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Chapter 1

Measure Theory

1. Sets and operations on sets

We consider a spaceX of elements (or point)x and systems of this sub-1
setsX,Y, . . . The basic relation between sets and the operations on them
are defined as follows:

(a) Inclusion: We write X ⊂ Y (or Y ⊃ X) if every point of X is
contained inY. Plainly, if 0 is empty set, 0⊂ X ⊂ X for every
subsetX. Moreover,X ⊂ X and X ⊂ Y, Y ⊂ Z imply X ⊂ Z.
X = Y if X ⊂ Y andY ⊂ X.

(b) Complements:The complementsX′ of X is the set of point ofX
which do not belong toX. Then plainly (X′)′ = X andX′ = Y if
Y′ = X. In particular ,O′ = X, X′ = 0. Moreover, ifX ⊂ Y, then
Y′ ⊂ X′.

(c) Union: The union of any system of sets is the set of pointsxwhich
belong to at least one of them. The system need not be finite or
even countable. The union of two setsX andY is written X ∪ Y,
and obviouslyX ∪ Y = Y∪ X. The union of a finite or countable

sequence of setsX1, X2, . . . can be written
∞
⋃

n=1

Xn.

(d) Intersection:The intersection of a system of sets of points which
belong to every set of the system. For two sets it is writtenX ∩ Y

1



2 1. Measure Theory

(or X.Y) and for a sequence{Xn},
∞
⋂

n=1

Xn. Two sets are disjoint if

their intersection is 0, a system of sets is disjoint if everypair of
sets of the system is. For disjoint system we writeX+Y for X∪Y2

and
∑

Xn for ∪Xn, this notation implying that the sets are disjoint.

(e) Difference:The differenceX.Y′ or X − Y between twoX andY is
the sets of point ofX which do not belong toY. We shall use the
notationX − Y for the difference only ifY ⊂ X.

It is clear that the operations of taking unions and intersection are
both commutative and associative. Also they are related t tothe opera-
tion of taking complements by

X.X′ = 0,X + X′ = X, (X ∪ Y)′ = X′,Y′, (X.Y)′ = X′ ∪ Y′.

More generally

(∪X)′ = ∩X′, (∩X)′ = ∪X′.

The four operations defined above can be reduced to two in sev-
eral different ways. For examples they can all be expressed in terms of
unions and complements. In fact there is complete duality inthe sense
that any true proposition about sets remains true if we interchange

0 and X

∪ and ∩
∩ and ∪
⊂ and ⊃

and leave= and′ unchanged all through.
A countable union can be written as a sum by the formula

∞
⋃

n=1

Xn = X1 + X′1.X2 + X′1.X
′
2.X3 + · · ·
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2. Sequence of sets

A sequence of setsX1, X2, . . . is increasingif3

X1 ⊂ X2 ⊂ X3 ⊂ . . .

decreasingIf
X1 ⊃ X2 ⊃ X3 ⊃ . . .

The upper limit, lim sup Xn of a sequence{Xn} of sets is the set
of points which belong toXn for infinitely manyn. The lower limit,
lim inf Xn is the set of points which belong toXn for all but a finite num-
ber of n. It follows that lim inf Xn ⊂ lim supXn and if lim supXn =

lim inf Xn = X, X is called thelimit of the sequence, which thencover-
ageto X.

It is easy to show that

lim inf Xn =

∞
⋃

n=1

∞
⋂

m=n

Xm

and that

lim supXn =

∞
⋂

n=1

∞
⋃

m=n

Xm.

Then if Xn ↓,
∞
⋂

m=n

Xm =

∞
⋂

m=1

Xm. lim inf Xn =

∞
⋂

m=1

Xm,

∞
⋃

m=n

Xm = Xn, lim supXn =

∞
⋂

n=1

Xn,

lim Xn =

∞
⋂

n=1

Xn,

and similarly ifXn ↑,

lim Xn =

∞
⋃

n=1

Xn.
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3. Additive system of sets

A system of sets which containsX and is closed under a finite number of4

complement and union operations is called a (finitely) additive system or
a field. It follows from the duality principle that it is then closedunder
a finite number of intersection operations.

If an additive system is closed under a countable number of union
and complement operations (and therefore under countable under inter
sections), it is called acompletely additive system, a Borel systemor a
σ-field.

It follows that any intersection (not necessarily countable) of addi-
tive or Borel system is a system of the same type. Moreover, the in-
tersection ofall additive (of Borel) systems containing a family of sets
is a uniquely defined minimal additive (or Borel) system containing the
given family. The existence ofat least oneBorel system containing a
given family is trivial, since the system ofall subsets ofX is a Borel
system.

A construction of the actual minimal Borel system containing a
given family of sets has been given by Hausdorff (Mengenlehre,1927,
p.85).

Theorem 1. Any given family of subsets of a spaceX is contained in
a unique minimal additive system S0 and in a unique minimal Borel
system S .

Example of a finitely additive system: The family of rectanglesai ≤
xi < bi(i = 1, 2, ..., n) in Rn is not additive, but has a minimal additive5

S0 consisting of all “element ary figures” and their complements. An
elementary figure is the union of a finite number of such rectangles.

The intersections of sets of an additive (or Borel) system with a fixed
set(of the system) from an additive (or Borel) subsystem of the original
one.
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4. Set Functions

Functions con be defined on a system of sets to take values in any given
space. If the space is an abelian group with the group operation called
addition, one can define the additivity of the set function.

Thus, ifµ is defined on an additive system of sets,µ is additiveif

µ
(
∑

Xn

)

=
∑

µ(Xn)

for anyfinite system of (disjoint) setsXn.
In general we shall be concerned only with functions which take real

values. We use the convention that the value−∞ is excluded but thatµ
may take the value+∞. It is obvious thatµ(0) = 0 if µ(X) is additive
and finite for at least oneX.

For a simple example of an additive set function we may takeµ(X)
to be thevolumeof X whenX is an elementary figures inRn.

If the additive property extends to countable system of sets, the func-
tion is calledcompletelyadditive, and again we suppose thatµ(X) ,
−∞. Complete additive ofµ can defined even if the field ofX is only 6

finitely additive, provided thatXn and
∑

Xn belong to it.

Example of a completely additive function: µ(X) = number of ele-
ments (finite of infinite) inX for all subsetsX of X

Examples of additive, but not completely additive functions:

1. X is an infinite set,

µ(X) = 0 if X is a finite subset ofX

= ∞ if X is an infinite subset ofX

Let X be a countable set of elements (x1, x2, . . .) of X.

Then
µ(xn) = 0,

∑

µ(xn) = 0, µ(X) = ∞.

2. X is the interval 0≤ x < 1 andµ(X) is the sum of the lengths of fi-
nite sums of open or closed intervalswith closure inX. These sets
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together withX from an additive system on whichµ is additive
but not completely additive ifµ(X) = 2.

A non-negative, completely additive functionµ defined on a Borel
systemS of subsets of a setX is called ameasure. It is bounded
(or finite) if µ(X) < ∞. it is called a probability measure ifµ(X) =
1. The sets of the systemS are calledmeasurable sets.

5. Continuity of set functions

Definition . A set functionµ is said to be continuous, from below if
µ(Xn)→ µ(X) whenever Xn ↑ X. It is continuous from above ifµ(Xn)→
µ(X) whenever Xn ↓ X andµ(Xno) < ∞ for some n0.

It is continuous if it is continuous from aboveandbelow. Continuity7

at 0 means continuity from above at 0.
(For general ideas about limits of set functions when{Xn} is not

monotonic, see Hahn and Rosenthal, Set functions, Ch. I).
The relationship between additivity and complete additivity can be

expressed in terms of continuity as follows.

Theorem 2. (a) A completely additive function is continuous.

(b) Conversely, an additive function is completely additive ifit is ei-
ther continuous from below or finite and continuous at 0. (The
system of sets on whichµ is defined need only be finitely addi-
tive).

Proof. (a) If Xn ↑ X, we write

X = X1 + (X2 − X1) + (X3 − X2) + · · · ,
µ(X) = −µ(X1) + µ(X2 − X1) + · · ·

= µ(X1) + lim
N→∞

N
∑

n=2

µ(Xn − Xn−1)

= lim
N→∞

µ(XN).
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On the other hand, ifXn ↓ X andµ(Xn0) < ∞, we write

Xn0 = X +
∞
∑

n=n0

(Xn − Xn+1)

µ(Xn0) = µ(X) +
∞
∑

n=n0

µ(Xn − Xn+1), andµ(X) = limµ(Xn)

as above sinceµ(Xn0) < ∞.

(b) First, if µ is additive and continuous from below, and 8

Y = Y1 + Y2 + Y3 + · · ·

we write

Y = lim
N→∞

N
∑

n=1

Yn,

µ(Y) = lim
N→∞

µ

















N
∑

n=1

Yn

















, since
N

∑

n=1

Yn ↑ Y

= lim
N→∞

N
∑

n=1

µ(Yn)

by finite additivity, and thereforeµ(Y) =
∞
∑

n=1
µ(Yn).

On the other hand, ifµ is finite and continuous at 0, andX =
∞
∑

n=1
Xn, we write

µ(X) = µ

















N
∑

n=1

Xn

















+ µ

















∞
∑

n=N+1

Xn

















=

N
∑

n=1

µ(Xn) + µ

















∞
∑

n=N+1

Xn

















, by finite additivity,

since
∞
∑

N+1
Xn ↓ 0 and has finiteµ. �
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Theorem 3 (Hahn-Jordan). Suppose thatµ is completely additive in a
Borel system S of subsets of a spaceX. Then we can writeX = X+ + X−

(whereX+, X− belong to S and one may be empty) in such a way that

1. 0 ≤ µ(X) ≤ µ(X+) = M ≤ ∞ for X ⊂ X+,
−∞ < m= µ(X−) ≤ µ(X) ≤ 0 for X ⊂ X−

while m≤ µ(X) ≤ M for all X.

Corollary 1. The upper and lower bounds M, m ofµ(X) in S are at-
tained for the setsX+, X− respectively and m> −∞.

Moreover, M< ∞ if µ(X) is finite for all X. In particular, a finite9

measureis bounded.

Corollary 2. If we write

µ+(X) = µ(X · X+), µ−(X) = µ(X · X−)

we have

µ(X) = µ+(X) + µ−(X), µ+(X) ≥ 0, µ−(X) ≤ 0

µ+(X) = sup
Y⊂X

µ(Y), µ−(X) = inf
Y⊂X

µ(Y).

If we writeµ(X) = µ+(X) − µ(X), we have also

|µ(Y)| ≤ µ(X) for all Y ⊂ X.

It follows from the theorem and corollaries that an additivefunction
can always be expressed as the difference of two measures, of which
one is bounded (negative part here). From this point on, it issufficient
to consider only measures.

Proof of theorem 3. [Hahn and Rosenthal, with modifications] We sup-
pose that m< 0 for otherwise there is nothing to prove. Let An be defined

so thatµ(An)→ m and let A=
∞
⋃

n=1
An. For every n, we write

A = Ak + (A− Ak),A =
n

⋂

k=1

[Ak + (A− Ak)]
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This can be expanded as the union of 2n sets of the form
n
⋂

k=1
A∗k,

A∗k = Ak or A − Ak, and we writeBn for the sum of those for which
µ < 0. (If there is no such set,Bn = 0). Then, sinceAn consists of
disjoint sets which either belong toBn or haveµ ≥ 0, we get 10

µ(An) ≥ (Bn)

Since the part ofBn+1 which does not belong toBn consists of a

finite number of disjoint sets of the form
n+1
⋂

k=1
A∗k for each of whichµ < 0,

µ(Bn ∪ Bn+1) = µ(Bn) + µ(Bn+1B′n) ≤ µ(Bn)

and similarly
µ(Bn) ≥ µ(Bn ∪ Bn+1 ∪ . . . ∪ Bn′)

for anyn′ > n. By continuity from below, we can letn′ → ∞,

µ(An) ≥ µ(Bn) ≥ µ
















∞
⋃

k=n

Bk

















Let X− = limn→∞
∞
⋃

k=n
Bk. Then

µ(x−) ≤ lim
n→∞

µ(An) = m,

and sinceµ(x−) ≥ m by definition ofm, µ(x−) = m.
Now, if X is any subset ofX− andµ(X) > 0, we have

m= µ(X−) = µ(X) + µ(X− − X) > µ(X− − X)

which contradicts the fact thatm is inf
Y⊂X

µ(Y).

This proves (1) and the rest follows easily.
It is easy to prove that corollary 2 holds also for a completely addi-

tive function on afinitely additive system of sets, but supµ(X), inf µ(X)
are then not necessarily attained.
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6. Extensions and contractions of additive
functions

We get a contraction of an additive (or completely additive)function de-11

fined on a system by considering only its values on an functiondefined
on a system by considering only its values on an additive subsystem.
More important, we get anextensionby embedding the system of sets
in a larger system and defining a set function on the new systemso that
it takes the same values as before on the old system.

The basic problem in measure theory is to prove the existenceof a
measure with respect to which certain assigned sets are measurable and
have assigned measures. The classical problem of defining a measure
on the real line with respect to which every interval is measurable with
measure equal to its length was solved by Borel and Lebesgue.We
prove Kolmogoroff’s theorem (due to Caratheodory in the case ofRn)
about conditions under which an additive function on a finitely additive
systemS0 can be extended to a measure in a Borel system containing
S0.

Theorem 4. (a) If µ(I ) is non-negative and additive on an additive

system S0 and if In are disjoint sets of S0 with I =
∞
∑

n=1
In also in

S0, then
∞
∑

n=1

µ(In) ≤ µ(I ).

(b) In order thatµ(I ) should be completely additive, it is sufficient
that

µ(I ) ≤
∞
∑

n=1

µ(In).

(c) Moreover, if(I ) is completely additive, this last inequality holds12

whether In are disjoint or not, provided that I⊂
∞
⋃

n=1
In.

Proof. (a) For any N,
N

∑

n=1

In, I −
N

∑

n=1

In
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belong toS0 and do not overlap. Since their sum isI , we get

µ(I ) = µ

















N
∑

n=1

In

















+ µ

















I −
N

∑

n=1

In

















≥ µ
















N
∑

n=1

In

















=

N
∑

n=1

µ(In)

by finite additivity. Part (a) follows if we letN → ∞ and (b) is a
trivial consequence of the definition.

For (c), we write

∞
⋃

n=1

In = I1 + I2 · I ′1 + I3 · I ′1 · I
′
2 + · · ·

and then

µ(I ) ≤ µ[∪∞n=1In] = µ(I1) + µ(I2 · I ′1) + · · ·

≤ µ(I1) + µ(I2) + · · ·

�

7. Outer Measure

We define the out or measure of a setX with respect to a completely ad-13

ditive non-negativeµ(I ) defined on a additive systemS0 to be inf
∑

µ(In)

for all sequences{In} of sets ofS0 which coverX (that is,X ⊂
∞
⋃

n=1
).

Since anyI of S0 covers itself, its outer measure does not exceed
µ(I ). On the other hand it follows from Theorem 4(c) that

µ(I ) ≤
∞
∑

n=1

µ(In)

for everysequence (In) covering I , and the inequality remains true if
the right hand side is replaced by its lower bound, which is the outer
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measure ofI . It follows that the outer measure of a setI of S0 is µ(I ),
and there is therefore no contradiction if we use the same symbol µ(X)
for the outer measure of every setX, whether inS0 or not.

Theorem 5. If X ⊂
∞
⋃

n=1
Xn, then

µ(X) ≤
∞
∑

n=1

µ(Xn)

Proof. Let ǫ > 0,
∞
∑

n=1
ǫn ≤ ǫ. Then we can chooseInν from S0 so that

Xn ⊂
∞
⋃

ν=1

Inν,

∞
∑

ν=1

µ(Inν) ≤ µ(Xn) + ǫn,

and then, since

X ⊂
∞
⋃

n=1

Xn ⊂
∞
⋃

n,ν=1

Inν,

µ(X) ≤
∞
∑

n=1

∞
∑

ν=1

µ(Inν) ≤
∞
∑

n=1

(µ(Xn) + ǫn)

≤
∞
∑

n=1

µ(Xn) + ǫ,

and we can letǫ → 0. �14

Definition of Measurable Sets.
We say thatX is measurablewith respect to the functionµ if

µ(PX) + µ(P− PX) = µ(P)

for everyP with µ(P) < ∞.

Theorem 6. Every set I of So is measurable.
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Proof. If P is any set withµ(P) < ∞, andǫ > 0, we can defineIn in
S0 so that

P ⊂
∞
⋃

n=1

In,

∞
∑

n=1

µ(In) ≤ µ(P) + ǫ

Then

PI ⊂
∞
⋃

n=1

I · In, p− PI ⊂
∞
⋃

n=1

(In − IIn)

and sinceIIn andIn − IIn both belong toS0,

µ(PI) ≤
∞
∑

n=1

µ(IIn), µ(P− PI) ≤
∞
∑

n=1

µ(In − IIn)

and

µ(PI) + µ(P− PI) ≤
∞
∑

n=1

(µ(IIn) + µ(In − IIn))

=

∞
∑

n=1

µ(In) ≤ µ(P) + ǫ

by additivity in S0. Sinceǫ is arbitrary, 15

µ(PI) + µ(P− PI) ≤ µ(P)

as required.
We can now prove the fundamental theorem. �

Theorem 7 (Kolmogoroff-Caratheodory). If µ is a non-negative and
completely additive set function in an additive system S0, a measure
can be defined in a Borel system S containing S0 and taking the original
valueµ(I ) for I ∈ S0.

Proof. It is sufficient to show that the measurable sets defined above
form a Borel system and that the outer measureµ is completely additive
on it.
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If X is measurable, it follows from the definition of measurablility
and the fact that

PX′ = P− PX,P− PX′ = PX,

µ(PX′) + µ(P− PX) = µ(PX) + µ(P− PX)

thatX′ is also measurable.
Next suppose thatX1, X2 are measurable. Then ifµ(P) < ∞,

µ(P) = µ(PX1) + µ(P− PX1) sinceX1 is measurable

= µ(PX1X2) + µ(PX1 − PX1X2) + µ(PX2 − PX1X2)

+ µ(P− P(X1 ∪ X2)) sinceX2 is measurable

Then, since

(PX1 − PX1X2) + (PX2 − PX1X2) + (P− P(X1 ∪ X2)) = P− PX1X2,

it follows from Theorem 5 that16

µ(P) ≥ µ(PX1X2) + µ(P− PX1X2)

and soX1X2 is measurable.
It follows at once now that the sum and difference of two measurable

sets are measurable and if we takeP = X1 + X2 in the formula defining
measurablility ofX1, it follows that

µ(X1 + X2) = µ(X1) + µ(X2)

WhenX1 andX2 are measurable andX1X2 = 0. This shows that the
measurable sets form an additive systemS in which µ(X) is additive.
After Theorems 4(b) and 5,µ(X) is also completely additive inS. To

complete the proof, therefore, it is sufficient to prove thatX =
∞
⋃

n=1
Xn is

measurable if theXn are measurable and it is sufficient to prove this in
the case of disjointXn.

If µ(P) < ∞,

µ(P) = µ















P
n

∑

n=1

Xn















+ µ

















P− P
N

∑

n=1

Xn
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since
N
∑

n=1
Xn is measurable,

≥ µ
















P
N

∑

n=1

Xn

















+ µ(P− PX) =
N

∑

n=1

µ(PXn) + µ(P− PX)

by definition of measurablility appliedN−1 times, theXn being disjoint.
Since this holds for allN, 17

µ(P) ≥
∞
∑

n=1

µ(PXn) + µ(P− PX)

≥ µ(PX) + µ(P− PX),

by Theorem 5, and therefore X is measurable. �

Definition. A measure is said to becompleteif every subset of a measur-
able set of zero measure is also measurable (and therefore has measure
zero).

Theorem 8. The measure defined by Theorem 7 is complete.

Proof. If X is a subset of a measurable set of measure 0, thenµ(X) = 0,
µ(PX) = 0, and

µ(P) ≤ µ(PX) + µ(P− PX) = µ(P− PX) ≤ µ(P),

µ(P) = µ(P− PX) = µ(P− PX) + µ(PX),

and soX is measurable.
The measure defined in Theorem 7 is not generally the minimal mea-

sure generated byµ, and the minimal measure is generally not complete.
However, any measure can be completed by adding to the systemof
measurable sets (X) the setsX ∪ N whereN is a subset of a set of mea-
sure zero and definingµ(X ∪ N) = µ(X). This is consistent with the
original definition and gives us a measure since countable unions of sets
X∪N are sets of the same form, (X∪N)′ = X′ ∩N′ = X′ ∩ (Y′ ∪N ·Y′)
(whereN ⊂ Y, Y being measurable and of 0 measure)= X1∪N1 is of the
same form andµ is clearly completely additive on this extended system.
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The essential property of a measure is complete additivity or the 18

equivalent continuity conditions of Theorem 2(a). Thus, ifXn ↓ X or

Xn ↑ X, thenµ(Xn) → µ(X), if Xn ↓ 0, µ(Xn) → 0 and if X =
∞
∑

1
Xn,

µ(X) =
∞
∑

1
µ(Xn). In particular, the union of a sequence of sets of measure

zero also has measure zero. �

8. Classical Lebesgue and Stieltjes measures

The fundamental problem in measure theory is, as we have remarked
already, to prove the existence of a measure taking assignedvalues on
a given system of sets. The classical problem solved by Lebesgue is
that of defining a measure on sets of points on a line in such a way
that every interval is measurable and has measure equal to its length.
We consider this, and generalizations of it, in the light of the preceding
abstract theory.

It is no more complicated to consider measures in Euclidean space
RK than inR1. A set of points defined by inequalities of the form

ai ≤ xi < bi(i = 1, 2, . . . , k)

will be called arectangleand the union of a finite number of rectan-
gles, which we have called anelementary figure, will be called simply a
figure. It is easy to see that the system of figures and complements offig-
ures forms a finitely additive system inRk. Thevolumeof the rectangle

defined above is defined to be
k
∏

i=1
(bi − ai). A figure can be decomposed

into disjoint rectangles in many different ways, but it is easy to verify
that the sum of the volumes of its components remains the same, how-19

ever, the decomposition is carried out. It is sufficient to show that this is
true when one rectangle is decomposed to be+∞, it is easy to show by
the same argument that the volume functionµ(I ) is finitely additive on
the systemS0 of figures and their complements.

