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Chapter 1
Differential Calculus

1.1

Let k be a commutative ring with unit an8l a commutative and asso4
ciative algebra ovek having 1 as its element. In Applicatiors will
usually be the real number field aAdhe algebra of dierentiable func-
tions on a manifold.

Definition 1. A derivation Xis a mapX : A — A such that
i) X eHom(A, A), and
i) X(ab) = (Xa)b + a(Xb) for everya,b € A.

If no non-zero element ik annihilatesA, k can be identified with a
subalgebra ofA and with this identification we hav&x = 0 for every
x € k. In fact, we have only to take = b = 1 in (jii) to getX; = 0 and
consequentlyXx = xX(1) = 0.

We shall denote the set of derivations®yThenC is obviously an
A-module with the following operations:

X+Y)a =Xa+Ya
(@X)(b) = a(Xb) for a,be A and X,Y € C.

We have actually something more:XfY, € C, then [X, Y] € C.

1



2 1. Differential Calculus

This bracket product has the following properties:
[X1+ X2, Y] = [X1, Y] + [X2, Y]
[X, Y] = -[Y. X]
x 2|+ | vz x|+ |z x V1| =0

for X,Y,Z € C. The bracket is not bilinear ovéy, but only overk. We
have

[X.aY](b) = {X(aY) - (aY)(X)} (b)
= (Xa) (YD +a[X, Y](b)

so that K, aY] = (Xa)Y + a[X, Y] for X,Y € C,a € A. The skew com-
mutativity of the bracket gives

[aX Y] = -(Y@X +a[X Y].

WhenA is the algebra of dierentiable functions on a manifol@,
is the space of dierentiable vector fields.

1.2 Derivation laws

Definition 2. A derivation law in a unitary A-modulé/ is a mapD :
C — Hom(M, M) such that, ifDx denotes the image of € C under
this map, we have
i) Dx,y = Dx + Dy
Dax = aDx forae A, X, Y € C.
i.e., D e Homy(C,Hom(M, M)).

ii) Dx(au) = (Xau+ aDxuforae A,ue M.

In practice,M will be the module of dferentiable sections of a vec-
tor bundle over a manifold/. A derivation law enables one thus to
differentiate sections of the bundle in specified directions.



1.2. Derivation laws 3

If we considerA as an A-module, theD defined byDya = Xais a
derivation law inA. This will hereafter be referred to as thanonical
derivationin A. Moreover, ifV is any module ovek, we may define
on theA-moduleA (X) V, a derivation law by settin@x(a® v) = Xa®

k
v and extending by linearity. This shall also be termed d¢hronical
derivationin AR V.

k

There exist modules which do not admit any derivation lawr Fo
instance, leAA be the algebr&[t] of polynomial in one variablé overk;
thenC is easily seen to be the frédemodule generated by = 9/4. Let
M be theA-module A/t wheredt is the ideal of polynomials without
constant term. If there were a derivation law is this moddémoting by
ethe identity coset of\/y, we have

0= Dy(te) = (Pt)e+t.Dpe=1¢

which is a contradiction.

However, the situation becomes better if we confine oveeselo
free A-modules.

Theorem 1. Let M be a free A-modulég )ic; being a basis. Given any4
system(wj)ic; of elements itHoma(C, M), there exists one and only one
derivation law D in M such that Rg = wj(X) for every i€ I.

Let u be an arbitrary element &fl. Thenu can be expressed in the
termu = ) 1jg. If the conditions of the theorem have to be satisfied,
we have to defin®xu = 3 (XAj)g + X 2i4;(X). It is easy to verify that
this is a derivation law.

We shall now see that the knowledge of one derivation lawasigh
to compute all the possible derivation laws. In factDifD’ are two
such laws, then@x — D})(au) = a(Dx — D{)(u). SinceD,D’ €
Homa(C, Homy(M, M)), it follows that D — D’ € Homa(C,Homa
(M, M)). Conversely, ifD is a derivation law and any element of
Homa(C, Homp (M, M)), thenD’ = D + his a derivation law as can be
easily verified.



4 1. Differential Calculus

1.3 Derivation laws in associated modules

Given moduleM; with derivation lawsD', we proceed to assign in a
canonical way derivation laws to module which are obtaimednfthe
M; by the usual operations.
Firstly, if M is the direct sum of the modulad;, thenDyx(m) =
Dix(mi) wherem = ¥m;, gives a derivation law ifM.
SinceD), are k-linear, we may definB in M (%) . (%) M, by set-

ting Dx (U1, ®---®Up) = X U1 ®- - - Dixui ®---Up. Now, it is easy to see
that this leaves invariant the ideal generated by elemérkedorm

UW® -ay® --@Up— U1 ®---au;®---®@UpWithae A

This therefore induces a k-linear m&y of M1 ) -+ - X Mp, into
A A
itself, where

Dx(u1®...®up):Zul@)...DiXui@...@up

whereu; ® - - ®upeM1® ®Mp

It is easily seen thdD i |s a derlvatlon law.

We will be particularly interested in the case whdp= M, = - - - =
Mp = M. In this case, we denotél; ® --- ® My by TP(M). Since we
have such a law in eachP(M) (for T°(M) = A, we take the canonical
derivation law) we may define a derivation law in the tensgebfa
T*(M) of M. If t,t’ are two tensors, we still have

Dx(t ® t/) =Dxt® t+t® Dxt/.

Now let %t be the ideal generated i (M) by elements of the form
u®Vv-veuwith u,v € M. It follows from the above equality that
DxM c 9. Consequentl induces a derivation law il*(M)/9t, which
is the symmetric algebra ovévl. Again, if %’ is the ideal inT*(M)
whose generators are of the four® u,u € M, then it is immediate
that Dy’ c 9. Thus we obtain a derivation law in exterior algebra
T*(M)/gz/ of M.
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Let M, L be two A-modules with derivation law®M, D' respec-
tively. We define a derivation la® in Homa(L, M) by setting Dxh) =
DMh — hD, for everyh € Homa(L, M) andX € C.

In fact Dx(ah) = DY (ah) - (ah)Dk.
Dx(ah)(l) = DY (ah)(l) - (ah)D (1)
= DY (ah()) - ah(D%(1))
= (Xa)(h())) +aDY (h(1)) — ah(Dx(1))
= {(Xa)h}(l) + (aDxh) for every | € L.
In particular, ifL = M with D- = DM, then we have 6

Dxh = [D§. h| for everyh € Homa(L, L).

Moreover, this leads to a derivation law in the du&bf L by taking
M = A with the canonical derivation law. The corresponding law is

(Dx f)(u) = X(f(u)) — f(Dk(u)) forevery f e L* andue L.

Now letL, M be modules with derivation lanB", DM respectively.
We may then define a derivation law in themodule.# P(M, L) of mul-
tilinear forms onM of degreep with values inL in the following way:

p
(Dxw)(Ug, .. ., Up) = D% (U, ..., Up) = > w(Ui,...,D¥U,...up).
r=1

If % P(M,L) is the submodule of#P(M, L) consisting of alternate
forms , then it is easy to see tHat, % P(M, L) c Z P(M, L). This leads
to a derivation law in thédA-modules.#ZP(M, A), Z P(M, A), if we take 7
L = Awith the canonical derivation law.

Let M1, My, M3 be three modules with a bilinear prodidi x M, —
Ms, denoted i§,v) — uv. If D, D2 D23 are the respective derivation
laws, we say that the productéempatiblewith the derivation laws if

D3(uV) = (Dxu)v + u(DZV) for X e C,ue My and ve My.

This was the case the we todk, = M, = M3z = A with the canon-
ical derivation law and the algebra-product. Again, we st the
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above condition is satisfied bM; = M, = M3 = T*(M) with the asso-
ciated derivation laws and the usual multiplication. Mo it will be
noted that ifM is anA-module with derivation lavD, the condition

Dx(au) = (Xa)u + aDxu for everyae A,ue M

expresses the fact that the max M — M defining the module struc-
ture is compatible with the derivation laws &kand M. If we denote
% P(L, M) by %"(i = 1,2,3), we may define fow € %,"p € %, e A
by setting

(@ AB)(@, ..., 8piq) = Z €r (@r(1); - - - Br(p))B(Br(p+1): - - - > Bor(pra))

where the summation extends over all permutatios (1,2, ..., p+0Q)
such thatr(1) < 0(2) < --- < o(p) ando(p+ 1) < o(p+2) < --- <
o(p + q) ande, is its signature. If the derivation laws are compatible
with the product, we have

D3(a A B) = (Da) A B+ a A (D2p) for every X e C.

1.4 The Lie derivative

LetV be a manifoldZ the algebra of dferentiable functions oW and
% the module of derivations a¥ (viz. differentiable vector fields ovi.

Any one-parameter group offfierentiable automorphisms dhgener-
ates a dterentiable vector field oN. Conversely, every éierentiable
vector fieldX gives rise to a local one-parameter gra() of local au-
tomorphisms oV. If w is ap-co variant tensor, i.e., ib € FP(€, %),

then we may define fierentiation ofw with respect toX as follows:

SHw - w
t 2
where s'(t) stands for thek-transpose of the fferential map lifted to

FP(€, ). This is known as thé&ie derivativeof w with respect taX
and can be calculated to be

Oxw = lim
t—o

p
Oxw(Ug, ..., Up) = Xw(Uy,...,Up) — Z w(Uu,...[X ul,...up).
i=1
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It will be noted ifa € %, thenfyxw # a(@xw) if p > 0. At a point
& € V, the Lie derivativéxw, unlike the derivation law, does not depend
only on the value of the vector fiekdat&.

Lemma 1. Let D be a derivation law in the A-module M anda
multilinear form on C of degree p with values in M. Then the map
B : CP = M defined by

p
B(Zi....,Zp) = Dxa(Zy,....Z Za/(Zl,. X Zl,.. .. Zp)
i=1
is multilinear. 9
Infact,8(Zy,...Zi+2,...2p) = B(Zs, ... Zi, ... Zp)+B(Z1, ... Z, ... Zp)
and

,B(Zl, ...az,. .. Zp) = (Xa)a(Zl, .. Zp) + a(Dxa(Zl, e Zp))
P
- Z a(Za,...[X.Zjl.... Zp) - a(Zs, ... (XAZ, ... Zp)

= a6(Z1,...Zp) forevery Zy,...Z, e C,ac A

Definition 3. The mapX — 8x of C into Hom(.%#P(C, M).ZP(C, M))
defined by ¢xa)(Z1,...,2Zp) = Dxa(Zs,...Zp) - Zipzl a(Zy,...[X Z]

-Zp) is called thelie derivationin the A-module.# P(C, M) and6xa
is defined to be thkie derivativeof @ with respect tox.

The Lie derivation satisfies the following

Ox(a + B) = Oxa + 0xB
Ox(aa) = (Xa)a + a(fxa)
Ox+y(@) = Oxa + Oya
Oax(a) = A(Ox(a)
foreveryX,Y e C, aB e .#P(C,M)anda € k.
Thuso looks very much like a derivation law, bafy # afdx in gen- 10

eral. From the definition, it follows that if is alternate (resp. symme-
tric), so isfxa.



8 1. Differential Calculus

1.5 Lie derivation and exterior product

As in ch[IB, letM, M2, M3 be A-module with derivation®,, D5, D3
respectively. Let there be given a bilinear prodiitx M, — M3 with
reference to which an exterior produet, ) — a A 8 of ZP(C, My) x

2 UC, My) — % P*9(C, M3) is defined. If the product is compatible
with the derivation laws, we have, on direct verification,

Ox(a@ AB) = Oxa AB+ a A OxB
for @ € ZP(C,M1),8€ Z9C,M;) and X € C.

1.6 Exterior differentiation

We shall introduce an inner product in themodule.Z#P(C, M). For
every X € C, the inner product is the homomorphiggof .%#P(C, M)
into .#P~1(C, M) defined by

(Ixa)(Z, ce Zp_l) = a/(X, Zl, ceny Zp_l)

for everya € FP(C,M),Z;,...Z,1 € C. If a is alternate it is obvious
thatlxa is also alternate. Whem is of degree Oxa = 0. The inner
product satisfies the following

1. lax = alx

|X+Y = |x+|Y, for ae A XY eC.

2. If 6x is the Lie derivation,
11 Oxly — IyO0x = I[X,Y] for X,Y,e C.

3. If ais alternate|xlxa = 0.

4. LetMq, My, M3 be threeA-modules with a bilinear product com-
patible with their lawsD1, D2, D3. Then we have, for € %P
(C,My),8 € Z%4C, Mp)

In(a A B) = (Ixa) A B+ (=1)Pa A IxB.
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infact, letZy,...,Zp.q-1 € C. Then

Ix(a A B)Z1, ..., Zp+q—1) =(@Ap)X Zy,..., Zp+q—1)
= Z €r (X Zo(2), - - -5 Zr(p-1))BZo(p); - - - Zo(pra-1)

+ Z € a(Xe(1), - - - Xe(p))BOX, Ze(pr1)s - - - Ze(prg-1))
=

whereo runs through all permutations of,[ft + q — 1] such that
oc(l)<---<o(p-1)ando(p) < --- < o(p+q-1), whiler runs
through those which satisfy(1) < - - - < r(p) andr(p+1) < --- <
7(p+ q—1). The first sum is equal tdya) A 8 and the second to

(=1)Pa A (IxB).

Theorem 2. Let D be a derivation law in an A-module M. Then there
exists one and only one family of k-linear maps: dZP(C,M) —
% PH(C, M)(p=0,1,2,...) such thaB(X) = dlx +Ixd for every Xe C.

We call this map thexterior dfferentiationin the module of alter-
nate forms orcC.

First of all, assuming that there exists such a mawe shall prove 12
that it is unique. Ifd’” is another such map, we have

d-d)ly+Ix(d-d)=0

Hencelx(d — d)a = (d’ — d)Ixa for everya € % P(C, M). We shall
prove thatde = d’« for everya € 7% P(C, M) by induction onp. When
« is of degree 0, we havel(— d)lya = 0 = Ix(d — d")a. This being
true for everyX € C,da = d’a. If the theorem were fop = g - 1, then
(d — d)Ixa = 0 = Ix(d — d)a. Again, sinceX is arbitrary,da = d'«a
which proves the uniqueness of the exteridfatentiation.

The existence is also proved by induction. bet %7 °(C, M) = M.
Then we wish to defingl, such thatlxde = (da)(X) = Oxa (since
Ixa = 0) = Dxa. Hence we can setl(a)(X) = Dxa for everyX € C.
This is obviouslyA-linear sinceDy is A-linear inX. Let us suppose that
d has been defined ot P(C, M) for p = 0,1,...(g — 1) such that the
formula is true. We shall defindw for o € % P(C, M) by setting

(da(Zy,...,Zg1) = (02,0)(Z2, . . . Zg11) — (dlz,@) (22, . . . Zg41)



13

14

10 1. Differential Calculus

We have of course to show that the thus defined is an alternate
form. That it is linear inZy, . . . Zy,1 follows from the induction assump-
tion and the multilinearity ofz,a. We shall now prove that it is alter-
nate. That means:

(da)(Z1,...,Zq+1) = 0 wheneverz; = Z; with i # .

Using the alternate nature 6f,« anddlz, «, we see that it stices
to prove that

(02,0)(Zar . .. Zqe1) = (dlz,0)(Za. . ... Zgy1) When Z; = Z,
NOW  (02,0)(Za. - - .. Zge1) = (12,02,0)(Zs. .. .. Zg1)
= (02,)2,0)(Zs. . ... Zge1) by (2)of Ch16
= (diglz,e + 12,d17,0) (Zs. .. .. Zge1)
= (d,@)(Z2. Zs. . . .. Zau).

Since (o) is alternate, linearity iZ; follows from that in the other
variables and additivity iZ;. This completes the proof of the theorem.

Remark. If we take A to be the algebra of ffierentiable functions on a
manifoldV, andM to beA itself then the exterior dierentiation defined
above coincides with the usual exterioffdrentiation.

1.7 Explicit formula for exterior di fferentiation
Lemma 2. The exterior dfferentiation defined above is given by

p+1

(d)(Z. ... Zpu1) = 3 (-1 Dza(Zs.... Zi... . Zps1)
i=1
+ ) D2.2). 2, D 2 Zpa)

i<j

where the symbol over a letter indicates that the corresponding ele-
ments is omitted.
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If dis defined as above amde % P(C, M), it is easy to see that
(Iz,da + dlz,@) = 6z,« for every Z; € C.

By the uniqueness of exteriorftBrentiation , we see that the above
gives the formula for the exterior ftierentiation.

We shall use this explicit formula only when the degreerof 2.
Then we have the formula:

1. (de)(X) = Dxa for @ € °(C, M), X e C.

2. [da)(X,Y) = Dxa(Y) — Dya(X) — a([X, Y]) for @ € Z*(C, M),
X, YeC.

3. )X, Y,2) = Y {Dxa(Y,2) - a([X, Y], 2)} for @ € %?(C, M),
X.Y,ZeC

where the summation extends over all cyclic permutationXo¥, Z).

1.8 Exterior differentiation and exterior product

We now investigate the behavioursdwith regard to the exterior prod-
uct. LetM, M5, M3 be three modules with derivation laviy, D, D3
and letM; x M> — M3 be a linear product compatible with the deriva-
tion laws. Then we have, far € Z P(C, M1),8 € Z %(C, My)

dla AB) =da AB + (-1)Pa A dB.

Again, we prove this by induction, but this g+ g. Whenp+q = 0,
the above formula just expresses the compatibility of troalpet with 15
the derivation laws. Let us assume the theorem proved fay =r — 1.
We have

d(e AB)(Zs, . ... Zpigr1) = (Izd(a A B)(Z2s - - -, Zprgr1)

But, lz,d(a AB) = 0z, (a AB) - d(lz,(a A B)
=0z,a ANB+aAbzfB— d(lzla’ AB+ (—l)pa A |zl,3)
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by(3) of Ch.[IT6
=bz,a AB+a AbzB8—dlzaAB—(=)Pza
AdB - (-1)Pda Alz,8 - a Adlzp

by induction assumption
=lzda AB - (-1)Pda AlzB + a AlzdB

- ()P lzaAd
= Iz (da A B) + (=1)Plz (@ A dB)
=1z ((da A B) + (-1)°(a A dB)),

which proves our assertion.

Remark. If we take M, = M3z = M and M; = A with the product
Ax M — M defining the module structure, then, by the above formula,
we obtain

dlae) =(da) Aa+aAda | for aeZ°(C.A)=A
=daAa+ada and a € ZP(C M).

Thus the exterior dierentiation is noA-linear.

