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Introduction

To begin with, we shall roughly state the main problem that weshall be 1

considering in the following. LetD denote a domain in then-dimen-
sional Euclidean spaceRn and letθ1, . . . , θm be a system of homoge-
neous differential forms onD, which we shall denote by

∑
. We adopt

the convention that a function is a homogeneous differential form of
degree zero. A submanifoldM of D is called an integral submanifold
or simply an integral of

∑
if the restrictions ofθ1, . . . , θm to M vanish.

We will be concerned mainly with the following problem: given a sys-
tem

∑
of homogeneous differential forms onD, to determine sufficient

conditions for constructing all the integrals of
∑

, and to obtain some
information regarding the structure of the set of integralsof

∑
. We shall

discuss such conditions given by E.Cartan. He called systems satisfying
his conditions “systems in involution”. We shall also discuss the pro-
longations of differential systems, the main idea of which is also due to
him.

The above mentioned problem is essentially a problem in the theory
of partial differential equations. This fact is made clear by the following
simple example.

Let u(x, y) be a function of two independent real variables defined
in a certain domainD in R2 and satisfy the system of partial differential 2

equations

Fα

(
x, y, u,

∂u
∂x
,
∂u
∂y

)
= 0 (α = 1, 2, . . . ,m)

u may be assumed to be once continuously differentiable. We will con-
struct, introducing new variablesp andq, a system

∑
of homogeneous

iii



iv 0. Introduction

differential forms in a suitable domainD1 in R5 of coordinate system
(x, y, u, p, q)

(∑)
Fα(x, y, u, p, q),

du− pdx− qdy

Let M2 be a two dimensional submanifold ofD1 expressed para-
metrically by (x, y, u(x, y), p(x, y), q(x, y)). It can be easily seen thatM2

is an integral of the system
∑

if and only if u(x, y) is a solution of the
system of differential equations

Fα

(
x, y, u,

∂u
∂x
,
∂u
∂y

)
= 0 (α = 1, . . . ,m)

together withp(x, y) =
∂u(x, y)
∂x

, q(x, y) = ∂u(x,y)
∂y .

However, it seems that, in our approach, it is convenient to handle
the system of homogeneous differential forms rather than solving the
system of partial differential equations. Moreover, sometimes our ap-
proach is quite useful for certain geometric problems also.

We shall restrict our attention only to the case of systems ofreal
analytic differential forms. The extension of our results to the case ofC∞3

forms (differentiable case) appears to be very much more complicated
and remains unsolved. we shall also confine ourselves to the so called
local problem.
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Chapter 1

Parametrization of sets of
integral submanifolds

1.1

In order to illustrate the problem with which we will be concerned in this 4

chapter, let us consider an ordinary differential equation, for instance,

du
dx
= F(x)

where F is defined and real analytic in a neighbourhood ofx = 0.
Then there exists a unique functionu(x,w), real analytic inx, depending
real analytically on a parameterw such that for sufficiently small fixed
w, u(x,w) is a solution of the differential equation andu(o,w) = w. Thus
the solutions are parametrized by the parameterw.

More generally, in order to consider the situation independent of
the coordinate systems, we shall use the following terminology. We
say that a real analytic functionv(x,w1, . . . ,wh) is a parametrisation
of solutions of the equation, when, for any fixed (wo

1, . . . ,w
o
h), with wo

i
small,v(x,wo

1, . . . ,w
o
h) is a solution of the differential equation and con-

versely any solution which is sufficiently small at the origin is obtained
by choosing (wo

1, . . . ,w
o
h) suitably. Then, for any parametrization, the

1



2 1. Parametrization of sets of integral submanifolds

number of parameters is the same and is a constant determinedby the
equation (being equal to 1 in the above instance).

In the case of partial differential equations, the solutions are often5

parametrized by arbitrary functions. Take as a simple example, the par-
tial differential equation

∂u
∂x
= 0,

whereu is an unknown function of the variables (x, y). Then, for any
real analytic functionf (y), u = f (y) is a solution of the above differ-
ential equation and any real analytic solution is so obtained. In such a
case the solutions of the partial differential equation are said to depend
on one arbitrary function in two variables. However, no strict defini-
tion of this notion is known. As a consequence, the number of arbitrary
functions on which the solutions of the equation depend may not be an
invariant of the equation. For instance, we can give anotherparametriza-
tion of the solution of the above partial differential equation, in which
the solutions depend on two arbitrary functions. Namely, for any two
real analytic functionsf =

∑
an yn, g =

∑
bn yn, we associate a solu-

tion u =
∑

(an y2n
+ bn y2n+1). The main purpose of this chapter is to

introduce a notion of parametrization of a set of submanifolds by arbi-
trary functions. This notion will be used to define systems ofpartial
differential equations or an exterior differential system, the solutions of
which depend on certain number of arbitrary functions. In this defini-
tion the number of arbitrary functions and the number of variables will
be invariants of the system.

1.2

Let Hp denote the vector space of power series, inp variablesx1, . . . , xp,6

which are convergent on a neighbourhood of the origin and with coeffi-
cients in the fieldC of complex numbers. We setHo = C. If u > 0, v > 0
are real numbers, letHp(u, v) denote the subset ofHp consisting of
all power seriesξ satisfying the following conditions: On a polydisc
{x; |xr | < u+ ε}, ξ converges and|ξ(x)| < v− ε, whereε > 0 depending
on ξ. In particularHo(u, v) = {z ∈ C; |z| < v}. Let Hs

p denote the direct
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sum ofscopies of the vector spacesHp.

Definition . By a system S of characters we mean an ordered set of
non-negative integers so, s1, . . . , sp. Denote by H(S) the direct sum of

Hso
o ,H

s1
1 , . . . ,H

sp
p .

p∑
q=o

(Hq(u, v))sq can be naturally identified with a sub-

set of H(S) = ⊕
p∑

q=o
(Hq)sq. We denote the subset by H(S; u, v). It is

clear that

(1) H(S; u, v) ⊆ H(S; u, v′) if v ≤ v′

(2) H(S; u, v) ⊆ H(S; u′, v) if u ≥ u′

and therefore(3) H(S; u, v) ⊆ H(S; u′, v′) if v ≤ v′ and u≥ u′.

Let K(a) denote the open disc inC of radius a about the origin.

Definition . A mappingC of K(a) into H(S; u, v) is called a regular
curve in H(S; u, v) if each componentC (z)λ(x1, . . . , xq) is an analytic
function in(z, x1, . . . , xq) for |z| < a, |xi | > u.

Let S′ = (s′o, s
′
1, . . . , s

′
p′) be another system of characters. (p′ may

be different fromp).

Definition . A mapping F of H(S; u, v) into H(S′; u′, v′) is said to be 7

regular if

(i) f (0) = 0 ∈ H(S′),

(ii) for any regular curveC in H(S; u, v) f ◦ C is a regular curve in
H(S′; u′, v′).

Proposition 1. If F is a regular mapping of H(S; u, v) into H(S′; u′, v′)
then for any real number b with0 < b ≤ 1 and for anyε > 0

F[H(S; u, bv)] ⊆ H(S′, u′, bv′)
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Proof. Take aξ in H(S; u, v). For sufficiently smallε′, zξ is in H(S; u, v)
if |z| ≤ 1 + ε′. Hencez → zξ is a regular curve inH(S; u, v). F be-
ing regular,F(zξ) is a regular curve inH(S′; u′, v′). The component
F(zξ)λ(x1, . . . , xq) is an analytic functionf (z) for any fixed (x1, . . . , xq)
with |xr | < u′ and|z| ≤ 1+ ε′. f (z) satisfies the following two conditions:

f (0) = 0 since F(0) = 0

and | f (z)| ≤ v′ for |z| ≤ 1+ ε′

Hence by Schwarz’s lemma it follows that| f (z)| ≤
b

1+ ε′
v′ for |z| < b <

1. Therefore the image ofH(S; u, bv) is contained inH(S′; u′, bv′). �

Proposition 2. If F and G are two regular maps of H(S; u, v) into
H(S′; u′, v′) and H(S′; u′, v′) into H(S′′; u′′, v′′) respectively, then GoF8

is a regular map of H(S; u, v) into H(S′′; u′′, v′′).

This follows immediately from the definition of regular maps.

Germs of regular maps. We remark thatH(S′′; u′′, v′′) is contained
in H(S; u, v) ∩ H(S′; u′, v′) wheneveru′′ > u, u′ and v′′ < v, v′. Let
Fr be regular maps ofH(S; ur , vr ) into H(S′; u′r , v

′
r )(r = 1, 2). We shall

introduce an equivalence relation, denoted by∼, in the set of all regular
maps as follows.F1 is said to be equivalent toF2 (denoted byF1 ∼ F2)
if there existu > u1, u2 andv < v1, v2 such that the restrictions ofF1

andF2 to H(S; u, v) are equal. Clearly∼ is an equivalence relation.

Definition . An equivalence class of regular maps under∼ is called a
germ of regular mapsof H(S) into H(S′).

A germ of regular maps containing a representativeF is denoted by
F .

Let us introduce the following notations. For anyξ ∈ Hp andz ∈ C
we define [ξ.z] ∈ Hp by setting [ξ.z] (x1, . . . , xp) = ξ(z x1, . . . , z xp) and
for anyξ ∈ H(S) we define [ξ.z] in H(S) by setting [ξ z]λ = [ξλ z]. Then
clearly

(i) if ξ ∈ Hp(u, v) , [ξ, z] ∈ HP(|z|−1 u, v) and hence
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(ii) if ξ ∈ H(S; u, v), [ξ, z] ∈ H(S; |z|−1u, v).

Further, forw ∈ C and for anyξ ∈ H(S; u, v), we definewξ in
H(S; u,wv) by the usual multiplication byw.

Proposition 3. If F r(r = 1, 2) are two regular maps of H(S; u, v) into 9

H(S′; u′r , v
′
r ) such that F1 ∼ F2 then F1 = F2.

Proof. F1 andF2 being equivalent there existu∗ ≥ u andv∗ ≤ v such
that F1 and F2 coincide onH(S; u∗, v∗). Takeξ in H(S; u, v). There
exists anε > 0 such thatξλ is convergent in the polydisc of radius
(1+ 2ε)u and (1+ 2ε)|ξλ(x1, . . . , xq)| < v for |xi | < u(i = 1, . . . , q). Let f
be the mapping ofK(1+ ε) defined byf (z) = z[ξ.z]. f is a regular curve
in H(S; u, v) and f (z) is in H(S; u∗, v∗) for z sufficiently near the origin,
say for example|z| < δ. ThenF1( f (z)) = F2( f (z)) for |z| < δ. �

Hence by the theorem of uniquenessF1( f (1)) = F2( f (1)) which
meansF1(ξ) = F2(ξ). A germF of regular maps ofH(S) into H(S′) is
said to be defined at an elementξ in H(S) if there exists a representative
F of F defined onH(S; u, v) with ξ ∈ H(S; u, v). The valueF(ξ) is said
to be the value of the germF at ξ. The Proposition 3 shows that the
value of the germF at an elementξ in H(S) is uniquely defined and
independent of the choice of the representatives.
Composition of regular maps. Let F andG be two germ of regu-
lar maps ofH(S) into H(S′) and H(S′) into H(S′′) respectively. We
say that the composition ofF andG are defined whenever there ex-
ist representativesF of F andG of G such thatF is a regular map of
H(S; u, v) into H(S′; u′, v′) andG is a regular map ofH(S′; u′, v′) into
H(S′′, u′′, v′′).

It is clear that the composition of any two germs need not always 10

be defined. Whenever the composition of two germsF andG is de-
fined, the germ of regular maps ofH(S) into H(S′′) containingGoF as
a representative is called the composition ofF andG and is denoted by
G oF . It is clear thatG oF is uniquely defined.

Definition. A mapping F of H(S1; u1, v1) into H(S2; u2, v2) is said to be
infinite analytic if
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(i) F is regular and

(ii) there exist strictly positive real numbers u∗, v, v′,w and an integer
k such that for every u with0 < u < u∗ there exists a regular map
Fu of H(S1; u, uk v) into H(S2; wu, v′) which is equivalent to F.

k is called adegreeof the infinite analytic mapF.

Remarks.Let F be an infinite analytic map of H(S1; u1, v1) into H(S2;
u2, v2) and let u∗, v, v′,w and k satisfy the conditions of the above defi-
nition.

(i) Any w′ ≤ w also satisfies the requirement because obviously
H(S2; wu, v′) is contained in H(S2; w′u, v′).

(ii) Any k′ ≥ k also satisfies the requirement. Hence we can without
loss of generality assume k to be non-negative.

Definition. A germ of regular maps is called a germ ofinfinite analytic
mapsif every representative of it is an infinite analytic map.

We shall give two simple examples of infinite analytic maps.11

Example 1.The mappingF defined byξ(x) →
dξ
dx

(x) of H1(u, v1) into

H1

(
u
2
,
2v1

u

)
is an infinite analytic map as can be seen using Cauchy’s

integral formula. Here we can takek = 1,w =
1
2
, v = v1 andv′ = 2v1.

Example 2.The mappingF defined byξ(x) →
∫ x

0 ξ(y)dy of H1(u, v1)
into H1(u, uv1) is infinite analytic. Here we can takek = −1,w = 1, v =
v1 = v′.

Proposition 4. If F andG are germs of infinite analytic maps of H(S)
into H(S′) and H(S′) into H(S′′) then the compositionG o F is always
defined and is a germ of infinite analytic maps of H(S) into H(S′′).

Proof. Let F (resp.G) be a representative ofF (resp.G ). Then there
exist (u∗, v, v′,w, k) and (ū∗, v̄, v̄′, w̄, k̄) as in the definition of an infinite
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analytic map andFa ∈ F andGb ∈ G for any 0 < a < u∗ and 0<
b < ū∗. According to remark 1, we assumek > 0, k′ > 0 and by
remark 2, we can choose aw so small that (u∗w)k̄v̄(2v′)−1 < 1 andwa<
ū∗ for any 0 < a < u∗. Let v2 = wk̄v̄ v (2v′)−1. For ana with 0 <

a < u∗, Fa is a regular map ofH(S; a, akv) into H(S′; wa, v′). From
Proposition 1 it follows that for a constantc with 0 < c < 1 the image

of H(S; a, bakv) by Fa is contained inH(S′; wa, bv′). Takingb =
ak̄v2

v
the image ofH(S; a, ak+k̄v2) by F is contained inH(S′; wa, (wa)k̄v̄1). 12

Now sincewa< ū∗ we have that the image ofH(S′; wa, (wa)k̄v̄) by Gwa

is contained inH(S′′; w̄wa, v̄1). Thus the composite ofGwa andFa is
defined and this completes the proof. �

If 1 ≥ 0 is an integer letH(1)
p denote the vector subspace ofHp con-

sisting of allξ ∈ Hp such that the first non-zero term, in the expansion
of ξ in terms of homogeneous polynomials, is of degree≥ 1. In other
wordsξ can be put in the form

ξ =
∑

k≥1

Ak(x1, . . . , xp)

where Ak(x1, . . . , xp)

denotes a homogeneous polynomial inx1, . . . , xp of degreek. If S =
(so, . . . , sp) is a system of characters, we can define the vector subspace
H(S)(1) of H(S) by

H(S)(1)
= {ξ ∈ H(S) : ξλ ∈ H(1)

q }

For any subsetA of H(S) we denote byH(S; u, v)(1) the setH(S; u, v) ∩
H(S)(1).

Definition. For an elementξ in Hp(u, v) the norm ofξ in Hp(u, v), denote
by |ξ|u, is defined by

|ξ|u = sup
x
{|ξ(x)| : |xr | < u(r = 1, . . . , p)}

and for anyξ in H(S; u, v) the norm ofξ in H(S; u, v), denoted again by
|ξ|u, is defined by

|ξ|u = max
λ
|ξλ|u
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In a phrase like “ξ is in H(S; u, v) and |ξ|u” we shall often omit “ξ is in13

H(S; u, v) and” when there is no possible confusion.

The following proposition is an immediate consequence of the above
definitions.

Proposition 5. An elementξ in H(S) belongs to H(S)(1) if and only if
there exists a constant C> 0 such that for sufficiently small u we have
the inequality|ξ|u ≤ c.u1.

Proposition 6. Let F be a regular map of H(S; u, v) into H(S′; u′, v′).
Then for anyξ, η ∈ H(S; u, v/4),

|F(ξ) − F(η)|u′ ≤ K|ξ − η|u

where K is a positive constant.

Proof. Supposeζ = ξ − η, the functionf (z) = ξ − zζ is in H(S; u, v) for

|z| < R=
3v
4
|ζ |−1

u (1+ ε). The functiong(z) = F[ f (0)]λ(x) − F[F(z)]λ(x)

is a holomorphic function for|z| < R and forx in |xr | < u′.g(z) satisfies
the conditions: (i)|g(z)| < 2 v′ and g(0) = 0. By Schwarz’s lemma

|g(z)| <
2v′ |z|

R
and hence we have

|g(1)| = |F(ξ) − F(η)|u′ < K
v′

v
|ξ − η|u

if we takeK ≥
8
3

. �

The Propositions 1 and 5 together imply the following.

Proposition 7. If F is a germ of infinite analytic maps (of degree k) of
H(S) into H(S′) and ifξ ∈ H(S) then there exists a positive real number14

a1 depending onξ such that for any a< a1, ξ is defined at aξ; moreover
if ξ is in H(S)(1+k) (with 1 ≥ 0, 1+ k ≥ 0) thenF (aξ) is in H(S′)(1).
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1.3 Regular linear maps

Let S,S′ be two systems of characters.

Definition. A regular map F of H(S; u, v) into H(S′; u′, v′) is said to be
linear if the following condition is satisfied: for everyξ, η in H(S; u, v)
such thatαξ, βη andαξ + βη are in H(S; u, v) whereα, β ∈ C

F(αξ + βη) = αF(ξ) + β F(η).

For a strictly positive real numberu let H(S; u) =
⋃
v>0

H(S; u, v).

ClearlyH(S; u) is a subvector space ofH(S). Let F be a regular linear
map ofH(S; u, v) into H(S′; u′, v′). Then, for anyξ ∈ H(S; u) andα ∈ C
such thatαξ ∈ H(S; u, v), α−1F(αξ) does not depend on the choice of
such anα.

In fact, if β ∈ C such thatβξ is also inH(S; u, v), we see thatF(αξ) =
β−1αF(βα−1αξ) = β−1α F(βξ) by the linearity ofF.

SettingF′(ξ) = α−1F(αξ) with α ∈ C such thatαξ is in H(S; u, v)
we obtain a mapF′ of H(S; u) into H(S′; u′). The restriction ofF′ to
H(S; u, v) is equal toF because of the linearity ofF. Also the restriction
of F′ to H(S; u, v′) for anyv1 > 0 is a regular map and is equivalent to
F. FurtherF′ is a linear map of the vector spaceH(S; u) into the vector 15

spaceH(S′; u′).
In fact letξ, η ∈ H(S; u). ThenF′(αξ+βη) = γ−1

1 F(γ1(αξ+βη)) for
α, β ∈ C and anyγ1 ∈ C(γ1 , 0) such thatγ1(αξ + βη) is in H(S; u, v).
Let γ2, γ3 ∈ C(γ2, γ3 , 0) such thatγ2αξ, γ3βη ∈ H(S; u, v). If γ ∈ C is
such that|γ| = min(|γ1|, |γ2|, |γ3|) it follows by linearity ofF that

F′(αξ + βη) = γ−1F(γ(αξ + βη)) = γ−1{F(γαξ) + F(γβη)

= α(γα)−1F(γαξ) + β(γβ)−1F(γβη)

= αF′(ξ) + βF′(η).

Definition. A germF of regular maps of H(S) into H(S′) is said to be
linear if F contains a representative F which is linear.

Proposition 8. If F is a germ of linear infinite analytic maps thenF
is defined everywhere and linear mapping of the vector space H(S) into
H(S′).
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Proof. Every ξ in H(S) is an element of someH(S; u) for sufficiently
small u > 0. There exists a representativeF of F defined atξ ∈
H(S; u, v1) for sufficiently smallv1 > 0 and thisF can be extended
into H(S; u). The linearity of the germF is clear from the above re-
mark. �

Now we introduce the following terminology: ifS = (so, . . . , sp)16

with sp , 0 is a system of characters thenp is called the degree ofH(S)
andsp is called the multiplicity ofH(S).

Definition . Two vector spaces H(S) and H(S′) are said to be isomor-
phic if there exist germs of linear infinite analytic mapsF and G of
H(S) into H(S′) and H(S′) into H(S) respectively such thatG o F and
F o G are germs of identity maps on H(S) and H(S′) respectively.

This is denoted byH(S) � H(S′).

Proposition 9. Two vector spaces H(S) and H(S′) are isomorphic if
and only if H(S) and H(S′) have the same degree and multiplicity.

Proof. We shall first prove thatH(S) � H(S′) implies that their degrees
and multiplicities are the same. �

We observe that for any integer 1> 0 the dimension of the quotient

space
Hr

H(1)
r

is

(
r + 1− 1

r

)
=

1
r ! 1r
+ (lower powers of 1)= fr (1) where

fr (X) denotes the polynomial
Xr

r!
+ ∗ Xr−1

+ · · · of degreer. Then

dim

(
H(S)

H(S)(1)

)
=

p∑

r=0

sr fr (1)

and dim

(
H(S′)

H(S′)(1)

)
=

q∑

r=0

tr fr (1)

whereS = (so, . . . , sp) andS′ = (to, . . . , tq) with sp , 0, tq , 0. Let
F and G be the germs of linear infinite analytic maps defining the
isomorphism. We can, without loss of generality assume thatF has
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a degreek > 0. The mapF of H(S) into H(S′) is surjective and
F [H(S)(1+k)] ⊆ H(S′)(1) (Proposition 5). Hence there exists an induced17

surjective map of
H(S)

H(S)(1+k)
onto

H(S′)

H(S′)(1)
and therefore

p∑

r=0

sr fr (1) ≥
q∑

r=0

tr fr(1).

For large 1, the comparison of dominant factors on either side of the
inequality shows thatp ≥ q. Similarly, we show thatq ≤ p and hence
p = q. Then, by the same reasoning we show thatsp = sq.

The converse is proved in two steps.

Case 1.Consider the particular case where tν = sν + sν+1+ · · ·+ sp for
ν = 0, . . . , p. Letξr be the component ofξ ∈ H(S) in Hsr

r . Thenξr has
sr components which are functions of(x1, . . . , xr) and we denote them
by ξ1

r , . . . , ξ
sr
r when sr , 0. Similarly ησr (for σ = 1, . . . , sr + · · · + sp)

denote the components of an elementη in H(S′).

Now we define a linear mapF of H(S) into H(S′) as follows: for
anyξ ∈ H(S) set

F(ξ)
so+···+sq−1+σ
o = ξσq (0) for q = 0, . . . , p;σ = 1, . . . , sq if sq , 0

whereso + · · · + sq−1 + σ meansσ whenq = 0 and

F(ξ)
sr+···+sq−1+σ
r =

∂ ξσq

∂ xr
for r=1,...,p;q=r,...,p

σ=1,...,sq if sq,0

wheresr + · · · + sq−i + σ meansσ whenq = r. Clearly F is infinite
analytic (see ex.1 of §1.2) and linear because of the linearity of partial 18

derivation. The inverse mapG of H(S′) into H(S) is defined as follows:
for anyη ∈ H(S′) set

G(η)λr = η
so+···+sr−1+λ
o +

∫ x1

o
η

s1+···+sr−1+λ

1 dx1

+

∫ x2

o
η

s2+···+sr−1+λ

2 + · · · +

∫ xr

o
ηλr d xr
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for r = 1, . . . , p; λ = 1, . . . , sr if sr , 0. AgainG is infinite analytic (ex.2
of §1.2) and linear because of the linearity of integration.ObviouslyF
and G are surjective. It is easy to verify thatF andG define germs
of infinite analytic mapsF andG , and thatG o F (resp.F o G ) is
identity on H(S) (resp.H(S′)). The assertion follows in this special
case.

Case 2.To prove the assertion in the general case we shall write H(S)
explicitly as H(so, . . . , sp). It is sufficient to prove that H(S) � H

sp
p .

In view of the Case1 proved above we can without any loss of gener-
ality assume that so , 0, . . . , sp , 0 because H(S) is isomorphic to
H(so+ · · ·+ sp, . . . , sp−1+ sp, sp). Then it can be seen without much dif-
ficulty that our assertion is a consequence of the following statement:
if sr > 0, . . . , sp > 0,H(0, . . . , 0, sr , sr+1, . . . , sp) � H(0, . . . , 0, sr −

1, sr+1, . . . , sp). Now since Hr � Ho ⊕ H1 ⊕ · · · ⊕ Hr we can write

H(0, . . . , 0, sr , sr+1, . . . , sp)

� H(0, . . . , 0, sr − 1, sr+1, . . . , sp) ⊕ Hr

� H(0, . . . , 0, sr − 1, sr+1, . . . , sp) ⊕ (Ho ⊕ · · · ⊕ Hr )

� H(0, . . . , 0, sr − 1, sr+1 − 1, . . . , sp) ⊕ Hr+1 ⊕ (Ho ⊕ · · · ⊕ Hr)

� H(0, . . . , 0, sr − 1, sr+1 − 1, . . . , sp) ⊕ Hr+1

� H(0, . . . , 0, sr − 1, sr+1, . . . , sp).
19

This is obtained by successive usage of Case 1.

1.4

Hitherto we had restricted our attention to the case of convergent power
series with coefficients in the field of complex numbers. We can, without
much difficulty, extend all the notions and results proved in the previ-
ous sections to the case of convergent power series with realcoefficients
(which we call, hereafter, as the real analytic case). LetS = (so, . . . , sp)
be a system of characters. LetHR(S) denote the (real) subvector space
of H(S) consisting ofξ in H(S) with all its componentsξλr to be real ana-
lytic. SetHR(S; u, v) = HR(S)∩H(S; u, v). A mappingFR of HR(S; u, v)
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into HR(S′; u′, v′) is said to be a (real) regular map if there exists a regu-
lar mapFC of H(S; u, v) into H(S′; u′, v′) such thatFR is the restriction
of FC to HR(S; u, v).FC is called the complexification ofFR and by the
theorem of identity it can be shown that such anFC is unique. Two
(real) regular maps are said to be equivalent when their complexifica-
tions are equivalent. Thus we can define germs of (real) regular maps
of HR(S) into HR(S′). Similarly we can define the notion of germs of
infinite analytic maps ofHR(S) into HR(S′) when there exist germs of
infinite analytic map ofH(S) into H(S′) mappingHR(S) into HR(S1). 20

1.5 Examples

(1) Consider a system of functions

Aλ(y1, . . . , ys, xp+1, . . . , xp+1) (λ = 1, . . . , s′)

defined and analytic in the domain|yσ| ≤ v, |xp+µ| ≤ u∗ (σ = 1,
. . . , s; µ = 1, . . . , 1) satisfying the following conditions:

(i) Aλ(0, . . . , 0) = 0

(ii) |Aλ(y1, . . . , ys; xp+1, . . . , xµ)| < v′ − ε for small ε > 0 in the
above domain.

Then we define a regular mapFu of Hs
p(u, v) into Hs′

p+1(u, v′) for
every 0< u < u∗ by setting

[Fu (ξ)]λ(x1, . . . , xp+1)

= Aλ(ξ1(x1, . . . , xp), . . . , ξs(x1, . . . , xp), xp+1, . . . , xp+1)

for everyλ with 1 ≤ λ ≤ s′. The germ ofFu can be verified to be a
germ of infinite analytic maps.

(2) Consider a system of functions

Aλ(x1, . . . , xp+1, y1, . . . , ys, . . . , y
r
µ, . . .) (λ = 1, . . . , s)
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defined and analytic in the domain|xi | < v∗, |yµ| < v∗, |yr
µ| < v∗

(i = 1, . . . , p+ 1; r = 1, . . . , p; µ = 1, . . . , s). Consider the system of
partial differential equations

(U )
∂yλ
∂xp+1

= Aλ

(
x1, . . . , xp+1, y1, . . . , ys, . . . ,

∂ yµ
∂ xr

, . . .

)
.

Such a system of partial differential equations is called a system of21

partial differential equations of Cauchy-Kowalewski type.
Now we make the following definitions.

Definition . If ξ ∈ Hs
p such that|ξλ(0)| < v∗ and

∣∣∣∣
∂ξλ

∂xr
(0)

∣∣∣∣ < v∗ for λ =

1, . . . , s and r= 1, . . . , p then an elementη ∈ Hs
p+1 is called asolution

of Cauchy-Kowalewski system(U ) with the initial conditionξ if

(i) ηλ(x1, . . . , xp, 0) = ξλ(x1, . . . , xp) (λ = 1, . . . , s)

(ii) yλ = ηλ is a solution of(U ).

Let u, v, u′, v′ be strictly positive real numbers.

Definition . A mapping F of Hs
p(u, v) into Hs

p+1(u′, v′) (where v, u−1v <
v∗) is called a solution mapping of the Cauchy-Kowalewski system (U )
if, for everyξ ∈ Hs

p(u, v) F(ξ) is a solution of(U ) with the initial condi-
tion ξ.

We remark that there is no ambiguity in this definition since the

conditionsu, u−1v < v∗ imply that |ξλ(0)| < v∗ and
∣∣∣∣
∂ ξλ

∂ xr
(0)

∣∣∣∣ < v∗.

Now the classical theorem of Cauchy-Kowalewski on the existence
and uniqueness of solutions of Cauchy problems can be generalised as
follows.

Theorem 1.

(i) Given an elementξ in Hs
p with

∣∣∣∣ξλ(0)
∣∣∣∣ < v∗ and

∣∣∣∣
∂ ξλ

∂ xr
(0)

∣∣∣∣ < v∗, the

solution of the system(U ) with the initial conditionξ is (locally)
unique if it exists;
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(ii) there exists a solution mapping; and22

(iii) when Aλ(x, 0) = 0 for all λ = 1, . . . , s, any solution mapping is
a regular map and all solution mappings are equivalent to each
other.

AssumeAλ(x, 0) = 0 for all λ = 1, . . . , s. Then the solution map-
pings of the system (U ) define a germ of regular maps called thesolu-
tion germof the system (U ).

Theorem 2. The solution germ of(U ) is a germ of infinite analytic
maps of Hs

p into Hs
p+1.

The proofs of these two theorems will be given in sections 1.7and
1.9 respectively. Section 1.6 deals with some preliminaries required in
the following sections.

1.6

We will adopt the following notations in the course of the proofs of the
above two theorems and the preliminary propositions:

x = (x1, . . . , sp+1), y = (y1, . . . , ys).