Theorem 9. The functionµ(I ) (defined above) iscompletelyadditive in
S0.
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Proof. As in Theorem 2, it is sufficient to show that if{In} is a decreasing
sequence of figures andIn → 0, thenµ(In) → 0. If µ(In) does not→ 0,
we can defineδ > 0 so thatµ(In) ≥ δ for all n and we can define a
decreasing sequence of figuresHn such thatclosureHn of Hn lies in In,
while

µ(In − Hn) <
δ

2
It follows thatµ(Hn) = µ(In) − µ(In −Hn) > δ

2 so thatHn, and there-
fore Hn, contains at least one point. But the intersection of a decreasing
sequence of non-empty closed sets (Hn) is non-empty, and therefore the
Hn and hence theIn have a common point, which is impossible since
In ↓ 0. �

The measure now defined by Theorem 7 is Lebesgue Measure.

9. Borel sets and Borel measure

The sets of theminimal Borel system which contains all figures are
called Borel sets and the measure which is defined by Theorem 9and 7
is called Borel measure when it is restricted to these sets. The following
results follow immediately.

Theorem 10. A sequence of points in RK is Borel measurable and has20

measure 0.

Theorem 11. Open and closed sets in RK are Borel sets.

(An open set is the sum of a sequence of rectangles, and a closed set
is the complement of an open set).

Theorem 12. If X is any (Lebesgue) measurable set, andǫ > 0, we can
find an open set G and a closed set F such that

F ⊂ X ⊂ G, µ(G− P) <∈

Moreover, we can find Borel sets A, B so that

A ⊂ X ⊂ B, µ(B− A) = 0.

Conversely, any set X for which either of these is true is measurable.
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Proof. First suppose thatX is bounded, so that we can find a sequence
of rectanglesIn so that

X ⊂
∞
⋃

n=1

In,

∞
∑

n=1

µ(In) < µ(X) + ǫ/4.

Each rectangleIn can be enclosed in an open rectangle (that is, a
point set defined by inequalities of the fromai < xi < bi , i = 1, 2, . . . , k,

its measure is defined to be
k
∏

i=1
(bi − ai)Qn of measure not greater than

µ(In) +
ǫ

2n + 2
. �

Then

X ⊂ Q =
∞
⋃

n=1

Qn, µ(Q) ≤
∞
∑

n=1

µ(Qn) ≤
∞
∑

n=1

µ(In)+ǫ
∞
∑

n=1

1
2n + 2

≤ µ(X)+
ǫ

2

ThenQ is open andµ(Q− X) ≤ ǫ/2.
Now any setX is the sum of a sequence ofboundedsetsXn (which21

are measurable ifX is), and we can apply this eachXn with 6/2n+1 in-
stead of∈. Then

X =
∞
∑

n=1

Xn,Xn ⊂ Qn,

∞
∑

n=1

Qn = G,

whereG is open and

G− X ⊂
∞
⋃

n=1

(Qn − Xn), µ(G− X) ≤
∞
∑

n=1

µ(Qn − Xn) ≤
∞
∑

n=1

∈
2n + 1

=
∈
2

The closed setF is found by repeating the argument onX and com-
plementing.

Finally, if we set∈n↓ 0 andGn, Fn are open and closed respectively,

Fn ⊂ X ⊂ Gn, µ(Gn − Fn) <∈n

and we put

A =
∞
⋃

n=1

Fn, B =
∞
⋃

n=1

Gn,
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we see that

A ⊂ X ⊂ B, µ(B− A) ≤ µ(Gn − Fn) ≤∈n for all n,

and so
µ(B− A) = 0,

while A, B are obviously Borel sets.
Conversely, ifµ(P) < ∞ and

F ⊂ X ⊂ G,

We have, since a closed set is measurable, 22
µ(P) = µ(PF) + µ(P− PF)

≥ µ(PX) − µ(P(X − F)) + µ(P− PX)

≥ µ(PX) + µ(P− PX) − µ(X − F)

≥ µ(PX) + µ(P− PX) − µ(G− F)

≥ µ(PX) + µ(P− PX)− ∈
true for everyǫ > 0 and therefore

µ(P) ≥ µ(PX) + µ(P− PX)

so that X is measurable.
In the second case,X is the sum ofA and a subset ofB contained

in a Borel set of measure zero and is therefore Lebesgue measurable by
the completeness of Lebesgue measure.

It is possible to defined measures on the Borel sets inRk in which the
measure of a rectangle is not equal to its volume. All that is necessary
is that they should be completely additive on figures. Measures of this
kind are usually called positiveStiltjes measuresin Rk and Theorems 11
and 12 remain valid for them butTheorem 10 does not. For example, a
single point may have positive Stieltjes measure.

A particularly important case isk = 1, when a Stieltjes measure can
be defined on the real line by any monotonic increasing functionΨ(X).
The figures I are finite sums of intervalsai ≤ x < bi andµ(I ) is defined
by

µ(I ) =
∑

i

{Ψ(bi − 0)− Ψ(ai − 0)}.
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The proof of Theorem 9 in this case is still valid. We observe that 23

since lim
β→b−0

Ψ(β) = Ψ(b− 0), it is possible to chooseβ so thatβ < b and

Ψ(β − 0)− Ψ(a− 0) > 1
2, [Ψ(b− 0)− Ψ(a− 0)].

The set functionµ can be defined in this way even ifΨ(x) is not
monotonic. Ifµ is bounded, we say thatψ(x) is of bounded variation.
In this case, the argument of Theorem 9 can still be used to prove that
µ is completely additive on figures. After the remark on corollary 2
of Theorem 3, we see that it can be expressed as the difference of two
completely additive, non-negative functionsµ+,−µ− defined on figures.
These can be extended to a Borel system of setsX, and the set function
µ = µ++µ− gives a set function associated withΨ(x). We can also write
Ψ(x) = Ψ+(x) +Ψ−(x) whereΨ+(x) increases,Ψ (x) decreases and both
are bounded ifΨ(x) has bounded variation.

A non-decreasing functionΨ(x) for whichΨ(−∞) = 0,Ψ(∞) = 1 is
called adistribution function, and is of basic importance in probability.

10. Measurable functions

A function f (x) defined inX and taking real values is calledmeasurable
with respect to a measureµ if ε[ f (x) ≥ k](ε[P(x)] is the set of points
x in X for which P(x) is true) is measurable with respect toµ for every
realk.

Theorem 13. The memorability condition

(i) ε[ f (x) ≥ k] is measurable for all realk is equivalent to each one24

of

(ii) ε[ f (x) > k] is measurable for all realk,

(iii) ε[ f (x) ≤ k] is measurable for all realk,

(iv) ε[ f (x) < k] is measurable for all realk,

Proof. Since

ε[ f (x) ≥ k] =
∞
⋂

n=1

ε

[

f (x) > k− 1
n

]

,
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(ii) implies (i). Also

ε[ f (x) ≥ k] =
∞
⋃

n=1

ε

[

f (x) ≥ k+
1
n

]

,

and so (i)implies (ii). This proves the theorem since (i) is equivalent with
(iv) and (ii) with (iii) because the corresponding sets are complements.

�

Theorem 14. The function which is constant inX is measurable. If f
and g are measurable, so are f± g and f · g.

Proof. The first is obvious. To prove the second , supposef , g are
measurable. Then

ε[ f (x) + g(x) > k] = ε[ f (x) > k − g(x)]

= ∪ε[ f (x) > r > k− g(x)]

=

r
⋃

r

ε[ f (x) > r] ∩ ε[g(x) > k− r]

the union being over all rationalsr. This is a countable union of mea-
surable sets so thatf + g is measurable. Similarlyf − g is measurable.
Finally

ε[ f (x))2 > k] = ε[ f (x) >
√

k] + ε[ f (x) < −
√

k] for k ≥ 0

so thatf 2 is measurable. Since 25

f (x)g(x) =
1
4

( f (x) + g(x))2 − 1
4

( f (x) − g(x))2

f · g is measurable. �

Theorem 15. If fn measurable for n= 1, 2, . . . then so arelim sup fn,
lim inf fn.

Proof. ǫ[lim sup fn(x) < k]

= ǫ[ fn(x) < k for all sufficiently largen]
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=

∞
⋃

N=1

∞
⋂

n=N

ǫ[ fn(x) < k]

is measurable for all realk. Similarly lim inf fn is measurable. �

In Rn, a function for whichǫ[ f (x) ≥ k] is Borel measurable for allk
is called aBorel measurable functionor aBaire function.

Theorem 16. In Rn, a continuous function is Borel measurable.

Proof. The setǫ[ f (x) ≥ k] is closed. �

Theorem 17. A Baire function of a measurable function is measurable.

Proof. The Baire functions form the smallest class which contains con-
tinuous functions and is closed under limit operations. Since the class
of measurable functions is closed under limit operations, it is sufficient
to prove that a continuous function of a measurable, function is measur-
able. Then ifϕ(u) is continuous andf (x) measurable,ǫ[ϕ( f (x)) > k]
is the set ofx for which f (x) lies in an open Set, namely the open set26

of points for whichϕ(u) > k. Since an open set is a countable union of
open intervals, this set is measurable, thus proving the theorem. �

Theorem 18(Egoroff). If µ(X) < ∞ and fn(x) → f (x) , ±∞ p.p in X,
and if δ > 0, then we can find a subset X◦ of X such thatµ(X − X◦) < δ

and fn(x)→ f (x) uniformly in X◦.

We write p.p for “almost everywhere”, that is, everywhere expect
for a set of measure zero.

Proof. We may plainly neglect the set of zero measure in whichfn(X)
dose not converge to a finite limit. Let

XN,ν = ǫ[| f (x) − fn(x) |< 1/ν for all ≥ N].

Then, for fixedν,
XN,ν ↑ X asN→ ∞

For eachν we chooseNν os thatXν = XNν,ν satisfies

µ(X − Xν) < δ/2
ν,



11.. The Lebesgue integral 23

and let X◦ =
∞
⋂

ν=1

Xν

Then

µ(X − X◦) ≤
∞
∑

ν=1

µ(X − Xν) < δ

and | f (x) − fn(x) |< 1/ν for n ≥ Nν

if x is in xν and therefore ifX is in X◦. This proves the theorem. �

11. The Lebesgue integral

Suppose thatf (x) ≥ 0, f is measurable inX, and let 27

0 = y◦ < y1 < y2 · · · < yν →∞
and Eν = ǫ

[

yν ≥ f (x) < yν+1
]

, ν = 0, 1, 2, . . .

so thatE is measurable andx =
∑∞
ν=0 Eν.

We call the set of theyν, {yν} subdivision.
Let

S = S{y} =
∞
∑

ν=1

yνµ(Eν).

Then we define supS for all subdivisions{yν} to be theLebesgue
Integral of f (x) over X, and write it

∫

f (X)dµ. We say thatf (x) is
integrableor summableif its integral is finite. It is obvious that changes
in the values off in a null set (set of measure 0) have no effect on the
integral.

Theorem 19. Let {yk
ν}, k = 1, 2, . . . , be a sequence of subdivisions

whose maximum intervals

δk = sup(yk
ν+1 − yk

ν)→ 0 as k→ ∞

Then, if Sk is the sum corresponding to{yk
ν},

lim
k→∞

Sk =

∫

X

f (x)dµ = F(X).
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Corollary. Since Sk is the integral of the function taking constant val-
ues ykν in the sets Ekν, it follows, by leaving out suitable remainders
∑∞
ν=v+1 yk

νµ(Ek
ν), that F(X) is the limit of the integrals of simple func-

tions, a simple function being a function taking constant values on each28

of a finite number of measurable sets whose union isX.

Proof. If A < F(X), we can choose a subdivision{y′ν} so that ifEν are
the corresponding sets,S′ the corresponding sum,

S′ ≥
V

∑

ν=1

y′νµ(E′ν)

for a finite V. One of theµ(E′ν) can be infinite only ifF(x) = ∞ and
then there is nothing to prove. Otherwise,µ(E′ν) < ∞ and we let{yν}
be a subdivision withδ = sup(yν+1 − yν) and denote byS′′ the sum
defined for{yν} and byS the sum defined for the subdivision consisting
of pointsyν andy′ν. SinceS′ is not decreased by insertion of extra points
of sub-division,

S′′ ≥ S′ ≥
V

∑

ν=1

y′νµ(E′ν) > A,

while S′′ − S ≤ δ
V

∑

1

µ(E′ν)

and, by makingδ small enough we getS > A. SinceS ≤ F(X) and
A < F(X) is arbitrary, this proves the theorem. �

The definition can be extended to integrals over subsetsX of by
defining

F(X) =
∫

X

f (x)dµ =
∫

X

fx(X)dµ

where fX(x) = f (x) for x in x and fX(x) = 0 for x in X − X. We may
therefore always assume (when it is convenient) that integrals are over
the whole spaceX.

The conditionf (X) ≥ 0 can easily be removed.29



11.. The Lebesgue integral 25

We define

f +(x) = f (x) when f (x) ≥ 0, f +(x) = 0 when f (x) ≤ 0,

f −(x) = f (x) when f (x) ≤ 0, f −(x) = 0 when f (x) ≥ 0.

Then f (x) = f +(x) + f −(x), | f (x) |= f +(x) − (x).
We define

∫

X

f (x)dµ =
∫

X

f +(x)dµ −
∫

X

(− f −(x))dµ

when both the integrals on the right are finite, so thatf (x) is integrable
if and only if | f (x) | is integrable.

In general, we use the integral sign only when the integrand is in-
tegrable in this absolute sense. The only exception to this rule is that
we may sometimes write

∫

X

f (x)dµ = ∞ when f (x) ≥ −r(x) andr(x) is

integrable.

Theorem 20. If f (x) is integrable onX, then

F(X) =
∫

X

f (x)dµ

is defined for every measurable subset X ofX and is completely additive
on these sets.

Corollary. If f (x) ≥ 0, then F(Y) ≤ F(X) if Y ⊂ X

Proof. It is sufficient to prove the theorem in the casef (X) ≥ 0. Let

X =
∞
∑

n=1

Xn where areXn are measurable and disjoint. Then, if{yν} is a

subdivision,Eν =
∞
∑

n=1
EνXn, µ(Eν) =

∞
∑

n=1
µ (EνXn) and

S =
∞
∑

ν=1

yνµ(Eν) =
∞
∑

ν=1

yν
∞
∑

n=1

µ(EνXn)
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=

∞
∑

n=1

∞
∑

ν=1

yνµ (EνXn)

=

∞
∑

n=1

Sn

whereSn is the sum forf (x) over Xn. SinceS andSn (which are≥ 0)30

tend toF(X) andF(XN) respectively as the maximum interval of subdi-
vision tends to 0, we get

F(X) =
∫

X

f (x)dµ =
∞
∑

n=1

F(Xn).

�

Theorem 21. If a is a constant,
∫

X

a f(x)dµ = a
∫

X

f (x)dµ

Proof. We may again suppose thatf (x) ≥ 0 and thata > 0. If we use
the subdivision{yν} for f (x) and{ayν} for af (x), the setsEν are the same
in each case, and the proof is trivial. �

Theorem 22. If A ≤ f (x) ≤ B in X, then

Aµ(X) ≤ F(X) ≤ Bµ(X).

Theorem 23. If f (x) ≥ g(x) in X, then
∫

X

f (x)dµ ≥
∫

X

g(x)dµ

Corollary. If | f (x) |≤ g(x) and g(x) is integrable, then so is f(x).

Theorem 24. If f (x) ≥ 0 and
∫

X

f (x)dµ = 0, then f(x) = 0 p.p. in X.
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Proof. If this were not so, then31

∈ [ f (x) > 0] =
∞
∑

n=0

∈
[

1
n+ 1

≤ f (x) <
1
n

]

has positive measure, and hence, so has at least one subsetEn =∈
[

1
n+1 ≤ f (x) < 1

n

]

Then

∫

x

f (x)d ≥
∫

En

f (x)dµ ≥ µ(En)
n+ 1

> 0

which is impossible. �

Corollary 1. If
∫

K

f (x)dµ = 0 for all X ⊂ X, f (x) not necessarily of the

same sign, then f(x) = 0 p.p.
we have merely to apply Theorem 24 to X1 =∈ [ f (x) ≥ 0] and to

X2 =∈ [ f (x) < 0].

Corollary 2. If
∫

X

f (x)dµ =
∫

x
g(x)dµ for all X ⊂ X , then f(x) = g(x)

p.p. If f(x) = g(x) p.p. we say that f and g are equivalent.

12. Absolute Continuity

A completely additive set functionF(x) defined on a Borel system is
said to beabsolutely continuouswith respect to a measureµ on the same
system ifF(X) → o uniformly in X asµ(X) → 0. In other words, if
∈> 0, we can findδ > 0 so that|F(X)| <∈ for all setsX which satisfy
µ(X) < δ. In particular, ifF(X) is defined inR by a point functionF(x)
of bounded variation, then it is absolutely continuous, if given ǫ > o we
can findδ > 0 so that

n
∑

i=1

∣

∣

∣

∣
F(bi) − F(ai)

∣

∣

∣

∣
≤∈ if

n
∑

i−1

(bi − a1) < δ

32
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Moreover, it is clear from the proof of Theorem 3 that a set func-
tion F(X) is absolutely continuous if and only if its componentsF+(X),
F−(X) are both absolutely continuous. An absolutely continuouspoint
function F(x) can be expressed as the difference of two absolutely con-
tinuous non-decreasing functions as we see by applying the method
used on page 22 to decompose a function of bounded variation into two
monotonic functions. We observe that the concept of absolute continuity
does not involve any topological assumptions onX.

Theorem 25. If f (x) is integrable on X, then

F(X) =
∫

x

f (x)dµ

is absolutely continuous.

Proof. We may suppose thatf (x) ≥ 0. If ∈> 0, we choose a subdivision
{ yν }so that

∞
∑

ν=1

yνµ(Eν) > F(X)− ∈ /4

and then chooseV so that

V
∑

ν=1

yνµ(Eν) > F(X)− ∈ /2

Then, ifA > yv+1 andEA = ε[ f (x) ≥ A]

we have Eν ⊂ X − EAforν ≤ V.

Now F(X − EA) ≥
V

∑

ν=1

∫

EV

f (x)dµ ≥
V

∑

ν=1

yνµ(Eν)

> F(X)− ∈ /2
and therefore, F(EA) <∈ /2.

33

If X is any measurable set,
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F(x) = F(XEA) + F(X − EA)

<
∈
2
+ Aµ(X)(sincef (x) ≤ A in X − EA)

provided thatµ(X) ≤∈ /2A = δ �

Theorem 26. If f (x) is integrable on X and Xn ↑ X, then

F(Xn)→ F(X).

Proof. If µ(X) < ∞ this follows from Theorem 25 and the continuity
of µ in the sense of Theorem 2. Ifµ(X) = ∞, ∈> o we can choose a
subdivision{ yν } and corresponding subsetsEν of X so that

∞
∑

ν=1

yνµ(Eν) > F(X)− ∈

(assuming thatf (x) ≥ 0, as we may)
But

F(Xn) =
∞
∑

ν=1

F(XnEν)

andF(XnEν) → F(Eν) asn → ∞ for everyν, sinceµ(Eν) < ∞. Since
all the termsyνF(XnEν) are positive, it follows that 34

lim
n→∞

F(Xn) =
∞
∑

ν=1

F(Eν) ≥
∞
∑

ν=1

yνµ(Eν) > F(X)− ∈

SinceF(Xn) ≤ F(X), the theorem follows. �

Theorem 27. If f (x) is integrable on X and∈> 0, we can find a subset
X1 of X so thatµ(X1) < ∞,

∫

X−X1
| f(x) | dµ <∈ and f(x) is bounded in

X1.

Proof. The theorem follows at once from Theorems 25 and 26 since we
can takeX1 ⊂∈ [ f (x) ≥ y1] and this set has finite measure since f(x) is
integrable. �
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Theorem 28. If f (x) and g(x) are integrable onX, so is f(x)+ g(x) and
∫

X

[ f (x) + g(x)]dµ =
∫

X

f (x)dµ +
∫

X

g(x)dµ.

Proof. Since| f (x) + g(x) |≤| f (x) | + | g(x) |≤ 2 sup(| f (x) |, | g(x) |)
we have

∫

X

| f (x) + g(x) | dµ ≤ 2
∫

X

sup(| f (x) |, | g(x) |)dµ

= 2























∫

| f |≥|g|

| f (x) | dµ +
∫

| f |<|g|

| g(x) | dµ ≤ 2

∫

X

| f (x) | dµ + 2
∫

X

| g(x) | dµ





















so that f (x) + g(x) is integrable. After Theorem 27, there is no loss of
generality in supposing thatµ(X) < ∞. Moreover, by subdividingX into
the sets (not more than 8) in whichf (x), g(x), f (x) + g(x) have constant
signs, the theorem can be reduced to the case in whichf (x) ≥ 0,g(x) ≥ 0
and sof (x) + g(x) ≥ 0 in X. �

The conclusion is obvious iff (x) is a constantc ≥ 0, for we can35

then take as subdivisions,{yν} for g(x) and{yν + c} for g(x) + c. In the
general case, if

Eν = ε[yν ≤ g(x) < yν+1]
∫

X

[ f (x) + g(x)]dµ =
∞
∑

ν=0

∫

Eν

[ f (x) + g(x)]dµ, by Theorem 20

≥
∞
∑

v=0

∫

Eν

f (x)dµ +
∞
∑

ν=1

yνµ(Eν

=

∫

X

f (x)dµ + S,
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and since
∫

X

g(x)dµ is sup s for all subdivisions{yν}, we get

∫

X

[ f (x) + g(x)]dµ ≥
∫

X

f (x)dµ +
∫

X

g(x)dµ

On the other hand, if∈> 0, and we consider subdivisions for which

y1 ≤∈, yν+1 ≤ (1+ ∈)yν for ν ≥, 1

we get

∫

X

[ f (x) + g(x)]dµ ≤
∞
∑

ν=0..

∫

Eν

f (x)dµ +
∞
∑

ν=0

yν+1µ(Eν)

≤
∫

X

f (x)dµ + (1+ ∈)S + y1µ(Eo)

≤
∫

X

f (x)dµ + (1+ ∈)
∫

X

g(x)dµ+ ∈ µ(X)

and the conclusion follows if we let∈→ 0.
Combining this result with Theorem 21, we get

Theorem 29. The integrable functions onX form a linear space over R
on which

∫

X

f (x)dµ is a linear functional.

This space is denoted byL(X), and f (x)εL(X) means thatf (x) is 36

(absolutely) integrable onX.

