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Part I

Domains of Holomorphy
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Chapter 1

Cauchy’s formula and
elementary consequences

1. Let Cn be the space ofn complex variables (z1, . . . , zn). We write 1

simply z for (z1, . . . , zn). Let zj = x j + iy j , j = 1, . . . , n, and letΩ be an
opne set inCn. Suppose thatf (z) = f (z1, . . . , zn) is a complex-valued
function defined inΩ which is (once) continuously differentiable as a
function of the 2n real variablesx1, y1; . . . ; xn, yn.

Set, by definition,

∂ f
∂zj
=

1
2

(
∂ f
∂x j
− i

∂ f
∂y j

)

and
∂ f
∂z̄j
=

1
2

(
∂ f
∂x j
+ i

∂ f
∂y j

)
.

Definition. f (z) is said to beholomorphicin Ω is
∂ f
∂z̄j
= 0, j = 1, . . . , n,

at every point ofΩ. (These equations generalize the Cauchy-Riemann
equations to the case of functions of several variables).

A definition which is equivalent to the above, ist the following:
f (z) is said to have a complex derivative ata ∈ Ω if, for any b ∈ Cn, λ

3



4 1. Cauchy’s formula and elementary consequences

complex,

lim
λ→0

f (a+ λb) − f (a)
λ

exists. f (z) is said to be holomorphic inΩ if it has a complex derivative
at everya ∈ Ω.

Definition . A polydisc, with centre at the origin is the setK of points
such that

|z1| ≤ ρ1, |z2| ≤ ρ2, . . . , |zn| ≤ ρn, ρ1, ρ2, . . . , ρn > 0.

These inequalities are, for brevity, written

|z| ≤ ρ.

Let Γ denote the set of pointsz∈ Cn for which2

|z1| = ρ1, . . . , |zn| = ρn.

Consider a functionf (z) holomorhpic in a neighbourhood ofK and
denote byc j the curve|zj | = ρ j in the zj-plane. Then the following
theorem holds.

Cauchy’s formula. If z is a point with |z| < ρ (i.e., |zj | < ρ j , j =
1, . . . , n), then

f (z1, . . . , zn) =
1

(2πi)n

∫
. . .

∫

Γ

f (ζ1, . . . , ζn)
(ζ1 − z1) . . . (ζn − zn)

dζ1 . . . dζn.

(The integral
∫
. . .

∫

Γ

g(ζ1, . . . , ζn)dζ1 . . .dζn, is defined, for continu-

ousg, to be
∫
c1

dζ1 . . .
∫
cn

g(ζ1, . . . , ζn)dζn and is independent of the order
in which the repeated integration is performed.)

Proof. Repeated application of the Cauchy formula for holomorphic
functions of one complex variable gives

f (z1, . . . , zn) =
1

2πi

∫

c1

f (ζ1, z2, . . . , zn)
ζ1 − z1

dζ1
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=
1

(2πi)2

∫

c1

dζ1

ζ1 − z1

∫

c2

f (ζ1, ζ2, z3, . . . , zn)
ζ2 − z2

dζ2

= . . . =
1

(2πi)n

∫

c1

dζ1

ζ1 − z1

∫

c2

dζ2

ζ2 − z2
. . .

∫

cn

f (ζ1, . . . , ζn)
ζn − zn

dζn

=
1

(2πi)n

∫
· · ·

∫

Γ

f (ζ1, . . . , ζn)
(ζ1 − z1) . . . (ζn − zn)

dζ1 . . . dζn.

�

2. If f is a complex valued continuous function on a compact space
K, we define

|| f ||K =
∑

x∈K

| f (x)|.

Definition. A series
∑

m∈Nn
am(z) of complex valued continuous functions3

on a compact spaceK is said to converge normally if
∑

m∈N

||am||K < +∞.

(N is the set of non-negative integers).

If am(z) are functions defined in an open setΩ, we say the series con-
verges normally inΩ if it converges normally on every compact subset
of Ω.

The following are simple consequences of Cauchy’s formula.

Proposition 1. If f (z) is holomorphic in a neighbourhood U of a poly-
disc K, then

f (z1, . . . , zn) =
∑

( j1,..., jn)∈Nn

a j1,..., jnz
j1
1 . . . zjn

n for z∈ K. (1)

The series converges normally onK.
The proposition is proved simply by applying Cauchy’s formula to

a polydiscK′ wiht K ⊂
o

K′ ⊂ K′ ⊂ U (
o

K′ is the interior ofK′).



6 1. Cauchy’s formula and elementary consequences

The coefficientsa j = a j1,..., jn in (1) are given by

a j1,..., jn =
1

(2πi)n

∫
. . .

∫

Γ

f (ζ1, . . . , ζn)

ζ
j1+1
1 . . . ζ

jn+1
n

dζ1 . . .dζn

=
1

(2π)n

∫ 2π

0
. . .

∫ 2π

0

f (ρ1eiθ1, . . . , ρneiθn)

ρ
j1
1 . . . ρ

jn
n

e−i( j1θ1+···+ jnθn)dθ1 . . . dθn (2)

From the expansion off (z) as a power series (1), it is seen thatf (z)
is indefinitely differentiable and that

∂ j1+...+ jn f (0)

∂zj1
1 . . . ∂zjn

n

= j1! . . . jn!a j1,... jn

so that the expansion is unique. By differentiation in Cauchy’s formula,4
we have also

∂ j1+...+ jn f (z)

∂zj1
1 . . . ∂zjn

zn

=
j1! . . . jn!
(2πi)n

∫
. . .

∫

Γ

f (ζ1, . . . , ζn)
(ζ1 − z1) j1+1 . . . (ζn − zn) jn+1

dζ1 . . .dζn

(3)

If f (z) is assumed to be holomorphic only in the interior ofK, we
can write

f (z) =
∑

J∈Nn

aJzJ

where

aJ =
1

(2πi)n

∫
. . .

∫

Γ′

f (ζ1 . . . , ζn)

ζ
j1+1
1 . . . ζ

jn+1
n

dζ1 . . . dζn,

Γ′ being a set of points of the form

|z1| = r1, . . . , |zn| = rn, 0 < r j < ρ j , j = 1, . . . , n.

The series converges normally in the interior ofK.
If f (z) is holomorphic in a neighbourhood ofK and M = max

z∈Γ
| f (z)| = max

z∈K
| f (z)| (the latter equality is easily established using

Cauchy’s formula), then

|aJ| ≤
M
ρJ
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i.e.
|a j1,..., jn| ≤ M/(ρ j1

1 . . . ρ
jn
n ).

This follows at once from the expression (2) foraJ as an integral in
terms of f (z). The inequalities are called theCauchy inequalities.

Proposition 2. Let { fk(z)} be a sequence of functions holomorphic inΩ
and suppose that{ fk(z)} converges, uniformly on every compact subset
ofΩ, to a function f(z). Then f(z) is holomorphic inΩ.

Proof. Since fk(z) → f (z) uniformly in a neighbourhood of anyz ∈ Ω, 5

f (z) is continuous inΩ. Also, in a polydiscK about any point ofΩ
(lying wholly in Ω), fk(z) verifies Cauchy’s formula, and{ fk(z)} being
uniformly convergent onK, so doesf (z), from which it follows easily
that f (z) is holomorphic inΩ.

Also, using the integral (3) for the derivatives of a holomorphic func-
tion, one proves that the derivatives (opf all orders) offk(z) converge to
the corresponding derivatives off (z), uniformly on every compact sub-
set ofΩ.

Another interpretation of the Proposition 2 is as follows. If CΩ,HΩ
denote the sets of continuous and holomorphic functions inΩ respec-
tively, CΩ and HΩ are vector spaces over the field of complex num-
bers. We recall that one may topologizeCΩ,HΩ by putting on them the
topology of uniform convergence on compact sets, namely iffn ∈ CΩ
(or HΩ), fn → 0 if || fn||K → 0 asn→ ∞ for every compactK ⊂ Ω. A
fundamental system of neighbourhoods of the origin is givenby the sets
U (Km, 1/m), whereU (K, a)(a > 0) is the set off ∈ CΩ (resp.HΩ) for
which || f ||K < a, and{Km} is a sequence of compact sets with

Km ⊂
o
Km+1,

∞⋃

m=1

o
Km = Ω.

CΩ is an (F )-space, i.e., it has a countable fundamental system of neigh-
bourhood of 0 and is complete.

Proposition 2 may be expressed by saying thatHΩ is a closed sub-
space ofCΩ. �
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Proposition 3. Every bounded closed setΦ in HΩ is compact. 6

(A bounded setΦ in any topological vector space is a set such that
to any neighbourhoodU of the origin, there exists aλ > 0 such that
Φ ⊂ λU . CΩ or HΩ, we may say equivalently that a setΦ is bounded
if

∑
f∈Φ
|| f ||K < +∞ for every compact K⊂ Ω.).

Proof. Let K be any compact subset ofΩ. LetΦK be the set of functions
fK , where fK is the restriction off ∈ Φ to K. We prove thatΦK is
equicontinuous from which it follows by means of Ascoli’s theorem (see
e.g. Bourbaki: Topologie Générale, Chap.X, p.48) thatΦK is relatively
compact inCK .

Choose a compact setK′ so thatK ⊂
o

K′ ⊂ K′ ⊂ Ω. K has positive
distance from the boundary ofK′. Since sup

f∈Φ
|| f ||K′ < +∞ Cauchy’s

inequlity applied to the derivatives of thef in a suitable polydisc about
an arbitrary point ofK, contained inK′ shows that

sup
f∈Φ

max
j
||
∂ f
∂zj
||K = MK < ∞.

Since
∂ f
∂z̄j
= 0, it follows from the definitions of

∂ f
∂zj

,
∂ f
∂z̄j

that
∂ f
∂x j

,

∂ f
∂y j

, are bounded uniformly onK, for f ∈ Φ (actually, ||
∂ f
∂x j
||K ≤ MK,

||
∂ f
∂y j
||K ≤ MK). The mean value theorem now shows thatΦK is equicon-

tinuous.
To prove now thatΦ is compact, it suffices to prove that any se-

quence{ fm}, fm ∈ Φ has a limit point inCΩ. We choose a sequence

{Km} of compact setsKm with Km ⊂
◦

Km+1,
⋃∞

m=1 Km = Ω. SinceΦK is
relatively compact for every compactK ⊂ Ω, we choose, inductively,
subsequences{ fm,y} of { fm}, such that each is a subsequence of the pre-
ceding, while if fm,ν+1 = fm′,ν0 thenm′ > m, and{ fm,ν} converges uni-7

formly onKν. Since
⋃ ◦

Km = Ω, the subsequence{ fνν} of { fm} converges
to a limit in CΩ and Proposition 3 is proved.
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Suppose given a subsetΦ of HΩ such that sup
f∈Φ
| f (z)| < +∞ for every

z∈ Ω. The question arises as to what one can assert about the bounded-
ness of the setΦ. The following result holds. �

Proposition 4. There exists an open setΩ′ ⊂ Ω, which is dense inΩ
such thatΦΩ′ (the set of the restrictions toΩ′ of functions ofΦ is a
bounded set inHΩ′ .)

The proposition and its proof remain valid ifHΩ is replaced byCΩ.
We need the following

Theorem of Baire. Let U be an open set⊂ Cn and{O}, k = 1, 2, . . . a

sequence of open sets⊂ U, such that eachOk is dense inU. The
∞⋂

k=1
Ok

is dense inU.

Proof. SinceO1 is dense inU, given any open ballB ⊂ U, O1 ∩ B
contains an open ballB1. In the same way,O2 ∩

1
2B1 (1

2B1 is the ball
with the same centre asB1 and half its radius) contains an open ball

B2 and this process can be continued. Clearly
∞⋂

k=1
B̄k , 0 and since

B̄k ⊂ Bk−1,
∞⋂

k=1
Bk , 0. Also Bk ⊂ Ok ∩ B, so that

∞⋂
k=1

Ok ∩ B , 0 and

∞⋂
k=1

Ok is dense inU. �

Proof of the proposition.
Let U be an arbitrary open set⊂ Ω. Let Ok ⊂ U be the set of

z ∈ U for which there exists at least onef ∈ Φ̄ for which | f (z)| > k.

ClearlyOk is open. Also since for anyz ∈ Ω, sup
f∈Φ
| f (z)| < +∞,

∞⋂
k=1

Ok =

0. By Baire’s theorem, at least oneOk is not dense inU. HenceU 8

contains an open setOU contained in the complement ofOk for some
k and the functions ofΦ are uniformly bounded forz ∈ OU(by k). If
we setΩ′ =

⋃
U

OU , Ω′ is clearly open and dense inΩ. If z ∈ Ω′, z

possesses a neighbourhood on whichΦ is uniformly bounded and so
Φ is bounded uniformly on every compact subset ofΩ′ (by the Borel-
Lebesgue lemma).





Chapter 2

Reinhardt domains and
circular domains

1 Reinhardt domains
9

Definition. A Reinhardt domain is an open setΩ ⊂ Cn such that

(z1, . . . , zn)ǫΩ implies (eiθ1z1, . . . , e
iθnzn)ǫΩ

for all realθ1, . . . , θn.

Theorem 1. LetΩ ⊂ Cn be a connected Reinhardt domain containing
0 and suppose that f(z) is holomorphic inΩ, Then f(z) can be written

f (z) =
∑

mǫNn

amzm

in Ω, the series converging normally inΩ. Such an expansion is unique.

Proof. LetΩǫ be the set ofzǫΩ which have distance> ǫ|z|(|z2 =
∑
|zi |

2)
from the boundary ofΩ. LetΩ′ǫ ⊂ Ωǫ be the connected component of
0. Then ⋃

ǫ>0

Ω′ǫ = Ω.

11



12 2. Reinhardt domains and circular domains

For, if zǫΩ, we can joinz to the origin by a path inΩ. This path has a
distance> 0 from the boundary ofΩ. If ǫ is small enough the path lies
in Ωǫ and so inΩ′ǫ . In particular,zǫΩ′ǫ .

Define, forzǫΩ′ǫ

g(z1, . . . , zn) =
1

(2πi)n

∫

|t1|=1+ǫ

. . .

∫

|tn|=1+ǫ

f (t1z1, . . . , tnzn)
(t1 − 1) . . . (tn − 1)

dt1 . . .dtn.

The integral is defined, for if (z1, . . . , zn)ǫΩ′ǫ , then ((1+ ǫ)z1, . . . , (1 +
ǫ)zn)ǫΩ for the distance between these two points isǫ|z|. Hence, sinceΩ
is a Reinhardt domain, (t1z1, . . . , tnzn)ǫΩ for all (t1, . . . , tn) with |t j | = 1+
ε. By differentiation under the integral, it is seen thatg(z) is holomorphic
in Ω′ε. Moreover, if we choose a polydiscK ⊂ Ω′ε with centre 0 such10

that (1+ ǫ)K ⊂ Ω, then forzǫ
◦

K, (t1z1, . . . , tnzn)ǫΩ for all |t j | ≤ 1+ ǫ so
that, by Cauchy’s formula,

g(z1, . . . , zn) = f (z1, . . . , zn), zǫ
◦

K.

Now, if two holomorphic functions in an open, connected setU co-
incide in some open set inU, then they coincide in the whole ofU. (See
the principle of analytic continuation in III). Hence

f (z) =
1

(2πi)n

∫

|t1|=1+ǫ

. . .

∫

|tn|=1+ǫ

f (t1z1, . . . , tnzn)
(t1 − 1) . . . (tn − 1)

dt1 . . .dtn

in Ω′ǫ. Moreover,

1
(t1 − t) . . . (tn − 1)

=
1

t1 . . . tn

∑

(m1,...,mn)ǫNn

1

tm1
1

. . .
1

tmn
n

the series being normally convergent on|t j | = 1 + ǫ, j = 1, 2, . . . , n.
Hence

f (z1, . . . , zn) =
∑

(m1,...,mn)ǫNn

φm1...mn(z)

where

ϕm1...mn(z) =
1

(2πi)n

∫

|t1|=1+ǫ

. . .

∫

|tn|=1+ǫ

f (t1z1, . . . , tnzn)

tm1+1
1 . . . tmn+1

n

dt1 . . . dtn.
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Exactly as we proved above thatg(z) = f (z) in Ω′ǫ , we prove, using
formula (3) for the derivatives of a holomorphic function, that

φm1...mn(z) =
1

m1! . . .mn!
∂m1+···mn f (t1z1, . . . , tnzn)

∂tm1
1 . . . ∂tmn

n

∣∣∣∣∣∣ t j = 0

=
zm1
1 . . . zmn

n

m1! . . .mn!
∂m1+···+mn f (0)

∂zm1
1 . . . ∂zmn

n
.

From the integral representation ofφ, it is seen that ifz lies in a 11

compact subsetK ⊂ Ω andǫ is small enough

|φm1...mn(z)| ≤
MK

(1+ ǫ)m1 . . . (1+ ǫ)mn

whereMK depends only onK, so that the series converges normally on
K. The expansion in the whole ofΩ follows easily by lettingǫ → 0.

The uniqueness is obvious. �

2 Domains of convergence of powe series

Let ∑

mǫNn

amzm

be a given power series. We define its domain of convergence,D, as
follows: zǫD if the series converges absolutely in a neighbourhood of
z. D is clearly open. We define the setB as the set ofz for which there
existsC > 0 such that|amzm| ≤ C for all mǫNn. ClearlyD ⊂ B◦ (interior
of B). But we can prove thatD = Bo. This follows from

Abel’s lemma: If z = (z1, . . . , zn)ǫB, then (α1z1, . . . , αnzn)ǫD if |α1| <

1, . . . , |αn| < 1 and the series converges normally inD.

Proof. If |amzm| ≤ C, the general term of the series
∑

mǫNn
am1...mn×

(α1z1)m1 . . . (αnzn)mn is majorized byC|α1|
m1 . . . |αn|

mn and the result fol-
lows. �

Consequences of Abel’s lemma
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(a) D = B◦. This is obvious.

(b) The series represents a holomorphic function inD (by I, Prop 2)

(c) D is a Reinhardt domain. More, if (z1, . . . , zn) then (α1z1, . . . ,12

αnzn)ǫD if |α1| ≤ 1, . . . |αn| ≤ 1,

and soD is a union of polydiscs (all with centre).
We give an example, due to Hartogs, of a domain inC2 that any

holomorphic function in the domain can be extended to a larger domain.
Let G be the domain consisting of the pointszwith

|z1| < ǫ, |z2| < 1

and the points with

|z1| < 1, 1− ǫ < |z2| < 1.

In the figure we have indicated the variation in|z1|, |z2|. By Theorem
1, any function holomorphic inG can be expanded in a power series
in G and, by Abel’s lemma, the power series represents a holomorphic
function in the open polydisc

|z1| < 1, |z2| < 1.

A special case is the following:
Let Ω be an open set inCn(n > 1) anda a point ofΩ. Let f (z)

be holomorphic inΩ − a. Then f (z) can be continued holomorphically
throughourΩ.
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Consequence (c) of Abel’s lemma shows that the domain conver-
gence of a power series is a Reinhardt domain, but this is not all; not13

every Reinhardt domain, which is the union of open polydiscs, is the
domain of convergence of a power series. We can, however, character-
ize the domains of convergence of power series.

Let D∗ ⊂ Rn be the set consisting of the points (log|z1|, . . . , log |zn|)
where (z1, . . . , zn)ǫD i.e. D∗ is the image ofD under the mappingφ :
Cn → Rn defined byφ(z1, . . . , zn) = (log |z1|, . . . , log |zn|). Let B∗ be the
image ofB underφ (D andB are the sets of points defined on p.11 asso-
ciated with the power series). If (ρ1, . . . , ρn)ǫD∗ then (ρ1 − t1, . . . , ρn −

tn)ǫD∗ if t1 ≥ 0, . . . , tn ≥ 0.
The following fundamental result holds.

Theorem 2. D∗ is a convex set in Rn.

Proof. SinceD = B0, D∗ =
◦

B∗ so that it suffices to prove thatB∗ is
convex. NowB∗ =

⋃
C>0

B∗C, whereB∗C is the image, underφ, of the set

of zǫCn where|amzm| ≤ C for all mǫNn. SinceB∗C ⊂ B∗C′ , if C < C′ it is
enough to prove thatB∗C is convex. AlsoB∗C =

⋂
mǫNn

B∗C,m, whereB∗C,m is

the image of the set ofzǫCn, |amzm| ≤ C for a fixedm, underφ. Thus,
we have only to prove thatB∗C,m is convex. NowB∗C,m is the image of the

set ofzǫCn for which
∣∣∣am1...mnz

m1
1 . . . zmn

n

∣∣∣ ≤ C and so is the set of points
(ρ1, . . . , ρn)ǫRn(ρ j = log |zj |) at which

log |am1...mn| +m1ρ1 + · · · +mnρn ≤ logC,

which, being a half space inRn, is convex. This proves Theorem 2.
For example, consider a series convergent in the domain inC2 con- 14

sisting of the points|z1| < 1, |z2| < e, and the points|z1| < e, |z2| < 1. It
has the image shown in Fig. (a) (the setα) in the (|z1|, |z2|)-plane andD∗

contains the setα∗ in Fig. (b). SinceD∗ is convex, it contains also the
setβ∗ in Fig. (b) and so the series converges at the points inC2 which
are mapped by

φ : z→ (log |z1|, log |z2|)

into the setβ′ in Fig. (a).
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Fig. (a) Fig. (b)

The converse of Theorem 2 is true; that is if a Reinhardt domain,
which is the union of polydiscs, is such that its image underφ is convex,
then it is (precisely) the domain of convergence of a power series. We
shall prove this later (in VII, p.44) �

3 Circular domains

We consider next the expansion of holomorphic functions in series of
homogeneous polynomials.

Definition . An open setΩ ⊂ Cn is said to be acircular domainif zǫΩ
implieseiθzǫΩ i.e. (eiθz1, . . . , eiθzn)ǫΩ for all realθ.15

Theorem 3. LetΩ be a connected circular domain and let0ǫΩ. Sup-
pose f(z) to be holomorphic inΩ. Then f(z) can be expanded in a series
of homogeneous polynomials,

f (z) =
∞∑

k=0

Pk(z) in Ω

(Pk(z) is homogeneous, of degree k in z1, . . . , zn) and the series con-
verges normally inΩ. An expansion of this form is unique.

Proof. DefineΩ′ǫ as in Theorem 1 and consider the integral

1
2πi

∫

|t|=1+ǫ

f (tz1, . . . , tzn)
t − 1

dt.
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Exactly as in the proof of Theorem 1, we choose a polydiscK about
the origin such that (1+ ǫ)K ⊂ Ω′ǫ and then, ifzǫK, (tz1, . . . , tzn)ǫΩ
for |t| ≤ 1 so that, the integral being holomorphic inΩ′ǫ we have, by
Cauchy’s formula,

f (z1, . . . , zn) =
1

2πi

∫

|t|=1+ǫ

f (tz1, . . . , tzn)
t − 1

dt.

in
◦

K and so, sinceΩ′ǫ is connected, inΩ′ǫ. Since

1
t − 1

=
1
t

∞∑

k=0

1

tk
,

the series converging normally on|t| = 1+ ǫ, we have

f (z1, . . . , zn) =
∞∑

k=0

Pk(z)

where

Pk(z) =
1

2πi

∫

|t|=1+ǫ

f (tz1, . . . , tzn)

tk+1
dt.

As in the proof of Theorem 1, the series converges normally inΩ′ǫ and, 16

repeating the above argument, it follows that

Pk(z) =
1
k!

∣∣∣∣∣∣
dk f (tz1, . . . , tzn)

∣∣∣∣∣∣
t=0

=
1
k!

∑

m1+···+mn=k

∂k f (0)

∂m1z1 . . . z
mn
n

zm1
1 . . . zmn

n

The theorem follows by lettingǫ → 0.

It is easily seen that iff (z) has an expansion
∞∑

k=0
Pk(z) which con-

verges uniformly in a neighbourhood of 0, thenPk(z) has the above
form. This proves Theorem 3.