Let (r, r′, . . . , r i , . . .) denote integers running independently between
1 andp and (λ, λ′, . . . , λi , . . .) and (µ, µ′, . . . , µi , . . .) denote integers run-
ning independently between 1 ands. β denotes an ordered set of inte-
gers (r1, . . . , rh) where, by the above convention 1≤ r i ≤ p andh = |β|
denotes the length ofβ. k or ki denote integers 0, 1, 2, . . .. When we
consider a finite set ofβ′s we often use the notationβ(1), . . . , β(h). We
include the case whereβ is the empty set (β = φ) and in this case|β| = 0.
For a functiong = g(x1, . . . , xp+1), sufficiently differentiable, we set 23

∂βg =
∂|β|g

∂ xr1 · · · ∂ xrh

if β = (r1, . . . , rh) , φ

= g if β = φ.
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Let us introduce a set of indeterminateswβk1···ks

k andwβk1···ks;r
k λµ. Let

P denote the ring of polynomials in these indeterminates overthe field of
rational numbers. A polynomialΦ in P is said to be positive whenever
all its coefficients are non-negative. For any system of functions

C = (· · · ,Cλ(x, y), . . . ,Cr
λµ(x, y), . . .),

sufficiently differentiable and for anyΦ in P we denote byΦC the func-
tion, in (x, y), obtained in substituting

wβk1···ks;r
k λ =

∂k1

∂yk1
1

· · ·
∂ks

∂yks
s

∂k

∂ xk
p+1

(∂βCλ),

wβk1···ks;r
k λµ =

∂k1

∂yk1
1

· · ·
∂ks

∂yks
s

∂k

∂ xk
p+1

(∂βCr
λµ) in Φ.

First we consider the following special case of the system ofequa-

tions (U ) whereAλ = Bλ(x, y) + Br
λµ

(x, y)
∂ yµ
∂ xr

. Consider the system of

equations

(L )
∂ yλ
∂ xp+1

= BλB(x, y) + Br
λµ(x, y)

∂ yµ
∂ xr

where the usual tensor summation convention is used. LetB = (· · · , Bλ24

(x, y), . . . , Br
λµ

(x, y), . . .). The proof of the theorem is given in the fol-
lowing lemmas, in this special case. Let 1 denote an integer≥ 1.

Definition . Given the equation(L ), the property{1, β} is said to hold
if the following condition is satisfied: there exist positive polynomials
1
Φ
βµ1···µh

λβ(1)···β(h) in P depending only on p, s and the indicated indices (for
any |β(1)|+ · · ·+ |β(h)| ≤ |β|+ 1) such that the following equation holds:

(L )1,β ∂
1(∂βyλ)

∂ x1
p+1

=

(
1
Φ
βµ1···µh

β(1)···β(h) B
) (
∂β(1)yµ1

)
· · ·

(
∂β(h)yµ

)

where the usual summation convention is used. (h= 0 is also included).

Lemma 1. Given the equation(L ), the property{1, β} holds. Moreover
1
Φ
βµ1···µk

β(1)···β(k) depends only on p and s.
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Proof. The proof follows by induction argument in two steps.

(i) As for {1, φ} is concerned1Φφµ1···µh

β(1)···β(h) = 0 unlessh = 0, 1. Also
1
Φ
φ

λ
= wβ0···0;λ

o and whenβ = {r},1Φφµ
λβ
= wβo,...,o;r

o λµ. There-

fore (L )1,φ is nothing but the system (L ). Then we proceed by
induction on|β| to prove{1, β}. by formally differentiating both
sides of (L )1,β′ with respect toxr whereβ′ is chosen such that
∂

∂ xr
(∂β

′

y) = ∂β y.

(ii) Assuming the assertion of the lemma to have been proved for
{1′, β} for any β and all 1′ < 1 we can show that{1, β} holds on 25

the same lines as above.

�

Lemma 2. Whenever there exists a solution of the system of equations
(L ) exists, the solution is unique for a given initial condition.

Proof. Let ξ ∈ Hs
p and η = (ηλ) be a solution of (L ) with

ηλ(x1, . . . , xp, 0) = ξλ(x1, . . . , xp). By Lemma 1

{1, φ}
∂1 yλ
∂ x1

p+1

=

(
1
Φ
φµ1···µh

β(1)···β(h) B
) (

∂β(1) yµ1

)
· · ·

· · · (∂β(h)yµh) (|β(1)| + · · · + |β(h)| ≤ 1)

is a consequence of the system of equations (L ). On the other hand

∂β(k) (k = 1, . . . , h) contain only partial derivatives
∂

∂xr
(r = 1, . . . , p).

Hence ifξ = (ξ1(x), . . . , ξs(x)) is the given initial condition (ξ ∈ Hs
p),

the solutionη = (ηλ) must be of the form

ηλ = ξλ(x) +
∞∑

1=1

(xp+1)1

1 !

(
1Bµ1···µh

λβ(1)···β(h) (x, ξ)
)

(∂β(1) ξµ1) · · · (∂
β(h)ξµh) (|β(1)| + · · · + |β(h)| ≤ 1)

where 1Bµ1···µh

λβ(1)···β(h) (x, y) =
(
1
Φ
φµ1···µh

λβ(1)···β(h).B
)
(x1, . . . , xp, 0, y1, . . . , ys)

�
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The right hand side of the above expansion being unique for a given
ξ ∈ Hs

p, it follows that the solution is unique whenever there exists one.26

q.e.d.
Let us denote the formal power series representingηλ by TL

λ
(ξ). It

only remains to prove thatTL

λ
(ξ) is convergent in a neighbourhood of

xp+1 = 0. For this purpose we introduce the following notation.
Let f (v1, . . . , vh) and g(v1, . . . , vh) be formal power series in

(v1, . . . , vh). A power seriesg is said to be positive if each coefficient
of g is≥ 0. A power seriesf is said to be majorized by a positive power
seriesg if the absolute value of each coefficient of f is majorized by the
corresponding coefficient ofg. This we denote byfαg.

Now consider the system of linear differential equations

(L )
∂ yλ
∂ xp+1

= Cλ (x, y) +
∑

µ,r

Cr
λµ (x, y)

∂ yµ
∂ xr

whereCλ (x, y),Cλ,
r
µ (x, y) are positive. Assume thatBλαCλ and Br

λµ

αCr
λµ

. Let ξ, ζ ∈ Hs
p with ζλ positive for allλ = 1, . . . , s. In {ℓ, φ},ℓ

Φ
φµ1···µh

λβ(1)···β(h) are all positive and are independent ofβµ, Br
λµ
,Cµ,Cr

λµ
.

Hence it follows from lemmas (1) and (2) that, ifξλαζλ (λ = 1, . . . , s),
TL

λ
(ζ) is positive andTL

λ
(ξ)αTL

λ
(ζ). Therefore it is sufficient to prove

the convergence ofTL
λ

(ζ).

Lemma 3. There exists a solution of the system(L ) when the initial
conditionξ ∈ Hs

p is given.

Proof. First we shall construct a systemL satisfying the above require-27

ments. Assume that

Bλ, B
r
λµα

[
b
/
1−

1
a

( xp+ 1
z
+ x1 + · · · + xp + y1 + · · · + ys

)]

for any 0< z< 1. we prove that the system (L (a, b, z))

∂ yλ
∂ xp+1

=

[
b
/
1−

1
a

( xp+ 1
z
+ x1 + · · · + xp + y1 + · · · + ys

)]

1+
∑

µ,r

∂ yµ
∂ xr
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has a solutionfa,b,z(x) with positive coefficients. Then it follows that
[
TL

λ

]
(x)α fa,b,z(x). Now we prove thatfa,b,z(x) exists for

1
z
> bsp as

follows: Consider a functionh(t) of the variablet such thatyλ = h(x1 +

· · ·+ xp +
xp+1

z ) is a solution of (L (a, b, z)). This is possible if and only
if

1
z

(
dh
dt

)
=

[
b
/
1−

1
a

(t + sh)

] [
1+ sp

dh
dt

]

or equivalently if and only if


1
z
−

bsp

1− t+sh
a


dh
dt
−

b

1− t+sh
a

.

�

This equation takes the form
dh
dt
= F(h, t) whereF(h, t) is a positive

convergent power series inh, t, if
1
z
> bsp. But it is known that there

exists a positive solutionh(t) and so (L (a, b, z)) has a positive solution

if
1
z
> bsp. This shows that (L ) has a solution with the initial condition

0. Now,η is a solution of (L ) with the initial conditionξ if and only if
(wλ) = (ηλ − ξλ) is a solution of the system

(L )ξ
∂ wλ

∂ xp+1
= Bξ

λ
(x,w) + Bξr

λµ
(x,w)

∂ wλ

∂ xr

with the initial condition 0, where 28

Bξ
λ
(x,w) = Bλ (x,w+ ξ(x)) + Br

λµ(x,w+ ξ(x))
∂ ξµ

∂ xr
,

Bξr
λµ

(x,w) = Br
λµ(x,w+ ξ(x))

Therefore, (L ) has a solution with the initial conditionξ.

Lemma 4. There exists a solution mapping for the system of equations
(L ).
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Proof. Let Bλ(x, y), Br
λµ

(x, y) be defined for|xk|, |xp+1|, |yσ| < v∗ (k =
1, . . . , p;σ = 1, . . . , s) and let|Bλ|, |Br

λµ
| < v′ − ε on this domain. Then,

if ξ ∈ Hs
p(v∗, v∗/2), we have thatBξ

λ
(x, y), Bξr

λµ
(x, y) are defined for|xk|,

|xp+1|, |yσ| < v∗/2 and on this domain|Bξ
λ
|, |Bξr

λµ
| < (1+ sp)v′ − ε (since

∂ ξλ
∂ xr
∈ Hp(v∗

2 , 1)). Hence for largeb > 0 and smalla > 0

Bξ
λ
, Bξ r

λµ
αb

/[
1−

1
a

(2 spb xp+1 + x1 + · · · + xp + y1 + · · · + ys)
]

wheneverξ ∈ Hs
p(v∗, v∗/2). Hence, by Lemma 3,T(L )

λ
(ξ) converges

for any ξ ∈ Hs
p(v∗, v∗/2) and is majorized byfa,b,

1
2spb

. Thus there

exists a solution mappingT of Hs
p(v∗, v∗/2) into Hs

p+1(u′, v′) for suitable
u′, v′. �

If T is any solution mapping ofHs
p(u, v) into Hs

p+1(u′, v′) for the

system (L ) thenTλ(ξ) must have the expressionTL

λ
(ξ) in Lemma 2 and

henceT must be regular. It is also clear that the solution mappings are29

equivalent to each other. Thus the Lemmas 1, 2, 3, 4 together complete
the proof of Theorem 1 in our special case of the system (L ).

1.7

To simplify the expressions we adopt the following notation. If in β =

(r1 · · · rh) the integers 1, . . . , p occur a1, . . . , ap times respectively we

shall denote byCβ the constant
1

a′1 · · ·a
′
p
. Then, ifξ ∈ Hp(u, v), we have

|Cβ ∂β ξ(0)| <
(u
2

)−|β|
v. We rewrite the expansion ofTλ(ξ) in the form:

Tλ(ξ) =
∞∑

n=o

xn
p+1

nBµ1···µh

λβ(1)···β(h)(x, ξ)
(
cβ(1)∂β(1)ξµ1

)

· · ·
(
cβ(h) ξµh

)
(|β(1)| + · · · + |β(h)| ≤ n).

The newnBµ1···µh

λβ(1)···β(h) differs from the previous one by a constant fac-
tor.
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Lemma 5. The solution mapping T of Hsp(u, v) into Hs
p+1(u′, v′), for the

system(L ), defined byξ → (T1(ξ), . . . ,Ts(ξ)) is an infinite analytic
map, provided Tλ(0) = 0.

Proof. (i) Given u, v > 0 there exist ˜u, v1 > 0, u1 ≥ 1 with the fol-
lowing property: For any|xo

r | < ũ and |yβ
λ
| < v1(u1)−|β|. There is

a ξ in Hs
p(u, v) such that (cβ∂βξλ)(xo) = yβ

λ
. For, givenxo

r , y
β

λ
, set

ξλ =
∑
β

yβ
λ
(xr1 − xo

r1
) · · · (xrh − xo

rh
), (β = (r1, . . . , rh)). Then

|ξλ|u ≤
∑

v1
1

u|β|1

(u+ ũ)|β| = v1

∑

β

t |β|

wheret =
u+ ũ

u1
. Choose ˜u, v1 sufficiently small andu1 sufficiently 30

large so thatv1
∑
β

t |β| < v. Thenξ ∈ Hp(u, v) and (cβ∂βξλ)(xo) =

yβ
λ
.

(ii) For anyξ ∈ Hs
p(u, v) we have, by Cauchy’s formula, that

∣∣∣nBλβ(1)···β(h)
µ1···µh (x, ξ)(cβ(1)∂β(1)ξµ1) · · · (c

β(h) ∂β(h)ξµh)
∣∣∣ < (

u′

2
)−n v′.

Therefore, by (i),
∣∣∣∣nBµ1···µh

λβ(1)···β(h)(x, y)yβ(1)
µ1
· · · yβ(h)

µh

∣∣∣∣ < (
u′

2
)−n v′ when-

ever|xr | < ũ, |yβµ| <
v1

u1 |y
β
µ|

(yφµ = yµ).

Hence, for|xr | < ũ, |yβµ| < v′1/σ|β| for anyv′1 σ > 0 we have
∣∣∣∣∣∣∣∣
nBµ1···µh

λβ(1)···β(h) (x, y)
h∏

j=1


v1

v′1

(
σ

u1

)|β( j)|

yβ( j)
µ j



∣∣∣∣∣∣∣∣
<

(
u′

2

)−n

v′.

More explicitly,

∣∣∣∣
n∑

k=0

∑

|β(1)|+···+|β(h)|=k

(
σ

u1

)k (
v1

v′1

)h
nBµ1···µh

λβ(1)···β(h)
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(x, y)yβ(1)
µ1
· · · yβ(h)

µh

∣∣∣∣ <
(
u′

2

)−n

v′

That is
∣∣∣∣∣∣∣∣

∑

|β(1)|+···+|β(h)|=k

n
Bµ1···µh

λβ(1)···β(h) (x, y) yβ(1)
µ1
· · · yβ(h)

µh

∣∣∣∣∣∣∣∣
<

(
u′

2

)−n

v′
(u1

σ

)k
(
v′1
v1

)h

.

(iii) Let 0 < t < 1 be fixed and let 0< a < ũ; then if ξ ∈ Hs
p(a, v′1),

|cβ∂βξµ| < (ta)−|β|v′1 in a polydisc of radius (1− t)a, by Cauchy’s
formula. Therefore

|Tλ(ξ)|(1−t)a ≤

∞∑

n=0

(1− t)nan
n∑

k=o

∑

n

(u1

ta

)k
(
u′

2

)−n

v′
(
v′1
v1

)h

≤ v′
∞∑

n=o

(n+ 1)

(
1− t

t
u1

u′
.2

)n ∑

h

(
v′1
v1

)h

if a < 1

Choosev′1 such that
v′1
v1

< 1 andt such that
1− t

t
u1

u′
<

1
4

. Then we31

obtain the majorization|Tλ(ξ)|(1−t)a < k
/ (

1−
v′1
v1

)
whereK is a constant

> 0.
Thus the proof of Theorem 2 is completed in the special case ofthe

system of equations (L ). �

1.8

We shall now give the proof of the Theorems 1 and 2 in the general case
of the system of equations (U ).

Proof of Theorem 1.The system of equations (U ) being given we con-
sider the following system of equations (U ′) with the unknown func-
tionsy1, . . . , ys, . . . , yr

µ, . . .;
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(U ′)



∂yλ
∂ xp+1

= Aλ(x, y, . . . , yr
µ, . . .) (λ = 1, . . . , s)

∂ yr
λ

∂ xp+1
=

∂ Aλ
∂ xr

(x, y, . . . , yr
µ, . . .) +

∂Aλ
∂ yµ

(x, y, . . . , yr
µ, . . .)

∂ yµ
∂ xr

+
∂ Aλ
∂ yr ′

µ

(x, y, . . . , yr
µ, . . .)

∂ yr ′
µ

∂ xr

(
λ = 1, . . . , s;
r = 1, . . . , p

)

whereAλ are analytic functions of all their arguments in the domain
|xk|, |yµ|, |yr

µ| < v∗(k = 1, . . . p + 1;µ = 1, . . . , s; r = 1, . . . , p) and the
second system is obtained by formally differentiating both the members
of the system of equations (U ) with respect to the variablesxr(r =
1, . . . , p). Hence we easily see thatyλ = ηλ(x) is a solution of (U ) 32

with the initial conditionξ if and only if yλ = ηλ(x), yr
λ
=

∂ ηλ

∂ xr
is a

solution of (U ′) with the initial condition

(
ξ, . . . ,

∂ ξµ

∂ xr
, . . .

)
. Because the

system (U ′) is of the special type of system (L ) considered, it follows
therefore that there exists a unique solution of the system of equations
(U ) with a given initial conditionξ from lemmas 2 and 3.

Further, if ξ is in Hs
p(u, v) then clearly

(
ξ, . . . ,

∂ ξµ

∂ xr
, . . .

)
is in

Hs+ps
p (u/2, 2v/u). There exists, by lemma 4, a solution mappingT∗ of

Hs+ps
p (u/2, 2v/u) into Hs+ps

p+1 (u′, v′) for the system of equations (U ′)p.

On the other hand the mappingF of Hs
p(u, v) into Hs+ps

p (u/2, 2v/u) de-

fined byF(ξ) =

(
ξ, . . . ,

∂ ξµ

∂xr
, . . .

)
is clearly infinite analytic. (See Ex.

1 of § 1.2). Similarly the projection mappingP defined byp(η, . . . ,
ηr
µ, . . .) = η of Hs+ps

p+1 (u′, v′) onto Hs
p+1(u′, v′) is also infinite analytic.

Therefore the composite mappingT = p o T∗ o F is an infinite analytic
map sinceT∗ is so by Lemma 5. MoreoverT is a solution mapping be-
cause of the remark made in the beginning of this section. This complete
the proof of Theorem 1 and 2.
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1.9

In this section we consider the discussion of the case of a system of dif-
ferential equations involving certain parameters. We prove in this case
that the solution depends infinite analytically on the initial condition and
the parameters.

Here in addition to the usual notations,z = (z1, . . . , zq) denotes the
set of parameters. LetAλ(x, y, . . . , yr

µ, . . . , z) be a system of functions de-
fined and analytic (in all their arguments) in the domain|xk|, |yλ|, |yr

λ
|, |zσ|33

< v∗1 (k = 1, . . . p + 1; r = 1, . . . , p; λ = 1, . . . s;σ = 1, . . . , q). Given
a ζ ∈ Hq

p+1 with |ζ(0)| < v∗1 consider the system of partial differential
equations

(Uζ)
∂ yλ
∂ xp+1

= Aλ

(
x, y, . . . ,

yµ
∂ xr

, . . . ζ(x)

)
.

Definition. A mapping T of the direct sum(Hs
p + Hq

p+1)(u, v) into Hq+s
p+1

(u′, v′) (with u−1v, v < v∗1) is said to be a solution mapping of the system
of partial differential equations(Uζ) with parameters if yλ = Tλ(ξ, ζ)
is a solution of(Uζ) with the initial conditionξ, for any(ξ, ξ) in (Hs

p +

Hq
p+1)(u, v).

Theorem 3. For any given system of partial differential equations(Uζ)
with parameters of Cauchy-Kowalewski type there exists a solution map-
ping. If moreover Aλ(x, 0, 0) = 0 then the solution mappings are regular
and equivalent to each other.

The additional conditionAλ(x, 0, 0) = 0 is imposed to ensure that
the image by any solution mapping of 0 in (Hs

p + Hq
p+1)(u, v) is the 0 in

Hq+s
p+1(u′, v′). The germ of solution mappings in this case is called the

solution germ of the system with parameters.

Theorem 4. The solution germ of a system of partial differential equa-
tions of Cauchy-Kowalewski type with parameters is germ of infinite
analytic maps.
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Proof of Theorem 2 and 3.Given the system of equations (Uζ) we con-
struct a new system of equations (U ′′) by introducing another new vari-
ablet, with the unknown functionsy1, . . . , ys, z1, . . . , zq.

(U ′′)



∂ yλ
∂ xp+1

= Aλ(x1, . . . , xp, t, tp+1, y1, . . . , ys, . . . ,
∂ yµ
∂ xr

, . . . , z1, . . . , zq)

∂ zσ
∂ xp+1

=
∂ zσ
∂ t

(λ = 1, . . . , s)

(σ = 1, . . . , q)

34

where Aλ

(
x1, . . . , xp, t, xp+1, y1, . . . , ys, . . . ,

∂ yµ
∂ xr

, . . . , z1, . . . , zq

)

= Aλ(x1, . . . , xp, xp+1, y1, . . . , ys, . . . ,
∂ yµ
∂ xr

, . . . , z1, . . . , zq)

(U ′′) is a system of Cauchy-Kowalewski type treated in Theorems 1and
2. Now if yλ = ηλ(x1, . . . , xp, t, xp+1), zσ = µσ(x1, . . . , xp, t, xp+1) is a so-
lution of the system (U ′′) thenµσ(x1, . . . , xp, t, xp+1) must be equal to
ζσ(x1, . . . , xp, t+ xp+1) whereζσ(x1, . . . , xp, t) = µp(x1, . . . , xp, t, 0) , be-

cause
∂ zσ
∂ xp+1

=
∂ zσ
∂ t

is of Cauchy-Kowalewski type and so the solution

must be unique for the initial condition. Thereforeyλ = ηλ(x1, . . . , xp, 0,
xp+1) is a solution of the system (Uζ). Then the proof can be carried out
by an argument similar to the one given when we deduced the theorems
1 and 2 from the special case (L ).

Remark. Let F be a solution mapping of(U ′′). Then the mappingξ →
F(ξ) − F(0) is infinite analytic. This follows from the fact that F− F(0)
is a solution mapping of a system of partial differential equations of the
same type as(U ′′).

Next we shall briefly mention the case of a system of partial differ-
ential equations in which the derivatives of the parametersalso occur.
Given aζ ∈ Hq

p+1(u, v) consider the system of equations

∂ yλ
∂ xp+1

= Aλ

(
x, y, . . . ,

∂ yµ
∂ xr

, . . . , z1, . . . , zq, . . . ,
∂ zσ
∂ xr

, . . .

)
(U ′

ζ
)

(λ = 1, 2, . . . , s),
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whereAλ(x, y, . . . , yr
µ, . . . , z1, . . . , zq, . . . , zr

σ, . . .) are functions defined35

and analytic in|xk|, |yµ|, |zσ|, |yr
µ|, |z

r
σ| < v∗1 (k = 1, . . . , p+ 1, r = 1, . . . , p,

µ = 1, . . . , s, σ = 1, . . . , q). In this case also it is not difficult to give
definitions of a solution mapping and a solution germ.

Definition. A mapping T of the direct sum(Hs
p+Hq

p+1)(u, v) (with u−1v,

v < v∗1) into Hq+s
p+1(u′, v′) is called a solution mapping of the system(U ′

ζ
)

if yλ = Tλ(ξ, ζ) is a solution of(U ′
ζ

), for every(ξ, ζ) in (Hs
p+Hq

p+1)(u, v),
with the initial conditionξ.

Theorem 5. For any system(U ′
ζ

) of Cauchy-Kowalewski type there ex-
ists a solution mapping. Moreover if Aλ(x, 0, 0) = 0, then the solution
mappings are regular and equivalent to each other.

The germ of solution mappings is called the solution germ of the
given system (U ′

ζ
).

Theorem 6. The solution germ of(U ′
ζ

) is infinite analytic.

Proof. First, consider (zσ, zr
σ) as independent parameters. Then restrict

the parameter tozr
σ = ∂zσ/∂xr . �

1.10 Differentials of regular maps

Let S andS′ be two systems of characters. Then, ifF is a regular map
of H(S; u, v) into H(S′, u′, v′), for anyξ, η in H(S; u, v/2) the mapping
of K(1 + ε) into H(S; u, v) defined byt → ξ + tη is a regular curve in
H(S; u, v). We pose the following definition.36

Definition . The differential dF of a regular map F of H(S; u, v) into

H(S′; u′, v′) is defined to be the mapping of the direct sum H
(
S; u,

v
2

)

⊕ H
(
S; u,

v
2

)
into H(S′; u′, v′) by the formula

dFλ (ξ, η) =

[
∂

∂ t
Fλ (ξ + tη)

]

t=0
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Remarks .Let S = (s0 . . . , sp) be a system of characters. Set S′′ =
(2s0, . . . , 2sp); then dF can be identified with a mapping of H(S′′; u, v)
into H(S′; u′, v′). It can be seen by direct verification that the following
are immediate consequences of the above definition.

(1) For any regular map F, its differential is also a regular map.

(2) For any two regular maps F1 and F2 with F1 ∼ F2, dF1 ∼ dF2. This
implies that one can define the differential of a germF of regular
maps of H(S) into H(S′) to be germ containing the differential of
any representative ofF . The differential of a germF of regular
maps is denoted by dF . This definition is unambiguous.

(3) The differential dF of any infinite analytic map F of H(S) into H(S′)
is itself infinite analytic.

The differentialdF of any infinite analytic germF is an infinite
analytic germ.

Let F be any regular mapping ofH(S; u, v) into H(S′; u′, v′), then 37

dFλ (0, ξ) =

[
∂

∂ t
Fλ ((t, ξ)

]

t=0
and this is denoted by (dF)o,λ(ξ). Define

(dF)0 = ((dF)o,λ); (dF)o is called the differential ofF at the origin.
For any regular mapF of H(S; u, v) into H(S′; u′, v′), it is easy to

see that (dF)0 is a linear map ofH(S; u, v) into H(S′; u′, v′).
Now if F is a regular map ofH(S; u, v) into H(S′; u′, v′), since the

mapping ofK(1 + ε) into H(S; u, v) defined byt → t ξ is a regular
curve, the mapping ofK(1 + ε) into H(S′; u′, v′) defined byt → F(t ξ)
is a regular curve inH(S′; u′, v′). HenceFλ(t ξ) has an expansion in
powers oft in a neighbourhood oft = 0 as follows:

Fλ(tξ) =

[
∂

∂ t
Fλ (tξ)

]

t=0
t + higher powers oft

= (dF)o,λ (ξ) t + higher powers oft.

Now supposingG is a regular map ofH(S′; u′, v′) into H(S′′; u′′, v′′)
then we have

(GoF)λ (t ξ) = d(GoF)o,λ (ξ) t + higher powers oft.
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But on the other hand

(GoF)λ (t ξ) = Gλ

[
t (dF)o,µ (ξ) + higher powers oft

]

= Gλ

[
t (dF)o,µ (ξ)

]
+Gλ( higher powers oft)

= (dG)o,λ o (dF)o,λ (ξ) t + higher powers oft.

Comparing the coefficients of t in the right members of the two38

equalities we obtain the formula

d(GoF)o,λ = (dG)o,λ o (dF)o

and hence we can write (d(GoF))0 = ((dG)o,λ o (dF)o).

Proposition 10. If F andG are two germs of infinite analytic maps of
H(S) into H(S′) and H(S′) into H(S) respectively such thatG o F and
F o G are germs of identity maps on H(S) and H(S′) respectively then
H(S) and H(S′) have same degree and multiplicity.

Proof. The germs (dF )o, (dG )o are linear infinite analytic and are such
that (d(Go F ))o = (dG )o o (dF )o and (d(F o G ))o = (d Fo o (dG )o

are germs of identity maps onH(S) andH(S′) respectively. Hence, by
Proposition 9,H(S) andH(S′) have same degree and multiplicity. �

All our considerations above are in the case of complex analytic
maps. The whole discussion can, without much difficulty, be carried out
to the case of real analytic maps.

1.11 Germs of submanifolds of a manifold

Let M denote a real analytic manifold andz a point in M. Let (N, z)
denote a real locally closed analytic submanifold ofM passing through
the pointz. (N, z) is called a real analytic submanifold with center. Two
real analytic submanifolds with centers (N, z) and (N, z′) passing through
zandz′ respectively are said to be equivalent if

(i) z= z′ and39
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(ii) there exists a neighbourhoodU of zsuch thatU ∩ N = U ∩ N′.

This is denoted by (N, z) ∼ (N′, z′). Clearly∼ is an equivalence
relation.

Definition. An equivalence class of real analytic submanifolds with cen-
ters under∼ is called a germ of real analytic submanifolds.

A germ of real analytic submanifolds ofM is denoted byϑ. An
element (N, z) ∈ ϑ is called a representative ofϑ, z is called the origin of
the germϑ, andϑ is called a germ atz.

Let M andM′ be two real analytic manifolds and̟be a real analytic
mapping ofM onto M′. ̟ is said to be locally trivial when, for any
z ∈ M, d ̟ maps the tangent vector space toM at z onto the tangent
vector space toM′ at̟(z). A triple consisting ofM.M′ and a locally
trivial real analytic map̟ of M onto M′ is called of fibred manifold
and is denoted (M,M′, ̟). For any pointz in M, a coordinate system
(x1, . . . , xn, y1, . . . , ym) at z in M is called a coordinate system atz in
the fibred manifold (M,M′, ̟) when there exists a coordinate system
(x′1, . . . , x

′
n) at̟(z) in M′ such thatxi = x′i o ̟. It is clear that there

exist coordinate systems in (M,M′, ̟) at any point ofM.

Definition. A germϑ of real analytic submanifolds at z, of M is called a
germ of cross - sections of(M,M′, ̟) at z ifϑ contains a representative
(N, z) such that̟ induces a real analytic homeomorphism of N onto an40

open neighbourhood of̟ (z).

ϑ is also called a germ of cross - sections of (M,M′, ̟) over̟(z).
Again all these notions can be carried over without any change to

the complex analytic case.
Let (M,M′, ̟) be a fibred manifold. Then for any fixed pointz′ ∈

M′, let T(̟, z′) denote the set of all germsϑ of cross-sections of
(M,M′, ̟) overz′. Letϑ0 ∈ T(̟, z′).

A coordinate system (x1, . . . , xn, y1, . . . , ym) around the origin of
ϑo in (M,M′, ̟) is called a coordinate system with centreϑ0 if the germ
ϑ0 can be expressed by (x1, . . . , xn, 0, . . . , 0). Let us fix an germϑo in
T(̟, z′) and a coordinate system (x, y) in (M,M′, ̟) with centreϑ0. De-
note byU the open set ofM where (x, y) is defined and byT(̟,U, z′) the
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set of germsϑ′ in T(̟, z′) with their origins inU. If ϑ is in T(̟,U, z′), ϑ
can be expressed parametrically byyλ = ξλ(x1, . . . , xn) (λ = 1, . . . ,m),
whereξλ(x1, . . . , xn) is a real analytic function defined in a neighbour-
hood of the pointx1 = · · · = xn = 0. Thusξλ(x1, . . . , xn) can be regarded
as a convergent power series inx1, . . . , xn and hence as an element of
Hn. We setτλ(ϑ) = ξλ ∈ Hn, andτ(ϑ) = (τ1(ϑ), . . . , τm(ϑ)) ∈ Hm

n . The
mappingτ defined by this is an injective mapping ofT(ω,U, z′) into
Hm

0 . For strictly positive real numbersu, v,T(ω, ϑ0, u, v) denotes the set
of germsϑ in T(ω,U, z′) such thatτ(ϑ) is in Hm

n (u, v). For sufficiently41

smallv, τ induces a bijective mapping ofT(̟,ϑ0, u, v) into (Hm
n )R(u, v).

EvidentlyT(̟,ϑ0, u, v) depends on the choice of the coordinate system
chosen with centreϑ0. The idea behind this definition is to follow the
analogy of coordinate systems in point sets for sets of germsof cross
sections. Namely, the coordinate neighbourhoods and coordinate func-
tions in the case of manifolds are replaced respectively byT(̟,ϑ0, u, v)
andτ respectively in the case of the set of germs of cross sections. We
observe that, whenM′ is reduced to a point,T(̟,ϑ0, u, v) andτ are re-
spectively the coordinate neighbourhood and coordinate function in M.
Because of this analogy we callτ the coordinate mapping with centre
ϑ0 induced by the coordinate system (x, y) in (M,M′, ̟).

