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Preface

In this course of lectures I have discussed the elementary parts of Stochas-
tic Processes from the view point of Markov Processes. I owe much to
Professor H.P. McKean’s lecture at Kyoto University (1957–58) in the
preparation of these lectures.

I would like to express my hearty thanks to Professor K. Chan-
drasekharan, Dr.K. Balagangadharan, Dr.J.R. Choksi and Mr.K.M. Rao
for their friendly aid in preparing the manuscript.

K. Ito
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Section 0

Preliminaries

1 Measurable space
1

LetΩ be a set and letS(Ω) denote the set of all subsets ofΩ. A ⊂ S(Ω)
is called analgebra if it is closed under finite unions and complemen-
tations; an algebraB closed under countable unions is called a Borel
algebra. ForC ⊂ S(Ω) we denote byA(C) andB(C), the algebra and
Borel algebra, respectively, generated byC. M ⊂ S(Ω) is called amono-
tone classif An ∈ M, n = 1, 2, . . ., and {An} monotone implies that
lim

n
An ∈ M. We have the following lemma.

Monotone Lemma. If M is a monotone class containing an algebraA
thenM ⊃ B(A).

The proof of this lemma can be found inP. Halmos: Measure the-
ory.

For any given setΩ we denote byB(Ω) a Borel algebra of subsets
of Ω.

Definition (). A pair (Ω, B(Ω)) is called a measurable space. A⊂ Ω is
called measurable if A∈ B(Ω).

Let (Ω1,B1(Ω1)) and (Ω2,B2(Ω2) be measurable spaces. A function
f : Ω1 → Ω2 is calledmeasurablewith respect toB1(Ω1) if for every
A ∈ B2(Ω2), f −1(A) ∈ B1(Ω1).

Now suppose thatΩ1 is a set, (Ω2, B(Ω2)) a measurable space and
f a function onΩ1 intoΩ2. LetB( f ) be the class of all sets of the form2

1



2 0. Preliminaries

f −1(A) for A ∈ B(Ω2). ThenB( f ) is a Borel algebra, and is the least
Borel algebra with respect to whichf is measurable.

Let (Ωi, Bi(Ωi), i ∈ I , be measurable spaces. LetΩ =
∏

i Ωi denote
the Cartesian product ofΩi and letπi : Ω—Ωi be defined byπi(w) = wi.
LetB(Ω) be the least Borel algebra with respect to which all theπi ’s are
measurable. The pair (Ω, B(Ω)) is called theproduct measurable space.
B(Ω) is the least Borel algebra containing the class of all sets of the form

{ f : f (i) ∈ Ei},

whereEi ∈ Bi(Ωi). A function F intoΩ is measurable if and only ifπiF
is measurable for everyi ∈ I .

2 Probability space

LetΩ be a set,A ⊂ S(Ω) an algebra. A functionP onA suchp(Ω) = 1,
0 ≤ p(E) ≤ 1 for E ∈ A, and such thatp(EUF) = p(E)+p(F) whenever
E, F ∈ A andE∩F = φ, is called anelementary probability measureon
A. Let (Ω,B(Ω)) be a measurable space andp an elementary probability
measure onB. If An ∈ B, An disjoint, imply p(

⋃
n

An) =
∑

p(An) we say

that p is a probability measureon B(Ω). The proof of the following
important theorem can be found inP. Halmos: Measure theory.

Theorem ((Kolmogoroff)). If p is an elementary probability measure3

onA then p can be extended to a probability measure P onB(A) if and
only if the following continuity condition is satisfied:

An ∈ A,An ⊃ An+1,
⋂

n

An = φ imply lim
n

p(An) = 0.

Further under the above condition the extension is unique.

Definition (). A triple (Ω, B, P), where P is a probability measure onB,
is called aprobability space.

A real-valued measurable function on a probability space iscalled
a random variable. If a vandom variablex is integrable we denote the
integral byE(x) and call it theexpectationof X.
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Let (Ω2, B2) be a measurable space, (Ω1, B1, P1)a probability space
and f : Ω1 → Ω2 a measurable function. DefineP2(E) = P1( f −1(E))
for everyE ∈ B2. Then (Ω2, B2, P2) is a probability space and for every
integrable functiong onΩ2, E(g0 f ) =

∫
g0 f dP1 =

∫
gdP2 = E(g). We

say thatf inducesa measure onB2. In casex is a random variable, the
measure induced on the line is called theprobability distributionof x.

We shall prove the following formulae which we use laterInclusion-
exclusion formula. Let (Ω, B, P) be a probability space andAi ∈ B,
i = 1, 2, . . . , n. Then

P


n⋃

i=1

Ai

 =
∑

i

P(Ai) −
∑

i< j

P(Ai ∩ A j) +
∑

i< j<k

P(Ai ∩ A j ∩ Ak) − . . .

To prove this, letχB denote the characteristic function ofB. Then 4

P(∪Ai) = E(χ∪Ai ) = E(1− χ∩Ai c) = 1− E
(∏

χAc
i

)

= 1− E((1− χA1)(1− χA2) . . . (1− χAn))

= 1− E
[
1−

∑

i

χAi +

∑

i< j

χAiχA j −
∑

i< j<k

χAiχA jχAk + . . .

]

=

∑

i

E(χAi ) −
∑

i< j

E(χAi∩A j ) +
∑

i< j<k

E(χAi∩A j∩Ak) − . . .

=

∑

i

P(Ai) −
∑

i< j

P(Ai ∩ A j) + . . .

The followingdual inclusion-exclusion formulais due to Hunt. We
have

P(∩Ai) = 1− P(∪Ac
i ) = 1−

{∑

i

P(Ac
i ) −

∑

i< j

P(AC
i ∩ Ac

j) + . . .
}

= 1−
{∑

i

(1− P(Ai)) −
∑

i< j

(1− P(Ai ∪ A j)) + . . .
}

= 1−
{
n−

∑

i

P(Ai) −
(
n
2

)
+

∑

i< j

P(AiA j) + . . .
}

=

[
1−

(
n
1

)
+

(
n
2

)
. . .

]
+

∑

i

P(Ai) −
∑

i< j

P(Ai ∪ A j) + . . .
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=

∑

i

P(Ai) −
∑

i< j

P(Ai ∪ A j) + . . .

A collection (χt, t ∈ T) of random variablesxt, T being some index-5

ing set, is called astochasticor random process. We generally assume
that the indexing setT is an interval of real numbers.

Let {xt, t ∈ T} be a stochastic process. For a fixedωxt(ω) is a
function onT, called asample functionof the process.

Lastly, ann-dimensional random variableis a measurable func-
tion into Rn; an n-dimensional random processis a collection of n-
dimensional random variables.

3 Independence

Let (Ω, B, P) be a probability space andBi, i = 1, 2, . . . , n, n Borel
subalgebras ofB. They are said to beindependentif for any Ei ∈ Bi, i ≤
i ≤ n, P(E1∩, . . .∩En) = P(E1) . . .P(En). A collection (Bα)α∈I of Borel
subalgebras ofB is said to be independent if every finite subcollection
is independent.

Let X1, . . . , xn ben random variables on (Ω, B, P) andB(xi), 1 ≤ i ≤
n, the least Borel subalgebra ofBwith respect to whichxi is measurable.
x1, . . . xn are said to be independent ifB1, . . . ,Bn are independent.

Finally, suppose that{xα(t, w)}α∈I is a system of random processes
onΩ andBα the least Borel subalgebra ofB with respect to whichxα(t,
w) is measurable for allt. The processes are said to bestochastically
independentif the Bα are independent.

We give some important facts about independence. Ifx andy are
random variables onΩ the following statements are equivalent:

(1) E(eiαx+iβy) = E(eiαx)E(eiβy), α, andβ real;6

(2) The measure induced byz(w) = (x(w), y(w))on the plane is the
product of the measures induced byx andy on the line;

(3) x andy are independent.
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4 Conditional expectation

Let (Ω, B, P) be a probability space andC a Borel subalgebra ofB.
Let x(w) be a real-valued integrable function. We follow Doob in the
definition of the conditional expectation ofx.

Consider the set functionµ onC defined byµ(C) = E(x : C). Then
µ(C) is a bounded signed measure andµ(C) = 0 if P(C) = 0. Therefore
by the Radon-nikodym theorem there exists a unique (uptoP-measure
0) functionϕ(w) measurable with respect toC such that

µ(C) = E(ϕ : C).

Definition (). ϕ(w) is called theconditional expectationof x with re-
spect toC and is denoted by E(x/C).

The conditional expectation is not a random variable but a set of
random variables which are equal to each other except for a set of P-
measure zero. Each of these random variables is called aversionof
E(x/C).

The following conclusions (which are valid with probability 1) re-
sult from the definition.

1. E(1/C) = 1. 7

2. E(x/C) ≥ 0 if x ≥ 0.

3. E(αx+ βy/C) = αE(x/C) + βE(y/C).

4. |E(x/C)| ≤ E(|x|/C).

5. If xn→ x, |xn| ≤ S with E(S) < ∞,then

lim
n

E(xn/C) = E(x/C).

6. If
∑

n E(|xn|) < ∞, thenE(
∑
n

xn/C) =
∑
n

E(xn/C).

7. If x isC-measurable, thenE(xy/C) = xE(y/C).

In particular, ifx isC-measurable, thenE(x/C) = x.
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8. If x andC are independent, thenE(x/C) = E(x).

9. If C = {A : P(A) = 0 or 1}, thenE(x/C) = E(x).

10. If C1 ⊃ C2, thenE(x/C2) = E(E(x/C1)/C2) and, in particular,
E(E(x/C))) = E(x).

5 Wiener and Poisson processes

The following processes are very important and we shall encounter
many examples of these.

We shall define a Wiener process and establish its existence.

Let
{
xt(w), 0 ≤ t < ∞

}
be a stochastic process such that

(1) for almost allw the sample functionxt(w) is a continuous function
on [0,∞] and vanishes att = 0;

(2) P(w : xt1(w) ∈ E1, . . . , xtn(w) − xtn−1(w) ∈ En) = P(w : xt1(w) ∈
E1) . . .P(w : xtn(w) − xtn−1(w) ∈ En, wheret1 < t2 < . . . < tn.
This means thatxt1, xt2 − xt1, . . . , xtn − xtn−1 are independent if8

t1 < . . . < tn;

(3) P(w : xt(w) − xs(w) ∈ E) = [2π(t − s)]
1
2

∫

E

e−x2/2(t−s)dx.

Then the process is called aWiener process. This process is ex-
tremely important and we shall now construct a Wiener process which
we shall use later. This incidentally will establish the existence of Wie-
ner process.

LetΩ = C[0,∞) be the space of all real continuous functions on [0,
∞). We introduce an elementary probability measure onΩ as follows.

For any integern, 0 < t1 < t2 . . . < tn < ∞ and a Borel setBn in Rn,
let

E =
{
w : w ∈ Ω and (w(t1), . . . ,w(tn)) ∈ Bn

}
,

and
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pt1...tn(E) =
∫
· · ·

∫

Bn

N(t1, 0, x1)N(t2− t1, x1, x2) . . .N(tn− tn−1, xn−1, xn)

dx1 . . .dxn

where N(t, x, y) =
1
√

2πt
e−(y−x)2/2t

If 0 < u1 < . . . < um < ∞ is a set of points containingt1, . . . , tn and
tr = uir , r = 1, 2, . . . , n, thenE can also be written as

E =
{
w : w ∈ Ω and (w(u1), . . . ,w(um)) ∈ Bm

}
,

and then 9

pu1...um(E) =
(

Bm

N(u1, 0, x1) . . .N(um − um−1, xm−1, xm)dx1 . . . dxm,

whereBm is the inverse image ofBm under the mapping (x1, . . . , xm)→
(x11, . . . , xin of Rm into Rn. Using the formula

∫
N(t, x, y)N(s, y, z)dz= N(t + s, x, z),

we can show thatpu1...um(E) = pt1...tn(E).
Now suppose thatE has two representations

E =
{
w : (w(t1), . . . ,w(tn)) ∈ Bn, Bn ⊂ Rn

}

=

{
w : (w(s1), . . . ,w(sm)) ∈ Bm, Bm ⊂ Rm

}
,

and 0< u1 < . . . < ur is the union of the sets{t1, . . . , tn} and{s1, . . . , sm}.
Then from the above,pt1...tn(E) = pu1...ur (E) = ps1...sm(E). Hence
pt1...tn(E) does not depend on the choice of the representation forE. We
denote this byp(E).

The classA of all such setsE, for all n, for all such n-tuples
(t1, . . . , tn) and all Borel sets ofRn, is easily shown to be an algebra.
It is not difficult to show thatp is an elementary probability measure on
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A. This elementary probability measure is called theelementary Wiener
measure.

We shall presently prove thatp satisfies the continuity condition of10

Kolmogoroff’s theorem. Hencep can be extended to a probability mea-
sureP onB(A), which we call theWiener measureon (Ω,B(A)). It will
then follow thatP(w : w(0) = 0) = 1.

Now let xt(w) = w(t). Then evidently{xt, 0 ≤ t < ∞} is a stochastic
process with almost all sample functions continuous and vanishing at
t = 0. We show that{xt, 0 ≤ t < ∞} is a Wiener process.

The function f : (x1, x2) — x2 − x1 of R2 → R1 is continuous and
hence for any Borel setE ⊂ R1, the setB = f −1(E) = {(x1, x2) : x2−x1 ∈
E} is a Borel set inR2. Therefore

p{w : xt − xs ∈ E} = P{w : (w(s),w(t)) ∈ B = f −1(E)}

=

"
B

N(s, o, x1)N(t − s, x1, x2)dx1dx2.

The transformation (x1, x2)→ (x, y) with x = x1, y = x2 − x1 gives

P(w : xt − xs ∈ E) =
"

{(x,y):y∈E}

N(s, 0, x)N(t − s, x, y+ x)dxdy

=

∫

E

N(t − s, 0, y)dy.

Again

P{w : xt1 ∈ E1, . . . , xtn − xtn−1 ∈ En} = P{w : (w(t1), . . . ,w(tn) ∈ Bn},

whereBn
= {(x1, . . . , xn) : x1 ∈ E1, x2 − x1 ∈ E2, . . . , xn − nn−1 ∈ En}.

Therefore11

P{w : xt1 ∈ E1, . . . , xtn − xtn−1 ∈ En}

=

(

Bn

N(t1, o, x1) . . .N(tn − tn−1, xn−1, xn)dx1 . . .dxn

=

∫

E1x

. . .

∫

xEn

N(t1, 0, x
′
1) . . .N(tn − tn−1, 0, x

′
n)dx′1 . . . dx′n
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= P{w : xt1 ∈ E1}P{w : xt2 − xt1 ∈ E2} . . .P{w : xtn − xtn−1 ∈ En},

wherex′1 = x1, x′2 = xi − xi−1i = 2, . . . , n. We have proved that (xt) is a
Wiener process.

It remains to prove thatp satisfies the continuity condition. We shall
prove the following more general theorem.

Theorem (). (Prohorov, ‘Convergence of stochastic processes and limit
theorems in Probability Theory’, Teoria veroyatnesteii e eyo primenania
Vol. I Part 2, 1956).

Let p be an elementary probability measure onA which is a prob-
ability measure when restricted to sets ofA dependent on a fixed set
t1, . . . , tn. Let E denote expectations with respect top. If there exist
a > 0, b > 1 andc > 0 such thatE(|xt − xs|a) ≤ C|t−s|b then p can be
extended to a probability measure onB(A).

Proof. Let An ⊃ An+1, n = 1, 2, . . . ,An ∈ A be such thatp(An) >∈> 0,
for all n. We prove that

⋂
n

An , φ.

Let An = {w : (w(t(n)
1 ), . . . ,w(t(n)

rn
)) ∈ Bn}, where Bn ∈ B(Rrn)

(the set of Borel subsets ofRrn). For eachn there exists aqn such 12

that (a) eacht(n)
i ≤ qn, (b) at most onet(n)

i is contained in any closed
interval

[
(k− 1)2−qn , k2−qn

]
for k = 1, 2, . . . , qn2qn. By adding super-

fluous suffixes if necessary, one can assume that each pointk2−qn, k =
0, 1, . . . , qn2qn, is in {t(n)

i , . . . t(n)
rn }, and moreover (by adding, say, the mid-

point if necessary) that in each open interval ((k− 1)2−qn , k2−qn) there is
exactly one point of (t(n)

1 , . . . , t(n)
rn

). Thusrn = qn2qn+1 andt(n)
2k = k2−qn.

Finally, by adding superfluous sets when necessary one may assume that
qn = n i.e., that

An =
{
w :

(
w

(
t(n)
1

)
, . . . ,w

(
t(n)
n2n+1

))
∈ Bn

}
,

where t(n)
2k = k2−n and

(
t(n)
1 , . . . , t(n)

n2n+1

)
⊂

(
t(n+1)
1 , . . . , t(n+1)

(n+2)2n+2

)
.

Sincep is a probability measure when restricted to sets dependent
on a fixed sets1, . . . , sk, we can further assume that eachBn is a closed
bounded subsetRn2n+1

. Now, sinceE(|x(s) − x(t)|a) ≤ C|s− t|b,

p(w : |w(t(n)
i ) − w(t(n)

i−1)| ≥ |t(n)
i − t(n)

i−1|
δ) = p(w : |w(t(n)

i ) − w(t(n)
i−1)|a ≥
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≥ |t(n)
i − t(n)

i−1|
aδ) ≤ C|t(n)

i − t(n)
i−1|

b−aδ

Chooseδ > 0 such thatλ = b− aδ − 1 > 0. Then

p(w : |w(t(n)
i ) − w(t(n)

i−1)| ≥ |t(n)
i − t(n)

i−1|
δ) ≤ C|t(n)

i − t(n)
i−1|

1+λ ≤ C2−n(1+λ)

Hence13

p


n2n+1⋃

i=2

(
w : |w(t(n)

i ) − w(t(n)
i−1)| ≥ |t(n)

i − t(n)
i−1|

δ
)
 ≤

Cnn+1
2

2n(1+)
= 2.C.n.2−λn.

Since
∑

n2−nλ is convergent, there existsmo such that 2C
∞∑

n=m0

n−nλ
2 <

∈
2

.

Then forl ≥ m0,

p


l⋃

n=m0

nn+1
2⋂

i=2

(
w : |w(t(n)

i ) − w(t(n)
i−1)| ≥ |t(n)

i − t(n)
i−1|

δ
)
 <
∈
2
,

and so p


ℓ⋂

n=mo

nn+1
2⋂

i=2

(
w : |w(t(n)

i ) − w(t(n)
i−1)| < |t(n)

i − t(n)
i−1|

δ
)
 > 1− ∈

2
.

It follows that

p

A1 ∩
l⋂

n=m0

nn+1
2⋂

i=2

(
w : |w(t(n)

i ) − w(t(n)
i )| < |t(n)

i − t(n)
i−1|

δ
)
 > 1− ∈

2
,

and so this set is non-empty. Call this setB′l . Then B′l ⊃ B′l+1 and

Al ⊃ B′l . We prove that
∞⋂
m0

B′l , φ.

From eachB′1 choose a functionwl linear in each interval [t(l)i−1, t
(l)
i ].

Such a function exists since for eachw ∈ B′l there corresponds such a

function determined completely by (w(t(l)1 ), . . . ,w(t(l)l2l+1)). We can as-

sume thatw(t(l)1 ) = 0, since zero never occurs in the points which define
sets ofA. Now if l ≥ mo

|wl(t
(n)
i ) − wl(t

(n)
i−1)| < |t(n)

i − t(n)
i−1|

δ ≤ 2−nδ,m0 ≤ n ≤ 1, 1 ≤ i ≤ n2n+1,
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so that|wl(k2−n) − wl((k − 1)2−n)| ≤ 2.2−nδ, 1 ≤ k ≤ n2n,m0 ≤ n ≤ l.14

Givenk2−l , k′2−l , k′ < k, k2−l < 2−m0, there existsq ≤ l such that 2−q ≤
k2−l − k′2−l < 2−q+1. In the interval [k′2−l , k2−l ] there exist at most
two points of the formj2−q, ( j + 1)2−q. Then sincewl ∈ B′q, |wl( j2−q) −
wl(( j +1)2−q)| < 2.2−qδ. Repeating similar arguments we can prove that

|wl(k2−l) − wl(k
′2−l)| ≤ 4(1− 2−δ)−12−qδ ≤ λ|k2−l − k′2−l |δ,

λ being a constant. Now we can easily see that

|w1(t(l)i ) − wl(t
(l)
j )| < µ|t(l)i − t(l)j |

δ if |t(l)i − t(l)j | ≤ 2−m0 say.

From this easily follows, using linearity ofwl in each interval[
t(l)i , t

(l)
i+1

]
, that if t(l)i ≤ t ≤ s≤ t(l)j , then

|wl(t) − wl(s)| ≤ 4µ|t(l)i − t(l)j |
δ.

Now sincewl+p ∈ Al for every p ≥ 0, (wl+p(t(l)1 ), . . . ,wl+p(t(l)
l2l+1)) ∈

Bl. SinceBl is compact, this sequence has a limit point inBl. Since
the same is true for everyl, we can by the diagonal method, extract a
subsequence{wn}, say, such thatwn(t(l)i ) converges for alli and for alll.

Now let t0 andη > 0 be given. For largen0 suppose thatt(n0)
i ≤ t0 ≤ 15

t(n0)
i+1 , |t

(n0)
i − t(n0)

i+1 < 2−n0 < η2. Then if l andm are large andt(n0)
i ≤ t(l)j ≤

t0 ≤ t(l)j+1 ≤ t(n0)
i+1 , t

(n0)
i ≤ t(m)

k ≤ t0 ≤ t(m)
k+1 ≤ t(n0)

i+1 , we have

|wl(t0) − wm(t0)| ≤ |wl(t0) − wl(t
(l)
j )| + |w1(t(l)j ) − wl(t

(n0)
i )| + |wl(t

(n0)
i )

−wm(t(n0)
i )| + |wm(t(n0)

i ) − wm(t(m)
k )| + |wm(t(m)

k ) − wm(t0)|
≤ |t0 − t(l)j |

δ
+ µ|t(l)j − t(n0)

i |
δ
+ η2 + |t(n0)

i − t(m)
k |

δµ + |t(m)
k − t0|δ < Aη2,

A being some constant. This is true for anyt ∈ [t(n0)
i , t(n0)

i+1 ]. This
shows that the limit exists at every point ofR′. Also using |wl(t) −
wl(s)| < 4µ|t(l)i − t(l)j |

δ, we easily see that the limit function sayw, is

continuous. Also since (w(t(l)1 , . . . ,w(t(l)
l2l+1)) ∈ Bl for all l,

⋂
l≥m0

B′l , φ.

We have proved the theorem.
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In our case we have

p(xt − xs ∈ E) = [2π(t − s)]−
1
2

∫

E

e
−x2

2(t−s) dx

�

Poisson processes. Let (xt, 0 ≤ t < ∞) be a stochastic process such that16

1. for almost allw the sample functionxt(w) is a step function in-
creasing with jump 1 and vanishes att = 0;

2. P(xt − xs = k) = e−λ(t−s) (t − s)kλk

k
with λ > 0;

3. P(xt1 ∈ E1, xt2 − xt1 ∈ E2, . . . , xtn ∈ En) = P(xt1 ∈ E1) . . .P(xtn −
xtn−1 ∈ En); i.e., xt1, . . . , xtn − xtn−1 are independent ift1 < t2 . . . <
tn; then the process is called aPoisson process.



Section 1

Markov Processes

1 Introduction
17

In the following lectures we shall be mainly concerned with Markov
processes, and in particular with diffusion processes.

We shall first give an intuitive explanation and then a mathematical
definition. The intuitive model of a Markov process is a phenomenon
changing with time according to a certain stochastic rule and admitting
the possibility of a complete stop. The space of the Markov process
has the set of possible states of the phenomenon as its counter-part in
the intuitive model. Specifically, consider a moving particle. Its pos-
sible positions are points of a spaceS and its motion is governed by a
stochastic rule. The particle may possibly disappear at some time; we
then say it has gone to itsdeath point. A possible motion is a mapping
of [0,∞) into the space of positions. Such a function is asample path.
The set of all sample paths is thesample spaceof the process, denoted
by W. A probability lawPa governing the path of the particle starting at
a pointa ∈ S is a probability distribution on a Borel algebra of subset
of W. The stochastic rule consists of a system of probability laws gov-
erning the path. Finally, the condition on the system, that “if the particle
arrives at a position ‘a’ at time ‘t’ it starts afresh according to the prob-
ability law Pa ingonoring its past history” will correspond intuitively to
the basicMarkov property.

Definitions (). We turn now to the mathematical definitions. We first18

13
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explain the notation and terminology which we shall use.

Let S denote a locally compact Hausdorff space satisfying the sec-
ond axiom of countability. LetB(S) denote the set of all Borel sub-
sets ofS, B(S) the set of allB(S)-measurable bounded functions onS.
SinceS satisfies the second axiom of countability, this class coincides
with the class of all bounded Baire functions onS. We shall add toS a
point∞ to get a spaceS ∪ {∞}. S ∪ {∞} has the topology which makes
S an open sub-space and∞ and isolated point. Then ifB(S ∪ {∞}), and
B(S ∪ {∞}) are defined in the same way,B(S) ⊆ B(S ∪ {∞}), and for
any f ∈ B(S) if we put f (∞) = 0, then f ∈ B(S ∪ {∞}). A function
w : [0,∞] − S V∞ is called asample pathif

(1) w(∞) = ∞;

(2) there exists a numberσ∞(w) ∈ [0,∞] such thatw(t) = ∞ for
t ≥ σ∞(w) andw(t) ∈ S for t < σ∞(w);

(3) w(t) is right continuous fort < σ∞(w).

For any sample pathw, σ∞(w) is called thekilling time of the path.
For any pathw we denote byxt(w) the value ofw at t i.e., xt(w) = w(t).
Then we can regardx as a function of the pair (t,w). Given a sample
pathw the pathsw−s andw+s defined for anysby

xt(w
−
s ) = xt∧s(w)0i f t < ∞,

and19

x∞(w−s ) = ∞,

where

t ∧ s= min(t, s);

xt(w
+

s ) = xt+s(w),

are called thestopped pathand theshifted pathat times, respectively.
A systemW of sample paths is called asample spaceif w ∈ W implies
w−s ∈ W,w+s ∈ W for eachs. For a sample spaceW the Borel algebra
generated by sets of the form (w : w ∈ W, xt(w) ∈ E), t ∈ [0,∞),
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E ∈ B(S) is denoted byB or B(W), andB or B(W) denotes the set of
all boundedB-measurable functions onW. The class of all sets of the
form (w : w−s ∈ B)B ∈ B, is called thestopped Borel algebraat s, and
is denoted byBs or Bs(W). B will denote the system of all bounded
Bs-measurable functions. Note thatBs increases withsandB∞ = B.

Consider the functionx(t,w) on R×W into S ∪ {∞}. Let

xn(t,w) = x

(
j + 1
2n

,w

)
= w

(
j + 1
2n

)
for

j
2n < t ≤ j + 1

2n .

Thenxn(t,w) is measurable with respect toR(R)×B(W) andxn(t,w)
→ x(t,w) pointwise.xt(w) is therefore a measurable function of the pair20

(t,w)

Definition (). A Markov processis a triple

M = (S,W,Pa, a ∈ S ∪ {∞})

where

(1) S is a locally compact Hausdorff space with the second axiom of
countability;

(2) W is a sample space;

(3) Pa(B) are probability laws for a∈ S ∪ {∞}, B ∈ B, i.e.,

(a) Pa(B) is a probability measure inB for every a∈ S ∪ {∞},
(b) Pa(B), for fixed B, isB(S)-measurable in a,

(c) Pa(x0 = a) = 1,

(d) Pa has theMarkov propertyi.e.,

B1 ∈ Bt, B2 ∈ B imply

Pa[w : w ∈ B1,w
+

t ∈ B2] = Ea[w ∈ B1; Pxt (B2)],

where the second member is by definition equal to
∫

B1

Pxt(w)(B2)dPa. [For

fixed t, B2, pxt(w)(B2) is a bounded measurable function on W.]
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Remark 1. (d) is equivalent to the following:

f ∈ B, g ∈ B imply
∫

f (w)g(w+t )dPa = Ea[ f (w)Ext (w)(g(w′))]

More generally (d) is equivalent to
(d′) f ∈ Bt, g ∈ B, B1 ∈ Bt, B2 ∈ B imply21

Ea[ f (w)g(w+t ) : w ∈ B1,w
+

t ∈ B2]

= Ea[w ∈ B1; f (w)Ext(w)(w
′ ∈ B2 : g(w′))].

S, W, Pa are called thestate space, sample spaceandprobability
law of the process respectively.

We give below three important examples of the sample space ina
Markov process.

(a) W =Wrc = the set of all sample paths. These processes are called
right continuousMarkov processes.

(b) W = Wd1 = the set of sample paths whose only discontinuities
before the killing time are of the kind, i.e.,w(t − 0), w (t + 0)
exist andw(t − 0) , w(t + 0) = w(t), t < σ∞(w). These are called
Markov processes of type d1.

(c) W =Wc = the set of all sample paths which are continuous before
the killing time. These are continuous Markov processes.

Remark 2. A Markove process is calledconservativeif Pa(σ∞ = ∞) =
1 for all a.

3 Transition Probability

The functionP(t, a,E) = Pa(xt ∈ E) on B(S), a ∈ S and 0< t < ∞
being fixed, is a measure onB(S) called thetransition probabilityof Pa

at timet. The transition probability has the following properties:

(T.1) P(t, a,E) is a sub - stochastic measure inE, i.e., it is a measure in22

E with total measure≤ 1.

For P(t, a,S) = Pa(xt ∈ S) = 1− Pa(Xt = ∞) ≤ 1.
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(T.2) P(t, a,E) ∈ B(S) for fixed t andE.

For P(t, a,E) = Pa(B) whereB = {xt ∈ E} andPa(B) is by defini-
tion B(S)-measurable in a for fixedB.

(T.3) P(t, a,E) is measurable in the pair (t, a) for fixedE. For f ∈B(S)
let

Ht( f (a)) =
∫

S

P(t, a, db) f (b) =
∫

W−{xt−∞}

f (w(t))dPa.

=

∫

W

f (w(t))dPa, since f (∞) = 0.

If f is a bounded continuous function andδn ↓ 0

lim
δn→0

Ht+δn f (a) = lim
δn→0

∫

W

f (w(t + δn))dpa.

=

∫

W

f ( lim
δn→0

)w(t + δn))dPa

=

∫

W

f (w(t))dPa,

sincew(t) is right continuous.

Ht f (a) is thus right continuous int, if f is bounded and contin-
uous. It is not difficult to show (by considering simple functions
and then generalizing) thatHt f (a) is measurable in a iff is mea- 23

surable. ThereforeHt f (a) is measurable in the pair (t, a) if f is
continuous and bounded. Further, if{ fn} is a sequence of measur-
able functions with| fn| ≤ η and fn → f , thenHt fn → Ht f . The
class of those measurable functionsf for whichHt f (a) is measur-
able in the pair (t, a) thus contains bounded continuous functions
and is closed for limits. ThereforeHt f (a) is measurable in the
pair (t, a) for f ∈ B(s). If f = χE,Ht f (a) = P(t, a,E).

(T.4) lim
t 0

P(t, a,Ua) = 1, whereUa is an open set containinga.
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Let tn ↓ 0, andBn = {w : w(tn) ∈ Ua}. Sincew(t) is right continu-

ous,{w : w(0) ∈ Ua ⊂
∞⋃

n=1

∞⋂
m=n

Bm.

Therefore

lim inf
tn↓0

P(tn, a,Ua) ≥ Pa


∞⋃

n=1

∞⋂

m=n

Bm



≥ Pa{w : w(0) ∈ Ua} ≥ Pa{w : w(0) = a} = 1.

(T.5) Chapman-Kolmogoroff equation :

P(t + s, a,E) =
∫

S

P(t, a, db)P(s, b,E).

P(t + s, a,E) = Pa{xt+s ∈ E} = Pa{xt ∈ S, xt+s ∈ E}
= Pa{xt ∈ S.xs(w

+

t ) ∈ E}
= Ea[xt ∈ S : Pxt {xs(w) ∈ E}]
= Ea[xt ∈ S : P(s, xt,E)]

=

∫

S
P(t, a, ab)P(s, b,E)

24

(T.6)

Pa(xt1 ∈ E1, . . . , xtn ∈ En) =
"

ai∈Ei

P(t1, a, da1)

P(t2 − t1, a1, da2) · · · P(tn − tn−1, an−1, dan)

We shall prove this forn = 2.

Pa(xt1 ∈ E1, xt2 ∈ E2)

= Pa(xt1 ∈ E1, x(t2−t1)+t1 =∈∈ E2)

= Pa(xt1 ∈ E1, xt2−t1w
+

t1 ∈ E2)

= Pa(w ∈ B1,w
+

t1 ∈ B2), B1 = {xt1 ∈ E1} andB2 =
{
xt2−t1 ∈ E2

}
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=

∫

B1

Pxt1
(B2)dPa =

∫

B1

Pxt1
(w : w(t2 − t1) ∈ E2)dPa

=

∫

E1

P(t1, a, da1)P(t2 − t1, a1,E2)

=

"

ai∈Ei

P(t1, a, da1)P(t2 − t1, a1, da2).

(T.7) Suppose thatM1 = (S1,W1,P′a, a ∈ S1 ∪ {∞}) andM2 = (S2,W2,

P2
a, a ∈ S2 ∪ {∞}) are two Markov processes withS1 = S2, W1 = 25

W2 andP′(t, a,E) = P2(t, a,E): thenM1 ≡ M2, i.e. P1
a = P2

a.

Proof. Any sub-set ofW of the form
{
(xt1, . . . , xtn) ∈ E1 × · · · × En

}
,Ei ∈ B(S),

is inB(W). SinceB(W) is a Borel algebra, any set of the form
{
(xt1, . . . , xtn) ∈ En ∈ B(Sn)

}

is inB(W). The class of all sets of the form
{
(xt1, . . . , xtn) ∈ En,En ∈ B(Sn)

}

for all n, for all n-tuples 0≤ t1, . . . , tn < ∞ and all Borel setsEn of Sn,
is an algebraA(W) ⊂ B(W). FurtherA(W) generatesB(W). �

For fixed 0≤ t1, . . . , tn < ∞, let

Pi
a(En) = Pi

a
{
(xt1, . . . , xtn) ∈ En} , i = 1, 2.

ThenPi
a is a measure on the Borel sets ofSn. From (T.6) it follows

thatP1
a(En) = P2

a(En), for all setsEn which are finite disjoint unions of
sets of the form

E1 × . . . × En,Ei ∈ B(S).

Such setsEn form an algebra which generatesB(Sn). Using the 26

uniqueness part of the Kolmogoroff theorem, we getP1
a(En) = P2

a(En)
for all En ∈ B(Sn).

ThusP1
a = P2

a onA(W). One more application of the uniqueness of
the extension gives the result.



20 1. Markov Processes

T.8 Suppose thatM = (S,W,Pa, a ∈ S ∪ {∞}) is a triple withS andW
being as in the definition of a Markov process, andPa, a ∈ S∪{∞}
are probability distributions onB(W) and let

P(t, a,E) = Pa{w : w(t) ∈ E}.

Suppose further thatp(t, a,E) satisfies the properties (T.2), (T.4) and
(T.6). Then the contention is thatM is a Markov process withP(t, a,E)
as the transition probability ofPa.

To prove this we have to verify conditions (b), (c) and (d) onPa.
The proof of b) is similar to that of (T.6). (T.6) shows thatPa(B) is
measurable in a ifB is of the form

{
(x(t1), . . . , x(ta)) ∈ En,En ⊆ Sn}

whereEn is a finite disjoint union of sets of the formE1×E2× · · · ×En,
Ei ∈ B(S). For fixedt1, . . . , tn, consider the classX of setsEn ∈ B(Sn)
for which

Pa
{
(xt1, . . . , xtn ∈ En}

is measurable ina. If En
i is a monotone sequence of sets inX and

lim
i→∞

En
i = En, Pa

{
(xt1, . . . , xtn) ∈ En

i

}
is a monotone sequence and27

lim
i→∞

Pa

{
(xt1, . . . , xtn) ∈ En

i

}
= Pa

{
(xt1, . . . , xtn) ∈ En} .

X is therefore a monotone class and henceX ⊃ B(Sn). We have thus
shown thatPa(B) is measurable in a for allB ∈ A(W). Similarly we
show that the class of setsB ∈ B(W) for which Pa(B) is measurable in
a, is a monotone class.

We now verify (c). Choosetn ↓ 0 such that

Pa{Bn} = Pa
{
xtn ∈ Ua

}
> 1− ∈ .

Sincew(t) is right continuous

{
w : w(0) ∈ Ūa

}
⊃
∞⋂

n=1

∞
U

m=n
[
∞⋃

m=n

Bm].
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WhereŪa denotes the closure ofUa. Therefore

1 ≥ Pa(w : w(0) ∈ Ūa) ≥ 1− ∈ .

Since∈ arbitrary,Pa(w : w(0) ∈ Ūa) = 1. Now we choose a decreas-

ing sequence{U i
a} of open sets such thatU i

a ⊃ Ū i+1
a and

∞⋃
i=1

U i
a = {a}.

We then have

Pa(xo = a) = Pa(
∞⋂

i=t

(xo ∈ U i
a)) = lim

i→∞
Pa(xo ∈ U i

a) = 1.

To prove (d) we proceed as follows. First remark that iff ∈ B(Sn) 28

andEn ∈ B(Sn) andB = ((Xt1, . . . , xtn) ∈ En then
∫

En

P(t1, a, daa) · · ·P(ta − tn−1, dan) f (a, . . . , an) =
∫

B

f [xt1, . . . , xtn]dPa.

Let B1 ∈ Bt be given byB1 = (w : w−t ∈ B′) whereB′ = (xt′1
∈

E1, . . . , xt′n ∈ En); thenB1 = (xti ∈ Ei , 1 ≤ i ≤ n) with ti = tΛt′i , 1 ≤ i ≤
n. Let B2 ∈ B2 be given by

B2 = (xsj ∈ F j , 1 ≤ j ≤ m).

We have

Pa(w ∈ B1,w
+

t ∈ B2) = Pa(xti ∈ Ei , xt+sj ∈ F j)

= P(xti ∈ Ei , xt ∈ S, xt+sj ∈ F j)

=

∫

ai∈Ei
c∈S

P(t1, a, da1) − P(tn − tn−1, an−1, dan)P(t − tn, an, dc)

∫

bj∈F j

P(s1, c, db1) . . .P(sm− sm−1, bm−1, dbm)

=

∫

ai∈Ei ,c∈S

P(t1, a, da1) . . .P(t − tn, an, dc)Pc(B2) =
∫

B

Pxt (B2)

by the above remark. We now fixB2 and prove that the above equation
holds for allB1 ∈ Bt [the proof runs along the same lines as the proof
of b)]. Finally fix B1 ∈ Bt and prove the same for allB2 ∈ B.
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4 Semi-groups

Let Ht f (a) =
∫

S

P(t, a, db) f (b) = Ea{ f (xt)}. ThenHt is a map ofB(S)29

into B(S) with the following properties:

(H.1) It is linear onB(S) into B(S). It is continous in the sense that if
| fn| ≤ M and fn→ f thenHt fn→ Ht f .

(H.2) Ht ≥ 0, in the sense that iff ≥ 0,Ht f ≥ 0.

(H.3) It has the semi-group property i.e.HtHs = Ht+s.

Ht+s f (a) = Ea( f (xt+s)) =
∫

S

P(t + s, a, db) f (b)

=

∫

S

f (b)
∫

S

P(t, a, dc)P(s, c, db)

=

∫

S

P(t, a, dc)



∫

S

f (b)P(s, c, db)



=

∫

S

P(t, a, dc)Ht f (c)

= HtHs f (a)

(H.4) Ht | ≤ 1

(H.5) Ht f (a) isB(R′)-measurable int.

(H.6) If f is continuous ata, lim
t↓0

Ht f (a) = f (a).

For if Ua is an open set containing a

Ht f (a) =
∫

S

P(t, a, db) f (b) =
∫

Ua

P(t, a, db) f (a)

+

∫

Ua

P(t, a, db)[ f (b) − f (a)] +
∫

S−Ua

P(t, a, db) f (b).
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= f (a)P(t, a, ua) +
∫

Ua

P(t, a, db)[ f (b) − f (a)] +
∫

S−Ua

P(t, a, db) f (b).

30

Now use the fact thatP(t, a,Ua)→ 1 and f is continuous ata.

5 Green operator

We have seen that the operators{Ht} form a semi-group. We now in-
troduce one more operator, the Green operator, as the formalLaplace
transform ofHt, which will lead to the concept of a generator.

Consider the operatorG∝ =
∞∫

0

e−∝tHtdt, defined for∝> 0 by

Gα f (a) =

∞∫

0

e−∝tHt f (a)dt, f ∈ B(S).