13. Convergence theorems

Theorem 30 (Fatou’s Lemma). If γ(x) is integrable onX, and fn(x),
n = 1, ...are measurable functions, then

lim sup
∫

X

fn(x)dµ ≤
∫

X

(lim sup fn(x))dµ if fn(x) ≤ γ(x),
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lim inf
∫

X

fn(x)dµ ≥
∫

X

(lim inf fn(x))dµ if fn(x) ≥ −γ(x),

As immediate corollaries we have

Theorem 31(Lebesgue’s theorem on dominated convergence). If γ(x)
is integrable onX, | fn(x) |≤ γ(x) and

fn(x)→ f (x) p.p. inX

then
∫

X

fn(x)dµ →
∫

X

f (x)dµ

In particular, the conclusion holds ifµ(X) < ∞ and the fn(x) are
uniformly bounded.

Theorem 32(Monotone convergence theorem). If γ(x) is integrable on
X, fn(x) ≥ −γ(x) and fn(x) is an increasing sequence for each x, with
limit f (x) then

lim
n→∞

∫

X

fn(x)dµ =
∫

X

f (x)dµ

in the sense that if either side is finite, then so is the other and the two
values are the same, and if one side is+∞, so is the other.

Proof of Fatou’s lemma37

The two cases in the theorem are similar. It is sufficient to prove
the second, and sincefn(x) + γ(x) ≥ 0, there is no loss of generality in
supposing thatγ(x) = 0, fn(x) ≥ 0,

Let f (x) = lim inf fn(x) and suppose that
∫

X
f (x)dµ < ∞. Then

after Theorem 27, given∈> 0 we can defineX1 so thatµ(X1) < ∞ and
∈>

∫

X−X1
f (x)dµ while f (x) is bounded inX1.

A straight-forward modification of Egoroff’s theorem to gether with
theorem 25 shows that we can find a setX2 ⊂ X1 so that

∫

X1−X2

f (X)dµ <∈

while fn(x) ≥ f (x)− ∈ /µ(X1)
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for all x in X2 andn ≥ N. Then
∫

X

fn(x)dµ ≥
∫

X2

fn(x)dµ ≥
∫

X2

f (x)dµ− ∈

≥
∫

X

x f(x)dµ − 3 ∈ for n ≥ N

and our conclusion follows.
If

∫

X

f (x)dµ = ∞

it follows from the definition of the integral thatA > 0, we can define
ϕ(x) ∈ L(X) so that

∫

X

ϕ(x)dµ ≥ A, 0 ≤ ϕ(x) ≤ f (x)

The argument used above now shows that 38
∫

X

fn(x)dµ ≥
∫

X

ϕ(x)dµ − 3 ∈≥ A− 3 ∈

for sufficiently largen, and hence

lim inf
∫

X

fn(x)dµ = ∞.

Restatement of Theorems 31 and 32 in terms of series, rather than
sequences given us

Theorem 33. (Integration of series) If un(x) is measurable for each n,

u(x) =
∞
∑

n=1

un(x), then

∫

X

u(x)dµ =
∞
∑

n=1

∫

X

un(x)dµ
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provided that|
n

∑

ν=1

uν(x) |≤ γ(x) for all N and x,γ(x) ∈ L(X).

The equation is true if un(x) ≥ 0, in the sense that if either side is
finite, then so is the other and equality holds, while if either side is∞ so
is the other.

Theorem 34. (Differentiation under the integral sign)
If f (x, y) is integrable in a< x < b in a neighbourhood of y= y◦

and if
∂ f
∂y◦

exists in a< x < b, then

d
dy◦

b
∫

a

f (x, y)dx =

b
∫

a

∂ f
∂y◦

dx

provided that

∣

∣

∣

∣

∣

f (x, y◦ + h) − f (x, y◦)
h

∣

∣

∣

∣

∣

≤ γ(x)εL(a, b)

for all sufficiently small h.39

This theorem follows from the analogue of Theorem 31 withn re-
placed by a continuous variableh. The proof is similar.

14. The Riemann Integral

If we proceed to define an integral as we have done, but restrict the set
function to one defined only on afinitely additive system of sets (we
call this set function “measure” even now), we get a theory, which in
the case of functions of a real variable, is equivalent to that of Riemann.
It is then obvious that an-R-integrable function is alsoL-integrable and
that the two integrals have the same value.

The more direct definition of theR-integral is thatf (x) is R-inte-
grable ina ≤ x ≤ b if it is bounded and if we can define two sequences
{ϕn(x)}, {ψn(x)} of step functions so thatϕn(x) ↑, ψn(x) ↓, for eachx,
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ϕn(x) ≤ f (x) ≤ ψn(x),
b
∫

a
(ψn(x) − ϕn(x))dx→ 0 asn→ ∞ since lim

ϕn(x) = limΨn(x) = f (x) p.p., it is clear thatf (x) is L-integrable and
that itsL-integral satisfies

b
∫

a

f (x)dx= lim
n→∞

b
∫

a

ϕn(x)dx= lim
n→∞

b
∫

a

ψn(x)dx,

and the common value of these is the R-integral. The following is the
main theorem.

Theorem 35. A bounded function in(a, b) is R-integrable if and only if 40

it is continuous p.p

Lemma. If f (x) is R-integrable and∈> 0, we can defineδ > 0 and a
measurable set E◦ in (a, b) so that

µ(E0) > b− a− ∈,
| f (x+ h) − f (x)| ≤∈ for x ∈ E0, x+ h ∈ (a, b), |h| < δ.

Proof of Lemma: We can define continuous functionsϕ(x), ψ(x) in a
≤ x ≤ b so that

(i) ϕ(x) ≤ f (x) ≤ ψ(x), a ≤ x ≤ b

(ii)
b
∫

a
(ψ(x) − ϕ(x))dx≤∈2 /2

If E0 is the set in (a, b) in which ψ(x) − ϕ(x) <∈ /2 it is plain that
µ(E0) > b−a− ∈ . For otherwise, the integral in(ii) would exceed∈2 /2.
By uniform continuity ofϕ(x), ψ(x), we can defineδ = δ(∈) > 0 so that

ψ(x+ h) − ψ(x)1 ≤ ǫ/2, |ϕ(x+ h) − ϕ(x)| ≤ ǫ/2

for x, x+ h in (a, b), |h| ≤ δ.
Then, if x is in E0, x+ h is in (a, b) and|h| ≤ δ

f (x+ h) − f (x) ≤ ψ(x+ h) − ϕ(x) = ψ(x) − ϕ(x) + ψ(x+ h) − ψ(x)
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≤ ǫ/2+ ǫ/2 = ǫ

and similarly f (x+ h) − f (x) ≥ −ǫ, as we require.
Proof of Theorem 35 41

If f (x) is R-integrable, let

∈> 0, ∈n> 0,
∞
∑

n=1

∈n<∈,

and define measurable setsEn in (a, b) by the lemma so that

µ(En) > b− a− ∈n, | f (x+ h) − f (x)| <∈n for xεEn,

|h| ≤ δn, δn = δn(∈n) > 0.

Let E∗ =
∞
⋂

n=1
En, so that

µ(E∗) ≥ b− a−
∑

∈n> b− a− ǫ

Since f (x) is continuous at every point ofE∗ and∈ is arbitrarily
small, f (x) is continuous p.p.

Conversely, suppose thatf (x) is continuous p.p. Then ifǫ > 0 we
can defineE0 so that

µ(E0) > b− a− ǫ andδ > 0so that

| f (x+ h) − f (x)| <∈ for xǫE0, |h| < δ

If now we divide (a, b) into intervals of length at mostδ those which
contain a point ofE0 contribute not more than 2∈ (b− a) to the differ-
ence between the upper and lower Riemann sumsS, s for f (x), while
the intervals which do not contain points ofE0 have total lengthǫ at
most and contribute not more than 2∈ M whereM = sup| f (x)|. Hence

S − s≤ 2 ∈ (b− a) + 2 ∈ M

which can be made arbitrarily small.42



15.. Stieltjes Integrals 37

15. Stieltjes Integrals

In the development of the Lebesgue integral, we have assumedthat the
measureµ is non-negative. It is easy to extend the theory to the case in
whichµ is the difference between two measuresµ+ andµ− in accordance
with Theorem 3.In this case, we define

∫

√
x

f (x)dµ =
∫

√
x

f (x)dµ+ −
∫

√
x

f (x)d(−µ−),

when both integrals on the right are finite, and sinceµ+ andµ− are mea-
sure, all our theorems apply to the integrals separately andtherefore to
their sum with the exception of Theorems 22, 23, 24, 30, 32 in which
the sign ofµ obviously plays a part. The basic inequality which takes
the place of Theorem 22 is

Theorem 36. If µ = µ+ + µ− in accordance with Theorem 3, andµ− =
µ+ − µ−then

|
∫

√
x

f (x)dµ| ≤
∫

√
x
| f (x)|dµ−.

[The integral on the right is often written
∫

√
x
| f (x)| |dµ|.]

Proof.
∣

∣

∣

∣

∣

∫

√
x

f (x)dµ
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

x

f (x)dµ+ − X f (x)d(−µ−)
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

√
x

f (x)dµ+
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

√
x

f (x)d(−µ−)
∣

∣

∣

∣

∣

≤
∫

√
x

| f (x)dµ+ +
∫

√
x

| f (x)|d(−µ−)

=

∫

√
x

| f (x)|dµ− =
∫

√
x

| f (x)| |dµ|.

We shall nearly always suppose thatµ is a measure withµ ≥ 0 but it 43



38 1. Measure Theory

will be obvious when theorems do not depend on the sign ofµ and these
can be extended immediately to the general case. When we dealwith
inequalities, it is generally essential to restrictµ to the positive case (or
replace it byµ). �

Integrals withµ taking positive and negative values are usually called
Stieltjes integrals. If they are integrals of functionsf (x) of a real vari-
able.xwith respect toµ defined by a functionψ(x) of bounded variation,
we write

∫

X

f (x)dψ(x) for
∫

X

f (x)dµ,

and if X is an interval (a, b) with ψ(x) continuous ata and atb, we write
it as

b
∫

a

f (x)d ψ(x).

In particular, ifψ(x) = x, we get the classical Lebesgue integral,
which can always be written in this from.

If ψ(x) is not continuous ata or at b, the integral will generally
depend on whether the interval of integration is open or closed at each
end, and we have to specify the integral in one of the four forms.

b±0
∫

a±o

f (x)dψ (x)

Finally, if f (x) = F1(x) + i f2(x), ( f1(x), f2(x) real) is a complex
valued function, it is integrable iff1 and f2 are both integrable if we44

define
∫

X

f (x)dµ =
∫

X

f1(x)dµ + i
∫

X

f2(x)dµ.

The inequality
∣

∣

∣

∣

∣

∫

X

f (x)dµ
∣

∣

∣

∣

∣

≤
∫

X

| f (x) | | dµ |

(Theorem 36) still holds.
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16. L-Spaces

A set L of elementsf , g, . . . is a linear space over the fieldR of real
numbers (and similarly over any field) if

(1) L is an abelian group with operation denoted by+.

(2) ∝ f is defined and belongs toL for anyα of Rand f of L.

(3) (α + β) f = α f + β f

(4) α( f + g) = α f + αg

(5) α(β f ) = (αβ) f

(6) 1. f = f .

A linear space is atopological linear space if

(1) L is a topological group under addition,

(2) scalar multiplication byα in R is continuous in this topology.L is a
metric linear spaceif its topology is defined by a metric.

It is a Banach space if

(1) L is a metric linear space in which metric is defined byd( f , g) =
‖ f − g‖ where thenorm ‖ f ‖ is defined as a real number for allf
of L and has the properties

‖ f ‖ = 0 if and only if f = 0, ‖f‖ ≥ 0 always 45

‖α f ‖ =| α | ‖ f ‖, ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖

and

(2) L is complete. That is, if a sequencefn has the property that‖ fn−
fm‖ → 0 asm, n → ∞, then there is a limitf in L for which
‖ fn − f ‖ → 0. A Banach spaceL is called aHilbert spaceif and
inner product (f , g) is defined for everyf , g of L as a complex
number and
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(1) ( f , g) is a linear functional inf and ing

(2) ( f , g) = (g, f )

(3) ( f , f ) = ‖ f ‖2

Two point f , g areorthogonalif ( f , g) = 0, It is obvious that the
integrable functionsf (x) in X form a linear spaceL(X) on which
∫

X

f (x)dµ is a linear functional. Ifp ≥ 1 the space of measurable

functions f (x) on x for which | f(x) |p is integrable is denoted by
Lp(X) and we have the fallowing basic theorems.

Theorem 37. (Holder’s inequality; Schwartz’ inequality if p=2)
If p ≥ 1, 1

p +
1
p′ = 1, f (x) ∈ Lp(X) then

∣

∣

∣

∣

∣

∫

X

f (x)g(x)dµ
∣

∣

∣

∣

∣

≤





















∫

X

f (x) |p dµ





















1/p 



















∫

X

| g(x) |p′ dµ





















1/p′

If p = 1,













∫

X

| g(x) |p′ dµ













1/p′ is interpreted as the essential upper

bound of g(x) that is, the smallest numberΛ for which | g(x) |≤ Λ p.p

Theorem 38. If q ≥ p ≥ 1 andµ(χ) < ∞, then46

Lq(X) ⊂ Lp(X).

If µ(X) = ∞, there is no inclusion relation between Lp, Lq. For the proof
we merely apply Holder’s theorem with f(x) ,g(x), p replaced by| f (x)|p,

1,
q
p

respectively.

Theorem 39(Minkowski’s Inequality).
If p ≥ 1 and || f || = (

∫

x
| f (x)|pdµ)1/p , then

|| f + g|| ≤ || f || + ||g||

For the proofs see Hardy, Littlewood and Polya: Inequalities.

Theorem 40. If p ≥ 1, Lp(χ) is complete. (the case p= 2 is the Riesz-
Fischer theorem).
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Proof. We support thatp < ∞ and that

|| fn − fm|| → 0 as m, n→ ∞,

(in the notation introduced in Theorem 39) and defineAk > 0 ∈k↓ 0 so
that

∑

Ak < ∞ and
∑

(∈k /Ak)p < ∞.
We can choose a sequence{nk} so thatnk+1 > nk and

|| fnk − fm|| ≤∈k for m≥ nk

and in particular

|| fnk+1 − fnk || ≤ ǫk.

Let Ek be the set in which| fnk+1 (x) − fnk(x)| ≤ Ak. �

Then 47

∈p
k≥

∫

X

| fnk+1 (x) − fnk(x)| p dµ ≥
∫

X−Ek

| fnk+1 (x) − fnk(x)| p dµ

≥ Ap
kµ(X − Ek),

so thatµ

[

∞
⋃

K
(X− ∈k)

]

→ 0 asK → ∞ since
∑

(∈k /Ak)p < ∞.

Since fnk(x) tends to a limit at every point of each set
∞
⋂

K
Ek (because

∑

Ak < ∞) , it follows that fnk(x) tends to a limitf (x) p.p.
Also, it follows from Fatou’s lemma that, since|| fnk || is bounded,

f (x) ∈ Lp(X) and that

|| f nk − f || ≥∈k, || f nk − f || → 0 as k→ ∞

Since|| f nk − fm|| → 0 as k,m→ ∞ it follows from Minkowski’s
inequality that| fm − f || → 0 as m→∞.

If p = ∞, the proof is rather simpler.
From these theorems we deduce
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Theorem 41. If p ≥ 1, Lp(X) is a Banach space with

|| f || =





















∫

X

| f (x)|p dµ





















1/p

L2 is a Hilbert space with

( f , g) =
∫

X

f (x) g(x) dµ.

The spacesLp generally have certain separability properties related
to the topological properties (if any) ofX.

A function with real values defined on an additive systemS0, taking48

constant values on each of a finite number of sets ofS0 id called astep
function.

Theorem 42. The set of step functions (and even the sets step function
taking relation values) is dense in Lp for 1 ≤ p < ∞. If the Borel system
of measurable sets inX is generated by a countable, finitely additive sys-
tem S0 ,then the set of steps functions with rational values is countable
and Lp is separable.

The proof follows easily from the definition of the integral.

Theorem 43. If every step function can be approximated in Lp(X) by
continuous functions, the continuous functions, are densein Lp(X), (as-
suming of course that(X) is a topological space).

In particular, continuous functions in Rn are dense in Lp(Rn). Since
the measure in Rn can be generated by a completely additive function
on the finitely additive countable system of finite unions of rectangles
ai ≤ xi < bi , and with ai , bi rational their complements, Lp(Rn) is
separable.

We have proves in Theorem 25 that an integral over an arbitrary
set X is an absolutely continuous function of X. The following theorem
provides a converse.
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Theorem 44. (Lebesgue for Rn; Radon-Nikodym in the general case)
If H (x) is completely additive and finite inX and ifX has finite mea-

sure or is the limit of a sequence of subset of finite measure, then49

H(X) = F(X) + Q(X)

where F(X) =
∫

X

f (x)dµ, f (x) ∈ L(X)

and Q is a (singular) function with the property that there isa setXs of
measure zero for which

0 ≤ Q(X) = Q(X.Xs)

for all measurable X. Moreover,F(X),Q(X) are unique and f(x) is
unique up to a set of measure zero.

In particular, if H(X) is absolutely continuous, Q(X) = 0 and

H(X) = F(X) =
∫

X

f (x)dµ, f (x) ∈ L(X)

In this case, f(x) is called the Radon derivative of H(X) = F(X)

Proof. We assume thatµ(X) < ∞. The extension is straightforward.
By Theorem 3, we can suppose thatH(X) ≥ 0. letΘ be the class of

measurable functionθ(x) with the property thatθ(x) ≥ 0,

∫

x
θ(x)dµ ≤ H(X)

for all measurableX. Then we can find a sequence{θn(x)} inΘ for which

∫

X

θn(x)dµ −→ sup
θǫΘ

∫

x
θ(x)dµ ≤ H(X) < ∞

�

If we defineθ′n(x) = sup
k≤n

θk(x) and observe that 50



44 1. Measure Theory

X =
n

⋃

k=1

X.ǫ[θ′n(x) = θk(x)]

we see thatθ′n(x) belongs toΘ. Sinceθ′n(x) increases withn for eachx,
it has a limit f (x) ≥ 0, which also belongs toΘ ,and we can write

F(X) =
∫

X
f (x)dµ ≤ H(X), Q(X) = H(X) − F(X) ≥ 0

while
(1)

∫

X
f (x)dµ = supθǫΘ

∫

X
θ(x)dµ < ∞.

Now let

Qn(X) = Q(X) − µ(X)
n

and letX+n , X−n be the sets defined by Theorem 3 for which

Qn(X) ≥ 0 if X ⊂ X+n , Qn(X) ≤ 0 if X ⊂ X+n

Then,

H(X) ≥ F(X) +
µ(X)

n
=

∫

X
( f (x) +

1
n

)dµ if X ⊂ X+n

and if

f (x) = f (x) +
1
n

for x ∈ X+n
f (x) = f (x) for x ∈ X+n ,

it follows that f (x) be longs toΘ, and this contradicts(1) unlessµ(X+n) =
0. Henceµ(X+n ) = 0 andQ(X) = 0 if X is disjoint from

Xs =

∞
⋃

n=1

X+n

which has measure zero.
To prove uniqueness, suppose that the decomposition can be made51

in two ways so that

H(X) = F1(X) + Q1(X) = F2(X) + Q2(X),
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whereF1(X), F2(X) are integrals andQ1(X), Q2(X) vanish on all sets
disjoint from two sets of measure zero, whose unionXs also has measure
zero. Then

F1(X) = F1(X − XXS), F2(X) = F2(X − XXS),

F1(X) − F2(X) = Q2(X − XXs) − Q1(X − XXs) = 0.

Theorem 45. If φ(X) is absolutely continuous inX and has Radon
derivativeϕ(X), with respect to a measureµinX,then

∫

X

f (x)dφ =
∫

X

f (x)ϕ(x)dµ

if either side exists.

Proof. We may suppose thatf (x) ≥ 0, ϕ(x) ≥ 0, φ(X) ≥ 0, Suppose that

∫

X

f (x)dφ < ∞

Then, it follows from Theorem 27 that we may suppose thatφ(X) <
∞. If E > 0, we consider subdivisions{yν} for which

y1 ≤ ǫ, yν+1 ≤ (1+ ǫ)yν(ν ≥ 1)

so that

s=
∞
∑

ν=1

yνφ (Eν) ≤
∫

x

f (x)dφ

≤
∞
∑

v=0

yν+1Φ(E)

≤ (1+ ∈)s+ ∈ Φ(X)

But 52
∫

X

f (x)φ(x)dµ =
∞
∑

ν=o

∫

Eν
f (x)φ(x)dµ
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by Theorem 20, and

yνΦ(Eν) ≤
∫

Eν
f (x)ϕ(x)dµ ≤ yν+1Φ(Eν)

by Theorem 22, and therefore we have also

s≤
∫

X

f (x)φ(x)dµ ≤ (1+ ∈)s+ ∈ Φ(x).

The conclusion follows on letting∈→ 0 �

Moreover the first part of this inequality holds even if
∫

X
f (x)dµ =

∞, but in this case,s is not bounded and since the inequality holds for
all s,

∫

X

f (x)ϕ(x)dµ = ∞.

17. Mappings of measures

Suppose that we have two spacesX, X∗ and a mappingX → X∗ of X
into X∗. If S is a Borel system of measurable sets X with a measureµ

in X, the mapping induces a Borel systemS∗ of ‘measurable’ setsX∗ in
X∗, these being defined as those setsX∗ for which the inverse imagesX
in X are measurable, the measureµ∗ induced byµ on s∗ being defined
by µ∗(x∗) = µ(x) whereX is the inverse image ofX∗.

If the mapping is (1-1), the two spaces have the same properties of
measure and we call the mapping a measure isomorphism.

Theorem 46 (Change of variable). If the measureµ, µ∗ in X and X∗53

are isomorphic under the (1-1) mapping X→ X∗ of X ontoX∗ and if
f ∗(x∗) = f (x) then

∫

X

f (x)dµ =
∫

X∗
f ∗(x∗)dµ∗

The proof is immediate if we note that the setsEν andE∗ν defined in
X andX∗ respectively by any subdivision correspond under the mapping
x→ x∗ and have the same measureµ (Eν) = µ∗(E∗ν).

As an immediate corollary of this theorem we have
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Theorem 47. If α(t) increases for A≤ t ≤ b andα(A) = a, α(B) = b
and G(x) is of bounded variation in a≤ x ≤ b, then

∫ b

a
f (x)dG(x) =

∫ B

A
f (α(t))dG(α(t)).