Because we will only consider, henceforth, real analytic manifolds
and real analytic mappings, we will drop the usageR in HR

n , (H
m
n )R and

HR(S) etc. ThusHn is the vector space of convergent power series with
real coefficients, andHn(u, v) is the subset ofHn, which was denoted
by HR

n ∩ Hn(u, v) so far. A germ of infinite analytic maps ofH(S) into
H(S′) means a germ of real infinite analytic maps.

1.12

Definition. Letσ be a set of germs of cross-sections of a fibred manifold
(M,M′, ̟). Denote by(n+m), n the dimensions of M,M′ respectively.σ
is said to depend on s functions in p variables around a fixed germsϑ0 of
σ if there exist germsF andG of infinite analytic maps of H(S) into Hm

n
and of Hm

n into H(S), respectively, satisfying the following conditions:42

(i) S has degree p and multiplicity s;
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(ii) there exist strictly positive numbersũ, ṽ and an integer̃k such that
for every a (with0 < a < ũ)F has a representative which maps
H(S; a, ak̃ṽ into τ(T(̟,ϑ0, u′, v′) ∩ σ) whereτ is the coordinate
mapping induced by a suitable coordinate system in(M,M′, ̟)
aroundϑ0;

(iii) G o F is the germ of the identity mapping.

Then we see easily that the germF o G has a representative de-
fined onHm

n (a, aℓ, v) and which is identity onτ(T(̟,ϑ0, a, aℓṽ)) ∩ σ)
for sufficiently largeℓ and smalla.

We remark that if the conditions (ii ) and (iii ) are satisfied by a co-
ordinate system, then the same conditions hold for any arbitrary coordi-
nate system of (M,M′, ̟) with centreϑ0 by suitably changing ˜u, ṽ,F
andG .

Proposition 11. If σ is a set of germs of cross - sections of(M,M′, ̟)
depending on s functions in p variables and also on s′ functions in p′

variables, then p= p′ and s= s′.

Proof. By the above remark, we can, without loss of generality, assume
that the coordinate systems in both the cases are the same. Then the
germsG ′ o F (resp.G o F ) of H(S) (resp.H(S′)) ontoH(S′) (resp.
H(S)) are germs of infinite analytic maps and both (G ′ o‘F ) o (G o F

and (G o F ) o (G ′ o F ′) are germs of identity mappings. Hence, by
Proposition 10,S, S′ have the same degree and multiplicity. �





Chapter 2

Exterior di fferential systems

2.1

In this chapter, as we mentioned in the beginning of chapter I. We study 43

the construction and properties of the submanifolds of a given manifold
which are integrals of a certain differential system. We make this more
explicit in the following. We begin with certain notations which we
employ throughout this and the following chapter.

All manifolds, submanifolds, differential forms which we consider
in the following will be real analytic, so we omit the adjective real ana-
lytic. Let M be a manifold of dimensionn. For any pointz ∈ M, (M)z

denotes the tangent vector space toM atz.
Let ϕ be a homogeneous differential form of degreeh on M. ϕ as-

sociates to every pointzan anti-symmetrich-tuple multilinear mapping
ϕz on (M)z. If L1, . . . , Lh are tangent vectors in (M)z the value of the
functionϕz on (L1, . . . , Lh) is denoted by〈ϕ, L1 ∧ · · · ∧ Lh〉. If ϕ has an
expressionϕ =

∑
ai1···ihdui1 ∧ · · · ∧ duih in terms of a system of local

coordinates then we have〈ϕ, L1 · · · Lh〉 =
∑

ai1···ih det〈duiν , Lµ〉. For any
subspaceE of the tangent vector space (M)z of M atz, we denote byϕ|E
the restriction of the functionϕz to E.

A q-dimensional subspaceE of (M)z is called aq-dimensionalcon-
tact elementsatz. LetG q

z (M) be the set of all contact elements ofM atz. 44

ThenG q(M) = ∪{G q
z (M) : z ∈ M} is the set of allq-dimensional contact

33
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elements ofM. G q(M) can be provided with a structure of real analytic
manifold such that eachG q

z (M)(z ∈ M), is a real analytic submanifold
of G q(M) and such that there is a real analytic projection mappingρ of
G q(M) ontoM, mapping every contact element onto its origin. Now we
shall explicitly give the coordinate system inG q(M).

Let x1, . . . , xq be (real analytic) functions defined on an open set
U of M such thatdx1, . . . , dxq are linearly independent at each point
of U. Let U(x1, . . . , xq) be the set of allq-dimensional contact ele-
mentsE in G q(M) such thatρ(E), the origin ofE, is in U and such that
the restrictions (dx1|E, . . . , dxq|E) are linearly independent. IFE is in
U(x1, . . . , xq) let L1(E), . . . , Lq(E) be a basis inE dual todx1|E, . . . , dxq|

E. Clearly this choice of the dual basis depends on the choice of (x1, . . .,
xq). Suppose that (x1, . . . , xq; w1, . . . ,wn−q) be a coordinate system ofM
defined onU. Then, for everyE in U(x1, . . . , xq), Li(E) can be expressed
by

∂

∂xi
+

n−q∑

λ=1

yi
λ(E)

∂

∂wλ

whereyi
λ

are functions defined onU(x1, . . . , xq). The mapping which
associates to everyE in U(x1, . . . , xq) the system (origin ofE, . . . , yi

λ
(E),

. . .) defines a coordinate system (y1 o ρ, . . . , yn o ρ, . . . , yi
λ
(E), . . .) where

(y1, . . . , yn) is a coordinate system onM defined inU. Thus (y1 o ρ, . . .,45

yn o ρ, . . . , yi
λ
(E), . . .) is a coordinate system inG q(M). G q(M) is the so

called Grassman manifold.

2.2

Hereafter we consider only the domains in a Euclidean space.Let D
be a domain inRn; ler Λk(D) denote the module of homogeneous ex-
terior differential forms of degreek on D and the direct sumΛ(D) of
λo(D), . . . ,Λn(D), wheren denote the dimension ofD, is the algebra
over Λo(D) of homogeneous exterior differential forms onD. Here
Λ

0(D) denotes the ring of (real analytic) functions onD. The opera-
tors∧ andd always denote the exterior multiplication and the exterior
derivation respectively in the algebraΛ(D). If f is a real analytic map-
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ping of a manifoldM into another manifoldM′ then the inverse image
on M of an exterior differential formφ on M′ by f is denoted byf ∗ϕ
and we have the equalityd( f ∗ϕ) = f ∗(dϕ).

Let (
∑

) be a subset of∧(D).

Definition. A submanifold N of D is said to be inintegral submanifold
or an integralof (

∑
) if the restrictions ofϕ to N vanish for allϕ ∈ (

∑
).

Definition. A q-dimensional contact element E of D is called anintegral
elementof dimension q of the system(

∑
) if the restrictions ofϕ (in

∑
)

to E vanish. A 0-dimensional integral element is also sometimes called
an integral point.

The following proposition is an immediate consequence of this def-
inition.

Proposition 1. A submanifold N of D is an integral of the system(
∑

) of 46

exterior differential forms if and only if for any point z in N, (N)z is an
integral element of(

∑
).

Now let N be a submanifold ofD and leti denote the natural inclu-
sion mapping ofN into D. If ϕ = ϕ0

+ · · ·+ ϕn, whereϕ j ∈ Λ j(D), is an
exterior differential form onD, i∗ϕ is nothing but the restriction ofϕ to
N. Therefore we remark that, if the restriction ofϕ to N also vanishes,
becausei∗ϕ = 0 implies thati∗(dϕ) = d(i∗ϕ) = 0. If ϕ andψ are two
differential forms onD with i∗ϕ = 0, theni∗(ψ ∧ ϕ) = (i∗ψ) ∧ (i∗ϕ) = 0.
If moreoveri∗ψ = 0 then clearlyi∗(αϕ + βψ) = 0. Hence we conclude
that the homogeneous ideal (closed under the operationd) generated by
homogeneous parts of elements in (

∑
) in the exterior algebraΛ(D) also

possesses the same integrals as (
∑

).

Definition . A homogeneous ideal(
∑

) in Λ(D) is said to be closed if
(d

∑
) ⊂ (

∑
).

Proposition 2. If (
∑

) is a homogeneous ideal inΛ(D) then the homo-
geneous ideal generated by(

∑
) and(d

∑
) is closed. This follows easily

if we use the fact that d o d= 0.
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Definition . A homogeneous ideal(
∑

) in the exterior algebraΛ(D) is
called an exterior differential system if (i)(

∑
) is closed and (ii)(

∑
) is

finitely generated as an ideal.

As remarked above, as far as the set of integrals are concerned, the
situation will not change when we replace a finite set (

∑
) = {ϕ1, . . . , ϕh}47

by the homogeneous ideal generated by{ϕ1, . . . , ϕh, dϕ1, . . . , dϕh} in the
algebra∧(D). Then the ideal is closed by Proposition 2 and so here-
after we will consider only exterior differential systems instead of finite
subsets in∧(D).

Let (
∑

) be an exterior differential system. (
∑

) being a homoge-
neous ideal, it can be decomposed as

∑
=

∑(0)
+

∑(1)
+ · · ·+

∑(n) where∑(k)
=

∑
∩Λk(D). Let E be a fixed element inG q

z (D). Any set of vec-
tors L1, . . . Lr in E and a differential formϕ in

∑(r+1) define a linear
functionalαϕ on the tangent space (D)z atz, as follows:

αϕ(L) = 〈ϕ, L1 ∧ · · · ∧ Lr ∧ L〉 (L ∈ (D)z).

The subspace of the dual of (D)z generated by all theαϕ(
ϕ ∈

∑(r+1); L1, . . . , Lr ∈ E; r = 0, 1, . . . , q
)

is denoted by J(E,
∑

)
(or simply by J(E) when there is no possible confusion regarding

∑
)

and the dimension ofJ(E,
∑

) is denoted byt(E,
∑

) (or simply byt(E)).
J(E,

∑
) is called thespace of polar formsof

∑
at E. t can be regarded

as an integral valued (not necessary real analytic) function on (G q(D).
The following are immediate consequences of this definition.

Proposition 3. The subspace of the tangent space(D)z of D at z, spann-
ed by an integral element E (subspace of(D)z) and a tangent vector L is
an integral element of(

∑
) if and only if L is a solution of the equation

J(E) = 0.

Proposition 4. If E and E′ are two integral elements of(
∑

) with E′ ⊂ E48

then J(E′) ⊆ J(E) and hence t(E′) ≤ t(E).

Definition. J(E) = 0 is called the polar equation of
∑

at E.

Definition. Let F be a set of (real analytic) functions defined in a neigh-
bourhood of a point z in D; F = 0 is said to be a regular local equation
of a subset N of D(z ∈ N) around z if
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(i) there exists a neighbourhood U of z in D such that U∩ N is a
submanifold;

(ii) f = 0 on N for every f in F; and

(iii) there exists functions f1, . . . , fn−h in F ( h being the dimension of
the submanifold U∩N) such that d f1, . . . , d fn−h are linearly inde-
pendent at z.

The set of allq-dimensional integral elements of (
∑

) will be denoted
by ℓq ∑

. we shall now define the notions of ordinary and regular integral
elements of (

∑
) by induction on the dimensionq. ℓq ∑

is provided with
the topology induced byF qD.

Definition . An integral point x of
∑

is said to be anordinary integral
point if

∑(0)
= 0 is a regular local equation ofℓo ∑

around x. An integral
point x is said to be aregular integral pointif x is an ordinary integral
point and the function t is a constant in a neighbourhood of x in ℓo ∑

.
Suppose that the ordinary and regular integral elements of dimensions
q′, for q′ < q, are defined.

Definition. A q-dimensional integral element is said to be an ordinary
integral element of(

∑
) if it contains atleast one(q − 1)-dimensional 49

regular integral element. A q-dimensional integral element is said to be
a regular integral element of(

∑
) if it is an ordinary integral element and

the function t is a constant in a neighbourhood of it inℓq ∑
.

Example .Let D be the plane R2 represented by(x, y). Let (
∑

) be the
differential system generated (as a closed ideal) inΛ(D) by

{
x, dx, xdy,

dx∧ dy
}
. If z ∈ D then clearly J(z) is generated by{(dx)z} if z ∈ ℓo ∑

since x(z) = 0 and by{(dx)z, (dy)z} if z < ℓo ∑
. Hence any integral point

z is a regular integral element of(
∑

).

2.3

Let (M,M′, ̟) be a real analytic fibered manifold.
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Definition. A homogeneous differential formθ on M of degree r is said
to be a fibred differential form if, for every z∈ M and every pair of
sets of tangent vectors(L′, . . . , Lr) and (L

′1, . . . , L
′r ) in (M)z such that

̟(Li) = ̟(L
′ i) (i = 1, 2, . . . , r), we have

〈θ, L1 ∧ · · · ∧ Lr〉 = 〈θ, L
′1 ∧ · · · ∧ L

′r〉.

If z is any point inM, a fibred differential form onM defines an
antisymmetric multilinear formθ[z], on the tangent space ofM′ at̟(z)
such that for anyL1, . . . , Lr ∈ (M)z

〈θ, L1 ∧ · · · ∧ Lr〉 = 〈θ[z], ̟(L1) ∧ · · · ∧ ω̃(Lr)〉.

If ( x′1, . . . , x
′
n) is a coordinate system in an open subsetU of M′50

and if we setxi = x′i o̟ on̟−1(U) the fibred differential formθ has an
expression of the formθ =

∑i1···ir dxi1∧· · ·∧dxir . Thenθ[z], z ∈ ̟−1(U)
is given byθ [z] =

∑
ai1···ir (z)(dx′i1)̟(z) ∧ · · · ∧ (dx′ir )̟(z). This expression

shows clearly thatθ[z] depends real analytically onz.
Let (x1, . . . , xq) be a set of functions defined on a domainD of Rn

such thatdx1, . . . , dxq are linearly independent at each point ofD. Let
G q(D; x1, . . . , xq) denote the subset ofG q(D) consisting of all elements
E in G q(D) for which the restrictions ofdx1, . . . , dxq to E are linearly
independent. Letρ be the canonical projection ofG q(D; x1, . . . , xq) onto
D which associates to every elementE in G q(D; x1, . . . , xq) its origin.
WhenG q(D; x1, . . . , xq) is provided with the manifold structure induced
from G q(D), it is easy to see that (G q(D; x1, . . . , xq),D, ρ) is a fibred
manifold. Given a homogeneous differential formϕ ∈

∑(r+1)(D) and a
set of integers (i1, . . . , ir ) with 1 ≤ i1 < · · · < ir ≤ q, a Pfaffian form,
denoted byϕ{i1···ir } onG q(D; x1, . . . , xq) is defined by the identity

〈ϕ{i1···ir }, L〉 = 〈ϕ, Li1(E) ∧ · · · ∧ Lir (E) ∧ dρL〉

whereL ∈ (G q(D))E and L1(E), . . . , Lq(E) is a basis ofE dual to the
restrictions ofdx1, . . . , dxq to E. It is immediate to see thatϕ{i1···ir } is a
fibred differential form on (G q(D; x1, . . . , xq)) with respect to the fibred51

manifold (G q(D; x1, . . . , xq); D, ρ).
Let (

∑
) be an exterior differential system onD and letϕ1, . . . , ϕℓ

be a set of homogeneous differential forms (of degreed(1), . . . , d(ℓ)) in
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(
∑

) which generate (
∑

) (as a closed ideal inΛ(D)). Let
{
ϕ1, . . . , ϕh

}

be the subset ofϕ1, . . . , ϕℓ for which 1 ≤ d(i) ≤ q. As before choose
a set (x1, . . . , xq) of functions onD such thatdx1, . . . , dxq are linearly
independent at each point ofD and letE ∈ G q(D; x1, . . . , xq).

Proposition 5. If E is in ℓq ∑
∩G q(D; x1, . . . , xq) then J(E) is generated

by
{
ϕi1···id(σ)−1 [E] ; ρ = 1, . . . , k, 1 ≤ i j ≤ q

}
(1 ≤ i1 < · · · < id(ρ)−1 ≤ q)

Proof. By definition J(E) is generated by allαϕ defined byαϕ(L) =
〈ϕ, L1 ∧ · · · ∧ Lr ∧ L〉 whereϕ ∈

∑(r+1), L1, . . . , Lr ∈ E and L′ ∈
(D)z, z being the origin ofE. If L1(E), . . . , Lq(E) is a basis ofE dual
to dx1

∣∣∣E, . . . , dxq

∣∣∣E we can writeL j
=

∑
b j

i L
i(E). Thereforeαϕ is in the

space generated byϕ{i1···ir }[E]. �

On the otherhand, since degϕ ≤ q we see thatαϕ = 0 for r ≥ q.

Hence one can assume thatr < q and one can writeϕ =
h∑

σ=1
ψσ ∧ ϕσ +

∑
f j
∧ξ j( f j ∈

∑(0)). Therefore, forL ∈ (D)z

〈ϕ{i1···ir }[E], L〉 = 〈ϕ, Li1(E) ∧ · · · ∧ Lir (E) ∧ L〉

=

h∑

σ=1

〈ψσ ∧ ϕσ, L
i1(E) ∧ · · · ∧ Lir (E) ∧ L〉

+

∑
〈 f j ∧ ξ j , L

i1(E) ∧ · · · ∧ Lir (E) ∧ L〉.

52

But sinceE is an integral element andf j ∈
∑(0) the second term in

the right member vanishes. Hence

〈
ϕ{i1···ir }, L

〉
=

h∑

σ=1

〈ψσ ∧ ϕρ, L
i1(E) ∧ · · · ∧ Lir (E) ∧ L〉

=

h∑

σ=1

±〈ψσ, L
h1(E) ∧ · · · ∧ Lhσr1 (E)〉〈ϕσLk1(E) ∧ · · · ∧ Lkσr2−1(E)

+

h∑

σ=1

±〈ψσ, L
h1(E) ∧ · · · ∧ Lhσr1−1(E) ∧ L〉〈ϕσ, L

k1(E) ∧ . ∧ Lkσr2 (E)
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Here rσ1 , r
σ
2 are the degrees ofψσ and ϕσ respectively. AgainE

being an integral element, the latter term in the right member vanishes.
Therefore we obtain

〈ϕ{i1···ir }, L〉 =
h∑

σ=1

± ∗ 〈ϕ
k1···kr2σ−1
σ , L〉.

This completes the proof of the proposition.
Let (

∑
) be a differential system on a domainD of Rn. If E is an inte-

gral element of (
∑

), letGr
E (when there is no possible confusion, simply

G) be the set of allr-dimensional contact elements ofD contained in
E. G can be provided with the structure of a real analytic manifold as
follows. Let E′ be an element ofG and letϕ1, . . . , ϕh be a base of the
dualE∗ of E such that the restrictions ofϕ1, . . . , ϕr to E′ are linearly in-
dependent. Then a coordinate neighbourhood ofE′ in G can be defined53

to beU(ϕ1, . . . , ϕr) = {E′′ ∈ G : ϕ1

∣∣∣E′′, . . . , ϕr

∣∣∣E′′ are linearly inde-
pendent}. The coordinate systems can be explicitly constructed without
much difficulty. But we do not go into the details since we do not need
the explicit coordinate systems. ClearlyGr

E is a submanifold ofG r (D).

Definition . A subset A of manifold M is said to be a(real analytic)
subvariety ( or areal analytic subset) if for every a in M there exists a
neighbourhood U of a in M and a finite number of real analytic func-
tions f1, . . . , fh defined on U such that A∩U is the set of common zeros
of f1, . . . , fh.

We say that a subvarietyA is proper whenA , M. Clearly this
definition is local. Every real analytic subset is closed inM. If M is
connected andA is proper thenM − A is everywhere dense.

Proposition 6. Let E be an integral element of
∑

. Then there exists a
proper real analytic subset A of GrE = G and an integer k> 0 such that
t(E′) = k for every E′ in G− A and t(E′) <

,
k for every E′ in A. (We will

denote this k by tr(E)).

Proof. Let E′ ∈ G and let (x1 . . . , xq, y1, . . . , ym) be a coordinate system
in D such that dx1

∣∣∣E′, . . . , dxr

∣∣∣E′ are linearly independent.
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G r(D; x1, . . . , xr) being an open subset ofG r (D) and the property of
a real analytic subset being local, it is sufficient to prove that there exists
a real analytic subsetA′ of G∩G r (D; x1, . . . , xr ) satisfying the assertion54

of the proposition. �

We know that there exists a finite number of Pfaffian formsθ1, · · · ,

θh of the fibred manifoldG r (D; x1, . . . , xr ),D, ρ) such thatθ1[E′], . . . ,
θh[E′] generateJ(E′) for any integral elementE′ in G r(D; x1, . . . , xr )
in particular. for anyE′ in G ∩ G r (D; x1, . . . , xr). We can writeθσ =
r∑

i=1
ai
σdxi+

m∑
λ=1

ar+λ
σ dyσ. Hence for an elementE′ in G r(D; x1, . . . , xr)∩G,

the dimensiont(E′) of J(E′) is nothing but the rank of the matrix


· · · ai
1(E′) · · · ar+λ

1 (E′) · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · ai
h(E′) · · · ar+λ

h (E′) · · ·



Sinceai
σ(E′) and ar+λ

σ (E′) are real analytic functions on a neigh-
bourhood ofE′ in G∩ G r (D; x1, . . . , xr ), it can be easily seen thatt is a
constantk > 0 except on a real analytic subsetA′ of G∩G r(D; x1, . . . , xr )
and this proves the required assertion.

It is easy to prove the following
Corollary to Proposition 6. Let E be an ordinary integral element. IfE′

is regular and is contained inE, thent(E′) = tr (E) wherer = dim(E′).
We shall denote the set of all regular integral elements of dimen-

sion q of (
∑

) by Rq ∑
and the set of all ordinary integral elements of

dimensionq of (
∑

) byGq ∑
.

2.4

Let (x1, . . . , xq, y1, . . . , ym) be a coordinate system ofD. Any differen- 55

tial form ϕ ∈ Λr(D) and a finite set of integers (i1, . . . , ir) such that
1 ≤ i1 < · · · < ir ≤ q define a functionϕ[i1, . . . , ir ] (r = 0, 1, . . . , q)
on G q(D; x1, . . . , xq) as follows: If E ∈ G q(D; x1, . . . , xq) and {L1(E),
. . . , Lq(E)} is a basis ofE dual todx1

∣∣∣E, . . . , dxq

∣∣∣E then

ϕ[i1, . . . , ir ](E) = 〈ϕ, Li1(E) · · · Lir (E)〉.
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Let F = F(
∑

; x1, . . . , xq) be the set of allϕ[i1, . . . , ir ] with ϕ ∈∑(r) (1 ≤ i1 < · · · < ir ≤ q; r = 0, 1. . . . , q).

Proposition 7. θq ∑
andRq ∑

are open subsets ofℓq ∑
. If E0 ∈ θq ∑

∩

G q(D; x1, . . . , xq) then there exists a neighbourhood of E0 in G q (D)
such thatθq ∑

∩U is a submanifold ofU and F = 0 is a regular lo-
cal equation ofθq ∑

. Moreover, if E′ is a regular (p − 1)-dimensional
integral element in E0, thendim(θq ∑

∩U ) = dim(θq−1 ∑
∩U ′) − (q −

1) + (n − q − t(E′)), when n= dim D and U ′ is a sufficiently small
neighbourhood of E′.

Proof. The proposition is obviously true in the caseq = 0. We pro-
ceed now by induction onq. Let us assume the proposition to have been
proved for all dimensionsq′ < q. If E is anθq ∑

there exists a subspace
E′ of E in Rq−1 ∑

. Choose the coordinate system (x1, . . . , xq, y1, . . . , ym)
in D such thatdx1

∣∣∣E0, . . . , dxq

∣∣∣E0 are linearly independent and such that

E′ = {L ∈ E : 〈dxq, L〉 = 0}

We shall define a mapπ of G q(D; x1, . . . , xq) into G q−1(D; x1, . . . xq−1)56

as follows : if E ∈ G q(D; x1, . . . , xq) then π(E) is the space gener-
ated byL1(E), . . . , Lq−1(E). For E′′ in G q−1(D; x1, . . . , xq−1) denote by
L1(E′′), . . . , Lq−1(E′′) the base ofE′′ dual todx1

∣∣∣E′′, . . . , dxq−1

∣∣∣E′′. We
can write

Lr(E′′) =
∂

∂xr
+ wr(E′′)

∂

∂xq
+ yr

λ(E
′′)

∂

∂yλ
(r = 1, . . . , q− 1)

wherewr(E′′), yr
λ
(E′′) form part of a coordinate system inG q−1(D; x1,

. . . , xq−1). Therefore the equationsw1 = · · · = wq−1 = 0 define a sub-
manifold W of G q−1(D; x1, . . . , xq−1) and dimW + (q − 1) = dimE′

(ℓq−1 ∑
). Then it is clear thatπ mapsG q(D; x1, . . . , xq) onto W and

G q(D; x1, . . . , xq),W, π) is a fibred manifold. �

By the induction assumption, there exists a neighbourhoodU ′ of
E′ in G q−1(D) such thatU ′ ∩ Rq−1 ∑

is a submanifold ofU ′ and
FE′ = 0 is a regular local equation. We now assert that, for a suitable
U ′,U ′∩W∩Rq−1 ∑

is a submanifold ofRq−1 ∑
. Letz0 be the origin of
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E0. Given real numbersa1, . . . , aq−1, andu, let Eu ∈ G q−1(D), be gener-
ated byL j(E0)+uajLq(E0) ( j = 1, . . . , q−1) . Eu being a subspace ofE0,
it is an integral element. ThereforeEu is a real analytic curve inRq−1 ∑

for sufficiently smallu. Because of the choice ofE′, (Eu)u=0 = E′ and
w j(Eu) = u aj . The last equality implies that〈dwj ,Xa〉 = a j where
Xa is the tangent vector atu = 0 of the curveEu in Rq−1 ∑

. Because
a1, . . . , . . . , aq−1 are arbitrary, it follows that (dw1)E, . . . , (dwq−1)E′, re-
stricted to the tangent vector space toRq−1 ∑

atE′ are linearly indepen- 57

dent. HenceU ′ ∩W ∩ Rq−1 ∑
is a submanifoldN of U ′. Let U be

a neighbourhood ofE0 in G q(D) such thatπ(U ) ⊂ U ′. It is clear that
any elementE in U is in ℓq ∑

if and only if its imageπ(E) is in N and
Lq(E) is a zero ofJ(π(E)).Take real analytic functionsf1, . . . , fa on U ′

wherea = dimG q−1(D) − dim(ℓq−1 ∑
∩U ′) such thatd f1, . . . , d fa are

linearly independent atE′ and f1 = · · · = fa = 0 defineℓq−1 ∑
∩U ′.

By the induction assumption we can choose fibred differential forms
θ1, . . . , θt)(E′) of (G q−1(D; x1, . . . , xq−1),D, ρ) such thatθ1[E′′], . . . , θt(E′)

[E′′] are linearly independent and generateJ(E′′) for integral elements
E′′ nearE′. We can write

θσ =

q∑

j=1

a j
σdxj +

m∑

λ=1

aq+λ
σ dyλ.

We recall that the functionsyq
λ

onG q(D; x1, . . . , xq) defined byLq(E)

=
∂

∂xq
+

∑
λ

yq
λ
(E)

∂

∂yλ
, form a part of the coordinate system inG q(D; x1,

. . . , xq). Then the conditionsπ(E) ∈ N and 〈J(π(E)), Lq(E)〉 = 0 are
analytically expressed by the conditions:

(I )


f1oπ = · · · = faoπ = 0

aq
σoπ + (aq+λ

σ oπ)yq
λ
= 0 (σ = 1, . . . , t(E′))

Becausedx1, . . . , dxq, θ1[E′], . . . , θt[E′] are linearly independent, it
is clear now that the differentials of the above functions atE are lin-
early independent at eachE in U , for U sufficiently small. Therefore 58

ℓq ∑
∩U form a submanifold ofG q(D). Since dimπ−1(E′) = n− q, we

see easily that dim(ℓq ∑
∩U ) is equal to dim(U ′ ∩ ℓq−1 ∑

) − (q− 1)+
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(n − t(E′) − q). By induction assumption we can choosef1, . . . , fa in
FE′ . Then it is clear by the definition ofFE that f1oπ, . . . , faoπ are in
FE. If we chooseθσ as constructed in in Proposition 5, we see easily
that the function〈θσ

[
π0E

]
, Lq(E)〉 are inFE. Thus we can choosefh and

θσ in such a way that the equations (I ) is a part of the equationFE = 0.
ThereforeFE = 0 is a regular local equation ofθq ∑

at E.
Becausepi is continuous andRq−1 ∑

is open inℓq−1 ∑
it follows

that θq ∑
is open. Then, because of the definition of regular integral

elements,Rq ∑
is also open.

Proposition 8. Let E be an ordinary integral element of dimension q.
Let E′ ⊂ E. Assume that there is a sequence of subspaces E′

= E(1) ⊂

E(2) ⊂ · · ·E(h)
= E of E such thatdim(Ei+1)) = dim(E(i)) + 1 and such

that each E(i) (i = 1, . . . , h− 1) is regular. Then for each neighbourhood
U of E in ℓq ∑

there is a neighbourhoodU ′ of E′ with the following
property: for any E′′ ∈ U ′ ∩ ℓr ∑(r = dim E′) there is an element
E1 ∈ U ∩ Θq ∑

such that E1 ⊃ E′′.

Proof. By an induction argument the problem can be reduced to the
case whenr = q − 1. Take a neighbourhoodU ′

1 of E′ and a sys-
tem θ1, . . . , θt, of fibred differential forms on (U ′

1 ,D, ρ) such that for
any E′′ ∈ U ′

1 ∩ ℓ
q−1 ∑

, θ1[E′′], . . . , θt, [E′′] are linearly independent59

and generateJ(E′′). Then the proposition follows from the fact that a
non-zero solution ofJ(E′′) together withE′′ generate aq-dimensional
integral element forE′′ in ℓq−1 ∑

. �

When dimE′ = 0, that is whenE′ is the origin ofE, we have the
following corollary.
Corollary to Proposition 8. Let E be an ordinary integral element of
origin z. Then for neighbourhoodU of E there is a neighbourhoodU
of zsuch that for anyz′ in U ∩ ℓ0 ∑

there is an integral elementE′′ ∈ U

with origin z′.

2.5

Let (
∑

) be a differential system on a domainD in Rn Then we pose the
following definitions.
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Definition. Let E be a q-dimensional contact element of D. A flag on E
is defined to be a finite sequence of subspaces of E:

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eq = E,

such that the dimension of Er is r(r = 0, 1, . . . , q).

q is called the dimension of the flag andEr is called ther th compo-
nent of the flag onE (r = 0, 1, . . . , q).

Definition. Let E be an integral element of(
∑

). A flag in E with compo-
nents Er , is said to be normal if t(Er ) = tr (E) holds for r= 0, 1, . . . , q−1
(cf. Proposition 6).

Definition . For an ordinary integral element E of(
∑

) a flag on E is
called regular if each component Er is a regular integral element(r =
0, 1, . . . , q− 1).

It is clear by definition and by Corollary to Proposition 6 that if E is 60

an ordinary integral element of (
∑

), a regular flag onE is a normal flag.

Proposition 9. Given a q-dimensional ordinary integral element of(
∑

)
there exists atleast one regular flag on E.