G is called theGreen operatoron B(S). Interchanging the orders of
integration, we also have

Gα f (a) = Ea



∞∫

0

e−αt f (xt(w))dt

 .

Let G(α, a,E) =
∞∫

0

e−αtP(t, a,E)dt. This measure onB(S) is called

Green’s measure onB(S). We have

Gα f (a) =

∞∫

0

e−αtHt f (a)dt =
∫

S

f (b)

∞∫

0

e−αtP(t, a, db)dt

=

∫

S

G(α, a, db) f (b).

The operatorGα has the following properties:
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(G.1) Gα is linear, and continuous in the sense that if| fn| < η and fn → 31

f , thenGα fn(a)→ Gα f (a).

(G.2) Gα ≥ 0, i.e.Gα f ≥ 0 if f ≥ 0.

(G.3) Gα satisfies the following equation, called theresolventequation:

Gα −Gβ + (α − β)GαGβ = 0.

We have

HsGα f (a) =
∫

S

P(s, a, db)Gα f (b)

=

∫

S

P(s, a, db)

∞∫

o

e−αtHt f (b)dt

=

∞∫

0

e−αtHt+s f (a)dt (interchanging the order of integration)

= eαs

∞∫

s

e−αtHt f (a)dt.

Therefore

GβGα f (a) =

∞∫

0

e−βsHsGα f (a)ds

=

∞∫

0

e(α−β)sds

∞∫

s

e−αtHt f (a)dt

=

∞∫

0

e−αtHt f (a)dt

t∫

o

e(α−β)sds

=
Gβ f (a) −Gα f (a)

α − β
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Remark. HtHs = Ht+s = HsHt and32

G∝Gβ =
Gβ −G∝
∝ −β = GβG∝

(G.4) Gα1 ≤ 1
α

, becauseHtl ≤ 1

(G.5) The integral definingGα exists for complex numbers whose real
part> 0 for every f ∈ B(S). ThenGα f (a) is analytic inα for
every f ∈ B(S) and everya ∈ S.

(G.6) f is continuous at a implies

αGα f (a) → f (a) as ∝→ ∞.

ForαGα f (a) =
∞∫

0

αe−αtHt f (a)dt =
∞∫

0

e−tH t
∝

f (a)dt and

Ht f (a)→ f (a) ast → 0 if f is continuous ata.

6 The Generator

Define, for f ∈ B(S)
|| f || = sup

a∈S
| f (a)|.

Then |Ht f (a)| ≤ || f ||.
B(S) is a Banach space with the norm|| f ||, andHt becomes a semi-

group of continuous linear operators onB(S).
Consider the following purely formal calculations.

G = lim
t→0

Ht − I
t
= [

dHt

dt
]t=0

Then 33

dHt

dt
= lim

δ→0

Ht+δ − Ht

δ
= lim

δ→0

Hδ − I
δ
· Ht = G Ht.
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ThereforeHt = etG and

Gα =

∞∫

0

e−αtHtdt =

∞∫

0

e−(α−G )tdt = (∝ −G )−1

or
G = α −G−1

α .

The above purely formal calculations have been given precise mean-
ing, and the steps justified by Hille and Yosida [ ] whenHt satisfy certain
conditions. In our case, however,Ht do not in general satisfy these con-
ditions, and we shall defineG with the last equation in view. We now
proceed to the rigorius definition.

Let Rα = Gα[B(S)],Nα = G−1
α {0} be the image and kernel ofGα

respectively. We show thatRα andNα are independent ofα and that
Rα ∩ Nα = {0}. The resolvent equation gives

Gα −Gβ f + (α − β)GαGβ f = 0

i.e.
Gβ f = Gα[ f + (α − β)Gβ f ]

Since f + (α − β) Gβ f ∈ B(S), it follows that

Gβ f ∈ Gα[B(S)] = Rα,

or that Rβ ⊂ Rα. Interchanging the roles ofα andβ, Rβ ⊃ Rα or
Rα ≡ Rβ. We denoteGα[B(S)] by R. Similarly f ∈ Nβ givesGβ f = 034

and the resolvent equation then givesGα f = 0 orNβ ⊂ Nα. We denote
G−1
α {0} byN. Let u ∈ R ∩N Thenu = Gα f for somef ∈ B(S), and for

everyβ, Gβu = 0. Now

Hsu(a) = HsGα f (a) = eαs

∞∫

s

e−αtHt f (a)dt,

and soHsu(a) is continuous ins and→ u(a) as s → 0. Also, since
∞∫

0

e−βsHsu(a)ds= Gβu(a) = 0 for all β,Hsu(a) ≡ 0.
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Letting s→ 0 we see thatu(a) ≡ 0.
Foru ∈ Rdefine

Gαu = αu−G−1
α u.

Gαu is then determined modN. We now prove thatG u
α is independent of

α. If f = Gαu( modN) then f = αu−G−1
α u, ( modN) and

Gα f = αGαu− u

GβGα f = αGβGαu−Gβu,

Gα −Gβ

β − α f = α
Gα −Gβ

β − α u−Gβu,

Gα f −Gβ f = αGαu− βGβu,

Gβ f = Gα f − αGαu+ βGβu

= −u+ βGβu

f = βu−G−1
β u (modN) = Gβu (modN)

35

We denoteGαu by G u. Then ifGα f = u we have

G u = αu− f (modN).

Thusu = Gα f if and only if (α − G )u = f ( modN). The domain
D(G ) of G is R and we haveG = α−G−1

α . G is called thegeneratorof
the Markov process.

The following theorem shows that the generator determines the Mar-
kov process uniquely.

Theorem (). LetMi = (S,W,Pi
a, a ∈ S ∪ {∞}), i = 1, 2, be two Markov

processes, andGi , i = 1, 2 their generators. Then ifG1 = G2, P1
a = P2

a,
i.e.M1 = M2.

Proof. D(Gi) = Gi
α[B(S)] = R i . SinceG1 = G2, D(G1) = D(G2),

i.e. R1
= R2

= R (say). Since their ranges must also be the same
N1 = N2 = N(say). We have therefore

(α − G1)G1
α f = f (modN)
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= f (modN)[(α − G2)G 2
α f (α − G1)G1

α f ]

= (α − G2)G2
α f (modN),

(α − G )G1
α f = (α − G )G2

α f (modN) sinceG1 = G2

�

By definitionα − G = α − G1 = G′−1
α Therefore36

G1−1

α G1
α f = G1−1

α G
2
α f (modN)

G1
αG

1−1

α G1
α f = G1

αG1−1

α G2
α f

ThereforeG1
α f = G2

α f . This gives

∞∫

0

e−αtH1
t f (a)dt =

∞∫

0

e−αtH2
t f (a)dt for everyF ∈ B(S)

Thus if f is continuous,H1
t f (a) ≡ H2

t f (a)
∫

P1(t, a, db) f (b) =
∫

P2(t, a, db) f (b)

for every f ∈ B(S) which is continuous. Therefore

P1(t, a,E) = P2(t, a,E),

Hence
P1

a = P2
a.

7 Examples

We first prove a lemma which will have applications later, andthen we
give a few examples of Markov processes.

Let f be a real -valued function on an open interval (a, b). When f
is of bounded variation in every compact sub-interval of (a, b) we write
f ∈ B(a, b) and then there exists a unique signed measured f Lebesgue-37

Stieltjes measure) such thatd f(α, β] = f (β+) − f (α+), (α, β] ⊆ (a, b).
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Suppose thatµ is any measure on (a, b) which is finite on compact sub-
sets of (a, b). Suppose further that there exists a functionϕ on (a, b)
which isµ-summbale on every compact sub-interval of (a, b) and satis-
fies

f (β+) − f (α+) =

β∫

α

ϕ(ξ)d µ(ξ).

Thend f = ϕdµ and f is absolutely continuous with respect todµ.
We now prove that following

Lemma (). If f , g ∈ BW(a, b) then f g∈ BW(a, b) and

d( f g)x = f (x+)dg(x) + g(x−)d f(x).

Proof. We can assume thatf andg are non-negative and non-decreasing
in (a, b). It is enough to prove that ifh is continuous in (a, b) and has
compact support, then,

∫
h(x)d( f g)(x) =

∫
h(x) f (x+)dg(x) +

∫
h(x)g(x−)d f(x).

�

For n = 1, 2, . . . let {αn,k}, k = 0, ±1,±2, . . . be a sequence of points
such that

a← · · · < αn,o < αn,1 < · · · → b, αn,i − αn,i−1 <
1
n

Define
ϕn(x) = αn,i

ψn(x) = αn,i−1
if αn,i−1 < x < αn,i.

Then 38

In =

∫
h[ϕn(x)]d( f · g)(x)

=

∞∑

i=−∞
h(αn,i)[ f (αn,i1+)g(αn,i+) − f (αn,i−1+)g(αn,i−1+)



30 1. Markov Processes

=

∞∑

i=−∞
h(αn,i) f (αn,i+) · [g(αn,i−1+)] − g(αn,i−1+)

+

∞∑

i=−∞
h(αn,i−1)g(αn,i−1+)[ f (αn,i−1+) − f (αn,i−1+)]

=

∫
h[ϕn(x)] f [ϕn(x)+]dg(x) +

∫
h[ψn(x)]g[ψn(x)+]d f(x)

Sinceh has compact support, lettingn→ ∞ we get the result.

Ex.1 Standard Brownian motion

Let S = R1, W = C[0,∞) [we definew(∞) = ∞]. Let P be the
Wiener measure onW and define fora ∈ S,

Pa(B) = P{w : w+ a ∈ B}, B ∈ B(W).

It is not difficult to show that (S,W,Pa) is a Markov process ; that is
a continuous process and is called theStandard Brownian motion.

We shall determine the generator of this process. We have

P(t, a,E) = P(w : w+ a ∈ E) =
1
√

2πt

∫

E−a

e−x2/2tdx

=

∫

E

N(t, a, c)dc.

Ht f (a) =
∫

R′

N(t, a, b) f (b)db =

∞∫

−∞

e−(b−a)2/2t

√
2πt

f (b)db.

39

If u ∈ R, u = Gα f for somef ∈ B(R1) and

u(a) = Gα f (a) =

∞∫

0

e−αtHt f (a)dt =

∞∫

0

f (b)db

∞∫

−∞

e−αt− (b−a)2

2t

√
2πt

dt

=

∞∫

−∞

i
√

2α
e−
√

2α|b−a| f (b)db
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= e−
√

2αa

a∫

−∞

1
√

2α
e
√

2αb f (b)db+ e
√

2αa

∞∫

a

1
√

2α
e−
√

2αb f (b)db.

Sincee−
√

2αa and
a∫
−∞

e
√

2αb f (b)db are both inBW(−∞,∞) we get

from the lemma

du(a) = −
√

2αe−
√
−2αada

a∫

−∞

1
√

2α
e
√

2αb f (b)db+
e−
√

2αae
√

2αa f (a)
√

2α
da

+

√
2αe

√
2αada

∞∫

a

1
√

2α
e−
√

2αb f (b)db− e
√

2αae−
√

2αa f (a)
√

2α
da.

Thereforeu is absolutely continuous and 40

u(a) = −e−
√

2αa

a∫

−∞

e
√

2αb f (b)db+ e
√

2αa

∞∫

a

e−
√

2αb f (b)db

almost everywhere. Using the lemma again we see thatu′ is absolutely
continuous and we get

u′′ = 2αu− 2 f almost everywhere.

Let R+ = {u :∈ B(R′), u abs. cont,u′ abs. cont,u′′ ∈ B(R1)}. We
have seen above that ifu ∈ R, thenu ∈ R+. Conversely letu ∈ R+ and

put f = αu− 1
2

u′′. Then f ∈ B(R1) andv = Gα f satisfies

1
2

v′′ = αv− f

Thereforew = v− u satisfies

1
2

w′′ − αw = 0.

Hencew = c1e
√

2αa
+ c2e−

√
2αa. Sincew is bounded,c1 = c2 = 0 or

u = Gα f . Thus we have proved that

R =
{
u : u ∈ B(R1), u abs.cont, u′ abs.cont, u′′ ∈ B(R1)

}



32 1. Markov Processes

If f ∈ N, u = Gα f = 0 and sinceu′′ = 2αu − 2 f a.e. we see that
f = 0 a.e. Therefore

N = { f : f = 0 a.e.}.

Also the formulau′′ = 2αu− 2 f (a.e.) shows thatG =
u′′

2
(a.e.) and41

henceG =
1
2

d2

da2
.

Ex.2 Brownian motion with reflecting barrier at t = 0.

Let (S = (−∞,∞), Ŵ, P̂a) denote the Standard Brownian motion.
Let S = [0,∞) andW the set of all continuous functions on [0,∞)

into S. If B ∈ B(W) thenB ∈ B(Ŵ). DefinePa(B) = p̂a[w : |w| ∈ B] for
a ∈ s. Then (S,w,Pa) is a continous Markov Process and is called the
Brownian motion with reflecting barrier at t= 0.

We have

P(t, a,E) = P̂a{w : |w(t)| ∈ E}
= P̂a{w : w(t) ∈ E ∪ (−E)}

=

∫

E

[N(t, a, b) + N(t, a,−b)]db

Ht f (a) =

∞∫

0

[N(t, a, b)| + N(t, a,−b)
]
f (b)db

=

∞∫

−∞

N(t, a, b) f̂ (d)db= Ĥt f̂ (a)

where f̂ (b) = f (|b|). Therefore

u(a) = Gα f (a) =

∞∫

0

e−atHt f (a)dt

=

∞∫

0

e−αtĤt f̂ (a)dt = Ĝα f̂ (a) = û(a), say
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From the previous example it follows that ˆu ∈ B(Ŝ), û is absolutely42

continuous, ˆu′ is absolutely continuous and ˆu′′ ∈ B(Ŝ). Sinceu(a) =
û(a) for a > 0, we see thatu ∈ B(S), u is absolutely continuous fora >
0, u′ is absolutely continuous,u′ ∈ B(S). Further since ˆu(a) = û(−a)
we see that ˆu′(a) = −û′(−a) and hence ˆu′(0) = 0. This givesu+(0) = 0.

The relation
1
2

û′′ = αû− f̂ gives
1
2

u′′ = αu− f

N = { f : f = 0 a.e.}
R = {u : u ∈ B(S), u, u′ abs.cont, u+(0) = 0 andu′′B(S)}

G u = αu− f =
1
2

u′′ (a.e.)

Ex.3 Poisson process

Let (Ω,P) be a probability measure space and{ξ(t, ω), 0 ≤ t < ∞} a
Poisson process onΩ.

Let S = {0, 1, 2, . . . . . .},W = Wd1 = the set of all sample paths
whose only discontinuities are of the first kind, and hence they are step
functions with integral values. For almost allω, ξ(t, ω) is a step function
with jump 1 and vanishes att = 0; therefore, for almost allω, ξ(t, ω) is
a step function with integral values and hence belongs toW.

Let η(k)(t, ω) = k+ ξ(t, ω) and define

Pk(B) = P{ω : η(k)(., ω) ∈ B}, B ∈ B(W).

If E ⊂ S,

P(t, k,E) = P(ω : k+ ξ(t, ω) ∈ E)

= P(ω : ξ(t, ω) ∈ E − k)

=

∑

0≤n∈E−k

e−λt (λt)n

n!

=

∑

k≤n∈E
e−λt (λt)n−k

(n− k)!

Ht f (k) =
∞∑

n=0

f (n+ k)eλt (λt)n

n!
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u(k) = Gα f (k) =

∞∫

0

e−αt
∑

f (n+ k)e−λt (λt)n

n!

=

∞∑

n=0

f (n+ k)
λn

(α + λ)n+1
.

43

Therefore we obtain

u(k + 1)− u(k) = − f (k)
λ
+
α

λ
u(k).

If u = Gα f = 0, from the above we see thatf ≡ 0, and

N = { f : f ≡ 0}.

Let u ∈ B(S) and put f (k) = αu(k) − λ[u(k + 1) − u(k)]. If v(k) =
Gα f (k), v satisfies

v(k + 1)− v(k)− = − f (k)
λ
+
α

λ
v(k)

and hence, subtracting,44

α[v(k) − u(k)] − λ[v(k + 1)− u(k + 1)− v(k) + u(k)] = 0

and so

v(k + 1)− u(k + 1) =
α + λ

λ
[v(k) − u(k)]

If v(0) , u(0), |v(k) − u(k)| = (
α + λ

λ
)k|v(0) − u(0)| → ∞ which

is impossible sincev − u ∈ B(S). Thereforev(0) = u(0) and hence
v(k) = u(k). Thus we haveR = B(S).

Ex. 4 Constant velocity motion

Let S = R1,W = C[0,∞). Let

Pa{w(t) ≡ a+ λt, 0 ≤ t < ∞} = 1.
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Then for anyB ∈ B if w(t) = a + λt ∈ B, Pa(B) = 1 and otherwise
Pa(B) = 0.

P(t, a,E) = δ(E, a+ λt) =


1 if a+ λt ∈ E

0 if a+ λt < E

Ht f (a) = f (a+ λt)

u(a) = Gα f (a) =
1
λ

e
α
λ

a

∞∫

a

e−
α
λ

t f (t)dt.

From the lemma and the absolute continuity ofu,

u′(a) =
α

λ
u(a) − f (a)

λ
(a.e.)

45

So if Gα f = 0, f = 0 a.e.

N =
{
f : f = 0 a.e.,

}

R ⊂ {u : u ∈ B(R1), u, abs.cont, u′ ∈ B(R1)}
G u = αu− f = λu′

So thatG = λ
d
da

.

If u ∈ R, we haveu ∈ B(R1), u abs.cont. andu′ ∈ B(R1). Con-
versely, letu satisfy these conditions andf = λu − u′. Thenv = Gα f
satisfies

αy− λy = f .

The general solution therefore is

y = Gα f +Ce
α
λ

a.

Sincey is to be bounded,C = 0. Thus

R =
{
u : u ∈ B(R1), u abs.cont, u′ ∈ B(R1)

}
.

Ex.5 Positive velocity motion
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Let S = (r1, r2) andv(x) > 0 a function continuous on (r1, r2) such
that forr1 < α < β < r2

β∫

α

dx
v(x)

< +∞ and

r2∫
dx

v(x)
= +∞.

46

Then there exists a solutionξ(a)(t) of
dξ
dt
= v(ξ) with the initial con-

dition ξ(a)(0) = a.
Let W =Wc and

Pa

{
xt(w) = ξ(a)(t), 0 ≤ t < ∞

}
= 1.

This is similar to Ex.4 and we can proceed on the same lines.

8 Dual notions

LetM = (S,W,Pa) be a Markov process andM the set of all bounded
signed measures onB(S). M is a linear space. ForE ∈ B(S) andµ ∈ M
define

||µ|| = total variation ofµ = sup
E∈B(S)

[µ(E) − µ(Ec)].

H∗t µ(E) =
∫

S

P(t, a,E)µ(da)

G∗αµ(E) =

∞∫

0

e−αtH∗t µ(E)dt.

ThenH∗t µ andG∗αµ are inM and

||H∗t µ|| ≤ ||µ||, ||G∗α|| ≤
||µ||
α

Also, for f ∈ B(S), denote by (f ,H∗t µ) and (f ,G∗αµ) the integrals∫
f (a)H∗t µ(da) and

∫
f (a)G∗αµ(da) respectively. We have

( f ,H∗t µ) =
∫

f (a)H∗t µ(da) =
"

f (a)P(t, b, da)µ(db)
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=

∫
Ht f (b)µ(db) = (Ht f , µ)

Similarly ( f ,G∗αµ) = (Gα f , µ).

47

Theorem 1.
G∗α −G∗β + (α − β)G∗αG

∗
β = 0.

Follows easily from (f ,G∗αµ) = (Gα f , µ) and the resolvent equation
for Gα.

Theorem 2. R∗α = G∗αM is independent ofα. We denote this byR∗.

Follows from Theorem 1.

Theorem 3. If G∗αµ = 0, µ ∈M, thenµ = 0.

Proof. Let f ∈ C(S). Then sinceαG∗αµ = 0 we have

0 = ( f , αG∗αµ) = (αGα f , µ)→ ( f , µ)

asα → ∞. Hence, for everyf ∈ C(S), ( f , µ) = 0. It follows that
µ ≡ 0. �

Theorem 4. G ∗α = α − (G∗α)−1 is independent ofα. We denote this by
G ∗, and call it thedual generatorof G .

Proof is easy

Theorem 5. If u ∈ R = G , v ∈ R∗ = D(G ∗) then 48

(G u, y) − (u,G ∗v).

Proof. Let u = Gα f , ν = G∗αG . Then

(G u, v) = (αν− f , ν) = (αu, ν) − ( f , ν)

= (αu, ν) − ( f ,G∗αµ) = (u, αν) − (Gα, f , µ)

= (u, α, ν) − (u, µ) = (u, αν − µ) = (u,G ∗ν).

�
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This theorem justifies the namedual generatorG ∗.

Theorem 6. G ∗ determines the Matkov process i.e. ifMi = (Si ,Wi ,Pi
a),

i = 1, 2 are two Markov processes with S1
= S2,W1

= W2 andG 1∗
=

G 2∗, then P1
1 = P2

a.

Proof. SinceG 1∗
= G 2∗, D(G 1∗) = D(G 2∗). Letµ ∈ M andν = G1∗αµ.

Sinceν ∈ D(G 2∗), ν = G2 ∗α µ1. Nowαν− µ = G 1∗ν = G 2∗ν = αν− µ1.
Henceµ1 = µ2 i.e. G1∗

α µ = G2∗
α µ. Now for any f ∈ B(S), and for any

µ ∈M ,
(G1

α f , µ) = ( f ,G1∗
α µ) = ( f ,G2∗

α µ) = (G2
α f , µ).

It follows that G1
α f ≡ G2

α f , i.e. H1
t f (a) = H2

t f (a) for almost all
t. If f ∈ C(S), Hi

t f (a)i = 1, 2 are right continuous int and are equal
almost everywhere. They are therefore identical. Now the proof can be
completed easily. �49

Example.Consider the standard Brownian motion. Then

R
∗
= {ν : ν(db) = db

∫
µ(da)G(α, |a− b|)}.

This meansν(E) =
∫

E

db
∫
µ(da)G(α, |a− b|) where

G(α, |a− b|) =
∞∫

0

e−dtN(t, a, b)dt =
1
√

2α
e−
√

2α|b−a|.

The formula shows thatν has the density

u(b) =

∞∫

−∞

1
√

2α
e−
√

2α|b−a|µ(da)

= e−
√

2αb

b∫

−∞

1
√

2α
e
√

2αaµ(da) + e
√

2αb

∞∫

b

1
√

2α
e−
√

2αaµ(da).
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Now using the lemma of§ 7 we see that

du(b) = e−
√

2αbdb

b∫

−∞

√
2αaµ(da) + e

√
2αbdb

∞∫

b

e−
√

2αaµ(da)

and henceu is absolutely continuous and

u′(b) = −e−
√

2αb

b∫

−∞

e
√

2αaµ(da) + e
√

2αb

∞∫

b

e−
√

2αaµ(da)

Using the same lemma again we see that

du′(b) = −2µ(db) +
√

2αdb

∞∫

−∞

e−
√

2α|b−a|(da)

= −2µ(db) + 2αν(db).
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Thus we haveG ∗ν = αv− µ = 1
2

du1.

9 A Theorem of Kac

We prove the following

Theorem (Kac). LetM = (S,W,Pa) be a Markov process. For k, f , ∈
B(S) we define

v(a) = v(α, a) = Ea



∞∫

0

e−αt f (xt)e
−

∫ t
0 k(xs)dsdt



whereα > ||k−|| sup(−k(a)v0), {(avb) = max(a, b)}. Then

(k+ α − G )v = f .

[If k ≥ 0, ||k−|| = 0 andα > 0].
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Proof. We have

v− u = Ea



∞∫

0

e−αt f (xt)[e
−

t∫

0 k(xs)ds− 1]dt



= −Ea



∞∫

0

e−αt f (xt)

t∫

0

e
−

t∫
s

k(kθ)dθ
k(xs)ds· dt



Now

∞∫

0

t∫

0

∣∣∣∣∣∣∣∣∣
e−αt f (xt)e

−
t∫

0
k(kθ)dθ

k(xs)

∣∣∣∣∣∣∣∣∣
dsdt

≤
∞∫

0

|| f || ||k||e−(α−||k− ||)ttdt < ∞.

Changing the order of integration51

v− u = −Ea



∞∫

0

k(xs)ds

∞∫

s

e−αt f (xt)e
−

t∫
s

k(xθ )dθ
dt



= −Ea



∞∫

0

k(xs)ds

∞∫

s

e−α(t+s) f (xt+s)e
−

t+s∫
s

k(xθ)dθ
dt



= −Ea



∞∫

0

eαsk(xs)ds

∞∫

s

e−αt f (xt+s)e
−

t∫

0
k(xθ+s)dθ

dt



= −Ea



∞∫

0

e−αsk(xs)ds

∞∫

0

e−αt f [xt(w
+

s )]e
−

t∫

0
k[xθ (w+s )]dθ

dt



= −
∞∫

0

e−αsds Ea

k(xs)

∞∫

0

e−αt f [xt(w
+

s )]

 e
−

t∫

0
k[xθ(w+s )]dθ

dt
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= −
∞∫

0

e−αsds Ea

[
k(xs)Exs



∞∫

0

e−αt f (xt)e
−

t∫

0
k(xθ)dθ

dt



]

= −
∞∫

0

e−αsds Ea [k(xs)v(xs)]

= −Gα(k, v)(a) ∈ D(G ).

Since

u ∈ D(G ),

v ∈ D(G )

Further 52

G−1
α [v− u] = −kv mod (N) andG−1

α = α − G

(α − G )(v− u) = −kv (modN)

(α − G )v− (α − G )u = −kv (modN)

(α − G )v− f = −kv (modN), (α − G )u = f (modN)

= (α + k− G )v = f .

This proves the result. �

As an application of Kac’s theorem consider the standard Brownian
motion (S,W,Pa). Let

Φ(t) = the Lebesgue measure of (s : xs > 0 and 0< s≤ t).

= the time spent in the positive half line up tot.

Note thatΦ(t) is continuous int.
Then we shall prove that

P0[φ(t) ∈ dτ]
dτ

=
1

π
√
τ(t − τ)

so that

P0(w : Φ(t) < τ) =
2
π

are sin

√
τ

t
, 0 ≤ τ ≤ t.
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We haveβΦ(t) =
t∫

0

k(xs)dswhere

k(a) = β if a > 0

= 0 if a ≤ 0.

53

TherforeβΦ(t) =
t∫

0

k[x(s,w)]ds, considered as a function ofw is

measurable inw. Let

ϕ(β, t, a) = Ea

(
e−βΦ(t)

)
.

Then

ϕ(β, t, a) = Ea

e
−

t∫

0
k(xs)ds



=

∫ ∞

−∞
e−βτPa(Φ(t) ∈ dτ)

=

∫ ∞

0
e−βτPa(Φ(t) ∈ dτ)

for, if B ⊂ (−∞, 0) thenPa {w : Φ(t) ∈ B} = 0. Also if v(a) = v(β, α, a) =
∞∫

0

e−αtϕ(β, t, a)dt we have

v(a) = Ea

(∫ ∞

0
e−αt f (xt)e

−
∫ t
0 k(xs)dsdt

)
where f ≡ 1.

From Kac’s theorem,v is a solution of the differential equation
(
α + k − 1

2
d2

da2

)
y = 1 (a.e.)

i.e.,v satisfies
(
α + β − 1

2
d2

da2

)
y = 1 if a > 0



9. A Theorem of Kac 43

(
α − 1

2
d2

da2

)
y = 1 if a < 0

54

The general solution of this equation is

y =
1

α + β
+ A1e−

√
2(α+β)x

+ A2e
√

2(α+β)x, x > 0

=
1
α
+ B1e−

√
2αx
+ B2e

√
2αx, x < 0.

Sincev is boundedA2 = B1 = 0 and using the factv is continuous
andv′ is continuous at 0 we have

v(0) = v(β, α, 0) =
1

√
α
√
α + β

.

Now

∞∫

0

e−αt

t∫

0

1
√
π(t − s)

1
√
πs

e−βsds dt

=

∞∫

0

e−βs ds
√
πs

∞∫

s

1
√
π(t − s)

e−αtdt

=

∞∫

0

e−βs ds
√
πs

∞∫

0

1
√
πt

e−α(t+s)dt

=

∞∫

0

e−(α+β)s ds
√
πs

∞∫

0

1
√
πt

e−αtdt

=
1√

α(α + β)
.

Therefore,

∞∫

0

e−αtϕ(β, t, 0)dt = v(0) =

∞∫

0

e−αt

t∫

0

1
√
π(t − s)

1
√
πs

e−βsdsdt.
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55

Fixing β, since this is true for allα, andϕ(β, t, a) and
t∫

0

1√
π(t−s)

1√
πs

e−βsdsare continuous int, we have

ϕ(β, t, 0) ≡
t∫

0

1
√
π(t − s)

1
√
πs

e−βs ds

i.e.,

∞∫

0

e−βτP0(Φ(t) ∈ dτ) =

t∫

0

e−βs 1

π
√

s(t − s)
ds.

Thus finally

P0(Φ(t) ∈ ds) =
1

π
√

s(t − s)
ds.



Section 2

Srong Markov Processes

1 Markov time
56

Definition (). Let (S,W,Pa) be a Markov process with W=Wrc, Wd1 or
Wc. A mappingσ : W→ [0,∞] is called Markov time if

(w : σ(w) ≥ t) ∈ Bt.

It is easily seen thatw → w−σ is a measurable map ofW → W. In
fact, it is enough to show that

w→ w−σ(t) = x(σΛt,W)

is measurable, and this is immediate sincex(s,w), σ(w), t andw are all
measurable in the pair (s,w). Similarly, w→ w+σ is measurable.

The system of all subsets ofW of the form (w : w−
σ(w) ∈ B), B ∈ B,

is denoted byBσ. Bσ is a Borel algebra contained inB. We shall give
examples to show thatσ is not alwaysBσ -measurable. However, ifσ <

∞, xσ = w(σ(w)) is Bσ-measurable, forxσ = lim
t→∞

w−σ(t) andxσ(wt−) is

Bσ -measurable for everyt.
If σ is a Markov time, thenσ+ ∈ is also a Markov time for every

∈≥ 0. It is not difficult to see thatBσ+∈ increases with∈. Let

Bσ+ =

⋂

∈>0

Bσ+∈ =
⋂

n

Bσ+ 1/n.

45
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ThenBσ+ ⊃ Bσ andBσ+ ⊂ Bσ+∈ for every∈> 0. The class of all 57

boundedBσ -measurable functions is denoted byBσ and the class of all
boundedBσ+ -measurable funcitons byBσ+.

Theorem (). σ(w) is Bσ+ -measurable.

Proof. We shall prove that for every∈> 0, σ(w) = σ(w−σ+∈), from this
the theorem follows. Letw0 ∈ W. If σ(w0) = ∞ the equality is trivial.
Let t = σ(w0) < ∞. Now

(w : σ(w) ≥ t) ∈ Bt ⊂ Bt+∈

for any∈> 0. Also

(w : σ(w) > t) =
⋃

n

(
w : σ(w) ≥ t +

∈
n

)
∈ Bt+∈.

It follows that
(w : σ(w) = t) ∈ Bt+∈.

Hence
(w : σ(w) = t) = (w : w−t+∈ ∈ B)

for someB ∈ B. Sinceσ(w0) = t we see that (w0)−t+∈ ∈ B.
Hence [

(w0)−t+∈
]−
t+∈ = (w0)−t+∈ ∈ B.

So
σ

[
(w0)−t+∈

]
= t,

i.e.,
σ

[
(w0)−σ(w0)+∈

]
= σ(w0),

completing the proof. �

2 Examples of Markov time
58

1. σ ≡ t.
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2. σ = σG = inf . {t : xt(w) ∈ G}
= first passage time for the open setG ⊂ S.

We have

{w : σG < t} = {w : ∃s< t and xs ∈ G}
= {w : ∃r < t, xr ∈ G and r rational}

=

⋃

r
r rational,r<t

{
w : xr(w

−
t ) ∈ G

}
.

ThusσG is a Markov time.

Remark. σ = σG is not alwaysBσ-measurable. Ifσ is a Markov time
which isBσ-measurable, then

{w : σ((w) < c} =
{
w : w−σ ∈ B, B ∈ B

}
,

and since (w−)−σ = w−σ, we should haveσ(w−σ) < c. In particular, ifσ
is Bσ-measurable andσ(w) < ∞, thenσ(w−σ) < ∞. Now consider a
Markov process withS = (−∞,∞),W = Wc and letσ = σG where
G = (0,∞). Let w(t) = −1+ t. Thenσ(w) = 1. Also w−σ(t) = −1+ t if
t ≤ 1 andw−σ(t) = 0 if t ≥ 1. Thereforeσ(w−σ) = ∞. Henceσ cannot be
Bσ-measurable.

3. If G = {∞}, σG = σ∞ = killing time.

4. LetW = Wc and

σ = σF = inf . {t : xt ∈ F} .

whereF is closed inS. LetGm ⊃ Gm+1 be a sequence of open sets59

such that
⋂
m

Gm = F, and letσ̃ = lim
m

σGm. Thenσ̃ is measurable

[actually it is a Markov time]. We easily verify that

σF =


σ̃ if σ̃ < σ∞

∞ if σ̃ = σ∞.
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It follows thatσF is measurable. Now it is easily verified that

[w : σF(w) < t] =
[
w : σF(w−t ) < t

]
;

in fact the closedness ofF is not necessary to prove this. Sincew→ w−t
is Bt -measurable, it follows thatσF is a Markov time.

3 Definition of strong Markov process

LetM be a Markov process.M is said to have thestrong Markov prop-
erty with respect to the Markov timeσ if

Pa(w : w ∈ B1,w
+

σ ∈ B2) = Ea(w ∈ B1 : Pxσ(B2)),

whereB1 ∈ Bσ+ andB2 ∈ B.

Remark. The above condition is equivalent to

Ea( f (w)g(w+σ)) = Ea( f (w)Exσ (g(w′))),

or, more generally, to

Ea(w ∈ B1, w+σ ∈ B2 : f (w)g(w+σ)) =

= Ea(w ∈ B1 : f (w)Exσ (w′ ∈ B2 : g(w′))),

where60

f ∈ Bσ+, g ∈ B, B1 ∈ Bσ+ and B2 ∈ B.

Definition ().M is called astrong Markov processif it has the strong
markov property with respect to all Markov times. A strong Markov
process is called adiffusion processif W =Wc(S).

4 A condition for a Markov process to be a storng
Markov process

We shall later give examples to show that not all Markov processes are
strong Markov processes. The following theorem gives a sufficient con-
dition for a Markov process to be a strong Markov process.
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Theorem (). LetM = (S,W,Pa) be Markov process and C(S) the set of
all real continuous bounded functions on S . If Ht maps C(S) into C(S),
thenM is a strong Markov process.

Proof. Letσ be a Markov time. We have to show that

Ea( f (w)g(w+σ)) = Ea( f (w)Exσ (g(w′))).

�

Let δ > 0 and f ∈ Bσ+. Then, sincef ∈ Bσ+∈ for every∈> 0,

(w : t − δ ≤ f (w) < t) = (w : w−σ+∈ ∈ B), B ∈ B.

Also (w−σ+∈)
−
σ+∈ = w−σ+∈. Therefore

i − δ ≤ f (w−σ+∈) < t.

61

Puttingt = f (w) + δ and lettingδ→ 0 we getf (w) = f (w−σ+∈).

If σm =
[mσ] + 1

m
, thenσm > σ andσm→ σ asm→ ∞. We have

for f ∈ Bσ+ andg1, g2 ∈ B(S),

Ea( f (w)g1(xt1+σ)g2(xt2+σ)) = Ea(σ < ∞ : f (w)g1(xt1+σ)g2(xt2+σ))

and
f (w−σm

) = f (w−σ+σm−σ) = f (w).

If g1, g2 ∈ C(S), gi(xti+σm)→ gi(xti+σ), i = 1, 2, asm→ ∞.
We have therefore

Ea( f (w)g1(xt1+σ)g2(xt2+σ)) =

= lim
m→∞

Ea(σ < ∞ : f (w−σm
)g1(xt1+σm)g2(xt2+σm))

= lim
m→∞

∞∑

k=1

Ea
[
∗ : f (w−σm

)g1(xt1+σm)g2(xt2+σm),

where∗ ≡
(
σ ≥ k− 1

m

)
−

(
σ ≥ k

m

)
,
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= lim
m→∞

∞∑

k=1

Ea
[∗ : f (w−k/m)g1(xt1+k/m)g2(xt2+k/m),

sinceσm = k/m if
k− 1

m
≤ σ <

k
m

. From the definition of Markov time,

(
σ ≥ k− 1

m

)
∈ B k−1

m
⊂ B k

m
, (σ ≥ k/m) ∈ Bk/m,

so that∗ ∈ Bk/m. Therefore form the Markov property we have the last62

expression equal to

lim
m→∞

∞∑

k=1

Ea

[
∗ : f (w−k/m)Exk/m

] {
g1(xt1)g2(xt2)

}

= lim
m→∞

∞∑

k=1

Ea

[
∗ : f (w−σm

)Exσm

{
g1(xt1)g2(xt2)

}]

= lim
m→∞

Ea

[
σ < ∞ : f (w−σm

)F(xσm)
]
,

whereF(xσm) = Exσm

{
g1(xt1)g2(xt2)

}
. Also,

F(b) = Eb(g1(xt1)g2(xt2))

= Eb

[
g1(xt2(w

−
t1))g2(xt2−t1(w

+

t1))
]
, if t2 > t1,

= Eb

[
g1(xt2(w

−
t1))Ext1

(g2(xt2−t1(w
′)))

]

= Eb
[
g1(xt1)Ht2−t1g2(xt1)

]

= Ht1
[
g1Ht2−t1 g2

]
(b).

ThusF(b) is continuous inb sinceHt : C(S)→ C(S).
Therefore

Ea
[
f (w)g1(xt1+σ)g2(xt2+σ)

]
=

= Ea
[
σ < ∞ : f (w)Exσ (g1(xt1)g2(xt2))

]

= Ea
[
f (w)Exσ (g1(xt1)g2(xt2))

]
.
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63

Generalizing this ton > 2, we have, ifgi ∈ C(S),

Ea
[
f (w)g1(xt1+σ) . . . gn(xtn+σ)

]
= Ea

[
f (w)Exσ (g1(xt1) . . . gn(xtn))

]
.

The same equation holds ifgi ∈ B(S). If B ∈ B and B = (w :
w(t1) ∈ E1, . . . ,w(tn) ∈ En), then

XB(w) = XE1(xt1) . . .XEn(xtn),

and therefore,

Ea f (w)XB(w+σ) = Ea
[
f (w)Exσ (XE1(xt1) . . .XEn(xtn)

= Ea
[
f (w)Exσ (XB(w′))

]
.

The equation

Ea( f (w)g(w+σ)) = Ea
[
f (w)Exσ (g(w′))

]

follows easily now forg ∈ B.

5 Example of a Markov process which is not a
strong Markov process

The above theorem shows the all the preceding examples of Markov 64

processes are strong Markov processes. The natural question is whether
there exist Markov processes which are not strong Markov processes.
The following example answers this question in the affirmative.

Suppose thatΩ(P) is a probability space andτ(w), w ∈ Ω, a random
variable onΩ(P) such that

P(w : τ(w) ∈ E) =
∫

E

λe−λtdt, λ > 0.

Such a random variable is often calledexponetial holding time.
Let S =

[
0,∞) andW =Wc. Define

ξ(a)(t,w) = a+ t, a > 0;
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ξ(0)(t.w) = 0, if t < τ(w),

t − τ, if t ≥ τ(w).

ξ(a)(t,w) are random variables onΩ(p) and for fixedw are inWc. For
B ∈ B(W) and 0≤ a < ∞, define

Pa(B) = P
[
w : ξ(a)(.,w) ∈ B

]
.

For a > 0, then,Pa(B) = 1 if ξ(a) ∈ B andPa(B) = 0 otherwise.
To show thatM = (S,W,Pa) is a Markov process, we have only to

verify the Markov property. To do this, we show that iff1, f2 ∈ B(S),
then

Ea( f1(xt1) f2(xt2)) = Ht1( f1Ht2−t1 f2)(a).

Denoting byE the expectiation onΩ, we have65

Ht f (a) = f (a+ t), a > 0;

Ht f (0) = E0( f (xt)) = E(τ ≤ t; f (t − τ)) + E(t < τ; f (0)).

So if a > 0,

Ea( f1(xt1) f2(xt1)) = f1(a+ t1) f2(a+ t2).

