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Chapter 1

Differential Calculus

1.1

Let k be a commutative ring with unit andA a commutative and asso-1
ciative algebra overk having 1 as its element. In Applications,k will
usually be the real number field andA the algebra of differentiable func-
tions on a manifold.

Definition 1. A derivation Xis a mapX : A→ A such that

i) X ∈ Homk(A,A), and

ii) X(ab) = (Xa)b+ a(Xb) for everya, b ∈ A.

If no non-zero element ink annihilatesA, k can be identified with a
subalgebra ofA and with this identification we haveXx = 0 for every
x ∈ k. In fact, we have only to takea = b = 1 in (ii ) to getX1 = 0 and
consequentlyXx= xX(1) = 0.

We shall denote the set of derivations byC. ThenC is obviously an
A-module with the following operations:

(X + Y)(a) = Xa+ Ya

(aX)(b) = a(Xb) for a, b ∈ A and X,Y ∈ C.

We have actually something more: IfX,Y, ∈ C, then [X,Y] ∈ C.

1



2 1. Differential Calculus

This bracket product has the following properties:

[X1 + X2,Y] = [X1,Y] + [X2,Y]

[X,Y] = −[Y,X]
[

X, [Y,Z]
]

+

[

Y, [Z,X]
]

+

[

Z, [X,Y]
]

= 0,

for X,Y,Z ∈ C. The bracket is not bilinear overA, but only overk. We2

have

[X, aY](b) = {X(aY) − (aY)(X)} (b)

= (Xa)(Yb) + a[X,Y](b)

so that [X, aY] = (Xa)Y + a[X,Y] for X,Y ∈ C, a ∈ A. The skew com-
mutativity of the bracket gives

[aX,Y] = −(Ya)X + a[X,Y].

WhenA is the algebra of differentiable functions on a manifold,C
is the space of differentiable vector fields.

1.2 Derivation laws

Definition 2. A derivation law in a unitary A-moduleM is a mapD :
C → Homk(M,M) such that, ifDX denotes the image ofX ∈ C under
this map, we have

i) DX+Y = DX + DY

DaX = aDX for a∈ A,X,Y ∈ C.

i.e., D ∈ HomA(C,Homk(M,M)).

ii) DX(au) = (Xa)u+ aDXu for a ∈ A, u ∈ M.3

In practice,M will be the module of differentiable sections of a vec-
tor bundle over a manifoldV. A derivation law enables one thus to
differentiate sections of the bundle in specified directions.



1.2. Derivation laws 3

If we considerA as an A-module, thenD defined byDXa = Xa is a
derivation law inA. This will hereafter be referred to as thecanonical
derivation in A. Moreover, ifV is any module overk, we may define
on theA-moduleA

⊗

k
V, a derivation law by settingDX(a⊗ v) = Xa⊗

v and extending by linearity. This shall also be termed thecanonical
derivationin A

⊗

k
V.

There exist modules which do not admit any derivation law. For
instance, letA be the algebrak[t] of polynomial in one variablet overk;
thenC is easily seen to be the freeA-module generated byP = ∂/∂t. Let
M be theA-moduleA/N whereN is the ideal of polynomials without
constant term. If there were a derivation law is this module,denoting by
e the identity coset ofA/N, we have

0 = Dp(te) = (P.t)e+ t.Dpe= e,

which is a contradiction.
However, the situation becomes better if we confine overselves to

freeA-modules.

Theorem 1. Let M be a free A-module,(ei )i∈I being a basis. Given any4

system(ωi)i∈I of elements inHomA(C,M), there exists one and only one
derivation law D in M such that DXei = ωi(X) for every i∈ I.

Let u be an arbitrary element ofM. Thenu can be expressed in the
term u =

∑

λiei . If the conditions of the theorem have to be satisfied,
we have to defineDXu =

∑

(X∧i)ei +
∑

λiλi(X). It is easy to verify that
this is a derivation law.

We shall now see that the knowledge of one derivation law is enough
to compute all the possible derivation laws. In fact, ifD,D′ are two
such laws, then (DX − D′X)(au) = a(DX − D′X)(u). Since D,D′ ∈
HomA(C,Homk(M,M)), it follows that D − D′ ∈ HomA(C,HomA

(M,M)). Conversely, ifD is a derivation law andh any element of
HomA(C,HomA (M,M)), thenD′ = D + h is a derivation law as can be
easily verified.
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1.3 Derivation laws in associated modules

Given moduleMi with derivation lawsDi, we proceed to assign in a
canonical way derivation laws to module which are obtained from the
Mi by the usual operations.

Firstly, if M is the direct sum of the modulesMi, then DX(m) =
∑

Di
X(mi) wherem= Σmi, gives a derivation law inM.
SinceDi

X are k-linear, we may defineD in M1
⊗

k
· · ·

⊗

k
Mp by set-

ting DX(u1,⊗ · · · ⊗ up) =
∑

u1 ⊗ · · ·Di
Xui ⊗ · · · up. Now, it is easy to see

that this leaves invariant the ideal generated by elements of the form

u1 ⊗ · · · aui ⊗ · · · ⊗ up − u1 ⊗ · · · auj ⊗ · · · ⊗ up with a ∈ A.

This therefore induces a k-linear mapDX of M1
⊗

A
· · ·

⊗

A
Mp into5

itself, where

DX(u1 ⊗ · · · ⊗ up) =
∑

u1 ⊗ · · ·Di
Xui ⊗ · · · ⊗ up

whereu1 ⊗ · · · ⊗ up ∈ M1
⊗

A
· · ·

⊗

A
Mp.

It is easily seen thatD is a derivation law.
We will be particularly interested in the case whenM1 = M2 = · · · =

Mp = M. In this case, we denoteM1 ⊗ · · · ⊗ Mp by Tp(M). Since we
have such a law in eachTp(M) (for T0(M) = A, we take the canonical
derivation law) we may define a derivation law in the tensor algebra
T∗(M) of M. If t, t′ are two tensors, we still have

DX(t ⊗ t′) = DXt ⊗ t′ + t ⊗ DXt′.

Now letN be the ideal generated inT∗(M) by elements of the form
u ⊗ v − v ⊗ u with u, v ∈ M. It follows from the above equality that
DXN ⊂ N. ConsequentlyD induces a derivation law inT∗(M)/N, which
is the symmetric algebra overM. Again, if N′ is the ideal inT∗(M)
whose generators are of the formu ⊗ u, u ∈ M, then it is immediate
that DXN

′ ⊂ N′. Thus we obtain a derivation law in exterior algebra
T∗(M)/N′ of M.
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Let M, L be two A-modules with derivation lawsDM,DL respec-
tively. We define a derivation lawD in HomA(L,M) by setting (DXh) =
DM

X h− hDL
X for everyh ∈ HomA(L,M) andX ∈ C.

In fact DX(ah) = DM
X (ah) − (ah)DL

X.

DX(ah)(l) = DM
X (ah)(l) − (ah)DL

X(l)

= DM
X (a.h(l)) − a.h(DL

X(l))

= (Xa)(h(l)) + aDM
L (h(l)) − a.h(DL

X(l))

= {(Xa)h}(l) + (aDXh) for every I ∈ L.

In particular, ifL = M with DL
= DM , then we have 6

DXh =
[

DL
X, h

]

for everyh ∈ HomA(L, L).

Moreover, this leads to a derivation law in the dualL∗ of L by taking
M = A with the canonical derivation law. The corresponding law is

(DX f )(u) = X( f (u)) − f (DL
X(u)) for every f ∈ L∗ and u ∈ L.

Now letL, M be modules with derivation lawsDL, DM respectively.
We may then define a derivation law in theA-moduleF p(M, L) of mul-
tilinear forms onM of degreep with values inL in the following way:

(DXω)(u1, . . . , up) = DL
Xω(u1, . . . , up) −

p
∑

r=1

ω(u1, . . . ,D
M
X ur , . . . up).

If U p(M, L) is the submodule ofF p(M, L) consisting of alternate
forms , then it is easy to see thatD∧U p(M, L) ⊂ U p(M, L). This leads
to a derivation law in theA-modulesF p(M,A),U p(M,A), if we take 7

L = A with the canonical derivation law.
Let M1,M2,M3 be three modules with a bilinear productM1×M2→

M3, denoted (u, v) → uv. If D1,D2,D3 are the respective derivation
laws, we say that the product iscompatiblewith the derivation laws if

D3
X(uv) = (D1

Xu)v+ u(D2
Xv) for X ∈ C, u ∈ M1 and v ∈ M2.

This was the case the we tookM1 = M2 = M3 = A with the canon-
ical derivation law and the algebra-product. Again, we seenthat the
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above condition is satisfied byM1 = M2 = M3 = T∗(M) with the asso-
ciated derivation laws and the usual multiplication. Moreover, it will be
noted that ifM is anA-module with derivation lawD, the condition

DX(au) = (Xa)u+ aDXu for everya ∈ A, u ∈ M

expresses the fact that the mapA× M → M defining the module struc-
ture is compatible with the derivation laws inA and M. If we denote
U p(L,Mi) by U p

i (i = 1, 2, 3), we may define forα ∈ U p
1 β ∈ U q

2 , α∧ β
by setting

(α ∧ β)(a1, . . . , ap+q) =
∑

∈σ α(aσ(1), . . . , aσ(p))β(aσ(p+1), . . . , aσ(p+q))

where the summation extends over all permutationsσ of (1, 2, . . . , p+q)
such thatσ(1) < σ(2) < · · · < σ(p) andσ(p + 1) < σ(p + 2) < · · · <
σ(p + q) and∈σ is its signature. If the derivation laws are compatible
with the product, we have

D3
X(α ∧ β) = (D1

Xα) ∧ β + α ∧ (D2
Xβ) for every X ∈ C.

1.4 The Lie derivative

Let V be a manifold,U the algebra of differentiable functions onV and8

C the module of derivations ofU (viz. differentiable vector fields onV.
Any one-parameter group of differentiable automorphisms onV gener-
ates a differentiable vector field onV. Conversely, every differentiable
vector fieldX gives rise to a local one-parameter groups(t) of local au-
tomorphisms ofV. If ω is a p-co variant tensor, i.e., ifω ∈ F p(C ,U ),
then we may define differentiation ofω with respect toX as follows:

θXω = lim
t→o

s∗(t)ω − ω
t

,

wheres∗(t) stands for thek-transpose of the differential map lifted to
F p(C ,U ). This is known as theLie derivativeof ω with respect toX
and can be calculated to be

θXω(u1, . . . , up) = Xω(u1, . . . , up) −
p

∑

i=1

ω(u1, . . . [X, ui ], . . . up).
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It will be noted if a ∈ U , thenθaXω , a(θXω) if p > 0. At a point
ξ ∈ V, the Lie derivativeθXω, unlike the derivation law, does not depend
only on the value of the vector fieldx at ξ.

Lemma 1. Let D be a derivation law in the A-module M andα a
multilinear form on C of degree p with values in M. Then the map
β : CP→ M defined by

β(Z1, . . . ,Zp) = DXα(Z1, . . . ,Zp) −
p

∑

i=1

α(Z1, . . . [X,Zi], . . . ,Zp)

is multilinear. 9

In fact,β(Z1, . . .Zi+Z′i , . . .Zp) = β(Z1, . . .Zi , . . .Zp)+β(Z1, . . .Z′i , . . .Zp)
and

β(Z1, . . . aZi , . . .Zp) = (Xa)α(Z1, . . .Zp) + a(DXα(Z1, . . .Zp))

−
p

∑

j=1

aα(Z1, . . . [X,Z j], . . .Zp) − α(Z1, . . . (Xa)Zi , . . .Zp)

= aβ(Z1, . . .Zp) for every Z1, . . .Zp ∈ C, a ∈ A.

Definition 3. The mapX → θX of C into Homk(F p(C,M)F p(C,M))
defined by (θXα)(Z1, . . . ,Zp) = DXα(Z1, . . .Zp) −

∑p
i=1α(Z1, . . . [X,Zi]

· · ·Zp) is called theLie derivationin the A-moduleF p(C,M) andθXα

is defined to be theLie derivativeof α with respect toX.

The Lie derivation satisfies the following

θX(α + β) = θXα + θXβ

θX(aα) = (Xa)α + a(θXα)

θX+Y(α) = θXα + θYα

θλX(α) = λ(θX(α)

for everyX,Y ∈ C, αβ ∈ F p(C,M) andλ ∈ k.
Thusθ looks very much like a derivation law, butθaX , aθX in gen- 10

eral. From the definition, it follows that ifα is alternate (resp. symme-
tric), so isθXα.
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1.5 Lie derivation and exterior product

As in ch.1.3, letM1,M2,M3 be A-module with derivationsD1,D2,D3

respectively. Let there be given a bilinear productM1 × M2→ M3 with
reference to which an exterior product (α, β) → α ∧ β of U p(C,M1) ×
U q(C,M2) → U p+q(C,M3) is defined. If the product is compatible
with the derivation laws, we have, on direct verification,

θX(α ∧ β) = θXα ∧ β + α ∧ θXβ

for α ∈ U p(C,M1), β ∈ U q(C,M2) and X ∈ C.

1.6 Exterior differentiation

We shall introduce an inner product in theA-moduleF p(C,M). For
everyX ∈ C, the inner product is the homomorphismlX of F p(C,M)
into F p−1(C,M) defined by

(lXα)(Z, . . .Zp−1) = α(X,Z1, . . . ,Zp−1)

for everyα ∈ F p(C,M),Z1, . . .Zp−1 ∈ C. If α is alternate it is obvious
that lxα is also alternate. Whenα is of degree 0, lXα = 0. The inner
product satisfies the following

1. laX = alX

lX+Y = lX + lY, for a ∈ A,X,Y ∈ C.

2. If θX is the Lie derivation,

θXlY − lYθX = l[X,Y] for X,Y, ∈ C.11

3. If α is alternate,lXlXα = 0.

4. Let M1,M2,M3 be threeA-modules with a bilinear product com-
patible with their lawsD1,D2,D3. Then we have, forα ∈ U p

(C,M1), β ∈ U q(C,M2)

lX(α ∧ β) = (lXα) ∧ β + (−1)pα ∧ lXβ.
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in fact, letZ1, . . . ,Zp+q−1 ∈ C. Then

lX(α ∧ β)(Z1, . . . ,Zp+q−1) = (α ∧ β)(X,Z1, . . . ,Zp+q−1)

=

∑

σ

∈σ α(X,Zσ(1), . . . , zσ(p−1))β(Zσ(p), . . .Zσ(p+q−1))

+

∑

τ

∈τ α(Xτ(1), . . .Xτ(p))β(X,Zτ(p+1), . . .Zτ(p+q−1))

whereσ runs through all permutations of [1, p+ q− 1] such that
σ(1) < · · · < σ(p−1) andσ(p) < · · · < σ(p+q−1), whileτ runs
through those which satisfyτ(1) < · · · < τ(p) andτ(p+1) < · · · <
τ(p+ q− 1). The first sum is equal to (lXα) ∧ β and the second to
(−1)pα ∧ (lXβ).

Theorem 2. Let D be a derivation law in an A-module M. Then there
exists one and only one family of k-linear maps d: U p(C,M) →
U p+1(C,M)(p = 0, 1, 2, . . .) such thatθ(X) = dlX+ lXd for every X∈ C.

We call this map theexterior differentiationin the module of alter-
nate forms onC.

First of all, assuming that there exists such a mapd, we shall prove 12

that it is unique. Ifd′ is another such map, we have

(d − d′)lX + lX(d − d′) = 0

HencelX(d − d′)α = (d′ − d)lXα for everyα ∈ U p(C,M). We shall
prove thatdα = d′α for everyα ∈ U p(C,M) by induction onp. When
α is of degree 0, we have (d′ − d)lxα = 0 = lX(d − d′)α. This being
true for everyX ∈ C, dα = d′α. If the theorem were forp = q− 1, then
(d′ − d)lXα = 0 = lX(d − d′)α. Again, sinceX is arbitrary,dα = d′α
which proves the uniqueness of the exterior differentiation.

The existence is also proved by induction. Letα ∈ U o(C,M) = M.
Then we wish to definedo such thatlXdα = (dα)(X) = θXα (since
lXα = 0) = DXα. Hence we can set (d(α)(X) = DXα for everyX ∈ C.
This is obviouslyA-linear sinceDX is A-linear inX. Let us suppose that
d has been defined onU p(C,M) for p = 0, 1, . . . (q − 1) such that the
formula is true. We shall definedα for α ∈ U p(C,M) by setting

(dα(Z1, . . . ,Zq+1) = (θZ1α)(Z2, . . .Zq+1) − (dlZ1α)(Z2, . . .Zq+1)
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We have of course to show that thedα thus defined is an alternate
form. That it is linear inZ2, . . .Zq+1 follows from the induction assump-
tion and the multilinearity ofθZ1α. We shall now prove that it is alter-
nate. That means:

(dα)(Z1, . . . ,Zq+1) = 0 wheneverZi = Z j with i , j.

Using the alternate nature ofθZ1α anddlZ1α, we see that it suffices13

to prove that

(θZ1α)(Z2, . . . ,Zq+1) = (dlZ1α)(Z2, . . . ,Zq+1) when Z1 = Z2

Now (θZ2α)(Z2, . . . ,Zq+1) = (lZ2θZ2α)(Z3, . . . ,Zq+1)

= (θZ2lZ2α)(Z3, . . . ,Zq+1) by (2)o f Ch.1.6

= (dlZ2 lZ2α + lZ2dlZ2α) (Z3, . . . ,Zq+1)

= (dlZ2α)(Z2,Z3, . . . ,Zq+1).

Since (dα) is alternate, linearity inZ1 follows from that in the other
variables and additivity inZ1. This completes the proof of the theorem.

Remark. If we takeA to be the algebra of differentiable functions on a
manifoldV, andM to beA itself then the exterior differentiation defined
above coincides with the usual exterior differentiation.

1.7 Explicit formula for exterior di fferentiation

Lemma 2. The exterior differentiation defined above is given by

(dα)(Z1, . . . ,Zp+1) =
p+1
∑

i=1

(−1)i+1DZiα(Z1, . . .Zi , . . .Zp+1)

+

∑

i< j

(−1)i+ jα([Zi ,Z j],Z1, . . . Ẑi , . . . Ẑ j , . . .Zp+1)

where the symbol∧ over a letter indicates that the corresponding ele-14

ments is omitted.
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If d is defined as above andα ∈ U p(C,M), it is easy to see that

(lZ1dα + dlZ1α) = θZ1α for every Z1 ∈ C.

By the uniqueness of exterior differentiation , we see that the above
gives the formula for the exterior differentiation.

We shall use this explicit formula only when the degree ofα ≤ 2.
Then we have the formula:

1. (dα)(X) = DXα for α ∈ U 0(C,M), X ∈ C.

2. (dα)(X,Y) = DXα(Y) − DYα(X) − α([X,Y]) for α ∈ U 1(C,M),
X,Y ∈ C.

3. (dα)(X,Y,Z) =
∑ {DXα(Y,Z) − α([X,Y],Z)} for α ∈ U 2(C,M),

X,Y,Z ∈ C

where the summation extends over all cyclic permutations of(X,Y,Z).

1.8 Exterior differentiation and exterior product

We now investigate the behaviours ofd with regard to the exterior prod-
uct. Let M1,M2,M3 be three modules with derivation lawsD1,D2,D3

and letM1 × M2 → M3 be a linear product compatible with the deriva-
tion laws. Then we have, forα ∈ U p(C,M1), β ∈ U q(C,M2)

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Again, we prove this by induction, but this onp+q. Whenp+q = 0,
the above formula just expresses the compatibility of the product with 15

the derivation laws. Let us assume the theorem proved forp+q = r −1.
We have

d(α ∧ β)(Z1, . . . ,Zp+q+1) = (lZ1d(α ∧ β))(Z2, . . . ,Zp+q+1)

But, lZ1d(α ∧ β) = θZ1(α ∧ β) − d(lZ1(α ∧ β))

= θZ1α ∧ β + α ∧ θZ1β − d(lZ1α ∧ β + (−1)pα ∧ lZ1β)
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by(3) of Ch. 1.6

= θZ1α ∧ β + α ∧ θZ1β − dlZ1α ∧ β − (−)p−1lZ1α

∧ dβ − (−1)Pdα ∧ lZ1β − α ∧ dlZ1β

by induction assumption

= lZ1dα ∧ β − (−1)pdα ∧ lZ1β + α ∧ lZ1dβ

− (−1)p−1lZ1α ∧ dβ

= lZ1(dα ∧ β) + (−1)plZ1(α ∧ dβ)

= lZ1((dα ∧ β) + (−1)p(α ∧ dβ)),

which proves our assertion.

Remark. If we take M2 = M3 = M and M1 = A with the product
A× M → M defining the module structure, then, by the above formula,
we obtain

d(aα) = (da) ∧ α + a∧ dα

= da∧ α + a.dα















for a ∈ U ◦(C,A) = A

and α ∈ U p(C,M).