Proof. Take a regularE′1 in E. There exists a neighbourhoodU1 of E′1
in G1

E such that anyE′′1 ∈ U1 is regular. LetU′2 = {E
′′
2 ∈ G2

E : there
existsE′′1 ∈ U1 such thatE′′1 ⊂ E′′2 }. Clearly this is a non-empty open
subset ofG2

E. There exists a regularE′′2 ∈ U′2 such thatt(E′′2 ) = t2(E).
Thus we findE′′1 ⊂ E′′2 ⊂ E such thatE′′r is regular andr-dimensional
for r = 1, 2. Now we proceed similarly by induction onr uptoq− 1 and
thus the assertion is proved. �

Given an elementE in G q(D) the setG̃(E) of all flags onE, can be
made into a real analytic manifold by considering it as a homogeneous
space as follows: LetGℓ(q) be the general linear group ofE. Fix a flag
E0 ⊂ E1 ⊂ · · · ⊂ Eq = E onE. We define a mapf of Gℓ(q) into G̃(E) as
follows: ForA ∈ Gℓ(q), f (A) is the flagAE0 ⊂ AE1 ⊂ · · · ⊂ AEq = E.
It is clear that f is surjective. Denoting byH the subgroup of all the
elements which leaves eachEq invariant, we see easily thatf induces a
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bijective mapping ofGℓ(q)/H ontoG̃(E). Hence we can identifỹG(E)
with Gℓ(q)/H and take its real analytic structure. It is easy to see the
following:

Proposition 10. The set of all normal flags on an integral element E is61

a non-empty open subset ofG̃(E).

Proof is similar to that of Proposition 9.
Let E be an element ofℓq ∑

of origin z. We assume thatℓ0 ∑
is a

submanifold on a neighbourhood ofz and
∑(0)

= 0 is a regular local
equation ofℓ0 ∑

aroundz. We define a sequence of integerssr(E) (r =
−1, 0, . . . , q) by setting

s−1(E) = t−1(E) = co-dimension ofℓ0
∑

aroundz

sr(E) = tr (E) − tr−1(E) for r = 0, 1, . . . , q− 1

sq(E) = n− q− tq−1(E).

Hences−1(E) + · · · + sq(E) = n− q.

Proposition 11. If E ∈ ℓq ∑
satisfies the above conditions, then sr (E) ≥

0 (r = −1, . . . , q). In particular, if E is ordinary then sr(E) ≥ 0.

Proof. Since
∑(0)

= 0 is a regular local equationℓ0 ∑
is a submanifold

around the originz of E. By Proposition 9 there exists a normal flag on
E, sayE0 ⊂ E1 ⊂ · · · ⊂ Eq = E with tr (E) = t(Er ). By Proposition 4,
t(Er ) ≥ t(Er−1). Hencesr(E) ≥ 0 for r = 1, . . . , q− 1. �

Case whenr = 0 (
∑

) being closedf ∈
∑(0) impliesd f ∈

∑(1). The set
of all (d f)z, where f ∈

∑(0), will generate a subspaceA of the dual of
E, whose dimension iss−1(E). Since (

∑
) is closedA ⊂ J(z) and hence

s0(E) = t0(E) − t−1(E) ≥ 0.
Case whenr = q. For everyL ∈ E and for anyα ∈ J(Eq−1), α(L) = 062

implies dimJ(Eq−1) ≤ n−dim E = n−q and hencesq = n−q− tq−1 ≥ 0.
From the second part of Proposition 7, we easily deduce the follow-

ing
Corollary to Proposition 7. Let E be aq-dimensional ordinary integral
element of

∑
. Then the dimension ofℓq ∑

is equal to (n − s−1(E)) +∑q
r=1 rsr (E), wheren = dim D.
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2.6

Let (
∑

) be a differential system onD. Let D1 be a submanifold ofD.
Denote by (

∑
1) the differential system onD1 generated by the restriction

of (
∑

) to D1. ThenG q(D1) is a submanifold ofG q(D) and soℓq ∑
1 is a

subset ofG qD. We easily see the following:

ℓq
∑

1

= ℓq
∑
∩G q(D1).

Let z be a point ofD1. Then the injection mappingi : D1 → D
induces a homomorphismi∗z of (D)∗z onto (D1)∗z. Let E be an integral
element of (

∑
1) with zas its origin. Then by the remark aboveE is also

an integral element of (
∑

). Therefore we haveJ(E,
∑

) and J(E,
∑

1)
which are subspaces of (D)∗z and (D1)∗z respectively. LetAz denote the
kernel ofi∗z.

Proposition 12. Notations being as above, i∗z induces a surjective map-
ping of J(E,

∑
) onto J(E,

∑
1). If, moreover, for anyβ(, 0) in Az there is

an integral element E′ of (
∑

) containing E and there is an L in E′ with 63

β(L) , 0, then i∗z induces a bijective mapping of J(E,
∑

) onto J(E,
∑

1).

Proof. The first assertion is an immediate consequence of the definitions
of J(E,

∑
) and J(E,

∑
1). As for the second, takeβ in J(E,

∑
) ∩ Az.

Then, becauseE′ is an integral element,β(L) = 0 for any L in E′.
Thereforeβ = 0 because of the assumption that there exists anL in E′

with β(L) , 0 for non-zeroβ. �

Let f be a function onD such thatd f
∣∣∣Eq , 0 whereEq is a q-

dimensional ordinary integral element of (
∑

) on D. Let us assume fur-
ther thatD1 is the submanifold ofD defined by the equationf = 0.
Take a regular flag of (

∑
) on E : E0 ⊂ E1 ⊂ · · · ⊂ Eq. Assume that

Eq−1 = {L ∈ E : 〈d f, L〉 = 0}. Then we have the following proposition:

Proposition 13. Er(r ≤ q− 1), regarded as a contact element of D1, is
a regular integral element of(

∑
1). Moreover, we have
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sr

Eq−1,
∑

1

 = sr

(
Eq,

∑)
for r = −1, . . . , q− 2;

sq−1

Eq−1,
∑

1

 = sq−1

(
Eq,

∑)
+ sq

(
Eq,

∑)
.

Proof. First, we show that there is a neighbourhoodUr of Er in G r(D)
such that for anyE′′ in Ur ∩ ℓr ∑

1 t(E′′,
∑

1) = t(Er .
∑

). Take a neigh-
bourhoodU of Eq in G qD such that, for anyE′ in U, d f

∣∣∣E′ , 0. By
Proposition 8 there is a neighbourhoodUr of Er such that for anyE′′ in
Ur ∩ ℓr ∑, there isE′ in U ∩ ℓq ∑

containingE′′ as a subspace. Then64

if E′′ is in Ur ∩ ℓr ∑
1, the conditions in the second part of Proposition

12 are satisfied forE′′ and hence it follows thatt(E′′,
∑

1) = t(E′′,
∑

)
from Proposition 12. If we takeUr sufficiently small, thent(E′′,

∑
) =

t(Er ,
∑

). Now the proof can be completed by induction onr. When
r = 0, the conditiond f

∣∣∣Eq , 0 implies thatℓ0 ∑
1 = ℓ

0 ∑
∩D1 is a sub-

manifold of D1 on a neighbourhood ofz having regular local equation∑(0)
1 = 0. ThusE0 is ordinary and dimℓ0 ∑

1+1 = dimℓ0 ∑
. In partic-

ular, s−1(z,
∑

1) = s−1(z,
∑

). On the other hand we have already shown
that t(w,

∑
1) = t(z,

∑
) for any integral pointw of (

∑
1) in a sufficiently

small neighbourhood ofE0 in ℓ0 ∑
1. HenceE0 is a regular integral

point of (
∑

1) ands0(z,
∑

1) = s0(z,
∑

). Assuming the case of allr′ < r
to show thatEr is in Rr ∑

1 ; it is only necessary to show thatt(E′,
∑

1)
remains constant whenE′ is an integral element of

∑
1 sufficiently near

Er . We have already shown this and moreover,t(E′,
∑

1) = t(Er ,
∑

). So
we havesr(Eq−1,

∑
1) = sr(Eq,

∑
) for r ≤ q− 2. By definition,

sq−1

Eq−1,
∑

1

 = dim D1 − (q− 1)− t

Eq−2,
∑

1



= dim D − q− t
(
Eq−1,

∑)
+

(
t
(
Eq−1,

∑)
− t

(
Eq−2,

∑))

= sq

(
Eq,

∑)
+ sq−1

(
Eq,

∑)
.

This completes the proof of the proposition. �
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2.7 Differential systems with independent variables

Let (D,D′, ̟) be a fibred manifold whereD and D′ are domains in 65

Euclidean spacesRq+m and Rq respectively. Let (
∑

) be a differential
system defined onD. A pair consisting of a fibred manifold (D,D′, ̟)
and a differential system (

∑
) on D is called a differential system with

independent variables and is denoted by
[∑

; (D,D′, ̟)
]
.

Definition . A cross-section f of(D,D′, ̟) over an open set U of D′

is said to be an integral of the differential system
[ ∑

, (D,D′, ̟
]

if the
map f of U into D defines a submanifold of D which is an integral
submanifold of(

∑
).

LetG r (D.D′, ̟) denote the set of allr-dimensional contact elements
E in G r(D) which are such that ifz is the origin ofE, (d̟)z is injective
on E. We set

ℓr
[∑

, (D,D′, ̟
]
= ℓr

∑
∩G r(D,D′, ̟);

θr
[∑

, (D,D′, ̟
]
= θr

∑
∩G r(D,D′, ̟);

and R
r
[∑

, (D,D′, ̟
]
= R

r
∑
∩G r(D,D′, ̟).

Let E be aq-dimensional ordinary integral element of this system
(an element ofθq [

∑
, (D,D′, ̟]) with origin z. Let (x1, . . . , xq, y1, . . .,

ym) be a coordinate system of (D,D′, ̟) aroundz.

Definition . A coordinate system(x1, . . . , xq, y1, . . . , ym) of (D,D′, ̟)
around z is said to be regular with respect to an ordinary integral el- 66

ement E of the system[
∑
, (D,D′, ̟)] if xi(z) = yλ(z) = 0 and if the

following conditions are satisfied:

(i) Er = {L ∈ E : 〈dxr+1, L〉 = · · · = 〈dxq, L〉 = 0 is a regular integral
element of(

∑
) for r = 0, 1, . . . , q− 1;

(ii) y1, . . . , ys−1, where s−1 = s−1(E), are in
∑(0);

(iii) ( dx1)z, . . . , (dxq)z, (dytr+1)z, . . . , (dym)z, where tr = tr(E) = s−1

(E) + · · · + sr(E), are linearly independent modulo J(Er ,
∑

) for
r ≤ q− 1; and
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(iv) E is equal to the tangent vector space at z to the submanifold y1 =

· · · = ym = 0.

PutS = (s0, . . . , sq), wheresr = sr (E) (sq may be zero;S is a system
of characters (cf. 1.2). Aξ in H(S) hass0+· · ·+sq = m−s−1 components.
Namely, if sr+1 , 0, ξs0+s1+···+sr+ j is in Hr+1 for j = 1, . . . , sr+1. Let
(x, y) be a fixed regular coordinate system andξ in H(S) be given.

Definition. A cross-section f of(D,D′, ̟) over an open neighbourhood
U of ̟(z) is said to have initial conditionξ with respect to the regular
coordinate system(x, y) with center z if

(i) f (̟(z)) is in the domain of(x, y) and

(ii) when f is expressed by yλ = ηλ(x1, . . . , xq) we haveη1(x) = · · · =
ηs−1(x) = 0 and

ys−1+s0+sr−1+ j(x1, . . . , xr , 0, . . . , 0) = ξs0+···+sr−1+ j(x1, . . . , xr).

We note that the last condition has a meaning sinces−1+s0+· · ·+sq =67

dim D − q = m.

Definition . A mapping F of H(S; u, v) into Hm
q (u′, v′) is said to be a

solution mapping of the system
[∑
, (D,D′, ω̃)

]
with respect to a regular

coordinate system (x, y) if yλ = Fλ(ξ) is an integral of (
∑

) with the initial
conditionξ.

2.8

Proposition 14. For any ordinary integral element E of[
∑
, (D,D′, ̟)]

of dimension q= dimD′, there exists a regular coordinate system in
(D,D′, ̟) with respect to E and

∑
.

Proof. Take a regular flagE0 ⊂ E1 ⊂ · · · ⊂ Eq = E on E. Take a
coordinate system (x′1, . . . , x

′
q) around̟(z) in D′ (z being the origin of

E) such that

Er = {L ∈ E : 〈dxr+1, L〉 = · · · = 〈dxq, L〉 = 0}
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wherex j = x′jo̟. Sincez is an ordinary integral point there are func-

tions y1, . . . , yt−1 in
∑(0) such that (dy1)z, . . . , (dyt−1)z are linearly inde-

pendent. Then, sincedyσ
∣∣∣E = 0, dy1, . . . , dyt−1, dx1, . . . , dxq are linearly

independent atz. Therefore (x1, . . . , xq, y1, . . . , yt−1) can be completed
into a coordinate system (x1, . . . , xq, y1, . . . , ym) aroundz in (D,D′, ̟).
This coordinate system satisfies (i) and (ii) of the definition of a regular
coordinate system. SinceJ(Er ,

∑
) are ascending withtr = dim(Er ,

∑
)

for r = 1, 2, . . . , q−1 and since they contain (dy1)z, . . . , (dyt−1)z (because
(
∑

) is closed), it is now clear that, by applying a linear transformation of 68

x1, . . . , xq y1, . . . , ym which fixes eachx j (if necessary), we can construct
a coordinate system satisfying (i), (ii), (iii) and (iv) of the definition of a
regular coordinate system. �

Proposition 15. Let (x1, . . . , xq, y1, . . . , ym) be a regular coordinate sys-
tem in (D,D′, ̟) with respect to an ordinary integral element E of
[
∑
, (D,D′, ̟)]. Denote by D1 (resp. D′1) the submanifold of D (resp.

D′) defined by xq = 0 (resp. x′q = 0, where xq = x′qo̟). Let (
∑

1) be the
restriction of(

∑
) to D1. Let Eq−1 =

{
L ∈ E : 〈dxq, L〉 = 0

}
. Then Eq−1

is an ordinary integral element of
[∑

1, (D1,D′1, ̟)
]

and(x1, . . . , xq−1, 0,
y1, . . . , ym) is a regular coordinate system of(D1,D′1, ̟) with respect to
Eq−1 and(

∑
1)

Proof. Eq−1 is a regular integral element of (
∑

1) by Proposition 13 and
the coordinate system (x1, . . . , xq−1, 0, y1, . . . , ym) satisfies the condition
(i) of a regular coordinate system with respect toEq−1 and (

∑
1). The

condition (ii) is clear, becauses−1(E,
∑

) = s−1(Eq−1,
∑

1) by the same
proposition. The restriction mappingi∗z of (D)∗z onto (D1)∗z induces an
isomorphism ofJ(Er ,

∑
) onto J(Er ,

∑
1) and the kernel ofi∗z is (dxq)z.

Then the verification of the condition (iii) for (x1, . . . , xq−1, 0, y1, . . . , ym)
is immediate. �

2.9

We fix in this n0 once for all a regular coordinate system (x, y) in
(D.D′, ̟) with respect to an ordinary integral elementE0 and (

∑
). So, 69



52 2. Exterior differential systems

dim E0
= dim D. We use the notations used in the definition of a reg-

ular coordinate system and Proposition 15. In particularEr = {L ∈
E0; 〈dxr+1, L〉 = · · · = 〈dxq, L〉 = 0}. Set S = (s0, . . . , sq) where
sr = sr (E0) andS1 = (s0, . . . , sq−2, sq−1 + sq). We define an infinite
analytic mappingP (everywhere defined) ofH(S) onto H(S1) by set-
ting

p(ξ) = (ξ1, . . . , ξtq−1, ξtq−1+1(x1, . . . , xq−1, 0), . . . , ξm(x1, . . . , xq−1, 0))

We remark that the elements ofH(S) (resp.H(S1)) can be regar-
ded as initial conditions for integrals of [

∑
, (D,D′, ̟)] (resp.

[ ∑
1, (D1,

D′1, ̟)
]
) as explained inn0 2.7.

Take a cross-sectionf of (D,D′, ̟) over an open neighbourhood of
̟(z) (z being the origin ofE), which is represented byyλ = ηλ(x1, . . . ,

xq) (λ = 1, . . . ,m), with the initial conditionξ in H(S). Now we state
necessary conditions onηλ so that f is an integral of [

∑
, (D,D′, ̟)]

with initial conditionξ in H(S).

I. (x1, . . . , xq−1, 0, y1, (x1, . . . , xq−1, 0), . . . , ym(x1, . . . , xq−1, 0))
should be an integral of

[∑
1(D1,D′1, ̟1)

]
with the initial condition

P(ξ). This follows easily from the definitions involved.

II. Consider the fibred manifold (G q−1(D),D, the canonical projec-
tion). Letα1, . . . , αtq−1 be fibred differential forms on (G q−1(D),D,
canonical projection) defined in a neighbourhood ofEq−1 such that
α1[E′], . . . , αtq−1[E

′] generateJ(E′,
∑

) for any integral elementE′70

nearEq−1 in G q−1(D) (cf. no2.5, and Proposition 5). Now sup-
pose f , expressed byyλ = ηλ(x1, . . . , xq) is an integral of (

∑
)

over an open neighbourhoodU of ω̃(z) in D,M = f (U) is an
integral submanifold ofD. If (x, η(x)) ∈ M denote byEx the
tangent vector space (M)x,η(x) to M at (x, η(x)). Ex is an integral
element of (Σ). Let L′(Ex), . . . , Lq(Ex) be a basis ofEx such that
ω̃(L′(Ex)), . . . , ω̃(Lq(Ex)) are dual todx1|ω̃(Ex), . . . , dxq|ω̃(Ex).
Let E′x be the subspace ofEx generated byL′(Ex), . . . , Lq−1(Ex).
Clearly E′x is an integral element of (Σ). Lq(Ex) must be a solu-
tion of J(E′x,Σ) = 0 and hence a solution ofασ[E′x](L

q(Ex)) = 0
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(σ = 1, . . . , tq−1)(∗). Let us express this condition (∗) by using the
coordinate system. We have, forσ = 1, . . . , tq−1,

ασ =
′

bi
σdxi +

′

aλσdyλ

where
′

bi
σ and

′

aλσ are real analytic functions on a neighbourhood
of Eq−1 in G q−1(D). Since (x, y) is a regular coordinate system
(dx1)z, . . . , (dxq)z, α1[Eq−1], . . . , αtq−1[Eq−1], (dytq−1+1)z . . . , (dym)z

are linearly independent. Hence we can find real analytic functions
cσ
′

σ (σ,σ′ = 1, . . . , tq−1) on a neighbourhood ofEq−1 such that

cσ
′

σ ασ′ = dyσ − di
σdxi − at+µ

σ dyt+µ

(σ,σ′ = 1, . . . , tq−1, t = tq−1, µ = 1, . . . ,m− t)

Sincedx1|Eq−1, . . . , dxq−1|Eq−1 are linearly independent, we have71

the coordinate system (x, y,w1, . . . ,wq−1, . . . , yr
λ
, . . .)(λ = 1, . . . ,m;

r = 1, . . . , q− 1) on a neighbourhood ofEq−1 in G q−1(D) such that

Lr (E′) =
∂

∂xr + wr(E′)
∂

∂xq
+ yr

λ(E
′)
∂

∂yλ

where L1(E′), . . . , Lq−1(E′) is a basis ofE′ dual to dx1|E′, . . .,
dxq−1|E′. Then

Lr (E′x) = Lr (Ex) =
∂

∂xr
+
∂ηλ

∂xr

∂

∂yλ

and thereforeE′x has the coordinateswr(E′x) = 0, yr
λ
(E′x) =

∂ηλ

∂xr
,

Let At+µ(x, y,w, . . . , yr
λ
, . . .), Bσ(x, y,w, . . . , yr

λ
, . . .) be the expres-

sion of the functionsat+µ
σ , bq

σ in terms of the coordinate system.
Then the condition (∗) can be expressed as

∂ησ

∂xq
= Bσ

(
x, η, . . . ,

∂ηλ

∂xr
, . . .

)

+ At+µ
σ

(
x, η, . . . ,

∂ηλ

∂xr
, . . .

)
∂ηt+µ

∂xq
(r = 1, . . . , q− 1)
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On the otherhand, by the initial condition ofη, we have

ηt+µ(x1, . . . , xq) = ξso+···+sq−1+µ(x1, . . . , xq).

Hence, by settingCξ
σ(x1, . . . , xq) y1, . . . , yt, yr

k, . . .) (k = 1, . . . , t; r =
1, . . . , q−1), the function obtained by substitutingyt+µ = ξso+···+sq−1

+ µ(x1, . . . , xq), yi
t+µ =

∂ξso+···+sq−1 + µ

∂xi
(i = 1, . . . , q) in Bσ(x, y, . . .,

yr
λ
, . . .) + At+µ(x, y, . . . , yr

λ
, . . .)yq

t+µ in the above differential equa-72

tion, the condition (∗) can be expressed by

∂ησ

∂xq
= Cξ

σ

(
x1, . . . , xq, η1, . . . ηt, . . . ,

∂ηk

∂xr , . . .

)

(σ, k = 1, . . . , t; r = 1, . . . , q− 1).

Now we claim that the above two conditions are also sufficient. More
precisely we have the following:

Proposition 16. Let f be a cross-section of(D,D′ω̃) over an open
neighbourhood U of̃ω(z), expressed by yλ = ηλ(x1, . . . , xq), with the
initial condition ξ. Assume that the tangent space of M= f (U) at
the point overω̃(z) is sufficiently near the ordinary integral element
E (dim E = q). Then f is an integral of(Σ) if and only if the follow-
ing two conditions are satisfied:

(i) yλ = ηλ(x1, . . . , xq−1, 0) represent an integral of(Σ1) with the ini-
tial condition P(ξ);

(ii) (y1 = η1(x1, . . . , xq), . . . , yt = ηt(x1, . . . , xq)) is a solution of the
system of equations

(**)
∂yσ
∂xq
= Cξ

σ

(
x1, . . . , xq, y1, . . . , yt, . . . ,

∂yk

∂xr
, . . .

)

In order to prove the proposition we make the following preliminar-
ies:
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Let ϕ be a homogeneous differential form of degreeh on D and let
f be a cross-section of (D,D′, ω̃) over an open neighbourhood of ˜ω(z)
in D. Denote, as before, byM the imagef (U). Let iM : M → D be the
injection mapping. Then

i∗Mϕ =
∑

i1<···<ih

ϕ
i1···ih
M dxi1 ∧ · · · ∧ dxih,

where xioiM is also denoted byxi. Then by definition (cf. no2.4) of 73

ϕ[i1, . . . , ih] we have

ϕ
i1,...ih
M (x) = (ϕ[i1, . . . , ih])(Ex),

where againEx is the tangent vector space toM at x. Ex is regarded
as an element ofG q(D). Sincei∗M(dϕ) = d(i∗Mϕ), the above equality
implies

(χ)
h+1∑

s=1

(−1)s
∂ϕi1,...̂is···ih+1

∂xis
= ((dϕ)[i1, . . . , ih+1])(Ex)

For a fibred differential formα of the fibred manifoldG q−1D,D,
the canonical projection), we define a function ˜α of G q(d; x1, . . . , xq) as
follows: ForE in G q(D; x1, , . . . , xq) let π(E) be the subspace defined by
dxq = 0, or equivalently generated byL1(E), . . . , Lq−1(E). Setα̃(E) =
(α[π(E)])(Lq(E)). In this notation the condition (∗) can be expressed as

(* 1) α̃σ(Ex) = 0 (σ = 1, . . . , tq−1 = t),

where we adopt same notations as before. We choose real analytic func-
tions f1, . . . , fk (defined on a neighbourhood ofEq−1 = π(E)) from
F(

∑
, x1, . . . , xq) (cf. Proposition 7), such thatf1 = · · · = fk = 0 is a

regular local equation ofℓq−1 ∑
on a neighbourhood ofEq−1 in G q−1D.

We recall thatf1oπ = · · · = fkoπ = α̃1 = · · · = ∝̃t = 0 is a regular local
equation ofℓq ∑

on a neighbourhoodU of E (cf. Proof of Proposition
7). TakeU so small that, besides the above property, we have real ana-74

lytic functionsCσ′

σ , as in (#), defined onU and such that every element
E ofU ∩ ℓq ∑

is ordinary andπ(E1) is regular.
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proof of the proposition 16. We have only to show that the condi-
tions are sufficient. We assume that the tangent vector space ofM at
the point over ˜ω(z) is in the above neighbourhoodU of E. To prove
that M is an integral submanifold is the same as proving thatEx are
in ℓq ∑

. By the condition (2) which is equivalent to (∗) (and hence to
(∗′)), α̃σ(Ex) = 0. Hence it remains to show thatfioπ(Ex) = · · · =
fkoπ(Ex) = 0. Setgθ(x1, . . . , xq) = fθoπ(Ex) for θ = 1, . . . , k. Since fθ
are inF(

∑
, x1, . . . , xq−1) eachfθ is expressed as

fθ = ϕ[i1, . . . , ih], ϕ ∈
(h)∑
,

where 1≤ i1 · · · < ih ≤ q− 1.

Therefore, by (χ), we obtain

(χχ)(−1)h
∂gθ
∂xq
=

h∑

s=1

(−1)s
∂ϕ

i1···̂is···ihq
M

∂xis
− ((dϕ)[i1, . . . , ih, q])(Ex)

Sinceϕ anddϕ are in (
∑

) and since

f1oπ = · · · = fkoπ = α̃1 = · · · = α̃t = 0

is a regular local equation ofℓq ∑
aroundE, we have

ϕ[i1, . . . , îs, . . . , ih, q] = Xθ
s.( fθoπ) + Yλ

s .α̃λ,

dϕ[i1, . . . , ih, q] =′ Xθ.( fθoπ) +′ Yλ.α̃λ,

whereXθ
s,
′ Xθ,Yλ

s ,
′ Yλ are real analytic functions on the neighbourhood75

of E. (This is here, where we use the closeness of (
∑

) most essentially).
Therefore, by the definition ofϕi1,...ih

M , the equation (χχ) can be written
in the form

∂gθ
∂xq
=Wθ′

θgθ′ + Zθ
′,r
θ

∂gθ′

∂xr
.

In the above ˜α(E′x) and their derivatives do not appear because they
are already known to be zero. This equation is of Cauchy Kowalewski
type. Hence the solutiongθ(x1, . . . , xq) is uniquely determined by func-
tionsgθ(x1, . . . , xq−1, 0). Butgθ(x1, . . . , xq−1, 0) are zero, because of the
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condition (1). Thengθ = 0 is clearly the solution, so we proved that
gθ(x1, . . . , xq) = 0 . ThereforeM is an integral submanifold andf is an
integral of (

∑
).

2.10

Now we are in a position to formulate and prove the main theorems
of this Chapter. Let [

∑
, (D,D′, ω̃)] be a defferential system with inde-

pendent variables. Setq = dimD′. Let Eo be aq-dimensional ordi-
nary integral element of the system. Take a regular coordinate system
(x1, . . . , xq, y1, . . . , ym) = (x, y) in (D,D′, ω̃) with respect toEo and

∑
,

which is known to exist by Proposition 14. ToEo we have already as-
sociated a system if charactersS, andH(S) was considered to be initial
conditions for cross sections over open neighbourhoods of ˜ω(z) wherez
is the origin ofEo (cf, 2.7). We remark thatxi(z) = yλ(z) = 0.

Under the above notations and assumptions, we have the following
theorem:

Theorem 1. (i) For any givenξ in H(S), the germ of integrals of 76

[
∑
, (D,D′, ω̃)] over ω̃(z) with the initial conditionξ (with respect

to (x, y)) is unique if it exists;

(ii) there exists a solution mapping F with respect to(x, y) such that
the mappingξ → F(ξ) − F(0) is finite analytic;

(iii) if yλ = 0 is an integral, then there exists a regular solution mapping
and any two such regular solution mappings are equivalent and
determine a germ of infinite analytic mapping.

Let p be the largest integral such that sp , 0, sp+1 = · · · = sq = 0.

Theorem 2. Let M0 be a germ of integral submanifolds of[
∑
, (D,D′,

ω̃)] at z. Assume that the tangent vector space E0 to M0 at z is an
ordinary integral element of(

∑
). Then the set of germs overω̃(z) of

integrals of[
∑
, (D,D′, ω̃)] depend on sp functions in p variables around

M0.

The proofs of theorems 1 and 2 are given in the following section.
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2.11

We reduce the problem to the case of (q− 1)-variables. For this purpose
we introduce the mappingP of H(S) into H(S′), whereS = (s0, . . . , sq)
andS′(s0, . . . , sq−2, sq−1 + sq), defined by

Pσ(ξ)(x1, . . . , xq−1) = ξσ(x1, . . . , xq−1), σ ≤ so + · · · + sq−1

Pso+···+sq−1+σ(ξ)(x1, . . . , xq−1)

= ξso+···+sq−1+σ(x1, . . . , xq−1, 0) for 1≤ σ ≤ sq

Let (D1,D′1, ω̃) be the subfibred manifold of (D,D′, ω̃) whereD177

(resp.D′1) is defined by the coordinate system (x1, . . . , xq−1, 0, y1, . . . ,

ym) (resp. (x1, . . . , xq−1, 0)) and ω̃1 is the restriction of ˜ω to D1. Let
(
∑

1) be the differential system onD1 generated by the restriction of (
∑

)
to D1 and letE be an ordinary integral element of [

∑
, (D,D′, ω̃)].

Now according to Proposition 16 a sectionf of (D,D′, ω̃) repre-
sented byyλ = ηλ(x1, . . . , xq) with the initial conditionξ at ω̃(z) is an
integral of [

∑
, (D,D′, ω̃)] if and only if the following two conditions are

satisfied:

(1) yλ = ηλ(x1, . . . , xq−1, 0) represents an integral of [
∑

1, (D1,D′1, ω̃1)]
with the initial conditionP(ξ) at ω̃(z)

(2) yk = ηk(x1, . . . , xq) for k = 1, . . . t = tq−1, is the system of solutions
of the Cauchy -Kowalewski system of equations

(G ξ)
∂yσ
∂xq
= Aξσ(x, y1, . . . , yt,

∂y′σ
∂xr

(σ,σ′ = 1, . . . , t; r = 1 · · · q− 1)

HereAξσ(x1, . . . , xq, y1, . . . , yt, . . . , yr
σ′
, . . .) is equal to

Aσ
(
x1, . . . , xq, y1, . . . , yt, . . . , y

r
σ, . . . , ξt+1(x1, . . . , xq),

. . . , ξm(x1, . . . , xq), . . . ,
∂ξt+µ

∂x j
, . . .

)

with Aσ(x1, . . . , xq, y1, . . . , yt, . . . , yr
σ′
, . . . , yt+1, . . . ym, . . . , y

j
t+µ, . . .) are

analytic functions of all their arguments fort = s−1 + · · · + sq−1; r =
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1, . . . , q− 1; j = 1, . . . , q′σ,σ′ = 1, . . . , t. (G ξ) is a system of equations
of Cauchy-Kowalewski type with parameter in which the derivatives of
the parameters also applear . There exists a unique solutions of the sys-
tem (G ξ) by Theorem 5 of Chapter I. Hence, by Theorems 5 and 6 of78

ChapterI , there exists a solution mappingF′′ of (G ξ) and∃′′ represents
a germ of infinite analytic maps ofHt

q−1 + Hm−t
q into Ht

q.
We complete the proof of Theorem 1 by induction onq.

