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Chapter 1
Measure Theory

1. Sets and operations on sets

We consider a spaceof elements (or pointx and systems of this sub-1
setsX, Y, ... The basic relation between sets and the operations on them
are defined as follows:

(@) Inclusion: We write X c Y (or Y o X) if every point of X is
contained inY. Plainly, if 0 is empty set, @ X c X for every
subsetX. Moreover,X c XandX c Y,Y c Zimply X c Z.
X=Yif XcYandY c X.

(b) ComplementsThe complementX’ of X is the set of point oft
which do not belong tX. Then plainly ') = XandX’ = Y if
Y’ = X. In particular ,O’ = X, ¥’ = 0. Moreover, ifX c Y, then
Y cX.

(c) Union: The union of any system of sets is the set of poinighich
belong to at least one of them. The system need not be finite or

even countable. The union of two s&sandY is written X U Y,
and obviouslyX U Y = Y U X. The union of a finite or countable

sequence of seb$;, Xp,... can be WritteU Xn.
n=1

(d) Intersection:The intersection of a system of sets of points which
belong to every set of the system. For two sets it is wriemY

1



2 1. Measure Theory

(or X.Y) and for a sequenceX,}, ﬂ Xn. Two sets are disjoint if

n=1
their intersection is 0, a system of sets is disjoint if eveayr of
sets of the system is. For disjoint system we wKteY for XUY
andy X, for UX,, this notation implying that the sets are disjoint.

(e) Difference:The diferenceX.Y’ or X — Y between twoX andY is
the sets of point oK which do not belong t&. We shall use the
notationX — Y for the ditference only ify c X.

It is clear that the operations of taking unions and intdisecare
both commutative and associative. Also they are relatedhampera-
tion of taking complements by

XX =0, X+ X =X,(XUY) =X,Y,(XY) =X UY.
More generally
(UX) = nX’, (NX)" = UX".

The four operations defined above can be reduced to two in sev-
eral diferent ways. For examples they can all be expressed in terms of
unions and complements. In fact there is complete dualithénsense
that any true proposition about sets remains true if wecéhgamge

and X
and N
and U
and >

n O C o

and leave= and’ unchanged all through.
A countable union can be written as a sum by the formula

) X=X+ X[ Xa + X[ X5 X5+ <
n=1
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2. Sequence of sets
A sequence of set&;, X», ... isincreasingif
X1CX2CX3C...

decreasindf
X13X23X3D...

The upper limit lim sup X, of a sequencéX,} of sets is the set
of points which belong toX, for infinitely manyn. The lower limit,
liminf X, is the set of points which belong ¥, for all but a finite num-
ber of n. It follows that liminfX, c lim supX, and if limsupX, =
liminf X, = X, X is called thdimit of the sequence, which theover-
ageto X.

It is easy to show that

liminf X, = O ﬁ Xm

n=1m=n
and that o o
limsupX, = m U Xm
n=1m=n
ThenifX, |,

ﬁ Xm = ﬁ Xm. liminf X, = ﬁ Xms
m=n m=1 m=1

U Xm = Xn, Ilm SUan = ﬂ Xn,
m=n n=1

Ilm Xn = m Xn,
n=1

and similarly if X, T,

Im%=UM.
n=1
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3. Additive system of sets

A system of sets which contaidsand is closed under a finite number of
complement and union operations is callefimitely) additive system or
a field It follows from the duality principle that it is then closeahder

a finite number of intersection operations.

If an additive system is closed under a countable number iohun
and complement operations (and therefore under countaildler unter
sections), it is called aompletely additive systera Borel systernor a
o-field.

It follows that any intersection (not necessarily courgqlulf addi-
tive or Borel system is a system of the same type. Moreover,rth
tersection ofall additive (of Borel) systems containing a family of sets
is a uniquely defined minimal additive (or Borel) system aiming the
given family. The existence dit least oneBorel system containing a
given family is trivial, since the system @l subsets off is a Borel
system.

A construction of the actual minimal Borel system contagnin
given family of sets has been given by Hausti@Mengenlehre, 1927,
p.85).

Theorem 1. Any given family of subsets of a spa€és contained in
a unique minimal additive systenmy @&nd in a unique minimal Borel
system S.

Example of a finitely additive system: The family of rectangles; <

X < bi(i = 1,2,...,n) in R, is not additive, but has a minimal additive
So consisting of all “element ary figures” and their complensenf\n
elementary figure is the union of a finite number of such regtm

The intersections of sets of an additive (or Borel) systeth effixed
set(of the system) from an additive (or Borel) subsystenhefdriginal
one.
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4. Set Functions

Functions con be defined on a system of sets to take valuey igivam
space. If the space is an abelian group with the group operatlled
addition, one can define the additivity of the set function.

Thus, ifu is defined on an additive system of setss additiveif

(D0 %) = D ulxo)

for anyfinite system of (disjoint) setX.

In general we shall be concerned only with functions while teeal
values. We use the convention that the vahse is excluded but that
may take the value-c. It is obvious thaju(0) = 0 if u(X) is additive
and finite for at least onX.

For a simple example of an additive set function we may &k
to be thevolumeof X whenX is an elementary figures R,.

If the additive property extends to countable system of se¢sfunc-
tion is calledcompletelyadditive, and again we suppose thdéX) #
—oco. Complete additive ofi can defined even if the field of is only 6
finitely additive, provided thaX,, and}, X, belong to it.

Example of a completely additive function: u(X) = number of ele-
ments (finite of infinite) inX for all subsetsX of X

Examples of additive, but not completely additive functiors:

1. Xis an infinite set,

u(X) = 0if X is a finite subset ok
= oo if X is an infinite subset af

Let X be a countable set of elemenig,(x, ...) of X.
Then
() =0, )" (%) = 0, u(X) = .

2. Xistheinterval O< x < 1 andu(X) is the sum of the lengths of fi-
nite sums of open or closed intervalith closure inX. These sets
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together withX from an additive system on whiglh is additive
but not completely additive ji(X) = 2.

A non-negative, completely additive functiardefined on a Borel
systemS of subsets of a set is called ameasure It is bounded
(or finite) if u(X) < co. itis called a probability measuref X) =
1. The sets of the systeBare calledneasurable sets

5. Continuity of set functions

Definition . A set functionu is said to be continuous, from below if
u(Xn) — u(X) whenever X1 X. Itis continuous from abovejii(X,) —
#(X) whenever X | X andu(Xp,) < co for some g.

Itis continuous if it is continuous from aboemdbelow. Continuity
at 0 means continuity from above at 0.

(For general ideas about limits of set functions wh&g} is not
monotonic, see Hahn and Rosenthal, Set functions, Ch. I).

The relationship between additivity and complete additican be
expressed in terms of continuity as follows.

Theorem 2. (a) A completely additive function is continuous.

(b) Conversely, an additive function is completely additivie ig ei-
ther continuous from below or finite and continuous at 0. (The
system of sets on whighis defined need only be finitely addi-
tive).

Proof. (a) If X, T X, we write

X:Xl+(X2—X1)+(X3—X2)+...’
/J(X) = —,U(Xl)+,u(X2—Xl)+...

N
u(X) + lim- Z;mxn ~ Xn-1)
n=

li XN).
N'L”wll( N)
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On the other hand, X, | X andu(Xy,) < co, we write

Xng = X+ Z (Xn — Xns1)

N=Ng
p(%no) = u(X) + > (¥ = Xny2). andu(X) = limu(Xy)
N=nNg
as above sincg(Xn,) < .

(b) First, if u is additive and continuous from below, and

Y = Yi%-Yé%—Yé%—-n

we write
N
Y = lim Zvn,
N—ooco
n=1

N N
u(Y) = I\Ilim)ou[z Yn), sinceZYn 1Y

n=1 n=1
N
= m, 2
n=

by finite additivity, and thereforg(Y) = § u(Yn).
n=1

On the other hand, if: is finite and continuous at 0, arXl =

(o8]
> Xn, We write
n=1

n=N+1
N 00
= Z 1(Xn) + ﬂ[ Z xn}, by finite additivity,
n=1 n=N+1

since ioj Xn 1 0 and has finiteu. O
N+1
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Theorem 3 (Hahn-Jordan) Suppose that is completely additive in a
Borel system S of subsets of a spaécdhen we can writ&€ = X* + X~
(whereX™, X~ belong to S and one may be empty) in such a way that

1. 0<u(X) <u(X*) =M < oo for X C X*,
—oo <m=pu(X") <u(X)<0for X c X~
while m< u(X) < M for all X.

Corollary 1. The upper and lower bounds M, m@fX) in S are at-
tained for the set&*, X~ respectively and i+ —co.

Moreover, M< oo if u(X) is finite for all X. In particular, a finite
measuras bounded.

Corollary 2. If we write
(X)) = u(X- X%), 1™ (X) = u(X - X7)
we have
H(X) = p*(X) + p” (X), 1" (X) > 0,17 (X) < 0
#(X) = supu(Y), u~(X) = Inf u(Y).
YcX N
If we writeu(X) = u*(X) — u(X), we have also
lu(Y)| < u(X) forall Y c X.

It follows from the theorem and corollaries that an addifiwection
can always be expressed as thffalence of two measures, of which
one is bounded (negative part here). From this point on,dtfigcient
to consider only measures.

Proof of theorem 3. [Hahn and Rosenthal, with modifications] We sup-
pose that mx 0for otherwise there is nothing to prove. Let e defined

so thatu(An) — m and let A= fj An. For every n, we write
n=1

A=Act(A=—A) A=A+ (A-AJ]
k=1
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n
This can be expanded as the union 8fs2ts of the formN Ay,

A; = Acor A- A, and we writeB, for the sum of those for which
u < 0. (If there is no such seB, = 0). Then, sinceA, consists of
disjoint sets which either belong &), or haveu > 0, we get 10

u(An) = (Bn)

Since the part oBp,1 which does not belong t&, consists of a
n+1
finite number of disjoint sets of the forif) A for each of which: < 0,
k=1

H(Bn U Bry1) = p(Bn) + 1(Bnr1By) < u(Bn)

and similarly
#(Br) > p1(Bn U Bpi1 U... U By)

for anyn’ > n. By continuity from below, we can let — oo,

#(Pa) = p(Br) 2 [U Bk}

k=n

LetX™ =limy,e J Bk. Then
k=n

p(x7) < lim u(Ag) = m,

and sinceu(x) > m by definition ofm, u(x™) = m.
Now, if X is any subset 0¥~ andu(X) > 0, we have

m=pu(X7) = u(X) +p(X™ = X) > p(X™ - X)

which contradicts the fact thatis \l(m; u(Y).
C

This proves (1) and the rest follows easily.

It is easy to prove that corollary 2 holds also for a compleseldi-
tive function on dinitely additive system of sets, but spgX), inf u(X)
are then not necessarily attained.
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6. Extensions and contractions of additive
functions

We get a contraction of an additive (or completely additfugiction de-
fined on a system by considering only its values on an fundefined
on a system by considering only its values on an additive ysibs.
More important, we get aaxtensiorby embedding the system of sets
in a larger system and defining a set function on the new systetnat

it takes the same values as before on the old system.

The basic problem in measure theory is to prove the existehae
measure with respect to which certain assigned sets arairabésand
have assigned measures. The classical problem of definingaaure
on the real line with respect to which every interval is meakle with
measure equal to its length was solved by Borel and Lebestve.
prove Kolmogordt's theorem (due to Caratheodory in the casdrgf
about conditions under which an additive function on a fipigglditive
systemSg can be extended to a measure in a Borel system containing
So.

Theorem 4. (a) If u(l) is non-negative and additive on an additive

system g and if |, are disjoint sets of gwith | = § I, also in
n=1
Sp, then
2 wln) < ().
n=1
(b) In order thatu(l) should be completely additive, it isBaient
that .
ORI
n=1

(c) Moreover, if(l) is completely additive, this last inequality holds

whether }, are disjoint or not, provided that& | J In.
n=1

Proof. (@) Forany N,
N

N
I
n=1

n=1
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belong toSy and do not overlap. Since their sumljsve get

w3

n=1 n=1

N N
zu[zln]=;u(ln)

n=
by finite additivity. Part (a) follows if we leN — c and (b) is a
trivial consequence of the definition.

For (c), we write
(o]
=tttz 1y 41500715+
n=1

and then
p(l) < p[Up ln] = p(ly) +plz - 13) + -

< (1) + u1z) + -

7. Outer Measure

We define the out or measure of a ewith respect to a completely ad413
ditive non-negativex(l) defined on a additive syste&y to be inf}’ u(ly)

for all sequencefl)} of sets ofSy which coverX (thatis,X c |J).
n=1

Since anyl of Sy covers itself, its outer measure does not exceed
u(1). On the other hand it follows from Theordih 4(c) that

u() < 3 uln)
n=1

for everysequencelf) coveringl, and the inequality remains true if
the right hand side is replaced by its lower bound, which édhter
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measure of. It follows that the outer measure of a $etf Sq is u(l),
and there is therefore no contradiction if we use the saméaln{Xx)
for the outer measure of every sétwhether inSg or not.

Theorem 5. If X c |J X,, then
n=1

HX) < ) (%)
n=1

Proof. Lete > 0, 3 & < e. Then we can choodg, from Sy so that
n=1

Xn C U Iy, Z,U(Inv) < ,u(Xn) + €n,
y=1 y=1

and then, since

(1(Xn) + €n)

p(X) < i iﬂ(lnv) < i
n=1 y=1 n=1
n=1

/‘l(xn) t €,

and we can le¢ — 0. O

Definition of Measurable Sets.
We say thalX is measurablavith respect to the function if

H(PX) + pu(P — PX) = u(P)
for everyP with u(P) < oo.

Theorem 6. Every set | of §is measurable.
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Proof. If Pis any set withu(P) < o0, ande > 0, we can defing, in
So so that

Pt ) ulln) <u(P)+e
n=1 n=1
Then

Plc| Ji-tnp-Plc| JUn-11y)
n=1 n=1

and sincdl, andl, — |1, both belong td5y,
(P < D u(l1n). (P =P1) < ) pulln = 11r)
n=1 n=1
and

u(P1) +p(P =PI < > (u(lln) + p(ln = 1))
n=1

= D 1(in) S p(P) + e
n=1

by additivity in Sg. Sincee is arbitrary, 15

u(P1) + u(P = PI) < u(P)

as required.
We can now prove the fundamental theorem. O

Theorem 7 (Kolmogordf-Caratheodory) If i is a non-negative and
completely additive set function in an additive systegn &measure
can be defined in a Borel system S containiggfd taking the original
valueu(l) for | € Sq.

Proof. It is suficient to show that the measurable sets defined above
form a Borel system and that the outer meaguisecompletely additive
oniit.



14 1. Measure Theory

If X is measurable, it follows from the definition of measurdylil
and the fact that

PX = P-PXP-PX =PX
w(PX) + u(P - PX) = u(PX) + u(P - PX)
that X’ is also measurable.
Next suppose thaX;, X, are measurable. ThendfP) < oo,
u(P) = u(PX1) + u(P — PXy) sinceX; is measurable
= u(PX1X2) + p(PXy — PXX2) + u(PXo — PX1X7)
+ u(P — P(X1 U X)) sinceX, is measurable

Then, since
(PX1 — PX1X2) + (PXo — PX1X2) + (P — P(X1 U X3)) = P — PX1 Xo,
16 it follows from Theorenib that
p(P) = u(PX1X2) + u(P — PX1Xp)

and soX; X, is measurable.

It follows at once now that the sum andfdrence of two measurable
sets are measurable and if we take: X; + X5 in the formula defining
measurablility ofXy, it follows that

u(Xy + X2) = u(Xq) + u(X2)

WhenX; and X, are measurable arki X, = 0. This shows that the
measurable sets form an additive syst8nn which u(X) is additive.
After Theorem¢$(b) and 2(X) is also completely additive i§. To

complete the proof, therefore, it isfigient to prove thakK = |J Xp is
n=1
measurable if theX,, are measurable and it isfligient to prove this in

the case of disjoink,.
If u(P) < oo,

u(P) :y(PZn:Xn]+y[P—PZN:Xn}

n=1 n=1
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N
since . X, is measurable,
n=1

n=1 n=1

N N
2 ﬂ[PZ Xn} +pu(P=PX) = > u(PX) + u(P - PX)

by definition of measurablility applied —1 times, theX,, being disjoint.
Since this holds for alN, 17

u(P) 2 > u(PXo) +u(P ~ PX)
n=1
> pu(PX) + u(P — PX),
by Theorenib, and therefore X is measurable. O

Definition. A measure is said to lmmpletdf every subset of a measur-
able set of zero measure is also measurable (and therefarenleasure
ZEero).

Theorem 8. The measure defined by Theol@m 7 is complete.

Proof. If X is a subset of a measurable set of measure 0th= 0,
u(PX) =0, and

u(P) < u(PX) + u(P - PX) = u(P - PX) < u(P),
u(P) = u(P = PX) = u(P - PX) + u(PX),

and soX is measurable.

The measure defined in TheorEm 7 is not generally the minireatm
sure generated hy, and the minimal measure is generally not complete.
However, any measure can be completed by adding to the sysftem
measurable setX] the setsX U N whereN is a subset of a set of mea-
sure zero and defining(X U N) = u(X). This is consistent with the
original definition and gives us a measure since countab@arof sets
XUN are sets of the same fornXUN) = X' NN = X'Nn(YYUN-Y)
(whereN c Y, Y being measurable and of 0 measute¥; UN; is of the
same form ang is clearly completely additive on this extended system.
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The essential property of a measure is complete additivitthe 18
equivalent continuity conditions of Theordrh 2(a). ThusXif| X or

X, 1 X, thenu(Xn) — u(X), if Xo L 0, u(Xy) — 0 and ifX = 3 Xn,
1

u(X) = X u(Xn). In particular, the union of a sequence of sets of measure
1

zero also has measure zero. O

8. Classical Lebesgue and Stieltjes measures

The fundamental problem in measure theory is, as we haverkenha
already, to prove the existence of a measure taking assigpiads on
a given system of sets. The classical problem solved by Igeleeis
that of defining a measure on sets of points on a line in suchya wa
that every interval is measurable and has measure equa kenigth.
We consider this, and generalizations of it, in the lightref preceding
abstract theory.

It is no more complicated to consider measures in Euclidpanes
Rk than inR;. A set of points defined by inequalities of the form

a<x<hb(i=12..K

will be called arectangleand the union of a finite number of rectan-
gles, which we have called atementary figurewill be called simply a
figure Itis easy to see that the system of figures and complemefitgs of
ures forms a finitely additive system Rx. Thevolumeof the rectangle

defined above is defined to lﬁ(b. g). A figure can be decomposed

into disjoint rectangles in many fierent ways, but it is easy to verify
that the sum of the volumes of its components remains the ,daome
ever, the decomposition is carried out. It istgtient to show that this is
true when one rectangle is decomposed ta-be it is easy to show by
the same argument that the volume functigh) is finitely additive on
the systensg of figures and their complements.