In particular
∫ b

a
f (x)dx=

∫ B

A
f (α(t))dα(t)

and, ifα(t) is absolutely continuous
∫ b

a
f (x)dx=

∫ B

A
f (α(t))α′(t)dt.

18. Differentiation

It has been shown in Theorem 44 that any completely additive and abso-
lutely continuous finite set function can be expressed as thethe integral
of an integrable function defined uniquely upto a set of measure zero
called its Radon derivative. This derivative does not depend upon any
topological properties of the spaceX. On the other hand the derivative54

of a function of a real variable is defined, classically, as a limit in the
topology of R. An obvious problem is to determine the relationship be-
tween Radon derivatives and those defined by other means. We consider
here only the caseX = Rwhere the theory is familiar (but not easy). We
need some preliminary results about derivatives of a function F(x) in the
classical sense.

Definition. The upper and lower, right and left derivatives of F(x) at x
are defined respectively, by

D+F = lim
h→+0

sup
F(x+ h) − F(x)

h

D+F = lim
h→+0

inf
F(x+ h) − F(x)

h

D−F = lim
h→−0

sup
F(x+ h) − F(x)

h
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D−F = lim
h→−0

inf
F(x+ h) − F(x)

h

Plainly D+F ≤ D+F, D−F ≤ D−F. If D+F = D+F or D−F = D−F
we say thatF(x) is differentiable on the or on the left, respectively, and
the common values are called the right or left derivatives,F′+, F

′
−. If

all four derivatives are equal, we say thatF(x) is differentiable with
derivativeF′(x) equal to the common value of these derivatives.

Theorem 48. The set of points at which F′+ and F′− both are exist but
different is countable.

Proof. It is enough to prove that the setE of pointsx in which F′ (x) <55

F′+(x)is countable. Letr1, r2 . . . be the sequence of all rational numbers
arranged in some definite order. Ifx ∈ E let k = k(x) be the smallest
integer for which

F′ (x) < rk < F′+(x)

Now let m, n be the smallest integers for which

rm < x,
F(ζ) − F(x)

ζ − x
< rk for rm < ζ < x,

rn > x,
F(ζ) − F(x)

ζ − x
> rk for x < ζ < rn

�

Every x defines the triple (k,m, n) uniquely, and two numbersx1 <

x2 cannot have the same triple (k,m, n) associated with them. For if they
did, we should have

rm < x1 < x2 < rn

and therefore

F(x1) − F(x2)
x1 − x2

< rk from the inequality

while
F(x1) − F(x2)

x1 − x2
< rk from the second

and these are contradictory. Since the number of triples (k,m, n) is
countable, so isE.
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Theorem 49 (Vitali’s covering theorem). Suppose that every point of
a bounded set E of real numbers (not necessarily measurable)is con-56

tained in an arbitrarily small closed interval with positive length and
belonging to a given family V. Suppose that G is an open set containing
E and that∈> 0.

Then we can select afinite numberN of mutually dis joint intervals
In of V so that eachIn lies inG and

N
∑

n=1

µ(In)− ∈≤ µ(E) ≤ µ(E
N

∑

n=1

In)+ ∈ .

(µ standing of course, foroutermeasure).

Proof. If ∈> 0, it is obviously enough, after Theorem 12, to prove the
theorem in the caseµ(G) ≤ µ(E)+ ∈. We may also suppose that all the
intervals ofV lie in G. �

We define a sequence of intervalsI1, I2 . . . inductively as follows.
I1 is an arbitrary ofV containing points ofE. If I1, I2 . . . , In have been
defined, let 1n be the upper bound of lengths of all the intervals ofV
which contain points ofE and which are disjoint fromI1 + I2 + · · · + In.
Then, since theIk are closed, 1n > 0 unlessI1 + I2 + · · · + In ⊃ E. Now
defineIn+1 so that it is an interval of the type specified above and so that
λn+1 = µ(In+1) > 1

21n.
ThenIn+1 is disjoint fromI1 + · · · + In and

S =
∞
∑

n=1

In ⊂ G.

Suppose now thatA = E−S E, µ(A) > 0. Let Jn be the interval with
that same centre asIn and 5 times the length ofIn. We can then choose

N so that 57
∞
∑

n=N+1

µ(Jn) = 5
∞
∑

n=N+1

µ(In) < µ(A),
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since
∞
∑

n=1
µ(In) ≤ µ(G) ≤ µ(E)+ ∈< ∞ andµ(A) > 0. It follows that

µ

















A− A
∞
⋃

n=N+1

Jn

















> 0

and thatA − A
∞
⋃

n=N+1
Jn contains at least one pointξ. Moreover, since

ξ does not belong to theclosedset
N
∑

n=1
In, we can choose fromV an

interval I containingξ and such thatI . In = 0 for n = 1, 2 . . . ,N. On
the other hand,I .In cannot be empty for alln ≥ N + 1 for, if it were, we
should have

0 < µ(I ) ≥ 1n < 2λn+1

for all n ≤ N + 1 and this is impossible sinceλn → 0 (for
∞
∑

1
λn =

∞
∑

1
µ(In) ≤ µ(G) < ∞). We can therefore definen◦ ≥ N + 1 to be the

smallest integer for whichI .In◦ , 0. But

I .In = 0 f orn ≤ n◦ − 1

and it follows from the definition of 1n that

0 < λ ≤ 1n◦−1 < 2λn◦

HenceI , and thereforeξ, is contained inJn◦ sinceJn◦ has five times the
length ofIn◦ andI .In◦ , 0.

This is impossible sinceξ belongs toA−A
∞
⋃

n=N+1
Jn andn◦ ≥ N+ 1.58

Hence we must have
µ(A) = 0

andµ(ES) = µ(E),
∞
∑

n=1
µ(In) ≤ µ(G) ≤ µ(E)+ ∈ .

We can therefore chooseN as large that

N
∑

n=1

µ(In)− ∈≤ µ(E) ≤ µ(E
N

∑

n=1

In)+ ∈
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Theorem 50. A function F(x) of bounded variation is differentiable p.p.

Proof. It is sufficient to prove the theorem whenF(x) is increasing. We
prove thatD+F = D+F p.p. The proof thatD−F = D−F p.p. is similar,
and the conclusion then follows from Theorem 48.

The set

∈ [D+F > D+F] =
⋃

r1,r2

∈ [D+F > r1 > r2 > D+F]

Where the union is over the countable pairs of rationalr1, r2.

Hence, if we suppose thatµ(∈ [D+F > D+F]) > 0 we can find
rationalsr1, r2 such that

D+F > r1 > r2 > D+F

in a setE of positive outer measure. Then every pointx of E is the left
hand end point of an interval (x, η) such that

F(η) − F(x) ≤ (η − x)r2

and we may suppose thatη − x is arbitrarily small. It follows from 59

Vitali’s theorem that we can define a setK consisting of a finite number
of such intervals so that

µ(E.K) > µ(K)− ∈

While the incrementF(K) of F(x) over the intervals satisfies

F(K) ≤ r2µ(K).

But every pointx of EK, with the exception of the finite set of right
hand end points ofK, is the left hand end point of an arbitrarily small
interval (x, ξ) for which

F(ξ) − F(x) ≥ (ξ − x)r1.

If we now apply Vitali’s theorem to the intersection ofE and the
set of interior pints ofK (Which has the same measure asEK), we can
construct a finite set of intervalsK′ so that

K′ ⊂ K, µ(K′) ≥ µ(EK)− ∈≥ µ(K) − 2 ∈,
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while the incrementF(K′) of F(x) over the intervalsK′ satisfies

F(K′) ≥ r1µ(K′).

SinceF(K′) ≤ F(K), we get

r2µ(K) ≥ r1µ(K′) ≥ r1(µ(K) − 2 ∈),

which gives a contradiction ifǫ is small enough. Hence we must have
µ(E) = 0 and the theorem is proved. �

Theorem 51. If F (x) increases and is bounded in a≤ x ≤ b and if F′(x)
is its derivative, then F′(x) is non-negative p.p, integrable in(a, b) and60

satisfies
∫ b

a
F′(x)dx≤ F(b) − F(a)

Proof. SinceF(x+h)−F(x)
h ≥ 0 for h , o it follows that

F′(x) = lim
h→0

F(x+ h) − F(x)
h

≥ 0 p.p.

It follows now from Fatou’s lemma that ifδ > 0,

∫ b−δ

a
F′(x)dx≤ lim

h→0
inf

∫ b−δ

a

F(x+ h) − F(x)
h

dx

= lim
h→0

inf
{1
h

∫ b+h−δ

a+h
F(x)dx− 1

h

∫ b

a
F(x)dx

}

= lim
h→0

inf
{1
h

∫ b+h−δ

b−δ
F(x)dx− 1

h

∫ a+h

a
F(x)dx

}

≤ lim
h→0

[F(b+ h− δ) − F(a)]

≤ F(b) − F(a)

sinceF(x) is increasing. �
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Theorem 52. IF f (x) is integrable in(a, b) and

F(x) =
∫ x

a
f (t)dt = 0 for a ≤ x ≤ b

then f(x) = 0 p.p.

(This is a refinement of corollary 1 of Theorem 24, since the con- 61

dition here is lighter than the condition that theset function F(X) =
∫

x
f (t)dt should vanish for forall measurable X.)

Proof. Our hypothesis implies thatF(X) = 0 for all open or closed
intervalsX and therefore, sinceF(X) is completely additiveF(X) = 0
for all open setsX every open set being the sum of a countable number
of disjoint open intervals. But every measurable set ist he sum of a set
of zero measure and the limit of a decreasing sequence of opensets by
Theorem 12, and thereforeF(X) = 0 for every measurable setX. The
conclusion then follows from corollary 1 to Theorem 24. �

Theorem 53(Fundamental theorem of the calculus). (i) If F (x) is
an absolutely continuous point function and f(x) is the Radon
derivative of its associated set function F(X) (which is also ab-
solutely continuous ; see page 30) then F(x) is differentiable p.p
and

F
′
(x) = f (x) p.p

(ii) If f (x)εL(a, b) then F(x) =
∫ x

a
f (t)dt is absolutely continuous and

F
′
(x) = f (x) p.p

(iii) If F (x) is absolutely continuous in a≤ x ≤ b, then F
′
is integrable

and

F(x) =
∫ x

a
F′(t)dt + F(a)

Proof. (i) We may suppose thatF(x) increases and thatF(x) ≥ o. If
A > 0, let fA(x) = min[A, f (x)], FA(x) =

∫ x

a
fA(t)dt, where f (x) is the 62

Radon derivative ofF(X) andF(x) =
∫ x

a
f (t)dt. �
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Then sincefa(x) is bounded it follows from Fatou’s lemma that
∫ x

a
F
′

A(t)dt =
∫ x

a
lim
h→0

FA(t + h) − FA(t)
h

dt

≥ lim
h→0

sup
∫ x

a

FA(t + h) − FA(t)
h

dt

= lim
h→0

sup
{1
h

∫ x+h

x
FA(t)dt − 1

h

∫ a+h

a
FA(t)dt

}

= FA(x) − FA(a) = FA(x)

sinceFA(t) is continuous. Sincef (t) ≥ fA(t) it follows thatF
′
(t) ≥ F′A(t)

and therefore
∫ x

a
F
′
(t)dt ≥

∫ x

a
F
′

A(t)dt ≥ FA(x)

This holds for allA > 0 and sinceFA(x)→ F(x)asA→ ∞ by
Theorem 31, we deduce that

∫ x

a
F
′
(t)dt ≥ F(x) =

∫ x

a
f (t)dt.

Combining this with Theorem 50 we get
∫ x

a
(F
′
(t) − f (t))dt = 0

for all x, and the conclusion follows from Theorem 51
Parts(ii) and (iii) follow easily form(i). If we did not wishto use

the Radon derivative, we could prove (ii) and (iii) with the help of the63

deduction from Vitali’s theorem that ifF(x) is absolutely continuous
andF

′
(x) = 0 p.p thenF(x) is constant

Theorem 54(Integration by parts). If F (x),G(x) are of bounded varia-
tion in an open or closed interval J and

F(x) =
1
2

[F(x− 0)+ F(x+ 0)],G(x) =
1
2

[G(x− 0)+G(x+ 0)],

then
∫

j
F(x)dG(x) =

∫

J
[F(x)G(x)] −

∫

j
G(x)dF(x).
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In particular if F(x), G(x) are absolutely continuous then,

∫ b

a
F(x)G′′(x)dx=

∫ b

a
[F(x)G(x)] −

∫ b

a
F
′
(x)G(x)dx

Proof. We may suppose that F(x), G(x) increase on the interval and are
non - negative and define

∆(I ) =
∫

I
F(x)dG(x) +

∫

I
G(x)dF(x) −

∫

I
[F(x)Gx]

for intervalsI ⊂ J. Then∆(I ) is completely additive and we shall prove
that∆(I ) = 0 for all I �

Suppose first thatI consist of a single pointa. Then

∆(I ) = F(a)[G(a+ 0)−G(a− 0)] +G(a)[F(a+ 0)− F(a− 0)]

− F(a+ 0)G(a+ 0)+ F(a− 0)G(a− 0)

= 0

since 2F(a) = F(a+ 0)+ F(a− 0), 2G(a) = G(a+ 0)+G(a− 0).
Next if I is an open intervala < x < b,

∆(I ) ≤ F(b− 0)[G(b− 0)−G(a+ 0)]G(b− 0)[F(b− 0)− F(a+ 0)]

− F(b− 0)G(b− 0)+ F(a+ 0)G(a+ 0)

= (F(b− 0)− F(a+ 0))(G(b− 0)−G(a+ 0)),

= F(I )G(I )

whereF(I ), G(I ) are the interval functions defined by F(x),G(x), and64

similarly
∆(I ) ≥ −F(I )G(I )so that| ∆(I ) |≥ F(I )G(I )

Now, any interval is the sum of an open interval and one or two end
points and it follows from the additivity of∆(I ), that

| ∆(I ) |≤ F(I )G(I ).
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for all intervals. Let∈> 0. Then apart from a finite number of points at
which F(x+ 0)− F(x− 0) >∈, and on which∆ = 0, we can divideI into
a finite number of disjoint intervalsIn on each of whichF(In) ≤∈ . Then

| ∆(I ) |=| ∆
(
∑

In

)

|= |
∑

∆(In) |≤
∑

F(In)G(In)

≤ ∈
∑

G(In) =∈ G(I ).

The conclusion follows on letting∈→ 0.

Theorem 55(Second Mean Value Theorem). (i) If f (x) ∈ L(a, b)
andϕ(x) is monotonic,

∫ b

a
f (x)φ(x)dx= ϕ(a+ 0)

∫ ξ

a
f (x)dx+ φ(b− 0)

∫ b

ξ

f (x)dx

for someξ in a ≤ ξ ≤ b.65

(ii) If ϕ(x) ≥ 0 andφ(x) decreases in a≤ x ≤ b,
∫ b

a
f (x)ϕ(x)dx = ϕ(a+ 0)

∫ ξ

a
f (x)dx

for someξ, a ≤ ξ ≤ b.

Proof. Suppose thatφ(x) decreases in (i), so that, if we putF(x) =
∫ x

a
f (t)dt, we have
∫ b

a
f (x)φ(x)dx = b−0

a+0[F(x)φ(x)] −
∫ b−0

a+0
F(x)d(x)

= φ(b− 0)
∫ b

a
f (x)dx+ [φ(a+ 0)− φ(b− 0)]F(ξ)

by Theorem 22 and the fact thatF(x) is continuous and attains every
value between its bounds at some pointξin a ≤ ξ ≤ b. This establishes
(i) and we obtain (ii) by definingϕ(b+ 0) = 0 and writing

∫ b

a
f (x)φ(x)dx =

∫ b+0

a+0
[F(x)φ(x)] −

∫ b+0

a+0
F(x)dϕ(x)

= ϕ(a+ 0)F(ξ) with a ≤ ξ ≤ b.

A refinement enables us to assert that a< ξ < b in (i) and that
a < ξ ≤ b in (ii). �
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19. Product Measures and Multiple Integrals

Suppose thatX,X′ are two spaces of pointsx, x′. Then the space of pairs
(x, x′) with x in X, x′ in X is called theproduct spaceof X andX′ and is
writtenXxX′.

Theorem 56. Suppose that measuresµ, µ′, are defined on Borel systems
S , S′ of measurable sets X, X′ in two spacesX, X respectively. Then66

a measure m can be defined inXxX′ in such a way that, if X, X′ are
measurable inX, X′ respectively, then XxX′ is measurable inXxX′ and

m(XxX) = µ(X).µ′(X′)

(The measure m is called the product measure ofµ andµ′). The idea
of product measures is basic in the theory of probability where it is vital
to observe that the product measure is not the only measure which can
be defined inXxX′.

Proof. We define arectangularset inXxX′ to be any setXxX′ with X
in S, X′ in S and we define its measurem(XxX′) to beµ(X) · µ′(X′).
(An expression of the form 0· ∞ is taken to stand for 0). We call the
sum of a finite number of rectangular sets afigure in XxX′ and define its
measure to be the sum of the measure of disjoint rectangular sets which
go to form it. It is easy to verify that this definition is independent of the
decomposition used and that the figures and their complements form a
finitely additive system on which their measure is finitely additive.

After Kolmogoroff’s theorem (Theorem 7), it s sufficient to show
thatm is completely additive on figures. Suppose that

∞
∑

n=1

XnxX′n = X0xX′0

where the sets on the left are disjoint. Ifx is any point ofX0, let J′n(x)
be the set of pointsx′ of X′0 for which (x, x′) belongs toXnxX′n. Then
J′n(x) is measurable inX′ for eachx, it has measureµ′(Xn′) whenx is in 67

Xn and 0 otherwise. This measureµ
′
(J
′
n(x)) is plainly measurable as a

function of x and
∫

Xo

µ′(J′n(x))dµ = µ(Xn)µ
′
(X
′
n)
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Moreover,
N
∑

n=1
J′n(X) is the set of points x ofXo for which (x, x′)

belongs to
N
∑

n=1
XnxXn. It is measurable and

∫

Xo

µ′

















N
∑

n=1

Jn(x)

















dµ =
N

∑

n=1

µ(Xn)µ
′
(X
′
n).

But sinceX0xX
′

0

∞
∑

n=1
XnxX

′
n, it follows that

lim
N→∞

N
∑

n=1

J′n(x) = X′0 for every x ofX0,

and therefore lim
N→∞

µ′

















N
∑

n=1

Jn(x)

















= µ(X′0) for every x ofX0.

It follows from Theorem 32 on monotone convergence that

µ(X0)µ′(X′0) = lim
N→∞

∫

X0

µ′

















N
∑

n=1

J′n(x)

















dµ =
N

∑

n=1

µ(Xn)µ′(X′N)

and so m(X0xX
′

0) =
∞
∑

n=1

m(XnxX
′
n)

which completes the proof. �

Theorem 57. LetX,X′′ be two measure spaces with measuresµ, µ′ re-68

spectively such thatX(X′) is the limit of a sequence|{Xn
}

(
{

X′n
}

) of mea-
surable sets of finite measureµ(Xn)(µ′(X′′n )). Let Y be a set inXxX′

measurable with respect to the product measure m defined byµ, µ′. Let
Y′(x) be the set of points x′ ∈ X′ for which (x, x′) ∈ Y. Then Y′ is mea-
surable inX′ for almost all x∈ X, its measureµ′(Y′(x)) is a measurable
function of x and

∫

X

µ′(Y′(x))dµ = m(Y).
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Proof. We note first that the theorem is trivially true ifY is a rectangular
set and follows immediately ifY is the sum of a countable number of
rectangular sets. Further, it is also true for the limit of a decreasing
sequence of sets of this type. In the general case, we can suppose that

Y ⊂ Q,Q− Y ⊂ Γ

wherem(Γ) = 0 andQ, Γ are limits of decreasing sequence of sums of
rectangular sets. Then, ifQ

′
(x), Γ

′
(x) are defined in the same way as

Y
′
(x) we have

Y′(x) ⊂ Q′(x),Q′(x) − Y′ ⊂ Γ′(x)

whereΓ′(x), Q′(x) are measurable for almost allx. But
∫

X

µ′(Γ(x))dµ = m(Γ) = 0

so thatµ′(Γ
′
(x)) = 0 for almost allx sinceµ

′ ≥ 0, and this is enough to
show thatY

′
(x) is measurable for almost allx and that

µ′(Y′(x)) = µ′(Q
′
(x))p.p.

�

Finally, 69
∫

X

µ
′
(Y
′
(x))dµ =

∫

X

µ
′
(Q(x))dµ = m(Q) = m(Y).

Theorem 58 (Fubini’s theorem). SupposeX,X
′

satisfy the hypotheses
of Theorem 57. If f(x, x

′
) is measurable with respect to the product

measure defined byµ, µ
′
it is measurable in x for almost all x

′
and in x

′

for almost all x. The existence of any one of the integrals
∫

XxX′
| f (x, x′)|dm,

∫

X

dµ
∫

X′
| f (x, x)|dµ′,

∫

X′
dµ′

∫

X

| f (x, x)|dµ

implies that of the other two and the existence and equality of the inte-
grals

∫

XxX′
f (x, x)dm,

∫

X

d
∫

X′
f (x, x′)dµ′,

∫

X

dµ
∫

X′
f (x, x′)dµ
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Proof. We may obviously suppose thatf (x, x
′
) ≥ 0. Let

{

yν
}

be a sub-
division with Eν =∈ [yν ≤ f (x, x

′
) < yν+1]. The theorem holds for the

function equal toyν in Eν for ν = 0, 1, 2, . . . ,N (N arbitrary) and zero
elsewhere, by Theorem 57, and the general result follows easily from
the definition of the integral. �



Chapter 2

Probability

1. Definitions

A measureµ defined in a spaceX of points x is called aprobability 70

measureor aprobability distributionif µ(X) = 1. The measurable sets
X are calledeventsand theprobability of the event Xis real number
µ(X). Two eventsX1,X2 are mutually exclusive ifX1 · X2 = 0.

The statement:x is a random variable inX with probability distri-
butionµ means

(i) that a probability distributionµ existsX,

(ii) that the expression“the probability that x belongs to X”, where
X is a given event, will be taken to meanµ(X) · µ(X) sometimes
written P(xεX).

The basic properties of the probabilities of events follow immedi-
ately. They are that these probabilities are real numbers between 0 and
1, inclusive, and that the probability that one of a finite or countable set
of mutually exclusive events (Xi) should take palace i.e. the probability
of the event∪Xi, is equal to the sum of the probabilities of the eventsXi.

