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Lecture 1

1 Introduction

We shall be dealing in these lectures with the algebraic aspects of the 1

theory of algebraic functions of one variable. Since an algebraic func-
tion w(z) is defined implicitly by an equation of the formf (z,w) = 0,
where f is a polynomial, it is understandable that the study of such func-
tions should be possible by algebraic methods. Such methodsalso have
the advantage that the theory can be developed in the most general set-
ting, viz. over an arbitrary field, and not only over field of complex
numbers (the classical case).

Definition . Let k be a field. Analgebraic function fieldK over k is
a finitely generated extension over k of transcendence degree at least
equal to one. If the transcendence degree of K/k is r, we say that it is a
function field in r variables.

We shall confine ourselves in these lectures to algebraic function
fields of one variable, and shall refer to them shortly as ‘function fields’.

If K/k is a function field, it follows from our definition that there
exists anX in K transcendental overk, such thatK/k(X) is a finite al-
gebraic extension. IfY is another transcendental element ofk, it should
satisfy a relationF(X,Y) = 0, whereF is a polynomial overK which
does not vanish identically. SinceY is transcendental by assumption,2
the polynomial cannot be independent ofX. Rearranging in powers of
X, we see thatX is algebraic overk(Y). Moreover,

1



2 1. Lecture 1

[K : k(Y)] = [K : k(X,Y)].[k(X,Y) : k(Y)]

≤ [K : k(X)].[k(X,Y) : k(Y)] < ∞

and thusY also satisfies the same conditions asX. Thus, any transcen-
dental element ofK may be used as a variable in the place ofX.

The set of all elements ofK algebraic overk forms a subfieldk′

of K, which is called thefield of constantsof K. Hence forward, we
shall always assume, unless otherwise stated, thatk = k′, i.e., thatk is
algebraically closed inK.

2 Ordered Groups

Definition . A multiplicative(additive) Abelian group W with a binary
relation< (>) between its elements is said to be an ordered group if

0(1) for α, β ∈ W, one and only one of the relationsα < β, α = β, β <

α (α > β, α = β > α) holds.

0(2) α < β, β < γ⇒ α < γ (α > β, β > γ ⇒ α > γ)

0(3) α < β, δ ∈W⇒ αδ < βδ(α > β, δ ∈W⇒ α + δ > β + δ)

We shall denote the identity (zero) element by 1(0). In this and
the following section, we shall express all our results in multiplicative
notation.α > β shall mean the same thing asβ < α.

Let W0 be the set{α : α ∈Wα < 1}. W0 is seen to be a semi group by
0(2) and 0(3). Moreover,W =W0∪{1}∪W−1

0 is a disjoint partitioning of3

W (whereW−1
0 means the set of inverses of elements ofW0). Conversely,

if an Abelian groupW can be partitioned asW0 ∪ {1} ∪W−1
0 , whereW0

is a semi-group, we can introduce an order inW by definingα < β to
meanαβ−1 ∈ W0; it is immediately verified that 0(1), 0(2) and 0(3) are
fulfilled and thatW0 is precisely the set of elements< 1 in this order.

For an Abelian groupW, the mapα → αn (n any positive integer)
is in general only an endomorphism. But ifW is ordered, the map is a
monomorphism; for ifα is greater than or less than 1,αn also satisfies
the same inequality.
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3 Valuations, Places and Valuation Rings

We shall denote the non-zero elements of a fieldK by K∗.

Definition. A Valuationof a field K is a mapping v of K∗ onto an ordered
multiplicative (additive) group W (called thegroup of the valuationor
thevaluation group) satisfying the following conditions:

V(1) For a, b ∈ K∗, v(ab) = v(a)v(b) (v(ab) = v(a) + v(b)); i.e. v is
homomorphism of the multiplicative group K∗ onto W.

V(2) For a, b, a+b ∈ K∗, v(a+b) ≤ max(v(a), v(b)) (v(a+b)) ≥min(v(a)
v(b)))

V(3) v is non-trivial; i.e., there exists an a∈ K∗ with v(a) , 1(v(a) , 0)

Let us add an element 0(∞) to W satisfying the following

(1) 0.0 = α.0 = 0.α = 0 for everyα ∈W(∞+∞ = α+∞ = ∞+α = ∞),

(2) α > 0 for everyα ∈ W(α < ∞). If we extend a valuationv to the 4

whole of K by definingv(0) = 0 (v(0) = ∞, the new mapping also
satisfiesV(1),V(2) andV(3).

The following are simple consequences of our definition.

(a) Fora ∈ K, v(a) = v(−a). To prove this, it is enough byV(1) to
prove thatv(−1) = 1. But v(−1). v(−1) = v(1) = 1 by V(1), and
hencev(−1) = 1 by the remark at the end of§2.

(b) If v(a) , v(b), v(a + b) = max(v(a), v(b)). For letv(a) < v(b). Then,
v(a + b) ≤ max(v(a), v(b)) = v(b) = v(a + b − a) ≤ max(v(a +
b), v(a)) = v(a+ b)

(c) Let ai ∈ K, (i = 1, . . . n). Then an obvious induction onV(2) gives

v(
n
∑

1
ai) ≤

n
max
i=1

v(ai), and equality holds ifv(ai) , v(a j ) for i , j.

(d) If ai ∈ K, (i = 1, . . . n) such that
n
∑

1
ai = 0, thenv(ai ) = v(a j) for

at least one pair of unequal indicesi and j. For letai be such that
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v(ai) ≥ v(ak) for k , i. Thenv(ai) = v(
n
∑

k=1
k,i

ak) ≤
n

max
k=1
k,i

(v(ak)) = v(a j)

for some j , i, which proves thatv(ai ) = v(a j).

Let
∑

be a field. By
∑

(∞), we shall mean the set of elements of
∑

together with an abstract element∞ with the following properties.
α +∞ = ∞ + α = ∞ for everyα ∈

∑

.

α .∞ = ∞.α = ∞ for everyα ∈
∑

, α , 0.
∞ +∞ and 0.∞ are not defined.

Definition. A placeof a field K is a mappingϕ of K into
∑

U(∞) (where5
∑

may be any field ) such that

P(1) ϕ(a+ b) = ϕ(a) + ϕ(b).

P(2) ϕ(ab) = ϕ(a).ϕ(b).

P(3) There exist a, b ∈ K such thatϕ(a) = ∞ and ϕ(b) , 0 or ∞.
P(1)andP(2) are to hold whenever the right sides have a meaning.

From this it follows, taking theb of P(3), thatϕ(1)ϕ(b) = ϕ(b), so
thatϕ(1) = 1, and similarlyϕ(0) = 0.

Consider the setOϕ of elementsa ∈ K such thatϕ(a) , ∞. Then by
P(1), P(2) and P(3),Oϕ is a ring which is neither zero nor the whole of
K, andϕ is a homomorphism of this ring into

∑

. Since
∑

is a field, the
kernel of this homomorphism is a prime idealY of Oϕ

Let b be an element inK which is not inOϕ. We contend thatϕ(
1
b

) =

0. For if this mere not true, we would get 1= ϕ(1) = ϕ(b). ϕ(
1
b

) = ∞,

by P(2). Thus
1
b
∈ Y , and thusY is precisely the set of non-units of

Oϕ. Since any ideal strictly containingY should contain a unit, we see
that Y is a maximal ideal and hence the image ofOϕ in

∑

is again a
field. We shall therefore always assume that

∑

is precisely the image of
Oϕ by ϕ, or thatϕ is a mapping onto

∑

U(∞).
The above considerations motivate the
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Definition . Let K be a field. Avaluation ringof K is a proper subring

O of K such that if a∈ K∗, at least one of the elements a
1
a

is in O. 6

In particular, we deduce thatO contains the unity element. LetY be
the set of non-units inO. ThenY is a maximal ideal. For, leta ∈ O , b ∈

Y . If ab < Y , abwould be a unit ofO, and hence
1
ab
∈ O. This implies

thata
1
ab
=

1
b
∈ O, contradicting our assumption thatb is a non-unit of

O. Suppose thatc is another element ofY . To show thatb − c ∈ Y ,
we may assume that neither of them is zero. SinceO is a valuation ring,

at least one of
b
c

or
c
b

, say
b
c

, is in O. Hence,
b
c
− 1 =

b− c
c
∈ O. If

b − c were not inY ,
1

b− c
∈ O, and hence

1
b− c

·
b− c

c
=

1
c
∈ O,

contradicting our assumption thatc ∈ Y . Finally, since every element
outsideY is a unit ofO ,Y is a maximal ideal inO.
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3 (Contd.)

In this lecture, we shall establish the equivalence of the concepts of val- 7

uation, place and valuation ring.
Two placesϕ1 : K →

∑

1∪(∞) andϕ2 : K →
∑

2∪(∞) are said to
beequivalentif there exists an isomorphismλ of

∑

1, onto
∑

2 such that
ϕ2(a) = λ ◦ ϕ1(a) for everya, with the understanding thatλ(∞) = ∞.

This is clearly an equivalence relation, and thus, we can putthe set
of places ofK into equivalence classes. Moreover, equivalent placesϕ1

andϕ2 obviously define the same valuation ringsOϕ1 andOϕ2. Thus, to
every equivalence class of places is associated a unique valuation ring.

Conversely, letO be any valuation ring andY its maximal ideal.
Let

∑

be the quotient fieldO/Y andη the natural homomorphism of
O onto

∑

. It is an easy matter to verify that the mapϕ : K →
∑

U{∞}
defined by

ϕ(a) =















η(a) if a ∈ O

∞ if a < O

is a place, whose equivalence class corresponds to the givenvaluation
ring O.

Let v1 andv2 be two valuations of a fieldK in the ordered group
W1 andW2. We shall denote the unit elements of both the groups by 1,8

since it is not likely to cause confusion. We shall say thatv1 andv2 are
equivalentif v1(a) > 1 if and only ifv2(a) > 1.

Let v1 andv2 be two equivalent valuations. From the definition, it
follows, by taking reciprocals, thatv1(a) < 1 if and only if v2(a) < 1,

7



8 2. Lecture 2

and hence (the only case left)v1(a) = 1 if and only if v2(a) = 1. Let
α be any element ofW1. Choosea ∈ K such thatv1(a) = α (this is
possible sincev1 is onto W1). Defineσ(α) = v2(a). The definition
is independent of the choice ofa since ifb were another element with
v1(b) = α, thenv1(ab−1) = 1 so thatv2(ab−1) = 1, i.e. v2(a) = v2(b).
Thus,σ is a mapping fromW1 ontoW2 (sincev2 is ontoW2). It is easy
to see thatσ is an order preserving isomorphism ofW1 ontoW2 and we
havev2(a) = (σ.v1)(a) for everya ∈ K∗. Thus, we see that the definition
of equivalence of valuations can also be cast into a form similar to that
for places.

Again, equivalence of valuations is an equivalence relation, and we
shall that equivalence classes of valuations of a fieldK correspond cano-
nically and biunivocally to valuation rings of the fieldK.

Let v be a valuation andO be the set of elementsa in K such that
v(a) ≤ 1. It is an immediate consequence of the definition thatO is a

ring. Also, if a ∈ K, v(a) > 1, thenv

(

1
a

)

< 1 and hence
1
a
∈ O. Thus,O

is a valuation ring. Also, ifv1 andv2 are equivalent, the corresponding9

rings are the same.
Suppose conversely thatO is a valuation ring inK andY its maxi-

mal ideal. The set differenceO − Y is the set of units ofO and hence
a subgroup of the multiplicative groupK∗. Let η : K∗ → K∗/O − Y

be the natural group homomorphism. Thenη(O∗) is obviously a semi-
group and the decompositionK∗/O − Y = η(O∗) ∪ {1}U ∪ η(O∗)−1 is
disjoint, Hence, we can introduce an order in the groupK∗/O − Y and
it is easy to verify thatη is a valuation onK whose valuation ring is
preciselyO.

Summarising, we have

Theorem.The valuations and places of a field K are, upto equivalence,
in canonical correspondence with the valuation rings of thefield.
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4 The Valuations of Rational Function Field

Let K = k(X) be a rational function field overk ; i.e., K is got by ad- 10

joining to k a single transcendental elementX over k. We seek for all
the valuationsv of K which aretrivial on k, that is,v(a) = 1 for every
a ∈ K∗. It is easily seen that these are the valuations which correspond
to places whose restrictions tok are monomorphic.

We shall henceforward write all our ordered groups additively.
Let ϕ be a place ofK = k(X) onto

∑

∪(∞). We consider two cases

Case 1.Letϕ(X) = ξ , ∞. Then, the polynomial ring k[X] is contained
in Oϕ, andY ∩ k[X] is a prime ideal in k[X]. Hence, it should be of
the form(p(X)), where p(X) is an irreducible polynomial in X. Now, if

r(X) ∈ K, it can be written in the form r(X) = (p(X))ρ
g(X)
h(X)

, where g(X)

and h(X) are coprime and prime to p(X). Let us agree to denote the
image in

∑

of an element c in k bȳc, and that of a polynomial f over k
by f̄ . Then,we clearly have

ϕ(r(x)) =



























0 if ρ > o
g(ξ)
h(ξ) if ρ = 0

∞ if ρ < 0

Conversely, supposep(X) is an irreducible polynomial ink[X] and 11

ξ a root of p(X). The above equations then define a mapping ofk(X)
onto k(ξ) ∪ {∞}, which is a place, as is verified easily. We have thus
determined all places ofk(X) under case 1 (upto equivalence).

9
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If Z is the additive group of integers with the natural order, theval-
uationv associated with the placeϕ above is given byv(r(X)) = ρ.

Case 2.Suppose now thatϕ(X) = ∞. Thenϕ(
1
X

) = 0. Then since K=

k(X) = k(
1
X

), we see thatϕ is determined by an irreducible polynomial

p(
1
X

), and sinceϕ
1
X

) = 0, p(Y) should divide Y. Thus, p(Y) must be Y

(except for a constant in k), and if

r(X) =
a0 + a1x+ − + anxn

b0 + b1x+ − + bmxm, an, bm , 0,

ϕ(r(X)) = ϕ

















( 1
X )m−n

a0
xn +

a1
xn−1 + − + an

b0
xm +

b1
xm−1 + − + bm

















=



























o if m> n
an
bm

if m = n

∞ if m < n

The corresponding valuation with values inZ is given byv(r(X)) =
m− n = − degr(X), where the degree of a rational function is defined in
the degree of the numerator-the degree of the denominator.

We shall say that a valuation isdiscreteif the valuation group may
be taken to beZ. We have in particular proved that all valuations of a
rational function field trivial over the constant field are discrete. We shall
extend this result later to all algebraic function fields of one variable.

5 Extensions of Places

Given a fieldK, a subfieldL and a placeϕL of L into
∑

, we wish to12

prove in this section that there exists a placeϕK of K into
∑1, where

∑1

is a field containing
∑

and the restriction ofϕK to L is ϕL. Such aϕK is
called an extension of the placeϕL to K. For the proof of this theorem,
we require the following

Lemma (Chevalley) . Let K be a field,O a subring andϕ a homomor-
phism ofO into a field∆ which we assume to be algebraically closed.
Let q be any element of K∗, andO[q] the ring generated byO and q in
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K. Thenϕ can be extended into a homomorphismΦ of at least one of

the ringsO[q],O[
1
q

], such thatΦ restricted toO coincides withϕ.

Proof. We may assume thatϕ is not identically zero. Since the image
of O is contained in a field, the kernel ofϕ is a prime idealY which is

not the whole ringO. Let O1
= O ∪

{a
b

a, b ∈ O , b < Y

}

. Clearly,O1

is a ring with unit, andϕ has a unique extension ˜ϕ to O1 as a homomor-

phism, give by ˜ϕ
(a
b

)

=
ϕ(a)
ϕ(b)

. The image by ˜ϕ is then the quotient field
∑

of ϕ(O). We shall denote ˜ϕ(a) by ā for a ∈ O1. �

Let X and X̄ be indeterminates overO1 and
∑

respectively. ˜ϕ can
be extended uniquely to a homomorphism ¯ϕ of O1[X] onto

∑

[X̄] which
takesX to X̄ by defining

ϕ̄(a0 + a1X + − + anXn) = ā0 + ā1X̄ + − + ānX̄n.

Let U be the idealO1[X] consisting of all polynomials which van-13

ish for X = q, and letŪ be the ideal ¯ϕ(U ) in
∑

[X̄]. We consider three
cases.

Case 1. Let Ū = (0). In this case, we defineΦ(q) to be any fixed
element of∆. Φ is uniquely determined on all other elements ofO1[q]
by the requirement that it be a ring homomorphism which is an extension
of ϕ̃. In order that it be well defined, it is enough to verify that ifany
polynomial overO1 vanishes for q, its image bȳϕ vanishes forΦ(q).
But this is implied by our assumption.

Case 2.Let Ū , (0),,
∑

[X̄]. ThenŪ = ( f (X̄)), where f is a non-
constant polynomial over

∑

. Let α be any root f(X̄) in ∆ (there is a
root in ∆ since∆ is algebraically closed). DefineΦ(q) = α. This can be
extended uniquely to a homomorphism ofO1[q], since the image bȳϕ of
any polynomial vanishing for q is of the form f(X̄) f (X̄), and therefore
vanishes forX̄ = α.

Case 3.SupposeŪ =
∑

[X̄]. Then the homomorphism clearly cannot

be extended toO1[q]. Suppose now that it cannot be extended toO1[
1
q

]
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either. Then ifδ denotes the ideal of all polynomials inO1[X] which

vanish for
1
q

, and if δ̄ is the idealϕ̄(δ)in
∑

[X̄], we should havēδ =
∑

[X̄]. Hence, there exist polynomials f(X) = a0 + a1X + − + anXn and

b0+b1X+−+bmXm such thatϕ̄( f (X)) = ϕ̄(g(X)) = 1, f (q) = g

(

1
q

)

= 0.

We may assume that f and g are of minimal degree n and m satisfying
the required conditions. Let us assume that m≤ n. Then, we have14

ā0 = b̄0 = 1, āi = b̄ j = 1 for i, j > 0. Let g0(X) = b0Xm
+ · · · + bm.

Applying the division algorithm to the polynomials bn
0 f (X) and g0(X),

we obtain

bn
0 f (X) = g0(X)Q(X) + R(X),Q(X),R(X) ∈ O

1[X], degR< m.

SubstitutingX = q, we obtainR(q) = 0. Also, acting with ¯ϕ, we
have

1 = b̄n
0 f̄ (X̄) = ḡ0(X̄)Q̄(X̄) + R̄(X̄) = Q̄(X̄)X̄m

+ R̄(X̄),

and hence, we deduce thatQ̄(X̄) = 0, R̄(X̄) = 1. Thus,R(X) is a polyno-
mial with R(q) = 0, R̄(X̄) = 1, and degF(X) < m≤ n, which contradicts
our assumption on the minimality of the degree off (X). Our lemma is
thus prove.

We can now prove the

Theorem.Let K be a field andO a subring of K. Letϕ be a homomor-
phism ofO in an algebraically closed field∆. Then it can be extended
either to a homomorphism of K in∆ or to a place of K in∆ ∪ (∞). In
particular, any place of a subfield of K can be extended to a place of K.

Proof. Consider the family of pairs{ϕα,Oα}, whereOα is a subring if
K containingO andϕα a homomorphism ofOα in ∆ extendingϕ onO.
The family is non-empty, since it contains (ϕ,O). We introduce a partial
order in this family by defining (ϕα,Oα) > (ϕβ,Oβ) if Oα ⊃ Oβ andϕα
is an extension ofϕβ. �

The family clearly being inductive, it has a maximal elementby15

Zorn’s lemma. Let us denote it by (Φ,O). O is either the whole ofK or
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a valuation ring ofK. For if not, there exists aq ∈ K such that neither

q nor
1
q

belongs toO. we may then extendΦ to a homomorphism of

at least one ofO[q] or O

[

1
q

]

in ∆. Since both these rings containO

strictly, this contradicts the maximality of (Φ,O).
If O were not the whole ofK,Φ must vanish on every non - unit of

O; for if q were a non-unit andΦ(q) , 0, we may defineΦ

(

1
q

)

=
1
Φ(q)

and extend this to a homomorphism ofO

[

1
q

]

, which again contradicts

the maximality ofO. This proves thatΦ can be extended to a place of
K by defining it to be∞ outsideO.

In particular, a placeϕ of a subfieldL of K , when considered as a
homomorphism of its valuation ringOϕ and extended toK, gives a place
on K; for if ϕ where a homomorphism of the whole ofK in ∆, it should
be an isomorphism (since the kernel, being a proper ideal inK, should
be the zero ideal). ButΦ being an extension ofϕ, the kernel contains at
least one non-zero element.

Corollary . If K/k is an algebraic function field and X any element of
K transcendental over k, there exists at least one valuationv for which
v(X) > 0.

Proof. We have already shown in the previous section that there exists
a placeY1 in k(X) such thatvY1(X) > 0. If we extend this placeY1 to a
placeY of K, we clearly havevY (X) > 0. �





Lecture 4

6 Valuations of Algebraic Function Fields

It is our purpose in this paragraph to prove that all valuations of an al- 16

gebraic function fieldK which are trivial on the constant fieldk are
discrete. Henceforward, when we talk of valuations or places of an al-
gebraic function fieldK, we shall only mean those which are trivial onk.
Valuations will always be written additively. We require some lemmas.

Lemma 1. Let K/L be a finite algebraic extension of degree[K : L] = n
and let v be a valuation on K with valuation group V. If V◦ denotes the
subgroup of V which is the image of L∗ under v and m the index of V◦ in
V, we have m≤ n.

Proof. It is enough to prove that of anyn+ 1 elementsα1, . . . αn+1 of V,
at least two lie in the same coset moduloV◦. �

Chooseai ∈ K such thatv(ai) = αi (i = 1, . . . n+ 1). Since there can
be at mostn linearly independent elements ofK overL, we should have

n+1
∑

i=1

l iai = 0, l i ∈ L, not all l i being zero.

This implies thatv(l iai) = y(l ja j) for somei and j, i , j (see Lecture
1, § 3). Hence, we deduce that

v(l i) + v(ai) = v(l iai ) = v(l ja j) = v(l j ) + v(a j ),

αi − α j = v(ai ) − v(a j ) = v(l j ) − v(l i ) ∈ V◦

15
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andαi andα j are in the same coset moduloV◦. Our lemma is proved. 17

Let V be an ordered abelian group. We shall say thatV is archime-
deanif for any pair of elementsα, β in V with α > 0, there corresponds
an integern such thatnα > β. We shall call any valuation with value
group archimedean anarchimedean valuation.

Lemma 2. An ordered group V is isomorphic to Z if and only if(i) it is
archimedean and(ii ) there exists an elementξ > 0 in V such that it is
the least positive element; i.e.,α > 0⇒ α ≥ ξ.

Proof. The necessity is evident. Now, letα be any element ofV. �

Then by assumption, there exists a smallest integern such thatnξ ≤
α < (n+ 1)ξ. Thus,

0 ≤ α − nξ < (n+ 1)ξ − nξ = ξ,

and sinceξ is the least positive element, we haveα = nξ. The mapping
α ∈ V → n ∈ Z is clearly an order preserving isomorphism, and the
lemma is proved.

Lemma 3. If a subgroup V◦ of finite index of an ordered group V is
isomorphic to Z,V is itself isomorphic to Z.

Proof. Let the index be
[

V : V◦
]

= n. Let α, β be any two elements of

V, with α > 0. Thennα andnβ are inV◦, nα > 0. �

SinceV◦ is archimedean, there exists an integerm such thatmnα >
nβ, from which it follows thatmα > β.

Again, consider the set of positive elementsα in V. Thennα are in18

V◦ and are positive, and hence contain a least elementnξ (since there is
an order preserving isomorphism betweenV◦ andZ). Clearly,ξ is then
the least positive element ofV.

V is therefore isomorphic toZ, by Lemma 2.
We finally have the

Theorem.All valuations of an algebraic function field K are discrete.
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Proof. If X is any transcendental element ofK/k, the degree
[

K : k(X)
]

< ∞. Since we know that all valuations ofk(X) are discrete, our result
by applying Lemma 1 and Lemma 3. �

7 The Degree of a Place

Let Y be a place of an algebraic function fieldK with constant fieldk
onto the fieldkY ∪∞. SinceY is an isomorphism when restricted tok,
we may assume thatkY is an extension ofk. We shall moreover assume
that kY is the quotientOY /MY whereOY is the ring of the placeY
andMY the maximal ideal. We now prove the

Theorem.LetY be a place of an algebraic function field. Then kY /k is
an algebraic extension of finite degree.

Proof. Choose an elementX , 0 in K such thatY (X) = 0. ThenX
should be transcendental, sinceY is trivial on the field of constants.

Let
[

K : k(X)
]

= n < ∞. Let α1, . . . αn+1 be any (n + 1) elements of 19

kY . Then, we should haveαi = Y (ai) for someai ∈ K(i = 1, . . . n+ 1).
There therefore exist polynomialsfi(X) in k[X] such that

n+1
∑

i=1
fi(X)ai = 0, not all fi(X) having constant term zero. �

Writing fi(X) = l i + Xgi(X), we have

n+1
∑

i=1

l iai = −X
n+1
∑

i=1

aigi(X), and taking

theY -image,
n+1
∑

i=1
l iαi = −Y (X)

n+1
∑

i=1
aigi(Y X) = 0, l i ∈ k, not all l i being

zero.
Thus, we deduce that the degree ofkY /k is at mostn.
The degreefY of kY over k is called thedegree of the placeY .

Note that fY is always≥ 1. If the constant field is algebraically closed
(e.g. in the case of the complex number field),fY = 1, sincekY , being
an algebraic extension ofk, should coincide withk.
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Finally, we shall make a few remarks concerning notation.
If Y is a place of an algebraic function field, we shall denote the cor-

responding valuation with values inZ by vY (vY is said to be a normed
valuation at the placeY ). The ring of the place shall be denoted by
OY and its unique maximal ideal byY . (This is not likely to cause any
confusion).

8 Independence of Valuations

In this section, we shall prove certain extremely useful result on valua-20

tions of an arbitrary fieldK.

