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Introduction

Three different subjects are treated in these lectures. 1

1. In the first part, an exposition of certain recent work of J.L. Lions
on the transmutations of singular differential operators of the second
order in the real case, is given. (J.L. Lions- Bulletin soc. Math. de
France, 84(1956)pp. 9− 95)

2. The second part contains the first exposition of several new results on
the theory of mean periodic functionsF, of two real variables, that
are solutions of two convolution equations:T1 ∗ F = T2 ∗ F = 0,
in the case of countable and simple spectrum. These functions can
be, at least formally, expanded in a series of mean-periodicexpo-
nentials, corresponding to different points of the spectrum. Having
determined the coefficients of this development, we prove its unique-
ness and convergence whenT1 andT2 are sufficiently simple. The
result is obtained by using an interpolation formula, inC2, which is
analogous to the Mittag-Leffler expansion, inC1.

The exposition and the proofs given here can probably later,be sim-
plified, improved, and perhaps generalized. They should therefore be
considered as a preliminary account only.

3. Finally, in the third part, I state and prove the two-radius theorem,
which is the converse of Gauss’s classical theorem on the spherical 2

mean for harmonic functions. The proof is the same as that recently
published, (Comm. Math. Helvetici, 1959) in collaborationwith J.L.
Lions; it uses the theory of transmutations of singular differential

iii
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operators of the second order, and the fundamental theorem of mean-
periodic functions inR1.

J. Delsarte
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Part I

Transmutation of Differential
Operators
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Chapter 1

Riemann’s Method

1 Riemann’s Method for the Cauchy problem

Definition. A function is said to be (C, r) on a subset ofA of Rn if all its 3

partial derivatives upto the orderr exists and are continuous inA.

Let D be a region (open connected set) inR2, the (x, y) plane. Let
a, b, c be three functions which are (C, 1) in D andu a function (C, 2) in
D and letL denote the differential operator

Lu =
∂2u
∂x∂y

+ a
∂u
∂x
+ b

∂u
∂y
+ cu.

Let v be a function which is (C, 2) in D andL∗ be a differential operator
of the same type asL:

L∗v =
∂2v
∂x∂y

− ∂

∂x
(av) − ∂

∂y
(bv) + cv

then

vL(u) − uL∗(v) =
∂M
∂x
+
∂N
∂y

(1)

whereM andN are (C, 1) in D and are certain combinations ofu, v and 4

their partial derivatives.

vL(u) = v
∂2v
∂x∂y

+ av
∂u
∂x
+ bv

∂u
∂y
+ cuv

3



4 1. Riemann’s Method

= cuv+
∂

∂x
(auv) +

∂

∂y
(buv) +

∂

∂x

(
v
∂u
∂y

)

− u
∂

∂x
(av) − u

∂

∂y
(bv) − ∂v

∂x
∂u
∂y

= u

[
∂2v
∂x∂y

− ∂

∂x
(av) − ∂

∂y
(bv) + cv

]

+
∂

∂x

[
auv+ v

∂u
∂y

]
− ∂

∂y

[
u
∂v
∂x
− buv

]

vL(u) − uL∗(v) =
∂M
∂x
+
∂N
∂y

where

M = auv+ v
∂u
∂y
,N = buv− u

∂v
∂x
.

The right hand member of (1) does not change if we replaceM by

auv+
1
2

(v
∂u
∂y
− u

∂v
∂y

) andN by buv+
1
2

(v
∂u
∂x
− u

∂v
∂x

). We prefer to have

M =
1
2
∂

∂y
(uv) − uP(v) (i)

N =
1
2
∂

∂x
(uv) − uQ(v) (ii)

where

P(v) =
∂v
∂y
− av ,Q(v) =

∂v
∂x
− bv.

Let C be a closed curve lying entirely in the regionD.5

By Green’s formula,

∫

C
(λM + µN)ds=

∫ ∫

A

(
∂M
∂x
+
∂N
∂y

)
dxdy

whereλ, µ denote the direction cosines of the interior normal toC and
A denotes the region enclosed byC.

In view of equation (1),
∫

C
(λM + µN)ds=

∫ ∫

A
(vL(u) − uL∗(v))dxdy (2)



1. Riemann’s Method for the Cauchy problem 5

We shall consider this equation in the case whenC consists of two
straight linesAX, AY parallel to the axes of coordinates and a curveΓ,
monotonic in the sense ofAX andAY, joining X andY. Suppose that

L(u) = 0 andL∗(v) = 0 then
∫
C

(λM+µN)ds= 0 i.e.
∫ X

A
Ndx−

∫ A

Y
Mdy=∫ X

Y
(λM + µN)dssubstituting forM andN from (i) and (ii) respectively,

X∫

A

Ndx=
1
2

[(uv)X − (uv)A] −
X∫

A

uQ(v)dx

and −
∫ A

Y
Mdy=

1
2

[(uv)Y − (uv)A] +
∫ A

Y
uP(v)dy.

If the functionsu, v satisfy 6

Lu = 0, L∗v = 0,P(v) = 0 onAY andQ(v) = 0 onAX (3)

then we obtain the Riemann’s Resolution formula:

(uv)A =
1
2

[(uv)X + (uv)Y] +
∫ X

Y
(λM + µN)ds.

Let A be (x0, y0). Thenv = g(x, y; x0, y0) satisfying the conditions (3) is
the Riemann’s function for the equationL(u) = 0.

In the situation

L(u) = f (x, y), L∗v = 0,P(v) = 0 onAY,Q(v) = 0 onAX,



6 1. Riemann’s Method

exactly similar computation gives the formula:

(uv)A =
1
2

[(uv)X + (uv)Y] +
∫ X

Y
(λM + µN)ds+

∫ ∫

A
v f(x, y)dxdy.

An important property of the Riemann’s function.

Let nowΓ consider of two straight linesXB,YBparallel to the axes
of coordinates. Then

∫ X

Y
(λM + µN)ds=

∫ X

B
Mdy−

∫ B

Y
Ndx

We can write M = −1
2
∂

∂y
(uv) + vP∗(u)

N = −1
2
∂

∂x
(uv) + vQ∗(u)

whereP∗(u) =
∂u
∂y
+ au , Q∗(u) =

∂u
∂x
+ bu.7

∫ X

B
Mdy= −1

2
[(uv)X − (uv)B] +

∫ X

B
vP∗(u)dx

−
∫ B

Y
Ndx=

1
2

[(uv)B − (uv)Y] −
∫ B

Y
vQ∗(u)dx

Thus in this case Riemann’s resolution formula becomes

(uv)A =
1
2

[(uv)X + (uv)Y] − 1
2

[(uv)X − (uv)B]

+

∫ X

B
vP∗(u)dx+

1
2

[(uv)B − (uv)Y] −
∫ B

Y
vQ∗(u)dx

i.e., (uv)A = (uv)B −
∫ B

Y
vQ∗(u)dx+

∫ X

B
vP∗(u)dx

If u = h(x, y; x1, y1), (x1, y1) being the pointB, is such that

Lu = 0,P∗(u) = 0 onBX,Q∗(u) = 0 onBY,



2. Proof for the Riemann’s method 7

we get (uv)A = (uv)B.

Choosing constant multipliers foru = h(x, y; x1, y1) and v = g
(x, y; x0, y0) in such a way thatu = 1 atB andv = 1 atA, we have8

h(x0, y0; x1, y1) = g(x1, y1; x0, y0) (4)

This shows that the Riemann’s functiong, considered as a function
of (x0, y0) satisfies the differential equationLu = 0.

2 Proof for the Riemann’s method

We have obtained (4) under the hypothesis that there exists functions
u = h(x, y; x1, y1) andv = g(x, y; x0, y0) which are (C, 2) in D and which
satisfy

Lu =
∂2u
∂x∂y

+ a
∂u
∂x
+ b

∂u
∂y
+ cu= 0

P∗(u) =
∂u
∂y
+ au= 0 onBX

Q∗(u) =
∂u
∂x
+ bu= 0 onBY and

L∗v =
∂2v
∂x∂y

+ a∗
∂v
∂x
+ b∗

∂v
∂y
+ c∗v = 0 where

a∗ = −a, b∗ = −b, c∗ = −∂a
∂x
− ∂b
∂y
+ c

P(v) =
∂v
∂y
+ a∗(v) = 0 onAY

Q(v) =
∂v
∂x
+ b∗(v) = 0 onAX.

By change of notation and translation of the origin, the problem for 9

the existence of the Riemann’s functionv = g(x, y) in D for the point
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(x0, y0) ∈ D for the differential equationLu = 0 reduces to the solution
of the problem 1:

∂2u
∂x∂y

+ a
∂u
∂x
+ b

∂u
∂y
+ cu= 0

with the conditions

u(0, y) = α(y)

u(x, 0) = β(x) I

α(0) = β(0) = 1

wherea, b, c are (C, 1) in D andα, β are (C, 1) functions of one real
variable. The solution of the more general problem 2:

∂2u
∂x∂y

= λ

[
a
∂u
∂x
+ b

∂u
∂y
+ cu

]

with the conditionsI will give for λ = −1 the solution of the problem (1).
We shall now prove the existence of the unique solution for the problem
2 by using Piccard’s method of successive approximations. Consider
the series

u0(x, y) + λu1(x, y) + · · · + λnun(x, y) + · · · (5)

whereui(x, y) are defined by the following recurrence formula:10

∂2u0

∂x∂y
= 0 u0(0, y) = α(y), u0(x, 0) = β(x)

∂2un

∂x∂y
= a

∂un−1

∂x
+ b

∂un−1

∂y
+ cun−1, un(x, 0) = un(0, y) = 0 for n ≥ 1.

It suffices to takeu0(x, y) = α(y) + β(x) − 1 andun(x, y) =
∫ x

0

∫ y

0
φn−1(ξ, η)dξdη where

φn−1 = a
∂un−1

∂x
+ b

∂un−1

∂y
+ cun−1

We shall now prove the convergence of the series (5) by the process
of majorisation which is classical. Suppose thata, b, c are (C, 0) in D



2. Proof for the Riemann’s method 9

andα, β are (c, 1) of one real variable. LetK be a compact subsetD
containing the rectangle with sides parallel to the axes and(0, 0) and
(x, y) as opposite corners. Then there exists anM,A such that|α(ξ) +
β(η) − 1| ≤ M,

| ∂
∂ξ

(α(ξ) + β(η) − 1)| ≤ M,

and | ∂
∂η

(α(ξ) + β(η) − 1)| ≤ M,

for (ξ, η) in K, and|a|, |b|, |c|,≤ A in K. Then|φ0(x, y)| ≤ 3 A M. By the 11

recurrence formula forn = 1,

|u1(x, y)| ≤ |
∫ x

0

∫ y

0
φ0(ξ, η)dξdη| ≤ 3AM|x||y|

∣∣∣∣∣∣
∂u1

∂x

∣∣∣∣∣∣ ≤ 3AM|y| and,

∣∣∣∣∣∣
∂u1

∂y

∣∣∣∣∣∣ ≤ 3AM|x|. Hence|u1(x, y)|,
∣∣∣∣∣∣
∂u1

∂x

∣∣∣∣∣∣,
∣∣∣∣∣∣
∂u1

∂y

∣∣∣∣∣∣ are

each≤ 3AM(1+ |x|)(1+ |y|).
Computingφ1(x, y), we have immediately,

|u2(x, y)| ≤ 9A2M

(
1+ |x|

2!

)2 (
1+ |y|

2!

)2

∣∣∣∣∣
∂u2(x, y)
∂x

∣∣∣∣∣ ≤ 9A2M(1+ |x|)
(
1+ |y|

2

)2

∣∣∣∣∣
∂u2(x, y)

∂y

∣∣∣∣∣ ≤ 9A2M

(
1+ |x|

2

)2

(1+ |y|)

In general

|un(x, y)|,
∣∣∣∣∣
∂un

∂x

∣∣∣∣∣ ,
∣∣∣∣∣
∂un

∂y

∣∣∣∣∣ , ≤
M[3A(1+ |x|)(1+ |y|)]n

n!

Comparing with the exponential series, this majorization proves that
the series (3) as also the series obtained from (3) by differentiating each
term once and twice are all convergent uniformly on each compact sub-
set ofD and absolutely inD, so that (3) converges to a function (C, 2) in
D. This functionu(x, y) is evidently the solution of problem 2 and the
proof for the existence of Riemann’s functions is complete.
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Remark. From the recurrence formula it is clear that the functionu(x, y) 12

satisfies

u(x, y) = α(y) + β(x) − 1+ λ
∫ x

0

∫ y

0

[
a
∂u
∂x
+ b

∂u
∂y
+ cu

]
dξ dη

x=ξ
y=η

This integral equation is equivalent to the differential equation of prob-
lem 2 with conditionsI . Whena, b, c are (C, 0) andα, β are (C, 1), the
solutionu(x, y) of the integral equation may not be (C, 2). But then it is
a solution of problem 2 in the sense of distributions.



Chapter 2

Transmutation of Differential
Operators

Let L1 andL2 denote two differential operators on the real lineR and 13

E m(x ≥ a) denote the space of functionsm times continuously differ-
entiable in [a,∞) furnished with the usual topology of uniform conver-
gence of functions together with their derivatives upto theorderm on
each compact subset of [a,∞). Let E be a subspace of the topological
vector spaceE m(x ≥ a).

Definition. A transmutation of the differential operatorL1 into the dif-
ferential operatorL2 in E is a topological isomorphismX of the topo-
logical vector spaceE onto itself (i.e. a linear, continuous, one-to-one,
onto map), such that

XL1 = L2X

X is said to transmute the operatorL1 into the operatorL2 in E and
L2 = XL1X−1 on E.

Transmutation in the regular case. Let L1 = D2
x − q(x), L2 = D2

x
whereq satisfies certain conditions of regularity. The construction of
the transmutation operator in this case depends on the consideration of
certain partial differential equation.

Problem 1.To determineΦ(x, y) in x ≥ a, y ≥ a satisfyingΦxx − Φyy −

11



12 2. Transmutation of Differential Operators

q(x)Φ = 0 with the boundary conditions

Φ(x, a) = 0 = Φ(a, y);Φy(x, a) = f (x)

This mixed problem is equivalent to the Cauchy problem if we set14

u(x, y) = Φ(x, y) for x ≥ a

= −Φ(2a− x, y) for x ≤ a

We set without proof the following proposition.

Proposition 1. (a) If q ∈ E ◦(R), f ∈ E ◦(x ≥ a) with f(a) = 0, then
problem 1 possesses a unique solution which is(C, 1) in x ≥ a, y ≥ a
and satisfies the differential equation in the sense of distributions.

(b) If q ∈ E 1(R) and if f ∈ E 2(x ≥ a) with f(a) = 0, the solution of
problem1 is (C, 2) in x ≥ a, y ≥ a. In the region y≥ x(or x ≥ y),
the solution is(C, 3).

(c) If q ∈ E 2(R) with q′(a) = 0 and f ∈ E 3(x ≥ a) with f(a) = f ′′(a) =
0, then the solution u of the problem is(C, 4) in y ≥ a. [Refer to E.
Picard, ‘Lecons sur quelques types simples d’ equation aux derivces
partielles’, Paris, Gauthier-VIllars, 1927.]

With the help of this proposition we prove

Proposition 2. If q ∈ E 2(R) with q′(a) = 0 and f ∈ E 4(x ≥ a) with
f (a) = f ′′(a) = 0 then D2A f = AL f where L= D2

= q and A is defined
by

A f(y) =
∂

∂x
[Φ(a, y)],

Φ(x, y) being the solution of problem 1.15

Let ψ(x, y) = Lx[Φ(x, y)] = ∂2
Φ

∂x2 − q(x)Φ andg(x) = Lx f (x). AsΦ
is (C, 4) by Proposition 1 (c), and f ∈ E 4(x ≥ a),Ψ(x, y) is (C, 2) and
g ∈ E 2(x ≥ a) with g(a) = 0. Replacingf by g in proposition 1 (b),
problem 1 possesses a unique solution. We verify below that this unique
solution isΨ(x, y).

LxΨ − D2
yΨ = LxLxΦ − D2

yLxΦ = Lx[LxΦ − D2
yΦ] = 0;
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Ψ(x, a) = Lx[Φ(x, a)] = Lx[0] = 0;

∂

∂y
Ψ(x, y) = DyLxΦ(x, y) = LxDyΦ(x, y) so that

Ψy(x, a) = LxDyΦ(x, a) = Lx f (x) = g(x);

Ψ(a, y) = D2
y[Φ(a, y)] = 0.

Now by definition ofA, AL[ f (y)] = A.g =
∂

∂x
Ψ(a, y)

Ψx(x, y) = DxLxΦ = D2
y[Φx(x, y)] gives

Ψx(a, y) = D2
y[Φx(x, y)] = D2

yA f(y). Hence we have proved that
AL = D2

yA.
Computation of the solutionu(x, y), y ≥ a of problem 1 by using 16

Riemann’s function.

Let K(x, y; x0, y0) be the Riemann’s function defined in the shaded

part of the satisfying the conditions
∂2K

∂x2
− ∂

2K

∂y2
− q∗(x)K = 0

with q∗(x) = q(x) if x ≥ a

= q(2a− x) if x < a
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andK on Mm1 = K on Mm2 = −
1
2

.

In this case Riemann’s method gives

u(x0, y0) =
∫ x0+y0−a

a−y0+x0

f ∗(x)K(x, a; x0, y0)dx

where f ∗(x) = f (x) if x ≥ a

= − f (2a− x) if x ≤ a

Hence

A[ f (y0)] =
∂

∂x0
u(a, y0)

= f (y0) − 2
∫ y0

a
f (x)

∂

∂x0
K(x, a; a, y0)dx.

Problem 2.To determine the functionΦ(x, y) in x ≥ a, y ≥ a satisfying17

the conditionsΦxx − Φyy − q(x)Φ = 0;Φ(a, y) = 0;Φx(a, y) = g where
g ∈ E 2(y ≥ a) with g(a) = 0, andΦ(x, a) = 0. Problem 2 , is the
same as Problem 1 if in the boundary conditions the linesx = a, y = a
are interchanged. IfΦ is the solution of Problem 2, we define ag(x) =
∂

∂y
Φ(x, a).

Proposition 3. If q ∈ E 1(R) and f ∈ E 2(x ≥ a) with f(a) = 0, then
aA f = Aa f = f .

LetΦ be the solution of Problem 1 and letg(y) = A f(y) =
∂

∂x
Φ(a, y).

By Proposition 1 (b), g is (c, 2) in y ≥ a andg(a) = 0. HenceΦ is the

solution of Problem 2 anda · g(x) =
∂

∂y
Φ(x, a) = f (x). This shows that

aA f = f . Similarly Aa f = f .
Proposition 3 together with Proposition 2 shows that ifq ∈ E 1(R)

with q′(a) = 0 the mapA, which is obviously linear is one-to-one of the
spaceE =

{
f / f ∈ E 4(x ≥ a), f (a) = f ′′(a) = 0

}
onto itself and verifies

AL f = D2A f . Further in view of the formula forA f on page 13 in
items of Riemann’s functions,A is continuous onE with the topology
induced byE 4(x ≥ a). As E is a closed subspace of the Frechet space



15

E 4(x ≥ a),A is a topological isomorphism. Thus we have proved the
existence of the transmutation operatorA in E transmutingD2 − q(x)
into D2 whenq is sufficiently regular.

We now consider the problem of transmuting more general differen- 18

tial operatorsLi = D2
+ r i(x)D + si(x) (i = 1, 2) into each other whenr i

andsi are regular (e. g.r i , s1 ∈ E (R)).

Proposition 4. There exists an isomorphism AL1L2 of E which satisfies

AL1L2L1 = L2AL1L2.

The proposition will be proved if we prove the existence of transmu-
tationX of the operatorL1 into the operatorD2 − q1. For then the same
method will give a transmutation ofL2 into L∗2 = D2−q2 and each of the
operatorsD2 − qi(i = 1, 2) can be transmutated into the operatorD2 so
that finally we obtain the required transmutationsAL1L2 by composing
several transmutations.

Let R1(x) =
∫ x

a
r1(ξ)dξ then the verification of the following equa-

tions is straight forward:

L1

[
e−

1
2R1(x) f (x)

]
= e−

1
2R1(x)L1[ f ].

Hence we haveX f(x) = e
−

1
2

R1(x)
f (x).L∗1 = D2 − q1 where

q1(x) =
1
4

r2
1(x) +

1
2

r1(x) − s1(x) ∈ E .

Application of transmutation to the Mixed Problems of differ-
ential equations.

If Λ is an elliptic operator inRn ( independent of the variablet which 19

corresponds to time) we consider the problem of finding a function
u(x, t) (x ∈ Rn, t time) which satisfies the differential equation

Λx(x, t) +

(
∂2

∂t2
+ r(t)

∂

∂t
+ s(t)

)
u(x, t) = 0
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with the Cauchy data in a bounded domainΩ ⊂ Rn for t = 0 and also
on the hemicylinderΩ∗ × [t ≥ 0] whereΩ∗ denotes the frontier ofΩ. In
this problem the variablex which corresponds to space and the variable
t which corresponds to time are strictly separated. Suppose that At is

a transmutation in the variablet which transmutes
∂2

∂t2
+ r(t)

∂

∂t
+ s(t)

into
∂2

∂t2
and letV(x, t) = Atu(x, t) when u(x, t) is the solution of the

differential equation. Then applyingAt to the left hand member of the
equation we have

AtΛxu(x, t) + At(
∂2

∂t2
+ r(t)

∂

∂t
+ s(t))u(x, t) = 0

i.e., Λxv(x, t) +
∂2v(x, t)

∂t2
= 0

andv(x, t) satisfies Cauchy’s data i.e., by means of the transmutation,
consideration of the gives equation is reduced to the consideration of
the wave equation.



Chapter 3

Transmutation in the
Irregular Case

Introduction. Our aim in this chapter is to obtain a transmutation op-20

erator for a differential operator with regular coefficients. In order to
reduce the mixed problem relative to the operator

Λ +
∂2

∂t2
+

2p+ 1
t

∂

∂t
, p real or complex,

whereΛ = −∆(∆ being the Laplacian in the variablesx1, . . . , xn) to the
mixed problem relative to the operator

Λ +
∂2

∂t2

we shall construct an operator will transmute the operator

Lp = D2
+

2p+ 1
x

D

into the operatorD2. The difficulty in this case arises due to the pres-

ence of the coefficient
1
x

which has a singularity atx = 0. If we seek the

solution of the problem inx ≥ a, wherea > 0, the method of the pre-
ceding chapter is perfectly valid without any change. But the important
case is precisely the one in whicha = 0.

17
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We shall determine isomorphismsBp,Bp(of certain space which21

will be precisely specifies in the sequel ) which satisfy

D2Bp = BpLp; BpD2
= LpBp.

The operatorBp for −1 < Rep< −1
2

and the operatorBp for Rep> −1
2

are classical.Bp is the Poisson’s operator andBp is the derivative of the
Sonine operator.

1 The operatorBp for Rep> −1
2

It can be forseen that the operatorBp is defined in terms of the solution
for y > 0 of the partial differential equation

Φxx − Φyy+
2p+ 1

x
Φx = 0

with the conditionsΦ(0, y) = g∗(y) being an even functiong∗(y) = g(y)
for y > 0 andg∗(y) = g(−y) for y < 0, andΦx(0, y) = 0 Now we define
Bp[g(x)] = Φ(x, 0).

Changing the variables (x, y) to the variables (s, t) be means of the
formulaes

√
2 = y + x and t

√
2 = y − x, we see by simple computa-

tion thatu(s, t) = Φ
( s− t

2
,

s+ t
2

)
is a solution of the partial differential

equation

ust −
p+ 1

2

s− t
us +

p+ 1
2

s− t
ut = 0

with the conditionsu(s, s) = g∗(s
√

2)22

(us − ut)s=t = 0
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Forα = p+
1
2

, Poisson’s solution has the form

u(s, t) =
Γ(2α)

[Γ(α)]2

∫ 1

0
g∗

{
[s+ (t − s)ρ]

√
2
}
(1− ρ)α−1ρα−1dρ

valid for Reα > 0 (or Rep> −1
2

). Then

B[g(x)] = Φ(x, 0) = u(
x
√

2
,
−x
√

2
)

=
Γ(2α)

[Γ(α)]2

∫ 1

0
g∗[x(1− 2ρ)](1 − ρ)α−1ρα−1dρ

setting 1− 2ρ = r,

Bp[g(x)] =
Γ(2α)

[Γ(α)]2

1

22α−2

∫ 1

0
(1− r2)α−1g∗(rx)dr

=
2Γ(p+ 1)
√
πΓ(p+ 1

2)

∫ 1

0
(1− t2)p− 1

2 g(tx)dt.

( UsingΓ(2α) =
Γ(α)Γ(α + 1

2)22α−1

√
π

 .

Note thatBp[g(0)] = 1.

Proposition 1. The mapping f→ Bp f is a linear continuous map of23

F2
=

{
f / f ∈ E 2(x ≥ 0), f ′(0) = 0

}
into itself and satisfies

BpD2 f = LpBp f for any f ∈ F2.

As forRep> −1
2, differentiation under sign of integration is permissible,

Bp f ∈ E 2(x ≥ 0). Further

{
d
dx

Bp[ f ]

}

x=0
= f ′(0)k (k being some

constant),
= 0.

HenceBp f ∈ F2. EvidentlyBp is linear. In order to prove continuity,
since F2 has a metrizable topology induced by that ofE 2(x ≥ 0), it is



20 3. Transmutation in the Irregular Case

sufficient to show that if a sequence{ fn}, n = 1, 2, . . . , fn ∈ F2. con-
verges to0 in F2, thenBp fn converges to zero in F2. But fn → 0 in
F2 implies fn → 0 uniformly on each compact set, in particular on the
compact set[0, 1] from which it follows thatBp fn → 0. It remains to
verify thatBp satisfies the given condition. Writingβp =

2Γ(p+1)√
πΓ(p+1/2)

1
βp

{
LpBp f −BpD2 f

}
=

1
βp

∫ 1

0

{
t2(1− t2)p− 1

2 f ′′(tx)

+
(2p+ 1)t

x
(1− t2)p− 1

2 f ′(tx) − (1− t2)p− 1
2 f ′′(tx)

}
dt

=
2p+ 1

x

∫ 1

0
t(1− t2)p− 1

2 f ′(tx)dt −
∫ 1

0
(1− t2)p+ 1

2 f ′′(tx)dt.

=
2p+ 1

x


−1

2


(1− t2)p+ 1

2

p+ 1
2

f ′(tx)


1

0

+
1
2

∫ 1

0

(1− t2)p+ 1
2

x
f ′′(tx)dt



−
∫ 1

0
(1− t2)p+ 1

2 f ′′(tx)dt (integrating the first integral by parts).

= 0.

Remark. Let Jp(x) denote the classical Bessel function and let24

jp(x) = 2p
Γ(p+ 1)x−pJp(x)

jp(x) is in F2 and is the unique solution of the differential equation
d2y

dx2
+

2p+ 1
x

dy
dx
+ s2y = 0 with the conditions (y)x=0 = 1 and

(
dy
dx

)

x=0
= 0.25

Now cossx ∈ F2. Let Bp(cossx) = g(x). Using LpBp = BpD2, we
get

LpBp[cossx] = Lp[g(x)] = BpD2(cossx)

= −s2
Bp[cossx] = −s2g(x).

i.e., Lpg+ s2g = 0.

Furtherg(0) = cos 0= 1 andg′(0) = 0 sinceg ∈ F2. This shows
that

Bp(cossx) = g(x) jp(sx).
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Hence we obtain the classical formula,

jp(sx) =
2Γ(p+ 1)
√
πΓ(p+ 1

2)

∫ 1

0
(1− t2)p− 1

2 cos(stx)dt.