Thus the exterior differentiation is notA-linear.16

1.9 The curvature form

It is well-know that the exterior differentiation in the algebra of differen-
tial forms on a manifold satisfiesdd = 0. Let us compute in our general
case value ofddα for α ∈ U 0(C,M) = M. Then one has

ddα(X,Y) = DX(dα)(Y) − DY(dα)(X) − (dα)([X,Y])

= DXDYα − DYDXα − D[X,Y]α

Let K(X,Y) = DXDY − DYDX − D[X,Y]. Then it is obvious that
K(X,Y) is a k-endomorphism ofM. But, it actually follows on trivial
verification that it is anA- endomorphism. On the other hand, we have

i) K(X,Y) = −K(Y,X)
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ii) K(X + X′,Y) = K(X,Y) + K(X′,Y), and

iii) K(aX,Y)α = aK(X,Y)α for everyα ∈ M.

i) andii ) are trivial and we shall verify onlyiii ).

K(aX,Y) = DaXDY − DYDaX − D[aX,Y]

= aDXDY − DY(aDX) − Da[X,Y] − (Ya)X

= aDXDY − (Ya)DX − aDYDX − aD[X,Y] + (Ya)DX

= aK(X,Y).

We have therefore proved thatK is an alternate form of degree 217

overC with values in the moduleHomA(M,M).

Definition 4. The elementK of U 2(C,HomA(M,M)) as defined above
i.e.,

K(X,Y) = DXDY − DYDX−[X,Y]

is called thecurvature formof the derivation lawD.

Examples.1) Take the simplest case whenM = A, with the canonical
derivation law. Then

K(X,Y)u = XYu− YXu− [X,Y]u = 0

i.e., the curvature form is identically zero.

2) However, there are examples in which the curvature form isnon-
zero.

Let A = k[x, y] with x, y transcendental overk. It is easy to see that

C is the free module overA with P

(

=
∂

∂x

)

,Q

(

=
∂

∂y

)

as base.

We takeM to beA itself but with a derivation law different from the
canonical one. By Th.1, Ch. 1.2, if we choose 1∈ M and takeω ∈
HomA(C,A), then there exists a derivation lawD such thatDX1 = ω(X).
We shall defineω by requiring thatω(P) = y andω(Q) = 1. Then it
follows thatDP(1) = y,DQ(1) = 1.

K(P,Q)(1) = DPDQ(1)− DQDP(1)− D[P,Q](1)
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= y− (Qy).1− y(DQ(1))

= −1.

We now prove two lemmas which give the relation between Lie18

derivatives in two directions and the relation of Lie derivative to the
exterior differentiation in terms of the curvature form.

Lemma 3. θXθYα − θYθXα = θ[X,Y]α + K(X,Y)(α) for everyα ∈ U p

(C,M).

In fact, whenα is of degree 0, the formula is just the definition of
the curvature form. In the general case, this follows on straight forward
verification.

Lemma 4. θXdα − dθXα = (lXK) ∧ α for everyα ∈ U p(C,M).

It will be noted thatK ∈ U 2(C,HomA(M,M)) and hencelXK has
values in HomA(M,M). TakingM1 = HomA(M,M), M2 = M, M3 = M
in our standard notation, one has a bilinear productM1 × M2 → M3

defined by (h, u) →. The symbol∧ used in the enunciation of the lemma
is with reference to this bilinear product.

Proof. As usual, we prove this by induction onp, the degree ofα. When
α is of degree 0, the formula reduces to

DX(dα(u)) − dα(
[

X, u
]

) − (dDXα)(u) = (lXK ∧ α)(u) for u ∈ C.

i.e., DXDuα − D[X,u]α − DuDXα = (lXK ∧ (α)(u)

which is but the definition ofK. Assuming the truth of the lemma for19

forms of degree< p, we have

lYθXdα − lYdθXα − lY((lXK) ∧ α)

= θXlYdα − l[X,Y]dα + dlYθXα − θYθXα

− (lYlXK) ∧ α + (lXK) ∧ (lYα)

= −θXdlYα + θXθYα − l[X,Y]dα + dθXlYα − dl[X,Y]α − θYθXα

− (lYlXK) ∧ α + (lXK) ∧ (lYα)

= −θXdlYα + dθXlYα + θXθYα − θYθXα



1.9. The curvature form 15

− θ[X,Y]α − (lYlXK) ∧ α + (lXK) ∧ (lYα)

= −θXdlYα + dθXlYα + (lXK) ∧ (lYα) by lemma 3, Ch. 1.9

= 0 by induction assumption.

�

Remark. The mapsθX, lX, d are of degrees 0,−1, 1 respectively con-
sidered as homomorphisms of the graded moduleU ∗(C,M) =

∑

p
U p

(C,M). If ϕ is a mapU ∗(C,M) → U ∗(C,M) of degreep, andψ an-
other of degreeq, we define the commutator [ϕ, ψ] = ϕψ − (−1)pqψϕ.
We have, in this notation, the following formulae :

i) [θX, lY] = l[X,Y] by (2) of Ch.1.6
ii) [ d, lX] = θX by Th. 2, Ch. 1.6
iii) [ θX, θY] = θ[X,Y]

{

for derivation laws of zero curvature
iv) [θX, d] = 0 by lemma 3 and 4, Ch.1.9
v) [lX, lY] = 0 by (3) of Ch.1.6

The operatorsθX and lX have been generalised ( see [ 15 ] to the20

caseM = A by replacingX by an alternate formγ on C with values
in C. This generalisation has applications in the study of variations of
complex structures on a manifold.

A general formula ford2 is given by

Lemma 5. In our usual notation, d2α = K ∧ α.

The meaning of∧ has to be interpreted as in Lemma 4, Ch.1.9 . The
proof is again by induction on the degree ofα. If α is of degree 0, α ∈ M
and we have to show thatddα(X,Y) = K(X,Y)α.Assuming the lemma
verified for forms of degree< p, we get

lXddα = θXdα − dlXdα

= dθXα + (lXK) ∧ α − dθXα + ddlXα by Lemma 4, Ch. 1.9

= (lXK) ∧ α + K ∧ lXα by induction assumption

= lX(K ∧ α).

SinceX is arbitrary,ddα = K ∧ α and the lemma is proved.
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Lemma 6.

dK = 0

dK(X,Y,Z) =
∑

{(DXK)(Y,Z) − K([X,Y], z)} by (3) of Ch. 1.7

=

∑

{DXK(Y,Z) − K(Y,Z)DX − K([X,Y],Z)}

=

∑

{

DXDYDZ − DXDZDY − DXD[Y,Z] − DYDZDX+

DZDYDX + D[Y,Z]DX − D[X,Y]DZ + DZD[X,Y] + D[[X,Y]Z]
}

= 0

using Jacobi’s identity where the summations extend over cyclic permu-21

tations of X, Y, Z.

1.10 Relations between different derivation laws

We shall now investigate the relations between the exteriordifferenti-
ations, curvature forms etc. corresponding to two derivation laws in
the same moduleM. It has already been shown (Ch.1.2) that ifD,D′

are two such derivation laws, then there existsh ∈ HomA(M,M)) such
that D′X = DX + hX. We denote the exterior differential operator, cur-
vature form etc. Corresponding toD′ by d′,K′ etc. Thend′ is given
by d′α = dα + h ∧ α. ( Here also, theLambda-sign has to be inter-
preted as in lemma 4, Ch. 1.9 ). In fact, by definition, it follows that
θ′Xα = θXα + hX ◦ α. Hence

dlXα + h∧ lXα + lXdα + lX(h∧ α) = θ′Xα.

From Th. 2, Ch. 1.6 on the uniqueness of exterior differentiation, our
assertion follows.22

With regard to the curvature form, we have the following formula:

K′ = K + h∧ h+ dh.

For

K′(X,Y) = (DX + hX)(DY + hY) − (DY + hY)(DX + hY) − D[X,Y] − h[X,Y]
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= K(X,Y) + hXhY − hYhX + (DXhY) − (DYhY) − h[X,Y]

= K(X,Y) + hXhY − hYhX + dh(X,Y)

= K(X,Y) + (h∧ h)(X,Y) + dh(X,Y).

The classical notation for (h∧h) defined by (h∧h)(X,Y) = h(X)h(Y)−
h(Y)h(X) is [ h, h ]. In that notation, we have

K′ = K + [h, h] + dh.

1.11 Derivation law in C

WhenA is the algebra of differentiable functions on a manifoldV, any
derivation law in theA-moduleC of differentiable vector fields onV is
called alinear connectionon the manifold.

Let A be an algebra overk,D a derivation law in theA- moduleC of
derivations ofA. Let η : C→ C be the identity mapping. Then exterior
defferential ofη is given by

(dη)(X,Y) = DXη(Y) − DYη(x) − η([X,Y])

= DXY − DYX − [X,Y] for X,Y ∈ C.

The alternate linear formdη = T is called the torsion form of the 23

derivation law inC.
Regarding the action ofd on T, we have theBianchi’s identity
(dT)(X,Y,Z) =

∑

K(X,Y)Z, where the summation extends over all
cyclic permutations of (X, .Y,Z).

This is immediate from Lemma 5, Ch. 1.9
Let D be a derivation law inC. Then we can define a derivation law

in the module of multilinear forms onC with values in anA- moduleM
with derivation lawD. Forα ∈ F p(C,M), we define

(DXα)(Z1, . . . ,Zp) = DXα(Z1, . . . ,Zp) −
p

∑

i=1

α(Z1, . . . ,DXZi , . . . ,Zp).

Moreover, we define for everyα ∈ F p(C,M)

(DXα)(Z1, . . . ,Zp+1) = DZ1α(Z1, . . . ,Zp) −
p

∑

i=2

α(Z2, . . . ,DZ1Zi , . . . ,Zp+1)
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ObviouslyDα ∈ F p+1(C,M). However, this operatorD does not take
alternate forms into alternate forms. We therefore set, forα ∈ U p(C,M)

d′α =
p+1
∑

i=1

(−1)i+1(Dα)(Zi ,Z1, . . . , Z̃i , . . . ,Zp+1).

It is easy to see thatd′α ∈ U p+1(C,M).

Theorem 3. If the torsion form is zero, then d′ and the exterior deffer-
ential coincide.24

In fact, it is easy to verify thatlXd′ +d′lX = θX and the theorem then
follows from Th.2, Ch.1.6

In particular, letK be the curvature form of the derivation law in
C; since dK = 0, we haved′K = 0. It is easily seen thatdK =
∑

(DXK)(Y,Z). where the summation extends over cyclic permutations
of X,Y,Z. Hence we have theSecond Bianchi Identity:

If the torsion of the derivation law inC is 0, then
∑

(DXK)(Y,Z) = 0
where the summation is over all cyclic permutations ofX,Y,Z.

1.12 Connections in pseudo-Riemannian manifolds

A differentiable manifoldV together with a symmetric bilinear form is
said to beRiemannianif the form is positive definite at all points. If the
above form is only non-degenerate ( not necessarily positive definite )
at each point, the manifold ispseudo-Riemannian.Such a form defines
a natural isomorphism of the module of vector fields onV onto its dual.

Accordingly, in our algebraic set-up, we define apseudo Rieman-
nian formon C to be a symmetric bilinear form onC with values inA
such that the induced mapC→ C∗ is bijective.

Theorem 4. If g is a pseudo-Riemannian form on C then there exists
one and only one derivation law D on C such that

1) the torsion form of D is zero,25

2) DXg = 0 for every X.
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Explicitly, 1) means that Xg(Y,Z) − g(DXY,Z) − g(Y,DXZ) = 0 for
every Y,Z ∈ C.

In fact, by straight forward computation, it can be found that if there
exists one such derivation lawD, it must satisfy the equation

2g(DXY,Z) = Xg(Y,Z) − Zg(Y,X) + Yg(Z,X)

− g(Y, [X,Z]) + g([Z,Y],X) − g(Z, [Y,X]).

Since the mapC → C∗ induced fromg is bijective, this equation deter-
minesD uniquely and conversely if we defineD by this equation, it can
be easily verified thatD is a derivative law inC and that it satisfies the
conditions of the theorem

1.13 Formulae in local coordinates

Finally we translate some of our formulae in the case of a differentiable
manifold in terms of local coordinates. As far as local coordinates are
concerned, we may restrict ourselves to an open subsetV of Rn. Let U
denote the algebra of differentiable functions onV andC theU -module
of vector fields onV. Let (x1, x2, . . .n) be a system of coordinates. The

partial derivativesPi =
∂

∂xi
have the following properties:

1) (Pi)i=1,2,...n is a base ofC overU .

2) Pi x j
= δi j

3) [Pi ,P j] = 0 for anyi, j. 26

Also (dx1, . . . dxn) form a base forC ∗ overU dual to (Pi) i.e. (dxi )
(P j) = δi j . Since theU -moduleC is free overU , all the associ-
ated modules such asTp(C ),U p(C ,U ) are all free overU . Thus
U p(C ,U ) has a basis consisting of elementsdxλ(1)∧· · ·∧dxλ(p), λ ∈ S
whereS whereS is the set of all mapsλ : [1, p] → [1, n] such that
λ(1) < λ(2) < · · · < λ(p). If M is anU -module, any alternate form
∈ U p(C ,M)) can be written in the form

∑

λ∈S
ωλ∧dx (1)∧dx(2)∧···∧dxλ(p)
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with ωλ ∈ M. ( The exterior product is with respect to the bilinear
productM × A→ M defining the structure ofU -module ).

Let M be a freeU -module of finite rank with a derivation lawD.
Let eα(α = 1, 2, . . .m) be a base ofM. We set

DPi eα =
∑

Γ
β

iαeβ, Γ
β

iα ∈ U

The functionsΓβiα completely determine the derivation law. Con-

versely, givenΓβiα ∈ U , we may define, for

u =
m

∑

α=1

ραlα, ρ
α ∈ U .

DPi u =
∑

α

(piρ
α)eα +

∑

αβ

ραΓ
β

iαeβ

and extendD to the whole ofξ by linearity. It is easy to see that is a
derivation law. The above becomes in the classical notation27

DPi u =
∑

α

∂ρα

∂xi
eα +

∑

α,β

ραΓ
β

i,αeβ

From this we get ifu ∈ M, then

du=
∑

i

dxi ∧ (DPi u)

Letω ∈ U p(C,M). We have seen that

ω =
∑

λ∈S
ωλ ∧ dx (1) ∧ · · · ∧ dx (p) with ωλ ∈ M.

Using the fact thatθPi (α ∧ β) = (θPiα) ∧ β + α ∧ (θPiβ), in order to
computeθXω, it is enough to computeθPiω

λ andθPi dxj . But θPiω
λ
=

DPiω
∧ which we have fond out earlier. On the other hand,

(θPi dxj (Pk) = Pi((dxj )(Pk)) − dxj([Pi ,Pk])

= 0.



Chapter 2

Differentiable Bundles

2.1

We give in this chapter, mostly without proofs, certain definitions and 28

results on fibre bundles which we require in the sequel.

Definition 1. A differentiable principal fibre bundle is a manifold P on
which a Lie group G acts differentiable to the right, together with a
differentiable map p of P onto a differentiable manifold X such that

P.B. for every x0 ∈ X, there exist an open neighbourhood U of x0

in X and a diffeomorphismγ of U × G → p−1(U) ( which is an open
submanifold of P) satisfying pγ(x, s) = x, γ(x, st) = γ(x, s)t for x ∈ U
and s, t ∈ G.

X shall be called thebase, p theprojectionandP the bundle. For
anyx ∈ X, p−1(x) shall be called thefibre over xand forξ ∈ P, the fibre
over pξ is thefibre throughξ.

The following properties follow immediately from the definition:

a) Each fibre is stable under the action ofG, andG acts with out fixed
points onP, i.e. if ξs= ξ for someξ ∈ P ands ∈ G, thens= e;

b) G acts transitively on each fibre, i.e. ifξ, η are such thatpξ = pη, 29

then there existss∈ G such thatξ = η;

c) For everyx0 ∈ X, there exist an open neighbourhoodV of x0 and

21
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a differentiable mapσ : V → P such thatpσ(x) = x for every
x ∈ V. We have only to choose forV the neighbourhoodU of con-
dition (P.B), and define forx ∈ V, σ(x) = γ(x, e). A continuous
(resp. differentiable) mapσ : V → P such thatpσ(x) = x for every
x ∈ V is called a cross-section resp. differentiable cross-section)
overV.

d) For everyx0 ∈ X, there exist an open neighbourhoodV of x0 and
a differentiable mapρ of p−1(V) into G such thatρ(ξs) = ρ(ξ)s for
everyξ ∈ p−1(V) ands ∈ G. Choose forV as before the neighbour-
hoodU of (P.B.). If π is the canonical projectionU × G → G, the
mapρ = π ◦ γ−1 of p−1(V) into G satisfies the required condition. It
is also obvious thatρ is bijective when restricted to any fibre.

Conversely we have the following

Proposition 1. Let G be a Lie group acting differentiably to the right
on a differentiable manifold P. Let X be another differentiable manifold
and p a differentiable map P→ X. If conditions(b), (c), (d) are fulfilled,
then P with p: P→ X is a principal bundle over X.

For everyx0 ∈ X, we can find an open neighbourhoodV of x0, a
differential mapσ : V → P and a homomorphismρ : p−1(V) → G
such thatpσ(x) = x, ρ(ξs) = ρ(ξ)s and moreoverρσ(x) = e for every30

x ∈ V, ξ ∈ p−1(V). We defineγ : U × G → P by settingγ(x, s) =
σ(x)s for x ∈ V, s ∈ G. If θ is the mapp−1(V) → V × G defined by
θ : ξ → (pξ, ρξ) it is easy to verify thatθγ = γθ = Identity, using the
fact thatρσ(x) = e for everyx ∈ U. Both θ andγ being differentiable,
our assertion is proved.

2.2 Homomorphisms of bundles

Definition 2. A homomorphism h of a differentiable principal bundle P
into another bundle P′ ( with the same group G) is a differentiable map
h : P→ P′ such that h(ξs) = h(ξ)s for everyξ ∈ P, s∈ G.
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It is obvious that points on the same fibre are taken byh into points
of P′ on the same fibre. Thus the homomorphismh induces a map h:
X→ X′ such that the diagram

P

p

��

h // P′

p′

��
X

h // X′

is commutative. The map h: X→ X′ is easily seen to be differentiable.
This is called theprojectionof h.

Definition 3. A homomorphismh : P→ P′ is said to be anisomorphism
if there exists a homomorphismh′ : P′ → P such thathoh′l h′oh are
identities onP′, P respectively.

Proposition 2. If P and P′ are differentiable principal bundles with the31

same base X and group G, then every homomorphism h: P→ P′ whose
projectionh̄ is a diffeomorphism of X onto X, is an isomorphism.

In the case whenP andP′ have the same baseX, an isomorphism
h : P→ P′ for which h̄ is identity will be called an isomorphism ¯overX.

2.3 Trivial bundles

If G is a Lie group andX a differentiable manifold,G acts on the man-
ifold X ×G by the rule (x, s)t = (x, st). X ×G together with the natural
projectionX ×G→ X is a principal bundle. Any bundle isomorphic to
the above is calledtrivial principal bundle.

Proposition 3. Let P be a principal bundle over X with group G. Then
the following statements are equivalent:

1) P is a trivial bundle.

2) There exists a differentiable section of P over X.

3) There exists a differentiable mapρ : P→ G such thatρ(ξs) = ρ(ξ)s
for everyξ ∈ P, s∈ G.
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2.4 Induced bundles

Let P be a principal bundle overX with groupG. Let q be a differen-
tiable map of a differentiable manifoldY into X. The subsetPq of Y×P
consisting of points (y, ξ) such thatq(y) = p(ξ) is a closed submanifold.
There is also a canonical mappq : Pq→ Y defined byPq(y, ξ) = y. The
groupG acts onPq with the law (y, ξ)s = (y, ξs). It is easy to see that32

Pq together withpq is a principal bundle with baseY and groupG. This
is called the bundle induced fromP by the mapq. There then exists
clearly a canonical homomorphismh : Pq→ P such that

Pq

pq

��

h // P

p

��
Y

h=q
// X

is commutative.h is defined byh(y, ξ) = ξ. By proposition (3). Ch.2.3,
the principal bundlePq is trivial if and only if there exists a differentiable
cross section forPq overY. This is equivalent to saying that there exists
a differentiable mapλ : Y→ P such thatp = p ◦ λ, i.e., the diagram is
commutative.

P

p

��
Y

λ
??

�
�

�
�

�
�

�

q
// X

We now assume thatq is surjective and everywhere ofrank = dim X.
If Pq is trivial we shall say thatP is trivialised by the mapq.

Let q be a differentiable mapY → X which trivialisesP. Consider
the subsetYq of Y × Y consisting of points (y, y′) such thatq(y) = q(y′).
This is the graph of an equivalence relation inY. Sinceq is of rank =
dim X,Yq is a closed submanifold ofY × Y.

Let λ be a mapY → P such thatq = p ◦ λ. If (y, y′) ∈ Yq, then33

λ(y), λ(y′) are in the same fibre and hence there existsm(y, y′) ∈ G
such thatλ(y′) = λ(y)m(y, y′). Thus we have a mapm : Yq → G
such that for (y, y′) ∈ Yq, we haveλ(y′) = λ(y)m(y, y′). This map is
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easily seen to be differentiable. Obviously we have, for (y, y′), (y′, y′′) ∈
Yq,m(y, y′)m(y′, y′′) = m(y, y′′).