Theorem.Let K be an arbitrary field and vi(i = 1, . . . n) a set of valua-
tions on K with valuation ringsOi such thatOi 1 O j if i , j. There is
then an element X∈ K such that v1(X) ≥ 0, vi(X) < 0 (i = 1, . . . n).

Proof. We shall use induction. Ifn = 2, sinceO1 1 O2, there is an
X ∈ O1,X < O2, and thisX satisfies the required conditions. Suppose
now that the theorem is true forn − 1 instead ofn. Then there exists a
Y ∈ K such that

v1(Y) ≥ 0, vi (Y) < 0 (i = 2, . . . n− 1).

�

SinceO1nsubsetOn, we can finda Z ∈ K such that

v1(Z) ≥ 0, vn(Z) < 0

Let m be a positive integer. PutX = Y + Zm. Then

v1(Y + Zm) ≥ min(v1(Y),mv1(Z)) ≥ 0

Now supposer is one of the integers 2, 3, . . . n. If vr (Z) ≥ 0, r cannot
ben, and sincevr (Y) < 0, we have

vr (Y + Zm) = vr (Y) < 0.
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If vr (Z) < 0 andvr (Y + Zmr ) ≥ 0 for somemr , for m> mr we have21

vr (Y+ Zm) = vr (Y+ Zmr
+ Zm− Zmr ) = min(vr (Y+ Zmr ), vr (Z

m− Zmr )),

andvr (Zm− Zmr ) = vr (Zmr ) + vr (1− Zm−mr ) = mrvr (Z) < 0,
Sincevr(1− Zm−mr) = vr (1) = 0
Thus, vr (Y + Zm) < 0 for large enoughm in any case. HenceX

satisfies the required conditions.
If we assume that the valuationsvi of the theorem are archimedean,

then the hypothesis thatOi 1 O j for i , j can be replaced by the weaker
one that the valuations are inequivalent (which simply states thatOi ,

O j for i , j).
To prove this, we have only to show that ifv andv1 are two archime-

dean valuations such that the corresponding valuation rings O andO1

satisfyO ⊃ O1, thenv andv1 are equivalent. For, consider an element

a ∈ K∗ such thatv(a) > 0. Then,v

(

1
a

)

< 0, and consequently
1
a

is not

in O, and hence not inO1. Thus,v1

(

1
a

)

< 0, v1(a) > 0. Conversely,

supposea ∈ K∗ andv1(a) > 0. Then by assumption,v(a) ≥ 0. Suppose
now thatv(a) = 0. Findb ∈ K∗ such thatv(b) < 0. If n is any positive
integer, we havev(anb) = nv(a) + v(b) < 0, anb < O.

But sincev1 is archimedean andv1(a) > 0, for large enoughn we
have

v1(anb) = nv1(a) + v1(b) > 0 , anb ∈ O
1.

22

This contradicts our assumption thatO1 ⊂ O, and thus,v(a) >

0. Hencev and v1 are equivalent. Under the assumption that thevi

archimedean, we can replace in the theorem above the first inequality
V1(X) ≥ 0 even by the strict inequalityv1(X) > 0. To prove this let
X1 ∈ K∗ satisfyv1(X1) ≥ 0, vi(X1) < 0, i > 1. Let Y be an element in
K∗ with v1(Y) > 0. Then, ifX = X1

mY, wherem is a sufficiently large
positive integer, we have

v1(X) = v1(Xm
1 Y) = mv1(X1) + v1(Y) > 0,

vi(X) = vi(X
m
1 Y) = mvi(X1) + vi(Y) < 0, i = 2, . . . , n.
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We shall hence forward assume that all valuations considered are
archimedean. To get the strongest form of our theorem, we need two
lemmas.

Lemma 1. If vi (i = 1, . . . n) are inequivalent archimedean valuations,
andρi are elements of the corresponding valuations group, we can find
Xi(i = 1, . . . n) in K such that vi(Xi − 1) > ρi , v j(Xi) > ρ j , i , j

Proof. ChooseYi ∈ K such that

vi(Yi) > 0, v j(Yi) < 0 for j , i.

PutXi =
1

1+ Ym
i

. Then, ifm is chosen large enough, we have (since the

valuation are archimedean)

v j(Xi) = −v j(1+ Ym
i ) = −mvj(Yi) > ρ j , i , j

andvi(Xi − 1) = vi(
−Ym

i

1+ Ym
i

) = mvi(Yi) − vi(1 + Ym
i ) = mvi(Yi) > ρi .23

sincev− i(1+ Ym
i ) = 0. �

A set of valuationsvi(i = 1, . . . n) are said to be independent if given
any set of elementsai ∈ K and any set of elementsρi in the respective
valuation groups ofvi , we can find anX ∈ K such that

vi(X − ai) > ρi .

We then have the following

Lemma 2. Any finite set of inequivalent archimedean valuations are
independent.

Proof. Supposevi(i = 1, . . . n) is a given set of inequivalent archimedean
valuations. Ifai ∈ K andρi are elements of the valuation group of the

vi , putσi = ρi −
n

min
j=1

vi(a j). ChooseXi as in Lemma 1 for thevi andσi.

PutX =
n
∑

1
aiXi. Then

vi(X − ai) = vi



















∑

j,i

a jX j + ai(Xi − 1)



















> σi +
n

min
j=1

vi(a j) = ρi ,
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and our lemma is proved. �

Finally, we have the following theorem, which we shall referto in
future as the theorem of independence of valuations.

Theorem . If vi(i = 1, . . . n) are inequivalent archimedean valuations,
ρi is an element of the value group of vi for every i, and ai are given 24

elements of the field, there exists an element X of the field such that

vi(X − ai) = ρi

Proof. ChooseY by lemma 2 such thatvi(Y−ai) > ρi. Findbi ∈ K such
thatvi(bi ) = ρi and anZ ∈ K such thatvi(Z − bi) > ρi . Then it follows
thatvi(Z) = min(vi(Z − bi), vi(bi )) = ρi . �

PutX = Y + Z. Then,

vi(X − ai ) = vi(Z + Y− ai ) = vi(Z) = ρi ,

andX satisfies the conditions of the theorem.

Corollary. There are an infinity of places of any algebraic function field.

Proof. Suppose there are only a finite number of placesY1, . . . ,Yn. �

Choose anX such thatvYi (X) > 0 (i = 1, . . . n). Then, vYi (X +
1) = vYi (1) = 0 for all the places,Yi, which is impossible sinceX an
consequentlyX + 1 is a transcendental element overk.





Lecture 5

9 Divisors

Let K be an algebraic function field with constant fieldk. We make the 25

Definition . A divisor of K is an element of the free abelian group gen-
erated by the set of places of K. The places themselves are called prime
divisors.

The groupϑ of divisors shall be written multiplicatively. Any ele-
mentU of the groupϑ of divisors can be written in the form

U =

∏

Y

Y vY (U )

where the product is taken over all prime divisorsY of K, and the
vY (U ) are integers, all except a finite number of which are zero. The
divisor is denoted byn.

We say that a divisorU is integral if vY (U ) ≥ 0, for everyY , and
thatU dividesδ if δU −1 is integral. Thus,U dividesδ if and only if
vY (δ) ≥ vY (U ) for everyY .

Two divisorsU andδ are said to becoprimeif vY (U , 0 implies
thatvY (δ) = 0.

Thedegree d(U ) of a divisorU is the integer

d(U ) =
∑

Y

fY vY (U ),

where fY is the degree of the placeY . 26

23
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The mapU → d(U ) is a homomorphism of the group of divisorsϑ
into the additive group of integers. The kernelϑ◦ of this homomorphism
is the subgroup of divisors of degree zero.

An elementX of K is said to bedivisibleby the divisorU if vY (X) ≥
vY (U ) for everyY . Two elementsX, Y ∈ K are said to becongruent
modulo a divisorU (written X ≡ ( mod U )) if X − Y is divisible by
U .

Let S be a set prime divisors ofK. Then we shall denote byΓ(U /S)
the set of elementsX ∈ K such thatvY (X) ≥ vY (U ) for everyY in S.
It is clear thatΓ(U /S) is a vector space over the constant fieldk, and
also that ifU dividesδ, Γ(δ/S) ⊂ Γ(U /S). Also, if S andS1 are two
sets of prime divisors such thatS ⊂ S1, thenΓ(U /S1) ⊂ Γ(U /S)).
Finally, Γ(U /S) = Γ(δ/S) if U δ−1 contains noY belonging toS with
a non-zero exponent.

If S is a set of prime divisor which is fixed in a discussion andU a
divisor, we shall denote byU◦ the new divisor got fromU by omitting
all Y which do not occur inS: U◦ =

∏

Y ∈S
Y vY (U )

Theorem.Let S be a finite set of prime divisors andU , δ two divisors
such thatU dividesδ. Then,

dimk
Γ(U /S)
Γ(δ/S)

= d(δ◦) − d(U◦) = d(δ◦U
−1
◦ ).

Proof. By our remark above, we may assume thatU = U◦ andδ = δ◦.27

Moreover, it is clearly sufficient to prove the theorem whenδ =
U Y , whereY is a prime divisor belonging toS. For, if δ = U Y1..Yn

we have

dimk
Γ(U /S)
Γ(δ/S)

= dimk
Γ(U /S)
Γ(U Y1/S)

+

dimk
Γ(U Y1/S)
Γ(U Y1Y2/S)

+ · · · + dimk
Γ(UY1···Yn−1/S

Γ(δ/S)

andd(δ) − d(U ) = d(Y1) + d(Y2) + · · · + d(Yn). �

Hence, we have to prove that ifU is a divisor such that all the
prime divisors occurring in it with non-zero exponents are in S, andY
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any prime divisor inS, we have

dimk
Γ(U /S)
Γ(U Y /S)

= fY = f .

By the theorem on independence of valuations, we may choose an
elementu ∈ K such that 28

vU (u) = vU (U ) for all U in S.

If X1,X2, . . .Xf+1 are anyf + 1 elements ofΓ(U /S), the elements
X1u−1, . . .Xf+1u−1 are all inUY . But since the degree ofkU = OY /Y

overk is f , we have

f+1
∑

i=1

aiXiu
−1 ∈ Y , ai ∈ k, not all ai being zero.

Hence,
f+1
∑

i=1
aiXi ∈ Γ(U Y /S), ai ∈ k, not all ai being zero, thus

proving that the dimension overk of the quotient
Γ(U /S)
Γ(U Y /S)

is ≤ f .

Now, supposeY1, . . .Yf are f elements ofOY such that they are lin-
early independent overk moduloY . ChooseY1

i ∈ K such that

vY (Y1
i − Yi) > 0, vU (Y1

i ) ≥ 0 for U , Y ,U ∈ S.(i = 1, f ).

By the first condition,Y1
i ≡ Yi( mod Y ), and henceYi andY1

i de-
termine the same element inkY . But by the second condition, the ele-
mentsuY1

i belong toΓ(U /S), and sinceY1, . . .Yf are linearly indepen-
dent modY , no linear combination ofuY1

1 , . . .uY1
f with coefficients

in k- at least one of which is non-zero-can lie inΓ(U Y /S). Thus,

dimk
Γ(U /S)
Γ(U Y /S)

≥ f .

This proves our theorem.
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10 The SpaceL(U )

Let U be any divisor of an algebraic function fieldK. 29

We shall denote byL(U ) the set of all elements ofK which are
divisible by U . Clearly L(U ) = Γ(U /S) if S is the set of all prime
divisors ofK, and thus we deduce thatL(U ) is a vector space overk and
if U dividesδ, L(U ) ⊃ L(δ). We now prove the following important

Theorem .For any divisorU , the vector space L(U ) is finite dimen-
sional over k. If we denote its dimension by l(U ), and if U dividesδ,
we have

l(U ) + d(U ) ≤ l(δ) + d(δ).

Proof. Let S be the set of prime divisors occurring inU or δ.
Then, it easy to see that

L(δ) = L(U ) ∩ Γ(δ/S)

Hence, by Noether’s isomorphism theorem,

L(U )
L(δ)

=
L(U )

L(U ) ∩ Γ(δ/S)
≃

L(U ) + Γ(δ/S)
L(δ/S)

⊂
L(U /S)
Γ(δ/S)

,

and therefore, dimk
L(U )
L(δ)

≤ dimk
Γ(U /S)
Γ(δ/S)

= d(δ) − d(U )

Now, choose forδ any integral divisor which is a multiple ofU and
is not the unit divisorn. Then,L(δ) = (0); for if X were a non-zero
element ofL( ), it cannot be a constant sincevY (X) ≥ vY (δ) > 0 for

27
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at least oneY , and it cannot be transcendental overk sincevY (X) ≥ 30

vY (δ) ≥ 0 for all Y . �

This is not possible. This together with the above inequality proves
that dimk L(U ) = l(U ) < ∞, and our theorem is completely proved.

SinceL(N ) clearly contains only the constants,l(N ) = 1.

11 The Principal Divisors

We shall now associate to every non-zero element ofK a divisor. For
this, we need the

Theorem .Let X ∈ K∗. Then there are only a finite number of prime
divisorsY with vY (X) , 0.

Proof. If X ∈ k, vY (X) = 0 for all Y and the theorem is valid.
Hence assume thatX is transcendental overk. Let [K : k(X)] = N.

SupposeY1, . . .Yn are prime divisors for whichvYi (X) > 0. Let δ =
n
∏

i=1
YivYi (X), andS = {Y1, . . .Yn}. �

Then, dimk
Γ(N /S)
Γ(δ/S) = (δ) =

n
∑

i=1
fYi vYi (X). We shall show that this is

at most equal toN.
Let in factY1, . . . ,YN+1 be any (N + 1) elements ofΓ(N /S). Since

[K : k(X)] = N, we should have
N+1
∑

j=1
f j(X)Yj = 0, f j(X) ∈ k[X], with

at least onef j having a non-zero constant term. Writingf j(X) = a j +

Xgj(X), the above relation may be rewritten as
N+1
∑

1
a jYj = −X

N+1
∑

1
g j

(X)Yj , not alla j being zero, and hence

vYν

















N+1
∑

1

a jYj

















= vYν
(X) + vYν

















N+1
∑

1

g j(X)Yj

















≥ vYν
(X)

31
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This proves that
N+1
∑

1
a jYj ∈ Γ(δ/S), and therefore

n ≤
n

∑

i=1

fYi vYI (X) = d(δ) = dimk
Γ(N /S)
Γ(δ/S)

≤ N,

By considering
1
X

instead ofX, we deduce that the number of prime

divisorsY for whichvY (X) < 0 is also finite, and our theorem follows.
The method of definingthe divisor(X) corresponding to an element

X ∈ K∗ is now dear. We define thenumeratorzX of X to be the divisor
∏

vY (X)>0
Y vY (X) (the product being taken over allY for whichvY (X) >

0), thedenominatorNX of X to be the divisor
∏

vY (X)<0
Y −vY (X) , and the

principal divisor (X) of X to be
∏

vy(X),0
Y vY (X)

=
zX

NX
.

If X,Y ∈ K∗, clearly (XY) = (X)(Y) and (X−1) = (X)−1. Thus,
the principal divisors form a subgroupZ of the group of divisorsϑ.

The quotient groupR =
ϑ

Z
is calledthe group of divisor classes. The

following sequence of homomorphisms is easily seen to be exact (i.e.,
the image of a homomorphism is equal to the kernel of the next).

1→ k∗ → K∗ → ϑ→ R→ 1.

In the course of the proof of the above theorem, we proved the in-
equalitiesd(Nx) ≤ N, d(zx) ≤ N, for a transcendentalX, where [K :
k(X)] = N.

We will now show that equality holds 32

Theorem.Let X be a transcendental element of K, and put N= [K :
k(X)]. Then,

d(zX) = d(NX) = N.

In order to prove the theorem, we shall first prove a lemma. We
shall say thatY ∈ K is anintegral algebraic functionof X, if it satisfies
a relation

Ym
+ fm−1(X)Ym−1

+ − + fo(X) = o, fi(X) ∈ k[X].
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We then have the

Lemma. If Y is an integral algebraic function of X, and a prime divisor
Y does not divideNX, it does not divideNY.

Proof. SinceY does not divideNX, vY (X) ≥ 0, and hence

mvY (Y) = vY (Ym) = vY ( fm−1(X)Ym−1
+

· · · + f0(X)) ≥
m−1
min
ν=0

(γvY (Y)) = ν0vY (Y),

for someν0 such that 0≤ ν0 ≤ m− 1. This proves that (m− ν0)vY (Y) ≥
0, vY (Y) ≥ 0, and thereforeY does not divideNY. Now, letY be any
element ofK satisfying the equation

fm(X)Ym
+ · · · + f0(X) = 0

Then, the elementZ = fm(X)Y satisfying the equation

Zm
+ gm−1(X)Zm−1

+ · · · + go(X) = 0,

wheregk(X) = fk(X) f m−k−1
m (x), and henceZ is an integral function of33

X �

Suppose then thatY1, . . .YN is a basis ofK/k(X). By the above
remark, we any assume that theYi are integral functions ofX. The
elementsXiYj(i = 0, . . . t; j = 1, . . .N) are then linearly independent
overk, for any non-negative integert. By the above lemma, we can find
integers such thatN s

X (Yj) are integral divisors. Hence,N s+t
X (Xi)(Yj)

is an integral divisor for (i = 0, . . . t, j = 1, . . .N), which implies that
XiYj are elements ofL(N −s−t

X ). Since these are linearly independent
andN(t + 1) in number, we obtain

N(t + 1) ≤ 1(N −s−t
X ) ≤ l(N ) + d(N ) − d(N −s−t

X ) = 1+ (s+ t)d(Nx),

the latter inequality holding becauseN −s−t
X dividesN .

Thus,d(NX) ≥
Nt+ N − 1

s+ t
→ N ast → ∞, which taken together

with the opposite inequality we proved earlier shows thatd(NX) = N.
It is clearly sufficient to show thatd(NX) = N, since the other fol-

lows on replacingX by
1
X

and observing thatk(X) = k(1/X).



11. The Principal Divisors 31

Corollary 1. If X ∈ K∗, d((X)) = 0. This is clear when X is a constant.
If X be a variable, d((X)) = d(zX) − d(NX) = N − N = 0. Hence we get
the exact sequence

1→ k∗ → K∗ → ϑ→ R0→ 1,

whereϑ0 is the group of divisor of degree zero andR0 =
ϑ0

Z
is the group

of divisor classes of degree zero.

Corollary 2. Suppose C∈ R is a class of divisors. IFU , δ are two
divisors of this class, there exists an X∈ K∗ such thatU = (X)δ.
Hence, d(U ) = d((X)) + d(δ) = d(δ), and therefore we may define the34

degree d(C) of the class C to be the degree of any one of its divisors.

Corollary 3. If X is any transcendental element, there exists an integer
Q dependent only on X such that for all integral m, we have

l(N −m
X ) + d(N −m

X ) ≥ −Q.

Proof. We saw in the course of the proof of the theorem that fort ≥ 0,

l(N −s−t
X ) ≥ N(t + 1) = d(NX)(t + 1),

and writingm= s+ t, we obtain form≥ s,

l(N −m
X ) + d(N −m

X ) ≥ (1− s)d(NX) = −Q.

Form< s, sinceN −s
X dividesN −m

X , we have

l(N −m
X ) + d(N −m

X ) ≥ l(N −s
X ) + d(N −s

X ) ≥ −Q.

�





Lecture 7

12 The Riemann Theorem

In the last lecture, we saw that ifX is any element ofK, the integer 35

l(N −m) + d(N −m
X ) remains bounded below asm runs through all in-

tegral values. We now prove the following stronger result, known as
Riemann’s theorem.

Theorem .Let X be any transcendental element of K and(1 − g) the
lower bound of l(N −m

X ) + d(N −m
X ). Then, for any divisorU ,

l(U ) + d(U ) ≥ 1− g.

Proof. Let U = U1U
−1

2 , whereU1 andU2 are integral divisors. Then
clearlyU −1

2 dividesU , and we have

l(U ) + D(U ) ≥ l(U −1
2 ) + d(U −1

2 ).

It is therefore enough to prove the inequality withU −1
2 in the place

of U . �

The key to the proof lies in the statement thatl(δ)+d(δ) is unaltered
when we replaceδ by δ(Z), where (Z) is a principal divisor. To prove
this, consider the map defined onL(δ) by

Y ∈ L(δ)→ YZ

This is clearly ak-isomorphism of the vector spaceL(δ) onto the
vector spaceL(δ(Z)). This proves thatl(δ) = l(δ(Z)), and since we
already know thatd(δ) = d(δ(Z)), our statement follows.

33
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Observe now that for any non-negative integerm, we havel(N −m
X 36

U2) + d(N −m
X U2) ≥ l(N −m

X ) + d(N −m
X ) ≥ l − g. SinceX is transcen-

dental,d(NX) > 0 and it follows that for large enoughm,

l(N −m
X U2) ≥ md(NX − d(U2) + l − g > 0

For such anmtherefore, there exists a non-zero elementZ in L(N −m
X

U ). This clearly means that the divisor (Z)N m
X U −1

2 is integral, or that
N −m

X divides (Z)U −1
2 . Hence, we deduce that

l(U −1
2 ) + d(U −1

2 ) = l((Z)U −1
2 ) + d((Z)U −1

2 )

≥ 1(N −m
X ) + d(N −m

X ) ≥ l − g

which proves our theorem.
The integerg is called thegenusof the field. Since

1+ 0 = l(N ) + d(N ) ≥ 1− g,

it follows thatg is always non-negative. The integerδ(U −1) = l(U ) +
d(U )+ g− 1, which is non-negative by the above theorem, is called the
degree of specialityof the divisorU . We say thatU is anon-specialor
specialdivisor according asδ(U −1) is or is not equal to zero. We shall
interpretδ(U −1) later. Incidentally, we have proved that ifU is any
divisor andX ∈ K∗, the dimensions of the spacesL(U (X)) andL(U )
are the same.

This enables us to define thedimension of a divisor classC. Choose
any elementU −1 in C and define the dimensionN(C) of C to bel(U ).
By the remark, this is independent of the choice ofU −1 in C.

13 Repartitions

We now consider the following question, to which we are led naturally37
by the theorem of §7. If for every placeY of K, we are given an element
XY of K, can we find anX in K such thatvY (X−XY ) ≥ 0 holds for every
Y ? A necessary condition for such anX to exist is thatvY (XY ) ≥ 0
for all but a finite number ofY . For, supposevY (XY ) < 0 for someY .
Then, sincevY (X − XY ) ≥ 0,

vY (X) = vY (X − XY + XY ) = min(vY (X − XY ), vY (XY )) = vY (XY ) < O,
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and this can hold for at most a finite number ofY . We now make the
following

Definition . A repartitionC is a mappingY → GY of the set of prime
divisorsY of K into the field K such that vY (CY ) ≥ o for all but a finite
number ofY .

We can define the operations of addition and multiplication in the
spaceX of repartitions in an obvious manner. IfC andG are two repar-
titions, anda an element of the constant fieldk,

(C + G )Y = CY + GY , (C G )Y = CY GY , (aC )Y = aCY .

The newly defined mappings are immediately verified to be repar-
titions. Thus,X becomes an algebra over the fieldk. We can imbed
the fieldK in X by defining for everyX ∈ K the repartitionCX by the
equations (CX)Y = X for everyY . The condition for this to be a repar-
tition clearly holds, and one can easily verify that this is an isomorphic 38

imbedding ofK in the algebraX.
We can now extend to repartitions the valuations of the fieldK by

defining for every placeY ,

vY (C ) = vY (CY ).

Clearly, we have the following relations

vY (C G ) = vY (C ) + vY (G )

vY (C + G ) ≥ min(vY (C ), vY (G )),

andvY (CX) = vY (X)
This leads to the notion of the divisibility of a repartitionC by a

divisor U . We shall say thatC is divisible by U if vY (C ) ≥ vY (U )
for everyY , and thatC andG are congruent moduloU (C ≡ G (U ) in
symbols) ifC − G is divisible byU .

The problem posed at the beginning of this article may be restated
in the following generalised form. Given a repartitionC and a divisor
U , to find an elementX of the field such thatX ≡ C (U ). (The original
problem is the caseU = N ).

If U is a divisor, let us denote by∧(U ) the vector space (overk) of
all repartitions divisible byU . Then we have the following
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Theorem . If U and δ are two divisors such thatU dividesδ, then
∧(U ) ⊃ ∧(δ) and

dimk
∧(U )
∧(δ)

= d(δ) − d(U ).

Proof. Let S denote the set of prime divisors occurring in eitherU or39

δ with a non-zero exponent. Since dimk
Γ(U /S)
Γ(δ/S)

= d(δ) − d(U ), it is

enough to set up an isomorphism of
Γ(U /S)
Γ(δ/S)

onto the space
∧(U )
∧(δ)

. �

If x ∈ Γ(U , /S), define a repartitionGx as follows:

(GX)Y =















X if Y ∈ S

0 if Y < S

Clearly,GX ∈ ∧(U ), andX→ GX is ak-homomorphism ofΓ(U /S)
into ∧(U ). The image of an elementX ∈ Γ(U /S) lies in ∧(δ) if and
only if vY (X) ≥ vY (δ) for everyY ∈ S, i.e., if and only ifX ∈ Γ(δ/S).

Thus, we have an isomorphism of
Γ(U /S)
Γ(δ/S)

into
∧(U )
∧(δ)

. We shall show

that this is onto. Given any repartitionC ∈ ∧(U ), find X ∈ K such that

vY (X − C ) ≥ vY (δ) for everyY ∈ S.

This means that the repartitionGX − C is an element of∧(δ). Also,
the above condition implies that forY ∈ S, vY (X) ≥ min(vY (C ),
vY (δ)) ≥ vY (U ). Thus,X is an element ofΓ(U /S) and its image in
∧(U )
∧(δ)

is the cosetC + ∧(δ). Our theorem is thus proved.



