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Introduction

These lectures do not constitute a systematic account af it the-
orems. | have said nothing about these theorems where #eshtis
essentially topological, and in particular have nowheteodtuced the
important concept of mapping degree. The lectures have been
cerned with the application of a variety of methods to both-lieear
(fixed point) problems and linear (eigenvalue) problemsniimite di-
mensional spaces. A wide choice of techniques is availabléirfear
problems, and | have usually chosen to use those that givethorg
more than existence theorems, or at least a promise of simgettore.
That s, | have been interested not merely in existence ¢émesyrbut also
in the construction of eigenvectors and eigenvalues. Herrdason, |
have chosen elementary rather than elegant methods.

| would like to draw special attention to the Appendix in whikt
give the solution due to B. V. Singbal of a problem that | rdigethe
course of the lectures.

| am grateful to Miss K. B. Vedak for preparing these notes and
seeing to their publication.

Frank F. Bonsall






Contents

[L__The contraction mapping theorem 1
[2__Fixed point theorems in normed linear spacés 13
[3__The Schauder - Tychondf theoren 31
K4 Nonlinear mappings in conds 43
|5__Linear mapping in coneb 51
6__Self-adjoint linear operator in a Hilbert space 79
[Z__Simultaneous fixed points 95
8__A class of abstract semi-algebras 103






Chapter 1

The contraction mapping
theorem

Given a mapping of a setE into itself, an elementi of E is called a 1
fixed point of the mapping if Tu = u. Our problem is to find condi-
tions onT andE suficient to ensure the existence of a fixed poinfof
in E. We shall also be interested in uniqueness and in proceturtse
calculation of fixed points.

Definition 1.1. Let E be a nonempty set. A real valued functidrde-
fined onE x E is called a distance function or metric kif it satisfies
the following conditions
i) d(xy) =0,Xx yeE
i) dx,y) =0 x=y
iii) d(x,y) = d(y, %)
iv) d(x,2) <d(xy) +d(y,2

A nonempty set with a specified distance function is callededrim
space.



2 The contraction mapping theorem

Example .Let X be a set andE denote a set of bounded real valued
functions defined oX. Letd be defined orkE x E by

d(f, g) = sup{|f(t) — g : tsX}, f,geE.

Thend is a metric onE called the uniform metric or uniform dis-
tance function.

Definition 1.2. A sequencégXx,} in a metric spaceH, d) is said to con-
verge to an elementof E if

r!im d(x,, x) =0

A sequencex, of elements of a metric spacg,(d) is called a Cauchy
sequence if givea > 0, there exist& such that fop, g > N, d(Xp, Xq) <
€.

A metric space K, d) is said to be complete if every Cauchy se-
guence of its elements converges to an elemeht difis easily verified
that each sequence in a metric space converges to at mosh qoénd,
and that every convergent sequence is a Cauchy sequence.

Example. The spaceg[0, 1] of all continuous real valued functions on
the closed interval [A] with the uniform distance is a complete metric
space. Itis not complete in the metdcdefined by

1
d(f.g) = fo 1£(%) - g(ldx T, geCRI0, 1].

Definition 1.3. A mappingT of a metric spacdé into itself is said to
satisfy a Lipschitz condition with Lipschitz constatif

d(Tx Ty) < Kd(xy) (X yeE)

If this conditions is satisfied with a Lipschitz constafitsuch that O<
K < 1 thenT is called a contraction mapping.

Theorem 1.1(The contraction mapping theorenbet T be a contrac-
tion mapping of a complete metric spagento itself. Then
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i) T has a unique fixed pointin E
i) If %o is an arbitrary point oE, and &) is defined inductively by

Xm1=TX(n=0,1,2..),

then lim x, = uand

Nn—oo

n

1-K

d(Xn, u) < d(x1, Xo)

whereK is a Lipschitz constant for.

Proof. Let K be a Lipschitz constant foF with 0 < K < 1. Letx.cE
and letx, be the sequence defined by

Xm1=TX%(M=0,12..)

We have
d(Xr+1, Xs+1) = d(T %, T Xs) < Kd(X, Xs) (1)

and so
d(Xr+1, Xr) < Kr(xls XO) (2)

Givenp g, we have by[lll) and1?2),
d(xp, Xq) < qu(xp—q, Xo)
< Kq{d(xp—q, Xp-q-1) + A(Xp-q-1, Xp-q-2) + - - - + d(xq, Xo)}
< KQ{KP—Q—l FKPI2 4K+ 1}d(x1, %)

Kda

<
~1-K

d(X1, Xo) ®)

since the right hand side tends to zeraas oo, it follows that (x,) isa 4
Cauchy sequence, and sirteés complete, X,) converges to an element
u of E. Sinced(Xn+1, TU) < Kd(Xy, U) — 0 asn — oo,

Tu= lim Xye1 = U

N—oo
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n

1-K

d(u, xn) < d(u, Xp) + d(Xp, Xn) < d(u, Xp) + d(xz, Xo) for n < p, by

@). Lettingp — oo, we obtain

n

1-K

d(u, Xn) < d(X1, Xo)

O

Example.As an example of the applications of the contraction map-
ping theorem, we prove Picard’s theorem on the existencelofisn of
ordinary diferential equation.

Let D denote an open set R?, (Xo, Yo)eD. Let f(x,y) be a real val-
ued function defined and continuousDnand let it satisfy the Lipschitz
condition:

1f(X, y1) = F(X, ¥2)l < Mly1 = y2| (X, y1), (X, ¥2)eD)

Then there exists i> 0, and a functionp(x) continuous and dlieren-
tiable in [Xg — t, Xo + t] such thati)é(x,) = Yo, (ii)y = ¢(X) satisfies the
differential equation

dy

We show first that there exists an> 0 and a functions(x) contin-
uous in o — t, Xo + t] such thatii )¢(x) = yo + fX: f(t, p(t))dt (xo — t <
X £ Xo+1), ande(X, #(X))eD(Xo— < X < Xp+1). Then it follows from the
continuity of f(t, ¢(t)) that¢(X) is in fact diferentiable in k, — t, Xo + t]
and satisfies (i) and (ii).

Let U denote a closed disc of centrg(y,) with positive radius and
contained in the open sBt and letmdenote the least upper bound of the
continuous functionf| on the compact se/. We now choose, 6§ such
that 0< t < M1, the rectangléx—x| < & is contained iri/, andmt < 6.
Let E denote the set of all continuous functions mappixg t, Xo + t]
into [Yo — &, Yo + 6]. With respect to the uniform distance functi@nis
a closed subset of the complete metric spagp< — t, %o + t] and is
therefore complete. We define a mappifng = v for ¢ € E by

) = Yo + on (L, g(D)dt
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Clearly y(X) is continuous in o — t, X + t]. Also [y(X) — Yo| <
MIX — Xo| < mt < 6 wheneverx — x| < t. ThusT mapsE into it self.
Finally, T is a contraction mapping, for if; € E,y; = To)i(i = 1,2),
then

000 = 2001 =1 [ {1(C.0n0) - 1€t} at

<X = XM suplg1(t')] — p2(t')] (Xo —t <t < Xo + 1))
< tMd(¢1. ¢2)

Hence 6
d(y¥1,¥2) < tMd(¢1, ¢2)

AstM < 1, this proves that is a contraction mapping. By the contrac-
tion mapping theorem, there exigisE with T¢ = ¢ i.e., with

M@=w+ff@ﬂmm
Xo

This complete the proof of Picard’s theorem.
A similar method may be applied to prove the existence oft&wia
of systems of ordinary €lierential equations of the form
dy;

dx = fi(xXy,....y)([i=12,...,n)

with given initial conditions. Instead of considering realued func-
tions defined onx, — t, X + t], one considers vector valued functions
mapping ko — t, Xo + t] into R".

In the following theorem we are concerned with the continwit
the fixed point.

Theorem 1.2.Let E be a complete metric space, andTeand T,(n =
1,2,...) be contraction mappings & into itself with the same Lipschitz
constantK < 1, and with fixed pointal andu, respectively. Suppose
that lim T,x = T xfor everyx<E. Thennﬂ)r(g Un = U. By the inequality

n—oo

in Theoren_LIL, we have for each= 1,2,.. .,

n

1-K

d(ur, TM%o) < d(TrXo, Xo), Xo€E
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settingn = 0 andXx, = U, we have 7
1
1-K
Butd(T;u, Tu) — 0 asr — oo. Hence

d(ur,u) < d(Tru,u) = _ild(Tr u Tu)

rIim d(ur,u) =0

Example.In the notation of the last example, suppose that a real
seqguence converging Y@ and letT, be the mapping defined daby

(Tad)(X) = Yo + fXO (L, ¢(t))clt

Then|(The)(X) — Yol < IYn — Yol + Mme < ¢ for n suficiently large
i.e. Tn mapE into itself for n suficiently large. Also the mapping
Tn, T have the same Lipschitz constaril < 1. Obviously for each
o<E, r!m Th¢ = T¢. Hence if¢, is the unique fixed point of ,(n =
1,2,...) then nﬂm ¢n = ¢. In other words, if¢, is the solution of the
differential equation

Y iy

ax Y
in [ X, —t, Xo +t] with the initial conditiongn(X,) = Yn, theng, converges
uniformly to the solutiorp with ¢(Xo) = Yo.

Remark. The contraction mapping theorem is the simplest of the fixed
point theorems that we shall consider. Itis concerned wahbmpngs of a
complete metric space into itself and in this respect is gerneral. The
theorem is also satisfactory in that the fixed point is alwayigue and is
obtained by an explicit calculation. Its disadvantage @ the condition
that the mapping be a contraction is a somewhat severect@siriln the
rest of this chapter we shall obtain certain extension ofcthv@raction
mapping theorem in which the conclusion is obtained undedifieol
conditions.

Definition 1.4. A mappingT of a metric spac& into a metric spac&’
is said to be continuous if for every convergent sequergeof E,

A T =TI 0



The contraction mapping theorem 7

Theorem 1.3.Let T be a continuous mapping of a complete metric
spaceE into itself such thaf is a contraction mapping d& for some
positive integek. ThenT has a unique fixed point iB.

Proof. T has a unique fixed pointin E andu = lim (TA)"%, XoeE
arbitrary. O

Also lim (TK)"T x, = u. Hence
N—oo
u=lim (TY"Tx = lim T(TX)"%,
n—oo N—oo
=T lim (T¥)"x, (by the continuity of ) T
nN—oo
=Tu

The unigueness of the fixed point Bfis obvious, since each fixed
point of T is also a fixed point oT k.

Example.We consider the non-linear integral equation 9

f(x) =4 fa X K(x.y, f(y))dy + g(x) (1)

whereg is continuous ind, b] andK(x, y, 2) is continuous in the region
[a, b] x [a, b] x Rand satisfies the Lipschitz condition.

IK(XY,z1) — K(X Y, )| < M|z — Z,|.
(The classical Volterra equation is obtained by takifg,y,2) =

H(X,y).z, with H continuous in§, b] x [a,b]). LetE = Ck[a,b] and T
be the mapping oE into itself given by

X
(TH(X) = /lf K(x,y, f(u)dy+ g(X) (feE,a< x< b).
a
Given fy, f, in E it is easy to prove by induction amthat

(T109 - (TR < TWMTd(fy, B)(x- @), (a<x<b)
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Then L
d(T"f, T™f) < H|/l|”M”(b —a)"d(fy, f2)

This proves that all™ and in particularT, are continuous and, for
. 1 . .
n suficiently Iargeﬁl/u”M”(b —a)" < 1, so thatT" is a contraction

mapping fom large. Applying the theorem, we have a unigud with
T f = f which is the required unique solution of the equatidn (1).

Definition 1.5. Let (E, d) be a metric space anrt> 0. A finite sequence
Xos X1, . . ., Xn Of points ofE is called are - chain joiningxg andx, if

d(x-1,%) <e(i=12...,n)

The metric spaceH, d) is said to bes -chainableif for each pair
(x,y) of its points there exists ast chain joiningx andy.

Theorem 1.4(Edelstein) Let T be a mapping of a complete chainable
metric spacekl, d) into itself, and suppose that there is a real nuniber
with 0 < K < 1 such that

dxy) <e=d(Tx Ty < Kd(x,Yy)

ThenT has a unique fixed pointin E, andu = lim T"x, wherex,
n—oo
is an arbitrary element d&.

Proof. (E, d) beinge chainable we define fax, yeE,
n
do(xy) = inf )’ d(xi-1. %)
i=1

where the infimum is taken over a&ll- chainsx, . .., Xy joining Xp = X
andx, = y. Thend is a distance function ok satisfying

) d(xy) < dao(XY)

i) d(x,y) =d.(xy) ford(x,y) < e
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From (ii) it follows that a sequencex{), x,eE is a Cauchy sequence
with respect tad, if and only if it is a Cauchy sequence with respect
to d and is convergent with respect & if and only if it converges
with respect with respect td. Hence E, d) being complete, K, d.) is
also a complete metric space. MoreoVds a contraction mapping with
respect tal,. Givenx, yeE, and anye-chainxg, . . ., X, with Xg = X, X, =
y, we have

d(x-1,x)<e(i=212...,n),

so that
d(TX%_1, TX) <Kd(X_-1,%)<e(i=212,...,n)

HenceT X, ..., T X, is ane- chain joiningTy and Ty and

n n
d(TXTY) < > d(TG 1, TX) <K > d(xi 1, %)
i=1 i=1

Xos - . - » Xn D€ING an arbitraryg- chain, we have
d=(TX Ty) < Kd:(x,Y)
andT has a unique fixed pointsE given by

r!im d.(T"xo, u) = 0 for x,cE arbitrary 1)

But in view of the observations made in the beginning of thisof ()
implies that
r!im d(T"%o,u) = 0
m|

Example.Let E be a connected compact subset of a dontain the
complex plane. Lef be a complex holomorphic function b which 12
mapsE into itself and satisfied’(2)| < 1 (z €E). Then there is a unique
pointzin E with f(2) = z. Sincef’ is continuous in the compact def
there is a construdk with 0 < K < 1 such thatf’(2)] < K ¢E). For
each poinweE there existg,, > 0 such thatf (x) is holomorphic in the
discS(w, 20,,) of centerw and radius 2, and satisfie$f’(2)| < K there.
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E being compact, we can chooas, ..., wneE such thatE is covered
by
S(wl, 2pw1)a ) S(wn, 2pwn)
Let e = minjpw;,i = 1,2,...,n}. If zZ¢E and|z— Z| < ¢ then
2,7 &S(wi, 2p,,) for somei and so

1f2) - f(z’)|:|L f'(w)dw| < K|z—Z|.

This proves that Theore[1.4 is applicable to the mappirg f (2)
and we have a unigue fixed point.

Definition 1.6. A mappingT of a metric spac& into itself is said to be
contractiveif
d(Tx Ty) <d(xy) (X # Y, X yeE)

and is said to be-contractive if
O<d(xy)<e =d(TxTy) <d(x,y)

Remark. A contractive mapping of a complete metric space into itself
need not have a fixed point. e.g. Et= {x/x > 1} with the usual

distanced(x,y) = [x—V|,letT : E — E be given byT x= x + )}(

Theorem 1.5(Edelsten)Let T be ane-contractive mapping of a metric
spacek into itself, and letx, be a point ofE such that the sequence
(T"x,) has a subsequence convergent to a poiof E. Thenu is a
periodic point ofT, i.e. there is a positive integ&rsuch that

Tku=u

Proof. Let (n;) be a strictly increasing sequence of positive integerh suc
that imT"x, = uand letx; = T" X,. There existdN such thatd(x;, u) <

1—00

e/4 fori = N. Choose any > N and letk = nj;1 — n;. Then
d(%+1, T*U) = d(T*%, T*U) < d(x, u) < &/4

and
d(Tku’ U) < d(Tku’ Xi+1) + d(Xi+1, u) < ‘9/2
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Suppose that = TKu # u. ThenT beinge - contractive,
d(Tu Tv)
d(u, v)

is continuous aty, v). So there exist

6,K>0withO<K <1 such thatd(x, u) < 6,d(y,Vv) < ¢ implies that
d(TxTy) < Kd(x.y). As lim TKx = TKu = v, there existd\’ > N

d(Tu Tv) < d(u,Vv) or <1l

TxTy

The function &, y) —

such thad(x,, u) < 6,d(T %,Vv) < forr > N” and so 14
d(Tx, TTX) < Kd(x, T¥x) (1)
d(x, TE%) < d(x, u) + d(u, TXu) + d(T¥u, TK %)
& € & ,
<Z+§+Z_sforer >N 2)
From (1) and[(R)

d(Tx, TT%) < Kd(x, T"x) < eforr > N’
and soT beinge-contractive,
d(TPx, TPTKX) < Kd(x, T¥x) forn> N, p>0 (3)
Settingp = nry1 — Ny in @)
d(Xes1, T*%11) < Kd(x, T¥x,) for anyr > N’
Henced(xs, Tkxs) < KSTd(x, TKx) < K5S¢ andd(u,v) < d(u, Xs) +

d(xs, T*xs) + d(T¥xs, v) — 0 ass — oo This contradicts the assumption
thatd(u,v) > 0. Thusu = v = Tku.

Theorem 1.6(Edelstein )Let T be a contractive mapping of a metric
spacek into itself, and letx, be a point of such that the sequentéx,
has a subsequence convergent to a poisit E. Thenu is a fixed point
of T and is unique.

Proof. By Theoren L, there exists an integes 0 such thafl u
u. Suppose that = Tu #,u. ThenTXu = u, T*v = v andd(u, V)
d(T*u, Tkv) < d(u,v), sinceT is contractive. As this is impossible,
u = vis afixed point. The unigueness is also immediate. O

15
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Corollary . If T is a contractive mapping of a metric space E into a
compact subset of E, then T has a unique fixed point u in E aad u
lim T"%, where X% is an arbitrary point of E.

n—oo



Chapter 2

Fixed point theorems in
normed linear spaces

In ChaptelL, we proved fixed point theorems in metric spaddout 16
any algebraic structure. We now consider spaces with arlsteacture
but non-linear mappings in them. In this chapter we resitictattention

to normed spaces, but our main result will be extended torgeloeally
convex spaces in Chapfér 3

Definition 2.1. Let E be a vector space over. A mapping®into Ris
called a norm ork if it satisfies the following axioms.

i) p(xX) >0 (xeE)
i) p(x)=0ifandonlyifx=0
iii) p(x+y) < p(x) + p(y) (x.y € E).

A vector spacds with a specified norm on it called a normed space.
The norm of an elemente E will usually be denoted byx||. A normed
space is a metric space with the metl{&, y) = x -y (X, yeE) and the
corresponding metric topology is called the normed topplégnormed
linear space complete in the metric defined by the norm iedallBa-
nach space. We now recall some definitions and well knownegrtigs

13
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of linear spaces. Two nornms and p, on a vector spack are said to
be equivalent if there exist positive constakt&’ such that

P1(X) < kp2(X), P2(X) < K'pa(x) (x € E)
Two norms are equivalent if and only if they define the sameltayy.

Definition 2.2. A mappingf of a vector spacg& into Ris called a linear
functional onE if it satisfies

) f(x+y)=f(X)+ f(y) (xy€E)
i) feX) = af(x) (xe E,acR).

A mappingp : E — Ris called a sublinear functional if

)" p(x+y) < p(X) + py) (xy € E)
i)” plax) = ap(x) (x € E,a > 0).

Hahn- Banach Theorem Let Eq be a subspace of a vector sp&cever
R; let p be a sublinear functional o and leff, be a linear functional
on E,, that satisfies

fo(X) < p(X) (x € Eo).
Then there exists a linear functionfibn E that satisfies
) £() < p(x) (xeE),
i) f(x) = fo(X) (X € Ep).

[For the proof refer to Dunford and Schwartz {[14], p. 62) aylJ13,
p.91l.

Corollary. Given a sublinear functional on E and x E, there exists a
linear functional f such that

f(x0) = p(x0). £(X) < p(X) (x € E).
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In particular, a norm being a sublinear functional, giverompxg
of a normed spack, there exists a linear function&lon E such that

T < 11Xl (x € E) and f(Xo) = [1Xoll

Definition. A norm p on a vector space E said to be strictly convex if
p(x+Yy) = p(X) + p(y) only when x and y are linearly dependent.

Theorem 2.1(Clarkson ) If a normed spac& has a countable every-
where dense subset, then there exists a strictly convex onErequiv-
alent to the given norm.