1.9 The curvature form

It is well-know that the exterior dlierentiation in the algebra offiiéren-
tial forms on a manifold satisfiasd = 0. Let us compute in our general
case value ofida for @ € %°(C, M) = M. Then one has
dda(X,Y) = Dx(da)(Y) — Dy(da)(X) - (de)([X, Y])
= DxDya — DyDxa - Dixyja

Let K(X,Y) = DxDy — DyDx — Dixy;. Then it is obvious that
K(X,Y) is ak-endomorphism oM. But, it actually follows on trivial
verification that it is arA- endomorphism. On the other hand, we have

i) KX Y) = —K(Y,X)
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i) KX+ X,Y)=K(XY)+K(X,Y), and
i) K@@X Y)a =aK(X, Y)a for everya € M.
i) andii) are trivial and we shall verify onljji).

K(aXY) = DaxDy — DyDax — Diaxy
= anDY - Dy(an) - Da[)(,y] - (Ya)X
= aDxDy — (Y@Dx — aDyDx — aDyxy; + (Y&Dx
=aK(X,Y).

We have therefore proved thkt is an alternate form of degree 27
overC with values in the moduléloma(M, M).

Definition 4. The elemenK of % ?(C, Homa(M, M)) as defined above
ie.,
K(X,Y) = DxDy — DyDx—[xv]

is called thecurvature form of the derivation lanD.

Examples.1) Take the simplest case whéh = A, with the canonical
derivation law. Then

KX, Y)u=XYu-YXu-[X,YJu=0
i.e., the curvature form is identically zero.

2) However, there are examples in which the curvature formois-
zero.

Let A = k[x, y] with X,y transcendental ovd« It is easy to see that

C is the free module oveh with P|= i ,Ql= ﬁ as base.
ox ay

We takeM to beA itself but with a derivation law dierent from the
canonical one. By Thl1, Ch. 1.2, if we choose=1IM and takew €
Homy(C, A), then there exists a derivation ldvsuch thaDx1 = w(X).
We shall definav by requiring thatw(P) = y andw(Q) = 1. Then it
follows thatDp(1) = y, Dg(1) = 1.

K(P, Q)(1) = DpDq(1) — DoDp(1) - Dipgi(1)
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=y-(Qy).1-Yy(Dg(1))
= -1

We now prove two lemmas which give the relation between Lie
derivatives in two directions and the relation of Lie detiva to the
exterior diferentiation in terms of the curvature form.

Lemma 3. OxOva — OyOxa = Ox v + K(X, Y)() for everya € %P
(C,M).

In fact, whena is of degree 0, the formula is just the definition of
the curvature form. In the general case, this follows origttforward
verification.

Lemma 4. 0xda — ddxa = (IxK) A a for everya € % P(C, M).

It will be noted thatk € % ?(C, Homa(M, M)) and hencdxK has
values in Hom(M, M). TakingM; = Homa(M, M), My = M, M3 = M
in our standard notation, one has a bilinear proddgtx My, — M3
defined by, u) —. The symbolA used in the enunciation of the lemma
is with reference to this bilinear product.

Proof. As usual, we prove this by induction grnthe degree at. When
« is of degree 0, the formula reduces to

Dy (da(u)) — de([X, u]) — (dDxa)(U) = (IxK A @)(u) for u e C.
i.e., DxDya — D[x,u]a — DyDxa = (|xK A (a)(U)

which is but the definition oK. Assuming the truth of the lemma for
forms of degree< p, we have

lvOxda — lydoxa — ly((IxK) A @)
= Oxlyda — ljx vide + dlyOxa — Oybxa
= (IyIxK) A a + (IxK) A (Iya)
= —Oxdlva + OxOya — l[x vida + doxlya — dix yja — OyOxa
— (IyIxK) A @ + (IxK) A (Iya)
= —Oxdlyva + doxlya + OxOya — OvOxa
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- H[X,Y]CL’ - (lylxK) Na+ (lxK) A\ (|YCL’)
= —Oxdlya + doxlya + (IxK) A (lya) by lemmd3, Ch. 1.9
= 0 by induction assumption

O

Remark. The mapyx, Ix, d are of degrees,8-1, 1 respectively con-
sidered as homomorphisms of the graded moduléC, M) = . %P

(C,M). If ¢ is a mapz *(C,M) —» % *(C, M) of degreep, andpw an-
other of degrea, we define the commutatop[y] = oy — (=1)P%.
We have, in this notation, the following formulae :

) [6xIv] = lixy by (2) of ChLb

i) [d,Ix] =6x by Th.[Z, Ch. 1.6

i) [6x,60y] =6xv for derivation laws of zero curvature

iv) [6x,d] =0 } by lemmdB anfll4, Ch.1.9

v) [Ix,ly]=0 by (3) of CHIb

The operatorg)x andlyx have been generalised ( see [ 15 ] to ttee
caseM = A by replacingX by an alternate forry on C with values
in C. This generalisation has applications in the study of Viaria of
complex structures on a manifold.

A general formula fod? is given by

Lemma 5. In our usual notation, & = K A a.

The meaning of\ has to be interpreted as in Lemfa 4, Ch.1.9. The

proof is again by induction on the degreenoflf « is of degree Qv € M
and we have to show thade(X,Y) = K(X, Y)a.Assuming the lemma
verified for forms of degree p, we get

Ixdda = Oxda — dlxda
= dbxa + (IxK) A @ — dfxa + ddlxa by Lemmd#, Ch. 1.9
= (IxK) A a@ + K A lxa by induction assumption
= Ix(K A @).

SinceX is arbitrary,dde = K A @ and the lemma is proved.
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Lemma 6.

dK =0
dK(X.Y.2) = ) {(DxK)(Y.2) - K([X. Y]. 2} by (3) of ChLLV
= > IDxK(Y.2) - K(%.Z)Dx - K([X, Y], 2)}
= " {DxDyDz — DxDzDy — DxDyyz - DyDzDx+
DzDyDx + Dyyz1Dx — Dix 1Dz + DzDyx ] + Dix.viz}
=0

using Jacobi’s identity where the summations extend oweicqyermu-
tations of X, Y, Z.

1.10 Relations between dferent derivation laws

We shall now investigate the relations between the extdaiiberenti-
ations, curvature forms etc. corresponding to two devataws in
the same modul®. It has already been shown (Chll1.2) thabifD’
are two such derivation laws, then there extsts Homa(M, M)) such
thatDj = Dx + hx. We denote the exterior flierential operator, cur-
vature form etc. Corresponding @ by d’, K’ etc. Thend’ is given
by da = da + h A @. ( Here also, thd_ambdasign has to be inter-
preted as in lemm@ 4, Ch. 1.9). In fact, by definition, it fallothat
6%« = Oxa + hy o a. Hence

dixa + hAlxa + Ixda + Ix(h A @) = 65a.

From Th.[2, Ch. 1.6 on the uniqueness of exteridfedéentiation, our
assertion follows.
With regard to the curvature form, we have the following fatan

K'=K+hAh+dh
For

K’'(X,Y) = (Dx + hx)(Dy + hy) — (Dy + hy)(Dx + hy) = Dixv; — hixy)
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= K(X,Y) + hxhy — hyhx + (Dxhy) — (Dyhy) — hix v
= K(X, Y) + hxhy - hyhx + dh(X, Y)
= K(XY) + (h A B Y) + dh(X, Y).

The classical notation fohph) defined by BAh)(X, Y) = h(X)h(Y)-
h(Y)h(X) is [ h, h]. In that notation, we have

K’ = K +[h,h] +dh.

1.11 Derivation law InC

WhenA is the algebra of dierentiable functions on a manifold, any
derivation law in theA-moduleC of differentiable vector fields oy is
called alinear connectionon the manifold.

Let A be an algebra ovds, D a derivation law in the\- moduleC of
derivations ofA. Letn : C — C be the identity mapping. Then exterior
defferential ofp is given by

(dn)(X,Y) = Dxn(Y) = Dyn(x) = n([X, Y])
= DxY - DyX - [X, Y] for X, Y € C.

The alternate linear forrdn = T is called thetorsion form of the 23
derivation law inC.

Regarding the action af on T, we have theBianchi’s identity

dT(X Y, 2) = > K(X, Y)Z, where the summation extends over all
cyclic permutations ofX, .Y, Z).

This is immediate from Lemnid 5, Ch. 1.9

Let D be a derivation law it€. Then we can define a derivation law
in the module of multilinear forms o@ with values in arA- moduleM
with derivation lawD. Fora € .%P(C, M), we define

p

(Dxa)(Zy,....Zp) = Dxa(Zs, ... Zp) = > a(Z,....DxZ, ... Zp).
i=1

Moreover, we define for every € .7 P(C, M)

P
(Dx@)(Zs ... Zps1) = Dz,0(Zs, ... Zp) = ) alZo.....D2,Z, .., Zpu)
i=2
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ObviouslyDe € .ZP*1(C, M). However, this operatdd does not take
alternate forms into alternate forms. We therefore setyferZ P(C, M)

p+1
da = Z(—l)'*l(Da)(Zi, Za,.. . Ziv . Zpia).
i=1

It is easy to see that'« € % P*(C, M).

Theorem 3. If the torsion form is zero, therf énd the exterior dger-
ential coincide.

In fact, it is easy to verify thaid’ + d’lx = 8x and the theorem then
follows from ThI2, Ch.1.6

In particular, letK be the curvature form of the derivation law in
C; sincedK = 0, we haved’K = 0. It is easily seen thalK =
> (DxK)(Y, Z2). where the summation extends over cyclic permutations
of X, Y, Z. Hence we have th&econd Bianchi Identity

If the torsion of the derivation law i is 0, then}.(DxK)(Y,Z) = 0
where the summation is over all cyclic permutationsoY, Z.

1.12 Connections in pseudo-Riemannian manifolds

A differentiable manifold/ together with a symmetric bilinear form is
said to beRiemannianif the form is positive definite at all points. If the
above form is only non-degenerate ( not necessarily pesitéfinite )
at each point, the manifold gseudo-RiemanniarSuch a form defines
a natural isomorphism of the module of vector fieldsvbanto its dual.

Accordingly, in our algebraic set-up, we defingseudo Rieman-
nian formon C to be a symmetric bilinear form o@ with values inA
such that the induced m&p— C* is bijective.

Theorem 4. If g is a pseudo-Riemannian form on C then there exists
one and only one derivation law D on C such that

1) the torsion form of D is zero,

2) Dxg = Oforevery X.
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Explicitly, 1) means that X¥, Z) — g(DxY, Z) — g(Y, DxZ) = 0 for
every YZ e C.

In fact, by straight forward computation, it can be found ihthere
exists one such derivation lal, it must satisfy the equation

29(DxY, Z) = XY, Z2) - Z(Y. X) + YIZ, X)
- 9(Y.[X.Z]) +9(Z Y]. X) - 9(Z. [Y. X]).

Since the ma® — C* induced fromg is bijective, this equation deter-
minesD uniquely and conversely if we defifizby this equation, it can
be easily verified thab is a derivative law inC and that it satisfies the
conditions of the theorem

1.13 Formulae in local coordinates

Finally we translate some of our formulae in the case ofi@cintiable
manifold in terms of local coordinates. As far as local cauatks are
concerned, we may restrict ourselves to an open sibséR". Let %7
denote the algebra offtierentiable functions oW and% the% -module

of vector fields orV. Let (x}, X2,...") be a system of coordinates. The

partial derivatives?; = i have the following properties:

2) Pixi = 0ij
3) [Pi, Pj] = O for anyi, j. 26

Also (dx, ... dx") form a base fof6* over% dual to @) i.e. (dX)
(Pj) = dij. Since theZ -module¥ is free over7, all the associ-
ated modules such aBP(%), # P(¢,%) are all free over. Thus
% P(€,7) has a basis consisting of elemedi§® A- .- Adx(P 1 e S
whereS whereS is the set of all mapg : [1, p] — [1,n] such that
A1) < A2) < -+ < A(p). If M is anZ -module, any alternate form

€ % P(¢, M)) can be written in the formy, w* A dX (1) ,gx(2)r...rdxA(P)
A€S



27

20 1. Differential Calculus

with w' € M. ( The exterior product is with respect to the bilinear
productM x A — M defining the structure of/-module ).

Let M be a freezz -module of finite rank with a derivation la®.
Lete,(@ =1,2,...m) be a base oM. We set

DPie‘Y = Zl—faeﬂ’rﬁr cu

The functionsl"iﬁa completely determine the derivation law. Con-
versely, giverl"iﬁa € % , we may define, for

m
U:Zp"la,p“e%.

a=1
Dpu= Y (Pp%es + » p°Th 6
o off

and extend to the whole of¢ by linearity. It is easy to see that is a
derivation law. The above becomes in the classical notation
pa

Dpu = o St p"l"'f:aeﬁ
o1 a.p

From this we get il € M, then

du= " dx A (Dpu)

Letw €  P(C, M). We have seen that

w= Zwﬂ/\dx(%---/\dx(m with w' € M.
A€S

Using the fact thatip, (@ A B) = (0p,@) A B + @ A (6p3), in order to
computefyw, it is enough to computép w! anddp dx. Butfpw' =
Dp,w”" which we have fond out earlier. On the other hand,

(0p,dX (Py) = Pi((dX)(P)) — dX([Pi, P])
=0.



Chapter 2
Differentiable Bundles

2.1

We give in this chapter, mostly without proofs, certain défins and 28
results on fibre bundles which we require in the sequel.

Definition 1. A differentiable principal fibre bundle is a manifold P on
which a Lie group G acts glerentiable to the right, together with a
differentiable map p of P onto afferentiable manifold X such that

P.B. for every % € X, there exist an open neighbourhood U gf x
in X and a difeomorphismy of U x G — p~1(U) ( which is an open
submanifold of Psatisfying p(x, ) = X y(X, st) = y(x, 9t for x e U
and st e G.

X shall be called thebase, p the projectionandP the bundle. For
anyx e X, p~1(x) shall be called théibre over xand for¢ e P, the fibre
over pé is thefibre through¢.

The following properties follow immediately from the defion:

a) Each fibre is stable under the actionGfandG acts with out fixed
points onP, i.e. if £s = £ for somef € Pands € G, thens= ¢

b) G acts transitively on each fibre, i.e. dfn are such thapé = pn, 29
then there exists € G such that = »;

c) For everyxy € X, there exist an open neighbourhowdof xo and

21
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a differentiable mapr : V — P such thatpo(X) = x for every
x € V. We have only to choose fof the neighbourhood of con-
dition (P.B), and define fox € V,o(X) = y(x,€). A continuous
(resp. diterentiable) map- : V — P such thatpo(x) = x for every
x € V is called a cross-section resp. flerentiable cross-sectioh
overV.

d) For everyxp € X, there exist an open neighbourhowdof xo and
a differentiable map of p~X(V) into G such thaip(¢s) = p(&)s for
every¢ € p (V) ands e G. Choose folV as before the neighbour-
hoodU of (P.B.). If z is the canonical projectiod x G — G, the
mapp = oyt of p~1(V) into G satisfies the required condition. It
is also obvious that is bijective when restricted to any fibre.

Conversely we have the following

Proposition 1. Let G be a Lie group acting glerentiably to the right
on a djferentiable manifold P. Let X be anotheffdrentiable manifold
and p a diferentiable map P~ X. If conditions(b), (c), (d) are fulfilled,
then P with p. P — X is a principal bundle over X.

For everyxg € X, we can find an open neighbourhob®dof X, a
differential mapor : V. — P and a homomorphismp : p1(V) —» G
such thatpo(X) = X, p(£9) = p(£)s and moreovepo(X) = e for every
x € V,é € p (V). We definey : U x G — P by settingy(x,s) =
o(X)sfor x € V,s e G. If 9is the mapp (V) — V x G defined by
0 : & — (pé,pé) itis easy to verify thaty = y6 = Identity, using the
fact thatoo(X) = e for everyx € U. Both 8 andy being diferentiable,
our assertion is proved.

2.2 Homomorphisms of bundles
Definition 2. A homomorphism h of a glerentiable principal bundle P

into another bundle P( with the same group {3s a diferentiable map
h: P — P’ such that §¢s) = h(¢)s for everyé € P, se G.
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It is obvious that points on the same fibre are takein byto points
of P’ on the same fibre. Thus the homomorphisimduces a map h
X — X’ such that the diagram

h

P—>p
pl lpl
h
X —"> X’

is commutative. The map hX — X’ is easily seen to be fierentiable.
This is called theorojectionof h.

Definition 3. A homomorphisnh : P — P’ is said to be aisomorphism
if there exists a homomorphishi : P — P such thathoh| h’oh are
identities onP’, P respectively.

Proposition 2. If P and P are djfferentiable principal bundles with the31
same base X and group G, then every homomorphisi t P’ whose
projectionh is a djfeomorphism of X onto X, is an isomorphism.

In the case whe? andP’ have the same bas§ an isomorphism
h: P — P’ for whichh s identity will be called an isomorphisaverX

2.3 Trivial bundles

If Gis a Lie group anX a differentiable manifoldG acts on the man-
ifold X x G by the rule &, s)t = (X, st). X x G together with the natural
projectionX x G — X is a principal bundle. Any bundle isomorphic to
the above is calledrivial principal bundle

Proposition 3. Let P be a principal bundle over X with group G. Then
the following statements are equivalent:

1) Pis atrivial bundle.
2) There exists a glerentiable section of P over X.

3) There exists a glerentiable map : P — G such thap(£s) = p(£)s
for everyé € P, se G.
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2.4 Induced bundles

Let P be a principal bundle oveX with groupG. Let g be a diferen-
tiable map of a dferentiable manifold into X. The subsePq of Y x P
consisting of pointsy( &) such thag(y) = p(é) is a closed submanifold.
There is also a canonical ma@g : Pq — Y defined byPq(y,£) = y. The
groupG acts onPq with the law {,&)s = (y,£9). Itis easy to see that
Pq together withpy is a principal bundle with basé and groupG. This
is called the bundle induced froi by the mapg. There then exists
clearly a canonical homomorphisim P4 — P such that

pql ~ Lp

Y—=X

is commutativeh is defined byh(y, &) = £. By proposition[[B). Ch.2.3,
the principal bundlé® is trivial if and only if there exists a fierentiable
cross section foPq overY. This is equivalent to saying that there exists
a differentiable map : Y — P such thatp = po 4, i.e., the diagram is
commutative.

S

Y—q>X

We now assume thatis surjective and everywhere @nk = dim X.
If Pqis trivial we shall say thaP is trivialised by the mag.

Let q be a diterentiable magy — X which trivialisesP. Consider
the subsely of Y x Y consisting of pointsyy’) such that(y) = q(y’).
This is the graph of an equivalence relationYinSinceq is of rank =
dim X, Yq is a closed submanifold of x Y.