(i) Let f be a germ of integrals of [
∑
, (D,D′, ω̃)] over ω̃(z) with the

initial conditionξ. Then the restrictionf1 of the cross-sectionf to
D1 is a germ of integrals of [

∑
1, (D,D

′
1, ω̃1)] with the initial con-

dition P(ξ) at ω̃(z) . So f1 is uniquely determined by the induction
assumption. Thenf is unique sinceη1(x), . . . , ηt(x) is the solution
of (G ξ) with the prescribed initial functionsησ(x1, . . . , xq−1, 0) and
ηt+τ(x) = ξτ(x).

(ii) Let E′ be the subspace ofE defined bydxq = 0. By Proposi-
tion 16,E′ is an ordinary integral element of [

∑
1(D1,D′1, ω̃1)] and

(x1, . . . , xq−1, 0, y) is a regular coordinate system of (D1,D′1, ω̃1)
with respect toE′ and (

∑
1). Let F′ be a solution mapping of

[
∑

1(D1,D′1, ω̃1)] with respect to (x1, . . . , xq−1, 0, y). F′ is a map-
ping of H(S′; u1, v1) into Hm

q−1(u′1, v
′
1) with suitableu1, v1, u′1, v

′
1,

clearly we can chooseu′1 arbitrarily small. Since the mappingζ →
F′(ζ)−F′(0) is finite analytic, choosingv1 small, we can make sup{∣∣∣∣∣F′(ζ) − F′(0)

∣∣∣∣∣; ζ ∈ H(S′; u1, v1)
}

arbitrarily small. On the other-

hand [F(0)](0) = 0 because the cross-sectionyλ = Fλ(0) must pass
throughz. Therefore we can choosev′1 arbitrarily small (cf. Propo-
sition 1, Chapter I). Hence we can assume without loss of gener-
ality thatF ′′ has a representativeF′′ which mapsHt

q−1(u′1, v
′
1) + 79

Hm−1
q u′1, v

′
1) into Ht

q(u′, v′). Setu = max(u1, u′1), v = min(v1, v′1).
Let F be the mapping ofH(S; u, v) into Hm

q (u′, v′) defined by

Fσ(ξ) = F′′((F′1(P(ξ)), . . . , F′t (P(ξ))), (ξt+1, . . . , ξm))(σ = 1 · · · t),

Ft+λ(ξ) = ξt+λ(λ = 1 · · ·m− t). Then by Proposition 16 it is easy
to verify thatF satisfies the conditions of the solution mapping ex-
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cept for the fact that the mappingξ → F(ξ) − F(0) is infinite ana-
lytic. But this follows from the remark in section 1.9 (see page 25),

(iii) is clear from (ii).

Proof of Theorem 2.Choose (x, y) such thatM0 is represented byyλ =
0. We define a germY of finite analytic mappings ofHm

q into H(S)
as follows: Takev sufficiently small and for eachη ∈ Hm

q let fη be the
germ of cross-sections of (D,D′, ω̃) represented byyλ = ηλ(x1, . . . , xq)
aroundω̃(z). Denote byG(η) the initial condition of fη with respect
to (x, y). Now it is clear thatY0F is identity sinceY associates the
initial condition. The definition ofF implies the second condition of
the definition of the parametrization. On the otherhand the choice ofS
andp implies thatH(S) � H

sp
p . This proves the Theorem 2.

Proposition 17. Under the notation of Theorem 1, let M be the integral
of [

∑
, (D,D′, ω̃)] with initial condition0. Then the tangent vector space

of M at z is equal to Eo.

Proof. (by induction onq) Denote byE the tangent vector space. By80

induction assumption applied to [
∑

1, (D1,D′1, ω̃1)],, we can assume that
Lr(E) = Lr(Eo) for r = 1, . . . , q− 1. SinceM has initial condition 0, the
condition (iv) of the regular coordinate system implies that〈dyt+ρ, Lq(E)〉
= 〈dyt+ρ, Lq(Eo)〉 for ρ = 1, . . . ,m− t. SinceLq(E) andLq(Eo) are so-
lutions of J(Eq−1,

∑
) = 0, the condition (iii) of the regular coordinate

system implies thatLq(E) = Lq(Eo). HenceE = E0. �

corollary or proposition 17. Let E be an ordinary integral element
(with origin z) of a differential system (

∑
). Then there is an integral

submanifoldM of (
∑

) such that the tangent vector space toM at z is
equal toE.



Chapter 3

Prolongation of Exterior
Differential Systems

3.1

In the chapter, we shall introduce the notion of jets of mappings of one 81

manifold into another and give the construction of prolongation of a
given differential system. For this purpose we make use of the notion of
ℓ- jets of mappings.

Let M′ and M be two infinitely differentiable (C∞) manifolds and
let x′ and x denote points ofM′ and M respectively. Letf be aC∞

mapping of an open neighbourhood ofx′ in M′ into M. We shall intro-
duce an equivalence relation in the set of all suchC∞ mapsf . The open
neighbourhood ofx′ may depend on the functionf . Let (w1, . . . ,wn′)
and (x1, . . . , xn) be coordinate systems atx′ in M′ and x in M respec-
tively. Let ℓ be an integer≥ 0.

Definition. Two C∞ mappings f and g, of open neighbourhood of x′ in
M′ into M, are said to beℓ-equivalent, and is denoted by fℓ̃g, if , for
every h≤ ℓ,

∂h fi
∂wi1 · · · ∂wih

(x′) =
∂hgi

∂wi1 · · · ∂wih
(x′)

for all (i1, . . . , ih) where fi and gi are the components of f and g respec-

61
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tively.

Clearlyℓ̃ is an equivalence relation and this definition of equivalence
is independent of the choice of the coordinate systems as canbe easily82

verified.

Definition. An equivalence class of C∞ mappings such as above under
ℓ̃ is called anℓjet of mappingsat x′.

An ℓ-jet of mappings at x′ containing a mapping f is denoted by
jℓx′ ( f ).

Example .Let M′ be the real line R and x′ the origin. Then any C∞

mapping f of an open neighbourhood of0 into M is a C∞ curve through
the point x= f (0) in M. A jet is thus a generalisation of the notion of
high order of contact of two curves.

Let Jℓ(M′,M) = ∪
{
jℓx′ ( f ) : x′ ∈ M′

}
be the set of allℓ-jets ofC∞

mappings ofM′ into M. Let α (resp.β) be the mapping ofJℓ(M′,M)
onto M′(resp.M) which associates to every jetjℓx′ ( f ) in Jℓ(M′,M) the
point x′ of M′ (resp.x of M). the pointx′ is called the source and the
point x = f (x′) the target of the jetjℓx′( f ).

We can provideJℓ(M′,M) with the structure of aC∞ manifolds as
follows: Let X ∈ Jℓ(M′,M) with α(X) = x′β(X) = x, and supposeV′

andV be coordinate neighbourhoods ofx′ and x in M′ and M respec-
tively. Let (w1, . . . ,wn′) and (x1, . . . , xn) be the coordinate systems atx′

andx in V′ andV respectively. Denote byH the set

H =

{
X′ ∈ Jℓ(M′,M) : α(X′) ∈ V′ and β(X′) ∈ V

}

H can be taken as a coordinate neighbourhood ofX in Jℓ(M′,M) defin-
ing the manifold structure. The explicit coordinate systemat X in H83

can be given as follows:
SupposeX′ = jℓy( f ) ∈H with α(X′) = y. The mapping

X′ →

α(X′), β(X′), . . . ,
∂h f j

∂wi1 · · · ∂wih
(y), . . .

 .

of H into V′ × V ×
{
(. . . ,Pi1···ih

j , . . .)
}
, whereh ≤ ℓ, 1 ≤ i1, . . . , ih ≤

n, j = 1, . . . ,m), is objective. Here the functionsPi1,...ih
j are assumed
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to be symmetric with respect toi1 · · · ih. Clearly this mapping is well
defined independent of the choice of the respectivef of jℓy( f ). Thus a
coordinate system atX′ is

α(X′), β(X′), . . . ,
∂h f j

∂wi1 · · · ∂wih
(y), . . .

The change of coordinate can again be verified to beC∞. Therefore,
this defines aC∞ manifold structure onJℓ(M′,M).

WhenM′ andM are real analytic manifolds,Jℓ(M′,M) can also be
made a real analytic manifold in the same way. This is the casein which
we will be interested in. It is, now, easy to see that (Jℓ(M′,M),M′ ×
M, α × β) is a fibre bundle overM′ × M with projection mappingα × β
and the structure group a linear group.

Let (M,M′, ω̃) be a fibred manifold. Let us denote byJℓ(M,M′, ω̃)
the set of all jetsX = jℓx′ ( f ) in Jℓ(M′,M) of cross-sectionsf of (M,M′,
ω̃) over open neighbourhoods ofx′ in M′. Jℓ(M,M′, ω̃) is a real analytic
submanifold ofJℓ(M′,M) as is clear from the following: 84

Let (x, y) be a coordinate system in (M,M′, ω̃), and letV be the
coordinate neighbourhood inJℓ(M′,M) associated with (x, y). Then
V ∩ Jℓ(M,M′, ω̃) is a submanifold. In fact, letX ∈ V with α(X) =
xo be represented by a mapping (X) → ( f (x), g(x)). X has the coor-

dinatex0, f (x0), g(x0), . . . ,
∂h f j

∂xi1 · · · ∂xih
(xo), . . . ,

∂hgλ
∂xi1 · · · ∂xih

(xo), . . .) in

V . Then X is in Jℓ(M,M′, ω̃) if and only if f (xo) = xo,
∂ f j

∂xi
(xo) =

δ
j
i ,

∂
hf j

∂xi1 · · · ∂xih
(xo) = 0 for h ≥ 2. ThusV ∩ Jℓ(M,M′, ω̃) is a subman-

ifold. Moreover, it has a coordinate system (x, y, yi1···ih). More explicitly
X = jℓx(g), whereg(x′) = (x′, gλ(x′) is a cross-section, has the coordi-
nates:yλ = gλ(x), yi1···ih = ∂hgλ/∂xi1 · · · ∂xih. Thus coordinate system in
Jℓ(M,M′, ω̃) is called the coordinate system corresponding to the coor-
dinate system (x, y) of (M,M′, ω̃).

Let U′ be an open set of a manifoldM′ andM be another manifold.
For a mappingf of U′ into M we denote byjℓ( f ) the submanifold of
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Jℓ(M′,M) defined by the mapping

U′ → Jℓ(M′,M)

x′ → jℓx′( f )

This mapping is injective becauseαo jℓx′ ( f ) = x′. If f is a cross-
section of a fibred manifold (M,m′, ω̃) over an open setU′ of M′ then85

jℓ( f ) is a cross-section of the fibred manifold (Jℓ(M,M′ω̃, ),M′, α).

3.2

Consider now a fibred manifold (D,D′, ω̃) whereD andD′ are domains
in Euclidean spaces Rp×Rm and Rp respectively, and where ˜ω is the pro-
jection. We shall denote by

∏[1](ℓ) the set of all differential formsω of
degree 1 onJℓ(D,D′, ω̃) such that for any cross- sectionf of (D,D′, ω̃)
over an open set ofD′, the restrictionω| jℓ( f ) is zero. This can equiva-
lently be expressed by sayingjℓ( f )∗(ω) = 0 when jℓ( f ) is regarded as
cross- section of (Jℓ(D,D′, ω̃),D′, d).

Proposition 1.
∏[1](ℓ) is finitely generated over the ring of real analytic

functions∧0(Jℓ(D,D′, ω̃)).

More precisely, if (x, y) is a coordinate system in (D,D′, ω̃) and if
(x′, x, y, . . . , yi1...ih, . . .) is the corresponding coordinate system ofJℓ(D,
D′, ω̃) then

∏[1](ℓ) is generated over∧0(Jℓ(D,D′, ω̃)) by

ωλ = dyλ − yi
λdxi

ω
i1···ih
λ
= dyi1···ih

λ
− yi1···ihi

λ
dxi (h ≤ ℓ − 1)

Proof. First of all we shall show thatωi1···ih
λ

are in
∏[1](ℓ). Let f be

a cross-section of (D,D′, ω̃) over an open setU′ of D′ represented by
yλ = fλ(x1, . . . , xq) then jℓ( f ) is represented by86

yλ = fλ(x);

yi1···ih
λ
=

∂h fλ
∂xi1 · · · ∂xih

�
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Hence

jℓ( f )∗ωλ = d fλ −

(
∂ fλ
∂xi

)
dxi = 0;

jℓ( f )∗ωi1···ih
λ
= d

(
∂h f

∂xi · · · ∂xih

)
−

[
yii ···ih.i
λ

jℓ( f )
]
dxi

= d

(
∂h f

∂xi1 · · · ∂xih

)
−

∂h+1 fλ
∂xi1 · · · ∂xi1∂xi

dxi = 0.

Conversely, letω ∈
∏[1](ℓ). We know that

{
dxi , dyi1···ih

λ

}
form a

basis of Pfaffian forms onD. Hence anyω ∈
∏[1](ℓ) can be expressed

as
ω = aidxi + bλi1···iℓdyi1···iℓ

λ
+ cλi1···ihω

i1···ih
λ

(h ≤ ℓ − 1)

Let f be any cross - section of (D,D′, ω̃) represented byyλ = fλ(x).
Then we obtain

jℓ( f )∗(ω) = [aio jℓ( f )dxi ] +
[
bλi1···iℓo jℓ( f )

]
∂ℓ+1 f

∂xi1 · · · ∂xiℓ∂xi
dxi

Thesejℓ( f )∗(ω) are differential forms onD′. A necessary and suffi-
cient condition forjℓ( f )∗(ω) = 0 is that

[
aio jℓ( f )

]
dxi +

[
bλi1···iℓo jℓ( f )

]
∂ℓ+1 f

∂xi1 · · · ∂xiℓ∂xi
dxi = 0.

This equality holds for any cross-sectionf if and only if ai
= 0, 87

bλi1···i = 0. Therefore we haveω = cλi1···ihω
i1···ih
λ

so much so thatωi1···ih
λ

generate
∏[1](ℓ).

Let us denote by
∏

(ℓ) or by
∏

(ℓ; (D,D′ω̃)) if there is any possibility
of confusion, the differential system generated by

∏[1](ℓ) over the ring
∧0(Jℓ(D,D′, ω̃)).

Proposition 2. Let F be a cross-section of the fibred manifold(Jℓ(D,
D′, ω̃),D′, α) over an open set U of D′. Then there exists a cross-section
f of (D,D′ω̃) over U such that F= jℓ( f ) if and only if F is an integral
of

∏
(ℓ).
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Proof. It is immediate thatF is an integral of
∏

(ℓ) if F = jℓ( f ) because
of the definition of

∏
(ℓ). �

Conversely,F being a cross-section it can be expressed byyλ =
Fλ(x), yi1···ih

λ
= F i1···ih

λ
(x) so that we can write

F∗ωi1···ih
λ
= dFi1···ih

λ
− F i1···ihi

λ
(x)dxi .

F being an integral of
∏

(ℓ), F∗ωi1···ih
λ

= 0 and therefore we obtain

thatF i1···ihi
λ

(x) =
∂F i1···ih

λ

∂xi
(x). ThereforeF = jℓ( f ) where f is represented

by yλ = fλ(x) over the open setU of D′ and this proves the existence of
a sectionf of (D,D′, ω̃) such thatF = jℓ( f ).

Suppose (D,D′, ω̃) is a fibred manifold with dimD′ = p. Then we
can identifyJ1(D,D′, ω̃) with of G p(D,D′.ω̃) canonically by means of
the following map: LetX ∈ J1(D,D′, ω̃). If X = J1

z( f ) we associate88

to X the element (d f)z′ ((D′)z′) of G p(D,D′, ω̃). Here we observe the
fact that (d f)z′ , is injective. It is clear that this canonical identification
is independent of the choice of the representative sectionf of the jetX.

3.3

We shall define the notion ofℓ jets of differential forms on aC∞ mani-
fold M. Letz ∈ M and (x1, . . . , xn) be a coordinate system atz in M. Let
ϕ andθ be two differential forms of the same degree (say a ) having the
following expressions with respect to the coordinate system (x1, . . . , xn):

ϕ =
∑

i1<···<ia

ϕi1···iadxi1 ∧ · · · ∧ dxia

and θ =
∑

i1<···<ia

θi1···iadxi1 ∧ · · · ∧ dxia

respectively.

Definition. ϕ is said to beℓ− equivalent toθ, and is denoted byϕℓ̃, if

jℓz
(
ϕi1···ia

)
= jℓz

(
θi1···ia

)
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It is easy to verify that̃ℓ is an equivalence relation and is independent
of the choice of the coordinate system.

Definition. An equivalence class of differential forms is called anℓ− jet
of differential formson M at z and is denoted by jℓ

z(ϕ).

The following are almost immediate consequences of this definition.

(1) jℓ+1
z (ϕ) = jℓ+1

z (θ) implies jℓz(dϕ) = jℓz(dθ). 89

(2) If M′ and M are twoC∞ manifolds, f andg are twoC∞ maps of
M′ into M, andϕ andθ are two differential forms onM such that
jℓz′( f ) = jℓz′(g) and jℓz(ϕ) = jℓz(θ) wherez = f (z′) = g(z′) then
jℓ−1
z′ ( f ∗ϕ) = jℓ−1

z′ (g∗θ).

Now consider an exterior differential system [
∑
, (D,D′, ω̃)] with in-

dependent variables. We pose the following definition.

Definition. Anℓ− jet X ∈ Jℓ(D,D′, ω̃) is an integralℓ− jet of the system
[
∑
, (D,D′, ω̃] if the jet X = jℓz( f ) satisfies jℓ−1

z′ ( f ∗ϕ) = oz′ the zeroℓ−
jet of differential forms at z′, for everyϕ ∈ (

∑
).

This is again independent of the choice off . By the canonical iden-
tification of J1(D,D′ω̃) andY p(D,D′, ω̃), the notion of integral 1-jets
is equivalent to the notion ofp-dimensional integral elements.

Fix a coordinate system (x, y) of (D,D′, ω̃). For anyϕ in ∧a(D) and
for set of integersi1 < · · · < ia define a mappingF i1···ia

ϕ of Jℓ(D,D′, ω̃)
into Jℓ(D′,R) by settingF i1···ia

ϕ (X) = jℓ−1
α(X)(ϕ

i1···ia
f ) whereX = jℓ

α(X)( f ) ∈

Jℓ(D,Dω̃) andϕi1···ia
f are the coefficients in f ∗ϕ =

∑
ϕ

i1···ia
f dxi1∧···∧dxia

.

Let (x, . . . ,wi1···ir , . . .)r ≤ ℓ − 1, be a coordinate system inJℓ−1(D′R)

wherewi1···ir is given bywi1···ir (L) =
∂rg

∂xi · · · ∂xir
for any jℓ−1

z (g) = L ∈

jℓ−1(D′, R). Denotewi1···ir (Fk1···ka
ϕ (X)) by Fk1···ka;i1···ir

ϕ (X).

In particularFk1···ka
ϕ = ϕ

k1···ka
f (the caser = 0). It can be verified that 90

Fk1···ka;i1···iϕ is a real analytic function onJℓ(D,D′ω̃), when the formϕ is
real analytic.
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Remarks. (1) Given a differential system[
∑
, (D,D′ω̃)] with indepen-

dent variables, anℓ− jet X in Jℓ(D,D′, ω̃) is an integralℓ− jet of the
system if and only if each Fk1···ka;i1···ir

ϕ (X) = 0 for anyϕ ∈
∑(a)(0 ≤

k1, . . . , ka ≤ p; 1 ≤ i1, . . . ir ≤ p; a = 0, 1, . . . ; r ≤ l − 1). This is
an immediate consequence of the definition of an integralℓ− jet of
such a differential system.

(2) Fk1···ka;i1···ir
ϕ is symmetric with respect to i1, . . . ir and anti-symmetric

with respect to k1 · · · ka.

We shall denote byF ℓ(
∑

) the set of all Fk1···ka;i1···ir
ϕ whereϕ ∈∑(a), (a = 0, 1, . . . and r ≤ ℓ−1). Therefore anℓ− jet X is an integral

of [
∑
, (D,D′, ω̃)] if and only if F(X) = 0 for every F∈ F ℓ(

∑
).

(3) If ϕ, ψ are two differential forms of degree a, then Fk1···ka;i1···ir
ϕ+ψ

=

Fk1···ka;i1···ir
ϕ + Fk1···ka;i1···ir

ψ
.

(4) If ϕ is a differential form of degree a1 andψ is a differential form of
degree a2, then, setting

a = a1 + a2Fk1···ka;i1···ir
ϕ+ψ

= 0 modF
h1···ha2 ; j1··· js
ψ

, s≤ r).

Denote byρℓ
′

ℓ
(ℓ′ ≥ ℓ) the natural projection ofJℓ

′

(D,D′, ω̃) onto

Jℓ(D,D′, ω̃). If we write (ℓ)Fk1···ka;i1···ir
ϕ the function Fk1···ka;i1···ir

ϕ on
Jℓ(D,D′, ω̃) for the sake of precision, then

(ℓ′)Fk1···ka;i1···ir
ϕ =

(ℓ)Fk1···ka;i1···ir
ϕ oρℓ

′

ℓ

Because of this relation, there will be no confusion when we omit91

the index (ℓ) in (ℓ)Fk1···ka;i1···ir
ϕ . Thus Fk1···ka;i1···ir

ϕ is a function onJℓ

(D,D′ω̃) for ℓ ≥ r + 1.

Proposition 3. If ϕ is a differential form of degree a, then for r≤ ℓ − 2
we have the identity

dFk1···ka;i1···ir
ϕ ≡ Fk1···ka;i1···ir i

ϕ dxi (mod
∏

(ℓ)).
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Proof. Supposejℓz( f ) = x ∈ J(D,D′, ω̃); then we have

f ∗ϕ =
∑

k1<···<ka

ϕ
k1···ka
f dxk1 ∧ · · · ∧ dxka

�

Therefore,Fk1···ka;i1···ir
ϕ (X) =


∂ϕ

k1···ka
f

∂xi1 · · · ∂xir


z=α(X)

On the otherhand,

becausedxi , ωλ, . . . ω
i1···ia
λ

(a ≤ ℓ − 1), dyi1···iℓ
λ

form a base for Pfaffian

forms onJℓ(D,D′, ω̃) andωi1···ia
λ

generate
∏

(ℓ), we can write

dFk1···ka;i1···ir
ϕ ≡ A jdxj + Aλji ··· jdyj1··· j1

λ

modulo
∏

(ℓ). But for r = ℓ − 2, Fk1···ka;i1···ir
ϕ are functions only of the

argumentsx, y, . . . , yh
λ
, . . . , yh1···hr+1

λ
. Hence the termsAℓj1··· jℓdyj1··· jℓ

λ
do

not appear in the expression ofdFk1···ka;i1···ir
ϕ , i.e., dFk1···ka;i1···ir

ϕ ≡ A jdxj

modulo
∏

(ℓ).
Now jℓ( f ) being a cross-section ofJℓ(D,D′, ω̃) over an open neigh-92

bourhood ofz= α(X) we obtain

jℓ( f )∗
(
dFk1···ka;i1···ir

ϕ

)
≡

[
A jo jℓ( f )

]
dxj modulo [jℓ( f )∗

(∏
(ℓ)

)
]

Since jℓ( f )∗(
∏

(ℓ)) = 0 the above congruence becomes an inequal-
ity,

( jℓ( f ))∗
(
dFk1···ka;i1···ir

ϕ

)
= [A jo jℓ( f )]dxj .

On the other hand

jℓ( f )∗(dFk1···ka;i1···ir
ϕ ) = d(Fk1···ka;i1···ir

ϕ o jℓ( f ))

= d
( ∂rϕ

k1···ka
ℓ

∂xiℓ · · · ∂xir

)

=

∂r+1ϕ
k1···ka
f

∂xi1 · · · ∂xir∂x j
dxj
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so much so that we obtain

A jo jℓ( f ) =
∂r+1ϕ

k1···ka
f

∂xi1 · · · ∂xir

= Fk1···ka;i1···ir , j
ϕ o jℓ( f )

Therefore jℓ( f )∗(dFk1···ka;i1···ir
ϕ − Fk1···ka;i1···ir j

ϕ dxj) = 0 for any cross-
section f . Hence, by the definition of

∏
(ℓ)

dFk1···ka;i1···ir
ϕ ≡ Fk1···ka;i1···ir

ϕ dxj (mod
∏

(ℓ)).

Proposition 4. For anyϕ ∈ ∧′(D) we have the relation93

F i;k1···kν j
ϕ − F j;k1···kν i

ϕ = F ji ;k1···kν
ϕ (ν ≤ ℓ − 2)

Proof. Let f be a cross-section of the fibred manifold (D,D′, ω̃); we
can then write

f ∗ϕ = ϕi
f dxi and f ∗(dϕ) =

1
2

(∂ϕi
f

∂x j
−
∂ϕ

j
f

∂xi

)
dxj ∧ dxi

�

But, on the otherhand we havef ∗(dϕ) =
1
2

(dϕ) ji
f dxj ∧dxi and there-

fore it follows that

(dϕ) ji
f =

∂ϕi
f

∂x j
−
∂ϕ

j
f

∂xi
.

But

F ji ;k1···k
dϕ

(
jℓα(X)( f )

)
=

∂ν

∂xk1 · · · xkν

[
(dϕ) ji

f

]

=
∂ν+1

∂xk1 · · · ∂xkν∂x j

[
ϕi

f

]
−

∂ν+1

∂xk1 · · · ∂xkν∂xi

[
ϕ

j
f

]

= F i;k1···kν j
ϕ − F j;k1···kν i

ϕ .

Hence the required identity.
By the same method as in the proof of Proposition 3, we prove the

following proposition:
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Proposition 5. If ϕ is a form of degree a, then on J1(D,D′, ω̃) we have

ϕ ≡ Fk1···ka
ϕ dxk1 ∧ · · · ∧ dxka

(
mod

∏
(1)

)
.

Consider an exterior differential system [
∑
, (D,D′ω̃)] with inde- 94

pendent variables. Since (
∑

) is finitely generated as an ideal in∧(D)
(closed for the operatord of exterior derivation), we see thatF ℓ(

∑
)

is also finitely generated. Let
∏

(ℓ) be the exterior differential system
constructed on (Jℓ(D,D′, ω̃),D′, α). These considerations lead to the
following definition.

Definition . The differential system generated by
{∏

(ℓ),F ℓ, β∗
∑}

on

Jℓ(D,D′, ω̃) is called thestandard prolongationof (
∑

) to the space of
ℓ− jets and is denoted by PℓS[

∑
, (D,D′, ω̃)].

The following is a consequence of this definition and the Proposition
2. (Remark thatα = ω̃ ◦ β).

Proposition 6. For an integral f of the system[
∑
, (D,D′, ω̃)] the cross-

section jℓ(r) of (Jℓ(D,D′, ω̃),D′, α) is an integral of PℓS[
∑

; (D,D′, ω̃)].
Conversely for any integral F of PℓS[

∑
; (D,D′, ω̃)] there exists a unique

cross- section f of(D,D′, ω̃) such that F= jℓ( f ); when this is so f is
an integral of(

∑
).

3.4 Admissible Restriction

Let D,D1 be two domains in Euclidean spaces such thatD1 ⊆ D and
(
∑

) be a differential system onD.

Definition. A differential system(
∑

1) on D1 is said to be an admissible
restriction of(

∑
) to D1 when

(i) (
∑

1) is generated byi∗(
∑

), i being the injection map ofD1 into D

(ii) there exist functionsf1, . . . , fa in
∑(0) such thatd f1, . . . , d fa are 95

linearly independent at each point ofD andD1 is the set of com-
mon zeros off1, . . . , fa.
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Proposition 7. If (D1,
∑

1) is an admissible restriction of(
∑

) on D to
D1 and (D2,

∑
2) is an admissible restriction of(

∑
1) on D1 to D2, then

(D2,
∑

2) is an admissible restriction of(
∑

) to D2.

This follows immediately from the above definition.

Remarks. (1) The condition(ii ) of the above definition implies that
ℓ0 ∑

is subset of D1.

Suppose we denote by diq the injective mapping ofG q(D1) into
G q(D) induced by the injection i of D1 into D, diq defines an iso-
morphism ofℓq ∑

1 ontoℓq ∑
1 ontoℓq ∑

.

(2) Any integral of(
∑

) is contained in D1. A submanifold of D1 is an
integral of(

∑
1) if only if it is an integral of(

∑
).

Proposition 8. An integral element E of(
∑

1) is an ordinary (resp.
regular) with respect to(

∑
1) if and only if diq(E) is ordinary (resp.

regular) with respect to(
∑

).

Proof. The proof is by induction on the dimensionq of E. The propo-
sition is trivial in the caseq = 0 because of the definition of an ordi-
nary (resp. regular) integral point. Let us suppose that theproposition
holds for allq′ < q. If E ∈ θq ∑

1 then E contains a (q − 1) dimen-
sional regular integral elementE′ of (

∑
1). By induction assumption

E′ ∈ Rq−1 ∑
1 if and only if diq(E′) ∈ Rq−1 ∑

. HenceE ∈ θq ∑
1 if96

and only if diq(E) ∈ θq ∑
. Sinceℓq ∑

⊆ G qD1 ⊆ G qD, i∗(J(E;
∑

)) =
J(iqE;

∑
), andJ(E;

∑
) ∋ (d f1)z, . . . , (d fa)z, wherez is the origin ofE

and f1, . . . , fa ∈
∑o such thatD1 is defined byf1 = · · · = fa = 0, it fol-

lows by the definition of regular elements thatE is regular if and only if
iqE is regular. �

Proposition 8′ . Let (D,D′, ω̃) be a fibered manifold. Let D1 be a sub-
manifold of D such that(D,D′, ω̃) is a fibered manifold. Assume that

∑

is a differential system on D such that its restriction to D1 is an admis-
sible restriction. Denote by i′ the canonical injection of Jℓ(D1,D′, ω̃)
into Jℓ(D,D′, ω̃), where p= dim D′. Then i′ induces an isomorphism of
PℓS[

∑
1, (D,D

′, ω̃)] onto an admissible restriction of PℓS[
∑
, (D1,D′, ω̃)].
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Proof. We can take a coordinate system (x, y1, . . . , ym) of (D,D′, ω̃)
such thaty1, . . . , ys ∈

∑
(0) andD1 is defined by the equation:y1 = · · · =

ys = 0. Then our assertion follows easily by direct verification. �

Let (D,D′, ω̃) be a fibred manifold then we can define a mapping
of Jℓ+m(D,D′, ω̃) into Jm(Jℓ(D,D′, ω̃),D′, α) by associating to each jet
X = jℓ+m( f ) in Jℓ+m(D,D′, ω̃) the jet jmz′( jℓ( f )). Sincejℓ+m( f ) is a cross-
section of (Jℓ(D,D′, ω̃),D′, α) the following diagram is commutative.