The above theorem shows that if a functionf (z) is holomorphic is
a circular domainΩ (which is connected and contains 0) then it can be



18 2. Reinhardt domains and circular domains

holomorphically continued to
⋃

0≤t≤1
(tΩ). This is proved in the same way

as Abel’s lemma. �



Chapter 3

Complex analytic manifolds

Definition . A Hausdorff, topological spaceVn is called atopological 17

manifold of dimension n(n ≥ 0 an integer) if it has followsing property:
every pointa ∈ Vn has a neighbourhood homeomorphic to an open set
Ω ⊂ Rn.

(Note that a space having this property is not automaticallyHaus-
dorff.)

Vn is said to be countable at infinity, ifVn is a countable union of
compact sets.

We next recall, without proof, the following two propositions.

Proposition 1. If Vn is connected the following three conditions are
equivalent:

(1) Vn is countable at infinity.

(2) Vn is paracompact (i.e. any open covering(Ui)i∈I admits a locally
finite refinement, namelyl there is another open convering(Wj) j∈J

each set of which is contained in at least one Ui and such that
any point has a neighbourhood intersecting only a finite number
of the Wj)

(3) Vn has a countable open base.

19
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Proposition 2 (Poincaré - Volterra theorem). If Vn, Wn are two n di-
mensional manifolds and if (1) Vn is connected, (2) Wn is countable at
infinity, (3) there exists a continuous mappingφ : Vn → Wn which is
a local homeomorphism (i.e. every a∈ Vn has an open neighbourhood
which is mapped homeomorphically on an open set of Wn). Then Vn is18

countable at infinity.

Differentiable manifolds. Let Vn be a topological manifold of dimen-
sionn. by an (indefinitely) differentiable orC∞-structure onVn is meant
a family {Oi}i∈I of open sets⊂ Vn which coverVn, and mappings{ fi}i∈I
such thatfi mapsOi homeomorphically onto an open subsetÕi ⊂ Rn

and such that the mappingsfi ◦ f −1
j and f j ◦ f −1

i areC∞-mappings of
f j(Oi ∩ O j), fi(Oi ∩O j) respectively, ontofi(Oi ∩ O j), f j(Oi ∩ O j), i.e.
if the correspondence

fi(Oi ∩ O j)←→ f j(O j ∩O j)

is C∞.
(Note that it may happen that one can define more than one differen-

tiable structure on a manifoldVn, so that aC∞-manifold is not a special
topological manifold, but is a topological manifold with anadditional
structure).

If {O′k, f ′k} defines aC∞-structure onVn, we say that it defines the
same structure as{Oi , fi} if (and only if) the correspondencefi(Oi ∩

O′k) ←→ f ′k(Oi ∩ O′k) is C∞. If the intersectionsOi ∩ O j or Oi ∩ O′k
are empty we take it that the condition is satisfied. We make a similar
convention whenever we speak of properties of mappings ofOi ∩O j or
Oi ∩ O′k, without stating this explicitly.

If φ is a mapping ofV to W, whereV, W areC∞-manifolds (not
necessarily of the same dimension) withC∞-structures{Oi , fi}, {O′j , f ′j }

we say thatφ is a differentiable or a C∞-mappingif f ′j ◦ φ ◦ f −1
i is a

C∞-mapping, offi(Oi ∩ϕ
−1(O′)). If V andW have the same dimension,19

we say thatφ is adiffeomorphismif φ is a homeomorphism ofV ontoW
and ifφ andφ−1 are differentiable.

System of local coordinates
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Definition . Let V be aC∞-manifold and leta ∈ V. If (X1, . . . ,Xn) is a
system ofreal valued functions in an open neighbourhoodW of a such
that the mappingφ : W → Rn defined byb → (X1(b), . . . ,Xn(b)) for
everyb ∈ W, is a diffeomorphism, then (X1, . . . ,Xn) are said to form a
system of local coordinates at a.

If Y1, . . . ,Yn areC∞-functions in a neighbourhood of a, they form a
system of local coordinates ata if and only if the Jacobian

D(Y1, . . . ,Yn)
D(X1, . . . ,Xn)

does not vanish ata. The proof follows easily from the implicit function
theorem.

Complex analytic manifolds.

Definition. LetΩ,Ω′ be two open sets inCn, f1, . . . , fn complex valued
functions inΩ. We say thatf = ( f1, . . . , fn) is ananalytic isomorphism
of Ω ontoΩ′ if the mappingf = ( f1, . . . , fn) of Ω → Cn is a diffeomor-
phism ofΩ ontoΩ′ and the functionsf1, . . . , fn are holomorphic inΩ.

The composite of analytic isomorphisms is an analytic isomorphicm.
Moreover, the inverse of an analytic isomorphism is also one. This is
seen as follows:

Let ( f1, . . . , fn) ben holomorphic functions ofz1, . . . , zn, and letJ = 20

det

(
∂ fk
∂zl

)
and fk = f (1)

k + i f (2)
k , zk = xk + iyk. Then the determinant

∣∣∣∣∣∣
A B
C D

∣∣∣∣∣∣, where

A =


∂ f (1)

k

∂xl

 , B =


∂ f (2)

k

∂xl

 , C =


∂ f (1)

k

∂yl

 , D =


∂ f (2)

k

∂yl



is equal to

∣∣∣∣∣∣
A1 B1

C1 D1

∣∣∣∣∣∣, where

A1 =

(
∂ fk
∂zl

)
, B1 =

(
∂ f̄k
∂zl

)
, C1 =

(
∂ fk
∂z̄l

)
, D1 =

(
∂ f̄k
∂z̄l

)



22 3. Complex analytic manifolds

and, by the Cauchy-Riemann equations, this equals|J|2 so that, since
( f1, . . . , fn) = f is a diffeomorphism,J , 0. We can now easily compute
∂z

∂ f̄k
and show that it is zero which proves the statement.

Definition. Let V be a topological manifold of dimension 2n. We shall
identify R2n with Cn. A system{Oi , fi}i∈I , where{Oi}i∈I is an open cov-
ering of V and fi are mappings,fi : Oi → Õ i ⊂ Cn, is said to define
a complex analytic structureif the mappingfi ◦ f −1

k defines an analytic
isomorphism off j(Oi ∩O j) onto fi(Oi ∩O j), i.e., if the correspondence

fi(Oi ∩ O j)←→ f j(Oi ∩O j)

is an analytic isomorphism for everyi, j ∈ I . Two systems{Oi , fi},
{O′k, f ′k} define the same complex analytic structure if the correspon-21

dencefi(Oi ∩O′k)←→ f ′k(Oi ∩O′k) is an analytic isomorphism for every
i, k.

We callV a complex analytic manifold of (complex) dimensionn.

Definition. Let Vn, Wm be two complex analytic manifolds, with struc-
tures{Oi , fi}, {O′j , f ′j } andφ a mapVn→Wm. φ is said to be ananalytic

mappingif the mappingsf ′j ◦ φ ◦ f −1
i are analytic mappings of̃O j to

Cm, i.e., if the component functions are holomorphic inÕi . φ is called
ananalytic isomorphismof Vn ontoWm if it is an analytic map and is,
moreover, a diffeomorphism.

Local coordinates.
Let V be a complex, analytic manifold. A system ofn complex

valued functions (z1, . . . , zn) in a neighbourhood of a pointa ∈ V is
said to form a system of local coordinates ata if there exists an open
set W, a ∈ W such that the mappingφ : W → W̃ ⊂ Cn defined by
b → (z1(b), . . . , zn(b)) is an analytic isomorphismn holomophic func-
tions t1, . . . , tn (i.e., analytic mappings intoC1) in a neighbourhood ofa
form system of local coordinates if and only if the determinant

J = det

[
∂tk
∂zl

]

a
, 0.
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This follows from the fact that Jacobian of theRti , Jt j in terms of the
Rzi , Jzj equals|J|2 , 0 and the remark on the inverse of an analytic
isomorphism.

The question arises as to which theorems on holomorphic functions
in an open setΩ ⊂ Cn generalize to holomorphic functions on a complex
analytic manifoldV. The following theorems, and their proofs, do. 22

(1) HV is closed inCV (the notation is the obvious one).

(2) A closed bounded setΦ in HV is compact. The diagonal process
fails if V is not countable at infinity, but it is easy to prove that
any ultrafilter inΦ converges, by considering, for any compact
K ⊂ V, the restrictions toK of the functions in the elements of
the ultrafilter.

(3) If Φ ⊂ HV (or CV) and
∑
f∈Φ
| f (a)| < +∞ for everya ∈ V, then

there exists an open setV′ ⊂ V dense inV such thatΦV′ (the set
of restrictions toV′ of the functions ofΦ) is a bounded set inHV′

(respectivelyCV′).

This is because Baire’s theorem (used in I, Prop.4) is true for open
subsets of locally compact spaces or complete metric spaces(and any
manifold is locally compact).

It is also sometimes of interest to apply Baire’s theorem inHV, but
this necessitates the assumption thatV is countable at infinity whenHV

is a Fréchet space and so a complete metric space.

The principle of analytic continuation.
Let V be a connected,W an arbitrary, complex analytic manifold,

and let f1, f2 be two analytic mappings ofV into W. Let {Oi , φi}, {O′j , φ
′
j}

define the structures onV, W respectively.
Let a ∈ Oi, f1(a) = f2(a) ∈ O′j . We say thatf1, f2 have the same

derivatives ata if the components of the mappingsφ′j ◦ f1 ◦ φ−1
i and

φ′j ◦ f2 ◦ φ−1
j have the same derivatives (of all orders) atφi(a). This

definition is independent of theOi ,O
′
j containinga, f1(a) respectively,

and of the systems chosen to define the analytic structures.
The following theorem then holds: 23



24 3. Complex analytic manifolds

Theorem. (1) (The strong principle of analytic continuation).

If f1 and f2 and all their derivatives coincide at a point a∈ V,
then f1 = f2 everywhere on V.

(2) (The weak principle of analytic continuation).

If f1 = f2 in an open set on V, f1 = f2 everywhere on V.

Proof. The weak principle follows at once from the strong principleso
that we have only to prove the latter. LetE be the set of points where
f1 and f2 and all their derivatives coincide. It is clear thatE is closed.
Suppose now thatb ∈ E. Then all the components of the functions
φ′k ◦ f1 ◦ φ−1

l andφ′k ◦ f2 ◦ φ−1
l (b ∈ Ol , f1(b) = f2(b) ∈ O′k) and all

their derivatives coincide atφl(b). By expanding in power series about
φl(b), it follows that these components and their derivatives coincide
in a neighbourhood ofφl(b) so thatE is open. Sincea ∈ E andV is
connected,E = V and the theorem follows. �



Chapter 4

Analytic Continuation

All the manifolds considered in this and the next lecture areassumed to 24

be connected.

Definition . Let V, W be two complex analytic manifolds of complex
dimensionn, φ a mapping ofV → W. We say thatφ is a local analytic
isomorphismif every pointa ∈ V has an open neighbourhoodO such
thatφ restricted toO is an analytic isomorphism.

We say thatV is spread inW and thatφ spreadsV in W if φ is a local
analytic isomorphism ofV in W.

One may define the continuation of a holomorphic functionf on V,
to the manifoldW in which V is spread byφ by saying thatg is the
continuation off to W if f = g◦ φ. If such ag exists, it is unique, for if
g′ ◦ φ = f = g ◦ φ, then sinceφ is a local homemorphism,g = g′ in an
open set onW, andW being connected,g = g′ on W.

Example. (i) V is an open set⊂ W, φ is the inclusion mapφ(a) = a
for everya ∈ V. The functions inV which can be continued toW
are precisely the restrictions toV of holomorphic functions onW.

(ii) V is a convering space ofW andφ the natural projection. The
functions onV which can be continued toW are those functions
which have the same value at all points which lie over one point
of W.

25
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However, this definition of continuation turns out to be too general
to be of use. To have interesting theorems, it is necessary torestrict the25

definition, and we introduce therefore the following

Definition . Let V be a complex analytic manifold,φ a map which
spreadsV in Cn. (The necessary and sufficient condition that such a
φ exist is that there aren global functions onV which form a system of
local coordinates at each point ofV). Let (V′, φ′) be another such pair,
φ′ spreadingV′ in Cn. Suppose also that there exists a mapψ : V → V′

which spreadsV in V′, such thatφ = φ′ ◦ ψ (φ, φ′, ψ are assumed to be
given and fixed). Letf be a holomorphic function onV. We say thatf ′

is the continuation off from V to V′ if f ′ is a holomorphic function on
V′ such thatf = f ′ ◦ ψ.

Maximal continuation.
Let (V, φ) be a pair consisting of the (n dimensional) complex an-

alytic manifoldV and a spreadφ of V in Cn. Let f be a holomorphic
function onV. Suppose that there exists another such pair (Ṽ, φ̃) with
the following properties:

(i) f can be continued to (Ṽ, φ̃), i.e., there exists a holomorphic func-
tion f̃ on Ṽ and a spread̃ψ of V in Ṽ such thatf = f̃ ◦ψ̃, φ = φ̃◦ψ̃.

(ii) If f ′ is a continuation off to the pair (V′, φ′) andψ is the spread
of V in V′ such thatf = f ′ ◦ ψ, φ = φ′ ◦ ψ, then there exists
a spreadχ of V′ in Ṽ such that f ′ = f̃ ◦ χ and such that the
mappingψ̃ : V → Ṽ factorises intoψ̃ = χ ◦ ψ. Then we can show
that we have alsoφ′ = φ̃ ◦ ψ and we call (̃V, φ̃, ψ̃, f̃ ) a maximal
continuationof (V, φ, f ).

To consider the problem of the existence and uniquencess of amaxi-26

mal continuation, we shall have to introduce the so-calledsheaf of germs
of holomorphic functions.

Let W be a complex analytic manifold (of complex dimensionn).
Let a ∈ W. Consider the set of all holomorphic functions in open sets
containing the pointa. We introduce an equivalence relation in this set
of functions by identifying two functionsf , g, if, in a neighbourhood
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of a, f = g. The equivalence classes are called germs ofholomorphic
functionsat a. fa will stand for a germ ata. It is clear thatfa(a) has an
unambiguous meaing.

Denote byOa the set of germs ata. The sheaf of germs of holomor-
phic functions on Wis defined to beOW = O =

⋃
a∈W

Oa. A complex

analytic structure can be put onO in the following way.
Let a ∈ W and let (a, fa) ∈ Oa · fa is defined by a holomorphic

function f in a neighbourhoodU of a. Also, for everyb ∈ U, f defines
a germ fb at b. We define

⋃
b∈U

(b, fb) to be a neighbourhood ofa. It is

easy to verify that this defines a topology onO.

Proposition 1. O is a Hausdorff space.

Proof. Let (a, fa) , (b, gb) be two points ofO.
If a , b we choose neighbourhoodsUa, Vb of a, b in W such thatfa

is determined byf in Ua, gb by g in Vb andUa∩Vb = 0. Then
⋃

c∈Ua

(c, fc),
⋃

d∈Vb

(d, gd) are disjoint neighbourhoods of (a, fa), (b, gb) in O . �

If a = b, then fa , ga. Let U be a connected neighbourhood ofa on 27

W such thatfa, ga are defined by holomorphic functionsf , g in U. Then
the neighbourhoods

⋃
c∈U

(c, fc),
⋃

c∈U
(c, gc) of (a, fa) (a, ga) are disjoint, for

if (c, fc) = (c, gc), then f , g coincide in a neighbourhood ofc, and since
U is connected,f = g in U so thatfa = ga which is not the case.

Let p be the projectionO → W defined byp(a, fa) = a. This is a
mapping ofO ontoW. It is a local homeormorphism as follows at once
from the definition of the topology onO . It is clear now, howp can be
used to carry over the complex analytic structure fromW to O .

Let now V be ann dimensional complex analytic manifold,φ a
spread ofV in Cn. Let O be the sheaf of germs of holomorphic func-
tions onCn. Let f be a holomorphic function onV. Let a ∈ V andU
a neighbourhood of a such thatφ, restricted toU is an analytic isomor-
phism. Then the holomorphic functionf ◦ φ−1 in φ(U) defines a germ
in O , viz., (f ◦ φ−1)φ(a). We define a mapping̃ψ : V → O by setting
ψ̃(a) = (φ(a), ( f ◦φ−1)φ(a)) ∈ O. ψ̃ is a local analytic isomorphism which
spreads (V, φ) in O.
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Let Ṽ be the connected component inO of φ(V), and definẽφ to be
the restriction toṼ of the projectionp : O → Cn and definef̃ (b, gb) =
gb(b) for (b, gb) ∈ V. Clearlyφ = φ̃◦ψ and f = f̃ ◦ψ. Hence (̃V, φ̃, ψ̃, f̃ )
is a continuation of (V, φ, f ). We assert that it is a maximal continuation.
Suppose that (V′, φ′, f ′) is any continuation of (V, φ, f ). Letψ be a local
analytic isomorphismV → V′ such thatf = f ′ ◦ ψ, φ = φ′ ◦ ψ. We
can apply the above reasoning to (V′, φ′, f ′) to continue it to (̃V′, φ̃′, f̃ ′).28

The pointψ(a) ∈ V′(a ∈ V) is mapped onto (φ′(ψ(a)), ( f ′ ◦ φ′−1)φ′(ψ(a)))
and this= (φ(a), ( f ◦ φ−1)φ(a)). Hence the images ofV andV′ have a
common point inO and by the definition of̃V, Ṽ′ we haveṼ = Ṽ′. It
follows easily that (̃V, φ̃, ψ̃, f̃ ) is maximal.

If now (Ṽ, φ̃, f̃ ) and (̃V′, φ̃′, f̃ ′) are both maximal continuations of
(V, φ, f ), ψ̃ : V → Ṽ, ψ̃′ : V → Ṽ′ the corresponding spreads ofV
in Ṽ, Ṽ′ respectively, then there exists a spreadχ of Ṽ in Ṽ′ such that
f̃ = f̃ ′ ◦ χ, ψ̃′ = χ ◦ ψ̃, φ̃ = φ̃′ ◦ χ. Using the similar spreadχ1 of Ṽ′

in Ṽ it is easily shown thatχ is an analytic isomorphism. Thus we have
the following

Theorem .Let V be a complex analytic manifold,φ a spread of V in
Cn. Let f be a holomorphic function on V. Then there exists a maximal
continuation(Ṽ, φ̃, ψ̃, f̃ ) of (V, φ, f ). If (Ṽ, φ̃, ψ̃, f̃ ) and(Ṽ′, φ̃′, ψ̃′, f̃ ) are
two maximal continuations, then there exists an analytic isomorphism
χ : V → V′ such thatf̃ = f̃ ′ ◦ χ, ψ̃ = χ ◦ ψ̃, φ̃ = φ̃′ ◦ χ.



Chapter 5

Envelopes of Holomorphy

Let V be a complex analytic manifold of (complex) dimensionn and 29

let φ spreadV in Cn. Let F = ( fi)i∈I be a subset of the set of all
holomorphic functions onV. We say that (V, φ, ( fi)i∈I ) is continuted
to (V′, φ′, ψ, ( f ′i )i∈I ) if there exists a complex analytic manifoldV′, a
spreadφ′ of V′ in Cn, a system (f ′i )i∈I of holomorphic functionsf ′i on
V′ and a local isomorphismψ of V into V′ such thatφ = φ′ ◦ ψ and
fi = f ′i ◦ ψ for i ∈ I . This process is calledsimultaneous continuation
of ( fi)i∈I to (V′, φ′) from (V, φ). A maximal continuationof ( fi)i∈I is a
continuation (̃V, φ̃, ψ̃, ( f̃i)i∈I ) such that if (V′, φ′, ψ′, ( f ′i )i∈I ) is any con-
tinuation of (V, φ, ( fi)i∈I ), then there is a local isomorphismχ of V′ → Ṽ
such that for alli ∈ I , f ′i = f̃i ◦χ andψ̃ = χ◦ψ′. It follows thatφ′ = ψ̃◦χ.

We can prove the existence and uniquencess of a maximal (simulta-
neous) continuation of a given system (V, φ, ( fi)i∈I ) in a manner similar
to the proof of the theorem in IV.

Consider an open neighbourhoodU of a pointa ∈ Cn. Let (gi)i∈I

be a family of holomorphic functions inU (indexed by I). Let (g′i )i∈I

be another such family defined in a neighbourhoodU′ of a. Identify
(gi)i∈I and (g′i )i∈I if there existsaneighbourhoodW of a, W ⊂ U ∩ U′

such thatgi = g′i in W for every i ∈ I . Denote by (gi)a an equivalence
class of the set of all families (gi )i∈I of holomorphic functions, such that
all functions of one family are defined in a fixed neighbourhood of a
by the equivalence relation defined by this identification. The set of all

29
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(gi)a is denoted byOI ,a. Let OI =
⋃

a∈Cn
OI ,a. ThenO I is a sheaf. The

topology onO I is defined exactly as before: if (a, (gi )a) ∈ O I andU30

is a neighbourhood ofa, (gi)i∈I a family of holomorphic functions in
U defining (gi)a, thenU =

⋃
b∈U

(b, (gi )b) [(gi )b is the equivalence class

defined by (gi)i∈I atb] is an open neighbourhood of (a, (gi )a). Exactly as
in IV, we put onO I a complex analytic structure and define a mappingψ

from (V, φ) to O I : ψ(a) = (ψ(a), (gi ◦φ
−1)φ(a)) and show that this indeed

gives us a maximal continuation. The uniqueness is proved inthe same
way as in IV.

The most important case is that in whichF consists of all holomor-
phic functions onV. In this case the maximal continuation (Ṽ, φ̃, ψ̃) is
called theenvelope of holomorphyof (V, φ).

Let V be a complex analytic manifold,φ1, φ2 two local analytic
isomorphisms ofV into Cn. Let F = ( fi)i∈I be a family of holomorphic
functions onV. Let (Ṽ1, φ̃1, ψ̃1, f̃1i), (Ṽ2, φ̃2, ψ̃2, f̃2i) be the maximal con-
tinuations of (V, φ1, fi), (V, φ2, fi) respectively. The two continuations
are said to beisomorphicif there exists an analytic isomorphismχ of Ṽ1

onto Ṽ2 such thatψ̃2 = χ ◦ ψ̃1 and f̃1i = f̃2i ◦ χ for all i ∈ I .
We have the following

Theorem 1. Let F = ( fi)i∈I consist of all the holomorphic functions on
the complex analytic manifold V. Letφ1, φ2 be two maps which spread
V in Cn. Let (Ṽ1, φ̃1, ψ̃1), (Ṽ2, φ̃2, ψ̃2) be the envelopes of holomorphy
of (V, φ1), (V, φ2) respectively. Then(Ṽ1, φ̃1, ψ̃1) and(Ṽ2, φ̃2, φ̃2) are iso-
morphic.

Proof. Consider the components of the mappingφ2 : V → Cn. They31

are holomorphic functions onV and they can be continued toṼ1 and this
gives us a mappingφ′2 of Ṽ1 to Cn, such thatφ2 = φ

′
2 ◦ ψ̃1. Let J be the

Jacobian ofφ2 with respect to the local coordinates defined byφ1. Then
J is a holomorphic function onV, and sinceφ2 is a local isomorphism,
J , 0 so that 1/J is holomorphic onV. Hence 1/J (resp. J) has a
continuation (̃1/J)1 (resp. J̃1) to Ṽ1. Clearly we have ˜(1/J)1XJ̃1 = 1 on
the image ofV by ψ̃1 in Ṽ1 and sinceṼ1 is connected, (̃1/J)1XJ̃1 = 1
everywhere onV1 so that J̃1 , 0 throughoutV1. Moreover J̃1 is the
Jacobian ofφ′2 with respect to the local coordinates defined byφ̃1 so that
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ψ′2 is a local analytic isomorphism, and spreads̃V1 in Cn. The situation
is explained by the following diagram:

V

ψ̃1

����
��

��
��
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ψ̃2
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77

77
77

φ1

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~

φ2

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

Ṽ1
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Cn
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Since (̃V2, φ̃2, ψ̃2) is maximal, this implies that there exists a local
analytic isomorphismχ1 : Ṽ1 → Ṽ2 such thatψ̃2 = χ2 ◦ ψ̃1 and f̃1i =

f̃2i ◦ χ1. In the same way, we prove that there exists a local analytic
isomorphismχ2 : Ṽ2→ Ṽ1 such thatψ̃1 = χ2 ◦ ψ̃2.

