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Preface

As the title of this course of lectures suggests, my aim waaggstem- 1
atic treatment of infinite groups. Instead | have tried tespret some of
the methods and results that are new and look promising,rextdhave
not yet found their way into the books of Kurosh, Specht, Zabaus,
Marshall Hall, Jr. The contents of Chapters 8, 10, 11, 12 waostly
still unpublished at the time of the lectures; those of Céep8 and 12
have recently appeared. All through the lectures | have ali@iention
to the numerous problems that still defy oufoets at solution. The
Theory of Groups is still very much alive today.

This course was delivered during the monsoon term, 1959e&nd
tended over 36 lectures. | enjoyed every one of them. | anoprafly
grateful to Professor K. Chandrasekharan for inviting mepend this
term at the Tata Institute of Fundamental Research. | alsb wgirecord
my gratitude to Mr. Pavman Murty, who took the notes and pexgha
them for circulation.

B.H. Neumann.
The University,
MANCHESTER, 13,

ENGLAND.
December, 1959.
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Chapter 1

Introduction, Definitions and
Notations

1 Abstract Algebras

In this chapter we shall derive certain properties of gram$fix certain 2
notations.
Let E be any set an@ a set of functions defined on ti@&artesian

products
EC = {¢},E,E%,...E",...

with values inE, where¢ denotes the empty set and
EN = {(xl,...,xn)|xi eE,i= 1,...n}.

The pair €, Q) is called aralgebraic systenor anabstract algebra
E is called thecarrier of the algebrak, Q) and the elements @@ are
calledoperators

If w e Qs a function onE" with values inE, we say thatw is in
n-ary operator. Thus ifw is an n-ary operator, then

w(Xq,...,%) € E, forall (xq,...,%,) € E".

A nullary operator is a function on the sdt} with value inE. Thus
if w is a nullary operator then it is a function with the argumerand
with value inE. We denote this value by { }.

1



2 1. Introduction, Definitions and Notations

We shall use the termgnary and binary operators for 1-ary and3
2-ary operators respectively.

2 Groups

We are here interested in a particular class of algebraieisysalled
groups.

Definition. A group G, Q) is an algebraic system wil8 as its carrier
and Q consisting of a nullary operataz, an unary operatoL. and a
binary operatorr, related by the following laws:

Q) 7 (x, 7 (y,2) =n(7(XY),2, for everyx, y, z € G (Associative
Law);

(2) 7 (% L(x)) =€ {}, for everyx € G;
(3) 7 (% €{}) = x, for everyx € G.

We shall for convenience write,

m(X.y) = Xy,
L(x) = x°L,
e{}=1

In this notation, it is customary to cadl/ the product elementsand
y. The above three laws read as follows when written mulépiiely.

(1) x(y2 = (xy)z, (Associative law)
(2) xxt=1,
() x1=x

Because of (3 we say that 1 is aight neutral element. Similarly
as suggested by (%! is aright inverseof x. For the sake of brevity
we shall identify the groupQ, Q) with its carrierG and refer toG as a
group through this chapter.

If a groupG in addition to the above three laws satisfies
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4) 7 (x,y) =n(y, X, forall x,y e G (Commutative law)
or
(4) xy = yx(in the multiplicative notation)

thenG is anabelian group(or aCommutative group
For the abelian group it is sometimes convenient to use tlwviog
additive notation

a(X,y) = X+y
L(X) = =X
e{}=0.

3 Some elementary properties of groups

(1) In the definition of a group the associative law is forntedafor
products of three elements G One can prove by induction on
the number of factors that the corresponding law holds fodpr
ucts of any finite number of factors; in other words, the paaduill
be independent of the way in which the brackets are insefad.
brackets are, therefore, irrelevant and will later on uguzs omit-
ted. The proof of the general associative law is straigiwéod and
we omit it.

(2) The right neutral elemenit’ is also a left neutral element; in othes
words,
Ix=x, forall xe G.

Proof. From law (3), it follows that
11=1,
then
1(xxt) = xxt  from (2),
(W)xt=xxt from(2).
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Therefore,

(X)xH(xH™t = (xxH(x 1)L, where 1)1 is the right inverse
of x°L.

An application of the associative law gives,

LI ™) = xpHxh ™,
and therefore ®W1=x1=x

Finally, by another application of the associative law,
1x1) =1x=x
This proves (2).
The right inversex! is also a left- inverse af; in other words,
x1x =1, forall xe G.
Proof. (x 1x)x! = x1(xx1) = x11=x1.
Therefore,
(X HxH=xTx =1,
) =xtixh Tt =1
Hence, X1 =1,

xIx=(x1x1=1
This proves (3). ]

We say that 1 is a (two-sided) neutral element or unit eleymraw
that it is both left neutral and right neutral. Similasy? is an in-
verse ofx.



(4) There is only one right neutral element@ For letn be any right
neutral element. An application of (2) immediately gives

n=1n=1.

This, in particular proves that 1 is the only neutral elernudri.

(5) The equatiorax = b, with a,b € G, has the unique solutior =
alb, in G. Itis easy to verify thaa b is a solution of the above
equation. Now ifx andy are two solutions of the equation, we have

x=1x=(ata)x=al(@) =al(ay = (@lay=1y-=y.

This proves the uniqueness. 7

Thus in a group the left cancellation law holds. Dually itldats
that the right cancellation law also holds. As a consequencg),
x~1is the only inverse ok and alsox is the inverse ok !

4

We note that we have defined groups by postulates of the fromalf

X, ¥, Z ...,acertain equation is true”. This does not mean that we have
made no existential assumptions; but all existential apsioms have
gone into the general algebraic frame work; that is to sagy tre of
the form “there is a nullary operate; a unary operatoL”, and so on.

A class of algebraic systems that is singled out, like tharofips, by
postulates of the form “for al, . . ., the equation- - holds” is said to be
equation-ally definedor avariety of algebraic systems. Thus groups, as
we have defined them, form a variety. Not all important andridting
classes of algebraic systems form varieties; thus e.g.léss of fields

is not a variety. This will be shown later.
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5 The multiplication of subsets of groups and its re-
lation to the lattice operations

Let (E, Q) be an algebraic system, € Q, ann-ary operatorXy, ..., X,
n subsets of the carridt. We define the set

w(X1,..., %) CE by
wX1..... X)) = {w(Xe. .. X6 e X i=1....n}.

Let G be a groupD, E andF subsets ofs. Correspondingly we
have

EF = {eflec E.f < F},
El= {e‘1|ee E}.

We denote the sdE{f} by Ef and similarly{e}F by eF. Also we
identify {€}{ f} with elementef.

Using the associativity of the multiplication of the elertsenf G it
is easy to verify that the same holds for the multiplicatidrsets. In
other words,

D(EF) = (DE)F, for D,E,F subsets ofG.
LetF C G, {Dj}ic| be a family of subsets @; then
(1) (UD))F = UD;F.
Proof. Letg € (UD;)F; then
g=df withd e UD;, f € F; now

d e Dj for somej € |; hence
g=dfe D;F c UDjF,

and thus, ag was arbitrary,

(UDj)F < UD;F.
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Conversely, ifg € UD;F, then

g€ DjF for somej € I;
thus g=df with de D, f e F,

Henced € UD;, and therefore
g=df € (UDj)F, and again agy was arbitrary
UDjF c (UDj)F.
' Combining this with the above inclusion we have the requérguial-
v In particular, we have

(D UE)F = DF UEF, for D,E, F C G.

A similar straightforward verification shows that
(2) (UDi)F c NDjF.
In particular, we have

(DNE)F cDFNEF

The following example demonstrates that in general inolusian-
not be replaced by equality in (2).
TakeG to be the additive group of integers, and

E ={1},D = {-1},F = G, then
(DNE)F =¢, DFNEF=G.

10
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6 Subgroups

LetS c G, and

(1) e{}es,

(2) L(s)S, for everyse S,

(3) n(st) € S, for everysit e S.

Itis obvious that is a group with the set of operatais= { &L, n}.

We call S, a subgroupof G. It should be noted that by definition a
subgroup is non-empty. If a subgro8mf G is a proper subset @&, we
call it a proper subgroup

Hereafter the notationS' < G” will be used for ‘S is a subgroup of
G”. WhenS is a proper subgroup @, we shall write 'S < G”.

The definition of a subgroup is immediately seen to be egeitab
the following conditions.

(1) 1€S,
(2) stcs,
(3) SScs.

These three conditions can be replaced by the apparentlitewea
condition given in the following simple theorem.

Theorem 1. The subset S of the group G is a subgroup if, and only if
(i) S=#¢,
(i) sstcs.

Condition (ii) means that for ang; t € S, the “right quotient’st™* e
S: we then say tha$ is closedunder right division. Similarly closure
under left division can be defined.
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Proof. The ‘only if’ part of the theorem is trivial. We proceed to peo
the ‘if’ part. SinceS # ¢, there is an elemern € S, and therefore by
hypothesis

xxl=1eS

Now, foranyx € S,
Ixl=xles

Further, ifx, y, € S, then by what we have just proved

yles
and therefore, xy=x(yHtes.

This proves tha$ is a subgroup. O

Also, by symmetry it follows that a non-empty subse&fclosed
under left division is a subgroup.

In the above theorem instead of right or left division, we adso
take their transposes. In other words, a non-empty subs#tG is
a subgroup if and only if it is closed under one of the follogvifour
binary operations.

1) e(xy)=xyt (2 ¢x=y'x
3) vxy=x1ly, (@) y(xy)=yxh
Graham Higman (Higman and Neumann, 1952) has suggestad a
more general problem which stands unsolved in the case e&belian
groups.

Problem. Let ¢ be a binary operator (expressible in termgdf, r and
two variables) with the property th& c G is a subgroup if only if

(1) S#¢
(2) p(x,y) € S,forall x,y e S.

What forms carp take?

In the case of abelian groups it is proved that the only pdiib
are the above four functions (which in this case reduce tp twvd func-
tions, right and left division).

Nothing is known in the case of non-abelian groups.






Chapter 2
Generators and Relations

1

In this chapter we shall show how to construct the smallebgwup 13
containing a given set of elements of group. The concept lafioa
will also introduced.

As an immediate consequence of the theorem of the last chapte
have

Theorem 1. The intersection of an arbitrary family of subgroups of a
groups is a subgroup.

Let G be a group andt a subset o6. The subgroup
gpE)= (] S
ECSCG
is the subgrougenerated by EWe callE a set ofgeneratorsof gp(E).
Since a subgroup by definition is non-empty, it follows that

gp(¢) = {1}

We call{1} thetrivial subgroupof G.

If X is any set, we denote B¥] its cardinal.

If E C G and|E| < X,, thengp(E) is finitely generated Similarly,
gp(E) is countably generated JiE| < X..

If |E| = 1, thengp(E) is acyclic group

11
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We shall now construagp(E), givenE € G. We construct a non-14
decreasing sequence of sets inductively. But E U {1}.
Having definedEy, ..., E, defineEn 1 = EnE,;1 write S = |J Ep.

n=1
It is immediately seen that

E,CcS.
Also, if T is an arbitrary subgroup @ containingE, then
E,CT.

If EhC T,thenalscEn,, CT.
It follows that
SCT 1)

and thus ScgpE) = ﬂ T.

We now prove tha$ is a subgroup$S is non-empty and all th;s
contain 1. Iff € E,, then

f1l=1feEpg.

ThereforeE, € En1. Thus{E,} is a non-decreasing sequence of
sets. Letx, y, € S; so thatx € E, y € E for somem,n. Putp =
max(n, n). Then,x € Ep,y € Ep and hencexy € Ep1 € S. This
proves thasS is closed under right division. TherefoBeis a subgroup
containingE. Thus,gp(E) € S, and combining this witH{1), we get

S = gp(E).

2

The above construction shows that any elemeri bfis a ‘representa-
tion’ in terms of elements oE as

wey,...,e) =€ m=+lgecEi=1...,n
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Such expressions are callegrds It is not assumed that filer-
ently indexedg are diferent. Diferent words may represent the same
element. For examplegbblc™? andac™ are diferent words repre-
senting the same elemeat. The word containing ne at all is the
empty word This represents the unit element, and we therefore denote
it (somewhat ambiguously) by 1. It is easy to see that any et mfG
that can be represented by a word in the elemenisisin gp(E). Thus
we have,

Theorem 2. The subgroup gft) consists of all the elements of G rep-
resented by the ‘words’ formed by the element of E.

3

Cyclic groups are the simplest types of groups which one sameoss.
The theorem below gives the structure of subgroups of acgectiup.

Theorem 3. If G is cyclic, all subgroups of G are cyclic.
Proof. Let{a} be a generator db. Then,
gp({a}) = gp(@) = C.
m]

Let S be a subgroup o6. If = {1}, it is cyclic as claimed. If 16
{1} < S < G, then there is an elemedf € S, ak # 1; also,a ¥ € S. Let
N be the set of positive integers defined by

N:{n

a”eS}

Sincek € N or -k € N, N # ¢. Denote bym the least positive
integer inN. We claim thata, is a generator 08.
Trivially,
gp(am) < S.

If c=a’ €S, then|¢| > m. Write

f=mg+r,0<r<m
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Thena' = a‘a™d e S, and therefore = 0. Hencec = a™ e gp(@™).
Thus,
S < gp@)

Combining this with the above inequality, we have
S =gp@")

and the theorem is proved.

4

In this context, we ask the following question
Problem. What groups can be subgroups of two-generator groups?

A partial answer to this problem will be given now. It will bero-
pletely soled in the subsequent chapters.

Theorem 4. Countably generated groups are countable.

Let G = gp(E), whereE is countable. LeE = {e,e,...}. We
have seen thagp(E) consists of all the elements represented by ‘words’

ine,e,....
If gis an element of5 which can be represented by a wardn

€1, &, ..., theng can be written in the form
W @M g
g=w=6&6,"§

where thei; are positive integers angh are integers, positive, zero,
for negative. Note that ffierentw’s can represent the same element.
Corresponding to eaa;, we define

= max(, 0),
m~ = max(m, 0).

If m >0, thenmy” = my, ™ = 0. If m <O, thenm =0, m” = —m;.
Thus at most one ofi", m" is non-zero.
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We now construca 1 — 1 mappingy of the set of allw’ sinto the set
of positive integers. This will prove thap(E) is countable. '
We writey(1) = 1. If g™ € - €T, then definey(w) = 2113M 5™ 72

11m137 ... p;f where p, denotes the™ prime when the set of all
positive primes is arranged in increasing order.

The numberg/(w) are calledc6del numbers

Since every positive integer can be written as a product iofigr
powers uniquely, it follows that every positive integertie tGodel num-
ber ofat most onavord; hencey is 1 — 1. Therefore the set of words in
E, and alsap(E), is countable.

Remark. This theorem can also be proved by making use of the con-
struction we have given fap(E). That is to say,

gp(E) = O En,
n=1

whereE; = EU {1}, Epyq = EnEgl. If E is countable, so i&;. If E, is
countable, so i€n,1 becauseEn, 1| < |E;Y| |E;Y| = |Enf2. Therefore all
the E; sare countable, and so is their unigp(E).

Corollary. Necessary for a group to be embeddable in a two-generator
group is that it be countable

5

Let G = gp(E) be a group withE as the set of generators. Then ev-
ery element of5 can be represented by a ‘word’ formed of some finite
number of elements d&. We denote bywv(ey, ..., e,) a word consisting 19
of the ‘letters’ey, ..., e, only (not necessarily all). Let(e;....,e,),
v(el,...,et) be two words irE. We say that

wer,....e) = V(e ....eh)

is arelationin G, if this equation holds whew(ey, .. ., &,) andv(e,, .. .,
g,) are considered as elements@f Without loss of generality we can
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write the above relation in the form
w(ey,...,e)) = v(ey,...,e).
In the subsequent pagesvél stand for 4, ..., e,). We say that
w(e) = u(e)

is atrivial relation if it follows from the group axioms and does not
depend upon the particular group under consideration. ¥anple,

166, e3e4€," = ere36565 "
is a trivial relation. A relation of the the type
€16 = €6,

if valid, is a non-trivial relation.
Let

wey,....en) =€ g m=+lLgecEi=1...,n
and  V(fy,....f) =62 fieE G =xLli=1...2

be two words. By the@roductof the wordsw andv (taken in this order),
we mean the word

V=wer,...,e)V(fr,..., ) = el e il )
similarly theinverseof w is defined to be the word
W—l — eamn . egmzelml

We now state certain elementary properties of relationchvhare im-
mediate from the definitions given above.

(1) v(e) = v(e) is a trivial relation.
(2) If u(e) = v(e) is arelation, then so ige) = u(e).
(3) If u(e) = v(e) andv(e) = w(e) are relations, then so ige) = w(e).



(4) If u(e) = v(e) is a relation, then so is™1(e) = v1(g)

(5) If ue) = v(e) andu’(e) = V'(g) are relations then so ige)u'(e) =
v(e)v'(e)

(6) For any wordu(e),
ueu (e =1

is a trivial relation.

6

In what follows, we shall abbreviatge) asv for convenience, when21
confusion is not possible.
we say that a relation
u =V

follows from (or is a consequence of) relations = vy,...,U = V,
if it can be derived from these by a finite chain of applicasiar (1) -
(6). We say that two relations = v andu’ = Vv are equivalent if each
follows from the other in the above sense.

Example. Every relationu = v is equivalent to a relation of the form
w=1
We can in fact prove this with
w=uv?i

Suppose that = vis true. Then by (4), we have

ut=vt
An application of (2) gives
vi=ut
Also by (1),
u=u

is a relation. 22
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Multiplying these two relations using (5), we get

uvt=uutl

By (6), uit=1
is a relation. By the transitivity of relations ((3)), we leav
uvl=1

Similarly we can prove thaiv! = 1 implies thatu = v.

Let G = gp(E) be a group. Consider the set of relations vali&Gin
Let Rbe a set relations in the elementso$uch that all relations in the
elements oE follow from R.

We then say thaR is a set ofdefining relationsof the group with
respect to the system to generathrsThe groupG is completely deter-
mined byE andR. We write

G=gp(ER)

We call E, R) apresentatiorof G.

G isfinitely presentedf there is some presentatioit;(R) of G with
|IE| < Np and|R| < Ny. Similarly a countablypresentedgroup is de-
fined.

It is easy to see that all finite groups are finitely presentadinfi-
nite cyclic group is also finitely presented.

There exist groups which are finitely generated but not finjee-
sented. Examples will be given later.

The following problem about finitely presented groups isalved.

Problem. What groups can be embedded in finitely presented gr(ﬂlps?

Not all countable groups can be embedded in finitely predegiaups.
But I know of no example of a countable group of which it can m/pd
that it cannot be embedded in a finitely presented group.

1* note added November 195® very significant advance towards a solution of
this problem has recently been made by GRAHAM HIGMAN (unjeh®d). He has
determined all finitely generated subgroups, and a larges @&not finitely generated
subgroups, of finitely presented groups.
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7 The Word Problem for groups

In this section we give a brief account of what is known as Werd
Problem”. This problem arose with the development of matitéral
logic. A precise statement of the problem entirely depermmsa pre-
cise definition of the concept of a “procedure” (also, “algon”, “rule”,
“effective procedure”, “recurrive procedure”, “computatibmaoce-
dure” of “process”), which was given by Church, Turing, Kieeand
Post (see Kleene (1952)).

The Word Problem for groups

Given a group presentatioi (R) of a groupG, to give a “procedure” to
decide, for any two words*, v* in the elements o, whether

u*(e) = v'(e)

is a consequence of the relatioRs Here, roughtly speaking a “proce24
dure” is a set of rules or instructions that could be so foated as to
be programmed for an automatic computer with the dat& andu*,

v* (suitably coded) and the computer so programmed as to afgwaer
somehow cased “follows” or “does not follow”.

A similar problem can be formulated for other algebraic eyst.
Markov and Post have proved the insolubility of the word jpeabin
associative systems. Turing (1950) proved the insolyhilftthe word
problem for semi-groups with cancellations. (A semi-gravith can-
cellation is an algebraic system with an associative binpgrator, with
the property)

ax= bximpliesa=b, and
ya=ybimpliesa=b, forallxy,ahb,eS).

The solubility of the word problem for groups has been prowved
special cases. Magnus (1932) has constructed a procedwavio
the word problem for an arbitrary group with a single definnetp-
tion. Similarly V. A. Tartakovski (1949) - (1952), H. Sheik956) and
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J. L. Britton (1956), (1957) have given solutions for the évproblem
in special classes of groups. However, the question of thetemce of
a procedure for the solution of the word problem for groupgeneral
remained open until Novikov (1952), (1955), (1958) proveat in gen-
eral the word problem for groups is not soluble. Later, Bo(if#54)
(1955) (1957) (1958) (1959) and Britton (1958) gavéatent proofs
for the insolubility of the word problem for groups.
We conclude this chapter with a precise statement of thduhiity

of the word problem for groups.

Theorem (Novikov, Boone, Britton).There is a finite presentation
(E; R) such that the word problem is insoluble in the group

G =gpE:R),

in the sense that to everyfective procedure M that purports to solve
the word problem for G, there is a wordw({€) such that the equation

wm(e) =1

defeats the procedure.



Chapter 3
Homomorphisms of Groups

1

We shall, in the this chapter introduce the concepts of hoarphism, 26
isomorphism and other important mappings of a group intathero

group.
Let G andH be any two groups. A mapping if G into H is a
homomaorphisnif it preserves the group operations. On the face ¢f it

has to satisfy
() (et =e{}
(i) (1(@)¢ =1(g)*, for everyge G

(i) (7(9.9)* = n(g¥,g¥) forallg,g' € G.

To make the notation less clumsy, we have used the same symbol
e, 1, n for the operators of the groufid andH. These three conditions
written in the multiplicative notation read as follows.

(@) 2 =1 (we use the same symbol ‘1’ for the neutral elements of both
G andH)

(b) @) = (g9
(c) @9)¢ =g*g”

21



22 3. Homomorphisms of Groups

The definition of homomorphism given here is capable of gener
alisation, and thus we can speak of a homomorphism of an raigeb
system into another. But, here we shall confine our attentigroups.

In the case of groups conditiona) (@nd @) are contained ind). Thus
we have

Theorem 1. A mappingy of a group G into a group H is a homomor-
phism if and only if it satisfie€).

Proof. If ¢ is a homomorphism o6 into H, then trivially ¢ satisfies

(©). m|

Now, lety be a mapping o6 into H satisfying €). We first observe
that in a group the natural element is the only idempotemhefd. (An
elementx is idempotentf it satisfies the equation® = x.) For if x is
any idempotent element of a group, then

XX = X= X1;
therefore, x=1

Now,
191 = (11 = 1°.

Therefore £ is idempotent and hence the neutral elemenrtt ofSimi-
larly

g’ (g = (99 ')¥ = 1%
hence ¢ Y =(g") .

Thusg is a homomorphism db into H.
Let X, Y be any two sets and a mapping ofX into Y; further let
E c X, F CY. We define

E = (ec E}
F = ldee X & € F}

The following two propositions are easy to verify.
Let ¢ be a homomorphism of a gro@pinto another groug.



(A) If S<G,thenS? <H
(B) If T < H, thenT¢ " <G.

In particular,
-1
{1}¥ =N<G.

The subgroupN < G is uniquely de terminal by and is called the
kernelof the homomorphism.
A homomorphisnp or G into H is anepimorphisnif it mapsG onto
H; in other words, if
G¥ = H.

A homomorphismy of G onto H is a monomorphisnif it is one-
to-one (briefly 1- 1), i. e. x¥¥ = y* impliesx =y, for all x,y € G. A
homomorphism which is both an epimorphism and monomorpligsm
anisomorphism

(C) If ¢is an isomorphism of ontaH, then the inverse mapping® 29
of ¢ exists and is an isomorphism Hf ontoG.

Proof. The equation
g =h, withge G,he H,
has one and only one solution@ We define
he' =g ifg? =h
The mappingy~ is ‘onto’, because for ang € G, we have
(@) =g
Also, if

he" = ¢, with h,V € H, and
g =h, g% =", then
g=¢d, and therefore
h=¢g’=g¥=h.

Hencey? is one-to-one. o
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Now, leth, ¥ € H, with h = g¢, Y = g%, then )¢~ = (g°g’¥)? "
= gg = W' . Hencep ! is an isomorphism oH onto G. It is
easy to see that™! is the two-sided inverse @f, in other words; the
composite mappingg ¢t and¢™! ¢ are the identity mappings «®
andH respectively.

We say that two group& andH areisomorphicif there is an iso-
morphisme of G ontoH. We then write

G=H.

Let G, H andK be any three groups ardandy be homomorphism
of G into H andH into K respectively. Then we have

(D) The composite mappingy of G into K is a homomorphism.

Forletg g € G; then
@9)* = ((99)%)" = (¥g*) = () = (@*) =g =g

In (D), if ¢ andy are isomorphisms then sog¢s. This is easy to
verify.

It follows from the above considerations that isomorphisman
equivalence relation on the class of all groups. Thus, we hav

(R) G=G;
(S) G = HimpliesH = G;
(T) G=G & H = KimpliesG = K.

Let G be a group. A homomorphism &f into itself is anendomor-
phism An isomorphism ofs onto itself is arautomorphism

The product of two homomorphisms, or more generally, thelyco
of two mapping is defined only under certain restrictiong, \that the
range of the first mapping is contained in the domain of thersgcThis
is, however, always the case for mapping of a set into itself.

By mere computation one can verify the associativity of thétim
plication of mappings whenever the multiplication is define



1. 25

Thus the set of all endomorphisms of a grd@ps closed under
an associative binary operation and therefore forms armedgesystem
calledsemi-group

Now consider the set of all automorphisms of a gr@upTrivially
the identity mappind- belongs to this set and under the multiplication
of automorphisms it acts as an unit element. By what we haeady
proved automorphism possesses a right inverse (in fadhi¢isvo sided
inverse) and the multiplication is associative.

Thus we have,

Theorem 2. The set of all automorphisms of a group G forms a group.