The operatorBp was considered by Poisson in this particular question
of the transformation of the consine into the functionjp. The operator

Bp for −1 < Rep< −1
2

For f ∈ E 0(x ≥ 0), the definition ofBp is

Bp[ f (x)] = bpx
∫ x

0
(x2 − y2)

−p−3
2 · y2p+1 f (y)dy

= bp

∫ 1

0
t2p+1(1− t2)−p−3/2 f (tx)dt

where 1/bp =
1

2
√
π
Γ(p+ 1)Γ

(
−p− 1

2

)

Proposition 2. For −1 < Rep< −1
2

and f ∈ F2, f → Bp f is a linear 26

continuous map of F2 into itself satisfying

D2Bp f = BpLp f .

The proof of the fact thatBp is a linear continuous map ofF2 into
itself is analogous to the one we have given in Proposition 1.We ver-
ify that Bp satisfies the given condition, again as in Proposition 1, by
integration by parts

1
bp

{
BpLp − D2Bp

}
f (x) =

∫ 1

0
t2p+1(1− t2)−p−3/2

{
f ′′(tx) +

2p+ 1
tx

f ′(tx) − t2 f ′′(tx)

}
dt

=

∫ 1

0
t2p+1(1− t2)−p− 1

2 ) f ′′(tx) +
2p+ 1

x

∫ 1

0
t2p(1− t2)−p−3/2) f ′(tx)dt

=

[
t2p+1(1− t2)−p− 1

2 f ′(tx)
]1

0
−

∫ 1

0

f ′(tx)
x

d
dt
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t2p+1

(1− t2)p+ 1
2

 dt +
2p+ 1

x

∫ 1

0
t2p f ′(tx)

(1− t2)p+3/2
dt = 0.

The Sonine operatorB̄p for −1 < Rep<
1
2

.27

B̄p is defined for everyf ∈ E 0(x ≥ 0)by

B̄p f = xb̄p

∫ 1

0

t2p+1

(1− t2)p+ 1
2

f (tx)dt

= b̄p

∫ x

0
y2p+1(x2 − y2)−p− 1

2 f (y)dy

where b̄p =

√
π

Γ(p+ 1)Γ(−p+ 1
2)
.

The integral converges if−1 < Rep< 1
2 and we can differentiate under

the sign fo integration

d
dx

B̄p[( f (x))] = Bp[ f (x)] for every f ∈ E
0(x ≥ 0)

Relation betweenBp and B̄p

When−1
2
< Rep<

1
2

, bothB and B̄p are defined and it is easy to

prove by direct computation Abel’s functional equation

B̄pBp[ f (x)] =
∫ x

0
f (y)dy.

In fact

B̄pBp[ f (x)] = b̄p

∫ x

0
y2p+1(x2 − y2)−p− 1

2βpy−2p
∫ y

0
f (z)(y2 − z2)p− 1

2 dz

= b̄pβp

∫ y

0
dy

∫ y

0
y(x2 − y2)−p− 1

2 f (z)dz

= b̄pβp

∫ x

0
[ f (z)

∫ x

z
(x2 − y2)−p− 1

2 (y2 − z2)p− 1
2 ydy]dz



2. Continuation of the operatorBp 23

Settingx2 sin2 θ + z2 cos2 θ = y2, we have28

x2 − y2
= (x2 − z2) cos2 θ, y2 − z2

= (x2 − z2) sin2 θ

ydy= 2(x2 − z2) sinθ cosθdθ

∫ x

z
(x2 − y2)−p− 1

2 (y2 − z2)p− 1
2 ydy

=

∫ π
2

0
cos−2p θ sin2p θdθ =

1
2

B

(
−p+

1
2
, p+

1
2

)

=
1
2

Γ

(
−p+ 1

2

)
Γ

(
p+ 1

2

)

Γ(1)

HenceB̄pBp[ f (x)] =
∫ x

0
f (z)dzso thatDB̄pBp[ f (x)] = f (x).

2 Continuation of the operator Bp

For any f ∈ E (x ≥ 0) = E∞(x ≥ 0), we define

T1[ f (t, x)] = Dt[t f (tx)],

T2[ f (t, x)] = Dt[t
3T1{ f (t, x)}].

In general Tn[ f (t, x)] = Dt{t3Tn−1[ f (t, x)]}.

Lemma 1. Tn[ f (t, x)] = t2n−2gn(t, x) where gn(t, x) is an indefinitely 29

differentiable function in[0, 1] × [0,∞).

The proof of the lemma is trivial and is based on indication onn.
Forn = 1, we have only to setg1(t, x) = Dt[t f (tx)]. Assume that the

lemma is true forn− 1 so that

Tn−1[ f (t, x)] = t2n−4gn−1(t, x).

Define

gn(t, x) = 3gn−1(t, x) + (2n− 4)g(n−1)(t, x) + tDt gn−1(t, x).
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By definition

Tn[ f (t, x)] = 3t2Tn−1[ f (t, x)] + t3DtTn−1[ f (t, x)]

= 3t2t2n−4gn−1(t, x) + t3
{
(2n− 4)t2n−5gn−1(t, x) + t2n−4Dt gn−1(t, x)

}
.

= t2n−2gn(t, x).

Corollary. The integral
∫ 1

0
t2p−(2n−3)(1− t2)

−p+


2n− 3

2


Tn f (x, t)dt con-

verges for−1 < Rep< n− 1
2

.

The corollary is immediate since the integral can be writtenas30

∫ 1
0 t2p+1(1− t2)

−p+
2n− 3

2 gn(t, x).

Proposition 1. For −1 < Rep< −1
2

, and for f ∈ E (x ≥ 0),

Bp[ f (x)] =
(−1)nbp

(2p+ 1)(2p− 1) · · · (2p− 2n− 3)
∫ 1

0

t2p−(2n−3)

(1− t2)p− 2n−3
2

Tn f (t, x)dt

The proof is based on induction on n and the following formulawhich is
obvious:

d
dt


t2p−λ

(1− t2)p− λ2

 =
(2p− λ)t2p−λ−1

(1− t2)p−λ/2+1
(1)

for any λBp[ f (x)] = bp

∫ 1

0
t2p+1(1− t2)−p−3/2 f (tx)dt

Let n = 1. If p+
3
2
= p− λ

2
+ 1, i.e., λ = −1

t2p

(1− t2)p+3/2
=

1
(2p+ 1)

d
dt


t2p+1

(1− t2)p+ 1
2





2. Continuation of the operatorBp 25

so that

Bp[ f (x)] =
bp

2p+ 1

∫ 1

0

d
dt


t2p+1

(1− t2)p+ 1
2

 t f (tx)dt

= −
bp

2p+ 1

∫ 1

0

t2p+1

(1− t2)p+ 1
2

T1
[
f (t, x)

]
dt

(integrating by parts, the integrated part being zero sinceRep+1
2 < 0 31

and 2 Rep+ 2 > 0). Thus the formula to be proved holds forn = 1.
Assuming it forn− 1, we establish it forn

Bp
[
f (x)

]
=

(−1)n−1bp

(2p+ 1)(2p− 1) . . . (2p− 2n+ 5)
∫ 1

0

t2p−(2n−5)

(1− t2)p− 2n−5
2

Tn−1[ f (t, x)]dt

Using (1) withp− 2n− 5
2
= p− λ

2
+ 1 i.e., λ = 2n− 3, the integral

on the right hand side equals

1
2p− 2n+ 3

∫ 1

0

d
dt


t2p−2n+3

(1− t2)p− 2n−3
2

 t3Tn−1[ f (t, x)]dt

=
1

2p− 2n+ 3




t2p+2

(1− t2)p− 2n−3
2

gn−1(t, x)


1

0

−
∫ 1

0

t2p−2n+3

(1− t2)p− 2n−3
2

Tn
[
f (t, x)

]
dt



=
1

2p− 2n+ 3

∫ 1

0

t2p−2n+3

(1− t2)p− 2n−3
2

Tn
[
f (t, x)

]
dt,

the integrated part being zero since−1 < Rep< −1
2

. We write 32

Bn
p
[
f (x)

]
= b(n)

p

∫ 1

0

t2p−(2n−3)

(1− t2)p− 2n−3
2

Tn
[
f (t, x)

]
dt (2)
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where b(n)
p = (−1)n

bp

(2p+ 1)(2p− 1)(2p− 3) · · · (2p− 2n+ 3)
(3)

The integral is convergent for−1 < Rep < n − 1
2

so that under

this condition, we can differentiate under the sign of integration and
Bn

p f ∈ E . We obtain for eachn a function which assigns to eachp in

−1 < Rep< n− 1
2

, a mapBn
p of E into itself which coincides withBp if

−1 < Rep< −1
2

. It is easy to see thatBn
p is a linear map ofE into itself.

In order to show that it is continuous, asE is metrizable, it is enough to
prove that if a sequence

{
f j
}

j=1,2,... tends to zero inE , thenBn
p f j tends to

0 in E . We have

∣∣∣Dr
xBn

p
[
f j(x)

]∣∣∣ ≤ b(n)
p M(r, x, j)

∫ 1

0

t2p−(2n−3)

(1− t2)p− 2n−3
2

dt

where M(r, x, j) = sup
1≤t≤1

∣∣∣∣Dr
xTn

[
f j(t, x)

]∣∣∣∣

Now Tn
[
f f (t, x)

]
is a polynomial int, x with coefficients which are33

derivatives of order≤ n of f j and f j together with all its derivatives
converge to zero on each compact subset. HenceM(r, x, j) → 0 as
j → ∞ uniformly for x on each compact subseti.e. Bn

p f j → 0 in E .

Thus we obtain a functionp → Bn
p on −1 < Rep < −1

2
with values

in L (E ,E ), the space of linear continuous maps ofE into itself. We
intend to prove that this function is analytic and can be continued in the
whole complex plane into a function which ia analytic in the half plane
Rep > −1 and meromorphic in Rep< −1 with a sequence of poles
lying on the real axis. Before proving this continuation theorem we give
first the definition of a vector valued analytic function and some of its
properties which follow immediately from the definition.

Definition. Let 0 be an open subset of the complex plane andE a locally
convex vector space. A functionf : 0→ E is called analytic if for every
e′ in the topological dualE′ of E (i.e. the space of linear continuous
forms onE) the functionz →< f (z), e′ > is analytic in 0 where<, >
denotes the scalar product betweenE andE′.
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Lemma 2. If E is locally convex vector space in which closed convex
envelope of a compact set is compact, a function f: 0→ E is analytic if
f is continuous and for every e′ in a total set M′ of E′, z→< f (z), e′ >
is analytic in0.

Let C be any simple closed curve lying entirely in 0, enclosing re-34

gion ( open connected set ) contained in 0. Fore′ ∈ M′, the function
z →< f (z), e′ > is analytic in 0, so that

∫
c
< f (z), e′ > dz = 0 i. e.

<
∫
c

f (z)dz, e′ >= 0.
∫
c

f (z)dz is the integral of the continuousE-valued
function f over the compact setC and is an element ofE sinceE has the
property that the closed convex envelope of any compact subset is com-
pact. ( For integration of a vector valued function, refer toN. Bourbaki,
Elements de Mathematique, Integration, Chapter III). Hence

∫
c

f (z)dz=

0 sinceM′ is total, so that<
∫
c

f (z)dz, e′ >=
∫
c
< f (z), e′ > dz= 0 for

everye′ ∈ E′. Also as f is continuous it follows thatz→< f (z), e′ >
is continuous. This proves thatz →< f (z), e′ > is analytic for every
e′ ∈ E′ since the choice ofC was arbitrary.

Proposition 2. Suppose that−1 < Rep< n− 1
2

. Then

a) Bn
p f ∈ E (x ≥ 0) for every f∈ E (x ≥ 0)

b) The mapping f→ Bn
p f is linear continuous ofE into itself.

c) The function p→ Bn
p on the strip−1 < Rep < n − 1

2
with val-

ues inLs(E ,E ) is analytic whereLs(E ,E ) is the space of linear
continuous maps ofE into E endowed with the topology of simple
convergence.

We have to prove only (c). We first observe that any linear contin-
uous form onLs(E, F) is given by finite linear combination of forms35

of the typeu →< ue, f ′ > with e ∈ E and f ′ ∈ F′. The theorem
will be proved if we show that the mapp →< Bn

p f ,T > is analytic in

−1 < Rep< n − 1
2

where f is any element ofE andT any element of

E ′; i.e. for fixed f we have to show that the mapp→ Bn
p f is analytic

with values inE . Now E ia a Hausdorff complete locally convex vector
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space and therefore closed convex envelope of each compact subset of
E is compact ( refer toN. Bourbaki, Espaces Vectoriels Topologiques,
Ch.II, §4, Prop.2). Further it is easy to see thatp→ Bn

p f is continuous
and that the set

{
δx

}
x≥0, whereδx is the Dirac measure with support atx,

is total inE ′. Applying the lemma, we see that in order to prove analyt-
icity of the functionp→ Bn

p f we have only to prove that the function
p →< Bn

p f , δx > i.e. the functionp → Bn
p f (x) (for f and x fixed ) is

analytic in−1 < Rep< n− 1
2

.

Observing thatbp =
2
√
π

Γ(p+ 1)Γ(−p− 1
2

)
is an entire function with

zeros atp = −1,−2,−3, . . . and p = −1
2
,
1
2
,
3
2
, . . . we see thatbn

p in (3)

is an entire function. The integral in (2) on the other hand converges for

−1 < Rep< n − 1
2

and therefore is analytic in the same region, Hence

p→ Bn
p f (x) is analytic in the strip−1 < Rep< n− 1

2
.

Corollary. The functions Bmp and Bn
p where m and n are two distinct36

positive integers are identical in the intersection of their domains of
definition.

We have in fact two analytic functionsBm
p and Bn

p which coincide

with Bp in −1 < Rep < −1
2

which is common to their domains of

definitions and therefore the two functions coincide everywhere in the
domain which is the intersection of their domains of definition due to
analyticity. It follows from the corollary that we have a unique analytic
function Bp defined for Rep> −1.

Remark. We haveB−1/2 = identity.

For n = 1,

Bp( f ) =
−bp

2p+ 1

∫ 1

0

t2p+1

(1− t2)p+ 1
2

d
dt

[
t f (tx)

]
dt
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and if p = −1
2

,
−bp

2p+ 1
= 1 and

B− 1
2

[
f (x)

]
=

∫ 1

0

d
dt

[
t f (tx)

]
dt = f (x).

Continuation of Bp for Rep< −1
2

.

We define

U1
[
f (t, x)

]
= Dt

[
(1− t2)

1
2 f (tx)

]
.

U2
[
f (t, x)

]
= Dt

[
(1− t2)3/2 f (tx)

]
.

In general Un
[
f (t, x)

]
= Dt

[
(1− t2)3/2Un−1 f (tx)

]
. 37

Lemma 3. For every f inE(x ≥ 0) = E we have

Un
[
f (t, x)

]
= (1− t2)3/2DtUn−1 f (t, x) − 3t(1− t2)

1
2 Un−1

[
f (t, x)

]
(4)

and Un
[
f (t, x)

]
= (1− t2)

n−2
2 hn(t, x) (5)

where hn(t, x) is indefinitely differentiable in
[
0, 1

] × [
0,∞)

.

Relation (4) is evident. (5) can be proved by induction onn. It is
true forn = 1 if we set

h1(t, x) = −t f (tx) + x(1− t2) f ′(t, x).

Assuming it forn− 1, it is easy to verify that (5) holds forn if

hn(t, x) = −nthn−1(t, x) + (1− t2)Dthn−1(t, x)

Corollary. The integral
∫ 1
0

t2p+n+1

(1−t2)p+ n+1
2

Un
[
f (x, t)

]
dt converges for−1 −

n
2 < Rep< −1

2.

Proposition 3. If −1 < Rep< −1
2

,
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Bp
[
f (x)

]
=

(−1)nbp

(2p+ 2)(2p+ 3) · · · (2p+ n+ 1)
∫ 1

0

t2p+n+1

(1− t2)p+ n+1
2

Un
[
f (t, x)

]
dt

The proof of this proposition is analogous to that of Proposition 1. 38

We prove it by induction onn and by using formula (1).

For−1 < Rep< −1
2

,

Bp
[
f (x)

]
= bp

∫ 1

0
t2p+1(1− t2)−p− 3

2 f (tx)dt

Using (1) with 2p+ 1 = 2p− λ − 1 i. e.λ = −2, we have,39

t2p+1

(1− t2)p+2
=

1
2p+ 2

d
dt

(
t2p+2

(1− t2)p+1
)

so that

Bp
[
f (x)

]
=

bp

2p+ 2

∫ 1

0

d
dt

(
t2p+2

(1− t2)p+1
)(1− t2)

1
2 f (tx)dt

=
−bp

(2p+ 2)

∫ 1

0

t2p+2

(1− t2)p+1
U1

[
f (t, x)

]
dt,

the integrated part being zero since−1 < Rep <
1
2

. The formula is

proved forn = 1. We assume it forn− 1

Bp
[
f (x)

]
=

(−1)n−1bp

(2p+ 2)(2p+ 3) · · · (2p+ n)
∫ 1

0

t2p+n

(1− t2)p+n/2
Un−1[ f (t, x)]dt

Using (1) with 2p+ n = 2p− λ − 1 i. e.λ = −(n+ 1), we get

d
dt


t2p+n+1

(1− t2)p+ n+1
2

 = (2p+ n+ 1)
t2p+n+2

(1− t2)p+ n+3
2

,
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so that

Bp
[
f (x)

]
=

−(−1)n−1bp

(2p+ 2) · · · (2p+ n+ 1)

∫ 1

0

t2p+n+1

(1− t2)p+ n+1
2

Dt

{
(1− t2)

3
2 Un−2 f (t, x)

}
dt

we shall now set

nBp

[
f (x)

]
= (n)bp

t2p+n+1

(1− t2)p+ n+1
2

Un
[
f (t, x)

]
dt (6)

(n)bp =
(−1)nbp

(2p+ 2)(2p+ 3) · · · (2p+ n+ 1)
(7)

(n)bp is a meromorphic function ofp, with poles at the points

p =
−3
2
,
−5
2
, . . ..

Proposition 4. Suppose that p satisfies

− 1− n
2
< Rep< −1

2
(8)

and does not assume any of the values

− 3
2
,
−5
2
, . . . (9)

Then 40

a) nBp f ∈ E for eachf ∈ E

b) The mappingf → nBp f is linear continuous fromE into E .

c) The functionp → nBp is meromorphic in the strip defined by (8)
with poles situated at the points given by (9).

We omit the proof ofa) andb) since it is exactly similar to that of
Proposition 2. The proof ofc) reduces as in Proposition 2, to showing
that the function

p (n)bp

∫ 1

0

t2p+n+1

(1− t2)p+ n+1
2

Un
[
f (t, x)

]
dt
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is meromorphic in the strip (8) with poles at the points (9), which is
obvious since the integral converges in (8) and is thereforeanalytic in
(8) andnbp is meromorphic in (8) with poles given by (9).

Corollary. If m, n are two distinct positive integers, the two functions
mBp, nBp coincide in the common part of their domains of definition.

This corollary is immediate like the corollary of Proposition 2. Con-

sequently we have a unique functionBp defined for Rep< −1
2

.

Propositions (2) and (4) give finally the continuation theorem for the41

operatorBp.

Theorem.The function p−Bp defined initially in−1 < −Rep< −1
2

with

values inL (E ,E ) endowed with the topology of simple convergence
can be continued in the whole plane into a meromorphic function. The

poles of this function are situated at the points
−3
2
,
−5
2
,
−7
2
, . . ..

Remark. The notion of an analytic function with values in a locally
convex vector spaceE depends only on the system of bounded subsets
of E. E being complete it is easy to see (in view of Theorem 1, page 21,
Ch.III, Espaces vectorieles Topologiques byN. Bourbaki) that the space
L (E ,E ) when furnished with the topology of simple convergence has
the same system of bounded sets as when furnished with the topology
of uniform convergence on the system of bounded sets ofE . Hence in
the theorem we can replace the topology of simple convergence by the
topology of uniform convergence on bounded subsets ofE or by any
other locally convex topology which lies between these two topologies.

Let E∗ andD◦ be subspaces ofE(x≥0) defined by

E∗ =
{
f | f ∈ E (x ≥ 0), f 2n+1(0) = 0 for n ≥ 0

}

D◦ =
{
f | f ∈ (x ≥ 0), f n(0) = 0 for n ≥ 0

}

When−1 < Rep< −1
2

, we have42

Dr Bp
[
f (x)

]
= bp

∫ 1

0
t2p+1+r (1− t2)

−p− 3
2 f r (tx)dt
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so that
Dr Bp

[
f (0)

]
= bp,r f r (0) (10)

where

bq,r =

√
π Γ

(
p+

r
2
+ 1

)

Γ

(
r+1
2

)
Γ(p+ 1)

This shows that whenr is even, p → bp,r is an entire function
of p and whenr is odd it is a meromorphic function with poles at
−3
2 ,

−5
2 , . . . (10) is therefore true for allp not equal to the exceptional

values−3
2 ,
−5
2 , . . .. ThenBp[ f ] is in E∗ or in D◦ according asf is in E∗

or D◦. Therefore forp , −3
2 ,
−5
2 , . . . , Bp ∈ L (ε∗, ε∗)( or ∈ L (Do,Do))

and p → Bp is meromorphic with poles atp =
−3
2
, . . .. Actually the

following stronger result holds.

Theorem.The function p→ Bp is an entire analytic function with val-
ues inL (ε∗, ε∗) (also in(Do,Do)).

We have seen more than once, that in order to investigate the ana-
lyticity of the function p → Bp, it is sufficient to do the same for the
function p → Bp[ f (x)], where f ∈ E and x ≥ 0 are arbitrarily cho-
sen and are fixed. In this case we study the behaviour of the function 43

p−Bp[ f (x)] where f ∈ E ∗ andx ≥ 0, in the neighbourhood of the point

po = −
2m+ 1

2
, (a supposed singularity of the function).

By Taylor’s formula,

f (tx) =
N∑

0

xntn

n!
f n(0)+

xN+1

N

∫ t

o
f (tξ) f N+1(ξx)dξ,

N being an arbitrary integer.

Suppose first that−1 < Rep< −1
2

. Then

Bp[ f (x)] =

√
π

Γ(p+ 1)

N∑

o

Γ

(
p+ n

2 + 1
)

Γ

(
n
2 +

1
2

)
n!

xn f n(0)
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+ bp
xN+1

N!

∫ 1

o
t2p+1(1− t2)−p− 3

2 dt
∫ 1

o
(t − ξ)N f N+1(ξx)dξ.

The right hand side of this formula is well defined when−N + 3
2

<

Rep< −1
2

and depends analytically onp and therefore coincides with

the continuation ofB already obtained. ChoosingN such that−N + 3
2

<

po, the integral on the right is analytic at the pointpo. Hence we have

only to consider the finite sum atpo. The functionΓ(p+
n
2
+1) has poles

at the pointsp such thatp +
n
2
+ 1 = −µ, µ a positive integer. It has a

pole atp0 if
n
2
= −µ−1− p0 = m−µ− 1

2
i.e. n = 2(m−µ)−1. But when44

n is odd, f n(0) = 0 since f ∈ E∗. The finite sum is therefore analytic

at p0 andBp[ f (x)] has false singularity at−2m+ 1
2

and the proof of the

theorem is complete.

Theorem.The formula

D2Bp f = BpLp f holds for every f∈ E
∗

and for every complex number p. Lp f is in E∗ if f ∈ E∗ so that Lp ∈
L (E∗,E∗) and it is easy to verify that p→ Lp is an entire function with
value isL (E∗,E∗). The two entire functions p→ BpLp and p→ D2Bp

coincide by Proposition 2, §1 in−1 < Rep < −1
2

and are therefore

identical in the whole plane.

Remark. It is necessary to suppose thatf ∈ E∗. If f is only inE , Lp f is
not inE (always).

3 Continuation of Bp

We now consider the extension of the operatorBp initially defined for

Rep> −1
2

by

Bp[ f (x)] = βp

∫ 1

o
(1− t2)p− 1

2 f (tx)dt. (I)
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where

βp =
2Γ(p+ 1)
√∏
Γ(p+ 1

2)

Changing the variablet = sinΘ, 45

Bp[ f (x)] = βp

∫ ∏
2

o
f (xsinθ) cos2p θdθ.

Let M1
p[ f (x, θ)] = f (xsinθ)

+
1

(2p+ 1)(2p+ 2)
d
dθ

{
sinθ

d
dθ

[sinθ f (xsinθ)]

}

and

N1
p[ f (x, θ)] =

1
2p+ 1

d
dθ
{sinθ f (xsinθ)}

We determine by induction, the functions

Mn
p[ f (x, θ)] = Mn−1

p [ f (x, θ)] +
1

2p+ 2n
d
dθ{

sinθ
d
dθ

sinθNn−1
p [ f (x, θ]

}
+

1
(2p+ 2n− 1)(2p+ 2n)

d
dθ{

sinθ
d
dθ

[sinθMn−1
p ( f (x, θ))

}

and

Nn
p[ f (x, θ)] = Nn−1

p [ f (x, θ)] +
1

2p+ 2n− 1
d
dθ

{
sinθMn−1

p [ f (x, θ)]
}

Proposition 1. For Rep> −1
2
, f ∈ E (x ≥ 0) and for any n,

Bp[ f (x)] = βp

∫ π
2

o
cos2p+2n θMn

p[ f (x, θ)]dθ

+ βp

∫ π
2

0
cos2p+2n+1 θNn

p f (x, θ)dθ (1)
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The proof of this proposition is elementary and is based on induction 46

on n and the process of integration by parts.

Bp f (x) = βp

∫ π
2

0
f (xsinθ) cos2p+2 θdθ

+ βp

∫ π
2

o
f (xsinθ) sin2 θ cos2p θdθ.

But as sinθ cos2p θ =
d
dθ

(
cos2p+1 θ

−(2p+ 1)
) integrating by parts the second

integral, we get,

Bp f (x) = βp

∫ π
2

o
f (xsinθ) cos2p+2 θdθ

+ βp

∫ π
2

0

1
2p+ 1

d
dθ

(sinθ f (xsinθ)) cos2p+1 θdθ

Now the second integral in this equation equals

∫ π
2

0

1
2p+ 1

d
dθ

(sinθ f (xsinθ)) cos2p+3 θdθ

+

∫ π
2

0

1
2p+ 1

d
dθ

(sinθ f (xsinθ)) cos2p+1 θ sin2 θdθ

=

∫ π
2

0

1
2p+ 1

d
dθ

(sinθ f (xsinθ)) cos2p+3 θdθ

+

∫ π
2

0

1
(2p+ 1)(2p+ 2)

cos2p+2 θ
d
dθ

{
sinθ

d
dθ

(sinθ f (xsinθ))
}
dθ

so that47

Bp f (x) = βp

∫ π
2

0
cos2p+2 θ

{
f (xsinθ)

+
1

(2p+ 1)(2p+ 2)
d
dθ

(sinθ
d
dθ

(sinθ f (xsinθ)))
}
dθ

+ βp

∫ π
2

0
cos2p+3 θ

1
2p+ 1

d
dθ

(sinθ f (xsinθ))dθ
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Hence formula (1) holds forn = 1. Assuming it forn− 1, it can be
verified forn by integration by parts.

We define for every integern > 0,

B
n
p f (x) = βp

∫ π
2

0
cos2p+2n θMn

p f (x, θ)dθ+

βp

∫ π
2

o
cos2p+2n+1 θNn

p f (x, θ)dθ

The two integrals converge for Rep> −1
2
− n.

