Lectures on

Topics In The Theory of Infinite Groups

By

B.H. Neumann

Notes by

M. Pavman Murthy

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5

Tata Institute of Fundamental Research, Bombay
1960
(Reissued 1968)

Preface

As the title of this course of lectures suggests, my aim was not a system- $\mathbf{1}$ atic treatment of infinite groups. Instead I have tried to present some of the methods and results that are new and look promising, and that have not yet found their way into the books of Kurosh, Specht, Zassenhaus, Marshall Hall, Jr. The contents of Chapters 8, 10, 11, 12 were mostly still unpublished at the time of the lectures; those of Chapters 8 and 12 have recently appeared. All through the lectures I have drawn attention to the numerous problems that still defy our efforts at solution. The Theory of Groups is still very much alive today.

This course was delivered during the monsoon term, 1959, and extended over 36 lectures. I enjoyed every one of them. I am profoundly grateful to Professor K. Chandrasekharan for inviting me to spend this term at the Tata Institute of Fundamental Research. I also wish to record my gratitude to Mr. Pavman Murty, who took the notes and prepared them for circulation.

B.H. Neumann.
The University,
MANCHESTER, 13,
ENGLAND.
December, 1959.

Contents

Preface iii
1 Introduction. Definitions and Notations 1
1 Abstract Algebras 1
2 Groups 2
3 Some elementary properties of groups 3
4 5
5 The multiplication of subsets of groups. 6
6 Subgroups 8
2 Generators and Relations 11
1 11
2 12
3 13
4 14
5 15
6 17
7 The Word Problem for groups 19
3 Homomorphisms of Groups 21
1 21
2 Equivalence relations and congruences 26
3 Factorisation of a homomorphism 32
4 Normal subgroups 33
5 The graph of a binary relation 34
6 The graph of a congruence in a group 36
7 The lattice of congruences and normal subgroups 37
8 Extension of a mapping of a set of. 39
4 Free Groups 43
1 43
2 Normal words 43
3 46
4 Dual property of free groups 48
5 Identical Relations and Varieties of Groups 51
1 51
2 Varieties 53
3 Burnside conjectures 54
4 A consequences of the result of Novikov.. 55
5 56
7 Verbal Subgroups 60
8 61
6 Group-theoretical Constructions 63
1 The Cartesian product and the... 63
2 The splitting extension 68
3 72
4 73
5 Reqular permutation representations.. 75
6 Wreath Product 76
7 82
7 Varieties of Groups (Contd.) 87
1 87
2 95
8 An Embedding Theorem 103
1 103
2 Corollaries 106
9 Generalised Free Products of Groups with Amalgamations 113
1 113
2 118
3 119
4 121
5 128
10 Permutational Products 135
1 Permutational products and Scbreier's Theorem 135
2 139
3 143
4 146
5 149
6 151
11 Embedding of Nilpotent and Soluble Groups 157
1 157
2 159
3 161
12 The Problems of Heinz Hopf 169
1 169
2 172
3 174
4 Finitely generated soluble non-Hopf group 179

Chapter 1

Introduction, Definitions and Notations

1 Abstract Algebras

In this chapter we shall derive certain properties of groups and fix certain 2 notations.

Let E be any set and Ω a set of functions defined on the Cartesian products

$$
E^{o}=\{\phi\}, E, E^{2}, \ldots E^{n}, \ldots
$$

with values in E, where ϕ denotes the empty set and

$$
E^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in E, i=1, \ldots n\right\} .
$$

The pair (E, Ω) is called an algebraic system or an abstract algebra. E is called the carrier of the algebra (E, Ω) and the elements of Ω are called operators.

If $\omega \in \Omega$ is a function on E^{n} with values in E, we say that ω is in n-ary operator. Thus if ω is an n -ary operator, then

$$
\omega\left(x_{1}, \ldots, x_{n}\right) \in E, \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in E^{n}
$$

A nullary operator is a function on the set $\{\phi\}$ with value in E. Thus if ω is a nullary operator then it is a function with the argument ϕ and with value in E. We denote this value by $\in\}$.

We shall use the terms unary and binary operators for 1-ary and $\mathbf{3}$ 2-ary operators respectively.

2 Groups

We are here interested in a particular class of algebraic system called groups.

Definition. A group (G, Ω) is an algebraic system with G as its carrier and Ω consisting of a nullary operator \in, an unary operator L and a binary operator π, related by the following laws:
(1) $\pi(x, \pi(y, z))=\pi(\pi(x, y), z)$, for every $x, y, z \in G$ (Associative Law);
(2) $\pi(x, L(x))=\in\{ \}$, for every $x \in G$;
(3) $\pi(x, \in\{ \})=x$, for every $x \in G$.

We shall for convenience write,

$$
\begin{aligned}
\pi(x, y) & =x y \\
L(x) & =x^{-1} \\
\in\} & =1 .
\end{aligned}
$$

In this notation, it is customary to call $x y$ the product elements x and y. The above three laws read as follows when written multiplicatively.
$\left(1^{\prime}\right) x(y z)=(x y) z, \quad$ (Associative law)
(2') $x x^{-1}=1$,
(3') $x 1=x$.
Because of (3^{\prime}) we say that 1 is a right neutral element. Similarly as suggested by $\left(2^{\prime}\right) x^{-1}$ is a right inverse of x. For the sake of brevity we shall identify the group (G, Ω) with its carrier G and refer to G as a group through this chapter.

If a group G in addition to the above three laws satisfies
(4) $\pi(x, y)=\pi(y, x)$, for all $x, y \in G$ (Commutative law)
or
(4') $x y=y x$ (in the multiplicative notation)
then G is an abelian group (or a Commutative group).
For the abelian group it is sometimes convenient to use the following additive notation

$$
\begin{aligned}
\pi(x, y) & =x+y \\
L(x) & =-x \\
\in\} & =0 .
\end{aligned}
$$

3 Some elementary properties of groups

(1) In the definition of a group the associative law is formulated for products of three elements of G. One can prove by induction on the number of factors that the corresponding law holds for products of any finite number of factors; in other words, the product will be independent of the way in which the brackets are inserted. The brackets are, therefore, irrelevant and will later on usually be omitted. The proof of the general associative law is straight forward and we omit it.
(2) The right neutral element ' t ' is also a left neutral element; in other 5 words,

$$
1 x=x, \text { for all } x \in G
$$

Proof. From law (3'), it follows that

$$
11=1,
$$

then

$$
\begin{array}{cl}
1\left(x x^{-1}\right)=x x^{-1} & \text { from }\left(2^{\prime}\right), \\
(1 x) x^{-1}=x x^{-1} & \text { from }\left(1^{\prime}\right) .
\end{array}
$$

Therefore,
$\left((1 x) x^{-1}\right)\left(x^{-1}\right)^{-1}=\left(x x^{-1}\right)\left(x^{-1}\right)^{-1}$, where $\left(x^{-1}\right)^{-1}$ is the right inverse of x^{-1}.

An application of the associative law gives,

$$
\begin{array}{r}
(1 x)\left(x^{-1}\left(x^{-1}\right)^{-1}\right)=x\left(x^{-1}\left(x^{-1}\right)^{-1}\right) \\
(1 x) 1=x 1=x
\end{array}
$$

and therefore

Finally, by another application of the associative law,

$$
1(x 1)=1 x=x
$$

This proves (2).
6 (3) The right inverse x^{-1} is also a left- inverse of x; in other words,

$$
x^{-1} x=1, \text { for all } x \in G
$$

Proof. $\left(x^{-1} x\right) x^{-1}=x^{-1}\left(x x^{-1}\right)=x^{-1} 1=x^{-1}$.
Therefore,

$$
\begin{aligned}
& \left(\left(x^{-1} x\right) x^{-1}\right)\left(x^{-1}\right)^{-1}=x^{-1}\left(x^{-1}\right)^{-1}=1, \\
& \left(x^{-1} x\right)\left(x^{-1}\left(x^{-1}\right)^{-1}\right)=x^{-1}\left(x^{-1}\right)^{-1}=1 .
\end{aligned}
$$

Hence, $\left(x^{-1} x\right) 1=1$,

$$
x^{-1} x=\left(x^{-1} x\right) 1=1 .
$$

This proves (3).

We say that 1 is a (two-sided) neutral element or unit element, now that it is both left neutral and right neutral. Similarly x^{-1} is an inverse of x.
(4) There is only one right neutral element in G. For let n be any right neutral element. An application of (2) immediately gives

$$
n=1 n=1 .
$$

This, in particular proves that 1 is the only neutral element of G.
(5) The equation $a x=b$, with $a, b \in G$, has the unique solution $x=$ $a^{-1} b$, in G. It is easy to verify that $a^{-1} b$ is a solution of the above equation. Now if x and y are two solutions of the equation, we have

$$
x=1 x=\left(a^{-1} a\right) x=a^{-1}(a x)=a^{-1}(a y)=\left(a^{-1} a\right) y=1 y=y .
$$

This proves the uniqueness.
Thus in a group the left cancellation law holds. Dually it follows that the right cancellation law also holds. As a consequence of (5), x^{-1} is the only inverse of x and also x is the inverse of x^{-1}

4

We note that we have defined groups by postulates of the from "for all x, y, z, \ldots, a certain equation is true". This does not mean that we have made no existential assumptions; but all existential assumptions have gone into the general algebraic frame work; that is to say, they are of the form "there is a nullary operator \in, a unary operator L ", and so on. A class of algebraic systems that is singled out, like that of groups, by postulates of the form "for all x, \ldots, the equation \cdots holds" is said to be equation-ally defined, or a variety of algebraic systems. Thus groups, as we have defined them, form a variety. Not all important and interesting classes of algebraic systems form varieties; thus e.g. the class of fields is not a variety. This will be shown later.

5 The multiplication of subsets of groups and its relation to the lattice operations

Let (E, Ω) be an algebraic system, $\omega \in \Omega$, an n-ary operator, X_{1}, \ldots, X_{n}, n subsets of the carrier E. We define the set

$$
\begin{gathered}
\omega\left(X_{1}, \ldots, X_{n}\right) \subseteq E \text { by } \\
\omega\left(X_{1}, \ldots, X_{n}\right)=\left\{\omega\left(X_{1}, \ldots, X_{n}\right) \mid x_{i} \in X_{i}, i=1, \ldots, n\right\} .
\end{gathered}
$$

Let G be a group, D, E and F subsets of G. Correspondingly we have

$$
\begin{aligned}
E F & =\{e f \mid e \in E, f \in F\}, \\
E^{-1} & =\left\{e^{-1} \mid e \in E\right\} .
\end{aligned}
$$

We denote the set $E\{f\}$ by $E f$ and similarly $\{e\} F$ by $e F$. Also we identify $\{e\}\{f\}$ with element $e f$.

Using the associativity of the multiplication of the elements of G it is easy to verify that the same holds for the multiplication of sets. In other words,

$$
D(E F)=(D E) F, \text { for } D, E, F \text { subsets of } G .
$$

Let $F \subseteq G,\left\{D_{i}\right\}_{i \in I}$ be a family of subsets of G; then
(1) $\left(\cup D_{i}\right) F=\cup D_{i} F$.

Proof. Let $g \in\left(\cup D_{i}\right) F$; then

$$
\begin{gathered}
g=d f \text { with } d \in \cup D_{i}, f \in F ; \text { now } \\
\qquad d \in D_{j} \text { for some } j \in I ; \text { hence } \\
g=d f \in D_{j} F \subseteq \cup D_{i} F,
\end{gathered}
$$

and thus, as g was arbitrary,

$$
\left(\cup D_{i}\right) F \subseteq \cup D_{i} F
$$

Conversely, if $g \in \cup D_{i} F$, then

$$
g \in D_{j} F \text { for some } j \in I
$$

thus $\quad g=d f$ with $d \in D_{j}, f \in F$,
Hence $d \in \cup D_{i}$, and therefore

$$
\begin{aligned}
& g=d f \in\left(\cup D_{i}\right) F \text {, and again as } g \text { was arbitrary, } \\
& \qquad \cup D_{i} F \subseteq\left(\cup D_{i}\right) F
\end{aligned}
$$

Combining this with the above inclusion we have the required equality.

In particular, we have

$$
(D \cup E) F=D F \cup E F, \text { for } D, E, F \subseteq G
$$

A similar straightforward verification shows that
(2) $\left(\cup D_{i}\right) F \subseteq \cap D_{i} F$.

In particular, we have

$$
(D \cap E) F \subseteq D F \cap E F
$$

The following example demonstrates that in general inclusion cannot be replaced by equality in (2).

Take G to be the additive group of integers, and

$$
\begin{gathered}
E=\{1\}, D=\{-1\}, F=G, \text { then } \\
(D \cap E) F=\phi, \quad D F \cap E F=G
\end{gathered}
$$

6 Subgroups

Let $S \subseteq G$, and
(1) $\in\} \in S$,
(2) $L(s) S$, for every $s \in S$,
(3) $\pi(s, t) \in S$, for every $s, t \in S$.

It is obvious that S is a group with the set of operators $\Omega=\{\in, L, \pi\}$. We call S, a subgroup of G. It should be noted that by definition a subgroup is non-empty. If a subgroup S of G is a proper subset of G, we call it a proper subgroup.

Hereafter the notation " $S \leq G$ " will be used for " S is a subgroup of G ". When S is a proper subgroup of G, we shall write " $S<G$ ".

The definition of a subgroup is immediately seen to be equivalent to the following conditions.
(1') $1 \in S$,
$\left(2^{\prime}\right) S^{-1} \subseteq S$,
$\left(3^{\prime}\right) S S \subseteq S$.
These three conditions can be replaced by the apparently weaker condition given in the following simple theorem.

Theorem 1. The subset S of the group G is a subgroup if, and only if
(i) $S \neq \phi$,
(ii) $S S^{-1} \subseteq S$.

Condition (ii) means that for any $s, t \in S$, the "right quotient" $s t^{-1} \in$ S : we then say that S is closed under right division. Similarly closure under left division can be defined.

Proof. The 'only if' part of the theorem is trivial. We proceed to prove the 'if' part. Since $S \neq \phi$, there is an element $x \in S$, and therefore by hypothesis

$$
x x^{-1}=1 \in S
$$

Now, for any $x \in S$,

$$
1 x^{-1}=x^{-1} \in S
$$

Further, if $x, y, \in S$, then by what we have just proved
and therefore,

$$
y^{-1} \in S
$$

This proves that S is a subgroup.
Also, by symmetry it follows that a non-empty subset of G, closed under left division is a subgroup.

In the above theorem instead of right or left division, we can also take their transposes. In other words, a non-empty subset S of G is a subgroup if and only if it is closed under one of the following four binary operations.
(1) $\varphi(x, y)=x y^{-1}$,
(2) $\varphi^{*}(x, y)=y^{-1} x$,
(3) $\psi(x, y)=x^{-1} y$,
(4) $\quad \psi^{*}(x, y)=y x^{-1}$.

Graham Higman (Higman and Neumann, 1952) has suggested a more general problem which stands unsolved in the case of non-abelian groups.

Problem. Let φ be a binary operator (expressible in terms of ε, L, π and two variables) with the property that $S \subseteq G$ is a subgroup if only if
(1) $S \neq \phi$
(2) $\varphi(x, y) \in S$, for all $x, y \in S$.

What forms can φ take?
In the case of abelian groups it is proved that the only possibilities are the above four functions (which in this case reduce to only two functions, right and left division).

Nothing is known in the case of non-abelian groups.

Chapter 2

Generators and Relations

1

In this chapter we shall show how to construct the smallest subgroup containing a given set of elements of group. The concept of relation will also introduced.

As an immediate consequence of the theorem of the last chapter, we have

Theorem 1. The intersection of an arbitrary family of subgroups of a groups is a subgroup.

Let G be a group and E a subset of G. The subgroup

$$
g p(E)=\bigcap_{E \subseteq S \subseteq G} S
$$

is the subgroup generated by E. We call E a set of generators of $g p(E)$. Since a subgroup by definition is non-empty, it follows that

$$
g p(\phi)=\{1\} .
$$

We call $\{1\}$ the trivial subgroup of G.
If X is any set, we denote by $|X|$ its cardinal.
If $E \subseteq G$ and $|E|<\mathfrak{X}_{\circ}$, then $g p(E)$ is finitely generated. Similarly, $g p(E)$ is countably generated if $|E| \leq \mathfrak{X}_{\circ}$.

If $|E|=1$, then $g p(E)$ is a cyclic group.

We shall now construct $g p(E)$, given $E \subseteq G$. We construct a nondecreasing sequence of sets inductively. Put $E_{1}=E \cup\{1\}$.

Having defined E_{1}, \ldots, E_{n} define $E_{n+1}=E_{n} E_{n}^{-1}$ write $S=\bigcup_{n=1}^{\infty} E_{n}$. It is immediately seen that

$$
E_{1} \subseteq S
$$

Also, if T is an arbitrary subgroup of G containing E, then

$$
E_{1} \subseteq T
$$

If $E_{n} \subseteq T$, then also $E_{n+1} \subseteq T$.
It follows that

$$
\begin{equation*}
S \subseteq T \tag{1}
\end{equation*}
$$

and thus

$$
S \subseteq g p(E)=\bigcap_{E \subseteq T \leq G} T
$$

We now prove that S is a subgroup. S is non-empty and all the $E_{n}^{\prime} s$ contain 1 . If $f \in E_{n}$, then

$$
f .1^{-1}=f \in E_{n+1}
$$

Therefore $E_{n} \subseteq E_{n+1}$. Thus $\left\{E_{n}\right\}$ is a non-decreasing sequence of sets. Let $x, y, \in S$; so that $x \in E_{m}, y \in E_{n}$ for some m, n. Put $p=$ $\max (m, n)$. Then, $x \in E_{p}, y \in E_{p}$ and hence $x y^{-1} \in E_{p+1} \subseteq S$. This proves that S is closed under right division. Therefore S is a subgroup containing E. Thus, $g p(E) \subseteq S$, and combining this with (1), we get

$$
S=g p(E)
$$

2

The above construction shows that any element of E has a 'representation' in terms of elements of E as

$$
w\left(e_{1}, \ldots, e_{n}\right)=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}, m_{i}= \pm 1, e_{i} \in E, i=1, \ldots, n
$$

Such expressions are called words. It is not assumed that differently indexed e_{i} are different. Different words may represent the same element. For example, $a b b^{-1} c^{-1}$ and $a c^{-1}$ are different words representing the same element $a c^{-1}$. The word containing no e at all is the empty word. This represents the unit element, and we therefore denote it (somewhat ambiguously) by 1 . It is easy to see that any element of G that can be represented by a word in the elements of E is in $g p(E)$. Thus we have,

Theorem 2. The subgroup $g p(E)$ consists of all the elements of G represented by the 'words' formed by the element of E.

3

Cyclic groups are the simplest types of groups which one comes across. The theorem below gives the structure of subgroups of a cyclic group.

Theorem 3. If G is cyclic, all subgroups of G are cyclic.
Proof. Let $\{a\}$ be a generator of G. Then,

$$
g p(\{a\})=g p(a)=C .
$$

Let S be a subgroup of G. If $=\{1\}$, it is cyclic as claimed. If $\mathbf{1 6}$ $\{1\}<S \leq G$, then there is an element $a^{k} \in S, a^{k} \neq 1$; also, $a^{-k} \in S$. Let N be the set of positive integers defined by

$$
N=\left\{n \mid a^{n} \in S\right\}
$$

Since $k \in N$ or $-k \in N, N \neq \phi$. Denote by m the least positive integer in N. We claim that a_{m} is a generator of S.

Trivially,

$$
g p\left(a_{m}\right) \leq S
$$

If $c=a^{\ell} \in S$, then $|\ell| \geq m$. Write

$$
\ell=m q+r, 0 \leq r<m
$$

Then $a^{r}=a^{\ell} a^{-m q} \in S$, and therefore $r=0$. Hence $c=a^{m q} \in g p\left(a^{m}\right)$. Thus,

$$
S \leq g p\left(a^{m}\right)
$$

Combining this with the above inequality, we have

$$
S=g p\left(a^{m}\right)
$$

and the theorem is proved.

4

In this context, we ask the following question
17 Problem. What groups can be subgroups of two-generator groups?
A partial answer to this problem will be given now. It will be completely soled in the subsequent chapters.

Theorem 4. Countably generated groups are countable.
Let $G=g p(E)$, where E is countable. Let $E=\left\{e_{1}, e_{2}, \ldots\right\}$. We have seen that $g p(E)$ consists of all the elements represented by 'words' in e_{1}, e_{2}, \ldots..

If g is an element of G which can be represented by a word w in e_{1}, e_{2}, \ldots, then g can be written in the form

$$
g=w=e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdot e_{i_{\ell}}^{m_{\ell}}
$$

where the i_{j} are positive integers and m_{i} are integers, positive, zero, for negative. Note that different $w^{\prime} s$ can represent the same element. Corresponding to each m_{i}, we define

$$
\begin{aligned}
& m_{i}^{+}=\max \left(m_{i}, 0\right) \\
& m_{i}^{-}=\max \left(-m_{i}, 0\right)
\end{aligned}
$$

If $m_{i} \geq 0$, then $m_{i}^{+}=m_{i}, m_{i}^{-}=0$. If $m_{i}<0$, then $m_{i}^{+}=0, m_{i}^{-}=-m_{i}$. Thus at most one of m_{i}^{+}, m_{i}^{-}is non-zero.

We now construct $a 1-1$ mapping γ of the set of all $w^{\prime} s$ into the set of positive integers. This will prove that $g p(E)$ is countable.

We write $\gamma(1)=1$. If $e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdot e_{i_{\ell}}^{m_{\ell}}$, then define $\gamma(w)=2^{i_{1}} 3^{m_{1}^{+}} 5^{m_{1}^{-}} 7^{i_{2}}$ $11^{m_{2}^{-}} 13_{2}^{m^{-}} \ldots p_{3 \ell}^{m_{\ell}^{-}}$where p_{n} denotes the $n^{\text {th }}$ prime when the set of all positive primes is arranged in increasing order.

The numbers $\gamma(w)$ are called Gödel numbers.
Since every positive integer can be written as a product of prime powers uniquely, it follows that every positive integer is the Gödel number of at most one word; hence γ is $1-1$. Therefore the set of words in E, and also $g p(E)$, is countable.

Remark. This theorem can also be proved by making use of the construction we have given for $g p(E)$. That is to say,

$$
g p(E)=\bigcup_{n=1}^{\infty} E_{n}
$$

where $E_{1}=E \cup\{1\}, E_{n+1}=E_{n} E_{n}^{-1}$. If E is countable, so is E_{1}. If E_{n} is countable, so is E_{n+1} because $\left|E_{n+1}\right| \leq\left|E_{n}^{-1}\right|\left|E_{n}^{-1}\right|=\left|E_{n}\right|^{2}$. Therefore all the $E_{n}^{\prime} s$ are countable, and so is their union $g p(E)$.

Corollary. Necessary for a group to be embeddable in a two-generator group is that it be countable

5

Let $G=g p(E)$ be a group with E as the set of generators. Then every element of G can be represented by a 'word' formed of some finite number of elements of E. We denote by $w\left(e_{1}, \ldots, e_{n}\right)$ a word consisting of the 'letters' e_{1}, \ldots, e_{n} only (not necessarily all). Let $w\left(e_{1} \ldots, e_{n}\right)$, $v\left(e_{1}^{1}, \ldots, e_{m}^{1}\right)$ be two words in E. We say that

$$
w\left(e_{1}, \ldots, e_{n}\right)=v\left(e_{1}^{1}, \ldots, e_{m}^{1}\right)
$$

is a relation in G, if this equation holds when $w\left(e_{1}, \ldots, e_{n}\right)$ and $v\left(e_{1}^{\prime}, \ldots\right.$, $\left.e_{n}^{\prime}\right)$ are considered as elements of G. Without loss of generality we can
write the above relation in the form

$$
w\left(e_{1}, \ldots, e_{n}\right)=v\left(e_{1}, \ldots, e_{n}\right)
$$

In the subsequent pages $\underline{\mathrm{e}}$ will stand for $\left(e_{1}, \ldots, e_{n}\right)$. We say that

$$
w(\underline{\mathrm{e}})=u(\underline{\mathrm{e}})
$$

is a trivial relation if it follows from the group axioms and does not depend upon the particular group under consideration. For example,

$$
e_{1} e_{2} e_{2}^{-1} e_{3} e_{4} e_{4}^{-1}=e_{1} e_{3} e_{5} e_{5}^{-1}
$$

is a trivial relation. A relation of the the type

$$
e_{1} e_{2}=e_{2} e_{1}
$$

if valid, is a non-trivial relation.
Let
and

$$
\begin{gathered}
w\left(e_{1}, \ldots, e_{n}\right)=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdot e_{n}^{m_{n}}, m_{i}= \pm 1, e_{i} \in E, i=1, \ldots, n \\
v\left(f_{1}, \ldots, f_{r}\right)=f_{1}^{\ell_{1}} f_{2}^{\ell_{2}} \cdots f_{r}^{\ell_{r}}, f_{i} \in E, \ell_{i}= \pm 1, i=1, \ldots, 2
\end{gathered}
$$

20 be two words. By the product of the words w and v (taken in this order), we mean the word

$$
v=w\left(e_{1}, \ldots, e_{r}\right) v\left(f_{1}, \ldots, f_{r}\right)=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}} f_{1}^{l_{1}}, \ldots, f_{1}^{l_{r}}
$$

similarly the inverse of w is defined to be the word

$$
w^{-1}=e_{n}^{-m_{n}} \cdots e_{2}^{-m_{2}} e_{1}^{-m_{1}} .
$$

We now state certain elementary properties of relations which are immediate from the definitions given above.
(1) $v(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})$ is a trivial relation.
(2) If $u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})$ is a relation, then so is $v(\underline{\mathrm{e}})=u(\underline{\mathrm{e}})$.
(3) If $u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})$ and $v(\underline{\mathrm{e}})=w(\underline{\mathrm{e}})$ are relations, then so is $u(\underline{\mathrm{e}})=w(\underline{\mathrm{e}})$.
(4) If $u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})$ is a relation, then so is $u^{-1}(\underline{\mathrm{e}})=v^{-1}(\underline{\mathrm{e}})$
(5) If $u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})$ and $u^{\prime}(\underline{\mathrm{e}})=v^{\prime}(\underline{\mathrm{e}})$ are relations then so is $u(\underline{\mathrm{e}}) u^{\prime}(\underline{\mathrm{e}})=$ $v(\underline{\mathrm{e}}) v^{\prime}(\underline{\mathrm{e}})$
(6) For any word $u(\underline{e})$,

$$
u(\underline{\mathrm{e}}) u^{-1}(\underline{\mathrm{e}})=1
$$

is a trivial relation.

6

In what follows, we shall abbreviate $v(\underline{\mathrm{e}})$ as v for convenience, when confusion is not possible.
we say that a relation

$$
u^{*}=v^{*}
$$

follows from (or is a consequence of) relations $u_{1}=v_{1}, \ldots, u_{r}=v_{r}$, if it can be derived from these by a finite chain of applications of (1) (6). We say that two relations $u=v$ and $u^{\prime}=v^{\prime}$ are equivalent if each follows from the other in the above sense.

Example. Every relation $u=v$ is equivalent to a relation of the form

$$
w=1 .
$$

We can in fact prove this with

$$
w=u v^{-1} .
$$

Suppose that $u=v$ is true. Then by (4), we have

$$
u^{-1}=v^{-1}
$$

An application of (2) gives

$$
v^{-1}=u^{-1}
$$

Also by (1),

$$
u=u
$$

is a relation.

Multiplying these two relations using (5), we get

By (6),

$$
\begin{aligned}
u v^{-1} & =u u^{-1} \\
u u^{-1} & =1
\end{aligned}
$$

is a relation. By the transitivity of relations ((3)), we have

$$
u v^{-1}=1
$$

Similarly we can prove that $u v^{-1}=1$ implies that $u=v$.
Let $G=g p(E)$ be a group. Consider the set of relations valid in G. Let R be a set relations in the elements of E such that all relations in the elements of E follow from R.

We then say that R is a set of defining relations of the group with respect to the system to generators E. The group G is completely determined by E and R. We write

$$
G=g p(E ; R)
$$

We call (E, R) a presentation of G.
G is finitely presented if there is some presentation $(E ; R)$ of G with $|E|<\mathcal{N}_{0}$ and $|R|<\mathcal{N}_{0}$. Similarly a countably presented group is defined.

It is easy to see that all finite groups are finitely presented. An infinite cyclic group is also finitely presented.

There exist groups which are finitely generated but not finitely presented. Examples will be given later.

The following problem about finitely presented groups is unsolved.
Problem. What groups can be embedded in finitely presented groups? 1
Not all countable groups can be embedded in finitely presented groups. But I know of no example of a countable group of which it can be proved that it cannot be embedded in a finitely presented group.

[^0]
7 The Word Problem for groups

In this section we give a brief account of what is known as the "Word Problem". This problem arose with the development of mathematical logic. A precise statement of the problem entirely depends upon a precise definition of the concept of a "procedure" (also, "algorithm", "rule", "effective procedure", "recurrive procedure", "computational procedure" of "process"), which was given by Church, Turing, Kleene and Post (see Kleene (1952)).

The Word Problem for groups

Given a group presentation $(E ; R)$ of a group G, to give a "procedure" to decide, for any two words u^{*}, v^{*} in the elements of E, whether

$$
u^{*}(e)=v^{*}(e)
$$

is a consequence of the relations R. Here, roughtly speaking a "procedure" is a set of rules or instructions that could be so formulated as to be programmed for an automatic computer with the data E, R and u^{*}, v^{*} (suitably coded) and the computer so programmed as to answer by a somehow cased "follows" or "does not follow".

A similar problem can be formulated for other algebraic systems. Markov and Post have proved the insolubility of the word problem in associative systems. Turing (1950) proved the insolubility of the word problem for semi-groups with cancellations. (A semi-group with cancellation is an algebraic system with an associative binary operator, with the property)

$$
\begin{aligned}
& a x=b x \text { implies } a=b, \quad \text { and } \\
& y a=y b \text { implies } a=b, \quad \text { for all } x, y, a, b, \in S) .
\end{aligned}
$$

The solubility of the word problem for groups has been proved in special cases. Magnus (1932) has constructed a procedure to solve the word problem for an arbitrary group with a single defining relation. Similarly V. A. Tartakovski (1949) - (1952), H. Sheik (1956) and
J. L. Britton (1956), (1957) have given solutions for the word problem in special classes of groups. However, the question of the existence of a procedure for the solution of the word problem for groups in general remained open until Novikov (1952), (1955), (1958) proved that in general the word problem for groups is not soluble. Later, Boone (1954) (1955) (1957) (1958) (1959) and Britton (1958) gave different proofs for the insolubility of the word problem for groups.

We conclude this chapter with a precise statement of the insolubility of the word problem for groups.

Theorem (Novikov, Boone, Britton). There is a finite presentation $(E ; R)$ such that the word problem is insoluble in the group

$$
G=g p(E ; R)
$$

in the sense that to every effective procedure M that purports to solve the word problem for G, there is a word $w_{M}(\underline{e})$ such that the equation

$$
w_{M}(\underline{e})=1
$$

defeats the procedure.

Chapter 3

Homomorphisms of Groups

1

We shall, in the this chapter introduce the concepts of homomorphism, isomorphism and other important mappings of a group into another group.

Let G and H be any two groups. A mapping φ if G into H is a homomorphism if it preserves the group operations. On the face of it φ has to satisfy
(i) $\left(\in\})^{\varphi}=\in\{ \}\right.$
(ii) $(l(g))^{\varphi}=l(g)^{\varphi}$, for every $g \in G$
(iii) $\left(\pi\left(g, g^{\prime}\right)\right)^{\varphi}=\pi\left(g^{\varphi}, g^{\prime \varphi}\right)$, for all $g, g^{\prime} \in G$.

To make the notation less clumsy, we have used the same symbols \in, l, π for the operators of the groups G and H. These three conditions written in the multiplicative notation read as follows.
(a) $1^{\varphi}=1$ (we use the same symbol ' 1 ' for the neutral elements of both G and H)
(b) $\left(g^{-1}\right)^{\varphi}=\left(g^{\varphi}\right)^{-1}$
(c) $\left(g g^{\prime}\right)^{\varphi}=g^{\varphi} g^{\prime \varphi}$

The definition of homomorphism given here is capable of generalisation, and thus we can speak of a homomorphism of an algebraic system into another. But, here we shall confine our attention to groups. In the case of groups conditions (a) and (b) are contained in (c). Thus we have
therefore,

$$
x x=x=x 1 ;
$$

Now,

$$
1^{\varphi} 1^{\varphi}=(11)^{\varphi}=1^{\varphi} .
$$

Therefore 1^{φ} is idempotent and hence the neutral element of H. Similarly
hence

$$
g^{\varphi}\left(g^{-1}\right)^{\varphi}=\left(g g^{-1}\right)^{\varphi}=1^{\varphi} ;
$$

Thus φ is a homomorphism of G into H.
Let X, Y be any two sets and θ a mapping of X into Y; further let $E \subseteq X, F \subseteq Y$. We define

$$
\begin{aligned}
E^{\theta} & =\left\{e^{\theta} \mid e \in E\right\} \\
F^{\theta^{-1}} & =\left\{e \mid e \in X, e^{\theta} \in F\right\}
\end{aligned}
$$

The following two propositions are easy to verify.
Let φ be a homomorphism of a group G into another group H.
(A) If $S \leq G$, then $S^{\varphi} \leq H$
(B) If $T \leq H$, then $T^{\varphi^{-1}} \leq G$.

In particular,

$$
\{1\}^{\varphi^{-1}}=N \leq G .
$$

The subgroup $N \leq G$ is uniquely de terminal by φ and is called the kernel of the homomorphism.

A homomorphism φ or G into H is an epimorphism if it maps G onto H; in other words, if

$$
G^{\varphi}=H
$$

A homomorphism φ of G onto H is a monomorphism if it is one-to-one (briefly $1-1$), i. e. $x^{\varphi}=y^{\varphi}$ implies $x=y$, for all $x, y \in G$. A homomorphism which is both an epimorphism and monomorphism is an isomorphism.
(C) If φ is an isomorphism of G onto H, then the inverse mapping φ^{-1} of φ exists and is an isomorphism of H onto G.

Proof. The equation

$$
g^{\varphi}=h, \text { with } g \in G, h \in H,
$$

has one and only one solution in G. We define

$$
h^{\varphi^{-1}}=g, \text { if } g^{\varphi}=h .
$$

The mapping φ^{-1} is 'onto', because for any $g \in G$, we have

$$
\left(g^{\varphi}\right)^{\varphi^{-1}}=g .
$$

Also, if

$$
\begin{aligned}
h^{\varphi^{-1}} & =h^{\varphi^{-1}}, \text { with } h, h^{\prime} \in H, \text { and } \\
g^{\varphi} & =h, g^{\prime \varphi}=h^{\prime}, \text { then } \\
g & =g^{\prime}, \text { and therefore } \\
h & =g^{\varphi}=g^{\prime \varphi}=h^{\prime} .
\end{aligned}
$$

Hence φ^{-1} is one-to-one.

Now, let $h, h^{\prime} \in H$, with $h=g^{\varphi}, h^{\prime}=g^{\prime \varphi}$, then $\left(h h^{\prime}\right)^{\varphi^{-1}}=\left(g^{\varphi} g^{\prime \varphi}\right)^{\varphi^{-1}}$ $=g g^{\prime}=h^{\varphi^{-1}} h^{\varphi^{-1}}$. Hence φ^{-1} is an isomorphism of H onto G. It is easy to see that φ^{-1} is the two-sided inverse of φ, in other words; the composite mappings $\varphi \varphi^{-1}$ and $\varphi^{-1} \varphi$ are the identity mappings of G and H respectively.
morphism φ of G onto H. We then write

$$
G \cong H
$$

Let G, H and K be any three groups and φ and ψ be homomorphism of G into H and H into K respectively. Then we have
(D) The composite mapping $\varphi \psi$ of G into K is a homomorphism.

For let $g g^{\prime} \in G$; then

$$
\left(g g^{\prime}\right)^{\varphi \psi}=\left(\left(g g^{\prime}\right)^{\varphi}\right)^{\psi}=\left(g^{\varphi} g^{\prime \varphi}\right)^{\psi}=\left(g^{\varphi}\right)^{\psi}=\left(g^{\prime \varphi}\right)^{\psi}=g^{\varphi \psi}=g^{\varphi \psi}
$$

In (D), if φ and ψ are isomorphisms then so is $\varphi \psi$. This is easy to verify.

It follows from the above considerations that isomorphism is an equivalence relation on the class of all groups. Thus, we have
(R) $G \cong G$;
(S) $G \cong H$ implies $H \cong G$;
(T) $G \cong G \& H \cong K$ implies $G \cong K$.

Let G be a group. A homomorphism of G into itself is an endomorphism. An isomorphism of G onto itself is an automorphism.

The product of two homomorphisms, or more generally, the product of two mapping is defined only under certain restrictions, viz. that the range of the first mapping is contained in the domain of the second. This is, however, always the case for mapping of a set into itself.

By mere computation one can verify the associativity of the multiplication of mappings whenever the multiplication is defined.

Thus the set of all endomorphisms of a group G is closed under an associative binary operation and therefore forms an algebraic system called semi-group.

Now consider the set of all automorphisms of a group G. Trivially the identity mapping L belongs to this set and under the multiplication of automorphisms it acts as an unit element. By what we have already proved automorphism possesses a right inverse (in fact it is the two sided inverse) and the multiplication is associative.

Thus we have,
Theorem 2. The set of all automorphisms of a group G forms a group.
Let φ be an endomorphism of G possessing a left inverse θ and a right inverse ψ. Then φ is an automorphism and $\theta=\psi$. For if,

$$
x_{1}^{\varphi}=x_{2}^{\varphi}, \text { with } x_{1}, x_{2} \in G
$$

then,
i.e.,

$$
\begin{gathered}
\left(x_{1}^{\varphi}\right)^{\theta}=\left(x_{\alpha}^{\varphi}\right)^{\theta} \\
x_{1}=x_{1}^{\varphi \theta}=x_{2}^{\varphi \theta}=x_{2} .
\end{gathered}
$$

Therefore φ is $1-1$. Further for any $x \in G$, we have

$$
\left(x^{\psi}\right)^{\varphi}=x^{\psi \varphi}=x
$$

Therefore, φ is 'onto' and hence an automorphism. This, in turn, proves that $\theta=\psi$.

Thus we have proved that the automorphisms of G are precisely the endomorphisms having a left inverse and right inverse. But an endomorphism which is not an epimorphism may possess a left inverse which is not a right inverse. Similarly an endomorphism which is not a monomorphism can have a right inverse which not a left inverse.

Let X be any set. A mapping π of X into itself is a permutation if it is 1-1 and 'onto'. Thus every automorphism of a group G is a permutation of G.

With the usual techniques, we can verify the following:
Theorem 3. The set of all permutations on X form a group with the composite of permutations as the binary operation.

2 Equivalence relations and congruences

Let G and H be any two sets, not necessarily groups, φ, a mapping of G into H. We introduce an equivalence relation ' \sim ' as follows:

$$
g \sim g^{\prime} \text { if and only if } g^{\varphi}=g^{\prime \varphi}
$$

It is immediate that ' \sim ' satisfies the following conditions:
(R) $g \sim g$;
(S) $g \sim g^{\prime}$ implies $g^{\prime} \sim g$, for all $g, g^{\prime} \in G$;
(T) $g \sim g^{\prime}, g^{\prime} \sim g^{\prime \prime}$ implies $g \sim g^{\prime \prime}$, for all $g, g^{\prime}, g^{\prime \prime} \in G$.

Hence ' \sim ' is an equivalence relation.
Now let G and H be groups and φ a homomorphism of G into H. Then ' \sim ' in addition to R, S, T also satisfies the following condition:

$$
g \sim g_{1}, g^{\prime} \sim g_{1}^{\prime} \text { implies } g g^{\prime} \sim g_{1} g_{1}^{\prime}
$$

For

$$
g^{\varphi}=g_{1}^{\varphi}, g^{\prime \varphi}=g_{1}^{\prime \varphi}
$$

Therefore,

$$
\left(g g^{\prime}\right)^{\varphi}=g^{\varphi} g^{\prime \varphi}=g_{1}^{\varphi} g_{1}^{\varphi}=\left(g_{1} g_{1}^{\prime}\right)^{\varphi}
$$

Further

For

$$
\begin{aligned}
& g \sim g_{1} \text { implies } g^{-1} \sim g_{1}^{-1} \\
& g^{\varphi}=g_{1}^{\varphi} \text { implies }\left(g^{-1}\right)=\left(g_{1}^{-1}\right)^{\varphi}
\end{aligned}
$$

Such an equivalence relation is called a congruence.
Definition. Let G be a group and ' \sim ' an equivalence relation satisfying the condition.

$$
g \sim g^{\prime}, g_{1} \sim g_{1}^{\prime} \text { implies } g g_{1} \sim g^{\prime} g_{1}^{\prime}
$$

Then we call ' \sim ' a congruence. Strictly speaking we should also demand that

$$
g \sim g^{\prime} \text { implies } g^{-1} \sim g^{\prime-1} .
$$

But in the case of groups our definition implies this. For if,

$$
\begin{aligned}
& g \sim g^{\prime}, \text { then } \\
& g^{\prime} \sim g
\end{aligned}
$$

Now,
and therefore

$$
g^{-1} \sim g^{-1}
$$

$$
g^{\prime} g^{-1} \sim g g^{-1}=1
$$

Again,

$$
g^{\prime-1} \sim g^{\prime-1}
$$

Therefore

$$
g^{-1}=g^{\prime-1}\left(g^{\prime} g^{-1}\right) \sim g^{\prime-1} 1=g^{\prime-1}
$$

Let X be any set, φ a mapping of X into another set Y. We have seen that φ induces an equivalence relation ' \sim ' in X. Every equivalence relation splits X into disjoint blocks. Let ' \sim ' be any equivalence relation in X. Define, for $g \in X$

$$
[g]=\{x \in X E \mid x \in g\} .
$$

Then clearly either
or

$$
\begin{gathered}
{[g] \cap[h]=\phi,} \\
{[g]=[h] .}
\end{gathered}
$$

Conversely every partition of X into blocks gives rise to an equivalence relation. To see this we have only to define " $x \sim y$ if and only if x, y belong to the same block".

Now let G be a group and ' \sim ' a congruence relation in G. That is to say,

$$
g \sim g_{1}, h \sim h_{1} \text { implies } g h \sim g_{1} h_{1}, \text { for } g, h, g_{1}, h_{1} \in G .
$$

In this case the block $[g h]$ depends only on $[g]$ and $[h]$ and not on the particular element g and h. For if
and

$$
\begin{aligned}
& {[g]=\left[g^{\prime}\right]} \\
& {[h]=\left[h^{\prime}\right]} \\
& {[g h]=\left[g^{\prime} h^{\prime}\right] .}
\end{aligned}
$$

then
This follows easily from the definition of a congruence in a group.
Now we shall prove that the product of $[g]$ and $[h]$ is again a block. In other words,

$$
[g][h]=[g h]
$$

Let, $p \in[g h]$, then $p \sim g h$. But

$$
g^{-1} \sim g^{-1}
$$

Therefore

$$
g^{-1} p \sim g^{-1}(g h)=h
$$

$$
p=g\left(g^{-1} p\right), \text { with } g \in[g], g^{-1} p \in[h]
$$

Hence

$$
p \in[g][h]
$$

thus

$$
\begin{equation*}
[g h] \subseteq[g][h] . \tag{1}
\end{equation*}
$$

Conversely if $x=\in[g][h]$, then

$$
x=g^{\prime} h^{\prime}, \text { with } g^{\prime} \in[g], h^{\prime} \in[h]
$$

Hence
therefore

$$
\begin{aligned}
& g^{\prime} h^{\prime} \sim g h, \text { and } \\
& \quad x=g^{\prime} h^{\prime} \in[g h] .
\end{aligned}
$$

This gives

$$
\begin{equation*}
[g][h] \subseteq g h . \tag{2}
\end{equation*}
$$

Combining this with (1) we have

$$
[g][h]=[g h]
$$

This multiplication of blocks turns the set of blocks into a group. We have

$$
[1][g]=[1 g]=[g]
$$

Similarly

$$
\begin{aligned}
{[g][1] } & =[g 1]=[g], \\
{[g]\left[g^{-1}\right] } & =\left[g g^{-1}\right]=[1], \\
{\left[g^{-1}\right][g] } & =\left[g^{-1} g\right]=[1]
\end{aligned}
$$

The above equations prove the following theorem.
Theorem 4. The books associated with a congruence in a group G from a group

We denote this group by G / \sim. The block [l] is the neutral element of this group and $\left[g^{-1}\right]$ is the inverse of $[g]$. We call G / \sim the quotient group (also the factor group) with respect of the congruence ' \sim '

The notion of congruence, as well as the notion of the quotient algebra with respect to a congruence, can be defined much more generally than for groups, namely for arbitrary algebraic systems.