Let ¢ be an endomorphism @ possessing a left invergeand a
right inversey.. Theng is an automorphism artl= . For if,

X = x5, with x3, X2 € G

then, &)’ = ()
ie., X1 = x‘lw = )(ge = Xo.
Thereforeyp is 1-1. Further for anyk € G, we have 32
()¢ = X = x

Therefore,p is ‘onto’ and hence an automorphism. This, in turn,
proves that = y.

Thus we have proved that the automorphismsGoére precisely
the endomorphisms having a left inverse and right inverset. a en-
domorphism which is not an epimorphism may possess a leftrsav
which is not a right inverse. Similarly an endomorphism wahig not a
monomorphism can have a right inverse which not a left imers

Let X be any set. A mapping of X into itself is apermutationif it is
1-1 and ‘onto’. Thus every automorphism of a grdsis a permutation
of G.

With the usual techniques, we can verify the following:

Theorem 3. The set of all permutations on X form a group with the
composite of permutations as the binary operation.
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2 Equivalence relations and congruences

Let G andH be any two sets, not necessarily groupsa mapping ofs
into H. We introduce an equivalence relatio#i as follows:

g~¢gifandonlyifg® = g*.
It is immediate that~’ satisfies the following conditions:
33  (R)g~g
(S) g~ ¢ impliesg ~ g, forallg,g € G;
(TY g~d,9 ~g” impliesg ~g”,forallg,g’,g” € G.

Hence ~' is an equivalence relation.
Now let G andH be groups ang a homomorphism o6 into H.
Then '~ in addition toR, S, T also satisfies the following condition:

g~ 01,9 ~g;impliesgy ~ 019;.

For
¢ =9.9% =g
Therefore,
(99)? =9 9% =g} df = (01 9)*.
Further
g~ g implies gt ~ gt
For o¥ = ¢f implies @) = (g;1)*

Such an equivalence relation is calledangruence

Definition. Let G be a group and~" an equivalence relation satisfying
the condition.

g~¢d,01~0g; impliesga ~ g'g;
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34 Then we call ~’ a congruence. Strictly speaking we should also
demand that
g~ g impliesgt~gt

But in the case of groups our definition implies this. For if,

g~d, then

g~9g
Now,

gt~gt
and therefore ggl~gglt=1

Again,

g/—l g/—l.
Therefore

g—l — g/—l(g/g—l) N g/—ll — g/—l'

Let X be any setyp a mapping ofX into another set. We have
seen that induces an equivalence relation’ in X. Every equivalence
relation splitsX into disjointblocks Let ‘~" be any equivalence relation
in X. Define, forg € X

[o] ={xe XE|x egl.
Then clearly either

[a]l n[h] = ¢,
or [] = [h].

Conversely every partition of into blocks gives rise to an equiva3s
lence relation. To see this we have only to defime~'y if and only if
X, y belong to the same block”.

Now letG be a group and~' a congruence relation i. That is to
say,

g~ g1, h ~ hyimpliesgh~ g1 hy, forg,h,gs,hy € G.
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In this case the blockgh] depends only ond] and [h] and not on
the particular elemerg andh. For if

[d] = [9]
and h] =[]
then pbh =[g'h].

This follows easily from the definition of a congruence in augy.
Now we shall prove that the product afj[and [h] is again a block.
In other words,

[allh] = [gh]
Let, p € [gh], thenp ~ gh. But

gi~g
Therefore
glp~gigh =h
36 Thus
p=9(@'p). withge[dl.g'pe[h]
Hence
p € [g[h]
thus
[gh] < [g][h]. 1)

Conversely ifx =€ [g][h], then

x=gh, withg €[g],h" €[h]

Hence
gh' ~gh and
therefore x=gh €[gh.
This gives

[gllh] < gh. )
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Combining this with[{ll) we have

[allh] = [gh]

This multiplication of blocks turns the set of blocks into @gp.
We have

[1][d] = [1d] = [d]

Similarly 37

[al[1] = [91] = [dg].
[gllg™*] =991 = [1],
[9711ld]l = [g7'd] = [1]

The above equations prove the following theorem.

Theorem 4. The books associated with a congruence in a group G from
a group

We denote this group b§/ ~. The block [] is the neutral element
of this group andg™] is the inverse ofg]. We callG/ ~ the quotient
group (also the factor group with respect of the congruence’

The notion of congruence, as well as the notion of the qubtikeye-
bra with respect to a congruence, can be defined much moreadjgne
than for groups, namely for arbitrary algebraic systems.

In the case of groups, the bodkplays an important part. In fact we
shall see that it completely determines the congruenceciased with
it.

We one define an epimorphisfrof G ontoG ~. Write

o =[d

The equation
[ghl = [gl[h]

demonstrates thatis a homomorphism. Obviouslis ontoG/ ~ and 38
therefored is an epimorphism.
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Consider now
[y = {x e G‘XQ - [1]} - {x e G‘[x] - [1]}.
We see from this that
([113*~1 = [1] (considered as a set)

Thus [] is the kernel of) and we denote it biX.

Definition. Let S < G; then the seSy is called aright cosetof S.
Similarly left cost coset is defined

We shall now prove that every block, with respect to a certaimn
gruence is a right coset of the kernel of the epimorphismaadiby the
congruence under consideration.

Let ‘~’ be a congruence s andd the corresponding epimorphism
of GontoG/ ~, and again

N =[1] =[1]°".
Then
[d] = Ng,
for let x € Ng; then
Xx=ng with neN.
Now,
n~1g~g, give
ng~1lg=g
ie., X=nge[(q]
Therefore
Ngc [d]

Conversely ifx € [g], then

x~g,gt ~gtimply
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xg't~ggt=1
Therefore  x=(xgt)ge Ng.
Thus
[g] € Ng, and it follows that
[g] = Ng, as claimed
Similarly
[g] = 9N
Hence
Ng=[g] =gN.
Thus we have proved the following theorem. 40

Theorem 5. Let ‘~’" be a congruence in G. The mappifdgf G into
G/ ~ defined by
g’ = [glwithge G

is an epimorphism with kernel N [1]. Further every element of G~
is a right coset (left coset) of N. Also N commutes with evienpents
of G.

LetZ be the set of all congruences@ Every~e % in a 1-1 man-
ner determines the associated natural epimorphism.Aetenoted the
set of all such associated natural epimorphisms. Also every# de-
termines uniquely a kern®. Let.4" be the of all such kernels. By the
above theorem eveyl € .4 determines completely all the blocks and
therefore uniquely determines the associated congruevigeh in turn
determines the natural epimorphism. The considerationeapmve the
following theorem.

Theorem 6. There is a ‘natural’ 1-1 correspondence between#
and.t".

Because of the above theorem we shall writdGor G/ ~ where
N is the kernel determined by
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3 Factorisation of a homomorphism

We shall now show that every homomorphism of a group ontotemot
can be factorised “canonically”.

Theorem 7. Let G and H be any two groupg, a homomorphism of

41 G into H. Theny can be factorised in the froma = 0y, whereg is
the canonical epimorphisnfor natural epimorphism) of Gonto G~
(= G/N), ~ being the congruence determined gyand wherey is a
monomorphism of G~ into H.

Proof. Definey onG/ ~ with values inH by

[g’ = ¢*
Let
[d] = [g]
then g~d
and therefore g =g”.

This proves thay is a defined mapping. Further,
([allh))? = ([ghD)* = (gh)*
= g*h* = [g)Y[n])Y, forallg,h e G.
Also y is 1-1. For if
[g]¥ = [h]¥, with g,h € G, then
g” = h?; thatis
g~ hand

42  therefore
[d] = [h].
Thusy is a monomorphism dB/ ~ into H. Now,
g =[gY = ¢, forallgeG.
Therefore
¢ =0y
Hence the theorem. m|
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4 Normal subgroups

We now proceed to characterise the kernels of the homorrsimshof

a groupG. We have already seen that the kernel determined by a con-
gruence inG commutes with all the elements &f We shall prove that

the kernel of any homomorphism &f has this property. The following
establishes this.

Theorem 8. Let G and H be any two groupg, a homomorphism of
G into H. Then the kernel a is also kernel N associated with the
congruence~’ determined byp.

Proof.
et = {x|x“’ - 1}
- {x|x“’ = 1“’} = IXx ~ 1}
-y

Thus the kernel of any homomorphism of the gré@imto H commutes 43
with all the elements of. O

N.

We now make the following definition.

Definition. Let N < G. Then is anormal subgrougalso self-conjugate
or invariant) ofG (notationNAG) if

Ng=gNforallgeG.

Thus the kernel of a homomorphism Gfinto H is a normal sub-
group

Let NAG. Definex ~ yif and only if xy* € N. A straight forward
verification shows that~’ is a congruence relation 6. Further,

[1] = {x|x~ l} = {x|xe N} =N

Hence we have
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Theorem 9. Every normal subgroup NG determines a congruence’
in G with
[1] =N.

Corollary. If NAG, then N is the kernel of some homomorphism of G.

Proof. We have only to consider the natural epimorphigwf G onto
G/ ~= G/N. Theorenlb and Theorelmh 9 together imply i

Theorem 10. Let% be the set of all congruences in @ the set of all
normal subgroup of G. Then there isla- 1 mappinga of ¥ onto./",
in a natural way.

Proof. Definea as
o(~) = {x|x N 1} —[1] = N, forall ~¢ %

@ Serves our purpose. O

5 The graph of a binary relation

Let E be any set and<" a binary relation irE. With every such relation
there is associated a ®RC E x E, namely

R= {(x,y)|x*y,xe E,ye E}.

The subseRis called the graph of the binary relation. Conversely
to everyR C E x E there is a binary whose graph ks and this cor-
respondence is £ 1. We shall usually identify the binary relation *’
with its graph and refer t® itself as the binary relation. In particular,
with this identification, an equivalence relation Enwill be subset of
E x E. We shall now interpret the reflexive, symmetric and travesit
laws in terms of the subset of the product Eet E. We call the subset
A C E x E, defined by

A= {(x, X)|x € E}
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the diagonal of E x E.
LetRC EX E, S C E x E be two binary relations ic. Then

R = {x |00 R}

is the inverse of the relatioR. By theproductof the relationdR andS 45
we mean the relation

RS= {(x, Ay e E,(xy)eR(Y,2) € S}.

Let R be a binary relations ikE. ThenR is reflexive if and only in
A C R; alsoRis symmetric if and ifR™! C R; finally R is transitive if
and only ifR?(= RR) ¢ R.ThusRis equivalence relation if and only if it
has all three properties:
(R) ACR
(S)RIcR
(T) RPCR
It is immediate from the above definitions that

Rr=aAR=R forall RC E x E.

Further the symmetric and transitive laws are in the eqeitabR—
R andR? = R, respectively. The following fact is formally analogous
to TheorentIl of Chapter 1; we omit the proof.

Theorem 11. RC E x E is an equivalence relation if and only if

(1) R#¢

(2) RR1CR.
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6 The graph of a congruence in a group

Let G be a group. Before considering the congruences in a group, we
shall introduce a group structure on the productGet G in a natural 46
way. Define the unit element &x G to be (1,1) with 1€ G, the inverse

of (g, h) to be g1, h™1) and the product ofg, h) and @', I) to be

(9.h)(g’.h) = (99, hi), with g.¢'.h.h" € G.

Itis easily seen that this turix G into a group. We call this group
the direct squaref G. In fact we can define the direct product of any
family of groups. We shall have occasion to return to thisddater
(See Chaptdil 6).

LetR c G x G be a congruence iB. Since

ACR,
it follows that LD eR
If (g,h) e Rand @', h) € Rthen
g~ handg ~H.
Therefore
gg ~ hi; thatis
(99.hi) e R
Thus

(9.h)(g'.h") = (99, hi) e R
Further if @, h) € R, then

g ~ hand therefore
gl ~h; thatis
@hhhHer

Thus we have proved thRtis a subgroup o6xG, that is in symbols

R<GxG.
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Conversely reversing the above arguments we can proveftRas i
an relation an®R < G x G, thenRis a congruence . Thus we have
following theorem.

Theorem 12. The equivalence relation R G x G is a congruence in G
ifand only if R< G x G

7 The lattice of congruences and normal subgroups

Let R S be two binary relations ifE. By theintersectionof relations
R andS, we mean the relation whose graphR$)S. The following
theorem is an immediate consequence of the definition of aimagnce
relation.

Theorem 13. The intersection of any family of equivalence relations in
E is an equivalence relation.

Let S be any binary relation il&. Then
R = R(S) N R is the equivalence relatiomenerated by Svhere 48
ScRi

R runs all the equivalence relations containBgin particular,

R(¢) = &

is theidentity relation
In general, the union of two equivalence relations need eoarb
equivalence relation. We make the following definition.

Definition. Let {R}ic; be a family of equivalence relations. Tjuwn of
{Ri}iel is the equivalence relation generated(by .

The discussion above, leads to the following theorem.

Theorem 14. The set of all equivalence relation in E is a lattice on
E x E with “C in EXE” as the partial order.

In this case, the ‘cap’ and ‘cup’ operations are the set $eigtion
and the ‘join’ as we have defined above.

Let us turn to groups. Le&b be a group. Similar to Theoreml13, we
have for congruences the following theorem.
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Theorem 15. The intersection of any family of congruences in G is
again a congruence.

Thus we can now speak tiie congruence generated by a binary
relationin G. As in the case of equivalence relations we can similarly
define the join of a family of congruences @ Note, however, that
“join” means diferent things according as we deal with the lattices of
equivalence or of congruences.

Analogous to Theorem 14 is the following theorem.

Theorem 16. The set R of all congruences in a group G is a lattice on
G x G with “C in G x G” as the partial order.

Of course, the ‘cap’ and the ‘cup’ operations again are thanger-
section and the join. The lattice of congruences of a growp mapor-
tant properties. But we shall not discuss them here. We omgtion
that the lattice of congruences of a groBps not a sub-lattice of the
lattice of equivalence relations.

Let us now consider the set” of all normal subgroups d&. We
shall show that#” is a lattice with set inclusion as the partial order.
For this we need to following theorem, the proof of which isagtht-
forward; and we omit it.

Theorem 17. The intersection of a familylN;}ic; of normal subgroups
is a normal subgroup.

We can now speak of the normal subgroup generated by a subset o
G. An an immediate consequence of this theorem we have

Theorem 18. The set4” of all normal subgroups of G is a lattice with
inclusion as the partial order.

Here again the ‘cap’ operations is the intersection anddbp’ ‘op-
eration is the “join”, where the join of a family of normal syrioups is
the normal subgroup generated by the union of the groupssofitimily.

We have already need (Theor€n] 10) that there is natural 1gt ma
ping A of the set of all congruences @ onto.4". In fact this mapping
is a lattice isomorphism ofZ onto.#". To prove this we have only to
show that this mapping preserves the partial order.
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LetRC R withR R € #, andR! = N, R' = N’. Then,
N = {x|(x, 1) e R} C {x|(x, 1) e R’} =N

Thus we have,
Theorem 19. The latticeZ and.#" are isomorphic.

8 Extension of a mapping of a set of generators of a
group to a homomorphism

LetG = gp(E) andH = gp(F) be groups ang an arbitrary mapping of
E into F. Under what conditions canbe extended to a homomorphism
of G into H? In other words, when can a homomorphigraf G into H
exists, with

¢ =¢ forallec E?

Further if such a mapping exists, is it unigue? The mapping
induces, in a natural way, a mappiagon the set of all words ik with
values inH; namely

(W(e)e* = w(e¥), where
& =(en,....,en)¢ =(ef,....eh),eg €E,i=1,...,n

In generaly* need not be a well define mapping@f For an element 51
of G may have more than one word representation it and it is batysw
true that the images hy* of all these words are the same elements of
H. Wheneverk* induces a mapping o8, we shall denote the induced
mapping also by*.

Suppose now, thap can be extended to a homomorphignof G
intoH. Letg=w(e) € G. Then

g’ = (W(E)" = w(e”) = w(e”).

This shows thap* induces a mapping da and thaty coincides with
¢*. Conversely lety* induce a mapping o. If g = w(e), h = u(e),
theng?" = w(e¥), h¥" = u(e?); and gh)*" = (w(e)u(e))* = w(e*)u(e?) =
g” h*". Hencey* is a homomorphism db into H. Thus we have proved
the following theorem.
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Theorem 20. The mapping can be extended to a homomorphism of G
into H if and only if¢* induces a mapping on G. Further, there can be
only one such extension and this then coincides with

Let ¢ be a mapping o into H and¢* the mapping induced by
on the set of all words ilE. Suppose* induces a mapping oB8. Let

u(e) = v(e)

be a relation irG. Suppose* induces a mapping 08, we have

u@©)* = (Y(e)*;
that is u(e?) = v(e¥)

is a relation valid inH.
Conversely suppose every relation

u(e) = v(e)
in G leads to a valid relation
ue’) = v(e”) in H.

Now if x is any element i3, say

X = u(e).
Then ) )
X7 = (u(@)* = u(e).
If also
X =V(e)
then X = V@) =v(e)
But

ue) =ve) (=x
is a relation inG. Therefore
ue”) = v(e)

is valid relation inH; that is¢* induces a well-defined mapping @&
Hence by Theorefin 20, we have
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Theorem 21. A mappingy of of E into H can be extended to a homo-
morphism of G= gp(E) into H if and only if every relation

ue) =v(e)inG

leads to a relation
ue’) = v(e”) in H.

Since every relation can be derived from the defining refstiave
have the following corollary.

Corollary ven Dyck (1882).Let G= gp(E) and H = gp(F), and lety
be a mapping of E into F. Thencan be extended to a homomorphism
of G into K if and only if every defining relation of the form

u(e) = v(e)

turns into a valid relation

u(e?) = V(&)

between the elements of F upon applying.






Chapter 4
Free Groups

1

In this chapter we shall consider an important class of gsatadled 54
“free groups”. LetE be a set of generation of a grobp We callF a
free groups ifF = gp(E; ¢). In other words, a free groups is one which,
in a particular set of generations, does not have any defimtagions
and hence it is without non-trivial relations. An infiniteatiz group

is a free group with one generator. An immediate consequehen
Dyck’s theorem is:

Theorem 1. Every mapping of the generation set E of a free group
F = gp(E; ¢) onto a group H can be extended to a homomorphism of F
into H.

2 Normal words

We now proceed to find what the elements of a free group loek like
make the following definition

Definition. (i) The empty word ‘1’ is a normal word
(ii) the wordse™€™ ---€™ is a normal word if

@m==+x1i=1...,4

43
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(b) ij = ij+1 = Mj = Mj41.

Itis clear from this definition that a normal word is one whiamnot
be “cancelled down” to a shorter word. The number of letters word
w is thelengthif the wordw and is denoted by(w). We put(1) = 0.

The following theorem shows that any word can be cancellethdo
to a unique normal word.

Theorem 2. Every word is trivially equal (i.e. equal by a trivial rela-
tion) to a normal word and this normal word is unique.

Proof. We prove the first part of the theorem by induction on the lengt
Let G = gp(E) be a group and let(e) be a word inE, with A(w) = n.
Whenn = 0, by definitionw is the empty word and hence normal. Thus
the theorem is true fan = 0. Assume that every wong with A(V) < n,

is 'trivially equal’ to a normal word. Lefl w = €™ .- €™ and thus

AWw) =n. m|

If wis normal, there is nothing to prove. W is not normal, then

there is a positive integej such thati; = ij.,,m; = -mj;. Put
u=¢erd®... g"u =¢"?...g™ Thenw = ug'e ", U. Itis
1 12 lj-1 lj+2 In i hj-1

mMj;1

immediate thatv = uq”;"elj_1 ,U = uu = vis a trivial relation. But
A(v) = n— 2. Therefore induction hypothesis, there is a hormal ward
such thaw = w’ is a trivial relation. Sincev = vis also a trivial relation
it follows by transitivity thatw = s’ is a trivial relation. This proves the
first part of the theorem.

We say that word/ is obtained from the word by an‘elementary

reduction’if there is a ‘letter’ein u such thau = ue"e"™u” and

!

v=uu’',m==+1
To prove the uniqueness we required the following two lemmas

Lemma 1. Two words yv are trivially equal (i.e. v= V is a triv-
ial relation) if and only if there is a finite sequence of words= vy,
Vi,...,Vh =V, such that for every(1 < i < n), either v, is got from y
by elementary reduction or is got from vy, 1 by elementary reduction.

We use= for equality of words= for equality of group elements
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Lemma 2. (The “Diamond Lemma”). If y and w are obtained from
the same word v by elementary reduction, then eithet w,, or each

can be reduced by an elementary reduction to one and the samk w

V¥

Proof. Let
_ M My
V_eil elz eln >
b = Tj1, Mj = —Mjq,
ik = ik+17 m( = _m(+17

and u; obtained by omittingeghelfkl uy y

from v, and u, by omitting e[ e,
where we may without loss of gener- ;

ality suppose that < k.
Thenif j = K, thenuy = up (trivially).

If j = k-1, theng e = €", say, and

Mgtz g =y,

11 lj-1 Ik+2
Finally, if j <k -1, put

Vv = g™ Mj-1 Mj+2 M1 M2 M
=e't...e _ e ..en,
11 li-1 Tlj+2 k-1 “lk+2 In
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Thenv* is obtained fronu; by the elementary reduction that deletes

el e™ and fromus by similarly deletingelnjnj gt
+

j+1 '

We now give an intuitive argument to show that if two normares
are trivially equal, then they are identical. Letw’ be two words such
thatw = w' is a trivial relation. By lemma&ll, there exists wongs=
Vo, V1, ..., Vh = W such that eithev;, ; is obtained fronv; by elementary
reduction or vice versa, fdr= 0,1,...,n. In the following figure we
write vi,; abovev; and connect it toy; if vi,; is obtained fromv; by

elementary reduction.
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58 A glance at the above figure shows that by several applicatidn
the diamond lemma, we descend down to a watdwhich is trivially
equal towandw’, orwandw’ are identical. Now ifv andw’ are hormal
words which are trivially equal, then they have to be ideaitas further
descent is not possible.

59 A formal proof of the above lemma can be found in M.H.A Newman
(1942).

Corollary. If G = gp(E), then every elementgG has a representation
g = w(e) where w is normal.

In particular in a free group, every element is represargdiy one
and only one normal word. This follows from the fact that inreef
group there are no non-trivial relations.

3

Let G be any group wittG = gp(E; R) andF = gp(E°, ¢) a free group
such thalE®| = |E|. There is a mapping of E° onto E which is one-
one. By Von Dyck’s theorenp can be extended to an epimorphigrh
of F ontoG.
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LetN = {1}‘1”“1 be the kernel ofp*. ThenNAF. Letf € F. Then
f = w(e”). Without loss of generality we can assume tivas a normal
word. We have

f* =we=geG
where =E,....)
e =(ey,...,e) andg = .

Now f e Nifand onlyifg = 1;i.e.,f e Nifonly if wie) = 1isa
relation inG. Since any relation d& can be written in the formv = 1,
it follows that N completely determines the relation@ HenceN is
called therelation groupof G.
Further 60
g=F/N.

Thus we have the following theorem.

Theorem 3. Every group is an epimorphic image of a free group and
hence is isomorphic to a quotient group of a free group.

If a set of defining relatiorR of G is given we can say something
more about the structure &f. LetR = {f; = wi(e) = 1‘i € 1} be a set of

defining relations of5. Without loss of generality we can assume that
all wi(e) are normal words. We claim that is the normal closure if

of {f/}icr, wheref] = w, (€Y). That is to sayN is the normal subgroup of
F containing( f;}ic;. In other words, iR = {f]}ic/, then

N= (] M
RCcMAF

SinceR" ¢ NAF, we haveN’ ¢ N, whereN’ denotes the normal
closure ofR". Consider now the quotiet/N’. All the defining relations
w; = 1,i € | of G, are satisfied ifF/N’ asR’ ¢ N’. Hence any relation
w = 1 satisfied inG is also satisfied ifF/N’. Let f = w(e) € N. Then
w(e) = 1 is a relation inG and thereforev(e®)N’ = N’. i.e.,w(e®) € N’.
HenceN C N’.

In virtue of the reversed inclusion which we already havis, phoves
thatN = N’.

The following theorem gives a method of constructionNor 61



48 4. Free Groups

Theorem 4. Let G be any group, & G. Then the normal closure T of
S in G is the totality of all elements t of the form

t=g; " 00 S - 0y ST,

where m = +1, 1 arbitrary, g;, 5 are arbitrary elements of G and S
respectively.

Proof. Let T denote the totality of such elements. Triviallyis con-
tained in the normal closure & To complete the proof of the theorem,
we have only to show thatAG. ThatT is closed under right division is
easy to verify, so thal < G. If g € G, then

g tg =90, 0105 0 - g7 S g0
= (010) "™ (010) (910) (920) ' 2(020) - - (9:9) 'S™(@19) € T

for arbitraryt € T. ThereforeT AG. Hence the theorem. Determining to
our N, we see thaN consists of all elements of the form

-1

=1.,+1; +-1,,+1 +1
twW Tt Wt W where

11

tsare arbitrary anav, € R'. o

4 Dual property of free groups

Theorem 5. If a group G is epimorphically mapped on a free group F,
then G contains a free subgroup isomorphic to F, and in facpped
isomorphically onto F by the restriction to it of the epimbigm of G.

Proof. Let ¢ be an epimorphism db ontoF. LetF = gp(E, ¢). Then
¢ isa non-empty for everg € E. Choose am®; from e . Denote by

E1 the set of all sucks. LetF; = gp(E1). We claim that the restriction
o1 of ¢ to F ia an isomorphism oF; onto F. That the mapping is

an epimorphism is obvious, by our choice&k. Now if g € F, let
w(e) he a normal word representitgg Theng*? = (w(g))#* = (W(€))¥ =
(w(gf)) = w(e) = 1 if and only ifw is the empty word, a§ is a free
group. Hence the kernel g consists of the neutral elements alone and
thereforep; is an isomorphism. Since any group isomorphic to a free
group is also free, our theorem follows. m|
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Theorem 6. Free groups generated by sets of the same cardinality are
isomorphic.

