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We shall develop in this course Nevanlinna’s theory of menghic
functions. This theory has proved a tool of unparallelleelcigion for
the study of the roots of equatiorfi§z) = a, fM(2) = b, etc. whether
single or multiple and their relative frequency. Basic tis $tudy is the
Nevanlinna Characteristi€(r) which is an indication of the growth of
the functionf(z). We shall see in Theorel 2 that for everyl &) is,
apart from a bounded term, the sum of two componmifitsa) + N(r, a)
of which the second measures the number of roots of the equidti) =
ain |z < r and the first the average closenessf(d) to a on|z = r.
The second fundamental theorem shows that in general tbadgéerm
dominates and many applications giving well beyond Picatttkorem
result.

1.2 The Poisson-Jensen Formula

We shall start with Poisson-Jensen formula which plays ddorental
role in our study.

Theorem 1. If f(2) is meromorphic inzZ < R and has there zeros,a
and poles band ifZ = re', f(¢) # 0, then forO < r < R we have

2r
: 1 log|(RE?)|(R? - r2)dr R - a,)
log f(re'?) = — + ) log|=—=
s )

R -8,

R2 — 2Rrcos ¢ — 6) +r2
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(1.1) - > log

v

R(§ _ bv)
R? - Evg

Proof. Let f(2) # 0, in|Z < 1. Then, since we can define an analytic
branch of logf(2) in |7 < 1, we have by the residue theorem

1 dz
o flogf(z)? = log f(0)
l2=1

By change of variable,
2r
iflo f(€?)d¢ = log (0)
o g ¢ = log
0
and now taking real part on both sides
L 2r
- i =
5 [ 1oalf(e)ids = logif (o)
0

For any¢ with |{] < 1, we dfect the conformal transformation =

2 E for the integralf Iogf(z)d—z. This in turn becomes,
1—2;2 |Z=1 z

1 dw
= f 0 (W) S = 10g 1(2) where g(w) = (2w)
wj=1

so thate(0) = f(¢). Substituting in the integral = €¢ and taking real
part we get,

27{ .

] log| f(€7) e y

27rf1—2rcos(¢_9)+r2(l r“)d¢ = log|f(J)l. £ =re
0
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Now for the functionf(2) with polesb, and zerosa, none of them
being on|Z = 1, let us define

(z-b)
T —

(1 - bvz)
n@—@)

(1-3a,2

¥ =10

On|Z = 1, [¢(2)| = |f(2)| and the function has no zeros or polegirk 1. 3
By the above result,

2
1 io (1-r? B
5 [ Toai@ 5oL = loa)
0
r=rer<1

Substitution fony gives the theorem faR = 1. In the case when there
are poles and zeros on the circumference of the unit circlpnaeced
as follows. We have only to show that i{z) has no zeros or poles in
|7 < 1, but has poles and zeros jah= 1, then

1 dz
o flogf(z)? = log f(0)
l2=1

For if f(2) has zeros and poles g < 1 we can considep(2), in place
of f(2). Further we can assume that there is only one zero (the ¢ase o
pole being treated in the same manner) 2= 1. For the case when
f(2) has a finite number (it can have at most only a finite number) of
zeros (poles) can be treated similarly.

Let thereforez = a, |a| = 1 be a zero off(Z) on|Z = 1. LetP be
the pointz = a and consider a circle of radiys< 1 aboutP, p being
small. Consider the conto® QR(fig.) Inside it f(2) has no zeros or
poles. Hence by the residue theorefﬁog f(2dz = log f(0). Thus it
is enough to prove thaf log f(2) dztends to zero as tends to zero.

QR
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Let z = a be zero of ordek. Thenf(2) = (z— a)*A(2), 1(a) # 0, in
a certain neighbourhood af and we can assume the choiceoaduch
that this expansion is valid within and on the circle of ragitaboutP.

flogf(z)d—zzkflog(z—a)d—z+flog/l(z)d—Z
z z z
QR QR

Since A(2) remains bounded the second integral tends to zero. So we

have only to prove tha}f log(z— a)— tends to zero gs — 0, Now,
QR

f'og(z a) <ma {"09'('; a)l}

np < [log(1/p) + 0(L)}rp — O if p < %

This proves the result, in the case when the functi¢z) has zeros or
poles on the unit circle. In cage # 1, we consider the functiof(R2
instead off(2) and arrive at the result. Hence the theorem is proved
completely.

Corollary. Inthe special case wheh= 0 we get the Jensen’s formula

2n
1 .
(12) loglf(0) = 5- f gl f(R&*)dg + ' log | -
0 H

the summation ranging over poles and zeros(@f ih |7 < R. The above
formula does not hold if zero is a pole or a zero ¢i)f If f(0) = 0 or oo
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and f(2) is not identically constant then(#) = C,z'+---+---. Consider
f(2)/z'. This has neither zero nor pole at zero. Hence we get,

031G - zﬂf' ‘f(Re)dq5 Siog ! _ 3" 0g 2

:—flog|f(Ré¢)|d¢+Zlog 13| Zlog“%'—/llogR

where sums are taken over zeros and poleg®fii0 < |7 < R. 5

1.3 The Characteristic Function
Set forx, real and positive,

log* x =logx if x> 1,
log*x=0 if x<1,

Then clearly logk = log" x — log*(1/x). So

f log|f(Re?)(dg = f log* | (R€”)idg - f log" |f(Re¢)|

We note that the first term represents the contribution whénlarge
and the second term whdris small.

LetO<ry <rp ... <1y, < Rbe the moduli of the poles in the
order of increasing magnitude. Lefr) denote the number of poles in
|zl < r of f(2). Then the Riemann-Stieljes’ integral,

R
R 1
flog —dn(t) = Z log B
0

given on integrating by parts,

R
R
n0log 7]+ [T = 3 log®/by)

0
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The first term is zero, in consequence of the f&tk = 0, near zero.

We write n(r, f) for the number of poles of(2) in |7 < r, so that
n(r,1/f) is equal to the number of zeros 62 in |7 < r. We define
N(r, f) to be

r

© [reng

0

r

If f(0) = oo we defineN(r, f) = f[n(t, f) — n(0, f)]%[ +n(0, f)logr.
0

Then the formulal{I]2) becomes, f6{0) # 0, co

2r 2n
_i + i0 _if + 1
log|f(0) = 2ﬂflog [f(re'”)|de o log |f(rei9)|d9+ N(r.f)
0 0
=N(r, 1/f).
We define,
(1.4) T(r, f) = N(r, f) + m(r, )
where,
1 2
(1.5) m(r, f) = — f log* | f(re'?)|do
0

Again (I.2) takes the form, fof(0) # 0, co
1.2) T(r, f) = T(r,1/f) + log|f(0)|

If f(z) ~ CiZ' nearz = 0, whered # 0, then we obtain
T(r, f) =T(r,1/f) +log|C,|. In future such modifications will be taken
for granted.

The functionT (r, ) is called theCharacteristic Functiorof f(2).

This is the Nevanlinna characteristic function.

Theorem 2. First fundamental theorem.
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For any finite complex,

T(r, ) =T[r,1/(f — a)] + log|f(0) — al + (a)
where |e(a)| < log* |a + log 2

Proof. We note that l0g|z; + 2| < log* z;| + log* |z| + log 2
and lod |z; — 2| > log" |z1] — log* |z| — log 2. Whence, 7

log* |f(2) — al — log* |f(2)| < log2+ log* |al

Integrating we get,
—log2-log*|aj + m(r, f —a) <m(r, f) <log2+log" |a] + m(r, f — &)
Sincef and f — a have the same poles,

N(r, f) = N(r, f —a).
Therefore,

T(r,f—a)—log*la—log2<T(r, f) <log2+log*|a + T(r, f —a)
Thatis,|T(r, f) = T(r, f — a)| < log 2+ log* |a|
T, f) +T(r, f —a) + (@), where|e(@)| <log2+ log*|al

From [I2)) we have,

T(r,f)=T (r, f—la) +log|f(0) — a + €(a)
wherele(a)| < log 2 + log* |al. Hence the theorem is proved. O

If we write m(r, &), N(r, a) for m(r, f—la) N{r, f—la) thenm(r, a)

represents the average degree of approximatidi{z)to the value a on
the circle|zZ = r and N(r, @) the term involving the numbers of zeros
of f(2) — a. Their sum can be regarded as the toféhay of f(z) for
the valuea and we see than apart from a bounded term the tdiaits
for every value ofa. However, the relative size of the two termms N
remains in doubt. We shall see in the second fundamentaletirethat
in general it isN(r, @) that is the larger component. The valueadfor
which this is not the case will be called exceptional.
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Let us now consider some examples

1. Letf(2 = P(2)/Q(2), P(2) andQ(2) being polynomials of degrees
m and n respectively, and prime to each other, that is have no
common roots.

Then for larger, |f(2)] ~ Cr™™".
So if mis greater tham, m(r, f) = (m—n)logr + 0(1) and since

log"x=0, for 0<x<1,m{r,1/f)=0
(1.6) and m(r,1/(f —a)) = 0.
for larger and fixeda. Sincef(Z) = ~ hasn roots in the open
plane,n(t, f) = n, fort > to andN(r, f) = nlogr + 0(1). Again
T(r, f) = m(r, f) + N(r, f) which is equal tanlogr + 0(1) fora
finite again by[(1J6) and theordthlQ(r, 1/(f —a)) = mlogr+0(1),
afinite. Thus[N (r, f—ia) JT(r, f)] — 1 asr — oco. In this case
a = o is the only exceptional value.

Similar conclusions follow ifm is less tham by taking 7/ f in
place off in the above discussion. In this cage- 0 = () is
the only exceptional value.

If mis equal ton, f = c+0(z*) (say). Or writing,f —c¢ ~ b(z %),
we see tham(r, 1/(f — c)) = Alogr + 0(1)

m(r, 1/(f —a)) = 0(1), whena#c
m(r, f) = 0(1), N(r, f) = nlogr + 0(1)

ThusT(r, f) = nlogr + 0(1) and,

N(r,a) = nlogr + 0(1),a# ¢
N(r,c) = (n— ) logr + 0(1).

Thus in any case

T(r, f) = (Max. mn)logr + 0(1)
ie.,, T(r, f) ~(Max. m,n)logr.
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Thus in the case of a rational function there is always onky on

exceptional value, viz.f(co)

2. Letf(2) = €. In this case the value ofi(r, ) is,

21
m(r, f) = 1/27rflog+ g %y
0

/2

=1/2n f cosé dg
/2

=r/n

because cas < 0inn/2 < 6 <&, —-31/2 < 0§ < —n/2 and so
log* € ¢°% is equal to zero.

Since€? has no polesN(r, f) = 0. ConsequenthT (r, f) is equal to
m(r, f) which in turn is equal to /.

We employ the notatiomn(r,a) = m(r, 1/(f — a)) for finite a and
m(r, o) = m(r, f), and similarly with the functions, N, andT. We
have|e? — a > ||€9 — |al| = |€°°% — |a]| if z = re. If a £ 0, we have
for larger@" < |a < €. Thereforela] = € %% for 0 < @ < n. Thus

de

21
2m(r,a) = [ log*
(r, a) ({g Z=a

2

1
+
sflog |gF cos _ g cosa do
0

2
1 1

_ + +

= 2rlog o cosa +2f|og & (Gos-cosa) _ 1|d9

0

If cosé — cosa > 0, we havee (€ost-cose) _ 1|

2
r
= r(cosf — cosa) + E(cos@ — cosa)? + - - > r(cosd — cosa)

10
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> (cos# — cosa) if r> 1.

If < |g/(cost-cose) _ 7] and cosr — cosd > O we haveg (c0s-cosa) 1
or 0< r(cosa — cost) < 1. Since 1- e * = xe * we have

|er(cose—c050) -1=1- e—r(com—cos@) > I’(COSCK _ Cose)e—r(com—cose)
S r(cosa — cosb) _ cosa — cosé
B 2 B 2

Thus if |g'(c0st-cose) _ 1] < 1 we have

|er(c039_cosa) ST ICOSH; COSa/l‘
Let E be the set of at which
1
er(cos@—com) 1> =
| | > 5

Then

1 1
+ = +
2rm(r, a) < 2rlog a " Zflog 0w cos) ] do
E

1
+
+2 f Iog |er(cose—c03a) _1|d9
[0,7]-E

1 2
<2logt —+2 | log"2d9 + 2 logf ———do.
=<9 gt f g ado+ f 9" coso - cosal

E [0,7]-E

T
1
< 2|OQ+H +47T|092+ 2f|09m
0

/4
2 . , . .
11 Further flog ——————df is a continuous function at in
5 | cosd — cosal

0 < a < m and hence is bounded. Thus

m(r,a) = 0(1)
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Hence
T(r,a) =T(r, f) +0(1) = r/x + 0(1).
i.e. N(r,a) + m(v,a) = r/m + 0(1).
i.e. N(r,a) =r/m+ 0(1).
This shows thatIM — 1.
T(r)

1.4 Some Inequalities

We have already seen that
log* z; + z2log* z; + log* || + log 2

More generally,

v=n
log* z,| < log" Inmax|z,|| < log* n + log* | max|z,|
v=1
v=n
<log*n+ Z log* |z,
y=1

Hence,

N n=N
m[r, Z fn) < Z m(r, f,) + logN

n=1 n=1

N
Now F = Y fs(2) has poles only where th&(2) have poles and
1

n=
the multiplicity of such pole is at most the maximal multgiy of the
poles of f,(2) which is not greater than the sum of the multiplicities.
This gives

N
N(r, F) < Z N(r, fn)
n=1

N N
and T {r, Z fn} < Z T(r, fn) + logN

n=1 n=1
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Againif lazap...an| <1 12
n
log* |la1ay...an| =0 < Z log® |a,|
1

If |azay...an] > 1, log" |azaz ... a5 = loglaiay . .. a,|, which is in turn
is equal to sum of log|i = 1 tom, and hence less than or equal to

3 log* .
Therefore we get
m(r, wfe) < > m(r, o)
T(rafe) < D T( )
because N(r, f)) < Z N(r, fp).

We remark that in all cases equality is not excluded. For @tartake
a = a = ... = aandla > 1, then log |a1a;...a,| is equal to

n
2 log” [al.
i=1

Example

If a, b, c, d are constants withd — bc # 0,
T(r, (@f + b)/(cf +d)) =T(r, f) + 0(2)
For,

T(r, (@af +b)/(cf +d)) = T(r,a/c+ bc—ad)/(cf + d)c)
=T(r,k/(f +K))+0(1)

and by the first fundamental theorem,

=T(r,(f +K)/K) +0(1)
<T@, f+K)+0(1)
<T(r, f)+0(2)

Similarly we getT(r, (af + b)/(cf +d)) > T(r, f) + O(1).



Basic Theory 13

15
13

21
Theorem 3 (H. Cartan) We have Tr, f) = (1/27) [ N(r,€)do +
0

log* |f(0)| that is, T(r, f) apart from a constant term is the average of
N(r, a), for aon the circlela = 1.

For the proof we require the following lemma.

Lemma 1. If a is complex,
2n
1/27rflog|a— e’do = log* |a|
0

This can be proved in various ways |df > 1,z—a has no zeroes in
|z < 1, and apply Poisson formula witl{a) = z—a, R= 1.
Then

21
% flog|e"’ —aldd = loglal = log* |al, |a] > 1
0

jal < 1 write, [a— €| = |all1 - €/a = |all1 - /3]
= lall¢’ —i/al

, 11
and we get by the first part, sm% > 1,

2r
1 i 1
— || o _ =1 I H: =log" |al.
2ﬂfogle' aldé = log|al + log 2 0= log* |a|
0
To prove the theorem consider now Jensen’s formula apmié()t—e?,

2r
log|f(0) — €] = % flog|f(rei¢) —@%ldg + N(r, f) = N(r, 1/(f — €%))
0
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sinceN(r, f) = N(r, f — &%) (f and f — €’ have the same poles). Now
integrate both sides with respectd@@nd invert the order of integration
in the first term in the right hand side which we can do by Fubini
Theorem, because the integrand is bounded above By fge'?)| + 1]
and this is positive, integrable and independent. of

2r

i _df%do = el i 0

2ﬂfloglf(O) €’lds = — f 2ﬂflog|f(re ) — f|dg
0

2r
+—fN(r fydo - — Of (r.e”)do

and by the previous lemma,

2n

2r
log* |f(0)| = % f log* | f(€4)|dg + N(r, f) — % f N(r, €%)dg
0 0
2r

_T(r ) - %fN(r,eie)de

0

which gives the result.

Corollary 1. T(r, f) is an increasing convex function lofgr. It is also
easily seen that (n f) need not be either an increasing or a convex
function oflogr (e.g. by considering rational functions). In fact from
theorentB,

2n
d(T(r)) d -
dlogr dlogrzﬂfdef n(t, e'9) _—fn(r,éO)de
0

and the right hand side is non-negative and non-decreasitigrw

1% ”
Corollary 2. > 0fm(r,el Ydé < log 2.
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In fact by theorerill2,

. . 1
m(r,€%) + N(r,é) =T (r, — eie)
=T(r, f) — log|f(0) - €%)|+ < log 2 >

where< e > denotes any quantity that is less tharin modulus. 15
Integrating,

1 T 1 T
il i0 i i0
2ﬂfm(r,e' )d9+2ﬂfN(r,e' )do
0 0
=T(r, f) - log" |f(0)+ < log 2 >

by the lemma.
So

2r

1 i0 +

me(r,e' )dé + T(r, f) — log* | f(0)|
0

=T(r, f)+ < log2> —log* |f(0)

which is the required result. i.e.
. 2r
o f m(r, €%)dg =< log 2 >
0

1.6 The Ahlfors-Shimizu Characteristic:

We have defined the Nevalinna characteristic function of @merphic
function f(2). We now proceed to define the characteristic function after
Ahlfors [1] and Shimizullll]. Prior to that let us prove theléwling
lemma.