Lecture 8

14 Differentials

In this article, we wish to introduce the important notion ofa differential 40

of an algebraic function field. As a preparation, we prove the

Theorem. If U andδ are two divisors andU dividesδ, then

dimk
∧(U ) + K
∧(δ) + K

= (l(δ) + d(δ)) − (l(U ) + d(U ))

and dimk
X

∧(U ) + K
= δ(U −1) = l(U ) + d(U ) + g− 1.

Proof. We have

∧(U ) + K
∧(δ) + K

=
∧(U ) + (∧(δ) + K)

∧(δ) + K
≃

∧(U )
(∧(δ) + K) ∩ ∧(U )

But it is easily verified that (∧(δ) + K) ∩ ∧(U ) = ∧(δ) + L(U ).
Hence, we obtain

∧(U ) + K
∧(δ) + K

≃
∧(U )

∧(δ) + L(U )
∧(U )/ ∧ (δ)

∧(δ) + L(U )/ ∧ (δ)
∧(U )/ ∧ (δ)

L(U )/L(U ) ∩ ∧(δ)
=
∧(U )/ ∧ (δ)
L(U )/L(δ)

Thus,

dimk
∧(U ) + K
∧(δ) + K

= dimk
∧(U )
∧(δ)

− dimk
L(U )
L(δ)

37
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= (d(δ) − d(U )) − (l(U ) − l(δ)) = (l(δ) + d(δ)) − (l(U ) + d(U )),

which is the first part of the theorem. �41

Now, choose a divisorL such that

l(L) + d(L) = 1− g.

PuttingµY = min(vY (δ), vY ), andU =
∏

Y

Y µY , we see thatU

divides bothδ andL. Hence

1− g ≤ l(U ) + d(U ) ≤ l(L) + d(L) = 1− g,

and hence l(U ) + d(U ) = 1− g.

Moreover, we have

dimk
X

∧(δ) + K
≥ dimk

∧(U ) + K
∧(δ) + K

= l(δ) + d(δ) − 1+ g = δ(δ−1).

To prove the opposite inequality, supposeC1, . . .Cm arem linearly
independent elements ofX over k module∧(δ) + K. If we put νY =

min
i

(vY (Ci), vY (δ)) andU =
∏

Y

Y γY , clearly all theCi lie in ∧(U ).

We deduce that

m≤ dimk
∧(U ) + K
∧(δ) + K

= (l(δ)+d(δ))−(l(U )+d(U )) ≤ l(δ)+d(δ)−1+g,

which proves that dimk
X

∧(δ) + K
is finite and≤ δ(δ−1). The second part

of the theorem is therefore proved.

Definition . A differentialω is a linear mapping ofX into k which van-
ishes on some sub space of the form∧(U + K).

In this case,ω is said to bedivisible by U −1.ω is said to be of the
first kind if it is divisible by N

If δ dividesU , clearly∧(δ−1) + K ⊂ ∧(U −1) + K, and therefore42

every differential divisible byU is also divisible byδ.
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Consider now the setD(U ) of differentialsω of K which are di-
visible by U . This is the dual of the finite dimensional vector space
X/∧(U −1)+K , and therefore becomes a vector space overk of dimension

dimk D(U ) = dimk
X

∧(U −1) + K
= δ(U ).

If ω1 andω2 are two differentials divisible byU1 andU2 respec-
tively, their sum is a linear function onX which clearly vanishes on
∧(U −1)+K, whereU is (U1,U2). (Thegreatest common divisor(g.c.d.)
of two divisorsU1 andU2 is the divisorU =

∏

Y

Y min(vY (U1),vY (U2)).)

Thus,ω1 + ω2 is a differential divisible byU . Similarly, for a differen-
tial ω divisible byU and an elementX ∈ K, we define the differential
Xω by

Xω(C ) = ω(XC ).

Xω is seen to be divisible by (X)U . We then obtain

(XY)ω = X(Yω)

(X + Y)ω = Xω + Yω

X(ω1+ω2) = Xω1 + Xω2

It follows that the differentials form a vector space overK. We now
prove the

Theorem. If ω0 is a non-zero differential, every differential can be writ- 43

ten uniquely in the formω = Xω0 for some X∈ K. In other words, the
dimension over K of the space of differentials of K is one.

Proof. Let ω0 be divisible byδ−1
0 andω by δ−1. Let U be an integral

divisor, to be chosen suitably later. The two mappings

X0 ∈ L(U −1δ0)→ X0ω0 ∈ D(U −1)

and X ∈ L(U −1δ)→ Xω ∈ D(U −1)

are clearly k-isomorphisms ofL(U −1δ0) andL(U −1δ) respectively into
D(U −1). Hence, the sum of the dimensions of the images inD(U −1).
is

l(U −1δ0) + l(U −1δ) ≥ 2d(U ) − d(δ) − d(δ0) + 2− 2g,
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and is therefore> dimD(U −1) = δ(U −1) = d(U )+g−1 if U is chosen
so thatd(U ) is sufficiently large. With such a choice ofU , therefore,
we see that the images must have a non-zero intersection inD(U −1).
Hence, for someX0 andX different from zero, we must have

X0ω0 = Xω,ω = X0X−1ω0 = Yω0,Y ∈ K.

The uniqueness is trivial. �

We shall now associate with every differentialω a divisor. We re-
quire a preliminary

Lemma . If a differentialω is divisible by two divisorsU and δ, it is
also divisible by the least common multipleL of U and δ (Definition44

of l.c.m. obvious).

Proof. SupposeC ∈ ∧(L−1). Then,

vY (C ) ≥ −vY (L) = −max(vY (U ), vY (z)).

Define two repartitionsC 1 andC ′′ by the equations

C
1
Y1
= CY ,C

′′
Y
= 0 for all C such thatvY (U ) ≥ vY (δ)

C
1
Y
= 0,C ′′

Y
= CY for all Y such thatvY (U ) < vY (δ).

C 1 andC ′′ are by the above definition divisible byU −1 andY −1 re-
spectively, andC = C 1

+ C ′′. Hence,

ω(C ) = ω(C 1) + ω(C ′′) = 0.

Sinceωmust vanish onK, ωmust vanish on∧(L−1)+K. Our lemma
follows �

Theorem.To any differentialω , 0, there corresponds a unique divisor
(ω) such thatω is divisible byU if and only if(ω) is divisible byU .
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Proof. Supposeω is divisible by a divisorU . Then, the mappingX ∈
L(U −1) → Xω ∈ D(N ) is clearly a k-isomorphism ofL(U −1) into
D(N ). Hence, we deduce that

l(U −1) ≤ dim D(N ) = δ(N ) = l(N ) + d(N ) + g− 1 = g.

On other hand, we have

l(U −1) + d(U −1) = 1− g+ δ(U ) ≥ 2− g,

sinceδ(U ) ≥ 1. Combining these two inequalities, we deduce that

d(U ) ≤ 2g− 2.

45

This proves that the degrees of all divisors dividing a certain differ-
entialω are bounded by 2g− 2. �

Now, choose a divisor (ω) dividing ω and of maximal degree. IfU
were any another divisor ofω, the least common multipleδ of U and
(ω) would have degree at least that of (ω), and would divideω by the
above lemma. Hence, we deduce thatδ = (ω) or thatU divides (ω).

The uniqueness of (ω) also follows from this. Our theorem is proved.

Corollary 1. If X ∈ K∗, (Xω) = (X)(ω). This follows from the easily
verified fact thatU dividesω if and only if(X)U divides Xω.

This corollary, together with the theorem that the space of differen-
tials is one dimensional overK, proves that the divisors of all differen-
tials form a classW. This class is called thecanonical class

15 The Riemann-Roch theorem

LetC be a class andU any divisor ofC. If Ui(i = 1, . . . , n) are elements
of C,UiU

−1
= (Xi) are principal divisors. We shall say that the divisors

Ui, are linearly independent ifXi(i = 1, . . . , n) are linearly independent
overk. This does not depend on the choice ofU or of the respectively
Xi of UiU

−1, as is easy to verify. We now prove the
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Lemma. The dimension N(C) of a class C is the maximum number of
linearly independent integral divisors of C. 46

Proof. LetU be any divisor ofC. Then, the divisors (X1)U , (X2)U , . . .,
(Xn)U are linearly independent integral divisors ofC if and only if
X1, . . . ,Xn are linearly independent elements ofL(U −1). Our lemma
follows. �

We now prove the celebrated theorem of Riemann-Roch.

Theorem. If C is any divisor class,

N(C) = d(C) − g+ 1+ N(WC−1).

Proof. Let U ∈ C. Then,

N(C) = l(U −1) = d(U ) − g+ 1+ δ(U ) = d(C) − g+ 1+ δ(U ).

�

But δ(U ) being the dimension ofD(U ) is the maximum number of
linearly independent differentials divisible byU . Hence, it is the max-
imum number of linearly independent differentialsω1, . . . , ωn such that
(ω1)U −1, (ω2)U −1, . . . , (ωn)U −1 are integral. By the above lemma, we
conclude thatδ(U ) = N(WC−1), and our theorem is proved.
Corollaries E andW shall denote principal and canonical classes re-
spectively.

(a) N(E) = l(n) = 1, d(E) = d(N) = 0.

1 = N(E) = d(E) − g+ 1+ N(W) =⇒ N(W) = g.

g = N(W) = d(W) − g+ 1+ N(E) =⇒ d(W) = 2g− 2.

(b) If d(C) < 0, or if d(C) = 0 andC , E,N(C) = 0.

If d(C) > 2g− 2 or if d(C) = 2g− 2 andC ,W,47

N(C) = d(C) − g+ 1
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Proof. SupposeN(C) > 0. Then there exists an integral divisorU

in C, and henced(C) = d(U ) ≥ 0, equality holding if and only if
U = N or C = E. �

The second part follows immediately on applying that first part to
the divisorWC−1.

(c) If W1 is a class andg1 an integer such that

N(C) = d(C) − g1
+ 1+ N(W1C−1),

We must haveW =W1 andg = g1.

Proof. Exactly as in (a), we deduce thatN(W1) = g1, d(W1) = 2g1 − 2.
Again as in the second part of (b), we deduce that ifd(C) > 2g1 −

2,N(C) = d(C) − g1
+ 1. Hence, ford(C) > max(2g− 2, 2g1 − 2),

N(C) = d(C) − g+ 1 = d(C) − g1
+ 1, g = g1.

HenceN(W1) = g and d(W1) = 2g − 2, and it follows from the
second part of (b) thatW =W1. �

This shows that the classW and integerg are uniquely determined
by the Riemann-Roch theorem.

Let us give another application of the Riemann-Roch theorem. We
shall say that adivisor U divides a class Cif it divides every integral
divisor ofC. We then have the following

Theorem. If C is any class andU an integral divisor,

N(C) ≥ N(CU ) ≤ N(C) + d(U )

The first inequality becomes an equality if and only ifU divides the
class CU , and the second if and only ifU divides the class WC−1.

Proof. Since the maximum number of linearly independent integral di- 48

visors in CU is clearly greater than or equal to the number of such
divisors inC, the first part of the inequality follows. Suppose now that



44 8. Lecture 8

equality prevails. Then there exists a maximal setδ1, . . . δn of linearly
independent integral divisors inC, such thatU δ1, . . .U δn forms such a
set inCU . But since every integral divisor inCU is ‘linear combina-
tion of divisors of such a set’ with coefficients ink (in an obvious sense),
every integral divisor ofCU is divisible byU . �

Now, by the theorem of Riemann-Roch,

N(CU ) = d(C) + d(U ) + 1− g+ N(WC−1
U
−1),

and the second inequality together with the condition of equality follows
by applying the first toWC−1U −1 instead ofC.

Corollary. For any class C,N(C) ≥ max(0, d(C) + 1).

Proof. If N(C) = 0, there is nothing to prove, ifN(C) > 0, there exists
an integral divisorU in C. Hence we obtain

N(C) = N(EU ) ≤ N(E) + d(U ) = d(U ) + 1 = d(C) + 1,

and our corollay is proved. �
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16 Rational Function Fields

In this lecture, we shall consider some particular functionfields and find 49

their canonical class, genus, etc. as illustrations of the general theory.
Let us first consider the rational function fields.

Let K = k(X) be a rational function field in one variable overk. We
shall first show thatk is precisely the field of constants ofK. For later
use, we formulate this in a more general form.

Lemma. Let K be a purely transcendental extension of a field k. Then k
is algebraically closed in K.

Proof. Let (xi)i∈I be any transcendence basis ofK over k such that
K = k(xi). Since any element ofK is a rational combination of a
finite number ofxi , we may assume thatI is a finite set of integers
(1, . . . n). �

We proceed by induction. Assume first thatn = 1. Let α be any

element ofk(x1) algebraic overk. α may be written in the form
f (x1)
g(x1)

,

where f andg are polynomials overk prime to each other.
We then have

f (x1) − αg(x1) = 0

This proves that ifα were not ink, x1 is algebraic overk(α), (since 50

the above polynomial forx1 over K(α) cannot vanish identically ) and
hence overk which is a contradiction. Henceα is in k.

45
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Suppose now that the lemma holds forn − 1 instead onn. If α
were an element ofk(x1, . . . xn) algebraic overk, it is algebraic over
k(x1, . . . xn−1). By the first part, it should be thek(x1, . . . xn−1), and hence
by induction hypothesis ink. Our lemma is proved.

Let us return to the rational function fieldK. We have already seen

that the prime divisors are (i)NX, the prime divisor corresponding to
1
X

,

and (ii )Yp(X), the prime divisors corresponding to irreducible polynomi-
als p(X) in k[X]. If f (X) is a rational function ofX over k having the
unique decompositionpe1

1 (X) · · · pen
r (X), the principal divisor (f (X)) is

clearly given by

( f (X)) =
r

∏

ν=1

Y
eγ

pγ (X)N− deg f
X

It follows that the spaceL(N−t
X ) for t ≥ 0 consists precisely of

all polynomials of degree≤ t, and since there aret + 1 such poly-
nomials independent overk, and generating all polynomials of degree
≤ t, (1,X, . . .Xt for example), we deduce that

N(Nt
XE) = t + 1.

But by the corollary to the Riemann - Roch theorem, ifd(Nt
XE) =

td(NX) = t > 2g− 2, we should have

N(Nt
XE) = d(Nt

XE) + 1− g = t + 1− g,

and hence,g = 0. Thus, there are no non-zero differentials of the first51

kind.
Sinced(N−2

X E) = −2 = 2g−2 < 0, it follows thatN(N−2
X E) = 0 = g.

and henceW = n−2
X

E.

17 Function Fields of Degree Two Over a Rational
Function Field

We start with a lemma which will be useful for later calculations.
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Lemma. Let K/k be any algebraic function field and X∈ K any tran-

scendental element. If R(X) =
f1(X)
f2(X)

is any rational function of X, then

f1 and f2 being prime to each other(R(X)) =
z f1
z f2

N− degR(X)
X and z f1

and z f2 are prime to each other and both are prime to NX. Moreover,
[k(X) : k(R(X))] = max(degf1, deg f2).

Proof. Let f (X) be any polynomial overk of the form

f (X) = ao + a1X + · · · + atX
t.

If Y is a prime divisor not dividingNX, i.e., if vY (X) ≥ 0, we have
vY ( f (X)) ≥ min

ν=o
(γvY (X)) ≥ o). If on the other hand,Y does occur in

NX, we havevY (X) < o, and hence

vY ( f (X)) = min
ν=o−t

(νvY (X)) = tvY (X)

Thus, we see thatz f is prime toNX andNf (x) = Nt
X. �

Hence, ifR(X) =
f1(X)
f2(X)

, where (f1, f2) = 1, we have

(R(X)) =
z f1
z f2

N−degR(X)
X

We assert thatz f1 andz f2 are prime to each other. For if not, letz f1 52

and z f2 have a prime divisorY in common. ThenvY (X) ≥ o. Find
polynomialsg1 andg2 such that

f1g1 + f2g2 = 1.

Then, 0 = vY (1) = vY ( f1g1 + f2g2)

≥ min(vY ( f1) + vY (g1), vY ( f2) + vY (g2)) > 0,
a contradiction. Thus,z f1 andz f2 are prime to each other.
To prove the last part of the lemma, we may assume without lossof

generality that degf1 ≥ deg f2 or that degR(X) ≥ 0 (otherwise consider
1

R(X)
). It then follows that

zR(X) = z f1(X), [k(X) : k(R(X))] = [K : k(R(X))]/[K : k(X)]
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=
d(zR(X))

d(NX)
=

d(z f1(X))

d(NX)
=

d(z f1(X))

d(NX)
= deg f1.

Our lemma is proved.
It follows in particular thatk(x) = k(R(X)) if and only if max(degf1,

deg f2) = 1, orR(X) =
αX + β
γX + δ

, α, β, γ, δ ∈ k andαδ − βγ , 0.

Now, let k be a field of characteristic different from 2,X a tran-
scendental element overk andK a field of degree two overk(X) which
is not got from an algebraic extension ofk (viz., K should not be got
by the adjunction tok(X) of elements algebraic overk). Thenk is the
constant field ofK, for if it were not, there exists an elementα of K
which is algebraic overk but not ink. α cannot lie ink(X), sincek is53

algebraically closed ink(X). Hence,k(X, α) should be an extension of
degree at least two overk(X), and should therefore coincide withK. But
this contradicts our assumption regardingK.

Now, K can be get the adjunctions tok(X) of an elementY which
satisfies a quadratic equation

Y2
+ bY+ c = 0, b, c ∈ k(X)

Completing the square ( note that characteristick , 2), we get

(

Y +
b
2

)2

+

(

c−
b
4

2)

= 0,

and hencek(X,Y) = k(X,Y1) whereY1
= Y +

b
2

satisfies equation of

the formγ12
= R(X),R(X) being a rational function ofX. Let R(X) =

r
∏

ν−1
peγ
γ (X), wherepν(X) are irreducible polynomials ink[X] andeν are

integers. Puttingeν = 2gν + ǫγ, wheregν are integers andǫν = 0 or

1, andY′′ =
Y1

∏

ν
pγggamma(X)

, we see thatk(X,Y) = k(X,Y
′′

), andY
′′

satisfies an equation of the form

Y′′2 =
r

∏

1

pǫνγ (X) = D(X),
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whereD(X) is a polynomial which is a product of different irreducible
polynomials.

We shall therefore assume without loss in generality thatK = k(X,Y)
with Y2

= D(X) of the above form. Let us assume thatm is the degree
of D.

Now, let σ be the automorphism ofK over k(X) which is not the 54

identity. If Z = R1(X) + YR2(X) is any element ofK,Zσ = R1(X) −
YR2(X). To every prime divisorY of K, let us associate a prime divisor
Y σ by the definition

vY σ(Z) = vY (σ−1Z)

This can be extended to an automorphism of the groupϑ of divisors
(see Lecture 19). We shall denote this automorphism again byσ, and
the image of a divisorU by U σ. SinceXσ

= X,Nσ
X = NX.

Suppose now thatZ = R1(X) + YR2(X) is any element ofL(N−t
X ) (t

any integer). Applyingσ, we deduce thatR1(X) − YR2(X) should also
be an element ofL(N−t

X ). Adding, 2R1(X) ∈ L(N−t
X ),R1(X) ∈ L(N−t

X ).

If R1(X) =
f1(X)
g1(X)

, where f1 andg1 are coprime polynomials, we have

(R1(X)) =
z f1

zg1

N− degR1
X divisible byN−t

X , and hence we deduce thatzg1 =

n, andg1(X) is a constant. HenceR1(X) is a polynomial of degree≤ t
(if t < o,R1(X) = 0).

Also, since bothZ andZσ are inL(N−t
X ). This implies as before that

R2
1 − DR2

2 is a polynomial of degree≤ 2t. HenceDR2
2 is a polynomial

of degree≤ 2t, and sinceD is square free,R2 is a polynomial of degree

≤ t −
m
2

.

Conversely, by working back, we see that ifR1 is a polynomial of
degree≤ t andR2 a polynomial of degree≤ t = m

2 , Z = R1 + YR2 ∈
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L(N−t
X ) . Hence, we obtain

N(ENt
X) = l(N−t

X ) =



















































0 if t < 0

t + 1 if 0 ≤ t ≤ m
2 − 1 andmeven

t + 1 if m and 0≤ t ≤ m−1
2

2t + 2− m
2 if m even andt ≥ m

2

2t + 2− m+1
2 if m odd and t ≥ m+1

2 .

55

Sinced(NX) = [K : k(X)] = 2, for t > g−1, we haved(ENt
X) = 2t >

2g− 2 and hence

N(ENt
X) = d(Nt

X) − g+ 1 = 2t − g+ 1

Comparing with the above equations, we deduce thatg is
m
2
− 1 if

m is even and
m− 1

2
if m is odd.

Thus, we obtain examples of fields of arbitrary genus over anycon-
stant field.

The canonical class ofK is ENg−1
X . For,

d(Ng−1
X E) = 2g− 2,

and N(Ng−1
X E) =















g− 1+ 1 = g if g > 0

0 = g if g = 0.

If gg > o, there exists a differentialω of the first kind with (ω) =
Ng−1

X . Then clearly the differentialsω,Xω, . . . ,Xg−1ω are all of the first
kind and are linearly independent overk, and as they areg in number,
they form a base overk for all differentials of the first kind.

18 Fields of Genus Zero

We shall find all fields of genus zero over a constant fieldk.56

First, notice that any divisor of degree zero of a field of genus zero
is a principal divisor. For letC be a class of degree 0. Then since
d(C) > −2 = 2g− 2,N(C) = d(C) − g+ 1 = 1 and thereforeC = E.



19. Fields of Genus One 51

Now,

d(W−1) = 2 > 2g− 2,N(W−1) = 2− g+ 1 = 3,

and therefore there exists three linearly independent integral divisors
U1,U2,U3 in the classW−1 (incidentally, this proves there exists inte-
gral divisors, and consequently prime divisors of degree atmost two).

Let
U1

U2
= (X). Then clearlyNX dividesU2, and hence we obtain

[K : k(X)] = d(NX) ≤ d(U2) = 2.

Thus, any field of genus zero should be either a rational function
field or a quadratic extension of a rational function field. Wehave the
following

Theorem .The necessary and sufficient condition for a field of genus
zero to be a rational function field is that it possess a prime divisor of
degree1.

Proof. If K = k(X), the prime divisornX satisfies the requisite condi-
tion.

Conversely, letY be a prime divisor of degree 1 ofK. Then,
N(Y E) = d(Y ) + 1 = 2, and therefore there are elementsX1,X2 in 57

K linearly independent overk such thatX1Y = U1 and X2Y = U2

are integral divisors. Thus ifX =
X1

X2
, (X) = (

X1

X2
) =

U1

U2
, andd(NX) ≤

d(U2) = d(Y ) = 1. ButX is not ink, and henced(NX) = 1 = [K : k(X)],
from which it follows thatK = k(X). The theorem is proved. �

19 Fields of Genus One

Let K/k be an algebraic function field of genus 1. Then, sinceN(W) =
g = 1 andd(W) = 2g− 2 = 0, the canonical classW coincides with the
principal classE.

A function field of genus one which contains at least one primedi-
visor of degree one is called anelliptic function field.(The genus being
one does not imply that there exists a prime divisor of degreeone. In
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fact, it can be proved easily that the fieldR(X,Y), whereR is the field
of real numbers andX,Y transcendental overR and connected by the
relationY2

+ X4
+ 1 = 0 has every prime divisor of degree two). Let us

investigate the structure of elliptic function fields.
Let Y be a prime divisor of degree one. Then, sinced(Y 2) = 2 >

2g − 2 = 0, we havel(Y −2) = 2. Let 1,X be a basis ofL(Y −2) overk.
SinceXY 2 is integral,NX dividesY 2.NX cannot beY , since if it were,
we obtain [K : k(X)] = d(NX) = d(Y ) = 1,K = k(X) and henceg = 0.
Thus,NX should be equal toY 2.

Again, sincel(Y −3) = 3, we may complete (l,X) to a basis (1,X,Y)
of L(Y −3) overk. Nγ should divideY 3, and sinceY is not an element58

of L(Y −2),Nγ does not divideY 2. Thus,Nγ = Y 3.
The denominators of 1,X,Y,X2,XY,X3 andY2 are respectivelyN,

Y 2, Y 3, Y 4,Y 5,Y 6 andY 6. Since the first six elements have dif-
ferent powers ofY in the denominator, they are linearly independent
elements ofL(Y −6). But l(Y −6) = 6, and the seventh element, being
in L(Y −6) should therefore be a linear combination of the first six. We
thus obtain

Y2
+ γXY+ δY = α3X3

+ α2X2
+ α2X2

+ α1X + αo, γ, δ, αi ∈ k.

Now, if Y where a rational function ofX, writing Y =
f (X)
g(X)

, f (X),

g(X) ∈ k[X], ( f (X), g(X)) = 1, and substituting in the above equation,
we easily deduce thatg(X) should be a constant, and thatY should be a
polynomial inX of degree≤ 1. But this would mean thatY is divisible
by Y 2, which we have already ruled out. Hence, [k(X,Y) : k(X)] = 2 =
d(NX) = [K : k(X)], and consequently,K = k(X,Y).

If the characteristic ofk is different from 2, we may as in §16 find a
Z such thatK = k(X,Y), with

Z2
= f (X)

where f (X) is a cubic polynomial inX with non-repeating irreducible
factors.

A partial converse of the above result is valid. Suppose thatK =
k(X,Z), whereX is transcendental overk andZ satisfies an equation59
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of the form Z2
= f (X), where f (X) is a cubic polynomial which we

assume to be irreducible. Letch(k) , 2. Then, the genus ofK is one,
by §16. Also, since degf (X) = 3,Z2 ∈ L(N−3

X ), andN2
z divides N3

X.
But sinceX is of degree 3 overk(Z), we haved(N2

z ) = 2d(Nz) = 2.[K :
k(Z)] = 6 = 3.[K : k(X)] = 3d(NX), and thereforeNz = N3

X. From this,
it is clear that there exists a prime divisorY with d(Y ) = 1 such that
Nz = Y 3,NX = Y 2.

Finally, suppose a fieldK is of genus greater than 1. Then,N(W) =
g > o andd(W) = 2g − 2 > o, and hence we deduce the existence of
an integral divisor, N of degree 2g − 2. Thus, we have proved that
if g > 1, there always exists prime divisors of degree≤ 2g − 2. The
minimal degree of prime divisors for a field of genus one is notknown.
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20 The Greatest Common Divisor of a Class

We wish to find when the greatest common divisor of all integral divisors 60
of a class is different from the unit divisorN. We assert that this is
impossible whend(C) ≥ 2g. In fact, letU be an integral divisor of the
classC. Then we obtain

d(C) − g+ 1 = N(C) = N(CU
−1) = d(C) − d(U ) + 1− g+ N(WC−1

U ),

d(U ) = N(WC−1
U ) ≤ max(0, d(WC−1

U ) + 1)

and since 1+ d(WC−1U ) ≤ 2g − 2 − 2g + 1 + d(U ) = d(U ) − 1, we
should haved(U ) = 0 andU = N.

