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Introduction

Different kinds of problems can be put about partifiledéntial equa-

tions.

a)

b)

Local problems, i.e. problems of regularity of solutions when we
know the degree of regularity of the dtieients and the second
member.

Boundary value problems These problems generally have a
physical origin. As an example we have the first boundary value
problem — the famous Dirichlet problem — for the Laplacian. We
have a bounded domaid with a smooth boundary iR"; we are
given a functiong in Q and a functiorh on the boundary of2.

The problem is to find a functio in Q such thatAf = gin Q
2

n

and f = h on the boundary of). |A=} % .Another prob-
i=1 0X;

lem is Neumann'’s problem fok: find f suchI thatAf = gin Q

and% = h on the boundary. We can also consider the problem

whereinf is prescribed on a part of the boundary éan%lon the

n
rest of the boundary. Under suitable assumptiorgandh these
problems have one and only one solution. The problems with a
physical origin are usually well-posed.

Mixed problems or initial and boundary value problems. Let
Q be a bounded domain with a smooth boundsiry\Ve consider
the problem of heat conduction . From a physical point of
view, it is clear that the knowledge of the temperaturQiat time



0 and that of the temperature at the boundary at every time
should completely determine the temperatur€iat any timet.
The corresponding problem is this: given a functigiix) in Q
and a functiorh(x,t), t > 0, x € S, find a functionu(x,t) such
that

) ou(x,t)
ot

i) u(x,0)=up(x) (initial condition)

i) u(xt) =h(xt) for everyt > 0 andx € S (boundary condi-

tion)

= Au(x, t)

Another problem of this type arises when we know the initial tem-
perature of the body and the amount of heat that flows across the
boundary at every subsequence moment. The problem is to find
u(x,t) such that

i 8”(8):’0 = AU(x,t)
i) u(x0) =up(x)
i aug],t) ~h(xt) (t>0,xeS).

We shall formulate these problems, or rather weaker versions of
these, in the framework of spaces of distributions and solve them.
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Mixed Problems in Partial
Differential Equations






Lecture 1
Vector valued Distributions

Notations. & denotes the space 6f° functions with compact supports.
onRN,

& denotes the space of all* functions onRN. .#denotes the
space of ‘rapidly decreasing’ functions Bf. All these spaces are pro-
vided with their usual topologies. (See “Theorie des distributions” by L.
Schwartz, Vol. 1 and 2) We denote B/, &’ and.#’ the strong duals of
2,8 and.¥ respectively.2’, & and.’ are respectively the space of
distributions orRN, the space of distributions with compact support on
RN and the space of ‘tempered’ distributions RM.

Definition of a vector valued distribution:
Let E be a locally convex Hausdfrtopological vector space. We
will refer to such a space dsLC.

Definition 1.1. A linear continuous map fronw to E is defined to be
an E-valued distribution or a distribution with values in E.

Remark . The space ofE-valued distributions depends only on the
bounded sets dt.

Proof. Since 2 is bornological (Theorie des distributions, Tome 1,
p. 71) a linear map fron¥ to E is continuous if and only if it takes
bounded sets a¥ into bounded sets &. Hence the space &-valued
distributions depends only on the bounded sets.ah particular if we
replace the topology dE by the weakened topology, due to the iden-
tity between the bounded sets in the initial topology and the weakened

1



2 1. Vector valued Distributions

topology, we have the space Bfvalued distributions to be the same
algebraically in the above two cases. m|

We denote by?’(E) the space oE-valued distributionsTopology
of 2'(E). On 2’'(E) we put the topology of uniform convergence on
bounded sets of/. Since bounded sets ¢ are relatively compact,
the topology that we introduce is the same as the topology of uniform
convergence on compact setsaf

Examples of vector valued distributions:

Let T be a distribution oiRN and € a fixed vector of. T€ defined
by T€(¢) = T(¢)€ for everyy € 2 is anE-valued distributionT €
maps the whole of7 either into a one-dimensional subspaceEobr
into zero according ag€ # 0, T # 0 or one of the quantitiesandT is
zero.

The map(T, €) — T€ of 2'xEinto 2'(E) is a bilinear map and
hence induces a linear map 2’ ® E —» 2'(E). This map I’ is an
injection. For, let{ €,} be a basis oE. Any element of?’ ® E can be
written asy T, ® €,, T, € Z’. Now,i(¥ T, ® €,) = ¥ T, €,. Hence
ifi(XT,®€,)=0,wehavey T,€,=0,0ryT,(¢)€, =0 for every
¢ € 2. The linear independence of thé,’s givesT, (¢) = 0 for every
e 2. Hencey T, ® €, = 0, which proves that* is an injection.

It is easy to see that the image &f ® E under this injection is
the space of continuous linear maps freminto E which are of finite
rank, that is to say, which mag into a finite dimensional subspace of
E. WhenE is finite dimensional, everig-valued distribution is of finite
rank and s@?’(E) can be identified algebraically with’ ® E. WhenE
is finite dimensional by choosing a basi,, ..., €y, of E we see that
anyT> € 9'(E) can be written as

_
T=T1€1+To€2++Tm€m

whereTy,..., Ty are uniquely determined scalar distributions. Instead
of giving T it suffices to give then-scalar distributiond, To, ..., Tm.

Now we give an example of a distribution which can have infinite
rank.



If fisacomplexvalued continuous function we know thalefines
a distribution, also denoted Wy in the following way:

f(go):ff(x)(p(x)dx forevery ¢e 2.
RN

We shall now define an analogous vector valued distribution. H.et

be a completELC. If ¢ € 2 the function—f)np defined by—f)go(x) =

¢(x) f(x) is anE-valued continuous function with compact suppdt.

being complete, the integrgl f(x)¢(x)dx (for the definition of this
N

R
integral, see Bourbaki, Integration, Chap.lll § 4) is an elemei.of
The mapp - f (¢) = [ f(X)e(x)dx which is evidently linear,
N

is anE-valued distribution? We have to prove the continuity of the map
¢ - —f)(go) of 2 in E. Suppose{¢n} is a sequence of functions alll
having their supports in a fixed compact Beand tending uniformly to

0, together with all their partial derivatives. L'¥tK) be the volume of
the compact sdt. Then

f F(x)e(x) dxe mV(K) T (K)

RN

(Bourbaki, Integration, Chap. Ill, § 4).

—

wherem = sup|p(Xx)| and_f)(K) is the convex, closed envelope of the
xeK

—

compact set_f)(K). SinceE is complete_f)(K) is compact.
Hence

[ T e dxe mv(K) T (K),
RN
wherem, = suplgn(X)]. If ¢n tend to O uniformly onK, we have
xeK
_f)(t,on) — 0in E. This proves the continuity of the map— _f)(tp).
The identity distribution . The identity map o7 into Z is a continuous
linear map ofZ into 2, hence it is &7-valued distribution.



4 1. Vector valued Distributions

Definition 1.2. An E-valued distributionT : 2 — E is said to be of
order m, m an integee O, if T can be extended into a continuous
map from%™ to E. (For the definition and the topology 6f™ refer to
“Theorie des distributions”, vol. 1).

One knows that a scalar distribution is locally of finite order. But the
analogous result is in general false for vector valued distributions. For
example, the identity distribution (example (2.3))is of infinite order in
every open subset. In fact,iif ¥ — Z is of finite order, everf-valued
distribution, E being a complet& LC, will be of finite order. For, let
f : 2 - E be anE-valued distribution and: 2™ - 2 be the extension
of i into a continuous linear map /™ in 2. Thenf = foi: 2™ - Eis
an extension of into a continuous linear map &#™ into E. But given
any open se® there exists a distribution ai with values inC (field of
complex numbers) which is of infinite order.

Suppose andF are two locally convex Hausdffispaces such that
E is a subspace df with a finer topology. It may happen that &3
valued distributionT which is of infinite order becomes a distribution
of finite order considered as a distribution with valueE ir-or example
takeE = 2 andF = 2’. The identity distribution ofZ with values in
2 is of infinite order. But considered as@ -valued disﬁibution it is
given by the indefinitely dferentiableZ’-valued functionf defined as
_f)(a) = §a, 03 being the Dirac distribution &&’. It is easily seen thaf
is aC*, 2'-valued function. We now verify that the distribution given
by T is the same as th@’-valued distributioni’.

The distribution defined by_f> maps anyy € Z into the element

_f>((,0) = [ f(a)p(a)daof 2'. Now, | claim _f)(tp) Is the same as the
RN
elementi(y) of 2'. i(y), considered as an element & maps any
Y € 2 into the elementp(y) = [ ¢(a)y(a)daof C. To show that
RN

_f)(go) =i(¢) we have to show merely

(T(@).0) = (v) forevery yeg.



Now,

(T@.0=( [ T@e@dav) - [(T(@(a).v)da

RN RN

- [(oaw(@).v)da= [ p(@)(6av)da

RN RN

- [w@w(@)da
RN

= o(¥).
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Lecture 2

Vector valued Distributions
(Contd.)

Let E andF be two locally convex Hausdfirspaces andi : E —~ F 6
be a continuous linear map. T : 9 > Eis anE-valued distribution
Uo T : 2 - F is anF-valued distributionuo T is called the image of
T by u. The distributionu o T has at least as simple propertiesﬁs
For example, ifT is of finite orderuo T is of finite order. The support
of uo T is contained in that off . In particular, if T has a compact
support,u o T has a compact support. ¥ is given by a function
TRV S E, thenuo T is given by the functiomio f : RN - F. This
follows immediately from the equality

u(f _f>(x)¢,p(x)dx)=fu(?(x))¢(x)dx

RN RN

Every distributionT : 2 — E is a continuous image of the identity
distribution for T = T o . In this sense the identity distribution is
the worst possible distribution. Suppo?)eE 2'(E) ande’ € E',E’
denoting the dual dE. Write forg € 2, (<p|?| = ?(<p) and<<p|?|‘€’) =
/(T (¢)). The mapping, T,€") - (¢|T[€’) is a trilinear form
onZxP'(E)xE. €'o T is a scalar distribution and we denote this
distribution by| T |€”).



8 2. Vector valued Distributions (Contd.)

Proposition 2.1. If T is an E-valued distribution, the map front ©
— —
' which takese’ into | T |'€”) is the transpose of the map : Z — E.

Proof. We have

|?|?’)(g&)=(tp|?|<€,> forevery ¢e 2

~(T(¢), € )ep
t
= (go,?(@').

This proves the proposition. |

Let E be a locally convex Hausdfrtopological vector space, we
denote byE/ the dual ofE endowed with the topology of uniform con-
vergence on convex, compact, stable subsets. dy Mackey'’s theo-
rem (BourbakiEVT, Tome 2, Chapter IV, Theorem 2), the dualkffis
identical withE. Moreover ifE andF areELC andu: E — F is a con-
tinuous linear map, the transpdse F, — E. is continuous, because
maps convex, compact, stable subsetg ofto convex, compact, stable
subsets of. . .

Now, supposeT : ¢ — E is anE-valued distributiod T : E, — 2’
is a continuous map fa?’ = 7. Conversely, we have

Proposition 2.2. If u : E; - 2’ is a continuous linear map, it is the
transpose of a uniquely determined E-valued distribution.

Proof. Letu: EL - 2’ be a continuous linear map. Than: (EL)~ «
(2")¢ is a continuous linear map. B@Z7'); = 2, and (E{); has a
topology finer than the topology &. [(E(); is algebraically the same

as E by Mackey’s theorem]. To prove that the topology (&); is

finer than that ofE, we first remark that the initial topology o is

the topology of uniform convergence on equicontinuous subseis. of

To prove our assertion, we have only to show that any equicontinuous
subset oE’ is contained in a convex, compact, stable subsEfofet A

be any equicontinuous subsetkt Let A be the convex, weakly closed
stable envelope d&. A is then weakly compact and equicontinuous. But
on equicontinuous subsets the topology of compact convergence and the



weak topology coincide. Hence i& a compact subset &. Since the
topology of (E{)¢ is finer than that oE, t, : E < & is also continuous.
This proves our proposition, &) = u. O

The above proposition shows that the vector spag€%/, E) and
Z(E[, 2") are algebraically isomorphic.
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Lecture 3
Spaces of distributions.s7

Definition 3.1. A space of distributions?’ is, by definition, an ELC 9
which is contained i’ as a linear subspace with a finer topology:
that is to say, the injection:i.z — 2’ is continuous.

Definition 3.2. A space of distributiong?’ is said to be normal if7 is
contained insZ with a finer topology an@ is dense in/”.

Proposition 3.1. If 77 is a normal space of distributions,
1) the space’ is a normal space of distributions, and

2) the space; (the dual of7# with the topology of uniform con-
vergence of bounded sets.#f) is a space of distributions.

Proof. The space’” is first of all a subspace @@’. In fact, if T € #”
andT = T|2 (T restricted to%), since the topology o is finer than
the topology induced by#, T is a continuous linear functional of.
HenceT ¢ 2'. The mapping — T is an injection, for ifl = 0, we have
T = 0 because” is dense in7Z. Thus we see tha#””’ is a subspace of
78

Since the injections? -~ # — 2’ are continuous, we have by
transpositionz, < # « (2'). are continuous. BuZ, = 2’ and
(2" = 9. HenceZ, < # < & are continuous. Also sinc&” —
2' is an injection,Z is dense in#’ if we take the weak topology
o(A', 7). Now ' and #' with the topologyo (¢, ) have
the same dual (Mackey’s Theorem). It follows therefore that the linear

11
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12 3. Spaces of distribution®’

subspace? which is dense in7#”’ in the topologyo (7', ) is also
dense in the topology o7 . (See Bourbaki, EVT IV, § 2, no. 3, Cor. 1).
This completes the proof of (1).

The proof of (2) is, in fact, trivial. The continuity of the injections
9 - A — P' gives the continuity of the injectiony); < ¢ «
(2");.ButZzi=2"and(2'); = 2. i

The spaces’(E):
Let 27 be a space of distributions. LEtbe anELC.

Definition 3.3. The space”’(E) consists of all E-valued distributions

T which have the following propert)ﬁ) : E. - 2’ maps actually
EL into »# and is a continuous map of{Ento .#°. We have#’(E)
~ L(EL ).

Definition 3.4. Let .# be any linear subspaces ¢#’. We say that
an E-valued distributionT belongs scalarly te77 if T E. - 2
actually maps Einto .. In other words, for everye’ ¢ E’, we have
(T,%€") e .

Definition 3.5. We say that a space of distributiop&” has theg- prop-
erty, if for every locally convex, Hausdfijrcomplete vector space any E-
valued distributionT which scalarly belongs te# belongs to7(E).

Proposition 3.2. If 5Z has theE-property, every subspace gf with
the induced topology has also tEeproperty.

Proof Let.# be a linear subspace g# with the induced topology Let
T be anE-valued dlstrlbutlon withE a completeELC, satlsfylng(

‘8’) € # for every '8’ e E'. We have to show thal e . (E). In
other words, we have to show thaf E. —» 2’ takesE{ into %
and is continuous. NoWT , €') € .# for every '8’ merely means that
T ('€’) e # forevery'®’ e E'. Hencé T : E, - 9’ mapsE, into ..
Since# c 2 and.7Z has theS-property T E. — 7 is continuous.
Now, the topology of7" is the induced topology andr (Ef) € 7.
Hence' T : E. — ¢ is continuous. m|
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Proposition 3.3. Suppose’” satisfies the following conditions
(1) 7 is a normal space of distributions.

(2) 27 has a fundamental system @f-closed neighbourhood df
in 27, that is to say,s# has a fundamental system of neighbour-
hoods of0 which are closed in the topology induced fram.

(3) The bounded sets g¥ are relatively compact. Thes” has the
E-property.

Proof. Let E be any complet&LC and letT be anyE-valued distri-
bution scalarly belonging te#’, that is to sayf? : E{ = 2’ mapsE(
into /7. Since' T : E. - @' is continuous! T : E, - %, is continu-
ous, where’# is the space#’ with the topology induced by’. The
topology on.# is finer than the topology induced I8y’. To prove the
E-property we have to show thiT : E. — 7 is continuous. Accord-
ing to (2), if we prove thaﬁ)fl(W) is a neighbourhood of 0 i&., for
any convex, stable neighbourho®élof 0 in # which is 2’ closed, it
will follow that ' T : E; - ¢ is continuous. Sinck/ is 2'-closed and

; =T, ; ; L ; N
since'T : E, — % iscontinuous,T (W)isclosedirEl.'T (W) 12
-1
is a convex, stable set &. SinceW is absorbing‘,? (W) is also ab-

sorbing. Sincé?fl(W) is a convex closed set iB(, it is also closed

in E” with the weak topology and since it is convex, stable, absorbing
and weakly closed, it is a neighbourhood of 0 in the strong topology on
E’, that is inE}. Hence'T : E; - ¢ is continuous. The injection
A — 2’ is continuous. Hence the transpage— 7 is continuous
and the image is dense i#¢y. Because of (3) we haver] = 7.

Also T : A — (E§)5 is continuous. LeE” be the bidual oE. The
topology& of uniform convergence on equicontinuous subsets’aé
coarser than the topology 6E)?. HenceT : 6 — El is continuous.
Hence the composit¢ — 7 — E{ is continuous. The image &
by the composite is contained Eand onE, E¢ induces orE the same
topology as the initial topology dE. Since the image o is dense in
7, the image ofZ} in E{ is contained in the closure & in EZ. But
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E being complete we have : 3 — EZ mapsz in E. The topology
of E being the one induced Wy, we haveT : ) = A — E contin-
uous. HencdT : E. — ()¢ is continuous. But.2Z); is the same
as.s with a finer topology. ThereforeT : E. — 7 is continuous. O

This proves our proposition.



Lecture 4

The £-product of two locally
convex Hausdoff spaces

Let L andM be two locally convex Hausdfirvector spaces. We shall.3
define a spackEM.

Definition 4.1. LEM is the set of bilinear forms onglx M¢ hypocontin-
uous with respect to the equicontinuous subsets ahtd M. (For the
definition of hypocontinuity, see Bourbaki, E.V.T., Chap. Ill, 8 M.
is a linear space. We put oré€lM the topology of uniform convergence
on products of equicontinuous subsets oahd M.

Let& € LEM,I" e L" andm’ € M’. Write &(I",m’) = (I'|&|m’) For
any fixedm' € M’ the mappind’ — (I'|&|m) is a continuous linear form
onL¢ and hence defines an elementathich we denote bys’|m’). The
mappingm’ — |&|m’) is a continuous, linear map &1/ in L. That it is
linear is trivial. To show that it is continuous we have to only show that
if M - 0|&|m') - 0inL. Now|&|m') — 0 if for I lying in an equicon-
tinuous subset df’ we have(l’|&|m) — 0 uniformly. But this is half of
the hypocontinuity assumption @f. Hencem’ — |&'|nY) is a continu-
ous linear map oM( into L. Thus& defines an element o¥ (M(, L).
Similarly, using the other half of the hypocontinuity hypothesis, we can
show that’ determines an element &f (L, M). In fact this is nothing
but the transpose of the linear mif§ — L that corresponds t6§.

Let us denote bys”’ the continuous linear map &_ into L that 14

15
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16 4. The&-product of two locally convex Hausdbispaces

corresponds t@&’. Thend&’(m') is that element oL which satisfies
(', m) = (|&m') = (&(m'),I")L,L". Conversely suppose that:
M{ — L is a continuous linear map.
Then the bilinear map : L x M{ — C defined byy(l’,nY) = (n(m'),1")
is hypocontinuous with respect to the products of equicontinuous sub-
sets ofL; and M. First we show that if’ lies in an equicontinuous
subset ofL” andm’ — O, (p(m’),I’) - O uniformly. Sincey is con-
tinuous,n(m') — 0 in L and hencdn(m’),l’) — 0 uniformly if I’ lies
in an equicontinuous subset bf. The transposg, : L, - M is also
continuous for(M{); is finer thanM. This gives the other half of the
hypocontinuity, namely, ifrY lies in an equicontinuous set &’ and
"> 0inL/,

(n(m'),1") = (M, t,(1")) - 0

uniformly.

