximated
by continuous maps of finite rank of L in L on equicontinuous subsets
of (L′c)′. Any convex, compact stable subset of L is equicontinuous in(L′c)′. This proves our proposition.

As pointed out in the previous lecture, we have

(1) D
′(E) ≈ D

′EE ≈Lδ(D ,E) ≈LE(E′c,D ′)
(2) S

′(E) ≈S
′EE ≈Lδ(S ,E) ≈LE(E′c,S ′), and

(3) E
′(E) ≈ E

′EE ≈Lδ(E ,E) ≈LE(E′c,E ′).
Definition 5.2. Let

Ð→
T be an E-valued distribution. The support of

Ð→
T

is, by definition, the smallest closed setΩ ⊂ Rn such that ifϕ is any
C∞ function with compact support whose support is contained in the

complement ofΩ, we have
Ð→
T (ϕ) = 0.

Remark. An element ofE ′(E) need not have compact support. In fact,
the identity mapI ∶ E → E is an element ofE ′(E ). It does not have a
compact support. For, if it had a compact supportK, every continuous
image ofI will have its support inK. In particular, every scalar-valued
distribution with compact support, being a continuous image ofI , will
have its support inK, a fixed compact set, which is absurd.

However, if anE-valued distribution
Ð→
T has a compact support,

Ð→
T ∈

E
′(E). In fact, tÐ→T ∶ E′c → D

′ mapsE′c into E
′.

Proposition 5.3. If E has a neighbourhood of0 which does not contain22

any straight line, then every element ofE
′(E) has a compact support.

Proof. Let V be a neighbourhood of 0 inE not containing any straight
line and

Ð→
T ∶ E → E a continuous linear map. Since

Ð→
T is continuous,

∃ an integerm ≥ 0, a compact setK and anε > 0 such that for every
ϕ ∈ E with sup

∣p∣≤m,x∈K
∣Dpϕ(x)∣ ≤ ε we have

Ð→
T (ϕ) ∈ V. Let ψ ∈ D
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with support in the complement ofK. Then sup
∣p∣≤m,x∈K

∣Dpλψ(x)∣ = 0 and

henceλ
Ð→
T (ψ) ∈ V for everyλ. SinceV does not contain any straight

line,
Ð→
T (ψ) = 0 or the support of

Ð→
T is contained inK. Therefore

Ð→
T has

a compact support. �

Corollary. E having a neighbourhood of0 not containing any straight
line is equivalent to saying that there exists a continuous semi-norm on
E which is a norm.

If E is a normed space, then any
Ð→
T ∈ E ′(E) has a compact support.

Definition 5.3. The space of E-valued distributions with compact sup-
port is denoted bỹE ′(E).

We haveẼ ′(E) ⊂ E ′(E) algebraically.

Definition 5.4. Ẽ m(E) is the space of m-times continuously differen-
tiable functions from Rn to E.

Proposition 5.4. We have the algebraic inclusionE m(E) ⊂ Ẽ
m(E).

Proof. Let
Ð→
T be a continuous linear mapE ′mc → E. Let

Ð→
f be anE-

valued function defined as follows:
Ð→
f (a) = T(δa). Now the mapa→ δa 23

is anm-times continuously differentiable function ofRn with values in

E
′m
c andT is a continuous linear map. Hence

Ð→
f is anm-times continu-

ously differentiable function. We show that
Ð→
T is the distribution defined

by the function
Ð→
f . We have

⟨Ð→f ,←Ðe ′⟩(a) = ⟨Ð→f (a),←Ðe ′⟩ = ⟨Ð→T (δa),←Ðe ′⟩ = δa(⟨Ð→T ,←Ðe ′⟩)
= ⟨Ð→T ,←Ðe ′⟩(a) (as a function)

�

This proves our assertion.

Proposition 5.5. If E is complete,Ẽ m(E) = E
m(E).
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Proof. If we prove thatẼ m(E) ⊂ E m(E). we are through, because of

proposition 5.4. Let
Ð→
f ∈ Ẽ

m(E). SinceE is complete,
Ð→
f can be used

to define a distribution
Ð→
f (ϕ) = ∫

Rn

Ð→
f (x)ϕ(x)dx. It is evident that the

above distribution
Ð→
f scalarly belongs toE m. Now E

m does not satisfy

theE-property. We cannot immediately conclude that
Ð→
f ∈ E m(E). We

have to prove that the mapE′c → E
m defined by

Ð→
f is continuous. Sup-

pose←Ðe ′ → 0 in E′c, we have to show that⟨Ð→f ,←Ðe ′⟩ → 0 in E m, i.e.,

Dp⟨Ð→f ,←Ðe ′⟩ → 0 uniformly on every compact subsetK ⊂ Rn for ∣p∣ ≤ m.

But Dp⟨Ð→f ,←Ðe ′⟩ = ⟨Dp f ,←Ðe ′⟩ for ∣p∣ ≤ m. For eachp with ∣p∣ ≤ m, the

set of valuesDpÐ→f (x), x ∈ K is a compact set inE. SinceE is complete

the convex, stable, closed envelope of the set{DpÐ→f
x∈K
(x)} is compact and

so,⟨DpÐ→f ,←Ðe ′⟩ → 0, ∣p∣ ≤m uniformly for x ∈ K. �

Characterization of E
m(E). In the general case, one sees thatE

m(E)
is the set of allm-times continuously differentiable functions

Ð→
f satis-

fying the following conditions: For eachp with ∣p∣ ≤ m, and for each

compact setK ⊂ Rn, the convex, stable, closed envelope ofDpÐ→f (K) is
compact inE.

Let E be a completeELC. Let H denote the space of holomorphic24

functions onR2n provided with the canonical complex structure. We put
on H the topology induced by that ofE ○. Let H(E) denote the space
HεE.

Definition 5.5. Any element
Ð→
f ∈ H(E) is called a holomorphic function

with values in E.

Proposition 5.7. Let
Ð→
f (z) be an E-valued function such that for every←Ðe ′, the functionϕH defined byϕ←Ðe ′(z) = ⟨Ð→f (z),←Ðe ′⟩ is in H. ThenÐ→

f ∈ H(E) and we have a formula similar to the formula of Cauchy:

Ð→
f (z) = 1

2πi ∫
Ð→
f (ζ)
ζ−z dζ.
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Proof. SinceH has theE-property, if
Ð→
f belongs scalarly toH,

Ð→
f be-

longs toH(E). This proves the first part. To prove the second part we
see that for every←Ðe ′ ∈ E′, ϕ←Ðe ′ being a scalar-valued holomorphic func-
tion, we have

ϕ←Ðe ′(z) = ⟨Ð→f (z),←Ðe ′⟩ = 1
2πi ∫

ϕ←Ðe ′(ζ)
ζ − z

dζ

= 1
2πi ∫

⟨Ð→f (ζ),←Ðe ′⟩
ζ − z

dζ.

That is to say, ⟨Ð→f (z),←Ðe ′⟩ = 1
2πi ∫

⟨Ð→f (ζ),←Ðe ′⟩
ζ − z

dζ

= 1
2πi ∫ ⟨

Ð→
f (ζ)
ζ − z

,←Ðe ′⟩ dζ

= ⟨ 1
2πi ∫

Ð→
f (ζ)
ζ − z

dζ,←Ðe ′⟩ .

Hence
Ð→
f (z) = 1

2πi ∫
Ð→
f (ζ)
ζ−z dζ.

�
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Lecture 6

Operations on Vector valued
Distributions

E will always denote a complete E L C. 25

Differentiation of vector valued distributions.

Let
Ð→
T ∈ D

′(E). Let Dp be the operator
∂p1+⋯+pn

∂xp1
1 . . . ∂xpn

n
wherep is

then-tuple(p1, p2, . . . , pn). DpÐ→T is defined to be the map, which maps

ϕ ∈ D into (−1)∣p∣Ð→T (Dpϕ) ∈ E It is easily seen thatDpÐ→T is anE-valued
distribution.

We have⟨DpÐ→T ,←Ðe′ ⟩ = Dp⟨Ð→T ,←Ðe′ ⟩. This follows from the very defi-
nition of Dp.

Scalar product.
Let H be a normal space of distributions. ThenH

′
c is a normal

space of distributions (Proposition 4.1). Let us denote by S.T the scalar
product of any elementS ∈ H and any elementT ∈ H

′. Let nowÐ→
S ∈H (E) andT ∈H

′.

Definition 6.1.
Ð→
S ∈ H (E). Hence

Ð→
S can be considered as a contin-

uous linear map ofH ′
c in E. Hence if T∈ H

′
c ,
Ð→
S (T) ∈ E. We defineÐ→

S 1̇T to be the element
Ð→
S (T) of E.

Definition 6.2. Let
Ð→
S ∈ H (E). ThentÐ→S ∶ E′c → H is a continuous

linear map. We have agreed to denote by⟨Ð→S ,←Ðe′ ⟩ the elementt
Ð→
S (←Ðe′ )

27
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of H . Let T ∈H ′. Then
Ð→
S 2̇T is defined to be that element of E which

satisfies

⟨Ð→S 2.T,
←Ð
e′ ⟩E,E′ = ⟨tÐ→S (←Ðe ′)′T⟩H ,H ′

= tÐ→S (←Ðe ′)⋅T
= ⟨Ð→S ,←Ðe ′⟩ ⋅ T

Definition 6.3. Let
Ð→
S ∈H ⊂ E and T∈H

′. Then T∶H → C and I ∶26

E→ E are continuous linear maps. Hence T∈ I ∶H ⊂ E→ C ⊂ E = E
is a continuous linear map (Definitions 4.3 (1), 4.3 (2) and 4.3 (3)). We

define
Ð→
S 3.T to be the element T∈ I(Ð→S ) of E.

Proposition 6.1. The elements
Ð→
S 1̇T,

Ð→
S 2̇T and

Ð→
S 3̇ T of E are all equal.

Now ⟨Ð→S 1.T,
←Ðe ′⟩E,E′ = ⟨Ð→S (T),←Ðe ′⟩ = ⟨T, tÐ→S (←Ðe ′)⟩H ′,H

= ⟨Ð→S 2.T,
←Ðe ′⟩E,E′ .

This proves
Ð→
S 1.T =Ð→S 2 ⋅ T.

Also ⟨Ð→S 3 ⋅ T,
←Ðe ′⟩E,E′ = ⟨T ∈ I(Ð→S ),←Ðe ′⟩E,E′ .

Proposition 4.2 givesT ∈ I(Ð→S ), considered as an element ofC ⊂ E or
as an element ofLε(CC; E), is the same as the composite of the maps

tT ∶ C→H
′

c ,H
′

c

Ð→
SÐ→ E andI ∶ E→ E.

Hence⟨T ∈ I(Ð→S ),←Ðe ′⟩E,E′ = ⟨I ○Ð→S ○ tT(1),←Ðe ′⟩E,E′ .
Also

Ð→
S ○ tT(1) =Ð→S (T). Hence we have

⟨I ○Ð→S ○ tT(1),←Ðe ′⟩E,E′ = ⟨Ð→S (T),←Ðe ′⟩
= ⟨Ð→S 1.T,

←Ðe ′⟩.
Hence

Ð→
S 3̇T =Ð→S 1̇T.

As example, we see in the following situations we can define a scalar
product:

1)
Ð→
T ∈ D ′(E), ϕ ∈ D ; 2)

Ð→
T ∈ D ′mc (E), ϕ ∈ Dm;

3)
Ð→
T ∈S ′(E), ϕ ∈S ; 4)

Ð→
T ∈ D(E), ϕ ∈ D ′;

5) Ð→ϕ ∈ D(E),T ∈ D ′ ; and 6) Ð→ϕ ∈ Dm(E),T ∈ D ′m.
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Properties of the scalar product: 27

Proposition 6.2. If T belongs to an equicontinuous subset ofH ′ andÐ→
S tends to0 in H (E),Ð→S ⋅ T tends to zero uniformly in E.

Proof. Now,
Ð→
S ∈Lε(H ′

c E), theε-topology being the topology of uni-
form convergence on equicontinuous sets ofH

′. Hence whenT lies
in an equicontinuous subset ofH ′ and

Ð→
S tends to 0 inH (E),Ð→S (T)

tends to 0 uniformly inE. But
Ð→
S ⋅T =Ð→S (T). Hence

Ð→
S ⋅T tends to 0 in

E uniformly with respect toT in an equicontinuous subset ofH ′, whenÐ→
S tends to 0 inH (E). �

Proposition 6.3. If
Ð→
S lies in a compact set ofH (E) and T tends to0

in H
′

c and ifH is complete, then
Ð→
S ⋅ T tends uniformly to0 in E.

Proof. Let K be any compact subset ofH (E) =Lε(E′cH ). If A is any
equicontinuous subset ofE′c, U

S⃗∈K
S(A) lies in a compact subset ofH . If

Ð→
S ∈ K and←Ðe ′ lies in an equicontinuous subset ofE′, we have to show
that⟨Ð→S (T),←Ðe ′⟩ tends to 0 uniformly asT → 0 in H ′

c . We have

⟨Ð→S ,←Ðe ′⟩ ⋅ T = ⟨Ð→S (T),←Ðe ′⟩.
That is to say⟨Ð→S (T),←Ðe ′⟩ = T(⟨Ð→S ,←Ðe ′⟩). From what has been said

above⟨Ð→S ,←Ðe ′⟩ lies in a compact subset ofH . SinceH is complete,

the convex stable envelope of a compact set is compact. Hence if
Ð→
S

lies in a compact set ofH (E) and←Ðe ′ lies in an equicontinuous sub-

set of E′, ⟨Ð→S ,←Ðe ′⟩ lies in a compact disc ofH . Hence ifT → 0 in

H
′

c ,T(⟨Ð→S ,←Ðe ′⟩) → 0 uniformly. This proves proposition 6.3. �

Proposition 6.4. If
Ð→
S belongs to a bounded subset ofH (E) and T 28

tends to0 in the strong dualH ′

δ then
Ð→
S ⋅ T tends to0 uniformly in E.

Proof. It suffices to show that when←Ðe ′ lies in an equicontinuous subset
of E′, ⟨Ð→S ⋅ T,←Ðe ′⟩ tends to 0 uniformly. Let

Ð→
S remain in the bounded

setB of H (E). NowH (E) ≈Lε(E′c,H ). If B is bounded inH (E),
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then U
S⃗∈B

Ð→
S (H) is a bounded set ofH , whatever be the equicontinuous

subsetH of E′c. We have⟨Ð→S ⋅T,←Ðe ′⟩ = ⟨Ð→S ,←Ðe ′⟩.T = T(⟨Ð→S ,←Ðe ′⟩). When←Ðe ′ lies in an equicontinuous subset ofE′ and
Ð→
S lies in a bounded setB

of H (E) we have seen that⟨Ð→S ,←Ðe ′⟩ lies in a bounded set ofH . Since

T → 0 in H ′

δ we haveT(⟨Ð→S ,←Ðe ′⟩) → 0 uniformly with respect to
Ð→
S in

a bounded set ofH (E) and←Ðe ′ in an equicontinuous subset ofE′. This
proves proposition 6.4. �

Combining propositions 6.2 and 6.4, we get the following

Proposition 6.5. The mapping(Ð→S ,T) → Ð→S ⋅ T of H (E) ×H
′

δ → E
is a bilinear map hypocontinuous with respect to the bounded subsets of
H (E) and equicontinuous subsets ofH

′.

Proposition 6.6. For any element of the form SÐ→e in H (E),S ∈ H ,Ð→e ∈ E, we have SÐ→e ⋅ T = S ⋅ TÐ→e .

Proof. To prove this we have only to verify that

⟨SÐ→e ⋅ T,←Ðe ′⟩E,E′ = ⟨S ⋅ TÐ→e ,←Ðe ′⟩E,E′
for every←Ðe ′ ∈ E′. Now

⟨SÐ→e ⋅ T,←Ðe ′⟩ = ⟨SÐ→e (T),←Ðe ′⟩ = ⟨S ⋅ TÐ→e ,←Ðe ′⟩.
WhenH satisfies the approximation property, we have a characteriza-29

tion for the scalar product that we have introduced. �

Proposition 6.7. Let H satisfy the approximation property and E be
a complete ELC. The bilinear map that we have defined is the only
bilinear map which is separately continuous and which satisfies UÐ→e ⋅
T = (U ⋅ T)Ð→e , for every U∈H ,Ð→e ∈ E and T∈H

′

c .

Proof. We have already seen that the bilinear map defined by us is sep-
arately continuous and satisfiesUÐ→e ⋅ T = (U ⋅ T)Ð→e .

Suppose there exists two bilinear maps, sayµ1 andµ2 of H (E) ×
H
′

c Ð→ E which are separately continuous and satisfyµ1(SÐ→e ,T) =
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⟨S,T⟩Ð→e andµ2(SÐ→e ,T) = ⟨S,T⟩Ð→e for everyS ∈ H ,Ð→e ∈ E andT ∈
H
′. SinceH ⊗ E is dense inH (E), the equality ofµ1 andµ2 on(H ⊗E)×H ′

c and the separate continuity ofµ1 andµ2 giveµ1 = µ2 on
H (E) ×H

′

c . �



32 6. Operations on Vector valued Distributions



Lecture 7

Multiplicative product of a
vector valued distribution
and a scalar valued
distribution

Let H ,K andL be three spaces of distributions onRn. 30

Definition 7.1. A bilinear map U ofH ×K →L which is separately
continuous and which coincides with the multiplication of functions on
D × D is called a multiplication between the elements ofH and the
elements ofK with values inL .

If S ∈H ,T ∈K , we write S UT for U(S,T).
Theorem 7.1. Let H ,K and L be any three locally convex spaces.
Let E be a complete ELC. Let U∶ H ×K → L be a bilinear map
hypocontinuous with respect to the bounded sets ofH andK . Then
we can define a bilinear map̃U ∶ H (E) ×K → L (E) which is sep-
arately continuous and which satisfies SÐ→e ŨT = (S UT)Ð→e for every
S ∈H ,Ð→e ∈ E and T∈K ; moreover it is hypocontinuous with respect
to the bounded sets ofH (E) andK .

If H satisfies the approximations property, the bilinear map that we
define is the only bilinear map which is separately continuous and which
satisfies SÐ→e ŨT = (S UT)Ð→e for every S∈H ,Ð→e ∈ E and T∈K .

33
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Proof. Let T be any element ofK . Then it defines a continuous linear
mapmT ∶ H → L as follows:mT(S) = S UT for everyS ∈ H . Let
I ∶ E → E be the identify map ofE in E. The mapmT ∈ I ∶ H (E) →
L (E) (for the definition ofmT ∈ I refer to Lecture 4) is a continuous

linear map. We define
Ð→
S ŨT to bemT ∈ I(Ð→S ) for every

Ð→
S ∈ H (E).

We shall prove that̃U thus defined has all the properties mentioned in
the theorem. �

We haveH (E) ≈Lε(E′c,H ) ≈Lε(H ′

c ,E). From definitions 4.331

(1), 4.3 (2) and 4.3 (3), we have the following results.

(i) Considered as an element ofLε(E′c,L ), mT ∈ I(Ð→S ) = Ð→S ŨT is
the same as the composite of the maps

tI ∶ E
′

c → E′c,
Ð→
S ∶ E′c →H ,mT ∶H →L

wheretT is the transpose of the identity mapping ofE in E; in
other words,tT is the identity mapping ofE′c.

(ii) Considered as an element ofLε(L ′

c ,E),mT ∈ I(Ð→S ) is the same
as the composite of the maps

tmT ∶L
′

c →H
′

c ,
Ð→
S ∶H ′

c → E, I ∶ E→ E,

Ð→
S being considered as an element ofLε(H ′

c ,E).
First we shall show that̃U is hypocontinuous with respect to the

bounded subsets ofH (E) andK . Let
Ð→
S remain in a bounded set of

H (E) andT → 0 in K . To show that
Ð→
S ŨT tends to 0 inL (E) =

Lε(E′c,L ), we have to prove that if←Ðe ′ lies in an equicontinuous set

of E′,
Ð→
S UT(←Ðe ′) → 0 uniformly in L . Since

Ð→
S lies in a bounded set

B, U⟨Ð→S ,
Ð→
S εB,←Ðe ′εH

←Ðe ′⟩, H being an equicontinuous subset ofE′, is bounded in

H . Hence⟨Ð→S ,←Ðe ′⟩UT tends to 0 uniformly inL . But one sees easily

that⟨Ð→S ,←Ðe ′⟩UT =Ð→S ŨT(←Ðe ′). Hence
Ð→
S UT(←Ðe ′) → 0 uniformly inL .

In other words,
Ð→
S UT tends to inL (E) uniformly when

Ð→
S remains in

a bounded set ofH (E) andT → 0 in K .



35

Now suppose
Ð→
S → 0 in H (E) andT remains bounded inK . Then

for ←Ðe ′ lying in an equicontinuous setH of E′, ⟨Ð→S ,←Ðe ′⟩ → 0 uniformly

in H and hence whenT lies in a bounded set ofK , ⟨Ð→S ,←Ðe ′⟩UT =Ð→
S ŨT(←Ðe ′) → 0 uniformly inL . Hence

Ð→
S ŨT → 0 inL (E) uniformly. 32

It is trivially seen thatSÐ→e ŨT = (S UT)Ð→e for everyS ∈ H ,Ð→e ∈
E,T ∈K .