Proposition 2. If p satisfies 48

Rep> −1
2
− n (2)

and
p , −1,−2,−3, . . . (3)

Then

a) For f ∈ E (x ≥ 0) = E ,Bn
p f ∈ E .

b) The mappingf → Bn
p f is linear continuous ofE into itself.

c) The functionp → Bn
p is meromorphic in the half plane defined by

(2) with values inL (E ,E ) the poles being situated at the points
(3). We shall give only the outline of the proof since it is analo-

gous to that of Proposition (2), §2. The functionβp =
2Γ(p+ 1)
√
πΓ(p+

1
2

)

is a meromorphic function ofp which vanishes at−1
2
,−3

2
, . . . , and

poles at−1,−2,−3, . . . and for x, θ fixed, Mn
p f (x, θ), andNn

p f (x, θ)

are meromorphic function with poles at−1
2
,−1,

−3
2
,−2, . . .. Hence

for p fixed and, −1,−2, . . . , the function (x, θ) → βpMn
p(x, θ) and

(x, θ)→ βpNn
p f (x, θ) are indefinitely differentiable in [0,∞) × (0,

π

2
)
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so that (a) is true. The proof for (b) is similar to that of (b) of propo-
sition 2, §2. Forf , x andθ fixed, Mn

p f (x, θ) andNn
p f (x, θ) are mero-

morphic functions with poles at−1,−2, . . . so thatp → Bp f (x) is

meromorphic Rep> −1
2
−n with poles at (3). Further sincep→ Bp

is continuous in the region given by (2) and (3), (c) follows.49

Corollary. If m, n are two distinct positive integers, the functionsBm
p

andBm
p coincide in the intersection of their domains of definitions.

In fact the two meromorphic functions coincide withBp in the half

plane Rep> −1
2

which is common to their domains of definitions and

hence they coincide everywhere in the intersection of theirdomains of
definition.

We have proved the following

Theorem.The function p→ Bp defined inRep> −1
2

by (I) with values

in L (E ,E ) can be continued analytically into a function meromorphic
in the whole plane with poles at−1,−2,−3, . . ..

Remark 1. B− 1
2=

identity.

Remark 2. For Rep> −1
2

, we have

Dr
Bp f (x) = βp

∫ 1

◦
tr(1− t2)

p−
1
2 f r (tx)dt

and [Dr
Bp f (x)]x=0 = βp,r f r (0) (4)

whereβp,r =

Γ(p+ 1)Γ

(
r + 1

2

)

√
πΓ

( r
2
+ p+ 1

) is a meromorphic function ofp with

poles at−1,−2, . . .. By analytic continuation, the equation (I ) holds for50

p , −1,−2, . . .. Then if f ∈ E∗(resp. Do), Bp f ∈ E∗(resp. Do) and
p→ Bp is meromorphic with values inL (E∗,E∗)(resp. L (Do,Do)).
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Theorem.For any p, −1,−2, . . . we have

BpD2 f = D2
Bp f , f ∈ E∗.

By Proposition 1, §1, the given equation holds for Rep> −1
2

and

hence for allp , −1,−2, . . . by analytic continuation.

Theorem.For any complex p, −1,−2, . . . the operators Bp and Bp

are isomorphisms ofE∗ (respDo) onto itself which are inverses of each
other.

We have seen thatDB̄pBp = I (identity) for −1
2
< Rep<

1
2

. Also

for p in the same regionDB̄p = Bp so thatBpBp = I for −1
2
< Rep<

1
2

and the same holds for allp , −1,−2,−3, by analytic continuation.
Similarly BpBp = I for p , −1,−2, . . ..





Chapter 4

Transmutation in the
Irregular Case

[
Case of the general operator :D2

+

(
2p+ 3

x

)
+M(x)D +N(x)

]

1

Let M andN be two indefinitely differentiable functions,M odd (i.e., 51

M(2n)(0) = 0 for everyn ≥ 0) andN even (i.e.,N2n+1(0) = 0 for every
n ≥ 0 i.e.,N ∈ E∗).

We consider the two following problems.

Problem 1.To find u(x, y), indefinitely differentiable even inx and y
which is a solution of

∂2u

∂x2
+

(
2p+ 1

x
+ M(x)

)
∂u
∂x
+ N(x)u− ∂

2u

∂y2
= 0 (1)

with
u(0, y) = g(y), g ∈ E∗ (2)

Problem 2.To find v(x, y) indefinitely differentiable, even inx andy,
solution of the same equation (1) with

41
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v(x, 0) = f (x), f ∈ E∗ (3)

We intend to prove the following

Theorem 1. For p , −1,−2, . . ., each of the two problems stated above
admits a unique solution, which depends continuously on g (or f ).

Once we prove this theorem, we can defineOperators Xp andXp.52

Definition 1. Forg ∈ E∗, andp , −1,−2, . . .

Xp[g(x)] = u(x, 0),

whereu is the solution of the Problem 1.

Definition 2. For f ∈ E∗, andp , −1,−2, . . .

Xp[ f (y)] = v(0, y)

wherev is the solution of the second problem. Assuming Theorem 1,
definitions (1) and (2) give immediately

Theorem 2. For p , −1,−2, . . . ,Xp andXp are in L(E∗,E∗).

We now prove

Theorem 3. For p , −1,−2, . . ., we have

D2Xp = XpΛp (4)

XpD2
= ΛpXp (5)

where Λp = D2
+

2p+ 1
x

D + M(x)D + N(x) (6)

Applying the operator
∂2

∂y2
to the two sides of

∂2v

∂x2
+

(
2p+ 1

x
+ M(x)

)
∂v
∂x
+ N(x)v− ∂

2v

∂y2
= 0
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and setting
∂2v

∂y2
= V, we have53

(Λp)xV −
∂2V

∂y2
= 0,

and V(x, 0) =
∂2v

∂y2
(x, 0) = (Λp)x(v(x, 0)) = Λp[ f (x)]; and by the defini-

tion of Xp,V(0, y) = XpΛp[ f (x)].

But we have also
∂2V

∂y2
(0, y) = D2

y[Xp f (y)]. Thus (4) is proved. Sim-

ilarly (5) can be proved. But (5) follows from (4) and the

Theorem 4. For p , −1,−2, . . . , the operators Xp, Xp are isomor-
phisms ofE∗ onto itself and XpXp = XpXp = the identity.

Let g ∈ E∗ and u be the solution of Problem 1. Thenu(x, 0) =
Xp[g(x)]. In order to findXpXp[g(x)] it is sufficient to determine the
solutionv(x, y) of

∂2v

∂y2
+ (

2p+ 1
x
+ M(x))

∂v
∂x
+ N(x)v− ∂

2v

∂y2
= 0

with v(x, 0) = Xp[g(x)] = u(x, 0).
Then, in view of Theorem 1,u(x, y) = v(x, y). HenceXpXp[g(y)] =

u(0, y) = g(y) similarly XpXp = the identity. 54

The Theorem 1. We now proceed to solve Problem 1. Let (Bp)x

[u(x, y)] = w(x, y) where (Bp)x denotes the operatorBp relative to the
variablex. Applying (Bp)x to the two sides of equation (1), i. e., of

(Lp)x[u(x, y)] + M(x)
∂u
∂x
+ N(x)u− ∂

2u

∂y2
= 0

and usingD2Bp = BpLp, we obtain

∂2w

∂x2
− ∂

2w

∂y2
+ (Bp)x[M(x)

∂u
∂x
+ N(x)u] = 0

and we have alsow(0, y) = g(y) = u(0, y) sinceBp f (0) = f (0).
We intend to put this equation which is equivalent to equation (1) in

a proper form, We first prove
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Proposition 1. BpABp f (x) = A(x) f (x) + x
∫ x

o
Tp[A](x, y) f (y)dy where

A(x) and f(x) ∈ E∗ and Tp is a map defined inE∗ with values in the
space of even indefinitely differentiable functions of the variables x and
y.

For−1 < Rep<
1
2

,

B̄p f (x) = b̄p

∫ x

o
(x2 − y2)−p− 1

2 y2p+1 f (y)dy

where b̄p =

√
π

Γ(p+ 1)Γ(−p+
1
2

)
, B̄p f (0) = 0,DB̄p = Bp

and for Rep> −1
2
,

Bpg(x) = βpx−2p
∫ x

o
(x2 − y2)p− 1

2 f (y)dy

where βp =
2Γ(p+ 1)
√
πΓ(p+

1
2

)
.55

Hence for−1
2
< Rep<

1
2

, we compute

B̄pABp f (x) = b̄pβp

∫ x

o
(x2 − z2)−p− 1

2 z2p+1A(z)
[
z−2p

∫ z

o
(z2 − y2)p− 1

2 f (y)dy

]
dz

= b̄pβp

∫ x

o
f (y)

[ ∫ x

y
(x2 − z2)−p− 1

2 (z2 − y2)p− 1
2 A(z)zdz

]
dy.

Settingz2
= x2 sin2 θ + y2 cos2 θ, we get

B̄pABp f (x) = b̄pβp

∫

o
φp(x, y) f (y)dy

where, φp(x, y) =
∫ π

2

o
sin2p θ cos−2p θA

[√
x2 sin2 θ + y2 cos2 θ

]
dθ
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which converges for−1
2
< Rep< 1

2. It follows that

DB̄pABp f (x) = b̄pβpφp(x, x) f (x) + b̄pβp

∫ x

0

∂

∂x
φp(x, y) f (y)dy

But we have 56

φp(x, x) = A(x)
1
2
Γ(p+

1
2

)Γ

(
−p+

1
2

)

so that b̄pβpφp(x, x) = A(x).

HenceBpABp f (x) = A(x) f (x) + γp

∫ x

0

∂

∂x
φp(x, y) f (y)dy where

γp =
2

Γ(p+ 1
2)Γ(−p+ 1

2)
.

Now
∂

∂x
φp(x, y) =

∫
π

2
0 sin2p+2 θ cos−2p θ

A′(z)
z

xdθ so that if we give

Definition 3. For f ∈ E∗

Tp[ f ](x, y) = γp

∫ π
2

0
sin2p+2 θ cos−2p θ f1(z)d

where f1(z) =
f ′(z)

z
, z =

[
x2 sin2 θ + y2 cos2 θ

] 1
2
, γp = b̄pβp, then we

can write

BpAB f (x) = A(x) f (x) + x
∫ x

o
Tp[A](x, y) f (y)dy (7)

(7) is valid for |Rep| < 1
2

and f ∈ E∗.

Remark. We haveγp = 0 for p = ±1
2
,±3

2
, . . . so thatT− 1

2
= 0. Again 57

for p = −1
2, Bp = Bp = the identity. Hence (7) is valid forp =

−1
2. Now w(x, y) = (Bp)xu(x, y) so thatu(x, y) = (Bp)xw(x, y) and
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(Bp)xM(x)
∂u
∂x
= (Bp)xM(x)Dx(B)xw(x, y). We shall denote byφ(x), the

functionw(x, y) considered as a function ofx; let (Bp)xw(x, y) = Bpφ =

ψ. ThenBpψ = φ, BpMDBpφ = BpMDψ = Bp(D(Mψ))Bp(M′ψ) =

Bp[D(xM∗ψ)] − Bp(M′ψ) whereM∗(x) =
M(x)

x
∈ E∗ andBp[MDψ] =

Bp[xDM∗ψ] + Bp[(M∗ − M′)ψ]. But for −1 < Rep< −1
2

,

Bp[xDF] = bpx
∫ 1

o
t2p+2(1− t2)−p−3/2F′(tx)dt = xD(Bp[F])

HenceBp(MDψ) = xDBpM∗ψ + Bp[(M∗ − M)ψ]
Now by (7),

Bp[MDψ] = xD

{
M∗φ + x

∫ x

o
Tp[M∗](x, y)φ(y)dy

}

+ (M∗ − M′)φ + x
∫ x

o
Tp[M∗ − M](x, y)φ(y)dy.

= x2Tp[M∗](x, x)φ(x) + x
∫ x

o
Sp[M](x, y)φ(y)dy+ M(x)φ′(x)

whereSp[M](x, y) = Tp[2M∗ − M](x, y) + x
∂

∂x
Tp[M∗](x, y)58

As

Tp[M∗](x, x) = γp
M∗

′
(x)

x

∫ π

2
o

sin2p+2 θ cos−2p θdθ

=

(
p+

1
2

)
M∗

′
(x)

x
,

BpMDBp[φ] = M(x)φ′(x) +

(
p+

1
2

)
[M′(x) − M∗(x)]φ(x)

+ x
∫ x

o
Sp[M](x, y)φ(y)dy

Also Bp[N(x)ψ] = BpNBpφ = N(x)φ(x) + x
∫ x

o
Tp[N](x, y)φ(y)dy
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Hence the differential equation inw has the form

∂2w

∂x2
− ∂

2w

∂y2
+ M(x)

∂w
∂x
+

(
P+

1
2

)
[M′(x) − M∗(x)]w

+ N(x)w+ x
∫ x

o

{
Sp[M](x, ξ) + Tp[N](x, ξ)

}
w(ξ, y)dξ = 0

Let Qp(x) = N(x) +

(
p+

1
2

) (
M′(x) − M(x)

x

)
∈ ξ∗ andRp(x, ξ) =

Sp[M](x, ξ) + Tp[N](x, ξ). We see that Problem 1 is equivalent to the
determination of the indefinitely differentiable solution even inx andy
the integro differentiable equation

∂2w

∂x2
− ∂

2w

∂y2
M(x)

∂w
∂x
+ Qp(x)w+ x

∫ x

o
Rp(x, ξ, )w(ξ, y)dξ = 0

with the conditionw(0, y) = g(y).
It is easy and classical to transform this problem to a purelyintegral 59

equation of Valterra type and the solution is obtained by themethod of
successive approximation. It can be verified that all the conditions of
w are verified . A process completely analogous gives the solution of
Problem 2.

3 Continuation of Tp

For f ∈ E∗ fixed we define by induction the functionsgn(x, y, θ) as fol-
lows

go(x, y, θ) = f1(z) =
f ′(z)

z
wherez=

√
x2 sin2 θ + y2 cos2 θ

sin2p θ cosθg1(x, y, θ) =
∂

∂θ

[
sin2p+1 θgo(x, y, θ)

]

In general

sin2p−2n+2 θ cosθ gn(x, y, θ) =
∂

∂θ

[
sin2p−2n+3 θgn−1(x, y, θ)
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i.e., g1(x, y, θ) = (2p+ 1) f1(z) + (x2 − y2) sin2 θ f2(z)

where f2(z) =
f ′1(z)

z
∈ E∗.

In fact we can prove immediately by induction onn the following

Lemma 1. gn(x, y, θ) is a linear combination of f1, f2, . . . , fn+1 with
coefficients which are polynomials in x2, y2 and sin2 θ where fn(z) =60
1
z

fn−1(z) ∈ E∗.

Corollary. The functions gn(x, y, θ) are indefinitely differentiable in x, y,

θ and even in x and y for(x, y) ∈ R2 andθ ∈ [0,
π

2
].

Definition.

T(n)
p [ f ](x, y) =

(−1)nγp

(2p− 1)(2p− 3) · · · (2p− 2n+ 1)

∫ π
2

0

cos−2p+2n θ sin2p−2n+2 θgn(x, y, θ)dθ

The integral converges for
2n− 3

2
< Rep <

2n+ 1
2

and T(n)
p ∈

L (E∗,E) whereE is the space of indefinitely differentiable functions
of two variablesx, y which are also even inx andy with the usual topol-
ogy of uniform convergence on every compact subset ofR2 of functions
together with their derivatives. It can be verified thatp → T(n)

p is an
analytic function forp in the strip in view of the fact that

p→
γp

(2p− 1) · · · (2p− 2n+ 1)
is an entire function.

Lemma 2. In each strip
2n− 3

2
< Rep <

2n− 1
2

, we have

T(n)
p = T(n−1)

p

T(n−1)
p [ f ](x, y) =

(−1)n−1γp

(2p− 1)(2p− 3)̇̇(2p− 2n+ 3)
∫ π

2

0
cos−2p+2n−2 θ sin2p−2n+4 θgn−1(x, y, θ)dθ
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The integral can be written as61

∫ π
2

0
cos−2p+2n−2 θ sinθ sin2p−2n+3 θgn−1(x, y, θ)dθ

=
−1

(2p− 2n+ 1)

∫ π
2

0
cos−2p+2n−1 θ

∂

∂θ

{
sin+2p−2n+3 θgn−1(x, y, θ)

}
dθ

(integrating by parts, the integrated part being zero for
2n− 3

2
< Rep<

2n− 1
2

). The lemma is now evident by the recurrence formula forgn.

Thus we have

Proposition. The function p→ Tp defined for−3
2
< Rep<

1
2

admits

an analytic continuation in the half plane Rep>
−3
2

, with values in

L (ε∗,E). The explicit definition of Tp is given by the formula for T(n)
P

for suitable n.

Analytic continuation ofTp in the half plane Rep<
−3
2

is obtained

by exactly similar process. We introduce functions

ho(x, y, θ) = f1(z), z= (x2 sin2 θ + y2 cos2 θ)
1
2 ,

cos−2p−2 θ sinθh1(x, y, θ) =
∂

∂θ

[
cos−2p−1 θho(x, y, θ)

]
,

and by induction,

cos−2p−2n θ sinθhn(x, y, θ) =
∂

∂θ

[
cos−2p−2n+1 θhn−1(x, y, θ)

]
,

It is easy to see by induction onn that hn(x, y, θ) is a linear com- 62

bination of f1, f2, . . . , fn+1, with coefficients which are polynomials in
x2, y2, cos2 θ so that the functionshn(x, y, θ) are indefinitely differen-
tiable in x, y, θ and are even inx andy. If we set

(n)Tp f (x, y) =
(−1)nγp

(2p+ 3)(2p+ 5) · · · (2p+ 2n+ 1)
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π
2∫

0

sin2p+2n+2 θ cos−2p−2n θhn(x, y, θ)dθ

for n ≥ 1, then(n)Tp ∈ L (ε∗,E) for −n − 3
2
< Rep < −n +

1
2

and

p →(n) Tp is analytic in this strip with values inL (ε∗,E) and that for

−n− 1
2
< Rep< −n+

1
2
, (n−1)Tp =

(n) Tp. Finally we have the

Theorem.The function p→ Tp initially defined for−3
2
< Rep<

1
2

,

admits an analytic continuation into an entire function with values in
L (ε∗,E) and we have the explicit formula for this continuation.

In particular, we have, by analytic continuation,Tp[ f ](x, x) = (p +
1
2

) f1(x) for any p.

Corollary. For p , −1,−2, . . . , the formula

BpABp f (x) = A(x) f (x) + x
∫ x

o
Tp[A](x, y) f (y)dy

is valid.

The first memberBpABp f (x) is defined and is analytic except for63

p = −1,−2, . . .. The second member is an entire function ofp, and the

two members are equal for|Rep| < 1
2

so that the corollary follows.

Remark. If A(x) is a constant, we haveTp[A](x, y) = 0 and the formula
of the corollary is equivalent toBpBp = the identity.
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Topics In Mean-Periodic
Functions
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Chapter 1

Expansion of a
Mean-periodic Function in
Series

Introduction.

There is no connection between Part I and Part II of this lecture 64

course. But both these parts are essential for the two-radius theorem
which will be proved in the last part.

The theory of Mean periodic functions was founded in 1935 (refer
to “Functions Moyenne-periodiques” by J. Delsarte in Journal de Math-
ematique pures et appliques, Vol. 14, 1935). A mean periodicfunction
was then defined as the solutionf of the integral equation

∫ b

a
K(ξ) f (x+ ξ)dξ = 0 (1)

whereK is “ density ” given by a continuous functionK(x), given on
a bounded interval [a, b]. It was obvious that the study of an ordinary
differential equation with constant coefficients or of periodic functions
with periodb−a was a problem exactly of the same type as the study of
equation (1). It was proved in the paper mentioned above thatif K sat-
isfied certain conditions and iff were a solution of (1) i.e.f were mean
periodic with respect toK then f is developable in a series of exponen-
tial functions which converges towardsf uniformly on each interval on 65

53
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which f is continuous. Equation (1) in modern notation is essentially a
convolution equation

K ∗ f = 0

if we replacef by
∨
f (
∨
f (x) = f (−x)).

L.Schwartz in 1947 applied the theory of distributions to the the-
ory of Mean periodic functions. He calls a mean periodic function a
continuous functionf which is a solution of

µ ∗ f = 0

whereµ is measure with compact support. More generally a continuous
function f is mean periodic with respect to the distributionT with com-
pact support ifT ∗ f = 0. He has also given a new definition of mean
periodic function which is important from the topological point of view
and the theory developed in his paper (Annals of Mathematics, 1947)
is complete in the case of one variable. J.P. Kahane has givena special
and delicate development of the theory which gives connection between
Mean periodicity and almost periodicity. The extension to the case of
several variables is certainly difficult and the first known result inRn is
due to B. Malgrange.

For x ∈ R1, λ ∈ C we have,

T ∗ (e
∨
λx) = e−λxM(λ)

whereM(λ) = 〈T, eλξ〉 is the Fourier - Laplace transform of the distri-66

butionT. WhenT is a densityK or a measure,µ,

M(λ) =
∫ b

a
K(ξ)eλξdξ or M(λ) =

∫ b

a
eλξdµ(ξ)

respectively and for periodic function of perioda, we haveM(λ) =
eaλ − 1. In the case of the differential operator with constant coeffi-
cients,M(λ) is the characteristic polynomial of the operator. In all these
casesM(λ) is an entire function ofλ, of exponential type and behaves
like a polynomial if Reλ is bounded and the (simple) zeros of this func-
tion give the exponential functions (or the exponential polynomials in
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the case of multiple zeros) which are mean periodic with respect to the
distributionT. It is clear that any linear combination of mean periodic
exponentials is also mean periodic and the first problem is todetermine,
for any mean - periodic functionf , the coefficients of the mean periodic
exponentials in the expansion of the function.

1 Determination of the coefficients in the formal se-
ries

Let T be a distribution with compact support andM(λ) its Fourier-
Laplace transform. The set of zeros ofM(λ) will be called thespectrum
of M(λ) and will be denoted by (σ).

For the sake of simplicity we suppose that these zeros are simple. 67

Let F be a function sufficiently regular for the validity of the scalar
product

〈T,
∫ x

o
eλ(x−ξ)F(ξ)dξ

If T is a measure with compact support,F need be only an integrable
function and ifT is a distribution with compact support and orderm, F
can be any (m− 1) times continuously differentiable function.

Let F(x) = eαx whereα ∈ C is fixed
∫ x

o
eλ(x−ξ)eαξdξ =

eλx − eαx

λ − α

so that 〈T,
∫ x

o
eλ(x−ξ)eαξdξ〉 = M(λ) − M(α)

λ − α = τα(λ) · τα(λ)

is an integral function of exponential type and forα, β ∈ (σ),

τα(β) = 0 if β , α

= M′(α) if α = β.

Let tα(λ) =
1

M′(α)
τα(λ) so thattα(β) = δβα

= 1if α = β
= 0 if α , β

Thentα(λ) is an entire function of exponential type and therefore by
the theorem of Paley-Wiener, there exists a distributionTα with compact 68
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support whose Fourier-Laplace transform is
tα(λ) i.e. 〈Tα, eλx〉 = tα(λ).
Thus we see that the system of distributions{Tα}α∈(σ) and the func-

tions {eαx}α∈(σ) form a biorthogonal system relative to the distribution
T.

If

F(x) =
∑

α∈(σ)

cαeαx thencα = 〈Tα, F〉

=
1

M′(α)
〈T,

∫ x

o
eα(x−ξ)F(ξ)dξ〉.

For anyF which satisfies suitable regularity conditions (stated at the
beginning) we consider the formal expansion

F(x) ∼
∑

α∈(σ)

cαeαx

where cα =
1

M′(α)
〈T,

∫ x

o
eα(x−ξ)F(ξ)dξ〉

and we have immediately two problems.

Problem 1. If F is mean periodic relatively to a distributionT i.e. if
T ∗ F = 0 and if we compute the coefficients (cα) and construct the
series

∑
α∈(σ)

cαeαx.

Then what is the significance of this series? If the series converges
(in some sense) what is the connection between the sum of the series
and the given functionF? In particular does there exist a one-to-one
correspondence between the mean periodic functionF and the system69

of coefficients (cα)α∈σ?

Problem 2. If F is given one the smallest closed interval which contains
the support ofT it is possible to compute thecα by the formula. In this
case is it possible to extendF into a mean periodic function onR′?
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2 Examples

Example 1.We consider a periodic functionF(x) with [0, 1] as the in-
terval of periodicity. In this caseT = δ1−δ0(δa being the Direct measure
at a) andT ∗ F = F(x + 1) − F(x) = 0 andM(λ) = eλ − 1 so that the
spectrum (σ) is given by= 2kπi, k an integer;M′(λ) = eλ,M′(α) = 1
for everyα ∈ (σ). We have

cα = 〈Tα, F〉 = 〈T,
∫ x

o
eα(x−ξ)F(ξ)dξ

=

∫ 1

o
eα(1−ξ)F(ξ)dξ =

∫ 1

o
e−2ikπξF(ξ)dξ.

This is the classical formula for the coefficients of the Fourier series
for F(x) on the interval [0, 1] and the answers to Problem 1 and Problem
2 are classical.

Example 2.Let T be a distribution inR1 with compact support which
has the property

T ∗ F = F(x+ 1)− kF(x) −
∫ 1

0
K(ξ)F(x+ ξ)dξ (2)

wherek is a constant, 0 andK(x) is continuously differentiable and 70

T ∗ F is a function defined by

T ∗ F(x) = 〈Tξ, F(x+ ξ)〉 = Tξ.F(x+ ξ).

We shall study in this case the spectrum and the formal development
in series of exponentials for a functionF mean periodic with respect to
T.

a) LetK be continuous in [0, 1].
The definitionT ∗ eλx

= e+λxM(λ) gives

M(λ) = eλ − k−
∫ 1

o
K(ξ)eλξdξ (3)

or e−λM(λ) − 1 = −ke−λ −
∫ 1

o
K(ξ)eλ(ξ−1)dξ
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and ifλ = λo + iλ1,

∣∣∣e−λM(λ) − 1
∣∣∣ ≤

∣∣∣k
∣∣∣e−λo

+

∫ 1

o

∣∣∣K(ξ)
∣∣∣eλo(ξ−1)dξ

The second member of this inequality→ 0 whenλ0 → +∞ so that
the real parts of the zeros ofM(λ) are bounded above.

Similarly from
∣∣∣M(λ) + k

∣∣∣ ≤ eλo
+

∫ 1
o

∣∣∣K(ξ)
∣∣∣eλoξdξ, we see that the71

real parts of the zeros are bounded below. Thus the spectrum lies in a
vertical band of complex numbers with real parts bounded.

b) Let K be once continuously differentiable in [0, 1]. Integrating
by parts the integral in (3),

M(λ) = eλ − k− K(1)eλ − K(0)
λ

+
1
λ

∫ 1

o
K′(ξ)eλdξ = eλ − k− M1(λ)

λ

where M1(λ) is an entire function of exponential type which remains
bounded when the real partλ0 of λ remains bounded. The zeros ofM(λ)
are therefore asymptotic with the zeros ofeλ−k i.e. withα+2πih, where
α is a determination of logα andh = 0,±1,±2, . . .. Letαh be the zero of

M(λ) nearα+2πih. Then the convergence of the series
+∞∑

h=−∞

1
|α + 2πih|2

implies the convergence of
+∞∑

h=−∞

1

|αh|2
.

c) Let F be (C, 2) in [0, 1] and K be (C, 1). We consider the ex-
pansion ofF(x) in terms of the exponentials

{
eαhx}

h=0,±1,±2,...(αh ∈ (σ)),
mean periodic with respect toT.