= f1(a+ t1)Ht2−t1 f (a+ t1)

= Ht1( f1Ht2−t1 f2)(a)

If a = 0, we have

E0( f1(xt1) f2(xt2)) = E(τ ≤ t1; f1(t1 − τ) f2(t2 − τ))
+ E(t1 < τ ≤ t2; f1(0) f2(t2 − τ)) + E(t2 < τ : f1(0) f2(0))

=

t1∫

0

f1(t1 − s) f2(t2 − s)λe−λsds+ f1(0)

t2∫

t1

f2(t2 − s)λe−λsds+ f1(0) f2(0)e−λt2
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=

t1∫

0

f1(t1 − s) f2(t2 − s)λe−λsds+ f1(0)e−λt1

t2−t1∫

0

f2(t2 − t1 − s)λe−λsds+ f1(0) f2(0)e−λt2

=

t1∫

0

f1(t1 − s)
[
Ht2−t1 f2(t1 − s)

]
λe−λsds+ f1(0)e−λt1



t2−t1∫

0

f2(t2 − t1 − s)λe−λsds+ f2(0)e−λ(t2−t1)



=

t1∫

0

f1(t1 − s)Ht2−t1 f2(t1 − s)λe−λs
+ f1(0)e−λt1Ht2−t1 f2(0)

= Ht1
[
f1 Ht2−t1 f2

]
(0).

66

The following facts are easily verified:

N = { f : f = 0 a.e., f (0) = 0} ;
R =

{
u : u abs.cont. in (0,∞), u, u′ ∈ B (0,∞)

}
;

G u(a) = u′(a) for a > 0 andG u(0) =
[
u(0+) − u(0)

]
λ.

We now show thatM is not strong Marko process. Letσ = σG,
whereG = (0,∞). We shall show thatM does not have the strong
Markov property with respect to the Markov timeσ. We have,

A = P0(σ > 0, σ(W+σ) > 0) = 0,

sinceσ(w+σ) = 0. Also
{
w : τ(w) > 0

}
⊂

{
w : σ(ξ(0)(.,w)) > 0

}
,

and hence

P0(w : σ(w) > 0) = P(w : σ(ξ(0)(.,w)) > 0 ≥ P
{
w : τ(w) > 0

}
= 1.
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Note thatw(σ(w)) = 0. If M has the strong Markov property with
respect toσ, we should have

0 = A = P0 (σ > 0, σ(w+σ) > 0) = E0(σ > 0;Pxσ (σ > 0))

= E0(σ > 0;P0(σ > 0)) = 1 · P0(σ > 0) = 1,

but this is absurd.67

6 Dynkin’s formula and generalized first passage
time relation

We now prove some theorems on Markov processes which have the
strong Markov property with respect to the Markov timeσ.

Theorem 1(Dynkin). If u(a) = Gα f (a), then

u(a) = Ea



∞∫

0

e−αt f (xt)dt

 + Ea(e−ασu(xσ)).

Proof. We have

u(a) = Ea



∞∫

0

e−αt f (xt)dt



= Ea



σ∫

0

e−αt f (xt)dt

 + Ea



∞∫

σ

e−αt f (xt)dt

 ,

and

Ea



∞∫

σ

e−αt f (xt)dt

 = Ea

e
−ασ

∞∫

0

e−αt f (xt(w
+

σ))dt



=

∞∫

0

e−αtEa(e−ασ f (xt(w
+

σ)))dt
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=

∞∫

0

e−αtEa(e−ασExσ ( f (xt))dt,

becauseM has the strong Markov property with respect toσ. (Note that 68

if ϕ is a Borel function on the real line, thenϕ(σ) ∈ B
σ+

).

Therefore

Ea



∞∫

0

e−αt f (xt)dt

 = Ea



∞∫

0

e−ασExσ (e−αt f (xt))dt



= Ea(e−ασu(xσ)).

�

Before proving Theorem 2, we prove the following

Lemma (). Let

µa(dt db) = Pa[σ ∈ dt, xσ ∈ db]

be the meausre induced on the Borel sets of R′ × S by the mapping
w→ (σ, xσ) of W into R′×S . Letϕ(t, b) be a bounded Borel measurable
function on R′ × S . Then

∫

[
o,∞)×S

e−αtµa(dt db)

∞∫

s=0

e−αsϕ(s, b)ds

=

∞∫

0

e−αtdt
∫

[
0,t
]
×S

ϕ(t − s, b)µa(ds db)

Proof. We have

∫

[0,∞)×S

e−αtµa(dtdb)

∞∫

0

e−αsϕ(s, b)db



56 2. Srong Markov Processes

=

∫

[0,∞)×S

µa(dt db)

∞∫

t

e−αsϕ(s− t, b)ds

=

∫

[0,∞)×S

µa(dt db)

∞∫

0

F(t, s, b)ds

where69

F(t, s, b) = e−αsϕ(s− t, b), if s≥ t;

0, if s< t.

Changing the order of integration we get the last expressionequal to

∞∫

0

ds

∞∫

[0,∞)×S

F(t, s, b)µa(dt db) =

∞∫

0

e−αsds

∞∫

[0,∞)×S

ϕ(s− t, b)µa(dt db)

This proves the lemma. �

Theorem 2. (Generalized first passage time relation). Put

Q(t, a,E) = Pa(xt ∈ E andσ > t).

Then

P(t, a,E) = Q(t, a,E) +
∫

[0,t]×S

P(t − s, b,E)µa(ds db)

Remark. Whenσ is the first passage time, this is usually known as the
‘first passage time relation’.

Proof. We have

Ea



σ∫

0

e−αt f (xt)dt

 = Ea



∞∫

0

e−αt f (xt) χ
[0,σ]

(t)dt
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=

∞∫

0

e−αtEa(σ > t : f (xt))dt.

Further70

Ea(e−ασu(xσ)) =
∫

[0,∞)×S

e−αtu(b)µa(dt db),

and sinceu(b) =
∞∫

0

e−αsHs f (b)ds, we have from the Lemma,

Ea(e−ασu(xσ)) =

∞∫

t=0

e−αtdt
∫

[0,t]×S

Ht−s f (b)µa(ds db).

From Theorem 1, therefore

∞∫

0

e−αtHt f (a)dt = u(a) =

∞∫

0

e−αtEa(σ > t : f (xt)dt

+

∞∫

t=0

e−αtdt
∫

[0,t]×S

Ht−s f (b)µa(ds db).

Since the last equation is true for allα > 0, we have for almost allt,

Ht f (a) = Ea(σ > t; f (xt)) +
∫

[0,t]×S

Ht−s f (b)µa(dsdb).

Now suppose thatf is bounded and continuous. Then

Ht f (a) − Ea(σ > t : f (xt)) = Ea(σ ≤ t; f (xt)) = Ea( f (xt) χ
[0,t]

(σ(w)))

is right continuous int since f (xt) and χ
[0,t]

are right continuous int.

Further
∫

[0,t]×S

Ht−s f (b)µa(dsdb) =
∫

[0,∞]χS

X[0,t](s)Ht−s f (b)µa(ds db)
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and so is also right continuous int. Therefore the above equation holds71

for all t if f is continuous and bounded. It follows easily that for any
f ∈ B(s) the equation is true identically int. Putting f = XE we get
Theorem 2.

The following rough proof should give us an intuitive explanation
of Theorem 2.

P(t, a,E) − Q(t, a,E) = Pa(xt ∈ E, t ≥ σ)

=

t∫

s=0

t∫

S

Pa(σ ∈ ds,Xσ ∈ db, xt ∈ E)

=

t∫

s=0

t∫

S

Pa(σ ∈ ds,XS ∈ db, xt−s(W
+

S) ∈ E

=

t∫

s=0

t∫

S

Pa(σ ∈ ds, XS ∈ db)Pb(xt−s ∈ E)

=

t∫

s=0

t∫

S

P(t − s, b,E)µ(ds db).

We give below two examples to illustrate the use of Theorem 2.�

Example 1.LetM be the standard Brownian motion,E ∈ B(0,∞) and
a > 0. Then we shall prove that

Pa(xt ∈ E, t < σ0) =
∫

E

[
N(t, a, b) − N(t, a,−b)

]
db

whereσ0(w) = inf(t : w(t) = 0),72

Sincew(σ0(w)) = 0, for E ∈ B[0.∞] andF ∈ B(S) we have

µa(E×F) = Pa(σ0 ∈ E, xσ0 ∈ F) = 0, if 0 ∈ F; Pa(σ0 ∈ E), if 0 ∈ F.

Therefore form Theorem 2, withσ = σ0, we have

P(t, a,E) = Q(t, a,E) +

t∫

s=0

P(t − s, o,E)µa(ds),
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P(t, a,−E) = Q(t, a,−E) +

t∫

s=0

P(t − s, o,−E)µa(ds).

Sincea > 0, E ∈ B(0,∞) and all continuous paths starting at a and
going into−E pass througho, Q(t, a,−E) = 0. Also P(t − s, o,E) =
P(t − s, o,−E). Therefor, subtractiong,

P(t, a,E) − P(t, a,−E) = Q(t, a,E) = Pa(xt ∈ E, t < σ0)

i.e.,
∫

E

[
N(t, a, b) − N(t, a,−b)

]
db= Pa(xt ∈ E, t < σ0).

Remark . Pa(xt ∈ E and t < σ◦) = Pa(xt ∈ E and xs > 0,
0 ≤ s≤ t).

Example 2.

Pa(xs > 0, 0 ≤ s≤ t) = 2

a∫

0

1
√

2πt
e−ξ

2/2tdξ = P0(|xt | < a).

PutE = (0,∞) in Example 1. Then we get 73

Pa(xs > 0, 0 ≤ s≤ t) =
∫ ∞

0

1
√

2πt

(
e−

(b−a)2

2t − e
(b+a)2

2t

)
db

= 2
∫ a

0

1
√

2πt
e−ξ

2/2tdξ

= P0(|xt | < a).

Note that ifa > 0

Pa(xs > 0, 0 ≤ s≤ t) = Pa(σ0 > t) =

= Pa

(
min
0≤s≤t

xs > 0
)
= Pa

(
min
0≤s≤t

xs > −a
)

= P0

(
max
0≤s≤t

xs < a
)
.

The following important theorem which follows easily from Theo-
rem 1 gives what is called Dynkin’s formula.
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Theorem 3. If Ea(σ) < ∞ and u∈ D(G ), then

Ea

(∫ σ

0
G u(xt)dt

)
= Ea(u(xσ)) − u(a).

Proof. From Theorem 1,

u(a) = Ea

(∫ σ

0
e−αt f (xt)dt

)
+ Ea(e−ασu(xσ)).

Also74

f (xt) = u(xt) − G u(xt).

Therefore

u(a) = Ea

{∫ σ

0
e−αt(αu(xt) − u(xt))dt

}
+ Ea(e−ασ(u(xσ)).

Lettingα→ 0, we get the result. �

7 Blumenthal’s 0− 1 law

LetM denote a strong Markov process.

Theorem 1. If A ∈ B0+(=
⋂
ε>0
Bε), then Pa(A) = 1 or 0.

Proof. For Pa(A) = Pa(A,w ∈ A) = Pa(A,w+0 ∈ A)

= Ea(A : Px0(A)) = Ea(Pa(A) : A) = (Pa(A))2

�

Theorem 2. If f (w)εB0+, then Pa( f = Ea( f )) = 1.

Proof. Since f ∈ B0+, f is bounded. From Theorem 1,

Pa[ f > Ea( f )] = 1 or 0.

Obviously it cannot be 1, since thenEa( f ) < Ea( f ). HencePa[ f >
Ea( f )] = 0. For the same reason,Pa[ f < Ea( f )] = 0. HencePa[ f =
Ea( f )] = 1. �
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We consider the following

Example.Let ϕ(t) be a function oft, positive and increasing fort > 0.
Let xt be a real valued strong Markov process. Consider

Pa(ϕ) = Pa

limδ↓0
⋂

0≤t≤δ
(|xt − a|) ≤ ϕ(t)

 .

75

By Theorem 1,Pa(ϕ) = 1 or 0. If Pa(ϕ) = 1, we say thatϕ ∈ Uε

(the upper class) and ifPa(ϕ) = 0, we say thatϕ ∈ La (the lower class).
Wiener proved that for the Brownian notion,

ϕ(t) = t
1
2 ∈ Ua andϕ(t) = t

1
2+ε ∈ La for everyε > 0

These results have been made more precise by P. Lavy, Kolmogorff
and Eröds P. Levy’s theorem is that

ϕ(t) ∈ (1+ c)
√

2t log log 1/t ∈Ua, c > 0

La, c < 0.

8 Markov process with discrete state space

Let M be a right continuous Markov process with discrete state space
S. SinceS satisfies the second countability axiom, it is countable. We
denote the elements ofS by (1, 2, 3, . . .). SinceS is discrete,B(S) =
C(S) andW consists of the set of all step functions before their killing
-time.M is a Markov process becauseHtC(S) ⊂ C(S).

Let τa = inf(t : xt , a) = inf(t : xt ∈ G) whereG = (S − {a}) ∪ {∞}.
τa is called thefirst leaving timefrom a. Clearlyτa ≤ σ∞. τa has the
following properties:

1. τa is a Markov time. 76

For,

(τa ≥ t) = (xs = a for all s< t)
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= (xr = a for all r < t, r rational)∈ Bt.

Note that

(τa > t) = (xs = a for all s≤ t)

= (xr = a for all rationalr < t andxt = a) ∈ Bt.

2. Pa(τa > t) = epat where
1
pa
= Ea(τa)

Indeed we have

Pa(τa > t + s) = Pa(τa > t, τa(w+t ) > s)

= Ea(τa > t, pxt (τa > s))

= Ea(τa > t,Pa(τa > s)), sincext = a,

= Pa(τa > t)Pa(τa > s)

Therefore, ifϕ(t) = Pa(τa > t), thenϕ(t) is right continuous, as is
easily seen, 0≤ ϕ(t) ≤ 1 andϕ(t + s) = ϕ(t)ϕ(s). Further

ϕ(0) = Pa(τa > 0) = Pa(w : xo = a) = 1.

If ϕ(t) = 0 for somet > 0, thenϕ(t) = (ϕ(t/n))n
= 0 and so we

should haveϕ(t/n) = 0 for all n, and by right continuity,ϕ(0) = 0.77

Therefore 0< ϕ(t) ≤ 1 for all t. Thus

ϕ(t) = e−Pat, 0 ≤ pa < ∞.

If pa = 0, thenϕ(t) ≡ 1, i.e. Pa(τa > t) = 1, i.e. Pa(τa = ∞) = 1
and so

Ea(τa) =
∫

τa=∞

τa(w)dPa(w) = ∞.

If pa > 0, the mapw → τa(w) induces the mesurepae−patdt.
Therefore

Ea(τa) =
∫ ∞

0
tpae−patdt =

1
pa
.
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3. xτa andτa are independent with respect toPa.

Indeed, noticing thatτa(w) = t + τa(w+t ) if τa(w) > t, we have

Pa(τa > t, xτaεE) = Pa(τa > t, xt+τa(w+t )(w) ∈ E)

= Pa(τa > t, xτa(w+t )(w
+

t ) ∈ E

= Ea(τa > t, pxt (xτa ∈ E))

= Ea(τa > t,Pa(xτa ∈ E))

= Pa(xτa ∈ E)Pa(τa > t).

We now determine the generator. From Theorem 1, 78

u(a) = Ea

(∫ τa

0
f (xt)e

−αtdt

)
+ Ea(e−ατau(xτa))

Sincew(t) = a for t < τa(w) andτa, xτa are independent, we have

u(a) = Ea

(
f (a)

∫ τa

0
e−αtdt

)
+ Ea(e−ατa)Ea(u(xτa))

= f (a)Ea

(
1− e−ατa

α

)
+ Ea(e−ατa)Ea(u(xτa))

= f (a)
∫ ∞

0

1− e−αt

α
e−pat padt + Ea(u(xτa))

∫ ∞

0
e−αte−pat padt

=
f (a)

pa + α
+

pa

p+αa
Ea(u(xτa)).

Let now
πab = Pa(xτa = b).

Then
Ea(u(xτa)) =

∑

b∈S∪∞
πabu(b).

Sinceu(∞) is by definition zero,

u(a) =
f (a)

pa + α
+

pa

pa + α

∑

b∈S
πabu(b).



64 2. Srong Markov Processes

From the last equation we see thatu ≡ 0 implies f ≡ 0. Therefore 79

M =
{
f : f ≡ 0

}
.

Also from the above we get

αu(a) − f (a) = pa

∑

b∈S
πabu(b) − pau(a)

and hence

G u(a) = pa


∑

b∈S
πabu(b) − u(a)



= pa


∑

b∈S
πab(u(b) − u(a)) − πa∞u(a)



since
∑

b∈S
πab+ πa∞ = 1.

Remark. It is generally difficult to determineR = D(G ). We can also
find G from Dynkin’s formula as follows:

Ea

(∫ τa

0
G u(xt)dt

)
= Ea(u(xτa)) − u(a).

Therefore

G u(a)Ea

[∫ τa

0
dt

]
=

∑

b∈S
πabu(b) − u(a)

i.e.,G u(a)Ea(τa) =
∑

b∈S
πabu(b) − u(a) and sinceEa(τa) = 1/pa, we get

the result.

Example.Suppose thatπab = 0 expect forb = a± 1 orb = ∞ and let80

πa,a+1 = µa, πa,a−1 = νa, πa∞ = λa1− µa − νa.

This process is called thebirth and death process. We have

G u(a) = pa(µau(a+ 1)+ νau(a− 1)− u(a))

= pa
[
µa(u(a+ 1)− u(a)) + νa(u(a− 1)− u(a)) − λau(a)

]

In this particular case we can derermineDG which will depend on
the behaviour ofpa, µa andνa ata = ∞.
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9 Generator in the restricted sence

In case of the generatorG defined previously there was some ambiguity
so thatG u(a) had no meaning unless we took a version ofG u. We shall
now aviod this ambiguity by restricting the domain of the generator; we
can then speak ofG u(a). Before doing this we prove some theorems
on the domain of the new generator. We first define the functionspace
D(S).

Definition (). Let yt, t > 0, be a random process on a probability space
Ω(B,P). We say that yt tends to y essentially(P) as t ↓ t0, in symbols:
yt −−−−−→

ess.(P)
y, if for any countable t-set C with t0 ∈ c̄,

p

(
lim

t∈C,t→t0
yt = y

)
= 1.

LetM = (S,WPa) be a strong Markov proces. We make the follow-81

ing

Definition (). D(S) =
{
f : f ∈ B(S) and for every a, f(xt) −−−−−−→

ess.(Pa)

f (a), as t↓ 0
}
.

Theorem 1. D(S) ⊃⊂ (S).

Proof. Clear. �

Theorem 2. GαB(S) ⊂ D(S). In particular, GαD(S) ⊂ D(S).

The proof depends on the following Lemma, the proof of which can
be in Doob’s book (p.355).

Lemma (). Let z be a random variable on a probability spaceΩ(B, p),
with E(|z|) < ∞. LetBt ⊂ B, 0 < t < ∞, be Borel algebras such that if
t < s,Bt ⊂ Bs. Then, ifBo+ =

⋂
t>0
Bt, we have

E(z/Bt) −−−−−→
ess.(P)

E(z/Bo+).
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Proof of Theorem 2.We prove first that

Gα f (xt) = eαtEa(z/Bt) − eαt
∫ t

o
e−αs f (xs)ds

with Pa probability 1, wherez=
∫ ∞
0 e−αs f (xs)ds. Indeed, ifBt ∈ Bt, by

the Markov property,

Ea(Gα f (xt) : Bt) = Ea

(
Ext

(∫ ∞

0
e−αs f (xs)ds

)
: Bt

)

= Ea

(∫ ∞

0
e−αs f (xs(w

+

t ))ds : Bt

)

= eαtEa

(∫ ∞

0
e−αs f (xs)ds : Bt

)
.

82

SinceGα f (xt) ∈ Bt, by the definition of conditional expectation we
have

Gα f (xt) = eαtEa

(∫ ∞

t
e−αs f (xs)ds

/
Bt

)

= eαtEa

(∫ ∞

0
e−αs f (xs)ds

/
Bt

)
− eαtEa

(∫ t

0
e−αs f (xs)ds

/
Bt

)

= eαtEa(z/Bt) − eαt



t∫

0

e−αs f (xs)ds

 .

Since
∫ t

0
e−αs f (xs)ds ∈ Bt, the conditional expectation of

∫ t

0
e−αs

f (xs)ds is
∫ t

0
e−αs f (xs)ds with probability 1. Using the lemma, there-

fore,
Gα f (xt) −−−−−−→

ess (Pa)
Ea(z

/
B0+).

From Blumenthal’s 0− 1 law, if EεB0+, Pa(E) = 0 or 1. Hence

Ea(z
/
B0+) = Ea(z) = Gα f (a).

This proves the theorem.83
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Theorem 3. If f ∈ D(S), f (xt) is right continuous with respect to L′-
norm.

Proof. Since f ∈ D(S), if tn→ 0, Pa( f (xt)→ f (a)) = 1, so that

Ea(| f (xt) − f (a)|) → 0 asn→ ∞.

Now

Ea(| f (xs+t) − f (xs)|) = Ea(| f (xt(w
+

s )) − f (x0(w+0))|)
= Ea(Exs(| f (xt) − f (x0)|))→ 0 as n→ ∞.

This proves the result �

Theorem 4. If F ∈ D(S) and Gα f = 0, then f≡ 0.

Proof. Note that ifgα f = 0 for someβ, Gβ f = 0 for all β, from the
resolvent equation. From Theorem 3,

Ht f (a) = Ea( f (xt))→ f (a) ast → 0.

Now

0 = αGα f (a) = α
∫ ∞

0
e−αtHt f (a)dt

=

∫ ∞

0
e−sHs/α f (a)ds→ f (a) asα→ ∞.

Q.E.D. �

Theorem 5. If f εD(S),

Pa

(
1
t

∫ t

0
f (xs)ds→ f (a) as t→ 0

)
= 1.

84

Proof. Puty(s,w) = f (xs(w)) − f (a) and letC =
{
2−n

k, k, n = 1, 2, . . .
}

be the set of dyadic rational numbers. Then from the definition of D(S),

lim
t→0

sup
sεC,0≤s≤t

|y(s,w)| = 0,
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for w ∈ Ω1, with Pa(Ω1) = 1. Putϕn(s) =
[2ns] + 1

2n . Thenϕn(s) → s

for everys. From Theorem 3,

∫ 1

0
Ea(|y(ϕn(s),w) − y(s,w)|)ds→ 0 asn→∞,

i.e., y(ϕn(s),w) → y(s,w) in L′-norm on L′([0, 1] × W). Therefore,
there exists a subsequence,ψn(s) = ϕkn(s), say, such thaty(ψn(s),w) →
y(s,w) for (s,w) ∈ A, say, with (m× Pa)(A) = 1, m× Pa denoting the
product measure on [0, 1] ×W. Now

(m× Pa)(A) =
∫

m(s : (s,w) ∈ A)dPa(w) = 1,

so thatm(s : (s,w) ∈ A) = 1 for w ∈ Ω2, Pa(Ω2) = 1. LetΩ1 ∩ Ω2 = Ω.
Then ifw ∈ Ω, w ∈ Ω2 so that

∣∣∣∣∣
1
t

∫ t

0
y(s,w)ds

∣∣∣∣∣ = lim
n

∣∣∣∣∣
1
t

∫ t

0
y(ψn(s),w)ds

∣∣∣∣∣
≤ lim

n
sup

n∈C,0≤s≤t
y(s,w)→ 0 ast → 0,

sincew ∈ Ω1.85

Definition of generator in the restricted sence. Let M be a strong
Markov process. Consider the restriction ofGα to D(S). We shall de-
note this also byGα. �

Theorem 6.Rα = GαD(S) is indepentent ofα. (We can therefore denote
Rα byR.)

The proof is similar to that is the case of the generator defined ear-
lier.

Theorem 7. Gα : D(S)→ R is 1 : 1and linear.

Proof. SinceGα f = 0 implies f ≡ 0, Gα is 1 : 1. Let us writeGα =
α −G−1

α . �

Theorem 8. Gα is independent ofα.
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This is obvious.

Definition (). G = α−G−1
α is called thegenerator in the restricted sence.

SinceGα is 1 : 1,G u ∈ B(S).

Theorem 9(Dynkin’s formula). If u ∈ D(G ) andσ a Markov time with
Ea(σ) < ∞, then

Ea

(∫ σ

0
G u(xt)dt

)
= Ea(u(xσ)) − u(a).

proof as before.

Theorem 10(Dynkin). If G u is continuous at a and ifG u(a) , 0, then

G u(a) = lim
U↓a

Ea(u(xτU )) − u(a)

Ea(τU)

where U denotes a closed neighbourhood of a andτU is the leaving 86

time for U, i.e.τU = inf {t : xt ∈ (S − U) ∪∞}.
Proof. SinceG u(a) , 0, we may suppose thatG u(a) > α > 0. Let U
be a closed neighbourhood of a such that forb ∈ U, G u(b) > α/2. Let
τn
= τU ∧ n; thenEa(τn) < ∞ and

Ea

(∫ τn

0
G u(xt)dt

)
= Ea(u(xτn)) − u(a).

If T < τn, u(xt) ∈ U andG u(xt) > α/2. Hence 2||u|| ≥ α
2 Ea(τn). If

follows thatEa(τU) < ∞. Therfore

Ea

(∫ τU

0
G u(xt)dt

)
= Ea(u(xτU )) − u(a).

SinceG u(a) ia continuous ata, supb∈∪ |G u(a)−G u(b)| → 0 asU ↓ a.
Therefore

∣∣∣∣∣G u(a) −
Ea(u(xτU )) − u(a)

Ea(τU )

∣∣∣∣∣ =
1

Ea(τU)

∣∣∣∣∣∣Ea

(∫ τU

0
(G u(xt) − G u(a))dt

)∣∣∣∣∣∣

≤ 1
Ea(τU)

Ea(τU)

∣∣∣∣∣∣sup
b∈∪
|G u(a) − G u(b)|

∣∣∣∣∣∣→ 0

as U ↓ a

�
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Theorem 11. If u ∈ D(G ) = R, then given any sequence of Markov87

times{σn} such thatσn > 0, we can find a sequence{τn} of Markov
times,0 < τn ≤ σn such that

G u(a) = lim
n→∞

Ea(u(xτn)) − u(a)

Ea(τn)

Proof. Let θε( f ) = inf
{
t : 1

t

∣∣∣∣
∫ t

0 f (xs)ds− f (a)
∣∣∣∣ > ε

}
. If is easily seen

that θε( f ) is a Morkov time, and sincePa(1
t

∫ t

0
f (xs)ds→ f (a)) = 1,

Pa(θε( f ) > 0) = 1. Let now

τn = θ1/n(G u) ∧ σn ∧ 1.

ThenPa(τn > 0) = 1 and 0< Ea(τn) < 1. Therefore

Ea

(∫ τn

0
G u(xt)dt

)
= Ea(u(xτn)) − u(a).

We have
∣∣∣∣∣G u(a) −

Ea(u(xτn)) − u(a)

Ea(τn)

∣∣∣∣∣

≤ 1
Ea[τn]

Ea

[
1
τn
τn

∣∣∣∣∣
∫ n

0
(G u(xt) − G u(a))dt

∣∣∣∣∣
]

≤ 1
Ea(τn)

Ea(τn)
1
n
→ 0 asn→ ∞.

Properties of generator in the restricted sense: �

Theorem 12(Mean value property). Let U be an open subset of S and88

τU the leaving time from̄U and u∈ D(G ).

(1) If u(a) = Ea(u(xτU )) for every a∈ Ū, thenG u(a) = 0 in U.

(2) Conversely, if Ea(τU) < ∞, G u(a) = 0 in U, then

u(a) = Ea(u(xτU )) for every a∈ U.
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Proof. (1) If u(a) = Ea(u(xτU )) for every a ∈ Ū, thenu(a) = Ea

(u(xτU )) for everya ∈ S. For if a < Ū, Pa(τU = 0) = 1. If follows
thatEa(u(xτU )) = u(a). Noting this, letτ be a Markov time≤ τU .
Then sinceτU = τ + τU(w+τ ), we have

u(a) = Ea(u(xτU )) = Ea(u(xτ+τU (w+τ )(w)))

= Ea(u(xτU (w+τ )(w
+

τ )))

= Ea(Exτ (u(xτU ))) = Ea(u(xτ)).

Now we can choose a sequence of Markov timesτn ≤ τU so that

G u(a) = lim
n

Ea(u(xτn)) − u(a)

Ea(τn)
= 0.

(2) If Ea(τU) < ∞ we have from Dynkin’s formula

Ea

(∫ τU

0
G u(xt)dt

)
= Ea(u(xτU )) − u(a),

so that ifG u(a) = 0 for a ∈ Ū, G u(xt) = 0 for t < τ0 and we get 89

the result.
�

Theorem 13(Local property). Let u, v∈ D(G ) and u= v in a closed
neighbourhood U of a. Suppose that there exists a Markov thimeσ such
that Pa(σ > 0) = 1 and Pa (xt is continuous for0 ≤< σ) = 1. Then

G u(a) = G v(a).

Proof. Let h = u − v. Thenh(b) = 0 for b ∈ U. Let τ = σ ∧ τU . Then
sincext is continuous for 0≤ t ≤ τ, xτ ∈ U so thatEa(h(xτ)) = 0 = h(a).
Now

G h(a) = lim
n→∞

Ea(h(xτn)) − h(a)

E(τn)
= 0,

sinceτn can be chosen so thatτn ≤ σ ∧ τU . �





Section 3

Multi-dimensional Brownian
Motion

We have already studied one-dimonsional Brownian motion. We shall 90

now definek-dimensional Brownian motion, determine its generator and
deduce the main result of Potential Theory using propertiesof the k-
dimensional Brownian motion.

1 Definition

We first definek-dimensional Wiener process. Letx(t,w) = (xi(t,w), i =
1, 2, . . . , k) be a k-dimensional stochastic process on a probability space
Ω(P). x(t,w) is called ak-dimensional Wiener processif (1) its compo-
nentsxi(t,w) are one-dimensional Wiener processes, and (2)xi(t,w), 1 ≤
i ≤ k, are stochastically independent processes.

It is easy to construct ak-dimensional Wiener processx(t,w) on
Ω(P) from a 1-dimensional Wiener processξ(t, λ) onΛ(Q). It is suffi-
cient to takeΩ = Λk andP = the product probabilityQk, and define for
w = (λ1, . . . , λk),

x(t,w) = (ξ(t, λ1), . . . , ξ(t, λk)).

We now study thek-dimensional standard Brownian motions. Let

73
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S = Rk, W = the set of all continuous functions intoS and define

Pa(B) = P[a+ x(.,w) ∈ B].

Herea = (a1, . . . , ak). It is easily verified thatM = (S,W,Pa) is91

a Markov processM is called thek-dimensional standard Brownian
motion. The transition probability of the process is

P(t, a,E) =
∫

E
Nk(t, a, b)db,

where Nk(t, a, b) = N(t, a1, b1) · · ·N(t, ak, bk)

Since, for f ∈ C(S),

Ht f (a) =
1

(2πt)k/2

∫
e−|b|

2/2t f (a+ b)db, |b|2 = b2
1 + · · · + b2

k

is also inc(S),M is a strong Markov process.
Let θ denote the group of congruence (distance-preserving) trans-

formations ofRk. If O ∈ θ, thenO indues a transformation, which again
we denote byO, of W→W defined by

(Ow)(t) = OW(t).

O carries measurable subsets ofW into measurable subsets. For any
subsetL ⊂ W, we define

OL = (Ow : w ∈ L).

The following facts are easily verified

(0.1) P(t,Oa,OE) = P(t, a,E)

(0.2) POa(OB) = Pa(B).

If O ∈ θ is a rotation arounda, i.e. if Oa = a, Pa(OB) = Pa(B), so92

thatO is aPa-measure preserving transformation ofW ontoW.
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2 Generator of thek-dimensional Brownian motion

Let D = D(Rk) be the space of allC∞ function with compact supports.
Forϕ ∈ D , put

θ(t, a) = Htϕ(a),

and

ψ(a) ≡ ψ(a, α) = Gαϕ(a) =
∫ ∞

0
e−αtθ(t, a)dt.

Now

θ(t, a) =
∫

Rk

1

(2πt)k/2
e−|b|

2/2tϕ(a+ b)db

=

∫

Rk

1

(2π)k/2
e−|b|

2/2ϕ(a+ b
√

t)db,

and a simple calculation gives

∂θ

∂t
=

1
2
∆θ, θ(0+ a) = ϕ(a).

Taking Laplace transform, the last equation gives

(α − 1
2
∆)ψ = ϕ.

In order to show thatψ is the unique solution of this equation, it is

enough to show that ifψ ∈ C2, ψ(a) → 0 as|a| → ∞ and (α− 1
2
∆)ψ = 0, 93

thenψ ≡ 0. To prove this, suppose thatψ(a) > 0 for somea. Then since
ψ(a) → 0 as|a| → ∞, the maximum ofψ(a) is attained at a finite point
a0 and

ψ(a0) = maxψ(a) > 0.

Therefore
∆ψ(a0) ≤ 0,

and hence

(α − 1
2
∆)ψ(a0) > 0.
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Thusψ(a) ≤ 0. Replacingψ by −ψ, we see thatψ ≡ 0. This proves
our contention.

Now, let f ∈ B(Rk). Then

u(a) = Gα f (a) =
∫

G(α, |b− a|) f (b)db,

where

G(α, |b− a| =
∫ ∞

0

e−αt−|b−a|2/2t

(2πt)k/2
dt.

Note thatG(α, |b − a|) is continuous in (a, b). It is immediate that
u ∈ B(Rk) and we can consideru as a distribution in the Schwartz sense.
Then by the definition of the derivative of a distribution, for anyϕ ∈ D ,

(
α − 1

2
∆

)
u(ϕ) =

∫
u(a)

(
α − 1

2
∆

)
ϕ(a)da

=

"
G(α, |a− b|) f (b)

(
α − 1

2
∆

)
ϕ(a)da db

=

∫
f (b)db

∫
G(α, |b− a|)

(
α − 1

2
∆

)
ϕ(a)da

=

∫
f (b)ψ(b)db;

where94

ψ(b) =
∫

G(α, |a− b|)
(
α − 1

2
∆

)
ϕ(a)da.

If θ =
(
α − 1

2∆
)
ϕ, thenθ ∈ D and

ψ = Gαθ,

and from the above we get

(
α − 1

2
∆

)
ψ = θ =

(
α − 1

2
∆

)
ϕ,

and hence ψ = ϕ.
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Thus (
α − 1

2
∆

)
u(ϕ) =

∫
f (b)ϕ(b)db,

and this means that the distribution

(
α − 1

2
∆

)
u is defined by the function

f . (Of course, any function equal tof almost every-where defines the
same distribution.)

What we have above also shows that ifu = 0 then the distribution(
α − 1

2
∆

)
u = 0 so thatf = 0 a.e. Hence

N = { f : f = 0 a.e.} .

Let R =

{
u : u,∆u ∈ B(Rk),∆u is the distribution sense

}

=

{
u : u ∈ B(Rk) and the distribution∆u is defined

by a function inB(Rk)
}
.

We see form the above thatR ⊂ R+. Now supposeu ∈ R+. Then 95

u ∈ B(Rk) and∆u is defined by a function inB(Rk). Let (α − 1
2
∆)u

be defined byf ∈ B(Rk). PutGα f = v and from the above we see that

(α − 1
2
∆)v is defined byf . Hence (αu1 −

1
2
∆u1) = 0 whereu1 = u− v.

We prove thatu1 = 0 a.e. Now
∫ (

α − 1
2
∆

)
ϕ(a)u1(a)da= 0

for everyϕ ∈ D(Rk), so that
∫ (

α − 1
2
∆

)
ϕ(a+ b)u1(a)da= 0

for everyϕ ∈ D(Rk). Also
"

G(α, |b|)|u1(a)||
(
α − 1

2
∆

)
ϕ(a+ b)|da db

=

∫
G(α, |b|)db

∫
|u1(a)||

(
α − 1

2
∆

)
ϕ(a+ b)|da
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=

∫
G(α, |b|)db

∫

a∈K

|u1(a− b)||
(
α − 1

2
∆

)
ϕ(a)|da

≤ M
∫

G(α, |b|)db,

whereK is the compact set outside whishϕ is zero and

M = (diam.K).Sup|u(a− b)(α − 1
2
∆)ϕ(a)|.

Therefore,

0 =
∫

G(α, |b|)db
∫ (

α − 1
2
∆

)
ϕ(a+ b)u1(a)da

=

∫
u1(a)da

∫
G(α, |b|)

(
α − 1

2
∆

)
ϕ(a+ b)db

=

∫
u1(a)daϕ(a).

96

Hence u1 = 0 a.e. Thus

R =
{
u : u,∆u ∈ B(Rk)

}

andG u =
1
2
∆u in the distribution sense.

3 Stochastic solution of the Dirichlet problem

Let U be a bounded open set andf a function which is bounded and
continuous on the boundary∂U of U. The problem of finiding a function
h(a : f ,U), defined and harmonic inU and such thath(a : f ,U)→ f (ξ)
as a → ξ from within U, is called theDirichlet problem. h(a), if it
exists, is unique and is called theclassical solution. The definition of
a solution can be generalized, in various ways, so as to include cases
in which the classical solution does not exist. The generalized solution
will still be harmonic inU, but will tend to the boundary valuef (ξ) in a
slightly weaker sense.
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The stochastic solution. which we shall discuss, gives one way of
defining a generalized solution. Let

τU = first leaving time fromU = inf {t : xt < U}

By definition, u(a) ≡ u(a : f ,U) = Ea( f (xτu)) is the stochastic
solution of the Dirichlet problem with boundary valuef . We shall see
that the stochastic solution is identical with the classical solution, in case 97

the latter exists.
We first establish some results onτU .

Theorem 1. Pa(τu < ∞) = 1 if U is a bounded domain.

This is a corollary of the following stronger

Theorem 2.
Ea[τU ] < ∞, if U is bounded.

Proof. SincePa[B + a] = P0[B], we can assume thata = 0. Further,
sinceτu ≥ τv for U ⊃ V, we can assume thatU is the sphereΓ =
{x : |x| < r}. Let u ∈ D(G ) be such thatG u has a version satisfying

G u(a) >∈0 in Γ for some∈0> 0. For example, ifu(a) = −e−|a|
2
/ 4r2

, then

G u(a) =
1
2
∆u(a) =

−1
2

[
k

2r2 −
|a|2

4r4

]
u(a) > 0, if |a| ≤ r.

Let τn = τU ∧ n. Thenτn is a Markov time, andE0(τn) ≤ n < ∞.
Therefore, from Dynkin’s formula,

E0

(∫ τn

0
G u(xt)dt

)
= E0(u(xτu)) − u(0).

For 0 ≤ t ≤ τn, xt ∈ Γ and G u(xt) ≥∈0 and ∈0 E0(τn) ≤ 2||u||
Therefore

E0(τ) = lim E◦(τn) ≤ 2||u||
ǫ◦

< ∞.

�
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Theorem 3. If U is open and bounded, if f is continuous on∂U and if 98

there exists a classical solution h(a) = h(a : f ,U), then

u(a : f ,U) = h(a : f ,U)

Proof. For any open subsetV of U such thatV̄ ⊂ U, let h denote aC∞

function which vanishes outsideU and such thathV = h or V̄. Such
a function can easily be constructed. ThenhV ∈ D(G ). SinceV is
bounded,Ea(τV) < ∞ and Dynkin’s formula gives

Ea

(∫ τv

0
G hV(xt)dt

)
= Ea(hV(xτv)) − hV(a).

For t < τV, xt ∈ V andG hV(xt) =
1
2
∆hV(xt) =

1
2
∆h(xt) = 0. If

τV < ∞, xτv ∈ ∂V so thathV(xτv) = h(xτv), and sinceV is bounded,
Pa(τV < ∞) = 1. ThereforeEa(h(xτv)) = hV(a). Hence, ifa ∈ V̄, then
Ea(h(xτv)) = h(a).

Now let {Vn} be an increasing sequaence of open subsets ofU such
that V̄n ⊂ U andVn ↑ U. Thenτu = lim

n−∞
τVn. SincePa(τu < ∞) = 1, we

have withPa-measure. 1,

f (xτu = lim
n→∞

h(xτVn
)

u(a) = Ea( f (xτu)) = lim
n→∞

Ea(h(xτvn
)) = h(a)

for everya ∈ U. This completes the proof. �

A natural question is “When does the classical solution exist?” The
simplest case is that of a ballΓ = Γ(a0; r). For a ∈ Γ, let a′ denote the
inverse of a with respect toΓ, i.e.,

a′ = a0 +
r2

||a− a0||2
(a− a0).