Let A be a mapY — P such thaty = po A. If (y,y) € Yq, then
Aly), A(y') are in the same fibre and hence there existgy) € G
such thati(y’) = A(y)m(y,y’). Thus we have a mam : Y53 — G
such that fory,y’) € Yq, we haved(y’) = A(y)m(y,y’). This map is
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easily seen to be flerentiable. Obviously we have, for, §), (Y,y’) €
Yq’ m(y’ y’)m(y,7 y”) = m(y’ y”)

Definition 4. Let Y be diferentiable manifold anda differentiable map
of Y onto X everywhere ofank = dim X. The manifoldYy is defined as
above. Any diferentiable mapn : Yy — G is said to be amultiplicator
with value inG if it satisfies

m(y’ Y) m(y,7 y,,) = m(y’ y,) for (y’ Y)’ ()/y”) € Y(]'

We have seen that to every trivialisation Bfby g corresponds a
multiplicator with values inG. However, this depends upon the par-
ticular lifting A of g. If u is another such lifting with multiplicaton,
there exists a dlierentiable map : Y — G such thatm(y’, y)p(y) =
p(y)n(y’,y) for every §,y)eYy. Accordingly, we define an equivalence
relation in the set of multiplicators in the following way:

The multiplicatoram, n areequivalentif there exists a dferentiable
mapp : Y — G such tham(y, y)p(y') = p(y)n(y,y’) for every §,y') €
Yg- Hence to every principal bundlIe trivialised by q corresponds a
class of multiplicatoram(P). It can be proved that in(P) = m(P’),
then P and P’ are isomorphic oveX. Finally, given a multiplicator
m, there exists bundle R trivialised by q for which m(P) = m. In
fact, in the spac¥ x G, introduce an equivalence relati®by defining 34
y,s) ~ (y,s)if(y.y) € Yqands = m(y’,y)s. Then the quotient
(YxG)/Rcan be provided with the structure of dfdrentiable principal
bundle overX trivialised byq. The multiplicator corresponding to the
mapa : Y — (Y x G)/Rdefined byy — (y, €) is obviouslym.

2.5 Examples

1) Given a principal bundI® over X, we may takeY = P andq = p.
ThenA =ldentity is a lifting ofq to P. The corresponding multipli-

catormis such thay’ =y mly,y’) wherep(y) = p(y’)

2) Let (Uj)ic; be an open cover of such that there exists a cross section
o of P over eachJ;. Take forY the open submanifold of x | (with
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| discrete) consisting of elementsg, {) such thatx € u;. Define
g(x,i) = x. This is obviously surjective and everywhere of rank
= dimX. ThenP is trivialised byq, since the mapl(x,i) = oj(X)
of Y — P is a lifting of g. The manifoldYy may be identified with
the submanifold oK x | x | consisting of elementz, i, j such that
X € Uinuj. If mis the corresponding multiplicator, we ha, i) =
A(X, J)m(x, j,i). This can be written asi(x) = oj(X)m;i(X) where
the multiplicatorm is looked upon as a family of maps; : U; N
Ui — G such thatmjimy(x) = mj(x) for everyx € U; N U; N Uy.
Such a family of maps is called a set ¢fansition functions Two
sets of transition functiongmy}, {n;} are equivalent if and only if
there exists a family of dierentiable mapg; : U; — G such that
m;i (X)pi(X) = pj(¥)n;i(X) for everyx € U; n U;. Conversely, given a
set of transition functionfim;; } with respect to a covering; of V, we
can construct a bundRoverV such thaP is trivial over eachJ; and
there exists cross - sectionsoverU; satisfyingoi(x) = o j(X)m; (X)
for everyx € U N U;

Let G be the sheaf of germs offifrentiable functions oiX with
values inG. The compatibility relations among transition functions

viz -M;i (M (X) = mjk(x) for every xe U n Uj N Uk

only state that a set of transition functions is-acicycle of the covering
(Upie) with values in the sheaf Gfwo such cocycles are equivalent (in
the sense of multiplicators) if and only if theyfidir by a coboundary.
In other words, the set of equivalent classes of transitiorctions for
the covering {;)ie| is in one-one correspondence WiHHR((U))ici, G). It
will be noted that there is no group structureHA((U;)ici, G) in gen-
eral. It can be proved by passing to the direct limit thatehisra one-
on correspondence between classes of isomorphic bundbes<and
elements oH(X, G).

2.6 Associated bundles

Let P be a diferentiable principal fibre bundle ov&rwith groupG. Let
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F be a diferentiable manifold on whic® acts diferentiably to the right.
ThenG also acts on the manifold x F by the rule £, u)s = (¢s,us) for
everyse G.

Definition 5. A differentiable bundlewith fibre type F associated to
P is a diferentiable manifoldE together with a dferentiable may :
P x F — E such that P x F, g) is a principal fibre bundle oveE with
groupG.

Let G act on a diferentiable manifold- to the right. Then we can
construct a dferentiable bundle associatedRawith fibre F. We have

only to takeE = X under the action o6 defined as above argl

to be the canonical projectiddx F — E. The diferentiable structure in
E is determined by the conditionP(x F, q) is a diferentiable principal
bundle ovelE.

Now let E be a diferentiable bundle associatedRawith fibre type
F and groupG. Then there exists a canonical mpp : E — X such
that peq(é,u) = pé for (£,u) € P x F wherep, q are respectively the
projectionsP —» X andP x F — E. X is therefore called the base
manifold of E and pg the projection ofE. For everyx € X, pgl(x) is
called the fibre ovex. Let U be an open subset &f. A continuous (
resp. diferentiable ) map- : U — E such thatpeo(X) = x for every
x € U is called asection (resp dferentiable sectionpf E overU.

Let o be a diferentiable section dP over an open subset &f of
X. This gives rise to a fieomorphismy of U x F onto pgl(U) defined 37
by y(x,v) = q(c(x),v) for x € U,v € F. On the other hand, we also
have pey(x,v) = X. In particular , ifP is trivial, there exists a global
cross-sectionr (Propl3, Ch. 2.3) and hengeis a difeomorphism of
U x F ontoE.

We finally prove that all fibres it are difeomorphic withF. In
fact for everyz € P. the mapF — E (which again we denote b3)
defined byz(v) = q(z V) is a difeomorphism of Onto pgl(p(z)). Such
amapz: F — E is called aframeat the pointx = p(2). Corresponding
to two different frameg, Z at the same point, we have two dferent
diffeomorphismg, Z of F with pgl(x). If se G such thatzs = z then
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the we have(v) = Z (vs?).

Examples.(1) LetV be a connected fierentiable manifold ané the

)

®3)

universal covering manifold o¥. Letp : P — V be a covering
map. Then the fundamental gromp of V acts onP and makes of

P a principal bundle oveY with groupz;. Moreover, any covering
manifold is a bundle ove¥ associated to the universal covering
manifold of V with discrete fibre. On the other hand, any Galois
covering ofV may be regarded as a principal bundle ovewith a
quotient ofry as group.

Let B be a closed subgroup of a Lie groGp ThenB is itself a Lie
group and it acts to the right d@ according to the following rule:

G x B — G defined by §t) — st Consider the quotient space
V = G/B under the above action. There exists one and only one
structure of a dferentiable manifold oW such thaG is a diferen-
tiable bundle ove¥ with groupB ([29]). It is moreover easy to see
that left translations ofs by elements ofs are bundle homomor-
phisms ofG into itself. The projections of these automorphisms to
the base space are precisely the translations of the left space
G/B by elements o6.

Let G be a Lie group andB a closed subgroup. Léi be a closed
subgroup ofB. As in (2), B/H has the structure of aftierentiable
manifold andB acts onB/H to the right according to the rule:

a(b)p’ = b™*q(b) = qb’*h),

whereb,b’ € B andq is the canonical projectioB — B/H. We
define amap : G x B/H — G/H by settingr(s bH) = sbH. It
is easy to see that this makésx B/H a principal bundle ovet.

In other wordsG/H is a bundle associated ®with baseG/B and
fiore B/H.
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2.7 Vector fields on manifolds

Let V be a diferentiable manifold and/ (V) the algebra of dferen-
tiable functions orV. At any point¢ € V, a tangent vectod is a map
U: Z((V) - RsatisfyingU(f +g) = Uf + Ug;Uf = 0 whenf is
constant; and (fg) = (U f)g(¢) + f(£)(Ug) for everyf,g e % (V). The
tangent vectort) at a point form a vector spacé;. A vector fieldX is
an assignment to eag¢hin V of a tangent vectoX; at¢. A vector fieldX
may also be regarded as a mapZo{V) into the algebra of real valued
functions onV by setting K f)(¢) = X¢f. A vector fieldX is a said to be
differentiable itX7% (V) c % (V). Hence the set of ffierentiable vector 39
fields onV is the modules’(V) of derivations of7Z (V).

If pis a diferentiable map from a fierentiable manifoldv into
another manifoldv’, we define a map* : (V') —» % (V) by setting
p*f = fop. Furthermore, i € V, then a linear map of; into Ty
(which is again denoted bp) is defined by pU)g = U(p*g).

Now let G be a Lie group acting ffierentiably to the right on a
manifold V. As usual, the action is denoted, §) — &s. For every
(&, 9 € V x G, there are two inclusion maps

V — V x G defined by — (n, 9); and
G — V x G defined byt — (£, 1)

These induce injective mags — T, Ts — T respectively.
The image ofdé € T¢ in T is denoted bydé,s). The image of
dse Tsin T g is denoted by4, ds). We set (£, ds) = (d¢, s) + (£,d9).
The image ofi¢ e T, by the map; — nsof V into Vwill be denoted by
dés. Similarly, the image of vectads € T by the mapt — £t will be
denotedsds Therefore the image of the vectalé(ds) € T by the
map €,s) — £sis dés+ £ds In particular, the grou®s acts on itself
and such expressions as dst and tds will be used in the abase. SEhe
following formulae are easy to verify:

1) (@é9)t = (d)(sY 40
2) (cd9t = £(dsh
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3) (£t)ds=£(td9 for £ e V ands it € G.

Let G be a Lie group with unit elememt The spacd of vectors
at e will be denoted by?'. A vector field X on G is said to be left
invariant if sX = Xg; for everys,t € G. Every left invariant vector field
is differentiable and is completely determined by its value. aBiven
a € %, we define a left invariant vector field by setting (3)s = sa
This gives a natural isomorphism éF onto the vector space of left
invariant vector fields oW. There is also a similar isomorphisms#f
onto the space of right invariant vector fields. In the samg waenG
acts on a manifold/ to the right, for evena € %/, we define a vector
field Zy onV, by setting Za): = £ aforé € V. Thus# defines a vector
space of vector fields ov.

2.8 Vector fields on diferentiable principal bundles

Let P be a diferentiable principal over a manifold with group G.
Then the projectiorp : P — V gives rise to a homomorphisp* :
% (V) — % (P). Sincepis onto , p* is injective. This defines on
every% (P)- module a structure of a# (V)module. Itis clear that any
elementh € p*% (V) is invariant with respect to the action Gfon P.
Conversely, ifh € 7 (P), wheneveh is invariant with respect t& then
he p*# (V). Infactif f € % (V) is defined by setting(x) = h(2) where
zis any element ip~(x), thenf coincides locally with the composite of
a differentiable cross- section ahdand is consequently fiiérentiable.
For everyé € P, there exists a natural linear map #f into T, taking
ae & ontoéa e T;. Itis easy to verify that the sequence of linear maps

0) = % — Tz — Tpe) — (0)

is exact. The image o¥ in T, i.e. the space of vectogsa witha € %
is the space of vectorsangential to the fibre£G and will be denoted

Definition 6. A vector fieldX on P is said to betangential to the fibres
if for every x € P, p(X¢) = 0.
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A vector fieldX is tangential to the fibres if and only X; € 9t for
every¢ € P. Itis immediate than an equivalent condition for a vector
field X to be tangential to the fibres is théfp* % (V)) = (0). We denote
the set of vector fields tangential to the fibredbyThent is an% (P)-
submodule ofg(P). We have the following

Proposition 4. If az,..., & is a base for?, then Z,,...Z, is a basis
for 9t over % (P).

In fact, for everya € %, (Za): = éa € N, i.e.,Z5 € N. Moreover,
if f1,...,f € % (P) are such thaﬁ] fiZg, =0, thenz fi(©)(&q) = 0

for everyé € P. Since{¢a}_; form a bias fordi, f(g) =0fori =
12,...,r andZ,,...Z, are linearly independent. On the other haneg

if X € N, at each point € P, we can writeX; = i fi(©)(£)éq;, and

henceX = Z fiZs, where thef; are scalar functions oR. Let¢ € P

andgl,...,gr € % (P) such that Zy):0; = dij for everyi.j; then the
functionsf; are solutions of the system of linear equations:

r
Xg = )" fi(Zag)).
i=1

Since the coficient are diferentiable and the determinga, g;| +#
0 in a neighbourhood &, f; are diferentiable at.

2.9 Projections vector fields

Let P be a principal bundle ove¥ and X a vector field onP. It is in
general not possible to define the image vector fgkdon V. This is
however possible if we assume that forgih the same fibre , the image
pX¢ in the same. This yields the following.

Definition 7. A vector field X on P is said to beprojectableif p(X¢) =
P(Xe,) for everyé € P, se G. 43
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Proposition 5. A vector field X on P is projectable if and only if X3
V) cpr#(V).

This follows from the fact that

Xe(p'f) = p(Xe) T = p(Xes) = Xes(p™ )
for everyf € Z (V).

Proposition 6. A vector field X is projectable if and only if XsX is
tangential to the fibre, ie. Xs X € 9t for every se G.

In fact, if X is projectable , we have

P(Xs=X)s = p(Xes1S— Xe)
= P(Xes1) — P(Xe)
=0.

Hence Ks— X): € 9(¢) for everyé e P.
The converse is also obvious from the above.

Definition 8. Theprojection pXof a projectable vector field is defined
by (pX)p: = pX for everyé € P.

Sincep*{(pX)f} = X(p* f) for every f € % (V) we see thapX s a
differentiable vector field oX. We shall denote the space of projectable
vector field bygp. Itis easy to see that X, Y € ¢, thenX + Y € p and
p(X +Y) = pX+ pY. Moreovergp is a submodule o%(P) regarded
as anz/ (V)-module (butnot an % (P)-submodule). Fof € % (V) and
X € 9, we havep((p*f)X) = f(pX). Thusp: ¢ — € (V) is an% (V)-
homomorphism and the kernel is just the modiilef vector fields on
P tangential to the fibre. Furthermore, for eveXyY € ¢, we have

[X.Y] € p andp[X, Y] = [pX pY].

Proposition 7. If V is paracompact, every vector field on V is the image
of a projectable vector field on. Re.,p — € (V) is surjective.

Let xe V and U a neighbourhood of x over which P is trivial. It is
clear that any vector field ¥ U is the projection of a vector field X in
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p~1(U). Using the fact that V is paracompact we obtain that therstexi
a locally finite covelU;)ic of V and a family of projectable vector fields
X; € p such that pX= X; on U; where X coincides on Ywith a given
vector field X on V. Lefyi)ic; be a dfferentiable partition of unity for

V with respect to the above cover. Ther=X(p*¢i)X; is well-defined
il

and is ingp with projection pX= } ¢ipX = X.
il

Example.Let G be a Lie group acting flierentiably to the right on a
differentiable manifoldv. The action ofG onV is given by the map
p:V xG — V. Consider the manifol¥ x G with the above projection
ontoV. G acts to the right o x G by the rule

(x, 9)t = (xt,t™1s) for everyx e V,s t € G.

The mapy : Vx G — V x G defined byy(x,s) = (xss™?) for
X € V, se Gis a difeormorphism. We also have

(X, st) = y(x, )t

This show thal/ x G is a trivial principal bundle oveY with group
G and projectionp. A global cross -section is given ly: X — (X, €).

Let = Te be the space of vectors atand |, the left invariant 45
vector field onG whose value atis a. Let (Q I;) be the vector field on
V x G whose value atx, s) is (x,sa). Then for everya € %, (0, 1,) is
projectable; as a matter of fact , it is even right invaridur,

(O, la) kgt = (x, sat
= (x,t71sq)
= (0, |a)(x,t)t-1s
= (0, |a)(x,s)t

We moreover see thai(0, |;) = Z; since we havep(x, sa) = xsa=

(Za)XS-
We define a bracket operatioa, p] in % by setting [a, ] = l[ay-
Then we have in the above situation

[(0,12), (O, 1p)] = (0, l{a)-
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Then it follows that

[Za, Zy] = [p(O, Ia), P(O, Ip)]
= pl(0, 1), (0, Ib)]
= ZJak-



Chapter 3

Connections on Principal
Bundles

3.1

A connection in a principal bundIB is, geometrically speaking, an as46
signment to each point of P of a tangent subspace atvhich is sup-
plementary to the spac®:. This distribution should be fferentiable
and invariant under the action G More precisely,

Definition 1. A connectior” on the principal bundI® is a diferentiable
tensor field of type (11) such that

1) T(X) c M for every X € € (P)
2) T'(X) = X forevery X e it
3) I'(X) =I'(X)s for every se G.

Thus, at each poir, I is a projection ofT; onto9t,. Condition 3)
is equivalent td'(d¢)s = I'(d¢'s) for everyé € P, dé € T andse G.

Examples.1) If Gis a discrete group, the submodgiteof % (P) is (0).
Thus any projection o%’(P) onto %t has to be 0. Hence the only
connection on a Galois covering manifold is the (0) tensor.

35
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2) LetV be a diferentiable manifold an@ a Lie group. Consider the
trivial principal bundleV x G overV. The tensoi” defined by

I(dx dg = (x.d9
is easily seen to be a connection.

3) LetPbe aLie group an a closed subgroup. Consider the principal
bundleP overP/G. Let p be the tangent spaceato P, and# that
ateto G. Then# can be identified with a subspacegfFora e %,
the vector fieldZ, is the left invariant vector field, on P. We shall
now assume that ip, there exists a subspa®é such that

) p=%aM
2) for everyse G, s"1dis c M.

(Mt is only a subspace supplementary2q which is invariant under
the adjoint representation @ in ¢. Such a space always exists if
we assume thds is compact or semisimple).

Under the above conditions, there exists a conneétiand only one
on P such thaf"(9) = (0) andI'(th) = t(I'b) for everyb € p andt € G.
The kernel of”" is the submodule o’ (P) generated by the left invariant
vector fieldl, on P with a € M. Moreover,I is left invariant under the
action ofG. Conversely, every left invariant connection correspaads
such an invariant subspa® supplementary t& in .

Theorem 1. If V is paracompact, for every ferentiable principal bun-
dle P over V, there exists a connection on P.