Lemma 2 (Spencer) Suppose that D is a bounded domain in the com-
plex plane, whose boundary is composed of a finite numberabytan
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curves,y, and that GR) is twice continuously gierentiable on the set
of values R assumed biy2)| in D and ony, f(2) being regular in D and
ony. Then

[ sreut@nds= [ st@nr @raxay
Y D

where dR) = G”(R)+(1/R)G’(R) and we djferentiate out of the domain

along the normal in—.
9 on

Let us make use of Green’s formula which under the hypothasis
the lemma gives,

fﬁG(lfl)dS—fsz[G(lfD]dxd g,
on - YV =58 y2
D

Y

Suppose first that(z) has no zeros forin D. Putu = log|f|, in order
to facilitate the easy calculation 2G(|f|). u is a harmonic function.
Therefore,V?u = 0. Now|f| = &, G(|f|) = G(&"). Calculating the
partial derivatives with respect toandy we see that,

62 ] aUZUIU Uz’ U U/Ué)2u
ﬁ[G(e)]:(a_x) [e'G'(e") + €G" (¢ }+eG(e)W

and
aa_; (G(e") = (g—;)z {e'G/(e") + G (")} + G’(e“)e“gi;
Andu =Rl log f(2 andZ—; - ig—; = diz(log f)y=f/f.
Hence on addition we get,
vice) = T e+ ea@)

sinceV2u = 0.
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Writing |f(2)| = R,

VIG(R] = If'(@P[G'(R) + RG'(R]/R
= gRIf' @I

whereg(R) = (1/R)G'(R) + G”(R). 17
This establishes the result provided tti&t) = 0 for zin D. Other-
wise, exclude the zeros (which are necessarily finite in ranntf f(2)

in D, by circles of small radii, and in the%G(lfl) is bounded, since
by hypothesis5(R) is continuously diferentiable neaR = 0. Hence the
contribution to the left hand side of the formula tends tasith the
radii of the circles, and so the lemma is proved.

Let us now specialise witts(R) = 2 log(1 + R?) and f(2) a mero-
morphic function injz, r with no poles onz = r. Exclude the poles in
|Z < r by circles of radijp (small). Let us apply the lemma to the region
D consisting ofZ < r with the poles excluded. We find in this case,

g(R) = (1/RG'(R) + G”"(R) = 2/(1 + R?)?, and

| sreutiax= [[ autnir@iaxdy
D

Y

v consists of the circumference |af = r and the smaller circles. Near a
pole zy of orderk, of f(2)

112 ~ 01/A% |z—2| =2

and
G(T)) = 5 log(1-+ 1) = log f| + O(1)
that is,
G(R) = klogy, + 0(1)
Therefore,

0

%[G(R)] =3 (klog %) +0(1)
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. : 0. .
since in the lemma the derivative- is along the normal directed out of
the region and hence here into the circle (isolatis)g 18

0
sn[CR)I1 = Kk/p +0(1)
Hence the contribution to the left hand side in the lemmarid R/ p +

0(1)], that is, Zk + O(p). Adding over all the circles and lettingtend
to zero,

2nn(r, ) + | —[log(L+|f?)z]ds
IZIJ;

2/f'(2)?
ff TPNITC L ket
that is again,

n(r, f) + —f [Iog A1+ |f(re'9)|2]rd9
/()
ff L+ 1

We call the right hand sida(r).
Integrate both sides from 0 to’‘with respect tor after dividing by
r throughout to get,

2n
N(r, f)+%flog(1+|f(rei)|2)%d9—Iog(1+|f(0)|2)%

r
an - [A
0
The integration is justified since both sides are continuand have
equal derivatives except for the isolated values &br which |2 = r
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contains poles of the functiof(z). Now log" R < log(1 + RZ)% <
logR+ 1log 2, if R > 1 so that log(+ R?)? < log* R+ < 1log 2 > and
if R<1,0<log(l+ Rz < log2 = Llog2+ log* R so that in all
cases log(¥ R?)? < log* R+ < 1log 2 >. Hence log[1+ | (re)?]2 =
< %log 2> +log" |f(rel’)| substituting,

2r
fA(t)dTt = % flog*(f(rei9)|d9+ N(r, )+ < %Iog2> —log* |f(0)]
0 0

=m(r, f) + N(r, f)+ < %I092> —log* | f(0)|
=T(, )+ < %I092> —log* | f(0)|

Now if we put,
r

ot 1) = [ AOT

0
We get

To(r, f) = T(r, f)+ < :—ZLI092> —log* |f(O)|

Definition. To(r, f) is called Ahlfors-Shimizu Characteristic function of

f(2).

Interpretation of (L7)
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Consider the Riemann Sphere of diameter one lying oventipdane
and touching it atv = 0. To every pointv corresponds the poirR(w)
in which the lineNw (fig) intersects the sphere. From the figiN® =
cosd=1/(1+ RZ)%, R = |w|. NPis called the chordal distance between
w andeo and is denoted by, oo].

Then

2 f log[1L + |(re)?)bce = f 09 1 o

and so is the average of the chordal distances betiggand infinity,
whenzruns ovellz = r. The left hand side of the above equation is an
alternative fom(r, f) in the sense that it fliers fromm(r, f) by less than
3log 2.

It is easy to see that ifls is an element of length in the plane
anddo the corresponding element on the Riemann-sphere dbeg
ds/(1 + R?). Hence ifdu dvis an element of area in the-plane, then
the corresponding element of area on the sphedeiidv/(1 + R%)?. If
dx dyis an element of area incircle, |7 < r, its image in thev-plane is
|f/(2)[2dx dy since the element of length is multiplied by (2)|. Thus
the element of area correspondingd® dy on the Riemanm-sphere
is precisely|f’(2)|2dx dy/[1 + |f(2)|°]?. Therefore, we interpretA(r)
as the area on the Riemamnsphere of the image, with due count of
multiplicity (the mapw = f(2) may not be one-one, and more than one
lement of arcx in the z-plane may go into the same element of aiia
thew-plane) ofig < r byw = f(2). Since the area of the sphererjA(r)
itself being the area of the image divided by the area of tihegpmay
be interpreted as the average number of rootg i r of the equation
f(2) = w, asw moves over the Riemann sphere.

We have seen above thafr) = 1 area of image ofg < r by f(2) on the
Riemann Sphere. So tha(r) éTan be interpreted as the average value
of the numbem(r, a) of roots of f(2) = a, in |7 < r asaruns over the
complex plane.
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Let us now rotate the sphere. This corresponds to a one-ariereo
mal map of the closed plane onto itself and in fact to a bilimaap of
the typew’ = €4(1+aw)/(w—a) (for the proof refer Carathéoderi [1]).
Further under this rotatioA(r) will remain unaltered.

Sety(2) = €11 + af(2)]/[f(2) - a], and observe thaifz), o] =
[f(2),a], wherew, ais the chordal distance between the points corre-
sponding tow and a on the Riemann Sphere. In particulav, po] =
{1+ |w|2}%. If we apply our previous result t(2), we get

. 2
dt 1 1 L
fA(t)T = N(r, ) + gflog oo "9 Loy

0

1
= N(I’ a)+—f|09[f(re|e) a] ~lo g[f(o),a]

Thus we have proved the theorem.

Theorem. For every complexaanda = «

1
fA(t)— = N(r, a)+—f| g[f(re|9) a] g[f(O),a]'

0

The new chordal distance is 22
[w.a] = & S e —
[ [(1 +[a2)(1 + [wi?)]2
1+
w-—a

Thus in this above theorem, the expressiaiir, a) replacean(r, a) of
the Theorenill2, where,

2n
_ 1 (logl@ + AP + I (ré®)P)] 2
mo(r,a) = P ([ e —al do

Unlike theoreniR theoref 2’ is exact. Notice thalr, a) is always non-
negative because the chordal distance between any tweoistivays
is less or equal to one.
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Corollary. If f(2) is meromorphic in the plane then
r

fn(t,a)dTt sz(t)th+C.

1 1
for all a where C is independent of a an¢>r1) but may depend on f.

Proof.

r

fA(t)th = N(r, a) + my(r, a) — mp(0, a)

01 dt
f A(t)T = N(1, a) + mp(1, a) — my(0, a)
0

]
subtracting, sincél(r,a) = [ n(t, a)th,
0

r r

fn(t, a)dTt = fA(t)%[ + my(1, a) — my(r, @)

1 1
r

< f A(t)th + méalxrm(l, a)
1

sincem(r, a) is greater or equal to zero.

The maximum on the right is finite. In fact, for variatdeand fixed
r mo(r, &) is continuous irmand is bounded asmoves over the Riemann
sphere. This is evident if the functidi(z) # aon|Z =r. If f(2 = &, at
a finite number of points the argument is similar to that inPleésson-
Jensen formula. Putting = Max, mp(1, @) the result is obtained. O

Remark. By an inequality for real positive functions due to W.K. Hay-
man and F.M. Stewarit[1] and using corollafy 1 we deduce thiatz) is
meromorphic and not constant in the plane and

n(r) = sup-n(r,a) and e >0,
a
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then
(1.8) n(r) < (e+ e)A(r)...

on a sett of r having the following property. 1E(r) is the part ofE in
[1,r] then f th > c(e) logr for all larger, wherec(e) depends only on

E(r)
€.

The following are some open problems:

(a) Canebe replaced by a smaller constant and in particular by one

in (L3)?
(b) Does[I.B) hold for all large; or for all larger except a small set?24

(c) Can we assert

r

f n(t)dTt < (constant)A(r)

1

for some arbitrarily large?

1.7 Functions in the plane
25

Let S(r) be areal functiorr 0, and increasing for & r < . Theorder
k and thelower orderA of the functionS(r) are defined as

'j} _ fim [log SM))/ logr.

r—oo

The order and the lower orders of the function always satlsyrela-
tion,0< A1 <k < c0.
If 0 < k < o0, we distinguish the following possibilities,

(@) S(r) is maximal type if

C = lImS(R)/R¥ = infinity.
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(b) S(r) is of mean type of ordekif 0 < C < oo.
(c) S(r) is of minimal type ifC = 0.

(d) S(r) is of convergence class if,

f S(t)dt/t“**  converges
1

Note that ifS(r) is of orderk ande > 0,
S(r) < r** for all large r.
and
S(r) > r*¢ for some larger.

(This follows from the definition of order &(r).)
It can be seen that i(r) is of orderk and of convergence type
i.e., (d) then it is of minimal type, (c). In fact in this case

(9

fs(r)dr<e it 1o > t(e)

rk+l

fo

Then

2ro
S(r)

p dr <e

fo

and sinceS(r) increases witln,

2r

f’ S1) g, , S0

fo

and
S(ro)2 ®V/rok < e for rg > t(e)

that is, L
Tim S(r)/rk = 0.
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So if (d) holdsS(r) is of minimal type. We also note thatkf is greater
than the order o§(r) then,

fS(r)dr/r"'+l converges.
1

and ifk’ is less thark f%dr diverges.
1 et

We have next
Theorem 4. If f(2) is a regular function fotz < R and
M(r, f) = Maxz=r f(2) then,

r+
R-—

T(r, f) < log" M(r, f) < I?T(R, f) for 0<r<R

Proof. Sincef(2) is regular in|Z < Randr < Rwe have,

2n
T, H)=TF) =m(r, f) = % flog* If(re'?)|de
0

1 .
S o Maxr log* | f(re'?)|2n
= log* M(r, f)

To prove the other side of the above inequality of the theonerdis- 27
tinguish between the two casesM)r) < 1 or (i) M(r) > 1. In the case
(@), log" M(r) = 0 andT(r, f) x (R+r)/(R - r) being non-negative the
inequality holds good. Hence we can now suppose ¥ha) > 1, and
in which case log M(r) = log M(r).

The Poisson-Jensen formula gives, Zef re'’

(R*-r?)
R2 + 2Rrcosg — 6) +r2

o1
1 .
log|f(2)| = EflogH(Ré‘p)l de.
0
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—Zlog

in the above equalitg, runs through all the zeros #{2). For, as regards
the zeros with modulus less or equaRo

R -32
R(z a.)

R°-a R°-a
log* = log ﬂ since ﬂ >1
R( ap) R(z-a,) (z-a,)R
and for the zerosu with modulus greater thaR,
R°-3
log* —( 8:2) =
R(z-a,)
and Poisson’s formula is uffacted. m|
Clearly,
—r2 _r2
log| | (R %) < log* If| (R -
R2 — 2Rrcosg — 6) + r2 R2 — 2Rrcosp — 6) + r2
R+r, . R+r, .
< R_rlog f - - log™ f

28

- + ¢
l0g1f (2 < f e 2R)Iog 1f(RE*)ido

~ (1/27) f (R+1/(R—r))log* | (Re*)dg

log|f(2| < (R+r/(R-r)T(R, f).

This being true for al, |2 = r, holds good for the at which f(2) takes
the maximumM(r, f).
Hence,
logM(r, f) < (R+r/R=1)T(R, f).
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Corollary. If f(2) is an integral function, the order and type (a, b, c or
d defined in the last article) of (F) andlog™ M(r) are the same.

From the left hand side of the inequality of TheorEm 4, itdols
that the order and type df(r, f) are not bigger than those of o/ (r).
In order to prove the reverse, let us substitlte 2r in the right side of
the theorem. We get,

log* M(r, f) < 3T(2r, f)

Suppos is the order off (r, f), then givere > 0, T(r, f) < erk*< for all
r > ro by the definition of order. Hence combining the two ineqiesit

log" M(r, f) < 3T(2r, f) < 3e(2r)*¢  for r > ro.

This implies that the order of I6gM(r, f) is less or equal té. If T(r)
has mean type, we may take= 0. If T(r) has minimal type, we may29
in addition takec arbitrarily small. Hencd (r, f) and log” M(r, f) both
have same order and belong to the same orderdayper c. In order to
complete the corollary, we have to consider the case Wilerf) is of

(d) i.e., convergence type. Consider,

(o)

log* M(r)

fo
(o) (o]

log™ M(r) 3T(2r)

fo fo

k being the order of (r, f).

(o)

_ fghsz(r)dr

rk+l

2ro

by change of variable.

SinceT (r) is of convergence type, it follows from the above inequal-
ity that log" M(r) also belongs to the same class. It is clear that this
relation holds good in the reverse direction.
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We now proceed to define the order and the order type of a famcti
f(2 meromorphic in the plane on the above analogy.

Definition. Theorderand type of a function {z) meromorphicin the
plane aredefinedas theorderandtype of T(r, f).

We note that this coincides with that of order and type of
log™ M(r, f)if f(2) is an entire function.

Example. (1) If the functionf(2) = €, logM(r) = r andT(r) = r/x.
The function has order one, mean type. In this casé M) and
T(r) are of the same type, viz., mean type, though the values of
the type are dferent. More precisely, foF(r), @T(r)/r =1/n

(the order being 1) and for IGgM(r), rIi_m(l/r) log* M(r) = 1.

In the above example the ratio of the two super. limites that i

lim —=
r—oco rk

—— =1
"
jim 129 M)
r—co r
In general case for a function of orderand mean type this ratio is
bounded by 1. But it is still an open problem to find the best- pos
sible lower bound. It can be shown easily from theof@m 4,n@ki
R = r[1 + (1/K)], that a lower bound is /E(2k + 1). In this connection
P.B. Kennedyl]ll] has given a counter example of a functionrdéik
mean type inargz < x/2k, and bounded for/2k < argz < x, provided
k> 1, such that

log* |f(re'”)| ~ rkcosks for 6] < x/2k

log* |f (re®)| = 0(1) 2£k <l <n

HenceT(r, f) ~ r/k, log M(r) ~ rk. Thuse(2k + 1) cannot be replaced
by any constant less thaw if k > 1.
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Remark. For functions of infinite ordeil (r) and log- M(r) no longer
have necessarily the same order of magnitude. Actually stbeen
shown by W.K. Hayman and F.M. Stewalr [1] thatit O, logM(r) <
(2e+€)[T(r) +A(r)] for some large. As an example considdi(z) = € 31

logM(r) = €
and

T(r) ~ € (21%)3/r2.

1.8 Representation of a function in terms of its zeros and pek
32
Definition. For any complex number z, and any integes @,

1 1
+§zz+~-~+azq.

Ezg) = (1-2¢

Theorem 5(Nevanlinna) If f (2) is meromorphic in the plane with zeros
a, and poles b and f(2) being of order at most g of the minimal type

then,
z
H E(_vq_l)
1a,/<R  \ &y

ol E(i,q—l)
1b,|<R b,
where p is a suitable integer and,R(2) is a polynomial of degree at
most g— 1.

ﬂ@:ﬁ&w@gm

Note that the theorem only asserts that the limit on the rigsts,
but it does not indicate whether the products are converyativergent.

In fact if f(2) only satisfies the weaker condition that lower limit as
r tends to infinity ofT(r)/r% is equal to zero (instead of the condition
assumed in the theorem viz., upper limit of the same is zdt®)result
still holds provided thaRis allowed to tend to infinity through a suitable
sequence of values, instead of all values.

To start with let us assume that the functib{z) has no zero or pole33
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at zero. The Poisson-Jensen formula gives,

(R r?)log|f(Re)| Rz-3)
091f@1= 57 | = oRrcosp - 0) 5 2% * la;R'Og R-3,2
7= relf + Z Iog
Ib,|<R

Both the sides are equal harmonic functie(® (say) ofz near the point
; ; ov .oV .
z=re'’ wheref(re'?) # 0, c. Letus operat%? _IG_ on both the sides.