Proof. Let E andE° be two sets such th#E| = |E?|, F = gp(E, ¢) and
FO = gp(E® ¢). Lety be a one-one mapping &° onto E. Extend
it to an epimorphism oF° onto F. We shall also denote this extended

mapping byy. O

Now (w(c®))¥ = w(e) = 1 if and only ifw is an empty word. This
follows because we can without loss of generality take be a normal
word. hencen(e®) = 1. Thereforey is an isomorphism of° ontoF.

This shows that the structure of a free group depends onhend3
cardinality of its set of generators. We cid| the rank of the free group
gp(E, ¢). Afree of rank zero is the trivial grougd}. Free groups of rank
1 are finite cyclic groups.

It is natural to ask if free groups offtierent ranks are in fact fier-
ent. The following theorem answer this question.

Theorem 7. Free groups of dferent ranks are not isomorphic.

To prove this theorem we need the following lemma, the prdof o
which we shall give later.

Lemma. To every cardinal number n there is group €at can be gen-
erated by a set of cardinal n elements, but by no set of strigtialler
cardinal.

Proof of the theorem. Let

Fn = ngEn, ¢)9 |En| = na
Fm= gp(Em, ¢), |Eml =m

wheren andmmay be infinite cardinals. Choo& of the above lemma.
Then there is a epimorphisgof F, onto G,,. Assume that there is an
isomorphismy of Fr, onto F,. Thengy is an epimorphism ofF, onto
Gn. ThereforeEZY generates the group,. Hence we haven = |Ep| >
IEZY| > n using the isomorphisng~2, we similarly getn > m. Hence
m = n. Differently put,F,, andF, are not isomorphic im # n. Hence
the theorem.
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Proof of the lemma. For every cardinah, we shall construct &, with
the desired property. Lé#l be any set withM| = m. Consider the s&b
of all finite subsets oM. We turnG into a group by defining the binary
operation as the symmetricffirence. That is to say, for eve®yT € G.

sT=(s-T)| JT-9)
We take the empty set as the unit element and eaghas its own in-
verse. For we have

S¢ = ¢S = SandS S= ¢, for everyS € G.

The verification of the associativity of this multiplicatiés easy and
therefore we omit it. Hence the multiplication defineddnmakesG a
group. We claim that this group is generated by the set of one-element

subsets oM, E = {{x}‘x € M}. ForifS = {al,az,...,ak}, it is easily

seen thalS = {a}{ay}---{ax}. Further for everyS, T € G, we have
ST = TS. ThereforeG is commutative. We shall show that no set
of cardinal< m generatess. Let E° be a set of generators &f with

EC = n, say. Then every elements= G can be written as

x=g"S...S*withm =+1,S e E%i=1...,k

Butin G, we haveS = S71, for everyS € G. Therefore every € G,
can be written as

X =$1S;- - - Sk with district generators; € E°.

Further, sincés is commutative it follows that every finite subset of
EC determines only one element@f Thus to every elemente G, we
can associated a finite subsetEf. This shows thalG| < cardinal of
the set of all finite subsets &°. But we know that ifX is any set andF
the set of all finite subset &f. Then
IF| = 2Xif [X| < N
and [F| = Xif |X] > Ng
Thus ifmis finite, we have, from the above inequality, th&t 2",
and thereforen < n. If mis infinite andn is finite, we havem < 2",
which is impossible. Hence ifiis infinite, n must also be infinite, and
again conclude thanh < n. Hence the groufs cannot be generated by
a set of cardinals strictly smaller tham This establishes the lemma.



Chapter 5

|dentical Relations and
Varieties of Groups

1

In the preceding chapter we have seen that an arbitrary mgfi@im a 66
set generators of a free group into any other group can badedeto a
homomorphism. In fact this property completely charastsithe free
groups. In order to generalise this notion of being “freeg wtroduce
certain classes of groups calledrietiesof groups

While proving that the free groups offtiérent ranks are not iso-
morphic we have come across an example of a g@up which the
equationx? = 1 holds for allx in G. Such equations are call@entical
relationsor laws

Definition. A law or identical relation is a relation of the form

u(X) = v(X)

whereu andv are words in_ X= (Xg,...,X;). We say that the law
u(X) = v(X) holds in a groupG if the equationu(f) = v(f) holds
when we substitute arbitrary elemenss. . ., g, of G for the “variables”
X1,...,Xn. Forinstance iu(X) = X1 X, andv(X) = XXz, then in an
abelian group the law(X) = v(X) holds.

The following fundamental relations can be easily verified

51
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(1) Ifu=v, thenu=visalaw.

(2) fu=v,isalawthensoig = u.

(3) If u=vandv=ware laws, then so ig = w.

(4) Ifu=visalaw, thensoist = v

(5) If u=vandu =V are laws, themu = vV is a law.

(6) XXt =1andX X =1 are laws.

(7) fuX) = u(Xg, ..., X%n) = (X1, ..., X%n) = v(X) is a law andY;(2),
.. Yn(2) are words in variableg, . .., Z, thenu(Y1(2), .. ., Yn(2))

=Vv(Y1(2),...,Yn(2) is a law.

The rule (7) is a called thsubstitution rule

[If we assumeX X~ = 1 and (7) we can derive the la}¥ X = 1.
For putY = XX ThenYYl=1lisalaw. ieX (X H1=X1IXx=1
is alaw.]

These rules can be used can be used to derive from given latvs th
are valid in a group further laws that “follow” from the givéaws.

Example.If X2 = 1is a law in a group, then so is
XY=YX
Proof. The lawXY = Y Xis equivalent toX"1Y~1XY = 1. Now
X7YIXY = XY X XY IXCEXIX Y XY
— (X—lY—lX)Z(X—l)Z(XY)Z
Applying (5) and (7) we hav1Y~1XY =1,i.e. XY= YXisalaw. O

It is easily seen (as for relations) that every lagX) = v(X) is
equivalent to a law(X) = 1; and it is often convenient to write all laws
in this from.
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2 Varieties

Throughout this chapter we shall assume that the set oforasi{axl, Xo,
} is countable. This is just for convenience and not a reafictish.

Let L be a set of laws invariable%xl, X2,...}. The class of all

groups satisfying the laws a&fis calledvariety. We call this the variety
definedby L and denote it by_, as it clearly depends dn For exam-
ple if L consists of the single laX; *X;1X1 X, = 1, thenV__ is the class
of all abelian groups.

A variety may be defined by fierent sets of laws. For instance if

L= {3 =1h 1 = {32 = 115150 = 1, thenVoy = Ver.

Itis easily seenthatif C L', thenV_, C V_ . We say that a variety
Visfinitely basedf there exists a finite set of laws definii

In this context there are still some undecided questions.

Problem. Are all varieties of groups finitely based?

Let C be a class of groups, and consider the “least variety” to whic
all grou_ps ofC belong: this is the variety defined by all those laws
that are (simu_ltaneously ) valid in all groups@ We can take, as the
simplest cas€ to consist of just a single grouﬁ.

Problem. If V is the least variety to which the finite gro@belongs, is
V necessarily finitely based?

Even this problem is not solved in general; onhGifis further as- 68
sumed to be nilpotent is the answer known to be positive [Ry@don
1952]; of. alsop.163.

Let V_, be a variety, without loss of generality we can assume that
all laws inL are of the formw = 1, wherew is a normal word in the
variablesXy, X, .. .. LetE be any set withE| = n. LetR be the set of all
relations of the formw(ey, ..., ey) = 1 with g arbitrary elements o
andw(Xy, ..., Xm) = 1 alawinL andm < n. Consider the group| =
gp(E; R). Now, if G is a group in the variety_, , then any mapping
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of E into G is extendable to a homomorphispi of F into G. For if
w(ey,...,e,) = 1is arelation inR, thenw(Xy,..., Xy) = lis alaw in
L; and therefore, sinc& € V_,wW(€,...,€7) = 1 is a relation inG.
Thus the seR of defining relations i go over to relations iG upon
applyinge

Therefore, by von Dyck’s theorem the mappings extendable to a
homomorphismy* of F_ into G. Thus in a way, this is a generalisation
of free groups, We calF| afree group of V| (reduced free or relatively
free) of rankn. It is easy to see th&,_ itself is a member of/__ and it
depends upon. In particular ifL is the empty set we get the free group
in the ordinary sense (in this context calkgolsolutely free groups)

3 Burnside conjectures

Let L be the set consisting of the single 1&k = 1. We denote the cor-
respondingv-, by B_,,. Group ofB_, are called groups aéxponent n
We call B, the Burnside varietyafter W. Burnside (1852-1927). There
is a problem connected with this known as the Burnside ctunjes
(BurnsideW.1902). We first state the original conjecture, now known
as the Full Burnside Conjecture; and afterwards a weaker, ftire so-
called Restricted Burnside Conjectufaull Burnside ConjectureEvery
finitely generated group iB_,, that is of finite exponem, is finite. Let
Bqy,n. denote al generator free group @-,,. The Full Burnside Conjec-
ture is equivalent to saying thiqn < .45, for every positive integer
d for every group withd generators and exponentis an epimorphic
image ofBg .

The following problem is weaker than the above conjecture.

Restricted Burnside Conjecture.

There is a boung(d, n) such that every finitel generator group of
exponentn has order B(d, n). This conjecture is an easy consequence
of the full Burnside conjecture. For if the full conjecturetrue, then
Bq,n is finite and we can takg(d, n) = |Bq|. The present state of knowl-
edge of the Burnside conjecture is for from complete. Thiewohg are
the results so far obtained in this direction. In the follogvd denotes
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the number of generators the exponent. We abbreviate the Restricted
Burnside
Conjecture and the full Burnside conjectiR8CandFBC respec- 70

tively.
d n RBC FBC REMARKS
all 2 true Trivial. In fact|Bg | = 29.
all 3 true Burnside (1902). The order
of By3 was given by Levi
and van der Waerden (1933).
Byl = 30+G+().
all 4 true Sanov(1940). The order of
By.4 is not known.
2 5 true  unsolved Kostrikin (1955).
all 5 true  unsolved G.Higman (1956).
all 6 true P. Hall and G. Higman
(1956).
all 6 true M. Hall, Jr. (1959).
all 12 true  unsolved P. Hall and G. Higman
(1956).
all all prime ptrue - Kostrikin(1959).
all Pa (p.q tue unsolve follows form a combination
dlf_ferent of Kostrikind (1959), Hall
primes) and Higman(1956)
all 4p (p, a true unsolve
prime)
2 > 72 not true Novikov(1959).

4 A consequences of the result of Novikov (1959)
and Kostrikin (1959)

Using the result of Novikov and Kostrikin, we shall deriveiateresting 71
consequence. As the Burnside conjecture is not truafer 2,n >
73, it follows thatB; 73, the 2 generator free group Bf;3, is infinite.
But 73 is a prime, and therefore by Kostrikin’s result, thesests a
maximal finite 2 generator group of exponent 73. Let us detiute
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group by B5,5 We know thatB;’73 is an epimorphic image dBy 73
and therefore is isomorphic to a quotient groupBefys. ThusB; ,; =
B2.73/N, NABy73. ThereforeN is an infinite normal subgroup of finite
index in By 73. We now state the following theorem without proof.

Theorem (0, Schreier (1972); see Kurosh (1956) pp.36-3A.sub-
group of finite index of a finitely generated group is finiteiyngrated.

By this theoremN is finitely generated. Now, it is known that a
finitely generated group contains a maximal normal subgro{ioH.
Neumann 193%. Let M be a maximal normal subgroup M. Then it
is easily seen thatl/M is simple; that is to say\/M does not contain
any proper non-trivial normal subgroup. We assert that tbegN/M
is infinite. To prove this we quote another theorem with oor

Theorem (R. Baer1953. If a finitely generated group contains a prop-
er subgroup of finite index it also contains a characterigtio definition
see section 6 of this chapter) proper subgroup of finite index

If N/M is finite, by the above theorem, there exists a characteristi
proper subgroug of finite index inN. It follows thatK is a normal
subgroup ofBy 73 and is of finite index inBy73. ThereforeB, 73k is
a finite group of exponent 73, whose order exceeds thﬁtfg’%. This
is impossible. Therefordl/M is infinite. Thus we arrive at in infinite
groupN/M which is simple, finitely generated and of exponent 73.

5

We return to the considerations of sectidn 2. Vet be a variety deter-
mined by a set of lawk. Without loss of generality we can assume that
every law ofL is of the formw(X, ..., Xy) = 1 wherew(X,..., Xn)

is a normal word in the variables;, Xy, .... We denote byF, the free
group generated by the variablgsg, Xo, . .., X, and byF the free group
generated by all the variableg, X5, .. .. That is to say,

Fp = gp({Xl,...,Xn},¢), F, = gp({Xl, Xz,...},d))
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By F we shall mean eithdf,, or F,,. With everyV__ we associate a
subgroupW of F in the following way. Define

W(Xg,...,Xm) =1
{W:W(Xl,...,Xm) 4 ™ valid in all groupo f Y L}

W(X1, ..., Xm) €"

ThatW is a group is easy to verify.

Now let F_ be a free group of/__ with E as the set of generatorsg3
and of the same rank & Consider some one-one mappipgf X onto
E, whereX denotes the set of generatorskaf We can exteng to an
epimorphismy* of F onto F_. The kernel ofy*, by the definition of
F., is precisely the groupV we have defined above. Therefaféis a
normal subgroup oF andF| is isomorphic toF/W. The substitution
rule which we have for laws in a group gives some more infoionat
aboutW. If w(xq, Xo,...,Xm) € W, andY1(X),...,Ym(X) € F, then
alsow(Y1(X), ..., Ym(X)) € W.

We make the following definition.

Definition. Let E be any setS ¢ E andnp a mapping oE — E. We say
that the subse$ admits the mapping if S”7 C S.

Theorem 1. The subgroup W& F admits all endomorphisms of F.

Proof. Letn be any endomorphism &f andxi'7 = Yi(X). If w(Xq,...,
Xm) is in W, then

n
(w(xl, Xo ..., xm)) — WX, .. XD
=wW(Y1(X), ..., Ym(X)) € W.
ThereforeW” c W. This proved the theorem. ]

Let G be any group. For evettye G, we define the mapping; of G
onto itself such that

x?t = t~Ixtfor all x € G.

now (xy)# = t~ixyt = (t"Ix)(tyt) = (X)#y# for all x andy in G. 74
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Thereforey; is an endomorphism @. But
e = (7 Ixpe = T Ixtt = x = xe e

Thuserp-1 = € = p-14t; in Other everyp; has a two sided inverse. Thus
¢t Is an automorphism dB. We call ¢; aninner automorphisnof G.
An automorphism which is not an inner automorphism is caleduter
automorphism

Let us denote by, the set of all inner automorphisms Gf It is
easy to see tha, is a group. There is a natural mappiagf G onto
A defined bys? = ¢ for all sin G. This mappingy is easily seen
to be an epimorphism. Then kernélof ¢ consists precisely of those
elements oz which commute with every element &f [For proofs see
Kurosh (1955), Ch. 4, §12]. We callthe center of5. By the definition
of inner automorphisms it follows thaAG if and only if N admits all
inner automorphisms d@b.

A subgroupH < G is characteristicin G if it admits all automor-
phisms ofG. Similarly a subgrougd < G is fully invariant in G if it
admits all endomorphisms @. By the definition of full invariance it
follows that the subgroulV in TheorentlL is fully invariant ifF. Every
fully invariant subgroup of5 is trivially characteristic inG and every
characteristic subgroup @ is normal inG. We remark that the centre
z of a groupG is a characteristic subgroup. Forafe Z, thenax = xa
for everyxin G. Therefore

a'x"=@Y"=xn" =x"a"
for every automorphisnT of G. Now sincex’ runs through all the
elements ofs it follows thata' is in Z and therefore is a characteristic
subgroup ofG. In general the centre of a group is not a fully invariant
subgroup. [See Kurosh (1955), ch. 4 15].

One can easily verify that the intersection of an arbitramypify of
characteristic (fully invariant) subgroups of a group isharmcteristic
(fully invariant) subgroup. Thus we can talk of charactarigfully in-
variant subgroup generated by a set of elements and alse ddittice
of characteristic (fully invariant) subgroups of a group.
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In general a characteristic subgroup is not a fully invargrgroup.
[See Neumann and Neumann (1951)]. The following is an uesblv
problem in this direction.

Unsolved problem.Is there a characteristic subgroup of a free grBup
of infinite rank which is NOT fully invariant ir-?

Theorem 2. The relation “characteristic” and “fully invariant” are
transitive; that is to say, if K€ H < G with K characteristic (fully
invariant) in H and H characteristic (fully invariant) in Ghen K is
characteristic (fully invariant) in G.

Proof. Let @ be an automorphism dB; o’ the restriction ofe to H. 76
Then, becauskl is characteristic 5, H* < H. Applying the automor-
phisma~ to H, we haveH*™! < H. ThereforeH = (H*%)* < He.
Hence we havel® = H. i.e. H* = H. Thereforay’ is an automorphism
of H. Now sinceK is characteristic itd, we haveK® = K¢ < K. hence

K is characteristic il6. O

The proof in the case of full invariance is similar and adjuaven
easier and we omit it.

The transitivity is not true for the relation “normal”. Inkar words
if KAHAgQ, in general it is not true tha( AG. For example take foG
the symmetric grouf,4 of permutations on four letters or the alternating

groupAs. Let
H =V, = {1, (12)(34) (13)(24) (14)(23)} and
K = {1, (12)(34)}.

We know thatHAG, andKAH. Now (123)e A4. (123)! = (132) and
(123y1K(123)= {1, (14)(23)} # K. ThereforeK is not normal inG.

We say thatH < G is accessible(or subnormal in G (notation
HAAG) if there exists subgroupdy = H,Hs,...,Hy = G, such that
HoAH1AH2 - - - AH,,.

The accessible subgroups of finite group were introduced by H
Wielandt (1939) and further studied by H. Wielandt and rdgeby 77
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B. Huppert. It is easy to verify that the intersection of twalahence
the intersection of a finite number of accessible subgrosis iacces-
sible subgroup. The intersection of an infinite number ofeasible
subgroups need not be an accessible subgroup.

If a groupG has a composition series [Kurosh (1956)1.5, §16]
then the join of any two accessible groups is again an aditeggioup
(Wielandt (1939)). The following is an unsolved problem.

Unsolved problem. Is the join of two accessible subgroup of an infinite
group (without composition series) accessible?

7 Verbal Subgroups

Let L be any set of WOFdE in the variablesXy, Xo, ... andG a group.
Consider the set,

S:{w(gl,...,gn)w(xl,...,xn)eL,gi eGi:l,Z,...n}

This is not in general a subgroup 6f We callH = gp(S) < G, the
word subgroupor averbal subgroupefined byL.

Theorem 3. Every verbal subgroup H of a group G is fully invariant.

Proof. Let n be an endomorphism @ and the verbal subgroud be
defined byL. It is enough to prove tha” C S, for every endomor-
phismn of G, whereS is the set of generators éf as defined above.
n

Now if W(gL.. ... 0n) € S.W(Xe,..., %) € Ly, then{w(gl,...,gn)} -
w(g],.... %) € S. ThereforeS” C S; this is true of every endomorphism
of G. HenceH is fully invariant inG. The converse of this theorem is
not true in general; but happens to be in the case of free group O

Theorem 4. Every fully invariant subgroup of a free group is verbal.

1This is a slight change of notation - earliestood for a set of laws 1, now only
for the set of their left-hand sides.
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Proof. Let W Be a fully invariant subgroup of a free grolp LetL be
the set of all normal words that occur W. If Y1(X),...,Yn(X) € F,
where X = (Xi,...,Xp) and X; € X, and whereX denotes the set of
variables as well as the set of generatorg pthen the mapping defined
by

X'=Yi(X),i=1,...,n

can be extended to an endomorphisnfaoivhich also we denote by.
Now if W(Xg, ..., Xp) € L, thenw(Xy, ..., Xn)" = W(Y1(X), ..., Yn(X)) €
W asW is fully invariant inF. Therefore

S= {W(Yl(Yl(é), > Yn(X))
W(X1,...,%Xn) € L,Yi(X) € F,i = 1,2,...n}

is contained inW. But clearly alsoW € S. ThusS = W, and also
gp(S) = W. Hence the theorem. O

It follows that the intersection of any arbitrary family aénbal sub-
group of a free group is a verbal subgroup. In general in aitrarp
group this is not true [B.M. Neumann (199J. It is easy to verify that
the join of two verbal subgroups of a group is a verbal subgrou

8

We shall now give an important example of a verbal subgrougt@. 79
be any group. Lek consist of the single word;*X51 X, X = [Xq, Xa].
The verbal subgrou’ of G defined byL is called thecommutator
subgroupor derived subgroupf G.

Evidently the commutator subgroup of an abelian group isrthial
group. For any group it is easily seen that the quotient g@Up’ is
abelian [Kurosh (1955)].

Theorem 5. Let W be a verbal subgroup, defined by a set L of words,
of the free group F. Then the quotient groupV¥ is the free group of
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the variety \/|_ defined by the laws @) = 1, for all w(X) € L and it has
the same rank as F.

Proof. Now F_, the corresponding free group of the varidty,, is
isomorphic toF/W*, whereW* consists of alWw(X, ..., X,) such that
W(Xy,...,X,) = lisalaw in all the groups of_. We also know thaitV*
is fully invariant inF. If w(Xy, ..., Xp)isin L, thenw(Y1(X), ..., Yn(X))
€ W for arbitrary Y;(X) € F. ThereforeW < W*. Now F/W € V_, .
Therefore, ifw(Xy, ..., Xn) € W* then the laww(X4, ..., Xn) = 1 holds
in F/W. In other wordsw(Xy, ..., X,) € W. ThereforeW* < W; we get
W = W*, Hence the theorem. O

Theorem 6. Every verbal subgroup W of a free group F is the fully
invariant closure of the set L (i.e. the fully invariant subgp generated
by L) of words consisting of either one or no word of the fro{na)(d
apart from that “commutator words” i.e. words contained hretderived
group F.

Proof. We have already remarked that the quotient grBup’ is abe-
lian. Therefore every € W can be written as = X& - X{'w/ with w’ €
F’. Letn be the endomorphism df defined byX] = X1, X/ = 1 for
i # 1. SinceW is fully invariant inF it follows thatw’ = X'l‘lw”f = X'Il.
Similarly ; defined byX" = X; and XJT“ = 1for j # i, generates an
endomorphism of and thereforev’ = X w = X, sincew” = 1.
Let gp(X¥) = gp(X1) N W. Thenk/k fori = 1,2,...n. If I is the
endomorphism defined by" = X;, X" = 1 fori # j, then K =
XKoW. Let L be the set consisting o< and all thew’sthat occur when
eachw € W is written asw = X'l‘1 . Xfw'. It is easily seen that any
invariant subgroup ofF that containd. also containdV. But W itself is
fully invariant in F. HenceW is the fully invariant closure of.. When
k=0, L is asubset ofV'. m|

Corollary B.M. Neumann, 1937.1f k # 1, then the reduced free
groups of the variety are non-isomorphic fogfdrent ranks. [If k= 1,
the free groups of the variety are all the trivial groups.]



Chapter 6

Group-theoretical
Constructions

1 The Cartesian product and the direct product of
a family of groups

Let {Gi be a family of group indexed by a non-empty setLet T 81
iel
denote tlﬁe set of all functions drwith values inG;. Consider the sd®

defined by
P:{f eT‘f(i)eGi foralli e I}.

We turnP into a group by introducing the following multiplicationf |
f,ge P. Then

fg =h, whereh(i) = f(i)g(i), foralli € I.
It is easy to see thdit € P. We take the functioe € P, defined by
g(i) = 1 for everyi € |
(where 1is the unit element o&;) as the unit element. For,
ef=fe=f, forall f € P.

63
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For everyf e P, we take the functiorf ~* defined by
f71(i) = (f(i))™L, for everyi €1,

as the inverse of. It is easy to verify thaf 7t e Pandff~t = f~1f =
e, for everyf € P. We have only to verify the associative law. Let
f,g,h € P. We have

((fgh)(i) = (fg)(i)h(i) = (F(Ha@)h() = f (i) (g(i)h(i))
= f(gh() = (f(gh)i,

for everyi € |. Therefore for allf, g, h, € P,

(fgh = f(gh).
This proves thaP is a group. We calP the Cartesian produc{unre-

iel

stricted, full, or strong direct product) ({)Gi}
Consider now the sd?* defined by

P - {1

That is to sayP* consists precisely of all € Pwith f(i) = 1; except
for a finite number of indices It is easy to see thd®* is a subgroup
of P. The subgrougP* is known as thedirect product(restricted or

fe Pand‘{i‘f(i) " 1i}‘ <X0}.

weak direct product) O{Gi}' . f || < xo, thenP = P*; that is to say,

the concepts of the Cartelseilan product and the direct prachintide
when the index set is finite. The two products we have just ddfare
important, and they occur frequently in the group theory.
Hereafter, we shall denote all the unit elements that ocgdr, lin-
less is a possibility of confusion.
Consider now, for everie |, the set

Hi :{f’f cPandf(j)=1forallj # i}.

We claim thatH;AP and thatH; = G;. Let f,g € H;. Thenf(j) =
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1,9(j) = 1, for j # i. Therefore,f~1g(j) = f-1(j)a(j) = (f(j))*a(j) =
1711 =1, forall j # i. Hencef~1g e H;, and thereforéd; < P. In fact
Hi < P* < P. Now, letf € P he Hj. Then

(f*h D) = (FWO) G () = (FANTLE() = 1, for j 1.

ThereforeH;AP. Consider now the mappinp]; of P onto G; de-
fined by
fIli = (i), for everyf € P.

We have, for arbitranf,g € P,
(fQ' = (fg)(i) = f(i) = f(i)g(i) = Mg

Therefore[]; is a homomorphism and in fact, clearly, an epimor-
phism. We call[]; the projection ofP ontoG;. Let us now restric{];
to the subgroug;. We shall denote this restricted mapping alsq iy
We claim that[]; is an isomorphism oH; onto G;. To check that this
mapping is ‘onto’, we have only to observe that for evarg G;, the
functionh, € H; defined by

ha(j) = 1 for j #1i, andhy(i) = a

is mapped on a by];. Obviously, the kernel of ]; in H; is trivial, and 84
therefore
Hi = G;, foralliel.