If a probability measure is defined in some space, it is clearly possi-
ble to work with any isomorphic measure in another space. In practice,
this can often be taken to beRk, in which case we speak of arandom
real vector in the place of a random variable. In particular, ifk = 1

61
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we speak of a random of arandom real number or random real vari-
able. The probability distribution is in this case defined by adistribu-71

tion function F(x) increasing from 0 to 1 in -∞ < x < ∞. For example,
a probability measure in any finite or countable space is isomorphic,
with a probability measure inRdefined by a step function having jumps
pν at ν = 0, 1, 2, . . . , where

pν ≥ 0,
∑

pν = 1.

Such a distribution is called adiscreteprobability distribution. If
F(x) is absolutely continuousF′(x) is called theprobability density
function (or frequency function).

Example 1.Tossing a coinThe spaceX has only two pointsH, T with
four subsets, with probabilities given by

µ(0) = 0, µ(H) = µ(T) =
1
2
, µ(X) = µ(H + T) = 1.

If we makeH, T correspond respectively with the real numbers 0,1,
we get the random real variable with distribution function

F(x) = 0(x < 0)

=
1
2

(0 ≤ x < 1)

= 1(1≤ x)

Any two real numbers a,b could be substituted for 0, 1.

Example 2.Throwing a die- The space contains six points, each with
probability 1/6 (unloaded die). The natural correspondence withRgives
rise toF(x) with equal jumps 1/6 at 1, 2, 3, 4, 5, 6.

2. Function of a random variable

Suppose thatx is a random variable inX and thaty = α(x) is a function72

defined inX and taking values in a spacey. Suppose thaty contains a
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Borel system of measurable setsY. Theny is called afunctionof the
variablex if the setε[α(x) ∈ Y] is measurable inX for every measurable
Y and if we take the measure inX of this set as the probability measure
of Y. Note that the mappingx→ y need not be one-one.

(There is a slight ambiguity in notation asx may denote either the
random variable inX or a generic point ofX. In practice, there is no
difficulty in deciding which is meant.)

Example 1.x being a random real variable with distribution function
(d · f )F(x) we compute thed · f ·G(y) of y = x2

P(y < 0) = P(x2 < 0) = 0 so thatG(y) = 0 for y < 0.

If

a ≥ 0,P(y ≤ a) = P(x2 ≤ a) = P(0 ≤ x ≤
√

a) + P(−
√

a ≤ x < 0),

G(a+ 0) = F(
√

a+ 0)− F(−
√

a− 0).

Example 2.If F(x) = 0 for x < 0 andG(y) is the distribution function
of y = 1/x, x having d.f.F(x) then

G(y) = 0 f ory < 0.

If a ≥ 0.

G(a+ 0) = P(y ≤ a) = P

(

1
x
≤ a

)

= P(x ≥ 1/a) = 1− F(1/a− 0).

SinceG(a) is a d.f.,G(a + 0) → 1 asa → ∞, so thatF must be
continuous at 0. That is,P(x = 0) = 0.

3. Parameters of random variables

A parameterof a random variable (or its distribution) is a number asso-
ciated with it. The most important parameters of real distributions are 73

the following.
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(i) The meanor expectationα(x) of a real valued functionα(x) of a
random real variablex is defined by

α(x) = E(α(x)) =
∫

X

α(x)dµ

(ii) The standard deviation or dispersionσ of a random real number
about its mean is defined by

σ2 = E(x− x)2 =

∫

X

(x− x)2dµ

=

∫

X

x2dµ − 2x
∫

X

xdµ + x2
∫

X

dµ

= E(x2) − 2x2
+ x2

= E(x2) − (E(x))2

σ2is called thevarianceof x.

(iii) The rangeis the interval (r,R), where

r = sup
F(a)=0

a,R= inf
F(a)=1

a

(iv) Themean erroris
∫

X
|x− x|dµ = E(|x− x|)

(v) A medianis a real numberA for which

F(A− 0)+ F(A+ 0) ≤ 1.

(vi) The modeof an absolutely continuous distributionF(x) is the
unique maximum, when it exists, ofF′(X).

Some special distributions in R.

(i) TheDinomial distribution

0 < p < 1, q = 1 − p, n is a positive integer.x can take values
ν = 0, 1, 2, ..., n with probabilities

pν = (n
ν)p

νqn−ν,
n

∑

0

pν = 1.
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Then

x = E(ν) =
n

∑

ν=0

νpν = np,

σ2 = E(ν2) − x2
=

n
∑

ν=0

ν2pν − n2p2 = npq

Pν is the probability ofν successes out of n experiments in each of
which the probability of success isp.

(ii) The Poisson distribution xcan take the valuesν = 0, 1, 2, . . . with
probabilities

pν = e−c cν

ν!
,

∞
∑

ν=0

pν = 1,

wherec > 0. Here

x = e−c
∞
∑

ν=0

νcν

ν!
= c

σ2 = e−c
∞
∑

ν=0

ν2cν

ν!
− c2 = c

The binomial and Poisson distributions are discrete. The Poisson
distribution is the limit of the binomial distribution asn→ ∞′ if
we put

p = c/n(p then → 0).

(iii) The rectangular distribution

This is given by

F(x) = 0 for x ≤ a

=
x− a
b− a

for a ≤ x ≤ b
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= 1 for b ≤ x.

It is absolutely continuous andF′(x) = 1/(b−a) for a < x < b and 75

= 0 for x < a, x > b. Also

x =
a+ b

2
, σ2 =

(b− a)2

12

(iv) The normal (or Gaussian) distribution

This is an absolutely continuous distributionF for which

F′(x) =
1

σ
√

2
∏

e−(x−x)2/2σ2

It is easy to verify that the mean and standard deviation are respec-
tively x and σ.

(v) The singular distribution:

Herex = 0 has probability 1,

F(x) = D(x− a) =1 if x ≥ a

0 if x < a

We now prove

Theorem 1 (Tehebycheff’s inequality). If ∝ (x) is a nonnegative func-
tion of a random variable x and k> 0 then

P(α(x) ≥ k) ≤ E(α(x))
k

Proof.

E(α(x)) =
∫

X

α(x)dµ

=

∫

α(x)≥k
α(x)dµ +

∫

α(x)<k
α(x)dµ

≥
∫

α(x)≥k
α(x)dµ ≥ k

∫

α(x)≥k
dµ = KF(α(x) ≥ k).

�
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Corollary. If k > 0 andx,σ are respectively the mean and the standard
deviation of a random real x, then

p(α(x) ≥ kσ−) ≤ 1/k2.

We merely replace k byk2σ2, α(x) by (x− x)2 in the Theorem 1.

4. Joint probabilities and independence

Suppose thatX1, X2 are two spaces of pointsx1, x2 and that a probability
measureµ is define in a Borel system of setsX in their product space
X1xX2. Then the setx1 in X1 for which the set∈ [x1 ∈ X1, x2 ∈ X2] is
measurable with respect toµ form a Borel system inX1. if we define

µ1(X1) = µ (∈ [x1 ∈ X1, x2 ∈ X2])

it follows thatµ1 is a probability measure inX1 and we defineµ2 in X2

in the same way. We callµ1(X1) simply the probability thatx1 belongs
to X1 with respect to thejoint distribution defined byµ.

Definition . If µ is the product measure ofµ1, µ2 the random variables
x1, x2 are said to be independent. Otherwise, they are dependant.

When we wish to deal at the same time with several random vari-
ables, we must know theirjoint probability distributionand this, as we
see that once, is not necessarily the same as the product probability as 77

their separate distributions. This applies in particularα(x1, x2 . . .) for
the probability distribution of the values of the function is determined
by the joint distribution of (x1, x2, . . .). In this way we can define the
sum X1+ X2 andproduct x1 · x2 of random variables, each being treated
as a functionα(x1, x2) over the product spaceX1xX2 with an assigned
joint probability distribution.

Theorem 2. If (x1, x2, ..., xn) is a random real vector then

E(x1 + x2 + ... + xn) = E(x1) + E(x2) + ... + E(xn)

whether x1, x2, . . . , xn are independent or not.(E(xi ) is the mean of xi
over the product space.)
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Proof. Let p be the joint probability distribution. Then

E
(
∑

xi

)

=

∫

Ω

(
∑

xi

)

dp (whereΩ = X1x . . . xXn)

∑

∫

Ω

xi dp=
∑

E(xi). 2

Theorem 3. If x1, x2, . . . , xn are independent random real variables
with standard deviationsσ1, σ2, . . . , σn, then the standard deviationσ
of their sum xi + x2 . . . + xnis given by

σ2 =

n
∑

i=1

σi
2

Proof. It is sufficient to prove the theorem forn = 2. Then

σ2 = E((x1 + x2 − x1 − x2)2)

= E
(

(x1 − x1)2 + (x2 − x2)2 + 2(x1 − x1)(x2x2)
)

= E((x1 − x1)2) + E((x2 − x2)2)2E((x1 − x2)(x2 − x2))

(by theorem 2)

= σ2
1 + σ

2
2 + 2

∫

X1xX2

(x1 − x1)(x2 − x2)dp

= σ2
1 + σ

2
2 + 2

∫

X1(xX2

(x1 − x1)(x2 − x2)dµ1dµ2

= σ2
1 + σ

2
2 + 2

∫

X1

(x1 − x1)dµ1

∫

X2

(x2 − x2)dµ2

by Fubini’s theorem,

= σ2
1 + σ

2
2

this is an example of more general principle. �78

Theorem 4. If α(x1, x2) is function of two independent variables x1, x2

then
∫

Ω

α(x1, x2)dp=
x

Ω

α(x1, x2)dµ1 dµ2,Ω = X1xX2.
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The proof is immediate from the definition of independence. In par-
ticulars,

Theorem 5. If x1, x2 are independent, then

E(x1, x2) = E(x1)E(x2) = x1.x2

It is not generally sufficient to know the mean or other parameters
of a function of random variables. The general problem is to find its
complete distribution. This can be difficult, but the most important case
is fairly easy.

Theorem 6. If x1, x2 are independent random real numbers, with dis-79

tribution functions F1, F2 then their sum has distribution function F(x)
defined by

F(x) = F1 ∗ F2(x) = F2 ∗ F1(x) =
∫ ∞

−∞

F1(x− u)dF2(u)

(F(x) is called the convolution of F1(x) and F2(x)).

Proof. Let

αx(x1, x2) = 1 whenx1 + x2 ≤ x

= 0 whenx1 + x2 > x

so that if we suppose thatF(x+ 0) = F(x) and putΩ = RxR, we have

F(x) =
x

Ω

αx(x1, x2)dp

=

x

Ω

αx(x1, x2)dF1(x1)dF2(x2)

=

∞
∫

−∞

dF2(x2)

∞
∫

−∞

αx(x1, x2)dF1(x1)

=

∞
∫

−∞

dF2(x2)
∫

x1+x2≤x

dF1(x1)
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=

∞
∫

−∞

F1(x− x2)dF2(x2) =

∞
∫

−∞

F1(x− u)dF2(u),

and a similar argument shows that

F(x) =
∫ ∞

−∞

F2(x− u)dF1(u).

�

It is obvious thatF(x) increases,F(−∞) = 0, F(+∞) = 1 so that80

F(x) is a distribution function. Moreover, the process can be repeated
any finite number of times and we have

Theorem 7. If x1, . . . , xn are independent, with distribution functions
F1, . . . , Fn, then the distribution function of x1 + . . . + xn is

F1∗ . . . ∗ Fn

Corollary . The convolution operator applied to two or more distribu-
tion functions (more generally, functions of bounded variation in (- co,
co)) is commutative and associative.

Theorem 8. If F1(x), F2(x) are distribution functions, and F1(x) is ab-
solutely continuous with derivative f1(x) then F(x) is absolutely contin-
uous and

f (x) = F′(x) =

∞
∫

−∞

f1(x− u)dF2(u)p.p

If both F1(x) and F2(x) are absolutely continuous, then

f (x) =
∫ ∞

−∞
f1(x− u) f2(u)du p.p

Proof. We write

F(x) =

∞
∫

−∞

F1(x− u)dF2(u) =

∞
∫

−∞

dF2(u)

x−u
∫

−∞

f1(t)dt
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by the fundamental theorem of of calculus

=

∞
∫

−∞

dF2(u)

x
∫

−∞

f1(t − u)dt

=

x
∫

−∞

dt

∞
∫

−∞

f1(t − u)dF2(u)

and so

f (x) = F′(x) =

∞
∫

−∞

f1(x− u)dF2(u)p.p

again by the fundamental theorem of the calculus. The secondpart 81

follows from Theorem 45, Chapter I,
We shall need the following general theorem on convolutions. �

Theorem 9. Suppose that F1(x), F2(x) are distribution functions and
thatα(x) is bounded and is either continuous or is the limit of continuous
functions. Then

∞
∫

−∞

α(x+ y)dF2(x) is B - measurable as a

function of y and

∞
∫

−∞

dF1(y)

∞
∫

−∞

α(x+ y)dF2(x) =

∞
∫

−∞

α(x)dF(x)

where
F(x) = F1 ∗ F2(x)

Proof. We may suppose thatα(x) ≥ 0. If we consider first the case in
whichα(x) = 1 f ora ≤ x ≤ b andα(x) = 0 elsewhere,

∞
∫

−∞

α(x+ y)dF2(x) = F2(b− y− 0)− F2(a− y− 0),
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∞
∫

−∞

dF1(y)

∞
∫

−∞

α(x+ y)dF2(x) =

∞
∫

−∞

(F2(b− y− 0))− F2(a− y− 0)dF1(y)

= F(b− 0)− F(a− 0)

=

∫ ∞

−∞
α(x)dF(x),

and the theorem is true for functionα(x) of this type.82

Since an open set is the union of a countable number of intervals a
≤ x < b, the theorem is true also for functionsα(x) constant in each
interval of an open set and 0 elsewhere. The extension to continuous
functionα(x) and their limits is immediate. �

5. Characteristic Functions

A basic tool in modern probability theory is the notion of thecharacter-
istic functionϕ(t) of a distribution functionF(x).

It is defined by

ϕ(t) =
∫ ∞

−∞
eitxdF(x)

Since| eitx |= 1, the integral converges absolutely and definesϕ (t)
for all real t.

Theorem 10. | ϕ(t) |≤ 1, ϕ(0) = 1, ϕ(−t) = ϕ(t) andϕ(t) is uniformly
continuous for all t.

Proof.

| ϕ(t) | =|
∞

∫

−∞

eitxdF(x) |≤
∞

∫

−∞

| eitx | dF(x)

=

∞
∫

−∞

dF(x) = 1.

ϕ(0) =

∞
∫

−∞

dF(x) = 1.
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ϕ(−t) =

∞
∫

−∞

e-itxdF(x) =

∞
∫

−∞

eitxdF(x) = ϕ(t)

sinceF(x) is real. � 83

If h , 0,

ϕ(t + h) − ϕ(t) =

∞
∫

−∞

eitx(eixh − 1)dF(x),

| ϕ(t + h) − ϕ(t) | ≤
∞

∫

−∞

| eixh − 1 | dF(x) = o(1) as h→ 0

by Lebesgue’s theorem, since| eitx − 1 |≤ 2.

Theorem 11. If ϕ1(t), ϕ2(t) are the characteristic functions of F1(x),
F2(x) respectively, thenϕ1(t). ϕ2(t) is the characteristic function of F1 ∗
F2(x).

Proof.

ϕ1(t).ϕ2(t) =

∞
∫

−∞

eithdF1(y).

∞
∫

−∞

eitxdF2(x)

=

∞
∫

−∞

dF1(y)

∞
∫

−∞

eit(x+y)dF2(x)

=

∞
∫

−∞

dF1(y)

∞
∫

−∞

eitxdF2(x− y)

=

∞
∫

−∞

eitxdF(x)

whereF(x) = F1 ∗ F2(x)m by Theorem 9. �
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As an immediate corollary of this and theorem 7, we have

Theorem 12. If x1, x2, . . . , xn are independent random real variables
with characteristic functionϕ1(t), ϕ2(t), . . . , ϕn(t) then the characteristic84

function of x1 + x2 + · · · + xn is ϕ1(t), ϕ2(t), · · · , ϕn(t).

Theorem 13. Suppose that F1(x), F2(x) are distribution functions with
characteristic functionsϕ1(t), ϕ2(t).

Then
∞

∫

−∞

ϕ1(t + u)dF2(u) =

∞
∫

−∞

eitxϕ2(x)dF1(x)

Proof.

∞
∫

−∞

eitxϕ2(x)dF1(x) =

∞
∫

−∞

eitxdF1(x)

∞
∫

−∞

eixudF2(u)

=

∞
∫

−∞

dF1(x)

∞
∫

−∞

eix(t+u)dF2(u)

=

∞
∫

−∞

dF2(u)

∞
∫

−∞

eix(t+u)dF1(x)

=

∞
∫

−∞

ϕ1(t + u)dF2(u)

�

Theorem 14(Inversion Formula). If

ϕ(t) =

∞
∫

−∞

eitxdF(x),

∞
∫

−∞

| dF(x) |< ∞

then

(i) F(a+h)−F(a−h) = lim
A→∞

1
π

A
∫

−A

sin ht
t e−iatϕ(t)dt if F(x) is continuous

at a±h.
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(ii)
a+H
∫

a
F(x)dx−

a
∫

a−H

F(x)dx = 1
π

∞
∫

−∞

1−cosHt
t2 e−iatϕ(t)dt.

85

Corollary . The expression of a functionϕ(t) as an absolutely conver-
gent Fourier - Stieltjes integral in unique. In particular,a distribution
function is defined uniquely by its characteristic function.

Proof.

1
π

A
∫

−A

·sin ht
t

e−iat ϕ(t)dt =
1
π

A
∫

−A

sin ht
t

e−iatdt

∞
∫

−∞

eitxdF(x)

=
1
π

∞
∫

−∞

dF(x)

A
∫

−A

sin ht
t

eit(X−a)dt

=
2
π

∫ ∞

−∞
dF(x)

A
∫

o

sin ht cos((x− a)t)
t

dt

But

=
2
π

∞
∫

0

sin ht cos(x− a)t
t

dt =
1
π

∞
∫

0

sin(x− a+ h)t
t

dt

− 1
π

A
∫

0

sin(x− a− h)t
t

dt

=
1
π

A(x−a+h)
∫

0

sint
t

dt =
1
π

A(x−a+h)
∫

0

sint
t

dt − 1
π

A(x−a+h)
∫

A(x−ah)

sint
t

dt

and 86

1
π

∫ T

0

sint
t

dt→ 1
2
,
1
π

∫ 0

−T

sint
t

dt→ 1
2

asT → ∞.
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It follows that

A lim
→∞

1
π

∫ A(x−a+h)

A(x−a−h)

sint
t

dt =



























0 if x > a+ h

1 if a− h < x < a+ h

0 if x < a− h

and since this integral is bounded, it follows from the Lebesgue conver-
gence theorem that

A lim
→∞

1
π

∫ A

−A

sin ht
t

e−iatϕ(t)dt

=

∫ a+h

a−h
dF(x) = F(a+ h) − F(a− h)

provided thatF(x) is continuous at a±h. �

Since the integral on the left is bounded in| h |≤ H, we can apply
Lebesgue’s theorem to its integral with respect toh over | h |≤ H, and
(ii) follows.

6. Sequences and limits of distribution and charac-
teristic functions

Theorem 15. If ϕ(t), ϕn(t) are the characteristic functions of distribu-
tion functions F(x) and Fn(x), and if Fn(x) → F(x) at every point of
continuity of F(x), thenϕn(t)→ ϕ(t) uniformly in any finite interval.

Proof. Let ∈> 0 and chooseX, N (∈) so that±X are points of continuity87

of F(x) while
(∫ −X

−∞
+

∫ ∞

X

)

dF(x) <∈ /2,
(∫ −X

−∞
+

∫ ∞

X
dFn(X)

)

<∈ /2 for n ≥ N.

This is possible since the first inequality is clearly satisfied for large
X and

(∫ −X

−∞
+

∫ ∞

X

)

dF(X) = Fn(−X − 0)+ 1− Fn(X + 0).
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SinceFn is a distribution function and asn→ ∞ this

→ F(−X) + 1− F(X) =

(∫ −X

−∞
+

∫ ∞

X

)

dF(X) <∈ /2

SinceF(x) is continuous at± X.
Then

| ϕn(t) − ϕ(t) | ≤∈ + |
∫ X

−X
eitxd(Fn(X) − F(X)) |

=∈ +
∣

∣

∣

∣

∣

∫ X

−X

[

eitx(Fn(x) − F(x))
]

−
∫ X

−X
iteitx(Fn(x) − F(x))dx

∣

∣

∣

∣

∣

≤∈ + | Fn(X − 0)− F(X − 0) | + | Fn(−X + 0)− F(−X + 0) |

+ | t |
∫ X

−X
| Fn(x) − F(x) | dx≤∈ + 0(1) asn→ ∞

uniformly in any finite interval of values t, by Lebesgue’s theorem. �

The converse theorem is much deeper.

Theorem 16. If ϕn(t) is the characteristic function of the distribution88

function Fn(x) for n = 1, 2, . . . andϕn(t) → ϕ(t) for all t, whereϕ(t) is
continuous at 0, thenϕ(t) is continuous at 0, thenϕ is the characteristic
function of a distribution function F(x) and

Fn(x)→ F(x)

at every continuity point of F(x).

We need the following

Lemma 1. An infinite sequence of distribution functions Fn(x) contains
a subsequence Fnk(x) tending to a non-decreasing limit function F(x) at
every continuity point of F(x). Also

0 ≤ F(x) ≤ 1.

(but F(x) is not necessarily a distribution function).
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Proof. Let
{

rm
}

be the set of rational numbers arranged in a sequence.
Then the numbersFn(r1) are bounded and we can select a sequence
n11, n12, . . . so thatFn1ν(r1) tends to a limit asγ → ∞ which we denote
by F(r1). The sequence (n1ν) then contains a subsequence (n2ν) so that
Fn2ν (r2) → F(r2) and we define by induction sequences (nkν), (nk+1,ν)
being a subsequence of (nkν) so that

Fnkν(rk)→ F(rk)asν→ ∞

If we then definenk = nkk, it follows that

Fnk(rm)→ F(rm) for all m.

Also, F(x) is non-decreasing on the rationals and it can be defined else-89

where to be right continuous and non-decreasing on the reals. The con-
clusion follows sinceF(x), Fnk(x) are non-decreasing and everyx is a
limit of rationals. �

Proof of the theorem: We use the lemma to define a bounded non-
decreasing functionF(x) and a sequence (nk) so thatFnk(x) → F(x) at
every continuity point ofF(x).