99

Let

G(b, a) =
1

|b− a|k−2
− rk−2

|a− a0|k−2

1

|b− a′|k−2
, k ≥ 3;
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= log
1

|b− a| − log
1

|b− a′1
− log

r
|a− a0|

, k = 2,

and

ΠΓ(a, ξ) = −
1

k− 2
∂

∂ρb
G(b, a)

]

b=ξ
xrk−1 for k ≥ 3,

ΠΓ(a, ξ) = −
∂

∂ρb
G(b, a)

]

b=ξ
rk−1 for 1 ≤ k ≤ 2,

where
∂

∂ρb
denotes the derivative in the radial direction ofΓ. Then, if

f is defined and continuous on the boundary of the ball, and ifθ(dξ) is
the uniform probability distribution (i.e. the normed rotation invariant
measure on the boundary ofΓ), the classical solution is given by the
Poisson integral

h(a : f ,U) =
∫

∂Γ

ΠΓ(a, ξ) f (ξ)θ(dξ).

The concrete form ofΠΓ(a, ξ) is not of importance to us. The only
fact we need is

Theorem 4. If Γ,V are two concentric balls, with radii r, ρ(r > ρ) ; then

c1 = min
a∈V̄,ξ∈∂Γ

ΠΓ(a, ξ)

and 100

c2 = max
a∈V̄,ξ∈∂Γ

ΠΓ(a, ξ)

depend only onρ/r and c1, c2→ 1 asρ/r → 0.

Thehitting measureΠU(a,E) of E is defined as

ΠU(a,E) = Pa(xτU ∈ E),E ∈ B(∂U).

Clearly

u(a : f ,U) =
∫

Γ

ΠU(a, dξ) f (ξ).

We have the following
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Theorem 5. If Γ is a ball, for a∈ Γ we have

ΠΓ(a, dξ) = ΠΓ(a, ξ)θ(dξ)

= the harmonic measure on∂Γ with respect to a.

Proof. The proof is immediate since, from the above, for every contin-
uous functionf on∂Γ,

∫

∂Γ

(a, dξ) f (ξ) =
∫

∂Γ

ΠΓ(a, ξ)θ(dξ) f (ξ),

and hence the same equation holds for all bounded Borel functions on
∂Γ. �

Using the notation of Theorem 4, we have

Theorem 6.
c1θ(E) ≤ ΠΓ(a,E) ≤ c2θ(E).

We now proceed to prove that if the boundary of a bounded open set101

U is smooth in a certain sense, then the stochastic solution isalso the
classical solution.

Definition (). Let ξ ∈ ∂U, where U is an open set. If there exists a cone
C ⊂ Uc, with vertex atξ thenξ is called a Poincare point for U.

Theorem 7. If ξ is a Poincare point for a bounded open set U, then
for any∈> 0 and for any neighbourhoodΓ of ξ, there exists a smaller
neighbourhoodΓ′ of ξ such that

Pa(xτu < Γ) <∈

for any a∈ Γ′ ∩U.

Proof. Let C ⊂ Uc be a cone with vertex atξ. We can assume thatΓ
is a ball of radiusr such thatC − Γ , φ. Let Γn be the ball with the
same centre asΓ and radiusrn = αnr, whereα < 1 is to be chosen
subsequently. Letτn be the first leaving time fromΓn. If xτU < Γ, τΓ ≤
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τu and sincePa(τn ≤ τΓ) = 1 for anya ∈ Γ we havexτn ∈ U. Therefore
xτn < C. But xτn ∈ ∂Γn so thatxτn ∈ ∂Γn − c. Therefore for anya ∈ Γn,

Pa(xτu < Γ) ≤ Pa(xτn−1 ∈ ∂Γn−1 −C, . . . , xτ1 ∈ ∂Γ1 −C)

= Pa(xτn−1 ∈ ∂Γn−1 −C, . . . , xτ2 ∈ ∂
Γ2 −C, xτ1(ωτ2+)(ω

+

τ ) ∈ ∂Γ1 −C)

sinceτ1 = τ2 + τ1(w+τ2
). Also sinceτi < τ2, for i > 2 we have 102

xτi = x(τi(w),w) = x(τi(w),w−τ2
)

= x(τ1(w−τ2
),w−τ2

) ∈ Bτ2 ⊂ Bτ2+ .

�

Using the strong Markov property we have

Pa(xτu < Γ) ≤ Ea(xτn−1 ∈ ∂Γn−1 −C, . . . , xτ2 ∈ ∂
Γ2 −C : Pxτ2

(xτ1 ∈ ∂Γ1 −C)

≤ c2θPa(xτn−1 ∈ ∂Γn−1 −C, . . . , xτ2 ∈ ∂Γ2 −C),

if a ∈ Γn ∩ U. whereθ = θ(∂Γ1 − C) < 1. Sinceθ depends only on
the solid angle at the vertexξ, θ(∂Γ1 − C) = θ(∂Γ2 − C) = − − · · · =
θ(∂Γn−1 −C). We have repeating the argument,

Pa(xτU < Γ) ≤ (c2θ)
n−1

Sincec2 → 1 asα → 0, we can chooseα so small thatc2θ < 1.
Now choosen large enough so that (c2θ)n−1 <∈.

Theorem 8. For any open set U and any bounded Borel function f on
∂U,

u(a) = u(a : f ,U)

is harmonic in U.

Proof. Let a ∈ U andΓ be a ball with centre at a and contained inU.
Then sinceτU = τΓ + τU(w+

τΓ)
, we have

u(a : f ,U) = Ea( f (xτU )) = Ea( f (xτU(w+τΓ
)
(w+τΓ )))
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= Ea(ExτΓ
( f (xτU ))

= Ea(u(xτΓ ))

=

∫
Pa(xτΓ ∈ dξ)u(ξ)

=

∫
ΠΓ(a, ξ)u(ξ)θ(dξ),

and the last term is harmonic fora ∈ Γ. This proves thatu is harmonic103

in a neighbourhood of everya ∈ U. Henceu is harmonic inU. �

Theorem 9. If U is a bounded open set such that every point of U is a
Poincare point and if f is continuous on∂U, then the stochastic solution
u = u(a : f ,U) is also the classical solution.

Proof. By Theorem 8,u is harmonic inU. Let ξ ∈ ∂U. Since f is
continuous, we can choose a ballΓ = Γ(ξ) such that| f (η) − f (ξ)| <∈ for
η ∈ Γ. By Theorem 7 we can chooseΓ′ so that

Pa(xτU < Γ) <∈, a ∈ Γ′.

For a ∈ Γ′,

|u(a) − f (ξ)| ≤ Ea(| f (xτU ) − f (ξ)|)
= Ea(| f (xτU ) − f (ξ)| : xτU ∈ Γ)

+ Ea(| f (xτU ) − f (ξ)| : xτu < Γ)

≤∈ +2|| f || ∈ .

�

Remark . When k = 1, harmonic functions are linear functions. If104

(a1, a2) is an interval andf (a1), f (a2) are given; then

h(a : f , (a1, a2)) =
a2 − a
a2 − a1

f (a1) +
a− a1

a2 − a1
f (a2)

= u(a; f , (a1, a2))

= f (a1)Pa(xτ(a1,a2) = a1) + f (a2)Pa(xτ(a1,a2) = a2)

= f (a1)Pa(σa1 < σa2) + f (a2)Pa(σa2 < σa1),
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whereσai , i = 1, 2, is the first passage time forai , i = 1, 2. Since f is
arbitrary,

Pa(σa1 < σa2) =
a2 − a
a2 − a1

,

Pa(σa2 < σa1) =
a− a1

a2 − a1
,

We have seen that ifU is bounded and open and if every point of
∂U is a Poincare’ point, the Dirichlet problem forU has a solution. We
now define a generalized solution.

Suppose thatU is open and bounded and thatf is bounded and
continuous on∂U. Let {Un} ↑ U be an increasing sequence of open sets
with Ūn ⊂ Un+1 and such that every point of∂Un is a Poincare point.
Let F be a continuous extension off to Ū andFn = FΓ∂Un. Denote
the classical solution forUn with boundary valuesFn by h(a; Fn,Un). 105

Then lim
n−∞

h(a; Fn,Un) is, by definition,the generalized solution(in the

Wiener sense) of the Dirichlet problem with boundary valuesf . We
have of course to show that the limit exists and is independent of the
choice ofUr and ofF.

Theorem 10. For a bounded open set U, u(a; f ,U) is the generalized
solution.

Proof. We have only to show thath(a : Fn,Un) → u(a : f ,U). In fact
sinceτun ↑ τu < ∞ with probability 1,

h(a : Fn,Un) = u(a : Fn,Un) = Ea(F(xτun
))

→ Ea(F(xτu))

= Ea( f (xτU )) = u(a : f ,U).

�

Remark. u(a) = u(a : f ,U) does not always satisfy the boundary con-
dition lim

a∈U,a→ξ
u(a) = f (ξ) for ξ ∈ ∂U. In §7 we shall discuss these

boundary conditions.
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4 Recurrence

Definition (). A Markov processM is calledrecurrentif

Pa(xt ∈ U for some t) ≡ Pa(σU < ∞) = 1

for any a∈ S and any open U; otherwise it is callednon-recurrent.

We shall now show that the standard Brownian motion is recurrent
for k ≤ 2 and is non-recurrent fork ≥ 3.

Theorem 1. LetΓ1, Γ2 be the balls with centres a0 and radii r1, r2(r2 >106

r1). If σ1 = σ∂Γ1, σ2 = σ∂Γ2 are the first passage times for∂Γ1 and∂Γ2,
then for a∈ Γ2 − Γ̄1,

Pa(σ1 < σ2) =



r−k+2−r−k+2
2

r−k+2
1 −r−k+2

2
, k ≥ 3;

log 1
r −log 1

r2

log 1
r1
−log 1

r2

, k = 2;

r2−r
r2−r1

, k = 1;

where r= |a− a0|.

Proof. In fact, if U = Γ2− Γ̄1, ∂U = ∂Γ1∪∂Γ2, and the functionf which
is 1 as∂Γ1 and 0 as∂Γ2 is continouous on∂U. Since every point in∂U
is a Poincaré point, the classical solutionh(a; f ,U) = u(a; f ,U) exists
and

p(a) ≡ Pa(σ1 < σ2) = Pa(xτU ∈ ∂Γ1) = u(a; f ,U).

The function given in the statement of the theorem is harmonic in U
and takes the boundary valuef . Since such a function is unique, we get
the result. �

Theorem 2. LetΓ = Γ(a0, r) be a ball with centre a0 and radius r and
let σΓ be the first passage time forΓ. For a < Γ andρ = |a− a0|,107

Pa(σΓ < ∞) =


(r/ρ)k−2, k ≥ 3

, k ≤ 2

Therefore k-dimensional Brownian motion is recurrent or not ac-
cording as k≤ 2 or k ≥ 3.
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Proof. Observe thatσΓ = σ∂Γ for any path whose starting point is not
in Γ. Let Γ′ = Γ′(a0, r′) andσ′ = σ∂Γ′ . If t < σ∞(w), then sincew(t) is
continous,Ft = {xs : 0 ≤ s≤ t} is a compact set and hence we can find
r′ such thatΓ′ ⊃ Ft. Thenσ(w) ≥ t. It follows that

lim
r ′→∞

σ′ = ∞.

Therefore

Pa(σΓ < ∞) = Pa(σΓ < lim
r ′→∞

σ′) = lim
r ′→∞

P′a(σΓ < σ
′).

Now taker2 = r′ andσ2 = σ
′ in Theorem 1 and we get the result.

�

Theorem 3. If k ≥ 3,Pa(|xt | → ∞ as t→ ∞) = 1. If k ≤ 2,Pa(w :
(xs, s≥ t, is dense in Rk for all t)) =1.

Proof. Case k ≥ 3. We can, without loss of generality, assume that
a = 0. LetΓn = Γ

(0,n) andσn = σ∂Γn. For any pathw, |xt| → ∞ if and
only if for every givenn we can finds such that the image of [0,∞] by 108

w+s is contained inΓc
n. Therefore|xt | 9 ∞ if and only if we can findn

such that for everys ≥ 0, the image of [0,∞] by w+s has a non-empty
intersection withΓn and therefore ifw+s (0) < Γn, thenσn(w+s ) < ∞.
Therefore

P0 [|xt |9 ∞] = P0[∃ n such that for everys

≥ 0 with w+s (0) < Γn, σn(w+s ) < ∞]

≤
∑

n

P0
[
for everys≥ 0 with w+s (0) < Γn, σn(w+s ) < ∞]

≤
∑

n

P0

[
for everym> n, σn(w+σm

) < ∞
]
.

Now

P0( for everym, σn(m+σm
) < ∞) ≤ P0(σn(w+σm

) < ∞ for somem)

= E0(Pxσm
(σn < ∞)
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=

( n
m

)k−2
→ 0, asm→∞.

Casek ≤ 2. LetΓ be any ball andσΓ = the first passage time forΓ. We
have

Pa(σΓ < ∞) = 1

for everya, so that for anyt,

Pa(σΓ(w
+

t ) < ∞) = Ea(Pxt (σΓ < ∞)) = 1.

Now109

Pa( for everyt, σΓ(w
+

t ) < ∞) = Pa( for everyn, σΓ(w
+

n ) < ∞)

= 1.

LetΓ1, Γ2, . . . be a complete fundamental system of neighbourhoods.
Then

Pa( for everyn, for everyt, σΓn(w
+

t ) < ∞) = 1,

i.e.,
Pa((xs(w) : s≥ t is dense in Rk)) = 1.

�

5 Green function

Casek ≥ 3.

Definition (). Let U be a bounded open set. Then

GU(a, b) =
1

|a− b|k−2
−

∫

∂U

ΠU(a, dξ)

|ξ − b|k−2

is called theGreen functionfor U, whereΠU(a, dξ) is the harmonic
measure on∂U with respect to a. This is the potential at b due to a unit
charge at a and the induced charge on∂U.
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As the limiting case, whenU → Rk, we can define the Green func-
tion (relative to the whole spaceRk by

G(a, b) =
1

|a− b|k−2
.

Theorem 1. If f is bounded, Borel and has compact support, then110

Ea(
∫ ∞
0

f (xt)dt) < ∞ and

Ea(
∫ ∞

0
f (xt)dt) =

2
K

∫
f (b)db

|b− a|k−2
, where K= 4Π

k
2/Γ(

k
2
− 1)

Proof. It is enough to prove the theorem forf ≥ 0. We have

Ea

(∫ ∞

0
f (xt)dt

)
=

∫ ∞

0
Ea( f (xt))dt

=

∫ ∞

0
dt

∫

Rk

1

(2Πt)
k
2

e−
|b−a|2

2t f (b)db

=

∫

Rk
f (b)db

∫ ∞

0

1

(2Πt)
k
2

e−
|b−a|2

2t dt

=

∫

Rk

f (b)db

|b− a|k−2

Γ(k/2− 1)

2Π
k
2

=
2
K

∫

Rk

f (b)db

|b− a|k−2

< ∞,

because, ifΓ is a ball containing the support off ,
∫

Γ

f (b)db

(b− a)k−2
≤ || f ||

∫

Γ

db

(b− a)k−2
< ∞.

�

Theorem 2. Let v(a) = Ea(
∫ ∞
0 f (xt)dt). Then v(a) ∈ D(G ), 111

1
2
∆v = − f a.e., and v(a)→ 0 as |a| → ∞
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Therefore, if

u(a) =
∫

G(a, b) f (b)db,

∆ u = −k f a.e. ( Poisson’s equation)

and u(a) → 0 as/a/→ ∞.

Proof. By Theorem 1,v(a) is bounded and Borel. If

G∈ f (a) = Ea

(∫ ∞

0
e−∈t f (xt)dt

)
,

we have
v(a) = lim

∈→0
G∈ f (a)

and the resolvent equation gives

Gα f −G∈ f + (α− ∈)GαG∈ f = 0.

Letting∈→ 0,
Gα f − v+ αGαv = 0,

or
v = Gα( f + αv) ∈ D(G ).

Also, sinceG v = αv−G−1
α v = αv− f − αv = − f , a.e.,

1
2
∆v = − f a.e.

�

Definition (). Let A be a bounded subset of Rk. Then112

S(A,w) = the Lebesgue measure of{t : xt(w) ∈ A}

is called the sojourn (visiting) time for the set A.

From Theorem 1, we have
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Theorem 3.
Ea(S(db))

db
=

2
K

G(a, b).

Let nowU be a bounded open set andf ∈ B(U). Let

vU(a) = vU(a; f ,U) = Ea

[∫ τU

0
f (xt)dt

]
,

τU being the first leaving time fromU.

Theorem 4.

vU(a) =
2
K

∫

U
GU(a, b) f (b)db.

Proof. Extend f by putting f = 0 in Uc. Then

v0(a) = Ea

(∫ ∞

0
f (xt)dt

)
=

2
K

∫

U

f (b)db

|b− a|k−2
,

by Theorem 1. Also

v0(a) = Ea

(∫ τU

0
f (xt)dt

)
+ Ea

(∫ ∞

τU

f (xt)dt

)

= vU(a) + Ea

(∫ ∞

0
f (xt(w

+

U))dt

)

= vU(a) + Ea

(
ExτU

(∫ ∞

0
f (xt)dt

))

= vU(a) + Ea(v0(xτU )).

= vU(a) +
∫

∂U
πU(a, dξ)v0(ξ)

= vU(a) +
2
K

∫
f (b)db

∫

∂U

πU(a, d)

|b− ξ|k−2

113

This gives the result. �

Theorem 5. vU(a) satisfies

1
2
∆vU = − f , a.e.,

and vU(a)→ 0 as a→ ξ, ξ being a regular point of∂U.
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Proof. vU(a) = v0(a)−Ea(v0(xτU )). SinceEa(v0(xτU )) is harmonic inU

and
1
2
∆v0(a) = − f a.e., we have

1
2
∆vU(a) = − f , a.e.

�

Further ifξ ∈ ∂U is regular,Ea(v0(xτU ))→ v0(ξ) as a→ ξ and since
v0(a) is continuous by Theorem 1v0(a) → v0(ξ) asa → ξ. The result
follows.

Theorem 6. Let S(A/U,w) = the Lebesgue measure of{t : xt ∈ A, t <
τU }. Then

Ea(S(db/U))
db

=
2
K

GU(a, b).

As an example we computevU(a) for U = the open cube (0, 1)3, k =
3. Since every boundary point of the unit cube is regular (in fact every
point is a Poincaré point),vU = 0 as∂U. Thereforev = vU(a) is the
solution of

1
2
∆v = − f and v = 0 on ∂U.

114

Sincev = 0 as∂U we can put

v(x, y, z) =
∑

l+m+n>0

almn sin l πxsinmπysinnπz

Then

1
2
∆v =

π2

2

∑

l+m+n>0

(12
+m2

+ n2)almn sinlπxsinmπysinnπz

If
f (x, y, z) =

∑
blmn sinlπxsinmπysinnπz,

we have therefore

almn =
2blmn

π2(l2 +m2 + n2)



5. Green function 93

=
16

π2(l2 +m2 + n2)∫ 1

0

∫ 1

0

∫ 1

0
f (ξ, η, ζ) sin lπξ sinmπ ↑ in nπξdξdηdη

This gives

v(x, y, z) =
$

f (ξ, η, ζ)
16

π2

∑ sin lπξ sinlπxsinmπη sinmπysinnπζ sinnπz

l2 +m2 + n2
dξdηdζ.

Hence

GU(x, y, z; ξ, η, ζ) =
32
π

∑ sinlπξ sinlπxsinmπη sinmπysinnπζ sinnπz
12 +m2 + n2

in the distribution sense. 115

Casek ≤ 2.

We cannot apply the preceding method to discuss the Green function
for k ≤ 2 becauseEa(

∫ ∞
0 f (xt)dt) may be infinite even iff has compact

support. We therefore follow a different method.
Let Γ = Γ(o, r) be a ball. Ifu ∈ C∞(R2), [i.e. compact support and

C∞ ] thenu ∈ D(G ) and Dynkin’s formula gives

Ea



τΓ∫

0


1
2
∆u(xt)dt) = Ea(u(xτΓ )) − u(a)

=

∫

∂Γ

πΓ(a, ξ)u(ξ)θ(dξ) − u(a), πΓ(a, ξ) =
r2 − a2

|a− ξ|2
,

= −
∫

∂Γ

G(a, b)
∂n

]

b=ξ∈∂Γ
xru(ξ)θ(dξ) − u(a),GΓ(a, b) = log

|ab̄− r2|
|a− b|

=

∫

Γ

1
2π

GΓ(a, b)
1
2
∆u(b)2db.
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If ϕ ∈ C∞(R2) andv(a) = 1
π

∫
Γ

GΓ(a, b)ϕ(b)db, then1
2∆v = ϕ There-

fore we have for anyϕ ∈ C∞(R2),

Ea



τΓ∫

0

ϕ(xt)dt

 =
1
π

∫

Γ

GΓ(a, b)ϕ(b)db.

It follows that the same equation holds for anyf ∈ B(R2), i.e.,

Ea



τΓ∫

0

f (xt)dt

 =
1
π

∫

Γ

G(a, b) f (b)db.

Now let U be a bounded domain,̄U ⊂ Γ, a ball. Then

Ea



τΓ∫

0

f (xt)dt

 = Ea



τU∫

0

f (xt)dt

 + Ea



τΓ∫

0

(w+τU) f (x0(w+τU
))dt



= Ea



τU∫

0

f (xt)dt

 + Ea

(
ExτU

(∫ τΓ

0
f (xt)dt

))
,

so that116

Ea



τU∫

0

f (xt)dt

 =
1
π

∫

Γ

GΓ(a, b) f (b)db−
∫

∂U

πU(a, dξ)Eξ



τΓ∫

0

f (xt)dt



=
1
π

∫

Γ

GΓ(a, b) f (b)db− 1
π

∫

∂U

πU(a, d)
∫

Γ

GΓ(ξ, b) f (b)db

=
1
π

∫

Γ

GU(a, b) f (b)db,

where

GU(a, b) = GΓ(a, b) −
∫

∂U

πU(a, dξ)GΓ(ξ, b)

= log
1

|a− b|
−

∫

∂U

πU(a, dξ) log
1

|ξ − b|
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− log
1

|ab̄− r2|
+

∫

∂U

πU(a, dξ) log
1

|ξb̄− r2|

Sinceb ∈ U ⊂ Ū ⊂ Γ, |ab̄| < r2 for a ∈ U and log|ab̄ − r2| is
harmonic fora ∈ U, with boundary values log|ξb̄− r2|. Hence if every
point of∂U is regular,

log |ab̄− r2| =
∫

∂U

πU(a, d) log |ξb̄− r2|.

Thus we have

GU(a, b) = log
1

|a− b| −
∫

∂U

πU(a, d) log
1

|ξ − b| .

Theorem 1. If U is a bounded open set such that every point of∂U is 117

regular and if u(a = Ea(
τU∫

0

f (xt)dt), then

1
2
∆u = f and u(a) → 0 as a→ ξ ∈ ∂U.

Proof. In fact

u(a) = Ea

(∫ τU

0
f (xt)dt

)
=

1
π

∫

U
GU(a, b) f (b)db

and the theorem follows from the definition ofGU(a, b). �

Theorem 2.
Ea(S(db/U))

db
=

1
π

GU(a, b).

If k = 1, we can proceed directly. Suppose thatU = (α, β).
Then

Ea



τα,β∫

0

1
2

u′′(xt)dt

 = Ea(u(xτ(α,β))) − u(a)
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=
β − a
β − α

u(α) +
a− α
β − α

u(β) − u(a)

=

β∫

α

G(α,β)(a, b)
1
2

u′′(b)2db,

where

G(α,β)(x, y) = G(α,β)(y, x) =
(β − y)(x− α)

β − α , α ≤ x ≤ y ≤ β.

Threfore we have

Theorem 3.

Ea



τ(α,β)∫

0

f (xt)dt

 =
∫ β

α

G(α,β)(a, b) f (b)2db

Theorem 4.
Ea(S(db/(α, β))

db
= 2G(α,β)(a, b).

6 Hitting probability
118

We have already discussed the hitting probability for spheres. Here we
shall discuss it for more general sets, especially compact sets.

Absolute hitting probability ( k ≥ 3).

For simplicity we consider the casek = 3.
Let F be a compact set andσF = inf {t : t > 0 andxt ∈ F}. Put

pF(a) = Pa(σF < ∞) = Pa(xt ∈ F for somet > 0); pF (a) is called the
absolute hitting probabilityfor a F with respect toa.

Lemma (). Let Γ = Γ(a, r) and τr = τΓ = the first leaving time forΓ.
Then Pa(τr → 0 as r→ 0) = 1.

Proof. Clearlyτr decreases asr decreases. Ifτ = lim
r→0

τr , we have only

to show thatPa(τ > 0) = 0. NowPa(τ > t) ≤ Pa(τr > t) ≤ Pa(xt ∈ Γ) =
(2πt)−3/2

∫

Γ

exp(−(x− a)2 1
2t )dx→ 0 asr → 0. �
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Theorem 1. PF(a) is expressible as a potential induced by a bounded

measureµF i.e. PF(a) =
∫ µF(db)
|b− a|

, whereµF is concentrated on∂F.

Further∀F is uniquely determined by F.

Proof. Firstly we show thatpF(a) is harmonic inFc∩F0. SincepF(a) ≡
1 in F0, we have only to show that it is harmonic inFc. Let Γ be ball
such thatΓ̄ ⊂ Fc. If τΓ is the first leaving time forΓ, τΓ < σF and
pF(a) = Pa(τΓ < σF < ∞) = Pa(σF(w+τ ) < ∞) = Ea(PxτΓ

(σF < ∞)) =

Ea(pF(xτΓ )) =
∫

∂Γ

πΓ(a, dξ)pF(ξ) =
∫
∂Γ
πΓ(a, ξ)pF(ξ)θ(dξ), showing that

pF(a) is harmonic fora ∈ Γ.
Let Γ be a ball anda ∈ Γ. Then 119

pF(a) = Pa(σF < ∞) ≥ pa(σF(w+τΓ) < ∞) =
∫

∂Γ

πΓ(a, ξ)pF(ξ)θ(dξ).

This show thatpF(a) is super harmonic in the wide sense (i.e. its
value at the centre of a ball in not less than the average valueon the
boundary).

Finally we show thatpF(a) is lower semi-continuous. It is enough
to show this fora ∈ ∂F. Let a0 ∈ ∂F, andΓ(a0, r) = Γr , τr = τΓr . Then
pF(a0) = Pa0(xt ∈ F for somet > τr) + ηr , ηr → 0 (from the lemma)
=

∫

∂Γr

pF(ξ)θ(dξ) + ηr . On the other hand

pF(a) ≥
∫

∂Γr

πΓ(a, ξ)pF(ξ)θ(dξ)

so that

lim
a→a0

pF(a) ≥
∫

∂Γr

lim
a→a0

πΓ(a, ξ)pF(ξ)θ(dξ) =
∫

∂Γr

pF (ξ)θ(dξ)
λ
= pF(a0) − ηr .

Now letting r → 0, lim
a→a0

pF(a) ≥ pF(a0), showing thatpF(a) is

lower semi-continuous. Now ifΓ is a ball containingF, σΓ, the first
passage time forΓ, then we have seen thatPa(σΓ < ∞) = rρ−1, ρ = |a|.
ThereforePa(σΓ < ∞) → 0 asa → ∞ and sincePa(σF < ∞) ≤
Pa(σΓ < ∞), Pa(σF < ∞) → 0 asa → ∞. Since pF(a) is super
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harmonic inR3, from the Reisz representation theorem there exists a

unique bounded measureµF with pF(a) =
∫ µF(db)
|b− a| +H(a) whereH(a)

is harmonic inR3. But pF(a) → 0|a| → ∞ and also
∫

µF(db)
|b−a| → 0 as120

|a| → ∞ sinceµF is a bounded measure. It follows thatH(a) → 0 as

|a| → ∞ i.e. H(a) ≡ 0. ThereforepF(a) =
∫ µF(db)
|b− a| . SinceµF is

concentrated in the set wherepF is not harmonic,µF is concentrated in
∂F. This proves the theorem completely. �

Theorem 2. If u(a) is any potential induced by a measureν which is
concentrated in F and if u(a) ≤ 1, then

u(a) ≤ pF(a) andν(F) ≤ µF(F)(= µF(∂F)).

Proof. We haveu(a) =
∫

F

ν(db)
|a− b| . SinceF is compact, for fixed a we

can findn such that|a− b| ≤ n. It follows thatν(F) < ∞ and therefore
u(a) is harmonic inFc. LetGn ↑ Fc be a sequence of bounded open sets
such thatḠn ⊂ Gn+1. Let τn = τGn = the first leaving time fromGn. If
we put f = u/Gn thenu is the classical solution with boundary values
f . Therefore for everya ∈ Gn

u(a) = Ea( f (xτn))

= Ea(u(xτn)) − Ea(u(xτn) : σF = ∞) + Ea(u(xτn) : σF < ∞).

�

Now τn ↑ σF. If σF = ∞, τn ↑ ∞ andxτn ↑ ∞ with probability 1;
and by the formula foru, u(xτn)→ 0. Sinceu(a) ≤ 1 we have therefore

u(a) ≤ Ea(σF < ∞) = pF(a).

If a ∈ F0, pF(a) = 1 andu(a) ≤ 1 = pF(a).121

Let nowa ∈ ∂F andΓ = Γ(a, r) andτr the first leaving time forΓ.
Then

pF(a) ≥ Pa(xt ∈ F for somet ≥ τr )



6. Hitting probability 99

= Pa(xt(w
+

τr
) ∈ F for somet ≥ 0)

= Ea[Pxτr (xt ∈ F for somet ≥ 0)]

= EaPxτr (xt ∈ F for somet ≥ 0) : xτr ∈ Fc

+ EaPxτr (xt ∈ F for somet ≥ 0) : xτr ∈ F)

≥ Ea[xτr ∈ Fc : u(xτr )] + Ea[xτr ∈ F : 1] ≥ Ea[u(xτr )]

sincePa(xt ∈ F for somet ≥ 0) = 1 for a ∈ F. Letting r → 0 we get

pF(a) ≥ lim
r→0

Ea(u(xτr )) ≥ Ea(lim
r→0

u(xτr )) ≥ u(a)

sinceu(a) is lower semi-continuous. It remains to prove thatν(F) ≤
µF(F).

Let E be a compact set withE ⊃ E0 ⊃ F and considerpE(a). Then

pE(a) =
∫ µE(db)
|a− b| andpE(a) = 1 for a ∈ E0 ⊃ F. Since

∫
µF(db)
|a− b|

≥
∫

ν(db)
|b− a|

we have "
µF(db)
|a− b| µE(da) ≥

"
ν(db)
|a− b|µE(da)

i.e., 122∫

F
µF(db) ≥

∫

F
ν(db).

An alternative proof of the last fact is the following. SincepF(a) ≥
u(a) ∫

F
|a|µF(db)
|b− a| ≥

∫

F
|a| ν(db)
|b− a|

Letting a→ ∞ we get the result.
From the above theorem we have

Theorem 3. C(F) = µF(∂F) is the maximal total charge for those
charge distributions which induce potentials≤ 1.
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Theorem 4(Kakutani). C(F) > 0 if and only if pF(a) > 0 i.e.

Pa(xt ∈ F for some t> 0) > 0.

C(F) is called the capacity of F.

Theorem 5.

C(F)
max
b∈F
|a− b|

≤ pF(a) ≤ C(F)
min
b∈F
|b− a|

and C(F) = lim
|a|→∞

|a|pF(a).

We shall now prove the subadditivity ofpF(a) andC(F) following
Hunt. This means thatpF(a) andC(F) are both strong capacities in the
sense of Choquet.

Theorem 6. pF(a) and C(F) are subadditive in the following sense.
ϕ(F1∩· · ·∩Fn) ≤i

∑
ϕ(Fi)−i

∑
j ϕ(Fi∪F j)+

∑
i< j<k

ϕ(Fi∪F j∪Fk) · · ·

whereϕ(F) denotes either of pF(a) and C(F).

Proof. PutF∗ = {w : σF(w) < ∞}. Then (F1 ∪ · · · ∪ Fn)∗ = F∗1 ∪ · · · ∪123

F∗n, (F1∩ · · · ∩Fn)∗ ⊂ F∗1∩ · · · ∩F∗n andpF(a) = Pa(F∗). Using the dual
inclusion - exclusion formula of Hunt, we have

pF1∩···∩Fn(a) = Pa[(F1 ∩ · · · ∩ Fn)∗] ≤ Pa[(F∗1 ∩ · · · ∩ F∗n)]

=

∑

i

Pa(F∗i ) −
∑

i< j

Pa(F∗i ∪ F∗j ) + · · · · · ·

=

∑

i

PFi (a) −
∑

i< j

pFi∪F j (a) +
∑

i< j<k

pFi∪F j∪Fk(a) · · ·

�

Multiplying by |a| both sides and letting|a| → ∞ we get the said
inequality forC(F).

Hitting probability for open sets.

Let U be a bounded open set and defineσU and PU(a) as in the
case of compact setsF. ThenpU(a) is harmonic outside∂U and super

harmonic in the whole space. ThereforepU(a) =
∫

∂U

µU(db)
|a− b|

in (∂U)c,



6. Hitting probability 101

andµU(∂U) = lim
|a|→∞

|a|pU (a). Let Fn ↑ U be compact subsets ofU.

ThenC(Fn) = lim
|a|→∞

|a|pFn(a) and the convergence is uniform inn since

Fn are contained in a bounded set. Also since

PU(a) = Pa(σU < ∞) = lim
n→∞

Pa(σFn < ∞) = lim pFn(a)

we have
µU(∂U) = lim

n→∞
C(Fn).

ThereforeµU∂U) is the supremum of capacities of compact sets124

contained inU; it is the capacity C(U) of U by definition. Again

pU(a) ≤ C(U)
min
b∈∂U
|b− a| .

Remark. The capacity of any set is defined as follows. We have already
defined the notion of capacity for compact sets. The capacityof any
open set is by definition the supermum of the capacities of compact sets
contained in it. Theouter capacityof a set is the infimum of the capaci-
ties of open sets containing it, while theinner capacityis the supremum
of the capacities of compact sets contained in it. If both areequal the
set is calledcapacitableand the outer (or inner) capacity is called the
capacityof the set. Choquet has proved that every Borel (even analytic)
set is capacitable.

Relative hitting probability ( k ≥ 1).

Let F be a compact set contained in a bounded open setU and put
σF/U = inf {t : τU > t → 0 and xt ∈ F} whereτU is the first leaving
time from U. Let pF/U(a) = Pa(σF/U < ∞) = Pa{ for somet > 0xt

reachesF before it leavesU. pF/U(a) is called the(relative) hitting
probability for F with respect to a and relative toU. Using the same
idea as before we can prove

Theorem 1′. pF/U (a) is expressible as a potential induced by a bounded
measureµF/U with the Green function GU(a, b), i.e.

pF/U(a) =
∫

GU(a, b)µF/U (db), a ∈ U,
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whereµF/U is concentrated on F. FurtherµF/U is uniquely determined125

by F.

We can define therelative capacity CU(F) of F asµF/U(θF) and
carry out similar discussions.

Remark on absolute hitting probability ( k ≤ 2).

In casek = 1, pF(a) ≡ 0 or≡ 1 according asF , φ or = φ.
In casek = 2, we contend thatpF(a) ≡ 1 or 0 according asCU(F) >

0 or = 0, whereU is a bounded open set containingF. To prove this
let V be another bounded open set such thatF ⊂ V ⊂ V̄ ⊂ U. Let
σ1(w) = τU(w) + σV(w+U), σ2(w) = σ1(w) + σ1(w+σ1

), σ3(w) = σ2(w) +
σ1(w+σ2

), . . . , σn(w) = σn−1(w)+σ1(w+n−1), etc. Then evidentlyxσn ∈ ∂V
andσn ↑ ∞; for let, σ′n(w) = σn−1(w) + τU(w+σn−1

). Thenσn−1 ≤ σ′n ≤
σn, andxσn ∈ ∂V, xσ′n ∈ ∂U so that ifσn ↑ σ, xσ ∈ ∂V ∩ ∂U = φ which
is a contradiction. Henceσn ↑ ∞ with Pa-probability 1. IfCU(F) = 0,
thenpF/U (xσn) = 0. Now

Pa(xt ∈ F, σn < t ≤ σn+1 = Pa(σF(w+σn
) < τU(w+σn

))

= Ea(Px∂n
(σF(w) < τU(w))) = Ea(pF/U (xσn)) = 0.

HencePF(a) = Pa(xt ∈ F for somet > 0) ≤
∑

Pa(xt ∈ F, σn < t ≤
σn+1) = 0. Now

1− pF(a) ≤ Pa(xt < F, o < t < σn

≤ Pa(σF(w+σr
) > τU(w∗σr

)(≤ r ≤ n)

126

The set
(
σF(w+σr

)
)
> τU(w+σr

), 1 ≤ r ≤ n− 1) isBσn+
-meansurable.

For

(σF(w+σr
) < τU(w+σr

)) = (σF[w−σ+1)+
σr (w−r1)] > τU [(w−σr+1

)+
σr (w−r+1)])

Hence (σF(w+σr
) < τU(w+σr

)) ∈ Bσr+1 ⊂ Bσn, for r+1 = n. [Note that
if σ1, σ2 are two Markov times andσ1 < σ2 thenBσ1 ⊂ Bσ2]. Hance
by strong Markov property
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Pa(σF(w+σr
) > τU(w+σr

), 1 ≤ r ≤ n)

= Ea[pxσn
(σF > τF) : σF(w+σr

) > τU(w+σr
), 1 ≤ r ≤ n− 1]

If CU(F) > 0, sincepF/U (a) is continuous on∂V and always> 0 it
has a minimumǫ > 0. Then

Pa(σF(w+σr
) > τU(w+σr

), 1 ≤ r ≤ n) ≤ (1− ǫ)Pa(σF(w+σr
)

> τU(w+σr
), 1 ≤ r ≤ n− 1) ≤ . . . ≤ (1− ǫ)n → C.

This proves our contertion.

7 Regular points (k ≥ 3)

In order to decide whether the garalied solution (the stochastic solution)
u(a) = u(a : f , v) satisfies the boundary conditions

lim
a∈U,
a→ξ

u(a) = f (ξ), ξ ∈ ∂U

we introduce the notion of regularity of boundary points. 127

Let U be an open set andξ ∈ ∂U. Let

τ∗U = inf {t : t > 0 andxt < U},

and consider the eventτ∗U = 0. This clearly belongs toBo+ and Blumen-
thal 0− 1 law givesPξ(τ∗U = 0) = 1 or 0. If it is 1,ξ is called aregular
point for U; if it is zero it is calledirregular for U. Regularity is a local
property. In fact, ifξ is regular forU, ξ is regular forΓ ∩ U for any
open neighbourhoodΓ of ξ and vice versa. We state here two important
criteria for regularity.

Theorem 1. Let ξ ∈ ∂U.

(a) ξ is regular for U if and only if lim
a∈U,a→ξ

Pa(x(τ∗U ) ∈ ∂U ∩ Γ) = 1.

(b) ξ is irregular for U if and only iflim
Γ↓ξ

lim
a→ξ

Pa(x(τ∗U) ∈ ∂U ∩ Γ) = 0.
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Theorem 2(Winer’s test). If ξ ∈ U and

Fn = (b : 2−(n+1)(k−2) ≤ |b− ξ| ≤ 2−n(k−2), b ∈ Uc)

is regular or irregular according as
∑
n

2−n(k−2)C(Fn) = ∞ or < ∞.

We can prove the above two theorems using the same idea we used
for the proof of Poincare’s test.

The following theorem, an immediate corollary of Theorem 1 gives128

the boundary values of the stochastic solution.

Theorem 3. If U is a bounded open set, ifξ is regular for U and if f is
bounded Borel on∂U and continuous atξ, then

lim
a∈U,a→ξ

u(a : f ,U) = f (ξ).

On the other hand ifξ is irregular for U, then there exists a contin-
uous funtion f on∂U such that the above equality is not true.

The following thorem, which we shall state whithout proof, shows
that the set of irregular points is very small compared with the rest.

Theorem 4. Let U be a bounded open set. Then the set of irregular
points has capacity zero.

Using Theorem 3 and 4 we prove the following

Theorem 5. If U is a bounded open set and if f is continuous on∂U the
stochastic solution u(a) = u(a : f ,U) is the unique bounded harmonic
function defined in U such that

lim
a∈U,a→ξ

u(a) = f (ξ), ξ ∈ ∂U

except for aξ- set of capacity zero.