It follows that ψ̃2 = χ1 ◦ χ2 ◦ ψ̃2 so thatχ1 ◦ χ2 = IṼ2
(the identity 32

mapping ofṼ2) on the image ofV underψ̃2 in Ṽ2 and hence, by the
principle of analytic continuation, on all̃V2. Similarly χ2 ◦ χ1 = IṼ1

on
Ṽ1, so thatχ1 is an analytic isomorphism of̃V1 onto Ṽ2. Sinceψ̃2 =

χ1 ◦ ψ̃1 and f̃1i = f̃2i ◦ χ1, this proves the theorem.
We can prove also the following �

Theorem 2. Let V, V′ be complex analytic manifolds, and letφ, φ′

spread V, V′ in Cn. Let g spread V in V′. (It is not required thatφ =
φ′◦g. Let(Ṽ, φ̃, ψ̃) , (Ṽ′, φ̃′, ψ̃′) be the envelopes of holomorphy of(V, φ),
(V′, φ′). Then there exists a local analytic isomorphismg̃ ofṼ′ such that
the following diagram is commutative:

V
g

//

ψ̃

��

V′

ψ̃′

��

Ṽ g̃
// Ṽ′
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Proof. Consider the following diagram:

V
g
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V is spread inCn by φ′ ◦ g and by Theorem 1, sincẽV is maximal,
there is a local analytic isomorphism̄φ : Ṽ → Cn such thatφ′◦g = φ̄◦ψ̃.
Also, Ṽ′ is a maximal continuation for the functions onV induced byg33

from those onV′, so that, sincẽV is maximal forall functions onV, Ṽ
is “intermediate” betweenV andṼ′ and there is a spread ˜g of Ṽ in Ṽ′

with the properties we require.
This has the following �

Corollary . Let V be a complex analytic manifold andσ an analytic
automorphism of V. Let V be spread in Cn by φ, and (Ṽ, φ̃, ψ̃) be the
envelope of holomorphy of(V, φ). Then, there exists an analytic auto-
morphismσ̃ of Ṽ such that the following diagram is commutative:

V
σ //

ψ̃

��

V

ψ̃

��

Ṽ σ̃
// Ṽ

Definition 1. Let V be a complex analytic manifold,φ a spread of V in
Cn. Let (Ṽ, φ̃, ψ̃) be the envelope of holomorphy of(V, φ).

(V, φ) is called a domain of holomorphy ofψ̃ is an analytic isomor-
phism of V ontõV.

Note that, in the definition above,(V, φ) is not called a domain of
holomorphy if V and̃V are isomorphic, but only if̃ψ is an isomorphism.
Nevertheless, Theorem 1 shows that if V is a complex analyticmanifold,
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φ1, φ2, two mappings which spread V in Cn, (V, φ1) is a domain of holo-
morphy if and only if(V, φ2) is. For, if (Ṽ1, φ̃1, ψ̃1), (Ṽ2, φ̃2, ψ̃2) are the
envelopes of(V, φ1), (V, φ2), then there is an analytic isomorphismχ of
V1 ontoṼ2 such thatψ̃2 = ψ̃1 ◦ χ and ψ̃1 is an isomorphism if and only
if ψ̃2 is. This justifies the following

Definition 2. Let V be a complex analytic manifold which can be spread34

in Cn. Then V is called a domain of holomorphy, if, for some spreadφ

of V in Cn, (V, φ) is a domain of holomorphy.

Theorem 1 is, in general, false, if, instead of considering the fam-
ily of all holomorphic functions onV, we take only a subfamily. The
following is a counter-example.

Let Γ be the complexζ-plane,C the complexz-plane. SpreadΓ in C
by the two mappingsφ1(ζ) = ζ andφ2(ζ) = eζ respectively. Letf (ζ) =
eζ . The maximal continuation of (Γ, φ1, f ) is (C, f̃1) where f̃1(z) = ez.
SinceΓ is the universal convering surface ofC∗ = C − (0) under the
projectionφ2(ζ) (which naturally has the same value at all points lying
over one point onC∗) and f as a mappingΓ→ C coincides withφ2, the
maximal continuation of (Γ, φ2, f ) is (C, f̃2) where f̃2(z) = z. But (since
e.g. z has zeros andez has not) there is no isomorphism ofC into itself
takingz to ez.





Chapter 6

Domains of Holomorphy:
Convexity Theory

An important problem is to find necessary and sufficient conditions un- 35

der which a manifold which can be spread inCn is a domain of holo-
morphy. The results that are presented below are due to CartanThullen
[2] (see also [1]).

S(z, r) is the open polydisc with centrezand radiusr in Cn, i.e., the
set of pointsz′ ∈ Cn with

|z′j − zj | < r, j = 1, . . . , n.

Definition 1. Let V be a complex manifold spread in Cn byφ. Let z∈ V.
By the polydisc S(z, r) ⊂ V with centre z and radius r is meant the open
setO containing z (if it exists) such that the restriction ofφ to O is an
analytic isomorphism ofθ onto S(φ(z), r) ⊂ Cn.

By the distance of z∈ V to the boundary of V, d(z), is meant the
radius of the maximal polydisc S(z, r) ⊂ V; the distance d(K) of a com-
pact set K to the boundary of V isinf

z∈K
d(z). {d(z), d(K) depend of course,

onφ}.

Definition. Let K be a compact subset of the complex manifoldV, and
let C be a family of holomorphic functions onV. TheC -envelope ofK,

35
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K̂C is the set ofz ∈ V for which there exists acz > 0 such that for all
f ∈ C , | f (z)| ≤ cz|| f ||K (|| f ||K = sup

x∈K
| f (x)|, see p.2).

Examples.(a) LetV = C be the complex plane,C the family of poly-
nomials. IfK is a compact set⊂ C andL is the union of the relatively
compact components of the complement ofK (relatively compact inC),36

then it can be shown that̂KC = K∪L. If, on the other hand, we consider
C∗ = C − (0) and takeK to be an annulus enclosing 0,C as the set of
all holomorphic functions inC∗, thenK̂C = K.

(b) In V = C2 if we takeK to be the closure of the domain in the
example on p.12, viz.,|z1| ≤ 1, |z2| ≤ ǫ; 1− ǫ ≤ |z1| ≤ 1, |z2| ≤ 1,C to be
the family of all polynomials (or all holomorphic functions) in C2, then
K̂C is the polydisc|z1| ≤ 1, |z2| ≤ 1.

(c) If on the manifoldV, C is such thatf ∈ C implies f p ∈ C for
every integerp > 0, then

K̂C =
{
z ∈ V

∣∣∣| f (z)| ≤ || f ||K for every f ∈ C
}
.

It the set of points defined above is denotedK1, clearly K1 ⊂ K̂C . If
z ∈ K̂C , | f (z)|p ≤ cz|| f ||

p
K , | f (z)| ≤ c1/p

z || f ||K and letting p → ∞, it
follows thatz ∈ K1.

Let V be a complex manifold and letφ spreadV in Cn. Let f be a
holomorphic function onV andz ∈ V. Let U be an open neighbour-

hood ofz such thatφ|U is an isomorphism. Then
∂ f (z)
∂zi

is defined to be

∂( f ◦ φ−1)(φ(z))
∂zi

, φ−1 being the inverse ofφ|U.

Theorem 1. Let V be a complex manifold and suppose thatφ spreads
V in Cn. Let C be a family of holomorphic functions on V, stable for

derivation, i.e., f∈ C implies
∂ f
∂zi
∈ C . Suppose also that the canonial

mapping of V to the maximal continuation of V is an isomorphism. If K
is an arbitrary compact subset of V, then the distances of K and K̂C to
the boundary of V are the same.

Proof. SinceV is itself maximal forC , it is clearly sufficient to prove37
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the following:
If z ∈ K̂C and 0< ρ < d(K), then anyf ∈ C can be continued to

S(z, ρ), i.e., that the functionsf ◦ φ−1 in a neighbourhood ofφ(z), can
be continued to the polydiscS(φ(z), ρ) ⊂ Cn.

Let L =
⋃
x∈K

S(x, ρ). ThenL is the continuous image of the com-

pact spaceK × S(0, ρ){S(0, ρ) ⊂ Cn} and soL is compact. Let, for
f ∈ C , M( f ) = sup

z∈L
| f (z)|. It follows from the Cauchy inequalities

that |DJ f (z)| ≤
J!M( f )

ρ|J|
(where J = ( j1, . . . , jn), DJ is the operator

∂|J|

∂zj1
1 . . . ∂zjn

n

, |J| = j1 + · · · + jn and J! = j1! . . . jn!). From the defini-

tion of K̂C and the fact thatC is stable for derivation, it follows that if

z∈ K̂C , |DJ f (z)| ≤
CzJ!M( f )

ρ|J|
. If, therefore,

g(z′) =
∑

J∈Nn

DJ f (z)
J!

(φ(z′) − φ(z))J

for any z ∈ K̂C , the series converges normally in the polydiscS(φ(z),
ρ) ⊂ Cn and it is clear that it continuesf to S(φ(z), ρ) for every f ∈ C .
The theorem follows. �

Theorem 2. Let V be a complex analytic manifold,φ a spread of V
in Cn. Let C be a family of holomorphic functions on V having the
following properties:

(1◦) C is a closed subalgebra ofHV, 1 ∈ C .

(2◦) If φ(z) = φ(z′)(z, z′), then there exists a function f∈ C such that
fz , fz′ ( fa is the germ fa = ( f ◦ φ−1)φ(a); see IV and V).

(3◦) If K is a compact subset of V and z∈ K̂C , S(z, r), the maximal 38

(open) polydisc about z in V contains points not inK̂C .

Then, there exists a function g∈ C such that g cannot be continued
outside(V, φ).



38 6. Domains of Holomorphy: Convexity Theory

Proof. The main step in the proof is to construct a functiong ∈ C such
that

(a) if φ(z) = φ(z′), thengz , gz′ and it is clearly enough that for
a countable dense set{zm} on V, gzm , gz′m if z′m is any point
such thatφ(zm) = φ(z′m). (The existence of a countable dense set
follows from the Poincaré-Volterra theorem);

(b) for a countable dense set{zm} of points onV, let S(zm, rm) de-
note the maximal open polydisc aboutzm. Theng(z) has zeros of
arbitrarily large multiplicity in everyS(zm, rm).

�

The proof then divides into three steps.

Step 1.The existence of the functiong implies that (V, φ) is the maximal
domain forg.

Proof. Let (Ṽ, φ̃, ψ̃) be the maximal domain ofg. V consists of pairs
(φ(z), (g◦φ−1)φ(z)) = (φ(z), gz). We show that̃ψ is one-one. If (φ(z), gz) =
(φ(z′), gz′) thenφ(z) = φ(z′), gz = gz′ and since, ifz , z′, gz , gz′ this
implies thatz= z′. ψ̃ therefore identifiesV with an open subset of̃V. In
what follows, we assume this identification made, and show thatV = Ṽ.
In the first place,S(zm, rm) is the maximal polydisc aboutzm in Ṽ for if it
were not,S(zm, rm) is relatively compact iñV andg̃, the continuation of
g to Ṽ cannot have zeros of unbounded multiplicity inS(zm, rm). Now
suppose thatV , Ṽ. SinceṼ is connected, there is a pointb ∈ Ṽ so39

that b < V, b ∈ V̄. If c is near enough tob it is clear that there is a
polydiscS(c, ρ) containingb. But if c is azm, then there is a polydisc
S(zm, ρ) ⊂ Ṽ, 1 V which is not the case. This completes Step 1. �

Step 2.Construction of a funtionf ∈ C having property (b). LetSm =

S(zm, rm) and consider the following sequence of polydiscs:

S1,S2,S1,S2,S3,S1,S2,S3,S4, . . .

Denote itsp-th term by
∑

p. Let Kp be a sequence of compact sets⊂ V

such thatKp ⊂
o
Kp+1 and

∞⋃
p=1

Kp = V. Now, by property 3◦ in the
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hypotheses of Theorem 2,
∑

p 1 (K̂p)C . Hence there is a functionh ∈ C
and a pointz(p) ∈

∑
p so that|h(z(p))| > ||h||Kp, by example (c) on p.36,

sinceC is an algebra. Iffp(z) = (h(z)/h(z(p)))ν andν is large enough,fp

satisfiesfp ∈ C , | fp(z)| ≤ 2−p on Kp, fp(z(p)) = 1 with z(p) ∈
∑

p. Let

f =
∞∏

p=1
(1− fp)p. It is easily verified that this product converges inHV

and that f . 0. SinceC is a closed subalgebra ofHV, f ∈ C . Also
f has a zero of order at leastp in

∑
p and since eachSm = S(zm, rm)

occurs infinitely often in the sequence{
∑

p}, this concludes Step 2.

Step 3.Modification of the functionf , such that the resulting function
has properties (a) and (b).

Let C f be the closure of the set of all functionf h, h ∈ C , where f
is the function constructed in Step 2. SinceC is closed,C f ⊂ C and
trivially, eachg ∈ C f has property (b).

Let (Xm) be a countable dense set onV and (Ym) the set of all points 40

havingφ(Ym) = φ(Xm) (this set is countable by the Poincaré-Volterra
theorem). LetO(m,Ym) be the set of functionsh ∈ C f such thathXm ,

hYm andφ(Xm) = φ(Ym).ClearlyO(m,Ym) is open inC f . We prove below
that eachO(m,Ym) is dense inC f . It then follows from Baire’s theorem
applied toC f (C f is a complete metrizable space sinceV is countable at
infinity) that O = ∩O(m,Ym) is dense inC f and if g ∈ O, g . 0, g has
properties (a) and (b). Thus to complete Step 3, it remains only to prove
thatO(m,Ym) is dense inC f .

Let k ∈ C f , φ(Ym) = φ(Xm). If kYm , kXm, k ∈ O(m,Ym). If k <
O(m,Ym), let h ∈ C f be so thathXm , hYm (h exists: for if f has this
property one may takeh = f while if f Xm = fYm andl is such thatlXm ,

lYm (hypothesis (2◦)) one may takeh = f l). Then, if |λ| is small enough,
k+ λh defines different germs atXm andYm, and is in the closure of the
functionsk + λh, |λ| small, which are inO(m,Ym) andk ∈ O(m,Ym).
This proves thatO(m,Ym) is dense inC f and thus completes Step 3 and
with Steps 1, 2 and 3, the proof of Theorem 2 is complete.

Corollary. Under the hypotheses of Theorem 2

(i) (V, φ) is a domain of holomorphy.
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(ii) (V, φ) is the maximal continuation of(V, φ,C ).

Theorems 1 and 2 show that the following are equivalent:

(a) (V, φ) is a domain of holomophy.

(b) If φ(z) = φ(z′), z, z′ there exists f∈ HV so that fz , fz′ , and, if
K is a compact subset of V, d(K) = d(K̂HV ).

The last condition may be replaced by the apparently weaker condi-41

tion that for any z∈ K̂HV the maximal polydisc about z contains points
not in K̂HV . Also, it follows from Theorems 1 and 2 that if V is a domain
of holomorphy, then there exists a function g∈ HV which separates
points in the sense that if z, z′, andφ(z) = φ(z′), then gz , gz′ , such
that g cannot be continued outside V, i.e., if the family of all functions on
V cannot be continued simultaneously outside V, there is onefunction
which itself cannot be continued.
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Convexity Theory
(continued)

1. The maximal continuation of a family of holomorphic functions on a 42

manifoldV (spread inCn) was defined inV. Certain analogous concepts
will now be defined.

Let V be a complex manifold spread inCn byφ and letC be a family
of holomorphic functions onV.

An N-continuationof (V, φ,C ) is a continuation (V′, φ′, ψ′,C ′) such
that{ fi}i∈I is any subfamily ofC , normally convergent inV and f ′i is the
continuation offi, then the family{ f ′i }i∈I converges normally inV′. A
maximalN-continuation is now defined in the same way as was maximal
continuation.

The following two concepts are defined similarly.
A maximal U-continuation: the property considered is that of con-

vergence of sequence of functions ofC , in HV.
Maximal B-continuation:The property considered is that of bound-

edness of subfamilies inHV.
In the same way as before, one can prove the existence and unique-

ness of maximalN−, U− andB− continuations.
The proof of 6, Theorem 1 on p.36 gives us the following result.

Theorem 1′. Let V be a complex manifold,φ a spread of V in Cn. Let
C ⊂ HV and suppose thatC is stable derivation. If(V, φ) is itself the

41
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maximal N− continuation (or B− or U− continuation) of(V, φ,C ), then
the distances of K and̂KC to be boundary of V are the same.

6 Theorem 2 (p.37) also has an analogue:43

Theorem 2′. Let V be a complex manifold,φ a spread of V in Cn. Sup-
poseC has the following properties:

(1◦) f ∈ C impliesλ f ∈ C for every complexλ;

(2◦) If φ(x) = φ(y), there exists f∈ C such that fz , fy;

(3◦) If K ⊂ V is compact, and z∈ K̂C , the maximal polydisc about z
contains points not in̂KC .

Finally, let (Ṽ, φ̃, ψ̃, C̃ ) be the maximal N−, B−, or U-continuation
of (V, φ,C ).

Then,ψ̃ is an isomorphism ofV ontoṼ.

Proof. As in Step 1, in the proof of 6 Theorem 2,ψ̃ is one-one (into).
We now construct a sequence of functions (fp) as follows.

Choose a countable dense set{zm} in V and letSm be the maximal
polydisc aboutzm in V. Consider the sequence.

S1,S2,S1,S2,S3, . . .

and denote itsp-th term by
∑

p. Let {Kp} be a sequence of compact

sets so thatKp ⊂
o
Kp+1,

∞⋃
p=1

Kp = V. Then, by hypothesis (3◦), there

is a pointz(p) ∈
∑

p, (z(p) < (K̂p)C ) and (by the definition of (̂Kp)C ) a
function f ∈ C so that| f (z(p))| > 22p|| f ||Kp. This gives rise to a sequence
of functions{ fp} such that|| fp||Kp ≤ 2−p, | fp(z(p))| > 2p. The fact thatψ
is onto is proved by reasoning analogous to Step 1 of 6, Theorem 2. �

Examples.(a) Letθ ⊂ Cn be a (univalent) Reinhardt domain and letC
be the family of monomialsλzJ (λ complex). It is possible to find̂KC

very simply. LetK′ be the set of (t1z1, . . . , tnzn), where (z1, . . . , zn) ∈44

K and |t1| ≤ 1, . . . , |tn| ≤ 1. Clearly K′ ⊂ K̂C . Also it is clear that
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K̂C is completely characterised by its image in the (|z1|, . . . , |zn|)-space,
and so in the (ρ1, . . . , ρn)-space (ρ j = log |zj |). As in II, let K

′∗ be the
image ofK′, K̂∗C the image ofK̂C in the (ρ1, . . . , ρn) space.K′∗ has the
following propety: if (ρ1, . . . , ρn) ∈ K′∗, then (ρ1−a1, . . . , ρn−an) ∈ K′∗

if a j ≥ 0, j = 1, . . . , n. Also K̂∗C is defined by inequaliticsj1ρ1 +

· · · + jnρn ≤ log ||zJ||K , so thatK̂∗C is clearly convex and so contains the
convex closure ofK′∗. Since the convex closure ofK′∗ is the intersection
of all closed half spaces containingK′∗, it follows easily thatK̂∗C is the
convex closure ofK′∗ and this gives us theC -envelope ofK.

This leads to a necessary and sufficient condition for a Reinhardt do-
mainO, containing 0, to be a domain of holomorphy. IfO is a domain of
holomorphy, then by 2 Theorem 1,O is the maximalN-continuation do-
main of the family of all monomials. IfO is the maximalN-continuation
domain of the monomials, then by Theorem 1′ and 6, Theorem 2,O is
a domain of holomorphy (since the envelope of a compact set with re-
spect to the monomials is trivially larger than that with respect to all
holomorphic functions). By the above results, this is so if and only if
the imageO∗ of O in the (ρ1, . . . , ρn)-space is convex and such that if
(ρ1, . . . , ρn) ∈ O∗ then (ρ1 − a1, . . . , ρn − an) ∈ O∗ whena j ≥ 0. By 6,
Theorem 2, it follows that ifO is a Reinhardt domain which is the union
of polydiscs, with centre 0, andO∗ is convex, then there is a power se-
ries such thatO is precisely the domain of convergence of this power
series, a result which was stated on p.14 (Converse of 2, Theorem 2).

(b) Let O be an open set inC, and letC = HO . If K is a compact 45

subst ofO andL is the union of the relatively compact components of
the complement ofK(inO), thenK̂HO

= K ∪ L. It is easy to see from 6,
Theorem 2, thatO is a domain of holomophy. In fact, it can be proved
that K̂HO

is compact.

3. Some remarks on domains of holomorphy.

Proposition 1. Let O be a (univalent) domain in Cn. The following
three conditions are equivalent:

1) O is a domain of holomorphy;
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2) If K is a compact subset ofO and z∈ K̂H (whereH =HO ), the
maximal polydisc about z inO contains points not in̂KH ;

3) If K is a compact subset ofO, thenK̂H is compact.

Proof. After 6, Theorems 1 and 2, it is enough to prove that 1) implies
3). Clearly K̂H is closed inO, sinceH is an algebra andd(K) =
d(K̂H ). Also K̂H is bounded inCn: the functionzi is holomorphic in
O and, by definition ofK̂H , |z′i | ≤ ||zi ||K for everyz′ ∈ ĤH .

SupposeK̂H were not compact. There is then a sequence{Xp} of
Xp ∈ K̂H having no limit point inK̂H . However{Xp} has a limit point
X ∈ Cn sinceK̂H is bounded. NowX belongs to the boundary ofO
sinceK̂H is closed inO, so thatX has a distance> 0 from K. But if
O is a domain of holomorphy, this implies thatX has a positive distance
from K̂H which is not the case, and̂KH is compact. �

Definition. Let V be a complex manifold.V is calledholomorph-convex
if the HV-envelope of every compact set is compact.

Proposition 2. Let V be a manifold spread in Cn and suppose that V is46

holomorph-convex. Then V is a domain of holomorphy.
Let (Ṽ, φ̃, ψ̃) be the envelope of(V, φ).
The proof of Step 1 in 6 Theorem 2 shows that

(1◦) V is a covering spaces ofṼ under projectionψ̃.

(2◦) Over any point of V lie only finitely many points of V: by defini-
tion of Ṽ, ψ̃, all holomorphic functions on V have the same value
at all points over one point of̃V. If X is any point ofṼ, it follows
that all points lying over X belong to theHV-envelope of X and
sinceψ̃ is a local homeomorphism, this set cannot have a limit
point; since V is holomorph-convex, this set must be finite.

(3◦) Ṽ is holomorph-convex: this follows from(2◦).

(4◦) If x, y ∈ Ṽ, x , y, there is a holomorphic function f oñV such
that f(x) , f (y): if φ̃(x) , φ̃(y), this is obvious; ifφ̃(x) = φ̃(y),
then, sincẽV is a domain of holomorphy, there exists a function g
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such that gx , gy and, by going to a derivative of g of sufficiently
large order, the existence of f follows.

(1◦), (2◦), (3◦), and (4◦) imply that V is a domain of holomorphy
by a theorem of J-P. Serre [1, Chap. XX] which is a consequenceof
TheoremA and B of Oka-Cartan-Serre on Stein manifolds and these
will be proved later.