This is in a sense the best possible result. In fact, if there exists a
prime divisorY of degree 1 in the field, we haved(WY ) = 2g− 2, and
hence.

N(WY ) = d(W) + d(Y ) − g+ 1 = g = N(W),

which proves thatY divides all integral divisor of the classWY . Nev-
ertheless, ifg > 0, we can prove that the greatest common divisor of the
canonical classW is N. For, supposeU , N is an integral divisor ofW.
Then,

dim L(U −1) = N(EU ) = d(U ) + 1− g+ N(WU
−1)

= d(U ) + 1− g+ N(W) = d(U ) + 1 ≥ 2.

Thus, there exists a transcendental elementX ∈ L(U −1). The divi-
sor (X)U is then integral. Also, sinceN(W) = g > o, we can choose

55
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a differential ω of the first kind. Then, (Xω) = ((X)U ).((ω)U −1) is 61

also integral and thereforeXω is also first kind. By repetition of the
argument, we obtain thatXnω is of the first kind for all positive integers
n. But sinceX is transcendental,NX , N , and henceXnω cannot be
an integral divisor for largen. This is a contradiction. Our assertion is
therefore proved.

For fields of genusg > o, we shall improve the inequalityN(C) ≤
max(o, d(C) + 1).

Lemma. If g > o and d(C) ≥ o,C , E, we have

N(C) ≤ d(C)

Proof. We may obviously assume thatN(C) > o. Then there exists
an integral divisorU in C, and sinceC , E,U , N , and therefore
d(C) = d(U ) > o. SinceG > o, U cannot be a divisor of the class
W,and therefore

g = N(W) > N(WU
−1) = N(WC−1)

N(C) = d(C) − g+ 1+ N(WC−1) ≤ d(C) − g+ 1+ g− 1 = d(C).

Our lemma is proved �

21 The Zeta Function of Algebraic Function Fields
Over Finite Constant Fields

In the rest of this lecture and the following two lectures, weshall always
assume thatk is a finite field of characteristicp > o and withq = pt

elements,and thatK is an algebraic function field with constant fieldk.62

If Y is any prime divisor ofK, we shall call the number of elements
in the class fieldkY the norm of Y . Since [kY : k] = d(Y ), we see
that norm ofY (which we shall denote byNY ) is given by

NY = qd(Y )

We may extend this definition to all divisors, by putting

NU =

∏

Y

(NY )vY (U )
= qd(U )
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Clearly we have for two divisorsU andδ

NU δ = NU .Nδ.

Before introduction the zeta function, we shall prove an important

Lemma . For any positive integer m, the number of prime divisors of
degree≤ m is finite. The number of classes of degree zero is finite. (The
latter is calledthe class numberof K and is denoted by h).

Proof. To prove the first part of the lemma, choose any transcendental
elementX of K. Let Y be any prime divisor ofK with d(Y ) ≤ m and
which does not divideNX. (We may neglect thoseU which divideNX,
since they are finite in number.) LetY 1 be the restriction ofY to k(X).
Y 1 must be a place onk(X). SinceY 1(X) , ∞, there corresponds a
unique polynomial (p(X)) which gives rise toY 1.

Now, sincekY ′ ⊂ kY , we obtain 63

deg(p(X)) = d(Y ′) ≤ d(Y ) ≤ m.

�

Since the number of polynomials of degree≤ mover a finite field is
finite, and since there the are only a finite number of prime divisorsY

of K which dividezp(X) for a fixedp(X), the first part of our theorem is
proved.

To prove the second part, choose and fix an integral divisorUo such
thatd(Uo) ≥ g. If C is any class of degree zero, we have

N(CUo) ≥ d(C) + d(Uo) − g+ 1 ≥ 1,

and hence there exists an integral divisorU in CUo such thatd(U ) =
d(CUo) = d(Uo). But since

d(U ) =
∑

d(Y )vY (U ), d(Y ) ≥ 1, vY (U ) ≥ 0,

and there are only a finite number ofY with d(Y ) ≤ d(Uo), there are
only a finite of integralU with d(U ) = d(Uo) and consequently only a
finite number ofC with d(C) = 0.

The lemma is completely proved.
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Remark 1. Let ρ denote the least positive integer which is the degree of
a class. sinceC → d(C) is a homomorphism of the groupR of divisor
classes into the additive groupZ of integers, we see that the degree of
any class of the fromνρ whereν is an integer, and that to anyν, there
correspond preciselyh classesC(γρ)

1 , . . . ,C(νρ)
h of degreeνρ.64

Remark 2. The number of integral divisors in anyC is precisely
qN(C) − 1

q− 1
. This is clear ifN(C) = 0. If N(C) > 0, let U be any in-

tegral divisor ofC. Then all integral divisors ofC are of the from (X)U ,

whereX ∈ L(U −1),X , 0. Also (X)U = (Y)U if and only if
(X
Y

)

= N

or X = aγ, a ∈ k∗. Since the number of non zero elements ofL(U −1) is
qN(C) −1 and the number of non zero elements ofk is q−1 our assertion
follows.

Now, let s= σ+ it be a complex variable. Forσ > 1, we definethe
zeta functionof the algebraic function fieldK by the series

ζ(s,K) =
∑

U

1
(NU )s , s= σ + it, σ > 1

the summation being extended over all integral divisors of the fieldK.

Since
∣

∣

∣

∣

∣

1
(NU )s

∣

∣

∣

∣

∣

=
1

(NU )σ
, and all the terms of the series are positive

when s is real, the following calculations are valid first fors > 1 and
the for complexs with σ > 1. In particular, they prove the absolute
convergence of the series

τ(s,K)

=
∑

C
(number of integral divisors inC). q−sd(C), the last summation

being over all classes,

=
1

q− 1

∑

C

(qN(C) − 1)q−sd(C);

writing d(C) = νρ, and noticing thatqN(C)−1 = 0 if d(C) < 0, the above65
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expression becomes

1
q− 1

∞
∑

ν=o

q−νρs
h

∑

l=1

qN(Cl
(νρ)) −

h
q− 1

∞
∑

ν=o

q−νρs

Let us now putU = q−s. Then |U | = |q−s| = q−σ < 1 sinceσ > 1,
and we can sum the second geometric series. Suppose now thatg > o.
We may then split the first sum into two parts, the ranging overo ≤

ν ≤
2g− 2
ρ

and the second overν >
2g− 2
ρ

. (Sinced(w) = 2g − 2, ρ)

divides 2g− 2; or
2g− 2
ρ

is an integer). In the second summation since

d(C(νρ)
l ) = νρ > 2g − 2, we may substituteN(C(νρ)

l ) = νρ − g + 1. We
obtain the expression

1
q− 1

2g−2
ρ

∑

ν=o

q−νρs
h

∑

l=1

qN(C(νρ)
l )
+

h
q− 1

∑

ν>
2g−2
ρ

q−νρsqνρ−g+1−
h

q− 1
.

1
1− qsρ

= τ(s,K) =
1

q− 1

2g−2
ρ

∑

ν=o

Uνρ

h
∑

l=1

qN(C(νρ)
l )

+
hq1−g

q− 1
(Ug)2g−2+ρ

1− (Uq)ρ
−

h
q− 1

1
1− Uρ

(1)

If g = o,N(C) = d(C) − g+ 1 for all C with d(C) > o, and a similar
computation gives

τ(S,K) =
hq

q− 1
1

1− (Uq)ρ
−

h
q− 1

1
1− Uρ

(2)

(1) and (2) may be combined as follows

(q− 1)τ(s,K) = F(U) + R(U), (3)

whereF(U) is the polynomial 66

F(U) =
∑

o≤d(C)≤2g−2

qN(C)Ud(C) (4)
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andR(U) the rational function

R(U) = hq1−g (Uq)max(o,2g−2+ρ)

1− (Uq)ρ
−

h
1− Uρ

(5)

These formulae provide the analytic continuation ofτ(s,K) to the
whole plane. The only possible poles are the values ofs for which
Uρ
= 1 or (qU)ρ = 1.
For a rational function fieldK = k(X), sinceg = o, h = 1 andρ = 1,

we obtain

(q− 1)τ(s,K) =
q

1− Uq
−

1
1− U

=
q− 1

(1− Uq)(1− U)
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22 The Infinite Product for ζ(s,K)

Let K be an algebraic function field over a finite constant fieldk. Then, 67

theζ function ofK can be expressed as an infinite product taken over all
prime divisors ofK.

Theorem.For s= σ + it, andσ > 1, we have

ζ(s,K) =
∏

Y

1
1− (NY )−s,

where the product is taken over all prime divisorsY of K. The product
is absolutely convergent, and hence does not depend on the order of the
factors.

Proof. Sinceσ > 1, we have for any integerm> o,

∏

NY ≤m

1
1− NY −s =

∏

NY ≤m

(

1+
1

(NY )s +
1

(NY )2s
+ · · ·

)

,

and since there are only a finite number of factors in the product, each
factor being an absolutely convergent series, we may multiply these to
obtain

∏

NY ≤m

1
1− (NY )−s =

∑

nU ≤m

1
(NU )s +

∑

NU >m

1
(NU )s ,

where the first summation is over all integral divisorsU with NU ≤ m,
and the second over all integral divisorsU which do not contain any

61
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prime divisorU with NU > mand which satisfy the inequalityNU >

m. �

Hence68

∣

∣

∣

∣

∣

∏

NY ≤m

1
1− (NY )

− s−
∑

NU ≤m

1
NU

s
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
∑

NU >m

1
(NU )s

∣

∣

∣

∣

∣

≤
∑

NU >m

1
(NU )σ

and lettingm→ ∞, we obtain the asserted equality, since
∑

NU >m
(

1
NU

)σ,

being the remainder of the convergent series forζ(σ,K), tends to zero
asm→ ∞.

The absolute convergence of the product is deduced from the in-
equality

∣

∣

∣

∣

∣

1
(NY )s

+
1

(NY )2s
+ −

∣

∣

∣

∣

∣

≤
1

(NY )σ
+

1

(NY )2σ

As a corollary to this theorem, we see thatζ(s,K) has no zero for
σ > 1.

23 The Functional Equation

In the last lecture, we obtained the following formula:

(q− 1)ξ(s,K) = F(U) + R(U), where U = q−s,

F(U) =
∑

o≤d(c)≤2g−2

qN(C)Ud(C)

and R(U) = hq1−g (Uq)max(o,2g−2+ρ)

1− (Uq)ρ
−

h
1− Uρ

.

Substituting forN(C) in F(U) from the theorem of Riemann-Roch,
we obtain69

F(U) =
∑

o≤d(C)≤2g−2

qd(C)−g+1+N(WC−1)
V

d(C)
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= q1−g
∑

o≤d(C)≤2g−2

(

1
qU

)

d(WC−1)−2g+2qN(WC−1)

Writing WC−1
= C1, and noticing thatC1 runs through the same set

of classes asC in the summation, we have

F(U) = qq−1U2g−2
∑

o≤d(C1)≤2g−2

(

1
qU

)d(C1)

qN(C1)
= qg−1U2g−2F

(

1
qU

)

.

We shall prove that a similar functional equation holds forR(U).
First suppose thatg > o. Then,

R(U) = hg1−g (qU)2g−2+ρ

1− (qU)ρ
−

h
1− Uρ

= −hg1−g

(

1
qU

)2g+2

1−
(

1
qU

)

ρ
+

h.(q. 1
Uq)ρ

1−
(

q. 1
Uq

)ρ

= U2g−2qg−1





















hq1−g

(

q 1
qU

)2g−2+ρ

1−
(

g. 1
U q

)ρ −
h

1−
(

1
Uq

)ρ





















= qg−1U2g−2R

(

1
qU

)

.

If g = o, the only divisor class of degree zero isE and henceh = 1.
Also, sinceρ divides 2g− 2 = −2, ρ = 1 orρ = 2. If ρ = 1, we obtain

R(U) =
q

1− qU
−

1
1− U

=
q− 1

(1− U)(1− qU)

= q−1U−2 q− 1
(

1− 1
qU

) (

1− q. 1
qU

)

= q−1U−2R

(

1
qU

)

.

If ρ = 2, we get 70

R(U) =
q

1− (qU)2
−

1

1− U2
=

−q.
(

1
qU

)2

1−
(

1
qU

)2
+

U−2

1−
(

q. 1
qU

)2
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= q−1U−2R

(

1
qU

)

.

Thus, in any case, we have the functional equation

R(U) = qg−1U2g−2R

(

1
qU

)

.

Adding the equation forF(U) andR(U), we see thatζ(s,K) satisfies
the functional equation

(q− 1)ζ(s,K) = qg−1qs(2−2g)(q− 1)ζ(1− s,K), or

ζ(s,K) = qg−1qs(2−2g)ζ(1− s.K)

We may also rewrite this in the from

qs(q−1)ζ(s,K) = q(1−s)(g−1)ζ(1− s,K).

Thus, the function on the left is unaltered by the transformation s→
1− s.

24 L-series

We wish to study theL-series associated to characters of the class group
of an algebraic function with a finite constant field.

Definition . A characterX of finite orderon the class groupR is a ho-71

momorphism ofR into the multiplicative group C∗ of non zero complex
numbers such that there exists in integer N withXN(C) = 1 for all C in
R.
X(C) is therefore an Nth root of unity for all C. We may defineX on

the group v of divisors by comparing with the natural homomorphism
v→ R, i.e., by puttingX(U ) = X(U E) for any divisorU .

The L-function L(s,X,K) associated to a characterX (which we
shall always assume to be of finite order) is then defined fors = σ + it,
σ > 1 by the series

L(s,X,K) =
∑

U

X(U )(NU )−s
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where the summation is over all integral divisorsU of the field. The
absolute value of the terms of this series is majorised by thecorrespond-

ing term of the series
∑ 1

(NU )σ
= ζ(σ,K) and is therefore absolutely

convergent forσ > 1. We may prove along exactly the same lines as in
the case of theζ -function the following product formula:

L(s,X,K) =
∏

Y

1
1− X(Y )(NY )−s

whereY runs through all prime divisors andσ > 1.
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25 The Functional Equation for the L-functions

Let X be a character of finite order on the class group of an algebraic 72

field K over a constant fieldk with q = pf elements. We consider two
cases.

Case 1.X when restricted to the subgroupRo of R of all classes of
degree zero, is trivial; i.e.,X(Co) = 1 for Co ∈ Ro.

Let ρ be as before the smallest positive integer which is the degree
of a class, and letC(ρ) be a class of degreeρ. ThenR is clearly the direct
product ofRo and the cyclic group generated byC(ρ). SetX(C(ρ)) =
e2πiξ. We then have

L(s,X,K) =
∑

U

X(U )(NU )−s
=

∑

Co∈Ro

∞
∑

n=−∞
U ∈CoC(ρ)n

e2πiξnq−nρs

=

∑

U

(NU )−
(

s− 2πiξ
ρ logq

)

= ζ

(

s−
2πiξ
ρ logq

)

.

Thus, theL-function reduces to aζ- function in this case. We can
therefore deduce a functional equation forL(s,X,K) from the functional
equation forζ(s,K). Define the character̄X conjugate toX by putting
X̄(C) = ¯X(C). Clearly,X̄ is a character of finite order on the class group
and is trivial onRo, alsoX̄C(ρ)

= e−2πiξ. Then, we obtain the following
relation forL(s,X,K) by substituting from the functional equation for

67
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theζ function.

qs(g−1)L(s,X,K) = qs(g−1)ζ

(

s−
2πiξ
ρ logq

)

= q2(q−1) 2πiξ
ρ logq

ζ

(

1− s+
2πiξ
ρ logq

)

q(1−s)(g−1)

= X(W)q
(1−s)(g−1)L(1− s, X̄,K)

sinceX(W) = (X(C(ρ)))
2g− 2
ρ
= e

2πiξ
ρ

(2g− 2)73

Case 2.Suppose now thatX when restricted toRo is not identically 1.
Let C1

o be a fixed class withX(C1
o) , 1. Then,

X(C1
o)

∑

Co∈Ro

X(Co) =
∑

Co∈Ro

X(C1
oCo) =

∑

Co∈Ro

X(Co),

and therefore
∑

Co∈R

X(Co) =

Again, using the fact thatN(C) = 0 if d(C) < 0, we obtain

(q− 1)L(s,X,K) =
∑

Co∈Ro

X(Co)
∞
∑

n=0

Xn(C(ρ))(qN(CoC(ρ))n
− 1)q−nρs

=

∑

Co∈Ro

X(Co)

2g−2
ρ

∑

n=o

Xn(C(ρ))(qN(CoC(ρ)n) − 1)

+

∑

Co∈Ro

X(Co)
∑

n> 2g−2
ρ

Xn(C(ρ))(qnρ−g+1 − 1)q−nρs

The second sum vanishes, since
∑

Co∈Ro

X(Co) = 0.

Thus, we obtain

(q− 1)L(s,X,K) =
∑

o≤d(C)≤2g−2

X(C)qN(C)Ud(C)

The coefficient ofU2g−2 is given by74
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∑

d(C)=2g−2

X(C)qN(C)
= X(W)

∑

Co∈Ro

X(Co)qN(CoW)

= X(W)



















∑

Co,E

X(Co)qg−1
+ qg



















,

since N(CoW) = d(CoW) − g+ 1 = g− 1 if Co , E andN(W) = g,

= X(W)



















∑

Co∈Ro

X(Co)qg−1
+ (qg − qg−1)



















= (q− 1)X(W)qg−1
, 0.

Thus, L(s,X,K) is a polynomial inU = qs of degree 2g − 2 and
leading coefficientqg−1X(W)

Again, by substituting from the Riemann-Roch theorem, we have

(q− 1)L(s,X,K) =
∑

o≤d(C)≤2g−2

X(C)qN(C)Ud(C)

=

∑

o≤d(C)≤2g−2

X(C)qd(C)−g+1+N(WC−1)Ud(C)

= qg−1U2g−2X(W)
∑

o≤d(C)≤2g−2

X(WC−1)qN(WC−1)

(

1
qU

)d(WC−1)

Writing C1 for WC−1 and noting thatC1 runs through exactly the
same range of summation as doesC, we obtain

(q− 1)L(s,X,K) = (q− 1)qg−1U2g−2X(W)L(1− s, X̄,K),

which is again the same functional equation that we got in Case 1. We
have therefore proved the

Theorem.For any characterX of finite order,

qs(g−1)L(s,X,K) = X(W)q(1−s)(g−1)L(1− sX̄,K).





Lecture 13

26 The Components of a Repartition

Our next aim is to introduce the L-functions modulo an integral divisor 75

of an algebraic function field over a finite constant filed and to obtain
their functional equation. We shall develop the necessary results for this
in this and the next two lectures.

Let K be an algebraic function field over an arbitrary (not necessarily
finite) constant fieldk. For a repartitionC ∈X and a prime divisorY ,
we define the componentC Z of C atZ to be the repartition defined by

C
Z (U ) =















CZ if U Y

0 if Y is a prime divisor other thanY .

The mapping is clearly ak-linear mapping ofX into itself. This
induces a linear mapping of the dual ofX into itself, by which a differ-
entialω is taken to a liner mapωZ : X →X given by

ωY (C ) = ω(C Z )

ωZ is called the component of the differentialω at Y .ωZ is not, in
general, a differential. ForX ∈ K, we have

(Xω)Y (C ) = (Xω)(C Z ) = ω(XC
Z ) = ω((XC )Y ) = ωZ (XC )

We shall now prove a lemma which expresses a differential in terms
of its components.

71
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Lemma. If ω is a differential andC a repartition,ωY (C ) = 0 for all 76

but a finite number of prime divisorsY , and we have

ω(C ) =
∑

Y

ωY (C ).

Proof. Let U be a divisor which divides the differential ω. Let
Y1, . . . ,Yn be the finite number of prime divisors for which either
vYi (U ) , 0 or vYi (C ) < 0. For U , any of theYi , and any prime
divisor Y , we have

vY (C U ) = vY (C U (Y ))

=















vC (YU ) if U = Y

vY (0) if , Y U















=















vU (C ) if Y = U

∞ if Y , U















≥ vY (U ),

and thereforeC U ∈ Λ(U ), ωU (C ) = ω(C U ) = 0. �

Also, if we putY = C −
n
∑

i=1
C Yi , we have for anyY ,

vY (Y ) =















vY (CY ) if Y is not any of theY1

vY (0) = ∞ if Y is a certainYi















≥ vY (U ),

and thereforeY ∈ Λ(U ). Hence,

ω(C ) = ω















C −

n
∑

i=1

C
Yi















+ ω















n
∑

i=1

C
Yi















= ω















n
∑

i=1

C
Yi















=

n
∑

i=1

ω
(

C
Yi
)

=

n
∑

i=1

ωYi =

∑

Y

ωY (C ).

Our lemma is proved.
We shall now prove another useful

Lemma. Letω be a differential andC a prime divisor. Then vY ((ω)) is77

the largest integer m such that whenever X∈ K and vY (X) ≥ −m, we
haveωY (X) = 0.



26. The Components of a Repartition 73

Proof. Suppose first thatX ∈ K with vY (X) ≥ −vY ((ω)). Then clearly
the repartitionsxY is in Λ((ω)−1) and thereforeωY (X) = ω(XY ) =
0. �

Now, by the definition of (ω), ω does not vanish on the space
Λ((ω)−1Y −1). Hence there exists a repartitionC ∈ Λ((ω)−1Y −1) such
thatω(C ) , 0. It is evident that forU , Y , C U ∈ Λ((ω)−1) and
thereforeω(C ) , 0. Hence,

0 , ω(C ) =
∑

U

ω(C U ) = ω(C Y )

PutX = C Y . Then,

ωY (X) = ω(XY ) = ω(C Y ) , 0

and vY (X) = vY (C ) ≥ −vY ((ω)) − 1.

Thus,vY ((ω)) is the largestm for which vY (X) ≥ −m implies that
ωY (X) = 0.
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27 A Consequence of the Riemann-Roch Theorem

In this lecture, we shall prove a theorem which will be crucial in the 78

proof of the functional equation of theL-functions modulo an integral
divisor.

Let F be an integral divisor andU1, . . . ,Ur the distinct prime divi-
sors occurring in it. We prove a series of lemmas leading uptothe proof
of the theorem we mentioned above.

Lemma 1. In any class C, there exists a divisorU such that vUν
(U ) =

0(ν = 1, · · · r).

Proof. Let U◦ be any divisor ofC. By the independence theorem for
valuations, we may findX ∈ K with

vUν
(X) = −vUν

(U◦)

ThenU = (X)U◦ ∈ C satisfies the required conditions. �

Let us denote byR the vector spaceΓ(n/U1, Ur) and byi the sub-
spaceΓ(F /U1, . . .Ur ). R is not only a vector space overk, but also an
algebra. In fact, ifX,Y ∈ R,

vUi (XY) = vUi (X) + vUi (Y) ≥ 0, XY ∈ R. (i = 1, . . . r) i is an ideal
of R, sinceX ∈ R, Y ∈ i implies that

vUi (XY) = vUi (X) + vUi (Y) ≥ vUi (F ),XY ∈ i.

Thus, the quotient̄R= R/i is an algebra of 79

75
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rank dimk =
Γ(n/U r) U r)
Γ(F /U1 Ur )

= d(F )

over the fieldk.
Now, choose a differentialω such that the divisorF (ω) is coprime

toF . This is possible by Lemma 1. We shall assume thisω to be chosen
and fixed throughout the discussion. We define a linear function S on
the algebraR by

S(X) =
r

∑

ν=1

ωUν(X), X ∈ R.

S vanishes on the ideali, for if X ∈ i, vUν
(X) ≥ vUν

(F ), and
sinceF (ω) is corprime to eachUν, vUν

(F ) + vUν
((ω)) = 0, vUν

(F ) =
−vUν

((ω)). By the last lemma of the previous lecture, we deduce that

S(X) =
r

∑

ν=1

ωUν (X) = 0.

Thus,S induces a linear map from the quotientR̄ to the fieldk. This
in turn gives rise to a bilinear form on̄R defined by (̄X, Ȳ) → S(X̄Y).
Our next lemma states that this is non - degenerate.

Lemma 2. If X̄ ∈ R̄, X̄ , 0, there exist āY ∈ R̄ such that S(X̄.Ȳ) = 1.

Proof. Let X be any element of the coset̄X. SinceX̄ , 0, we have
X < i andvUν

(X) < vUν
(F ) = −vUν

((ω)) for someν. Thus,Xω is a
differential withvUν

(Xω) < 0. By the last lemma of the previous lecture,
we deduce that there exists an elementY1 ∈ K such thatvUν

(Y1) ≥ 0 and
(Xω)Uν (Y1) , 0. �

Find Y2 ∈ K such that80

vUν
(Y2 − Y1) ≥ max(0,−vUν

((Xω))),

vUν
(Y2) ≥ max(0,−vUµ

((Xω))). for µ , ν.