Proof. It folllows at once from Theorem 3 and 4 that the stochastic solu-
tion is a bounded harmonic function with boundary valuesf at regualar129
points. Conversely letv be any bounded harmonic funtion with the
boundary valuesf upto capacity zero. LetN be the set of all pointsξ
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such thatv(a) 9 f (ξ). ThenC(N) = 0 by assumption. Therefore there
exists a decreasing sequence of open setsGm ⊃ N such thatḠm+1 ⊂ Gm
andC(Gm) → 0. SinceN is bounded we can assume thatGm are also
bounded and sinceN ⊂ ∂U, we can assume that

⋂
m

Gm ⊂ ∂U. Let

a ∈ U. Thenρ(a,Gm) = inf
b∈Gm

ρ(a, b) > some positive constant for large

m. Therefore

Pa(xτU ∈ N) ≤ Pa

xτU ∈
⋂

m

Gm

 ≤ Pa[σGm < ∞] ≤ C(Gm)
(ρ(a,Gm))k−2

→ 0

so thatPa(xτU ∈ N) = 1. Let nowUn be open sets,Un ↑ U such that
Ūn ⊂ U and every boundary point ofUn is a Poincaré point forUn.
Thenv(a) = Ea(b(xτUn

)), a∈ Un so that

v(a) = lim
n→∞

Ea(v(xτUn
)) = Ea( lim

n→∞
v(xτUn

))

= Ea( lim
n→∞

v(xτUn
) : lim

n→∞
xτUn
= xτU < N)

= Ea( f (xτU ) : xτU < N) = Ea( f (xτU )) = u(a : f ,U).

�

8 Plane measure of a two dimensional Brownian
motion curve

We have seen in Theorem 3 of§ 4 that the two-dimensional Brownian
motion is dense in the plane. We now prove the following interesting
theorem due to Paul Lévy.

Theorem 1(P. Levy). The two dimensional Lebesgue measure of a two-130

dimensional Brownian motion curve is zero with probability1 i.e. if
C(w) = {xs : 0 ≤ s< ∞}, and |C| = the Lebesgue measure of C(w) then
Pa(|C| = 0) = 1.

We first prove the following lemma.

Lemma (). Let S be a Hausdorff space with the second countability
axiom and W a class of continuous functions fo[0, t] into S . LetB be the
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Borel algebra generated by the class of all sets of the form{w : w ∈ W
and w(s) ∈ E} where0 ≤ s ≤ t and E ∈ B(S), B(S) being the class of
Borel subsets of S (i.e. the Boral algebra generated by open sets of S ).
Let C(w) = {w(s) : 0 ≤ s≤ t}. Then the function defined by

f (a,w) = 1 if a ∈ C(w)

= 0 if a < C(w)

is B(S) × B-measurable in the pair(a,w).

Proof. It is clearly enough to prove that

{(a,w) : a < C(w)} ∈ B(S) × B.

For any open setU ⊂ S we have

(w : C(w) ⊂ Uc) = −
⋂

r≤t
r, rational

{w : w(r) ∈ Uc}

so that
(w : C(w) ⊂ Uc) ∈ B.

Let nowUn be a countable base forS. Then it is not difficult to see
that

{(a,w) : a < C(w)} =
∞⋃

n=1

[
Un ×

{
w : C(w)Uc

n
}]

using the fact thatC(w) being the continuous image of [o, t] is closed.131

Q.E.D. �

Proof of Theorem.To prove the theorem it is enough toi consider two
dimensional Brownian motion curves starting at zero i.e. a two-dimen-
sional Wiener process. Letxt(w) be a two-dimensional Wiener process
onΩ(B,P). It is enough to show thatE(|ct |) = 0, wherect = {xs : 0 ≤
s≤ t} and|ct | = the two dimensional Lebesgue measure ofct. From the
lemma the functionχ(a, ct) defined as

χ(a, ct) = 1 if a ∈ ct
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= 0 if a < ct

is measurable in the pair (a,w). Since|ct | =
∫

R2

χ(a, ct)da, |ct | is measur-

able inw. Consider the following four processes:

1. xs(w), 0 ≤ s≤ t

2. ys(w) = xs+t(w) − xt(w), 0 ≤ s≤ t

3. zs(w) = xt−s(w) − xt(w), 0 ≤ s≤ t

4. us(w) =
x2s(w)
√

2
, 0 ≤ s≤ t.

All the four processes are continuous processes i.e. processes whose
sample functions are continuous. Let

cx
t = {xs : 0 ≤ s≤ t}

with similar meanings forcu
t , c

y
t andcz

t . Now the form of the Gaussian
distribution shows that all the above four processes have the same joint
distributions at any finite system of points. It follows thatthe distri- 132

butions induced on [R2][o,t] by the above processes are the same. Also
χ(a, cx

t ) = f (a, x) where f is the function in the lemma andx denotes
the path. Thus we have

E(χ(a, cx
t )) = E(χ(a, cy

t )) = E(χ(a, cz
t )) = E(χ(a, cu

t )).

Hence

E(|cx
t |) =

∫

R2
E(χ(a, cx

t ))da=
∫

R2
E(χ(a, cu

t ))da= E(|cu
t |).

We have

cx
2t = {xs : 0 ≤ s≤ 2t = cx

t ∪ [cy
t + xt]

≡ [cx
t − xt] ∪ cy

t = cz
t ∪ cy

t ,
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where≡ denotes congruency under translation. Therefore|cx
2t |+|c

y
t∩cz

t | =
|cz

t | + |c
y
t |, and

E(|cx
2t |) + E(|cy

t ∩ cz
t |) = E(|cz

t |) + E(|cy
t |) = 2E(|cx

t |).

Also

E(|cx
t |) = E(|

√
2cu

t |) = E(2|cu
t |) = 2E(|cu

t |) = 2E(|cx
t |)

Therefore

E(|cy
t ∩ 0z

t |) = 0 i.e.
∫

R2

E(χ(a, cx
t )Eχ(a, cy

t ))da= 0.

Since the processy andzare easily seen to be independent

E(χ(a, cx
t )Eχ(a, cy

t )) = E(χ(a, cz
t ))E(χ(a, cy

t )) = [E(χ(a, cx
t ))]2.

Therefore
∫

[E(χ(a, cx
t ))]2da = 0 giving E(χ(a, cx

t )) = 0 for almost133

all a. Hence
∫

E(χ(a, cx
t ))da = 0 i.e E(|cx

t |) = 0. This proves the theo-
rem.



Section 4

Additive Processes

1 Definitions
134

Let x• = (xt, 0 ≤ t < a) be a stochastic process on a probability space
(Ω,P). If I = (t1, t2] the incrementof x in I is by definition the random
variablex(I ) = xt2 − xt1.

Definition (). A process, x• = (xt) with x0 ≡ 0 is called anadditive
(or differential) process, if for every finite disjount system I1, . . . , In of
intervals, x(I1), . . . , x(In) are independent.

We shall only consider additive processesx for which E(x2
t ) < ∞

for all t. In this caseE(xt) = m(t) exists and is called thefirst momentof
xt.E((xt −m(t))2) is called thevarienceof xt and is denoted byV(xt) or
v(t). If yt = xt −m(t), y. = (yt) is also additive.

Definition (). A process x= (xt) is said to becontinuous in probability
at t0 or said to havefixed discontinuityat t0, if for every∈> 0,

lim
t→t0

P[|xt − xt0 | > ǫ] = 0.

If it is continuous in probability at every point t it is said to be con-
tinuous in probability.

The following theorem is due to Doob.

109
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Theorem 1. If an additive process(xt) has no fixed discontinuity then135

there exists a process(yt) such that

(1) P(xt = yt) = 1 for all t;

(2) almost all sample functions of(yt) are d1.

If further (yt), (y′t ) are two such processes, then

P(for every t, yt = y′t ) = 1.

y• = (yt) is called thestandard modificationof xt. The proof can
be seen in Doob’s Stochastic processes.

Definition (). An additive process(xt) with no point of fixed discontinu-
ity and whose sample paths are d1 with probability 1 is called aLevy
process.

It can be seen easily that Wiener processes and Poison processes are
particular cases of Levy processes.

Definition (). A process(xt) is called temporally homogeneousif the
probability distribution of xs− xt(s> t) depends only on s− t.

The above theorem of Doob shows that it is enough to study Levy
processes in order of study additive processes with no pointof fixed
discontinuity.

2 Gaussian additive processes and poisson additive
processes

The following two theorems give two elementary types of Levypro-
cesses.

Definition (). An additive process(xt) which almost all sample paths
continuous is called aGaussian additive process.If for almost all w, the136

sample functions are step fucntions increasing with jump1 the process
is called aPoisson additive process.
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We prove the following two theorem which justify the above nomen-
clature.

Theorem 1. Let (xt) be a Levy process. If xt(w) is continuous in t for
almost all w, then x(I ) is Gassian variable.

The condition that xt is continuous of almost all w is sometimes
referred to as”( xt) has no moving discontinuity” in contrast with “(xt)
has no fixed discontinuity”.

Proof. Let I = (t0, t1]. Since almost all sample functions are continuous,
for anyǫ > 0, there exists aδ(ǫ) > 0 such that

P(for all t, s∈ I , |t − s| < δ⇒ |xt − xs| < ǫ) > 1− ǫ.

Noting this, let for eachn,

t0 = tn0 < tn1 < . . . < tnpn
= t1

be a subdivision of (t0, t1], with 0 < tni − tni−1 < δ(ǫn), whereǫn ↓ 0.

Let xnk = x(tnk) − x(tnk−1). Thenx = x(I ) =
pn∑

k=1
xnk. Definex′nk − xnk if

|xnk| <∈n and zero otherwise. Putxn =
pn∑

k=1
x′nk. Then from the above it

follows that
P(x = xn) > 1− ∈n;

i.e., thatxn → x in probability. Sincexnk are independent so arex′nk. 137

Therefore

E(eiαx) = lim
n→∞

E(eiαxn) = lim
n→∞

Pn∏

k=1

E(eiαx′nk).

Let mnk = E(x′nk),Vnk = V(x′nk),mn =
Pn∑

k=1
mnk andVn

Pn∑
k=1

Vnk. Then

|mnk| ≤∈n andVnk ≤ 4 ∈2
n. Now

E(eiαx) = lim
n→∞

eiαmn

Pn∏

k=1

E(eiα(x′nk−mnk))
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= lim
n→∞

eiαmn

Pn∏

k=1

[
1− α

2

2
Vnk(1+ 0(∈n))

]
,

so that

|E(eiαx)| ≤ lim
n→∞

∏

k

e−
α2
2 Vnk = lim

n→∞
e−

α2
2 Vn ≤ e−

α2
2 lim Vn.

SinceE(eiαx) is continuous inα and is 1 atα = 0, for sufficient
smallα, E(eiαx) , 0. Hencelim

n→∞
Vn < ∞, i.e. Vn is bounded. By taking

a subsequence if necessary we can assume thatVn→ V.

We can very easily prove taht ifzn =
Pn∑
i=1

zni such that

(1) sup
1≤i≤Pn

|zni| → 0 asn→ ∞;

(2)
Pn∑
i=1
|zni | is bounded uniformly inn; and

(3) zn→ z, then

lim
n−∞

Pn∏

i=1

[1 − zni] = e−z.

Now in our case max
k
|Vnk| ≤ 4 ∈2

n→ 0,
Pn∑

k=1
Vnk[1+0(∈n)] → V and138

Vnk ≥ 0 so that

lim
n→∞

Pn∏

k=1

[
1− α

2

2
Vnk(1+ 0(∈n))

]
= e−

α2
2 V.

ThereforeE(eiαx) = lim
n→∞

eiαmne−α
2/V. This implies thatϕ(α) =

lim
n→∞

eiαmn exists. Now if 0≤ β ≤ π/2,

β∫

0

ϕ(α)dα = lim
n

β∫

0

eiαmndα = lim
n→∞

eiβmn − 1
imn

= 0
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if mn → ±∞, and thenϕ(α) = 0 for almost allα ≤ π/2, i.e.
E(eiαx) = 0 for almost allα ≤ π/2 and this is a contradiction.
Thereforemn→ m and

E(eiαx) = eiαm−α2/2V.

�

Theorem 2. Let (xt) be a Levy process. If almost all sample functions
are step functions with jump1, then x(I ) is a Poisson variable.

Proof. From the continuity in probability ofxt,

sup
|t−s|<n−1,t0≤t,s≤t1

P(|xt − xs| ≥ 1)→ 0 asn→ ∞.

For eachn, let t0 = tno < tn1 < · · · < tnpn = t1, tni − tni−1 ≤
1
n

, be a

subdivision of [t0, t1] and letxnk = xtnk − xtnk−1, x′nk = xnk if xnk = 0 or
1 andx′nk = 1 if xnk ≥ 2. Putxn =

∑
x′nk. Then sinceP(xn→ x) = 1, 139

E(e−αx) = lim
n→∞

E(e−αxn) = lim
n→∞

Pn∏

k=1

E(e−αx′nk)

= lim
n→∞

Pn∏

k=1

[
(1− pnk) + pnke

−α]
= lim

n→∞

Pn∏

k=1

[
1− Pnk(1− e−α)

]

≤ lim
n→∞

Pn∏

k=1

e−pnk(1−e−α)
= lim

n→∞
e−Pn(1−e−α)

= e−(1−e−α) lim Pn,

wherepnk = P(xnk ≥ 1) = P(x′nk = 1) andPn =
Pn∑

k=1
Pnk. ThereforePn

is bounded. We can assume thatPn → P. Again since max
1≤k≤pn

Pnk → 0,

E(e−αx) = e−p(1−e−α). �
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3 Levy’s canonical form

Before considering the decomposition of a Levy process we prove some
lemmas.

Lemma 1. Let (xt) be a Levy process and(yt) a Pisson additive process.
Suppose further that(zt) = ((xt, yt)) is a vector-valued additive process.
Then, if

P(for every t, xt = xt− or yt = yt−) = 1,

the processes(xt) and(yt) are independent.

Proof. It is enough to prove that

P(x(I ) ∈ E, y(I ) ∈ F) = P(x(I ) ∈ E)P(y(I ) ∈ F).

For once this is proved we have, by the additivity of (zt), for any140

finite disjoint systemI1, . . . , In of intervals,

P(x(I i ) ∈ Ei , y(I i ) ∈ Fi), i = 1, 2, . . . , n) =
∏

i−1

P(x(I i ) ∈ Ei , y(I i ) ∈ Fi)

=

n∏

i−1

P(x(I i )Ei)P(y(I i )Fi)

= P[x(I i) ∈ Ei , i = 1, 2, . . . , n]P[y(I i ) ∈ Fi , i = 1, 2, . . . , n],

and the proof can be completed easily. �

Sincey(I ) is a Poisson variable it is enough to prove thatE(eiαx(I) :
y(I ) = K)E(eiαx(I))p(y(I ) = K).

Let I = (t0, t1]. For eachn let t0 = tn0 < tn1 < . . . << tnn = t1,

tni − tn−1 =
1
n

(t1 − t0) be the subdivision ofI into n equal intervals. Put

xni = x(tni) − x(tni−1), yni = y(tnin) − y(tni−1)x′ni = xni if yni = 0, x′ni = 0

if yni ≥ 1, andxn =
n∑

i=1
x′ni
=

∑
yni=0

xni. We havex = x(I ) =
n∑

i=1
xni

and |x(w) − xn(w)| ≤ yni
∑

(W)≥1
xni(w). Sinceyt(w) is a Poisson variable

increasing with jump 1 the number of terms in the right hand side of the
last inequality is at mosty(w) = P (say). Suppose thatτ1(w), . . . , τp(w)
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are the points inI , at whichyt(w) has jumps. Then|x(w) − xn(w)| ≤
p∑

j=1
|x(s′n j) − x(sn j)| where (sn j, s′n j] is the interval of thenth subdivision

which containsτ j(w). Now |x(s′n j) − x(sn j)| ≤ |x(s′n j)| − x(
tauj)|+ |x(τ j)− x(sn j)|. Since atτ1, . . . , τp, yt(w) has jumps,xt(w) has no
jumps at these points. Therefore|x(τ j)−x(sn j)| and|x(x(s′n j)|−x(τ j )| → 0 141

asn→ ∞. ThusP(xn→ x) = 1. Now

E(eiαxn : y = k) =
∑

r≤k

∑

0≤λ1≤λ2≤···≤λr≤n
P1+···+Pr=k
P1,...,Pr≥1

E

(
eiα ∑

λ,λσ xnλ : ynλσ = pσ, σ = 1, 2, . . . r
ynλ=0,λ,λσ

)

Put

E

(
eiα ∑

λ,λσ xnλ : ynλσ = pσ, 1 ≤ σ ≤ r
ynλ=0,λ,λσ

)
= Er(λ)(p)

Using the hypothesis that (xt, yt) is additive one shows without dif-
ficulty that

Er(λ)(p) =

∏

λ,λσ

E(eiαxnλ ) : ynλ = 0)
∏

1≤σ≤r

P(ynλσ = pσ),

so that

Er(λ)(p) = E(e
iα

∑
λ,λσ

xnλ

: ynλ = 0, λ , λσ)P(ynλσ = pσ, 1 ≤ σ ≤ r)

Also P(y = 0) = P(ynλ = 0 for all λ)P(ynλ = 0, λ , λσ)P(Ynλσ =

0, 1 ≤ σ ≤ r). Therefore (using the additivity of (xt, yt) again)

Er(λ)(p)P(y = 0) = E(e
iα

∑
λ,λσ

xnλ

: ynλ = 0, λ , λσ)P(ynλσ = 0, 1 ≤ σ ≤ r)

× xP(ynλσ = pσ, 1 ≤ σ ≤ r)P(ynλ = 0, λ , λσ)

= E(e
iα

∑
λ,λσ

xnλ

: ynλ = 0 for all λ)

P(ynλσ = pσ, 1 ≤ σ ≤ r, ynλ = 0, λ , λσ)

= E(e
iα

∑
λ,λσ

xnλ

: y = 0
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P(ynλσ = pσ, 1 ≤ σ ≤ r, ynλ = 0, λ , λσ).

Therefore 142

P(y = 0)E(eiαxn : y = k) =
∑

r≤k

∑

0≤λ1≤...<λr≤n
P1+···+Pr=k
P1,...,Pr≥1

E(λ)(P)P(y = 0)

=

∑

r≤k

∑

0≤λ1<...<λr≤n
P1+···+Pr=k
P1,...,Pr≥1

E(e
iα

∑
λ,λσ

xnλ

: y = 0)

P(ynλσ = pσ, ynλ = 0, λ , λσ)

Now

|E
(
e

iα
∑

λ,λσ

xnλ

: y = 0

)
− E

(
eiαx : y = 0

)
| ≤ E

(
|e

iα
∑

1≤σ≤
r xnλσ

− 1|
)

≤
r∑

σ=1

E
(
|eiαxnλσ − 1|

)
≤ K sup

|t−s|≤ 1
2 (t1−t0)

t0≤t,s≤t1

E
(
|eiαxt − eiαxs|

)
→ 0,

asn → ∞, sincext has no point of fixed discontinuity. We thus have,
sinceP(y = k) =

∑
r≤k

∑
(λ)
(p)

P(ynλσ = pσ, ynλ=0,λ,λσ ),

|p(y = 0)E
(
eiαxn : y = k

)
− p(y = k)E(eiαx; y = 0)

≤
∑

r≤k

∑

(λ)
(p)

∣∣∣∣∣∣E
(
e

iα
∑

λ,λσ

xn

: y = 0

)
− E

(
eiαx : y = 0

)∣∣∣∣∣∣

P
(
ynλσ = Pσ, ynλ = 0, λ , λσ

)

≤ sup
(λ),(p)

E

(
e

iα
∑

λ,λσ

xnλ

: y = 0

)
− E(eiαx : y = 0)|

∑

r≤k(λ)
(p)

p(ynλσ = pσynλ = 0, λ , λσ)

≤ sup
(λ),(p)

E

(
e

iα
∑

λ,λσ

xnλ

: y = 0

)
− E(eiαx : y = 0)| → 0.
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Thereforep(y = 0)E(eiαx : y = k) = E(eiαx : y = 0)P(y = k). 143

Summing the above fork = 0, 1, 2, . . . we getP(y = 0)E(eiαx) = E(eiαx :
y = 0). Hence finally we have

P(y = 0)E(eiαx : y = k) = E(eiαx : y = 0)

P(y = k) = E(eiαx)P(y = 0)P(y = k),

i.e.,
E(eiαx : y = k) = P(y = k)E(eiαx).

We have proved the lemma.

Remark. We can prove that ifx• = (xt),
•y• = (yt) are independent Levy

processes, then

P(for everyt, xt = xt− or yt = yt−) = 1.

Lemma 2 (Ottaviani). If r1(.), . . . , rn(.) are independent stochastic pro-
cesses almost all of whose-sample functions are of type d1, then for any
∈> 0,

P
[

max
1≤m≤n

||r1( •) + · · · + rm( •)|| > 2 ∈
]

≤ P [||r1 + · · · + rn|| >∈]
1− max

1≤m≤n−1
P [||rn+1 + · · · + rn|| >∈]

where||r || = ||r( •)|| = sup
0≤s≤t

|r(s)|.

Proof. Let

Am =

(
max

a≤µ≤m−1
||r1 + · · · + rµ|| ≤ 2 ∈, ||r1 + · · · + rm||2 ∈

)

Bm = (||rm+1 + · · · + rn|| ≤∈).

Then sinceAm are disjoint, Am ∩ Bm are also disjoint. Further
n⋃

m=1
AmBm ⊂ C = (||r1 + · · · + rn|| >∈), so that 144
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P(c) ≥
∑

P(Am∩ Bm) =
∑

P(Am)P(Bm) ≥ P(UAm)
n

min
m=1

P(Bm)

If we now note that
n

min
m=1

P(Bm) = 1 − max1≤m≤n P(Bc
m) we get the

result. �

Lemma 3. Let (xt) be a Levy process, such that E(x(t)) = 0, E(x(t)2) <
∞. Then for any∈> 0,

P

[
sup

o≤s≤t
|x(s)| >∈

]
<

1

∈2
E(x(t)2).

Proof. This lemma is the continuous version of Kolmogoroff’s inequal-
ity which is as follows.

Kolomogoroff’s inequality. If x1, . . . , xn are independent random vari-
ables withE(xi) = 0, E(x2

i ) < ∞, i = 1, 2, . . . , n, and ifSm = x1+· · ·+xm,
then

P
(

max
1≤m≤n

|Sm| > ǫ
)
<

1

ǫ2
E(S2

n).

The lemma follows easily from this inequality.
Let now (xt, o ≤ t < a) be a Levy process,S = {(s, u) : o ≤ s <

a,−∞ < u < ∞}. LetB(S) be the set of Borel subsets ofS and

B
+(S) = (E : E ∈ B(S) andρ(E, s− axis) > 0).

For everyw we define

J(w) = ((t, u) ∈ S : xt(w) − xt−(w) = u , 0, o ≤ t < a).

For E ∈ B(S) put p(E) = number of points inJ(w)∩E. For fixedw,145

thereforep is a mesure onB(S). We can prove thatp(E) is measurable
in w, for fixed E ∈ B+(S). Letσ(M) = E(p(M)) for M ∈ B+(S). Then
we have the �

Theorem ().

xt = x∞(t) + lim
n→∞

∫

[o,t]×(u:1≥|u|> 1
n)

[up(ds du) − uσ(ds du)]
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+

∫

[o,t]×(|u|>1)

up(ds du)

where x∞(t) is continous.

Proof. The proof is in several stages. LetEt = E ∩ [(s, u) : o ≤ s ≤ t]
for E ∈ B+(S).

1. We shall first prove thatyE
t = p(Et) is an additive Poisson process.

Using the fact thatxt is of type d1 it is not difficult to see that
yE

t < ∞, and that it increases with jump 1.

LetBts be the least Boral algebra with respect to whichxu−xv, s≤
u, v ≤ t, are measurable. We shall prove tha tYE

t − yE
s is Bts-

measurable. It suffices to prove this whenE = G is open. Let
Gm ↑ G, Ḡm ⊂ Gm+1 be a sequnce of open sets such thatḠm

is compact. LetyG
t − yG

s = N, yGm
t − yGm

s = Nm. For everyn
let tnk = s + k(t−s)

n , k = 1, 2, . . . , n and Nm
n =number ofk such

that (tnk, xtnk
− xtnk−1

) ∈ Gm. ThenNm−1 ≤ lim
n→∞

Nm
n ≤ Nm+1,Nm

n is

measurable inω with respect toBts, andyG
t −yG

s == lim
m→∞

lim
n→∞

Nm
n .

Now suppose thatI i = (si , ti ]i = 1, 2, . . . , nare disjoint. ThenBti si ,
1 ≤ i ≤ n are independent andyE

I i
is Bti si -measurable. Therefore146

yE
t is an additive process.

Finally yE
t has no fixed discontinuity. For, a fixed discontinuity of

yE
t is also a fixed discontinuity ofxt.

Thus we have proved thatp(Et) is an additive Poisson process.

2. Let r(Et) =
∑

(s,u)∈Et∩J
u =

∫
Et

up(ds du).

We prove thatr(Et) is additive. For everyw ∈ Ω, p is a mea-
sure onB(Et − Es). Any simple function onEt − Es is of the

form
n∑

i=1
aiχFi whereFi ∈ B(Et − Es), i = 1, 2, . . . , n, are disjoint.

Also
∫

Et−Es
(
∑

aiχFi )p(ds du) =
∑

ai p(Fi), so that
∫

Et−Es
(
∑

aiχFi )
p(dsdu) isBts-measurable. It follows that

r(Et) − r(Es) =
∫

Et−Es

up(ds du)
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is Bts-measurable. LetxE
t = xt − r(Et). Using the fact that

r(Et)−r(Es) isBts-measurable, it is seen without difficulty thatxE
t

is a Levy process. SincezE
T = (xE

t , y
E
t ) is additive, andP[xE

t = xE
t−

or yE
t = yE

t− for everyt) = 1 it follows thatxE. andyE
•

are indepen-
dent.

3. Now we prove thatE1, . . . ,En ∈ B+(S) are disjoint then
xE1∪...∪En

• , yE1
• , . . . , yEn are independent. For simplicity we prove

this forn = 2. Putx′t = xE1
t . Then (x′t )

E2 = xE1∪E2
t and the process

yE2
• defined with respect tox′t is the same asyE2

t with respect to
xt. Hence, since (x′

•
)E2 andyE2 are independent from 2,xE1∪E2

•147

andyE2
• are independent. FurtherxE1∪E2

• , yE2
• ) is measurable with

respect toB(xE1
• , the least Borel algebra with respect to whichxE1

t
is measurable for allt, andB(xE1

• ), B(yE1
• are independent. There-

fore (xE1∪E2
• , yE2

• ) andyE1
• are independent. It follows thatxE1∪E2

• ,
yE1

• andyE1
• are independent.

4. xE
t andr(Et) are independent.

Sincer(Et) =
∫

Et
u p(ds du), it is enough to prove that ifF is a

simple function onEt,
∫

Et
F p(ds du) andxE

t are independent; this
follows from 3.

5. If σ(M) = E(p(M)) thenE(eiαr(Et )) = exp
(∫

Et
(eiαu − 1)σ(ds du)

)
.

It is again enough to prove this for simple functions onEt. Note
that if y is a Poisson variable thenE(eiαy) = e(eiα−1) whereλ =
E(y), so that for anyβ we haveE(eiαβy) = eλ(eiαβ−1).

Let f =
∑

siχFi be a simple function onEt with Fi, 1 ≤ i ≤ n
disjoint. Sincep(Fi) are independent random variables we have

E

(
exp

(∫

Et

f p(ds du)

))
= E

e
iα

n∑
j=1

sj p(F j )
 = Π

n
j=1E(eiαsj p(F j ))

=

∏

1≤ j≤n

exp
(
σ(F j)(e

iαsj − 1)
)

= Π1≤ j≤n exp

(∫

Et

(eiαχF j sj − 1)σ(ds du)

)
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= exp



∫

Et

(e
iα

n∑
j=1

sjχF j−1
)σ(ds du)



= exp



∫

Et

(eiα f − 1)σ(ds du)

 .

6. LetU = ((s, u) ∈ S : |u| > 1), Un
= ((s, u) ∈ S : 1

n ≤ |u| ≤ 1). 148

Thenxt = xUn

t + r(Un
t ), and since (XE

t andr(Et) are independent

|E(eiαxt )| =
∣∣∣∣∣E

(
eiαxUn

t

)
||E

(
eiαr(Un

t )
)
| ≤ |E

(
eiαr(Un

t )
)∣∣∣∣∣ =

=

∣∣∣∣∣∣exp


∫

Un
t

(
eiαu − 1

)
σ(dsdu)


∣∣∣∣∣∣

= exp


∫

Un
t

(cosαu− 1)σ(dsdu)



≤ exp

−
α2

4

∫

Un
t

u2σ(ds du)

 ,

because cosαu − 1 ≤ −α
2u2

4
for |α| ≤ 1. It follows that

∫
Un

t
u2

σ(ds du) < ∞ for everyn. Therefore lim
n→∞

∫
Un

t
u2σ(ds du) < ∞.

7. Let rn(t) = r(Un
t ) − E(r(Un

t )), thenrn(t) converges uniformly in
[o, a). The limit we denote byr∞(t).

Now r(Um+k+1
t ) − r(Um+k

t ) = r(Um+k+1
t − Um+k

t ). It follows that
rm+k( •) − rm+k−1( •), k = 1, 2, . . . , n − m are independent. Using
Lemmas 2 and 3,

P
(

max
1≤k≤n−m

||rm+k − rm|| > 2 ∈
)
≤ P(||rn − rm|| >∈)

1− max
1≤k≤n−m−1

P(||rn − rm+k|| >∈)

≤
1
∈2

∫
Un

t −Um
t

u2σ(ds du)

1− 1
∈2

∫
Un

t −Um
t

u2σ(ds du)
→ 0 asm, n→ ∞.
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since

E(|rn(t) − rm(t)|2) = E(|r(Un
t − Um

t ) − E(r(Un
t − Um

t )|2)

= E



∫

Un
t −Um

t

u[p(ds du) − σ(ds du)]2




and149

E

([∫

Et

u(p(ds du) − σ(ds du))2
]
=

∫

Et

u2σ(ds du)

)

which can be proved by first considering simple functions etc.,
and noting the fact that ify is a Poisson variable, then

E[(y− E(y))2] = E(y).

8. Let xn(t) = xUn

t + E(r(Un
t )) − r(Ut) = xt − rn(t) − r(Ut). Since

ru(t) converges uniformly, in every compact subinterval of [o, a),
with probabilty 1, xn(t) converges uniformly in [o, a), say tox∞(t).

Sincexn(t) has no jumps exceeding
1
n

in absolute valuex∞(t) is

continuous. We have

xt = r(Ut) + lim
n→∞

rn(t) + lim
n→∞

xn(t) =

=

∫

Ut

up(ds du) + lim
n→∞

[up(ds du) − uσ(ds du)]

sinceE(r(un
t ) =

∫
Un

t
uσ(ds du). The theorem is proved.

Since
∫
Ut
σ(ds du) = E(p(Ut)) < ∞,

∫
Ut

u

1+ u2
σ(ds du) < ∞.

We have seen that lim
n→∞

∫

Un
t

u2σ(ds du) < ∞. Therefore lim
n→∞

∫

Un
t

u3

1+ u2

σ(ds du) < ∞ and we can also write the last equation as150

xt = g(t) + lim
n→∞

∫

[o,t]×(u:|u|> 1
n )

[
up(ds du) − u

1+ u2
σ(dsdu)

]
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where

g(t) = x∞(t) +
∫

Ut

u

1+ u2
σ(dsdu) − lim

n→∞

∫

Un
t

u3

1+ u2
σ(ds du).

For simplicity we shall write

xt = g(t) +

t∫

s=o

∞∫

−∞

[
up(ds du) − u

1+ u2
σ(ds du)

]
.

In the general case whenxo , 0, we have

xt = xo + g(t) +

t∫

s=o

∞∫

−∞

[
up(ds du) − u

1+ u2
σ(ds du)

]

From now on we shall write

xt =

∞∫

−∞

up([o, t] × du) − u

1+ u2
σ([o, t] × du) + g(t).

Sincext has no fixed discontinuityP(|xt − xt−| > 0) = 0. It fol-
lows thatσ({t} × U) = 0. Noting this it is not difficult to see that
∫
Ut

u

1+ u2
σ(ds du) and lim

n→∞

∫
Un

t

u3

1+ u2
σ(dsdu) are both continuous int.

Thereforeg(t) is continuous hence is a Gaussian additive process. Fur-

ther we can show thatg(t) and
∫ ∞
−∞[up([o, t]] ×du)− u

1+ u2
σ([o, t]×du)

are independent. We have

E(eiα(xt−xs)) = E(exp(iα
∫ ∞

∞
[up([s, t] × du

− u

1− u2
σ([s, t] × du]))E(eiα[g(t)−g(s)] )

= lim
n→∞

E(exp(iα
∫

|u|> 1
n

[up([s, t] × du) − u

1− u2

σ([s, t] × du])) × exp

(
i(m(t) −m(s))α − v(t) − v(s)

2
α2

)
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= lim
n→∞

exp


∫

|u|> 1
n

(eiαu − 1− iαu

a+ u2
)σ([s, t] × du)



× exp

(
tα(m(t) −m(s)) − v(t) − v(s)

2
α2

)

151

Therefore

log E(eiα(xt−xs)) = iα[m(t) −m(s)] − v(t) − v(s)
2

α2
+

+

∫ ∞

−∞
[eiαu − 1− iαu

1+ u2
σ([s, t] × du).

Sinceg(t) is Gaussianm(t) andv(t) are continuous int andv(t) in-
creases witht.

Conversely, givenm, v andσ such that (1)m(t) is continuous int, (2)

v(t) is continuous and increasing, (3)σ[{t}×U] = 0,
∫ ∞
−∞

u2

1+ u2
σ([o, t]×

du) < ∞, we can construct a unique (in law) Lévy process.
Let us now consider some special cases. If

∫ ∞
−∞ u2σ([o, t] × du) < ∞152

we can write

xt = g1(t) +
∫ ∞

−∞
u[p([o, t] × dv) − σ([o, t] × du).

The condition
∫ ∞
−∞

|u|
1+ |u|

σ([o, t] × du) < ∞ is equivalent to the two

condition (1)
∫ ∞
−∞

u2

1+ u2
σ([o, t] × du) < ∞ and (2)

∫ ∞

−∞

|u|
1+ u2

σ([o, t] × du) < ∞ so that if
∫ ∞

−∞

|u|
1+ |u|

σ([o, t] × du) < ∞

we can write

xt =

∫ ∞

−∞
up([o, t] × du) + g2(t)

and

logE(eiαxt ) = −iαm(t) − v(t)
2
α2
+

∫ ∞

−∞
[eiαu − 1]σ([o, t] × du)
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The condition
∫ ∞
−∞

u2

1+ |u|
σ([o, t] × du) < ∞ is equivalent to the

condition (1)
∫ ∞
−∞

u2

1+ u2
σ([o, t] × du) < ∞ and (2)

∫ ∞
−∞

u3

1+ u2
σ([o, t] ×

du) < ∞. Therefore if
∫ ∞
−∞

u2

1+ |u|σ([o, t] × du) < ∞ we can write

logE(eiαxt ) = iαm(t) − v(t)
2
α2
+

∫ ∞

−∞
[eiαu − 1− iαu]σ([o, t] × du)

�

Lemma (). If f (α) = imα− v
2
α2
+

∫ ∞
−∞[eiαu−1− iαu

1+ u2
]σ(du) ≡ 0, where

m and v are real andσ is a signed measure such that
∫ ∞
−∞

u2

1+ u2
σ(du) <

∞, then m= v = σ = 0.

Proof. We have 0≡ f (α) − 1
2

∫ α+1
α−1 f (β)dβ = v

3 +
∫ ∞
−∞ eiαu[ 1−sinu

u ]σ(du) 153

so that ifδo is the Dirac measure at 0,

∞∫

−∞

[
v
3
δo(du) +

(
1− sinu

u

)
σ(du)

]
eiαu ≡ 0.

It follows that v
3δo(A) +

∫
A
(1 − sinu

u
)σ(du) = 0. TakingA = {0},

since
∫
{0}(1 −

sinu
u

)σ(du) = 0 we see thatv = 0. It then follows that

σ = 0 and hencem= 0. �

Form this lemma we can easily deduce that in the expression

logE(eiαxt ) = iαm(t) − v(t)
2
α2
+

∞∫

−∞

[eiu − 1− iαu

1+ u2
]σ([o, t] × du),

m(t), v(t) andσ are unique.
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4 Temporally homogeneouos Ĺevy processes

We shall prove that if (xt) is a temporally homogeneous Lévy process,
then logE(eiαxt ) = tψ(α) where

ψ(α) = imα − v
2
α2
+ +

∫ ∞

−∞

[
i iαu − 1− iαu

1+ u2

]
σ(du).

Definition (). Two random variables x and y on a probability space
Ω(P) are said to beequivalent in lawand we write s∼

L
y if they yield

the same distribution.

A stochastic process (xt, 0 ≤ t < a) on Ω can be regarded as a
measurable function intoR[0,a]. Two stochastic processes (xt), (yt), 0 ≤
t < a are said to be equivalent in law if they induce the same probability
distribution onR[0,a] and we writex•∼

L
y•. If (xt) and (yt) are addtive

processes such thatxt − xs∼
L
yt − ys, then we can be prove thatx•∼

L
y•.

Let D′ denote the set of alld1-type functions on [0, a) into R′. Then154

D′ ⊂ R[0,a) and letB(D′) be the induced Borel algebra onD′ byB(R[0,a)).
If ( xt, 0 ≤ t < a) is a Lévy process then the mapw → x•(w) into D′ is
measurable; also ifx(h)

t = xx+h − xt, 0 ≤ t < a− h we can show that (xt)
is temporally homogeneous if and only ifx•∼

L
x(h)

• .

Now considerD′. Let E ∈ B+(S),

J( f ) = {(s, u) : f (s) − f (s−) = u , 0}, f D′

andFE
t ( f ) = number of points inJ( f ) ∩ Et.

We can show thatFt( f ) < ∞ and thatFt is measurable onD′. The
proof of measurability ofFt follows exactly on the same lines as that of
the mesurability ofYE

t . We have clearlyp(Et) = yE
t = FE

t (x•).
Let E ∈ B([0, t]) andU ∈ B(R′) be such thatE1 = E × U ∈ B+(S).

If h is such thatt + h < a we prove thatσ((E + h) × U) = σ(E U). Let
E2 = (E+h)×U. Thenσ(E2×U) = E(yE2

t+h) = E(yE2
t+h− yE2

h ). Let x(h)
t =

xt+h− xh. Sincext is temporally homogeneousx(h)
• ∼

L
x•. Also yE2

t+h−yE2
h =

FE1
t [x(h)

• ] andyE1
t = FE1

t [x•]. It follows that E(yE1
t ) = E(yE2

t+h). Thus for
fixed U, σ is a translation-invariant measure onB[(0, a))] and hence is
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the Lebesgue measure, i.e.σ(E × U) = m(E)σ1(U), wherem(E) is
the Lebesgue measure ofE andσ1(U) is a constant depending onU.
Sinceσ is a measure onR2, it follows thatσ1 is also a measure. Hence
σ(ds du) = dsσ1(du). We shall drop the suffix 1 and use same symbol155

σ. Thus

t∫

0

∞∫

−∞

[
eiαu − 1− iαu

1+ u2

]
σ(ds du) = t

∞∫

−∞

[
eiαu − 1− iαu

1+ u2

]
σ(du).

Now logE(eiα(xt−xs)) depends only ont − s. Thereforem(t) − m(s)
and v(t) − v(s) depend only ont − s. Hencem(t) = m.t, v(t) = v.t.
Therefore, finally,

logE(eiαxt ) = Imαt − vt
2
α2
+ t

∫ ∞

−∞

[
eiαu − 1− iαu

1+ u2

]
σ(du).

We shall now consider some special cases of temporally homoge-
neous Lévy process. We have seen that

xt = g(t) +

∞∫

−∞

[
upt(du) − u

1+ u2
tσ(du)

]
,

wherept(du) = p([0, t] × du). Sinceg(t) is Gaussian additive and tem-
porally homogeneousg(t) = mt+

√
vBt, whereBt is a Wiener process.

Thus

xt = mt+
√

vBt +

∞∫

−∞

[
upt(du) − u

1+ u2
tσ(du)

]

and

ψ(α) = Imα − v
2
α2
+

∫ ∞

−∞

[
eiαu − 1− iαu

1+ u2

]
σ(du)

Special cases:

1. σ ≡ 0. Thenxt = mt+
√

vBt.
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2. In casem′ = lim
ǫ↓0

∫
|u|>ǫ

u
1+u2σ(du) existce, we can writext = (m+

m′) +
√

vBt +
∫ ∞
−∞ upt(du), and

ψ(α) = i(m+m′)α − v
2
α2
+

∫ ∞

−∞
[eiαu − 1]σ(du).

Note that ifσ is symmetric,m′ = 0.156

3. If m+m′ = 0 andv = 0, xt = lim
∈↓0

∫
|u|>∈ upt(du)

ψ(α) = lim
∈↓0

∫

|u|>∈
[e−iαu − 1]σ(du)

Such a process is called a pure jump process.