Exercises

1. LetV be a connected complex manifold spread inCn by φ. Suppose 47

that there exists an-parameter familyTn of analytic automorphisms of
V, σ(α1, . . . , αn) where theα are real numbers mod 2π, such that,
if φ(z) = (φ1(z), . . . , φn(z)), thenφ ◦ σ(α1, . . . , αn)(z) = (eiα1φ1(z), . . .
eiαnφn(z)) for all α · (V, φ) is then calleda Reinhardt domain.

Prove the following two results:

(a) If (Ṽ, φ̃) is the envelope of holomorphy of (V, φ), then (̃V, φ̃) is a
Reinhardt domain.

(b) If there exists a pointz ∈ V so thatφ(z) = 0, then every holomor-
phic function onV can be expanded in a series

∑
aJφ(z)J on V,

which converges normally inV. Deduce that̃φ is one-one, i.e.,̃V
is univalent.

2. LetO be an open set inCn+1 and (z1, . . . , zn,w) be a generic point of
O. O is called aHartogs domainif (z,w) ∈ O implies (z, eiαw) ∈ O for
every realα. Let nowO be a connected Hartogs domain such that there
is a point (z, 0) ∈ O. Then, if f (z,w) is holomorphic inO, prove that
f (z,w) can be expanded in a series of the form

f (z,w) =
∞∑

p=0

ap(z,w)wp,

where theap(z,w) are holomorphic functions inO which are locallyl

independent ofw, i.e.,
∂ap

∂w
= 0 in O, and such that the series converges

normally inO.

47
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3. LetO be the following open set inC2: 48


−3 < Rz< 0, |w| < eRz,Jz arbitrary

0 ≤ Rz< 3, e−1/Rz < |w| < 1,Jz arbitrary.

(O is a Hartogs domain). Prove that theap(z,w) of Exercise 2 are in-
dependent ofw and deduce that every holomorphic function inO can
be continued toO′, the union ofO and the set of points (z,w) with
0 < Rz< 3, |2| ≤ e−1/Rz.

Prove also that the mapping (z,w)→ (eiπ/2z,w) spreadsO, but can-
not be continued univalently toO′.

Remark. Exercise 1 gives an example of a non-univalent domain whose
envelope is univalent, and Exercise 3 gives an example of a univalent
domain whose envelope is not univalent.

In the following two exercises,D will denote the closed unit disc
|z| ≤ 1 in theC-plane.

4. If f (z) is holomorphic in a neighbourhood ofD,

log | f (z)| ≤
1
2π

2π∫

0

log | f (eiθ)|R
eiθ + z

eiθ − z
dθ

5. Let fp(z), (p = 1, 2, . . .) be holomorphic in neighbourhoods ofD and

suppose that (i)lim
p→∞

1
p

log || fp||D < +∞, (ii) lim
p∈∞

1
p

log | fp(z)| ≤ M,

z ∈ D. Prove thatlim
p∈∞

1
p

log || fp||D ≤ M.

6. (Hartog’s main theorem”). Letθ be an open set inC and let{ fp(z)}
be a sequence of holomorphic functions inθ. The domain of absolute
(normal) convergence of the series

∞∑

p=0

fp(z)wp

is defined to be the set of points (z0,w0) ∈ C2 such that
∞∑

p=0
fp(z)wp49
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converges absolutely (normally) in a neighbourhood of (z0,w0). Let
R(z)(R̄(z)) be the greatest number (≥ 0) such that the set{z ∈ O, |w| <
R(z)(R̄(z)) is contained in the domain of absolute (normal) convergence.

Prove that ifR̄(z) > 0, theR(z) = R̄(z) (use Exercise 5).
7. Let {Pn(z1, z2)} be a sequence of homogeneous polynomials (Pn is of
degreen) in z1, z2. Consider the series

∞∑

n=0

Pn(z1, z2).

The domain of absolute convergence,δ, is defined as the set of (z(0)
1 ,

z(0)
2 ) ∈ C2 such tht in a neighbourhood of (z(0)

1 , z(0)
2 ) the series

∞∑
Pn(z1, z2)

converges absolutely.
Prove the following statements.

(a) If (z1, z2) ∈ ∆ then (tz1, tz2) ∈ ∆ if 0 < |t| ≤ 1.

(b) If ∆ is not empty, (0, 0) ∈ ∆ and the series converges normally
near (0, 0).

(c) The series converges normally in∆.

(Also due to Hartogs; for (b), use Baire’s theorem and the maximum
principle; for (c) use Exercise 6).
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Chapter 8

d′′-cohomology on the cube

1 Differential forms

Let O ⊂ Rn be an open set. The concept of (C∞)-differential form is 51

assumed known. A differential form
r
ω of degreer in O has a represen-

tation
r
ω =

∑

i1<...<ir

ai1...ir dxi1 ∧ . . . ∧ dxir (1)

where∧ is the sign of exterior multiplication. Theai1...ir areC∞ - func-
tions. Also we define the partial derivatives of a form (1) by

∂
r
ω

∂xi
=

∑

i1<...<ir

∂ai1...ir

∂xi
dxi1 ∧ . . . ∧ dxir .

The differentiald
r
ω of the form (1) is defined by

d
r
ω =

n∑

i=1

dxi ∧
∂

r
ω

∂xi
.

The operatord has the following properties:

(a) d is a local operator: ifω = ω′ in an open setU, dω = dω′ in U.

(b) d is linear on the forms considered as a vector space over the
complex numbers (but not as a module overC∞-functions).

55
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(c) d(
p
ω ∧

q
ω) = d

p
ω ∧

q
ω + (−1)p p

ω ∧ d
q
ω.

(d) dd = 0.

(e) d is invariant under diffeomorphisms.

Of course,d has the property that for functionsf (forms of degree52

0), d f =
∑ ∂ f
∂xi

dxi is the ordinary differential of f .

This property with (b), (c), and (d) characterized completely. The
following result, calledPoincaré’s theoremholds:

Let O be an open ball inRn (or O = Rn). Let
p
ω be a form of degree

p in O, such thatd
p
ω = 0. Then, there exists a form

p−1
π of degreep− 1,

such that
d

p−1
π =

p
ω.

This will not a proved here. See for instance [6].

2 The operatorsd′ and d′′

We now identifyCn and R2n, and setzj = x j + ixn+ j , j = 1, . . . , n,

where (x1, . . . , x2n) are the coordinates inR2n. Then anr-form
r
ω (form

of degreer) in O can be written uniquely in the form

r
ω =

∑

p+q=r
p,q≥0

(p,q)
ω

where

(p,q)
ω =

∑

0<i1<...<ip≤n
0< j1<...< jq≤n

ai1...ip j1... jqdzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq

(p,q)
ω is said to be oftype(p, q). Its degree is, of course,p+ q = r. It is

easy to verify that one has, for every formω,

dω =
n∑

j=1

dzj ∧
∂ω

∂zj
+

n∑

j=1

dz̄j ∧
∂ω

∂z̄j
.
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The first sum is denoted byd′ω, the second byd′′ω ·d′, d′′ are operators53

of degree+1, i.e., anr-form goes into an (r+1)-form underd′, d′′; more
preciselyd′ is of type (1,0), i.e., a form of type (p, q) goes into one of
type (p+ 1, q), while d′′ is of type (0,1), taking forms of type (p, q) into
forms of type (p, q+ 1).

The operatorsd′, d′′ have properties similar to those ofd. They are
the following:

(a) d′, d′′ are the local operators.

(b) d′, d′′ are linear.

(c) d′(
p
ω ∧

q
ω) = d′

p
ω ∧

q
ω + (−1)p p

ω ∧ d′
q
ω and similarly ford′′.

(d) d′d′ = 0, d′d′′ + d′′d′ = 0, d′′d′′ = 0 .

(e) d′, d′′ are invariant under analytic isomorphisms (but not under
diffeomorphisms). A formω is said to bed′, (d′′) closedif d′ω =
0 (d′′ω = 0).

3 Triviality of d′′-cohomology on a cube

A form ω is said to beholomorphicif it is of type (p, 0) and hte coeffi-
cient ofdzi1 . . . dzip are holomorphic for alli1 < . . . < ip. A (p, 0) form
ω is holomorphic if and only ifd′′ω = 0. In particular, a functionf is
holomorphic if and only ifd′′ f = 0.

For forms of type (p, q) with q ≥ 1, we prove an analogue of Poin-
caré’s theorem, due to A. Grothendieck.

A clsoed cubein Cn is a set inCn defined by inequalities

|Rzj | ≤ a j , |J zj | ≤ b j , a j , b j > 0.

Theorem 1. Triviality of d′′-cohomology on a cube. Let K be a closed54

cube⊂ Cn. Letω be a form of type(p, q), q ≥ 1 defined in a neighbour-
hood of K and suppose that d′′ω = 0. Then there exists a neighbourhood
U of K and a formπ of type(p, q− 1) in U such that d′′π = ω in U.

We need a lemma.
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Lemma . Let α(z, λ, µ) be a complex function defined for z∈ U (U a
neighbourhood of the closed unit square∆ with centre0 in the z-plane),
λ ∈ O ⊂ Cl, µ ∈ Ω ⊂ Rm. Suppose thatλ is differentiable in all its
variables, and is holomorhic inλ1, . . . , λl (λ = (λ1, . . . , λl)). Then

f (z) = f (z, λ, µ) =
1

2πi

"
∆

α(ζ, λ, µ)
ζ − z

dζ ∧ dζ̄

is differentiable in all its variables in
o
∆xOxΩ and is a holomorphic

function inλ, such that

∂ f
∂z̄
= α(z, λ, µ), z∈

o
∆.

Proof of the lemma: The integral exists since
1
z

is locally summable.

Let δ be a closed square, centre 0,δ ⊂
o
∆. It is sufficient to prove that

∂ f
∂z̄
= α for z∈

o
δ. Letβ(z) be aC∞-function which is 1 inδ andβ(z) = 0

in a neighbourhood of the boundary of∆. (Such aβ(z) exists). Now
α = α1 + α2, whereα1 = βα, α2 = (1− β)α, and we have

f (z) = f1(z) + f2(z),

where

f1(z) =
1

2πi

"

∆

α1(ζ)
ζ − z

dζ ∧ dζ̄ , f2(z) =
1

2πi

"

∆

α2(ζ)
ζ − z

dζ ∧ dζ̄.

and it is obvious thatf2 is holomorphic inz,
∂ f2
∂z̄
= 0, if z ∈ δ◦ and55

that f2 is holomorphic inλ. Sinceα1(z) = 0 in a neighbourhood of the
boundary of∆, we can defineα1(z) = 0 outside∆ and write

f1(z, λ, µ) =
1

2πi

"
α1(ζ, λ, µ)
ζ − z

dζ ∧ dζ̄

=
1

2πi

"
α1(u+ z, λ, µ)

u
· du∧ dū,
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if we substituteu = ζ − z (integrals without limits being over the whole
plane). From this form of the integral, it it clear thatf1(z, λ, µ) is differ-
entiable in all the variables and holomorphic inλ. Also (writingα1(u+z)
for α1(u+ z, λ, µ))

∂ f1
∂z̄
=

1
2πi

"
∂α1(u+ z)

∂z̄
·

1
u

du∧ dū

=
1

2πi

"
∂α1(u+ z)

∂ū
1
u

du∧ dū

= lim
ǫ→0

1
2πi

"
|u|≥ǫ

∂α1(u+ z)
∂ū

·
1
u

du∧ dū

= lim
ǫ→0

1
2πi

"

|u|≥ǫ

∂(α1(u+ z) · 1
u)

∂ū
du∧ dū.

If Γ+ε (Γ−ε ) is the positively (negatively) oriented circle|u| = ε, Riemann’s
formula applied to the last integral above gives

∂ f1
∂z̄
= lim

ǫ→0
−

1
2πi

∫

Γ1
ε

α1(u+ z)
du
u

= lim
ǫ→0

1
2πi

∫

Γ+ε

α1(u+ z)
du
u
= α1(z) = α(z),

if zǫδ0. This proves the lemma.

Proof of Grothendieck’s Theorem: The proof will be given first for
forms of type (0, 1) to bring out the method clearly, and then it will be
given in the general case.

The proof is by induction. Consider the following statement: 56

For all formsω of type (0, 1) which ared′′-closed and in which
the coefficients ofdz̄k+1, . . . , dz̄n are all 0, there exists anf such that
d′′ f = ω.

The statement is trivially true whenk = 0 for thenω = 0 and we
may takef = 0.

Suppose the statement true for all forms withk replaced byk − 1.
Suppose that inω the coefficients ofdz̄k+1, . . . , dz̄n are zero. Then the
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coefficients ofω are holomorphic functions ofzk+1, . . . , zn (for, if ω =
k∑

j=1
a jdz̄j , dz̄l (l > k) occurs as

k∑
j=1

∂a j

∂z̄l
dz̄l ∧ dz̄j in d′′ω and, sinceω

is d′′-closed
∂a j

∂z̄l
= 0 for l > k). Now, by the lemma, there exists a

function g(z1, . . . , zn), differentiable in all the variablesz1, . . . , zn and

holomorphic inzk+1, . . . , zn (in a neighbourhood ofK) such that
∂g
∂z̄k
=

ak.
The problem is to find anf so thatd′′ f = ω. If we put f1 = f − g,

the problem becomes that of findingf1, so thatd′′ f1 = ω1 = ω − d′′g.
Clearly d′′ω1 = 0, and by the construction ofg, the cofficient of dz̄i

in ω1 is 0 if l ≥ k. By inductive hypothesis there is anf1 such that
d′′ f1 = ω1 and the statement is true also fork. Grothendieck’s theorem
for forms of type (0, 1) follows on takingk = n.

In the general case, the proof is the same.
Consider the following statement: For anyd′′-closed formω of type

(p, q) in which all terms in whichdz̄k+1, . . . , dz̄n occur are zero, there
exists a formπ of type (p, q− 1) such thatd′′π = ω.

The statement is tirvially true ifk = 0. Suppose the statement is true57

whenk is replaced byk − 1, and letω be a (p, q)-form (form of type
(p, q)) such that all the terms in whichdz̄k+1, . . . , dz̄n occur are zero.
Then, in the same way as above, it is seen that all the coefficients ofω
are holomorphic functions ofzk+1, . . . , zn. Suppose now that

ω = dz̄k ∧
(p,q−1)
α +

(p,q)
β .

By the lemma, there exists a formφ of type (p, q − 1) differentiable in
all the variables, such that its coefficients are holomorphic inzk+1, . . . , zn

and such that
∂φ

∂z̄k
=

(p,q−1)
α . (One has merely to apply the lemma to the

coefficients of
(p,q−1)
α ). As above, the problem reduces to finding a form

π1 such thatd′′π1 = ω1 = ω − d′′φ. Sinced′′ω1 = 0 and the terms in
which dz̄k, . . . , dz̄n occur are zero by construction ofφ, the existence of
π1 follows from inductive hypothesis and the theorem of Grothendieck
follows on takingk = n.
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It may be remarked that the theorem of Grothendieck is true also
for open cubes and polydiscs, but the proof necessitates a limit process,
and since this can be carried out for arbitrary “Stein manifolds,” these
special cases are not considered here.

4 Meromorphic functions

Let V be a complex analytic manifold, and letaǫV. Let Oa denote the
ring of germs of holomorphic functions ata. It can be easily verified
thatOa is an integrity domain and we may therefore from the quotient
field ma · ma is called the set ofgerms of meromorphic functions at a. 58

Let m =
⋃

a∈V
ma. A topology may be introduced on as follows. Let

a ∈ V and let
fa
ga
= ma ∈ ma. Let fa andga be defined by holomorphic

functions f , g in an open connected neighbourhoodΩ of a. For every

point b ∈ Ω, mb is defined to be
fb
gb

. If f ′, g′ are two other holomorphic

functions inΩ such that
f ′a
g′a
= ma, then f ′aga−g′a fa = 0 and f ′g−g′ f = 0

in a neighbourhood ofa, and by the principle of analytic continuation,

f ′g−g′ f = 0 inΩ so that
f ′b
gb
=

f ′b
g′b

and the above definition is unique. A

neighbourhood of (a,ma) ∈ m is now defined to be
⋃

b∈Ω
(b,mb), whereΩ

has the properties mentioned above. In this topology,m is a sheaf over
V.

A meromorphic functionis now simply defined to bea section ofm
over V, i.e, a continuous mapf : V → m such thatf (a) ∈ ma for every
a ∈ V.

The weak principle of analytic continuation remains valid when
holomorphic functions are replaced by meromorphic functions. Mero-
morphic functions may also be defined in terms of coverings and local
quotients of holomorphic functions, with certain obvious consistency
conditions.

Principle Parts.
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A system ofprincipal partson V is a section of the quotientm/O
(m being the sheaf of additive groups of germs of meromorphic func-
tions, O the sheaf of additive groups of germs of holomorphic func-
tions.) But the following alternative definition is the one that will be
used in Cousin’s first problem.

A system of principal parts on the complex manifoldV consists of an59

open covering{Ωi} of V and meromorphic functionsfi in Ωi; such that
fi − f j is holomorphic inΩi ∩ Ω j. (The meaning of this last statement
is clear). Two systems{Ωi , fi}, {Ω′j , f ′j } define the same principal parts if
fi− f ′j is holomorphic inΩi∩Ω

′
j for everyi, j. Here, and in what follows,

properties like the above are assumed fulfilled when the intersections in
question ar empty.

5 The first Cousin problem

The problem is the following: Suppose given a sytem of principal parts
{Ωi , fi} on the complex manifoldV. Then does there exist a meromor-
phic function f on V such thatf − fi is holomorphic inΩi, i.e., when is
the system of principal parts defined by one function?

This problem may be generalized to

The generalized first Cousin problem.
Let {Ωi} be an open covering of the complex manifoldV and suppose

given a family of functions{ci j } such thatci j is holomorhic inΩi ∩ Ω j

and having the following properties:

ci j + c ji = 0 inΩi ∩Ω j , ci j + c jk + cki = 0 inΩi ∩Ω j ∩Ωk.

Then, is it possible to find holomorphic functionsci in Ωi such that
ci j = ci − c j in Ωi ∩Ω j?

A solution of this problem leads to a solution of the first cousin
problem, for if we takeci j = fi − f j andci j = ci −c j, then fi −ci = f j −c j

in Ωi ∩ Ω j, and if we definef = fi − ci in Ωi , it is easy to see thatf
solves the first Cousin problem.

The first Cousin Problem fo the cube.60

The following therorem will now be proved.
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Theorem 2. Let K be a cube in Cn and let {Ωi , ci j } be a system such
that {Ωi} is an open covering of K and the ci j have the properties given
above. Then there exists a neighbourhood U of K such that the general-
ized Cousin problem has a solution for the system{U ∩ Ωi , ci j }.

Proof. We assume first that{Ωi} is a finite covering �

Step 1.There exists a neighbourhoodU1 of K and a system{γi} of C∞-
functionsγi in Ωi ∩ U1 such thatγi − γ j = ci j .

Let {φi} be a differentiable partition of unity relative to the convering
{ωi} of K, i.e.,φi is C∞ and has compact support contained inΩi, φi ≥ 0
and

∑
φi = 1 in a neighbourhoodU1 of K. Such a partition of unity

exists.
Consisder the following functionγi onΩi ∩ U1.
Let z ∈ Ωi ∩ U1; defineγi(z) =

∑
j,1
φ j(z)ci j (z). This sum is mean-

ingful, for if ci j (z) is not defined, thenz < Ω j and soφ j(z) = 0, and
we defineφ j(z)ci j (z), for suchz, to be zero. It is easily seen thatγi

isdifferentiable inΩi ∩U1. Now

γi − γ j =
∑

k,i, j

φk(cik − c jk) + φ jci j − φic ji .

Also
cik − c jk = cik + ck j = −c ji = ci j .

Hence
γi − γ j =

∑

k

φkci j = ci j in Ωi ∩ Ω j ∩ U1.

Step 1 is completed.

Step 2. Solution of the generalized first Coursin problem.
In Ωi ∩ Ω j ∩ U1 we haved′′γ1 − d′′γ j = d′′ci j = 0 sinceci j is 61

holomorphic. Hence if we define a formα (of type (0, 1)) byα = d′′γi

in Ωi ∩U1 we have a well-defined form onU1. Clearlyd′′α = 0 and by
Grothendieck’s theorem, there is a (0, 0) form β, i.e., a functionβ such
thatd′′β = α in a neighbourhoodU ⊂ U1 of K. If we setci = γi − β in
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Ωi ∩ U, d′′ci = d′′γi − d′′β = α − α = 0 so thatci is holomorphic inΩi

while ci − c j = γi − γ j = ci j in Ω j ∩Ω j ∩U. This commpletes the proof
of the theorem when{Ωi} is finite.

In the general case letΩ1, . . . ,Ωp be a finite covering of the cube
K, extracted from{Ωi}. By passing to suitable intersections, we may
assume that eachΩα is contained inΩ1 ∪ . . . ∪ Ωp while the functions
c1, . . . , cp are defined everywhere inΩ1, . . . ,Ωp respectively. Givenα,
we definecα = ci + cαi onΩα ∩ Ωi(i = 1, . . . , p) . OnΩα ∩ Ωi ∩ Ω j,

ci + cαi = c j + cα j , for ci − c j = ci j = cα j − cαi . SinceΩα ⊂
p⋃

i=1
Ωi, cα

is defined onΩα and it is easily verified that the system{Ωα, cα} solves
the generalized first Cousin problem.



Chapter 9

Holomorphic Regular
Matrices

In IX and X, we shall prove analogues of the theorems of VIII for holo-62

morphic functions whosevalues are regular(invertible) matrices, and
give some applications of these generalizations. We begin by restating
Grothendieck’s theorem in a form which can be carried over.

Let α be an arbitrary differentiable (0, 1) form in a neighbourhood
of the cubeK. The necessary and sufficient condition that there exists
aC∞-function f in a neighbourhood ofK such thatf , 0 at any point,
and

f −1d′′ f = α

is that d′′α = 0. (We have only to findg so thatd′′g = α and set
f = expg).

In what follows, the functions or forms considered have values or
coefficients in the space of (m×m) complex matrices or in the full linear
groupGL(m,C) or regular matrices.

Our aim will be to generalize the above result to the case whenα

is a (0, 1) form whose coefficients are (m×m) complex matrices andf
is replaced by a mapping inGL(m,C). We shall need to generalize the
lemma of VIII.

65
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Theorem 1. Let K be a rectangle in the C-plane, L, M compact sets in
Cl, Cm respectively. Letα(z, λ, µ) be a matrix valued function, defined in
a neighbourhood of K× L×M such that it is a differentiable function of
allits variables and a holomorphic function ofλ in this neighbourhood.
Then there exists a C∞-function f(z, λ, µ) in a neighbourhood of K×L×
M with values in GL(M,C) which is differentiable in all its variables, is
holomorphic inλ and is such that

∂ f
∂z̄
= f · α.

We need some lemmas. The first two will not be proved here.63

Lemma 1. Let B be a Banach space,L ,m open sets in Cl ,Cm respec-
tively and U(λ, µ) a continuous linear operator B→ B which has an
inverse, for every(λ, µ) ∈ L ×m. Suppose that U(λ, µ) is a C∞-function
of λ andµ and is holomorphic inλ. Suppose, moreover, that X(λ, µ) is
a differentiable function ofλ, µ with values in B, which is holomorphic
in λ.

Then U−1(λ, µ)X(λ, µ) has also these properties.

Lemma 2. Let O be an open set in the plane and H an open set in Ch.
Let f(z, η) be a continuous function of the set of all continuous functions
of z inO with values in the space of differentiable functions ofη in H.
Suppose that the derivatives

∂kf

∂z̄k
, k = 0, 1, 2, . . .

(in the sense of distributions) all exist and have the same properties.
Then f(z, η) is an indefinitely differentiable function inO × H.
This is a particular case of a theorem on the “regularity in the in-

terior” of solutions of elliptic partial differential equations. See, for
example, Lions [5] (also exercise 1). The present situationinvolves vec-
tor functions with values in the space of differentiable functions, but the
proof remains valid.