Definition 4. Let Y be differentiable manifold andq a differentiable map
of Y ontoX everywhere ofrank = dim X. The manifoldYq is defined as
above. Any differentiable mapm : Yq→ G is said to be amultiplicator
with value inG if it satisfies

m(y, y′) m(y′, y′′) = m(y, y′′) for (y, y′), (y′.y′′) ∈ Yq.

We have seen that to every trivialisation ofP by q corresponds a
multiplicator with values inG. However, this depends upon the par-
ticular lifting λ of q. If µ is another such lifting with multiplicatorn,
there exists a differentiable mapρ : Y → G such thatm(y′, y)ρ(y) =
ρ(y′)n(y′, y) for every (y, y′)eYq. Accordingly, we define an equivalence
relation in the set of multiplicators in the following way:

The multiplicatorsm, n areequivalent if there exists a differentiable
mapρ : Y → G such thatm(y, y′)ρ(y′) = ρ(y)n(y, y′) for every (y, y′) ∈
Yq. Hence to every principal bundleP trivialised byq corresponds a
class of multiplicatorsm(P). It can be proved that ifm(P) = m(P′),
then P and P′ are isomorphic overX. Finally, given a multiplicator
m, there exists bundle aP trivialised by q for which m(P) = m. In
fact, in the spaceY×G, introduce an equivalence relationRby defining 34

(y, s) ∼ (y′, s′) if (y, y′) ∈ Yq and s′ = m(y′, y)s. Then the quotient
(Y×G)/Rcan be provided with the structure of a differentiable principal
bundle overX trivialised byq. The multiplicator corresponding to the
mapλ : Y→ (Y ×G)/Rdefined byy→ (y, e) is obviouslym.

2.5 Examples

1) Given a principal bundleP over X, we may takeY = P andq = p.
Thenλ =Identity is a lifting ofq to P. The corresponding multipli-
catorm is such thaty′ = y m(y, y′) wherep(y) = p(y′)

2) Let (Ui)i∈I be an open cover ofX such that there exists a cross section
σi of P over eachUi . Take forY the open submanifold ofX× I (with
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I discrete) consisting of elements (x, i) such thatx ∈ ui . Define
q(x, i) = x. This is obviously surjective and everywhere of rank
= dim X. ThenP is trivialised byq, since the mapλ(x, i) = σi(x)
of Y → P is a lifting of q. The manifoldYq may be identified with
the submanifold ofX × I × I consisting of elementsx, i, j such that
x ∈ ∪i∩∪ j . If m is the corresponding multiplicator, we haveλ(x, i) =
λ(x, j)m(x, j, i). This can be written asσi(x) = σ j(x)mji (x) where
the multiplicatorm is looked upon as a family of mapsmji : U j ∩
Ui → G such thatmji mik(x) = mjk(x) for every x ∈ Ui ∩ U j ∩ Uk.
Such a family of maps is called a set oftransition functions. Two
sets of transition functions{mi j }, {ni j } are equivalent if and only if35

there exists a family of differentiable mapsρi : Ui → G such that
mji (x)ρi (x) = ρ j(x)n ji (x) for everyx ∈ Ui ∩ U j . Conversely, given a
set of transition functions{mi j }with respect to a coveringUi of V, we
can construct a bundlePoverV such thatP is trivial over eachUi and
there exists cross - sectionsσi overUi satisfyingσi(x) = σ j(x)mi j (x)
for everyx ∈ Ui ∩ U j

Let G be the sheaf of germs of differentiable functions onX with
values inG. The compatibility relations among transition functions

viz .mji (x)mik(x) = mjk(x) for every x∈ Ui ∩ U j ∩ Uk

only state that a set of transition functions is a 1−cocycle of the covering
(Ui)i∈I with values in the sheaf G. Two such cocycles are equivalent (in
the sense of multiplicators) if and only if they differ by a coboundary.
In other words, the set of equivalent classes of transition functions for
the covering (Ui)i∈I is in one-one correspondence withH1((Ui)i∈I ,G). It
will be noted that there is no group structure inH1((Ui)i∈I ,G) in gen-
eral. It can be proved by passing to the direct limit that there is a one-
on correspondence between classes of isomorphic bundles over X and
elements ofH1(X,G).

2.6 Associated bundles

Let P be a differentiable principal fibre bundle overX with groupG. Let36
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F be a differentiable manifold on whichG acts differentiably to the right.
ThenG also acts on the manifoldP× F by the rule (ξ, u)s= (ξs, us) for
everys∈ G.

Definition 5. A differentiable bundlewith fibre typeF associated to
P is a differentiable manifoldE together with a differentiable mapq :
P × F → E such that (P × F, q) is a principal fibre bundle overE with
groupG.

Let G act on a differentiable manifoldF to the right. Then we can
construct a differentiable bundle associated toP with fibre F. We have

only to takeE =
(P× F)

G
under the action ofG defined as above andq

to be the canonical projectionP×F → E. The differentiable structure in
E is determined by the condition: (P× F, q) is a differentiable principal
bundle overE.

Now let E be a differentiable bundle associated toP with fibre type
F and groupG. Then there exists a canonical mappE : E → X such
that pEq(ξ, u) = pξ for (ξ, u) ∈ P × F wherep, q are respectively the
projectionsP → X and P × F → E. X is therefore called the base
manifold of E and pE the projection ofE. For everyx ∈ X, p−1

E (x) is
called the fibre overx. Let U be an open subset ofX. A continuous (
resp. differentiable ) mapσ : U → E such thatpEσ(x) = x for every
x ∈ U is called asection (resp differentiable section)of E overU.

Let σ be a differentiable section ofP over an open subset ofU of
X. This gives rise to a diffeomorphismγ of U × F onto p−1

E (U) defined 37

by γ(x, v) = q(σ(x), v) for x ∈ U, v ∈ F. On the other hand, we also
havepEγ(x, v) = x. In particular , ifP is trivial, there exists a global
cross-sectionσ (Prop.3, Ch. 2.3) and henceγ is a diffeomorphism of
U × F ontoE.

We finally prove that all fibres inE are diffeomorphic withF. In
fact for everyz ∈ P. the mapF → E (which again we denote byz)
defined byz(v) = q(z, v) is a diffeomorphism ofF Onto p−1

E (p(z)). Such
a mapz : F → E is called aframeat the pointx = p(z). Corresponding
to two different framesz, z′ at the same pointx, we have two different
diffeomorphismsz, z′ of F with p−1

E (x). If s ∈ G such thatz′s = z, then
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the we havez(v) = z′(vs−1).

Examples.(1) Let V be a connected differentiable manifold andP the
universal covering manifold ofV. Let p : P → V be a covering
map. Then the fundamental groupπ1 of V acts onP and makes of
P a principal bundle overV with groupπ1. Moreover, any covering
manifold is a bundle overV associated to the universal covering
manifold of V with discrete fibre. On the other hand, any Galois
covering ofV may be regarded as a principal bundle overV with a
quotient ofπ1 as group.

(2) Let B be a closed subgroup of a Lie groupG. ThenB is itself a Lie
group and it acts to the right onG according to the following rule:
G × B → G defined by (s, t) → st. Consider the quotient space
V = G/B under the above action. There exists one and only one
structure of a differentiable manifold onV such thatG is a differen-
tiable bundle overV with groupB ([29]). It is moreover easy to see38

that left translations ofG by elements ofG are bundle homomor-
phisms ofG into itself. The projections of these automorphisms to
the base space are precisely the translations of the left coset space
G/B by elements ofG.

(3) Let G be a Lie group andB a closed subgroup. LetH be a closed
subgroup ofB. As in (2), B/H has the structure of a differentiable
manifold andB acts onB/H to the right according to the rule:

q(b)b′ = b−1q(b) = q(b′−1b),

whereb, b′ ∈ B andq is the canonical projectionB → B/H. We
define a mapr : G × B/H → G/H by settingr(s, bH) = sbH. It

is easy to see that this makesG × B/H a principal bundle over
G
H

.

In other words,G/H is a bundle associated toG with baseG/B and
fibre B/H.
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2.7 Vector fields on manifolds

Let V be a differentiable manifold andU (V) the algebra of differen-
tiable functions onV. At any pointξ ∈ V, a tangent vectorU is a map
U : U (V) → R satisfyingU( f + g) = U f + Ug; U f = 0 when f is
constant; andU( f g) = (U f )g(ξ)+ f (ξ)(Ug) for every f , g ∈ U (V). The
tangent vectorsU at a pointξ form a vector spaceTξ. A vector fieldX is
an assignment to eachξ in V of a tangent vectorXξ atξ. A vector fieldX
may also be regarded as a map ofU (V) into the algebra of real valued
functions onV by setting (X f)(ξ) = Xξ f . A vector fieldX is a said to be
differentiable ifXU (V) ⊂ U (V). Hence the set of differentiable vector 39

fields onV is the moduleC (V) of derivations ofU (V).
If p is a differentiable map from a differentiable manifoldV into

another manifoldV′, we define a mapp∗ : U (V′) → U (V) by setting
p∗ f = f op. Furthermore, ifξ ∈ V, then a linear map ofTξ into Tpξ

(which is again denoted byp) is defined by (pU)g = U(p∗g).
Now let G be a Lie group acting differentiably to the right on a

manifold V. As usual, the action is denoted (ξ, s) → ξs. For every
(ξ, s) ∈ V ×G, there are two inclusion maps

V → V ×G defined byη→ (η, s); and

G→ V ×G defined byt → (ξ, t)

These induce injective mapsTξ → T(ξ,s),Ts → T(ξ,s) respectively.
The image ofdξ ∈ Tξ in T(ξ,s) is denoted by (dξ, s). The image of
ds∈ Ts in T(ξ,s) is denoted by (ξ, ds). We set (dξ, ds) = (dξ, s) + (ξ, ds).
The image ofdξ ∈ Tξ by the mapη→ ηsof V into Vwill be denoted by
dξs. Similarly, the image of vectords ∈ Ts by the mapt → ξt will be
denotedξds. Therefore the image of the vector (dξ, ds) ∈ T(ξ,s) by the
map (ξ, s) → ξs is dξs+ ξds. In particular, the groupG acts on itself
and such expressions as dst and tds will be used in the above sense. The
following formulae are easy to verify:

1) (dξs)t = (dξ)(st) 40

2) (ξds)t = ξ(dst)
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3) (ξt)ds= ξ(tds) for ξ ∈ V ands, t ∈ G.

Let G be a Lie group with unit elemente. The spaceTe of vectors
at e will be denoted byY . A vector field X on G is said to be left
invariant if sXt = Xst for everys, t ∈ G. Every left invariant vector field
is differentiable and is completely determined by its value ate. Given
a ∈ Y , we define a left invariant vector fieldIa by setting (Ia)s = sa.
This gives a natural isomorphism ofY onto the vector space of left
invariant vector fields onV. There is also a similar isomorphisms ofY
onto the space of right invariant vector fields. In the same way, whenG
acts on a manifoldV to the right, for everya ∈ Y , we define a vector
field Za on V, by setting (Za)ξ = ξ a for ξ ∈ V. ThusY defines a vector
space of vector fields onV.

2.8 Vector fields on differentiable principal bundles

Let P be a differentiable principal over a manifoldV with group G.
Then the projectionp : P → V gives rise to a homomorphismp∗ :
U (V) → U (P). Since p is onto , p∗ is injective. This defines on
everyU (P)- module a structure of anU (V)module. It is clear that any
elementh ∈ p∗U (V) is invariant with respect to the action ofG on P.
Conversely, ifh ∈ U (P), wheneverh is invariant with respect toG then
h ∈ p∗U (V). In fact if f ∈ U (V) is defined by settingf (x) = h(z) where
z is any element inp−1(x), then f coincides locally with the composite of41

a differentiable cross- section andh, and is consequently differentiable.
For everyξ ∈ P, there exists a natural linear map ofY into Tξ taking
a ∈ Y ontoξa ∈ Tξ. It is easy to verify that the sequence of linear maps

(0)→ Y → Tξ → Tp(ξ) → (0)

is exact. The image ofY in Tξ, i.e. the space of vectorsξ a witha ∈ Y
is the space of vectorstangential to the fibreξG and will be denoted
byNξ.

Definition 6. A vector fieldX on P is said to betangential to the fibres
if for every x ∈ P, p(Xξ) = 0.
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A vector fieldX is tangential to the fibres if and only ifXξ ∈ Nξ for
everyξ ∈ P. It is immediate than an equivalent condition for a vector
field X to be tangential to the fibres is thatX(p∗U (V)) = (0). We denote
the set of vector fields tangential to the fibres byN. ThenN is anU (P)-
submodule ofC (P). We have the following

Proposition 4. If a1, . . . , ar is a base forY , then Zal , . . .Zar is a basis
for N overU (P).

In fact, for everya ∈ Y , (Za)ξ = ξa ∈ Nξ, i.e.,Za ∈ N. Moreover,

if f1, . . . , fr ∈ U (P) are such that
r
∑

i=1
fiZai = 0, then

r
∑

i=1
fi(ξ)(ξai) = 0

for every ξ ∈ P. Since{ξai}ri=1 form a bias forNξ, fi(ξ) = 0 for i =
1, 2, . . . , r andZai , . . .Zar are linearly independent. On the other hand,42

if X ∈ N, at each pointξ ∈ P, we can writeXξ =
r
∑

i=1
fi(ξ)(ξ)ξai, and

henceX =
r
∑

i=1
fiZai where thefi are scalar functions onP. Let ξ ∈ P

andg1, . . . , gr ∈ U (P) such that (Zai )ξg j = δi j for every i. j; then the
functions fi are solutions of the system of linear equations:

Xgj =

r
∑

i=1

f1(Zai g j).

Since the coefficient are differentiable and the determinant|Zai g j | ,
0 in a neighbourhood ofξ, fi are differentiable atξ.

2.9 Projections vector fields

Let P be a principal bundle overV andX a vector field onP. It is in
general not possible to define the image vector fieldpX on V. This is
however possible if we assume that for allξ in the same fibre , the image
pXξ in the same. This yields the following.

Definition 7. A vector fieldX on P is said to beprojectableif p(Xξ) =
p(Xξs) for everyξ ∈ P, s∈ G. 43
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Proposition 5. A vector field X on P is projectable if and only if Xp∗U
(V) ⊂ p∗U (V).

This follows from the fact that

Xξ(p
∗ f ) = p(Xξ) f = p(Xξs) f = Xξs(p

∗ f )

for every f ∈ U (V).

Proposition 6. A vector field X is projectable if and only if Xs− X is
tangential to the fibre, ie. Xs− X ∈ N for every s∈ G.

In fact, if X is projectable , we have

p(Xs− X)ξ = p(Xξs−1 s− Xξ)

= p(Xξs−1) − p(Xξ)

= 0.

Hence (Xs− X)ξ ∈ N(ξ) for everyξ ∈ P.
The converse is also obvious from the above.

Definition 8. Theprojection pXof a projectable vector fieldX is defined
by (pX)pξ = pXξ for everyξ ∈ P.

Sincep∗{(pX) f } = X(p∗ f ) for every f ∈ U (V) we see thatpX is a
differentiable vector field onV. We shall denote the space of projectable
vector field by℘. It is easy to see that ifX,Y ∈ ℘, thenX + Y ∈ ℘ and
p(X + Y) = pX + pY. Moreover℘ is a submodule ofC (P) regarded
as anU (V)-module (butnot anU (P)-submodule). Forf ∈ U (V) and
X ∈ ℘, we havep((p∗ f )X) = f (pX). Thusp : ℘ → C (V) is anU (V)-
homomorphism and the kernel is just the moduleN of vector fields on
P tangential to the fibre. Furthermore, for everyX,Y ∈ ℘, we have
[X,Y] ∈ ℘ andp[X,Y] = [pX, pY].

Proposition 7. If V is paracompact, every vector field on V is the image
of a projectable vector field on P. i.e.,℘→ C (V) is surjective.44

Let x∈ V and U a neighbourhood of x over which P is trivial. It is
clear that any vector field Xin U is the projection of a vector field X in
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p−1(U). Using the fact that V is paracompact we obtain that there exists
a locally finite cover(Ui)i∈I of V and a family of projectable vector fields
Xi ∈ ℘ such that pXi = Xi on Ui where Xi coincides on Ui with a given
vector field X on V. Let(ϕi)i∈I be a differentiable partition of unity for
V with respect to the above cover. Then X=

∑

i∈I
(p∗ϕi)Xi is well-defined

and is in℘ with projection pX=
∑

i∈I
ϕi pXi = X.

Example.Let G be a Lie group acting differentiably to the right on a
differentiable manifoldV. The action ofG on V is given by the map
p : V ×G→ V. Consider the manifoldV ×G with the above projection
ontoV. G acts to the right onV ×G by the rule

(x, s)t = (xt, t−1s) for everyx ∈ V, s, t ∈ G.

The mapγ : V × G → V × G defined byγ(x, s) = (xs, s−1) for
x ∈ V, s∈ G is a diffeormorphism. We also have

γ(x, st) = γ(x, s)t

This show thatV ×G is a trivial principal bundle overV with group
G and projectionp. A global cross -section is given byσ : x→ (x, e).

Let Y = Te be the space of vectors ate and Ia the left invariant 45

vector field onG whose value ate is a. Let (0, Ia) be the vector field on
V × G whose value at (x, s) is (x, sa). Then for everya ∈ Y , (0, Ia) is
projectable; as a matter of fact , it is even right invariant.For,

(O, Ia)(x,s)t = (x, sa)t

= (x, t−1sa)

= (0, Ia)(x,t)t−1s

= (0, Ia)(x,s)t

We moreover see thatp(0, Ia) = Za since we havep(x, sa) = xsa=
(Za)xs.

We define a bracket operation [a, b] in Y by setting [Ia, Ib] = I[a,b] .
Then we have in the above situation

[(0, Ia), (0, Ib)] = (0, I[a,b]).
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Then it follows that

[Za,Zb] = [p(0, Ia), p(0, Ib)]

= p[(0, Ia), (o, Ib)]

= Z[a,b] .



Chapter 3

Connections on Principal
Bundles

3.1

A connection in a principal bundleP is, geometrically speaking, an as-46

signment to each pointξ of P of a tangent subspace atξ which is sup-
plementary to the spaceNξ. This distribution should be differentiable
and invariant under the action ofG. More precisely,

Definition 1. A connectionΓ on the principal bundleP is a differentiable
tensor field of type (1, 1) such that

1) Γ(X) ⊂ N for every X ∈ C (P)

2) Γ(X) = X for every X ∈ N

3) Γ(X) = Γ(X)s for every s∈ G.

Thus, at each pointξ, Γ is a projection ofTξ ontoNξ. Condition 3)
is equivalent toΓ(dξ)s= Γ(dξs) for everyξ ∈ P, dξ ∈ Tξ ands∈ G.

Examples.1) If G is a discrete group, the submoduleN of U (P) is (0).
Thus any projection ofC (P) ontoN has to be 0. Hence the only
connection on a Galois covering manifold is the (0) tensor.

35
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2) Let V be a differentiable manifold andG a Lie group. Consider the
trivial principal bundleV ×G overV. The tensorΓ defined by

Γ(dx, ds) = (x, ds)

is easily seen to be a connection.

3) LetP be a Lie group andG a closed subgroup. Consider the principal47

bundleP overP/G. Let℘ be the tangent space ate to P, andY that
ate toG. ThenY can be identified with a subspace of℘. Fora ∈ Y ,
the vector fieldZa is the left invariant vector fieldIa on P. We shall
now assume that in℘, there exists a subspaceM such that

1) ℘ = Y ⊕M
2) for everys∈ G, s−1Ms⊂ M.

(M is only a subspace supplementary toY , which is invariant under
the adjoint representation ofG in ℘. Such a space always exists if
we assume thatG is compact or semisimple).

Under the above conditions, there exists a connectionΓ and only one
on P such thatΓ(M) = (0) andΓ(tb) = t(Γb) for everyb ∈ ℘ andt ∈ G.
The kernel ofΓ is the submodule ofC (P) generated by the left invariant
vector fieldIa on P with a ∈ M. Moreover,Γ is left invariant under the
action ofG. Conversely, every left invariant connection correspondsto
such an invariant subspaceM supplementary toY in ℘.

Theorem 1. If V is paracompact, for every differentiable principal bun-
dle P over V, there exists a connection on P.

We have seen that there exists a connection on a trivial bundle. Us-
ing the paracompactness ofV, we can find a locally finite open cover
(Ui)i∈I of V such thatP is trivial over eachUi and such that there ex-
ist tensor fieldsΓi of type (1, 1) on P whose restrictions toP−1(Ui) are
connections. Setθi j = Γi − Γ j for everyi, j ∈ I . Then theθi j satisfy the48

following equations:

θi j d ξ ∈ Nξ, θi j (ξ a) = 0, andθi j (dξs) = (θi j dξ)s
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for everyξ ∈ p−1(Ui ∩U j), dξ ∈ Tξ, a ∈ Y , s∈ G.
Now, let (ϕi)i∈I be a partition of unity with respect to the above cov-

ering, i.e., support ofϕi ⊂ Ui and
∑

ϕi = 1. Denotep∗ϕi by ϕ̃i. Then
ϕ̃i is a partition of unity with respect to the coveringp−1(Ui).ϕ̃kθik is a
tensor onP for everyk and hence

ζi =

∑

k

ϕ̃kθik

is a tensor having the following properties:

ζidξ ∈ Nξ, ζiξ a = 0 andζi(dξs) = (ζidξ)s.