Thus we see thatéEM ~ Z(M[, L) algebraically. Similarly we
haveLEM ~ £ (L, M) algebraically.
Topologies onZ (M(; L) and £ (Lg; M).

On both these spaces we put theopology which we define below.

Definition 4.2. Let E and F be two ELC. Th&-topology on the space
Z(E[,F) is the topology of uniform convergence on equicontinuous
subsets of E

Proposition 4.1. The algebraic isomorphisms between the three spaces
LEM, Ze(Le, M) and Ze (M, L) are topological isomorphisms.

We shall prove the isomorphisn€ M ~ Z¢(M(, L) is topological,
the other case being similar to this.

Let& € LEM andé&” the corresponding element iffe (M(, L). We
show& - 0in LEM <= &' - 0in Z: (M, L). Now,& — 0in LEM
if and only if for I ¢ P,m’ € Q, P and Q being arbitrary equicontinuous
sets of L and M respectively, we havé(l’,m’) — 0 uniformly. &’
tends to0, if and only if for m in any equicontinuous subset, say R
of M, &'(m') — 0in L or for I’ in any equicontinuous set S of,L
(&'(m'),1") - Ouniformly. This is precisely equivalent&(l’,m’) - 0
uniformly for(I’,m’) € Px Q, P and Q any equicontinuous subsets bf L
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and M respectively. Henc& — 0in LEM < &' - 0in £z (M(, L).
This proves proposition4.1.

Examples of the&-product of a space of distributions and anELC.

1) 9'"EE~ Le(EL D) ~ Le(Z;E) (by propositioi 4.11).

But we have?’(E) ~ Z:(2; E) topologically for inZ, consid-
ered as the dual g¥’, bounded sets are equicontinuous.

2) S'EE v Ze(SE) » Z(EL.Y') and ' (E) ~ 'EE for
S(E) ~ Ze(7;E) topologically since.”’,.# are Montel
spaces.

3) OMEE %gg(E’; ﬁM).

(For the definition of the space%’,.’, Ow, O, 0}, O}, refer:
Theorie des distributions, Tome ii).

4) 6'(E) » Le(&:E) and&'EE ~ Le(6,E) ~» Le(EL &").

Covariance property of the £-product. 16

Letu: Ly - Ly andv : M1 — My be continuous linear maps,
L1, M1, L, and M being locally convex Hausdfirtopological vector
spaces. We shall now see how withindv a continuous linear map, say
uév: L1EM1 - L,EM, can be associated. There are, in fact, three ways
of defining this map according as we consider the three forms of writing
the £-product, namelfL1EM1, Le (M, L1) and Ze (L., M1).

1lc

Definition 4.3 1. Let(l5,m},) € L, x Mj and& € L1iEM1. Let(UEV) (&)
be the bilinear forny defined by

n(12.mp) = & (Cu(lz). 'V(mp)).

We now prove thaj € L,EM,. For this we have to only prove hypocon-
tinuity of  with respect to the equicontinuous subsets fpfdnd M,
Supposejl lies in an equicontinuous subset df.LThen there exists a
neighbourhood Y of 0in L, such thaf(l,15)| < 1 for I, € U,. Since u
is continuous, | = u‘l(Uz) is a neighbourhood db in L; and for any
l;inU; we havei(ll,tu(l’z))| = |<U(|1),|’2>| But L(l]_) =y e Us.
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Hence|(l1,t,(15))] < | for every k € U1. Hence the sef'u(15)]l5 e
an equicontinuous subset o JLis an equicontinuous subset of.LLet
ny, — 01in M. Then sinceyt: M5, - M, is continuous!v(m,)~? in
Mi.. Hences tu(l}); 'v(m,))~0 uniformly if I, lies in an equicontinu-
ous subset ofJand i, - 0in Mj.. Similarly we prove the other part
of the hypocontinuity.

Thusn € Lo,EM,. The mapping — n is denoted by &v.

Definition 4.3 2. Let& € £ (Mj.,L1). Letu: L1 - Lpand v: M1 —

Mic I—1
M> be continuous linear maps. Thentt and | u are continuous linear
Moe L2

maps.& : M/, — L1 is continuous linear. The composije= uo & oty :
M5, — L2 is a continuous linear map and henge .2 (M, L2). With
& € £ (Mj.. L1) we associate the elemept .2 (My, Lo).

Definition 4.3 3. Let & € Zg(L1.M1). ty : L} < Lo,V : M1 —
M, continuous. Hence the composite= vo & oty : Ly, — My is a
continuous linear map. Wit € .Z¢ (L7, M1) we associate the element
ne gg(L’ZC, Mz).

Proposition 4.2. The above three definitions give one and the same el-
ement; of LhEM, ~ fg(MéC, Lz) N gg(LIZC, Mz).

Proof. Let us, for the sake of clarity, denote the elements got from def-
initions 4.3 [1), 4.3[(R) and 4.81(3) by, 2 andnz. Our assertion will
be proved if we show

1112, M%) = (72(m), 12) L,y = (13(12)s o) g s
Now, n1(l5,m5) = &Cu(ly) tv(mp) ()
(12(Mh). 15) L,y = (U0 & o V(Mh). 15) 1,1

= (&) (1)) L1
= &('u(ly)" (mp)) (ii)
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Similarly - (73(12), M), = € Cu(l3)” 'v(mp)) (ii)
A comparison of[{i),[(ii), and.(ili) gives the required proposition. O

Proposition 4.3. If u: Ly —» Ly and v: M1 — M are injections @v :
L1EM1 - LoEMy is also an injection.

Proof. We have to show thatu€v)&r = 0 = &1 = 0. Now (U€v)ér =
(tu(15)]&]'v(m,)). Sinceu andv are injectionsty(L5) andt,(M5) are
dense irL] andM;. Hence#; which is a separately continuous bilinear
form, is zero on the produdg(L5) x t(M5) wheret,(L5) andt,(M5)
are dense subspacesldfandM;. Henceé; = 0. (See Bourbaki, EVT,
Chap. Ill, § 4, No. 3).

In fact, one can even show thatuf L; - Ly andv: M1 — M» are
monomorphismsiEv : L1iEM;1 — LoEMs is a monomorphism. That is
to say if we assume that: L; — u(Ly) is a topological isomorphism
with the topology induced on(L1) by L, andv : M3 - v(M;) is a
topological isomorphism with the topology induced kg, thenu€v :
L1EM; - uév(L1EM;) is a topological isomorphism with the induced
topology.

Also we haveL ® M c LEM. The topology on. ® M induced by
LEM is called theg-topology and provided with this topolody® M is
denoted by_%)M O

Proposition 4.4. If L and M are complete, £M is complete.

Proof. Let (&) be a Cauchy filter oh€M. This Cauchy filter gives rise

to a Cauchy filter, which also we denote @}), on Z¢(L¢, M). Since

M is complete it follows that there exists a linear m@pL; — M such
that&} converges t&” uniformly on every equicontinuous subsetldf
Similarly (&}) defines a Cauchy filter a’s (M, L) which also we de- 19
note by(&j) and this defines a linear maf : M; — L. Also trivially &
and&”’ are transposes of each other. Now, every equicontinuous subset
of L’ is contained in a compact (fdy), convex, equicontinuous subset
of L’. Since the restriction of’ to every equicontinuous subset lof

is continuous, it follows that the image of every equicontinuous subset
of L’ by & is contained in a compact convex subseibf This proves
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that&’ : M, — L is continuous. Similarlys’ : L, - M is continuous.
Consequently’ € LEM. ]



Lecture 5
The Approximation Property

Definition 5.1. We say that an ELC L has the approximation propertg
if L’ ® L is dense inZ(L,L).

Trivially if the identity map |: L — L is adherent to L® L in
Z(L,L), L has the approximation property. In fact, if | is adherent
toLl'®Lin %4(L,L), we have Lo M dense inZ:(L, M) for every ELC
M.

The spaces,2',&,&', 9™, (2')©),.7,.", Oy and &., have
all the approximation property. It is not known wheth@f™ with the
strong topology has the approximation property or not.

Proposition 5.1. If L or M has the approximation property, we have
L® M dense in EM. If for every ELCM, L® M is dense in EM, then
L has the approximation property.

Assume that L has the approximation property. We have to prove
that continuous linear maps from M- L of finite rank are dense in
Ze(M(, L). Since L has the approximation property, we can find a filter
(vj) of maps of finite rank of L into L converging to the identity map in
Z(L;L), i.e., the filter(v;) converges uniformly to | on compact discs
of L (disc= convex, stable subset). LettuZ:(M.L) = LEM. Since
every equicontinuous subset of M contained in a compact disc of M
the filter (vj o u) converges uniformly on equicontinuous subsets pf M
to u. Also y o u are maps of finite rank of Mn L. Hence the required
result follows.

Conversely, supposes M is dense in EM for every ELCM. Tak- 21

21
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ing for M the space |, we have L® L dense in EL{. The topology

of (L¢)¢ is finer than that of L, though algebraically they are the same.
Hence I: (L¢)¢ — L is continuous and hence it can be approximated
by continuous maps of finite rank of L in L on equicontinuous subsets
of (L{)". Any convex, compact stable subset of L is equicontinuous in
(Lg)". This proves our proposition.

As pointed out in the previous lecture, we have
(1) 2'(E) » P'EE ~ ZL5(2,E) ~ L (EL, P")
(2) S"(E)~» S"EE~ Z5( S, E) » ZLe(EL "), and
(3) &'(E) ~» &'EE ~ L5(&,E) » L (EL &").

Definition 5.2. Let T be an E-valued distribution. The support%)f
is, by definition, the smallest closed $etc R" such that ify is any
C* function with compact support whose support is contained in the

complement of2, we have?@p) =0.

Remark. An element of6”’ (E) need not have compact support. In fact,
the identity map : & — & is an element o&”’(&). It does not have a
compact support. For, if it had a compact suppgorevery continuous
image ofl will have its support irK. In particular, every scalar-valued
distribution with compact support, being a continuous imagk @fill
have its support ifK, a fixed compact set, which is absurd.

However, if anE-valued distributionT has a compact suppoﬁ €

&'(E). Infact,'T : E, — 2’ mapsE, into &”.

Proposition 5.3. If E has a neighbourhood @which does not contain
any straight line, then every element®f(E) has a compact support.

Proof. Let V be a neighbourhood of 0 iB not containing any straight
line and? : & - E a continuous linear map. Sind_é) is continuous,
3 an integem > 0, a compact sek and ane > 0 such that for every

¢ € & with sup |DPp(x)| < & we have?(go) eV. Lety € 9
[pl<mxeK
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with support in the complement . Then sup |DPAy(x)| =0 and
|pl<mxeK

hence/ﬁ)(w) e V for everyA. SinceV does not contain any straight

line, '—I')(l//) = 0 or the support off is contained irk. ThereforeT has
a compact support. m]

Corollary. E having a neighbourhood @not containing any straight
line is equivalent to saying that there exists a continuous semi-norm on
E which is a norm.

If E is a normed space, then aﬁ)'y € &'(E) has a compact support.

Definition 5.3. The space of E-valued distributions with compact sup-
port is denoted by’ (E).
We haves”’(E) c &'(E) algebraically.

Definition 5.4. £&™(E) is the space of m-times continuouslyfetien-
tiable functions from Rto E.

Proposition 5.4. We have the algebraic inclusiefi™(E) c &™(E).

Proof. Let T be a continuous linear maf’y — E. Let T be anE-

valued function defined as follow§>(a) =T(6a). Nowthe ma@m — 6, 23
is anmtimes continuously dierentiable function oR" with values in

& andT is a continuous linear map. Hendeis anm-times continu-

ously diferentiable function. We show that is the distribution defined
—_

by the function f . We have

(62). ®") =6a({T.&"))

,’e’)(a) (as afunction)

(T.€') (@) =(F(a), &)=
(

—
T
—
T

This proves our assertion.

Proposition 5.5. If E is complete£™(E) = £™(E).
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Proof. If we prove thaté™(E) c £&™(E). we are through, because of

propositio{ 5.4. Letf « &™(E). SinceE is complete,_f> can be used

to define a distributiorﬁ)(go) = [ _f)(X)tp(X)dX. It is evident that the
RN

above distributionf scalarly belongs t&’™. Now &™ does not satisfy
the &-property. We cannot immediately conclude tHak EM™(E). We
have to prove that the mdf. — &™ defined by_f) is continuous. Sup-
pose’€’ — 0 in EJ, we have to show thatf,€’) - 0in &™, ie.,
Dp(—f), ‘e’) - 0 uniformly on every compact subsétc R" for [p| < m.
But DP( T, €’) = (DPf,"€’) for |p| < m. For eachp with |p| < m, the
set of vaIuest_f)(x), x € K is a compact set ii. SinceE is complete

the convex, stable, closed envelope of the{ﬁlﬁ—f)(x)} is compact and
xeK

s0,(DP T, €’) - 0,|p| < muniformly for x € K. O

Characterization of &™(E). In the general case, one sees #a(E)
is the set of allm-times continuously dierentiable functionsf satis-
fying the following conditions: For each with |p| < m, and for each
compact seK c R", the convex, stable, closed envelopd)ﬁ’f_f)(K) is
compact inkE.

Let E be a completd&eLC. Let $ denote the space of holomorphic
functions onR?" provided with the canonical complex structure. We put
on $ the topology induced by that ef°. Let $(E) denote the space
HeE.

Definition 5.5. Any element « $(E) is called a holomorphic function
with values in E.

Proposition 5.7. Let_f>(z) be an E-valued function such that for every
‘e’, the functiongs, defined byp+,(2) = (T(2).€')isin $. Then
T e $(E) and we have a formula similar to the formula of Cauchy:

(@)= [ Q.




25

Proof. Since$ has theg-property, if belongs scalarly to;,? be-
longs toH(E). This proves the first part. To prove the second part we
see that for everfe’ € E’, ¢+, being a scalar-valued holomorphic func-

tion, we have
1 [ ee(?)

vo(@=(T@.8) =50 [ F2d
1 (f©.*)
ail e %

That is to say, (—f)(Z),(@'F%f“(ff)’zwdg
~ i —f)(é,) <7
‘2nif<§—2’e )dg
= (i ﬂd{’%,>
2ni {-z

Hence T (2) = L/ %dg.



26

5. The Approximation Property



Lecture 6

Operations on Vector valued
Distributions

E will always denote a complete E L C. 25

Differentiation of vector valued distributions.
GPL+pn _
Let T e 2'(E). Let DP be the operatow wherep is
1 o« oo n

then-tuple (p1, p2,- .., Pn)- DPT is defined to be the map, which maps

¢ e 7into (-1)P T (DPy) € E Itis easily seen thddP T is anE-valued
distribution. - -

We have(Dp?, €)= DF’(?, € ). This follows from the very defi-
nition of DP.

Scalar product.

Let 2 be a normal space of distributions. Thef{’ is a normal
space of distributions (Propositibn 4.1). Let us denote by S.T the scalar
product of any elemers ¢ .# and any element ¢ .#’. Let now

Se A (E) andT € J7".

Definition 6.1. S ¢ A (E). HenceS can be considered as a contin-
uous linear map of7 in E. Hence if Te %’,g(T) € E. We define
§1T to be the elemerg(T) of E.

Definition 6.2. Let S « H(E). Then's : E. — 2 is a continuous
linear map. We have agreed to denote(l8, € ) the elementS (€)

27
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of #. LetTe . Then§2T is defined to be that element of E which
satisfies

(ST, €)e.E = ('S(E)Y) sy
_ tg(%/)-T
(S,e).-T

Definition 6.3. Let S € # c E and Te #. Then T: # — C and |:

E — E are continuous linear maps. HencesT: %7 cE—-CcE=E

is a continuous linear map (Definitions 4[3 (1), 4.8 (2) and 413 (3)). We
defineS3.T to be the element T | (5’) of E.

Proposition 6.1. The elementgiT, §2T and§-3 T of E are all equal.
Now (S1.T.%")ee = (S(T). €)= (T.'S(&))ror
= (S,T, € )ee.
This prO\fS §1.T = §2-T. R
Also (S3-T,€)ee =(Tel(S), € )er.

Propositiorf 4.2 give§ ¢ I(§), considered as an element©®fc E or
as an element of/,.(Cc; E), is the same as the composite of the maps

‘T.Co 2, 2 2 Eandl :E > E.
Hence(T € 1(S), €)ee = (10 S otr(1), &' )ep.
Also So tr(1) = §(T). Hence we have

(1o Sotr(1), € )ee =(S(T). €
=(S.T.%").
Hence §3T = §>1T.

As example, we see in the following situations we can define a scalar
product:

1) TeP'(Ehoec? ; 2) T eZME),peI™

3) TesE)gpes 4) TeDE),peP
5 Ye2(E),Te? ; and 6) ¢ ec2™(E),Tez™
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Properties of the scalar product: 27

Proposition 6.2. If T belongs to an equicontinuous subset;6f and
—> —>
S tendst®in s (E), S - T tends to zero uniformly in E.

Proof. Now, Se %.(H]E), thee-topology being the topology of uni-
form convergence on equicontinuous setss6f. Hence wher lies

in an equicontinuous subset &f”’ and S tends to 0 in%ﬂ(E),g(T)

tends to O uniformly irE. ButS . T = §(T). HencesS - T tends to 0 in
E uniformly with respect td in an equicontinuous subset.gf”’, when

S tends to 0 in (E). ]

Proposition 6.3. If S liesina compact set of’(E) and T tends t®
in 27 and if 2 is complete, ther§ - T tends uniformly t@ in E.

Proof. LetK be any compact subsetg#’(E) = Z.(E.77). If Ais any
equicontinuous subset &, U S(A) lies in a compact subset of’. If
SeK

S ¢ K and g’ lies in an equicontinuous subset®Bf, we have to show
that(§)(T), ‘e’) tends to 0 uniformly a§ — 0 in .. We have

(S.%')-T=(S(T).¥").
That is to say(g(T),‘E’) = T((g,‘E’)). From what has been said
above(§),‘€’) lies in a compact subset o¥’. Sinces# is complete,

the convex stable envelope of a compact set is compact. HerBe if
lies in a compact set of#(E) and €’ lies in an equicontinuous sub-

set of E’,(g,‘é’) lies in a compact disc afZ. Hence ifT — 0 in
%’g’,T((?, ‘€’)) — 0 uniformly. This proves propositidn 6.3. i

Proposition 6.4. If s belongs to a bounded subset#f(E) and T 28
tends to0 in the strong dualz}’ then'S - T tends tcd uniformly in E.

Proof. It suffices to show that whele’ lies in an equicontinuous subset

of E/, (§ -T,"e’) tends to O uniformly. LetS remain in the bounded
setBof /Z(E). Now 77 (E) ~ Z:(Eg, 7). If Bis bounded in7# (E),
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then U §(H) is a bounded set of#, whatever be the equicontinuous
SeB

subseH of E/. We have(S T, €') = (S, €/).T = T((S,€’)). When
e’ lies in an equicontinuous subset®fand S lies in a bounded s
of 7#(E) we have seen th:(ig, ‘e’) lies in a bounded set of”. Since
T - 0inJZ we haveT((g, ‘€’)) - 0 uniformly with respect teS in
a bounded set of#(E) and €’ in an equicontinuous subsetBf. This
proves proposition 614. ]

Combining propositionis 6.2 and 6.4, we get the following

Proposition 6.5. The mappinqg,T) -S.T of #(E) x s - E
is a bilinear map hypocontinuous with respect to the bounded subsets of
2 (E) and equicontinuous subsets.#f".

Proposition 6.6. For any element of the form® in J#(E),S ¢ 7,
€cE,wehave ¥ - T=S-TE.

Proof. To prove this we have only to verify that
(S€ -T,€)ee =(S-T€,€)ee
for every®’ ¢ E’. Now
(S8 -T,€')=(SB(T),€)=(S T8, %)

When 7 satisfies the approximation property, we have a characteriza-
tion for the scalar product that we have introduced. ]

Proposition 6.7. Let 7 satisfy the approximation property and E be

a complete ELC. The bilinear map that we have defined is the only
bilinear map which is separately continuous and which satisfias -U
T=(U-T)€,forevery Ue #, € cE and Te 7.