Thus we have irP isomorphic copies of the groufs. The group
P is something called thimternal Cartesian producbf {H;}c;, and the
external Cartesian produdaif {G;}i.

It is easy to see that far+ j, every element oH; commutes with
every element oH;.

We have already seen thidtAP*, for all i € I. We assert now that
P* is the subgroup generated {;}ic; in P. Trivially

gm{Hi}iel) < P".

Letnow f* € P* with f*(ij)) =a; #1, j=1,...,nand f*(i) = 1 for
| #1i1,...,in. Defineh;; € Hj.j = 1,...,nas follows:

hiy(ij) = aj, hi;(i) = 1 fori # ij
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Then
f* =hyhi,---hi, € gp({Hilier).

Therefore P* = gp({Hi}iel).

The following, theorem and the example we give show thataert
properties of thes; are retained in the direct product, but not in the
Cartesian product.

We call a groupperiodic if all of its elements are of finite order.

Theorem 1. The direct product of periodic groups is periodic.

Proof. Let f € P*. Let

{i

If mis the least common multiple of the orders fdf,), ..., f(in),
thenf™ = 1. This proves the theorem. m|

iel,f(i);tl}:{il,...,in}.

In general this is not true for Cartesian produets=or example, let
G =gp@a : a1!+1 =1),i = 1,23,...; that is to sayG; is a cyclic of
orderi + 1, generated bg;. Considerfy € P defined by

foi)=a,i=123,...
For any positive integan, we have
fol(m) = aff # 1,

thereforef, is of infinite order.

Let {Gi}ici be a countable family of countable groups. Th&n=
gp({Hilie1) is countably generated, since eddh being isomorphic to
Gi, is countable. On the other hand, the Cartesian productaitably
infinite family of non-trivial countable groups has the daal of the
continuum. For it is easily seen that

2% <Pl < 5" = 2.4,

We have already remarked that the Cartesian product andréwt d
product of a family of groups are equal if the index k&t finite. (The
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converse is also true if there are no trivial groups in theilfajn If
| ={1,2,...,n}, we denote this product by

P:P*:G]_XGZX"'XGn

(Note that the same notation is used for the set product d@biheut
there is little danger of confusion.)

The following theorems are easy to prove. We shall state themm
without proof.

Theorem 2. If {Gj}ic and{G}i¢| are two families of groups indexed by
the same set |, and

Gi = G/ for every i€ I,

then P= P’ and P = P”* where PP’ denote the Cartesian products
of {Gi}ier and {G}ic| respectively, and £ P* the corresponding direct
products.

Theorem 3. If {I;}jc; is a partition of the index set |, and;FP; are
the Cartesian product and direct product of the fam{Bylic|;, then the
Cartesian product (direct product) QP,-},-EJ({P’J.*}J-EJ) is isomorphic to
the Cartesian product (direct product {5;}ic.

In particular, ifl ={1,2, 3}, we have
Gy X (G2 X G3) = (Gl X Gz) X Gs.

If the G; are all isomorphic to a grou@, then we callP the Carte- 87
sian powerof G, andP* thedirect powerof G. By TheoreniR, we may
replace all thes; by G. ThenP will be the set of all functions ohwith
values inG. We denote this set big'. If f,ge G', thenfg(i) = f(i)g(i).
The unit element is the functiome G' such thate(i) = 1 for alli € I.
The inverse off € G' is the functionf 1 such thatf ~1(i) = (f(i))~* for
alliel.

Whenl is a finite set, say = 1,2, ..., n, we writeG" for G'.

The Cartesian or direct power of a groGpdoes not depend on the
index setl, but only on the cardinal df (See Kuroshm 195%17).
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2 The splitting extension

In this section we shall give a group-theoretical constomctvhich is
more general then the direct product. This constructior lvdl later
used in proving certain embedding theorems.

Let G be any group, andAG, with G/A = B. We callG anexten-
sionof A by B. We now pose the following question. Given two groups
A and B, does there exist an extension by B? We assert that the
direct product ofA andB is one such extension. For, 6t= A x B be
the direct product oA andB. According to our definition of the direct
product an element @& is a functionf on the sef1, 2} with values in
AU B, such thatf(1) € A, andf(2) € B. We shall denote this function
by the pair f(1), f(2)); in other words &, b) € A x Bis the function on
{1, 2} such thatf(1) = a, f(2) = b. Further, if @ b),(@,b’) € Ax B,
then

(ab)@.b) = (ad, bb);

the unit element oAx Bis (1, 1) and &%, b™) is the inverse ofd, b) in
our new notation. We have seen in the last section that thegtian [],

of G onto B is an epimorphism with the S(%(a, 1)‘a € A} as the kernel.

Clearly, the kernel is isomorphic t& in a natural way. If we identify
this set withA, we have
G/A = B.

ThusG is an extension of by B. But in general this is not the only
extension ofA by B.

We shall now give another method of constructing an extensid
by B. Let o be a homomorphism d into the group of automorphisms
of A; this is to saya(b) for anyb € B is an automorphism oA, and
further a(bb’) = a(b)a(b’) for all b,b’ € B: this is the homomorphism
property ofa. We take the productet

G:BxA:&u@

be B,aeA},

and make it a group by introducing the following multipliicet:

(b,a)(b’, ) = (bb,a*®)a), for b,b’ € B, anda, a € A.
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We take (1, 1) as the unit elements@f (The unit elements of bothsgg
AandP are denoted by 1. ) For

(1,1)(b, @) = (1b, 1°Pq) = (b, a)
asa(b), being an automorphism &, must map 1 on 1; and
(b,a)(1,1) = (b1, a®Y1) = (b, a),

sincea is a homomorphism and thug1) must be the unit be the unit
element of the group of automorphismsAfthat is the identity auto-
morphism. The inverse ob(a) we take as

ba)™t = @®)™

For,
(b.a)(b™, (@® )™ = (bb ™ a® (@) = (1,2).
Similarly,
(b4, (@) )b, a) = (b7, (") 1) D).
But

((aa(b_l))—l)a(b) — ((aa(b'l))a(b))—l

— (aa(b_l)a(b))—l — ((aa(b_lb))—l — (aa(l))—l — a—l.

Therefore, 71, (a?®)(b,a) = (1, 1). We have now only to
verify the associative law. Leb(a), (b/,a’) and @”,a”) € Bx A. Then
(b, a)(b". ") = (ba @ a)(b",a")
= (b, @y e’y
= (b(b'b”), (@ a2y
= (b(b'b”), a®® P gy
= (b,a)(b'b”, a®a")
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= (b.a)((b", &) (b",a")).

ThusB x Ais a group with the multiplication we have defined. 90
To show thaiG is an extension oA by B, we have first to identify
A with some subgroup d&. In other words we have to find a suitable
monomorphic image of\ in G. Consider the mappinf]; of Ainto G
defined by
alli = (g a)forallac A

Now,
(aa’)ﬂl =(Lad) = (11, aoz(l)a/) = (L,a) (L&) = alligrIl

andall: = (1,1) if and only ifa = 1. Therefore[], is a monomorphism
of Aiinto G, the monomorphic image the subgro{m, a)’a € A} <G.

We identify A with this monomorphic image; in other words we write a
for (1,a), foralla € A.
Similarly, consider the mapping the mappipjg of Binto G defined

by
bllz = (b, a), forall b € B.

We have
(bb)l2 = (bly, 1) = (bl, 1°®)1) = (b, 1)(1', 1) = bll2py [l

Furtherbll2 = (1,1) if and only ifb = 1. Therefore[], is a
monomorphism oB into G, and

Bllz — {(b, a)

b*eB}sG.

We identity B with Bll2 and writeb for (b, a), for all b € B.
Now,
ba = (b,a)(1,a) = (b1, 1°Ya) = (b, a).

Therefore every elemenib,(@) of G can be written as

(b,a) = ba, withbe B,ae A
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By the identification we have made, it is easily seen #aB = {1}.
We claim that the representation of a pdird) as a product ba is unique.
For if

ba=b'a, withb,b' ce B,a,a € A,

thenb’~1b = aa 1. ButAn B = {1}. Hence, 92
b lb=aal=1ie,a=a.b=0.
Consider now the mappinf] of G onto B defined by
(ba)l = b.

(Note that the uniqueness of the representation ba ensaftrg]tis
a mapping. ) We assert thp} is an epimorphism of onto B with A as
kernel, For,

(ba)(b'a))IT = (bba®® )T = bl = (ba)lI (&)

forallb,b’ € B,a,a € A.ltis easy to see that the kernel gfis A and
therefore
AAG,G/A = B.

HenceG is an extension oA by B. We callG a splitting extension
(split extension or semi-direct product) Afby B.

By the above construction it follows th& depends on the homo-
morphisma also. In particular, if we take fow the trivial homomor-
phism, that is, the mapping which maps every elemenB ointo the
identity automorphism oA, it is easy to see that the corresponding split-
ting extension is the direct product AfandB.

If @ is an isomorphism 0B onto the group of automorphisms Af
then corresponding splitting extension is known asitbiemorphof A. 93

We note that in a splitting extension Afby B,

b~lab=a"® foralla e A:

that is to say, all the automorphisab) of A are induced by inner au-
tomorphisms of the splitting extension. In particular whens the
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holomorph ofA, all the automorphisms oA are induced by the inner
automorphisms ob.

Not all extensions ofA by B are necessarily splitting extensions.
Consider the grouf generated by two elemenitsj with the defining
relations
iLji = L]

This group is known as thguaterniongroup (see Coxeter and Mo-
ser, 1957). It is not diicult to prove the order of) is 8, the elemenitis
four, and the only subgroup of order 2@is {1, i%}. Let nowA = gp(i).
Then the subgrou@ being of index 2 inQ is a normal subgroup d.
ThusQ is an extension oA by a cyclic group of order 2. But the only
subgroup of order 2 o) is gp(i%), which is contained ifA. Therefore
Q is not a splitting extension ok. The subgroump(i?) is also normal
in Q, as it is the only subgroup of order 2 @f But

Q/gp(i®) = Va =gpla,b: a® = b = 1).

However, Q contains only one subgroup of order 2, hence cannot
contain any subgroup isomorphic ¥. ThereforeQ is not a splitting
extension ofp(i?).

3

The quaternion groug is a finite group which is presented by two
generators and two relations. L@tbe a group generated by a minimal
set of generators consistingaélements, and let the number of defining
relations in these generators édt is not difficult to prove that ie < d,
then the grougs is infinite. Thus for finite groups, one necessarily has
e > d. Obviously the finite cyclic group are examples of finite greu
with e = d = 1. Some examples of finite groups with= d = 2 can be
found in B.H.Neumann (1956).

H.Mennicke (Kiel, Germany now Glasgow ) has shown that the fo
lowing group is finite:

G=gp(abc:a b b =bc?=c).
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It is not difficult to verify thatG cannot be generated by generated
by fewer than three elements; thGsis an example of a finite group
with e = d = 3. Later Mennicke and.P. Macdonald (Manchester)
independently have given an infinite sequence if finite gsowjth e =
d = 3. (The results of Mennick and Macdonald are to be published
in Arch. Math. and Canod J.math., respectively. This suggtse
following
Unsolved problem. Are there finite groups witke = d = 4 that cannot
be generated by fewer than 4 elements? 95

4

Let G be a group, and, B subgroups ofG satisfying the following
conditions:

() G=AB, (i) AnB={1}

We call G the general producbf the subgroup# and g,

If G is the general product of its subgroupsndB, then it can also
be written a$G = AB. For,

G=Gl=ABl=BlAtl=BA

Everyg € G can be represented as the product of an elemeAt of
and an element oB. Moreover, this representation is unique. For, if
g=ab=ab' witha,a € A b,b’ € B, then

al=pbleAnB={1

Hencea la=1=bbl iea=a,b=0.

We have seen (section 2 of this chapter) th& i§ a splitting exten-
sion of its subgroup by a subgrougB, then

() G=BA (i) BnA={1} and (iii) AAG.

We claim that conditions (i), (ii) and (iii) are fiicient in order that
G be a splitting extension gk by B. To prove this, we define a mappin@é
a of Binto the group of automorphisms Afas follows: for evenp € B,

a®® = plabforallac A

!Note:- In the recent literature it is also often called th@@aSzep-Redei product
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SinceAAG, it admits all inner automorphisms & and hencex(b)
is an automorphism oA. We assert that is a homomorphism dB into
the group of automorphisms éf For,

aa(bb() = (b[j)_la(bt{) — bi—l(b—lab)b/ _ b/—laa(b)b/
= (a*®)e®) = ge®)o(®)

for everya e Aand allb,b’ € B. Hence
a(bb) = a(b)a(b’) for all b,b’ € B;

that is,a is a homomorphism.

The condition (ii) immediately giveba = b’a’ is and only ifb =
b',a = a. Now, ba)(b’a) = bbb taba = bbya®®)a’. This proves
thatG is a splitting extension oA by B.

If, decides conditiond), (ii) and {ii ), G also satisfiesi{) BAG, then
G is the direct product oA andB. For,

a®® = p~lab=aa ‘b tab= a[a,b]
for all a € A, b € B. And sinceAAG, BAG, we have

[a,b] = (@b ta)b=al(btan) AnB= {1},
i.e., [a,b] =1, forallae A,be B.

Thatisa®® = aforalla € A; thusa(b) is the identity automorphism
of Afor everyb € B. Thereforeq is the trivial homomorphism, an@
is the direct product ofA andB.

Conversely ifG is the (internal) direct product of its subgrof@and
B, thenG satisfies (i), (ii), (iii) and (iv).

Then we have

Theorem 4. 1. G is a splitting extension of A by B if and only if it
satisfies conditions (i), (ii) and (iii).

2. G is the direct product of A and B if and only if it satisfies cend
tions (i), (ii), (i) and (iv).
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5 Regular permutation representations of a group
by right multiplications

LetG be a group. We know that the set of all one-one mappir(g @fito
G, or permutationsof G forms a group (called the symmetric group)
with the composition of mapping as multiplication. We shatibedG
in this permutation group; in other words, we shall find a nroogphic
image ofG in this group.

For everyg € G, we define a permutatign(g) of G by

X9 = xg, forall x € G.

It is easy to verify thajp(g) is a permutation of5; but this also 98
follows from the homomorphism property to be moved now. @ers
the mapping of G into the group of permutations &, defined by

o =p(g)forallgeG.

We claim thajp is a monomorphism. Leg,h € G. Then

x(@h — x(gh) = (xgh = xR = (Xp(g))p(h)
= X9, forall xe G.

Therefore,

p(@h) = p(g)p(h), forallg.heG.

Further,p(g) = 1 means
X9 = xg=x, forall x € G.

In particular if we takex = 1, we getg = 1. Hencep is a homomor-
phism with trivial kernel, that is, a homomorphism. THas= p(G).

We callp(g)aright multiplication, andp(G) the regular permutation
representation by right multiplications.

In this context, we can realise the holomorphGfas a subgroup
of the symmetric grouj$g of all permutation ofG, namely as the nor-
maliser ofo(G) in Sg.
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6 Wreath Product

Let A be an abstract group, aftla permutation group of a s¥t Con-
sider AY, the Cartesian power @&; this consists of all functions ox
with values inA. If f,ge AY, then

fa(y) = f(y)a(y). forallye Y.

We want to represer as an automorphism group &F. In other
words we want to find a homomorphismBfnto the group of automor-
phisms ofAY. For everyb € B, we define a mapping(b) of AY into AY

by |
fe®(y) = f(y? ) forallye Y.

We first prove thatr(b) is an endomorphism g&”. We have

(f9" @) = (fP° ) = F6* Hgy” )
= 2O y)g*®(y) = (7O g*O)(y),
for all y € Y. Therefore

(fg)"® = §2®g® for all f,g e A"
Further,
FOR) = 1) = 167
= oy _ feP ) — (fab)ye®)
H(OP ) = 100D = (1e0y®))
= fe®e®)y) forall yeY.

Hence a(bb) = a(b)a(b’)

Again, this is true for alb,b’ € B, hence the mapping of B into
the semigroup of endomorphismsA¥ is a homomorphism. It follows
thata(B) is a group, and also that evergb) is an automorphism ok".
(Incidentally, one easily verifies thatis a monomorphism, provided
thatAis non - trivial).

We now form the splitting extensioR of AY by B in terms ofa.
Every elemenp of P can be written uniquely as

p=bf,beB, feA.
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if p =0’ f’ withb’ € B, f € AY is any other element d?, then
pp = (bf)(b' ') = bl f2®) ¢/

We call P the (Cartesian, full, or unrestricted) wreath product of A
andB write
P=AWrB

(P. Hall uses the notatioA:B, seeP. Hall (1954).) 101
Instead of taking the Cartesian pow&f, we could start with the

corresponding direct power & we then arrive at a group* thedirect

(or restricted) wreath produadf A andB, and we write

P* = AwrB.

(P. Hall uses the notatioAB. If Y is a finite set, the two wreath prod-
ucts are equal:
AWrB= AwrB.

Next we shall consider the case when béttand B are abstract
groups. We represeifit as a permutation group &f = B by right mul-
tiplications and form the wreath produBtof A and the permutation
group ofY which represent8. We call P the wreath product of the ab-
stract group®A andB. We shall identify every elemefitof B with the
corresponding right multiplicatiop(b) and writeb for p(b); that is,

y® =P forally e B.

As beforea is the homomorphism d8 into the group of automorphism
of AB defined by

fe®(y) = f(y* ) = f(yb L), forally e B.

This is a slight simplification of the notation, and we furteanplify
it by writing b for a(b). Thus we write

fo(y) = f(ybt), forally € B, f € AB.

(This accords with our usual notation, by whioh fb = fP).
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Every elementp of P can be written uniquely ag = bf with b €
B, f € AB: and

(bf) (B ') = b f¥ f/, forall b,/ € B, f, f' € AB.

Thus by this convention of identifying the abstract gr@&iwith the
group of all right multiplications oB, we form the wreath product of
any two abstract groups.

Now suppose botA and B are permutation groups, say of sets
andY respectively. In this case we can give a particularly singae
mutation representation on the productXséx for the wreath product of
A andB. To this end, we reverse the order of the factors in the sitt
extensionP of AY by B, that is, we now write the element &fin the
form

p=fb, feA',beB.

Then multiplication of such products takes the form

(fb)(f’b’) - fbf — b lby = ff/b—lbU
= f*b* Say’

wheref* = ff®" ¢ AY andb* = bl € B. For everyfb of P, we define
a mapping €, b) of the setX x Y into itself as follows:

(x, )M = (xfW) y), forall (x,y) € X x Y.

We shall now show that the mappiggof P into the set of all map-
ping of X x Y into itself, defined by

(fb)* = (f,b)

is a monomorphism. Letb, '’ € P, with f, f’ € AY,b,b’ € B.
Then
(fb)(f'b) = ffo-lpy = f*b*.

Now,

(X )P — (109, yp) (T
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= ((xf(y))f,(yb) , (Yb)b’)

/b-1
= (X9 .y)
= (X" y).) = (X ().):
and as this is true for all(y) € X x Y it follows that

(b, b)(f",b") = (f*,b"),
that is, (b)(F'D) = (Fb)(f'D)

This proves thap is a homomorphism.

It follows that every §, b) is a permutation oK x Y. We claim that
¢ is a monomorphism dP into the symmetric group of permutations of
Xx Y. Forif (f,b) = (f/,b), then

() = (x0,yP) = ("0 y) = (. y) ")
for all (x,y) € X x Y. Hence 104

xf® = x'®) forall xe X

Thereforef(y) = f'(y).

Again this holds for ally € Y; thus f = f’. Similarly, y? = y* for
ally € Y; henceb = b’. This show thatp is a monomorphism. Thus we
have representeld as a group of permutations #fx Y.

In the following, we shall identify the wreath product of tper-
mutation groupsA and B (of the setsX andY respectively), with its
representation as a permutation groupxof Y.

The above permutation representation of the wreath praafueto
permutation groups makes the wreath product associativeother
words, if A, B andC are permutation groups of setsY, andZ respec-
tively, then

(AWrBWrC = AWr(BWrC).

In fact, if we make the natural identification o({),2) € (X x Y) x Z
and
(%(y.2) € Xx (Y x2)
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with the triplet .y, 2) € Xx Y xZ then QWrB) Wr CandAWr(BWrC)
become the same permutation groupXat Y x Z. This will consist of
105 the mapping, g, c) whereF € AY¥*? ge B% ce cand

(X7 y? Z)(F’g’C) = (XF(y’Z)’ yg(Z)’ ZC) .

Write P = AWrB Q = BWrC. Then
P:&aneAﬂbeq,
and AWrBWrC = PWrC = {(gp, C)‘go eP%ce C}

Now, if ¢ € P? ¢(2) is of the form
SD(Z) = (fZa bZ)y fz € AY, bz S B

Write
fAy) = F(y,2.b; = 9(2.

We have
(69,249 = ((x 9@, 7)
((X, y)(fz,bz)’ ZC) — ((sz(y)’ ybz)’ ZC)
((XF(y,Z)’ vy, ZC)
= (X"02,y9@ ) (by our identification)
= (x99 (say).

Conversely, by retracing the above steps, one can easilyhate
106 any triplet of the form F,g,c) with F € A4 g € B andc € C is
( by our identification) an element oAWrBWrC. Thus the group
(AWrBW rC consists of all permutations &fxYxZ of the form §, g, ¢)
with F € A¥4 ge B%,ce C, and

(Xa ya Z)(F’g’C) = (XF(y’Z)a yg(Z)a ZC)

forall (x,y,2) e Xx Y X Z.
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Similarly, we have

Q= {(g, c)‘f eB%ce C},
and AWIBWIC) = AWrQ= {(F, q)‘F e A ge Q}
Letg=(g,c) € Q.Then

(% (. 2)FD = (x702, (y,2))
- (XF(y,Z)’ (9@, z°))
= (XF(V’Z),yg(Z), zc), again by our identification

= (xy. 299,

Conversely, we can prove that arfy, ¢, ) is an element oAW (B
WrC). Thus we have proved that

(AWrBWrC = AW(BWrC).

Let us now compute the cardinality of the grodp/N rB)\WrC. It is easy
to see that

IAWTrB = |B||AY
and I(AWrBWrC| = |AWrB#|C|
= (|B||A||Y|)|ZI|C| — |A||Y||Z||B||z||cl
= |[AWr(BWrC)| because of associativity

In general the wreath product of two abstract groups as we haw
defined it is not associative. LétandB be two abstract groups. Then
by definitionAWrBis a group with the séBx AB as carrier and therefore

|AWrB = |AI®|B].
Let nowA, B, C be three abstract groups of orders sg3, 3 respectively

IAl=2,1B| =3,|C| = 5.
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Then we have

IAWTB = |AB|B| = 223, and
I(AWrBWrC| = |JAWrB“|C| = (233)°5 = 2153°5

on the other hantBWrC = |BI°l|C| = 3°5 and
IAW(BWrO)| = |ABYCBWrQ = 2375355,

108 Hence
AWr(BWTrC) = (AWrBWrC.

Thus in general the wreath product of abstract groups isssutcia-
tive and the wreath products of two groupsand B depends upon the
permutation representation we chooseBor

7

We shall later have occasion to use the wreath product ofpgwhile
certain embedding theorems. As a first illustration of wigabducts
and their usefulness, we ally them to find the sylow subgraipmite
symmetric groups.

Let A andB be cyclic groups of order 3, say

A =gpao: ag=1).B=gp(bo : by = 1).

The groupsA and B can be regarded as permutation groups on the set
X =1{1,2 3} =Y by identifying agp andbg with the cycle (123); thus

120 =22% =3 3% =1,

and similarly forbyg. Write P = AWrB. The groupP has permutation
representation on the €Y, since the groupé andB are permutation
groups on the seX = Y{1, 2, 3}.

Now,

XxY={(11),(12).(13).(21)(22).(23).(3,1).(3.2).(3,3)}
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109 For convenience, we rename these paj 3,4,5, 6,7, 8,9 in the same

order:; i.e.,
i) =i, (i=1223)
(2,])) =3+], (1=1,23)
(3 k) =6+Kk, (k=1,23)

The groupAY = Ax Ax A consists of all functions on the st 2, 3}
with values inA. In our usual notation,

P={(f,b)f e AXxAx A beBj,
where (f, b) is the permutation oK x Y such that

(x, )P = (xTO yP) xe X,y €Y.

Definefi € AY,i = 1,2, 3 by
fi(j) =21fori# J, fi(i) = ap(j = 1,2, 3).
Then it is easy to verify that
A" = gp(fy, f2, f3).

Since (,b) = (f,1)(1 b) for all f € AY, b € B,we have

P =gp((f1, 1), (2, 1), (fs. 1), (1, bo)).

Now we can easily write down the permutatiorig (), (f2, 1)(fs, 1)
and (1 bg). We have 110

(L 1D = (100,11 = 2,1)
(2, 1D = (25, 11) = (3,1)
(3, 1) = (35, 1) = (1,1)

and g )Y = (80 1) = G, j), fori=1,23,j =23
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Thus, in the alternative notation
(f1,1) = (147)
Similarly, (f,, 1) = (258), (fs3, 1) = (369). Further

(1, 1)&Po) =(13D), 1%0) = (1, 2)
(1,25 = (L.3)
(1,3)00) = (1,1),

and so on. Therefore,
(1, bg) = (123)(256)(789)
111 But

(L, bo)*(f1, 1)(L, bo)
— (321)(654)(987)(123)(456)(789)
= (258) = (f2,1)

Similarly, (1, bo)™(f2, 1)(L bo) = (f3,1).

Hence the grou® is generated by the two permutatiorfs, (1) and
(1, bp); that is, by (147) and (123)(456)(789). We also note thas
here represented as a group of permutations of degree Gstrat a
subgroup of the symmetric grougy. The order of the group is

Pl = |AYB| = 3°3 = 3%

It is easy to see that*F9!; that is 3 is the highest power of 3
dividing the order 9 fSg. ThusP is a "sylow subgroup” of5g.