We have seen that there exists a connection on a trivial burt-
ing the paracompactness ¥f we can find a locally finite open cover
(Uier of V such thatP is trivial over eachU; and such that there ex-
ist tensor fieldd"; of type (1 1) on P whose restrictions t®~(U;) are
connections. Setj = I'i — T'j for everyi, | € |. Then theg;; satisfy the
following equations:

6ij d & € N, 65(¢ @) = 0, andej(dés) = (6;;dé)s
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for every¢ € p (Ui nUj),dé € T,,ae #,s€G.

Now, let (i)ic) be a partition of unity with respect to the above cov-
ering, i.e., support opi c Uj and} ¢ = 1. Denotep*y; by ¢;. Then
i is a partition of unity with respect to the coveripg*(U;).Gx8i is a
tensor orP for everyk and hence

Gi= Z Pbi
k
is a tensor having the following properties:

{id¢ € N, 46 a= 0 and(i(des) = (4idé)s.

The tensol; — ¢; is easily seen to be a connection prt(U;). Since
P« is a partition of unity, it follows thaF; ¢, T'j—¢; coincide onp™1(Uin
U;) for everyi, j € I. Therefore the tensor fieldl on P defined by
I =T - & on p~1(U;) is a connection ofP.

3.2 Horizontal vector fields

LetI" be a connection oR. By definition,I" is a map%'(P) — 9. The
kernelJ of this map is called the module abrizontal vector fieldslt
is clear tha” mapsg into itself. Hence we have = 9t (p N J). It
is easily seen that the vector fields belonging tozh@/)-modulep N ¢
are invariant under the action & We have defined the projectignof 49
p onto %’ (V). The kernel of this projection i& since the restriction of
pto p N Jis bijective.

We shall now see that the modwg&(F) of all vector fields orP is
generated by projectable vector fields.

Theorem 2. Let V be a paracompact manifold and P a principal bundle

over V. Then the map: % (P) /c(z»v)goms — J defined by(3 fs®Xs) =
wu

> fsXs is bijective.
The proof rests on the following

Lemma 1. % (V) is a module of finite type ove¥ (V).
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In fact, by Whitney’s imbedding theoreni(]28]) there exiatseg-
ular, proper imbedding of each connected component af R>*!
wheren = dimV. This gives us a mag : V — R*™! defined by
y = (f,(y),..., fansa(y)) which is of maximal rank. LetWj)jc; be
base for the module of fierential forms of degree 1 dd;. Let S be
the set of maps : [1,n] — [1,2n + 1] such thate(i + 1) < af(i) for
i =12,...(n-1). We shall denote by, the union of the open sets
of the above covering in whiclf,, ...df,, are linearly independent.
Thus we arrive at a finite covetl(,),c» having the above property. Us-
ing a partition of unity for this cover, any form onV can be written
as a linear combination of ttebf;. Using the magf, we can introduce a
Riemannian metric ol which gives an isomorphism &f (V) onto the
module of diferential forms of degree 1. This completes the proof of
the lemma.

Proof of the theorem.Let Xi,...Xon,1 be a set of generators for the
module %' (V) and (U,).cc @ finite covering such that for every
@, Xy(1) - - - Xo(n) form a base for the module of vector fields op. We
shall now prove that the mapis injective.

Let (¢o)ecc be a partition of unity for this covering ar be vector
n .
fieldse ¢ N ¢ such thatpXs = Xs. Theng,Xs = 3 0, Xa(), With
i=1

. n .
Ohs € Z (V) and hencep,Xs = Y, g, sXe() USing the structure of
i=1

2n+1
« (V)-module on#'(P). If u = E fs ® Xs with fg € % (P) is such
s=1

thatn(u) = 0, thenn(y, U) = 0 for everya. Thereforel, f, gihs =0on
S

U, and consequently ovi. Butg, u=3; fs g‘aﬁ ® Xqfiy; it follows that
X ’
u=> ¢, u=0. The proof thay is surjective is similar.

Corollary. If V is paracompact, the module of horizontal vector fields
on P is generated ovet/ (P) by the projectable and horizontal vector
fields.
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3.3 Connection form

Le P be a principal bundle over andI” a connection ofP. If d¢ € Tg,
thenI” d¢ € 9t anda — &ais an isomorphism o/ onto%,. We define
a differential formy on P with values in? by settingy(d¢) = a where 51
I'(d¢) = € a. In order to prove thay is differentiable, it is enough to
prove thaty takes dfferentiable vector fields into fierentiable func-
tions with values in%'. We havey(Z,) = a for everya € % and
v(X) = 0 for everyX € 5. Since the modul&’(P) is generated bg and
the vector field<Z,, y(X) is differentiable for every dlierentiable vector
field X on P. Thus corresponding to every connectioon P, there ex-
ists one and only one form with values 4 such thaf’(d¢) = &y(d¢)
for everyd ¢ e T;. Itis easily seen that satisfies

1) y(¢a) = afor everyé € Pandae %
2) y(d¢s) = s ty(d¢)sfor dé € T, andse G.

A %- valued form onP satisfying 1) and 2) is called @onnection
form. Given a connection form on P, it is easy to see that there exists
one and only one connectidnhfor which y is the associated form, i.e.,
['(d¢) = &y(d¢) for everydé e Te.

3.4 Connection on Induced bundles

Let P, P’ be two principal bundles oveY,V’ respectively. Leh be a
homomorphism of’ into P. If y is a connection form o, the form
h*y on P’ obviously satisfies conditions (1) and (2) and is therefore a
connection form orP’.

In particular, ifP’ is the bundle induced by a map V' — V, then
v induces a connection d?!.

Let P be a diferentiable principal bundle oveY, andq a map 52
Y — V which trivialisesP,p being a lifting ofg to P with m as the
multiplicator. As in Chapter 2.4, we denote Wy the subset of x Y
consisting of pointsy,y’) such thag(y) = q(y’). Now w = p*y is a dif-
ferential form onY. We havep(y’) = p(y) m(y,y’) for every {,y’) € Y.
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Differentiating we obtain for every vectaty dy) at (y,y’') € Yq

p(dy) = p(dy)m(y. y') + p(y)m(dy, dy)

Sincew(dy) = y(ody) we have

y(pdy) = m(y,y)  w(dy)mly,y') + ¥(e(y)mly, y Im(y, y') " m(dy, dy))
= m(y,y)  w(dy)m(y,y') + m(y,y') " "m(dy. dy)

Hencem(dy, dy') = m(y, y')w(dy) — w(dy)m(y,y’).
Conversely ifw is a diferential form onY satisfying

m(dy, dy’) = m(y,y)w(dy) - w(dy)m(y. y’)

for every §,y’) € Yq, then there exists one and only one connection form
v on P such thatw = p*y.

In particular, when the trivialisation d? is in terms of a covering
(Upie) of V with differentiable sections;(Ch.2.5), the connection form
y onP gives rise to a family of dierential formsw; = oy onU;. From
the equationsri(x) = o j(X)m;i (x) defining the transition functions;,
we obtain on dierentiation,

wi(dX) = m;i (%)~ Lw;(dXm;i(x) + m; (x)~tm; (dX) for x € Uj,
ie., m;i (dX) = m;i(X)wi(dX) — w;j(dX)m;i (X).

Conversely given a family of élierentiable formsv; on the open
sets of a coveringU,)ic| of V satisfying the above, there exists one and
only one connection formy on P such thatw; = oy for everyi.

3.5 Maurer-Cartan equations

To every diferentiable magd of a differentiable manifold/ into a Lie
groupG, we can make correspond dfdrential form of degree 1 ov
with values in the Lie algebr#@ of G defined byw(¢)(d¢) = f(£)~11(dé)
for £ € V anddé e T;. We shall denote this form b§~1df. This is
easily seen to be flerentiable.
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If we take f : G — G to be the identity map, then we obtain a
canonical dfferential formw on G with values in%’. Thus we have
w(dy = slds e #. Also w(td9 = w(d9 for every vectords of
G. That is,w is a left invariant diferential form. Moreover, it is easy
to see that any scalar left invarianttérential form orG is obtained by
composingw with elements of the algebraic dual®f. In what follows,
we shall provideA ® # with the canonical derivation law (Gh.1.2).

Proposition 1 (Maurer-Cartan) The canonical formw on G satisfies
dw + [w, w] = 0. 54

We recall that the formd), w] has been defined byJf w](X,Y) =
[w(X), w(Y)] for every vector fieldsX, Y € € (G). Since the module of
vector fields ovets is generated by left invariant vector fields, itisces
to prove the formula for left invariant vector fields= 15, Y = lpa,b €
% . We have

d(w)(la, Ip) = law(lp) = Ipw(la) — w([la, 1p])

But [la, Ip] = ljar @andw(la, Ip] = w(ljan) = [ 0] = [w(la), w(lb)]
sincew(ly) = a, w(lp) = b.

Corollary. If f is a differentiable map > G, then the formy = f1d f
satisfies & + [@,a] = 0.

In fact, a(d¢) = f71(&)f(d¢) = w(f(d€)) = (f*w)(d¢) and hence
a = f*w. The above property aof is then an immediate consequence of
that of w.

Conversely, we have the following

Theorem 3. If « is a djferential form of degre& on a manifold V with
values in the Lie algebr& of a Lie group G satisfyingd+ [a, a] = 0,
then for every, € V and a djiferentiable map f: U — G such that
f~1(&) f(d¢) = a(d¢) for every vector d of U.

Consider the forng = pja — p;w onV x Gwherep; : VxG —V 55
andp, : V x G — G arc the two projections and the canonical left
invariant form onG. If B is expressed in terms of a bagés, ... a;} of
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%, the component scalar fterential formsg; are everywhere linearly
independent. This follows from the fact that on eqr;ﬁ(g),ﬁ reduces
to p;w. We shall now define a fierentiable and involutive distribution
on the manifoldV x G. Consider the modul®t of vector fieldsX on
V x G such thatg;(X) = 0 for everys;. We have now to show that
XY € M = [X Y] € M. But this is an immediate consequence of the
relationsd @ = —[a, @] anddw = [w, w].

By Frobenius’ theorem (seE[11]) there exists an integraheni-
fold W (of dim = dim V) of V x G in a neighbourhood of(, €). Since
for every vector £, a) # 0 tangent tcp;lgo, B(&o, @) = a # 0 there exist
a neighbourhoodl of &, and a dfferentiable section- into V x G over
U such thato(U) c W. Definef(¢) = poo(¢). By definition of W, it
follows thatBo(d¢) = 0. This means that

ap1o(d¢) — wpzo(dé) = 0
ie., o(dé) = w(por(dg)) = (Frw)dé = 1) f(dg).

Remark. When we takdés = additive group of real numbers, the above
theorem reduces to the Poincare’s theorem for 1-forms. €airg the
uniqueness of such mapswe have the

Proposition 2. If f4, f, are two dfferentiable maps of a connected man-
ifold V into a Lie group G such that fdf, = f,df, then there exists
an element € G such that { = f;s.

Define a dfferentiable functiors: V — G by setting

S(¢) = f1(&) f51(¢€) for everyé e V.

Differentiating this, we get

S(d8) f2(8) + s(§) f2(dé) = fa(de).

Hences(d¢) = 0. Thereforesis locally a constant and sindé is
connectedsis everywhere a constant.
Regarding the existence of a méjn the large, we have the follow-

ing
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Theorem 4. If « is a differential form of degre& on a simply connected
manifold V with values in the Lie algebe of a Lie group G, such that
da +[a, a] = 0, then there exists a @erentiable map f of V into G such
that f-1df = a.

The proof rests on the following

Lemma 2. Let m; be a set of transition functions with group G of a
simply connected manifold V with respect to a cove(ldg. If each ny

is locally a constant, then there exists locally constanpsaa : U; — G
such that m(x) = Ai(x)"12j(x) for every xe U;j N U;.

In fact, there exists a principal bundieoverV with groupG con-
sidered as a discrete group and with transition functiops(Ch[Z5).
P is then a covering manifold ov&f and hence trivial. Therefore thes7
mapsy; : Uj — G exist satisfying the conditions of the lemma (CH.2.5).

Proof of the theorem. Let (U;)ic; be a covering of V such that on each
Ui, there exists a gierentiable function ;fsatisfying f(x)~1fi(dx) =
a(dx) for every xe Uj. We set i(x) = fi(X) fj(X)_l. It is obvious that
the m; form a set of locally constant transition functions. Ugbe the
maps Y — G of the lemma. Theni(x)fi(X) = 1;(x)fj(x) for every
xe UinUj;. The map f. V — G which coincides witR; f; on each y

is such that f1df = a.

3.6 Curvature forms

Definition 2. Let y be a connection form on a principal bundeover

V. Then the alternate form of degree 2 with values in the Lielaig
2% of the structure grouf defined byK = dy + [y, y] is said to be the
curvature formof y. A connection orP is said to béflat if the form

K =0.

Theorem 5. The following statements are equivalent:
a) The connectiory is flati.e., d + [y,y] = 0.

b) If X, Y are two horizontal vector fields on p, so is PX.
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c) Forevery % € V, there exists an open neighbourhood U gard a
differentiable sectiow on U such that*y = 0.

Proof. a) = b) is obvious from the definition.

b) = ©)
O

Let aj,a,...a, be a basis o7 and lety = Y yia wherey; are
scalar diterential forms. Sincei(Za;) = ¢jj, it follows that{yy, ...y}
form a set of diferential forms of maximal rank Fromb), it follows
that the modul€s of horizontal vector fields is stable under the bracket
operation. Henc@ forms a distribution or® which is diferentiable and
involutive. Let&, € P such thatp(&,) = X, and letW be an integral
manifold W of dim = dimV in a neighbourhood of,. As in Th[3,
Ch.3.5Wis locally the image of a dlierentiable sectionr over an open
neighbourhood ok,. Since all the tangent vectors \f are horizontal,
we haveyo(dx) = 0 for every vectodxonU.

c) = a)

Let o be a diferentiable section over an open subdedf V such
thato*y = 0. For every¢é € p~1(U), define a dferentiable function
p: p1(U) — G by the conditior¢ = o(p(¢))p(¢). Differentiating this,
we obtain

d¢ = op(d§)p(£) + o p(§)p(ds)

Hencey(d¢) = p~(€)y(op(dé))p(€) +p(€)~*p(d€) by conditions (1)
and (2) for connection forms. i.e(d¢) = p(¢)"1p(d¢) anda) follows
from cor. to profill, Ch.3.5.

Theorem 6. If there exists a flat connection on a principal bundle P over
a simply connected manifold V, then P is a trivial bundle. &tmer, a
differentiable cross-sectiom can be found over V such thaty = 0.

By Th.4,Ch.3.5, there exists an open coverirg;jic; and cross sec-
tionso; : Ui — P suchthaty = 0. Letoi(X)m;j(X) = oj(X) where the
corresponding transition functions arg. Then we have

Y(oi([dXYmyj (x) + oi(x)my; (dX) = yoj(dX).
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Thereforem;j(dx) = 0, i.e. them; are locally constant. Lemnia 2,
Ch.3.5 then gives a family; of locally constant mapd; — G such that

mj = 4
It is easily seen thati4* = oj4;* on Ui n U;. Define a cross
sectiono- on'V by settingo = m/ii‘l on everyU;. Then we have
Y(e(dX) = y(oi(dX 4 1(X)
= ()i (9

= 0 for x € Uj.

Hence the bundle is trivial and*y = 0.

Proposition 3. If X is a vector field on P tangential to the fibre, theso
K(X,Y) = 0for every vector field Y on P.

In fact, sincep = p N J @ N andyp generatess’(P), it is enough to
prove the assertion fof € 9%t andY € p N . In the first cas& = Z; and
Y = Z,, we have

K(Za, Zy) = (dy + [y, y])(Za, Zp)
= Zay(Zv) — Zvy(Za) — ¥[Za, Zb] + [¥(Za), ¥(Zb)]
= —¥(Zjap) + [a, 0]
=0

In the second casé, is invariant undeG and it is easy to see that
[Za, Y] = 0. Sincey(Y) = 0, we have

K(Za, Y) = (dy + [y, ¥])(Za. Y)
= Zay(Y) = Yy(Za) — v[Za, Y] + [¥(Za), y(Y)]
=0.

Proposition 4.

K(diés, de9) = SIK(d1€, dpé)s for & € Pdh¢,dpé € T, and se G.
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By Prop[3, Ch.3.6, it is enough to consider the case vehé&yé €
Je. Extendd: £, doé¢ to horizontal vector fieldXy, X, respectively. Then
we have

K(diés, dés) = K(X18 X29)(¢)
= —y[X1s X28|(¢)
= —y([X1, X2]9)(€)
= —y([X1, X2]¢9)
= —s1y([X1. X2l¢)s
= § K (X1, X2)(€)s
= s73(d1&, dpé)s for everys e G.
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3.7 Examples

1. LetdimV = 1. Then%' (V) is a face module generated by a single
vector field. But# (V) is % (V)-isomorphic toJ N g and hence

I=%P) K Ingisalso (P) - free, and of rank 1. Sinck
U V)

is alternateK = 0. In other words, if the base manifold Bfis a

curve, any connection is flat.

2. LetGbe aclosed subgroup of a Lie groHpand let?’, % be their
respective Lle algebras. We have seen that (Example B }h.3.
if M is a subspace ofF such that# = M e # ands1Ms c M
for every s € G, then the projectiol” : .# — M gives rise to a
connection which is left invariant by element @f Denoting by
|2 the left invariant vector fields oH whose values aisa € %,
we obtain

K(la, In) = =y([1a, Ie]) + [¥(1a), ¥(Ib)]
= —Yl[ab) + [[ed, T'eb]
= —T'e([a, b]) + [['e(a), Te(b)].
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62 ThusK is also left invariant for elements &. MoreoverT is flat if
and only ifI'e is @ homomorphism of# onto % . This again is true if
and only ifMt is an ideal in_# .






Chapter 4
Holonomy Groups

4.1 Integral paths

We shall consider in this chapter only connected base nidgifo 63

Definition 1. A pathy in a manifoldW is a continuous map of the
unit intervall = [0, 1] into W. A pathy is said to belifferentiable if v
can be extended to aftBrentiable map of an open neighbourhood of
into W. ¢(0) is called the origin ang(1) the extremity, of the path. The
patht — (1 — t) is denoted byy~2. If v is a connection on a principal
bundleP over X, then a diferentiable patly in P is said to bentegral

if y*y = 0. If y is integral, so igy .

Let ¢ be a path inX. A pathy in P such thatpoy = y is called a
lift of y. Itis easy to see that if is an integral lift ofy, so isy's, where
ysis defined by s(t) = ¢(t)s. If ¢ is an integral lift ofy, theny 1 is an
integral lift of .

Theorem 1. If y is a differentiable path in V with origin at x V, then
for everyé € P such that f¢) = X, there exists one and only one integral

lift of ¥ with origin &.

