
Lectures on Some Aspects of
p-Adic Analysis

By

F. Bruhat

Notes by

Sunder Lal

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay-5

Tata Institute of Fundamental Research
Bombay

1963





Introduction

These lectures are divided in three parts, almost independent part I is
devoted to the more less classical theory of valuated fields (Hensel’s
lemma, extension of a valuation, locally compact fields, etc.,)

In the second part, we give some recent results about representations
of classical groups over a locally compact valuated field. Wefirst recall
some facts about induced representations of locally compact groups and
representations of semi-simple real Lie groups (in connexion with the
theory of “spherical functions”). Afterwards, we construct a class of
maximal compact subgroupsK for any type of classical groupG over a
p-acid field and the study of the left coset and double coset modulo K
decomposition ofG allows us to prove the first results about spherical
functions onG. Some open problems are indicated.

Part III is devoted to Dwork’s proof of the rationality of the zeta
function of an algebraic variety over a finite field. We first need some
results (well known, but nowhere published) about analyticand mero-
morphic functions on an algebraically closed complete valuated field.
Then we settle the elementary facts about the zeta function of a scheme
(in the sense of Grothendieck) of finite type overZ and we give, follow-
ing Dwork, the proof of the rationality of these zeta functions
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Part I

Classical Theory of Valuated
Fields
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Chapter 1

Theory of Valuations-I

In this and the next chapter we give a short account of the classical 1

theory of valuated fields. Unless otherwise stated by a ring we mean a
commutative ring with the unit element 1 and without zero divisors.

1

Definition. Let A be a ring andΓ a totally ordered comutative group [1].
A valuationv of the ringA is a mapping fromA∗ (the set of non-zero
elements ofA) into Γ such that

(I) v(xy) = v(x) + v(y) for everyx, y in A∗.

(II) v(x+ y) ≥ inf(v(x), v(y)) for everyx, y in A∗.

We extendv to A by settingv(0) = ∞; where∞ is an abstract element
added to the groupΓ satisfying the equation

∞ +∞ = α +∞ = ∞ + α = ∞ for α in Γ.

We assume thatα < ∞ for everyα in Γ. The valuationv is said to be
improper ifv(x) = 0 for all x in A∗, otherwisev is said to be proper.

The following are immediate consequences of our definition.

(a) v(1) = 0. For,v(x.1) = v(x) = v(x) + v(1), thereforev(1) = 0

3



4 1. Theory of Valuations-I

(b) If for x in A, x−1 is also inA, we havev(x−1) = −v(x), because 2

v(1) = v(xx−1) = v(x) + v(x−1) = 0

(c) If x is a root of unity, thenv(x) = 0. In particularv(−1) = 0, which
implies thatv(−x) = v(x)

(d) Porn in Z (the ring of integers)

v(n) = v(1+ − − − + 1) ≥ inf(v(1)) = 0.

(e) If for x, y in A v(x) , v(y), thenv(x + y) = inf(v(x), v(y)). Let us
assume thatv(x) > v(y) andv(x+ y) > v(y). Thenv(y) = v(x + y−
x) ≥≥ inf(v(x+ y), v(−x)) > v(y), which is impossible.

If xi belongs toA for i = n, 1, 2, . . . , n, then one can prove by in-

duction onn that v(
n∑

i=1
xi) ≥ inf

1≤i≤n
(v(xi)) and that the equality holds if

there exists only onej such thatv(x j) = inf
1≤i≤n

(v(xi)). In particular if
n∑

i=1
xi = 0 (n ≥ 2) thenv(xi) = v(x j) = inf

1≤k≤n
(v(xk)) for at least one pair

of unequal indicesi and j. For, letxi be such thatv(xi) ≤ v(xl) for i , l.
Thenv(xi) ≥ inf

1≤k≤n k,i
(v(xk)) = v(x j ), which proves thatv(xi) = v(x j ).

Obviously we have

Proposition 1. Let A be a ring with a valuation v. Then there exists one
and only one valuation w of the quotient field K of A which extends v.

It is seen immediately that w

(
x
y

)
= v(x) − v(y) for x, y in A.

So without loss of generality we can confine ourselves to a field. The3

image ofK∗ (the set of non-zero elements of fieldK) by v is a subgroup
of Γ which we shall denote byΓv

Proposition 2. Let K be a field with a valuation v. Then

(a) The setO = {x|x ∈ K, v(x) ≥ 0} is a subring of K, which we shall
call the ring of integers of K with respect to the valuation v.

(b) The setY = {x|x ∈ K, v(x) > 0} is an ideal inO called the ideal of
valuation v.
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(c) O∗ = O − Y = {x|x ∈ K, v(x) = 0} is the set of inversible elements
of O

(d) O is a local ring (not necessarily Noetherian) andY is the unique
maximal ideal ofO.