In the case of groups, the book [l] plays an important part. In fact we shall see that it completely determines the congruence associated with it.

We one define an epimorphism θ of G onto $G \sim$. Write

$$
g^{\theta}=[g]
$$

The equation

$$
[g h]=[g][h]
$$

demonstrates that θ is a homomorphism. Obviously θ is onto G / \sim and 38 therefore θ is an epimorphism.

Consider now

$$
\{[1]\}^{\theta^{-1}}=\left\{x \in G \mid x^{\theta}=[1]\right\}=\{x \in G \mid[x]=[1]\} \text {. }
$$

We see from this that

$$
\{[1]\}^{\theta-1}=[1] \text { (considered as a set). }
$$

Thus [$l]$ is the kernel of θ and we denote it by N.
Definition. Let $S \leq G$; then the set S_{g} is called a right coset of S. Similarly left cost coset is defined

We shall now prove that every block, with respect to a certain congruence is a right coset of the kernel of the epimorphism induced by the congruence under consideration.

Let ' \sim ' be a congruence in G and θ the corresponding epimorphism of G onto G / \sim, and again

$$
N=[1]=[1]^{\theta^{-1}} .
$$

Then

$$
[g]=N g ;
$$

for let $\quad x \in N g$; then

$$
x=n g \text { with } n \in N \text {. }
$$

Now,
i.e.,

$$
\begin{gathered}
n \sim 1, g \sim g, \text { give } \\
n g \sim 1 g=g \\
x=n g \in[g]
\end{gathered}
$$

Therefore

$$
N g \subseteq[g]
$$

Conversely if $x \in[g]$, then

$$
x \sim g, g^{-1} \sim g^{-1} \text { imply }
$$

$$
x g^{-1} \sim g g^{-1}=1
$$

Therefore $\quad x=\left(x g^{-1}\right) g \in N g$.
Thus

$$
\begin{aligned}
& {[g] \subseteq N g, \text { and it follows that }} \\
& {[g]=N g, \text { as claimed }}
\end{aligned}
$$

Similarly

$$
[g]=g N
$$

Hence

$$
N g=[g]=g N
$$

Thus we have proved the following theorem.
Theorem 5. Let ' \sim ' be a congruence in G. The mapping θ of G into G/ ~ defined by

$$
g^{\theta}=[g] \text { with } g \in G
$$

is an epimorphism with kernel $N=[1]$. Further every element of G / \sim is a right coset (left coset) of N. Also N commutes with every elements of G.

Let \mathscr{R} be the set of all congruences in G. Every $\sim \in \mathscr{R}$ in a $1-1$ manner determines the associated natural epimorphism. Let \mathscr{M} denoted the set of all such associated natural epimorphisms. Also every $\theta \in \mathscr{M}$ determines uniquely a kernel N. Let \mathscr{N} be the of all such kernels. By the above theorem every $N \in \mathscr{N}$ determines completely all the blocks and therefore uniquely determines the associated congruences which in turn determines the natural epimorphism. The consideration above prove the following theorem.

Theorem 6. There is a 'natural' 1-1 correspondence between \mathbb{R}, \mathscr{M} and \mathscr{N}.

Because of the above theorem we shall write G / N for G / \sim where N is the kernel determined by \sim.

3 Factorisation of a homomorphism

We shall now show that every homomorphism of a group onto another can be factorised "canonically".

Theorem 7. Let G and H be any two groups, φ a homomorphism of
then

$$
[g]=\left[g^{\prime}\right]
$$

and therefore

$$
g \sim g^{\prime}
$$

$$
g^{\varphi}=g^{\prime \varphi} .
$$

This proves that ψ is a defined mapping. Further,

$$
\begin{aligned}
([g][h])^{\psi} & =([g h])^{\psi}=(g h)^{\varphi} \\
& =g^{\varphi} h^{\varphi}=[g]^{\psi}[h]^{\psi}, \text { for all } g, h \in G .
\end{aligned}
$$

Also ψ is 1-1. For if

$$
\begin{aligned}
{[g]^{\psi} } & =[h]^{\psi}, \text { with } g, h \in G, \text { then } \\
g^{\varphi} & =h^{\varphi} ; \text { that is } \\
g & \sim h \text { and }
\end{aligned}
$$

therefore

$$
[g]=[h] .
$$

Thus ψ is a monomorphism of G / \sim into H. Now,

$$
g^{\theta \psi}=[g]^{\psi}=g^{\varphi}, \text { for all } g \in G
$$

Therefore

$$
\varphi=\theta \psi
$$

Hence the theorem.

4 Normal subgroups

We now proceed to characterise the kernels of the homomorphisms of a group G. We have already seen that the kernel determined by a congruence in G commutes with all the elements of G. We shall prove that the kernel of any homomorphism of G has this property. The following establishes this.

Theorem 8. Let G and H be any two groups, φ a homomorphism of G into H. Then the kernel of φ is also kernel N associated with the congruence ' \sim ' determined by φ.

Proof.

$$
\begin{aligned}
\{1\}^{\varphi^{-1}} & =\left\{x \mid x^{\varphi}=1\right\} \\
& =\left\{x \mid x^{\varphi}=1^{\varphi}\right\}=\{x \mid x \sim 1\} \\
& =[1]=\{1\}^{\theta^{-1}}=N .
\end{aligned}
$$

Thus the kernel of any homomorphism of the group G into H commutes with all the elements of G.

We now make the following definition.
Definition. Let $N \leq G$. Then is a normal subgroup (also self-conjugate or invariant) of G (notation $N \triangle G$) if

$$
N g=g N \text { for all } g \in G
$$

Thus the kernel of a homomorphism of G into H is a normal subgroup

Let $N \Delta G$. Define $x \sim y$ if and only if $x y^{-1} \in N$. A straight forward verification shows that ' \sim ' is a congruence relation in G. Further,

$$
[1]=\{x \mid x \sim 1\}=\{x \mid x \in N\}=N
$$

Hence we have

Theorem 9. Every normal subgroup $N \Delta G$ determines a congruence ' \sim ' in G with

$$
[1]=N .
$$

Corollary. If $N \triangle G$, then N is the kernel of some homomorphism of G.
Proof. We have only to consider the natural epimorphism θ of G onto $G / \sim=G / N$. Theorem 6 and Theorem 9 together imply

Theorem 10. Let \mathscr{C} be the set of all congruences in G, \mathscr{N} the set of all normal subgroup of G. Then there is a $1-1$ mapping α of \mathscr{C} onto \mathscr{N}, in a natural way.

Proof. Define α as

$$
\alpha(\sim)=\{x \mid x \sim 1\}=[1]=N, \text { for all } \sim \in \mathscr{C}
$$

α serves our purpose.

5 The graph of a binary relation

Let E be any set and ' $*$ ' a binary relation in E. With every such relation there is associated a set $R \subseteq E \times E$, namely

$$
R=\{(x, y) \mid x * y, x \in E, y \in E\}
$$

The subset R is called the graph of the binary relation. Conversely to every $R \subseteq E \times E$ there is a binary whose graph is R; and this correspondence is $1-1$. We shall usually identify the binary relation '*, with its graph and refer to R itself as the binary relation. In particular, with this identification, an equivalence relation in E will be subset of $E \times E$. We shall now interpret the reflexive, symmetric and transitive laws in terms of the subset of the product set $E \times E$. We call the subset $\Delta \subseteq E \times E$, defined by

$$
\Delta=\{(x, x) \mid x \in E\}
$$

the diagonal of $E \times E$.
Let $R \subseteq E \times E, S \subseteq E \times E$ be two binary relations in E. Then

$$
R^{-1}=\{(x, y) \mid(y, x) \in R\}
$$

is the inverse of the relation R. By the product of the relations R and S we mean the relation

$$
R S=\{(x, z) \mid \exists y, y \in E,(x, y) \in R,(y, z) \in S\} .
$$

Let R be a binary relations in E. Then R is reflexive if and only in $\Delta \subseteq R$; also R is symmetric if and if $R^{-1} \subseteq R$; finally R is transitive if and only if $R^{2}(=R R) \subseteq R$.Thus R is equivalence relation if and only if it has all three properties:
(R) $\triangle \subseteq R$,
(S) $R^{-1} \subseteq R$,
(T) $R^{2} \subseteq R$.

It is immediate from the above definitions that

$$
R \triangle=\triangle R=R, \text { for all } R \subseteq E \times E
$$

Further the symmetric and transitive laws are in the equivalent to $R-$ R^{-1} and $R^{2}=R$, respectively. The following fact is formally analogous to Theorem 1 of Chapter 1; we omit the proof.

Theorem 11. $R \subseteq E \times E$ is an equivalence relation if and only if
(1) $R \neq \phi$
(2) $R R^{-1} \subseteq R$.

6 The graph of a congruence in a group

Let G be a group. Before considering the congruences in a group, we shall introduce a group structure on the product set $G \times G$ in a natural way. Define the unit element of $G \times G$ to be $(1,1)$ with $1 \in G$, the inverse of (g, h) to be $\left(g^{-1}, h^{-1}\right)$ and the product of (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ to be

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right), \text { with } g, g^{\prime}, h, h^{\prime} \in G
$$

It is easily seen that this turns $G \times G$ into a group. We call this group the direct square of G. In fact we can define the direct product of any family of groups. We shall have occasion to return to this topic later (See Chapter 6).

Let $R \subseteq G \times G$ be a congruence in G. Since

$$
\Delta \subseteq R
$$

it follows that

$$
(1,1) \in R .
$$

If

$$
\begin{aligned}
& (g, h) \in R \text { and }\left(g^{\prime}, h^{\prime}\right) \in R \text { then } \\
& g \sim h \text { and } g^{\prime} \sim h^{\prime} .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
g g^{\prime} \sim h h^{\prime} ; \text { that is } \\
\left(g g^{\prime}, h h^{\prime}\right) \in R .
\end{gathered}
$$

Thus

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right) \in R
$$

47
Further if $(g, h) \in R$, then

$$
\begin{aligned}
& g \sim h \text { and therefore } \\
& g^{-1} \sim h^{-1} ; \text { that is } \\
& \quad\left(g^{-1}, h^{-1}\right) \in R .
\end{aligned}
$$

Thus we have proved that R is a subgroup of $G \times G$, that is in symbols

$$
R \leq G \times G
$$

Conversely reversing the above arguments we can prove that if R is an relation and $R \leq G \times G$, then R is a congruence in G. Thus we have following theorem.

Theorem 12. The equivalence relation $R \subseteq G \times G$ is a congruence in G if and only if $R \leq G \times G$

7 The lattice of congruences and normal subgroups

Let R, S be two binary relations in E. By the intersection of relations R and S, we mean the relation whose graph is $R \bigcap S$. The following theorem is an immediate consequence of the definition of an equivalence relation.

Theorem 13. The intersection of any family of equivalence relations in E is an equivalence relation.

Let S be any binary relation in E. Then
$R=R(S) \bigcap_{S \subseteq R_{i}} R_{i}$ is the equivalence relation generated by S where 48 R_{i} runs all the equivalence relations containing S. In particular,

$$
R(\phi)=\Delta
$$

is the identity relation.
In general, the union of two equivalence relations need not be an equivalence relation. We make the following definition.

Definition. Let $\left\{R_{i}\right\}_{i \in I}$ be a family of equivalence relations. The join of $\left\{R_{i}\right\}_{i \in I}$ is the equivalence relation generated by $\bigcup_{R_{i}}$.

The discussion above, leads to the following theorem.
Theorem 14. The set of all equivalence relation in E is a lattice on $E \times E$ with " \subseteq in $E X E$ " as the partial order.

In this case, the 'cap' and 'cup' operations are the set intersection and the 'join' as we have defined above.

Let us turn to groups. Let G be a group. Similar to Theorem 13 we have for congruences the following theorem.

Theorem 15. The intersection of any family of congruences in G is again a congruence.

Thus we can now speak of the congruence generated by a binary relation in G. As in the case of equivalence relations we can similarly define the join of a family of congruences in G. Note, however, that "join" means different things according as we deal with the lattices of equivalence or of congruences.

Analogous to Theorem 14 is the following theorem.
Theorem 16. The set R of all congruences in a group G is a lattice on $G \times G$ with " \subseteq in $G \times G$ " as the partial order.

Of course, the 'cap' and the 'cup' operations again are the set intersection and the join. The lattice of congruences of a group have important properties. But we shall not discuss them here. We only mention that the lattice of congruences of a group G is not a sub-lattice of the lattice of equivalence relations.

Let us now consider the set \mathscr{N} of all normal subgroups of G. We shall show that \mathscr{N} is a lattice with set inclusion as the partial order. For this we need to following theorem, the proof of which is straightforward; and we omit it.

Theorem 17. The intersection of a family $\left\{N_{i}\right\}_{i \in I}$ of normal subgroups is a normal subgroup.

We can now speak of the normal subgroup generated by a subset of G. An an immediate consequence of this theorem we have

Theorem 18. The set \mathscr{N} of all normal subgroups of G is a lattice with inclusion as the partial order.

Here again the 'cap' operations is the intersection and the 'cup' operation is the "join", where the join of a family of normal subgroups is the normal subgroup generated by the union of the groups of this family.

We have already need (Theorem 10) that there is natural 1-1 mapping λ of the set of all congruences in G onto \mathscr{N}. In fact this mapping is a lattice isomorphism of \mathscr{R} onto \mathscr{N}. To prove this we have only to show that this mapping λ preserves the partial order.

Let $R \subseteq R^{\prime}$ with $R, R^{\prime} \in \mathscr{R}$, and $R^{\lambda}=N, R^{\lambda}=N^{\prime}$. Then,

$$
N=\{x \mid(x, 1) \in R\} \subseteq\left\{x \mid(x, 1) \in R^{\prime}\right\}=N^{\prime}
$$

Thus we have,
Theorem 19. The lattice \mathscr{R} and \mathscr{N} are isomorphic.

8 Extension of a mapping of a set of generators of a group to a homomorphism

Let $G=g p(E)$ and $H=g p(F)$ be groups and φ an arbitrary mapping of E into F. Under what conditions can φ be extended to a homomorphism of G into H ? In other words, when can a homomorphism ψ of G into H exists, with

$$
e^{\psi}=e^{\varphi}, \text { for all } e \in E ?
$$

Further if such a mapping ψ exists, is it unique? The mapping φ induces, in a natural way, a mapping φ^{*} on the set of all words in E with values in H; namely

$$
\begin{aligned}
(w(\underline{\mathrm{e}})) \varphi^{*} & =w\left(\underline{\mathrm{e}}^{\varphi}\right), \text { where } \\
\underline{\mathrm{e}}^{\varphi} & =\left(e_{1}, \ldots, e_{n}\right)^{\varphi}=\left(e_{1}^{\varphi}, \ldots, e_{n}^{\varphi}\right), e_{i} \in E, i=1, \ldots, n .
\end{aligned}
$$

In general φ^{*} need not be a well define mapping of G. For an element of G may have more than one word representation it and it is bot always true that the images by φ^{*} of all these words are the same elements of H. Whenever φ^{*} induces a mapping on G, we shall denote the induced mapping also by φ^{*}.

Suppose now, that φ can be extended to a homomorphism ψ of G into H. Let $g=w(\underline{e}) \in G$. Then

$$
g^{\phi}=(w(\underline{e}))^{\psi}=w\left(\underline{e}^{\psi}\right)=w\left(\underline{e}^{\varphi}\right) .
$$

This shows that φ^{*} induces a mapping on G and that ψ coincides with φ^{*}. Conversely let φ^{*} induce a mapping on G. If $g=w(\underline{\mathrm{e}}), h=u(\underline{\mathrm{e}})$, then $g^{\varphi^{*}}=w\left(\underline{\mathrm{e}}^{\varphi}\right), h^{\varphi^{*}}=u\left(\underline{\mathrm{e}}^{\varphi}\right)$; and $(g h)^{\varphi^{*}}=(w(\underline{\mathrm{e}}) u(\underline{\mathrm{e}}))^{\varphi^{*}}=w\left(\underline{\mathrm{e}}^{\varphi}\right) u\left(\underline{\mathrm{e}}^{\varphi}\right)=$ $g^{\varphi^{*}} h^{\varphi^{*}}$. Hence φ^{*} is a homomorphism of G into H. Thus we have proved the following theorem.

Theorem 20. The mapping φ can be extended to a homomorphism of G into H if and only if φ^{*} induces a mapping on G. Further, there can be only one such extension and this then coincides with φ^{*}.

Let φ be a mapping of E into H and φ^{*} the mapping induced by φ on the set of all words in E. Suppose φ^{*} induces a mapping on G. Let

$$
u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})
$$

be a relation in G. Suppose φ^{*} induces a mapping on G, we have

$$
\begin{aligned}
(u(\underline{\mathrm{e}}))^{\varphi^{*}} & =(v(\underline{\mathrm{e}}))^{\varphi^{*}} \\
u\left(\underline{\mathrm{e}}^{\varphi}\right) & =v\left(\underline{\mathrm{e}}^{\varphi}\right)
\end{aligned}
$$

that is
is a relation valid in H.
Conversely suppose every relation

$$
u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}})
$$

in G leads to a valid relation

$$
u\left(\underline{\mathrm{e}}^{\varphi}\right)=v\left(\underline{\mathrm{e}}^{\varphi}\right) \text { in } H
$$

Now if x is any element in G, say

$$
x=u(\underline{\mathrm{e}}) .
$$

Then

$$
x^{\varphi^{*}}=(u(\underline{\mathrm{e}}))^{\varphi^{*}}=u\left(\underline{\mathrm{e}}^{\varphi}\right)
$$

If also

$$
x=v(\underline{\mathrm{e}})
$$

then

$$
x^{\varphi^{*}}=(v(\underline{\mathrm{e}}))^{\varphi^{*}}=v\left(\underline{\mathrm{e}}^{\varphi}\right)
$$

But

$$
u(\underline{\mathrm{e}})=v(\underline{\mathrm{e}}) \quad(=x)
$$

is a relation in G. Therefore

$$
u\left(\underline{\mathrm{e}}^{\varphi}\right)=v\left(\underline{\mathrm{e}}^{\varphi}\right)
$$

is valid relation in H; that is φ^{*} induces a well-defined mapping on G. Hence by Theorem 20] we have

Theorem 21. A mapping φ of of E into H can be extended to a homomorphism of $G=g p(E)$ into H if and only if every relation

$$
u(\underline{e})=v(\underline{e}) \text { in } G
$$

leads to a relation

$$
u\left(\underline{e}^{\varphi}\right)=v\left(\underline{e}^{\varphi}\right) \text { in } H .
$$

Since every relation can be derived from the defining relations, we have the following corollary.

Corollary ven Dyck (1882). Let $G=g p(E)$ and $H=g p(F)$, and let φ be a mapping of E into F. Then φ can be extended to a homomorphism of G into K if and only if every defining relation of the form

$$
u(\underline{e})=v(\underline{e})
$$

turns into a valid relation

$$
u\left(\underline{e}^{\varphi}\right)=v\left(\underline{e}^{\varphi}\right)
$$

between the elements of F upon applying.

Chapter 4

Free Groups

1

In this chapter we shall consider an important class of groups called
"free groups". Let E be a set of generation of a group F. We call F a free groups if $F=g p(E ; \varphi)$. In other words, a free groups is one which, in a particular set of generations, does not have any defining relations and hence it is without non-trivial relations. An infinite cyclic group is a free group with one generator. An immediate consequence of Von Dyck's theorem is:

Theorem 1. Every mapping of the generation set E of a free group $F=g p(E ; \varphi)$ onto a group H can be extended to a homomorphism of F into H.

2 Normal words

We now proceed to find what the elements of a free group look like. We make the following definition

Definition. (i) The empty word ' 1 ' is a normal word
(ii) the words $e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{\lambda}}^{m_{\lambda}}$ is a normal word if
(a) $m_{i}= \pm 1, i=1, \ldots, \lambda$
(b) $i_{j}=i_{j+1} \Rightarrow m_{j}=m_{j+1}$.

It is clear from this definition that a normal word is one which cannot be "cancelled down" to a shorter word. The number of letters in a word w is the length if the word w and is denoted by $\lambda(w)$. We put $\lambda(1)=0$.

The following theorem shows that any word can be cancelled down to a unique normal word.

Theorem 2. Every word is trivially equal (i.e. equal by a trivial relation) to a normal word and this normal word is unique.

Proof. We prove the first part of the theorem by induction on the length. Let $G=g p(E)$ be a group and let $w(e)$ be a word in E, with $\lambda(w)=n$. When $n=0$, by definition w is the empty word and hence normal. Thus the theorem is true for $n=0$. Assume that every word v, with $\lambda(v)<n$, is 'trivially equal' to a normal word. Let ${ }^{11} w=e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{n}}^{m_{n}}$ and thus $\lambda(w)=n$.

If w is normal, there is nothing to prove. If w is not normal, then there is a positive integer j such that $i_{j}=i_{j+1}, m_{j}=-m_{j+1}$. Put $u=e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{j-1}}^{m_{j-1}}, u^{\prime}=e_{i_{j+2}}^{m_{j+2}} \cdots e_{i_{n}}^{m_{n}}$. Then $w \equiv u e_{i_{j}}^{m_{j}} e_{i_{j-1}}^{m_{j+1}}, u^{\prime}$. It is immediate that $w \equiv u e_{i_{j}}^{m_{j}} e_{i_{j-1}}^{m_{j+1}}, u^{\prime}=u u^{\prime} \equiv v$ is a trivial relation. But $\lambda(v)=n-2$. Therefore induction hypothesis, there is a normal word w^{\prime} such that $v=w^{\prime}$ is a trivial relation. Since $w=v$ is also a trivial relation it follows by transitivity that $w=s^{\prime}$ is a trivial relation. This proves the first part of the theorem.

We say that word v is obtained from the word u by an 'elementary reduction' if there is a 'letter' e in u such that $u \equiv u^{\prime} e^{m} e^{-m} u^{\prime \prime}$ and

$$
v \equiv u^{\prime} u^{\prime \prime}, m= \pm 1
$$

To prove the uniqueness we required the following two lemmas.
Lemma 1. Two words v, v^{\prime} are trivially equal (i.e. $v=v^{\prime}$ is a trivial relation) if and only if there is a finite sequence of words $v=v_{0}$, $v_{1}, \ldots, v_{n}=v^{\prime}$, such that for every $i(1 \leq i \leq n)$, either v_{i+1} is got from v_{i} by elementary reduction or v_{i} is got from v_{i+1} by elementary reduction.

[^1]Lemma 2. (The "Diamond Lemma"). If u_{1} and u_{2} are obtained from the same word v by elementary reduction, then either $u_{1} \equiv u_{2}$, or each can be reduced by an elementary reduction to one and the same word v^{*}.

Proof. Let

$$
\begin{aligned}
v & =e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{n}}^{m_{n}} \\
i_{j} & =i_{j+1}, m_{j}=-m_{j+1} \\
i_{k} & =i_{k+1}, m_{k}=-m_{k+1}
\end{aligned}
$$

and u_{1} obtained by omitting $e_{i_{1}}^{m_{1}} e_{i_{j+1}}^{m_{j+1}}$ from v, and u_{2} by omitting $e_{i_{k}}^{m_{k}} e_{i_{k+1}}^{m_{k+1}}$, where we may without loss of gener-
 ality suppose that $j \leq k$.

Then if $j=K$, then $u_{1} \equiv u_{2}$ (trivially).

If $j=k-1$, then $e_{i_{j}}^{m_{j}} e_{i_{k+1}}^{m_{k+1}}=e^{m}$, say, and

$$
u_{1} \equiv e_{i_{1}}^{m_{1}} \cdots e_{i_{j-1}}^{m_{j-1}} e^{m} e_{i_{k+2}}^{m_{k+2}} \cdots e_{i_{n}}^{m_{n}} \equiv u_{2}
$$

Finally, if $j<k-1$, put

$$
v^{*}=e_{i_{1}}^{m_{1}} \cdots e_{i_{j-1}}^{m_{j-1}} e_{i_{j+2}}^{m_{j+2}} \cdots e_{i_{k-1}}^{m_{k-1}} e_{i_{k+2}}^{m_{k+2}} \cdots e_{i_{n}}^{m_{n}} .
$$

Then v^{*} is obtained from u_{1} by the elementary reduction that deletes $e_{i_{k}}^{m_{k}} e_{i_{k+1}}^{m_{k+1}}$ and from u_{2} by similarly deleting $e_{i_{j}}^{m_{j}} e_{i_{j+1}}^{m_{j+1}}$.

We now give an intuitive argument to show that if two normal words are trivially equal, then they are identical. Let w, w^{\prime} be two words such that $w=w^{\prime}$ is a trivial relation. By lemma there exists words $w=$ $v_{0}, v_{1}, \ldots, v_{n}=w^{\prime}$ such that either v_{i+1} is obtained from v_{i} by elementary reduction or vice versa, for $i=0,1, \ldots, n$. In the following figure we write v_{i+1} above v_{i} and connect it to v_{i} if v_{i+1} is obtained from v_{i} by elementary reduction.

A glance at the above figure shows that by several applications of the diamond lemma, we descend down to a word w^{*}, which is trivially equal to w and w^{\prime}, or w and w^{\prime} are identical. Now if w and w^{\prime} are normal words which are trivially equal, then they have to be identical as further descent is not possible.

A formal proof of the above lemma can be found in M.H.A Newman (1942).

Corollary. If $G=g p(E)$, then every element $g \in G$ has a representation $g=w(\underline{e})$ where w is normal.

In particular in a free group, every element is representative by one and only one normal word. This follows from the fact that in a free group there are no non-trivial relations.

3

Let G be any group with $G=g p(E ; R)$ and $F=g p\left(E^{0}, \varphi\right)$ a free group such that $\left|E^{0}\right|=|E|$. There is a mapping φ of E^{0} onto E which is oneone. By Von Dyck's theorem φ can be extended to an epimorphism φ^{*} of F onto G.

Let $N=\{1\}^{\varphi^{*-1}}$ be the kernel of φ^{*}. Then $N \Delta F$. Let $f \in F$. Then $f=w\left(\underline{\mathrm{e}}^{0}\right)$. Without loss of generality we can assume that w is a normal word. We have

$$
f^{\varphi^{*}}=w(\underline{\mathrm{e}})=g \in G
$$

where

$$
e^{0}=\left(e_{1}^{0}, \ldots, e_{n}^{0}\right)
$$

$$
e^{0}=\left(e_{1}, \ldots, e_{n}\right) \text { and } e_{i}=e_{i}^{\iota^{\varphi}}
$$

Now $f \in N$ if and only if $g=1$; i.e., $f \in N$ if only if $w(\underline{\text { e }})=1$ is a relation in G. Since any relation of G can be written in the form $w=1$, it follows that N completely determines the relation in G. Hence N is called the relation group of G.

Further

$$
g \cong F / N .
$$

Thus we have the following theorem.
Theorem 3. Every group is an epimorphic image of a free group and hence is isomorphic to a quotient group of a free group.

If a set of defining relation R of G is given we can say something more about the structure of N. Let $R=\left\{f_{i} \equiv w_{i}(\underline{\mathrm{e}})=1 \mid i \in I\right\}$ be a set of defining relations of G. Without loss of generality we can assume that all $w_{i}(\mathrm{e})$ are normal words. We claim that N is the normal closure in F of $\left\{f_{i}^{\prime}\right\}_{i \in I}$, where $f_{1}^{\prime}=w_{i}\left(\underline{e^{0}}\right)$. That is to say N is the normal subgroup of F containing $\left\{f_{1}^{\prime}\right\}_{i \in I}$. In other words, if $R^{\prime}=\left\{f_{1}^{\prime}\right\}_{i \in I}$, then

$$
N=\bigcap_{R^{\prime} \subseteq M \Delta F} M
$$

Since $R^{\prime} \subseteq N \Delta F$, we have $N^{\prime} \subseteq N$, where N^{\prime} denotes the normal closure of R^{\prime}. Consider now the quotient F / N^{\prime}. All the defining relations $w_{i}=1, i \in I$ of G, are satisfied in F / N^{\prime} as $R^{\prime} \subseteq N^{\prime}$. Hence any relation $w=1$ satisfied in G is also satisfied in F / N^{\prime}. Let $f \equiv w\left(e^{0}\right) \in N$. Then $w(e)=1$ is a relation in G and therefore $w\left(e^{0}\right) N^{\prime}=N^{\prime}$. i.e., $w\left(e^{0}\right) \in N^{\prime}$. Hence $N \subseteq N^{\prime}$.

In virtue of the reversed inclusion which we already have, this proves that $N=N^{\prime}$.

The following theorem gives a method of construction for N^{\prime}.

Theorem 4. Let G be any group, $S \subseteq G$. Then the normal closure T of S in G is the totality of all elements t of the form

$$
t=g_{1}^{-1} s_{1}^{m_{1}} g_{1} g_{1}^{-1} s_{2}^{m_{2}} g_{2} \cdots g_{\lambda}^{-1} s_{\lambda}^{m} g_{\lambda}
$$

where $m_{i}= \pm 1, \lambda$ arbitrary, g_{i}, s_{i} are arbitrary elements of G and S respectively.

Proof. Let T denote the totality of such elements. Trivially T is contained in the normal closure of S. To complete the proof of the theorem, we have only to show that $T \Delta G$. That T is closed under right division is easy to verify, so that $T \leq G$. If $g \in G$, then

$$
\begin{aligned}
g^{-1} t g & =g^{-1} g_{1}^{-1} s_{1}^{m_{1}} g_{1} g_{2}^{-1} s_{2}^{m_{2}} g_{2} \cdots g_{\lambda}^{-1} s_{\lambda}^{m} g_{\lambda} g \\
& =\left(g_{1} g\right)^{-1} s_{1}^{m_{1}}\left(g_{1} g\right)\left(g_{1} g\right)\left(g_{2} g\right)^{-1} s_{2}^{m_{2}}\left(g_{2} g\right) \cdots\left(g_{\lambda} g\right)^{-1} s^{m}\left(g_{\lambda} g\right) \in T
\end{aligned}
$$

for arbitrary $t \in T$. Therefore $T \Delta G$. Hence the theorem. Determining to our N, we see that N consists of all elements of the form

$$
t_{1}^{-1} w_{i_{1}}^{ \pm 1} t_{1} t_{2}^{-1} w_{i_{2}}^{ \pm 1} t_{2} \cdots t_{\lambda}^{-1} w_{i_{\lambda}}^{ \pm 1}, \text { where }
$$

$t_{\lambda}^{\prime} s$ are arbitrary and $w_{i_{k}} \in R^{\prime}$.

4 Dual property of free groups

Theorem 5. If a group G is epimorphically mapped on a free group F, then G contains a free subgroup isomorphic to F, and in fact mapped isomorphically onto F by the restriction to it of the epimorphism of G.
Proof. Let φ be an epimorphism of G onto F. Let $F=g p(E, \varphi)$. Then $e^{\varphi^{-1}}$ is a non-empty for every $e \in E$. Choose an e_{1} from $e^{\varphi^{-1}}$. Denote by E_{1} the set of all such $e_{1}^{\prime} s$. Let $F_{1}=g p\left(E_{1}\right)$. We claim that the restriction φ_{1} of φ to F_{1} ia an isomorphism of F_{1} onto F. That the mapping φ_{1} is an epimorphism is obvious, by our choice of $e_{1}^{\prime} s$. Now if $g \in F$, let $w(\underline{\mathrm{e}})$ he a normal word representing g. Then $g^{\varphi_{1}}=(w(\underline{\mathrm{e}}))^{\varphi_{1}}=(w(\underline{\mathrm{e}}))^{\varphi}=$ $\left(w\left(\underline{\mathrm{e}}_{1}^{\varphi}\right)\right)=w(\underline{\mathrm{e}})=1$ if and only if w is the empty word, as F is a free group. Hence the kernel of φ_{1} consists of the neutral elements alone and therefore φ_{1} is an isomorphism. Since any group isomorphic to a free group is also free, our theorem follows.

Theorem 6. Free groups generated by sets of the same cardinality are isomorphic.

Proof. Let E and E^{0} be two sets such that $|E|=\left|E^{0}\right|, F=g p(E, \phi)$ and $F^{0}=g p\left(E^{0}, \phi\right)$. Let ψ be a one-one mapping of E^{0} onto E. Extend it to an epimorphism of F^{0} onto F. We shall also denote this extended mapping by ψ.

Now $\left(w\left(c^{\circ}\right)\right)^{\psi}=w(e)=1$ if and only if w is an empty word. This follows because we can without loss of generality take w to be a normal word. hence $w\left(e^{0}\right)=1$. Therefore ψ is an isomorphism of F^{0} onto F.

This shows that the structure of a free group depends only on the cardinality of its set of generators. We call $|E|$ the rank of the free group $g p(E, \phi)$. A free of rank zero is the trivial group $\{1\}$. Free groups of rank 1 are finite cyclic groups.

It is natural to ask if free groups of different ranks are in fact different. The following theorem answer this question.

Theorem 7. Free groups of different ranks are not isomorphic.
To prove this theorem we need the following lemma, the proof of which we shall give later.

Lemma. To every cardinal number n there is group G_{n} that can be generated by a set of cardinal n elements, but by no set of strictly smaller cardinal.

Proof of the theorem. Let

$$
\begin{aligned}
& F_{n}=g p\left(E_{n}, \phi\right),\left|E_{n}\right|=n, \\
& F_{m}=g p\left(E_{m}, \phi\right),\left|E_{m}\right|=m
\end{aligned}
$$

where n and m may be infinite cardinals. Choose G_{n} of the above lemma. Then there is a epimorphism ψ of F_{n} onto G_{n}. Assume that there is an isomorphism φ of F_{m} onto F_{n}. Then $\varphi \psi$ is an epimorphism of F_{m} onto G_{n}. Therefore $E_{m}^{\varphi \psi}$ generates the group G_{n}. Hence we have $m=\left|E_{m}\right| \geq$ $\left|E_{m}^{\varphi \psi}\right| \geq n$ using the isomorphism φ^{-1}, we similarly get $n \geq m$. Hence $m=n$. Differently put, F_{m} and F_{n} are not isomorphic if $m \neq n$. Hence the theorem.

Proof of the lemma. For every cardinal n, we shall construct a G_{n} with the desired property. Let M be any set with $|M|=m$. Consider the set G of all finite subsets of M. We turn G into a group by defining the binary operation as the symmetric difference. That is to say, for every $S, T \in G$.

$$
S T=(S-T) \bigcup(T-S)
$$

We take the empty set ϕ as the unit element and each S as its own inverse. For we have

$$
S \phi=\phi S=S \text { and } S S=\phi, \text { for every } S \in G .
$$

The verification of the associativity of this multiplication is easy and therefore we omit it. Hence the multiplication defined in G, makes G a group. We claim that this group G is generated by the set of one-element subsets of $M, E=\{\{x\} \mid x \in M\}$. For if $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, it is easily seen that $S=\left\{a_{1}\right\}\left\{a_{2}\right\} \cdots\left\{a_{k}\right\}$. Further for every $S, T \in G$, we have $S T=T S$. Therefore G is commutative. We shall show that no set of cardinal $<m$ generates G. Let E^{0} be a set of generators of G with $E^{0}=n$, say. Then every elements $x \in G$ can be written as

$$
x=s_{1}^{m_{1}} S_{2}^{m_{2}} \cdots S_{k}^{m_{k}} \text { with } m_{i}= \pm 1, S_{i} \in E^{0}, i=1, \ldots, k
$$

But in G, we have $S=S^{-1}$, for every $S \in G$. Therefore every $x \in G$, can be written as

$$
x=S_{1} S_{2} \cdots S_{k} \text { with district generators } S_{i} \in E^{0} .
$$

Further, since G is commutative it follows that every finite subset of E^{0} determines only one element of G. Thus to every element $x \in G$, we can associated a finite subset of E^{0}. This shows that $|G| \leq$ cardinal of the set of all finite subsets of E^{0}. But we know that if X is any set and F the set of all finite subset of X. Then

$$
\begin{aligned}
& |F|=2^{X} \text { if }|X|<\mathcal{N}_{0} \\
& |F|=X \text { if }|X| \geq \mathcal{N}_{0}
\end{aligned}
$$

Thus if m is finite, we have, from the above inequality, that $2^{m} \leq 2^{n}$, and therefore $m \leq n$. If m is infinite and n is finite, we have $m \leq 2^{n}$, which is impossible. Hence if m is infinite, n must also be infinite, and again conclude that $m \leq n$. Hence the group G cannot be generated by a set of cardinals strictly smaller than m. This establishes the lemma.

Chapter 5

Identical Relations and Varieties of Groups

1

In the preceding chapter we have seen that an arbitrary mapping from a set generators of a free group into any other group can be extended to a homomorphism. In fact this property completely characterises the free groups. In order to generalise this notion of being "free", we introduce certain classes of groups called varieties of groups

While proving that the free groups of different ranks are not isomorphic we have come across an example of a group G in which the equation $x^{2}=1$ holds for all x in G. Such equations are called identical relations or laws.

Definition. A law or identical relation is a relation of the form

$$
u(\underline{\mathrm{X}})=v(\underline{\mathrm{X}})
$$

where u and v are words in $\underline{\mathrm{X}}=\left(X_{1}, \ldots, X_{n}\right)$. We say that the law $u(\underline{\mathrm{X}})=v(\underline{\mathrm{X}})$ holds in a group G if the equation $u(\mathfrak{f})=v(\mathfrak{f})$ holds when we substitute arbitrary elements g_{1}, \ldots, g_{n} of G for the "variables" X_{1}, \ldots, X_{n}. For instance if $u(\underline{X})=X_{1} X_{2}$ and $v(\underline{X})=X_{2} X_{1}$, then in an abelian group the law $u(\underline{\mathrm{X}})=v(\underline{\mathrm{X}})$ holds.

The following fundamental relations can be easily verified
(1) If $u \equiv v$, then $u=v$ is a law.
(2) If $u=v$, is a law then so is $v=u$.

67 (3) If $u=v$ and $v=w$ are laws, then so is $u=w$.
(4) If $u=v$ is a law, then so is $u^{-1}=v^{-1}$.
(5) If $u=v$ and $u^{\prime}=v^{\prime}$ are laws, then $u u^{\prime}=v v^{\prime}$ is a law.
(6) $X X^{-1}=1$ and $X^{-1} X=1$ are laws.
(7) If $u(\underline{\mathrm{X}}) \equiv u\left(X_{1}, \ldots, X_{n}\right)=v\left(X_{1}, \ldots, X_{n}\right) \equiv v(\underline{\mathrm{X}})$ is a law and $Y_{1}(\underline{\mathrm{Z}})$, $\ldots Y_{n}(\underline{\mathrm{Z}})$ are words in variables Z_{1}, \ldots, Z_{p} then $u\left(Y_{1}(\underline{\mathrm{Z}}), \ldots, Y_{n}(\underline{\mathrm{Z}})\right)$ $=v\left(Y_{1}(\underline{\mathrm{Z}}), \ldots, Y_{n}(\underline{\mathrm{Z}})\right)$ is a law.

The rule (7) is a called the substitution rule.
[If we assume $X X^{-1}=1$ and (7) we can derive the law $X^{-1} X=1$.
For put $Y=X^{-1}$. Then $Y Y^{-1}=1$ is a law. i.e. $X^{-1}\left(X^{-1}\right)^{-1}=X^{-1} X=1$ is a law.]

These rules can be used can be used to derive from given laws that are valid in a group further laws that "follow" from the given laws.

Example. If $X^{2}=1$ is a law in a group, then so is

$$
X Y=Y X
$$

Proof. The law $X Y=Y X$ is equivalent to $X^{-1} Y^{-1} X Y=1$. Now

$$
\begin{aligned}
X^{-1} Y^{-1} X Y & =X^{-1} Y^{-1} X X^{-1} Y^{-1} X X^{-1} X^{-1} X Y X Y \\
& =\left(X^{-1} Y^{-1} X\right)^{2}\left(X^{-1}\right)^{2}(X Y)^{2}
\end{aligned}
$$

Applying (5) and (7) we have $X^{-1} Y^{-1} X Y=1$, i.e. $X Y=Y X$ is a law.
It is easily seen (as for relations) that every law $u(\underline{\mathrm{X}})=v(\underline{\mathrm{X}})$ is equivalent to a law $w(\underline{\mathrm{X}})=1$; and it is often convenient to write all laws in this from.

2 Varieties

Throughout this chapter we shall assume that the set of variables $\left\{X_{1}, X_{2}\right.$, $\ldots\}$ is countable. This is just for convenience and not a real restriction.

Let L be a set of laws invariables $\left\{X_{1}, X_{2}, \ldots\right\}$. The class of all groups satisfying the laws of L is called variety. We call this the variety defined by L and denote it by $V_{=L}$ as it clearly depends on L. For example if L consists of the single law $X_{1}^{-1} X_{2}^{-1} X_{1} X_{2}=1$, then $V_{=L}$ is the class of all abelian groups.

A variety may be defined by different sets of laws. For instance if $L=\left\{X_{1}^{2}=1\right\}, L^{\prime}=\left\{X_{1}^{2}=1, X_{1}^{-1} X_{2}^{-1} X_{1} X_{2}=1\right\}$, then $V_{=L}=V_{=L^{\prime}}$.

It is easily seen that if $L \subseteq L^{\prime}$, then $V_{=L^{\prime}} \subseteq V_{=L}$. We say that a variety $\underset{=}{V}$ is finitely based if there exists a finite set of laws defining $\underset{=}{V}$.

In this context there are still some undecided questions.
Problem. Are all varieties of groups finitely based?
Let $\underset{=}{C}$ be a class of groups, and consider the "least variety" to which all groups of $\underset{=}{C}$ belong: this is the variety defined by all those laws that are (simultaneously) valid in all groups in C. We can take, as the simplest case $\underset{=}{C}$ to consist of just a single group $\overline{\bar{G}}$.

Problem. If $\underset{=}{V}$ is the least variety to which the finite group G belongs, is $\underset{=}{V}$ necessarily finitely based?

Even this problem is not solved in general; only if G is further assumed to be nilpotent is the answer known to be positive [R.C. Lyndon 1952]; of. also $p .163$.