Since we also have

vUν
(Y2) ≥ min(vUν

(Y2 − Y1), vUν
(Y1)) ≥ 0,
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it follows that Y2 ∈ R̄. Also, for anyµ , ν, we have by the second
condition, (Xω)Uµ(Y2) = 0. Again, it follows from the first condition
that

(Xω)Uν(Y2 − Y1) = 0, (Xω)Uν (Y2) = (Xω)Uν (Y1) , 0

Thus,

S(X̄Ȳ2) =
r

∑

λ=1

ωUλ(XY2) =
r

∑

λ=1

(Xω)Uλ(Y2) = (Xω)Uν (Y2) = ̺ , 0,

andȲ = Ȳ2¯̺ satisfies the conditions of our lemma.
Now, letU be any divisor coprime toF . Then, we assert thatL(U )

is a subspace ofR. In fact, we have forX ∈ L(U ), vUν
(X) ≥ vUν

(U ) =
0. Also, we assert thatL(U ) ∩ i = L(U F ). This follows from the
following argumentX ∈ L(U F ) ⇐⇒ vU (X) ≥ vU (U ) + vU (F ) for
everyU ⇐⇒ vU (X) ≥ vU (U ) for everyU andvUv(X) ≥ vUν

(F ) for
(ν = 1, , r). Hence, if we denote byL(U ) the image ofL(U ) under the
natural homomorphism formR to R̄, we have

dimk(L(U )) = dimk

(

L(U ) + i
i

)

= dim
L(U )

L(U ) ∩ i

= dimk
L(U )

L(U F )
= l(U ) − l(U F ).

81

This proves that the dimension ofL(U ) depends only on the class
of U . Since there are divisors in any class prime toF , we may define
N0(C) for a classC to be dimk L(U ) for anyU ∈ C−1 coprime toF .

For any classC, we shall call the classC∗ = WC−1F the comple-
mentary classof C moduloF . We then prove the following

Lemma 3. For any class C, we have

N0(C) + N0(C∗) = d(F ).

Proof. Let U ∈ C−1 andδ ∈ C∗−1 be prime toF . Then,

N0(C) + N0(C∗) = dimL(U ) + dim L(δ)
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= (l(U ) − l(U F )) + (l(δ) − l(δF )

= N(C) − N(CF −1) + N(WC−1F ) − N(WC−1)

= (d(C) − g+ 1)− (d(CF −1) − g+ 1) = d(F )

by the Riemann-Roch theorem. Our lemma is proved. �

Now, let V be a vector space on a fieldk and B : VxV → K a
non-degenerate bilinear form onV. ( A bilinear form is said to be non-
degenerate if for everyX , 0, there exist aX1 ∈ V such thatB(X,X1) , 0
and for everyY , 0 there exists aY1 ∈ V such thatB(Y1,Y) , 0. Let
V1 be a subspace ofV. Then we definethe complementary subspace of
V1 with respect to the bilinear formB to the spaceV1comp of all elements
Y ∈ V such thatB(X,Y) = 0 for everyX ∈ V1. We then have the82

Lemma 4. Let V be a finite dimensional vector space and B a; non-
degenerate bilinear form on V. Then, if V1 is a subspace of V, we have

dimk V1 + dimk V1comp. = dimV.

Proof. Let V∗ be the dual ofV. We can define a homomorphismϕ :
V → V∗ which takes an elementX ∈ V ot the linear mapϕ(X) ∈ V∗

defined by
ϕ(X)(Y) = B(Y,X)

SinceB is non-degenerate,ϕ(X) , 0 if X , 0, andϕ is a monomor-
phism. SinceV is finite dimensional, dimV∗ = dimV = dimϕ(V).
Thus,ϕ is also an epimorphism. �

Now, let V2 be the complementary subspace ofV1. Then, every
element ofϕ(V2) is a linear map ofV into k which vanishes on the
subspaceV1, and conversely every element ofV∗ which vanishes onV1

should be of the formϕ(X), whereX ∈ V2. Hence, we deduce thatϕ(V2)
is isomorphic to the dual of the quotient spaceV/V1. Therefore,

dimk V2 = dimk ϕ(V2) = dimk(V/V1)∗ = dimk V − dimk V1,

dimk V1 + dimk V2 = dimk V.

The lemma is proved.
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Now, let U be a divisor prime toF andω the ( already chosen83

and fixed ) differential such that (ω)F is prime toF . We define the
complementary divisorU ∗ of U as the divisor (ω)−1F −1U −1. It is
clear thatU ∗ is also prime toF and that ifU −1 ∈ C, U ∗−1 ∈ C∗. We
may then state our theorem as follows.

Theorem.The complementary space ofL(U ) in R̄ with respect to the
bilinear form B(X̄, Ȳ) = S(XY) defined onR̄ isL(U ∗).

Proof. SupposeX̄ ∈ L(U ) andȲ ∈ L(U ∗). Then, for any prime divisor
Y , any of theUν, we have

vY (XY) ≥ vY (U U
∗) = vY ((ω)−1F −1) = −vY ((ω)),

and therefore by the lemma of the previous lecture,

ωY (XY) = 0

Hence, we obtain,

S(X̄Ȳ) = S(XY) =
n

∑

i=1

ωU (XY) =
∑

Y

ωY (XY) = ω(XY) = 0,

sinceXY ∈ K. Thus, we deduce that

L(U ∗) ⊂ ((L(U )compl.

�

Now, letC andC∗ be the classes ofU −1 andU ∗−1. We then have

dimk L(U ∗) = N0(C∗) = d(F ) − N0(C)

= dimk R̄− dimk L(U )

= dimk (L(U ))compl.

sinceB(X̄, Ȳ) = S(X̄Ȳ) is non-degenerate by lemma 2. Hence, it follows84

that(L(U )comp. = L(U ∗).
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28 Classes ModuloF

Let K be an algebraic function field over an arbitrary constant field k and 85

F an integral divisor ofK. We shall denote the distinct prime divisors of
F by U1, . . . ,Ur . We now define some groups associated to the integral
divisor F . In all the cases, it is an easy matter to verify that the sets
defined are closed under taking products or inverses.

ϑF will be the group of divisors coprime toF , andϑF0 the subgroup
of all elements ofϑF whose degree is zero.K∗F is the multiplicative
group of elements ofK∗ which are coprime toF . EF is the group of
principal divisors coprime toF .

Clearly,k∗ ⊂ K∗F , and since two elements ofK∗F define the same
divisors if and only if their ratio is a constant, we have the isomorphism

EF ≃ K∗F /k∗

Moreover, since every class contains a divisor coprime toF , the
saturation ofϑF by E is the whole ofϑ, and consequently

ϑF /EF =
ϑF

E ∩ ϑF
≃
ϑF E

E
=
ϑ

E
= R,

and similarlyϑFo /EF ≃ ϑ0.
We shall say thatX ≡ Y( mod +F ) if vUi (X − Y) ≥ vUi (F ) (i = 86

1, r). The condition is evidently equivalent to saying thatX − Y ∈
Γ(F /U1,Ur). Let K∗

F
be the set of elementsX of K∗ which satisfyX ≡

1( mod+F ). If X ∈ K∗
F

, it follows that vUi (X) = min(vUi (X − 1),

81
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vUi (1)) = 0. Hence, ifX, Y ∈ K∗, we haveXY ≡ Y ≡ 1( mod+F ) and

thereforeXY ∈ K∗
F

. Similarly,
1
X

is also inK∗
F

. SinceX ∈ K∗
F
⇒U i

(X) = 0, we deduce thatK∗
F

. EF shall denote the group of principal

divisors ofK∗
F
⊂ K∗F . EF elements ofK∗

F
. It follows from the above

inclusion thatEF ⊂ EF . EF is called the ray moduloF .
If F , N, it is easy to see thatk∗ ∩ K∗

F
=

{

1
}

. Hence, we deduce, in

this case, thatEF =
K∗
F

k∗

k∗
≃

K∗
k∗
F
∩ k∗

≃ K∗
F

.

Theclass group moduloF is by definition the quotient groupRF =
ϑF /EF and its elements are calledclasses moduloF . The subgroup
R0F = ϑ

F
0 /EF of RF is called thegroup of classes moduloF of degree

zeroand its orderhF is called theclass number moduloF . In the case
of a finite fieldk, hF can be expressed in terms of the class numberh.
We have the following theorem.

Theorem.Let the constant field k be finite with q elements and letF be
an integral divisor different from N. Then,

hF =
hNF
q− 1

r
∏

ν=1

(

1−
1

NUν

)

Proof. From the isomorphisms

R0 ≃ ϑF0 /E
F ≃

ϑF0 /EF

EF /EF
,

it follows that87

h =
hF

(

EF
EF

: 1
)

Again,

EF

EF
≃

K∗F /k∗

K∗
F

k∗/k∗
≃

K∗F

K∗
F

k∗
≃

K∗F /K∗
F

K∗
F

k∗/K∗
F

,

and
K∗
F

k∗

k∗
F

≃
k∗

k∗ ∩ K∗
F

≃ k∗,
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sinceF , N and thereforek∗ ∩ K∗
F
= {1}. Hence, we obtain

hF =
h

q− 1

[

K∗F : K∗F
]

.

�

Now , K∗F is precisely the set of elements ofΓ(N/U1, . . .Ur ) which
do not lie in any of the spacesΓ(Ui/U1, . . .Ur). Also, if X,Y ∈ K∗F ,
they belong to the same coset moduloK∗

F
if and only if XY−1 ≡ 1

(mod +F ) ⇐⇒ X ≡ Y (mod +F ) ( since Y is coprime toF ) ⇐⇒
X − Y ∈ Γ(F /U1 · · ·Ur). We deduce from these facts that (withS =
(U1, . . .Ur))

[

K∗F : K∗
F

]

= qdim Γ(n/s)
Γ(F /s) −

∑

i

qdim
Γ(Ui /s
Γ(F /s) +

∑

i, j

qdim
Γ(UiU j /s)

Γ(F /s) ···

= qd(F ) −
∑

i

qd(F )−d(Ui ) +

∑

i, j

qd(F )−d(Ui )−d(U j ) · · ·

= N(F )
r

∏

ν=1

(

1−
1

NUν

)

Substituting this expression in the value ofhF , we get the required 88

result.
Note that the theorem is not valid whenF = N. In fact, we have

R0N = R0 andhN = h.
We shall end this lecture with a simple lemma asserting the existence

of sufficiently many divisors in any class moduloF .

Lemma. If U is any given divisor, any class CF moduloF contains a
divisor δ prime toU .

Proof. Let U0 be any divisor ofCF . Find aY ∈ K such that

vUν
(Y − 1) ≥ vUν

(F ) (ν = 1, . . . , r)

and vU (Y) = −vU (Y0) if vY (U ) , 0 andY , Uν

Then it is easy to verify thatδ = U0(Y) satisfies the conditions of the
lemma. �
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29 Characters ModuloF

We shall now introduce the characters of an algebraic function field K 89

modulo an integral divisorF

Definition. A chapterX modulo an integral divisorF is a homomor-
phism ofRF into the multiplicative group of complex numbers with ab-
solute value one.

If U is a divisor prime toF , we putX(U ) = X(U EF ). If U =

δ/L , whereδ andL are mutually coprime and integral andL coprime
to F whereasδ is not, we defineX(U ) = 0. X is this defined as a
complex valued function on a subset ofV , and is clearly multiplicative
(i.e., if X(U )) andX(δ) are defined,X(U δ) = X(U X(δ)). Note thatX
is defined in particular on all integral divisors ofK.

Let X be a character modF of K. An integral divisorF 1 is said
to be a modulus of definition ofX if for any X ∈ K coprime toF and
X ≡ 1( mod+F ∞) we haveX((X)) = 1. F itself is clearly a modulus of
definition. The reason for our terminology is provided by thefollowing

Theorem. If X is a character modF andF 1 a modulus of definition
ofX, there exists a unique characterX1 of K modF 1 such that for any
divisor U prime toFF 1,

X(U ) = X1(U )

Conversely, ifX andX1 are two characters modF andF 1 respec- 90
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tively such that wheneverU is coprime toFF 1, we haveX(U ) =
X1(U ), thenF ∞ is a modulus of definition ofX andX1 is the character
associated toX by the first part of the theorem.

Proof. SupposeF 1 is a modulus of definition ofX. If CF 1 is any class
moduloF 1, we can find a divisorU in CF 1 coprime toF and we define

X1(CF 1) = X(U ).

�

The definition is independent of the choice ofU in CF 1. For ,if
δ ∈ CF 1 and is coprime toF , there exists anX ∈ K such thatU δ−1

=

(X),X ≡ 1( mod+F 1) andX coprime toF . Hence

X(U δ−1) = X((X)) = 1,

X(U ) = X(δ).

So defined,X1 is evidently a character moduloF 1 which satisfies
the condition

X(U ) = X1(U )

if U is coprime toFF ′. The uniqueness follows from the fact that this
definition ofF 1 is forced upon us by the above condition.

The first of our theorem is proved.
To prove the second part, supposeX andX1 are two characters mod-91

ulo F andF 1 respectively satisfying the above condition. Then, if (X)
is coprime toF andX ≡ 1(F 1), (X) is coprime toFF 1, and therefore

X((X)) = X1((X)) = 1

This proves thatF 1 is a modules of definition ofX andX1 the asso-
ciated character modF 1.

Corollary. F is a modulus of definition ofX1.

Our next theorem states that to any given character, there exists a
‘smallest’ modulus of definition. To prove this, we require the following
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Lemma. If F 1 andF ′′ are two moduli of definition of a character mod-
ulo F , their greatest common divisorF ′′′ is also a modulus of defini-
tion.

Proof. Let X be coprime toF andX ≡ 1( modF ′′′). Find aY ∈ K
such that

vY (XY− 1) ≥ vY (F 1) +
∣

∣

∣vY (X)
∣

∣

∣ if vY (F 1F
′′′−1 > 0, (1)

vY (X(Y − 1)) ≥ vY (F ′′) +
∣

∣

∣vY (X)
∣

∣

∣ if vF (F ′′F
′′′−1 > 0, (2)

andvY (Y− 1) ≥ vY (FF ′F ”) +
∣

∣

∣vY (X)
∣

∣

∣ if Y dividesFF ′F ” but does
not belong to the first two categories. (3)

SinceF ′′′ is the greatest common divisor ofF ′ andF ′′ the first two 92

categories are mutually exclusive, and the third category is by definition
exclusive of (1) or (2). �

Now, one can easily verify that (Y) is coprime toF . Hence, (XY) is
also coprime toF . We now assert thatY ≡ 1 ( mod+F ′′) andXY≡ 1(
mod +F ′). To verify the first, supposeY is a prime divisor dividing
F ′′. ThenY must occur in one of the three categories. IfY belongs to
(1),

vY (Y − 1) = vY (XY− 1+ 1− X) − vY (X)

≥ min(vY (XY− 1), vY (X − 1))− vY (X),

and sincevY (X − 1) ≥ vY (F ′′′) = vY (F ′′) > 0, vY (X) = 0, and the
right hand side of the inequality becomes

≥ min(vY (F ′), vY (F ′′)) = vY (F ′′).

If Y belongs to category (2), we get

vY (Y − 1) ≥ vY (F ′′) +
∣

∣

∣vY (X)
∣

∣

∣ − vY (X) ≥ vY (F ′′).

Finally, for Y in (3), we get again

vY (Y − 1) ≥ vY (F ′′).
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The second congruenceXY ≡ 1 (mod+F ′) can be proved simi-
larly. SinceF ′ andF ′′ are moduli of definition, we deduce thatX(Y) =
X(XY) = 1. HenceX(X) = 1. This completes the proof of the fact that
F ′′′ is a modulus of definition.

The theorem we mentioned is a fairly easy consequence.93

Theorem .Let X be a character of K modF . Then there exists a
unique integral divisor m such that it divides every modulusof definition
of X and every integral divisor which is divisible by it is a modulus of
definition. m is called the conductor ofX.

If X1, is the associated character tom, the conductor ofX1 is m
itself.

Proof. By the previous lemma, the g.c.d. of all moduli of definition of
X is an integral divisor which satisfies all the conditions of the first part
of the theorem. LetX1, be the associated character modm. If the
conductor ofX1, is m1, it is clear thatm1 is also a modulus of definition
of X. Hencem dividesm1, andm1 dividesm sincem1 is the conductor
of X1. Thus,m= m1. Our theorem is proved. �

A characterF moduloF is said to beprimitive or proper if F is
the conductor ofX.
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30 L-functions Modulo F

Throughout this lecture, we shall assume thatK is an algebraic function 94

field over a finite constant fieldk with q = pf elements. LetF be
an integral divisor ofK andX a character moduloF . For a complex
variables = σ+ it σ > 1, we define the L-function w.r.t. the character
F by the infinite series

L(s,X) =
∑

U

X(U )
(NU )s ,

the summation being over all integral divisors. The absolute conver-
gence, etc. of the series do not offer any difficulty to prove, and we may
also get the following product formula:

L(s,X,K) =
∏

Y

(

1−
X(Y )
(NY )s

)−1

for σ > 1.

31 The Functional Equations of the L-functions.

Before proceeding to the proof of the functional equation ofthe L-
functions, we shall prove some essential lemmas. Since it ispossible
to prove these in a general setting, we shall do so.

Let A be a commutative algebra with unit element 1 of finite rankf
over a finitek with q elements. We shall assume that a mappingX of A
into the complex number is given with the following properties:

89
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1) χ(X) = 0 if and only if X is a zero divisor isA95

2) χ(XY) = χ(X)χ(Y) for X,Y ∈ A

3) χ(αX) = χ(X) for X ∈ A andα ∈ k∗

4) If X is a zero divisor ofA, there exists aY in A such thatXY= X and
χ(Y) , 0, χ(Y) , 1.

We shall also assume that ak-linear mappingS of A in k is given
which is such that ifX ∈ A,X , 0, There exists aY ∈ A such that
S(XY) = 1. Lastly, we assume that a complex valued functionψ is
given onk such that (a)ψ(0) = 1 and (b)

∑

α∈k
ψ(α) = 0. (e.g,ψ(0)) =

1, ψ(α) = −
1

q− 1
for α , 0 satisfies the required conditions). We then

have the following lemmas.

Lemma 1. Let V be a vector subspace of A. Then,

∑

X∈V

ψ(S(XY)) =















qdimV if Y ∈ Vcomp.

0 otherwise.

Proof. If Y ∈ Vcomp,S(X,Y) = 0 for everyX ∈ V and the first equality
follows from condition (a) forψ. �

If Y < Vcomp, we can findX1 ∈ V such thatS(X1Y) = 1. Complete
X1 to a basisX1, . . .Xd of V overk. Then the sum on the left is

∑

α1,...,αd∈K

ψ

















S

















d
∑

i=1

αiXiY

































=

∑

α1,...,αd∈K

∑

α1∈K

ψ

















α1 + S

















d
∑

i=2

α1XiY

































= 0,

since for fixedα2, . . . αd, the sumα1 + S(
∑d

i=2αiXiY) runs through all
elements ofk whenα1 does. Our lemma is proved.

Lemma 2. Define the generalised Gaussian sum G(X, χ) for X ∈ A by96

G(X, χ) =
∑

Y∈A

χ(Y)ψ(S(XY)).
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Then we have
G(X, χ) = χ(X)G(1, χ)

Proof. SinceA is a finite algebra every non-zero divisor is a unit. (In
fact, if u is a non-zero divisor,ua , ub if a , b, and sinceA is a
finite set,uA = A. In particular, there exists and elementu1 ∈ A with
uu1
= 1). �

Now, if X is a zero divisor, there exists an elementu ∈ A by 4) with
Xu = X andχ(u) , 0 or 1; thus,u, is a non-zero divisor. Hence we
obtain

G(X, χ) =
∑

Y∈A

χ(Y)ψ(S(XuY)) =
∑

Y∈A

χ(Yu−1)ψ(S(XY))

= χ(u−1)G(X, χ),

and sinceχ(u−1) = χ−1(u) , 1,G(X, χ) = 0 = χ(X)G(1, χ). If X is not a
zero divisor,

G(X, χ) =
∑

Y∈A

χ(Y)ψ(S(XY)) =
∑

Y∈A

χ(X−1Y)ψ(S(Y)) = χ−1(X)G(1, χ).

Now, the units ofA form a finite group and therefore there exists an
integern , 0 with Xn

= 1. Henceχn(X) = χ(Xn) = χ(1) = 1, |χ(X)| = 1
andχ−1(X) = χ(X). The lemma is proved.

Lemma 3. Let V be a subspace of A and 97

M(V, χ) =
∑

X∈V

χ(X).

Then,
M(Vcomp, χ̄) = q− dimV

∆(χ)M(V, χ),

where∆(χ) depends only onχ and |∆(χ)| = qf /2

Proof. By the first two lemmas, we have

q−dimVM(Vcomp, χ̄) =
∑

X∈Vcomp

χ̄(X)qdimV
=

∑

X∈A

χ̄(X)
∑

X∈V

ψ(S(XY))

=

∑

Y∈V

∑

X∈A

χ̄(X)ψ(S(XY))
∑

Y∈V

G(Y, χ̄) =
∑

Y∈V

χ(Y)G(1, χ̄) = G(1, X̄)M(V, χ)

�
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Put∆(χ) = G(1, χ̄). It only remains to prove that|G(1, χ̄)| = qf /2.
Now, k can be imbedded inA by the mappingα ∈ k → α1· ∈ A.

Also,
M(k, χ)

∑

α∈k

χ(α) =
∑

α∈k∗
χ(1) = q− 1 , 0.

Chooseψ to be real. TakingV = k in the above formula, we obtain

G(1, χ)G(1, χ̄)M(k, χ) = G(1, χ)qM(kcompχ̄) = qdimkcomp+1M(k, χ),

G(1, χ)G(1, χ̄) = qf

But sinceψ is real, G(1, χ̄) = G(1, χ), and therefore

|∆(χ)| = |G(1, χ̄)| = qf /2

Our lemma is proved.98

Since we had∆(χ̄) = G(1, χ), we see thatG(1, χ) does not depends
on the functionψ. By lemma 2, it follows thatG(X, χ) is independent of
ψ. (This may also be proved directly.)

We now proceed to the functional equation

Theorem .Let F be an integral divisor which is not the unit divisor
andχ a proper character moduloF . Then L(s, χ,K) is a polynomial in
U = q−s of degree2g− 2+ d(F ) and satisfies the functional equation

qs(g−1+ 1
2d(F ))L(s, χ,K) = ǫ(χ)q(1−s)(g−1+ 1

2d(F ))L(1− s, χ̄,K)

whereǫ(χ) is a constant depending onχ, with |ǫ(χ)| = 1.

Proof. Let R be the algebraΓ(N /U1, . . .Ur), i the idealΓ(F /U1,

. . .Ur) andR̄ the quotient algebraR/i. �

Now, if X ∈ R,X , 0, NX is prime ofF andχ((X)) is meaningful.
We shall show thatχ((X)) is constant on the cosets modulo the ideali.

Let X,Y ∈ R,X − Y ∈ i. If (X) is not coprime toF , (Y) cannot be
coprime toF and thereforeχ((X)) = χ((Y)) = 0. If X is coprime toF ,
we have

vU i

(Y
X
− 1

)

= vU i(Y − X) ≥ vU i(F ),
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and hence
Y
X
≡ 1( mod+F ), χ(X) = χ(Y).

Thus, we may define for̄X ∈ R̄ a mapping which again we shall
denote byχ by the equation

χ(X̄) = χ((X)).

99

Clearly we haveχ(X̄)χ(Ȳ) = χ(XY) andχ(αX̄) = χ(X̄) if α ∈ k∗.
Also, χ(X̄) = 0 if and only if vUi (X) > 0 for somei. Find aY ∈ K such
that

vUi (Y) = vUi (F ) − vUi (X)

vUi (Y) = vUi (F ) for j , i.

Then, Ȳ ∈ R̄, Ȳ , 0 and X̄Ȳ = 0. Thusχ(X̄) = 0 implies that
X̄ is a zero divisor. Conversely, if̄X is a zero divisor, we should have
vUi (X) > 0 for somei and thereforeχ(X̄) = 0.

Now, supposēZ is a zero divisor inR̄. ThenvUi (Z) > 0 for somei.
Sinceχ is proper character moduloF ,F −1

Ui
is not a modulus of defini-

tion of χ. Hence there exists an elementX ∈ K∗, with (X) coprime to
F ,X ≡ 1( mod+FU −1

i ), andχ((X)) , 1. Then we have (X− 1)Z ≡ 0(
mod +F ), X̄Z̄ = Z̄, andχ(X̄) , 0 or 1.

Hence, the mapχ on R̄ satisfies the conditions 1), 2), 3) and 4)
stipulated at the beginning of this lecture. We have alreadyseen (Lecture
14) that ifω is a differential such thatF (ω) is coprime toF ,S(X̄) =

S(X) =
r
∑

i=1
ωUi (X) has all the requisite properties. Now,

L(s, χ,K) =
∑

C

q−sd(c)
∑

U ∈C

χ(U ),

where the first summation is over all classesC and the second over all
integral divisors in the classC. Choose a divisorUC in the classC 100

coprime toF . We have

∑

U ∈C

χ(U ) =
χ(UC)
q− 1

∑

X∈L∗(U −1
C )

χ((X)),
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since every integral divisorU ∈ C can be written in precisely (q − 1)
ways in the form (X)UC, whereX is a non-zero element ofL(U −1

C ).
Again, sinceUC is coprime toF , L(U −1

C ) ⊂ R and two elements of
L(U −1

C ) go to the same coset moduloi if and only if their difference in
L(U −1

C )F . We therefore have

∑

U ∈C

χ(U ) =
χ(UC)
q− 1

ql(U −1
C F )

∑

χ(X̄)

X̄ ∈ L(U −1
C )

Applying lemma 3 withV = L(U −1
C ), we have

∑

X̄∈L(U −1
C )

χ(X̄) = M(V, χ) = ∆−1(χ)qdim VM(Vcomp, χ̄).

But by the theorem of lecture 14, we have

L(U −1
C )compl. = L(UCF (ω))

Now, if d(C) < 0,N(C) = l(U −1
C ) = 0 and henceM(V, χ) = 0. Also,

if d(C) > 2g− 2+ d(F ), d(C−1FW) < 0, andN(C∗) = l(UCF (ω)) = 0;
hence againM(V, χ) = 0. Substituting in the expression forL(s, χ,K),
we see that it is a polynomial inU = q−s of degree at most 2g−2+d(F ).