Let G be a finite group, ang a prime. Ifp“T G, theG has subgroups
of order pX. Such subgroups are callsglow subgroupsThere are a
number of important theorems (known as sylow theorems) tathese
subgroups. See e.g Kurosh (19864) and Zassenhaus (1958, Ch. 1V,
p. 135).

The example considered above is a particular case of tranfioly
theorem.
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112 Theorem 5 (Kaloujnine, 1948) The sylow p-subgroup of 5 is the
wreath product

Pn = CpWrCyWr---WrCpy(n times)

were G, = gp(Co : cg = 1) is the cyclic group of order p. The group,C
can be regarded as the subgroup generated by the ¢¥2le - p) in Sp,.

LetX={12,...,p} =Xy =--- = X,, and

Z:{(xl,xz,...,xn)’xi e X, i :l,...,n};

that is to say,
Z=X1XX2~~~XXn=Xn.

n .
We rename the elements(. . ., x,) of Z, and write & 3 (x—1)p"*
i=1

for (xg,...,%,). We note thatZ| = p". In the new notajtion, we have
Pn S Spn.

Since the wreath product is associative (note that we argy ymr-
mutation groups), we get

Pn = Pn-tWrC,,.
ThereforelPy| = [Pn-1/PICp| = |Pr-1/Pp
= p (say).
Herek(n) is defined by the recurrence relation
k(1) = 1,k(n) = pk(n—1) + 1.
We shall prove by induction that 113
PO

Forn = 1, this is obvious. Assume that

pk(n—l).l_ pn—l;
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Now,

pn—l

pn—l pn—l pn—l
P = {]‘[ r] {ﬂ(p”‘l + r)} []‘[(2p”-1 + r)} = [ﬂ((p -1p+ r)]
r=1 r=1 r=1 r=1

We havepST(mp™? +r) ifand only if p5Tr,m< p-1,1<r < p™L.
Therefore,

n-1

p-D n(m Plinform<p-1
r=1

But pK-1+1t ﬂf:ll((p - 1)p™?! + 1), since the last term of this
product isp". Hence pK™D)Pp = pMTp"; for all n, ThusP, is a
sylow subgroup o5p. It is not difficult to use this result to compute
the sylow subgroups of any symmetric grdbip.



Chapter 7
Varieties of Groups (Contd.)

1

Let V be a variety defined by a set of laws that isV consists of all 114
groups in which the laws df hold. If G € V andH < G, thenH € V.

Let G’ be any epimorphic image @, that is, there is an epimorphism

¢ of GontoG’. Now if

W(Xq, ..., Xn) =1

is a law in vV, then it is also a law irG’. For, Ietg’l, ..., 0, be arbi-

trary elements of’. Because is an epimorphism, there exist elements
Oi,...,0n € G such that

g =g.1L....n
Now,

(W(g1.---.0n))* = 1=w(g].....0h)
ie., w(gs,...,0n) = 1; thus
W(Xq,...,X) =1

is a law inG. Therefore
G eV

87
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Let {Gi}ici be an arbitrary family of groups of. We assert that the115
cartesian produd® of {G;}ic| is in the variety\_/. Consider

f*=w(fy,...,fn) e P,
wherefy, ..., f, are arbitrary elements & and
W(Xq, ..., %)) =1,
is alaw inL. Then

£5() = w(fy(i),..., fa(i)) = 1, foralli € 1, since
f1(D),. .., fa(i) € G andG; € V. Therefore

f* =w(fy,..., fy) = 1pthatis
W(X1, ..., %) = 1,

is alawinP. That is

)
m
<<

Hence we have prove

Theorem 1. Every variety is closed under the operations of forming
subgroupqS), epimorphic map$Q) and cartesian product&R).

Theorem 1, enables us to make new groups of a vaviety using

there which we already know. A variety in general is not atbeader
the operation of “wreathing”.

The converse of the above theorem is also true. Before pdowg®
prove the converse we wish to remark that many of the coneepitsh
we have introduced for groups can be generalised to absiligeiraic
system in a natural way. For example, we can speak of a suiralge
system of an algebraic system, a homomorphism of an algefysiem
in to another, the cartesian product of a family of algebsistems.
Note that the concept of direct product cannot in generahtveduced
in the theory of algebraic system, as we may not have an amalofy
the neutral element of a group. Thus proofs of Thedrem 1 aedEm
[ can easily be carried over to abstract algebraic systems.
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Theorem 2. A class of groups closed under the operationdgRCp is a
variety.

We first prove two lemmas.
Let G be a class of groups. We form the clos@ef G under the

operatlonsQ R S. LetV be the least variety contamn@ By Theorem
IZI]V is closed under the operatio@s R, S. Therefore

Ccv.
Lemma 1. There is a grous* with the following properties:
() G eC
(i) Every laww(X) =

valid inG*, is valid in every group oG (and is hence a law of).

Proof. Consider the clasE of all finitely generated groups @. We 117
split F into disjoint classe$-l of mutually isomorphic groups that is
any two groups of are |somorph|c if and only if they belong to the
sameH . From each we choose a groupl, and form the cartesian
productG* of H,s. Since eactHH, € C andC is closed under the
operation, R, S, we have

G* €

||Q

Let
W(X1, ..., %) = 1,

be a law inG* andG € (_3. Foranygi,...,0n € G, let

H :gp(gl,...,gn) (S G)

Now, G € G andC is closed under the operations of taking sub-
groups. - -
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Therefore
He (_3; infact
HeF.

Hence
H ~ H, for somea.

Denote this isomorphism b Let ¢, be the projection o6* onto
H,.. Theng,01 is an epimorphism o* ontoH.
Therefore,

as wW(Xqg,..., X)) =1
is a law inG*, itis also a law inH, and thus in particular

W(gl,---,gn):l

is a relation inH and inG. Butga,..., g, were arbitrarily chosen if.
Hence
W(Xg,...,Xn) =1

is a law inG. Thus every law valid irG* is also valid inG and hence in
V. )

We have to verify from an axiomatic set-theoretic point awithat
the construction of the cartesian product of theis legitimate, that is
to say we have to verify that thd, form a family ( or that they can be
indexed by a set). Note that we have made a distinction bettotess”
and “set”, though no emphasis has been placed on this distin@as
being outside group theory proper.

Now, everyH, is isomorphic to a quotient group of a free group of
finite rank, say

H =~ Fi/R

whereF, is the free group of rank andR a suitable normal subgroup
of F,. ClearlyF, is countable for every and therefore the cardinality
of the set of all such Rs cannot exceé®®2Hence there cannot be more
H, sthanN2V0 = 2V0: and thus they form a family. Hence we have
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Corollary. The group G of the lemma can be chosen to have order
G| < 22°.

Lemma 2.Let G* be a group with the property that every law valid in
G" is also valid inG ( and hence iV), and letl be a set. Then there is

M
a subgrouF* < G*° such thafF* is generated by a set of cardingl

say

F* = gp({filic)

and ifG € V is also generated by a set of cardifiglsay
G = gp({eic),
then there is an epimorphisgof F* ontoG with

fP=q,icl.

N
Proof. Every element of5*° is a function onG* with values inG*.

<P
To everyi € |, we definef; € G, by
fi(@) = g(i), forallge G*.

Let 120
F* = gp({filic)).
We define the mapping of {fi};,, onto{e};, by

fi=¢g, foralliel.

We claim thaty can be extended to an epimorphismFdfonto G.
To prove this we have only to show that all the relationg-bfgo over
to the relations o6 upon applyingp. O

Let
U(fil,..., fin) =1,
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be a relation irF*, with fi,..., fi, € F*. Then
u(fi,.... fi.)(g) =1, forallge G*

ie., u(fi,.... fi (@) =1, forallge G*

ie. u(g(in), . ...g(n) = 1, forallg e G*'.

Letg],...,g be arbitrary elements &*. There is an element of
G*', that is a function on to G*, which takes the value@i, ...,0n at
i1,...,in respectively. We only have to defihes G* by

h(i1) = g3, ..., h(in) = g,
121 andh(i) arbitrary otherwise, say

h(i) = 1 wheni #i4,...,in.

Then
u(gi. ... gn) = u(h(ia), ... h(in)) = 1,
thus, agy;, ..., g, where arbitrary elements &,

uXe,.... %) =1
is a law inG* and therefore a law ilg; that is,

uXe,.... %) =1
is a law inG in particular

ue,,....a,) =1

This provesy can be extended to an epimorphismFsfontoG. Hence
the lemma.

Proof of Theorem 2.We shall now prove that

c=v.



Let G be any group oV andE be a set of generators B&f

G = gp(E).
By Lemmall, there is a group” € C such that every law iG" is
122 alawinV. We choose an index skwith |I| = |E|. Then by Lemm&l2,

M
there is a subgroup* < G*° such thaG is an epimorphic images of

F*. Now, since(_: is closed under the operatio@s R, S, we have

G" €

Q

and thereforés, being an epimorphic image éf, is inC that is

c

<<
||_O

combining this with the reversed inclusion which we haveeadly
proved, we get

@]

||_<

Corollary 1. The group F is a reduced free group, of rank|, of the
variety V.

Corollary 2. Let the class Gonsist of a single group §only, and let

Go be finite. Then every reduced free group &F finite rank d of the
least variety Vcontaining G is finite, and its order is bounded by

d
IF*| < |Go|®

Proof. TakeGq as theG* of Lemmd2 andl| = d. By Corollary[1, the 123
groupF* is a reduced free group of raik
Further
IF*| < ol

Now, sinceF* is a finite group it has finite number of defining rela-
tions, say
u@=21i=1...,n
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We have already proved that
uX)=1i=1,...,n

are laws inV. Therefore every law 0¥ not involving more thar vari-

ables is a c_onsequence of theslaws. In other words, the set of laws,
not involving more thar variables, where is an arbitrary positive in-
teger, is “finitely based”. Notice that this does not prowa this finitely

based. (See section 2, ch.5, p.67). m|

Theorem 3(P. Hall (unpublished))Let F = gp({ fi};.,) be a group with
the property that every mappingof { fi};_, into F can be extended to an
endomorphism of F. Then F is a reduced free group of ihnéf the
least variety containing F.

Proof. Let
U(fil, ey fin) =1,

be a relation irF. We assert that
u(Xl,...,Xn) = 1

isalawinF. Leths,...,b, be arbitrary elements df. Consider the
mappingy of { fi},, into F defined by

fiz =bg, k=1,...,n
and arbitrarily otherwise, say
fi = fi, i # il,...,in.

O

By the hypothesis of the theoremcan be extended to an endomor-
phism ofF. which we also denote by. Now

u(by,...,by) = u(fiz,..., fi;’) = (u(fi,....f)=1"=1
As by, ..., b, were chosen arbitrarily if,

u(Xe, ..., Xn) =1
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is alaw inF.

It follows that F is written as the factor group of a free group with
respect to a normal ("relation”) subgrofy thenR is verbal in the free
group €f. Chapter 5). By Theorem,$.79 F then is a reduced free
group of ranKl| as claimed.

2

In this section we shall construct new varieties out of givarieties. 125
Let C,D be any two classes of groups. We say that a grGup

aC- by -D group if G is an extension of a group € C by a group
Be D. We define the class- by —D as the class of all such grou@s
[ThJs e.g. afinite-by-abelian grou_p is one with a finite ndreadogroup
whose factor group is abelian.]

LetU,V be two varieties defined by the set of latisandN respec-

tively, where

M= {ui@) = 1}iel and
N = {v;(X) = 1}jeJ'

Without loss of generality we can assume that theXset variables
is countable, say
X = {X1, Xa,...}.

We denote by the free group on these variables,
F =gp(X ¢).
Our objective is to prove that the clads- by —V is a variety. Let
U = {uX)lu(X) = 1 alaw inU}

and V = {v(X)\(X) =1alaw in\:/}.

We know that the groupbl,V are verbal subgroups &f; in fact 126
U, V are the verbal subgroups generated by the left-hand siddsamid
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N respectively. We shall also denote these left-hand sided lapd N
respectively.
Let
U(Xl, cees Xm) =1,

bealawinL_J and
Vi(Xg,....Xn)=Li=1,....m

be laws in\_/. Write

W(X) = u(v(X)) = u(ve(Xy, ..., Xny), Vo Ky -+ 5 Xgrnp)s

RN Vm(xn1+,-~-+nm_1+1, B Xn1+...+nm))-

_LetL denote the set of all laws of the forw(X) = u(v(X) = 1, with
u(X) € U, v(X) € V. We also denote the set of all left-hand sided. of
by L. Let W be the verbal subgroup generatedlbin F and Wbe the
variety defined by.. We shall use the notation

W=U,V
and W=UV.

If H is any set of words in the variabl&g, Xo, ... andG any group, then
we denote the verbal subgroup definedtbin G by Gy. In particular

W=Fi=Fw, U=Fuy=Fy,.V=F=F,

iel’ jed’

Let G be any group in the clasg— by —V. Then there exist groups
A, B, such that

AAG, G/A= B, with AcU, BeV;
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that is, there is an epimorphisghof G onto B with A as its kernel.
We assert that the verbal subgroup defined/bin G, namelyGy, is a
subgroup ofA. For consider

V(gly---,gn)WithV@)EV,gl,---,gnEG;

we have Y(gu. . ... gn))’ = (d}.....dh) = 1, sinceB e V.
Hence 128
Gy < A

Now if

w(X) = u(v(X)) € W, where
V(X) = (v1(X), ... vm(X)), then

vi(g) € Gy < A, with gsbelonging toG and fori = 1,..., m. Since
u(Xl,...,Xm) = 1

is alaw inU and hence i\, we have

u(v(g)) = 1; thatis
uvX)) =1

is a law inG in other words,
GeW=UV.

Hence

nc

— by -V CUV.

Conversely leG be any group of the variety V. The verbal sub-
groupGy is fully invariant and hence trivially normal iG. It is easy to 129
verify thatG/Gy € V. (This is in fact true for any grouf.) We claim
that )

GV € !;
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for let
u(Xl,...,Xm) = 1
be any law inJ andvi(g), . .., m(@) € Gv; then
u(v(@) = u(v1(@), .- -, vm(@) = 1;
that is, uXg,...,Xm) =1
is a law inGy.Hence

Gv€ L_J,
ie., GeU- by -V.

Therefore,
UVeU - by - V.

Combining this with the above reversed inclusion we get

This proves thal — by -V is a variety. In the case of varieties we
shall use the simpler notation and write/ instead ofU -by V.

Theorem 4 (Hanna Neumann, 1956 he multiplication of varieties is
associative.

Proof. LetT, U,V be three varieties defined by the set of ldw# and

N respectively. The variety U is defined by all laws of the form

w(X) = t(u(X)) = 1, where
t(X) =1andu(X) =1

are laws inT andU respectively. Therefore the varieff0)V is defined
by all laws of the form o

w(v(X)) = t(u(v(X))) = 1, where
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v(X) = 1 are laws inv. Similarly one can see that the variefiyUV) is
also defined by all laws of the form

tuv(x)) = 1.

This proves that

O

The above theorem can also be proved in the following way. We
first observe that it) is any variety defined by a set of law4, then 131

Ge

ncC

if and only if
Gm = {1}

Further ifV is any other variety defined by a set lalsthen

if and only if
Gnm =1

Forif, G e l:J\_/, thenGy € l:J. Hence
Ge(TU)Y

if and only if
(GnMm)L = 1.

Let the varietyUV be defined byP. ThenG € T(UV) if and only if
GpL =1
To prove the theorem we have only to prove that

Gp = (Gn)wm-
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It is easy to verify thatGp is the least normal subgroup &f such 132
thatG/Gp € UV. Now,

(G/(GN)MINIM = (GNIM/(GN)m = {1}

that is to say
G/(Gn)m € UV.

Further ifS is any normal subgroup @ such that
G/S e uv, then
(G/S)n)m = {1}; that is
(Gn)m < S.
Thus Gn)wm is the unigue minimal normal subgroup®fsuch that

(Gn)m € UV.

Therefore
Gp = (Gn)wm-

This proves the theorem.
The associative law does not hold for arbitrary classesaig; in
133 other words ifC, D, E are three classes of groups, then in general

(C- by -D)- byE#C- by(D- by —E).
Consider the following example. L& be the class of all cyclic
groups. Consider the normal seriesfaf

{1}ACABAA4, Where
B = {1, (12)(34) (13)(24) (14)(23},
C =1{1,(12)(34).
The groupsA4/B, B/C andC are cyclic groups; that i#4/B € (::
and

B e C-by-C; thus
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Ase (C-by-C)-by-C.

But, Ay ¢ C - by —(C - by-C), asA, does not contain any cyclic
normal subgrBup. ) )

LetU be variety. We defin&! = U,U™! = U"U = UU". As the
multiplic_ation of varieties is assjociati;/gl,_” is uni(iue_ly determined.

Let A be the variety of all abelian gFoups. We call the varidiythe
variety ofsoluble group®f lengthn. A groupG is solubleif it is in A"
for somen. It is immediate that )

Alc A2cAc. ..,

It is easy to verify that this definition is equivalent to tledldwing 134
more usual definition which can be found in most text books raug
theory.

A groupG is soluble if there exits a “normal series”.

{1} = HoaH1AH2A -+ - AHp = G

with Hi;1/H; abelian, forn = 0,1,...,n - 1. WhenG is finite and
soluble, therG has a series with the corresponding factor groups cyclic.
A (not necessarily finite) grou is said to bepolycyclicif it has a
normal series with the corresponding factor groups cydicus every
finite soluble group is a polycyclic group. Polycyclic greuwere first
studied by Hirsch who called them S-groups. The term “patlicy’ is

due to P. Hall who introduced it as a part of a systematic teotogy.

The class of all soluble groups do not form a variety. One cang
that for every integen, there is aGn € A",Gp ¢ A”‘l. Consider the
cartesian producP of G,,n = 1,2.... If P were soluble, therP €
A" for somem. Therefore everg,, being an epimorphic image of a
subgroup ofP is in A™. This is absurd. Thus, the class of all soluble
groups is not closed under the operation of taking cartgsiaducts and
therefore does not from a variety.

We have already remarked in Chapter 1 that the class of adisfiel
does not form a variety. To see this, itsces to observe that the class af3s
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fields is not closed under the operation of forming cartepraducts: in
fact one easily sees that the direct product of two fieldsasostproper
zero-divisions and thus cannot be a field.



Chapter 8
An Embedding Theorem

1

The group theoretical constructions which we have discligs€hapter 136
[@ will be used to prove the following embedding theorem.

Theorem 1(Higman,Neumann and Neumanrgvery countable group
G can be embedding inZgenerator group H.

Proof. Let
G=gplaa,...)

be a group generated K}, wherel is countable; and le€ be an
infinite cyclic group generated by an elemerthus

C =gp(o).
[Later we shall modify this by choosinG is a finite cyclic group
provided that certain conditions are satisfiedpdf46.] O

We form the wreath product of the grou@sandC,
P=GWrC

Every element oP is of the formc®f wheref is a function onC
with values inG and the product of any two elemerf¥ andc'g of P 137
is given by

103
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(c3f)(c%g) = c*'f%g, where f,ge GC, and
(") = f(c™Y), for n=0,+1,+2, ...

In the groupP (and in fact inG®) we single out certain elements
gi,i € |, defined by

ai(c) = gi_j,i el,j=0,£1+2,...
We now compute the elemerksi € |, where

ki = [gi,c].

As
k = g'clgic = gl
we see thak; € G®; and

k(c)) = g'gf(c)) = g (chgf(c)
=gieaE ) =aa ' = a.

Thusk; are constant functions taking the valaefor all cg. The
constant functions clearly form a gro@# and this is isomorphic t6.
We callG* the diagonal subgroup @C. [The diagonal can be defined
in arbitrary cartesian powers, not only of groups.] It is daficult to
see that all constant functions are generated by those atmemgvhose
values are the generataxsof G, thus

gm{ki}iel) =G.

Note also that we have embeddédn the commutator subgroup of
P.

Now let B be a cyclic group generated by an elemigand letB be
“big enough” to contairp; € B,i € I, satisfying the following conditions

biqtl,bi;tbjfori;tj

and 1# bibj, bib; # by, for alli, j,k € I. This we can achieve by taking
B to be infinite cyclic group

B=gp(b), if Il = A0 :
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and if|l| = g < 45, we can either tak® to be the infinite cyclic group

or
B=gp(b;b™=1),m=3dorm> 4d - 1.

When B is the infinite cyclic group om = 3d, we choose for in-

stance _
bi=b¥Licl.

If m>4d - 1, we choose
b =b*Liel.

Itis easy to verify thab;, i € | satisfy the above conditions. We nowt39
form the wreath product d? andB. Let

Q=PWrB
Defineq € Q (in factq € PB) by
q)=c
g =g.iel,
andq(y) = 1, fory # 1,b7%,i € 1. Define further
hi[q”, 0l e PP < Q, foriel.

We now computdn;

hi(1) = [o”, dl(1) = [q” (1), a(1)]
= [a(br), a)] = [gi.c] = k;;
next hi(bj*) = [o”, q(b;*) = R (oY), a(b; )]
= [g(b; "o ), a(bj ).
Now, we have choseln, such that

1+ bibj,bibj # by, fori, j,kel.

Therefore we have 140
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hi(bY) = [alo;*bi ). alb; ] = [L.g;' 1 =1, j €.
Finally

hi(y) = [a” (). ay)] = [a" (). 1] =1 fory = Lb; " jel.
Thus
hi(1) = ki,
h(y)=1Ly# 1

We denote the group generated by thdy G*; it is then obvious
that

G = gp({hi}iel) = gp{ki}iel =G.
Further
G* <gp(g,b) =H

This proves the theorem.

This theorem was first proved (Higman, Neumann, Neumanr)194
using quite diferent methods. The proof (Neumann and Neumann,
1959) which we have given here provides answer to a numberterf i
esting questions of the form: @ has the property, canH be chosen
to have the propertl? or some property closely related R?

2 Corollaries

2.1 IfGeV,avariety, therH € VA% ForG® e VandP =GWrCe
VA, and therefore,

Q=PWrBe VA?

SinceH < Q, we have

In particular ifG € A’, we get

H e A™*% thus we have
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2.2 A countable group which is soluble of lengtif can be embedded
in a 2-generator group, soluble of length 2.

This is the best possible result in the sense that we can nxake-e
ples of groups that are countable and soluble of leagthand which
cannot be embedded in any finitely generated soluble grougngth
€+ 1.

We shall have give an example with= 1; that is, we shall give an
example of a countable abelian group which cannot be emdedaay
finitely generated metablian group. In this context, we redioeorem
which we state here without proof Theorem Hall, 1954). A finitely
generated metabelian group satisfies the maximal conditionormal
subgroups.

Consider the grous with a countable set of generataag ap,... 142
presented by

G=gpaya,...;& =La& =ay,....a&%,; =a,...),
where p is a prime. It is easy to verify thab is isomorphic to the
group of allp" th roots of unity fom = 1,2,.... The groupG is known
as “Pruferp® - group” or quasi-cyclic group. This group has many
interesting properties. For instance all proper subgrafifgs are finite
cyclic groups. For iH # 1 is a proper subgroup &, then

H = gp(an),

wheren is the least positive integer such thet; ¢ H. It is easy to
verify that
G/H =G.

Thus all the factor groups d& are either isomorphic t& or the
trivial group.

We shall now show thab cannot be embedded in a finitely gener-
ated metabelian group.

AssumeG to be embedded in a metabelian graGpWe shall iden-
tify the isomorphic ofG in K with G and takeG < K. Consider the 143
canonical mapping of K ontoK/K’” whereK’ is the derived subgroup
of K. Since all the factor groups @ are either isomorphic tG@ or the
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trivial group, the imagé&s; of G undery is either group or is isomorphic
to G.

Now if G = G, thenG; is not finitely generated. But we know that
every subgroup of a finitely generated abelian group is fintener-
ated. (See Kurosh, 19880, p.149) ThereforeK/K” and hencé is not
finitely generated.

On the other hand, & is the trivial group, then

G <K
Let GX be the normal closure @ in K. Then
G <K
DefineA, < GX by

Adfg

geGX g” = 1}.

SinceK is merabelianK’ is abelian. Thereforé\, is a group, for
everyn. We claim thatA, are invariant irGK. For, lety be an endomor-
phism ofGK, then ¢7)P" = (gP")" = 17 = 1, for all g € A,; that

Al <A,

ThereforeA, are fully invariant and thus, a fortiori, characteristic in
GK. But
GKaK((trivially ).

Hence,
AnAK, for all n.

Now we assert that
Al <A <Az---
is an infinite strictly ascending chain. For,

an+1 € Any1 andan,g € An.

Therefore by P. Hall's theorelld cannot be finitely generated. Thus
G cannot embedded in any finitely generated metabelian group.



2. Corollaries 109

2.3 IfGis abelian, in the proof of Theordh 1 we can take the gi@up
to be of order 2. But in this case we defiges GC,i € |, by

g(1)=4g
gi(c) = 1, whereC = gp(c; ¢® = 1).
Then, 145
k =[g.c] =g 'g° € GSieland
k(1) =g (Dgf) =&,
k() = g (0g7(©) = a.

It is easy to verify that whe® is abelian the mapping of {a},,
into P = G Wr Cdefined by

a’ =k,iel

can be extended a monomorphisntzinto P. Now one can proceed as
in the proof of the Theoreid 1.

If further, G is finitely generated, we have seen tBatould be taken
to be a finite group. We have

2.4 1If G € Aand finitely generated, the € 63 can be chosen as an
abelian-by-finite group.
Now,

GCAP; and
hence G°)BaAPE.

It is easy to verify that
P®/(G%)® = (P/G)®,
Now, sinceB| < oo and|P/G®| < oo, we have 146

IPB/(G%)B| < .
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Now for any f € (G°)B, we have

blfb= f?(GC)E.

Therefore
(G%)®Agp(P?.b) = Q.
Further,
B Q/(G%"
Q/P - pB/(GC)B

Since,|Q/PB| < oo, |PB/(G®)B| < o, follows that
1Q/(G%)® < co.

As G is abelian, the grouf is abelian- by - finite. It is not di-
cult to prove that the property of being abelian-by-finiténiserited by
subgroups (and also by factor groups).