Proof. We have already seen that the bilinear map defined by us is sep-
arately continuous and satisfigsg - T = (U -T) €.

Suppose there exists two bilinear maps, gaandu, of 7 (E) x
A — E which are separately continuous and satjgfyS€,T) =
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(S, T)€ andux(S€,T) = (S, T)€ for everyS ¢ 7, € ¢ E andT ¢
A'. Sinces# ® E is dense in#’(E), the equality ofu; andu, on
(o ® E) x # and the separate continuity @f andu; give uq = p2 on
H(E) x 7. mi
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Lecture 7

Multiplicative product of a
vector valued distribution
and a scalar valued
distribution

Let 7, K and.# be three spaces of distributions Bh 30

Definition 7.1. A bilinear map U of%7 x 2 — % which is separately
continuous and which coincides with the multiplication of functions on
2 x 9 is called a multiplication between the elementss6f and the
elements of#” with values inZ.

IfS e, T e, wewrite SUT for YS,T).

Theorem 7.1. Let 57, % and .Z be any three locally convex spaces.
Let E be a complete ELC. Let U x # — £ be a bilinear map
hypocontinuous with respect to the bounded set&band J#". Then
we can define a bilinear map : JZ(E) x ¢ — Z(E) which is sep-
arately continuous and which satisfies88)T = (SUT)€ for every
Se . #, € € E and Te ¢, moreover it is hypocontinuous with respect
to the bounded sets o#’(E) and 7.

If 77 satisfies the approximations property, the bilinear map that we
define is the only bilinear map which is separately continuous and which
satisfies EUT = (SUT) € forevery & .7, € eEand Te 7.

33
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Proof. Let T be any element of#". Then it defines a continuous linear
mapmy : J# — £ as follows: my(S) = SUT for everyS € J7. Let
| : E - E be the identify map oE in E. The mapmy €| : JZ(E) —
Z(E) (for the definition ofmr € | refer to Lecturé }4) is a continuous

linear map. We defjné?ﬂT to bemy € I(§) for every§ e H(E).
We shall prove that thus defined has all the properties mentioned in
the theorem. O

We have” (E) ~ Z.(EL, ) ~ L:(#!, E). From definitions 4.3
@), 4.32) and 4.4(3), we have the following results.

(i) Considered as an element 4. (E[,.¥), mr ¢ I(§>) - S0Tis
the same as the composite of the maps

= - =l .
t:Ec>ELS:E. > L

wheretr is the transpose of the identity mapping®fin E; in
other wordstry is the identity mapping oE..

(i) Considered as an element 6f.(.Z!,E), mr € I(§)) is the same
as the composite of the maps

tmy : L0 > HS : A - E,|:E—E,
s being considered as an element4f(#,, E).

First we shall show that is hypocontinuous with respect to the
bounded subsets of’(E) and.?". Let S remain in a bounded set of

A (E) andT - 0in.#. To show thatSUT tends to 0 inZ(E) =

Z,(EL %), we have to prove that i’ lies in an equicontinuous set

of E, S UT(€’) - 0 uniformly in .Z. Since'S lies in a bounded set

B, U(§, “’), H being an equicontinuous subsetHf is bounded in
SeB,€’eH

H. Hence<§>, ‘€’)UT tends to 0 uniformly inZ. But one sees easily

that(S, €)UT = SUT('€’). HenceS UT(€’) — O uniformly in.&.

In other words,S UT tends to inZ (E) uniformly when'S remains in

a bounded set o##(E) andT - 0in.7".
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Now supposeg — 0in27(E) andT remains bounded it¢". Then
for ‘&' lying in an equicontinuous sét of E/, (S, €’) - 0 uniformly
in 2 and hence whefl lies in a bounded set o%/,(g,‘_’)UT =
SUT(€’) - Ouniformlyin.Z. HenceS UT - 0in.Z(E) uniformly. 32

It is trivially seen thatSE€UT = (SUT)€ for everyS ¢ 7, € «
E.Tex.

Now suppose satisfies the approximation property. Then:
H(E)x " - Z(E)isthe only bilinear map separately continuous and
satisfyingSE@UT = (SUT)€ for Se 7, € ¢ EandT e #. For if
U’ is another such bilinear map, we haVé(.# ® E) x .# = U'| (A ®
E) x #. Sinces ® E is dense in#’(E), we haveU = U’ from the
separate continuity of botll andU’. This proves our theorem.

Proposition 7.2. Let 7 and.¥ be normal spaces of distributions and
2 alocally convex Hausdgftopological vector space. Let U7 x

K — £ be a bilinear map hypocontinuous with respect to bounded
subsets of7Z and . Foreach Te % let my : 57 — £ be the
mapping defined by AfS) = SUT. Thend, : £ —» J# is linear
and continuous. Let € .Z. Let us denote by the scalar product
between? and.%/ and by.># the scalar product betwee#t” and .77 .

Let us denote by the same symbols the extensio# ) and %! and

to .7 (E) and.%Z. Then

§E%Ta = (§UT)305, where Ta =ty (@).

Proof. We have to only verify that for everg’ € E’, (ij'Ta, e’) =
<(SUT)$ a,’e’).
we have (S -Ta, €)= (S,

= mr( .
SUT,€)y-a=(SUTy a ).

I
—
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Examples of multiplicative products.

1)

2)

The multiplicative produca T defined fora € & andT ¢ 2’ as
aT(p) = T(ay) for everyp € 2 is a bilinear maps x 2’ —

2" which is hypocontinuous with respect to bounded subsets of
& and 2'. (Ref. Theorie des distributions, Tome 1, pp. 117,
Chap. V, § 2, Tkoreme 3). IfE is any completd&E LC we can de-

fine bilinear maps, hypocontinuous with respect to bounded sets,
as explained in Theorem 7.1 in the following cases:

@) 2'(E)x& - 2'(E) and (b) 2’ x &(E) - 2'(E).

If @ € Oy andT € .’ the multiplicative produce T € .’. The
mapping(a,T) — aT of Oy x .¥' — .’ is hypocontinuous
with respect to the bounded subset¥if and of.7". If E is any
completeELC, as explained in theorelm 7.1, we get a bilinear map
which is hypocontinuous with respect to the bounded subsets, in
the following cases:

(@ S'(E)x O — ' (E)
(b) " x Om(E) - #'(E).

The Convolution product.

If U: 7 x - £ is a separately continuous bilinear map of
HCx H in L, wheres, % and.Z are three locally convex Hausdbr
spaces and iE is a completeELC we can define a bilinear map :
H(E) x # - Z(E) as explained in theorefn T.1. We take any fixed
T e ¢ and consider the continuous linear mawp ¢ | : 77 (E) —
Z(E), wheremy : 5 — £ is the continuous linear map - SUT
andl : E - E is the identity map. This can be applied to the product
of convolution. We get then products of convolution of certain vector
valued distributions by certain scalar valued distributions.

For example, we can define convolution in the following cases:

1) .7'(E) x O - &' (E).

(2) ' x O(E) - 7' (E).
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Regularization:

Definition 7.2. The mappindT,a) - T*a of 2’ x 2 — & is called the
regularization.

If E is a complete ELC we can get a bilinear mgy(E) x 9 —
&(E) as explained already. This bilinear map is called the regulariza-
tion in the case of vector valued distributions.

As in the scalar case, we ha\Té*a(x) = ?g.a(x— &) where- de-
notes the extension of the multiplicative product. In fact, this is proved
by forming the scalar product with arg’ € E’.

Let £° and 2° denote the space of continuous functions and the
space of continuous functions with compact support with their usual
topologies. For fe £° and ge 2° we have f+ g € £° and we have the
formula

f+g00= [ f(x-£)g(€) e ®

Rn
Now suppose E is a complete ELC. We have a convoldfiqit) x
2° - &°(E). Suppose we takd e &°(E) and ge 2°, we have a
formula similar to (1), namely

Trg0= [ T(x-8)ae

R"

Proof. We have, for everye’ ¢ E’

(T +g(x), €)= (T +g, €)x)

=(f ,(5') * g(Xx).

(T, 8") » gis the convolution of the functiofif , €'} € #° andge2°. 35
We have, therefore,

(T.8") <900 - / (T.8") (x-©)g(e) e

(T (x-&),8")g(¢) dé

E\%
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- [(Tx-0)9e). 8 de
Rn

( [ Tx-o9e) e w).

R

—_—

Hence(T » g(x). &) - (4 Tx-£)9() d.f,%').

This gives_f> * g(X) :an ?(x—f)g(f) dé. m



Lecture 8

Fourier Transform of a
vector valued distribution

One knows (Theorie des distributions, tome 2, § 6, Chap. VII) that tse
Fourier transform% is a topological isomorphism of”’ on ./, and

the inverse of% which is also a topological isomorphism is called the
conjugate of# and is denoted by .

Definition 8.1. Let E be a complete ELC. Let | be the identity map of

E. The continuous linear mag ¢ | of .¥/(E) in .’(E) is called the

Fourier transform of#”’(E) into itself. _
Using the fact that# is the inverse of# and that(.% ¢ |)(.% «

1) = . #.% ¢ | we see that? ¢ | .¥/(E) - /(E) is in fact an auto-

morphism. We agree to denote the automorphism als@ by

Proposition 8.1. For Te <'(E) andg € . we have
FT(p)=T(F9).

Proof. The Fourier transform of any ¢ .’ is defined exactly by the
equality ZT(¢) = T(Z¢), for everyp ¢ .. To proveﬁ‘?(tp) =
?(3%) we have to only form the scalar product with aay € E’ and
apply the equality# T (¢) = T(F ), foranyT € ¥, p € .. In fact,

(FT (). €)= (FT. &) (p) = F(T. €' ()
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=(T.€)NF¢) = (T (Fp).¥).
This provesgf?(go) = '_F)(ghp). o

Proposition 8.2. For every? e '(E) and se Oy we haveﬁ(?-
S) = ﬁ(?) + Zs whereT - s denotes the multiplicative product of
Te <'(E) and se g

Proof. One knows (Theorie des distributions, tome 2) that the multi-
plicative producfl - sof anyT € ¥/ andse Oy, is an element of””.
Hence for any'—l') e '(E) andse Oy, T - se <" (E). Also one knows
the validity of the equality# (T - s) = .7 (T) » ZsforanyT €.’ and

se On. Now, for anye’ e E/,

(#(T -5),%¢) =

9

{
(
{

F

)9

/

o

TR
NI,
e

+ FS

bl

N

)
)

ot of

, *

I}
—_

-

ot

/

F

* FS,

This gives the equalit;ﬂ('_l').s) = ﬁ('_l')) * FS.
We know that iff is a continuous function with compact support the
Fourier transform# f is given by

FE(X) = | f(&)eZEXde.
/

O

Proposition 8.3. If T is a continuous function with compact support
having values in E the Fourier transfor ( f ) is given by{.7 ( f )}
(x) = [ f(£€)eZ¢Xde, E being a complete ELC.

R

Infact  (F 1 (x),€')=F(T(x), €
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Whenf is a continuous function with values in E and having a compact

=~ IR S H
support, for everye’ ¢ E’,( f,’€’) is a continuous complex valued

function with compact support. Hence
F(T,E)(x) = [ (T, ') (&)e ¥ X de,
R"
That is to say 38

(FT00.8) = [(T(e). 8)e™dg
RN

=< f T ()e¥éxde, T').

R

Hence

FT(x) = [ T (¢)eZiex de.

Rn
Laplace Transform:

Lett be areal variable. Le¥; denote the space of distributions with
supports contained in the half-life, o). On the spac&’ we take the
topology induced by that o%’.

Definition 8.2. Let T € 2/. We say that T has a Laplace transform if
there exists a real numbeg such that fort > £, we have &'T ¢ .7,

There exist distribution§ ¢ 2. such that there exists no regl
with T e .7/ for & > &,. For example, letr(t) be aC> function
with support in[0, c0) which is equal to 1 fot > 1. LetT be the
distribution defined by the functiod” - a(t). This distribution has no
Laplace transform.

Now, letT € 2/. We have the following three possibilities:

1 There exists no reglsuch thae 'T ¢ ..
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2 For every reaf we havee™s'T ¢ .7/,

3 There exists at least one real numk#such thate T ¢ .’ and
at least one real number ‘such thate T ¢ .7,

Proposition 8.4. In case (3) there exists a real numhg&r such that
for &£ > & we have &'T ¢ ./ and for¢ < &, we have &'T ¢ .7,
Moreover, foré > £, we have actually €'T € .,

Proof. If « is any real number such that®™T ¢ .’ we have, for any
B> a,ePT e . Infact,ePT = (eT) . e B0t 5(t) whered(t)
is aC*-function witha(t) = 1 fort > 0 anda(t) = 0 fort < -1 and
0< &(t) < 1. The functione™ #-®)t. 4(t) is an element of” and hence
e”'T which is the product o 'T ande®~"'G(t) is an element o

If we put all the real numbenssuch thae™"T ¢ .’ into a clasd. and
all the real numbera such thae T ¢ .’ into another clas®, from
our assumptions, it follows that andR are non-empty. From what we
have proved above, it follows that the clastesndR determine a real
numberé, having the properties mentioned in the proposition. o

As for the other part, we will in fact, prove that f is a complex
number withRIp > &, e P'T € . We haveg P'T = e €' 1T.e (Pl (1)
whereq(t) is a real valuedC* - function satisfyingx(t) = 1 fort > 0
ande(t) =0fort < -1 and 0< a(t) < 1. LetRIp= ¢ > &. Choose’
real such that > & > &. Thene €T ¢ ." ande (Pl (t) e .7 if
Rlp> ¢'. Hencee P'T € 0.

Definition 8.3. In case (1) we say that T has no Laplace transform at

all. In case (2) the whole of the complex plane is defined to be the
domain of definition of the Laplace transform of T. In case (3) the half
plane Rlp> &, is defined to be the domain of definition of the Laplace

transform of T.

In case (2) we can show for every complex numipewe have
e PIT ¢ oL In fact, if RIp = £, we choose a real such that > u.
We then find a read’ with & > & > . Thene P'T = e €'1T.e (P (t)
wherea(t) is aC*-function satisfyingx(t) = 1 fort > 0 anda(t) =0
fort < -1and 0< a(t) < 1. We havee ¢''T ¢ . ande™ (Pt (t) € 7.
Hencee P'T € 0.
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Proposition 8.5. Let there exist a reaj, such that for Rlp- £, we have
e P'T ¢ .#’. Then the mapping p- € P'T is a holomorphic function of
the complex variable p with values &Y, for Rlp> &,.

Proof. LetRIp=¢& > &,. Leté’ be such thag > &' > &,. We havee P'T =
e €1T.e (Pt o (t) wherea(t) is aC*-function which satisfiea(t) =
1fort > 0 anda(t) = 0fort < -1 and O0< a(t) < 1 for everyt.
We havee¢''T ¢ .77 and it is a fixed element of”’. The function
p - e (P)ly(1) is a holomorphic function foRlp > &, with values in
. In fact, the derivative iste (P-€)lg(t). That is to say

lim

(Pt _ g (p-£)t
h—0

- + te‘(p‘f')t} a(t) =0

in.7. ]

The mapyy : .¥ - O} given byyy(s) = §, § is a continuous linear
map for every fixed' € .. Nowe P'T is a fixed element of”’ and the
function p - e‘(p‘f')t.a(t) is a holomorphic function of the complex
variable p with values in.¥ and hence the composite of the linear map
7e ¢''T and the above holomorphic function is a holomorphic function.
This proves our assertion.

Definition 8.4. Suppose k 2. has a Laplace transform. The Laplace
transform is then defined to be the function-pF(p) = [ e P'Tdt,
which is defined in the domain of definition of the Laplace transfornsof
T.

In fact for p in the domain of definition we have seen tleaf'T ¢
Of. Now le (0)), and the integral e P'T dtis nothing but the scalar
product 1& P'T by definition. In the domain of definition of the Laplace
transform, we have — F(p) a holomorphic function of the complex
variablep.
Properties of the Laplace transform:

Proposition 8.6. Let T € 2. have a Laplace transform. Let the half
plane of existence of the Laplace transform of T be Rlfy, in case
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the whole plane is not the domain of existence of the Laplace transform.
For any fixed¢ > &, the mapping; — F(& + in) defines an element of
Owm. In case the whole of the complex plane is the domain of existence
of the Laplace transform, for every regln — F(£ +in) is an element

of ﬁM.

Proof. For any fixed¢ > &, the functionn — F(& + in) is the Fourier
transform of the distributioa™'T in &, and hence is an element 6f;.
In the second case for any fixed réah — F(& + in) is the Fourier
transform ofe 'T € ¢ and hence is an element 6.

LetT € Z.. WhenT has a Laplace transform, the domain of exis-
tence is usually denoted IRIp > awhere either a is a real numbg&ror
stands for the symboloo. If S € 2/ hasF(p) as its Laplace transform
in RIp > awewritesfgaF(p). o

Proposition 8.7. Let S and Te 2] and Sf F(p) and TE:,b G(p).
>a E>

Then Sx T F(p)G(p).
en Sx o Ma(ab) (P)G(p)

Proof. ForRIp = ¢ > Max(a,b) we havee 'S ¢ ¢ ande P'T ¢ 0.
Hence forRIp > Max(a,b) S » T has a Laplace transform. H(p)
denotes the Laplace transform®# T, for any fixed¢ > Max(a, b) we
have

H(¢+in) = Z,(e¥'S* T)
= F,(e7¥1S).F, (e7¥'T)
=F(£+in)G(§ +in).
Hence  H(p) = F(p)G(p).

O

Corollary. T € 2.,T = F(p) implies T = p F(p). This follows
é>a &>a

from the fact that for the distributiod’ the domain of existence of
the Laplace transform is the whole of the complex plane and that the
Laplace transform of’, is precisely p.

Infact o +T 2P F(p). But &, *T=T.L
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Proposition 8.8. Let T € 2/ have a Laplace transform. Let the domain
of definition be RIp- ‘a’ where either a is a real number or stands for
the symbol<oo’.

If ‘&’ is real, for anye > 0, in the half planeRlp > a + £ we have
a uniform majorisationF (p)| < A(|p|*> + 1)%, F(p) being the Laplace
transform of T. If ‘& stands for the symbol-co’, for any realé we
have|F(p)| < A(|p]? + 1)¥ in the half planeRIp > £ We admit this
proposition.

Proposition 8.9. Suppose Ep) is a holomorphic function of the com-
plex variable p defined in some half plane, gay&o.

Suppose for every> 0 we have a uniform majorisation for F in thes3
half plane > &, + &, of the typdF (p)| < A(|p]2 + 1), then K p) is the
Laplace transform of some distributionéT2;.

Proof. Letp=¢+inpwith € > & + e andk < -1. Let

&+ioco

()=, [ @F(p)dp
£ioo

This integral certainly exists. We have, in fact,

1 t dp] _A s _ét
|f§(t)|g§Aeffl+|p|2_Zef.n_Zef.

O

The functionfs(t) does not depend ahas long ag > &, + ¢. For,
if we take the rectanglE bounded by the lines = £1,£ = & andp = R
andn = —Rthe integral

%feptl:(p)dpzo by Cauchy’s theorem.
r

Now

[ F(pydp-; [ F(P)dp

T i=1 T
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1 Iy 1
1 . |-
< n=R
A3
Y
Iy
Ty
o g L =R
§=6& §=¢&

wherel'; is the portion of the ling& = &; lying between the lines
n =R, n=-R;T2is the portion of the lingg = —R lying between the
lines¢ = &1 and¢ = &; T3 is the lineé = & lying between the lines
n=-R andn =R and so on.