The tensorΓi −ζi is easily seen to be a connection onp−1(Ui). Since
ϕ̃k is a partition of unity, it follows thatΓi−ζi , Γ j−ζ j coincide onp−1(Ui∩
U j) for every i, j ∈ I . Therefore the tensor fieldΓ on P defined by
Γ = Γi − ζi on p−1(Ui) is a connection onP.

3.2 Horizontal vector fields

Let Γ be a connection onP. By definition,Γ is a mapC (P) → N. The
kernelJ of this map is called the module ofhorizontal vector fields. It
is clear thatΓ maps℘ into itself. Hence we have℘ = N ⊕ (℘ ∩ J). It
is easily seen that the vector fields belonging to theU (V)-module℘∩ ζ
are invariant under the action ofG. We have defined the projectionp of 49

℘ ontoC (V). The kernel of this projection isN since the restriction of
p to ℘ ∩ J is bijective.

We shall now see that the moduleC (F) of all vector fields onP is
generated by projectable vector fields.

Theorem 2. Let V be a paracompact manifold and P a principal bundle
over V. Then the mapη : U (P) ⊗

U (V)
℘∩J→ J defined byη(

∑

fs⊗Xs) =
∑

fsXs is bijective.

The proof rests on the following

Lemma 1. C (V) is a module of finite type overU (V).
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In fact, by Whitney’s imbedding theorem ([28]) there existsa reg-
ular, proper imbedding of each connected component ofV in R2n+1

wheren = dimV. This gives us a mapf : V → R2n+1 defined by
y → ( f , (y), . . . , f2n+1(y)) which is of maximal rank. Let (U j) j∈J be
an open covering ofV such that on everyU j , (d fi)i=1,2,...2n+1 contains a
base for the module of differential forms of degree 1 onU j. LetS be
the set of mapsα : [1, n] → [1, 2n + 1] such thatα(i + 1) < α(i) for
i = 1, 2, . . . (n − 1). We shall denote byUα the union of the open sets
of the above covering in whichd fα1 . . .d fαn are linearly independent.
Thus we arrive at a finite cover (Uα)α∈C having the above property. Us-
ing a partition of unity for this cover, any formω on V can be written
as a linear combination of thed fi . Using the mapf , we can introduce a
Riemannian metric onV which gives an isomorphism ofC (V) onto the50

module of differential forms of degree 1. This completes the proof of
the lemma.

Proof of the theorem.Let X1, . . .X2n+1 be a set of generators for the
module C (V) and (Uα)α∈S a finite covering such that for every
α,Xα(1), . . .Xα(n) form a base for the module of vector fields on Uα. We
shall now prove that the mapη is injective.

Let (ϕα)α∈S be a partition of unity for this covering andXs be vector

fields ∈ ℘ ∩ ζ such thatpXs = Xs. ThenϕαXs =
n
∑

i=1
gi
α,sXα(i), with

gi
α,s ∈ U (V) and henceϕαXs =

n
∑

i=1
gi
α,sXα(i) using the structure of

U (V)-module onC (P). If u =
2n+1
∑

s=1
fs ⊗ Xs with fs ∈ U (P) is such

thatη(u) = 0, thenη(ϕα u) = 0 for everyα. Therefore
∑

s
fα gi

α,s = 0 on

Uα and consequently onV. Butϕα u =
∑

s,i
fs gi

α,β
⊗ Xα(i); it follows that

u =
∑

ϕα u = 0. The proof thatη is surjective is similar.

Corollary. If V is paracompact, the module of horizontal vector fields
on P is generated overU (P) by the projectable and horizontal vector
fields.
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3.3 Connection form

Le P be a principal bundle overV andΓ a connection onP. If dξ ∈ Tξ,
thenΓ dξ ∈ Nξ anda→ ξa is an isomorphism ofY ontoNξ. We define
a differential formγ on P with values inY by settingγ(dξ) = a where 51

Γ(dξ) = ξ a. In order to prove thatγ is differentiable, it is enough to
prove thatγ takes differentiable vector fields into differentiable func-
tions with values inY . We haveγ(Za) = a for every a ∈ Y and
γ(X) = 0 for everyX ∈ J. Since the moduleC (P) is generated byJ and
the vector fieldsZa, γ(X) is differentiable for every differentiable vector
field X on P. Thus corresponding to every connectionΓ on P, there ex-
ists one and only one form with values inY such thatΓ(dξ) = ξγ(dξ)
for everyd ξ ∈ Tξ. It is easily seen thatγ satisfies

1) γ(ξa) = a for everyξ ∈ P anda ∈ Y

2) γ(dξs) = s−1γ(dξ)s for dξ ∈ Tξ ands∈ G.

A Y - valued form onP satisfying 1) and 2) is called aconnection
form. Given a connection formγ on P, it is easy to see that there exists
one and only one connectionΓ for which γ is the associated form, i.e.,
Γ(dξ) = ξγ(dξ) for everydξ ∈ Tξ.

3.4 Connection on Induced bundles

Let P,P′ be two principal bundles overV,V′ respectively. Leth be a
homomorphism ofP′ into P. If γ is a connection form onP, the form
h∗γ on P′ obviously satisfies conditions (1) and (2) and is therefore a
connection form onP′.

In particular, ifP′ is the bundle induced by a mapq : V′ → V, then
γ induces a connection onP′.

Let P be a differentiable principal bundle overV, and q a map 52

Y → V which trivialisesP, ρ being a lifting of q to P with m as the
multiplicator. As in Chapter 2.4, we denote byYq the subset ofY × Y
consisting of points (y, y′) such thatq(y) = q(y′). Nowω = ρ∗γ is a dif-
ferential form onY. We haveρ(y′) = ρ(y) m(y, y′) for every (y, y′) ∈ Yq.



40 3. Connections on Principal Bundles

Differentiating we obtain for every vector (dy, dy′) at (y, y′) ∈ Yq

ρ(dy′) = ρ(dy)m(y, y′) + ρ(y)m(dy, dy′)

Sinceω(dy′) = γ(ρdy′) we have

γ(ρdy′) = m(y, y′)−1ω(dy)m(y, y′) + γ(ρ(y)m(y, y′)m(y, y′)−1m(dy, dy′))

= m(y, y′)−1ω(dy)m(y, y′) +m(y, y′)−1m(dy, dy′)

Hencem(dy, dy′) = m(y, y′)ω(dy′) − ω(dy)m(y, y′).
Conversely ifω is a differential form onY satisfying

m(dy, dy′) = m(y, y′)ω(dy′) − ω(dy)m(y, y′)

for every (y, y′) ∈ Yq, then there exists one and only one connection form
γ on P such thatω = ρ∗γ.

In particular, when the trivialisation ofP is in terms of a covering
(Ui)i∈I of V with differentiable sectionsσi(Ch.2.5), the connection form
γ on P gives rise to a family of differential formsωi = σ

∗
i γ onUi. From

the equationsσi(x) = σ j(x)mji (x) defining the transition functionsmji ,53

we obtain on differentiation,

ωi(dx) = mji (x)−1ω j(dx)mji (x) +mji (x)−1mji (dx) for x ∈ Ui ,

i.e., mji (dx) = mji (x)ωi(dx) − ω j(dx)mji (x).

Conversely given a family of differentiable formsωi on the open
sets of a covering (Ui)i∈I of V satisfying the above, there exists one and
only one connection formγ on P such thatωi = σ

∗
i γ for everyi.

3.5 Maurer-Cartan equations

To every differentiable mapf of a differentiable manifoldV into a Lie
groupG, we can make correspond a differential form of degree 1 onV
with values in the Lie algebraY of G defined byα(ξ)(dξ) = f (ξ)−1 f (dξ)
for ξ ∈ V anddξ ∈ Tξ. We shall denote this form byf −1d f . This is
easily seen to be differentiable.
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If we take f : G → G to be the identity map, then we obtain a
canonical differential formω on G with values inY . Thus we have
ω(ds) = s−1ds ∈ Y . Also ω(tds) = ω(ds) for every vectords of
G. That is,ω is a left invariant differential form. Moreover, it is easy
to see that any scalar left invariant differential form onG is obtained by
composingωwith elements of the algebraic dual ofY . In what follows,
we shall provideA⊗ Y with the canonical derivation law (Ch.1.2).

Proposition 1 (Maurer-Cartan). The canonical formω on G satisfies
dω + [ω,ω] = 0. 54

We recall that the form [ω,ω] has been defined by [ω,ω](X,Y) =
[ω(X), ω(Y)] for every vector fieldsX,Y ∈ C (G). Since the module of
vector fields overG is generated by left invariant vector fields, it suffices
to prove the formula for left invariant vector fieldsX = Ia,Y = Ib a, b ∈
Y . We have

d(ω)(Ia, Ib) = Iaω(Ib) − Ibω(Ia) − ω([Ia, Ib])

But [Ia, Ib] = I[a,b] andω[Ia, Ib] = ω(I[a,b]) = [a, b] = [ω(Ia), ω(Ib)]
sinceω(Ia) = a, ω(Ib) = b.

Corollary. If f is a differentiable map V→ G, then the formα = f −1d f
satisfies dα + [α, α] = 0.

In fact, α(dξ) = f −1(ξ) f (dξ) = ω( f (dξ)) = ( f ∗ω)(dξ) and hence
α = f ∗ω. The above property ofα is then an immediate consequence of
that ofω.

Conversely, we have the following

Theorem 3. If α is a differential form of degree1 on a manifold V with
values in the Lie algebraY of a Lie group G satisfying dα + [α, α] = 0,
then for everyξo ∈ V and a differentiable map f: U → G such that
f −1(ξ) f (dξ) = α(dξ) for every vector dξ of U.

Consider the formβ = p∗1α − p∗2ω on V ×G wherep1 : V ×G→ V 55

and p2 : V × G → G arc the two projections andω the canonical left
invariant form onG. If β is expressed in terms of a basis{a1, . . .ar } of
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Y , the component scalar differential formsβi are everywhere linearly
independent. This follows from the fact that on eachp−1

1 (ξ), β reduces
to p∗2ω. We shall now define a differentiable and involutive distribution
on the manifoldV × G. Consider the moduleM of vector fieldsX on
V × G such thatβi(X) = 0 for everyβi. We have now to show that
X,Y ∈ M ⇒ [X,Y] ∈ M. But this is an immediate consequence of the
relationsd α = −[α, α] anddω = [ω,ω].

By Frobenius’ theorem (see [11]) there exists an integral submani-
fold W (of dim = dim V) of V ×G in a neighbourhood of (ξo, e). Since
for every vector (ξo, a) , 0 tangent top−1

1 ξo, β(ξo, a) = a , 0 there exist
a neighbourhoodU of ξo and a differentiable sectionσ into V ×G over
U such thatσ(U) ⊂ W. Define f (ξ) = p2σ(ξ). By definition ofW, it
follows thatβσ(dξ) = 0. This means that

αp1σ(dξ) − ωp2σ(dξ) = 0

i.e., α(dξ) = ω(p2σ(dξ)) = ( f ∗ω)dξ = f −1(ξ) f (dξ).

Remark. When we takeG = additive group of real numbers, the above
theorem reduces to the Poincare’s theorem for 1-forms. Concerning the
uniqueness of such mapsf , we have the

Proposition 2. If f1, f2 are two differentiable maps of a connected man-
ifold V into a Lie group G such that f−1

1 d f1 = f −1
2 d f2, then there exists56

an element s∈ G such that f1 = f2s.

Define a differentiable functions : V → G by setting

s(ξ) = f1(ξ) f −1
2 (ξ) for everyξ ∈ V.

Differentiating this, we get

s(dξ) f2(ξ) + s(ξ) f2(dξ) = f1(dξ).

Hences(dξ) = 0. Therefores is locally a constant and sinceV is
connecteds is everywhere a constant.

Regarding the existence of a mapf in the large, we have the follow-
ing
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Theorem 4. If α is a differential form of degree1 on a simply connected
manifold V with values in the Lie algebraY of a Lie group G, such that
dα+ [α, α] = 0, then there exists a differentiable map f of V into G such
that f−1d f = α.

The proof rests on the following

Lemma 2. Let mi j be a set of transition functions with group G of a
simply connected manifold V with respect to a covering(Ui). If each mi j

is locally a constant, then there exists locally constant mapsλi : Ui → G
such that mi j (x) = λi(x)−1λ j(x) for every x∈ Ui ∩ U j.

In fact, there exists a principal bundleP overV with groupG con-
sidered as a discrete group and with transition functionsmi j (Ch.2.5).
P is then a covering manifold overV and hence trivial. Therefore the57

mapsλi : Ui → G exist satisfying the conditions of the lemma (Ch.2.5).

Proof of the theorem.Let (Ui)i∈I be a covering of V such that on each
Ui, there exists a differentiable function fi satisfying fi(x)−1 fi(dx) =
α(dx) for every x∈ Ui . We set mi j (x) = fi(x) f j(x)−1. It is obvious that
the mi j form a set of locally constant transition functions. Letλi be the
maps Ui → G of the lemma. Thenλi(x) fi (x) = λ j(x) f j(x) for every
x ∈ Ui ∩ U j. The map f: V → G which coincides withλi fi on each Ui

is such that f−1d f = α.

3.6 Curvature forms

Definition 2. Let γ be a connection form on a principal bundleP over
V. Then the alternate form of degree 2 with values in the Lie algebra
Y of the structure groupG defined byK = dγ + [γ, γ] is said to be the
curvature formof γ. A connection onP is said to beflat if the form
K ≡ 0.

Theorem 5. The following statements are equivalent:

a) The connectionγ is flat i.e., dγ + [γ, γ] = 0.

b) If X,Y are two horizontal vector fields on p, so is [X,Y].
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c) For every xo ∈ V, there exists an open neighbourhood U of xo and a
differentiable sectionσ on U such thatσ∗γ = 0.

Proof. a) ⇒ b) is obvious from the definition.

b) ⇒ c)
�

Let a1, a2, . . .an be a basis ofY and letγ =
∑

γiai whereγi are58

scalar differential forms. Sinceγi(Zaj) = δi j , it follows that{γ1, . . . γr }
form a set of differential forms of maximal rankr. Fromb), it follows
that the moduleJ of horizontal vector fields is stable under the bracket
operation. HenceJ forms a distribution onP which is differentiable and
involutive. Letξo ∈ P such thatp(ξo) = Xo and letW be an integral
manifold W of dim = dimV in a neighbourhood ofξo. As in Th.3,
Ch.3.5,W is locally the image of a differentiable sectionσ over an open
neighbourhood ofxo. Since all the tangent vectors ofW are horizontal,
we haveγσ(dx) = 0 for every vectordx on U.
c) ⇒ a)

Let σ be a differentiable section over an open subsetU of V such
thatσ∗γ = 0. For everyξ ∈ p−1(U), define a differentiable function
ρ : p−1(U) → G by the conditionξ = σ(p(ξ))ρ(ξ). Differentiating this,
we obtain

dξ = σp(dξ)ρ(ξ) + σp(ξ)ρ(dξ)

Henceγ(dξ) = ρ−1(ξ)γ(σp(dξ))ρ(ξ)+ρ(ξ)−1ρ(dξ) by conditions (1)
and (2) for connection forms. i.e.γ(dξ) = ρ(ξ)−1ρ(dξ) anda) follows
from cor. to prop.1, Ch.3.5.

Theorem 6. If there exists a flat connection on a principal bundle P over59

a simply connected manifold V, then P is a trivial bundle. Moreover, a
differentiable cross-sectionσ can be found over V such thatσ∗γ = 0.

By Th.4,Ch.3.5, there exists an open covering (Ui)i∈I and cross sec-
tionsσi : Ui → P such thatσ∗i γ = 0. Letσi(x)mi j (x) = σ j(x) where the
corresponding transition functions aremi j . Then we have

γ(σi(dx)mi j (x) + σi(x)mi j (dx)) = γσ j(dx).
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Therefore,mi j (dx) = 0, i.e. themi j are locally constant. Lemma 2,
Ch.3.5 then gives a familyλi of locally constant mapsUi → G such that

mi j = λ
−1
i λ j

It is easily seen thatσiλ
−1
i = σ jλ

−1
j on Ui ∩ U j. Define a cross

sectionσ on V by settingσ = σiλ
−1
i on everyUi. Then we have

γ(σ(dx)) = γ(σi(dx)λ−1
i (x))

= λi(x)(γσi (dx))λ−1
i (x)

= 0 for x ∈ Ui .

Hence the bundle is trivial andσ∗γ = 0.

Proposition 3. If X is a vector field on P tangential to the fibre, then60

K(X,Y) = 0 for every vector field Y on P.

In fact, since℘ = ℘ ∩ J ⊕ N and℘ generatesC (P), it is enough to
prove the assertion forY ∈ N andY ∈ ℘∩ ζ. In the first caseX = Za and
Y = Zb, we have

K(Za,Zb) = (dγ + [γ, γ])(Za,Zb)

= Zaγ(Zb) − Zbγ(Za) − γ[Za,Zb] + [γ(Za), γ(Zb)]

= −γ(Z[a,b]) + [a, b]

= 0

In the second case,Y is invariant underG and it is easy to see that
[Za,Y] = 0. Sinceγ(Y) = 0, we have

K(Za,Y) = (dγ + [γ, γ])(Za,Y)

= Zaγ(Y) − Yγ(Za) − γ[Za,Y] + [γ(Za), γ(Y)]

= 0.

Proposition 4.

K(d1ξs, d2ξs) = s−1K(d1ξ, d2ξ)s for ξ ∈ P, d1ξ, dαξ ∈ Tξ and s∈ G.
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By Prop.3, Ch.3.6, it is enough to consider the case whend1ξ, d2ξ ∈
Jξ. Extendd1ξ, d2ξ to horizontal vector fieldsX1,X2 respectively. Then
we have

K(d1ξs, d2ξs) = K(X1s,X2s)(ξ)

= −γ[X1s,X2s](ξ)

= −γ([X1,X2]s)(ξ)

= −γ([X1,X2]ξs)

= −s−1γ([X1,X2]ξ)s

= s−1K(X1,X2)(ξ)s

= s−1(d1ξ, d2ξ)s for everys ∈ G.

61

3.7 Examples

1. Let dimV = 1. ThenC (V) is a face module generated by a single
vector field. ButC (V) is U (V)-isomorphic toJ ∩ ℘ and hence
J = U (P)

⊗

U (V)
J ∩ ℘ is alsoU (P) - free, and of rank 1. SinceK

is alternate,K ≡ 0. In other words, if the base manifold ofP is a
curve, any connection is flat.

2. LetG be a closed subgroup of a Lie groupH and letY ,F be their
respective LIe algebras. We have seen that (Example 3, Ch.3.1)
if M is a subspace ofF such thatF = M ⊕ Y ands−1Ms ⊂ M
for every s ∈ G, then the projectionΓ : F → M gives rise to a
connection which is left invariant by element ofG. Denoting by
Ia the left invariant vector fields onH whose values ate is a ∈ F ,
we obtain

K(Ia, Ib) = −γ([Ia, Ib]) + [γ(Ia), γ(Ib)]

= −γI[a,b] + [Γea, Γeb]

= −Γe([a, b]) + [Γe(a), Γe(b)].
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ThusK is also left invariant for elements ofG. MoreoverΓ is flat if62

and only ifΓe is a homomorphism ofJ ontoU . This again is true if
and only ifM is an ideal inJ .





Chapter 4

Holonomy Groups

4.1 Integral paths

We shall consider in this chapter only connected base manifolds. 63

Definition 1. A pathψ in a manifoldW is a continuous mapψ of the
unit intervalI = [0, 1] into W. A pathψ is said to bedifferentiable if ψ
can be extended to a differentiable map of an open neighbourhood ofI
into W. ψ(0) is called the origin andψ(1) the extremity, of the path. The
patht → ψ(1− t) is denoted byψ−1. If γ is a connection on a principal
bundleP overX, then a differentiable pathψ in P is said to beintegral
if ψ∗γ = 0. If ψ is integral, so isψ−1.

Let ψ be a path inX. A path ψ̂ in P such thatpo ψ̂ = ψ is called a
lift of ψ. It is easy to see that if̂ψ is an integral lift ofψ, so isψ̂s, where
ψ̂s is defined byψ̂s(t) = ψ̂(t)s. If ψ̂ is an integral lift ofψ, thenψ̂−1 is an
integral lift of ψ−1.

Theorem 1. If ψ is a differentiable path in V with origin at x∈ V, then
for everyξ ∈ P such that p(ξ) = x, there exists one and only one integral
lift of ψ with origin ξ.

Let I ′ be an open interval containingI to whichψ can be extended.64

The mapψ : I ′ → V defines an induced bundlePψ with baseI ′ and a

49
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canonical homomorphismh of Pψ into P such that the diagram

Pψ

q

��

h // P

p

��
I ′

ψ
// V

is commutative. The connectionγ on P also induces a connectionh∗γ
on Pψ. SinceI ′ is a curve, by Ex.1 of Ch.3.7 and Th.5 of Ch.3.6, there
exists a sectionσ such that the inverse image byσ of h∗γ is zero. i.e.
σ∗h∗γ = 0. Defineψ̂ : I ′ → P by settingψ̂ = hσ on I ′. Then it is
obviously an integral lift ofψ. If s ∈ G is such thatξ = ψ̂(0)s, thenψ̂s
is an integral lift ofψ with origin ξ.