F(x) ∼
+∞∑

h−−∞
Aheαnx

(4)

where Ah =
1

M′(αh)
〈T,

∫ x

o
eαh(x−ξ)F(ξ)dξ (5)

We have M′(λ) = eλ −
∫ 1

o
K(ξ)eλξdξ72

sinceM(αh) = 0,

eαh = k +
∫ 1

o
K(ξ)eαhξdξ (6)
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and M′(αn) = k+
∫ 1

o
(1− ξ)K(ξ)eαhξdξ

Integrating by parts integral and observing thatK′(ξ) is bounded in

[0, 1] since it is continuous, it is clear thatM′(αh) = k +
M2(αh)
αh

where

M2(αh) is bounded whenReαh is bounded. Also from (a), we know that
if |h| → ∞, |αh| → ∞ with |Reαh| bounded. Hence

Ah =
Bh

M′(αh)
∼ 1

K
Bh as |h| → ∞ · · · (7)

where Bh = 〈T,Gh(x)〉,Gh(x) =
∫ x

o
eαh(x−ξ)F(ξ)dξ

〈T,Gh(x)〉 = T ∗Gh(0) = Gh(1)− kGh(0)−
∫ 1

o
K(ξ)Gh(ξ)dξ

Bh =

∫ 1

o
eαh(1−ξ)F(ξ)dξ −

∫ 1

o

∫ ξ

o
K(ξ)eαh(ξ−η)F(η)dηdξ

Now 73

∫ 1

o
eαh(1−ξ)F(ξ)dξ = −F(1)

αh
+

eαhF(o)
αh

+
1
αh

∫ 1

o
eαh(1−ξ)F′(ξ)dξ

= − 1
αh

[
F(1)− eαhF(0)

] − 1

α2
h

[
F′(1)− eαhF′(0)

]

+
1

α2
h

∫ 1

o
eαh(1−ξ)F′′(ξ)dξ

and −
∫ 1

o

∫ ξ

o
K(ξ)eαh(ξ−η)F(η)dηdξ

=
1
αh

∫ 1

o
K(ξ)F(ξ)dξ − F(0)

αh

∫ 1

o
eαhξK(ξ)dξ

− 1
αh

∫ 1

o

∫ ξ

o
eαh(ξ−η)K(ξ)F′(η)dηdξ

=
1
αh

∫ 1

o
K(ξ)F(ξ)dξ − F(0)

αh

∫ 1

o
eαhξK(ξ)dξ
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+
1

α2
h

∫ 1

o
K(ξ)F′(ξ)dξ − F′(0)

α2
h

∫ 1

o
eαhξK(ξ)dξ

− 1

α2
h

∫ 1

o

∫ ξ

o
eαh(ξ−η)K(ξ)F′′(η)dηdξ

whence74

Bh =
1
αh

{
− F(1)+ eαhF(0)+

∫ 1

o
K(ξ)F(ξ)dξ − F(0)

1∫

o

eαhξK(ξ)dξ

1
αh2

{
− F′(1)+ eαhF′(0)+

1∫

o

eαh(1−ξ)F′′(ξ)dξ

+

∫ 1

o
K(ξ)F′(ξ)dξ − F′(0)

∫ 1

o
eαhξK(ξ)dξ

−
∫ 1

o

∫ ξ

o
eαh(ξ−η)K(ξ)F′′(η)dηdξ

}

substituting foreαh from (6) the first bracket above becomes

−F(1)+ kF(0)+ F(0)
∫ 1

o
K(ξ)eαhξdξ +

∫ 1
o

K(ξ)F(ξ)dξ

−F(0)
∫ 1

o
eαhξK(ξ)dξ = −(T ∗ F)(0) = 0 sinceF is assumed to be

mean periodic with respect toT. HenceBh = o


1

α2
h

 providedF′ and

F′′ are bounded in [0, 1]. As |Reαh| remains bounded when|h| → ∞,

from (7) it is immediate that the series (4) is comparable with
+∞∑

h=−∞

1

α2
h

and therefore converges uniformly and absolutely on each compact sub-
set ofR1 to a continuous functionF1(x)H(x) = F(x) − F1(x) is mean
periodic with respect toT and the coefficientscαh(αh ∈ σ) in the expan-
sion for H(x) in mean periodic exponentials are all zero. HenceH = 0
by the uniqueness of development. (Problem 1).



Chapter 2

Mean Periodic Function in
R2

We shall study function of two variables mean periodic with respect 75

to two distributions, and discuss problems 1 and 2 stated in Chapter 1
(page 56). The general case being difficult we shall give solutions of the
problems in some special cases when the distributions are ofparticular
type with the spectrum satisfying certain conditions.

Definition. A continuous functionF on R2 is said to be mean periodic
with respect toT1,T2 ∈ ε′(R2) if it verifies simultaneously the convolu-
tion equations

T1 ∗ F = 0,T2 ∗ F = 0.

The Fourier- Laplace transforms

Mi(λ) = 〈Ti , e
<λ,x>〉

wherex = (x1, x2) R2, λ = (λ1, λ2) ∈ C2, < λ, x >= λ1x1+λ2x2 of Ti(i =
1, 2) are entire functions ofλ1, λ2 of exponential type. Thespectrum
(σ) is defined byMi(λ) = 0, i = 1, 2,. In all that follows we shall restrict
ourselves to the case when i) (σ) is countable and (ii) (σ) is simple i.e.
α ∈ (σ) is a simple zero ofM1(λ) andM2(λ) and the Jacobian 76
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D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M1

∂λ1

∂M1

∂λ2

∂M2

∂λ1

∂M2

∂λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣

does not vanish at anyα ∈ (σ). We define

tα(λ) =
1

D(α)(λ1 − α1)(λ2 − α2)
J(M,M)
J(λ, α)

where

J(M,M)
J(λ, α)

=

∣∣∣∣∣∣∣∣∣

M1(λ1, λ2) − M1(α1, λ2) M1(α1, λ2) − M1(α1, α2)

M2(λ1, λ2) − M2(α1, λ2) M2(α1, λ2) − M2(α1, α2)

∣∣∣∣∣∣∣∣∣

is the determinant of Jacobi. It is clear that

tα(β) = 0 for α, β ∈ (σ), α , β

= 1 for α, β ∈ (σ), α = β

For α∈(σ), tα(λ) is an entire function ofλ of exponential type and by
Paley-Wiener theorem,tα(λ) is the Fourier Laplace transform of a distri-
bution Tα ∈ E 1(R2). {Tα}α∈(σ) together with the exponentials{
e〈α,x〉

}
α∈(σ)

mean periodic with respect toT1,T2 form a biorthogonal

system, i. e.
〈Tα, e<β,x>〉 = 0 for α, β ∈ (σ), α , β

〈Tα, e<α,x>〉 = 1 for α ∈ (σ)
(1)

If F is mean periodic with respect toT1,T2 and if we suppose the exis-77

tence of an expansion ofF in a series of mean periodic exponentials

F(x) ∼
∑

α∈(σ)

cα e<α,x> (2)

we have formally
cα = 〈Tα, F〉 (3)

Let sα(λ) =
1

D(α
J(M,M)
J(λ, α)

so that

sα(λ) = (λ1 − α1)(λ2 − α2)tα(λ)
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Forα fixed in (σ), sα(λ) is an entire function ofλ of exponential type.
Let Sα be the distribution inE ′(R2) whose Fourier-Laplace image is

sα(λ). Denoting
∂

∂xi
by Di(i = i, 2), we have

〈(D1 + α1)(D2 + α2)Tα, e
λx〉 = (D1D2 + α1D2 + α2D1 + α1α2)Tα, e

λx〉
= 〈Tα, (D1D2 − α1D2 − α2D1 + α1α2)eλx〉

(by the definition of the derivative of a distribution〈DpT, φ〉 = (−1)p 78

〈T,Dpφ〉, refer to ‘theory des distributions’ by L. Schwartz)

= 〈Tα, (λ1 − α)(λ2 − α2)eλx〉 = (λ1 − α1)(λ2 − α2)tα(λ)

Hence
Sα = (D1 + α1)(D2 + α2)Tα (4)

(4) is equivalent to

e−〈α,x〉D1D2
[
e<α,x>Tα

]
= Sα (5)

For

〈e−〈α,x〉
[
D1D2 e〈α,x〉Tα

]
, φ〉 = 〈Tα, e<α,x>D1D2e−〈α,x〉φ〉

(by the definition of the multiplicative product of a distribution by a
function and the derivative of a distribution; refer to ‘Theory des distri-
butions’)

= 〈Tα, (α1α2 − α2D1 − α1D2 + D1D2)φ〉
= 〈(D1 + α1)(D2 + α2)Tα, φ >=< Sα, φ〉

Let G(x) be any solution of the partial differential equation

e〈α,x〉D1D2

[
e−〈α,x〉G(x)

]
= F(x) (6)

or DG = F (6′)

whereD =
∂2

∂x1∂x2
− α1

∂

∂x2
− α2

∂

∂x1
+ α1α2 is a differential operator 79
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with constant coefficients. ForF ∈ E , we can chooseG ∈ E . We can
actually takeG to be

G(x1, x2) =
∫ x1

a1

∫ x2

a2

eα1(x1−ξ1)+α2(x2−ξ2)F(ξ1, ξ2)dξ1dξ2 (7)

wherea1, a2 are arbitrary.
Thus we obtain from

〈Tα, F〉 = 〈Tα, e〈α,x〉D1D2

[
e−〈α,x〉G(x)

]
〉

= e−〈α,x〉D1D2

[
e〈α,x〉Tα

]
,G〉 = 〈Sα,G〉,

the formula

cα =< Sα,

∫ x1

a1

∫ x2

a2

eα1(x1−ξ1)+α2(x2−ξ2)F(ξ1, ξ2)dξ1dξ2 > (8)

which is a natural generalization of the formula know in the case ofR1.

Remark. The distributionsS are completely explicit. We have80

Sα(λ) =
1

D(α)
M1(λ1, λ2)M2(α1, λ2) − M2(λ1, λ2)M1(α1, λ2)

andSα =
1

D(α)
[
T1 ∗

∑
2−T2 ∗

∑
1
]

whereT1 andT2 are the given dis-

tributions and
∑

2 for instance is a distribution in the variablex2 deter-
mined by its Fourier-Laplace imageM2(α1, λ2).

Theorem.The mean periodic exponentials
{
e<α,x>

}
α∈(σ) form a free sys-

tem of functions inE .

In fact they form a biorthogonal system with the distributions
{Tα}α∈(σ) in E ′ and it is clear from (1) that noe〈α,x〉 is in the closed

subspace generated by
{
e<β,x>

}
β∈(σ)
β,α

.

Remark. It is possible to choose the solutionIα( f ) = G of (6) such that
for F ∈ E , the functionλ → Iα(F) from C2 to E is an entire function.
In fact it suffices to takeG as in (7). In this case

cα e〈α,x〉 =
e〈α,x〉

D(α)
〈Sα, Iα(F)〉
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λ→ Sλ is an entire function ofλ with values inE ′ andλ→ Iλ(F) is an81

entire function ofλ with values inE . Hence

F (x, λ) =
e〈λ,x〉〈Sλ, Iλ(F)〉

M1(λ)M2(λ)

is a meromorphic function ofλ in which the ‘local residues’ in the sense
of Poincare are preciselycα e<gα,x>.

The Problem is now as follows.
If F is given inE mean periodic with respect toT1 andT2 then isF

then sum of the series
∑

α∈(σ)
eα e<α,x>?

If for xfixed, the integrals ofF (x, λ) over a system of varieties inC2

tending to infinity have for limitF(x) and if the global Cauchy theorem
were true inC2, then the answer to this question would be in affirmative.
In this manner, the problem is equivalent to the global Cauchy theorem
in C2 and the answer is completely unknown.





Chapter 3

The Heuristic Method

1

We consider the problem of continuation of a function given on a subset 82

of R1 into a function defined on the whole of the real line, mean periodic
with respect to a distribution with compact support (Problem 2, page 56)
T ∈ E ′(R1) has its support contained in a finite closed interval say [0,
1]. Then the distributions{Tα}, for α of T have their supports contained
in [0, 1]. Let F be a function given in [0, 1] so that the computation of
the coefficientscα = 〈Tα, F〉 is possible. The heuristic point of view
is the following. We suppose that problem 2 is completely solved for
the distributionT and for the functionF i.e. any functionF given on
the minimal set [0, 1] admits of an extensioñF in the whole ofR1 as a
function mean periodic with respect toT. F is not necessarily infinitely
differentiable, even ifF may be in [0, 1] but it is probably sufficiently
regular piecewise. We haveT ∗ F = 0 and in a certain sensẽF =∑
α∈(σ)

cαeαx. In particular, forx ∈ (0, 1) we have

F(x) = F̃(x) =
∑

α∈(σ)

cα eαx (1)

Now we suppose the possibility of the change of the distribution T, 83

with its compact support keeping in a fixed interval [0, 1] and we shall
obtain several representations ofF in series of mean periodic exponen-
tials (relative to several distributions). For instance wesuppose thatT

67
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depends on a parameterε which tends to zero, but that the support ofT
is contained in [0, 1]. In such a situation, the spectrum (σ) and therefore
each term in the right hand member of (1) depends onε whereas the left
hand member is fixed whateverε. Thus we have

d


∑

α∈(σ)

cα eαx

 = 0 x ∈ (0, 1)

where the differentiald is related to the variation of the distributionT.
Formal computation gives

∑

α∈(σ)

d[cα]eαx
+

∑

α∈(σ)

x eαx cαdα = 0

But applying our heuristic concept to the distributionT and the function
xeαx we obtain

xeαx
=

∑

β∈(σ)

kαβ eβx, for x ∈ (0, 1),

which gives
∑

α∈(σ)

{
dcα +

∑

β∈(σ)

cβkβαdβ

}cαx

= 0

so that84

dcα +
∑

β∈(σ)

cβ kβα dβ = 0 (2)

But

cα = 〈Tα, F̃〉 where

〈Tα, eλx〉 = tα(λ) =
M(λ)

(λ − α)M′(α)

As supportTα ⊂ [0, 1], cα = 〈Tα,R〉

so that
dcα = 〈dTα, F〉
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sinceF is independent ofε and (2) becomes

〈dTα +
∑

β∈(σ)

kβα Tβ dβ, F〉 = 0 (3)

(3) holds for any arbitrarily chosenF on [0, 1] and for the distribution
dTα +

∑
β∈(σ)

kβα Tβ dβ with support contained in [0, 1] whenever the

scalar product is meaningful
{

wheneverF is sufficiently regular in [0, 1]

in order that the scalar product be defined
}
. Hence 85

dTα +
∑

β∈(σ)
kβα Tβ dβ = 0 (in the sense of distributions)

Taking Fourier-Laplace image,

dTα(λ) +
∑

β∈(σ)

kβα Tβ(λ) dβ = 0

Now

kβα =
1

M′(α)
〈T,

∫ x

0
eα(x−ξ)ξ eβξ dξ〉

But

eαx
∫ x

0
e(β−α)ξdξ =

xeβx

(β − α)
− e−αx

x∫

o

e(β−α)ξ

(β − α)
dξ

=
xeβx

β − α
− eβx − eαx

(β − α)2

and kβα =
1

M′(α)

{
1

(β − α)
〈T, xeβx〉 − M(β) − M(α)

(β − α)2

}

=
1

M′(α)

{
M′(β)
β − α −

M(β) − M(α)

(β − α)2

}

Hence 86

kβα =
1

β − α
M′(β)
M′(α)

for β , α

and kαα =
1
2

M′′(α)
M′(α)
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We have also

dTα(λ) = d
M(λ)

(λ − α)M′(α)

=
d[M(λ)]

(λ − α)M′(α)
+

M(λ)

(λ − α)2M′(α)
dα − M(λ)

(λ − α)[M′(α)]2
d[M′(α)]

and
d[M′(α)] = d[M′(λ)]λ=α + M′′(α)dα

This gives

d[Tα(λ)]+
1
2

M′′(α)
M′(α)

M(λ)
(λ − α)M′(α)

dα+
∑

β∈(σ)
β,α

M(λ)
(λ − β)(β − α)M′(α)

dβ = 0

or

d[M(λ)]
(λ − α)M′(α)

− M(λ)(d[M′(λ)])
(λ − α)[M′(α)]2

λ

= α +

{
M(λ)

(λ − α)2M′(α)
− M(λ)M′′(α)

(λ − α)[M′(α)]2

}

dα +
1
2

M′′(α)
M′(α)

M(λ)
(λ − α)M′(α)

dα +
∑

β∈(σ)
β,α

M(λ)
(λ − β)(β − α)M′(α)

dβ = 0

After simplification we finally obtain the formula87

d[M(λ)]
M(λ)

− (d[M′(λ)])λ=α
M′(α)

+

{
1

λ − α
− 1

2
M′′(α)
M′(α)

}

dα +
∑

β∈(σ)
β,α

λ − α
(λ − β)(β − α)

dβ = 0 . . . . . . (F )

2

The formula (F ) is obtained by a purely heuristic process and the fol-
lowing example will serve as a partial verification of the computation.
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Suppose thatM(λ) is a polynomial. (In this caseT is a differential
operator with constant coefficients)

M(λ) =
n∏

i=1
(λ − βi). Let βi , β j for i , j

dM(λ)
M(λ)

= −
n∑

j=1

1
λ − β j

dβ j

M′(λ) =
∑

j

(λ − β1)(λ − β2) . . . ( ̂λ − βn) . . . (λ − βn)

and

(d[M′(λ)])λ=α=βi = −
(∑

j,k

(λ − β1) . . . ( ̂λ − β j) . . . ( ̂λ − βk) . . .

(λ − βn)dβk

)

λ=βi

−
∑

j

(βi − β1) . . . ( ̂βi − β j) . . . (βi − βk)dβi

But 88

M′(βi) = M′(α) = (βi − β1) . . . ( ̂βi − βi) . . . (βi − βn)

(d[M′(λ)])λ=α
M′(α)

= −
∑

k,i

1
βi − βk

dβk −
[∑

j,i

1
βi − β j

]
dβi

M′′(λ) = (λ − β1) . . . ( ̂λ − β j) . . . ( ̂λ − βk) . . . (λ − βn)k, j

so that M′′(λ) = 2
∑

k,i

(βi − β j) . . . ( ̂βi − β j) . . . ( ̂βi − βk) . . . (βi − βn)

and
M′′(α)
M′(α)

= 2
∑

k,i

1
βi − βk

.

Thus we can write

d[M(λ)]
M(λ)

= −
∑

β∈(σ)

1
λ − βdβ

(d[M′(λ)])λ=α
M′(α)

= −
∑

β
β,α

1
α − βdβ − 1

2
M′′(α)
M′(α)

dα
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and 89

d[M(λ)]
M(λ)

− (d[M′(λ)])λ=α
M′(α)

− 1
2

M′′(α)
M′(α)

dα

= −
∑

β,α

1
λ − βdβ +

∑

β,α

1
α − βdβ − 1

λ − αdα

= − 1
λ − αdα +

∑

β
β,α

λ − α
(λ − β)(α − β)

dβ

= − 1
λ − αdα −

∑

β
β,α

λ − α
(λ − β)(β − α)

dβ

This is exactly the formula (F ).

Remark. It is important to note that in this case, the support ofT is only
{0}.

3 The general formula inR2 by the heuristic process

Let T1,T2 ∈ E ′(R2) with their spectrum (σ) simple. Suppose thatF is
a function given on a subsetE of R2, which depends on the supports of
T1 andT2 so that the computation ofcα =< Tα, F >, α ∈ (σ) is possible
(page 64). We can write formally

F ≈
∑

α∈(σ)

cα e<α,x>

suppose that the distributions vary in certain family whichdepends on a90

parameter their supports fixed. ThendF = 0 gives

∑

α∈(σ)

dcαe<α,x> +
∑

β∈(σ)

2∑

i=1

cβ xi dβie
<β,x
= 0 β = (β1, β2)

But
xie
〈β,x〉
=

∑

β∈(σ)

kβαi e
<α,x> on E,
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and so

dcα +
∑

β∈(σ)

2∑

i=1

kβαi dβi cβ = 0.

The coefficientscα are given bycα = 〈F,Tα〉 and

dTα +
∑

β∈(σ)

2∑

i=1

kβαi Tβ dβi = 0

Taking Fourier-Laplace transform,

d(tα(λ)) +
∑

β∈(σ)

2∑

i=1

kβαi tβ(λ)dβi = 0

Now kβαi = 〈xie<β,x〉,Tα〉 =
∂

∂λi

[
< Tα, e<λ,x>

]
λ=β
=

[
∂

∂λi
tα(λ)

]

λ=β

and

the general formula is

d[tα(λ)] +
∑

β∈(σ)

2∑

i=1

tβ(λ)
∂

∂λi
tα(λ)λ−βdβi = 0 (G )

where
{
tα(λ)

}
α∈(σ)

is a biorthogonalising system of functions on the91

spectrum:tα(β) =


0, β , α

1, β = α

4

We now again consider the formula (F ) and give another interpretation
of the formula by making precise the variation ofT. Let UεE ′(R1) be a
distribution with support contained in [0, 1] andε a parameter infinitely
small. The distributionT − εU has Fourier-Laplace transformM(λ) −
εA(λ) whereA(λ) is the Fourier-Laplace transform ofU and support
(T − εU) ⊂ [0, 1]. If {α} is the spectrum ofT, {α + dα} is the spectrum
of T − εU. M(α + dα) − εA(α + dα) = 0 give

M(α) + dαM′(α) + · · · − ∈ {A(α) + dαA′(α) + · · · } = 0
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usingM(α) = 0 and neglecting terms of higher order, we have

M′(α)dα− ∈ A(α) = 0 so thatdα =
∈ A(α)
M′(α)

substituting in (F ) for dα,

A(λ)
M(λ)

=
A(λ)

(λ − α)M′(α)
+

∑

βε(σ)
β,α

(
1

λ − β
+

1
β − α

)
A(β)
M′(β)

− 1
2

M′′(α)A(α)
[M′(α)]2

− lim
ε→0

1
2

{
d[M′(λ)]λ=α

M′(α)

}

But M′(λ) + dM′(λ) = M′ − εA′(λ) andd[M′(λ)] = −εA′(λ) so that92

finally

A(λ)
M(λ)

=
A(α)

(λ − α)M′(α)
+

∑

β∈(σ)
β,α

(
1

λ − β +
1

β − α

)
A(β)
M′(β)

− 1
2

M′′(α)A(α)

[M′(α)]2
+

A′(α)
M′(α)

· · · · · · (F1)

Remark. The series
∑

βε(σ)
β,α

(
1

λ − β +
1

β − α

)
A(β)
M′(β)

= 0 for λ = α, and it

is easy to prove that

lim
λ→α

[
A(λ)
M(λ)

− A(α)
(λ − α)M′(α)

]
=

A′(α)
M′(α)

− 1
2

M′′(α)A(α)

[M′(α)]2

We have in fact, in the neighbourhood ofα

A(λ) = A(α) + (λ − α)A′(α) + · · · · · ·

M(λ) = (λ − α)M′(α) +
1
2

(λ − α)2M′′(α) + · · · · · ·

A(λ)
M(λ)

=
1

(λ − α)
A(α) + (λ − α)A′(α) + · · · · · ·

M′(α) + 1
2(λ − α)M′′(α) + · · · · · ·
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A(λ)
M(λ)

− A(α)
(λ − α)M′(α)

=
1

λ − α

{
1

M′(α)
[A(α) + (λ − α)A′(α) + · · · ]

[1 − 1
2

(λ − α)
M′′(α)
M′(α)

+ · · · ] − A(α)
M′(α)

}

=
1

λ − α

{
1

M′(α)
[A(α) + (λ − α)A′(α)][1 − 1

2
(λ − α)

M′′(α)
M′(α)

+ · · · ] − A(α)
M′(α)

}

=
1

λ − α

{
(λ − α)

[ A′(α)
M′(α)

− 1
2

A(α)M′′(α)

[M′(α)]2
+ · · ·

]}

=
A′(α)
M′(α)

− 1
2

A(α)M′′(α)

[M′(α)]2
+ (λ − α)

{
· · ·

}

which gives the required result. 93

Remark 2. The formula (F ) is exactly a formula of Mittag-Leffler; the

principal part of
A(λ)
M(λ)

in the neighbourhood of the simple poleβ is

A(β)
(λ − β)M′(β)

; the term A(β)
(β−α)M′(β) is a corrective term which gives the

convergence of the series
∑
β

, by reason of the convergence of
∑ 1

|β|2
(which itself is a consequence of the fact thatM(λ) is of exponential
type) only if A(β) is bounded on (σ). We can also write

A(λ) =
M(λ)A(α)

(λ − α)M′(α)
+

∑

βε(σ)
β,α

(
1

λ − β
+

1
β − α

)
M(λ)
M′(β)

A(β)

and we consider this formula as an interpolation formula forA(λ), with 94

the interpolation function

tβ(λ) =
M(λ)

(λ − β)M′(β)

Now we see that the computation of §1 is in a certain sense the
converse of the theorem of the Mean periodic functions, viz amean
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periodic function admits of an expansion in mean periodic exponen-
tials (the spectrum being simple otherwise mean periodic exponential-
monomials) (Problem 1). Mittag-Leffler’s theorem is used in the proof
of this theorem. Conversely problem (2) if solved gives the Mittag-
Leffler’s theorem.

5

We shall now consider the formula (G ), in the case ofR2 andC2. For
convenience we shall first fix the following notation.

Let S denote the function fromC2 into C2 given by (λ1, λ2) − − −
−(S1(λ1, λ2),S2(λ1, λ2)). S is an entire analytic function onC2 into
itself sinceS1 andS2 are so. Forλ, α, βεC2 let [λ−α] = (λ1−α1)(λ2−α2)
and

[α − β] = (α1 − β1)(α2 − β2).

Let

D(α) =
∂(S1,S2)
∂(α1, α2)

=

∣∣∣∣∣∣∣∣∣

∂S1
∂α1

∂S1
∂α2

∂S2
∂α1

∂S2
∂αn

∣∣∣∣∣∣∣∣∣

and
J(S,A)
J(λ, α)

=

∣∣∣∣∣∣
S1(λ1, λ2) A1(α1, λ2)
S2(λ1, λ2) A2(λ1, λ2)

∣∣∣∣∣∣

whereS andA are two entire functions ofC2 into itself andλ, α are two95

points ofC2. If S = A then

J(S,A)
J(λ, α)

=

∣∣∣∣∣∣
S1(λ1, λ2) S1(α1, λ2)
S2(λ1, λ2) S2(λ1, λ2)

∣∣∣∣∣∣
The pointα is a zero of the functionS if and only if S1(α1, α2) =

0 = S2(α1, α2) i.e., if αε(σ) and

D(α) = lim
λ→α

1
(λ − α)

J(S,S)
J(λ, α)

The set (α) is countable and the zerosαε(σ) are simple (i.e.D(α) ,96

0 for αε(σ)).
We shall now compute
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a) dβi (i = 1, 2),

b)
∂

∂λi
(tα(λ))λ=β,

c) d[tα(λ)] which occur in (G ).

a) Letε be a small parameter which has 0 for limit. We substitute for
the functionS, a neighbouring functionS − εA whereA = (A1,A2)
is another entire analytic function ofC2 into itself and we compute
the variations of the spectrum (σ).