Proof. LetS denote the surface of the unit ball i
S={x:lx=1

Then there exists a countable sgf)(of points ofS that is dense irs.
For eachn, there exists a linear function&} on E such that

fa(Xn) = lIXll = 1 and|fa(x)| < lIX] (X € E). o

If x # 0, thenfy(X) # O for somen. For, by homogeneity, it is
enough to considex with ||x]| = 1, and for suchx there exista with

[IX = Xnl| < % But then
fa(¥) = fa(Xn) + fa(X = Xn) = 1 = fr(X = Xp)
1
1—1Ix—= Z
> X = Xnll > 5

1
) 2
We now takep(x) = |IX|| + {Z 2‘”(fn(x))2} . It is easily verified 19
n=1

that p is a norm orkE and that
X < p(x) < 2IXI.
Finally p is strictly convex. To see this, suppose that

p(x+Y) = p(x) + p(y).
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and write&n = fa(X), yn = fn(y). Then

(Secon] (S +[Send
n=1 n=1 n=1

and we have the case of equality in Minkowsiki’s inequalltyfollows
that the sequenc&y) and n) are linearly dependent. Thus there exist
A,v, not both zero, such that

1
2

n+umm=0MN=212,..)
But this implies that

fiAx+uy) =0(n=12,...),
and soix + uy = 0. This completes the proof.

Lemma 2.1. Let K be a compact convex subset of a normed space E
with a strictly convex norm. Then to each point x of E corresfsoa
unique point Px of K at K at minimum distance from x, i.e., with

lIX = PX| = inf{|Ix - yII : yeK}
and the mapping x> Px is continuous in E.

Proof. Let x € E, and let the functionf be defined orK by f(y) =
IIXx —yil. Thenf is a continuous mapping of the compact Keinto R
and therefore attains its minimum at a pairday ofK

IXx—2| = inf{lx-yl :y e K} 0

Evidently forx € K, z = xis uniquely determined. i ¢ K, suppose
thatZ is such that
0#|[Ix=2 =lIx-Z| ()

. , 1
sinceK is convexy = E(Z+ Z) € K and therefore

1 1
IX=VIl > IX=2| = Ix=Z]| = SlIx—4l+ EIIX—Z'II
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But

1 1
(x-y) = 5(x=2 + 5(x~2),
so that [|x — ||<:—L||x—z’||+:—L||x—z’||
=3 2
1 1 1 1
Hencellx -yl = IIE(X -2+ E(X_ Z)| = |I§(x -2+ IIE(X— 2)Il
As the norm is strictly convex,
AX-2+u(x-2)=0

for A, u not both zero. By (1)1 = |ul and sox -z = (X - Z). If

z .
X—2=—(X-12), thenx = Tz K, which is not true. Hence

X—z= X-Z orz= Z. This proves that the mapping— Px = zis
uniguely onE. Givenx, X’ € E,

X = PX| < [Ix=PX]| < [Ix= X[ +[IX = PX],
and similarly||x’ — PX|| < |[x— X|| + [|x - PX|. So 21
| Ix=Px| = [IX = PX]|| | < [Ix=X]| (2)

Letx, € E(n=1,2,...) converge tax € E. Then the sequendex,
in the compact metric spad€ has a subsequend&x, converging to
y € K. Then

lim [xn, = Pxal = X = I 3)

By (2) X — PXll = [IX=PX| | < |IX — X - 0 asn — oo, and
so||x — ¥l = |Ix— PX|. HencePx = yi.e. I(Iim PX, = Px Thus if (xn)
converges tx, (Px,) has a subsequence convergingPtoans so every
subsequence oPk,) has a subsequence convergingPta Therefore
(Px,) converges t&®x andP is continuous. O

Definition 2.3. The mappingP of LemmalZll is called the metric pro-
jection ontoK.
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Definition 2.4. A subsetA of a normed space is said to be bounded if
there exists a constaM such that|x]| < M (x € A).

We now state without proof three properties of finite dimenal
normed spaces.

Lemma 2.2. Every finite dimensional normed space is complete.

Lemma 2.3. Every bounded closed subset of a finite dimensional norm-
ed space is compact.

Lemma 2.4(Brouwer fixed point theorem)Let K be a non-empty com-
pact convex subset of a finite dimensional normed space eaidbe a
continuous mapping of K into itself. Then T has a fixed poitg.in

The proofs of the first two of these Lemmas are elementaryfe(Re
to Dunford and SchwartZz 14, p. 244-245].) The Brouwer fixethp
theorem on the other hand is far from trivial. For a proof gssome
elements of algebraic topology refer to P. Alexarttiemd H. Hopf ([1],
p.376-378). A proof of a more analytical kind is given by Domtf ans
Schwartz ([14], p.467).

Theorem 2.2(Schauder)Let K be a non-empty closed convex subset
of a normed space. Latbe a continuous mapping &f into a cumpact
subset oK. ThenT has fixed point irkK.

Proof. Let E denote the normed space andllét c A, a compact subset
of K. A'is contained in a closed convex bounded subséi.of

TBNK)cT(K)cAcCB

so T(B n K) is contained in a compact subset®fK and there is no
loss of generality in supposing thitis bounded. IfA, is a countable
dense subset of the compact metric spacthen the set of all rational
linear combinations of elements Af is a countable dense subset of the
closed linear subspade, spanned byA, andA c Eg. ThenT(K n
Eop) c T(K) c A, a compact subset &y, andK N Eg is closed and
convex. Hence without loss of generality we may assume Khist a
bounded closed convex subset of a separable normed Epadth a
strictly convex norm (Theorefn2.1). m|
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Given a positive integen, there exists a:crL]—netT X, ..., T XpSayin 23
TK, so that L
min [ITx=Txd <~ (x € K) 1)
Let E, denote the linear hull o x1,..., TXn. Kqh = KNEyis a
closed bounded subsetBf and therefore compact (Lemmal2.3). Since
the norm is strictly convex, the metric projecti®m of E onto the con-
vex compact subsdtn exists. T, = P, T is a continuous mapping of the

non-empty convex compact subdén into itself, and therefore by the
Brouwer fixed point theorem, it has a fixed poiReK.,,

TnUn = Un (2)

By @), sinceT x € Ky (k=1,2,...,m), we have
1
ITX=ThX]| < N 3

The sequencéT u,} of TK has a subsequenday, converging to a
pOintV € K. By az) and @)’”Unk _V” = ||Tnkunk _V” < ||Tnkunk _Tunk” +

1 . L
IIT Uy, — VIl < = + T Uy, — Vil. Therefore, limu,, = u, and by continuity

k
of T, I(Iim Tuy, =TvorTv=wv.

Example. Suppose that a functiofi(x, y) of two real variables is con-
tinuous on a neighbourhood of y,). Then we can choose> 0 such
that f is continuous in the rectangle

IX=Xo| < &,y — Yol < Me
and satisfies there the inequality 24
fxy)l<m

Let E denote the Banach spaCg[ %, — &, X + €], which is a Banach
space with the uniform norm

il = sup{l(o) : it - %ol < e}
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Let K be the subset dE consisting of all continuous mappings of
[Xo — &, % + &] into [Yo — Me, Yo + Me]. ThenK is a bounded closed
convex subset dE. Let T be the mapping defined dt by

ﬂ@m=%+£}@amm (%= x| < &)

ThenTK c K. Also since

(Te)(X) - (Te)(X)

X
< f f(t, (t))dt‘ <mx-X| (¢ € K),
X/
T K s an equicontinuous set. Since alsK is boundedT K is contained
in a compact set by the Ascoli - Arzela theorem. Thereforel orem
22, T has a fixed poing in K i.e.,

ﬂ@=w+f‘m¢®NHR—MSQ.
Xo

Theng is differentiable in k, — €, X, + €] and provides a solution
y = ¢(X) there of the dierential equation

dy

5= )
with ¢(X,) = Yo. This is Peano’s theorem. As a particular case of
Schauder’s theorem, we have

Theorem 2.3.LetK be a non-empty compact convex subset of a normed
space, and lef be a continuous mapping &f into itself. ThenT has a
fixed point inK.

Remark. TheorenZR and 2.3 are almost equivalent, in the sense that
TheoreniZR, with the additional hypothesis tdte complete, follows
from TheorenTZI3. For, iK is a complete convex set afK is con-
tained in a compact subsatof K, then the closed convex hull éfis a
compact convex subsgt, of K, andT Kg c K.

Definition 2.5. A mappingT which is continuous and maps each boun-
ded set into a compact set is said to be completely continuous
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Theorem 2.4.Let T be a completely continuous mapping of a normed
spacek into itself and lefT E be bounded. Them has a fixed point.

Proof. Let K be the closed convex hull GfE. ThenK is bounded and
soTK is contained in a compact subsetkof By TheorenZ2T has a
fixed point inK. O

The TheorenizZl4 implies Theordm12.3 is seen as follows. KLet
be a compact convex set and Tetbe continuous mapping df into
itself. There is no loss of generality is supposing that tbemin E
is strictly convex. LetP be the metric projection dE onto K, and let 26
T = TP. ThenT satisfies the conditions of theorem 24, and so there
existsu in E with Tu = u. SinceT mapsE into K, we haveu € K and
soPu=uTu=TRu=u.

Lemma 2.5. Let K be a hon-empty complete convex subset of a normed
space E, let A be a continuous mapping of K into a compact sulbse
E, and let F be a mapping of K K into K such that

O IFY) = FOuWI < KIy=-YIl (XY, Y € K), wherek is a constant
withO<k< 1,

(i) IF(xY) = F(X, I < IAX—= AX]| (%, X,y € K). Then there exists
a pointu in K with
F(u,u) = u.

Proof. For each fixed, the mappings — F(X,y) is a contraction map-
ping of the complete metric spa¢€into itself, and it therefore has a
unique fixed point irkK which we denote byl

TXx=F(XTX (x € K).
We havd|Tx—TX]|| = [[F(x, TX) — F(X, TX)||
<|IF(XTX) — F(X,TX)||
+|IF(X, TX) — F(X, TX)||
< JAX= AX|| + K|Tx=TX]| ]
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Thereforg|Tx-TX|| < 1—||Ax AX|l, (1) which shows that kis

continuous and thak K c K is precompact sincAK is compact, since
K is complete TK c K is compact. By the Schander theoremhas
fixed pointu in K,

Tu=u.

But then
F(uu)=FU,Tu=Tu=u

O

Theorem 2.5(Kranoselsku )Let K be a non-empty complete convex
subset of a normed spa€g let A be a continuous mapping &f into a
compact subset @&, let BmapK and satisfy a Lipschitz condition

IBx— BX]| < K|[x— X|| (x, X € k)

with 0 < k < 1 and letAx+ By € K for all x,y in K. Then there is a
pointu € K with
Au+ Bu=u

Proof. TakeF(x,y) = Ax+ Byand apply LemmBZ2]5. o

Corollary. Let K be a non-empty complete convex subset of a normed
space, let A be a continuous of K into a compact subset of K teap
K into itself ans satisfy the Lipschitz condition

IBXx=BX|| < lIx=X|I (X XeK),
and letO < a < 1. Then there exists a pointauK with
aAu+ (- a)Bu=u

In general, under the condition of Schauder’s theorem, we ha
method for the calculation of a fixed point of a mapping. Hoarahere
is a special case in which this can be done using a method dGe$e
noselsku.
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Definition 2.6. A norm p is uniformly convex if it satisfies
PO%) = Plyn) =1 (N=1,2,...), lim p(X, + yn)
=2= lim p(X —yn) = 0.
28

Lemma.Let p be a uniformly convex norm, and leM be positive
constants. Then there exists a consiantith O < ¢ < 1 such that

P(X) < M, p(y) < M, p(x-y) > & = p(X+Y) < 26 max(p(x), p(y))-
Proof. For all x,y, we have
1 1 1
p(500+9) < 3700 + 300 < mAXP. PO )

If there is no constand with the stated properties, there exist se-
quencesn), (Yn) With p(xn) < M, p(yn) < M,

P(Xa —Yn) > &, 2
and
1 1
p( 500+ > (1.~ 5 maxtpte). ®
Letan = p(Xn), Bn = P(Yn), Yn = Max(n, Bn). By @) and [2),
Yoz, @
and so, by[ll) and13)
jim - (3(xn +yn)) _1 (5)
n—eo yp - \2

It follows from (@) and [b), that

jim 2P _ g )
n—oo 2')/n
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Since §n) is bounded, there exists a convergent sequepg$ and

by @)

I(Il_r)r‘;lo e =Y = &y, (7)

k”_'};()’nk —an) + (yn = Bn) =0,
29 and, since each bracket is non-negative, each tends toHezcefore
lim an, = lim fn, =y (8)

By discarding some terms of the subsequence if necessampaye
suppose thatn, > 0 andgp, > 0 for allk. Since

‘p(ixn oy, )—p(ixn oy, )
@nk “ ﬂnk nk )’nk “ )’nk "

p(l 1)Xn+(1 l)y
ne Ve “ B Vn A

{l 1 1 l}
M{— - — 4 — - —1},
ank Ynk ,Bnk )’nk

IA

IA

it follows from @), @), [B), that

. 1 1
lim p(—xnk + —ynk) =2

koo \ @y Bry

Therefore,
lim p(ixnk - iynk) =0.
k—co © \ arpy Bry
and so
Jim = pOx, ~yn) = 0
which contradicts[{2). m|

30 Theorem 2.6(Krashoselsku)Let K be a bounded closed convex set in
a Banach spacE with a uniformly convex norm. LeT be a mapping
of K into a compact subset #f that satisfies a Lipschitz condition with
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Lipschitz constant 1, and le¢, be an arbitrary point oK. Then the
sequence defined by

1
converges to a fixed point df in K.

Proof. By Schauder’s theorem, there is a nonempty~set fixed points
of T in K. We prove first that

X1 =Yl <X -Vl (yeFRn=012..)

In factify = Ty, then

IXne1 — VIl = ||%(Xn +Tx) - %(Y+ Ty
= 5060~ + 5(T% - TYI
< %”Xn -yl + %IITXn — Tl
<[ =Vl
which is (1). O
Suppose that there exist an- 0 andN, such that
[Xn = TXq|| > eforalln> N 2

Then|ix, -y - (Tx -Tyll > eforalln> N,y e F.

Also[Tx =Tyl < I =W < X% =Yl by (1)
Since the norm is uniformly convex, this implies that thexists a
constan®, 0 < ¢ < 1, such that

1 1
[IXne1 — Wil = ||§(Xn +TX) — E(Y"‘ Tyl

1 1
=H#M—w+§UM—TWH
< max{[[Xn = YILIIT X — TV}
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< [[% — il forn > N.

Thereforen limx, = ywhereTy =Y. 31

If there does not exist an > 0 for which (2) holds, there exists a
sequencea of integers such thakt lifn, — TX,) = 0, and such that

(T %, ) converges. But this implies thet liky, = u = I(Iim T X, and so
Tu=u.
Hencel|xn,1 — ull < [[%) - ull, by (1). Since limixq —ull = 0, we

havenlim IXn — ull = 0 and the theorem is proved.

The following theorem was proved by Altam by means of the con-
cept of ‘degree of a mapping’, but we can easily deduce it fsotran-
der’s theorem.

Theorem 2.7 (Altman). Let E be a normed space, 1€ be the closed
ball of radiusr > 0,
Q={x:lxl<r}

and letT be a continuous mapping Qfinto a compact subset & such
that
ITx= X1 > ITXZ = 162 (X =)

ThenT has fixed point irQ.
Proof. Supposel has no fixed point irQ then
T X=X+ X > [ITX] (X =r) 1)
For

(T x= X + [IX)? = ITXI? = ITx = X7 + [IX[> = IT x|
+2|X ITX=X]| > 2r|[TXx—X| >0

Let P be the mapping defined by

Px— X (xe Q)
X (x¢Q)

Plainly P is a continuous projection & onto Q. m|
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LetT = PT
ThenT mapsQ continuously into a compact subset@fHence, by
the Schauder theorenf, has a fixed pointiin Q,

PTu=u
If Tue Q,thenPTu=Tu, and
Tu=u

If Tug¢ Q, then|Tu|>r and

If follows that||u|| = r, and we have

ITu
|nu—un+mm=n—7—u—un+mm

ITul
= (T ~1+ 1)||u|| = |Tul

which contradicts (1)
supplementary results and exercises

(1) For further results connected with Theoren 2.6, ek [19]

(2) Let A be a continuous mapping of a normed sp&cato itself
which maps bounded sets into compact sets and satisfies

IAXI _
IX—eo |IX|

Then given arbitrary real > 0 andy in E, the equation
X=AAX+Y

has a solutiorxin E 33
Consider the mappingj x = AAX+Yy
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Clearly T has all the properties &
LetSp,={x:xeE|Xl<n (n=12..)

Then
TS, c Sy for somen (1)
Otherwis€||T x,|| > n, for somex, € S, n=1,2,... (2)

If {x,} were bounded, thefT x,} will be contained in a compact set
and thereford|T x,|| will be bounded which contradicts (2). Hence
[[Xn|l = o0 @asn — oo But

T . T
| MH>1SO IImH anl
[1Xnll [Xall—o0 || Xnl|

As this is not true;T maps somé&,, into its compact subset; Schau-
der's theorem them gives a fixed pointx which is the required
solution.

(o0
Let > ax be a convergent series of non-negative real numbers and

k=1
let (fx) be a sequence of continuous mappings of the reaRimto
itself such that

h@®Ml<a (teRk=12..)
Givena € R, there exists a convergent real sequeggeguch that

() é=a
(i) &1—-&="f(&) (Kk=1212..)

consider the mapping of (c) into itself given by

(TX)l =

(M1 =a+ ) fi@) (=12..)
k=1

wherex = (&).
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(4)

(®)

(6)

()

Let E be a Banach space with a uniformly convex norm, andlet
be a bounded closed convex subseEof hen the metric projection

t . . . .
E 2 K exists and is uniformly continuous on each bounded
subset ofE.

Brodsku and Milman[[10], give conditions under which anaex
set in a Banach space has a point invariant under all iscoret
mappings. In this connection see also Dunford and Schwiddk, (
p.459).

Browder (11) gives some generalization of the Schaudeorem
which appear to lie rather deep. Perhaps the most strikirlyesie
results is the following generalization of theoréml2.4. Mebe

a continuous mapping of a Banach spa&ténto itself that maps
bounded sets into compact sets. If, for some positive integE™E

is bounded, theM has a fixed point. For a generalization of the
Schauder theorem of aftirent kind see Stepaneek (32).

Aronszajn [[2] gives general regularity condition ®rsuficient to

establish that the set of its fixed points isRyi.e. is a homeomor-
phic image of the intersection of decreasing sequence aflals
retracts.






Chapter 3

The Schauder - Tychondf
theorem

It this chapter we are concerned with non-linear operatorgeineral 35
locally convex spaces.

Definition 3.1.A vector spaceE over R which is also a topological
space is called Bnear topological space (l.t.5j the mappings

(Xy) = x+y
(@, X) = ax

from E x E andR x E respectively intce are continuous. If also every
open set irk is a union of convex open sets, thEns said to bdocally
convex

We establish the elementary properties ofts E. Since the map-
ping (@, X) — aXx is continuous, the mapping — ax, with fixed «,
is continuous. Therefore, if is a non-zero constant then the mapping
X — aXis a homeomorphism, and so

a) G open,a # 0 = aG open.
In particular

b) G open implies that & is open.

31
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¢) Similarly, G open— y + G open, and so

d) V is neighbourhood of 0 if and only if + V is neighbourhood of.
Let V be a neighbourhood of 0, and lete E. Since the mapping
a — aXis continuous, andX= 0, we have%lx e V for all sufi-
ciently largeq, i.e.,

e) x € AV for all suficiently largea.
We prove next that

f) The closure of a convex set is convex.
For 0< a < 1, the mappind : E x E — E given by

(xYy) = ax+ (1-a)y

is continuous and (K x K) c K. Thereforef (K x K) c K, whereK
denotes the closure ¢f. ButK x K = K x K and sof (K x K) c K
i.e.,ca+ (l-a)be KforabeK.

g) The interior of a convex set is convex.