If we put a = 0 in Theorem 14 (ii), we have

∫ H

0
Fnk(x)dx−

∫ ◦

−H
Fnk(x)dx=

1
π

∞
∫

−∞

1− cosHt

t2
ϕnk(t)dt

and if we letk → ∞ and note tat1−cosHt
t2 εL(−∞,∞) and thatFnk ,

ϕnk(t)are bounded, we get

1
H

∫ H

◦
F(x)dx− 1

H

∫ ◦

−H
F(x)dx=

1
πH

∞
∫

−∞

1− cosHt

t2
ϕ(t)dt

=
1
π

∞
∫

−∞

1− cost

t2
ϕ(

t
H

)dt.

Now, sinceϕ(t) is bounded in (−∞,∞) and continuous at 0, the ex-
pression on the right tends toϕ(0) = lim

k→∞
ϕnk(0) = 1 as



7.. Examples of characteristic functions 79

H → ∞ . Since F(t) is non-decreasing, it easy to show that the left
hand side tends toF(∞) − F(−∞) and hence we have

F(∞) − F(−∞) = 1,

andF(x) is a distribution function. It now follows from Theorem 15 that
ϕ is the characteristic function ofF(x).

Finally, unlessFn(x) → F(x) through the entire sequence we can90

define another subsequence (n∗k) so thatF∗nk
(x) → F∗(x) and the same

argument shows thatF∗(x) is a distribution function and that

ϕ(t) =

∞
∫

−∞

eitxdF∗(x)

By the corollary to Theorem 13,F(x) = F∗(x), and it follows there-
fore thatFn(x)→ F(x) at every continuity point ofF(x).

7. Examples of characteristic functions

Theorem 17. (i) The binomial distribution pν = (n
ν)p

νpn−ν, ν = 0, 1,
2, . . . has the distribution function

F(x) =
∑

ν≤x

pν

and the characteristic function

ϕ(t) = (q+ peit )n

(ii) The Poisson distribution pν = e−c cν
ν! , ν = 0, 1, 2, . . . has distribu-

tion function
F(x) =

∑

ν≤x

pν

and characteristic function

ϕ(t) = ec(eit−1)
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(iii) The rectangular distribution F′(x) = 1
b−a for a < x < b, 0 for

x < a, x> b, 0 for x< a, x> b, has the characteristic function

ϕ(t) =
eitb − eita

(b− a)it

(iv) The normal distribution F′(x) = 1
σ
√

2π
e−x2/2σ2

has characteristic91

function
ϕ(t) = e−t2σ2/2

(v) The singular distribution

F(x) = D(x− a) = 0, x < a

= 1, x ≥ a

has characteristic function

ϕ(t) = eita

If a = 0 , ϕ(t) = 1.

These are all trivial except (iv) which involves a simple contour in-
tegration.

As a corollary we have the

Theorem 18. (i) The sum of independent variables with binomial dis-
tributions (p, n1), (p, n2) is binomial with parameters(p, n1 + n2).

(ii) The sum of independent variables with Poisson distributions c1, c2

is Poisson and has parameter c1 + c2.

(iii) The sum of independent variables with normal distributions(x1, δ)
(x2, δ2) has normal distribution(x1 + x2, σ), σ2 = σ2

1 + σ
2
2.

We have also the following trivial formal result.

Theorem 19. If x is a random real number with characteristic function
ϕ(t), distribution function F(x), and if A, B are constants, then Ax+B has
distribution function F( X−B

A ) if A > O and1− F( X−B
A + 0) if A < 0, and92

characteristic function eitBϕ(At). In particular−x has the characteristic
functionϕ(−t) = ϕ(t).
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Corollary. If ϕ(t) is a characteristic function, so is

| ϕ(t) |2= ϕ(t)ϕ(−t).

The converse of Theorem 18, (ii) and (iii) is deeper. We sate it with-
out proof. For the proof reference may be made to “Probability Theory”
by M. Loose, pages 213-14 and 272-274.

Theorem 20. If the sum of two independent real variables is normal
(Poisson), then so is each variable separately.

8. Conditional probabilities

If x is a random variable inX andC is a subset ofX with positive mea-
sure, we define

P(X/C) = µ(XC)/µ(C)

to be theconditional probability that x lies in X, subject to the condition
that x belongs to C. It is clear thatP(X/C) is probability measure over
all measurableX.

Theorem 21 (Bayes’ Theorem). Suppose thatX =
J
∑

j=1
c j , µ(c j) > 0.

Then

P(cJ/X) =
P(X/C j)µ(C j)
J
∑

j=1
P(X/Ci)µ(Ci)

The proof follows at once from the definition. In applications, the
sets Cj are regarded as hypotheses, the numbersµ(c j) being called the
prior probabilities. The numbers P(C j/X) are called their post proba-
bilities or likelihoods under the observation of the event X. 93

Example 3.Two boxesA, B are offered at random with (prior) probabil-
ities 1/3, 2/3. A contains 8 white counters, 12 red counters, B contains
4 white and 4 red counters.A counter is taken at random from a box
offered. If it turns out to be white, what is the likelihood that the box
offered wasA ?
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If we denote the event of taking a red (white) counter byR(W)
the spaceX under consideration has four points (A,R), (A,W), (B,R),
(B,W). The required likelihood is.

P(A/W) =
P(W/A) µ (A)

P(W/A) µ (A) + P(W/B)µ(B)

Here
P(W/A) = probability of taking white counter from A

= 8/20= 2/5

P(W/B) = 4/8 = 1/2
Hence

P(A/W) =
2
5

1
3

2
5

1
3 +

1
2

2
3

= 2/7.

Thus the likelihood that the box offered was A is 2/7.
Conditional probabilities arise in a natural way if we thinkof X as a

product spaceX1xX2 in which a measureµ(not generally a product mea-
sure) is defined. Then if we write (P(X2/X1) as the conditional proba-
bility that x2 ∈ X2 with respect to the conditionx1 ∈ X1, we have

P(X2/X1) = µ(X1 x X2)/µ1(X1)

where µ1(X1) = µ(X1 x X2).

94

The setX1, may reduce to a single pointx1, and the definition re-
mains valid provided thatµ1(x1) > 0. But usuallyµ1(x1) = 0, but
the conditional probability with respect to a single point is not difficult
to define. It follows from the Randon-Nikodym theorem that for fixed
X2, µ(X1xX2) has a Radon derivative which we can writeR(x1,X2) with
the property that

µ(X1 x X2) =
∫

x1

R(x1,X2)dµ1

for all measurableX1. For eachX2,R(x1,X2) is defined for almost all
x1 and plainlyR(x1,X2) = 1 p.p. But unfortunately,since the number
of measurable setsX2 is not generally countable, the union of all the
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exceptional sets may not be a set of measure zero. This means that we
cannot assume that, for almost allx1,R(x1,X2) is a measure defined on
all measurable setsX2. If how ever, it is , we write itP(X1/x1) and call
it that conditional probability thatx2EX2 subject to the condition thatx1

has a specified value.
Suppose now that (x1, x2) is a random variable in the plane with

probability densityf (x1, x2)(i.e f(x1, x2) ≥ 0 and
s

f (x1, x2)dx1dx2 =

1). Then we can defineconditional probability densitiesas follows:

P(x2/x1) =
f (x1, x2)
f1(x1)

f1(x1) =

∞
∫

−∞

f (x1, x2)dx2

provided thatf1(x1) > 0. 95

Theconditional expectationof x2 for a fixed value ofx1 is

m(x1) =

∞
∫

−∞

x2P(x2/x1)dx2 =

∞
∫

−∞
x2 f (x1, x2)dx2

∞
∫

−∞
f (x1, x2)dx2

The conditional standard deviation ofx2 for the valuex1 isσ(x1) where

σ2(x1) =

∞
∫

−∞

(x2 −m(x1))2P(x2/x1)dx2

∞
∫

−∞
(x2 −m(x1))2 f (x1, x2)dx2

∞
∫

−∞
f (x1, x2)dx2

The curvex2 = m(x1) is called theregression curve of x2 on x1. It
has following minimal property it gives the least value of

E(x2 − g(x1))2) =
x

RXR

(x2 − g(x1))2 f (x1, x1)dx1dx2
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for all possible curvesx2 = g(x1). If the curvesx2 = g(x1) are restricted
to specified families, the function which minimizesE in that family.
For example, the linear regression is the linex2 = Ax1 + B for which 96

E((x2 − Ax1 − B)2) is least, thenth degree polynomial regression is the
polynomial curve of degreen for which the correspondingE is least.

9. Sequences of Random Variables

We can define limit processes in connection with sequences ofrandom
variables in several different ways. The simplest is the convergence of
the distribution or characteristic functions,Fn(x) or φn(t), of random
real numbersxn to a limiting distribution or characteristic functionF(x)
or φ(t). As in Theorem 15, it is sufficient to have lim

n−→∞
Fn(x) = F(x)

at every continuity point ofF(x). Note that this does not involve any
idea of a limiting random variable. If we wish to introduce this idea, we
must remember that it is necessary, when making probabilitystatements
about two or more random variables, to specify their joint probability
distribution in their product space.

There are two important definitions based on this idea. We saythat
a sequence of random variablesxn converges in probabilityto a limit
random variablex, and write

xn −→ x in prob.

if lim
n−→∞

P(|xn − x| > ǫ) = 0

for everyǫ > 0, P being thejoint probability in the product space ofxn

andx. In particular, ifC is a constant,xn −→ C in prob, if

lim
n→∞

E(| xn − x |α) = 0.

97

The most important case is that in whichα = 2. The following result
is got almost immediately from the definition.

Theorem 22. If Fn(X) is the distribution function of xn the necessary
and sufficient condition that xn→ 0 in prob. is that

Fn(x)→ D(x)
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where D(x) = 0, x < 0;= 1, x ≥ 0 is the singular distribution. The
necessary and sufficient condition that xn → 0 in mean of orderα is
that

lim
n→∞

∞
∫

−∞

| x |α dFn(x) = 0.

Theorem 23. (i) If xn→ x in prob., then Fn(x)→ F(x).

(ii) If xn → x in mean, then xn → x in prob. and Fn(x) → F(x). As
corollaries we have

Theorem 24(Tchebycheff). If xn has meanxn and standard deviation
σn then xn − xn→ 0 in prob. ifσn→ 0.

Theorem 25(Bernoulli: Weak law of large numbers). If ξ1, ξ2, ..... are
independent random variables with meansξ1, ξ2, . . . and standard devi-
ationsσ1, σ2, .. and if

xn =
1
n

n
∑

ν=1

ξνmn =
1
n

n
∑

ν=1

ξν

then Xn −mn→ 0 in prob. if
n

∑

ν=1

σ2
ν = 0(n2)

98

Theorem 26(Khintchine). If ξν are independent random variables with
the same distribution function and finite mean m, then

xn =
1
n

n
∑

ν=1

ξ → m in prob.

(Note that this cannot be deduced from Theorem 25 since we do not
assume thatξν has finite standard deviation.)

Proof. Let φ(t) be the characteristic function ofξν so that the character-
istic function ofxn is (φ(t/n))n. If

φ(t) =

∞
∫

−∞

eitxdF(x),
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we have φ(t) − 1−mit =

∞
∫

−∞

(

eitx − 1− itx
)

dF(x).

Now
∣

∣

∣

∣

∣

eitx−1−itx
t

∣

∣

∣

∣

∣

is majorised by a multiple of| x | and→ 0 ast → 0

for eachx.
Hence, by Lebesgue’s theorem,

φ(t) − 1−mit = σ(t) ast → 0.

Thus

(φ(t/n))n =

[

1+
mit
n
+ 0

(

1
n

)]n

→ emitasn→ ∞,

and sinceemit is the characteristic function ofD(x − m) the conclusion
follows easily. �

In these definitions we need only the joint distribution ofx and each99

xN separately. In practice, of course, we may know the joint distribu-
tions of some of thexn s (they may be independent, for example), but
this is not necessary.

On the other hand, when we come to consider the notion of a random
sequence, the appropriate probability space is the infiniteproduct space
of all the separate variables. This is a deeper concept than those we have
used till now and we shall treat it later as a special case of the theory of
random functions.

10. The Central Limit Problem

We suppose that
xn =

∑

ν

xnν

is a finite sum of independent random real variablesxnν and thatFnν(x),
Fnν(x), φnν (t), φnν(t) are the associated distribution and characteristic
functions. The general central limit problem is to find conditions un-
der whichFn(x) tends to some limiting functionF(x) when each of the
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componentsxnν is small (in a sense to be defined later) in relation to
xn. Without the latter condition, there is no general result ofthis kind.
Theorems 25 and 26 show thatF(x) may take the special formD(x) and
the next two theorems show that the Poisson and normal forms are also
admissible. The general problem includes that of finding themost gen-
eral class of such functions. The problem goes back to Bernoulli and
Poisson and was solved (in the case ofR) by Khintchine and P. Lévy.

Theorem 27(Poisson). The binomial distribution P(x = ν) = (n
ν)p

νqn−ν, 100

p = − c
n, q = 1 − p, c constant, tends to the Poisson distribution with

mean c as n→ ∞.

Proof.

ϕn(t) = (q+ peit )n

=
[1 + c(eit − 1)]n

n

→ ec(eit−1)

which, after Theorem 16, is sufficient. �

Theorem 28(De Moivre). If ξ1 , ξ2 · · · are independent random vari-
ables with the same distribution, having mean 0 and finite standard de-
viationσ, then the distribution of

xn =
ξ1 + ξ2 +··· +ξn√

n

tends to the normal distribution (0,σ2).
This is proved easily using the method of Theorem 26.

The general theory is based on a formula due to Khintchine and
Levy, which generalizes an earlier one for distributions offinite variance
due to Kolmogoroff.

We say thatψ(t) is aK − L function with representation (a,G) if

ψ(t) = iat +

∞
∫

−∞

[

eitx − 1− itx

1+ x2

] 1+ x2

x2
dG(x)
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wherea is a real number andG(x) is bounded and non-decreasing in101

(−∞ ,∞). The value of the integrand atx = 0 is defined to be -12t2 and
it is then continuous and bounded in−∞ < x < ∞ for each fixedt.

Theorem 29. A K − L functionψ(t) is bounded in every finite interval
and defines a, G uniquely.

Proof. The first part is obvious.
If we define

θ(t) = ψ(t) − 1
2

∫ 1

−1
ψ(t + u)du=

1
2

∫ 1

−1
(ψ(t) − ψ(t + u))du,

we have

θ(t) =
1
2

∫ 1

−1
du

∞
∫

−∞

(

eitx(1− eiux)
iux

1+ x2

) 1+ x2

x2
dG(x)

=

∞
∫

−∞

eitx
(

1− Sinx
x

)

1+ x2

x2
dG(x) =

∞
∫

−∞

eitxdT(x)

where

T(x) =

x
∫

−∞

[

1− sin y
y

]

1+ y2

y2
dG(y),

G(x) =

x
∫

−∞

y2

(1− siny/y)(1 + y2)
dT(x)

since
[

1− siny
y

]

1+y2

y2 and its reciprocal are bounded. �

This proves the theorem sinceG(x) is defined uniquely byT(x)
which is defined uniquelyψ(t) by Theorem 14 and this in turn is de-
fined uniquely byψ(t).

The next theorem gives analogues of theorems 15 and 16. We shall102

write Gn → G if Gn(x) andG(x) are bounded and increasing andGn(x)
G(x) at every continuity point ofG(x) and at±∞
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Theorem 30. If ψn(t) has K− L representation(an,Gn) for each n and
if an → a, Gn → G where G(x) is non-decreasing and bounded, then
ψn(t)→ ψ(t) uniformly in any finite interval.

Conversely, ifψn(t)→ ψ(t) for all t andψ(t) is continuous at 0, then
ψ(t) has a K− L representation(a,G) and an→ a, Gn→ G.

Proof. The first part is proved easily using the method of Theorem 15.
For the second part, defineθn(t), Tn(t) as in the last theorem. Then, since

θn(t)→ θ(t) = ψ(t)− 1
2

∫ 1

−1
ψ(t+u)du, which is continuous at 0, it follows

from Theorem 16 that there is a non-decreasing bounded function T(x)
such thatTn → T . ThenGn → G whereG(x) is defined as in Theorem
29, and is bounded, andψ(t) plainly hasK − L representation (a,G)
wherean → a. �

Definition. We say that the random variables xn1, xn2, . . . are uniformly
asymptotically negligible (u.a.n.) if, for every∈> 0,

sup
ν

∫

|x|≥∈

dFn(x)→ 0 as n→ ∞.

The condition that the variables are u.a.n implies that the variables 103

are “centered” in the sense that their values are concentrated near 0.
In the general case of u.a.n variables by considering the newvariables
xnν − Cnν . Thus, we need only consider the u.a.n case, since theorems
for this case can be extended to the u.a.n. case by trivial changes. We
prove an elementary result about u.a.n. variables first.

Theorem 31. The conditions

(i) xnν are u.a.n.

(ii) sup
ν

∞
∫

−∞

x2

1+x2 dFnν
(

x+ anν
)

→ 0 for every set of numbers
(

a−∞nν

)

for

which sup
ν

∣

∣

∣anν

∣

∣

∣ → 0 as n→ ∞ are equivalent and each implies

that

(iii) sup
ν

| ϕnν(t)−1 |→ 0as n→ ∞, uniformly in every finite t−interval.
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Proof. The equivalence of (i) and (ii) follows from the inequalities

∞
∫

−∞

x2

1+ x2
dFnν(x+ anν ) ≤ (ǫ+ | anν |2) +

∫

|x|≥ǫ

dFnν (x)

∫

|x|≥ǫ

dFnν (x) ≤ 1+ ǫ2

ǫ2

∫

|x|≥ǫ

x2

1+ x2
dFnν (x).

For (iii) we use the inequality| 1−eitx |≤| xt | i f | xt |≤ 1 and deduce
that

| ϕnν(t) − 1 |=|
∞

∫

−∞

(eitx − 1)dFnν (x) |≤ ǫ | t | +2
∫

|x|≥ǫ

dFnν (x).

�

Theorem 32(The Central Limit Theorem). Suppose that xnν are inde-104

pendent u.a.n. variables and that Fn→ F. Then.

(i) ψ(t) = logϕ (t) is a K− L function

(ii) If ψ(t) has representation(a,G) and the real numbers an satisfy

∞
∫

−∞

x

1+ x2
dFnν (x+ anν ) = 0,

and are bounded uniformly inν then

Gn(x) =

x
∫

−∞

y2

1+ y2
dFnν (y+ anν )→ G(x),

an =
∑

ν

anν → a.

Conversely, if the conditions (i) and (ii) hold, then Fn→ F.
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Proof. It follows from the definition of theanν that

e−itanνφnν (t) =

∞
∫

−∞

eitxdFn(x+ anν) = 1+ γnν(t)

where γ√nν(t) =

∞
∫

−∞

(

eitx − 1− itx

1+ x2

)

dF√nν(x+ a√nν ),

and
α√nν(t) = −R(γ√nν(t)) ≥ 0 (1)

It follow easily from the u.a.n. condition and the definitionof anν

that a√nν → 0 uniformly in ν as n → ∞ and from Theorem 31 that105

γnν(t)→ 0 uniformly in ν for | t |≤ H whereH > 0 is fixed. Hence

logϕnν(t) = itanν + γnν (t) + 0(| γnν(t) |2),

the 0 being uniform inν and , by addition,

logϕn(t) = it an +
∑

ν

γnν (t) + 0[
∑

| γnν (t) |2], (2)

uniformly in | t |≤ H.
Now let

A√nν =
1
2h

∫ H

−H
∝nν (t)dt

=

∞
∫

−∞

[

1− sinHx
Hx

]

dFnν (x+ anν )

Using the inequality

| eitx − 1− itx

1+ x2
|≤ C(H)

[

1− sinHx
Hx

]

for | t |≤ H, we have
| γnν (t) |≤ CAnν ,
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and therefore , taking real parts in (2) and using the fact that sup
ν
|

γnν (t) |→ 0 uniformly in | t |≤ H,

∑

ν

αnν (t) ≤ − log | ϕn(t) | + ◦














∑

ν

Anν















This again holds uniformly in| t |≤ H, and after integration we get

∑

ν

≥ − 1
2H

∫ H

−H
log | ϕn(t) | dt + ◦

(
∑

Anν

)

from which it follows that
∑

ν Anν = 0(1) and that106

logϕn(t) = i t an +
∑

ν

γnν(t) + 0(1), (3)

uniformly for |t| ≤ H, and the before, sinceH is at our disposal, for each
real t.

The first part of the conclusion follows from Theorem 30.
For the converse, our hypothesis implies thatGn(∞)→ G(∞) and if

we use the inequality

∣

∣

∣

∣

∣

eitx − 1− itx

1+ x2

∣

∣

∣

∣

∣

≤ C(t)
x2

1+ x2
,

it follows from (1) that
∑

ν

|γnν (t)| ≤ C(t)Gn(∞) = 0(1)

uniformly in γ. But γν (t) → 0 uniformly inγ for any fixed t so that (2)
and (3) remain valid and

logϕn(t)→ ita +

∞
∫

−∞

(eitx − 1− itx

1+ x2
)
1+ x2

x2
dG(x)

= ψ(t) log ϕ(t, )

sinceGn→ G. Henceϕn(t)→ ϕ(t) as we require. �
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Notes on Theorem 32.

(a) The first part of the theorem shows that the admissible limit func-
tions for sums of u.a.n variables are those for which logϕ(t) is a
K − L function.

(b) The numbersanν defined in stating the theorem always exist when107

n is large since
∞
∫

−∞

x
1+x2 dFnν (x + ξ) is continuous inξ and takes

positive and negative values atξ = ∓1 when n is large. They can
be regarded as extra correcting terms required to complete the
centralization of the variables. The u.a n. condition centralizes
each of them separately, but this is not quite enough.

(c) The definition ofanν is not the only possible one. It is easy to see
that the proof goes through with trivial changes provided that the
anν are defined so thatanν → 0 and

∞
∫

−∞

x

1+ x2
dFnν (x+ anν ) = 0(

∞
∫

−∞

x2

1+ x2
dFnν (x+ anν ))

uniformly in ν asn → ∞, and this is easy to verify if we define
anν by

anν =

τ
∫

−τ

x dFn(x)

for some fixedτ > 0. This is the definition used by Gnedenko and
Lévy.