We assume thaR is such thatf(2) # 0,  on|Z = R. Differentiating
under the integral sign and observing that

Ré’ +z (R2-r?)
Reall — =
Ré? —z] R2-2Rrcosg —6) +r2

We deduce,

do
f 0 1f(RE") gyl
[N
@-2 (R-3a2

la,|<R
Z [ 1 b, ]
Rl -2 (R2-b,2)

34  provided that there are no zeros or polegade R. Differentiating this
q- 1times,

+

A\ @\ 1 (o i9)|Rd?
() ( )_ glf(Re’)Ré

dz) \f@) xJ (Re? -zt
0

b,
+(q-1) Z ((b T (R _b.21

|b,|<R
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1 a, ]
-1 -
+ (q )|;R((a# _ Z)q (R2 _ Zﬁﬂ)q

Suppose now that(2r)/(r)" tends to zero astends too either through
all values or through a suitable sequence of valuesRgdwhich tends
to oo with k). Such a sequence of values exists by our assumptions. Also
by decreasingry slightly if necessary we may assume tliét) # 0, oo
onz = Ry, we takeR = R¢in (1).
Then sincem(r, f) > 0,
2R g
TR, 1) N@R 1) > [ n(t. N > nRe flog2
R

Thusn(Rg, f)R! tends to zero ak tends toco. Similarly, n(R, 1/f)/R

— 0, ask — o) since,T(R, 1/f) = T(Re, f) + 0(1) andT (R, f)/R} —

0. Our aim now is to show that some of the terms on the right ef th
equation 11.9 including the integral tend to zero uniforifolyz on any
bounded set astends to infinity. Then lettinds tend to infinity, we get

a modified equation integrating whicjtimes we will get the result.

Now suppose thay < %Rk Then,b,Z < %Rk Ry for |b,| < R¢. 35
and 1
Re-bd >R - b, > SR
Hence, .
_ q q
‘(Rﬁbvﬁ )| - = :%
— VZ - 2 q
GR)
this inequality being true for all poles, with |b,| < R«. Therefore,
summing up for all poleb,, |b,| < Rk
q
.| nR. )2

= Z (Ri - Evz)q RE

and hence the right hand side tends to zero uniformll &sds to in-
finity for zin any bounded set. A similar result holds good in the case
of the zeros of the function.

Bq

Bq
Z (Ri - Evz)
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Now coming to the integral,

IR€? — 2)| > %Rk for |24 < %Rk.

Hence the modulus of the integral on the right[0f1.9) is astho

2n
2q+1 .
(@ =2 f log!f (Re?)|do
T

(q') il l f log" | f (Ré%)|dg + f log*

< (q.

If(Ré¢)I ‘

< (Const. )% (Const.)T(ZI;k#f) -0

as k — oo.
36 Now the equation[{I]19) takes the form,

d\"t @@
(d_z) o~ wm S@

Where

Iby|<R¢ (b Z)

Si(@ = (a- 1)'{ 3 -y (aﬂl_ Z)q}

lay|<R«

the convergence being uniform for any bounded set of valfiesnot
containing any of the zeros or poles if).
By the uniform convergence we may therefore, integrate biokbs
(g - 1) times along a suitable path from Ozto get,
() . { 1 1z zq-Z}
— = |im Z - ... = -
— 00 - 2 -1
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R
By <Re a" i’

wherePqy_2(2) is a polynomial of degree at mogt- 2. Now integrate
both the sides once more from Ozcand take exponentials,

z 2 At
. laul<Re a,
t(2) = Pea(@ lim =
k—o0 Z\ z,.1(z)?
(1——)ebv+ 71(%)
Iby <R b,

Hence the result in the case whéf®) # 0, «. In case zero is a pole or37
zero of the function of ordep, consider the functiorf(2)/z° and apply
the result just obtained to get the theorem in its final form.

1.9 Convergence of Weierstrass products
38

Leta, ap,...a,... be a sequence of complex numbers (none 0) with
moduliry, o, ..., rn,...in the increasing order of magnitude. Lgt)
be defined as

n(r) = Supk.

re<r

Then follows the result:

;

Lemma. If N(r) = f@dt then Nr) and r(r) have the same order and
0

type; and for any Kk, such thaI < k < oo, the seriesy, 1/rk and the

n(r)

mtegralsf —1ar, andf N(r) e converge or diverge together.

Proof. By Riemann-Stieltjes’ integrals,

Zl/r';:flkdn(t)
0

<R
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R
dt
=k f n(t)tkj +n(R)/R¢ becausen(t) = 0
0

dR

T is less than infinity.n(R) has at

near 0. Suppose noly = [n(R)
0

most convergence type of order (Hence it is also of minimal type).
Therefore upper limit of(r)/rk asr tends to infinity= zero, andy, 1/rX
converges tk(l1). The convergence of the series implies the conver-
gence of the integral, becausgR)/R¢ > 0. m|

Now consider the integral,
R q R
r
f N(r)rm = N(R)/(-K)R¥ + f dN(r)/krK
0 0

R
:—N(R)/kl#‘+f£kr)dr/rk+l
0

(o)

From this inequality we get that the integralsN(r)dr/rk*! and
0

[ n(r)dr/r*1 will converge or diverge together, due to the following
0

< dar . —
reason. The convergenceﬁN(r)rkT implies thatFI;m N(R)/R = 0,
0 — 00

hence the convergence gffn(r)rf—:l follows. On the other hand if
0

0 R dr
[ n(r)dr/rk+1 convergesf N(r)rkj at once by comparison.
0 0

Therefore it remains to be proved thgt) andN(r) have the same
order and type. Suppos¥r) has ordek, then givers > 0, n(r) < crk*?
for r greater thamg

;

N(r):fn(t)dTt

0
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fn(t)—+f (t) for r>rg

fo

N(r) < fn(t)T +fcr"‘l dr for r >rg

0 ro
< constant + cr¥*9/(k + 6) for r > rg.

This implies that order oN(r) is not greater than that ofr), and if
n(r) has got mean or minimal type so hEéR). The result for conver-
gence or divergence class follows from earlier inequalitiehe estimate 40
for n(r) in terms ofN(r) follows from

2r
n(r) < (1/ log 2) f n(t)th < N(2r)/log 2

From this inequality it can be derived in the same way as efibrat
the order ofn(r) is not greater than that ®(r) etc.

Definition . The order and type of(n) or N(r) (being the same) are
called the order and type of the sequeltag). The order of {r) is also
sometimes calledxponent of convergenad the sequence.

We note thaf, 1/rK converges if and only if(r) has order less than
k, or orderk of convergence type. (This is a consequence of lemma 3)

Next let us state the theorem,
Theorem 6. Suppose thatais a sequence having at most orde#d
(a positive integer) convergence class. Then the proemt = []

n=1
E(z/an, ) converges absolutely and uniformly in any bounded region,

and for|g =,

log|7(2)| < A(q){rqfn(t) st rq+1f n(t) q+2}

0
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Proof.

u

E(u,0) = (1 - u)e 2+

q
log E(u.q) = Iog(l—u)+u+1u2+...+%

2
= —Zuk/k

g+1

k
. 1 . .
so that log E(u, )| — 3 % < QUL if ul < > since logE(u, g)| is the
q+1

real part of logg(u, g) we get logE(u,g)] < g+ 1if Jul < % Suppose
% <|u < 1. Then

q
10g E(u. @)1 < 10gI(L~ ) + Iul + Sju? + -+ 0

1 ul
s|u|+|u|+§|u|2+---+u

1 .
Also |u| > > Judt > 172071 29-1jya-1 > |u|. So that sinceu| < 1,

lul? < |u < 29 1ju|? and
log |E(u, @) < 29 Hul® + 29 Hul® = A(Q)Iul < 2A(q).

A(q) being a constant depending only gn
Thus for|u| < 1, log|E(u, )| < A(q)|u|*L. O

Let

1 5 ud
lu > 1, then loglE(u,q)| < |u| + |u| + §|u| Foeet 3

< (q+ 1)l

Now u = z/z,. Let|Z =, |z,| = r, andN the least integer for which
rn>r. Then|ul > 1. Thus

N-1 N-1
Z log |E(z/zn, )| < A(Q)r Z rno
n=1 1
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and
> logE(2/2,, q) < By rp
n+1 n+1
Thus
00 [ N-1 )
> 10gIE(Z/z0, ) < C|rd Y rpd4r®t Y r;q‘ll
1 | 1 N
[ r oo
1 1
- a | = ol [ T
el [ Zany o1 ftqﬂdnm}
L 0 r
1 r1
=K rqun(t)dtﬂqﬂfﬁn(t)dt‘
L O r
K depending only om. This proves the theorem. 42
We also see that for large
7 r g+1
IO E -, <A - ’
g (Zn q) (q)(rn)

and, the product converges sinEer;(q”) converges. Our Theorehh 6
shows that if in Theorerl $(z) has at most ordey convergence class,
then the two products converge separately, uniformly asolakely on
every bounded set.

As a consequence of the theorem we have

Theorem 7. If a sequence adefined as in the last theorem, has order
N=oco
p,0—1<p<q,qaninteger, themy(2) = [] E(z/an, q— 1) has order
n=1
o and further ifp is not an integer] (2 has the same type class @g).
a
Hence if f(2) is meromorphic of finite non-integral order, then the

roots of f(2) = a, have the same order and type clasd @ except for
at most one value @ on the Riemann sphere.
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Proof. If n(t) < ct**€ for t > tg wheree > 0

r to r

ra-1 f n(t)(tj—qt <rot f n(t)dt/t% + ra-? f ctredt/td
to

0 0
rp+l—q+s Crr+e
—0(r*Hy+C—— ¥t = o(rq—l + —)
p+l+-q+e p+e+l—q

43 and the result regarding the order of the first integral fedlo The
second integral is treated similarly and then the first pahbdvs from
Theorenib.

If p > q—1andf(2 is of mean type or minimal type of ordgrwe
can takee = 0, and in the case of minimal tymesmall and the results
for the type at once follow. Suppose for instance ti{gthas order less
thanq so thain(t) < cr*€ for t > tg. Then for large,

[o9) [ee)

n(t)dt trte crote .
rfth<quftq+ldt:m if €e<qg-p.

r r

and the integral is ®(*<) and is O(®) if n(r) = O(r") as required. O

Suppose now thaf(zZ) is a meromorphic function of finite non-
integral ordep andq such thatyj— 1 < p < q. Then,

f(2) = e’ O1,(2)/112(2)

wherell(2) andIl,(2) are the products over the zeros and poles respec-

tively. Now if both have a smaller order and type thigg), so does their
44  ratio. since

T(r, TI1/T1,) < T(r, 1) + T(r, 1/I1,)
= T(r,I1y) + T(r,II,) + O(1).

ande”+1@ has ordeq - 1 < p, so we should get a contradiction. Hence

at least one of th&l;(2) or I1x(2) and so either zeros or the poles have

the same order and type as the functigg).
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If for instance the poles do not have the order and typ&®nfthen
sincef(2) — a has the same poles &&) (for every finitea), the roots of
f(2) = athat is the zeros of (Z) — a have the order and type &{2).

This kind of argument was used to show that Riemann-Zetaifumc
has an infinity of zeros.

We now illustrate the above by means of an example.

If f(2) is meromorphic in the plane and_liff(r, f)/logr<** then

ll—)OO
f(2) is rational.
In this casef(2) has lower order zero, and lower limit &f(r, )/
logr asr tends towo is less tharo. [T(r, f) > N(r, f)].

Similarly,
im NG
oo lOgr
further,
R

N(R, f) > fn(t, f)dTt > n(r, f)Iog?R

N(r2, f)
llogr

so thatn(r, f) < = 0(1) for a sequence of —» «. So f(2)

has only a finite number of zeros and poles. Hence from thefteas
f(2 = z2°(1I(1 - z/a,)/(1 - z/b,) where both the products are finite.
Thus for all transcendental meromorphic functidr(s, f)/logr tends

to infinity asr tends to infinity.






Part Il

Nevanlinna’s Second
Fundamental Theorem

2.1
46

As the name indicates this theorem is most fundamental irstingy
of meromorphic functions. It is an extension of Picard’s dieen, but
goes much farther. We develop the theorem in theoféms Blahth&o
chapter, and then proceed systematically to explore sonte obnse-
guences.

Theorem 8. Suppose that (k) is a non-constant meromorphic function
in|z <r. Leta,ay,..., aq be distinct finite complex numbeis,> 0
such thafa, —a,| > for1 <u <v <q. Then,

v=(
m(r, f) + > m(r,a,) < 2T(r, f) = Na(r) + S(r)

v=1

where N(r) is positive and is given by
Na(r) = N(r, 1/f") + 2N(r, f) = N(r, f')

and
v
S(r) = m(r, f'/f) + m[r, DUEE - ay)}
y=1

41
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+qlog* (?) +log 2+ log* 1/f'(0)|

with madifications if {0) = 0 or oo, f’(0) = 0.

Proof. Let a new functiorF be defined as follows

v=q
F@ =) 1If@-a)
v=1

and suppose that for some|f(2) — a,| < §/3g. Then foru # v,

|f(Z) - ajl| 2 |a/1 _avl - |f(Z) _av|
>6-6/3q
> 26/3. (9=1)

Therefore,
1/1f(9-a,)<3/26 for pu#v
< (1/29)[1/If(2 - &[]
Again,
F@I > 1/1f(2) -al- ) 1/1(2) -a,l
HFV
> [1/1f(2 -alll - (- 1)/2d]
>1/21f(2 - al
Hence
log* |[F(2)| > log* 1//f(2) —a,| — log 2
In this case,

q
log” |F(2)| > Z log* 1/f(2) — a,| — qlog* 2/6 — log 2
pu=1

q
1
> > log* ——=—— - glog* 3q - log 2
2,100" 74, 109" 3a-1og
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since all the term fop # v are at most 10§2/s. This is true if|f(2) —
a,| < 6/3q for somev < g. This inequality is true evidently for at most
onev (with the conditionja, — a,| > ¢). If it is not true for any value
then we have trivially,

q
log® |F(2)| > Z log©1/f(2) — a,| — glog* 3q/s — log 2

v=1

(because, log|F(2)| > 0). So the last relationship holds good in all
cases. m|

Taking integrals we deduce,

q
@1 meF)= ) mnlf-a)-dglog’ 39

v=1

—log 2
Again to get an inequality in the other direction,
1f
m(r,F): ( ?f_f F)
By equation (12") of 1.2 i.e. ,
T(r, f) =T(r,1/f) + log|f(0)
m(r, /) =m(r, /) + N(r, £'/f) = N(r, /") + log[| f (0)I/ ' (0)]]
m(r,1/f) = T(r, f) = N(r, 1/f) + log 1/| £ (O)]
Hence we get finally, 48

m(r, F) < T(r, f) = N(r, 1/f) + log 1/|f (O)| + m(r, f’/f)
+ N(r, f/f) = N(r, f/f") + log|f(0)|/| " (0)| + m(r, f'F)

The above inequality, combined with{R.1) g|vQ$ m(r,a,) — gqlog*
3q/6 — log 2 < Right hand side of the above mequallty Add to both the
sidesm(r, f), we get the inequality,

q
m(r, f) + Z m(r,a,) < T(r, f) + [m(r, f) + N(r, f)] = N(r, f)
y=1
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+m(r, f’/f) + log 1/|f'(0)| + log 2
q
LY f/(f-a)

y=1
+N(, £7F) = N(r, £/§).

+m +qlog* 3q/6 — N(r, 1/ f)

= 2T(r, f) = No(r) + m(r, f’/f) + log

q £/
ONory

where,N1(r) = N(r, f) + N(r, 1/f) + N(r, f/f") = N(r, f’/f). Now for
any two functionsf(2) andg(2) Jensen’s formula gives

[£(0)l

+qlog+?+m

g(re”)
f(reif)

2r
1
N(r. £/9) - Nr.9/) = 5 [ 1og| 3053 do - log a(0)/ f(0)
0

2r
= % f loglg(re")ide - log|g(0)
0

2n

1 1

+Zflog|f(rei9)|d9+log|f(o)|
0

= N(r,1/g) — N(r,g) + N(r, f) = N(r, 1/ f)

49  Thus
N1(r) = N(r, f) + N(r, 1/f) + N(r, 1/ ")
+ N(r, f) = N(r, f) = N(r, 1/f)
= 2N(r, f) + N(r, 1/f") = N(r, f')
as required.

2.2 Estimation of the error term

We shall firstly prove some lemmas.
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Lemma 1. Suppose that (f) is meromorphic in thézZ < R and that
O<r<R. Letp = %(r + R) and§(2) the distance of z from the nearest
pole or zero of {2) in |7 < p. Then,

m(r, f'/f) < log" T(R, f) + 2log*[1/(R-r)] + 2log" R

2n
1 1
— | log* —do + 0(1
"o f g o(re'?) +0d)
0
0(1) depending only on the behaviour ofzfat z= 0.
Proof. We have by dierentiation of Poisson formula as in theorlgm 5,

g¢
/@ = floglf(pé¢)l(p:§ 27

1
+Z a,1z> @—z)]*Z

where the sums as usual run over the zexpand polesb, in |2 < p.

From|o* ~ 8,2 > p* — pld = p>~1p = (p —1)p for |7 = r we get
EW o

> -a,2 ~ pz—pr (o-r)

do

1 b
by-2  (p2-Db,2)

and by definition o#(2)

1
< —
82

1 ’ 1

—_— —_— S _—
(-2 (2
Hence 50

a, 1 1 b,
‘Z[W—éﬂzf@—z)]*Z[(b —z)‘pZ—byz]

<0lo. 1)+ 1/ | 575+ 725

We now estimat@(p, f) andn(p, 1/ f). For this we have,

R

fn(t, fdt/t < N(R. ) < T(R, )

o
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R
and sincen(t, f)/t = n(p, f)/R for t greater tharp, fn(t, f)dt/t >

n(o, f)(R - f)/R. Therefore f(p, f)](R - p)/R < T(R,pf) or np, f) <
RT(R, f)/(R-p) = 2RT(R f)/(R-r) since » = (R+7).