Theorem 9. The functionu(l) (defined above) isompletelyadditive in
So.
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Proof. Asin TheorenlR, itis sflicient to show that ifl,} is a decreasing
sequence of figures ang — 0, thenu(l,,) — 0. If u(l,) does not> 0,
we can definey > 0 so thatu(l,) > § for all n and we can define a
decreasing sequence of figutés such thatlosureH, of H, lies in Iy,
while

0
lh,—H =
u(ln n)<2

It follows thatu(Hyp) = u(ln) — u(ln — Hp) > % so thatH,, and there-
fore H,, contains at least one point. But the intersection of a desing
sequence of non-empty closed séig)is non-empty, and therefore the
Hn and hence thé, have a common point, which is impossible since
Ih | 0. m]

The measure now defined by Theorgm 7 is Lebesgue Measure.

9. Borel sets and Borel measure

The sets of thaninimal Borel system which contains all figures are
called Borel sets and the measure which is defined by Thedraml[¥

is called Borel measure when it is restricted to these séis fdllowing
results follow immediately.

Theorem 10. A sequence of points inkRs Borel measurable and ha0
measure 0.

Theorem 11. Open and closed sets inkRire Borel sets.

(An open set is the sum of a sequence of rectangles, and adete
is the complement of an open set).

Theorem 12. If X is any (Lebesgue) measurable set, and0, we can
find an open set G and a closed set F such that

FcXcGuG-P)<e
Moreover, we can find Borel sets A, B so that
AcXcB,u(B-A) =0.

Conversely, any set X for which either of these is true is omahte.
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Proof. First suppose thaX is bounded, so that we can find a sequence
of rectangled,, so that

Xc 0 In,iy(ln) < u(X) + €/4.

n=1 n=1
Each rectanglé,, can be enclosed in an open rectangle (that is, a
point set defined by inequalities of the fran< x < b;,i =1,2,...,Kk,
k

its measure is defined to g (bj — a)Q, of measure not greater than
i=1

€
M(In)+m O

Then

© *© > > 1 €
X Q= QnuQ = D@ = Dl re ) 7 <u0)+ 5

ThenQ is open ang(Q — X) < €/2.

Now any setX is the sum of a sequence lobundedsetsX, (which
are measurable X is), and we can apply this eadt with 6/2"1 in-
stead ofe. Then

X = j;i Xn, Xn C (?n,:§3 Qn =G,
n=1 n=1

whereG is open and

€

G_XCQ(Qn—xn)’/l(e_x)Sgﬂ(Qn—Xn)Sni:; :%

2"+1

The closed sef is found by repeating the argument ¥rand com-
plementing.
Finally, if we seten| 0 andGy, F,, are open and closed respectively,

Fn C X C Gn, /.I(Gn - Fn) <€n

and we put

A:OFn, B:OGn,
n=1 n=1
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we see that
Ac XcB,u(B-A) < u(Gn—-Fp) <e, for all n,

and so
uB-A) =0,

while A, B are obviously Borel sets.
Conversely, ifu(P) < o and

FcXcgG,

We have, since a closed set is measurable, 22
H(P) = u(PF) + u(P - PF)
> u(PX) = u(P(X = F)) + (P~ PX)

> pu(PX) + u(P ~ PX) (X ~ F)
> u(PX) + u(P-PX)— u(G-F)
> u(PX) + u(P - PX)— €

true for everye > 0 and therefore

u(P) = u(PX) + u(P - PX)

so that X is measurable.

In the second cas¢ is the sum ofA and a subset dB contained
in a Borel set of measure zero and is therefore Lebesgue nabdsiy
the completeness of Lebesgue measure.

Itis possible to defined measures on the Borel se® in which the
measure of a rectangle is not equal to its volume. All thakisessary
is that they should be completely additive on figures. Messof this
kind are usually called positiv8tilties measureim Ry and TheoremiS11
and[I2 remain valid for them bitheoren_TI0 does noFor example, a
single point may have positive Stieltjes measure.

A particularly important case is= 1, when a Stieltjes measure can
be defined on the real line by any monotonic increasing fancH(X).
The figures | are finite sums of intervads< x < b andu(l) is defined
by

u(l) = (b —0)—¥(a ~ 0)).
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The proof of Theorem 9 in this case is still valid. We obsehat t 23
sinceﬁli%n 0 ¥Y(B) = ¥(b-0), itis possible to choosé so thaiB < b and

YB-0)-¥(@-0)> % [P(b-0)-¥(a-0)].

The set functioru can be defined in this way even(x) is not
monotonic. Ifu is bounded, we say that(x) is of bounded variation
In this case, the argument of TheorEm 9 can still be used teepiat
u is completely additive on figures. After the remark on caglid
of TheorenIB, we see that it can be expressed as fferatice of two
completely additive, non-negative functioms, —u~ defined on figures.
These can be extended to a Borel system of Xetd the set function
u = ut+u~ gives a set function associated witix). We can also write
Y(X) = ¥*(X) + ¥~ (X) where®*(x) increases¥ (x) decreases and both
are bounded i¥(X) has bounded variation.

A non-decreasing functioW(x) for whichW(—o0) = 0, ¥(c0) = 1 is
called adistribution function and is of basic importance in probability.

10. Measurable functions

A function f(x) defined inX and taking real values is calledeasurable
with respect to a measuge if e[ f(X) > K](e[P(X)] is the set of points
x in X for which P(X) is true) is measurable with respectitdor every
realk.

Theorem 13. The memorability condition

24 () e[f(x) > K] is measurable for all redd is equivalent to each one
of

(i) e[f(x) > K] is measurable for all re,
(iii) e[f(x) < K] is measurable for all red,
(iv) €[f(X) < K] is measurable for all re,

Proof. Since

[ee)

elf) 2K =( e [f(x) > k- —]

n=1
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(i) implies (i). Also

(o)

1
e[f(X) = K = Us[f(x) >kt -

n=1

bl

and so (i)implies (ii). This proves the theorem since (i)jaigalent with
(iv) and (ii) with (iii) because the corresponding sets asmplements.
m|

Theorem 14. The function which is constant & is measurable. If f
and g are measurable, so are+fg and f- g.

Proof. The first is obvious. To prove the second , suppbsg are
measurable. Then

e[f(X) +9(X) > K] = e[ f(X) > k—g(X)]
= Ue[F(X) > r > k—g(X)]

= Ug[f(x) >r]Nefg(x) > k—r]

the union being over all rationats This is a countable union of mea-
surable sets so thdit+ g is measurable. Similarly — g is measurable.
Finally

e[f(X)2 > K] = e[ f(x) > VK] +¢[f(X) < — VK] for k> 0

so thatf? is measurable. Since 25

100000 = (109 + 909)° ~ 7(F00 — g0
f - gis measurable. O

Theorem 15. If f, measurable for n= 1,2, ... then so ardim sup f,,
lim inf f,.

Proof. e[lim sup fa(X) < K]

= ¢[ fa(X) < k for all suficiently largen]
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(s
DX

e[ fn(x) < K]

N=1n=N

is measurable for all re& Similarly liminf f, is measurable. ]

In R,, a function for whiche[ f(x) > K] is Borel measurable for ak
is called aBorel measurable functioar aBaire function

Theorem 16. In R,, a continuous function is Borel measurable.

Proof. The set[f(X) > K] is closed. m|

Theorem 17. A Baire function of a measurable function is measurable.

Proof. The Baire functions form the smallest class which contaors ¢
tinuous functions and is closed under limit operations.c&ithe class
of measurable functions is closed under limit operationis, $uficient

to prove that a continuous function of a measurable, funéianeasur-
able. Then ifp(u) is continuous and (X) measurablee[o(f(X)) > K]

is the set ofx for which f(x) lies in an open Set, namely the open set
of points for whiche(u) > k. Since an open set is a countable union of
open intervals, this set is measurable, thus proving theréine. o

Theorem 18(Egordt). If u(X) < oo and f,(x) — f(X) # +oo p.pin X,
and if 6 > 0, then we can find a subset ¥f X such thaj(X - X,) < &
and f,(x) — f(x) uniformly in X,.

We write p.p for “almost everywhere”, that is, everywhergeot
for a set of measure zero.

Proof. We may plainly neglect the set of zero measure in wHiglx)
dose not converge to a finite limit. Let

Xn = €[] F(X) = fa(X) 1< 1/v for all > N].

Then, for fixedy,
Xny T XasN — oo

For eachv we chooseN, os thatX, = Xy, satisfies

ﬂ(x - XV) < 5/2V’
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and let X, = ﬂ X,

Then

X =Xo) < ) u(X=X,) <6
y=1
and | f(X) — fo(X) < 1/vforn> N,

if xisin x, and therefore i is in X,. This proves the theorem. 0O

11. The Lebesgue integral

Suppose thaf(x) > 0, f is measurable iX, and let 27
O=Y,<Yy1<Y2::- <Yy, >0
and E, =€ly, > f(X) <¥y41],v=0,1,2,...

so thatE is measurable and= 37, E,.
We call the set of thg,, {y,} subdivision.
Let

S =Sly} = ) ywu(E)).
y=1

Then we define suP for all subdivisions{y,} to be theLebesgue
Integral of f(x) over X, and write it f f(X)du. We say thatf(x) is
integrableor summablef its integral is finite. It is obvious that changes
in the values off in a null set (set of measure 0) have riteet on the
integral.

Theorem 19. Let {y¥},k = 1,2,... , be a sequence of subdivisions
whose maximum intervals

Sk = SUpX,; —¥) — 0 as k— oo
Then, if & is the sum corresponding tg‘;},

lim Sy = ff(x)dy - F(X).
X
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Corollary. Since & is the integral of the function taking constant val-
ues ¥ in the sets E, it follows, by leaving out suitable remainders
3% a1 YSU(EK), that F(X) is the limit of the integrals of simple func-
tions, a simple function being a function taking constanti@a on each
of a finite number of measurable sets whose unich is

Proof. If A < F(X), we can choose a subdivisid¢y(} so that ifE, are
the corresponding setS; the corresponding sum,

\Y%
SN
y=1

for a finite V. One of theu(E!) can be infinite only ifF(x) = o and
then there is nothing to prove. OtherwigdE,) < co and we let{y,}

be a subdivision withh = supf,.1 — y,) and denote bys” the sum
defined for{y,} and byS the sum defined for the subdivision consisting
of pointsy, andy,. SinceS’ is not decreased by insertion of extra points
of sub-division,

\%
S"28' 2 Y yuE)>A
y=1
\Y
while S"-S<6) uE)
1
and, by making small enough we geb > A. SinceS < F(¥) and
A < F(X) is arbitrary, this proves the theorem. m]

The definition can be extended to integrals over subXetd by

defining
F(X) = f f(xX)du = L fx(X)d,
X

where fx(x) = f(x) for xin x and fx(x) = 0 for xin X — X. We may
therefore always assume (when it is convenient) that integre over
the whole spacé.

The conditionf (X) > 0 can easily be removed.
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We define

f*(x) = f(x) whenf(x) > 0, f*(x) = 0 when f(x) <0,
f7(x) = f(x) whenf(x) <0, f7(x) = 0 whenf(x) > 0.

Thenf(xX) = f*(X) + f7(x),] f(X) |= f*(X) - (X).
We define

|tk = [ 0= [ £ 0opae
X X X

when both the integrals on the right are finite, so th@j is integrable
if and only if | f(X) | is integrable.

In general, we use the integral sign only when the integrarid-i
tegrable in this absolute sense. The only exception to thésis that
we may sometimes writf f(X)du = co when f(x) > —r(x) andr(x) is

X

integrable.

Theorem 20. If f(X) is integrable onk, then
F(X) = f f(X)du
X

is defined for every measurable subset X ahd is completely additive
on these sets.

Corollary. If f(x) > 0, then RY) < F(X)ifY c X
Proof. It is suficient to prove the theorem in the cabgX) > 0. Let

X = Z Xn where areX, are measurable and disjoint. Then{yif} is a
n=1

subdivision,E, = ¥ E,Xnu(E,) = 3 4 (E,X,) and

n=1 n=1

S= i yvu(E,) = i Yv i,u(van)
v=1

y=1 n=1
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whereS,, is the sum forf (x) over X,. SinceS andS,, (which are> 0)
tend toF(X) andF(Xy) respectively as the maximum interval of subdi-
vision tends to 0, we get

F(X) = f f(x)du = i F(Xn).
X n=1

Theorem 21. If ais a constant,

f af()du = a Xf F )y

X

Proof. We may again suppose thé{x) > 0 and thata > 0. If we use
the subdivisionly, } for f(x) and{ay,} for af (x), the sets€, are the same
in each case, and the proof is trivial. m|

Theorem 22.If A < f(X) < Bin X, then
Au(X) < F(X) < Bu(X).

Theorem 23. If f(x) > g(x) in X, then

xf F()t > Xf o)

Corollary. If | f(X) |< g(x) and (X) is integrable, then so is(k).
Theorem 24. If f(xX) > 0 andf f(X)du = 0, then f(X) = 0 p.p. in X.
X
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Proof. If this were not so, then

(o)

e[f(x)>0]=Ze[rllsf(x)<%

n=0

has positive measure, and hence, so has at least one $jpset
[A < f(x) < r—l]] Then

n+1 —
(En)
fodz | fodu =22 > 0
[ e |

n+1

which is impossible. O

Corollary 1. If f f(X)du = O for all X c %, f(X) not necessarily of the

K
same sign, then(k) = 0 p.p.

we have merely to apply Theordm 24 tp Xe [f(X) > 0] and to
Xo =€ [f(X) < 0].

Corollary 2. If [ f(x)du = [g(X)du for all X c X, then f(x) = g(X)
X X
p.p. If f(xX) = g(X) p.p. we say that f and g are equivalent.

12. Absolute Continuity

A completely additive set functiok(x) defined on a Borel system is
said to beabsolutely continuouwith respect to a measugeon the same
system ifF(X) — o uniformly in X asu(X) — 0. In other words, if
e> 0, we can findd > 0 so thatiF(X)| <e for all setsX which satisfy
u(X) < 6. In particular, ifF(X) is defined inR by a point functionF(x)
of bounded variation, then it is absolutely continuous,veg e > o we
can finds > 0 so that

3| - Fa| << if Yo~ ar) <5
=1 i-1
32
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Moreover, it is clear from the proof of Theord 3 that a setcfun
tion F(X) is absolutely continuous if and only if its componeRts(X),
F~(X) are both absolutely continuous. An absolutely continyaoisit
function F(x) can be expressed as théfdience of two absolutely con-
tinuous non-decreasing functions as we see by applying ththod
used on page 22 to decompose a function of bounded variatiomwo
monotonic functions. We observe that the concept of absalontinuity
does not involve any topological assumptionsXon

Theorem 25. If f(X) is integrable on X, then
F(X) = f F()du
X

is absolutely continuous.

Proof. We may suppose thd{(x) > 0. If e> 0, we choose a subdivision
{y, }so that

> yu(E) > F(X)- € /4

y=1
and then choos¥ so that

\%
> yu(E) > F(X)- € /2
y=1

Then, ifA> yy,1 andEp = g[f(X) > A]

we have E, c X — Eafory < V.
\% \%
Now FE-E0 > [ k> ) yu(E)
>F(X)—€/2
and therefore, F(Ea) <€ /2.

If X is any measurable set,
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F(X) = F(XEp) + F(X - Ep)
< ; + Au(X)(sincef (x) < Ain X — Ep)
provided thau(X) <€ /2A =6 m|
Theorem 26. If f(X) is integrable on X and XT X, then
F(Xn) = F(X).

Proof. If u(X) < oo this follows from Theoreni 25 and the continuity
of u in the sense of Theorel 2. Af{X) = ~,e> o0 we can choose a
subdivision{ y, } and corresponding subseis of X so that

D V(E)) > F(X)- €
v=1

(assuming that(x) > 0, as we may)
But

FOG) = 3 FOGE)
y=1

andF(X,E,) — F(E,) asnh — oo for everyv, sinceu(E,) < . Since
all the termsy, F(X,E,) are positive, it follows that 34

lim F(Xn) = i FE) = i you(Ey) > F(X)- €
y=1 v=1

SinceF(X,) < F(X), the theorem follows. ]

Theorem 27. If f(X) is integrable on X an&> 0, we can find a subset
X1 of X so thatu(X1) < oo, fx-xl | f(x) | du <€ and f(x) is bounded in
X1.

Proof. The theorem follows at once from Theorelm$ 25 add 26 since we
can takeX; ce [f(X) > yi1] and this set has finite measure since f(x) is
integrable. O
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Theorem 28. If f(X) and (X) are integrable or¥, so is f(xX) + g(x) and

f [£(0) + g(9]cht = f Fdh + f o).
X X X

Proof. Since| f(X) +g(X) I<| f() |+ 19(X) |< 2sup( f(X) [,]1 g(X)
we have

X

—2I f|f(x)|du+f|g(x)|dusz

[f1>Igl i<l

f|f(x)|du+2f|g(x)|du
X X

so thatf(x) + g(x) is integrable. After Theorem R7, there is no loss of
generality in supposing tha(X) < co. Moreover, by subdividing into
the sets (not more than 8) in whidl(x), g(x), f(X) + g(x) have constant
signs, the theorem can be reduced to the case in wifih> 0,g(x) > 0
and sof(x) + g(x) = 0in X. m|

f () + 000 | du <2 f sup( 109 11 90 ol
X

35 The conclusion is obvious if(x) is a constant > 0, for we can
then take as subdivisiongy,} for g(x) and{y, + c} for g(x) + c. In the
general case, if

E, = ely, < 9(X) < Y41l

1709+ g1ck = ) [ 1709 + g¥]cs. by Theoreni20

X v=0E,
> > [ s Y v,
v=0 g v=1

:ff(x)d,u+S,
E3
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and sincef g(X)du is sup s for all subdivision§y, }, we get

X
f [F(3) + g0 du > f F(X) + f A
X X X

On the other hand, > 0, and we consider subdivisions for which
V1 <€, Vi1 < (L+ €y, forv >, 1

we get

R CTED N R WA e
X v=0

v=0.. E,

< f F()du + (1+ €)S + yau(Eo)
X

< ! F(c + (1+ €) ! 909+ € ()

and the conclusion follows if we let— O.
Combining this result with Theorem21, we get

Theorem 29. The integrable functions ok form a linear space over R
on Whichf f(X)du is a linear functional.
X

This space is denoted Hy(X), and f(X)eL(X) means thatf(X) is 36
(absolutely) integrable ox.