Let Kp be the interior of a convex s#t, leta,b e Kg and O< a < 1.
By (@), aKo, (1 — a)Kg are open sets. By) aKg + (1 — @)Kp is a
union of open sets and is therefore open. Since

aa+ (l—-a)be Ko+ (1-a)KgCK,

it follows thataa + (1 — @)b € Kq. A subsetA of a vector spac&
overRis said to be symmetric #A = A.

h) LetU be a neighbourhood of 0 in a locally convielxs. Then there
exists a closed convex symmetric neighbourh¥aaf O withV c U.
Since 0 is an interior point o) and the space is locally convex,

. . 1
there exists a convex open &twith 0 € G c U. LetH = E(G N

—G), andV = H. By (b) and (f) V is a closed convex symmetric
neighbourhood of 0. Finallly c U; forif v e V, thenv+ H is an
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open set containing and therefore has nonempty intersegiib H,
ie there existdh, b’ in H with v+ h = i. SinceH is convex and
symmetric,

v=h-he2H c G.ThusVcGc U.

Definition. Given an lt.s. E over K, a subset A of E is said absorb
points if for every xin E,
X € 1A

for all sufficiently largeA.

Definition. Given a convex set K that absorbs points, the
Minkowski functional R is defined by

pk(X) = inf{2; 1 > 0, and xe AK}

Definition. A mapping p of E into R is called a seminorm on E if it
satisfies the axioms.

i) p(x) =0 (xe E)
i) p(ax) = |alp(X) (xe E,a eR)
i) p(x+y) < p(x)+ py)

Given a seminornp, the seminorm topologydetermined byp is
the class of unions of open balls

S(x.€) ={y: ply—-X <e}(e>0)

With this topologyE is a locally convex.t.s. which is not in general a
Hausdoff space.

The Minkowski functional of a convex sét that absorbs points is38
sublinear, and ifK is also symmetric, then it is a seminorm. Also if
x € AK andu > 4, thenx € uK, for 0 € K sinceK absorbs points and

}x=£(1x)+(1—£)-OeK
Hooopu\4 H
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i) If Kisa closed convex symmetric neighbourhood of Olin.g the
p Minkowski functionalpk is a continuous semi-norm i, and

K={x pk(X) < 1}

Conversely, ifp is a continuous seminorm i, then{x: p(x) < 1}
is a closed convex symmetric neighbourha¢af 0, andpk = p.

Proof. LetK be a closed convex symmetric neighbourhood of 0.0

Thenpk is a seminorm ork, and so

Ipk(X) = P < px(X =%X) (X, x€ E)
Givene > 0,

Xe, X+eK = X - xeK
> pk(X -X)<e
= Ipk(X) - pk(¥) < &
sincex + ¢K is a neighbourhood af, this shows thapk is continuous.

If xeK, thenpk(X) < 1, by the definition ofp,. On the other hand, if
Pk (X) < 1, thenx e AK(A > 1),

1
—-xe K(1>1),
Txe K@ > 1)

and, sinceK is closedx € K.
39 Thus
K={x:p(X) <1}

Conversely, lep be a continuous semi-norm & and letK = {x:
p(x) < 1}. ThatK is a closed convex symmetric neighbourhood of the
origin is evident. We have

pxX)<le xeKoe p(X) <1,

and, sincep and px are both positive-homaogeneous, it follows tipat
P
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1)

(k)

Let xbe a nonzero point of a Hausdidiocally convex.t.s.E. Then
there exists a continuous semi-nopon E with p(x) > 0.

Proof. Sincex # 0 andE is a Hausddf space, there exists a neigh-
bourhoodU of 0 such thatk ¢ U. By (h) there exists a closed con-
vex symmetric neighbourhood of 0 with V c U. By (i), there
exists a continuous semi-norpon E such that

V={y:py) <1

Hencep(x) > 1. O

Let E be a vector space ovi. Let p be a semi-norm ok, and let
N = {x: p(X) = 0}. ThenN is a subspace d&, and the functional

g defined on the quotient spaiE? by

Zlm

a® =p()  (xeX%X<)

is a norm orE/N

Proof. If x,y € N, then 40

0< p(x+Yy) < p(X) +py) =0,

and sox+Yy € N. Also p(X) = 0 implies p(1x) = 0, and soN is
a linear subspace d&. The definition ofq(X) is in fact free from
ambiguity, for ifx, X' € X, thenx — X' € N, and so

Ipx— p(X)I < p(x-X) =0,
p(x) = p(x).

Finally that q satisfies the axioms of a norm is entirely straight-
forward. O
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Lastly, among these preliminary results, we need a prdpasit
which is a special case of a general theorem on uniform spates-
ever, it is more convenient for our purposes to prove theiapease
than to invoke the general theory.

(b) LetE, F be linear topological spaces, ktbe a compact subset
of E and letT be a continuous mapping &f into F. Given a neigh-
bourhoodU of 0 in F, there exists a neighbourhoadof 0 in E such
that

X, X eK, X=X eV=>Tx-TX eU.

Proof. Let H be an open set containing 0 such that
H-HcU

Given xeK, there exists a neighbourho@i(x) of 0 such thatx’ € K n
(X+G(X)) = TX e Tx+H.
Let V(x) be an open neighbourhood of Ofnsuch that

V(X) + V(X) c G(X),

sinceK is compact and is covered by open sets V(X), it has a finite
covering
X1+ V(X1),..., % + V(Xn).
n
LetV = () V(x).

i=1
ThenV is a neighbourhood of 0 iB. Suppose, X' € K andx— X’ €
V. Then there exist$ with

X' € Xj + V(X)) € Xj + G(X))
X—Xj=X=-X+X —X%; € V+V(Xj) c V(X)) + V(X)) € G(xj)

since X, X € xj + G(x;j),
we have TXxeTxj+H, TX e Tx +H,
and so Tx-TXeH-HCcU.

We are now ready to prove the main theorem by which we are able-t
duce properties of operators in a locally convex linear logical space
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from the corresponding properties of operators in normedeqn The
main idea of this theorem was derived from the proof of theaBder-
Tychndt theorem in Dunford and Schwariz14] p.454. O

Theorem 3.1.Let K be a compact subset of a locally convex IE,§ a
continuous mapping df into itself, p, a continuous semi-norm da.

Then there exists a semi-nomyon the linealL(K) of K such that
) a(¥) = po(x) (x € L(K));
i) gis continuous oK — K;
iii) K is compact with respect to the semi-norm topology giveuby

iv) T is uniformly continuous irK with respect taji.e., givene > 0,
there exist® > 0, such that

X eK, qx=X)<d=>q(Tx-TX)<e

Remark. It would be better if one could prove the existence of a con-
tinuous semi-norng on E satisfying {) and {v).

Proof. Sincep, is bounded orK there is no real loss of generality in
supposing that
pP.(X) <1 (xeK).

Itis convenient to introduce the following definition. Weyshat a set”
of continuous semi-norndominatesa setl” of continuous semi-norms
if the following two conditions are satisfied. O

a) pPx)<1 xeK,p el 43

b) givenp € T ande > 0, there existg’ € I” ands > 0 such that
XX eK,pP(Xx=X)<§d= p(Tx-TX) <e.

We construct a countable self-dominating set contaimngGiven
a continuous semi-normp, and a positive integar, the set

{x: p(x) < %}
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is a neighbourhood of 0. Therefore, by proposition (2), ehexists a
neighbourhood/ of 0 in E such that

xXeK x-XeV= p(Tx—T>()<%.

By (h), we may suppose th&tis a closed convex symmetric neigh-
bourhood of 0, and then by)( py is a continuous semi-norm and

V={x:pv(x) <1}

Multiplying p by an appropriate positive constafy, we obtain a
continuous semi-norm, such that

(¥ <1 (xeK),
1
and suchthat x, X € K,gn(x—X) < 6p = p(Tx-TX) < .

Plainly the set of semi-normg;, is a countable set dominating the set

(p).

It follows that given a countable s&tof continuous semi-norms,
there exists a countable sét that dominated”. Now the set ) is
dominated by a countable dét, I'; is dominated by a countable d&i,
and so on. Finally, we take

['=(p,) Y U I'n.
n=1

ThenT is a countable self-dominating set. L@h]>° be an enumer-
ation ofT" and take

a9 = > 2"p(¥) (1)
n=0
since
pn(X) <2 (xe K-K),

the series[{]1) converges uniformly 8h— K, and sog is continuous on
K — K. Also the series converges &(K) (linear hull ofK) andqis a
semi-norm there satisfying (i). GiverK, let

S(x,p) = {X; X € Kandq(x - X) < p}
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sinceq is continuous orK — K, S(x, p) is an open subset d&f in the
topologyr on L(K) induced from the initial topology o&. Hence each

open subset oK in the topology induced byq (topology onL(K) de- 45

fined byq) is also open in the topology induced by (iii) is now an
immediate consequence of the&compact-ness df.

Givene > 0, we chooseéN with 2N < Z since we have

(o0 [ee)

1 1 €
—pn(x—X) < <5 (XX €K),
n:Z\Hl 2" n:ZN;rl 2n+1 2
and so
N 1 €
ax-x)c > =pa(x=X)+5 (XX €K) 2
~— 2 2
sinceT mapsK into itself, (2) gives
N 1 €
q(Tx—T)()<nZ=0?pn(Tx—T>()+§ (x, X € K) (3)

sincerl  is self-dominated, for eaah there exist&, ands,, > 0 such that
(X = X) < 6 = pa(TX=TX) < z(x,x’e K) 4)
LetN’ = maxk,...,kn), and
= 2N min(s., ..., dn).

Then sincep, < 2N'qfor n < N’, we have

d(X=X) <6 =p, X=X) < (N<N)
and so, by[[4)

X Xek, q(x—X), <6 = pn(TXx-TX) < 2 (n=0,1,...,N).

Therefore, by[(B),

xX €K gx=X)<d=q(Tx-TX) <e.
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Theorem 3.2 (Schauder-Tychorf). Let K be a non- empty compact
convex subset of a locally convex Hausfidrt. sg, and letT be a con-
tinuous mapping oK into itself. ThenT has a fixed point irK.

Proof. There is no loss of generality in supposing théK) = E. Sup-
pose thafl has no fixed point iflK. ThenT x— T x # 0 (x € K). m|

It follows by proposition () that for each poink of K there exists a
continuous semi-norrpy such that

px(Tx—Xx) >0

By continuity of T and py, there exists a neighbourhoddl, of x such
that

Px(Ty-y) >0 (ye Uy
SinceK is compact, there is a finite covering kfby such neigh-
bourhood say
Uy, ..o Uy
Let P= Py + Pxo + -+ Pxy-

Thenpis a continuous semi-norm and
p(Tx-x) >0 (xe K) 1)

Let g be the semi-norm constructed as in Theoker 3.1 itk p.
Thenqis defined onL(K) = E,q > p,K is compact in the semi-norm
topology7q, and givere > 0, there exist > 0 such that

X XeK,gx-X)<s=q(Tx-TX) <e 2

LetN = {x: g(X) = 0}. By lemma 3.4E/N is a normed space with
the norm given by

1K = a(x)

whereXis the coset ok. Let K = {x: x e K}. Then since mapping
X — Xis a continuous homomorphism froBhwith the topologyr to
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E/N with the norm topologyK is a compact convex set iB/N. Also

by (2),
xX eKgx-x)=0=q(Tx-TX)=0 3)

For eachx’in K there exists a poink in % N K, and we defind % by
taking
Tx=Tx

By @), this definition is unambiguous, afidmapsK into itself.
Also, by (@), givere > 0, there exist§ > 0 such thak X € K, ||X-X|| <
§ = ||TX-TX| < e. Forgivenx, XeK, there existx € K n % and 48
X eK N x andg(x— x’) = ||X— X||. HenceT is a continuous mapping of
the compact convex subsktof the normed spacE/N. Applying the
Schauder fixed point theorefi,has a fixed pointi 3ay

To=10
SinceueK , there existsl € K N @i, and we havd i = Tu. Thus

Tu—-ueN,
ie, g(Tu-u)=0

It follows that p(T u— u) = 0, which contradictd{1) sinage K.

Problem. It will be noticed that Theoreri-3.2 generalizes theofem 2.3
rather than the full force of the Schauder theorEml (2.2} ihiat known
whether the following proposition is true.

Q. LetK be a closed convex subset of a locally convex Hausdor
l.t.s. E, and letT be a continuous mapping &f into a compact subset
of K. ThenT has a fixed point irK.

It is obvious that ifT mapsK into acompact convesubsetH of K,
thenT has a fixed point. For

THcTKcH

and we can apply theorem B.2 ltbinstead ofK. In particular,Q will 49
hold if every compact subset &f is contained in compact convex sub-
set of K. By an elementary theorem of Bourbaki (Espaces Vectoriels
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TopologiquesCh.ll, p.80) the convex hull of a precompact subset of a
locally convex Hausddi I.t.sis precompact. Thus we can obtain a true
theorem fromQ by supposing thak be complete instead of closed©r
quasi-complete. However, this is certainly unnecessagfyrictive. By
the Krein-Smulian Theorem_[21], E is a branch space with the weak
topology as the specified topology, then the closed convébohaach
compact subset dE is compact, and so the propositighholds, even
thoughK need not be completes (in the weak topology).

Example.Let E be a reflexive Banach spad€,a closed convex subset
of E, T a weakly continuous mapping &f into a bounded subset .
ThenT has a fixed point irK.

For sinceK is norm closed and convex it is also weakly closed.
Also sinceE is reflexive, each bounded weakly closed subsdEt if
weakly compact. Hence the weakly closed convex hull Kfis weakly
compact.



Chapter 4

Nonlinear mappings in cones

The theorems in this chapter are mainly due to Krein and Ruff#@] 50
and to Schaefel [28]. They may be regarded as a further stédmin
transition from nonlinear to linear problems. We will be tamt with
considering normed spaces only, through theorems of thi dtudied
here have been proved for general locally convex spaces Bglrader.

Definition 4.1. A subseC of a vector spac& overRis called apositive
cone if it satisfies

() xyeC=x+yeC
(i) xeC,a=20=>a€C
(i) x,-xeC=x=0
(iv) C contains non-zero vectors.

A vector spacee over R with a specified positive cone is called a
partially ordered vector spaceand we writex < y( ory > X) to denote
thaty — x € C. Itis easily verified that this relatiog is a relation of
partial order in the usual sense i.e.,

(V) x< x(xeE),

(Vi) X<y, y<z=x<z
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(Vi) X<y,y<x=Xx=Y.

Also the partial ordering and the linear structure are eeldty the prop-
erties:
(vii) i <y (i=1,2)= X3+ X2 <Y1 + Y2,
(iX) x<y,0<a<B= ax<py.

Conversely, given a non-trivial relatiog in E satisfying ¢),...,
(xi), the sefx : 0 < x} is a positive cone ift to which the given relation
corresponds in the above manner.

Definition 4.2. Let C be a positive cone in a nhormed spdeeA map-
ping T of a subsetD of C into C is said to bestrictly positive in D
if

xneD,r!im Txn:0:>r!im X =0
A mappingT defined orC is said to becompletelycontinuous irC if it
is continuous inC and maps each bounded subse€adhto a compact
set.

Theorem 4.1(Morgenstern[[23])Let C be a closed positive cone in a
normed vector spade such that the norm is additive @i.e.

X+ Yl =X + 1yl (xyeC)

Letc > 0, letK = {x: x € C,||X| = ¢}, and letT be a continuous
and positive mapping oK and strictly positive orK and mapK into
a compact subset @. Then there exista in K and4 > 0 such that
TU = /lu.

Proof. Since the norm is additive oG, K is a convex set. Sinc€ is
strictly positive onK,

inf{]ITX,xe K} >0
and therefore the mappirfydefined orK by
Ax=c|TX1Tx

is continuous and mapK into a compact subseh itself. By the
Schauder theorem, there exiats K with Au = u. m|
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Corollary. Let C be a closed positive cone in a hormed vector space
E such that the norm is additive on C. Let T be a strictly pesitind
completely continuous mapping of C into itself. Then fotheac 0,
there exists gin C andA. > 0 such that Ty = Acu: and||ug|| = c.

Definition 4.3. A positive coneC in a normed vector space is said be
normal if there exists a positive constansuch that

X+ Yl = ¥IIXI (x,y € C).

Theorem 4.2(Schaefer)Let C be a closed normal positive cone in a

normed space. Lat> 0 and letk = {xC |. LetT be a continuous

and strictly positive orK and mapK into a compact set. Then there
existsu € C, andA > 0, such thafr u= A, and|jul| = c.

Proof. SinceTK is contained in a compact set we can chopse 0,
such thauTkc K. Let A= uT, lety be a point oK with y = ¢, and let
B be the mapping defined df by Bx = ¢ 1xAx+ c™1(c — X)y (x € K),
sinceK is convex, we hav®8K c K. Also B is continuous irkK, and
mapsK into a compact set. Sinceis strictly positive orK, there exists
¢ > 0 such that

1
xe K, [[X]| > 5¢= IAX| > &

sinceC is a normal cone, it follows that 53
1 1 1
xe K, |IX| > Zc = |IBX| > yc tZce = =
€ K, x| 5 = [IBX| >y > 5Y€
On the other hand,

1 _ 1 1
xeK Xl <5c=c Ye—IIXDiyll = 5¢ = [IBXI5yc

Thereforg|BX| > %y min(e,c) > 0 (x € K).
It follows that the mapping

X — ¢||BX|"1Bx
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is a continuous mapping &f into a compact subset of itself. Therefore,
there existal € K with
u=c||Bul"*Bu

Plainly |lu]]| = ¢, and soBu = Au, and we have
Au= A, with 2 = ¢ }||Au]| > 0.

The following theorem due to Krein and Rutman [20, Theored] 9.
marks a further transition towards a linear problem. m|

Definition 4.4. Let E be a partially ordered vector space with positive
coneC, let T be a mapping o€ into itself and letc be be positive real
number.T is said to be

(i) positive-homogeneous of

T(axX) = aTX(a = 0,xe C)

(i) monotonic increasing if

XYeC Xx<y=>Tx<Ty

(iii) c-dominant if there exists a honzero vectoin C with Tu > cu.

Lemma 4.1. Let C be a closed positive cone in a normed space E,
and let u be a point that does not belong+€. Then there exists a
continuous linear functional f on E such that

(i) f(u) =d(u,-C) > 0,
(i) (x) >0 (xeC),
(i) 11fl <1

Proof. Let
p(X) = d(x,—C) = inf{|[x+y|| : y € C}

Thenpis a sublinear functional o, with the properties
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(@) p(u) =d(u,-C) >0,
(b) p(x) = 0(x € —0),
() p(¥) <Xl (x € E).
m}

By the Hahn-Banach theorem there exists a linear functibrmel E
with f(u) = p(u) and with

f(X) < p(x) (xeE).
Plainly f has the required properties. 55

Theorem 4.3(Krein and Rutman)Let E be a partially ordered normed
vector space with a closed positive cabeLet T be a completely con-
tinuous mapping of in to itself which is positive-homogeneous, mono-
tonic increasing, and-dominant for some& > 0. Then there exists a
nonzero vectov in C and a real numbet > c such thafTv = Av.

Proof. SinceT is positive-homogeneous amedominant, there exists a
vectoru in C with |Jul| = 1 and

Tu>cu (1)

sinceu ¢ —-C, LemmalZll establishes the existence of a continuous
linear functionalf on E with

f(uy>0,f(x) >0 (xeC) 2
and Il =1 €)
We now prove that
XeC,a>08>0,Tx=ax—Bu= a >C. (4)
Let I denote the set of positive real numbéraith x > tu. Since
X = éu + lTx > ’gu, we have’:—i e I'. AlsoT is bounded above,

a @
for otherwise 1
ﬁxz uin=12..),
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and sinceC is closed, this gives & u, u = 0 with is not true.
Let mdenote the least upper boundiofUsing again the fact th& 56

is closed, we have
X>mu

and therefore
Tx>T(mW=mTux= mcu

SinceT x = aXx — Bu, this gives

and therefore

B+ mc
a
m(a —¢) > >0,

a>C

<m

4

In the rest of the proof will denote a real number with

1
0 =
<(9<2 ®)

LetK, = {x: xe E,| x|I< 1, xgeg || x|l u, f(X) > ef(u) ClearlyK
is a closed, convex, bounded subseEofNext we note that, for some
0>0,

| TX]>6 € f(u)O(x € K¢) (6)
Forxe K, X > || x| ugives
Tx>e||x]||Tu
sinceT is positive homogeneous and monotonic increasing .