Let I’ be an open interval containirigto whichy can be extended.64
The mapy : I’ — V defines an induced bundf, with basel” and a

49
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canonical homomorphisinof P, into P such that the diagram

I’ \%

is commutative. The connectighon P also induces a connectidriy
onP,. Sincel’ is a curve, by Ex.1 of CAL3.7 and Th.5 of Ch.3.6, there
exists a sectiomr such that the inverse image byof h*y is zero. i.e.
o*h*y = 0. Definey : I’ — P by settingyy = ho- onl’. Then it is
obviously an integral lift ofy. If s € G is such that = (0)s, thenys
is an integral lift ofys with origin &.

If &, are two such lifts, then we may define a n&pl — G such
that

w(t) = p()s(t) for everyt € 1.

Since, ¢ are diferentiable, it can be proved thats also difer-
entiable using the local triviality of the bundle. fBirentiation of the
above yieldgj(dt) = $(dt)s(t) + &(t)s(dt). Hence

Y(@(d)s(b)) + y(@e()s(dt)) = 0.

Using conditions (1) and (2) of connection form, we ggit) = 0.
Hences is a constant. Since(0) = ¢(0), the theorem is completely
proved.

4.2 Displacement along paths

Let Py be the fibre ak andy a path with originx and extremityy. For
every¢ e Py, there exists one and only one integral {iftof ¢ whose
origin is £. The extremity ofy is an element of the fibre &. We
shall denote this by,é. Thent, is said to be a displacement along
Y. Any displacement along the pathcommutes with the operations
of G in the sense thai,(¢s) = (t,é)sfor everyé € Py; thereforery, is
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differentiable and is easily seen to be a bijective ap> Py. Trivially,
(ty) 1= 14-1. Itis also obvious that the displacement is independent of
the parameter, i.e., f is a diferentiable map off into | such that

1) 6(0) = 0,6(1) = 1;

) y'o=y

then‘EW =Ty

Given a diferentiable patly, we may define a new patit by suit-
ably changing the parameter so tigathas all derivatives zero at origin
and extremity. By the above remark, we haye = 1.

4.3 Holonomy group

Definition 2. A chain of paths inV is a finite sequence of pathg,
..., 1} wherey; is a path such thag;,1(0) = y(1) fori < p- 1.

We define the origin and extremity of the chaino be respectively 66
¥1(0) andyp(1). Given two chains

U ={Yp, ¥p-1,... Y1}, ¢ = {¢q, g1, - - . 1 } such that origin ofy =
extremity ofp, we defineyp = {yp,...¥1,¢q, ... @1} ¢ 1is defined to
befeil,... o5t and itis easily seen thapg) ™ = ¢ 1yt

A displacement, along a chainy = {¢p, ... 1} in the base mani-
fold V of a principal bundleP is defined byry, = 7,po,... 0 7y1.

Let x,y € V. Define®(x,y) to be the displacementg, wherey is
a chain withy/(0) = x,¢(1) = y. It can be proved, by a suitable change
of parameters of the patlys (ch.[42), that there exists afffirentiable
pathe such thatr, = 7,. The following properties are immediate con-
sequences of the definition:

1) @ € D(x,y) = a1 € Dy, X).
2) € D(XY),B € DY,2) = Ba € D(X,Y).

3) ®(x,Yy) is non empty sinc& is connected.
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We shall denoteb(x, X) by ®(x). ®(X) is then a subgroup of the
group of automorphisms &, commuting with operations @. This is
called theholonomy groupat x with respect to the given connection on
the principal bundleP. If we restrict ourselves to all chains homotopic
to zero atx, then we get a subgroup; (x) of ®(x), viz., the subgroup of
displacements,, wherey is a closed chain athomotopic to zero. This
is called therestricted holonomy groupt X. This is actually a normal
subgroup ofd(x), for if ¢ is homotopic to 0 ang any continuous path
oye~L is again homotopic to zero.

Proposition 1. For every xe V, there exists a natural homomorphism
of the fundamental group],(V, X) onto ®(X)/®,(X).

Let y be a closed path at Then there exists aflierentiable path
¥’ homotopic toy. We mapy on the coset ofd,(X) containingry. If
¢ andy are homotopic, so ar@’ andy’ i.e. y¥'¢’~t is homotopic to
zero. Thenry,1 = 7,4,7,* € ;. Thus we obtain a canonical map
0 : T11.(V, X) = O(X)/P,(X) which is easily seen to be a homomorphism
of groups. That this is surjective is immediate.

In general,® will not be injective. As the fundamental group of
manifolds which are countable atis itself countable, so ®(X)/®;, (X).
Hence from the point of view of structure theory, a studybefx) is in
most cases dficient.

4.4 Holonomy groups at points of the bundle

If X,y are two points of the connected manifoldand ¢ a path join-
ing x andy, then there exists an isomorphishty) — ¢(x) defined by
Ty — T,17yT, for every path closed at The image ofd,(y) under
this isomorphism is contained i, (x). However, this isomorphism is
not canonical depending as it does on the patihe situation can be
improved by association to each point of the buritlieholonomy group
which is a subgroup d&.

Let A, be the group of automorphisms Bf commuting with oper-
ations ofG. Leté € Py, Then we define an isomorphisma : Ay — G
by requiringaé = £A¢() for everya € Ay. Thati, is a homomorphism
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and is bijective is trivial. At every € P, we define theholonomy group
¢(¢) to be 1:D(pé). Similarly therestricted holonomy groug, (¢) até

Theorem 2.

For any two pointst, n € P, (&), ®(n) are conjugate subgroups of
G. Moreover, if€, n lie on an integral path, thed(¢) = O(x).

If £, 1 are on the same integral path, thes T¢& for some pathy
with origin p¢ = x and extremitypn = y. It is suficient to prove that
(&) c O(n). Lety be a closed chain at Then

E(AeTy) = Tyé
= T¢T;17]
= 7;17:077 wherey’ = gyt
=7, (7, (ty))
= f/ln(T:p)
Hencex, (1) = A¢(ty) € ®(n) and our assertion is proved.
Finally, if &£, n are arbitrary, we may joipé, pn by a pathe. Letg
be an integral lift ofp throughé andz’ its extremity. Then there exists

s € G such thaty = ps. We have already proved th@(¢) = ®(ns). 69
Now

(79)(Ays(@)) = (n9)
= (ny(a))s

Henced(¢) = s71d(n)s, which completes the proof of theoréin 2.

4.5 Holonomy groups for induced connections

Leth be a homomorphism of a principal bundteoverV’ into a princi-
pal bundleP overV. Leth be the projection ofi. Lety be a connection
form on P and h « y the induced connection oR’. If & € P’ and
h(&’) = &, then®(¢’) c ®(£). Moreover,®(¢’) is the set ofdg(th,,)
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wherey/’ is a closed chain gt¢” = X'. For, lets € ®(£) corresponding
to the closed chaip’ atx'. Thené’s = 7,/&’.

&s=h(ry¢&’)
=1¢ where y=hy
= &e(1y).

Therefores = 1:(7,) and it is obvious that any suct(r,) belongs
to O(&).

In particular, letV’ be the universal covering manifold & h the
covering map,P’ a principal bundle ove¥’ andh a homomorphism
P’ — P whose projection is h Then for¢ € P/, ®(¢’) is the set of
¢ty Wherey is the image under bf a closed chain apé’. But V’
being simply connectedy is any closed chain & homotopic to zero
and henceb(¢’) = @, (&).

4.6 Structure of holonomy groups
Theorem 3.

For everyé € P, @ (£) is an arcwise connected subgroupf

If ¥ is a closed path at € V which is homotopic to zero, then it can
be shown that there existsdifferentiablemapy : I’ x I’ — V(I’ being
a neighbourhood df) such thatp(t, 0) = y(t) ande(t, 1) = x for every
t € I. This can be lifted into amap "I’ x I’ — P such that

1) po(t,0) = ¢(t, 6) for everyt,0 € I;
2) Forevery € |,t — @(t, 9) is an integral path;
3) ¢(0,0) = & with p(£) = x.

Infact,¢ : I’xl” — Vinduces a bundI®, overl’xI’. Lety, be the
induced connection oR,. For everyd € I, the patht — (t,0) in I x I’
can be lifted to an integral path, in P, with origin at ((Q6),¢) € P,.
The origin depends fferentiably ord and therefore the mapof I’ x I’
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defined byor(t, 8) = oy(t) is differentiable. Hencg o o~ = ¢ satisfies the
conditions 1)2) and 3).

Now we define a functiors : | — G by requiring thatés(d) =
¢(1,0). Obviously s(1) = e and 5(0) is the element of the restricted’1
holonomy group af corresponding to the path Itis also easy to verify
that 5(9) is a diferentiable function of using the local triviality ofP.
Therefore any point o, (£) can be connected ®by a diferentiable
arc.

Corollary. @((¢) is a Lie subgroup of G.

This follows from the fact that any arcwise connected subgraf a
Lie group is itself a Lie groud[31].

4.7 Reduction of the structure group

Theorem 4.

The structure group d? can be reduced td(¢) for anyé € P.
For this we need the following

Lemma 1. Let M(¢) be the set of point& of P which are extremities of
integral paths emanating fromy There exists an open coverifg;)ic
of V and cross-sections; over U such thatoi(x) € M(&) for every
x € U;j.

Let x= p£ and % € V. Consider the patly connecting x and
Then the integral lifty of ¢ with origin ¢ has extremityp with p& =
Xo. Let U be a neighbourhood ofy»@n which are defined n linearly
independent vector fields X.. X, where n=dimV. Let X, X,... X,
be horizontal vector fields on")U) such that pX = X; for every i.
By the theorem on the existence of solution fgfedential equations,
there exists a neighbourhood (@ 0,...) in Rx R" in which is defined
a differentiable ma@ having the properties

1) £(0,a) = o 72
2) &'(t,a) = X tai(Xi)et.a)-
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From the uniqueness of such solutions, we get

&(at,a) = £(t, 2a)

for suficiently small values oft,t anda. Thus there exists a fiieren-
tiable map¢ having the properties 1) and 2) above onPx W where
W is a neighbourhood of (0..) in R". Since theX; are horizontal,
&(t,a) € M(&). Now consider the dierentiable majg : W — P defined
by g(@) = £(1,a@). The mapp.g is of maximal rank. Moreover since
dimV = n, this is locally invertible. In other words, in a neighboadul
U’ of Xp we have a dterentiable mag : U’ — W such thapogo f =
Identity, i.e., gof is a cross section ovdt and

(gof ) (y) = £(1, f(y)) € M(&) forevery ye U’.

Proof of theorem 4.We have only to take for transition functions the
functionsmy; such that

oi(X) = O’j(X)mji (X) forevery xeUjn Uj

where theo have the properties mentioned in the lemma. Then it is
obvious tham;j(x) € ®(ci(Xo)) = ®(£€) by theoreniR, Ch. 4.3.

Now let V be simply connected. Theh(£) = @, (£). Sinced(£)
is a Lie subgroup of5, it follows [11] that them;; are diferentiable
functions as mapdJ; N U; — ®(¢) also. Ifp; are the difeomorphisms
Ui x G — pU;) defined bypi(&,s) = oi(é)s foré € Ui, s € G.
Consider the séet\; consisting ofp;(&, s) with £ € Uj,s € ®(¢). Itis
clear thatw; n p~1(U;) = W; n p1(Ui). Moreover if we provide each
W; with the structure of a dlierentiable manifold by requiring that the
pi be a difeomorphism, then the flierentiable structures oW, N W;
agree. In other wordsvi(¢) = U W has a diferentiable structure (with

which it is a submanifold oP) cD(g) acts onM(¢) differentiably to the
right and makes of it a principal bundle ovérwith projectionp. We
denote the inclusion maj(£) — P by f.

Proposition 2. Let d7 be a vector at the poing of the manifold M¢)
and% (¢) the Lie subalgebra a¥ corresponding tab(&), theny(fdn) €

Y (8)-
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Since the connection form is 0 on horizontal vectors, it isugyh to
consider the case whditp is tangential to the fibre, i.e. is of the form
sawith a e (&), se ®(¢). In this case/(sa) = a € Z'(£) which proves
the assertion.

If we definey*(dn) = y(fdn) for every vectodn of M(£) theny* is
again a connection form on the principal buntiés). For every point
n € M(£), the holonomy group correspondingjtbis ®(£).

4.8 Curvature and the holonomy group

Theorem 5.

Foré € P, @, (¢) = (e) if and only if the curvature form is identically 74
zero.

Consider the universal covering manifélcof V with covering map
h LetP = Ph be the induced bundle with as the homomorphism

P> P. Letg € P such thathé = &£ Then by CHZL5., the holonomy
group ®(£) with respect to the induced connectign="h*y on P is
0] (g) Therefore, if®,(¢) = (), M(€) is the image of a cross-section
of P overV. By prop.[3, Ch.3.6y5(d X) = 0 for everyx'c V. Hence
by th[B, Ch.3.6 the curvature is 0. Singas locally difeomorphic with
V the curvature form of is 0. Conversely, iiK = 0,K = 0 and by
th[@, ch.3.6, there exists a sectiorof P overV such thatyd- = 0 and
such thatr{X) = £. Hence the holonomy group ateduces tde}, i.e.,

q)r(é:) = {e}
Theorem 6 (Ambrose-Singerj]1])

The Lie algebra of the restricted holonomy grobfé) até € Pis
the subspace of the Lie algels¥aof G generated by the valud§(din,
don) of the curvature form wittdyn, donp € T,,n € TM(£). We may
assume thaV is simply connected in which cask(¢) = @, (¢), the
general case being an easy consequence. Moreover, siseadugh to
taked;n, donp to be horizontal, we may consider the valueKobn the
manifold M(£). We may therefore restrict ourselves to the case when
@, (¢) = G, andM(¢) = P. Let .# be the subalgebraof ¢ generated by
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the values oK. Let.Z be the set of vector fields on P such thaty(X)
is a function with values in#. This is anz (P)- submodule. It is easily
seen thatZ has everywhere rank dimV + dim .7, using the fact that
v(Zy) = ae 7 forae .#. Moreover,

Y(IX YDE = —K(X, Y)§ = Xy(Y)§ + Yy(X)é + [y(X), y(V)]¢
€ J forevery X,Ye ¥ and ¢é e P.

By Frobenius’ theorem, there exists an integral manifotdtie dis-
tribution given by.#. Let L be the maximal integral manifold faf”
containingé. Since the integral paths foerwith origin at£ are integral
with respect taZ we must havel = P. Hence dm¢# = dim¥, or
I =9.

Finally it remains to prove that the subspa#é of % generated by
the values oK is itself a Lie subalgebra.

SinceK (di77s, dons) = s1K(d17, donp)s € .7, it follows thats™19ts ¢
9 for everys € G. Therefore for ever) € .#, [ X, 9] c %. In particular,
(A, %) Cc .

We now give a geometric interpretation Kf{d:&, dx¢) for & € P.
Firstly, we may assume &, do¢ to be both horizontal vectors (Prdd. 3,
Ch.3.6). Letx = p&,dix = pdié anddox = pdhé. Extendd;x, dox
to vector fields X and X, onV such that [X,X,] = 0. Let Xy, X5 be
the corresponding projectable, horizontal vector field$PorLetn —
Fi(n, t) be the automorphism of parametetefined on a neighbourhood
of £ by the vector fieldXj(i = 1,2). We set&1(0) = F1(0,£),£(0) =
F2(6,£1(0)). £3(0) = Fa(-6,£2(0)) andéa(6) = Fu(-6,£3(0)). The chain
of pathsF1(t/6, &), Fa(t/6,£1(0)), F1(-t/6,£2(6)), F2(-1/6,£3(6)) is not
closed in general though its projection Wris closed (sinceXy, Xp] =
0). Let 5(6?) be the element o6. such thatés(d) = £5(6%). Then
[X1, X2]¢ = £5'(0) and we have

[X1, X2l = ([ X1, X2]¢)
= —K(Xee. Xzz)
= —K(dyg, d).
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Chapter 5

Vector Bundles and
Derivation Laws

5.1

Let P be a diferentiable principal bundle over a manifofdwith group 77
G. Consider a vector spade of finite dimension over the fiel®R of
real numbers. Les — s_ be a linear representation & in L.G acts
differentiably onL (regarded as a manifold ) to the right by the rule
vs=slv.

Let E be a fibre bundle associated Rowith fibre L andq the map
PxL — E. For every¢ € P, the mapr — q(&, v) is a bijection ofl. onto
the fibre ofE at p&, or a frame ofL. On each fibree, at x € V of the
associated bundIE, we may introduce the structure of a vector space
by requiring that the frame defined by any pajr¢ p~1(x) be linear. It
is clear that such a structure does exist and is uniqueULls an open
subset ofV over whichP is trivial andp a difeomorphismU x L —
p~1(VU) defined byp(x,v) = q(c(X), v) whereo is a diferentiable cross
section ofP overU. Then we have

1) pp(xy) =x
2) p(X,V+V) = p(XV) + p(X, V)
3) p(x, Av) = 4p(x, V)
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foreveryxe U,v,v € Land1 e R

Conversely, letE be a diferentiable manifold angp : E — Va
differentiable map. Assume eapht(x) = Ey to be a vector space over
R. The manifoldE (together withp) is called a differentiable vector
bundle(or simply a vector bundle ) ovéf if the following condition is
satisfied. For everyg € V, there exist an open neighbourhoddf xg
and a diferentiable isomorphism of U x R onto p~1(U) such that

1) po(x,V) = X
2) p(XV+V) = p(x,V) +p(x V)

3) p(x, V) = Ap(X, V)
foreveryxe V,v,v e Land1 e R

Proposition 1. Every vector bundle of dimension n over V is associated
to a principal bundle over V with group Gb, R).

In fact, let E be a vector bundle of dimensiamoverV andq :
E — V the projection ofE. For everyx € V, definePy to be the set

of all linear isomorphisms oR" onto Ex andP = |J Px. The group
XeV

G = GL(n,R) acts onP by the rule £s)v = &(sV) for everyv € R".
Definep : P —» V by p(Px) = x. By definition of vector bundles,
there exist an open covering, c V and a family of difeomorphisms
e Uy x R" = q71(U,) satisfying conditions 1) and 3). For every
@, the mapy, : U, x G = p1(U,) defined byy,(x, YV = p.(X, SV)

for x € U,, s € G is bijective. We put orP a differentiable structure
by requiring that ally, be difeomorphisms. It is easy to see that on the
overlaps the dferentiable structures agree. Moreover,

Yo(X, SHV = po (X, (sHV)

= pa(X, S(tv))

=Ya(X, 9)(tV)
for x e U,, s,t € Gandv € R". ThusP is a principal bundle oveV with
groupG. Letq be the map oP x R" onto E defined by (¢, V) = &v for

£ e PveR Itiseasy to see th® x R" is a principal bundle oveE
with projectiond’. HenceE is an associated bundle Bf
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5.2 Homomorphisms of vector bundles

Definition 1. Let V andV’ be two diferentiable manifoldskE a vector
bundle oveV andE’ a vector bundle ovev’. A homomorphism lof
E into E’ is a diferentiable mafh : E — E’ such that such that, for
everyx €V, p'h(Ex) reduces to a point’ € V’ and the restrictiory of
hto Ey is a linear map oEy into E;.