13. Convergence theorems

Theorem 30 (Fatou's Lemma) If y(x) is integrable onX, and f(X),
n =1, ...are measurable functions, then

lim supf fa(X)du < f(lim sup fa(X))du if fo(X) < ¥(X),
X

X
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lim inf f fa(X)du > f(liminf fn(X))du if fa(X) > —y(X),
X X

As immediate corollaries we have

Theorem 31(Lebesgue’s theorem on dominated convergentfey(x)
is integrable onX, | fo(X) |< y(X) and

fa(X) = f(X) p.p. inX
then faX)du — | f(X)du
=]

In particular, the conclusion holds jf(X) < o« and the f(x) are
uniformly bounded.

Theorem 32(Monotone convergence theoren) y(x) is integrable on
X, fa(¥) = —y(X) and {(X) is an increasing sequence for each x, with

limit f(X) then
lim | fa09du = [ (9
o]

in the sense that if either side is finite, then so is the otimer the two
values are the same, and if one side-t®, so is the other.

Proof of Fatou’s lemma

The two cases in the theorem are similar. It iffisient to prove
the second, and sindg(x) + y(x) > 0, there is no loss of generality in
supposing thag(x) = 0, fa(X) > 0,

Let f(x) = liminf f,(X) and suppose tha}ﬁ{ f(X)du < oo. Then
after Theoreni 47, givea> 0 we can definé; so thatu(X;) < o and
e> L_Xl f(X)du while f(x) is bounded inX;.

A straight-forward modification of Egoftis theorem to gether with
theorenZb shows that we can find a ¥gtc X; so that

f f(X)du <€
X1—Xo
while fa(X) = f(X)— € /u(X1)



13.. Convergence theorems 33

for all xin X2 andn > N. Then

! fo(X)d > fx 2 fo(X)d > fx 2 f(X)du— €

zfxf(x)dy—3e forn>N
X

and our conclusion follows.

If
f f(X)du = oo
X

it follows from the definition of the integral tha& > 0, we can define
¢(X) € L(¥) so that

f e(X)du > A, 0< (X < f(X
X

The argument used above now shows that 38
f fa(X)du > fgo(x)d,u -3e>xA-3¢
E3 X

for sufficiently largen, and hence
lim inf ffn(x)dp = oo.
X

Restatement of Theorerhs] 31 32 in terms of series, rdther t
seqguences given us

Theorem 33. (Integration of series) If g(X) is measurable for each n,

u() = > un(¥), then
n=1

| aa - i’{ J (X

X
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n
provided that Z u,(X) |< y(x) forall N and x,y(xX) € L(X).
y=1
The equation is true if4{X) > 0, in the sense that if either side is

finite, then so is the other and equality holds, while if giside isco so
is the other.

Theorem 34. (Differentiation under the integral sign)
If f(x ) is integrable in a< x < b in a neighbourhood of ¥ vy,

and if

exists in a< X < b, then

d 2 2 of
dyoff(x,y)dx:fayodx
a a

o

provided that

‘ f (XY +h) - f(XY,) < y(X)sL(a, b)

h

for all syficiently small h.

This theorem follows from the analogue of Theorgm 31 wnitie-
placed by a continuous variakthe The proof is similar.

14. The Riemann Integral

If we proceed to define an integral as we have done, but restdcset
function to one defined only on finitely additive system of sets (we
call this set function “measure” even now), we get a theotyictv in
the case of functions of a real variable, is equivalent tbdh&iemann.
It is then obvious that aR-integrable function is alst-integrable and
that the two integrals have the same value.

The more direct definition of th&-integral is thatf(x) is R-inte-
grable ina < x < bifitis bounded and if we can define two sequences
{on(X)}, {un(X)} of step functions so that,(X) T, ¥n(X) |, for eachx,
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en(X) < f(X) < ¥n(X), fb(zpn(x) — ¢n(X))dx — 0 asn — oo since lim

a
en(X) = limYy(x) = f(X) p.p., it is clear thatf (x) is L-integrable and
that itsL-integral satisfies

b

fb (3= im_ [ a9 fim fb Un()lx

a

and the common value of these is the R-integral. The follgvignthe
main theorem.

Theorem 35. A bounded function ifa, b) is R-integrable if and only if 40
it is continuous p.p

Lemma. If f(X) is R-integrable ande> 0, we can defing > 0 and a
measurable set Hn (a, b) so that

u(Eo) > b—a-€,
[f(x+h) - f(X)| <e for xe Eg, x+he (ab),|h <é.

Proof of Lemma: We can define continuous functiopgx), ¢(X) in a
< X< bso that

() () < f(¥) <y(¥),a<x<b

b
(i) [W0) - e())dx<e? /2

If Epis the setin b) in which y(X) — ¢(X) <€ /2 it is plain that
u(Ep) > b—a- € . For otherwise, the integral in(ii) would exceetl /2.
By uniform continuity ofe(X), ¢(X), we can definé = 6(€) > 0 so that

Y(x+h) — ()1 < €/2 lp(x+h) - (X)) < €/2

for x, x+ hin (a, b), |h < 6.
Then, ifxis in Eg, x+ hisin (a,b) and|h| < 6

f(x+h) = £ < g(x+h) = o(x) = ¥(X) = e(X) + ¥(x+h) —y(x)
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<e€/2+¢€/2=¢

and similarly f(x + h) — f(X) > —e¢, as we require.
Proof of Theorem 35

If f(X)is R-integrable, let

(o8]
e>0,en> 0, Z En<E,
n=1

and define measurable s&gin (a, b) by the lemma so that

u(En) > b—a— €, [f(x+h) — f(X)| <€, for xeEn,
IN[ < 6, On = Sn(en) > 0.

LetE* = N Ep, so that
n=1

u(E") zb—a—Z en>b-a-e¢

Since f(X) is continuous at every point d&* and € is arbitrarily
small, f(x) is continuous p.p.

Conversely, suppose théfx) is continuous p.p. Then # > 0 we
can defineeg so that

u(Eg) > b—a-eands > 0so that
[f(x+h) — f(X)| <e for xeEp, |h| < ¢

If now we divide @, b) into intervals of length at mosgtthose which
contain a point oEq contribute not more than 2 (b — a) to the difer-
ence between the upper and lower Riemann s8msfor f(x), while
the intervals which do not contain points Bf have total lengthe at
most and contribute not more thare2Vl whereM = sup|f(x)|. Hence

S-s<2e(b-a)+2eM

which can be made arbitrarily small.

41
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15. Stieltjes Integrals

In the development of the Lebesgue integral, we have asstimethe
measureu is hon-negative. It is easy to extend the theory to the case in
whichu is the diference between two measurgsandu~ in accordance
with TheoreniB.In this case, we define

fﬁ f()du = f‘ﬁ(f(x)dy+ —fﬁ F(¥)d(=p0),

when both integrals on the right are finite, and sinte@ndu~ are mea-
sure, all our theorems apply to the integrals separatelytizrafore to
their sum with the exception of Theoreind 3,122,030, 32hick
the sign ofu obviously plays a part. The basic inequality which takes
the place of Theore P2 is

Theorem 36. If u = u* + u~ in accordance with Theoref 3, apd =

ut —u~then
f e f (01

[The integral on the right is often ertteﬁﬁlf(xﬂ |dul.]

Proof.

| f (| =| f 19 = 110

<| f 19|+ f (1)
f [ (d* + f 1 (9ld(—4)

- f (0l = f 101 [dl.
= =

We shall nearly always suppose thas a measure with > 0 but it 43
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will be obvious when theorems do not depend on the signasfd these
can be extended immediately to the general case. When wenitbal
inequalities it is generally essential to restrigtto the positive case (or
replace it byu). m|

Integrals withu taking positive and negative values are usually called
Stieltjes integrals If they are integrals of function§(x) of a real vari-
able. x with respect tqu defined by a functiog(x) of bounded variation,

we write
f(X)dy(x) for f(X)du,
xf xf

and if X is an interval &, b) with y(x) continuous aa and atb, we write
it as

b
f F()d W(x).

In particular, ify(X) = X, we get the classical Lebesgue integral,
which can always be written in this from.

If ¥(X) is not continuous at or atb, the integral will generally
depend on whether the interval of integration is open oretlas each
end, and we have to specify the integral in one of the four form

b+0
f Fdy (%)

Finally, if f(X) = F1(X) + ifa(X), (f1(X), fo(X) real) is a complex
valued function, it is integrable if; and % are both integrable if we

define
f(X)du = f.0)du + i f2(X)du.

The inequality
Uf(x)dy sflf(X)l | cu |
X

X
(Theoreni3b) still holds.
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16. L-Spaces

A setL of elementsf, g, ... is alinear space over the fiel® of real
numbers (and similarly over any field) if

(1) Lis an abelian group with operation denoted+hy

(2) o f is defined and belongs tofor any« of Rand f of L.

@3) (@+p)f = af +pf
@) a(f +g) = af +ag
(5) aBf) = (ep)f

6) Lf = f.

A linear space is topological linear space if
(1) Lis atopological group under addition,

(2) scalar multiplication byr in Ris continuous in this topology is a
metric linear spacdf its topology is defined by a metric.

It is a Banach space if

(1) L is a metric linear space in which metric is defineddgy, g) =
||f — gl where thenorm||f|| is defined as a real number for 4l
of L and has the properties

||f]l = 0ifand only if f = 0, ||f|| > 0 always 45
llefll =l a | [Ifll, If +all < IIfll +llgll

and

(2) Liscomplete That is, if a sequencé, has the property théitf,, —
frll @ 0 asm, n — oo, then there is a limitf in L for which
|Ifn — fll = 0. A Banach spack is called aHilbert spaceif and
inner product {, g) is defined for everyf, g of L as a complex
number and
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(1) (f,9g)is alinear functional inf and ing
@ (f.9=("
3) (f, f) =lIfII?

Two point f, g areorthogonalif (f,g) = O, It is obvious that the
integrable functiond (x) in X form a linear spacé&(X) on which
f f(X)du is a linear functional. Ifp > 1 the space of measurable

ES
functions f(x) on x for which | f(x) P is integrable is denoted by
Lp(¥) and we have the fallowing basic theorems.

Theorem 37. (Holder's inequality; Schwartz’ inequality iffR)
fp>12%+ % = 1, f(x) € Lp(X) then

p
1/p
< f(X)Ipdu] [ |g(x)|p’du]
[rova] |f

If p =1, [f | g(x) |” d,u) 1P is interpreted as the essential upper

1/p

| ! (0909

X
bound of @x) that is, the smallest number for which| g(x) |[< A p.p
Theorem 38.1f q = p > 1andu(y) < oo, then
Lq(¥) € Lp(X).

If 1(X) = oo, there is no inclusion relation between,lLq. For the proof
we merely apply Holder’s theorem witlix) ,g(x), p replaced byf (x)|P,

1, 5 respectively.

Theorem 39(Minkowski’'s Inequality)
If p>1and||f|| = ([ |f(x)IPdw)*P, then

It +all < IIfll +lgll

For the proofs see Hardy, Littlewood and Polya: Inequatitie

Theorem 40. If p > 1, Lp(x) is complete. (the case $ 2 is the Riesz-
Fischer theorem).
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Proof. We support thap < o« and that
Ifa — fmll > 0 @as mn — oo,

(in the notation introduced in Theordml 39) and defige> 0 €| 0 so

that}, Ax < oo and ) (ex /AP < oo.
We can choose a sequercg} so thatng, 1 > ng and

Ifn, — fmll <ex for m> ng

and in particular

||fnk+1 - fnkH < €.

Let Ex be the set in whichfy, ., (X) — fn (X)] < Ax. m|
Then

P> f s (0 = (91 Pt > f o () = fo (01 P
X X-Ex
> APp(X - Ey),

so thatu

(= ek)] — 0 asK — oo since(ex /AP < oo.
K

Sincef,, (X) tends to a limit at every point of each $atEy (because
K

2 A < 00) , it follows that f,, (X) tends to a limitf (X) p.p.
Also, it follows from Fatou’s lemma that, sinddp,|l is bounded,
f(x) € Lp(¥) and that

Ifne — f|| >k |Ifnk — f|l = 0 as k— oo

Since||fnk — fmll @ 0as km — oo it follows from Minkowski's
inequality that f,, — f|| > 0 as m— oo.

If p= o0, the proof is rather simpler.

From these theorems we deduce
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Theorem 41. If p > 1, Ly(X) is a Banach space with

1/p
11 =[f|f(x)|p du]

X

L, is a Hilbert space with

(f.9) =ff(x) a0 du
X

The spaces , generally have certain separability properties related
to the topological properties (if any) &f.

A function with real values defined on an additive systmtaking
constant values on each of a finite number of setSqydfl called astep
function

Theorem 42. The set of step functions (and even the sets step function
taking relation values) is dense i, ffor 1 < p < co. If the Borel system

of measurable sets iis generated by a countable, finitely additive sys-
tem S ,then the set of steps functions with rational values is tatla

and L, is separable.

The proof follows easily from the definition of the integral.

Theorem 43. If every step function can be approximated ig(¥) by
continuous functions, the continuous functions, are denkg(X), (as-
suming of course thdf) is a topological space).

In particular, continuous functions inJare dense in (R,). Since
the measure in Rcan be generated by a completely additive function
on the finitely additive countable system of finite unionseofangles
a < X < b, and with g by rational their complements, J(R,) is
separable.

We have proves in Theordml 25 that an integral over an arhjtrar
set X is an absolutely continuous function of X. The follgwheorem
provides a converse.
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Theorem 44. (Lebesgue for R Radon-Nikodym in the general case)
If H(X) is completely additive and finite fhand if X has finite mea-
sure or is the limit of a sequence of subset of finite measuee, t

H(X) = F(X) + Q(X)
where RX) = f F(X)du, F(X) € LX)
X

and Q is a (singular) function with the property that theraisetX of
measure zero for which

0 < Q(X) = Q(X.Xy)

for all measurable X. Moreover(KX), Q(X) are unique and X) is
unigue up to a set of measure zero.
In particular, if H(X) is absolutely continuous, &) = 0 and

H(X) = F(X) = f F(X)du, F(X) € LX)
X

In this case, €x) is called the Radon derivative of(K) = F(X)

Proof. We assume that(X) < co. The extension is straightforward.
By TheorenB, we can suppose ti#tX) > 0. let® be the class of
measurable functioé(x) with the property tha#(x) > 0,

f 9(x)du < H(X)

for all measurabl&. Then we can find a sequeni@g(x)} in ® for which

f@n(x)d,u —> su pf@(x)d,u <H®X) <o
X 0e® Jx

If we defined,(X) = suk(x) and observe that 50

k<n
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X = U X.e[0r(X) = 0k(X)]
k=1

we see tha#,(x) belongs to®. Sinced; (x) increases witm for eachx,
it has a limitf(x) > O, which also belongs t® ,and we can write

F(X) = L f(X)du < H(X), Q(X) =H(X)-F(X) >0

while
(1) [ f(9du = Supe [, 6 < co.
Now let X
Qn(X) = Qx) - A&

n
and letx/, X;, be the sets defined by Theor€im 3 for which

Qn(X) > 0if X c X}, Qn(X) <0if X C X
Then,

H(X) > F(X)+‘@ = fx(f(x)+ %)d,u if X c x;

and if
l +
f(X) = f(X) + - for x € X,
f(x) = f(x) for x € X;\,

it follows that f (x) be longs td®, and this contradicts(1) unlegéx;) =
0. Henceu(X}) = 0 andQ(X) = 0 if X is disjoint from

which has measure zero.
To prove unigueness, suppose that the decomposition caratie m
in two ways so that

H(X) = F1(X) + Q1(X) = F2(X) + Q2(X),
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where F1(X), Fo(X) are integrals and1(X), Q»(X) vanish on all sets
disjoint from two sets of measure zero, whose urigalso has measure
zero. Then

F1(X) = F1(X = XXs), F2(X) = F2(X - XXs),
F1(X) = F2(X) = Q2(X — XXg) — Q1(X = XXs) = 0.

Theorem 45. If ¢(X) is absolutely continuous i¥ and has Radon
derivativep(X), with respect to a measugenX,then

£ F(x)dg = ﬂ (X)X

if either side exists.

Proof. We may suppose thdix) > 0, ¢(x) > 0, ¢(X) > 0, Suppose that

j; f(X)d < oo

Then, it follows from Theorei 27 that we may suppose #fa) <
oo. If & > 0, we consider subdivisiony, } for which

Yi<eV1<A+ey(v>1)

so that
5= 0o (E) < [ 1090
y=1 x
< Z yv+l(D(E)
v=0
< (1+ €)s+ € D(X)
But 52

L [CIELTEDY fE 190090k
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by Theoreni20, and
Y O(E,) < fE £ (Xt < Yor 1 D(E,)
by Theoreni 2R, and therefore we have also

s< f f(X)p(X)du < (1+ €)s+ € O(X).
X
The conclusion follows on letting— 0 m|

Moreover the first part of this inequality holds evenﬁff(x)dy =
o0, but in this casesis not bounded and since the inequality holds for
all s,

f f(X)p(X)du = co.
X

17. Mappings of measures

Suppose that we have two spacgsx* and a mapping< — X* of X
into X*. If S is a Borel system of measurable sets X with a meagure
in X, the mapping induces a Borel syst&hof ‘measurable’ setX* in
X*, these being defined as those s€tfor which the inverse images
in X are measurable, the measwieinduced byu on s« being defined
by u*(X*) = u(x) whereX is the inverse image of*.

If the mapping is (1-1), the two spaces have the same prepeofi
measure and we call the mapping a measure isomorphism.

Theorem 46 (Change of variable)If the measureu, ¢* in X and X*
are isomorphic under the (1-1) mapping % X* of X onto X* and if

f*(x*) = f(x) then
L f(X)du = j; )

The proof is immediate if we note that the setsandE*, defined in
X andX* respectively by any subdivision correspond under the nmappi
X — X* and have the same measuréE,) = u*(E*,).

As an immediate corollary of this theorem we have
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Theorem 47. If «(t) increases for A<t < b anda(A) = a,a(B) = b
and Q(x) is of bounded variation in & x < b, then

b B
fa f(X)dG(X) = j; f ((1))dG(a(t)).

f  Hdx = f ” fa(®)da(t)
a A

and, ifa(t) is absolutely continuous

In particular

f  Hoodx = f  f ) ()t
a A

18. Differentiation

It has been shown in Theordm] 44 that any completely additideahso-
lutely continuous finite set function can be expressed aththantegral
of an integrable function defined uniquely upto a set of memagero
called its Radon derivative. This derivative does not ddpgmon any
topological properties of the spade On the other hand the derivatives4
of a function of a real variable is defined, classically, agratlin the
topology of R. An obvious problem is to determine the relasitip be-
tween Radon derivatives and those defined by other meansons&ler
here only the cas& = Rwhere the theory is familiar (but not easy). We
need some preliminary results about derivatives of a fongii(x) in the
classical sense.