WE can deduce immediately the following special cases.

Theorem 33(Law of large numbers). In order that Fn should tend to the
singular distribution with F(x) = D(x− a) it is necessary and sufficient
that

∑

ν

∞
∫

−∞

y2

1+ y2
d Fnν(y+ anν )→ 0,

∑

ν

anν → a

(Hereψ(t) = ita, G(x) = 0).
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Theorem 34. In order that Fn should tend to the Poisson distribution108

with parameter c, it is necessary and sufficient that

∑

ν

anν →
1
2

c and
∑

ν

x
∫

−∞

y2

1+ y2
d Fnν(y+ an)→ c

2
D(x− 1)

(Hereψ(t) = c(eit − 1), a = 1
2c, G(x) = c

2 D(x− 1))

Theorem 35. In order that Fn should tend to the normal(α, σ2) distri-
bution, it is necessary and sufficient that

∑

ν

anν → α and

x
∫

−∞

y2

1+ y2
dFnν(y+ anν ) → σ2D(x).

(Hereψ(t) = i tα − σ2t2
2 , a = α ,G(x) = σ2D(x). From this and the

note (c) after Theorem 33, it is easy to deduce

Theorem 36 (Liapounoff). If xnν has mean o and finite varianceσ2
nν

with
∑

ν σ
2
nν = 1 a necessary and sufficient condition that xn should tend

to normal(0, 1) distribution is that for every∈> 0,

∑

ν

∫

|x|≥∈

x2 d Fnν (x)→ 0 as n→ ∞.

The distributions for which logϕ(t) is a K− L function can be char-
acterized by another property. We say that a distribution isinfinitely
divisible (i.d.) if, for every n we can write

φ(t) = (φn(t))n

whereφn(t) is a characteristic function. This means that it is the dis-109

tribution of the sum of n independent random variables with the same
distribution.

Theorem 37. A distribution is i.d. if and only iflogφ(t) is a K − L
function.

This follows at once from Theorem 32. That the condition thata dis-
tribution be i.d. is equivalent to a lighter one is shown by the following
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Corollary 1. φ(t) is i.d. if there is a sequence of decompositions (not
necessarily with identically distributed components) in which the terms
are u.a.n.

Corollary 2. If a distribution is i.d.,φ(t) , 0.

Theorem 38. A distribution is i.d. if and only if it is the limit of finite
compositions of u.a.n. Poisson distributions.

Proof. The result is trivial in one direction. In the other, we observe that
the integral

∞
∫

−∞

(

eitx − 1− itx

1+ x2

) 1+ x2

x2
dG(x)

can be interpreted as a Riemann - Stieltjes integral and is the limit of
finite sums of the type

∑

j

b j

















eitξ j − 1−
itξ j

1+ ξ2
j

















each term of which corresponds to a Poisson distribution. � 110

11. Cumulative sums

Cumulative sums

xn =
ξ1 + ξ2 + . . . + ξn

n
in which ξ1, ξ2, . . . ξn are independent and have distribution functions
B1(x), B2(x), . . . , Bn(x) and characteristic functionsβ, (t), β(t), . . . , βn(t)
are included in the more general sums considered in the central limit
theorem. It follows that the limiting distribution ofxn is i.d. and ifϕ(t) is
the limit of the characteristic functionsφn(t) of xn, then logϕ(t) is aK−L
function function. These limits form, however, only a proper subclass
of the K − L class and the problem of characterizing this subclass was
proposed by Khint chine and solved by Lévy. We denote the class byL.

As in the general case, it is natural to assume always that thecom-
ponentsξν

λn
are u.a.n.
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Theorem 39. If ξν/λn are u. a. n. andφn(t) → φ(t) whereφ(t) is
non-singular, thenλn→ ∞, λn+1

λn
→ 1.

Proof. Sinceλn > 0, eitherλn→ ∞ or (λn) contains a convergent subse-
quence (λnk) with limit λ. The u.a.n. condition implies thatβν

(

tλ
λn

)

→ 1
for everyt and therefore, by the continuity ofβν(t),

βν(t) = lim
k→∞

βν

(

tλ
λnk

)

= 1

for all t. This means that everyβν(t) is singular, and this is impossible111

asϕ(t) is not singular.
For the second part, since

λnxn

λn+ 1
=
ξ1 + ξ2 + · · · + ξn

λn+1
= xn+1 −

ξn+1

λn+1

and the last term is asymptotically negligible,λnxn
λn+1

and xn+1 have the
same limiting distributionF(x), and therefore

Fn

(

xλn+1

λn

)

→ F(x), Fn(x)→ F(x)

Now if λn+1
λn
= θn, we can choose a subsequence (θnk) which either

tends to∞ or to some limitθ ≥ 0. In the first caseFnk(xθnk)→ F(±∞) ,
F(x) for somex. In the other case

F(x) = lim
k→∞

Fnk(θnk x) = F(θx)

wheneverx andθx are continuity points ofF(x) and this is impossible
unlessθ = 1.

A characteristic functionφ(t) is calledself-decomposable(s.d) if,
for everyc in 0 < c < 1 it is possible to write

φ(t) = φ(ct)φc(t)

whereϕc(t) is a characteristic function �112

Theorem 40(P.Lévy). A functionϕ(t) belongs to L if and only if it is
self-decomposable , andϕc(t) is then i.d
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Proof. First suppose thatϕ(t) is s.d. if it has a positive real zero, it has
a smallest, 2a, since it is continuous, and so

ϕ(2a) = 0, ϕ(t) , 0 f or0 ≤ t < 2a.

Thenϕ(2ac) , 0 if 0 < c < 1, and sinceϕ(2a) = ϕ(2ac)ϕc(2a) it
follows thatϕc(2a) = 0. Hence

1 = 1− R(ϕc(2a)) =

∞
∫

−∞

(1− cos 2ax)dFc(x)

= 2

∞
∫

−∞

(1− cosax)(1+ cosax)dFc(x) ≤ 4

∞
∫

−∞

(1− cosax)dFc(x)

= 4(1− R(ϕc(a))) = 4(1− R(ϕ(a)1ϕ(ca)))

This leads to a contradiction sinceϕ(ca) → φ(a) asc → 1, and it
follows therefore thatϕ(t) , 0 for t ≥ 0 and likewise fort < 0.

If 1 ≤ V ≤ n it follows from our hypothesis that

βV(t) = ϕ v−1
v

(Vt)
ϕ(Vt)

ϕ((V − 1)t)

is a characteristic function and the decomposition

ϕ(t) = ϕn(t) =
n

∏

=1

βV(t/n)

shows thatϕ(t) is of typeL with λn = n
Conversely if we suppose thatϕ(t) is of typeL we have

ϕn(t) =
n

∏

r=1

βr(tλn)

ϕn+m(t) =
n+m
∏

v=1

βγ(t/λn+m) = ϕn(λnt/λn+m)χn,m(t),

where 113
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χn,m(t) =
n+m
∏

v=n+1

βγ(t/λn+m)

Using theorem 39, we can thosen, m(n) → ∞ so thatλn/λn+m →
c(0 < c < 1) and thenϕn+m(t) → ϕ(t). Sinceϕn(t) → ϕ(t) uniformly in
any finitet-intervalϕn(λnt/λn+m) → ϕ(ct). It follows thatχn,m(t) has a
limit φc(t) which is continuous att = 0 and is therefore a characteristic
function by theorem 16. Moreover the form ofχn,m(t) shows thatϕc(t)
is i.d.

The theorem characterizesL by a property ofϕ(t). It is also possible
to characterize it by a property ofF(x). �

Theorem 41(P.Lévy). The functionϕ(t) of L are those for whichlogϕ(t)
has a K−L representation (a,G) in which x2+1

x G
′
(x) exists and decreases

outside a countable set of points.

Proof. If we suppose thatϕ(t) is of classL and 0< c < 1 and ignore
terms of the form iat we have

logϕc(t) =

∞
∫

−∞

(

eitx − 1− itx

1+ x2

) 1+ x2

x2
dG(x)

−
∞

∫

−∞

[

eitx − 1− itc2x

c2 + x2

]

x2 + c2

x2
dG(x/c)

and the fact thatϕc(t) is i.d. by Theorem 40 implies thatQ(x) − Q(bx)114

decreases, whereb = 1/c > 1, x > 0 and

Q(x) =

∞
∫

x

y2 + 1

y2
dG(y)

If we write q(x) = Q(ex) this means thatq(k) − q(x + d) decrease
for x > 0 if d > 0. If follows thatq′(x) exists and decreases outside a
countable set (see for instance Hardy, Littlewood, Polya: Inequalities ,
P.91 together with Theorem 48 Chapter I on page 51)

Then since
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x2

x2 + 1
Q(x) − Q(x+ h)

h
≤ G(x+ h) −G(x)

h

≤ (x+ h)2

(x+ h)2 + 1
Q(x) − Q()x+ h

h

We haveG′(x) = x2

x2+1Q′(x) and x2+1
x G′(x) = xQ′(x) which also

exists and decreases outside a countable set. The same argument applies
for x < 0. The converse part is trivial.

A more special case arises if we suppose that the components are
identically distributed and the classL∗ of limits for sequences of such
cumulative sums can again be characterized by properties ofthe limits
ϕ(t) or G(x)

We say thatϕ(t) is stable, if for every positive constantb, we can
find constants a,b′ so that

ϕ(t)ϕ(bt) = eiatϕ(b
′
t)

This implies, of course, thatϕ (t) is s.d. and thatϕc has the form
eia′tϕ(c′t). �

Theorem 42 (P.Lévy). A characteristic functionϕ(t) belongs to L∗ if 115

and only if it is stable.

Proof. If ϕ(t) is stable, we have on leaving out the inessential factors of
the formeiαt, (ϕ(t))n = ϕ(λnt) for someλn > 0 and so

ϕ(t) = (ϕ(t/λn))n =

n
∏

ν=1

βν(t/λn) with βν(t) = ϕ(t),

which is enough to show thatϕ(t) belongs toL∗.
Conversely, if we suppose that a sequenceλn can be found so that

ϕn(t) = (ϕ(t/λn))n→ ϕ(t),

we writen = n1 + n2,

ϕn(t) = (ϕ(t/λn))n1(ϕ(t/λn))n2 = ϕn1(tλn1/λn)ϕn2(tλn2/λn).
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Then, if 0< c < 1, we choosen1 so thatλn1/λn → c and it follows
thatϕn1(tλn1/λn) → φ(ct) andϕn2(tλn2/λn) → ϕc(t). It is easy to show
that this implies thatϕc(t) has the formeia′′tφ(c′t).

It is possible to characterize the stable distributions in terms of log
ϕ(t) andG(x). �

Theorem 43(P.Lévy). The characteristic functionϕ(t) is stable if and
only if

logφt = iat − A | t |α (1+
iθt
t

tan
πα

2
)

0 < α < 1 or 1 < α < 2

or logϕ(t) = iat − A | t | (1+ iθt
t

2
π

log | t |)with A > 0 and− 1 ≤ θ ≤ +1.

116

Corollary. The real stable distributions are given byϕ(t) = e−A |t|α (0 <
α ≤ 2).

Proof. In the notation of Theorem 41, the stability condition implies
that, for everyd > 0, we can defined′ so that

q(x) = q(x+ d) + q(x+ d′)(x > 0).

Sinceq(x) is real, the only solutions of this difference equation, apart
from the special caseG(x) = AD(x) are given by

q(x) = A1e−αx,Q(x) = A1x−α,G′(x) =
A1x1−α

1+ x2
, x > 0

andα satisfies 1= e−αd + e−αd′ . We can use a similar argument for x<0
and we have also

q(x) = A2e−α|x|,Q(x) = A2 | x |−α,G′(x) =
A2 | x |1−α

1+ x2
, x < 0

whered, d′, α are the same. Moreover, sinceG(x) is bounded, we must
have 0< α ≤ 2, and since the caseα = 2 arises whenG(x) = AD(x) and
the distribution is normal, we can suppose that 0< α < 2. Hence
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logϕ(t) = iat + A1

∫ ∞

0

(

eitx − 1− itx

1+ x2

) dx

xα+1

+ A2

∫ 0

−∞

(

eitx − 1− itx

1+ x2

) dx

| x |α+1

The conclusion follows, ifα , 1 form the formula 117

∞
∫

0

(eitx − 1)
dx

xα+1
=| t |α e−απi/2

p(−α) if 0 < α < 1,

∞
∫

0

(

eitx − 1− itx

1+ x2

) dx

xα+1
=| t |α e−απi/2

p(−α) if 1 < α < 2

(easily proved by contour integration), Since the remaining components
itx

1+x2 or itx
1+x2 − tx merely add to the term iat. Ifα = 1, we use the formula

∞
∫

0

(

eitx − 1− itx

1+ x2

) dx

x2
= −π

2
| t | −it log | t | +ia1t,

which is easy to Verify. �

12. Random Functions

In our discussion of random functions, we shall not give proofs for all
theorems, but shall content ourselves with giving references, in many
cases.

Let Ω be the space of functionsx(t) defined on some spaceT and
taking values in a spaceX. Then we callx(t) a random function(or
process) if a probability measure is defined inΩ. We shall suppose here
thatX is the space of real numbers and thatT is the same space or some
subspace of it.

The basic problem is to prove the existence of measures inΩ with
certain properties - usually that certain assigned sets inΩ are measur-
able and have assigned measures. These sets are usually associated with 118

some natural property of the functionsx(t). It is sometimes convenient
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to denote the function (which is a pointΩ) by ω and the value of the
function att by x(t, ω)..

A basic theorem is

Theorem 44 (Kolomogoroff). Suppose that for every finite set of dis-
tinct real numbers t1, t2, . . . , tn we have a joint distribution function-
Ft1,t2,...,tn(ξ1, ξ2, . . . , ξn) in Rn and that these distribution functions are
consistent in the sense that their values are unchanged by like permuta-
tions of(ti) and(ξi) and, if n> m,

Ft1,t2,...,tn(ξ1, ξ2, . . . , ξm,∞, . . . ,∞) = Ft1,t2,...,tm(ξ1, . . . , ξm).

Then a probability measure can be defined inΩ in such a way that

Prob(x(ti ) ≤ ξi , i = 1, 2, . . . , n) = Ft1,t2,...,tn(ξ1, . . . , ξn). (1)

Proof. The set of functions defined by a finite number of conditions

ai ≤ x(ti) ≤ bi

is called arectangular setand the union of a finite number of rectangular
sets is called a figure. It is plain that intersections of figures are also
figures and that the systemSo of figures 1 and their complements is
additive. Moreover, the probability measureµ defined inSo by 1 is
additive inSo , and it is therefore enough, after Theorem 7 of Chapter
1, to show thatµ is completely additive inSo. It is enough to show that119

if In are figures andIn ↓ 0, thenµ(In)→ 0.
We assume that limµ(In) > 0, and derive a contradiction. Since only

a finite number of pointsti are associated with eachIn, the set of all these
t′i s is countable and we can arrange them in a sequence (ti). Now each
In is the union of a finite number of the rectangular sets in the product
space of finite number of the space of the variablesxi = x(ti) and we
can select one of these rectangles, forn = 1, 2, . . . so that it contains
a closedrectangleJn with the property that lim

m→∞
µ(JnIm) > 0. Also

we may choose theJn so thatJn+1 ⊂ Jn. We then obtain a decreasing
sequence of closed non empty rectanglesJn defined by

ain ≤ yi ≤ bin(i = 1, 2, . . . , in)
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For each i there is at least one pointyi which is contained in all the
intervals [ain, bin] , and any functionx(t) for which x(ti ) = yi belongs to
all In. This impossible sinceIn ↓ 0, and therefore we haveµ(In)→ 0.

As an important special case we have the following theorem onran-
dom sequences. �

Theorem 45. Suppose that for every N we have joint distribution func-
tions FN(ξ1, . . . , ξN) in RN which are consistent in the sense of Theorem
44. Then a probability measure can be defined in the space of real se-
quences(x1, x2, . . .) in such a way that

P(xi ≤ ξi i = 1, 2, . . . ,N)

= FN(ξ1, . . . , ξN)

Corollary. If
{

Fn(x)
}

is a sequence of distribution functions, a probabil-120

ity measure can be defined in the space of real sequence so thatif In are
any open or closed intervals,

P(xn ∈ In, n = 1, 2, . . . ,N) =
N

∏

n=1

Fn(In).

The terms of the sequence are then said to beindependent, and
the measure is the product measure of the measures in the component
spaces. The measures defined by Theorem 44 will be calledK-measure.
The probability measures which are useful in practice are generally ex-
tensions ofK-measure, since the latter generally fails to define measures
on important classes of functions. For example, ifI is an interval, the
set of functions for whicha ≤ x(t) ≤ b for t in I is notK-measurable.

In the following discussion of measures with special properties, we
shall suppose that the basicK-measure can be extended so as to make
measurable all the sets of functions which are used.

A random functionx(t) is calledstationary (in the strict sense) if
the transformationx(t)→ x(t + a) preserves measures for any real a (or
integer a in the case of sequences).

A random functionx(t) is said to haveindependent incrementsif
the variablesx(ti ) − x(si) are independent for non-overlapping inter-
vals (si , ti). It is called Gaussianif the joint probability distribution 121
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for x(t1), x(t2), . . . , x(tn) for any finite sett1, t2, . . . , tn is Gaussian inRn.
That is , if the functions F of Theorem 44 are all Gaussian. A random
function x(t) is called anL2- function if it has finite variance for every
t. This means thatx(t,w) belongs toL2(Ω) as a function ofw for eacht,
and the whole function is described as atrajectory in the Hilbert space
L2(Ω).

Many of the basic properties of anL2-function can be described in
terms of theauto-correlationfunction

r(s, t) = E((x(s) −m(s))(x(t) −m(t)))

= E(x(s)x(t)) −m(s)m(t)

wherem(t) = E((x(t)).
A condition which is weaker than that of independent increments is

that the increments should beuncorrelated. This is the case ifE(x(t) −
x(s))(x(t′) − x(s′))) = E(x(t) − x(s))E(x(t′) − x(s′)) for non- overlap-
ping intervals (s, t), (s′, t′). If an L2-function iscentredso thatm(t) = 0
(which can always be done trivially by consideringx(t) −m(t)), a func-
tion with uncorrelated increments hasorthogonalincrements, that is

E((x(t) − x(s))(x(t′) − x(s′))) = 0

for non-overlapping intervals. The function will then be called anor-
thogonal random function.

The idea of astationaryprocess can also be weakened in the same122

way. An L2- function isstationary in the weak senseor stationary, if
r(s, t) depends only ont − s. We then writeρ(h) = r(s, s+ h).

We now go on to consider some special properties of random func-
tions.

13. Random Sequences and Convergence Proper-
ties

The problems connected with random sequences are generallymuch
simpler than those relating to random functions defined overa non-
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countable set. We may also use the notationw for a sequence andxn(w)
for its nth term.

Theorem 46 (The 0 or 1 principle: Borel, Kolmogoroff). The proba-
bility that a random sequence of independent variables havea property
(e.g. convergence) which is not affected by changes in the values of any
finite number of its terms is equal to 0 to 1.

Proof. Let E be the set of sequences having the given property, so that
our hypothesis is that, for everyN ≥ 1,

E = X1 x X2 x . . . x Xn x EN

whereEN is a set in the product spaceXN+1 x XN+2 x . . .

It follows that if F is any figure,F E = F x EN for large enoughN
and

µ(FE) = µ(F)µ(EN) = µ(F)µ(E)

and since this holds for all figures F , it extends to measurable sets F. In 123

particular, putting F=E, we get

µ(E) = (µ(E))2, µ(E) = 0or1.

We can now consider questions of convergence of series
∞
∑

ν=1
xν of

independentrandom variables. �

Theorem 47. If sn =
∞
∑

ν=1
xν → s p. p., then sn − s→ 0 in probability

and the distribution function of sn tends to that of s . (This follows from
Egoroff ’s theorem)

Theorem 48 (Kolmogoroff’s inequality). If xν are independent, with
means 0 and standard deviationsσν and if

TN = sup
n≤N
| sn |, sn =

n
∑

ν=1

xν, ∈> 0

then P(TN ≥∈) ≤∈
1
2

N
∑

ν=1

σ2
ν
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Proof. Let

E =∈ [TN ≥∈] =
N

∑

k=1

Ek

where Ek =∈ [| sk |≥∈,Tk−1 <∈]

It is plain that theEk are disjoint . Moreover
N
∑

ν=1
σ2
ν =

∫

Ω

s2
Ndµ, since the

xν are independent,

≥
∫

E
s2

Ndµ =
N

∑

k=1

∫

EK

s2
Ndµ

=

N
∑

k=1

∫

EK

(sk + xk+1 + ... + xN)2dµ

=

N
∑

k=1

∫

EK

s2
kdµ +

N
∑

k=1

µ(Ek)
N

∑

i=k+1

σ2
i

sinceEk involves onlyx1, . . . , xk.124

Therefore

N
∑

ν=1

σ2
ν ≥

N
∑

k=1

∫

Ek

s2
kdµ ≥∈2

N
∑

k=1

µ(Ek) =∈2 µ(E)

as we require. �

Theorem 49. If xν are independent with means mν and
∞
∑

ν=1

σ2
ν < ∞ then

∑∞
1 (xν −mν) converges p.p.

Proof. It is obviously enough to prove the theorem in the casemν = 0.
By theorem 48, if∈> 0

P













sup
|≤n≤N

| sm+n − sm |<∈












≥ 1

∈2

m+n
∑

ν=m+1

σ2
ν
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and therefore

P

(

sup
n≥1
| sm+n − sm |>∈

)

≤ 1

ǫ2

∞
∑

ν=m+1

σ2
ν

and this is enough to show that

lim
m→∞

sup
n≥1
| sm+n − sm |= 0p.p.

and by the general principle of convergence,sn converges p.p. 125

As a partial converse of this, we have �

Theorem 50. If xν are independent with means mν and standard devia-

tionsσν, | xν |≤ c and
∞
∑

=1

xν converges in a set of positive measure (and

therefore p.p. by Theorem 46), then
∞
∑

ν=1

σ2
ν and

∞
∑

ν=1

mν converge.

Proof. Letϕν(t), ϑ(t) be the characteristic functions ofxν ands=
∞
∑

ν=1

xν.