4. If λ = σ(R′) < ∞, then

xt =

∫ ∞

−∞
upt(du), ψ(α) = λ

∫ ∞

−∞
[eiαu − 1]Θ(du) = λ[Θ(α) − 1]

whereΘ(E) = λ−1σ(E) andθ(α) is the characteristic function of
Θ. We have

E(eiαxt ) = etψ(α
= e−λt

∑

k

tkλk

k!
θ(α)k

= e−λt
∑

k

tkλk

k!
× [characteristic function ofΘ∗k],

whereΘ∗k denotes the k-fold convolution ofΘ. SinceE(eiαxt ) is
the chaacteristic function of the measureϕ(t, .) we have

ϕ(t,E) = e−λt
∑

k

λktk

k!
Θ
∗k(E).

Remark. If ϕ(t,E) = P(xt ∈ E) is symmtric, i.e. ifP(xt ∈ E) = P(−xt ∈
E) thenE(eiαxt ) is real. Henceψ(α) is real. Further, sincext∼

L
− xt, we

havex∼
L
− x. It follows thatσ(db) = σ(−db). Therefore

ψ(α) = imα − v
2
α2
+ 2

∫ ∞

o
[cosαu− 1]σ(du).
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Sinceψ(α) is realm= 0, so that 157

ψ(α) = −v
2
α2
+ 2

∫ ∞

0
[cosαu− 1]σ(du).

5 Stable processes

Let (xt, 0 ≤ t < ∞) be a temporally homogeneous Levy process. If
xt∼

L
ctx1, wherect is a constant depending ont we say that (xt) is astable

process. We shall now give a theorem which characterises stable process
completely. From Levy’s canonical form we haveE(eiαxt ) = etψ(α) where

ψ(α) = Imα − v
2
α2
+

∫ ∞

−∞

[
eiαu − 1− iαu

1+ u2

]
σ(du).

Theorem 1.

ψ(α) =



Imα,m real

−ao|α|2

(−ao + i α|α|a1)|α|c,

where a0 > 0, 0 < c2 and a1 is real.

Proof. Suppose thatψ(α) is not of the form Imα.

We prove that ifψ(cα) = ψ(dα) thenc = d. For if ∈= min

(
c
d
,
d
c

)
<

1 andψ(α) = ψ(∈ α) so thatψ(α) = ψ(∈n α) → 0. Henceψ(α) ≡ 0 and
this is the omitted case.

Sinceeψ(ctα)
= E(eictαx1 = E(eiαxt ) = etψ(α) we haveψ(ctα) = tψ(α).

Therefore

ψ(ctsα) = tsψ(α) = tψ(csα) = ψ(ctcsα).

It follows thatcts = ctcs. 158

We prove next thatct is continuous. Letctn → d astn→ t. If d = ∞
we should have, sinceψ(ctnα) = tnψ(α),

ψ(α) = tnψ(c−1
tn α)→ 0.
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Therefored , ∞ andψ(ctα) = tψ(α) = lim
n

tnψ(α) = lim
n
ψ(ctnα) =

ψ(dα). Hence limctn = d = ct. One shows easily thatct = t1/c. There-
fore if α > 0,

ψ(α.1) = ψ((αc)ψc.1) = αcψ(1),

and ifα < 0,

ψ(α) = ψ(|α|(−1) = |α|cψ(−1) = |α|cψ(1),

for from the form ofψ(α) we see thatψ(α) = ψ(−α). Thus if ψ(1) =

−ao + ai i, we haveψ(α) = |α|c(−ao + ia1
α

|α|
). Since|eψ(α)| ≤ 1, ao ≥ 0;

if ao = 0, E(eiαx1) = eia1α·|α|c−1
so that

E
[
cosα(x1 − a1|α|c−1)

]
= 1,

i.e., E
[
1− cosα

(
x1 − a1|α|c−1

)]
= 0.

We should therefore have cosα(x1 − a1|α|c−1) = 1 a.e. orα[x1(w) −
a1|α|c−1] = 2k(α,w)π, k(α,w) being an integer depending onα andw.
For fixedw, thusk(α,w) is continuous inα. Lettingα → 0 we see that
k(α,w) ≡ 0. Thereforex1(w) − a1|α|c−1 ≡ 0. If a1 , 0 this shows that
c = 1 so thatψ(α) = ia1α.

We shall now show thato < c ≤ 2. We havext∼
L
t

1
c x1, xst∼

L
(st)

1
c159

x1∼
L

s
1
c xt. By using additivity and homogeneity ofxt and xst we can

show thatxs∼
L

s
1
c x. (as random processes). It follows that the expecta-

tions of the number of jumps of these processes are the same (because
if p1(Et) and p2(Et) correspond toxs andS1/cx then p1(Et), p2(Et) are
equivalent in law). The expected number of jumps ofxs and s

1
c x in

dt du are sdtσ(du) anddtσ(S−1/cdu) respectively. We have therefore
σ(s

−1
c du) = sσ(du). Let σ+(u) =

∫ ∞
u
σ(du) for u > 0. Then since

sσ(du) = σ(s−1/cdu),

sσ+(u) = s
∫ ∞

u
σ(du) =

∫ ∞

u
σ(s−1/cdu) =

∫ ∞

s−1/cu
σ(du) = σ+(us−1/c).

Puttings= uc anda+ = cσ+(1)(≥ 0) we getucσ+(u) = σ+(1) =
a+
c

,

so thatσ+(u) =
a+
c

u−c. Thereforeσ(du) = a+u−c−1du. Similarly we see
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thatσ(du) = a−|u|−c−1(u < 0). If a+ = a− = 0 thenψ(α) = imα − v/2α2

and xt is Gaussian additive. Alsoψ(α) = |α|c(−ao + ia1
α

|α|
) so that

c = 2, v/2 = ao anda1 = m= 0, Thereforeψ(α) = −aoα
2, ao > 0.

Let us now assume that at least one ofa+ or a− is positive, saya+.

Since
∫ −1

1
u2σ(du) < ∞,

∫ 1

o
u2σ(du) < ∞, so thata+

∫ 1

o
u2 du

uc+1
< ∞.

This proves thatc < 2. Again using
∫ o

1 σ(du) < ∞ we can see that
o < c. The theorem is completely proved.

The numberc is called theindex of the stable process. We shall160

discuss the caseso < c < 1, c = 1, and 1< c < 2. �

Case (a)0 < c < 1.

In this case we have
∫ ∞
−∞ σ(du) = ∞,

∫ 1
−1 |u|σ(du) < ∞. The second

inequality impliesE(
∫ 1
−1 |u|p([o, t] × du)) < ∞ so that

P(
∫ 1

−1
|u|p([o, t] × du) < ∞) = 1.

Let

f (n) = t
∫

|u|≥ 1
n

σ(du) =
∫

|u|≥ 1
n

σ([o, t] × du) = E


∫

|u|≥ 1
n

p([o, t] × du)



= E

(
p

(
[o, t] ×

(
|u| ≥ 1

n

)))
.

Sincep(Et) is a Poisson variable we have

P

[
p([o, t] × (|u| ≥ 1

n
)) ≥ N

]
=

∑

k≥N

e− f (n) [ f (n)]k

k!
= 1−e− f (n)

∑

k≤N

[ f (n)]k

k!

Letting n→ ∞, since f (n) → ∞ we have

P[p([o, t] × (|u| > o)) ≥ N] = 1.

HenceP [the number of jumps in [o, t] = ∞] = 1. Now
∫ ∞
−∞

|u|
1+ u2

σ(du) < ∞, so that we can write

xt = g2(t) +
∫ ∞

−∞
up([o, t] × du).
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We can now show that

ψ(α) = im− v
2
α2
+ a+

∫ ∞

o
[eiαu − 1]

du

uc+1
+ a−

∫ o

−∞
[eiαu − 1]

du

|u|c+1

Also
∫ ∞
0 (eiαu − 1) du

uc+1 = αc
∫ ∞
0 [eiu − 1] du

uc+1 = 0(|α|0) = 0(|α|) =161

0(|α|2); similarly
∫ 0

−∞(eiαu − 1)
du

|u|c+i
= 0(|α|c) = 0(|α|) = 0(|α|2) as

α→ ∞. Hencev = m= 0, andψ(α) = a+
∫ ∞
0 [eiαu−1] du

uc+1+a−
∫ o

−∞[eiαu−

1]
du

|u|c+1
andxt =

∫ ∞
−∞ up([o, t] × du).

Case (b)1 < c < 2

In this case
∫ ∞
−∞

u2

1+ |u|
du

|u|c+1
< ∞. Hence we can write

ψ(α) = imα − v
2
α2
+ a+

∫ ∞

0

[
eiαu − 1− iαu

] du

uc+1

+ a−

∫ 0

−∞

[
eiαu − 1− αu

] du
|u|c + 1

Now ψ(α) = 0(|α|c), so that comparing the orders asα → ∞ and
α→ o we see immediately thatm= v = 0. Hence

ψ(α) = a+

∫ ∞

o

[
eiαu − 1− iαu

] du

uc+1
+ a−

∫ o

−∞

[
eiαu − 1− iαu

] du

|u|c+1
.

We have

E

(∫ 1

−1
|u|c1

p([o, t] × du)

)
= a+t

∫ 1

o
|u|c1 du

uc+1
+ma−t

∫ o

−1
|u|c1 du

|u|c+1
,

which is finite of infinite according asc′ > o or c′ ≤ c. Therefore
P[

∑
s≤t
|xs − xs−|c′ < ∞] = 1 if c′ > c. We can easily show that

E

(
exp

(
−

∫ δ

−δ
|u|c1

p([o, t] × du)

))
= exp

(
−t

∫ δ

−δ
(1− e−|u|

c
)σ(du)

)

Since
∫ 1
−1 |u|

c1
σ(du) = ∞ the right side is zero in the limit. It fol-

lows that exp(−
∫ 1
−1 |u|

c1
p([o, t] × du)) = 0 with probability 1. Hence162
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P[
∑

s≤t |x1 − xs−|c
1
= ∞] = 1 if c1 ≤ c.

Case (c)c = 1

We haveψ(α) = ia1α − ao|α|. Since

−Π|α| = 2
∫ ∞

o
[cosαu− 1]

du

u2
=

∫ ∞

−∞
[eiαu − 1− iαu

1+ u2
]
du

u2
,

we have

ψ(α) = ia1α +
ao

Π

∫ ∞

−∞

[
eiαu − 1− iαu

1+ u2

] du

u2

= imα − v
2
α2
+

∫ ∞

−∞

(
eiαu − 1

iαu

1+ u2

)
σ(du).

From the uniqueness of representation ofψ(α) we getv = 0 and
σ(du) = du

u2 . In this case thusa+ = a− and

ψ(α) = ia1α +
ao

Π

∫ ∞

−∞

[
eiαu − 1− iαu

1+ u2

] du

u2
.

Definition (). Processes for which c= 1 are called Cauchy processes.

6 Lévy process as a Markov process

Let (xt(w)), w ∈ Ω(B, p) be a temporally homogeneous Levy process.
LetM = (R′,W,Pa), whereW = Wd1 andPa(B) = P(x• + a ∈ B). We
show thatM is Markov process.

If x is a random variable on a probability spaceΩ, then the map
(w, a)→ (x(w), a) is measurable. It follows that the map (w, a)→ x(w)+
a is measurable in the pair (w, a). Now note that ifF is a fixed subset
of Ω × R′, then f (a) = P(w : (w, a) ∈ F) is measurable ina. Hence
P(w : x(w) + a ∈ E) for E ∈ B(R′) is measurable ina.

ThereforeP(t, a,E) = P(w : xt(w) + a ∈ E) is measurable ina. If U 163

is an open set containing a,U − a is an open set containing 0. Sincext

is continuous in probability

lim
t→0

P(t, a,U) = lim
t→0

P[xt(w) ∈ U − a] = 1.
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It remains to prove that ift1 < . . . < tn,Pa(xti ∈ Ei , 1in) =
∫

ai∈Ei

· · ·
∫

P(t1, a, da1)P(t2 − t1, a1, da2) . . .P(tn − tn−1, an−1, dan) We prove this
for n = 2. We have, sincext2 − xt1∼L xt2 − t1,

∫

a1∈E1

∫

a2∈E2

P(t1, a, da1)P(t2 − t1, a1, da2)

=

∫

a1∈E1

P(t1, a, da1)P(t2 − t1, a1,E2)

=

∫

a1∈E1

P(xt1 ∈ da1 − a)P(xt2−t1
∈ E2 − a1)

=

∫

a1∈E1

P(xt1 ∈ da1 − a)P(xt2 − xt1 ∈ E2 − −a− (a1 − a))

= P[(xt1, xt2 − xt1) ∈ (E2 − a)1 ∈ ((E1 − a) × R′)]

= P[xt1 ∈ E1 − a, xt2 ∈ E2 − a] = Pa[xt1 ∈ E1, xt2 ∈ E2]

where(E2 − a)′ = {(ξ, η) : (ξ, η) ∈ R2 andξ + η ∈ E2 − a}.
ThusM is a Markov process. Further sinceHt f (a) = f (b)P(t, a, db)

=

∫
f (a + b)P(xt ∈ db), we see thatHt(C(R′)) ⊂ C(R′). M is thus

strongly Markov. M is conservative. Recall thatWd1 consists of all
functions which are ofd1− type before their killing time. We have164

Pa(σ∞ = ∞) = Pa(w : w(n) ∈ R′ for every integern

= lim
n

Pa(w(n) ∈ R′) = lim
n

P(w : xn(w) ∈ R′) = 1.

AlsoM is translation invariant, i.e. ifτhb = b+ h thenPτha (τhB) =
Pa(B).

Conversely any conservative translation invariant Markovprocess
with state spaceR′ can be got in the above way from a temporally ho-
mogeneous Lévy process.

We shall now prove that the kernel ofGα is the set of functions
which are zeroa.e., i.e.Gα f = 0 implies f = 0 a. e. To prove this firstly
onserve thatGα f = 0 impliesHt f (a) = 0 for almost allt. Hence we
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can fined a sequence oftn ↓ 0 such thatHtn f (a) = 0. Now
∫

f (a +
b)ϕ(tn, db) = 0. Since f is bounded it is locally summable. Hence for
any interval (α, β) we have

β"

α

f (a+ b)ϕ(tn, db) =0

i.e., 0=

β"

α

f (a+ b)daϕ(tn, db)

=

β+b"

α+b

f (a)daϕ(tn, db)

=

∫
g(b)ϕ(tn, db) = 0

whereg(b) =
β+b∫

α+b

f (a)da is continuous. It follows that
∫

g(b)ϕ(tn, db)→

g(0) astn → 0 i. e.
β∫
α

f (a)da = 0. Since this is true for every interval

(α, β), f = 0 a. e. This proves our contention.
Generator. It is difficult to determine the generator of this process in

165
the general case. However we will determingG u whenu satisfies some
conditions.

Theorem 1. Let f̂ (η) =
∫

e−iηa f (a)da denote the Fourier transform of

f . If u = Gαh with h∈ L′(−∞,∞), then u∈ L′ andû =
ĥ
∝ −ψ

. Therefore

G u ∈ L′ andĜ u = ψû.

Proof. Let ϕ(t,E) = P(xt ∈ E). Then if f ≥ 0 we have
∫

Ht f (a)da=
∫

da
∫

f (a+ b)ϕ(t, db) =
∫

ϕ(t, db)
∫

f (a+ b)da

=

∫
ϕ(t, db)

∫
f (a)da=

∫
f (a)da
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so that if f ∈ L′ so is Ht f (a). Now Ht f (a) is measurable in the pair
(t, a). We have similarly iff ≥ 0,

∫
Gα f (a)da=

∫
da

∞∫

0

e−αtHt f (a)dt

=

∞∫

0

e−αtdt
∫

Ht f (a)da

=

∞∫

0

e−αtdt
∫

f (a)da=
1
α

f (a)da

so thatGα f (a) ∈ L′. Therefore

Ĝαh(η) =
∫

e−iaηda

∞∫

0

e−αtdt
∫

h(a+ c)η(t, dc).

�

Since
∣∣∣∣∣
$

e−αth(a+ c)eiaηdadtϕ(t, dc)
∣∣∣∣∣ ≤
$

e−αt |h(a+ c)|dadtϕ(t, dc)

=

∫
Gα|h(a)|da=

1
α

∫
|h(a)|da

we can interchange the orders of integration as we like. We have

̂Gαh(η) =

∞∫

0

e−αtĥ(η)
∫

eiηcϕ(t, dc)dt =

∞∫

0

e−αtĥ(η)etψ(η)dt =
ĥ(η)

α − ψ(η)

since
∫

eiαaϕ(t, da) = E(eiαxt ) = etψ(α) and since the real part ofψ(α) is166

non-positive
∞∫

0

e−(α−ψ(η))tdt exists and equals
1

α − ψ(η)
. Sinceu = Gαh

is in L′,G u ∈ L′. Also from the last equationα ̂Gαh− h = ψĜαh so that
Ĝ u = ψû.
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Corollary ( ). If α > 0 and (α − ψ)û = f̂ for some function f∈ L′ then
u = Gα f ∈ D(G ) andĜ u = ψû.

For we have from Theorem 1,̂Gα f =
f̂

α − ψ = û so thatu =

Gα f (a.e) andĜ u = ψû.

Theorem 2. If u, u′ and u′′ are in L′, then u∈ D(G ) and u is given a.e.
by

G u(a) = mu′(a) +
v
2

u′′(a) +

∞∫

−∞

[
u(a+ b) − u(a) − bu′(a)

1+ b2

]
σ(db).

Proof. Let f1 = mu′, f2 =
v
2

u′′, f3 =
∫

|b|>|

[
u(a+ b) − u(a) − bu′(a)

1+ b2

]

σ(db). f4 =
∫

|u|≤1

b3

1+ b2
u′(a)σ(db) and f5 =

∫

|b|≤1

[u(a + b) − u(a) −

bu′(a)]σ(db). �

From the hypothesis we see thatfi ∈ L′, i = 1, 2, 3, 4. We prove that
f5 exists and is inL′. We have

u(a+ b) − u(a) − bu′(a) =
∫ b

0
u′(a+ x)dx− bu′(a)

=

∫ b

0
[u′(a+ x) − u′(a)]dx

=

b∫

x=0

dx

x∫

y=0

u′′(a+ y)dy.

Therefore
∫ ∞

−∞
da

∫

|b|≤1

|u(a+ b) − u(a) − bu′(a)|σ(db)

≤
∫ ∞

−∞
da

∫

|b|≤1

σ(db)

b∫

x=o

dx

x∫

y=0

u′′(a+ y)dy
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=

∫

|b|≤1

σ(db)

b∫

x=0

dx

x∫

y=0

dy
∫ ∞

−∞
|u′′(a+ y)|da

=

∫

|b|≤1

σ(db)

b∫

x=0

dx

x∫

y=0

dy||u′′ || = ||u
′′||
2

∫

|b|≤1

b2σ(db) < ∞.

167

This shows thatf5 exists, is inL′ and || f5|| ≤ ||u
′′ ||
2

∫

|b|≤1

b2σ(db). We

can easily see that

f̂1(η) = Im ηû(η), f̂2(η) =
v
2
η2û(η), f3(η)

= û(η)
∫

|b|>|

[eiηb − 1− iηb

1+ b2
]σ(db)

and f̂4(η) = iηû(η)
∫

|b|≤1

b3

1+ b2
σ(db). Further f5 ∈ L′ and we have see

that
!
|u(a+ b) − u(a) − bu′(a)|σ(db)da exists as a double integral.

Hence we can interchange the order of integration in

"
e−iηa[u(a+ b) − u(a) − bu′(a)]σ(db)da.

Thus we havef̂5(η) =
∫

[eiηa − 1 − iηb]û(η)σ(db). Hence finally
if f = f1 + · · · + f5, f̂ (η) + f̂1(η) + · · · + f̂5(η) = ψ(η)û(η). We have
[α − ψ(η)]û(η) = αû − f̂ = αû− f . Using the corollary of Theorem 1,
we see thatu ∈ D(G ) andu = Gα[αu− f ] so thatG u = αu− (αu− f ) =
f (a.e). This proves the theorem.

Remark. If ϕ(t,E) is symmetric,G u(a) =
v
2

u′′(a)+
∫ ∞
0

[u(a+b)+u(a−
b) − 2u(a)]σ(db). In the case of a symmetric Cauchy processv = 0 and
G u(a) =

∫ ∞
0 [u(a+ b) + u(a− b) − 2u(a)]σ(db).
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7 Multidimensional Levy processes
168

A k-dimensional stochastic process (xt) is called ak-dimensional Lévy
processif, it is additive, almost all sample functions ared1 and it has no
point of fixed discontinuity; note that unlike the k-dimensional Brown-
ian motion the component process need not be independent.

A k-dimensional random variablex is called Gaussian if and only

if E(ei(α,x)) = e
i(m,α)−

1
2

(vα,α)
wherem is a vector,v a positive definite

matrix and (a, b) denotes the scalar product ofa andb.
Let x = (x1, . . . , xk) be ak-dimensional random variable such that

for any realc1, . . . , ck,
∑

ci xi is a Gaussian variable. Thenx is also Gaus-

sian. ForE(eiβ
∑
αi xi

) = e
imβ−

v
2

′
β2

wherem =
∑
αimi, v′ = E((

∑
αi(xi −

mi))2) with mi
= E(xi). Now v′ =

∑
α2

i vii + 2
∑
i< j
αiα jvi j = (vα, α) where

vi j = E((xi − mi)(x j − mj)) and v = (vi j ). Sincev′ ≥ 0, v is a posi-
tive definite matrix. Puttingβ = 1 we haveE(ei(α,x)) = E(ei

∑
αi xi

) =
ei(m,α) 1

2(vα,α).
Thus if almost all sample functions of ak-dimensional Levy process

(xt) are continuous thenxt − xs is Gaussian.
Let (xt(w)) be ak-dimensional Lévy process. Proceeding exactly as

in the case ofk = 1 we can show that

xt = g(t) +
∫

Rk×[0,t]

− 1

1+ u2
σ(ds du)].

whereg(t) is continuous; hence we can obtain 169

logE(ei(α,xt )) = i(m(t), α)

− 1
2

(v(t)α, α) +
∫

Rk×[0,t]

[
ei(α,b) − 1− i(α, b)

|b|2 + 1

]
σ(dsdb)

If σ = 0 the path functions are continuous.
If ( xt) is rotation invariant i.e., ifE(ei(α,xt )) = E(ei(α,0xt )) where 0 is

any rotation, we have, since (α, 0−1xt) = (0α, xt)(m(t), 0α) = (m(t), α)
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and (v(t)0α, 0α) = (v(t)α, α). Since this is true for every rotation 0 we
should havem(t) ≡ 0 andv(t) a diagonal matrix in which all the diagonal
elements are the same and we can write

log E(ei(α,xt )) = −1
2

v(t)|α|2 +
∫

[0,t]×Rk

[ei(α,b) − 1− i(α, b)

1+ b2

]
σ(ds db).

If the process is temporally homogeneousE(ei(α,xt )) = etψ(α) where

ψ(α) = i(m, α) − 1
2

(vα, α) +
∫

Rk

[
ei(α,b) − 1− i(α, b)

1+ b2

]
σ(db).

Now suppose that (xt) is a stable process i. e. (xt) is temporally
homogeneous andxt∼

L
ctx1. We can show (proceeding in the same way as

for k = 1) thatσ(aE) =
1
acσ(E) for a > 0. Now we prove that 0< c < 2

unlessσ ≡ 0. Let E = (b : 1 ≥ |b| > 1
2

. Since
∫

|b|≤1

|b|2σ(db) < ∞ we

have
∞∑

n=0

∫

1
21≥|b|≥

1
2 .

1
2n

|b|2σ(db) < ∞

so that
∞∑

n=0

1
22

22nσ

(
b :

1
2n ≥ |b| >

1
2

1
2n

)
< ∞

i.e.,
∑ 1

22n
σ

(
1
2n E

)
< ∞.

Hence sinceσ(rE) =
1
rcσ(E), we should haveσ(E)

∑ 2nc

22n
< ∞. If170

σ(E) , 0, c < 2. Similarly considering
∫

|b|≥1

σ(db) < ∞ we can prove

thatc > 0.
Let S denote the surface of the unit sphere inRk. ThenRk minus

the point (0, 0, . . . , 0) can be regarded as the product ofS and the half
line (0,∞). For any Borel subsetΘ of S let c−1σ+(Θ) = σ(Θ × [1,∞])).
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Thenc−1σ+(dθ) is a measure onB(S) and

σ(Θ× [r,∞)) = σ(r.Θ× [1,∞)) =
1
rc

c−1σ+(Θ) =
1
c

∫

[r,∞)×Θ

dr

rc+1
cσ+(dθ)

It follows thatσ(db) =
dr

rc+1
σ+(dθ).

If xt is rotation invariantσ+(dθ) will be rotation invariant and hence

must be the uniform distributiondθ so thatσ(db) =const.
dr dθ

rc+1
.

We can consider ak-dimensional temporally homogenous Lévy pro-
cess (xt) as a Markov process with state spaceRk and we can prove
that if f ∈ L′(Rk) and u = Gα f then (α − ψ(ξ))û(ξ) = f̂ (ξ) = and
Ĝ u(ξ) = ψ(ξ)û(ξ). If u ∈ L′ and (α − ψ(ξ))û(ξ) ∈ L′ thenu ∈ D(G ) and
Ĝ u(ξ) = ψ(ξ)û(ξ). To prove this letf̂ = (α − ψ(ξ))û(ξ) andv = Gα f .
Then (α − ψ(ξ))v̂ = f̂ = (α − ψ(ξ))û so thatu = v a.e. andu ∈ D(G ).

Now suppose that (xt) is stable and rotation invariant. We can show

thatψ(α) − |α|cψ(
α

|α| ) so that ifψ(α) is rotation invariantψ(α) = −|α|c, 171

constant. If we look at the expression forψ(α), we see that real part of
ψ(α) ≤ 0. It follows that const.≥ 0. In this case we thus have

Ĝ u(ξ) = −λû(ξ)|ξ|c

i.e., û(ξ) = − 1
λ|ξ|c

Ĝ u(ξ).

The Fourier transform (in the distribution sense) of|a|c−k is µ|ξ|−c,

µ = π(k/2)−c
Γ(c/2)/Γ(

k − c
2

) (refer to Theorie des distributions by Sch-

wartz, page 113, Example 5). SinceG u is bounded, it is a rapidly de-
creasing distribution. Hence (see page 124, Theorie des distributions,
Schwartz)

û(ξ) = AĜ u(ξ)
1̂

|a|k−c
(ξ) = AG u∗̂ 1

|a|k−c
(ξ),A = − 1

µλ
.

Thereforeu(a) = A
∫

G u(b)
1

|a− b|k−c
db. Thus

1

|a− b|k−c
is the po-

tential kernel corresponding to this process. Potentials with such kernels
are calledReisz Potentials.
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Whenc = 2, u(a) = AG u ∗ 1

|a|k−2
so that∆u(a) = AG u ∗ ∆ 1

|a|k−2
=

AG u(a).



Section 5

Stochastic Differential
Equations

1 Introduction
172

The standard Brownian motion is a one-dimensional diffusion whose

generator is
1
2

d2

da2
. We shall here construct a more general one-dimen-

sional diffusion whose generatorG is the differential operator

D =
1
2

p2(a)
d2

da2
+ r(a)

d
da

;

precisely ifu ∈ C2(R′) = {u : u, u′, u′′ continuous and bounded} thenu ∈
D(G ) andG u = Du. To do this we consider the stochastic differential
equation

dxt = p(xt)dβt + r(xt)dt,

whereβt is a Wiener process. The meaning of the above equation is

xu − xt =

∫ u

t
p(xs)dβs +

∫ u

t
r(xs)ds, 0 ≤ t < u < ∞.

The meaning of
∫ u

t
p(xs)dβs has to be made clear; we do this in

article 3. Note that it cannot be interpreted as a Stieltjs integral for a
fixed path because it can be shown that as a function ofs, βs is not of

143
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bounded variation for almost all paths. We make the following formal
considerations postponing the definition of the integral to§ 3.

Let x(a)
t be a solution of the differential equation with the initial con-173

dition x(a)
0 = a, i.e. letx(a)

t be a solution of the integral equation

xt = a+
∫ t

0
p(xs)dβs +

∫ t

0
r(xs)ds.

Then, under certain regularity conditions onp andr, we can define
a strong Markov processM = (S,W,Pa) with S = R′,W = Wc(R′),
Pa(B) = P(x(a) ∈ B) and such that

G u(a) =
1
2

P2(a)
d2u

da2
+ r(a)

du
da
, u ∈ C2(R′)

whereG is the generator in the restricted sense. The same can be donein
multi-dimensional case replacingβ, p, r by a multi-dimensional Wiener
process, a matrix valued function and a vector valued function respec-
tively. Componentwise we will have

dxi
t =

∑

j

pi
j(xt)dβ

j
t + r i(xt)dt, i = 1, . . . , n

and the generator will be given by

G u(a) =
1
2

∑

i, j

qi j (a)
∂2u(a)
∂ai∂a j

+

∑

i

r i (a)
∂u(a)
∂ai

whereqi j
=

∑
k

pi
kp j

k.

Taking local coordinates we can extend the above to the case in
which the state spaceS is a manifold.

Coming back to stochastic integrals we prove the following theorem
which show that

∫ u

t
f (s,w)dβ(s,w) cannot be interpreted as a Stieltjes

integral.

Theorem (). Let∆ be the subdivision t= s0 < s1 < . . . < sn = u, and174

δ(∆) = max
i

(si+1 − si). Then
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1. r2(∆) =
∑
i
(β(si+1) − β(si))2→ u− t L2-mean asδ(∆) − 0

2. r(β, t, u) = sup
∆

∑
i
|β(si+1) − β(si)| = ∞ with probability1.

Proof. (1) E(r2(∆)) =
∑
i

E[β(Si+1) − β(Si )]2
=

∑
i
(si+1 − si) = u − t

and

E(r2(∆)2) =
∑

i

E((β(si+1)) − β(si))
4)

+ 2
∑

i< j

E((β(si+1))2(β(sj+1) − β(sj))
2)

=

∑

i

3(si+1 − si)
2
+ 2

∑

i< j

E((β(si+1) − β(si))
2)

E((β(sj+1) − β(sj))
2)

=

∑

i

3(si+1 − si)
2
+ 2

∑

i< j

(si+1 − si)(sj+1 − sj)

= 2
∑

i

(si+1 − si)
2
+

∑

i

(si+1 − si)
2

+

∑

i< j

2(si+1 − si)(sj+1 − sj)

= 2
∑

i

(si+1 − si)
2
+

[∑
(si+1 − si)

]2

= 2
∑

(si+1 − si)
2
+ (u− t)2

becauseβ(si+1)−β(si) andβ(sj+1)−β(sj) are independent fori , j
andE((β(t) − β(s))4) = 3(t − s)2. We thus have

E((r2(∆) − (u− t))2) = E(r2(∆)2) − (u− t)2

= 2
∑

i

(si+1 − si)
2 ≤ 2δ(∆)

∑

i

(si+1 − si)→ 0 asδ(∆) → 0.

(2) From (1) we can find a sequence∆n
= (t = s(n)

0 < . . . < s(n)
Pn
= u)
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such thatr2(∆n)→ u− t with probability 1. We have

r(β, t, u) ≥
∑
|β(s(n)

i+1) − β(s(n)
i )| ≥

∑
|β(s(n)

i+1) − β(s(n)
i )|2

maxi |β(s(n)
i+1) − β(s(n)

i )|
→ ∞

since
∑
|β(s(n)

i+1)−β(s(n)
i )|2 → u− t and maxi

∑
|β(s(n)

i+1)−β(s(n)
i )| →175

0 because of continuity of path functions.
�

2 Stochastic integral (1) Function spacesE , L 2, Es

Let T be a time interval [u, v), 0 ≤ u < v < ∞ andβt, t ∈ T be a Wiener
process i.e. (1) the sample functions are continous for almost all w, (2)

P(βt−βs ∈ E) =
∫

E

1
√

2π(t − s)
e−x2/2(t−s)dxand (3)βt1, βt2−βt1, . . . , βtn−

βtn−1 are independent ift1 < . . . < tn ∈ T. LetBt, t ∈ T be a monotone
increasing system of Borel subalgebras ofB such thatBt includes all
null sets for eacht, βt ∈ (Bt) andβt+h−βt is independent ofBt for h > 0.
We shall use the notationf ∈ (B) to denote thatf isB-measurable.

Let Ls be the set of all functionsf such that (1)f is measurable in
(t,w), (2) ft ∈ (Bt) for almost allt ∈ T and (3)

∫
T

f 2
t dt < ∞ for almost

all w ∈ Ω. Instead of 3) we also consider the two stronger conditions

(3′)
∫
Ω

∫
T

f (t,w)2dt dp< ∞

(3′′) there exist a subdivisionu = t0 < t1 < . . . < tn = v andM < ∞
such that

ft(w) = fti (w), ti ≤ t < ti+1, 0 ≤ i ≤ n− 1

and| ft(w)| < M.176

We define the function spacesL 2 andE by

L
2
= { f : 1), 2) and 3′) hold }

E = { f : 1), 2) and 3′′) hold }.
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ClearlyE ⊂ L 2 ⊂ Ls. L 2 is a (real) Hilbert space with the norm
|| f ||2 =

∫
Ω

∫
T
| f |2dtdρ andLs is a (real) Fréchet space with the norm

|| f ||Ls =

∫

Ω

1

1+
√∫

T
| f |2dt

.
√∫

T
| f |2dt. “ || f ||Ls → 0” is equivalent to

“
∫
T
| f |2dt→ 0 in probability” and if

>
∈ L 2 then|| f ||Ls ≤ || f ||.

Theorem 1. 1 E is dense inL 2 (with the norm|| ||)

2 E is dense inLs (with the norm|| ||Ls).

Proof. 1. We shall prove that, givenf ∈ L 2 there exists a sequence
fn ∈ E such that|| fn − f || → 0. We can assume thatf is bounded.
Put f (t,w) = 0 for t < T. Then f is defined for allt (this is to
avoid changingT each time) and
∫ ∞
−∞ f 2dt dp< ∞ so that

∫ ∞
−∞ f 2dt < ∞ so almost allw.

Therefore
∫ ∞

−∞
| f (t + h) − f (t)|2dt→ 0 ash→ 0.

Also
∫ ∞
−∞ | f (t + h) − f (t)|2dt ≤ 4

∫ ∞
−∞ f (t)2dt ∈ L′(Ω). We get

∫

Ω

∫ ∞

−∞
| f (t + h) − f (t)|2dt dp→ 0 ash→ 0.

If ϕn(t) =
[2nt]
2n , n ≥ 1 then 177

∫

Ω

∫ ∞

−∞
| f (s+ ϕn(t)) − f (s+ t)|2ds dp→ 0 asn→ ∞

Also
∫

Ω

∫ ∞

−∞
| f (s+ ϕn(t)) − f (s+ t)|2d sd P≤ 4

∫

Ω

∫ ∞

−∞
f (s)2ds dP.
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SinceT = [u, v) is a finite interval
∫ v

u−1

∫

Ω

∫ ∞

−∞
| f (s+ ϕn(t)) − f (s+ t)|2 ds dP dt→ 0 asn→ ∞.

i.e.,
∫ ∞

−∞
ds

∫ v

u−1

∫

Ω

| f (s+ ϕn(t)) − f (s+ t)|2 ds dP dt→ 0 asn→ ∞.

Therefore there exists a subsequence{ni} such taht
∫ v

u−1

∫
Ω
| f (s+ϕni (t))− f (s+ t)|2dP dt→ 0 for almost alls. Choose

s ∈ [0, 1] and fix it. Then
∫ v

u−1
| f (s+ ϕni (t)) − f (s+ t)|2dP dt→ 0 asni → ∞.

Changing the variable

v+s∫

u−1+s

∫

Ω

| f (s+ ϕni (t − s)) − f (t)|2dP dt → 0 asni → ∞

since 0≤ s≤ 1

v∫

u

∫

Ω

| f (s+ ϕni (t − s)) − f (t)|2 dP dt→ 0.

Let hi(t) = f (s+ ϕni (t − s)). Thenhi ∈ ε and||hi − f || → 0.

2. Let f ∈ Ls. We prove that there exista a sequencefn ∈ E with178

|| fn− f ||Ls→ 0. We can assume thatf is bounded so thatf ∈ L 2.
We can findfn ∈ E such that|| fn − f || → 0. But || fn − f ||Ls ≤∫
Ω

√∫
T
| fn − f |2dt d p≤

√∫
Ω

∫

T

| fn − f |2dtdp= || fn − f || → 0.

�
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Remark. Let f M be the truncation off by M i.e.

f M
= ( f V − M) ∧ M

and for a subdivision∆ = (u = t0 < t1 < · · · < tn = v) let f∆ be
the functionf∆(t,w) = f (ti ,w), ti ≤ t < ti+1, 0 ≤ i ≤ n − 1. Then
the approximating functionsfn in the above theorem are of the form
fn = f Mn

∆n
for someMn,∆n.

3 Stochastic Integral (II) Definitions and properties

Let L2(Ω) be the realL2-space with the usualL2 - norm|| || andS(Ω) be

the space of all measurable functions with the norm|| f ||s =
∫ 1

1+ | f (w)|
| f (w)|dP(w). S(Ω) is a real Fréchet space and “|| f ||s → 0” is equiv-
alent to “f → 0 in probobility”. Clearly L2(Ω) ⊂ S(Ω) and if f ∈
L2(Ω), || f ||s ≤ || f ||.

We first defineI ( f ) =
∫
T

f dβ for f ∈ E , show that it is continuous
in the norms|| ||, || ||s and hence that it is extendable toL 2 andLs.

We define forf ∈ E

I ( f ) =
∫

T
ftdβt =

n−1∑

i=0

f (ti )(β(ti+1) − β(ti ))

wheret0 = u < t1 < . . . < tn = v is any subdivision by whichf is 179
expressed. This definition is independent of the division points with
respcect to whichf is expressed andI ( f ) ∈ L2(Ω) ⊂ S(Ω). That I is
linear is easy to see and

E(I ( f )) =
∑

i

E( f (ti))(β(ti+1)) − β(ti))) =
∑

i

E( f (ti))E(β(ti+1) − β(ti)) = 0

since f (ti ) andβ(ti+1) − β(ti) are independent andE(β(t)) = 0.
Now we prove the following

(A) || f || = ||I ( f )|| Though we use the same notation, note that

f ∈ L
2, I ( f ) ∈ L2(Ω).
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(B) ||I ( f )||s = 0(|| f ||L 1/3
s ).

Proof of (A). Let (f , g) = E(
∫

T

f g dt). It is enough to show that

( f , g) = (I ( f ), I (g)).

Let f , g be expressed by the division points (ti). Then

(I ( f ), I (g)) = (
∑

fiXi ,
∑

g jX j)

with fi = f (ti), g j = g(t j ), Xi = β(ti+1)− β(ti ). Note thatfi ∈ (Bti ) andXi

is independent ofBti . We have

(I ( f ), I (g)) =
∑

i

E( figi)E(X2
i ) +

∑

i< j

E( figiXi)E(X j)

= E
∑

i

E( figi)(ti+1 − ti)

=

[∑
figi(ti+1 − ti)

]
= E



∫

T

f gdt

 = ( f , g).

Proof of (B). Let f be expressed by the division points (ti) and putfi =180

f (ti), Xi = β(ti+1) − β(ti ), ∆i = ti+1 − ti andδ = || f ||Ls. Then

P



∫

T

f 2dt > ǫ2

 ≤ δ
1+ ∈
∈

.

Let

Yi =


1 if

∑i
j=0 f 2

j ∆ j ≤ ǫ
0 if

∑i
j=0 f 2

j ∆ j > ǫ.

ThenYi ∈ (Bti ) and sinceXi is independent ofBti

E




n−1∑

i=0

Yi fiXi



2 =
n−1∑

i=0

E(Y2
i f 2

i )∆i = E


n−1∑

i=0

Yi f
2
i ∆i
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since from the definition ofYi, Y2
i = Yi. Again From the definition of

Yi ,
n−1∑
i=0

Yi f 2
i ∆i ≤ ǫ2 so thatE(S2) ≤ ǫ2, whereS =

n−1∑
i=0

Yi fiXi . Now

P(|S| > η) ≤ ǫ2/η2. If
∫
T

f 2dt ≡
∑

i f 2
i ∆i ≤ ǫ2 thenY0 = Y1 = . . . =

Yn−1 = 1 so thatS =
∑

fiXi = I ( f ). Therefore

P(I ( f ) , S) ≤ P



∫

T

f 2dt > ǫ2

 ≤ δ
1+ ∈
∈

P(|I ( f )| > η) ≤ δ1+ ǫ
ǫ
+
ǫ2

η2

and

||I ( f )||s =
∫

1
1+ |I ( f )| |I ( f )dP

=

∫

|I( f )|≤η

1
1+ |I ( f )| |I ( f )|dP+

∫

|I( f )|>η

1
1+ |I ( f )| |I ( f )|dP

≤ η + δ1+ ǫ
ǫ
+
ǫ2

η2
.