Now

i pt = i pt -
Fgggorfle F(p)lldp=0 and Rgrgrﬂe F(p)lldpi =0.
2 4

E+ico &Ep—ico
Hence, we have - gfi eP'F(p)dp+ g[i eP'F(p)dp; = 0.
1—loo 2+lo0

44 In other wordsf, (t) - f,(t) = 0. Hencefy, (t) = f5,(t). We now show
that ift < 0, f(t) = 0, wheref(t) = fs(t) for any¢ > & + e. In fact,
|f(t)] < 5€. Allowing ¢ - oo we have

If(t)| < 0.

Now, we have  f(t) = % f R (& +in)eMidn(é > & +¢)

o0

1 N
=Ze‘$t/F(§+ln)e"’tdn.

—0Q0
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Hence, 2ef(t)=.%,(F(¢+in)). Hence
F(¢+in) = (et 2nf (1))

Hence ze¢'f(t) has for itsy-Fourier transform the functioR (& +in),
foranyé > &, + €, > 0. Hencef (t) i F(p). Obviouslyf(t) defines
§>5o

a distribution inZ;, for f(t) =0, fort <0.
Now supposé= satisfiegF (p)| < A(1+|p|?)¥in & > &, + & for any
&> 0,k being an integer. The above is equivalent to assuming

IF(p)| < Alpl¥

wherek’ is some integer and’ is some constant, f®Ip > &, + . Now
F(P) s holomorphic inRlp > Max(0,&,) = v (say), and for any > 0,

pk’ +2
we have

AII
< > for RIp>v+e,
(1+[p?)
A’ being some constant. Hence by what we have proved, there exists a
distributionT’ € 2/ such that

 Fp)
T é:gv pk’+2.

F(p)
pk’+2

HenceT = (¢’ x -+ 6')+«T" 2 F(p),and(é’*--»8")+«T' € 2.. Thus 45
k'+2 times &y
we see that there exists a distributibne 2/ which hasF(p) as its

Laplace transform in the domain of definition of its Laplace transform.
That T is unique follows from the fact that the Fourier transform
F " - " is an isomorphism onto.
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Lecture 9

The Laplace transform of
vector valued distributions

Let E be a complet&eLC. Let T ¢ 2" (E). As in the case of scalar46
distributions we have the following three possibilities:

1) There exists no real numbefssuch thae T e S (E).

2) For every realf we havee *'T ¢ .7(E).
3) There exist two real numbet® and&; such that we have !
T ¢.7'(E) ande @' T ¢ 7/(E).

Proposition 9.1. In case (3) there exists a real numb€rsuch that for
& > & we have &'T e #/(E) and for & < & we have e”'T ¢
S'(E).

Proof. This will follow immediately if we show thae ™ T e S (E),u
real, andy >  imply e T ¢ .7'(E).
Now €T =T . e (Mig(t),

wherea(t) is aC>-function which is 1 fort > 0, which is 0 fort <
-1, and which satisfies @ a(t) < 1. Now eHT ¢ <'(E) and
e (Mig(t) € .7 and hencee™ T e G/(E) ¢ .#/(E). Thus, we
have, in case (3), a real numbé&r such that for8 > &, we have

49
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e T ¢ #'(E) and for& < &, €T ¢ .#/(E). As in the case of
scalar distributions, we say in case (1) the distribuflohas no Laplace
transform and in cases (2) and (3) it has a Laplace transform. I(2gase
the whole of the complex plane is defined to be the domain of existence

of the Laplace transform of and case (3) the half-plarip > &, is
defined to be the domain of existence of the Laplace transform ofo

Proposition 9.2. In case (2) we have 8T e O((E) for every p, and
in case (3) we have 8T ¢ O{(E) for every p satisfying RIp &..

Proof. Case(2) For every€’ ¢ E’, (e P'T,€’) ¢ .#/ and hence
(e"P'T,'87) e & for everyp, from what we have seen in lectiife 8.
Case(3) For everyg’ ¢ E' andRIp > &, we havele ' T, €') ¢ .7/
and hencde P'T, €') ¢ 0. for everyp such thaRIp > &,. Now, since
0 satisfies th&-property we have the required result. |

Proposition 9.3. The function p— ePT is a holomorphic function
with values inZ(E) in case (2) and a holomorphic function with values
in 0}(E), in the half plane RIp- & in case (3).

Proof. Similar to the proof of proposition 8.5. i

Definition 9.1. Let T ¢ 2! (E) have a Laplace Transform. We denote

the domain of existence of the Laplace Transform?oby Rlp> a
where either ‘a’ is a certain real numbef, or stands for the symbol

‘—oc0’. The function?(p) defined in RIp> &, by

F(p) = /e‘pt?dt: 1ePT
0

with values inE is called the Laplace transform a. The scalar
product 16 P'T is the scalar product of d (67). ande P'T e &(E).

The functionp — E(p) is a holomorphic function of the complex vari-
able with values irE.
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Proposition 9.4. If E(p) is the Laplace Transform oF ¢ 7. (E), the
domain of existence being Rtp a : and if U € 2 has G p) as its
Laplace transform, with RIp: b : as the domain of existencB * U

has, in RIp> Max(a,b) = a the functionl_f(p) G(p) as its Laplace
transform.

—

Proof. Now (e P'T « U, '€) = e P{(T,€’) » U} for every'€’ e E/. 48
Hence, for everye’ ¢ E/, (e P'T + U, €) = (e P{T,€')) » e PU.
For Rlp > @ we havee P(T,€) ¢ ¢, ande U ¢ &/ and hence
ePYT, &) »ePU € 0.

Hence(e P'T U, €’) e 6. for RIp> @ and this for everye’ ¢ E'.
Since &, has theg-property, we have P'T « U e O{(E) ¢ ' (E).
Also the Laplace transform Qf_l'), e’) x U is the same a(s?( p),e’)-
G(p). This proves that

T +U = F (p)G(p).
Rlp>a

O

We shall be only interested in the case whkeis a Banach space. We
shall now study the properties of the Laplace transform in this particular
case.Notation. In what followsE is a Banach space.

Proposition 9.5. T ¢ 2! (E) is a distribution havingf)(p) as its
Laplace transform with Rlp>- a as the domain of existence. Then if
a is a real number, given any > 0 in the half plane Rlp> a+ ¢
we have a uniform majorisatiofp I—:)(p) < A1+ |p]®)X. If a stands
for the symbol-co then for any real number r we have a majorisation
I E(p) Il< A(L+|p2)¥in RIp>r, A being a constant 0.

Proof. First we prove that the following two statements are equivalent:
1) There exists an integ&rsuch that

I F(p) lI< A(L+|p}2)
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2) For every sequence of complex numbpisp,, ps, ... such that
|pn| = oo and for every sequence of real numbessasy, ...,
an, ... such thatr,| pn|¥ tends to O for every integér the sequence

I F (pn) || an is bounded.

Trivially (1) implies (2). We have to only prove (2) implies (1). Suppose
(2) is satisfied and (1) is not satisfied. Given any intagese can find
a p, such that

I F(pn) 12 AL+ [pa*)"
Take for{an} the sequenc%%'n/z. Then obviously for every integér
the sequencen|py|¥ tends to 0. Hence by (2) we should h |p.S|F”)72)”
bounded. But”F(‘ﬁ;‘g” > AQpP)" Obviously this sequence is not

[Pn = pnlv2
bounded. Hence (2) has to imply (1).

Let T = F(p). Then(T,€’) o (F(p),€’) for every fixed
&>a’ &>a
€’ € E'. Hence there exists an integel such that|<f)(p),‘€’>| <
A, (1+|p|?)* "€’ whereA, is a constant 0, uniformly inRIp> a+&
if ais real or inR1p > r,r any real number if stands for the symbol

‘ ’
—00 .,

Now suppos€ p,} is any sequence of complex numbers Wikl —
oo and supposéa,} is any sequence of real numbers withjpn|< — 0
for every integek

We have  [(F (pn)an. €| < Ag (1+ |pn/2)" |an].
Now asn — oo,|an\(1+|pn\2)“‘§’ - 0, and hence{?(pn)an,‘@’) is
a bounded sequence of points. Hence the set of pcﬁr(tpn)an is a
weakly bounded set i, and hence a strongly bounded set. Hence
I F(pn) |l |n| is bounded.

This completes the proof of propositibn ©.5. |

Proposition 9.6. If ?( p) is a holomorphic function of the complex vari-
able p in RIp> & with values in E and if we have a majorisation

= k.
I F(p) I<AL+[p?)" in Ripxé&,
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50 f(p) is the Laplace transform of a certain unique distributian «
2" (E) in their common domain of definition.

Proof. Similar to the scalar case. m]
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Lecture 10

Partial Differential
Equations - Weak boundary
value problems

Heat conduction equation: 51
Let Q be a bounded domain R" with a smooth boundar$. The

heat conduction problem if2 with Neumann’s boundary condition is

the following. We are given smooth functiofgx,t)[x € Q,0 < t <

oo], H(x,t)(xe Q,0 <t < c0) andU,(x)(x e Q). The problem is to find

a smooth functiord (x,t) continuous inQX (0, ) and diferentiable

in QX]0, o0) such that

i) % - AU(xt) = F(xt) (t > 0,x € Q)[Ais the Laplacian in
R"];

ii) for each fixedt > 0,U(x,t) andH(x,t) have the same normal
derivative at every point of the boundary;

iii) U(x0)=Uo(X).

Remark concerning condition (ii): Actually one is given initially a
functionh(x,t), x € S and it is required thatl (x, t) satisfy the condition

i") %’;’:) = h(x,t) for xe S and even.

55
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We shall, however, assume that there exists a smooth funidtiert),
X € Q, such thaf% =h(xt),xeS.

PuttingU — H = u, we are led to the following homogeneous prob-
lem: Givenf(x,t) andu,(x) which are sticiently differentiable find
u(x,t) continuous iNQX(0,0) and diferentiable inQX(0, o) such
that

) 2D Au(x.t) = F(x.1).t>0;

ii) for each fixedt > 0,u(x,t) has vanishing normal derivative at the
boundary;

i) u(xt) = u.(x).

In the frame-work of Hilbert spaces, the above problem, in a weaker
formulation, can be posed as follows. Consider the Hilbert spa¢e)
and the associated spad€See Lions:On Elliptic Partial Di fferential
Equations”, Tata Inst. of Fundamental Research, Bombay, Lec. 6).
Problem 1. Given a continuous functiof (t)(t > 0) with values in
L?(Q) and a functioru, € N, find a functionu, with values inL?(Q),
once continuously dierentiable irt > 0 such that fot > O, % -Au=F
and such thati(t) - u, in N ast — 0.

We shall transform this problem in the following way. Defing)”
(with values inN) by G(t) = u(t) for t > 0 andu(t) = 0,t < 0. Consider
U as an element o] (t,N) (space of distributions with values N
and with supports if(0,c0]. Similarly defineF e Z/(t,L?). Since
we requireu(0) = u,, we must havé! = (%) + 6u,, and problem 1
reduces to
Problem 1. To find 0 € 2/ (t,N) with & once continuously dieren-
tiable int > 0 and= 0 fort < 0 and such that

(%) @—AG=5UO+ F.
ot
Finally we may abandon the requirement tha diferentiable irt > 0
and replace the right hand member(ef) by an arbitrary element of
7' (t,L2). We then have
Problem 2. GivenT in 2. (t,L?) finduin 2 (t,N) such that
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ou
at Au=T.

We shall treat only problem 2. We shall show that the problem ad-
mits of a unique solution. But what we would have solved will only be
a problem much weaker than the original problem we posed. To solve
the original problem completely one has to show thatZ; (t, N) that
we have found is a flierentiable function it > 0 and also one has to

prove the regularity properties aft, x) as a function ok.
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Lecture 11

Weak boundary value
problems

We first formulate the generalized weak “boundary value problersd.
Problem 11.1. Q is a Banach space ar@ is its strong dual.V is

a Hilbert space satisfyiny ¢ Q,V c Q" with continuous injections
anda(u,Vv) is a continuous sesquilinear form & LetV be dense in

Q. Then we can find a subspabkof V and a continuous linear map
A: N - @Q such thatAu,v) = a(u,v). (See Lions:*On Elliptic Par-

tial Differential Equations”, Tata Institute of Fundamental Research,
Lecture 5). Letd € Z.(t,Q). We look for U € 2. (t,N) such that

% +AU=T.
Theorem 11.1. We follow the above notations. Assume that
1) § has a Laplace transformig = G (p) for RIp> a.
2) (u,u)V > 0forueV, where(, )y denote the scalar product in V.
3) There exists arr > 0 and a real&; such that
a(uu)+&Uud>a|ullz for £>&

where a(u,v) is the real part of 4u,v) and | ||v denotes the
norminV.

59
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Then there exists a uniqué € 2. (t,N) such thatU has a Laplace
transform and satisfie” + AT = G

Proof. §(p) is a holomorphic function with values i®’. For every
fixed p such thaRIp >y = Max(&1, @) consider the equation

(p+A)U(p) = G(p) (1)

Sinceay (u,v) + &(u,U) >|| u ||2 for & > & with a > 0, it follows (See
Lions: “On Elliptic Partial Di fferential Equations”, Tata Institute of
Fundamental Research, Lecture 5) that the opefaterA) : N - Q'
is an isomorphism foRIp > y. Hence there exists a uniql!l_é( p) €N

such that[(l) is valid. In facu,_f( p)=(p+ A)*lf;)( p) for every fixedp
with Rlp > y. m|

We shall next show thﬁ(P) is a holomorphic function with values
in N. For this we need the following general

Lemma. Suppose N and ‘Gare two Banach spaces andR) a holo-
morphic function in a domai® (in C) with values inZ(N,Q’). As-
sume I(P) has a continuous inverse £(P) at every point p of2. Then
the function p— L~=%(p) is a holomorphic function i with values in
Z(Q,N).

Proof. For p, p+ he Q we have
LY (p+h) - L7 (p) =L~} (p+h) {L(P) ~L(P+h)} L™(P).

The norm ofL=%(p + h) remains bounded ds— 0. For if not, we can
find a sequencéh,}n = 1,2,... of complex numbers tending to zero,
and a sequenck, of element inQ’ such that

LY (p+h)Xe=dn>n and [[X\ =1 in Q.

Let Yo = 22, Then|| Y g~ 0 and| L™*(p+ha)Ya [lv= 1. Let

Zn = L_l(p+ hn)Yn. Then” Zn ||: 1 NOW” L(p+ hn)Zn ||Q’:|| Yn ||Q’
and this tends to 0 as— co. Due to the continuity op — L(p) we have
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nIim | L(p+hn)—L(p) ||=0. Hencen lim|| L(p)Zn ||o=0. ButL(p) is

invertible and|| Z, ||= 1. This cannot happen. Hengd_"*(p+h) || is
bounded a$ — 0. Hencehlim|| L-3(p+h) -L"(p) ||= 0. This proves

the continuity ofp - L=%(p) for pin Rlp> y. O

We now prove the dierentiability of the functiorp - L=(p) in Q.
Forpand(p+ h) € Q, we have

L (p+) -L7(p) _ | 1
h

L(p) - L(p+h)
h

(p+h) L™ (p).

Now, rI]irrgJ L-X(p+h) =L7(p). Hence

-1 -1
im £ (P+h) -L7(p)
h-0 h

=L (p)L'(p)L(p).

whereL’(p) is the derivative of(p).

Continuing with proof of theorerh 1.1, we first remark that the

function p - p + A is a holomorphic function irRlp > y with val-
ues inZ(N, Q). FromU(p) =(p+ A)’lé(p) and the holomorphic

nature of(_f(p) and(p+ A)~1in RIp > v, it follows thatU(p) is a
holomorphic function op with values inN for RIp > .

The next step in proving our theorem is to show tE)Ja(tp) is the
Laplace transform of a well determined distributioihe 2/ (t,N) and
that this T satisfies the equatiofil + A)T = §. For anyf € Q' we
havev — (f, V) o to be a continuous linear functional ® Hence

(f.v) = (Jf,v)y where J:Q >V
is some fixed continuous linear map. Let
ap(u,v) = a(u,v) + p(u,v).

The mapv — a(u, V) is also a continuous linear map ¥fin V. Hence
there exists a fixed continuous linear mapV — V such that

a(u,v) = (Ku, v)y.



57

58

62 11. Weak boundary value problems

Then ap(u,v) = (Ku,v)y + p(u, V)
= (Ku,v)y + p(Juv)y (since Vc Q)
= ((K + pd)u,v)y.

For each fixecp in Rlp > y the eIemenU(p) of N is nothing but that
element ofN satisfying

ap(U(p),v) = (G(P). Voo
HenceU(p) is that element oN satisfying
((R+pd)U (p).vv = (JC(p). Vv
Hence (K +pJ)U(p)=JGC(p).
If we show that forRIp > y the operatoK + pJ is invertible, we will get
U(p) = (R+pd) 3G (p).
Now  [((K+ pd)uu)y|=|a(u,u)+ p(u,u)l.
We haveRl{a(u,u) + p(u,u)} = ai(u,u) + &(u,u) where& = RIp.
(This follows from the assumption théat, u) is real). Hence
|a(u, u) + p(u,u)| > az(u,u) + &(u,u)
>a|ulldZ for &>v.(witha>0).
Hence || (K+pd)ufv|ulv=e|ul. Hence
| (K+pJu|v2al uly withe>O0.

This implies, since we are in a Hilbert space, that the opetéterpJ
is invertible and that| (K + pJ)~* |< 2 for RIp > v. Hence we have

U(p) = (R+pd)13G(p).
1) Il <l (R+p) 1311 C(p) |
<251 B |

whereg is some constant. Sin(ﬁ(p) has a uniform polynomial ma-
jorisation in any half plan®lp > v + £, > 0, the same is true of
U(p). HenceU(p) is the Laplace transform of a certain distribution
T € 2.(t,N), which is unique.



Lecture 12
Topological tensor products

Let L andM be two vector spaces (algebraic) o¥erLetL ® M be the 59
tensor product of. and M over K. Then for any vector spadg over

K there exists a biunique correspondence between the bilinear maps of
Lx M in N and the linear maps @f® M in N. In fact to the bilinear map

uof L x M in N corresponds the linear map L ® M in N which takes
l@mintou(l,m). The map;: Lx M — L® M defined byp(I,m) =1em

is a bilinear map and is called the canonical bilinear map fM in

L ® M. We have commutativity in the following diagram:

LxM 1 Lo M
N

Let nowL andM be two locally convex Hausdfirvector spaces over
C. LetL ® M be the algebraic tensor productloAndM overC.

Theorem 12.1. There exists a unique locally convex, Haugfitopol-

ogy on L® M such that under the usual correspondence between bi-
linear maps of Lx M in an ELC N and the linear maps of& M in

N, the continuous bilinear maps ofXM in N precisely correspond to
the continuous linear maps oféh M provided with this topology in N.
Moreover under the biunique correspondence between bilinear nfaps o
L x M in C and linear maps of k& M in C, equicontinuous sets of bi-
linear maps of Lx M in C correspond to equicontinuous sets of linear

63
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maps of I’M in C (L&M being the tensor product provided with the
above topology) and conversely.

Proof. Assuming the existence of at least one such topology, we will

prove the uniqueness. Let andnr; be two such topologies. Take foyr

the spach@M The identity map oE®M — N is continuous and hence
T

the b|||near map which corresponds to this, thatistogay,x M - N
is continuous. Now thay : L x M - L®M is continuous, we have

2
i : LeM — LeM continuous. Hence; is finer thanr;. Interchanging
9] o
the roles ofr; andn, we see thai is finer thanr,. Hencery =n,. O

We now go to the proof of the existence of one such topology. Let
A(L, M) denote the set of continuous bilinear formslosx M. The
spaces”(L, M) andL® M are in duality with respect to the scalar prod-
uct which is got by restricting the scalar product betweé(L, M; C)
andL ® M where.Z (L, M;C) is the set of all bilinear maps df x M
in C. Now the duality betwees#(L, M) andL ® M allows us to define
a topology onL ® M, namely the topology of uniform convergence on
equicontinuous subsets &8(L, M) which is a locally convex, Haus-
dorff topology. This topology o ® M we denote byr and provided
with this topology the spade® M is denoted by_§M. We shall prove

thatr is a topology having all the properties mentioned in the theorem.
We shall show first that under the biunique correspondence of bilinear
maps ofL x M in C and linear maps di®M in C, equicontinuous sets of

/g

bilinear maps precisely correspond to equicontinuous linear maps. Let
H c Z(L,M;C) be any equicontinuous set. Thehc Z(L, M) triv-
ially. Let H be the corresponding subset#f(L ® M, C) (the set of all
linear maps ol. ® M in C). LetI'(H) be the stable envelope éf in
Z(L,M;C).T(H) is an equicontinuous set and hemgé!) c ZL,M).
LetW =T'(H)° be the polar of (H) with respect to the duality between
ZA(L,M) andL ® M.