Now supposeH satisfies the approximation property. ThenŨ ∶
H (E)×K →L (E) is the only bilinear map separately continuous and
satisfyingSÐ→e ŨT = (S UT)Ð→e for S ∈ H ,Ð→e ∈ E andT ∈ K . For if
U′ is another such bilinear map, we haveŨ ∣(H ⊗ E) ×K = U′∣ (H ⊗
E) ×K . SinceH ⊗ E is dense inH (E), we haveŨ = U′ from the
separate continuity of both̃U andU′. This proves our theorem.

Proposition 7.2. Let H andL be normal spaces of distributions and
K a locally convex Hausdorff topological vector space. Let U∶ H ×

K → L be a bilinear map hypocontinuous with respect to bounded
subsets ofH and K . For each T ∈ K let mT ∶ H → L be the
mapping defined by mT(S) = S UT. Then tmT ∶ L

′

c → H
′

c is linear
and continuous. Letα ∈ L ′

c . Let us denote byL̇ the scalar product
betweenL andL

′

c and byḢ the scalar product betweenH andH
′

c .
Let us denote by the same symbols the extensions toL (E) andL ′

c and
to H (E) andH

′

c . Then

Ð→
S

Ḣ
Tα = (Ð→S ŨT)

L̇
α, where Tα = tmT(α).

Proof. We have to only verify that for every←Ðe ′ ∈ E′, ⟨Ð→S H ⋅ Tα,
←Ðe ′⟩ =

⟨(Ð→S ŨT)L ⋅ α,←Ðe ′⟩.
we have ⟨Ð→S H ⋅ Tα,

←Ðe ′⟩ = ⟨Ð→S ,←Ðe ′⟩H ⋅ Tα = ⟨Ð→S ,←Ðe ′⟩H ⋅ tmT(α)
=mT⟨Ð→S ,←Ðe ′⟩L ⋅ α = (⟨Ð→S ,←Ðe ′⟩UT)L ⋅ α
= ⟨Ð→S ŨT,←Ðe ′⟩L ⋅ α = ⟨Ð→S ŨTL ⋅ α,

←Ðe ′⟩.
�
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Examples of multiplicative products.33

1) The multiplicative productαT defined forα ∈ E andT ∈ D
′ as

αT(ϕ) = T(αϕ) for everyϕ ∈ D is a bilinear mapE × D ′ →
D
′ which is hypocontinuous with respect to bounded subsets of

E and D ′. (Ref: Theorie des distributions, Tome 1, pp. 117,
Chap. V, § 2, Th´eorème 3). IfE is any completeELC we can de-
fine bilinear maps, hypocontinuous with respect to bounded sets,
as explained in Theorem 7.1 in the following cases:

(a) D ′(E) × E → D ′(E) and (b) D ′ × E (E) → D ′(E).
2) If α ∈ OM andT ∈ S

′ the multiplicative productαT ∈ S
′. The

mapping(α,T) → αT of OM × S ′ → S ′ is hypocontinuous
with respect to the bounded subsets ofOM and ofS ′. If E is any
completeELC, as explained in theorem 7.1, we get a bilinear map
which is hypocontinuous with respect to the bounded subsets, in
the following cases:

(a) S ′(E) ×OM →S ′(E)
(b) S

′
×OM(E) →S

′(E).
The Convolution product.

If U ∶ H ×K → L is a separately continuous bilinear map of
H ×K in L , whereH ,K andL are three locally convex Hausdorff
spaces and ifE is a completeELC we can define a bilinear map̃U ∶
H (E) ×K → L (E) as explained in theorem 7.1. We take any fixed
T ∈ K and consider the continuous linear mapmT ∈ I ∶ H (E) →
L (E), wheremT ∶ H → L is the continuous linear mapS → S UT
and I ∶ E → E is the identity map. This can be applied to the product
of convolution. We get then products of convolution of certain vector
valued distributions by certain scalar valued distributions.

For example, we can define convolution in the following cases:34

(1) S
′(E) ×Oc →S

′(E).
(2) S

′
×Oc(E) →S

′(E).
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Regularization:

Definition 7.2. The mapping(T, α) → T∗α of D ′×D → E is called the
regularization.

If E is a complete ELC we can get a bilinear mapD
′(E) × D →

E (E) as explained already. This bilinear map is called the regulariza-
tion in the case of vector valued distributions.

As in the scalar case, we have
Ð→
T ∗α(x) = Ð→T ξ.α(x− ξ) where⋅ de-

notes the extension of the multiplicative product. In fact, this is proved
by forming the scalar product with any←Ðe ′ ∈ E′.

Let E ○ and D○ denote the space of continuous functions and the
space of continuous functions with compact support with their usual
topologies. For f∈ E

○ and g∈ D
○ we have f∗ g ∈ E

○ and we have the
formula

f ∗ g(x) = ∫
Rn

f (x− ξ)g(ξ)dξ (1)

Now suppose E is a complete ELC. We have a convolutionE ○(E) ×
D
○ → E

○(E). Suppose we take
Ð→
f ∈ E

○(E) and g ∈ D
○, we have a

formula similar to (1), namely

Ð→
f ∗ g(x) = ∫

Rn

Ð→
f (x− ξ)dξ.

Proof. We have, for every←Ðe ′ ∈ E′

⟨Ð→f ∗ g(x),←Ðe ′⟩ = ⟨Ð→f ∗ g,←Ðe ′⟩(x)
= ⟨Ð→f ,←Ðe ′⟩ ∗ g(x).

⟨Ð→f ,←Ðe ′⟩ ∗ g is the convolution of the function⟨Ð→f ,←Ðe ′⟩ ∈ E ○ andgεD○. 35

We have, therefore,

⟨Ð→f ,←Ðe ′⟩ ∗ g(x) = ∫
Rn

⟨Ð→f ,←Ðe ′⟩(x− ξ)g(ξ)dξ
= ∫

Rn

⟨Ð→f (x− ξ),←Ðe ′⟩g(ξ)dξ
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= ∫
Rn

⟨Ð→f (x− ξ)g(ξ),←Ðe ′⟩dξ

= ⟨∫
Rn

Ð→
f (x− ξ)g(ξ)dξ,←Ðe ′⟩ .

Hence⟨Ð→f ∗ g(x),←Ðe ⟩ = ⟨∫
Rn

Ð→
f (x− ξ)g(ξ)dξ,←Ðe ′⟩.

This gives
Ð→
f ∗ g(x) = ∫

Rn

Ð→
f (x− ξ)g(ξ)dξ. �



Lecture 8

Fourier Transform of a
vector valued distribution

One knows (Theorie des distributions, tome 2, § 6, Chap. VII) that the36

Fourier transformF is a topological isomorphism ofS ′ on S
′, and

the inverse ofF which is also a topological isomorphism is called the
conjugate ofF and is denoted byF̄ .

Definition 8.1. Let E be a complete ELC. Let I be the identity map of
E. The continuous linear mapF ∈ I of S ′(E) in S ′(E) is called the
Fourier transform ofS ′(E) into itself.

Using the fact thatF̄ is the inverse ofF and that(F ∈ I)(F̄ ∈
I) = FF̄ ∈ I we see thatF ∈ I S

′(E) → S
′(E) is in fact an auto-

morphism. We agree to denote the automorphism also byF .

Proposition 8.1. For
Ð→
T ∈S ′(E) andϕ ∈S we have

F
Ð→
T (ϕ) =Ð→T (Fϕ).

Proof. The Fourier transform of anyT ∈ S
′ is defined exactly by the

equality FT(ϕ) = T(Fϕ), for everyϕ ∈ S . To proveF
Ð→
T (ϕ) =Ð→

T (Fϕ) we have to only form the scalar product with any←Ðe ′ ∈ E′ and
apply the equalityFT(ϕ) = T(Fϕ), for anyT ∈S

′, ϕ ∈S . In fact,

⟨FÐ→T (ϕ),←Ðe ′⟩ = ⟨FÐ→T ,←Ðe ′⟩(ϕ) =F ⟨Ð→T ,←Ðe ′⟩(ϕ)
39
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= ⟨Ð→T ,←Ðe ′⟩(Fϕ) = ⟨Ð→T (Fϕ),←Ðe ′⟩.
This provesF

Ð→
T (ϕ) =Ð→T (Fϕ). �

Proposition 8.2. For every
Ð→
T ∈ S ′(E) and s∈ OM we haveF (Ð→T ⋅

s) = F (Ð→T ) ∗ F s where
Ð→
T ⋅ s denotes the multiplicative product ofÐ→

T ∈S
′(E) and s∈ O

M
.

Proof. One knows (Theorie des distributions, tome 2) that the multi-37

plicative productT ⋅ s of anyT ∈ S
′ ands ∈ OM, is an element ofS ′.

Hence for any
Ð→
T ∈S

′(E) ands ∈ OM ,
Ð→
T ⋅ s ∈S

′(E). Also one knows
the validity of the equalityF (T ⋅ s) =F (T) ∗F s for anyT ∈S ′ and
s ∈ OM. Now, for any←Ðe ′ ∈ E′,

⟨F (Ð→T ⋅ s),←Ðe ′⟩ =F ⟨Ð→T ⋅ s,←Ðe ′⟩
=F (⟨Ð→T ,←Ðe ′⟩ ⋅ s)
=F ⟨Ð→T ,←Ðe ′⟩ ∗F s

= ⟨FÐ→T ,←Ðe ′⟩ ∗F s

= ⟨FÐ→T ∗F s,←Ðe ′⟩.
This gives the equalityF (Ð→T .s) =F (Ð→T ) ∗F s.

We know that if f is a continuous function with compact support the
Fourier transformF f is given by

F f (x) = ∫
Rn

f (ξ)e−2πiξ.x dξ.

�

Proposition 8.3. If
Ð→
f is a continuous function with compact support

having values in E the Fourier transformF (Ð→f ) is given by{F (Ð→f )}
(x) = ∫

Rn

Ð→
f (ξ)e−2πiξ.xdξ,E being a complete ELC.

In fact, ⟨FÐ→f (x),←Ðe ′⟩ =F ⟨Ð→f (x),←Ðe ′⟩
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=F ⟨Ð→f ,←Ðe ′⟩(x).
When

Ð→
f is a continuous function with values in E and having a compact

support, for every←Ðe ′ ∈ E′, ⟨Ð→f ,←Ðe ′⟩ is a continuous complex valued
function with compact support. Hence

F ⟨Ð→f ,←Ðe ′⟩(x) = ∫
Rn

⟨Ð→f ,←Ðe ′⟩(ξ)e−2πiξ.x dξ.

That is to say 38

⟨FÐ→f (x),←Ðe ′⟩ = ∫
Rn

⟨Ð→f (ξ),←Ðe ′⟩e−2πiξ.x dξ

= ⟨∫
Rn

Ð→
f (ξ)e−2πiξ.x dξ,←Ðe ′⟩ .

Hence

F
Ð→
f (x) = ∫

Rn

Ð→
f (ξ)e−2πiξ.x dξ.

Laplace Transform:

Let t be a real variable. LetD ′
+

denote the space of distributions with
supports contained in the half-line[○,∞). On the spaceD ′

+
we take the

topology induced by that ofD ′.

Definition 8.2. Let T ∈ D
′

+
. We say that T has a Laplace transform if

there exists a real numberξ○ such that forξ > ξ○ we have e−ξtT ∈S ′.

There exist distributionsT ∈ D
′

+
such that there exists no realξ○

with e−ξtT ∈ S ′ for ξ > ξ○. For example, letα(t) be aC∞ function
with support in[0,∞) which is equal to 1 fort ≥ 1. Let T be the
distribution defined by the functionet2

⋅ α(t). This distribution has no
Laplace transform.

Now, letT ∈ D
′

+
. We have the following three possibilities:

1 There exists no realξ such thate−ξtT ∈S
′.
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2 For every realξ we havee−ξtT ∈S ′.

3 There exists at least one real number ‘a’ such thate−atT ∈S ′ and
at least one real number ‘b’ such thate−btT ∉S

′.

Proposition 8.4. In case (3) there exists a real numberξ○ such that
for ξ > ξ○ we have e−ξtT ∈ S

′ and for ξ < ξ○ we have e−ξtT ∉ S
′.

Moreover, forξ > ξ○ we have actually e−ξtT ∈ O ′c.

Proof. If α is any real number such thate−αtT ∈ S
′ we have, for any39

β > α,e−βtT ∈ S ′. In fact, e−βtT = (e−αtT) ⋅ e−(β−α)t.α̃(t) whereα̃(t)
is aC∞-function with α̃(t) = 1 for t ≥ 0 andα̃(t) = 0 for t ≤ −1 and
0 ≤ α̃(t) ≤ 1. The functione−(β−α)t ⋅ α̃(t) is an element ofS and hence
e−βtT which is the product ofe−αtT ande(β−α)tα̃(t) is an element ofS ′.
If we put all the real numbersr such thate−rtT ∉ S

′ into a classL and
all the real numbersα such thate−αtT ∈ S

′ into another classR, from
our assumptions, it follows thatL andR are non-empty. From what we
have proved above, it follows that the classesL andR determine a real
numberξ○ having the properties mentioned in the proposition. �

As for the other part, we will in fact, prove that ifp is a complex
number withRlp> ξ○ e−ptT ∈ O

′

c. We have,e−ptT = e−ξ
′tT.e−(p−ξ

′)tα(t)
whereα(t) is a real valuedC∞− function satisfyingα(t) = 1 for t ≥ 0
andα(t) = 0 for t ≤ −1 and 0≤ α(t) ≤ 1. Let Rlp = ξ > ξ○. Chooseξ′

real such thatξ > ξ′ > ξ○. Thene−ξ
′tT ∈ S ′ ande−(p−ξ

′)tα(t) ∈ S if
Rlp> ξ′. Hencee−ptT ∈ O

′

c.

Definition 8.3. In case (1) we say that T has no Laplace transform at
all. In case (2) the whole of the complex plane is defined to be the
domain of definition of the Laplace transform of T. In case (3) the half
plane Rlp> ξ○ is defined to be the domain of definition of the Laplace
transform of T.

In case (2) we can show for every complex numberp we have
e−ptT ∈ O

′

c. In fact, if Rlp = ξ, we choose a realµ such thatξ > µ.
We then find a realξ′ with ξ > ξ′ > µ. Thene−ptT = e−ξ

′tT.e−(p−ξ
′)α(t)40

whereα(t) is aC∞-function satisfyingα(t) = 1 for t ≥ 0 andα(t) = 0
for t ≤ −1 and 0≤ α(t) ≤ 1. We havee−ξ

′tT ∈S ′ ande−(p−ξ
′)tα(t) ∈S .

Hencee−ptT ∈ O
′

c.
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Proposition 8.5. Let there exist a realξ○ such that for Rlp> ξ○ we have
e−ptT ∈ S

′. Then the mapping p→ e−ptT is a holomorphic function of
the complex variable p with values inO ′c, for Rlp> ξ○.
Proof. Let Rlp= ξ > ξ○. Letξ′ be such thatξ > ξ′ > ξ○. We havee−ptT =
e−ξ

′tT.e−(p−ξ
′)t.α(t) whereα(t) is aC∞-function which satisfiesα(t) =

1 for t ≥ 0 andα(t) = 0 for t ≤ −1 and 0≤ α(t) ≤ 1 for every t.
We havee−ξ

′tT ∈ S
′ and it is a fixed element ofS ′. The function

p→ e−(p−ξ
′)tα(t) is a holomorphic function forRlp> ξ′, with values in

S . In fact, the derivative is−te−(p−ξ
′)tα(t). That is to say

lim
h→0
{e−(p−ξ

′
+h)t
− e−(p−ξ

′)t

h
+ te−(p−ξ

′)t}α(t) = 0

in S . �

The mapγs′ ∶S → O
′

c given byγs′(s) = s′, s′ is a continuous linear
map for every fixeds′ ∈S . Now e−ptT is a fixed element ofS ′ and the
function p → e−(p−ξ

′)t.α(t) is a holomorphic function of the complex
variablep with values inS and hence the composite of the linear map
γe−ξ

′tT and the above holomorphic function is a holomorphic function.
This proves our assertion.

Definition 8.4. Suppose T∈ D
′

+
has a Laplace transform. The Laplace

transform is then defined to be the function p→ F(p) = ∫ e−ptTdt,
which is defined in the domain of definition of the Laplace transform of41

T.

In fact for p in the domain of definition we have seen thate−ptT ∈
O
′

c. Now 1 ∈ (O ′c)′c and the integral∫ e−ptTdt is nothing but the scalar
product 1.e−ptT by definition. In the domain of definition of the Laplace
transform, we havep → F(p) a holomorphic function of the complex
variablep.
Properties of the Laplace transform:

Proposition 8.6. Let T ∈ D ′
+

have a Laplace transform. Let the half
plane of existence of the Laplace transform of T be Rlp> ξ○, in case
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the whole plane is not the domain of existence of the Laplace transform.
For any fixedξ > ξ○ the mappingη → F(ξ + iη) defines an element of
OM. In case the whole of the complex plane is the domain of existence
of the Laplace transform, for every realξ, η → F(ξ + iη) is an element
of OM.

Proof. For any fixedξ > ξ○ the functionη → F(ξ + iη) is the Fourier
transform of the distributione−ξtT in O

′

c and hence is an element ofOM.
In the second case for any fixed realξ, η → F(ξ + iη) is the Fourier
transform ofe−ξtT ∈ O

′

c and hence is an element ofOM.
Let T ∈ D ′

+
. WhenT has a Laplace transform, the domain of exis-

tence is usually denoted byRlp> a where either a is a real numberξ○ or
stands for the symbol−∞. If S ∈ D

′

+
hasF(p) as its Laplace transform

in Rlp> a we writeS ⊐
ξ>a

F(p). �

Proposition 8.7. Let S and T∈ D
′

+
and S ⊐

ξ>a
F(p) and T ⊐

ξ>b
G(p).42

Then S∗ T ⊐
ξ>Max(a,b)

F(p)G(p).
Proof. For Rlp = ξ > Max(a,b) we havee−ptS ∈ O ′c ande−ptT ∈ O ′c.
Hence forRlp > Max(a,b)S ∗ T has a Laplace transform. IfH(p)
denotes the Laplace transform ofS ∗T, for any fixedξ > Max(a,b) we
have

H(ξ + iη) =Fη(e−ξtS ∗ T)
=Fη(e−ξtS)Fη(e−ξtT)
= F(ξ + iη)G(ξ + iη).

Hence H(p) = F(p)G(p).
�

Corollary . T ∈ D ′
+
,T ⊐

ξ>a
F(p) implies T′ ⊐

ξ>a
p F(p). This follows

from the fact that for the distributionδ′
○

the domain of existence of
the Laplace transform is the whole of the complex plane and that the
Laplace transform ofδ′

○
is precisely p.

In fact δ′
○
∗ T ⊐

ξ>a
p F(p). But δ′

○
∗ T = T1.
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Proposition 8.8. Let T ∈ D ′
+

have a Laplace transform. Let the domain
of definition be Rlp> ‘a’ where either a is a real number or stands for
the symbol ‘−∞’.

If ‘ a’ is real, for anyε > 0, in the half planeRlp ≥ a + ε we have
a uniform majorisation∣F(p)∣ ≤ A(∣p∣2 + 1)k,F(p) being the Laplace
transform ofT. If ‘ a’ stands for the symbol ‘−∞’, for any realξ we
have ∣F(p)∣ ≤ A(∣p∣2 + 1)k in the half planeRlp ≥ ξ. We admit this
proposition.

Proposition 8.9. Suppose F(p) is a holomorphic function of the com-
plex variable p defined in some half plane, sayξ > ξ○.

Suppose for everyε > 0 we have a uniform majorisation for F in the43

half planeξ ≥ ξ○ + ε, of the type∣F(p)∣ ≤ A(∣p∣2 + 1)k, then F(p) is the
Laplace transform of some distribution T∈ D

′

+
.

Proof. Let p = ξ + iη with ξ ≥ ξ○ + ε andk < −1. Let

fξ(t) = 1
2πi

ξ+i∞

∫
ξ−i∞

eptF(p)dp.

This integral certainly exists. We have, in fact,

∣ fξ(t)∣ ≤ 1
2π

Aeξt ∫ ∣dp∣
1+ ∣p∣2 =

A

2π
eξt.π = A

2
eξt.

�

The function fξ(t) does not depend onξ as long asξ ≥ ξ○ + ε. For,
if we take the rectangleΓ bounded by the linesξ = ξ1, ξ = ξ2 andη = R
andη = −R the integral

1
2πi ∫

Γ

eptF(p)dp= 0 by Cauchy’s theorem.

Now

∫
Γ

eptF(p)dp= 4

∑
i=1
∫
Γi

eptF(P)dp
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whereΓ1 is the portion of the lineξ = ξ1 lying between the lines
η = R, η = −R;Γ2 is the portion of the lineη = −R lying between the
lines ξ = ξ1 andξ = ξ2; Γ3 is the lineξ = ξ2 lying between the lines
η = −R andη = R and so on.

Now

lim
R→∞
∫
Γ2

∣eptF(p)∣ ∣dp∣ = 0 and lim
R→∞
∫
Γ4

∣eptF(p)∣ ∣dp∣ = 0.