If ϕ̂, ψ̂ are two such lifts, then we may define a maps : I → G such
that

ψ̂(t) = ϕ̂(t)s(t) for everyt ∈ I .

Sinceϕ̂, ψ̂ are differentiable, it can be proved thats is also differ-
entiable using the local triviality of the bundle. Differentiation of the
above yieldsψ̂(dt) = ϕ̂(dt)s(t) + ϕ̂(t)s(dt). Hence

γ(ϕ̂(dt)s(t)) + γ(ϕ̂(t)s(dt)) = 0.

Using conditions (1) and (2) of connection form, we gets(dt) = 0.
Hences is a constant. Since ˆϕ(0) = ψ̂(0), the theorem is completely65

proved.

4.2 Displacement along paths

Let Px be the fibre atx andψ a path with originx and extremityy. For
everyξ ∈ Px, there exists one and only one integral liftψ̂ of ψ whose
origin is ξ. The extremity ofψ̂ is an element of the fibre atPy. We
shall denote this byτψξ. Thenτψ is said to be a displacement along
ψ. Any displacement along the pathψ commutes with the operations
of G in the sense thatτψ(ξs) = (τψξ)s for everyξ ∈ Px; thereforeτψ is
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differentiable and is easily seen to be a bijective mapPx→ Py. Trivially,
(τψ)−1

= τψ−1. It is also obvious that the displacement is independent of
the parameter, i.e., ifθ is a differentiable map ofI into I such that

1) θ(0) = 0, θ(1) = 1;

2) ψ′θ = ψ

thenτψ′ = τψ
Given a differentiable pathψ, we may define a new pathψ′ by suit-

ably changing the parameter so thatψ′ has all derivatives zero at origin
and extremity. By the above remark, we haveτψ−1 = τψ.

4.3 Holonomy group

Definition 2. A chain of paths inV is a finite sequence of paths{ψp,
. . . , ψ1} whereψi is a path such thatψi+1(0) = ψ(1) for i ≤ p− 1.

We define the origin and extremity of the chainψ to be respectively 66

ψ1(0) andψp(1). Given two chains
ψ = {ψp, ψp−1, . . . ψ1}, ϕ = {ϕq, ϕq−1, . . . ϕ1 } such that origin ofψ =

extremity ofϕ, we defineψϕ = {ψp, . . . ψ1, ϕq, . . . ϕ1}. ϕ−1 is defined to
be{ϕ−1

1 , . . . ϕ−1
q } and it is easily seen that (ψϕ)−1

= ϕ−1ψ−1
1 .

A displacementτψ along a chainψ = {ψp, . . . ψ1} in the base mani-
fold V of a principal bundleP is defined byτψ = τψp◦, . . . ◦ τψ1.

Let x, y ∈ V. DefineΦ(x, y) to be the displacementsτψ whereψ is
a chain withψ(0) = x, ψ(1) = y. It can be proved, by a suitable change
of parameters of the pathsψi (ch. 4.2), that there exists a differentiable
pathϕ such thatτϕ = τψ. The following properties are immediate con-
sequences of the definition:

1) α ∈ Φ(x, y) =⇒ α−1 ∈ Φ(y, x).

2) α ∈ Φ(x, y), β ∈ Φ(y, z) =⇒ βα ∈ Φ(x, y).

3) Φ(x, y) is non empty sinceV is connected.
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We shall denoteΦ(x, x) by Φ(x). Φ(x) is then a subgroup of the
group of automorphisms ofPx commuting with operations ofG. This is
called theholonomy groupat x with respect to the given connection on
the principal bundleP. If we restrict ourselves to all chains homotopic
to zero atx, then we get a subgroupΦr (x) of Φ(x), viz., the subgroup of
displacementsτψ whereψ is a closed chain atx homotopic to zero. This
is called therestricted holonomy groupat X. This is actually a normal
subgroup ofΦ(x), for if ψ is homotopic to 0 andϕ any continuous path67

ϕψϕ−1 is again homotopic to zero.

Proposition 1. For every x∈ V, there exists a natural homomorphism
of the fundamental group

∏

1(V, x) onto Φ(x)/Φr (x).

Let ψ be a closed path atx. Then there exists a differentiable path
ψ′ homotopic toψ. We mapψ on the coset ofΦr (x) containingτψ1. If
ϕ andψ are homotopic, so areϕ′ andψ′ i.e. ψ′ϕ′−1 is homotopic to
zero. Thenτψ′ϕ′−1 = τψ, τ

−1
ϕ ∈ Φr . Thus we obtain a canonical map

θ :
∏

1(V, x)→ Φ(x)/Φr (x) which is easily seen to be a homomorphism
of groups. That this is surjective is immediate.

In general,θ will not be injective. As the fundamental group of
manifolds which are countable at∞ is itself countable, so isΦ(x)/Φr (x).
Hence from the point of view of structure theory, a study ofΦr (x) is in
most cases sufficient.

4.4 Holonomy groups at points of the bundle

If x, y are two points of the connected manifoldV andϕ a path join-
ing x andy, then there exists an isomorphismΦ(y) → φ(x) defined by
τψ → τϕ−1τψτϕ for every path closed aty. The image ofΦr (y) under
this isomorphism is contained inΦr (x). However, this isomorphism is
not canonical depending as it does on the pathϕ. The situation can be
improved by association to each point of the bundleP a holonomy group
which is a subgroup ofG.

Let Ax be the group of automorphisms ofPx commuting with oper-
ations ofG. Let ξ ∈ Px, Then we define an isomorphismλξ : Ax → G68

by requiringαξ = ξλξ(α) for everyα ∈ Ax. Thatλξ is a homomorphism
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and is bijective is trivial. At everyξ ∈ P, we define theholonomy group
ϕ̄(ξ) to beλξΦ(pξ). Similarly therestricted holonomy groupΦr (ξ) at ξ
is λξΦr (pξ).

Theorem 2.

For any two pointsξ, η ∈ P,Φ(ξ),Φ(η) are conjugate subgroups of
G. Moreover, ifξ, η lie on an integral path, thenΦ(ξ) = Φ(η).

If ξ, η are on the same integral path, thenη = τϕξ for some pathϕ
with origin pξ = x and extremitypη = y. It is sufficient to prove that
Φ(ξ) ⊂ Φ(η). Letψ be a closed chain atx. Then

ξ(λξτψ) = τψξ

= τψτ
−1
ϕ η

= τ−1
ϕ τ
′
ψη whereψ′ = ϕψϕ−1

= τ−1
ϕ (ηλη(τψ′))

= ξλη(τ
′
ψ)

Henceλη(τψ′) = λξ(τψ) ∈ Φ(η) and our assertion is proved.
Finally, if ξ, η are arbitrary, we may joinpξ, pη by a pathϕ. Let ϕ̂

be an integral lift ofϕ throughξ andη′ its extremity. Then there exists
s ∈ G such thatη′ = ηs. We have already proved thatΦ(ξ) = Φ(ηs). 69

Now

(ηs)(ληs(α)) = α(ηs)

= (ηλη(α))s

HenceΦ(ξ) = s−1
Φ(η)s, which completes the proof of theorem 2.

4.5 Holonomy groups for induced connections

Let h be a homomorphism of a principal bundleP′ overV′ into a princi-
pal bundleP overV. Let h be the projection ofh. Let γ be a connection
form on P and h ∗ γ the induced connection onP′. If ξ′ ∈ P′ and
h(ξ′) = ξ, thenΦ(ξ′) ⊂ Φ(ξ). Moreover,Φ(ξ′) is the set ofλξ(τhψ′ )
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whereψ′ is a closed chain atpξ′ = x′. For, lets ∈ Φ(ξ′) corresponding
to the closed chainψ′ at x′. Thenξ′s= τψ′ξ′.

ξs= h(τψ′ξ
′)

= τψξ where ψ = hψ′

= ξλξ(τψ).

Therefores = λξ(τψ) and it is obvious that any suchλξ(τψ) belongs
toΦ(ξ′).

In particular, letV′ be the universal covering manifold ofV, h the
covering map,P′ a principal bundle overV′ and h a homomorphism
P′ → P whose projection is h. Then forξ ∈ P′, Φ(ξ′) is the set of70

λξτψ whereψ is the image under hof a closed chain atpξ′. But V′

being simply connected,ψ is any closed chain atξ homotopic to zero
and henceΦ(ξ′) = Φr (ξ).

4.6 Structure of holonomy groups

Theorem 3.

For everyξ ∈ P,Φr(ξ) is an arcwise connected subgroup ofG.
If ψ is a closed path atx ∈ V which is homotopic to zero, then it can

be shown that there exists adifferentiablemapϕ : I ′ × I ′ → V(I ′ being
a neighbourhood ofI ) such thatϕ(t, 0) = ψ(t) andϕ(t, 1) = x for every
t ∈ I . This can be lifted into a map ˆϕ : I ′ × I ′ → P such that

1) pϕ̂(t, θ) = ϕ(t, θ) for everyt, θ ∈ I ;

2) For everyθ ∈ I , t → ϕ̂(t, θ) is an integral path;

3) ϕ̂(0, θ) = ξ with p(ξ) = x.

In fact,ϕ : I ′× I ′ → V induces a bundlePϕ overI ′× I ′. Letγϕ be the
induced connection onPϕ. For everyθ ∈ I ′, the patht → (t, θ) in I ′ × I ′

can be lifted to an integral path ˆσθ in Pφ with origin at ((0, θ), ξ) ∈ Pϕ.
The origin depends differentiably onθ and therefore the mapσ of I ′× I ′
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defined byσ(t, θ) = σθ(t) is differentiable. Henceρ ◦σ = ϕ̂ satisfies the
conditions 1), 2) and 3).

Now we define a functions : I → G by requiring thatξs(θ) =
ϕ̂(1, θ). Obviously s(1) = e and s(0) is the element of the restricted71

holonomy group atξ corresponding to the pathψ. It is also easy to verify
that s(θ) is a differentiable function ofθ using the local triviality ofP.
Therefore any point ofΦr (ξ) can be connected toe by a differentiable
arc.

Corollary. Φr (ξ) is a Lie subgroup of G.

This follows from the fact that any arcwise connected subgroup of a
Lie group is itself a Lie group [31].

4.7 Reduction of the structure group

Theorem 4.

The structure group ofP can be reduced toΦ(ξ) for anyξ ∈ P.
For this we need the following

Lemma 1. Let M(ξ) be the set of pointsξ′ of P which are extremities of
integral paths emanating fromξ. There exists an open covering(Ui)i∈I
of V and cross-sectionsσi over Ui such thatσi(x) ∈ M(ξ) for every
x ∈ Ui .

Let x = pξ and x0 ∈ V. Consider the pathψ connecting x and x0.
Then the integral liftψ̂ of ψ with origin ξ has extremityξ0 with pξ0 =

x0. Let U be a neighbourhood of x0 in which are defined n linearly
independent vector fields X1, . . .Xn where n= dimV. Let X1,X2, . . .Xn

be horizontal vector fields on p−1(U) such that pXi = Xi for every i.
By the theorem on the existence of solution for differential equations,
there exists a neighbourhood of(0, 0, . . .) in R× Rn in which is defined
a differentiable mapξ having the properties

1) ξ(0, a) = ξ0 72

2) ξ′(t, a) =
∑

tai(Xi)ξ(t,a).
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From the uniqueness of such solutions, we get

ξ(λt, a) = ξ(t, λa)

for sufficiently small values ofλ, t anda. Thus there exists a differen-
tiable mapξ having the properties 1) and 2) above on [0, 2] ×W where
W is a neighbourhood of (0, . . .) in Rn. Since theXi are horizontal,
ξ(t, a) ∈ M(ξ). Now consider the differentiable mapg : W→ P defined
by g(a) = ξ(1, a). The mapp.g is of maximal rank. Moreover since
dimV = n, this is locally invertible. In other words, in a neighbourhood
U′ of X0 we have a differentiable mapf : U′ →W such thatp◦ g◦ f =
Identity, i.e., gof is a cross section overU, and

( gof ) (y) = ξ(1, f (y)) ∈ M(ξ) for every y ∈ U′.

Proof of theorem 4.We have only to take for transition functions the
functionsmi j such that

σi(x) = σ j(x)mji (x) for every x ∈ Ui ∩ U j

where theσi have the properties mentioned in the lemma. Then it is
obvious thatmi j (x) ∈ Φ(σi(x0)) = Φ(ξ) by theorem 2, Ch. 4.3.

Now let V be simply connected. ThenΦ(ξ) = Φr (ξ). SinceΦ(ξ)
is a Lie subgroup ofG, it follows [11] that themji are differentiable73

functions as maps:Ui ∩ U j → Φ(ξ) also. Ifρi are the diffeomorphisms
Ui × G → p−1(Ui) defined byρi(ξ, s) = σi(ξ)s for ξ ∈ Ui , s ∈ G.
Consider the setWi consisting ofρi(ξ, s) with ξ ∈ Ui , s ∈ Φ(ξ). It is
clear thatWi ∩ p−1(U j) = Wj ∩ p−1(Ui). Moreover if we provide each
Wi with the structure of a differentiable manifold by requiring that the
ρi be a diffeomorphism, then the differentiable structures onWi ∩ Wj

agree. In other words,M(ξ) =
⋃

i∈I
Wi has a differentiable structure (with

which it is a submanifold ofP). Φ(ξ) acts onM(ξ) differentiably to the
right and makes of it a principal bundle overV with projection p. We
denote the inclusion mapM(ξ)→ P by f .

Proposition 2. Let dη be a vector at the pointη of the manifold M(ξ)
andY (ξ) the Lie subalgebra ofY corresponding toΦ(ξ), thenγ( f dη) ∈
Y (ξ).
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Since the connection form is 0 on horizontal vectors, it is enough to
consider the case whenf dη is tangential to the fibre, i.e. is of the form
sawith a ∈ Y (ξ), s∈ Φ(ξ). In this caseγ(sa) = a ∈ Y (ξ) which proves
the assertion.

If we defineγ∗(dη) = γ( f dη) for every vectordη of M(ξ) thenγ∗ is
again a connection form on the principal bundleM(ξ). For every point
η ∈ M(ξ), the holonomy group corresponding toγ∗ isΦ(ξ).

4.8 Curvature and the holonomy group

Theorem 5.

Forξ ∈ P,Φr (ξ) = (e) if and only if the curvature form is identically74

zero.
Consider the universal covering manifoldṼ of V with covering map

h. Let P̃ = Ph be the induced bundle withh as the homomorphism

P̃ → P. Let ξ̃ ∈ P̃ such thathξ̃ = ξ. Then by Ch.4.5., the holonomy
groupΦ(ξ̃) with respect to the induced connection ˜γ = h∗γ on P̃ is
Φr (ξ). Therefore, ifΦr(ξ) = (e),M(ξ̃) is the image of a cross-section ˜σ

of P̃ overV. By prop. 4, Ch.3.6, ˜γσ̃(d x̃) = 0 for every x̃ ∈ Ṽ. Hence
by th.5, Ch.3.6 the curvature is 0. SinceṼ is locally diffeomorphic with
V the curvature form ofγ is 0. Conversely, ifK = 0, K̃ = 0 and by
th.6, ch.3.6, there exists a section ˜σ of P̃ over Ṽ such that ˜γσ̃ = 0 and
such that ˜σ(x̃) = ξ̃. Hence the holonomy group atξ̃ reduces to{e}, i.e.,
Φr (ξ) = {e}.

Theorem 6(Ambrose-Singer; [1]).

The Lie algebra of the restricted holonomy groupΦr (ξ) at ξ ∈ P is
the subspace of the Lie algebraG of G generated by the valuesK(d1η,

d2η) of the curvature form withd1η, d2η ∈ Tη, η ∈ f M(ξ). We may
assume thatV is simply connected in which caseΦ(ξ) = Φr (ξ), the
general case being an easy consequence. Moreover, since it is enough to
taked1η, d2η to be horizontal, we may consider the values ofK on the
manifold M(ξ). We may therefore restrict ourselves to the case when
Φr (ξ) = G, andM(ξ) = P. Let I be the subalgebraof G generated by
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the values ofK. Let L be the set of vector fieldsX on P such thatγ(X)
is a function with values inI . This is anU (P)- submodule. It is easily
seen thatL has everywhere rank= dimV + dimI , using the fact that75

γ(Za) = a ∈ I for a ∈ I . Moreover,

γ([X,Y])ξ = −K(X,Y)ξ − Xγ(Y)ξ + Yγ(X)ξ + [γ(X), γ(Y)]ξ

∈ I for every X,Y ∈ L and ξ ∈ P.

By Frobenius’ theorem, there exists an integral manifold for the dis-
tribution given byL . Let L be the maximal integral manifold forL
containingξ. Since the integral paths forγ with origin atξ are integral
with respect toL we must haveL = P. Hence dimI = dimG , or
I = G .

Finally it remains to prove that the subspaceM of U generated by
the values ofK is itself a Lie subalgebra.

SinceK(d1ηs, d2ηs) = s−1K(d1η, d2η)s∈ I , it follows thats−1Ns⊂
N for everys∈ G. Therefore for everyX ∈ I , [X,N] ⊂ N. In particular,
[M ,M ] ⊂M .

We now give a geometric interpretation ofK(d1ξ, d2ξ) for ξ ∈ P.
Firstly, we may assumed1ξ, d2ξ to be both horizontal vectors (Prop. 3,
Ch.3.6). Letx = pξ, d1x = pd1ξ and d2x = pd2ξ. Extendd1x, d2x
to vector fields X1 and X2 on V such that [X1,X2] = 0. Let X1,X2 be
the corresponding projectable, horizontal vector fields onP. Let η →
Fi(η, t) be the automorphism of parametert defined on a neighbourhood
of ξ by the vector fieldXi(i = 1, 2). We setξ1(θ) = F1(θ, ξ), ξ2(θ) =
F2(θ, ξ1(θ)), ξ3(θ) = F2(−θ, ξ2(θ)) andξ4(θ) = F1(−θ, ξ3(θ)). The chain
of pathsF1(t/θ, ξ), F2(t/θ, ξ1(θ)), F1(−t/θ, ξ2(θ)), F2(−t/θ, ξ3(θ)) is not76

closed in general though its projection onV is closed (since [X1,X2] =
0). Let s(θ2) be the element ofG. such thatξ4(θ) = ξs(θ2). Then
[X1,X2]ξ = ξs′(0) and we have

[X1,X2]ξ = γ([X1,X2]ξ)

= −K(X1ξ,X2ξ)

= −K(d1ξ , d2ξ).
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Chapter 5

Vector Bundles and
Derivation Laws

5.1

Let P be a differentiable principal bundle over a manifoldV with group 77

G. Consider a vector spaceL of finite dimension over the fieldR of
real numbers. Lets → sL be a linear representation ofG in L.G acts
differentiably onL (regarded as a manifold ) to the right by the rule
vs= s−1

L v.
Let E be a fibre bundle associated toP with fibre L andq the map

P×L→ E. For everyξ ∈ P, the mapv→ q(ξ, v) is a bijection ofL onto
the fibre ofE at pξ, or a frame ofL. On each fibreEx at x ∈ V of the
associated bundleE, we may introduce the structure of a vector space
by requiring that the frame defined by any pointξ ∈ p−1(x) be linear. It
is clear that such a structure does exist and is unique. LetU be an open
subset ofV over whichP is trivial andρ a diffeomorphismU × L →
p−1(U) defined byρ(x, v) = q(σ(x), v) whereσ is a differentiable cross
section ofP overU. Then we have

1) p ρ(x, y) = x

2) ρ(x, v+ v′) = ρ(x, v) + ρ(x, v′)

3) ρ(x, λv) = λρ(x, v)

61
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for everyx ∈ U, v, v′ ∈ L andλ ∈ R.
Conversely, letE be a differentiable manifold andp : E → Va

differentiable map. Assume eachp−1(x) = Ex to be a vector space over78

R. The manifoldE (together withp) is called a differentiable vector
bundle(or simply a vector bundle ) overV if the following condition is
satisfied. For everyx0 ∈ V, there exist an open neighbourhoodV of x0

and a differentiable isomorphismρ of U × Rn onto p−1(U) such that

1) pρ(x, v) = x

2) ρ(x, v+ v′) = ρ(x, v) + ρ(x, v′)

3) ρ(x, λv) = λρ(x, v)

for everyx ∈ V, v, v′ ∈ L andλ ∈ R.

Proposition 1. Every vector bundle of dimension n over V is associated
to a principal bundle over V with group GL(n,R).