Similarly n(p, 1/f) < 2RT(R,1/f)/(R-r) = 2R[T(R, f)+0(1)]/(R-
r). 0(1) depends only on the behaviourfdf) atz= 0. Thus

n(o, f) +n(p,1/f) < (R )[T(R f) +0(2)]
and so
a 1 1 b
I e
2
<moplTRO 0(1)][ ERIGE r)]
Further,
2p ¢
el¢)|(pe'¢ )2d¢
s
for,

o€’ 2 > llp€’| - 12l = (o - 1)
1 4 7~ 7~ 1
4 + id +
flog |f (o€ )d¢+f|og |f(é¢p)|d¢

- ;(R— r)2
(R r)z[m(P f) +m(p, 1/ )] < ( )2

(R )Z[T(p f) +0(1)] < R- )Z[T(Rf)+0(1)]

[2T (o, f) + O(1)]
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0(1) depending only on the behaviour ff2) atz = 0. Thus from the
above inequalities and the equation f6(z)/ f (2) we get finally,

@I < Eos{TR 0+ 0] 22+
+ o TR )+ 0]
_ (RiRr)z [BT(R )+ TR f)(é( )) +0(1) + 0(1)$]
< (R‘iRr)z [6+ i( > ][T(R ) + 0(1)]
Hence,
log* |f'(2)/f(2)| < log" (RiRr)z +log* (6+ F;(_Z)r) +log" T(R, f)
+0(1) < log* R2 log" (Ri 5 +10g" T(R )log’ (r‘;(‘z)r) +0(1)
< 2log" R + log" ()+2Iog (Rl = +log’ TR 1)+ 0(1)

0(1) depending only on the behaviour i) atz = 0. Integrating the 52
above inequality on the circlg =,

i i0
Zﬂfk)g” (re'”)/ f(re'”)|dé < 2 log* R+2ﬂflog 6(re'9)

+2log*

(Rf S+ log* T(R f) + 0(1)

which gives the lemma. O

Lemma 2. Let z be any complex number a@c r < co. Let K be the
set of allg such thatz — re'?| < kr where0 < k < 1. Then

flog[r/|(z— re')[]do < = [Iog(%) +1
Ex
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Proof. We may after rotation assuraeeal and positive. For if = 0 Ex
is obviously void and there is nothing to prove. SoZet 0. Then forg
in Ex |z—re'| > | Im(z—re'?)| = r sind andEy is contained in an interval
of the form|g| < 8y wherer sinfgg < kr, that is, sirfy < k. So,

flog[r/|re'9 Z]do < Zflog —de
Now, 9 < g for whené <9 <n, |z-re? > |re] = r. Thus

%29 Z16] < 6p we get flog[r/|re'9 Z]deo < Zflog —do

= 2f|og 29d9

because —or— 1.
0=35%%"~

6o o
flog[r/|(rei9—z)|]d9§Zfloggde—Zflogede
E 0 0

= 26y Iog g — 200 Iog 6o + 26y

Lemma 3. With the hypothesis of lemrih 1,
m(r, f’/f) < 3log" T(R, f)+4log" R+4log*[1/(R-r)]+log* (1/r)+0(1)
Proof. Notations being the same as in the proof of lenftha 1, write,

[1/6(2)] =[r/6(2)] - (1/r). Then Iog%) < Iog— - |ogm So

1 = 1 1 1 7~
r
_ + + = _ +
2ﬂflog 6(rei€)deslog r+27Tflog 6(rei9)d9
0 0
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Let E denote the set of in (0, 2r) for which 5(re'?) < # wheren =

n(p, f) + n(p, 1/ f). (If n = 0 so that there are no zeros and poles we can
puts(2) = +o0 and there is nothing to prove. So assume 1). For each
pointd in E there is a zero or polg, such thas(re'?) = |z, —re?| <r/n? 54
and then
log*[r/8(2)] = log*[r/Ire"’ - 2]

Now write log, x = log x if x > n? and log, x = 0 otherwise. Then since
n> 1, log, x > 0 always.

Also for 8 in E log*[r/6(2)] = log*[r/|(re'’ — z,)|] for somey Since,
1<n?<[r/|re? -z,

"
logt ———— =log <
g Ireif — z,| |re'9 Z 0% i 7 |re'9
where the sum is taken over all zeros and pajes |7 < p. Thus

LT r
flog 6(rei€)d95;flogo—lrew_zﬂlde
E E

T T
SZQ[IognZ+1] = E[Zlogn+1] <A
u

by lemmdR withk = 1/n?, and whereA is an absolute constant.
Also on the complement d&, §(re'?) > r/n® and,

2
f log*” 6(rrei9) do < flog n’dé = 2xlogn?
0

compl. ofE

Adding we obtain

2n
1 Lo
—flog 5(rei9)d9s[2logn+A]

2
1 r
2 f |5(re'9)| “ f 9 15(rel®)| do
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2n

1
+_
f |6(re'9)| 6+log’y

2log" n+log*1/r + A

wheren = n(p, f) + n(p, 1/ f).
We have from (22)

n=n(p, f) + n(p, 1/f) < 4R[T(R, ) + O(L)]/(R-r).
Hence,
log"n<log"*R+log*1/(R-r) +log* T(R, f) + 0(1),

giving

1 1 1 1

— | log————d6 < log" = + 2log* 2log" R

2nf 9i5ran) @ =109 § T8 g Helod
0

+2log" T(R, f) + 0(1)
From this and lemm@ 1, lemm@ (3) follows. That is,
m(r, f'/f) < 3log" T(R, f) +4log" 1/(R-r) +4log" R+log* 1/r 0(1).
O

Lemma 4 (Borel). (i) Suppose Tr) is continuous, increasing and
T(r) > 1forrg <r < . Then we have

(2.3) T[r +21/T(r)] < 2T(r)

outside a set E of r which has length (that is) linear meastre a
most2.

(i) If T(r) is continuous and increasing fog < r < 1and T(r) > 1
then we have

(2.4) Tr+@-r)/(eT(r))] < 2T(r)
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outside a set E of r such thgﬁdr/(l —r) < 2. In particular

E
T[r+ (1 -r)/eT(r)] < 2T(r) for some r such that < r < o’ if
ro<p<landl-p' < (1-p)/€.

Proof. We prove first (i) [that is in the plane]. Letf be the lower bound
of all r for which (Z3) is false. If there are no suclthere is nothing to
prove. We now define by induction a sequence of numierSuppose
thatr, has been defined and write = rp + 1/T(rn). Define therr,,1 as
the lower bound of alt > r, for which (Z3) is false. We have already
definedr; and so we obtain the sequencg) ( Note that by continuity of
T(r) @3) is false for =r,, forn=1,2,3,... that isr, belongs toEy,
Ep being the exceptional set. From the definitiorr gf; is follows that
there are no points d& in (r;, rn+1) and that the set of closed intervals
[rn, ry] containsEg. If there are an infinity ofy, (r,) cannot tend to a
finite limit r. For then since, < r;, < rp.1, I}, tends tor also. But
r, —rn = 1/T(rn) which is greater or equal to/I(r) > O, sinceT(r) is
increasing, for almwhich is a contradiction. m]

It remains to be shown th&(r/, — rn) < 2. NowT(r}) = T[rn +
1/T(rn)] = 2T(rn) sincery belongs toE. And sOT(rns1) = T(ry,) =
2T(rn). Therefore,T (rns1) = 2T(rp) > ... > 2"T(r1) > 2" sinceT(r) > 57
1. ThusT(rp) = 21 Now 3 (r, - rn) = S 1/T(rp) < 2 27" < 2.

To prove part (i) of the theorem, sBtlog[1/(1—-r)] gettingr = 1—

e Rand putT (r) = ¢(R)-¢(R) then is continuous and increasing Ry =
log[1/(1—ro)] < R< oo ande(R) > 1. Apply then the first part tap(R).
Then we have[R+1/¢(R)] < 2¢(R) for R > log[1/(1-r()] outside a set
E of Rsuchthat 2> 3 (R,—Ry) = de: fdr/(l—r). Translating back

tor, R = R+1/¢(R) becomes IoS[ﬂ(l— r)] =log[1/(2—r)] + 1/T(r).

Thatis (1-r") = (1 - r)e‘ﬁ andT(r’) < 2T(r). By the first mean

value theorent(b) = f(a) + (b — a)f’(x), wherea < x < b. SinceT(r)

increases withr, T[r + (1 —r)/eT(r)] < 2T(r) outside the exceptional

setE of r for which fdr/(l —r) < 2. If E contains the whole of the
E

intervalp < r < p’ then fpp,dr/(l -r) < fdr/(l -r) < 2, that is

E
log(1-p)/(1-p’) <2, and so (+ p)/(1 - p’) < € as required.
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2.3

Theorem 9. If f(2) is meromorphic and non-constant in the plane and
S(r, f) denotes the error term in Theordin 8 then we have

(2.5) S(r, f) = O[log T(r, f)] + O(logr)

as r tends to infinity through all values if(#) has finite order, and
through all values outside a set of finite linear measure vtise.

(i) If f(2 is meromorphic (non-constant) il < 1 and the
!ijml{T(r, f)/log[1/(1 — r)]} = oo, then we have @, f) = O[T(r, f)]

as r tends to one on a set E such tlfaﬂr/(l —T) = o0,
E

Proof. If ¢(2) = 19[[f(z) —a,] then
v=1
S, f) =m(r, f'/f) + m[r, ¢’ /o] + O(1)

becaus&(r, f) = m(r, f//f)+m(r, i f’/(f-a,))+0(1) and% fr/(f-
v=1 v=1

’

a,) = Ll by logarithmic diterentiation. Therefore from the lemrh 3,

for anyR > r we have,
S(r, f) < 3log" T(R, f) + 4log" R+ 4log"[1/(R-T1)]
+log™(1/r) + 3log" T(R, ¢)
4log"* R+ 4log" 1/(R-r) +log*(1/r) + 0(1)

Also
q
(2.6) T(ne) < > T(, f-a) <T@, f)+O1),...
y=1
Thus

S(r, f) <3(1+q)log* T(R f) + 8log" R+ 8log"[1/(R-r)]
+2log*(1/r) + O(1)
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If r is greater than 1 (we are consideri&(y, f) for larger) log*(1/r) =
0. Now suppose thdt(z) is meromorphic of finite order so thatr, f) <
rK for r greater thamg. Also chooseR = r? andr > 2 so thatR—r > 1.

1
Then log (ﬁ) = 0. We get

S(r, f) <3(1+q)log* T(R f) + 8log" R+ O(1),
log" T(R, f) < klog* R < 2klog* r = 2klogr

sinceR = r? andr > 1. We thus have finallyg(r, f) < 6(1+ g)K logr +
16logr + O(1) showing thatS(r, f) = 0(logr) which gives [Zb) since
log™ T(r, f) = O(logr). m|

Note that by our exampléeg(r, f)/logr tends to infinity unles$(z) 59
is a rational function in which cas(r, f) is bounded becaudg/f — 0
asz — oo for any polynomial and hence for any rational function. Thus
if f(2) has finite orde5(r, f)/T(r, f) — 0 asr — .

If f(2) has infinite order takdR = [r + 1/T(r)], then logd R ~
logr[sinceT(r) — o] -log"1/(R-r) = log* T(r) and log¥r = 0
finally. Outside the exceptional set of lemMal4R, f) < 2T(r, f) and
so, log T(R, f) < log* T(r, f) + log 2. Hence again we have(R.5) out-
side the exceptional set. This completely proves i) In otdeprove

— 00 as

(i) denote byr, a sequence such tha{rp, f)/Iog(1 -
—In

n — co and by taking a sub sequence if necessary we can assume that
. Then letr,, be defined by %+, = (1 -rp)/10 so that

1-ry

10

1-rpa<
r/

rn <rp<rne < 1. Then sincef =log(1-rny)/(1-r,) = log 10>
M

1-r

. . . dr
2 the unionE; of all the intervals i(,, r}) is such thatf 17~ +00.
Ep —
Further each such interval contains a point not in the excep-
tional setE, for T(r, f) because by lemmd j[dr/(l -r) < 2, pro-
E

vided only thatT(r1) > 1. For a not exceptional pointof E; take
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R=r+(1-r)/eT(r), then

1 eT(r 1
|Og+ ﬁ = |Og+ r(r) < |Og+ T(r) + |Og+ E +1

and log T(R) < log* T(r) + log 2, Thus by[(ZI6)

S(r, f) <3(1+q)log* T(R f) + 8log" R+ 8log"

R-1 +0O(2)

+0(1)

+ +
<(3+3g+8)log" T(r) + 8log a-n

Also, log[1/(1-1)] < log" 1/(1-r}) +log* (ﬁ?n) <log" - +0(1) =
O[T(rn)] + O(1) = O[T(r)].
So since log (r, f) = O T(r) we getS(r, f) = O T(r). This proves
(ii) for a setE; of r such thatf l—rr = 400 and containing at least one
S
point in each intervaf, < r < ry,. In faceE comprises all the in the
sequence of intervals |, r/], n > 1 except possibly a sé&j such that

dr
— < 2.
E{l—r

2.4 Applications

Definition . Let n(t, a) denote the number of roots ofZf = ain|Z <

t, the multiple roots being counted according to their nplitity and

n(t, a) the number of roots of (k) = ain |z < t with the multiple roots
r

counted simply. Further Ie(t,a) = [A(t, a) — [(0, a)dt/t. [7(0,a) is

equal to one if {0) = a and zero oth((e)rwise]; and (X a) as before with
n(t, a) instead of(t, a). Let now the function (£) be meromorphic, and
non-constant iz < R,0 < R < o« and suppose that(#) satisfies the
hypotheses of theorelth 9, so thiat [S(r, f)/T(r)] = 0 and T(r) tends

r-R
to infinity as r tends to R.

Now write §(a) = lim[m(r,a)/T(r)] = 1—E[N(r, a)/T(r)] because

r-R

[m(r,a) + N(r,a)]/T(r) = [T(r) + O())/T(r) — 1,
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thus

lim [m(r. &)/ T()] = lim 1+ S8 _ g 4 jim NG, a)/T(r)
r-R r-R T( ) r-R

=1- ﬁN(r, a)/T(r)

Again write,
6(a) = lim[N(r,a) - N(r,a)]/T(r)
r-R
and
O@@) =1- ﬁﬁ(r, a)/T(r) = lim[1 - N(r,a)/T(r)].
r- r-R

Clearly,s(a), 6(a) and®(a) lie in the closed interval [AL]. Also

N N N-N
1—?—1—?4' T
. N Ny . (N=-N
lim1-— Z“ﬂ(l——)+“ﬁ(—]
r-R r-R T r-R T
i.e.®(a) > §(a) + 0(a). 62

The quantitys(a) is called thedefect of aand 6(a) the Branching
index (Verzweigungsindex) o&. Now we have the defect relation of
Nevanlinna. This is the second fundamental theorem in itst reffec-
tive form and is very important in the theory.

Theorem 10. If f(2) satisfies the hypotheses of the Theofgm 9, then
0(a) = 0 except possibly for a finite or countable sequengcefavalues
of a and for thes&, ©(a,) < 2.

Proof. From theorenil8, for ang distinct values,, of a includinga; =

00
q

> Ima,) < 2T(r, f) = Na(r) + S(r)
v=1

q
and adding}, N(r, a,) to both sides and using first fundamental theorem
y=1
T(r,a) = T(r, f) + O(1), we get

q
qr(r, f) < 2T(r, f) — No(r) + Z N(r,a,) + S(r, f) + 0(1)
v=1
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q
q-2)T(r,f) < Z N(r,a,) = Na(r) + S(r) + 0(1).
y=1
Now, N1(r) = 2N(r, f) — N(r, f’) + N(r, 1/f’), and since by definition
N(r, f) = N(r,00), N(r,00) — N1(r) = N(r,a1) — Ng(r) = N(r, ') —
N(r, f) = N(r, 1/f").
63 So,

g
Q-2)T(r, f) < Z N(r,a,)+N(r, )= N(r, f) = N(r, 1/f) + S(r) + 0(1)

v=1

If f(2) has a pole of ordep at zy, f’(2) has a pole of ordep + 1 atz,
so thatn(t, f) — n(t, f) = At f) and soN(r, f’) — N(r, f) = N, f),.
Similarly if ais anyone oy, ags, ..., gq (finite) andf(z) = ahas a root
of multiplicity p, f’(2) has there a zero of order— 1. Thus

q q
DIN(La) - N(r, /1) = > N(r,a,) - No(r, 1/ 1)
v=2 v=2

whereNy(r, 1/ f’) refers to zeros of’(2) at points other than the roots
of f(2 = a
Hence we get,

q
(q-2)T(r, f) < Z N(r,a,) — No(r, 1/ ") + S(r) + N(r, o) + 0(1)
y=2

q
ie. @-2)T(r, f)< Zﬁ(r, a,) — No(r,1/f") + S(r, f) + 0(1)
v=1

q
ie. Z % >(q-2)- %:)0(1) since No(r,1/f") >0

v=1

since limS(r, f)/T(r) = 0 andT(r, f) » 0 asr - R

r-R

q
'_[_M]:Q Thus ﬁ Mz(q—Z)
y=1

lim
rI—>R T(r)

T(r)
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and afortiori
N(r,a,)
ZMR T 2972

that is, 64

q
Z[l -0(a,)] = (g-2) as required.
v=1
This shows tha®(a) > (1/n) at most for 2 values ofa and so®(a) > 0
for at most a countable number af If thesea's are arranged in a

q
sequencey; O(a;) < 2 for any finiteq, and so to infinity. O
r=1

Consequences

(1) Sinced(a) < O(a) we have) d(a,) < 2 and thus there exists
at most two values oé for which §(a) = 1, or more generally
6(a) > :% Thus if the equatiorf(2) = a has only a finite number
of roots in the planelN(r,a) = O(logr) asr tends to infinity, and
we should have

lim ()

m—<

r—oo I

r@ log[r/T(r)] >0, i.e.

i.e., f(2) is rational. Thus iff(2) is transcendental in the plane
6(a) < 1 the equationf(z) = a has infinitely many roots. The
same is true in all cases R is finite, since otherwis®\(r,a) =
0(1) and so limT(r) < +oo that isT(r) = 0(1) asr tends toR,

r-R
sinceT(r) is increasing. This would contradict
lim T(r)/lo 1 +
— | = o0
r-R g 1-r

This result thus contains Picard’s theorem as a special case

(2) @ in relation to N andN. Suppose that the functiof(z) = ahas 65
only multiple roots of multiplicityk > 2. Then

N(r,a) < (1/KN(r,a) < (1/K)[T(r, f) + 0(1)]
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Hence in this case,

rIi_>_mRN(r,<':1)/T(r) < (1/K)
0@ =1- Eﬁ(r, a)/T(r) > 1—(1/k) > %

If a1, a,...,aq areq such values wittk = k, for a,, we have
since), O(a,) <2, X1 - (1/k)] < 2.