Definition. The upper and lower, right and left derivatives ofdrat x
are defined respectively, by

D*F = lim Supw
h—+0

h

D.F = lim inf w
h—+0 h

D F = lim sup w
h—-0 h
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D_F = lim inf w
h—-0 h

PlainlyD,F < D*F,D_.F <D F.IfD,F=D*ForD_F=DF
we say thaf(X) is differentiable on the or on the left, respectively, and
the common values are called the right or left derivatives,F’. If
all four derivatives are equal, we say tHatx) is differentiable with
derivativeF’(x) equal to the common value of these derivatives.

Theorem 48. The set of points at which’Fand F_ both are exist but
different is countable.

Proof. Itis enough to prove that the sEtof pointsx in which F’ (X) <
F’ (X)is countable. Lety,r»... be the sequence of all rational numbers
arranged in some definite order. Xfe E let k = k(X) be the smallest
integer for which

F'_(X) <rk < FL.(X)

Now letm, n be the smallest integers for which
F(0) -F(¥

fm< X———=<rgforrm< <X

FO-F(
- X

> >reforx< <y

O

Every x defines the triplek; m, n) uniquely, and two numbers; <
X2 cannot have the same triplle (n, n) associated with them. For if they
did, we should have
'm<Xg < X2<TIp

and therefore

F(x) - FOe) <ry from the inequality

X1 — X2
. F(x1) — F(x
while M <rx from the second
X1 — X2

and these are contradictory. Since the number of triptes,() is
countable, so i&.
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Theorem 49 (Vitali's covering theorem) Suppose that every point of
a bounded set E of real numbers (not necessarily measurabtn-
tained in an arbitrarily small closed interval with posiévength and
belonging to a given family V. Suppose that G is an open sdhicing

E and thate> 0.

Then we can selectfaite numberN of mutually dis joint intervals
|, of V so that each, lies inG and

N N
2 Hn)= €< p(E) S p(E ) ln)+ €.
n=1 n=1

(u standing of course, fasuter measure).

Proof. If e> 0, it is obviously enough, after Theordml 12, to prove the
theorem in the case(G) < u(E)+ €. We may also suppose that all the
intervals ofV lie in G. O

We define a sequence of intervaisl,... inductively as follows.
I; is an arbitrary oV containing points oE. If I1,1»..., 1, have been
defined, let } be the upper bound of lengths of all the intervalsvof
which contain points oE and which are disjoint frony + o + - - - + Ip.
Then, since théy are closed, 1> O unlesd; + 1o +---+ 1, D E. Now
definel,,1 so that it is an interval of the type specified above and so that
Ans1 = plne1) > :‘2L1n-

Thenly, 1 is disjoint fromly + - - - + I, and

S:ilnCG.
n=1

Suppose now thak = E—SE u(A) > 0. LetJ, be the interval with
that same centre ds and 5 times the length of. We can then choose
N so that S7

(o)

S a0 =5 ) ulle) < (A,

n=N+1 n=N+1
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since 3 u(ly) < u(G) < u(E)+ e< oo andu(A) > O. It follows that

n=1
,u[A—A U Jn}>0

n=N+1

and thatA—- A |J J, contains at least one poigit Moreover, since
n=N+1
N
& does not belong to thelosedset Y I,,, we can choose fronv an
n=1
interval | containingé and such that. I, = 0forn=1,2...,N. On

the other handl.I,, cannot be empty for alt > N + 1 for, if it were, we
should have
0<pu(l) 21 <2041

for all n < N + 1 and this is impossible sincg, — 0 (for §/ln =
ioj,u(ln) < u(G) < ). We can therefore define, > N + 1 to be the
slmallest integer for which.l,, # 0. But

l.I,=0forn<n, -1
and it follows from the definition of 1that

O0<A<1y 1 <24,

Hencel, and therefore, is contained inJ,, sinceJ,, has five times the
length ofl,,, andl.l,, # 0.
This is impossible sincé belongs tcA-A |J Jpandn, > N+ 1.

n=N+1
Hence we must have

HA) =
andu(ES) = u(E), Z u(ln) < p(G) < u(BE)+ €.

We can therefore chood¢ as large that

N N
D )= e< u(E) < p(E ) In)+
n=1 n=1
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Theorem 50. A function FX) of bounded variation is gferentiable p.p.

Proof. It is suficient to prove the theorem whét(x) is increasing. We
prove thatD*F = D, F p.p. The proof thaD™F = D_F p.p. is similar,
and the conclusion then follows from TheorEn 48.

The set

e[D*F > D,F] = | | €[D*F > 11> 15 > D,F]

r1,r2

Where the union is over the countable pairs of rational,.
Hence, if we suppose thaie [D*F > D,F]) > 0 we can find
rationalsry, ro such that

D*F>ry>r,>D.F

in a setk of positive outer measure. Then every poirdf E is the left
hand end point of an intervak(r) such that

F(m) - F(X) < (- xrz

and we may suppose that— x is arbitrarily small. It follows from 59
Vitali's theorem that we can define a $€tconsisting of a finite number
of such intervals so that

H(E.K) > pu(K)- €
While the incremenE (K) of F(X) over the intervals satisfies
F(K) < I'z,u(K).

But every pointx of EK, with the exception of the finite set of right
hand end points oK, is the left hand end point of an arbitrarily small
interval (x, &) for which

FE) -F() = (E-Xr1.

If we now apply Vitali's theorem to the intersection Bfand the
set of interior pints oK (Which has the same measureEs), we can
construct a finite set of interval§’ so that

K" c K,u(K") > u(EK)- € u(K) - 2 €,
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while the incremenE (K’) of F(X) over the interval&’ satisfies
F(K’) > rau(K’).
SinceF(K’) < F(K), we get
rop(K) > rap(K’) > r1(u(K) - 2 €),

which gives a contradiction ¥ is small enough. Hence we must have
u(E) = 0 and the theorem is proved. m|

Theorem 51. If F(x) increases and is bounded inax < b and if F(x)

is its derivative, then KX) is non-negative p.p, integrable {@a, b) and
satisfies

b
f F'()dx < F(b) - F(a)

Proof. Since XN-FX > 0 for h # ot follows that

h) —

F'(X) = lim
(X) hl—>0

It follows now from Fatou’s lemma that & > O,

0-0 ) _
f F’(x)dx < lim inff wdx
a h—0 a h

o 1 b+h-6 1 b
:HTolnf{E£+h F(x)dx—ﬁfa F(x)dx}

o 1 b+h-¢ 1 a+h
= lim inf {H j;_é F(x)dx— ﬁfa F(x)dx}
< rI1i£>nc)[F(b +h-96) - F(a)]
< F(b) - F(a)

sinceF(X) is increasing. m|
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Theorem 52. IF f(X) is integrable in(a, b) and
X
F(X) = f f()dt=0fora<x<b
a

then f(x) = 0 p.p.

(This is a refinement of corollafd 1 of Theordml 24, since the-ca1
dition here is lighter than the condition that teet function F(X) =
fx f(t)dt should vanish for foall measurable X

Proof. Our hypothesis implies thd(X) = 0 for all open or closed
intervals X and therefore, sincé(X) is completely additived=(X) = 0

for all open setX every open set being the sum of a countable number
of disjoint open intervals. But every measurable sétie sum of a set

of zero measure and the limit of a decreasing sequence ofsmisrby
TheorenIR, and therefofe(X) = 0 for every measurable s& The
conclusion then follows from corollafy 1 to Theor&n 24. ]

Theorem 53(Fundamental theorem of the calculus) (i) If F(X) is
an absolutely continuous point function an@x is the Radon
derivative of its associated set functiorf>X§ (which is also ab-
solutely continuous ; see page 30) the(xHs differentiable p.p
and

F'(X)=f(X)p.p

(i) If f(x)eL(a, b) then Hx) = fax f(t)dt is absolutely continuous and
F'(} = f(x) p.p

(iii) If F(x) is absolutely continuous in| x < b, then F is integrable
and

F(x) = fXF’(t)dt+ F(a)

Proof. (i) We may suppose thd(x) increases and thadt(x) > o. If
A > 0, let fa(x) = min[A, f(¥)],Fa(x) = [ fa(®)dt, wheref(x) is the 62
Radon derivative oF (X) andF(X) = fax f(t)dt. O
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Then sincefa(X) is bounded it follows from Fatou’s lemma that

f " FL(t)dt = f " im Falt+h) = Fa®) o,

h
I|m supf Falt+ h) — I:A(t)dt

= LiTOsup{%f Fa(t)dt - —f FA(t)dt

= Fa(X) = Fa(@) = Fa(X)

sinceF A(t) is continuous. Sincé(t) > fa(t) it follows thatF () > FA)
and therefore

fx F'(t)dt > fx F:A(t)dt > Fa(X)

This holds for allA > 0 and sincd=a(X) —» F(X)asA— oo by
Theoren3M, we deduce that

faXF'(t)dtz F(X) = fax f(t)dt.

Combining this with Theorefi 0 we get

f X(F'(t) — f(t))dt=0

for all x, and the conclusion follows from Theordém 51
Parts(ii) and (iii) follow easily form(i). If we did not wisho use
63 the Radon derivative, we could prove (ii) and (iii) with thelf of the
deduction from Vitali's theorem that iF(X) is absolutely continuous
andF'(x) = 0 p.p thenF(X) is constant

Theorem 54(Integration by parts)If F(x), G(x) are of bounded varia-
tion in an open or closed interval J and

F(X) = %[F(x —0)+ F(x+ 0)],G(x) = %[G(x— 0) + G(x + 0)],

then

j;F(x)dG(x) = L[F(X)G(X)] - j;G(x)dF(x).
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In particular if F(X), G(X) are absolutely continuous then,

b b b
LF(x)G”(x)dx:L[F(x)G(x)]—j; F'(x)G(x)dx

Proof. We may suppose that F(x), G(x) increase on the interval aad ar
non - negative and define

Al) = fIF(X)dG(X) +fG(X)dF(X) - I[F(X)Gﬂ

for intervalsl c J. ThenA(l) is completely additive and we shall prove
thatA(l) = O for all | m|

Suppose first thdt consist of a single poird. Then

A(l) = F(@)[G(a+0)-G(a-0)] + G(@)[F(a+0)- F(a-0)]
-F(@+0)G(a+0)+ F(a-0)G(@a-0)
=0

since F(a) = F(a+ 0)+ F(a-0), 2G(a) = G(a+ 0) + G(a- 0).
Next if | is an open intervah < x < b,

A(l) < F(b - 0)[G(b - 0) - G(a + 0)]G(b — O)[F(b - 0) - F(a + 0)]
— F(b-0)G(b-0)+ F(a+ 0)G(a+0)
= (F(b- 0) - F(a+ 0))G(b - 0) — G(a + 0)),
= F(NG(I)

whereF(l), G(I) are the interval functions defined by F(x),G(x), angh
similarly
A(l) = =F(1)G(I)so that| A(l) |>= F(1)G(I)

Now, any interval is the sum of an open interval and one or b e
points and it follows from the additivity ok(l), that

| A() 1< F(DG(D).
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for all intervals. Lete> 0. Then apart from a finite number of points at
which F(x+ 0) - F(x - 0) >¢, and on whichA = 0, we can dividd into
a finite number of disjoint intervals, on each of which-(1,)) <e . Then

[AQ) =1 A (D 1a) 1=1 ) Alln) 1= ) F(I)G(In)
<€ > G(ln) =€ G(1).
The conclusion follows on letting— 0.

Theorem 55(Second Mean Value Theorem) (i) If f(X) € L(ab)
and ¢(X) is monotonic,

b s b

f dx = 0 f(x)d b-0 f(x)d
fa ()6(x)dx = g(a+0) f (x)dx+ (b - 0) L (x)dx
forsomefina< & <h.

(i) If () > 0andg¢(x) decreases in& x < b,

fb f(X)e(X)dx = p(a+ O)f f(x)dx

for somet,a< £ <b.
Proof. Suppose thap(x) decreases in (i), so that, if we p&(x) =
[ f(t)dt, we have
b-0

b
fa F()0()dx = 29F ()#()] ~ f F(9d(x)

a+0

b
=¢>(b—0)fa f(x)dx+ [¢(a+ 0) - ¢(b - 0)]F(£)

by Theoren{2R2 and the fact thk{x) is continuous and attains every
value between its bounds at some pdiinta < £ < b. This establishes
(i) and we obtain (ii) by defining(b + 0) = 0 and writing

b b+0 b+0
fa F()o(x)dx = f IFOI00] - f F(9de(x)

a+ a+0

=p(@a+0)F(¢) witha<é<h.

A refinement enables us to assert that & < b in (i) and that
a< ¢ <bin(ii). i
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19. Product Measures and Multiple Integrals

Suppose that, X’ are two spaces of points X'. Then the space of pairs
(%, X) with xin X, X' in X is called theproduct spacef X andX’ and is
written XxX’.

Theorem 56. Suppose that measuresu’, are defined on Borel systems
S, S of measurable sets X,”¥n two spacest, X respectively. Thené6
a measure m can be defined ¥xX’ in such a way that, if X, Xare
measurable irk, X’ respectively, then XXXs measurable ikxX’ and

M(XxX) = u(X).4"(X')

(The measure mis called the product measugearidy’). The idea
of product measures is basic in the theory of probability meliis vital
to observe that the product measure is not the only measuehwhn
be defined inExx’.

Proof. We define aectangularset inX¥xX’ to be any seXxX with X
in S, X’ in S and we define its measum(XxX) to be u(X) - u’'(X’).
(An expression of the form O is taken to stand for 0). We call the
sum of a finite number of rectangular seffigarein XxX’ and define its
measure to be the sum of the measure of disjoint rectangetidich
goto form it. It is easy to verify that this definition is indmpdent of the
decomposition used and that the figures and their complenfiem a
finitely additive system on which their measure is finitelylitiste.

After Kolmogordi’'s theorem (Theorerl 7), it s fiicient to show
thatmis completely additive on figures. Suppose that

i XnXX), = XoXxXj
n=1

where the sets on the left are disjoint.xIfs any point ofXo, let J/,(X)

be the set of pointx’ of X[ for which (x, X') belongs toX,xX;. Then
Jn(X) is measurable i’ for eachx, it has measurg’(Xy) whenxisin 67
Xn and 0 otherwise. This measyg(J,(x)) is plainly measurable as a
function ofx and

fx W00V = (Xt (X0)
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N
Moreover, 3 Jr(X) is the set of points x oK, for which (x, X’)
n=1

N
belongs to}, X xX,. It is measurable and

n=1

N N
f I {Z Jn(X)} du = D" (Xl (X):
Xo n=1 n=1

But sinceXoxX, Y, XnXX, it follows that
n=1

N
I\!im Z Jh(X) = X for every x ofXo,
n=1

= u(Xp) for every x ofXo.

N
and therefore N lim’ lz Jn(X)
—00 n:l

It follows from Theoreni-32 on monotone convergence that

N N
H(Xo)' (Xg) = lim f W [Z Ja(x)]du = > KOG OK)
7% I n=1 n=1

and so M(XoXXg) = Z M(XnXX;)

n=1

which completes the proof. i

68 Theorem 57. Let X, X" be two measure spaces with measurgs re-
spectively such tha¥(X’) is the limit of a sequencgXs}({X},}) of mea-
surable sets of finite measugXy)(1’(X)). Let Y be a set imkx¥’
measurable with respect to the product measure m defineddy Let
Y’(X) be the set of points’»x X’ for which(x, X') € Y. Then Yis mea-
surable inX’ for almost all xe X, its measure:/’(Y’(X)) is a measurable
function of x and

ﬁ WY ()t = m(Y).
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Proof. We note first that the theorem is trivially true¥fis a rectangular
set and follows immediately i¥ is the sum of a countable nhumber of
rectangular sets. Further, it is also true for the limit ofexmr@asing
sequence of sets of this type. In the general case, we cansetat

YcQQ-YcT

wherem(I') = 0 andQ, T are limits of decreasing sequence of sums of
rectangular sets. Then, @ (x), I'(x) are defined in the same way as
Y (X) we have

Y'(x)cQ(x),Q(x)-Y cI'(x

wherel”(x), Q'(X) are measurable for almost all But
[ o= mry =0

so that’ (I (X)) = 0 for almost allx sincei’ > 0, and this is enough to
show thatY’(x) is measurable for aimost atland that

#(Y'(X) =1 (Q ()p.p.

Finally, 69
f W (Y (0)u = f 1 (QUO)d = M(Q) = m(Y).
X X

Theorem 58 (Fubini’'s theorem) Supposek, X~ satisfy the hypotheses
of Theoren37. If fx,x) is measurable with respect to the product
measure defined ky i’ it is measurable in x for almost all xand in x
for almost all x. The existence of any one of the integrals

f (% X)ldm f du f £ (% Xt f A’ f £ )1k
xx’ X X X’ X

implies that of the other two and the existence and equdlitieinte-
grals

f f(x, x)dm,fdf f(x, x’)d,u’,fd,uf f(x, X)du
XX ¥ Jy X ¥
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Proof. We may obviously suppose thétx, x) > 0. Let{y,} be a sub-
division with E, =€ [y, < f(x,X) < y,+1]. The theorem holds for the
function equal toy, in Ev for v = 0,1,2,...,N (N arbitrary) and zero
elsewhere, by Theorem157, and the general result followisy €fasm
the definition of the integral. o



Chapter 2
Probabllity

1. Definitions

A measureu defined in a spacé& of points x is called aprobability 70
measureor aprobability distributionif u(X) = 1. The measurable sets
X are calledeventsand theprobability of the event Xs real number
1(X). Two eventsXy, X, are mutually exclusive Ky - Xo = 0.

The statementx is a random variable ir¥ with probability distri-
butionu means

(i) that a probability distribution existsX,

(i) that the expressiofithe probability that x belongs to X’where
X is a given event, will be taken to meaiiX) - u(X) sometimes
written P(xeX).

The basic properties of the probabilities of events follommiedi-
ately. They are that these probabilities are real numbevgdas 0 and
1, inclusive, and that the probability that one of a finite oumtable set
of mutually exclusive eventsX() should take palace i.e. the probability
of the eventUX;, is equal to the sum of the probabilities of the evefjts

If a probability measure is defined in some space, it is glqaotsi-
ble to work with any isomorphic measure in another spacerdnotjte,
this can often be taken to B, in which case we speak ofrandom
real vectorin the place of a random variable. In particularki= 1

61
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we speak of a random of @ndom real number or random real vari-
able The probability distribution is in this case defined byiatribu-
tion function Hx) increasing from 0 to 1 ince < X < co. FoOr example,
a probability measure in any finite or countable space is @phic,
with a probability measure iR defined by a step function having jumps
p, atv=0,12,..., where

P20 p =1

Such a distribution is called discreteprobability distribution. If
F(X) is absolutely continuou$’(X) is called theprobability density
function (or frequency function)

Example 1.Tossing a coirThe spaceX has only two pointdd, T with
four subsets, with probabilities given by

H(0) = 0.p(H) = u(T) = 5. u(®) = u(H + T) = 1.