In fact, let E be a vector bundle of dimensionn over V and q :
E → V the projection ofE. For everyx ∈ V, definePx to be the set
of all linear isomorphisms ofRn onto Ex and P =

⋃

x∈V
Px. The group

G = GL(n,R) acts onP by the rule (ξs)v = ξ(sv) for every v ∈ Rn.
Define p : P → V by p(Px) = x. By definition of vector bundles,
there exist an open coveringUα ⊂ V and a family of diffeomorphisms
ρα : Uα × Rn → q−1(Uα) satisfying conditions 1), 2) and 3). For every
α, the mapγα : Uα × G → p−1(Uα) defined byγα(x, s)v = ρα(x, sv)
for x ∈ Uα, s ∈ G is bijective. We put onP a differentiable structure
by requiring that allγα be diffeomorphisms. It is easy to see that on the
overlaps the differentiable structures agree. Moreover,

γα(x, st)v = ρα(x, (st)v)

= ρα(x, s(tv))

= γα(x, s)(tv)

for x ∈ Uα, s, t ∈ G andv ∈ Rn. ThusP is a principal bundle overV with79

groupG. Let q′ be the map ofP×Rn ontoE defined byq′(ξ, v) = ξv for
ξ ∈ P, v ∈ Rn. It is easy to see thatP × Rn is a principal bundle overE
with projectionq′. HenceE is an associated bundle ofP.
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5.2 Homomorphisms of vector bundles

Definition 1. Let V andV′ be two differentiable manifolds,E a vector
bundle overV andE′ a vector bundle overV′. A homomorphism hof
E into E′ is a differentiable maph : E → E′ such that such that, for
everyx ∈ V, p′h(Ex) reduces to a pointx′ ∈ V′ and the restrictionhx of
h to Ex is a linear map ofEx into E′x.

The map h: V → V′ defined by the conditionp′h = hp is differen-
tiable and is called theprojection of h. If V = V′, by a homomorphism
of E into E′, we shall mean hereafter a homomorphism having the iden-
tity map V → V as projection. In that case,h : E → E′ is injective
or surjectiveaccording as all the mapshx : Ex → E′x are injective or
surjective.

A vector bundle of dimensionn overV is said to betrivial if it is
isomorphic to the bundleV×Rn (with the natural projectionV×Rn→ V).
Let P be a principal bundle overV to which the vector bundleE is 80

associated. IfP is trivial, so is E and every section ofP defines an
isomorphism ofV × L ontoE.

Let E,E′,E′′ be vector bundles overV. Then a sequence of homo-
morphisms

E′
h−→ E

k−→ E′′

is said to beexact if, for every x ∈ V, the sequence

E′x
hx−−→ Ex

kx−→ E′′x

is exact

5.3 Induced vector bundles

Let E be a vector bundle over a manifoldV andq a differentiable map of
a manifoldY into V. Let Eq be the subset of the productY×E consisting
of elements (y, η) such thatq(y) = p(η). Definep : Eq → Y by setting
p′(y, η) = y. If p′(y, η) = p′(y′, η′), theny = y′ and p′−1(y)(y ∈ Y) by
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setting

(y, η) + (y, η′) = (y, η + η′)

λ(y, η) = (y, λη)

for η, η′ ∈ E andλ ∈ R. It is clear that this makes ofEq a differentiable
vector bundle overY. This is called thebundle overY inducedby q.
Let P be a principal bundle overX andE a vector bundle associated to
P. If Pq is the principal bundle overY induced byq (Ch. 2.4) thenEq is81

associated toPq.

5.4 Locally free sheaves and vector bundles

Let M be a differentiable manifold andε a sheaf overM. If V ⊂ U are
two open sets inM, ϕVU denotes the restriction mapε(U) → ε(V) and
for everyx ∈ U, ϕxU denotes the canonical map ofε(U) into the stalkεx

at x.
Let U be the sheaf of differentiable real valued functions onM. For

every open setU ⊂ M, ε(U) is the algebra of real valued differentiable
functions onU. A sheafε over M is called a sheaf of U - modules
if, for every open setU ⊂ M,U (U) is an U (U)-module and if the
restriction maps satisfy the condition:

ϕVu( fσ) = (ϕVU f )(ϕVUσ)

wheneverV ⊂ U are open sets inM, f ∈ U (U) andσ ∈ ε(U).,
Let ε and ε′ be two sheaves ofU -modules overM.A homomor-

phismh of ε into ε′ is a family of mapshU : HomU (U)(ε(U), ε′(U))(U
open subset ofM) such that ifV ⊂ U are two open sets inM, ϕVUhU =

hVϕVU.
Let E be a differentiable vector bundle overM. The sheaf of dif-

ferentiable sections ofE is a sheafε of U -modules overM; for every
open setU ⊂ M, ε(U) is theU (U)- module of differentiable sections of
E overU.

Definition 2. A sheafε of U -modules overM is said to befree of rank
n if ε is isomorphic to the sheafU n of differentiable mapsM → Rn.82
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A sheafε of U -modules overM is said to belocally free of rankn if
every pointx ∈ M has a neighbourhoodU such thatε restricted toU is
a free sheaf of rankn.

For every vector bundleE over M, the sheafε of differentiable sec-
tions ofE is locally free of rank= dimension ofE.

Proposition 2. A sheafε of U -modules over M is locally free of rank
n if and only if for every x∈ M, there exists a neighbourhood U of x
and elementsσ1, σ2, . . . σn ∈ ε(U) such that for every open set V⊂ U,
(ϕVUσ1, ϕVUσ2, . . . ϕVUσn) is a base ofε(V) overU (V).

That a locally free sheaf has such a property is an immediate con-
sequence of the definition. Conversely, if such elementsσ1, σ2, . . . σn

overU exist, then, for every open setV ⊂ U,the maphV of U (V)n into
ε(V) defined byhV( f1, f2, . . . fn) = f1σ1 + f2σ2 + . . . fnσn is bijective
and the mapshV define an isomorphism of the sheafU n of differentiable
mapsU → Rn onto the sheafε restricted toU.

Let E and E′ be two vector bundles overM. To every homomor-
phismh : E → E′ there corresponds in an obvious way a homomor-
phismτh : ε → ε′ and the assignmentE → ε of locally free sheaves to
vector bundles is a functorT from the category of vector bundles over
M into the category of locally free sheaves overM.

Moreover, if

0→ E′
h−→ E

k−→ E′′ → 0

is an exact sequence, then the sequence 83

0→ TE′
τh−−→ Te

τk−−→ TE′′ → 0

is also exact (in the first sequence, 0 denotes the vector bundle of dimen-
sion 0 overM).

We shall now define a functor from the category of locally free
sheaves into the category of vector bundles overM. Let ε be a locally
free sheaf overM. Let Ux be the stalk atx ∈ M for the sheafU andmx

the ideal of germs off ∈ Ux such thatf (x) = 0. Then we have the exact
sequence

0→ mx→ εx→ R→ 0.
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If εx is the stalk atx for the sheafε, then we have correspondingly the
exact sequence

0→ mxεx→ εx→ εx/mxεx→ 0.

Let Ex = εx/mxεx,E =
⋃

x∈M
Ex and definep : E → M by the con-

dition p(Ex) = (x). Let U be an open subset ofM andσ1, σ2, . . . σn ∈
ε(U) satisfying the condition of prop.2. Then, for everyx ∈ U, ϕxUσ1,

ϕxUσ2, . . . ϕxUσn is a basis ofεx over Ux. Let σ∗i (x) be the image of
ϕxUσi in the quotient spaceEx. Thenσ∗1(x), σ∗2(x), . . . σ∗n(x) also is a
base ofEX over R. The mapρU : U × Rn → p−1(U) ⊂ E defined by
ρ(x, a1, a2, . . . an) =

∑

aiσ
∗
i (x) is obviously a bijection. There exists on

E one and only one differentiable structure such that every mapρU is a84

diffeomorphism. With this structure,E is a differentiable vector bundle
T∗εover M. Let ε, ε′ be two locally free sheaves ofU − modules over
M. To every homomorphismh : ε→ ε′ corresponds in an obvious way
a homomorphismT∗h : T∗ε → T∗ε′ and the assignmentε → T∗ε is a
functor T∗ from the category of locally free sheaves to the category of
vector bundles overM. Moreover, if

0→ ε′ → ε→ ε′′ → 0

is an exact sequence of locally free sheaves, then

0→ T∗ε′ → T∗ε→ T∗ε′′ → 0

is an exact sequence of vector bundles.

Proposition 3. For every vector bundle E over M, there exists a canon-
ical isomorphism of E onto T∗TE. For every locally free sheaf ofU −
modulesε over M, there exists a canonical isomorphism ofε onto TT∗ε.
(We shall later identify E with T∗TE and E with TT∗E means of these
isomorphisms.)

For instance, ifε = TE andE′ = T∗ε, the isomorphismE → E′

mapsu ∈ Ex into σ∗(x) whereσ is a differentiable section over an
open neighbourhood ofx such thatσ(x) = u. In particularT defines a
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bijection of the set of classes of isomorphic vector bundlesoverM onto
the set of classes of isomorphic locally free sheaves ofU −modules over
M.

Many vector bundles are defined in differential geometry from a lo-85

cally free sheaf, using the functorT∗. For instance thetangent bundle
for a manifoldM corresponds the sheafC overM such thatC (U) is the
module of differentiable vector fields over the open setU ⊂ M,

5.5 Sheaf of invariant vector fields

Let P be a differentiable principal bundle over a manifoldV with group
G. LetJ be the sheaf overV such that for every open setU ⊂ V,J(U) is
the spec of invariant differentiable vector fields onp−1(U) ⊂ P. Clearly
eachJ(U) is a module over the algebraU (U) of differentiable func-
tions onU andJ is sheaf ofU -modules.

Let U be an open subset ofV such thatP is trivial overU and such
that the moduleC (U) of vector fields onU is a free module overU (U).
Let X1.X2, . . .Xm be a base ofC (U) over U (U). Let I1, I2, . . . In be
a base of right invariant vector fields onG. Then ((Xi , 0), (0, I j )) for
i = 1, 2, . . .m, j = 1, 2, . . . n is a base of theU (U)-module of vector
fields onU ×G invariant underG acting to the right. This base satisfies
the condition of Prop.2. Therefore the sheaf of invariant vector fields
on U × G is a free sheaf of rank= m+ n over the sheafU , restricted
to U. Hence,J is a locally free sheaf ofU modules of rank equal to
dimV + dimG.

By Chap.5.4, there exists a vector bundlej = T∗J of dimension=
dimV + dimG canonically associated toJ. Any point in the fibreJx of 86

J at x ∈ V may be interpreted as a family of vectorsL along the fibrePx

satisfying the condition

Lξs = L(ξ)s for ξ ∈ Px, s∈ G.

Let K be the sheaf ofU -modulo overV such that, for every open
subsetU ⊂ V,K (U) is the sub-module ofJ(U) consisting of invariant
vector fieldstangential to the fibres. ThenK is locally free of rank
= dimG and there exists a canonical injectionK → J. The vector
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bundle K = T∗K associated toK is a vector bundle of dimension
= dimG over V. Any point in the fibreKx of K at x ∈ V may be
regarded as a vector field of the manifoldPx invariant under the action
of G.

For every open setU ⊂ V, any X ∈ J(U) is projectable and the
projection defines a homomorphismPU ∈ HomU (U)(J(U),C (U)). The
family of homomorphismspU gives rise to a homomorphismp : J →
C . Since pU is surjective whenU is paracompact,p : J → C is
surjective. On the other hand, since the kernel ofpU isK (U), the kernel
of p is the image ofK → J. Therefore we have the exact sequence of
locally free sheaves overV:

0→ K → J → C → 0.

This gives rise to an exact sequence of vector bundles overV:

0→ K → J→ C→ 0

whereC denotes the tangent bundle ofV.87

Theorem 1. The vector bundle K is a vector bundle associated to P
with typical fibreY , the action of G onY being given by the adjoint
representation.

Let E = (P×Y )/G the vector bundle overV canonically associated
to P andq the mapP×Y → E. We shall define a canonical isomorphism
of E ontoK. LetU be an open subset ofV andσ ∈ ε(U) a differentiable
section ofE on U. We define a differentiable map ˜σ of p−1(U) into Y
by the conditionq(ξ, σ̃ξ) = σ(pξ) for everyξ ∈ p−1(U). Thenσ̃(ξs) =
s−1σ̃(ξ)s for every s ∈ G andξ ∈ p−1(U). Therefore the vector field
Xσ on p−1(U) defined byXσ

ξ
= ξ(σ̃ξ) belongs toK (U). It is easy to

verify that the mapσ→ Xσ is an isomorphismλU of theU (U)-module
ε(U) onto theU (U)-moduleK (U). The familyλU (U open inV) is an
isomorphism of the sheafε of differentiable sections ofE onto the sheaf
K . Hence (λU) defines an isomorphismλ of E onto K. Let (ξ, a) ∈
P× Y . Thenλq(ξ, a) = ϕxUX whereU is an open neighbourhood ofx
andX ∈ K (U) a vector field satisfying the conditionXξ = ξa.
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The isomorphismλ will be used later to identify the bundleE =
(P× Y )/G with K. The vector bundleK is called theadjoint bundle of
P.

Definition 3. Let 88

0→ E′
h−→ E

k−→ E′′ → 0

be an exact sequence of vector bundles over the manifoldV. A splitting

of this exact sequence is an exact sequence 0→ E′′
µ
−→ E

λ−→ E′ →
0, such thatλh is the identity onE′ andkµ the identity onE′′. Any
homomorphismλ (respµ) of E into E′ (resp ofE′′ into E) such thatλh
(respkµ) is the identity determines a splitting. We shall now interpret
the splitting of the exact sequence

(S) 0→ K → J→ C→ 0.

For every open setU ⊂ V, the moduleJ(U) (resp.K (U)) will be
identified with the module of differentiable sections ofJ (resp. .K) over
U.

Theorem 2. There exists one and only one bijectionρ of the set of con-
nections on P onto the set of splittings J→ K of (S) such that, ifΓ is a
connection on P,

Γ(X) = (ρΓ) ◦ X

If Γ is a connection onP, then, for every open setU ⊂ V, the restric-
tion of the tensorΓ to U′ = p−1(U) is a projection of the moduleC (U′)
of vector fields onU′ onto the moduleN(U′) of vector fields onU′ tan- 89

gential to the fibres which is invariant under the action ofG and induces
a projectionλU : J(U) → K (U). The family (λU) is a homomor-
phism of the sheafJ onto the sheafK and defines a homomorphism
ρΓ : J → K which is a splitting of (S). For every invariant vector field
X on P, we have (ρΓ) ◦ X = λV(X) = Γ(X). Since two homomorphisms
λ, λ′ : J → K such thatλ ◦ X = λ′ ◦ X for every differentiable section
X of J coincide, the mapρ is completely determined by the condition
Γ(X) = (ρΓ) ◦ X. Moreover, since two connectionsΓ andΓ′ such that
Γ(X) = Γ′(X) for every invariant vector fieldX coincide,ρ is injective. It
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remains to prove thatρ is surjective. Letλ be a splitting of (S). For every
open setU ⊂ V, Let λU be the projection ofJ(U) ontoK (U) defined
by settingλU X = λ ◦ X for everyX ∈ J(U). AssumeP to be trivial
over U and letU′ = p−1(U). The injectionJ)(U) → C (U′) defines
an isomorphism of theU (U′)-moduleU (U′)

⊗

U (U)
J(U) onto C (U′).

The injectionK (U) → N(U′) defines an isomorphism of theU (U′)-
moduleU (U′)

⊗

U (U)
K (U) ontoN(U′). ThereforeλU is the restriction

of a projectionλ of C (U′) ontoN(U′) which, regarded as tensor overU′

is invariant under the action ofG. HenceλV is the restriction toJ(V)
of a projectionΓ : C (P)→ N(P) which is a connection onP. For every
invariant vector fieldX on P, Γ(X) = λVx = λ ◦ X. Thereforeλ = ρΓ.

Remark. Let 0 ← K
λ←− J

µ
←− C ← 0 be the splitting of (S) corre-

sponding to a connectionΓ on P. For every vector field Xon the base90

manifold, regarded as a section ofC, the invariant vector fieldµ ◦ X
is the horizontal vector field onP (for the connectionΓ), having Xas
projection (cf. Atiyah [2]).

5.6 Connections and derivation laws

Let V andV′ be two differentiable manifolds, andE,E′ two differen-
tiable vector bundles of dimensionn overV andV′ respectively. Leth
be a homomorphism ofE′ into E with projection h: V′ → V. Assume
the maph : E′x′ → Eh(x′) to be bijective for everyx′ ∈ V′. If σ is a
section ofE overV, then exists one and only one sectionσ′ of E′ over
V′ such thathσ′ = σh. If σ is differentiable, so isσ′. Since his a
differentiable map ofV′ into V, any module over the algebraU (V′) of
differentiable functions overV′ can be regarded as a module over the
algebraU (V) of differentiable functions overV. Then the mapσ→ σ′

is a homomorphism ofε(V) into ε(V′) regarded asU (V)-modules.
In particular, letP be a principal differentiable bundle with groupG

over V and letp : P → V be the projection. Lets → sL be a linear
representation ofG in a vector spaceL. AssumeE to be a vector bundle
associated toP with typical fibreL andq to be the mapP × L → E.
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Taking V′ = P,E′ = P × L, h = q, h = p, for every sectionσ of E
the sectionσ′ is defined byqσ′(ξ) = σp(ξ) for ξ ∈ P. Let L (P) be 91

the space of differentiable maps ofP into L. Since to any sectionσ′ of
E′ = P × L corresponds a map ˜σ ∈ L (P) such thatσ′(ξ) = (ξ, σ̃(ξ)),
we obtain ahomomorphismλ : σ → σ̃ of theU (V)-moduleε(V) into
L (P) such that

q(ξ, σ̃ξ) = σp(ξ)

for everyξ ∈ P.

Definition 4. A differentiable function onP with values in the vector
spaceL is said to be aG-functionif f (ξs) = s−1

L f (ξ) for everyξ ∈ P, s∈
G.

We shall denote the space ofG-functionsP→ L by LG(P).

Proposition 4. The homomorphismλ : ε(V) → L (P) is injective and
λ ε(V) = LG(P).

If σ ∈ ε(V) andλσ = 0, thenσ(ξ) = 0 for everyξ ∈ P. Therefore
σ = 0 sincep is surjective. On other hand, ifσ ∈ ε(V) andσ̃ = λσ,
we haveq(ξs, σ̃(ξs)) = σp(ξs) = σp(ξ) = q(ξ, σ̃ξ) = q(ξs, s−1

L σ̃(ξ)) for
everyξ ∈ P ands ∈ G. Henceσ̃ ∈ LG(P). Conversely, letf ∈ LG(P).
The mapξ → q(ξ, f ξ) maps each fibre into a point ofEX and therefore
can be writtenσp, with σ ∈ ε(V). We havef = λσ.

We shall now show how a connection onP gives rise to a derivation
law in the module of sections of the vector bundleE overV. By means
of the mapε(V)→ L (P), the derivation law in theU (V)-moduleε(V)
will be deduced from a derivation law in theU (P)-moduleL (P). 92

To the representations→ sL of G in L corresponds a representation
in L of the Lie algebraY of left invariant vector fields onG. For every
a ∈ Y , defineaL by settingaLv = av− v for everyv ∈ L, the vectors
at 0 ofL being identified with elements ofL. Then it is easy to see that
[a, b]L = aLbL − bLaL. Hencea→ aL is a linear representation ofY in
L.

Let Y (P) be the space of differentiable functions onP with val-
ues inY . The linear mapa → aL of Y into homR(L, L) defines an
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U (P)-linear mapα → αL of Y (P) into homU (P)(L (P),L (P)) where
(αL f )(ξ) = α(ξ)L f (ξ) for ξ ∈ P, α ∈ Y (P) and f ∈ L (P).

We have already seen (Ch. 1) that there are canonical derivation laws
in the modulesY (P) andL (P) and hence in homU (P)(L (P),L (P))
also. It is easy then to see that

(Xα)L f = X(αL f ) − αL(X f)

for everyα ∈ Y (P) and f ∈ L (P). We now define inL (P) a new
derivation law in terms of a given connection formγ on the bundle by
setting

DX f = X f + γ(X)L f

for every X ∈ C (P) and f ∈ L (P). This differs from the canoni-
cal derivation law inL (P) by the mapγ : X → γ(X)L of C (P) into
homU (P)(L (P),L (P)). The curvatures form the canonical derivation93

law has been shown to be zero in Ch.1.9. Hence ifK is the curvature
form of the derivation law andK the curvature form of the connection
from γ, we have

K(X,Y) = DXDY − DYDX − D[X.Y]

= Xγ(Y)L − Yγ(X)L − γ([X,Y])L + [γ(X)L, γ(Y)L]

= Xγ(Y)L − Yγ(X)L − γ([X,Y])L + [γ(X), γ(Y)]L

= (dγ(X,Y))L + [γ(X), γ(Y)]L

= K(X,Y)L

Theorem 3. For a given connection formγ on P, there exists one and
only one derivation law D in the module of sections on the vector bundle
E on V such that for every sectionσ and every projectable vector field
X on P, we have

D∼pXσ = Xσ̃ + γ(X)Lσ̃

The proof is an immediate consequence of the two succeeding lem-
mas

Lemma 1. If X is a vector field on P tangential to the fibres and f∈
L (P), then DX f = 0.
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In fact, if X = Za wherea ∈ Y , we have

DZa f = Za f + (γ(Za))L f = Za f + aL f

Hence 94

DZa f (ξ) = (ξa) f + aL f (ξ).

If g(s) = f (ξs) = s−1 f (ξ), then (ξa) f = ag = −aL f (ξ). Therefore
DZa f = 0 and the lemma is proved since the module of vector fields
tangential to the fibres is generated by the vector fieldsZa(a ∈ Y ).

Lemma 2. If X is projectable and f∈ LG(P), then DX f ∈ LG(P).