25 Ifa' =1, foralli €I, in the embedding procedure of Theorgim 1
147 we can takeC be to be a cyclic group of ordex It is easy to verify that
in this case the functiong are un ambiguously defined.

2.6 1t G has finite exponent and is finitely generated, say ldyel-
ements, therH can be chosen of finite exponent*’, wherer is an
integer such thamn = n" is a possible choice for the order of the group
B occurring in the proof of the theorem; thatns= 3d orm > 4d — 1.
Now,
P=GWrC

whereC is a cyclic group of orden. SinceG is a group of exponem,
so isGC. Further
P/G¢ = C.

If x € P, thenx" € G€, and

(Xn)n _ an =1
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that isP and thereforéE is of exponenn?. Again
Q/PB =B,

whereB has been chosen to be a finite cyclic group of order
Now if y € Q, theny” e PB, and therefore

G =y =1,

that isQ, and hencéd < Qis of exponenn®*. 148
From Corollary 6, we immediately get the following reductithe-
orems for the Burnside conjectures.

2.7 Reduction Theorem for the Full Burnside Conjecture Alitély
generated groups of exponamtare finite if all 2-generator groups of
exponenn®, for all s, are finite.

This “reduction theorem” was first proved by Sanov (1945hds
lost interest in view of Novikov’s recent results.

2.8 Reduction Theorem for the Restricted Burnside Conjectlt there
is a numbep(nk, 2) such that every finite-yenerator group of exponent
n has order< B(nk, 2), then there is a numbg(n, d) such that every

finite d-generator group witd < Ail(n"‘2 + 1) and of exponenh has
order< B(n,d). In fact,

B(n,d) < BN, 2).






Chapter 9

Generalised Free Products of
Groups with Amalgamations

1

In this chapter we shall consider the question under whatitons a 149
given family of groups with prescribed intersections carelrbedded
in a group. More precisely the problem is the following.

Let {Gi},., be a family of groups an¢H;j};., be a given family of
subgroups 06G;, for everyi € |. We then ask: does there exist a group
P and monomorphism; of G; into P for everyi € | with the property

G!' NG’ = H! = H, foralli,jel?

Certain conditions are necessary for the existence of sgcbup.
First we note that
Hii = Gi.

SinceH;; andHj are to be mapped onto the same subgroup,of
they must be isomorphic. In fagt;, the restriction oﬂiej‘l to Hij, must
be an isomorphism dfij; ontoHj;. It is immediate that

eijeji = ¢,
the identity map oH;; onto itself. Further, 150

113
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O 0] Ok _ g0 6 _ 46 0i _ 146 7]

G, mGj’ NG = Hi nHy =Hjn Hjli =H N ij.
Thus the three intersections,
Hij N Hi, Hji 0 Hie, Hig 0 Hy
must be mapped onto one and the same subgroup
Gi 0 [
G' NG/ NG
Now

(Hij N Hi)® = (Hij n Hik)giej_1 = (Hﬁi N Hﬁ(i)ej_1
671

o) g1\
=[H"i NnHKk :Hjimij-
The mappingpijejk is an isomorphism offj; N Hix onto Hjj; N Hig;
in fact
%ijeik = @ik on Hij N Hik.
We can similarly write down further necessary conditionsiclth

arise from the fact that the the intersection of more thaaehgroups
151 Hjj, Hi, ... are to be mapped onto one and the same intersection of

groupsGiei,G?j, .... But once the necessary conditions in terms of the
intersection of three groups are satisfied other such dondiinvolv-

ing more than three groups are automatically satisfied.ristance, say
four groupsG;, Gj, G, G¢. Then

(Hij N Hik 0 Hi)* = HY n HEE N HE
= (H N HiH) N (H N HY
= (H N H)(HT N HY)
= Hf{ N Hfl’( N Hi{ and so on
It is easy to verify that
Gijeikeke = @ie ONHij N Hix N Hig.

Thus we have proved
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Theorem 1. In order that{G;j},, be embeddable in a group with pre-
scribed intersectiongHij} )|« it is necessary that there be isomor-
phismsy;; of Hjj onto H; satisfying the following conditions.

(1) gijeji = ¢, the identity map oH;; onto itself 152
(2) ¢ij mapsH;j N Hix ontoH;j; N Hix
(3) @ijeik = @ik onHij N Hik, foralli, j,kel.

Here after we shall refer to the family of subgroyp; }; e, sat-
isfying the necessary conditions of Theorlgm 1 as the fanfilgroalga-
mated subgroups

Let {Gi};., be a family of groups with amalgamated subgroups
{Hij}(LD'x' and et

Gi = gp(Ei; R)
be a presentation @; with generators; and a set of defining relations
R. Let

Hij = gp(Djj), where
Hij = {dij,},
v running over some index set. Sinel andHj are isomorphic, we
can choose generatdbs; in such a way that
DT}” = Dji and
Gij _
d;, = di.
Thusy runs over one and the same index segrandD;;. Without 153
loss of generality we can take

U Dij C Ei.
i

Now for everyi € |, we take a sefE; with |Ej| = |[E|; that is there is
a 1l-1and onto map; of Ej ontoE". LetR’ be the set of all relations
defined by

R = {r(e(f,...,eﬁr)=l|(r(e1,...,an)=1)6R,e1,...,ane El}
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Let
P =gp(| JE": | JR.dI, =d,. foralli, j.v
iel iel
We shall refer to the collectiofG;};., with amalgamated subgroups
{Hij € }i.jx as anamalgam. If there exists a group embedding the
family {Gi}ic, with amalgamatedH;j € }; ;) ., we say that P embeds
the amalgam”.

Theorem 2. If there exists a group P embedding the amalgam, then
the group P also embeds the amalgam andjfis the corresponding
canonical monomorphism of;@to P, then there is a homomorphigm

of P* into P, mapping

* ei* *

isomorphically onto é such that

0]

(G NG)*=G/' NG/ = Hfl = H].

Proof. Define the mapping of | Eiei* into P by

i€l
(ele‘*)“’ =¢', fore e R and

whereg; is the embedding monomorphism @f into P. We claim that
¢ can be extended to a homomorphisnmPdfinto P. m|

For let o o
i i — 1 H k.
rl(ell,. .. ,eln) =1 we arelation irR;".

Then
o o o i . .
(ri (eli,...,eln')): r (qi“”,...,eﬁ] “’): ri(eh....e") =1
since ri(e,,....an) =1

is a relation inR; andg; is a monomorphism dg; into P.
Further,
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dr = d”Jy implies

ijv

6i — j
dljv - dijv'
6,671
Pii_d =

Thus the defining relations d® go over to relations oP upon
applying¢ and thereforex can be extended to a homomorphismRof
into P, by von Dyck’s Theorem. We shall denote this homomorphism
also byy. Again an application of von Dyck’s theorem shows that
the mapping of; into P*, can be extended to a homomorphisnGyf
into P*, which we also denote by. It is obvious that

Gl =G

We claim that (sinc® embeds the amalgargi) is a monomorphism
of G;j into P*. By the definition of

6" ¢ = 6; onG;.

Therefore the kernel off is contained in that ofj. But 6;, being
a monomorphism has trivial kernel. Therefdtehas a trivial kernel; 156
that is#; is a monomorphism o&; into P*. To showP* embeds the
amalgam we have only to prove that

G/ NG =H! =HJ.i,jel.

]I”

Now,
"= (gpi(a )" = gp({df’,-rv})

- op ( J'V) gp({d,,v HT,*, and

o* o*

H H GJ G
o* o;
Leth* € G;' mGj‘. Then,

h* (G NG <G nG =6 nG.
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Now P embeds the amalgam. Hence

h* €G! NG = H! = Hj

Therefore there is a uniquree Hjj such that
h = h' e HYl.

157 Now 67 is an isomorphism of; ontoG;". Therefore

-1

h"" = h thatis
h e Hﬁ‘*; that is to say
¢ ‘A i
Gie' N GjJ c Hiej'

Combining this with the reversed inclusion which we haveadly
proved we have

o* o; o* o;
G/' mGj’ = Hij' = Hji‘.

This proves thaP* embeds the amalgam. Furtherestricted thiei*
is precisely the mappin@‘lei and hence is % 1; that is the mapping

restricted td.‘aiei* is @ monomorphism.
We shall refer taP* as the “canonic group” of the amalgam afid
as the “canonic homomorphism” &; into Px.
If P* embeds the amalgam, we cBll the generalised free product
of the amalgam. The name “ generalised free product” isfiabte as
158 there is a homomorphism & into any group that embeds the amal-
gam.

2

If all the amalgamated subgroupls; are trivial, then the cartesian prod-
uct of {G;} is one that embeds the amalgam. Therefore the corresponding
P* also embeds the amalgam; this is known as filee product of the
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family of groups{G;}. Free products occur naturally in applications of
group theory. For instance the free group

G =gp(E; ¢)

is the free product of infinite cyclic grouggp(e)}q . Another exam-
ple of a free product is the following. Consider the Bébf all linear
transformations of the form

_az+b

= with ad — bc = +1, where
cz+d

a, b, c,d are rational integers. Itis notftlicult to verify thatM is a group
with composite of maps as the multiplication. The grddps known
as the modular group. This groupM is the free product of two cyclic
groups of order 2 and 3 generatedd@andp respectively where

1

7 =-=;0%=tand
z

F-_ L g rthus
z-1

M = gp(e,8;a® = g2 = 1).

(See Coxeter and Moser 19585 — 88; the group is there calledi59
the projective modular group in 2- dimensions.)

The generalised free products, too, appear naturally imogy. For
instance the clover knot group (i.e. the fundamental grduperesid-
ual space ir8° of the clover knot) is the generalised free product of two
infinite cyclic groups say gp(a) and gp(b) with gp andgp(b®) as the
amalgamated subgroups. More generally any torus knot gisothpe
generalised free product of two infinite cyclic groups gpdail ga(b)
with gp@™) andgp(a™) amalgamated.

3

We can make examples of amalgams which cannot be embeddey in a
group. Consider the following amalgam.
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Let,
_ h2 L2 _ _ 2 g _
Gy = gp(gr. he. ki hf = k§ = Lhy kg = 1,65 = L. hi = ky).

This is known the “dihedral group” of order 8 and it is pretyse
the group of automorphisms of a square. (One can desGibalso
as the wreath product of two cyclic groups of order 2). Weddlee
alternating grougs asG,, presented as follows.

Gz = gp(g1, o, ko; 03 = 1, 1% = ko, kK = hpko.

We takeCg, the cyclic group of order 6, &3 and give it rather an
“unorthodox” presentation; that is

Gz =gp(c,d;c® =d® = 1;[c,d] = 1)
The following we take as the amalgamated subgroups.

His = gp(hy, k1) < Gy, Ho1 = gp(hz, ko) < G2
Hiz = gp(g1) < Gy, Hz1=gp(c) < G3
Hz3 = gp(g2) < Go, Hs2 = gp(d) < Gs.

The amalgamating isomorphismg; are to maph; on hy, ki on
kp, 01 onc, gz ond.

It this amalgam can be embedded in a group, then the cananip gr
P* also embeds the amalgam. N&#¥is the group generated by

01, h1, K1, g2, o, ko, . d

with defining relations consisting of the defining relatiafi$s1, Gy, G3
and the following amalgamating relations.

h1 =hp, ki =ko,01 =C, 02 =d.
Now in P*, we have,

- -1 -1
hy = h[lc,d] — h[lgl,gz] _ h% lg§19192 _ kgl Q% _ kgl 0102
— hglgz — hglgz — kgz — kgz = hoky = hyko;



4. 121

161 thatis
ko = 1 and therefore
h, = 1.
Hence,
hi=hy=ki =k = 1.
Thus,

P* ECO

and therefore cannot embed the amalgam ; that is to say thigama
we have considered cannot be embedded in any group. Not¢hthat
amalgam satisfies the necessary conditions. Thus an amadgaat
always embeddable in a group.

4

We can impose certain conditions on the amalgam to make iedmb
dable in a group. A special case when all the amalgamate cujbgr
coincide with a single group was first studied by Schreie{}9

Theorem 3(Schreier, 1927)If all the amalgamated subgroups coincides2
(with a single group) then the amalgam is embeddable.

Before proceeding to prove the theorem we make a definitiat. L
G be any group andH < G. ThenG can be written as the union of
disjoint left cosets oH. We choose one representative for each of these
left cosets. The set of all such representatives is callkdtaransversal
of H in G. Similarly a right transversal dfl in G can be defined. 15 is
a left transversal ofl in G, then

G = SH with the property
S’ ¢ S,G=S'H impliesS’ = S.

(We call |S] the index ofH in G; notation|S| = |G : H|). Every
elementg € G can be written as

g=sh withse S,he H.
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Moreover, this representation is unique. For if
g=sh=5sh,s# 9,55 S hh eH,
then

s1¢ =hhteH; thatis
sH = g'H; and therefore by our

163 choice ofS,
s=5,h="H.

It is often convenient to choose the transversal in such athatyH
is represented by 1.

We shall give two proofs of Theoref 3. The second proof will be
given in the next chapter, and applied there to give furtmebedding
theorems.

First proof of Theorem 3. Let {Gj}ic) be a family of groups and let
G; contain an isomorphic copy of a given groty for everyi € I.
Without loss of generality we can think of all these isomaeptopies
as identified with each other, i.e.,

H<Giel.

We call theG; the constituents of the amalgam. We choose a left
transversa$; of H in G;j, for eachi € |, and we here represeHtalways
by 1; thus 1€ S;, for all i € I. Now we pick out certain words in the
elements of5;. We call

W=5%...5h
anormal wordif it satisfies the following three conditions:

1) Eachs,,v =1,...,n,is a representativg 1 belonging to one of the
left transversals we have chosen, Say);

164 2)i(v) #i(v+1),forv =1,...,n, in other words, no two consecutive
s, appearing inw belong to the same set of representatives.
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3) heH.

We calln the length of the normal wordv and denote it by'(w).
In particularn may be zero also. In fact

f(w) =0

if and only ifw € H. We denote by, the normal word consisting of the
identity element alone. L&V be the set of all normal words. Consider
the mapping(g) of Winto W, for all g € | G;, defined as follows.

|

Forge Gy, ke | and
W = 8132-~~th€W

we put
w@ =
wherew’ is defined as follows.
@) If n> 0,i(n) = k; that iss, lies in the same grou® asg, then
syhgis a certain element @&y and are be uniquely written as

sshg=sh’, s € Sg,h € H.

We then put

W=5% 515N, ifg#1

and W=5% SN, if § =1

@iy If n=0o0rn> oandi(n) # k; that is if s, ¢ Gg, we represent 165
hg e Gy as

hg=sh,s € S, e H

and write W =5% 55N, if s #1;
and W=5% -sif §#1

Thusw = w’@ is defined for everyv € W and it is easy to verify
thatw’ is again a normal word. ifj is contained in more than one con-
stituentsG;, sayg € GjNGy, theng € H and we can defing” according
to (i) or (ii). Now, if

sshg = s'h’, then
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sinceg € H,
SHi=¢
and gh="H.
166 Therefore according ta)( we have

W=5% 515 =% - shg
On the other hand, computing according toif) we have, as
hg=H,
W=5% -5 =% 5hg

Thus we get the sam& whichever way we compute it.
We shall now show that

p(99) = p(Q)p(9), for g.g" € Gk.

Put
W@ = w wrE) = w’ wed9) — w*,

(1) If n>0,i(n) = k; then

shhg =€ Gy.
We write
sshg=sh’, s € S,h e H and
sh'g’ = §’h”,s” € Sx,h”" € H.
167 Now,
W =5% --515'hif s #1
and W =5%---S1h’if s =1.

On the other hand let

sih(gg) = s'h*, s" € Sy, h* € H.
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Then
W =85S --S1Sh'if s #1
But,
sh(gg) = (sshg)g’ = sh'g’ = s’h”.
Therefore,

s'=9d’ h" =h"; thatis
w o= w"

Notice that it does not matter wheth&r= 1 or not as(n— 1) # k 168
and in either case we have to consigddr g’ to computew”.
(2) fn=0orifn> 0,i(n) #k, write

hg=sh,s € Sx,h" e H
and sh'g’ = §’h”, 8" € Sy, € H.

Then,

W =% --55°h"if 8" #1
and W =% -5 if § =1

On the other hand if we put

h(gg) = S'h*, s" € Sy, h* € H,

we have W=5%--55h"ifss#1
and W =59 --5h"if =1
But, 169
s'h* =h(gg) = (hg)g’ = sh'g’ = s’h”.
Therefore

s*=9",h* =h"’; thatis
W =w.
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In this case also not does not matter whetiet 1 ors’ # 1.
Thus we proved that in both the cases

Wad) _ [Wo(g>]p @

As this is true for allwv € W, we have

p(Qd) = p(9)p(d).

Again, as this true for alyj, g’ € Gx we conclude that mapping of
Gy into the semigroup of the mappings\Winto itself, defined by

g’ = p(g), forall g € Gk

is a homomorphism; and therefore the ima@:é is a group. Hence
everyp(g), g € Gk has a two sided inverse, thatd&) is a permutation
170 of W, for all g € Gx. We claim thaj is an isomorphism ofy ontoGﬁk.

For, if
p(g) = L,ge G, then
Wg(g) - W,
But,
wo® = sh where
g=shse Sg,heH.
Therefore,
sh=1; that is
s=1h=1
ie., g=1

Hence the kernel gi is trivial; that is to saypy is an isomorphism
of Gy ontoGﬁk. Let ) denote the group of permutations\@fgenerated

by theG{’i,i e |; thatis

> =an{eh.
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By what we have just proved all grouf® are embedded in by the
isomorphisnp;. Now let

o =g*,9e€Gi,g €Gj,g €Gizk
thatis 0(9) = p(@).

Let 171

g = shwith se S;,he H, and
g = sh' with s € Si,h" e H.

Then,
V\/('@,(g) = shorh, accordingas+# 1lors=1
Similarly,
w29 = ¢ or i according as’ # 1 ors = 1.
But
V\/(;(g) _ V\/(;(g).
Therefore
s=9 =1,h=N; thatis
g=g=h
Hence
gOi - g’Pk € HP = HPk,
Thus, 172

G NG = H = Hx foralli,kel.

This proves that the groug embeds the amalgam under considera-
tion.
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5

We shall now turiW into a group isomorphic tQ, by defining a suit-
able multiplication inW, in fact 3, will turn out to be the right-regular
permutation representation of the grolfy we are to define. Consider
the mapping; of 3 into W defined by

o' =wg, foreveryo € Z

Let
W=8%--- sh

be any normal word iW. Put
0 = P(s)P(s) " P(s)P ()
It is easy to verify that
Wg =9 - SN =W

Thus the mapping is ‘ontdV. Now we shall show thajis 1— 1.
We shall first prove the following lemma.

Lemma 1. Let

0 =P(q) " Plgm) € Z, with g,Gj(1 < u < m).

and i(u) # i(u+1). Then the length of the normal wor@ws m if m> 1
and further

W =819 snhwith g, € S, 1<u<mheH.
If m= 1, then the length of is O or 1 according is in H or not.

Proof. The proof of the lemma will be by induction. Fan = 2, we
have
o = p(91)p(92), 91 € Gi1), &2 € Gi2), (1) # i(2).

Now,

wo® = s1hy with 1 # 51 € Sig),h e H
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and g1 = s1thy;
and W = (We@y@) = g 5hp, 1% 5 € Siz,h e H
and h192 = shp.
O
Thus
twg) =2

Assume the lemma to be true for all or with2r < m. Letm > 2.
Put
o = p(91)p(92) - - - p(Im-1)-

Then by induction hypothesis

W =819 Sm1h', s, € Gigyy, L<u<m-1L K e H

Now,

.\ ~(Gm) ()
wg = [Wé'] = (1% Sm-ah)or

=8 Sn1Smh, where
h'gm =5Snh,1# S € Si(m)a heH.

This completes the induction and proves that

{Wg) =mif m> 1.

If m=1, then
o = p(da)-
It is obvious that(w,) = 0 or 1 according ag; is in H or not.
Now if,
W =Wg,0, 0 € Z,
then

-1
wWo7 = Wo.

Choosemto be the least positive integer such that

oo™t = p(g) -+ p(gm), With GiiGi(y, 1 <p <m

174

175
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If m> 1, theni(u) # i(u + 1). For, otherwisero’~* can be “shrunk”
by amalgamating), andg,.;. Hence by the above lemma it follows that

Wy =m> 1.

Since
-1
wWo? = W,

this is absurd.
Thereforem = 1; thus let

oo’ = p(gu), 01 € G-

176 Then
W27 = sphy, where
01 = sthy with 51 € Si(1)s h, € H.
But
w27 = w,; and therefore
ss=1h; =1; thatis
g1 = 1: thatisto say
oo’ =p(gr) = L.

Hence

o=0'.

Thus the mappingy of > ontoW is 1 - 1. We now put a group
structure oV in the following way.
Define

wow = \/\/g‘fl, wherew,w € W
and Wl =wwl =Ww.

One can easily verify thal/ is turned into a group with this multi-
177  plication and that the group is the right regular permutation represen-
tation of the groupV. Further,W being isomorphic tg, also embeds
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the amalgam. To return to our old notatidf, will be renamedP. We
shall identify the group&}*” with Gx. Under this identification,

Gy <P forallkel.

Further
GNnGj=HinP.

Let
W=8% -sheWs, eSjyl<u<nheH.
It is easy to verify that

W=S0So---08,0h.

W =8,s,-- S,
then in general the usual product of the wondandw’ is not a normal
word. If

o = p(s1)o(s2) -~ p(sn)pe(h) and
o’ = p(sPp(sy) - - p(swe(h), then

,

WoW = W7 = (1% sh)7 = w.
Now, 178
oo’ = p(s1) -+ p(s)p(h)p(sy) - - p(sp(N).
If s, ands; do not be in the same constituent, then by our lemma
WEo = WS PSS
is of lengthn + mand
WoW = W = 8- 55D ... gMp(m
where

h gl = DRID)
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hWg, = §9p@

hm-Dg = My

On the other hand if(;’l ands, are in the same constituent, we amal-
gamates,h ands; and write

thgl = dHp®

and proceed as in the above case.
We now proceed to show that is the generalised free product of
the amalgam. Let

ule(g)) = L

be a relation in); we show that it follows from the relations of the
groupsp(G;i). We write the relation in the form

p(91)p(92) - - - p(gn) = L,

where 9,Gi¢),v = L1,...,n. [This can be done because(d)™ =
p(g™).] If n=1, then we have(g:) = L, and we have seen already that
this impliesg; = 1, so the relation is trivial. Assume then that- 1.
We claim that there are two successive elemgntg, .1 out of the same
constituent, that iv) = i(v + 1); for if not, then

f(wg(gl)p(gz)mp(gn)) —n>1

by our lemma, and this contradicts the assumed relation. N8y,
there is a produay*, say ofg, andg,.1, so that

O Ov+1 =0

is a relation inG;,) ; thus also

P(g,)P(gy+1) = P(g")
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is a relation inp(g,,,), that is a consequence of the defining relations of
PGy By means of this relation we can now reduce the given refatio
to a shorter one,

p(91) - p(gy-1)p(@)p(Ty+2) - - - p(Gn) = L.

By an easy induction one deduces that the given relationvisll
from the defining relations of the constituent groups. Thisves the
theorem:

Theorem 4. The group}. and hence P is the generalised free prod-
uct of the family of group§G;};, with all the amalgamating subgroups
coinciding with H.

We immediately have the following consequence:

Corollary. The group}. (and hence P) does not depend upon the trans-
versals $ of H in G; that have been chosen.






Chapter 10
Permutational Products

1 Permutational products and Scbreier's Theorem

In this chapter we shall introduce another product called‘germuta- 181
tional product” of an amalgam. The permutational producrmfimal-
gam will be used in giving an alternative proof of Schreidifeeorem.
The embedding group we are going to construct will be in gardif-
ferent from the generalised product of the amalgam in questDnce
we construct a group embedding the amalgam the existente gen-
eralised free product follows Theorem 2 of the precedingtdra

It the following we will be considering an amalgam of two gpsu
This is just for convenience. The same proof carries overcdse of
an amalgam of an arbitrary family of groups with a single ajaaiated
subgroup.

Let the amalgam consist of groupsB with the amalgamated sub-
groupH, H < A H < B. We choose arbitrary left transvers&sr of H
in A andB respectively. Thus everg € A andb € B can be uniquely
written as

a=sh seS heH
b=thy, teT,h; € H.

Consider the product sé& = S x T x H. Our object is to realise 182
the embedding group as a permutation group of thekKseFor every
ae€ A b € Bwe define mappings), o) of K into K as follows.

135
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Letk=(st,h)e K,se S,t e T,he H. Then put

k@ =K = (s,t,1),
where sh=sha
and t' =t

Similarly we define

kp(b) - k/l - (Sl/’ t”, hl/)’
where s’ =thh,
and s’ =s

If h* € H, thenp can be defined in two ways, once considering it
as an element oA and the other time considering it as an elemer.of
But,

shh=9dhH,
implies s=9,h = hh.
Similarly
thh* — t// h”,
implies t=t",h"" = hh'.

Therefore, whatever way we compw&™), we get
k™) = (s t,hh);

hence our definition gb is unambiguous. Alsg(h*) when applied to
any (s,t,h) € K leavess, t unaltered.

Conversely one can easily verify thatdfx), x € A or B, does not
alter s, t when applied to a tripletqt, h) € K, thenx € H.

Now consider the mappinga of A into the semigroup of all map-
pings ofK into itself defined by

a’» = p(a), forallae A
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Leta,a; € A (s t,h) € K. We have,
(sthy@ =(s,t,h),

with sh=sha
and t' =t
and further g1, WY@ = (s’ t” ),
where S’h"’ =9 h a,
and t=t.
But 184

sh(aa;) = (shda = sh'a; = s"h”.
Therefore,
(st hy@) = (s7,t”, ") = (s, t, hy @@,
As this is true for all §,t, h) € K, we have
p(aa) = p(a)p(a).