In particular there can be at the most four such vakesf a for
[l - (1/kv)] 2 %

If f(2) is regularm(r, f) = T(r, f) andé(eo) = limm(r, f)/T(r, f) =
1. and so®(w0) = 1 becaus@®(w) < §() = 1. So,>.0(a,) < 1 for

any finite number of finite,’s. So that there can be Bnly two such val-
uesa, which are taken multiply. Such values are called fully braatt
(Wollstandig Verzweight). These results are best possitar sinz and
cosz, have the values1 “fully branched”. Again for the Wierstrassian
elliptic function P(2) which satisfies the éierential equation

[P'@1° = (P@) - e)(P(D) - &)(P(2) - &)

whereey, &, e3 are distinct finite numbers the valuese, ande; are
evidently fully branched and so is infinity. F(2) has a pole of ordek,
P2 ~ A(z-¢) ¥ and P’ (2] ~ P(2)® ~ A3(z—¢)~3 from the diferential
equation.
But
(2D ~ANZ7%*2 e, —-2k-2=-3k

Hence we havé& = 2 so all the poles are double and infinity is fully
branched.

We also note that the equatiorf = H‘v‘:l(z— a,) can have no para-
metric solutionz = p(t), w = ¥(t) which are integral functions dfif
g = 3 or which are meromorphic f > 5. Because ifp(tp) = a; for
instance them? = y2(t) has a zero at and say(t) has a zero ang?(t)
has at least a double zerotgt Hence alsap(t)™® has at least a dou-
ble zero attp and all roots ofp(t) = a, therefore will be multiple and
zq] 0O(a,) = 2 for ¢(t), a contradiction.

y=1
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We just remark that this result extends to a general equation
g(z w) = 0 of genus greater than 1.

67
Theorem 11. Suppose () is meromorphic of finite order in the plane
gnd O(a1) = O(ap) = 1, a1y # ap. Then if a is not equal toa ap,
N(r,a) ~ T(r) as r tends to infinity.

Proof. In fact we have iff (2) is not rational
T(r, ) < N(r,a1) + N(r, a2) + N(r, a) + S(r, f) + O(1)

and in this cas&(r, f) = O[T(r)], (evenS(r) = 0(logr)). By hypoth-
esis sinced(a) = 1 — lim[N(r,a)/T(r)], N(r,a) = O[T(r)]i = 1,2.
Therefore [1+ O(1)IT(r, f) < N(r,a) asr — oo. B

That is lim[N(r, 8)/T(r)] = 1, and evidentlylim N(E’r ;")

r—co r—oo
is, N(r,a)/T(r) — 1, asr tends to infinity. Similarly sinceN(r,a) >
N(r,a), lim N(r,a)/T(r) = 1 and agairN(r,a) ~ T(r). If f(2) is rational

r—oo
these results follow by elementary methods; in fact in thisecthere is

at most onea namelya = f(c0) for which N(r,a) = OT(r) unlessf is a
constant. O

< 1 that

Theorem 12. If a,(2) for v = 1,2, 3 are three functions satisfying
T(r,a,) = O[T(r,f)] asr —» R, and {2 is as in theoreni10, then
we have

3 1
[1+O0OL)]T(r, f)< > N (r, —)
i; f-a(

as r tends to R through a suitable sequence of values.

Proof. Set 68
@ = f@ -au(@ a2 —as(?)
T2 20 -a@
It is easy to see using(r,a) = O[T(r, f)] that T(r, ) = T(r,f) =
[1+O)]T(r, f), alsop =0, 1,00, 0nly if f —a1(2), f —ax(2), f —az(2
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are zero or if two suitabla’s are equal.

N [r, ~ i a3] <T[r,1/(ax —az)] = T[r,ax — ag] + O(1)

< T(r.a) + T(r,as) + O(1) = O[T(r)]

1
So,N(r,1/¢) <N (r, —
hypothesis. o

) + O[T (r, f)] etc. by Jensen’s formula and

In the course of the proof of theordml 10 we obtained,

q
9-2)T(r, f) < Z N(r, &) — No(r, 1/f") + S(r, f) + O(1)
i=1

q
< Y N(r.a)+ S(, f) + O(1).
i=1
Takef = ¢, anda; = o0, a, = 0,a3 = 1 to get

T(r,¢) < N(r,¢) + N (r, E) +N (r, i) + O[T(r, ¢)]
® -1

That is,
1 1
[1+O@]T(r,¢) < N(r,¢) + N (r, —) +N (r, —)
72 -1
for a suitable sequence ptending toR. ¢ = 0, only if eitherf = a,,

1 1
orap = as. SoN(r,—)s N(r, )+N(r,
¢ f—ap

toN (r, %) + O[T(r)]. Similar reasoning givesl (r, l) + N(r, ©) +
—a ¥
1 3 1
Nlr,——] < N{r,
- 1) igl ( f—a
O(D)]T(r) the result follows.

) which is equal
ay —ag

+ O[T(r)]. Thus sinceT(r,¢) = [1 +

Remark. Note that the same reasoning cannot be applied to more than
three functions. In fact it is not known whether the analagoesult is
still true if we take more than three functions.
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2.5 Picard values of meromorphic functions and their deriva

tives:
70

A function f(2) will be called admissible if it satisfies the hypothesis of
theoreni® in a circléz < Rand alsof (2) is transcendental R = co.

Note that if f )(2) Ith derivative off(2), all the poles off Y)(z) have
multiplicity at least + 1. ThereforeN[r, f0] < N(r, f)/(l + 1) and

O(c0) = lim (1 -

N(r, fM) o 1 N(r, f0) S|
T, 10 = m) U+ DT I0) T (4D

q
We obtain forf()(2), sincey, @(a,) < 2, if ay,...,aq, are distinct and
0

.9 1 -
finite, >, ®(a,) < 1+ 1 Thus there can be at most one finite value

1
which is taken only a finite number of times or more generaltwihich
3
@(a) > Z
Write nowy(2) = ag(2) + f(2) + - - - + &(2) f'(2)a (2) being functions
satisfyingT[r, a(2)] = OT(r, f) and we assumeg(2) is not identically
constant. Then we have the following sharpened form of arédmemf
Milloux.

Theorem 13. If f(2) is admissible ifZ < R then,

T(r, f) < N(r, f) + N(r, 1/f) + N|r,

1
7|~ Mot 1) + st )

where N(r, 1/y’) indicates that zeros af’ corresponding to the re-
peated roots ofy = 1 are to be omitted, andim S;(r, f)/T(r, f) = 0.

r-R
Note that this reduces to the second fundamental theorerq fer3
wheny = f.

71
Firstly let us prove some lemmas.
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Lemma 5. If | is a positive integer and () admissible inZ < R, such
0<r <p<Rthen,

0]
m[r, fT] < A(l) [Iog+ T(o, f) + log" p + log* pi—r +log*(1/r) + O(1)

A(l) being a constant depending only on |.

Proof. The proof is by induction. The result is true fot 1, by Lemma
B of sectio Z1. Takg; = %(p + r) and assume that result forNow,

Tlo1, F1@)] = mip1, f'@] + N[o1, f'(2)]
< mlpa, f] + mpr, fO/F) + (1 + DN(o, f)

since at a pole of of orderk, f!) has a pole of ordek + | < k(I + 1).
By our induction hypothesis the right hand side is less than

(I +2)T (o1, T) + A(l) [Iog* T(o, f) +log* p

+ log*

+ log* E + O(l)]
P1

<[I+1+AD]T(, f) + A(l) [Iog+p + log* +log* 1 + O(l)]
P—p1 P1

So,

log* T[p1, "] < log* T(p, f) + log*(log* p) + log* (Iog* P )
—F1

+log* (Iog+ i) +0(1)
P11

1
+log" — + O(1)
P —p1 P1

< log" T(p, f) + log* p + log*

Also by LemmdB applied t6®,

fl+1 1
m(r, T) <3log" T [pl, f(')] +4log* py + log* -

+4log*

+0(2)
pr—r
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1 1
< 3log" T(p, f)+7|og+,o+7log+—r +2Iog+F +0(1)
p_

< A[Iog* T(o, f) +log" p + log* ir + log* % + O(l)]
p —

because,

1
pr=r=p-p1=3©-Np>p1>r)
Therefore, since

fl+1 1+1
m[r, T] < m[r, W

1+1
m(r, T) is less than

+m[r,f(')/f].

[A+ A(] [IogJr T(o, f) + log* ir +log*(1/r) + O(1) + Iog*,o]
p f—
completing the inductive proof. O
Lemma 6. If y(2) is defined as in theoreM113, afk r < p < R, then
m(r,y/f) < O[T(r, f)] + A)[log* T(p, f) + log* ir +log* p] + O(1)
p —

asr— R in any manner.

Proof.

|
m(r,;///f)SZm

i=0

r,ag—— |+ log(l + 1).

@"
[

IA
—

|
mma@ﬂ+§:WLﬂWﬂ+k@G+ﬂ+0+ﬂmgz
i=0 i=0

=O[T(N] + > mr, fO/f] + O(1)

|
i=0
< QO[T(r)] + A(l) [Iog* T(o, f) + log” /% +log* p|+ O(2)

from the lemmd15 and becausgr, aj(2)] < T[r,a(2)] = O[T(r)], and 73
log*(1/r) remains bounded astends toR. O
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Lemma 7. If y(2) is defined as above then as+ R in any manner
whileO<r <p <R,

T(ry) <[l +1+O@)]T(r, ) + A(l)

log® T(p, f) + log* (%) +log* p + O(1)

Proof. m(r,¥) <m(r,y/f)+m(r, f). If f has a pole of ordeK at a point
anda, (2) a pole of ordeK, thena,(2) f) has a pole of order+K +K,,
and say(2) has a pole or of order MaXy + K + K,) < (I + DK + Y K,.
This gives

N(r,w) < (1 + DN, F) + ) N(r, @)

< (I + N(r, f) + O[T(r, )]
Adding the above two inequalities,
T(ry) <[I+1+OQ]T(r, f) + m(r,y/f),

and now the lemma follows from the previous lemma. ]

Lemma 8. If S(r,y) is defined as in Theorelth 8 wighinstead of f then
ifO<r<p<RandrtendstoR,

S(r,v) < A[log+ T(, f) + log* ([ﬁ) +logt p + 0(1)] .

Proof. Letp; = %(p +r). Lemmé&3 gives then

S(r,y) < A[Iog+ T(o1,¥) + log* (

By lemmdT since logx < X,

T(p1.¢) < A(l) [T(p, f) +(

P r) +log* p1 + O(l)] )

)+p+0(1)]
p—p1

that is, log T (o1, %) < log* T(o, f) + log* — + log* p + O(1).

1
Substituting this and remembering that p1 < p,p—p1=p1-r =
%(p — r) we get the result. O

Now we are ready to prove theorém 13.
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Proof of theorem 2.13.We have from theoreifd 8,

m(r, ¥) + m(r, i) + m(r, ! 1) < 2T(r, ) — No(r, ¥) + S(r, ¢)

T (r, %) +T (r, wi 1) < T(r, ) — Na(r, ¢) + S(r,¢)

1 1
+N(r,zp)+N(r,Z)+N(r,w_1)

i.e.

T(r,¥) < N(r,¢) = Nao(r,¥) + N (r, %) +N (r, ! ) + S(r,¢) + O(1)

-1

also

N(r, ) — Ny(r, ) = N(r, ) = N (r, 5) and

1 1 — 1 1
N (I’, m) - N (r, W) = N (I’, m) - N() (r, W) . Hence
Thus,

T )N, )+ N(r, 1/ ) + N(r, _il) — No(r, 1/1) + S(r, ) + O(1)
where No(r, 1/¢¥’) denotes the fact that zeros ¢f at multiple roots
of ¢ — 1 are omitted. Thus, since(r,y) = m(r,1/y) + N(r, 1/¢¥) +
o(L)m(r, 1/¢) < N(r,¥) + N(r, ! 1) — No(r, 1/¢") + S(r,¢) + O(L).

Note again that poles of occur only at poles of or of a,(2), and inN 75
each pole is counted only once. Then

N(r,y) <N, ) + ) N(r, a)




76

66 Nevanlinna’s Second Fundamental Theorem

< N(r, f) + OT(r, ).
Again,

T(r, f) = m(r,1/f) + N(r, 1/ f) + O(2)
<m(r,y/f)+m(r,1/¥) + N(r, 1/ ) + O(2).

Substituting we obtain,

[O(1) + 1]T(r, f) < N(r, f) +N(r, ! 1) + N(r, 1/ f) = No(r, 1/¢")

+S(r, ) + m(r, ¥/ ),

since f(2) being admissiblé>(1) = O[T(r)]. Nowif0 <r < p < R
lemmadb anfil8 give

m(r, /) + S(r,¥) < A(l) [IogJr T(o, f) + log* /% +log* p + O(1)|.

and now the result is completed just as in thedfém 9 by medesohia
A. Hence theorem13.

Consequences.

Theorem 14 (Milloux). If f(2) is admissible inz < R and is regular
there then either () assumes every finite value infinitely often or ev-
ery derivative of {2) assumes every finite value except possibly zero,
infinitely often.

Proof. Supposef(2) = a, f)(2) = b have only a finite number of roots
@ 9

b b in theorem

whereb # 0. Choos&(2) = (29 —a, ¥(2) =
[I3. Then sincéN(r, g) = 0, g being regular

[1+0()]T(r,g) <N [r +N(r, 1/9) + S1(r)

_ 1
@b
where limS1(r)/T(r,g) = 0.

r-R
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If R = oo this gives IimT(r,g)/logr < +co by assumptions that

r—oo

n [t, Wl)b] andn(t, 1/g) are finite ag tends to infinity so thag(2)
is rational and so i$(2). That isf(2) is a polynomial. ]

If Ris less than infinity we obtain, lifi(r,g) < o, and so since

r-R
T(r,g) increases with im T(r,g) < o and the same result applies to
f(2) giving a contradiction to admissibility.

Theorem 15(Saxer) If f(2) is meromorphic in the plane and f/, ff”
have only a finite number of zeros and poles th€n) £ P1(2)/P2(2
e Py, P,, P3 being polynomials. If f,’f f” have no zeros and poles
then f(z) = €¢*P2where a, b are constants.

Proof. Setg(z) = f(2)/f'(2). Theng'(2) = 1 - [f(2) " (2)/ f'*(2)]. Sup-
pose thatg(z) is transcendental and so admissible in the plane. Now
g =0, only whenf’ =0, onf =0, o that is a finite number of times
and so,N(r,g) + N(r,1/g) = O(logr). Nextg'(z2 = Lonly forf =0

or f” = 0thatisN{r,

) = O(logr) by hypothesis. Now theorem

-1
I3 applied tog(2) gives for a sequence oftending to infinity, taking
y=q,

[1+ O()]T(r,g) = O(logr).

This impliesg(2) is rational, i.e. a contradiction. Hengé) is rational 77
so thatf’/f = gis rational. Nowf’/f has simple poles with integer
residues at the poles and zerod (). Sincef’/f is rational by expand-
ing it in partial fractions we get,

/f = k/(@z-2)+P@

with k, integers andP(2) a polynomial. Integrating the above,

@ =] |@-2) f P(2)dz

e
This proves the first part and {f(z) has no zeros or poles the product
term disappears anfi= €°@, (2 = P’(2e”@ and f’(2) # 0 implies
P’(2) # 0, which givesP(2) = a+ bz O
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Remark . Note that we cannot do the same thing witfz) and f’(2).

For if f(2) = €99, f'(2) = ' (2e99 and if we putg'(2) = €@ where
h(z) is an arbitrary integral function, so thaz) = [ €"@dzand f(2) =

exp- | [€@dz]. Thenf is an integral function withf = 0, andf’ # 0.

So in theoren 15 we cannot leave out the restrictionf®n Further
F(2 = ff(z)dzis a function for whichF” # 0, F” # 0 and so we
cannot leave the restriction dn

But we will show that we can leave out the restrictionfdnThis is
precisely Theorerii19.

In connection with theoref 5 we also quote the followingeaxt
sion by Csillagl[1].