Hence, we have 1
2πi

⎧⎪⎪⎨⎪⎪⎩
ξ+i∞

∫
ξ1−i∞

eptF(p)dp+
ξ2−i∞

∫
ξ2+i∞

eptF(p)dp
⎫⎪⎪⎬⎪⎪⎭ = 0.

In other words,fξ1(t) − fξ2(t) = 0. Hencefξ1(t) = fξ2(t). We now show44

that if t < 0, f (t) = 0, where f (t) = fξ(t) for any ξ ≥ ξ○ + ε. In fact,∣ f (t)∣ < A
2eξt. Allowing ξ →∞ we have

∣ f (t)∣ ≤ 0.

Now, we have f (t) = 1
2πi

∞

∫
−∞

eξtF(ξ + iη)eiηt idη(ξ ≥ ξ○ + ε)

= 1
2π

eξt
∞

∫
−∞

F(ξ + iη)eiηt dη.
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Hence, 2πe−ξt f (t) = F̄η(F(ξ + iη)). Hence

F(ξ + iη) = F̄η(e−ξt.2π f (t)).
Hence 2πe−ξt f (t) has for itsη-Fourier transform the functionF(ξ+ iη),
for anyξ ≥ ξ○ + ε, ε > 0. Hencef (t) ⊐

ξ>ξ○
F(p). Obviously f (t) defines

a distribution inD ′
+

for f (t) = 0, for t < 0.
Now supposeF satisfies∣F(p)∣ ≤ A(1+ ∣p∣2)k in ξ ≥ ξ○ + ε for any

ε > 0, k being an integer. The above is equivalent to assuming

∣F(p)∣ ≤ A′∣p∣k′
wherek′ is some integer andA′ is some constant, forRlp≥ ξ○ + ε. Now
F(p)
pk′+2 is holomorphic inRlp > Max(0, ξ○) = ν (say), and for anyε > 0,
we have

∣F(p)
pk′+2

∣ ≤ A′′

(1+ ∣p∣2) for Rlp≥ ν + ε,
A′′ being some constant. Hence by what we have proved, there exists a
distributionT′ ∈ D ′

+
such that

T′ ⊐
ξ>ν

F(p)
pk′+2

.

HenceT = (δ′ ∗⋯ ∗ δ′)
k′+2 times

∗T′ ⊐
ξ>ν

F(p), and(δ′ ∗⋯∗δ′)∗T′ ∈ D
′

+
. Thus 45

we see that there exists a distributionT. ∈ D ′
+

which hasF(p) as its
Laplace transform in the domain of definition of its Laplace transform.

That T is unique follows from the fact that the Fourier transform
F ∶S

′ →S
′ is an isomorphism onto.
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Lecture 9

The Laplace transform of
vector valued distributions

Let E be a completeELC. Let
Ð→
T ∈ D ′

+
(E). As in the case of scalar46

distributions we have the following three possibilities:

1) There exists no real numbersE such thate−E tÐ→T ∈S
′(E).

2) For every realE we havee−E tÐ→T ∈S ′(E).
3) There exist two real numbersE ′

○
andE1 such that we havee−E

′
○ tÐ→

T ∈S ′(E) ande−E1tÐ→T ∉S ′(E).
Proposition 9.1. In case (3) there exists a real numberE○ such that for

E > E○ we have e−E tÐ→T ∈ S
′(E) and for E < E○ we have e−E tÐ→T ∉

S ′(E).
Proof. This will follow immediately if we show thate−µtÐ→T ∈S

′(E), µ
real, andν > µ imply e−νt

Ð→
T ∈S ′(E).

Now, e−νt
Ð→
T = e−µtÐ→T ⋅ e−(ν−µ)tα(t),

whereα(t) is a C∞-function which is 1 fort ≥ 0, which is 0 fort ≤
−1, and which satisfies 0≤ α(t) ≤ 1. Now e−µtÐ→T ∈ S

′(E) and

e−(ν−µ)tα(t) ∈ S and hencee−νt
Ð→
T ∈ O ′c(E) ⊂ S ′(E). Thus, we

have, in case (3), a real numberE○ such that forE > E○ we have

49
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e−E tÐ→T ∈ S ′(E) and forE < E○, e−E tÐ→T ∉ S ′(E). As in the case of

scalar distributions, we say in case (1) the distribution
Ð→
T has no Laplace

transform and in cases (2) and (3) it has a Laplace transform. In case(2)
the whole of the complex plane is defined to be the domain of existence
of the Laplace transform of

Ð→
T and case (3) the half-planeRlp > E○ is

defined to be the domain of existence of the Laplace transform of
Ð→
T . �

Proposition 9.2. In case (2) we have e−ptÐ→T ∈ O
′

c(E) for every p, and47

in case (3) we have e−ptÐ→T ∈ O ′c(E) for every p satisfying Rlp> E○.

Proof. Case(2). For every←Ðe ′ ∈ E′, ⟨e−ptÐ→T ,←Ðe ′⟩ ∈ S
′ and hence

⟨e−ptÐ→T ,←Ðe ′⟩ ∈ O
′

c for everyp, from what we have seen in lecture 8.

Case(3). For every←Ðe ′ ∈ E′ andRlp> E○ we have⟨e−ptÐ→T ,←Ðe ′⟩ ∈S ′

and hence⟨e−ptÐ→T ,←Ðe ′⟩ ∈ O
′

c for everyp such thatRlp> E○. Now, since
O ′c satisfies theE-property we have the required result. �

Proposition 9.3. The function p→ e−ptÐ→T is a holomorphic function
with values inO ′c(E) in case (2) and a holomorphic function with values
in O ′c(E), in the half plane Rlp> E○ in case (3).

Proof. Similar to the proof of proposition 8.5. �

Definition 9.1. Let
Ð→
T ∈ D

′

+
(E) have a Laplace Transform. We denote

the domain of existence of the Laplace Transform of
Ð→
T by Rlp > a.

where either ‘a’ is a certain real numberE○ or stands for the symbol

‘−∞’. The function
Ð→
F (p) defined in Rlp> E○ by

Ð→
F (p) =

∞

∫
0

e−ptÐ→T dt= 1.e−ptÐ→T

with values inE is called the Laplace transform of
Ð→
T . The scalar

product 1.e−ptÐ→T is the scalar product of 1∈ (O ′c)′c ande−ptÐ→T ∈ O
′

c(E).
The functionp→Ð→F (p) is a holomorphic function of the complex vari-
able with values inE.
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Proposition 9.4. If
Ð→
F (p) is the Laplace Transform of

Ð→
T ∈ D ′

+
(E), the

domain of existence being Rlp>∶ a ∶ and if U ∈ D
′

+
has G(p) as its

Laplace transform, with Rlp>∶ b ∶ as the domain of existence
Ð→
T ∗ U

has, in Rlp> Max(a,b) = α the function
Ð→
F (p) G(p) as its Laplace

transform.

Proof. Now ⟨e−ptÐ→T ∗ U,←Ðe ⟩ = e−pt{⟨Ð→T ,←Ðe ′⟩ ∗ U} for every←Ðe ′ ∈ E′. 48

Hence, for every←Ðe ′ ∈ E′, ⟨e−ptÐ→T ∗ U,←Ðe ⟩ = (e−pt⟨Ð→T ,←Ðe ′⟩) ∗ e−ptU.

For Rlp > α we havee−pt⟨Ð→T ,←Ðe ⟩ ∈ O
′

c and e−ptU ∈ O
′

c and hence

e−pt⟨Ð→T ,←Ðe ′⟩ ∗ e−ptU ∈ O ′c.

Hence⟨e−ptÐ→T ∗U,←Ðe ′⟩ ∈ O
′

c for Rlp> α and this for every←Ðe ′ ∈ E′.

SinceO ′c has theE-property, we havee−ptÐ→T ∗ U ∈ O ′c(E) ⊂ S ′(E).
Also the Laplace transform of⟨Ð→T ,←Ðe ′⟩ ∗U is the same as⟨Ð→F (p),←Ðe ′⟩ ⋅
G(p). This proves that

Ð→
T ∗U ⊐Ð→F

Rlp>α
(p)G(p).

�

We shall be only interested in the case whenE is a Banach space. We
shall now study the properties of the Laplace transform in this particular
case.Notation. In what followsE is a Banach space.

Proposition 9.5.
Ð→
T ∈ D

′

+
(E) is a distribution having

Ð→
F (p) as its

Laplace transform with Rlp> a as the domain of existence. Then if
a is a real number, given anyε > 0 in the half plane Rlp≥ a + ε

we have a uniform majorisation∥ Ð→F (p) ∥≤ A(1 + ∣p∣2)k. If a stands
for the symbol−∞ then for any real number r we have a majorisation

∥ Ð→F (p) ∥≤ A(1+ ∣p∣2)k in Rlp≥ r,A being a constant> 0.

Proof. First we prove that the following two statements are equivalent:

1) There exists an integerk such that

∥ Ð→F (p) ∥≤ A(1+ ∣p∣2)k
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2) For every sequence of complex numbersp1, p2, p3, . . . such that∣pn∣ → ∞ and for every sequence of real numbersα1, α2, . . . ,

αn, . . . such thatαn∣pn∣k tends to 0 for every integerk, the sequence

∥ Ð→F (pn) ∥ αn is bounded.

Trivially (1) implies (2). We have to only prove (2) implies (1). Suppose49

(2) is satisfied and (1) is not satisfied. Given any integern we can find
a pn such that

∥ Ð→F (pn) ∥≥ A(1+ ∣pn∣2)n.
Take for{αn} the sequence1

∣pn∣
n/2. Then obviously for every integerk,

the sequenceαn∣pn∣k tends to 0. Hence by (2) we should have∥
Ð→
F (pn)∥

∣pn∣n/2

bounded. But∥
Ð→
F (pn)∥

∣pn∣n/2
≥ A(1+∣pn∣2)n

∣pn∣n/2
. Obviously this sequence is not

bounded. Hence (2) has to imply (1).

Let
Ð→
T ⊐

E >a′

Ð→
F (p). Then⟨Ð→T ,←Ðe ′⟩ ⊐

E >a′
⟨Ð→F (p),←Ðe ′⟩ for every fixed

←Ðe ′ ∈ E′. Hence there exists an integerµ′e such that∣⟨Ð→F (p),←Ðe ′⟩∣ ≤
A←Ðe ′(1+ ∣p∣2)µ←Ðe ′ whereA←Ðe ′ is a constant> 0, uniformly inRlp≥ a+ ε
if a is real or inR1p ≥ r, r any real number ifa stands for the symbol
‘−∞’.

Now suppose{pn} is any sequence of complex numbers with∣pn∣→
∞ and suppose{αn} is any sequence of real numbers withαn∣pn∣k → 0
for every integerk

We have ∣⟨Ð→F (pn)αn,
←Ðe ′∣ ≤ A←Ðe ′(1+ ∣pn∣2)µ←Ðe ′ ∣αn∣.

Now asn → ∞, ∣αn∣(1+ ∣pn∣2)µ←Ðe ′ → 0, and hence⟨Ð→F (pn)αn,
←Ðe ′⟩ is

a bounded sequence of points. Hence the set of points
Ð→
F (pn)αn is a

weakly bounded set inE, and hence a strongly bounded set. Hence
∥ Ð→F (pn) ∥ ∣αn∣ is bounded.

This completes the proof of proposition 9.5. �

Proposition 9.6. If
Ð→
F (p) is a holomorphic function of the complex vari-

able p in Rlp≥ E with values in E and if we have a majorisation

∥ Ð→F (p) ∥≤ A(1+ ∣p∣2)k in Rlp≥ E ,
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Ð→
F (p) is the Laplace transform of a certain unique distribution

Ð→
T ∈50

D
′

+
(E) in their common domain of definition.

Proof. Similar to the scalar case. �
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Lecture 10

Partial Differential
Equations - Weak boundary
value problems

Heat conduction equation: 51

Let Ω be a bounded domain inRn with a smooth boundaryS. The
heat conduction problem inΩ with Neumann’s boundary condition is
the following. We are given smooth functionsF(x, t)[x ∈ Ω,0 < t <
∞],H(x, t)(x ∈ Ω,0 < t <∞) andU○(x)(x ∈ Ω). The problem is to find
a smooth functionU(x, t) continuous inΩ̄X (0,∞) and differentiable
in ΩX]0,∞) such that

i) ∂U(x,t)
∂t − ∆U(x, t) = F(x, t) (t > 0, x ∈ Ω)[∆ is the Laplacian in

Rn];
ii) for each fixedt > 0,U(x, t) and H(x, t) have the same normal

derivative at every point of the boundary;

iii) U(x, ○) = U○(x).
Remark concerning condition (ii): Actually one is given initially a
functionh(x, t), x ∈ S and it is required thatU(x, t) satisfy the condition

ii ′) ∂(x,t)
∂nx
= h(x, t) for x ∈ S and everyt.

55
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We shall, however, assume that there exists a smooth functionH(x, t),
x ∈ Ω, such that∂H(x,t)

∂n = h(x, t), x ∈ S.
PuttingU − H = u, we are led to the following homogeneous prob-

lem: Given f (x, t) andu○(x) which are sufficiently differentiable find
u(x, t) continuous inΩ̄X(0,∞) and differentiable inΩ̄X(0,∞) such
that

i) ∂u(x,t)
∂t − ∆u(x, t) = f (x, t), t > 0;52

ii) for each fixedt > 0,u(x, t) has vanishing normal derivative at the
boundary;

iii) u(x, t) = u○(x).
In the frame-work of Hilbert spaces, the above problem, in a weaker

formulation, can be posed as follows. Consider the Hilbert spaceH1(Ω)
and the associated spaceN (See Lions:“On Elliptic Partial Di fferential
Equations”, Tata Inst. of Fundamental Research, Bombay, Lec. 6).
Problem 1. Given a continuous functionF(t)(t > 0) with values in
L2(Ω) and a functionu○ ∈ N, find a functionu, with values inL2(Ω),
once continuously differentiable int > 0 such that fort > 0, ∂u

∂t − ∆u = F
and such thatu(t)→ u○ in N ast → 0.

We shall transform this problem in the following way. Define ˜u(t)
(with values inN) by ũ(t) = u(t) for t > 0 andũ(t) = 0, t < 0. Consider
ũ as an element ofD ′

+
(t,N) (space of distributions with values inN

and with supports in(0,∞]. Similarly defineF ∈ D
′

+
(t, L2). Since

we requireu(0) = u○, we must have∂ũ
∂t = (∂u

∂t )∼ + δtu○, and problem 1
reduces to
Problem 1′. To find ũ ∈ D ′

+
(t,N) with ũ once continuously differen-

tiable int > 0 and= 0 for t < 0 and such that

(∗) ∂ũ

∂t
− ∆ũ = δu○ + F̃.

Finally we may abandon the requirement that ˜u be differentiable int > 0
and replace the right hand member of(∗) by an arbitrary element of
D ′
+
(t, L2). We then have

Problem 2. GivenT in D
′

+
(t, L2) find u in D

′

+
(t,N) such that53
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∂u

∂t
− ∆u = T.

We shall treat only problem 2. We shall show that the problem ad-
mits of a unique solution. But what we would have solved will only be
a problem much weaker than the original problem we posed. To solve
the original problem completely one has to show thatu ∈ D ′

+
(t,N) that

we have found is a differentiable function int > 0 and also one has to
prove the regularity properties ofu(t, x) as a function ofx.
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Lecture 11

Weak boundary value
problems

We first formulate the generalized weak “boundary value problem”.54

Problem 11.1. Q is a Banach space andQ′ is its strong dual.V is
a Hilbert space satisfyingV ⊂ Q,V ⊂ Q′ with continuous injections
anda(u,v) is a continuous sesquilinear form onV. Let V be dense in
Q. Then we can find a subspaceN of V and a continuous linear map
A ∶ N → Q′ such that⟨Au, v̄⟩ = a(u,v). (See Lions:“On Elliptic Par-
tial Differential Equations”, Tata Institute of Fundamental Research,
Lecture 5). LetÐ→g ∈ D

′

+
(t,Q′). We look forÐ→u ∈ D

′

+
(t,N) such that

dÐ→u
dt + AÐ→u =Ð→g .

Theorem 11.1.We follow the above notations. Assume that

1) Ð→g has a Laplace transform:Ð→g ⊐Ð→G(p) for Rlp> a.

2) ⟨u, ū⟩V ≥ 0 for u ∈ V, where⟨, ⟩V denote the scalar product in V.

3) There exists anα > 0 and a realE1 such that

a1(u,u) + E ⟨u, ū⟩ ≥ α ∥ u ∥2
v f or E ≥ E1

where a1(u,v) is the real part of a(u,v) and∥ ∥V denotes the
norm in V.

59
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Then there exists a uniqueÐ→u ∈ D ′
+
(t,N) such thatÐ→u has a Laplace

transform and satisfiesd
Ð→u
dt + AÐ→u =Ð→g .

Proof.
Ð→
G(p) is a holomorphic function with values inQ′. For every

fixed p such thatRlp> γ = Max(E1,a) consider the equation

(p+ A)Ð→U (p) =Ð→G(p) (1)

Sincea1(u,v) + E ⟨u, ū⟩ ≥∥ u ∥2
v for E ≥ E1 with α > 0, it follows (See55

Lions: “On Elliptic Partial Di fferential Equations”, Tata Institute of
Fundamental Research, Lecture 5) that the operator(p+ A) ∶ N → Q′

is an isomorphism forRlp > γ. Hence there exists a unique
Ð→
U (p) ∈ N

such that (1) is valid. In fact,
Ð→
U (p) = (p+ A)−1Ð→G(p) for every fixedp

with Rlp> γ. �

We shall next show that
Ð→
U (P) is a holomorphic function with values

in N. For this we need the following general

Lemma. Suppose N and Q′ are two Banach spaces and L(P) a holo-
morphic function in a domainΩ (in C) with values inL (N,Q′). As-
sume L(P) has a continuous inverse L−1(P) at every point p ofΩ. Then
the function p→ L−1(p) is a holomorphic function inΩ with values in
L (Q′,N).
Proof. For p, p+ h ∈ Ω we have

L−1(p+ h) − L−1(p) = L−1(p+ h) {L(P) − L(P+ h)} L−1(P).
The norm ofL−1(p+ h) remains bounded ash→ 0. For if not, we can
find a sequence{hn}n = 1,2, . . . of complex numbers tending to zero,
and a sequenceXn of element inQ′ such that

L−1(p+ hn)Xn = λn ≥ n and ∥ Xn ∥= 1 in Q′.

Let Yn = Xn
λn

. Then∥ Yn ∥Q′→ 0 and∥ L−1(p + hn)Yn ∥V= 1. Let

Zn = L−1(p+ hn)Yn. Then∥ Zn ∥= 1. Now∥ L(p+ hn)Zn ∥Q′=∥ Yn ∥Q′

and this tends to 0 asn→∞. Due to the continuity ofp→ L(p)we have
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lim
n→∞
∥ L(p+hn)−L(p) ∥= 0. Hence lim

n→∞
∥ L(p)Zn ∥Q′= 0. ButL(p) is

invertible and∥ Zn ∥= 1. This cannot happen. Hence∥ L−1(p+ h) ∥ is
bounded ash→ 0. Hence lim

h→○
∥ L−1(p+ h) − L−1(p) ∥= 0. This proves56

the continuity ofp→ L−1(p) for p in Rlp> γ. �

We now prove the differentiability of the functionp→ L−1(p) in Ω.
For p and(p+ h) ∈ Ω, we have

L−1(p+ h) − L−1(p)
h

= L−1(p+ h)L(p) − L(p+ h)
h

L−1(p).
Now, lim

h→0
L−1(p+ h) = L−1(p). Hence

lim
h→0

L−1(p+ h) − L−1(p)
h

= L−1(p)L′(p)L−1(p),
whereL′(p) is the derivative ofL(p).

Continuing with proof of theorem 11.1, we first remark that the
function p → p + A is a holomorphic function inRlp > γ with val-
ues inL (N,Q′). From

Ð→
U (p) = (p+ A)−1Ð→G(p) and the holomorphic

nature of
Ð→
G(p) and(p + A)−1 in Rlp > γ, it follows that

Ð→
U (p) is a

holomorphic function ofp with values inN for Rlp> γ.
The next step in proving our theorem is to show that

Ð→
U (p) is the

Laplace transform of a well determined distributionÐ→u ∈ D
′

+
(t,N) and

that thisÐ→u satisfies the equation( d
dt + A)Ð→u = Ð→g . For any f ∈ Q′ we

havev→ ⟨ f , v̄⟩Q′,Q to be a continuous linear functional onV. Hence

⟨ f , v̄⟩ = ⟨J̃ f,v⟩V where J̃ ∶ Q′ → V

is some fixed continuous linear map. Let

αp(u,v) = a(u,v) + p⟨u, v̄⟩.
The mapv→ a(u,v) is also a continuous linear map ofV in V. Hence
there exists a fixed continuous linear mapK̃ ∶ V → V such that

a(u,v) = ⟨K̃u,v⟩V.
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Then αp(u,v) = ⟨K̃u,v⟩V + p⟨u, v̄⟩
= ⟨K̃u,v⟩V + p⟨J̃u,v⟩V (since V ⊂ Q′)
= ⟨(K̃ + pJ̃)u,v⟩V.