Again as this is true for alh, a1, € A it follows that the mappinga
is @ homomorphism. Therefore the homomorphic image= p(A) is
a group. Hence evepya), a € A has a two sided inverse; that iga) is
a permutation group df. Further if

p(@=L,aeA
then for every §,t, h) € K, we have
(st.hy@ = (st.h).
Therefore, 185

sha=sh ; that is
a=1
that ispa is an isomorphism of onto A°A = p(A). Similarly the map-

ping pg of B into the semigroup of all mapping &f into itself defined

by
b’® = p(b), forallb e B
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is a monomorphism; that B is isomorphic taB’® = p(B). Denote byP
the permutation group df generated by(A) andp(B),

P = gp(p(A). p(B)).

It is evident thatP contains isomorphic copies &f and B namely
A°A andBre. We claim that

APA N BPE = HPA = HPB,

Let P@ =pPp),a€AbeB.
186 Thenp, fixes boths, t of any (s, t, h) € K. Therefore,
aeH.
Similarly,
beH.

Now, sincepp is an isomorphism and

P(a) = P(b)>
it follows that

a=be H; thus
APA N BPB = HPA = HPB,

HenceP embeds the amalgam. This proves Schreier's Theorems.
We call P a permutational productof the amalgam. This proof of
Shchreier’s theorem immediately leads us to the followioglary.

Corollary. An amalgam of two finite groups is embeddable in a finite
group.

In this context we mention the following unsolved problem.
Unsolved problem. If an amalgam oh(n > 2) finite groups embed-
dable in a group, is it embeddable in a finite group?
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2

Now we shall consider amalgams of abelian groups. We askahe f
lowing question: If an amalgam aofabelian groups is embeddable in a
group, is it embeddable in an abelian group ?

Forn = 2, 3,4, the answer to this question is ‘yes’; for= 5. ‘no’
( see Hanna Neumann, 1951 and B. H. Neumann and Hanna Neumann,
1953). Fom = 2, we shall prove the assertion.

We shall start with a more general situation. BeandB be any two
groups andH, H; be isomorphic subgroups éfandB respectively, and
let H, H1 be contained in the centres AfandB,

H < centre f),H1 < centre B).

Let 8 be an isomorphism dfi ontoH;. Consider the direct product
A x B of AandB. We shall denote an arbitrary elementfok B by

axb, withae A, be B.

ConsidemN C A x B, defined by

N:{h-lxhl

hy = hO}.

Now if x = h™t x hy,y = ™1 x h} € N with
hy = h’,h; = b, then
xy = (htxh)htxh)™t= (1 xh)b x h'l‘l)
=h~th x h;hy™?
= (hh Y Y(As,h i € centre p))
= (hn )™t x hyhit.
But, 188
(=19 = (%)~ = hyht.
Therefore,

xy ! e N; thatis
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N <AxB.
It is easy to verify that

N < centre Ax B)
and therefore NAA x B.

Consider now the quotient groupx B/N. We claim that the map-
ping = of Aiinto A x B/N defined by

a=(ax1)Ne AxB/N,ac A

is @ monomorphism. That it is a homomorphism is easy to veNfyw
if

ax1leN, then
ax1=h?1xh’ forsomeheH;

that is,
a=h?t1=nh.

Sincef is an isomorphism,
1 =h’ impliesh = 1; that is
a=ht=1

Hencer has a trivial kernel; that ig is a monomorphism. Similarly
the mappingr; of B into A x B/N defined by

b™ =(1xb)N e AxB/N,be B

is a monomorphism. Thus the groupsand B are monomorphically
embedded irA x B/N. We assert tha® x B/N embeds the amalgam in
question. To see this we have only to prove

ATNB™=H"=H".
Now for anyh € H, we have

(hx1)Axh)t=hx (") teN: thatis
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(hx )N = (1 x hY)N.
Making h run through all the elements éf, we get
H™ = H.
It is immediate that
H™ = Hf* ¢ A"n B™.
Conversely ifx e A" n B™, then

x=(ax 1)N = (1x b)N for someae A,b e B.

This gives
axb™leN; thatis
a=h,b=nh’for someh € H; that is
x=(hx1)N e H" = HT".
Hence

A"NB™C H" = HT".
Combining this with the above inclusion we have
A" B™ =H" = H".
This proves thaf x B/N embeds the amalgam. It is evident that 191
Ax B/N = A"B™,

and every element %" commutes with every element 8f. We call
A x B/N a “generalised direct product” of the amalgam. [This is also
called a “central product” by some authors.]

Let A andB any two groups each containing an isomorphic copy of
a groupH. Without loss of generality we can také < A /H < B. Let
A and B embedded monomorphically in a gro@ We shall identify
these monomorphic images withandB respectively and take

A<G,B<G.

We callG a generalised direct producof the amalgam oA andB
with the amalgamated subgrotipif
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(i) G=AB
(i) AnB=H
(iii) Every element ofA commutes with every element Bf

In particular wherH is the trivial group we get the usual direct prod-
uct. In order that a generalised direct product of the anmaligaguestion
may exists necessary that

H < centre f),H < centre B).

This is immediate from (iii). We have also proved that thedition
is suficient.

Let G be a generalised direct product of the amalgam consisting
of groupsA and B with an amalgamated subgrowp. Consider the
mappingy of A x B/N ontoG defined by

(@axbNy* =ab G,

Once can easily verify thap is an isomorphism. In other word,
the generalised direct product of an amalgam in unique upteamnor-
phism. Thus we can speak tfie generalised direct product of an amal-
gam. In contract to this, the permutational product of anlgam is in
general not unique. We shall soon make an example. We suseibe
results proved above in the following;

Theorem 1. The generalised direct product of an amalgam consisting
of groups A and B with an amalgamated subgroup H exists if ag o
if

H < centre(A), H < centre(B);

and it is unigue to an isomorphism.
Taking A andB to be abelian groups we have,

Corollary. An amalgam of two abelian groups is embeddable in an
abelian group;
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3

Consider again the amalgam of two groups&nd B with an amalga-
mated subgroupd with, H < centre ), H < centre B). As before,
we choose transversd® T of H in A andB respectively and form per-
mutational producP on the seK = S x T x H. We show now that in
this case everg(a)o(A) commutes with every elemen(tb) € p(B). Let
(st,h) e K, p(a) € p(A), p(b) € (B). Then,

(st hy® = (sp,t3, hy), with
sihy = shat =ty
(51t Y® = (82,12, hp), with
tohy = tihib, s, = 5

Now from the above equations it follows that
thb = th(h;'t; *tahp) = tih(hy 't tohy).
But H < centre B). Therefore,
thb = totst;*hhithy = hohhpthy.

Hence we have,
(st hyY® = (s tz, hhy™hy)

Again from the above equations and sintec centre f), we have
sthhy *hp)a = (shghy™hs = (s1h) = s1hp = sphp.
Therefore

(s t,gPP°@ = (s tp, hh; @ = (s, to, hp);
= (s t, h)p(a)p(b).

As this is true for all §,t, h) € K, we get

p(@p(b) = p(b)o(a).

194
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This is true for alla € A, b € B. Since

P = gplo(A). p(B))

embeds the amalgam, we have proved thas the generalised direct
product of the amalgam. Thus we have:

195 Theorem 2. If H is central in both A and B, then the permutational
product of the amalgam is the generalised direct product.

The uniqueness of the generalised product gives:

Corollary. Under the assumptions of the above theorem the permuta-
tional product does not depend upon the transversals chosen

Incidentally, not that in this case the permutational patdsinot the
generalised free product. For in the generalised free ptada A — H
andb € B — H do not commute.

In general, the permutational product depends upon theveasals
chosen. We give here an example. Takd to be groups isomorphic
to Sz andH to be a subgroup of order 2 &;. For A, B, H we give the
following presentations.

A=gp(p,r; p?=r%=(pr)? = 1),
B=gp(p.r;q° = r? = (qr)? = 1),
H=gp(p.r;p? = 1).

For the transversals ¢f in A andB, first we choose

S; = {1, p, pz},Tl = {1, 9 qz}
We rename the elements i§f = S; x T, x H, for convenience:

(L11)=1 (pL1)=4; (PL1L1)=7,
(La1)=2; (pg1)=5 (p°.91)=8;
(LA 1)=3 (p.%1)=6; (p°q%1)=9;
LLn=1; ((plr)=4; (E.Ln=7;
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(Lan=2; (pan=5; (p’qr) =8;
LAnN=3; (por)=6; (PP.q"r=9,
By a straightforward computation one obtains: 196
p(p) = (147)(258)(369)(17'4')(28'5)(3'9'6'),

p(r) = (11)(22)(33)(44)(55)(66')(77)(88)(99),
0(q) = (123)(456)(789)(13'2)(4'6'5)(79'8).

One can easily verify that

[o(p). p(a)] = L.

Thusp(p) andp(g) generate a group of order 9. Lpt denote the
permutational product of the amalgam,

P1 = gplo(p). p(a) p(r)).

It is not difficult to verify thatP; is an extension ofip(o(p), 0(q))

by gp(o(r)). Thus 197
|P1| = 18.

Now we choose dierent transversals and form the permutation pro-
duct. Choose

Sy = {r, P, pz},Tz =T= {1, o, qz}
to form the permutational product. Let

Ko =S, x Ty x H.

As before we rename the elementsof
rin=1  (al=2  (.¢.1)=3
(PLD=4  (Pal=5  (EdF1)=6
(P.L1)=7  (.a1)=8 ("¢’ 1=9;
r,1,r)=1; (r,a,r)=2; (r,g%r) =3
(L) =4; (pan=5; (pd.n=6;
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PLn=7; (pPPan=8; (P nN=9.
As we have not changed the transverBglof H in B, p(q) andp(r) 198

are not altered. The only generator that is altergg{ 3. One can again
compute it without diiculty:

o(p) = (174)(285)(396')(1'47)(258)(3 69)

Now
[o(p), p(@)] = (132)(456)(12'3')(7'8'Y).
Thusgp(e(p), p(Q)) is not elementary abelian; in fact it turns out to
be a group order 81. The gro#, the permutational product with the
above choice of transversals is given by

P2 = gple(p). p(a), p(r)); and
P1 # Pa.

Thus, in general, by selectingftiirent transversals we gefldirent
permutational products. If we choose the transversafs p®}, {r, d, 9°}
of H in A, B respectively, the corresponding permutational prodrict
we get, is a group of order 9; in fact it is the direct produdhefalternat-
ing group,Ag and a group of order 2 and therefore not soluble, whereas
Sz is metabelian. Thus the permutational product of two mdiaie
group with an amalgamated sub ground need not even be soluble

4

Consider now the amalgam of any two groups with an amalgaimate
subgroup, sayH. We have already seen thathf is central both in

A and in B, then the permutational product does not depend upon the
transversals of chosen inA andB. We now prove that iH is central

in A, then the permutational product is independent of the vexsal of

H in B we choose to form the product. More precisely we have

Theorem 3. Let H < center(A), S a transversal of H in A.If TT” are
any two transversals of H in B, then the permutational pradion the
set K= Sx T x H and the permutational product®n K" = SxT’xH

are isomorphic.
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Proof. Letp’(a), p(b)a € A, b € B, denote the permutations on the set
K’ corresponding to permutatiopga), o(b) on the seK. Consider the
mappingy of K into K’,

(st,h? =(st,h),seS,hheHteTt'eT’

defined by
t'h = th.

It is obvious thatp is 1- 1 and onto and

(st,h) 1= (sth),seSteT,t' eT hheH,
where th=t'h.

Now fora € A, let us compute 200
(st.h)* (ag). (s t.h) e K.
We have

(st,h)?" = (st h), where
th=t'nW,teT,heH; and
(s t,h)*@ = (s, 11, hy), where
s1hy =shat=t;,5 € S,h; € H; and

finally,

(s1.t1, h1)? = (s1, 17, ), where
t/lh’l = tlhlyt’l eT’, h/l e H.
Now,
tihi =t1hy =th; = th.h_lhl = t'h'h_lhl_

Therefore, 201
ty =t,h, = Whth.
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Using the hypothesis th&t <centre f), we get

(s@h = sha= s;hy; thatis
sa= gh;h™t and
sha = (sgh’ = (sshih™Hh = s;(h7th) = sih].

Thus
(V.7 = (s, hy) = (st ) = (st Y'@.
As this is true for all ', h") € K’, we have
¢ p@)¢ = p'(a).
Now considery p(b)¢, for b € B. We have

(st'h)* 1= (st h),th=th;

and 6.t hyP® = (s ty, hy),

where tlhl = thb, 11 €T, hl eH:

and 6t,h)? = (sty, M),

where t1hy =tihg, t € T/, h) e H.
202 But,

t'h'b = thb = t1hy = t}h).
Therefore,
(s t,W)F 0% = (sty,h) = (st Hy©®.
Again as this is true for all{ t’, ') € K’, we get
¢~ 'p(b)e = p'(b).

It is obvious that the mapping of p(A) U p(B) into p’(A) U p’(B)
defined by
PN = ¢~ p(X)e, X € p(A) U p(B),
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is1-1 and ’'onto . Further if

u(p(xa), ... p(%) = L),

is a relation inP1, with
X €p(A)UpB),i=1,...,n,

then

U(p(Xl)n, cee ’P(XZ) = (U(p(X]_), v ’p(xn))TI) = 90_1
u(e(%), . ...p(X%n))e = ¢ Ml = L.

Therefore by von Dyck’s Theorem,can be extended to an isomorz03
phism ofP ontoP’, asp(A) U p(B) andp’(A) U o’ (B) generateP andP’
respectively. This proves the theorem.

5

We shall now consider questions of the form:

If the groupsA and B have the property?, can the amalgam be
embedded in a group with the propertyP?

Let # be a property of groups. We say that a gr@pas the prop-
erty P locally if every finite set of elements @ is contained in a sub-
group of G having®. In particular, a groufs is locally finite if every
finitely generated subgroup @ is finite. Similarly we can speck if
locally solubleandlocally nilpotent groups.

A locally finite group is obviously periodic. For a long timething
was known about the converse of this statement; but the reesults of
Novikov provide example of periodic groups that are not ligcénite.

Consider an amalgam of groupsB with an amalgamated subgroup
H. We ask ifA andB are locally finite, can the amalgam be embedded
in a locally finite group? The answer to this question, in gahés ‘no’. 204
But if we impose certain ‘good’ conditions d¢thsuch an embedding can
be achieved. The answer to the above question is ‘ydd'if finite or
H is central both inA andB. (See Theoremd 4 aibdl 5.) Hf is central
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only in A or B, the answer is not completely known; for a partial result,
see the end of this Chapter.

We can repeat the same question replacing “locally finite®gm®r
riodic”; that is, we ask: ifA and B are periodic, can the amalgam be
embedded in a periodic group? Again, in general, the answaol. If
H is central in bothA and B, the answer is 'yes’. Nothing is known in
the case whehl is finite or whenH is central only inA or B.

We now give an example to show thatdfand B are locally finite,
the amalgam need not even be embeddable in a periodic group.

LetC be a periodic abelian group in which the orders of the element
is unbounded. For instance we can t&kéo be the Prufep™ -group.
Let

H=CxC.

Take
A=gp(H,a;a* = 1,(c,d)? = (d%,c), forall (c,d) € H)
and B=gpH,b;b®=1(cd)P = (cd,c), forall(c,d) € H).

A is the splitting extension off by the cyclic group (of order 4)
generated by a; similarly is the splitting extension dfi by the cyclic
group (of order 3) generated ty It is not dificult to show (cf. the
lemma in the next section) that an extension of a locallydigitoup by
a locally finite group (or as we also say a locally finite-bgdty finite
group) is itself locally finite. ThusA and B are locally finite. Their
intersection is, of course,

ANnB=H.
Let P be any group embedding the amalgam, consider the element
p=abeP
We have for any¢, d) € H,
(c,d)P = (c,d)® = (d2, ¢)° = (dc, d).
It is easy to verify that

(c,d)”" = (d"c,d), forn=1,2,3,....
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206 If pwere of finite order, sayn, then
(c,d)P" = (d™c,d) = (c, d);
that is,

dMc =: that is
d™ =, foralldeH.

This contradicts our choice &f. ThereforeP is not periodic.

6

In this section we shall give two ficient conditions for the amalgam
of two locally finite groupsA and B with an amalgamated subgrottp
to be embeddable in a locally finite group.

Theorem 4. The amalgam of two locally finite groups A and B with an
amalgamated subgroup H is embeddable in a locally finite gibt is
central both in A and B.

Proof. Since
H < centre f),H < centre B),

the generalised direct produktof the amalgam exists. We claim that
P is locally finite. One can prove this directly. But, we shadiddice it
from a more general lemma. O

Lemma. An extension of a locally finite group by a locally finite group
is a locally finite group.

Proof. Let P be an extension of a locally finite group by a locally 207
finite groupB, so that
AAP,P/A = B.

Let p1,..., pn be arbitrary elements d?, wheren is any positive
integer and

G=9gp(p1,---,Pn)-
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Consider the canonical mappiggf P onto P/A. We have
IG¥] = Igp(p}, . ... Ph)l < o, since

P/Ais isomorphic toB and thus locally finite. lfpg is the restriction of
¢ to G, we have

g061{1} ~GNAG" = GF.

Therefore,
G/GNnA=G*.

Now sinceG is finitely generated an@ N A has finite index inG,
by a theorem of Schreier (1927, cf, e.g Kurosh 1956, p. 3®)@ls A
is finite generated. Therefore the local finitenesf\adamplies that the
groupGnAis finite. Now, sincesn AandG/Gn A are finite,G itself is
finite. This prove thaP is locally finite. Now to complete that proof of
Theoren#, we have only to remark that the generalised directuct
P of the amalgam is an extension Afby a factor group oB (namely
by B/H).

Theorem 5. The amalgam of locally finite groups A and B with an amal-
gamated subgroup H is embeddable in a locally finite groupis fiite.

Proof. Choose transversa T of H in A andB respectively and form
the permutational produ® of the amalgam on the skt=S x T x H.
Let,

G=9gp(p,.---P),PiEPi=1,...r

be any finitely generated subgroup Rf Eachp; is a word in the ele-
ments ofp(A) andp(B). Letp(g),i = 1,...,mand

p(bi),i =1....0§ EA,bi eB

occur whenp; are expressed as words in the elemenis(8j andp(B).
Let,

A; = gp(as,...,am, H)and
B: = gp(bs,...,bm H);so that

G =gp(p1.---. Pr) < gp(e(Ar), p(B1), p(H)) = P1(say).
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Now sinceH is finite andA and B are locally finite, the group8y 209
andB; are finite. Further

AiNBy=H.
We now defineKy, € K,a € A,b e Bby
Kap = {(s, t.h)|seah,te bBl}

SinceAq, B; andH are finite, eachyy is finite; in fact,

A4l |B1
|Kap| = [S naA||T nbBy||H| = |As: H|[By: H||H| = | ||H|| |.
Further fora,c € A, b,d € B either

Kab N Keg = gor
Kab = ch-
For, if (s t, h) € Kgp N Keg, then
seaM NCcA,tebB NdB;

hence aA; = cA;,bB; = dBy,
and Kab = ch.

Now since every g t,h) € Kg, it follows thatK = | Kg. We 210

acAbeB

claim that everyK,, admitsPy. For let (5 t,h) € Kgp; then, fori =
1,...,m,

(st,hy@ = (1,11, hy) where
sthy = sha,ty = t;

Thus

sts = hahtt e A,
and SA = S1A;.
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But (s, t, h) € Kgp. Therefore
s1A; = sA = a/; thatis s, € aA.

Moreover,t; = t € bB;. Hence 6 t,h)’@) e Ka,. Similarly it can
be proved that

(s t, @) e Ky, for every 6,1, h) € Kap.
211 It is also obvious that, for evelly € H,
(S t’ h)p(h,) € Kab9 (S t’ h) € Kab-

Thus for everya € A, b € B, the elements oP; restricted toKgy
are permutations of the skty,. HenceP; is a subgroup of the Cartesian
product of symmetric groups of permutations on the Kgts Now since
all of the setK,, have the same cardinal, the groepcan be regarded
as a subgroup of a Cartesian power of the gr&@p) whereS(F) is
the symmetric group of permutations on a Bedf cardinal|Kgp|. Now
the groupP; is finitely generated. The following lemma proves that the
groupPy is finite.

Lemma. Let E be a finite group, Y any set and Q a finitely generated
subgroup of E. Then Q is finite.

Proof. Let Q = gp(th,...,qn) € EY, with g € EY. Consider ther-
tuples

(@u(y).---.an()).Y €Y.

SinceF is finite, there can only be a finite number of distinct such
n-tuples. In fact the numbeX of distinct n-tuples cannot excedd"|.
Letys,...,yn € Y. be such that

(ql(y)’ s 7CIn(Y))’| =1...,N

212 areN distinctn-tuples. Let

Yo={Y1,---,YN}
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Consider the mappingof Q into EYo defined by

9 = o,
whereqq is the restriction ofy to Y. It is easy to verify that is a homo-
morphism. In fact is a homomorphism. For l&f € Q belongs to the
kernel ofg, that isq’ = ey, wheregy is the neutral element d&°; that

is
eoly))=21i=1...,N.

If g=u(qs,...,qn), then

a(y) = u(@a(y). - - - an(y))-
Now there exists &;,1 < j < nsuch that

ql(y) = ql(yj)vl =1...,n
Now
u@(yy), - - -» an(yj)) = 1, sinceq’ = e.
Therefore 213
aly) = u(a(yj) - - - an(yj)) = 1;

asy was an arbitrary element of, we see that) is the unit elements of
EY. Thus the kernel df is trivial, in other wordsg is a homomorphism.
Now 6, being isomorphic to a subgroup of the finite grde, is finite.
This completes the proof of the lemma.

Thus we have proved that every finitely generated subgRaugf P
is finite; that isP is locally finite.

Observing that in the proof of the above theorem the trassisy T
were arbitrary we have:

Corollary. Every permutational product of the amalgam of two locally
finite groups with an amalgamated subgroup is locally firfithé amal-
gamated subgroup is finite.

If AandB are locally finite and iH is central inA and of countable
index inA, it can be proved that there is an embedding (in a permutation
product with a suitable transversalof H in A) in a locally finite group.

We shall, however, not prove this.






Chapter 11

Embedding of Nilpotent and
Soluble Groups

1

Let G be a group ané c G, B c G be any two subsets @&. We define 214
the commutator subgroupA, B] of these subsets as

[A B] = gp({[a, bllac Abe B}).

In particular [G, G] is the derived groupof G. A normal series of
the form
GC=Gy2G1>2Gy>---

is called adescending central seridfs

GiNG,i=12, ..., and
Gi/Gj;1 < centre Gi/Gj1),i=0,1,2,....

It is immediate that
Gi/Gis1 < centre G/Gi.1)

if and only if
[G,Gi] < Gjs1.

157
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In general a descending central series may not becomenstgtin 215
a finite number of steps. We call a groGp nilpotent of classes ifi G
has a descending central series with

Gn = {1}

GC=Gy2G1>2Gy>---
where Giy1 =[G;,Gl,i=0,1,2,...

The normal series

is called thelower central series.One can show that the terms of the
lower central series are verbal subgroup&and hence fully invariant
in G. A groupG is nilpotent of class if and only if then® term in the
lower central series is the trivial group. Furthenifs the least integer
such that the™ term of the lower central series is the trivial group, then
G is nilpotent of class but not of class — 1.

A series of the form

{l =H, <Hi <Hj---
is called amascending central series serids

HiAG,i=1,2,..., and
Hi;1/H;i < centre G/H;)

216 or equivalently if
[G, Hi+1] < H;.

Obviously, in a nilpotent group there is an ascending cértrdes
terminating inG in a finite number of steps. The ascending central series

{1l =Hp<Hi<Hx<--.
with Hi,1/H; = centre G/H;)

is called theupper central serie®f G. In general, the upper central
series does not become stationary in a finite number of step&\aen
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if it does it may not end irG. But the upper central series of a nilpo-
tent group reacheS in a finite number of steps. Further the upper and
the lower central series of a nilpotent group (brokéhas soon as the
former has reache@ and the latter 1) have the same length.

Obviously every nilpotent groups is soluble and the lendthotu-
bility does not exceed the class of nilpotency. It is ndficlilt to prove 217
that

Theorem 1. A group of order B where p is a prime and > 1 is
nilpotent of class i 1.

The proofs of the above statements including Theorem 1 iarigist
forward (see eg. Krosh (1956), Chapter XV,p.211.)

2

We have seen in the last chapter that an amalgam of two alugltiaps
(i.e. nilpotent groups of class 1) is embeddable in and abajroup.
We now ask:

Can every amalgam of two nilpotent (soluble) groups be embed
in a nilpotent (soluble) group?

In general, the answer to this question is 'no’. In fact, ¢hisran
amalgam of an abelian groupand a nilpotent grou of classc = 2
which cannot be embedded in any nilpotent group. (J.Wied&89)

The following example shows that an amalgam of two nilpotent
groups need not even be embeddable in a soluble group.

Let

K=gp@h ¢g=h"=1  [gh=1)
A=gpH,a; g®=ghh*=h a=1)
B=gpH,b; ¢®=g,h°=gh b°=1).

Clearly, 218
IH| = 5%,|A| = |B| = 5°.
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By TheorentlL A and B are nilpotent groups of class 2. Consider
the amalgam of the grougsandB with the amalgamated subgrot
From the definition oA andB we readily confirm that

HAA HAB.

We now prove that the amalgam Afand B with the amalgamated
subgroupH is not embeddable in any soluble group. Gebe a group
embedding the amalgam and

p=gpA B) <G.

We first note that
HAP.

LetT be the group of all automorphisms dfinduced by the inner
automorphisms of. It is well known that

I' = P/N,

whereN is the centralizer oH in P. (The setN of all elements inP
which commute with every element bff is group; the groug\ is called
the centralizerof H in P. SinceH is normal inP, one easily verifies
thatNAP.)

219 Now,

I' = gp(a,B),

whereq, 8 are the automorphisms éf induced by the inner automor-
phismsga,, ¢p, of P given by

Xfea = a ‘xa, for everyx e P
and X = b 1xb, for everyx e P.