If we makeH, T correspond respectively with the real numbers 0,1,
we get the random real variable with distribution function

F(X) =0(x < 0)
= %(O <x<1)
=1(1<X)
Any two real numbers a,b could be substituted for 0, 1.

Example 2.Throwing a die- The space contains six points, each with
probability /6 (unloaded die). The natural correspondence Rigives
rise toF(x) with equal jumps B at 1, 2, 3, 4, 5, 6.

2. Function of a random variable

Suppose that is a random variable i& and thaty = a(X) is a function
defined inX and taking values in a spage Suppose thay contains a
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Borel system of measurable sé&fs Theny is called afunction of the
variablex if the sete[a(X) € Y] is measurable ix for every measurable
Y and if we take the measure ¥of this set as the probability measure
of Y. Note that the mapping — y need not be one-one.

(There is a slight ambiguity in notation asmay denote either the
random variable irX or a generic point of. In practice, there is no
difficulty in deciding which is meant.)

Example 1.x being a random real variable with distribution function
(d- f)F(X) we compute thel - f - G(y) of y = x?

P(y < 0) = P(x? < 0) = 0 so thatG(y) = 0 fory < O.
If

a>0,P(y<a)=P(*<a)=P0<x< va)+P(-va< x<0),
G(a+0) = F(va+0)- F(-va-0).

Example 2.1f F(X) = 0 for x < 0 andG(y) is the distribution function
of y = 1/x, x having d.f.F(x) then

G(y) = Ofory < 0.

If a>0.
G@a+0)=Py<a) = P(;l( < a) =P(x>1/a)=1-F(1/a-0).

SinceG(a) is a d.f.,G(a + 0) —» 1 asa — oo, so thatF must be
continuous at 0. That i®(x = 0) = 0.

3. Parameters of random variables

A parameterof a random variable (or its distribution) is a number asso-
ciated with it. The most important parameters of real distions are 73
the following.
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() The meanor expectatiom(X) of a real valued functiom(x) of a
random real variabl& is defined by

a0 = E(@(¥) = ﬁ (X

(i) The standard deviation or dispersionof a random real number
about its mean is defined by

0?2 = E(x-X)? = f (x — X)%du
X
:fxzd,u—2xfxd,u+>_<2fdy
= E(®) - 2% + ¥ = E(X) - (E(X))?
ois called thevarianceof x.
(iii) The rangeis the interval £, R), where

r=supaR= inf a
F(a):po F@=1

(iv) Themean erroris [, |x - Xdu = E(|x - X|)
(v) A medianis a real numbeA for which
F(A-0)+F(A+0)< 1.

(vi) The modeof an absolutely continuous distributidr(x) is the
unique maximum, when it exists, &f (X).

Some special distributions in R.

() The Dinomial distribution

0< p<1lqg=1-pnis a positive integerx can take values
v=0,1,2,...,nwith probabilities

n
p=Pd, Y p =1
0
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74

(ii)

(iii)

Then

o? = E0?) =% = > v?p, - np? = npg
v=0

P, is the probability ofr successes out of n experiments in each of
which the probability of success s

The Poisson distribution gan take the values= 0, 1,2, ... with
probabilities

wherec > 0. Here

The binomial and Poisson distributions are discrete. Thssen
distribution is the limit of the binomial distribution as— oo’ if
we put

p = ¢/n(p then — 0).

The rectangular distribution
This is given by

F(x)=0forx<a

X—a
=—— for a<x<b
b-a
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=1 for b< x.

It is absolutely continuous arfef(x) = 1/(b—a) fora< x<band 75
=0forx < a x> b. Also
atb , (b-a)?

2 7 T 12

X =

(iv) The normal (or Gaussian) distribution
This is an absolutely continuous distributierfor which

1 92 /92
F/(X) = ——— e—(x—x) /20"
() 2T
It is easy to verify that the mean and standard deviationeseearc-
tively X and o
(v) The singular distribution
Herex = 0 has probability 1,
F(X)=D(x-a)=1ifx>a
Oifx<a

We now prove

Theorem 1(Tehebyché’s inequality) If « (X) is a nonnegative func-
tion of a random variable x and ¥ 0 then

v 10 < £

Proof.

E(a(¥) = ﬂ (%)

:f a/(X)d,u+f a(X)du
(=K a(x)<k

> f a(X)du > kf du = KF(a(x) > k).
a(X)=k a(X)=k
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Corollary. If k > 0 and¥X, o are respectively the mean and the standard
deviation of a random real x, then

pla(X) > ko) < 1/K2.
We merely replace k bi?c2, a(x) by (x — X)? in the Theorenill.

4. Joint probabilities and independence

Suppose that,, X, are two spaces of pointg, x, and that a probability
measureu is define in a Borel system of seXsin their product space
X1XX2. Then the sek; in X; for which the set [x; € X1, X € X5] is
measurable with respect toform a Borel system if¥;. if we define

H1(X1) = u (e [x1 € X1, X2 € X2])

it follows thatu, is a probability measure i%; and we defing:, in X,
in the same way. We call1(X1) simply the probability thak; belongs
to Xy with respect to théoint distribution defined by.

Definition . If u is the product measure @f, uo the random variables
X1, X2 are said to be independent. Otherwise, they are dependant.

When we wish to deal at the same time with several random vari-
ables, we must know thejoint probability distributionand this, as we
see that once, is not necessarily the same as the producthiitgbas 77
their separate distributions. This applies in particutéx;, x, ...) for
the probability distribution of the values of the functiadetermined
by the joint distribution of X3, X2, ...). In this way we can define the
sum X + Xp andproduct % - X, of random variables, each being treated
as a function(xq, x2) over the product spack; xX, with an assigned
joint probability distribution.

Theorem 2. If (X1, X2, ..., Xn) IS @ random real vector then
E(X1 + X2+ ... + Xn) = E(X)) + E(%2) + ... + E(Xn)

whether x, X, ..., X, are independent or not(E(X;) is the mean of ix
over the product space.)
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Proof. Let p be the joint probability distribution. Then

E(in):L(in)dp(whereQ:3€1x...x3€n)
>, [ % ap= Y E00. 0

Theorem 3. If X1, Xo,..., X, are independent random real variables
with standard deviations 1, o, ..., on, then the standard deviationm
of their sum x+ X»... + XniS given by

n
2= 02
i=1

Proof. It is sufficient to prove the theorem for= 2. Then
0% = E((x1 + X2 — X1 — %2)?)
= E((xa = %0)? + (X2 - %) + 201 — %) (X))

= E((x1 — %1)?) + E((%2 — %2)?)2E((x1 — X2)(X2 — %2))

(by theoreniR2)
=0 +05+2 f (X1 = Xp) (X2 — X2)dp
X1xX2
=0 +05+2 f (X1 — X1)(X2 — Xo)du1duz
X1(xX2

= O'i+0’%+2f(X1—7(1)d,ulf(X2—)_(2)d,uz
351 352

by Fubini’'s theorem,

_ 2, 2

= O'l + 0'2
this is an example of more general principle. m|

Theorem 4. If a(Xq, X2) is function of two independent variableg x,
then

f a(Xg, X)dp = fj (X1, X2)dua duz, Q = X1 XX,
Q Q
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The proof is immediate from the definition of independencepdr-
ticulars,
Theorem 5. If X1, Xo are independent, then
E(x1, X2) = E(x1)E(X2) = X1.%2

It is not generally sgfiicient to know the mean or other parameters
of a function of random variables. The general problem is rtd fis
complete distribution. This can beffitult, but the most important case
is fairly easy.

Theorem 6. If x1, xo are independent random real numbers, with dig9
tribution functions F, F» then their sum has distribution function(§
defined by

H@=FNFﬂ@=FNFﬂ@ZJWHW—®mﬂ®

(F(x) is called the convolution of f£x) and F»(X)).

Proof. Let

ax(X1, X2) = Lwhenxg + Xp < X
= 0whenxq + X2 > X

so that if we suppose th&t(x + 0) = F(X) and putQ = RxR, we have
F(9 = |] ax(xa, )dp
Q

= j ax(X1, X2)dF1(X1)dF2(x2)

dez(Xz)fa’x(Xl, XZ)dFl(Xl)

dez(Xz) f dF1(x1)

X1+Xo<X
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(o) (o)

= fFl(x— X2)dF2(X%2) = fFl(x— u)dF,(u),

—00 —00

and a similar argument shows that

F(X) = waz(x— udF1(u).

—00

O

It is obvious thatF(X) increasesf(—c) = 0, F(+o) = 1 so that
F(x) is a distribution function. Moreover, the process can lpeated
any finite number of times and we have

Theorem 7. If X3,..., Xy are independent, with distribution functions
Fi1,...,Fn then the distribution function ofix ... + X, is

Fl**Fn

Corollary. The convolution operator applied to two or more distribu-
tion functions (more generally, functions of bounded vi@siain (- co,
c0)) is commutative and associative.

Theorem 8. If F1(X), F2(X) are distribution functions, and #x) is ab-
solutely continuous with derivativa (k) then F(x) is absolutely contin-
uous and

9 =F (0 = [ filx-wdrpp
If both F1(X) and F»(X) are absolutely continuous, then

f(X) = j:oo f1(x — u) fo(Wdu p.p

Proof. We write

(o9

F(x):fFl(x—u)sz(u)zdeg(u)ffl(t)dt

—00
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by the fundamental theorem of of calculus

fwsz(u) fx f1(t - u)dt
fx dtf.ofl(t—u)sz(u)

and so

f) = F'(x) = f f1(x - WdF2(U)p.p

again by the fundamental theorem of the calculus. The sepand 81
follows from Theoreni 45, Chapter |,
We shall need the following general theorem on convolutionso

Theorem 9. Suppose that KX), Fo(x) are distribution functions and
thata(X) is bounded and is either continuous or is the limit of corbunsl
functions. Then

fa(x + y)dF»(X) is B - measurable as a

function of y and

f dFy) f a(x + Y)dFa(x) = f «()dF ()
where
F () = F1 » Fa(%)

Proof. We may suppose that(x) > 0. If we consider first the case in
whicha(x) = 1fora < x < banda(x) = 0 elsewhere,

oo

f a(x + Y)dF2(X) = Fa(b—y — 0)— Fa(a—y— 0O),

—00
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f dF() f a(x + y)dFa(x) = f (Fa(b—y - 0)) - Fa(a—y - 0)dF1(y)

F(b-0)- F(a-0)

Jﬁa&mﬂﬁ

and the theorem is true for functiar{x) of this type.

Since an open set is the union of a countable number of ingeava
< X < b, the theorem is true also for functiomgx) constant in each
interval of an open set and 0 elsewhere. The extension toncauis
function ¢(X) and their limits is immediate. m|

5. Characteristic Functions

A basic tool in modern probability theory is the notion of ttearacter-
istic function(t) of a distribution functior-(x).
It is defined by

o(t) = j: " eXdF(x)

(o)

Since| € |= 1, the integral converges absolutely and definé
for all real t.

Theorem 10. | ¢(t) |< 1, ¢(0) = 1, ¢(-t) = ¢(t) and ¢(t) is uniformly
continuous for all t.

Proof.

o(t) | =I f X dF(¥) |< f €% | dF (%)

= f”dF(x) =1

0(0) = f dF(x) = 1.
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[ee) [ee)

o(-t) = f e™dF(x) = f &XdF(x) = o(t)

—00 —00
sinceF(X) is real. O

Ifh 0,

[ee)

ot +h) — g(t) = f (@ — 1)dF(),

—00

| o(t+h) — () | sf|éxh —1]dF(X) = o(1)as h— 0
by Lebesgue’s theorem, sinpe™ — 1 |< 2.
Theorem 11. If ¢1(t), ¢o(t) are the characteristic functions of1Ex),

F»(X) respectively, thep;(t). ¢o(t) is the characteristic function of
Fa(X).

Proof.

o1(0).02(t) = f N dF (). f XdF2(x)

- [[aFuy [ erdrg

= f” dFl(y)]oé‘Xsz(x—y)

= f XdF(x)

—00

whereF(x) = F1 * Fo(XYmby Theorem 9. O

83
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As an immediate corollary of this and theorEm 7, we have

Theorem 12. If X3, Xp, ..., X, are independent random real variables
84  with characteristic functior4(t), ¢o(t), . . ., ¢n(t) then the characteristic
function of X + Xo + - - - + X IS @1(t), 2(t), - - - , @n(b).

Theorem 13. Suppose that §X), F»(X) are distribution functions with
characteristic functiong(t), ¢o(t).
Then

(o9

f e1(t + wdF,(u) = f e”xgoz(x)dFl(x)

—c0 —00

Proof.

f X o (X)dF1(X) = f X dF(x) f UdF,(u)

= f dF1(%) f X dF,(u)

= f dF(u) f XTI dF(X)

- f p1(t + WdF()

—00

Theorem 14(Inversion Formula) If

o(t) = f e*dF(x), f | dF(X) |< oo

then

A . .
() F(a+h)-F(a-h) = lim 1 [ sinfte-iatyb)dt if F(x) is continuous
—o0 "

at a+h.
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a (]
[ F(dx=1 [ LecosHtgiatypg,
H

a— -0

a+H

(@) [ Feydx-
85

Corollary. The expression of a functigp(t) as an absolutely conver-
gent Fourier - Stieltjes integral in unique. In particulaa, distribution
function is defined uniquely by its characteristic function

Proof.
A i h A inh 00
1 f SN Pt gt = 2 f SIN Nl at gy f ddF()
n t m t
— —A —c0
00 A h
_1 f dF(x) f SIN Ot rx-a) gy
m t
—00 A
2 [ Fsi ht t
_2 f dF(x)fsm cos((<—a))dt
T Joeo t
(0]
But
_ gfsmhtcosx—a)tdt: }fsm(x—a+ h)tdt
n t n t
0 0
1 Fsi h
__fsm(x—a— )tdt
n t
0
A(x-a+h) A(x-a+h) A(x-a+h)
L[ L[y 1 sy,
n t n t n t
0 0 A(x—ah)
and 86

1 (7 sint 11 (P sint 1
—f —dt—>—,—f — dt —» - asT — co.
tJg t 2 n) g t 2
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It follows that

0 ifx>a+h

) A(x—a+h) sint
AI|m—f —dt=4{1 ifa-h<x<a+h
oo T Japeach) 0 ifx<a—h

and since this integral is bounded, it follows from the Leh&sconver-
gence theorem that

1 (Psinht
Alim = f #e—'atgo(t)dt

—00 JT A
a+h
= f dF(x) = F(a+ h) - F(a-h)
a-h
provided thaf=(x) is continuous at ah. m|

Since the integral on the left is bounded|ih |< H, we can apply
Lebesgue’s theorem to its integral with respechtover| h |[< H, and
(ii) follows.

6. Sequences and limits of distribution and charac-
teristic functions

Theorem 15. If ¢(t), ¢n(t) are the characteristic functions of distribu-
tion functions Kx) and F,(x), and if F,(x) — F(X) at every point of
continuity of KX), thengn(t) — ¢(t) uniformly in any finite interval.

Proof. Lete> 0 and choos&, N (€) so that+X are points of continuity
of F(x) while

(f;erf:)dF(x) <€ /2,(£;X+f:d|:n(x)) <e /2forn> N.

This is possible since the first inequality is clearly sagidfior large
X and

(I: - fx OO) dF(X) = Fa(=X = 0) + 1 = Fy(X + 0).
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SinceF, is a distribution function and as— oo this

- F(=X)+1-F(X) = (I_x+j:o)dF(X) <€ /2

SinceF(X) is continuous at X.
Then

x .
| on® — () | <€ + | f P AF() - FO).

X X
_ jtx _ _ it AltX _
=€ + I ) [ (Fa(¥) - F(x)] I e (Fa() F(x))dx{
<€+ |Fn(X-0)-F(X-0)|+ | Fo(-X+0)-F(-X+0)|

X
+|t|f | Fa(X) = F(X) | dx<e +0(1) asn — oo
-X

uniformly in any finite interval of values t, by Lebesgue’'®them. 0O
The converse theorem is much deeper.

Theorem 16. If ¢p(t) is the characteristic function of the distributiorss
function F(X) forn=1,2,... andegn(t) — ¢(t) for all t, wherey(t) is
continuous at 0, thea(t) is continuous at 0, thegq is the characteristic
function of a distribution function &) and

Fn(X) = F(X)
at every continuity point of ().
We need the following

Lemma 1. An infinite sequence of distribution functiong(® contains
a subsequenceH{x) tending to a non-decreasing limit functior(§ at
every continuity point of £). Also

0<F(X <1

(but F(X) is not necessarily a distribution function).
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Proof. Let {rm} be the set of rational numbers arranged in a sequence.
Then the number&,(r;) are bounded and we can select a sequence
M1, N12, ... SO thatFy, (r1) tends to a limit ay — oo which we denote

by F(r1). The sequencen(,) then contains a subsequence,] so that

Fn, (r2) — F(r2) and we define by induction sequenceg,), (Nk+1.v)
being a subsequence i) so that

Fn (k) = F(r)as — o
If we then definen, = ny, it follows that
Fn (rm) = F(rm) for all m.

Also, F(X) is non-decreasing on the rationals and it can be defined else
where to be right continuous and non-decreasing on the rélaéscon-
clusion follows sinceF(x), Fp, (X) are non-decreasing and everys a
limit of rationals. |

Proof of the theorent We use the lemma to define a bounded non-
decreasing functiofr (x) and a sequencey) so thatF, (x) — F(X) at
every continuity point of(x).

If we puta = 0 in Theorem 14 (i), we have

[ee)

H ° 1 [ 1- cosHt
fo Fnk(x)dx—f Fn(X)dx = —f—zgonk(t)dt
—H

n t
and if we letk — oo and note tat=%3Ht¢| (~c0, 0) and thatFy, ,
¢n (t)are bounded, we get

(o)

1 (H 1 (° 1 1 - cosHt
ﬁj; F(x)dx—ﬁj:H F(x)dx_mft—zgo(t)dt

—00

(o)

1 1 - cost t
_1 f ()t

T t

—00

Now, sincep(t) is bounded in {0, o) and continuous at 0, the ex-
pression on the right tends ¢g0) = I(Iim ¢n(0)=1as
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H — oo . Since F(t) is non-decreasing, it easy to show that the left
hand side tends tB(c0) — F(—c0) and hence we have

F(o0) — F(—o0) = 1,

andF(X) is a distribution function. It now follows from Theorem st
@ is the characteristic function &f(x).

Finally, unlessF,(X) — F(X) through the entire sequence we ca
define another subsequencg)(so thatFp, (x) — F*(x) and the same
argument shows th&t*(x) is a distribution function and that

a0=f&wwu)

By the corollary to Theorem 1%(x) = F*(X), and it follows there-
fore thatF,(X) — F(X) at every continuity point oF(X).