For each fixedp in Rlp > γ the element
Ð→
U (p) of N is nothing but that57

element ofN satisfying

αp(Ð→U (p),v) = ⟨Ð→G(p), v̄⟩Q′,Q.
Hence

Ð→
U (p) is that element ofN satisfying

⟨(K̃ + pJ̃)Ð→U (p),v⟩V = ⟨J̃Ð→G(p),v⟩V.
Hence (K̃ + pJ̃)Ð→U (p) = J̃

Ð→
G(p).

If we show that forRlp> γ the operator̃K + pJ̃ is invertible, we will getÐ→
U (p) = (K̃ + pJ̃)−1J̃

Ð→
G(p).

Now ∣⟨(K̃ + pJ̃)u,u⟩V∣ = ∣a(u,u) + p⟨u, ū⟩∣.
We haveRl{a(u,u) + p⟨u, ū⟩} = a1(u,u) + E ⟨u, ū⟩ whereE = Rlp.
(This follows from the assumption that⟨u, ū⟩ is real). Hence

∣a(u,u) + p⟨u, ū⟩∣ ≥ a1(u,u) + E ⟨u, ū⟩
≥ α ∥ u ∥2

V for E > ν.( with α > 0).
Hence∥ (K̃ + pJ̃)u ∥V∥ u ∥V ≥ α ∥ u ∥2

V . Hence

∥ (K̃ + pJ̃)u ∥V ≥ α ∥ u ∥V with α > 0.

This implies, since we are in a Hilbert space, that the operatorK̃ + pJ̃
is invertible and that∥ (K̃ + pJ̃)−1 ∥≤ 1

α
for Rlp > ν. Hence we haveÐ→

U (p) = (K̃ + pJ̃)−1J̃
Ð→
G(p).

∥ Ð→U (p) ∥ ≤∥ (K̃ + pJ̃)−1 ∥∥ J̃ ∥∥ Ð→G(p) ∥
≤ 1
α
β ∥ Ð→G(p) ∥

whereβ is some constant. Since
Ð→
G(p) has a uniform polynomial ma-58

jorisation in any half planeRlp ≥ ν + ε, ε > 0, the same is true ofÐ→
U (p). Hence

Ð→
U (p) is the Laplace transform of a certain distributionÐ→u ∈ D ′

+
(t,N), which is unique.



Lecture 12

Topological tensor products

Let L andM be two vector spaces (algebraic) overK. Let L⊗M be the 59

tensor product ofL and M over K. Then for any vector spaceN over
K there exists a biunique correspondence between the bilinear maps of
L×M in N and the linear maps ofL⊗M in N. In fact to the bilinear map
u of L ×M in N corresponds the linear map ˜u ∶ L⊗M in N which takes
l⊗m into u(l,m). The mapη ∶ L×M → L⊗M defined byη(l,m) = l⊗m
is a bilinear map and is called the canonical bilinear map ofL × M in
L⊗M. We have commutativity in the following diagram:

L ×M
η

//

u
""FF

FF
FF

FF
F L⊗M

ũ
{{xx

xx
xx

xx
x

N

Let now L and M be two locally convex Hausdorff vector spaces over
C. Let L⊗M be the algebraic tensor product ofL andM overC.

Theorem 12.1. There exists a unique locally convex, Hausdorff topol-
ogy on L⊗ M such that under the usual correspondence between bi-
linear maps of L× M in an ELC N and the linear maps of L⊗ M in
N, the continuous bilinear maps of L× M in N precisely correspond to
the continuous linear maps of L⊗ M provided with this topology in N.
Moreover under the biunique correspondence between bilinear maps of
L × M in C and linear maps of L⊗ M in C, equicontinuous sets of bi-
linear maps of L× M in C correspond to equicontinuous sets of linear

63
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maps of L⊗
π

M in C (L⊗
π

M being the tensor product provided with the

above topology) and conversely.

Proof. Assuming the existence of at least one such topology, we will60

prove the uniqueness. Letπ1 andπ2 be two such topologies. Take forN
the spaceL⊗

π1
M. The identity map ofL⊗

π1
M → N is continuous and hence

the bilinear map which corresponds to this, that is to say,η ∶ L×M → N
is continuous. Now thatη ∶ L × M → L⊗

π2
M is continuous, we have

i ∶ L⊗
π2

M → L⊗
π2

M continuous. Henceπ2 is finer thanπ1. Interchanging

the roles ofπ1 andπ2 we see thatπ1 is finer thanπ2. Henceπ1 = π2. �

We now go to the proof of the existence of one such topology. Let
B(L,M) denote the set of continuous bilinear forms onL × M. The
spacesB(L,M) andL⊗M are in duality with respect to the scalar prod-
uct which is got by restricting the scalar product betweenL (L,M;C)
andL ⊗ M whereL (L,M;C) is the set of all bilinear maps ofL × M
in C. Now the duality betweenB(L,M) andL⊗M allows us to define
a topology onL ⊗ M, namely the topology of uniform convergence on
equicontinuous subsets ofB(L,M) which is a locally convex, Haus-
dorff topology. This topology onL ⊗ M we denote byπ and provided
with this topology the spaceL⊗M is denoted byL⊗

π
M. We shall prove

thatπ is a topology having all the properties mentioned in the theorem.
We shall show first that under the biunique correspondence of bilinear
maps ofL×M in C and linear maps ofL⊗

π
M in C, equicontinuous sets of

bilinear maps precisely correspond to equicontinuous linear maps. Let
H ⊂ L (L,M;C) be any equicontinuous set. ThenH ⊂ B(L,M) triv-
ially. Let H̃ be the corresponding subset ofL (L⊗ M,C) (the set of all
linear maps ofL ⊗ M in C). Let Γ(H) be the stable envelope ofH in61

L (L,M;C). Γ(H) is an equicontinuous set and henceΓ(H) ⊂BL,M).
Let W = Γ(H)○ be the polar ofΓ(H) with respect to the duality between
B(L,M) andL⊗M.

SinceΓ(H) is stable,

W = {γ ∈ L⊗M/∣⟨r, γ⟩∣ ≤ 1, for everyr ∈ Γ(H)} .
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Now h̃(γ) = ∣⟨h, γ⟩∣ whereh̃ ∈ H̃ andh is the corresponding bilinear
map. Forh ∈ H we have∣⟨h, γ⟩∣ ≤ 1. Hence∣h̃(ν)∣ ≤ 1 for ν ∈ W.
HenceH̃ is an equicontinuous set of linear maps ofL⊗

π
M in C (asW is

a neighbourhood of 0 inL⊗
π

M).

Now supposeH̃ is any equicontinuous set of linear maps ofL⊗
π

M

in C. Let H be the corresponding set of bilinear maps ofL × M in C.
Given any neighbourhoodN of 0 in L ⊗ M we show that there exist
neighbourhoodsU andV of the zero elements inL andM respectively
such that the setU ⊗ V ⊂ N. (The setU ⊗ V is, by definition, the set of
all elements of the formu⊗v, u ∈ U, v ∈ V). Now N ⊃W○ whereW is an
equicontinuous subset ofB(L,M). We can find stable neighbourhoods
U andV of the zero elements such that∣w(u,v)∣ ≤ 1w ∈ W, u ∈ U and
v ∈ V. The pair(U,V) does what we need, for ifu ∈ U andv ∈ V we have∣⟨w,u⊗ v⟩∣ = ∣w(u,v)∣ ≤ 1. Henceu⊗ v ∈ W○ ⊂ N. HenceU ⊗ V ⊂ N.
(This incidentally proves the continuity of the mapη ∶ L ×M → L⊗

π
M).

Now for anyh ∈ H and(u,v) ∈ U ×V we have

∣h(u,v)∣ = ∣h̃(u⊗ v)∣ ≤ 1,

sinceU ⊗V ⊂ N. HenceH is an equicontinuous set of bilinear maps of
L ×M in C.

Now we prove that the continuous bilinear maps ofL × M in any 62

ELC N, precisely correspond to the continuous linear maps ofL⊗
π

M in

N. For this, we need the following

Lemma 12.1. Let ϕ be any continuous bilinear map of L× M in N.
With eachµ ∈ N′ we associate the bilinear form⟨ϕ, µ⟩ defined by⟨ϕ, µ⟩(l,m) = ⟨ϕ(l,m), µ⟩. The bilinear form⟨ϕ, µ⟩ is an element ofB(L,M),
(trivially). If W ′ is any equicontinuous subset of N′, the set ∪

w′∈W′
⟨ϕ,w′⟩

is an equicontinuous subset ofB(L,M).
Proof. SinceW′ is an equicontinuous subset ofN′ we can find a neigh-
bourhoodΓ of 0 in N such that

∣⟨r,w′⟩∣ ≤ 1 for every r ∈ Γ and w′ ∈W′
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Sinceϕ ∶ L × M → N is continuous, there exist neighbourhoodsU and
V of the zero elements ofL andM respectively such thatϕ(U ×V) ⊂ Γ.
For (u,v) ∈ U ×V we have

∣⟨ϕ,w′⟩(u,v)∣ = ∣⟨ϕ(u,v),w′⟩∣ = ∣⟨r,w′⟩∣ ≤ 1 with r ∈ Γ.
Hence ∪

w′∈W′
{⟨ϕ,w′⟩} is an equicontinuous subset ofB(L,M).

Now, letϕ ∶ L×M → N be bilinear and continuous. For any equicon-
tinuous setW′ of N′ we have ∪

w′∈W′
{⟨ϕ,w′⟩} is an equicontinuous subset

of B(L,M). Hence ifα→ 0 in L⊗
π

M,

⟨⟨ϕ,w′⟩, α⟩ → 0
B(L,M),L⊗M

uniformly for w′ ∈W′. If ϕ̃ ∶ L⊗
π

M → N is the corresponding linear map,

we have⟨ϕ̃(α),w′⟩N,N′ = ⟨⟨ϕ,w′⟩, α⟩
B,L×M

and this tends to 0 uniformly

whenw′ ∈W′. �

Hence ˜ϕ(α)→ 0 in N whenα→ 0 in L⊗
π

M. Hence ˜ϕ is continuous.63

Conversely, suppose ˜ϕ ∶ L⊗
π

M → N is continuous. Letϕ be the

corresponding bilinear map ofL × M → N. We haveϕ = ϕ̃○η. As has
been shown already,η is continuous. Henceϕ is continuous.

Corollary 1. π is the strongest (finest) locally convex Hausdorff topol-
ogy on L⊗M such thatη ∶ L ×M → L⊗M is continuous. In factπ is a
locally convex Hausdorff topology on L⊗M such thatη ∶ L×M → L⊗

π
M

is continuous. Letπ′ be any locally convex Hausdorff topology such that
η ∶ L× → L⊗

π′
M is continuous. Then i∶ L⊗

π
M → L⊗

π′
M is continuous and

henceπ is finer thanπ′.

Corollary 2. The topologyπ is finer than the topologyϕ.

In fact, with the topologyε, η ∶ L ×M → L⊗
ε

M is continuous, Hence

π is finer than ε.
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Proposition 12.1. Let u ∶ L1 → L2 and v∶ M1 → M2 be continuous lin-
ear maps where L1, L2,M1 and M2 are locally convex, Hausdorff, topo-
logical vector spaces. Then u⊗ v = L1⊗

π
M1 → L2⊗

π
M2 is a continuous

linear map.

Proof. To show this, it suffices to prove that the bilinear mapu × v ∶
L1×M1 → L2⊗

π
M2 defined byu×v(l1,m1) = u(l1)⊗v(m1) is continuous.

If l1 → 0 in L1 andm1 → 0 in M1, we haveu(l1) andv(m1) tending to 0
in L2 andM2. Henceu(l1)⊗ v(m1) → 0 in L2⊗

π
M2 since the canonical

mapL2 ×M2 → L2⊗
π

M2 is continuous. Henceu× v ∶ L1 ×M1 → L2⊗
π

M2

is continuous. �

Corollary . If u ∶ L1 → L2 and v ∶ M1 → M2 are continuous injections,64

u⊗ v ∶ L1⊗
π

M1 → L2⊗
π

M2 is a continuous injection.

This is an immediate consequence of the fact that C is a field and of
proposition 12.1

Remarks:

1. Thoughu⊗ v ∶ L1⊗
π

M1 → L2⊗
π

M2 is a continuous injection, the

extension ofu⊗v by continuity fromL1⊗
π

M1 → L2⊗M2 (the com-

pletions) is a continuous linear map, but not necessarily an injec-
tion.

2. Let H be a complete space of distributions andE a complete
ELC. The spaceH (E) is complete. The mapi ∶H ⊗

π
E→H ⊗

ε
E

given byi(α) = α is a continuous linear map which extends itself
into a continuous linear map̂i ∶ H ⊗̂

π
E → H (E). î is in general

not an injection.

3. Let L,M and N be threeELCs overC. The canonical isomor-
phism of(L⊗M)⊗N with L⊗ (M⊗N) is a topological isomor-
phism of(L⊗

π
M)⊗

π
N with L⊗

π
(M⊗

π
N). By using trilinear maps we

can introduce a locally convex, Hausdorff topologyπ onL⊗M⊗N
such that the canonical biunique correspondence between trilinear
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maps ofL × M × N and linear maps ofL⊗ M ⊗ N in anyELC F
takes the continuous trilinear maps precisely into the continuous
linear maps(L ⊗ M ⊗ N)Π in F. The canonical isomorphism of
L ⊗ (M ⊗ N) with (L ⊗ M ⊗ N) is a topological isomorphism of
L⊗
π
(M⊗

π
N) with (L⊗M ⊗ N)π. That is to say, we have

(L⊗M ⊗ N)π ≈ L⊗
π
(M⊗

π
N) ≈ (L⊗

π
M)⊗

π
N

as topological vector spaces.
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Topological tensor products
(contd.)

We shall give an intrinsic characterisation of the topology on the tensor65

product defined already. LetL andM be twoELCs overC. Let U and
V be neighbourhoods of the zero elements inL andM. LetΓ(U⊗V) be
the convex, stable envelope of the setU⊗V in L⊗M, U⊗V being the set
of points(u⊗ v, u ∈ U, v ∈ V). The setΓ(U ⊗V) is an absorbing set in
L⊗M. In fact any element ofL⊗M is of the form∑ lν⊗mν, lν ∈ L and
mν ∈ M, the sum written being a finite sum.U absorbslν andV absorbs
mν. HenceU⊗V absorbs each of the elementslν⊗mν. Hence the convex,
stable, envelopeΓ(U ⊗V) absorbs any finite sum of the elements of the
form lν ⊗mν. We can take the setsΓ(U ⊗ V) for a fundamental system
of neighbourhoods of 0 in a certain locally convex topology onL ⊗ M.
This topology is precisely the topologyπ. Let us denote the topology
just defined byτ.

Proposition 13.1. The topologiesπ andτ are identical.

Proof. If we show that the topologyτ is the finest locally convex topol-
ogy onL ⊗ M such that the canonical bilinear mapη ∶ L × M → L ⊗ M
is continuous, we are through. Obviouslyη is continuous, for if we take
any neighbourhood of 0 inL⊗M it contains a set of the formΓ(U⊗V),
U a neighbourhood of 0 inL andV a neighbourhood of 0 inM. Now
η−1(Γ(U ⊗V) ⊃ U ×V and this is a neighbourhood of(0,0) in L ×M.

69
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Supposeθ is any topology onL ⊗ M such thatL × M
ηÐ→ L⊗

θ
M is66

continuous andθ is locally convex. Any neighbourhood of 0 inL⊗
θ

M

contains a convex, stable neighbourhoodW of 0. If we show thatW is
a neighbourhood of 0 even forτ we are through. Sinceη ∶ L × M →
L⊗
θ

M is continuous, there exist neighbourhoodsU and V of the zero

elements ofL andM such thatU⊗V ⊂W. SinceW is convex and stable
Γ(U ⊗V) ⊂W. HenceW is a neighbourhood of 0 inτ. �

Seminorms.Let U andV be convex, stable neighbourhoods of the zero
elements inL and M respectively. Letp be the seminorm associated
with U andq the seminorm associated withV. Let r be the seminorm
associated withΓ(U ⊗ V). It is possible to prove thatr is the same
as the tensor product of the two seminormsp andq defined as follows:
p⊗q(E ) = Inf ∑

ν
p(xν)q(yν)whereE = ∑ xν⊗yν is a way of expressing

E as the sum of a finite number of elements of the typexν ⊗ yν, xν ∈
L,Yν ∈ M. Also,m if for a pair of elementsx,y; x ∈ L andy ∈ M we have
E = x⊗ y, we can show thatr(E ) = p(x)q(y). If L andM are normed
spaces,L⊗M is a normal space with the tensor product of the norms on
L andM as the norm. That is to say,

∥ E ∥= Inf∑ ∥ xν ∥∥ yν ∥ .
SupposeL andM are both Frechet spaces. One can show then that

L⊗̂
π

M is also Frechet.

Proof. Let L and M be Frechet spaces. In order to show thatL⊗̂
π

M is

a Frechet space it suffices to show that inL⊗
π

M we have a countable

base for the neighbourhoods of 0.L andM being metrizable, we have
countable bases for the neighbourhoods of the zero elements in the case67

of the two spacesL andM. If Un andVn are countable bases for neigh-
bourhoods of the zero elements inL andM respectively,Γ(Un ⊗ Vn) is
a fundamental system of neighbourhoods of 0 inL⊗

π
M. HenceL⊗

π
M is

metrizable and hence its completion is a complete metric space and as it
is locally convex, it is a Frechet space.
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In what follows immediatelyL andM stand for two Frechet spaces.
�

Proposition 13.2. Any E ∈ L⊗̂M can be written as a convergent infi-
nite series∑λνxν ⊗ yν in which the xνs and yνs can be so chosen as to
converge to0 asν → ∞ in L and M respectively and∑

ν
∣λν∣ < ∞ Also

if K is compact in L̂⊗
π

M, anyE ∈ K can be written as∑
ν
λνxν ⊗ yν with

∑
ν
∣λν∣ < ∞ and xν ∈ A,yν ∈ B where A and B are compact subsets of L

and M respectively. That is to say K⊂ Γ(A⊗ B). For the proof, refer to
Memoirs of the American Mathematical Society, No. 16, Products Ten-
soriels Topologique et Espaces Nucleaires, by Alexandre Grothendieck,
p. 51.

Definition 13.1. An ELC E is said to be nuclear if forevery ELC, F
theπ andε topologies coincide on E⊗ F.

We now give a criterion for a locally convex Hausdorff space L to
be nuclear.

Criterion 13.1. An ELC E is nuclear if and only if for every Banach
space B, we have L⊗

π
B = L⊗

ε
B.

We shall give another criterion, which is, to some extent, better than
the above criterion. Before giving the criterion, we introduce certain
notions needed to state the criterion.

Definition 13.2. Let N be a complete ELC. Let L be an ELC. A linear68

continuous map u∶ L→ N is called nuclear if it can be written as

u =∑
ν

λν(l′ν ⊗mν)
with the l′νs contained in an equicontinuous subset of L′ and mν con-
tained in a bounded subset of N and∑

ν
∣λν∣ <∞.

To see that the definition makes sense, we consider the expression
µ = ∑

ν
λν(l′ν ⊗mν) with the l′νs lying in an equicontinuous subset of L′

and the mν lying in a bounded set of N and∑
ν
∣λν∣ <∞. Letµ(l) for any
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l be defined as∑
ν
λν(l′ν(l).mν). We shall show that l→ µ(l) ∈ N̂ = N is

a continuous map. Let V be any neighbourhood of0 in N. Since mνs
lie in a bounded set, there existsα > 0 such that mν ∈ αV for everyν.
Since the l′ν lie in an equicontinuous set, given any∈> 0, we can find a
neighbourhood of W∈ of 0 in L such that∣⟨l, l′ν⟩∣ ≤∈ for any l ∈W∈. Hence

∑λν⟨l, l′ν⟩mν ∈ ∧ ∈ αΓ(V)
where∑ ∣λν∣ < ∧ and Γ(V) is the convex, stable, closed envelope of
V. But V itself can be chosen to be a disked neighbourhood of0 in N.
Hence∑λν⟨l, l′ν⟩mν ∈ ∧ ∈ αV. Choose∈= 1

∧α
. Then∑

ν
λν⟨l, l′ν⟩mν ∈ V.

This proves the continuity ofµ. Thatµ is linear is obvious. If u∶ L →
N is a nuclear map, we can express u as∑

ν
λν(l′ν ⊗ mν) with mν →

0 in N and l′ν lying in an equicontinuous subset of L′. In fact, since
∑
ν
∣λν∣ converges we can find a divergent sequence of real numbers{rν},

diverging to+∞ such that the series∑
ν
λνrν still converges absolutely.

Then∑
ν
λν(l′ν ⊗mν) = ∑λνrν(lν ⊗ mν

rν
). Since the mνs lie in a bounded

set,mν

rν
→ 0 asν→∞ and∑ ∣λνrν∣ <∞.