The proof of Theorem 1 will be in three parts.
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First Part: Proof of Theorem 1 in the particular case when α is64

“sufficiently near to zero”. [The last phrase means the following: if
K′, L′, M′ are compact neighbourhoods ofK, L, M respectively such
that K′ × L′ × M′ is contained in the domain of definition ofα, then
||α|| < C(K′, L′,M′) for a suitableC(||α|| will denote, in what follows
max

i, j
||αi j ||K′×L′×M′ if α = (αi j ))].

The lemma that follows is the crucial step in the first part.

Lemma 3. Suppose thatα(z, λ, µ) satisfies the hypothesis of Theorem
1 and thatα is “sufficiently near zero”. Then there exists a function
β(z, λ, µ) in a neighbourhood of K× L × M which is C∞ in z, λ, µ and
holomorphic inλ is such that

∂β

∂z̄
+ [α, β] =

∂α

∂z
.

([α, β] stands, as usual, forαβ − βα).

Proof. Let γ(z) be aC∞-function which is 1 in an open neighbourhood
of K and is zero near the boundary ofK′. Consider the following integral
equation (writing [α, β] for [α, β](ζ, λ, µ)):

β(z, λ, µ) +
1

2πi

"

K′

γ[α, β]
1

ζ − z

dζ ∧ dζ̄ =
1

2πi

"

K′

∂α

∂ζ

1
ζ − z

dζ ∧ dζ̄

Consider the Banach spaceB of all continuous functions onK′ whose
values arem×m matrices, with norm||β|| (defined as forα) for β ∈ B.
Let A(λ, µ) denote the operator defined by

A(λ, µ)β(z) =
1

2πi

"

K′

γ(ζ)

{α(ζ, λ, µ)β(ζ) − β(ζ)α(ζ, λ, µ)}
1

ζ − z
dζ ∧ dζ̄
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for z∈ K′. The integral equation can then be written

(I + A(λ, µ))β = X(λ, µ)

where65

X(λ, µ)(z) =
1

2πi

"

K′

γ ·
∂α

∂ζ

1
ζ − z

dζ ∧ dζ̄ .

Now, X(λ, µ) andA(λ, µ) are differentiable inλ, µ and holomorphic in
λ. It is clear from the definition ofA(λ, µ) that if α is sufficiently near
zero,||A(λ, µ)|| ≤ θ < 1 for (λ, µ) ∈ L′ × M′. Consequently,I + A(λ, µ)

has an inverse for every (λ, µ) ∈
◦

L′ ×
◦

M′, and so, by Lemma 1, (I +
A(λ, µ))−1X(λ, µ) is differentiable inλ, µ and holomorphic inλ, and the
integral equation has a solutionβ(z, λ, µ) which has the following prop-
erties:

(1) β is a differentiable function of (λ, µ) ∈
◦

L′ ×
◦

M′ with values inB;

(2) β is holomorphic inλ.

From (1) it follows thatβ is a continuous function ofζ ∈
◦

K′ with values

in the space of all differentiable function of (λ, µ) in
◦

L′ ×
◦

M′.

Now, if g(z) =
1
z
,

1
2πi

!
K′
γ(ζ) f (ζ)

1
ζ − z

dζ ∧ dζ̄ =
1
π

g∗γ f (∗ being

convolution). Since
∂g
∂z̄
= πδo (δo is the Dirac distribution at 0; this is

essentially the lemma proved before Grothendieck’s theorem), it follows
that

∂β

∂z̄
= −[α, β] +

∂α

∂z

in O×
◦

L′×
◦

M′ (in the sense of distributions). Since the terms on the right
are continuous functions ofz (with values in the space of differentiable

functions in
◦

L′ ×
◦

M′), so is
∂β

∂z̄
and so

∂2β

∂z̄2
= −

[
∂α

∂z̄
, β

]
−

[
α,
∂β

∂z̄

]
+
∂2α

∂z∂z̄
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has the same property. By iteration66

∂kβ

∂z̄k
is continuous fork ≥ 0,

and, by Lemma 2,β is C∞ in a neighbourhood ofK×L×M. This proves
Lemma 3. �

Proof of Theorem 1 in the particular case.LetO be an open rectangle
⊂ C, K ⊂ O and letL ,m be open neighbourhoods ofL, M respectively,
such thatO ×L × m is contained in the domain of definition ofα. We
shall find a differentiable, regular matrixf such that

∂ f
∂z
= f · β,

∂ f
∂z̄
= f · α, f (0) = I (unit matrix). (1)

If we put f (tz) = φz(t), φ(t) = φz(t) satisfies


φ(0) = I
dφ
dt

= zφ(t)β(tz) + z̄φ(t)α(tz) = φ(t) · A,
(2)

if f satisfies (1). By the classical theorems on systems of ordinary equa-
tions of the form (2), a solutionφ(t) of (2) exists, isC∞ in z, λ, µ,
holomorphic inλ and is unique; thus,f , if it exists, is uniquely given by
f (z) = φ2(1).

Let nowφ be the solution of (2);define fby f (z) = φz(1). Then f is
C∞ in O ×L × m and holomorphic as a function ofλ. We shall show
that

(i) f (z) is a regular matrix;

(ii) f satisfies the equation (1).

Proof of (i): φ satisfies 67

φ(0) = I ,

dφ
dt
= φ · A.
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Let ψ be the unique solution of

ψ(0) = I ,

dψ
dt
= −A · ψ.

Then
d(φ · ψ)

dt
= 0,φψ = φ(0)ψ(0) = I so that, in particular,f (z) ·ψ(1) =

I .

Proof of (ii): Let gz(t) = ∂φz(t)/∂z̄. We shall prove that

gz(t) = tφz(t)α(tz) = hz(t)

(the second equality is a definition) which implies (ii). Now, for t = 0,
gz(0) = hz(0) = 0, andgz(t) satisfies the equation

dgz

dt
= gz{zβ(tz) + z̄α(tz)} + φzα(tz) + φz{zt

∂β

∂z̄
(tz) + z̄t

∂α

∂z̄
(tz)} (3)

Since
∂β

∂z̄
+ [α, β] =

∂α

∂z
, the equation (3) remains valied ifgz is

replaced byhz. Sincegz(0) = hz(0)(= 0), it follows from the uniqueness
of a solution of an equation of the form (3) thatgz(t) ≡ hz(t) and this
completes the proof of (ii). This concludes the proof of Theorem 1 in
the particular case.

Corollary. Under the hypothesis of Theorem 1, every point of K has an
open neighbourhood U with a function f(z, λ, µ), C∞ in all its variables
and holomorphic inλ in a neighbourhood of U× L × M such that

∂ f
∂z̄
= fα in a neighbourhood of U× L × M.

Proof of the corollary. It is enough to prove thsi for the point 0∈ K.68

Let
αt = α(tz, λ, µ), t ≥ 0.

It is clearly sufficient to findt > 0 such that forαt there is a functionft in
a neighbourhood ofK × L×M with the required properties of regularity

so that
∂ ft
∂z̄
= t ftαt (by settingf (z) = ft

(z
t

)
in a neighbourhood ofz= 0).
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It t is small enough,tαt is near zero and by the particular case of
Theorem 1, the matrixft exists.

Before continuing with the proof of Theorem 1, we shall deduce
from the preceding results the following theorem of H. Cartan, which is
all that will be required in the later theory.

Second Part:Theorem on holomorphic regular matrices.

Theorem 2. Let K be a rectangle in the complex plane and L, M two
compact sets in Cl , Cm respectively. Let H be the intersection of K with
the lineRz = 0. Let C(z, λ, µ) be a C∞-function in a neighbourhood of
H × L × M which is holomorphic in z and inλ with values in GL(m,C).
Let K1 = K ∩ {z ∈ C

∣∣∣Rz ≥ 0}, K2 = K ∩ {z ∈ C
∣∣∣Rz ≤ 0}. Then there

exist functions C1(z, λ, µ), C2(z, λ, µ) in neighbourhoods of K1 × L × M,
K2×L×M satisfying the same regularity conditions as C and such that,
in a neighbourhood of H× L × M,

C = C1C
−1
2 .

Proof. The proof will be given first in the case whenC differs little from
the indentity matrixI in a sense which is obvious. LetH′ be a rectangle
with sides parallel to the coordinate axes in the plane containing H such 69

thatH′×L×M is contained in the domain of definition ofC. ThenlogC
is defined (as exp−1(C)) and is near zero ifC is nearI in H′ × L × M.
Let φ be aC∞-function in a neighbourhood ofK such thatφ(z) = 1 if
Rz≥ ǫ, = 0 if Rz≤ −ǫ (ǫ so chosen that the intersection ofK with the
strip |Rz| ≤ ǫ is contained inH′).

Now define
γ−1

2 = exp[φ logC]

andγ1 = Cγ2 in a neighbourhood ofH′ × L × M. γ2 is extended to a
neighbourhood ofK2 × L × M by settingγ−1

2 = I for Rz ≤ −ǫ, andγ1

to a neighbourhood ofK1 × L × M by settingγ1 = I for Rz ≥ ǫ. Then
we have

C = γ1γ
−1
2 .

Also, if C is nearI , γ1, γ2 are nearI , while
∂γ1

∂z̄
,
∂γ2

∂z̄
are near 0. Since
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C is holomorphic, we have

C
∂γ2

∂z̄
=
∂γ1

∂z̄
,

and

γ−1
1
∂γ1

∂z̄
= γ−1

2
∂γ2

∂z̄
= α.

Sinceα is near 0 ifC is near,I , there exists aC∞-function f (z, λ, µ)
holomorphic inλ in a neighbourhood ofK × L × M such that

f −1∂ f
∂z̄
= α.

If

C1 = γ1 f −1, C2 = γ2 f −1,
∂C1

∂z̄
= −γ1 f −1∂ f

∂z̄
f −1 +

∂γ1

∂z̄
f −1

= −γ1α f −1 + γ1α f −1 = 0,

so thatC1 and similarlyC2 are holomorphic inzandλ.
Clearly,70

C = C1C
−1
2

in a neighbourhood ofH × L × M.
To prove Theorem 2 in the general case, we proceed as follows.Let

C be any holomorphic regular matrix in a neighbourhood ofH × L×M.
Then there exists a matrixC′ holomorphic inzandλ in a neighbourhood
of K × L × M (and even in one ofC × L × M, C being the complex
plane) which approximates toC (one has only to approximate the entries
of C), and so, there is aC′ so thatC′−1C is nearI . By the particular
case proved above, there exist holomorphic regular matrices C′1,C2 in
neighbourhoods ofK1 × L × M, K2 × L × M respectively so that

C′−1C = C′1C
−1
2

and so, we have
C = C1C

−1
2 ,

whereC1 = C′C′1. This concludes the proof of Cartan’s theorem on
holomorphic regular matrices. �
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Third Part: Proof of Theorem 1 in the general case.
After the corollary to the particular case of Theorem 1, we can divide

K into a finite number of closed rectanglesKi with sides parallel to
the axes of coordinates and obtain functionsfi in neighbourhoods of

Ki so that
∂ fi
∂z̄
= fiα and fi has the required regularity properties. We

require a certain functionf in the whole ofK. It is easy to see that
it is enough to solve the following problem: given two functions f1,
f2 in neighbourhoods of two adjacent rectanglesK1, K2 such that in
neighbourhoods ofK1 × L × M, K2 × L × M, respectively,

∂ f1
∂z̄
= f1α,

∂ f2
∂z̄
= f2α

find a function f in a neighbourhood of (K1 ∪ K2) × L × M with
∂ f
∂z̄
= 71

fα. Now, since f −1
1

∂ f1
∂z̄
= f −1

2

∂ f2
∂z̄

, the functionc = f1 f −1
2 is C∞ in a

neighbourhood ofH × L×M (H being the common side of (K1 andK2)
and holomorphic inz andλ.) Consequently, by Theorem 2, there exist
matricesc1, c2 in neighbourhoods ofK1×L×M, K2×L×M holomorphic
in z andλ, so thatc = c1c−1

2 in a neighbourhood ofH × L × M. Then
c = c1c−1

2 = f1 f −1
2 andc1 f −1

1 = c2 f −1
2 in a neighbourhood ofH×L×M.

If we define f = c1 f −1
1 in a neighbourhood ofK1 × L × M,= c2 f −1

2 in a

neighbourhood ofK2 × L × M, then
∂ f
∂z̄
= c−1

1

∂ f1
∂z̄
= c−1

1 f1α = fα if z

belongs to a neighbourhood ofK1, and the same equation holds also in
a neighbourhood ofK2 × L × M. This completes the proof of Theorem
1 in the general case.





Chapter 10

Complementary Results

1 Generalization of Grothendieck’s theorem

Let Ω be an open set inCn, α a (0, 1) form inΩ whose coefficients are 72

m×m (differentiable) matrices. We ask for a condition that there exist a
differentiable mappingf of Ω in GL(m,C) such that

f −1d′′ f = α.

If α =
∑

akdz̄k and f −1d′′ f = α, then
∂2 f
∂z̄l∂z̄k

=
∂ f
∂z̄l

ak + f
∂ak

∂z̄l

= f alak + f
∂ak

∂z̄l
=

∂2 f
∂z̄k∂z̄l

= f akal + f
∂al

∂z̄k
,

i.e.,
∂al

∂z̄k
−
∂ak

∂z̄l
+ [ak, al ] = 0,

and if we write [α, α] =
∑
k<l

[ak, al ]dz̄k ∧ dz̄l , then we can write these

equations as
d′′α + [α, α] = 0.

The following generalization of Grothendieck’s theorem provides a con-
verse in the case of a cube.

75
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Theorem 1. Let K be a cube in Cn, α a(0, 1) differentiable form in a
neighbourhood of K. Suppose that

d′′α + [α, α] = 0.

Then there exists a differentiable, regular matrix f in a neighbourhood
U of K such that, in U,

f −1d′′ f = α.

Proof. We use induction as in Grothendieck’s theorem. Consider the
statement:

For every formα of type (0, 1) such thatd′′α + [α, α] = 0 and for73

which the coefficients of dz̄k+1, . . . , dz̄n are zero, there existsf with
values inGL(m,C) so that f −1d′′ f = α. For k = 0, the statement
is trivially true, sinceα = 0 and we may takef = I . Suppose the

statement true whenk is replaced byk − 1. Let α =
k∑

j=1
a jdz̄j . Since

d′′α + [α, α] = 0 and [α, α] does not containdz̄l , l > k, thea j are holo-
morphic inzk+1, . . . , zn. By 9, Theorem 1 there is a functiong, holo-

morphic in zk+1, . . . , zn such that
∂g
∂z̄k
= g · ak. If we set f = f ′ · g

then f −1d′′ f = g−1 f ′−1d′′ f ′g+ g−1d′′g and the problem reduces to the
finding of an f ′ such that

f ′−1d′′ f ′ = g(α − g−1d′′g)g−1 = β

say. It is easily verified thatd′′β+ [β, β] = 0 and clearlyl the coefficients
of dz̄l , l ≥ k, in β are zero, and by inductive hypothesisf ′ exists. �

2 Linear bundles

Let V be a topological space,{Oi}i∈J an open covering ofV. Suppose
that in everyOi ∩ O j is defined a continuous functionci j with values in
GL(m,C) such that the set{ci j } satisfies

(i) ci j c ji = I in Oi ∩O j ,

(ii) ci j c jkcki = I in Oi ∩O j ∩ Ok.
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Consider the set
⋃

i∈I
(Oi ×Cm). Let (x, y) ∈ Oi ×Cm, (x′, y′) ∈ O j ×Cm.

We identify (x, y) and (x′, y′) if x = x′ in V andy′ = ci j (x)y. The quotient
is denoted byE.

Definition . E together with the given system{Oi , ci j } is called alinear
bundle over V(with fibreCm). V is said to be the base ofE.

E is a topological space with the following properties: 74

(a) There is a canonical mappingp : E→ V which is continuous and
ontoV.

(b) p−1(a) ≃ Cm for everya ∈ V (topologically and as a vector space
overC).

(c) Every pointa ∈ V has a neighbourhoodO such thatp−1(O) ≃
O × Cm the isomorphism being topological and compatible with
(a) and (b) in an obvious sense.

SupposeE′ is another linear boundle overV, defined by the system
{O′α, c

′
αβ
}A. Supposep′ is the p corresponding toE′ and that there is a

homeomorphism ofE ontoE′ compatible with (a), (b) and (c). Then it
is easily shown that{Oi , ci j }I , {O′α, c

′
αβ
}A are related by a finite number

of applications of the following two operations:

(1◦) Passage to refinements or the converse.{O′α, c
′
αβ
}A is a refinement

of {Oi , ci j } if there is a mappingφ : A→ J such thatO′α ⊂ Oφ(α)

andc′
αβ
= cφ(α)φ(β).

(2◦) The covering{Oi}i∈J being the same, one passes to new functions
c′i j by definingc′i j = cici j c−1

j whereci is continuous inOi .

(Moreover, it can be shown easily that if, in definingE andE′ the
same covering is used, then only one application, namely of operation
(2◦), is necessary). IfE andE′ are related by such a homeomorphism,
we say that they are in thesame clases.

Thetrivial classis defined as the class containing the bundle defined
by taking for the covering, justV. With respect to a covering{Oi}i∈J this
class can be defined by taking for the functionsci j the unit matrixI or, 75
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generally, any functionscic−1
j whereci is continuous inOi. A bundle is

trivial if it is in the trivial class.
If V were a differentiable (complex analytic) manifold, then we de-

fine adifferentiable (analytic) linear bundleoverV in the same way, but
now requiring theci j to be differentiable (analytic).

The differentiable or analytic class of a differentiable or analytic
bundle can be defined in the obvious way and we speak of differentiable
or analytic equivalenceandtriviality .

The following important theorem holds.

Theorem 2. Let K be a cube in Cn, E an analytic bundle over a neigh-
bourhood of K. Then E is trivial over a neighbourhood of K.

Proof. By dividing K into smaller (closed) cubesKi with faces parallel
to the coordinate hyperplanes, we obtain holomorphic regular matrices
ci j in neighbourhoods ofKi ∩ K j respectivelyl. Also, if the bundle is
defined by{Oi , ci j } and is trivial overO1 andO2, we may replaceO1,O2

by their union and modify theci j to obtain an equivalent bundle (ifc12 =

c1c−1
2 set O′1 = O1 ∪ O2, O′i = Oi if i , 1, 2, c′i = ci j if i, j , 1,

c′1 j = c−1
1 c1 j(= c−1

2 c2 j). Then {O′i , ci j } defines an equivalent bundle).
We have thus only to prove the following result: given two adjacent
cubesK1, K2 and a holomorphic regular matrixc in a neighbourhood
of their common face, we can writec = c1c−1

2 in a neighbourhood of
K1 ∩ K2, c1, c2 being holomorphic regular matrices in neighbourhoods
of K1,K2 respectively. But this follows at once from Cartan’s theorem
on holomorphic regular matrices (9, Theorem 2). �

3 Application to the second Cousin problem

Divisor: A divisor can be defined in two ways similar to the two defini-76

tions of meromorphic functions and of principal parts.

(a) Letm∗ be the sheaf of multiplicative groups of germs of mero-
morphic functions. 0 on the complex manifoldV,H the sheaf
of multiplicative groups of germs of invertible holomorphic func-
tions. A divisor is a section ofm∗/H overV.
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(b) Let {Oi} be an open covering ofV and letgi be a meromorphic
function inOi . The system{Oi , gi} defines a divisor if the func-
tion gig−1

j and its reciprocal are holomorphic inOi ∩ O j . Two

systems{Oi , gi} and {O′j , g
′
j} define the same divisor ifgig′−1

j is
holomorphic and invertible inOi ∩O′j .

The second Cousin problem is as follows:
Given a divisor{Oi , gi} on V, does there exist a meromorphic func-

tion f on V such thatf = γigi in Oi , whereγi andγ−1
i are holomorphic

in Oi , i.e., does there exist one meromorphic functionf on V which
defines the same divisor as{Oi , gi}? As in the case of the first Cousin
problem, this problem can be generalized.

Let {Oi} be an open covering ofV and let there be given a holomor-
phic invertible functionγi j in Oi ∩ O j such that

γi jγ ji = 1 in Oi ∩O j ,

γi jγ jkγki = 1 in Oi ∩ O j ∩Ok.

Then, does there exist a holomorphic invertible functionγi in Oi such
that

γiγ
−1
j = γi j in Oi ∩ O j?

It is easily seen that a solution of this problem leads to a solution 77

of the second Cousin problem: for if we defineγi j = gig−1
j in Oi ∩ O j

({Oi , gi} is the second Cousin datum) and ifγi j = γiγ
−1
j (also inOi∩O j),

thenγ−1
i gi = γ

−1
j g j in Oi ∩O j , and the meromorphic functionf defined

by f = γ−1
i gi in Oi solves the second Cousin problem.

Theorem 3. The generalized second Cousin problem is always solvable
for a neighbourhood of a cube.

Proof. Given the system{Oi , γi j } in a neighbourhood of the cubeK, the
system defines ananalytic line bundleover a neighbourhood ofK (linear
boundle with fibreC). The solubility of the second Cousin problem is
precisely the triviality of this line bundle over a neighbourhood ofK,
and this has been proved in Theorem 2. �





Eexercise

1. Letα(z) be aC∞-function with compact support in the plane. Let78

f (z) = −
1

2πi

"
α(ζ)

z̄− z̄
ζ − z

dζ ∧ dζ̄ .

Prove that
∂2 f

∂z̄2
= α(z). If α is only a distribution with compact

support, prove that this equation holds in the sense of distribu-

tions. Deduce that iff is a distribution such that
∂2 f

∂z̄2
is a contin-

uous functions, then so aref ,
∂ f
∂z

,
∂ f
∂z̄

.

2. LetV be a complex analytic manifold, and suppose that the gen-
eralized first Cousin problem is always solvable onV. Prove that
the generalized second Cousin problem is solvable, if it is “differ-
entiably solvable” (in an obvious sense).

Prove also that on the Riemann sphere, the first Cousin problem
is always solvable, while the second is not.

3. Let K be a compact set inC. Prove that an analytical bundle
differentiably trivial over a neighbourhood ofK is analytically
trivial over a neighbourhood ofK.

4. Let V be a complex analytic manifold and let{Oi , ci j } define an
analytic bundle overV which is differentiably trivial. Letγi be a
C∞-function inOi with ci j = γiγ

−1
j in Oi ∩ O j . Letαi = γ

−1
i d′′γi.

81
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Show that theαi define a formα of type (0, 1). What relation does
α satisfy?

Given a formα of type (0, 1) with d′′α + [α, α] = 0, show that it
defines a class of analytic bundles overV which is differentiably
trivial. When do two such formsα andβ define the same (ana-79

lytic) class of analytic bundles?

5. Generalize the results of exercise 4 to the case of a nontrivial class
of differentiable bundles onV.

As an application, prove that ifV is a Riemann surface andE
and an arbitrary differentiable bundle onV, there always exists an
analytic bundle which is differentiably equivalent withE (use a
device similar to that used in Step 1 in 8, Theorem 2.).



Bibliography

[1] H. Cartan: Sur les matrices holomorphes denvariables complexes,80
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Chapter 11

Sheaves

Definition. Let X andF be topological spaces andπ a mappingF → X 81

such that

(i) π is onto;

(ii) π is a local homeomorphism.

Then we callF (with the mappingπ) asheafon X. π will be called the
projectionof F on X.

A sectionof the sheafF (overX) is a continuous mappings : X→
F such thatπ ◦ s= identity.

If W is any subset ofX, π−1(W) is a sheaf onW in a natural way
A section of the sheafF over a subset W of Xis a section of the

sheafπ−1(W) overW.
We shall sometimes say ‘section’ for the image of the sections in

F .
If x ∈ X, Fx will stand forπ−1(x).

Proposition 1. A section over an open set U⊂ X is an open set inF .