By @), I TxI> f(TX)
and by [2) f(TX) = f(ec|| x|l U) = ec|| x| f(u) (XeKe)
ie., | Tx|>ec| x| f(u) > eef(x)f(u)
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>def(u) (xeK,)

with 6§ = ecf(u) > 0.
Let V. be the mapping defined by taking

V(0) =0,
V() =l XNl 1 X+ 28 [ x [ u ™ (x+ 2 | x| u), x # 0

V is well defined since

| X+ 2€ || x| ull=ll x|l =2& || X || [ ull
=l x|l (L -2¢) > 0if || x|l#O0.

Plainly V is continuous irE and
I VexII=I1 Xl )

Also
XeC, | x|l=1VxeK, (8)

For f(Vex) = IIXIllIx + 2slIXIull~{ () + 2s]IxiI f (u)}

2¢
< mf(U) > ef(u)

Let A, be the mapping defined dfy. by 58

A, =V.LT
when Lx = x X+0

1]

Then by [6) and{8)

AK, c K,

By @), V.L is continuous irT K., andA, continuously into a compact
subset oK,. Applying the Schauder theorem, we see that there exists a
point . in K, such that

Asxs = Xe»

. TX
.e., Vg{m} = Xe (9)
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i.€. ITX |71 T % + 26U = || IT %72 T % + 2eu]|x, This can be written in
the form
TXe = @eXe — Bel, (10)
where c<a, < (1+ 28)||T X||.
We now choose a sequencg)(such thatn_lior?sn = 0, and such
that the sequenced k) and @en) converges. Lev = r!i_rﬂoTXen and
A= r!l_rl]o @,,. Thena > ¢, and since limn — 0B, = 0, (I0) gives

n—oo

. 1
lim x., = 7V

By continuity and positive homogeneity ©f

1 1 :
~Tv=T|=v|=1lm Tx, =V
A A n—oo

Finally by {@) and[®)||x.|| = 1 and sov # 0. m|

Remark. The theorems in this chapter are unsatisfactory in that ebch
them involves an adhoc condition (strict positivity axddomi-nance).

It turns out that for linear mappings such an ad hoc conditian be
avoided, and think that there is still scope for proving a better theorem
on non-linear mappings also.



Chapter 5

Linear mapping in cones

If Ais a linear operator iRR™ with a matrix &;) with non-negative 60
elementsa;j > 0, then, by a famous theorem of Perron and Frobenius
(see for example Gantmacher, The theory of matrices), vdsts an
eigen vector oA with non-negative coordinates and with eigenvaiue
such that all other eigenvalues satisty< p.

If we takeE = R™ andC to be the set of all vectors i with non-
negative coordinates, th&his a positive cone it , andn x n matrices
with non-negative elements correspond to linear operatdtshat map
C into itself. Then theorems of the present chapter may beadedaas
generalizations of the Perron-Frobenius Theorghgreat many such
generalizations with various methods of proof have beetighdx dur-
ing recent years, and our list of references is far from cetepl

The idea of the method of proof adopted here is the use of thglsi
concept of 'topological divisor of zero'.

Let U be a Banach algebra with a unit elementand leta be a
frontier point of the set of invertible elements. Then a i®pological
divisor of zero, i.e., there exists a sequengg With ||x,|| = 1(n =
1,2,...) such that

lim ax, =0

n—oo

61
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Proof. There exists a sequenca,) of invertible elements such that

lim a, = a

n—oo

Then the sequencgai!|)) is unbounded. For otherwise
lim (2 - 8)a;" = 0

ie. nIim(e—aa;l) =0

But this implies thaga;?! is invertible for somen, and therefore has a
right inverse. Similarlya has a left inverse, anglis invertible, which is
absurd since the set of invertible elements is open. m|

We may therefore suppose thiatl|| — oo, and takex, = |ja;?||*
a;t. Then|x,|| = 1, and

nIim Xy = r!im (a—an)Xn + anX, = 0.

In particular, ifA is a frontier point of the spectrum of an elemént
thenle - bis a frontier point of the set of invertible elementsi@fand
so0 there existsx), with ||x,|| = 1 and

r!im (1e-b)x, =0

If further we know thatt # 0, andbx, — u for some subsequence
(X )- Then

AXn, — U,
Abx, — by,

so thatbu = Au andu # 0, sincel|u|| = A.

Actually, our method is not quite so simple as this, for oun&eh
algebra is a Banach algebra of operation on a Banach sfaaed we
have to replace the sequenag)(of operators by a sequence of elements
of X.

Until we reach the statement of our main theorem (Thedrehvéel
shall use the following notation.
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E will denote a normed and partially ordered vector space motim
[IX|| and positive con€. We suppose th& is complete with respect to
[IX|l, and that
E=C-C

We do not suppose th&tis complete with respect {{x||. We denote by
B the intersection o€ and the closed unit dE, i.e.,

B={x:xeC and|X| < 1}
We denote by the convex symmetric hull d, i..e.
B ={ax-py:xyeB,a>08>0a+8=1},
and by||x||c the Mindowski functional oB°, i.e.,
IXllc = inf{1:2>0,xe AB%
Lemmab5.1. (a) ||X|lcis a norm on E and satisfies

IXle = 11Xl (x€ C), IXllc > lIX|  (x€ E)

(8) E is complete and C is a closed subset of E with respgptito

Proof. (@) sinceE = C - C,B? is an absorbing set fdE, and so the
Mindowski functional||X||c is defined onE. SinceB? is convex and
symmetric ||X|c is a seminorm ofE. If z € E and||Z|c < 1, thenz € B°
i.e.z=ax-pBywith x,y e Bande > 0,8 > 0,a + 8 = 1. Therefore

12l = llex =Byl < alX| + BVl <@+ B8 = 1.

This proves that
IXII < IXllc (xe E)

and completes the proof thi]|c is a norm. Sincéd c B°, we have
IXlc < 1 (xe B),

and therefore
[IXllc < [IX]] (xeC)
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This completes the proof o&].

(B) Let (z,) be a Cauchy sequence Ewith respect tox.. Then
there exists a strictly increasing sequenag 6f positive integers such
that

P.q= Nk = Izp - Zglle < 27%

Letwg =z, (k=1,2,...). Then, in particular,
Wi —Wille < 27K (k=1,2,...)

Therefore
Wks1 — Wk € 2_kBO,

and SOWk;1 — Wk = akXk — BkYk, With
ak > 0,8 > 0,ax + fk = 1, X, Yk € 27¥B

Let . .
S = Z akXg, th = Z,BkYk-
k=1 k=1

Thenp > q gives
p P
Isp - soll < > albxdl < Y 27 <279,
g+l k=0+1

and similarly

SinceC is complete, there exig t in C such that
lim fls—sll =0, lim It - tall = 0

Also, IOIim Sp— Sy = S— Sy, andsy — 55 € C wheneverp > g. Hence
s—s5,€C(n=12...). Therefore

I[s=sllc=lls—sill (n=12..)),

64
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and so . lim||s— syllc = 0.

Similarly, nIim It — tollc = O, and soW,) converges with respect to

IX|c tows + s—t. Itis now easily seen that{) converges with respect to
IXle, and scE is complete with respect tfx||c. ThatC is a closed subset
of E with respect td|x||c is a simple consequence of the inequality

IXI<IIXle  (xeE)

and the closeness @fwith respect td|X||, (in fact a larger norm gives a
stronger topology).

Definition 5.1. A linear operator irE is said to beositive if it mapsC
into C and to bepartially boundedif it maps B into a bounded set. The
partial bound (T) of a partially bounded linear operatdris defined
by

p(T) = supl|[Tll : x € B}

Given partially bounded positive linear operat&sandT, we have 66

PST) < p(S)p(T),

and therefore the limit
1
lim {p(T)"}7
exists. It is called thepartial spectral radiusof T.

Lemma 5.2. A positive linear operator T is partially bounded if and
only if it is a bounded linear operator in the Banach spdEg||X ||c).
For such an operator T,

P(T) = lITllc = sup{liT¥lc : x € E and |IX|c < 1},

and the partial spectral radiug of T is equal to its spectral radius as
an operator in(E, ||x|c), i.e.

1
n

p=lim {IT7lc)
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Finally, if 2 > u, there exists a partially bounded positive linear opera-
tor Ry, such that

AW -TR =Rl -T) =1,
where | is the identity operator in E.

Proof. Let T be a partially bounded positive linear operatoEiand let
x € E with ||x||c < 1. Thenx € B®, and so

X=ay-pz
witha >0,8>0,a+B8=1,y,z€ B. Then
Tx=aTy-8Tz
and so

ITXle < allTWlc +BIITZc
al[TYl + BIIT 4|
(@ +p)p(T) = p(T)

ThusT is a bounded linear operator i&,(|x||c) and

IA

ITlle < p(T)
For the converse and the reversed inequality it is enougbtmthat

[ITlle >sup{lITX|c : xe C and [IXlc < 1}
sup{liT¥ : x € B} = p(T).

i
1
Thatu = AE@O{IIT”IIC}H is an obvious consequence of the fact that
IITllc = p(T) for each partially bounded linear operator.
If 2> u, the series

1 1 1
Sl =T+ =T%+---
A A2 A3
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converges with respect to the operator norm for boundeddioperators
in the Banach spacé(||X||c) to a bounded linear operatBy, and

(A -T)R =Rl = T) = 1.

SinceC is closed with respect tx||c, and the partial sums of the
series are obviously positive operators, it follows tRatis a positive
operator.

Definition 5.2. A positive linear operatorl is said to be anormalising
operatorif it satisfies the following condition:

an>0,yh € B,apnX> Ty, lima,=0 lim ||Ty,|=0
n—oo N—oo

If Cis a normal cone, then every positive linear operator is-obvi
ously a normalising operator. We shall see later that aicectampact-
ness condition off suffices to makd a normalising operator (without
restriction onC).

Lemma 5.3. Let T be a normalizing partially bounded positive linear
operator with partial spectral radiug. Then

/12210 p(R/l) -

Corollary. For each such operator T, the partial spectral radjuss in
the spectrum of T regarded as an operator in the Banach s{iad|c).

Suppose that the conditions of the lemma are satisfied buptRa)
does not tend to infinity ag decreases tp. Then there exists a positives9
constantM such thatp(R,) < M for somey gather than and arbitrarily
close tou.

The case: = O is easily settled. For ji = 0, then, from the formula
(Al = T)Ry =1, it follows that

AR—AX > X (1>0,xeC) Q)

If we let A tend to zero through values for whigiiR,) < M, the left
hand side off{]1) tends to zero, and, si&& closed, we obtain

-xeC (xe C).
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But this implies thaC = (0) which was excluded by our axioms @n
Suppose now that > 0. Then we may choosg v with

O<d<pu<v<a+MY

and withp(R,) < M. Since||R||lc = p(R)), it follows that the series
R+ (V- )R- R+

converges with respect to the operator ndiriig to a partially bounded
positive linear operatos which is easily seen to satisfy

S -T)=(@l -T)S =1
This gives
Sx=A1x+11TSx (xeC),

from which it follows by induction that

Sx> A ™V (xeC,n=0,12..) 2)
1

sinced <y and lim T = 4, we have
lim A ™DTe = oo
n—oo

By the principle of uniform boundedness, there exists atpwim E
for which the sequencgt~™UT"x||. is unbounded. SincE = C -
C, it follows that there exists a point in C for which the sequence
lA-™DT W is unbounded. But given any unbounded sequéageof
non-negative real numbers, there exists a subsequaggeiich that

an >k  (k=12..) @3)
an >a (J<mk=12..) (4)

This is easily proved by induction. For ify,...,n._1 have been
chosen so thaEl3) andl (4) are satisfiedker 1,2,...,r — 1, we taken,
to be the smallest positive integefor which

as>an , +TI
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Hence we see that there exists a strictly increasing segug)of pos-
itive integers for which

klﬂll) /l—(nk+1)-|—nk - 00 (5)
and
I DTN > (jaT ™ (6)
since

[T Wi < p(T)IIT™ 2w,

we also have
lim AT w|| = oo 7
k— o0

By (@), there is no loss of generality in supposing th&t! = 0 for
all k, and we may take

yi = [T w2 T (8)
Then, by [2),
ATt w> ATy (9)

Sinceyk € B, andT is a normalizing operator, it follows fronil(7)72
and [@) that
lim AYTwl =0 (10)

But, by (8),
YT wl| > [T w,

which obviously contradict§{10). This contradiction pgsvthe lemma.
To deduce the corollary, it is enough to appeal to the coityiraf
the resolvent operator on the resolvent set.

Definition 5.3. Let ry denote the given norm topology B r a second
linear topology inE, andA a subset of the positive col® We say that
7 is sequentiallystronger thanry at O relative to Aif 0 is a (rn)-cluster
point of each sequence of point Afof which 0 is ar-cluster point.
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We recall that to say that 0 is@acluster point of a sequencey]
means that each-neighbourhood of 0 contains poirgg which arbi-
trarily large n.

Theorem 5.1.Let E be a normed and partially ordered vector space with
norm topologyry, positive coneC complete with respect to the norm,
and letB = {x: x e C,||X|| < 1}. LetT be a partially bounded positive
linear operator irE with partial spectral radiug, and letr be a linear
topology inE with respect to whicl€ is closed and is continuous.

Let A be a subset of that is contained in a countabtycompact
subset ofC, and letr be sequentially stronger thag at O relative toA.
If either

) A=TB and u >0,
or
(i) A=B,

then there exists a non-zero vecton C with Tu = uu.

Proof. Since we can restrict our considerationde- C, we shall
suppose that in fadt = C - C. m|

SinceT B c p(T)B, both ) and (i) imply

(i) TBis contained in a subset ¢ that is countably compact with
respect tar, andr is sequentially stronger tham, at O relative to
TB.

We prove that under conditiorii(), T is a normalizing operator. Let
anX = Tyn+ 2z,

with o, > O,nlim an = 0,y, € Bandz, € C. If || Ty,|| does not converge
to zero, we may select a subsequentg,) such that

Tyl >2e>0  (k=12..) 1)
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We have
TV +2, — 0 (),

and (Tyn,) has ar-cluster point,v say, inC. It follows that-vis ar- 74
cluster point of &, ), and, sinceC is r-closed,—v € C, v = 0. This now
implies that O is ar-cluster point of Ty, ) and therefore is ay-cluster
point of (T yn, ), which contradicts[{1).

Thus, by Lemm@&35I]3, we have

lim R) =
/l—l>;1+0 p( /l) o,

ie., lim |IRyllec = oo.
A—-u+0

Applying the principle of uniform boundedness, we see thate
exists a sequencea{) converging decreasingly joand a vectow in C
with ||w|| = 1 such that

r!m R,an = 00,
and we may suppose thi, Wil #0 (n=1,2,...). Letay = ||Rﬁnw||‘1
andup = apRy,w. Thenu, € B, |lup|| = 1, r!l_rgo an =0, anduu, — Tu, =
(u — A)Un + (Anl = Tun = (1 — An)Un + apW.

Suppose that condition (ii) in the statement of the theoresatis-
fied. SinceB is r-countably compact and, € B, it follows from (2)
that

lim pth —Th =0 (1) 3)

75
Also (up) has ar-cluster poinuin C, and [B) shows thatu—Tu = 0.
We haveu # 0, for otherwisea is 0 ry-cluster point of @), which
contradictd|un|| = 1.
Finally suppose that the conditioi) (s satisfied. Then by (2).

(w=1-T)TUy =Tl —TUn=(u— )T + anTW

SinceT Bis contained in a-countably-compact subset Gf this shows
that

lim @l -TTw =0 (@)
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and that Tu,) has ar-cluster pointvin K. By ther-continuity of ul —
T), we have therefore
W -T)v=0

If v =0, then 0 is an-cluster point of T u,). But, by (2),
nIim uun—Tuy =0 (Tn)

and therefore 0 is ay-cluster point of gu,). But sincey > 0, and
[lunll = 1, this is absurd.

The statement of Theorefnb.1 is somewhat complicated initthat
seeks to combine generally and precision. A number of lasgplicated
but also less general theorems are easily deduced from it.

Theorem 5.2.Let C be a complete positive cone in a normed splace
letB={x:xeC and |[X]| < 1}, and letT be a positive linear operator
which is continuous irC, and mapsB into a compact set and has a
positive partial spectral radiys Then there exists a hon-zero vector
in C with

Tu=puu.

Proof. In Theoren[ &, take = 7. O

Example 1.Let E = Cg|[0, 1] with the uniform norm, and Ie€ be the
positive cone inE consisting of those functionf belonging toE that
are increasing, convex in [@] and satisfyf (0) = 0.

Let0< k < 1, and lefT denote the operator i defined by
(TH(X) = f(kxX (feE,0<x<1)

Plainly T is a bounded linear operator iEhand map< into itself.
For f in C we have||f|| = f(1), and also sinc& = (1 — x)0 + x1,

f(x) < (1-x)f(0)+ xf(1) = xf(2) (0O<x<1)
sinceT"f(x) = f(K"x), it follows that

Tl = (k) <K' =KWl (feC)
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and equality is attained with the functidifx) = x. Thus
p(T") =K,

and the partial spectral radius @fis k > 0. Also T mapsB into a
compact set, for given a convex functiérand 0< X3 < Xo < y1 <Yp <

1, we have
fOR) — F0x) _ f(y2) — Flya)
X=X = Yoa-W1
Givenf € B, and 0< s< t < 1, we therefore have
< f(kt) — f(k9 < f(1) - f(k) < 1

kt - ks 1-k 1-k
) k
ie., 0< (TH(E)—(TH(s < m(l -9

This proves thal Bis an equicontinuous set of functions, and, since

TBis also bounded, it is contained in a compact set.

For this particular operatof the conclusion of Theorefn .2 is of

course trivial since the functiomgiven byu(x) = x(0 < x < 1) plainly
satisfiesT u = ku.

The example is however of interest in that it provides a samgX-
ample of a bounded linear operator completely continuoascione that
is not a compact linear operator in any subspade thfat contain<. In
fact letgn, hn, fn be defined by

ogn(X) =k"x (0<x<1),

he(¥) = 0 (0< x<kM
YTk (x =K (K" < x< 1)

and fn = gn - hn.

Thengn, hy € C, f, e C - C and since

k" (0<x<kh

fa(X) = ( n )

1 k'<x<1)

we have [Tl = 1 n=212..).

78
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Also,
Tf, = f1 (n=212,..),

and forr > s,
Ifr = fll > fi(K) - fs(K)=1-kK5>1-k
It follows that no subsequence df {,) converges.

Example 2.A slight modification of the last example yields a less triv-
ial application of Theoreri 3.2. L& denote the class of continuous,
increasing, convex functionson [0, 1] with f(0) = 0, and lety be an
element ofC that satisfies

¢(1) <1, ¢:(0)>0.

Then there exists an elemanbf C such thago ¢ = ¢1(0)g. (fo g
denotes the compositiorf o g)(X) = f(g(x))). As before we takd =
Cr[0, 1], and consider the linear operaibmgiven by

Tf=fog¢ (f€cE)

That Theoren 512 is applicable is proved as in the last exaneplkcept
for showing that the partial spectral radjus$s given by

u=¢(0)
To prove this we consider the sequengg) ©f functions defined by
on=T"9 (n=12..)).
Letk = ¢ (1). Then, forf in C,
IT O = (T £)(1) = f(¢(1)) < ¢(D)F(2),
and sop(T) <k < 1.
r!mo én(1) =0.
Hence

ol @) d(bna(D))
= | = AN/
A% [T Lg] ~ no gpa(1)  nod dna(D)

= ¢.(0),
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1
and therefor% Iim|T”¢||ﬁ = ¢, (0),
© = ¢.(0).

Finally (T"f)(X) = f(¢n(X)), so that

P(T") < pn(2).

and sou < ¢/, (0). This completes the proof that TheorEm 5.2 is appe
cable.

In this particular example, we can calculate an eigenvegtny an
iterative process. In fact, if we takg defined by

z:g)l()) 0<x<1, n=12..)

Then the sequencegy) converges decreasingly to a functignvith the
required properties.

On(X) =

Example 3.Let E, C and¢ be defined as in the last example, and let
K(x,y) be a function continuous on the square

[0,1] x [0, 1]

which belongs tdC as a function ok for each fixedy in [0, 1]. LetT be
the operator defined da by

1
(TH) = F(#(x) +f0 Kx.y)fydy (0=<x<1)

ThenT is a bounded linear operator mappi@gnto itself. T maps
B into a compact set, and its spectral radiusatisfies

u=¢,(0)>0.