We have101

(q− 1)L(s, x,K) =
∑

C

q−sd(C)χ(UC)ql(U −1
C F )M(L(U −1

C ), χ)

=
1
∆(χ)

∑

C

q−sd(C)+N(C)χ(UC)M(L(U −1
c )compχ̄) by lemma 3,

=
1
∆(χ)

∑

C

q−sd(C)+N(C)χ(UC)M(L((U −1
c )∗)χ̄)

by the theorem of lecture 14,

=
1
∆(χ)

∑

q(1−s)d(C)−g+1+N(WC−1)χ̄(U −1
C )M(L(U −1

C )∗), χ̄)

=
χ(ω)F
∆(χ)

q(2s−1)(1−g)+(1−s)d(F )
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×
∑

C

q(1−s)d(C∗)χ̄((U −1
C )∗−1)ql(U −1

C )F ∗)M(L((U −1
C )∗), χ)

= (q− 1)
χ((ω)F )
∆(χ)

q(2s−1)(1−g)+(1−s)d(F )L(1− s, χ̄,K), sinceC∗

runs through all classes asC does. This gives

qs(g−1+ 1
2d(F ))L(s, χ,K) = ǫ(χ)q(1−s)(g−1+ 1

2d(F ))L(1− s, χ̄,K),

where ǫ(χ) =
χ((ω)F )q

1
2

d(F )

∆(χ)
, |ǫ(χ)| = 1.

That the degree inU of L(s, χ,K) is exactly 2g − 2 + d(F ) follows
by comparing the coefficients of highest powers on both sides of the
equation. Our theorem is proved.
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32 Extensions of Algebraic Function Fields

In the next five Lectures, we shall investigate the relationsbetween an al- 102

gebraic function field and an extension of it (see below for definition). In
particular, we consider in the end the connection between theζ-function
of a function field and theζ-function of a constant field extension. This
gives in particular the interesting result that for algebraic function fields
over a finite constant field, the smallest positive degree of adivisor is 1.

We start with the definition of an extension.

Definition . Let K be an algebraic function field with constant field k.
An extension of K an algebraic function field L with constant field l such
that L⊃ K and l∩ K = k.

Now let L/l be an extension ofK/k andK a prime divisor ofL. If
vK (X) = 0 for all X ∈ K is said to bevariable over Kor trivial on
K. If this were not true, the restriction ofvK to K defines a valuation
of K trivial on k and should therefore correspond to a prime divisorY

of K. In this case,K is said to befixed on Kand is said to lie over the
prime divisorY of K. Also, since the restriction ofvK to K andvY are
equivalent valuations with values inZ, the latter having the whole ofZ
for its value group, there exist a positive integereL/K(K ) such that

vK (X) = eL/KvY (X) for all X ∈ K

eL/K(K ) is called ramification indexof K overK. 103

The relation between the residue fields ofK andY is given by the
following

97
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Lemma . If L/l is an extension of K/k and a prime divisorK of L
lies over a prime divisorY of K, the residue field KY of Y can be
canonically imbedded in the residue field LK of Y

Proof. Let O ,K denote respectively the valuation ring and maximal
ideal ofK andO andY those ofY . SincevK andvY are equivalent
on K, we clearly haveO ⊃ Y and Y = O ∩ K . Hence we have
monomorphismY = O/Y → O/K = LK andKY can be considered
as imbedded as a subfield ofLK . �

We now give condition forL/K to be a finite or an arbitrary algebraic
extension.

Lemma . Let L/l be an extension of K/k. Then among the following
statements, (1), (2) and (3) are equivalent and so are(1′), (2′) and(3′).

(1) [l : k] < ∞ (1′) l is algebraic overk.
(2) [L : K] < ∞ (2′) L is algebraic overK
(3) If K is any prime divisor

of L lying over the prime
divisor
Y of K[LK : KY ] < ∞

(3’) If K is any prime ofL ly-
ing over the prime divisor
Y of K, LK is algebraic
overKY

Proof. We shall show that (1)⇔ (2) ⇔ (3). The proof that (1)′ ⇔
(2)′ ⇔ (3)′ is similar, and even simpler �

The equation (valid even when either side is infinite)

[LK : k] = [LK : KY ][KY : k] = [LK : l][ l : k]

show that (1)⇔ (3) since [KY : k] and [LY : l] are both finite.104

We shall now prove that (1)⇔ (2). Let X be any transcendental
elements ofK overk. SinceX < k andL ∩ k = l, X < l and is therefore
transcendental over 1. It follows that [K : k(X)] < ∞ and [L : l(X)] < ∞,
and from the equalities

[L : k(X)] = [L : K][K : k(X)] = [L : l(X)][ l(X) : k(X)],

it follows that [L : K] < ∞ ⇔ [l(X) : k(X)] < ∞.
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We shall now prove that [l(X) : k(X)] = [l : k], which would finish
the proof of the theorem.

Supposeα1, . . . , αn aren linearly independent element ofl overK.
We assert that they are also linearly independent overk(X). For it there
were a linear relation among these with coefficients ink(X) with at least
one non-vanishing coefficient, we may clearly assume that it is of the
form

n
∑

i=1

αigi(X) = 0

at least onegi(X) with a non-zero constant term. SinceX is transcen-
dental overl, we may putX = 0 in the above equation to obtain a linear
relation among theα1 overk with at least one non-zero co-efficient. But
this is impossible since theαi are linearly independent by a assumption.
Hence, [l(X); k(X)] ≥ [l : k].

To prove the reverse inequality, we may assume that [l : k] < ∞. 105

Hence, there exists a finite setβ1, . . . βr of element ofl such thatl =
k(β1, . . . βr ). Then

[l(X) : k(X)] = [k(X, β1, . . . , βr) : k(X)]

= [k(X), β1, . . . βr ] : k(X, β1, . . . , βr−1).[k(X, β1, . . . , βr−1)] :

k[X, β1, . . . , βr−2] . . . [k(X, β1) : k(X)]

≤ [k, β1, . . . βr ] : k(, β1, . . . , βr−1).[k(, β1, . . . , βr−2)] :

k[, β1, . . . , βr−2] . . . [k(β1) : k(X)]

since the degree ofβ1 over k(X, β1 · · · βi−1) is less than or equal to its
degree over the smaller fieldk(β1 · · · βi−1), [k(β1 · · · βr ) : k] = [l : k].

The proof of the lemma is completed.
We shall call an extensionL/l overK/k satisfying any of the condi-

tions (1), (2), (3) of lemma a finite extension. IfK is a prime divisor of
L lying over a prime divisorY of K, the positive integer [LK : KY ] =
dL/K(K ) is called the relative degree ofK overK. It follows from the
proof of the above lemma that

dL/K(K ) =
[LK : l][ l : k]

[KY : k]
=

dL(K )
dK(Y )

[l : k],
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dL(K )[l : k] = dL/K(K )dK(Y )

(The suffix to d indicated the field in which the degree is taken)106

If L/l is an algebraic extension ofK/k, there does not exist any prime
divisor of L which is variable overK. For, supposev is a valuation on
L which is trivial on K. Any elementsα ∈ L satisfies an irreducible
equation

αn
+ a1α

n−1
+ · · · + an = 0, ai ∈ K,

so that 0= v(an) = v(α) + v(αn−1
+ +an−1)

If v(α) > 0, we have

v(αn−1
+ · · · + an−1) = min((n− 1)v(α), (n− 2)v(α), 0) = 0,

and we obtain a contradiction by substituting in the previous equation.
Thus,v cannot be positive for any element ofL, which is impossible.

Now, let L/l be any extension ofK/k. We shall prove that there are
at most a finite number of prime divisors ofL lying over a given prime
divisor Y of K, and that there is at least one.

Let g be the genus ofK and letC be the class of the divisorY g+1 .
Sinced(C) = d(Y g+1), ≥ g+ 1, we have

N(C) ≥ d(C) − g+ 1 ≥ 2,

and there exists at least one more integral divisorU in C. Then,Y g+1

U −1
= (X)K where X ∈ K and X transcendental overk. HenceX

is also transcendental overl and the divisor (X)L has a decomposi-

tion (X)L =
K

a1
1 K

ah
h

NX
, whereh ≥ 1, andai > 0. We assert that107

K1, . . .Kn are precisely the divisors ofL lying over Y . For, if K

lies overY , vK (X) > 0 and hence should be one of theKi ; and since
vKi (X) > 0, the restriction ofvKi to K should be a prime divisor oc-
curring in the numerator of (X)K , and the only such prime divisor isY .
Our contention is proved.

We now have the
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Theorem .Suppose L/l is an algebraic extension of K/k. LetY be a
prime divisor of K andK1, . . .Kh all the prime divisors of L lying over
Y . Then,

[L : K] =
h

∑

ν=1

dL/K(Kν)eL/K(Kν)

Proof. Choose an elementX ∈ K as above. We have

(X)k =
Y t

(NX)K

and (X)L =
(zX)L

(NX)L
=

K
vK1(X)

1 K
vK2(X)

2 . . . K
vK h(X)

h

(NX)L

Therefore we have

[L : l(X)] = d((zX)L) =
h

∑

ν=1

vKν
(X)dL(Kν) = vY (X)

h
∑

ν=1

eL/K(Kν)dL(Kν)

and on the other hand

[K : k(X)] = dK(Y t) = tdK(Y ) = vY (X)dK(Y ).

�

Hence, 108

[L : K] =
[L : l(X)][ l(X) : k(X)]

[K : k(X)]
=

[l : k]
dK(Y )

h
∑

ν=1

eL/K(Kν)dL(Kν)

=

h
∑

ν=1

eL/K(Kν)dL/k(Kν),

which is the formula we want.
As corollaries, we deduce the inequalities

h ≤ [L : K],

dL/K(Kν) ≤ [L : K]

and eL/K(Kν) ≤ [L : K].
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33 Application of Galois Theory

We shall now recall some basic facts of Galois theory which weshall 109

use in the sequel.
Let A be a field andB a finite algebraic extension ofA.Bs shall de-

note the subfields of all separable elements overA of B. The separable
degree[B : A]s is then define to be the degree of the fieldBs overA.B is
a purely inseparable extension overBs and its degree is called thedegree
of inseparabilityof B over A, and is denoted by [B : A] i . We obtained
the relation

[B : A] = [B : Bs].[Bs : A] = [B : A]s.[B : A] i

If B/A is a normal extension, we define theGalois group G(B/A) to
be the group of all automorphisms ofB which leave all the elements of
A fixed. The setA1 of all elements left fixed by every automorphism
belonging toG(B/A) is clearly a field containingA. It is called the
fixed fieldof G(B/A). A1 is a purely inseparable extension ofA andB a
separable extension ofA1, and we have

[B : A1] = [B : B]s, [A1 : A] = [B : A] i .

We shall now apply these facts to the theory of algebraic functions.
Let L/l ba a extension ofK/k. We define therelative separable degree
dL/K(K )s and the relative inseparable degree dL/K(K )i of a prime di- 110

visor K of L lying over the prime divisorY of K to be respectively
[LK : KY ]s and [LK : KY ] i . K is said to beseparable, inseparable

103
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or purely inseparableaccordingly asdL/K (K )i is equal to one, greater
than one or equal todL/K (K ).

Suppose now thatL1/l′ ⊃ L/l ⊃ K/k is a tower of algebraic function
fields. LetK 1 be a prime divisor ofL1 lying over a prime divisorK
of L, which again lies over a prime divisorY of K. It is easy to see that
the following relation between the ramification indices holds

eL′/K(K 1) = eL′(K
1).eL/K(K )

If moreover we assume that [L1 : K]< ∞, we have

dL1/K
(K 1) = dL1/L

(K 1)dL/K (K ),

and similar relations for the separable and inseparable degrees.
Now, supposeL/l andL1/l1 are two extensions ofK/k andσ is an

isomorphism ofL onto L1 which mapsl on l1 and fixes every element
of K. If K is any prime divisor ofL, we define the prime divisorσK

in L1 by the equation

vσK (Y) = vK (σ−1Y) for Y ∈ L1.

Clearly, K → σK is a one-one and onto mapping of the set of
prime divisors ofL onto the prime divisors ofL1. It is also immediate
that the isomorphismσ maps the valuation ring and the maximal ideal111

of K onto those ofσK . Hence we have an induced isomorphism ¯σ :
LK → L1

σK
of the residue class fields. IfK lies over a prime divisor

Y of K, σK also lies overY andσ̄ fixes every element ofKY .
From these facts, it follows that

eL1/K(σK ) = eL/K (K )

and if [L : K] < ∞

dL1/K
(σK ) = dL/K (K ).

We have the following theorem for finite normal extensions.

Theorem.Let Ll be a finite normal extension of K/k, andK a prime
divisor of L lying over a prime divisorY of K. Then every prime divisor
of L lying overY is of the formσK , whereσ is an element of G(L/K)
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Proof. We have already seen thatσK lies over Y for every
σ ∈ G(L/K). To prove the converse statement, letK = K1, . . . ,Kh

be all the prime divisors ofL lying overY . FindaY ∈ L such that

vK (Y) > 0

vK j (Y) = 0 for j = 2, . . . h.

�

Then ,

vK (NL/K Y) = [L : K] i

∑

σ∈G(L/K)

vK(σY) = [L : K] i

∑

σ∈G(L/K)

vσ−1K (Y) > 0,

since eachσ−1K for σ ∈ G(L/K) is a certainKi. BecauseK lies over 112

Y , we deduce that
vY (NL/K Y) > 0,

and consequently forj = 2, . . . , h, we have

vK j (NL/K Y) = [L : K] i

∑

σ∈G(L/K)

vσ−1K j
(Y) > 0.

Since at least one term of the sum on the right must be positive,
and since the only prime divisor lying overY whose valuation onY is
positive isK , there exists an automorphismσ j such thatK = σ−1

j K j,
K j = σ jK for every j. Our theorem is proved.

For the rest of the lecture, we shall assume thatL/l is a finite normal
extension ofK/k andG(L/K) the Galois group.

If K is a prime divisor ofL, we define thedecomposition group
(Zerlegungs gruppe)Z(K ) of K to be the subgroup ofG(L/K) of all
elementsσ ∈ G(L/K) such thatσK = K . It follows that if σ,σ1 ∈

G(L/K), σK = σ1K if and only if σ andσ1 belong to the same left
coset ofG(L/K) moduloZ(K ). Because of the above theorem, we are
able to deduce that the number of prime divisors ofL lying over a fixed
prime divisor ofK is equal to the index inG(L/K) of the decomposition
group of any one of them.
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It is also easy to obtain the relation between the decomposition
groups of two prime divisorsK andσK lying over the same prime
divisor of K. In fact, we have

τ ∈ Z(σK )⇔ τσK = σK ⇔ σγτσK = K ⇔ σ−1τσ ∈ Z(K )

and thereforeZ(σK ) = σZ(K )σ−1113

Theorem.Let K be a prime divisor of L lying over the prime divisor
Y of K. Then LK /KY is a normal extension. Every elementσ of Z(K )
induces an automorphism̄σ of LK over KY , and every automorphism
of LK over KY is got in this way.

Proof. Let K = K1,K2, . . . ,Kh be all the prime divisors ofL lying
overY . If ȳ ∈ LK , we can find a representative of ¯y in the valuation
ring OK of K such that

vK j (y) > 0 for j = 2, . . . , h.

�

In fact, if y1 is any representative of ¯y, choose ay ∈ L such that

vK (y− y1) > 0

vK j(y) > 0 for j = 2, . . . , h.

y satisfies the required condition.
The field polynomial ofy overK is given by

f (X) =















∏

σ∈G

(X − σy)















[L:K] i

Now, if σ < Z(K ), σ−1K , K and thereforevK (σy) = vσ−1K

(y) > 0. Passing to the quotient moduloK in the above equation, we
get

f (X) =



















∏

σ∈Z(K )

(X − σy)



















[L:K] i

XM,
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whereM is a non-negative integer. But this is a polynomial overKY114

which is satisfied by ¯y, and which has all its roots lying inLK . LK is
thus a normal extension ofKY .

Now if σ ∈ Z(K ), σK = K and by what we have already seen,σ

induces aKY isomorphism ¯σ of LK ontoLK , i.e. an automorphism of
LK . To prove the final part of the theorem, notice thatLK is a separable
extension of the fixed field (KY ) of the Galois groupG(LK /KY ), and
is therefore simple. Hence any automorphism ofLK /KY is uniquely
determined by its effect on a single element ¯y. But the working above
proves that every conjugate of ¯y io of the formσy = σ̄(ȳ) for some
σ ∈ G(L/K). Hence every automorphism ofLK overKY is of the form
σ̄ with σ ∈ G(L/K). Our theorem is proved.

We define theinertia group T(K ) of a prime divisorK of L to
be the subgroup of all elementsσ of Z(K ) for which σ̄ is the identity
automorphism ofLK . It is clearly a normal subgroup ofZ(K ). The
theorem proved above then establishes an isomorphismG(LK /KY ) ≃
Z(K )
T(K )

.

We now given some consequences of the theorems of this lecture.

1. [G : (e)] = [L : K]s = h[Z(K ) : (e)].

2. [Z(K ) : T(K )] = [LK : KY ]s = dL/K(K )s

3. [L; K] =
h
∑

ν=1
eL/K (Kν)dL/K (Kν) = heL/K (K )dL/K (K )

∴ eL/K (K )dL/K(K ) =
[L : K]
[L : K]s

[Z(K ) : (e)]

= [L : K] i [Z(K ) : (e)]

Hence, 115

4. [Z(K ) : (e)] =
eL/K(K )dL/K(K )

[L : K] i

5. [T(K ) : (e)] =
eL/K(K )dL/K(K )

[L : K] idL/K(K )s
= eL/K(K )dL/K (K )i

[L:K] i
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It follows from (5) that if L is separable overK, T(K ) , 1 if and
only if at least one ofeL/K(K ) or dL/K(K )i is greater than one.
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34 Divisors in an Extension

Let L/l be an arbitrary extension ofK/k. We wish to imbed the group116

of divisors of K in the group of divisors ofL in such a way that the
principal divisor (X)K in K of an elementX of K goes into the principal
divisor of the elementX in L. This condition may also be rewritten in
the form

m
∏

i=1

Y
vYi (X)

i −→

m
∏

i=1

hi
∏

j=1

K
eL/K (Ki j )vYi (X)

i j

whereYi(i = 1, . . . ,m) are the prime divisors ofK occurring inX and
Ki j ( j = 1, . . . , hi) are all the prime divisors ofL lying over Yi . This
motivates the following

Definition. If U =

m
∏

i=1
Y

vYi (U )
i is any divisor of K, we shall identity it

with the divisor
m
∏

i=1

hi
∏

j=1
K

eL/K (Ki j )vY i (U )
i j in L.

It is easy to see that this accomplishes an isomorphic imbedding of
the groupvK of divisors ofK in the groupvL of divisors ofL which takes
the principal divisor (X)K to the principal divisor (X)L. Hence we also
get a homomorphism of the class groupKK of K the class groupKL of
L. From now on, we shall use the same for a divisor or class ofK or its
image as a divisor or class ofL.

We have the following theorem comparing the degree inK of a di- 117

visor of K and its degree inL

109
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Theorem.There exists a positive rational numberλL/K depending only
on L and K such that for any divisorU of K,

dL(U ) = dK(U )/λL/K .

Proof. Obviously it suffices to prove that for any two prime divisorsY

andU of K, we have
dL(Y )
dK(Y )

=
dL(U
dK(U )

�

Assume on the contrary that we have

dL(Y )
dK(Y )

<
dL(U
dK(U )

i.e.,
dL(Y )
dL(U )

<
dK(Y )
dK(U )

Then there is a positive rationalm/n such that

dL(Y )
dL(U )

<
m
n
<

dK(Y )
dK(U )

It follows that for sufficiently large integralt, we have

dK(Y nt
U
−mt) = t(ndk(Y ) −mdK(U )) > 2gK − 1

and dL(Y nt
U
−mt) = t(ndL(Y ) −mdL(U )) < 0

118

It follows from the first inequality and the Riemann-Roch theo-
rem that there exists an elementX , 0 in K divisible by the divisor
U mtY −nt. Hence,

(X)K = U U
mt

Y
−nt,U integral

and dL((X)) = dL(U ) − t(ndL(Y ) −mdL(U )) > 0

by the second inequality. But this is impossible and our theorem is
proved.
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If [ L : K] < ∞, the value ofλL/K is
[l : k]
L : K

. For, if Y be any prime

divisor of K andKi(i = 1, . . . , h) be the prime divisors ofL lying over
Y , we have

dL(Y ) =
h

∑

i=1

dL(Ki)eL/K(Ki)

=
1

[l : k]

h
∑

i=1

dL/K(Ki)dK(Y )eL/K(Ki) =
[L : K]
[l : k]

dL(Y ).

Now letL/l be an extension ofK/k of finite degree andL1 the small-
est normal extension ofK containingL. Let l1 be the algebraic closure
of l in L1. ClearlyL1/l1 is an algebraic function field with constant field
l1. Let G = G(L1/K) be the Galois group ofL1 over K andH be the 119

subgroup of all automorphisms ofL1 fixing every element ofL. Let
G/H be the set of left cosets ofG moduloH. If Y is an element ofL, it
is well-known that the norm ofY overK is given by

NL/K (Y) =

















∏

σ̄∈G/H

σY

















[L:K] i

,

the product being over any set of representatives of the cosets in G/H.
This suggests the following definition for the norm of a divisor of L. (As
already explained, we shall use the same symbol for a divisorof L and
its canonical image as a divisor ofL1). If U is a divisor ofL, we put

NormL/K U = NmL/K U =



















∏

¯σ∈G/H

σU



















[L:K] i

The definition is independent of the choice of the representative σ

of σ̄, sinceσU = U if σ ∈ H. (More generally, ifL1/l1 andL2/l2 are
two extension of an algebraic function field andσ an isomorphism ofL1

ontoL2 mappingl1 onto l2 and fixing every element ofK, σ maps every
divisor U of K considered as a divisor ofL1 onto U considered as a
divisor of L2).

We list below the essential properties of the norm
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1. The norm of a divisor ofL is a divisor ofK. Hence the norm
mapping is a homomorphism ofϑL into ϑK

2. If K is a prime divisor ofL lying over the prime divisorY of K,
we have

NmL/KK = Y
dL/K(K )

120

3. If y ∈ L,
NmL/K(y)L = (NmL/Ky)K

4. If U ∈ ϑK ,
NmL/KU = U

[L:K]

5. If L1 ⊃ L ⊃ K is a tower of extensions of algebraic function fields,
andU ∈ vL1,

NmL1/KU = NmL/K(NmL1/LU )

Proof. (3) and (4) are immediate consequences of the definition of the
norm. It is also clear that the norm defines a homomorphism ofϑL

into itself. We have only to prove that the image is containedin ϑK to
complete the demonstration of (1). But this will follow if wecan prove
(2). �

Again, it is enough to prove (5) for prime divisorsK1 of L1 because
of (1). But using (2), (5) reduces to the already proved equality

dL1/K(K1) = dL1/L(K1)dL/K(K )

for a prime divisorK1 of L1 which lies overK of L.
It only remains to prove (2). Let againG be the Galois group of the

smallest normal extensionL1 of K containingL.
Then L1 is also normal overL and its Galois group overL is the121

subgroupH of G of all automorphisms which fix every element ofL.
Let K1 be any prime divisor ofL1 lying over the prime divisorK of L.
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We shall denote byZK andZL the decomposition group ofK1 over K
andL respectively. The, sinceL1 is normal overL, we have

K =



















∏

σ̄∈H/ZL

σK1



















eL1/L(K1)

,

and therefore

(NL/KK )[ZL:(e)]
=





















∏

τ̄∈G/H

τ



















∏

σ̄∈H/ZL

σK1



















[ZL:(e)]


















eL1/L(K)[L:K] i

=

















∏

τ∈G/H

τ















∏

σ∈H

σK1































eL1/L (K1)[L:K] i

=















∏

τ∈G

τK1















eL1/L (K1)[L:K] i

=



















∏

τ̄∈G/ZK

τK1



















eL1/L (K1)[L:K] i [ZK :(e)]

= Y

eL1/L
(K1)[L:K]i [ZK :(e)]

eL1/K
(K1)

= Y
[ZL:(e)]dL/K (K ),

since

eL1/L (K1)[L : K] i [ZK : (e)]

eL1/K(K1)
=

eL/L(K1)

[L1, : L] i
.
[L1 : K] i [ZK : (e)]

eL1/K(K1)

=
[ZL : (e)]
dL1/L(K1)

.dL1/K(K1) = [ZL : (e)]dL/K (K )

122

Since the group of divisors is free, it is also torsion free and our
formula follows.

Finally, for any divisorU of L, we have

dK(NL/K U ) = [l : k]dL(U ).

It is enough to prove this for a prime divisorK . But by the above
result, we have

dK(NL/K K ) = dK(Y dL/K (K )) = dL/K(K )dK(Y ) = dL(K )[l : k]

which is the result we want.
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35 Ramification

We wish to prove two theorems on ramification. The first one is easy.

Theorem. If L/l is an algebraic extension of K/k such that L is purely
inseparable over K, there is exactly one prime divisorK of L lying over
a given prime divisorY of K andY = Y pt where p is the characteristic
of K and t a non-negative integer.

Proof. Let Y be any element ofL. SinceL is purely inseparable overK,123

there exists an integern such thatY0 = Ypn
∈ K. Then, if K be any

prime divisor lying overY , we have

pnvK (Y) = vK (Yo) = eL/K(K )vY (Yo)

and therefore the value ofvK (Y) is uniquely determined byvY (Y0).
HenceK is unique. �

If we chooseY such thatvK (Y) = 1, we deduce thateL/K(K ) di-
videspn, and our theorem is proved.

We say that a prime divisorK of an extensionL of an algebraic
function fieldK is ramified if eL/K(K ) > 1. We have the following

Theorem. If L is separably algebraic over K, there are at most a finite
number of prime divisors of L which are either ramified or inseparable
over K.