Theorem 16. If | and m are djiferent positive integers and4) an inte-
gral function such that @) # 0, f"(2) # 0and f™(2) # 0, then f(2) is
equal to P,

2.6 Elimination of N(r, f)

We shall prove the following theorem

Theorem 17. If f(2) is admissible iz < R, and I> 1 then,

T(r, f) <[2+ (I/DIN(r,1/f) + 2[1 + (l/I)]N(r, f(l)—l_l) + So(r, 1),

wherelim Sy(r, f)/T(r) = 0.

r-R

Let us set(2) = f)(2) in theoreniIB (Th. of Milloux), to get
2.7)

— — 1 1
T(r, f) < N(r, f) + N(r, 1/f) +N (r, m) - No (r, m) + Sl(r, f)

. 1 .
where inNg (r, W) zeros off(+1) at multiple roots off (z) = 1 are

to be omitted.
Further we need,
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1+1

Lemma 9. If g(2) = [f"D(@)| " /[1 - 10(2)]"2 then

— — 1 1
IN1(r, f) < No(r, f) + N (r, f(')——l) + Ng (r, m) +m(r,g’/9)
(2.8) +log|g(0)/g'(0)

where N(r, f) stands for the N-sum over the simple poles (#);f 79
Ny(r, ) for the N sum over multiple poles ofzj, with each pole counted
only once. Thud(r, f) = Na(r, f) + Na(r, f).

Now at a simple poley of f(2), f(2) = O(1) + [a/(z - )] wherea
is not equal to zero.

Differentiatingl times,

all(-1)+1

1- 100 = 20

+0O(2)

This can be written as
all(-1)+1
(z-2z0)"*t

The diferentiation of both the sides again gives,

1-f0(z) = [1+O{(z- 20)"*}]

_1\+1
£0+D(3) = [1 +0Of(z- ZO)I+2}] %

Hence,

(_1)I+l(| + 1)I+1
a()!
S0,0(z0) # 0, o butg’(2) has a zero of order at ledsatz = z. Now

we have

9@ = [1+Of(z- 20)" )]

N(r,9/9") = N(r,g'/g) = m(r,g’/g) — m(r,g/g’) + log|g(0)/g’(O)l

from Jensen’s formula. As we saw at the end of section 2 thdidefd 80
side is

N(r,g) + N(r, 1/g") = N(r,g') = N(r, 1/9)
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= N(r,1/g’) - N(r, 1/g) - N(r,g)
= No(r, 1/g’) - N(r, 1/g) - N(r, g)

where inNp(r, 1/g’) only zeros ofg’ which are not zeros df are to be
considered. By our above analysis,

IN1(r, f) < No(r, 1/9)
N(r, 1/g) + N(r, g) + m(r, g’ /g) + log|g(0)/g’ ()

Then note thag) = 0, co only at poles off (2) which must be multiple, at
zeros off)(2)—1, and zeros of (+1)(z) which are not zeros df)(2)-1.
This gives lemma&l9.

Now (Z1) gives on writindT (r, f) = m(r, f) + N(r, f)
(2.9)

— — 1 1
N(r, f) = N(r, f) < N(r, 1/f) + N(r, m) - NO( f(|+1)) + Sa(r, )

On the left the contribution of each multiple pole to the sueing
counted once foN, but at least twice foN. So,

(2.10) Naor, f) < N(r, f) = N(r, f)
Also N(r, f) = No(r, f) + Ny(r, f). Hence it follows from lemmAl9 that,

N(r, f) < [1 + (1/D)]No(r, f)
% N(r, —f(l)l_ 1) + No( f(il)) +m(r,g’/g)
By the inequalities[{2]9) an@{Z]10) it is at the most,
[+
1 1
+ )| = )+ Mo v+ 079 + o O/ O
= (L+ L/DN(r, /) + (1 + 2/DN(r, 1/(fO - 1))

1
- No( f(|+l)) + S3(I')

19(0)
9'(0)]

+ +—

N(r, 1/ ) + N(r, /(O - 1)) - NO( f(llﬂ))+sl(r f)]
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where
Sa(r) = [1 + (1/D]Sa(r, f) + (1/D[m(r, g'/9) + log|g(0)/g’ (O)].
Substituting forN(r, f) in (Z-4) we obtain,
T(r, f) < [2 + (L/D]N(r, 1/f) + 2[1 + (1/1)]

— 1 1
N (r, m) — 2N0 (r, m) + Sl(r, f) + S3(r, f)

We observe that the above gives the result of thedrdm 17idadwe
pose

Sa(r, f) = Sa(r, f) + Ss(r, )
= [2+ (@/D]1S4(r, ) + (1/DIm(r, g’ /9) + 1ogg(0)/g’ (O)I]

and in order to complete the proof it isfBaient to prove that if < p <
R, andr tends toR,

m(r,g’/g) < Allog™ T(p, f) +log* 1/(0o — r) + log* p + 0(1)]
The above inequality is true for,
logg(@ = (I + 1) log f*9(2) — (1 + 2) log[1 - fD(2)]
g/g=(+1)[fE2/£0D] 1 (14 2) 1 - 1)
m(r,g'/g) < m(r, £+ 780Dy 4om (1, 10960 - 1)) + O(2)

Now the result follows from Lemnid 8, with = {0 -1 or f!+1). Hence 82
the proof of theoreri 17 is complete.

2.7 Consequences

Theorem 18. The result of theorefill4 extends to meromorphic func-
tions without any further hypothesis. To be precise(# s admissible

in |Z < R and is meromorphic there, then eithg)fassumes every fi-
nite value infinitely often or every derivative dizZf assumes every finite
value except possibly zero infinitely often.
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The proof is as before by the considerationg(d) = [f(2) — a]/b
instead off (2); if the equationsf(2) = aand ") = b have only a finite
number of roots. For theg = 0 andg() = 1 have only finite number of
roots and we can use Theorénm 17.

Theorem 19. TheoreniIb (Saxer’s theorem) still holds if the hypothesis
of f/(2) is omitted. That is, if {2) is meromorphic in the plane and f,
and f” have only a finite number of zeros and poles then,

f(2) = P1(2)/P2(2e™?

P1, Py, P3 being polynomials. If f, f have no zeros and poles then
f(2) = €#P a and b being constants.

Proof. If f(2) and f”’(2) have only a finite number of zeros and poles,
putg(2 = f(2)/f'(2. Theng (2 = 1- {f(Df"”/[F(2]?}9(2) has only
finite number of zeros and so dog§z) — 1 = ff”/f’? namely at the
poles of f and at the zeros of and f””. Hence by Theorei_18)(2)

is rational and now the proof is completed as in Saxer’s #weor If
f(2) and f”(2) have no zeros or poled,(2) = €@ whereP(2) is a
polynomial. Thereforef”(2) equals P”(2) + P’(2?]eP@, and if P'(2)
has degre greater than or equal to 1, thé(2)?, P”(2) have degree
2n, n — 1, respectively, so that”(2) has 21 zeros. Thud’(2) = a =
const.P(2) = az+b. m|

A slightly more delicate analysis shows thatfiz), f”’(z) have no
zeros butf(2) may have a finite number of poles, thée) = €22 or
(az+ b)™", wheren is a positive integer.
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Univalent Functions

3.1 Schlicht functions o

Definition. A function f(2) regular in a domain D is said to benivalent
(Schlicht, Simple) if () takes dfferent values at gferent points of D.
Then f(2) maps D, one-one conformally into a domain

Since f(2) takes no value more than once,fifz) is Schlicht in the
plane, the functiorA(r) (area on the Riemann sphere) is less or equal
to one andTy(r) < logr. Sof(2) is rational and is in fact a polynomial
which must be linear. We consider functioh&) univalent in|Z < 1.

If f(2 = E anZ", (f(2) — ag)/a; is also univalent. In fach; cannot be

n=0
zero, for otherwisef (2) would assume values at least twice near 0,
a; # 0. Hence we may assunfé¢z) to be of the form

@) zZ+ i anZ"
n=2

The class of functions, univalent |@d < 1 with the expansion]2) is
calledsS.
The first two results are,

Theorem 1. If f(z% € S,|az] < 2, and equality is possible only for
f(2) = f(2 = m, and

73
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Theorem 2. If f(2) € S and w is a value not taken byzf then|w| > ‘—11,
again equality is possible only for(@) = f4(2).

85 Both results in the above form are due to Biberbach, theblanti?
a smaller constant thaﬁm is due to Koebe though it seems we had the
proof eventually form
Note thatf(z) € S, takes all values with modulus ;11. We shall
prove theoren]l first and then deduce theokém 2 from it. Farvika
need

Lemma 1. Suppose (@) is regular and univalent in the annulug K
|2 < r2 then the area of the image of the annulus i, njay/>(ra"—r2"),

where (2) has the expansiory, a,Z" in the annulus.

Io 2r .
Proof. The area of the image is clearﬁlr dr flf’(re"’)|2d9. The inte-
r 0

gral

21 21
f|f’(rei9)|2d9:ff’(reie)f(re"’)de
0 0

o
_ f[z nanrn—lei(n—l)e] [Z mnrm—le—i(m—l)e]
0

Since the multiplication of the two series and then term bytategra-

o
. . : 0, m=#n,
tions are valid, and €™ "’dg = { *

o 2r, m=n.

27r o0

0

86 .. Areaofimage
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ro 2or

=frdr0f|f(rei9)|2de

r

2 +o0

r
= %IZ n?lay2r2"1dt.
ri -

Again since integration term by term is valid,

+00
=7 ) nan(r3" - ri"
—00

Hence the lemma. m]

We now proceed to prove the theorem.
Consider the functiori(2) € S.

f(@=z+ ianzn, let F(2)= [f(ZZ)]% - Z[%f)r
7

1+ i anzzn‘zr
2
f@2) f@)

SinceT is not zeroT has a one valued square root which is a

f(2
power series iz and hence{%

=Z

% . . .
IS a power series i

F(2) is odd. AlsoF(2) is univalent. For ifF(z1) = F(z), then
1@ = 1A

1(2)=1@)=2Z=2.
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Sy = .
But F(-z) = —F(z) # F(z) unlessz; = 0. Soz; = z. Now set
_ 1 2L bR
92 = G- 1) ° = 5+ biz+ bsZ® +
1 [ee)

whereb; = —3ay.

And g(2) is univalent in O< |7 < 1. LetJ(r) be the curve which is
the image ofZ = r by g(2), 0 < r < 1 andA(r) the area inside it. Then
for 0 < ry < rp < 1 we have by the lemma

Ar1) = Arz) = +n [(riz - riz) + Z nlbnl?(r3" — raM)

1 2 1

SinceJ(r1) andJ(r2) do not cross, the left hand side and hence the right

hand side is dferent from zero. Sé(r) is monotonic. Further for small
r, A(r) ~ r£2 which tends too asr — 0. HenceA(r) decreases. The

left hand side is therefore positive and the quantity intigebrackets is
positive and so we take the positive sign.

1 0o
SetS(r) = Z - % |bn|2nr?".

88 ThenA(r) = nS(r) + C, C being a constant. We want to prove that
S(r)=0forO<r < 1.
Suppose now thdi; i.e. ay is real Otherwise iy = |ay|€? we con-
sideré? f (ze'') in place off(2) and then

ei‘)f(ze“e) =7+ eiea_ze_zwz2 Foeeennn

=7+ |a2|22 4o

Thus there is no loss of generality in assumaageal and positive. Now
1 . .
g(z) = E + blZ+ b3z3 4oereenn , SO |f1 7= reIG

g(re') = (% + blr) COSO + i (blr - %)sine +0(r%).
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We have then

IRI. g(re'’)| < % +bar| + O(r)

IIm.g(re'?)| < % — byr|

+qﬁy{%—mQ+qﬁ)

(sinceay, > 0, by < 0) so that the image df| = r by g(2) is contained
. . . 1 1
in the ellipse of semi-ax s - bar | + O(r3), |F + byr| + O(r3). Hence

area inside the imag#(r) satisfies
1 2.2 2 Ul 2
A(I’)Sﬂ(r—z—blr )+O(r )= E+O(r ).

Thus . 89
ﬁ@+0§ﬁ+qﬂ.

But 1
_ 2
S(r) = ) +O(r9)
so that 1
T
ﬁ+qN+CSﬁ+qﬁ
or

C+0(r?) < O(r?)

lettingr — 0 we see thaC < 0. This proves thatC+ A(r) = nS(r) = 0
since,—C > 0, A(r) > 0. Thus for O<r <1 S(r) = 0. [Actually a little
more refined argument shows tgt) = 7S(r)].

Therefore,
1 S 2~p2N
r_2 > El |bn|“nr

and lettingr — 1, 1> Y n|by2. Thus
1

b1l <1 or |ag <2
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. . . 1 ;
Equality can hold only ib, =0forn> 1i.e.g(2 = >- zé’.

. z 1
l.e. F(Z) = m = [1:(22)]2
Thus .
f(Z) = m = fg(Z).
This proves the theorem provided we shfyfz) € S. To deduce theo-
_ wf(2
rem2, sey(2) = W@ wheref(z) # wfor |7 < 1.
Then
_ w(z + a222+ ------ ) a222
092 = e (z+aZ + )(1+ e

90 by expansion
1 .
—z+ (az + v_v) Z + higer powers of.
Since the map is bi-lineag(2) is also univalent. In fact(z) = g(z)

implies, f(z1) = f(z) from which it follows thatzy = z. Further
d(2) € S. Hence by the above theorem,

fi+=]

1
—| <2+ |a
‘W‘_ lag]

<2

<4

S wl = %1 and equality is possible only j&| = 2, i.e. f(2) = fy(2).

Note that
z 1

(1-2?2 "2

o = (1+2)?2 1]

1-22

. 1+2z - .
if £ = 15 then by this linear transformatiodg < 1 corresponds to

real > 0i.e.,Z = £? gives the plane cut along the negative axis. So
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. . . 1
fo(2) is univalent and in factfo(2) maps onto the plane cut fromz1

to co along the real axis. Henci(2) is univalent possessing such an
expansion defined for elements $fand so doed,(2) = e'?fy(z€?).

1 . 1
Also fy(2) # —Ze" becausefy(2) # 7 Note also that

fo(2) = z+ Z nZ'e("-1¥
2

so thatjay| = nfor all n.

Theorem 3. Suppose () € S and|Z =, 0 < r < 1then the following 91
inequalities hold.

r

e <10 < oy
1-r 1+r
(l+r)3<|f(z)|_(1 oE
@-r < (2 < 1+r

r(t—r) —

“r(l-r)
where equality is possible only for functiongzf defined already.

Proof. Assumézy| < 1 and set

o Zo + Z ......
w2 =f Tr72| bo + b1z +
Sincel — Z _ w s a bi-linear map of the unit circle onto itself(2) is
univalentin|g < 1 and so"w S.
1
Applying theoreni]l we deduce,
by
<2
byl =

lbo| < 2by]
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we have

Z+ 2
’ — f/
BT (1%2)

Z+ 2o
1+7z

1 (20 + 27
1+22z (1+2oz)2]

(G

1 (2+2%]

1+22z (1+2oz)2]

(1-12P2
(1 + Z20)?

= f

and

’” _ Z+ 2
vo- (52

_Zf,(z+_zo)
1+7z

Thus
by = ¢'(0) = (1 - 120*) ' (20)
by = 567/(0) = 31 - l2oP121" () ~ /(2021 ~ 20,
We have seetb,| < 2|b,|i.e.
3.1 1f"(20)(1 - 10P) - 22t (20)(1 - [201)| < 4(1 - |z01)I ' (20)]

If zp = p€? this gives

” 2
f (Zo)ZO_ | 4 o<1
f'(z) ~ 1-p2|" 1-p?
. OwW dw ;, »
Now for any complex functlona—r = Ee’ . If z = re? and so

124

g[log f'(2] = ff—,ei". Thus the above inequality is

4o

< —i6
hS 1—,02’

(067" = p),

9 oat/ ) 2
‘p% 0g ')~ 17—

Y

— 7 < ap[loglf (0e”)] < 12

=
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because loff’(2)| = RI. log f'(2).
Now integrate the above with regarddp

log ! _ 2logi - 2log(1+ p) < log|f’(pe?)|
1-p2 1-p
1 1
<log +2Iog— + 2log(1+ p).

1-p? p
—pP _ At

e UG R AT

This gives bounds fof’(2).
Again,

0y _ r ’ i0 r ’ i0 r l+p _ r
106 = | [ 10| < [116e < [ T Ead =
0 0 0

To get the lower bound fow = f(p€e?), we supposew| < 2, since for

93

1
lw| > }1 the result is trivia (1 @ <2 . Thus by theorerfll2 (Section 3)

the line segment [@] lies entirely i |n the image off < 1 byw = f(2).
If Ais this line segmenty the corresponding curve in thzeplane

Wi = f|dw| ﬂ 2> f(l Lo

W+m2

becaus%‘ |dZ > (11+;pp)3dp if do is positive sincalp < |dZ,if do <0
the result is even more evident.

SinceM € S, we obtain,
b1
~
P S‘¢@é) bo| _ _p
(1+p)? b1 (1-p)?

Now zy = pé?.

94
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Thene(z) = 0, bo = f(z), b1 = [1 - 2] f'(20)
|20 If)l .,
Trio? “ -zl O
r(L-r) f(2 - r(L+r)
1+r /(- 1-r °

|Zo|
11—z

O
’

This gives the bounds fr{rf?

since equality holds iri{3.1) only for

¢©(2) = f4(2) it can be shown that for all the inequalities of theod@m 3
equality is possible only for this function.