Thus Theorer Bl2 is again applicable.
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Example 4.A variant on Exampl€l3 is given by

(TH) = F(e(x) + fo k(y) f(y)dy

wherek is increasing non-negative and continuous iJ0 Again The- 81
orem[5.2 is applicable and so there exists a non-zero fundtim C
with

uf(x) - f(@(¥) = fo ki fydy  (0<x<1)

whereu is the partial spectral radius ®f From this we see thatf (x) —
f(¢#(X)) is differentiable and we have a solution of the functional equa-
tion

d
Ty 1 f ) = F(600)) = K F(x)

Example 5.That the conclusion of Theorelmb.2 need not hold # 0
is seen by taking the following example. Lktx, y) be continuous and
non-negative in the square, [ x [0, 1], and suppose that

K(Ly)>0 (0<y<1l).
Let E = CR[0, 1], letC consist of allf € E with
f(X)>0 (0<x<1),

and letT be the Volterra operator defined by

(THK) = fo K(xY)f(5)dy:

ThenT satisfies the condition of Theordmb.2 except that its spkectr
radius is zero (and hence its partial spectral radius ig)zero
Also, if f e CandT f = 0, we have

1
fo K(LY)f(y)dy = O,

and sof = 0.
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Definition 5.4. Given a normed and partially ordered vector spXce
with positive coneK, a non zero linear functiondl such thatf(x) >
0 (x € K) is called apositive continuous linear functional.

The following theorem is quite easily deduced from Theoketh 5

Theorem 5.3.Let X be a hormed and partially ordered vector space with
a closed positive conié, and suppose that there exists a subsef K
with the properties:

() GivenxeX with ||X|| < 1, there existhiH with —hxh
(i) His contained in a compact set.

LetT be a partially bounded positive linear operatoKiwith partial
spectral radiug.

Then there exists a positive continuous linear functidnahd a real
numbernu* with O < u* < u such that

f(TY) =u f(X) (xeX).
If also K is a normal cone, them = u*

Proof. Let X* be the dual space of, and letC be the dual con&*
consisting of allf in X* that satisfy

f(x) >0 (xeK)

We have seen in Lemnia#.1 (chagiker 4) that sikés closedK* = 0. 83
By condition () in the theoremX = K — K, and therefor&* N (-K*) =

(0). This proves tha€ = K* is indeed a positive cone. It is clearly a
closed, and therefore complete, subset of the Banach 3fjatie take
E=C-C. O

Let M = sup{|lh]| : he H}, and as usual, leB = {f : f € C and
[If]l < 1}. Givenf € Bandx € X with ||x|| < 1, there existd € H with

-h<x<h,
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and thereforeeTh< Tx< Th,

—f(Th < f(TX < f(Th),
[f(TX < £(Th <|[Thl < p(MIihll < p(T).M,

where p(T) denotes the partial bound @f. Thus for eachf € E we
have an element* f of E given by

(T H)X) = (TR (xe X),

and we obtain a partially bounded positive linear operatoin E with
partial boundp(T*) satisfying

p(T*) < Mp(T).

similarly
p(T™") < Mp(T"),

and therefore
Oy

whereu* denotes the partial spectral radiusTof. We taker to be the
weak topology inE. Plainly C is r-closed,B is r-compact andl'* is

T-continuous. In order to apply Theordml5.1 it only remainrtove

thatt is sequentially stronger tham, at O relative toB. To prove this,
suppose thaf, € B(nh = 1,2...) and that 0 is a-cluster point of the
sequencef).

SinceH is contained in a (norm) compact set, given- 0. there
existshy, ..., hy in H such that for each € H there issom&(1 <k <)
with

E
h = hdl < 5 (1)

Since 0 is a weak-cluster point of §,), there exists an infinite set
A of positive integers such that

fhdl <5 (k=12...nneA) 0
Therefore by[{ll) and12) and the fact thidg|| < 1,
Ifa(h)l <& (heH,neA) (3)
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Givenx € X with ||x|| < 1, there existh € H with —h < x < h, and

85  so, by [B),
T < [fa(N) <& (n€A)

Therefore
Ifall<e (ne ),

and 0 is ary-cluster point of the sequencé,).
Suppose now th& is a normal cond,e. for somey > 0,

IX+yll = yIXl (% yeK).
Then, for each poinkin K,

d(x, -K) = 3'/2;]2 [IX + yIl > Il
Therefore, for eacl in K, there existd € K* with ||f|| < 1 and
f(X) > IIx]
In particular, givere > 0, there existg € K with ||Xol| < 1, and
ITX%ll > p(T)—
Then there exitdy € B with
fo(Tx0) = ¥IIT %ol > ¥(p(T) ~ &).

Therefore

IT* foll > y(p(T) — &),
and p(T*) > yp(T).

86
Since, similarly,

p(T™) = yp(T"),
we have JTR-NTR

and the proof is complete.
As a special case of Theoréml5.3, we have
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Theorem 5.4(Krein and Rutman.)Let X be a normed and partially or-
dered over space with a closed normal positive ddneith non-empty
interior. LetT be a positive linear operator ). Then

() T is a bounded linear operator ¥
(ii) There exists a positive continuous linear functiofaduch that
fF(TY) =pf(x) (xeX),
wherep is the spectral radius df.
Proof. SinceK has non-empty interior, there exists a paf K such

that
IX|<1l=>e+xekK

since|| — || < ||, we have

[X|] <1 extxeK=-e<x<e Q)
Thus conditions (i) and (ii) of Theorerh 5.3 are satisfied with
H = (e). ]

Give a positive linear operatdr and||x| < 1, we have-e < X < g,
and so-Te< Tx< Te SinceK is a normal cone, there exists a positive
constanty with

ly+2=yliyll (y,z€ K) (2
We haveT e+ T xeK, and so
2ATel =I(Te+ T+ (Te-=TX| > ylTe=TX > {I[TH - ITdl},

2+
YT,
Y

which proves thal is bounded, and also gives

and so [T <

2+
Tl < ==X 3)
Y
It follows from (3) that

2+
IT|l < Tyuen p(T),
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and similarly, for any positive integer,

2+
04

7 <

el p(T"),

Therefore 88
p = lim IT"Y" < lim p(TMM" = 4
N—oo N—oco

On the other hand it is obvious that< p, and so the theorem now
follows from Theoreni 5]3.
As a special case of Theordml5.2 we have the following theorem

Theorem 5.5(Krein and Rutman theorefn 6.1)et X be a partially or-
dered Banach space with a positive cdfesuch thatX is the closed
linear hull of K. LetT be a compact linear operator ¥ithat mapsK
into itself and has a positive spectral radiusThen there exists a non-
zero vectoru in K and a positive continuous linear functionfilsuch
that

Tu=pu, T°f = pf.

The proof depends on the following lemma concerning compact
liner operators.

Lemma 5.4. Let T be compact linear operator in a normed space X,
and let T have a positive spectral radius. Then there existsctor x in
X such that
limsup IT"74T x| > O.
n—oo
Proof. Lete > 0, and suppose that the lemma is false. Then,for gach
in X there exists a positive integhk such that

n> Ny = [T"X] < gnT”n

89
Also

, & &
X =Xl<z= IT"X =T < EIITHII,
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and so IT'X] < elT (0= Ny, [IX = X < g)

Let S denote the closed unit ball M.ThenT S is compact and so has a
finite covering by open balls of radidsand centersq, . .. Xn say. Let

N max(Ny,, . .., Nx.).

Then
IT"X| < &T" (n>N,xeTS),
T < T (n> N, x € S),
and so
T < &lT (n > N),
from which it follows that lim||T"|Y" < &. O
n—oo

Proof of Theorem 5.5.By Lemma[&.}t and the fact that = K - K,
there exists a vectorin C with

lim sup[IT"I~YT x| > O.
It easily follows from this that
p lim p(TMY" = lim [T"Y" = p
N—oo N—oo

Applying Theoreni 512 witle = X andC = X we see that there exists a
non-zero vectou in K with

Tu=pu

As in the beginning of the proof of TheordmB.3, the Kétof continu-
ous linear functiond with

f(xX) >0 (xeK)

is a positive cone in the dual spa®é. Also, T* is a compact linear
operator inX* and mapsK* into itself. Applying Theoreniz5]l2 with
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E = X* andC = K*, we conclude that there exists a positive continuous
linear functionalf with

Tf =u*f,
whereu* is the partial spectral radius @f. Since the spectral radius of
T* is equal to that ofl, we haveu* < p. It only remains to prove that
u* > p. There existsl € K with ||u]| = 1 andT u = pu. We have

Tl=p"u (n=12,..).

Sinced = d(u,—K) > 0, there existsp in K* with ||¢|| < | and 91
#(u) = 6. Then
¢(T") = ¢(p"u) = p"s,
and so we have in turii(" ¢)(u) = p"s,

IT"¢ll > p",
pT">p%,  (h=12..)
Hzp
Remark. Itis in fact enough in Theorefn 3.5 thiitbe a complete cone
in a normed space (rather than a closed cone in a complete)spac

In our next theorem we give a formula for the calculation dfifive
eigenvectors corresponding govalid under the conditions of Theorem
B3. For its proof we shall need some result from the clab§ttesz
Schauder theory of compact operators in Banach spaces. alNetsite
these results without proof (see Dunford and Schwartz [14])

Let T be a compact linear operator in a complex Banach space
The spectruna-(T) is the set of all complex numbergfor which Al — T
is not a one-to-one mapping &f onto itself. Thers-(T) is a countable
set contained in the dis¢|| < p wherep = r!i_r)rgo||T”||1/”. Also each
element ofo(T) other than 0 is an eigenvalue, and is an isolated point
of o(T),i.e. has a neighbourhood containing no other point(f). 92

Let 2 be a non-zero point af(T). Then there is a positive integer
v = y(A) called the index of A which is the smallest integerwith the
property that

(T-aA)™x=0= (T -a)"x=0.
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[The null space of T—Al)" increases witm, but eventually we come
to an integer after which it remains constant.] Let
N ={x:(T-2al)"x=0},

and let
M= (T - A)X

ThenN andM are closed subspacesXfand
X=NeM 1)

(i.e., each vector ig has a unique expression=y + zwith y € N and
ze M)
Also M andN are invariant subspaces for

TM)cM, TNcN.

There exist bounded linear projectioRsand Q orthogonal to each
other and with ranges! andN respectively.

| =P+Q,PQ=QP=0,P’=PQ°=0Q (2)
PX=M,QX=N.

Let Ty denote the restriction of to M. ThenTy is a compact
linear operator irM and

azlaceo(T) = acd(Tu) 3)

Theorem 5.6.Let X, K, T, p satisfy the conditions of Theoreln 5.5 and
let y be the index op. Let Q be the projection onto the null space of
(T — pl)” which is orthogonal to the range of ¢ pl). Then

-1
O Jm@sa (")) 0T =@ e

i) lim 10+ T+ )= 1T = p)QITHT - ph)~'Q,

the convergence being with respect to the operator norm.
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Proof. Since there is a natural isometry between bounded linear ope
ator in a real Banach space and their complexifications, s $his
isometry preserves compactness of operators, there issamf@ener-
ality in supposing thaX is a complex Banach space. O

Taking A = p in the above considerations, we have continuous linear
projectionsP, Q on to the rangevl and null spaceN of A”,y being the
index ofp, whereA =T —pl, and (1), (2), (3) hold.

Supposer is a non-zero point in the spectrumBf+ T P. We prove
thata — 1 is in the spectrum ofy; (the restriction ofT to the subspace
M.) In fact

S=al-(P+TP)

is not a (1- 1) mapping ofX onto itself. Either 94
i) the mappingS is not (1- 1),

or
ii) the range of the mapping in not the whole ofX.

In case (i) there exists a non-zero vectan X with

(P+TP)x=ax
It follows thatx € PX = M, x = Px, and so
(I+T)x=ax, Tx=(e-1)X a—-1€o(Tm).

Incaseii), sinceSMc M,SNc NandX = M+N, eitherSM= M
or SN# N. But asPis zero onN, anda # 0, we haveS N= N. Hence
SM=# M. But

Sx={a-DI -T}x, (xeM)

and sax—1 € o(Ty). It follows from this and (3) that ifr is a non-zero
point of the spectrum d? + TP, then

a—-1ea(T) (o).
Therefore

lim (P + TP)"I™ < supf{|1 + ZII¢ € o(T), ¢ # p}
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Since all points’ of o(T) satisfy|/| < p, and since is as isolated point 95
of o(T), it follows that

lim (P+TP)"Y"=k<1+p
n—oo
sinceTM c M, we havePTP= TP, and so
lim [|(1 + T)"P|IY" = k.
N—oo

We choose with k < < 1+ p. Then there existsy with

I(1+T)"Pll<n”  (n>no) 1)
We have
l+T=LQA+p)l+A
and A'Q=0(Mz>v).
Hence

(1+T)'Q= {(1 +p)'l + (2) (L+p)" A4+ (_”1) (1+ p)“-“lAV-l} Q
It follows that
-1

im@o?(," ) 0eTre-aepate @

Also (1) gives,

-1
im (1+p) ™" (Vf 1) (1+T)"P=0 3)
and, sincel(+ T)"= (1 +T)"P+ (I + T)"Q, (2) and (3) give
-1

lim (L+5)°" ( ") oesr-agmate @

Taking norms, we have

-1
ryg;o(lw)‘”( ”1) 10 +T)M=Q+p)IAQ (5

v —
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By definition ofv, the null space oA’~! is not the whole oN, and
SoA”1Q # 0. Thus (4) and (5) combine to give (ii).

Further results connected with TheorEm 5.5 are given byrkaed
Rutman[[20]. In particular very precise results are provigteprenf 6.3
[20]) for an operatoiT which satisfies the conditions of Theoréml5.5
and also maps each non-zero pointkofnto the interior ofK. In this
casev = 1, and the result of Theorem 5.6 takes the specially simple
from

lim (1+p) (1 +T)" = Q

HereQ is a dimensional operator
Qx= f(x)u,

whereu is a positive eigenvector dof, f a positive eigenvector of *
normalized by takind (u) = 1.






Chapter 6

Self-adjoint linear operator
In a Hilbert space

It would be foolish of me to attempt to give in these lectunesecount 97
of the many methods that have been developed for the stuthe sfec-
tral resolution of a self adjoint operator. | shall limit ngysto giving an
account of a certain explicit formula for the projection$ooging to the
spectral resolution. In general this is a theorem abougeptins; in the
case of a compact operator it becomes a theorem about eaers/e

Definition 6.1. A complex (real) Hilbert space is a vector space over
C(R) with a mapping
HxH — C(R)

called the scalar product and denoted Ryy) which satisfies the fol-
lowing axioms

) (xy) = (. %)
i) (X2 +X2,y) = (X1, Y) + (x2,y) (X1, X2,y € H)
i) (axy) =a(xy) X,y e H, aeCR)
iv) (x,y)>0forx=0;(x,X)=0forx=0 (xeH)

v) H is a Banach space with the nofix| = (X, x)%.

79
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Let H be areal or complex Hilbert space, and.$étdenote the class
of all bounded symmetrigperators irH, i.e., bounded linear mappings
of T into itself such that

(Txy)=(xTy) (XxyeH)

98 .7 is the class bounded self adjoint operatdrs; T*. A relation< is
introduced into” by writing A < B or B > A to denote that

(AxX) < (Bxx) (xeH).
In particular, the operatofE belonging ta¥ that satisfy
T>0

are calledpositive operators

Note that this definition of ‘positive’ has nothing to do witte prop-
erty of mapping a cone into itself that we have consideredaitiex
chapters.

We establish a few elementary properties of the relatiomst Fie
recall a few obvious properties of commutants.

Let B denote the class of all bounded linear operator$ijnand
givenE c B, let

E' ={T:T e BandAT = TA(A € E)}
E’ is called thecommutantof E.
() EEcEx2=>E,CcE;] (obvious)

(i) E’is strongly closed.
Let T, € E’ converge strongly toward§ € B. ThenT,A =
AT, (n=12,..)

n—oo n—oo

99
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(i) E self-adjoint= E’ self-adjoint.
TcE =AT=TA (A€E)

AT =TA (A€E)
T*A=AT* (A€E)

(iv) E’is acomplex linear algebra (obvious)

(v) E =(T) = E” is a strongly closed commutative algebra contain-
ingT.

(Mc @) =T @y
AR e (TY =2 Ate(T), Ae(T) AA=AA.

We next establish some well known elementary propositians c
cerning positive operators.

(a) For any positive operatdr, the generalized Schwartz inequality
holds i.e.,

(TX YR < (TXX(TY,Y)

Proof. Bx,y) = (TxY) is a positive semi-definite symmetric bi-
linear form and so the generalized Schwarz inequality figrftbrm.

m|
(b) If T is a positive operator, then
ITI = sup(TxX) : Il < 1}
Proof. Let T be a positive operator and let 100

M = sug(Tx X) : [IX < 1}
By the Schwarz inequality

(T )1 < IT X 11X,
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and soM < |[T|l. On the other hand putting= T X in the general-
ized Schwarz inequality, we have

ITX* = (Tx TX2 = [(TxY)? < (TxX)(Ty,y) < MAIXIPIT X2,

and sa|T|| < M. O
(c) The set of positive operators is a positive coneZin

Proof. If T and—T are both positive, we have

(TxnN =0 (xeH)

By (b), this givesT = 0. The other properties of the cone are obvi-
ous. i

(d) Let (Ty) be a bounded increasing sequence of elementg dfe.,
TnSTrH.lSMI (n=1,2,)
Then (T,) converges strongly to an elemeénbf si.e.

lim Tox=Tx (xeH)
n—oo

101 Proof. Form < n, let Ay, = T, — Tm. By the generalized Schwartz
inequality @) with T = Ay, andy = ApnnX, we have||AnnX|* =
(Ann% AnnX)? = [(AmnX V)2 < (AmnX X)(Amn: Y). Since 0< App <
MI, we have Anny,y) < M3|X[2. Hence|Thx — Tmx|* < M3|X|?
{Tax, X) = TmX, X)}. Since the sequend€T,x, X)} is a bounded increas-
ing sequence of real numbers, it follows th&tX) is a Cauchy sequence
which converges to an elemehik € H in view of the axiom ) in defi-

nition[6.1.
@ T>0=>T">0(n=12..).
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Proof. (T2x,x) = (TKx, TKx) > 0
(TZ*y, x) = (T.TX, TKX) > 0.

) E{ilch positive operatdr is the square of a positive operatb%, and
T2 belongs to the second commutam)’( of T.

m|
Proof. Suppose that& A< |, and letB =1 — A, so that also
0<B<I.
m|
Let Y, be the sequence defined inductively by
Yo=0, Y1 = %(B+ Y)(n=0,1,2,...).
By induction we havd]Y,|| < 1, and so
0<Yp<l.
Also, since 102

1 1
Yni1 = Yo = E(Yﬁ ~-Y2 )= 5(Yn + Ya2)(Yo = Yoa),

we see by induction tha,, 1 — Y, is a polynomial inB with non-negative
real codficients. SinceB" > 0, for everyn, it follows that (Y;,) is an in-
creasing sequence. Hendg) converges strongly to a positive operator
Y, and we have

1
0<Y<I, Y= E(|3+Y2)
LetX =1 - Y. ThenX is a positive operator and
X% =A

If a bounded linear operator commutes wih it commutes with
each polynomial ifA, hence it commutes withi,, and therefore witkX.
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1 i .
fO<T<MI,A= M'T satisfies 0< A < | and so the proposition
holds forT.

The positive square rodtz is in fact unique but we do not need this
fact.
(9) A>0, B>0, AB= BA= AB> 0.
Proof. SinceA € (B’), we haveB: ¢ (A) and so

AB = AB?B? = B3AB3.

i
Finally, BAB2x, x) = (ABZx, BzX) > 0.
() T >0 | + Tisinvertible, { + T™1) > 0, and
(1 +T)te(m).
103
Proof. We have
I<1+T<(1+ M),
<A<,
1+M ™~ =
whereA = 1 (I + T). Therefore
1+ M '
1 M
I-Al<|{1-—=]IllI= 1
[ I|_||( 1+M) [ oM~
i

Therefore the Neumann series

l+(-A)+(1-A+--
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converges in operator norm and sin¢e-(A)¥ > 0 its sum is a positive
operatorB. We have

| =B(I-A)=1+(I -AB=B,

and scAB= BA= 1.
Finally (1 + M)™'B is the required positive inverse bf+ T. By a
projection we mean an operat® belonging to.” with P? = P.