181

Puttingǫ = δ2/3, η = ǫ
1
2 , we get||I ( f )||s ≤ 4δ1/3.

Using linearity of I and the fact||I ( f )|| = || f || for f ∈ E , we can
extendI to L 2(|| ||) [sinceE is dence inL 2(|| ||)] such thatI is lienar.
For f ∈ L 2, I ( f ) ∈ L2(Ω) and|| f || = ||I ( f )||, andE(I ( f )) = 0.

The linearity ofI and the fact||I ( f )||s ≤ 4|| f ||)1/3
Ls

imply that we can

extendI to the closure ofE in || ||Ls i.e. to Ls. Since for f ∈ L 2,
|| f ||Ls ≤ || f || we see that this extension coincides with the above for
f ∈ L 2. Further for f ∈ Ls we have||I ( f )||s ≤ 4|| f ||

L
1/3
s

.
Using the remark at the end of the previous article we can showthat

for f ∈ L 2

I ( f ) = lim
n→∞

∑

i

f Mn(t(n)
i )

[
β(t(n)

i+1) − β(t(n)
i )

]

for some∆n = (t(n))i andMn.
Finally if f , g, ǫLs and if f = g on a measurable setΩ1 then

I ( f ) = I (g) a.e.Ω1.
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4 Definition of stochastic integral (III) Continuous
version

LetBt, 0 ≤ t < ∞ be a monotone increasing system of Borel subalgebras
of B such thatBt includes all null sets for eacht. Let βt, 0 ≤ t < ∞ be a
Wiener process such thatβt ∈ (βt) andβt+h − βt is independent ofBt for
h > 0.

Let ft = ft(w) = f (t,w), 0 ≤ t < ∞ be such that182

(1) f is measurable in the pair (t,w).

(2) ft ∈ (Bt) for almost allt.

(3)
∫ v

u
f 2
t dt < ∞ for almost allw ∈ Ω for any finite interval [u, v] ⊂

[0,∞). Consider also the following conditions besides 1 and 2.

(3′)
∫
Ω

∫ v

u
f 2
t dt dP< ∞ for any finite interval [u, v] ⊂ [0,∞).

(3′′) There exist point 0≤ t0 < t1 < t2 < . . . → ∞ and constants
Mi independent ofw such that

ft(w) = f (ti ,w), | f (ti)| ≤ Mi , ti ≤ t < ti+1, i ≥ 0.

In the same way as in
∫

2 we introduce theree function classesE ,
L 2 andL as follows

E = { f : 1, 2, 3′′ hold }
L

2
= { f : 1, 2, 3 hold}

L = { f : 1, 2, 3 hold}.

From§ 3 we can defineI (u, v) =
∫ u

v
f (t,w)dβ(t,w), for f ∈ L and

for any bounded interval [u, v] ⊂ [0,∞).
Now we shall show

Theorem 1. I (u, v) has a continuous version in[u, v] i.e., there exists
I (u, v) such that

P[I (u, v) =
∫ v

u
f d β] = 1 for any pair(u, v)
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and I(u, v) is continuous in the pair(u, v) for almost all w; I(u, v) is183

uniquely determined in the sense that if Ii (u, v) i = 1, 2 satisfy the above
conditions, then

P
[
I1(u, v) = I2(u, v)] for all u, v

]
= 1.

Proof. It is enough to show thatI (t, f ) =
∫ t

0 f dβ has a continuous (in t)
versonI ∗(t, f ) in 0 ≤ t ≤ v for any givenv > 0, becauseI (u, v) =
I (0, v) − I (0, u). If f ∈ E thenI (t) itself is such a version and

P[ sup
0≤t≤v

|I (t, f )| > ǫ] ≤ 1
ǫ2
|| f ||2 (1)

where|| f 2|| =
∫ v

0

∫
Ω

f 2dt dP. �

To prove (1) let the restriction off to [0, v) be expressed by the
division set∆ = (0 = t0 < t1 < . . . < tn = v) ands0, s1, . . . be a dense
set in [0, v) such thatti = si , 0 ≤ i ≤ n. Let nowτ1, . . . , τm(m ≥ n) be a
rearrangement ofa0, s1, . . . , sm in order of magnitudes. Then

I (τi , f ) =
∑

j<1

f (τ j)(β(τ j+1) − β(τ j))

Using arguments similar to those empolyed in the proof of Kolo-
mogoroff’s inequality we can prove the following

Lemma (). If x1, . . . , xn, y1, . . . , yn are random variables satisfying

(1) yi is independent of(x1, . . . , xi , y1, . . . , yi−1)

(2) E(yi) = 0 and E(x2
i ), E(y2

i ) < ∞

then

P

max
1≤k≤n

|
k∑

i=1

xiyi | ≥ ǫ
 ≤

1

ǫ2
)
∑

E(x2
i )E(y2

i ).

184
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Thus we have

P
(
max
0≤i≤n

|I (τi , f )| > ǫ
)
≤ 1

ǫ2

∫

Ω

∫ v

0
f 2dt dP

i.e., P
(
max
0≤i≤n

|I (si , f )| > ǫ
)
≤ 1

ǫ2
|| f ||2

Letting n→ ∞ we have (1).
Let Cs denote the space of all functions (h(t,w), 0 ≤ t ≤ v,w ∈ Ω)

which are continuous in [0, v] and introduce the norm|| ||cs by

||h||cs = E

(
1

1+ sup0≤t≤v |h(t,w)| sup
0≤t≤v

|h(t,w)|
)

We shall prove that forf ∈ E

||I ( f )||cs = O(|| f ||
L

1/3
s

) (2)

where || f ||Ls = E


1

1+
√∫ v

0 | f |
2dt

√√√√√ t∫

0

f 2dt



DefineYi = 1 if
i−1∑
j=0

f 2
j (t j+1− t j) ≤ ǫ2 andYi = 0 if

i−1∑
j=0

f 2
j (t j+1− t j) >

ǫ2 and letg(t) = Yi f (t) = Yi f (ti) for ti ≤ t < ti+1. Theng(t) ∈ Bt and
||g||2 =

∫

Ω

∫ t

0 g2dt dP≤ ǫ2 and185

P(I (t, f )) , I (t, g) for somet ∈ [0, v) = P



v∫

0

f 2dt > ǫ2

 < δ
1+ ǫ
ǫ

whereδ = || f ||L s. Thus

P

(
sup

0≤t≤v
|I (t, f )| > η

)
≤ p

(
sup

0≤t≤v
|I (t, g)| > η

)
+ δ

1+ ǫ
ǫ
≤ ǫ2

η2
+ δ

1+ ǫ
ǫ

from (1). Therefore

||I (., f )||cs ≤ η + δ
1+ ǫ
ǫ
+
ǫ2

η2
.
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Puttingǫ = δ2/3 andη = ǫ
1
2 we get

||I (., f )||cs ≤ ǫ
1
2 [2 + ǫ + ǫ

1
2 ≤ 4ǫ

1
2 = 0(ǫ

1
2 ) = 0(δ1/3) = 0(|| f ||1/3

Ls
).

SinceCs is complete in the norm|| ||cs we can extend the mapping

E ∋ f → I (., f ) ∈ Cs

to the closure ofE with respect to|| ||Ls i.e. toLs. This extension gives
the continuous version ofI (t, f ), 0 ≤ t ≤ v. Since (2) is also true for this
extension, we have

Theorem 2. If
∫ v

0
| fn − f |2dt→ 0 in probability

then sup
0≤t≤v

|I (t, fn) − I (t, f )| → 0 in probability.

For any Borel setE ∈ [u, v) we define
∫

E
fθdβθ =

∫ v

0
fχEdβθ.

For f ∈ L 2 we have seen that 186

||I (t, f )|| = || f ||.

Let f ∈ Ls and consider the truncationf M . Since
∫ v

u
| f M − f |2χE

ds→ 0 we see that sup
u≤t≤v

|I (t, fχE) − I (t, f MχE)| → 0 in probability.

SinceχE f M ∈ L 2 we have, ifE has Lebesgue measure zero

||I (t, f MχE)|| =
∫ t

0
E( f M)χE ds= 0.

Thus
∫

E

fθdβθ = 0 if the Lebesgue measure ofE is zero.

Remark. Henceforth when we speak of the stochastic integral we shall
always understand it to mean the continuous version.
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If f ∈ L 2 we have

Theorem 3. If f ∈ L 2 andǫ > 0,

P[|||I (t, f )||| > ǫ] ≤ 1

ǫ2
|| f ||2

where |||I (t, f )||| = sup
0≤t≤v

||I (t, f ||).

Proof. Let fn ∈ E be such that|| fn − f || → 0. Then for anyδ > 0.

P[|||I (t, fn − f )||| > δ] → 0 (1)

For g ∈ E we have proved that

P[|||I (t, g)||| > ǫ] ≤ 1

ǫ2
||g||2 (2)

Therefore ifη > 0,187

P[|||I (t, f )||| > ǫ + η] ≤ P[|||I (t, fn − f )||| + |||I (t, fn)||| > ǫ + η]
≤ [|||I (t, fn − f )|||] + P[|||I (t, fn)||| > ǫ]

≤ P[|||I (t, fn − f )||| > η] + 1

ǫ2
|| fn||2,

from (2). From (1) ifn → ∞,P[|||I (t, f )||| > ǫ + η] ≤ 1

ǫ2
|| f ||2. Letting

η→ ∞ we get the result. �

5 Stochstic differentials

Let βt, βt be defines as before. Ifxt = x0 +
∫ t

0 fsd βs +
∫ t

0 gsds, where
x0(w) ∈ B0 and

1. f , g are measurable in the pair (t,w)

2. fs, gs ∈ (Bs) for almost alls, 0 ≤ s< ∞

3.
∫ t

0
f 2
s ds< ∞,

∫ t

0
|gs|ds< ∞ for almost allw, for any finitet then

we write
dxt = ftdβt + gtdt.
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If dxt = ftdβt + gtdt, dxi
t = f i

t dβt + gi
tdt, ft =

∑
i ϕ

i
t f i

t , gt =
∑
i
ϕi

tg
i
t +

ψ(t) then we shall write

dxt =

∑

i

ϕi
tdxi

t + ψtdt.

Theorem (). If F (ξ1, . . . , ξk, t) is C2 in (ξ1, . . . , ξk, ) and C1 in t, if dxi
t =

f i
t dt + gi

tdt and if yt = F(x1
t , . . . , x

k
t , t), then

dyt =

∑

i

Fidxi
t +

y2

k∑

i, j=1

Fi j f i
t f j

t + Fk+1

 dt

where Fi =
∂F
∂ξi

, Fi j =
∂2F

∂ξ1∂ξ j
, Fk+1 =

∂F
∂t
.

188

Remark. We can get the result formally as follows:

1. Expanddyt i.e. dyt = dF(x1
t , . . . , x

k
t , t) =

∑
i

Fidxi
t + Fk+1dt +

1
2

k∑
i, j=1

fi j dxi
tdxj

t + · · ·

2. Putdxi
t = f i

t dβt + gi
tdt.

3. Usedβt ≃
√

dt

4. Ignore 0(dt).

Lemma 1. If f , g ∈ Ls (as defined in§ 2) then


u∫

t

fsdβs





u∫

t

ǫsdβs

 =
u∫

t

fsGsdβs +

u∫

t

gsFsdβs +

u∫

t

fsgsds,

where

Fs =

s∫

t

fθdβθ,Gs

s∫

t

gθdβθ.
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Proof.

Case 1.f , g ∈ E (as defined in§ 2).
We can expressf and g by the same set of division points∆ =

(t = t(n)
0 < . . . < t(n)

n = u). Now let∆n = (t = t(n)
0 ) < t(n)

1 < · · · < t(n)
n =

u)(n ≥ m) be a sequence of sets of division points containing∆ such that
δ(∆n) = max

0≤i≤n−1
|t(n)

i+1 − t(n)
i | → 0. PutX(n)

i = f (t(n)
i ),Y(n)

i = g(t(n)
i ), B(n)

i =

β(t(n)
i+1) − β(tni ). We have



u∫

t

fsdβs





u∫

t

gsdβs

 =


n−1∑

i=0

X(n)
i B(n)




n−1∑

j=0

Y(n)
J B(n)

J



=

n−1∑

i=1

X(n)
i G(t(n)

i )B(n)
i +

n−1∑

i=1

Y(n)
i F(t(n)

i )B(n)
i +

n−1∑

i=0

X(n)
i Y(n)

i (B(n)
i )2.

Putϕn(s) = t(n)
i for f (n)

i ≤ s< t(n)
i+1 and letGn, Fn be defined as189

Gn(S,W) = G(ϕn(S),w), Fn(s,w) = F(ϕn(s),w).

ThenGn, Fn ∈ E and since the set∆n contains∆m, fGn, gFn ∈ E .
Thus

u∫

t

fsdβs

u∫

t

gsdβs =

u∫

t

f (s)Gn(s)dβs+

u∫

t

gsFndβs+

n−1∑

i=0

X(n)
i Y(n)

i (B(n)
i )2.

Now
u∫
t
| f (s)G(ϕn(s)) − f (s)G(s)|2ds ≤ max

t≤s≤u
|Gn(s) −G(s)|

u∫
t
| f (s)|2

ds→ 0 with probabulity 1 sinceG(s) is continuous ins. Similarly∫ u

t
|g(s)Fn(s) − g(s)F(s)|2ds→ 0 with probability 1. Further

E




n−1∑

i=0

X(n)
i Y(n)

i

[
(B(n)

i )2 − t(n)
i+1 − t(n)

i

]


2

=

n−1∑

i=o

E((X(n)
i )2(Y(n)

i )2
[([

(B(n)
i )2 − (t(n)

i+1 − t(n)
i )2

])2
]
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+ 2
∑

i< j

E
{
X(n)

i Y(n)
i X(n)

j Y(n)
j

[(
B(n)

i

)2
−

(
t(n)
n+1

)] [(
B(n)

j

)2
−

(
t(n)
j+1 − t(n)

j

)]}

=

n−1∑

i=0

E((X(n)
i Y(n)

i )2E
[(

(B(n)
i )2 − (ti+1 − t(n)

i )
)2

]
,

sinceE((B(n)
j )2) = t(n)

j+1 − t(n)
j

= 2
n−1∑

i=0

E((X(n)
i Y(n)

i )(t(n)
i+1 − t(n)

i )2 ≤ 2δ(An)E


n−1∑

i=0

(X(n)
i Y(n)

i )2(t(n)
i+1 − t(n)

i )



= 2δ(∆n)E



u∫

t

f 2(s)g2(s)ds

 ,

since
n−1∑

i=0

(
X(n)

i Y(n)
i

)2 (
t(n)
i+1 − t(n)

i

)
=

u∫

t

f 2(s)g2(s)ds.

190

The lemma forf , g ∈ E , then follows Theorem 2 of§ 4.

Case 2.Let f , g ∈ Ls. There exist sequencesfn, gn ∈ E such that
u∫
t
| fn − f |2dsand

u∫
t
|gn − g|2ds→ 0 in probability.

Therefore sup
t≤s≤us

|Fn − F | and sup
t≤s≤us

|Gn − G| → 0 in probability

whereF(s) =
∫
t

f (θ)dβθ ,G(s) =
s∫

t
g(θ)dβθ , Fn(s) =

s∫
t

fn(θ)dβθ , gn(s) =
∫ s

t
gn(θ)dβθ. Choosing a subsequene if necessary we can assume that

the above limits are true almost every where. Then for anyw

u∫

t

| fnGn − fG|ds≤ 2

u∫

t

| fn − f |2G2
nds+ 2

u∫

t

f 2|Gn −G|2ds

≤ 2 sup
t≤s≤u

G2
n(s)

∫ u

t
| fn − f |2ds+ 2 sup

t≤s≤u
|Gn −G|2

u∫

t

f 2ds→ 0.

The proof of the lemma can be completed easily. �
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Proceeding on the same lines and noting that
∑

i f (t(n)
i )g(t(n)

i )(β(t(n)
i+1)

− β(t(n)
i ))(t(n)

i+1 − t(n)
i )→ 0, for f , g ∈ E , asn→ ∞ we can prove191

Lemma 2. (
∫ u

t
fsdβs)(

∫ u

t
gsds) =

∫ u

t
fsGsdβs +

∫ u

t
gsFsds where Fs =∫ s

t
fθdβθ,Gs =

∫ s

t
gθdθ.

Proof of Theorem.Write F(x1
t , . . . , x

k
t , t) = F(xt). Let∆n

= (0 = t(n)
0 <

t(n)
1 < t(n)

1 < . . . < t(n)
n = t) be a sequence of sub divisions such that

δ(∆n)→ 0. Then

yt = y0 +

n−1∑

l=0

k∑

i=1

F1

(
x(t(n)

l )
) (

xi(t(n)
l+1) − xi(t(n)

l )
)

+

n−1∑

l=0

FK+1

(
x(t(n)

l )
) (

t(n)
l+1 − t(n)

l

)

+
1
2

n−1∑

l=0

k∑

i, j=1

Fi j

(
x(t(n)

l )
) (

xi(t(n)
l+1) − xi(t(n)

l )
) (

x j(t
(n)
l+1) − x j(t(n)

l )
)

+
1
2

n−1∑

l=0

k∑

i, j=1

ǫ
(n)
i jl

(
xi(t(n)

l+1) − xi(t(n)
l )

) (
xi(t(n)

l+1) − x j(tnl )
)

= y0 +

k∑

i=1

I1
in + I2

n +
1
2

k∑

i, j=1

I3
i jn +

1
2

k∑

i, j=1

I4
i jn , say.

From the hypotheses onF and the continuity ofx j(t),

ǫ
(n)
i jl → 0 uniformly in i, j, l asn→∞.

Let ϕn(t) = t(n)
l for t(n)

l ≤ t < t(n)
l+1. Then we have

I1
in =

n−1∑

l=0

Fi(x(t(n)
l ))



tl+1∫

t(n)
l

f i
sdβs +

tl+1∫

t(n)
l

gi
sds



=

n−1∑

l=0



tl+1∫

t(n)
l

Fi(x(ϕn(s))) f i
sdβs +

tl+1∫

t(n)
l

Fi(x(ϕn(s)))gi
sds
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=

t∫

0

Fi(x(ϕn(s))) f i
sdβs +

∫ t

0
Fi(x(ϕn(s)))gi

sds.

192

Also
∫ t

0
|Fi(x(ϕn(s))) − Fi(x(s))|2( f i

s)
2ds

≤ max
0≤s≤t

|Fi(x(ϕn(s))) − Fi(x(s))|2 ×
∫ t

0
( f i

s)
2ds→ 0

for everyw. Thus

k∑

i=1

I1
in →

k∑

i=1

[∫ t

0
Fi(x(s)) f i

sdβs +

∫ t

0
Fi(x(s))gi

sds

]

in probability. Similarly

I2
n =

∫ t

0
FK+1(x(ϕn(s)))ds→

t∫

0

Fk+1(x(s))ds.

Using Lemma 1 and 2 we have

(xi(v) − xi(u))(x j(v) − x j(u))

=

∫ v

u

[
f i
s(x

j(s) − x j(u)) + f j
s (xi(s) − xi(u)

]
dβs

+

v∫

u

f i
s f j

s ds+

v∫

u

gi
s



s∫

u

f j
θ
dθ

 ds

+

v∫

u

g j
s



s∫

u

f i
θdθ

 +



v∫

u

gi
sds





v∫

u

g j
sds



=

v∫

u

[
f i
s(x

j(s) − x j(u)) + f j
s (xi(s) − xi(u))

]
dβs +

v∫

u

f i
s f j

sds

+

v∫

u

[
gi

s(Y
j
s − Y j

u) + g j
s(Y

i
s − Yi

u)
]
ds
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since



v∫

u

gi
sds





v∫

u

g j
sds

 =
v∫

u

gi
s



s∫

u

g j
θ
dθ

 +
v∫

u

g j
s



s∫

u

gi
θdθ

 ds

where Yi
s =

s∫

0

[
f i
θ + gi

θ

]
dθ,Y j

s =

s∫

0

[
f j
θ
+ g j

θ

]
dθ.
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Thus

I3
i jn =

t∫

0

Fi j (x(ϕn(s)))
[
f i
s(x

j(s) − x j(s))) + f j
s (xi(s) − xi(ϕn(s)))

]
dβs

+

t∫

0

Fi j (x(ϕn(s))) f i
s f j

s ds+

t∫

0

Fi j (x(ϕn(s)))

[
gi

s(Y
j(s) − Y j(ϕn(s))) + g j

s(Y
i(s) − Yi(ϕn(s)))

]
ds→

t∫

0

Fi j (x(s)) f i
s f j

sds

in probability because othet terms can, without difficulty, be shown, to
tend to zero in probability. Again

|I4
i jn | ≤ max

0≤l≤n−1
|ǫ(n)

i jl |
n−1∑

l=0

|xi(t(n)
l+1) − xi(t(n)

l )||x j(t(n)
l+1) − x j(t(n)

l )|

≤ 1
2

max
0≤l≤n−1

|ǫ(n)
i jl |

n−1∑

l=0

[(
xi(t(n)

l+1) − xi(t(n)
l )

)2
+

(
x j(t(n)

l+1) − x j(t(n)
l )

)2
]

In the same ways as above we can show that

n−1∑

l=0

(
xi(t(n)

l+1) − x(t(n)
l )

)2
→

t∫

0

f i
s f i

sds.

Thus|I4
i jn | → 0 in probability. We have proved the theorem
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6 Stochastic differential equations

The notation in this article is as in the previous ones.

Theorem 1. Let p(ξ), r(ξ), ξ ∈ R′ satisfiying Lipschitz condition

|p(ξ) − p(η)| ≤ A|ξ − η|, |r(ξ) − r(η)| ≤ A|ξ − η|.

194

Then
dxt = p(xt)dβt + r(xt)dt, x0(w) = α(w) ∈ B0

has one and olny one solution.

[|α(w)| < ∞ for almost all w]

Proof. (a) Existence. We show that

xt(w) =∝ (w) +

t∫

0

p(xs)dβs +

t∫

0

r(xs)ds

has a solution. We use successive approximation to get a solution.
Let∝M (w) be the truncation of∝ at M (i.e., (∝ V − M)∧ M) and
put

x0(t,w) ≡∝M (w).

Define by induction onk

xk+1(t,w) = αM(w) +

t∫

0

p(xk
s)dβs +

t∫

0

r(xk
s)ds

= αM
+ yk(t) + zk(t), say.

Note that if f ∈ L 2 thenI (t, f ) ∈ L 2 and

E(|I (t, f )|2) =

t∫

0

E(| f (s)|2)ds,
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where I (t, f ) =
t∫

0

fsdβs. From the hypotheses onp and r,

xk(t,w) ∈ L 2 for all k. Now

E(|xk+1(t) − xk(t))|2)

≤ 2E
[
|yk(t) − yk−1(t)|2 + 2E

[
|zk(t) − zk−1(t)|2

]]

≤ 2
∫ t

0
E(|p(xk(s)) − p(xk−1(s))|2)ds

+ 2tE

(∫ t

0
|r(xk(s) − r(xk−1(s))|2ds)

)

 since|zk(t) − zk−1(t)|2 ≤ t

t∫

0

|r(xk(s)) − r(xk−1(s))|2ds



≤ 2A2(1+ t)

t∫

0

E(|xk(s) − xk−1(s)|2)ds

≤ 2A2(1+ v)

t∫

0

E(|xk−1
s − xk−1

x |2)ds

where 0≤ t ≤ v < ∞ andv is fixed for the present. Therefore195

E(|xk+1(t) − xk(t)|2) ≤ [2A2(1+ v)]k
t∫

0

ds1

s1∫

0

ds2 . . .
sk−1∫

0

E(|x1(sk)−

x0(xk)|2)dsk

≤ [2A2(1+ v)]k

t∫

0

ds1 . . .

sk−1∫

0

2E(p2(αM)sk + r2(αM)s2
k)dsk

= [2A2(1+ v)]k2

[
E(p2(αM))

tk+1

(k + 1)!
+ 2E(r2(αM))

tk+2

(k + 2)!

]

which gives

v∫

0

E(|xk+1(θ) − xk(θ)|2)dθ
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≤ 2
[
2A2(1+ v)

]k
E(p2(αM))

vk+2

(k + 2)!
+ 2E(r2(αM))

vk+3

(k + 3)!
]

Let |||F(t,w)||| = sup
0≤t≤v

|F(t,w). Then

P
[
|||xk+1(t) − xk(t)||| >∈

]

≤ P
[
|||yk(t) − yk−1(t)||| > ∈

2
+ P

[
|||zk(t) − zk−1(t)||| > ∈

2

]]

≤ 4

ǫ2

v∫

0

E
[
|(p(xk(s)) − p(xk−1(s))|2

]
ds

+
4

ǫ2
v

v∫

0

E
[
|r(xk(s)) − r(xk−1(s))2

]
ds.

(from Theorem 3 of§ 4)

≤ 4A2(1+ v)

ǫ2
2

[
2A2(1+ v)

]k−1
[
E(p2(αM))

vk+1

(k+ 1)!
+ 2E(r2(αM))

vk+2

(K + 2)!

]

<
B

ǫ2

[2A2v(1+ v)]k

k!
whereB = 2

[
E(P2(αM))v+ 2v2E(r2(αM))

]
.

Puttingǫk =
[2A2v(1+ v)]k/3

(k!)1/3
we get 196

P
[
|||xk+1(t) − xk(t)||| >∈k

]
≤ Bǫk.

�

Since
∑
ǫk is a convergent series Borel-Cantelli lemma implies that,

with probability 1, w belongs only to a finite number of sets in the
bracket of the last inequality. Therefore

P[|||xk+1(t) − xk(t)||| <∈k for all k ≥ somel] = 1.
Since

∑
ǫk < ∞, we get
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|||xm(t) − xn(t)||| → o with probability 1 asm, n → ∞ i.e., P[xk(t)
converges uniformly for 0≤ t ≤ v] = 1.

Takingv = 1, 2, 3, . . . we get
P[xk(t) converges unifolmly for 0≤ t ≤ n] for every n] = 1. Let

xM(t,w) be the limit ofxk(t,w). This is clearly continuous int for almost
all w. Also for anyv < ∞,

P
[
|||xk(t) − xM(t)||| → 0 ask→ ∞

]
= 1.

so that
∫ t

0 p(xk(s))dβs→
∫ t

0 p(xM)(s))dβs in probability. Now we prove
without difficulty that

XM(t,w) = αM(w) +
∫ t

0
p(xM(s,w))dβ(s,w) +

t∫

0

r(xM(s,w))ds.

Let ΩM = (w : |α(w)| ≤ M) and definex(t,w) = xM(t,w) onΩM.197

If M < M′ then onΩM, αM
= αM′ so that from the construction [and

the fact that if f = g on a measurable setB then I (t, f ) = I (t, g) a.e.
on B] it follows that xM(t,w) = xM′(t,w). Also since onΩM, x(t,w) =
xM(t,w), x(t,w) is a solution.

(b) Uniqueness. Let

xt = a+
∫ t

0
p(xs)dβs +

∫ t

0
r(xs)ds 0 ≤ t ≤ v, a ∈ (B0).

yt = a+
∫ t

0
p(ys)dβs +

∫ t

0
r(ys)ds

Case 1.E(x2
t ) andE(y2

t ) are bounded by someG < ∞ for 0 ≤ t ≤ v. We
have

E((x(t) − y(t))2) ≤ 2E


[∫ t

0
(p(x(s)) − p(y(s)))dβ(s)

]2

+ 2E


[∫ t

0
(r(x(s)) − r(y(s)))ds

]2

≤ 2
∫ t

0
E(

[
(p(x(s)) − p(y(s)))2

]
ds+ 2t

∫ t

0
E

[
(r(x(s)) − r(y(s)))2

]
ds
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since
[∫ t

0 ϕ(s)ds
]2
≤ t

∫ t

0 ϕ
2(s)ds. Thus

E
[
(xt − yt)

2
]
≤ 2A2(1+ t)

∫ t

0
E

[
(xs − ys)

2
]
ds

≤ 2A2(1+ v)
∫ t

0
E

[
(xs − ys)

2
]
ds

put Ct = E((xt − yt)2)
[
≤ 4G2

]
. Then

Ct ≤ 2A2(1+ v)
∫ t

o
csds≤

[
2A2(1+ v)

]2
∫ t

0
ds

∫ s

0
cθdθ ≤ · · ·

Therefore

Ct ≤
[2A2(1+ v)]n

n!
tn4G2→ 0 asn→ ∞.

198

Case 2.Let xtM = (xtΛM)∀(−M), ytM = (ytΛM)∀(−M) andaM = (a∀−
M)ΛM. Definex0, x1, . . . , y0, y1, . . ., inductively as follows

x0
t = xtM , x

n+1
t = aM +

∫ t

o
p(xn

s)dβs +

∫ t

o
r(xn

s)ds

y0
t = ytM , y

n+1
t = aM +

∫ t

o
p(yn

s)dβs +

∫ t

o
r(yn

s)ds.

Arguments similar to those used in the proof of existence of asolu-
tion prove that

x̃t = lim
n−∞

xn
t , ỹt = lim

n−∞
yn

t

exist and

x̃t = aM +

∫ t

0
p(x̃s)dβs +

∫ t

0
r(x̃s)ds

ỹt(t) = aM +

∫ t

0
p(ỹs)dβs +

∫ t

0
r(ỹs)ds
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and
sup

0≤t≤v
E(x̃2

t ) < ∞, sup
0≤t≤v

E(ỹ2
t ) < ∞.

Therefore from Case 1, ˜xt = ỹt for 0 ≤ t ≤ v.
LetΩM = (w : |a| < M, sup

0≤t≤v
| xt |< M, sup

0≤t≤v
| yt |< M). Then since

xt andyt have continuous pathsp[UMΩM] = 1. But onΩM,

yt = ytM = y0
t = y1

t = · · ·
xt = xtM = x0

t = x1
t = · · ·

 0 ≤ t ≤ v

199

Note that if f , g ∈ Ls and f = g on a measurable subsetB then
I (t, f ) = I (t, g) on B with probability 1.

Thusxt = yt onΩM. We have proved the theorem.

Corollary ( ). Letα(w) ∈ L2(Ω) and x(t,w) satisfy

x(t,w) = α(w) +
∫ t

o
p(x(s,w)dβ(s,w) +

∫ t

o
r(x(s,w))ds.

Then
E(x2

t ) ≤ βeµt for 0 ≤ t ≤ v

whereβ = 3E(α2) + 6vp2(0)+ 6v2r2(0) andµ = 6A2(1+ v).

Proof. From the proof of Theorem 1 we gather thatx(t,w) ∈ L2 (for
anyv < ∞). If | x(t)||2 = E(| x(t)|2),

||x(t) − x(s)||2 ≤ 2
∫ t

S
E(p(x(θ))2)dθ + 2(t − s)

∫ t

s
E(r(x(θ))2)dθ

so that||x(t)||2 is continuous int. Let l = sup
0≤t≤v

||xt ||2.

Now

||xt ||2 ≤ 3E(α2) + 3
∫ t

o
E(p(x(s))2)ds+ 3t

∫ t

o
E(r(x(s))2)ds

≤ 3E(α2) + 6[tp2(0)+ t2r2(0)] + 6A2(1+ t)
∫ t

o
||x(s1)||2ds1.
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≤ β + µ
∫ t

o
||x(s1)||2ds1 ≤ β + µ

∫ t

o
ds1[β + µ

∫ s1

o
||x(s2)||2ds2]

= β(1+ µt) + µ2
∫ t

o
ds1

∫ S1

o
||x(s2)||2ds2 ≤ β(1+ µt)

+ µ2
∫ t

o
ds1

∫ S1

o
ds2

[
β + µ

∫ S2

0
||x(s3)||2ds3

]

= β

[
1+ µt +

µ2t2

2!

]
+ µ3

∫ t

0
ds1

∫ S1

0
ds2

∫ S2

0
||x(s3)||2ds3

200

Continuting this, for anyn we have

||x(t)||2 ≤ β
[
1+ µt +

µ2t2

2!
+ · · · + µ

ntn

n!

]
+ µn+1

∫ t

0
ds1

∫ S1

0
ds2 . . .

∫ Sn

0
||x(sn+1)||2dsn+1

≤ βeµt
+ µn+1

∫ t

o
ds1 . . .

∫ Sn

0
||x(sn+1)||2dsn+1 ≤ βeµt

+ µn+1l
tn+1

(n+ 1)!

Q.E.D. �

Theorem 2. There exists a function x(t, a,w) measurable in the pair
(a,w) such that for every fixed a∈ R1,

x(t, a,w) = a+
∫ t

0
p(x(s, a,w))dβ(s,w) +

∫ t

0
r(x(s, a,w))ds

for every t and for almost all w. That is there exists a versionof the
solutin of

dxt = p(xt)dβt + r(xt)dt, x(0) = a

which is measurable in the pair(a,w).

Proof. Let x0(t, a,w) ≡ a.x0(t, a,w) is measurable in the pair (a,w).
Assume thatx1, . . . , xk have been defined, are measurable in the pair201

(a,w) and for every fixed a

xi(t, a, k) = a+
∫ t

0
p(xi−1(s, a,w))dβ(s,w)
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+

∫ t

0
r(xi−1(s, a,w))ds, 1 ≤ i ≤ k.

for almost allw and for all t. We shall definexk+1. Let ∆n
= (0 =

sn
o < sn

1 < . . .) be a sequence of subdivisions of [0,∞) such thatδn =

sup
i
|sn

i+1 − sn
i | tends to zero. Letv < ∞. Then sincexk(s, a,w) is contin-

uous ins for almost allw,
∫ v

0
|p(xk(s, a,w)) − p(xk(ϕn(s), a,w))|2ds→ 0

for almost allw, whereϕn(t) = sn
i for sn

i ≤ t < sn
i+1. Hence

sup
0≤t≤v

∣∣∣
∫ t

0 [p(xk(s, a,w)) − p(xk(ϕn(s), a,w))]dβs → 0] in probabil-

ity. By the diagonal process we can find a subsequencen j suct that

p[ sup
0≤t≤v

|
∫ t

0 p(xk(s, a,w))dβs −
∫ t

0 p(xk(ϕn j(s), a,w))dβs

∣∣∣ → 0 for every

v < ∞] = 1
Since p(xk(ϕn j(s), a,w)) ∈ E

∫ t

0 p(xk(ϕn j(s), a,w) is measurable in

(a,w). It follows that M(t, a,w) = lim
∫ t

0
p(xk(ϕn j(s), a,w))dβs is mea-

surable in (a,w). Now define

xk+1(t, a,w) = a+ M(t, a,w) +
∫ t

0
r(xk(s, a,w))ds.

202

Proceeding as in Theorem 1 we can show thatxk(t, a,w) converges
with probability 1. Let now

x(t, a,w) = limxk(t, a,w)

We can show thatx(t, a,w) is the required function. �

Remark. We can easily prove that ifan→ a thenx(t, an,w)→ x(t, a,w)
in probability. In fact

E(|x(t, a,w) − x(t, an,w)|2) ≤ 3|a− an|2 + 3
∫ t

0
E(|p(x(s, an,w)
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− p(x(s, a,w))|2)ds+ 3t
∫ t

0
E(|r(x(s, an,w)) − r(x(s, a,w))|2)ds

so that

lim
an→a

E
[
lx(t, a,w) − x(t, an,w)|2

]
≤ 3A2(1+ t)

lim
an→a

∫ t

0
E(|x(s, an,w) − x(s, a,w)|2)ds

and now using the corollary to Theorem 1 and Fatou lemma we get

lim
an→a

E[lx(t, a,w) − x(t, an,w)|2]

≤ 3A2(1+ t)
∫ t

o
lim

an→a
E(|n(s, an,w) − x(s, a,w)|2)ds

Q.E.D.

Theorem 3. Let x(t, a,w) be as in Theorem 2 and x(t,w) be the solution
of

dxt = p(xt)dβt + r(xt)dt, x(o,w) ≡ α(w), α(w) ∈ (B0)

Then 203

p[x(t, α(w),w) = x(t,w)] = 1

Proof. We shall prove that

x(t, α(w),w) = α(w) +
∫ t

0
p(x(s, α(w),w))dβ(s,w) +

∫ t

o
r(x(s, α(w),w))ds

with probability 1; then by uniqueness part of Theorem 1 the result will
follow.

1. Sincex(t, a,w) is measurable in (a,w), x(t, α(w),w) is measurable
in w. In fact, x(t, α(w),w) is the composite of

w→ (α(w),w) and (a,w)→ x(t, a,w).

2. Consider the function-space valued random variable

β(w) = β(.,w) − β(o,w).
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This induces a measure onC, the space of all continuous functions
on [0,∞) and with respect to this measure the set of coordinate functions
is a Wiener process i.e., if for ˜w ∈ C

β̃(t, w̃) = w̃(t)

then β̃(t,w) is a Wiener process onC. Let B̃t correspond toBt. There
exists a unique solution of the equation

dx̃t = p(x̃t)dβ̃(t) + r(x̃t)dt, x̃o = a.

i.e., x̃(t, a,w) = a+
∫ t

0
p(x̃(s, a, w̃))dβ̃(s, w̃) +

∫ t

0
r(x̃(s, a, w̃))ds

for almost allw. Hence we have by uniqueness204

x(t, a,w) = x̃(t, a, β(w)) a.e.

Let L(a,w) = x̃(t, a, w̃) and

R(a, w̃) = a+
∫ t

0
p(x̃(s, a, w̃))dβ̃(s, w̃) +

∫ t

0
r(x̃(s, a, w̃))ds

If α(w) ∈ (B0) thenα(w) andβ(w) are independent. Hence the mea-
sure induced by (α, β) onR1 × C is the productPα × Pβ wherePα is the
distribution ofα andPβ is the probability induced onC by β. Hence we
have

P[w : x(t, α(w),w) = α(w) +
∫ t

0
p(x(s, α(w),w)dβ(s,w)

+

∫ t

0
r(x(s, α(w),w)ds

= (Pα × Pβ)[(a, w̃) : L(a, w̃) = R(a, w̃)]

=

∫

R
Pβ[(a, w̃) : L(a, w̃) = R(a, w̃)]Pα(da)

=

∫

R
1.Pα(da) = 1.

This proves the theorem. �



7. Construction of diffusion 173

7 Construction of diffusion

In this article we shall answer the question of§ 1 i.e. we shall prove that
if p and r satisfy Lipschitz condition then there exists a diffusion with

state spaceR′ such that ifu, u′, u′′ are continuous,u and
1
2

P2u′′ + ru′

are bounded andG is the generator in the restricted sense, then

G u =
1
2

P2u′′ + ru′.

We have proved in§6 that

x(t) = a+
∫ t

0
p(x(s))dβ(s) +

∫ t

0
r(x(s))ds

has a unique solutionx(t, a,w). Let S = R′,W =Wc(R1) and 205

Pa(B) = P(w : x(., a,w) ∈ B), B ∈ B(W).

ThenM = (S,W,Pa) is a diffusion.
We shall first prove thatM is a Markov process. We verify the

Markov property ofPa.
Let β−t (w) denote the stopped path att of β(.,w) i.e. β(tΛ.,w) and let

β′(w) = β(t + .,w) − β(t,w), β′′(s,w) = β(t + s,w), B′′θ = Bt+θ. Then
β′′(s,w) is also a Wiener process onΩ. Let x(t, a,w), y(t, a,w) denote
solutions with respect to these processes of

dzt = p(zt)dβt + r(zt)dt

i.e.

x(t, a,w) = a+
∫ t

0
p(x(s, a,w))dβ(s,w) +

∫ t

0
r(x(s, a,w))ds

y(t, b,w) = b+
∫ t

0
p(y(s, b,w))dβ′′(s,w) +

∫ t

0
r(y(s, b,w))ds

If β(w) = β(.,w) − β(0,w) then β(w) and β′(w) induce the same
probability onC. Hence (see the proof of Theorem 3 of§ 6)

x(t, a,w) = x̃(t, a, β(w)), y(t, a,w) = x̃(t, a, β′(w)).
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Consider theC-valued random variableβ−t (w). This induces a prob-
ability onC and with respect to this the process

β̃(s, w̃) = w̃(s), 0 ≤ s≤ t

is a Wiener process onC and there exists a unique solution for206

dx̃s = p(x̃s)dβ̃s + r(x̃s)ds, x̃0 = a, 0 ≤ s≤ t

i.e. there existsf (s, a, w̃) such that

f (s, a, w̃) = a+
∫ s

0
p( f (θ, a, w̃))dβ̃(θ, w̃)+

∫ s

0
r( f (θ, a, w̃))dθ, 0 ≤ s≤ t.

Then we have

f (s, a, β−t (w)) = a+
∫ s

0
p( f ( , a, β−t (w)))dβ(θ,w)

+

∫ s

0
r( f (θ, a, β−t (w)))dθ, 0 ≤ s≤ t.