By lemma 1, it is enough to consider the case whenX is a horizontal
projectable vector field. Thenγ(X) = 0 and hence we have

(DX f )(ξs) = (X f)(ξs) = Xξs f = (Xξs) f = Xξh,

whereh(ξ) = f (ξs) = s−1 f . Therefore

(DX f )(ξs) = s−1(Xξ f ) = s−1(DX f )(ξ)

for s ∈ G, i.e.,DX f ∈ LG(P).
The converse cannot be expected to be true in general. For, ifE is

a trivial vector bundle overV with group reduced to{e}, it is clear that
we can have only the trivial connections inP, whereas there are nonzero
derivation laws inV. However, we have the

Theorem 4. Let G be the group of automorphisms of a vector space
L,P a principal differentiable bundle with group G over a manifold V95

and E a differentiable vector bundle over V associated to P with typical
fibre L. Let p be the projection of P onto V. For every derivation law
D in theU (V)-moduleε(V) of differentiable sections of E, there exists
one and one connections formγ on P such that

(C) D∼pXσ = Xσ̃ + γ(X)Lσ̃

for everyσ ∈ ε(V) and every projectable vector field X on P.
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We denote as before byq the map ofP × L onto E. For everyσ ∈
ε(V) and every vectordxat a pointx ∈ V, let Ddx be the value (DXσ)(x),
where Xis any vector field onV such that Xx = dx. Let dξ be a vector
with origin at ξ ∈ Px. We define a mapr(dξ) of ε(V) into the fibreEx

by setting

r(dξ)σ = Dpdξσ − q(ξ, dξσ̃)

for everyσ ∈ ε(V). Sincer(dξ)( fσ) = f (x)(r(dξ)σ) for every f ∈
U (V) and everyσ ∈ ε(V), r(dξ)σ depends only uponσ(x) or uponσ̃(ξ).
Therefore, there exists an endomorphismα of L such thatr(dξ)σ =
q(ξ, ασ̃(ξ)) for everyσ ∈ ε(V). SinceG is the group of automorphisms
of L, there exists an elementγ(dξ) in the Lie algebraY of G such that
r(dξ)σ = q(ξ, γ(dξ)Lσ̃(ξ)) for everyσ ∈ ε(V), andγ is clearly a form
degree 1 onP with values iny satisfying the condition (C). From (C)96

we deduce thatγ(X) is differentiable wheneverX is a differentiable pro-
jectable vector field onP. Thereforeγ is differentiable. It is the easy
to verify thatγ is a connection form onP. Any connection form onP
satisfying the condition (C) coincides withγ since the representation of
Y in L is faithful and since a form onP is determined by its values on
projectable vector fields.

5.7 Parallelism in vector bundles

Let E be a vector bundle overV associated to the principal bundleP with
typical fibreL, γ a connection form onP,D the corresponding derivation
law in the module of sectionsε(V) of E, q the usual mapP× L → E, ϕ
a differentiable path inV with origin at x ∈ V, andϕ̂ an integral lift of
ϕ in P with respect toγ. For everyy ∈ Ex, there existsv ∈ L such that
q(ϕ̂(0), v) = y.

Then it is easy to see that the pathq(ϕ̂(t), v) in E depends only on
y andϕ. The pathq(ϕ̂(t), v) is called the integral lift ofϕ with origin y.
The vectorsq(ξ(t), v) are sometimes said to be parallel vectors alongϕ.

Let σ be a section of the bundleE anddx a vector atx ∈ V. We
would like to define the derivation ofσ with respect todx in terms of
parallelism. Letϕ be a differentiable path with originx andϕ′(0) = dx
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andϕ̂ an integral lift ofϕ in P. Let v(t) = σ̃(ϕ̂(t)) so thatq(ϕ̂(t), v(t)) =
σ(ϕ(t)). Definey(t) = q(ϕ̂(0), v(t)). Then we have

Ddxσ = lim
t→0

1
t
{y(t) − y(0)}.

In fact, if 97

ξ = ϕ̂(0) and dξ = ϕ̂′(0),we have

lim
t→0

{

1
t
(y(t) − y(0))

}

= q(ϕ̂(0), lim
t→0

1
t
{v(t) − v(0)})

= q(ϕ̂(0), lim
t→0

1
t
{σ̃(ϕ̂(t) − σ̃(ϕ̂(0))})

= q(ϕ̂(0), dξσ̃)

= q(ϕ̂(0), dξσ̃ + γ(dξ)Lσ̃)

= Ddxσ.

For everyY ∈ Ex, let (ξ, v) ∈ P × L such thatq(ξ, v) = Y. Then
q(dξ, v) ∈ TY. This gives in particular, a map of the spaceζξ of hori-
zontal vectors with origin atξ into TY, which is clearly injective. If we
compose this with the projection, we obtain the bijectionp : ζξ → Tx.
We define a vector atY in E to behorizontal if it is of the form q(dξ, v)
with q(ξ, v) = Y anddξ ∈ Sξ. It is easy to see that this definition does
not depend on the particular pair (ξ, v). With this definition, for every
integralϕ̂ in P and everyu ∈ L, the pathY(t) = q(ϕ̂(t), v) has horizontal
agents at all points. The space of horizontal vectors atY is a subspace of
TY supplementary to the subspace of vectors∈ TY tangents to the fibres
throughY.

Theorem 5. Letσ be a section of E over V. Thenσ(dx) is horizontal if 98

and only if Ddxσ = 0.
Let dξ be a horizontal tangent vector atξ ∈ p−1(x) whose projection

is dx. Then we have

Ddxσ = q(ξ, dξσ̃ + γ(dξ)σ̃)

= q(ξ, dξσ̃).
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But σ̃ has been defined by

q(ξ, σ̃(ξ)) = σ(pξ).

Henceq(ξ, σ̃(dξ)) + q(dξ, σ̃(ξ)) = σ(pdξ) = σdx. If σ(dx) is
horizontal, so isq(ξ, σ̃(dξ)). But pE.q(ξ, σ̃(dξ)) = x, i.e., σ̃(dξ) =
σ̃(ξ). Sincedξσ̃ = σ̃(dξ) − σ̃(ξ), it follows that dξσ̃ = 0. Therefore
q(ξ, dξσ̃) = 0. The converse is also immediate.

This theorem enables us to define integral paths inE with respect to
a given derivation law inε(V).

5.8 Differential forms with values in vector bundles

Definition 5. Let E be a differentiable vector-bundle over the manifold
V. A differential formα of degreen onV with values in the vector bundle
E is ann-form on the moduleC (V) of differentiable vector fields onV
with values in the moduleε(V) of differentiable sections of the bundle99

E.

For everyn-tuple d1x, d2x, . . . dnx of vectors atx ∈ V, the value
α(d1x, d2x, . . . dnx) of α belongs toEx. TheU (V)-module of forms of
degreen on V with values inE will be denoted byεn(V).

Let P be a differentiable principal bundle overV, with groupG and
projectionp. AssumeE to be associated toP, with typical fibreL and
let q be the mapP × L → E. For every integern ≥ 0, we shall define
an isomorphismλ of εn(V) into the spaceL n(P) of differential forms of
degreen on P with values in the vector spaceL. For n = 0, λ has been
defined in 5.6. Assumen > 0. For everyα ∈ εn(V), we define a form
α̃ = λα on P with values inL by the condition

q(ξ, α̃(d1ξ, d2ξ, . . .dnξ)) = α(pd1ξ, pd2ξ, . . . pdnξ)

for every sequencediξ of n vectors with origin atξ ∈ P. If X1,X2, . . .Xn100

aren projectable vector fields onP, then

(λα)(X1,X2, . . .Xn) = λ(α(pX1, pX2, . . . pXn))
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Therefore,λα is differentiable and belongs toL n(P). It is imme-
diately seen thatλ is an injective homomorphism ofεn(V) into L n(P)
regarded asU (V)-modules. Moreover, if ˜α belongs to the image ofλ in
L n(P), then :

1) α̃(d1ξs, d2ξs, . . .dnξs) = s−1α̃(d1ξ, d2ξ, . . .dnξ)s

for every sequencediξ of n vectors with origin atξ ∈ P and every
s∈ G,

2) α̃(d1ξ, d2ξ, . . .dnξ) = 0

for every sequencediξ of n vectors with origin atξ ∈ P such that one
of thediξ has projection 0.

Definition 6. A form α ∈ L n(P) satisfying the conditions 1) and 2) is
said to be aG- form of degree non P with values inL.

Let L n
G(P) be the set ofG-forms of degreen. It is easy to see that

L n
G(P) is a submodule ofL (P) over U (V). MoreoverL n

G(P) is the
image of the homomorphismλ : εn(V)→ L n(P).

5.9 Examples

1. Letγ, γ′ be two connection forms on the principal bundleP over
V. Let β = γ − γ′. Then we haveβ(dξ s) = s−1β(dξ)s; and
β(dξ) = γ(dξ)−γ′(dξ) = 0 if pdξ = 0. In other words,β ∈ L 1

G(P)
with respect to the adjoint representation ofG in Y . Henceβ = α̃
whereα is a differential form of degree 1 onV with values in
the adjoint bundle ofP which is a vector bundle associated toP
with typical fibreY . This gives a method of finding all connec-
tion forms from a given one. This is particularly useful whenG is
abelian, in which case the adjoint representation ofG in Y is triv-
ial and consequentlyα may be considered as a differential form
on V with values inY

2. LetK be the curvature form of the connection formγ on a princi- 101

pal bundleP. Then
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K(d1ξs, d2ξs) = s−1K(d1ξ, d2ξ)s

and K(d1ξ, d2ξ) = 0 if eitherd1ξ or d2ξ ∈ Nξ

ThereforeK is an alternateG-form of degree 2 onP with values
in Y and corresponds to a form of degree 2 onV with values in the
associated adjoint bundle.

5.10 Linear connections and geodesics

Let C be the vector bundle of tangent vectors onV. We considerC as
a vector bundle associated to the principal bundleP of tangent frames
on V with typical fibre Rn. There exists an one-one correspondence
between connections onP (which are calledlinear connectionson V)
and derivations laws in the moduleC (V) of vector fields onV. The
torsion form is an alternate form of degree 2 with values in the tangent
bundleC.

Given any linear connection onV, we have the notion ofgeodesics
on V. (In Ch.5.10 to Ch.5.12, we consider paths with arbitrary intervals
of definition). In fact, ifϕ is a differentiable path inV, then there exists
a canonical liftof ϕ in C defined byt → ϕ′(t). We shall denote this lift
by ϕ′.

Definition 7. A pathϕ in V is said to be ageodesicif the canonical lift
ϕ′ is integral. (In other words, the vectorϕ′′(t) at ϕ′(t) ∈ C should be102

horizontal for the given linear connection).

Lemma 3. Letϕ be a path in V and̂ϕ an integral lift ofϕ in P. Thenϕ
is a geodesic if and only if there exists v∈ Rn such that q(ϕ̂(t), v) = ϕ′(t)
for every t∈ I.

The proof is trivial.
It will be noted that the notion of a geodesic depends essentially on

the parametrisation of the path. However, a geodesic remains a geodesic
for linear change of parameters.

Let Y ∈ C be a vector at a pointx ∈ V andθY the horizontal vector at
Y whose projection isY. Thenθ is a vector field onC called thegeodesic
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vector field. The geodesic vector field isdifferentiableaccording to the
following computation ofθ in local coordinates.

5.11 Geodesic vector field in local coordinates

Let C be the tangent bundle of a manifoldV with a derivation lawD.
Let p be the projectionC → V. If Y is a vector atx = pY ∈ V and
U a neighbourhood ofpY wherein a coordinate system (x1, . . . xn) is

defined, we denote the vector fields
∂

∂xi
on U by Pi . Let yi

= dxi be

a family of differential forms onU dual to Pi, i.e., y j(Pi) = δ
j
i . The

y j may also be regarded as scalar functions onp−1(U) ⊂ C. Thus for
Y ∈ P, (y1, y2, . . . yn, x1, x2, . . . xn) form a coordinate system inp−1(U).
SetQi = ∂/∂yi. Then we assert that the geodesic vector fieldθ is given
in p−1(U) by

θ =
∑

i

yiPi −
∑

i, j,k

Γ
k
i, jy

iy jQK

where theΓk
i, j are defined by 103

DPi P j =

∑

k

Γ
k
i, jPk.

In fact, using Th.5, Ch.5.7, we see that the value of the differential
forms dyj

+
∑

i,k
yk
Γ

j
i,k(x)dxi on the vector is zero. It is easy to observe

thatθY =
∑

i
yi(Pi)Y −

∑

i, j,k
Γ

k
i, jy

iy jQk is horizontal and thatpθY = Y. This

shows thatθ as defined above is the geodesic vector field.

5.12 Geodesic paths and geodesic vector field

Proposition 5. ϕ is geodesic path in V if and only if the canonical lift
ϕ′ of ϕ is integral forθ, i.e.,ϕ′′(t) = θϕ′(t) for every t.

In fact, if ϕ is a geodesic, then we havepϕ′(t) = ϕ(t) andpϕ′′(t) =
ϕ(t) for everyt ∈ I . Henceϕ′′(t) = θϕ′′(t). The converse is trivial in as
much every path integral forθ is also integral for the connection.
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Proposition 6. If ψ is an integral path forθ thenϕ = pψ is a geodesic
ϕ′(t) = ψ(t)

By assumptionψ′(t) = θψ(t) and if ϕ(t) = pψ(t), we haveϕ′(t) =
pψ′(t) = pθψ(t), i.e.,ψ is the canonical lift ofϕ and is integral.

The geodesic vector fieldθ on C generates a local one-parameter104

group of local automorphisms ofC. We say that the linear connection
on V is completeif θ generates a one-parameter group of global auto-
morphisms ofV. It is known that in a compact manifold, any vector
field generates such a one-parameter group of automorphisms. On other
hand, if the local one-parameter group generated byθ in C is represented
locally by 2n functionsϕi(y1, . . . yn, x1, . . . xn, t) of (2n + 1) variables,
then it is easy to observe that the firstn of these functions are linear
in y1, . . . , yn. From this it is immediate that any linear connection on a
compact manifolds is complete.

The nomenclature ‘complete’ is due to the fact that a Riemannian
connection is complete if and only if the Riemannian metric is complete
([27]).

Let Γ be a complete linear connection andθ the geodesic vector
field. Let tθ be the automorphism ofC corresponding to the parameter
t in the one-parameter group generated byθ. Paths which are integral
for θ are of the formt → tθY (i.e., the orbit ofY undertθ). Given any
vectorY at a pointx on the manifoldV, ϕ(t) = p(tθY) is thegeodesic
curvedefined byY. For everyx ∈ V, the mapρ : Cx → V defined by
settingρ(Y) = p(1θY) is a differentiable map of maximal rank at 0x and
therefore defines a diffeomorphism of an open neighbourhood of 0 in
the vector spaceCx onto an open neighbourhood ofx in V([26]).
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Holomorphic Connections

6.1 Complex vector bundles

Definition 1. A complex vector bundleis a differentiable vector bundle105

E over a manifoldV with a differentiable automorphismJ : E → E
such that

1) JEx ⊂ Ex for everyx ∈ V;

2) J2Y = −Y for everyY ∈ E.

Let P be a differentiable principal bundle overV with groupG. Let
us assume given a left representations→ sL of G in a complex vector
spaceL, such that eachsL is a complex automorphism ofL. Then a
vector bundleE associated toP with typical fibreL can be made into a
complex vector bundle by settingJq(ξ, v) = q(ξ,

√
−1v) for everyξ ∈ P

andv ∈ L, q being the usual projectionP × L → E. Conversely any
complex vector bundleE can be obtained in the above way. In fact, for
x ∈ V we definePx to be the vector space of all linear isomorphisms
α : Cn → Ex such thatα(

√
−1v) = Jα(v) for v ∈ Cn. Then as in Ch. 4,

one can provideP = ∪Px with the structure true of a principal bundle
over V with group GL(n,C).E is easily seen to be a complex bundle
associated toP with fibreCn with respect to the obvious representation
of GL(n,C) in Cn.

If E is a complex vector bundle, theU (V)− moduleε(V) of differ- 106

81
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entiable sections ofE can be provided with the structure of anUC(V)−
moduleUC(V) being the algebra of complex-valued differentiable func-
tions onV) by setting (f +ig)σ = fσ+Jgσ for f , g ∈ U (V). Conversely
if I is an endomorphism of theU (V)− module of sections of a differ-
entiable vector bundleE over V such thatI2σ = −σ for every section
σ, then there exists one and only one automorphismJ of E such that
J(σx) = (Iσ)x (for every sectionσ and x ∈ V) and J makes ofE a
complex vector bundle.

6.2 Almost complex manifolds

Definition 2. An almost complex manifoldis a differentiable manifold
V for which the tangent bundle has the structure of a complex vector
bundle, i.e., there exists anU (V)− endomorphismI of C (V) such that
I2
= − (Identity).

TheUC(V)- moduleCC(V) of complex vector fields (defined as for-
mal sumsX1 + iX2,X1,X2 ∈ C (V)) can be identified with the module
of derivations ofUC(V) overC. TheU (V)− endomorphismI of C (V)
can then be extended to anUC(V)- endo-morphism ofCC(V) by setting
I (X1 + iX2) = IX1 + iIX2 for X1,X2 ∈ C (V).

Definition 3. A vector fieldX ∈ CC(V) is said to be oftype(1, 0) (resp. .
of type(0, 1)) if IX − iX (resp. .IX = −iX).

We shall denote byC(1,0)(V),C(0,1)(V) theUC(V)- modules of vector
fields of type (1, 0) and type (0, 1) respectively.

Clearly one hasCC(V) = C(1,0)(V)⊕C(0,1)(V). Moreover, any vector107

field X of type (1, 0) can be expressed in the formX1 − iIX1 with X1 ∈
C (V). On the other hand,X − iIx is of type (1, 0) for everyX ∈ CC(V).
Similarly every vector field of type (0, 1) can be expressed inthe form
X1 + iIX1 with X1 ∈ C (V) andX + iIX is of type (0, 1) for everyX ∈
UC(V).

Let V be an almost complex manifold andE a complex vector bun-
dle overV. A complex form of degree p on V with values in Eis a
multilinear form of degreep on theUC(V) - moduleCC(V) with values
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in ε(V). Any real form can be extended in one and only one way to a
complex form. On the other hand, every complex form is an extension
of a real form.

Every holomorphic manifoldV carries with it a canonical almost
complex structure. With reference to this a vector field onV is of type
(1, 0) if and only if its expression in terms of any system (Z1, . . . ,Zn) of

local coordinates does not involve
∂

∂Z̄1
, . . . ,

∂

∂Z̄n
. Hence it follows that

[C(1,0)(V),C(1,0) (V)] ⊂ C(1,0)(V). Conversely an almost complex struc-
ture onV comes from a holomorphic structure onV if [ C(1,0)(V),C(1,0)

(V)] ⊂ C(1,0)(V) cf. Newlander and Nirendberg, Annals of Math. 1957.
Let X,Y ∈ CC(V). ThenX − iIX,Y − iIY ∈ C(1,0)(V) and the above
condition requires that [X − iIX,Y − iIY] ∈ C(1,0)(V). In other words,

[X,Y] − [IX, IY] = −I [IX,Y] − I [X, IY].

F(X,Y) = [X,Y] + I [IX,Y] + I [X, IY] − [IX, IY]

is easily seen to beCC(V)− bilinear. Hence we have: 108

An almost complex structure onV is induced by a holomorphic
structure if and only ifF(X,Y) = 0 for everyX,Y ∈ CC(V).

6.3 Derivation law in the complex case

We wish to study derivation laws in the module of sections of acomplex
vector bundle over an almost complex manifold (mostly holomorphic
manifold). This can be done in the algebraic set-up of Ch.1.

Let A be a commutative algebra over the field of real numbers and
AC its complexification. LetC be theAC module of derivations ofAC.
We assume given onC and AC - endomorphismI such thatI2

= −
(Identity). If we defineX̄ ∈ C by X̄a = Xā for a ∈ A, then we also
assume thatI satisfiesI X̄ = ¯IX. X ∈ C is said to be of type (1, 0) (resp. .
type (0, 1)) if IX = iX (resp. . IX = −iX). Let M be anA- module. A
multilinear formα of degreep on C with values inM is said to be of
type (r, s) if r + s = p andα(X1, . . .Xp) = 0 whenever either more than
rX′i s are of type (1, 0) or more thansX

′

i s are of type (0, 1). We shall
denote the submodule ofF p(C,M) consisting of all forms of type (r, s)
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by F r,s(C,M). Then it is easy to see thatF p(C,M) =
∑

r+s=p
F r,s(C,M),

the sum being direct. Let us denote the module of alternate forms of
type (r, s) on C with values inM by U r,s(C,M). Let M1,M2,M3 be
threeAC- modules with a bilinear productM1 × M2 → M3. It is then
easy to see that ifα ∈ U r,s(C,M1), β ∈ U r ′,s′(C,M2), thenα ∧ β ∈109

U r+r ′,s+s′(C,M3).
We shall now make the additional assumption thatF[X,Y] = [X,Y]+

I [IX,Y] + I [X, IY] − [IX, IY] = 0 for everyX,Y ∈ C. (This corresponds
to the case when the base manifoldV is holomorphic). A derivation law
D in anAC moduleM gives rise to an exterior derivationd in U p(C,M).
Using the explicit formula ford (Ch.1.7) and the fact thatF ≡ 0, it is
easily proved that forα ∈ U r,s(C,M), dα is the sum of a formd′α of
type (r + 1, s) and a formd′′α of type (r, s+ 1). The curvature form
K ∈ U 2(C,HomAC(M,M) is a sum of three componentsK2,0,K1,1 and
K0,1. Forα ∈ U p,q(C.M) we haved2α = K ∧α (Lemma 5, Ch. 1.9) and
calculating the components of type (p, q+ 2) we obtain

d′′2α = K0,2 ∧ α.