Let $V_{=L}$ be a variety, without loss of generality we can assume that all laws in L are of the form $w=1$, where w is a normal word in the variables X_{1}, X_{2}, \ldots Let E be any set with $|E|=n$. Let R be the set of all relations of the form $w\left(e_{1}, \ldots, e_{m}\right)=1$ with e_{i} arbitrary elements of E and $w\left(X_{1}, \ldots, X_{m}\right)=1$ a law in L and $m \leq n$. Consider the group $F_{L}=$ $g p(E ; R)$. Now, if G is a group in the variety $V_{=L}$, then any mapping φ
of E into G is extendable to a homomorphism φ^{*} of F_{L} into G. For if $w\left(e_{1}, \ldots, e_{n}\right)=1$ is a relation in R, then $w\left(X_{1}, \ldots, X_{n}\right)=1$ is a law in L; and therefore, since $G \in V_{=L}, w\left(e_{1}^{\varphi}, \ldots, e_{n}^{\varphi}\right)=1$ is a relation in G. Thus the set R of defining relations in F_{L} go over to relations in G upon applying φ

Therefore, by von Dyck's theorem the mapping φ is extendable to a homomorphism φ^{*} of F_{L} into G. Thus in a way, this is a generalisation of free groups, We call F_{L} a free group of $V_{=L}$ (reduced free or relatively free) of rank n. It is easy to see that F_{L} itself is a member of $V_{=L}$ and it depends upon n. In particular if L is the empty set we get the free group in the ordinary sense (in this context called absolutely free groups).

3 Burnside conjectures

Let L be the set consisting of the single law $X^{n}=1$. We denote the corresponding $V_{=L}$ by $B_{=n}$. Group of $B_{=n}$ are called groups of exponent n. We call B_{n} the Burnside variety after W. Burnside (1852-1927). There is a problem connected with this known as the Burnside conjectures (Burnside W.1902). We first state the original conjecture, now known as the Full Burnside Conjecture; and afterwards a weaker form, the socalled Restricted Burnside Conjecture. Full Burnside Conjecture. Every finitely generated group in $B_{=n}$, that is of finite exponent n, is finite. Let $B_{d, n}$. denote a d generator free group of $B_{=n}$. The Full Burnside Conjecture is equivalent to saying that $\left|B_{d, n}\right|<\mathscr{N}_{0}$, for every positive integer d for every group with d generators and exponent n is an epimorphic image of $B_{d, n}$.

The following problem is weaker than the above conjecture.

Restricted Burnside Conjecture.

There is a bound $\beta(d, n)$ such that every finite d generator group of exponent n has order $\leq \beta(d, n)$. This conjecture is an easy consequence of the full Burnside conjecture. For if the full conjecture is true, then $B_{d, n}$ is finite and we can take $\beta(d, n)=\left|B_{d, n}\right|$. The present state of knowledge of the Burnside conjecture is for from complete. The following are the results so far obtained in this direction. In the following d denotes
the number of generators, n the exponent. We abbreviate the Restricted Burnside

Conjecture and the full Burnside conjecture $R B C$ and $F B C$ respec- 70 tively.

d	n	RBC	FBC	REMARKS
all	2		true	Trivial. In fact $\left\|B_{d, 2}\right\|=2^{d}$.
all	3		true	Burnside (1902). The order of $B_{d, 3}$ was given by Levi and van der Waerden (1933). $\left\|B_{d, 3}\right\|=3\binom{d}{1}+\binom{d}{2}+\binom{d}{3}$.
all	4		true	$\operatorname{Sanov}(1940)$. The order of $B_{d, 4}$ is not known.
2	5	true	unsolved	Kostrikin (1955).
all	5	true	unsolved	G.Higman (1956).
all	6	true		P. Hall and G. Higman (1956).
all	6		true	M. Hall, Jr. (1959).
all	12	true	unsolved	P. Hall and G. Higman (1956).
all	all prime	p true	-	Kostrikin(1959).
all all	$p q(p, q$ different primes) 4p (p, a prime)	true true	$\left.\begin{array}{l}\text { unsolved } \\ \text { unsolved }\end{array}\right\}$	follows form a combination of Kostrikind (1959), Hall and Higman(1956)
2	\geq	72	not true	Novikov(1959).

4 A consequences of the result of Novikov (1959) and Kostrikin (1959)

Using the result of Novikov and Kostrikin, we shall derive an interesting $\mathbf{7 1}$ consequence. As the Burnside conjecture is not true for $d=2, n \geq$ 73 , it follows that $B_{2,73}$, the 2 generator free group of $B_{=73}$, is infinite. But 73 is a prime, and therefore by Kostrikin's result, there exists a maximal finite 2 generator group of exponent 73. Let us denote this
group by $B_{2,73}^{*}$. We know that $B_{2,73}^{*}$ is an epimorphic image of $B_{2,73}$ and therefore is isomorphic to a quotient group of $B_{2,73}$. Thus $B_{2,73}^{*} \cong$ $B_{2,73} / N, N \Delta B_{2,73}$. Therefore N is an infinite normal subgroup of finite index in $B_{2,73}$. We now state the following theorem without proof.

Theorem (0, Schreier (1972); see Kurosh (1956) pp.36-37). A subgroup of finite index of a finitely generated group is finitely generated.

By this theorem N is finitely generated. Now, it is known that a finitely generated group contains a maximal normal subgroup. (B.H. Neumann 1937^{b}). Let M be a maximal normal subgroup in N. Then it is easily seen that N / M is simple; that is to say, N / M does not contain any proper non-trivial normal subgroup. We assert that the group N / M is infinite. To prove this we quote another theorem with out proof.

Theorem (R. Baer 1953). If a finitely generated group contains a proper subgroup of finite index it also contains a characteristic (for definition see section 6 of this chapter) proper subgroup of finite index.

If N / M is finite, by the above theorem, there exists a characteristic proper subgroup K of finite index in N. It follows that K is a normal subgroup of $B_{2,73}$ and is of finite index in $B_{2,73}$. Therefore $B_{2,73 / K}$ is a finite group of exponent 73 , whose order exceeds that of $B_{2,73}^{*}$. This is impossible. Therefore N / M is infinite. Thus we arrive at in infinite group N / M which is simple, finitely generated and of exponent 73 .

5

We return to the considerations of section Let $V_{=L}$ be a variety determined by a set of laws L. Without loss of generality we can assume that every law of L is of the form $w\left(X_{1}, \ldots, X_{n}\right)=1$ where $w\left(X_{1}, \ldots, X_{n}\right)$ is a normal word in the variables X_{1}, X_{2}, \ldots. We denote by F_{n} the free group generated by the variables $X_{1}, X_{2}, \ldots, X_{n}$ and by F the free group generated by all the variables X_{1}, X_{2}, \ldots. That is to say,

$$
F_{n}=g p\left(\left\{X_{1}, \ldots, X_{n}\right\}, \phi\right), F_{\omega}=g p\left(\left\{X_{1}, X_{2}, \ldots\right\}, \phi\right)
$$

By F we shall mean either F_{n} or F_{ω}. With every $V_{=L}$ we associate a subgroup W of F in the following way. Define

That W is a group is easy to verify.
Now let F_{L} be a free group of $V_{=L}$ with E as the set of generators 73 and of the same rank as F. Consider some one-one mapping φ of X onto E, where X denotes the set of generators of F. We can extend φ to an epimorphism φ^{*} of F onto F_{L}. The kernel of φ^{*}, by the definition of F_{L}, is precisely the group W we have defined above. Therefore W is a normal subgroup of F and F_{L} is isomorphic to F / W. The substitution rule which we have for laws in a group gives some more information about W. If $w\left(x_{1}, X_{2}, \ldots, X_{m}\right) \in W$, and $Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{m}(\underline{\mathrm{X}}) \in F$, then also $w\left(Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{m}(\underline{\mathrm{X}})\right) \in W$.

We make the following definition.
Definition. Let E be any set, $S \subseteq E$ and η a mapping of $E \rightarrow E$. We say that the subset S admits the mapping η if $S^{\eta} \subseteq S$.

Theorem 1. The subgroup $W \leq F$ admits all endomorphisms of F.
Proof. Let η be any endomorphism of F and $X_{i}^{\eta}=Y_{i}(\underline{\mathrm{X}})$. If $w\left(X_{1}, \ldots\right.$, X_{m}) is in W, then

$$
\begin{aligned}
\left(w\left(X_{1}, X_{2}, \ldots, X_{m}\right)\right)^{\eta} & =w\left(X_{1}^{\eta}, \ldots, X_{m}^{\eta}\right) \\
& =w\left(Y_{1}(X), \ldots, Y_{m}(X)\right) \in W
\end{aligned}
$$

Therefore $W^{\eta} \subseteq W$. This proved the theorem.
Let G be any group. For every $t \in G$, we define the mapping φ_{t} of G onto itself such that

$$
\begin{equation*}
x^{\varphi_{t}}=t^{-1} x t \text { for all } x \in G \tag{74}
\end{equation*}
$$

now $(x y)^{\varphi_{t}}=t^{-1} x y t=\left(t^{-1} x t\right)\left(t^{-1} y t\right)=(x)^{\varphi_{t}} y^{\varphi_{t}}$ for all x and y in G.

Therefore φ_{t} is an endomorphism of G. But

$$
x^{\varphi_{t} \varphi_{t-1}}=\left(t^{-1} x t\right)^{\varphi_{t}}=t\left(t^{-1} x t\right) t^{-1}=x=x^{\varphi_{t}-1 \varphi_{t}} .
$$

Thus $\varphi_{t} \varphi_{t^{-1}}=\ell=\varphi_{t^{-1}} \varphi_{t}$; in other every φ_{t} has a two sided inverse. Thus φ_{t} is an automorphism of G. We call φ_{t} an inner automorphism of G. An automorphism which is not an inner automorphism is called an outer automorphism.

Let us denote by A_{I} the set of all inner automorphisms of G. It is easy to see that A_{I} is a group. There is a natural mapping φ of G onto A_{I} defined by $s^{\varphi}=\varphi_{s}$ for all s in G. This mapping φ is easily seen to be an epimorphism. Then kernel Z of φ consists precisely of those elements of G which commute with every element of G. [For proofs see Kurosh (1955), Ch. 4, §12]. We call Z the center of G. By the definition of inner automorphisms it follows that $N \Delta G$ if and only if N admits all inner automorphisms of G.

A subgroup $H \leq G$ is characteristic in G if it admits all automorphisms of G. Similarly a subgroup $H \leq G$ is fully invariant in G if it admits all endomorphisms of G. By the definition of full invariance it follows that the subgroup W in Theorem is fully invariant in F. Every fully invariant subgroup of G is trivially characteristic in G and every characteristic subgroup of G is normal in G. We remark that the centre z of a group G is a characteristic subgroup. For if $a \in Z$, then $a x=x a$ for every x in G. Therefore

$$
a^{\top} x^{\top}=(a x)^{\top}=(x n)^{\top}=x^{\top} a^{\top}
$$

for every automorphism \top of G. Now since x^{\top} runs through all the elements of G it follows that a^{\top} is in Z and therefore Z is a characteristic subgroup of G. In general the centre of a group is not a fully invariant subgroup. [See Kurosh (1955), ch. 4 15].

One can easily verify that the intersection of an arbitrary family of characteristic (fully invariant) subgroups of a group is a characteristic (fully invariant) subgroup. Thus we can talk of characteristic (fully invariant subgroup generated by a set of elements and also of the lattice of characteristic (fully invariant) subgroups of a group.

In general a characteristic subgroup is not a fully invariant subgroup. [See Neumann and Neumann (1951)]. The following is an unsolved problem in this direction.
Unsolved problem. Is there a characteristic subgroup of a free group F of infinite rank which is NOT fully invariant in F ?

Theorem 2. The relation "characteristic" and "fully invariant" are transitive; that is to say, if $K \leq H \leq G$ with K characteristic (fully invariant) in H and H characteristic (fully invariant) in G then K is characteristic (fully invariant) in G.

Proof. Let α be an automorphism of $G ; \alpha^{\prime}$ the restriction of α to H.
Then, because H is characteristic in $G, H^{\alpha} \leq H$. Applying the automorphism α^{-1} to H, we have $H^{\alpha-1} \leq H$. Therefore $H=\left(H^{\alpha-1}\right)^{\alpha} \leq H^{\alpha}$. Hence we have $H^{\alpha}=H$. i.e. $H^{\alpha^{\prime}}=H$. Therefore α^{\prime} is an automorphism of H. Now since K is characteristic in H, we have $K^{\alpha}=K^{\alpha^{\prime}} \leq K$. hence K is characteristic in G.

The proof in the case of full invariance is similar and actually even easier and we omit it.

The transitivity is not true for the relation "normal". In other words if $K \Delta H \Delta g$, in general it is not true that $K \Delta G$. For example take for G the symmetric group S_{4} of permutations on four letters or the alternating group A_{4}. Let

$$
\begin{aligned}
& H=V_{4}=\{1,(12)(34),(13)(24),(14)(23)\} \text { and } \\
& K=\{1,(12)(34)\}
\end{aligned}
$$

We know that $H \Delta G$, and $K \Delta H$. Now (123) $\in A_{4}$. (123) $)^{-1}=(132)$ and $(123)^{-1} K(123)=\{1,(14)(23)\} \neq K$. Therefore K is not normal in G.

We say that $H \leq G$ is accessible (or subnormal) in G (notation $H \Delta \Delta G)$ if there exists subgroups $H_{0}=H, H_{1}, \ldots, H_{n}=G$, such that $H_{0} \Delta H_{1} \Delta H_{2} \cdots \Delta H_{n}$.

The accessible subgroups of finite group were introduced by H . Wielandt (1939) and further studied by H. Wielandt and recently by
B. Huppert. It is easy to verify that the intersection of two and hence the intersection of a finite number of accessible subgroups is an accessible subgroup. The intersection of an infinite number of accessible subgroups need not be an accessible subgroup.

If a group G has a composition series [Kurosh (1955), CH.5, §16] then the join of any two accessible groups is again an accessible group (Wielandt (1939)). The following is an unsolved problem.
Unsolved problem. Is the join of two accessible subgroup of an infinite group (without composition series) accessible?

7 Verbal Subgroups

Let L be any set of words 1 in the variables X_{1}, X_{2}, \ldots and G a group. Consider the set,

$$
S=\left\{w\left(g_{1}, \ldots, g_{n}\right) \mid w\left(x_{1}, \ldots, x_{n}\right) \in L, g_{i} \in G i=1,2, \ldots n\right\}
$$

This is not in general a subgroup of G. We call $H=g p(S) \leq G$, the word subgroup or a verbal subgroup defined by L.

Theorem 3. Every verbal subgroup H of a group G is fully invariant.
Proof. Let η be an endomorphism of G and the verbal subgroup H be defined by L. It is enough to prove that $S^{\eta} \subseteq S$, for every endomorphism η of G, where S is the set of generators of H as defined above. Now if $w\left(g_{1}, \ldots, g_{n}\right) \in S, w\left(X_{1}, \ldots, X_{n}\right) \in L_{\eta}$, then $\left\{w\left(g_{1}, \ldots, g_{n}\right)\right\}^{\eta}=$ $w\left(g_{1}^{\eta}, \ldots, g_{n}^{\eta}\right) \in S$. Therefore $S^{\eta} \subseteq S$; this is true of every endomorphism of G. Hence H is fully invariant in G. The converse of this theorem is not true in general; but happens to be in the case of free group.

Theorem 4. Every fully invariant subgroup of a free group is verbal.

[^2]Proof. Let W Be a fully invariant subgroup of a free group F. Let L be the set of all normal words that occur in W. If $Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{n}(\underline{\mathrm{X}}) \in F$, where $\underline{\mathrm{X}}=\left(X_{1}, \ldots, X_{n}\right)$ and $X_{i} \in X$, and where X denotes the set of variables as well as the set of generators of F, then the mapping defined by

$$
X_{i}^{\eta}=Y_{i}(\underline{\mathrm{X}}), i=1, \ldots, n
$$

can be extended to an endomorphism of F which also we denote by η. Now if $w\left(X_{1}, \ldots, X_{n}\right) \in L$, then $w\left(X_{1}, \ldots, X_{n}\right)^{\eta}=w\left(Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{n}(\underline{\mathrm{X}})\right) \in$ W as W is fully invariant in F. Therefore

$$
\begin{aligned}
& S=\left\{w \left(Y_{1}\left(Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{n}(\underline{\mathrm{X}})\right) \mid\right.\right. \\
&\left.w\left(X_{1}, \ldots, X_{n}\right) \in L, Y_{i}(\underline{\mathrm{X}}) \in F, i=1,2, \ldots n\right\}
\end{aligned}
$$

is contained in W. But clearly also $W \subseteq S$. Thus $S=W$, and also $g p(S)=W$. Hence the theorem.

It follows that the intersection of any arbitrary family of verbal subgroup of a free group is a verbal subgroup. In general in an arbitrary group this is not true [B.M. Neumann $\left(1937^{a}\right)$]. It is easy to verify that the join of two verbal subgroups of a group is a verbal subgroup.

8

We shall now give an important example of a verbal subgroup. Let $G 79$ be any group. Let L consist of the single word $X_{1}^{-1} X_{2}^{-1} X_{1} X_{2}=\left[X_{1}, X_{2}\right]$. The verbal subgroup G^{\prime} of G defined by L is called the commutator subgroup or derived subgroup of G.

Evidently the commutator subgroup of an abelian group is the trivial group. For any group it is easily seen that the quotient group G / G^{\prime} is abelian [Kurosh (1955)].

Theorem 5. Let W be a verbal subgroup, defined by a set L of words, of the free group F. Then the quotient group F / W is the free group of
the variety $V_{=L}$ defined by the laws $w(\underline{X})=1$, for all $w(\underline{X}) \in L$ and it has the same rank as F.

Proof. Now F_{L}, the corresponding free group of the variety $V_{=L}$, is isomorphic to F / W^{*}, where W^{*} consists of all $w\left(X_{1}, \ldots, X_{n}\right)$ such that $w\left(X_{1}, \ldots, X_{n}\right)=1$ is a law in all the groups of V_{L}. We also know that W^{*} is fully invariant in F. If $w\left(X_{1}, \ldots, X_{n}\right)$ is in L, then $w\left(Y_{1}(\underline{\mathrm{X}}), \ldots, Y_{n}(\underline{\mathrm{X}})\right)$ $\in W^{*}$ for arbitrary $Y_{i}(\underline{X}) \in F$. Therefore $W \leq W^{*}$. Now $F / W \in V_{=L}$. Therefore, if $w\left(X_{1}, \ldots, X_{n}\right) \in W^{*}$ then the law $w\left(X_{1}, \ldots, X_{n}\right)=1$ holds in F / W. In other words $w\left(X_{1}, \ldots, X_{n}\right) \in W$. Therefore $W^{*} \leq W$; we get $W=W^{*}$. Hence the theorem.

Theorem 6. Every verbal subgroup W of a free group F is the fully invariant closure of the set L (i.e. the fully invariant subgroup generated by L) of words consisting of either one or no word of the from X_{1}^{k} and apart from that "commutator words" i.e. words contained in the derived group F^{\prime}.

Proof. We have already remarked that the quotient group F / F^{\prime} is abelian. Therefore every $w \in W$ can be written as $w=X_{1}^{k_{n}} \cdot X_{n}^{k_{n}} w^{\prime}$ with $w^{\prime} \in$ F^{\prime}. Let η be the endomorphism of F defined by $X_{1}^{\eta}=X_{1}, X_{i}^{\eta}=1$ for $i \neq 1$. Since W is fully invariant in F it follows that $w^{\eta}=X_{1}^{k_{1}} w^{\prime \eta}=X_{1}^{k_{1}}$. Similarly η_{i} defined by $X_{i}^{\eta_{i}}=X_{1}$ and $X_{j}^{\eta_{i}}=1$ for $j \neq i$, generates an endomorphism of F and therefore $w^{\eta_{i}}=X_{1}^{k_{i}} w^{\prime \eta_{i}}=X_{1}^{k_{i}}$, since $w^{\prime \eta_{i}}=1$. Let $g p\left(X_{1}^{k}\right)=g p\left(X_{1}\right) \cap W$. Then k / k_{i} for $i=1,2, \ldots n$. If Π_{i} is the endomorphism defined by $X_{1}^{\Pi_{i}}=X_{i}, X_{j}^{\Pi_{i}}=1$ for $i \neq j$, then $\left(X^{k}\right)^{\Pi_{i}}=$ $X_{i}^{k} \varphi W$. Let L be the set consisting of X_{1}^{k} and all the $w^{\prime} s$ that occur when each $w \in W$ is written as $w=X_{1}^{k_{1}} \cdots X_{n}^{k_{n}} w^{\prime}$. It is easily seen that any invariant subgroup of F that contains L also contains W. But W itself is fully invariant in F. Hence W is the fully invariant closure of L. When $k=0, L$ is a subset of W^{\prime}.

Corollary B.M. Neumann, 1937^{1}. If $k \neq 1$, then the reduced free groups of the variety are non-isomorphic for different ranks. [If $k=1$, the free groups of the variety are all the trivial groups.]

Chapter 6

Group-theoretical Constructions

1 The Cartesian product and the direct product of a family of groups

Let $\left\{G_{i}\right\}_{i \in I}$ be a family of group indexed by a non-empty set I. Let $T \mathbf{8 1}$ denote the set of all functions on I with values in G_{i}. Consider the set P defined by

$$
P=\left\{f \in T \mid f(i) \in G_{i} \text { for all } i \in I\right\} .
$$

We turn P into a group by introducing the following multiplication: If $f, g \in P$. Then

$$
f g=h, \text { where } h(i)=f(i) g(i) \text {, for all } i \in I .
$$

It is easy to see that $h \in P$. We take the function $e \in P$, defined by

$$
e(i)=1_{i} \text { for every } i \in I
$$

(where 1_{i} is the unit element of G_{i}) as the unit element. For,

$$
e f=f e=f, \text { for all } f \in P .
$$

For every $f \in P$, we take the function f^{-1} defined by

$$
f^{-1}(i)=(f(i))^{-1}, \text { for every } i \in I
$$

as the inverse of f. It is easy to verify that $f^{-1} \in P$ and $f f^{-1}=f^{-1} f=$ e, for every $f \in P$. We have only to verify the associative law. Let $f, g, h \in P$. We have

$$
\begin{gathered}
((f g) h)(i)=(f g)(i) h(i)=(f(i) g(i)) h(i)=f(i)(g(i) h(i)) \\
=f(i)(g h)(i)=(f(g h)) i
\end{gathered}
$$

for every $i \in I$. Therefore for all $f, g, h, \in P$,

$$
(f g) h=f(g h)
$$

This proves that P is a group. We call P the Cartesian product (unrestricted, full, or strong direct product) of $\left\{G_{i}\right\}_{i \in I}$.

Consider now the set P^{*} defined by

$$
P^{*}=\left\{f \mid f \in P \text { and }\left|\left\{i \mid f(i) \neq 1_{i}\right\}\right|<\chi_{0}\right\}
$$

That is to say, P^{*} consists precisely of all $f \in P$ with $f(i)=1_{i}$ except for a finite number of indices i. It is easy to see that P^{*} is a subgroup of P. The subgroup P^{*} is known as the direct product (restricted or weak direct product) of $\left\{G_{i}\right\}_{i \in I}$. If $|I|<\chi_{0}$, then $P=P^{*}$; that is to say, the concepts of the Cartesian product and the direct product coincide when the index set is finite. The two products we have just defined are important, and they occur frequently in the group theory.

Hereafter, we shall denote all the unit elements that occur by 1 ; unless is a possibility of confusion.

Consider now, for every $i \in I$, the set

$$
H_{i}=\{f \mid f \in P \text { and } f(j)=1 \text { for all } j \neq i\}
$$

We claim that $H_{i} \Delta P$ and that $H_{i} \cong G_{i}$. Let $f, g \in H_{i}$. Then $f(j)=$
$1, g(j)=1$, for $j \neq i$. Therefore, $f^{-1} g(j)=f^{-1}(j) g(j)=(f(j))^{-1} g(j)=$ $1^{-1} 1=1$, for all $j \neq i$. Hence $f^{-1} g \in H_{i}$, and therefore $H_{i} \leq P$. In fact $H_{i} \leq P^{*} \leq P$. Now, let $f \in P, h \in H_{i}$. Then
$\left(f^{-1} h f\right)(j)=(f(j))^{-1} h(j) f(j)=(f(j))^{-1} 1 f(j)=1$, for $j \neq i$.
Therefore $H_{i} \Delta P$. Consider now the mapping \prod_{i} of P onto G_{i} defined by

$$
f^{\Pi_{i}}=f(i), \text { for every } f \in P
$$

We have, for arbitrary $f, g \in P$,

$$
(f g)^{\Pi^{i}}=(f g)(i)=f(i)=f(i) g(i)=f^{\Pi_{i}} g^{\Pi_{i}} .
$$

Therefore \prod_{i} is a homomorphism and in fact, clearly, an epimorphism. We call \prod_{i} the projection of P onto G_{i}. Let us now restrict \prod_{i} to the subgroup H_{i}. We shall denote this restricted mapping also by \prod_{i}. We claim that \prod_{i} is an isomorphism of H_{i} onto G_{i}. To check that this mapping is 'onto', we have only to observe that for every $a \in G_{i}$, the function $h_{a} \in H_{i}$ defined by

$$
h_{a}(j)=1 \text { for } j \neq i \text {, and } h_{a}(i)=a
$$

is mapped on a by \prod_{i}. Obviously, the kernel of \prod_{i} in H_{i} is trivial, and therefore

$$
H_{i} \cong G_{i}, \text { for all } i \in I .
$$

Thus we have in P isomorphic copies of the groups G_{i}. The group P is something called the internal Cartesian product of $\left\{H_{i}\right\}_{i \in I}$, and the external Cartesian product of $\left\{G_{i}\right\}_{i \in I}$.

It is easy to see that for $i \neq j$, every element of H_{i} commutes with every element of H_{j}.

We have already seen that $H_{i} \Delta P^{*}$, for all $i \in I$. We assert now that P^{*} is the subgroup generated by $\left\{H_{i}\right\}_{i \in I}$ in P. Trivially

$$
g p\left(\left\{H_{i}\right\}_{i \in I}\right) \leq P^{*}
$$

Let now $f^{*} \in P^{*}$ with $f^{*}\left(i_{j}\right)=a_{j} \neq 1, j=1, \ldots, n$ and $f^{*}(i)=1$ for $i \neq i_{1}, \ldots, i_{n}$. Define $h_{i_{j}} \in H_{i_{j}} . j=1, \ldots, n$ as follows:

$$
h_{i_{j}}\left(i_{j}\right)=a_{j}, h_{i_{j}}(i)=1 \text { for } i \neq i_{j} .
$$

Then

$$
f^{*}=h_{i_{1}} h_{i_{2}} \cdots h_{i_{n}} \in g p\left(\left\{H_{i}\right\}_{i \in I}\right) .
$$

Therefore, $P^{*}=g p\left(\left\{H_{i}\right\}_{i \in I}\right)$.
The following, theorem and the example we give show that certain properties of the G_{i} are retained in the direct product, but not in the Cartesian product.

Theorem 1. The direct product of periodic groups is periodic.
Proof. Let $f \in P^{*}$. Let

$$
\{i \mid i \in I, f(i) \neq 1\}=\left\{i_{1}, \ldots, i_{n}\right\} .
$$

If m is the least common multiple of the orders of $f\left(i_{1}\right), \ldots, f\left(i_{n}\right)$, then $f^{m}=1$. This proves the theorem.

In general this is not true for Cartesian products P. For example, let $G_{i}=g p\left(a_{i}: a_{i}^{i+1}=1\right), i=1,2,3, \ldots$; that is to say, G_{i} is a cyclic of order $i+1$, generated by a_{i}. Consider $f_{0} \in P$ defined by

$$
f_{o}(i)=a_{i}, i=1,2,3, \ldots
$$

For any positive integer m, we have

$$
f_{0}^{m}(m)=a_{m}^{m} \neq 1,
$$

therefore f_{o} is of infinite order.
Let $\left\{G_{i}\right\}_{i \in I}$ be a countable family of countable groups. Then $P^{*}=$ $g p\left(\left\{H_{i}\right\}_{\epsilon I}\right)$ is countably generated, since each H_{i}, being isomorphic to G_{i}, is countable. On the other hand, the Cartesian product of a countably infinite family of non-trivial countable groups has the cardinal of the continuum. For it is easily seen that

$$
2^{\mathscr{N}_{o}} \leq|P| \leq \mathscr{N}_{o}^{N_{o}}=2 \mathscr{N}_{o} .
$$

We have already remarked that the Cartesian product and the direct product of a family of groups are equal if the index set I is finite. (The
converse is also true if there are no trivial groups in the family.) If $I=\{1,2, \ldots, n\}$, we denote this product by

$$
P=P^{*}=G_{1} \times G_{2} \times \cdots \times G_{n}
$$

(Note that the same notation is used for the set product of the G_{i}; but there is little danger of confusion.)

The following theorems are easy to prove. We shall state them here without proof.

Theorem 2. If $\left\{G_{i}\right\}_{i \in I}$ and $\left\{G_{i}^{\prime}\right\}_{i \in I}$ are two families of groups indexed by the same set I, and

$$
G_{i} \cong G_{i}^{\prime} \text { for every } i \in I
$$

then $P \cong P^{\prime}$ and $P^{*} \cong P^{*}$ where P, P^{\prime} denote the Cartesian products of $\left\{G_{i}\right\}_{i \in I}$ and $\left\{G_{i}^{\prime}\right\}_{i \in I}$ respectively, and $P^{*}, P^{* *}$ the corresponding direct products.

Theorem 3. If $\left\{I_{j}\right\}_{j \in J}$ is a partition of the index set I, and P_{j}, P_{j}^{*} are the Cartesian product and direct product of the family $\left\{G_{i}\right\}_{i \in I_{j}}$, then the Cartesian product (direct product) of $\left\{P_{j}\right\}_{j \in J}\left(\left\{P_{j}^{*}\right\}_{j \in J}\right)$ is isomorphic to the Cartesian product (direct product of $\left\{G_{i}\right\}_{i \in I}$.

In particular, if $I=\{1,2,3\}$, we have

$$
G_{1} \times\left(G_{2} \times G_{3}\right) \cong\left(G_{1} \times G_{2}\right) \times G_{3}
$$

If the G_{i} are all isomorphic to a group G, then we call P the Cartesian power of G, and P^{*} the direct power of G. By Theorem 2, we may replace all the G_{i} by G. Then P will be the set of all functions on I with values in G. We denote this set by G^{I}. If $f, g \in G^{I}$, then $f g(i)=f(i) g(i)$. The unit element is the function $e \in G^{I}$ such that $e(i)=1$ for all $i \in I$. The inverse of $f \in G^{I}$ is the function f^{-1} such that $f^{-1}(i)=(f(i))^{-1}$ for all $i \in I$.

When I is a finite set, say $I=1,2, \ldots, n$, we write G^{n} for G^{I}.
The Cartesian or direct power of a group G does not depend on the index set I, but only on the cardinal of I (See Kuroshm 1955, §17).

2 The splitting extension

In this section we shall give a group-theoretical construction which is more general then the direct product. This construction will be later used in proving certain embedding theorems.

Let G be any group, and $A \Delta G$, with $G / A \cong B$. We call G an extension of A by B. We now pose the following question. Given two groups A and B, does there exist an extension of A by B ? We assert that the direct product of A and B is one such extension. For, let $G=A \times B$ be the direct product of A and B. According to our definition of the direct product an element of G is a function f on the set $\{1,2\}$ with values in $A \cup B$, such that $f(1) \in A$, and $f(2) \in B$. We shall denote this function by the pair $(f(1), f(2))$; in other words $(a, b) \in A \times B$ is the function on $\{1,2\}$ such that $f(1)=a, f(2)=b$. Further, if $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$, then

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)
$$

the unit element of $A \times B$ is $(1,1)$ and $\left(a^{-1}, b^{-1}\right)$ is the inverse of (a, b) in our new notation. We have seen in the last section that the projection Π_{2} of G onto B is an epimorphism with the set $\{(a, 1) \mid a \in A\}$ as the kernel. Clearly, the kernel is isomorphic to A in a natural way. If we identify this set with A, we have

$$
G / A \cong B
$$

Thus G is an extension of A by B. But in general this is not the only extension of A by B.

We shall now give another method of constructing an extension of A by B. Let α be a homomorphism of B into the group of automorphisms of A; this is to say $\alpha(b)$ for any $b \in B$ is an automorphism of A, and further $\alpha\left(b b^{\prime}\right)=\alpha(b) \alpha\left(b^{\prime}\right)$ for all $b, b^{\prime} \in B$: this is the homomorphism property of α. We take the product set

$$
G=B \times A=\{(b, a) \mid b \in B, a \in A\}
$$

and make it a group by introducing the following multiplication:

$$
(b, a)\left(b^{\prime}, a^{\prime}\right)=\left(b b^{\prime}, a^{\alpha\left(b^{\prime}\right)} a^{\prime}\right), \text { for } b, b^{\prime} \in B, \text { and } a, a^{\prime} \in A
$$

We take $(1,1)$ as the unit elements of G. (The unit elements of both $\mathbf{8 9}$ A and P are denoted by 1.) For

$$
(1,1)(b, a)=\left(1 b, 1^{\alpha(b)} a\right)=(b, a)
$$

as $\alpha(b)$, being an automorphism of A, must map 1 on 1 ; and

$$
(b, a)(1,1)=\left(b 1, a^{\alpha(1)} 1\right)=(b, a)
$$

since α is a homomorphism and thus $\alpha(1)$ must be the unit be the unit element of the group of automorphisms of A, that is the identity automorphism. The inverse of (b, a) we take as

$$
(b, a)^{-1}=\left(b^{-1},\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)
$$

For,

$$
(b, a)\left(b^{-1},\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)=\left(b b^{-1}, a^{\alpha\left(b^{-1}\right)}\left(\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)=(1,1) .\right.
$$

Similarly,

$$
\left(b^{-1},\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)(b, a)=\left(b^{-1} b,\left(\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)^{\alpha(b)} a\right)
$$

But

$$
\begin{aligned}
\left(\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)^{\alpha(b)}= & \left(\left(a^{\alpha\left(b^{-1}\right)}\right)^{\alpha(b)}\right)^{-1} \\
& =\left(a^{\alpha\left(b^{-1}\right) \alpha(b)}\right)^{-1}=\left(\left(a^{\alpha\left(b^{-1} b\right)}\right)^{-1}=\left(a^{\alpha(1)}\right)^{-1}=a^{-1} .\right.
\end{aligned}
$$

Therefore, $\left(b^{-1},\left(a^{\alpha\left(b^{-1}\right)}\right)^{-1}\right)(b, a)=(1,1)$. We have now only to verify the associative law. Let $(b, a),\left(b^{\prime}, a^{\prime}\right)$ and $\left(b^{\prime \prime}, a^{\prime \prime}\right) \in B \times A$. Then

$$
\begin{aligned}
\left((b, a)\left(b^{\prime}, a^{\prime}\right)\right)\left(b^{\prime \prime}, a^{\prime \prime}\right) & =\left(b a, a^{\alpha\left(b^{\prime}\right)} a^{\prime}\right)\left(b^{\prime \prime}, a^{\prime \prime}\right) \\
& =\left(\left(b b^{\prime}\right) b^{\prime \prime},\left(a^{\alpha\left(b^{\prime}\right)} a^{\prime}\right)^{\alpha\left(b^{\prime \prime}\right)} a^{\prime \prime}\right) \\
& =\left(b\left(b^{\prime} b^{\prime \prime}\right),\left(a^{\alpha\left(b^{\prime}\right) \alpha\left(b^{\prime \prime}\right)} a^{\prime \alpha\left(b^{\prime \prime}\right)}\right) a^{\prime \prime}\right) \\
& =\left(b\left(b^{\prime} b^{\prime \prime}\right), a^{\alpha\left(b^{\prime} b^{\prime \prime}\right)} a^{\prime\left(b^{\prime \prime}\right)} a^{\prime \prime}\right) \\
& =(b, a)\left(b^{\prime} b^{\prime \prime}, a^{\prime\left(b^{\prime \prime}\right)} a^{\prime \prime}\right)
\end{aligned}
$$

$$
=(b, a)\left(\left(b^{\prime}, a^{\prime}\right)\left(b^{\prime \prime}, a^{\prime \prime}\right)\right)
$$

Thus $B \times A$ is a group with the multiplication we have defined.
To show that G is an extension of A by B, we have first to identify A with some subgroup of G. In other words we have to find a suitable monomorphic image of A in G. Consider the mapping Π_{1} of A into G defined by

$$
a^{\Pi_{1}}=(a, a) \text { for all } a \in A
$$

Now,

$$
\left(a a^{\prime}\right)^{\Pi_{1}}=\left(1, a a^{\prime}\right)=\left(11, a^{\alpha(1)} a^{\prime}\right)=(1, a)\left(1, a^{\prime}\right)=a^{\Pi_{1}} a^{\prime \Pi_{1}}
$$

and $a \Pi_{1}=(1,1)$ if and only if $a=1$. Therefore \prod_{1} is a monomorphism of A into G, the monomorphic image the subgroup $\{(1, a) \mid a \in A\} \leq G$. We identify A with this monomorphic image; in other words we write a for ($1, a$), for all $a \in A$.

Similarly, consider the mapping the mapping \prod_{2} of B into G defined by

$$
b^{\Pi_{2}}=(b, a), \text { for all } b \in B
$$

We have

$$
\left(b b^{\prime}\right)^{\Pi_{2}}=\left(b b^{\prime}, 1\right)=\left(b b^{\prime}, 1^{\alpha\left(b^{\prime}\right)} 1\right)=(b, 1)\left(b^{\prime}, 1\right)=b^{\Pi_{2}} b^{\prime \Pi_{2}}
$$

Further $b^{\Pi_{2}}=(1,1)$ if and only if $b=1$. Therefore Π_{2} is a monomorphism of B into G, and

$$
B^{\Pi_{2}}=\left\{(b, a) \mid b^{*} \in B\right\} \leq G
$$

We identity B with $B^{\Pi_{2}}$ and write b for (b, a), for all $b \in B$.
Now,

$$
b a=(b, a)(1, a)=\left(b 1,1^{\alpha(1)} a\right)=(b, a) .
$$

Therefore every element (b, a) of G can be written as

$$
(b, a)=b a, \text { with } b \in B, a \in A .
$$

By the identification we have made, it is easily seen that $A \cap B=\{1\}$. We claim that the representation of a pair (b, a) as a product ba is unique. For if

$$
b a=b^{\prime} a^{\prime}, \text { with } b, b^{\prime} \in \in B, a, a^{\prime} \in A
$$

then $b^{-1} b=a^{\prime} a^{-1}$. But $A \cap B=\{1\}$. Hence,

$$
b^{\prime-1} b=a^{\prime} a^{-1}=1, \text { i.e }, a=a^{\prime}, b=b^{\prime}
$$

Consider now the mapping Π of G onto B defined by

$$
(b a)^{\Pi}=b
$$

(Note that the uniqueness of the representation ba ensure that Π is a mapping.) We assert that Π is an epimorphism of G onto B with A as kernel, For,

$$
\left((b a)\left(b^{\prime} a^{\prime}\right)\right)^{\Pi}=\left(b b^{\prime} a^{\alpha\left(b^{\prime}\right)} a^{\prime}\right)^{\Pi}=b b^{\prime}=(b a)^{\Pi}\left(b^{\prime} a^{\prime}\right)^{\Pi}
$$

for all $b, b^{\prime} \in B, a, a^{\prime} \in A$.It is easy to see that the kernel of Π is A and therefore

$$
A \Delta G, G / A \cong B
$$

Hence G is an extension of A by B. We call G a splitting extension (split extension or semi-direct product) of A by B.

By the above construction it follows that G depends on the homomorphism α also. In particular, if we take for α the trivial homomorphism, that is, the mapping which maps every element of B onto the identity automorphism of A, it is easy to see that the corresponding splitting extension is the direct product of A and B.

If α is an isomorphism of B onto the group of automorphisms of A, then corresponding splitting extension is known as the holomorph of A.

We note that in a splitting extension of A by B,

$$
b^{-1} a b=a^{\alpha(b)} \text { for all } a \in A
$$

that is to say, all the automorphism $\alpha(b)$ of A are induced by inner automorphisms of the splitting extension. In particular when G is the
holomorph of A, all the automorphisms of A are induced by the inner automorphisms of G.

Not all extensions of A by B are necessarily splitting extensions. Consider the group Q generated by two elements i, j with the defining relations

$$
i^{-1} j i=j^{-1}, j^{-1} i j=i^{-1}
$$

This group is known as the quaternion group (see Coxeter and Moser, 1957). It is not difficult to prove the order of Q is 8 , the element i is four, and the only subgroup of order 2 in Q is $\left\{1, i^{2}\right\}$. Let now $A=g p(i)$. Then the subgroup A being of index 2 in Q is a normal subgroup of Q. Thus Q is an extension of A by a cyclic group of order 2 . But the only subgroup of order 2 of Q is $g p\left(i^{2}\right)$, which is contained in A. Therefore Q is not a splitting extension of A. The subgroup $g p\left(i^{2}\right)$ is also normal in Q, as it is the only subgroup of order 2 of Q. But

$$
Q / g p\left(i^{2}\right) \cong V_{4}=g p\left(a, b: a^{2}=b^{2}=1\right)
$$

However, Q contains only one subgroup of order 2, hence cannot contain any subgroup isomorphic to V_{4}. Therefore Q is not a splitting extension of $g p\left(i^{2}\right)$.

3

The quaternion group Q is a finite group which is presented by two generators and two relations. Let G be a group generated by a minimal set of generators consisting of d elements, and let the number of defining relations in these generators be e. It is not difficult to prove that if $e<d$, then the group G is infinite. Thus for finite groups, one necessarily has $e \geq d$. Obviously the finite cyclic group are examples of finite groups with $e=d=1$. Some examples of finite groups with $e=d=2$ can be found in B.H.Neumann (1956).
H.Mennicke (Kiel, Germany now Glasgow) has shown that the following group is finite:

$$
G=g p\left(a, b, c: a^{b}, b^{3}, b^{c}=b^{3}, c^{a}=c^{3}\right)
$$

It is not difficult to verify that G cannot be generated by generated by fewer than three elements; thus G is an example of a finite group with $e=d=3$. Later Mennicke and I.P. Macdonald (Manchester) independently have given an infinite sequence if finite groups with $e=$ $d=3$. (The results of Mennick and Macdonald are to be published in Arch. Math. and Canod J.math., respectively. This suggests the following
Unsolved problem. Are there finite groups with $e=d=4$ that cannot be generated by fewer than 4 elements?

4

Let G be a group, and A, B subgroups of G satisfying the following conditions:
(i) $G=A B$,
(ii) $A \cap B=\{1\}$

We call G the general product of the subgroups A and B.
If G is the general product of its subgroups A and B, then it can also be written as $G=A B$. For,

$$
G=G^{-1}=(A B)^{-1}=B^{-1} A^{-1}=B A .
$$

Every $g \in G$ can be represented as the product of an element of A and an element of B. Moreover, this representation is unique. For, if $g=a b=a^{\prime} b^{\prime}$ with $a, a^{\prime} \in A, b, b^{\prime} \in B$, then

$$
a^{\prime-1}=b^{\prime} b^{-1} \in A \cap B=\{1\}
$$

Hence $a^{\prime-1} a=1=b^{\prime} b^{-1}$, i.e, $a=a^{\prime}, b=b^{\prime}$.
We have seen (section 2 of this chapter) that if G is a splitting extension of its subgroup A by a subgroup B, then
(i) $G=B A$, (ii) $B \cap A=\{1\}$ and (iii) $A \Delta G$.