Sincel'(H) is stable,

W= {yeLe®M/|(r,y)| <1, foreveryr eT'(H)}.
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Now h(y) = [(h.y)| whereh ¢ H andh is the corresponding bilinear
map. Forh ¢ H we have|(h,y)| < 1. Hence|h(v)| < 1 forv ¢ W.
HenceH is an equicontinuous set of linear mapd.&fM in C (asW is

a neighbourhood of 0 ih@M).

Now supposeH is any equicontinuous set of linear mapslLaM

in C. LetH be the corresponding set of bilinear mapd.of M inﬂC.
Given any neighbourhootl of 0 in L ® M we show that there exist
neighbourhood&) andV of the zero elements ih andM respectively
such that the sa&fl ® V c N. (The setJ ® V is, by definition, the set of
all elements of the form®v, ue U, ve V). NowN > W° whereW is an
equicontinuous subset &#(L, M). We can find stable neighbourhoods
U andV of the zero elements such tHat(u,v)| < 1w e W, u e U and
ve V. The pair(U, V) does what we need, forife U andv € V we have
w,u® V)| = |w(u,v)| < 1. Henceu®ve W° c N. HenceU ® V c N.
(This incidentally proves the continuity of the mapL x M — L§> M).

Now for anyh € H and(u,v) € U x V we have
Ih(u,v)| = |h(ue V)| < 1,

sinceU ® V c N. HenceH is an equicontinuous set of bilinear maps of
Lx MinC.

Now we prove that the continuous bilinear mapsLof M in any 62
ELC N, precisely correspond to the continuous linear maps%d\‘/l in

N. For this, we need the following

Lemma 12.1. Let ¢ be any continuous bilinear map of>LM in N.
With eachu € N we associate the bilinear forip, 1) defined by(¢, u)
(I,m) = (¢(l,m), u). The bilinear form(y, 1) is an element of8(L, M),
(trivially). If W' is any equicontinuous subset of, lthe Se'ENILEJWI(t,D,W')

is an equicontinuous subset#f(L, M).

Proof. SinceW’ is an equicontinuous subsetf we can find a neigh-
bourhoodr of 0 in N such that

|(r,w) <1 forevery rel’ and weW
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Sincep : L x M — N is continuous, there exist neighbourhoddigand
V of the zero elements df andM respectively such that(U x V) cT.
For (u,v) € U x V we have

o, WY (U, V)| = {o(u,v),W)| = |(r,w) <1 with rel.

Hence 9, {{p,W)} is an equicontinuous subset@f(L, M).
weW’

Now, lety : Lx M — N be bilinear and continuous. For any equicon-
tinuous seW’ of N’ we have . {{p, W)} is an equicontinuous subset
weW’

of (L, M). Hence ifa - 0 in L& M,

9\/\/ ’ - O
{lp.w).a) B(LM),LeM

uniformly forw’ e W'. If »: L&M — N is the corresponding linear map,

we have(g(a),W)nn = ((g, W), «) and this tends to O uniformly
B,LxM
whenw' e W', i

Henceg(a) — 0in N whena — 0 in L& M. Hencey'is continuous.
/e
Conversely, supposg ©LeM — N is continuous. Lety be the
Vs

corresponding bilinear map afx M — N. We havep = ¢.n. As has
been shown already,is continuous. Hence is continuous.

Corollary 1. nis the strongest (finest) locally convex Haugfitwpol-
ogy on L® M such thaty: L x M — L ® M is continuous. In fact is a
locally convex Hausdgftopology on l® M such thaty: Lx M — LM

/e
is continuous. Let’ be any locally convex Hausdtopology such that
n:Lx - L®M is continuous. Then:iLe&M — L&M is continuous and
i b .

hencer is finer thann'.
Corollary 2. The topologyr is finer than the topology.

In fact, with the topology,n : L x M - L®M is continuous, Hence
&
nisfiner than e.
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Proposition 12.1. Let u: Ly - Ly and v: M1 — M5 be continuous lin-

ear maps where 1, L,, M1 and M, are locally convex, Hausdg topo-

logical vector spaces. Thenauv = L1®@M1 — L,®M, is a continuous
T Vs

linear map.

Proof. To show this, it sffices to prove that the bilinear mapx v :
L1xM1 - Lo®M; defined byuxv(ly, my) = u(l1)®v(my) is continuous.

If I1 - 0inL; andmy — 0 in My, we haveu(l;) andv(my) tending to O
in L, andM,. Henceu(l1) ® v(m;) — 0 in L,@ M3 since the canonical

mapL, x My — Lo®Ms is continuous. Hencex v: Ly x My —» Lo®Mo
V4 Ve
is continuous. |

Corollary. If u: Ly - Ly and v: M1 — My are continuous injections,64

u®Vv:Li®M; - L,®M, is a continuous injection.

Vs /4
This is an immediate consequence of the fact that C is a field and of

proposition 1Z.1L
Remarks:

1. Thoughue v: L1®M; — Lo®Ms> is a continuous injection, the
Ve Ve
extension ofi®v by continuity fromL;®M; — Lo®M> (the com-
Ve

pletions) is a continuous linear map, but not necessarily an injec-

tion.

2. Let sZ be a complete space of distributions adca complete
ELC. The space’(E) is complete. The maip /7 ®E — 7#®E

/e &
given byi(a) = a is a continuous linear map which extends itself
into a continuous linear map J#®E — 27 (E). i is in general

/s

not an injection.

3. LetL,M andN be threeELCs overC. The canonical isomor-
phism of(L® M) ® N with L ® (M ® N) is a topological isomor-
phism 0f(L®M)®N with L®(M®N) By using trilinear maps we

can mtroduce a IocaIIy convex Hausﬁaopologyzr onLeMeN

such that the canonical biunique correspondence between trilinear
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maps ofL x M x N and linear maps df ® M ® NinanyELC F
takes the continuous trilinear maps precisely into the continuous
linear mapgL ® M ® N)y in F. The canonical isomorphism of
L® (M ® N) with (L® M ® N) is a topological isomorphism of
L<§(M<§>N) with (L® M ® N),. That is to say, we have

(L& M®N), »L(M&N) ~ (LeM)®N

as topological vector spaces.



Lecture 13

Topological tensor products
(contd.)

We shall give an intrinsic characterisation of the topology on the teng®r
product defined already. LétandM be twoELCs overC. LetU and

V be neighbourhoods of the zero elements endM. LetI'(U® V) be
the convex, stable envelope of theBeV in L& M, UV being the set

of points(u® v, ue U, ve V). The sefl’(U ® V) is an absorbing set in

L ® M. In fact any element df ® M is of the form}. I, ® m,, |, ¢ L and

m, € M, the sum written being a finite sur. absorbd, andV absorbs
m,. HenceU ®V absorbs each of the elemehtsm,. Hence the convex,
stable, envelopE(U ® V) absorbs any finite sum of the elements of the
forml, ® m,. We can take the sel§U ® V) for a fundamental system
of neighbourhoods of 0 in a certain locally convex topologyLan M.
This topology is precisely the topology Let us denote the topology
just defined byr.

Proposition 13.1. The topologies andr are identical.

Proof. If we show that the topology is the finest locally convex topol-
ogy onL ® M such that the canonical bilinear mapLxM - L® M
is continuous, we are through. Obviouglis continuous, for if we take
any neighbourhood of 0 ih® M it contains a set of the forii(U ® V),
U a neighbourhood of 0 ik andV a neighbourhood of 0 iM. Now
n 3T (U ®V) o U x V and this is a neighbourhood (8,0) in L x M.

69
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Suppose is any topology orL ® M such that. x M LA L%M is
continuous and is locally convex. Any neighbourhood of 0 I[%M

contains a convex, stable neighbourh&df 0. If we show thatV is
a neighbourhood of 0 even farwe are through. Sincg: Lx M —
L®M is continuous, there exist neighbourhoddisandV of the zero

9
elements of- andM such that) ® V ¢ W. SinceW is convex and stable
I'(U ® V) c W. HenceW is a neighbourhood of 0 in. i

Seminorms.Let U andV be convex, stable neighbourhoods of the zero
elements inL and M respectively. Letp be the seminorm associated
with U andq the seminorm associated with Letr be the seminorm
associated wit'(U ® V). It is possible to prove that is the same
as the tensor product of the two seminormandq defined as follows:
peq(&) = InfY p(x,)a(y,) whered =¥ x,®y, is a way of expressing

& as the sumvof a finite number of elements of the type® vy,, X, €
L,Y, € M. Also, mif for a pair of elementx, y; x ¢ L andy ¢ M we have

& = X®Yy, we can show that(&) = p(x)q(y). If L andM are normed
spacesl. ® M is a normal space with the tensor product of the norms on
L andM as the norm. That is to say,

& fl=nf 370 % Iy -

Supposd. andM are both Frechet spaces. One can show then that
L®M is also Frechet.

Proof. Let L andM be Frechet spaces. In order to show thatV is
a Frechet space it flices to show that i@ M we have a countable

base for the neighbourhoods of D.andM bneing metrizable, we have
countable bases for the neighbourhoods of the zero elements in the case
of the two spacek andM. If U, andV, are countable bases for neigh-
bourhoods of the zero elementslimand M respectivelyl'(U, ® V,) is
a fundamental system of neighbourhoods of Q&M. HenceL®M is

T /4
metrizable and hence its completion is a complete metric space and as it
is locally convex, it is a Frechet space.
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In what follows immediatel\. andM stand for two Frechet spaces.
m|

Proposition 13.2. Any & € L&M can be written as a convergent infi-
nite seriesy. 1, X, ® ¥, in which the xs and ys can be so chosen as to
converge td) asv — oo in L and M respectively anl |4,| < oo Also

if K is compact in [®M, any& € K can be written as” 1,x, ® y, with
T v

Y|4, < oo and x, € Ay, € B where A and B are compact subsets of L

and M respectively. That is to say&I'(A® B). For the proof, refer to
Memoirs of the American Mathematical Society, No. 16, Products Ten-
soriels Topologique et Espaces Nucleaires, by Alexandre Grothéndiec
p. 51.

Definition 13.1. An ELC E is said to be nuclear if favery ELC, F
ther ande topologies coincide on B F.

We now give a criterion for a locally convex Hausgf@pace L to
be nuclear.

Criterion 13.1. An ELC E is nuclear if and only if for every Banach
space B, we havedB = L®B.

T &£
We shall give another criterion, which is, to some extent, better than
the above criterion. Before giving the criterion, we introduce certain
notions needed to state the criterion.

Definition 13.2. Let N be a complete ELC. Let L be an ELC. A lineas
continuous map uL — N is called nuclear if it can be written as

u=>y A,(,em,)

with the [/s contained in an equicontinuous subset 6fahd m, con-
tained in a bounded subset of N afid4,| < co.

v
To see that the definition makes sense, we consider the expression
u =Y A,(l, ® m,) with the [;s lying in an equicontinuous subset df L

and the m lying in a bounded set of N arjg |4,| < co. Letu(l) for any
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| be defined ag 4, (I’(1).m,). We shall show that+ (1) € N = N is

a continuous map. Let V be any neighbourhoo® af N. Since ms
lie in a bounded set, there exists> 0 such that m € aV for everyy.
Since thej] lie in an equicontinuous set, given aay 0, we can find a
neighbourhood of Wof 0 in L such thaf(l,1/}| <e for any e W.. Hence

S 4, 1)m, € A€ al (V)

where Y |4,| < A and (V) is the convex, stable, closed envelope of
V. But V itself can be chosen to be a disked neighbourho@droiN.
HenceY 4,(1,1’)m, € A € V. Choose= -X. ThenYy A,(I,I’)m, € V.

Aa”
4
This proves the continuity @f. Thaty is linear is obvious. Ifu L —
N is a nuclear map, we can express u 8s, (I, ® m,) with m, —
4

0in N and [, lying in an equicontinuous subset of. LIn fact, since
> |4,| converges we can find a divergent sequence of real nuribgrs
4

diverging to+oo such that the serie¥ A,r, still converges absolutely.
14
Then}y A4, (ILem,) =X A4,n(l, ® %). Since the is lie in a bounded
4
set,% —»0asv - ocoandy |A,r,] < co.

Criterion 13.2. Let U be any disked neighbourhood®in L. With U

we associate a seminorm p. This seminorm gives a certain equivalence
relation in L. x~ y if and only if gx) = p(y). We put on L the coarsest
topology under which the seminorm p is continuous. Then we take the
quotient space . under the equivalence relation defined with the help
of the seminorm p. Ldty be the completion of i Ly is a Banach
space. L is Nuclear if and only if the canonical mapsLLy is a Nuclear

map for every disked neighbourhood (A. Grothendieck: Espaces
Nucleares, Memoirs of the Amer. Math. Soc., No. 16, p. 34). We shall
now prove the following

Proposition 13.3. If for every disked neighbourhood U @the canoni-
cal map L— Ly is anuclear map, any continuous linear maplu— B,
B being any Banach space is nuclear.

Proof. There exists a disked neighbourhobdof 0 in L such that
u(U) c T whereT is the unit ball ofB. The continuous linear map
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can be factored into the canonical miap> Ly and a continuous linear
map ofLy — B. SinceL — Ly is nuclear, our assertion follows. 0

Theorem 13.1. A nuclear space has the approximation property.

Theorem 13.2.1n a nuclear complete space L all the bounded sets are
relatively compact.

Theorem 13.3. A nuclear Banach space is finite dimensional.

We admit Criterio 1312, and Theorém 13.1. Theorem]|13.3 is an imme-
diate consequence of Theorem 13.2. We prove here Théarein 13.2.

Proof. Let B be a bonded set. Without loss of generaliB/can be
assumed to be disked, for the convex, stable envelope of a bounded set
is bounded . Since is complete, to show tha is relatively compact, 70

it suffices to show thaB is precompact. FoB to be precompact, it is
necessary and ficient that for any disked neighbourhood of 0 sy

the image oB in Ly is precompact. Now — Ly is a nuclear map and
hence a compact map. Hence the imagB wf Ly, is relatively compact.

This completes the proof of Theorém 13.2. O

Theorem 13.4.1f L and M are both nuclear, &M = L&M is nuclear
Ve &
and Lx M is nuclear.

The proof is trivial in the case df@M.

Theorem 13.5. L is nuclear if and only if_ is nuclear.

Theorem 13.6. If L is a nuclear Frechet space, the strong dualis.a
nuclear space.

Theorem 13.7.1f L and M are Frechet nuclear space&;(L, M) is a
nuclear space.

Theorem 13.8.If L is a nuclear space, any subspace of L with the
induced topology is a nuclear space. If H is any closed subspace of L,
the quotient space/H is also nuclear.
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Examples of nuclear spaces?;, 2,2',&,&",.,.", Owm, O}, O, Ok
are nuclear spaces¢™ andLP are not nuclear. In fact ig™ and LP
bounded sets are not relatively compact.

For the proofs of all these results, refer to Espaces Nucleaires by A.
Grothendieck, Memoirs of Amer. Math. Soc., No.16.



Lecture 14

Multiplication of vector
valued distributions

Lets7, 7 and.Z be threeELCs LetU : 77 x % — £ be a bilinear 71
map which is hypocontinuous with respect to the bounded subsets of
2 and.# . Let E,F,G be three Banach spaces aBd E x F - G
be a continuous bilinear map. We ask the question whether it will be
possible to define a bilinear map:

H(E)x #(F) > Z(G) sayLBJ such that is satisfies the following

conditions:

1) LE{ is hypocontinuous with respect to bounded sets®fE) and
H(F).

2) For decomposed elements, that is for elements of theSy@and
T f of #(E) and.# (F) we haveS?léJT f =(SUT)B(E, f)

With?eE,_f)eF,SejfandTeJi/.

In general it will not be possible to define such a map. We shall give
here, without proof, a certain example in which such a ngapannot
be defined. Let?° be the space of continuous functions with compact
support orRN. Let 7" be the strong dual o#°, that is to sayZ; is

the space of measures B. Let 7 ¢ 22 (E) and g ¢ 2°(F) where
E andF are two Banach spaces. LBt: E x F — G be a continuous

75
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bilinear map. The duality betwe@;' and 2° gives a bilinear map of
235x2° in C hypocontinuous with respect to the bounded sets. But a
bilinear mapLé : 9°'(E) x 2°(F) - G cannot be defined to satisfy the

conditions (1) and (2). We shall now prove the following

Theorem 14.1.Let o7, 7, £ be three locally convex separated com-
plete vector spaces all of which are nuclear. Let the strong duals of
the three spaces be also nuclear. Let U? x .7 — % be a bilin-

ear map hypocontinuous with respect to the bounded subsgfs afd

. Let E F and G be three Banach spaces with a continuous bilinear

map B: E x F - G. Then there exists one and only one bilinear map
LE{ : H(E) x # (F) > Z(G) which satisfies

1) S_e?lgT—f) - (SUTR(E, T) forevery8 ¢ E, T e F,S ¢ #
and Te 7.

2 (S, T)->S gJT is separately continuous i& andT . More-
over LBJ has the following supplementary properties.

3) lg is hypocontinuous with respect to the bounded subsets of
' (E) and 7 (F).

4)

é’gf’ (176B8)(U1E)(T)

= (1z¢B)(Ie® U=)(S)

where ly, Ig and I are the identity mappings o, E and F respec-
tively, and Uz, U= andB are defined as follows. iJ: %" -~ Z(E) on

any Te 2, Ug(T) = SuT (for the definition oB UT refer to lecture

7). Uz : A — Z(E), onany Se 7#,U=(S) = SUT B being a con-
tinuous bilinear map of & F in G, B gives rise to a continuous linear
map B of E®F in G which in its turn can be extended to a continuous

linear map of BBF in G. B denotes this extended map.
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Proof. First, assuming the existence of a bilinear map satisfying (1) and
(2), we shall prove the uniqueness of the map. Suppose there are two bi-
linear mapstLJB1 and%2 satisfying (1) and (2)»# and.# being nuclear, 73
they have the approximation property ald®E = Z’®E. Therefore
H'®E = #(E), # ®F = ¢ (F), because’(E) and.# (F) are com-
plete. Hence the set®’ ®E and.# ®F are dense i’ (E) and# (F).
On the product of the sefts? ® E) x (# ® F) the bilinear maps that we
define are well determined because of (1). Now the separate continuity
of bothL{l andUB2 givesUB1 = Ul2 on the whole of#(E) x ¢ (F).

Now we shall prove the existence of a bilinear map satisfying (1)
and (2).

Given a bilinear magJ : 7 x . — £ hypocontinuous with
respect to bounded sets we have already seen how to define a bilin-
ear map#’(E)x# — Z(E) hypocontinuous with respect to bounded

sets satisfying certain consistency conditions (see lecture 7). Bach
H (E) = #®E defines a continuous linear mapg : 4~ Z(E) =
/4
Z®E as follows: Ug(T) = SuT. Uz gives rise to a continuous
Ve
linear mapUz ® I¢ : Z'®F — (.,%%E) ® F, which can be extended
/4

by continuity into a linear map, which also we denotel}bg ® Ig of

H OF — (Z®E)®F; thatis to sayl¢ ® I : #&F - Z&(ESF) is
/e Vg /g /4 /e s

a continuous linear map. Sincg is nuclear, we have

L&(EBF) = £(ESF).