7. Examples of characteristic functions

Theorem 17. (i) The binomial distribution p= )p’p",v = 0,1,
2,... has the distribution function

FO)O= )by

V<X

and the characteristic function
¢(t) = (g + pe")"
(i) The Poisson distribution,p= €S, v = 0,1,2,... has distribu-

tion function
FO =D py

V<X

and characteristic function

o(t) = D
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(iii) The rectangular distribution Kx) = bfla fora < x < b, 0 for
X < a, x> b, 0 for x< a, x> b, has the characteristic function

gtb _ dta
t)= ———
o0 = B

91 (iv) The normal distribution AX) = ﬁe‘xm‘fz has characteristic

function
o(t) = e

(v) The singular distribution
F(xX) =D(x-a) =0,x<a
=1x>a
has characteristic function
o(t) = €
ifa=0,¢) =1

These are all trivial except (iv) which involves a simple tour in-
tegration.
As a corollary we have the

Theorem 18. (i) The sum of independent variables with binomial dis-
tributions (p, 1), (p, ) is binomial with parametergp, n; + ny).

(i) The sum of independent variables with Poisson distribsti@nc,
is Poisson and has parameter € Cy.

(iii) The sum of independent variables with normal distributiGfss)
(%2, 62) has normal distribution(X; + 32, o), 02 = 0% + 05,

We have also the following trivial formal result.

Theorem 19. If x is a random real number with characteristic function
(1), distribution function Kx), and if A, B are constants, then AR has

92  distribution function R*:2) if A> O and1- F(*& + 0)if A < 0, and
characteristic function ®¢(At). In particular —x has the characteristic
functiong(—t) = ¢(t).
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Corollary. If ¢(t) is a characteristic function, so is

| o(t) P= p(t)e(-1).

The converse of Theorem 18, (ii) and (iii) is deeper. We satéth-
out proof. For the proof reference may be made to “Probapiliheory”
by M. Loose, pages 213-14 and 272-274.

Theorem 20. If the sum of two independent real variables is hormal
(Poisson), then so is each variable separately.

8. Conditional probabilities

If xis a random variable i& andC is a subset ok with positive mea-
sure, we define

P(X/C) = u(XC)/u(C)

to be theconditional probability that x lies in X, subject to the cdtiwh
that x belongs to Clt is clear thatP(X/C) is probability measure over
all measurable.

J

Theorem 21 (Bayes’ Theorem) Suppose thak = 3} cj,u(cj) > O.
j=1

Then

P(X/Cju(C))

% P(/CIM(C)

P(cy/X) =

The proof follows at once from the definition. In applicaipthe
sets G are regarded as hypotheses, the numh&cs) being called the
prior probabilities. The numbers(E;/X) are called their post proba-
bilities or likelihoods under the observation of the event X 93

Example 3.Two boxesA, B are dfered at random with (prior) probabil-
ities 1/3, 2/3. A contains 8 white counters, 12 red counters, B contains
4 white and 4 red countersA counter is taken at random from a box
offered. If it turns out to be white, what is the likelihood thiaé tbhox
offered wasA ?
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If we denote the event of taking a red (white) counter R{V)
the spacex under consideration has four poini, R), (A, W), (B,R),
(B, W). The required likelihood is.

PW/A) 1 (A)

P(A/W) =
AW = SR 1 () + PWBI(E)
Here
P(W/A) = probability of taking white counter from A
=8/20=2/5
P(W/B) = 4/8=1/2
Hence
21
P(A/W) = 22— = 2/7.
53123

Thus the likelihood that the boxlered was A is 27.

Conditional probabilities arise in a natural way if we thiokX as a
product spacé&; xX, in which a measurg(not generally a product mea-
sure) is defined. Then if we writd?(X,/X;) as the conditional proba-
bility that x, € X, with respect to the conditior, € X1, we have

P(X2/X1) = u(X1 X X2)/u1(X1)
where H1(X1) = p(Xa X X2).

The setX;, may reduce to a single point, and the definition re-
mains valid provided thati(x;) > 0. But usuallyui(x1) = 0, but
the conditional probability with respect to a single pomnbt dificult
to define. It follows from the Randon-Nikodym theorem that fimed
Xo, u(X1xX2) has a Radon derivative which we can wiRg<, X) with
the property that

u(Xy X %) = f R(xq, X2)du1
X1
for all measurableX;. For eachXy, R(xy, X2) is defined for almost all

x; and plainlyR(x1, X2) = 1 p.p. But unfortunately,since the number
of measurable setX, is not generally countable, the union of all the
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exceptional sets may not be a set of measure zero. This nieansd
cannot assume that, for almost il R(x1, X») is a measure defined on
all measurable sets,. If how ever, it is , we write itP(X1/x;) and call
it that conditional probability that,&X, subject to the condition thag
has a specified value.

Suppose now thatx{, xo) is a random variable in the plane with
probability density (x1, x2)(i.e f(x1, X2) > 0 and [[ f(xq, x2)dxd% =
1). Then we can defineonditional probability densitieas follows:

f(X]_

P(xs/%) = fl(’XlX)Z) () = f f (X, Xo)d%o

provided thatf;(x;) > 0. 95
Theconditional expectatiowf x, for a fixed value ofx; is

o f Xzf(Xl, X2)dX2
m(xq) = f XP (o /Xg)dp =
o [ f(xa, x2)dx

The conditional standard deviation xf for the valuex; is o-(x1) where
o?(xq) = f(Xz — M(x1))*P(Xz2/x1)d %

[ (2 = mixa))2 (30, x2)l

[ f(x1. x2)d%

The curvex; = m(x;) is called theregression curve ofxon x. It
has following minimal property it gives the least value of

E(e - 900)?) = [[ (e - g0a)f(x, xa)dxado

RXR
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for all possible curves, = g(x;). If the curvesx, = g(x1) are restricted

to specified families, the function which minimiz&sin that family.
For example, the linear regression is the lige= Ax + B for which 96
E((xo — Ax. — B)?) is least, thei" degree polynomial regression is the
polynomial curve of degree for which the corresponding is least.

9. Sequences of Random Variables

We can define limit processes in connection with sequencesnadbm
variables in several fferent ways. The simplest is the convergence of
the distribution or characteristic functionBn(x) or ¢n(t), of random
real numbers, to a limiting distribution or characteristic functidf(x)
or ¢(t). As in TheorenIb, it is diicient to havenjr;rg Fn(X) = F(X)
at every continuity point of(x). Note that this does not involve any
idea of a limiting random variable. If we wish to introducéstitdea, we
must remember that it is necessary, when making probabttitiements
about two or more random variables, to specify their joirdbability
distribution in their product space.

There are two important definitions based on this idea. Welsazty
a sequence of random variablgs converges in probabilityo a limit
random variable, and write

Xn — X in proh,
if nIim P(x,— X >¢€) =0
for everye > 0, P being thejoint probability in the product space &f
andx. In particular, ifC is a constantx, — C in prob, if

lim E( %= x|") = 0.

The most important case is that in whiel= 2. The following result
is got almost immediately from the definition.

Theorem 22. If Fy(X) is the distribution function of xthe necessary
and syficient condition that x — 0in prob. is that

Fn(X) — D(X)
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where Ox) = 0, X < 0;= 1,x > 0 is the singular distribution. The
necessary and glcient condition that x — 0 in mean of ordern is
that

lim flxl“ dFn(X) = 0.

Theorem 23. (i) If x, — xin prob., then R(x) — F(X).

(i) If x, = xin mean, then x— X in prob. and R(xX) —» F(X). As
corollaries we have

Theorem 24(Tchebyché). If x, has meark, and standard deviation
onthen % — X, — 0in prob. ifo, — 0.

Theorem 25(Bernoulli: Weak law of Iarge rlumbers)f &,86, ... are
independent random variables with me@nsé,, . . . and standard devi-
ationsoq, 0o, .. and if

13 1=
XnZHZ§VW=EZ§y
y=1 y=1
n
then % — m, — 0in prob. ifZaf:O(nz)

v=1
98

Theorem 26(Khintchine) If &, are independent random variables with
the same distribution function and finite mean m, then

n

1 .
xn:ﬁ;§—>m|n prob.

(Note that this cannot be deduced from TheoEein 25 since wetdo n
assume tha¢, has finite standard deviation.)

Proof. Let ¢(t) be the characteristic function &f so that the character-
istic function ofx, is (¢(t/n))". If

ot) = f ¥ dF(x).

—00
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we have $(t) — 1 — mit = f(e“x — 1-itx) dF(x).

—00

e*_1-itx

Now :

is majorised by a multiple dfx | and— 0 ast —» 0

for eachx.
Hence, by Lebesgue’s theorem,

¢(t) — 1—mit = o(t) ast — 0.

Thus

oy =1+ ™ ¢ o(%)] L eMasn— oo,

and sinceg™ is the characteristic function @(x — m) the conclusion
follows easily. m|

In these definitions we need only the joint distributionx@nd each
XN Separately. In practice, of course, we may know the joirtritis-
tions of some of the, s (they may be independent, for example), but
this is not necessary.

On the other hand, when we come to consider the notion of @amand
sequence, the appropriate probability space is the infimgduct space
of all the separate variables. This is a deeper concept tiwse tve have
used till now and we shall treat it later as a special caseefttbory of
random functions.

10. The Central Limit Problem

X = Xy
v

is a finite sum of independent random real variabigsand thatFp, (x),
Frv(X), ¢n,(t), ¢n,(t) are the associated distribution and characteristic
functions. The general central limit problem is to find caiwtis un-
der whichF,(x) tends to some limiting functiof (X) when each of the

We suppose that



10.. The Central Limit Problem 87

componentsx,, is small (in a sense to be defined later) in relation to
Xn. Without the latter condition, there is no general resulthig kind.
Theorem$§25 arldP6 show tHagx) may take the special forf(x) and
the next two theorems show that the Poisson and normal forenslso
admissible. The general problem includes that of findinghilost gen-
eral class of such functions. The problem goes back to Bdiramd
Poisson and was solved (in the cas&®pby Khintchine and P. Lévy.

Theorem 27(Poisson) The binomial distribution Bx = v) = (})p"q", 100
p=-%q=1-p,cconstant, tends to the Poisson distribution with
mean c as > .

Proof.
en(t) = (q+ pe")"
[+ -1n
B n
N ec(e"—l)
which, after Theorerfi 16, is flicient. O

Theorem 28(De Moivre). If & , &--- are independent random vari-
ables with the same distribution, having mean 0 and finitadded de-
viation o, then the distribution of

_ &1t b+ +én

Vh

tends to the normal distribution (;?).
This is proved easily using the method of Thedreim 26.

The general theory is based on a formula due to Khintchine and
Levy, which generalizes an earlier one for distributionfirife variance
due to Kolmogor€.

We say thaty(t) is aK — L function with representatiora(G) if

itx 11+ x2

u(t) = iat + f [étx -1 5| = -de

—00
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wherea is a real number an@(x) is bounded and non-decreasing imo1
(o0, ). The value of the integrand at= 0 is defined to be%t2 and
it is then continuous and bounded-io < X < oo for each fixed.

Theorem 29. A K — L functiony(t) is bounded in every finite interval
and defines a, G uniquely.

Proof. The first part is obvious.
If we define

1 1
00 =00~ 5 [ o+ odu=3 [ @O -+

we have

o(t) = f du f e(1- &) lux )1+X2dG()

fe'tx( SII’]X)1+ xsz( )_fe'thT(x)

where
A 1
T(X) :”1_%’ +y dG(y),
—00 y
2
oW =] @smyar e
since[1 - %’] 1;—2”2 and its reciprocal are bounded. O

This proves the theorem singg(x) is defined uniquely byT (X)
which is defined uniquely(t) by Theorem 14 and this in turn is de-
fined uniquely by (t).

The next theorem gives analogues of theorEms 13and 16. We sha
write G, — G if Gp(X) andG(x) are bounded and increasing aBg(X)

G(X) at every continuity point o6(x) and at+co
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Theorem 30. If y(t) has K- L representation(a,, Gn) for each n and
if a, —» a, G, —» G where GX) is non-decreasing and bounded, then
wn(t) — () uniformly in any finite interval.

Conversely, ifi(t) — ¥ (t) for all t and y(t) is continuous at 0, then
Y(t) has a K- L representatior(a,G) and &, — a, G, — G.

Proof. The first part is proved easily using the method of Thedrém 15.
For the second part, defidg(t), Tn(t) as in the last theorem. Then, since
On(t) — 6(t) = () -3 f_ll ¥(t+u)du, which is continuous at 0, it follows
from Theorem 16 that there is a non-decreasing boundedidmnt(x)
such thafl, —» T . ThenG, — G whereG(X) is defined as in Theorem
29, and is bounded, ang(t) plainly hasK — L representationa G)
wherea, — a. O

Definition. We say that the random variableg XXz, . . . are uniformly
asymptotically negligible (u.a.n.) if, for evegy 0,

supf dFn(X) - 0as n— co.

|X|>€e

The condition that the variables are u.a.n implies that Hréables 103
are “centered” in the sense that their values are concedtragar O.
In the general case of u.a.n variables by considering thevagiables
Xn, — Cn,. Thus, we need only consider the u.a.n case, since theorems
for this case can be extended to the u.a.n. case by trivialgelsa We
prove an elementary result about u.a.n. variables first.

Theorem 31. The conditions

(i) X, are u.a.n.

1+x2

(i) sup f x_2dan (X+ an,) — 0 for every set of numbel(sa;f) for

which sup|anv| — 0 as n— oo are equivalent and each implies
v
that

(iii) sup| ¢n,(t)—1|— 0as n— oo, uniformly in every finite-tinterval.

v
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Proof. The equivalence of (i) and (ii) follows from the inequalitie

[

f—xz dFny(X+@n,) < (e+ | an, [°) + deny(X)

1+ X2
—00 IX|>€

1+ ¢ X2
deny(X)S = fl+x2anv(X).

|X|>€e [X|>€

For (iii) we use the inequalityl—e&™ |<| xt | if | xt|< 1 and deduce
that

| om(®) — 11| f (@ — 1)dFn () [< €] t] +2 f dFy, ().

IX|>€

O

104 Theorem 32(The Central Limit Theorem)Suppose thatnx are inde-
pendent u.a.n. variables and that F F. Then.

() y(t) =loge (t) is a K- L function

(i) If w(t) has representatiofg, G) and the real numbers,asatisfy

(o)

f X _dFy (x+an) =0,

1+ %2

and are bounded uniformly inthen

X

2
Gn(X)=flzyzany(y+anv)—>G(x),

ay= ) a, —>a
4

Conversely, if the conditions (i) and (ii) hold, theq F F.
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Proof. It follows from the definition of they,, that

&g 0 = [ PR+ an) = 140, ()

r itx
where y () = f(e'tx -1- o Xz)de/n—v(XJf aym);

—00

and
a mt) = Ry w(t) =0 1)

It follow easily from the u.a.n. condition and the definitioha,,
thata g — O uniformly inv asn — c and from Theoreni—31 that105
¥n,(t) = O uniformly iny for | t [< H whereH > 0 is fixed. Hence

log ¢n, (t) = itan, + ¥n, (1) + 0( ¥n, @) ),

the 0 being uniform irv and , by addition,

l0g@a(t) = it an+ > ¥, + 01> 1,0 1, 2)

uniformly in| t |< H.
Now let

1 H
A =5 f o

-H
sinHx
:f[1- o ]anv(x+any)
Using the inequality
x4 Itx _ sinHx
e -1 12 2 |5C(H)[1 e ]

for|t|< H, we have
[ yn, () I< CAy,,,
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and therefore , taking real parts il (2) and using the fact s |
¥n,(t) |- O uniformly in| t|< H, v

D an,) < —log gnlt) | +0 [Z Any]

This again holds uniformly int |[< H, and after integration we get

H
Z 2_%IH log | ¢n(t) | dt + O(ZAnv)

from which it follows that};, A, = 0(1) and that

logen(t) = itan+ > yn,(®) + O(1), 3)

uniformly for |t| < H, and the before, sindd is at our disposal, for each
realt.

The first part of the conclusion follows from Theor&m 30.

For the converse, our hypothesis implies Bgafc) — G(c0) and if
we use the inequality

X2

1+ x2°

itx
+ X2

< C(t)

eitX_l_
1

it follows from (@) that

>, (1 < COGH(e) = 0(2)

uniformly iny. Butvy, (t) — 0 uniformly iny for any fixed t so tha({2)
and [3) remain valid and

itx 1+ x2
1+ x2) X2 G

log en(t) — ita + f(e“x -1-

= y(t)log ¢(t.)

sinceG, — G. Hencepy(t) — ¢(t) as we require. O
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Notes on Theorem 32.

(@)

(b)

()

The first part of the theorem shows that the admissiblg fimc-
tions for sums of u.a.n variables are those for whichd(yis a
K — L function.

The numbers,,, defined in stating the theorem always exist when7
nis large sincef 152 dFn, (X + €) is continuous ir¢ and takes

positive and neg?oative values@t ¥1 when n is large. They can
be regarded as extra correcting terms required to compiete t
centralization of the variables. The u.a n. condition cdizes
each of them separately, but this is not quite enough.

The definition ofay, is not the only possible one. It is easy to see
that the proof goes through with trivial changes provideat the
an, are defined so that,, — 0 and

(9]

f X any(x+any)=O(f X dFy, (X + an,))

1+ x2 1+ x2

uniformly in v asn — oo, and this is easy to verify if we define
an, by

an, :fxan(x)

for some fixedr > 0. This is the definition used by Gnedenko and
Lévy.
WE can deduce immediately the following special cases.

Theorem 33(Law of large numbers)in order that k, should tend to the
singular distribution with Kx) = D(x — a) it is necessary and gicient

that

|

13/_2)/2 dFn(y+an) — O,Zanv —a

(Herey(t) = ita, G(X) = 0).
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Theorem 34. In order that R, should tend to the Poisson distribution
with parameter ¢, it is necessary andfgaient that

X
Zanvﬁ%cande

(Herey(t) = c(e' - 1), a= 3¢, G(X) = § D(x— 1))

Theorem 35. In order that F, should tend to the norméd, o) distri-
bution, it is necessary and figient that

y? c
T+y2 dFn(y+an) - > D(x-1)

X

2

> an, - a and f Y dF(y+a,) — o2D(X).
= 1+y2 Y

(Herey(t) = ita — X ,a = a,G(X) = o2D(X). From this and the
note (c) after Theorel B3, it is easy to deduce

Theorem 36 (Liapoundt). If x,, has mean o and finite varianae?,
with 3, 02 = 1a necessary and gicient condition that xshould tend
to normal(0, 1) distribution is that for everg> 0,

Z f X2 d Fpy, (X) > 0as n— .

v
|X|>€

The distributions for which log(t) is a K- L function can be char-
acterized by another property. We say that a distributioinfmitely
divisible (i.d.) if, for every n we can write

(1) = (¢n(®)"

wheregn(t) is a characteristic function. This means that it is the dis-
tribution of the sum of n independent random variables with $ame
distribution.

Theorem 37. A distribution is i.d. if and only iflog¢(t) is a K- L
function.