We claim that conditions (i), (ii) and (iii) are sufficient in order that G be a splitting extension of A by B. To prove this, we define a mapping α of B into the group of automorphisms of A as follows: for every $b \in B$,

$$
a^{\alpha(b)}=b^{-1} a b \text { for all } a \in A \text {. }
$$

[^3]Since $A \Delta G$, it admits all inner automorphisms of G, and hence $\alpha(b)$ is an automorphism of A. We assert that α is a homomorphism of B into the group of automorphisms of A. For,

$$
\begin{aligned}
a^{\alpha\left(b b^{\prime}\right)} & =\left(b b^{\prime}\right)^{-1} a\left(b b^{\prime}\right)=b^{-1}\left(b^{-1} a b\right) b^{\prime}=b^{-1} a^{\alpha(b)} b^{\prime} \\
& =\left(a^{\alpha(b)}\right)^{\alpha\left(b^{\prime}\right)}=a^{\alpha(b) \alpha\left(b^{\prime}\right)}
\end{aligned}
$$

for every $a \in A$ and all $b, b^{\prime} \in B$. Hence

$$
\alpha\left(b b^{\prime}\right)=\alpha(b) \alpha\left(b^{\prime}\right) \text { for all } b, b^{\prime} \in B ;
$$

that is, α is a homomorphism.
The condition (ii) immediately gives $b a=b^{\prime} a^{\prime}$ is and only if $b=$ $b^{\prime}, a=a^{\prime}$. Now, $(b a)\left(b^{\prime} a^{\prime}\right)=b b^{\prime} b^{\prime-1} a b^{\prime} a^{\prime}=b b^{\prime} a^{\alpha\left(b^{\prime}\right)} a^{\prime}$. This proves that G is a splitting extension of A by B.

If, decides conditions (i), (ii) and (iii), G also satisfies (iv) $B \Delta G$, then G is the direct product of A and B. For,

$$
a^{\alpha(b)}=b^{-1} a b=a a^{-1} b^{-1} a b=a[a, b]
$$

for all $a \in A, b \in B$. And since $A \Delta G, B \Delta G$, we have

$$
[a, b]=\left(a^{-1} b^{-1} a\right) b=a^{-1}\left(b^{-1} a b\right) A \cap B=\{1\}
$$

i.e.,

$$
[a, b]=1, \text { for all } a \in A, b \in B .
$$

That is $a^{\alpha(b)}=a$ for all $a \in A$; thus $\alpha(b)$ is the identity automorphism of A for every $b \in B$. Therefore, α is the trivial homomorphism, and G is the direct product of A and B.

Conversely if G is the (internal) direct product of its subgroup A and B, then G satisfies (i), (ii), (iii) and (iv).

Then we have
Theorem 4. 1. G is a splitting extension of A by B if and only if it satisfies conditions (i), (ii) and (iii).
2. G is the direct product of A and B if and only if it satisfies conditions (i), (ii), (iii) and (iv).

5 Regular permutation representations of a group by right multiplications

Let G be a group. We know that the set of all one-one mapping of G onto G, or permutations of G forms a group (called the symmetric group) with the composition of mapping as multiplication. We shall embed G in this permutation group; in other words, we shall find a monomorphic image of G in this group.

For every $g \in G$, we define a permutation $\rho(g)$ of G by

$$
x^{\rho(g)}=x g, \text { for all } x \in G .
$$

It is easy to verify that $\rho(g)$ is a permutation of G; but this also follows from the homomorphism property to be moved now. Consider the mapping ρ of G into the group of permutations of G, defined by

$$
g^{\rho}=\rho(g) \text { for all } g \in G
$$

We claim that ρ is a monomorphism. Let $g, h \in G$. Then

$$
\begin{aligned}
x^{\rho(g h)} & =x(g h)=(x g) h=x^{\rho(g)} h=\left(x^{\rho(g)}\right)^{\rho_{(h)}} \\
& =x^{\rho(g)}, \text { for all } x \in G .
\end{aligned}
$$

Therefore,

$$
\rho(g h)=\rho(g) \rho(h), \text { for all } g, h \in G
$$

Further, $\rho(g)=1$ means

$$
x^{\rho(g)}=x g=x, \text { for all } x \in G
$$

In particular if we take $x=1$, we get $g=1$. Hence ρ is a homomorphism with trivial kernel, that is, a homomorphism. Thus $G \cong \rho(G)$.

We call $\rho(g)$ a right multiplication, and $\rho(G)$ the regular permutation representation by right multiplications.

In this context, we can realise the holomorph of G as a subgroup of the symmetric group S_{G} of all permutation of G, namely as the normaliser of $\rho(G)$ in S_{G}.

6 Wreath Product

Let A be an abstract group, and B a permutation group of a set Y. Consider A^{Y}, the Cartesian power of A; this consists of all functions on Y with values in A. If $f, g \in A^{Y}$, then

$$
f g(y)=f(y) g(y), \text { for all } y \in Y
$$

We want to represent B as an automorphism group of A^{Y}. In other words we want to find a homomorphism of B into the group of automorphisms of A^{Y}. For every $b \in B$, we define a mapping $\alpha(b)$ of A^{Y} into A^{Y} by

$$
f^{\alpha(b)}(y)=f\left(y^{b^{-1}}\right) \text { for all } y \in Y
$$

We first prove that $\alpha(b)$ is an endomorphism of A^{Y}. We have

$$
\begin{aligned}
(f g)^{\alpha(b)}(y) & =(f g)\left(y^{b^{-1}}\right)=f\left(y^{b-1}\right) g\left(y^{b^{-1}}\right) \\
& =f^{\alpha(b)}(y) g^{\alpha(b)}(y)=\left(f^{\alpha(b)} g^{\alpha(b)}\right)(y)
\end{aligned}
$$

for all $y \in Y$. Therefore

$$
(f g)^{\alpha(b)}=f^{\alpha(b)} g^{\alpha(b)}, \text { for all } f, g \in A^{Y}
$$

Further,

$$
\begin{aligned}
f^{\alpha\left(b b^{\prime}\right)}(y) & =f\left(y^{\left(b b^{\prime}\right)^{-1}}\right)=f\left(y^{b^{\prime-1} b^{-1}}\right) \\
& =f\left(\left(y^{b^{\prime-1}}\right)^{b^{-1}}\right)=f^{\alpha(b)\left(y^{b^{\prime-1}}\right)}=\left(f^{\alpha(b)}\right)^{\alpha\left(b^{\prime}\right)}(y) \\
& =f^{\alpha(b) \alpha\left(b^{\prime}\right)}(y), \text { for all } y \in Y .
\end{aligned}
$$

100 Hence $\alpha\left(b b^{\prime}\right)=\alpha(b) \alpha\left(b^{\prime}\right)$
Again, this is true for all $b, b^{\prime} \in B$, hence the mapping α of B into the semigroup of endomorphisms of A^{Y} is a homomorphism. It follows that $\alpha(B)$ is a group, and also that every $\alpha(b)$ is an automorphism of A^{Y}. (Incidentally, one easily verifies that α is a monomorphism, provided that A is non-trivial).

We now form the splitting extension P of A^{Y} by B in terms of α. Every element p of P can be written uniquely as

$$
p=b f, b \in B, f \in A^{Y}
$$

if $p^{\prime}=b^{\prime} f^{\prime}$ with $b^{\prime} \in B, f^{\prime} \in A^{Y}$ is any other element of P, then

$$
p p^{\prime}=(b f)\left(b^{\prime} f^{\prime}\right)=b b^{\prime} f^{\alpha\left(b^{\prime}\right)} f^{\prime}
$$

We call P the (Cartesian, full, or unrestricted) wreath product of A and B write

$$
P=A W r B
$$

(P. Hall uses the notation $A \bar{\imath} B$, see P. Hall (1954 $\left.{ }^{b}\right)$.)

Instead of taking the Cartesian power A^{Y}, we could start with the corresponding direct power of A; we then arrive at a group P^{*} the direct (or restricted) wreath product of A and B, and we write

$$
P^{*}=A w r B .
$$

(P. Hall uses the notation $A \bar{\imath} B$. If Y is a finite set, the two wreath products are equal:

$$
A W r B=A w r B
$$

Next we shall consider the case when both A and B are abstract groups. We represent B as a permutation group of $Y=B$ by right multiplications and form the wreath product P of A and the permutation group of Y which represents B. We call P the wreath product of the abstract groups A and B. We shall identify every element b of B with the corresponding right multiplication $\rho(b)$ and write b for $\rho(b)$; that is,

$$
y^{\rho(b)}=y^{b}, \text { for all } y \in B
$$

As before α is the homomorphism of B into the group of automorphism of A^{B} defined by

$$
f^{\alpha(b)}(y)=f\left(y^{b^{-1}}\right)=f\left(y b^{-1}\right), \text { for all } y \in B
$$

This is a slight simplification of the notation, and we further simplify it by writing b for $\alpha(b)$. Thus we write

$$
f^{b}(y)=f\left(y b^{-1}\right), \text { for all } y \in B, f \in A^{B} .
$$

(This accords with our usual notation, by which $b^{-1} f b=f^{b}$).

Every element p of P can be written uniquely as $p=b f$ with $b \in$ $B, f \in A^{B}$; and

$$
(b f)\left(b^{\prime} f^{\prime}\right)=b b^{\prime} f^{b^{\prime}} f^{\prime}, \text { for all } b, b^{\prime} \in B, f, f^{\prime} \in A^{B}
$$

Thus by this convention of identifying the abstract group B with the group of all right multiplications of B, we form the wreath product of any two abstract groups.

Now suppose both A and B are permutation groups, say of sets X and Y respectively. In this case we can give a particularly simple permutation representation on the product set $X Y$ for the wreath product of A and B. To this end, we reverse the order of the factors in the splitting extension P of A^{Y} by B, that is, we now write the element of P in the form

$$
p=f b, f \in A^{Y}, b \in B
$$

Then multiplication of such products takes the form

$$
\begin{aligned}
(f b)\left(f^{\prime} b^{\prime}\right) & =f b f^{\prime}-b^{-1} b b^{\prime}=f f^{\prime b-1} b b^{\prime} \\
& =f^{*} b^{*} \text { say }
\end{aligned}
$$

where $f^{*}=f f^{\prime b^{-1}} \in A^{Y}$ and $b^{*}=b b^{\prime} \in B$. For every $f b$ of P, we define a mapping (f, b) of the set $X \times Y$ into itself as follows:

$$
(x, y)^{(f, b)}=\left(x^{f(y)}, y\right), \text { for all }(x, y) \in X \times Y .
$$

We shall now show that the mapping φ of P into the set of all mapping of $X \times Y$ into itself, defined by

$$
(f b)^{\varphi}=(f, b)
$$

103 is a monomorphism. Let $f b, f^{\prime} b^{\prime} \in P$, with $f, f^{\prime} \in A^{Y}, b, b^{\prime} \in B$.
Then

$$
(f b)\left(f^{\prime} b^{\prime}\right)=f f^{b-1} b b^{\prime}=f^{*} b^{*}
$$

Now,

$$
(x, y)^{(f, b)\left(f^{\prime}, b^{\prime}\right)}=\left(x^{f(y)}, y^{b}\right)^{\left(f^{\prime}, b^{\prime}\right)}
$$

$$
\begin{aligned}
& =\left(\left(x^{f(y)}\right)^{f^{\prime}\left(y^{b}\right)},\left(y^{b}\right)^{b^{\prime}}\right) \\
& =\left(x^{f(y) f^{\prime b-1}}(y), y^{b b^{\prime}}\right) \\
& =\left(x^{f f^{\prime b-1}}(y), y^{b b^{\prime}}\right)=\left(x^{f^{*}}(y), y^{b^{*}}\right)
\end{aligned}
$$

and as this is true for all $(x, y) \in X \times Y$ it follows that

$$
(b, b)\left(f^{\prime}, b^{\prime}\right)=\left(f^{*}, b^{*}\right)
$$

that is,

$$
\left((f b)\left(f^{\prime} b^{\prime}\right)\right)=(f b)\left(f^{\prime} b^{\prime}\right)
$$

This proves that φ is a homomorphism.
It follows that every (f, b) is a permutation of $X \times Y$. We claim that φ is a monomorphism of P into the symmetric group of permutations of $X \times Y$. For if $(f, b)=\left(f^{\prime}, b^{\prime}\right)$, then

$$
(x, y)^{(f, b)}=\left(x^{f(y)}, y^{b}\right)=\left(x^{f^{\prime}(y)}, y^{b^{\prime}}\right)=(x, y)^{\left(f^{\prime}, b^{\prime}\right)}
$$

for all $(x, y) \in X \times Y$. Hence

$$
x^{f(y)}=x^{f^{\prime}(y)} \text { for all } x \in X
$$

Therefore $f(y)=f^{\prime}(y)$.
Again this holds for all $y \in Y$; thus $f=f^{\prime}$. Similarly, $y^{b}=y^{b^{\prime}}$ for all $y \in Y$; hence $b=b^{\prime}$. This show that φ is a monomorphism. Thus we have represented P as a group of permutations of $X \times Y$.

In the following, we shall identify the wreath product of the permutation groups A and B (of the sets X and Y respectively), with its representation as a permutation group of $X \times Y$.

The above permutation representation of the wreath product of two permutation groups makes the wreath product associative. In other words, if A, B and C are permutation groups of sets X, Y, and Z respectively, then

$$
(A W r B) W r C \cong A W r(B W r C)
$$

In fact, if we make the natural identification of $((x, y), z) \in(X \times Y) \times Z$ and

$$
(x,(y, z)) \in X \times(Y \times Z)
$$

with the triplet $(x, y, z) \in X \times Y \times Z$ then $(A W r B) W r C$ and $A W r(B W r C)$ become the same permutation group of $X \times Y \times Z$. This will consist of the mapping (F, g, c) where $F \in A^{Y \times Z}, g \in B^{z}, c \in c$ and

$$
(x, y, z)^{(F, g, c)}=\left(x^{F(y, z)}, y^{g(z)}, z^{c}\right)
$$

Write $P=A W r B, Q=B W r C$. Then
and $\quad(A W r B) W r C=P W r C=\left\{(\varphi, c) \mid \varphi \in P^{z}, c \in C\right\}$
Now, if $\varphi \in P^{z}, \varphi(z)$ is of the form

$$
\varphi(z)=\left(f_{z}, b_{z}\right), f_{z} \in A^{Y}, b_{z} \in B
$$

Write

$$
f_{z}(y)=F(y, z), b_{z}=g(z)
$$

We have

$$
\begin{aligned}
((x, y), z)^{(\varphi, c)} & =\left((x, y)^{\varphi(z)}, z^{c}\right) \\
& =\left((x, y)^{\left(f_{z}, b_{z}\right)}, z^{c}\right)=\left(\left(x^{f_{z}(y)}, y^{b_{z}}\right), z^{c}\right) \\
& =\left(\left(x^{F(y, z)}, y^{g(z)}\right), z^{c}\right) \\
& =\left(x^{F(y, z)}, y^{g(z)}, z^{c}\right) \quad \text { (by our identification) } \\
& =(x, y, z)^{(F, g, c)} \quad \text { (say) }
\end{aligned}
$$

Conversely, by retracing the above steps, one can easily see that 106 any triplet of the form (F, g, c) with $F \in A^{Y \times Z}, g \in B^{Z}$ and $c \in C$ is (by our identification) an element of $(A W r B) W r C$. Thus the group $(A W r B) W r C$ consists of all permutations of $X \times Y \times Z$ of the form (F, g, c) with $F \in A^{Y \times Z}, g \in B^{Z}, c \in C$, and

$$
(x, y, z)^{(F, g, c)}=\left(x^{F(y, z)}, y^{g(z)}, z^{c}\right)
$$

for all $(x, y, z) \in X \times Y \times Z$.

Similarly, we have
and

$$
\begin{gathered}
Q=\left\{(g, c) \mid f \in B^{z}, c \in C\right\}, \\
A W r(B W r C)=A W r Q=\left\{(F, q) \mid F \in A^{Y \times Z}, q \in Q\right\}
\end{gathered}
$$

Let $q=(g, c) \in Q$.Then

$$
\begin{aligned}
(x,(y, z))^{(F, q)} & =\left(x^{F(y, z)},(y, z)^{q}\right) \\
& =\left(x^{F(y, z)},\left(y^{g(z)}, z^{c}\right)\right) \\
& =\left(x^{F(y, z)}, y^{g(z)}, z^{c}\right), \quad \text { again by our identification } \\
& =(x, y, z)^{(F, g, c)}
\end{aligned}
$$

Conversely, we can prove that any (F, g, c) is an element of $\operatorname{AWr}(B$ $W r C)$. Thus we have proved that

$$
(A W r B) W r C=A W(B W r C)
$$

Let us now compute the cardinality of the group $(A W r B) W r C$. It is easy to see that
and

$$
\begin{aligned}
|A W r B| & =|B \| A|^{|Y|} \\
|(A W r B) W r C| & =|A W r B|^{|Z|}|C| \\
& =\left(|B \| A|^{|Y|}\right)^{|Z|}|C|=|A|^{|Y| Z \mid}|B|^{|Z|}|C| \\
& =|A W r(B W r C)| \text { because of associativity. }
\end{aligned}
$$

In general the wreath product of two abstract groups as we have defined it is not associative. Let A and B be two abstract groups. Then by definition $A W r B$ is a group with the set $B \times A^{B}$ as carrier and therefore

$$
|A W r B|=|A|^{|B|}|B|
$$

Let now A, B, C be three abstract groups of orders say $2,3,5$ respectively

$$
|A|=2,|B|=3,|C|=5
$$

Then we have

$$
\begin{aligned}
|A W r B| & =|A|^{|B|}|B|=2^{3} 3, \quad \text { and } \\
|(A W r B) W r C| & =|A W r B|^{|C|}|C|=\left(2^{3} 3\right)^{5} 5=2^{15} 3^{5} 5
\end{aligned}
$$

on the other hand $|B W r C|=\left|B^{|C|}\right| C \mid=3^{5} 5$ and

$$
|A W r(B W r C)|=|A|^{|B W r C|}|B W r C|=2^{3^{5} .5} 3^{5} 5 .
$$

Hence

$$
A W r(B W r C) \neq(A W r B) W r C .
$$

Thus in general the wreath product of abstract groups is not associative and the wreath products of two groups A and B depends upon the permutation representation we choose for B.

7

We shall later have occasion to use the wreath product of group while certain embedding theorems. As a first illustration of wreath products and their usefulness, we ally them to find the sylow subgroups of finite symmetric groups.

Let A and B be cyclic groups of order 3, say

$$
A=g p\left(a_{o}: a_{0}^{3}=1\right), B=g p\left(b_{0}: b_{0}^{3}=1\right)
$$

The groups A and B can be regarded as permutation groups on the set $X=\{1,2,3\}=Y$ by identifying a_{0} and b_{0} with the cycle (123); thus

$$
1^{a_{0}}=2,2^{a_{0}}=3,3^{a_{0}}=1
$$

and similarly for b_{0}. Write $P=A W r B$. The group P has permutation representation on the set $X \times Y$, since the groups A and B are permutation groups on the set $X=Y\{1,2,3\}$.

Now,

$$
X \times Y=\{(1,1),(1,2),(1,3),(2,1)(2,2),(2,3),(3,1),(3,2),(3,3)\}
$$

109 For convenience, we rename these pairs $1,2,3,4,5,6,7,8,9$ in the same order; i.e.,

$$
\begin{array}{ll}
(1, i)=i, & (i=1,2,3) \\
(2, j)=3+j, & (j=1,2,3) \\
(3, k)=6+k, & (k=1,2,3)
\end{array}
$$

The group $A^{Y}=A \times A \times A$ consists of all functions on the set $\{1,2,3\}$ with values in A. In our usual notation,

$$
P=\{(f, b) \mid f \in A \times A \times A, b \in B\}
$$

where (f, b) is the permutation of $X \times Y$ such that

$$
(x, y)^{(f, b)}=\left(x^{f(y)}, y^{b}\right), x \in X, y \in Y
$$

Define $f_{i} \in A^{Y}, i=1,2,3$ by

$$
f_{i}(j)=1 \text { for } i \neq j, f_{i}(i)=a_{0}(j=1,2,3) .
$$

Then it is easy to verify that

$$
A^{Y}=g p\left(f_{1}, f_{2}, f_{3}\right)
$$

Since $(f, b)=(f, 1)(1, b)$ for all $f \in A^{Y}, b \in B$,we have

$$
P=g p\left(\left(f_{1}, 1\right),\left(f_{2}, 1\right),\left(f_{3}, 1\right),\left(1, b_{0}\right)\right) .
$$

Now we can easily write down the permutations $\left(f_{1}, 1\right),\left(f_{2}, 1\right)\left(f_{3}, 1\right)$ and $\left(1, b_{0}\right)$. We have

$$
\begin{aligned}
& (1,1)^{\left(f_{1}, 1\right)}=\left(1^{f_{1}(1)}, 1^{1}\right)=(2,1) \\
& (2,1)^{\left(f_{1}, 1\right)}=\left(2^{f_{1}(1)}, 1^{1}\right)=(3,1) \\
& (3,1)^{\left(f_{1}, 1\right)}=\left(3^{f_{1}(1)}, 1^{1}\right)=(1,1)
\end{aligned}
$$

and

$$
(i, j)^{\left(f_{1}, 1\right)}=\left(i^{f_{1}(j)}, j^{1}\right)=(i, j), \text { for } i=1,2,3, j=2,3 .
$$

Thus, in the alternative notation

$$
\left(f_{1}, 1\right)=(147)
$$

Similarly, $\left(f_{2}, 1\right)=(258),\left(f_{3}, 1\right)=(369)$. Further

$$
\begin{array}{ll}
(1,1)^{\left(1, b_{0}\right)}=\left(1^{1(1)}, 1^{b_{0}}\right)= & (1,2) \\
(1,2)^{\left(1, b_{0}\right)}= \\
(1,3)^{\left(1, b_{0}\right)}= & (1,3)
\end{array}
$$

and so on. Therefore,

$$
\left(1, b_{0}\right)=(123)(256)(789)
$$

111 But

$$
\begin{aligned}
& \left(1, b_{0}\right)^{-1}\left(f_{1}, 1\right)\left(1, b_{0}\right) \\
& =(321)(654)(987)(123)(456)(789) \\
& =(258)=\left(f_{2}, 1\right)
\end{aligned}
$$

Similarly, $\left(1, b_{0}\right)^{-1}\left(f_{2}, 1\right)\left(1, b_{0}\right)=\left(f_{3}, 1\right)$.
Hence the group P is generated by the two permutations $\left(f_{1}, 1\right)$ and $\left(1, b_{0}\right)$; that is, by (147) and (123)(456)(789). We also note that P is here represented as a group of permutations of degree 9 , that is, as a subgroup of the symmetric group S_{9}. The order of the group P is

$$
|P|=|A|^{|Y|}|B|=3^{3} 3=3^{4}
$$

It is easy to see that $3^{4} T 9$!; that is 3^{4} is the highest power of 3 dividing the order 9!of S_{9}. Thus P is a "sylow subgroup" of S_{9}.

Let G be a finite group, and p a prime. If $p^{k} T G$, the G has subgroups of order p^{k}. Such subgroups are called sylow subgroups. There are a number of important theorems (known as sylow theorems) about these subgroups. See e.g Kurosh (1956, §54) and Zassenhaus (1958, Ch. IV, p. 135).

The example considered above is a particular case of the following theorem.

112 Theorem 5 (Kaloujnine, 1948). The sylow p-subgroup of $S_{p^{n}}$ is the wreath product

$$
P_{n}=C_{p} W r C_{p} W r \cdots W r C_{p}(n \text { times })
$$

were $C_{p}=g p\left(c_{0}: c_{0}^{p}=1\right)$ is the cyclic group of order p. The group C_{p} can be regarded as the subgroup generated by the cycle $(12 \cdots p)$ in S_{p}.

Let $X=\{1,2, \ldots, p\}=X_{1}=\cdots=X_{n}$, and

$$
Z=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in X_{i}, i=1, \ldots, n\right\} ;
$$

that is to say,

$$
Z=X_{1} \times X_{2} \cdots \times X_{n}=X^{n} .
$$

We rename the elements $\left(x_{1}, \ldots, x_{n}\right)$ of Z, and write $1+\sum_{i=1}^{n}\left(x_{i}-1\right) p^{i-1}$ for $\left(x_{1}, \ldots, x_{n}\right)$. We note that $|Z|=p^{n}$. In the new notation, we have $P_{n} \leq S_{p^{n}}$.

Since the wreath product is associative (note that we are using permutation groups), we get

$$
P_{n}=P_{n-1} W r C_{p}
$$

Therefore $\left|P_{n}\right|=\left|P_{n-1}\right|^{p}\left|C_{p}\right|=\left|P_{n-1}\right|^{p} p$

$$
=p^{k(n)}(\text { say })
$$

Here $k(n)$ is defined by the recurrence relation

$$
k(1)=1, k(n)=p k(n-1)+1 .
$$

We shall prove by induction that

$$
p^{k(n)} \top p^{n} ;
$$

For $n=1$, this is obvious. Assume that

$$
p^{k(n-1)} \top p^{n-1}
$$

Now,

$$
p^{n}=\left(\prod_{r=1}^{p^{n-1}} r\right)\left(\prod_{r=1}^{p^{n-1}}\left(p^{n-1}+r\right)\left(\prod_{r=1}^{p^{n-1}}\left(2 p^{n-1}+r\right)\right) \cdots\left(\prod_{r=1}^{p^{n-1}}((p-1) p+r)\right)\right.
$$

We have $p^{s} \top\left(m p^{n-1}+r\right)$ if and only if $p^{s} \top r, m<p-1,1 \leq r \leq p^{n-1}$. Therefore,

$$
p^{k(n-1)} \top \prod_{r=1}^{p^{n-1}}\left(m p^{n-1}+r\right) \text { for } m<p-1
$$

But $p^{k(n-1)+1} \top \prod_{r=1}^{p^{n-1}}\left((p-1) p^{n-1}+r\right)$, since the last term of this product is p^{n}. Hence $\left(p^{k(n-1)}\right)^{p} p=p^{k(n)} T p^{n}$; for all n, Thus P_{n} is a sylow subgroup of $S_{p^{n}}$. It is not difficult to use this result to compute the sylow subgroups of any symmetric group S_{m}.

Chapter 7

Varieties of Groups (Contd.)

1

Let $\underset{=}{V}$ be a variety defined by a set of laws L, that is $\underset{=}{V}$ consists of all114 groups in which the laws of L hold. If $G \in \underset{=}{V}$ and $H \leq G$, then $H \in \underset{=}{V}$. Let G^{\prime} be any epimorphic image of G; that is, there is an epimorphism φ of G onto G^{\prime}. Now if

$$
w\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in $\underset{=}{V}$, then it is also a law in G^{\prime}. For, let $g_{1}^{\prime}, \ldots, g_{n}^{\prime}$ be arbitrary elements of G^{\prime}. Because φ is an epimorphism, there exist elements $g_{1}, \ldots, g_{n} \in G$ such that

$$
g_{i}^{\varphi}=g_{i}^{\prime}, 1, \ldots, n
$$

Now,

$$
\begin{aligned}
\left(w\left(g_{1}, \ldots, g_{n}\right)\right)^{\varphi}=1 & =w\left(g_{1}^{\varphi}, \ldots, g_{n}^{\varphi}\right) \\
\text { i.e., } \quad w\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right) & =1 ; \text { thus } \\
w\left(X_{1}, \ldots, X_{n}\right) & =1
\end{aligned}
$$

is a law in G. Therefore

$$
G^{\prime} \in \underset{=}{V}
$$

Let $\left\{G_{i}\right\}_{i \in I}$ be an arbitrary family of groups of V. We assert that the $\mathbf{1 1 5}$ cartesian product P of $\left\{G_{i}\right\}_{i \in I}$ is in the variety $\underset{=}{V}$. Consider

$$
f^{*}=w\left(f_{1}, \ldots, f_{n}\right) \in P
$$

where f_{1}, \ldots, f_{n} are arbitrary elements of P and

$$
w\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in L. Then

$$
\begin{gathered}
f^{*}(i)=w\left(f_{1}(i), \ldots, f_{n}(i)\right)=1, \text { for all } i \in I, \text { since } \\
f_{1}(i), \ldots, f_{n}(i) \in G_{i} \text { and } G_{i} \in \underset{=}{V} . \text { Therefore } \\
f^{*}=w\left(f_{1}, \ldots, f_{n}\right)=1 p \text { that is } \\
w\left(X_{1}, \ldots, X_{n}\right)=1
\end{gathered}
$$

is a law in P. That is

$$
P \in \underset{=}{V}
$$

Hence we have prove
Theorem 1. Every variety is closed under the operations of forming subgroups (S), epimorphic maps (Q) and cartesian products (R).

Theorem 1, enables us to make new groups of a variety $\underset{=}{V}$ by using there which we already know. A variety in general is not closed under the operation of "wreathing".

The converse of the above theorem is also true. Before proceeding to prove the converse we wish to remark that many of the concepts which we have introduced for groups can be generalised to abstract algebraic system in a natural way. For example, we can speak of a subalgebraic system of an algebraic system, a homomorphism of an algebraic system in to another, the cartesian product of a family of algebraic systems. Note that the concept of direct product cannot in general be introduced in the theory of algebraic system, as we may not have an analogue of the neutral element of a group. Thus proofs of Theorem 1 and Theorem 2] can easily be carried over to abstract algebraic systems.

Theorem 2. A class of groups closed under the operations Q, R, S is a variety.

We first prove two lemmas.
Let $\underset{=}{G}$ be a class of groups. We form the closure $\underset{=}{C}$ of $\underset{=}{G}$ under the operations Q, R, S. Let $\underset{=}{V}$ be the least variety containing G. By Theorem $1 \underset{=}{V}$ is closed under the operations Q, R, S. Therefore

$$
\underset{=}{C} \subseteq \underset{=}{V}
$$

Lemma 1. There is a group G^{*} with the following properties:
(i) $G^{*} \in \underset{=}{C}$
(ii) Every law $w(\underline{\mathrm{X}})=1$
valid in G^{*}, is valid in every group of $\underset{=}{G}$ (and is hence a law of $\underset{=}{V}$).
Proof. Consider the class $\underset{=}{F}$ of all finitely generated groups of $\underset{=}{C}$. We $1 \mathbf{1 1 7}$ split $\underset{=}{F}$ into disjoint classes $\underset{=}{H}$ of mutually isomorphic groups, that is any two groups of F are isomorphic if and only if they belong to the same $\underset{=\sigma_{\alpha}}{H}$. From each $\underset{=_{\alpha}}{G}$ we choose a group H_{α} and form the cartesian product G^{*} of $H_{\alpha} s$. Since each $H_{\alpha} \in \underset{=}{C}$, and $\underset{=}{C}$ is closed under the operations Q, R, S, we have

$$
G^{*} \in \underset{=}{C} .
$$

Let

$$
w\left(X_{1}, \ldots, X_{n}\right)=1,
$$

be a law in G^{*} and $G \in \underset{=}{C}$. For any $g_{1}, \ldots, g_{n} \in G$, let

$$
H=g p\left(g_{1}, \ldots, g_{n}\right)(\leq G)
$$

Now, $G \in \underset{=}{G}$ and $\underset{=}{C}$ is closed under the operations of taking subgroups.

Therefore

$$
\begin{aligned}
& H \in \underset{=}{C} ; \text { infact } \\
& H \in \underset{=}{F} .
\end{aligned}
$$

Hence

$$
H \simeq H_{\alpha} \text { for some } \alpha
$$

Denote this isomorphism by θ. Let φ_{α} be the projection of G^{*} onto H_{α}. Then $\varphi_{\alpha} \theta^{-1}$ is an epimorphism of G^{*} onto H.

Therefore,
as

$$
w\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in G^{*}, it is also a law in H, and thus in particular

$$
w\left(g_{1}, \ldots, g_{n}\right)=1
$$

is a relation in H and in G. But g_{1}, \ldots, g_{n} were arbitrarily chosen in G. Hence

$$
w\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in G. Thus every law valid in G^{*} is also valid in $\underset{=}{G}$ and hence in V.

We have to verify from an axiomatic set-theoretic point of view that the construction of the cartesian product of the H_{α} is legitimate, that is to say we have to verify that the H_{α} form a family (or that they can be indexed by a set). Note that we have made a distinction between "class" and "set", though no emphasis has been placed on this distinction, as being outside group theory proper.

Now, every H_{α} is isomorphic to a quotient group of a free group of finite rank, say

$$
H \simeq F_{n} / R,
$$

where F_{n} is the free group of rank n and R a suitable normal subgroup of F_{n}. Clearly F_{n} is countable for every n and therefore the cardinality of the set of all such Rs cannot exceed $2^{\mathcal{N} 0}$. Hence there cannot be more $H_{\alpha} s$ than $\mathcal{N}_{0} 2^{\mathcal{N} 0}=2^{\mathcal{N} 0}$; and thus they form a family. Hence we have

Corollary. The group G^{*} of the lemma can be chosen to have order

$$
\left|G^{*}\right| \leq 2^{2^{N_{0}}} .
$$

Lemma 2. Let G^{*} be a group with the property that every law valid in G^{*} is also valid in $\underset{=}{G}$ (and hence in V), and let I be a set. Then there is a subgroup $F^{*} \leq G^{* G^{G^{I}}}$ such that F^{*} is generated by a set of cardinal $|I|$, say

$$
F^{*}=g p\left(\left\{f_{i}\right\}_{i \in I}\right)
$$

and if $G \in V$ is also generated by a set of cardinal $|I|$, say

$$
G=g p\left(\left\{e_{i}\right\}_{\in I}\right),
$$

then there is an epimorphism φ of F^{*} onto G with

$$
f_{i}^{\varphi}=e_{i}, i \in I .
$$

Proof. Every element of $G^{* G^{G^{I}}}$ is a function on $G^{x^{I}}$ with values in G^{*}. To every $i \in I$, we define $f_{i} \in G^{* 8^{B^{P}} I}$, by

$$
f_{i}(g)=g(i) \text {, for all } g \in G^{x^{1}} .
$$

Let

$$
F^{*}=g p\left(\left\{f_{i}\right\}_{i \in I}\right) .
$$

We define the mapping φ of $\left\{f_{i}\right\}_{i \varphi I}$ onto $\left\{e_{i}\right\}_{i \in I}$ by

$$
f_{i}=e_{i}, \text { for all } i \in I
$$

We claim that φ can be extended to an epimorphism of F^{*} onto G. To prove this we have only to show that all the relations of F^{*} go over to the relations of G upon applying φ.

Let

$$
u\left(f_{i_{1}}, \ldots, f_{i_{n}}\right)=1,
$$

be a relation in F^{*}, with $f_{i_{1}}, \ldots, f_{i_{n}} \in F^{*}$. Then
i.e.,

$$
\begin{array}{ll}
& u\left(f_{i_{n}}, \ldots, f_{i_{n}}\right)(g)=1 \text {, for all } g \in G^{*^{I}} \\
\text { i.e., } & u\left(f_{i_{n}}, \ldots, f_{i_{n}}(g)\right)=1 \text {, for all } g \in G^{*^{I}} \\
\text { i.e., } & u\left(g\left(i_{1}\right), \ldots, g\left(i_{n}\right)\right)=1 \text {, for all } g \in G^{*^{I}}
\end{array}
$$

Let $g_{1}^{*}, \ldots, g_{n}^{*}$ be arbitrary elements of G^{*}. There is an element of $G^{*^{1}}$, that is a function on I to G^{*}, which takes the values $g_{1}^{*}, \ldots, g_{n}^{*}$, at i_{1}, \ldots, i_{n} respectively. We only have to define $h \in G^{*^{I}}$ by

$$
h\left(i_{1}\right)=g_{1}^{*}, \ldots, h\left(i_{n}\right)=g_{n}^{*}
$$

121 and $h(i)$ arbitrary otherwise, say

$$
h(i)=1 \text { when } i \neq i_{1}, \ldots, i_{n} .
$$

Then

$$
u\left(g_{1}^{*}, \ldots, g_{n}^{*}\right)=u\left(h\left(i_{1}\right), \ldots, h\left(i_{n}\right)\right)=1
$$

thus, as $g_{1}^{*}, \ldots, g_{n}^{*}$ where arbitrary elements of G^{*},

$$
u\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in G^{*} and therefore a law in $\underset{=}{V}$; that is,

$$
u\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in G in particular

$$
u\left(e_{i_{1}}, \ldots, e_{i_{n}}\right)=1
$$

This proves φ can be extended to an epimorphism of F^{*} onto G. Hence the lemma.

Proof of Theorem 2. We shall now prove that

$$
\underset{\underline{C}}{C=} \underset{=}{V} .
$$

Let G be any group of V and E be a set of generators of E,

$$
G=g p(E) .
$$

By Lemma 1 there is a group $G^{*} \in C$ such that every law in G^{*} is a law in $\underset{=}{V}$. We choose an index set I with $|I|=|E|$. Then by Lemma 2 , there is a subgroup $F^{*} \leq G^{*^{G^{4^{I}}}}$ such that G is an epimorphic images of F^{*}. Now, since C is closed under the operations Q, R, S, we have

$$
G^{*} \in \underset{=}{C} ;
$$

and therefore G, being an epimorphic image of F^{*}, is in $\underset{=}{C}$ that is

$$
\underset{=}{V} \subseteq \underset{=}{C} .
$$

combining this with the reversed inclusion which we have already proved, we get

$$
\underset{=}{C}=\underset{=}{V}
$$

Corollary 1. The group F^{*} is a reduced free group, of rank $|I|$, of the variety V.

Corollary 2. Let the class G consist of a single group G_{0} only, and let G_{0} be finite. Then every reduced free group F^{*} of finite rank d of the least variety $\underset{=}{V}$ containing G_{0} is finite, and its order is bounded by

$$
\left|F^{*}\right| \leq\left|G_{0}\right|^{\left|G_{0}\right|^{d}}
$$

Proof. Take G_{0} as the G^{*} of Lemma 2and $|I|=d$. By Corollary 1, the 123 group F^{*} is a reduced free group of rank d.

Further

$$
\left|F^{*}\right| \leq\left|F_{0}\right|^{\mid G_{0}^{d}}
$$

Now, since F^{*} is a finite group it has finite number of defining relations, say

$$
u_{i}(\underline{(})=1, i=1, \ldots, n .
$$

We have already proved that

$$
u_{i}(\underline{\mathrm{X}})=1, i=1, \ldots, n
$$

are laws in $\underset{=}{V}$. Therefore every law of $\underset{=}{V}$ not involving more than d variables is a consequence of these n laws. In other words, the set of laws, not involving more than d variables, where d is an arbitrary positive integer, is "finitely based". Notice that this does not prove that V is finitely based. (See section 2, ch.5, p.67).

Theorem 3 (P. Hall (unpublished)). Let $F=g p\left(\left\{f_{i}\right\}_{i \in I}\right)$ be a group with the property that every mapping η of $\left\{f_{i}\right\}_{i \in I}$ into F can be extended to an endomorphism of F. Then F is a reduced free group of rank $|I|$ of the least variety containing F.

Proof. Let

$$
u\left(f_{i_{1}}, \ldots, f_{i_{n}}\right)=1
$$

be a relation in F. We assert that

$$
u\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in F. Let b_{1}, \ldots, b_{n} be arbitrary elements of F. Consider the mapping η of $\left\{f_{i}\right\}_{i \in I}$ into F defined by

$$
f_{i_{k}}^{\eta}=b_{k}, k=1, \ldots, n
$$

and arbitrarily otherwise, say

$$
f_{i}=f_{i}, i \neq i_{1}, \ldots, i_{n}
$$

By the hypothesis of the theorem, η can be extended to an endomorphism of F. which we also denote by η. Now

$$
u\left(b_{1}, \ldots, b_{n}\right)=u\left(f_{i_{1}}^{\eta}, \ldots, f_{i_{n}}^{\eta}\right)=\left(u\left(f_{i_{1}}, \ldots, f_{i_{n}}\right)\right)^{\eta}=1^{\eta}=1 .
$$

As b_{1}, \ldots, b_{n} were chosen arbitrarily in F,

$$
u\left(X_{1}, \ldots, X_{n}\right)=1
$$

is a law in F.
It follows that F is written as the factor group of a free group with respect to a normal ("relation") subgroup R, then R is verbal in the free group ($c f$. Chapter 5). By Theorem 5, p. $79 F$ then is a reduced free group of rank $|I|$ as claimed.

2

In this section we shall construct new varieties out of given varieties.
Let C, D be any two classes of groups. We say that a group G is a C - by $-\underline{=}$ Droup if G is an extension of a group $A \in \underset{=}{C}$ by a group $B \in \underset{=}{D}$. We define the class $\underset{=}{C-}$ by $-\underset{=}{D}$ as the class of all such groups G. [Thus e.g. a finite-by-abelian group is one with a finite normal subgroup whose factor group is abelian.]

Let U, V be two varieties defined by the set of laws M and N respectively, where

$$
\begin{aligned}
M & =\left\{u_{i}(\underline{\mathrm{X}})=1\right\}_{i \in I} \text { and } \\
N & =\left\{v_{j}(\underline{\mathrm{X}})=1\right\}_{j \in J} .
\end{aligned}
$$

Without loss of generality we can assume that the set X of variables is countable, say

$$
X=\left\{X_{1}, X_{2}, \ldots\right\} .
$$

We denote by F the free group on these variables,

$$
F=g p(X, \phi) .
$$

Our objective is to prove that the class $\underset{=}{U-\text { by }}-\underset{\underline{V}}{V}$ is a variety. Let
and

$$
\begin{gathered}
U=\{u(\underline{X}) \mid u(\underline{X})=1 \text { a law in } \underline{U}\} \\
V=\{v(\underline{X}) \mid v(\underline{X})=1 \text { a law in } \underset{=}{V}\} .
\end{gathered}
$$

We know that the groups U, V are verbal subgroups of F; in fact
N respectively. We shall also denote these left-hand sides by M and N respectively.