Uz ®Ir : #(F) — Z(E&F) is a continuous linear map. Now
B : EQF — G is a continuous linear map. Hence the mapB is

a continuous linear map o/ (E®F) — £ (G). We define S gﬁ)

to be the elementl »£B)((U¢ ® I£)(T)). We shall now show that
Lé : H(E) x A (F) - Z(G), which is trivially bilinear, has the fol- 74
lowing properties:

—

()IfSe #Te#,8cEand f ¢ FSEUTT = (SUT)
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B(®, ):
(i) If S remains in a bounded set i’ (E), andT - 0in A (F),
then'S éﬁ" tends to 0 uniformly inZ(G); and

(iii) If S - 0insZ(E) andT is fixed in.# (F), thenS g?’ - 0in
Z(G).
We remark that proving (ii) and (iii) is more than proving separate
continuity.
Proof of (i). Let T = T—f),T e # and f € F. Then for any§) €
A(E).(Ug ® Ig)(T) is nothing but(SUT) @ f. If S = SE, we
see that
SUT=(S€)UT=(SUTE.

Hence (Ugelp)(T) = (SUT)Ee f if S=S8T-=
TY.

Hence(l #B)((Uz ® IF)(T)) = (SUT)B(E ® T)
- (SUT)B(B, 7).

Proof of (ii). LetS remain in a bounded set o¥’(E) andT - 0in
A (F). We know thatifT - 0in.# andS remains in a bounded set of
7 (E). S UT - 0in.Z(E) uniformly, that is to say¢ : # — .Z(E)
is an equicontinuous set of linear maps wiBries in a bounded set of
2 (E). Hence the set of operatotsg ® I : %%F - .Z(E)%F =
.Z(E%F), S in a bounded set o7 (E), is an equicontinuous set.

Hence if T — 0 in H(F),(Ug ® IF)(?) - 0 uniformly. 14&B
is a fixed, continuous, linear map o (E®F) in .#(G) and hence

(|g8é)((U§> ® IF)('—I'))) — 0 uniformly in Z(G) when'S remains
in a bounded set of# (E).
Proof of (iii). First we show that ifT remains in a bounded sét of
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# and T remains in a fixed ball, say V |< « of Fand if S - 0
in 2 (E), §)E3JT f tends to 0 inZ(G) uniformly. If we show that
(Ugel F)T—f) - 0in Z(E®F) uniformly, the above result will follow.
Now (Ug ® I,:)(T_f>) = (§> UT) ® T.SUT-0in Z(E) uniformly
if S > 0in 2 (E) becausdl remains bounded inZ” (theoren{711),
and sincef remains in a bounded se(3_§ UT)® f — 0uniformly as
S - 0in#(E).

Now suppose thal lies in the closure of the convex, stable, enve-
lopeT’(A, B, ) of the product of a bounded s&tin .#” and of a bounded
setB, in F, the closure being taken in the sense/6{F). LetS -0
in 7 (E). We shall show thas lBJ'—I') — 0. Since, convex, stable, closed
neighbourhoods form a fundamental system of neighbourhoods of 0 in

Z(G), it is suficient to prove thatW being a closed disc ofZ(G)
which is a neighbourhood of 0, there exists a neighbourhdad O in

¢ (E) such thatS e N implies thatS lBJ'—I') e W. Any Te I'(A,By)
can be gotas Iin?j, -—I—)j being a filter of sets ilr(A, B, ). To any neigh-
bourhoodW of 0 in £ (G) there corresponds a neighbourhdéaf O
in 2 (E) such thatS lBJ'—I') e W for every§) eNandT ¢ A®B,. Since

W is convex, stable we havé U-—I—)j e W for any'—l')j eT'(A,B,). Now
A . — . — B - = - =
if T =Ilim, Tjwith T;eTI(A B,), we haveS lBJTj - S lBJT. Hence

—

S gT ¢ W. But sinceW is closedW = W. HenceS EJ'—F) eW.

|

Now, suppose?> is an element of#"(F). Since.# is nuclear,
bounded sets inZ” are relatively compact. Hence}' = J¢;. We have
assumed that?;’ is nuclear. 7 (F) = Z.(/,F) = £.(%,F). If 76
'_I') e # (F), since#j is nuclear, and= a Banach space, we see that
T is a nuclear map. Hence - > Ankn ® _f)n,kn e A = () with

n
> |An| < o0, kq being an equicontinuous set.gf considered as the dual
n

of 7 and—f)n lying in a bounded set df. This just means that «



80 14. Multiplication of vector valued distributions

I'(A, B) with A andB bounded sets iZ” andF respectively, closure in
L F) = (F). HenceS UT - 0asS - 0in H(E).
Thus we have seen that the bilinear mgp H(E) x #(F) —

Z(G) satisfies (i), (i) and (iii). In particularté is separately continu-
ous. Now, let)’ be defined byS Lé’? = (leB)(lg ® U?)(g). v’
can be proved to satisfy
(i) sSBY TT =(SUT)B(®, f)whenSe #,T e .#, 8 cEand
T eF.

(i)’ When T remains in a bounded subset.af (F) andS - 0in
#(E), S Lé'? — 0 uniformly in Z(G).

T > 0in H(F) and'S is a fixed element o7 (E), the

- 0in.Z(G).

(i)Y f T -
s Lé’?’
In particular,UB’ is separately continuous.
Thuslé and UB’ are separately continuous bilinear maps satisfying the
condition (1) of the theorem. But from the uniqueness of such a map
which we have proved already, it follows thgt: Lé’.
Now, if we combine (ii), (iii), (i)', and(iii )’ we see that.BJ = lé’
satisfies also the conditions (3) and (4) stipulated in the theoremo

A particular case of the multiplicative product.

Lets#, # and.Z be three nuclear spaces with nuclear strong duals.
Let E be a Banach algebra. U : o7 x # — % is a bilinear map
hypocontinuous with respect to the bounded subset&’cdnd.?", by
taking for B the multiplication inE we get bilinear maphé : H(E) x

4 (E) - Z(E) which is hypocontinuous with respect to the bounded
subsets o7 (E) and.# (E).



Lecture 15

Operations on vector valued
distributions (contd.)

Suppose’’ is a nuclear, barrelled space with a nuclear strong d¢jal 78
Let 2 and.”Z;' be assumed to be complete. lE&tF andG be three
Banach spaces ari8la continuous bilinear map & x F in G. Then
we can get a bilinear map of/(E) x '(F) in G hypocontinuous
with respect to the bounded subsets/6f E) and.#”'(F). Since” is
barrelled, the scalar product defining the duality betweg€rand. 7" is

a bilinear map of7# x " into C hypocontinuous with respect to the
bounded sets of#” and.#]'. Let us denote the scalar product by the
symbol ‘.. B being a continuous bilinear map Bfx F in G, we get, as
explained in the previous lecture, a bilinear rréami”(E) x H'(F) -

C(G) = G, hypocontinuous with respect to the bounded set&4(fE)
andZ'(F).
Now, 2 and. are barrelled spaces. HenceBf: Ex F - G is

a continuous bilinear map, we get a separately continuous bilinear map
in each of the following cases, which is further hypocontinuous with
respect to the bounded sets

1) 2(E)x2'(F) -G

2) S(E)x S (F)->G

If ¢ e2(E)andT e 2'(F) we denote byl . ¢ the image irG of the
B

81
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82 15. Operations on vector valued distributions (contd.)

element(g, ?) by the bilinear map in case (1). We use similar notation
in case (2) also.

For the Banach spacé&s F andG we can takeE, E’ andC and for
B the canonical bilinear form o& x E’. Then whens and.#’ are
complete nuclear spaces wit#’ barrelled, we get a bilinear form on
A (E) x #'(E) hypocontinuous with respect to the bounded subsets
of #(E) and#'(E'). If @ ¢ #(E) and T ¢ 2#'(E') the image of
(@, ?) in C by the above bilinear map is denoted(ﬂ_ﬁ, g).

Since.” is nuclear and#” andE are complete, we hav&’(E) =
%%E. Letue (7 (E))’. uis alinear form on%ﬂ%E which is contin-

uous. Nows# ® E is dense inZ®E, therefore the space of continuous
/s
linear forms ons#’®E is the same space of continuous linear forms on
/s
®E. The definition of ther-topology hence give&7#(E))’ = space

of gontinuous bilinear forms o? x E algebraically. Them can be
considered also as a continuous bilinear formséhx E. For any fixed
he . #,€ - u(h,€) is a continuous linear map d& in C; hence it
defines an element, of E’. The mappinch — uy of 7 in E’, with
the structure of a Banach space on it, is a continuous linear map. Con-
versely, suppose that: 7 — E’ is a continuous linear map. Then ~
defined byuTh, €) = (u(h), €) for every € ¢ E andh € ¢ is a contin-
uous bilinear form o” x E. Hence we havé.#(E))' = £ (#,E’)
algebraically. Now, consider the spag¢&’(E"). We have seen that we
can define one and only one bilinear form.#fi(E) x.7#”' (E’) hypocon-
tinuous with respect to the bounded sets satisfying

(TE€.H€)=(TH) (€. ¢ )ee.

If H' (A#(E)) andg e 2 (E) the scalar product defining the dual-
ity betweens#’(E) and(s#(E))’ satisfies

(HE,H'€") = (H,H") sy (€, € )ep.
Also (W (E)) = L (#,E")and. ' (E") = L ("), E'). (H');is

algebraically the same a&” but, in general, has a topology finer than
that of /7. In the case of barrelled space®?’)’ = .%# topologically.It
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follows from Theoreni 14]1 that the scalar product defining the duality
betweens#(E) and (#(E))’ is the same as the bilinear form that is
defined ons#’(E) x ' (E") by the process described in Theolem 4.1

The convolution of two vector valued distributions.

Let E, F andG be three Banach spaces eéBdE x F — G a contin-
uous bilinear map. Le€ « ' (E) andT e O{(F). The convolution
operation between the elements.#f and the elements af satisfies
the conditions stipulated in Theorém 14.1 and the spates”, O, O
are all nuclear complete spaces. (See: Memoirs of the Amer. Math.
Soc., No. 16, Products Tensoriels Topologique et Espaces Nucleaires
by A. Grothendieck). Hence, as explained in Theofem]14.1 we can
define a bilinear mag : L' (E) x OL(F) - ./(G) which is hypocon-
tinuous with respect to the bounded subsets6tE) and 0((F). We
call S x T the convolution ofS and T underB.

We know thatS ¢ 7] andT ¢ 2/ impliesS x T ¢ 2., where
2" is the space of distributiors2’ with supports bounded on the left
(it is the dual of 2_). The map(S,T) € S» T of 2. x 2| in P,
also satisfies the conditions stipulated in Theoreml14.1. Hence we get
a bilinear maps : 2.(E) x 2.(F) - 2.(G) hypocontinuous with
respect to the bounded sets.Hfis a Banach Algebra, by taking = 81
F = G = E and B = the multiplication inE, we get a bilinear map
2.(E)x 7. (E) - 2! (E) hypocontinuous with respect to the bounded
subsets of7, (E) andZ; (E).

Now suppose§ e /'(E) andT ¢ O{(F). Then'S E'—I') e '(G),
whereB : E x F - G is a bhilinear continuous map ariel F and G
are three Banach spaces. The Fourier transforms cind T sat-
isfy %(g) e S'(E) and,%”(?) e Om(F). Sincedy and 0y, are
nuclear and complete (refer to: Memories of the Amer. Math. Soc.,
No16, Espaces Nucleaire, by A. Grothendieck), using the product be

tween the elements o’ and the elements af)y and using the bilin-
ear mapB we define a produdiB) between the elements of'(E) and

Om(F) as explained in Theorem14.1. Then we haaﬁg * -T-’) _
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%(g)(B)%ﬂ(?). This follows from the separate continuity of the
operations on the two sides and from the equality

AH(ST+TT)=H(SE) @ (TF)forSe. 7, Ted, 8 cEand
T ¢ F and from the fact that”’ ® E and 0 ® F are dense in”’'(E)
ando((F) respectively.

In the case in whichT e 2'(F) is a continuous functiorg with
values inF, E’B'_r) for every’ g € 2(E) can be expressed as an integral.

We will show that
?.T - [ B@(. (0dx
R
we know thatB : 9'(F)x2(E) — Gis a separately continuous function.
Hence.B :£°(F) x 2(E) - G is also separately continuous. Also the

mapping
(9.9) > [ B#(). T()dx

R
is a separately continuous map&f(F) x Z(E) - G. Also for every
0eD,geE°, € e Eand f €F, we have

[ BB (.97 (x)dx= [ Ble(0E.909 T )dx

Rn Rn

= [ e(09()B(€. T)dx
RN

:{[ <p(x)g(x)dx}.B(3,_f>).
R"
The mappings

S E°(F)x 7(E) > Gand(T. %) ~ [ B(F (0. T (x)dx

R

are separately continuous and agree on the decomposed elements. Since
£° andZ have the approximation property, we see that the two maps are
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identical. Also if f ¢ 2° andg € £° the convolutionf x g is_)an element
of £° and is given by[ f(x - &)g(&)d&. Now supposef ¢ 2°(E)
andg € &°(F). Theanwe shall prove that EH € £°(G) and is given
by the formula f E—g’(x) = an B(T(x- &), G(&))ds. The maps
ok 2°(E) x E°(F) - 2'(G) and(?,@) —>an B(f(x-&),9(&£))d&

of 2°(E) x £°(F) — £°(G) are separately continuous and agree on the
decomposed vectors, for ffe 2°,ge £>and@ e EandV € F. We
have

8 xgV(x) = f*g(xB(E.V)
_ (f f(x_g)g(g)dg)s(ﬁ,v’)
:fB(f(x—é")E’,g(éa)V)dg
=fB(fTa>(x-£),g7(5))d£.

Now since Z° and £° have the approximation property° ® E and
E°®F are dense iv°(E) and&°(F), hence we deduce the conclusion.
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15. Operations on vector valued distributions (contd.)



Lecture 16

Weak boundary value
problems

Let E,F andG be three Banach spaces andBet Ex F - G be a 83
continuous bilinear map.

Proposition 16.1. LetS e 2! (E) andT e 2" (F) be two distributions

such thatS - §(p) and T = ?(p). ThenS * T has a
Rl p>a Rl p>a B

Laplace transform for RIp- a and the Laplace transform is precisely

B(S(p). T (p)).

Proof. ForRI p > a,e ™S ¢ ./(E) ande T ¢ .#/(F). In fact,
we know that more is true. Fal p > aePs e O{(E) ande P'T e
O.(F). We havee P'S Ee‘pt? - eP(S ET’). The convolutions
9. x 9, - 27 and 0, x 0 -~ 0 coincide on the elements on which
both are defined. HenasP(S : T)=ePs Ee-pt? e 0.(G) for
Rl p>a HenceS x T has a Laplace transform f&l p > a and the
Laplace transform is the functidB(g( p). '_I')( p)).

We shall consider an application of the above theory to a problem in
differential equations.

Let Q' be a Banach space aia Hilbert space witiN ¢ Q" with
a continuous injection. LeA: N — Q' be a continuous linear operator.

87



88 16. Weak boundary value problems

Let T € 2/(Q)). Tofind, if possible,T € Z,(N) such tha( & +A) T =
T. This problem can be restated as follows: To fidde 2} (N) such
that R

(81 +6A) U = f
wherel : N - Q' is the injection. We havé;l andé&:A in 2, (Z(N,
Q). O

We use the properties of the convolution operation to get new operators.
Let 77, ¢ and.Z be three nuclear complete spaces with nuclear,
complete strong duals. L& : E x F - G be a continuous bilinear
map, E, F andG being three Banach spaces. Wt 7 x % - £
be a bilinear map hypocontinuous with respect to the bounded subsets
of 2 and.#". As explained in Theorein 14.1 we can define a bilinear
maplé : H(E) x #(F) - £(G) hypocontinuous with respect to the
bounded subsets.
LetS® ¢ #(E) with S e 7,8 c Eand T ¢ .#(F). We shall
find an expression foB € Lgﬁ)' For each€ ¢ E, letBg : F -~ G be

the continuous linear maag(—f)) = B(_e’,—f)). The continuous linear
mapB— : F — G allows us to define a continuous linear mapeB4 of
Z(G). This linear map also we denote By;. Using the bilinear map

U: 7 x % - £, hypocontinuous with respect to the bounded subsets
of s and.#", we can define a bilinear map: # x % (F) - Z(F)
hypocontinuous with respect to the bounded subsetg’cind 7 (F)

as explained in Theorem 7.1. We have tige@ gﬁ) = B?(SU'_I')). In
fact, if T is of the formT f,T ¢ ¥, f € F we have
Bg(SUT) =Bs((SUTT) = (12eBg)((SUT) T)
= (SUT).Bx(T) =(SUT)B(B.T),
andS€ LBJT_f) - SUTHE, T ). Hence from the approximation prop-

erty for # it follows thatS€ LBJT> = B%(SUT) for any? e #(F).

| and A are two fixed elements of the vector spagé&N, Q). §;l
andé;A are distributions with values i’ (N, Q’). 6:A = U is, by the
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formulaS®€ léﬁ) = B4(SUT), the same aﬁ(ét +U) Where§ is the
mappingl 4 el'a,Ta : N - Q' given byT'a.n = Anfor everyn e N.
HenceB(s * ) = AU. Similarly 5l » T = $U. Thus we see that the

equation(d% +A)U = T is the same ags|l +6tA) * U = T. What we
do first is to look forG e 2. (t,Z(Q',N) such that

/ —>
(6t| +5tA) * G = 5t|Q,
andG * ({1 +6iA) = il

wherely andly are the identity mappings @’ andN. Suppose such
a G has been found out. Then our contention®:= G * f is the
only solution of the equatio(1dﬁt +AT = T.To prove this fact, we use
the following associativity property of the convolution. Letdenote
the convolution of7; x 2] — 2. We have folU,V andW ¢ 2/ the
following relation: (U * V) s W=U x (V*W). LetB;: LxM - P
andB; : P x N —» Z be bilinear continuous maps with M, P, N andZ
Banach spaces. Lefy : LxQ — Zanda, : M x N - Q be bilinear
continuous maps with, M, N, Q,Z Banach spaces. Lam) M- P
be the linear maB,y(m) = By(l,m). Let Bz’Bl(I)(m) : N - Z be the
linear masz,Bl(l)(m)(n) = Ba(By(y(m),n). Letu: Lx M xN - Zbe
the trilinear map defined hy(l,m n) = BZ’Bl(I)(m) (n). Similarly we can
associate witly, anda a trilinear continuous map, say: Lx MxN —
Z. If we assume thgt = v we have the following equality: For anyse

Se2' (L), T e Z.(M)andU e 2/ (N),
(g*?)*Uzg*(?*U).
B1 B> [¢5% @z
The proof is, in fact, trivial. The convolutio®! x 2| - 2" satisfies
the associativity. Hence from the fact that v, we get
(S€ » T—f’)g UG =(S*T+U)u(8, 7,7
1 2

—

:(S*T*U)v(?, f,@)
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andSE + (T »UG) =(S*T+U(E, T.9)
iy a

foranyS,T,U € 2, and€ ¢ LLfeM andd e N.
Now, sinceZ’. has the approximation property, we get the required asso-

ciativity formula. Now, @ = G » f is a solution of(s{1 +6;A) T = T .
For (G +6A) + G+ T =ilg* T =lg(* F)=1T=7T.
HenceT = G « f is a solution. Suppos#¥ is any solution of

(S +6A) »T=T.
We have C{(6ll +6A) * V=G« .

But G + {(6/ +6iA) » V1 = {G * (6]l +6A)} + V
=O0tln * V=V
HenceV = G * f.

ThusG » f is the only solution of 61 + 6tA) » U = T.n applying
the associativity formula, we should take note of the following fact: The
obvious bilinear mapsZ(N, Q") x N - Q', Z(Q,N) x Q" - N and
Z(Q,N)x Z(N,Q) - Z(N,N) and.Z(N,N) x N - N satisfy the

condition which enables us to conclude that the trilinear mapadv
corresponding to these are the same.