Now we make the further assumption thatK0,2
= 0. It follows that

d′′2 = 0. For every integerp, form the sum
∑

q
U p,q(C,M) = Tp. Then

we have a complex

U p,0(C,M)
d
′′

−−→ U p,1(C,M)
d
′′

−−→ · · ·U p,q(C,M)
d
′′

−−→ · · ·

The complexTp of course depends on the derivation lawD. Let
D̂ be another derivation law inM. Then D̂ = D + ω whereω ∈
HomC(C,HomAC(M,M)) (see Ch. 1.10). We shall say that two deriva-110

tion lawsD, D̂ areequivalentif ω is of type (1, 0). The boundary op-
eratord

′′
in the complexSp remains the same whenD is replaced by

an equivalent derivation laŵD. For, if D = D̂ + ω, we have (Ch.1.10)
d̂α = dα + ω ∧ α for α ∈ U p,q(C,M). Hence on computing the compo-
nents of type (p, q+1), one obtainŝd′′α = d′′α. Thus we have associated
to every equivalence class of derivation laws, a complexTp (for every
integerp).
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A derivation law D in M induces a derivation lawD in HomAC
(M,M) = EndM(Ch.1.3). Then it is easy to see that

K(X,Y)ρ = K(X,Y) ◦ ρ − ρ ◦ K(X,Y)

for X,Y ∈ C, ρ ∈ end M. Hence ifK0,2
= 0,K0,2 is also= 0. Moreover,

if D, D̂ are equivalent, so areD, D̂. Hence to an equivalence class of
derivation laws inM corresponds a complexT p (for every integerp):

U p,o(C, EndM)
d′′

−−→ U p,1(C, EndM)
d′′

−−→ · · ·U p,q(C, EndM)
d′′

−−→ · · ·

Now K1,1 is an element ofU 1,1(C,EndM). Since we havedK = 0
(Lemma 6, Ch.1.9) andK0,2

= 0, we getd′′K1,1
= 0, i.e., K1,1 is a

cocycle of the complexT . If D is replaced by an equivalent derivation
law D̂, we have (Ch.1.10)̂K = K + dω + ω ∧ ω whereD̂ = D + ω. 111

Butω ∈ U 1,0(C,EndM). HenceK̂1,1
= K1,1

+ d′′ω. In other word, the
cohomology class ofK1,1 in the above complexT 1 is uniquely fixed.

6.4 Connections and almost complex structures

Let P be a differentiable principal bundle over an almost complex man-
ifold V with complex Lie groupG. Let Y be the Lie algebra ofG 112

identified with the space of real tangent vectors ate. We denote byIG
the endomorphismY → Y given by the complex structure ofG and by
I the almost complex structure ofV. Obviously we have

s(IGa)−1s= IG(sas−1) for s∈ G, a ∈ Y .

Let ξ ∈ P andpξ = x ∈ V. Then we have the exact sequence

0→ Nξ → Tξ → Tx → 0

whereNξ is the space of vectors atξ tangential to the fibre. If a connec-
tion is given onP, then we may define as almost complex structure on
P by carrying over the complex structure onTx to Sξ (the space of hor-
izontal vectors atξ) and that ofY to Nξ (by virtue of the isomorphism
a→ ξa). This is easily seen to define an almost complex structure onP
so that we have the
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Proposition 1. Letγ be a connection form on a differentiable principal
bundle P over an almost complex manifold V with complex Lie group
G. Then there exists one and only one almost complex structure on the
manifold P such that

1) γ(Ipdξ) = IGγ(dξ)

2) pIpdξ = I pdξ for ξ ∈ P.

In virtue of the general procedure given in Ch.6.2,γ is defined on
complex vector fields by settingγ(iX) = IGγ(X) for X ∈ C (P). The
connection form is obviously of type(1, 0) with respect to the induced
almost complex structure on P. Moreover, the P×G→ P given by the
action of G on P is almost complex. We shall call a principal bundle P
over an almost complex manifold V with complex Lie group G an almost
complex principal bundle if P has an almost complex structure such that
the projection p and the map(ξ, s)→ ξs of P×G→ P are both almost
complex (i.e., compatible with the almost complex structure). We have
seen above that P with the almost complex structure induced by a con-
nection formγ on P is an almost complex principal bundle. Conversely,
let P be an almost complex principal bundle. Ifγ = γ1,0

+ γ0,1 is a
connection form on P thenγ1,0 is again a connection form. In fact,

γ1,0(ξa) =
1
2
γ1,0((ξa+ iI pξa) + (ξa− iI pξa))

=
1
2
γ(ξa− iI pξa)

=
1
2

(a− IGγ(IPξa)) =
1
2

(a− IGγ(ξIGa))

= a

Similarly it may be shown thatγ1,0(dξs) = s−1γ1,0(dξ)s. Moreover113

we have

γ1,0(IPdξ) =
1
2
γ1,0(IPdξ + idξ + IPdξ − idξ)

=
1
2
γ(IPdξ + idξ)
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= IGγ
1,0(dξ).

On the other hand,pIPdξ = Ipdξ by assumption. Hence by prop.1,
Ch.6.4,γ1,0 induces the given almost complex structure onP.

Let γ, γ̂ be two connection forms on an almost complex principal
bundleP. Thenγ − γ̂ is a G-form (Ch.5) of degree 1 onP with values
in Y . It may be identified with a differential form of degree 1 onV with
values in the adjoint bundle. Using the fact that every vector field on
V of type (1,0) is the projection of a vector field onP of type (1,0) it
is easy to see that this identification is type-preserving. In other words,
the type ofG-forms onP with values inY depends only on the almost
complex structure onV. We say thatγ, γ̂ areequivalentif γ − γ̂ is of
type (1,0). The following proposition in then immediate.

Proposition 2. Two connectionsγ, γ̂ on P induce the same almost com-
plex structure on P if and only ifγ and γ̂ are equivalent.

On the other hand we have seen that every almost complex structure
on P which makes of it an almost complex principal bundle is induced 114

by a connection of type (1, 0). We have thus set up one-one correspon-
dence between almost complex bundle structure onP and equivalence
classes of connections.

We will hereafter assume that the base manifoldV is holomorphic
and investigate when a connection formγ induces a holomorphic struc-
ture onP. Then curvature formK of γ is a G-form of degree 2 with
values inY . Let K = K2,0

+ K1,1
+ K0,2 be its decomposition.

Proposition 3. A connection formγ on P induces a holomorphic struc-
ture on P if and only if K0,2 = 0.

In fact, if γ induces a holomorphic structure onP, thend′′γ = 0.
SinceK = dγ + [γ, γ] and γ is of type (1, 0) for the induced complex
structure,K0,2

= 0. Conversely, letK0,2
= 0. We have then to show that

FP(X,Y) = [X,Y] + IP[PX,Y] + IP[X, IPY] − [IPX, IPY] = 0

for any two vector fieldsX,Y onP. SinceFP is a tensor, it is sufficient to
prove thatFP(X,Y) = 0 for projectable vector fieldsX,Y. ThenIPX, IPY
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are also projectable, and we havePFP(X,Y) = FV(PX,PY) = 0 sinceV
is holomorphic. On the other hand,

γ(F(X,Y)) = γ([X,Y] − [IPX, IPY]) + IGγ([IPX,Y] + [X, IPY])

= γ([X,Y] − [IPX, IPY] + [iI PX,Y] + [X, iI PY])

= γ([X + iI PX,Y + iI PY]).

But sinceK0,2
= 0,K(X + iI PX,Y + iI PY) = 0.115

i.e., (X+ iI PX)γ(Y+ iI PY)− (Y+ iI PY)γ(X+ iI PX)−γ([X+ iI PX,Y+
iI PY]) = 0.

Sinceγ is of type (1, 0), we obtainγ(F(X,Y)) = 0 which gives
F(X,Y) = 0.

Definition 4. A differentiable principal bundleP over a holomorphic
manifold V with a complex Lie groupG is said to be aholomorphic
principal bundle ifP is a holomorphic manifold such that the projection
p : P→ V and the map (ξ, s)→ ξsof PχG→ P are holomorphic.

If a connection formγ exists onP with K0,2
= 0, then the induced

almost complex structure onP is holomorphic and its is obvious that
this makes ofP a holomorphic principal bundles.

6.5 Connections in holomorphic bundles

Let P be a holomorphic principal bundle overV with group G. The
definitions of holomorphic vector bundles with respect to a holomorphic
representation ofG in a complex vector spaceL are given in analogy
with the differentiable case.

All the results of Chapter 2 can be carried over to holomorphic bun-
dles with obvious modifications. Let0(U) be the algebra of holomor-
phic functions on an open subsetU of V and0 the sheaf of holomorphic
functions onV. The notion of a sheaf of0- modules is defined as in
Chapter 4. Moreover, there exists a functor from the category of holo-
morphic vector bundles overV to the category of locally free sheaves116

of 0 modules which takes exact sequences to exact sequences, andvice
versa.
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Let G be a complex Lie group,P a holomorphic principal bundle
with group G over a holomorphic manifoldV, and E a holomorphic
vector bundle overV associated toP with typical fibreL. Any connec-
tion formγ on P defines a derivation law in the module of sections ofE
(Ch.5).

Proposition 4. If the connection formγ is of type(1, 0), then a differen-
tiable sectionσ of E over an open subset U of V is holomorphic if and
only if d′′σ = 0.

If σ̃ is the G-function onP with values inL corresponding toσ
under our usual isomorphism, it is easy to prove (as in the differentiable
case) thatσ is holomorphic if and only if ˜σ is holomorphic. But this is
equivalent to saying thatd′′σ̃ = 0 for the canonical derivation law in the
UC(P) module ofL-valued functions onP. Since the derivation lawD
induced byγ in L (P) was defined byDX f = X f + γ(X)L f (in the usual
notation) andγ is of type (1, 0), thed′′ for D and the canonical derivation
law are the same. Since the isomorphismα→ α̃ is type-preserving, we
have (d′′α̃) = d̃′′α̃ where d̃′′ corresponds to the derivation lawD in
LG(P). Henced′′σ̃ = 0.

Let U be an open subset ofV over whichE is trivial and letσ1, . . .,
σn be holomorphic sections onU which form a basis for theU (U)−
moduleε(U) of sections ofE overU. Then for any sectionσ =

∑

fiσi 117

overU we have

d′′σ =
∑

(d′′ fi) ∧ σi +

∑

fi ∧ d′′σi (Ch.1.8)

=

∑

d′′ fi ∧ σi Prop. 4; Ch. 6.5

=

∑

(d′′ fi)σi

In other words,d′′ depends only on the manifoldV and not on the
principal bundleP. Moreover it is obvious thatd′′2σ = 0.

However, this can be proved algebraically. In fact, ifγ, γ̂ are of
type (1, 0), so isγ − γ̂ = ω. From this it follows that that induced
derivation laws are equivalent and the correspondingd′′ are the same
(Ch. 6.3). Furthermore, sinceK0,2

= 0 (which is a consequence of prop.



90 6. Holomorphic Connections

3. Ch.6.4γ being of type (1, 0)) we have seend′′2 = 0 in Ch.6.3. We
have therefore a complex

εp,0(U)
d′′−−→ εp,1(U)

d′′−−→ · · · εp,q(U)
d′′−−→ · · ·

for every open subsetU of V, whereεp,q(U) is the module of differential
forms of type (p, q) on U with values inE. This defines a complex
SP(E) of sheaves overV:

εp,0 d′′−−→ εp,1 d′′−−→ · · · · · · εp,q d′′−−→ · · · · · ·

whereεp,q denotes the sheaf of differential forms of type (p, q) on V
with values in the vector bundleE. Let U p,q be the sheaf of complex118

valued differentiable functions of type (p, q) on V,0 the sheaf of holo-
morphic functions onV, εh the sheaf of holomorphic sections ofE. Then
εp,q is isomorphic to the sheafU p,q ⊗

0

εh and therefore is a fine sheaf.

Moreover if0p is the sheaf of holomorphic forms of degreep onV then
the sequence

0→ 0
p ⊗

0

εh→ εp,0 d′′−−→ εp,1→ · · ·

is exact Dolbeault theorem [12]). Therefore the complexT p(ε) is a fine
resolution of the sheaf0p ⊗

0

εh and if Sp(ε) is the complex of sections

εp,0(V)
d′′−−→ εp,1(V)

d′′−−→ · · · εp,q(V)
d′′−−→ · · ·

Then
Hq(Sp(ε)) ≃ Hq(C,0p ⊗ εh)

for every pair of integersp, q > 0.
Now assumeE to be the adjoint bundle ad (P) to P. We shall con-

struct a canonical cohomology class inH1(S1(ad(P))). Let γ be a con-
nection form of type (1, 0) onP andK = K2,0

+K1,1 its curvature form.
As aG-form onP with values in the Lie algebraY ,K corresponds to an
alternate formχ of degree 2 onV with values inad(P). Sinced′′K1,1

= 0
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(Ch. 6.3), we haved′′χ1,1
= 0. In other words,χ1,1 as a 1-cocycle of the

complexS1(ad(P)).
Moreover if γ̂ is another connection of type (1, 0), χ̂1,1 differs from119

χ1,1 by a coboundary of the complexS1(ad(P)). We have therefore as-
sociated a unique 1-cohomology class inS1(ad(P)) to the holomorphic
bundleP. To the cohomology class ofχ1,1 corresponds an element of
H1(V,01 ⊗

0

(ad(P))h). This will be referred to as theAtiyah classof the

principal bundleP.
Regarding the existence of a holomorphic connection on the bundle

P (i.e., a connection such thatγ is a holomorphic form) , we have the

Theorem 1. There exists a holomorphic connection in a holomorphic
bundle P if and only if the Atiyah class a(P) of the bundle is zero.

In fact, if γ is a connection form onP of type (1, 0), γ is holomorphic
if and only if d′′γ = 0. SinceK0,2

= 0, we see thatd′′γ = K1,1
= 0 and

henceχ1,1
= 0.

Conversely, ifa(P) = 0 andγ a connection form of type (1, 0) on
P, we haveχ1,1 ∼ 0. Hence there exists a formα ∈ (adP)1,0(V) such
that d′′α = χ1,1. Thenγ̂ = γ − α̃ is a connection form onP such that
d′′γ̂ = 0.

Corollary. There always exists a holomorphic connection on a holo-
morphic bundle P over a Stein manifold V.

In fact, the sheaf01 ⊗
0

(adG )n is a coherent sheaf and therefore

a(P) = 0, sinceV is a Stein manifold. By Theorem 1, there exists a
holomorphic connection onP.

6.7 Atiyah obstruction

Let 0→ F 1 → F → F ′′ → 0 be an exact sequence of locally free120

sheaves of0 modules over a holomorphic manifoldV. SinceF ′ is
locally free, the corresponding sequence

0→ Hom0(F ′′,F ′)→ Hom0(F ,F ′)→ Hom0(F ′,F ′)→ 0
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is exact. This gives rise to the exact sequence

0→ Ho(V,Hom0(F ′′,F ′))→ · · · → Ho(V,Hom0 F ′,F ′))

→ H1(V,Hom0(F ′′,F ′)→ · · ·

Ho(V,Hom0(F ′,F ′)) is then the module of sections of the sheaf Hom0

(F ′,F ′). The image of the identity section of Hom0(F ′F ′) is called
theobstructionto the splitting of the given sequence.

Let Kh,Th,Ch be the sheaves of holomorphic vector fields onP
tangential to the fibres, of all holomorphic invariant vector fields onP
and of all holomorphic vector fields onV respectively. Then we have
the exact sequence

0→ Kh→ Th→ Cn→ 0

Let b(P) be the obstruction to the splitting of this exact sequence.
b(P) is then a class inH1(V,Hom0(Ch,Kh)). We shall call this the
Atiyah obstruction class.

Theorem 2. The necessary and sufficient condition for a holomorphic121

connection to exist on P is that b(P) = 0.

In fact,b(P) = 0 if and only if the above sequence splits and the rest
of the proof is exactly as for the differentiable case.

Theorem 3. There exists a canonical isomorphismρ of the sheafR =
0

1 ⊗
0

(adP)h ontoHom0(Ch,Kh) such thatρa(P) = −b(P).

We shall defineρU : R(U) → Hom0(U)(Ch(U),Kh(U)) for every
open subsetU of V. Everyω ∈ R(U) is a differential form onU with
values i the adjoint bundle and ˜ω is aG-form on p−1(U) with values in
Y . For everyX ∈ Ch(U) and ξ ∈ p−1(U), we define (ρU (ω)(X))ξ =
1
2
ξ(ωXξ − iIGωXξ). It is easily seen thatρU is an isomorphism and that

it defines an isomorphism

ρ : R → Hom0(Ch,Kh)
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Let {Ui} be a covering ofV by means of open setsUi , over each
of which P is holomorphically trivial. We shall computea(P), b(P) as
cocycles of the above covering with values in the sheavesR,Hom0(Ch,

Kh) with respect to the above covering. Letγi be holomorphic con-
nections onp−1(Ui) andγ a differentiable connection onP. K1,1 is the
elementd′′γ in (adP)1,1(V). If γ = γi + αi over p−1(Ui) with αi ∈
(adP)1,0(V), thenK1,1 is thed′′− image ofαi on Ui. For,d′′γ = d′′α̃i =

d′′α̃i (in our usual notation). Hencea(P) is represented inH1(X,R) 122

with respect to the above covering by the cocycleαi − α j = −(γi − γ j)
onUi ∩ U j.

On the other hand,in the exact sequence

0→ Hom0(Cn,Kh)→ Hom0(Ih,Kh)→ Hom0(Kh,Kh)→ 0

the identity section of Hom0(Kh,Kh) can be lifted onUi into the map

Γi ∈ Hom0(Th,Kh) whereΓi(X)ξ =
1
2
ξ(γi(Xξ) − iIGγ(Xξ)) for X ∈

Th, ξ ∈ P. Hence the obstruction class is represented byλi j on Ui ∩ U j

defined by

λi, j(pdξ) =
1
2
ξ((γi − γ j) (dξ) − iIG(γi − γ j)(dξ))

for everydξ ∈ Tξ. This represents the cocycle of the classb(P) for the
covering{Ui}. Obviouslyρ(a(P)) = −b(P).

6.8 Line bundles over compact Kahler manifolds

Let P be a holomorphic principal bundle over a manifoldV with group
G = C∗(C∗ = GL(1,C)). We shall compute the Atiyah classa(P) for
such a bundle. Let{Ui} be a covering ofV over each of whichP is
trivial with holomorphic sectionsσi on Ui and a set of holomorphic
transition functions{mi j }. Since the adjoint representation is trivial, the
adjoint bundle is also trivial and theG-functions andG-forms onP are
respectively functions and forms onP which are constant on each fibre.
Let γ be a connections form of type (1, 0) on P. It is easy to see that123

d′′(σ̃∗i γ) = d′′γ. But σ∗jγ − σ
∗
i γ = m−1

i j dmi j = d(logmi j ). Thus the
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forms d(logmi j ) form a cocycle representing the Atiyah class for the
covering{Ui}.

Finally, when the base manifold is compact KahlerH1(V,K = 0
1)

may be identified ([30]) with a subspace ofH2(V,C) by Dolbeault’s the-
orem. The sequences

(1) 0→ Z→ 0
e2πi

−−−→ 0
∗ → 0

and

(2) 0→ C→ 0
d−→ 0

1→ 0

whereZ,C are constant sheaves and0
∗ is the sheaf of nonzero holomor-

phic functions, can be imbedded in the commutative diagram

(3)

0 // Z

j
��

// 0

i
��

// 0∗

1
2πi d log

��

// 0

0 // C // 0 // 0′ // 0

where j, i are respectively the inclusion and identity maps. We get con-
sequently the commutative diagram

H1(V,0∗)

δ

��

α // H2(V,Z)

β

��
H1(V,0′)

γ
// H2(V,C)

whereα is the connecting homomorphism of the exact sequence (1),β, δ124

maps induced by diagram (3), andγ the injection given by Dolbeault’s
theorem ([29]). If{mi j } are the multiplicators for a covering (Ui) of

V, δ(mi j ) is given by
1

2πi
d log(mi j ). The bundleP may be regarded as

an element ofH1(V,0∗) and its image byα is the first integral Chern
class ofP and its image byβ is the Chern classC(P) with complex
coefficients. By the commutativity of the diagram, we havea(P) =
2πiC(P).
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In particular, we obtain the result that if there exists a holomorphic
connection in a line bundle over a compact Kahler manifold, then its
Chern class with complex coefficients= 0. It has been proved under
more general assumptions on the group of the bundle that the exis-
tence of holomorphic connections implies the vanishing of all its Chern
classes [2].
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