S1(α1 + dα1, α2 + dα2)− ∈ A1(α1 + dα1, α2 + dα2) = 0

S2(α1 + dα1, α2 + dα2)− ∈ A2(α1 + dα1, α2 + dα2) = 0

But (α) is a simple zero of the functionsS. Hence neglecting the
terms of the second order inε, we have,

∂S1

∂α1
dα1 +

∂S2

∂α2
=∈ A1(α1, α2)

∂S2

∂α1
dα1 +

∂S2

∂α2
dα2 =∈ A2(α1, α2)

and by the Cramer’s rule,

dα1 =
∈

D(α)

J(A, ∂S
∂λ2

)

J(α, α)
, dα2 =

∈
D(α)

J( ∂S
∂λ1
,A)

J(α, α)

b) Asβ is a zero of the the functionS, it is obvious that, forβ , α, the 97

terms of

(
∂

∂λi
tα(λ)

)

λ=β

which are different from zero arise from the

differentiation ofS1 andS2 and we have immediately,

(
∂

∂λi
tα(λ)

)

λ=β

=
1

D(α)[β − α]

J
(
∂S
∂λi
,S

)

(β, α)
, i = 1, 2

substituting fordβ, we obtain
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2∑

i=1

(
∂

∂λi
tα(λ)

)

λ=β

dβi =
∈

D(α)D(β)[β − α]

J
(
∂S
∂λ1
,S

)

J(β, α)

J
(
A, ∂S

∂λ2

)

J(β, β)
+

J
(
∂S
∂λ2
,S

)

J(β, α)

J
(
∂S
∂λ1
,A

)

J(β, β)

The curly bracket equals
[
∂

∂β1
S1(β1, β2)S2(α1, β2) − ∂

∂β1
S2(β1, β2)S1(α1, β2)

]
×

[
A1(β1, β2)

∂

∂β2
S2(β1, β2) − A2(β1, β2)

∂

∂β2
S1(β1, β2)

]

+

[
∂

∂β2
S1(β1, β2)S2(α1, β2) − ∂

∂β2
S2(β1, β2)S1(α1, β2)

]
×

∂

β1
S1(β1, β2)A2(β1, β2) − ∂

∂β1
S2(β1, β2)A1(β1, β2)

=
∂

∂β1
S1(β1, β2)

∂

∂β2
S2(β1, β2)A1(β1, β2)S2(α1, β2)

− ∂

∂β1
S1(β1, β2)

∂

∂β2
S2(β1, β2)A2(β1, β2)S1(α1, β2)

+
∂

∂β2
S1(β1, β2)

∂

∂β2
S2(β1, β2)A2(β1, β2)S1(α1, β2)

− ∂

∂β2
S1(β1, β2)

∂

∂β2
S1(β1, β2)A1(β1, β2)S2(α1, β2)

= D(β)
J(A,S)
J(β, α)

.

Finally,98

tβ(λ)
2∑

i=1

∂

∂λi
tα(λ)dβi

=
1

D(β)[λ − β]
J(S,S)
J(λ, β)

∈
D(α)D(β)[β − α]

D(β)
J(A,S)
J(β, α)

=
∈

D(α)D(β)[β − α]
1

λ − β
J(S,S)
J(λ, β)

J(A,S)
J(β, α)
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99
c)

tα(λ) =
1

D(α)(λ − α)
J(S,S)
J(λ, α)

d
{
tα(λ)

}
=

1
D(α)(λ − α)

d

{
J(S,S)
J(λ, α)

}
+ d

{
1

D(α)(λ − α)

}
J(S,S)
J(λ, α)

The differential of

J(S,S)
J(λ, α)

=

∣∣∣∣∣∣∣∣∣

S1(λ1, λ2) S1(α1, λ2)

S2(λ1, λ2) S2(α1, λ2)

∣∣∣∣∣∣∣∣∣

is the sum of two determinants, one of which is obtained from the dif-
ferentiation of the first column and the second by the differentiation of
the second column. The first determinant gives ind{tα(λ)} the term

− ∈
D(α)(λ − α)

J(A,S)
J(λ, α)

and this term is, in a certain sense, a principal term, because it is com-
posed of variationsA1 andA2 of S1 andS2 respectively, in the generic
sense, that is which depend on the two independent variables: λ1, λ2. In
the second determinant, the second column has elements

d[S1(α1, α2)] andd[S2(α1, λ2)]

which are equal to 100

− ∈ A1(α1, λ2) +
∂

∂α1
S1(α, λ2)dα1

and−εA2(α1, λ2) + ∂
∂α1

S1(α, λ2)dα1 respectively, in which ε
D(α)

J(A, ∂S
∂λ2

)

J(α,α)

has to be substituted fordα1 and ε
D(α)

J(A, ∂S
∂λ1

,A)

J(α,α) has to be substituted for
dα2. Other terms isd[tα(λ)] artist from the denominatorD(α)[λ − α]
in which again we have to substitute fordα1 and dα2. For us, it is
sufficient to write the principal term and to writeR for the others which
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are, in fact, of irregular formation, depend on only, finite in number and
containA1 andA2 (variations ofS1 andS2) in a non-generic manner.
Then the formula is reduced to

J(A,S)
J(λ, α)

=

∑

β,α
βε(σ)

[λ − α]
D(β)[λ − β][β − α]

J(S,S)
J(λ, β)

J(A,S)
J(β, α)

+ (R) (G1)

in which the terms inR are i) finite in number, ii) non-generic inA, iii)
depend only onλ andα. It is good to note that in dimension 1, formula101

G1 becomes

A(λ) =
∑

β,α
β∈(σ)

λ − α
D(β)(λ − β)(β − α)

S(λ)A(β) + · · · · · · · · ·

where the terms not written are exactly

S(λ)A(α)
D(α)(λ − α)

+
S(λ)A′(α)

D(α)
− 1

2
S(λ)A(α)D′(α)

D2(α)

That is the formula (F1) of §4 which is analogous toG1.
It is natural to say thatG1 is a generalisation, inC2, and for the

functionS of the formula of Mittag-Leffler inC1.

6

We now proceed to give an example in which the preceding results,
which are purely formal at present, are correct.

Let T1,T2 in E ′(R2) be finite linear combinations of Dirac measures,
situated atrational points.

Their Fourier-Laplace transforms will be of the form

S1(λ1, λ2) =
∑

apq exp
( pλ1 + qλ2

N

)
(1)

S2(λ1, λ2) =
∑

bpq exp
( pλ1 + qλ2

N

)
(2)

whereN is a fixed integer, and wherep, q are also integers and the to102
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summations are finite.

When (λ1, λ2) is in spectrum, the point (X1,X2) with X1 = exp
λ1

N
,

X2 = exp
λ2

N
, have to satisfy the two algebraic equations

∑
apqXp

1 Xq
2 = 0 (3)

and
∑

bpqXp
1 Xq

2 = 0 (4)

The two algebraic curves represented by (3) and (4) intersect in a
finite number, sayM, of points. We suppose that all these points (ξ1, ξ2)
are simple andfinite.

Let ξ1 = exp
α1

N
, ξ2 = expα2

N . The spectrum (σ) is defined by

β1 = α1 + 2hnπi , β2 = α2 + 2knπi

whereh andk are integers and the general solutions of

T1 ∗ F = 0 = T2 ∗ F

can be formally expressed as

F(x1, x2) =
∑

α

exp(α1x1 + α2x2) fα1α2(x1, x2)

where theM functions fα1α2(x1, x2) are periodic inx1 and x2 with pe- 103

riod
1
N

. The developments of thefα1α2(x1, x2) in Fourier series give

immediately the development ofF in mean periodic exponentials of the
spectrum (σ) and the computation of the coefficients by the use of the
distributionsTα is perfectly correct in this case.

Let the convex envelope of the supports ofT1 andT2 be the rectangle

0 ≤ x1 ≤ a , 0 ≤ x2 ≤ b

and letT1,T2 have Fourier-Laplace transforms

S1(λ1, λ2) =
∑

apq exp

(
paλ1

m
+

qbλ2

n

)
(1)′
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S2(λ1, λ2) =
∑

bpq exp

(
paλ1

m
+

qbλ2

n

)
(2)′

respectively, wherem, n are positive integers andp, q are integers satis-
fying

0 ≤ p ≤ m , 0 ≤ q ≤ n

setting exp
aλ1

m
= X1 , exp

bλ2

n
= X2, we obtain (3) and (4).

If the coefficientsa, b are generic, the equations (3), (4) have degree
n in X2, the coefficients relatively toX2 being the polynomial inX1 of104

degreem. We eliminateX2 by Sylvester’s resultant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 A1 · · · An 0 0 · · · 0
0 A0 · · · An−1 An 0 · · · 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · A1 A2 · · · An

B0 B1 · · · B1 0 · · · 0
0 B0 · · · Bn−1 Bn · · · 0
· · · · · · · · · · · ·
0 0 · · · B1 · · · Bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

The determinant is given by the elimination ofX0
2,X

1
2, . . . ,X

2n−1
2 be-

tween the 2n equations

A0X2n−1
2 + A1X2n−2

2 · · · + AnXn−1
2 = 0

A0X2n−2
2 + · · · + AnXn−2

2 = 0

· · · · · · · · · · · · · · ·
A0Xn

2 + A1Xn−1
2 + · · · + An = 0

B0X2n−1
2 + · · · · · · + BnXn−1

2 = 0

· · · · · · · · ·
B0Xn

2 + · · · + Bn = 0

in which theAi and theBi are polynomials inX1 of degreemso that the105

determinant of Sylvestor is a polynomial inX1 of degree 2mn and the
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numberM of common points of (3) and (4) is 2mn. Any point (ξ1, ξ2)

is given byξ1 = exp
aα1

m
, ξ2 = exp

bα2

n
and the spectrum (σ) consists

of (λ1, λ2) whereλ1 = α1 +
2hmπi

a
, λ2 = α2 +

2knπi
b

and F(x, y) =
∑
α1,α2

exp(α1x1 + α2x2) fα1α2(x1, x2) with fα1,α2(x1, x2) periodic in x1 of

period
a
m

and inx2 of period
b
n

.

We know that forαε(σ),

cα = 〈Sα,

∫ x1

P

∫ x2

Q
eα1(x1−ξ1)+α2(x2−ξ2)F(ξ1, ξ2)dξ1dξ2〉

whereSα =
1

D(α) {T1 ∗
∑

2−T2 ∗
∑

1} and if

〈T1, F〉 =
∑

i

ρiF(ai , bi)

〈T2, F〉 =
∑

j

σ jF(c j , d j) then,

∑
1,

∑
2 are defined by 106

〈Σ1, F〉 = Σiρie
α2bi F(ai , 0)

〈Σ2, F〉 = Σ jσ je
α2dj F(c j , 0)

so that

〈Sα, F〉 =
∑

i, j

ρiσ je
α2dj F(ai + c j , bi) − eα2bi F(ai + c j , d j)

As the points (ai , bi) and (c j , d j) are in the rectangle 0≤ x1 ≤ a , 0 ≤
x2 ≤ b, it is clear that in the computation ofcα1,α2, the values of the
functionF in the rectangle

0 ≤ x1 ≤ 2a , 0 ≤ x2 ≤ b (5)

are used. This rectangle can be divided inM = 2mnsmall rectangles

ap
m
≤ x1 ≤

a(p+ 1)
m

,
bq
n
≤ x2 ≤

b(q+ 1)
n
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for p = 0, 1, 2, . . . , (2m− 1) q = 0, 1, 2, . . . , (n− 1)

setting 107

φpq(x1, x2) = F

(
ap
m
+ x1,

bq
n
+ x2

)

p = 0, 1, . . . , 2m− 1

q = 0, 1, . . . , n− 1,

where 0≤ x1 ≤
a
m
, 0 ≤ x2 ≤

b
n

we obtain

φpq(x1, x2) =
∑

(α1,α2)

exp

(
aα1p

m
+

bα2q
n

)

exp(α1x1 + α2x2) fα1α2(x1, x2) (6)

p = 0, 1, . . . , 2m− 1 ; q = 0, 1, . . . , (n− 1)

(since fα1,α2

(
ap
m + x1,

bq
n + x2

)
= fα1,α2(x1, x2)).

The numbers of equations is (6) is equal to the number of unknowns

exp(α1x1 + α2x2) fα1,α2(x1, x2)

and the solution of the linear system gives periodic functions in the rect-

angle 0≤ x1 ≤
a
m
, 0 ≤ x2 ≤

b
n

. Thus we see that

i) The continuation ofF in all the plane is completely known.108

ii) The coefficients of the mean periodic exponentials in the develop-
ment ofF are determined by the process of the Jacobi determinant.

iii) The expansion converges as the Fourier series of the function
fα1,α2(x1, x2).

For instance ifF(x1, x2) is given and continuous in the rectangle
(5) together with their derivatives of order 1, 2, 3, 4, we have uniform
convergence in any compact set contained in the interior of the rectangle
(5).
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The heuristic computation has given us the following important re-
sult:

The formula of the type of Mittag-Leffler in C2, is valid if S1 and
S2 are two linear combinations of exponentials

S1(λ1, λ2) =
∑

apq exp(
paλ1

m
+

qbλ2

n
)

S2(λ1, λ2) =
∑

bpq exp(
paλ1

m
+

qbλ2

n
)

p = 0, 1, . . . ,m− 1

q = 0, 1, . . . , n− 1

where the coefficientsapq, bpq are generic 109

7 The formula (F ) for a polynomial

We shall now give the formulaF in the case of a polynomial. It is possi-
ble to establish the formula for more than one variable but the proof and
computation will be very long and therefore for the sake of simplicity
we consider only the case of one variable.

Let M(λ) be a polynomial ineλ. M(λ) = P(X) = a0+a1X+· · ·+anXn

with X = eλ. Let A1,A2, . . . ,An be n distinct roots ofP(X) = 0. The
spectrum (σ) is in this case composed ofn arithmetical progressions
β j(h) = α j + 2hπi whereeα j = A j , j = 1, 2, . . . , n, h an integer. In the
formulaF :

dM(λ)
M(λ)

− d[M′(λ)]λ=α
M′(λ)

+

[
1

1− λ −
1
2

M′′(α)
M′(α)

]
dα

+

∑

β,α

β − α
(λ − β)(β − α)

dβ = 0,

the summation
∑
β,α

can be divided inton summations with respect toh,

corresponding ton arithmetic progressions which constitute (σ). Let
α = α j , be fixed. We first consider the summation forβ(h) = αk +
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2hπi, k , j, i.e.,

+∞∑

h=−∞

1
(λ − αk − 2hπi)(αk − α j − 2hπi)

(1)

The well known classical formula (Mittag-Laffler) give110

1
eu − 1

= −1
2
+

1
u
+

h=+∞∗∑

h=−∞

(
1

u− 2hπi
+

1
2hπi

)
;

settingu = λ − αk andu = α j − αk in this, we have

1
eλ−αk − 1

= −1
2
+

1
λ − αk

+

∗∑

h

(
1

λ − αk − 2hπi
+

1
2hπi

)

and
1

eα j−αk − 1
= −1

2 +
1

α j−αk
+

∗∑
h

(
1

α j−αk−2hπi +
1

2hπi

)

By subtraction,

1
eλ−αk − 1

− 1
eα j−αk − 1

=
α j − λ

(λ − αk)(α j − αk)

+

∗∑{
1

λ − αk − 2πi
− 1
α j − αk − 2hπi

}

= (α j − λ)
+∞∑

h=−∞

1
(λ − αk − 2πi)(α j − αk − 2hπi)

Hence

∞∑

h=−∞
+∞ 1

(λ − αk − 2πi)(αh − α j − 2hπi)

=
1

(λ − α j)

[
1

eλ−αk − 1
1

eα j−αk
− 1

]
=

1
λ − α j

[
Ak

X − Ak
− Ak

A j − Ak

]

=
Ak[X − A j]

(λ − α j)(X − Ak)(Ak − A j)
.

But d βk(h) = dαk is independent ofh and the part of the summation111



7. The formula(F ) for a polynomial 87

(λ − α j)
∑
β,α

dβ
(λ − α)(β − α)

which is under consideration is

(X − A j)Ak dαk

(X − Ak)(Ak − A j)

For the part of the summation corresponding to the arithmetical
progressionβ j(h) = α j + 2hgπi, h , 0, it is necessary to compute
∗∑
h

1
(λ − α j − 2hπi)2hπi

settingz= λ − α j , we have,

∗∑

h

1
(z− 2hπi)(2hπi)

=
1
z

∗∑

h

[
1

z− 2hπi
+

1
2hπi

]

=
1
2z
+

1
z

(
1

ez− 1
− 1

z

)

=
1

(λ − α j)

[
A j

X − A j
− 1
λ − α j

]
+

1
2(λ − α j)

Hence the second part of the summation in gives

A j dα j

X − A j
−

d α j

λ − α j
+

d α j

2
.

For anyh, dAk = eαkdαk = Akdαk. (T ) now becomes 112

d M(λ)
M(λ)

−
(d M′(λ))λ=α j

M′(α j)
− 1

2

M′′(α j)

M′(α j)
d α j

+
dα j

2
+

dAj

X − A j
+

∑

k, j

(X − A j)dAk

(X − Ak)(Ak − A j)
= 0 (1)

Now M(λ) = P(X)

M′(λ) = XP′(X); M′′(λ) = X2P′′(X) + XP′(X).

We have

d[A j P
′(A j)] = (d[XP′(X)])X=A j + [A jP

′′(A j) + P′(A j)]dAj
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and also, d[A j P
′(A j)] = dAj P′(A j) + A j d[P′(A j)]

= dAj P′(A j) + A j(d P′(X))X=A j + A j P′′(A j)dAj

Hence

(d[XP′(X)])X=A j = A j(d[P′(X)])X=A j ;

also
(dM′(λ))λ=α j

M′(α j)
=

(d[XP′(X)])X=A j

A j P′(A j)
=

(d P′(X))X=A j

P′(A j)

and − 1
2

M′′(α j)

M′(α)
= −1

2

P′′(A j)

P′(A j)
A j dα j −

1
2

dAj

A j

= −1
2

P′′(A j)

P′(A j)
dAj −

1
2

dα.

From (1) we obtain,113

d P(X)
P(X)

−
d P′(X)X=A j

P′(A j)
+

[
1

X − A j
− 1

2

A′′(A j)

P′(A j)

]
dAj

+

∑

k, j

(X − A j)dAk

(X − Ak)(Ak − A j)
= 0

which is the formula (F ) for the polynomialP(X).

8

We have seen that the formula (G1) holds for the Fourier - Laplace trans-
forms of distributions which are finite linear combinationsof Dirac mea-
sures placed at rational points in a rectangle inR2 such that the convex
envelops of the supports of these distributions (i.e. the set of rational
points) is precisely the rectangle. We shall now prove that (G1) holds
for Fourier - Laplace transforms of two distributionsT1 andT2 in ε′(R2)
which differ slightly (in fact by a measure defined by a density) from a
finite linear combination of Dirac measures. LetT1 andT2 be defined
by

T1 ∗ F = a1F(x, y) + b1F(x+ 1, y) + c1F(x, y+ 1)+ d1F(x+ 1, y+ 1)
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+

1∫

o

1∫

o

k1(ξ, η)F(x+ ξ, y+ η)d ξ d η

T2 ∗ F = a2F(x, y) + b2F(x+ 1, y) + c2F(x, y+ 1)+ d2F(x+ 1, y+ 1)

+

1∫

o

1∫

o

k2(ξ, η)F(x+ ξ, y+ η)d ξ dη

where 114

i) ai , bi , ci , di (i = 1, 2) are all not zero

ii) ki(i = 1, 2) are continuous.

Let FL Ti = Mi(λ, µ) be Fourier - Laplace transforms of
Ti(i = 1, 2)

M1(λ, µ) = a1 + b1 eλ + c1 eµ + d1 eλ+µ +
x

k1(ξ, η)eλξ+µηd ξ d η

M2(λ, µ) = a2 + b2 eλ + c2 eµ + d2 eλ+µ +
x

k2(ξ, η)eλξ+µηd ξ d η

Let (σ) denote the spectrum.
Properties of the spectrum(σ) of T1 and T2.

We have

M1(λ, µ) e−λ−µ − d1 = a1e−λ−µ + b1 e−µ + c1 e−λ

+

x
k1(ξ, η)eλ(ξ−1)+µ(η−1)dξdη

Let 115

(λ, µ) ∈ (σ), λ = λo+i λi , µ = µo+i µ1|M1(λ, µ)e−λ−µ−d1| ≤ |a1|e−λo−µo

+ |b1|e−µo + |c1| e−λo

1∫

o

1∫

o

|k1(ξ, η)|eλo(ξ−1)+µo(η−1)d ξ d η

For (λ, µ) ∈ (σ), the left hand member is−d1 and asλo, µo both
tend to+∞, the right hand member tends to 0. This cannot happen as
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d1 , 0. Hence for (λ, µ) ∈ (σ), λo, µo both cannot tend to+∞. Similarly
the pairs (λo,−µo), (−λo, µo) and (−λo,−µo) cannot each tend to positive
infinity. We have only to consider fori = 1, 2,

Mi(λ, µ)e−λ − bi = aie
−λ
+ di eµ +

1∫

o

1∫

o

ki(ξ, η)e
λ(ξ−1)+µηd ξ d η

Mi(λ, µ)e−µ − ci = aie
−µ
+ bi eλ−µ + di eλ

+

1∫

o

1∫

o

ki(ξ, η)e
λξ+µ(η−1)d ξ d η

Mi(λ, µ) e−µ − di = bie
λ
+ cie

µ
+ die

λ+µ
+

1∫

o

1∫

o

ki(ξ, η)e
λξ+µη d ξ d η.

Proposition 1. If each of b2d1−b1d2, c1d2−c2d1, c1a2−a1c1, b1a2−b2a1

is distinct from zero, then the spectrum(σ) of T1,T2 is contained in a
vertical band in C2 (i.e. the projection(λo, µo) of (λ, µ) ∈ (σ) in the real116

plane remains bounded).

In view of the observations made in the preceding paragraph we
have only to show that (λ, µ) ∈ (σ), λ = λo + iλ1, µ = µo + i µ1, one of
λo, µo cannot tend to infinity while the other remains bounded. Elimi-
natinge−µ from the equation

M1(λ, µ)e−λ−µ − d1 = a1 e−λ−µ + b1 e−µ + c1 e−λ

+

1∫

o

1∫

o

k1(ξ, η)eλ(ξ−1)+µ(η−1) d ξ d η

M2(λ, µ)e−λ−µ − d2 = a2 e−λ−µ + b2 e−µ + c2 e−λ

+

1∫

o

1∫

o

k2(ξ, η)eλ(ξ−1)+µ(η−1) d ξ d η

we have
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b2M1(λ, µ)e−λ−µ − b1M2(λ, µ)e−λ−µ − b2d1 + b1d2

= (b2a1 − b1a2)e−λ−µ + (b2c1 − b1c2)e−λ

+

1∫

o

1∫

o

[b2k1(ξ, η) − b1k2(ξ, η)]eλ(ξ−1)+µ(η−1)dξdη

Hence

|b2M1(λ, µ)e−λ−µ − b1M2(λ, µ)e−λ−µ − b2d1 + b1d2|
≤ |b2a1 − b1a2|e−λo−µo + |b2c1 − b1c2|e−λo

+

1∫

o

1∫

o

|b2k1(ξ, η) − b1k2(ξ, η)|eλo(ξ−1)+µo(η−1)d ξ d η

For (λ, µ) ∈ (σ),Mi(λ, µ) = 0 so that passing to the limit asλo → 117

+∞ on (σ) while µo remains bounded, we obtainb2d1−b1d2 = 0 which
is supposed to be not true.

Similarly we can show that
µo→ +∞ with λo remaining bounded implies thatc1d2 − c2d1 = 0;
λo→ −∞ with µo remaining bounded implies thatc1a2 − c2a1 = 0;

andµo→ −∞ with λo remaining bounded implies thata1b2 − a2b1 = 0.

Remark. For the hyperbolas

a1 + b1X + c1Y + d1XY= 0 (H1)

and
a2 + b2X + c2Y + d2XY= 0 (H2)

The conditiona) b2d1 − b1d2 = 0 expresses that (H1) and (H2) have
the same horizontal asymptoteb) c2d1 − c1d2 = 0 implies that (H1) and
(H2) have the same vertical asymptote;c) c2a1 − c1a2 = 0 implies that
(H1) and (H2) have a common point ono Y; d) b2a1 − b1a2 = 0 implies
that (H1) and (H2) have a common point onoX.

We assume that the conditionsa), b), c), d) are not valid. Besides we
suppose that the hyperbolas (H1) and (H2) are not tangent to each other.
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Proposition 2. If ki(i = 1, 2) are twice continuously differentiable in 118

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then the spectrum(σ) is asymptotic to(λ, µ)
where

λ = α1 + 2hπi

µ = β1 + 2kπi



and
λ = α2 + 2h′πi

µ = β2 + 2k′πi

where h, k, h′, k′ are integers and(ξi , ηi) with eαi = ξi , eβi = ηi (i, 1, 2)
are the distinct common points of (H1) and (H2)

M1(λ, µ) = α1 + β1eλ + γ1eµ + δ1eλ+µ +
1
λµ

1∫

o

1∫

o

k1(ξ, η)
∂2

∂ξ∂η

[
eλξ+µη

]
d ξ d η

setting H(x, y) = eλx+µy and applying Green’s formula,

1∫

o

1∫

o

{
k1(ξ, η)

∂2

∂ξ∂η
H(ξ, η) − H(ξ, η)

∂2

∂ξ∂η
k1(ξ, η)

}
d ξ d η

=

∫

Q

[
H(ξ, η)

∂k1

∂ξ
dξ + k1(ξ, η)

∂H
∂η

d η
]
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where Q↑ denotes the perimeter of the square0 ≤ x ≤ 1, 0 ≤ y ≤ 1
in the sense OABC. The integral over the vertical sides AB,CD will be
denoted by

∫
↑ and it equals

∫

↑
k1(ξ, η)

∂H
∂η

dη =
∫

↑
k1 dH1 =

∫

↑
d(k1H) −

∫

↑
Hdk1

= −
∫

↑
H
∂k1

∂η
dη + (k1H)(1,1) − (k1H)(1,0)

− (k1H)(0,1) + (k1H)(0,0)

Finally 119

M1(λ, µ) = a1 + b1eλ + c1eµ + d1eλ+µ

+
1
λµ

[
k1(1, 1)eλ+µ − k1(1, 0)eλ − k1(0, 1)eµ + k1(0, 0)

∫

Q↑
eλξ+µη

[
∂k1

∂ξ
dξ − ∂k1

∂η
dη

]
+

1∫

o

1∫

o

eλξ+µη
∂k

1

∂ξ∂η
d ξ d η

and we have a similar expression forM2(λ, µ) i.e.