We omit the proof of this simple proposition. The field k= O/Y is
called the residual field of the valuation v.

It is obvious form the proposition 2 that the valuationv of K which
is a homomorphism formK∗ to Γ can be split up as follows

K∗
v1
−→ K∗/O∗

v2
−→ Γv

v3
−→ Γ.

wherev1 is the canonical homomorphism,v2 the map carrying an ele-
mentxO∗ to v(x) and (v3) the inclusion map ofΓv into Γ.

Definition. Two valuationsv andv′ of a fieldK are said to be equivalent
if there exists an order preserving isomorphismσ of Γv onto Γ′V such
that

v′ = σ ◦ v.

From the splitting of the homomorphismv it is obvious that a valua- 4

tion of a fieldK is completely characterised upto an equivalence by any
one ofO, or Y .

A valuation of a fieldK is said to bereal if Γv is contained inR
(the field fo real numbers). Since any subgroup ofR is either discrete
i.e., isomorphic to a subgroup of integers or dense inR, eitherΓv is con-
tained inZ or Γv is dense inR. In the former case we say thatv is
a discrete valuation and in the latter non-discrete. Moreover v is com-
pletely determined upto a real constant factor, because ifv andv′ are two
non-discrete equivalent valuations ofK, the isomorphism ofΓv ontoΓ′v
can be extended toR by continuity, which is nothing but multiplication
by a element ofR. If v andv′ are discrete and equivalent, the assertion
is trivial. If Γv = zwe callv a normed discrete valuation.

Definition. Let K be a field with a normed discrete valuationv. In K
we can find an elementπ with v(π) = 1. The elementπ is called a
uniformising parameter for the valuationv.
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Let K be a field with a normed discrete valuationv andO , (0)
an ideal inO. Let α = inf

x∈O
(v(x)). Such anα exists becausev(x) > 0

for every x in O. Moreover there exists an elementx0 in O such that
v(x◦) = α, because the valuation is discrete. ThenO = Ox0 = Oπα For,5

x belongs toO ⇐⇒ v(x) ≥ v(x0) ⇐⇒ v(
x
x0

) ≥ 0 ⇐⇒ x/x0 belongs

to O ⇐⇒ x belongs toOx0. Sincev(
xo

πα
) = v(x0) − αv(π) = 0, we get

that x0 is in Oπα, converselyπα belongs toOx0 is obvious. Therefore
O = Oπα. In particularY = Oπ. In general letv be any valuation
of a field K. Let O be any ideal ofO andHO = {α|α ∈ Γϑ, such that
there existsx in O with v(x) = α}. Then the mapO → HO is a 1− 1
correspondence between the set of idealsO in O and the subsetsHO of
Γv having the property that ifα belongs toHO andβ belonging toΓv is
such thatβ ≥ α, thenβ belongs toHO . In particular ifΓv is contained in
R, then the ideals ofO are of one of the two kinds

(i) I ′α = {x|x ∈ O , v(x) ≥ α}

(ii) Iα = {x|x ∈ O , v(x) > α}

for anyα > 0.

Examples.(1) Let Q be the field of rational numbers. For anym in
Q we havem = ±pα1

1 · · · p
αr
r uniquely, whereα1, . . . , αr are inZ and

p1, . . . , pr are distinct primes. Ifv is any valuation ofQ, we havev(m) =
r∑

j=1
α jv(p j). Therefore it is sufficient to define a valuation for primes in

Z. We note that for a valuationv there exists atmost onep for which
v(p) > 0. If possible let us suppose that there exist two primesp1 and
p2 such thatv(pi) > 0 for i = 1, 2.

Since (p1, p2) = 1, there exist two integersa andb such thatap1 +6

bp2 = 1. This implies that 0= v(1) ≥ inf(v(ap1)), v(bp2)) > 0, which
is impossible. Thus our assertion is proved, If there does not exist any
prime p for which v(p) > 0, thenv is improper.

For a primep we definevp(p) = 1 andvp(m) = α, whereα is the
highest power ofp dividing m. It is easy to verify that this is a valuation
of Q and any valuation ofQ for which v(p) > 0 is equivalent to this
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valuation. It is a discrete normed valuation ofQ. One can takep as a
uniformising parameter and prove that the residual field is isomorphic
to Z/(p)

(2) Let K be any field,K((x)) the field of formal power series over

K. For any elementf (x) =
∞∑

r=m
ar xr of K((x)) we definev( f (x)) = t,

if at is the first non-zero coefficient in f (x). One an easily verify that
v is a normed discrete valuation ofK((x)). The ring of integers of the
valuation is the ring of formal power series with non-negative exponents
and the ideal is the set of those elements in the ring of integers for which
the constant term is zero. One can takex as a uniformising parameter.