Proof. We give the proof in three steps. We first prove the theorem for
finite normal extension, then for finite separable extension, and finally
in the general case. �

First assume thatL is finite and normal overK. A prime divi-
sor K of L is either ramified or inseparable only if [T(K ) : (e)] =
eL/K(K )dL/K(K )i > 1.

This implies that there is an automorphismσ of L in the group
T(K ) which is not the identity automorphism. SinceL is finite and
separable overK it is a simple extensionK(Z) of K. HenceσZ , Z.

Al least one of the elementsZ,
1
Z

lies in OK , and sinceσ ∈ T(K )124
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we deduce that one of the two inequalities

vK (Z − σZ) > 0 orvK

(

1
Z
−

1
σZ

)

> 0

should hold. Since there are only finitely many automorphisms σ of L
over K and only finitely many prime divisorsK for which one of the
two inequalities above can be valid, the theorem is proved inthis case.

If L/K were finite and separable but not normal, letL1 be the small-
est normal extension ofK containingL. If a prime divisorK of L is
ramified or inseparable overK, the same property should also hold for
any prime divisor ofL1 lying overK . Hence the theorem in this case
follows from the first part.

Finally, supposeL/K is any separably algebraic extension Itl is the
constant field ofL, L is evidently a finite separable extension of the com-
posite extensionKl. Also, a prime divisor ofL in ramified (inseparable)
over K if and only if it is either ramified (inseparable ) overKl or the
prime divisor ofKl over which it lies is ramified (inseparable) overK.
Our theorem follows from what we have proved above and the following
lemma.

Lemma. If L/l is an algebraic function field which is separably alge-
braic over K/k and the that L= Kl, there are no prime divisors of L
ramified or separable over K.

Proof. If K is a prime divisor ofL which is ramified (inseparable) over
K, find an elementY ∈ Kl such thatVK (Y) = 1(Ȳ ∈ LK is inseparable 125

over KY ). SinceY is a rational combination of a finite number of ele-
ments ofK and l, Y lies in a finite extensionK(α1, . . . αn) of K, where
αi are elements ofl. We may also assume thatL1 = K(α1, . . . αn) is a
normal separable extension ofK; for it is already separable, and we have
only to adjoin to it the conjugates of theαi (which are finite in number)
to make it normal. Also by our choice ofY, we see that the prime divisor
K1 of L1 over whichK lies is ramified (inseparable) overK. �

Let T(K1) be the inertia group ofK1 in L1 overK. Then, we should
have

[T(K1) : (e)] = eL1/K (K1)dL1/K (K1)i > 1,
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and there exists an elementσ ∈ T(K1) which is not the identity. But
sinceσ ∈ T(K1),

vK1(αν − σαν) > 0 (ν = 1, 2, . . . n)

and theαν being constants, we should have

αν = σαν

Henceσ is the identity automorphism when restricted toK and fixes
each one of elementsα1, . . . , αn. Henceσ should be the identity auto-
morphism ofL1 = K(α1, . . . αn). This is a contradiction and our theorem
is proved.
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36 Constant Field Extensions

An extensionL/l of an algebraic function fieldK/k is said to be acon- 126

stant field extensionIf L is the composite extensionKl of K andl.
The following question arises. Given an algebraic functionfield K/k

and an extensionl of k, is it possible to find a constant field extension
L′/l′ of K/k such thatl is k-isomorphic tol′ ? This is not possible in
general, since the constant field ofL′ = Kl′ will in general be larger than
the isomorphic imagel′ of l.. More precisely, we have the following

Theorem.Let K/k be an algebraic function field and l′0 an extension of
k. Then there exists an algebraic function field L/l which is an extension
of K/k with the following properties:

(1) there exists a subfield l0 of l containing k and a k-isomorphismλ :
l0→ l′0

(2) L = Kl0.

If L∗/l∗ is another extension ofK/k with a subfieldl∗0 of l∗ and ak-
isomorphismλ∗ : l∗0→ l′0 having the properties (1) and (2), there exists a
K-isomorphismρ : L∗ → L such that the restriction ofρ to l∗0 coincides
with the mapλ−1

0 λ∗ of l∗0 onto l0.
l is a purely inseparable finite extension ofl0. 127

Proof. Construction of a composite fieldL = Kl0. �

117
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Let {u′i } be a transcendence basis ofl′0 over k. Take a{ui} of inde-
pendent transcendental elementsui over K in one-one correspondence
ui ↔ u′i with the set{u′i } and letΩ be the algebraic closure ofK({ui}).
Then we have an isomorphismλ of k(u′i ) ontok(ui ) trivial on k, defined
by λu′i = ui .λ can be extended to an isomorphismλ of l′0 onto subfieldl′0
of Ω, andΩ contains the composite fieldKl0 = L. Let l be the algebraic
closure ofl0 in L.

If X is a transcendental element ofK overk,X is also transcendental
over l0. For if it were not, there exists a finite subset (u1, . . .un) of theui

such thatX is algebraic overk(u1, . . .un). Hence there exists a relation
of the form

fo(u1, . . . un)Xr
+ · · · · · · + fr(u1, . . . un) = 0, fi ∈ k[u1, . . . un],

with at least one non-constant polynomialfi . But this would imply that
the set (u1, . . .un) is algebraically related overK, a contradiction.

Also, sinceL = Kl0, andl0 ⊃ k,

[L : l0(X)] ≤ [K : k(X)] < ∞,

and thereforeL/l is an algebraic function field with constant fieldl ⊃ l0.
The conditions (1) and (2) are evidently fulfilled. Moreover, since,X is128

transcendental overl, we have

[l : l0] = [l(X) : l0(X)] ≤ [L : l0(X)] < ∞

Only the second part of the theorem asserting uniqueness upto iso-
morphism and the last part asserting thatl is purely in-separable overl0
remain to be proved.

SupposeL∗/l∗ is another extension ofK/k satisfying the conditions
of the theorem. We have to set up an isomorphismρ : L∗ → L such
thatρ fixes the elements ofK andρ restricted tol∗0 is the isomorphism
λ1 = λ

−1
0 λ∗ of l∗0 onto l0. Since any element ofL∗ = Kl∗0 can be written

in the form
∑

ki l∗i
∑

k′j l
′∗
j

ki , k
′
j ∈ K, l∗i , l

′∗
j ∈ l∗0,
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we should necessarily have

ρ

(
∑

ki l∗i
∑

k′j l
′∗
j

)

=

∑

kiλ1(l∗i )
∑

k′jλ1(l′∗j )

We make this the definition ofρ. In order to prove that it is well
defined, we have to verify that if 0 has the representation

∑

ki l∗i , then
∑

kiλ1(l∗i ) = 0. To prove that the map is an isomorphism (and also
to prove that the denominator of the right side does not vanish when
∑

k′j l
′∗
j , 0) we have to prove that

∑

kiλ(l∗i ) = 0⇒
∑

ki l∗i = 0.
Thus, we have set up the required isomorphism provided we can129

prove that
∑

ki l
∗
i = 0⇔

∑

kiλ1(l∗i ) = 0.

But since these expressions involve only a finite number of elements
of l0 and l∗0, we may assume thatl0 (and consequentlyl∗0) is finitely
generated overk.

A simple argument shows that to prove the pure inseparability of l
over l0 we may also assume thatl0 is finitely generated overk.

First assume thatl0 is a purely transcendental extensionk(u1, . . . un)
of k. Then l∗0 = k(u∗1, . . . u

∗
n), whereu∗i = λ−1

1 (ui ). Thenu1, . . .un are
algebraically independent overK, and so areu∗1, . . . , u

∗
n. Hence there

exists an isomorphismρ : L∗ = K(u∗1, . . . , u
∗
n) → K(u1, . . . un) = L. In

this case, the constant fieldl coincides withl0 = k(u1, . . . , un). This
follows from the following more general

Lemma . If A is a field which is algebraically closed in another field
B, and if X1, . . . ,Xn is a set of algebraically independent elements over
B,A(X1, . . .Xn) is algebraically closed in B(X1, . . . ,Xn).

Proof. We may clearly assume thatn = 1,X1 = X. �

Letα = α0
f (X)
g(X)

be any element ofB(X), whereα0 , 0 is an element

of B and f (X) andg(X) are coprime polynomials overB with leading 130

coefficients 1. Ifα is algebraic overA(X), we have

ϕr (X)αr
+ · · · · · · · · · + ϕo(X) = 0, ϕi(X) ∈ A[X],
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ϕo, . . . , ϕr coprime

i.e., ϕr(X)αr
o f r(X) + · · · · · · + ϕo(X)gr (X) = 0.

Let ξ be any root off (X). SubstitutingX = ξ in the above equation
(which we may do sinceX is transcendental overB) we obtain

ϕo(ξ)gr (ξ) = 0

and sinceg(ξ) , 0, f andg being coprime,

ϕ0(ξ) = 0

and soξ is algebraic overA. Since every root off is algebraic overA
and f (X) has leading coefficient 1, the coefficients of f are algebraic
over A and hence lie inA. Similarly, g is also a polynomial overA.
Substituting forX a rootδ of f (X) − g(X), we get, sincef (δ) = g(δ) ,
0, ϕr (δ)αr

0 + · · · + ϕ0(δ) = 0, henceα0 is algebraic overA and therefore
in A, since not allϕi(δ) = 0(ϕ0, . . . ϕr being coprime). Our lemma is
proved.

We are therefore left with the case whenl0 is a finite algebraic ex-
tension ofk. Then we havel0 = k(α1, . . . , αm). We use induction onm.131

The result is trivial whenm= 0.
Suppose the result holds form − 1 in the place ofm. Put k1 =

k(α1, . . . , αm−1) andK1 = Kk1 = K(α1, . . . , αm−1). Let α∗i = λ−1
1 (αi),

k∗1 = k∗(α∗1 · · ·α
∗
m−1) andK∗1 = Kk∗1 = K(α∗1, . . . α

∗
m−1). Let l1 and l∗1 be

the algebraic closures ofk1 andk∗1 in K1 andK∗1 respectively. By our
induction hypothesis, we have

(1) an isomorphismρ1 : K∗1 → K1 such thatρ1 when restricted tok∗1
coincides with the restriction ofλ1 to k∗1, and

(2) l1 andl∗1 are purely inseparable extensions ofk1 andk∗1 respectively.

Putαm = α andα∗m = λ−1
1 (αm) = α∗. Then,L = K1(α) andL∗ =

K∗1(α∗). We would be through if we can extend the isomorphismρ1 to
an isomorphismρ : L∗ → L such thatρ(α∗) = λ1(α∗) and if we prove
that the constant fieldl of L is purely inseparable overl0.
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To prove that we can extend the isomorphismρ1 to ρ, it is necessary
and sufficient to show that ifF∗(X) is the irreducible polynomial ofα∗

overK∗1, ρ1F∗(X) is the irreducible polynomial ofα overK1.
Assume thatF∗(X) has leading coefficient 1. Since one of its roots is

algebraic overk∗1, all its roots are algebraic overk∗1 andF∗(X) is therefore
a polynomial with coefficients in the algebraic closure,l∗1 of k∗1 in K∗1.
Also, sincel∗1 is purely inseparable overk∗1, the irreducible polynomial of 132

α∗ overk∗1 is a certain power ofF∗(X) of the form (F∗(X))pt
, t ≥ 0. Since

λ1 is an isomorphism ofl∗o = k∗1(α∗) onto lo = k1(α) with λ1(α∗) = α,
we deduce thatλ1(F∗(X))pt

= ρ1(F∗(X))pt
is the irreducible polynomial

of α overk1.
Again, sinceρ1 mapsk∗1 ontok1, it maps the algebraic closurel∗1 of

k∗1 in K∗1 onto the algebraic closurel1 of k1 in K1. This proves that the
irreducible equation ofα overK1 (or what is the same,l1) with leading
coefficient 1 is equal toρ1F∗(X) sinceρ1F∗(X) is obviously the only
irreducible factor ofρ1(F∗(X))pt

over l1.
Henceρ1 can be extended to an isomorphismρ having the requisite

properties.
To prove thatl is purely inseparable overl0, notice that sincel1 is

purely inseparable overk1, l1(α) is purely in-separable overk1(α) = l0.
It is therefore sufficient to prove thatl is purely inseparable overl1(α).

Now sincel1 is algebraically closed inK1, the irreducible polyno-
mial ofα overK1 with leading coefficient l coincides with its irreducible
polynomial overl1. Therefore we have

[

K1(α) : K1
]

=
[

l1(α) : l1
]

and similarly
[

l1(α,X) : l1(X)
]

=
[

l1(α) : l1
]

.

From these two equalities and the following one 133

[

K1(α) : l1(X)
]

=
[

K1(α) : K1
][

K1 : l1(X)
]

=
[

K1(α) : l1(α,X)
][

l1(α,X) : l1(X)
]

.

we deduce that

[

K1 : l1(X)
]

=
[

K1(α) : l1(α,X)
]

.
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Now, letβ be a constant ofK1(α). Then there exists an integert ≥ 1
such thatβpt

is separably algebraic overl1(α). By a well-known theo-
rem, the extensionl1(α, βpt

) is a simple extensionl1(γ) of l1. We have

[

K1(α) : l1(α, βpt
,X)

]

=
[

K1(γ) : l1(γ,X)
]

=
[

K1 : l1(X)
]

by an argument which is familiar to us, and using our previousequality,
we get

[

K1(α) : l1(α, βpt
,X)

]

=
[

K1(α) : l1(α,X)
]

and hencel1(α, βpt
,X) = l1(α,X) andβpt

∈ l1(α,X). Sinceβpt
is alge-

braic overl1(α) which is algebraically closed inl1(α,X), βpt
∈ l1(α) and

β is purely inseparable overl1(α).
Our theorem is completely proved. We shall give an example where

l , l0. Let k0 be a field of characteristicp > 0 andu andv two alge-
braically independent elements overk0. Letk = k0(u, v) andX a variable
over k. PutK = k(X,Y) whereY satisfies the equationYp

= uXp
+ v.134

We shall show that the constant field isk. If it were not, letk1 be the
constant field. SinceK = k(X,Y) is of degreel or p overk(X) and since
[

k1(X) : k(X)
]

=
[

k1 : k
]

> 1, we deduce thatK = k1(X). Hence
Y = u1/pX + v1/p ∈ k1(X). But sinceX is transcendental overk, (and
hence also overk(u1/p, v1/p), we deduce thatu1/p andv1/p are both in
k1. Hence

[

k1 : k
]

≥
[

k(u1/p, v1/p) : k
]

=
[

k(u1/p, v1/p) : k(u1/p)
][

k(u1/p) : k
]

= p2,

while on the other hand

[

k1 : k
]

=
[

k1(X) : k(X)
]

≤
[

K : k(X)
]

≤

which is a contradiction.
Now, take l0 = k(v1/p). Then Kl0 clearly contains the element

Y − v1/p

X
= u1/p and hencel = k(u1/p, v1/p), l , lo and

[

l : lo
]

= p.
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37 Constant Field Extensions

We require some preliminary lemmas. 135

Lemma 1. Let A, B and C be subfields of a given field, B⊃ A and C
algebraic of finite degree n over A. Then the composite extension BC is
algebraic over B of degree at most n. Moreover if y1, . . . yn is a basis of
C over A, BC is spanned by the same set of elements y1, . . . yn over B.
The degree of BC over B is equal to n if and only if B and C are linearly
disjoint over A.

Proof. Sincey1, . . . yn spanC over A, we have in particularC = A(y1,
. . ., yn) and sinceB ⊃ A, BC = B(y1, . . . yn). Hence any element ofBC
can be written as a polynomial iny1, . . . yn with coefficients inB (since
y1, . . . yn are algebraic overA), and since any monomial iny1, . . . , yn can
be written as a linear combination ofy1, . . . , yn with coefficients inA, we
deduce thatBC is the vector space spanned byy1, . . . ..yn overB. Hence
[BC : B] ≤ n. �

If [ BC : B] = n, y1, . . . yn should also be linearly independent over
B, and since (y1, . . . yn) is an arbitrary set ofn elements ofC linearly
independent overA, B andC are linearly disjoint overA. The converse
is also evident.

Lemma 2. (a) Let B be any purely transcendental extension of A and
C any field containing A and algebraically disjoint with B over A. 136

Then C and B are linearly disjoint over A.

123
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(b) Let A be algebraically closed in B and C= A(α) a simple algebraic
extension of A. Then B and C are linearly disjoint over A.

Proof. (a) LetB = A(uλ)λ∈A whereuλ is a set of algebraically indepen-
dent elements overA. If B andC are not linearly disjoint, there is a
set of elementsc1, . . . cn ∈ C which are linearly independent overA
and polynomialsfi(u1, . . .um), ui , ∈ {ui}λ∈A not all of which vanish
identically such that

c1 f1(u1, · · · um) + · · · + cn fn(u1, . . . um) = 0, fi ∈ A[u1, . . . , um]

Sinceu1, . . .um are algebraically independent overA, they are alge-
braically independent overC also. We may therefore equate to zero
separately the coefficients of each of the monomial expressions in
u1, . . . um occurring in the left hand side of the above equation. At
least one of these provides a non-trivial linear combination of theci

with coefficients inA which vanishes. This is a contradiction.

(b) SinceA is algebraically closed inB, the irreducible monic polyno-
mial of α overB is actually a polynomial overA, as we have proved
earlier. Hence [B(α) : B] = [A(α) : A], and our result follows from
Lemma 1.

�

Lemma 3. Let A, B,C,D be subfields of a given field such that B⊃
A,D ⊃ C ⊃ A. Then B and D are linearly disjoint over A if and only if137

(i)B and C are linearly disjoint and (ii) D and the composite extension
BC are linearly disjoint over C.

Proof. Suppose first thatB andD are linearly disjoint. Then (i) is evi-
dently fulfilled. To prove (ii ), supposedi(i = 1, . . . n) is a set of elements
of D linearly independent overC. If they are linearly dependent over
BC, there exists a relation of the form

∑

i

di

∑

j

ci j b j = 0 , ci j ∈ C, b j ∈ B,
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with b j linearly independent overC and not allci j being zero. On inter-
changing the orders of summation, we get

∑

j

b j

∑

j

dici j = 0,

and we deduce from our hypothesis that
∑

i

ci j di = 0 for all j.

�

But sincedi are linearly independent overC, we haveci j = 0 for all
i and j. This is a contradiction.

Suppose conversely that (i) and (ii ) are fulfilled. Then any set of
elements ofB linearly independent overA are, by (i), linearly indepen-
dent overC, and (since they are also elements ofBC) by (ii ), linearly
independent overD. Our lemma is proved.

We can now prove the following

Theorem.Let L = Kl0 be a constant field extension of K with the field138

of constants l⊃ l0. Then the following conditions are equivalent

(A) K and l are linearly disjoint over k.

(B) For every finitely generated subfield l′
0 of l0 over k, and L1 = Kl10,

the constant field of L1 coincides with11
0.

If these are fulfilled, (B) holds for any (not necessarily finitely gen-
erated) subfieldl10 of l0, in particular forl0 itself, i,e.,l = l0.

Proof. We shall first show that (A) implies (B) for any subfieldl10 of l0.
Let l1 be the constant field ofL1

= Kl10. It follows from (A) that l1 and
K are linearly disjoint overk.

Let X be any transcendental element ofK overk. Then by Lemma
3, K and 11 are linearly disjoint overk if and only if (i) k(X) andl1 are
linearly disjoint overk and (ii)K andl1k(X) = l1(X) are linearly disjoint
overk(X).
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By lemma 2, sincek(X) are 11 are algebraically disjoint (i) is always
satisfied. By lemma 1, since 11

0(X) ⊂ 11(X) andL1
= K11

0(X), we have
the inequalities

[

L1 : l1(X)
]

≤
[

L1 : l1o(X)
]

≤
[

K : k(X)
]

.

�

Again by lemma 1, sinceL1
= Kl1(X), the equality

[

L1 : l1(X)
]

=
[

K : k(X)
]

follows from the linear disjointness ofK andl1(X) overk(X).
From these we deduce that if (A) holds, l1(X) = l10(X), and sinceX139

is transcendental overl1, l1 = l10.
Conversely suppose (B) holds for every finitely generated subfield

l10 of l0. To prove that 1 andK are linearly disjoint, it is enough to
prove that any finitely generated subfield of 1 overk is linearly disjoint
with K overk. But clearly a finitely generated subfield ofl is contained
in the constant fieldl1 = l10 of L1

= Kl10, wherel10 is a suitable finitely
generated extension ofk. It is therefore enough to prove that any finitely
generated subfieldl10 of l0 overk is linearly disjoint withK overk.
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Let l10 = k(α1, . . . αm). Putki = k(α1, . . . αi), andl i = Kki. To show
that l10 andK are linearly disjoint overk, it is enough to show thatk1 and
K are linearly disjoint overk, k2 andL1 = KK1 are linearly disjoint over
k1, etc., and finallyl10 = km and Lm−1 = KKkm−1 are linearly disjoint
over km−1 (Lemma 3). But by (B) eachki is algebraically closed inLi

and sinceki+1 is a simple extension ofki , our result follows from Lemma
2.

Corollary. If either K or l0 is separably generated over k, then l= l0.

Proof. By the above theorem, we may assume thatl0 is finitely gener-
ated overk. Morover, since we have already seen thatl = l0 for a purely 140

transcendental extensionl0 of k (see Lecture 21), we may assume thatl0
is finitely algebraic overk. �

Suppose now thatl0 is separably algebraic overk. ThenL = Kl0 is
separably algebraic overK. But if α ∈ l, the irreducible monic polyno-
mial of α over K lies in k and is therefore separable overk. Hencel is
separable overl0, and is also purely inseparablel = l0.

Suppose next thatK is separably generated overk. Let X ∈ K be
transcendental overk and such thatK/k(X) is separable. ThenL =
Kl0(X) is separable overl0(X). Hence any element ofl is separably
algebraic overl0(X), and sincel0 is algebraically closed inl0(X), l is
separable overl0. The result follows as before.

Our next theorem runs as follows.
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Theorem.Let L= l0K be a constant field extension andλL/K the ratio-
nal number satisfying

λL/KdL(U ) = dK(U )

for any divisorU of K. ThenλL/K is a power of the characteristic with
non-negative exponent(λL/K = 1 if the characteristic is zero). It is equal
to one if and only if K and l are linearly disjoint over k.

Proof. Let X be a transcendental element ofK. ChooseU to be the
numerator of (X). Then, we see that

dK(U ) = [K : k(X)] anddL(U ) = [L : l(X)]

Hence,141

λL/K = 1⇔ dL(U ) = dK(U )⇔ [L : l(X)] = [K : k(X)].

But as we have already seen (see proof of the first theorem of this
lecture) [L : l(X)] = [K : k(X)] if and only if K andl are linearly disjoint
overk. �

In particular, if the characteristic is zero,K is separably generated
over k, and by the corollary of the first theorem, the condition (B) of
our first theorem is satisfied. Hence (A) holds, i.e.,K andl are linearly
disjoint overk. HenceλL/K = 1.

If the characteristicp > 0, let K0 be the largest separable extension
of k(X) contained inK, andL0 = K0l0. Then as above,K0 and l0 are
linearly disjoint overk. Hence we obtain

[

K0 : k(X)
]

=
[

L0 : l0(X)
]

Also, K/K0 is a purely inseparable extension of degreeps, s≥ 0 and
therefore so isL = Kl0 inseparable of degreeps, wheres0 ≤ s (lemma
1). Therefore we have

λL/K =

[

K : k(X)
]

[

L : l(X)
] =

[

K : k(X)
][

l(X) : l0(X)
]

[

L : l0(X)
]
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=

[

K : K0
][

K0 : k(X)
]

[

L : L0
][

L0 : l0(X)
]

[

l : l0
]

= ps−s0
[

l : lo
]

Thus, we see thatλL/K is a power ofp divisible by
[

l : l0
]

. Our142

theorem is proved.
In particular, we see that ifK or l0 is separably generated overk,K

andl are linearly disjoint overk and thereforeλL/K = 1.
The last theorem of this section relates to the residue classfield of a

prime divisor in a constant filed extension.

Theorem .Let L = Kl, where I is separably generated over k. IfK

is a prime divisor of L lying over the prime divisorY of K, LR is the
composite of the two subfields KY and l.

Proof. It is clearly sufficient to prove the theorem when (1)l is purely
transcendental overk and (2) whenl is separably algebraic overk. �

Case 1. Since KY is algebraic over K, l and KY are linearly disjoint
over k. Let us agree to denote the image in LK of any element Y in the
valuation ringOK by Ȳ. Any Y∈ OK can be written in the form

n
∑

i=1
ki l i

m
∑

j=1
k1

j l
1
j

, ki , k
1
j ∈ K, l i , l

1
j ∈ 1,

and the two sets of elements(l i) and(l1j ) being linearly independent over

k. Find elements a, b of K such that vY (a) =
n

min
i=1

vY (ki ) and vY (b) =

−
m

min
j=1

vY (k1
j ). Then clearly for at least one j vY (k1

j b) = 0, k1
j , 0. The

image LR of the element
aY
b

is then 143

∑

(kia)l i
∑

(k1
j b)l1j

Since the li are linearly independent over k, they are also linearly inde-
pendent KY and therefore the numerator does not vanish. Similarly the
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denominator does not vanish, and therefore the image of
aY
b

in LK is a

non-zero element of KY l. Since Y∈ OK , it follows that
b
a
∈ OY and

henceȲ =

(

b̄
ā

) (

āY

b̄

)

∈ KY l.

SinceKY andl are linearly disjoint, the structure ofLK is uniquely
determined; in factLK is purely transcendental overK, and a transcen-
dence basis ofl over k is also a transcendence basis ofLK over KY .
Since the mapY→ Ȳ is also uniquely fixed, we see that there is exactly
one prime divisorK of L lying over the prime divisorY of K.

Case 2. In this case we may not only assume that l is separably alge-
braic over k, but also that it is finite. In fact, any elementα of LK is
clearly the image by the place ofK of an element of Kl1, where l1 is
a finite extension of k. If we have proved the theorem for finitesepara-
ble extensions, it would follow thatα ∈ l1KY ⊂ lKY and we would be
through.