Theorem 4(Littlewood, Paley, SpencerBuppose (&) € S and for any
A1 — 0set

(3.2) 1a(r, ) = % f HERIRL

d
=r1—1,(r).
Sa(r) = r-1ar)

Then

r

2 z . .
63  s0=4 f pdp f (a2 (o) el

0

Thus
Ard
(3.4) Sa(r) < AM(r, f)/l < m,
r r
L(r) = IM S/lfM(p, f)ﬁd—p
Jo Jo
0 0
AL -2, 4> 3
1
(3.5) < {Alog— A=3
1
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Proof. Suppose

f@=2

1+ i anz”‘ll
2
Set
o(2) = [f(Q]V? = 22

1+ i bnz”l

1

o . . 2 . .
This is possible smce% is regular and non-zero ilgl < 1 and

A L _
so has a-th power which is also regular. For definiteness we take the
principal value ofzV?, |argZ < 7.
® A
We havey’(2) = 3 [n + 5] bz 241,
0

g

iﬂ TNy _if—/, _oo[ 2]2 2 2n+1-2
zﬂflso(pe')lde—zﬂ wsod@—nzzé n+ 3| 1bnlp

-

exactly as in lemm@l 1 (Section 3)

10 1[0 _ 8
(e, 1) = 5 [letre®yeds = - [ a0 = 3 oo
~ 0

-

— d — 2.2n+2
Sa(r. f) = r-la(r. f) = D @0+ AlogPrem,

Further 96

r

[ ot [1¢t0ea0 =3 Y (en+ o> = 5. )

0

-1

fr f=

N~

Now ¢’ =

’ /12 ’ -
lp 'ZZZ” 121£472
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Thus

5 r T
sir. 1) = 5 [ oo [ 111G 20
0 -
giving (3:3).

We now interpret the above formulade dé is an element of area
in |z < 1, |f'[?pdpds is the corresponding area in the image plane at
w = Ré? and|f|*2|f’|%pdp d¥ the mass of the area, if we imagine a
mass densityR'~? on the circlew| = R in the image plane. Then our
integral is the total mass of the image. Since the image sawipoint
more than once and lies jw| < M(r, f) = M say, the mass of image
total mass of the circle which is

fan-R*‘zdR: %M” and so

227'( r
Sa(r) < ——M/l AM < 1——

This gives[[34), because from theorEim 3,
r
M(r, f) < ——.
.0 <G
Thus

-1
P -1
(<A | ———dp. If 1>1, <1 and so
ar) < f(l—theta)ﬂ o >1p
0

;

1 A 122

I’l(r)S/lf(l—p)ZﬂdpSZ/l—l(l ) I
0

Assume thafl < 1. Then

f (1- p)21+1 do.

(1) <4 f - )2 %=1 p)m
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I’ p . .
Sm‘”fmdp sincep<p'if 0<a<1

(l—r)21 f(l )mdp 2/lf(1 p)21+1

rt 21 121
= ot 3 51 A )2/1+1 if 21 % 1
21 21 21
L T A YL Sl

21

21
21-1

Hence if 1-21> 0, (1- )12 < 1,1,(r) <
r

r dp
f2A=11,(N <2 [Lt—do=
2ofp%(l—p) ofl—P2

—1-0 ﬂ—lo 1——[‘2<}|0 =lo
29T T2 a2 ez T Y E o
Thus

21 1

1-— 1-22 if =

s @a-r) [ /1>2

IJ(F)S IOQﬁ |f /1:
2yl

21-1 2

This proves the theorem completely. O

| =

2

Theorem 5 (Littlewood). If f(2) = z+ ganzn € S then|ay| < e for
2
n>2.

Proof. We havela,| = % f f(9dz

n+1
1Z4=p

j Il(/l f)
e'9)|d9 = T
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By inequality [3.5)

P
|1(p,f)§f a _ p
0

1-92 1-p
Thuslay| < We choose so that ! is minimal
pi1-p) P11 -p)
ie putp=1-= "L 1o et| |<( N )n_ln
€. pulp = 1-= = getian —
1 n-1
i.e., 1+ —— n<en
lan| < ( + — l) <
This completes theoref 5. i
Remark. Bazilevic [1] improved this td1 (o, f) < 1 p 5 +0.55 so that
—-p

we get

1
lan] < Een+ 151

Theorem 6. Suppose () € S and set
¢@ = [f@]" ¢ =7 [Z an,ﬁzﬂ .
0

Then ifA > %, lanil < AQ)N*L. In particular if f(2) = 2+ a2t +
.- -+akn+12k”+1+- -+ € S, thenagn,1| < A1 ifk = 2and|agn.1| < A2n‘1/3
if k = 3, Ay and A are absolute constants.

|1 ¢’'(2)dz
Proof. Now (n+ A)lanal = |5 [ vy
1Z2=p
1 ’

with the notation of theoreid 4. O
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Sincey’ = Af42f/
1 2n
16.9) = 57 [ 17N 100
0

2r
A L P .
-2 f | (oe) (o) (o) de
0

for anyt
2 3
li(p, ¢') < % f 1 (o) f (o) 2 2d| x
0
o 3
i i021-2t
(3.7) A Zﬂflf(pe' )22 de
0

by Schwarz inequality.

87

100

, 1 , "
Sincea > 7 we choosd suficiently small but positive such that

1 .
21— 2t > 3; for examplet = 3(1 - 71) can be a choice df By theorem

2]
% 2
r( o A0Y12 j0y2t-2 T 1
[ oo [[11enitatEan < Zosal1- 5]
1-1 0
< A(t)n™
Suppose

Vs

2= min. f [ (0e”)?| f (0e?)?2dp
1—53/)31—%
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Hence
At 4t+1
(3.8) < PR < A()n™*
[ pdpo
8

Also by theoreni ¥4,

2r
f If (0€”)%2dg < AL, H)(1 — p)****L since 24 — 2t > %
0

(3.9) < A(Q)n*-4-1

sincet depends upon.
Hence for this valug from 31),

|1(,0, 90,) < A(/l)n(4t+l+4/l—4t—1)l — A(/i)nZ/l
Therefore from[(316) it follows

A()n? =4
(n+ Dlanal < p(n+)/l—1 < (1 - ﬁ) A()n*

< A()n*

A(1) just standing for a constant depending upbnHence the result
lan.a < A()n?*"1 follows.

Suppose now that(2) = z + f am1Z™! € S. Then so does
n=1

. K
f(2) = [g(@/N)]k = z(l+ 3 amaz'| . For clearly f(2) is regular in
1

Iz < 1. f(0)=0, f’(0) = 1.n:Suppose‘(zl) = f(z). Then
o <[ o) ool -ofe

1
wherew is akth root of unity. Butg(2) € S, and we have; = w
2, = Do.

-

NI
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Thus
o(2)=1f@1
n=1
Hence applying the first part, with= 1/k (providedk = 1, 2, 3) 102

lakns1] < A(K)n  as required
ie. |an1l<An if k=1

lagnil < Ao if k=2

lagns1l < Agn® if k=3

This inequality is false for larg& as was shown by Little wood[1]
even if f(2) is continuous inzZ < 1. We do not know whether it is

true for anyk > 4. If f(2) = z+ iojanzn is bounded and univalent
2

then the area of the image @f < 1 is at mosttM? where M is the
least upper bound dff(2)]. Hencel nja,? < M? and it follows that
lan] = O(n~2) asn — co. Nothing stronger than this is known. For
further discussion see Hayman Chapter 3. This is the cooreletr for
mean-valent functions and probably fidiz) € S also. The best example
due to Clunie (unpublished) givés,| > n~1¥14 for some largan, so that

there is a gap betwee% and 1314. It can be shown that in theordin 6

the conclusion thag,| = O(1) obtains for alln if |a,| = O(1) for some
sequence af with constant common flierence. We do not know if this
conclusion is till true i.e. ifa,| = O(1) for a sequenca = ng such that
Nk;1 — Nk < constant.

In this connection Biernacki]1] has shown that for evé(y) € S,

llans1l - lanll < Allog(n)]*? for n>2.

Hence ifa, = 0 for a sequenca = ng, with ng,.1 — ng < const.|ay| = 103
O(logn)®/? for the intermediate cdicients. It is still to be found out
whetherO(1) can replac®(logn)3/2.
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Examples for theorem(®.
z
f(2 = ——

W) = (TN = g = DA™

where
2(2 2
R(R'Fl) ...... (R-i-n—l)
Gnk = 1.-2...... n
F(n+ %) n%_l

T+ DO/K) ~ T(2/K)

so that theorerfl 6 is best possible.

Theorem 7 (Rogosinski, Deudonne’, Szasdf f(2 = z+ ianzn be-
2
longs to S and has real cgieients therjay| < n.

Proof. Let f = u+iv. We have sinca, are realf(2) = f(2). z= x +1y,

y # 0 impliesv # 0O for otherwise ifv = 0 forz = x + iy, y # O then
f(2) = f(2 = uwhich contradicts uni valency. Further we assert that for
zsuch thaly > Ov must have constant sign. For if instead we hé(zg)
positive andv(z,) negativez; andz, having the imaginary part positive,
v(2) would be zero somewhere on the line joinimgand z,, which is
not possible. Clearly by consideringz)/z for smallz v > 0 for z with
Imz > 0. The proof of the theorem essentially depends on this eatur
the sign ofv. O

[ee)

Now v(re'”) = 3, a,r" sinnd sincea, are real wherey = 1.
1

T
Hence we have on integratioyﬁ,v(re'e)sinen o = gr”an since the
0
other terms vanish.
Also|sinngl < nsindfor0 <8 <.
. .. . /S .
It is enough to show this inequality for8 0 < > since|sinn(r —
0)| = | sinng|, singr — 6) = siné.
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Sing
—— decreases in@ 4 < z
6 n2
Hence ifng < —ie.f< —
2 2n
sinnd  sin@
S -
ng 0

which gives the inequality fof < %
In particular when

N

. .
rsing  sinZ

N
IN

ng =

NI
NI
[=

2n
or sin= > L
2n

Hence |f— <6<
on =

I\)Iil

. . T .
|sinng| <1< nsm% < nsing

Hence follows the inequalitysinng| < nsind 0<0 <.

T

2
lan| = fv(re'9) sinng do
0

Now making use of the fact that> 0 for the range ob

2
lan] < — p v(re'?)| singn|dg
0

Vs

2
— v(re’)nsing dg

I/\

Let us make — 1,
l|an] < n asrequired.

105
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. z . -
The functlonl—z)2 € S has real cofficients, and satisfiea, = n.
Thus our inequality is sharp.

We next proceed to prove another special case of Biebehaoh-

jecture. For this we need the definition:

Definition. A domain D is said to be star-like w.r.t. the origin O if for
any point Pe D, OP lies entirely in D.

Theorem 8(Nevanlinna) If w = f(2) = z+§ a,2'€ S and mapig < 1
2

onto a domain D star-like with respect tow0 then|a,| < n. Equality
is possible only when(®) = f4(2) defined already.

Before proceeding with the proof of the theorem let us prdwee t
following lemma due to Borel.

Lemma 2. If (2 = 1+ § b,Z" satisfies Rk(z) > O for z > 0 then
n=1

1+z

1

lbn| < 2, equality holds only fop(z) = — >

1432,
1
Considery(2) = (’08 ; T

which clearly impliede(2) — 1| < |¢(2) + 1| and sd¢(2)| < 1 and further

w(0) = 0.
Hence now applying Schwarz’s lemma

By hypothesisp(2) has real part-ve

Iy’ (0)| < 1. Equality holds only ify(2) = z&".

Near

S by2"
(% " ) by
—_ = ——Z4 e

2+ > by2" 2
n=1

z=0 4@ =

which gives thatb;| < 2. In order to deduce the inequality for,
consider

o@D =1+bz+byZ+------ N Y A
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Il

Kk
Z SO(Wer/k)
r=1

wr running through thedh roots of unity and for a fixed value at/k.
Forw, = W' wherew = e% . If we set

k 00
;=7 iZ(\/\/zl/k):1+§ang”[vw+...+v\,kn]
r=1 n=1

=1+ ) ™
n=1

= 1+ibnkzn
1

asw' +------ +wW<" =0 if k does not dividen
=k if k divides n.

Clearly Rlgy(2) > 0 sinceRlp(w;z¥/%) > 0 for every. Hence applying107
previous part ta(2), |bk| < 2.

Proof of theorem 3.8.Note first that ifG,; denotes the image ¢ < r
by f(2) then if G is star-like so is5, forO <r < 1.

Consider = ¢(2) = f1tf(2)] 0 < t < 1. Then sinces, is star-like
t f(2) lies in the image ofZ < 1 by f(2) and sof[tf(2)] is a well
defined point inZ] < 1, and clearlyy = 0 corresponds ta = 0. Thus
lp(2)| <1 ¢(0) =0 and hence by Schwarz’s lemma

le(2)] <14

tf(2 = f(¢) wherell] < |72 and soiflZ < r, f(0) € G, i.e.tf(2d € G;.
This being true for any, 0 < t < 1, G; is star-like.

SinceG; is star-like its boundary, meets any ray from 0 teo in 108
only one point. The limiting case whdh contains a line segment in
such a ray is excluded sindg is a simple closed analytic curve. Thus
arg.f(re'?) increases wittd for any fixedr, 0 < r < 1. Let

log f(re'’) = u+iv = log|f(re'”)| + i arg. f(re'¥)
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i i . OV
and arg f(re'’) is increasing for any fixed |mpI|es% > 0.

ie., Im.a%[log f(re')] > 0

o f/(re?)

[

Im.[lre' f(re?) >
. reief/(reie)
v ©f(rei)

In other words, o
RIZD S0 0<p<1

@
Now applying the lemma witlp(z) = zf'(2)/f(2) and observing, that
this function satisfies the hypothesis of the lemma, ¢i@ = 1 + O(2
nearz = 0) Rl.¢(2) > 0 and so if

_zf (@ >
0(2) = e _1+;an”

then|b,| < 2.
Again
2f(2) = Y na?' = (1 (2) = (Z anz”) (1 > bnz”]
1 1 n=1
with a; = 1.
Equating cofficient of 2" on either side,
Nay = 8y + bran1 +bpan o +------ +bp_1ag
i.e. (n - l)an =bia_1+bapo+------ + b1y
(n—La, <2[1+|ag| +lag|+------ + lan_1]] by the lemma.

(n-Lan| <2[1+2+------ +n-1]
<nn-1)
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lan < n.

and by theorerfilda,| < 2. Hence the proof is complete by induction on
n. Further equality is possible for> 2 only if |a| = 2 i.e. for functions
l2) = ey | |

For extensions of this result to a more general class of intage
mains see Kaplan, W.I[1].

3.2 Asymptotic behaviour
2
Theorem 9. If f(2) € S and unless (f) = f,(2) we have(1+ M(r, f)

decreasing steadily with increasing r and so tenda tshere0 < a < 1
asr— 1.

To prove this we require

Lemma 3. Suppose &) € S and for fixed f (re'?) = R(r)é*("), Suppose 110
further thatO < ry < rp < 1andr = rq, rp correspond to R= Ry, Ro.
Then

Ry(1-

jog L2 jpq Rl =) er f(l = NI O]dr.
1
r

rs r

Proof. We have

f/(reiO)
f(re?)

d i1 _E i0y _ A6
alog(Ré ) = ar log f(re'’) = ¢

On the other hand

d . 1dR .
alog(Ré)—ﬁa-FUl (r)

By theoreniB

1+r

f/(re'?) B
“r(l-r)

. h
) so that
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’ 2 (1 - r)2
+[A(N]° < m,

1dR
rdr

saya® + b? < c?i.e.|a® + |bf? < 2.
This can be written as

(Icl - la)(Ic| + lal) < b?
b? b2

or Ic| — |a] > >
| + [al 2ICI

. b .
since|c| > |al. Solal < || - m Sincea < |a we get

1dR< 1-r _r(l—r)
Rdr “r(-r) 2(1+r)

1+ r ,
S e Gl LUl

sincery < r forthe ranga, <r <rpand 1+r < 2. Integrating fronr,
tor,

[ (N1,

r2
1+r
Iong—IogRlsf il
r

r A ,
r(1_r)dr‘ Zf(l—r)[/l 1%

r2

1 r2 r r2 ,
:fr(l_r)dr+fdr—zf(1—r)[/l (n)]2dr.

2
 log (1_ r2)2 (1—r - f(l A’ (n]“dr.
Thus
log #:2)2 < log M - % f(l =LA ())*dr

giving the lemma m|
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_ )2
Proof of theorem 3.9.Sety(r) = (1 rr) M(r, f). Suppose that is so
chosen thaf (r2€?) = M(r», f) = Ry. Then lemm&I gives

log(r2) < log % - % f (1= ) ()2 dr.

<logu(ry) - f (L - L ()2 dr.

sinceRy < M(ry, f). 112
Hencey(ry) < (r1) showing thaiy(r) decreases (weakly) with If
W(r1) = ¢(ro) theny(r) = aconstant for, <r <r, and

f (1 - n)[A'(r)]?dr = 0.

Since 1-r > 0 therefored’(r) = 0 or A(r) = constant for; <r < r».

a

2
. —r -
Also y(r) = constant glvesr—lf(re"’)| = constant= « (say) for

1-r)? , .
ry <r <ro. Because from the Iemmg\r—)lf(re"’)| decreases with

increasing for fixed 6. Therefore ifg; is such thatf (ro€®) = M(ry, f)
we see that

(1- r2)

PRY.
- rrZ) M(r2, f) = |f(r2)
2
(1 ) |f(r e|91)| <( - ) IVI(I’ f)
1
R
= (¢ rrZ) M(ro, f) becausey(r) = constant.
2
(1-r)? o
Hencefﬁ(re' ) is constant for; <r <r,.
Now

ar 5, a(re?)dd-d

i0 A
fre) =Re' = 5% = T —gnep
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ad=0z
113 Or f(Z) = m

Hence by analytic continuation this equation holdgzin< 1 and
sincef(2) € S, a9 = 1 and sof (2) = f_4(2) as required.

forz=re ry <r <ry.