Therefore the stopped path att of x(., a,w) is

F(s, a, β−t (w)) =


f (s, a, β−t (w)), 0 ≤ s≤ t

f (t, a, β−t (w)), s> t.

Now

x(t + s, a,w)

= x(t, a,w) +
∫ s

0
p(x(+t, a,w))dβ(θ + t,w) +

∫ s

o
r(x(θ + t, a,w))dθ

= x(t, a,w) +
∫ s

0
p(x(θ + t, a,w))dβ′′(θ,w) +

∫ s

0
r(x(θ + t, a,w))dθ.

From Theorem 3 and uniqueness part of Theorem of 1 of§ 6 we
have therefore

x(t + s, a,w) = y(s, x(t, a,w),w) = x̃(s, x(t, a,w), β′(w))
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= x̃(s,E(t, a, β−t (w)), β′(w))

Let B1 ∈ Bt(w) andB2 ∈ B(w). Then by definition ofPa207

Pa[W ∈ B1,W
+

t ∈ B2] = P[x(., a,w) ∈ B1, x(t + ., a,w) ∈ B2]

= P[F(., a, β−t (w)) ∈ B′1, x(., F(t, a, β−t (w)), β′(w)) ∈ B2]

whereB1 = (w : w−t ∈ B′1). Let Pβ−t andPβ′ be the probabilities induced
on C by β−t andβ′; since they are independent they induce the product
probabilityPβ−t × Pβ′ onC × C . We have therefore,

Pa(w ∈ B1,w
+

t ∈ B2)

= (Pβ−t × Pβ′)[(w̃, w̃′) : F(., a, w̃) ∈ B′1, x̃(., F(t, a, w̃), w̃′) ∈ B2]

=

∫
Pβ−t (dw̃)P[w′ : F(., a.w̃) ∈ B1, x̃(., F(t, a, w̃), w̃′) ∈ B2]

=

∫
Pβ−t (dw)P[w′ : F(., a.w̃) ∈ B1, x̃(., F(t, a, w̃), β′(w′)) ∈ B2]

=

∫
P(dw)P[w′ : F(., a, β−t (w)) ∈ B′1, x̃(., F(t, a, β−t (w)), β′(w′)) ∈ B2]

=

∫

(ω:F(.,a,β−t (w))∈B′1)

P[w′ : x̃(., F(t, a, β−t (w)), β′(w′)) ∈ B2]P(dw)

=

∫

(ω:F(.,a,β−t (w))∈B′1)

P[w′ : x̃(., x(t, a,w), β(w′)) ∈ B2]P(dw)

sinceβ andβ′ induce the same probability onC . Thus by definition of
Pb we have

Pa[w : w ∈ B1,w
+

t ∈ B2] =
∫

(w:F(.,a,β−t (w)∈B′1)

Px(t,a,w)[B2]P(dw)

= Ea[B1 : Pxt(w)(B2)]

We have derived the Markov property.
From the remark at the end of Theorem 2 of§ 6 we see that ifan→ a 208
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there exists a subsequenceank such that

x(t, ank,w)→ x(t, a,w) a.e.

SinceHt f (a) = Ea[ f (xt(w))] =
∫

Ω

f (x(t, a,w))P(dw) if f is continu-

ous andan→ a then there exists a subsequnceank such thatHt f (ank)→
Ht f (a). Since this is true of every sequencean→ a,we should have

lim
b→a

Ht f (b) = Ht f (a).

M is therefore a strong Markov process. The definition ofPa shows that
M is conservative.

Theorem 1. If u, u′, u′′ are all continuous and if u and
1
2

p2u′′ + ru′ are

bounded, then u∈ D(G )(G in the restricted sense) and

G u =
1
2

P2u′′ + ru′.

Proof. It is enough to prove thatαGαu − u = Gα[
1
2

P2u′′ + ru′]. From

the theorem of§ 5 we have

u(x(t, a,w)) = u(x(0, a,w)) +
∫ t

0
u′(x(s, a,w))p(x(s, a,w))dβ(s)

+

∫ t

0

[
1
2

P2(x(s, a,w))u′′(x(s, a,w)) + u′(x(s, a,w))r(x(s, a,w))

]
ds.

Write F(s, a,w) =
1
2

P2(x(s, a,w))u′′(x(s, a,w)) + u′(x(s, a,w))

r(x(s, a,w)). Then sincex(0, a,w) = a,209

∫

Ω

u(x(t, a,w))P(dw) = u(a) +
∫ t

0
ds

∫

Ω

F(s, a,w)P(dw) (1)

since the expectation of a stochastic integral is zero.
Thus

α

∫ ∞

0
e−αtdt

∫

Ω

u(x(t, a,w))dP(w)
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= u(a) +
∫ ∞

0
αe−αtdt

∫ t

0
ds

∫

Ω

F(s, a,w)dP(dw)

= u(a) +
∫ ∞

0
ds

∫

Ω

F(s, a,w)P(dw)
∫ ∞

s
αe−αtdt

= u(a) +
∫ ∞

0
ds

∫

Ω

F(s, a,w)P(dw)e−αs

Q.E.D �

Theorem 2. If u satisfies the conditions of Theorem 1, then

lim
t→0

Htu(a) − u(a)
t

=
1
2

P2(a)u′′(a) + r(a)u′(a).

This is immediate from equation (1) above, since all the functions
involved are continuous.

Theorem 3. Let P(t, a,E) be the transition probability of the above dif-
fusion. Then the following Kolmogoroff conditions are true.

(A) lim
t→0

1
t
P(t, a,Uc

a) = 0

(B) lim
t→0

1
t

∫
Ua

(b− a)P(t, a, db) = r(a)

(C) lim
t→0

1
t

∫
Ua

(b− a)2P(t, a, db) = P2(a)

where Ua is any bounded open set containing a.

Proof. We can prove these facts using stochastic differential equations;
but we shall deduce them from Theorem 2 above.

(A) Let Va be any open set containing a with̄Va ⊂ Ua and letu be a 210

C2 function such thatu = 0 onVa, u = 1 onUc
a and 0≤ u ≤ 1 on

Ua − Va. Thenu satisfies the conditions of Theorem 1. We have

0 ≤ 1
t
P(t, a,Uc

a) ≤ 1
t
[Htu(a) − u(a)] → 1

2
p2u′′(a) + ru′(a) = 0.
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(B) Let Va ⊃ Ūa and let∈ be aC2 function vanishing outsideVa, 1 on
Ūa and 0≤∈≤ 1. Putu(b) = (b− a) ∈ (a). Then

lim
t→0

1
t
[Htu(a) − u(a)] =

1
2

p2u′′(a) + ru′(a) = r(a)

i.e., lim
t→0

1
t

∫

R′
u(b)P(t, a, db) = r(a).

Also

lim
t→0
|1
t

∫

R′
u(b)P(t, a, db) − 1

t

∫

Ua

(b− a)P(t, a, db)|

≤ lim
t→0

1
t

∫

Va−Ua

|b− a|| ∈ (b) − 1|P(t, a, db)

≤ lim
t→0

C
1
t

∫

Uc
a

P(t, a, db) = 0

from (A), whereC is a bound for|b− a|| ∈ (b) − 1| on Va − Ua.

(C) Takeu(b) = (b− a)2 ∈ (b) in (b).

�

Remark. Theorem 3 means (in an intuitive sense)

Pa(|dxt | >∈) = 0(dt),Ea(dxt) ∼ r(a)dt,

Va(dxt) = Ea((dxt)
2) ∼ p2(a)dt.



Section 6

Linear Diffusion

We recall the definition of a diffusion. A strong Markov process whose211

path functions are continuous before the killing time is called a diffision.
In this section we develop the theory (due to Feller) of linear diffusion.

1 Generalities

Definition (). A diffusion whose state space S is a linear connected set
is called alinear diffusion.

S is therefore one of the following sets, upto isomorphism i.e., order
preserving homeomorphism of linear connected sets:

(1) [0, 1], (2) [0, 1), (3) (0, 1], (4) (0, 1), (5) {0}.

Let σb denote the first passage time forb, i.e. σb = inf {t : xt = b}.
If Pa(σb < ∞) > 0, we writea → b; if a → b for someb > a, we
write a ∈ C+; if a→ b for someb < a, we writea ∈ C−. If a9 b for
anyb > a, i.e. if a < C+ we writea ∈ K−; similarly if a 9 b for any
b < a, i.e. if a < C−, we wrirea ∈ K+. Thus if a ∈ K+ andb < a then
Pa(σb = ∞) = 1, i.e.Pa(xt ≥ a for all t < σ∞) = 1.

Every point of the state spaceS belongs to one of the following sets:

1. C+ ∩ C− = Kc
+ ∩ Kc

−. These points are calledregular pointsor 212

second order points.

179
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2. C+−C− = K+−K−. A point of this set is called apure right shunt.

3. C− − C+ = K = K+. A point of this set is called apure left
Shunt. Both left and right shunts are sometimes calledpoints of
first order, i.e. a point of first order is an element ofC+ − C−) ∪
(C− −C+).

4. Cc
− ∩Cc

+ = K− ∩ K+. These points are calledtrap pointsor points
of order zero.

The intuitive meanings of the above should be clear; for instance of
particle starting at a pure right shunt travels to the right with probabil-
ity 1.

Theorem 1. If a ∈ C+(∈ c−), then Pa(σa+ = 0) = 1(Pa(σa− = 0) = 1),
whereσa+ = inf {t : xt > a}(σa− = inf {t : xt < a}).

Proof. Let σ = σa+ anda ∈ C+. There existsb > a, and t such that
Pa(σb < t) > 0. Now Ea(d−σb) ≥ e−tPa(σb < t) > 0. Sinceσb(w) =
σ(w) + σb(w+σ) we have, by the strong Markov property,

0 < Ea(e−σb) = Ea(e−σb : σb < ∞) = Ea(e−σb : σ < ∞, σb < ∞
= Ea(e−σ−σb(w+σ) : σ < ∞, σb(w+σ) < ∞)

= Ea[e−σExσ (e−σb : σb < ∞) : σ < ∞]

= Ea(e−σEa(e−σb) : σ < ∞) = Ea(e−σb)Ea(e−σ). Q.E.D

�

Remark. If M is not strong Markov the theorem is not true (e.g. expo-213

nential holding time process).

Theorem 2. If a→ b > a(< a) then[a, b) ⊂ C+((b, a] ⊂ C−.

Proof. Let a ≤ ξ < b. ThenPa(σξ < σb) = 1, because the paths are
continuous. We have

0 < Pa(σb < ∞) = Pa(σξ < ∞, σb < ∞) = Pa(σξ < ∞, σb(w
+

σξ
) < ∞)

= Ea[Pxσξ
(σb < ∞) : σξ < ∞ = Pξ[σb < ∞]Pa(σξ < ∞),

since by continuityx(σξ) = ξ. ThereforePξ(σb < ∞) > 0. Q.E.D. �
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Corollary ( ). If a ∈ C+ then some right neighbourhood (i.e. a set which
contains an interval [a, b )) of a,U+(a) ⊂ C+.

Theorem 3. The set of regular points is open.

Proof. Sincea ∈ C+, there existsb > a with Pa(σb < ∞) > 0 and since
a ∈ C−, by Theorem 1,Pa(σa− = 0) = 1. HencePa(σa− < σb < ∞) > 0;
this implies that there existsc < a such thatPa(σc < σb < ∞) > 0.
Noting thata ∈ C+ and using Theorem 1, there existsd, a < d < b, with
Pa(σd < σc < σd < ∞) > 0. Using the strong Markov property

Pa(σd < ∞)Pd(σc < ∞)Pc(σd < ∞) > 0,

so thatPd(σc < ∞) > 0,Pc(σb < ∞) > 0. Hence (c, d] ⊂ C− and
[c, b) ∈ C+. Q.E.D. �

Theorem 4. K+ is right closed, i.e. an ∈ K+, an ↑ a imply a∈ K+(k− is
left closed).

Proof. If a < K+ thena ∈ c−. There existsb < a anda→ b.
Then (b, a] ⊂ c− so that (b, a] ∩ K+ = φ. Q.E.D. � 214

2 Generator in the restricted sense

In the section of strong Markov processes we introduced a generator in
the restricted sense; we modify this to suit our special requirements. Let
D(S) = { f : f ∈ B(S) and f is right continuous at every point of
C+ and left continuous at every point ofC−. D(S) is smaller than the
classesD(S) introduced before in the section of strong Markov pro-
cesses. Clearlyf ∈ D(S) is continuous at every regular point and
D(S) ⊃ C(S).

Theorem 1. D(S) ⊃ Gαβ(S); a fortiori GαD(S) ⊂ D(S).

Proof. Let a ∈ C+. Then

Gα f (a) = Ea

(∫ ∞

0
e−αt f (xt)dt

)
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= Ea

(∫ σb

0
e−αt f (xt)dt

)
+ Ea

(∫ ∞

σb

e−αt f (xt)dt

)

= Ea

(∫ σb

0
e−αt f (xt)dt

)
+ Ea(e−ασbGα f (xσb))

= Ea

(∫ σb

0
e−αt f (xt)dt

)
+ Ea(e−ασb)Gα f (b).

Now

|Ea

(∫ σb

0
eαt f (xt)dt

)
| ≤ || f ||1− E(e−ασb)

α
−−−→
b→a

|| f ||1− E(e−ασa+ )
α

= 0,

since
Pa(σa+ = 0) = 1.

Q.E.D
We can prove thatGαD(S) is independent ofα and the other results

easily. �

Theorem 2. Gα f = 0, f ∈ D(S) imply f ≡ 0.215

Proof. It is enough to show thatPa( f (xt)→ f (a) ast − 0) = 1.
If a is regular, f is continuous at a and there is nothing to prove. If

a ∈ C+−C−, f is right continuous at a andPa(xt ≥ a for 0≤ t < σ∞) = 1
and again the result is immediate. Ifa ∈ C− − C+ the same is true. If
a is a trapPa(xt = a for 0 ≤ t < σ∞) = 1 and sincePa(σ∞ > 0) = 1
(becausePa(x0 = a) = 1) the result follows again. �

Definition (). We define the generator in the restricted sense asG u =
αu − f where u= Gα f with f ∈ D(S). One easily verifies thatG u is
independent ofα.

Theorem 3. If a is a trap, then Pa(σ∞ > t) ≡ Pa(τa > t) = e−kt

and G u(a) = −ku(a) where k ≥ 0 and τa = first leaving time from
a = inf {t : xt , a}.

Proof. Proceeding as in the case of a Morkov process with discrete

space (Section 2,§ 8) we show thatPa(τa > t) = e−kt and
1
k
= Ea(τa) if



2. Generator in the restricted sense 183

∞ > k > 0. If k = 0, Pa(τa > t) = 1 for all t, giving Pa(τa = ∞) = 1 i.e.
Pa(xt = a for all t) = 1 (such a point is called aconservative trap). We
haveG u(a) = αu(a)− f (a) = α

∫ ∞
o

e−αtEa( f (xt))dt− f (a) = f (a)− f (a) =

0. Let now∞ > k > 0. Since
1
k
= Ea(τa), by Dynkins formula,

Ea

(∫ τa

o
G u(xt)dt

)
= Ea(u(xτa)) − u(a),

i.e.,
Ea(τaG u(a)) = −u(a), since u(xτa) = u(∞) = 0.

Q.E.D. �

Theorem 4 (Dynkin). If a is not a trap then Ea(τU) < ∞ for a suffi- 216

ciently small open neighbourhood U of a and

G u(a) = lim
U→a

Ea(u(xτU )) − u(a)

Ea(τU)
,

whereτU = first leaving time from U.

Proof. We prove that if a is not a trap, there existsu0 ∈ D(G ) such
that u0(a) > 0. Let G u(a) = 0 for everyu ∈ D(G ). Then for all

f ∈ C(S), α.Gα f (a) − f (a) = 0 i.e.
∫ ∞
o

Ht f (a)e−αtdt =
1
α

f (a) =
∫ ∞
0 e−αt f (a)dt. Since for f ∈ C(S),Ht f is right continuous int,

Ht f (a) = f (a) i.e.
∫

f (b)P(t, a, db) = f (a) for all f ∈ C(S). It fol-
lows thatP(t, a, db) = δs(db) i.e. Pa(xt = a) = 1 for all t. By right
continuity Pa(xt = a) for all t) = 1, i.e. a is a trap. Thus there existsu0

such thatG u0(a) , 0.
From the definition ofD(S) we see that there existsǫ0 > 0 and a

neighbourhoodU0(a) such that

G u0(b) >∈0



for b ∈ U0(a) if a is regular,

for b ∈ U0(a) andb ≥ a if a is a pure right shunt,

for b ∈ U0(a) andb ≤ a if a is a pure left shunt.
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ThereforePa(G u0(xt) >∈0 for 0 ≤ t < τU0) = 1. Now putτn =

nΛτU0. Then

Ea

(∫ τn

0
G u0(xt)dt) = Ea(u0(xτn)) − u0(z)

)

so that
ǫ0Ea(τn) ≤ 2||u0||.

Letting n → ∞, Ea(τU0) ≤ 2
||u0||
∈0

< ∞. Therefore forU ⊂ U0(a),217

Ea(τU) < ∞.
Now let u ∈ D(G ). For every∈> 0, there exists a open neighbour-

hoodU(a) ⊂ U0(a) such that

|G u(b) − G u(a)| <∈



for b ∈ U(a) if a is regular,

for b ∈ U(a) andb ≥ a if a is a pure right shunt,

for b ∈ U(a) andb ≤ a if a is a pure left shunt.

ThereforePa(|G u(xt) − G u(a)| <∈ for 0 ≤ t < τU) = 1. Using
Dynkin’s formula the proof can be easily completed.

3 Local generator

Let M = (S,W,Pa) denote a linear diffusion, andS′ a closed interval
in S. Put W′ = Wc(S′), P′a(B′) = Pa[w−τ ∈ B′], whereτ ≡ τ(S′)0(w)
is the first leaving time from the interior (S′)0 of (S′). We prove that
M
′
= (S′,W′,P′a) is also a linear diffusion. We shall verify the strong

Markov property forM′. First we show that, ifσ′(w′) is a Markov time
in W′, thenσ(w) = σ

′
(w−τ(w)

) is a Markov time inW Now

(w : σ(w) ≥ t) = [w : σ′(w−τ(w)) ≥ t)] = (w : w−τ(w)) ∈ B′t), B
′
t ∈ B′t

= (w : (w−τ(w))
−
t ∈ B′), B′ ∈ B′ ⊂ B

= (w : t ≤ τ(w),w−t ∈ B′) ∪ (w : τ(w) < t, (w−t )−τ(w) ∈ B′)

= (w : t ≤ τ(w),w−t B′) ∪ (w : τ(w) < t, (w−t )τ(w−t ) ∈ B′) ∈ Bt

sincew→ w−t is Bt-measurable andw→ w−σ1
is B-measurable for any218

Markov timeσ1 we have (w : (w−t )−
σ1(w−t ) ∈ B) ∈ Bt for anyB ∈ B.
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Thusσ is a Markov time inW. Let f ′1 ∈ B′
σ′+ and f ′2 ∈ B′. Then

by definition ofP′a we have

E′a
[
f ′1(w′) f ′2(w

′
+

σ′(w′))
]
= Ea

[
f ′1(w−τ(w)) f ′2((w−τ(w))

+

σ(w))
]

Put f1(w) = f ′1(w−
τ(w)) and f2(w) = f 1

2 (w−
τ(w)). Let σ2 = σ ∧ τ. We

show thatf1 ∈ Bσ2+. Now

f1(w−σ2(w)+δ = f ′1((w−σ2(w)+δ)
−
τ(w−

σ2(w)+δ)
) = f ′1

[
(w−τ(w))

−
σ(w)+δ

]

= f ′1

[
(w−τ(w))

−
σ′(w−

τ(w))+δ
] + δ

]
= f ′1(w−τ(w)), since f ′1 ∈ B

′
σ′+

This proves thatf1 ∈ Bσ2+. From the definition ofτ andσ2 we can
see without difficulty that for anyt ≥ 0,

σ2(w) + (t ∧ τ(w+σ2(w))) = τ(w) ∧ (σ(w) + t)

Hence (w+
σ2(w))

−
τ(w+

σ2(w)
) = (w−

τ(w))
+

σ(w), so that

f2[w+σ2(w)] = f 1
2

[
(w+σ2(w))

−
τ(w+σ2

(w))

]
= f ′2

[
(w−τ(w))

+

σ(w)

]
.

Thus

E′a
[
f ′1(w′) f ′2(w

′
+

σ′(w′))
]
= Ea

[
f ′1(w−τ(w)) f ′2((w−τ(w))

+

σ(w))
]

= Ea

[
f1(w) f2(w+σ2

)
]
= Ea

[
f1(w)Exσ2( f2(w))

]

= Ea

[
f ′1(w−τ(w))Exσ(w)(w

−
τ(w))( f ′2(w−τ(w)))

]

= E′a
[
f ′1(w′)Exσ′ ( f ′2(w′))

]

which proves thatM′ is a linear diffusion.M′ is called thestopped pro- 219

cessat the boundary∂S′ of S′. We also denoteM′ byMS′ , its generator
by G ′ or Gs′ etc.

A point a ∈ S is called aconservative pointif there exists a neigh-
bourhoodU such thatMŪ is conservative. The set of all conservative
points is evidently open. Let a be a conservative regular point andS′a
closed interval containing a such thatMS′ is conservative. We shall



186 6. Linear Diffusion

prove that ifu ∈ D(G ), thenu′ = u|S′ ∈ D(G ′) andG ′u′ = G u in
(S′)0; more generally ifS′ ⊃ S′′, if u′ ∈ D(GS′) then u′′ = u′/S′′

(restriction toS′′) is in D(GS′′) andG ′u′ = G ′′u′′ in (S′′)0. Then we
can defineGa the local generator as the inductive limit ofGS′ asS′ ↓ a
in the following way. Consider the setDa of all functions defined in a
neighbourhood (which may depend on the function) right (left) contin-
uous at points ofC+(C ). Introduce an equivalence relation inDa by
putting f ∼ g if only if there exists a neighbourhoodU of a such that
f = g in U. Let D̄a(S) = Da(S)/ ∼ (the equivalence classes). Define
D(Ga) =

{
ū : ū ∈ Da(S) and there existU = U(a) with u|U ∈ D(GŪ ).

DefineDGaū = (GŪu)/ ∼ whereū = u| ∼, u|U ∈ D(GŪ). From above220

it follows that this is independent of the choice ofu. We now prove that
if uǫD(G ) thenu′ = u|S′ ∈ D(G ′) andGu = G ′u′ in (S′)0. Note that if
[b, c] = S′, τ = τU = σb ∧ σc,U = (S′)o. We have

u(ξ) = Gα f (ξ) = Eξ



∞∫

0

e−αt f (xt)dt



= Eξ

(∫ τ

0
e−αt f (xt)dt

)
+ Eξ



∞∫

σb

e−αt f (xt)dt : σb < σc



+ Eξ



∞∫

σc

e−αt f (xt)dtσc < σb



= Eξ



τ∫

0

e−αt f (xt(w
−
τ ))dt

 +Gα f (b)Eξ(e
−ασb : σb < σc)

+Gα f (c)Eξ(e
−ασc : σc < σb)

by strong Markov property. Putf ′ = f in U, f ′(b) = αGα f (b) and
f ′(c) = αGα f (c). Then it is easy to show thatu′ = u|s′ = G′α f ′ and
G ′u′ = G u in U.

Definition (). Ga is called thelocal generatorat a.
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4 Feller’s form of generators (1) Scale

We shall derive Feller’s cannocial form of generators by purely proba-
bilistic methods following Dynkin in the following articles.

Let a be a conservative regular point. There existsU = U(a) = (b, c)
such thatŪ has only conservative regular point andEξ(τU) = Eξ(δ∂U) <
∞ for ξ ∈ U. Puts(ξ) = Pξ(σc < σb).

(1◦) s∈ D(GŪ) andGŪ s= 0 in Ū.

Let f (c) = 1 and f (ξ) = 0, ξ ∈ [b, c). Then f ∈ D(Ū) = D ′ and

G′ǫ f (ξ) = E′ξ



∞∫

0

e−ǫt f (xt)dt

 = Eξ

(∫ ∞

0
e−ǫt f (xt(w

−
τU

))dt

)
=

Eξ



∞∫

σc

e−ǫtdt : σc < σb

 .

221

Hence lim
ǫ↓0
∈ G′ǫ f (ξ) = Pξ(σc < σb) = s(ξ). The resolvent equa-

tion gives

(G′α −G′ǫ) f + (α − ǫ)G′αG′ǫ f = 0 or

ǫ(G′α −G′ǫ) f + (α − ǫ)G′αG′ǫ f = 0.

Letting ǫ → 0 we get−s(ξ) + αG′αs(ξ) = 0. Therefore firstly
s∈ D ′ and again sinces= αG′αs, s∈ D(G ′) and

G
′s= αs− (G′α)−1s= αs− αs= 0 in Ū.

(2◦) is continuous inŪ.

Sinces∈ D ′ and all points ofU are regular fors′, s is continuous
in U.

It remains to prove thats is continuous atb andc. We prove the
continuity atc; continuity atb is proved in the same way. To prove
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this we shall first prove thate = lim
ξ↑c

E(e−σc− ) = 1 or 0,σc− =

lim
η↑c

ση. Let ξ < η < ξ < c. ThenEξ(e−ση ) = Eξ(e−ση )Eη(e−σc− ).

Letting η ↑ c, now andξ ↑ c finally we gete= e2 so thate= 1 or
0. Sincec is regular, there existsξ < c such thatPξ(σc < ∞) > 0
and thenEξ(e−σc) > 0. Alsoσc ≥ σc−. It follows thatEξ(e−σc− ) >222

0. Hencee= 1. Sinceξ is conservative

Pξ(xσc− = ∞, σc− < ∞) ≤ Pξ(σ∞ < ∞) = 0.

Therefore sinceσc ≥ σc− and the paths are continuous before the
killing time, Pξ(σc = σc−) = 1. We have proved that lim

ξ↑c
Eξ(e−σc)

= 1. For everyǫ > 0, therefore, lim
ξ→c

Pξ(σc < ǫ) = 1. Also

S(ξ) = Pξ(σc < σb) ≥ Pξ(σc < ǫ, σb ≥ ǫ) ≥ Pξ(σc < ǫ) − Pξ(σb < ǫ)

If b < ξ0 < ξ < c, then

Pξ(σb < ǫ) ≤ Pξ(σξ0 < ∞, σb(w
+

σξ0
) < ǫ)

= Pξ(σξ0 < ∞)Pξ0(σb < ǫ) ≤ Pξ0(σb < ǫ)

Therefores(ξ) ≥ Pξ(σc < ǫ)−Pξ0(σb < ǫ). Lettingξ ↑ c first and
ǫ ↓ 0 next, we get lim

ξ→c
s(ξ) ≥ 1 i.e. s(ξ) is continuous atξ = c.

(3◦) s(ξ) is strictly increasing.

The set of pointsξ, b < ξ ≤ c such thats(ξ) = 0 is closed in (b, c].
If Pξ0(σc < σb) = 0, the same is evidently true for anyb < ξ < ξ0.
Sinceξ0 is regular lim

η↓ξ0

Pξ0(ση < ǫ) = 1 for any ǫ > 0. Also

Pxi0(σb > 0) = 1. It easily follows that lim
η↓ξ0

Pξ0(ση < σb) = 1.

Chooseη0 > ξ0 with Pξ0(ση0 < σb) > 0. ThenPξ0(ση < σb) > 0
for any ξ0 < η < η0. Now that if a < ξ then (σa < σξ) = (w :223

σξ(w−σa) = ∞), and hence is inBσa. We have 0= Pξ0(σa <

σb) = Pξ0(ση < σb)Pη(σc < σb). Thus Pη(σc < σb) = 0.
The connectedness of (b, c] shows thats(ξ) , 0 in (b, c]. Exactly
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similar argument also shows thats(ξ) < 1 in [b, c). Now if ξ < η,
we replacec byη and repeat the argument to getPξ(ση < σb) < 1.
Thus ifσ < η

s(ξ) = Pξ(σc < σb) = Pξ(ση < σb)Pη(σc < σb) < Pη(σc < σb)

(4◦) αs+ β is the general solution ofG ′u = 0.

Let f (ξ) = 1 for b ≤ ξ ≤ c. Then f (ξ) = 1 = αE′
ξ
(
∫ ∞
0 e−αt f (xt)dt)

= α0′α f (ξ). This firstly shows thatf ∈ D ′(s′) and then the same
equation shows thatf ∈ D(G ′). ThusG ′1α·1−(G′α)−11 = α−α =
0. Hence sinceG ′s= 0 G ′(αs+ β) = 0. Now letG ′u = 0. Then

0 = E′ξ



τU∫

0

G
′u(xt)dt

 = E′ξ(u(xτU )) − u(ξ) = Eξ(u(xτU )) − u(ξ)

= u(b)Pξ(σb < σc) + u(c)Pξ(σc < σb) − u(ξ).

Thereforeu is linear ins.

(5◦) If b < b′ ≤ ξ ≤ c′ < c thenPξ(σc′ < σb′) =
s(ξ) − s(b′)
s(c′) − s(b′)

Let x = Pξ(σc′ < σb′), y = Pξ(σb′ < σc′); thenx+ y = 1 and

Pξ(σc < σb) = Pξ(σc′ < σb)Pc′(σc < σb)

Also

(σc′ < σb) = (σc′ < σb′) ∪ (σc′ > σb′ , σb(w+σb′
) > σc′(w

+

σb′
))

Therefore 224

Pξ(σc < σb) = Pξ(σc′ < σb′)Pc′(σc < σb) + Pξ(σc′ > σb′ , σb(w+σb′
)

> σc′(w
+

σb′
))Pc′ (σc < σb)

= xs(c′) + Pξ(σc′ > σb′)Pb′(σb > σc′)Pc′(σc < σb)

= xs(c′) + Pξ(σb′ < σc′)Pb′(σc < σb)

i.e., s(ξ) = x s(c′) + y s(b′). Solving forx we get the result.

�

Definition (). s is called thecanonical saclein b, c.
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5 Feller’s form of generator (2) Speed measure

Let p(ξ) = E′
ξ
(τU) = Eξ(τU), U = (b, c). Put f = 1 for x ∈ U, f (b) =

f (c) = 0. ThenG′ǫ f (ξ) = E′
ξ


∞∫

0

e−ǫt f (xt)dt

 = Eξ


τU∫

0

e−ǫtdt

, so that

lim
ǫ↓0

G′ǫ f (ξ) = p(ξ)

We haveG′α f −G′ǫ f + (α − ǫ)G′αG′ǫ f = 0. Lettingǫ → 0

G′α f − p+ αG′αp = 0.

This shows thatp ∈ D(G ′), because,f being indentically 1 inU, is
continuous at every regular-point andb, c are traps forM′. We have,

(1◦) G ′p = − f i.e. G ′p = −1 in U, G ′p(b) = G ′p(c) = 0

• p is continuous inŪ andp(b) = p(c) = 0.

We prove thatp(c−) = p(c) = 0. Let b < ξ < c andτξ = τ(b,ξ).225

Then ifb < ξ0 < ξ

Eξ0(τU) = Eξ0(τξ) + Eξ0(τU(w+τξ )) = Eξ0(τξ)

+ Eξ0(Exτξ
(τU) : σξ < σb) = Eξ0(τξ) + Eξ(τU)Pξ0(σξ < σb).

Now asξ → c,Eξ0(τξ) → Eξ0(τU) andσξ → σc. Therefore
lim
ξ→c

Eξ(τU)Pξ0(σc < σb) = 0 i.e. p(c−) = 0.

(3◦) p is the only solution ofG ′u = −1 in U, u(b) = u(c) = 0.

For −p(ξ) = −Eξ(τU) = Eξ(
τU∫

0

G ′u(xt)dt) = Eξ(u(xτU )) − u(ξ).

SincexτU = b or c, u(xτU ) = 0. Q.E.D.

(4◦) We have proved thats : [b, c] → [0, 1] is 1− 1 continuous. We
define a mappingp′ on [0, 1] by p′(s(ξ)) = p(ξ). To prove thatp′
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is strictly concave in [0, 1]. We express this by “p is concave in
s”. We have to prove that, ifb ≤ η < ξ < ζ ≤ c

p(ξ) >
s(ξ) − s(η)
s(ζ) − s(η)

p(ζ) +
s(ζ) − s(ξ)
s(ζ) − s(η)

p(η).

Now p(ξ) = Eξ(τU) = Eξ(σ = τU(w+σ)),σ = τη,ζ > Eξ(τU(w+σ)) =
right side of the above inequlity

(5◦) m(ξ) =
d+p
ds

is strictly increasing and bounded if there exists an

interval V ⊃ τ such thatEξ(τV)∞ andMV is conservative. (The
measuredm is called thespeed measurefor Ū).

From (4◦) the right derivative
d+p
ds

exists and strictly increases. We226

prove that it is bounded. LetV = (b1, c1) ⊃ [b, c]. Put p1(ξ) = Eξ(τV),
s1(ξ) = Pξ(σc1 < σb1). We have

P1(ξ) = Eξ(τU) + Eξ(τV(w+τU
)) = p(ξ) + s(ξ)P1(c) + (1− s(ξ))P1(b).

From this one easily sees that

m1(ξ) = −d + p1(ξ)ds1 = [m(ξ) − (P1(c) − p1(b))]
1

s1(c) − s1(b)

Q.E.D.

6 Feller’s form of generators (3)

Theorem (Feller). u ∈ D(G ′) if and only if

(1) u is of bounded variation in U

(2) du< ds i.e. du is absolutely continuous with respect to ds.

(3)
du
ds

(Radon Nikodym derivative) is of bounded variation in U.

(4) d
du
ds

< dm in U.
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(5) (d
du
ds

)/dm (which we shall write
d

dm
du
ds

has a continuous version in

U.

(6) u is continuous at b and c i.e. u is continuous inŪ andG ′u =
d

dm
du
ds

in U,G ′u = 0 at b and c.

Proof. (Dynkin) Letu ∈ (G ′). Then for somef ∈ D ′

u(ξ) = G′α f (ξ) = Eξ



τU∫

0

e−αt f (xt)dt



+ Eξ(e
−ασb : σb < σc)

f (b)
α
+

f (c)
α

Eξ(e
−ατc : σc < σb).

Thus lim
ξ→b

u(ξ) =
f (b)
α
= u(b) and lim

ξ→c
u(ξ) =

f (c)
α
= u(c). u is

therefore continuous in̄U.227

Let [α, β] ⊂ U. If G ′V ≥ 0 in (α, β) then Dynkin’s formula shows

0 ≤ E



σα∧σβ∫

0

G
′v(xt)dt

 = v(α)
s(β) − s(ξ)
s(β) − s(α)

+ v(β)
s(ξ) − s(α)
s(β) − s(α)

− v(ξ),

so thatv is convex insand hence is of bounded variation in [α, β]. Also
d+v
ds

exists and increases in [α, β] anddv is absolutely continuous with

respect tods. If G ′v ≥ λ in (α, β), then G ′(v + λp) ≥ 0 in (α, β).

Therefored
d+v
ds
≥ λdm. Similarly if G ′v ≤ µ in (α, β) thend

d+v
ds
≤

µdm.
Consider a division∆ = (b = α0 < α1 < · · · < αn = c) of [b, c]. Put

λi = inf
ξ∈(αi ,αi+1)

G
′u(ξ), µi = sup

ξ∈(αi ,αi+1)
G
′u(ξ).

Thenµidm≥ d
d+u
ds
≥ λidm in (αi , αi+1) andµidm≥ G ′udm≥ λidm

in (αi , αi+1). Puttingλ(ξ) = λi andµ(ξ) = µi for αi ≤ ξ < αi+1 we
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haveµ(ξ)dm ≥ d
d+u
ds
≥ λ(ξ)dm, andµ(ξ)dm ≥ G ′u(ξ)dm ≥ λ(ξ)dm.

Therefore (µ(ξ)− λ(ξ))dm≥ d
d+u
ds
−G ′u(ξ)dm≥ −(µ(ξ)− λ(ξ))dm. As

δ(∆) = max
i

[αi+1 − αi ] tends to zero,µ(ξ) − λ(ξ)→ 0. We have

d
d+u
ds
= G

′u dm in U.

228

Conversely suppose thatu satisfies all the above six conditions. De-

fine f = αu − d
dm

d
ds

u in U and f (b) = αu(b), f (c) = αu(c). Then

since f is continuous inU, f ∈ D ′. Let v = G′α f . From what we

have already provedαv − d
dm

d
ds

v = f in U, v(b) =
b
α

f (b), v(c) =

1
α

f (c). If θ = u − v then θ is continuous inŪ, θ(b) = θ(c) = 0, and

αθ − d
dm

d
ds
θ = 0. There exists a pointξ0 such thatθ(ξ0)is a maxi-

mum. Nowθ(ξ0) >→ θ(ξ) > 0 nearξ0 ⇒
d

dm
d
ds
θ > 0 nearξ0 ⇒

d
ds
θ

strictly increases nearξ0. Then if ξ > ξo > η are nearξo we have

θ(ξo)−θ(η) =
ξo∫
η

dθ
ds

ds<
dθ
ds

(ξ0)[s(ξ0)− s(η)]. Hence
dθ
ds

(ξ0) > 0. On the

other handθ(ξ)−θ(ξo) =
ξ∫

ξo

dθ
ds

ds>
dθ
ds

(ξo)[s(ξ)− s(ξo)], a contradiction.

Thereforeθ(ξ) ≤ 0. Smiliarly we proveθ(ξ) ≥ 0. Q.E.D. �

7 Feller’s form of generators (4) Conservative com-
pact interval

Let I = [b, c] be a conservative compact regular interval i.e., a compact
interval consisting only of conservative regular points. We shall prove
the following

Theorem (Feller). All the results of the three articles hold forMI .
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Proof. Since everya ∈ I is conservative regular, we can associate with
anya ∈ I an open intervalU(a) such thatEξ(τU(a)) < ∞ for ξ ∈ U(a)
and then the results of the last three articles are true forMU(a). Denote229

the quantitiess, p,metc. forŪ by sU , pU ,mU , etc. Lets= Pξ(σc < σb).
Then from (50) of ξ4 we get

s(ξ) = s(b′) + [s(c′) − s(b′)]Pξ(σc′ < σb′),

whereξθ(b′, c′) is an interval such that the results of the last three ar-
ticles are true forM[b′,c′]. This equation shows thats(ξ) is strictly in-
creasing and continuous in some neighbourhood of the pointξ. There-
fore s(ξ) is strictly increasing and continuous inI , ands is linear insU

in U, for every intervalU such that the results of the last three arti-
cles are true forMŪ . Let dmbe a measure defined onB(I ) as follows.

dm =
1
αU

dmU if in U, s = αU sU + βU . Let V ∩ U = W , φ. Since

pU = pW + pU(b′)+ sW(ξ)[pU(c′)− pU(b′)] whereU = (b′, c′) we have
1
αU

dmU = dmW =
1
αV

dmV. Therefore the measuredm is uniquely de-

fined onB(I ) and
d

dm
d
ds
=

d
dsU

d
dsU

in U. dm is defined by a strictly

increasing functionm (say) inI . Consider now the following “differen-
tial equation”

d
dm

d
ds

u = −1 in (b, c) and u(b+) = u(c−) = 0.

Then p(ξ) = −
ξ∫

b+

m(η)ds(η) +
c−∫

b+

m(η)ds(η)[s(ξ) − S(b)]
1

s(c) − s(b)

is a solution and (α− d
dm

d
ds

)p = αp+1 in (b, c) andp(b+) = p(c−) = 0.

Let f = αp + 1 in (b, c) and f (b) = f (c) = 0. Since f is continuous in
(b, c), f ∈ DI . Let v = GI f . Thenv ∈ D(G I ) and (α − G I )v = αp+ 1.230

v ∈ (G I )⇒ v ∈ D(G Ū) so that (α− d
dmU

d
dsU

)v = αp+1 in U. Therefore

(α − d
dm

d
dS

)v = αp+ 1 in (b, c). Sincev ∈ D(G I ), it is continuous inI .

Let θ = p− v. θ is continuous inI and (α − d
dm

d
dS

)θ = 0. We prove as
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in § 6 thatθ = 0. Thusp(ξ) = v(ξ) ∈ D(G I ). Using Dynkin’s formula
we have, ifτn = τ(b,c) ∧ n = τ ∧ n (say)

Eξ



τn∫

0

G
I (p(xt)dt) = Eξ(p(xτn)) − p(ξ)



i.e.,
Eξ(τn) ≤ 2||p|| < ∞. We get Eξ(τ) < ∞.

Again using Dynkin’s formula

Eξ



τ∫

0

G
I p(xt)dt

 = Eξ(p(xτ)) − p(ξ) i.e. p(ξ) = Eξ(τ(b,c)).

The proof of the theorem can be completed as in§ 6. �
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