Criterion 13.2. Let U be any disked neighbourhood of0 in L. With U69

we associate a seminorm p. This seminorm gives a certain equivalence
relation in L. x∼ y if and only if p(x) = p(y). We put on L the coarsest
topology under which the seminorm p is continuous. Then we take the
quotient space LU under the equivalence relation defined with the help
of the seminorm p. Let̂LU be the completion of LU . L̂U is a Banach
space. L is Nuclear if and only if the canonical map L→ L̂U is a Nuclear
map for every disked neighbourhood U. (A. Grothendieck: Espaces
Nucleares, Memoirs of the Amer. Math. Soc., No. 16, p. 34). We shall
now prove the following

Proposition 13.3. If for every disked neighbourhood U of0 the canoni-
cal map L→ L̂U is a nuclear map, any continuous linear map u∶ L→ B,
B being any Banach space is nuclear.

Proof. There exists a disked neighbourhoodU of 0 in L such that
u(U) ⊂ Γ whereΓ is the unit ball ofB. The continuous linear mapu
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can be factored into the canonical mapL → LU and a continuous linear
map ofL̂U → B. SinceL→ L̂U is nuclear, our assertion follows. �

Theorem 13.1.A nuclear space has the approximation property.

Theorem 13.2. In a nuclear complete space L all the bounded sets are
relatively compact.

Theorem 13.3.A nuclear Banach space is finite dimensional.

We admit Criterion 13.2, and Theorem 13.1. Theorem 13.3 is an imme-
diate consequence of Theorem 13.2. We prove here Theorem 13.2.

Proof. Let B be a bonded set. Without loss of generality,B can be
assumed to be disked, for the convex, stable envelope of a bounded set
is bounded . SinceL is complete, to show thatB is relativelycompact, 70

it suffices to show thatB is precompact. ForB to be precompact, it is
necessary and sufficient that for any disked neighbourhood of 0 sayU
the image ofB in LU is precompact. NowL → L̂U is a nuclear map and
hence a compact map. Hence the image ofB in L̂U is relatively compact.
This completes the proof of Theorem 13.2. �

Theorem 13.4. If L and M are both nuclear, L⊗
π

M = L⊗
ε

M is nuclear

and L×M is nuclear.

The proof is trivial in the case ofL⊗
π

M.

Theorem 13.5. L is nuclear if and only if̂L is nuclear.

Theorem 13.6. If L is a nuclear Frechet space, the strong dual L′ is a
nuclear space.

Theorem 13.7. If L and M are Frechet nuclear spaces,Lδ(L,M) is a
nuclear space.

Theorem 13.8. If L is a nuclear space, any subspace of L with the
induced topology is a nuclear space. If H is any closed subspace of L,
the quotient space L/H is also nuclear.
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Examples of nuclear spaces.D ′
+
,D ,D ′,E ,E ′,S ,S ′,OM,O

′

M ,O
′

c,Oc

are nuclear spaces.E m andLp are not nuclear. In fact inE m andLp

bounded sets are not relatively compact.
For the proofs of all these results, refer to Espaces Nucleaires by A.

Grothendieck, Memoirs of Amer. Math. Soc., No.16.



Lecture 14

Multiplication of vector
valued distributions

Let H ,K andL be threeELCs. Let U ∶H ×K → L be a bilinear 71

map which is hypocontinuous with respect to the bounded subsets of
H andK . Let E,F,G be three Banach spaces andB ∶ E × F → G
be a continuous bilinear map. We ask the question whether it will be
possible to define a bilinear map:

H (E) ×K (F)→L (G) sayU
B

such that is satisfies the following

conditions:

1) U
B

is hypocontinuous with respect to bounded sets ofH (E) and

K (F).
2) For decomposed elements, that is for elements of the typeSÐ→e and

T
Ð→
f of H (E) andK (F)we haveSÐ→e U

B
T
Ð→
f = (S UT)B(Ð→e ,Ð→f )

withÐ→e ∈ E,
Ð→
f ∈ F,S ∈H andT ∈K .

In general it will not be possible to define such a map. We shall give
here, without proof, a certain example in which such a mapU

B
cannot

be defined. LetD○ be the space of continuous functions with compact
support onRN. Let D

○
′

δ be the strong dual ofD○, that is to sayD○
′

δ is
the space of measures onRN. LetÐ→µ ∈ D○

′

δ (E) andÐ→ϕ ∈ D○(F) where
E andF are two Banach spaces. LetB ∶ E × F → G be a continuous

75
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bilinear map. The duality betweenD○
′

δ andD○ gives a bilinear map of
D
○

δ xD○ in C hypocontinuous with respect to the bounded sets. But a
bilinear mapU

B
∶ D○

′(E) ×D○(F) →G cannot be defined to satisfy the

conditions (1) and (2). We shall now prove the following72

Theorem 14.1. Let H ,K ,L be three locally convex separated com-
plete vector spaces all of which are nuclear. Let the strong duals of
the three spaces be also nuclear. Let U∶ H ×K → L be a bilin-
ear map hypocontinuous with respect to the bounded subsets ofH and
K . Let E,F and G be three Banach spaces with a continuous bilinear
map B∶ E × F → G. Then there exists one and only one bilinear map
U
B
∶H (E) ×K (F)→L (G) which satisfies

1) SÐ→e U
B

T
Ð→
f = (S UT)R(Ð→e ,Ð→f ) for everyÐ→e ∈ E,

Ð→
f ∈ F,S ∈ H

and T ∈K .

2) (Ð→S ,Ð→T ) → Ð→S U
B

Ð→
T is separately continuous in

Ð→
S and

Ð→
T . More-

over U
B

has the following supplementary properties.

3) U
B

is hypocontinuous with respect to the bounded subsets of

H (E) andK (F).
4)

Ð→
S U

B

Ð→
T = (IL εB̃)(U⊗Ð→

S
IF)(Ð→T )

= (IL εB̃)(IE ⊗UÐ→
T
)(Ð→S )

where IL , IE and IF are the identity mappings ofL ,E and F respec-
tively, and UÐ→

S
,UÐ→

T
andB̃ are defined as follows. UÐ→

S
∶K →L (E) on

any T ∈K ,UÐ→
S
(T) =Ð→S UT (for the definition of

Ð→
S UT refer to lecture

7). UÐ→
T
∶H → L (E), on any S∈H ,UÐ→

T
(S) = S U

Ð→
T B being a con-

tinuous bilinear map of E× F in G, B gives rise to a continuous linear
map B′ of E⊗

π
F in G which in its turn can be extended to a continuous

linear map of Ê⊗
π

F in G. B̃ denotes this extended map.
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Proof. First, assuming the existence of a bilinear map satisfying (1) and
(2), we shall prove the uniqueness of the map. Suppose there are two bi-
linear mapsU1

B
andU2

B
satisfying (1) and (2).H andK being nuclear, 73

they have the approximation property andH ⊗
π

E = H ⊗
ε
E. Therefore

H ⊗̂
π

E =H (E),K ⊗̂
π

F =K (F), becauseH (E) andK (F) are com-

plete. Hence the setsH ⊗E andK ⊗F are dense inH (E) andK (F).
On the product of the sets(H ⊗E)×(K ⊗F) the bilinear maps that we
define are well determined because of (1). Now the separate continuity
of bothU1

I
andU2

B
givesU1

B
= U2

I
on the whole ofH (E) ×K (F).

Now we shall prove the existence of a bilinear map satisfying (1)
and (2).

Given a bilinear mapU ∶ H × K → L hypocontinuous with
respect to bounded sets we have already seen how to define a bilin-
ear mapH (E)xK → L (E) hypocontinuous with respect to bounded

sets satisfying certain consistency conditions (see lecture 7). Each
Ð→
S ∈

H (E) = H ⊗̂
π

E defines a continuous linear mapUÐ→
S
∶ K → L (E) =

L ⊗̂
π

E as follows: UÐ→
S
(T) = Ð→S UT. UÐ→

S
gives rise to a continuous

linear mapUÐ→
S
⊗ IF ∶ K ⊗

π
F → (L ⊗̂

Π

E) ⊗ F, which can be extended

by continuity into a linear map, which also we denote byUÐ→
S
⊗ IF of

K ⊗̂
π

F → (L ⊗̂
π

E)⊗̂
π

F; that is to say,UÐ→
S
⊗ IF ∶K ⊗̂

π
F →L ⊗̂

π
(E⊗̂

π
F) is

a continuous linear map. SinceL is nuclear, we have

L ⊗̂(E⊗̂
π

F) =L (E⊗̂
π

F).
UÐ→

S
⊗ IF ∶ K (F) → L (E⊗̂

π
F) is a continuous linear map. Now

B̃ ∶ E⊗̂
π

F → G is a continuous linear map. Hence the mapIL εB̃ is

a continuous linear map ofL (E⊗̂
π

F) → L (G). We define
Ð→
S U

B

Ð→
T

to be the element(IL εB̃)((UÐ→
S
⊗ IF)(Ð→T )). We shall now show that

U
B
∶ H (E) ×K (F) → L (G), which is trivially bilinear, has the fol- 74

lowing properties:

(i) If S ∈ H ,T ∈ K ,Ð→e ∈ E and
Ð→
f ∈ F,SÐ→e U

B
T
Ð→
f = (S UT)
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B(Ð→e ,Ð→f ):
(ii) If

Ð→
S remains in a bounded set inH (E), and

Ð→
T → 0 in K (F),

then
Ð→
S U

B

Ð→
T tends to 0 uniformly inL (G); and

(iii) If
Ð→
S → 0 in H (E) and

Ð→
T is fixed inK (F), then

Ð→
S U

B

Ð→
T → 0 in

L (G).
We remark that proving (ii) and (iii) is more than proving separate

continuity.

Proof of (i). Let
Ð→
T = T

Ð→
f ,T ∈ K and

Ð→
f ∈ F. Then for any

Ð→
S ∈

H (E), (UÐ→
S
⊗ IF)(Ð→T ) is nothing but(Ð→S UT) ⊗Ð→f . If

Ð→
S = SÐ→e , we

see that Ð→
S UT= (SÐ→e )UT = (S UT)Ð→e .

Hence (UÐ→
S
⊗ IF)(Ð→T ) = (S UT)Ð→e ⊗ Ð→f if

Ð→
S = SÐ→e ,Ð→T =

T
Ð→
f .

Hence(IL εB̃)((UÐ→
S
⊗ IF)(Ð→T )) = (S UT)B̃(Ð→e ⊗Ð→f )

= (S UT)B(Ð→e ,Ð→f ).
Proof of (ii). Let S remain in a bounded set ofH (E) and

Ð→
T → 0 in

K (F). We know that ifT → 0 inK and
Ð→
S remains in a bounded set of

H (E),Ð→S UT→ 0 in L (E) uniformly, that is to sayUÐ→
S
∶K →L (E)

is an equicontinuous set of linear maps when
Ð→
S lies in a bounded set of

H (E). Hence the set of operatorsUÐ→
S
⊗ IF ∶ K ⊗̂

π
F → L (E)⊗̂

π
F =

L (E⊗̂
π

F), Ð→S in a bounded set ofH (E), is an equicontinuous set.

Hence if
Ð→
T → 0 in K (F), (UÐ→

S
⊗ IF)(Ð→T ) → 0 uniformly. IL εB̃

is a fixed, continuous, linear map ofL (E⊗̂
π

F) in L (G) and hence

(IL εB̃)((UÐ→
S
⊗ IF)(Ð→T )) → 0 uniformly in L (G) when

Ð→
S remains

in a bounded set ofH (E).
Proof of (iii). First we show that ifT remains in a bounded setA of75
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K and
Ð→
f remains in a fixed ball, say∥ Ð→v ∥≤ α of F and if

Ð→
S → 0

in H (E), Ð→S U
B

T
Ð→
f tends to 0 inL (G) uniformly. If we show that

(UÐ→
S
⊗ IF)TÐ→f → 0 in L (E⊗̂

π
F) uniformly, the above result will follow.

Now (UÐ→
S
⊗ IF)(TÐ→f ) = (Ð→S UT)⊗Ð→f .

Ð→
S UT→ 0 in L (E) uniformly

if
Ð→
S → 0 in H (E) becauseT remains bounded inK (theorem 7.1),

and since
Ð→
f remains in a bounded sets,(Ð→S UT)⊗Ð→f → 0 uniformly asÐ→

S → 0 in H (E).
Now suppose that

Ð→
T lies in the closure of the convex, stable, enve-

lopeΓ(A,Bα) of the product of a bounded setA in K and of a bounded

setBα in F, the closure being taken in the sense ofK (F). Let
Ð→
S → 0

in H (E). We shall show that
Ð→
S U

B

Ð→
T → 0. Since, convex, stable, closed

neighbourhoods form a fundamental system of neighbourhoods of 0 in
L (G), it is sufficient to prove thatW being a closed disc ofL (G)
which is a neighbourhood of 0, there exists a neighbourhoodN of 0 in
H (E) such that

Ð→
S ∈ N implies that

Ð→
S U

B

Ð→
T ∈ W. Any

Ð→
T ∈ Γ(A,Bα)

can be got as lim
Ð→
T j ,
Ð→
T j being a filter of sets inΓ(A,Bα). To any neigh-

bourhoodW of 0 in L (G) there corresponds a neighbourhoodN of 0

in H (E) such that
Ð→
S U

B

Ð→
T ∈W for every

Ð→
S ∈ N and

Ð→
T ∈ A⊗Bα. Since

W is convex, stable we have
Ð→
S U

B

Ð→
T j ∈W for any

Ð→
T j ∈ Γ(A,Bα). Now

if
Ð→
T = lim,

Ð→
T j with

Ð→
T j ∈ Γ(A,Bα), we have

Ð→
S U

B

Ð→
T j → Ð→S U

B

Ð→
T . Hence

Ð→
S U

B

Ð→
T ∈W. But sinceW is closed,W =W. Hence

Ð→
S U

B

Ð→
T ∈W.

Now, suppose
Ð→
T is an element ofK (F). SinceK is nuclear,

bounded sets inK are relatively compact. HenceK ′

δ = K
′

c . We have
assumed thatK ′

δ is nuclear.K (F) = Lε(K ′

c ,F) = Lε(K ′

δ ,F). If 76Ð→
T ∈ K (F), sinceK

′

δ is nuclear, andF a Banach space, we see thatÐ→
T is a nuclear map. Hence

Ð→
T = ∑

n
λnkn ⊗

Ð→
f n,kn ∈ K = (K ′

δ )′ with

∑
n
∣λn∣ <∞, kn being an equicontinuous set ofK considered as the dual

of K
′

c and
Ð→
f n lying in a bounded set ofF. This just means that

Ð→
T ∈
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Γ(A,B) with A andB bounded sets inK andF respectively, closure in

L (K ′

δ ,F) =K (F). Hence
Ð→
S U
Ð→
T → 0 as

Ð→
S → 0 in H (E).

Thus we have seen that the bilinear mapU
B
∶ H (E) ×K (F) →

L (G) satisfies (i), (ii) and (iii). In particular,U
B

is separately continu-

ous. Now, letU′
B

be defined by
Ð→
S U′

B

Ð→
T = (IL εB̃)(IE ⊗ UÐ→

T
)(Ð→S ). U′

B
can be proved to satisfy

(i)′ SÐ→e U′
B

T
Ð→
f = (S UT)B(Ð→e ,Ð→f ) whenS ∈H ,T ∈K ,Ð→e ∈ E and

Ð→
f ∈ F.

(ii)′ When
Ð→
T remains in a bounded subset ofK (F) and

Ð→
S → 0 in

H (E),Ð→S U′
B

Ð→
T → 0 uniformly inL (G).

(iii )′ If
Ð→
T → 0 in K (F) and

Ð→
S is a fixed element ofH (E), theÐ→

S U′
B

Ð→
T → 0 in L (G).

In particular,U′
B

is separately continuous.

ThusU
B

andU′
B

are separately continuous bilinear maps satisfying the

condition (1) of the theorem. But from the uniqueness of such a map
which we have proved already, it follows thatU

B
= U′

B
.

Now, if we combine (ii), (iii), (ii)′, and(iii )′ we see thatU
B
= U′

B
satisfies also the conditions (3) and (4) stipulated in the theorem.�

A particular case of the multiplicative product.77

LetH ,K andL be three nuclear spaces with nuclear strong duals.
Let E be a Banach algebra. IfU ∶ H ×K → L is a bilinear map
hypocontinuous with respect to the bounded subsets ofH andK , by
taking for B the multiplication inE we get bilinear mapU

B
∶ H (E) ×

K (E) → L (E) which is hypocontinuous with respect to the bounded
subsets ofH (E) andK (E).



Lecture 15

Operations on vector valued
distributions (contd.)

SupposeH is a nuclear, barrelled space with a nuclear strong dualH ′

δ . 78

Let H andH
′

δ be assumed to be complete. LetE,F andG be three
Banach spaces andB a continuous bilinear map ofE × F in G. Then
we can get a bilinear map ofH (E) ×H

′(F) in G hypocontinuous
with respect to the bounded subsets ofH (E) andH

′(F). SinceH is
barrelled, the scalar product defining the duality betweenH andH ′ is
a bilinear map ofH ×H

′ into C hypocontinuous with respect to the
bounded sets ofH andH ′

δ . Let us denote the scalar product by the
symbol ‘.’. B being a continuous bilinear map ofE × F in G, we get, as
explained in the previous lecture, a bilinear map.

B
∶H (E)×H ′(F)→

C(G) = G, hypocontinuous with respect to the bounded sets ofH (E)
andH ′(F).

Now, D andS are barrelled spaces. Hence ifB ∶ E × F → G is
a continuous bilinear map, we get a separately continuous bilinear map
in each of the following cases, which is further hypocontinuous with
respect to the bounded sets

1) D(E) ×D ′(F)→G

2) S (E) ×S ′(F)→G

If Ð→ϕ ∈ D(E) and
Ð→
T ∈ D

′(F) we denote by
Ð→
T .

B

Ð→ϕ the image inG of the

81
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element(Ð→ϕ ,Ð→T ) by the bilinear map in case (1). We use similar notation
in case (2) also.

For the Banach spacesE,F andG we can takeE,E′ andC and for79

B the canonical bilinear form onE × E′. Then whenH andH ′ are
complete nuclear spaces withH barrelled, we get a bilinear form on
H (E) ×H ′(E) hypocontinuous with respect to the bounded subsets

of H (E) andH
′(E′). If Ð→ϕ ∈ H (E) and

Ð→
T ∈ H

′(E′) the image of

(Ð→ϕ ,Ð→T ) in C by the above bilinear map is denoted by⟨Ð→T.,Ð→ϕ ⟩.
SinceH is nuclear andH andE are complete, we haveH (E) =

H ⊗̂
π

E. Let u ∈ (H (E))′. u is a linear form onH ⊗̂
π

E which is contin-

uous. NowH ⊗E is dense inH ⊗̂
π

E, therefore the space of continuous

linear forms onH ⊗̂
π

E is the same space of continuous linear forms on

H ⊗
π

E. The definition of theπ-topology hence gives(H (E))′ = space

of continuous bilinear forms onH × E algebraically. Thenu can be
considered also as a continuous bilinear form onH × E. For any fixed
h ∈ H ,Ð→e → u(h,Ð→e ) is a continuous linear map ofE in C; hence it
defines an elementuh of E′. The mappingh → uh of H in E′, with
the structure of a Banach space on it, is a continuous linear map. Con-
versely, suppose thatµ ∶ H → E′ is a continuous linear map. Then ˜µ

defined by ˜µ(h,Ð→e ) = ⟨µ(h),Ð→e ⟩ for everyÐ→e ∈ E andh ∈H is a contin-
uous bilinear form onH × E. Hence we have(H (E))′ = L (H ,E′)
algebraically. Now, consider the spaceH ′(E′). We have seen that we
can define one and only one bilinear form onH (E)×H ′(E′) hypocon-
tinuous with respect to the bounded sets satisfying

⟨TÐ→e .,H′←Ðe ′⟩ = ⟨T.H′⟩H ,H ′⟨Ð→e ,←Ðe ′⟩E,E′ .
If
Ð→
H ′ ∈ (H (E))′ andÐ→ϕ ∈H (E) the scalar product defining the dual-

ity betweenH (E) and(H (E))′ satisfies

⟨HÐ→e ,H′←Ðe ′⟩ = ⟨H,H′⟩H ,H ′⟨Ð→e ,←Ðe ′⟩E,E′ .
Also (H (E))′ = L (H ,E′) andH

′(E′) = L (H ′)′c,E′). (H ′)′c is80

algebraically the same asH but, in general, has a topology finer than
that ofH . In the case of barrelled spaces(H ′

c )′ =H topologically.It
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follows from Theorem 14.1 that the scalar product defining the duality
betweenH (E) and(H (E))′ is the same as the bilinear form that is
defined onH (E) ×H ′(E′) by the process described in Theorem 14.1

The convolution of two vector valued distributions.

Let E,F andG be three Banach spaces andB ∶ E × F →G a contin-
uous bilinear map. Let

Ð→
S ∈ S

′(E) and
Ð→
T ∈ O

′

c(F). The convolution
operation between the elements ofS ′ and the elements ofO ′c satisfies
the conditions stipulated in Theorem 14.1 and the spacesS

′,S ,O ′c,Oc

are all nuclear complete spaces. (See: Memoirs of the Amer. Math.
Soc., No. 16, Products Tensoriels Topologique et Espaces Nucleaires,
by A. Grothendieck). Hence, as explained in Theorem 14.1 we can
define a bilinear map∗

B
∶ S

′(E) ×O
′

c(F) →S
′(G) which is hypocon-

tinuous with respect to the bounded subsets ofS ′(E) andO ′c(F). We

call
Ð→
S ∗

B

Ð→
T the convolution of

Ð→
S and

Ð→
T underB.