M1(λ, µ) = a1 + b1eλ + c1eµ + d1eλ+µ +
M̄1(λ, µ)
λµ

M2(λ, µ) = a2 + b2eλ + c2eµ + d2eλ+µ +
M̄2(λµ)
λµ

where the functionsM̄1(λ, µ) andM̄2(λ, µ) are entire functions of expo-
nential type which remains bounded when (λ, µ) lie in a vertical band

of C2 so that|M1(λ, µ)
λµ

| → 0. asλ, µ → ∞ in a vertical band and in

particular when (λ, µ) ∈ (σ) by proposition 1. Thus the spectrum (σ) is
asymptotic with the solutions of 120

φ1(λ, µ) = a1 + b1eλ + c1eµ + d1eλ+µ = 0

φ2(λ, µ) = a2 + b2eλ + c2eµ + d2eλ,µ = 0

Settingeλ = X andeµ = Y we obtain (H1) and (H2) and the required
result follows.
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Corollary. |D(λ, µ)|,D(λ, µ) being the Jacobian of M1(λ, µ),M2(λ, µ)
possesses a positive lower bound on(σ). D(λ, µ) it asymptotic with
the Jacobian ofφ1(λ, µ) andφ2(λ, µ) which is

∂2(11, ϕ2)
(λ, µ)

=

∣∣∣∣∣∣
b1eλ + d1eλ+µ c1eµ + d1eλ+µ

b2eλ + d2eλ+µ c2eµ + d2eλ+µ

∣∣∣∣∣∣
When (λ, µ) ∈ (σ), (eλ, eµ) = (ξi , ηi) i = 1, 2, (ξi , ηi) being the com-

mon points of (H1) and (H2). Then

[∂(ϕ1, φ2)
∂(λ, µ)

]
(λ,µ)∈(σ)

= ξi ηi

[
(b1c2−b2c1)+(b1d2−b2d1)ξi+(d1c2−d2c1)ηi

]

for i = 1, 2.
But the expression in the square bracket is precisely the Jacobian121

of (H1) and (H2) at the common point (xi , ηi) which is distinct from
zero since the two hyperbolas do not touch each other. In viewof the
conditions of proposition 1 and the remarks following the proposition
ξiηi , 0. Thus|D(λ, µ)| for (λ, µ) ∈ (σ) is asymptotic with two nonzero
values. Further by the usual hypothesis that the spectrum (σ) is ‘simple’
i.e. D(λ, µ) , 0 for any (λ, µ) ∈ (σ) it follows that |D(λ, µ)| possesses a
positive (strictly) lower bound.

Let A1 andA2 be Fourier- Laplace transforms of two densitiesU1

andU2 with supports in the square 0≤ x ≤ 1, 0 ≤ y ≤ 1

U1 ∗ F =
x

U1(ξ, η)F(x+ ξ, y+ η)d ξ dη

U2 ∗ F =
x

U2(ξ, η)F(x+ ξ, y+ η)dξ dη

We wish to prove the following

Theorem.The formula

J(A,M)
J(λ, α)

=

∑

β,α
β∈(σ)

[λ − α]
D(β)[λ − β][β − α]

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

+R

holds if M1 and M2 are Fourier- Laplace transforms of distributions T1

and T2 given by
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Ti ∗ F = aiF(x, y) + biF(x+ 1, y) + ciF(x, y+ 1)

+ diF(x+ 1, y+ 1)+
x

ki(ξ, η)F(x+ ξ, y+ η)dξη i = 1, 2

(provided the functions ki(ξ, η) and the coefficients ai , bi , ci , di , i = 1, 2, 122

satisfy the required conditions in order that the spectrum(σ) should
have the desirable properties; cf. propositions proved above).

If T1,T2,U1,U2 be replaced byT1(η),T(n)
2 ,U(n)

1 ,U(n)
2 respectively

where

Tn
i ∗ F = aiF(x, y) + biF(x+ 1, y) + ciF(x, y+ 1)+ diF(x+ 1, y+ 1)

+

n−1∑

p,q=0

1

n2
ki

( p
n
,
q
n

)
F

(
x+

p
n
, y+

q
n

)
, i = 1, 2; and

Un
i ∗ F =

n−1∑

p,q=0

1

n2
U1

( p
n
,
q
n

)
F

(
x+

p
n
, y+

q
n

)
,

then we know that the theorem holds forMn
1,M

n
2,A

n
1,A

n
2 (with the obvi-

ous notation:FL Tn
1 = Mn

1 · · · etc). Hence the first step in the proof
is to study the spectrum (σn) of Tn

1 and Tn
2 and its relation to (σ) as

n→ ∞.

Proposition 3. (σn) is contained in a vertical band which is independent
of n.

The proof of the proposition is analogous to that of Proposition 1 123

and we shall give only a partial verification. For instance weprove that
if (λ, µ) ∈ (σn) andλ = λo + iλ, µ = µo + i µ1, then i)λo, µo cannot
both tend to+∞; ii) λo cannot tend to+∞ whenµo → −∞, iii) when
|λo| < m< ∞, thenµo cannot tend to+∞.

i) For (λ, µ) ∈ (σn), we haveMn
i (λ, µ) = 0, i = 1, 2. If λo →

+∞, µo→ ∞, we write

−d1 = a1e−λ−µ + b1e−µ + c1e−λ + e−λ−µ
∑ 1

n2
k1

( p
n
,
q
n

)
exp

λp+ µq
n

|d1| ≤ |a1|e−λo−µo + |b1|e−λo + |c1|e−λo + e−λo−µo L1

1∫

o

1∫

o

eλoξ+µoη dξdη
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where L1 = sup
0≤ξ≤1
0≤η≤1

k1(ξ, η)

since (x, y)→ eλox+µoy is an increasing function of (x, y) whenλo, µo > 0
which may be assumed to be the case sinceλo, µo both tend to+∞.

Or

|d1| ≤ |a1|e−λo−µo + |b1|e−µo |c1|e−λo + e−λo−µL1
(eλo−1)(eµo−1)

λoµo

→ 0 asλo, µo→ +∞.

This contradicts the hypothesis thatd1 , 0.124

ii) If λo→ +∞, µo→ −∞, we write

−b1 = a1e−λ + c1eµ−λ + d1eµ + e−λ
∑

p

∑

q

1

n2
k1(

p
n
,
q
n

) exp
λp+ µq

n

|b1| ≤ |a1|e−λo + |c1|eµo−λo + |d1|eµo + e−λo

n−1∑

p=0

n−1∑

q=0

1

n2
|k1(

p
n
,
q
n

)|exp
λop
n

since expµoq
n ≤ 1

i.e., |b1| ≤ |a1|e−λo + |c1|eµo−λo + |d1|eµo + e−λoL1

1∫

o

1∫

o

eλoξ dηdξ

= |a1|e−λo + |c1|eµo−λo + |d1|eµo + e−λoL1
eλo − 1
λo

→ 0 asλo→ +∞ andµo→ −∞ which is not possible sinceb1 , 0.
iii) Suppose that|λo| < m1 andµo→ +∞. We write

0 = a1e−µ + b1eλ−µ + c1 + d1e−µ + e−µ
n−1∑

p=0

n−1∑

q=0

k1

( p
n
,
q
n

)
exp

λp+ µq
n

0 = a2e−µ + b2eλ−µ + c2 + d2e−µ + e−µ
n−1∑

p=0

n−1∑

q=0

k2

( p
n
,
q
n

)
exp

λp+ µq
n
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Eliminatingeλ from these we get125

|c1d2 − c2d1| ≤ |a1d2 − a2d1|e−µo + |b1d2 − b2d1|

eλo−µo + e−µoL2

1∫

o

1∫

o

eµoηdξdη

whereL2 depends upon the supremum of|d1k2(x, y)− d2k1(x, y)|eλox for

0 ≤ x ≤ 1, 0 ≤ y ≤ 1. i.e. the last term is majorised bye−µo L2
(eµo − 1)

µo
.

Hence right hand side of the above inequality→ 0 when|λo| < m and
µo→ +∞. But this contradicts the assumption thatc1d2 − c2d1 , 0.

Summation of the seriesSn(λ, αn).

Sn(λ, αn) =
∑

βn∈(σn)

[λ − αn]
D(βn)[λ − βn][βn − αn]

J(Mn,Mn)
J(λ, βn)

J(An,Mn)
J(βn, αn)

+R
n

(whereRn can be got fromR by replacingM,A by Mn,An respec-
tively), whereλ = (λ1, λ2) denotes a point inC2. The functions
Mn

1(λ),Mn
2(λ),An

1(λ),An
2(λ) are periodic inλ1, λ2 with periods 2πni. The

same statement holds for the JacobianDn(λ) of the functionsMn(λ) as
also the two determinants of Jacobi:

J(Mn,Mn)
J(λ, α)

and
J(An,Mn)

J(β, α)

considered as functions of couples of points ofC2, (λ, α) and (β, α), 126

λ, α, β ∈ C2. These are therefore periodic functions of the four com-
plex variables with the same period 2nπi. MoreoverMn

1, and Mn
2 are

polynomials in exp
λ1

n
, exp

λ2

n
so that the zerosβn in the spectrum (σn)

can be arranged in 2n2 classes, each of these classes being situated in a
plane parallel to the purely imaginary plane ofC2 and forming in this
plane a network of squares of sides 2πn. By virtue of this remark, the
seriesSn(λ, αn), which is absolutely convergent can be broken up in 2n2
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partial sums corresponding to 2n2 classes in which the spectrum (σn) is
divided. In each of these partial sums the factors

1
Dn(βn)

J(Mn,Mn)
J(λ, βn)

J(An,Mn)
J(βn, αn)

has the same value for all the terms of the partial sum (λ, αn are fixed)
due to the periodicity of the functionsDn,Mn

1,M
n
2,A

n
1,M

n
2. We shall

then choose a representativeβn in each class which will be fixed (for the
classλ, σn, we chooseαn itself as its representative). It is necessary to
calculate, for each class

+∞∑

h=−∞

+∞∑

k=−∞

λ1 − αn
1

(λ1 − βn
1 − 2nhπi)(βn

1 + 2nhπi − αn
1)

λ2 − αn
2

(λ2 − βn
2 − 2nkπi)(βn

2 + 2nkπi − αn
2)

if αn does not belong to the class considered and127

+∞′∑

h=−∞

+∞′∑

k=−∞

λ1 − αn
1

(λ1 − αn
1 − 2nh′πi)(2nhπi)

λ2 − αn
2

(λ1 − αn
1 − 2nkπi)(2nkπi)

if αn belongs to the class considered. (
∑′∑′ denotes that that value

h = 0, k = 0 is excluded in the summation). The calculation of these
two sums is classical and gives

1

n2


1

exp
(
λ1−βn

1
n

)
− 1
− 1

exp
αn

1−β
n
1

n − 1




1

exp
(
λ2−βn

2
n

)
− 1
− 1

exp
αn

2−β
n
2

n − 1



in the first case and

1
n2


1

exp
(
λ1−βn

1
n

)
− 1
− n
λ1 − αn

1

+
1
2




1

exp
λ2−αn

2
n − 1

− n
λ2 − αn

2

+
1
2



is the second.
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As
J(An,Mn)
J(λn, αn)

= 0 sinceαn ∈ e(σn), we see that the seriesSn(λ, αn)

can now be put in the form of a finite sum (with 2n2 − 1 terms) each
of these terms corresponding to classes in which the spectrum (σn) is
divided. Denoting the classes by capital letters,

an = class ofαn,Bn = class ofβn,

the representativesαn, βn being fixed in their class, we can write 128

Sn(λ, αn) =
1
n2

∑

Bn,an


1

exp
(
λ1−βn

1
n

)
− 1
− 1

exp
(
αn

1−β
n
1

n

)
− 1




1

exp
(
λ2−βn

2
n

)
− 1
− 1

exp
(
αn

2−β
n
2

n

)
− 1



1
Dn(βn)

J(Mn,Mn)
J(λ, βn)

J(An,Mn)
J(βn, αn)

(1)

Behaviour of Sn(λ, αn) for n large.

Applying Taylor’s formula for the function
z

ez− 1
which is holo-

morphic in the neighbourhood of the origin, we have

x
ex − 1

= 1− x
2
+

x2

2πi

∫

0

dz
z(z− x)(ez − 1)

whereC is the circumference of a circle with centre origin and radius<
2π (2π is the radius of convergence of the Taylor’s series of the function

about the origin). Letx =
λ

n
with |λ| < πn so that|x| < π. Dividing by

λ, we have

1

n(e1/n − 1)
− 1
λ
+

1
2π
=

λ

2π i n2

∫

C

dz

z(z− λ
n)(ez − 1)

, λ , 0

similarly for |µ| < π n, 129
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1

n(eµ/n − 1)
− 1
µ
+

1
2n
=

µ

2π i n2

∫

C

dz

z(z− µ

n)(ez − 1)
, µ , 0

subtracting,

1

n(eλ/n − 1)
− 1

n(eµ/n − 1)
−

(
1
λ
− 1
µ

)
=

1
2πin

∫

C

[ λ
n

z− λ
n

−
µ

n

z− λ
n

]

dz
z(ez − 1)

=
λ − µ
2πin2

∫

C

dz(
z− λ

n

) (
z− µ

n

)
(ez − 1)

The length ofC is < 4π2, |λ
n
| < π and |µ

n
| < π. Hence|z− λ

n
| ≥

π, |z− µ
n
| ≥ π; let M denote max

|z|=R
| 1
ez− 1

|, (R< 2π). Then

∣∣∣∣
1

n(eλ/n − 1)
− 1

n(eµ/n − 1)
−

(
1
λ
− 1
µ

) ∣∣∣∣ ≤ Co
|λ − µ|

n2

with Co =
2M
π

and |λ| < πn, |µ| ≤ πn. Changingλ into λ1 − βn
1, µ into

αn
1 − β

n
1 or λ into λ2 − βn

2, µ into αn
2 − β

n
2, we have the majorisation

∣∣∣∣∣∣
1
n


1

exp
(
λ1−βn

1
n

)
− 1
− 1

exp
(
αn

1−β
n
1

n

)
− 1


−

λ1 − αn
1

(λ1 − βn
1)(βn

1 − α
n
1)

∣∣∣∣∣∣

≤ c0

n2
|λ1 − αn

1|

∣∣∣∣∣∣
1
n


1

exp
(
λ2−βn

2
n

)
− 1
− 1

exp
(
αn

2−β
n
2

n

)
− 1


−

λ2 − αn
2

(λ2 − βn
2)(βn

2 − α
n
2)

∣∣∣∣∣∣

≤ c0

n2
|λ2 − αn

2|

provided that130

|λ1 − βn
1| ≤ πn, |λ2 − βn

2| ≤ πn

|β1 − αn
1| ≤ πn, |βn

2 − α
n
2| ≤ πn

 (2)
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[ Note that|λ1−α1| and|λ2−α2| are independent ofρ1, β2 and therefore
fixed in the summation (1) ].

Using the majorisation (2), we shall study (1) and compare itwith a
finite sum

τ(λ, α) =
1
n2

∑

β,α


1

exp
(
λ1−β1

n

)
− 1
− 1

exp
(
α1−β1

n

)
− 1




1

exp
(
λ2−β2

n

)
− 1
− 1

exp
(
λ2−ρ2

n

)
− 1


1

D(β)
J(M,M)
J(λ, β)

J(A,M)
J(β, α)

.

The summation inβ is made forβ ∈ (σ) which are “near” to thoseβn 131

which are the chosen representatives of the 2n2 − 1 classesBn , an. It
is necessary for this to compare the functionsM andMn,A andAn, (σ)
and (σn).

Comparison of M with Mn and of A with An.

M1(λ) = a1 + b1eλ1 + c1eλ2 + d1eλ1+λ2 + N1(λ)

M2(λ) = a2 + b2eλ1 + c2eλ2 + d2eλ1+λ2 + N2(λ)

 (3)

Mn
1(λ) = a1 + b1eλ1 + c1eλ2 + d1eλ1+λ2 + Nn

1(λ)

Mn
2(λ) = a2 + b2eλ1 + c2eλ2 + d2eλ1+λ2 + Nn

2(λ)

 (4)

Hence it is sufficient to compareN andNn. The calculation will be
similar for A andAn.

We shall now suppose (for simplifying the proof) that the functions
k1, k2, a1, a2 in R2 are indefinitely differentiable with compact support132

contained in the square 0≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. Then the functions
A(λ),N(λ) decrease rapidly whenλ recedes to infinity keeping itself in
a vertical plane. Hence the functions such as

1

n2
k1

(y1

n
,
y2

n

)
exp

(
λ1y1 + λ2y2

n

)
= Kn

1(y1, y2)

are indefinitely differentiable with compact support contained in the
square 0≤ y1 ≤ n, 0 ≤ y2 ≤ n and we can write for example

Nn
1(λ) =

∑

p,q

Kn
1(p, q)
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where the summation is made over all the couples of integers (p, q). In
order to evaluate this sum it suffices to apply Poisson’s formula. The
Fourier transform ofKn

1(y1, y2) is (µ1, µ2 being real):

F [Kn
1] =

x
Kn

1(y1, y2) exp[−2πi(µ1 + µ2y2)]dy1 dy2

=
1
n2

x
K1(y1, y2) exp[

(
λ1

n
− 2πµ1

)
y1 +

(
λ2

n
− 2πiµ2

)
y2]dy1dy2

=

x
k1(u) exp〈λ − 2πiµn, u〉du= N1(λ − 2πiµn)

Hence by Poisson’s formula,

Nn(λ) =
∑

h,k

N(λ1 − 2πihn, λ2 − 2πikn)

An(λ) =
∑

h,k

A(λ1 − 2πihn, λ2 − 2πikn)


(5)

Nn(λ) − N(λ) =
′∑

h,k

N(λ1 − 2πihn, λ2 − 2πikn) = Mn(λ) − M(λ)

An(λ) − A(λ) =
′∑

h,k

A(λ1 − 2πihn, λ2 − 2πikn)



(6)

where the accent indicates that in the summation the coupleh = 0, k = 0133

is excluded.

Majorisation of the differenceNn − N and An − A.

As N decreases rapidly in the vertical bound, we have

|N(λ1, λ2)| ≤ c1(r)
|λ1λ2|r

in a vertical band wherer is a positive integer, arbitrarily large and where
c1(r) is a constant which depends onr and the functionk1(x1, x2). Hence

|Mn
1(λ) − M1(λ)| ≤ c1(r)

′∑

h,k

1
|λ1 − 2πinh|r |λ2 − 2πink|r
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(for λ1 andλ2 different from the multiples of 2πin; this restriction is
artificial).

Majorising the second member forr ≥ 3, it is easy to verify that

|Mn
1(λ) − M1(λ)| ≤ c2(r)

(2πn)r (7)

if

|Imλ1| ≤ πn, |Imλ2| ≤ πn (8)

and we have analogous inequalities for the functionsM2,A1,A2 under 134

the same conditions (8). We can always denote byc2(r) the positive
constant figuring in the numerator of the second member of (1)by taking
the same constant for the functions.

The volumeVn; zeros ofM(λ) in the interior of Vn.

We know that (σ) and (σn) are in a fixed vertical bandB indepen-
dent ofn. We shall intersect the vertical band by a horizontal band in
C2 defined by (8). Its section by a vertical plane is a square of side 2πn.
Such a square contains one and only one point of each of the 2n2 classes
in which (σn) is decomposed, since each of these 2n2 classes form, in its
plane, which is vertical, a network of squares of side 2πn. It follows that
the volumeVn in C2 contains exactly 2n2 points of the spectrum (σn).
We wish to find the points of (σ) which are also inVn. We first recall a
classical result due to Kronecker.

Let f , g, h be three functions continuously differentiable in a region
in R3. LetV be a volume contained in the region with boundaryS. Then

m= − 1
4π

x

S

(Acosλ + Bcosµ +C cosν)dS

where A =

[
f
D(g, h)
D(y, z)

+ g
D(h, f )
D(y, z)

+ h
D( f , g)
D(y, z)

]
1

[ f 2 + g2 + h2]3/2

B,C being analogously defined and cosλ, cosµ, cos, γ are the direction 135

cosines of the interior normal toS andm equals the difference between
the number of solutions lying inV of the systemsf = g = h = 0 for
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which
D( f , g, h)
D(x, y, z)

> 0 and the number of solutions for which
D( f , g, h)
D(x, y, z)

<

0. We shall use the analogue of this proposition inR4
= C2 i.e.,

If f1, f2, f3, f4 are four functions which are (C, 1) in a region ofR4,
then

m= − 1

2π2

y
(A1 cosλ1 + A2 cosλ2 + A3 + A4 cosλ4)dS

with A1 =


∑

f1

D( f2, f3, f4)
D(x2, x3, x4)


1

[
4∑

1=1
f 2
i

]2

and A2,A3,A4 similarly defined, wherem is defined as above for the
system of equationsf1 = f2 = f3 = f4 = 0 and the JacobianD( f1, f2, f3, f4)

D(x1,x2,x3,x4) .
The integral on the right hand side will be called the Kronecker integral.

We consider the following analytic transformation ofC2 into itself,

(λ1, λ2)→ (M1(λ1, λ2),M2(λ1, λ2))

This can be considered as a transformation ofR4 into itself. Instead of136

the four variables which are the real and imaginary parts of bothλ1, λ2,
we takeλ1, λ̄1, λ2, λ̄2. Then

dM1 =
∂M1

∂λ1
dλ1 +

∂M1

∂λ2
dλ2 and

dM2 =
∂M2

∂λ1
dλ1 +

∂M2

∂λ2
dλ2,

asM1,M2 are analytic. The volume elements which correspond to each
other by this transformation are proportional to

dλ1 ∧ dλ̄1 ∧ dλ2 ∧ dλ̄2 anddM1 ∧ dM̄1 ∧ dM2 ∧ dM̄2

Now

dM̄1 =
∂M̄1

∂λ1
dλ̄1 +

∂M̄1

∂λ2
dλ̄2 and

dM̄2 =
∂M̄2

∂λ1
dλ̄1 +

∂M̄2

∂λ2
dλ̄2
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Hence

dM1 ∧ dM̄1 ∧ dM2 ∧ dM̄2

=


∂M1

∂λ1

∂M1

∂λ1

∂M2

∂λ2

∂M2

∂λ2
− ∂M1

∂λ1

∂M1

∂λ2

∂M2

∂λ2

∂M2

∂λ1
− ∂M1

∂λ2

∂M1

∂λ1

∂M2

∂λ1

∂M2

∂λ2
+
∂M1

∂λ2

∂M1

∂λ2

∂M2

∂λ1

∂M2

∂λ1

 dλ1 ∧ dλ̄1 ∧ λ2 ∧ dλ̄2

=
D(M1,M2)
D(λ1, λ2)

D(M1,M2)
D(λ1, λ2)

dλ1 ∧ dλ̄1 ∧ dλ2 ∧ dλ̄2

Thus the Jacobian of the transformation under consideration is al- 137

ways real and≥ 0. Taking real and imaginary parts ofM1 andM2 the
systemM1 = 0,M2 = 0 is equivalent to the four equationsfi = 0 i =

1, 2, 3, 4. The Kronecker integral which can be briefly denoted by− 1

2π2t
K(M1,M2)dS in this case givesm exactly equal to the number of

solutions of the systemfi = 0 in the volumeV enclosed byS (since the
Jacobian does not change sign) i.e., the number of elements of (σ)inV.

Proposition 4. The volume Vn contains2n2 points ofσ for n sufficiently
large.

We know thatVn contains 2n2 points of (σn). Using Kronecker’s
result it follows that

2n2
=

∫

∂Vn

K(Mn
1,M

n
2)dS

where∂Vn denotes the boundary ofVn whose measure is of the form
c3n2, wherec3 is a fixed constant (viz. the product of 4π2 by the length
of the parameter of the right section of the vertical bandB) and the
proposition will be proved if we know that

2n2
=

∫

∂Vn

K(M1,M2)dS (i)

Consider the differenceK(M1,M2) − K(Mn
1,M

n
2) in ∂Vn. Let λ1 = 138

x1+ ix2, λ2 = x3+ ix4,M1 = f1+ i f2,M2 = f3+ i f4,Mn
1 = f n

1 + i f n
2 ,M

n
2 =
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f n
3 + i f n

4 where thef ′s are real valued functions of the four real variables

x1, x2, x3, x4. For (λ1, λ2) ∈ Vn, |Mi − Mn
i | ≤

c2(r)
(2πn)r

i = 1, 2. Hence

| fi − f n
i | ≤ |

c2(r)
(2πn)r i = 1, 2, 3, 4.

Similarly | ∂ fi
∂x j
−
∂ f n

i

∂x j
| ≤

c′2(r)

(2πn)r for (λ1, λ2) ∈ Vn, since the partial deriva-

tives of thefi with respect tox j are exactly of the same form as thefi.
We consider the differenceK(M1,M2) − K(Mn

1,M
n
1) on ∂vn. In

K(M1,M2) the fi and
∂ fi
∂x j

may be regarded as a finite set of variables

u1, u2, . . . andK(Mn
1,M

n
2) is the same function with the variablesfi and

∂ fi
∂x j

replaced byf n
i and

∂ f n
i

∂x j
respectively or the variablesu1, u2, . . . re-

placed byun
1, u

n
2, . . . respectively. Hence applying mean value theorem

of differential calculus,

|K(M1,M2) − K(Mn
1,M

n
2)| ≤ c3(r)

(2πn)r L on∂Vn (ii)

where L depends on the maximum modulus of the derivatives ofK
with respect tou1, u2, . . . over a region which contains (u1, u2, . . .) as139

also (un
1, u

n
2, . . .) while (λ1, λ2) = (x1, x2, x3, x4) varies in∂Vn. Since

|ui − un
i | = 0(

1
nr ) in Vn and therefore on∂Vn, for n ≥ N1, and since

∂K
∂ui

are continuous functions of (u1, u2, . . .) in estimatingL it is enough

to consider the maximum modulus of
∂K
∂ui

when (λ1, λ2) ∈ ∂Vn. Now

the numerator ofK(u1, u2, . . .) is a homogeneous polynomial in all the
u’s of total degree 4 with coefficients which are functions ofλ1, λ2 with
maximum moduls≤ 1 and the denominator is 2π2(u2

1 + u2
2 + u2

3 + u2
4)

or 2π2[|M1(λ)|2 + |M2(λ)|2]. Both the numerator and denominator as
also their partial derivatives with respect toui are uniformly bounded
on ∂Vn since they are uniformly bounded onB andVn is a closed sub-
set ofB. HenceL can be found to be a fixed positive number which
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does not depend onn if we prove that the denominator ofK i. e.
2π2[|M1(λ)|2 + |M2(λ)|2] is bounded below uniformly for (λ1, λ2) ∈ ∂Vn

by a fixed number> 0 which does not depend onn.
First we consider two vertical parts of∂Vn, denoted by (∂Vn)1 i. e.

parts contained in∂B. On∂B real parts ofλ1, λ2 are constant and the
imaginary parts vary from−∞ to+∞. We can suppose that the principal
parts

φ1(λ1, λ2) = a1 + b1eλ1 + c1eλ2 + d1eλ1+λ2 and

φ2(λ1, λ2) = a2 + b2eλ1 + c2eλ2 + d2eλ1+λ2

of M1(λ) andM2(λ) respectively do not vanish on∂B (we have only to 140

chooseB suitably) and have their moduli bounded below bym1 > 0
if (λ1, λ2) ∈ ∂B and |Imλ1| ≤ π and |Imλ2| ≤ π. But φ1 andφ2 are
periodic inλ1 andλ2 with periods 2πi so that|φ1| > m1 and |φ2| > m1

on ∂B. Now given
m1

2
> 0, we can find a compact setK1 such that

∣∣∣Mi(λ1, λ2) − φi(λ1, λ2)
∣∣∣ < m1

2
, i = 1, 2 for (λ1, λ2) < K1 by Proposition

2. Hence for (λ1, λ2) ∈ (∂Vn)1 and (λ1, λ2) < K1, |Mi(λ1, λ2)| > m1

2
, i =

1, 2. As M1,M2 do not vanish on∂B and therefore on (∂Vn)1∩K1, |M1|
and |M2| > m2 > 0 on (∂Vn)1 ∩ K1 so that if m = Min(

m1

2
,m2) >

0, 2π2(|M1(λ)|2 + |M2(λ)|2) > 2π2m2 > 0 on (∂Vn)1. On the horizontal
part (∂Vn)2 of ∂Vn i. e. where|Imλ1| = πn and |Imλ2| = πn, since the
a′s, b′s· · ·etc. are generic, we may suppose thatφ1 andφ2 do not vanish
on (∂Vn)2 so thatφ1 andφ2 have a lower boundm′ > 0 on (∂Vn)2 (since
(∂Vn)n is compact) andm′ is independent ofn because of the periodicity141

of φ1 andφ2. Now given
m′

2
, there exists a compact set outside which

|Mi − φi | <
m′

2
, i = 1, 2. Also for n > N2, (∂Vn)2 lies out side this

compact set so that|M1| and|M2| ≥
m′

2
> 0 on (∂Vn)2 for n ≥ N2. Thus

(|M1(λ)|2 + |M2(λ)|2 ≥ Min(m2,
m12

2
> 0) on∂Vn for n ≥ N2.