2 Valuation Rings and Places

This section is added for the sake of completeness. The results men-
tioned here will not be used in the sequel.

Remark. Let K be a field with a valuationv and ring of integersO. 7

Then for anyx in K, eitherx belongs toO or x−1 belongs toO.

Motivated by this we define
A subringA of a field K is called avaluation ring of K if for any

x in K eitherx belongs toA or x−1 belongs toA. In general a ringA is
said to be a valuation ring if it is a valuation ring for its quotient field.

Proposition 3. A ring A is a valuation ring if and only if the set of
principle of A is totally ordered by inclusion.

Proof. Let A be a valuation ring. LetAxandAybe two proper principle

ideals ofA. Considerz =
x
y

belonging toK the quotient field ofA.

SinceA is a valuation ring, eitherz or z−1 belongsA. But this implies
that eitherAx ⊂ Ay or Ay ⊃ Ax. Therefore the set of principal ideals

is totally ordered conversely letx =
y
z
, wherey andz belong toA and

x , 0, be an element ofK which is not inA. x < A implies thaty does
not belong toAz. But the set of principle ideals ofA is totally ordered,
therefore we getAz⊂ Ay implying z= ay for some a inA. But a = x−1,
thereforeA is a valuation ring. �
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Corollary. A valuation ring is a local ring.
If possible letM1 ,M2 be two maximal ideals in a valuation ring

A.M1 ,M2 implies that there exists x1 ∈ M1, x1 <M2 and x2 ∈ M2,
x2 <M1.

x1 < M2 =⇒ Ax1 is not contained inM2 which implies that Ax18

is not contained in Ax1. Similarly x2 not belonging toM1 implies that
Ax1. But this is impossible, thereforeM1 =M2.

Proposition 4. A ring A is a valuation ring if and only if A is the ring
of a valuation of its quotient field K determined upto an equivalence.

Proof. LetM be the unique maximal ideal of the valuation ringA and
A∗ = A/M. For x, y in K∗ we definex ≥ y if and only if x belongs
to Ay. It is easy to verify that this relation among the elements ofK∗

induces a total order in the groupK∗/A∗ and the canonical homomor-
phismK∗ onto K∗/A∗ is a valuation ofK for which the ring of integers
is A. The ring of integers of a valuation is a valuation ring has already
been proved. �

Let k be a fields. Byk∪∞ we mean the set of elements ofk together
with an element∞. We extend the laws ofk to (not everywhere defined)
laws ink∪∞ in this way

(i) ∞ + a = a+∞ = ∞ for a in k∗

(ii) ∞ × a = a×∞ = ∞ ×∞ = ∞, for a ink∗

0×∞ and∞ +∞ are not defined.

Let K be a field with a valuationv and letk = O/Y be the residual
fields ofv. Then the canonical homomorphismρ of O ontok extended
to K by settingρ(x) = ∞ for x not in O gives rise to a map ofK onto
k∪∞ called a place ofK.

In general, we define9

A place of a fieldK is a mappingρ form K to k∪∞ such that

(i) ρ(a+ b) = ρ(a) + ρ(b)

(ii) ρ(ab) = ρ(a)ρ(b)
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for a, b in K and whenever the right hand side is meaningful.
It is easy to prove thatO = ρ−1(K) is a valuation ring with the

maximal idealY = ρ−1(0).
Thus there exists a 1−1 correspondence between the set of valuation

rings and the set of inequivalent places of a field (Two placesρ1 andρ2

of a field K carryingK into k ∪ ∞ andk′ ∪ ∞) respectively are said to
be equivalent if there exists an isomorphismσ of k onto k′ such that
ρ2 = σ ◦ ρ1, with σ(∞) = ∞.

3 Topology Associated with a Valuation

Let K be a field with a valuationv. For anyα ≥ 0 in Γv consider the
ideal

Iα = {x|x ∈ K, v(x) > α}

Then there exists one and only topology onK for which

(1) Iα for differentα in Γv form a fundamental system fo neighbour-
hoods of 0.

(2) K is a topological group for addition.

We see immediately that the operation of multiplication inK is con-
tinuous in topology. Iα for anyα ≥ 0 in Γv is an open subgroup and
hence a closed subgroup ofK. Thus the residual fieldk is discrete for 10

the quotient topology. The topology ofK is discrete if and only if the
valuationv is improper ( ifΓv = {o}). In particularK with a discrete and
proper valuation is not discrete as a topological space. Thetopology of
K is always Hausdorff, because ifx , 0, thenx does note belong toIα
with α = v(x), therefore

⋃
α∈Γv

Iαα > 0 = (0) which proves our assertion.