We know thatS ∈ D
′

+
and T ∈ D

′

+
implies S ∗ T ∈ D

′

+
, where

D ′
+

is the space of distributions∈ D ′ with supports bounded on the left
(it is the dual ofD−). The map(S,T) ∈ S ∗ T of D

′

+
× D

′

+
in D

′

+

also satisfies the conditions stipulated in Theorem 14.1. Hence we get
a bilinear map∗

B
∶ D

′

+
(E) × D

′

+
(F) → D

′

+
(G) hypocontinuous with

respect to the bounded sets. IfE is a Banach Algebra, by takingE = 81

F = G = E and B = the multiplication inE, we get a bilinear map
D ′
+
(E)×D ′

+
(E)→ D ′

+
(E) hypocontinuous with respect to the bounded

subsets ofD ′
+
(E) andD

′

+
(E).

Now suppose
Ð→
S ∈S ′(E) and

Ð→
T ∈ O ′c(F). Then

Ð→
S ∗

B

Ð→
T ∈S ′(G),

whereB ∶ E × F → G is a bilinear continuous map andE,F andG

are three Banach spaces. The Fourier transforms of
Ð→
S and

Ð→
T sat-

isfy H (Ð→S ) ∈ S
′(E) andH (Ð→T ) ∈ OM(F). SinceOM andO

′

M are
nuclear and complete (refer to: Memories of the Amer. Math. Soc.,
No16, Espaces Nucleaire, by A. Grothendieck), using the product be-
tween the elements ofS ′ and the elements ofOM and using the bilin-
ear mapB we define a product(B) between the elements ofS ′(E) and

OM(F) as explained in Theorem 14.1. Then we haveH (Ð→S ∗
B

Ð→
T ) =
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H (Ð→S )(B)H (Ð→T ). This follows from the separate continuity of the
operations on the two sides and from the equality

H (SÐ→e ∗ T
Ð→
f ) =H (SÐ→e )(B)H (T f) for S ∈ S ′,T ∈ O ′c,

Ð→e ∈ E andÐ→
f ∈ F and from the fact thatS ′

⊗ E andO ′c ⊗ F are dense inS ′(E)
andO

′

c(F) respectively.

In the case in which
Ð→
T ∈ D ′(F) is a continuous functionÐ→g with

values inF,Ð→ϕ .
B

Ð→
T for everyÐ→ϕ ∈ D(E) can be expressed as an integral.

We will show that

Ð→ϕ .
B

Ð→
T = ∫

Rn

B(Ð→ϕ (x),Ð→g (x)dx.

we know that.
B
∶ D
′(F)×D(E)→G is a separately continuous function.

Hence.
B
∶ E○(F) ×D(E) → G is also separately continuous. Also the

mapping

(Ð→g ,Ð→ϕ )→ ∫
Rn

B(Ð→ϕ (x),Ð→g (x)dx

is a separately continuous map ofE○(F) ×D(E) → G. Also for every82

ϕ ∈ D ,g ∈ E○,Ð→e ∈ E and
Ð→
f ∈ F, we have

∫
Rn

B(ϕÐ→e (x),gÐ→f (x))dx= ∫
Rn

B(ϕ(x)Ð→e ,g(x)Ð→f )dx

= ∫
Rn

ϕ(x)g(x)B(Ð→e ,Ð→f )dx

= ⎧⎪⎪⎨⎪⎪⎩∫Rn

ϕ(x)g(x)dx
⎫⎪⎪⎬⎪⎪⎭ .B(

Ð→e ,Ð→f ).
The mappings

.
B
∶ E○(F) ×D(E)→G and(Ð→g ,Ð→ϕ )→ ∫

Rn

B(Ð→ϕ (x),Ð→g (x))dx

are separately continuous and agree on the decomposed elements. SinceE○ andD have the approximation property, we see that the two maps are
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identical. Also if f ∈ D○ andg ∈ E○ the convolutionf ∗ g is an element

of E○ and is given by∫
Rn

f (x − E )g(E )dE . Now suppose
Ð→
f ∈ D○(E)

andÐ→g ∈ E○(F). Then we shall prove that
Ð→
f ∗

B

Ð→g ∈ E○(G) and is given

by the formula
Ð→
f ∗

B

Ð→g (x) = ∫
Rn

B(Ð→f (x − E ),Ð→g (E ))dE . The maps

∗
B
∶ D○(E) × E○(F) → D ′(G) and(Ð→f ,Ð→g ) → ∫

Rn
B( f (x− E ),g(E ))dE

of D
○(E)×E○(F)→ E○(G) are separately continuous and agree on the

decomposed vectors, for iff ∈ D○,g ∈ E○ andÐ→e ∈ E andÐ→v ∈ F. We
have

fÐ→e ∗
B

gÐ→v (x) = f ∗ g(x)B(Ð→e ,Ð→v )
= (∫ f (x− E )g(E )dE )B(Ð→e ,Ð→v )
= ∫ B( f (x− E )Ð→e ,g(E )Ð→v )dE

= ∫ B( fÐ→e (x− E ),gÐ→v (E ))dE .

Now sinceD
○ and E○ have the approximation propertyD○ ⊗ E andE○⊗F are dense inD○(E) andE○(F), hence we deduce the conclusion.
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Lecture 16

Weak boundary value
problems

Let E,F andG be three Banach spaces and letB ∶ E × F → G be a 83

continuous bilinear map.

Proposition 16.1.Let
Ð→
S ∈ D ′

+
(E) and

Ð→
T ∈ D ′

+
(F) be two distributions

such that
Ð→
S ⊐

Rl p>a

Ð→
S (p) and

Ð→
T ⊐

Rl p>a

Ð→
T (p). Then

Ð→
S ∗

B

Ð→
T has a

Laplace transform for Rlp> a and the Laplace transform is precisely

B(Ð→S (p),Ð→T (p)).
Proof. For Rl p > a,e−ptÐ→S ∈ S

′(E) and e−ptÐ→T ∈ S
′(F). In fact,

we know that more is true. ForRl p > a,e−ptÐ→S ∈ O
′

c(E) ande−ptÐ→T ∈
O ′c(F). We havee−ptÐ→S ∗

B
e−ptÐ→T = e−pt(Ð→S ∗

B

Ð→
T ). The convolutions

D
′

+
×D

′

+
→ D

′

+
andO

′

c × O
′

c → O
′

c coincide on the elements on which

both are defined. Hencee−pt(Ð→S ∗
B

Ð→
T ) = e−ptÐ→S ∗

B
e−ptÐ→T ∈ O ′c(G) for

Rl p > a. Hence
Ð→
S ∗

B

Ð→
T has a Laplace transform forRl p > a and the

Laplace transform is the functionB(Ð→S (p),Ð→T (p)).
We shall consider an application of the above theory to a problem in

differential equations.
Let Q′ be a Banach space andN a Hilbert space withN ⊂ Q′ with

a continuous injection. LetA ∶ N → Q′ be a continuous linear operator.

87
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Let
Ð→
f ∈ D ′

+
(Q′). To find, if possible,Ð→u ∈ D ′

+
(N) such that( d

dt+A)Ð→u =Ð→
f . This problem can be restated as follows: To findÐ→u ∈ D ′

+
(N) such

that (δ′t I + δtA) ∗Ð→u =Ð→f
whereI ∶ N → Q′ is the injection. We haveδ′t I andδtA in D

′

+
(L (N,

Q′)). �

We use the properties of the convolution operation to get new operators.84

Let H ,K andL be three nuclear complete spaces with nuclear,
complete strong duals. LetB ∶ E × F → G be a continuous bilinear
map,E,F andG being three Banach spaces. LetU ∶ H ×K → L

be a bilinear map hypocontinuous with respect to the bounded subsets
of H andK . As explained in Theorem 14.1 we can define a bilinear
mapU

B
∶H (E) ×K (F) → L (G) hypocontinuous with respect to the

bounded subsets.
Let SÐ→e ∈ H (E) with S ∈ H ,Ð→e ∈ E and

Ð→
T ∈ K (F). We shall

find an expression forSÐ→e U
B

Ð→
T . For eachÐ→e ∈ E, let BÐ→e ∶ F → G be

the continuous linear mapBÐ→e (Ð→f ) = B(Ð→e ,Ð→f ). The continuous linear
mapBÐ→e ∶ F →G allows us to define a continuous linear mapIL εBÐ→e of
L (G). This linear map also we denote byBÐ→e . Using the bilinear map
U ∶H ×K →L , hypocontinuous with respect to the bounded subsets
of H andK , we can define a bilinear map̃U ∶H ×K (F) → L (F)
hypocontinuous with respect to the bounded subsets ofH andK (F)
as explained in Theorem 7.1. We have thenSÐ→e U

B

Ð→
T = BÐ→e (SŨ

Ð→
T ). In

fact, if
Ð→
T is of the formT

Ð→
f ,T ∈K ,

Ð→
f ∈ F we have

BÐ→e (SŨ
Ð→
T ) = BÐ→e ((S UT)Ð→f ) = (IL εBÐ→e )((S UT)Ð→f )
= (S UT).BÐ→e (Ð→f ) = (S UT)B(Ð→e ,Ð→f ),

andSÐ→e U
B

T
Ð→
f = S UT B(Ð→e ,Ð→f ). Hence from the approximation prop-

erty forK it follows thatSÐ→e U
B

Ð→
T = BÐ→e (SŨT) for any

Ð→
T ∈K (F).

I andA are two fixed elements of the vector spaceL (N,Q′). δ′t I
andδtA are distributions with values inL (N,Q′). δtA ∗

Ð→u is, by the85
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formulaSÐ→e U
B

Ð→
T = BÐ→e (SŨ

Ð→
T ), the same asB

A
(δt ∗

Ð→u ) whereB
A

is the

mappingID ′+εΓA,ΓA ∶ N → Q′ given byΓA.n = An for everyn ∈ N.
HenceB

A
(δt ∗

Ð→u ) = AÐ→u . Similarly δ′t I ∗
Ð→u = d

dt
Ð→u . Thus we see that the

equation( d
dt + A)Ð→u =Ð→f is the same as(δ′t I + δtA) ∗Ð→u =Ð→f . What we

do first is to look for
Ð→
G ∈ D

′

+
(t,L (Q′,N) such that

(δ′t I + δtA) ∗Ð→G = δtIQ,

and
Ð→
G ∗ (δ′t I + δtA) = δtIN,

whereIQ′ andIN are the identity mappings ofQ′ andN. Suppose such

a
Ð→
G has been found out. Then our contention is:Ð→u = Ð→G ∗Ð→f is the

only solution of the equation( d
dt +A)Ð→u =Ð→f . To prove this fact, we use

the following associativity property of the convolution. Let∗ denote
the convolution ofD ′

+
×D

′

+
→ D

′

+
. We have forU,V andW ∈ D

′

+
the

following relation: (U ∗ V) ∗W = U ∗ (V ∗W). Let B1 ∶ L × M → P
andB2 ∶ P× N → Z be bilinear continuous maps withL,M,P,N andZ
Banach spaces. Letα1 ∶ L × Q → Z andα2 ∶ M × N → Q be bilinear
continuous maps withL,M, N,Q,Z Banach spaces. LetB1(l) ∶ M → P
be the linear mapB1(l)(m) = B1(l,m). Let B2,B

1(l)(m)
∶ N → Z be the

linear mapB2,B
1(l)(m)

(n) = B2(B1(l)(m),n). Let µ ∶ L × M × N → Z be

the trilinear map defined byµ(l,m,n) = B2,B
1(l)(m)

(n). Similarly we can

associate withα2 andα1 a trilinear continuous map, sayγ ∶ L×M×N →
Z. If we assume thatµ = ν we have the following equality: For any86Ð→
S ∈ D ′

+
(L),Ð→T ∈ D ′

+
(M) and

Ð→
U ∈ D ′

+
(N),

(Ð→S ∗
B1

Ð→
T ) ∗

B2

Ð→
U =Ð→S ∗

α1
(Ð→T ∗

α2

Ð→
U ).

The proof is, in fact, trivial. The convolutionD ′
+
×D

′

+
→ D

′

+
satisfies

the associativity. Hence from the fact thatµ = ν, we get

(SÐ→e ∗
B1

T
Ð→
f ) ∗

B2
UÐ→g = (S ∗ T ∗U)µ(Ð→e ,Ð→f ,Ð→g )

= (S ∗ T ∗U)ν(Ð→e ,Ð→f ,Ð→g )
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andSÐ→e ∗
α1
(TÐ→f ∗

α2
UÐ→g ) = (S ∗ T ∗U)ν(Ð→e ,Ð→f ,Ð→g )

for anyS,T,U ∈ D
′

+
andÐ→e ∈ L,

Ð→
f ∈ M andÐ→g ∈ N.

Now, sinceD ′
+

has the approximation property, we get the required asso-

ciativity formula. Now,Ð→u =Ð→G ∗Ð→f is a solution of(δ′t I +δtA)∗Ð→u =Ð→f .

For (δ′t I + δtA) ∗Ð→G ∗Ð→f = δtIQ′ ∗
Ð→
f = IQ′(δt ∗

Ð→
f ) = I

Ð→
f =Ð→f .

HenceÐ→u =Ð→G ∗Ð→f is a solution. SupposeÐ→v is any solution of

(δ′t I + δtA) ∗Ð→u =Ð→f .
We have

Ð→
G ∗ {(δ′t I + δtA) ∗Ð→v } =Ð→G ∗Ð→f .

But
Ð→
G ∗ {(δ′t I + δtA) ∗Ð→v } = {Ð→G ∗ (δ′t I + δtA)} ∗Ð→v

= δtIN ∗
Ð→v = v.

HenceÐ→v =Ð→G ∗Ð→f .
Thus

Ð→
G ∗
Ð→
f is the only solution of(δ′t I + δtA) ∗Ð→u = Ð→f . In applying

the associativity formula, we should take note of the following fact: The87

obvious bilinear mapsL (N,Q′) × N → Q′, L (Q′,N) × Q′ → N and
L (Q′,N) ×L (N,Q′) → L (N,N) andL (N,N) × N → N satisfy the
condition which enables us to conclude that the trilinear mapsµ andν
corresponding to these are the same.

Hence the problem( d
dt + A)Ð→u = Ð→f will have one and only one

solutionÐ→u ∈ D
′

t (t,N), if we can find a
Ð→
G ∈ D

′

+
(t,L (Q′,N)) such that

(δ′t I + δtA) ∗Ð→G = δtIQ′

and
Ð→
G ∗ (δ′t I + δtA) = δtIN.

We, in fact, look for a
Ð→
G having a Laplace transform. If at all such a

Ð→
G

exists, it will satisfy

(pI + A)Ð→G(p) = IQ′ and
Ð→
G(p)(pI + A) = IN.

Hence, if only we assume that forRl p> E○ (E○ some real number), the
operator(p+A) is invertible and that the inverse is majorised uniformly
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in the half planeRl p≥ E○ + ε for anyε > 0) there exists a
Ð→
G(p) which

is the Laplace transform of a unique
Ð→
G ∈ D ′

+
(t,L (Q′,N)) satisfying

(δ′t I + δtA) ∗ Ð→G = δtIQ′ ,
Ð→
G ∗ (δ′t I + δtA) = δt IN. Then the problem

( d
dt + A)Ð→u =Ð→f has one and only one solution, namely

Ð→u =Ð→G ∗Ð→f .
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Part II

REPRESENTATIONS OF
SEMI-GROUPS
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Lecture 17

Representations of
semi-groups

Definition 17.1. A semi-group is a set G+ with a binary associative 88

law of composition, having an identity element. That is to say, there is
defined a mapping(x,y)→ x.y of G+×G+ in G+ satisfying the following
conditions:

1) x.(y.z) = (x.y).z for every x,y,z ∈G+.

2) There exists an element e∈ G+ such that e.x = x and x.e = x for
every x∈G+.

Definition 17.2. A topological semi-group G+ is a Hausdorff topologi-
cal space with a semi-group structure such that the mapping(x,y)→ x.y
of G+×G+ →G+ is continuous. In this section, we deal only with locally
compact semi-groups.

Definition 17.3. A measureµ on G+ is said to be summable if∫
G+

∣dµ∣ <
∞. One knows that, ifµ is a summable measure, for any continuous
bounded complex valued function f the integral∫

G+

f (x)dµ(x) can be

defined. We agree to denote this byµ( f ).
Definition 17.4. Letµ andν be summable measures on G+. The direct
image of the measureµ ⊗ ν on G+ ×G+ by the mapping(x,y) → x.y,

95
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which trivially exists, is defined to be the convolution of the measuresµ

andν and is denoted byµ ∗ ν.
If ϕ is any continuous bounded function on G+, the functionψ ∶G+×

G+ → C defined byψ(s, t) = ϕ(st) is a continuous bounded function.
Hence the integral

∫
G+×G+

ψd(µ⊗ ν) = ∫
G+

∫
G+

ψ(s, t)dµ(s)dν(t)

has a meaning. We have the equalityµ∗ ν(ϕ) = ∫
G+
∫

G+

ϕ(st)dµ(s)dν(t).89

Definition 17.5. For an integrable (or summable) measureµ, ∫
G+

∣dµ∣ is
defined to be the norm ofµ and is denoted by∥ µ ∥.

One knows that ifµ and ν are summable measures on G+, µ ∗ ν is
also summable and that∥ µ ∗ ν ∥≤∥ µ ∥∥ ν ∥ (Refer to Elements de
Mathematique, Integration, by N. Bourbaki).

Strict convergence.

Definition 17.6. A sequence of measures{µ j} is said to strictly con-
verge to0 if µ j(ϕ) → 0 for every fixedϕ, continuous with compact
support and if there exists a positive real numberε(K) corresponding
to each compact set K such that∫

[K
∣dµ j ∣ ≤ ε(K) independent of j, ([K

is the complement of K), with ε(K) → 0 according as the ‘filtrant set’
of compact subsets of G+ ordered by inclusion, that is to say, given any
ε > 0 there exists a compact K such that for any compact setΓ of G+
with Γ ⊃ K we haveε(Γ) < ε. In fact, it is sufficient if there exists a
compact set K such thatε(K) < ε.
Lemma 17.1. If {µ j} is a sequence of measures converging strictly to
0, for any fixed continuous bounded functionϕ, µ j(ϕ)→ 0.

Proof. Letα be any continuous function with 0≤ α(x) ≤ 1 for everyx ∈
G+ and with compact support. We haveµ j(ϕ) = µ j(αϕ)+µ j((1−α)ϕ).
We may assumeϕ ≢ 0. Sinceµ j → 0 strictly, given anyε > 0 we can
find a compact setK such that∫

[K
∣dµ j ∣ < ε

2∥ϕ∥ where∥ ϕ ∥= sup
x∈G+
∣ϕ(x)∣.



97

For α, choose a continuous function with compact support which is 1
on K and with 0≤ α(x) ≤ 1. Thenα.ϕ is a continuous function with
a compact support. Hence we can find aj(ε) such that forj ≥ j(ε)
we have∣µ j(αϕ)∣ < ε

2. We haveµ j((1 − α)ϕ) = ∫
[K
(1 − α)ϕdµ j , since 90

1− α = 0 onK. Hence

∣µ j((1− α)ϕ)∣ ≤∥ ϕ ∥ ∫
[K

∣dµ j ∣ ≤ ∥ ϕ ∥ .ε
2 ∥ ϕ ∥ for j ≥ j(ε).

Hence∣µ j(ϕ)∣ ≤ ∣µ j(αϕ)∣ + ∣µ j((1− α)ϕ)∣ ≤ ε
2 +

ε
2 = ε for j ≥ j(ε). �

Lemma 17.2. If {µ j},{ν j} are two sequences of measures strictly con-
verging toµ andν respectively, the sequence{µ j ∗ν j} strictly converges
to µ ∗ ν.

We shall first show that if{µ j} and {ν j} tend to0 strictly, the se-
quence{µ j ∗ ν j} tends to0 strictly. If ϕ is a function inC (G+ ×G+) of
the typeϕ(x,y) = ψ(x)η(y) whereψ ∈ C (G+), η ∈ C (G+) we have

(µ j ⊗ ν j)(ϕ) = µ j(ψ).ν j(η).
(C (G+) denotes the set of complex valued functions on G+ with compact
support). Hence for aϕ of the above mentioned form,µ j ⊗ ν j)(ϕ) → 0.
The linear combinations of elements of the formϕ(x,y) = ψ(x)η(y)
form a dense subset ofC (G+ ×G+). Since{µ j} and{ν j} are strictly
convergent sequences of measures,{µ j} and{ν j} are bounded sequen-
ces of measures and hence{µ j⊗ν j} is a bounded sequence of measures
on G+ ×G+. Hence the set consisting of the elements{µ j ⊗ ν j} is an
equicontinuous set in the dual ofC (G+ ×G+). On this set the topology
of simple convergence on a dense subspace ofC (G+ ×G+) by Ascoli’s
Theorem. Hence for everyϕ ∈ C (G+ ×G+) we haveµ j ⊗ ν j(ϕ) → 0 as
j →∞.