Jℓ+m(D,D′, ω̃)→ Jm(Jℓ(D,D′, ω̃),D′, α)

Jℓ+m(d,D′, w̃) //

&&LLLLLLLLLLL
Jm(Jℓ(D,D′, w̃),D′, α)

vvnnnnnnnnnnnnn

D′

jℓ+m
z′ ( f ) //

""
EE

EE
EE

EE
E

jmz′( jℓ( f ))

{{www
ww

ww
ww

z′

97

Then we claim that the standard prolongation
∏

(ℓ + m; (D,D′, ω̃))
is an admissible restrictionpm

S [
∏

(ℓ; (D,D′, ω̃)); Jℓ(D,D′, ω̃)]. For sim-
plicity, we set

∏
(ℓ) =

∏
(ℓ; (D,D′, ω̃)),

∏
(ℓ+m) =

∏
(ℓ+m; (D,D′, ω̃)),

Jr
= Jr(D,D′, ω̃).
Let (x, y) be a fixed coordinate system of (D,D′, ω̃). Then (x, y, . . .,

yi1···ia
λ

, · · · ) a ≤ ℓ, is a coordinate system inJℓ(D,D′, ω̃) and (x, y, . . .,
yi1···ib) b ≤ ℓ + m, is a coordinate system inJℓ+m(D,D′, ω̃). Let wσ

denoteyi1···ia
λ

(a ≤ ℓ); then a coordinate system inJm(Jℓ(D,D′, ω̃),D′, α)

will be (x, y, . . . ,wσ, . . .w
j1··· jc
σ , . . .)(c ≤ m). We shall writeyi1···ia; j1··· jc

λ

instead ofw j1··· jc
σ . Then the canonical injection mapping i is defined

by: yi1···ia; j1··· jc
λ

oi = yi1···ia; j1··· jc
λ

SincePm
S [

∏
(ℓ), (Jℓ,D′, α)] is generated

by
∏

(m; (Jℓ,D′, α)), which we shall denote bỹ
∏

(m), β∗
∏

(ℓ) andFm

(
∏

(ℓ)), we shall compute each of these.
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∏
(ℓ) is generated by{dyλ − yi

λ
dxi , dyi1···ia

λ
− yi1···iai

λ
dxi (a ≤ ℓ − 1) 98

and
∏̃

i(m) is generated bydyi1···ih
λ
− yi1···ih:idxi ; (h ≤ ℓ− 1), dyi1···ih; j1··· jc

λ
−

yi1···ih; j1··· jc, j
λ

dxj (h ≤ ℓ, c ≤ m− 1).
β∗

∏
(ℓ) is generated by

ω
i1···ia
λ
= dyi1···ia

λ
− yi1···iai

λ
dxi (0 ≤ a ≤ ℓ − 1)

We shall now calculateFm(
∏

(ℓ)). Take a jetX ∈ Jm(Jℓ,D′α), say
X = jmx (g) whereg is represented by (x, . . . , gλ(x), . . . , gi1···ia

λ
(x), . . .)(a ≤

ℓ). We have

g∗(dωi1···ia
λ

) = −dgi1···iak
λ

dxk

= −
1
2

(∂gi1···iak
λ

∂x j
−
∂gi1···ia j

∂xk

)
dxj ∧ dxk

Therefore we obtainF i; j1··· jc

ω
i1···ia
λ

= yi1···ia;i j1··· jc
λ

− yi1···iai; j1··· jc
λ

,

2F jk
dωi1 · · · ia(X) = −yi1···iak; j

λ
+ yi1···ia j;k

λ
,

2F jk; j1··· jc
dωλ i1 · · · ia(X) = −yi1···iak; j j1··· jc

λ
+ yi1···ia j;k j1··· jc

λ

Now it can be verified that
∏

(ℓ +m) is an admissible restriction of
pm

S(
∏

(ℓ); (Jℓ,D′, α)) to the submanifold defined by the equations

yi1···ia j; j, j1··· jb
λ

− yi1···ia j;i, j1··· jb
λ

= 0

yi1···ia;i j1··· jc
λ

− yi1···iai; j1··· jc
λ

= 0

Similarly it can be proved that, given a differential system [
∑
, (D,99

D′, ω̃)],Pℓ+m
S [

∑
, (D,D′, ω̃)] is an admissible restriction ofPm

S(PℓS(
∑

)).

3.5

We consider certain special types of exterior differential systems and
their prolongation.
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Definition. An exterior differential system[
∑
, (D,D′, ω̃)] with indepen-

dent variables is called anormal differential systemif it satisfies the
following conditions.

(1)
∑(0)
= 0;

(2) there exist Pfaffian formsθ1,...,θa on D which form a system of gen-
erators of

∑(1) and which are such thatθ1,...,θa, dx1,...,dxp are linearly
independent at each point ofD, where (x1, . . . , xp) is a coordinate
system inD′;

(3)
∑(2) ≡ 0 mod (

∑(1), dx1, . . . , dxp);

(4)
∑

is generated as an ideal, without the operatord, by
∑(1) and

∑(2)

over∧0(D).

Let (x, y) = (x1, . . . , xp, y1, . . . , ym) be a coordinate system of (D,D′,
ω̃). By a linear change of coordinatesyand by restricting to a neighbour-
hood of a given point if necessary, we can assume thatdx1, . . . , dxp, dy1,
. . . , dym, θ1, . . . , θa(m′ = m−a) are linearly independent at each point of
D. Therefore we can write

dym′+b = cb′
b θb′ + Aλbyλ + Bi

bdxi (1 ≤ i ≤ p, 1 ≤ λ ≤ m′, 1 ≤ b, b′ ≤ a).

Then the determinant of the matrix (Cb′
b ) is non zero. HenceCb′

b θb′ 100

∈
∑(1) and generate

∑(1). Therefore we can assume without loss of
generality that

θb = dym′+b − Aλbdyλ − Bi
bdxi .

Now we calculateFk;i1,...ir
θb

= Fk;i,...ir
b . Because

θb ≡ (yi
m′+b − Aλbyi

λ − Bi
b)dxi mod (dyσ − y j

σdxj), (σ = 1, . . . ,m)

Proposition 5 implies that

Fk
b = yk

m′+b − Aλbyk
λ − Bk

b.

Hence there are functionsEk;i
b on J′(D,D′, ω̃) such that

dFk
b ≡

(
yki

m′+b − Aλbyki
λ − Bk;i

b

)
dxi (mod

∏
(2))
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Therefore Proposition 3 implies that

Fk;i
b = yki

m′+b − Aλbyki
λ − Bk;i

b

By the repetition of the same argument , we find that, forr ≤ ℓ − 1

Fk;i1···ir
b = yki1···ir

m′+b − Aλbyki1···ir
λ

− Bk;i1···ir
b

whereBk;i1···ir
b are functions onJr . SinceFk;i1···ir

b is symmetric with re-

spect toi1 · · · ir , so isBk;i1···ir
b . Takeϕ in

∑(2). By the condition (3) of the
normal systems,

ϕ ≡ ϕ′ = Aiλ
ϕ dxi ∧ dyλ +

1
2

Bi j
ϕdxi ∧ dxj (modΣ(1))

whereλ = 1, . . . ,m′ andBi j
ϕ + B ji

ϕ = 0. Thenϕ′ ∈
∑(2) and101

Fk j;i1···ir
ϕ ≡ Fk j;i1···ir

ϕ mod (Fh; j1··· jν
b , ν ≤ r)

We find, by the same argument as we used to calculateFk;i1···ir
b , that

Fk j;i1···ir
ϕ′

= Akλ
ϕ y ji1···ir

λ
− A jλ

ϕ yki1···ir
λ

+ Bk j;i1···ir
ϕ

whereBk j;i1···ir
ϕ are functions onJr and symmetric with respect toi1 · · · ir .

We set
′Fk j;i1···ir

ϕ = Fk j;i1···ir
ϕ′

.

Now, PℓS(
∑

) is generated by{Fk1···ka; j1··· jr
ψ

(ψ ∈
∑(a), r ≤ ℓ−1),

∏
(ℓ),

(
∑

)} and their exterior derivatives. By the remark (4) on the functions
Fk1···ka;i1···ir
ψ

we can restrictψ to a system of generators of the ideal (
∑

).
By Proposition 5, we can omit (

∑
) for ℓ ≥ 1. Therefore, the condition

(4) of the definition of normal system shows thatpℓS(
∑

) is generated by



Fk;i1···ir
b (r ≤ ℓ − 1, b = 1, . . . , a),

F′k j;i1···ir
ϕ (r ≤ ℓ − 1;ϕ ∈

∑(2)),
∏

(ℓ)
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and their exterior derivatives. By Proposition 4 we have

Fk; ji1···ir−1
b − F j;ki1···ir−1

b = F jk;i1···ir−1
dθb

SinceFk;i1···ir
b is symmetric with respect toi1 . . . ir and sincedθb ∈102 ∑(2), we have proved the following

Proposition 9. When[
∑
, (D,D′, ω̃)] is a normal exterior differential

system, PℓS
∑

is generated by


Fk;i1···ir
b (1 ≤ k ≤ i1 ≤ · · · ≤ ir ≤ p, 0 ≤ r ≤ ℓ − 1, 1 ≤ b ≤ a),
′Fk;i1···ir

ϕ (1 ≤ k, i1 . . . , ir ≤ p, 0 ≤ r ≤ ℓ − 1, ϕ ∈
∑(2)),

∏
(ℓ)

and their exterior derivatives.

3.6

Let [
∑
, (D,D′, ω̃)] be an exterior differential system with independent

variables. Let it be normal. IfX in J(D,D′, ω̃) is an integral point of the
standard prolongationPℓS(

∑
), let J(X) be the space of polar forms ofX

with respect toPℓS(
∑

). By definition J(X) is the linear subspace of the
dual of (Jℓ)X, the tangent vector space ofJℓ(D,D′, ω̃) atX, generated by
{(ψ)X : ψ ∈ (PℓS

∑
k)

(1)}. This is equivalent to say thatJ(X) is generated

by {(dFk;i1···ir
B )X, 0 ≤ b ≤ a, (dFk j;i1···ir

ϕ )X, (
∏(1)(ℓ))X(r ≤ ℓ − 1)}. But by

Proposition 3 we have forr ≤ ℓ − 2

dFk1···ka;i1···ir
ψ

≡ Fk1···ka;i1···ir i
ψ

dxi (mod
∏

(ℓ)).

X being an integral point, (Fk;i1···ir
b )X = 0 and so (dFk;i1···ir

b )X ≡

(mod
∏

(ℓ)) for r ≤ ℓ − 2. Also, for any 103

ϕ ∈
∑(2), (dFk j;i1 ···ir

ϕ )X ≡ (Fk j;i1···ir i
ϕ )Xdxi

≡ 0 (mod
∏

(ℓ)).

From this we may conclude thatJ(X) has for generators the set{
(dFk;i1···iℓ−1

b )X(k ≤ i1 ≤ · · · ≤ iℓ−1 ≤ p) and
(
d′Fk j;i1···iℓ−1

)
X

(1 ≤

k, j, i1 · · · iℓ−1 ≤ p), (
∏(1)(ℓ))X

}
.
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Proposition 10. For anyθb(1 ≤ b ≤ a). We have

dFk;i1···iℓ−1
b ≡

{
(dy)ki1···iℓ−1

m′+b − Aλbyki1···iℓ−1
λ

+ Bk;i1···iℓ−1i
b

}
dxi (mod

∏
(ℓ))

and for anyϕ ∈
∑(2)

d′Fk j;i1···iℓ−1
ϕ ≡

(
Akλ ji1···iℓ−1
ϕyλ − A jλkii ···iℓ−1

ϕyλ + Bk j;i1···iℓ−1
ϕ

)
dxi (mod

∏
(ℓ)).

Proof. Jℓ+1 can be considered as a fibre space overJℓ with the natural
projectionρℓ+1

ℓ
. Hence, by lifting,dFk;i1···iℓ−1

b can be considered as a
pfaffian form onJℓ+1(D,D′, ω̃). Then we can write

dFk;i1···iℓ−1
b ≡ Fk;i1···iℓ−1i

b dxi (mod
∏

(ℓ + 1))

=

{
yki1···iℓ−1i

m′+b − Aλki1···iℓ−1i
byλ + Bk;i1···iℓ−1i

b

}
dxi (mod

∏
(ℓ + 1))

= dyki1···iℓ−1
m′+b − Aλbdyki1···iℓ−1

λ
+ Bk;i1···iℓ−1i

b dxi (mod
∏

(ℓ + 1))

becausedyki1···iℓ−1
σ − yki1···iℓ−1i

σ dxi ∈
∏

(ℓ + 1). Thus ifΩ denotes104

dyki1···iℓ−1
m′+b − Aλbdyki1···iℓ−1

λ
+ Bk;i1···iℓ−1i

b dxi ,

then dFk;i1···iℓ−1
b − Ω is a form on Jℓ and is in

∏
(ℓ + 1). Therefore

Jℓ( f )∗(dFk;i1···iℓ−1
b − Ω) = 0 for any cross-sectionf of (D,D′, ω̃). As

proved before, it follows thatdFk;i1···iℓ−1
b − Ω ∈

∏
(ℓ) and this completes

the proof of the first assertion. The second assertion can also be proved
on the same lines. �

Let us denote byG(ℓ) the subspace of Pfaffian forms onJℓ generated
by

η
k;i1···iℓ−1
b = dyki1···iℓ−1

m′+b − Aλbdyki1···iℓ−1
λ

+ Bk;i1···iℓ−1i
b dxi

(1 ≤ k ≤ i1 ≤ · · · ≤ iℓ−1 ≤ p, b = 1, . . . , a)

and byA(ℓ)
o the subspace generated by

ξ
k j;i1···iℓ−1
ϕ = Akλ

ϕ dyji1···iℓ−1
λ

− A jλ
ϕ yki1···iℓ−1

λ
+ Bk j;i1···iℓ−1i

ϕ dxi
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(
1 ≤ k, j, i1, . . . , iℓ−1 ≤ p, ϕ ∈

∑(2)
)

By the remark preceding Proposition 10 by Proposition 10 it fol-
lows thatJ(X) = (G(ℓ))X + (

∏
(ℓ))X + (A(ℓ)

o )X. On the otherhanddyi1···ir
σ −

yi1···ir i
σ dxi (1 ≤ i1 ≤ · · · ≤ ir ≤ p.r ≤ ℓ−1, σ = 1, . . .m), which form a sys- 105

tem of generators of
∏

(ℓ), together with the generators ofG(ℓ) are lin-
early independent modulodx1, . . . , dxp, . . . , dyi1···iℓ

λ
, . . . (λ = 1, . . . ,m′).

Moreover ξk j;i1···iℓ−1
ϕ are linear combinations ofdx1, . . . , dxp, dyi1···iℓ

λ
.

ThereforeJ(X) = (G(ℓ))X + (
∏

(ℓ))X + (A(ℓ)
o )X is a direct sum decom-

position of the vector spaceJ(X). Moreover it is clear that dim(G(ℓ))X =

aCp+ℓ−1
ℓ

and dim(
∏

(ℓ))X = m
ℓ∑

r=0
Cp+r−1

r , whereCp+r−1
r are the Bino-

mial coefficients.
Now, we shall show a similar decomposition of the space of po-

lar forms J(E) of a q-dimensional integral elementE of the standard
prolongationPℓS

∑
. Let X be the origin ofE. Let us first recall the defi-

nition of J(E). Take any system of generatorsψ1, . . . , ψn of the ideal
PℓS

∑
, whereψτ is homogeneous of degreeaτ. Let L1, . . . , Lq be a

base of the vector spaceE. ThenJ(E) is generated byf h1···ha
τ τ−1(1 ≤

h1, . . . , haτ−1 ≤ q, τ = 1, . . . ,N) defined by

f h1···ha
τ τ−1(L) = 〈ψτ, L

h1 ∧ · · · ∧ Lhaτ−1 ∧ L〉.

SincePℓS
∑

is generated by (PℓS
∑

)(1) and
∏2(ℓ), J(E) is generated

by J(X) together with all thef defined by

f (L) = 〈dyi1···ir i
σ ∧ dxi , L

′ ∧ L〉, (σ = 1, . . . ,m; 1 ≤ i1, . . . , ir ≤ p, L′ ∈ E).

If r ≤ ℓ − 2, thendyi1···ir i
σ ∧ dxi ≡ yi1···ir i j

σ dxj ∧ dxi = 0 (mod
∏

(ℓ)),
becauseyi1···ir i j

σ = yi1···ir ji
σ . ThusJ(E) is generated byJ(X) together with 106

ζ
i1···iℓ−1,L
σ = 〈dxi , L〉dyi1···iℓ−1i − 〈dyi1···i−1i , L〉dxi

whereL ∈ E.
Let G qJℓ(dx1, . . .dxq) denote the subspace ofG qJℓ(D,D′, ω̃) con-

sisting of all the elementsE such that the restrictionsdx1|E, . . . , dxq|E
are linearly independent.G qJℓ(dx1, . . . , dxq) is an open submanifold of
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G qJℓ(D,D′, ω̃). Let L1(E), . . . , Lq(E) be a dual base inE of dx|E, . . .,
dxq|E. We introduce the following functions onG qJℓ(dx1, . . . , dxq): for

anyE ∈ G qJℓ(dx1, . . . , dxq) let wq′

i.q(E) = 〈dxi , Lq′(E)〉,

wi1···iℓ;q′
σ q (E) = 〈dyi1···iℓ

σ , Lq′(E)〉.

Now if the integral elementE is in G qJℓ(dx1, . . . , dxq) the above
argument proves thatJ(E) is generated byJ(X) together with

ζ
i1···i−1;q′
σ,q = ζ

i1···i−1;Lq′ (E)
σ,q = wq′

i,q(E)dyi1···iℓ−1i;q′
σ dxi

(σ = 1, . . . ,m; q′ = 1, . . . , q)

We shall introduce the following notation to facilitate thewriting of
the above identities. We shall denote byIr (or by I when there is no
possible confusion) any set of indices (i1, . . . , ir ) for r = 0, 1, . . . , ℓ. We
can now write all the identities above in the compact form as follows:107

Fk;I
b = ykI

m′+b − AλbykI
λ + Bk;I

b ;

dFk;I
b ≡ dykI

m′+b − AλbdykI
λ + Bk;Ii

b dxi (mod
∏

(ℓ))

whereBk;I
b are functions onJr+1(D,D′, ω̃).

′Fk;I
ϕ = Akλ

ϕ y jI
λ

A j
λ
ykI
λ + Bk j;I

ϕ ;

d′Fk;I
ϕ = Akλ

ϕ dyjI
λ
− A jλ

ϕ dykI
+ Bk j;Ii

ϕ dxi (mod
∏

(ℓ))

whereBk j;I
ϕ are functions onJr(D,D′, ω̃). The generators ofG(ℓ) are

η
k;I
b = dykI

m′+b − AλbdykI
λ + Bk;Ii

b dxi ,

(1 ≤ b ≤ a; I = (i1, . . . , iℓ−1); 1 ≤ k ≤ i1 ≤ · · · ≤ iℓ−1 ≤ p) and

ξ
k j,I
ϕ = Akλ

ϕ dyjI
λ
− A jλ

ϕ dykI
λ + Bk j;Ii

ϕ dxi

(ϕ ∈
∑(2), I = (i1, · · · , iℓ−1), 1 ≤ k, j, i1 · · · ≤ p) are generators of the

subspaceA(ℓ)
0 of Pfaffian forms.
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If X is an integral point, it is clear that the dimensions of the spaces
(G(ℓ))X and (

∏
(ℓ))X do not change whenX is moved in a sufficiently

small neighbourhood ofℓopℓS
∑

. The direct sum decompositionJ(X) =

(G(ℓ))X + (
∏

(ℓ))X + (A(ℓ)
o )X shows that any change in the dimension of108

J(X) is due only to the change in the dimension of (A(ℓ)
o )X.

If E is anyq-dimensional integral element ofpℓS
∑

and if X is the
origin of E, it has already been proved thatJ(E) is generated byJ(X)
together with

ζ
I ;q′
σ,q = wq′

i,qdyIi
σ − wIiq′

σ,qdxi

onG qJℓ(dx1, . . . , dxq), I = (i1 · · · iℓ−1).

Remark . For any q1 with q′ ≤ q1 < q let Eq1 be the subspace of Eq

spanned by L1(E), . . . , Lq1(E) and letη be the natural projection of Eq

onto Eq1. Clearly we have wq
′

i,q = wq′

i,q1
oη,w

i1···iℓ;q′
σ,q = w

i1···iℓ;q′
σ,q1

oη and

hence we can simply write wq′

i w
i1···iℓ;q1

σ in place of wq′

i,q and w
i1···iℓ;q′
σ,q with-

out any ambiguity . Also, we can writeζ I ;q′
σ instated ofζ I ;q′

σ,q . For any
ℓ ≥ 2 we have

dyi1···iℓ−1i
m′+b ∧ dxi ≡ Aλbdyi1···iℓ−1i

λ
∧ dxi − Bi1;i2···iℓ−1i j

b dxi ∧ dxj

(mod
(
pℓS

∑)(1)
,
(
pℓS

∑)(0)
)

But Bi1···iℓ−1i j
b dxi ∧ dxj = 0 sinceBi1···iℓ−1i j

b are symmetric ini, j.

ThereforeJ(E) is generated byJ(X) andζ I ;q′

λ
(λ = 1, . . . ,m′).

Let A(ℓ)
q denote the subspace of 1-forms onG qJℓ(dx1, . . .dxq) gen-

erated byA(ℓ)
o , ζ

I ;1
λ
, . . . ζ

I ;q
λ

(I = (i1, . . . , iℓ−1); λ = 1, . . . ,m′).
Then we prove the following: 109

Proposition 11. Let E be a q-dimensional integral element of the stan-
dard prolongation to the space ofℓ- jets of a normal system[

∑
, (D,

D′, ω̃)] (0 ≤ q ≤ p = dim D′). Denote by X the origin of E. Then we
have the direct sum decomposition

J(E) =
(
G(ℓ)

)
X
+

(∏
(ℓ)

)
X
+

(
A(ℓ)

q

)
E
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L1(E), . . . Lq(E) being a basis of E dual to dx1|E, . . .dxq|E we see that

wq′

i = 〈dxi , Lq′(E)〉 = δ
q′

i (i ≤ q) so that the Pfaffian formsζ I ;q′
σ (I =

(i1, . . . , iℓ−1)) have the reduced formζ I ;q′
σ = dyIq′

σ +wq′

q+udyIq+u
σ −wIi ;q′

σ dxi .

Denote by′A(ℓ)
q the subspace of Pfaffian forms generated by the follow-

ing set:

′ξ
k j;I
ϕ = Akλ

ϕ dyjI
λ
− A jλ

ϕ dykI
λ ,

′ζ
I ;q′
σ = dyIq′

σ + wq′

q+udyIq+u
σ

whereϕ ∈
∑(2); λ, σ = 1, . . . ,m′; q′ = 1, . . . , q; I = (i1, . . . , iℓ−1) with

1 ≤ i1, . . . , iℓ−1 j, k ≤ p. Let t′(E) denote the dimension of(′A(ℓ)
q )E. If

we denote byΩ the space generated by(dx1)X, . . . (dxp)X, X being the
origin of E, then the definition shows that t′(E) = dim((A(ℓ)

q )E + Ω/Ω).
Thus t′(E) is defined independent of the choice of the coordinate system
(because of Proposition 11).

3.8

In this section we establish an inequality regardingt′(E). If E is a
q-dimensional integral element ofpℓS

∑
and if L1(E), . . . , Lq(E) is a

basic ofE dual to dx1|E, . . . , dxq|E, denote byE′ the subspace ofE110

spanned byL1(E), . . . Lq−1(E). Supposeρ is the natural projection of
Jℓ(D,D′, ω̃) onto Jℓ−1(D,D′, ω̃). It is clear thatE′′ = dρ.E′ is an inte-
gral of Pℓ−1

S

∑
on Jℓ−1(D,D′, ω̃). Then we have the

Proposition 12. If E is a q-dimensional integral element of PℓS
∑

then
the following inequality holds:

t′(E) ≤ dim(A(ℓ)
q )E

dim(A(ℓ)
q−1)E′ + nℓ−1 − t′(E′′),

where nℓ−1 = mcp+ℓ−2
ℓ−1 where crs denotes the Binomial coefficient.

Proof. In general we denote byI or Iχ indices (i1, . . . , iℓ−1). Let X be

the origin ofE. Let
(
dy

Iχ
λχ

)

ρ(X)
be the maximum number of linearly in-

dependent elementsdyI
λ

modulo (A(ℓ−1)
q−1 )E′′ . We denote byJ indices
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( j1, . . . , jℓ−2). We can write

(dyI
λ)ρ(X) = aχdyIχ

λχ
+ bϕk j;Jξ

k j;J
ϕ + cµ

′

J,q′ζ
J;q′
µ ,

(q′ = 1, . . . , q− 1;µ = 1, . . . ,m′). We claim that, for anys(1 ≤ s≤ p)

(#) (dyIs
λ )X = aχ(dyIχs

λχ
)X + bk j;J(′ξk j;Js

ϕ )E′ + cµJ′ ;q′(
′ζ

Js,q′
µ )E′

To see this, we consider a linear mapping of the vector space gener-
ated by all (dyI ′

µ )ρ(X) onto the space generated by all (dyI ′s
µ )X, sending

(dyI ′
µ )ρ(X) to

(
dyI ′s

µ

)
x
. It is clear that this map maps′ξk j;J

ϕ upon ′ξk j;Js
ϕ .

Sincewq′

q+u(E) = wq′

q+u(dρ,E) it follows that′ζJ;q′
µ is mapped upon′ζJs;q′

µ . 111

Thus we have proved the equality (#).E being an integral element of
PℓS

∑
, taking the value of (dyIs

λ
)X at Lq(E) we obtain by (#) that

〈(dyIs
λ )X, L

q(E)〉 = wIs;q
λ

(E) = aχwIχs;q
λχ

(E)

− bϕk j;J(Bk j;Jsi
ϕ (X)〈dxi , L

q(E)〉) + cµJ;q′ (w
Jsi;q′
µ 〈dxi , L

q(E)〉),

sinceξk j;J
ϕ =

′ξ
k j;J
ϕ + Bk j;J

ϕ vanishes atLq(E). Using the relations〈dxi ,
Lq(E)〉 = δq

i we can write

wIs;q
λ

(E) = aχwIχs;q
λχ

(E) − bϕk j;J(Bk j;Jsq
ϕ (X) + Bk j;Js′(q+u)

ϕ wq
q+u(E))

+ cµJ;q′

(
wJsq;q′
µ + wJs′(q+u);q′

µ wq
q+u(E)

)
.

But

ζ
I ;q
λ
= dyIq

λ
+ wq

q+u(E)dyIq+u
λ
− wIi ;q

λ
(E)dxi

= aχζ Iχ;q
λχ
+ bϕk j;J(ξk j;Jq

ϕ + wq
q+u(E)ξk j;J,(q+u)

ϕ )

+ cµJ;q′ (ζ
Jq;q′
µ + wq

q+u(E)ζJ′(q+u);q′
µ )

whereq′ = 1, . . . , q− 1. Thusζ I ;q
λ

is in the space generated byζ Iχ;q
λχ

and

(A(ℓ)
q−1)E. Hence we obtain

dim(A(ℓ)
q )E ≤ dim(A(ℓ)

q−1)E′ + the number of indicesχ

= dim(A(ℓ)
q−1)E′ +m.cp+ℓ−2

ℓ−1 − t′(E′′).

This completes the proof of the proposition. � 112



84 3. Prolongation of Exterior Differential Systems

3.9

Let [
∑
, (D,D′, ω̃)] be a differential system with independent variables

which is a normal system. Then we pose the following definition.

Definition. For any point z∈ D, a pair (z,Eχ) of z and a q-dimensional
contact element Eχ to D′ at ω̃(z) is called a q-dimensional reduced con-
tact element of D and z is called the origin of it.

Let χG q = χG q(D,D′, ω̃) be the set of all reduced contact elements
(z,Eχ)(z ∈ D). χG is a submanifold ofD × G qD′. For, letρ denote the
mapping ofχG into D′ which assigns to every element (z,Eχ) the origin
of Eχ. We observe thatχG q = {(z,Eχ) ∈ D × G qD′ : ω̃(z) = ρ(Eχ)}.
This condition defines the structure of a real analytic submanifold of
D × G qD′.

To every reduced contact element (z,Eχ) we associate a certain ho-
mogeneous idealA(z,Eχ) in a certain symmetric algebra R(V) on a mod-
uleV over R. We shall first construct the symmetric algebra R(V). Con-
sider the tangent vector space (D′)ω̃(z) which is ap-dimensional vector
space over R. Denote this byVp. Let Vm′ denote the quotient mod-
ule [∧1

z(D)/ω̃∗(∧1D′)ω̃(z) + (
∑(1))z] over the ring∧o

z(D) = R, where
∧1

z(D) is the conjugate space of (D)z. Let V denote the direct sum
Vp ⊕ Vm′ . Now we denote by R(V) the symmetric algebra overV. If
we choose a coordinate system (x1, . . . , xp, y1, . . . , ym) in (D,D′, ω̃) such113

that dyλ are linearly independent modulo (dx1, . . . , dxp;
∑(1)), thenVp

is spanned by
∂

∂x1
, . . . ,

∂

∂xp
andVm′ by [dy1], . . . , [dym′ ] where [dyµ] =

dyµ mod {ω̃∗(∧1(D′))ω̃(z) + (
∑(1)
ω̃(z))} (µ = 1, . . . ,m′). If we set

∂

∂xi
= Xi

and [dyµ] = Yµ the elements of the symmetric algebra R(V) can be ex-
pressed as polynomials inX1, . . . ,Xp,Y1, . . . ,Ym′ . In view of the fact
that R(V) depends onz ∈ D, we may, when there is any possible ambi-
guity write R(z).

(
∑

) being a normal differential system anyϕ ∈
∑(2) can be written

as

ϕ ≡ Aiλ
ϕ dxi ∧ dyλ +

1
2

Bi j
ϕdxi ∧ dxj (mod

∑(1))
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whereAiλ
ϕ , B

i j
ϕ are real analytic functions onD. Then we have that

(′ξ̃k j
ϕ )z = Akλ

ϕ (z)dyj
λ
− A jλ

ϕ (z)dyk
λ.

We associate to everyϕ ∈
∑(2) an element

ξ̃
k j
ϕ = ξ̃

k j
ϕ (z) = Ak j

ϕ (z)YλX j − A jλ
ϕ (z)YλXk

of R(z). By a change of coordinate systems (x, y)→ (x′, y′) such thatdy′
λ

are linearly independent modulo (dx′1, . . . , dx′p,
∑(1)) we have (dx′i )z =

a j
i (dxj)z(dy′

λ
)z ≡ bµ

λ
(dyµ)z mod ((

∑(1))z(dxi )z).
Hence obtain

Xi
= ai

j
′X j

,Y′λ = bµ
λ
Yµ,

where ′X j
= (

∂

∂x′j
)z,Y

′
λ = (dy′λ) mod ((

∑(1))z, (dxi )z).

If we expressϕ ∈
∑(2) in the new coordinate system as 114

ϕ ≡ ′Aiλ
ϕ dx′i ∧ dy′ +

1
2
′Bi j

ϕdx′i ∧ dx′j (mod
∑(1))

then we obtainAiλ
ϕ (z) = ′A jλ

ϕ ai
jb
λ
µ. In the new coordinate system the

element of the symmetric algebra associated toϕ ∈
∑(2) is

′ξ̃
k j
ϕ =

′Akλ
ϕ Y′λ′

′X j
− ′A jλ

ϕ Y′λ
′Xk

.