The groupH being abelian and of exponent 5 can be considered as
a vector space over the prime fiegBF(5) of characteristic 5. In fact
H becomes a two dimensional vector space @€(5) with (g, h) as
a basis. Thus the endomorphisms ringtbfis the ring of all 2x 2
matrices ovefGF(5). Let us now take the matrix representations of the
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automorphisms, 8 of H. Now writing the operations dfi additively,
we have

¢ =g¢g°=g+h
h* = he = h.

Thusa corresponds to the matrix

o)

Similarly it is easy to see th@tcorresponds to the matrix 220

53

The multiplicative groupM generated by the matricesg is pre-
cisely the group of all % 2 matrices with determinant 1 ov&F(5).
The groupl is isomorphic to this group. We identifyI” with M. The
groupM is well known and is called the binary icosahedral group (see
Coxeter and Moser, 1957, p.69). The binary icosahedralpgnas order
120. Its centre is cyclic of order 2, and the factor group efdbntre is
the icosahedral group (or alternating grofyof degree 5). Thus/ is
not soluble. This prove th@ and therefords is not soluble. Thus the
amalgam of two nilpotent group of class 2 need not even be édalixe
in a soluble group.

3

In this section we shall impose some conditions on the anadted
subgroupH to achieve a 'good’ embedding of the amalgam of nilpotent
or soluble groups.

Theorem 2. Let A B be two nilpotent groups of class c (soluble groups
of length¢). The amalgam of A and B with an amalgam subgroup H can
be embedded in a nilpotent group of class ¢ (soluble grouprajth¢)

if H is central both in A and in B. 221
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Proof. Let P be the generalised direct product of the amalgam. Then
P =Ax B/N,NAA x B.

Now the direct product of two groups (and indeed the Canmesia
product of an arbitrary family of groups) that are nilpoteftclassc
(soluble of lengthy) is itself a nilpotent of class (soluble of lengtht)¢,

In fact the nilpotent groups of clags and also the soluble groups of
length¢, form a variety. [For soluble groups, of cf. Chapter 7, fdpoi
tent groups we omit the proof]. It follows thatx B, and then als®, is
nilpotent of class (soluble length). m|

If H is central inA but not necessarily central BB then Wiegold’s
example (see Secti@h 2) shows that we cannot in general bope ém-
bedding in a nilpotent group. But in the case of solubilitg gituation
is different as is shows by the following theorem.

Theorem 3. If A is soluble of lengtl, B soluble of length m and if H
is central in A then the permutational product P of the amalg@rre-
spective of the transversal chosen) is soluble of lengthvr m— 1.

Proof. LetS, T be transversals ¢fl in AandB respectively an&k = Sx

222 TxH. LetP be the permutational product of the amalgam corresponding
of the transversalS, T. For everyf € BS, we define a mapping(f) of
K, called aquasi-multiplication as follows:

(st = (st O (st,h) e K.

In other wordsy(f) coincides witho(f(s)) on all those elements of
K whose first coordinate is Thus

(s t,h)"M(s", t*, h*), where
s = s t*h* = thf(9).

Consider the mapping of the Cartesian poweBS into, and in fact
onto, the ser of all quasi-multiplicationsy being defined by

7 = y(f), f € BS.
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First we prove that

y(fg) = ¥(f)¥(g), for f,g e BS.
Let (s t, h) be an arbitrary element &. Then

(s.t, )19 = (s t, hP(T9E) = (5, hyP(FENIE) = (g t, hyP(TENREE),

- (strpo) .

Now sincesis not altered after applying(f), we have 223

((s, t, h)v(f))p w“wr_ ((3 t) hy(f))m = (s.1, hy(DPES)Y Q)

Therefore
y(fg) = y(f)r(9).

This proves thai is a homomorphism, and the homomorphic image
is a group. In particular, this proves that the quasi-mlitiitions are
permutations on the s&t. Now if

y(f) =L, then
(s t,h)"(") = (s t,h) for every G t,h) € K;

that is

thf(s) = th, for everyse S;i.e,
f(s) = 1, foreveryse S.

Thus the kernel of is trivial; that is,n is an isomorphism. Thus 224

Further,
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For,

p(b) = y(fy), b € B, where
f, € BS is such that
fo(s) = bfor everyse S;

in other wordsf, is in the diagonal oBS.
Consider the group
A=TnP

We claim that
AAP.

Letae A y(f)eT, f € BS and
p@ ()o@ = p@) ¥(fo(@) =¥
225 Let (s t,h) € K and
sal=35,5eSheH.
Thuss hare completely determined ayands. Then
(st = (St hh);

for, H being central im, we have

Now

(5t,hh)"() = (5 ¢, hhy (" = (515, hy), where
tyhy = thhf(9).

Finally we have,

(St )@ = (sy, 13, hy), where
sthy = Shia
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Now, again sincéd < centre A), we have

sihy = Sha = (Sa)hy = s( hy)

226 Therefore,
s=s, and
hy=h "hy
Further
= =1 —1 = —1
tithy =tth = (tzhy)h ~ = (thhf(9)h

— th(hf(h )

Now, sinces, h are completely determined ks/anda, the function
f’ defined by

f'(s) = hf(In
is well defined and is iBS. We have
(st,hy@ D@ = (s, t;,hy); and
s = s tihy = thf’(9).
Therefore 227
p@Yy(fp(@) = y(f') eT.
It is now immediate that
p@HAp(a) = A.
Sincep(B) < A, we have
p(b™HA(b) = A,b e B.

Hence,
AAP.

Further,
P/pelta= p(A)/p(A) N A
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Now po(A)/o(A) N A is soluble of lengtif andA < BS is soluble of
lengthm. ThereforeP is soluble of lengttY + m. This almost proves
TheorenB; but we still want to improve the bound for the sigiéngth
of P. Consider now,

p@ Hp(b)p(a) €T
By what we have proved, it follows that
p@p(b)p(@) = y(f')
228 wheref’ € BS is defined by
f/(s) = hbh * where
sal=sh
Defineg € BS by
g(s) = h,se Sand

fp € B® by
fo(s) = bfor everys e S.

Then,
p@Hpd)p(@) = y(gfhg™).

Therefore,

[p(b), p(a)] = p(b™Hp(@ Hp(b)p(a) = ¥(f;*afg™)
=y[fp,g ] eI, forallac A be B.

Therefore,
[o(A).p(B)] <T".

It is not difficult to show that if a groufs is generated by its sub-
229 groupsGy, G, then its derived group is

G’ = GiG5[Gy1, Gy,
hence

P’ = [p(A). p(A)] [p(B). p(B)] [(A). p(B)]
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< p(AI.
Again,
Pll :p(AN)F”[p(A,),F,] SP(A”)F,

Continuing in this fashion we arrive &9 < p(AOT”, whereP®),
A(¢) denote the'th derived groups oP and A respectively. Now since
Alis soluble of lengtt, we have

AO = (1),

Hence,
PO <.

Therefore,

P({’+m—l) S (l—/)(m—l) — r(m) — {1}’

asI” = BSis soluble of lengthm. Therefore te grouf is soluble of 230
length? + m— 1.
This proves our assertion.






Chapter 12
The Problems of Heinz Hopf

1

More than twenty five years ago, Heinz Hopf formulated théofding 231
two problems which are closely related. These problemseanos of
a topological problem, which we do not formulate here (cfHBNeu-
mann, 1953).
First Hopf Problem. Can a finitely generated group be isomorphic to
one of its proper factor groups?
Second Hopf Problem If G is a finitely generated group artd an
epimorphic image o6, andG an epimorphic image dfl, areG andH
necessarily isomorphic?

We now take following definition

Definition. A groupG is aHopf groupif G is not isomorphic to ant of
its proper factor groups.

In virtue of this definition, the First Hopf Problem can beamiu-
lated as follows:

Is every finitely generated group Hopf group?

There are examples of non-finitely generated groups whiemar
Hopf group. For instance, one can easily verify that theatlippwer
or the cartesian power of any gro@ # 1 over any infinite index set
l(e,gl ={1,23,---}) is not a Hopf group. The Prufer grouf{p™)
(see Ch.8, Sectidd 2 Corollary 3) is also a non-Hopf group. 232
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A negative answer to the second problem impliesféimaative an-
swer to the first. In other words the existence of two non-isquhic
finitely generated groups which are epimorphic images oh esher
implies the existence of a finitely generated non-Hopf grdeqr letG
be a finitely generated group ahtlany group and lef andy be endo-
morphisms of5 ontoH andH onto G respectively. Then the composite
mapdys is an epimorphism ofs ontoG. Now if v has a non-trivial ker-
nel thendy also has a not-trivial kernel. L&t be the kernal ofy. Then
it follows that

G = G/N,

that is, G is not a Hopf group. On the other hand, the existence of a
finitely generated non-Hopf group does not by itself solve ¢gkcond
Hopf Problem.

It is known that all finitely generated free groups are Hopfugrs
(Magnus (1935); see also Kurosh, (1956)899). Magnus (1935) also
proved that the finitely generated reduced free groups ofdhety of
nilpotent groups of class are Hopf groups. Reinhold Baer made an
example of finitely generated non Hopf group. Though he lafém-
drew this as containing a mistake, it suggested the posgioflfinding
such a group. B.H. Neumann (1950) thereupon constructedeaé@rg
ator non-Hopf group; this has an infinite number of definingtiens.
Graham Higman (1951) constructed a finitely related 3-ggnemon-
Hopf group. Using the group of Graham Higman (1951), B.H. Neu
mann (1953) gave an example of 3-generator finitely relatedpsG
andH which are epimorphic images of each other, but are not isomor
phic. Thus the first and the second Hopf Problems have be&erdsol
nNow.

Let G be a non-Hopf group, Then there exists a non-trivial normal
subgroupN of G such that

G = G/N.

Let ¢ denote the isomorphism @&/N onto G, andd the canonical
epimorphism of ontoG/N. The mapping

Y =0p



2. 171

is an epimorphism o6 ontoG. Let N; be the kernal of the mapping
Then

1 0-1 1
N1={1}“’-1=({1}¢ ) ()" =N.

Consider now the epimorphisg? of G ontoG. By an easy applica-
tion of well-known isomorphism theorems one finds that then&eN,
of Y is such that

N]_ < N2, N2/N1 = N.

More generally, ifN; is the kernel of the epimorphisig we have 234
Nr—1 < Np, Ne/Nroz = N

Thus,
N1 <Np<Ng<---

is a strictly ascending of normal subgroups. As this is naisfiale is a
group satisfying the maximal condition for normal subgraupe have

Theorem 1. A group satisfying the maximal condition for normal sub-
groups is a Hopf group.

We know that a finitely generated nilpotent group satisfiegiax-
imal condition for subgroups. (See Kurosh, 1956, Ch. XV, 82)2
Hence we have:

Corollary 1. A finitely generated nilpotent group is a Hopf group.

Again, by a theorem o. Hall (1954) already quoted (in Chapter
8, p. 141) a finitely generated metabelian group satisfiesniwamal
condition for normal subgroups. Thus we have:

Corollary 2. A finitely generated metabelian group is a Hopf group.

This is the best possible result so far as soluble length lobio
Hopf groups is concerned; we shall later make an example aoitalfi
generated non-Hopf group which is soluble of length 3 (seté@d2 of
this Chapter).
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2

Definition 1. A subgroupG of a groupH is anE-subgroup of H if for 235
every normal subgroup R of G, there exist a normal subgroug B o
such that

SNnG=R

The above definition is equivalent to the following:

Definition 2. A subgroupG of a groupH is anE-subgroup ofH if for
every normal subgroup of G, we have

RING=R

whereR" is the normal closure dRin H. Itis clear that ifR" NG = R,
then we can tak&" as theS of Definition {1); conversely, if there is
a normal subgrou® of H such thatS N G = R, thenR < S, hence
R <sH =5 and

R<R'NG<SNG=R

thus alsoR" N G = R. We give yet another equivalent definition of an
E-subgroup:

Definition. A subgroupG is anE-subgroup ofH if every epimorphism
6 of G onto a groupG; = G can be extended to an epimorphigimof
H onto a grougH; containingGs.

Let G < H satisfy the conditions of Definitiofi(2).

236 Let 8 be any epimorphism db onto a groups; andR be its kernel.
Then
R= {1} "AG.
Therefore
RTNnG=R
Now

GR'/R"2G/R'NG=G/R=G;.
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Let 6* be the natural map dfl ontoH/R"™. By identifying G; with
GR'/H canonicallys* becomes an extensien

Conversely, assume the conditions of Definitiod (10). RAG, and
let 6 be the canonic epimorphism & ontoG; = G/R. Extendd to an
epimorphismg* of H onto a groupH; containingG;, and let the kernel
of 9* beS. AsR" = R is trivial, R< SN G. Now if se SN G then

1=¢ =¢,
and thuss € R. It follows thatS N G < R, and hence
SNG=R

This is the condition of Definitior{1), which we already kntwwbe
equivalent to Definition[{]2). Thus all the three definitiome aquivalent.

If H is the direct product of two grougs andG thenF andG are 237
E-subgroups oH. More generally, ifH is the direct product or the
Cartesian product of a family of groups, s&¥i}ic/, then each factor
Gi is an E-subgroup ofl. If H is any group an&(H) its center, then
any subgroups oZ(H) is an E-subgroup oH. This follows from the
fact that every subgroup @f(H) is a normal subgroup dfl. Further, if
H is a simple group then a proper non-trivial subgrougHois not an
E-subgroup oH. We now prove the following:

Theorem 2. The relation “E- subgroup of” is transitive; in other words,
if G is an E-subgroup of H, and H an E-subgroup of K, then G is an
E-subgroup of K.

Proof. Let,
RAG.

Then sinces is anE-subgroupH, there is ars < H such that
SAH,SNG =R
Now sinceH is an E-subgroup ok, there is a < K such that

TAK, TNH=S.
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We have
GNT=GNHNT=GNnS=R

This proves tha6 is anE-subgroup oK.

3

Let A, B be any two groups. Let
P = AWrB

We shall now prove that the coordinate subgrodgs< AB b € B
(that is,

Ap = {f’f € AB f(y) =1, forally b})

and the diagonah® < AB areE-subgroups oP.
Let ¢ be any epimorphism o onto a group?,. Let

Po = AGWTrB.

Consider the mapping* of P onto P, defined as follows. For every
p=DbfeP,withbe B, f e A,

P = (bf)¥ = bf, wheref, € A® and
fo(y) = (f(¥))*.y € B.

We claim thaty* is an epimorphism oP ontoP,. Letp = bf,p’ =
bf’ e Pbb eB,f,f eAB.

Then
pf =bf, p¥ = f!, where
fo(y) = (f(y))*.y € B,, and
fo(y) = (f'(y))*.y € B.
Now

pp = (bf)(b' ') = bl . £ §; and



3. 175

therefore, pp)¢ =bb.h, whereh e AB
and h(y) = ("' (1)
= (). F'M)* = (F*W)*(F' W),
= (f(yb 1)?(f'(y))¥, forally € B.
On the other hand,
P p¢ = (blo)(b'fg) = b i T,
Now 240

1) = & o)1)
= f.yb H ) = (Fyb ™ N?(F ().

Thus,
(PP)*" = p”p*".
This proves thap* is a homomorphism. It is easy to see that it maps
P onto Pg ; hence it is an epimorphism, as claimed.
Let & be an epimorphism of,(or A%) onto a groupAy andy be
isomorphism ofA onto A, (or A%). Then the epimorphism

v =yb

of A onto Ag gives rise to a mapping* of P onto Pg. If the groupAg
is identified withAgp(or AS), it follows without difficulty thate* is an
extension of). This proves:

Lemma 1.In a wreath product the coordinate subgroups and the diago-
nal subgroup ar&-subgroups.

In ChapteiZB we proved that a countable gr@pan be embedded
in a 2-generator groupl. We shall now prove that the embedding pra41
cedure given there embe@sas anE-subgroup oH. In the rest of this
Chapter we shall use the notation of Chapier 8.

Let us briefly recall the embedding procedure of Chdpter 8.

We started with a countable gro@where

G =gp({a};,) and
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1 ={123,...}.
We then formed the wreath product
P = GWrC where
C =gp(©);
and we embedde@ as the diagonal subgro@”,
G <G<P
We then formed the wreath product
Q=PWrB
whereB was any group containing elemettisi € |, with the property,
bi # 1, by # bj, bib; # 1,bjb; # by.
242 Then we realise as a subgrous* of
H = gp(q, B), q € PE.
In fact
G" = gp({hl;.,). where
hi[q”, q] € PE.

(For the definitions ofj anch;, see Chaptdi 8.)
Now be Lemm&NG? is E-subgroup oP. Further,G* is a subgroup
of the coordinate subgroup; < Q, where

.t

andG is mapped ont@* under the natural isomorphism Bfonto P;.
Therefore

fePB fiyy=1forally+lye B}

G" is an E-subgroup dP;.

Again by LemmdlLP; is anE-subgroup ofQ. Hence by the transi-
tivity property of E-subgroupsG* is anE-subgroup ofQ. Now, since

G'<H<Q,

it suffices for our purpose to show the following simple lemma.
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243 Lemma2.If G < H <K, and ifG is anE-subgroup oK, thenG is an
E-subgroup oH.

For if RAG, there is a subgroupAK with
TNnG=R
putS =T nH: thenSAHand
SNG=TNHNG=TNnG=R
Applying this lemma tdG+ < H < Q, we obtain the stated result:

Corollary 3. G* is an E-subgroup of H.

Let us now takes to be the free group of countably infinite rank
presented by

G = gn({ailicis ¢), where
I={...2-1,0,1,...}.

TakeB to be the infinite cyclic group

B = gp(b), and
bi — b3i—1
Then
hi [qb3i1 q] _ [b1—3i gb¥-1 q].
Identifying the groupG with 244
G =gp(h} )
le
we have G <H =gp(g,b).

Let nowF be the free group

F=gp(st¢)
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DefineE < F as
E= gp({a}id), where
g = [sl‘3i,ts3i‘l,t],i el.

We prove:
Theorem 3. The subgroup E is an E-subgroup of F.

Proof. Let @ be the epimorphism df ontoH defined by

d=pt'=q.
Then we have
e =h,iel, and
E’=G.
m
245 SinceG is freely generated b{,hi}iEI , it follows thatE is also freely
generated b){a}id. Hence the restriction a#fto E is an isomorphism.
Let AL
Then
R = RyAG.
Now sinceG is anE-subgroup oH, there is &S5pAH such that
GnNSy=Ro.
LetS =S{". Then
SAF.

We have

(SNEY<SNE? =SynG=Ry=F.
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This gives
SNE<R

as the restriction of to E is one- one. But evidently alde < S N E;
hence,
SNE=R

This proves thaE is anE-subgroup of-. 246

It may be of interest to remark that Theor&ln 3 is equivalerih¢o
embedding theorem proved in Chaifer 8. For a countable dedg@n
epimorphic image o& by an epimorphism, sag. Now sinceE is an
E-subgroup ofF, 8 can be extended to an epimorphighof F. Then

G<F”, and

F? is generated by 2 elements. The following is an unsolvedignob
in this context.
Unsolved problem. Is there a free infinite rank in the group

F=gp(st;s’=t1=1)?

Forp > 2,q > 6, the answer (unpublished) to this question is ‘yes’.
For p = 2,q = 3, we have the following interesting problem:

Problem. Has the modular group an E-subgroup that is free of infinite
rank?

4 Finitely generated soluble non-Hopf group

The object of this section is to construct a finitely genata@uble non-
Hopf group. In this section also we shall use the notation ludiZeilB. 247
Using the embedding procedure of Chapler 8, we embed thalbed@n
group of countably infinite rank into a 3-generator gradifpy suitably
choosing the grou; and then we prove that a certain factor group of
H is a non-Hopf group.

Let G be the free abelian group of countably infinite rank presknte
by

G= gp({a}id:[a,aj] =Lijel),
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where I:{...—l,O,l,Z,...}.

As in Chapte[B, we embe@ as the diagonal subgro@" of G€ in

P=GWrC where
C = gp(c).

We now take the grouf to be the free abelian group of rank 2
presented by
B=gpb,b’;[b,b] =1)

and form the wreath product
Q=PWrB
Choose the elements (see Chapter 8) as
bi = bb,iel.
One easily verifies that thebesatisfy the inequalities:
bi # 1, by # bj, bib; # 1,bjb; # by.

Therefore, as in Chapter 8, the gra@jis embedded as the subgroup
G of H, where

H =gp(a.B) = gp(a.b,b’) < Q

andG* = gp({ailig)) < H.
We recall thaty € PB is defined by

q)=c
qlo ) =giiel,
q(y) = 1 otherwise

where

g € G® is defined by
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g(c =a ™", nel; and further,
hi = [, ql.i€l.

249 Consider the mapping d@ onto B defined by

b® = b and
b”? = bb.

It is easy to verify tha is an automorphism oB. We want to
extendg to an automorphisng* of Q. (Our procedure is applicable to
an arbitrary automorphism &, but we require it only for the particular
B we have specified.) To do this we first extghitb an automorphism
of PB as follows:

For everyf € PB, definef?" e PB by

8 (y) = f(y* ), for ally € B.

It is easy to verify thaB* is one-one.
Now if f1, f, € PB, then for everyy € B, we have

(hf2f ) = ffay ) = P )R ) = 1 ()15 ).
Hence,
(ffoP = 17807,
it follows thats* is an automorphism d®B.
We now extengs* to Q and denote the extension gf also byg*.
For everyg, = bof € Q, with bae B, f PB, define 250
d°  Qasfollows :

do = (bof)’ = B0,

qo = bof,bp € B, f € PB and
o = by f’, by e B, f e PP
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are arbitrary elements @, then
(QoabY** = (bo Fhy /)P = (boby £ /Y7 = (bobp)P*.(fP /)P
= (bobp) (7% £
and
e = (bo Y (b I = b 15 B £78 = bbb (1) 76",
But

(%) (y) = o) = f(y b ) forally € B,

and

(P75 (y) = 12 (y(by™) ) = 1" (y( 2)
= f(y =¥y = f(Y g,

forally € B.

Therefore
(fﬁ*)bE) — fbé)ﬁ*

Hence
(G0 = o™
Again one can easily verify thgt is one-one and onto; that i85

is an automorphism dd.
Next, lety be the automorphism @ defined by

a’ =a(iel)

We want to exteng to an automorphismx of Q. (Our procedure is
applicable to an arbitrary automorphism@fbut we require it only for
the particulary we have specified.) Define the mappipgof G onto
G€ as follows:

If f eGC,thenfr € G, and

fY*(c") = (f(c")) forne l.
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252 A straight forward verification shows that is an automorphism of
GC. We now extend* to P by putting

(cf) =cf,ceC feGC tel.
Let p1 = ¢t f, P, = c“f’ belong toP. Then
(p1p2)7+ — (Ct+u]cc“f’)y+ - Ct+U(fc“ f/)y+
— Ct+U(fCU)y+ f'7+; and
PPy = = )
But
(FEY () = (F(C)” = (F(E™M))”
= (™Y = (F)Y(c"), forallnel.

Therefore
(F)" = ()"
Hence L 253
(P1p2)” = py P}
It is obvious that the extended mapping is one-one and onto.
Thusy* is an automorphism d®.

We now extendy* to an automorphisny* of Q. We first definey*
on PB as follows. For any € PB, g e PB and

g () = (9()”

One easily verifies that+ is an automorphism dPB. We now ex-
tendy= to Q by putting

(bog)”* = bog”*, for by € B,g € PE.
Let

th = bog, g = byg’, be inQ with
bo, b, € B,g, g’ € PE. Then
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(cht)”" = (bobpg®g')”* = boby(b%g’)””
= boby(9°)"*g”"; and
q;-/* q;* _ bo g/y*.baba(gy*)bag/y*.
254 But,
(g%)" W) = @) = Q™) =g (@) ™) forally e B
That is to say,
(g%) = (g")™; thatis,
(Q102)" =0y q -
One easily sees that: is one-one and onto. Hencgs is an auto-
morphism ofQ.
It will be noticed that the procedure of extendiyithy y= is the same
as that of extending to y*; in fact it applies to wreath products in gen-
255 eral. Now, however, we being to use the particular autorism)s, v
we had chosen and the automorphigagy= constructed from them.

Now consider automorphisg+ v+ of Q. For anybg € B, we have
bf)*y* = (bg)y* = bg; that isg * y+ is an extension g8. Further.

70 = (@) 6) = () = (@)

Therefore
(L) = (@) = (@ =c
and 6 (7)) = (@G ) = @)
But
biﬁ—l = (Yt = (0PIt = bbb = bl = by,
so that 7 (0" = @(bi-0)” = (@)
256 As

gfl(cn) = (gi_a(c")) = () =a ™", forallnel,
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it follows that .
o) =g =g.i€l
Now, sinceb; permute among themselves upon applydhgve have

Pry)=Ly=+Lbliel.

Therefore
¢ =q

This shows thaB = y+ mapsH = gp(b, b’, g) onto itself. Leta be
the restriction of3 = v+ to H, so thata is an auto-morphism afi. We
have

' G- @ '
he = [, " = [q" .q ] = [a,q] =[a**,q] = hisa
(for b% = (b'b')* = (b'Y’b”? = bbb = b* b’ = by,1).
ConsidemR < G, where

R=gp(...,a1,ap)

In the identification ofs with G*, Ris identified with 257

R =gp(...,h_1, o).

Trivially,
R'AG™.
Now by the corollary of Lemm@ Z* is anE-subgroup oH. There
is therefore an

S*AH, such that
R =S"nG".
Let
K =H/S".

Then
K = H/S* = HY/S* = H/S".
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Now
S*>gp(....h%,, hg) =gp(...,h 1, hg, hy).
But, 258

h; ¢ R" = S*nG*, so that
h; ¢ S*

ThusS* is strictly contained ir8**. We have
H/S* = H/S*/S*/S".

Thus
K = H/S* =~ H/S*/S*/S* = K/N,

whereN = S*'/S* is not trivial. EvidentlyK is a 3-generator group.
Further by CorollaryR2, p. 141 of Chapfdr 8, sir@ds abelian,H and
thereforeK is soluble of length 3. Thus we have proved:

Theorem 4. The group
K=H/S*

is a 3-generator non-Hopf group, soluble of length 3.
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