The map h V — V’ defined by the conditiop’h = hp is differen-
tiable and is called theprojection of h. If V = V’, by a homomorphism
of E into E’, we shall mean hereafter a homomorphism having the iden-
tity mapV — V as projection. In that casl,: E — E’ is injective
or surjectiveaccording as all the maps, : Ex — E} are injective or
surjective.

A vector bundle of dimension overV is said to betrivial if it is
isomorphic to the bundlgxR" (with the natural projectiof xR" — V).

Let P be a principal bundle ovey to which the vector bundl€& is 80
associated. IP is trivial, so isE and every section oP defines an
isomorphism oV x L ontoE.

Let E, E’, E” be vector bundles ovérf. Then a sequence of homo-
morphisms

h k
E/ N E N E/I
is said to beexact if, for every x € V, the sequence

hy K
E, — Ex — EY

is exact

5.3 Induced vector bundles

Let E be a vector bundle over a manifoldlandq a differentiable map of
amanifoldY into V. Let Eq be the subset of the produ¢i E consisting
of elementsy, ;) such thai(y) = p(n). Definep : Eq — Y by setting

pPly.n) =y. If Py.n) = Py.7), theny = y and p" " (y)(y € Y) by
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setting

v.m+ 1) =.n+1n)
A(Y.n) = (v, An)

forn,n” € EandA € R Itis clear that this makes & a differentiable
vector bundle ovel. This is called thebundle overY inducedby g.
Let P be a principal bundle oveX andE a vector bundle associated to
P. If Py is the principal bundle oveY induced byg (Ch.[Z3) therkEq is
associated t®q.

5.4 Locally free sheaves and vector bundles

Let M be a diferentiable manifold and a sheaf oveM. If V c U are
two open sets iM, ¢y denotes the restriction magu) — <(V) and
for everyx € U, pxy denotes the canonical mapaffJ) into the stalkey
at x.

Let % be the sheaf of dlierentiable real valued functions dh. For
every open setty ¢ M, g(U) is the algebra of real valuedftirentiable
functions onU. A sheafe over M is called a sheaf of /- modules
if, for every open setJ c M,z (U) is an % (U)-module and if the
restriction maps satisfy the condition:

evu(fo) = (evu f)evuo)

wheneve c U are open sets iM, f € % (U) ando € g(U).,

Let ¢ and &’ be two sheaves of/-modules overM.A homomor-
phismh of g into &’ is a family of mapshy : Homy u)(e(U), &' (U))(U
open subset o) such that iV c U are two open sets iN, pyyhy =
hvevu.

Let E be a diferentiable vector bundle ovél. The sheaf of dif-
ferentiable sections d is a sheafk of %7-modules oveiM; for every
open setJ c M, g(U) is the7 (U)- module of diferentiable sections of
E overU.

Definition 2. A sheafe of Z-modules oveM is said to befree of rank
nif ¢ is isomorphic to the sheak" of differentiable maps! — R".
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A sheafe of % -modules oveM is said to belocally free of rankn if
every pointx € M has a neighbourhood such that restricted taJ is
a free sheaf of ranh.

For every vector bundI& over M, the sheat of differentiable sec-
tions of E is locally free of rank dimension ofE.

Proposition 2. A sheafe of % -modules over M is locally free of rank
n if and only if for every xe M, there exists a neighbourhood U of x
and elements1, o2, ... 0, € (U) such that for every open set& U,
(evuo1, evuo, ... pvyuon) is a base o&(V) overZ (V).

That a locally free sheaf has such a property is an immedae ¢
sequence of the definition. Conversely, if such elementsr, . ..o
overU exist, then, for every open s¥étc U,the maphy of (V)" into
e(V) defined byhy(fy, fo,... f) = fio1 + foo2 + ... fho is bijective
and the maphy define an isomorphism of the she&f” of differentiable
mapsU — R" onto the sheaf restricted tdJ.

Let E and E’ be two vector bundles ovevl. To every homomor-
phismh : E — E’ there corresponds in an obvious way a homomor-
phismth: ¢ — & and the assignmefit — ¢ of locally free sheaves to
vector bundles is a functdr from the category of vector bundles over
M into the category of locally free sheaves olkr

Moreover, if

0-ENESE SO
is an exact sequence, then the sequence 83

0oTE D Te X TE >0

is also exact (in the first sequence, 0 denotes the vectotdahdimen-
sion 0 overM).

We shall now define a functor from the category of locally free
sheaves into the category of vector bundles derLet ¢ be a locally
free sheaf oveM. Let % be the stalk ak € M for the sheafZ andmy
the ideal of germs of € % such thatf (x) = 0. Then we have the exact
sequence

O-my—oer—>R—-DO0.
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If &4 is the stalk atx for the sheak, then we have correspondingly the
exact sequence

0 > Myex = ex = ex/Myex — 0.

Let Ex = ex/myex, E = |J Ex and definep : E — M by the con-

dition p(Ex) = (X). LetU béegn open subset ®fl ando1,05,...0m €
&(U) satisfying the condition of prdd.2. Then, for evetye U, pxyo1,
OxuOT2, ... xuTn is a basis oky over 7. Leto;(X) be the image of
@xuoi in the quotient spac&y. Thenoj(x),o5(X),...on(X) also is a
base ofEx overR. The mapoy : U x R" —» p~1(U) c E defined by
p(X, a1, @,...an) = X a0 (X) is obviously a bijection. There exists on
E one and only one ffierentiable structure such that every mgpis a
diffeomorphism. With this structuré&, is a diferentiable vector bundle
T*cover M. Lete, &’ be two locally free sheaves & — modules over
M. To every homomorphism : ¢ — & corresponds in an obvious way
a homomorphisnT*h : T*e — T*¢ and the assignmest— T*¢ is a
functor T* from the category of locally free sheaves to the category of
vector bundles oveM. Moreover, if

0—-¢& 5> -0
is an exact sequence of locally free sheaves, then
0-TE¢d>Te>TEe" -0
is an exact sequence of vector bundles.

Proposition 3. For every vector bundle E over M, there exists a canon-
ical isomorphism of E onto T E. For every locally free sheaf & —
modules: over M, there exists a canonical isomorphisnz ohto T T e.
(We shall later identify E with TT E and E with TTE means of these
isomorphisms.)

For instance, it = TE andE’ = T"¢, the isomorphisnE — E’
mapsu € Ex into o*(X) whereo is a diferentiable section over an
open neighbourhood of such thair(X) = u. In particularT defines a
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bijection of the set of classes of isomorphic vector bundies M onto
the set of classes of isomorphic locally free sheaves efnodules over
M.

Many vector bundles are defined irfidrential geometry from a lo-85
cally free sheaf, using the functdr. For instance thetangent bundle
for a manifoldM corresponds the she@fover M such thats’(U) is the
module of diferentiable vector fields over the open Bet M,

5.5 Sheaf of invariant vector fields

Let P be a diferentiable principal bundle over a manifofdwith group

G. LetJ be the sheaf over such that for every open sdtc V, 7(U) is

the spec of invariant dierentiable vector fields op~1(U) c P. Clearly

eachJ(U) is a module over the algebra (U) of differentiable func-
tions onU and 7 is sheaf ofZ-modules.

Let U be an open subset df such thatP is trivial overU and such
that the modulé&’(U) of vector fields orlJ is a free module ove#/ (U).
Let X;.X,,...X,, be a base of’(U) over Z (U). Letly,lp,...15 be
a base of right invariant vector fields @& Then ((X,0),(0,1;)) for
i=12...mj=12...nis a base of thez (U)-module of vector
fields onU x G invariant undefG acting to the right. This base satisfies
the condition of Propl2. Therefore the sheaf of invariartteefields
onU x G is a free sheaf of rank m+ n over the sheaf/, restricted
to U. HencedJ is a locally free sheaf of# modules of rank equal to
dimV + dimG.

By Cha54, there exists a vector bunglle T*J of dimension=
dimV + dim G canonically associated . Any point in the fibreJ, of 86
Jatx € V may be interpreted as a family of vectdralong the fibrePy
satisfying the condition

Les = L(é)sforé € Py, se G.

Let #" be the sheaf of/-modulo overV such that, for every open
subsel c V, .7 (U) is the sub-module qff (U) consisting of invariant
vector fieldstangential to the fibres. Then’#  is locally free of rank
= dimG and there exists a canonical injecticffi — J. The vector
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bundleK = T*.# associated ta% is a vector bundle of dimension
= dimG overV. Any point in the fibreKy of K at x € V may be
regarded as a vector field of the manifdétg invariant under the action
of G.

For every open sét) c V, any X € J(U) is projectable and the
projection defines a homomorphidPy € Homy, u)(J(U), € (U)). The
family of homomorphismgy gives rise to a homomorphism: J —
%. Sincepy is surjective wherlJ is paracompactp : J — % is
surjective. On the other hand, since the kerngdpfs .Z (U), the kernel
of pis the image of#" — J. Therefore we have the exact sequence of
locally free sheaves ovéf:

O—- X4 >9—>%—-0.
This gives rise to an exact sequence of vector bundles\6ver
0O K—-J->C->0

whereC denotes the tangent bundle\of

Theorem 1. The vector bundle K is a vector bundle associated to P
with typical fibre?, the action of G or? being given by the adjoint
representation.

LetE = (Px #)/G the vector bundle over canonically associated
to P andgthe mapPx%” — E. We shall define a canonical isomorphism
of E ontoK. LetU be an open subset bfando € ¢(U) a differentiable
section ofE onU. We define a dferentiable map-of p~(U) into %
by the conditionq(¢, 57¢) = o(pé) for everyé € p~1(U). Thend(¢s) =
s15(¢)s for everys € G andé € p~1(U). Therefore the vector field
X on p~1(U) defined be;r = ¢(0€) belongs ta (U). Itis easy to
verify that the mapr — X7 is an isomorphismy, of the % (U)-module
&(U) onto the?Z (U)-module_# (U). The family Ay (U open inV) is an
isomorphism of the sheafof differentiable sections & onto the sheaf
J . Hence Q) defines an isomorphism of E onto K. Let (£,a) €
P x % . Thenaq(¢, @) = oxuX whereU is an open neighbourhood &f
andX € 7 (U) a vector field satisfying the conditiog = &£a.
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The isomorphismt will be used later to identify the bundlg =
(P x 2)/G with K. The vector bundIK is called theadjoint bundle of
P.

Definition 3. Let A ) 88
O-EFE—SE—->E’'"-0

be an exact sequence of vector bundles over the manifold splitting

. . M A
of this exact sequence is an exact sequenee &’/ - E —» E' —
0, such thatth is the identity onE” and ku the identity onE”. Any
homomorphismil (respu) of E into E’ (resp ofE” into E) such thatth
(respku) is the identity determines a splitting. We shall now intetp
the splitting of the exact sequence

(S) 0-K—-»>J—->C-0.

For every open sdl c V, the moduley (U) (resp..# (U)) will be
identified with the module of dierentiable sections df(resp. .K) over
u.

Theorem 2. There exists one and only one bijectjonf the set of con-
nections on P onto the set of splittings=) K of (S) such that, ifl" is a
connection on P,

I'(X) = (o) o X

If T is a connection o, then, for every open sét c V, the restric-
tion of the tensof to U’ = p~(U) is a projection of the module’(U’)
of vector fields orlJ’ onto the modul&t(U’) of vector fields orlJ’ tan- 89
gential to the fibres which is invariant under the actiosaind induces
a projectiondy : J(U) — #(U). The family @@y) is a homomor-
phism of the sheaf/ onto the sheaf”” and defines a homomorphism
o' : J — K which is a splitting of §). For every invariant vector field
XonP, we have fI') o X = Ay(X) = T'(X). Since two homomorphisms
A, 1 J — Ksuch thatl o X = 1’ o X for every diferentiable section
X of J coincide, the map is completely determined by the condition
I'(X) = (oI') o X. Moreover, since two connectiodsandI” such that
I'(X) = I’(X) for every invariant vector fielX coincide,p is injective. It
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remains to prove thatis surjective. Left be a splitting of §). For every
open setJ c V, Let Ay be the projection off (U) onto 7 (U) defined
by settingAyX = 10 X for everyX € J(U). AssumeP to be trivial
overU and letU’ = p~1(U). The injectiong)(U) — €(U’) defines
an isomorphism of the/ (U’)-moduleZ (U’) & J(U) onto € (V).
(U
The injection.# (U) — %(U’) defines an isom(or)phism of ther (U’)-
moduleZ (U’) & # (U) onto(U’). Thereforedy is the restriction
# (U
of a projectionl o(f <)€(U’) onto%(U’) which, regarded as tensor ouef
is invariant under the action @. HenceJy is the restriction tQ7 (V)
of a projectionT : ¥’(P) — 9(P) which is a connection oR. For every

invariant vector fieldX on P,T'(X) = Ayx = A o X. Therefored = pI'.

Remark. Let 0 — K <& J & C « 0 be the splitting of ) corre-
sponding to a connection on P. For every vector field Yon the base
manifold, regarded as a section ©f the invariant vector fielgi o X
is the horizontal vector field oR (for the connectiorl’), having Xas
projection (cf. Atiyah[[2]).

5.6 Connections and derivation laws

Let V andV’ be two diferentiable manifolds, and, E’ two differen-
tiable vector bundles of dimensionoverV andV’ respectively. Leh
be a homomorphism d&’ into E with projection h: V' — V. Assume
the maph : E,, — Eb(x,) to be bijective for everyt’ € V’. If ois a
section ofE overV, then exists one and only one sectiohof E’ over
V’ such thatho” = oh. If o is differentiable, so ig~’. Since_his a
differentiable map o¥’ into VV, any module over the algebra (V') of
differentiable functions ovev’ can be regarded as a module over the
algebra7/ (V) of differentiable functions ovér. Then the map- — o’
is a homomorphism of(V) into (V) regarded ag”/ (V)-modules.

In particular, letP be a principal dferentiable bundle with group
overV and letp : P — V be the projection. Lets — s be a linear
representation db in a vector spack. Assumek to be a vector bundle
associated td@ with typical fibreL andq to be the mafP x L — E.



5.6. Connections and derivation laws 71

TakingV’ = PE' = PxL,h = g,h = p, for every sectiornr of E
the sections”’ is defined bygo’ (&) = op(é) for £ € P. Let Z(P) be 91
the space of dierentiable maps d? into L. Since to any section’” of

E’ = P x L corresponds a map € .Z(P) such thato’(£) = (¢, 5(£)),

we obtain shomomorphismt : o — ¢ of the % (V)-moduleg(V) into
Z(P) such that

a(¢. ¢) = op(é)

for everyé € P.

Definition 4. A differentiable function orP with values in the vector
spacel is said to be &-functionif f(£s) = szlf(g) foreveryé e P, se
G.

We shall denote the space@ffunctionsP — L by Z5(P).

Proposition 4. The homomorphism : (V) — Z(P) is injective and
/IS(V) = g(;(P).

If oo € ¢(V) andAo = 0, theno(€) = O for everyé € P. Therefore
o = 0 sincep is surjective. On other hand, if € (V) andd = Ao,
we haveq(¢s, G(£9) = op(¢s) = op(é) = q(¢. 6¢) = q(¢s s (¢)) for
everyé € Pands € G. Henceo™ e %45(P). Conversely, leff € £5(P).
The maps — q(&, f€) maps each fibre into a point &y and therefore
can be writterorp, with o € (V). We havef = Ao

We shall now show how a connection Brgives rise to a derivation
law in the module of sections of the vector bun8l@verV. By means
of the mape(V) — Z(P), the derivation law in theé/ (V)-modules(V)
will be deduced from a derivation law in th& (P)-module.Z(P). 92

To the representation— s of Gin L corresponds a representation
in L of the Lie algebra? of left invariant vector fields ofs. For every
a € %, definea_ by settinga v = av— v for everyv € L, the vectors
at 0 of L being identified with elements &f. Then it is easy to see that
[a,b]L =a b, — b a . Hencea — a_ is a linear representation éf in
L.

Let ' (P) be the space of fferentiable functions of® with val-
ues in?’. The linear map — a_ of # into honk(L, L) defines an
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% (P)-linear mapa — a of #(P) into homy, p)(.Z(P), £ (P)) where
(aLf)(E) = a(é) LT () foré € Pa e #(P) andf € Z(P).

We have already seen (Ch. 1) that there are canonical derivatvs
in the modules? (P) and.Z(P) and hence in homp) (£ (P), -2 (P))
also. Itis easy then to see that

Xa)L f = X(ar f) - ar (XF)

for everya € #(P) and f € Z(P). We now define inZ(P) a new
derivation law in terms of a given connection fosnon the bundle by
setting

Dxf = Xf +’)/(X)|_f

for every X € ¥(P) and f € £Z(P). This difers from the canoni-
cal derivation law inZ(P) by the mapy : X — y(X)_ of €(P) into
homy, ) (£ (P), £(P)). The curvatures form the canonical derivation
law has been shown to be zero in[Ch.1.9. Hende¢ i§ the curvature
form of the derivation law and( the curvature form of the connection
from v, we have

K(X,Y) = DxDy — DyDx — Dyxy]
= Xy(V)L = Yy(X)L — y([X YD + [y(X)L, v(Y)L]
= Xy(Y)L = Yy(X)L — v([X, YL + [¥(X), v(V)]L
= (dy(X, )L + [v(X), y(N)]L
= KX, Y)L

Theorem 3. For a given connection form on P, there exists one and
only one derivation law D in the module of sections on theordmindle
E on V such that for every sectienand every projectable vector field
X on P, we have

Dpxo = Xo +y(X) Lo

The proof is an immediate consequence of the two succeegling |
mas

Lemma 1. If X is a vector field on P tangential to the fibres and=f
Z(P), then D¢ f = 0.
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In fact, if X = Zy wherea € ¢/, we have
Dz, f =Zaf + W(Za))L T = Zaf + & f

Hence 94
Dz, f(§) = (£a)f +a f(£).

If g(s) = f(¢s) = s1(¢), then €a)f = ag = —a, f(¢). Therefore
Dz, f = 0 and the lemma is proved since the module of vector fields
tangential to the fibres is generated by the vector figlda € %).

Lemma 2. If X is projectable and & 45(P), then D« f € Z(P).