In all other caseg(r) decreases strictly with increasingnd

M(r, f)
—

limy(r) =1=Ilim
r—-0
Thusy(r) < 1,0< r < 1 and since)(r) decreasea = Iimlw(r) exists
r—
anda < w(%) <1

Theorem 10. If f(2) € S anda = 0in theorenD then with the notation

1 .
of theorenil we have fot > 7901 = O(r**1) as n —» o and in

particular if a, are the cogicients of f% — 0 as n tends to infinity.

Proof. We recall the proof of theorefd 6 and the notations of that-theo
rem. We proved

1
n+A4 <———li(p, ¢’
(n+ Dlanal < ——11(0.¢)

Il(P’ 90’) <

1 R L .
5 [ 17 eI d? 2

zi ( i0V24-2t 4 13
anf(pe') o]

. 1
We can findo such that - ~<p<l- 2 and

; f 0OV £ (i) 2-2 Sz (1- 5 ) 1
o= | 1/ (0€”)7If (0e”)|"db < 2
o -3 a- 97"

114 By theorenft

Sa(r, f) < 2tM(r, )% = O[(1 — )] ™
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asr — 1. So in the above inequality the right hand side (©[n]) =

O[n**1] instead ofO(n*+1).
Just as before (Ch. (3.9) of section 3.1)

f|f(,0€i9)|21‘2td9 = o[n—l+41_4t]

and so we now get

Nanal < (N+ Alanal = O[n+%(l+4t+4t+4/1_1)]

= O(n*") as required.

The casex > 0.

Suppose then from now an> 0 in theoreni® and we shall develop

a series of asymptotic formulae by a form of the Hardy-Littteod
method, culminating in a formula for tre ;. We have first

Theorem 11. There exist# in 0 < 6y < 2r such tha(1-r)?|f (re'®)| —
aasr— 1

1 .
Proof. Setr, =1- - and choos@, so thatf (r,é) = M(ry, f).
Then from lemm&l3 we have forOr < r,

ﬂ;—r)zu(reienn > %lf(rnég“)l =% (sa)

Let nowdg be a limit point of thed,, and choose a fixedin 0 < r < 1.

Then
(1-r)? (1-r1)
r

7|f(|re'90)| = lim |f(re'®) > lim %,

asn tends to infinity through a suitable sequence for whigh— 6o,

. 1-r)? : .
since after soma, r < rp and%ﬁ(re‘é’n)l > %$Bn. Also lim %, = «

(1-r)?
r

since M(r, f) - @ asr — 1. O

115
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and this is true for G r < 1. Thus

- ra
Hencelf (re'®)| >
|f(re'™)| > 1

r)?

lim(1 - r)?f(re®) > a

r-1

Onmeommhammyl—n%um%ns@gﬂ—rﬁM«J)zm
r—
Thus Iin11(1 — 1) f(re')| = « as required.
r—

Theorem 12. If 6 is as in theorerfil1 and(fe'®) = R(r)é4") then

f(l— N[A’(r)]?dr  converges.

. , 1 .
Henceifr— landp — 1whiler<p < 5(1 + r) we have uniformly

(1-r)2 f(re')
(T-p)? T(og®)

Proof. We have by lemmBI3for@r; <ro <1

ro ) , ) ,
5 [0 = log BT g Rl 12
4 o =
r
Lettingr, — 1 and by theorer 11 we get
’ Rl(l rl)z
f(l— [’ (r)]dr < Iog—
10

proving convergence, sinaé(r) is bounded in & r < r1. Now suppose
thatr is so near 1 that

\fu-mwmﬁmge mdr<p<%U+D
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Then

P 2
< { f (1- t)[/l’(t)]zdt} X

P

f A ()t

r

(o) — A(r)l =

(by Schwarz inequality).

[A(0) — A(r)] < [e log % < (elog 2)%

So|A(p) — A(r)] = 0if r, p — 1 being related as in the theorem. Thus

(1-r)? f(re')

—— =A(r)- A4 0
R Tpam) 10
and ,
(L-r)? f(re®)| « 1
(1-p)? f(o€%)| "o
by the previous theorem. The result follows. o 117

Theorem 13. Suppose @) € S. [By the hypothesis of theoréind®=
im &1
[, [6o such that() < 6o < 2rand (1 - r)?f(re'%) - o asr — 1] and
0@ =f@'=2 2 ane2". Thenifd > %

M(r, f) and]. Suppose > 0 and 6y as defined in theorem

1\ .
fli-3)e
na, €@ . 2 2 as n- co.

22

Assuming the theorem let us first deduce some corollaries.

a'n2-1
Corollary 1. We havéa, ;| ~ Ton as n— oo wherea < 1. Equality

is possible only in the case whe(e)f = fy(2) defined in theorer 1.
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Proof. Taking moduli for the result of the theorem,

pl(a- e

Nlanal ~ T2y as n— oo
A (e o [ %
B I'(21) I'(21)
after theorenfi 1. O

For, the choice oby is such that (1 r)? f(re®) — « asr — 1.

2
Precisely we geﬁ) f [(1 - :_r:) gifo

— @ asn — oo.

n
H ~ ——. Thisii I .
ence we gefan .| Ty is is corollarnyL
Corollary 2. If fy(2) = z+ § A <M1 belongsto S, and if k 1, 2
n=1
or 3then,

laknral < M for n>ng.
T(h+ /K

Equality holds for {2) = and all n, otherwise strict in-

z
(1 - Zef)2/k
equality holds for n> ng(f).

To prove this note that

f(2 = [f(@/ ) es

and
@) = 270 anna?) = [F2]7
0
Now eitherf(2) = ﬁ and so
z

= m = Z Akn+12kn+lein9 = k(2
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where

Akn+1 =
F(% + n)
T(2/K(n + 1)
ni-1
" T(2/K)

Alternatively since in every other caae< 1 for f(2) so by corollanf1L,

Akn+1

and sincer < 1,
|akni1| < Axne1 for large n.
Note that ifk = 1 we havdan. 1| < n+ 1 finally and ifk = 2, |agn, 1| < 1. 119
Let us now go to the proof of theordml13. We suppose without los
of generality thatly = (0) in theoren{_II3 for otherwise we can consider
e 1% f (zd%) instead off (2) ande[ f (ze%)]* instead ofp(2).

1 . . .
Setrp, =(1- = Givene > 0 we define a domain, = An(e) = {z:

f(rn)

€ 1 .
S<l-7< n—Elarg(l— 2)| < (E - e) andap = - SO thatlan| — o
asn — oo by theoreni1I1.

Suppose nown(2) =

an
(1-22
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Lemma 4. We have as r»> oo uniformly for ze An(e), f(2 ~ fn(2) and
(29 ~ f/(2.

Proof. Putz = I5(W) = rp + %w, so that (1- 2) = %(1 - W).
Then by thisA,(€) in thez-plane corresponds o, (€) in thew plane.
Define a functiorgs(2) as

f[In(W)]

f(rn)
Note that for a fixeds, Ap(e) lies in|z < 1 for largen. Hencegy(w) is
defined inA; () for suficiently largen. m|

(W) = (1 - w)?

Further|gn(w)] = O(1) for w € Aj(€) andn > ng. In fact if An(e),
An(3€), An(3€) are denoted by, A;, andd is the distance from] to
the outside ofA], the distance betweefy, and the exterior ofAf is
exactlyd/n.

SoifAj liesin|zZ < 1. A liesin|g <1 - - andAy liesin|g < 1

for all largen. Now |f(2)| < ﬁ; Iz =randsoifld <1- % <1;

d
1—|zlzﬁ.

2
Hence inALIf(2)| = O(%) = O(M) asn — o and f(r,) =
f(l— %) ~ an? by theorenIll as — oo and hence it follows that
flln(w)] _ O(n?)

f(rn)  n2
is bounded im\; for largen.

= O(1) asn — oo uniformly for win A. i.e., gn(W)

. 1 1
Next choose-1 < w < 0 so thawis real andn+ﬁw = 1—5(1—w) =
In(w). After theoreniZIR.

fllaW)] — (L-rn)* _
f(rn) n—lz(l—w)2 C(1-w)?

for the hypothesis of theoreml]12 is satisfied because,

as nN—o oo

1 1 1
|z|:‘l—ﬁ+ﬁw <rn<§|(z+1)l,rn—>1 as n— o
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in this manner ensuring the above asymptotic equality.
Therefore it follows on bringing (Aw)? to the left hand sidgn(w) =
flln(w)]
1-w)P———F2
=
-1.

Thus we have obtainegh(w) = O(1) asw ranges im\] andgn(w) — 121
1 asn — oo on a set ofw having a limit inA]. Hence by Vitalis con-
vergence theorem (see Titchmarsh p.p. 1&&wv) — 1, g,(w) —» O
uniformly in A; which is contained i} and satisfies the condition that
it is bounded by a contour that is interiorAq
f@
f(rn)

tends to one aB — oo, for realw satisfying 0> w >

Now translating back inta, n’(1 — 22—~ tends to 1 as tends to

infinity for z € Ap(e).
i.e. by the definition off,(2)

ffn((zz))—>1 for ze Ap(e) as n— co.
Also d ()]
2 T1In(W,
dw W) f(rn) =0
2 . f@
sincen(1-2) =(1- w),nd n“(1-2) f( ) -0
2@
O

—(1 - 2)%f(2) = O(n) since f(ry) ~ an® as N — co.
dz

for zin An(e).
Note that inAn(e)% and (1- 2) have the same order of magnitude.

Thus, (1- 221" (2) - 2(1- 2)f(2) = O(n), € An(€) asn — oo 122
f'(2) = (Zlf_(z;) +0(n’), ze An(e) asn— .
_ 2fi(2)

+0(n%)

S (1-2
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= @ +O(n®) = {,A[L + O(L)]

because
2an

O

Therefore,f’(2) ~ f,(2) uniformly for z € An(e) asn — co. This
completes the proof of the lemma.

= O(nd).

Lemma 5. With the notation of theoref 4, far> 0,
Sur,f)=at'Syr,(1-2"2+0(1-r* asr—1

1
andifd> =
if A > 5

L, f) =o' lr,-2]+01-rN** asr—>1

2
Proof. Let Ry = lanis, ¢n(2) = fn(@' = af(1 - 272 andAn(e) as
€

defined in the previous lemma. Note thaf(z) mapsAn(e) onto the
sector

e"RY < W < R, |argw) — Aargay| < (7 — 2¢€)

The area of the image=_ | I¢/,(2)? dx dy
An(e)

(3.2.1) = A(r — 26)RA1 — €8]
Also in Ap(e), fn(2) ~ T(2) andf;(2 ~ f'(2) and so
on(@d = AT ~ Q@I = ¢'(D
So we have
(3.2.2) f lp7(2)12dx dy~ A(r — 2€)R2Y (1 - €2Y)
An(e)
Also sincelgn(2)| < RYin Ap(e) we have by lemmEl 4,
lo(2)) < RY(1+¢) there for largen.

Now choosen so thatR,_; < M(r, f) < Rs. This is possible at least if
is suficiently near 1, sinc&, — oo with n. |
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Let Ep be the set of points gff < r outsideAn(e). Then inEp,
lp(2)] < R, and inAn(e), l¢(2)] < (1L+ €)RL. The image ofZ < 1 by f(2)
contains no point more than once, and so the length of thedroagr
any circle|w| = p is at the most 2.

If we cut the unit circle along the negative real axis, themithage
by f(2)* covers any circlejw| = p, with length at the most2rzp. So
the area of the image of the union Bf and An(€) by ¢(2) is at most
AR (1 + €)2.

That gives,

f f ¢’ (D)Pdx dy < mARRY(1 + €)?

EoUAR(€)

Also by (3Z2), we have for large

f ¢’ (2)2dx dy> An(1 - €)(1 — )R
An(e)

[Note thee terms of r.h.s. of this inequality and(3.P.2)]
So

f f l¢’ (2)|%dx dy< R'7A [(1 +e?-(1-o@1- 68*)]

=)
< AR

whereel is small if e is small.

Similarly,
f loh(@)2dx dy< &R
Eo
By theoreni}

> r Vs

Sar, )= 5 f pdp f | (0e) 22 (0e?)2dl0
0 -
_ L f |f (0€)[212| £ (0d”)[2dx dy
T2
|z<r

124
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.- f ¢ (2)2dx dy.
|z<r

125 Hence

Sai(r. 1) = 2 1) = = [[ (16 @12 - 164@F) dx

|lz2<r
J+J
E1 Eo

whereE; is the part ofz < r within An(e). Since inE1¢(2) ~ ¢’'(2)

2
o

[ (¢'@2 - i(@?) dxey=0 [ wi@Paxay
E;

E1

_0 f @ Pdx dy
An(e)

= O(R) by BZ1)

Also
| [ (v @ - 164@P) axay < [ 164@7 dxdys [ 1@ dxay
Eo Eo Eo

< (¢" +€)R2.

Sincee” ande’ can be made as small as we please by suitable choice of
€,
Saa(r, f) = Sa(r, fn) + O(RRY
= Sa(r, fn) + O(RY;) as Ry~Ry1
= Sou(r, ) + OM(r, )24

126 i.e.Sy(r, f) = Sou(r, fy) + O(1 — r)™ asr — 1 (by theorenil).
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Hence we get
Sou(r, f) = 1@?Y1Sur,1-2)2] +O(1 -1 as r— 1

which is the first result. Integrating the above from @ tov.r.t. r after
dividing byr, we get

Loa(r, f) = l? [r,A-2) ]+ 0L -1** asr > 1, if 1> %.

Hence we get the lemma [replacing By A]

L, f)=a'lr,1-2+01-r)** asr > 1

1
if 4> .
| >2

1 .
Lemma6.If >0 and A > 7 Wecan choose k O so that if

1 1
rn<r<l1--<r<l-—
0 n 2n

(If(re)? + I fa(re)?) do < (1~ 1)+

k(1-r)<|6l<m

Lety andy’ be the arc$d| < k(1 —r) andk(1—-r) < || < won
|7 = r. If kis any fixed number, we can chooseo small that the arg 127

1 1
lies in Ap(e) for 1— - <r<l- 7 for largen (see Haymari]1]).

Hence
f (DA ~ f FQRdo

f|fn|2/1d9—f|f|2/1d9:Oflflz’lde
Y y

= Ofla(r, )}
— O(l _ r)1—4/1
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L 1
by the application of theorehi 4, as 2 > and alsd(r, f)—l2.(r, fn) =

O[(1 - r)**1] by the previous lemma.
Hence subtraction gives,

(3.2.3) f |f12dlo — f |fal*'de = O[(1 — r)**1]

v’ bt

Now the integral

|a’n|2/ld9

fn*'d6
[T (1 - 2r cosf + r2)2
)

v’ k(1-r

< f do
B (r sing/2)*
k(@d-r)

[ do
A [ o

k(d-r)
! < sing/2 > A9 in that range
(1-2rcosd +r2) = (rsin?6/2)? - o
() f [f2d0 < AQYIK( - )=
,y/
1 1-42
< 377(1 r

128 by properly choosind suficiently large. Hence in virtue of the relation
@) we deduce same fdi(z) and hence the lemma.
We now proceed to prove theorém 13. We have as in lefdima 5,

en@ = @' = ap(1-272 = ap > bnZ"
0

:2/1(2/1+1) ...... 21+ m-1)

Brm



Univalent Functions 111

_I(m+1+21) mAtt
S r@AOL(m+1) 122
and as already defined

92 =7

1+ Z amﬂzml
m=1
Hence by considering the ddeients ofy’(z) andery(2),

1 (¢@ ¢
A _
(n+/l)an’,1—ntha’n——fm—anZ

|2=r
2n
1 1 . . .
(n+ /l)aM - nbnaﬁ < Z Y f((p/(rele) _ re/ll/ww;](rele)) do
0

. 1 1
We shall choose in the range + - <r <1-—asusual. For#&tobe

n
determined, ley andy’ be the arc| < k(1 -r) andk(1-r) <9 <n
respectively ong =r.

¥, ~ @ho(eh)(r'é?)y =01 -1 asr - 1.

and so 129

¢ — ()€ =01 - r) 2 = o(n**Y) asr - 1 orasn — o
The length of the path of integration of= O(1-r) = O(%)

f(wl(reie) _ r/lei/wgo;](rei(i)) do = O(n2/1)

this being true for any fixe#.
Again,

| (Saz(reie) _ r/lei/wgo;](rei(i)) d9|
!
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sf|¢’(rei9)|d9+fr*lga;](rew)lde
bt bt

. 1
We now proceed as in theordrh 6, chooseich that 2 — 2t > > and
using Schwarz’s Inequality.

f ¢’ (re'?)|dg = 2 f |/ (re')|| f (re'?) [ 2de
v’ v’

1
2

<A f |/ (re'®) 2 f (re'?)|2-2dg
Y

lf | f(rei9)|2/1—2td9
v

By the same method as of theorEm 6, we can chosseh that the first
integral isO(n*+%).

By what we have just seen in lemriha 6 the second integral can be
made less thain(1 — r)1*+4 j.e. (const.yn*-*-1 andn can be made
as small as we please. So

2

f|¢/(rei9)|d9<n’n2/l

130 using the inequality (8) of theorenh 6.
' can be made as small as we please by chodsilagge enough
[ ¢p(re'®)de can be dealt with similarly.

So finally we see that
2r
[ trey - Py re s < 129 + oL
0

and since;’ can be made as small as we please the right hand side is
o(n?h).
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That gives
nbnary 21-1
8n) = Tl +0(n™"7)
n f(rp)! n?t 21-1
= O
na e ey o)
Therefore,
f(ra)! :
Nana ~ as required.

1)
This completes the proof of theordml 13. For an extension @f th

result to p-valent functions and further results see for example W.K.
Hayman|[1], [2].
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