Let

$$
u\left(X_{1}, \ldots, X_{m}\right)=1,
$$

be a law in $\underset{\underline{U}}{U}$ and

$$
v_{i}\left(X_{1}, \ldots, X_{n_{i}}\right)=1, i=1, \ldots, m,
$$

be laws in $\underset{=}{V}$. Write

$$
\begin{aligned}
& w(\underline{\mathrm{X}})=u(\underline{\mathrm{~V}}(\underline{\mathrm{X}}))=u\left(v_{1}\left(X_{1}, \ldots, X_{n_{1}}\right), v_{2}\left(X_{n_{1}+1}, \cdots,\right.\right. \\
& \left.\quad \ldots, X_{n_{1}+n_{2}}\right), \\
& \left.\ldots, v_{m}\left(X_{n_{1}+, \ldots+n_{m-1}+1}, \ldots, X_{n_{1}+\ldots+n_{m}}\right)\right) .
\end{aligned}
$$

Let L denote the set of all laws of the form $w(\underline{\mathrm{X}})=u(\underline{\mathrm{y}}(\underline{\mathrm{X}})=1$, with $u(\bar{X}) \in U, v(\underline{\mathrm{X}}) \in V$. We also denote the set of all left-hand sides of L by L. Let W be the verbal subgroup generated by L in F and $\underline{\mathrm{W}}$ be the variety defined by L. We shall use the notation
and

$$
\begin{aligned}
& W=U_{0} V \\
& \underline{=}=\underset{=}{U} V .
\end{aligned}
$$

We shall now prove that

$$
\underset{\underline{U}}{U}-\text { by }-\underset{=}{V}=\underset{=}{U V} .
$$

If H is any set of words in the variables X_{1}, X_{2}, \ldots and G any group, then we denote the verbal subgroup defined by H in G by G_{H}. In particular

$$
\left.\left.W=F_{L}=F_{W}, U=F_{U}=F_{\left\{u_{i}\right\}}\right\}_{i \in I}, V=F_{V}=F_{\left\{v_{j}\right\}}\right\}_{j \in J}
$$

Let G be any group in the class $\underset{=}{U-\text { by }} \underset{=}{V}$. Then there exist groups A, B, such that

$$
A \Delta G, G / A \simeq B, \text { with } A \in \underset{=}{U}, B \in \underset{=}{V} ;
$$

that is, there is an epimorphism β of G onto B with A as its kernel. We assert that the verbal subgroup defined by V in G, namely G_{V}, is a subgroup of A. For consider

$$
v\left(g_{1}, \ldots, g_{n}\right) \text { with } v(\underline{\mathrm{X}}) \in V, g_{1}, \ldots, g_{n} \in G ;
$$

we have $\left(v\left(g_{1}, \ldots, g_{n}\right)\right)^{\beta}=v\left(g_{1}^{\beta}, \ldots, g_{n}^{\beta}\right)=1$, since $B \in \underset{=}{V}$.
Hence

$$
G_{V} \leq A .
$$

Now if

$$
\begin{gathered}
w(\underline{\mathrm{X}})=u(\underline{\mathrm{v}}(\underline{\mathrm{X}})) \in W \text {, where } \\
\underline{\mathrm{v}}(\underline{\mathrm{X}})=\left(v_{1}(\underline{\mathrm{X}}), \ldots v_{m}(\underline{\mathrm{X}})\right) \text {, then }
\end{gathered}
$$

$v_{i}(g) \in G_{V} \leq A$, with $g s$ belonging to G and for $i=1, \ldots, m$. Since

$$
u\left(X_{1}, \ldots, X_{m}\right)=1
$$

is a law in U and hence in A, we have

$$
\begin{aligned}
u(\underline{\mathrm{v}}(g)) & =1 \text {; that is } \\
u(\underline{\mathrm{v}}(\underline{\mathrm{X}})) & =1
\end{aligned}
$$

is a law in G in other words,

$$
G \in \underset{\underline{W}}{\underline{W}}=\underset{=}{U} \underset{=}{V} .
$$

Hence

$$
\underset{=}{U}-\text { by }-\underset{=}{V} \subseteq \underset{=}{U V} \text {. }
$$

Conversely let G be any group of the variety $\underset{=}{U} \underset{=}{V}$. The verbal subgroup G_{V} is fully invariant and hence trivially normal in G. It is easy to verify that $G / G_{V} \in \underset{=}{V}$. (This is in fact true for any group G.) We claim that

$$
G_{V} \in \underset{\Xi}{U} ;
$$

for let

$$
u\left(X_{1}, \ldots, X_{m}\right)=1
$$

be any law in $\underset{=}{U}$ and $v_{1}(\mathrm{~g}), \ldots, v_{m}(\mathrm{~g}) \in G_{V}$; then

$$
u(\underline{\mathrm{v}}(\mathrm{~g}))=u\left(v_{1}(\mathrm{~g}), \ldots, v_{m}(\mathrm{~g})\right)=1
$$

that is,

$$
u\left(X_{1}, \ldots, X_{m}\right)=1
$$

is a law in G_{V}.Hence

$$
\begin{array}{cc}
& G_{V} \in \underset{=}{U}, \\
\text { i.e., } & G \in \underset{=}{U}-\text { by }-\underset{=}{V} .
\end{array}
$$

Therefore,

$$
\underset{=}{U V} \subseteq \underset{=}{U}-\text { by }-\underset{=}{V} .
$$

Combining this with the above reversed inclusion we get

$$
\underset{=}{U} \underset{=}{V}=\underset{=}{U}-\text { by }-\underset{=}{V} .
$$

This proves that $\underset{=}{U}-b y-\underset{=}{V}$ is a variety. In the case of varieties we shall use the simpler notation and write $\underset{=}{U V}$ instead of $\underset{=}{U}-$ by $-\underset{=}{V}$.

Theorem 4 (Hanna Neumann, 1956). The multiplication of varieties is associative.

Proof. Let $\underset{=}{T,} \underset{=}{U}, \underline{=}$ be three varieties defined by the set of laws L, M and N respectively. The variety $\underset{=}{T} \underset{=}{U}$ is defined by all laws of the form

$$
\begin{aligned}
w(\underline{\mathrm{X}}) & =t(\underline{\mathrm{u}}(\underline{\mathrm{X}}))=1, \text { where } \\
t(\underline{\mathrm{X}}) & =1 \text { and } u(\underline{\mathrm{X}})=1
\end{aligned}
$$

are laws in $\underset{=}{T}$ and $\underset{=}{U}$ respectively. Therefore the variety $(\underset{=}{T} \underset{=}{U}) \underset{=}{V}$ is defined by all laws of the form

$$
w(\underline{\mathrm{v}}(\underline{\mathrm{X}}))=t(\underline{\mathrm{u}}(\underline{\mathrm{v}}(\underline{\mathrm{X}})))=1, \text { where }
$$

$\underline{\mathrm{v}}(\underline{\mathrm{X}})=1$ are laws in $\underset{=}{v}$. Similarly one can see that the variety $\underset{=}{T}(\underset{=}{U V})$ is also defined by all laws of the form

$$
t(\underline{\mathrm{u}}(\underline{\mathrm{v}}(\underline{\mathrm{X}})))=1 .
$$

This proves that

$$
(\underset{=}{T U}) \underset{=}{v}=\underset{=}{T}(U V) .
$$

The above theorem can also be proved in the following way. We first observe that if U is any variety defined by a set of laws M, then

$$
G \in \underset{=}{U}
$$

if and only if

$$
G_{M}=\{1\} .
$$

Further if V is any other variety defined by a set laws N, then

$$
G \in \underset{=}{U} \underset{=}{V},
$$

if and only if

$$
\left(G_{N}\right)_{M}=1
$$

For if, $G \in \underset{=}{U} \underset{=}{V}$, then $G_{N} \in \underset{=}{U}$. Hence

$$
G \in(\underset{=}{T U}) \underset{=}{U}
$$

if and only if

$$
\left(\left(G_{N}\right)_{M}\right)_{L}=1
$$

Let the variety $\underset{=}{U V}$ be defined by P. Then $G \in T(\underset{=}{U V})$ if and only if

$$
\left(G_{P}\right)_{L}=1
$$

To prove the theorem we have only to prove that

$$
G_{P}=\left(G_{N}\right)_{M}
$$

It is easy to verify that G_{P} is the least normal subgroup of G such that $G / G_{P} \in \underset{=}{U V}$. Now,

$$
\left(\left(G /\left(G_{N}\right)_{M}\right)_{N}\right)_{M}=\left(G_{N}\right)_{M} /\left(G_{N}\right)_{M}=\{1\} ;
$$

that is to say

$$
G /\left(G_{N}\right)_{M} \in \underset{=}{U V} .
$$

Further if S is any normal subgroup of G such that

$$
\begin{gathered}
G / S \in \underset{=}{U V} \text {, then } \\
\left((G / S)_{N}\right)_{M}=\{1\} \text {; that is } \\
\left(G_{N}\right)_{M} \leq S .
\end{gathered}
$$

Thus $\left(G_{N}\right)_{M}$ is the unique minimal normal subgroup of G such that

$$
\left(G_{N}\right)_{M} \in \underset{=}{U V} .
$$

Therefore

$$
G_{P}=\left(G_{N}\right)_{M}
$$

This proves the theorem.
The associative law does not hold for arbitrary classes of groups; in other words if $\underset{\underline{C}}{\underline{D}} \underset{\underline{D}}{\underline{E}} \underset{\underline{E}}{ }$ are three classes of groups, then in general

$$
(\underset{=}{C}-\text { by }-\underset{=}{D})-\text { by } \underset{=}{E} \neq \underset{=}{C}-\text { by }(\underset{=}{D}-\text { by }-\underset{=}{E}) .
$$

Consider the following example. Let $\underset{=}{C}$ be the class of all cyclic groups. Consider the normal series of A_{4},

$$
\begin{aligned}
& \{1\} \triangle C \Delta B \triangle A_{4}, \text { where } \\
& B=\{1,(12)(34),(13)(24),(14)(23)\}, \\
& C=\{1,(12)(34)\} .
\end{aligned}
$$

The groups $A_{4} / B, B / C$ and C are cyclic groups; that is $A_{4} / B \in C$ and

$$
B \in \underset{=}{C}-b y-\underset{=}{C} ; \text { thus }
$$

$$
A_{4} \in(\underset{=}{C}-b y-\underset{=}{C})-b y-\underset{=}{C} .
$$

But, $A_{4} \notin \underset{=}{C}-$ by $-(\underset{=}{C}-b y-\underset{=}{C})$, as A_{4} does not contain any cyclic normal subgroup.

Let $\underset{=}{U}$ be variety. We define $\underset{=}{U^{1}}=\underset{=}{U},{\underset{\underline{U}}{ }}_{n+1}=\underset{=}{U} \underset{=}{U}=\underset{=}{U} U^{n}$. As the multiplication of varieties is associative, $\stackrel{=}{U^{n}}$ is uniquely determined.

Let A be the variety of all abelian groups. We call the variety A^{n} the variety of soluble groups of length n. A group G is soluble if it is in A^{n} for some n. It is immediate that

$$
\stackrel{A^{1} \subseteq A^{2} \subseteq}{=} \xlongequal[=]{A^{3} \subseteq \ldots,}
$$

It is easy to verify that this definition is equivalent to the following more usual definition which can be found in most text books on group theory.

A group G is soluble if there exits a "normal series".

$$
\{1\}=H_{0} \Delta H_{1} \Delta H_{2} \Delta \cdots \Delta H_{n}=G
$$

with H_{i+1} / H_{i} abelian, for $n=0,1, \ldots, n-1$. When G is finite and soluble, then G has a series with the corresponding factor groups cyclic. A (not necessarily finite) group G is said to be polycyclic if it has a normal series with the corresponding factor groups cyclic. Thus every finite soluble group is a polycyclic group. Polycyclic groups were first studied by Hirsch who called them S-groups. The term "polycyclic" is due to P . Hall who introduced it as a part of a systematic terminology.

The class of all soluble groups do not form a variety. One can prove that for every integer n, there is a $G_{n} \in \underset{=}{A^{n}}, G_{n} \notin \underset{=}{A^{n-1}}$. Consider the cartesian product P of $G_{n}, n=1,2 \ldots$ If P were soluble, then $P \in$ $A_{=}^{m}$, for some m. Therefore every G_{n}, being an epimorphic image of a subgroup of P is in $A_{=}^{m}$. This is absurd. Thus, the class of all soluble groups is not closed under the operation of taking cartesian products and therefore does not from a variety.

We have already remarked in Chapter 1 that the class of all fields does not form a variety. To see this, it suffices to observe that the class of
fields is not closed under the operation of forming cartesian products: in fact one easily sees that the direct product of two fields contains proper zero-divisions and thus cannot be a field.

Chapter 8

An Embedding Theorem

1

The group theoretical constructions which we have discussed in Chapter $\mathbf{1 3 6}$ 6 will be used to prove the following embedding theorem.

Theorem 1 (Higman,Neumann and Neumann). Every countable group G can be embedding in a 2-generator group H.

Proof. Let

$$
G=g p\left(a_{1}, a_{2}, \ldots\right)
$$

be a group generated by $\left\{a_{i}\right\}_{i \varepsilon I}$ where I is countable; and let C be an infinite cyclic group generated by an element c, thus

$$
C=g p(c)
$$

[Later we shall modify this by choosing C is a finite cyclic group provided that certain conditions are satisfied; cf $p .146$.]

We form the wreath product of the groups G and C,

$$
P=G W r C .
$$

Every element of P is of the form $c^{s} f$ where f is a function on C with values in G and the product of any two elements $c^{s} f$ and $c^{t} g$ of P137 is given by

$$
\begin{aligned}
& \left(c^{s} f\right)\left(c^{s} g\right)=c^{s+t} f^{c^{t}} g, \text { where } f, g \in G^{C}, \text { and } \\
& \qquad f^{c^{t}}\left(c^{n}\right)=f\left(c^{n-t}\right), \text { for } n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

In the group P (and in fact in G^{C}) we single out certain elements $g_{i}, i \in I$, defined by

$$
g_{i}\left(c^{j}\right)=g_{i}^{-j}, i \in I, j=0, \pm 1, \pm 2, \ldots
$$

We now compute the elements $k_{i}, i \in I$, where

$$
k_{i}=\left[g_{i}, c\right] .
$$

As

$$
k_{i}=g_{i}^{-1} c^{-1} g_{i} c=g_{i}^{-1} g_{i}^{c}
$$

we see that $k_{i} \in G^{C}$; and

$$
\begin{aligned}
k_{i}\left(c^{j}\right) & =g_{i}^{-1} g_{i}^{c}\left(c^{j}\right)=g_{i}^{-1}\left(c^{j}\right) g_{i}^{c}\left(c^{j}\right) \\
& =g_{i}^{-1}\left(c^{j}\right) g_{i}\left(c^{j-1}\right)=a_{i}^{j} a_{i}^{-(j-1)}=a_{i}
\end{aligned}
$$

Thus k_{i} are constant functions taking the value a_{i} for all c_{s}^{j}. The constant functions clearly form a group G^{Δ} and this is isomorphic to G. We call G^{Δ} the diagonal subgroup of G^{C}. [The diagonal can be defined in arbitrary cartesian powers, not only of groups.] It is not difficult to see that all constant functions are generated by those among them whose values are the generators a_{i} of G, thus

$$
g p\left(\left\{k_{i}\right\}_{i \in I}\right)=G
$$

Note also that we have embedded G in the commutator subgroup of P.

Now let B be a cyclic group generated by an element b and let B be "big enough" to contain $b_{i} \in B, i \in I$, satisfying the following conditions

$$
b_{i} \neq 1, b_{i} \neq b_{j} \text { for } i \neq j
$$

and $1 \neq b_{i} b_{j}, b_{i} b_{j} \neq b_{k}$, for all $i, j, k \in I$. This we can achieve by taking B to be infinite cyclic group

$$
B=g p(b), \text { if }|I|=\mathscr{N}_{0}:
$$

and if $|I|=g<\mathscr{N}_{o}$, we can either take B to be the infinite cyclic group or

$$
B=g p\left(b ; b^{m}=1\right), m=3 d \text { or } m \geq 4 d-1 .
$$

When B is the infinite cyclic group or $m=3 d$, we choose for instance

$$
b_{i}=b^{3 i-1}, i \in I .
$$

If $m \geq 4 d-1$, we choose

$$
b_{i}=b^{2 i-1}, i \in I
$$

It is easy to verify that $b_{i}, i \in I$ satisfy the above conditions. We now form the wreath product of P and B. Let

$$
Q=P W r B .
$$

Define $q \in Q$ (in fact $q \in P^{B}$) by

$$
\begin{aligned}
q(1) & =c \\
g\left(b_{i}^{-1}\right) & =g_{i}, i \in I,
\end{aligned}
$$

and $q(y)=1$, for $y \neq 1, b_{i}^{-1}, i \in I$. Define further

$$
h_{i}\left[q^{b_{i}}, q\right] \in P^{B} \leq Q, \text { for } i \in I .
$$

We now compute h_{i}

$$
\begin{aligned}
h_{i}(1) & =\left[q^{b_{i}}, q\right](1)=\left[q^{b_{i}}(1), q(1)\right] \\
& =\left[q\left(b_{i}^{-1}\right), q(1)\right]=\left[g_{i}, c\right]=k_{i} ;
\end{aligned}
$$

next

$$
\begin{aligned}
h_{i}\left(b_{j}^{-1}\right) & =\left[q^{b_{i}}, q\right]\left(b_{j}^{-1}\right)=\left[q^{b_{i}}\left(b_{j}^{-1}\right), q\left(b_{j}^{-1}\right)\right] \\
& =\left[g\left(b_{j}^{-1} b_{i}^{-1}\right), q\left(b_{j}^{-1}\right)\right] .
\end{aligned}
$$

Now, we have chosen b_{i}, such that

$$
1 \neq b_{i} b_{j}, b_{i} b_{j} \neq b_{k}, \text { for } i, j, k \in I
$$

Therefore we have

$$
h_{i}\left(b_{j}^{-1}\right)=\left[q\left(b_{j}^{-1} b_{i}^{-1}\right), q\left(b_{j}^{-1}\right)\right]=\left[1, g_{j}^{-1}\right]=1, j \in I .
$$

Finally

$$
h_{i}(y)=\left[q^{b_{i}}(g), q(y)\right]=\left[q^{b_{i}}(y), 1\right]=1, \text { for } y \neq 1, b_{j}^{-1}, j \in I .
$$

Thus

$$
\begin{aligned}
& h_{i}(1)=k_{i}, \\
& h_{i}(y)=1, y \neq 1 .
\end{aligned}
$$

We denote the group generated by the h_{i} by G^{*}; it is then obvious that

$$
G^{*}=g p\left(\left\{h_{i}\right\}_{i \in I}\right) \cong g p\left\{k_{i}\right\}_{\in I} \cong G .
$$

Further

$$
G^{*} \leq g p(q, b)=H
$$

This proves the theorem.
This theorem was first proved (Higman, Neumann, Neumann, 1949) using quite different methods. The proof (Neumann and Neumann, 1959) which we have given here provides answer to a number of interesting questions of the form: if G has the property P, can H be chosen to have the property P or some property closely related to P ?

2 Corollaries

2.1 If $G \in \underset{=}{V}$, a variety, then $H \in \underset{=}{V A^{2}}$. For $G^{C} \in \underset{=}{V}$ and $P=G W r C \in$ $\stackrel{V A}{=}$, and therefore,

$$
Q=P W r B \in \underset{=}{V A^{2}}
$$

Since $H \leq Q$, we have

$$
H \in \underset{=}{V A^{2}} .
$$

In particular if $G \in \underset{\underline{A^{\ell}}}{ }$, we get

$$
H \in \underset{=}{A^{\ell+2}} ; \text { thus we have }
$$

2.2 A countable group which is soluble of length $\leq \ell$ can be embedded in a 2 -generator group, soluble of length $\ell+2$.

This is the best possible result in the sense that we can make examples of groups that are countable and soluble of length $\leq \ell$ and which cannot be embedded in any finitely generated soluble group of length $\ell+1$.

We shall have give an example with $\ell=1$; that is, we shall give an example of a countable abelian group which cannot be embedded in any finitely generated metablian group. In this context, we need a theorem which we state here without proof Theorem (P. Hall, 1954 ${ }^{b}$). A finitely generated metabelian group satisfies the maximal condition for normal subgroups.

Consider the group G with a countable set of generators a_{1}, a_{2}, \ldots presented by

$$
G=g p\left(a_{1}, a_{2}, \ldots ; a_{1}^{p}=1, a_{2}^{p}=a_{1}, \ldots, a_{i+1}^{0}=a_{i}, \ldots\right),
$$

where p is a prime. It is easy to verify that G is isomorphic to the group of all p^{n} th roots of unity for $n=1,2, \ldots$. The group G is known as "Prufer p^{∞} - group" or quasi-cyclic group. This group has many interesting properties. For instance all proper subgroups of G are finite cyclic groups. For if $H \neq 1$ is a proper subgroup of G, then

$$
H=g p\left(a_{n}\right),
$$

where n is the least positive integer such that $a_{n+1} \notin H$. It is easy to verify that

$$
G / H \cong G .
$$

Thus all the factor groups of G are either isomorphic to G or the trivial group.

We shall now show that G cannot be embedded in a finitely generated metabelian group.

Assume G to be embedded in a metabelian group K. We shall identify the isomorphic of G in K with G and take $G \leq K$. Consider the canonical mapping φ of K onto K / K^{\prime} where K^{\prime} is the derived subgroup of K. Since all the factor groups of G are either isomorphic to G or the
trivial group, the image G_{1} of G under φ is either group or is isomorphic to G.

Now if $G_{1} \cong G$, then G_{1} is not finitely generated. But we know that every subgroup of a finitely generated abelian group is finitely generated. (See Kurosh, 1955§20, p.149) Therefore, K / K^{\prime} and hence K is not finitely generated.

On the other hand, if G is the trivial group, then

$$
G \leq K^{\prime}
$$

Let G^{K} be the normal closure of G in K. Then

$$
G^{K} \leq K^{\prime}
$$

Define $A_{n} \leq G^{K}$ by

$$
A_{n}\left\{g \mid g \in G^{K}, g^{p^{n}}=1\right\}
$$

Since K is merabelian, K^{\prime} is abelian. Therefore A_{n} is a group, for every n. We claim that A_{n} are invariant in G^{K}. For, let η be an endomorphism of G^{K}, then $\left(g^{\eta}\right)^{p^{n}}=\left(g^{p^{n}}\right)^{\eta}=1^{\eta}=1$, for all $g \in A_{n}$; that

$$
A_{n}^{\eta} \leq A_{n}
$$

144 Therefore A_{n} are fully invariant and thus, a fortiori, characteristic in G^{K}. But

$$
G^{K} \Delta K(\text { trivially })
$$

Hence,

$$
A_{n} \triangle K, \text { for all } n
$$

Now we assert that

$$
A_{1} \leq A_{2} \leq A_{3} \cdots
$$

is an infinite strictly ascending chain. For,

$$
a_{n+1} \in A_{n+1} \text { and } a_{n+1} \notin A_{n}
$$

Therefore by P. Hall's theorem K cannot be finitely generated. Thus G cannot embedded in any finitely generated metabelian group.
2.3 If G is abelian, in the proof of Theorem 1 we can take the group C to be of order 2. But in this case we define $g_{i} \in G^{C}, i \in I$, by

$$
\begin{aligned}
g_{i}(1) & =a_{i} \\
g_{i}(c) & =1, \text { where } C=g p\left(c ; c^{2}=1\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
k_{i} & =\left[g_{i}, c\right]=g_{i}^{-1} g_{i}^{c} \in G^{c}, i \in I \text { and } \\
k_{i}(1) & =g_{i}^{-1}(1) g_{i}^{c}(1)=a_{i}^{-1}, \\
k_{i}(c) & =g_{i}^{-1}(c) g_{i}^{c}(c)=a_{i} .
\end{aligned}
$$

It is easy to verify that when G is abelian the mapping φ of $\left\{a_{i}\right\}_{i \in I}$ into $P=G W r C$ defined by

$$
a_{i}^{\varphi}=k_{i}, i \in I
$$

can be extended a monomorphism of G into P. Now one can proceed as in the proof of the Theorem 1

If further, G is finitely generated, we have seen that B could be taken to be a finite group. We have
2.4 If $G \in \underset{=}{A}$ and finitely generated, then $H \in \underset{=}{A^{3}}$ can be chosen as an abelian-by-finite group.

Now,

$$
G^{C} \Delta P ; \quad \text { and }
$$

hence

$$
\left(G^{C}\right)^{B} \Delta P^{B}
$$

It is easy to verify that

$$
P^{B} /\left(G^{C}\right)^{B} \cong\left(P / G^{C}\right)^{B}
$$

Now, since $|B|<\infty$ and $\left|P / G^{C}\right|<\infty$, we have

$$
\left|P^{B} /\left(G^{C}\right)^{B}\right|<\infty
$$

Now for any $f \in\left(G^{C}\right)^{B}$, we have

$$
b^{-1} f b=f^{b}\left(G^{C}\right)^{B} .
$$

Therefore

$$
\left(G^{C}\right)^{B} \Delta g p\left(P^{B}, b\right)=Q .
$$

Further,

$$
Q / P^{B}=\frac{Q /\left(G^{C}\right)^{B}}{P^{B} /\left(G^{C}\right)^{B}}
$$

Since, $\left|Q / P^{B}\right|<\infty,\left|P^{B} /\left(G^{C}\right)^{B}\right|<\infty$, follows that

$$
\left|Q /\left(G^{C}\right)^{B}\right|<\infty .
$$

As G is abelian, the group Q is abelian- by - finite. It is not difficult to prove that the property of being abelian-by-finite is inherited by subgroups (and also by factor groups).
2.5 If $a_{i}^{n}=1$, for all $i \in I$, in the embedding procedure of Theorem \square we can take C be to be a cyclic group of order n. It is easy to verify that in this case the functions g_{i} are un ambiguously defined.
2.6 It G has finite exponent n and is finitely generated, say by d elements, then H can be chosen of finite exponent n^{2+r}, where r is an integer such that $m=n^{r}$ is a possible choice for the order of the group B occurring in the proof of the theorem; that is $m=3 d$ or $m \geq 4 d-1$.

Now,

$$
P=G W r C,
$$

where C is a cyclic group of order n. Since G is a group of exponent n, so is G^{C}. Further

$$
P / G^{C} \cong C
$$

If $x \in P$, then $x^{n} \in G^{C}$, and

$$
\left(x^{n}\right)^{n}=x^{n^{2}}=1 \text {; }
$$

that is P and therefore P^{E} is of exponent n^{2}. Again

$$
Q / P^{B} \cong B
$$

where B has been chosen to be a finite cyclic group of order n^{r}.
Now if $y \in Q$, then $y^{n^{r}} \in P^{B}$, and therefore

$$
\left(y^{n r}\right)^{n^{2}}=y^{n^{2+r}}=1
$$

that is Q, and hence $H \leq Q$ is of exponent n^{2+r}.
From Corollary 6, we immediately get the following reduction theorems for the Burnside conjectures.
2.7 Reduction Theorem for the Full Burnside Conjecture All finitely generated groups of exponent n, are finite if all 2-generator groups of exponent n^{s}, for all s, are finite.

This "reduction theorem" was first proved by Sanov (1945). It has lost interest in view of Novikov's recent results.
2.8 Reduction Theorem for the Restricted Burnside Conjecture It there is a number $\beta\left(n^{k}, 2\right)$ such that every finite 2 -generator group of exponent n^{k} has order $\leq \beta\left(n^{k}, 2\right)$, then there is a number $\beta(n, d)$ such that every finite d-generator group with $d \leq \frac{1}{4}\left(n^{k-2}+1\right)$ and of exponent n has order $\leq \beta(n, d)$. In fact,

$$
\beta(n, d) \leq \beta\left(n^{k}, 2\right)
$$

Chapter 9

Generalised Free Products of Groups with Amalgamations

1

In this chapter we shall consider the question under what conditions a given family of groups with prescribed intersections can be embedded in a group. More precisely the problem is the following.

Let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups and $\left\{H_{i j}\right\}_{i \in I}$ be a given family of subgroups of G_{i}, for every $i \in I$. We then ask: does there exist a group P and monomorphism θ_{i} of G_{i} into P for every $i \in I$ with the property

$$
G_{i}^{\theta_{i}} \cap G_{j}^{\theta_{j}}=H_{i j}^{\theta_{i}}=H_{j i}^{\theta_{j}}, \text { for all } i, j \in I ?
$$

Certain conditions are necessary for the existence of such a group.
First we note that

$$
H_{i i}=G_{i} .
$$

Since $H_{i j}$ and $H_{j i}$ are to be mapped onto the same subgroup of P, they must be isomorphic. In fact $\varphi_{i j}$, the restriction of $\theta_{i} \theta_{j}^{-1}$ to $H_{i j}$, must be an isomorphism of $H_{i j}$ onto $H_{j i}$. It is immediate that

$$
\varphi_{i j} \varphi_{j i}=\ell
$$

the identity map of $H_{i j}$ onto itself. Further,

$$
G_{i}^{\theta_{i}} \cap G_{j}^{\theta_{j}} \cap G_{k}^{\theta_{k}}=H_{i j}^{\theta_{i}} \cap H_{i k}^{\theta_{i}}=H_{j i}^{\theta_{i}} \cap H_{j k}^{\theta_{j}}=H_{k i}^{\theta_{k}} \cap H_{k j}^{\theta_{k}}
$$

Thus the three intersections,

$$
H_{i j} \cap H_{i k}, H_{j i} \cap H_{j k}, H_{k i} \cap H_{k j}
$$

must be mapped onto one and the same subgroup

$$
G_{i}^{\theta_{i}} \cap G_{j}^{\theta_{j}} \cap G_{k}^{\theta_{k}} .
$$

Now

$$
\begin{aligned}
\left(H_{i j} \cap H_{i k}\right)^{\varphi_{i j}}=\left(H_{i j} \cap H_{i k}\right)^{\theta_{i} \theta_{j}^{-1}}= & \left(H_{i j}^{\theta_{i}} \cap H_{i k}^{\theta_{i}}\right)^{\theta_{j}^{-1}} \\
& =\left(H^{\theta_{j i}^{\theta_{j}}} \cap H^{\theta_{j k}^{-1}}\right)^{\theta_{j}^{-1}}=H_{j i} \cap H_{j k} .
\end{aligned}
$$

The mapping $\varphi_{i j} \varphi_{j k}$ is an isomorphism of $H_{i j} \cap H_{i k}$ onto $H_{i j} \cap H_{i k}$; in fact

$$
\varphi_{i j} \varphi_{j k}=\varphi_{i k} \text { on } H_{i j} \cap H_{i k} .
$$

We can similarly write down further necessary conditions which arise from the fact that the the intersection of more than three groups $H_{i j}, H_{i k}, \ldots$ are to be mapped onto one and the same intersection of groups $G_{i}^{\theta_{i}}, G_{j}^{\theta_{j}}, \ldots$. But once the necessary conditions in terms of the intersection of three groups are satisfied other such conditions involving more than three groups are automatically satisfied. For instance, say four groups $G_{i}, G_{j}, G_{k}, G_{\ell}$. Then

$$
\begin{aligned}
\left(H_{i j} \cap H_{i k} \cap H_{i \ell}\right)^{\theta_{i}} & =H_{i j}^{\theta_{i}} \cap H_{i k}^{\theta_{i}} \cap H_{i \ell}^{\theta_{i}} \\
& =\left(H_{i j}^{\theta_{i}} \cap H_{i k}^{\theta_{i j}} \cap\left(H_{i j}^{\theta_{i}} \cap H_{i \ell}^{\theta_{i}}\right)\right. \\
& =\left(H_{j i}^{\theta_{i j}} \cap H_{j k}^{\theta_{j}}\right)\left(H_{j i}^{\theta_{j}} \cap H_{i \ell}^{\theta_{j}}\right) \\
& =H_{j i}^{\theta_{i}} \cap H_{j k}^{\theta_{j}} \cap H_{j e}^{\theta_{j}}, \text { and so on } .
\end{aligned}
$$

It is easy to verify that

$$
\varphi_{i j} \varphi_{i k} \varphi_{k \ell}=\varphi_{i \ell} \text { on } H_{i j} \cap H_{i k} \cap H_{i \ell} .
$$

Thus we have proved

Theorem 1. In order that $\left\{G_{i}\right\}_{i \in I}$ be embeddable in a group with prescribed intersections $\left\{H_{i j}\right\}_{(i, j) \in I \times I}$ it is necessary that there be isomorphisms $\varphi_{i j}$ of $H_{i j}$ onto $H_{j i}$ satisfying the following conditions.
(1) $\varphi_{i j} \varphi_{j i}=\ell$, the identity map of $H_{i j}$ onto itself
(2) $\varphi_{i j}$ maps $H_{i j} \cap H_{i k}$ onto $H_{j i} \cap H_{j k}$
(3) $\varphi_{i j} \varphi_{j k}=\varphi_{i k}$ on $H_{i j} \cap H_{i k}$, for all $i, j, k \in I$.

Here after we shall refer to the family of subgroups $\left\{H_{i j}\right\}_{(i, j) \in I \times I}$ satisfying the necessary conditions of Theorem 1 as the family of amalgamated subgroups.

Let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups with amalgamated subgroups $\left\{H_{i j}\right\}_{(i, j) I \times I}$ and et

$$
G_{i}=g p\left(E_{i} ; R_{i}\right)
$$

be a presentation of G_{i} with generators E_{i} and a set of defining relations R_{i}. Let

$$
\begin{aligned}
& H_{i j}=g p\left(D_{i j}\right), \text { where } \\
& H_{i j}=\left\{d_{i j v}\right\},
\end{aligned}
$$

v running over some index set. Since $H_{i j}$ and $H_{j i}$ are isomorphic, we can choose generators $D_{i j}$ in such a way that

$$
\begin{aligned}
D_{i j}^{\varphi_{i j}} & =D_{j i} \text { and } \\
d_{i j v}^{\varphi_{i j}} & =d_{i v} .
\end{aligned}
$$

Thus v runs over one and the same index set for $D_{i j}$ and $D_{i j}$. Without loss of generality we can take

$$
\bigcup_{j} D_{i j} \subseteq E_{i}
$$

Now for every $i \in I$, we take a set E_{i}^{*} with $\left|E_{i}\right|=\left|E_{i}^{*}\right|$; that is there is a $1-1$ and onto map θ_{i}^{*} of E_{i} onto E_{i}^{*}. Let R_{i}^{*} be the set of all relations defined by

$$
R_{i}^{*}=\left\{r\left(e_{1}^{\theta_{i}^{*}}, \ldots, e_{n}^{\theta_{i}^{*}}\right)=1 \mid\left(r\left(e_{1}, \ldots, e_{n}\right)=1\right) \in R_{i}, e_{1}, \ldots, e_{n} \in E_{1}\right\}
$$

Let

$$
P^{*}=g p\left(\bigcup_{i \in I} E_{i}^{\theta_{i}^{*}} ; \bigcup_{i \in I} R_{i}^{*}, d_{i j v}^{\theta_{i}^{*}}=d_{i j v}^{\theta_{i}^{*}}, \text { for all } i, j, v\right)
$$

We shall refer to the collection $\left\{G_{i}\right\}_{i \in I}$ with amalgamated subgroups $\left\{H_{i j} \in\right\}_{(i, j) I \times I}$ as an amalgam. If there exists a group P embedding the family $\left\{G_{i}\right\}_{i \in I}$ with amalgamated $\left\{H_{i j} \in\right\}_{(i, j) I \times I}$, we say that " P embeds the amalgam".

Theorem 2. If there exists a group P embedding the amalgam, then the group P^{*} also embeds the amalgam and if θ_{i} is the corresponding canonical monomorphism of G_{i} into P, then there is a homomorphism φ of P^{*} into P, mapping

$$
G_{i}^{*}=g p\left(E_{i}^{\theta_{i}^{*}}\right) \leq P^{*}
$$

isomorphically onto $G_{i}^{\theta_{i}^{*}}$ such that

$$
\left(G_{i}^{*} \cap G_{j}^{*}\right)^{\varphi}=G_{i}^{\theta_{i}} \cap G_{j}^{\theta_{j}}=H_{i j}^{\theta_{i}}=H_{j i}^{\theta_{j}} .
$$

Proof. Define the mapping φ of $\bigcup_{i \in I} E_{i}^{\theta_{i}^{*}}$ into P by

$$
\left(e_{i}^{\theta_{i}^{*}}\right)^{\varphi}=e_{i}^{\theta_{i}}, \text { for } e_{i} \in R_{i} \text { and }
$$

where θ_{i} is the embedding monomorphism of G_{i} into P. We claim that φ can be extended to a homomorphism of P^{*} into P.

For let

$$
r_{1}\left(e_{i_{1}}^{\theta_{i}^{*}}, \ldots, e_{i_{n}}^{\theta_{i}^{*}}\right)=1 \text { we a relation in } R_{i}^{*} .
$$

Then

$$
\begin{aligned}
&\left(r_{i}\left(e_{i_{1}}^{\theta_{i}^{*}}, \ldots, e_{i_{n}}^{\theta_{i}^{*}}\right)\right)=r_{i}\left(e_{i_{1}}^{\theta_{i}^{*} \varphi}, \ldots, e_{i_{n}}^{\theta_{i}^{*} i}\right)=r_{i}\left(e_{i_{1}}^{\theta_{i}}, \ldots, e_{i_{n}}^{\theta_{i}}\right)=1, \\
& \text { since } \\
& r_{1}\left(e_{i_{1}}, \ldots, e_{i n}\right)=1
\end{aligned}
$$

is a relation in R_{i} and θ_{i} is a monomorphism of G_{i} into P.
Further,

$$
\begin{aligned}
d_{i j v}^{\theta_{i}^{*}} & =d_{i j v}^{\theta_{j}^{*}} \text { implies } \\
d_{i j v}^{\theta_{i}} & =d_{i j v}^{\theta_{j}}
\end{aligned}
$$

For, $\quad d_{i j v}^{\varphi_{i j}}=d_{i j v}^{\theta_{i} \theta_{j}^{-1}}=d_{j i v}$.
Thus the defining relations of P^{*} go over to relations of P upon applying φ and therefore φ can be extended to a homomorphism of P^{*} into P, by von Dyck's Theorem. We shall denote this homomorphism also by φ. Again an application of von Dyck's theorem shows that θ_{i}^{*}, the mapping of E_{i} into P^{*}, can be extended to a homomorphism of G_{i} into P^{*}, which we also denote by θ_{i}^{*}. It is obvious that

$$
G_{i}^{\theta_{i}^{*}}=G_{i}^{*}
$$

We claim that (since P embeds the amalgam) θ_{i}^{*} is a monomorphism of G_{i} into P^{*}. By the definition of

$$
\theta_{i}^{*} \varphi=\theta_{i} \text { on } G_{i} .
$$

Therefore the kernel of θ_{i}^{*} is contained in that of θ_{i}. But θ_{i}, being a monomorphism has trivial kernel. Therefore θ_{i}^{*} has a trivial kernel; that is θ_{i}^{*} is a monomorphism of G_{i} into P^{*}. To show P^{*} embeds the amalgam we have only to prove that

$$
G_{i}^{\theta_{i}^{*}} \cap G_{j}^{\theta_{j}^{*}}=H_{i j}^{\theta_{i}^{*}}=H_{j i}^{\theta_{j}^{*}}, i, j \in I
$$

Now,

$$
\begin{aligned}
H_{i j}^{\theta_{i}^{*}} & =\left(g p\left(\left\{d_{i j v}\right\}\right)\right)^{\theta_{i}^{*}}=g p\left(\left\{d_{i j v}^{\theta_{i}^{*}}\right\}\right) \\
& =g p\left(\left\{d_{j i v}^{\theta_{j}^{*}}\right\}\right)=\left(g p\left(\left\{d_{i j v}\right\}\right)\right)^{\theta_{j}^{*}}=H_{j i}^{\theta_{j}^{*}} ; \text { and } \\
H_{i j}^{\theta_{i}^{*}} & =H_{j i}^{\theta_{j}^{*}} \subseteq G_{i}^{\theta_{j}^{*}} \cap G_{j}^{\theta_{j}^{*}}
\end{aligned}
$$

Let $h^{*} \in G_{i}^{\theta_{i}^{*}} \cap G_{j}^{\theta_{j}^{*}}$. Then,

$$
h^{* \varphi} \in\left(G_{i}^{\theta_{i}^{*}} \cap G_{i}^{\theta_{j}^{*}}\right)^{\varphi} \subseteq G_{i}^{\theta_{i}^{*} \varphi} \cap G_{j}^{\theta_{j}^{*} \varphi}=G_{i}^{\theta^{i}} \cap G_{j}^{\theta_{j}}
$$

Now P embeds the amalgam. Hence

$$
h^{* \varphi} \in G_{i}^{\theta_{i}} \cap G_{j}^{\theta_{j}}=H_{i j}^{\theta_{i}}=H_{j i}^{\theta_{j}}
$$

Therefore there is a unique $h \in H_{i j}$ such that

$$
h^{* \varphi}=h^{\theta_{i}} \in H_{i j}^{\theta_{i}}
$$

Now θ_{i}^{*} is an isomorphism of G_{i} onto G_{i}^{*}. Therefore

$$
\begin{gathered}
h^{\theta_{i}^{i^{-1}}}=h ; \text { that is } \\
h_{i}^{\theta_{i}^{*}} \in H_{i j}^{\theta_{i}^{*}} ; \text { that is to say } \\
G_{i}^{\theta_{i}^{*}} \cap G_{j}^{\theta_{j}^{*}} \subseteq H_{i j}^{\theta_{i}^{*}}
\end{gathered}
$$

Combining this with the reversed inclusion which we have already proved we have

$$
G_{i}^{\theta_{i}^{*}} \cap G_{j}^{\theta_{j}^{*}}=H_{i j}^{\theta_{i}^{*}}=H_{j i}^{\theta_{j}^{*}}
$$

This proves that P^{*} embeds the amalgam. Further φ restricted to $G_{i}^{\theta_{i}^{*}}$ is precisely the mapping $\theta_{i}^{*-1} \theta_{i}$ and hence is $1-1$; that is the mapping φ restricted to $G_{i}^{\theta_{i}^{*}}$ is a monomorphism.

We shall refer to P^{*} as the "canonic group" of the amalgam and θ_{i}^{*} as the "canonic homomorphism" of G_{i} into $P *$.

If P^{*} embeds the amalgam, we call P^{*} the generalised free product of the amalgam. The name " generalised free product" is justifiable as there is a homomorphism of P^{*} into any group that embeds the amalgam.

2

If all the amalgamated subgroups $H_{i j}$ are trivial, then the cartesian product of $\left\{G_{i}\right\}$ is one that embeds the amalgam. Therefore the corresponding P^{*} also embeds the amalgam; this is known as the free product of the
family of groups $\left\{G_{i}\right\}$. Free products occur naturally in applications of group theory. For instance the free group

$$
G=g p(E ; \phi)
$$

is the free product of infinite cyclic groups $\left\{g p\left(e_{i}\right)\right\}_{e_{i} \in E}$. Another example of a free product is the following. Consider the set M of all linear transformations of the form

$$
z^{\varphi}=\frac{a z+b}{c z+d} \text { with } a d-b c= \pm 1, \text { where }
$$

a, b, c, d are rational integers. It is not difficult to verify that M is a group with composite of maps as the multiplication. The group M is known as the modular group. This group M is the free product of two cyclic groups of order 2 and 3 generated by α and β respectively where

$$
\begin{aligned}
& z^{\alpha}=-\frac{1}{z} ; \alpha^{2}=\ell \text { and } \\
& z^{\beta}=-\frac{1}{z-1} ; \beta^{3}=\ell \text { thus } \\
& M=g p\left(\alpha, \beta ; \alpha^{2}=\beta^{3}=1\right) .
\end{aligned}
$$

(See Coxeter and Moser 1957 pp. $85-88$; the group is there called the projective modular group in 2 - dimensions.)

The generalised free products, too, appear naturally in topology. For instance the clover knot group (i.e. the fundamental group of the residual space in S^{3} of the clover knot) is the generalised free product of two infinite cyclic groups say $\operatorname{gp}(\mathrm{a})$ and $\operatorname{gp}(\mathrm{b})$ with $\operatorname{gp}\left(a^{2}\right)$ and $g p\left(b^{3}\right)$ as the amalgamated subgroups. More generally any torus knot group is the generalised free product of two infinite cyclic groups $g p(a)$ and $g a(b)$ with $\operatorname{gp}\left(a^{m}\right)$ and $g p\left(a^{n}\right)$ amalgamated.

3

We can make examples of amalgams which cannot be embedded in any group. Consider the following amalgam.

Let,

$$
G_{1}=g p\left(g_{1}, h_{1}, k_{1} ; h_{1}^{2}=k_{1}^{2}=1, h_{1}, k_{1}=1, g_{1}^{2}=1, h_{1}^{g}=k_{1}\right) .
$$

This is known the "dihedral group" of order 8 and it is precisely the group of automorphisms of a square. (One can describe G_{1} also as the wreath product of two cyclic groups of order 2). We select the alternating group A_{4} as G_{2}, presented as follows.

$$
G_{2}=g p\left(g_{1}, h_{2}, k_{2} ; g_{2}^{3}=1, h_{2}^{g_{2}}=k_{2}, k_{2}^{g_{2}}=h_{2} k_{2} .\right.
$$

We take C_{6}, the cyclic group of order 6 , as G_{3} and give it rather an "unorthodox" presentation; that is

$$
G_{3}=g p\left(c, d ; c^{2}=d^{3}=1 ;[c, d]=1\right)
$$

The following we take as the amalgamated subgroups.

$$
\begin{array}{ll}
H_{12}=g p\left(h_{1}, k_{1}\right) \leq G_{1}, & H_{21}=g p\left(h_{2}, k_{2}\right) \leq G_{2} \\
H_{13}=g p\left(g_{1}\right) \leq G_{1}, & H_{31}=g p(c) \leq G_{3} \\
H_{23}=g p\left(g_{2}\right) \leq G_{2}, & H_{32}=g p(d) \leq G_{3} .
\end{array}
$$

The amalgamating isomorphisms $\varphi_{i j}$ are to map h_{1} on h_{2}, k_{1} on k_{2}, g_{1} on c, g_{2} on d.