Then it follows from Theorem 47 that
∞
∏

ν=1

ϕν(t) = ϑ(t)

whereϑ(t) , 0 in some neighbourhood of t=0, the product being uni-
formly convergent over every finite t-interval. Since

ϕν(t) =

c
∫

−c

eitxdFν(x)

it is easy to show that

σ2
ν ≤ −K log | ϕν(t) |

if t is in some sufficiently small interval independent ofν, and it follows

that
∞
∑

ν=1

σ2
ν < ∞. Hence

∞
∑

ν=1

(xν − mν) converges p.p. by Theorem 49,

and since
∑

xν converges p.p.,
∑

mν also converges. �



108 2. Probability

Theorem 51(Kolmogoroff’s three series theorem). Let xν be indepen-
dent and c> o,

x′ν = xνi f | xν |≤ c

= 0i f | x |> c.

126

Then
∞
∑

1
xν converges p.p. if and only if the three series

∞
∑

1

P(| xν |> c),
∞
∑

1

m1
ν,

∞
∑

1

σ′2ν

converge, where m′ν , σ′ν are the means and standard deviations of the
x′ν.

Proof. First,if
∑

xν converges p.p.,xν → 0 andx′ν = xν , | xν |< c for
large enoughν for almost all sequences.

Let pν = P(| xν |> c).
Now

ε

[

lim
ν→

sup
∞
| xν |< c

]

= lim
N→∞

ε[| xν |< c] for n ≥ N]

= lim
N→∞

∞
⋂

ν=N

ε[| xν |< c].

Therefore

1 = P(lim sup | xν |< c) = lim
N→∞

∞
∏

ν=N

(1− pν)

by the independence of thexν. Hence
∞
∏

ν=1
(1 − pν) so

∞
∑

ν=1
pν converge.

The convergence of the other two series follows from Theorem50.
Conversely, suppose that the three series converge, so that, by Theo-127

rem 50,
∞
∑

1
x′ν converges p.p. But it follows from the convergence of

∞
∑

1
pν

that xν = X′ν for sufficiently largeν and almost all series, and therefore
∞
∑

1
xν also converges p.p. �
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Theorem 52. If x are independent, sn =
n
∑

ν=1
xν converges if and only if

∏∞
ν=1ϕν(t) converges to a characteristic function.

We do not give the proof. For the proof see j.L.Doob, Stochastic
processes, pages 115, 116. If would seem natural to ask whether there
is a direct proof of Theorem 52 involving some relationship between TN
in Theorem 48 and the functionsϕν(t). This might simplify the whole
theory.

Stated differently, Theorem 52 reads as follows:

Theorem 53. If xν are independent and the distribution functions of sn

converges to a distribution function, then sn converges p.p.
This is a converse of Theorem 47.

Theorem 54(The strong law of large numbers). If xν are independent,
with zero means and standard deviationsσν, and if

n
∑

ν=1

σ2
ν

ν2
< ∞

then lim
n→∞

1
n

n
∑

ν=1

xν = 0 p.p.

Proof. Let yν =
xν
ν

, so thatyν has standard deviationσγ/ν. It follows 128

then from Theorem 49 that
∑

yν =
∑

(xν/ν) converges p.p.

If we write xν =
ν
∑

j=1
x j/ j,

xν = νXν − νXν=1,

1
2

n
∑

ν=1

xν =
1
n

n
∑

ν=1

(νXν − νXν=1)

= Xn −
1
n

n
∑

ν−1

Xν−1

= 0(1)

if Xn converges, by the consistency of (C, 1) summation.
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If the series
∞
∑

1
xν does not converge p.p. it is possible to get results

about the order of magnitude of the partial sumssn =
n
∑

1
xν. The basic

result is the famouslaw of the iterated logarithmof Khintchine. �

Theorem 55(Khintchine; Law of the iterated logarithm). Let xν be in-
dependent, with zero means and standard deviationsσν

Let

Bn =

n
∑

ν=1

σ2
ν −→ ∞ as n−→ ∞.

Then129

lim sup
n→∞

| sn |√
(2Bn log logBn)

= 1p.p.

Corollary. If xν have moreover the same distribution, withσν = σ then

lim sup
n→∞

| sn |√
(2n log logn)

= σ p.p.

We do not prove this here. For the proof, see M. Loeve: Proba-
bility Theory, Page 260 or A. Khintchine : Asymptotische Gesetzeder
Wahrsheinlichkeit srechnung, Page 59.

14. Markoff Processes

A random sequence defines adiscrete Markoff processif the behaviour
of the sequencexν for ν ≥ n depends only onxn (see page 123). It is
called aMarkoff chain if the number of possible values (or states) of
xν is finite or countable. The states can be described by thetransition
probabilities npi j defined as the probability that a sequence for which
xn = i will have xn+1 = j. Obviously

npi j ≥ 0,
∑

J
npi j = 1.

If npi j is independent of n, we say that the transition probabilities
are stationary and the matrixP = (pi j ) is called astochasticmatrix. It
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follows that a stationary Markoff chain must have stationary transition
probabilities, but the converse is not necessarily true.130

It is often useful to consider one sided chains, say forn ≥ 1 and
the behaviour of the chain then depends on theinitial stateor the initial
probability distribution ofx1.

The theory of Markoff chains with a finite number of states can
be treated completely (see for example J.L.Doob, Stochastic processes
page 172). In the case ofstationarytransition probabilities, the matrix
(pn

i j ) defined by

p1
i j = pi j , pn+1

i j =
∑

k

pn
ik pk j

satisfiespn
i j ≥ 0,

∑

j pn
i j = 1 and gives the probability that a sequence

with x1 = i will have xn = j. The main problem is to determine the
asymptotic behaviour ofpn

i j . The basic theorem is

Theorem 56 (For the proof see J.L.Doob, Stochastic Processes page
175).

lim
n→∞

1
n

n
∑

m=1

pm
i j = qi j

where Q= (qi j ) is a stochastic matrix and QP= PQ= Q,Q2 = Q.
The general behaviour of pn

i j can be described by dividing the states
into transient states and disjoint ergodic sets of states. Almost all se-
quences have only a finite number of terms in any one of the transient
states and almost all sequences for which xn lies in an ergodic set will
have all its subsequent terms in the same set.

A random function of a continuous variable t is called a Markoff if 131

, for t1 < t2 · · · < tn < t and intervals (or Borel sets) I1, I2, . . . , In, we
have

P(x(t) ∈ I/x(t1) ∈ I1, x(t2) ∈ I2, ..., x(tn) ∈ In)

= P(x(t) ∈ I/x(tn) ∈ In).

Part of the theory is analogous to that of Markoff Chains, but the
theory is less complete and satisfactory.
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15. L2-Processes

Theorem 57. If r (s, t) is the auto correlation function of an L2 function,

r(s, t) = r(t, s)

and if (zi) is any finite set of complex numbers, then
∑

i, j

r(ti , t j)zizj ≥ 0.

The first part is trivial and the second part follows from the identity
∑

i, j

r(ti , t j)zizj = E( |(x(ti ) −m(ti))zi | 2) ≥ 0.

Theorem 58(For proof see J.L.Doob, Stochastic processes page 72). If
m(t), r(s, t) are given and r(s, t) satisfies the conclusion of theorem 57,
then there is a unique Gaussian function x(t) for which

E(x(t)) = m(t),E(x(s) x(t)) −m(s)m(t)) = r(s, t).

132

The uniqueness follows from the fact that a Gaussian processis de-
termined by its first and second order moments given r(s, t). Hence, if
we are concerned only with properties depending on r(s, t) and m(t) we
may suppose that all our processes are Gaussian.

Theorem 59. In order that a centred L2-process should be orthogonal,
it is necessary and sufficient that

E(|x(t) − x(s)|2) = F(t) − F(s)(s< t) (1)

where F(S) is a non -decreasing function. In particular, if x(t) is sta-
tionary L2, then E(|x(t) − x(s)|2) = σ2(t − s)(s < t) for some constant
σ2.

Proof. If s < u < t the orthogonality condition implies thatE(|x(u) −
x(s)|2) + E(|x(t) − x(u)|2) = E(|x(t) − x(s)|2) which is sufficient to prove
(1). The converse is trivial.
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We write
dF = E(|dx|2)

and for stationary functions,

σ2dt = E(|dx|2).

We say that anL2 - function iscontinuousat t if

lim
h−→0

E(|x(t + h) − x(t)|2) = 0,

and that it is continuous if it is continuous for allt. Note that this does
not imply that the individualx(t) are continuous att. �

Theorem 60(Slutsky). In order that x(t) be continuous at t, it is neces-133

sary and sufficient that r(s, t) be continuous at t= s.
It is continuous (for all t) if r(s, t) is continuous on the line t=s and

then r(s, t) is continuous in the whole plane.

Proof. The first part follows from the relations

E(|x(t + h) − x(t)|2)

= r(t + h, t + h) − r(t + h, t) − r(t, t + h) + r(t, t)

= o(1) ash −→ 0 if r(s, t) is continuous for

t = s; r(t + h, t + k) − r(t, t)

= E(x(t + h)x(t + k) − x(t)x(t))

= E(x(t + h)x(t + k) − x(t))+ = ((x(t + h) − x(t))x(t))

= o(1) ash, k −→ 0

by the Schwartz inequality ifx(t) is continuous att.

For the second part, we have

r(s+ h, t + k) − r(s, t)

= E(x(s+ h)x(t + k) − x(t))) + E((x(s+ h) − x(s))x(t))

= o(1)as h, k −→ 0 by Schwarz’s inequality,

if x(t) is continuous at t and s.

�
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Theorem 61. If x(t) is continuous and stationary L2, withρ(h) = r(s, s+
h), then

ρ(h) =

∞
∫

−∞

eiλhdS(λ)

where S(λ) is non- decreasing and bounded.
Moreover,

S(∞) − S(−∞) = ρ(0) = E(|x(t)|2) for all t.

Proof. We haveρ(−h) = ρ(h), ρ(h) is continuous at 0 and134

∑

i, j

ρ(ti − t j)zizj ≥ 0

for all complex zi by Theorem 57 and the conclusion follows from
Bochner’s theorem (Loeve, Probability theory, p. 207-209,and Bochner
Harmonic analysis and Probability, page 58).

The theorem for sequences is similar. �

Theorem 62. If xn is stationary L2, with ρn = E(xm.xm+n) then

ρn =

∫ π

−π
einλdS(λ)

where S(λ) increases and S(π) − S(−π) = ρo = E(| xm |2)
We say that an L2-random function x(t) is differentiable at t with

derivative x′(t) (a random variable)if

E

(

| x(t + h) − x(t)
h

− ẋ(t) |2
)

→ 0 as h→ 0

Theorem 63. In order that x(t) be differentiable at t it is necessary and
sufficient that ∂

2r
∂s∂t exists when t= s. Moreover, if x(t) is differentiable

for all t, ∂2r
∂s∂t exists on the whole plane.

(The proof is similar to that of Theorem 60.)
Integration of x(t) can be defined along the same lines.
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We say that x(t) is R-integrable in a≤ t ≤ b if
∑

i x(ti )δi tends to
a limit in L2 for any sequence of sub-divisions of(a, b) into intervals135

of lengthsδi containing points ti respectively. The limit is denoted by
∫ b

a
x(t)dt.

Theorem 64. In order that x(t) be R-integrable in a≤ t ≤ b it is neces-

sary and sufficient that
∫ b

a

∫ b

a
r(s, t)dsdt exists as a Riemann integral.

Riemann - Stieltjes integrals can be defined similarly.
The idea of integration with respect to a random functionZ(t) is

deeper (see e.g. J.L.Doob, Stochastic processes, chap. IX§2). In the
important cases,Z(t) is orthogonal, and then it is easy to define the inte-
gral

∫ b

a
φ(t)dZ(t)

the result being a random variable. Similarly

∫ b

a
φ(s, t)dZ(t)

will be a random function of s under suitable integrability conditions.
The integral of a random functionx(t) with respect to a random func-

tion Z(t) can also be defined (Doob, Chap. IX§ 5).
The most important application is to the spectral representation of a

stationary process.

Theorem 65(Doob, page 527). A continuous stationary(L2) function
x(t) can be represented in the form 136

x(t) =

∞
∫

−∞

eiλtdZ(λ)

where Z(λ) has orthogonal increments and

E(| dZ |2) = dS

where S(λ) is the function defined in Theorem 61.
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The formula gives the spectral decomposition of x(t). S(λ) is its
spectral distribution.

The corresponding theorem for random sequence is

Theorem 66 (Doob, page 481). A stationary(L2) sequence
{

xn
}

has
spectral representation

xn =

π
∫

−π

eiλndZ(λ)

where Z(λ) has orthogonal increments and

E(| dZ |)2 = dS,

S(λ) being defined by Theorem 62.
Two or more random function xi(t) are mutually orthogonal if E(xi(t)

x j(s)) = 0 for i , j and s, t.

Theorem 67. Suppose that x(t) is a continuous, stationary(L2) process
and that E1,E2 . . . ,E are measurable, disjoint sets whose union is the
whole real line. Then we can write

x(t) =
ν

∑

i=1

xi(t)

where xi(t) are mutually orthogonal and137

xi(t) =

∞
∫

−∞

eiλtdZi(λ) =
∫

Ei

eiπtdZ(λ)

and E(| dZi |)2 = 0 outside Ei .
The theorem for sequences is similar. In each case, a particularly

important decomposition is that in which three sets Ei are defined by
the Lebesgue decomposition of S(λ) into absolutely continuous, discon-
tinuous and singular components. For the second component,the auto-
correlation functionρ(n) has the form

ρ(h) =
∑

i

die
ihλi
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where di are the jumps of S(λ) at the discontinuitiesλi , and is uniformly
almost periodic.

We can define liner operations on stationary functions (Doob, page
534). In particular, if k(s) of bounded variation in(−∞,∞), the random
function

y(t) =

∞
∫

−∞

x(t − s)dk(s)

can be defined and it is easy to show that y(t) has spectral representation

y(t) =

∞
∫

−∞

eiλtK(λ)dZ(λ) =

∞
∫

−∞

eiλtdz1(λ)

where K(λ) =

∞
∫

−∞

eiλsdk(s),E( | dZ1 (λ) |2) = (K(λ))2dS(λ).

138

If k(s) = 0 for s< τ, τ > 0 we have

y(t + τ) =
∫ ∞

0
x(t − s)dk(s− τ)

which depends only on the ”part” of the function x(t) ”before time t”.
The linear prediction problem (Wiener) is to determine k(s) so as to
minimise (in some sense) the difference between y(t) and x(t). In so
far as this difference can be made small, we can regard y(t + τ) as a
prediction of the value of x(s) at time t+ τ based on our knowledge of
its behaviour before t.

16. Ergodic Properties

We state first the two basic forms of the ergodic theorem.

Theorem 68 (G.D Birkhoff, 1932). Suppose that forλ ≥ 0,Tλ is a
measure preserving (1-1) mapping of a measure spaceΩ of measure 1
onto itself and that T0 = I , Tλ+µ = Tλ ◦ Tµ. Suppose that f(ω) ∈
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L(Ω)and that f(TλΩ) is a measurable function of(λ, ω) in the product
space R×Ω. Then

f ∗(ω) = lim
λ→∞

1
λ

∫ λ

0
f (TΛω)dλ

exists for almost allω, f ∗(ω) ∈ L(Ω) and
∫

Ω

f ∗(ω)dω =
∫

Ω

f (ω)dω

Moreover, ifΩ has no subspace of measure> 0 and< 1 invariant139

under all Tλ

f ∗(ω) =
∫

Ω

f (ω)dω for almost allω

There is a corresponding discrete ergodic theorem for transforma-
tions Tn = (T)n where n is an integer, the conclusion then being that

f ∗(ω) = lim
n→∞

1
N

N
∑

n=1

f (Tnω)

exists for almost allω. In this case, however, the memorability condition140

on f(Tλω) may be dispensed with.

Theorem 69(Von Neumann). Suppose that the conditions of Theorem
68 hold and that f(ω) ∈ L2(Ω). Then

∫

Ω

∣

∣

∣

∣

∣

1
Λ

λ
∫

0

f (Tλω)dλ − f ∗(ω)
∣

∣

∣

∣

∣

2

dω→ 0 as∧ → ∞.

For proofs see Doob page 465, 515 or P.R. Halmos, Lectures on
Ergodic Theory, The math.Soc. of Japan, pages 16,18. The simplest
proof is due to F.Riesz (Comm. Math.Helv. 17 (1945)221-239).

Theorems 68 is much than Theorem 69.

The applications to random functions are as follows
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Theorem 70. Suppose that x(t) is a strictly stationary random function
and that x(ω, t) ∈ L(Ω) for each t, with

∫

Ω
x(ω, t)dω = E(x(t)) = m.

Then

lim
Λ→∞

1
Λ

∫ Λ

0
x(ω, t)dt = x∗(ω)

exists for almost allω If x(t) is an L2- function we have also convergence
in mean .

This follows at once from Theorem 68, 69 if we define

f (ω) = x(ω, 0),Tλ(x(t)) = x(t + λ).

Corollary. If a is real

lim
Λ→∞

1
Λ

Λ
∫

0

x(ω, t)eiatdt = x∗(ω, a)

exists for almost allω.

Theorem 70 is a form of the strong law of large number for random
functions. There is an analogue for sequences.

A particularly important case arises if the translation operation x(t)
→ x(t + λ) has no invariant subset whose measure is>0 and< 1. In this
case we have

lim
Λ→∞

1
Λ

Λ
∫

0

x(ω, t)dt =
∫

Ω

x(ω, t)dω = m

for almost allω. In other words almost all functions have limiting “time
averages” equal to the mean of the values of the function at any fixed
time.

17. Random function with independent increments

The basic condition is that ift1 < t2 < t3, thenx(t2) − x(t1) andx(t3) −
x(t2) are independent (see page 114) so that the distribution function of
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x(t3) − x(t1) is the convolution of those ofx(t3) − x(t1) andx(t3) − x(t2).
We are generally interested only in the increments, and it isconvenient
to consider the behaviour of the function from some base point, say 141

0, modify the function by subtracting a random variable so asto make
x(0) = 0, x(t) = x(t) − x(0). Then ifFt1,t2 is the distribution function for
the incrementx(t2) − x(t1) we have,

Ft1,t3(x) = Ft1,t2 ∗ Ft2,t3(x).

We get the stationary case ifFt1,t2(x) depends only ont2 − t1. (This
by itself is not enough, but together with independence, thecondition is
sufficient for stationary) If we put

Ft(x) = Fo.t(x),

we have in this case

Ft1+t2(x) = Ft1 ∗ Ft2(x),

for all t1,t2 > 0.
If x(t) is also anL2 function withx(0) = 0, it follows that

E(|x(t1 + t2)|2) = E(|x(t1)|2) + E(|x(t2)|2)

so that E(|x(t)|2) = tσ2

where σ2 = E(|x(1)|2)

Theorem 71. If x(t) is stationary with independent increments, its dis-
tribution function Ft(x) infinitely divisible and its characteristic function
ϕt(u) has the form etψ(u), where

ψ(u) = iau+

∞
∫

−∞

[

eitx − 1− iux

1+ x2

] 1+ x2

x2
dG(x)

G(x) being non-decreasing and bounded,142

Proof. The distribution function is obviously infinitely divisible for ev-
ery t and it follows from the stationary property that

ϕt1+t2(u) = ϕt1(u)ϕt2(u)
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so thatϕt(u) = etψ(u) for someψ(u), which must have theK − L form
which is seen by puttingt = 1 and using Theorem 37. �

Conversely, we have also the

Theorem 72. Any functionϕt(u) of this form is the characteristic func-
tion of a stationary random function with independent increments.

Proof. We observe that the conditions onFt(x) gives us a system of joint
distributions over finite sets of pointsti which is consistent in the sense
of Theorem 44 and the random function defined by the Kolmogoroff

measure in Theorem 44 has the required properties. �

Example 1 (Brownian motion : Wiener). The increments all have nor-
mal distributions, so that

Ft(x) =
1

σ
√

2πt
e−x2/2tσ2

Example 2(Poisson). The incrementsx(s+ t)− x(s) have integral values
ν ≥ 0 with probabilitiese−ct (ct)ν

ν!
Both areL2− Processes. 143

Theorem 73. Almost all functions x(t) defined by the Kolmogoroff mea-
sure defined by the Wiener function, or any extension of it, are every-
where non-differentiable. In fact, almost all functions fail to satisfy a
Lipschitz condition of orderα(x(t − h) − x(t) = 0(| h |α)) if α > 1

2 and
are not of bounded variation.

Theorem 74. The Kolmogoroff measure defined by the Wiener function
can be extended so that almost all functions x(t) Satisfy a Lipschitz con-
dition of any orderα < 1

2 at every point, and are therefore continuous
at every point.

For proofs, see Doob, pages 392-396 and for the notion of extension,
pages 50-71.

Theorem 75. The K-measure defined by the Poisson function can be
extended so that almost functions x(t) are step functions with a finite
number of positive integral value in any finite interval.

The probability that x(t) will be constant in an interval of length t is
e−ct.
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18. Doob Separability and extension theory

The K-measure is usually not extensive enough to give probabilities to
important properties of the functionsx(t), e.g. continuity etc.

Doob’s solution is to show that a certain subjectΩ◦ of Ω has outer
K-measure 1,µ(Ω◦) = 1. Then, ifX1 is anyK-measurable set, Doob144

defines
µ ⋆ (X) = µ(X1)whenX = ΩoX1

and shows thatµ⋆ is completely additive and defines a probability mea-
sure in a Borel systemcontainingΩ0, andµ⋆(Ω0) = 1.

Doob now defines aquasi-separable K-measure as one for which
there is a subsetΩ0 of outerK-measure 1 and a countable setR0 of real
numbers with the property that

sup
tǫ I

x(t) = sup
tǫ I .R◦

x(t)

inf
tǫ I

x(t) = inf
tǫ I .R◦

x(t) (α)

for everyx(t) ∈ Ω◦ and every open intervalI .
If the K-measure has this property, it can be extended to a measure

so that almost all functionsx(t) have the property (α).
All conditions of continuity, differentiability and related concepts

can be expressed then in terms of the countable setR0 and the sets of
functions having the corresponding property then become measurable.
Thus, in the proofs of Theorem 74 we have only to show that the set of
functions having the required property (of continuity or Lipschitz con-
dition) has outer measure 1 with respect to the basic Wiener measure.

For Theorem 73, there is no need to extended the measure, for if
the set of functionsx(t) which are differentiable at least at one point has145

measure zero, with respect to Wiener measure, it has measurezero with
respect to any extension of Wiener measure.

For a fuller account, see Doob, Probability in Function Space, Bull.
Amer. Math. Soc. Vol. 53 (1947),15-30.
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