We shall obtain the relation between theξ̃k j
ϕ and the′ξ̃k j

ϕ .

ξ̃
k j
ϕ = Akλ

ϕ YλX
j − A jλ

ϕ YλX
k

=
′Ak′λ′

ϕ ak
k′b

λ
λ′YλX

j − ′A j′λ′

ϕ′
a j

j′b
λ
λ′YλX

k

=
′Ak′λ′

ϕ ak
k′a

j
j′Y
′
λ′
′X j′
− ′A j′λ′

ϕ a j
j′a

k
k′Yλ′

′Xk′
.

Thereforeξ̃k j
ϕ = a j

j′a
k
k′
′ξ̃

k′ j′

ϕ . Therefore the idealA(z) in R(v) gen-

eratedξ̃k j
ϕ (ϕ ∈

∑(2)) does not depend on the choice of the coordinate
system.
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Consider aq-dimensional reduced contact element (z,Eχ).
We remark that anyLχ in Eχ is in (D′)ω̃(z) = Vp ⊆ R(z). Therefore,

for anyY ∈ Vm′ ⊆ R(z), the multiplicationLχY ∈ R(z) is defined. Now
let A(z,Eχ) be the ideal in R(z) generated byA(z) and by allLχ.Y(Lχ ∈
Eχ, y ∈ Vm′). Let (x1, . . . , xp) be a coordinate system inD′. SetXi

=

(
∂

∂xi
)z. ThenLχ is expressed as

Lχ =
p∑

j=1

〈dxj , L
χ〉X j .

115

Remark. The symmetric algebra R(z) being a polynomial algebra in the
indeterminates X1, . . . ,Xp,Y1, . . . ,Ym we can decompose it into direct
sum of submodules of bidegree(ℓ, h)(ℓ = degree in Xk and h= degree
in Yλ) and written R(z) =

∑
R(ℓ,h)(z). An ideal I in R(z) is said to be a

homogeneous ideal if I=
∑

I (ℓ,h) where I(ℓ,h)
= I ∩ R(ℓ,h) where R(ℓ,h)(z)

is the submodule of all homogeneous polynomials of bidegree(ℓ, h).
A(z,Eχ) is a homogeneous ideal, so we have A(z, .Eχ) =

∑
A(ℓ,h)(z,Eχ).

Proposition 13. Let E be a q-dimensional integral element of the system
PℓS[

∑
, (D,D′, ω̃)] with independent variables. If Eχ denotes dα(E) then

t′(E) = dimension of A(ℓ,1)(β(X),Eχ) where X is the origin of E.

Proof. Sinceα = ω̃oβ, (β(X),Eχ) is a reduced contact element. The
proposition asserts thatt′(E) = dim A(ℓ,1)(z,Eχ), z = β(X). Let X1, . . . ,

Xp be a coordinate system at ˜ω(z). Then the generators ofA(ℓ,1)(z,Eχ)
are


ξ̃

k j;i1···iℓ−1
ϕ = Akλ

ϕ (z)YλX jXi1 · · ·Xiℓ−1 − A jλ
ϕ (z)YλXkXi1 · · · iℓ−1X;

LχYλXiℓ−1 · · ·Xiℓ−1
=

∑p
i=1〈dxi , Lχ〉YλXi1 · · ·Xiℓ−1(Lχ ∈ Eχ)

(ϕ ∈
∑(2), 1 ≤ k, j, i1, . . . , iℓ−1 ≤ p, λ = 1, . . . ,m).

We can assume if necessary, by a change of coordinate system that
dxi |Eχ, . . . , dxq|Eχ are linearly independent. LetL1(Eχ), . . . , Lq(Eχ) be116

a basis ofEχ dual todx1|Eχ, . . . , dxq|Eχ. Then
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Lq′(Eχ)YλX
i1 · · ·Xiℓ−1 = YλX

i1 · · ·Xiℓ−1Xq′

+

ℓ−q∑

h=1

〈dxq+h, L
q′(Eχ)〉YλX

i1 · · ·Xiℓ−1Xq+h

= YλX
i1 · · ·Xiℓ−1Xq′

+

ℓ−q∑

h=1

ω
q′

q+h(Eχ)YλX
i1 · · ·Xiℓ−1Xq+h

On the other hand the generators of′A(ℓ)
q are

′ξ
k j;i1···iℓ−1
ϕ′

= Akλ
ϕ dyjii 1···iℓ−1

λ
− A jλ

ϕ dyki1···iℓ−1
λ

′ζ
i1···iℓ−1q′

µ′
= dyi1···iℓ−1q′

µ + wq′

q+hdyi1···iℓ−1q+h
µ

(ϕ ∈
∑(2), 1 ≤ k, j, i1 · · · iℓ−1 ≤ p, λ = 1, . . . ,m)

andt′(E) = dim(′A(ℓ)
q )E by definition. �

Setting (dyi1···iℓ
λ

)X = Xi1··· jℓ
λ

, whereX is the origin ofE, we see that

xi1···iℓ
λ
= X j1··· jℓ

λ
for any permutationj1, . . . , jℓ of i1, · · · , iℓ. The genera-

tors of (′A(ℓ)
q )E are, therefore,

′ξ
k j;i1···iℓ−1
ϕ (E) = Akλ

ϕ (z)X ji1···iℓ−1
λ

− A jλ
λ

(z)Xki1···iℓ−1
λ

′ζ
i1···iℓ−1q′
µ (E) = Xi1···iℓ−1q′

λ
+ wq′

q+hXi1···iℓ−1q+h
λ

.

Let f denote a homomorphism of the submodule (′A(ℓ)
q )E of the

dual of (Jℓ)z generated by{′ξk j;i1···iℓ−1
ϕ (E), ′ζ i1···iℓ−1q′

µ (E)} into the module
R(ℓ,1)(z) defined by

f (Xi1···iℓ
λ

) = YλX
i1 · · ·Xiℓ .

It is easy to verify thatf is an isomorphism of (′A(ℓ)
q )E onto A(ℓ,1) 117

(z,Eχ) and hencet′(E) = dim A(ℓ,1)(z,Eχ).

3.10 Some results from the theory of ideals in poly-
nomial rings

Let X1 · · ·Xp be p indeterminates. Order the set of all monomials in
X1 · · ·Xp lexicographically. Denote byM the set of firstk elements in
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the set of all monomials of degreeℓ. Let Qℓ(k, p) denote the number of
elements in the setMX1U · · ·UMXp.

We shall state two theorems, without proof, regarding the function
Qℓ(k, p). For proof one can refer to “Lectures on commutative algebra”
by S.Bochner (1938).

Theorem 1. Given p and k, there exists an integer Qℓ(k, p) such that
Qℓ(k, p) = Q(k, p) for sufficiently largeℓ.

Definition. Q(k, p) is called Macauly function.

If I is any homogeneous ideal in a polynomial ringK[X1 · · ·Xp],
let I (ℓ)

= I ∩ K(ℓ)[X1 · · ·Xp] whereK(ℓ)[X1 · · ·Xp] is the submodule of
homogeneous polynomials of total degreeℓ. Setφℓ(I ) = the dimension
of I (ℓ).

Theorem 2 (Hilbert). For any homogeneous ideal I of K[X1 · · ·Xp]
there exists an integerℓ0(I ) satisfying the following conditions:

(i) φ(I (ℓ+1)) > Q(φ(ℓ), p) for ℓ < ℓ0(I ),

(ii) φ(I (ℓ+1)) = Q(φ(ℓ), p) for ℓ ≥ ℓ0(I ).

Let us write the symmetric algebra R(z) as a direct sum of the sub-118

modules R(ℓ,h)(z) of homogeneous elements of bidegree (ℓ, h) (degree
ℓ in X1 · · ·Xp and degreeh in Y1, . . . ,Ym′). R(z) =

∑
R(ℓ,h)(z). Set

R(ℓ)(z) =
∑

ℓ′+h=ℓ
R(ℓ′,h)(z) for ℓ ≥ 0.

Definition. To every reduced contact element(z,Eψ) associate an ideal
B(z,Eχ) defined to be R(0,1)(z)A(z,Eχ), the product being in the sense of
multiplication in the symmetric algebra.

Definition. For any integerℓ ≥ 0 define

φℓ(z,Eχ) = dim(A(z,Eχ) ∩ R(ℓ+1)(z))

ψℓ(z,Eχ) = dim(B(z,Eχ) ∩ R(ℓ+1)(z))

By definition it follows thatφℓ(z,Eχ) − ψℓ(z,Eχ) is the dimension of
A(ℓ,1)(z,Eχ).
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Proposition 14. There exists a proper subvariety Sℓ of χG q and a con-
stantφℓq(

∑
, (D,D′, ω̃)) = φℓq(

∑
) depending only on(

∑
) and (D,D′, ω̃)

such that

φℓ
(
z,Eχ) < φℓq

(∑)
for any(z,Eχ) ∈ Sℓ

φℓ(z,Eχ) = φℓq
(∑)

for any(z,Eχ) < Sℓ.

Proof. Let Sℓ be the set of all reduced contact element (z,Eχ) such that
the functionφℓ(z′,E′χ) in a nighbourhood of (z,Eχ) in χG q is not a con-
stant. Let (x1, . . . , xp, y1, . . . , ym) be a coordinate system in a neighbour-
hood ofz in (D,D′, ω̃). Then we know that

⋃

1≤i1<···<iq≤p

χG qD′(dxi1 , . . . , dxiq) = χG q

and that
⋂
χG qD′(dxi1, . . . , dxiq) , φ. Therefore it is sufficient to show 119

that S′′
ℓ
= Sℓ

⋂
χG qD′(dx1, . . . dxq) is a proper subvariety, outside of

which the functionφℓ is a constant. For (z,Eχ) ∈ χG qD′(dx1, . . . , dxq)
the set of generators of the idealAℓ(z,Eχ) are


ξ

k j;i1···iℓ−1
ϕ = Akλ

ϕ (z)YλX jXi1 · · ·Xiℓ−1 − A jλ
ϕ YλXkXi1 · · ·Xiℓ−1,

LχYλ =
∑p

i=1〈dxi , Lχ〉XiYλ(Lχ ∈ Eχ).

�

φℓ(z,Eχ) is the number of linearly independent such generators. Let
N be the maximum of the functionφℓ(z,Eχ) on χG qD′(dx1, . . . , dxq).
Take a subsetg1, . . . , gN of the above system of generators and letf be
the determinant of the submatrix of degreeN in the matrix of coefficients
in g1, . . . , gN. Let f1, . . . , fr be the set of allf obtained by this process.
Then it is clear thatS′′

ℓ
is the set of common zeros off1, . . . , fr and

thatS′′
ℓ

has the required properties. ThereforeSℓ is a proper subvariety.
Then our assertion follows easily.

Proposition 15. There exists a proper subvariety S′
ℓ

of χG qD′ and a
constantψℓq(

∑
, (D,D′, ω̃)) = ψℓq(

∑
) depending only on

∑
and(D,D′, ω̃)

such that

ψℓq(z,Eχ) < ψℓq
(∑)

for any(z,Eχ) ∈ S′,
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ψℓq(z,Eχ) = ψℓq
(∑)

for any(z,Eχ) < S′ℓ,

The proof is on the same lines as for Proposition 14.120

Set tℓq(Σ) = φℓq(Σ) − ψℓq(Σ).

Proposition 16. If φℓ(z,Eχ) = φℓq(Σ), then tℓ(z,Eχ) = tℓq(Σ).

Proof. By definition, B(z,Eℓ) = Y1A(z,Eχ) + · · · + YmA(z,Eχ) and
A(z,Eχ) is generated by elements of type (1, 1). It follows, then, that
B(ℓ, j)(z,Eχ) = A(ℓ, j)(z,Eχ) for j ≥ 2. By the same argument as in
the proof of Proposition 14, it follows that dimA(ℓ, j)(z,Eχ) is upper-
semi continuous. Hence the fact that dimφℓ(z′,Eχ) =

∑
k+ j=ℓ+1

dim A(k, j)

(z′, ′Eχ), is constant on an open set implies that dimA(A+1− j, j)(z′, ′Eχ)
is also a constant. Therefore the functionψℓ(z′, ′Eχ) =

∑
1≤ j≤ℓ−1

dim

(A(ℓ+1− j, j))(z′, ′Eχ) is a constant on a neighbourhood of (z,Eχ). Hence

ψℓ(z,Eχ) = ψℓq(Σ) and so tℓ(z,Eχ) = tℓq(Σ)

�

Proposition 17. φℓ+1
q (Σ) ≥ Q(φℓq(Σ),P + m′) for any ℓ. There is an

integerℓ0(Σ) such that

φℓ+1
q (Σ) = Q(φℓq(Σ), p+m′) for ℓ ≥ ℓ0(Σ)

Proof. It is sufficient, by Theorem 2, to show the following: There
is an idealI in a ring of polynomials inp + m variables over a field
K such thatφℓq(Σ) is equal to the dimension of the vector spaceI (ℓ)

over K. To construct such a fieldK and I , take a coordinate system
(x1, . . . , xp, y1, . . . , ym) in (D,D′, ω̃) and letxi ,Yλ be as before. For a
connected open setD of χG q(dx1, . . . , dxq), denote byk(D) the field of121

quotient of the ring of real analytic functions ofD . We remark that

ξ
k j
ϕ = Akλ

ϕ YλX
j − A jλ

ϕ YλX
k, η

q1

λ
= YλX

q1
+ wq1

q+hYλX
q+h
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can be considered, by restriction, as elements in the polynomial ring
K(D)[X1, . . . ,Xp,Y1, . . . ,Ym, ]. Let I (D) be the ideal generated byξk j

ϕ ,

η
q1

λ
in K(D)[X,Y]. For D ⊂ D1, we have the canonical injective map-

ping k(D1) → K(D). It is clear by definition that the image ofI (D1)
generateI (D) overK(D). Then it follows easily that dimK(D ′)(I (D ′)(ℓ))
= dimK(D )(I (D)(ℓ)). Now, setK = K(χG q(dx1, . . . , dxq)), I = I (χG q

(dx1, . . . , dxq)). For any fixedℓ, take (z,Eχ) such thatφℓ(z,Eχ) = φℓq(Σ).
Take a sufficiently small open connected neighbourhoodD of (z,Eχ).
Then it is easy to verify that dimK(D) I (D)(ℓ)

= φℓq(Σ). By the above
remark this implies that dimk(I (ℓ)) = φℓq(Σ). This finishes the proof of
Proposition 17. �

3.11

In this section we introduce the notions ofℓ- stable andℓ- regular re-
duced constant elements andP-regular points, and prove some of their
properties.

Definition . A reduced contact element(z,Eχ) is said to beℓ− stable
(with respect to[Σ, (D,D′, ω̃)]) if the functionφℓ remains a constant in
a neighbourhood of(z,Eχ) in χG q.

Proposition 18. A reduced contact element z,Eχ is ℓ− stable if and
only if φℓ(z,Eχ) = φℓq(Σ), where q= dimEχ. The set of non-ℓ-stable 122

q−dimensional reduced contact elements is a proper subvariety Sq
ℓ

of
χG q. If (z,Eχ) is ℓ-stable then tℓ(z,Eχ) = tℓq(Σ).

Proof. The first two assertions are immediate corollaries of Proposition
14. The last assertion follows from the first and Proposition16. �

Proposition 19. There exists an integerℓ0(Σ) depending only on(Σ)
with the following property: If(z,Eχ) is ℓ- stable and ifℓ ≥ ℓ0(Σ) then
(z,Eχ) is (ℓ + 1) stable.

Proof. Takeℓ0(Σ) as in Proposition 17. Then

φℓ+1
q (Σ) = Q(φℓq(Σ), p+m1)
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= Q(φℓq(z,Eχ), p+m1) by ℓ − stability of (z,E)

≤ φℓ+1
q (z,E) by the theorem of Hilbert .

This inequality, together with the inequalityφℓ+1
q (Σ) ≥ φℓ+1

q (z,Eχ)
(Proposition 14). shows that (z,Eχ) is (ℓ + 1)- stable. �

The Proposition 19 simply states that for sufficiently large integer
ℓ, ℓ- stability implies (ℓ + 1)- stability. In other words for sufficiently
largeℓ,Sq

ℓ+1 ⊆ Sq
ℓ
.

Let us denote byS(ℓ) = S(ℓ; [Σ,D,D′, ω̃]) the set of allz in D
such that any reduced contact element with origin atz is not anℓ-stable
element.

Proposition 20. S(ℓ) is a proper subvariety of D.

This follows from the following much more general lemma.123

Lemma. Let(M,M′, ρ) be a fibred manifold, M′′ be a proper subvariety
of M. Assume that, for every x∈ M′, ρ−1(x) be connected. Then the set
M′′ =

{
x ∈ M′ : ρ−1(x) ⊂ M′′

}
is a proper subvariety of M′.

Proof. Let U be an open subset ofM and setV = ρ(U). We claim
first that x ∈ M′′ ∩ V if and only if ρ−1(x) ∩ V ⊂ M′′. Namely, if
ρ−1(x)∩V ⊂ M′′, ρ−1(x) ∩M′′ contains interior points ofρ−1(x). Then,
ρ−1(x) ∩ M′′ being a subvariety andρ−1(x) being connected, it follows
thatρ−1(x) ∩ M′′ = ρ−1(x), i.e.. x ∈ M′′′ ∩ V. converse is trivial. �

Takez0 in M′. Let x0 ∈ M be such thatρ(x0) = z0. Take an open
neighbourhoodU of x0 with the following conditions;

(i) A coordinate system (x, y) of (M,M′, ρ) is defined onU.

(ii) there exist real analytic functionsf1, . . . , fk onU such thatM′′∩U
is equal to the common zeros off1, . . . , fk. For each fixedy and
λ = 1, . . . , k, we define a functionf y

λ
on ρ(U) = V by f y

λ
(x) =

fλ(x, y). Then by the remark made at the beginning,M′′′ ∩ V is
equal to the common zeros off y

λ
. ThereforeM′′′ is a subvariety.

Sinceρ(M − M′′) ⊆ M′ − M′′′ and sinceM − M′′ is not empty,
M′′′ is a proper subset.
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Proof of Proposition 20. Denote bySq(ℓ) the set of pointz such that
any q−dimensional reduced contact element atz is not ℓ−stable. Set
M = D,M′ = D′,M′′ = Sq(ℓ) . Applying the lemma, we find thatSq(ℓ) 124

is a subvariety. ThereforeS(ℓ) =
P⋃

q=0
Sq(ℓ) is a subvariety

Definition. Given an integerℓ > 0, a reduced contact element(z,Eχ) is
said to beℓ- regular if (z,Eχ) is ℓ′− stable forℓ′ ≥ ℓ.

LetV (ℓ, q) be the set of all nonℓ- regular reduced contact elements
of dimension q. ClearlyV (ℓ, q) =

⋃
ℓ′≥ℓ

Sq
ℓ′
=

⋃
0≤h≤max(0,ℓ0(Σ)−ℓ)

Sq
ℓ+h(cf.

Proposition 19). This shows thatV (ℓ, q) is again a proper subvariety of
χG qD′.

Now let us introduce the notion of reduced flags.

Definition. A reduced flagqFχ on a q-dimensional reduced contact ele-
ment(z,Eχ) is a finite sequence of reduced contact elements

{
z, (z,Eχ

1),

. . . , (z,Eχ
q)

}
such that Eχ0 ⊂ Eχ

1 ⊂ · · · ⊂ Eχ
q = Eχ is a flag on Eχ.

Let qF χ denote the set of all reduced flags onq-dimensional contact
elements of (D,D′, ω̃). qF χ is contained in the product spaceD×(space
of all flags onq-dimensional contact elements ofD′) = D × M.

Let ρ be the map which associates to each flag its origin. Then
qF χ

= {qFχ : ω̃(z) = ρ(qFχ)} . This defines the structure of a real ana-
lytic submanifold ofD × M on qF χ.

Definition. A reduced flagqFχ
=

{
(z,Eχ

k )(k = 0, 1, . . . , q)
}

is said to be

ℓ- regular if each component(z,Eχ

k ) is ℓ- regular.

Let SqF χ(ℓ) be the set of all nonℓ- regular reduced flagsqFχ on
(D,D′, ω̃). SqF χ(χ) is a proper real analytic subvariety ofqF χ. For if 125

ρk denotes the projectionqF χ → χk
G

associating to each flag inqF χ its

kthcomponent thenSqF χ(ℓ) =
q⋃

k=0
ρ−1

k (γ(ℓ, k)).

Definition . A point z ∈ D is said to be P- regular of weightℓ with
respect to(Σ) if there exists a reduced flag Fχ on (z, (D′)ω̃(z)) which is
ℓ− regular (with respect to(Σ)).
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Let S[ℓ] denote the set of all pointsz in D which are notP-regular
of weight ℓ. Denote byp the dimension ofD′. Let us denote the map
ρ : pFχ → D which associates to every reduced flag its origin. Then
sinceS(ℓ) =

{
z ∈ D : ρ−1(z) ⊂ SχF p(ℓ)

}
, it follows by the lemma that

S[ℓ] is a proper subvariety. We remark thatS(ℓ) ⊇ S(ℓ + 1) ⊇ · · ·

Definition . A point z in D is said to be P-regular of if there exists an
integer ℓ ≥ 0 such that z is P-regular of weightℓ with respect to(Σ)
if there exists a reduce flag Fχ on (, (D′)ω̃(z)) which is ℓ which is ℓ−
regular (with respect to(Σ)).

Let S[ℓ] denote the set of all pointsz in D which are notP- regular
of weight ℓ. Denote byp the dimension ofD′. Let us denote the map
ρ :q F χ → D which associates to every reduced flag its origin. The
sinceS(ℓ) =

{
z ∈ D : ρ−1(z) ⊂ SχF p(ℓ)

}
, it follows by the lemma that

S[ℓ] is a proper subvariety. We remark thatS(ℓ) ⊇ S(ℓ + 1) ⊇ . . .

Definition . A point z in D is said to be P- regular if there exists an
integerℓ ≥ 0 such that is z is P− regular of weightℓ.

Let S = S(Σ, (D,D′, ω̃)) be the set of all pointsz in D which are
not P− regular. ClearlyS =

⋂
ℓ

S(ℓ). Hence the set of all nonP-regular

pointsz in D is a proper subvariety ofD. For anyz < S we can con-
struct a reduced flagFχ

=

{
(z,Eχ

q)
}
q=0,1,...,p

on (z, (D′)ω̃(z)) such that

φℓ(z,Eχ
q) = φℓq(Σ) for sufficiently largeℓ.

3.12

Let (z,Eχ) be a fixed reduced contact element and letLχ be in (D′)ω̃(z) =

R(1,0)(z). Then the multiplicationLχ f ∈ R(z) is defined for anyf ∈ R(z).
We now pose the following definition:

Definition. Lχ is calledℓ1-prime to(z,Eχ) if the conditions f∈ R(ℓ,1)(z),
l ≥ ℓ1 and Lχ f ∈ A(z,Eχ) imply f ∈ A(z,Eχ).126

Proposition 21. Let (z, eχ) ∈ χG q be a reduced contact element. Then
there exists an integerℓ1 = ℓ1(z,Eχ) satisfying the following condition:
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the set of vectors Lχ ∈ R1,0(z) which areℓ1- prime to (z,Eχ) is every-
where dense in R1,0(z)

Proof. since R(z) is a Noetherian ring we can writeA(z,Eχ) = A =
G1 ∩ · · · ∩ Ga whereG1, . . . ,Ga are primary ideals in R(z). We shall
denote byR the algebra R(z), for simplicity. It is known from the theory
of ideals in polynomial rings that the setGi of all elementsu in R for
which there exists an integerℓ such thatuℓ ∈ i is a prime ideal inR.
We can also assume that there exists an integerni such thatU ni

i ⊆ Gi

for i = 1, . . . , a. We can assume further thatG1, . . . ,Gb are the primary
ideals such that for any integerℓ,Gi + R(ℓ,1)(1 ≤ i ≤ b); but for eachGi

amongGb+1, . . . ,Ga there exists an integerℓi such thatGi ⊇ R(ℓi ,1) and
henceGi ⊇ R( ,1) for anyℓ ≥ ℓi.

b may be zero and in this case takeℓ̃ = max(ℓ1, . . . , ℓa). ThenA ⊇
R(ℓ,1) for any ℓ ≥ ℓ̃ and the proposition follows in this case. Hence we
may assumeb > 0, defineℓ̃ = max(ℓb+1,...,ℓa) if b < a andℓ̃ = 1 if b = a.
For anyℓ ≥ ℓ̃ we haveG1 ∩ · · · ∩ Gb ∩ R(ℓ,1)

= A ∩ R(ℓ,1). We claim
thatGi ∩ R(1,0) is a proper subspace ofR(1,0)

= (D′)ω̃(z) for i = 1, . . . , b.
For let, if possible,Gi ⊇ R(1,0) so thatGi ⊇ G

ni
i ⊇ R(ni ,0) which is a

contradiction to the choice ofG1, . . . ,Gb. �

Now take a vectorLχ in R(1,0) such thatLχ < ∪Gi (1 ≤ i ≤ b). Fix 127

ℓ ≥ ℓ̃. Then the conditionLχ f < A(ℓ+1,1) implies Lχ. f ∈ ℓi (i ≤ i ≤ b)
because we can writeA(ℓ+1,1)

= G1∩· · ·∩GbR(ℓ+1,1). Then sinceLχ ∈ Gi

it is known from the theory of ideals in polynomial rings thatf ∈ Gi

(1 ≤ i ≤ b) which means thatf ∈ G1 ∩ · · · ∩ Gb ∩ R(ℓ,1)
= A(ℓ,1).

Therefore the complementary set of (G1 ∪ · · · ∪ Gb) ∩ (D′)ω̃(z), which is
everywhere dense in (D′)ω̃(z) consists of all vectors̃ℓ- prime to (z,Eχ).

Let (D,D′, ω̃) be a fibred manifold and (Σ) a normal differential sys-
tem on it. We pose the following definition.

Definition . If z is a point D, a coordinate system(x1, . . . , xp) of D′ at
ω̃(z) is said to beℓ1- regular when the following conditions are satisfied
(at z with respect toΣ):

(i) z is a P-regular point of weightℓ1;
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(ii) the reduced flag Fχ =
{
(z,Eχ

q); (q = 0, 1, . . . , p− 1)
}

where each

Eχ
q is the subspace of(D′)ω̃)(z) consisting of vectors L such that
〈dxq+1, L〉 = · · · = 〈dxp, L〉 = 0, is anℓ1-regular reduced flag;

(iii) If (L1, . . . , Lp) denote a base of(D′)ω̃(z) = M dual to dx1|M, . . .,
dxp|M, each Lq is ℓ1- prime to(z,Eχ

q−1)(q = 1, . . . , p).

Theorem 3. If z is a P-regular point of weightℓ0(with respect to
[Σ, (D,D′, ω̃)]), there exists anℓ1- regular coordinate system of D′ at

˜ω(z) (with respect to[Σ, (D,D′, ω̃)]) for sufficiently largeℓ1.128

Proof. Sincez is a P-regular point of weightℓ0 it is also aP-regular
point of weight ℓ for ℓ ≥ ℓ0 so much so that we can assume with-
out loss of generality thatℓo ≥ ℓo(Σ) .There exists anℓ0 - regular flag
Fχ
= {(z,Eχ

q) : (q = 1, . . . , p)} on (z, (D′)ω̃(z)) by definition. The set
of nonℓ0 -regular reduced flags being a proper real analytic subvariety,
the set ofℓ0-regular reduced flags is open in the manifold of all reduced
flags. Hence there exists a neighbourhoodUq of (z,Eχ

q) in χG q such that
any flag′Fχ with its qth component inUq for each q is alsoℓ0-regular.
Consider the vectorsL1, . . . , Lp such thatLq ∈ Eχ

q andEχ
q is generated

by Eχ

q−1 and Lq. we can choose a neighbourhoodUq of (z,Eχ
q) and a

neighbourhoodVq of Lq in such a way that the space′′Eχ
q spanned by

′Eχ

q−1 ∈ Uq−1 and ′Lq ∈ Vq is in Uq. Let ′Eχ
q = ω̃(z). Then by Propo-

sition 21 there exists a vector′L1 ∈ V1 ∩ (D′)ω̃(z) which isℓ0 -prime to
(z, ′′Eχ

0) and which is such that′′Eχ

1 spanned by′′Eχ

0 and ′L1 is in U1,
whereℓ0

= ℓ1(z, ′′Eχ

0). Proceeding in this manner inductively we can
choose′Lq ∈ Vq ∩ (D′)ω̃(z) such that �

(i) {(z, ′′Eχ
q)} is a reduced flag on (z, (D′)ω̃(z)), which isℓ0 -regular ,

(ii) ′Lq is ℓq−1-regular to (z, ′′Eχ

q−1 whereℓq−1
= ℓ1(z, ′′Eχ

q−1), and

(iii) ′′Eχ
q is generated by′′Eχ

q−1 and′Lq.

Setℓ1 = max(ℓ0, . . . , ℓp−1). Then we have a reduced flag{(z, ′′Eχ
q)}129

such that
(i) it is ℓ1 regular
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(ii) ′′Eχ
q is spanned by′′Eχ

q−1 and′Lq; ′Lq is ℓ1- prime to (z, ′′Eχ

q−1).

Take a coordinate system (x1, . . . , xp) such thatdxq+1|
′′Eχ

q = · · · =

dxp|
′′Eχ

q = 0. Let L′, . . . , Lp be a basis of (D′)ω̃(z) dual todx1, . . . , dxp.
Now we haveLq

= aq′Lq
+ vq(vq ∈ ′′Eχ

q−1), aq
, 0. Because′Lq is ℓ1-

prime to (z,Eχ

q−1), it is easy to see thatLq is ℓ1-prime to′′Eχ

q−1 and this
completes the proof.

Theorem 4. There exists an integer̃ℓ (
∑

) such that forℓ ≥ ℓ̃ (
∑

)

tℓq
(∑)

= tℓq−1

(∑)
+ nℓ−1 − tℓ−1

q−1

(∑)

where nℓ−1 = dimR(ℓ−1,1)(z), 1 ≤ q ≤ p.