By lemmdl, it is enough to consider the case wKés a horizontal
projectable vector field. Thep(X) = 0 and hence we have

(DxF)(Es) = (X)(€9) = Xesf = (X9 f = Xch,

whereh(¢) = f(£s) = sXf. Therefore

(Dx f)(s) = sTH(Xef) = s7(DxF)(©)

forse G, i.e.,Dxf € Z(P).

The converse cannot be expected to be true in general. Holsif
a trivial vector bundle oveY with group reduced tée}, it is clear that
we can have only the trivial connectionsRnwhereas there are nonzero
derivation laws inv. However, we have the

Theorem 4. Let G be the group of automorphisms of a vector space
L, P a principal diferentiable bundle with group G over a manifold g5
and E a diferentiable vector bundle over V associated to P with typical
fibre L. Let p be the projection of P onto V. For every derivatlaw

D in the  (V)-modulee(V) of diferentiable sections of E, there exists
one and one connections fomon P such that

(©) Djxo = X& + y(X)L.&

for everyo € £(V) and every projectable vector field X on P.
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We denote as before liythe map ofP x L onto E. For everyo €
£(V) and every vectodxat a pointx € V, let Dgy be the valueDy o) (X),
where Xis any vector field oV such that X = dx Letd¢ be a vector
with origin até € Py. We define a map(dé) of £(V) into the fibreEy
by setting

r(d)o- = Dpasor - q(&, d&7)

for everyo € &(V). Sincer(dé)(fo) = f(X)(r(dé)o) for every f €
Z (V) and everyr € g(V), r(d€)o depends only upoar(X) or upona(£).
Therefore, there exists an endomorphianof L such thatr(dé)o =
q(&, ac(£)) for everyo € g(V). SinceG is the group of automorphisms
of L, there exists an elemep{ds) in the Lie algebra?” of G such that
r(dé)o = g(&, y(dé)La(&)) for everyo € £(V), andy is clearly a form
degree 1 orP with values iny satisfying the condition®). From C)
we deduce thay(X) is differentiable wheneveX is a diferentiable pro-
jectable vector field ofP. Thereforey is differentiable. It is the easy
to verify thaty is a connection form of. Any connection form orP
satisfying the condition®) coincides withy since the representation of
2% in L is faithful and since a form oR is determined by its values on
projectable vector fields.

5.7 Parallelism in vector bundles

Let E be a vector bundle ov&f associated to the principal bund?avith
typical fibreL,y a connection form oP, D the corresponding derivation
law in the module of sectiong(V) of E, qthe usual maf? x L — E, ¢
a differentiable path itV with origin atx € V, andy an integral lift of
¢ in P with respect toy. For everyy € Ey, there existy € L such that
a(e(0).v) =y.

Then it is easy to see that the pait®(t), v) in E depends only on
y ande. The pathqg(¢(t), V) is called the integral lift ofp with origin .
The vectorgy(&(t), v) are sometimes said to be parallel vectors akpng

Let o be a section of the bundle anddx a vector atx € V. We
would like to define the derivation af with respect tadx in terms of
parallelism. Letp be a diferentiable path with origix and¢’(0) = dx
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andg an integral lift ofp in P. Let v(t) = &(¢(t)) so thatq(e(t), v(t) =
o (¢(t)). Definey(t) = q(¢(0), v(t)). Then we have

1
Daxo = {I_F[cl) Y{Y(t) - y(0)}.
In fact, if 97
£=30) and d¢=¢'(0),we have

m { 000 - YD = a0, fm 3 ) - vON)

i
= (0} im T (@) - GO
= 4(3(0). 6£5)

= 0(¢(0), dgo™ + y(dé)Lo)
= Dgxo-

For everyY € Ey, let (¢,v) € P x L such thatg(é,v) = Y. Then
q(d¢,v) € Ty. This gives in particular, a map of the spageof hori-
zontal vectors with origin a§ into Ty, which is clearly injective. If we
compose this with the projection, we obtain the bijectmn{; — Ty.
We define a vector & in E to behorizontalif it is of the form q(dé¢, v)
with q(¢,v) = Y andd¢ € S;. It is easy to see that this definition does
not depend on the particular pai, ). With this definition, for every
integralg in P and everyu € L, the pathY(t) = q(¢(t), v) has horizontal
agents at all points. The space of horizontal vectoksiata subspace of
Ty supplementary to the subspace of vectoiis, tangents to the fibres
throughy.

Theorem 5. Leto be a section of E over V. Ther(dX) is horizontal if 98
and only if Dyxo = 0.

Let & be a horizontal tangent vector &te p~1(x) whose projection
is dx. Then we have

Daxor = q(¢, déa + y(d&)d)
= (&, déa).
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But & has been defined by
(¢, 5(£)) = o(ps).

Henceq(¢, a(dé)) + q(dé,(¢)) = o(pdé) = odx If o(dX) is
horizontal, so isq(¢,5(d€)). But pe.q(é, a(dé)) = X, i.e., a(dé) =
o(£). Sincedéo = a(dé) — (&), it follows thatdéo- = 0. Therefore
q(é,déo) = 0. The converse is also immediate.

This theorem enables us to define integral paths with respect to
a given derivation law iz(V).

5.8 Differential forms with values in vector bundles

Definition 5. Let E be a diferentiable vector-bundle over the manifold
V. Adifferential forma of degreen onV with values in the vector bundle
E is ann-form on the modul&s’(V) of differentiable vector fields o
with values in the module(V) of differentiable sections of the bundle
E.

For everyn-tuple di X, d>X, ... dyx of vectors atx € V, the value
a(dix, doX, ... dyX) of a belongs toEx. The % (V)-module of forms of
degreen onV with values inE will be denoted by"(V).

Let P be a diferentiable principal bundle ov&f, with groupG and
projectionp. AssumeE to be associated tB, with typical fibreL and
let g be the ma® x L — E. For every integen > 0, we shall define
an isomorphismt of "(V) into the spaceZ"(P) of differential forms of
degreen on P with values in the vector spade Forn = 0,4 has been
defined ifBb. Assume > 0. For everya € £"(V), we define a form
a = Aa on P with values inL by the condition

q(é:’ &(dlg’ d2§7 v dnf)) = a(pdl§9 pdzf, s pd‘lé‘:)

for every sequencd & of n vectors with origin af € P. If X3, Xp, ... Xp
aren projectable vector fields oR, then

(Aa) (X1, X2, ... Xn) = Ala(pXy, pXo, ... PXn))
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Therefore, A« is differentiable and belongs t&"(P). It is imme-
diately seen that is an injective homomorphism ef'(V) into £"(P)
regarded ag/ (V)-modules. Moreover, i belongs to the image afin
ZL"(P), then :

1) a(chés doés, ... dnés) = S1a(0i€, doé, . .. dné)s

for every sequencd;¢ of n vectors with origin a € P and every
seG,

2) a(dig, dé,...dp¢) =0

for every sequencd £ of nvectors with origin a¥ € P such that one
of the di¢ has projection 0.

Definition 6. A form @ € " (P) satisfying the conditions 1) and 2) is
said to be &- form of degree n P with values inL.

Let ZZ(P) be the set of5-forms of degreen. It is easy to see that
Z2(P) is a submodule ofZ(P) over % (V). Moreover.ZZ(P) is the
image of the homomorphismh: "(V) — Z"(P).

5.9 Examples

1. Lety,y’ be two connection forms on the principal bun&ever
V. LetB = y — /. Then we havg8(d¢s) = s1B(d¢)s; and
B(d€) = y(dé) -y’ (d¢) = 0'if pd¢é = 0. In other wordsp .Zel(P)
with respect to the adjoint representatiorGoin . Hences = @
wherea is a diferential form of degree 1 oW with values in
the adjoint bundle oP which is a vector bundle associatedRo
with typical fibre?% . This gives a method of finding all connec-
tion forms from a given one. This is particularly useful wi@&is
abelian, in which case the adjoint representatio® of % is triv-
ial and consequentlg may be considered as affdirential form
onV with values in

2. LetK be the curvature form of the connection fognon a princi- 101
pal bundleP. Then
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K(d1és, 0p¢9) = sTTK (0, daé)s
and K(dié, do¢) = 0 if eitherd;& or dy¢ € N,

ThereforeK is an alternatés-form of degree 2 orP with values
in % and corresponds to a form of degree 2\Wmwith values in the
associated adjoint bundle.

5.10 Linear connections and geodesics

Let C be the vector bundle of tangent vectors\onWe considelC as
a vector bundle associated to the principal buriéllef tangent frames
on V with typical fibore R". There exists an one-one correspondence
between connections dd (which are calledinear connectionn V)
and derivations laws in the modut€(V) of vector fields onV. The
torsion form is an alternate form of degree 2 with values atdngent
bundleC.

Given any linear connection ovi, we have the notion ajeodesics
onV. (In Ch[EID to CIt512, we consider paths with arbitratgrivals
of definition). In fact, ify is a diferentiable path iV, then there exists
acanonical liftof ¢ in C defined byt — ¢’(t). We shall denote this lift

by ¢'.

Definition 7. A path in V is said to be ajeodesidf the canonical lift
102 ¢’ is integral. (In other words, the vectof’(t) at ¢’(t) € C should be
horizontal for the given linear connection).

Lemma 3. Lety be a path in V an@ an integral lift ofp in P. Theny
is a geodesic if and only if there exist&\R" such that ¢p(t), v) = ¢'(t)
for every te I.

The proof is trivial.

It will be noted that the notion of a geodesic depends esabntin
the parametrisation of the path. However, a geodesic renaagieodesic
for linear change of parameters.

LetY € C be a vector at a poirk € V anddy the horizontal vector at
Y whose projection i¥. Thendis a vector field orC called thegeodesic
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vector field The geodesic vector field differentiableaccording to the
following computation of in local coordinates.

5.11 Geodesic vector field in local coordinates

Let C be the tangent bundle of a manifdllwith a derivation lawD.
Let p be the projectiorC — V. If Y is a vector atx = pY € V and
U a neighbourhood opY wherein a coordinate syster!(...x") is

defined, we denote the vector fiel%% onU by P,. Lety = dx be

a family of differential forms orlJ dual toP;, i.e.,y/(P;) = ¢!. The
yl may also be regarded as scalar functiongpofU) c C. Thus for
Y e P(yLye, ...y, X2 %2, ... x") form a coordinate system ip~1(U).
SetQ; = d/dy. Then we assert that the geodesic vector fidsl given

in p1(U) by
6= ZVP. D Ty«
i,j,k

where thel"k are defined by 103
Dp,Pj = > T¥Pk.
K
In fac_:t, using TH.B, Ch.5.7, we see that the value of tiiedntial
formsdy! + Zykl".J (XdX on the vector is zero. It is easy to observe

thatdy = Z y'(P )y — 2 l":‘Jy'yJ Qx is horizontal and thapdy = Y. This

shows tha19 as deflned above is the geodesic vector field.

5.12 Geodesic paths and geodesic vector field

Proposition 5. ¢ is geodesic path in V if and only if the canonical lift
¢’ of pis integral ford, i.e.,¢” (t) = 6, for every t.

In fact, if ¢ is a geodesic, then we hape’ (t) = ¢(t) and py”’(t) =
¢(t) for everyt € 1. Hencey”(t) = 6,+. The converse is trivial in as
much every path integral feris also integral for the connection.
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Proposition 6. If y is an integral path fo theny = py is a geodesic
¢'(t) =y (t)

By assumption’(t) = 6y and if o(t) = py(t), we havey'(t) =
Py’ (t) = phy(y, i.€.,y is the canonical lift ofp and is integral.

The geodesic vector field on C generates a local one-parameter
group of local automorphisms @. We say that the linear connection
onV is completeif § generates a one-parameter group of global auto-
morphisms ofV. It is known that in a compact manifold, any vector
field generates such a one-parameter group of automorph@mesther
hand, if the local one-parameter group generateglibyC is represented
locally by 2n functions ¢;i(y1, ... Yn, X1, ... Xn, t) Of (2n + 1) variables,
then it is easy to observe that the firsbf these functions are linear
inyi,...,Y¥n. From this it is immediate that any linear connection on a
compact manifolds is complete.

The nomenclature ‘complete’ is due to the fact that a Rienamnn
connection is complete if and only if the Riemannian megicamplete
([22]).

Let I be a complete linear connection afdhe geodesic vector
field. Letty be the automorphism & corresponding to the parameter
t in the one-parameter group generatedbyPaths which are integral
for 6 are of the fornt — tyY (i.e., the orbit ofY underty). Given any
vectorY at a pointx on the manifoldV, ¢(t) = p(teY) is the geodesic
curvedefined byY. For everyx € V, the mapo : Cx — V defined by
settingo(Y) = p(14Y) is a diferentiable map of maximal rank at @nd
therefore defines a fieomorphism of an open neighbourhood of 0 in
the vector spac€y onto an open neighbourhood wfn V([26]).



Chapter 6
Holomorphic Connections

6.1 Complex vector bundles

Definition 1. A complex vector bundlis a diferentiable vector bundle10s
E over a manifoldV with a differentiable automorphisrd : E —» E
such that

1) JE, c E for everyx eV,
2) J2Y = -Y for everyY € E.

Let P be a diferentiable principal bundle ov&f with groupG. Let
us assume given a left representatior s of G in a complex vector
spaceL, such that eacls is a complex automorphism d&f. Then a
vector bundleE associated t® with typical fibreL can be made into a
complex vector bundle by settiny(¢, v) = q(£, V—1v) for every¢ € P
andv € L,q being the usual projectioR x L — E. Conversely any
complex vector bundI& can be obtained in the above way. In fact, for
x € V we definePy to be the vector space of all linear isomorphisms
a : C" — E, such thaty(v-1v) = Ja(v) for ve C". Then as in Ch. 4,
one can providd® = UPy with the structure true of a principal bundle
over V with groupGL(n,C).E is easily seen to be a complex bundle
associated t® with fibre C" with respect to the obvious representation
of GL(n,C) in C".

If E is a complex vector bundle, tl# (V)— modules(V) of differ- 106

81
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entiable sections dE can be provided with the structure of & (V)-

moduleZ(V) being the algebra of complex-valuedfdrentiable func-
tions onV) by setting f +ig)o = fo+Jgo for f,g € Z (V). Conversely
if 1 is an endomorphism of thé (V)— module of sections of a fier-

entiable vector bundl& overV such thatic = —o for every section
o, then there exists one and only one automorphisof E such that
J(ox) = (lo)x (for every sectiorr- and x € V) and J makes ofE a

complex vector bundle.

6.2 Almost complex manifolds

Definition 2. An almost complex manifolt a diferentiable manifold
V for which the tangent bundle has the structure of a complexove
bundle, i.e., there exists & (V)— endomorphism of %’ (V) such that
12 = — (Identity).

The %:(V)- module%:(V) of complex vector fields (defined as for-
mal sumsX; + iX2, X1, Xo € € (V)) can be identified with the module
of derivations of%4(V) overC. The% (V)- endomorphism of (V)
can then be extended to &t(V)- endo-morphism o%:(V) by setting
|(X1 + iX2) = X1 +il1Xy for Xq, X5 € %(V)

Definition 3. A vector fieldX € 6-(V) is said to be ofype(1, 0) (resp. .
of type(0, 1)) if IX —iX (resp. .IX = —iX).

We shall denote b¥(1,0)(V), €(0,1)(V) the Zc(V)- modules of vector
fields of type (1, 0) and type (0, 1) respectively.

Clearly one ha®c(V) = 6(1,0)(V) ®%(0,1)(V). Moreover, any vector
field X of type (1, 0) can be expressed in the foa — il X1 with X; €
%' (V). On the other handX — ilx is of type (1 0) for everyX € (V).
Similarly every vector field of type (0, 1) can be expressethanform
X1 + i1X1 with X1 € €(V) and X + ilX is of type (0, 1) for evernyX e
Uc(V).

Let V be an almost complex manifold alda complex vector bun-
dle overV. A complex form of degree p on V with values insEa
multilinear form of degree on the%(V) - module%(V) with values
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in &(V). Any real form can be extended in one and only one way to a
complex form. On the other hand, every complex form is anresits
of a real form.

Every holomorphic manifold/ carries with it a canonical almost
complex structure. With reference to this a vector fieldvois of type
(1, 0) if and only if its expression in terms of any systefy, (. ., Z,) of

) ) 0 )
local coordinates does not |nvoI\3eZ——, ...,—. Hence it follows that

[6(10)(V), €100 (V)] C Cl10)(V). Conlversely gn almost complex struc-
ture onV comes from a holomorphic structure ®nif [ €(1,0)(V), €(10)
(M) € 6(10)(V) cf. Newlander and Nirendberg, Annals of Math. 1957.
Let X, Y € 6c(V). ThenX —ilX,Y —ilY € %(10)(V) and the above
condition requires that{ — ilX,Y —ilY] € 6(1,0)(V). In other words,

[X, Y] = [IX,1Y] = =I[IX, Y] = I[X,1Y].
FOXY) = [X, Y] + 1[1X, Y] + 1[X 1Y] = [IX,1Y]

is easily seen to b&(V)- bilinear. Hence we have: 108
An almost complex structure oY is induced by a holomorphic
structure if and only i (X, Y) = 0 for everyX, Y € Ec(V).

6.3 Derivation law in the complex case

We wish to study derivation laws in the module of sections cd@plex
vector bundle over an almost complex manifold (mostly halgohic
manifold). This can be done in the algebraic set-up of Ch.1.

Let A be a commutative algebra over the field of real numbers and
Ac its complexification. LetC be theAc module of derivations ofc.
We assume given o and Ac - endomorphismi such thatl? = —
(Identity). If we defineX € C by Xa = Xafor a € A, then we also
assume thdt satisfied X = IX. X € C is said to be of type (D) (resp. .
type (Q1)) if IX = iX (resp. .IX = —iX). Let M be anA- module. A
multilinear forma of degreep on C with values inM is said to be of
type (, s) if r + s= panda(Xy, ... Xp) = 0 whenever either more than
rX{s are of type (10) or more thans>§s are of type (01). We shall
denote the submodule o P(C, M) consisting of all forms of typer(s)
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by .Z#"3(C, M). Then itis easy to see th&&P(C,M) = Y. .Z"5(C, M),
r+s=p

the sum being direct. Let us denote the module of alternatadmf
type ¢, s) on C with values inM by "5(C, M). Let My, M2, M3 be
three Ac- modules with a bilinear produdil; x M, — Ms. Itis then
easy to see that & € #"S(C,M4),8 € %"-5(C,M,), thena A B €
%r+r’,s+s’(c’ |\/|3).