(i) Each projectiorP satisfies < P < I.
Proof. SinceP €.¥ andP = P2, we haveP > 0. ]
Sincel -Pe.7and( - P)?>=1-Pwe havel - P > 0.
() For projectionsP4, P
P12 Py & Py = PPy & P, = P1P;,
104
Proof. PP, = P, = P, = P = (P2P1)* = PiP; = PP,

PP, = Py Py = P = (PoPy)* = P3P = PyPy.

Thus, if P, = P,P;, we also havé®1 P, = P,, and so
(P1— P2)? = P{ = P1Po — PoPy + P53 = Py — Py,

and therefore Py > P,.
Finally suppose tha®, > P»,. If P1x = 0, thenP,x = 0, for

(P2x, P2x) = (P3%, X) = (P2x,X) < (P1x,X) = 0.
SincePy(I — P1) =0,

Pa(l —P1) =0,
i.e., Py = PoP;.
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Lemma 6.1. Let A> 0, and let B= 2A%(l + A?)~. Then
i) Be A,
i) 0 <B<A,
i) 1 —B=(-A(+A)( +A)
iv) if P is a projective permutable with A and®A, then P< B.
Proof. Proposition f) implies (). m|
ThatB > 0 is clear sincé\? and ( + A?)~! are permutable. Also
(1 +A)A-B)=A+AS—2A%2 = A(l - A? >0,
and so, using the permutability of the operators,
A-B=(+A)Y1 +A)A-B)>0

This proves (ii), and (iii) is straight forward.
Let P be a projection such th&te A’ andP < A. We have

P=P?<PA <A?

and therefore
P=P?< AP

Therefore
(I + AD)(B=P) =2A% — (I + AP > 2A% — 2A°P
=2A’(1-P)>0
Finally, since [ + A%)~1 is permutable with all the operators concerned,
B-P> (I + AA)™12A%(1 - P) > 0.

Theorem 6.1.Let A be a positive operator, and let the sequergg Ibe
defined inductively by

AL=A Ang =2~ +ANT (n=12..)
Then
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) 0<Ai<A, (nN=12..),

ii) the sequenceA,) converges strongly to a projectidp belonging
to A”.

i) Q<A
v) (I -A)I-Q) =0,

v) Q is maximal in the sense P is a projection permutable witA
and satisfying® < A, thenP < Q.

Proof. (i) This follows at once from Lemma 1. (ii) and (iii). It folles
from (i) and Propositiond) that (A,) converges strongly to a positive
operatorQ with Q < A, and thatQ € (A)”. It remains to prove thad is

a projection. O
Since 0< A, < A, we have
IAnll < IIA (n=1,2,...);
and therefore, since
r!ﬂo Anx = Qx(x e H),
we have in turn,
lim Afx = Q°x (x € H),
lim Anea{(l+ Q9)x— (I +ADx} =0 (xeH),
lim Anya(1 + Q?)x = lim 2A2x =2Q%x (x € H).

But
lim Ani1(l + Q%)x = Q(I + Q)X (x e H),
and so o Q(l + Q%) = 2Q2.
Therefore

(Q-Q?=o.

107
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But sinceQ — Q? is symmetric, this gives
(Q-Q?=0,

i.e.,Qis a projection.
(iv) By Lemma 1 (iii),

(I =An) = (I = A + A + AL )
n-1
=(-A[ [0 +A)+AD)™
k=1

and so (-Al-A)=0 (n=1,2..)),
which gives (-A(-Q)=>0.

(v) Let P be a projection permutable withsuch thatP < A.
108 By repeated application of Lemma 1 (i\B,is permutable withA,
andP < Ay. In the limit we haveP < Q.

Theorem 6.2.Let T be a bounded symmetric operator with
ml<T < MI.

LetEy = I, and ford < M let E; be the projectiorQ of Theorem 1
corresponding t@é\ given by

A= ﬁ(M' -T)
Then
i) the projectionsE belongs toT)”;
i) Ex=0@A<m),Ey =1,
i) Ex< Eu(A<p);
iv) AE, —Ex) <T(E,—E)) <u(E,—E)) (A <p);

v) the maily E,) is strongly continuous on the right.
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Proof. i) follows from Theorem 1i{).

i) If E; # 0, there exists a non-zer@ with E;xg = Xo.

By Theorem 1 (iii), we have

1
M—-2a

E, <

(MI -T),

and so

(X0, %) = (EaXo, X0) < 17— ((MI = T)Xo, Xo).

SinceMIl - T < (M - m)l, this gives

(%0.%0) < XMy, %)

T M-2
and sol > m. This provesi(). 109

(iii) This is obvious except when < u < M. In this case, since
. L 1
E, is a projection permutable Wltf\l/I—(Ml -T), and
—H

E,1<

MI - T) <
M1 )_I\/I—,u

Then 1 (v) shows that

(MI -T),

EASE#

(iv) Suppose that < u < M. By Theorem 1i),

| - ﬁ(MI —T))(I ~E) >0,
ie., (- Al —Ey > 0.

SinceE, < E,, we haveE,E, = E,, and so this gives

(T-A)E,-E) =0,
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which is the left hand inequality inv). The right hand inequality is
obvious ifu = M (sinceT < MI); and ifu < M we have
1
E MI -T
H < M _ﬂ( )9
ie., T <Ml -(M-puE,.

SinceE,(E, - E,) = E, — E,, this gives.
T(E. - Ea) <u(E,-E)),.
and (iv) is proved.

(v) Supposeu < M. If (E,) is not strongly continuous on the right at
u, there exists a sequencé,) convergent decreasing tobut such
thatE,, does not converge strongly ,.

Since E,,) is a decreasing sequence of operators, \Eith> E,,
there exists a positive operatdisuch that] > E, and E,,) converges
strongly toJ. ThenJ is a projection, permutable with, and

1
E,<J<E, < MI -T =12...
y—J— /ln—M_/ln( )(n ) )
It follows that
E,<J< MI-T
and so by the maximal property Bf,,
J<E..

This completes the proof of the theorem.

Corollary. (The spectral theorem).
M
T= f/ldEA (e>0)
M-¢
The integral being the uniform limit of its Riemann-Stadtjisums. In

fact let
M-eg=Ag<A1 <+ <Ap=M.
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Then
/lk—l(E/lk - E/Ik,l) < T(E/lk - E/Ik,l) < /lk(E/lk - E/Ik,l)

and so sincé&,, = | andE,, =0,

n n
D Aka(Ea —En)) ST < )" AEx — En),
k=1 k=1

n

n
0<T- Z A-1(Ep — Epy) < Z(/ik — A-1)Ea — Eaca)
k=l k=1

< maxx — A1)l
Hence
n
IT = > Aca(Ey — Ey )l - 0 as maxf — A1) - 0
k=1

Moreover "

T = fﬂdeA r=012..)

m-e

To see this we rewritéy) in the form
M-u)(E,—E) <(MI -T)(E, - E)) <(M-A)(E, - E))
sinceMl - T >0, M -1 >0, andM — u > 0, it follows that
(M=) (E, - E2) < (MI = T)'(E, - E2) < (M - 2)'(E, - Ey)

Therefore, as in the preceeding argument,

M
(MI—T)’:f(M—/l)rdEA r=012..)

m-e

and the required result follows by induction.

112

In the next theorem weonsider the special simplification which

occurs when the operator is also compact. We need a simpiadem
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Lemma 6.2. Let A be a positive operator, and I6A,) be the sequence
constructed as in Theorem 7. Thep A A’B, (n = 2,3,...), where
each B, belongs tqA)” and

OS Bn+1SBn (n:2,3,)

Proof. We have
Ay = 2A%(1 + AD)~L = A?B,,

with B, = 2(1 + A%)~L. If A, = A?B,, with B, > 0 andB, € (A)”, then
Anig = 2A%B3(1 + A*BY)
= A’Bns1,
with Bp,1 = 2A%B2(1 + A*B2)~1. Then
Bn— Bni1 = (I + A*B2)7YBy(I + A*B2) — 2A%B3)
= (1 + A*B2)71 B, (I - A%B))?,
so that 0< Bps1 < By O

Theorem 6.3.Let A be a compact positive operator, and l&t)andQ
be the corresponding and projection defined as in Theorerhdn T

(i) (An) converges uniformly t@;
(i) Q has finite rank;

(iii) the range ofQ is spanned by eigenvectors Afcorresponding to
eigenvaluegt with 1 > 1, and all such eigenvectors lie in the range

of Q.

Proof. Let B, be the sequence defined in Lemma 2. ThBg) con-
verges strongly to an operat@ in (A)”. SinceA, = A?B, and A,
converges strongly tQ, we have

Q= A%B.
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Let K be the unit ball in the Hilbert spadd, and letE = (AK).
ThenE is a norm compact set. Sinﬁe liB,x = Bx(x € H), we have

r!i_r)rgo(an, X) = (Bx X) (x€ E).

With respect to the norm topology i, the functions B,x, X) are
continuous real functions converging decreasingly to twdinuous real 114
function Bx X). Therefore, by Dini’s theorem, the convergence is uni-
form onE. Since

(AnX, X) = (A?Byx, X) = (BhAX AX)

It follows that (Anx, X) converges uniformly orK to (BAXAX) =
(A% Bx, X) = (Qx X). ThereforeA, — Q uniformly (i.e., with respect to
the operator norm).

SinceQ = A?B andA is compact, we know thaD is compact, and
therefore has finite rank, i.e., its rangf, is finite dimensional; foQ
is the identity operator in the Banach spatg and a Banach space in
which a ball is compact is finite -dimensional.

The rangHq of Q is a finite dimensional Hilbert space aAdnaps
Q into itself (sinceQA = AQ). By the elementary theory of symmetric
matricesHgq is spanned by eigenvectaus, . . ., u, with real eigenvalues
A1, .oy Ay

AU =4y
SinceQu = uj, andA > Q, we have

AU, ) = (Au, W) > (Qu, u) = (Ui, W),

and sat; > 1.
Conversely, leti be an eigenvector oA with Au = Au,1 > 1. We
may suppose thdt|| = 1 and then define a projectidhby taking 115

Px= (X u)u.

APXx= (X, U)Au = A(x u)u = (X, AU)u = (X, Au)u = (Ax u) = PAX Also
P < A for givenx € H, we havex = H, we havex = £u + v with
(u,v) = 0. ThenAx= Aféu+ Av, and

(u, Av) = (Ay,v) = A(u,v) = 0. So
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(Ax X) = AU¢? (U, u) + (Av, v)?
> Al (u, u) = A(PX X) = (PX X).

By the maximal property o, P < Q. HenceP = QP, u € Hq.

The iterative method, given here can also be applied to narist
the projections belonging to the spectral family of an uninted self-
adjoint operator, and details of this may be found in my paper



Chapter 7

Simultaneous fixed points

In this brief chapter we are concerned with the existencesohaltane- 116
ous fixed point of a familyZ of mappings

Tu=u(T € %).

We first state without proof two well known theorems on thigsfion

proofs of which will be found in Dunford and Schwariz [14] $p6-

457. We then prove a theorem on families of mappings efre into

itself. Some further results in the present context willegopn the next
chapter in the theory of a special class of semialgebras.

Theorem 7.1(Markov- Kankutani) Let K be a compact convex subset
of a Hausddif linear topological space. LeF be a commuting family

of continuous fiine mappings oK into itself. Then there exists a pointL17
uin K with

Tu=u(T € %)

A mappingT is said to beaffine if
Tlax+(L-a)y)=aTx+(1-a)Ty (xyeK, 0<a<1l)

Theorem 7.2(Kakutani) Let K be a compact convex subset of a Haus-
dorff locally convex space and I&tbe a group of linear mappings which

95
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is equi-continuous oK and satisfie§SK c K. Then there existain K
with

Tu=u (T €G)
G is said to be equi-continuous d¢hif given a neighbourhood of 0,
there exists a neighbourhoddl of 0 such thaks, k, € K, ky —ky, € U
implies thatTk, — Tky € V(T € G).

We have chosen to include a theorem on mappings of cones into
themselves in this chapter because of the opportunity ésgis employ
a method of proof quite flierent from the methods used in the rest of
these lectures. The method depends on the concégealfin a partially
ordered vector space.

Definition 7.1. Let E be a partially ordered vector space with positive
coneC. A subset] of E is called an ideal if

(i) Jis alinear subspace
(i) jed=10,j]cJ,

Here a,b] = {x : a < x < b}; and conditions (i) and (ii) are equivalent
to (i) and

(i) jed=[-]jlcd

Forletje Jand—j < x < j. Then0< x+ j < 2j. By (i),2j € J
and by (i), x+ j € J. Again by (), xe J.

Example.If E, is a linear subspace & with E, C = (0). ThenE, is
an ideal. (For then [[( ] for j € Jis empty unlesg = 0).

118 Definition 7.2. An elemente of C is called anorder unitif [ e, €] ab-
sorbs all points ok, i.e., if for everyxin E

-le< x< e
for all suficiently largeaA.

By definition of a positive con&; contains non -zero elements, and
so certainly
e>0.
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We establish a few elementary properties of ideals. An ideial
properif 0 # J # E.

a) Anelement o€ is an order unit of if and only if it is not contained
in any proper ideal oE.

Proof. Let J be an ideal containing an order uritThende € J and

Ec U[—/le A€l cJ
>0

HenceE = Jis not a proper ideal. O

Conversely, ife € C is not contained in any proper ideal, then the

ideal | [-1e, A€] which containse is the whole ofE i.e., eis an order
>0
unit.

(b) If E has an order unit, then each proper ideakad$ contained in a
maximal proper ideal oE.

Proof is immediate usinggf and Zorn’s lemma.

(c) If E has an order uni¢, andJ is a proper ideal ok, thenE/Jisa 119
partially ordered vector space with order unit.

Proof. SinceJ is a linear subspacd;/J is a vector space whose ele-
ments are the cosets= x+ J, x € E. ThesetC = {X: x € C}is a
positive cone irE/J. It contains the non-zero elementahdX, —X € ®
implies that there exist, |’ € J such that

X+, —x+]j eC.
This gives

O<x+j< j+]
and so Xx+jel[0,j+]] c J
xeJ X=0.
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Finally &is an order unit. For
-le< x< e
implies that - AB< X< A8

which proves thaeTs an order unit since — X is an ‘onto’ mapping.
i

(d) If E has an order unit, anil is a maximal proper ideal d&, then
E/M has no proper ideals.

Proof. If Jis an ideal ofE/M, then
J={x:Xe J}

is an ideal ofE containingM. HenceJ = M orJ = E i.e. J = (0) or
J=E/M. O

(e) If E has no proper ideals théh~ R.

Proof. Ccontains a non-zero elementSince there are no proper ide-
als,eis an order unit. i

Let
p(x) =inf[¢é: x< &€] (xe E) 1)

Let y = p(x)e— x.

If x € E, then eithex € C or —x € C, for otherwise X) is an ideal.
Henceye Cor-ye C i.e. y>0ory< 0. Ify < 0 for somex, then
-y > gefor somee > 0, andx > (p(X) + &)e which contradicts (1). If
y > 0, for somex € E, theny is an order unit and so

y > ge forsomee >0
But then {(X) — £)e > x which also contradicts (1). Hence
y=p(X)e-x=0 xeE)

i.e. e # 0 spans the whole spa&eand soE is isomorphic taR.
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() Let E have an order uni, and letM be a maximal proper ideal.
Then there exists a linear functionfibn E with
@ f(x)=0 (xeC),
(i) f(e)=1,
(i) f(x) =0, (x e M).

(i.e., M is the null space of a normalised positive linear func-
tional).

Proof. E/M has no proper ideals, ared>"0 wherex — Xis the canoni-
cal mappinge — E/M. By (e), for eachx] there exists a real numbér
with
X =&
Let f(x) = £ Then it is easily verified that is a linear functional
with the required properties. O
(g) LetE have an order unit and have dimension greater than one, and
let T be a positive linear mapping & into itself.
Then there exists a prop@&rinvariant ideal, i.e. a proper idedl
with TJ c J.

Proof. Let e be the order unit, lep be the Minkowski functional of
[-e €], and let
N = {x: p(X) = 0}.

The setN is an ideal inE. For if j € N then 122
—e<j<eeforalle >0
Hence, if 0< x < |, then
—ce<x<ee (>0

and sop(x) = 0 andx € N. N # E sincep(e) = 1. AlsoTN c N. For
x € N, we have

—ge< X< g€ (>0
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and so —eTe<Tx<eTe (¢>0)
But

—-ae<Te<ae forsome a>0
so that —cae<Tx< eae forsomea >0 andalle >0

Hence
ap(TxX) =0i.e.Txe N.

O

Thus ifN # (0), itis aT-invariant proper ideal. Supposé= (0), so
that pis a norm. LetH denote the set of all positive linear functionals
f with f(e) = 1. AsE is of dimension greater than one, bs),(b)
and (f), H is nonempty. If for somd € H, we havef(T€ = 0, then
f(TX) = Ofor all x € E and so the null-space dfis a proper T-invariant
ideal. Suppose then th&{Te) # 0 for all f in H. ClearlyH is a convex
weak * closed subset of the dual spdeeof the normed spaceE( p).
Also H is contained in the unit ball d&*.

For we have
-p(¥e<x<p(xe  (x€E)
so that —p(x)f(e) < f(x) < p(x)f(e) (XeE, f eH)
ie., - p(x) < f(X) < p(x (XeE, f eH)
or 101 < p(¥)

HenceH is weakly compact.
As
-p(X)Te<T(x) < p(x)T(e)  (xeE),

T is a bounded linear transformation d&,(p) into itself with ||T|| <
T(e). Therefore its transposE* is a weak* continuous mapping &*
into itself. Thus the mappin§ defined by

1

:f(Te)Tf

Sf
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is a weak* continuous mapping of the convex, weak* compaasstH
of E* into itself. By the Schander-Tychfidixed point theoren$ has a
fixed pointfy in H, and the null space df is a propefT -invariant ideal.

(h) Under the condition ofg) there exists a maximal proper idedl
and a non-negative real number such that

TX—uxeM (xe E).

Proof. By (g) and Zorn’s lemma, there exists a maximal proper
invariant idealM. In fact M is a maximal proper ideal, for otherwisa 24
E/M has dimension greater than 1 and so there is a prbgrvariant
ideal M, in E/M, whereT is the mapping ofE/M given by

Tx=Tx
X — X being the canonical mappirtg — E/M. Then the inverse image
M1 of M1 by this mapping is a proper-invariant ideal containingv
strictly which contradicts the definition &fl.
The maximal proper ided¥ is the null space of a normalised posi-

tive linear functionalf.
Sincef(e) = 1, we have

x— f(X)ee M (x€ E),
and so Tx-=f(X)Tee M (xe E)
f{Tx-f(X)Tg =0 (xe E)

Writing u = f(T€), we have
f(Tx—ux)=0 (x € E),
and soT x— uxe M (x € E). O

Theorem 7.3.Let E be a partially ordered vector space with an order
unit e and with dimension greater than on&., be a commuting family

of positive linear mappings dt. Then there exists a maximal proper2s
ideal which isT-invariant for allT in.
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Proof. We prove that there is a proper ideal thatisinvariant (i.e. T-
invariant for everyl € .%), and then the proof is completed by applying
Zorn's lemma as in (h). m|

If every T € % is a constant multiple of the identity mapping, then
this assertion is obvious, for every proper ideal is théfnvariant. Sup-
pose then thaty € .# is not a constant multiple of the identity. Then by
(h), there exists a maximal proper idddl and a constant real number
such that

ToX—uxe M (x € E).

Let Eg = {Tox—uX: X € E}. ThenEg is a proper subspace Bfand
since
T(Tox—pX) =To(TX) —u(Tx) (T € %),

Ep is Z-invariant. IfEg N C = (0) thenEy is the required propef”-
invariant ideal.
Otherwise, let

3= Iy

yeEo
Then (0)# J c M, andJ is an.# invariant ideal.
Corollary. There exists a normalized positive linear functional f such

that
f(TX) = f(Tef(X) (T e Z#,xeE).



Chapter 8

A class of abstract
semi-algebras

The present chapter is somewhat of an intruder in this cafieetures. 126
It has some incidental bearing on the Perron-Frobeniugehedout our
main purpose is to establish some algebraic properties eftaic class

of semi-algebras.