We shall prove the strict convergence ofµ j ⊗ ν j to 0. We have al-
ready proved the ‘vague’ convergence ofµ j ⊗ ν j to 0, that is to say, for
every fixedϕ ∈ C (G+ ×G+), µ j ⊗ ν j(ϕ) tends to 0. To prove the strict
convergence of{µ j⊗ν j} it is sufficient to prove that there exist constants
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ε(H × K) for compact sets of the formH × K, H andK being compact 91

in G+ such that given anyε > 0 there exists a compact setH × K with
ε(H × K) < ε and ∫

[(H×K)
∣dµ j ⊗ ν j ∣ < ε(H × K). Now

∫
[(H×K)

∣dµ j ⊗ ν j ∣ ≤ ∫
G+×[K

∣dµ j ⊗ ν j ∣ + ∫
[H×G+

∣dµ j ⊗ ν j ∣

≤ A∫
[K

∣dν j ∣ + B∫
[H

∣dµ j ∣
≤ Aε(K) + Bε(H),

whereA ≥ ∫
G+

∣dµ j ∣ andB ≥ ∫
G+

∣dν j ∣. (Such real numbersA andB exist).

If we chooseK andH in such a way thatε(K) < ε
2A andε(H) < ε

2B we
have

∫
[H×K

∣dµ j ⊗ ν j ∣ < ε
2
+
ε

2
= ε.

Thusε(H × K) = Aε(K) + Bε(H) are constants satisfying

∫
[(H×K)

∣dµ j ⊗ ν j ∣ ≤ ε(H × K)
and given anyε > 0 there existsH ×K such thatε(H ×K) < ε. We have
thus proved thatµ j ⊗ ν j → 0 strictly.

Let u ∶ E → F be a continuous map of a locally compact spaceE
into a locally compact spaceF. Let {λ j} be a sequence of summable
measures strictly converging to 0 onE. The direct image of theλ′j s by
u converges to 0 strictly. First of alluλ j → 0 vaguely. For, ifϕ is any
continuous function with compact support onF,u ∗ ϕ is a continuous
bounded function onE andλ j(u∗ϕ)→ 0. Henceuλ j(ϕ) = λ j(u∗ϕ)→
0. It is sufficient to prove the existence of constantsε(H) for compact
setsH of the formH = u(K), K being compact inE such that given any
ε > 0 there exists anε(H) with ε(H) < ε and∫

[H
∣duλ j ∣ ≤ ε(H). Now92

∫
[H

∣duλ j ∣ ≤ ∫
ū1([H)

∣dλ j ∣ ≤ ∫
[K

∣dλ j ∣ ≤ ε(K).
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Given anyε > 0 we know that there exists a compact setK in E such
thatε(K) < ε. We have already proved that ifµ j andν j tend to 0 strictly
µ j ⊗ν j tends to 0 strictly.µ j ∗ν j being the direct image ofµ j ⊗ν j by the
map(x,y)→ x.y of G+ ×G+ in G+ we haveµ j ∗ ν j → 0 strictly.

Now supposeµ j → µ andν j → ν strictly. Thenµ j − µ andν j − ν are
sequences of measures strictly converging to 0. Hence(µ j −µ)∗(ν j −ν)
converges to 0 strictly. We have

µ j ∗ ν j − µ ∗ ν = (µ j − µ) ∗ (ν j − ν) + µ ∗ (ν j − ν) + (µ j − µ) ∗ ν
Now (µ j −µ)∗(ν j −ν)→ 0 strictly. To complete the proof of the lemma
we have only to prove the following: ifΓ j is a sequence of measures
strictly converging to zero andµ is a fixed summable measure, then
µ ∗ Γ j andΓ j ∗ µ tend to zero strictly. For this it is enough to prove that
µ ⊗ Γ j andΓ j ⊗ µ tend to zero strictly. (see the general considerations
given above). This is proved the same way we proved thatµ j ⊗ ν j → 0
strictly if µ j → 0 andν j → 0 strictly, using the following fact: ifµ
is a summable measure, then∫

[K
∣dµ∣ → 0 following the filtered set of

compact subsetsK.
Let λ, µ andν be three summable measures onG+. Thenλ ∗ µ ∗ ν

is defined to be the direct image of the measureλ ⊗ µ ⊗ ν by the map(x,y,z)→ x.y.zof G+ ×G+ ×G+ in G+. It is easily seen that

λ ∗ (µ ∗ ν) = λ ∗ µ ∗ ν = (λ ∗ µ) ∗ ν.
Also we haveδx ∗ δy = δxy andδe ∗ µ = µ ∗ δe = µ whereδx is the unit 93

mass (Dirac measure) atx ande is the identity element ofG+.

Representation of semi-groups.

Definition 17.6. Let G+ denote a locally compact semi-group. Let E
be a complete ELC. Arepresentationof G+ in E is a map U∶ G+ →
Ls(E,E) satisfying the following conditions:

(i) U(x.y) = U(x) ○U(y),U(e) = I the identity map of E;

(ii) U ∶G+ →Ls(E,E) is continuous, and



100 17. Representations of semi-groups

(iii) For every compact set K in G+ the set of operators{U(k),k ∈ K}
is an equicontinuous set of linear maps of E in E.

Property (iii) is called the property of local equicontinuity. We shall
consider here only representations satisfying the following stronger con-
dition of global equicontinuity.
(iii) ′ The set of operators{U(x), x ∈ G+} is an equicontinuous set of
linear maps of E in E.

Let MG+ denote the set of all summable measures on G+. It is an
algebra under the operations of addition and convolution.

Lemma 17.3. The representation U∶ G+ → Ls(E,E) can be extended
into a map, which also we denote by U, ofMG+ in Ls(E,E). When
µ = δx, the unit mass at x, U(µ) will be U(x).
Proof. Since{U(x), x ∈ G+} is an equicontinuous set of operators, it
is also a bounded set inLs(E,E). Sinceµ is summable, the integral

∫
G+

U(x)dµ(x) exists and is an element of(Ls(E,E))∧, the completion

of Ls(E,E). (Refer to Integration, by N. Bourbaki). SinceE is com-94

plete,(Ls(E,E))∧ ⊂ ∧s(E,E) where∧s(E,E) is the space of all linear
maps ofE in E with the topology of simple convergence. Now the set of
elements{U(x)/x ∈ G+} is an equicontinuous subsetU of Ls(E,E).
Let

⌢
U be the convex stable closed envelope ofU in ∧s(E,E). ⌢

U is

also equicontinuous and hence
⌢
U ⊂L (E,E). We have

U(µ) = ∫
G+

U(x)dµ(x) ∈ ⌢U ∫
G+

d∣µ∣ ⊂Ls(E,E).

HenceU(µ) ∈Ls(E,E) for everyµ ∈MG+ . Trivially U(δx) = U(x).
If Ð→e ∈ E, we have

U(µ)Ð→e = ∫
G+

U(x)Ð→e dµ(x),

since the mapU → UÐ→e is continuous.
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For any fixedθ ∈ Ls(E,E), the mapsΓ → Γ ○ θ andΓ → θ ○ Γ of
Ls(E,E) in Ls(E,E) are continuous linear maps. Hence

U(µ) ○ θ = ∫
G+

(U(x) ○ θ)dµ(x)
andθ ○U(µ) = ∫

G+

(θ ○U(x))dµ(x)

for every fixedθ ∈L (E,E). �
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Lecture 18

Representations of
semigroups (contd.)

Lemma 18.1. If µ andν are summable measures,µ ∗ ν is a summable 95

measure and U(µ ∗ ν) = U(µ) ○U(ν).
Proof. We have already remarked thatµ∗ν is summable and that∫ ∣dµ∗
ν∣ =∥ µ ∗ ν ∥≤∥ µ ∥∥ ν ∥= ∫ ∣dµ∣. ∫ ∣dν∣. We shall now prove that
U(µ ∗ ν) = U(µ) ○U(ν). For any bounded continuous functionϕ with
values inC we know that∫ ∫ ϕ(st)dµ(s)dν(t) = µ ∗ ν(ϕ). We shall
show that this formula is true for any vector valued continuous, bounded
function.

Let F be anELC and F̂ its completion. LetÐ→ϕ be anF-valued
function which is continuous and bounded. Considered as anF̂-valued
function alsoÐ→ϕ is continuous and bounded. Let

←Ð
f ′ ∈ (F̂)′. Then

⟨Ð→ϕ ,←Ðf ′⟩ is a continuous bounded function with values inC. Hence µ∗

ν⟨Ð→ϕ ,←Ðf ′⟩ = ∫ ∫ ⟨Ð→ϕ (st), f ′⟩ dµ(s)dν(t). Since
Ð→
f → ⟨Ð→f ,←Ðf ′⟩ is a con-

tinuous linear map of̂F in C, we have(µ∗ν)⟨Ð→ϕ ,←Ðf ′⟩ = ⟨(µ∗ν)(Ð→ϕ ),←Ðf ′⟩
and∫ ∫ ⟨Ð→ϕ (st),←Ðf ′⟩dµ(s)dν(t) = ⟨∫ ∫ Ð→ϕ (st)dµ(s)dν(t),←Ðf ′⟩. Hence

⟨(µ ∗ ν)(Ð→ϕ ),←Ðf ′⟩ = ⟨∫ ∫ Ð→ϕ (st)dµ(s)dν(t),←Ðf ′⟩
Therefore

(µ ∗ ν)(Ð→ϕ ) = ∫ ∫ Ð→ϕ (st)dµ(s)dν(t) (1)

103
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If it so happens that(µ ∗ ν)(Ð→ϕ ) is in F itself, we have∫ ∫ Ð→ϕ (st)dµ(s)dν(t) ∈ F because of equality (1). �

Since{U(x), x ∈ G+} is an equicontinuous set of linear maps, it
is a bounded set, and hence∫ ∫ U(st)dµ(s)dν(t) = (µ ∗ ν)(U). But
for any summable measureλ we have definedU(λ) to be∫ U(x)dλ(x)
or asλ(U). Hence(µ ∗ ν)(U) = U(µ ∗ ν) = ∫ ∫ U(st)dµ(s)dν(t).96

To evaluate the double integral∫ ∫ U(st)dµ(s)dν(t) we use Fubini’s
Theorem for integrals of vector valued functions. We want only the fol-
lowing form of Fubini’s Theorem. IfÐ→ϕ (s, t) is a continuous, bounded
F-valued function onG+ ×G+ and ifµ andν are summable measures

∫
G+×

∫
G+

Ð→ϕ (s, t)dµ(s)dν(t) = ∫
G+

dµ(s)∫
G+

Ð→ϕ (s, t)dν(t)
= ∫

G+

dν(t)∫
G+

Ð→ϕ (s, t)dµ(s).

Now, the integrals∫
G+

Ð→ϕ (s, t)dν(t) and∫ Ð→ϕ (s, t)dµ(s) exist for allsand

t ∈ G+ and are continuous functions ofs andt respectively. By forming

the scalar product with any
←Ð
f ′ ∈ (F̂)′ and applying the theorem of

Fubini for scalar valued function we get

∫
G+×

∫
G+

Ð→ϕ (s, t)dµ(s)dν(t) = ∫
G+

dµ(s)∫
G+

Ð→ϕ (s, t)dν(t)
= ∫

G+

dν(t)∫
G+

Ð→ϕ (s, t)dµ(s)

Applying this form of Fubini’s Theorem we get

∫
B+×

∫
G+

U(st)dµ(s)dν(t) = ∫
G+

dµ(s)∫
G+

U(st)dν(t)
= ∫

G+

dµ(s)∫
G+

U(s) ○U(t)dν(t).
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SinceV → U(s) ○ V for a fixed s ∈ G+ is a linear continuous map of
Ls(E,E) in itself, we have

∫
G+×

∫
G+

U(st)dµ(s)dν(t) = ∫
G+

dµ(s)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U(s) ○ ∫
G+

U(t)dν(t)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= ∫
G+

dµ(s)U(s) ○U(ν)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
G+

dµ(s)U(s)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
○U(ν)

since V → V ○U(ν)
is a continuous linear map ofLs(E,E) into itself.
Hence ∫

G+×
∫

G+

U(st)dµ(s)dν(t) = U(µ) ○U(ν) 97

Hence U(µ ∗ ν) = U(µ) ○U(ν).
SupposeE is a Banach space and eachU(x) satisfies∥ U(x) ∥≤ 1.

Then∥ U(µ) ∥≤ ∫ ∣dµ∣ for any summable measureµ. This follows
immediately from the definitionU(µ) = ∫

G+

U(x)dµ(x).
Proposition 18.1.Let E be a complete ELC. If∫ ∣dµ∣→ 0, then U(µ)→
0 in Lδ(E,E).
Proof. We haveU(µ)Ð→e = ∫

G+

U(x)Ð→e dµ(x) for everyÐ→e ∈ E. Suppose

we take vectorsÐ→e in a bounded setB of E. Since the set{U(x), x ∈
G+} is an equicontinuous set of linear maps ofE in E, the setΓ =
U

x∈G+
Ð→e ∈B

{U(x)Ð→e } is a bounded set ofE. Now U(µ)Ð→e ∈ ⌢Γ ∫
G+

∣dµ∣ where

⌢
Γ is the convex, closed, stable envelope ofΓ.

⌢
Γ is bounded sinceΓ is. If

∫ ∣dµ∣ → 0 we see that forÐ→e ∈ B, U(µ)Ð→e → 0 uniformly in E. Hence
our proposition. �

Proposition 18.2. If {µ j} is a sequence of measures tending to0 strictly,{U(µ j)} tends to0 in Ls(E,E).
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Proof. We have to prove that for every fixedÐ→e ∈ E, U(µ j)Ð→e → 0 in
E. But ∫

G+

U(x)Ð→e dµ j(x) = U(µ j)Ð→e . Now U(x)Ð→e is a bounded vector

valued function ofG+ in E; this follows from the fact that{U(x), x ∈
G+} is an equicontinuous set of operators. Hence the proposition is
proved if we prove the following more general proposition.

For any continuous boundedE valued functionÐ→ϕ (x) on G+ we
have∫ Ð→ϕ (x)dµ j(x) → 0 if µ j → 0 strictly. Assume first, thatÐ→ϕ is a
continuous function with values inE having a compact support. ThenÐ→ϕ ∈ D○(E) andµ j ∈ D○

′

c . The integral∫ Ð→ϕ (x)dµ j(x) is nothing but the98

productÐ→ϕ . µ j extending the scalar product defining the duality between
D○ andD○

′

c . This product is hypocontinuous with respect to compact
subsets ofD○(E) and compact subsets ofD

′○

c. Hence ifÐ→ϕ ∈ D
○(E)

is a fixed element andµ j → 0 in D ′○c we haveÐ→ϕ .µ j → 0. Our assump-
tion is thatµ j → 0 strictly. If we prove thatµ j → 0 strictly implies
µ j → 0 in D

′○

c we are through. Whenµ j → 0 strictly {µ j} is a bounded
set of measures and hence{µ j} is an equicontinuous set of measures.
Hence the topology of compact convergence and the topology of simple
convergence induce the topology on the set{µ j}. Henceµ j → 0 in D○

′

c .
Now we go to the case of a continuous, bounded functionÐ→ϕ (x)

with values inE.
To show that∫ Ð→ϕ (x)dµ j(x) → 0 we have to show that given any

convex neighbourhoodV of 0 in E, there exists ajV such that forj ≥ jV
we have∫ Ð→ϕ (x)dµ j(x) ∈ V. Let B be the set of values{Ð→ϕ (x)}. B

is bounded and hence
⌢
B also. Hence there exists anε > 0 such that

ε
⌢
B ⊂ V

2 . Let K be a compact subset ofG+ such that theε(K) that
corresponds toK is less thanε. Let α be a continuous function equal
to 1 or K and with compact support, satisfying 0≤ α(x) ≤ 1 for every
x ∈G+. Thenµ j(Ð→ϕ ) = µ j(αÐ→ϕ )+ µ j((1−α)Ð→ϕ ), i.e., ∫

G+

Ð→ϕ (x)dµ j(x) =
∫

G+

α(x)Ð→ϕ (x)dµ j(x)+ ∫
G+

(1−α(x))Ð→ϕ (x)dµ j(x). Sinceα(x)Ð→ϕ (x) is a

continuous function with compact support, we have ajV such that for
j ≥ jV,

∫
G+

α(x)Ð→ϕ (x)dµ j(x) ∈ V

2
.
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Also ∫
G+

(1− α(x))Ð→ϕ (x)dµ j(x) = ∫
[K
(1− α(x))Ð→ϕ (x)dµ j(x) 99

∈ ⌢B∫
[K

∣dµ j ∣

∈ ε⌢B ⊂ V

2
.

Hence ∫
G+

Ð→ϕ (x)dµ j(x) ∈ V. This proves our proposition. �
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Lecture 19

Representations of
semi-groups (contd.)

Let , from now on,G+ denote a closed convex cone inRn, containing 100

the origin. We shall assume thatG+ is the closure of its interior.G+ is a
topological semi-groups.

Definition 19.1. A distribution T on Rn is said to be G+ summable if
T has its support in G+ and T = ∑Dpµp whereµp are summable mea-
sures on Rn. The space of G+ summable distributions will be denoted by
D
′

L1(G+).
If T ∈ D

′

L1(G+) and T′ ∈ D
′

L1(G+) then T∗ T′ ∈ D
′

L1(G+). If
T = ∑Dpµp,T′ = ∑Dqνq then T∗ T′ = ∑Dp+qµp ∗ νq. If α ∈ D(Rn)
with support in G+ and T ∈ D ′L1(G+) thenα ∗ T hasits support in G+
andα ∗ Tdx is a summable measurein G+.

Definition 19.2. A sequence{T j} of G+ summable distributions is said
to converge to zero strictly if Tj = ∑

∣p∣≤m
Dpµp, j with m independent of j,

and{µp, j} is, for every p, a sequence of summable measures tending to
zero strictly.

If {T j} and{S j} are two sequences of summable distributions strict-
ly tending to zero, then{T j ∗S j} tends to zero strictly.

We have seen how one can define U(µ) for µ ∈MG+ . Now we shall
see how one can define U(T) for T ∈ D

′

L1(G+). However U(T) will

109
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not, in general, be defined on the whole of E. But the domain ET of
U(T) will be a dense subspace of E.

Definition 19.3. Let H be the filter having for a base the sets Aε,
for everyε > 0, defined as follows:

Aε =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α∣α ∈ (Rn), Support ofα ⊂G+, α ≥ 0,
1− ε ≤ ∫ α ≤ 1+ ε and support ofα contained
in a ε-neighbourhood of0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
101

Definition 19.4. Let T ∈ D
′

L1(G+). Let ET be the set of elements x of E
such thatlim

F
U(α ∗ T)x exists in E and for x∈ ET define U(T)x to be

lim
F

U(α ∗ T)x. (lim
F

denotes the limit asα → δ following the filterF .

U(α∗T)x has a meaning for every x∈ E, sinceα∗T has its support in
G+ and defines a summable measure in G+).

Definition 19.5. We defineD(G+) to be the subspace of functions in
D(Rn) whose supports are contained in G+ and DL1(G+) to be the
space of C∞ functions on Rn with supports in G+ and with summable
derivatives of all orders.

Proposition 19.1. For T ∈ D ′L1(G+), ρ ∈ DL1(G+) and x∈ ET we have
U(ρ ∗ T) = U(ρ) ○U(T)x.

Proof. ρ being a summable function with support inG+ρ(x)dx is a
summable measure, with support inG+. We denote this measure also
by ρ. U(ρ) andU(α ∗ T) are continuous linear operators inE and we
have

U(ρ) ○U(α ∗ T)x = U(ρ ∗ α ∗ T)x
Now, letα → δ following the filterF . SinceU(ρ) is a continuous map
of E in E. We have

lim
F

U(ρ) ○ U(α ∗ T)x = U(ρ) ○ U(T)x for every x ∈ ET . Also

ρ∗α∗T = α∗ρ∗ T (commutativity), and asα→ δ following F , α∗ρ∗

T → ρ∗T strictly (Lemma 17.2). Hence lim
F

U(ρ∗(α∗T))x = U(ρ∗T)x.

ThusU(ρ ∗ T)x = U(ρ) ○U(T)x for everyx ∈ ET . �
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Proposition 19.1′ . Let S,T ∈ D ′L1(G+), x ∈ ET . Thenx ∈ ES∗T if and102

only if U(T).x ∈ ES and if it is so

U(S ∗ T)x = U(S) ○U(T)x.
Proof. If S is an integrable distribution andα ∈ D(G+). Thenα ∗ S ∈
DL1(G+). Take forρ the elementα ∗ S of DL1(G+) in the previous
proposition. SinceU(α∗S∗T)x = U(α∗S) ○U(T)x, whatever bex ∈
ET , we see that if any one of lim

F
U(α∗S∗T)x and lim

F
U(α∗S)U(T)x

exists, the other also exists and we have the equality of the two limits.
Thus if x ∈ ET we havex ∈ ES∗T if and only if U(T)x ∈ ES and then
U(S ∗ T)x = U(S)U(T)x. �

Corollary 1. If ϕ ∈ DL1(G+), the element U(ϕ)x ∈ ET for every T ∈
D ′L1(G+). Moreover U(T)U(ϕ)x = U(T ∗ ϕ)x.