Proof. Let s : U → F be a section overU. Let a ∈ s(U) and letO be
an open set ins(U) such thatO = O′ ∩ s(U) whereO′ is open inF and
π restricted toO′ is a homeomorphism ofO′ onto an open subset ofX.
Sinces is continuous,s−1(O) is open inX, i.e.,π(O) is open inX and

87



88 11. Sheaves

so inπ(O′). Sinceπ is a homeormphism inO′,O is an open set inO′

and so inF .
This implies, in particular, that two sections which coincide at a82

point, coincide in a neighbourhood of this point. �

Proposition 2. If F is a Hausdorff space, a section over a closed set is
closed.

Proof. Let W be a closed set inX, and leta ∈ s(W) (s is the given
section). Letx = π(a). LetΩa be an open neighbourhood of a, homeo-
morphic with its projection.a belongs to the closure ofΩa∩ s(W) in Ωa

and soπ(a) belongs to the closure ofπ(Ωa ∩ s(W)) ⊂ π ◦ s(W) = W so
that, sinceW is closed,π(a) ∈ W. Suppose next thats(x) = b , a and
letΩa,Ωb be disjoint neighbourhoods ofa, b, homeomorphic with their
projections. Ify is near enough tox, thens(y) ∈ Ωb and consequently
Ωa does not meets(W), a contradiction.

Proposition 2 is not true ifF is not a Hausdorff space. �

Examples of sheaves.

1◦) If V, W are manifolds andW is spread onV by a mapping onto
V, W is a sheaf onV.

2◦) X being a topological space,Y an arbitrary set, the set of all map-
pingsX → Y give rise to a sheaf, the sheaf of germs of the map-
pingsX→ Y in the following way: two mappings of a neighbour-
hood ofx ∈ X are identified if they coincide in a neighbourhood
of x. The set of equivalence classes atx is Fx andF =

⋃
x∈X

Fx.

The topology onF is obtained by a method similar to that used
in the case of the sheaf of germs of holomorphic function in IV.

3◦) In the same way,X, Y, being topological spaces, one defines the
sheaf of germs of continuous mappings ofX in Y.

4◦) If V, W are complex analytic manifolds, we can define the sheaf of83

germs of analytic mappings ofV in W. This sheaf is a Hausdorff
space, by reasoning similar to that used in IV whenW = C.
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Diagonal product of two sheaves.
Let (F , π), (G , π′) be sheaves onX. The set of (f , g) ∈ F × G such

that π( f ) = π′(g) can be topologized in a natural way. This set then
forms a sheaf onX called thediagonal productFVG of the sheavesF
andG .

Sheaf of groups.Let F be a sheaf onX. F is asheaf of groupsif

1◦) for everx ∈ X, Fx is a group;

2◦) the mappinga→ a−1 of F (a, a−1 ∈ Fx) in F is continuous.

3◦) the mapping (f , g)→ f g of FVF to F is continuous.

Example .The sheaf of germs of continuous mappings ofX in a topo-
logical group is a sheaf of groups.

Sheaf of rings.
Let F be a sheaf onX. F is asheaf of ringsif

1◦) for everyx ∈ X, Fx is a ring;

2◦) F is a sheaf of (additive, abelian) groups;

3◦) the mapping (f , g)→ f g of FVF → F is continuous.

Let a be a sheaf of rings andm a sheaf on the same spaceX · m is
called asheaf ofamodulesif

1◦) m is a sheaf of abelian groups (additive);

2◦) for everyx ∈ X,mx is anax-module; 84

3◦) the mapping (α,m) → αm of aVm → m is continuous (it being
assumed thatmx is a leftax module).

The following is an important example.
Let {O , ci j } cefine a linear bundleE on the spaceV (theci j are con-

tinuous mappings ofOi ∩ O j into GL(m,C)). Let p be the projection of
E ontoV. A cross-sectionof the bundle is a continuous maps : V → E
such thatp ◦ s is the identity.
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We can now define thesheaf of germs of sections of the bundlein
the usual way. This sheaf is a sheaf ofC -modules, whereC is the sheaf
of germs of continuous, complex valued functions inV.

It is of importance to decide when a sheaf of modules overC can be
obtained from a bundle by the method given above.

Suppose that the sheafF can be so obtained. Then, since every
a ∈ V has a neighbourhoodU such thatp−1(U) ≃ U × Cm (as linear
bundles) locally, the contraction ofF to U is isomorphic (as a sheaf) to
C m

U whereCU is the sheaf of germs of continuous functions inU.
Suppose, conversely, that the sheaf (F , π) has the above property.

Let {Oi} be a covering ofV such thatπ−1(Oi) ≃ C m
Oi

. ThenOi ∩ O j ,
being an open subset of bothOi andO j, gives rise to an automorphism
φ of C m

Oi∧∩O j
as a sheaf of modules overOOi∩O j . Let ep ∈ C m

Oi∩O j
be

the element defined by (0, . . . , 0, 1, 0, . . . , 0) where all but thep-th place
contain 0. Thenφ(ep) =

∑
apqeq, (sinceφ is an automorphism of the

sheafC m
Oi∩O j

as a sheaf of modules overCOi∩O j ) and we can define the85

matrix ci j = (apq). Sinceφ is an automorphism,ci j is invertible. It is
easy to see that the bundle defined by{Oi , ci j } gives rise to the sheafF .

This leads to a one-one correspondence between classes of linear
bundles and sheaves locally isomorphic withC m.

Also there is a one-one correspondence between cross-sections of a
bundle and sections of the sheaf defined by the bundle.



Chapter 12

General properties of
Coherent Analytic Sheaves

1 Analytic Sheaves

Let F be a sheaf on the base spaceX. The concept of asubsheafis 86

defined in the obvious way (as a subset ofF which is made into a sheaf
by the restriction of the projection to the subset). It is clear that ifH ,
G are subsheaves ofF , so isH ∩ G .

Let nowF , G be two sheaves of groups onX with projectionsπ f ,
πg. Letφ be a mappingF → G . φ is called a (sheaf) homomorphismif

(i) φ is continuous;

(ii) π f = πg ◦ φ;

(iii) the restriction ofφ to Fx(= π−1
f (x), x ∈ X) is a homomorphism of

the groupFx in Gx(= π−1
g (x)).

There are corresponding definitions of subsheaves of sheaves of al-
gebraic structures and of homomorphisms between such sheaves. The
concepts of a one-one mapping (into), mapping onto,imageof a homo-
morphism,kernelof a homomorphism are defined in the obvious way.

91
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A sequence

. . .→ F p

dp
−−→ F p+1

dp+1
−−−→ F p+2→ . . .

of sheavesF p of groups (or other algebraic structures) and homomor-
phismsdp : F p → F p+1 is said to beexact atF p if the kernel of
dp+1 = image ofdp; it is exactif it is exact atF p for all p.

Quotient Sheaves.
Let G be a sheaf of groups on the topological spaceX, F a subsheaf

of G such that for everyx ∈ X, Gx is a normal subgroup ofGx. Then87

there is precisely one sheafH on X such thatHx = Gx/Fx and the
mappingη : G → H (ηx : Gx → Hx is the natural homomorphism)
is a sheaf homomorphism. We have only to setH =

⋃
x∈X

(Gx/Fx) and

put quotient topology onH . It is clear the the conditions onH above
determine uniquely the topology on it.

Analytic Sheaves.
Let V be a complex analytic manifold, andO = OV the sheaf of

germs of holomorphic functions onV.

Definition. An analytic sheafon V is a sheaf ofO-modules.
One can then define(analytic) subsheavesof an analytic sheafF in

the obvious way. Clearly, the intersection of analytic subsheaves ofF
is analytic.

Notations. In what follows,O will denote the ring of holomorphic fun-
tions on the complex manifoldV, O the sheaf of germs of holomorphic
functions onV; Om,Om will stand for them-th powe ofO, O respec-
tively.

If F is a sheaf on the spaceX, andU is a subset ofX, F U will
denote the restriction ofF to U. FU or Γ(U,F ) will stand for the
sectionsof F overU.

Examples. 1◦) Om is an analytic sheaf;
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2◦) Let m be a finitely generated submodule ofOm (generated by
h1, . . . , hp say). Fora ∈ V, letma be the submodule ofOm

a gener-
ated overOa by (h1)a, . . . , (hp)a. Thenm =

⋃
a∈V
ma is an analytic

sheaf onV. To prove this, one has only to show that iff is a sec-
tion of Om over an open neighbourhoodU of a ∈ V, then there is
a neighbourhoodU1 ⊂ U of a such thatfa ∈ ma implies fb ∈ mb

for b ∈ U1.

Now, fa =
p∑

i=1
(λi)a(hi )a, (λi)a ∈ Oa, and there is an open neigh-88

bourhoodU1 of a, and functionsf , λi in U1 such thatf =
p∑

i=1
λihi

in U1 , which implies that (f )b =
p∑

i=1
(λi)b(hi )b ∈ mb for b ∈ U1.

3◦) Thesheaf of relationsbetweenq elements ofOm. Leth1, . . . , hq ∈

Om. Let Ra be the submodule ofOq
a consisting of theq-tuples

((c1)a, . . . , (cq)a)·(ci)a ∈ Oa such that (c1)a(h1)a+·+(cq)a(hq)a = 0.
Then it is easily verified thatR = R(h1, . . . , hq) =

⋃
a∈V

Ra is an

analytic sheaf, called thesheaf of relationsbetweenh1, . . . , hq.

2 Coherent analytic subsheaves ofOm

Definition . Let F be an analytic subsheaf ofOm. F is said to beco-
herentif the following is true: for everya ∈ V there is a neighbourhood
U of a, and afinite number of sections ofF over U, f1, . . . , fq, such that
for everyb ∈ U, Fb is Ob-generated by (f1)b, . . . , ( fq)b.

The following important theorem holds, but we shall not prove it
here. The theorem is due toK. Oka 7. For the proof see Cartan [2], [3]
Lecture XV.

Theorem of Oka. Let h1, . . . , hq ∈ Om. Then, the sheaf of relations
R(h1, . . . , hq) is a coherent analytic sheaf.

Corollary. LetF ,G be coherent analytic subsheaves ofO p. ThenF ∩
G is a coherent analytic sheaf.
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Proof of the Corollary. Let U be a neighbourhood ofa ∈ V, f1, . . . , fk;
g1, . . . , gm sections ofF , G over U such that (f1)b, . . . , ( fk)b (resp.
(g1)b, . . . , (gm)b) Ob-generateFb (resp.Gb) for everyb ∈ U. Consider
the sheafR( f1, . . . , fk, g1, . . . , gm) = R on U.

It is coherent, by Oka’s theorem. We define a mapφ of R ontoF U∩89

G U , as follows: Forx ∈ U, let r = ((c1)x, . . . , (ck)x, (c′1)x, . . . , (c′m)x) ∈
R. i.e.,

∑
(ci )x( fi)x +

∑
(c′j )x(g j)x = 0. The imageφ(r) of this point is,

by definition,
∑

(ci )x( fi)x ∈ Fx. By the above relation,φ(r) ∈ G x and
soφ(r) ∈ Fx ∩ Gx. φ is clearly a homomorphism ofR in F U ∩ G U .
Also, if fx =

∑
(ci )x( fi)x =

∑
(c j)x(g j) ∈ Fx ∩ Gx, thenφ(r) = fx where

r = ((c1)x, . . . , (ck)x, (−c′1)x, . . . , (−c′m)x) and soφ is a homomorphism
of R ontoF U ∩ G U . It follows easily thatF U ∩ G U is coherent and
the result follows.

We give some examples of non-coherent, analytic sheaves.

(a) LetF be a sheaf of ideals onV, i.e.,Fa is an ideal ofOa (so an
Oa-module). Suppose thatF is coherent and let, in a neighbour-
hoodU of a, f1, . . . , fp generateFb overOb. Then, the necessary
and sufficient condition thatFb = Ob is that at least onefi(b) , 0.
Hence the set ofb with Fb , Ob is precisely the set of common
zeros off1, . . . , fp. Hence the set ofb wiht Fb , Ob is ananalytic
subsetof V [i.e., locally in V, it is the set of common zeros of a
finite number of holomorphic functions].

The complement of an open ball,S, in Cn is not an analytic subset.
Hence if we getFa = Oa for a ∈ S, Fa = 0 for a < S, the analytic
sheafF =

⋃
a∈Cn

Fa is not coherent.

(b) Let Ω , V be an open subset of the complex manifoldV. Let
Fa = Oa, a < Ω; Fa = 0, a < Ω. The sheafF =

⋃
a∈V
Fa is

analytic but not coherent (the definition is violated at a point on
the boundary ofΩ).

Let F be a coherent analytic sheaf on a (connected) complex man-
ifold V. ThenFa , 0 at any pointa ∈ V unlessFa = 0 for all a ∈ V: if
Fa = 0 and (f1)b, . . . , ( fp)bOb-generateFb for b ∈ U whereU is a con-90

nected neighbourhood ofa, then f1, . . . , fp are zero in a neighbourhood
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of a sinceFa = 0 andFb = 0 for b ∈ U by the principle of analytic
continuation. Hence the set of a withFa = 0 is open. It is easily proved
in the same way that this set is closed and the result follows.

3 General coherent analytic sheaves on a complex
analytic manifold

Definition . Let V be a complex analytic manifold andF an analytic
sheaf onV. F is said to becoherentif every a ∈ V has an open neigh-
bourhoodΩ such thatF

Ω
≃ O p

Ω

/
N , whereN is acoherent subsheaf

of O p
Ω

(in the first sense).

For subsheaves ofOm, the two definitions of coherence coincide.
It is clear that given a subsheaf ofOm, which, locally, is anarbitrary
quotient of anO p, there is a natural homomorphism ofO p

Ω
ontoF

Ω
(Ω

being an open neighbourhood of a given pointa ∈ V) andF is coherent
in the first definition. Converselyl, suppose thatF ⊂ Om and that to
everya ∈ V, there is a neighbourhoodΩ such that inΩ, p elements
g1, . . . , gp of O p

Ω
generateF . We have a homomorphism

((φ1)b, . . . , (φp)b){∈ O p
b } → (φ1)b(g1)b + · + (φp)b(gp)b

of O p
Ω

ontoF
Ω

, of which the kernel is the sheaf of relationsR
Ω

(g1, . . . ,

gp) which is coherent by the theorem of Oka. Hence the conditionof
the second definition is fulfilled.

An example of a coherent sheaf which is not a subsheaf of someOm

is the sheaf of germs of sections of an analytic, non-trivial, bundle. This
sheaf is locally isomorphic to anOm.

Proposition 1. Let F be a coherent analytic sheaf. Let f1, . . . , fq be a 91

finite number of sections ofF . Then the sheafR( f1, . . . , fq) of relations
between f1, . . . , fq is coherent.

Proof. Let a ∈ V. There arep sectionsg1, . . . , gp over a neighbourhood
Ω of a such that

(i) (g1)b, . . . , (gp)bOb-generateFb for b ∈ Ω.
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(ii) R̄Ω(g1, . . . , gp) is a coherent subsheaf ofO p
Ω

.

[This is just a reformulation of the definition of coherence]. We have

( fi)a =
p∑

j=1
(λ j

i )a(g j )a((λ j
i )a ∈ Oa) so that there is an open neighbourhood

Ω′ ⊂ Ω of a such thatfi =
∑
λ

j
i g j in Ω′. Now supposeb ∈ Ω′ and

that ((µ1)b, . . . , (µq)b) ∈ Rb( f1, . . . , fq). Then, we have
q∑

i=1
(µi)b( fi)b = 0,

so that
∑
i, j

(µi)b(λ j
i )b(g j)b = 0. This implies that (

∑
i
(µi)b(λ1

i )b, . . . ,
∑
i
(µi)b

(λq
i )b) ∈ Rb(g1, . . . , gp). Since by hypothesisR

Ω
(g1, . . . , gp) is coher-

ent, there exist functionsh j
k, j = 1, . . . p, k = 1, . . . , r and a neighbour-

hoodΩ′′ ⊂ Ω′ of a such that

∑

i

(µi)b(λ j
i )b =

r∑

k=1

(νk)b(h j
k)b

for b ∈ Ω′′, where (νk)b ∈ Ob. This implies that

(µ1, . . . , µq,−ν1, . . . ,−νr ) ∈ R
Ω′′

(λ j
i , h

j
k).

By Oka’s theoremR
Ω′′

(λ j
i , h

j
k) is coherent and the systems (µ1, . . . , µq) ∈

R
Ω′′

( f1, . . . , fq) form a quotient ofR
Ω′′

(λ j
i , h

j
k) and, this being⊂ Oq

Ω′′
,

R
Ω′′

( f1, . . . , fq) is coherent. This proves Proposition 1. �

Theorem 1. Let G and F be two coherent analytic sheaves. Letφ :92

G → F be a homomorphism (as analytic sheaves) ofG in F . Then
the kernel, the image, the cokernel and the coimage ofφ are coherent
analytic sheaves.

(The cokernel isF /φ(G ), the coimage isG /φ−1(O).)

Proof. 1) The image ofφ. Let g1, . . . , gq be sections ofG over an
open setΩ such that (g1)a, . . . , (gq)a Oa-generateGa for a ∈ Ω.
Then φ(g1), . . . , φ(gq) are sections ofF over Ω and theyOa-
generateφ(G )Ω for a ∈ Ω. Hence onΩ, φ(G ) is isomorphic with
Oq
Ω
/N whereN = R

Ω
(φ(g1), . . . , φ(gq)). The result follows

from Proposition 1 and the definition.
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2) The kernel of φ. Let g1, . . . , gq ∈ GΩ generateG Ω. Now, the
sheafRΩ(φ(g1), . . . , φ(gq)) is coherent. We define a mapping of
RΩ to the kernel ofφ as follows: if ((c1)a, . . . , (cq)a) ∈ Ra, map
this point on (c1)a(g1)a + · · · + (cq)a(gq)a. This gives us a homo-
morphism ofR

Ω
onto the kernel ofφ (restricted toΩ) and by 1)

the kernel is coherent.

3) and 4)The cokernel and the coimage ofφ. After 1) and 2) it is
clearly sufficient to prove the following statment:

If G is a coherent analytic sheaf,F a coherent analytic subsheaf
of G , thenG /F is coherent. To everya ∈ V corresponds an
open setΩ, a ∈ Ω with G

Ω
≃ O p

Ω
/N whereN is coherent.

Let f ′1, . . . , f ′q ∈ FΩ generateF
Ω

. SinceF
Ω
⊂ G

Ω
, there

are elementsf1, . . . , fq ∈ O p
Ω

which go into f ′1, . . . , f ′q. Let R
be the analytic sheaf onΩ generated byf1, . . . , fp; this sheaf is
clearly coherent. One hasF

Ω
≃ (R +N )/N , and consequently93

G
Ω
/F

Ω
≃ Oq

Ω
/(R +N ). Since obviouslyR +N is coherent,

the result follows.
�

4 Coherent analytic sheaves on subsets of a complex
analytic manifold

Let X be a subset of the complex manifoldV. An analytic sheaf onX
is defined to be a sheaf ofOX-modules (OX is, of course, the restriction
of O to X). The definition of acoherentanalytic sheafF on X is the
same as before: ifF ⊂ O p

X, thenF is coherent if to everya ∈ X
exist a neighbourhoodU in X and elementsf1, . . . , fp ∈ FU such that
( f1)b, . . . , ( fp)b OXb-generateFb for b ∈ U. An analytic sheafF on X
is coherent, if everya ∈ X has an open neighbourhoodU ⊂ X such that
FU ≃ O p

U/N whereN is a coherent analytic subsheaf ofO p
U . The

result of 3 generalize to the sheavesO p
X. The following theorem will be

proved.
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Theorem 2. Let X be a compact subset of the complex manifold V, and
F a coherent analytic sheaf on X. Then there is an open setΩ ⊃ X
(open in V) and a coherent analytic sheafG onΩ such thatG X ≃ F .

We begin the proof with a remark, which follows at once from the
fact that a section of sheaf is an open mapping and the definition of
coherence.

Remark. Let F , G be two coherent analytic sheaves on a subsetY of
the complex manifoldV, f , g two homomorphisms:F → G . Then,
the set ofy ∈ Y with fy = gy ( fy, gy are the homomorphismsFy → Gy

determined byf , g respectively) is open inY.

For the proof of Theorem 2, we require two lemmas.

Lemma 1. Let F , G be coherent analytic sheaves on a subset Y⊂ V.94

Let a ∈ Y and suppose that there is a homomorphismφa : Fa → Ga.
Then there is a neighbourhoodΩ of a in Y such thatφa can be continued
to a homomorphismφ : F

Ω
→ G

Ω
(in an obvious sense).

Proof. Suppose that in a neighbourhoodΩ′ of a, f1, . . . , fq ∈ FΩ, gen-
erateF

Ω′
; let g1, . . . , gp ∈ G

Ω′
define respectively the germs (g1)a =

φa(( f1)a), . . . , (gp)a = φa(( fp)a). The sheaf of relations betweenf1, . . . ,
fp is coherent, and so, ifΩ′ is small enough, is generated inΩ′ by
functions (λk

i ) and
∑
i
(λk

i )a( fi)a = 0 so that we have
∑
i
(λk

i )a(gi)a = 0.

Let Ω ⊂ Ω′ be such that
∑
i
λk

i fi = 0,
∑
i
λk

i gi = 0 in Ω. Let b ∈ Ω

and let
∑
i
(µi)b( fi)b = 0. Then (µi)b =

∑
k

(ak)b(λk
i )b and

∑
i
(µi)b(gi)b =

∑
k

(ak)b
∑
i
(λk

i )b(gi )b = 0. Hence, ifb ∈ Ω,
∑
i
(µi)b( fi)b = 0 implies

∑
i
(µi)b(gi)b = 0 and the homomorphismφ on Ω can be defined by

φb(( fi)b) = (gi)b for b ∈ Ω. �

Lemma 2. Let X be a compact set in V,F , G , coherent analytic
sheaves on a neighbourhood of X. Letφ be a homomorphismF X →

GX. Thenφ can be continued to a homomorphismFU → G U , U being
a suitable neighbourhood of X.
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Proof. By Lemma 1, for everya ∈ X, φa can be extended to a homo-
morphismφΩa : FΩa

→ G Ωa
in a neighbourhoodΩa of a. Now φ and

φΩa determine the same homomorphismφa of Fa→ Ga. By the remark
before the proof of Lemma 1, we may suppose thatφ = φΩa in Ωa ∩ X. 95

SinceX is compact, we obtain a finite covering{Ωi} of X and homomor-
phismsψi : F

Ωi
→ G

Ωi
such thatψi = ψ j = φ inΩi∩Ω j∩X. Again, by

the remark before Lemma 1 and the compactness ofX, we may assume
thatψi = ψ j in Ui ∩ U j whereUi is an open set containingΩi ∩ X. It is
clear that there is an open setU ⊃ X such thatψi = ψ j in Ωi ∩ Ω j ∩ U
andψi = φ onΩi ∩ X. Lemma 2 follows. �

Proof of Theorem 2.From the definition of coherent analytic sheaves
(as locally isomorphic to quotient ofO p

X, OX being the restriction ofOV)
it follows that if a ∈ X, there is an open setΩa, a ∈ Ωa and a coherent
analytic sheafG a onΩa such thatG a

Ωa∩X ≃ F
Ωa∩X. SinceX is compact,

there are finitely many coherent analytic sheavesG 1, . . . ,G r on open

setsΩ1, . . . ,Ωr respectively (
r⋃

i=1
Ωi ⊃ X) such thatG i

Ωi∩X ≃ F
Ωi∩X.

Let this isomorphism be given by a mappingci : G i
Ωi∩X → FΩi∩X.

On Ωi ∩ Ω j ∩ X, there is thus a homomorphismci j : G i
Ωi∩Ω j∩X →

G j
Ωi∩Ω j∩X (whereci j = c−1

j ci). Also cii = identity, ci j c jkcki = identity
onΩi ∩ Ω j ∩ Ωk ∩ X. By Lemma 2, there is a neighbourhoodUi j of
Ωi ∩ Ω j ∩ X (with Ui j = U ji ) and a homomorphism

γi j : G i
Ωi∩Ω j∩Ui j

→ G j
Ωi∩Ω j∩Ui j

.