This follows at once from Theordml 32. That the condition dhdis-
tribution be i.d. is equivalent to a lighter one is shown bg tbllowing
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Corollary 1. ¢(t) is i.d. if there is a sequence of decompositions (not
necessarily with identically distributed components) inich the terms
are u.a.n.

Corollary 2. If a distribution is i.d.,¢(t) # O.

Theorem 38. A distribution is i.d. if and only if it is the limit of finite
compositions of u.a.n. Poisson distributions.

Proof. The result is trivial in one direction. In the other, we ohssthat
the integral

(o9

it itx \ 1+ x?
12 s

can be interpreted as a Riemann - Stieltjes integral andeidirttit of
finite sums of the type

, itg;
Z b; [étfj -1- iz}
- 1+ é—‘
i i
each term of which corresponds to a Poisson distribution. o 110

11. Cumulative sums

Cumulative sums
E1+E+ ...+ én

n
in which &1, &5, ... &, are independent and have distribution functions
B1(X), B2(X), ..., Bn(X) and characteristic functions (t), (1), .. ., Bn(t)
are included in the more general sums considered in theatdimit
theorem. It follows that the limiting distribution of, is i.d. and ife(t) is
the limit of the characteristic functions,(t) of x,, then logp(t) is aK-L
function function. These limits form, however, only a progebclass
of theK — L class and the problem of characterizing this subclass was
proposed by Khint chine and solved by Lévy. We denote thesdbgL.

As in the general case, it is natural to assume always thataime
ponents: are u.a.n.

Xn:
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Theorem 39. If £,/4, are u. a. n. andpp(t) — ¢(t) where¢(t) is

non-singular, them, — oo, /13_:1 51

Proof. Sinced, > 0, eithert, — oo or (1,) contains a convergent subse-
quence {n,) with limit 2. The u.a.n. condition implies thﬁ;(%) -1
for everyt and therefore, by the continuity gf(t),

. t1
m®=@lm6:%ﬂ

for all t. This means that evep,(t) is singular, and this is impossible
asy(t) is not singular.
For the second part, since

AnXn :§l+§2+"'+§n: éni1
An+1 /ln+1 /1n+1

and the last term is asymptotically negligib% and xn,1 have the
same limiting distributior(x), and therefore

Fo ) 5 (9. Fo9 - (9

Now if ﬂ“” = 6n, we can choose a subsequengg)(which either
tends tox orto some limi® > 0. In the first casé€, (X6, ) — F(xo0) #
F(x) for somex. In the other case

F(x) = klmo Fn (6 X) = F(6X)

wheneverx and6x are continuity points of(x) and this is impossible
unlessd = 1.

A characteristic functior(t) is called self-decomposablés.d) if,
for everycin 0 < ¢ < 1itis possible to write

¢(t) = ¢(chc(t)
wheregc(t) is a characteristic function m|

Theorem 40(P.Lévy) A functione(t) belongs to L if and only if it is
self-decomposable , ang(t) is then i.d
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Proof. First suppose thag(t) is s.d. if it has a positive real zero, it has
a smallest, &, since it is continuous, and so

¢(2a) = 0, ¢(t) # Ofor0 < t < 2a.

Theng(2ac) # 0if 0 < ¢ < 1, and sincep(2a) = ¢(2ac)pc(2a) it
follows thatyc(2a) = 0. Hence

1=1-R(ec(20)) = f (1 - cos 2x)dF(x)

(o0 (o0

=2 f (1 - cosaxX)(1 + cosaxX)dF¢(x) < 4 f (1 - cosax)dF¢(x)

= 4(1- R(pc(@))) = 4(1— R(p(a)1e(ca)))

This leads to a contradiction singgca) — ¢(a) asc — 1, and it
follows therefore thap(t) # 0 fort > 0 and likewise foit < 0.
If 1 <<V < nit follows from our hypothesis that

_ (V1)
By(t) = sovfl((Vt)—gp«(v Yy

is a characteristic function and the decomposition
n
() = ¢n® = | [ sV
=1

shows thatp(t) is of typeL with 4, = n
Conversely if we suppose thaft) is of typeL we have

en(t) = ]—[,Br (tan)
r=1

n+m

grm(®) = | | By(t/Ansm) = @nlAat/ Ansmdnm(®),
v=1

where 113
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n+m
Xnm(t) = l—[ ,By(t//lmm)
v=n+1
Using theorenfi.39, we can thosem(n) — oo so thatdn/Anim —
c(0 < ¢ < 1) and thenpp m(t) — ¢(t). Sincepnp(t) — ¢(t) uniformly in
any finitet-interval on(Ant/Ansm) — @(ct). It follows thatynm(t) has a
limit ¢c(t) which is continuous at = 0 and is therefore a characteristic
function by theoreni16. Moreover the form gf () shows thaty(t)
isi.d.
The theorem characterizésby a property ofp(t). Itis also possible
to characterize it by a property &f(x). o

Theorem 41(P.Lévy) The functionp(t) of L are those for whiclog ¢(t)
has a K-L representation (&G) in which L;rlG’(X) exists and decreases
outside a countable set of points.

Proof. If we suppose thap(t) is of classL and 0< ¢ < 1 and ignore
terms of the form iat we have

[

- itx ) 1+x2
log ¢c(t) = f(eltx -1- 1+ X2) TdG(X)
~ r x4 tePX | ¥+
f [e‘ 1- 55|~ dG(x/0)

and the fact thap.(t) is i.d. by Theoreni’40 implies th&(x) — Q(bX)
decreases, whete= 1/c > 1, x> 0 and

SN2
Q) = f yyzldew)

If we write q(X) = Q(€¥) this means thafi(k) — g(x + d) decrease
for x > 0if d > 0. If follows thatg'(x) exists and decreases outside a
countable set (see for instance Hardy, Littlewood, Polpaqualities ,
P.91 together with Theore48 Chapter | on page 51)

Then since
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X2 Q(X) — Q(x+ h) - G(x+h) — G(x)
X2 +1 h - h

(x+h)? Q(¥)-QOx+h
T (x+h2+1 h

We haveG'(X) = 25-Q(x) and £HG/(x) = xQ/(X) which also
exists and decreases outside a countable set. The samesatqapplies
for x < 0. The converse patrt is trivial.

A more special case arises if we suppose that the components a
identically distributed and the clas of limits for sequences of such
cumulative sums can again be characterized by propertiggedimits

o(t) or G(X)
We say thatp(t) is stable if for every positive constarih, we can
find constants &y so that

p(t)e(bt) = €¢(b'Y)

~ This implies, of course, that (t) is s.d. and thap. has the form
e'a,t(,o(C/'[). m|

Theorem 42 (P.Lévy) A characteristic functionp(t) belongs to L if 115
and only if it is stable.

Proof. If ¢(t) is stable, we have on leaving out the inessential factors of
the forme®, (o(t))" = p(Ant) for somed, > 0 and so

@) = (e(t/2)" = | ] Bt/ An) with B,() = (1),
v=1

which is enough to show thait) belongs td_*.
Conversely, if we suppose that a sequemgean be found so that

en(t) = (@(t/An)" = (1),
we writen = nq + ny,

en(t) = (‘P(t//ln))nl(‘P(t//ln))n2 = ‘Pnl(t/lnl/fln)‘ﬁnz(t/lnz//ln)-
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Then, if 0< ¢ < 1, we choose so thatd,, /4, — ¢ and it follows
that ¢n, (tAn, /An) — ¢(ct) anden, (tAn,/An) — ¢c(t). Itis easy to show
that this implies thap(t) has the forme®"tg(c't).

It is possible to characterize the stable distributionsemmt of log
¢(t) andG(x). i

Theorem 43(P.Lévy) The characteristic functiop(t) is stable if and
only if
. iot
loggt =iat— At |* (1+ Ttan%)
O<a<lorl<ax<x?

. iot 2 .
orloge(t) =iat—A|t|(1+ T—Iogltl)W|thA> Oand-1<6<+1
T

Corollary. The real stable distributions are given byt) = e 1(0 <
@ <2).

Proof. In the notation of Theorefi}#1, the stability condition inegli
that, for everyd > 0, we can defing’ so that

g(x) = g(x+ d) + g(x + d’)(x > 0).

Sinceq(X) is real, the only solutions of thisfilerence equation, apart
from the special casB(x) = AD(x) are given by

Al Xl—a

— —aX _ @ _
aix) = A1e ¥, Q(X) = Aix %, G'(X) = >

x>0

anda satisfies & e + e®_ We can use a similar argument fok®
and we have also

Ag | x|t

= A —alX| = A - —
a(x) = Ae™™, Q) = Az [ X[, G'(Y) = ———3

,X<0
whered, d’, @ are the same. Moreover, sinG€x) is bounded, we must
have O< a < 2, and since the cage= 2 arises whes(x) = AD(x) and
the distribution is normal, we can suppose that ® < 2. Hence
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0 itx dx
log ¢(t) = iat + A (e”x—l— )
g¢ () [ =)
0 .
. itx dx
+A (étx _1- )_
ZLO 1+x2) | x [o+1
The conclusion follows, ifr # 1 form the formula 117

f (e - v X e e /2r(—q)if0 <@ < 1,

o itx dx
f(é“‘l——uxz)xaﬂ =l e () if 1 <o <2
0

(easily proved by contour integration), Since the remagmamponents

1?)‘(2 or 1212 —txmerely add to the term iat. & = 1, we use the formula
r itx \ dx Vg
éx—1- )—:—— t| it log | t | +iast,
f )2 > | t] glt|+ia;
0
which is easy to Verify. O

12. Random Functions

In our discussion of random functions, we shall not give fgdor all
theorems, but shall content ourselves with giving refeesnen many
cases.

Let Q be the space of functiongt) defined on some spadeand
taking values in a spac& Then we callx(t) a random function(or
proces$ if a probability measure is defined §&. We shall suppose here
that X is the space of real numbers and thas the same space or some
subspace of it.

The basic problem is to prove the existence of measur€s\iith
certain properties - usually that certain assigned se€¥ @ame measur-
able and have assigned measures. These sets are usuallgtasswoith 118
some natural property of the functiorf). It is sometimes convenient
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to denote the function (which is a poif) by « and the value of the
function att by x(t, w)..
A basic theorem is

Theorem 44 (Kolomogordf). Suppose that for every finite set of dis-
tinct real numbers it ty,...,t, we have a joint distribution function-
Fi, tp...1,(€1, €2, ..., &n) IN Ry and that these distribution functions are
consistent in the sense that their values are unchangedkéypérmuta-
tions of(t)) and (&) and, if n> m,

Ftl,tz ..... tn(é:la §29 ey fm’ 0, ..., OO) = Ftl,tz ..... tm(é:l’ KRR} é‘:m)

Then a probability measure can be definedin such a way that

Prob(x(t) < &,i=1,2,....n) = Fyp, (€1, ... &n). 1)
Proof. The set of functions defined by a finite number of conditions
3 < X(t) < b

is called aectangular seand the union of a finite number of rectangular
sets is called a figure. It is plain that intersections of figuare also
figures and that the systeBy, of figures 1 and their complements is
additive. Moreover, the probability measytedefined inS, by [ is
additive inS, , and it is therefore enough, after Theorgm 7 of Chapter
1, to show thaj: is completely additive ir5,. It is enough to show that
if 1, are figures andt, | 0, thenu(l,) — O.

We assume that lim(l,) > 0, and derive a contradiction. Since only
a finite number of pointg are associated with eath the set of all these
t'sis countable and we can arrange them in a sequercéNow each
In is the union of a finite number of the rectangular sets in troelyct
space of finite number of the space of the variables x(tj) and we
can select one of these rectangles, foe 1,2,... so that it contains
a closedrectangleJ, with the property thatm _I)igp(\]nlm) > 0. Also

we may choose thé, so thatJ,,1 c J,. We then obtain a decreasing
sequence of closed non empty rectangledefined by

alnsyl Sbll"l(l :l’zvvln)
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For each i there is at least one pointwhich is contained in all the
intervals Bin, bin] , and any functiorx(t) for which x(t;) = y; belongs to
all I,,. This impossible sincé, | 0, and therefore we haygl,,) — 0.

As an important special case we have the following theoremaon
dom sequences. O

Theorem 45. Suppose that for every N we have joint distribution func-
tions Fy(&1, . .., én) In Ry which are consistent in the sense of Theorem
E4. Then a probability measure can be defined in the spaceabbee
quencegxy, Xo, . ..) in such a way that

P(x <&i=12....N)
= FN(§19"~’€N)

Corollary. If {Fn(X)} is a sequence of distribution functions, a probabit-20
ity measure can be defined in the space of real sequence sblthate
any open or closed intervals,

N
PO € In,n=12,...,N) = [ | Fa(ln).
n=1

The terms of the sequence are then said tdndependentand
the measure is the product measure of the measures in theonentp
spaces. The measures defined by The@rdm 44 will be daliedasure.
The probability measures which are useful in practice areggly ex-
tensions oK-measure, since the latter generally fails to define measure
on important classes of functions. For exampld, i§ an interval, the
set of functions for whicla < x(t) < bfor tin | is notK-measurable.

In the following discussion of measures with special propsy we
shall suppose that the badfcmeasure can be extended so as to make
measurable all the sets of functions which are used.

A random functionx(t) is calledstationary (in the strict sense) if
the transformatiorx(t) — x(t + a) preserves measures for any real a (or
integer a in the case of sequences).

A random functionx(t) is said to havandependent incremenif
the variablesx(tj)) — x(s) are independent for non-overlapping inter-
vals (5.tj). It is called Gaussianif the joint probability distribution 121
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for x(t1), x(t2), . .., X(tp) for any finite sety, t,, ..., t; is Gaussian ifR,.
That is , if the functions F of Theoref144 are all Gaussian. idom
function x(t) is called anL,- function if it has finite variance for every
t. This means that(t, w) belongs td_,(Q2) as a function ofv for eacht,
and the whole function is described ataectoryin the Hilbert space
Lo(Q).

Many of the basic properties of drp-function can be described in
terms of theauto-correlationfunction

r(s.t) = E((x(s) - m(g))(x(t) — m(1)))
= E(x(9)X(1)) -~ m(9ym())

wherem(t) = E((x(1)).

A condition which is weaker than that of independent incretsés
that the increments should b@correlated This is the case IE(x(t) —
X(9)(X(t) — x(8))) = E(X(t) — x(9)E(X(t") — x(s)) for non- overlap-
ping intervals §t), (S, t’). If an L,-function iscentredso thatm(t) = 0
(which can always be done trivially by considerir@) — m(t)), a func-
tion with uncorrelated increments hahogonalincrements, that is

E((x(®) = x(89)(X(t") - x(s))) = 0

for non-overlapping intervals. The function will then bdled anor-
thogonal random functian

The idea of astationaryprocess can also be weakened in the same
way. An L,- function isstationary in the weak senge stationary, if
r(s,t) depends only oh— s. We then writepo(h) = r(s, s+ h).

We now go on to consider some special properties of randowt fun
tions.

13. Random Sequences and Convergence Proper-
ties

The problems connected with random sequences are gengeratii
simpler than those relating to random functions defined @aveon-
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countable set. We may also use the notatidior a sequence an,(w)
for its n'" term.

Theorem 46 (The 0 or 1 principle: Borel, Kolmogoff). The proba-
bility that a random sequence of independent variables lagw®perty
(e.g. convergence) which is ngfected by changes in the values of any
finite number of its terms is equal to O to 1.

Proof. Let E be the set of sequences having the given property, so that
our hypothesis is that, for evely > 1,

E=X1 XXX ... XXys XEn

whereEy is a set in the product spad®;, 1 X Xn2 X ...
It follows that if F is any figure,F E = F x Ey for large enoughN
and

p(FE) = p(F)u(En) = u(Fu(E)
and since this holds for all figures F , it extends to measarséis F. In 123
particular, putting EE, we get
u(E) = (u(E))% u(E) = Oorl.

We can now consider questions of convergence of se¥jes, of
v=1

independentandom variables. O

Theorem 47.1f s, = 3 x, —» s p. p., then $— s — 0in probability

y=1
and the distribution function of,dends to that of s . (This follows from
Egorg}’s theorem)

Theorem 48 (Kolmogordt’s inequality) If x, are independent, with
means 0 and standard deviations and if

n
Ty =SUp| shl,$1= ) %,€>0

n<N =1

N
then RTn >€) <e? Z o
v=1
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Proof. Let
N
E =€ [Ty 2e] = ) Ex
k=1
where Ex =€ [| & =€, Tk-1 <€]

N

It is plain that theEy are disjoint . Moreovery, o2 = [ s3du, since the
v=1 Q

X, are independent,

Zj;sﬁndu=ZN:f5ﬁndu

k=lg,
N
- Z f(sk + Xa1 + .. + Xn)%du
k=lg
N N N
=[S Y o) Y of
k=lg k=1 i=k+1
124  sinceEg involves onlyXy, . .., X.
Therefore
N N N
Yoty [duzet ) u(E) =€ u(E)
v=1 k=1 Ey k=1
as we require. O

Theorem 49. If x, are independent with means andz crf < oo then
v=1
2.7 (X%, —m,) converges p.p.
Proof. It is obviously enough to prove the theorem in the aase- 0.
By theoreni4B, iE> 0

l m+n
P(supls(mn—sm|<e]z— Z o2

|<n<N
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and therefore

(o)

1
P(supl sm+n—sm|>e)5; > o

n=1 v=m+1

and this is enough to show that

lim sup| Smin — Sm = Op.p.

m—oo n>1

and by the general principle of convergensgconverges p.p. 125
As a patrtial converse of this, we have m]

Theorem 50. If x, are independent with means and standard devia-

tionso,,| %, | C andz X, converges in a set of positive measure (and
=1

therefore p.p. by Theoreml46), th@ o2 andZ m, converge.
y=1 y=1

Proof. Letg, (1), 9(t) be the characteristic functions xfands = Z Xy
y=1
Then it follows from Theorerfi4d7 that

[ Je® =900
y=1

whered(t) # 0 in some neighbourhood o0, the product being uni-
formly convergent over every finite t-interval. Since

Cc
o) = [ €dF,0
—C
it is easy to show that
—Klog | ¢(t) |
iftis |n some sificiently small interval independent of and it follows

thatZ oo < oo, HenceZ(x — m,) converges p.p. by Theorem 49,

v=1 v=1
and smcez X, converges ppZ m, also converges. [m}
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Theorem 51(Kolmogordt’s three series theorem).et %, be indepen-
dent and ¢ o,

X,

xif [ x, |<c

Oif | x|>c.

126
Then}: x, converges p.p. if and only if the three series
1

i P( %, > c), i m, i ol?
1 1 1

converge, where fn o, are the means and standard deviations of the
X,
Proof. First,if ), x, converges p.px, — 0 andx, = x, , | X, |< cfor
large enougty for almost all sequences.

Letp, = P(l x, |> ©).