We shall now make the additional assumption &g, Y] = [X, Y]+
I[IX, Y]+ I[X 1Y] =[1X,1Y] = O for everyX, Y € C. (This corresponds
to the case when the base manifdlds holomorphic). A derivation law
D in anAc moduleM gives rise to an exterior derivatiahin % P(C, M).
Using the explicit formula fod (Ch[I.T) and the fact th& = 0, it is
easily proved that forx € %"S(C, M), da is the sum of a fornd’ « of
type ¢ + 1,9 and a formd”« of type ¢, s+ 1). The curvature form
K € %?(C,Homa.(M, M) is a sum of three componerits>?, K1 and
KO, Fora € % P9(C.M) we haved?a = K A @ (Lemmd, Ch. 1.9) and
calculating the components of typg, § + 2) we obtain

d%a = K% A q.

Now we make the further assumption thét? = 0. It follows that
d”? = 0. For every integep, form the sumy, % P4(C, M) = Jp. Then
q

we have a complex

7 7

s (A Y) R (o V) BNNOZL (R V)

The complex.7, of course depends on the derivation l&w Let
D be another derivation law iM. ThenD = D + w wherew €
Homc(C, Homac(M, M)) (see Ch[ZII0). We shall say that two deriva-
tion lawsD, D areequivalentif w is of type (10). The boundary op-
eratord” in the complex¥, remains the same whd is replaced by
an equivalent derivation la®. For, if D = D + w, we have (CEZI10)
de = da + w A a for @ € ZP9(C, M). Hence on computing the compo-
nents of type b, g+1), one obtaing”’« = d”a. Thus we have associated
to every equivalence class of derivation laws, a complgxfor every
integerp).
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A derivation lawD in M induces a derivation laviD in Homa_
(M, M) = End M(Ch[L3). Then it is easy to see that

KX Y)o = K(X,Y) o p—p o K(X.Y)

for X,Y € C,p € end M. Hence iK®2 = 0, K%? is also= 0. Moreover,
if D,D are equivalent, so al®, D. Hence to an equivalence class of
derivation laws inM corresponds a complejp (for every integem):

77

p.0 & el & qypa .
wP°(C, EndM) — #P*(C, EndM) — ---ZPY(C, EndM) —

Now K1 is an element o7 >1(C, EndM). Since we havelK = 0
(Lemmal®, Ch.1.9) an&k®? = 0, we getd’K>! = 0, i.e.,K M is a
cocycle of the comple¥/. If D is replaced by an equivalent derivation
law D, we have (CELIAOK = K + dw + w A w whereD = D + w. 111
Butw € 9(C, EndM). HenceK®! = K + d”w. In other word, the
cohomology class dk* in the above comple¥” ; is uniquely fixed.

6.4 Connections and almost complex structures

Let P be a diferentiable principal bundle over an almost complex man-
ifold V with complex Lie groupG. Let # be the Lie algebra o6 112
identified with the space of real tangent vectorg.atWe denote byg

the endomorphisr® — % given by the complex structure &fand by

| the almost complex structure ¥f Obviously we have

lga) ls=Ig(sast) forse G,ae #.
Leté € Pandpé = x € V. Then we have the exact sequence
0-Ne>Te—>Tx—0

whered, is the space of vectors &tangential to the fibre. If a connec-
tion is given onP, then we may define as almost complex structure on
P by carrying over the complex structure dpto S, (the space of hor-
izontal vectors af) and that of? to 9%, (by virtue of the isomorphism

a — £a). This is easily seen to define an almost complex structui@ on
so that we have the
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Proposition 1. Lety be a connection form on afftrentiable principal
bundle P over an almost complex manifold V with complex Loeigr
G. Then there exists one and only one almost complex stauotuthe
manifold P such that

1) ¥(1pdé) = ley(ds)
2) plpdé = Ipdé for & € P.

In virtue of the general procedure given in Chl6)2is defined on
complex vector fields by settindiX) = lgy(X) for X € €(P). The
connection form is obviously of tyg#, 0) with respect to the induced
almost complex structure on P. Moreover, th&« B — P given by the
action of G on P is almost complex. We shall call a principahtlie P
over an almost complex manifold V with complex Lie group Glaroat
complex principal bundle if P has an almost complex struiesuch that
the projection p and the ma, s) — &s of Px G — P are both almost
complex (i.e., compatible with the almost complex str@tuwWe have
seen above that P with the almost complex structure indugealdon-
nection formy on P is an almost complex principal bundle. Conversely,
let P be an almost complex principal bundle. yif= y20 + 101 is a
connection form on P thep'C is again a connection form. In fact,

1 , ,
yHoga) = Sy (Ea+ il pga) + (a- il pa))
1 ,
= Sv(€a-ilpéa)

= %(a— lgy(Ipéa)) = %(a— lcy(£1Ga))

=a

113 Similarly it may be shown tha%(d¢s) = s 1y-0(d¢)s. Moreover
we have

YO(1n0) = 2y (1o +idé + lot ~ ice)

= Zy(led +ide)
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= ley"(d?).

On the other handplpdé = 1,dé by assumption. Hence by prb.1,
Ch.6.4,y*0 induces the given almost complex structureFon

Let y,¥ be two connection forms on an almost complex principal
bundleP. Theny — ¥ is a G-form (CHBb) of degree 1 dawith values
in % . It may be identified with a dlierential form of degree 1 ovl with
values in the adjoint bundle. Using the fact that every vefiedd on
V of type (1,0) is the projection of a vector field ¢hof type (1,0) it
is easy to see that this identification is type-preservingother words,
the type ofG-forms onP with values in%” depends only on the almost
complex structure oV. We say thaty, ¥ areequivalentif y — ¥ is of
type (1,0). The following proposition in then immediate.

Proposition 2. Two connectionsg, ¥ on P induce the same almost com-
plex structure on P if and only if andy are equivalent.

On the other hand we have seen that every almost complexws&uc
on P which makes of it an almost complex principal bundle is iretlic114
by a connection of type (D). We have thus set up one-one correspon-
dence between almost complex bundle structuré®@md equivalence
classes of connections.

We will hereafter assume that the base manifélé holomorphic
and investigate when a connection foprimduces a holomorphic struc-
ture onP. Then curvature fornK of v is a G-form of degree 2 with
values in%Z. LetK = K?0 + K31 4+ K92 pe its decomposition.

Proposition 3. A connection formy on P induces a holomorphic struc-
ture on P if and only if B2 = 0.

In fact, if v induces a holomorphic structure &) thend”y = 0.
SinceK = dy + [y,y] andy is of type (10) for the induced complex
structure K%2 = 0. Conversely, leK®2 = 0. We have then to show that

Fp(X,Y) = [X,Y] + |p[pX,Y] + |p[X, |pY] - [|pX,|pY] =0

for any two vector field%, Y onP. SinceFp is atensor, it is dsfficient to
prove that-p(X, Y) = O for projectable vector fields, Y. ThenlpX, IpY
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are also projectable, and we haReP(X, Y) = Fy(PX, PY) = 0 sinceV
is holomorphic. On the other hand,

Y(FOXY)) = (X Y] = [IeX, 1pY]) + lay([1pX, Y] + [X 1pY])
= 7([X7Y] - [lPX, IPY] + [II PX, Y] + [X, il pY])
= y([X +ilpX, Y +ilpY]).

But sinceK%2 = 0, K(X +ilpX, Y +ilpY) = 0.

i.e., X+ilpX)y(Y+ilpY) = (Y +il pY)y(X +il pX) = y([X +il pX, Y +
ilpY]) = 0.

Sincey is of type (10), we obtainy(F(X,Y)) = 0 which gives
F(X,Y) = 0.

Definition 4. A differentiable principal bundI® over a holomorphic
manifold V with a complex Lie grougs is said to be éholomorphic
principal bundle ifP is a holomorphic manifold such that the projection
p: P — Vandthe map{, s) - £sof PyG — P are holomorphic.

If a connection formy exists onP with K%2 = 0, then the induced
almost complex structure oR is holomorphic and its is obvious that
this makes oP a holomorphic principal bundles.

6.5 Connections in holomorphic bundles

Let P be a holomorphic principal bundle ovef with groupG. The
definitions of holomorphic vector bundles with respect t@kmorphic
representation o6 in a complex vector spade are given in analogy
with the diferentiable case.

All the results of Chapter 2 can be carried over to holomarjtiain-
dles with obvious modifications. L&i(U) be the algebra of holomor-
phic functions on an open subd#bf V andU the sheaf of holomorphic
functions onV. The notion of a sheaf df- modules is defined as in
Chapter 4. Moreover, there exists a functor from the categbholo-
morphic vector bundles ovéf to the category of locally free sheaves
of U modules which takes exact sequences to exact sequencescand
versa.
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Let G be a complex Lie groupP a holomorphic principal bundle
with group G over a holomorphic manifold/, and E a holomorphic
vector bundle ove¥ associated t® with typical fibreL. Any connec-
tion formy on P defines a derivation law in the module of section&of
(Ch[®).

Proposition 4. If the connection forny is of type(1, 0), then a djiferen-
tiable sectiorno- of E over an open subset U of V is holomorphic if and
only ifd’o = 0.

If & is the G-function onP with values inL corresponding tar
under our usual isomorphism, it is easy to prove (as in tiferdintiable
case) thatr is holomorphic if and only ib"is holomorphic. But this is
equivalent to saying that’ o = 0 for the canonical derivation law in the
%(P) module ofL-valued functions orP. Since the derivation law
induced byy in £ (P) was defined bypx f = X +y(X)_f (in the usual
notation) and is of type (1 0), thed” for D and the canonical derivation
law are the same. Since the isomorphigms @ is type-preserving, we
have (I’&) = d’& whered” corresponds to the derivation lal in
Zc(P). Henced” & = 0.

Let U be an open subset d over whichE is trivial and leto, . . .,
o be holomorphic sections dd which form a basis for the” (U)-
moduleg(U) of sections of overU. Then for any sectionr = Y, fio; 117
overU we have

d’o = (d"f) Aci+ > fi Ad’oi (ChILB)
= Z d”’ fi A o Prop.[4; Ch. 6.5

= ) (@ oy

In other wordsd” depends only on the manifold and not on the
principal bundleP. Moreover it is obvious thad”?c = 0.

However, this can be proved algebraically. In factyjfy are of
type (10), so isy — ¥ = w. From this it follows that that induced
derivation laws are equivalent and the correspondificare the same
(Ch.[E:3). Furthermore, sind€™? = 0 (which is a consequence of prop.
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B3. Ch.6.4y being of type (1, 0)) we have seef> = 0 in Ch[E.B. We
have therefore a complex

q” d” d”
Sp’O(U) i 8p,l(u) ... SP,Q(U) NN

for every open subsét of V, wheresP9(U) is the module of dferential
forms of type ,0) on U with values inE. This defines a complex
SP(E) of sheaves ovev:

d// d/
&p0 &, pt 0 sha &,

where P9 denotes the sheaf of feierential forms of type §,q) on V
with values in the vector bundIE. Let % P9 be the sheaf of complex
valued diferentiable functions of typep(q) onV, G the sheaf of holo-
morphic functions oW, g, the sheaf of holomorphic sections©f Then
&PYis isomorphic to the shea¥ P9 @ &, and therefore is a fine sheaf.

o
Moreover ifGP is the sheaf of holomorphic forms of degneenV then
the sequence

05 0P@ey— &Pl — Pl ..
o

is exact Dolbeault theorem [12]). Therefore the compleX(s) is a fine
resolution of the shedfP %» &n and if SP(¢) is the complex of sections

d” a7 d”’
gp’O(V) BN 8p,1(v) N SP,Q(V) NN

Then
HY(SP(e)) = HI(C,UP ® &p)

for every pair of integerg, g > 0.

Now assumeE to be the adjoint bundle adP) to P. We shall con-
struct a canonical cohomology classHri(S*(ad(P))). Lety be a con-
nection form of type (1, 0) oR andK = K20 + K1 its curvature form.
As aG-form onP with values in the Lie algebr&’, K corresponds to an
alternate forny of degree 2 oV with values inad(P). Sinced”K%! = 0
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(Ch.[E:3), we have”y*! = 0. In other wordsy ! as a 1-cocycle of the
complexSt(ad(P)).

Moreover ify is another connection of type,@), ¢>! differs from
%! by a coboundary of the compleésd(ad(P)). We have therefore as-
sociated a unique 1-cohomology classSit(ad(P)) to the holomorphic
bundleP. To the cohomology class af! corresponds an element of
Hi(v, 0t ® (ad(P))n). This will be referred to as thatiyah classof the

principal bundleP.
Regarding the existence of a holomorphic connection onuhele
P (i.e., a connection such thatis a holomorphic form) , we have the

Theorem 1. There exists a holomorphic connection in a holomorphic
bundle P if and only if the Atiyah clasgR) of the bundle is zero.

In fact, if y is a connection form oR of type (3, 0), y is holomorphic
if and only if d”y = 0. SinceK%? = 0, we see thad”y = K1 = 0 and
henceyt! = 0.

Conversely, ifa(P) = 0 andy a connection form of type (D) on
P, we havey™! ~ 0. Hence there exists a form e (adP)%°(V) such
thatd”a = y*1. Theny = y — & is a connection form of® such that
d’y =0.

Corollary. There always exists a holomorphic connection on a holo-
morphic bundle P over a Stein manifold V.

In fact, the sheaf)* % (ad¥), is a coherent sheaf and therefore
a(P) = 0, sinceV is a Stein manifold. By Theorefd 1, there exists a

holomorphic connection oR.
6.7 Atiyah obstruction

Let0 » 1 - .Z — Z” — 0 be an exact sequence of locally free2o
sheaves ofj modules over a holomorphic manifod. Since.Z’ is
locally free, the corresponding sequence

0 - Homy(F”, ') - Homi(Z, .#') —» Homg(F', ') - 0
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is exact. This gives rise to the exact sequence

0 — H°(V,Homys(F#", #")) - --- = H°(V,Homy Z7, Z"))
— HY(V,Homy(#", F') —> - --

H(V,Hom;(.#7, .#")) is then the module of sections of the sheaf Hom
(#’,.%#’). The image of the identity section of Hey(%’.%") is called
the obstructionto the splitting of the given sequence.

Let %, Fh, 6h be the sheaves of holomorphic vector fields Bn
tangential to the fibres, of all holomorphic invariant vedields onP
and of all holomorphic vector fields ovi respectively. Then we have
the exact sequence

O-Kh—>  I9h—>%—0

Let b(P) be the obstruction to the splitting of this exact sequence.
b(P) is then a class irH(V, Homy(%h, %5)). We shall call this the
Atiyah obstruction class.

Theorem 2. The necessary and gigient condition for a holomorphic
connection to exist on P is tha{®) = 0.

In fact, b(P) = 0 if and only if the above sequence splits and the rest
of the proof is exactly as for the féierentiable case.

Theorem 3. There exists a canonical isomorphignof the shealR =
ot %) (adP), ontoHomys (%h, k) such thafa(P) = —b(P).

We shall defingpy : R(U) — Homyu)(éh(U), Kn(U)) for every
open subset) of V. Everyw € R(U) is a diferential form onU with
values i the adjoint bundle andi§ aG-form on p~%(U) with values in
% . For everyX € ¢p(U) andé € p~1(U), we define gy (W)(X))s =
%g(wxf - ilgwXe). Itis easily seen thaiy is an isomorphism and that
It defines an isomorphism

p 1 R — Homgs(%h, Kn)
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Let {U;} be a covering oV by means of open setd;, over each
of which P is holomorphically trivial. We shall computa&(P), b(P) as
cocycles of the above covering with values in the she®&étom;(%h,
Khn) with respect to the above covering. Lgtbe holomorphic con-
nections onp~1(U;) andy a differentiable connection oR. K% is the
elementd”’y in (@adP)*1(V). If ¥ = 9 + a; over p~X(U;) with a; €
(adP)0(V), thenkK?1 is thed”— image ofe; onU;. For,d”y = d”@; =
d”@; (in our usual notation). Henca(P) is represented it(X,R) 122
with respect to the above covering by the cocyele- aj = —(yi — v))
onUin Uj.

On the other hand,in the exact sequence

0 — Homys(%h, Kh) — Homgs(Hh, Kn) — Homgs (K, Kin) — 0

the identity section of Hog(%h, %) can be lifted orlJ; into the map

1 :
I € Homys(Jh, Kn) whereTi(X), = Ef()’i(xf) — ilgy(Xe)) for X €
Ih. € € P. Hence the obstruction class is represented;ppnU; N U;
defined by

Aij(pds) = %é*((% — i) (d¢) —ila(yi — ¥)(ds))

for everydé € T,. This represents the cocycle of the clagB) for the
covering{U;}. Obviouslyp(a(P)) = —b(P).

6.8 Line bundles over compact Kahler manifolds

Let P be a holomorphic principal bundle over a manifddvith group

G = C*(C* = GL(1,C)). We shall compute the Atiyah clas¢P) for
such a bundle. LetU;} be a covering ol over each of whichP is
trivial with holomorphic sectiongrj on U; and a set of holomorphic
transition functiongm;}. Since the adjoint representation is trivial, the
adjoint bundle is also trivial and the-functions ands-forms onP are
respectively functions and forms éhwhich are constant on each fibre.
Let vy be a connections form of type,(@) onP. It is easy to see that123
d’(67y) = d"y. Butajy —ofy = ny‘jldmj = d(logmj). Thus the
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forms d(logmjj) form a cocycle representing the Atiyah class for the
covering{U;}.

Finally, when the base manifold is compact Kater(V, X = G1)
may be identified [[30]) with a subspacetéf(V, C) by Dolbeault’s the-
orem. The sequences

(8] O—>Z—>UiU*—>O
and
@) 0-C-050t 50

whereZ, C are constant sheaves ditlis the sheaf of nonzero holomor-
phic functions, can be imbedded in the commutative diagram

0 Z (8 U* 0
3) jl il J{% dlog
0 C (8 U’ 0

wherej, i are respectively the inclusion and identity maps. We get con
sequently the commutative diagram

HY(V, U*) —— H%(V, 2)

d |

HY(V, 1) —— H2(V,C)

whereq is the connecting homomorphism of the exact sequdncg,d),
maps induced by diagrarfl (3), apdhe injection given by Dolbeault’s
theorem ([Z2B]). If{mj;} are the multiplicators for a coverindJ() of

V,6(my;) is given by%dlog(mj). The bundleP may be regarded as

an element oH(V, U*) and its image by is the first integral Chern
class ofP and its image by3 is the Chern clas€(P) with complex
codficients. By the commutativity of the diagram, we ha(@) =
2riC(P).
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In particular, we obtain the result that if there exists ahwbrphic
connection in a line bundle over a compact Kahler manifdintits
Chern class with complex ctiggcients= 0. It has been proved under
more general assumptions on the group of the bundle thatxise e
tence of holomorphic connections implies the vanishingllataChern
classes|2].
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