Also, by the remark before Lemma 1, we may suppose thatUi j is such
thatγii = identity onΩi ∩ Uii , γi jγ jkγki = identity onΩi ∩ Ω j ∩ Ωk ∩

Ui j ∩ U jk ∩ Uki; in particular,γi j is an isomorphism ofG i
Ωi∩Ω j∩Ui j

onto

G iΩi ∩ Ω j ∩ Ui j . SinceX is compact, there is a neighbourhoodU of X 96

such thatγi j is an isomorphism ofG i
Ωi∩Ω j∩U ontouG j

Ωi∩Ω j∩U , andγii =

identity,γi jγ jkγki = identity (onΩi ∩U,Ωi ∩Ω j ∩Ωk∩U respectively).
These sheaves and isomorphism give rise to a coherent analytic sheafG
on a neighbourhood ofX. Also, by the definition of theγi j it is clear
thatG X ≃ F and the proof of Theorem 2 is complete.
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If the manifoldV is paracompact,X may be replaced by any closed
set in Theorem 2. For the details of proof, see Cartan [4] or Dowker [6].



Chapter 13

Cohomology with coefficients
in a sheaf

1 Cohomology of a covering

Let X be a topological space,F a sheaf of abelian groups onX. Let 97

O = {Oi}i∈I be an open covering ofX. We shall denote byOi◦ ,...,ip the
setOi◦ ∩ . . .∩Oip and,U being an open set inX, byΓ(U,F ) = F U the
sections ofF overU. (If U is empty, we setΓ(U,F ) = 0).

Definition. A p-cochainof O is a mappingc of I p+1 such thatc j◦ ... jp ∈

Γ(Oi◦·ip,F ) and which is, moreover,alternate, (i.e., c j◦... jp = εci◦...ip if
( j◦, . . . , jp) is a permutation of (i◦, . . . , ip) andε = ±1 according as this
permutation is even or odd).

C p(O ,F ) will denote the abelian group of thep-cochains ofO,
C (O ,F ) =

∑
p≥0

C p(O ,F ) the direct sum of theC p(O ,F ) for p ≥ 0.

Thecoboundary operatorδp : C p(O ,F )→ C p+1(O ,F ) is defined
as follows: ifc ∈ C p,

(δpc)i◦ ...ip+1 =

p+1∑

j=0

(−1) jci◦ ...̂i j ...ip+1

101
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where i◦, . . . î j . . . ip+1 signifies that thej-th index i j is to be omitted.
Theδp give rise to a coboundary operatorδ : C (O ,F ) → (O ,F ). It
can be verified that

δp ◦ δp−1 = 0 i.e.,δ ◦ δ = 0.

Now, the elementsc of C ◦(O ,F ) such thatδc = 0 are precisely those
elements withci1 − ci◦ = 0 in Oi◦i1 (by the definition ofδ) and so, since98

ci◦ = ci1 in Oi◦ ∩ Oi1 they correspond to sections over the whole ofX,
i.e., to elements ofΓ(X,F ). Hence we have the following compelx:

0→ Γ(X,F )
i
−→ C ◦(O ,F )

δ◦

−→ C 1(O ,F )
δ1

−→ . . .

andδp ◦ δp−1 = 0. Settingzp(O ,F ) = kernel ofδp, Bp(O ,F ) = image
of δp−1, we define thep-th cohomology group Hp(O ,F ) of the covering
O with coefficient sheafF by

Hp(O ,F ) = Zp(O ,F )/Bp(O ,F ), p > 0

H◦(O ,F ) = Γ(X,F ).

2 Cohomology of the spaceX

Let O = {Oi}i∈I , Ω = {Ωα}α∈A be two (indexed) coverings ofX and
suppose thatΩ is a refinement ofO, i.e., there is a mappingφ : A→ I
such thatΩα ⊂ Oφ(α). (We do not considerφ as given once for all, but
merely require its existence). The mappingρ of C p(O ,F ) in C p(Ω,F )
defined by

(ρc)α◦...αp = restriction ofcφ(α◦)...φ(αp) toΩα◦,...,αp

induces a mappingρ∗ of Hp(O ,F )→ Hp(Ω,F ) (this is easy to verify).

Proposition 1. ρ∗ does not depend onφ.

Proof. Let φ, ψ be two mappingsA→ I such thatΩα ⊂ Oφ(α) ∩ Oψ(α).
Suppose thatA is totally ordered. Forp = 0, the result is obvious since
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H◦(O ,F ) = Γ(X,F ) for everyO. If p ≥ 1, we define a mappingk
(“homotopy operator”):C p+1(O ,F )→ C p(Ω,F ) by

(kc)α◦ ...αp =

p∑

j=0

(−1) jcφ(α◦)...φ(α j )ψ(α j )...ψ(αp),

if α◦ < α1 < . . . < αp in the total order ofA and then definekcuniquely 99

to be an (alternate) cochain. If the cochains correspondingto the maps
φ, ψ arec′, c′′ in C p(Ω,F ) respectively, it can be verified that

(kδ + δk)c = c′ − c′′.

Consequently, ifc is a cocycle (i.e.,δc = 0), thenc′−c′′ is a coboundary,
c′ − c′′ = δ(kc) and the mappingsφ andψ induce the same homomor-
phism ofHp(O ,F )→ Hp(Ω,F ) . This proves Proposition 1.

This homomorphism is denoted byσ(O ,Ω). It satisfies certain ob-
vious transitivity properties (as a functions ofO, Ω).

If p = 0,σ is always an isomorphism as observed above. �

Proposition 2. If p = 1, σ is a monomorphism.
We have to show that ifφ : A → I is such thatΩα ⊂ Oφ(α) and

c = 0 in H1(Ω,F ), then c= 0 in H1(O ,F ). Let c be a cochain with
cφ(α)ϕ(β) = γβ − γα in Ωαβ. For every i and x∈ Oi if x ∈ Ωα, set ci(x) =
γα(x)+cφ(α)i (x). If x is also inΩβ, thenγβ(x)+cφ(β)i (x) = γα(x)+cφ(α)i (x)
sinceγβ − γa = cφ(α)φ(β) = cφ(α)i − cφ(β)i. Hence this defines a section ci

onOi and clearly ci j = ci − c j in Oi j , which proves the proposition.
The homomorphismσ(O ,Ω) defined above depends only on the cov-

eringsO ,Ω. If Ȯ ,Ω are refinements of one another,σ(O ,Ω) is an iso-
morphism. Hence we identify all coverings which are two by two refine-
ments of one another, and consider the class of all indexed coverings
modulo this identification. It is clear that this quotient can be put in
one-one correspondence with a subclass of the power set of X and so is
a set. It is clearly a directed set and we have a directed system

{Hp(O ,F ), σ(O ,Ω)}O

for every p. The direct limit of this system is called the p-thcohomology 100

group of X with coefficient sheafF and is denoted Hp(X,F ). It is
obvious that H◦(X,F ) = Γ(X,F ).
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3 The exact cohomology sequence

Let

0→ F
i
−→ G

η
−→H → 0

be an exact sequence of sheaves. This evidently gives rise toan exact
sequence

0→ C (O ,F )→ C (O ,G )→ C (O ,H )

but the last mapping is not in general onto. If we denote byCa(O ,H )
the imageC (O ,G ) (group of “cochaı̂nes ascensionelles”) then we ob-
tain the exact sequence

0→ C (O ,F )→ C (O ,G )→ Ca(O ,H )→ 0.

It Zp
a is the group of cochainsc in C p

a (O ,H ) with δc = 0 andBp
a is the

group of cochainsδc, c ∈ C p−1
a (O , H̄ ), we define the groupHp

a (O ,H )
by

Hp
a(O ,H ) = Zp

a/B
p
a.

We now define a mappingd∗ : Hp
a(O ,H ) → Hp+1(O ,F ) in the fol-

lowing way. Leth ∈ Zp
a and lethi◦...ip = η(gi◦ ...ip) whereg ∈ C p(C ,G );

also, since clearlyη andδ commute,η{(δg)i◦...ip+1} = (δh)i◦ ...ip+1 = 0 since
h ∈ Zp

a · (δg)i◦ ,...ip+1 being a section overOi◦ ...ip+1 which goes to 0 under
η, δg ∈ C p+1(O ,F ) (sinceF is the kernel ofη). It is easy to see that
the class ofδg in Hp+1(O ,F ) remains unchanged ifg is replaced by101

another cochaing′ with ηg′ = h and if h is replaced bya cohomologous
cocycle. This definesd∗.

It is clear thati, η induce homomorphisms

i∗, η∗ : Hp(O ,F )
i∗
−→ Hp(O ,G )

η∗

−→ Hp(O ,H )

and it can be verified that the following sequence is exact:

0→ H◦(O ,F )
i∗
−→ H◦(O ,G )

η∗

−→ H◦a(O ,H )
d∗
−−→ H1(O ,F )

i∗
−→ . . .

. . .
d∗
−−→ Hp(O ,F )

i∗
−→ Hp(O ,G )

η∗

−→ Hp
a(O ,H )

d∗
−−→ Hp+1(O ,F )

i∗
−→ . . .
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We can now define the groupsHp
a(X,H ) by taking direct limits as the

covering becomes finer, as for the groupsHp(X,H ). Also there is a
canonical mappingHp

a (OH ) → Hp(O ,H ) and so a canonical homo-
morphismHp

a(X,H )→ Hp(X,H ). Since the operation of taking direct
limits commutes with exact sequences we obtain the exact sequence

. . .
d∗
−−→ Hp(X,F )

i∗
−→ Hp(X,G )

η∗

−→ Hp
a (X,H )

d∗
−−→ Hp+1(X,F )

i∗
−→ . . .

It is of interest to decide whenHp
a(X,H ) = Hp(X,H ). This is so in

the case whenX is paracompact (i.e., a Hausdorff space in which every
covering admits a locally finite refinement).

Theorem. If X is paracompact and

0→ F
i
−→ G

η
−→H → 0

an exact sequence of sheaves on X, then the canonical homomorphism

Hp
a(X,H )→ Hp(X,H )

is an isomorphism.

The theorem follows at once from the following

Lemma. If O = {Oi}i∈I is a covering of X and c∈ C p(O ,H ), there ex-
ists a coveringΩ = {Ωα}α∈A and a mappingφ : A→ I with Ωα ⊂ Oφ(α) 102

such that the induced homomorphismφ∗ : C p(O ,H ) → C p(Ω,H )
take c to a cochainφ∗(c) ∈ C p

a (Ω,H ).

Proof of the lemma: SinceX is paracompact, we may supposeO lo-
cally finite. SinceX is normal, (see Dieudonné [5]) there is an open
covering{O′i }i∈I such thatŌ′i ⊂ Oi. For everyx ∈ X, we choose an open
neighbourhoodΩx of x such that

(i) x ∈ Oi (respectivelyO′i ) impliesΩx ⊂ Oi (respectivelyO′i ).

(ii) Ωx ∩O′i , 0 impliesΩx ⊂ Oi .
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(iii) If x ∈ Oi◦...ip, there is a sectionS of G overΩx such thatη(s) =
ci◦ ...ip onΩx.

SinceO is locally finite, it follows from the definition of quotient
sheaf that (iii) can be fulfilled; and (i) and (ii) are then ensured if we
choose theΩx small enough. This gives us a covering{Ωx}x∈X = Ω of
X; we choose a mappingφ : X→ I such thatΩx ⊂ O′

φ(x). It is then easy
to verify thatΩ andφ have the property stated in the lemma.



Chapter 14

Coherent analytic sheaves on
a cube

1 The abstract de Rham Theorem

Let X be a paracompact topological space,F a sheaf of abelian groups103

on X, and suppose that

0→ F
i
−→ G◦

d◦
−−→ G1

d1
−−→ . . .

dk−1
−−−→ Gk

dk
−→ . . .

is an exact sequence of sheaves onX and thatHp(X,G k) = 0 for p ≥ 1,
k ≥ 0. Consider the sequence

0→ Γ(X,F )
i∗
−→ Γ(X,G

◦
)

d∗◦
−−→ . . .

d∗k−1
−−−→ Γ(X,G k)

d∗k
−−→ . . .

with the induced homomorphismsd∗k (this is not in general exact).
Then

Hk(X,F ) ≃ kerneld∗k/ imaged∗k−1 for k ≥ 1.

Proof. Consider the exact sequence

G k−1
dk−1
−−−→ G k

dk
−→ G k+1

107
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and letH k = kerneldk = imagedk−1. Then we have an exact sequence

0→H k → G k →H k+1→ 0

andX being paracompact, we obtain, forq > 0, the exact sequence

Hq(X,G k)→ Hq(X,H k+1)→ Hq+1(X,H k)→ Hq+1(X,G k)

and sinceHp(X,G k) = 0, if p ≥ 1,

Hq(X,H k+1) ≃ Hq+1(X,Hk)

for q ≥ 1. By iteration

Hp(X,F ) ≃ Hp−1(X,H 1) ≃ . . . ≃ H1(X,H p−1). (1)

Also we have the exact sequence

0→H p−1→ G p−1→H p→ 0

and the induced exact sequence104

H◦(X,Gp−1)→ H◦(X,H p)→ H1(X,H p−1)→ H1(X,G p−1).

Since the last term is 0 by hypothesis,

H1(X, H̄p−1) ≃ H◦(X,H p)/ imageH◦(X,G p−1).

It is easy to see thatH◦(X,H p) ≃ kerneld∗k, while imageH◦(X,Gp−1) =
imaged∗k−1 and the result follows from (1). �

Applications.

a) de Rham’s Theorem.Let X = V be a paracompact differentiable
manifold andE p the sheaf of germs of differentiablep-forms on
V. Then we have a sequence

0→ C
i
−→ E ◦

d
−→ · · ·

d
−→ E p d

−→ E p+1 d
−→ · · ·
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(C is a constant sheaf,C being the group of complex numbers).
This sequence is exact by the local form of Poincaré’s theorem
(VIII). By the method given in Step 1 of the solution of the gen-
eralized first Cousin problem (VIII) it is seen thatHk(V,E p) = 0
if k ≥ 1, p ≥ 0. Hence, the above theorem shows that

Hp(V,C) ≃

(group of closedp-forms)/(the differentials of (p− 1) forms), i.e.,
Hp(V,C) is the same as thep-dimensionald-cohomology ofV.
This is the theorem of de Rham.

b) Dolbeault’s theorem. Let V: a paracompact complex manifold
andE o,p the sheaf of germs of forms of type (0, p) on V. Then,
the local form of Grothendieck’s theorem shows that the sequence

0→ O
i
−→ E o,o d′′

−−→ E 0,1 d′′
−−→ . . .

is exact (O is the sheaf of germs of holomorphic functions onV).
Again, by the method of the generalized first Cousin problem,we 105

prove that
Hk(V,E o,p) = 0, p ≥ 0, k ≥ 1,

and we obtainHp(V,O) ≃ (d′′-closed (0, p) forms)/(d′′-differenti-
als of (0, p − 1) forms), i.e.,Hp(V,O) is the same as thep - di-
mensionald′′-cohomology of the (0, r) forms,r = 0, 1, . . . on V.

Similar reasoning proves that thep-th cohomology ofV with co-
efficients in the sheaf of germs of holomorphic (q, 0)-forms is the
p-th d′′-cohomology of the (q, r)-forms, r = 0, 1, . . . on V. This
is a particular case of Dolbeault’s theorem.

c) Let K be a cube imbedded inCn, i.e.,K is a subset of a fixedCn,
consisting of the pointsz∈ Cn with

|Rzi | ≤ ai |Izi | ≤ bi , ai , bi ≥ 0.

Consider the sheafO = OK (in the sense of XII, i.e., the restric-
tion to K of the sheaf of germs of holomorphic functions inCn).
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We define the sheavesE o,p in the same way as the restriction to
K of the sheaf of germs of (0, p)-forms inCn. As before we have
the exact sequence

0→ O
i
−→ E o,o d′′

−−→ E o,1 d′′
−−→ . . .

andHp(K,O) ≃ (d′′-closed (0, p)-forms)/(d′′-differentials of (0,
p − 1)-forms). Grothendieck’s theorem shows that this quotient
is zero. (The theorem was proved only whenai , bi > 0, but it is
immediate that the theorem holds also when some of theai , bi are
0). This proves the following

Theorem 1. If K is a closed cube in Cn, Hp(K,O) = 0 for p ≥ 1.

Corollary. If p, q ≥ 1, Hp(K,Oq) = 0.106

(One has only to apply Theorem 1 to the components of an element
c of Zp(K,Oq) to see that c is a coboundary).

It is instructive to compare the above proof with the solution of the
generalized first Cousin problem for a cube which implies that H1(K,
O) = 0. (This is exactly the generalization of that proof to the more
general setting here).

2 Coherent analytic sheaves on a cube

Let K be a cube inCn andF a coherent analytic sheaf onK. Funda-
mental Theorem. (Oka-Cartan-Serre).

A) F is (globally) a quotient of a sheafON (This can also be
expressed by saying that there areN (global) sectionsf1, . . . , fN of F
whichOb-generateFb for everyb ∈ K.)

B) For p ≥ 1, Hp(K,F ) = 0.
We introduce the following statement.
A′) F is (globally) a quotient of a coherent analytic sheaf locally

isomorphic toON.
The proof of the fundamental theorem now divides into two parts,

the proof thatA′) implies A) and B) for a cube and the proof ofA′) for
a cube.
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Step 3.The truth ofA′) for everyF implies the truth of A) and B) for
everyF .

(i) SupposeA′) true for all F . ThenF is a quotient of a sheafG
locally isomorphic toON. HenceG defines a class of analytic
bundles over a neighbourhood ofK (end of XI; the results proved
there relate to topological bundles, but they remain valid with ob-
vious modifications for analytic bundles). By Theorem 2 ofX, 107

this class is the trivial class (on some neighbourhood ofK) and so
G is ≃ ON and A) is proved.

(ii) According to A), we have an exact sequence

ON1 → F → 0

and ifG 1 is the kernel of this mapping,G 1 is coherent analytic by
Theorem 1 of XII, and we have the exact sequence

0→ G 1→ ON1 →F → 0.

Since A) is supposed to hold for all coherent analytic sheaves, we
obtain exact sequences

0→ G 2→ ON2 → G 1→ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0→ G k → ONk → G k−1→ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

This leads to the exact sequence

Hp(K,ONk)→ Hp(K,G k−1)→ Hp+1(K,G k)→ Hp+1(K,ONk).

If p ≥ 1, the first and last terms are zero by Theorem 1 above and
consequently,

Hp(K,G k−1) ≃ Hp+1(K,G k) (2)

Now, there is an integerm such that every covering ofK has a
refinement in which the intersection of anym+ 1 sets (of the re-
finement) is empty. [This is seen for example by subdividingK
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into smaller cubes by hyperplanes parallel to the coordinate hy-
perplanes. The stetement is, however, essentially of dimension 108

theoretic character; classical dimension theory shows that te best
possiblem is 2n + 1 and that this is not special to cubes. The
above property is the starting point of the more modern theory of
dimension]. HenceHm+p(K,H ) = 0 for every sheafH over K
andp ≥ 1. By iterating (2), we obtain

Hp(K,F ) ≃ Hp+1(K,G 1) ≃ . . . ≃ Hm+p(K,G m) = 0

and B) is proved.

Step 4. Proof of A′) for a cube. The proof will be by induction on
the real dimension of the cubeK. If K has dimension 0,A′) is just the
definition of a coherent analytic sheaf. SupposeA′) true for all cubesK′

of real dimensionp and all coherent analytic sheavesF on K′. Then
A) and B) are also true forK′ andF .

Let nowK be a cube of real dimensionp+ 1. We find a coordinate
hyperplane such that the intersection ofK with any hyperplane paral-
lel to it is of dimensionp (if it is non-empty). The restriction ofF to
each such intersection is coherent analytic, and by inductive hypothesis,
≃ a quotient ofON. The extension theorem of XII shows that there is
a neighbourhood of each intersection in whichF induces a coherect
analytic sheaf which is isomorphic to a quotient of sameON. By the
Borel-Lebesgue lemma, it follows that we have only to prove the fol-
lowing result:

Given two adjacent cubesK1, K2 of dimensionp+ 1 such thatP =
K1 ∩ K2 is of dimensionp, and a coherent analytic sheafF on K1 ∪ K2

such thatF is a quotient of a sheafON1 onK1, and a quotient of a sheaf
ON2 onK2, thenF is a quotient of a sheaf locally isomorphic toON1+N2

on K1 ∪ K2.

Let ( f ) =



f1
...

fN1


, f1, . . . , fN1 being sections ofF overK1 which Oa-109
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generateFa for a ∈ K1, (g) =



g1
...

gN


, g1, . . . , gN2 being sections ofF

over K2 which Ob-generateFb for b ∈ K2. It is easily seen that it is
enough to find a holomorphic regular matrixc on P such that

c

(
f
0

)
=

(
0
g

)
.

To findc, we use the following lemma, which is of interest by itself.

Lemma. If φ is a section ofF over P, there are N1 holomorphic func-
tionsλ1, . . . , λN1 on P such that

φ = λ1 f1 + · · · + λN1FN1.

Proof of the lemma: Consider the exact sequence

0→ G ′ → ON1 → F → 0

(these being sheaves onP = K1 ∩ K2; G ′ is the kernel of the homomor-
phismON1 → F ). This gives us the exact sequence

H◦(P,ON1)→ H◦(P,F )→ H1(P,G ′)

and by inductive hypothesis,H1(P,G ′) = 0 sinceP has dimensionsp.
Hence the mapping

H◦(P,ON1)→ H◦(P,F )

is onto and the lemma follows.

Construction of c. The lemma proves that there is a matrixγ1 of N1

columns andN2 rows such that

γ1



f1
...

fN1


=



g1
...

gN2
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i.e., γ1( f ) = (g). In the same way there is a matrixγ2 of N2 columns 110

andN1 rows such that
γ2(g) = ( f ).

If we set

c =

(
−I γ2

0 I

)
·

(
I 0
γ1 I

)

it is clear thatc is regular. Also

(
I 0
γ1 I

)
takes

(
f
0

)
to

(
f
g

)
,

(
−I γ2

0 I

)

takes

(
f
g

)
to

(
0
g

)
. This concludes Step 2 and with it the proof of the

fundamental theorem.

Remark. All reference to bundles can be avoided if after the construc-
tion of c, one applies Cartan’s theorem on holomorphic, regular matrices
to prove directly A) and B) without introducingA′).

The statementA′) is true for a much wider class of sets than is A).
Actually the problem of classifying the compact sets for which A′) is
true is still open (even inCn).



Chapter 15

Stein Manifolds: preliminary
results

1 Theorems A) and B) for closed polydiscs inCn

Let V be a complex analytic manifold, K a compact subset of V. We 111

say that Theorems A) and B) are true for K if A) every coherent analytic
sheafF on K is a quotient of a sheaf≃ ON and B)Hp(K,F ) = 0 for
p ≥ 1.

Proposition 1. Theorems A) and B) are true for (closed) polydiscs in
Cn.

Proof. Let P be the given polydisc.P has a fundamental system of
neighbourhoods each of which is analytically isomorphic toa closed
cube: P has a fundamental system of neighbourhoods which are open
polydiscs

∏
;
∏

, being a product of open discs, is isomorphic to an open
cube

∏
1 and the image ofP in

∏
1 is contained in a closed cube con-

tained in
∏

1 whose inverse image in
∏

is a neighbourhood isomorphic
to a closed cube. Since Theorems A) and B) are true for closed cubes,
it follows that Theorems A) and B) are ture for a fundamental system of
neighbourhoods ofP and after the extension theorem of XII it is easily
seen that A) is true forP, andB) follows from �

115
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Lemma 1. Let X be a paracompact topological space,F a sheaf of
abelian groups on X. Let Y be a closed set in X with a fundamental
system of closed neighbourhoods L. Then Hp(Y,F ) is the direct limit of
Hp(LF ) as L shrinks to Y.