It this amalgam can be embedded in a group, then the canonic group P^{*} also embeds the amalgam. Now P^{*} is the group generated by

$$
g_{1}, h_{1}, k_{1}, g_{2}, h_{2}, k_{2}, c, d
$$

with defining relations consisting of the defining relations of G_{1}, G_{2}, G_{3} and the following amalgamating relations.

$$
h_{1}=h_{2}, k_{1}=k_{2}, g_{1}=c, g_{2}=d .
$$

Now in P^{*}, we have,

$$
\begin{aligned}
h_{1} & =h_{1}^{[c, d]}=h_{1}^{\left[g_{1}, g_{2}\right]}=h_{1}^{g^{-1}} g_{2}^{-1} g_{1} g_{2}=k_{1}^{g_{1}^{-1} g_{1} g_{2}}=k_{2}^{g_{1}^{-1} g_{1} g_{2}} \\
& =h_{2}^{g_{1}^{1 g_{2}}}=h_{1}^{g_{1} g_{2}}=k_{1}^{g_{2}}=k_{2}^{g_{2}}=h_{2} k_{2}=h_{1} k_{2} ;
\end{aligned}
$$

161 that is

$$
\begin{aligned}
& k_{2}=1 \text { and therefore } \\
& h_{2}=1 .
\end{aligned}
$$

Hence,

$$
h_{1}=h_{2}=k_{1}=k_{2}=1
$$

Thus,

$$
P^{*} \cong C_{0}
$$

and therefore cannot embed the amalgam ; that is to say the amalgam we have considered cannot be embedded in any group. Note that the amalgam satisfies the necessary conditions. Thus an amalgam is not always embeddable in a group.

4

We can impose certain conditions on the amalgam to make it embeddable in a group. A special case when all the amalgamate subgroups coincide with a single group was first studied by Schreier (1927).

Theorem 3 (Schreier, 1927). If all the amalgamated subgroups coincide
(with a single group) then the amalgam is embeddable.
Before proceeding to prove the theorem we make a definition. Let G be any group and $H \leq G$. Then G can be written as the union of disjoint left cosets of H. We choose one representative for each of these left cosets. The set of all such representatives is called a left transversal of H in G. Similarly a right transversal of H in G can be defined. If S is a left transversal of H in G, then

$$
\begin{gathered}
G=S H, \text { with the property } \\
S^{\prime} \subseteq S, G=S^{\prime} H \text { implies } S^{\prime}=S .
\end{gathered}
$$

(We call $|S|$ the index of H in G; notation $|S|=|G: H|$). Every element $g \in G$ can be written as

$$
g=s h, \text { with } s \in S, h \in H
$$

Moreover, this representation is unique. For if

$$
g=s h=s^{\prime} h^{\prime}, s \neq s^{\prime}, s, s^{\prime} \in S, h, h^{\prime} \in H
$$

then

$$
\begin{gathered}
s^{-1} s^{\prime}=h h^{-1} \in H ; \text { that is } \\
s H=s^{\prime} H ; \text { and therefore by our }
\end{gathered}
$$

choice of S,

$$
s=s^{\prime}, h=h^{\prime} .
$$

It is often convenient to choose the transversal in such a way that H is represented by 1 .

We shall give two proofs of Theorem 3. The second proof will be given in the next chapter, and applied there to give further embedding theorems.
First proof of Theorem 3. Let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups and let G_{i} contain an isomorphic copy of a given group H, for every $i \in I$. Without loss of generality we can think of all these isomorphic copies as identified with each other, i.e.,

$$
H \leq G_{i}, i \in I
$$

We call the G_{i} the constituents of the amalgam. We choose a left transversal S_{i} of H in G_{i}, for each $i \in I$, and we here represent H always by 1 ; thus $1 \in S_{i}$, for all $i \in I$. Now we pick out certain words in the elements of G_{i}. We call

$$
w=s_{1} s_{2} \ldots s_{n} h
$$

a normal word if it satisfies the following three conditions:

1) Each $s_{v}, v=1, \ldots, n$, is a representative $\neq 1$ belonging to one of the left transversals we have chosen, say $S_{i(v)}$;
2) $i(v) \neq i(v+1)$, for $v=1, \ldots, n$, in other words, no two consecutive s_{v} appearing in w belong to the same set of representatives.
3) $h \in H$.

We call n the length of the normal word w and denote it by $\ell(w)$. In particular n may be zero also. In fact

$$
\ell(w)=0
$$

if and only if $w \in H$. We denote by w_{o} the normal word consisting of the identity element alone. Let W be the set of all normal words. Consider the mapping $\rho(g)$ of W into W, for all $g \in \bigcup_{i} G_{i}$, defined as follows.

For $g \in G_{k}, k \in I$ and

$$
w=s_{1} s_{2} \cdots s_{n} h \in W
$$

we put

$$
w^{\rho(g)}=w^{\prime}
$$

where w^{\prime} is defined as follows.
(i) If $n>0, i(n)=k$; that is s_{n} lies in the same group G_{k} as g, then $s_{n} h g$ is a certain element of G_{k} and are be uniquely written as

$$
s_{n} h g=s^{\prime} h^{\prime}, s^{\prime} \in S_{k}, h^{\prime} \in H .
$$

We then put

$$
w^{\prime}=s_{1} s_{2} \cdots s_{n-1} s^{\prime} h^{\prime}, \text { if } s^{\prime} \neq 1
$$

$$
\text { and } \quad w^{\prime}=s_{1} s_{2} \cdots s_{n-1} h^{\prime}, \text { if } s^{\prime}=1 .
$$

(ii) If $n=0$ or $n>o$ and $i(n) \neq k$; that is if $s_{n} \notin G_{k}$, we represent 165 $h g \in G_{k}$ as

$$
h g=s^{\prime} h^{\prime}, s^{\prime} \in S_{k}, h^{\prime} \in H
$$

and write

$$
w^{\prime}=s_{1} s_{2} \cdots s_{n} s^{\prime} h^{\prime}, \text { if } s^{\prime} \neq 1
$$

and

$$
w^{\prime}=s_{1} s_{2} \cdots s_{n} h^{\prime} \text { if } s^{\prime} \neq 1
$$

Thus $w^{\prime}=w^{\rho(g)}$ is defined for every $w \in W$ and it is easy to verify that w^{\prime} is again a normal word. If g is contained in more than one constituents G_{i}, say $g \in G_{j} \cap G_{k}$, then $g \in H$ and we can define w^{\prime} according to (i) or (ii). Now, if

$$
s_{n} h g=s^{\prime} h^{\prime}, \text { then }
$$

since $g \in H$,
and

$$
\begin{aligned}
& s_{n}=s^{\prime} \\
& g h=h^{\prime} .
\end{aligned}
$$

Therefore according to (i), we have

$$
w^{\prime}=s_{1} s_{2} \cdots s_{n-1} s^{\prime} h^{\prime}=s_{1} s_{2} \cdots s_{n} h g
$$

On the other hand, computing w^{\prime} according to (ii) we have, as

$$
\begin{gathered}
h g=h^{\prime} \\
w^{\prime}=s_{1} s_{2} \cdots s_{n} h^{\prime}=s_{1} s_{2} \cdots s_{n} h g .
\end{gathered}
$$

Thus we get the same w^{\prime} whichever way we compute it.
We shall now show that

$$
\rho\left(g g^{\prime}\right)=\rho(g) \rho\left(g^{\prime}\right), \text { for } g, g^{\prime} \in G_{k}
$$

Put

$$
w^{\rho(g)}=w^{\prime}, w^{\prime \rho\left(g^{\prime}\right)}=w^{\prime \prime}, w^{\rho\left(g g^{\prime}\right)}=w^{*} .
$$

(1) If $n>0, i(n)=k$; then

$$
s_{n} h g=\in G_{k}
$$

We write

$$
\begin{aligned}
& s_{n} h g=s^{\prime} h^{\prime}, s^{\prime} \in S_{k}, h^{\prime} \in H \text { and } \\
& s^{\prime} h^{\prime} g^{\prime}=s^{\prime \prime} h^{\prime \prime}, s^{\prime \prime} \in S_{k}, h^{\prime \prime} \in H .
\end{aligned}
$$

Now,
and

$$
\begin{array}{r}
w^{\prime \prime}=s_{1} s_{2} \cdots s_{n-1} s^{\prime \prime} h^{\prime \prime} \text { if } s^{\prime \prime} \neq 1 \\
w^{\prime \prime}=s_{1} s_{2} \cdots s_{n-1} h^{\prime \prime} \text { if } s^{\prime \prime}=1
\end{array}
$$

On the other hand let

$$
s_{n} h\left(g g^{\prime}\right)=s^{*} h^{*}, s^{*} \in S_{k}, h^{*} \in H
$$

Then
and

$$
\begin{gathered}
w^{*}=s_{1} s_{2} \cdots s_{n-1} s^{*} h^{*} \text { if } s^{*} \neq 1 \\
w^{*}=s_{1} s_{2} \cdots s_{n-1} h^{*} \text { if } s^{*}=1
\end{gathered}
$$

But,

$$
s_{n} h\left(g g^{\prime}\right)=\left(s_{n} h g\right) g^{\prime}=s^{\prime} h^{\prime} g^{\prime}=s^{\prime \prime} h^{\prime \prime}
$$

Therefore,

$$
\begin{aligned}
s^{*}=s^{\prime \prime}, h^{*} & =h^{\prime \prime} ; \text { that is } \\
w^{\prime \prime} & =w^{*} .
\end{aligned}
$$

Notice that it does not matter whether $s^{\prime}=1$ or not as $i(n-1) \neq k$ and in either case we have to consider $s^{\prime} h^{\prime} g^{\prime}$ to compute $w^{\prime \prime}$.
(2) If $n=0$ or if $n>0, i(n) \neq k$, write
and

$$
\begin{aligned}
h g & =s^{\prime} h^{\prime}, s^{\prime} \in S_{k}, h^{\prime} \in H \\
s^{\prime} h^{\prime} g^{\prime} & =s^{\prime \prime} h^{\prime \prime}, s^{\prime \prime} \in S_{k}, h^{\prime \prime} \in H .
\end{aligned}
$$

Then,

$$
w^{\prime \prime}=s_{1} s_{2} \cdots s_{n} s^{\prime \prime} h^{\prime \prime} \text { if } s^{\prime \prime} \neq 1
$$

and

$$
w^{\prime \prime}=s_{1} s_{2} \cdots s_{n} h^{\prime \prime} \text { if } s^{\prime \prime}=1
$$

On the other hand if we put
we have

$$
h\left(g g^{\prime}\right)=s^{*} h^{*}, s^{*} \in S_{k}, h^{*} \in H
$$

and $\quad w^{*}=s_{1} s_{2} \cdots s_{n} h^{*}$ if $s^{*}=1$.
But,

$$
s^{*} h^{*}=h\left(g g^{\prime}\right)=(h g) g^{\prime}=s^{\prime} h^{\prime} g^{\prime}=s^{\prime \prime} h^{\prime \prime}
$$

Therefore

$$
\begin{aligned}
s^{*}=s^{\prime \prime}, h^{*} & =h^{\prime \prime} ; \text { that is } \\
w^{*} & =w^{\prime} .
\end{aligned}
$$

In this case also not does not matter whether $s^{\prime}=1$ or $s^{\prime} \neq 1$.
Thus we proved that in both the cases

$$
w^{\rho\left(g g^{\prime}\right)}=\left(w^{\rho(g)}\right)^{\rho\left(g^{\prime}\right)}
$$

As this is true for all $w \in W$, we have

$$
\rho\left(g g^{\prime}\right)=\rho(g) \rho\left(g^{\prime}\right)
$$

Again, as this true for all $g, g^{\prime} \in G_{k}$ we conclude that mapping ρ_{k} of G_{k} into the semigroup of the mappings of W into itself, defined by

$$
g^{\rho_{k}}=\rho(g), \text { for all } g \in G_{k}
$$

is a homomorphism; and therefore the image $G_{k}^{\rho_{k}}$ is a group. Hence every $\rho(g), g \in G_{k}$ has a two sided inverse, that is $\rho(g)$ is a permutation of W, for all $g \in G_{k}$. We claim that ρ is an isomorphism of G_{k} onto $G_{k}^{\rho_{k}}$. For, if

$$
\begin{gathered}
\rho(g)=L, g \in G_{k}, \text { then } \\
w_{o}^{\rho(g)}=w_{o}
\end{gathered}
$$

But,

$$
\begin{gathered}
w_{o}^{\rho(g)}=s h, \text { where } \\
g=s h, s \in S_{k}, h \in H .
\end{gathered}
$$

Therefore,
i,e.,

$$
\begin{gathered}
s h=1 ; \quad \text { that is } \\
s=1, h=1 \\
g=1 .
\end{gathered}
$$

Hence the kernel of ρ_{k} is trivial; that is to say, ρ_{k} is an isomorphism of G_{k} onto $G_{k}^{\rho_{k}}$. Let \sum denote the group of permutations of W generated by the $G_{i}^{p i}, i \in I$; that is

$$
\sum=g p\left(\left\{G_{i}^{\rho i}\right\}\right)
$$

By what we have just proved all groups G_{i} are embedded in by the isomorphism ρ_{i}. Now let

$$
g^{\rho_{i}}=g^{\prime \rho_{k}}, g \in G_{i}, g^{\prime} \in G_{i}, g^{\prime} \in G_{k} . i \neq k
$$

that is

$$
\rho(g)=\rho\left(g^{\prime}\right)
$$

Let

$$
\begin{aligned}
& g=s h \text { with } s \in S_{i}, h \in H, \text { and } \\
& g^{\prime}=s^{\prime} h^{\prime} \text { with } s^{\prime} \in S_{k}, h^{\prime} \in H .
\end{aligned}
$$

Then,

$$
w_{o}^{\rho(g)}=s h \text { or } h, \text { according as } s \neq 1 \text { or } s=1 .
$$

Similarly,

$$
w_{o}^{\rho\left(g^{\prime}\right)}=s^{\prime} h^{\prime} \text { or } h^{\prime} \text { according as } s^{\prime} \neq 1 \text { or } s^{\prime}=1
$$

But

$$
w_{o}^{\rho(g)}=w_{o}^{\rho\left(g^{\prime}\right)} .
$$

Therefore

$$
\begin{gathered}
s=s^{\prime}=1, h=h^{\prime} ; \text { that is } \\
g=g^{\prime}=h .
\end{gathered}
$$

Hence

$$
g^{\rho_{i}}=g^{\prime \rho_{k}} \in H^{\rho_{i}}=H^{\rho_{k}}
$$

Thus,

$$
G_{k}^{\rho_{k}} \cap G_{i}^{\rho_{i}}=H^{\rho_{i}}=H^{\rho_{k}}, \text { for all } i, k \in I .
$$

This proves that the group \sum embeds the amalgam under consideration.

5

We shall now turn W into a group isomorphic to \sum by defining a suitable multiplication in W, in fact \sum will turn out to be the right-regular permutation representation of the group W, we are to define. Consider the mapping η of \sum into W defined by

$$
\sigma^{\eta}=w_{o}^{\sigma}, \text { for every } \sigma \in \sum
$$

Let

$$
w=s_{1} s_{2} \cdots s_{n} h
$$

be any normal word in W. Put

$$
\sigma=\rho_{\left(s_{1}\right)} \rho_{\left(s_{2}\right)} \cdots \rho_{\left(s_{n}\right)} \rho_{(h)}
$$

It is easy to verify that

$$
w_{o}^{\sigma}=s_{1} s_{2} \cdots s_{n} \cap=w
$$

Thus the mapping is 'onto' W. Now we shall show that η is $1-1$.
We shall first prove the following lemma.
Lemma 1. Let

$$
\sigma=\rho_{\left(g_{1}\right)} \cdots \rho_{\left(g_{m}\right)} \in \sum, \text { with } g_{\mu} G_{i(\mu)}(1 \leq \mu \leq m)
$$

and $i(\mu) \neq i(\mu+1)$. Then the length of the normal word w_{o}^{σ} is m if $m>1$ and further

$$
w_{o}^{\sigma}=s_{1} s_{2} \cdots s_{m} h \text { with } s_{\mu} \in S_{i(\mu)}, 1 \leq \mu \leq m, h \in H
$$

If $m=1$, then the length of w_{o}^{σ} is 0 or 1 according g_{1} is in H or not.
Proof. The proof of the lemma will be by induction. For $m=2$, we have

$$
\sigma=\rho\left(g_{1}\right) \rho\left(g_{2}\right), g_{1} \in G_{i(1)}, g_{2} \in G_{i(2)}, i(1) \neq i(2)
$$

Now,

$$
w_{o}^{\rho\left(g_{1}\right)}=s_{1} h_{1} \text { with } 1 \neq s_{1} \in S_{i(1)}, h \in H
$$

and

$$
g_{1}=s_{1} h_{1}
$$

and

$$
\begin{gathered}
w_{o}^{\sigma}=\left(w_{o}^{\rho\left(g_{1}\right)}\right)^{\rho\left(g_{2}\right)}=s_{1} s_{2} h_{2}, 1 \neq s_{2} \in S_{i(2)}, h \in H \\
h_{1} g_{2}=s_{2} h_{2} .
\end{gathered}
$$

and

Thus

$$
\ell\left(w_{o}^{\sigma}\right)=2
$$

Assume the lemma to be true for all or with $2 \leq r<m$. Let $m>2$.
Put

$$
\hat{\sigma}=\rho\left(g_{1}\right) \rho\left(g_{2}\right) \cdots \rho\left(g_{m-1}\right)
$$

Then by induction hypothesis

$$
w_{o}^{\hat{\sigma}}=s_{1} s_{2} \cdots s_{m-1} h^{\prime}, s_{\mu} \in G_{i(\mu)}, 1 \leq \mu \leq m-1, h^{\prime} \in H .
$$

Now,

$$
\begin{aligned}
w_{o}^{\sigma} & =\left(w_{o}^{\hat{\sigma}}\right)^{\rho\left(g_{m}\right)}=\left(s_{1} s_{2} \cdots s_{m-1} h\right)^{\rho\left(g_{m}\right)} \\
& =s_{1} s_{2} \cdots s_{m-1} s_{m} h, \text { where } \\
h^{\prime} g_{m} & =s_{m} h, 1 \neq s_{m} \in S_{i(m)}, h \in H
\end{aligned}
$$

This completes the induction and proves that

$$
\ell\left(w_{o}^{\sigma}\right)=m \text { if } m>1
$$

If $m=1$, then

$$
\sigma=\rho\left(g_{1}\right)
$$

It is obvious that $\ell\left(w_{o}\right)=0$ or 1 according as g_{1} is in H or not.
Now if,

$$
w_{o}^{\sigma}=w_{o}^{\sigma}, \sigma, \sigma^{\prime} \in \sum
$$

then

$$
w_{o}^{\sigma \sigma^{\prime-1}}=w_{o}
$$

Choose m to be the least positive integer such that

$$
\sigma \sigma^{\prime-1}=\rho\left(g_{1}\right) \cdots \rho\left(g_{m}\right), \text { with } g_{i} i G_{i(\mu)}, 1 \leq \mu \leq m
$$

If $m>1$, then $i(\mu) \neq i(\mu+1)$. For, otherwise $\sigma \sigma^{\prime-1}$ can be "shrunk" by amalgamating g_{μ} and $g_{\mu+1}$. Hence by the above lemma it follows that

$$
\ell\left(w_{o}^{\sigma \sigma^{\prime-1}}\right)=m>1
$$

Since

$$
w_{o}^{\sigma \sigma^{\prime-1}}=w_{o},
$$

this is absurd.
Therefore, $m=1$; thus let

$$
\sigma \sigma^{\prime-1}=\rho\left(g_{1}\right), g_{1} \in G_{i(1)}
$$

Then

$$
\begin{aligned}
& w_{o}^{\sigma \sigma^{\prime-1}}=s_{1} h_{1}, \text { where } \\
g_{1}= & s_{1} h_{1} \text { with } s_{1} \in S_{i(1)}, h_{1} \in H .
\end{aligned}
$$

But

$$
\begin{gathered}
w_{o}^{\sigma \sigma^{\prime-1}}=w_{o} ; \text { and therefore } \\
s_{1}=1, h_{1}=1 ; \text { that is } \\
g_{1}=1: \text { that is to say } \\
\sigma \sigma^{\prime-1}=\rho\left(g_{1}\right)=L .
\end{gathered}
$$

Hence

$$
\sigma=\sigma^{\prime}
$$

Thus the mapping η of \sum onto W is $1-1$. We now put a group structure on W in the following way.

Define

$$
\begin{gathered}
w o w^{\prime}=w_{o}^{\sigma \sigma^{-1}}, \text { where } w, w^{\prime} \in W \\
\text { and } \quad w_{o}^{\sigma}=w, w_{o}^{\sigma^{\prime}}=w^{\prime}
\end{gathered}
$$

One can easily verify that W is turned into a group with this multiplication and that the group \sum is the right regular permutation representation of the group W. Further, W being isomorphic to \sum also embeds
the amalgam. To return to our old notation, W will be renamed P. We shall identify the groups $G_{k}^{\rho_{k} \eta}$ with G_{k}. Under this identification,

$$
G_{k} \leq P, \text { for all } k \in I
$$

Further

$$
G_{i} \cap G_{j}=H \text { in } P .
$$

Let

$$
w=s_{1} s_{2} \cdots s_{n} h \in W, s_{\mu} \in S_{i(\mu)} 1 \leq \mu \leq n, h \in H .
$$

It is easy to verify that

$$
w=s_{1} \circ s_{2} \circ \cdots \circ s_{n} \circ h .
$$

If

$$
w^{\prime}=s_{1}^{\prime} s_{2}^{\prime} \cdots s_{m}^{\prime} h^{\prime}
$$

then in general the usual product of the words w and w^{\prime} is not a normal word. If

$$
\begin{aligned}
\sigma & =\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{n}\right) \rho(h) \text { and } \\
\sigma^{\prime} & =\rho\left(s_{1}^{\prime}\right) \rho\left(s_{2}^{\prime}\right) \cdots \rho\left(s_{m}^{\prime}\right) \rho\left(h^{\prime}\right), \text { then } \\
w_{o} w^{\prime} & =w_{o}^{\sigma \sigma^{\prime}}=\left(s_{1} s_{2} \cdots s_{n} h\right)^{\sigma^{\prime}}=w^{\sigma^{\prime}} .
\end{aligned}
$$

Now,

$$
\sigma \sigma^{\prime}=\rho\left(s_{1}\right) \cdots \rho\left(s_{n}\right) \rho(h) \rho\left(s_{1}^{\prime}\right) \cdots \rho\left(s_{m}^{\prime}\right) \rho\left(h^{\prime}\right)
$$

If s_{n} and s_{1}^{\prime} do not be in the same constituent, then by our lemma

$$
w_{o}^{\sigma \sigma^{\prime}}=w_{o}^{\rho\left(s_{1}\right) \cdots \rho\left(s_{n} h\right) \rho\left(s_{1}^{\prime}\right) \cdots \rho\left(s_{m}^{\prime} h^{\prime}\right)}
$$

is of length $n+m$ and

$$
w^{\prime} w^{\prime}=w_{o}^{\sigma \sigma^{\prime}}=s_{1} s_{2} \cdots s_{n} s^{(1)} s^{(2)} \cdots s^{(m)} h^{(m)}
$$

where

$$
h s_{1}^{\prime}=s^{(1)} h^{(1)}
$$

$$
\begin{gathered}
h^{(1)} s_{2}^{\prime}=s^{(2)} h^{(2)} \\
\ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \ldots \\
h^{(m-1)} s_{m}^{\prime}=s^{(m)} h^{(m)} .
\end{gathered}
$$

179 On the other hand if s_{1}^{\prime} and s_{n} are in the same constituent, we amalgamate $s_{n} h$ and s_{1}^{\prime} and write

$$
s_{n} h s_{1}^{\prime}=s^{(1)} h^{(1)}
$$

and proceed as in the above case.
We now proceed to show that \sum is the generalised free product of the amalgam. Let

$$
u \underline{(\rho(g))}=L
$$

be a relation in Σ; we show that it follows from the relations of the groups $\rho\left(G_{i}\right)$. We write the relation in the form

$$
\rho\left(g_{1}\right) \rho\left(g_{2}\right) \cdots \rho\left(g_{n}\right)=L
$$

where $g_{\nu} G_{i(v)}, v=1, \ldots, n$. [This can be done because $(\rho(g))^{-1}=$ $\rho\left(g^{-1}\right)$.] If $n=1$, then we have $\rho\left(g_{1}\right)=L$, and we have seen already that this implies $g_{1}=1$, so the relation is trivial. Assume then that $n>1$. We claim that there are two successive elements g_{v}, g_{v+1} out of the same constituent, that is $i(v)=i(v+1)$; for if not, then

$$
\ell\left(w_{o}^{\rho\left(g_{1}\right) \rho\left(g_{2}\right) \cdots \rho\left(g_{n}\right)}\right)=n>1,
$$

by our lemma, and this contradicts the assumed relation. Now in $G_{i(v)}$, there is a product g^{*}, say of g_{v} and g_{v+1}, so that

$$
g_{v} g_{v+1}=g^{*}
$$

180 is a relation in $G_{i(v)}$; thus also

$$
\rho_{\left(g_{\gamma}\right)} \rho_{\left(g_{\gamma+1}\right)}=\rho_{\left(g^{*}\right)}
$$

is a relation in $\rho_{\left(G_{i(v)}\right)}$, that is a consequence of the defining relations of $\rho_{\left(G_{i(v)}\right)}$. By means of this relation we can now reduce the given relation to a shorter one,

$$
\rho\left(g_{1}\right) \cdots \rho\left(g_{\gamma-1}\right) \rho\left(g^{*}\right) \rho\left(g_{v+2}\right) \cdots \rho\left(g_{n}\right)=\ell .
$$

By an easy induction one deduces that the given relation follows from the defining relations of the constituent groups. This proves the theorem:

Theorem 4. The group \sum and hence P is the generalised free product of the family of groups $\left\{G_{i}\right\}_{i \in I}$ with all the amalgamating subgroups coinciding with H.

We immediately have the following consequence:
Corollary. The group \sum (and hence P) does not depend upon the transversals S_{i} of H in G_{i} that have been chosen.

Chapter 10

Permutational Products

1 Permutational products and Scbreier's Theorem

In this chapter we shall introduce another product called the "permutational product" of an amalgam. The permutational product of an amalgam will be used in giving an alternative proof of Schreier's Theorem. The embedding group we are going to construct will be in general different from the generalised product of the amalgam in question. Once we construct a group embedding the amalgam the existence of the generalised free product follows Theorem 2 of the preceding chapter.

It the following we will be considering an amalgam of two groups. This is just for convenience. The same proof carries over the case of an amalgam of an arbitrary family of groups with a single amalgamated subgroup.

Let the amalgam consist of groups A, B with the amalgamated subgroup $H, H \leq A, H \leq B$. We choose arbitrary left transversals S, T of H in A and B respectively. Thus every $a \in A$ and $b \in B$ can be uniquely written as

$$
\begin{aligned}
& a=s h, s \in S, h \in H \\
& b=t h_{1}, t \in T, h_{1} \in H .
\end{aligned}
$$

Consider the product set $K=S \times T \times H$. Our object is to realise the embedding group as a permutation group of the set K. For every $a \in A, b \in B$ we define mappings $\rho_{(a)}, \rho_{(b)}$ of K into K as follows.

Let $k=(s, t, h) \in K, s \in S, t \in T, h \in H$. Then put

$$
k^{\rho(a)}=k^{\prime}=\left(s^{\prime}, t^{\prime}, h^{\prime}\right)
$$

where

$$
s^{\prime} h^{\prime}=s h a
$$

and

$$
t^{\prime}=t
$$

Similarly we define
where

$$
k^{\rho_{(b)}}=k^{\prime \prime}=\left(s^{\prime \prime}, t^{\prime \prime}, h^{\prime \prime}\right),
$$

and

$$
\begin{gathered}
s^{\prime \prime} h^{\prime \prime}=t h b, \\
s^{\prime \prime}=s .
\end{gathered}
$$

If $h^{*} \in H$, then $\rho_{\left(h^{*}\right)}$ can be defined in two ways, once considering it as an element of A and the other time considering it as an element of B. But,
implies

$$
\begin{aligned}
& s h h^{*}=s^{\prime} h^{\prime}, \\
& \qquad s=s^{\prime}, h^{\prime}=h h^{*} .
\end{aligned}
$$

Similarly
implies

$$
\begin{aligned}
& t h h^{*}=t^{\prime \prime} h^{\prime \prime}, \\
& t=t^{\prime \prime}, h^{\prime \prime}=h h^{*} .
\end{aligned}
$$

Therefore, whatever way we compute $k^{\rho\left(h^{*}\right)}$, we get

$$
k^{\rho\left(h^{*}\right)}=\left(s, t, h h^{*}\right) ;
$$

hence our definition of ρ is unambiguous. Also, $\rho\left(h^{*}\right)$ when applied to any $(s, t, h) \in K$ leaves s, t unaltered.

Conversely one can easily verify that if $\rho(x), x \in A$ or B, does not alter s, t when applied to a triplet $(s, t, h) \in K$, then $x \in H$.

Now consider the mapping ρ_{A} of A into the semigroup of all mappings of K into itself defined by

$$
a^{\rho_{A}}=\rho(a), \text { for all } a \in A
$$

Let $a, a_{1} \in A,(s, t, h) \in K$. We have,
with

$$
\begin{aligned}
&(s, t, h)^{\rho(a)}=\left(s^{\prime}, t^{\prime}, h^{\prime}\right) \\
& s^{\prime} h^{\prime}=s h a \\
& t^{\prime}=t \\
&\left(s^{\prime}, t^{\prime}, h^{\prime}\right)^{\rho\left(a_{1}\right)}=\left(s^{\prime \prime}, t^{\prime \prime}, h^{\prime \prime}\right), \\
& s^{\prime \prime} h^{\prime \prime}=s^{\prime} h^{\prime} a_{1} \\
& t^{\prime \prime}=t^{\prime}
\end{aligned}
$$

and
and further
where
and
But

$$
s h\left(a a_{1}\right)=(s h a) a_{i}=s^{\prime} h^{\prime} a_{i}=s^{\prime \prime} h^{\prime \prime}
$$

Therefore,

$$
(s, t, h)^{\rho_{(}\left(a a_{1}\right)}=\left(s^{\prime \prime}, t^{\prime \prime}, h^{\prime \prime}\right)=(s, t, h)^{\left.\rho_{(a)} \rho_{(} a_{1}\right)}
$$

As this is true for all $(s, t, h) \in K$, we have

$$
\rho\left(a a_{1}\right)=\rho(a) \rho\left(a_{1}\right)
$$

Again as this is true for all $a, a_{1}, \in A$ it follows that the mapping ρ_{A} is a homomorphism. Therefore the homomorphic image $A^{\rho_{A}}=\rho(A)$ is a group. Hence every $\rho(a), a \in A$ has a two sided inverse; that is, $\rho(a)$ is a permutation group of K. Further if

$$
\rho(a)=L, a \in A
$$

then for every $(s, t, h) \in K$, we have

$$
(s, t, h)^{\rho(a)}=(s, t, h) .
$$

Therefore,

$$
\begin{gathered}
\text { sha }=\mathrm{sh} ; \text { that is } \\
\qquad a=1
\end{gathered}
$$

that is ρ_{A} is an isomorphism of A onto $A^{\rho_{A}}=\rho(A)$. Similarly the mapping ρ_{B} of B into the semigroup of all mapping of K into itself defined by

$$
\left.b^{\rho_{B}}=\rho_{(} b\right), \text { for all } b \in B
$$

is a monomorphism; that is B is isomorphic to $B^{\rho_{B}}=\rho(B)$. Denote by P the permutation group of K generated by $\rho(A)$ and $\left.\rho_{(} B\right)$,

$$
P=g p(\rho(A), \rho(B))
$$

It is evident that P contains isomorphic copies of A and B namely $A^{\rho_{A}}$ and $B^{\rho_{B}}$. We claim that

Let

$$
\begin{gathered}
A^{\rho_{A}} \cap B^{\rho_{B}}=H^{\rho_{A}}=H^{\rho_{B}} . \\
\rho_{(a)}=\rho_{(b)}, a \in A, b \in B .
\end{gathered}
$$

Then $\rho_{(a)}$ fixes both s, t of any $(s, t, h) \in K$. Therefore,

$$
a \in H
$$

Similarly,

$$
b \in H
$$

Now, since ρ_{A} is an isomorphism and

$$
\rho_{(a)}=\rho_{(b)}
$$

it follows that

$$
\begin{gathered}
a=b \in H ; \text { thus } \\
A^{\rho_{A}} \cap B^{\rho_{B}}=H^{\rho_{A}}=H^{\rho_{B}} .
\end{gathered}
$$

Hence P embeds the amalgam. This proves Schreier's Theorems. We call P a permutational product of the amalgam. This proof of Shchreier's theorem immediately leads us to the following corollary.

Corollary. An amalgam of two finite groups is embeddable in a finite group.

In this context we mention the following unsolved problem.
Unsolved problem. If an amalgam of $n(n>2)$ finite groups embeddable in a group, is it embeddable in a finite group?

187 Now we shall consider amalgams of abelian groups. We ask the following question: If an amalgam of n abelian groups is embeddable in a group, is it embeddable in an abelian group ?

For $n=2,3,4$, the answer to this question is 'yes'; for $n=5$. 'no' (see Hanna Neumann, 1951 and B. H. Neumann and Hanna Neumann, 1953). For $n=2$, we shall prove the assertion.

We shall start with a more general situation. Let A and B be any two groups and H, H_{1} be isomorphic subgroups of A and B respectively, and let H, H_{1} be contained in the centres of A and B,

$$
H \leq \text { centre }(A), H_{1} \leq \text { centre }(B)
$$

Let θ be an isomorphism of H onto H_{1}. Consider the direct product $A \times B$ of A and B. We shall denote an arbitrary element of $A \times B$ by

$$
a \times b, \text { with } a \in A, b \in B \text {. }
$$

Consider $N \subseteq A \times B$, defined by

$$
N=\left\{h^{-1} \times h_{1} \mid h_{1}=h^{\theta}\right\} .
$$

Now if $x=h^{-1} \times h_{1}, y=h^{\prime-1} \times h_{1}^{\prime} \in N$ with

$$
\begin{aligned}
h_{1} & =h^{\theta}, h_{1}^{\prime}=h^{\prime \theta}, \text { then } \\
x y^{-1} & =\left(h^{-1} \times h_{1}\right)\left(h^{\prime-1} \times h_{1}\right)^{-1}=\left(h^{-1} \times h_{1}\right)\left(h^{\prime} \times h_{1}^{\prime-1}\right) \\
& =h^{-1} h^{\prime} \times h_{1} h_{1}^{\prime-1} \\
& =\left(h h^{-1}\right)^{-1}\left(\text { As }, h, h^{\prime} \in \text { centre }(A)\right) \\
& =\left(h h^{\prime-1}\right)^{-1} \times h_{1} h_{1}^{-1} .
\end{aligned}
$$

But,

$$
\left(h h^{-1}\right)^{\theta}=h^{\theta}\left(h^{\theta}\right)^{-1}=h_{1} h_{1}^{\prime-1} .
$$

Therefore,

$$
x y^{-1} \in N \text {; that is }
$$

$$
N \leq A \times B
$$

It is easy to verify that
and therefore

$$
N \leq \text { centre }(A \times B)
$$

Consider now the quotient group $A \times B / N$. We claim that the mapping π of A into $A \times B / N$ defined by

$$
a^{\pi}=(a \times 1) N \in A \times B / N, a \in A .
$$

189 is a monomorphism. That it is a homomorphism is easy to verify. Now if

$$
\begin{gathered}
a \times 1 \in N, \text { then } \\
a \times 1=h^{-1} \times h^{\theta}, \text { for some } h \in H ;
\end{gathered}
$$

that is,

$$
a=h^{-1}, 1=h^{\theta}
$$

Since θ is an isomorphism,

$$
\begin{gathered}
1=h^{\theta} \text { implies } h=1 ; \text { that is } \\
a=h^{-1}=1 .
\end{gathered}
$$

Hence π has a trivial kernel; that is π is a monomorphism. Similarly the mapping π_{1} of B into $A \times B / N$ defined by

$$
b^{\pi_{1}}=(1 \times b) N \in A \times B / N, b \in B
$$

is a monomorphism. Thus the groups A and B are monomorphically embedded in $A \times B / N$. We assert that $A \times B / N$ embeds the amalgam in question. To see this we have only to prove

$$
A^{\pi} \cap B^{\pi_{1}}=H^{\pi}=H_{1}^{\pi_{1}}
$$

Now for any $h \in H$, we have

$$
(h \times 1)\left(1 \times h^{\theta}\right)^{-1}=h \times\left(h^{\theta}\right)^{-1} \in N: \text { that is }
$$

$$
(h \times 1) N=\left(1 \times h^{\theta}\right) N .
$$

Making h run through all the elements of H, we get

$$
H^{\pi}=H_{1}^{\pi}
$$

It is immediate that

$$
H^{\pi}=H_{1}^{\pi_{1}} \subseteq A^{\pi} \cap B^{\pi_{1}}
$$

Conversely if $x \in A^{\pi} \cap B^{\pi_{1}}$, then

$$
x=(a \times 1) N=(1 \times b) N \text { for some } a \in A, b \in B .
$$

This gives

$$
\begin{gathered}
a \times b^{-1} \in N ; \text { that is } \\
a=h, b=h^{\theta} \text { for some } h \in H \text {; that is } \\
x=(h \times 1) N \in H^{\pi}=H_{1}^{\pi_{1}} .
\end{gathered}
$$

Hence

$$
A^{\pi} \cap B^{\pi_{1}} \subseteq H^{\pi}=H_{1}^{\pi_{1}}
$$

Combining this with the above inclusion we have

$$
A^{\pi} \cap B^{\pi_{1}}=H^{\pi}=H_{1}^{\pi_{1}} .
$$

This proves that $A \times B / N$ embeds the amalgam. It is evident that

$$
A \times B / N=A^{\pi} B^{\pi_{1}}
$$

and every element of A^{π} commutes with every element of $B^{\pi_{1}}$. We call $A \times B / N$ a "generalised direct product" of the amalgam. [This is also called a "central product" by some authors.]

Let A and B any two groups each containing an isomorphic copy of a group H. Without loss of generality we can take $H \leq A, H \leq B$. Let A and B embedded monomorphically in a group G. We shall identify these monomorphic images with A and B respectively and take

$$
A \leq G, B \leq G
$$

We call G a generalised direct product of the amalgam of A and B with the amalgamated subgroup H if
(i) $G=A B$
(ii) $A \cap B=H$
(iii) Every element of A commutes with every element of B

In particular when H is the trivial group we get the usual direct product. In order that a generalised direct product of the amalgam in question may exists necessary that

$$
H \leq \text { centre }(A), H \leq \text { centre }(B) .
$$

192 This is immediate from (iii). We have also proved that the condition is sufficient.

Let G be a generalised direct product of the amalgam consisting of groups A and B with an amalgamated subgroup H. Consider the mapping φ of $A \times B / N$ onto G defined by

$$
((a \times b) N)^{\varphi}=a b \quad G .
$$

Once can easily verify that φ is an isomorphism. In other word, the generalised direct product of an amalgam in unique upto an isomorphism. Thus we can speak of the generalised direct product of an amalgam. In contract to this, the permutational product of an amalgam is in general not unique. We shall soon make an example. We summarise the results proved above in the following;

Theorem 1. The generalised direct product of an amalgam consisting of groups A and B with an amalgamated subgroup H exists if and only if

$$
H \leq \text { centre }(A), H \leq \text { centre }(B) ;
$$

and it is unique to an isomorphism.
Taking A and B to be abelian groups we have,
Corollary. An amalgam of two abelian groups is embeddable in an abelian group;

193 Consider again the amalgam of two groups A and B with an amalgamated subgroup H with, $H \leq$ centre (A), $H \leq$ centre (B). As before, we choose transversals S, T of H in A and B respectively and form permutational product P on the set $K=S \times T \times H$. We show now that in this case every $\rho(a) \rho(A)$ commutes with every element $\rho(b) \in \rho(B)$. Let $(s, t, h) \in K, \rho(a) \in \rho(A), \rho(b) \in(B)$. Then,

$$
\begin{aligned}
(s, t, h)^{\rho(a)} & =\left(s_{1}, t_{1}, h_{1}\right), \text { with } \\
s_{1} h_{1} & =s h a, t=t_{1} ; \\
\left(s_{1}, t_{1}, h_{1}\right)^{\rho(b)} & =\left(s_{2}, t_{2}, h_{2}\right), \text { with } \\
t_{2} h_{2} & =t_{1} h_{1} b, s_{2}=s_{1}
\end{aligned}
$$

Now from the above equations it follows that

$$
t h b=\operatorname{th}\left(h_{1}^{-1} t_{1}^{-1} t_{2} h_{2}\right)=t_{1} h\left(h_{1}^{-1} t_{1}^{-1} t_{2} h_{2}\right) .
$$

But $H \leq$ centre (B). Therefore,

$$
t h b=t_{2} t_{1} t_{1}^{-1} h h_{1}^{-1} h_{2}=h_{2} h h_{1}^{-1} h_{2} .
$$

Hence we have,

$$
(s, t, h)^{\rho(b)}=\left(s, t_{2}, h h_{1}^{-1} h_{2}\right)
$$

Again from the above equations and since $H \leq$ centre (A), we have

$$
s\left(h h_{1}^{-1} h_{2}\right) a=(s h a) h_{1}^{-1} h_{2}=\left(s_{1} h_{1}\right)=s_{1} h_{2}=s_{2} h_{2} .
$$

Therefore

$$
\begin{aligned}
(s, t, g)^{\rho(b) \rho(a)} & =\left(s, t_{2}, h h_{1}^{-1} h_{2}\right)^{\rho(a)}=\left(s_{2}, t_{2}, h_{2}\right) ; \\
& =(s, t, h)^{\rho(a) \rho(b)} .
\end{aligned}
$$

As this is true for all $(s, t, h) \in K$, we get

$$
\rho(a) \rho(b)=\rho(b) \rho(a) .
$$

This is true for all $a \in A, b \in B$. Since

$$
P=g p(\rho(A), \rho(B))
$$

embeds the amalgam, we have proved that P is the generalised direct product of the amalgam. Thus we have:

195 Theorem 2. If H is central in both A and B, then the permutational product of the amalgam is the generalised direct product.

The uniqueness of the generalised product gives:
Corollary. Under the assumptions of the above theorem the permutational product does not depend upon the transversals chosen.

Incidentally, not that in this case the permutational product is not the generalised free product. For in the generalised free product $a \in A-H$ and $b \in B-H$ do not commute.