Hence the problenqd% + AU = T will have one and only one
solutionT € 7 (t,N), if we can find aG € Z/(t,.2(Q,N)) such that
(611 + 6iA) % G = 6l
andG * (/1 +6iA) = &l .

We, in fact, look for aG having a Laplace transform. If at all sucléa
exists, it will satisfy

(pl+A)G(p)=lg and G(p)(pl+A)=In.

Hence, if only we assume that f& p > &, (&, some real number), the
operator( p+A) is invertible and that the inverse is majorised uniformly
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in the half planeRl p> &, + ¢ for anye > 0) there exists £(p) which
is the Laplace transform of a uniqlfé € 7.(1,2(Q,N)) satisfying
(51 + S6tA) * G - 6tIQI,§ * (6{1 + 6tA) = StIn. Then the problem
(d% +A)U = T has one and only one solution, namely

T=C«T.
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Part |l

REPRESENTATIONS OF
SEMI-GROUPS
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Lecture 17

Representations of
semi-groups

Definition 17.1. A semi-group is a set Gwith a binary associative 88
law of composition, having an identity element. That is to say, there is
defined a mappingx,y) — x.y of G, xG, in G, satisfying the following
conditions:

1) x(y.z) = (xy).z for every xy,ze G,.

2) There exists an elemenkds, such that ex = x and xe = x for
every xe G,.

Definition 17.2. A topological semi-group Gis a Hausdoff topologi-
cal space with a semi-group structure such that the mapging) — x.y

of G, xG, — G, is continuous. In this section, we deal only with locally
compact semi-groups.

Definition 17.3. A measure: on G, is said to be summable if |du| <

ch
oo. One knows that, ifi is a summable measure, for any continuous
bounded complex valued function f the integyalf (x)du(x) can be

+

defined. We agree to denote thisgf ).

Definition 17.4. Letu andy be summable measures on.3 he direct
image of the measure® v on G, x G, by the mappindx,y) — xvy,

95
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which trivially exists, is defined to be the convolution of the meagures
andvy and is denoted by * v.

If ¢ is any continuous bounded function on,&e functiony : G, x
G, — C defined byy(s,t) = ¢(st) is a continuous bounded function.
Hence the integral

[ wdwen = [ [ w(svdu(ean)

G.xG, G, G,

has a meaning. We have the equalityv(¢) = [ [ ¢(st)du(s)dv(t).

+ Gyt

Definition 17.5. For an integrable (or summable) measyre/ |du| is
G:

defined to be the norm pfand is denoted by 1 ||.

One knows that if: and v are summable measures on G * v is
also summable and thajt « * v ||<|| ¢ ||| v || (Refer to Elements de
Mathematique, Integration, by N. Bourbaki).

Strict convergence.

Definition 17.6. A sequence of measur¢g;} is said to strictly con-
verge to0 if uj(¢) — O for every fixedp, continuous with compact
support and if there exists a positive real numbéK) corresponding
to each compact set K such that/duj| < (K) independent of, | [K

(K
is the complement of K with ¢(K) — 0 according as the ‘filtrant set’
of compact subsets of,Grdered by inclusion, that is to say, given any
£ > 0 there exists a compact K such that for any compactseft G,
with ' > K we haves(T') < &. In fact, it is syficient if there exists a
compact set K such thafK) < .

Lemma 17.1.If {uj} is a sequence of measures converging strictly to
0, for any fixed continuous bounded functian(¢) — 0.

Proof. Leta be any continuous function withQa(x) < 1 for everyx e

G, and with compact support. We hayg(¢) = pj(ap) +uj((1-a)e).

We may assume # 0. Sinceuj — O strictly, given anys > 0 we can

find a compact se such tha’Ej |du;| < m where|| ¢ ||= suple(X)|.
K

xeGy
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For a, choose a continuous function with compact support which is 1

on K and with 0< a(x) < 1. Thena.¢ is a continuous function with

a compact support. Hence we can fing(a) such that forj > j(&)

we haveluj(ay)| < 5. We haveuj((1-a)¢) = [ (1-a)eduj, since 90
(K

1-a=0o0nK. Hence

£ . .
(-l <l el [ il B2 or > e,
J Tel

Henceluj ()| < luj(ap)| + |uj((L-a)p)| <5+ 5=cfor j>j(e). O

Lemma 17.2.1f {u;}, {vj} are two sequences of measures strictly con-
verging tou andy respectively, the sequenge; » v; } strictly converges
tou *v.

We shall first show that ifxj} and {v;} tend toO strictly, the se-
quence{u; + v;} tends ta0 strictly. If ¢ is a function in€ (G, x G,.) of
the typep(x,y) = ¥ (X)n(y) wherey € €(G,),n € € (G, ) we have

(1j®vi)(p) =uj(¥).vj(n).

(¢ (G, ) denotes the set of complex valued functions pm&h compact
support). Hence for @ of the above mentioned form; ® vj)(¢) — 0.
The linear combinations of elements of the fapix,y) = ¥ (X)n(y)
form a dense subset &f(G, x G,). Since{u;} and {v;} are strictly
convergent sequences of measufgs; and {v;} are bounded sequen-
ces of measures and henjgg ® v} is a bounded sequence of measures
on G, x G,. Hence the set consisting of the elemejpts® v;} is an
equicontinuous set in the dual (G, x G, ). On this set the topology
of simple convergence on a dense subspa@(@., x G, ) by Ascoli’s
Theorem. Hence for evegye (G, x G, ) we haveuj ® vj(¢) - Oas

j = oo.

We shall prove the strict convergenceigf® vj to 0. We have al-
ready proved the ‘vague’ convergenceugf® vj to 0, that is to say, for
every fixedp € €(G, x G, ),uj ® vj(¢) tends to 0. To prove the strict
convergence ofuj®v;} itis suficient to prove that there exist constants
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&(H x K) for compact sets of the forid x K, H andK being compact 91
in G, such that given any > 0 there exists a compact ddtx K with
e(HxK)<egand [ |duj®v|<e(HxK). Now

[(HxK)
f |duj ® vl < f |duj @ vl + f |duj @ vjl
[(HxK) Gix[K [HxG4
<A [lav+B [ lduj

< Ag(K) + Beg(H),
whereA > [ du;j| andB > f |dvi|. (Such real number& andB exist).

If we chooseK andH in such a way that(K) < 5z ande(H) < 55 we
have
f |d/,lj®VJ|<§+§=8.
[HxK

Thuse(H x K) = As(K) + Be(H) are constants satisfying

|duj @ vj| < £(H x K)
[(HxK)

and given any > 0 there exist$1 x K such thak(H x K) < &. We have
thus proved that;j ® vj — O strictly.

Letu: E - F be a continuous map of a locally compact sp&ce
into a locally compact spade. Let {1;} be a sequence of summable
measures strictly converging to 0 & The direct image of tha}s by
u converges to O strictly. First of all1; — 0 vaguely. For, ifp is any
continuous function with compact support &hu * ¢ is a continuous
bounded function o andj(ux*¢) — 0. Henceulj(¢) = 2j(Uu*¢) >
0. It is suficient to prove the existence of constan($!) for compact
setsH of the formH = u(K), K being compact ik such that given any
€ > 0 there exists an(H) with e(H) < e and [ |duij| < &(H). Now

[H

f|du/1]|< f |d/lj|sf|d/lj|£s(K).

at([H) (K
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Given anye > 0 we know that there exists a compact Kein E such
thate(K) < &. We have already proved thatif andy; tend to O strictly
u1j®vjtends to O strictlyu;  vj being the direct image of; ® v; by the
map(x,y) - xy of G, x G, in G, we haveu; » vj — 0 strictly.

Now suppose:; — p andy; — v strictly. Thenuj — 4 andy; —v are
sequences of measures strictly converging to 0. Hémgceu) * (vj—v)
converges to 0 strictly. We have

pixvi—prv=(uj—p)* (vi=v)+px (vi=v)+ (uj—p) xv

Now (uj—pu) * (vj—v) — O strictly. To complete the proof of the lemma
we have only to prove the following: if; is a sequence of measures
strictly converging to zero and is a fixed summable measure, then
u*T'jandI’j x u tend to zero strictly. For this it is enough to prove that
u®T'jandl’j ® u tend to zero strictly. (see the general considerations
given above). This is proved the same way we provedihaty; — 0
strictly if 4; — 0 andvj — O strictly, using the following fact: ifx
is @ summable measure, thgndu| — 0 following the filtered set of
K

compact subsets. [

Let A, u andv be three summable measures@n Thena % u * v
is defined to be the direct image of the measuieu ® v by the map
(X,Y,2) > xy.zof G, x G, x G, in G,.. Itis easily seen that

Ax (pxv) = s pxy=(Axp)*v.

Also we havedy + dy = Oxy andde * u = u * de = 1 Whereoy is the unit 93
mass (Dirac measure) atande is the identity element db, .

Representation of semi-groups.

Definition 17.6. Let G, denote a locally compact semi-group. Let E
be a complete ELC. fepresentationof G, in Eisamap U: G, —
Zs(E, E) satisfying the following conditions:

(i) U(xy) =U(x)oU(y),U(e) = I the identity map of E;

(i) U : G, —» Z(E,E) is continuous, and
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(ii) For every compact set K in Gthe set of operator§U (k),k € K}
is an equicontinuous set of linear maps of E in E.

Property (iii) is called the property of local equicontinuity. We shall
consider here only representations satisfying the following stronger con-
dition of global equicontinuity.

(iii) " The set of operator§U(x),x € G, } is an equicontinuous set of
linear maps of E in E.

Let ., denote the set of all summable measures qn [Bis an

algebra under the operations of addition and convolution.

Lemma 17.3. The representation UG, - %s(E, E) can be extended
into a map, which also we denote by U,.afs, in Zs(E,E). When
i = Oy, the unit mass at x, () will be U(x).

Proof. Since{U(x),x € G, } is an equicontinuous set of operators, it
is also a bounded set i&s(E,E). Sinceu is summable, the integral
[ U (x)du(x) exists and is an element @&s(E, E))", the completion

of Zs(E,E). (Refer to Integration, by N. Bourbaki). Sinéeis com-
plete,(Z(E,E))" c as(E, E) whereng(E, E) is the space of all linear
maps ofE in E with the topology of simple convergence. Now the set of
elements{U(x)/x € G, } is an equicontinuous subs@t of .Zs(E,E).

Let % be the convex stable closed envelopeZofin As(E,E). % is
also equicontinuous and hengec Z(E,E). We have

() = [ Udu(x) e % [ diul < Z(E.E).
G, G,

HenceU (u) € Zs(E, E) for everyu e 4, . Trivially U(6x) = U(X).
If € ¢ E, we have

U(E = [ U du(x),
G,

since the mapy - U € is continuous.
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For any fixedd € Zs(E,E), the mapd” - I'o g andl' - 6o I of
Zs(E,E) in %s(E, E) are continuous linear maps. Hence

U() 0= [ (U(X) 0)du(x)
Gy

andg e U(u) = [ (62U(x)du(x)
Gy

for every fixedd € Z(E, E). m]
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Lecture 18

Representations of
semigroups (contd.)

Lemma 18.1. If x andv are summable measurgsy v is a summable 95
measure and Qu = v) = U(u) o U (v).
Proof. We have already remarked thaty is summable and thgt |du *
vl = wxv |I<|l w Il v 1= [|dul [ |dv]. We shall now prove that
U(u*v) =U(u) o U(v). For any bounded continuous functigrwith
values inC we know that/ [ ¢(st)du(s)dv(t) = u * v(¢). We shall
show that this formula is true for any vector valued continuous, bounded
function.

Let F be anELC andF its completion. Letg be anF-valued
function which is continuous and bounded. Con(s_idered d5-ealued
function also@ is continuous and bounded. Lét’ ¢ (F)’. Then

(@, T’) is a continuous bounded function with value€inHence p*
W@, T = [ [(Z(st). ') du(s)dwv(t). Since T — (T, T')is a con-
tinuous linear map of in C, we have(u+v){ @, T') = ((u+v)(F), T')
and [ [(Z(st), T)du(s)dv(t) = (/ [ F(stdu(s)dv(t), T'). Hence

(@), Th=([ [ F(shdu(s)an®), T)
Therefore
(@)= [ [ F(stdu(s)an) o

103
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If it so happens thatu = v)('g) is in F itself, we have/ [ g (st)du
(s)dv(t) € F because of equality(1). i

Since{U(x),x € G.} is an equicontinuous set of linear maps, it
is a bounded set, and henge/ U(st)du(s)dv(t) = (u * v)(U). But
for any summable measufeve have definetl (1) to be [ U (x)da(x)
or asA(U). Hence(u * v)(U) = U(u*v) = [ [ U(st)du(s)dv(t).
To evaluate the double integrdl / U (st)du(s)dv(t) we use Fubini's
Theorem for integrals of vector valued functions. We want only the fol-
lowing form of Fubini’'s Theorem. Ifg (s,t) is a continuous, bounded
F-valued function oG, x G, and ifu andy are summable measures

]/ﬁ@mwwm>fwwfwawm>

Gix Gy

=[wmfuwW@.
Gy G

Now, themtegralsf (s t)dv(t)and/ @ (s t)du(s) exist for allsand

te G, and are contlnuous functlons sandt respectively. By forming

the scalar product with an;t € (F)’ and applying the theorem of
Fubini for scalar valued function we get

[/J@mwwm>/W@[ (st)dv(t)

Grx Gy
:/dvt /cp(s,t)d,u(s)
G, G,

Applying this form of Fubini's Theorem we get

/ f U(st)du(s)dv(t) = f du(s) f U(stdv(t)

Bix Gi

:/HM9fuwoumwm.
G, G,
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SinceV — U(s) o V for a fixeds € G, is a linear continuous map of
Zs(E,E) in itself, we have

f /U(st)d,u(s)dv(t)—fd,u(s){u(s)o/U(t)dv(t)}
G, G,

Gix Gt
- [ du(s)u(9)°U)
Gt

- {f d,u(S)U(S)}oU(v)
G+

since V->VoU(v)

is a continuous linear map d¥s(E, E) into itself.

Hence [ [ U(st)du(s)dv(t) =U(u)oU(v) 97
Gix Gy

Hence U(ux*v)=U(u)oU().

SupposeE is a Banach space and eddlix) satisfies|| U(x) ||< 1.
Then| U(u) |I< [|du| for any summable measuge This follows
immediately from the definitiok (u) = [ U (x)du(X).

G+

Proposition 18.1.Let E be a complete ELC. [f|du| — 0, then U(i) —
0in.%(E,E).

Proof. We haveU (u) € = [ U(x)€ du(x) for every € ¢ E. Suppose
G,

we take vectorsg in a bounded seB of E. Since the sefU(x),x ¢
G.} is an equicontinuous set of linear maps®ofin E, the setl’ =

u {U(x)€} is a bounded set dE. Now U(u)€ ¢ f/ |du| where
XeGy G
€eB

f is the convex, closed, stable envelop&“of“ is bounded sincE is. If
[ |du| - 0 we see that for€ € B, U(u)€ — 0 uniformly in E. Hence
our proposition. O

Proposition 18.2.1f {u;} is a sequence of measures tending sirictly,
{U(uj)} tends t0 in Z5(E, E).
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Proof. We have to prove that for every fixed € E, U(uj)€ — 0in
E. Butf U(X) € duj(x) = U(uj) €. NowU(x)€ is a bounded vector

valued functlon ofG. in E; this follows from the fact thafU (x), x €
G.} is an equicontinuous set of operators. Hence the proposition is
proved if we prove the following more general proposition.

For any continuous bounded valued functiony (x) on G, we
have [ ¢ (x)duj(x) — O if uj — O strictly. Assume first, thal is a
continuous function with values iB having a compact support. Then
€ 2°(E) andu;j € 2¢'. Theintegral/ @ (x)du;(x) is nothing but the
producty . Hi extending the scalar product defining the duality between
2° and .@° This product is hypocontinuous with respect to compact
subsets 0f7°(E) and compact subsets &f';. Hence ifg ¢ 2°(E)
is a fixed element and; - 0 in 2,° we haveg .uj - 0. Our assump-
tion is thatuj — O strictly. If we prove thajy; — O strictly implies
uj — 01in 2 we are through. Whep; — 0 strictly {uj} is a bounded
set of measures and henfe;} is an equicontinuous set of measures.
Hence the topology of compact convergence and the topology of simple
convergence induce the topology on the&gt}. Henceu; - 0in .@g’.

Now we go to the case of a continuous, bounded functiofx)
with values inE.

To show that/ ¢ (x)duj(x) -~ 0 we have to show that given any
convex neighbourhood of 0 in E, there exists gy such that forj > jy
we have/ @ (x)duj(x) € V. Let B be the set of value§ ¢ (x)}. B

is bounded and hend8 also. Hence there exists an> 0 such that
eB c ¥. LetK be a compact subset @&. such that thes(K) that
corresponds tK is less thare. Let @ be a continuous function equal
to 1 orK and with compact support, satisfying<Ox(x) < 1 for every

X G Theni() = (o) + (1= ) )s e | ¢ (R0 (0) =

G/cv(x)so(x)d#J(X)+f(1 @ (X)) @ (X)duj(x). Slncea(X)sO(X) isa

continuous function with compact support, we havg,auch that for
2 v,

[ 2B € 5.

G,
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A|30G/(1—0(X))$(X)duj(x) = ﬁ(l—a(X)W(X)duj(X) 99

[
B [ ldy
[K

Bc .
ESCZ

Hence [ ¢ (x)du;j(x) e V. This proves our proposition. O
G

+
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Lecture 19

Representations of
semi-groups (contd.)

Let , from now on,G, denote a closed convex coneRf, containing 100
the origin. We shall assume th@t is the closure of its interiolG, is a
topological semi-groups.

Definition 19.1. A distribution T on R is said to be G summable if
T has its support in Gand T = ¥ DPup wherep, are summable mea-
sures on R The space of Gsummable distributions will be denoted by
P/1(Gy).

IfT e 2/.(Gy) and T' € 2[,(G;) then T+ T" € 2/,(G,). If
T =Y DPup, T' = X DYgthen T+ T = Y, DP*up x vq. If @ € Z(R")
with supportin G and Te 2/,(G,) thena * T hasits support in G,
anda » Tdx is a summable measureG,..

Definition 19.2. A sequencéT;} of G, summable distributions is said

to converge to zero strictly ifT= > DPpup, j with m independent of j,
[pl<m

and{up;} is, for every p, a sequence of summable measures tending to
zero strictly.

If {T;} and{S;} are two sequences of summable distributions strict-
ly tending to zero, thefiT; » S;} tends to zero strictly.

We have seen how one can defingJfor u € .#c,. Now we shall
see how one can defing(D) for T € 2/,(G,). However UT) will

109
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not, in general, be defined on the whole of E. But the domairofE
U(T) will be a dense subspace of E.

Definition 19.3. Let s# be the filter having for a base the setg, A
for everye > 0, defined as follows:

ala € (R"), Support ofr c G,,a > 0,
A.={ 1-&< [a<1+e¢andsupportofr contained
in a e-neighbourhood of.

Definition 19.4. Let Te 9,,(G.). Let Er be the set of elements x of E
such thaﬂlm U(a * T)x exists in E and for x Er define UT)x to be

I|m U(a* T)x (I|m denotes the limit ag — § following the filter.%.

U (a +T)xhasa meanlng for everyexE, sincea * T has its support in
G, and defines a summable measure i) G

Definition 19.5. We defineZ(G. ) to be the subspace of functions in
2(R") whose supports are contained in,@nd Z,:(G,) to be the
space of C° functions on R with supports in G and with summable
derivatives of all orders.

Proposition 19.1. For T € 2/,(G,),p € 21(G.) and xe Er we have
U(p=*T)=U(p)oU(T)x.