Proof. For p = 0, this follows from the fact that every section overY
can be extended to a section over an open neighbourhood ofY and the
fact that the set of points at which two sections coincide is open. For
p > 0, we construct an exact sequence

0→ F
i
−→ G

◦

d◦
−−→ G 1

d1
−−→ . . .

dk−1
−−−→ G k

dk
−→ . . . (1)

such thatHp(E,G 1) = 0 if p > 0, l ≥ 0 for all subsetsE of X. To do112

this it is clearly sufficient to construct an exact sequence

0→ F → G with Hp(E,G ) = 0 for p > 0

(for the construction can be repeated with the quotientG /F and the
process continued). We defineG to be the sheaf of germs of all map-
pings f : X → F with f (x) ∈ Fx for x ∈ X. Then clearly we have an
exact sequence

0→ F → G

andHp(E,G ) = 0 for p > 0 by the theorem in the appendix
Having constructed the exact sequence (1) we consider the associ-

ated sequence

0→ Γ(E,F )
i∗
−→ Γ(E,G

◦
)

d∗◦
−−→ . . .

d∗k−1
−−−→ Γ(E,G k)

d∗k
−−→ . . .

and by the abstract de Rham theorem, we have

Hp(E,F ) ≃ kerneld∗p/ imaged∗p−1(p ≥ 1). (2)

As in the case whenp = 0, asL shrinks toY, kerneld∗k, imaged∗k−1
(with E replaced byL) have as their direct limit, the kernel and image
of the mappings

γ(Y,G k)→ Γ(Y,G k+1) andΓ(Y,G k−1)→ Γ(Y,G k)

respectively and an application of (2) withE = Y establishes the lemma.
�
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2 Coherent analytic sheaves on an analytic subman-
ifold

Let X be a topological space,Y a closed subset ofX,F a sheaf of abelian
groups onY. We define a sheaf̃F on X by settingF̃a = Fa if a ∈ Y,=
the group 0 ifa < Y. Clearly, this defines a sheaf onX. Then one has 113

Proposition 2. For p = 0, 1, . . .

Hp(Y,F ) ≃ Hp(X, F̃ ).

Proof. If O = {Oi}i∈I is an open covering ofX, O′i = Oi ∩ Y, then
{O′i } = O′ is an open covering ofY and clearly

Hp(O , F̃ ) ≃ Hp(O′F ).

Also given an open coveringO′ = {O′i } of Y, if Oi is such thatOi ∩Y =
O′i , then the open covering{Oi ,X−Y} of X gives rise toO′ in the above
way and Proposition 2 follows. �

Definition . Let Vn be a complex analytic manifold of complex dimen-
sion n. Let Wm be a closed subset ofVn. Wm is called ananalytic
submanifold of dimension m, if, for a ∈ Wm, the local coordinates
(z1, . . . , zn) at a onVn (in an open setU ⊂ Vn) can be so chosen that
Wm∩ U = {z ∈ U

∣∣∣zm+1 = . . . = zn = 0}.

An application of the implicit function theorem shows that if W is
a complex analytic manifold of dimensionm and i an analytic one-one
mapping ofW into Vn, i(W) is an analytic submanifold ofVn if and only
if

1) i is proper: the inverse image of a compact subset ofVn is a com-
pact subset ofW;

2) i has rankm (i.e., the Jacobian matrix ofi has rankm at every
point ofW).
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Let V be a complex manifold andW a submanifold ofV. Let X ⊂ V
andY = X ∩W. We shall denote byVO, WO the sheaves of germs of
holomorphic functions onV andW respectively, considered as complex
manifoldsin their own rights.

LetF be a coherentWO-analytic sheaf onY, andF̃ the sheaf which114

continuesF to X by 0 outsideY. Then F̃ a has a structure ofVO-
analytic sheaf onX: if a < Y, F̃a is anVOa-module (F̃a being 0); if
a ∈ Y, fa ∈ F̃a = F andha ∈ VOa, ha fa is defined to behaW fa, where
haW is the restriction ofha to W.

Let I(W) be the subsheaf ofVO consisting of those germs which
vanish onW. Then we have the isomorphism

VO/I(W) ≃WÕ;

by a theorem of Cartan [2], [3, lecture XVI],I(W) is coherent.

Proposition 3. If F is a coherentWO-analytic sheaf on Y, theñF is a
coherentVO-analytic sheaf on X.

Proof. If F is the sheafWOY (restriction ofWO to Y), then, by what
we observed above,

VOX/I(W)X ≃ WÕ

and soÕ is a coherentVO-analytic sheaf.
In the general case, letF be a sheaf onY, a ∈ Y, Ω an open neigh-

bourhood of a inY such that

FΩ ≃ WON
Ω/R,

whereR is a coherent analytic subsheaf ofWON.
Let Ω be chosen so small that there areN1 sets ofN holomorphic

functions onW which WOb-generateRb at every point ofΩ. If Ω is
again sufficiently small, there is a neighbourhoodΩ′ of a in V such that
Ω′ ∩ Y = Ω and these functions are restrictions of holomorphic func-
tions inΩ′ to Ω. Let R′ be the subsheaf ofVON

Ω′
generated by these115

N1 elements ofVON
Ω′

. ThenR′ is a coherent analytic subsheaf ofVON
Ω′

,
while clearlyF̃Ω′∩X ≃ VON

Ω′∩X/R
′
X + I

N(W)X and the proposition fol-
lows. �
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Proposition 4. Let P be a closed polydisc in Cn,
∏

an open polydisc
⊃ P. Let W be an analytic manifold which is a submanifold of

∏
. Then,

Theorems A) and B) are true for W∩ P (considered as subset of W).
This follows at once from Propositions 1, 2 and 3.

3 Stein Manifolds

Definition . A complex analytic manifoldV of dimensionn which is
countable at infinity is said to be aStein manifoldif

(α) V is holomorph-convex (VII, 3);

(β) for any two pointsa , b onV, there exists a holomorphicf onV,
such thatf (a) , f (b).

(γ) if a ∈ V, there aren functions holomorphic inV which form a
system of local coordinates ata.

Examples of Stein manifolds.

1. Univalent domains of holomorphy inCn (see VII, Prop. 1)

2. Any open connected Riemann surface. [A Riemann surface is
countable at infinity by Rado’s theorem; (α), (β) and (γ) follow
from Runge’s theorem. For the details of proof, see H. Behnke
and K. Stein: Entwicklung analytischer Funktionen auf Riemann-
schen Flächen, Math. Ann., 120 (1948), 430-461, and B. Mal-
grange: Existence at approximation des solutions des équations
aux déxivées partielles et des équations de convolutionThèse,
Paris, 1956 (Chap.III,§4)].

3. Analytic submanifolds ofCn. In particular, algebraic varieties116

overC which have no singularities.

Lemma 2 (on Stein manifolds). Let V be a Stein manifold, K a compact
subset of V such that K= K̂ (K̂ is theHV-envelope of K; see VI). Then
K has a fundamental system{L} of compact neighbourhoods L having
the following properties:
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To every L correspond an open set∧ ⊃ L, a closed polydisc P⊂ CN

an open polydisc
∏
⊃ P and a finite number N of holomorphic functions

f1, . . . , fN on V such that the restrictions to∧ of the fi realize∧ as an
analytic submanifold of

∏
and such thatφ(L) = P∩φ(∧) whereφ is the

mapping( f1, . . . , fN) of V in CN.

Proof. LetΩ be a relatively compact neighbourhood ofK, and letF be
the boundary ofΩ. For everya ∈ F, there is anf such that| f (a)| > 1,
|| f ||K < 1. SinceF is compact and the set of a with| f (a)| > 1 is open,
there are a finite number,f1, . . . , fN′ of holomorphic functions such that
|| fi ||K ≤ θ < 1 while max

i
| fi(a)| > 1 for a ∈ F. LetΩ′ be the set ofa ∈ Ω

with | fi(a)| < 1 for i = 1, . . . ,N′. Also, the set ofa ∈ Ω with | fi(a)| ≤ ρ,
θ < ρ < 1 is compact sinceΩ̄′ is compact and the closure of this set
does not intersectF. This shows that the mapping ofΩ′ in CN′ defined
by ( f1, . . . , fN′) is proper.

Set∧ = Ω′. By adjoining a finite number of functionsfN′+1, . . . , fN
to f1, . . . , fN′ we can ensure that points ofΩ are separated by the map-
ping φ = ( f1, . . . , fN) and such thatφ is of maximal rank{this follows
from properties (β), (γ) of Stein manifolds and the compactness ofΩ̄}.

If 1 > ρ > θ and || fN′+1||K < A, . . . , || fN||K < A, we thkeP to be117

the polydisc|zi | ≤ ρ, i ≤ N′, |zi | ≤ A, i ≥ N′ + 1 in CN and L to be
the inverse image in∧ of P∩ φ(∧) under the mappingφ. SinceK has a
fundamental system of relatively compact neighbourhoodsΩ, Lemma 2
is proved. �

Theorem .Let V be a Stein manifold, K a compact set⊂ V such that
K = K̂. Then

1) Theorems A) and B) are true for K.

2) Every holomorphic function on K can be approximated, uniformly
on K by holomorphic funtions on V.

Proof. 1) follows from Proposition 4 and Lemmas 1 and 2. To prove
2), let g be a holomorphic function onK, andL a neighbourhood ofK
having the properties of Lemma 2, such thatg is holomorphic onL.
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Now, by Proposition 4, we have the exact sequence

CNOP→ VÕL → 0

(L is considered as a subset of
∏

), and if I is the kernel of the first
mapping, the sequence

0→ I→ CNOP→ VÕL → 0

is exact. The associated exact cohomology sequence

H◦(P,CNOP)→ H◦(P, VÕL)→ H1(O,I)

shows, sinceH1(P,I ) = 0 by Theorem B) for a polydisc, that every
element ofH◦(P, VÕL) is the image of an element ofH◦(P,CNOP) and
g is the restriction toL of a holomorphic function onP; henceg can be
expanded in a power series in thef1, . . . , fN which converges uniformly

onK ⊂
◦

L. Since the partial sums of this power series, being polynomials 118

in f1, . . . , fN are holomorphic onV, the theorem is proved. �

Appendix

Theorem.Let X be a topological space,F a sheaf of abelian groups
on X which is such that any section ofF over an open set of X can be
extended to a section ofF over X. Then, for any open coveringO =
{Oi}i∈I of X, Hp(O ,F ) = 0 for p > 0, and in particular Hp(X,F ) = 0
for p > 0.

Proof. The proof is by induction onp.

a) p = 1. Letc be a 1-cocycle of the coveringO = {Oi}i∈I . Suppose
J is a subset of the indexing setI such that there is a 0-cochain
γ of O with γi − γ j = ci j for i, j ∈ J. Let α ∈ I , α < J. We
define a 0-cochainγ′ as follows:γ′i = γi if i , α, γ′α = γi + cαi on
Oα ∩ Oi , i ∈ J. Then onOα ∩ Oi ∩ O j, γi + cαi = γ j + cα j since
γi − γ j = ci j = cα j − cαi (c being alternate). Henceγ′ is defined
uniquely on

⋃
i∈J

(Oα ∩ Oi). By hypothesis,γ′α can be extended to
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a section ofF overOα and the cochainγ′ is defined completely.
Also γ′i − γ

′
j = ci j if i, j ∈ J ∪ {α}. It is clear thatJ is non-empty

(sincec is alternate) and the theorem forp = 1 follows by an
application of Zorn’s lemma.

b) p > 1. Suppose the theorem true withp replaced byp − 1 for
all spacesX, all coveringsO of X and all (p − 1)-cocycles ofO.
Let c be ap-cocycle and letJ be a subset ofI such that there is
a (p − 1)-cochainγ with (δγ)i◦ ...ip for i◦, . . . , ip ∈ J. Let α ∈ I ,
α < J.

For everyi◦, . . . , ip−2 ∈ J, we determine a sectionγ′i◦...ip−2α
of F119

overOi◦...ip−2α such that

ci◦ ...ip−1α =

p−1∑

k=0

(−1)kγ′
i◦...̂ik...ip−1α

+ (−1)pγi◦...ip−1

overOi◦ ...ip−1α. This is possible: it is easily seen, from the definition of
γ, that the (p− 1)-cochainc′ defined by

c′i◦ ...ip−1
= ci◦ ...ip−1α + (−1)p−1γi◦...ip−1

is a cocycle of the covering{Oα ∩ Oi}i∈J of the spaceY =
⋃
i∈J

(Oα ∩ Oi)

(sincec is a cocycle) and the existence of theγ′i◦...ip−2α
follows from

inductive hypothesis.
We new define a (p − 1)-cochainγ1 as follows: if i◦, . . . , ip−2 ∈ J,

(γ1)i◦ ...ip−2α = γ
′
i◦...ip−2α

; γ1 is defined by the condition that it is alternate
for otherp-tuples of indices ofJ∪ {α} which containα and (γ1)t = γt if
t ∈ Jp. γ1 has the property that

(δγ1) j◦... jp = c j◦ ... jp for j◦, . . . , jp ∈ J ∪ {α}

while γ1 = γ on Jp. If we partially order the pairs (J, γ) by setting
(J, γ) < (J′, γ′) if J ⊂ J′ andγ′ = γ on Jp, the theorem follows by an
application of Zorn’s lemma. �
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Coherent analytic sheaves on
a Stein manifold

1. We shall prove here the fundamental theorem of Oka-Cartan-Serre 120

on Stain manifolds.

Fundamental Theorem. Let V be a Stein manifold andF a coherent
analytic sheaf onV. Then

A) For everya ∈ V, H◦(V,F ) Oa-generatesFa.

B) For p ≥ 1, Hp(V,F ) = 0.

(It is clear that for compact subsets ofV, Theorem A) as formulated
in XV is equivalent to the theorem as formulated above).

The following two results will be required, the first will notbe
proved here. For the proof, see Cartan [1].

Theorem 1. Let V be a complex analytic manifold and let a∈ V. LetM
be a submodule ofO p

a {as anOa-module} and let f = ( f1, . . . , fp) ∈ O p

(O =HV is the space of all holomorphic funtions on V). Suppose that f
is the limit inO p of functions fi ∈ O p such that( fi)a ∈ m. Then fa ∈ m.

Lemma. Let K be a compact subset of the Stein manifold V such that
K = K̂ (K̂ is theHV-envelope of K) andF a coherent analytic sheaf
on K. Let f1, . . . , fm ∈ H◦(K,F ) and suppose that for every a∈ K,

123
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f1, . . . , fm Oa-generateFa. Then f1, . . . , fm H◦(K,O)-generate H◦(K,
F ).

This lemma is proved, using Theorems A) and B) forK in exactly
the same way as was the lemma in the proof of Theorems A) and B) for
a cube inXIV.

2 Topology onH◦(V,F )

Let {Kp} be a sequence of compact subsets ofV such thatKp ⊂
◦

Kp+1,121
∞⋃
1

Kp = V andKp = K̂p (such a sequence exists sinceV is eountable at

infinity and, for any compact setK, ( ˆ̂K) = K̂).
For an integerN ≥ 1, we introduce a norm inH◦(Kp,O

N) by setting
the norm of f = ( f1, . . . , fN) ∈ H◦(Kp,O

N) to the equal to the greatest
of the suprema of| f1|, . . . , | fN| on Kp. We then introduce a seminorm
|| . . . ||p onH◦(Kp,F ) as follows: by Theorem A) forKp, F Kp

≃ ON/R

and || . . . ||p is defined to be the quotient seminorm of the norm onON.
It is easy to verify that two isomorphismsF Kp

≃ ON1/R1 ≃ ON2/R2
give rise to equivalent seminorms. Also, for everyp, there is a canonical
mappingH◦(V,F ) H◦(Kp,F ) (namely, restriction toKp). OnH◦(V,F )
we put the weakest topology for which these mappings are continuous
in these seminorms (which may also be described by saying that f ∈
H◦(V,F ) tends to zero if|| f ||p → 0 for everyp). Also, it is easily seen
that the topology induced by|| . . . ||p+1 on H◦(Kp,F ) is finer than that
given by|| . . . ||p.

The next results will show thatH◦(V,F ) is a Fréchet space. One
has only to show that it is Hausdorff and complete.

(a) If fp+1 ∈ H◦(Kp+1,F ) and || fp+1||p+1 = 0, then the restriction
of fp+1 to Kp is zero. (As a consequence, the topology ofH◦(V,F ) is
Hausdorff).

Proof. If φ1, . . . , φNp+1 Oa-generateFa for a ∈ Kp+1 (Theorem A) for
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Kp+1) and

fp+1 =

Np+1∑

i=1

ciφi (lemma on p.120)

(theci are holomorphic functions onKp+1) it follows from the definition 122

of the seminorm‖ . . . ‖p+1 and the fact that‖ fp+1‖p+1 = 0 that, given
ǫ > 0 there are holomorphic functionscǫ1, . . . , c

ǫ
Np+1

on Kp+1 such that

fp+1 =

Np+1∑

i=1

cǫi φi

and sup
i,aǫKp+1

|ci(a)| < ǫ. If γǫi = ci − cǫi , then (c1, . . . , cNp+1) is uniformly

approximated onKp+1 by (γǫ1, . . . , γ
ǫ
Np+1

) where (γǫ1, . . . , γ
ǫ
Np+1

) is an ele-
ment of the sheafR of relations betweenφ1, . . . , φNp+1. It follows from

Theorem 1 (stated on page 120) that on
◦

Kp+1 ⊃ Kp(c1, . . . , cNp+1) ∈ R
and (a) is proved.

(b) If f1, . . . , f, . . . is a sequence of elements ofH◦(Kp+1,F ) such
that

∞∑

k=1

|| fk||p+1 < +∞,

then the sequence{
N∑

k=1
fk} has a limit point inH◦(Kp,F ). The restric-

tions toKp−1 of two such limit points coincide. �

Proof. Let φ1, . . . , φNp+1 Oa-generateFa for a ∈ Kp+1 and let

fk =
Np+1∑

i=1

c(k)
i φi .

Then, since
∞∑

k=1
|| fk||p+1 < +∞, the c(k)

i can be so chosen that
∑
k

max
i

||c(k)
i ||Kp+1 < +∞ (by the definition of|| . . . ||p+1, one may, for exam-

ple, take thec(k)
i such that||c(k)

i ||Kp+1 < 2|| fk||p+1). Then, for eachi,
∑

k c(k)
i converges to a holomorphic functionci on Kp, and it is clear that
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||
N∑

k=1
fk −

Np+1∑
i=1

ciφi ||p → 0 asN → ∞. This proves the existence of the

limit point. The uniqueness onKp−1 follows at once from a).
(c) H◦(V,F ) is a Fréchet space.123

Given a Cauchy sequence{sk}, ||sk − sl ||p→ 0 ask, l → ∞ for every
p. If we choose a sequence{nk} of integers such that||sm− snk ||p < 1/2k

for p ≤ k andm ≥ nk (with nk+1 > bk) then
∑
k
||snk+1 − snk ||p < +∞ for

every p. It follows at once from (b) that{sk} has a limit inH◦(V,F )
which is unique sinceH◦(V,F ) is Hausdorff.

(d) (Approximation property). Givenfp ∈ H◦(Kp,F ) and ǫ > 0
there is a sectionf ∈ H◦(V,F ) such that|| fp − f ||p < ǫ. �

Proof. If φ1, . . . , φNp+1Oa-generateFa for a ∈ Kp+1, then their restric-
tions toKp clearlyOa-generateFa for a ∈ Kp. Hence, by the lemma,

fp =

Np+1∑

i=1

ciφi

where theci are holomorphic onKp. By the theorem of XV, theci

can be approximated uniformly onKp by holomorphic functions onV.
This shows thatfp can be approximated onKp (in || . . . ||p) by a sec-
tion fp+1 ∈ H◦(Kp+1,F ). Approximating fp+1 on Kp+1 by fp+2 ∈

H◦(Kp+2,F ) in || . . . ||p+1 and continuing this process, we construct a se-
quencefp+1, fp+2, . . . such that|| fp+k+1− fp+k||p+k ≤ ǫk. If the ǫk are small

enough, it is seen that
∞∑

m=k
|| fp+m+1 − fp+m||p+m < +∞ (since|| . . . ||m+1 is

finer than|| . . . ||m on Km) and so f ′p+k = fp+k +
∞∑
k

( fp+m+1 − fp+m) is

defined uniquely inKp+k−2. It is clear thatf ′p+k+1 = f ′p+k on Kp+k−2 and
so there is anf H◦(V,F ) with f = f ′p+k on Kp+k−2. If the ǫk are small
enough,f approximates tofp in || . . . ||p.

[If we say that a sequence{sm}, wheresm ∈ H◦(Km,F ), converges124

to s ∈ H◦(V,F ) if ||s− sm||m → 0 asm→ ∞, the above proof may be
rephrased by saying simply thatfp+m→ f asm→ ∞.]. �
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3 Proof of the fundamental theorem

Proof of Theorem A):

Let a ∈ V and suppose thata ∈
◦

Kp. Letφ1, . . . , φNp Ob-generateFb

for b ∈ Kp. Theorem A) asserts that the set of theNp-tuples (a1, . . . ,

aNp), whereai ∈ Oa, such that
∑

i φ belongs to the submodule ofFa

generated byH◦(V,F ) is O
Np
a . SuchNp-tuples from a submodulem

(overOa) of O
Np
a and after Theorem 1, we have only to prove that on a

certain fixed open nieghbourhoodU of a, everyNp-tuple of holomorphic
functions onU is the uniform limit ofNp-tuples (b1, . . . , bNp) such that
Np∑
1

biφi induces at a an element ofFa. But this follows at once from the

approximation property.

Proof of Theorem B): We prove first thatHp(V,F ) = 0 if p > 1. Let
α be ap-cocycle ofV. On Km we haveα = δβm, βm a cochain ofKm,
by Theorem B) forKm(m = 1, 2, . . .). Also, onKm, δ(βm+1 − βm) = 0,
so thatβm+1 − βm = δγ

′
m whereγ′m is a (p − 2)-cochain ofKm. By the

definition of cochain, we may suppose thatγ′m is the restriction toKm

of a (p − 2)-cochainγm of V, and soβm = βm+1 − δγm on Km, while
δ(βm+1 − δγm) = α on Km+1. It is clear that by repeating this process
with m = 1, 2, . . . we obtain a (p − 1)-cochainβ of V such thatδβ = α
and soHp(V,F ) = 0.

Finally, we turn to the proof thatH1(V,F ) = 0. Let α be a 1-
cocycle ofV and letα = δβ′ on Kp, whereβ′p is a 0-cochain ofKp.
Again,β′p+1 − β

′
p ∈ H◦(Kp,F ), i.e., is a cocycle.

By the approximation property, there is a cocyclec′p+1 ∈ H◦(V,F ) 125

such that||c′p+1 + β
′
p+1 − β

′
p||p ≤ ǫp, whereǫp can be chosen arbitrarily

small. It is clear that we find thus a cochainβp of Kp with δβp = α on
Kp and||βp+1 − βp||p ≤ ǫp for everyp ≥ 1.

If we say that a sequence of cochains,{βp}, whereβp is a cochain of
Kp, tends to a cochainβ of V if β − βp ∈ H◦(Kp,F ) and||β − βp||p→ 0
asp→ ∞, a repetition of the proof of the approximation property (with
trivial modifications) shows that the sequence{βp} defined above tends
to a cochainβ of V if the ǫp are small enough and it is clear thatδβ = α.
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This proves Theorem B) forp = 1 and the proof of the fundamental
theorem is complete.
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[3] H. Cartan: Séminaire E.N.S.1951/52 (especially Lectures XV-
XIX).

[4] H. Cartan: Variétés analytiques réelles et variét´es analytiques com-
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