Supposel is separably algebraic and of finite degree overk. Then it
is simple and we havel = k(α), whereα is separably algebraic overk of
degreen, say. LetK = K1,K2, . . . ,Kn be all the prime divisors ofL144

lying overY . Let L1 be the smallest normal extension ofK containing
L, andK 1 a prime divisor ofL1 lying overK . Letσi(i = 1, . . . ,m) be
all the automorphisms ofL1 over K. Then sinceσiK

1 again lies over
the prime divisor ofK, its restriction toL is one of theK j.

Let Z̄ ∈ LK . Find an elementC ∈ L such that

vK (C − Z) > 0,

and vK j(C) ≥ 0, ( j = 2, . . . h)

By the first condition ,C̄ = Z̄ ∈ LK .
SinceC ∈ K(α), it can be written uniquely in the form

C = ao + a1α + · · · · · · + an−1α
n−1, ai ∈ K

(the degree ofα overK being the same as overk, according to a previous
statement).
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Taking conjugates in the above equation overK, we obtain a set of
n equations

C(i)
= a0 + a1α

(i)
+ · · · · · · + an−1α

(i)n−1

Sinceα is separable of degreen over K, the determinant|α(i) j |(i =
1, . . . , n; j = o, . . . , n − 1) has a non-zero value, and we may solve the
above equations forak to obtain

ak =

∣

∣

∣

∣

∣

∣

1α(1) · · · α(1)k−2
C1 · · · α(1)n−1

1α(n) · · · α(n)k−2
Cn · · · α(n)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1α(1) · · · · · · · · · · · · · · · · · · · · · α(1)n−1

1α(n) · · · · · · · · · · · · · · · · · · · · · α(n)n−1

∣

∣

∣

∣

∣

∣

145

The denominator is a constant of the filedL1. The numerator is a
linear combination of theC(i) with constant coefficients. But we have

vK 1(C(i)) = vσ−1
ν K ′(C) = eL1/L(σ−1

ν K
1)vK j(C) ≥ 0

whereσν is an automorphism ofL1/K taking C to C(i) andK j is the
prime divisor ofL lying belowσnu−1K 1.

We may therefore conclude that

vK 1(ak) ≥ 0, vK (ak) ≥ 0

This means that theak are inOK and therefore

Z̄ = C̄ = āo + ā1α + · · · · · · + an−1α
n−1 ∈ lKY .

Our theorem is proved.
From the proof of the theorem whenl0 is purely transcendental, the

following fact emerges. IfK is a prime divisor ofL = Kl0, l0 being
purely transcendental, andK lies over a prime divisorY of K, we
have

vK















n
∑

1

l iai















=

n
min
i=1

(vY (ai))

if l i ∈ l0 andai ∈ K. This follows in fact from the equation 146

n
∑

i=1

l iai =

n
∑

i=1

l i āi , if ai ∈ OY .
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38 Genus of a Constant Field Extension

The notations will be the same as in the previous lecture; in addition, 147

we shall denote bygR the genus of a function fieldR and byFR(U )
the vector space over the constant field ofRof elements divisible by the
divisorU . The dimension ofFR(U ) will be denoted byNR(U ).ΛR(U )
shall denote the vector space of repartitions ofRdivisible by the divisor
U .

Theorem 1. If λL/K = 1, i.e., if K and l are linearly disjoint over k, gL ≤

gK . For any divisorU of K, a base of FK(U ) is a part of a base of
FL(U ), and hence NK(U ) ≤ NL(U ).

Proof. The last part immediately follows from the fact thatFK(U ) ⊂
FL(U ), if we observe thatK and l are linearly disjoint overk and that
l = l0. Taking a divisorU of K such that

−dK(U ) > 2gK − 2,−dL(U ) > 2gL − 2, we have

NK(U ) = dK(U ) − gK + 1,

NL(U ) = dL(U ) − gL + 1,

and it follows from the previous inequality thatgL ≤ gK . �

Theorem 2. If l0 is separably generated over k, gK = gL and a basis of
FK(U ) is also a base of FL(U ) for any divisorU of K; hence NL(U ) =
NK(U ).

133
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Proof. We first consider the casel0 = k(u), u transcendental overk. Let 148

Z ∈ FL(U ). ThenZ can be written uniquely in the from

Z =
F(u)
G(u)

=

n
∑

ν=o
aνuν

um+
m−1
∑

µ=o
bµuµ

, aν, bµ ∈ K

with F andG coprime. We shall show thatbµ ∈ K. �

Let K be a prime divisor ofL lying over a prime divisorY of K.
Then by the remark at the end of the previous lecture,

vK (G(u)) = vK (um
+ bm−1um−1

+ · · · + bm) = min(0, vY (b1), . . . , vY (bm)) ≤ 0

Hence the only possible prime divisors which occur in the numerator
zG(U) of G(u) are those which overK. But now, sinceZ ∈ FL(U ), the
divisor

(Z)U −1
=
zFNG

NFzGU

is integral, and sincezG andNG are coprime, any prime divisor occur-
ring in zG must dividezF . But sinceF andG are coprime, there exist
polynomialsF1(u) andG1(u) with

F(u)F1(u) +G(u)G1(u) = 1.

If F1(u) = co+ c1u+ · · ·+ ctut andU a prime divisor ofL variable over
K, we would have

vU (F1(u)) ≥ min
ν

(vU (cν) + γvU (u)) = 0

sincevU (u) = vU (VU (cν)) = 0. Similarly vU (G1(u)) ≥ 0. Hence we149

have

0 = v(1) ≥ min(vU (F(u)) + vU (F1(u)), vU (G(u)) + vU (G(u))

≥ min(vU ((F(u))), vU (g(u))),

and thereforezG(u) and zF(u) can not have a common prime divisor.
ThereforezG(u) = N andG(u) is constant.
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It follows that for any prime prime divisorY of K,

vY (Z) = vY (F(u)) = min
ν

vY (aν) ≥ vY (U )

and thereforeaν ∈ FK(U ).
Thus, we see thatFL(U ) is the vector space generated overl = l0 by

FK(U ). from the liner disjointness ofK andl, we deduce thatNK(U ) =
NL(U ).

Next supposel = l0 = k(α) is finite separable (and therefore simple)
overk. Any elementZ ∈ FL(U ) can be written uniquely in the form

Z = c0 + c1α + α + cn−1α
n−1, ci ∈ K

wheren is the degree ofα overk or K.
Let L1 be the smallest normal extension ofL overK. Taking conju-

gates in the above equation overK, we obtain

Z(i)
= c0 + c1α

(i)
+ · · · + cn−1α

(i)n−1
(i = 1, . . . n)

We may solve forck of obtain 150

ak =

∣

∣

∣

∣

∣

∣

1α(1) · · · α(1)k−2
Z(1) · · · α(1)k · · · α(1)n−1

1α(n) · · · α(n)k−2
Zn · · · α(n)k

· · · α(n)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1α(1) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · α(1)n−1

1α(n) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · α(n)n−1

∣

∣

∣

∣

∣

∣

The denominator is a constant, 0 and the numerator is a linear
combination ofZ(i) with constant coefficients. SinceU is a divisor of
K, it may be easily verified that every conjugateZ(i) of Z is divisible by
U in L1. Hence theck are divisible byU in L1 and hence inK. We
have proved in this case also thatFL(U ) is generated byFK(U ) over i.
The equalityNL(U ) = NK(U ) again follows from the liner disjointness
of K andl = lo overk.

The case of any separably generated extensionl0 now follows along
familiar lines. AnyZ ∈ FL(U ) is contained in a fieldL1

= Kl1, where
l1 is a finitely separably generated extension ofk; hence it is an element
of FL1(U ). But in the case of a finitely separably generated extension,
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the theorem follows by induction if we use the first two cases.Hence
we again obtain the fact thatFL(U ) is generated byFK(U ) over l, and
the equalityNL(U ) = NK(U ).

Choosing a divisorU with −dk(U ) > 2gK − 2,−dL(U ) > 2gL − 2

we have − dK(U ) = NK(U ) − gK + 1,

and − dL(U ) = NL(U ) − gL + 1.
151

But sinceλL/K = 1, it follows thatdK(U ) = dL(U ) and therefore
gL = gK . The theorem is completely proved.

Theorem 3. For any constant field extension L of K, we have gLλL/K ≤

gK . (In particular gL ≤ gK).

Proof. Since the genus is preserved for for a purely transcendentalex-
tension of the constant field, and sinceλL/K = 1for such an extension, it
follows from the obvious formulaλL/L1λL1/K = λL/KL ⊃ L1 ⊃ K that it
is enough to prove the theorem for algebraic extensionl0 of k. �

First assume thatl0 is a finite extension ofk with a basisα1, . . . , αn

overk. By lemma 1 of the previous lecture,L/K is a finite extension of
degreeno ≤ n, and we may assume thatα1, . . . , αn0 form a basis ofL
overK.

Let us denote byXK andXL the vector spaces of repartitions ofK
andL overk andl respectively. We define a mapσ of the direct product
no
∏

ν=1
XK of XK by itselfno times into the spaceXL by defining the image

of (C1, . . . ,Cn0) ∈
n0
∏

ν=1
XK in XL to be the repartitionC of L defined by

C (K ) =
no
∑

ν=1

ανCν(Y )

for any prime divisorK of L, whereY is the prime divisor ofK lying152

belowK . It is easy to verify thatC so defined is a repartition, and that

σ is a k-isomorphism of
n0
∏

ν=1
XK into XL. Let the image underσ be

the subspaceX o
L of XLX

o
L is a vector subspace ofXL, if the latter is

considered as a vector space overk.
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If y =
n0
∑

1
ανxν, xν ∈ K, is any element ofL, the element (x1, . . . , xn0)

of
n0
∏

ν=1
XK (keeping in mind that we have identifiedK(L) with a subspace

of XK(XL) and we may use the same symbol for an element ofK(L) and
the corresponding repartition inXK(XL)) clearly goes to the repartition
y of XL. Hence,X 0

L ⊃ L. We assert that for any divisorU of K, we
have

XL =X
0

L + ΛL(U )

To prove this, consider a repartitionC of L. Let K1, . . . ,Kr be the
prime divisors ofL lying over a prime divisorY of K. We can find an
elementy(Y ) of L satisfying

vK ν
(y(Y ) − C (Kν)) ≥ vK ν

(U ), (ν = 1, . . . r)

Define a repartitionY of L by

Y (K ) = y(Y ) if K lies overY andvK 1(U ) < 0 or if K lies
over Y and vK (C ) , 0 for some prime divisorK 1 lying over Y ,
Y (K ) = 0 otherwise.

Clearly, C − Y ΛL(U ). We shall show thatY εX 0
L . Let y(Y ) = 153

no
∑

ν=1
ανy1

ν(Y ), y1
ν(Y ) ∈ K. Define repartitionsY 1

ν of K(ν = 1, . . . n0) by

putting

Y 1
ν (Y ) = y1(Y ) if vY (U ) , 0 or vK (C ) < 0 for someK lying

overY , Y 1
ν (Y ) = 0 otherwise.

We then haveσ((Y 1
1 , . . . ,Y

1
no

)) = Y ∈ X 0
L . Our assertion in

proved.

Now, if N denotes the unit divisor, we have

dimk
Xk

ΛK(N ) + K
= gK

and diml
XL

ΛL(N ) + L
= gL
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From the first equation,

n0gK = dimk

n0
∏

ν=1
XK

n0
∏

ν=1
ΛK(N ) +

n0
∏

ν=1
K

and applyingσ

n0gK = dimK
X 0

L

Λ
0
L(N ) + L

,

whereΛ0
L(U ) is thek-subspaceσ(

n0
∏

ν=1
ΛK(U )) of XL for any divisorU154

of K.
On the other hand,

ngL = ndiml
XL

ΛL(N ) + L
= dimk

XL

ΛL(N ) + L

= dimk
X o

L + ΛL(N ) + L

ΛL(N ) + L
= dimk

X o
L

X o
L ∩ (ΛL(N ) + L)

= dimk
X 0

L

Λ
o
L(N ) + L

− dimk
X 0

L ∩ (ΛL(N ) + L)

Λ
o
L(N ) + L

(Λ0
L(N ) is obviously a subspace ofX 0

L ∩ (ΛL(N ) + L)). Hence we
deduce that

ngL ≤ n0gK

gL ≤
n0

n
gK

But if X is any element ofK transcendental overk, we obtain

λL/K =
dK(NX)
dL(NX)

=

[

K : k(X)
]

[

L : l(X)
] =

[

K : k(X)
]

[

L : k(X)
] .

[

l(X) : k(X)
]

=

[

l : k
]

[

L : k
] =

n
no

and our result is proved in the case of a algebraic extensionl0 of k.155
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To prove the theorem in the case of an arbitrary algebraic extension,
we shall show that there exists a finite extensionl10 of k such that for
L1
= Kl10, we haveλL/L1 = 1. It would then follow from theorem 1 that

gL ≤ gL1 and our result would follow.
Let X ∈ K be transcendental overk andNX the denominator ofX.

We have

m= dK(NX) =
[

K : k(X)
]

,

m◦ = dL(NX) =
[

L : l(X)
]

.

A basex1, . . . . . . xm of K/k(X) spansL overl(X), and hence we have
m−m◦ relations

m
∑

ν=1

xνCνµ = 0, µ = 1, 2, . . . . . . ,m−m◦

with coefficientsCνµ in l(X) such that them−m◦ vectors

(C1µ, . . . . . .Cmµ) (µ = 1, . . . . . . ,m−m◦)

are linearly independent overl(X). The rational functionsCνµ of X over
l have coefficients in a finitely generated subfieldl10 ⊃ k of l. Since
L1
= Kl10 is spanned byx1, . . . xm over l10(X) and since theCνµ are in

l10(X), we deduce that

dL1(NX) ≤
[

L1 : l1X(X)
]

≤ m0 = dL(NX),

and since we already haveλL/L1 ≥ 1, we deduce thatλL/L1 = 1. 156

Our theorem is completely proved.

Remark . If λL/K > 2, we can actually assert thatλL/K gL < gK . For
supposeλL/K gL = gK . Letω be a non-zero differential ofK. Then, we
have

dL((ω)) =
dK((ω))
λL/K

=
2gk − 2
λL/K

,

and hence (sincedL((ω)) is an integer)λL/K divides 2gK−2. But from the
equationλL/KgL = gK , we deduce thatλL/K dividesgK and hence 2gK .
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This implies thatλL/K divides 2, λL/K ≤ 2, which is a contradiction.
Hence we have the strict inequality.

If howeverλL/K = 2, we may have 2gL = gK as the following ex-
ample follows.

Let k be a field of characteristic 2 andα◦, α1 two elements ofk

such that
[

k
(

α
1
2
0 , α

1
2
1

)

: k
]

= 4. Then it can be seen easily that ifX is

a transcendental element overk, the polynomialY2 − (α1 + α1X2) is
an irreducible polynomial ofY over k(X). Hence, ifY is a root of the
equationY2

= α0 + α1X2, [k(X,Y) : k(X)] = 2. PutK = k(X,Y). It
can be proved (see the example forl , l0 given in Lecture 21) that the
constant fields ofk(X,Y) is k.

Now, it can be deduced by taking valuations in the equationY2
=

α0+α1X2 thatNY = NX. Hence the elements 1,X,X2, . . .Xn,Y,YX, . . .,
YXn−1 are all elements ofK divisible byN −n

X . Since they are linearly157

independent, we havel(N −n
X )] ≥ 2n+1, and the Riemann-Roch theorem

givesgK = 0.

Now, let l0 be any extension ofk such that
[

l0
(

α
1
2
0 , α

1
2
1

)

: l0
]

< 4,

andL = Kl0. SincegLλL/K ≤ gK = 0, we necessarily havegL = 0. We

shall show thatλL/K = 2. In fact, since
[

l0
(

α
1
2
0 , α

1
2
1

)

: l0
]

≤ 2, there is a

relation of the form
βα

1
2
◦ + γα

1
2
1 = δ, β, γ, δ ∈ l0, not all zero.

We may solve forα
1
2
0 andα

1
2
1 from this and the equation

α
1
2
0 + Xα

1
2
1 = Y,

sinceβX − γ , 0, thus proving thatα
1
2
0 , α

1
2
1 ∈ l0(X,Y), l = l0

(

α
1
2
◦ , α

1
2
1

)

.

Hence,L = l(X) anddL(NX) = 1, SincedK(NX) = 2, λL/K = 2.
One can in fact show that the above example covers the generalcase

whengL = gK andλL/K > 1.
To prove this, we first observe that we must havegL = gK = 0, for

otherwise, we would obtain

gL < λL/KgL ≤ gK .
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If now, W were the canonical class ofK, d(W−1) = 2 andN(W−1) = 3.
Hence there exists an integral divisorU in the classW−1 of degree 2,
andNK(U −1) = 3. Let 1,X,Y be a basis ofFK(U −1). ThenX is not a 158

constant, and sinceNX dividesU andd(U ) = 2, we see thatU = NX.
Hence,

[

K : k(X)
]

= d(NX) = 2.

Now, we assert thatY < k(X). For if it were, we can write

Y =
f1(X)
f2(X)

, f1 and f2 being coprime polynomials. Then,

(Y) =
z f1
z f2

N
deg f2−deg f1

X , and since (Y)NX is integral, we deduce that

f2 is constant and degf1 = 1. This contradicts our assumption that
1,X,Y are linearly independent. Hence,k(X,Y) , k(X), and since
[

K : k(X)
]

= 2,K = k(X,Y). Also, sinceλL/K > 1, Y should be purely

inseparable overk(X), and therefore satisfy an equation of the form

Y2
= R(X),

R(X) being a rational function ofX. SinceY2 is divisible byN −2
X , we

deduce by an argument similar to the one used above thatR(X) is a
polynomial of degree at most two. Thus,

Y2
= α◦ + α1X + α2X2

SinceX should also be purely inseparable overk(Y), we deduce that
α1 = 0.

Now, if
[

k
(

α
1
2
◦ , α

1
2
2

)

: k
]

were not equal to 4, it is less than or equal

to 2. Hence we have a relation of the form

βα
1
2
◦ + γα

1
2
2 = δ, β, γ, δ ∈ k.

This together with the relation 159

α
1
2
◦ + α

1
2
2 X = Y
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proves thatα
1
2
◦ , α

1
2
2 , are both inK and hence ink. This would imply that

Y ∈ K(X), which if false. Hence,
[

k
(

α
1
2
◦ , α

1
2
2

)

: k
]

= 4.

Finally, suppose
[

l0
(

α
1
2
0 , α

1
2
2

)

: l0
]

= 4. Then for any subfieldl10 of l0

containingk, we have
[

l10

(

α
1
2
0 , α

1
2
2

)

: l10

]

= 4. Hence the constant field of

Kl10 is l10. This implies that (see Lecture 22)λL/K = 1, a contradiction.
Our assertion is proved.
If gL = gK > 0, we deduce from the equation

gL = λL/K gL = gK

thatλL/K = 1.
We now prove the following

Theorem . If gL = gK and λL/K = 1, then for any divisorU of K a
basis of FK(U ) over k is also a basis of FL(U ) over l; in particular
NL(U ) = NK(U ).

Proof. Let us denote bylFK(U ) the vector space generated overl by
FK(U ) in L. Clearly we havelFK(U ) ⊆ FL(U ). SinceλL/K = 1, l and
K are linearly disjoint overk and we obtain

NK(U ) = diml lFK(U ) ≤ diml FL(U ) = NL(U )

Now, letU be any divisor withdK(U ) = dL(U ) < 2− 2gK . �160

Then we have

NK(U ) + dK(U ) = 1− gK ,

NL(U ) + dL(U ) = 1− gL,

and sincedK(U ) = dL(U ) andgK = gL, we obtain

NK(U ) = NL(U ),

and lFK(U ) = FL(U ).
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To draw the same conclusion for an arbitrary divisorU , choose two
divisorsδ andL of K such that (i) the least common multiple ofδ and
L is U and (ii )d(δ) < 2− 2gK , d(L) < 2− 2gL. This is clearly possible.
We then haveFK(δ) ∩ FK(L) = FK(U ), FL(δ) ∩ FL(L) = FL(U ).

Letα1, . . . , αm be a basis ofFK(U ). Complete this to a basisβ1, . . .,
β1, α1, . . . , αm of FK(δ) and to a basisγ1, . . ., γn, α1, . . . , αm of FK(L).
We assert thatα1, . . . , αm, β1, . . . , β1, γ1, . . . , γn are linearly independent
elements ofK overk. In fact, if we had a linear relation

∑

aiαi +

∑

b jβ j =

∑

ckγk, ai , b j , ck ∈ k,

since the left side is an element ofFK(δ) and the right side an element of161

FK(L),
∑

ckγk is an element ofFK(U ) and thereforeck = 0, ai = 0 and
b j = 0. Henceβ1, . . . , βl , α1, . . . , αm, γ1, . . . , γn is also a set of linearly
independent elements overl.

Now supposey is an element ofFL(U ) = FL(δ) ∩ FL(L). Since
FL(δ) has for basis (α1, . . . , αm, β1, . . . βl) over 1 andy ∈ FL(δ), we have

y =
∑

i

aiαi +

∑

j

b jβ j , ai , b j ∈ l,

and similarly, sincey ∈ FL(L) andFL(L) has for basis (α1, . . . , αm, γ1,
. . . , γn), we have

y =
∑

j

c jα j +

∑

K

dkγk, c j , dk ∈ l.

Equating the above two expressions fory, we obtain (sinceα1, . . .,
αm, β1, . . ., β1, γ1, . . . , γn are linearly independent overl)

ai = ci , b j = dk = 0.

Thusy ∈ lFK(U ) and hence we haveFL(U ) = lFK(U ). Again by
linear disjointness ofl andK overk, we obtain

NK(U ) = NL(U )

Our theorem is proved.
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The converse of the above theorem is very easy to prove. If
NK(U ) = NL(U ) for all divisors U , or even only for a sequence of162

divisors U with dk(U ) → −∞, we have the following equations for
−dk(U ) sufficiently large

NK(U ) + dK(U ) = 1− gK ,

NL(U ) + dL(U ) = 1− gL.

Hence we obtain

λL/K =
dK(U )
dL(U )

=
−NK(U ) + 1− gK

−NL(U ) + 1− gL
,

and lettingdK(U ) → −∞, and observing that the right hand side has
limit 1, we obtainλL/K = 1. HencedK(U ) = dL(U ) for any divisorU ,
and we obtaingK = gL.

Corollary. If gL = gK andλL/K = 1, the natural homomorphism of the
class groupKK of K into the class groupKL of L is an isomorphism.
Under this isomorphism, the canonical class of K goes to the canonical
class of L.

Proof. Let U be any divisor ofK which is a principal divisor inL.
ThendL(U ) = 0 andNL(U ) = 1. By the above theorem,dK(U ) = 0
and NK(U ) = 1. This proves thatU is a principal divisor ofK, and
thus the kernel of the homomorphism ofKK consists of the unit class
alone. Thus, the map is an isomorphism. We shall use the same symbol
for a class ofK and its image as a class ofL. �

Also, if WK is the canonical class ofK, dL(WK) = dK(WK) = 2gL−2163

andNL(WK) = NK(WK) = gL, which proves thatWK is the canonical
class ofL.

39 The Zeta Function of an Extension

Let K/k be an algebraic function field with a finite field of constantsk
containingq elements. Letkf be the extension ofk of degreef . Since
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k is perfect,kf /k is a separable extension, and hence the constant field
of L f = Kkf is kf . Let Y be a prime divisor ofK andK1, . . . ,Kh the
prime divisors ofL f lying over Y . Then, sincekf /k is separable, the
Ki are unramified overK, and we have

Y = K1 . . . . . .Kh.

Now, sincekf /k is separable, we know thatLKi = kY kf , and since
the degrees ofKY and kf over k are respectivelydK(Y ) and f , the
degree ofLKi overk is l.c.m. [dK(Y ), f ]. Thus,

f dL f (Ki) =
f dK(Y

( f , dK(Y ))

But we know that

f =
[

kf : k
]

=

[

L f : K
]

=

h
∑

i=1

dL f /K (Ki) = hdL f /K (K1),

and using the relation

dL/K(K1)d(Y ) = dL(K )[l; k],

we deduce the formula 164

h = ( f , dK(Y ))

An immediate consequence of the above formula is the following

Theorem .For algebraic function fields with finite constant fields, the
least positive value of the degree of its divisors is1.

Proof. Let ρ be this least value. Takef = ρ in the above formula. �

We obtain, sinceρ divides eachdK(Y ),

h = ρ

and also dL f (Ki) =
dK(Y )
ρ

.
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Substituting in the Euler product forζ(s, L f ), we obtain

ζ(s, L f ) =
∏

K

(

1− q−s f dL f (K )
)−1
=

∏

Y

h
∏

i=1

(

1− q−sdK (Y )
)−1

= (ζ(s,K))h
= (ζ(s,K))ρ

Since bothζ(s, L f ) andζ(s,K) have a pole of order 1 ats = 1, we
deduce thatρ = 1.

Finally, we prove a theorem expressing the zeta function of afinite
constant field extension in term of the L-series of the groundfield.

Theorem.With the same notation as above, we have

ζ(s, L f ) =
f

∏

ν=1

L(s, χ f ,ν,K)

whereχ f ,ν is the character on the class group taking the value e
2πiν

f on165

all classes of degree1.

Proof.

ζ(s, L f ) =
∏

K

(

1− NL f K
−s

)−1
=

∏

Y

∏

K /Y

(

1− q−s f dL f (K )
)−1

=















∏

Y

(1− NKY
−s f

( f ,dK (Y ))















−( f ,dK (Y ))

=

∏

Y

f
∏

ν=1

(

1− e
2πiν

f dK (Y )NKY
−s

)−1

(the last follows from the easily established formula
r
∏

ν=1

(

1− e
2πiν

r sz
)

=

(

1− z
r

(r,s)
)(r,s)

for positive integralr, s)

=

f
∏

ν=1

ζ

(

s−
2πiν

f logq
,K

)

=

f
∏

ν=1

L(s, χ f ,ν,K)

The proof of the theorem is complete. �
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