Proof. p being a summable function with support @, p(x)dx is a
summable measure, with support@. We denote this measure also
by p. U(p) andU (a = T) are continuous linear operatorsinand we
have

U(p)oU(a*T)x=U(p*axT)X

Now, leta@ — § following the filter.%. SinceU (p) is a continuous map
of E in E. We have
I|m U(p) oU(a * T)x = U(p) o U(T)x for everyx € Er. Also

p*a/*T ax*p* T (commutativity), and ag — § following .7, a * p *
T — pxT strictly (Lemmd17.R). Hence |IrU(p>e(a'>(-T))X U(p*T)x

ThusU(p * T)x=U(p) o U(T)xforeveryxe Er. i
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102 Proposition 19.1. LetS, T € 9/,(G,), x € Er. Thenx ¢ Es, 7 if and
only if U(T).xe Es and if it is so

U(S * T)x=U(S) o U(T)x.

Proof. If S is an integrable distribution ande 2(G,). Thena * S €
2,1(G4). Take forp the elementr » S of 2,1(G,) in the previous
proposition. Sinc&J (a*S+T)x=U(a*S)oU(T)X whatever be e
Et, we see that if any one oyim(a*S*T)xand Ii@mU(a*S)U(T)x

exists, the other also exists and we have the equality of the two limits.
Thus if x € Ey we havex € Es,t if and only if U(T)x € Es and then
U(S*T)x=U(S)U(T)x. ]

Corollary 1. If ¢ € 2,1(G.), the element Wp)x € Er for every Te
2/1(Gy). Moreover UT)U(¢)x=U(T * )X,

Corollary 2. N F7(G,)isdenseinE. Infact, ip ¢ 2(G,) tends to
Teo!
7

de = 6 following the filter.#, U (¢)x - X = x.
In particular, we have also £dense in E for every € 2,,(G.).

Proposition 19.2. The mappind T, X) - U(T)x is a closed mapping.
That is to say, if{T;} is a sequence of summable distributions with
supports in G and tending strictly to T and ix;} is a sequence of
elements of E tending to x and if(0; ) x; has a meaning for each jand
if imU(Tj)x; =y inE, then UT)x has a meaning and (O')x =y.
(The word mapping is not used here in the usual seng@&.)¥ need not
be defined for every x).

Proof. We shall, in fact, prove a result somewhat stronger than the one
that we have stated. Even whel(Tj)x; — y weakly in E, we shall
show thatx € Er and thatU(T)x =y. Fore € 2(G,), U(a + Tj)Xj = 103
U(a) o U(Tj)x; from Proposition I9]1. Fat fixed in 2(G,),a* Tj -

« * T in the sense of strict convergence of measures. Heifae+ Tj)
remains in an equicontinuous set of linear mapg&daf E and tends to
U(ax*T)in %(E E).
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If {Vj} is a sequence of elements lying in an equicontinuous set of
linear maps oE in E and ifV; - V in Z(E,E) and ifx; - x € E, the
sequenc#jx; — Vxin E. In fact,

VX—Vij = (V—Vj)X+Vj(X— Xj)

Since[V;]] is equicontinuous ana - x; - 0 in E, Vj(x-X;) = 0in
E. ([Vj] denotes the set of the linear mayg. SinceV -V, - 0in
Zs(E,E), for every fixedx e E, (V-Vj)x—-0inE.

Taking for V| the sequenctl (« + T;) we see that (e » Tj)Xx; —
U(a *T)xin Easj — oo. SinceU () is a continuous linear map of
E in E it is also weakly continuous. Hence if(Tj)x; — y weakly
in E, U(a) o U(T)Xj = U(a)yin E weakly. ButU(a) o U(Tj)x; -

U (ax*T)xstrongly inE. Hence we must hawg(a)oU(Tj)X; = U(a)y
strongly inE andU (a)y = U(a * T)x. If @ — 6 following the filter
Z,U(a)y - yin E. Hence ]ngnU (@ T)xexists and is equal tp That

is to say,U(T)x has a meaning angd= U(T)x. i
Corollaries:

1) For eachl € 7/,(G,),U(T) is a closed operator. For, ¥j —
xin EandU(T)x; — yin E, choosingT; = T in the above
proposition, we see that(T)x has a meaning and(T)x =y.

104 2) If xis an element oE such that

weaklimJ (@ * T)x=y
F

exists, therx belongs to the domain & (T) andU(T)x =y and
y=IlimU(a *T)xin E.
L‘;/r

3) If S is afilter of summable distributions strictly convergingsto
and ifU(S; = T)x is defined for evenyj and if U(S; * T)x - y
weakly inE, thenx e Ey and limU(S; » T) = U(T)x.

4) For defining the operator correspondingTie %, ,, even if we
choose for the filtet’ a filter finer than the filtet used above
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and require the limit to exist only weakly we will get the same
operatorU(T), i.e., the domain ofJ(T) will not be enlarged.
Forif #' = ¢j is a finer filter, thenp; x T will tend to T strictly. If
WezjqklinU (@i + T)x =y exists, then by the proposition libh( *

T)x exists and is equal tp

We thus see that the definition for{ T) we have chosen is the most
general one; it gives the largest possible domain of definitio{dr).
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Lecture 20

Representations of
semi-groups (contd.)

Let X be a tangent vector to the co@e at the origin. If for anyy € 105
72(G.) defineX(¢) = derivative ofy at 0 along the directiolX, X can

be considered as a distribution. It is an elemen®?pf(G. ). In fact X

has a compact support, the point ‘0’. The operdigiX) is called the
infinitesimal generator corresponding to the tangent veXtat 0. The
directional derivativeX(y) is by definition

im £ —w(O)'
t—o t

Hence X(¢) = Itlirg =0 ().
Proposition 20.1. U (X)x exists if and only if

. — |
fim 200 ~1 (60:)

t—o

lim %x: U(X)x.

t—o

X exists, and

Proof. Assume that linJ fuxdo x exists. Now2x=% — x strictly as
—>0

t - 0. By Propositiori 1912, we see thdt(X)x exists and is equal
to lim Mx.
t—o

115
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Conversely, suppose thdt( X)x has a meaning. We have

lim 5(tX)t—5(o)

t—o

= Itim(X * UUt)

wherey; is a measure, concentrated on the line segment joining the vec-
tors 0 andtX, which is homogeneous and gives to the segment a total
mass 1. U (X)x exists, by Proposition 19.1’, we have,@¢u;)U (X)x

106 exists,U (u » X)x = U(ur)U (X)x. But due to commutativityy; = X =

X+ pr. HenceU (X = ui)x = U (1)U (X)x. But sinceu; — § strictly, we
have

lim U (X * ut)x = U(6)U (X)X
=U(X)x.

Hence, if U(X)x exists, tIimU(X * py)X exists. In other words,
lim U((S(IX)—I

t—o

x exists and is equal td (X)x. i

Proposition 20.2. Let xe E. The following four properties are equiva-
lent:

i) U(T)x exists for every E 5’é+.
ii) U (T)xexists for every E £'%,i.e. U(X)x exists for every X R".

iii) The function U(S) x (s - U(s)X) belongs to€1(E). [We shall
say that a function on a cone is once continuousfjedentiable
if it is once continuously dkerentiable in the interior and the
derivatives have a continuous extension to the cone].

iv) The function L(%)x has weak derivatives at the origin in every
direction along the cone.

Proof. Evidently i) implies ii). ii) implies i) sinceT ¢ 5’é+ can be

written asT = Y u; * 6%, wherey; are summable measures with sup-
ports inG, (Whitney regularity) and we any apply Proposition 19.1".
i) implies iii): Let X,..., X, be independent vectors tangential to the
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cone. Ifs, is an interior point of the cone, using the method of proof
of Propositio 201, we see thldl(%)x is differentiable in the direction
Xi(i =1,...,n) ats, and that the derivative is equal t(s,)U (X;)x.

U (Xi)x being a fixed vector irE, the functions - U(s)U(Xj)x is a
continuous function on the cone. Since Hdorm a base foR", it fol-
lows thatU(%)x e EX(E). iii) implies iv), as is easily seen. iv) implies
ii) by Propositio 19.p. m]
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Lecture 21

Remarks on the
representation of
non-commutative Lie
semi-groups

LetG be a Lie group of dimensiomandG.. a sub semi-group @b such 107
that

i) G, isclosedinG;
ii) the unit element ofs belongs tds, .
iii) G, isthe closure of its interior.

We callG, a Lie semi-group.
We denote by7/, (G, ) the set of distribution§ on G with support
in G, which are of the form

T=>Dp*up (finite sum)
p

whereD, are distributiorf§in G with support at the unit elementand
up are summable measures Gn A sequencel; € Z/,(G,) is said

!By a distribution we mean a continuous linear form on the space of indefinitely
differentiabldfunctionson G with compact supports.

119
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to converge to zero strictly iTj = > Dp * upj, whereD, are fixed
P

distributions with support a of order at mosin, and if for everyp the
measuregp j converge to zero strictly.

Let U be a representation &, , by equicontinuous operators
ForT € 2/.(G.) we shall define a linear operatbr(T) on E. Let
F ={aj} be afilter ofC* n-forms, (= dimension ofG) of the second
kind (odd type) orGG such that

i) {e;} have compact supports contained3p;
ii) aj >0, for everyj,
iif) The support ofe; tends uniformly to the unit element Gf,

iV) fa/j—>1.
G

By definition the domairEr of U(T) will consist of thosex in E
for which limU (e = T)x exists andJ (T )x is defined to be this limit.
j’\

(Note the order in whickr andT enter in the convolution).

Remark. If %’ is another filter having the same propertiesZasand
U’(T) the corresponding operator, it will follow from the results to be
indicated later, that) (T) andU’(T ) have the same domain of definition
and are equal on their common domain of definition.

Propositio_19]1 is true also in the non-abelian casg,i#f a C*
form with compact support. To uphold this proposition in the non-
abelian case we have to prove the followingDiiis a distribution with
support at the origin angda summable measure, th@a) * (D*u) —
p D =y strictly asa — ¢ following .%. For this, it is sificient to prove
thatp » @ * D — p * D strictly. But this follows from the separate conti-
nuity of the convolution ma@" x £ - 2",

Proposition 19.1' is also true, 8 has compact support. Proposition
[19.2 is also true; proof is the same.

Supposex is an element o such that E"U(T * @)X = Yy exists

(T € 9/1(G,)). SinceT + a — T strictly we see, using Proposition
[19.2 thatx belongs to the domain df (T) andU(T)x = y. Thus the
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definition for U(T) we have given using convolution on the left by
gives a domain of definition fod (T) which is larger than the domain
we would have obtained if we chose to convolve on the right by
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Appendix

Representations of the
semi-group of positive reals.
Hille-Yosida Theorem for
complete locally convex
spaces

In this section we take fdB, the (additive) semi-group of positive real09
numbers.

Let U be a representation (equicontinuous&fin E. The linear
operatorU(-¢") (¢’ = first derivative of the Dirac measure) is called
the infinitesimal generator of the representation. We shall show that
every complex numbep with Rl p > 0 is in the resolvent set of the
infinitesimal generator. We hay@ - U(-¢") = U(ps + ¢'). We have
further, inR, (ps+¢6’) +Y(1)e P = Y(t)e Ptx (ps+¢’) = 6, Y(t) denoting
the Heaviside function. Now fdRl p > 0,e P! is a summable measure
in G, and henc&J (e”) is a continuous linear operator(see Lemma
[I7.3). SinceU () = I, using Propositioll we see thatl (e ™) is the
inverse ofpl - U(-¢").

We shall now prove an equicontinuity property of the resolvent op-
erators of the infinitesimal generataiof the one-parameter semi-group

123



110

124 21. Remarks on the representation...

U(t). Since

(6+ %> + pe P =6(p>0),

as before we see, using PropositidnthatU (pe ') = (1 - %)‘1. But

as/ pe Pldt = 1 we see that (see Lemma 17LB8]jpe P') belongs to the

convex closed stable envelo@ of the setzz = {U(t),t > 0}. Ina
similar way, we see that — %)‘m(p >0,m=12,...) e 7. Hence the

set of operator$(| - ‘—p\)‘m}, asp runs through strictly positive numbers
andmthrough positive integers, is equicontinuous (wit).

We shall now show that the equicontinuity condition we proved for
the resolvent operators of the infinitesimal generator of a one-parameter
semi-group is also sticient to ensure that a densely defined linear oper-
ator in E be the infinitesimal generator of a one-parameter semi-group.
The problem here is to define the exponential of such an operator. Be-
fore going into this problem we shall first consider the question of defin-
ing the exponential of a continuous linear operator.

The exponential of a continuous linear operator.

Let E be a complet&eLC and T a continuous linear operator &f
into itself. We try to define exf as a continuous linear operator by
means of the seri@s

(exptT)x = i ()
o K

(x€E) (t>0).

The series will converge for everye E and represent a continuous lin-

ear operator oE into itself, at least ifT and its iterateﬁ"‘(k =23,..)
(tT)kx
K!

o0
are equicontinuous. Actually the serigs will converge at every
k=o

x ¢ E if the set{T,T?,...} is weakly bounded. For then d is any

k
2If E is a Banach space, the se@é% converges in the uniform topology fany
continuous linear operatdr of E into E.
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continuous semi-norm oB, we have

f:Q((tT)"X) it"Q(T"X) i

o K s =

00 k
C being a positive constant, so that the serie ((II!) X s convergent.

SinceE is complete, it follows thatz (tT) X

k=o
show, under the hypothesis that the $EIT2,...} is equicontinuous,
thatx — (expT)x is a continuous operator, it is ficient to show that

is convergent irE. To

n k
the operator8, = ). % are equicontinuous since the pointwise limiti11
k=0 ’

of a sequence of equicontinuous linear operators is a continuous linear
operator. To show this we use the following criterion for equicontinuity
which will also be used later. LtB,} be a family of linear operators

of E into E; in order that{B, } be equicontinuous, it is necessary and
suficient that the following condition be satisfied: for every continuous
semi-normg on E there exists a continuous semi-nopron E and a
strictly positive numbea such that

q(B.(x)) <ap(x), forevery o« and xeE.

(see Espaces Vectoriels Topologiques, Ch. II, by N. Bourbaki).rdes
that the abovdB,, are equicontinuous, letbe a continuous semi-norm
on E. Since{T*}-01.. are equicontinuous there exists a continuous
semi-normp anda > 0 such thaty(T*x) < a p(x)x (k=0,1,...,x€ E).
Now

tT)k n tkq(Tkx)

) < Z

< (a. expt) p(X)

q(Bnx) = q( Z

which shows thaB,, are equicontinuous. One proves the same way the
following results.

i) Writing Tix = exp(tT)x, the mapt — exptT x is a continuous
function from(0, o) in E, for everyx e X, and
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(a) mn T“—’r‘l‘x exists for every ¢ E and in equal td x;
(b) Jim Tun-TX exists fort > 0 andx € E and equal tolT x =
TTtX.

i) Let T andS be two continuous linear operators such t8at =
TS and such thaf T} and{S*} are equicontinuous. Then

n (T + S)K

2w

converges pointwise to a continuous linear operator Xp+
S) = exptT. exptS = exptS. exptT and
i exph(T + S)x - x

li
hlo h

=(T+S)x,xeE

im exp(h+t)(T +S)x—expt(T + S)x

h—o h
=expt(S+T) (S+T)x
=(S+T)expt(S+T)x (xeE).

We now prove the

Theorem (Hille-Yosida). Let E be a complet&eLC. Suppose thaf
is a densely defined linear operator Bnsuch that for every strictly
positive p, (I - % -1 exists and such that the famil of operators

{(I - %)*m} (p strictly positive,m = 1,2,...) is equicontinuous. Then
there exists a uniquely determined representalign(t > 0), which is
equicontinuous withZ, whose infinitesimal generator #s

Proof. We follow Yosida’s method of proof.

Writing J; = (1 - 271A)(4 > 0) we have evidentlyAJ;x = A(J; -
)x,x € EandAJ;x = J)Ax = A(J, - )X, for x e Z(A), whereZ(A)
denotes the domain &. We shall prove thaf;x — X, asd — oo, for
everyx e E. If xe Z(A), J;x-x = 1"1J;(Ax) and hencel;x- x - 0 as
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A — o0, as the se{J,(AX)} is bounded. Sinc&(A) is dense irE and
{Ja} 1>0 is equicontinuous, it follows thal; x — x for everyx € E.
Set

TW = exp(tAdy) = exp(ta(IA - 1)) = exp(-1t) exp(Atd,).

It is easily seen, using for example the criterion for equicontinuity used
earlier, that the operatm{sTt“)}(/l > 0,t > 0) are equicontinuous with
Z. We remark that),;J, = J,J;,4,u > 0. We now prove that as
A= oo, Tt(l) converges in the topology of simple convergence, to a con-

tinuous linear operator; and for fixedx, Tt(”)x — Tyxuniformly when 113
tlies in a compact set. To prove this, tgbe a continuous semi-norm on

E. Since{Tt(”)} are equicontinuous there exist a continuous semi-norm

p anda > 0 such thaq(Tt“)x) <ap(x)fora>0,t>0andeverye E.
ForA,u >0 andxe Z(A)

t
d
ari00 T -l [ d—s,{Tt(i‘QTé‘)x}dS]

_q f THTO (A, —AJH)X]
L 0
<ta’p[(hA- JA)X],

and(J;A-J,A)x— 0, asl,u — oo asxe Z(A). Soﬂ lim q(Tt“)(x) -
=00

Tt(")x) = 0 uniformly whent lies in a compact set. Sincg(A) is
dense inE and the set of operatm{sTt(ﬂ)} iS equicontinuous, we see
that AILTO Tt“)x = Tix exists for everyx € E andt uniformly in any
compact set that the set of operatéiis}; > O is equicontinuous with
% . From the uniform convergence;> T; is a continuous map df> 0.
To prove thafl, s = T{Ts, letqbe a continuous semi-norm and éeand

p have the same meaning as before. Then, utfﬁb: Tt(ﬁ)Téﬂ),

G((Ters = TeTs)X) < A(Ters - T2X) + q(T2x - TEIT %)
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+q(TTE) - TOTex) + q(TIV Tex = TiTox)
<Q(TiesX - Tt(fs) X) + ap(TéA)x - TsX)
+a[(TV - To (T | > 0.
Sinceq(T.sx — TiTsx) = 0 for every continuous semi-norgy we must
haveTi,s = TiTs.

114 Let A’ be the infinitesimal generator of the semi-graupWe have
to show thatA’ = A. To show this, it is sfficient to show tha#\’ is an
extension ofA (i.e., x € Z(A) impliesx ¢ 2(A’) andAx = A’X). For,
t - T; being an equicontinuous representatidn; A~ 1A’) : 2(A') - E
is a bijection ford > 0 and by hypothesi§l - 171A) : 2(A) - Eis a
bijection, fora > 0, so thatZ(A) = 2(A’). To prove thatA’ is an

extension ofA’ let x € Z(A). ThenTél)AJﬂx - TSAIx. Forifqis a
continuous semi-norm, we have

q(TsAx—TEVALX) < q(TsAx— TSV AX) + (TS Ax- TSV ALX)
<q [(TS - Té”))(Ax)] +ap(Ax— J,AX)
-0, as 41— o0, (since JAx— AX).
Now, TiX— X = ﬂlm Tt(l)x - X

[
A—o0

t
- lim fTéA)AJAx ds
0

t
= [ lim TP A X

0
t
- [ TAx
0
SO thattllimﬁ exists and equal tdx, i.e., if xe 2(A), thenxe Z(A")

andA’'x = Ax.
The uniqueness of; follows from the following fact, which is
proved the same way as in the case of Banach spacés: I is a
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representation (equicontinuous) afAds the infinitesimal generator of
T; then
Tix= ﬂlim exp(tAJy)x, forevery xeE.

O

Remarks. (i) In a Banach space the condition of the theorem reads:
there exists a constaM > 0 such that

| (Al =A)™|<M/am (for m=1,2,...,1>0)

(ii) For the proof of the theorem it is flicient to assume thd is
quasi-complete.
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