Proof. There exists pointz which is P-regular of weightℓ1 for a suffi-
ciently largeℓ1. By Theorem 3 there exists a coordinate system (x1, . . . ,

xp) of D′ at ω̃(z) which is P-regular. Hence there exists anℓ̃-regular
reduced flagFχ for an integer̃ℓ satisfying the following conditions. �

(i) if ( z,Eχ
q) is the qth component ofFχ,Eχ

q is the space of all vectors
L such that〈dxq+1, L〉 = . . . = 〈dxp, L〉 = 0;

(ii) the baseX1, . . . ,Xp of (D′)ω̃(z) dual todx1, . . . , dxp is such that
Xp is ℓ̃- prime to Eχ

q−1. Thenφℓ(z,Eχ
q) = φℓq (

∑
) and by Proposition 130

16 ψℓ(z,Eχ
q) = ψℓq(Σ) for ℓ ≥ ℓ̃. Hencetℓq(Σ) = φℓq(Σ) − ψℓq(Σ) =

dim A(ℓ,1)(z,Eχ
q) for ℓ ≥ ℓ̃.A(ℓ,1)(z,Eχ

q)is generated as a vector space by


ξ̃

k j
ϕ (z)Xi1 . . .Xiℓ−1,

LXi1 . . .Xiℓ−1Yλ, L ∈ Eχ
q ⊆ R(1,0)(z)

Whereξk j
ϕ (z) = Akλ

ϕ (z)YλX j − A jλ
ϕ (z)YλXk andXi

=

(
∂

∂xi

)

z
∈ (D′)z =

R(1,0)(z). Hence

ξ
k j
ϕ Xii . . .Xiℓ−1,YλX

q′Xi1 . . .Xiℓ−1(q′ = 1, . . . , q)

generateA(ℓ,1)(z,Eχ
q) and henceA(ℓ,1)(z,Eχ

q) = A(ℓ,1)(z,Eχ

q−1) + Xq

R(ℓ−1,1)(z). But this need not be a direct sum. Letv1, . . . , vγ be a set of
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maximum number of linearly independent elements in R(ℓ−1,1)(z) mod-
ulo A(ℓ−1,1)(z,Eχ

q−1) .Then

A(ℓ,1)(z,Eχ
q) = A(ℓ,1)(z,Eχ

q−1) + XqRV1 + . . . + XqRVν

where Ris the field of real numbers. We claim that this is a direct sum
decomposition. For, let a non-trivial relation

Xqb1V1 + . . . + XqbνVν + a = 0, a ∈ A(ℓ,1)(z,Eχ

q−1)

hold. That is,Xq(b1V1+. . .+bνVν) ∈ A(ℓ,1)(z,Eχ

q−1) SinceXq is ℓ̃− prime

to (z,Eχ

q−1), it follows then thatb1V1 + . . . + bνvn ∈ A(ℓ−1,1), (z,Eχ

q−1).

Then by the choice ofVi , bi = 0, and soa = 0. Thereforetℓq−1(Σ) + ν =

tℓq(Σ). But by definitionν = nℓ−1 − tℓ−1
q−1(Σ). Therefore we obtain the131

required equality

tℓq(Σ) = tℓq−1(Σ) + nq−1 − tℓ−1
q−1(Σ) for ℓ ≥ ℓ̃ q.e.d.

By the same argument employed in the last part of the above proof,
we have the following :

Proposition 22. Let (z,Eχ

q−1) be a(q−1)−dimensional reduced contact

element. Assume that Lχ ∈ (D′)ω̃(Z) is ℓ1-prime to (z,Eχ

q−1). Denote

by Eχq the subspace generated by Eχ

q−1and Lχ. Assume that Eχq is q-
dimensional. Then forℓ ≥ ℓ1

tℓ(z,Eχ
q) = tℓ(z,Eχ

q−1) + nℓ−1 − tℓ−1(z,Eχ

q−1).

3.13

Definition. We say that a reduced flag
{
(z,Eχ

q); q = 0, 1, . . . p
}

is weakly
ℓ- stable when tℓq(z,Eχ

q) = tℓq(Σ) for q = 0, 1, . . . , p− 1.
Clearly, the set of weaklyℓ -stable reduced flags is open, and con-

tains the set ofℓ-stable reduced flags.
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Proposition 23. Let F =
{
Eq

}
be an integral flag of[pℓSΣ, ( jℓ,D′, α)]

satisfying the following conditions:

(i) ℓ ≥ ℓ1(Σ);

(ii) ( pℓSΣ)
(1)
X ∩ ΩX = {0}, WhereX is the origin ofF and

ΩX = α
∗(∧1

α(X)(D
′));

(iii) the reduced flagFχ
= {(z,Eχ

q) : q = 0, 1, . . . , p} is weaklyℓ-stable
and weakly (ℓ − 1)− stable, wherez = β(X) andz,Eχ

q = dαEq.
Then dim(Aℓ)Eq = f ℓq(z,Eχ) = tℓq(Σ) for q = 0, 1, . . . , p − 1 (cf.
Proposition 11).

Proof. We writeAℓ(Eq) instead of (Aℓq)Eq. The proof is by induction on 132

the dimensionq. WhenX is an integral point, we haveAℓ(X) ⊆ J(X) =
(PℓSΣ)

(1)
X . Hence by (ii) dimAℓ(X) = dim(Aℓ(X)+ΩX/ΩX = t′(X) = tℓo(x)

(cf. Proposition 13). The proposition is therefore proved in the case
q = 0 . Let us assume that the proposition holds in the case (q−1). Now
since (z,Eχ

q)is weakly-ℓ-stable,

tℓq(Σ) = tℓq(z,Eχ
q) = t′(Eq) (by Proposition 13)

≤ dimAℓ(Eq)

dimAℓ(Eq−1) + nℓ−1 − t′(dρℓℓ−1Eq−1) (by Proposition 12)

wherenℓ−1 = dim R(ℓ−1,1)
( z) andρℓ

ℓ−1 is the projection ofJℓ onto Jℓ−1.
By induction assumption and Proposition 13 the latter member of the
above inequality is equal to

tℓq−1(Σ) + nℓ−1 − tℓq−1(z,Eχ

q−1)

Hence, since the flag is weakly -(ℓ − 1)-stable we obtaintℓq(Σ) ≤ dimAℓ

(Eq) ≤ tℓq−1(Σ)+nl−1− tℓ−1
q−1(Σ). But for ℓ ≥ ℓ1(Σ), tℓq(Σ) = tℓq−1(Σ)+nℓ−1−

tℓ−1
q−1(Σ) by Theorem 4. Thereforetℓq(Σ) = dim Aℓ(Eq) and this proves the
proposition. �
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Let [Σ, (D,D′, ω̃)] be a differential system with independent vari-
ables. Suppose that dimD′ = p. We pose the following definition:

Definition . The system [Σ, (D,D′, ω̃)] is said to be in involution at an 133

integral point z∈ D if the following conditions are satisfied:

(i) any integral element, of dimension p of [Σ, (D,D′, ω̃)] with origin
at z, is an ordinary integral element,

(ii) there exists ap-dimensional integral element with origin atz of
[Σ, (D,D′, ω̃)].

Definition . An integral point z of[Σ, (D,D′, ω̃)] is a normal integral
point if the following conditions are satisfied:

(i) z is an ordinary integral point;

(ii) there exists a neighbourhoodU of z in D such that for anyz′ ∈
U ∩ v◦Σ, we have

(Σ(1))z′ ∩ ω̃
∗(∧(1)

ω̃(z)(D
′)) = {0}.

Proposition 24. If [Σ, (D,D′, ω̃)] is in involution at an integral point Z
in D then Z is a normal integral point.

Proof. By definition z is an ordinary integral point and there exists an
integral elementE of dimensionp at z. Let (x1, . . . , xp) be a coor-
dinate system ofD′ at ω̃(z) . Then E being an integral element of
[Σ, (D,D′, ω̃)] dx1|E, . . . , dxp|E are linearly independent. Because of
corollary to proposition 8 (Chapter II) there exists a neighbourhood
U of Z in D such that for anyZ′ ∈ ∪ ∩ ϑ0

Σ there is an integral el-
ementE′ of Z′ such thatdx1|E′, . . . , dxp|E′ are linearly independent,
Take an elementa1(dx1)z′ + . . . + ap(dxp)z′ in (Σ(1))z′ ,∩ω̃

∗(∧ω̃(z)D′)|E′.134

But sinceE′ is an integral element of (
∑

),Σ(1)|E′ = 0 so much so that
a1(dx1|E′) + . . . + ap(dxp|E′) = 0, that isa1 = . . . = ap = 0. �

Definition. Z in D is called P-weakly -regular of weightℓ0 with respect
to [Σ, (D,D′, ω̃)]) when there is a reduced flag over(z, (D′)ω̃(z)) which is
ℓ - weakly -stable forℓ ≥ ℓ0. Therefore z is a normal point.

Clearly , a P-regular point of weightℓ0 is a ℓ-weakly - regular point
of weightℓ0 .
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3.14

Theorem 5. Let [Σ, (D,D′, ω̃)] be a normal differential system with in-
dependent variables and PℓSΣ be its standard prolongation to Jℓ(D,D′,
ω̃). Let z ∈ D be a P-weakly -regular point of weightℓ0 and X be
an integral point of [PℓSΣ, (J

ℓ,D′, α)] such thatβ(X) = z. Then,ifℓ ≥
max[ℓ0 + 1, ℓ1(Σ)] the system[PℓSΣ, (J

ℓ,D′, α)] is in involution at X if
and only if X is normal with respect to PℓSΣ.

Proof. In view of the Proposition 24, it is sufficient to prove that ifX is
a normal integral point thenPℓSΣ, is in involution atX.

Take ap-dimensional integral elementE of [PℓSΣ, (J,D
′, ω̃)] at X.

Sincez is a P-regular point of weightℓ0 there exists anℓ0 -regular re-
duced flagFχ

= {(z,Eχ
q)}; that is each component isℓ′-stable for any

ℓ′ ≥ ℓ0. Sincedα is an isomorphism ofE onto (D′)ω̃(z) there exists a
subspaceEq ⊂ E such thatDα is an isomorphism ofEq onto Eχ

q. Now
F = {Eq} is a flag onE at X. We claim that each componentEq of 135

F is regular; that is there a neighbourhoodUq of Eq in G qJℓ(D,D′, ω̃)
such that for any elementE′q ∈ U ∩ ϑq(pℓSΣ) we have dimJ(E′q). Let

Ω(X) = α∗(∧(1)
α(X)(D

′)). �

By condition (ii) of normality ofX there exists a neighbourhoodU
of X in Jℓ such that for anyX′ in U ∩ ϑ0(PℓSΣ) we have ((PℓSΣ)

(1) ∩

Ω(X′) = {0}. ChooseUq so small that

i) for any E′q ∈ Uq, the originX′ of E′q is in U;

ii) (β(X′′), dα(E′q)) is ℓ0 -weakly -regular .

Hence all the conditions of Proposition 23 are satisfied and so

dim J(E′q) = dim(Gℓ)X + dim(π(ℓ))X + tℓq(Σ)

The right member of this equation is independent of the choice of
E′q inUq : This proves thatE is an ordinary integral element.

Now it only remains to show that there exists aP-dimensional inte-
gral element ofPℓSΣ and or origin atX. SinceX is normalJ(X)∩Ω(X) =
{0} and therefore dimJ(X) = dim[(J(X) + Ω(X))/Ω(X)].
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Let (x1, . . . , xp) be a coordinate system ofD′ atα(X) such thatEχ
q is

generated by the firstqelements in the base ofEχ
q todx1, . . . , dxp. Let L1

be a solution of the system of equations

〈J(X), L〉 = 0,

〈dx1, L〉 = 1, 〈dx2, L〉 = . . . = 〈dxp, L〉 = 0.

Let E1 denote the one dimensional contact element spanned byL1. E1136

is an one dimensional integral element ofPℓSΣ. Again

J(E1) = (Gℓ)X + (π(ℓ))X + Aℓ(E1)

dim Aℓ(E1) = tℓ1(Σ) and soJ(E1) ∩Ω(X) + {0}. Let L2 be the solution of
the equations

〈J(E), L〉 = 0,

〈dx1, L〉 = 0, 〈dx2, L〉 = 1, 〈dx3, L〉 = . . . = 〈dxp, L〉 = 0.

Repeating this process we construct ap-dimensional integral element of
PℓSΣ. This completes the proof of the theorem.

Remark . In Theorem 5, the assumption that z is P-regular can be re-
placed by the following assumption: There is a reduced flag on

(z, (D′)ω̃(z))

such that each of its componentℓ-weakly -stable and(ℓ − 1) -weakly
stable. The reason is that the former assumption is used in the proof of
Theorem 5 only to the existence of a reduced flag having the property in
the latter assumption.

3.15

Let [Σ, (D,D′, ω̃)] be a differential system with independent variables.
We setJℓ = Jℓ(D,D′, ω̃). The standard prolongationPℓSΣ on Jℓ is gen-
erated by (PℓSΣ)

(0), π(ℓ) as an ideal closed underd. Here
∏

(ℓ) and the137

operatord do not depend on the system given. ThusPℓSΣ is completely
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determined by (PℓSΣ)
(0). More generally, let us consider a submoduleF

of ∧0Jℓ .We shall construct a submoduleF′ of ∧0 jℓ+1 out of F having
the following property : When this construction is applied to (PℓSΣ)

(0) ,
we obtain (Pℓ+1

S Σ)
(0). To make the matter more general, we will consider

subsheaves of the sheaf of germs of (real analytic) functions, instead of
submodules.

Let (X1, . . . ,Xp,Y1l, . . . ,Ym) = (X,Y) be a coordinate system in
(D,D′, ω̃).Jℓ has the coordinates system (X,Y, . . . ,Yi,...iν

λ
, . . .) (ν ≤ ℓ)

associated with (X,Y). Let f be a function defined on an open setU
in the domain of the coordinate system. Considerf as a function on
(ρℓ+1
ℓ

)−1(U) = U′. Then we haved f ≡ f jdxj (mod
∏

(ℓ + 1)) where
f j are functions onU′ This follows from the facts thatd f is a lin-
ear combination ofdxj , dyλ, dyi1...iν

λ
(ν ≤ ℓ) and thatdyi, ...iν

λ
≡ yi1...iν j

λ
dxj

(mod
∏

(ℓ + 1)). We setD j f = f j . Clearly

D j(α f + βg) = αD j( f ) + βD j(g),D j ( f g) = (D j f )g+ f (D jg)

Whereα, β ∈ R. When (X,Y) is changed to (X′,Y′), havedxj = ak
jdx′k.

Since
∏

(ℓ + 1) does not depend upon the choice of the coordinate sys-
tem, df≡ (D j f )dxj = (D j f )ak

j dx′k(mod
∏

(ℓ + 1)). Therefore

D′ j( f ) = a j
k(D

k( f )).

Let F be an ideal of∧0(U). Denote byP(F) the ideal in∧0(U′) gen- 138

erated byFoρℓ+1
ℓ

andD j(F), where j = 1, . . . ,P and f runs throughF.
The above rule for change ofD j under coordinate transformation shows
thatP(F) is independent of the choice if coordinate system employedto
constructP(F).

Let (M,M′, ω̃) be a fibered manifold. Denote byOJℓ the sheaf of
germs of real analytic functions onJℓ. OJℓ is a sheaf of rings. LetU be
an open set ofJℓ. LetΦ be a subsheaf of ideals ofOJℓ |U , the restriction
of OJℓ to U . For each open setU ⊂ U of Jℓ , denote byΓ(U,Φ) the
ring of cross -sections ofΦ over.U. For each open setV of Jℓ+1 such that
ρℓ+1
ℓ

(V) = W ⊂ U , denote byΨ(V) the ideal in∧0(V) = Γ(V,OJℓ+1)
generated by the restriction ofP(Γ((ρℓ+1

ℓ
)−1(W),Φ)). If V′ ⊂ V, the

restriction mapping sendsΨ(V) intoΨ(V′). Hence the systemΨ(V) de-
fines a subsheaf of ideals ofOJℓ+1|(ρℓ+1

ℓ
)−1(U , ) which will be denoted
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by P(Φ). P(Φ) is called the standard prolongation ofΦ . Let us assume
now that M = D,M′ = D′. Let

[
(PℓSΣ)

(0)
]

the subsheaf of ideals in

OJℓ generated by [(PℓSΣ)
(0)] the subsheaf of ideals inOJℓ generated by

(PℓSΣ)
(0) . Then

Proposition 25. P([(PℓSΣ)
(0)]) = [(Pℓ+1

S Σ)
(0)].

Proof. By definition, (PℓSΣ)
(0) is generated byFk1,...ka;i1...ir

ϕ (ϕ ∈ Σ(a); 1 ≤
k1, . . . , ka; i1, . . . , ir ≤ p; r ≤ ℓ − 1).

By Proposition 3,D j(Fk1...ka; j1...ir
ϕ ) = Fk1...ka;i1...ir j

ϕ . Therefore then
ideal (Pℓ+1

S Σ)
(0) is generated byD j f and f , where f runs through139

(PℓS
∑

)(0). Hence our equality follows from the definition ofP. �

Now we pose the following

Definition. By a partial differential equation of order k on(M,M′, ω̃),
we mean an open setU in Jk(M,M′, ω̃) and a subsheaf of idealsΦ in
OJk|U such thatΦ is locally finitely generated. By theℓ -th standard
prolongation of the partial differential equationΦ, we mean the open
set (ρℓ+1

ℓ
)−1(U) and the subsheaf of ideals P(· · · (P(Φ)) · · · ) = Pℓ(Φ),

where we operate Pℓ-times.

It is clear by the definition that the standard prolongation of a partial
differential equation is again a partial differential equation. It will be
easy to see that our definition of partial differential equations is equiva-
lent to the usual one when (M,M′, ω̃) = (D,D′, ω̃). Also it will be clear
by Proposition 25 that the notion of partial differential equations and
their prolongations includes the notion of exterior differential systems
and their prolongations.

3.16

Let X be a point ofU . If f (X) = 0 for any f in Γ(U,Φ) and for any
open neighbourhoodU of X in U , then we say thatX is an integral
jet of the equationΦ. Denote byϑo

Φ the set of integral jets ofΦ. It
is clear thatϑo

Φ is a subvariety ofU . Take an open setD in U such
that a coordinate system in (M,M′, ω̃) is defined onD. SetD′ = ω̃(D).
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Then (D,D′, ω̃) is a fibered manifold. Assume thatΓ(D,Φ) is finitely
generated and thatΦ|D is generated byΓ(D,Φ). For anyX in Jk we 140

can choose such aD containingX, becauseΦ locally finitely generated.
Denote

∑
(D,Φ) the exterior differential system generated byΓ(D,Φ)

and
∏

(k).
∑

(D,Φ) is called a defferential system associated withΦ.
Thus Pk ∑

is associated with
[
(Pk ∑

)(0)
]
. Let g be a cross-section of

(M,M′, ω̃) over an open set inM′. We say thatg is an integral ofΦ
when jk(g) ⊂ ϑ0

Φ. It is equivalent to say that, for any
∑

(D,Φ) such
that D intersects with the image ofg, the restriction ofg is an integral
of

∑
(D,Φ). This follows from Proposition 2. By the proposition we

also have the following: LetG be an integral of an associated system∑
(D,Φ). Then there is an integralg of Φ such thatG = jk(g). Thus the

problem of finding integrals of associated differential systems.

Proposition 26. Let Φ be a partial differential equation of order k.
Let [

∑
, (D,D′, ω̃)]

∑
(D,Φ) be an associated differential system. Then∑

((ρk+ℓ
k )−1(D),Pℓ(Φ)) is isomorphic to an admissible restriction of

PℓS [
∑
, (D,D′, ω̃)].

Proof. We can assume without loss of generality thatM′ = D′. Also
it is easy to reduce the proof to the caseℓ = 1, by Proposition 8′.
So we assume thatℓ = 1. As mentioned inp.96, there is a canoni-
cal injectionℓ of Jk+1(M,D′, ω̃) into J′(Jk(M,D′, ω̃),D′, α). ℓ induces
an isomorphism of

∏
(k + 1; (M,D′ω̃)) to an admissible restriction of

P′S [
∏

(k; (M,D′, ω̃)), (D,D′, α)]. P′S [
∑
, (D,D′, α)] is generated (with 141

d) by Γ(D,Φ)oρℓ+1
ℓ
, Fk

dϕ(ϕ ∈ Γ(D,Φ)), and byP1
S[

∏
(k; (M,D′, ω̃)),

(D,D′, α)]. By Proposition 5

dϕ ≡ Fk
dϕdxk mod

∏
(1; (Jk(M,D′, ω̃),D′, α)).

�

Then sinceϑ ∗ (
∏

(1; (Jk(M,D′, ω̃),D′, α)) =
∏

(k + 1; (M,D′, ω̃))
as proved in p.97, it follows thatFk

dϕoℓ = Dkϕ. Thereforeϑ induces

an isomorphism of
∑

((ρk+1
k )−1(D),P(Φ)) to an admissible restriction

P1
S [

∑
, (D,D′, α)].

We say that an integral jetX ofΦ is ordinary whenX is ordinary with
respect to an associated differential system

∑
(D,Φ) (such thatD ∋ X).
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When this is so,X is an ordinary integral point of any associated system∑
(D1,Φ) such thatD1 ∋ X. The definition implies immediately the

following: WhenX is an ordinary integral jet ofΦ andU is a suitable
open neighbourhood ofX, ℓ0

Φ∩U is submanifolds ofU andΓ(U,Φ) = 0
is its regular local equation. We say thatΦ is in involution at an integral
jet X, when an associated differential system is in involution atX.

Let Φ,Ψ be partial differential equations of orderk on (M,M′, ω̃).
Denote byU , ω the sets inJk on whichΦ,Ψ are given, respectively.
We sayΦ ⊂ Ψ, whenU ⊂ ω andΦx ⊂ Ψx for any x in ω. We say that
Φ is a restriction ofΨ, whenU ⊂ ω andΦx = Ψx for any x in U .

Our main purpose is to prove the following

Theorem 6. Let(M,M′, ω̃) be a fibered manifold. Assume that a partial142

differential equationΦℓ of orderℓ on (M,M′, ω̃) is given for anyℓ ≥ ℓ0.
Let g0 be a cross-section of(M,M′, ω̃) over an open neighbourhood of
a point x0 in M′. Assume the following: for anyℓ ≥ ℓ0

(i) g0 is an integral ofΦℓ,

(ii) Φℓ+1 ⊇ p(Φℓ) on a neighbourhood of Xℓ = jℓ
x0( f 0),

(iii) Xℓ is an ordinary integral jet ofΦℓ,

(iv) for a suitable open neighbourhood U of Xℓ0, (ℓo
Φ
−o ∩U, α(U), α)

is a fibered manifold,

(v) (ℓ0
Φ
ℓ+1∩V, ℓ0

Φ
ℓ∩V′, ρℓ+1

ℓ
) is a fibered manifold for suitable open

neighbourhoods V,V′ of Xℓ+1,Xℓ, respectively.

Then there is an integerℓ1 such thatΦℓ+1 andP(Φℓ) are equal in a
neighbourhood ofXℓ+1 and such thatΦℓ is in involution atXℓ for any
ℓ ≥ ℓ1

3.17

In this article, we keep the notations in the above theorem and assume
that the assumption is satisfied. Choose a coordinates system (x, y) in
(M,M′, ω̃) defined on a neighbourhood ofg0(x0) such thatx0

= (0)
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and the cross-sectiong0 is represented byyλ = 0. Let f be a function
defined in a neighbourhood ofXℓ. Expandingf in the power series in
x, y, . . . , yi1···iν

λ
, . . . (1 ≤ ν ≤ ℓ), we have

f = aλi1···iℓ (x, y)yi1···iℓ
λ
+ f ′oρℓℓ−1 + h

where f ′ is a function onJℓ−1 andh is a function onJℓ, each of whose 143

terms is of atleast degree two inyi1···iν
λ

. The functionaλi1···iℓ (x, y)yi1···iℓ
λ

is

called the principal part off and is denoted byR( f ), or Rℓ( f ).

Lemma. Under the above notations,

Rℓ+1(D j f ) = aλi1···iℓ (x, y)yi1···iℓ j

Proof. Because of the above expansion off , we have

d f = aλi1···iℓ (x, y)dyi1···iℓ
λ
+ yi1···iℓ

λ
+ daλi1···iℓ + d( f ′oρℓℓ−1) + dh

≡ (aλiℓ ···iℓy
i1···iℓ j
λ

+ yi1···iℓ
λ

D j(aλi1···iℓ ) + (D j f ′)oρℓ+1
ℓ

+ (D jh)dxj (mod
∏

(ℓ + 1)).

�

Therefore

D j f = aλi1···iℓ (x, y)yi1···iℓ j
λ

+ yi1···iℓ
λ

D j(aλi1···iℓ ) + (D j f ′)oρℓ+1
ℓ + D jh.

Then our conclusion follows immediately
Introduce indeterminatesZ1, . . . ,Zp,Y1, . . . ,Ym, wherep = dim M′,

m= dim M − p. For eachf as above, we set

Fℓ
f = aλi1···iℓ (0, 0)YλZ

iℓ · · ·Ziℓ ∈ R[Z,Y]

where R[Z,Y] is the ring of polynomials inZ1, . . . ,Zp,Y1, . . . ,Ym. De-
note byAℓ the ideal in R[Z,Y] generated by allFℓ′

f whereℓ ≥ ℓ′ and f

is function defined on a neighbourhood ofXℓ which is a cross-section of
Φ
ℓ. ClearlyA0 ⊆ · · · ⊆ Aℓ ⊆ Aℓ+1 ⊆ · · ·R[Z,Y] being a Noetherian ring

there exists on integerℓ2 such thatAℓ+1
= Aℓ for ℓ ≥ ℓ2. This together 144
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with the above lemma means the following: For any cross-section f of
Φ
ℓ+1 defined on a neighbourhood ofXℓ+1 there existsh j which is a cross

section ofΦℓ such thatFℓ+1
f =

∑
Z jFℓ

hj
. Therefore by the above lemma,

it follows that the principal part off −
∑

D jh j vanishes atXℓ+1. Since
Xℓ+1 has the coordinatesx = y = · · · = yi1···iν

λ
= · · · = 0, this means

that d( f −
∑

D jh j)Xℓ + 1 is in ρℓ+1∗
ℓ

(∧xℓ(Jℓ)). Then the condition (iii)
and (v) imply thatΦℓ+1 is generated byΦℓ andD j(Φℓ) locally at Xℓ+1.
ThereforeΦℓ+1 is equal toP(Φℓ) on a neighbourhood ofXℓ+1 for ℓ ≥ ℓ2.

3.18

Take a sufficiently small open neighbourhoodDℓ of Xℓ (which we will
change if necessary), and setWℓ

= ℓ0
Φ
ℓ ∩ Dℓ. (Dℓ, α(Dℓ), α) and

(Wℓ, α(Dℓ), α) are fibered manifolds by (iv) and (v). Denote by
∑
ℓ the

restriction of
∑

(Dℓ,Φℓ) to Wℓ. By (iii) there aref1, . . . , fa in Γ(Dℓ,Φℓ)
such thatd f1, . . . , d fa are linearly independent mod.d(Γ(Dℓ−1,Φℓ−1)o
ρℓ
ℓ−1 = 0 is a regular local equation ofWℓ onDℓ. If h is inΓ(Dℓ−1,Φℓ−1),

then the definition ofD jh together with (ii) imply thatd(h ◦ ρℓ
ℓ−1)X ∈∏

(ℓ)X for any X in Wℓ. Therefore (
∑

(Dℓ;Φ(ℓ)))(1) is generated by
(d f1)X,...,(d fa)X, (

∏
(ℓ))x. Denote byℓ the injection ofWℓ into Dℓ. Then

the conclusion just reached shows that
(∑(1)

ℓ

)
X
= ℓ∗

(∏
(ℓ)

)
X

Denote byΩX the subspace of∧1
X(D) generated by (dx1)X,...,(dxp)X.145

We claim thatℓ∗(
∏

(ℓ))X ∩ ℓ
∗
ΩX = 0. Namely, ifℓ∗(

∏
(ℓ))X ∩ ℓ

∗
ΩX ,

0, then there is no integral elementE of
∑
ℓ with origin X such that

dim(dα(E)) = p. This means thatℓ0P1
S(

∑
; (Wℓ, α(Dℓ), α)) has no points

with origin X. By Proposition 26, it follows thatX < ρℓ+1
ℓ

(ℓ0p(Φℓ)). By

(ii) this contradicts to (v). Thusℓ∗(
∏

(ℓ)) ∩ ℓ∗Ω =
∑(1)
ℓ
∩ℓ∗Ω = 0. This

shows in particular thatXℓ is a normal integral point of
∑
ℓ.

We will show that
[∑

ℓ, (W
ℓ, α(Dℓ), α)

]
is a normal differential sys-

tem. Since
∏

(ℓ) is normal. the conditions (1), (3), and (4) in the
definition of normal system (p.99) is trivial. As for the condition (2),
we already showed that

∑(1)
ℓ
∩ℓ∗Ω = 0. Since

∏
(ℓ) is generated by
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dyi1···iν
λ
− yi1···iℓ i

λ
dxi(0 ≤ ν ≤ ℓ − 1), it is clear that (

∏
(ℓ))X + ΩX =

(ρℓ
ℓ−1)∗ ∧′X (Dℓ−1). Therefore (

∑(1)
ℓ

)x + ℓ
∗(ΩX) = (ρℓ

ℓ−1)∗(∧′X(Wℓ−1)).

Hence dim(
∑(1)
ℓ

)X = dim(wℓ−1) − p, which is independent ofX in Wℓ.

This proves that the condition (2) is satisfied. Thus
[∑
, (Wℓ, α(Dℓ), α)

]

is a normal system.
We will show that Xℓ2 is P-weakly-regular with respect to[∑

2, (W
ℓ2, α(Dℓ2, α)

]
,whereℓ2 is the integer chosen in §3.17. Takez

in Wℓ2 sufficiently nearXℓ2. Take an integral pointY of Pℓs
∑
ℓ2 over 146

z. Y is in Jℓ(Wℓ2, α(Dℓ2), α) ⊆ Jℓ(Jℓ2(M,M′, ω̃),M′, α). Denote byℓ
the canonical injection ofJℓ2+ℓ(M,M′, ω̃) into Jℓ(Jℓ2(M,M′, ω̃,M′α).
Then by Proposition 26 we can chooseY in such a way that there isX in
Wℓ2+ℓ nearXℓ2+ℓ such thatY = ℓ(X). By Proposition 11 and 13, applied
to the case dimE = 0, it follows thattℓ0(z;

∑
ℓ2

) = dim((PℓS(
∑
ℓ2

)(1))Y +

ΩY/ΩY) − c,wherec is a constant independent ofz. Therefore , by
Proposition 26 and 8′, tℓ0(z;

∑
ℓ2

) = dim((
∑

(PℓΦℓ2)))(1)
X + ΩX/ΩX) −

c′. By the choice of and by Proposition 8′, it follows that tℓ0(z;
∑
ℓ2
=

dim(
∑(1)
ℓ2+ℓ

)X̄c′′, because (
∑(1)
ℓ2+ℓ

)X ∩ ΩX = 0. As is already shown

dim(
∑(1)
ℓ2
+ℓ)X is a constant independent ofX in Wℓ2+ℓ. Hencetℓ0(Xℓ2;∑

ℓ2) = tℓ0(
∑
ℓ2). Let us assume as an induction assumption that there

is a sequenceXℓ2 = Eχ

0 ⊂ Eχ

1 ⊂ · · · ⊂ Eχ
q such thattℓr ((X

ℓ2,Eχ
r );

∑
ℓ2) =

tℓr (
∑
ℓ2) for r = 0, 1, . . . , q and for sufficiently largeℓ. By Proposition

22, there isEχ

q+1 ⊇ Eq such thattℓq+1((Xℓ2; Eχ
q);

∑
ℓ2

) = tℓq((Xℓ2,Eχ
q);

∑
ℓs

) + nℓ−1 − tℓ−1((Xℓ2,Eχ
q);

∑
ℓ2

) for largeℓ. Hence by theorem 4 for
suchEχ

q+1 we have the equalitytℓq+1((Xℓ2,Eχ

q+1);
∑
ℓ2) = tℓq+1(

∑
ℓ2) for

largeℓ. ThusXℓ2 is P-weakly regular of weightℓ1, for sufficiently large
ℓ1(≥ ℓ2) with respect to

∑
ℓ2

. By Proposition 8, a differential system
is in involution if and only if its admissible restriction isin involution.
Therefore by Theorem 5,Φℓ is in involution atXℓ for ℓ ≥ ℓ1. Thus 147

Theorem 6 is completely proved.
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