Thus the moduli of the denominator and numerator ofK(u1, u2, . . .)
as also their partial derivatives are bounded above uniformly on ∂Vn and
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the modulus of the denominator is bounded below by a strictlyposi-

tive number on∂Vn for n ≥ N2, so that|∂K
∂ui
| is bounded above by a

fixed number on∂Vn independent ofn ≥ N2. Hence for alln ≥ N3 =

Max(N1,N2) there exists a fixed positiveL satisfying (ii) independent
of n ≥ N3. Hence

∣∣∣
∫

∂Vn

K(M1,M2)dS−
∫

∂Vn

K(Mn
1,M

n
2)dS

∣∣∣ ≤ c3(r)
(2πn)r Lc3n2

=
c4(r)

nr−2
for n ≥ N3, and

c4(r)

nr−2
< 1 for n ≥ N4.

But each of the integrals equals an integer and their difference has
to be zero forn ≥ N = Max{N3,N4}, and

∫
∂Vn

K(M1,M2)dS =
∫

∂Vn

K(Mn
1,M

n
2)dS = 2n2.

Proposition 5. For n sufficiently large (n ≥ no fixed), there exists a142

one-to-one correspondence between the2n2 points of(σ) and of (σn)
contained in the volume Vn such that the distance between the corre-

sponding points of(σ) and of(σn) is uniformly majorised in Vn by
g5(r)

nr/2

where c5(r) > 0 depends only on the maximum modulus of the real and
imaginary parts of M1 and M2 as also their partial derivatives with re-
spect to real coordinates.

As Mn converges toM uniformly on each compact subset ofC2,
it is easy to see using Kronecker’s integral that in any arbitrary neigh-
bourhood of a point of (σ), there exists a point of (σn) for n sufficiently
large. Also by Proposition 4, forn sufficiently large, both (σ) and (σn)
have the same number (= 2n2) of points inVn. Now we show that if we

describe a sphere of radius
c5(r)

nr/2
about each of the 2n2 points of (σ) in

Vn, then there exists in the interior of each of these spheres a point of
(σn) lying in Vn.

Let S(α, ∈) denote the sphere of centreα and radiusε. The points
of (σ) are asymptotic with (σ′) which consist of points

(λ1λ2), λ1 = α
′
1 + 2hπi

λ2 = α
′
2 + 2kπi

and
λ1 = β

′
1 + 2h′πi

λ2 = β
′
2 + 2kπi
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(by Proposition 2). It follows therefore that forε sufficiently small, the
sphereS(α, ε) does not contain any other point of (σ) so that

∫

∂S(α,ε)

143

K(M1,M2)dS = 1∀αε(σ). We shall establish the proposition by com-
paring this integral with

∫

∂S(α,ε)

K(Mn
1,M

n
2)dS.

The denominator ofK(M1,M2) which is 2π2[|M1(λ)|2+ |M2(λ)|2]2 is
infinitely small of fourth order inε on∂S(α, ε). We haveλ = (λ1, λ2) =
(x1, x2, x3, x4) = x and

M1(λ) = f1(x) + i f2(x),M2(λ) = f3(x) + i f4(x).

As x = α is a zero of each off j ,

f j(x) = ε
∑ xi − xαi

ε

∂ f j

∂xαi
+ ε2

∑ (xi − xαi )

ε

(xk − xαk )

ε


∂2 f j

∂xi∂xk


x=x′

wherex′ is some point ofS(α, ε)

|M1(λ)|2 + |M2(λ)|2 = f 2
1 + f 2

2 + f 2
3 + f 2

4

= ε2
4∑

j=1


∑

i

xi − xαi
ε

∂ f j

∂xαi


2

+ ε3ψ(x, α) · · · (i)

Forαε(σ) andxεS(α, ε), |ψ(x, α)| is bounded above byM say, uniformly
for αε(σ) since the f j as also their partial derivatives are uniformly
bounded in the vertical bandB. Asα is a simple zeroM1(α) andM2(α),

∑
j

(∑
i

xi − xαi
ε

α f j

∂xαi

)2

is positive definite forxε∂S(α, ε) and has a 144

strictly positive minimumA(α) dependingα. We know that at a great
distance inB,M1 andM2 behave as their principal partsφ1 andφ2 re-
spectively and the same is true for their corresponding realand imagi-
nary parts as also their first partial derivatives with respect to real coor-

dinates. We observe that forxε∂S′(α′, ε),
∑

j

[∑
i

xi − xαi
ε

αg j

∂xαi

]2

(where

g j are the real and imaginary parts ofφ1 andφ2 and other obvious nota-
tion) is a positive definite quadratic form with strictly positive minimum
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B(α′). But g′js are periodic inx3 andx4 as also their partial derivatives
and thereforeB(α′) has a lower boundm′ > 0 independent ofα′ε(σ′).
Let α, α′ denote points of (σ) and (σ′) respectively which are very near
to each other (at a great distance inB). We have

A(α) = min
xε∂S(α,ε)

∑

j


∑

i

xi − xαi
ε

∂ f j

∂xαi


2

b(α′) = min
xε∂S′(α′,ε′)

∑

j


∑

i

xi − xαi
ε

∂g j

∂xα
′

i


2

Let145

B(α) = min
xε∂S(α,ε)


∑

j


∑

i

xi − xαi
ε

∂gi

∂xαi


2

.

Theg′j sare periodic functions ofx3 andx4 and hence are uniformly

continuous inB; so are
∂g j

∂xi
. HenceB(α′) is a uniformly continuous

function of α′εB; i.e. given
m′

4
> 0, there exists aδ > 0 such that

|α − α′| < δ implies that|B(α) − B(α′)| < m′

4
. Now givenδ, there exists

a compact setK1 such that|α − α′| < δ for α < K1 and given
m′

4
, there

exists a compact setK2 such that|A(α) − B(β)| < m′

4
for α < K2. Hence

for α < K1 ∪ K2,

A(α) > B(α′) − |B(α) − B(α′)| − |A(α) − B(α)|

> m′ − m′

4
− m′

4
=

m′

2
> 0.

Also K1 ∪ K2 contain only a finite number ofαε(σ) lying in Vn.
HenceA(α) > M′′ > 0 for αεK1 ∪ K2, αεVn. From (i),.

|M1(λ)|2 + || |M2(λ)|2 > m1ε
2 − ε3M where

m1 = min
{m′

2
,m′′

}
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Choosingε small enough,ε3M < ε2 m1

2
, so that|M1(λ)|2 + |M2(λ)|2146

has a strictly positive lower boundmε2 for λε∂S(α, ε) which does not
depend onαε(σ).

In order to compare the integrals
∫

∂S(α,ε)

K(M1,M2)dS and
∫

∂S(α,ε)

K(Mn
1,M

n
2)dS for αεVn, we adopt the procedure in proposition

4 in which integrandK is treated as a function ofu1, u2, . . . which arefi

and
∂ fi
∂x j

and apply the mean value theorem for differential calculus to

the differenceK(u1, u2, . . .) − K(un
1, u

n
2, . . .) = K(M1,M2) − K(Mn

1,M
n
2).

We suppose thatS(α, ε) ⊂ Vn for αεVn which is possible ifε is suffi-
ciently small.

K(M1,M2) − K(Mn
1,M

n
2) =

∑
(ui − un

i )
∂K
∂ui

,

since|ui − un
i | = 0

(
1
nr

)
,

|K(M1,M2) − K(Mn
1,M

n
2)| < c′(r)

(2πn)r L

whereL depends on the maximum modules of
∂K
∂ui

where (λ1, λ2) =

xε∂S(α, ε). The derivatives of the numerator ofK are uniformly boun-
ded inB and therefore on∂S(α, ε). In the derivatives of the denomi-

nator appears the term
[
|M1(λ)|2 + |M2(λ)|2

]−3
, partially compensated in

the numerator by terms which involve derivatives of|M1(λ)|2 + |M2(λ)|2
or u2

1 + u2
2 + u2

3 + u3
4. These letter term are uniformly majorised inVn 147

and on∂S(α, ε) by quantities which are of the first order inε. Thus the
term in the denominator are uniformly bounded inVn and therefore on
∂S(α, ε) by a quantity of orderε−5 since [|M1(λ)|2 + |M2(λ)|2] is uni-
formly bounded below on all∂S(α, ε), αεVn, by mε2 with m > 0. The
measure of∂S(α, ε) being proportional toε3, we have for all the spheres
S(α, ε) situated inVn,

∣∣∣∣∣
∫

∂S(α,ε)

K(M1,M2)ds−
∫

σS(α,ε)

K(Mn
1,M

n
2)ds

∣∣∣∣∣ <
c′′(r)

ε2nr
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If ε =

[
c′′(r)

nr

]1
2
=

c5(r)

nr/2
andn > n0 in order that be sufficiently

small we shall have the right hand side of the above inequality < 1 and
hence equal to zero as it is an integer and

∫

∂S(α,ε)

K(Mn
1,M

n
2)dS =

∫

∂S(α,ε)

K(M1,M2)ds= 1.

The passage to the limit.

We now compare the series

S(λ, α) =
∑

β,α

[λ − α]
D(β)[λ − β][β − α]

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

with148

Sn(λ, αn) =
∑

βn
,αn

βnε(σn)

[λ − αn]
Dn(βn)[λ − βn][βn − αn]

J(An,Mn)J(An,Mn)
J(λ, αn)J(βn, αn)

using the finite form ofSn(λ, αn) given by (1 ). We first remark that the
preceding properties permit on e to establish a sequence of one-to-one
correspondences

an↔ αn↔ α

among the set of 2n2 classes of zeros ofMn, the set ofMn which are in
Vn and the set of zeros ofM which are in the same volume, the distance
between the two zeros ofM andMn being estimated in Proposition 5.

Let Wn be the volume which consists of points ofB satisfying

|Imλ1| ≤ πn
1
4 , |Imλ2| ≤ πn

1
4

λ being fixed, we can suppose thatWn contains the pointλ for n suffi-
ciently large (since one can always suppose that forλ fixed,B contains
λ). We choosean, α, α

n such thatα, αnεWn. Then

|λ1 − α1|, |λ2 − α2|, |λ1 − αn
1|, |λ2 − αn

2|
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are majorised byc6n
1
4 .|D(β)| is bounded away from zero forβε(σ) and149

therefore|D(βn)| by proposition 5 forβnεVn and therefore|Dn(βn)| for n
sufficiently large andβnεVn. Also An,Mn,A,M as also their derivatives
are uniformly bounded so that by (7) and (8),

1
Dn(βn)

J(Mn,Mn)
J(λ, βn)

J(An,Mn)
J(βn, αn)

− 1
D(βn)

J(M,M)
J(λ, βn)

J(A,M)
J(βn, αn)

= 0

(
1
nr

)

for β, βnεVn.
Similarly by Proposition 4 and 5, it is clear that

1
Dn(βn)

J(Mn,Mn)
J(λ, αn)

J(An,Mn)
J(αn, βn)

=
1

J(βn)
J(M,M)
J(λ, β)

J(A,M)
J(β, α)

+ An (9)

with

|A| < c7(r)

nr/2
. (10)

The constantc7(r) being the same for all the terms of (1).
The second factor

1

n2


1

exp
λ1−βn

1
n − 1

− 1

exp
αn

1−β
n
1

n − 1




1

exp
λ2−βn

2
n − 1

− 1

exp
αn

2−β
n
2

n − 1


(11)

of the general term in (1) can be written as (because of (2))

[ λ1 − αn
1

(λ1 − βn
1)(βn

1 − α
n
1)
+ Bn

][ λ2 − αn
2

(λ2 − βn
2)(βn

2 − α
n
2)
+Cn

]
(12)

with 150

|Bn| ≤
c0

n2
|λ1 − αn

1|, |Cn| ≤
c0

n2
|λ2 − αn

2| (13)

In (12), the term

λ1 − αn
1

(λ1 − βn
1)(βn

1 − α
n
1)

may be replaced by
λ1 − α1

(λ1 − β1)(β1 − α1)

=
1

λ1 − β1
+

1
β1 − α1

· · · (14)
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But whenβ describes (α),

λ1 − β1, λ2 − β2, β1 − α1, β2 − α2

have a strictly positive minimum. Hence (11) can be written as

[
λ1 − α1

(λ1 − β1)(β1 − α1)
+ Bn + B′n

] [
λ2 − α2

(λ2 − β2)(β2 − α2)
+Cn +C′n

]
(15)

with the conditions (13) and

|B′n| <
cg(r)

nr/2
, |C′n| <

cg(r)

nr/2

We shall now put the second member of (9) as also (15) in place of151

(11) in the general term of (1). Then the principle term is evidently

∑

β,α
βεVn

1
J(β)

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

[λ − α]
[λ − β][β − α]

where the summation is extended to 2n2 − 1 points ofβ contained inVn

(and distinct fromα). The corrective terms are of different kinds. There
are two terms of type

∑

βεVn
β,α

{
λ1 − α1

(λ1 − β1)(β1 − α1)

}{
1

D(β)
J(M,M)
J(λ1, β1)

J(A,M)
J(β, α)

}
Cn (16)

The second bracket is uniformly bounded inB and

|Cn(λ1 − α1)| ≤ c0

n2
|λ1 − α1||λ2 − α2| ≤

c9

n3/2

Now we prove that

∑

βεVn
β,α

1
(λ1 − β1)(β1 − α1)

= 0(n) (16)′
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such that (16) will have the majorisation
c10(λ, α)
√

n
wherec10(λ, α) de-

pends upon the shortest distance ofλ1 from the set ofβ1 and the shortest
distance ofα1 from the set ofβ1 , α1. Letn = m4. The number of terms152

of (16)′ in Wn = Vm is 2m2
= 2
√

n. Let Un = Vm2. Let d denote the
minimum if the shortest distances ofλ from α and ofβ , α from α.
Then ∣∣∣∣∣

∑

βεUn
β,α

1
(λ1 − β1)(β1 − α1)

∣∣∣∣∣ ≤
1

d2
2n.

There are 2n2 − 2n points of (σ) in Vn − Un and |β| > π
√

n for
βεVn−Un. Also |λ1| < c6n1/4, |α1| <6 n1/4 gives|λ1−β1| > π

√
n−c6n1/4

and|β1 − α1| > π
√

n− c6n1/4 so that
∣∣∣∣∣

1
(λ1 − β1)(β1 − α1)

∣∣∣∣∣ ≤
1

(π
√

n− c6n1/4)(π
√

n− c6n1/4)

or
1

(λ1 − β1)(β1 − α1)
= 0

(
1
n

)
for βεVn − Un

Hence

∑

βεVn−Un

1
(λ1 − β1)(β1 − α1)

= (2n2 − 2n) 0

(
1
n

)
= 0(n)

and

∑

βεVn
β,α

1
(λ1 − β1)(β1 − α1)

=

∑

βεUn
β,α

1
(λ1 − β1)(β1 − α1)

+

∑

βεVn−Un

1
(λ1 − β1)(β1 − α1)

= 0(n).

The terms of the type 153

λ1 − α1

(λ1 − β1)(β1 − α1)
1

D(β)
J(M,M)
J(λ, β)

J(A,M)
J(β, α)

C′n (17)
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have majorisation of the form
c11(λ, α)

n
(

2r−5
4

) and the terms such as

1
D(β)

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

B′nC
′
n (18)

1
D(β)

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

BnC
′
n (19)

1
D(β)

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

B′nC
′
n (20)

have respectively the evident majorisation

c12

n7/2
,
c13(r)

n
r
2+

7
4

,
c14(r)

nr

Then term
[λ − α]

[λ − β][β − α]
An is majorised by

c15(r, λ, α)

n
r−1
2

where the

constantc15 depends onλ, α and contains in the denominator the short-
est distance ofλ1, λ2 from the set ofβ1, β2 respectively and the shortest
distance ofα1, α2 from the set ofβ1 , α1, β2 , α2 respectively.154

Similarly the terms

λ1 − α1

(λ1 − β1)(β1 − α1)
AnCn,

λ1 − α1

(λ1 − β1)(β1 − α1)
AnC

′
n

AnBnCn,AnBnC
′
n,AnB′nC

′
n

give by summation, the majorisation of the form

c15(r, λ, α)

n
r+1
2

,
c16(r, λ, α)

nr− 5
2

,
c17(r)

n
r+7
2

,
c18(r)

n
3r
2

.

Conclusion.For r sufficiently large, and forλ, α fixed, we have

Lt
n→∞


Sn(λ, αn) −

∑

β,α
βεVn

[λ − α]
[λ − β][β − α]

J(M,M)
J(λ, β)

J(A,M)
J(β, α)


= 0

Now the same summation, extended toβ exterior to the volumeVn is

majorised by
c19(λ, α)

n
(this is obvious if we consider the asymptotic

behaviour ofσ described by Proposition 2).
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Hence forλ, α fixed andr sufficiently large

Lt
n→ ∞Sn(λ, α) =

∑

β,α
βεVn

1
D(β)

[λ − α]
[λ − β][β − α]

J(M,M)
J(λ, β)

J(A,M)
J(β, α)

.

But Sn(λ, αn) =
J(An,Mn)
J(λ, αn)

− Rn which tends to
J(A,M)
J(λ, α)

− R as 155

n→ ∞ for λ, α fixed. Hence

J(A,M)
J(λ, α)

=

∑

β,α
βε(σ)

[λ − α]
D(β)[λ − β][β − α]

J(M,M)
J(β, α)

J(A,M)
J(λ, α)

+R

and we have proved the formula (G1) for the distributionsT1 andT2.

9 The fundamental theorem of Mean periodic func-
tions in the case of two variables

The fundamental theorem for Mean periodic functions, Viz. expansion
of a mean periodic function in term of mean periodic exponentials in
the case of one variable is well-known. But its analogue inRn is not
know. We shall prove it over for a function mean periodic relative to
two special kinds of distributions inR2. Even as in the case ofR1, the
theorem is proved by making use of Mittag-Leffler theorem inC1, the
proof given here depends upon the formula (G1) which may be consid-
ered as an analogue of Mittage-Leffler theorem inC2.

Let T1,T2εE
′(R2) be defined as in the preceding article by

Ti ∗ F = aiF(x, y) + b1F(x+ 1, y) + c1F(x, y+ 1)+ d1F(x+ 1, y+ 1)

+

1∫
o

1∫

0

ki(ξ, η)F(x+ ξ, y+ η)dξdη, i = 1, 2, with supports in the rect-

angleR1 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 where the densitieski(x, y) and the 156

coefficientsai , bi , . . . (i = 1, 2) satisfy all the necessary conditions in or-
der that all the results of §8 should hold. Letu1, u2εD(R1) (the space of
indefinitely differentiable functions with compact support) so that their



118 3. The Heuristic Method

Fourier-Laplace transformsA1(λ1, λ2),A2(λ1, λ2) are functions of expo-

nential type which decrease more rapidly than any power of
1

|λ1| + |λ2|
,

as|λ1|, |λ2| → ∞ in any vertical band; then we have

J(A,S)
J(A, α)

=

∑

βεσ
β,α

[λ − α]
D(β)[λ − β][β − α]

J(S,S)
J(λ, β)

J(A,S)
J(λ, β)

+R (1)

whereSi(λ) = FL Ti , i = 1, 2, and (σ) is the spectrum. The series (1)
converges uniformly on each compact set. Letϕ(x)εDΦ(λ)FL φ is a
function rapidly decreasing in any vertical band.

Setting Āi(λ) = Φ(λ)A(λ), S̄i (λ) = Φ(λ)S(λ), i = 1, 2, we obtain,
(after multiplying both sides of (1) byΦ(λ)),

J(Ā,S)
J(λ, α)

=

∑ [λ − α]
D(β)[λ − β][β − α]

J(S̄,S)
J(λ, β)

J(A,S)
J(β, α)

+ R̄ (2)

The series (2), like (1), converges uniformly on each compact set. More-
over we can prove the following

Proposition 1. The series (2) converges in the sense of L1(R2) in every157

plane of C2 for which the real parts ofλ1, λ2 are fixed (i.e. for(λ1, λ2)
in a vertical plane).

As A1(λ),A2(λ) decrease rapidly andS1(λ),S2(λ) are bounded in a
vertical band and (σ) is contained in one such band,

∣∣∣ J(A,S)
J(α, β)

∣∣∣ < χα(β)

whereχα(β) decreases rapidly inβε(σ). Similarly | J(S̄,S)
J(λ, β)

| < c1|Φ(λ)|
wherec1 > 0 is a constant which depends only on two vertical bands,
one containing (σ) and the other containingλ. Further by the corollary
of proposition 2, §8,|D(β)| ≥ k > 0 on (σ). Hence

∣∣∣∣∣
1

D(β)
J(S̄,S)
J(λ, β)

J(A,S)
J(β, α)

∣∣∣∣∣ <
1
k
χα(β)|Φ(λ)|
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We now consider the factor

[λ − α]
[λ − β][β − α]

=
1

(λ1 − β1)(λ1 − β2)
+

1
(λ1 − β1)(β2 − α2)

+
1

(λ2 − β2)(β1 − α1)
+

1
(λ1 − β1)(β2 − α2)

(3)

For (λ1, λ2) fixed, we investigate the term of (2) in the four cases 158

i) |λ1 − β1| ≥ 1, |λ2 − β2| ≥ 1

ii) |λ1 − β1| < 1, |λ2 − β2| < 1

iii) |λ1 − β1| < 1, |λ2 − β2| ≥ 1

iv) |λ1 − β1| ≥ 1, |λ2 − β2| < 1

Forβε(σ) verifying (i),

| [λ − α]
[λ − β][β − α]

| ≤ 1+
1

|β1 − α1|
+

1
|β2 − α2|

+
1

|β1 − α1||β2 − α2|

The general term of the series (2) corresponding to such aβ is ma-
jorised by

c′1(1+
1

|β1 − α1|
)(1+

1
|β2 − α2|

)χα(β)|Φ(λ)|

Summing forβ sinceχα(β) decrease rapidly on (σ), this part of the
series is majorised in modulus byc3(α)|Φ(λ)|. (ii ):- For λ fixed, there
are only a finite number of terms verifying this condition.

Now 159

J(S̄1,S)
J(λ, β)

=

∣∣∣∣∣∣
S̄1(λ1, λ2) − S̄1(β1, λ2),S1(β1, λ2) − S1(β1, β2)
S̄2(λ1, λ2) − S̄2(β1, λ2),S2(β1, λ2) − S2(β1, β2)

∣∣∣∣∣∣

and

S̄1(λ1, λ2) − S̄1(β1, λ2) =

λ1∫

β1

∂

∂ρ1
[S̄1(ρ1, λ2)]dρ1
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Then

J(S̄1,S)
J(λ, β)

=

λ1∫

β1

λ2∫

β2

∂

∂ρ1
S̄1(ρ1, λ2)

∂

∂ρ2
S2(β1, ρ2)

− ∂

∂ρ1
S̄2(ρ1, λ2)

∂

∂ρ2
S1(β1, ρ2)

}
dρ1dρ2

Let ψ(λ) denote the maximum modulus of the functions
∂

∂ρ1
S̄1(ρ1, λ2),

∂

∂ρ1
S̄2(ρ1, λ2) when (ρ1, ρ2) is such that|λ1−ρ1| < 1, |λ2−ρ2| < 1. Then

ψ(λ) is a rapidly decreasing function in a vertical band, and
∣∣∣∣∣
J(S̄1,S)
J(λ, β)

∣∣∣∣∣ ≤ c2|ψ(λ)||λ1 − β1||λ2 − β2|

and the terms of (2) for which (ii) holds are majorised byc3(α)ψ1(λ)
whereψ1(λ) is a rapidly decreasing function in a vertical band.160

(iii) : - Writing
J(S̄,S)
J(λ, β)

is the form

λ1∫

β1

{
∂

∂ρ1
S̄1(ρ1, λ2)S2(β1, λ2) − ∂

∂ρ1
S̄2(ρ1, λ2)S1(β1, λ2)

}
dρ1

we have in this case the terms of (2) majorised bycχα(β)ψ2(λ)
∣∣∣ [λ − α]
[β − α]

∣∣∣
whereψ2(λ) decreases rapidly in a vertical band and the sum of the
series of this part is majorised byc(α)ψ3(λ) wherec(α) is a constant
which depends onα andψ3(λ) decreases rapidly in a vertical band and
we have similar majorisation in case (iv). Thus the sum of (2) being
majorised by a rapidly decreasing function ofλ in a vertical plane, the
series converges in the sense ofL1(R2) in a vertical plane.

In view of Proposition 1, we can apply the inverse of Fourier Laplace
transformation to both sides of (2) and we obtain

ū =
∑

β∈σ
β,α

J(A,S)
J(β, α)

s̄αβ(x, y) + ν̄ (4)
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where FLū =
J(Ā,S)
J(λ, α)

,

FLs̄αβ =
[λ − α]

D(β)[λ − β][β − α]
J(S̄,S)
J(λ, β)

= S̄αβ(λ),

FLR̄= ν̄ and the series converges uniformly on each compact sub-161

set ofR2. Then for any continuous functionF on R

ū ∗ F =
∑

β,α
β∈(σ)

J(A,S)
J(β, α)

s̄αβ ∗ F + ν̄ ∗ F (5)

Using (3), we write
[λ − α]

[λ − β][β − α]
J(S̄,S)
J(λ,β) =

4∑
j=1

S̄
j
αβ

(λ) where

S̄
1
αβ(λ) =

1
D(β)(λ1 − β1)(λ2 − β2)

J(S̄,S)
J(λ, β)

S̄
2
αβ(λ) =

1
D(β)(β1 − α1)(λ2 − β2)

J(S̄,S)
J(λ, β)

S̄
3
αβ(λ) =

1
D(β)(β2 − α2)(λ1 − β1)

J(S̄,S)
J(λ, β)

S̄
4
αβ(λ) =

1
D(β)(β1 − α1)(β2 − α2)

J(S̄,S)
J(λ, β)

Let FLs− j
αβ
= S̄

j
αβ

(λ) j = 1, 2, 3, 4. Then 162

s̄αβ ∗ F =
4∑

j=1

s− j
αβ
∗ F

= S̄
1
αβ(λ) =

1
D(β)(λ1 − β1)(λ2 − β2)

Φ(λ)
{
S1(λ1, λ2)S2(β1, β2)

− S2(λ1, λ2)S1(β1, λ2)
}

= Φ(λ)tβ(λ).