Now

s[lim sup| x, |< c] = '\Ilim g[| X, |< ¢] for n > N]
V— 00 —00

= lim (el % 1< d.
N—oo V=N
Therefore

1= P(limsup| x, |<¢) = lim []a-p)
—00 V=N

by the independence of the. Henceﬂ(l p,) SO 2 p, converge.
v=1

=1
The convergence of the other two serles follows from Theds@m
127 Conversely, suppose that the three series converge, soyhﬁheo-

rem[E0 2 X/, converges p.p. But it follows from the convergence:qb
thatx, = 36’ for suficiently largev and almost all series, and therefore
> X, also converges p.p. m|

1
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n
Theorem 52. If x are independent,,s= >, x, converges if and only if

[1521 ¢,(t) converges to a characteristic; function.

We do not give the proof. For the proof see j.L.Doob, Stodahast
processes, pages 115, 116. If would seem natural to ask arhibibre
is a direct proof of Theorefi b2 involving some relationstepizen T
in Theoren”28 and the functions(t). This might simplify the whole
theory.

Stated dferently, Theorei 32 reads as follows:

Theorem 53. If x, are independent and the distribution functions f s
converges to a distribution function, theponverges p.p.
This is a converse of Theordml 47.

Theorem 54(The strong law of large nhumberslf x, are independent,
with zero means and standard deviatiens and if

I
2
v=1 v
1 n
then lim = » x, =0p.p.
n—oo N =

Proof. Letyy = ﬁ, so thaty, has standard deviatian, /v. It follows 128
v
then from Theorerfi 49 th&t y, = >.(x,/v) converges p.p.
If we write x, = i Xj/ s
j=1

X, = vX, = vX,-1,

1 1
E Z Xy = ﬁ Z(VXV - VXV=1)
v=1 v=1

1 n
Xo =~ Z; Xy_1
-

= 0(1)

if X, converges, by the consistency of (C, 1) summation.
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If the series}y, x, does not converge p.p. it is possible to get results
1

n
about the order of magnitude of the partial susps= > %,. The basic

1
result is the famoukaw of the iterated logarithnof Khintchine. i

Theorem 55(Khintchine; Law of the iterated logarithm)_et x, be in-
dependent, with zero means and standard deviatgns
Let

n
Bn=Z(r§—>ooasn—> 0.
y=1
Then 5|
. S
limsu =
N—sco P V(2B loglogBp)

Corollary. If x, have moreover the same distribution, with = ¢ then

1p.p.

. | Sn |
limsup—— =
oo P v(2nlog logn)
We do not prove this here. For the proof, see M. Loeve: Proba-
bility Theory, Page 260 or A. Khintchine : Asymptotische éasder
Wabhrsheinlichkeit srechnung, Page 59.

o p.p.

14. Markoff Processes

A random sequence definesliscrete Markg processf the behaviour

of the sequence, for v > n depends only oix, (see page 123). ltis
called aMarkgff chain if the number of possible values (or states) of
X, is finite or countable. The states can be described byréamsition
probabilities ,pj; defined as the probability that a sequence for which
Xn = i will have xn,1 = j. Obviously

nPij > O,anij =1
J

If npij is independent of n, we say that the transition probalslitie
are stationary and the matrix = (pjj) is called astochasticmatrix. It
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follows that a stationary Markbchain must have stationary transition
probabilities, but the converse is not necessarily true.

It is often useful to consider one sided chains, sayrfer 1 and
the behaviour of the chain then depends onitiiteal state or the initial
probability distribution ofx;.

The theory of Markéf chains with a finite humber of states can
be treated completely (see for example J.L.Doob, Stochpebcesses
page 172). In the case efationarytransition probabilities, the matrix
(p";j) defined by

ok =Py B =) PR pg
K

satisfiespi”j >0, pi”j = 1 and gives the probability that a sequence
with x; = i will have x, = j. The main problem is to determine the
asymptotic behaviour q@l’] The basic theorem is

Theorem 56 (For the proof see J.L.Doob, Stochastic Processes page
175)

1n
i m _ .
Jﬂﬁzﬂrﬂu
m=1

where Q= (gjj) is a stochastic matrix and QR PQ = Q, Q’=0Q.

The general behaviour ofi“jpcan be described by dividing the states
into transient states and disjoint ergodic sets of stateknoAt all se-
guences have only a finite number of terms in any one of theiéan
states and almost all sequences for whigHiets in an ergodic set will
have all its subsequent terms in the same set.

A random function of a continuous variable t is called a Mgfkb 131
,forty < to--- <ty < tand intervals (or Borel sets)]l,,..., I, we
have

P(X(t) c |/X(t1) € lq, X(tz) € lo, ..., X(tn) € In)
= P(X(t) € 1/X(tn) € In).

Part of the theory is analogous to that of Mafk&hains, but the
theory is less complete and satisfactory.
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15. L,-Processes

Theorem 57. If r (s, t) is the auto correlation function of arplfunction,

rst=r(t.s

and if (z) is any finite set of complex numbers, then

> r(tt)zz 2 0.

i
The first part is trivial and the second part follows from tidentity

., 1 t)zz = E(I(x(t) - m(t))z|?) > 0.
i
Theorem 58(For proof see J.L.Doob, Stochastic processes pagef72)

m(t), r(s,t) are given and (s, t) satisfies the conclusion of theorén 57,
then there is a unique Gaussian functid() Xor which

E(x(®) = m(t), E(x(9) x(B) - m(9m(D)) = r(s1).

132
The uniqueness follows from the fact that a Gaussian prase$s-
termined by its first and second order moments gi@ty. Hence, if
we are concerned only with properties depending @ty and nit) we
may suppose that all our processes are Gaussian.

Theorem 59. In order that a centred 4-process should be orthogonal,
it is necessary and gicient that

E(IX(t) - x(9F) = F(t) - F((s < 1) 1)

where HS) is a non -decreasing function. In particular, iftxis sta-

tionary Ly, then E|x(t) — x(9)|?) = o?(t — s)(s < t) for some constant
2

g~.

Proof. If s < u < t the orthogonality condition implies th&(|x(u) —
X(9)1%) + E(Ix(t) — x(u)|?) = E(Ix(t) — x(9)|?) which is suficient to prove
@). The converse is trivial.
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We write
dF = E(ldX?)

and for stationary functions,
o2dt = E(jdx?).
We say that ar., - function iscontinuousatt if

lim E(x(t +h) - X(t)P) = 0,

and that it is continuous if it is continuous for &llNote that this does
not imply that the individuak(t) are continuous at O

Theorem 60(Slutsky) In order that Xt) be continuous at t, it is neces433
sary and sficient that (s, t) be continuous at £ s.

It is continuous (for all t) if (s, t) is continuous on the line=s and
then 1(s, t) is continuous in the whole plane.

Proof. The first part follows from the relations
E(Ix(t + h) - X(t)P)
=rit+ht+h)—-rit+ht)-rtt+h)+r(,t)
=0(1) ash — 0if r(s,t) is continuous for
t=srt+ht+Kk)—r(tt)
= E(x(t + h)x(t + K) - x()x(1))
= E((t + h)x(t + K) = x(®)+ = ((x(t + h) - x©)x(®)
=0(1) ash,k — 0
by the Schwartz inequality i(t) is continuous at.
For the second part, we have

r(s+ht+Kk)—r(st)
= E(x(s+ h)x(t + k) — x(1))) + E((x(s + h) - () x(D)
= 0o(1l)as hk — 0 by Schwarz’'s inequality
if x(t) is continuous at t and s.
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Theorem 61. If x(t) is continuous and stationary,Lwith p(h) = r(s, s+
h), then

(9]

p(h) = f &hds(1)

—00

where 1) is non- decreasing and bounded.
Moreover,

S(e0) — S(~0) = p(0) = E(Ix(t)[?) for all t.
Proof. We havep(-h) = p(h), p(h) is continuous at 0 and

2ot~ 1))z 2 0
I

for all complexz by Theorem[8l7 and the conclusion follows from
Bochner’s theorem (Loeve, Probability theory, p. 207-208] Bochner
Harmonic analysis and Probability, page 58).

The theorem for sequences is similar. m|

Theorem 62. If x,, is stationary Ly, with o = E(Xm.Xmn) then
on = f e"ds(1)

where ) increases and &) — S(-n) = po = E(| Xm [?)
We say that an j-random function &) is differentiable at t with
derivative X(t) (a random variable)if

E(l w —X(t) |2) S 0ash—0
Theorem 63. In order that Xt) be djferentiable at t it is necessary and

syficient that% exists when & s. Moreover, if &) is differentiable
d%r

for all t, S exists on the whole plane.

(The proof is similar to that of Theoreml60.)
Integration of Xt) can be defined along the same lines.
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We say that {t) is R-integrable in a< t < b if }; x(tj)s; tends to
a limit in L, for any sequence of sub-divisions (afb) into intervals
of lengths¢; containing points;trespectively. The limit is denoted by

2 x(tydt.

Theorem 64. In order that Xt) be R-integrable in & t < b it is neces-
sary and sgficient thatfab fab r(s t)dsdt exists as a Riemann integral.

Riemann - Stieltjes integrals can be defined similarly.

The idea of integration with respect to a random functiit) is
deeper (see e.g. J.L.Doob, Stochastic processes, cha§)IXn the
important case<(t) is orthogonal, and then it is easy to define the inte-
gral

b
f o(t)dZ()

the result being a random variable. Similarly

b
fa o(s dZ(t)

will be a random function of s under suitable integrabilignditions.
The integral of a random functiox(t) with respect to a random func-
tion Z(t) can also be defined (Doob, Chap. $56).
The most important application is to the spectral reprediemt of a
stationary process.

Theorem 65(Doob, page 527)A continuous stationarylL,) function
X(t) can be represented in the form 136

X(t) = f etdz(1)

where 4 1) has orthogonal increments and
E( dZ ) =dS

where §1) is the function defined in Theordm 61.
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The formula gives the spectral decomposition @J.xS() is its
spectral distribution.
The corresponding theorem for random sequence is

Theorem 66 (Doob, page 481)A stationary(L,) sequencgx,} has
spectral representation

Xn = f endz(1)

where 41) has orthogonal increments and
E(dz))*=dS,

S(1) being defined by Theordml62.
Two or more random function (X) are mutually orthogonal if Ex (t)
Xj(s)) =0fori # jand s, t.

Theorem 67. Suppose that(¥) is a continuous, stationarfl,) process
and that B, E>. .., E are measurable, disjoint sets whose union is the
whole real line. Then we can write

X = > %(®)
i=1

137 where x(t) are mutually orthogonal and
% = [ az( = [ emaz
Ej

and K| dz |)? = O outside E.

The theorem for sequences is similar. In each case, a péatigu
important decomposition is that in which three setsake defined by
the Lebesgue decomposition dftpinto absolutely continuous, discon-
tinuous and singular components. For the second compotienguto-
correlation functiorp(n) has the form

p(h) = > die™
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where d are the jumps of 81) at the discontinuitieq;, and is uniformly
almost periodic.

We can define liner operations on stationary functions (D@ame
534). In particular, if Ks) of bounded variation iff—co, o), the random
function

(o)

y(t) = f x(t - 9dk(S)

can be defined and it is easy to show that y(t) has spectrabsemtation

(o) (9]

y(t) = f K (1)dZ(1) = f el'dz (1)

where K) = f e'5dk(s), E( | dZz (1) ) = (K(2))2dS().

138
If k(s) =0fors<,t>0we have

y(t+r):fooo X(t - 9)dk(s— 1)

which depends only on the "part” of the functiorftk’before time t”.
The linear prediction problem (Wiener) is to determin@)kso as to
minimise (in some sense) thegfeience between(ly and Xt). In so
far as this djference can be made small, we can regafd+yr) as a
prediction of the value of(%) at time t+ r based on our knowledge of
its behaviour before t.

16. Ergodic Properties

We state first the two basic forms of the ergodic theorem.

Theorem 68 (G.D Birkhoff, 1932) Suppose that fon > 0, T is a
measure preserving (1-1) mapping of a measure sgaoé measure 1
onto itself and that ¥ = I, T4 = T1 o TH. Suppose that (fv)
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L(Q)and that {T4Q) is a measurable function ¢f, w) in the product
space Rx Q. Then

)= lim = [ fThw)da
@=lm 3 | 1)

exists for almost all, f*(w) € L(Q2) and

fg f*(w)dw = fg f (w)dw

139 Moreover, ifQ has no subspace of measued and < 1 invariant
under all T

f*(w):f f(w)dw for almost allw
Q

There is a corresponding discrete ergodic theorem for tiammsa-
tions T" = (T)" where n is an integer, the conclusion then being that

N
N o 1 n
f() = lim = D H(T)
n=1
140 exists for almost all. In this case, however, the memorability condition
on f(T*w) may be dispensed with.

Theorem 69(Von Neumann) Suppose that the conditions of Theorem
hold and that w) € Lo(Q). Then

J

For proofs see Doob page 465, 515 or P.R. Halmos, Lectures on
Ergodic Theory, The math.Soc. of Japan, pages 16,18. Thaesin
proof is due to F.Riesz (Comm. Math.Helv. 17 (1945)221-239)

Theorem§&88 is much than Theorer 69.

A
1 2
A ff(TAa))d/l — f*(w)| dw — 0asA — .
0

The applications to random functions are as follows
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Theorem 70. Suppose that(¥) is a strictly stationary random function
and that Xw.t) € L(Q) for each t, with [, X(w,t)dw = E(x(t)) = m.
Then

A—>oo

lim % fo N )t = X()

exists for almost ally If x(t) is an Lp- function we have also convergence
in mean .
This follows at once from Theordml €8] 69 if we define

f(w) = X, 0), TA(X(1)) = x(t + ).

Corollary. If ais real

A—o0

A
lim % f X(w, H)edt = X" (w, a)
0

exists for almost all.

Theoren7D is a form of the strong law of large number for ramdo
functions. There is an analogue for sequences.

A particularly important case arises if the translationragien x(t)
— X(t + A) has no invariant subset whose measuredgind< 1. In this
case we have

A
1
/\I[noox f X(w, t)dt = fQ X(w, )dw = m
0

for almost allw. In other words almost all functions have limiting “time
averages” equal to the mean of the values of the function yafirad
time.

17. Random function with independent increments

The basic condition is that tf < ty < t3, thenx(tz) — x(t1) and x(t3) —
X(to) are independent (see page 114) so that the distributiartifumof
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X(t3) — X(t1) is the convolution of those of(t3) — x(t1) andx(t3) — x(to).

We are generally interested only in the increments, anddbisenient

to consider the behaviour of the function from some basetpsmy 141
0, modify the function by subtracting a random variable stoamake
X(0) = 0, X(t) = X(t) — x(0). Then ifFy, 4, is the distribution function for
the incremeni(t,) — x(t1) we have,

Ftot:(X) = F.t, * Fot(X).

We get the stationary caseH, 1,(x) depends only oty — t;. (This
by itself is not enough, but together with independencectmalition is
syficientfor stationary) If we put

Fi(X) = Fot(X),
we have in this case
Ft1+tz(x) = Ftl * th(x)v

for all t1,to > 0.
If x(t) is also arL, function with x(0) = 0, it follows that

E(Ix(ty + t2)I%) = E(X(t)?) + E(X(t2)I?)
so that E(Ix(t)) = to?
where o? = E(X(1)P)

Theorem 71. If x(t) is stationary with independent increments, its dis-
tribution function R(X) infinitely divisible and its characteristic function
¢t(u) has the form ¥ where

iux 11+ x?

W(U) = iau + f [é"x - 1- 5| =7-do

—00

142 G(x) being non-decreasing and bounded,

Proof. The distribution function is obviously infinitely divisielfor ev-
eryt and it follows from the stationary property that

P11, (U) = @t (U)er, (U)
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so thate:(u) = €¥M for somey(u), which must have th& — L form
which is seen by putting= 1 and using TheorefaB7. ]

Conversely, we have also the

Theorem 72. Any functiony;(u) of this form is the characteristic func-
tion of a stationary random function with independent imeests.

Proof. We observe that the conditions Bg(X) gives us a system of joint
distributions over finite sets of pointswhich is consistent in the sense
of Theorem[”4¥ and the random function defined by the Kolmagjoro
measure in TheoremMMK4 has the required properties. O

Example 1 (Brownian motion : Wiener)The increments all have nor-
mal distributions, so that

Fi(X) = Le—xz/Zto-2
o V2t
Example 2(Poisson) The increment(s+t) — X(s) have integral values
v > 0 with probabilitiese ot ("
Both areL,— Processes. 143

Theorem 73. Almost all functions §) defined by the Kolmogaoftmea-
sure defined by the Wiener function, or any extension of &,exery-
where non-gdferentiable. In fact, almost all functions fail to satisfy a
Lipschitz condition of ordea(x(t — h) — x(t) = 0( h |*)) if & > % and
are not of bounded variation.

Theorem 74. The Kolmogorg measure defined by the Wiener function
can be extended so that almost all functiofy Satisfy a Lipschitz con-
dition of any ordera < % at every point, and are therefore continuous
at every point.

For proofs, see Doob, pages 392-396 and for the notion oheida,
pages 50-71.

Theorem 75. The K-measure defined by the Poisson function can be
extended so that almost functionft)xare step functions with a finite
number of positive integral value in any finite interval.

The probability that &) will be constant in an interval of length t is

e,



122 2. Probability

18. Doob Separability and extension theory

The K-measure is usually not extensive enough to give probiasilto
important properties of the functiongt), e.g. continuity etc.
Doob’s solution is to show that a certain subj€xtof Q has outer
144 K-measure 1u(Q.) = 1. Then, if X; is any K-measurable set, Doob
defines
u*x (X) = u(X1)whenX = QpXg

and shows thai* is completely additive and defines a probability mea-
sure in a Borel systermontainingQo, andu*(Qop) = 1.

Doob now defines guasi-separable Kneasure as one for which
there is a subs&®g of outerK-measure 1 and a countable Bgtof real
numbers with the property that

supx(t) = sup x(t)
tel tel .R,

o X0 = it X0 g

for everyx(t) € Q. and every open interval

If the K-measure has this property, it can be extended to a measure
so that almost all functions(t) have the propertya).

All conditions of continuity, diferentiability and related concepts
can be expressed then in terms of the countablé&geind the sets of
functions having the corresponding property then becomasmable.
Thus, in the proofs of TheoremlI74 we have only to show that ¢hefs
functions having the required property (of continuity op&ghitz con-
dition) has outer measure 1 with respect to the basic Wierasare.

For Theoreni_43, there is no need to extended the measurd, for i

145 the set of functionx(t) which are diferentiable at least at one point has
measure zero, with respect to Wiener measure, it has mezexarevith
respect to any extension of Wiener measure.

For a fuller account, see Doob, Probability in Function Sp&uill.
Amer. Math. Soc. Vol. 53 (1947),15-30.
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