Corollary 2. ⋂
T∈D ′

L1

ET(G+) is dense in E. In fact, ifϕ ∈ D(G+) tends to

δe = δ following the filterF ,U(ϕ)x→ Ix = x.
In particular, we have also ET dense in E for every T∈ D ′L1(G+).
Proposition 19.2. The mapping(T, x) → U(T)x is a closed mapping.
That is to say, if{T j} is a sequence of summable distributions with
supports in G+ and tending strictly to T and if{x j} is a sequence of
elements of E tending to x and if U(T j)x j has a meaning for each j and
if lim U(T j)x j = y in E, then U(T)x has a meaning and U(T)x = y.
(The word mapping is not used here in the usual sense. U(T)x need not
be defined for every x).

Proof. We shall, in fact, prove a result somewhat stronger than the one
that we have stated. Even whenU(T j)x j → y weakly in E, we shall
show thatx ∈ ET and thatU(T)x = y. Forα ∈ D(G+), U(α ∗ T j)x j = 103

U(α)○U(T j)x j from Proposition 19.1. Forα fixed inD(G+), α∗T j →
α ∗ T in the sense of strict convergence of measures. HenceU(α ∗ T j)
remains in an equicontinuous set of linear maps ofE in E and tends to
U(α ∗ T) in Ls(E,E).
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If {V j} is a sequence of elements lying in an equicontinuous set of
linear maps ofE in E and if V j → V in Ls(E,E) and if x j → x ∈ E, the
sequenceV j x j → Vx in E. In fact,

Vx−V j x j = (V −V j)x+V j(x− x j)
Since[V j] is equicontinuous andx − x j → 0 in E, V j(x − x j) → 0 in
E. ([V j] denotes the set of the linear mapsV j). SinceV − V j → 0 in
Ls(E,E), for every fixedx ∈ E, (V −V j)x→ 0 in E.

Taking forV j the sequenceU(α ∗ T j) we see thatU(α ∗ T j)x j →
U(α ∗ T)x in E as j → ∞. SinceU(α) is a continuous linear map of
E in E it is also weakly continuous. Hence ifU(T j)x j → y weakly
in E, U(α) ○ U(T j)x j → U(α)y in E weakly. ButU(α) ○ U(T j)x j →
U(α∗T)x strongly inE. Hence we must haveU(α)○U(T j)x j → U(α)y
strongly in E andU(α)y = U(α ∗ T)x. If α → δ following the filter
F ,U(α)y→ y in E. Hence lim

F
U(α∗T)x exists and is equal toy. That

is to say,U(T)x has a meaning andy = U(T)x. �

Corollaries:

1) For eachT ∈ D
′

L1(G+),U(T) is a closed operator. For, ifx j →
x in E and U(T)x j → y in E, choosingT j = T in the above
proposition, we see thatU(T)x has a meaning andU(T)x = y.

2) If x is an element ofE such that104

weak lim
F

U(α ∗ T)x = y

exists, thenx belongs to the domain ofU(T) andU(T)x = y and
y = lim

F
U(α ∗ T)x in E.

3) If S j is a filter of summable distributions strictly converging toδ
and if U(S j ∗ T)x is defined for everyj and if U(S j ∗ T)x → y
weakly inE, thenx ∈ ET and limU(S j ∗ T) = U(T)x.

4) For defining the operator corresponding toT ∈ D ′L1, even if we
choose for the filterF ′ a filter finer than the filterF used above
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and require the limit to exist only weakly we will get the same
operatorU(T), i.e., the domain ofU(T) will not be enlarged.
For if F ′ = ϕi is a finer filter, thenϕi ∗T will tend toT strictly. If
weak lim

F
U(ϕi ∗T)x = y exists, then by the proposition limU(α j ∗

T)x exists and is equal toy.

We thus see that the definition forU(T) we have chosen is the most
general one; it gives the largest possible domain of definition forU(T).
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Lecture 20

Representations of
semi-groups (contd.)

Let X be a tangent vector to the coneG+ at the origin. If for anyϕ ∈ 105

D(G+) defineX(ϕ) = derivative ofϕ at 0 along the directionX, X can
be considered as a distribution. It is an element ofD ′L1(G+). In fact X
has a compact support, the point ‘0’. The operatorU(X) is called the
infinitesimal generator corresponding to the tangent vectorX at 0. The
directional derivativeX(ϕ) is by definition

lim
t→○

ϕ(tX) − ϕ(0)
t

.

Hence X(ϕ) = lim
t→○

δtX−δ○
t (ϕ).

Proposition 20.1. U(X)x exists if and only if

lim
t→○

U(δtX) − I

t
x exists, and

lim
t→○

U(δtX) − I

t
x = U(X)x.

Proof. Assume that lim
t→○

U δtX−δ○
t x exists. Now δtX−δ○

t → x strictly as

t → 0. By Proposition 19.2, we see thatU(X)x exists and is equal
to lim

t→○

U(δtX)−I
t x.

115
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Conversely, suppose thatU(X)x has a meaning. We have

lim
t→○

δ(tX) − δ(○)
t

= lim
t→○
(X ∗ µt)

whereµt is a measure, concentrated on the line segment joining the vec-
tors 0 andtX, which is homogeneous and gives to the segment a total
mass 1. IfU(X)x exists, by Proposition 19.1’, we have, asU(µt)U(X)x
exists,U(µt ∗ X)x = U(µt)U(X)x. But due to commutativityµt ∗ X =106

X ∗ µt. HenceU(X ∗ µt)x = U(µt)U(X)x. But sinceµt → δ strictly, we
have

lim
t→○

U(X ∗ µt)x = U(δ)U(X)x
= U(X)x.

Hence, if U(X)x exists, lim
t→○

U(X ∗ µt)x exists. In other words,

lim
t→○

U(δ(tX)−I
t x exists and is equal toU(X)x. �

Proposition 20.2. Let x∈ E. The following four properties are equiva-
lent:

i) U(T)x exists for every T∈ E ′1G+ .
ii) U (T)x exists for every T∈ E ′1

○
, i.e. U(X)x exists for every X∈ Rn.

iii) The function U(∧s) × (s→ U(s)X) belongs toE1
s(E). [We shall

say that a function on a cone is once continuously differentiable
if it is once continuously differentiable in the interior and the
derivatives have a continuous extension to the cone].

iv) The function U(∧s)x has weak derivatives at the origin in every
direction along the cone.

Proof. Evidently i) implies ii). ii) implies i) sinceT ∈ E ′1G+ can be
written asT = ∑µi ∗

∂
∂xi

, whereµi are summable measures with sup-
ports inG+ (Whitney regularity) and we any apply Proposition 19.1’.
ii) implies iii): Let X1, . . . ,Xn be independent vectors tangential to the
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cone. If s○ is an interior point of the cone, using the method of proof

of Proposition 20.1, we see thatU(∧s)x is differentiable in the direction
Xi(i = 1, . . . ,n) at s○ and that the derivative is equal toU(s○)U(Xi)x.
U(Xi)x being a fixed vector inE, the functions → U(s)U(Xi)x is a
continuous function on the cone. Since theXi form a base forRn, it fol-
lows thatU(∧s)x ∈ E1

s(E). iii) implies iv), as is easily seen. iv) implies
ii) by Proposition 19.2. �
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Lecture 21

Remarks on the
representation of
non-commutative Lie
semi-groups

LetG be a Lie group of dimensionn andG+ a sub semi-group ofG such 107

that

i) G+ is closed inG;

ii) the unit element ofG belongs toG+.

iii) G+ is the closure of its interior.

We callG+ a Lie semi-group.
We denote byD ′L1(G+) the set of distributionsT onG with support

in G+ which are of the form

T =∑
p

Dp ∗ µp (finite sum)

whereDp are distributions1 in G with support at the unit elemente, and
µp are summable measures onG. A sequenceT j ∈ D ′L1(G+) is said

1By a distribution we mean a continuous linear form on the space of indefinitely
differentiablefunctionsonG with compact supports.

119
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to converge to zero strictly ifT j = ∑
p

Dp ∗ µp, j , whereDp are fixed

distributions with support ate of order at mostm, and if for everyp the
measuresµp, j converge to zero strictly.

Let U be a representation ofG+, by equicontinuous operators inE.
For T ∈ D ′L1(G+) we shall define a linear operatorU(T) on E. Let
F = {α j} be a filter ofC∞ n-forms, (n = dimension ofG) of the second
kind (odd type) onG such that

i) {α j} have compact supports contained inG+;

ii) α j ≥ 0, for every j;

iii) The support ofα j tends uniformly to the unit element ofG;108

iv) ∫
G
α j → 1.

By definition the domainET of U(T) will consist of thosex in E
for which lim

F
U(α ∗ T)x exists andU(T)x is defined to be this limit.

(Note the order in whichα andT enter in the convolution).

Remark . If F
′ is another filter having the same properties asF and

U′(T) the corresponding operator, it will follow from the results to be
indicated later, thatU(T) andU′(T) have the same domain of definition
and are equal on their common domain of definition.

Proposition 19.1 is true also in the non-abelian case, ifρ is a C∞

form with compact support. To uphold this proposition in the non-
abelian case we have to prove the following: ifD is a distribution with
support at the origin andµ a summable measure, then(ρ∗α)∗(D∗µ)→
ρ∗D∗µ strictly asα→ δ following F . For this, it is sufficient to prove
thatρ ∗ α ∗D→ ρ ∗D strictly. But this follows from the separate conti-
nuity of the convolution mapDn

× E1 → Dn.
Proposition 19.1’ is also true, ifS has compact support. Proposition

19.2 is also true; proof is the same.
Supposex is an element ofE such that lim

F
U(T ∗ α)x = y exists

(T ∈ D ′L1(G+)). SinceT ∗ α → T strictly we see, using Proposition
19.2 thatx belongs to the domain ofU(T) andU(T)x = y. Thus the
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definition for U(T) we have given using convolution on the left byα
gives a domain of definition forU(T) which is larger than the domain
we would have obtained if we chose to convolve on the right byα.
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Appendix
Representations of the
semi-group of positive reals.
Hille-Yosida Theorem for
complete locally convex
spaces

In this section we take forG+ the (additive) semi-group of positive real109

numbers.

Let U be a representation (equicontinuous) ofG+ in E. The linear
operatorU(−δ′) (δ′ = first derivative of the Dirac measure) is called
the infinitesimal generator of the representation. We shall show that
every complex numberp with Rl p > 0 is in the resolvent set of the
infinitesimal generator. We havepI − U(−δ′) = U(pδ + δ′). We have
further, inR, (pδ+δ′)∗Y(t)e−pt = Y(t)e−pt

∗(pδ+δ′) = δ,Y(t) denoting
the Heaviside function. Now forRl p > 0,e−pt is a summable measure
in G+ and henceU(ept) is a continuous linear operator inE (see Lemma
17.3). SinceU(δ) = I , using Proposition 1′, we see thatU(e−pt) is the
inverse ofpI −U(−δ′).

We shall now prove an equicontinuity property of the resolvent op-
erators of the infinitesimal generatorA of the one-parameter semi-group

123
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U(t). Since

(δ + δ′
p
) ∗ pe−pt = δ(p > 0),

as before we see, using Proposition 1′, thatU(pe−pt) = (I − A
p)−1. But

as
∞

∫
○

pe−ptdt = 1 we see that (see Lemma 17.3)U(pe−pt) belongs to the

convex closed stable envelope
⌢
U of the setU = {U(t), t ≥ 0}. In a

similar way, we see that(I − A
p)−m(p > 0,m= 1,2, . . .) ∈ ⌢U . Hence the

set of operators{(I − A
p)−m}, asp runs through strictly positive numbers

andm through positive integers, is equicontinuous (withU ).

We shall now show that the equicontinuity condition we proved for110

the resolvent operators of the infinitesimal generator of a one-parameter
semi-group is also sufficient to ensure that a densely defined linear oper-
ator inE be the infinitesimal generator of a one-parameter semi-group.
The problem here is to define the exponential of such an operator. Be-
fore going into this problem we shall first consider the question of defin-
ing the exponential of a continuous linear operator.

The exponential of a continuous linear operator.
Let E be a completeELC andT a continuous linear operator ofE

into itself. We try to define exptT as a continuous linear operator by
means of the series2

(exptT)x = ∞∑
k=○

(tT)kx

k!
(x ∈ E) (t ≥ 0).

The series will converge for everyx ∈ E and represent a continuous lin-
ear operator ofE into itself, at least ifT and its iteratesTk(k = 2,3, . . .)
are equicontinuous. Actually the series

∞

∑
k=○

(tT)kx
k! will converge at every

x ∈ E if the set{T,T2, . . .} is weakly bounded. For then ifq is any

2If E is a Banach space, the series∑
(tT)k

k!T
converges in the uniform topology forany

continuous linear operatorT of E into E.
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continuous semi-norm onE, we have

m

∑
k=○

q((tT)kx)
k!

= m

∑
k=○

tkq(Tkx)
k!

≤ C
∞

∑
k=○

tk

k!
,

C being a positive constant, so that the series
∞

∑
k=○

q((tT)kx)
k! is convergent.

SinceE is complete, it follows that
∞

∑
k=○

(tT)kx
k! is convergent inE. To

show, under the hypothesis that the set{T,T2, . . .} is equicontinuous,
that x → (expT)x is a continuous operator, it is sufficient to show that

the operatorsBn = n
∑
k=○

(tT)k

n! are equicontinuous since the pointwise limit111

of a sequence of equicontinuous linear operators is a continuous linear
operator. To show this we use the following criterion for equicontinuity
which will also be used later. Let{Bα} be a family of linear operators
of E into E; in order that{Bα} be equicontinuous, it is necessary and
sufficient that the following condition be satisfied: for every continuous
semi-normq on E there exists a continuous semi-normp on E and a
strictly positive numbera such that

q(Bα(x)) ≤ ap(x), for every α and x ∈ E.

(see Espaces Vectoriels Topologiques, Ch. II, by N. Bourbaki). To prove
that the aboveBn are equicontinuous, letq be a continuous semi-norm
on E. Since{Tk}k=0,1,... are equicontinuous there exists a continuous
semi-normp anda > 0 such thatq(Tkx) ≤ a p(x)k (k = 0,1, . . . , x ∈ E).
Now

q(Bnx) = q( n

∑
k=○

(tT)kx

k!
) ≤ n

∑
k=○

tkq(Tkx)
k!

≤ (a.expt)p(x)
which shows thatBn are equicontinuous. One proves the same way the
following results.

i) Writing Ttx = exp(tT)x, the mapt → exptT x is a continuous
function from(0,∞) in E, for everyx ∈ X, and
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(a) lim
h↓○

Thx−x
h exists for everyx ∈ E and in equal toT x;

(b) lim
h→○

Tt+hx−Tt x
h exists fort > 0 andx ∈ E and equal toTtT x =

TTtx.

ii) Let T andS be two continuous linear operators such thatS T =
TS and such that{Tk} and{Sk} are equicontinuous. Then

n

∑
k=○

tk(T +S)k
k!

converges pointwise to a continuous linear operator exp(t(T +
S) = exptT.exptS = exptS.exptT and

lim
h↓○

exph(T +S)x− x

h
= (T +S)x, x ∈ E

112

lim
h→○

exp(h+ t)(T +S)x− expt(T +S)x
h

= expt(S + T) (S + T)x
= (S + T)expt(S + T)x (x ∈ E).

We now prove the
Theorem (Hille-Yosida). Let E be a completeELC. Suppose thatA
is a densely defined linear operator onE such that for every strictly
positive p, (I − A

p)−1 exists and such that the familyF of operators

{(I − A
p)−m} (p strictly positive,m = 1,2, . . .) is equicontinuous. Then

there exists a uniquely determined representationT(t)(t ≥ 0), which is
equicontinuous withF , whose infinitesimal generator isA.

Proof. We follow Yosida’s method of proof.
Writing Jλ = (I − λ−1A)(λ > 0) we have evidently:AJλx = λ(Jλ −

I)x, x ∈ E andAJλx = JλAx = λ(Jλ − I)x, for x ∈ D(A), whereD(A)
denotes the domain ofA. We shall prove thatJλx → x, asλ → ∞, for
everyx ∈ E. If x ∈ D(A), Jλx− x = λ−1Jλ(Ax) and henceJλx− x→ 0 as
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λ →∞, as the set{Jλ(Ax)} is bounded. SinceD(A) is dense inE and{Jλ}λ>0 is equicontinuous, it follows thatJλx→ x for everyx ∈ E.
Set

T(λ)t = exp(tAJλ) = exp(tλ(Jλ − I)) = exp(−λt)exp(λtJλ).
It is easily seen, using for example the criterion for equicontinuity used
earlier, that the operators{T(λ)t }(λ > 0, t ≥ 0) are equicontinuous with
F . We remark thatJλJµ = JµJλ, λ, µ > 0. We now prove that as

λ→∞,T(λ)t converges in the topology of simple convergence, to a con-

tinuous linear operatorTt and for fixedx, T(λ)t x→ Ttx uniformly when 113

t lies in a compact set. To prove this, letq be a continuous semi-norm on
E. Since{T(λ)t } are equicontinuous there exist a continuous semi-norm

p anda > 0 such thatq(T(λ)t x) ≤ a p(x) for λ > 0, t ≥ 0 and everyx ∈ E.
Forλ, µ > 0 andx ∈ D(A)

q(T(λ)t (x) − T(µ)t x) = q
⎡⎢⎢⎢⎢⎣

t

∫
0

d

ds
{T(µ)t−s T(λ)s x}ds

⎤⎥⎥⎥⎥⎦
= q
⎡⎢⎢⎢⎢⎣

t

∫
0

T(µ)t−s T(λ)s (AJλ − AJµ)x
⎤⎥⎥⎥⎥⎦

≤ ta2p[(JλA− JµA)x] ,
and(JλA− JµA)x→ 0, asλ, µ→∞ asx ∈ D(A). So lim

λ,µ→∞
q(T(λ)t (x)−

T(µ)t x) = 0 uniformly whent lies in a compact set. SinceD(A) is

dense inE and the set of operators{T(λ)t } is equicontinuous, we see

that lim
λ→∞

T(λ)t x ≡ Ttx exists for everyx ∈ E and t uniformly in any

compact set that the set of operators{Tt}t ≥ 0 is equicontinuous with
F . From the uniform convergence,t → Tt is a continuous map oft ≥ 0.
To prove thatTt+s = TtTs, let q be a continuous semi-norm and leta and

p have the same meaning as before. Then, usingT(λ)t+s = T(λ)t T(λ)s ,

q((Tt+s− TtTs)x) ≤ q(Tt+s− T(λ)t+s x) + q(T(λ)t+s x− T(λ)t T(λ)s x)
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+ q(T(λ)t T(λ)s − T(λ)t Tsx) + q(T(λ)t Tsx− TtTsx)
≤ q(Tt+sx− T(λ)t+s x) + ap(T(λ)s x− Tsx)
+ q[(T(λ)t − Tt)(Tsx)]→ 0.

Sinceq(Tt+sx− TtTsx) = 0 for every continuous semi-normq, we must
haveTt+s = TtTs.

Let A′ be the infinitesimal generator of the semi-groupTt. We have114

to show thatA′ = A. To show this, it is sufficient to show thatA′ is an
extension ofA (i.e., x ∈ D(A) implies x ∈ D(A′) andAx = A′x). For,
t → Tt being an equicontinuous representation,(I −λ−1A′) ∶ D(A′)→ E
is a bijection forλ > 0 and by hypothesis(I − λ−1A) ∶ D(A) → E is a
bijection, for λ > 0, so thatD(A) = D(A′). To prove thatA′ is an

extension ofA′ let x ∈ D(A). ThenT(λ)s AJλx → TsAIx. For if q is a
continuous semi-norm, we have

q(TsAx− T(λ)s AJλx) ≤ q(TsAx− T(λ)s Ax) + q(T(λ)s Ax− T(λ)s AJλx)
≤ q[(Ts− T(λ)s )(Ax)] + ap(Ax− JλAx)
→ 0, as λ→∞, (since JλAx→ Ax).

Now, Ttx− x = lim
λ→∞

T(λ)t x− x

= lim
λ→∞

t

∫
0

T(λ)s AJλx ds

=
t

∫
0

lim
λ→∞

T(λ)s AJλx

=
t

∫
0

TsAx

so that lim
t↓○

Tt x−x
t exists and equal toAx, i.e., if x ∈ D(A), thenx ∈ D(A′)

andA′x = Ax.
The uniqueness ofTt follows from the following fact, which is

proved the same way as in the case of Banach spaces: Ift → Tt is a
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representation (equicontinuous) andA is the infinitesimal generator of
Tt then

Ttx = lim
λ→∞

exp(tAJλ)x, for every x ∈ E.

�

Remarks. (i) In a Banach space the condition of the theorem reads:
there exists a constantM > 0 such that

∥ (λI − A)−m ∥≤ M/λm (for m= 1,2, . . . , λ > 0)

(ii) For the proof of the theorem it is sufficient to assume thatE is
quasi-complete.
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