In general, the permutational product depends upon the transversals chosen. We give here an example. Take A, B to be groups isomorphic to S_{3} and H to be a subgroup of order 2 of S_{3}. For A, B, H we give the following presentations.

$$
\begin{aligned}
A & =g p\left(p, r ; p^{3}=r^{2}=(p r)^{2}=1\right) \\
B & =g p\left(p, r ; q^{3}=r^{2}=(q r)^{2}=1\right) \\
H & =g p\left(p, r ; p^{2}=1\right)
\end{aligned}
$$

For the transversals of H in A and B, first we choose

$$
S_{1}=\left\{1, p, p^{2}\right\}, T_{1}=\left\{1, q, q^{2}\right\}
$$

We rename the elements of $K_{1}=S_{1} \times T_{1} \times H$, for convenience:

$$
\begin{aligned}
(1,1,1)=1 ; & (p, 1,1)=4 ; & \left(p^{2}, 1,1\right)=7 \\
(1, q, 1)=2 ; & (p, q, 1)=5 ; & \left(p^{2}, q, 1\right)=8 \\
\left(1, q^{2}, 1\right)=3 ; & \left(p, q^{2}, 1\right)=6 ; & \left(p^{2}, q^{2}, 1\right)=9 \\
(1,1, r)=1^{\prime} ; & (p, 1, r)=4^{\prime} ; & \left(p^{2}, 1, r\right)=7^{\prime}
\end{aligned}
$$

$$
\begin{array}{rlr}
(1, q, r)=2^{\prime} ; & (p, q, r)=5^{\prime} ; & \left(p^{2}, q, r\right)=8^{\prime} ; \\
\left(1, q^{2}, r\right)=3^{\prime} ; & \left(p, q^{2}, r\right)=6^{\prime} ; & \left(p^{2}, q^{2}, r\right)=9^{\prime} .
\end{array}
$$

By a straightforward computation one obtains:

$$
\begin{aligned}
& \rho(p)=(147)(258)(369)\left(1^{\prime} 7^{\prime} 4^{\prime}\right)\left(2^{\prime} 8^{\prime} 5^{\prime}\right)\left(3^{\prime} 9^{\prime} 6^{\prime}\right), \\
& \rho(r)=\left(11^{\prime}\right)\left(22^{\prime}\right)\left(33^{\prime}\right)\left(44^{\prime}\right)\left(55^{\prime}\right)\left(66^{\prime}\right)\left(77^{\prime}\right)\left(88^{\prime}\right)\left(99^{\prime}\right), \\
& \rho(q)=(123)(456)(789)\left(1^{\prime} 3^{\prime} 2^{\prime}\right)\left(4^{\prime} 6^{\prime} 5^{\prime}\right)\left(7^{\prime} 9^{\prime} 8^{\prime}\right) .
\end{aligned}
$$

One can easily verify that

$$
[\rho(p), \rho(q)]=L
$$

Thus $\rho(p)$ and $\rho(q)$ generate a group of order 9 . Let p_{1} denote the permutational product of the amalgam,

$$
P_{1}=g p(\rho(p), \rho(q), \rho(r)) .
$$

It is not difficult to verify that P_{1} is an extension of $g p(\rho(p), \rho(q))$ by $g p(\rho(r))$. Thus

$$
\left|P_{1}\right|=18
$$

Now we choose different transversals and form the permutation product. Choose

$$
S_{2}=\left\{r, p, p^{2}\right\}, T_{2}=T=\left\{1, q, q^{2}\right\}
$$

to form the permutational product. Let

$$
K_{2}=S_{2} \times T_{2} \times H .
$$

As before we rename the elements of K_{2}

$$
\begin{aligned}
& (r, 1,1)=1 ; \quad(r, q, 1)=2 ; \quad\left(r, q^{2}, 1\right)=3 ; \\
& (p, 1,1)=4 ; \quad(p, q, 1)=5 ; \quad\left(p, q^{2}, 1\right)=6 ; \\
& \left(p^{2}, 1,1\right)=7 ; \quad\left(p^{2}, q, 1\right)=8 ; \quad\left(p^{2}, q^{2}, 1\right)=9 ; \\
& (r, 1, r)=1^{\prime} ; \quad(r, q, r)=2^{\prime} ; \quad\left(r, q^{2}, r\right)=3^{\prime} ; \\
& (p, 1, r)=4^{\prime} ; \quad(p, q, r)=5^{\prime} ; \quad\left(p, q^{2}, r\right)=6^{\prime} ;
\end{aligned}
$$

$$
\left(p^{2}, 1, r\right)=7^{\prime} ; \quad\left(p^{2}, q, r\right)=8^{\prime} ; \quad\left(p^{2}, q^{2}, r\right)=9^{\prime}
$$

As we have not changed the transversal T_{1}, of H in $B, \rho(q)$ and $\rho(r)$ are not altered. The only generator that is altered is $\rho(p)$. One can again compute it without difficulty:

$$
\rho(p)=\left(17^{\prime} 4^{\prime}\right)\left(28^{\prime} 5^{\prime}\right)\left(39^{\prime} 6^{\prime}\right)\left(1^{\prime} 47\right)\left(2^{\prime} 58\right)\left(3^{\prime} 69\right)
$$

Now

$$
[\rho(p), \rho(q)]=(132)(456)\left(1^{\prime} 2^{\prime} 3^{\prime}\right)\left(7^{\prime} 8^{\prime} 9^{\prime}\right)
$$

Thus $g p(\rho(p), \rho(q))$ is not elementary abelian; in fact it turns out to be a group order 81 . The group P_{2}, the permutational product with the above choice of transversals is given by

$$
\begin{gathered}
P_{2}=g p(\rho(p), \rho(q), \rho(r)) ; \text { and } \\
P_{1} \neq P_{2}
\end{gathered}
$$

Thus, in general, by selecting different transversals we get different permutational products. If we choose the transversals $\left\{r, p, p^{2}\right\},\left\{r, q, q^{2}\right\}$ of H in A, B respectively, the corresponding permutational product P_{3} we get, is a group of order 9 ; in fact it is the direct product of the alternating group, A_{9} and a group of order 2 and therefore not soluble, whereas S_{3} is metabelian. Thus the permutational product of two metabelian group with an amalgamated sub ground need not even be soluble.

4

199 Consider now the amalgam of any two groups with an amalgamated subgroup, say H. We have already seen that if H is central both in A and in B, then the permutational product does not depend upon the transversals of H chosen in A and B. We now prove that if H is central in A, then the permutational product is independent of the transversal of H in B we choose to form the product. More precisely we have

Theorem 3. Let $H \leq$ center $(A), S$ a transversal of H in A.If T, T^{\prime} are any two transversals of H in B, then the permutational product P on the set $K=S \times T \times H$ and the permutational product P^{\prime} on $K^{\prime}=S \times T^{\prime} \times H$ are isomorphic.

Proof. Let $\rho^{\prime}(a), \rho(b) a \in A, b \in B$, denote the permutations on the set K^{\prime} corresponding to permutations $\rho(a), \rho(b)$ on the set K. Consider the mapping φ of K into K^{\prime},

$$
(s, t, h)^{\varphi}=\left(s, t^{\prime}, h^{\prime}\right), s \in S, h, h^{\prime} \in H, t, \in T, t^{\prime} \in T^{\prime}
$$

defined by

$$
t^{\prime} h^{\prime}=t h .
$$

It is obvious that φ is $1-1$ and onto and

$$
\left(s, t^{\prime}, h^{\prime}\right)^{\varphi-1}=(s, t, h), s \in S, t \in T, t^{\prime} \in T^{\prime}, h, h^{\prime} \in H,
$$

where

$$
t h=t^{\prime} h^{\prime}
$$

Now for $a \in A$, let us compute

$$
\left(s, t^{\prime}, h^{\prime}\right)^{\varphi^{-1}}(a \varphi),\left(s, t^{\prime}, h^{\prime}\right) \in K^{\prime}
$$

We have

$$
\begin{aligned}
\left(s, t^{\prime}, h^{\prime}\right)^{\varphi^{-1}} & =(s, t, h), \text { where } \\
t h & =t^{\prime} h^{\prime}, t \in T, h \in H ; \text { and } \\
(s, t, h)^{\varphi(a)} & =\left(s_{1}, t_{1}, h_{1}\right), \text { where } \\
s_{1} h_{1} & =s h a, t=t_{1}, s_{1} \in S, h_{1} \in H ; \text { and }
\end{aligned}
$$

finally,

$$
\begin{aligned}
\left(s_{1}, t_{1}, h_{1}\right)^{\varphi} & =\left(s_{1}, t_{1}^{\prime}, h_{1}^{\prime}\right), \text { where } \\
t_{1}^{\prime} h_{1}^{\prime} & =t_{1} h_{1}, t_{1}^{\prime} \in T^{\prime}, h_{1}^{\prime} \in H .
\end{aligned}
$$

Now,

$$
t_{1}^{\prime} h_{1}^{\prime}=t_{1} h_{1}=t h_{1}=t h \cdot h^{-1} h_{1}=t^{\prime} h^{\prime} h^{-1} h_{1} .
$$

Therefore,

$$
t_{1}^{\prime}=t^{\prime}, h_{1}^{\prime}=h^{\prime} h^{-1} h_{1} .
$$

Using the hypothesis that $H \leq$ centre (A), we get

$$
\begin{aligned}
(s a) h & =s h a=s_{1} h_{1} ; \text { that is } \\
s a & =s_{1} h_{1} h^{-1} \text { and } \\
s h^{\prime} a=(s a) h^{\prime} & =\left(s_{1} h_{1} h^{-1}\right) h^{\prime}=s_{1}\left(h_{1} h^{-1} h^{\prime}\right)=s_{1} h_{1}^{\prime} .
\end{aligned}
$$

Thus

$$
\left(s, t^{\prime}, h^{\prime}\right)^{\varphi^{-1} \rho(a) \varphi}=\left(s_{1}, t_{1}^{\prime}, h_{1}\right)=\left(s_{1}, t^{\prime}, h_{1}^{\prime}\right)=\left(s, t^{\prime}, h^{\prime}\right)^{\rho^{\prime}(a)}
$$

As this is true for all $\left(s, t^{\prime}, h^{\prime}\right) \in K^{\prime}$, we have

$$
\varphi^{-1} \rho(a) \varphi=\rho^{\prime}(a)
$$

Now consider $\varphi^{-1} \rho(b) \varphi$, for $b \in B$. We have
and

$$
\left(s, t^{\prime} h^{\prime}\right)^{\varphi-1}=(s, t, h), t h=t^{\prime} h^{\prime}
$$

$$
(s, t, h)^{\rho(b)}=\left(s, t_{1}, h_{1}\right)
$$

where

$$
t_{1} h_{1}=t h b, t_{1} \in T, h_{1} \in H:
$$

and
$\left(s, t, h_{1}\right)^{\varphi}=\left(s, t_{1}^{\prime}, h_{1}^{\prime}\right)$,
where
$t_{1}^{\prime} h_{1}^{\prime}=t_{1} h_{1}, t_{1} \in T^{\prime}, h_{1}^{\prime} \in H$.
But,

$$
t^{\prime} h^{\prime} b=t h b=t_{1} h_{1}=t_{1}^{\prime} h_{1}^{\prime}
$$

Therefore,

$$
\left(s, t^{\prime}, h^{\prime}\right)^{\varphi-1 \rho(b) \varphi}=\left(s, t_{1}^{\prime}, h_{1}^{\prime}\right)=\left(s, t^{\prime}, h^{\prime}\right)^{\rho(b)}
$$

Again as this is true for all $\left(s, t^{\prime}, h^{\prime}\right) \in K^{\prime}$, we get

$$
\varphi^{-1} \rho(b) \varphi=\rho^{\prime}(b)
$$

It is obvious that the mapping η of $\rho(A) \cup \rho(B)$ into $\rho^{\prime}(A) \cup \rho^{\prime}(B)$ defined by

$$
\rho(x)^{\eta}=\varphi^{-1} \rho(x) \varphi, x \in \rho(A) \cup \rho(B)
$$

is $1-1$ and 'onto '. Further if

$$
u\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{n}\right)=L\right)
$$

is a relation in P_{1}, with

$$
x_{i} \in \rho(A) \cup \rho(B), i=1, \ldots, n,
$$

then

$$
\begin{aligned}
& u\left(\rho\left(x_{1}\right)^{\eta}, \ldots, \rho\left(x_{n}^{\eta}\right)=\left(u\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{n}\right)\right)^{\eta}\right)=\varphi^{-1}\right. \\
& \\
& u\left(\rho\left(x_{i}\right), \ldots, \rho\left(x_{n}\right)\right) \varphi=\varphi^{-1} \ell \varphi=L
\end{aligned}
$$

Therefore by von Dyck's Theorem, η can be extended to an isomor-
phism of P onto P^{\prime}, as $\rho(A) \cup \rho(B)$ and $\rho^{\prime}(A) \cup \rho^{\prime}(B)$ generate P and P^{\prime} respectively. This proves the theorem.

5

We shall now consider questions of the form:
If the groups A and B have the property \mathcal{P}, can the amalgam be embedded in a group P with the property \mathcal{P} ?

Let \mathcal{P} be a property of groups. We say that a group G has the property \mathcal{P} locally if every finite set of elements of G is contained in a subgroup of G having \mathcal{P}. In particular, a group G is locally finite if every finitely generated subgroup of G is finite. Similarly we can speck if locally soluble and locally nilpotent groups.

A locally finite group is obviously periodic. For a long time nothing was known about the converse of this statement; but the recent results of Novikov provide example of periodic groups that are not locally finite.

Consider an amalgam of groups A, B with an amalgamated subgroup H. We ask if A and B are locally finite, can the amalgam be embedded in a locally finite group? The answer to this question, in general, is 'no'.
But if we impose certain 'good' conditions on H such an embedding can be achieved. The answer to the above question is 'yes' if H is finite or H is central both in A and B. (See Theorems 4and 5) If H is central
only in A or B, the answer is not completely known; for a partial result, see the end of this Chapter.

We can repeat the same question replacing "locally finite" by "periodic"; that is, we ask: if A and B are periodic, can the amalgam be embedded in a periodic group? Again, in general, the answer is 'no'. If H is central in both A and B, the answer is 'yes'. Nothing is known in the case when H is finite or when H is central only in A or B.

We now give an example to show that if A and B are locally finite, the amalgam need not even be embeddable in a periodic group.

Let C be a periodic abelian group in which the orders of the elements is unbounded. For instance we can take C to be the Prufer p^{∞}-group. Let

$$
H=C \times C
$$

Take

$$
\begin{aligned}
& A=g p\left(H, a ; a^{4}=1,(c, d)^{a}=\left(d^{-1}, c\right), \text { for all }(c, d) \in H\right) \\
& B=g p\left(H, b ; b^{3}=1,(c, d)^{b}=\left(c^{-1} d, c^{-1}\right), \text { for } \operatorname{all}(c, d) \in H\right)
\end{aligned}
$$

and
A is the splitting extension of H by the cyclic group (of order 4) generated by a; similarly, B is the splitting extension of H by the cyclic group (of order 3) generated by b. It is not difficult to show (cf. the lemma in the next section) that an extension of a locally finite group by a locally finite group (or as we also say a locally finite-by-locally finite group) is itself locally finite. Thus A and B are locally finite. Their intersection is, of course,

$$
A \cap B=H .
$$

Let P be any group embedding the amalgam, consider the element

$$
p=a b \in P
$$

We have for any $(c, d) \in H$,

$$
(c, d)^{p}=(c, d)^{a b}=\left(d^{-1}, c\right)^{b}=(d c, d) .
$$

It is easy to verify that

$$
(c, d)^{p^{n}}=\left(d^{n} c, d\right), \text { for } n=1,2,3, \ldots
$$

If p were of finite order, say m, then

$$
(c, d)^{p^{m}}=\left(d^{m} c, d\right)=(c, d) ;
$$

that is,

$$
\begin{aligned}
d^{m} c & =\text { : that is } \\
d^{m} & =\text { for all } d \in H .
\end{aligned}
$$

This contradicts our choice of H. Therefore P is not periodic.

6

In this section we shall give two sufficient conditions for the amalgam of two locally finite groups A and B with an amalgamated subgroup H to be embeddable in a locally finite group.

Theorem 4. The amalgam of two locally finite groups A and B with an amalgamated subgroup H is embeddable in a locally finite group if H is central both in A and B.

Proof. Since

$$
H \leq \text { centre }(A), H \leq \text { centre }(B),
$$

the generalised direct product P of the amalgam exists. We claim that P is locally finite. One can prove this directly. But, we shall deduce it from a more general lemma.

Lemma. An extension of a locally finite group by a locally finite group is a locally finite group.

Proof. Let P be an extension of a locally finite group A by a locally 207 finite group B, so that

$$
A \triangle P, P / A \cong B .
$$

Let p_{1}, \ldots, p_{n} be arbitrary elements of P, where n is any positive integer and

$$
G=g p\left(p_{1}, \ldots, p_{n}\right) .
$$

Consider the canonical mapping φ of P onto P / A. We have

$$
\left|G^{\varphi}\right|=\left|g p\left(p_{1}^{\varphi}, \ldots, p_{n}^{\varphi}\right)\right|<\infty, \text { since }
$$

P / A is isomorphic to B and thus locally finite. If φ_{0} is the restriction of φ to G, we have

$$
\varphi_{0}^{-1}\{1\}=G \cap A, G^{\varphi_{0}}=G^{\varphi} .
$$

Therefore,

$$
G / G \cap A \cong G^{\varphi} .
$$

Now since G is finitely generated and $G \cap A$ has finite index in G, by a theorem of Schreier (1927, cf, e.g Kurosh 1956, p. 36) also $G \cap A$ is finite generated. Therefore the local finiteness of A implies that the group $G \cap A$ is finite. Now, since $G \cap A$ and $G / G \cap A$ are finite, G itself is finite. This prove that P is locally finite. Now to complete that proof of Theorem 4 we have only to remark that the generalised direct product P of the amalgam is an extension of A by a factor group of B (namely by $B / H)$.
Theorem 5. The amalgam of locally finite groups A and B with an amalgamated subgroup H is embeddable in a locally finite group if H is finite.
Proof. Choose transversals S, T of H in A and B respectively and form the permutational product P of the amalgam on the set $K=S \times T \times H$. Let,

$$
G=g p\left(p_{1}, \ldots, p_{r}\right), p_{i} \in P, i=1, \ldots r
$$

be any finitely generated subgroup of P. Each p_{i} is a word in the elements of $\rho(A)$ and $\rho(B)$. Let $\rho\left(a_{i}\right), i=1, \ldots, m$ and

$$
\rho\left(b_{i}\right), i=1, \ldots, \ell, a_{i} \in A, b_{i} \in B
$$

occur when p_{i} are expressed as words in the elements of $\rho(A)$ and $\rho(B)$. Let,

$$
\begin{gathered}
A_{1}=g p\left(a_{1}, \ldots, a_{m}, H\right) \text { and } \\
B_{1}=g p\left(b_{1}, \ldots, b_{m}, H\right) ; \text { so that } \\
G=g p\left(p_{1}, \ldots, p_{r}\right) \leq g p\left(\rho\left(A_{1}\right), \rho\left(B_{1}\right), \rho(H)\right)=P_{1}(\text { say }) .
\end{gathered}
$$

Now since H is finite and A and B are locally finite, the groups $A_{1} 209$ and B_{1} are finite. Further

$$
A_{1} \cap B_{1}=H
$$

We now define $K_{a b} \subseteq K, a \in A, b \in B$ by

$$
K_{a b}=\left\{(s, t, h) \mid s \in a A_{1}, t \in b B_{1}\right\}
$$

Since A_{1}, B_{1} and H are finite, each $K_{a b}$ is finite; in fact,

$$
\left|K_{a b}\right|=\left|S \cap a A_{1}\right|\left|T \cap b B_{1}\right||H|=\left|A_{1}: H\right|\left|B_{1}: H \| H\right|=\frac{\left|A_{1}\right|\left|B_{1}\right|}{|H|}
$$

Further for $a, c \in A, b, d \in B$ either

$$
\begin{gathered}
K_{a b} \cap K_{c d}=\phi \mathrm{or} \\
K_{a b}=K_{c d} .
\end{gathered}
$$

For, if $(s, t, h) \in K_{a b} \cap K_{c d}$, then

$$
s \in a A_{1} \cap c A_{1}, t \in b B_{1} \cap d B
$$

hence

$$
a A_{1}=c A_{1}, b B_{1}=d B_{1},
$$

and

$$
K_{a b}=K_{c d} .
$$

Now since every $(s, t, h) \in K_{s t}$, it follows that $K=\bigcup_{a \in A, b \in B} K_{a b}$. We 210 claim that every $K_{a b}$ admits P_{1}. For let $(s, t, h) \in K_{a b}$; then, for $i=$ $1, \ldots, m$,

$$
\begin{aligned}
(s, t, h)^{\rho\left(a_{i}\right)} & =\left(s_{1}, t_{1}, h_{1}\right) \text { where } \\
s_{1} h_{1} & =s h a_{i}, t_{1}=t
\end{aligned}
$$

Thus

$$
s^{-1} s_{1}=h a_{i} h_{1}^{-1} \in A_{1},
$$

and

$$
s A_{1}=s_{1} A_{1}
$$

But $(s, t, h) \in K_{a b}$. Therefore

$$
s_{1} A_{1}=s A_{1}=a A_{1} ; \text { that is, } s_{1} \in a A_{1}
$$

Moreover, $t_{1}=t \in b B_{1}$. Hence $(s, t, h)^{\rho\left(a_{i}\right)} \in K_{a b}$. Similarly it can be proved that

$$
(s, t, h)^{\rho\left(a_{i}\right)} \in K_{a b}, \text { for every }(s, t, h) \in K_{a b}
$$

It is also obvious that, for every $h^{\prime} \in H$,

$$
(s, t, h)^{\rho\left(h^{\prime}\right)} \in K_{a b},(s, t, h) \in K_{a b} .
$$

Thus for every $a \in A, b \in B$, the elements of P_{1} restricted to $K_{a b}$ are permutations of the set $K_{a b}$. Hence P_{1} is a subgroup of the Cartesian product of symmetric groups of permutations on the sets $K_{a b}$. Now since all of the sets $K_{a b}$ have the same cardinal, the group P_{1} can be regarded as a subgroup of a Cartesian power of the group $S(F)$ where $S(F)$ is the symmetric group of permutations on a set F of cardinal $\left|K_{a b}\right|$. Now the group P_{1} is finitely generated. The following lemma proves that the group P_{1} is finite.

Lemma. Let E be a finite group, Y any set and Q a finitely generated subgroup of E^{γ}. Then Q is finite.

Proof. Let $Q=g p\left(q_{1}, \ldots, q_{n}\right) \in E^{Y}$, with $q_{i} \in E^{Y}$. Consider the n tuples

$$
\left(q_{1}(y), \ldots, q_{n}(y)\right), y \in Y
$$

Since F is finite, there can only be a finite number of distinct such n-tuples. In fact the number N of distinct n-tuples cannot exceed $\left|E^{n}\right|$. Let $y_{1}, \ldots, y_{N} \in Y$. be such that

$$
\left(q_{1}(y), \ldots, q_{n}(y)\right), i=1, \ldots, N
$$

are N distinct n-tuples. Let

$$
Y_{0}=\left\{y_{1}, \ldots, y_{N}\right\}
$$

Consider the mapping θ of Q into $E^{Y_{0}}$ defined by

$$
q^{\theta}=q_{0},
$$

where q_{0} is the restriction of q to Y_{0}. It is easy to verify that is a homomorphism. In fact θ is a homomorphism. For let $q \in Q$ belongs to the kernel of θ, that is $q^{\theta}=e_{0}$, where e_{0} is the neutral element of $E^{\gamma_{0}}$; that is

$$
e_{0}\left(y_{i}\right)=1, i=1, \ldots, N .
$$

If $q=u\left(q_{1}, \ldots, q_{n}\right)$, then

$$
q(y)=u\left(q_{1}(y), \ldots, q_{n}(y)\right) .
$$

Now there exists a $y_{j}, 1 \leq j \leq n$ such that

$$
q_{i}(y)=q_{i}\left(y_{j}\right), i=1, \ldots, n .
$$

Now

$$
u\left(q_{1}\left(y_{j}\right), \ldots, q_{n}\left(y_{j}\right)\right)=1, \text { since } q^{\theta}=e_{0}
$$

Therefore

$$
q(y)=u\left(q_{1}\left(y_{j}\right), \ldots, q_{n}\left(y_{j}\right)\right)=1 ;
$$

as y was an arbitrary element of Y, we see that q is the unit elements of E^{Y}. Thus the kernel of θ is trivial, in other words, θ is a homomorphism. Now θ, being isomorphic to a subgroup of the finite group $E^{Y_{0}}$, is finite. This completes the proof of the lemma.

Thus we have proved that every finitely generated subgroup P_{1} of P is finite; that is P is locally finite.

Observing that in the proof of the above theorem the transversal S, T were arbitrary we have:
Corollary. Every permutational product of the amalgam of two locally finite groups with an amalgamated subgroup is locally finite if the amalgamated subgroup is finite.

If A and B are locally finite and if H is central in A and of countable index in A, it can be proved that there is an embedding (in a permutation product with a suitable transversal S of H in A) in a locally finite group. We shall, however, not prove this.

Chapter 11

Embedding of Nilpotent and Soluble Groups

1

Let G be a group and $A \subset G, B \subset G$ be any two subsets of G. We define 214 the commutator subgroup $[A, B]$ of these subsets as

$$
[A, B]=g p(\{[a, b] \mid a \in A, b \in B\}) .
$$

In particular $[G, G]$ is the derived group of G. A normal series of the form

$$
G=G_{0} \geq G_{1} \geq G_{2} \geq \cdots
$$

is called a descending central series if

$$
\begin{gathered}
G_{i} \Delta G, i=1,2, \ldots, \text { and } \\
G_{i} / G_{i+1} \leq \operatorname{centre}\left(G_{i} / G_{i+1}\right), i=0,1,2, \ldots
\end{gathered}
$$

It is immediate that

$$
G_{i} / G_{i+1} \leq \operatorname{centre}\left(G / G_{i+1}\right)
$$

if and only if

$$
\left[G, G_{i}\right] \leq G_{i+1} .
$$

In general a descending central series may not become stationary in 215 a finite number of steps. We call a group G nilpotent of classes n if G has a descending central series with

$$
G_{n}=\{1\} .
$$

The normal series
where

$$
G=G_{0} \geq G_{1} \geq G_{2} \geq \cdots
$$

is called the lower central series. One can show that the terms of the lower central series are verbal subgroups of G and hence fully invariant in G. A group G is nilpotent of class n if and only if the $n^{\text {th }}$ term in the lower central series is the trivial group. Further if n is the least integer such that the $n^{\text {th }}$ term of the lower central series is the trivial group, then G is nilpotent of class n but not of class $n-1$.

A series of the form

$$
\{1\}=H_{\circ} \leq H_{1} \leq H_{2} \cdots
$$

is called an ascending central series series if

$$
\begin{aligned}
H_{i} \Delta G, i & =1,2, \ldots, \text { and } \\
H_{i+1} / H_{i} & \leq \operatorname{centre}\left(G / H_{i}\right)
\end{aligned}
$$

or equivalently if

$$
\left[G, H_{i+1}\right] \leq H_{i} .
$$

Obviously, in a nilpotent group there is an ascending central series terminating in G in a finite number of steps. The ascending central series
with

$$
\begin{gathered}
\{1\}=H_{0} \leq H_{1} \leq H_{2} \leq \cdots \\
H_{i+1} / H_{i}=\operatorname{centre}\left(G / H_{i}\right)
\end{gathered}
$$

is called the upper central series of G. In general, the upper central series does not become stationary in a finite number of steps and even
if it does it may not end in G. But the upper central series of a nilpotent group reaches G in a finite number of steps. Further the upper and the lower central series of a nilpotent group (broken off as soon as the former has reached G and the latter 1) have the same length.

Obviously every nilpotent groups is soluble and the length of solubility does not exceed the class of nilpotency. It is not difficult to prove that

Theorem 1. A group of order p^{n} where p is a prime and $n>1$ is nilpotent of class $n-1$.

The proofs of the above statements including Theorem 1 are straight forward (see eg. Krosh (1956), Chapter XV,p.211.)

2

We have seen in the last chapter that an amalgam of two abelian groups (i.e. nilpotent groups of class 1) is embeddable in and abelian group. We now ask:

Can every amalgam of two nilpotent (soluble) groups be embedded in a nilpotent (soluble) group?

In general, the answer to this question is 'no'. In fact, there is an amalgam of an abelian group A and a nilpotent group B of class $c=2$ which cannot be embedded in any nilpotent group. (J.Wiegold, 1959)

The following example shows that an amalgam of two nilpotent groups need not even be embeddable in a soluble group.

Let

$$
\begin{array}{llr}
K=g p(g, h ; & g^{5}=h^{5}=1, & [g, h]=1), \\
A=g p(H, a ; & g^{a}=g h, h^{a}=h, & \left.a^{5}=1\right), \\
B=g p(H, b ; & g^{b}=g, h^{b}=g^{-1} h, & \left.b^{5}=1\right) .
\end{array}
$$

Clearly,

$$
|H|=5^{2},|A|=|B|=5^{3} .
$$

By Theorem 11 A and B are nilpotent groups of class 2. Consider the amalgam of the groups A and B with the amalgamated subgroup H. From the definition of A and B we readily confirm that

$$
H \Delta A, H \Delta B
$$

We now prove that the amalgam of A and B with the amalgamated subgroup H is not embeddable in any soluble group. Let G be a group embedding the amalgam and

$$
p=g p(A, B) \leq G
$$

We first note that

$$
H \Delta P
$$

Let Γ be the group of all automorphisms of H induced by the inner automorphisms of P. It is well known that

$$
\Gamma \cong P / N
$$

where N is the centralizer of H in P. (The set N of all elements in P which commute with every element of H is group; the group N is called the centralizer of H in P. Since H is normal in P, one easily verifies that $N \Delta P$.)

Now,

$$
\Gamma=g p(\alpha, \beta),
$$

where α, β are the automorphisms of H induced by the inner automorphisms φ_{a}, φ_{b} of P given by
and

$$
\begin{aligned}
x^{\varphi_{a}} a & =a^{-1} x a, \text { for every } x \in P \\
x^{\varphi_{b}} & =b^{-1} x b, \text { for every } x \in P .
\end{aligned}
$$

The group H being abelian and of exponent 5 can be considered as a vector space over the prime field $G F(5)$ of characteristic 5 . In fact H becomes a two dimensional vector space over $G F(5)$ with (g, h) as a basis. Thus the endomorphisms ring of H is the ring of all 2×2 matrices over $G F(5)$. Let us now take the matrix representations of the
automorphisms α, β of H. Now writing the operations of H additively, we have

$$
\begin{aligned}
& g^{\alpha}=g^{2}=g+h \\
& h^{\alpha}=h^{a}=h .
\end{aligned}
$$

Thus α corresponds to the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Similarly it is easy to see that β corresponds to the matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

The multiplicative group M generated by the matrices α, β is precisely the group of all 2×2 matrices with determinant 1 over $G F(5)$. The group Γ is isomorphic to this group M. We identify Γ with M. The group M is well known and is called the binary icosahedral group (see Coxeter and Moser, 1957, p.69). The binary icosahedral group has order 120. Its centre is cyclic of order 2, and the factor group of the centre is the icosahedral group (or alternating group A_{5} of degree 5). Thus M is not soluble. This prove that P and therefore G is not soluble. Thus the amalgam of two nilpotent group of class 2 need not even be embeddable in a soluble group.

3

In this section we shall impose some conditions on the amalgamated subgroup H to achieve a 'good' embedding of the amalgam of nilpotent or soluble groups.

Theorem 2. Let A, B be two nilpotent groups of class c (soluble groups of length ℓ). The amalgam of A and B with an amalgam subgroup H can be embedded in a nilpotent group of class c (soluble group of length ℓ) if H is central both in A and in B.

Proof. Let P be the generalised direct product of the amalgam. Then

$$
P=A \times B / N, N \Delta A \times B
$$

Now the direct product of two groups (and indeed the Cartesian product of an arbitrary family of groups) that are nilpotent of class c (soluble of length ℓ) is itself a nilpotent of class c (soluble of length $\ell)_{i}$ In fact the nilpotent groups of class c, and also the soluble groups of length ℓ, form a variety. [For soluble groups, of cf. Chapter 7, for nilpotent groups we omit the proof]. It follows that $A \times B$, and then also P, is nilpotent of class c (soluble length ℓ).

If H is central in A but not necessarily central in B then Wiegold's example (see Section 2]) shows that we cannot in general hope for an embedding in a nilpotent group. But in the case of solubility the situation is different as is shows by the following theorem.

Theorem 3. If A is soluble of length ℓ, B soluble of length m and if H is central in A then the permutational product P of the amalgam (irrespective of the transversal chosen) is soluble of length $n \leq \ell+m-1$.

Proof. Let S, T be transversals of H in A and B respectively and $K=S \times$ $T \times H$. Let P be the permutational product of the amalgam corresponding of the transversals S, T. For every $f \in B^{S}$, we define a mapping $\gamma(f)$ of K, called a quasi-multiplication, as follows:

$$
(s, t, h)^{\gamma(f)}=(s, t, h)^{\rho(f(s))},(s, t, h) \in K .
$$

In other words, $\gamma(f)$ coincides with $\rho(f(s))$ on all those elements of K whose first coordinate is s. Thus

$$
\begin{gathered}
(s, t, h)^{\gamma(f)}\left(s^{*}, t^{*}, h^{*}\right), \text { where } \\
s^{*}=s, t^{*} h^{*}=t h f(s)
\end{gathered}
$$

Consider the mapping η of the Cartesian power B^{S} into, and in fact onto, the set Γ of all quasi-multiplications, η being defined by

$$
f^{\eta}=\gamma(f), f \in B^{S}
$$

First we prove that

$$
\gamma(f g)=\gamma(f) \gamma(g), \text { for } f, g \in B^{S} .
$$

Let (s, t, h) be an arbitrary element of K. Then

$$
\begin{aligned}
(s, t, h)^{\gamma(f g)} & =(s, t, h)^{\rho(f g(s))}=(s, t, h)^{\rho(f(s)) \cdot g(s))}=(s, t, h)^{\rho(f(s)) \rho(g(s))} . \\
& =\left((s, t, h)^{\gamma(f)}\right)^{\rho(g(s))} .
\end{aligned}
$$

Now since s is not altered after applying $\gamma(f)$, we have

$$
\left((s, t, h)^{\gamma(f)}\right)^{\rho(g(s))}=\left((s, t, h)^{\gamma(f)}\right)^{\gamma(g)}=(s, t, h)^{\gamma(f) \rho(g(s))) \gamma \gamma(g)} .
$$

Therefore

$$
\gamma(f g)=\gamma(f) \gamma(g) .
$$

This proves that η is a homomorphism, and the homomorphic image is a group. In particular, this proves that the quasi-multiplications are permutations on the set K. Now if

$$
\begin{aligned}
\gamma(f) & =L, \text { then } \\
(s, t, h)^{\gamma(f)} & =(s, t, h) \text { for every }(s, t, h) \in K ;
\end{aligned}
$$

that is

$$
\begin{aligned}
t h f(s) & =t h, \text { for every } s \in S ; i . e ., \\
f(s) & =1, \text { for every } s \in S
\end{aligned}
$$

Thus the kernel of η is trivial; that is, η is an isomorphism. Thus

$$
B^{S} \cong \Gamma .
$$

Further,

$$
\rho(B) \leq \Gamma
$$

For,

$$
\begin{array}{r}
\rho(b)=\gamma\left(f_{b}\right), b \in B, \text { where } \\
f_{b} \in B^{S} \text { is such that } \\
f_{b}(s)=b \text { for every } s \in S
\end{array}
$$

in other words f_{b} is in the diagonal of B^{S}.
Consider the group

$$
\Delta=\Gamma \cap P .
$$

We claim that
$\Delta \Delta P$.
Let $a \in A, \gamma(f) \in \Gamma, f \in B^{S}$ and

$$
\rho\left(a^{-1}\right) \gamma(f) \rho(a)=\rho(a)^{-1} \gamma(f) \rho(a)=\gamma^{\prime} .
$$

Let $(s, t, h) \in K$ and

$$
s a^{-1}=\bar{s} \bar{h}, \bar{s} \in S, \bar{h} \in H
$$

Thus \bar{s}, \bar{h} are completely determined by a and s. Then

$$
(s, t, h)^{\rho\left(a^{-1}\right)}=(\bar{s}, t, h \bar{h})
$$

for, H being central in A, we have

$$
s h a^{-1}=s a^{-1}=\bar{s} \bar{h} h .
$$

Now

$$
\begin{gathered}
(\bar{s}, t, h \bar{h})^{\gamma(f)}=(\bar{s}, t, h \bar{h})^{\rho(f(\beta \bar{s}))}=\left(\bar{s}, t_{1}, h_{1}\right), \text { where } \\
t_{1} h_{1}=\operatorname{th} \bar{h} f(s) .
\end{gathered}
$$

Finally we have,

$$
\begin{gathered}
\left(\bar{s}, t_{1}, h_{1}\right)^{\rho(a)}=\left(s_{1}, t_{1}, \bar{h}_{1}\right), \text { where } \\
s_{1} \bar{h}_{1}=\bar{s} h_{1} a .
\end{gathered}
$$

Now, again since $H \leq$ centre (A), we have

$$
s_{1} \bar{h}_{1}=\bar{s} h_{1} a=(\bar{s} a) h_{1}=s\left(\bar{h}^{-1} h_{1}\right)
$$

Therefore,

$$
\begin{aligned}
& s=\bar{s} ; \text { and } \\
& \bar{h}_{1}=\bar{h}^{-1} h_{1} .
\end{aligned}
$$

Further

$$
\begin{aligned}
t_{1} \bar{h}_{1} & =t_{1} \bar{h}^{-1} h_{1} \\
& =\operatorname{th}\left(\bar{h} f(\bar{s}) \bar{h}^{-1}\right)
\end{aligned}
$$

Now, since \bar{s}, \bar{h} are completely determined by s and a, the function f^{\prime} defined by

$$
f^{\prime}(s)=\bar{h} f(\bar{s}) \bar{h}^{-1}
$$

is well defined and is in B^{S}. We have

$$
\begin{gathered}
(s, t, h)^{\rho\left(a^{-1}\right) \gamma(f) \rho(a)}=\left(s_{1}, t_{1}, \bar{h}_{1}\right) ; \text { and } \\
s_{1}=s, t_{1} \bar{h}_{1}=t h f^{\prime}(s) .
\end{gathered}
$$

Therefore

$$
\rho\left(a^{-1}\right) \gamma(f) \rho(a)=\gamma\left(f^{\prime}\right) \in \Gamma
$$

It is now immediate that

$$
\rho\left(a^{-1}\right) \Delta \rho(a)=\Delta .
$$

Since $\rho(B) \leq \Delta$, we have

$$
\rho\left(b^{-1}\right) \Delta(b)=\Delta, b \in B
$$

Hence,

$$
\Delta \Delta P
$$

Further,

$$
P /{ }_{D} e l t a \cong \rho(A) / \rho(A) \cap \Delta
$$

Now $\rho(A) / \rho(A) \cap \Delta$ is soluble of length ℓ and $\Delta \leq B^{s}$ is soluble of length m. Therefore P is soluble of length $\ell+m$. This almost proves Theorem 3] but we still want to improve the bound for the soluble length of P. Consider now,

$$
\rho\left(a^{-1}\right) \rho(b) \rho(a) \in \Gamma
$$

By what we have proved, it follows that

$$
\rho\left(a^{-1}\right) \rho(b) \rho(a)=\gamma\left(f^{\prime}\right)
$$

where $f^{\prime} \in B^{S}$ is defined by

$$
\begin{gathered}
f^{\prime}(s)=\bar{h} b \bar{h}^{-1} \text { where } \\
s \bar{a}^{-1}=\overline{s h}
\end{gathered}
$$

Define $g \in B^{S}$ by

$$
\begin{aligned}
g(s)= & \bar{h}, s \in S \text { and } \\
& f_{b} \in B^{s} \text { by } \\
f_{b}(s)= & b \text { for every } s \in S
\end{aligned}
$$

Then,

$$
\rho\left(a^{-1}\right) \rho(b) \rho(a)=\gamma\left(g f_{b} g^{-1}\right)
$$

Therefore,

$$
\begin{aligned}
{[\rho(b), \rho(a)] } & =\rho\left(b^{-1}\right) \rho\left(a^{-1}\right) \rho(b) \rho(a)=\gamma\left(f_{b}^{-1} g f_{b} g^{-1}\right) \\
& =\gamma\left[f_{b}, g^{-1}\right] \in \Gamma^{\prime}, \text { for all } a \in A, b \in B
\end{aligned}
$$

Therefore,

$$
[\rho(A), \rho(B)] \leq \Gamma^{\prime}
$$

It is not difficult to show that if a group G is generated by its subgroups G_{1}, G_{2} then its derived group is

$$
G^{\prime}=G_{1}^{\prime} G_{2}^{\prime}\left[G_{1}, G_{2}\right]
$$

hence

$$
P^{\prime}=[\rho(A), \rho(A)][\rho(B), \rho(B)][\rho(A), \rho(B)]
$$

$$
\leq \rho\left(A^{\prime}\right) \Gamma^{\prime}
$$

Again,

$$
P^{\prime \prime}=\rho\left(A^{\prime \prime}\right) \Gamma^{\prime \prime}\left[\rho\left(A^{\prime}\right), \Gamma^{\prime}\right] \leq \rho\left(A^{\prime \prime}\right) \Gamma^{\prime}
$$

Continuing in this fashion we arrive at $P^{(\ell)} \leq \rho\left(A^{(\ell)} \Gamma^{\prime}\right.$, where $P^{(\ell)}$, $A(\ell)$ denote the ℓ th derived groups of P and A respectively. Now since A is soluble of length ℓ, we have

$$
A^{(\ell)}=\{1\} .
$$

Hence,

$$
P^{(\ell)} \leq \Gamma^{\prime}
$$

Therefore,

$$
P^{(\ell+m-1)} \leq\left(\Gamma^{\prime}\right)^{(m-1)}=\Gamma^{(m)}=\{1\},
$$

as $\Gamma \cong B^{s}$ is soluble of length m. Therefore te group P is soluble of $\mathbf{2 3 0}$ length $\ell+m-1$.

This proves our assertion.

Chapter 12

The Problems of Heinz Hopf

1

More than twenty five years ago, Heinz Hopf formulated the following two problems which are closely related. These problems arose out of a topological problem, which we do not formulate here (cf. B.H. Neumann, 1953).
First Hopf Problem. Can a finitely generated group be isomorphic to one of its proper factor groups?
Second Hopf Problem. If G is a finitely generated group and H an epimorphic image of G, and G an epimorphic image of H, are G and H necessarily isomorphic?

We now take following definition
Definition. A group G is a Hopf group if G is not isomorphic to ant of its proper factor groups.

In virtue of this definition, the First Hopf Problem can be reformulated as follows:

Is every finitely generated group Hopf group?
There are examples of non-finitely generated groups which are not Hopf group. For instance, one can easily verify that the direct power or the cartesian power of any group $G \neq 1$ over any infinite index set $I(e, g . I=\{1,2,3, \cdots\})$ is not a Hopf group. The Prufer group $Z\left(p^{\infty}\right)$ (see Ch.8, Section 2 Corollary 3) is also a non-Hopf group.

A negative answer to the second problem implies an affirmative answer to the first. In other words the existence of two non-isomorphic finitely generated groups which are epimorphic images of each other implies the existence of a finitely generated non-Hopf group. For let G be a finitely generated group and H any group and let θ and ψ be endomorphisms of G onto H and H onto G respectively. Then the composite map $\theta \psi$ is an epimorphism of G onto G. Now if ψ has a non-trivial kernel then $\theta \psi$ also has a not-trivial kernel. Let N be the kernal of $\theta \psi$. Then it follows that

$$
G \cong G / N,
$$

that is, G is not a Hopf group. On the other hand, the existence of a finitely generated non-Hopf group does not by itself solve the second Hopf Problem.