Definition 8.1. A real Banach algebra is a linear associative algebra over
R together with a norm under which it is a Banach space and which
satisfies

Ixyll < Xl vl (xy € B)

Definition 8.2. A non-empty subseA of a real Banach algebrB is
called a semi-algebra if
() xye A a>0= x+y,axe Aandxye A.
A semi-algebraA is called alocally compactsemi-algebra if it
satisfies the additional axioms
(ii) A contains non zero vectors;

(i) the set of elements of A with ||X|| < 1 is a compact subset &t

It is easily seen that iR is a locally compact semi-algebra, then
the intersection oA and each closed ball iB with its center at

103
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the zero vector is compact, and hence tAds a closed subset

127 of B, and that each closed bounded subseA &f compact. Itis
easily seen that axioms (i), (ii) and (iii) are equivalenti}o (ii)
and

(iif)” A with the relative topology induced from the norm topology i
B is a locally compact space.

This is our justification for the use of the term locally corapia the
present sense. Axionii) of course merely excludes trivial exceptional
cases.

If the Banach algebr® has finite dimensions, then its closed unit
ball is compact, and therefore every nontrivial closed salgébra in
B is locally compact. In particular, each closed semi-algetfrn x n
real matrices is of this kind. However, the axioms do not ynplat
every locally compact semi-algebra is contained in a finiteethsional
algebra, as the following example shows.

Example. Let E be the subset of the closed unit intervalIPconsisting

of the closed interval [,O%] together with the point 1, and |& be given

the topology induced form the usual topology in IQ) so thatE is a
compact Hausddi space.

Let A’ denote the class of all functions belongindgl0, 1] that are
non-negative, increasing, and convex inl) and letA denote the class
of all functions onE that are restrictions t& of functions belonging to
A

It is obvious thatd’ is a semi-algebra i€g[0, 1]. We prove thatA

128 is aclosed subset €@fr(E). Each element of A has a unique extension

f’ € A’ which is linear in % 1] defined by

f'(x) = f(x),0< x< %

() :af(%)+(l—a/)f(1) forx:a.% +(1-a)l0<a<1
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Let f, be a sequence of elementsfthat converges in norm to an
elementf of Cr(E). Then the sequendd;}, wheref; € A’ is the exten-

sion of f, to [0, 1] which is linear in E, 1], converges uniformly in [(L]

and sinced’ is a closed subset &[0, 1], the limit function f’ belongs

A, But f is the restriction off’ to E, and sof € A. HenceAis a closed

semi-algebra ilCr(E). To prove that it is locally compact it is enough

to prove thatA intersects the unit ball €€r(E) in an equicontinuous set.
If feA and|f||<1,then

Osf(%)sf(l)sl;

and so, for any pair of points,, X, with

I\?.IP

0<xXg <% <

we have, by theonvexity of f,

0 0= 1) _ fD-f(3)
X2 — X1 1-4

Thus the set of all such is equi-continuous, andis a locally compact 129
semi-algebra. Finally it is obvious thatis not contained in any finite
dimensional subspace Gk(E).

Our principal results are concerned with the existence amgguties
of idempotents in a locally compact semi-algebra, and maggarded
as analogues of classical theorems of Wedderburn. As hiptedve
obtain an abstract characterization of the semi-algebedl ofx n ma-
trices with non-negative entries, and some results relat¢oe Perron-
Frobenius theorems.

Throughout this chapter we will denote By the intersection oA
with the surface of the unit ball iB, i.e.,

Sa ={x:xeAand|x| < 1}.

Obviously the seEa is compact.
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Definition 8.3. Given a subsek of a semi-algebra, E; will denote the
right annihilator of Ein A, i.e.

Er = {x:xe Aandux=0 (ue E)}.

In particular @), denotes the right annihilator of the set consisting
of aonly; and the left annihilatork; and @), are similarly defined.

Definition 8.4. Given subset$ and Q of A, PQ will denote the set of
all finite sums

P10z + -+ + Pnln
with p; € P andg; € Q; andP? will denote PP.

Definition 8.5. A semi-algebral contained inA is called aright ideal
of Aif
aeAjel>jael

Left ideals are similarly defined with ja replaceddjy and semi-algebra
contained inAis called awo sided ideaif it is both a left ideal and right
ideal.

A closed right ideald is called a minimal closed right idealf
J # (0) and if the only closed right ideals containedJrare (0) and
J. Similar definitions apply for minimal closed left and twiolsd ide-
als. (Closed ideal means an ideal which is a closed subgeinaklative

topology.)

Theorem 8.1.Each non-zero closed right ideal of a locally compact
semi-algebra contains a minimal closed right ideal.

A similar statement holds for left and two-sided ideals.

Proof. Given a non-zero closed right idedl there exists, by Zorn's
lemma, a maximal familyA of non zero closed right ideals contained in
J and totally ordered by the relation of set theoretic induasiThe sets

I N Sawith | € A are compact and have the finite intersection property.
Hence their intersection is non-empty and therefore thersiettionlg
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of the idealsl in A is non-zero. Clearl\lg is a minimal closed right
ideal. m|

It is clear that similar results hold for left and two sidedsgd ide- 131
als.

Lemma8.1. Let E be a closed subset of a locally compact semi-algebra
A such thatzx € E whenever > 0 and xe E. Let a be an element of
A such thata), n E = (0). Then aE is closed.

Proof. Lety = nIim ax,, (xn € E). O

If y = 0 there is nothing to prove since ® E and so O¢ aE.
Lety # 0. Then we can assume that # 0 (n = 1,2,...). The

sequences, = H—i”n” in the compact seE N Sa has a subsequencs,,(
that converges to an elemesit E N Sa. We have
as; #0 and limas, = as#0,
|—00
since Sy #0,s#0and &), N E = (0).

Hence
llag,ll >m>0 i=212..).

Also since
lim [[xqllas, = lim ax, =y,
|—o00 |—o00

lIXnllasy is a bounded sequence. It follows that the sequejigl) is
bounded, and therefore has a subsequence convergent@say. Then

y=A4as = a(1s) € aE
and the lemma is proved.

Theorem 8.2.Let M be a minimal closed right ideal of a locally com32
pact semi-algebré with M? # (0). ThenM contains an idempotermt
andM = eA
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Proof. The proof begins on familiar algebraic lines. Mg # (0), there
existsa € M with aM % (0). Hence

Mn (@) M

SinceM N (@), is a closed right ideal contained M, the minimal prop-
erty of M implies that
M N (@) = (0) 1)

O
Hence, by Lemma 1, aM is a closed right ideal. We have
0OxraMcM

and therefore
aM = M.

In particular, there exists an elemer¢ M with
ae=a (2)

The complication of the rest of the argument is forced on uthby
fact that we cannot assert at this point téat e belongs toA. Our next
is to prove that

lim (€' = 1 (3)

133 By @), we have
adl=a (n=12..)
lalllle"|l > lla€|l = llall,
<1  (h=12..)
so that
lim et > 1

In order to prove tharg limle"|Y" < 1, it sufices to show that|€"|)) is

bounded.
Let K = inf{|lam| : me M N Sa}.
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SinceM N Sp is compact, this infimum is attained; there existse
M N Sa with |lamy|| = K. Therefore, by[1)K # 0. ThusK > 0, and we
have
llax] = K[| (xe M)

In particular||e"]| < %llaé‘ll = %||a|| (n=1,2,...). This completes
the proof of [B).
Suppose that > 1, and let

1 1
b= e+ —€®+...
TR

The convergence of the series is established[by (3), and we ha
b, € M. Also,
Ab; —eb =ee M,

and thereford, # 0. LetA, > 1(n=1,2,...) andnlim An=1. Bywhat 134

we have just proved, there exists for eagtan elementn, of M N Sp
such that

Ay, —eny e M

Therefore, by the compactnessMfn Sy, there exists an element of
M N S such that
m-eme M

Let
J={X:XxeM,x-exe M}.

We haveJ # (0) sincem € J. Also, Jis a closed right ideal con-
tained inM, and thereforel = M i.e.,

X—exe M (xe M)

But, by (2)
a(x-ex =0 (xe M),

and so
X—exe Mn (a) (xe M)
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Therefore, by[l),
x—ex=0 (xe M)
In particulare = €, and also 135
M=eM=eA

Definition 8.6. An idempotente in a semi-algebra for which eAis a
minimal closed right ideal is calleshinimal idempotent.

A semi-algebraA is called adivision semi-algebraf it contains a
unit element dierent from zero and if every non-zero elemenfdias
an inverse irA.

Theorem 8.3.Letebe a minimal idempotent in a locally compact semi-
algebraA. TheneAeis a closed division semi-algebra.

Proof. Let Ag = eAe ThenAg is a semi-algebra with unit elemeeat
and is closed since

Ap = {X: xe Aandx = ex=ex.

Let eaee a non-zero element é§. Then
e¢ (eadr NeA eceA

SinceeAis a minimal closed right ideal anddg, N eAis a closed right
ideal properly contained in it, we have

(eadr N eA=(0).

It follows, by Lemma 1, thatgad, N eAis a closed right ideal.
Since it containe@aeand is contained ieAit coincides witheA and
therefore

(aedAo = Ao.

This proves that every non-zero elementfgfhas a right inverse,
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and a routine argument now completes the proof.
Givenx # Ag, with x # 0, there existy € Ag with xy = e. It follows
thaty # 0, and so there existse Ag with yz= e. But then

X =Xy2 = (xy)z
and soyx = eandx has an inversg.

Definition 8.7. A semi-algebraA is said to bestrictif X,y e A, x+y =
0=x=0.

Theorem 8.4.Let A be a closed strict division semi-algebra. Then
A=R'e

whereeis the unit element oA andR? is the set of all non-negative real
numbers.

Proof. We prove first that ifx,y € Ay # 0, and|| X || is suficiently
small theny — x € A. O

Sincey # 0, it has an inversg ! in A and for sificiently small|| x ||,
we have|| z||< 1, wherez = y™1x. SinceA is a closed semi-algebra in a
Banach algebra, the series

e+z+2+---

converges to an element a&fand € — 2) = e. This shows thaa # 0,
and it therefore has an inverbén A therefore

e-z=(e-2ab=beA

137
Finally

y-x=yle-y')=ye-2cA
Suppose now thate A,u # 0, and let

u=supl:e—Aue A}
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By what we have just proved, we haye- 0. Also, the strictness of
Aimplies thatu is finite, for otherwise we have

1
Ee—ueA n=12..),

and so-u € A, sinceA s closed; and then = 0 (asA is strict) which is
not true.

Lety = e— uu. SinceAis closed we havg € A. If y # 0, then, for
suficiently smalla > 0, we have

(e—uu)—Aue A
i.e., e—(u+AueA,

which is absurd. Therefore— uu = 0,
A=R'e

Remark. It is of interest to consider what other division semi-algeh
there are besiddR?. In any semi-algebrd, An (-A) is an ideal. Hence
if Ais a division semi-algebraither An (-A) = (0) andA is strict, or
AN (-A) = AandAis a division algebra. Thus the only non-strict divi-
sion semi-algebras are the familiar division algebras. @rother hand
there are many strict (nonclosed) semi-algebras. For eleai@pE be

a compact Hausdfirspace and lef be the subset dfr(E) consisting
of those functiond € Cr(E) such that either

f(t)=0 (t € E),
orf(t) >0 (t€ E).

It is easily seen that each suéhs a strict division semi-algebra.

Definition 8.8. A semi-algebraA is said to besemi-simpldf the zero
ideal is the only closed two-sides idehWith J% = (0).

Lemma 8.2. Let A be a semi-simple semi-algebra, and let | be an ideal
(left, right, or two-sided) of A such that & (0) for some positive integer
n. Then I= (0).
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Proof. We first show that ifJ is any left ideal withJ? = (0) then
J=(0) 1)
LetH = (JA). ThenH is a closed two-sides ideal, and since
(JAJIA) = J(AJA c J°A = (0),

we haveH? = (0) and soH = (0), JA = (0). This gives) c A;, and 139
sinceA; is a closed two-sides ideal with

AZ c A = (0),
we havéy; = (0),J = (0)

If now | is a leftideal andhis the least positive integer witf = (0),
thenl"™l = 0, and s > 1 would give ("1)? = (0), and so byl{1)

|n—l:0

Hencen =1, I = (0).
A similar argument applies to right ideals. O

Theorem 8.5.Let Abe a semi-simple locally compact semi-algebra, and
let e be an idempotent iA. Theneis a minimal idempotent if and only
if eAeis a division semi-algebra.

Corollary . eA is a minimal closed right ideal if and only if Ae is a
minimal closed left ideal.

Proof. ThateAEis a division-algebra iéis a minimal idempotent was
proved in Theorenl 8l3. To prove the converse supposeethais a
division semi-algebra. Since

eA={x:xe Aandx = ex,

eAis a closed right ideal. Since it contaia# is non-zero, and it there-
fore contains a minimal closed right ideldl. SinceA is semi-simple, 140
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Lemma 2 shows that1? # (0); and therefore, by TheordmBIg, con-
tains an idempotent with M = fA. Since

(fA)? c (fA)(eA.
andA is semi-simple, we have
fAe£0

Let a be an element ofA with fae # 0. Thenfaeis non-zero element
of eAeand therefore has an inversén eAe

faeb=e

It now follows thateAc fA; and so by the minimal properly dfA, eA
is a minimal closed right ideal. ]

The Corollary is evident from the symmetry of the conditiamsA
andeAe

Theorem 8.6.Let A be a semi-simple locally compact semi-algebra, and
let .# be the set of all minimal idempotents & If e € .# anda € A,
then there exist$ € .# andb € A with ae= fb.

Corollary. .ZA is a two-sides ideal.
Proof. Letee .# anda € A. If ae= 0, we takef = eandb = 0. O
Supposeae # 0. Thene ¢ (ed),, and therefore the closed right ideal
(ed; N eA
is a proper subset @A Therefore, by the minimal property efy
(a®r neA=(0)
By Lemmd&8.L, it follows that

aeA= (ag(eh
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is closed right ideal. Itis a minimal closed right ideal, ifiod is non-zero
closed ideal properly contained &eA then{ex: aexe J} is a non-zero
closed right ideal properly contained é#\ SinceA is semi-simple and
locally compact, there existse .# with aeA= fA. In particular

ae= fbfor someb € A.

The corollary is obvious.

Theorem 8.7.Let A be a semi-simple locally compact semi-algebra.
Then the set of minimal closed two-sides idealsAd$ finite and non-
empty.

Proof. By Theorem 811 and the fact thatis a non-zero closed two-
sided ideal of itself, A has at least one minimal closed tided ideal.
O

Suppose tha# has an infinite sefM,, : @ € A} of minimal closed
two-sides ideals. Then

Mo N Mg = (0) (@ # B),
and so Mo Mg(0) (@ # B).

142
For eachy € A, choosam, € M, N Sa. By the compactness &,
there exists a sequence,}, of distinct elements oA such that i)
converges to an elememtsay ofSa. Givena € A, we have

Mqom,,, = (0) for all n such thair # an
and therefore M,m = (0) (@ € A)

Let  J= (M)

aeA

Since M,, is a two-sided ideal, Nl,)r is a closed two-sided ideal
and soJ is a closed two-sided ideal and is non-zero sinte J. By
Theoren 811, contains a minimal closed two-sided idéd}, say. But
Mg = (0), contradicting the semi-simplicity &.



116 A class of abstract semi-algebras

Theorem 8.8.Let A be a semi-simple locally compact semi-algebra and
let its minimal closed two-sided ideals be denotedMby Mo, ..., My.

Let .# be the set of all minimal idempotent iy and let.% = .# N
Mc(k=12,...,n). Then

i) the sets¥# are disjoint and their union ig,

i) For eachk, .#(Ais a two-sided ideal,

A = AY = AA,

143 i) My = d(AA).

Proof. Givene € .7, eithereAn My = eAor eAn My = (0). In the first
casee € My, e € 4. In the second case, since

eAM c eANn My,

n
we haveeAM; = (0),e € (My),. Thus ifee .7 bute ¢ | J %, then
k=1

eec ﬂ(Mk)I =J
k=1

Sinceld is a non-zero closed two-sided ideal, it contains one of th,e m
imal closed two-sidedM; say. But this lead td\/lj2 = (0), which is
impossible ag\ is semi-simple. Thus

JzOJk.

k=1

The disjointness of the? follows from the fact thativ; N My = (0) (j #
K). m|

Givene € .4, anda € A, we haveae = fbwith f € .# andb € A.
If ae = 0, we can takef = e € #. Sinceae € My, we havefb € My,
and so ifae # 0,
fAN Mg # (0).
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But this givesfANn My = fA, and sof € M. This proves that
A is a two-sided ideal, and it is plainly the smallest two-didideal
containing.%. Similarly A% and _#.A.# are both this smallest two-
sides ideal, and sai} holds.

Finally, each.% is non-empty, foiMy being a non-zero closed rightL44
ideal contains a minimal idempotent. Therefale#A) is non-zero
closed two-sided ideal containirigy; and the minimal property ol
gives (iii).

Theorem 8.9.Let e be a minimal idempotent in a semi-simple locally
compact semi-algebrA. TheneAis a minimal right ideal and\eis a
minimal left ideal.

Remark. Of course, we know thagAandAe are minimal closed right
and left ideals. But, a priori, they might contain smallensaosed
ideals.

Proof. With the notation of Theorein 8.8, .#, for somek. LetJ be a
non-zero right ideal contained @A and choosel € Jwithu=0. O

If # c (u), thenM c (u); by Theoreni8I8, and aoe (My),. But
sinceu € eAc My, this implies that

My N (M) # (0),

and thereford\/llf = (0), which impossible. Therefore there exifte
S with uf # 0. Sincef Ais a minimal closed right ideal, it follows that

(WrnfA=(0)

Therefore, by LemmB 8. 1yfA is a closed right ideal. It is non-zero
since it containsif2 = uf, and is containing ieAsinceu € eA There- 145
fore

eA=ufAc
J=eA
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Lemma 8.3. Let e be a minimal idempotent in a strict locally compact
semi-algebra A. Then
eAe= R'e.

Proof. This is an immediate consequence of Theokerh 8.3 amd 8

Lemma 8.4. Let A be a semi-simple strict, locally compact semi-
algebra, and let ef be minimal idempotent for which fAe(0). Then
there exists an elemeatof eAf such that

eAf=R'w,
and eitherw? = w or w? = 0.

Proof. Choose a non-zero elemenbf fAg sayv = fae sinceve =
v # 0, we havee ¢ (v);. Using Lemma 1 and the fact thaiAis a
minimal closed ideal, we deduce thagAis closed right ideal. Since it
containsv and is contained if A, we have

veA= fA
veAf= fAf.

Thus there exista € eAf for whichvu = f. Givenx € A, Lemmd38.B,
gives
exfv=exfae= Ae

146 for someAd € R*. Therefore
exf=exfvu= leu= Au

If U2 =0, wew = u. If U2 £ 0, thenu? = qu with @ > 0, and we take
1

w==u. i
(07

Lemma 8.5. Let e f be minimal idempotents in a semi-simple locally

compact semi-algebra A. Then fAg0) if and only if e and f belong

to the same closed two-sided ideal.
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Proof. Suppose that € M; andf € M;j with M; andM; minimal closed
two-sides ideals. Then

fAC |V|j
and so, if M # Mj,
fAec |V|j|\/|i = (0)
On the other hand, supposée = (0). Thenf € (Ae) since @Ag) is
closed two-sided ideal and its intersection wil containsf, it follows

that
|V|j C (Ae)|

ThereforeMje = (0), and see ¢ M;. |

Theorem 8.10.Let A be a semi-simple, strict, locally compact semi-
simple, and leMy and.#; be defined as in Theorelm 8.8. For each pair
e, f of minimal idempotent belonging td, there exists an elemet s

of eAfsuch thaeAf = R*we  and eithercuéf = We f ora)éf =0. Also 147

J= ) Riwes

e fe. %

is a two-sided ideal contained My, and My = clJ. Finally, for all
idempotents, f, g, hin %,

we fWgh = Awep, for somed € RY.

Proof. Lete, f be idempotent belonging t&#. By Lemmd®&.b,fAe #
0, and so Lemm@a8.4, there exisist in eAf such that

eAf = R+wef,

andwéf = wef, Orwes = 0. ThatJ is a two-sided ideal the closures of
which is My, now follows from Theorerfi 818. Finally

we fwgh = eafghke eAh= R wen
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We now consider the question: when does a semi-algebraigonta
exactly one minimal closed two-sided ideal?