Let FLTβ = tβ(λ). Thens−1
αβ ∗ F = ϕ ∗ Tβ ∗ F

(λ1 − β1)tβ(λ) =
1

D(β)

[
S1(λ1, λ2)

S2(β1, λ2) − S2(β1, β2)
λ2 − β2
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S2(λ1, λ2)
S1(β1, λ2) − S1(β1, β2)

λ2 − β2

]

S2(β1, λ2) − S2(β1, β2)
λ2 − β2

,
S1(β1, λ2) − S1(β1, β2)

λ2 − β2

are entire functions ofλ2 of exponential type and are Fourier Laplace
transforms of distributionss1 ands2 in the variablex2 with support com-
pact in whichβ1 appears as a parameter. Then

(λ1 − β1)tβ(λ) = FL
{ 1

D(β)
T1 ∗ (δx1 ⊗ s2) − T2 ∗ (δx1 ⊗ s1)

}

whereδx1 is the Dirac measure in the space ofx1. SettingTβ ∗ F = G,
we have

∂G
∂x1
− β1G =

1
D(β)

[
T1 ∗ (δx1 ⊗ s2) ∗ F − T2 ∗ (δx1 ⊗ s1) ∗ F

]
= 0

Similarly

(λ2 − β2)tβ(λ) =
1

D(β)

[
S2(λ1, λ2)

S1(λ1, λ2) − S1(β1, λ2)
λ1 − β1

S1(λ1, λ2)
S2(λ1, λ2) − S2(β1, λ2)

λ2 − β2

]
(3.1)

gives163
∂G
∂x2
− β2G = 0

Hence
G = kexp< β, x >

For x = 0,G(0) = Tβ ∗ F(0) = 〈Tβ, F〉 so that

Tβ ∗ F = 〈Tβ, F〉exp〈β, x〉 and

s−1
αβ ∗ F = φ ∗ Tβ ∗ F〈Tβ, F〉φ ∗ exp〈β, x〉

= Φ(β)〈Tβ, F〉exp〈β, x〉

S
2
αβ(λ) =

1
D(β)(λ2 − β2)(β1 − α1)
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{
S̄1(λ1, λ2)S2(β1, λ2) − S̄2(λ1, λ2)S1(β1, λ2)

}

S1(β1, λ2)
λ2 − β2

and
S2(β1, λ2)
λ2 − β2

are entire functions of exponential type and

the distributionsS1 andS2 with compact support in the variablex2 have
these functions as Fourier Laplace transforms

s−2
αβ =

1
D(β)(β1 − α1)

[
φ ∗ T1 ∗ (δx1 ⊗ s2) − φ ∗ T2 ∗ (δx1 ⊗ S1)

]

and s̄2
αβ
∗ F = 0.

Similarly s̄3
αβ
∗ F = 0, s̄4

αβ
∗ F = 0 and we obtain finally,

ū ∗ F =
∑

β∈(σ)

Φ(β)
J(A,S)
J(β, α)

〈Tβ, F〉exp〈β, x〉 + ν̄ ∗ F

=

∑

β∈(σ)

〈Tβ, F〉exp〈β, x〉 + ν̄ ∗ F.

We shall now verify that ¯ν ∗ F = 0. FLν̄ = R̄ = Φ(λ)R whereR 164

contains only a finite number of terms of ‘irregular type’ in the formula
G1, (refer to page 80). The terms inR come from

a) D(α)[λ − α]d
{ 1

D(α)[λ − α]

} J(S,S)
J(λ, α)

and

b) the determinant

∣∣∣∣∣∣
S1(λ1, λ2),−εA1(α1, λ2) + ∂

∂α1
S1(α1, λ2)dα1

S2(λ1, λ2),−εA2(λ1, λ2) + ∂
∂α1

S1(α1, λ2)dα2

∣∣∣∣∣∣

multiplied byD(α)[λ − α] in which for dα1 anddα2 we have to substi-

tute
ε

D(α)

J

(
A,

∂S
∂α2

)

J(α, α)
and

ε

D(α)

J

(
∂S
α1
,A

)

J(α, α)
.(b) gives inR a term of

the formKα[λ − α]
J(S,S)
J(λ, α)

wherekα depends only inα and this func-

tion in the ideal generated byS1(λ1, λ2) andS2(λ1, λ2) in the ring of

entire functions. Similarly in (a) the term
d[D(α)]

[D(α)]2[λ − α]
multiplied by
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D(α)[λ − α]
J(S,S)
J(λ, α)

gives a function in the same ideal. The other term165

in (a) viz.

D(α)[λ − α]
J(S,S)
J(λ, α)

d[λ − α]

D(α)[λ − α]2
equals

1
[λ − α]

J(S,S)
J(λ, α)

[(λ1 − α1)dα2 + (λ2 − α2)dα].Now

J(S,S)
J(λ, α)

1
λ1 − α1

and
J(S,S)
J(λ, α)

1
λ2 − α2

belong to the ideal. This

can be seen as in the study of̄S 2
αβ

(λ) andS̄ 3
αβ

(λ). ThusR̄ lies in the
ideal so that

γ̄ ∗ F = 0

We have

ū ∗ F =
∑

β∈(σ)

J(Ā,S)
J(β, α)

〈Tβ, F〉exp〈β, x〉 (6)

in which the series converges uniformly on compact ofR2 and where

FLū =
J(Ā,S)
J(λ, α)

.

We shall now prove that the continuous functionF mean periodic
with respect toT1 andT2 a uniquely determined by the system of co-
efficientscβ = 〈Tβ, F〉 corresponding to the mean periodic exponentials
(e<β,x>)βεσ by establishing the following
Representation theorem. If F is mean periodic with respect toT1 andT2

andφεD(R2) andu ∈ D(R1) then

φ ∗ u ∗ F =
∑

β∈(σ)

ψ(β) < Tβ, F > e<β,x> (7)

whereψ(λ) = FLφ ∗ u and the series converges uniformly in every166

compact subset ofR2.
For φεD(R2) andu1, u2εD(R1) we hadFLφ ∗ ui = Āi(λ1, λ2)i =

1, 2 and

J(Ā,S)
J(λ, α)

= Ā1(λ1, λ2)S2(α1, λ2) − Ā2(λ1, λ2)S1(α1, λ2)
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Let φ ∗ u1 ∗ F = G1, φ ∗ u2 ∗ F = G2. Gi are inE (R2) and are mean
periodic with respect toT1,T2. Let FLµi = Mi(α1, λ2). Then

µ2 ∗G1 − µ1 ∗G2 =

∑

β∈σ

J(Ā,S)
J(β, α)

〈Tβ, F〉e〈β,x〉

Setting in this equation firstu1 = uεD(R1), u2 = 0 and thenu1 = 0,
u2 = −u, and writingφ ∗ u ∗ F = G we obtain

µ1 ∗G =
∑

β∈σ
Ψ(β)S1(α1, β2)〈Tβ, F〉e〈β,x〉 (8)

µ2 ∗G =
∑

β∈σ
Ψ(β)S2(α1, β2)〈Tβ, F〉e〈β,x〉 (9)

Let H denote the sum of the series on the right hand side of (7). This
series converges uniform;y on every compact set sinceψ(λ) is a rapidly
decreasing function in any vertical band and (σ) is contained in such 167

a band. Hence convolution withH is obtained by convoling with each
term of the series then summing. Butµ1 ∗ H andµ2 ∗ H so obtained are
nothing but the series (8) and (9) respectively. Thereforeµ1∗G = µ1 and
µ2 ∗G = µ2 ∗ H. HenceG = H if we show that the two homogeneous
equationsµ1 ∗ L = 0 = µ2 ∗ L = 0 haveL = 0 for the unique solution in
E (R2).

Now µ1 = δx1 ⊗ s(1)
x2
µ2 = δx1 ⊗ s(2)

x2
wheres1 ands2 are distributions

in the variablex2 having for Fourier Laplace transformsS1(α1, λ2) and
S2(α1, λ2) respectively in whichα1 is a parameter. HenceL(X1, x2) con-
sidered as a function ofx2 for x1 fixed is means periodic with respect to
s1

x2
ands2

x2
. The spectrum (σα1) in C for the variableλ2 defined by the

equationsS1(α1, λ2) = S2(α1, λ2) = 0

L(x1, x2) =
∑

α2∈σα1

cα2(x1)eα2x2

whereσα1 is the set ofα2 such that (α1, α2)ε(σ) by the fundamental
theorem of mean periodic functions inR1.

Takingβ = (β1, β2)ε(σ) sum thatα1 , β1 we obtain again

L(x1, x2) =
∑

β2∈σβ1

dβ2(x1)eβ2x2.
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The spectrum (σ) is therefore decomposed into a countable union of168

subset each subset consisting of allαε(σ) with the same first co-ordinate
α1 and corresponding to each such subset we have the expansion of
L(x1, x2) in mean periodic exponentials inx2 with coefficients in which
the fixed co-ordinatex1 occurs as a parameter. But all these expansions
have to be the same and therefore there will be at leat oneα2 common
to all σα1 i.eσ is decomposed in countable subset of elements with the
same first co-ordinate and we can choose one element from eachof these
such that the second co-ordinates of all these chosen elements are the
same. But this is impossible for (σ). For (σ) is indefinitely near to (σ◦)
which is the set of common zeros of the principal parts ofS1(λ1, λ2) and
S2(λ1, λ2) { refer to §8} and the above type of decomposition of (σ0) is
not possible for the following reason.

SettingXi = eλi in these principal parts ofS1 andS2, (σ0) is given
in terms of the points of intersection of two rectangular hyperbolas

a1 + b1X1 + c1X2 + d1X1X2 = 0

a2 + b2X1 + c2X2 + d2X1X2 = 0

These have two distinct points of intersection (X′1,X
′
2) and (Y′1,Y

′
2)169

let X′1 = eα
′
1,X′2 = eα

′
2; Y′1 = eβ

′
1Y′2 = eβ

′
2. Then (σ0) is defined by

(α′1 + 2hπi,2+2kπi) and (β′1 + 2h′πi, β2 + 2k′πi)

whereh, k, h′, k′ very in the set of rational integersZ. If the situation
described for (σ) exists in the case of (σ◦) then for all distinct first co-
ordinates

α′1 + 2hπi, β′1 + 2h′πi h, h′εZ,

there will exist a single 2nd co-ordinate such that the points formed will
lie in (σ0)i.e there exist integersk, k′ such that

α2 + 2kπi = β + 2k′πi

This givesY′2 = Y′2. But it is clear that the two points of intersection (of
the two coines ) which are assumed to be distinct (see §8) cannot have
the same ordinates.
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Thus we have proved that the only solution for the con-volution
equation (8)µ1 ∗ L = µ2 ∗ L = 0 is L ≡ 0 and the theorem is proved.

The Uniqueness Theorem.

If all the coefficientscβ = 〈Tβ, F〉 are zero thenF = 0. 170

cβ = 0 imply thatφ ∗ u ∗ F = 0∀φεD(R2),∀uεD(R∞). Letting
φ → δ the Dirac measureu ∗ F = 0 ∀uεD(R1). Letting u tend towards
the Dirac at a pointx0 in the interior of the rectangleR1, we have

F(x+ x0) = 0 i.eF = 0.





Part III

The Two-Radius Theorem
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Chapter 1

1

The subject of this part is the two-radius theorem, which is the converse 171

of the classical theorem of Gauss on the spherical mean of theharmonic
functions inRn

Let kn denote the area of the sphere
∑

n−1 of radius 1 inRn(
∑

n−1 =

{x/x = (x1, x2, . . . xn)εRn,
∑

x2
i = 1). Let f (x) be a function which is

(C, 2) in Rn. The spherical mean off (x) on the surface of the sphere
with centerx and radiusr is by definition

M(x, r) =
1

knrn−1

∫

Sn−1
r (x)

f (ξ)dσ (1)

whereSn−1
r (x) is the sphere of centerxand radiusr in Rn, ξ is the generic

point of the sphere anddσ the element of area of the sphere. We have
also

M(x, r) =
1
kn

∫
∑

n−1

f (x+ r −→u )dω (2)

wheredω is the element of the sphere
∑

n−1 and−→u is the unit vector at 172

the origin, whose other extremity describes
∑

n−1.

Proposition 1(Poisson). The function M(r, x) is a solution of the partial
differential equation

△x
[
M(x, r)

]
=
∂2M

∂r2
+

n− 1
r

∂M
∂r

(3)

131
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As △ is a convolution operator inRn, we have

△x
[
M(x, r)

]
=

1
knrn−1

∫

Sn−1
r (x)

△ξ
[
f (ξ)

]
dσ

From 2,

∂M
∂r
=

1
kn

∫
∑

n−1

∂

∂r
[
f (x+ r−→u )

]
dω

1

knrn−1

∫

Sn−1
r (x)

d
dν

[
f (ξ)

]
dσ

whereν is the exterior normal toSn−1
r (x) at the pointξ. By Green’s

formula, we also have,

∂M
∂r
=

1

kr
n

n−1

∫ ∫
△ξ

[
f (ξ)

]
dV =

1

rn−1
J

whereJ =
1
kn

∫ ∫
△ξ

[
f (ξ)

]
dV where the integral is taken over the vol-173

ume of the solid sphere inRn with Sn−1
r (x) as boundary. Then

∂2M

∂r2
= − (n− 1)

rn J +
1

rn−1

∂J
∂r

But
∂J
∂r
=

1
kn

∫

Sn−1
r (x)

△ξ[ f (ξ)]dσ

sincedV = dσdr.
Thus

∂2M

∂r2
+

n− 1
r

∂M
∂r
=

1

knrn−1

∫

Sn−1
r

△ξ[ f (ξ)]dσ

= △x
[
M(x, r)

]
.

Remark. For r = 0, obviously

M(x, 0) = f (x).

And
[∂M
∂r

]
r=0 = limr=0

{ 1

knrn−1

∫ ∫
Sn−1

r
△ξ

[
f (ξ)

]
dV
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The integral in this expression is of orderrn

[
∂M
∂r

]

r=0
= 0

Hence the solutionM(x, r) of (3), verifies the Cauchy conditions 174

M(x, 0) = f (x),
[ ∂
∂r

M(x, r)
]
r=0 = 0

2 Study of certain Cauchy-Problems

Let E∗ denote the vector space ofevenfunctions indefinitely differen-
tiable inRwith the usual topology (that induced byE ). Let

L = D2
+

q(x)
x

D

be a differential operator whereD =
d
dx
, qεE∗ (with q(0) , −n+ 1

2
, n

integer≥ 1). Then (by the results obtained in partI ) there exists an
isomorphismB of E∗ onto itself the property

D2B = BL andB0
[
f (ξ)

]
= f (0)

Problem 1.To find a functionF(x, y) which is twice differentiable inR2

and which is a solution of the Cauchy-problem

∂2F

∂x2
+

q(x)
x

∂F
∂x
=
∂2F

∂y2
+

q(y)
y

∂F
∂y

with F(x, 0) = f (x), f ∈ E∗

and

[
∂F
∂y

]

y=0
= 0

Suppose that there exists a solutionF(x, y) which is an even function 175

of x for y fixed and also an even function ofy for x fixed.
Let

G(x, y) = BxBy[F(ξ, η)]
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whereBx operates onξ and By on η. G(x, y) is an element inE∗ as a
function ofy for x fixed and ofx for y fixed. We have

∂rG

∂x2
= D2

xBξBy[F(ξ1, η)] = ByD
2
xBξ[F(ξ1, η)]

= ByBxLξ[F(ξ1, η)] = ByBxLη[F(ξ, η1)]

= BxByLη[F(ξ, η1)] = BxD
2
yBη[F(ξ, η1)]

= D2
yBxBη[F(ξ, η1)] =

∂2G

∂y2
.

Also

G(x, 0) = BxBo[F(ξ, η)] = Bx[F(ξ, η)] = Bx[ f (ξ)] = g(x).
[
∂G(x, y)
∂y

]

y=0
= 0.

Hence Problem 1 is reduced to the problem of finding a solutionof176

the following Cauchy problem

∂2G

∂x2
=
∂2G

∂y2

G(x, 0) = g(x) ∈ E∗[
∂G
∂y

]

y=0
= 0.

It is wellknown that this problem has the unique solution

G(x, y) =
1
2

[
g(x+ y) + g(x− y)

]
(4)

Then there exists a unique solution of Problem (1), defined by

F(x, y) =
1
2
BxBy[g(ξ + η) + g(ξ − η)] (5)

whereB = B−1 is an isomorphism ofE∗.

Remark. As g is even,G(x, y) is symmetric inx andy. ThenF(x, y) is
also symmetric inx andy.
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Definition 1. For any f ∈ E∗ let, Mx,y
[
f (ξ)

]
denotes the solution of

problem (1):

Mxy[ f (ξ)] =
1
2
BxBy

{
Bξ+η[ f ] + Bξ−η[ f ]

}
(6)

Problem 2.To determineF(x, y), (r ∈ R1, r ≥ 0) which satisfies the 177

differential equation

Ax[F(ξ, r)] = Lr [F(x, ρ)],

whereA is an elliptic differential operator inRn with indefinitely differ-
entiable coefficients, and the Cauchy conditions

F(x, 0) = f (x);

[
∂F
∂r

]

r=0
= 0.

The existence and uniqueness of the solution of Problem 2 defines
the operatorMr by

Mr [ f (ξ)] = F(x, r).

Remark. By Poisson’s theorem, whenA = ∆ andq(r) = n− 1, then the
solution of Problem 2 is given by the spherical mean.

Proposition 2. The operatorM commutes with A.

Let
G(x, r) = Ax[F(ξ, r)] = AxMr [ f (ξ)].

We have

Ax[G(ξ, r)] = AxAξ[F(ξ1, r)]

= AxLr [F(ξ, ρ)] = LrAx[F(ξ, ρ)] = Lr
[
G(x, ρ)

]

Moreover,
G(x, 0) = Ax[F(ξ, 0] = Ax[ f (ξ)]

and

[
∂G
∂r

]

r=0
= 0 sinceG(x, r) ∈ E∗, as a function ofr for x fixed. 178

Hence
G(x, r) = MrAξ[ f (ξ1)]
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and the proposition is proved.

Iteration of the operator

For f ∈ E (Rn), let F(x, r) = Mr [ f (ξ)] be the solution of Problem 2.
By iteration we consider the Cauchy problem,

Ax[F (ξ, s)] = Ls[F (x, σ)]

with

F (x, 0) = F(x, r)
[
∂F

∂s

]

s=0
= 0

in with r is a positive parameter. The solutionF is a function ofx, r, s,

F (x|r, s) = Ms
[
F(ξ, s)

]
= MsMr [ f (ξ)] (7)

Proposition 3. For x fixed in Rn, F (x|r, s) is a solution of Problem1, i.
e.

Lr
[
F (x|ρ, s)] = Ls [F (x|r, σ)]

and F (x|r, 0) = F(x, r)[
∂F

∂s

]

s=0
= 0.

We compute179

Lr
[
F (x|ρ, s)] = Ms

{
Lr

[
F(ξ, ρ)

]

= Ms

{
Aξ

[
F(ξ1, r)

]}
= AxMs[F(ξ, r)]

(by Proposition 2)

= Ax
[
F (ξ|r, s)

]
= Ls [F (x|r, σ)] .

By Definition 1, we have

F (x|r, s) = Mr,s[F(x, θ)].
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Hence we obtain the formula

MsMr = MrMs = Mr,s[M0] (8)

We now consider the solution

F(x, r) = Mr [ f (ξ)]

of Problem 2 and suppose that the it satisfies fora > 0 fixed the condi- 180

tion
F(x, a) = f (x) (9)

for any x.
Condition (9) expresses the fact forr = a fixed, the valueF(x, a)

reproduces the initial valuef (x) of the function forr = 0 in the space
Rn.

Remark. If A = ∆, andL = D2
+

n− 1
r

D thenF(x, r) = M(x, r) and the

condition (9) is ’Gauss’s condition’ for the fixed radius a.

In view of (9) and (7) we have

F (x, a, s) = F(x, s)

wherex andsare arbitrary.
By definition (1),

Ma,s[F(x, θ)] = F(x, s) (10)

where the left-hand side the operatorM operates on the variableθ (Equa-
tion (10) thus gives a ’transposition’ fromRn to R1). Using (6), (10)
becomes,

2F(x, s) = BaBs {Bα+σF(x, θ) + Bα−σ[F(x, θ)]}

which gives

2Bs[F(x, σ)] = Ba {Bα+sF(x, θ) + Bα−sF(x, θ)}

sinceB is the inverse ofB. 181
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Setting
K(x, s) = Bs[F(x, σ)].

we have
2K(x, s) = Ba {K(x, α + s) + K(x, α − s)} (11)

in which a is fixed.
SinceK(x, s) is even ins, (11) can be written as

2K(x, s) = Ba {K(x, α + s) + K(x, s− α)} (11)′

so that the functionK(x, s) is mean periodic insas the equation (11)′ is
clearly an equation of convolution ins.

Remark. In order to obtain the spectrum, we have to substituteeλs in
place ofK(x, s) in (11)′ which leads to

1 = Ba[coshα]

3 The generalized two-radius theorem

Let a, b ∈ R1; a, b, > 0;a , b

Definition 2. A function f (x) which is (C, 2) in Rn possesses the two
radius property with respect to the elliptic operatorA and the singular182

operatorL, if
F(x, a) = F(x, b) = f (x) (12)

for x ∈ Rn, where
F(x, r) = Mr [ f (ξ)]

is the solution of Problem 2.

Remark. If A = ∆ andL = D2
+

n− 1
r

D. Condition (12) is the ’Gauss’s

condition’ for two fixed radiia andb.

Now in place of (11)′ we have two equations

2K(x, s) = Ba {K(x, s+ α) + K(x,S − α)}



3. The generalized two-radius theorem 139

2K(x, s) = Bb {K(x, s+ α) + K(x, s− α)}

so thatK(x, s) is mean periodic ins with respect to two distribution,
and by the classical result of the theory of mean periodicityin R1, the
elementsλ in the spectrumσ(a, b) have to satisfy two equations

1 = Ba[coshλα]

1 = Bb[coshλα]

 (13)

Now we show thatλ = 0 is a double solution of (13).
By definitionD2B = BL. 183

If Bs[1] = ϕ(s) , D2[ϕ(s)] = 0 sinceLs(1) = 0. Asϕ(s) is even,ϕ(s)
has to be a constant equal toϕ(0). Butϕ(0) = B0[1] = 1 so thatϕ(s) ≡ 1.
SinceB is the inverse ofB, andBs[1] = 1, we haveBs[1] ≡ 1.

As Ba[coshλα] is an even function ofλ, (13) possesses the double
solutionλ = 0.

We shall hereafter restrict ourselves to the following hypothesis
Hypothesis(H)- The equations

1 = Ba[coshλα] = Bb[coshλα]

have the only double solutionλ = 0. In this caseK(x, s) is necessarily
of the form

K(x, s) = k1(x) + sk2(x) (14)

by the fundamental theorem of the mean periodic functions inR1. But
K(x, s) is even insso thatk2(x) ≡ 0 in Rn and we have

K(x, s) = k1(x) (15)

By inversion,K(x, s) = Bs[F(x, σ)] gives

F(x, s) = k1(x)Bs[1] = k1(x)

and fors= 0, F(x, s) = f (x). Hence 184

F(x, s) = f (x) (16)
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for x ∈ Rn ands> 0.
But F(x, s) is a solution of

Ax
[
F(ξ, s)

]
= Ls [F(x, σ)]

andF(x, s) = f (x) gives necessarily

Ax
[
f (ξ)

]
= 0 (17)

Thus we have in conclusion the

Theorem.The hypothesis(H) and the condition

F(x, a) = F(x, b) = F(x),

gives
F(x, s) = f (x) for any s≥ 0

and
Ax

[
f (ξ)

]
= 0.

Corollary. A is the Laplacian∆, then f is a harmonic function.

4 Discussion of the hypothesisH

In general, the hypothesis (H) is satisfied because the equations

1 = Ba [coshλα] = Bb [coshλα]

are a system of two equations with only one unknownλ. But it is neces-185

sary to investigate certain exceptional values ofa, b(a , b, a > 0, b > 0)
for which the two-radius Theorem is false. The question of existence of
such exceptional couples (a, b) is difficult in the general case but in the

case ofA = ∆ of R3 andL = D2
+

2
r

D, (n = 3), we can assert that there

do not exists any such exceptional couples and the two-radius is always
true inR3.
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Remark. This discussion is completely independent of the functionf
and consequently the couples of exceptional values (a, b) are also inde-
pendent off (x).

Results of the discussion in the caseA = ∆.

In this case,B = Bp in the notation of part I withp =
n− 2

2
.

We know thatB [coshλx] = jp(λix) where jp(z) = 2p
Γ(p + 1)

z−pJp(z). The function which assumes the value 1 forz= 0. In this case
the equations under consideration are

jP(λia) = jp(λib) = 1 (18)

Thus it is sufficient to consider inC1, the equation

jp(z) = 1 (19)

and to examine whether there exists two roots of (19) with thesame 186

argument.
It is easy to see that the set of pointsζ in C1 which are roots of (19)

have for axes of symmetry the two axes 0ξ and 0η if z = ξ + iη. This
set is countable and contains the origin (ξ = η = 0). By an intricate
discussion based on the asymptotic expansion of the Bessel functions, it
is even possible to prove that for a givenp (i.e. for a given dimensionn
of the space) the number of couples of roots of (19) which havethe same
argument is necessarilyfinite. Hence for any dimensionn the number of

exceptional ratios
a
b

is necessarily finite.

In the casen = 3 i.e. p =
1
2

,

jp(z) =
sinz

z

(for any oddn , jp(z) has an expression which depends algebraically
onz, sinzand cosz).

Thus sinz= zgives

sinξ coshη = ξ
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cosξ sinhη = η.

Eliminating the hyperbolic functions and the circular functions, we
obtain respectively

ξ2

sin2 ξ
− η2

cos2 ξ
= 1

and
ξ2

cosh2 η
+

η2

sinh2 η
= 1

so that

η = ±ξ cotξ

[
1− sin2 ξ

ξ2

] 1
2

(A)

and

ξ = ±η cothη

[
sinh2 η

η2
− 1

] 1
2

(B)

The equations define two real curves in the plane (ξ, η), and the roots187

z = ξ + iη of (19) are a subset of the set points of intersection of two
curves.

As 0ξ, 0η are the axes symmetry of the two curves it is sufficient to
examine the situation forξ ≥ 0, η ≥ 0 (A) can be written as

ξ = f1(η) f2(η) (B′)

where f1(η) = η cothη, f2(η) =

[
sinh2 η

η2
− 1

]1
2

.

We have,

f ′1(η) = cothη − η

sinh2 η
=

1

sinh2 η

[
sinhη coshη − η]

=
1

2 sinh2 η

[
sinh 2η − 2η

]
> 0

and

f ′2(η) =
1

f2(η)

[
sinhη coshη

η2
− sinh2 η

η3

]
sinhη coshη

η3 f2(η)

[
η − tanhη

]
> 0.
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Thus f1(η) and f2(η) are increasing functions ofη > 0 and so is their188

product f1(η) f2(η).

dξ
dη
= f1(η)

sinhη coshη

η3 f2(η)
(η − tanhη) + f2(η)

1

2 sinh2 η
(sinh 2η − 2η)

andξ/η = cothη f2(η).
Hence

dξ
dη
/
ξ

η
=

1
[η f2(η)]2

sinhη coshη(η − tanhη) +
sinh 2η − 2η

sinh 2η

But
[
η f2(η)

]2
= sinh2 η − η2 and finally

dξ
dη
/
ξ

η
− 1 = sinhη coshη

η − tanh

sinh2 η − η2
− η

sinhη coshη

=
η3
+ η sinh4 η − sinh3 η coshη

sinhη coshη(sinh2 η − η2)
.

As
d
dη

(η sinhη − coshη) = η coshη > 0, η sinhη − coshη and there-

fore F(η) = η3
+ sinh3 η(η sinhη− coshη) is an increasing function ofη. 189

But F(0) = 0 so thatF(η) > 0 for η > 0. Hence

dξ
dη

>
ξ

η
on B for ξ > 0, η > 0

from which it is clear that there does not exist any point (ξ, η) on B,
ξ > 0, η > 0, the tangent at which passes through the origin. Then any
chord through the origin can cut the curve only in one point which is not
the origin. But the roots of sinz= z lie on the curve and it is impossible
to find out distinct roots other than zero which have the same argument.

Finally, for n = 3 there are no exceptional ratios
a
b

and the two-radius

theorem is completely proved inR3.
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