It is known that all finitely generated free groups are Hopf groups (Magnus (1935); see also Kurosh, (1956)39, p.59). Magnus (1935) also proved that the finitely generated reduced free groups of the variety of nilpotent groups of class c are Hopf groups. Reinhold Baer made an example of finitely generated non Hopf group. Though he later withdrew this as containing a mistake, it suggested the possibility of finding such a group. B.H. Neumann (1950) thereupon constructed a 2 generator non-Hopf group; this has an infinite number of defining relations. Graham Higman (1951) constructed a finitely related 3-generator nonHopf group. Using the group of Graham Higman (1951), B.H. Neumann (1953) gave an example of 3-generator finitely related groups G and H which are epimorphic images of each other, but are not isomorphic. Thus the first and the second Hopf Problems have been solved now.

Let G be a non-Hopf group, Then there exists a non-trivial normal subgroup N of G such that

$$
G \cong G / N
$$

Let φ denote the isomorphism of G / N onto G, and θ the canonical epimorphism of G onto G / N. The mapping

$$
\psi=\theta \varphi
$$

is an epimorphism of G onto G. Let N_{1} be the kernal of the mapping ψ.
Then

$$
N_{1}=\{1\}^{\psi-1}=\left(\{1\}^{\varphi^{-1}}\right)^{\theta-1}=\{1\}^{\theta^{-1}}=N .
$$

Consider now the epimorphism ψ^{2} of G onto G. By an easy application of well-known isomorphism theorems one finds that the kernal N_{2} of ψ^{2} is such that

$$
N_{1}<N_{2}, N_{2} / N_{1} \cong N .
$$

More generally, if N_{r} is the kernel of the epimorphism ψ, we have

$$
N_{r-1}<N_{r}, N_{r} / N_{r-1} \cong N .
$$

Thus,

$$
N_{1}<N_{2}<N_{3}<\cdots
$$

is a strictly ascending of normal subgroups. As this is not possible is a group satisfying the maximal condition for normal subgroups, we have

Theorem 1. A group satisfying the maximal condition for normal subgroups is a Hopf group.

We know that a finitely generated nilpotent group satisfies the maximal condition for subgroups. (See Kurosh, 1956, Ch. XV, p. 232) Hence we have:

Corollary 1. A finitely generated nilpotent group is a Hopf group.
Again, by a theorem of P. Hall $\left(1954^{b}\right)$ already quoted (in Chapter 8 , p. 141) a finitely generated metabelian group satisfies the maximal condition for normal subgroups. Thus we have:

Corollary 2. A finitely generated metabelian group is a Hopf group.
This is the best possible result so far as soluble length of soluble Hopf groups is concerned; we shall later make an example of a finitely generated non-Hopf group which is soluble of length 3 (see section 4 of this Chapter).

2

Definition 1. A subgroup G of a group H is an E-subgroup of H if for every normal subgroup R of G, there exist a normal subgroup S of H such that

$$
S \cap G=R
$$

The above definition is equivalent to the following:
Definition 2. A subgroup G of a group H is an E-subgroup of H if for every normal subgroup R of G, we have

$$
R^{H} \cap G=R
$$

where R^{H} is the normal closure of R in H. It is clear that if $R^{H} \cap G=R$, then we can take R^{H} as the S of Definition (1); conversely, if there is a normal subgroup S of H such that $S \cap G=R$, then $R \leq S$, hence $R^{H} \leq S^{H}=S$, and

$$
R \leq R^{H} \cap G \leq S \cap G=R
$$

thus also $R^{H} \cap G=R$. We give yet another equivalent definition of an E-subgroup:

Definition. A subgroup G is an E-subgroup of H if every epimorphism θ of G onto a group $G_{1}=G^{\theta}$ can be extended to an epimorphism θ^{*} of H onto a group H_{1} containing G_{1}.

Let $G \leq H$ satisfy the conditions of Definition (2).
236 Let θ be any epimorphism of G onto a group G_{1} and R be its kernel.
Then

$$
R=\{1\}^{\theta^{-1}} \Delta G
$$

Therefore

$$
R^{H} \cap G=R
$$

Now

$$
G R^{H} / R^{H} \cong G / R^{H} \cap G=G / R \cong G_{1}
$$

Let θ^{*} be the natural map of H onto H / R^{H}. By identifying G_{1} with $G R^{H} / H$ canonically θ^{*} becomes an extension θ.

Conversely, assume the conditions of Definition (10). Let $R \Delta G$, and let θ be the canonic epimorphism of G onto $G_{1}=G / R$. Extend θ to an epimorphism θ^{*} of H onto a group H_{1} containing G_{1}, and let the kernel of θ^{*} be S. As $R^{\theta^{*}}=R^{\theta}$ is trivial, $R \leq S \cap G$. Now if $s \in S \cap G$ then

$$
1=s^{\theta^{*}}=s^{\theta},
$$

and thus $s \in R$. It follows that $S \cap G \leq R$, and hence

$$
S \cap G=R
$$

This is the condition of Definition (1), which we already know to be equivalent to Definition (2). Thus all the three definitions are equivalent.

If H is the direct product of two groups F and G then F and G are237 E-subgroups of H. More generally, if H is the direct product or the Cartesian product of a family of groups, say $\left\{G_{i}\right\}_{i \in I}$, then each factor G_{i} is an E-subgroup of H. If H is any group and $Z(H)$ its center, then any subgroups of $Z(H)$ is an E-subgroup of H. This follows from the fact that every subgroup of $Z(H)$ is a normal subgroup of H. Further, if H is a simple group then a proper non-trivial subgroup of H is not an E-subgroup of H. We now prove the following:

Theorem 2. The relation " E-subgroup of" is transitive; in other words, if G is an E-subgroup of H, and H an E-subgroup of K, then G is an E-subgroup of K.

Proof. Let,
$R \Delta G$.

Then since G is an E-subgroup H, there is an $S \leq H$ such that

$$
S \Delta H, S \cap G=R .
$$

Now since H is an E-subgroup of K, there is a $T \leq K$ such that

$$
T \Delta K, T \cap H=S .
$$

We have

$$
G \cap T=G \cap H \cap T=G \cap S=R .
$$

This proves that G is an E-subgroup of K.

3

Let A, B be any two groups. Let

$$
P=A W r B
$$

We shall now prove that the coordinate subgroups $A_{b} \leq A^{B}, b \in B$ (that is,

$$
\left.A_{b}=\left\{f \mid f \in A^{B}, f(y)=1, \text { for all } y \neq b\right\}\right)
$$

and the diagonal $A^{\Delta} \leq A^{B}$ are E-subgroups of P.
Let φ be any epimorphism of A onto a group A_{o}. Let

$$
P_{o}=A_{o} W r B .
$$

Consider the mapping φ^{*} of P onto P_{o} defined as follows. For every $p=b f \in P$, with $b \in B, f \in A^{B}$,

$$
\begin{gathered}
p^{\varphi^{*}}=(b f)^{\varphi^{*}}=b f_{o}, \text { where } f_{o} \in A_{o}^{B} \text { and } \\
f_{o}(y)=(f(y))^{\varphi}, y \in B .
\end{gathered}
$$

We claim that φ^{*} is an epimorphism of P onto P_{o}. Let $p=b f, p^{\prime}=$ $b^{\prime} f^{\prime} \in P, b, b^{\prime} \in B, f, f^{\prime} \in A^{B}$.

Then

$$
\begin{aligned}
p^{\varphi^{*}} & =b f_{o}, p^{\varphi^{*}}=b^{\prime} f_{o}^{\prime}, \text { where } \\
f_{o}(y) & =(f(y))^{\varphi}, y \in B, \text { and } \\
f_{o}^{\prime}(y) & =\left(f^{\prime}(y)\right)^{\varphi}, y \in B
\end{aligned}
$$

Now

$$
p p^{\prime}=(b f)\left(b^{\prime} f^{\prime}\right)=b b^{\prime} \cdot f^{b^{\prime}} f^{\prime} ; \quad \text { and }
$$

therefore,

$$
\left(p p^{\prime}\right)^{\varphi^{*}}=b b^{\prime} . h, \text { where } h \in A_{o}^{B}
$$

and

$$
h(y)=\left(f^{b^{\prime}} f^{\prime}(y)\right)^{\varphi}
$$

$$
=\left(f^{b^{\prime}}(y) \cdot f^{\prime}(y)\right)^{\varphi}=\left(f^{b^{\prime}}(y)\right)^{\varphi}\left(f^{\prime}(y)\right)^{\varphi},
$$

$$
=\left(f\left(y b^{-1}\right)\right)^{\varphi}\left(f^{\prime}(y)\right)^{\varphi}, \text { for all } y \in B
$$

On the other hand,

$$
p^{\varphi^{*}} p^{\prime \varphi^{*}}=\left(b f_{o}\right)\left(b^{\prime} f_{o}^{\prime}\right)=b b^{\prime} f_{o}^{b^{\prime}} f_{o}^{\prime} .
$$

Now

$$
\begin{aligned}
f_{\circ}^{b^{\prime}} f_{0}^{\prime}(y) & =f_{\circ}^{b^{\prime}}(y) \cdot f_{0}^{\prime}(y) \\
& =f_{0}\left(y b^{\prime-1}\right) f_{0}^{\prime}(y)=\left(f\left(y b^{-1}\right)\right)^{\varphi}\left(f^{\prime}(y)\right)^{\varphi} .
\end{aligned}
$$

Thus,

$$
\left(p p^{\prime}\right)^{\varphi^{*}}=p^{\varphi^{*}} p^{\prime \varphi^{*}} .
$$

This proves that φ^{*} is a homomorphism. It is easy to see that it maps P onto P_{0}; hence it is an epimorphism, as claimed.

Let θ be an epimorphism of $A_{b}\left(\right.$ or $\left.A^{\Delta}\right)$ onto a group A_{0} and ψ be isomorphism of A onto A_{b} (or A^{Δ}). Then the epimorphism

$$
\varphi=\psi \theta
$$

of A onto A_{0} gives rise to a mapping φ^{*} of P onto P_{0}. If the group A_{0} is identified with $A_{o b}\left(\right.$ or $\left.A_{0}^{\Delta}\right)$, it follows without difficulty that φ^{*} is an extension of θ. This proves:

Lemma 1. In a wreath product the coordinate subgroups and the diagonal subgroup are E-subgroups.

In Chapter 8 we proved that a countable group G can be embedded in a 2 -generator group H. We shall now prove that the embedding procedure given there embeds G as an E-subgroup of H. In the rest of this Chapter we shall use the notation of Chapter 8

Let us briefly recall the embedding procedure of Chapter B
We started with a countable group G where

$$
G=g p\left(\left\{a_{i}\right\}_{\epsilon I}\right) \text { and }
$$

$$
I=\{1,2,3, \ldots\}
$$

We then formed the wreath product

$$
\begin{aligned}
& P=G W r C, \text { where } \\
& C=g p(c)
\end{aligned}
$$

and we embedded G as the diagonal subgroup G^{Δ},

$$
G^{\Delta} \leq G \leq P
$$

We then formed the wreath product

$$
Q=P W r B
$$

where B was any group containing elements $b_{i}, i \in I$, with the property,

$$
b_{i} \neq 1, b_{i} \neq b_{j}, b_{i} b_{j} \neq 1, b_{i} b_{j} \neq b_{k}
$$

Then we realised G as a subgroup G^{*} of

$$
H=g p(q, B), q \in P^{B}
$$

In fact

$$
\begin{aligned}
& G^{*}=g p\left(\left\{h_{i}\right\}_{i \in I}\right), \text { where } \\
& h_{i}\left[q^{b_{i}}, q\right] \in P^{B} .
\end{aligned}
$$

(For the definitions of q and h_{i}, see Chapter 8)
Now be Lemma $1 G^{\Delta}$ is E-subgroup of P. Further, G^{*} is a subgroup of the coordinate subgroup $P_{1} \leq Q$, where

$$
P_{1}=\left\{f \mid f \in P^{B}, f(y)=1 \text { for all } y \neq 1, y \in B\right\}
$$

and G is mapped onto G^{*} under the natural isomorphism of P onto P_{1}. Therefore

$$
G^{*} \text { is an E-subgroup of } P_{1} .
$$

Again by Lemma P_{1} is an E-subgroup of Q. Hence by the transitivity property of E-subgroups, G^{*} is an E-subgroup of Q. Now, since

$$
G^{*} \leq H \leq Q
$$

it suffices for our purpose to show the following simple lemma.

243 Lemma 2. If $G \leq H \leq K$, and if G is an E-subgroup of K, then G is an E-subgroup of H.

For if $R \Delta G$, there is a subgroup $T \Delta K$ with

$$
T \cap G=R
$$

put $S=T \cap H$: then $S \Delta H$ and

$$
S \cap G=T \cap H \cap G=T \cap G=R
$$

Applying this lemma to $G * \leq H \leq Q$, we obtain the stated result:
Corollary 3. G^{*} is an E-subgroup of H.
Let us now take G to be the free group of countably infinite rank presented by

$$
\begin{aligned}
G & =g p\left(\left\{a_{i}\right\}_{i \in I} ; \phi\right), \text { where } \\
I & =\{\ldots 2,-1,0,1, \ldots\} .
\end{aligned}
$$

Take B to be the infinite cyclic group

$$
\begin{aligned}
B & =g p(b), \text { and } \\
b_{i} & =b^{3 i-1}
\end{aligned}
$$

Then

$$
h_{i}\left[q^{b^{3 i-1}}, q\right]=\left[b^{1-3 i}, q b^{3 i-1}, q\right]
$$

Identifying the group G with
we have

$$
\begin{aligned}
& G *=g p\left(\left\{h_{i}\right\}_{i \in I}\right) \\
& G \leq H=g p(q, b) .
\end{aligned}
$$

Let now F be the free group

$$
F=g p(s, t ; \phi) .
$$

Define $E \leq F$ as

$$
\begin{aligned}
& E=g p\left(\left\{e_{i}\right\}_{i \in I}\right), \text { where } \\
& e_{i}=\left[s^{1-3 i}, t s^{3 i-1}, t\right], i \in I
\end{aligned}
$$

We prove:
Theorem 3. The subgroup E is an E-subgroup of F.
Proof. Let θ be the epimorphism of F onto H defined by

$$
s^{\theta}=b, t^{\theta}=q
$$

Then we have

$$
\begin{gathered}
e_{i}^{\theta}=h_{i}, i \in I, \text { and } \\
E^{\theta}=G
\end{gathered}
$$

Since G is freely generated by $\left\{h_{i}\right\}_{i \in I}$, it follows that E is also freely generated by $\left\{e_{i}\right\}_{i \in I}$. Hence the restriction of θ to E is an isomorphism. Let

$$
R \Delta E
$$

Then

$$
R^{\theta}=R_{0} \Delta G
$$

Now since G is an E-subgroup of H, there is a $S_{0} \Delta H$ such that

$$
G \cap S_{0}=R_{0}
$$

Let $S=S_{0}^{\theta^{-1}}$. Then

$$
S \Delta F
$$

We have

$$
(S \cap E)^{\theta} \leq S^{\theta} \cap E^{\theta}=S_{0} \cap G=R_{0}=R^{\theta}
$$

This gives

$$
S \cap E \leq R
$$

as the restriction of θ to E is one- one. But evidently also $R \leq S \cap E$; hence,

$$
S \cap E=R .
$$

This proves that E is an E-subgroup of F.
It may be of interest to remark that Theorem 3 is equivalent to the embedding theorem proved in Chapter 8 For a countable group G is an epimorphic image of E by an epimorphism, say θ. Now since E is an E-subgroup of F, θ can be extended to an epimorphism θ^{*} of F. Then

$$
G \leq F^{\theta^{*}}, \text { and }
$$

$F^{\theta^{*}}$ is generated by 2 elements. The following is an unsolved problem in this context.
Unsolved problem. Is there a free infinite rank in the group

$$
F=g p\left(s, t ; s^{p}=t^{q}=1\right) ?
$$

For $p \geq 2, q \geq 6$, the answer (unpublished) to this question is 'yes'. For $p=2, q=3$, we have the following interesting problem:

Problem. Has the modular group an E-subgroup that is free of infinite rank?

4 Finitely generated soluble non-Hopf group

The object of this section is to construct a finitely generated soluble nonHopf group. In this section also we shall use the notation of Chapter 8
Using the embedding procedure of Chapter 8, we embed the free abelian group of countably infinite rank into a 3-generator group H by suitably choosing the group B; and then we prove that a certain factor group of H is a non-Hopf group.

Let G be the free abelian group of countably infinite rank presented by

$$
G=g p\left(\left\{a_{i}\right\}_{i \in I} ;\left[a_{i}, a_{j}\right]=1, i, j, \in I\right),
$$

where

$$
I=\{\ldots-1,0,1,2, \ldots\} .
$$

As in Chapter 8 , we embed G as the diagonal subgroup G^{Δ} of G^{C} in

$$
\begin{aligned}
& P=G W r C, \text { where } \\
& C=g p(c) .
\end{aligned}
$$

We now take the group B to be the free abelian group of rank 2 presented by

$$
B=g p\left(b, b^{\prime} ;\left[b, b^{\prime}\right]=1\right)
$$

and form the wreath product

$$
Q=P W r B .
$$

Choose the elements b_{i} (see Chapter 8) as

$$
b_{i}=b^{i} b^{\prime}, i \in I .
$$

One easily verifies that these b_{i} satisfy the inequalities:

$$
b_{i} \neq 1, b_{i} \neq b_{j}, b_{i} b_{j} \neq 1, b_{i} b_{j} \neq b_{k} .
$$

Therefore, as in Chapter 8, the group G is embedded as the subgroup $G *$ of H, where

$$
H=g p(q, B)=g p\left(q, b, b^{\prime}\right) \leq Q
$$

and $G^{*}=g p\left(\left\{a_{i}\right\}_{\in I}\right) \leq H$.
We recall that $q \in P^{B}$ is defined by

$$
\begin{aligned}
q(1) & =c, \\
q\left(b_{i}^{-1}\right) & =g_{i}, i \in I, \\
q(y) & =1 \text { otherwise },
\end{aligned}
$$

where

$$
g_{i} \in G^{C} \text { is defined by }
$$

$$
\begin{gathered}
g_{i}\left(c^{n}\right)=a_{i}^{-n}, n \in I ; \text { and further, } \\
h_{i}=\left[q^{b_{i}}, q\right], i \in I .
\end{gathered}
$$

Consider the mapping of B onto B defined by

$$
\begin{aligned}
b^{\beta} & =b \text { and } \\
b^{\prime \beta} & =b b^{\prime} .
\end{aligned}
$$

It is easy to verify that β is an automorphism of B. We want to extend β to an automorphism β^{*} of Q. (Our procedure is applicable to an arbitrary automorphism of B, but we require it only for the particular β we have specified.) To do this we first extend β to an automorphism of P^{B} as follows:

For every $f \in P^{B}$, define $f^{\beta^{*}} \in P^{B}$ by

$$
f^{\beta^{*}}(y)=f\left(y^{\beta^{-1}}\right), \text { for all } y \in B
$$

It is easy to verify that β^{*} is one-one.
Now if $f_{1}, f_{2} \in P^{B}$, then for every $y \in B$, we have

$$
\left(f_{1} f_{2}\right)^{\beta_{*}}(y)=f_{1} f_{2}\left(y^{\beta^{-1}}\right)=f_{1}\left(y^{\beta^{-1}}\right) f_{2}\left(y^{\beta^{-1}}\right)=f_{1}^{\beta^{*}}(y) \cdot f_{2}^{\beta^{*}}(y) .
$$

Hence,

$$
\left(f_{1} f_{2}\right)^{\beta *}=f_{1}^{\beta *} f_{2}^{\beta *}
$$

it follows that β^{*} is an automorphism of P^{B}.
We now extend β^{*} to Q and denote the extension of β^{*} also by β^{*}. For every $q_{o}=b_{o} f \in Q$, with ba $\in B, f \in P^{B}$, define

$$
\begin{aligned}
& q_{0}^{\beta *} \quad Q \text { as follows : } \\
& q_{0}^{\beta *}=\left(b_{0} f\right)^{\beta *}=b_{\circ}^{\beta} f^{\beta *} .
\end{aligned}
$$

If

$$
\begin{gathered}
q_{0}=b_{0} f, b_{0} \in B, f \in P^{B} \text { and } \\
q_{0}^{\prime}=b_{0}^{\prime} f^{\prime}, b_{0}^{\prime} \in B, f^{\prime} \in P^{B}
\end{gathered}
$$

are arbitrary elements of Q, then

$$
\begin{aligned}
\left(q_{0} q_{0}^{\prime}\right)^{\beta *}=\left(b_{0} f b_{0}^{\prime} f^{\prime}\right)^{\beta *}=\left(b_{0} b_{0}^{\prime} f^{b_{0}^{\prime}} f^{\prime}\right)^{\beta *} & =\left(b_{0} b_{0}^{\prime}\right)^{\beta *} .\left(f^{b_{0}^{\prime}} f^{\prime}\right)^{\beta *} \\
& =\left(b_{0} b_{0}^{\prime}\right)^{\beta *}\left(f^{b_{\circ}^{\prime}}\right)^{\beta *} f^{\prime \beta *}
\end{aligned}
$$

and
$q_{0}^{\beta *} q_{0}^{\beta *}=\left(b_{0} f\right)^{\beta *}\left(b_{0}^{\prime} f^{\prime}\right)^{\beta *}=b_{0}^{\beta *} f^{\beta *} \cdot b_{0}^{\prime \beta *} f^{\prime \beta *}=b_{0}^{\beta *} b_{0}^{\prime \beta *}\left(f^{\beta *}\right)^{b_{0}^{\prime}} f^{\prime \beta *}$.
But

$$
\left(f^{\prime b_{o}^{\prime}}\right)^{\beta *}(y)=f^{b_{0}^{\prime}}\left(y^{\beta-1}\right)=f\left(y^{\beta-1} b_{0}^{\prime-1}\right) \text { for all } y \in B
$$

and

$$
\begin{aligned}
&\left(f^{\beta *}\right)^{b_{0}^{\prime \beta *}}(y)=f^{\beta *}\left(y\left(b_{0}^{\prime \beta *}\right)^{-1}\right)=f^{\beta *}\left(y\left(b_{0}^{\prime-1}\right)^{\beta *}\right) \\
&=f\left(\left(y b^{\prime-1 \beta_{0}}\right)^{\beta-1}\right)=f\left(y^{\beta-1} b_{0}^{\prime-1}\right)
\end{aligned}
$$

251 for all $y \in B$.
Therefore

$$
\left.\left(f^{\beta^{*}}\right)^{b_{0}^{\prime}}=f^{b_{0}^{\prime}}\right)^{\beta^{*}}
$$

Hence

$$
\left(q_{0} q^{\prime}\right)^{\beta *}=q_{0}^{\beta *} q^{\prime \beta *}
$$

Again one can easily verify that $\beta *$ is one-one and onto; that is, $\beta *$ is an automorphism of Q.

Next, let γ be the automorphism of G defined by

$$
a_{i}^{\gamma}=a_{i+1}(i \in I)
$$

We want to extend γ to an automorphism $\gamma *$ of Q. (Our procedure is applicable to an arbitrary automorphism of G, but we require it only for the particular γ we have specified.) Define the mapping γ^{+}of G^{C} onto G^{C} as follows:

If $f \in G^{C}$, then $f^{\gamma+} \in G^{C}$, and

$$
f^{\gamma+}\left(c^{n}\right)=\left(f\left(c^{n}\right)\right) \text { for } n \in I
$$

A straight forward verification shows that γ^{+}is an automorphism of G^{C}. We now extend γ^{+}to P by putting

$$
\left(c^{t} f\right)^{\gamma^{+}}=c^{t} f^{\gamma^{+}}, c \in C, f \in G^{C}, t \in I .
$$

Let $p_{1}=c^{t} f, P_{2}=c^{u} f^{\prime}$ belong to P. Then

$$
\begin{aligned}
\left(p_{1} p_{2}\right)^{\gamma^{+}} & =\left(c^{t+u} f^{c^{u}} f^{\prime}\right)^{\gamma^{+}}=c^{t+u}\left(f^{c^{u}} f^{\prime}\right)^{\gamma^{+}} \\
& =c^{t+u}\left(f^{c u}\right)^{\gamma^{+}} f^{\prime \gamma^{+}} ; \text {and } \\
p_{1}^{\gamma^{+}} p_{2}^{\gamma^{+}} & =c^{t} f^{\gamma^{+}} c^{u} f^{\prime \gamma^{+}}=c^{t+u}\left(f^{\gamma^{+}}\right)^{c^{u}} f^{\prime \gamma^{+}} .
\end{aligned}
$$

But

$$
\begin{aligned}
\left(f^{c^{u}}\right)^{\gamma^{+}}\left(c^{n}\right) & =\left(f^{c^{u}}\left(c^{n}\right)\right)^{\gamma}=\left(f\left(c^{n-u}\right)\right)^{\gamma} \\
=f^{\gamma^{+}}\left(c^{n-u}\right) & =\left(f^{\gamma^{+}}\right)^{c^{u}}\left(c^{n}\right), \text { for all } n \in I .
\end{aligned}
$$

Therefore

$$
\left(f^{c^{u}}\right)^{\gamma^{+}}=\left(f^{\gamma^{+}}\right)^{c^{u}} .
$$

Hence

It is obvious that the extended mapping γ^{+}is one-one and onto. Thus γ^{+}is an automorphism of P.

We now extend γ^{+}to an automorphism γ^{+}of Q. We first define γ^{+} on P^{B} as follows. For any $y \in P^{B}, g^{\gamma^{*}} \in P^{B}$ and

$$
g^{\gamma *}(y)=(g(y))^{\gamma^{+}}
$$

One easily verifies that $\gamma *$ is an automorphism of P^{B}. We now extend $\gamma *$ to Q by putting

$$
\left(b_{0} g\right)^{\gamma *}=b_{0} g^{\gamma *}, \text { for } b_{0} \in B, g \in P^{B}
$$

Let

$$
\begin{aligned}
& q_{1}=b_{0} g, q_{2}=b_{0}^{\prime} g^{\prime}, \text { be in } Q \text { with } \\
& b_{0}, b_{0}^{\prime} \in B, g, g^{\prime} \in P^{B} \text {. Then }
\end{aligned}
$$

$$
\begin{aligned}
&\left(q_{1} q_{2}\right)^{\gamma^{*}}=\left(b_{0} b_{0}^{\prime} g^{b_{0}^{\prime}} g^{\prime}\right)^{\gamma *}=b_{0} b_{0}^{\prime}\left(b_{0}^{b_{0}^{\prime}} g^{\prime}\right)^{\gamma^{*}} \\
&=b_{0} b_{0}^{\prime}\left(g_{0}^{b_{0}^{\prime}}\right)^{\gamma^{\prime}} g^{\prime \gamma *} ; \text { and } \\
& q_{1}^{\gamma *} q_{2}^{\gamma *}=b_{\circ} g^{\prime \gamma *} . b_{0}^{\prime} b_{0}^{\prime}\left(g^{\gamma^{\gamma *}}\right)^{b_{0}^{\prime}} g^{\gamma^{\prime *}} .
\end{aligned}
$$

254 But,
$\left(g^{b_{0}^{\prime}}\right)^{\gamma^{*}}(y)=\left(g^{g_{0}^{\prime}}(y)\right)^{\gamma^{+}}=\left(g\left(y b_{0}^{-1}\right)\right)^{\gamma^{+}}=g^{\gamma^{*}}\left(g^{b_{0}^{\prime}}\left(g^{\gamma *}\right)^{b_{0}}(y)\right.$ for all $y \in B$.
That is to say,

$$
\begin{gathered}
\left(g_{0}^{b_{0}^{\prime}}\right)^{\gamma^{*}}=\left(g^{\gamma^{*}}\right)^{b_{0}^{\prime}} \text {; that is, } \\
\left(q_{1} q_{2}\right)^{\gamma^{*}}=q_{1}^{\gamma^{\gamma *}} q_{2}^{\gamma_{2} .}
\end{gathered}
$$

One easily sees that $\gamma *$ is one-one and onto. Hence, $\gamma *$ is an automorphism of Q.

It will be noticed that the procedure of extending γ^{+}by $\gamma *$ is the same as that of extending γ to γ^{+}; in fact it applies to wreath products in general. Now, however, we being to use the particular automorphisms β, γ we had chosen and the automorphisms $\beta *, \gamma *$ constructed from them.

Now consider automorphism $\beta * \gamma *$ of Q. For any $b_{0} \in B$, we have $b_{0}^{\beta * \gamma *}=\left(b_{0}^{\beta}\right)^{\gamma *}=b_{0}^{\beta}$; that is $\beta * \gamma *$ is an extension of β. Further.

$$
q^{\beta * \gamma^{*}}(y)=\left(q^{\beta *}\right)^{\gamma^{*}}(y)=\left(q^{\beta *}(y)\right)^{\gamma^{+}}=\left(q\left(y^{\beta-1}\right)\right)^{\gamma^{+}} .
$$

Therefore

$$
\begin{aligned}
& q^{\beta * \gamma *}(1)=\left(q\left(1^{\beta-1}\right)\right)^{\gamma^{+}}=(c)^{\gamma^{+}}=c \\
& \text { and } \quad\left(q^{\beta * \gamma^{*}}\left(b_{i}^{-1}\right)\right)=\left(q\left(\left(b_{i}^{-i}\right)^{\beta^{-1}}\right)\right)^{\gamma^{+}}=\left(q \left(\left(b_{i}^{\beta-1}\right)\right.\right.
\end{aligned}
$$

But

$$
b_{i}^{\beta-1}=\left(b^{i} b^{\prime}\right)^{\beta-1}=\left(b^{i}\right)^{\beta-1}\left(b^{\prime}\right)^{\beta-1}=b^{i} b^{-1} b^{\prime}=b^{i-1} b^{\prime}=b_{i-1},
$$

so that

$$
q^{\beta * \gamma^{*}}\left(b_{i}^{-1}\right)=\left(q\left(\left(b_{i-1}\right)\right)^{\gamma^{+}}=\left(g_{i-1}\right)^{\gamma^{+}} .\right.
$$

As

$$
g_{i-1}^{\gamma^{+}}\left(c^{n}\right)=\left(g_{i-1}\left(c^{n}\right)\right)^{\gamma}=\left(a_{i-1}^{-n}\right)^{\gamma}=a_{i}^{-n}, \text { for all } n \in I,
$$

it follows that

$$
q^{\beta * \gamma^{*}}\left(b_{i}^{-1}\right)=g_{i-1}^{\gamma^{+}}=g_{i}, i \in I .
$$

Now, since b_{i} permute among themselves upon applying β, we have

$$
q^{\beta * \gamma *}(y)=1, y \neq 1, b_{i}^{-1}, i \in I
$$

Therefore

$$
q^{\beta * \gamma *}=q
$$

This shows that $\beta * \gamma *$ maps $H=g p\left(b, b^{\prime}, q\right)$ onto itself. Let α be the restriction of $\beta * \gamma *$ to H, so that α is an auto-morphism of H. We have

$$
\begin{aligned}
h_{i}^{\alpha}=\left[q^{b_{i}}, q\right]^{\alpha} & =\left[q^{\alpha_{i}^{\alpha}}, q^{\alpha}\right]=\left[q^{b_{i}^{\alpha}}, q\right]=\left[q^{b_{i+1}}, q\right]=h_{i+1} \\
& \left(\text { for } b^{\alpha_{i}}=\left(b^{i} b^{\prime}\right)^{\alpha}=\left(b^{i}\right)^{\beta} b^{\prime \beta}=b^{i} b b=b^{i+1} b^{\prime}=b_{i+1}\right)
\end{aligned}
$$

Consider $R \leq G$, where

$$
R=g p\left(\ldots, a_{-1}, a_{0}\right)
$$

In the identification of G with G^{*}, R is identified with

$$
R^{*}=g p\left(\ldots, h_{-1}, h_{0}\right)
$$

Trivially,

$$
R^{*} \Delta G^{*}
$$

Now by the corollary of Lemma $2 G^{*}$ is an E-subgroup of H. There is therefore an

$$
\begin{gathered}
S^{*} \Delta H, \text { such that } \\
R^{*}=S^{*} \cap G^{*} .
\end{gathered}
$$

Let

$$
K=H / S^{*}
$$

Then

$$
K=H / S^{*} \cong H^{\alpha} / S^{*^{\alpha}}=H / S^{*^{\alpha}}
$$

Now

$$
S^{*} \geq g p\left(\ldots, h_{-1}^{\alpha}, h_{0}^{\alpha}\right)=g p\left(\ldots, h_{-1}, h_{0}, h_{1}\right)
$$

But,

$$
\begin{aligned}
h_{1} \notin R^{*}= & S^{*} \cap G^{*}, \text { so that } \\
& h_{1} \notin S^{*}
\end{aligned}
$$

Thus S^{*} is strictly contained in $S^{*^{\alpha}}$. We have

$$
H / S^{*^{\alpha}} \cong H / S^{*} / S^{*^{\alpha}} / S^{*}
$$

Thus

$$
K=H / S^{*^{\alpha}} \cong H / S^{*} / S^{*^{\alpha}} / S^{*}=K / N
$$

where $N=S^{*^{\alpha}} / S^{*}$ is not trivial. Evidently K is a 3-generator group. Further by Corollary 2, p. 141 of Chapter 8, since G is abelian, H and therefore K is soluble of length 3 . Thus we have proved:

Theorem 4. The group

$$
K=H / S^{*}
$$

is a 3-generator non-Hopf group, soluble of length 3.

Bibliography

[1] Baer, Reinhold (1953) - Das Hyperzentrum einer Gruppe III. 259
Math. Zeitschr, 59, 299-338
[2] Birkhoff, Garret(1935)- On the structure of abstract algebras. Proc Cambridge Philos. Soc. 31, 433-454.
[3] Boone, W. W. (1954 ${ }^{a}$)- Certain simple uusolvable problems of group theory I.Proc. K. Nederl. Akad. Wetensch. Amsterdam (A) 57, 231-237.
(1954 ${ }^{b}$)- Certain simple unsolvable problems of group theory II. Proc. K. Nederl. Akad. Wetensch. Amsterdam (A)57, 492-497.
(1955 ${ }^{a}$)- Certain simple unsolvable problems of group theory III. Proc. K. Nederl. Akao. Wetensch. AMsterdam (A) 58, 252-256.
$\left(1955^{b}\right)$ - Certain simple unsolvable problems of group theory IV. Proc. K. Nederl. Akad. Wetensch. Amsterdam (A)58, 571-577.
(1957)- Certain simple unsolvable problems of group theory VI. Proc. K. Nederl. Akad. Wetensch. Amsterdam (A)60, 22-27.
(1958)- The word problem. Proc. Nat. Acad. Sc. U.S.A.44, 10611065.
(1959)- The word problem. Annals of Math. (70) No.2, 207-265.
[4] Britton J.L.(1956)- Soution of the word problem for certain types of groups I. Proc. Glasgow Math. Assoc. 3, 45-54.
(1957)- Soution of the word problem for certain types of groups II. Proc. Glasgow Math. Assoc. 3., 68-90.
(1958) - The word problem for groups. Proc. Lond. Math. Soc. (3) 8, 493-506.
[5] Burnside, W.(1902) - On an unsettled question in the theory of discontinuous groups. Journal of Pure and Applied Maths. (Lond.) 33, 230-238.
[6] Coxeter, H.S.M.and W.O.J.Moser (1957) - Generators and relations for discrete groups. (Ergebnisse der Mathematik undihrer Grenzgebiete) Springer-Verlag, Berlin, Gottingen, Heidelberg.
[7] Hall, P. (1933) - A contribution to the theory of groups of prime order. Proc. London Math. Soc. (2) 36, 29-95.
(1954 ${ }^{a}$) - The splitting properties of relatively free groups. Proc. London Math. Soc.(3) 4, 343-356.
$\left(1954^{b}\right)$ - Finiteness conditions on soluble groups. Proc. London Math. Soc. (3)4, 419-436.
[8] Hall, P. and Graham Higman (1956)- On the p-length of p-soluble groups and reduction theorems for Burnside's problem. Proc. London Math. Soc. (3) 6, 1-42.
[9] Hall, Marshall Jr.(1959)- Solution of the Burnside problem for exponent six. Illinois J. Math. Vol.2, No.4B(1958) 764-786.
[10] Higman, Graham (1951)- A finitely related group with an isomorphic proper factor group. J. London Math. Soc. 26, 59-61.
(1956)- On finite groups of exponent five. Proc. Cambridge Philos. Soc. 52, 381-390.
[11] Higman Graham and B.H. Neumann (1952)- Groups as groupoids with one law. Publ. Math. Debrecen 2, 215-221.
[12] Higaman Graham, B.H. Neumann and Hanna Neumann(1949)Embedding theorems for groups. J. London Math. Soc. 24, 247254.
[13] Hirsh, K. A. $\left(1938^{a}\right)$ - On infinite soluble groups I. Proc. London Math. Soc. (2) 44, 53-60.
$\left(1938^{b}\right)$ - On infinite soluble groups II. Proc. London Math. Soc. (2) 44, 336-344.
[14] Hirsch K.A. (1946) - On infinite soluble groups III. Proc. London 261 Math. Soc. (2) 49, 184-194.
(1952)- On finfinite soluble groups IV. J. London math. Soc. 27, 81-85.
(1954)- On infinite soluble groups V. J. London Math. Soc. 29, 250-254.
[15] Kaloujnine, Leo(1948)- La struture des p-groupes des sylow des groupes symetriques finis. Ann. Sci. Ecole Norm. Sup. (3) 65, 239276.
[16] Kaloujnine, Leo and Marc Krasner (1950)- Produit complet des groupes de permutations et probleme d'extension des roupes, Acta. Sci. Math. Szeged. Vol.13, 208-230.
(1951) - Produit complet des groupes de permutations et probleme d' extension des groupes, Acta Sci. Math. Szeged. Vol. 14, 39-66,69-82.
[17] Kostriken, A. I.(1955)- Solution of the restricted Burnside problem for exponent five, Izv. Akad. Nauk SSSR, Ser., at. 19, 233244(Russian)
(1959)- On Burnside's problems. Izv. Akad. Nauk SSSR Ser Mat. (23), 3-34(Russian).
[18] Kurosh, A.G. (1955)- Theory of groups. Chelsea Publ, Co., New York, N.Y., Vol. I.
(1956)- Theory of groups. Chelsea Publ. Co., New York, N.Y., Vol. II.
[19] Levi, F. and B.L.van der Waerden (1933)- Über eine besondere Klasse von Gruppen Abh. Math. Sem. Hamburg, 154-158.
[20] Lyndon, R.C. (1952)- Two notes on nilpotent groups. Proc. Amer. Math. Soc. 3, 579-583.
[21] Magnus, Wilhelm (1932)- Oas Identitatsproblem fou Gruppen miteiner definierenden Relation, Math. Ann. 106, 295-307.
(1935)- Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111, 259-280.

262 [22] Neumann, B.H. $\left(1937^{a}\right)$ - Identical relations in groups I. Math. Ann. 114, 506-525.
$\left(1937^{b}\right)$ - Some remarks on infinite groups. J. London Math. Soc. 12, 120-127.
(1950)- A two-generator group isomorphic to a proper factor group. J. London Math. Soc. 25, 247-248.
(1953)- On a problem of Hopf. J. London Math.Soc. 28, 351-353.
(1954)- An essay on free products of guoups with amalgamations. Phil. Trans. Roy. Soc. London. A, 246, 503-545.
(1956)- On some finite groups wiht trivial multiplicator. Publ. Math. Debrecan 4, 186-194.
[23] Neumann, Hanna (1957)- Generalised free products with amalgamated subgroups I. Amer. J. MATH. 70, 590-625.
(1949)- Generalised free products with amalgamated subgroups II. Amer. J. Math. 71, 491-540.
(1950)- Generalised free sums of cyclical groups. Amer. J. Math. 72. 671-685.
(1951)- On an amalgam of abelian groups. J. London Math. Soc. 26, 228-232.
(1956)- On varieties of groups and their associated near rings. Math. Math. Zeitschr. 65, 36-69.
[24] Neumann, B.H. and Hanna Neumann(1950)- A remark on generalised free products. J. London Math. Soc. 25, 202-204.
(1950-51)- Zwei Klassen charakteristischer unterguppen und ihre factor gruppen. Math. Nach. 4, 106-125.
(1953)- A contribution to the embedding theory of group amalgams. Proc. London Math. Soc. (3), 3, 245-256.
(1959)- Embedding theorems for groups. J. London Math. Soc. 34, 465-479.
[25] Newman, H.H.A. (1942) - On theories with a combinatorial defi-
nition of "equivalence". Annals of Math, 43, 223-243.
[26] Novikov, P.S.(1952)- On the algorithmic unsolvability of the identity problem. Doklady Akad. Nauk SSSR 85, 709-712(Russian).
(1955)- On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. im. Steklov No.44, Izdat, Akad. Nauk. SSSR 143 p.p. (Russian). = Amer. Math. Transl. seies 2, Vol. 9 (1958)1-122.
(1959)- On periodic group. Doklady Akad. Nauk. SSSR 127, 749752 (Russian).
[27] Polya, George(1937)- Kombinatorische Anzahlbestimmungen fur Group, Graphen und Chemische Verbindungen Acta Math. 68, 145-253.
[28] Sanov, I.N.(1940)- Solution of Burnside problem for exponent four. Ucenye Zapiski Leningrad Univ. 55, 16-170 (Russian).
(1947)- On the Burnside Problem. Dklady Akad. Nauk. SSSR 57, 759-761(Russian).
[29] Schiek, Helmut(1956)- Ahnlichkeitsanalyse von Gruppenrelationen. Acta Math. (96), 157-252.
[30] Schreier, Otto(1927)- Die Untergruppen der freien Gruppen. Abh. Math. Sem. Hamburg, 5, 161-183.
[31] Specht Wilhelm(1932)-Eine Verallgemeinerung der symmetrischen Gruppen. Schriften d. Math. sem. u.d. Inst. F. angew. Math. d. Univ. Berlin 1,4,1.
[32] Tartakovskiiu, V. A. $\left(1949^{a}\right)$ - The sieve method in the theory of group. Mat. Sb. N. S. 25(67), 3-50 (Russian). = Amer. Math. Soc. Transl. No. 60(1952),
$\left(1949^{b}\right)$ - Application of the sieve method to the solution of the word problem in certain types of group. Math. Sb. W. S. 25(67), 251-274(Russian). = Amer. Math. Soc. Transl. No.60(1952), 6392.
(1949 ${ }^{c}$)- Solution of the word problem for groups with a kreducible basis for $k>6$, Izv. Akad. Nauk. SSSr Ser. Mat. 13, 43-494 (Russian). = Amer. Math. Soc. Transl. No. 60(1952), 93110.
(1952)- On primitive composition. Mat. Sb. N.S. 30(72), 39-52 (Russian).
[33] Wiegold, James(1959)-Nilpotent products of groups with amalgemations. Publ. Math. Debrecen 6, 131-168.
[34] Wielandt, Helmut(1939)- Eine Verallgemeinerung der Untergruppen. Math. Zeitscher. 45, 209-244.
[35] Zassenhaus, Hans J.(1958)- The theory of group. Chelsea Publ. Co., New York.

[^0]: ${ }^{1 *}$ note added November 1959. A very significant advance towards a solution of this problem has recently been made by GRAHAM HIGMAN (unpublished). He has determined all finitely generated subgroups, and a large class of not finitely generated subgroups, of finitely presented groups.

[^1]: ${ }^{1}$ We use \equiv for equality of words, $=$ for equality of group elements

[^2]: ${ }^{1}$ This is a slight change of notation - earlier L stood for a set of laws $=1$, now only for the set of their left-hand sides.

[^3]: ${ }^{1}$ Note:- In the recent literature it is also often called the Zappa-Szep-Redei product