Definition 8.9. We say that a semi-algeb#ais primeif 1J # (0) when-
everl andJ are closed non-zero two-sided ideals.

A prime semi-algebra is obviously semi-simple. It is alseaclthat
in a prime semi-algebra, if is a non-zero left ideal, thed = (0), and
if Jis a non-zero right ideal, thel = (0).

Theorem 8.11.Let A be a locally compact semi-algebra.Afis prime,
thenA has exactly one minimal closed two-sided ideal. Conver#efy
is semi-simple and has exactly one minimal closed two-sideal, then
Ais prime.

Proof. Minimal closed two-sided ideals annihilate each other,thece-
fore if Ais prime there is exactly one such ideal. o

Suppose on the other hand tieis semi-simple and has exactly one
minimal closed two-sided ideal, and ldt J be closed two-sided ideals
with HJ = (0). Then { n J)? = (0) and so, by semi-simplicity ok,

HnJ=(0)

Then eitherH = (0) or J = (0), for otherwise by Theorein 8.1, they
contain minimal closed two-sided ideals which are distisiote they
have zero intersection.

Our next theorem is concerned with an abstract charactierizaf
the semi-algebra of ali x n matrices with non-negative real entries.

Definition 8.10.We say that a semi-algeb#ais simpleif it has no two-
sided ideals other than (0) aid

Theorem 8.12.A simple, strict, locally compact semi-algebra with a
unit element is isomorphic to the semi-algeia(R*) of all n x n ma-
trices with non-negative real entries wheardés some positive integer.
Conversely, for each positive integerthe semi-algebr,(R*) is sim-
ple, strict, locally compact and has a unit element.
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Proof. SinceA has a unit element)? # (0). ButA is the only non-zero
two-sided ideal, and therefor® is semi-simple and indeed prime. Let
.# denote the class of all minimal idempotents, and let 1 be thie u
element. ThenZ Ais a non-zero, two-sided ideal iy and so

A=A
]

In particular there exise, ep,...,6, € . andag,ap,...,a, € A
such that

l=ega +eay+--+enan, (1)

and we may suppose that the expresdidn (1) has been choseirsst
as small as possible. Frofd (1), we obtain

€] = e131€1 + €28€] + + -+ + Enaner (2

By LemmaB.Bgeiase; = Ae; with 1 € R, We havel > 1; forif 1 < 1,
then [2) gives
(1-2)eL = ex@€; + - - - + enaner,

and we could rewritd{1) in the form,
1=eby+---+enbn,

contradicting our hypothesis thatwas as small as possible. Thereforeso
A > 1; and rewriting[[R) in the form

(A-1)ey + eazer +--- + enaner = 0
and using the strictness 8f we obtain
A=1ejae, =0(j # 1).

By applying a similar argument with in place ofe;, we obtain the
formula

eae =6, gaeg=0 (i#]) (3
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We takeu; = g (i = 1,2,...,n). Then[B) gives

1,....n), UinIO (E)X (4)
and we also have

l1=ur+---+Uy

(5)
Sinceu;A = g Aeachy; is a minimal idempotent. And for eachj, uiAu;
is non-zero and is of the form

UiAUj = R+Qj

for some elemers;; of ujAu;. We choose the elemerds in such a way
that

€ = Ui (i:1,2,...,n)

(6)
€j€jk = €Kk @,j,k=1,...,n), (7)
gjen =0 (j#K) (8)
151

In the first place we havgAy, = R*u;, and so we can take;

U (i=12...,n). Next, forj = 2,...,nwe takeg; to be an arbitrary
non-zero element af;Au;. Then we have

wAy =Re; (j=1...,n).

Sinceg;j # (0), (Aw) = (0), we have

&jujAu = ejAy # (0),

and so e1jUj Al = LAl = R ey

(ik=1,....n).

Therefore, forj = 2,...,nandk = 1,...,n, we can seleatj such
that

€1j€jk = €1k
Sinceey; = ug, this holds also folj = 1 i.e.

ejek=ex  (L,k=1,...,n 9)
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We have now choseey for all j, k with u; Au; = R* e, and with
@) and [®) holding. To provél7), we note that

6j€ejk € UAL
and so gjejk = A6k with 1> 0.
multiplying by ey;, we obtain by[(P), 152

€1k = €1j€k = €1i6j€k = €16k = A€k

Therefored = 1 and [¥) is proved. FinalI8) is obvious sinegy =
0(#K.
Givenx € A, we have

x=1x1 zn: Ui XUj
o
Zfljaj,
J:

1

with &; > 0. Similarly, fory € A,

n
y= Znijaj
N
and Xy = i{zguml} €.

i,l=1

It is now easily seen that the mapping— (¢jj) gives an isomor-
phism between the semi-algebkand M,(R*).

Conversely, with a given positive integerlet A = M,(R"). Ais a
closed semi-algebra in the Banach algelgta= M (R) of all n x nreal
matrices (with an arbitrary Banach algebra norm), and iallpcom-
pact sinceB has finite dimension. Tha is strict and has unit element
is obvious.

Let u"s be the matrix withi j) the elemenui 6[615, where 153
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. |Yif a=p
s=1
Oif a#pB

The matrixu" belongs toA, and ifa = (aj;) is an arbitrary element
of A, we have

(U™ = > o 850,07

rm

= aslu” s

so that
m
uSad™ = agu'.

It follows that every non-zero two-sided ideal Afcontains all the
matricesu™, and so is the whole @k. ThusA is simple and the proof is
complete.

In the case wher\ is commutative our theorems on idempotents
take a particularly simple form. In the first place we can datee semi-
simple and prime commutative semi-algebras by annihitgbi@perties
of individual elements.

Lemma 8.6. Let A be a closed commutative semi-algebra. If A is semi-
simple, then

acAaz0=a+0 (n=23,..)

Conversely if
aeA &=0=a=0,

Then A is semi-simple.

Also, A is prime if and only if it has no divisors of zeilie. a,b €
A ab=0=>a=0,b=0.

Proof. Entirely straight-forward using Lemnia8.2. In fact we caovar
a stronger result than Lemral.6, that is analogous to akmellkn fact
about semi-simple commutative Banach algebras. m|
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Theorem 8.13.Let a bea non-zero element of a semi-simple commu-
tative locally compact semi-algebra. Then

lim Ja"[*'" > 0
Proof. Given a non-zero closed ided) let
Kj =inf {||a>q| xedn SA}.
mi
By the compactnes ofJ N Sa, this infimum is attained, and so
K;=0= Jn(a) # (0)

For somel, we haveK; > 0. For otherwise every non-zero closed ideal
J satisfies] N (a); # (0), and therefore

Mn (@) = M.

for every minimal closed idedl i.e.,aM = (0) for every suchM. Let 155
| = cl(aAh). Thenl is a non-zero closed ideal ahiyl = (Q). for every
minimal closed ideaM. Sincel contains a minimal closed ideal, this
would contradict the semi-simplicity &.

Let J be a closed ideal witK; > 0. Then

llaX| > Kslixl - (x € J),
and, sincex*1 e J,
la'x)| > Kylla™ x|  (xedn=1,2,..)
Therefore

a1l = K| (xe J),
and so lim|a"|I¥" > K; > 0.
Nn—o0
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Theorem 8.14.Let A be a semi-simple, commutative locally compact
semi-algebra. Then the sef of minimal idempotents oA is a fi-
nite non-empty sedy, ..., e,. Each ideabAis a closed division semi-
algebra with unit elemerdy, andece; = 0 (k # j). If also A is strict,
then

aA=Re (k=1,2,...,n)

Remark. The elementgy are simultaneous eignvectors &y
aa =& (aeA)

Proof. All ideals of A are two-sided, and so, by TheorEml & fas only
finitely many minimal closed ideald!,, . .., M, and we have

MiM; =(0) i#]
O

SinceM; is a minimal closed right ideal, it is of the formA with
g € Z. SincegA = ggA = gAq, (A being commutative)gA is a
closed division semi-algebra with unit element

Suppose now thatis a minimal idempotent. ThemAis a minimal
closed ideal, and seA = M; = eA for somei. Thene andeg are both
unit elements foM;, and sce = g.

Theorem 8.15.Let A be a semi-simple, strict, commutative, locally
compact semi-algebra, and kgt . . ., &, be the minimal idempotents of
A. Then, for each elemeatof A there exists non-negative real numbers
A1, ..., Aq such that

ag=41¢g (i=12...,n),
and maxdi : 1 <i<n}=p;,
where Pa = I(Iim 1a41¥%, and pa >0 (a#0)

Corollary. If also Ais prime then there exists exactly one minimal idem-
potent e and
ae=pe (acA).
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Proof. We have already proved in Theorédm 8.13 &0d18.14 everything
157 except that

Lete=e; +---&,. SinceAis strict, we have
n
@ ={)@)
i=1

n
Also N (&) is a closed ideal, and so if it were non-zero it would
i=1
contain one of the minimal idempoterds which is absurd. Therefore

(&) = (0).
Letae A,

K = inf{||xd] : X € Sa}, 4 = max(ly,..., Apn),
u=lell+...+lell

SinceK is attained andd), = (0), we haveK > 0, and so
Il < K~Yixel (x € A)
For every positive integet, we have

ake= ey + - + Aen,
and so lakell < A¥u.

Therefore
A < KK (k=1.2..)

On the other hand, for someve havel = 4;, 158
g = A,
and therefore &k > A%

Therefored = p,, and the proof is complete.
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We now consider some concrete semi-algebras. First some sem
algebras of matrices.

Letnbe a positive integeiM,(R) the Banach algebra of allx n real
matrices,Mp(R*) the semi-algebra of all matrices belonginghiy(R)
with all their entries non-negative. L¥t= R™ and letC be the positive
cone inR™ consisting of allx = (&,...,&) such that§ > 0 (i =
1,2,...,n). Letuy be the vector (0,...,1,0,...,0) with 1 in thisi®
place and 0 elsewhere.

Given a subse of (1,2,...,n), letC, be the set of all vectors

X:(fly---,fn) :€:1U1+"'+é‘:nun,

withg >0 =1,2,...,n),& =0( ¢ A). We call each such cor@,
abasic coneand callC a proper basis cond A is a hon-empty proper
subset of (12,...,n).
Each matrixa € Mp(R*) may be regarded as a linear operatoKin
159 that map<C into itself. Such a matrix is said to beducibleif there
exists a proper basic cofizwith

aCy c Cp.
In term of the entries;; in the matrixa, this is equivalent to
igA jeA ajj = 0,

for it is equivalent to
au; €C (jeA),

anday; is the vector ¢;j, zj, . . ., anj). For example, i = (1,2,...,r),
then @) is of the form
b c
o 4
whereb is anr x r matrix.
A matrix a e Mp(R") is said to be irreducible if it is not reducible.
Given a subseE of My(R"), let

N(E) = {x: xe C and Ex = (0)}.
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It follows that if a is an irreducible matrix and is a semi-algebra
with
ae Ac My(RY),
thenAis prime. 160
For, letl, J be non-zero two-sided ideals Afwith

1J =(0)
SinceJ c N(I), we haveN(l) # (0). Sincel # (0), we haveN(l) #
C. ThereforeN(l) is a proper basic cone. But sinta c |, we have
aN(I){N(I), so that this would imply that a is reducibl]e.

Theorem 8.16.Let ap be an irreducible matrix belonging td,(R"),
and letA(ap) denote the smallest closed semi-algebravig(R") that
containsag. Then there exists an idempotenof rank 1 inA(ap), such
that

ae = pak,
with p, = r!im l|a"||*/", for every elemend of Mp(R*) that is permutable
with ag.

Proof. Let A be a closed commutative semi-algebra with
ap € Ac Mp(RY).
m]

Then A is a strict, prime, commutative, locally compact semi-
algebra, and therefore there exists a unique minimal idéanpe, in
Aand

aen = pata (acA)
In particular
Q€A = Pag€A.
By a theorem of Function (Gantmacher, Theory of matrices$, 29, 161
Pa, IS @ simple eigenvalue of the irreducible mataix Therefore

X=(u+Y
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where (1) is the one-dimensional null-space a&f — pa,.1, andY is the
range of this matrix. By a straight-forward argument, ughngfact that
the restriction oBg — pa,.1 t0Y is nonsingular, we have

ealu=u,enY = (0)
In fact

(80 — pa,-1)ea =0
and so &0 — pay-1)eaX = (0)
eaX c (u)

Sinceep # 0, this giveseaX = (u), (u) being one dimensional. Also,
since

ea(@0 — pa,-1) = 0. and @0 — pa,-1)Y = Y,
we have eaY = ea(ag — pa,-1)Y = (0).

This proves thag, is the unique projection witBau = uandeaY =

(0).
Thereforeea is independent of the choice of the commutative semi-
algebraA containinga,, and so

€ea € A(ao)

Finally given any matribain M,(R") with aag = apa, there exists a
closed commutative semi-algebhan M,(R") that contains a ana.

S

1 . - , .
thene = an is a minimal idempotent if\(ap), A(ag) = R"ap.

Example.Forn = 2, if

a = (11 Q12
@21 @22
a12 = a1y, i.€., if and only if

) commutes withag if and only if @117 = a9 and

%
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Thenae = (a + B)e. (Note all sucha are inA(ap)).

Examples of semi-algebras of functions.

Let E denote a topological spacB(E) the Banach algebra of all
bounded continuous real functions Bnand letA be a locally compact
semi-algebra iB(E). At the beginning of this chapter we saw an exam-
ple of such a semi-algebrathat had infinite dimension. In this particu-
lar exampleE was not connected ardlwas a type 2 semi-ﬁllgebra. (Wae63

1+ f €A)

In both these respects our example was as simple as posSilib.
an example cannot ha¥econnected and cannot be of type 1. In fact we
can prove that the following propositions hold for any ldég@iompact
semi-algebraA in B(E).

say that a semi-algebwain B(E) is of typenif f e A=

a) If A contains a non-constant function, thEéms not connected.

b) If Ais of type 1, then each elementAfs constant on each connected
subset ofE, A contains a finite sety, ..., yn of characteristic func-
tions of subsets dE, and each elemeritof Ais a linear combination
of these characteristic functions with non-negativefitcients.

n
f :Zl”fi’ (i=12...,n).
i=1
It is obvious that any semi-algebraB{E) is semi-simple and com-
mutative. LetA contain a non-constant function. Sinkés semi-simple
it contains a minimal idempotent and is the characteristic function of
a set that is both open and closed. We hawe0, and so ify # 1, then
E is not connected.
Suppose thgt = 1 and thatt is connected. Then

A=Ay

is a division semi-algebra. If € A and f is not constant, ther has 164
an inverse iM, and so, for every, f(t) # 0. SinceE is connected, we
have eitherf (t) > 0, for allt or f(t) < O for allt. The second possibility
cannot occur sincd + 1y € A (1 > 0). Therefore all non-constant
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functions inA are contained iB*(E). SinceA contains a non-constant
function, it follows that in factA c B*(E), for if A contains a negative
constant function it also contains a non-constant fundfiam is not in
B*(E).

SinceA c B*(E), Ais strict, and so

A=Ay =Ry,

i.e., A contains only constant functions araj (s proved.
b) Suppos&\is of type 1. Givenf € A, anda > 0, let

E(f,a) = {x: f(X) > a},

and letyt , denote the characteristic functidrof E(f, ).

1
We prove thaj ¢, € A. Letg; = —f, and
a

2%
= n= 1, 2, e
gn+l l 4 g% ( )
Then nIim On(t) = xfo(t) (teE)

Since @) is a bounded sequence of elementédf has a uniformly
convergent subsequence, angs@ € A.

Let Eg be a subset dE, and f an element ofA that is not constant
on Eg, then we can choose poingst in Eg and a real number with

f() < a < f(t).

We havex > 0, and sincg i, € A, E(f, @) is both open and closed. But
t € E(f, @) ands ¢ E(f, @), and SOEq is not connected.
Let A denote the set of all characteristic functions that beldogs
A. Thena is a finite set, for if {,,) were an infinite sequence of distinct
elements oh, it would have a uniformly convergent subsequence which
is absurd, since
Ilp —xqll =1 (p # o)

We show that each element Afis a non- negative linear combination
of the elements of
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Give f € A, we haveyt, € A for everya > 0, and sof takes only a
finite set of diferent valuesy, ..., @, say with O< a; < -+ < ap, and
perhaps also the value 0. Let

h; = Xfa i=1...,n),

and consider the function

n
h=aih Z(ai —aj—)hy
=

If f(t) = ak, then 166
[0 >k
(= {1 (i <k
k
and so h(t) = a1+ ) (@i - ai1) = ax.
i=2

Also, if f(t) = 0, thenhj(t) = 0 (i = 1,2,...,), and soh(t) = 0.
Thusf = h, and we have proved (b)






Appendix The Schauder
theorem for locally convex
spaces

In Chapte B, | asked whether the Schauder fixed point in itgén- 167
erality (TheoreniLZ]2) is true for locally convex spaces, pouited out
that this question did not seem to be answered in the literat@m very
much indebted td®.V. Singbal who showed that this question could be
settled #irmatively by using a technique due to Nagumo. The result-
ing proof of the general Schauder fixed point theorem is in rew\the
simplest proof even for the special case of normed spaces.

Lemma. (Nagumo[[24]).Let A be a compact subset of a locally convex
l.t.s E, and V be a neighbourhood of 0 in E. Then there existsta fet
a,...,amof points of A and continuous mapping S of A into the convex
hull of &, ..., am such that

Sx—-xeV (xeA).
Proof. Let W be an open convex symmetric neighbourhood of 0 with

W c V. SinceAis compact, there exists a finite ggf. .., ay in A such
that

Ac U(a; +W). (1)
i-1
O

135
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Let Py denote the Minkowski functional &V. SinceW is open, 168
xeWe pw(X) <1 2
By (@) and [2), for eaclx € A, there exists somiewith
Pw(x—a) < L

Let S be the mapping oA into E defined by

m -1m
Sx= [Z qi(x)] Dd(a (xe A),
i=1 i=1
where gi(X) = maxl - pw(x - &), 0}.

For eachx in A, there is at least onewith gi(x) > 0. Since also
gi(X) = 0 for all i, it follows that S is defined and continuous oh
and that it map4A into the convex hull ofa,...,an. For anyi with
pw(@ — X) > 1, we havey(x) = 0, and therefore

pw(Sx—X) <1 (xe A),
ie., Sx-xeWcV(xeA).

The mappingS constructed in the above Lemma serves essentially
the purpose for which we used the metric projection in Chdte

Theorem. (Singbal).Let E be a locally convex Hausgpt.t.s., K anon
empty closed convex subset offEa continuous mapping of K into a
compact subset of K. Then T has a fixed point in K.

Proof. Let T mapK into A c K, with A compact. For each neighbour-
hoodV of 0, there exists a convex hifly of a finite subset oA and a
continuous mappingy of Ainto Ky such that

Syx—-XxeV (xeA). 1)
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SinceK is convex andA c K, we haveKy c K. Let Ty be the

mapping
Ty = SyoT

of Ky into itself. By the Brower fixed point theoreiiy, has a fixed point
Xy In Ky,
TuXv = Xv (2

Sincexy € Ky c K, we haveTl xy € A. Since A is compact, there exists
a point u ofA such that every neighbourhood wfcontains points«y
corresponding toarbitrarily small V, i.e. given neighbourhoods, H

of 0, there exists a neighbourho®dof 0 such that

)V cG,(i)xy eu+H 3)

Sinceu € K andT is continuous irK, given an arbitrary neighbour-170
hoodG of 0, there exists a neighbourhoétiof 0 such that

Xe(U+HNK=TxeTu+G, (4)
and by [B) there exists a neighbourhdéaf 0 such that
VcGxyeu+(HNG). (5)
Sincexy € Ky c K, it follows from @) that we then have, for suth
Txy € Tu+G. (6)
SinceTK c A, @) gives
SyTx-TxeV (xeK),
and, in particular,
Xy —ITxy=Tyxy - Txy=SyTxw-TxyeVcG @)
Since
U—Tu=(u-xv)+(xv—-Tx)+ (Tx —Tu),
@), (8) and[¥) give
u-Tue-G+G+G.
SinceG is an arbitrary neighbourhood of 0, it follows thatTu = 0.
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