Remark 1. If v is not improper, then the idealsI ′α for α ≥ o in Γv also
constitute a fundamental system of neighbourhoods of 0 for the topology
of K. For, I ′α and forα > o Iα containsI ′2α.

Remark 2. Let A be a ring a with a decreasing filtration by ideals i.e.
there exists a sequence (An)n≥0 of ideals such thatAn ⊃ An+1 and
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AnAm ⊂ Am+n. Then there exists one and only one topology for which
A is an additive topological group and (An)n≥o constitute a fundamental
system of neighbourhoods of 0.A is a topological ring this topology.

LetM be any ideals of a ringA. ThenA can be made into a topo-
logical ring by takingAn = M

n. We call the topology defined byM
on A theM− adic topology. In particular the ring of integers of a
field K which a real valuationv has theM− adic topology for every
M = {x/v(x) ≥ α > 0} We shall speak of this topology ofK as the
M−adic topology.

If the valuationv is discrete and normed. We can takeα = 1 and11

M = Y .

Remark 3. If K is a field with a real valuationv, then theY −adic
topology completely characterises the valuation upto a constant factor,
becausex belongs toY if and only if xn tends to zero asn tends to
infinity.

4 Approximation Theorem

For the sake of simplicity we confine ourselves in this section to real val-
uations though analogous results could be prove for any valuation. In
this section we deal with the question whether there exists any connec-
tion between various inequivalent valuations of a field. We first prove:-

Lemma 1.Let K be a field with two valuationsv1 andv2. Thenv1 and
v2 are inequivalent if an only ifO1, the ring of integers ofv1, is not
contained inO2, the ring of integers ofv2.

Proof. If O1 ⊂ O2, thenK − O1 containsK − O2 implying Y2 ⊂ Y1 ⊂

O1 ⊂ O2. ThereforeY2 is a prime ideal inO1. AssumeY2 , Y1, then
there existsx in Y1 which does not belong toY2. SinceY2 is an ideal in
O1, there existsα > 0 in Γv1 such thatY2 containsIα. Let v1(x) = β. �

Then for large enoughq we have

v1(xq) = qv1(x) = qβ > α,
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which means thatxq belongs toY2, but Y2is a prime ideal, thereforex
belongs toY2. Hence our assumption is wrong.

ThereforeY2 = Y1 andv1 is equivalent tov2. The converse is obvi-12

ous.

Lemma 2.Let K be a field withv1, . . . , vn(n ≥ 2) proper valuations such
thatvi is inequivalent tov j for i , j. Then there exists an elementz in K
such thatv1(z) > 0, v2(z) < 0 andvi(z) , 0 for i = 1, 2, . . . , n.

Proof. We shall prove the results by induction onn. Whenn = 2, v1 in-
equivalent tov2implies thatO1 is not contained inO2 (lemma 1). There-
fore there existsx in O1 and not inO2. MoreoverO2 not contained in
O1 implies thatY1 is not contained inY2. �

Therefore there existsy in Y1 and not inY2. Thenz = xy is the
required element.

Whenn > 2. By induction there exists an elementx in K such that
v1(x) > 0, v2(x) < 0 andvi(x) , 0 for i = 1, 2, . . . , n−1. If vn(x) , 0, we
have nothing to prove. Ifvn(x) = 0, we take an elementy with vn(y) , 0.
Let z = yxs, s a positive integer. Then for sufficiently larges, z fulfills
the requirements of the lemma.

Theorem 1. Let K be a field with v1, . . . , vr proper valuations such that
vi is inequivalent to vj for i , j. Let Ki be the field K with the topology

defined by vi andρ the canonical map from K→
r∏

i=1
Ki = P i.e. ρ(a) =

(a, a, . . . , a). Thenρ(K) = D is dense in P.

Equivalently stated ifa1, . . . , ar are anyr elements inK, then for
everyα1, . . . , αr in R there exists an elementx in K such that 13

v(x− ai) > αi for i = 1, 2, . . . , r.

Proof. The theorem is trivial forr = 1. Let us assume that it is true in
case the number of valuations is less thenr. �

By lemma 2 there exists an elementsx in K such thatv1(x) >

0, vr (x) < 0 andvi(x) , 0 for 1 ≤ i ≤ r, thenyn =
xn

1+ xn tends to
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0 in K1, to 1 in Kr and to 0 or 1 in others asn tends to infinity. Let
the notation be so chosen thatρ(yn) → (0, 0, . . . , 0, 1, . . . , 1) asn tends
to infinity, 0 occurring ins places where 1≤ s ≤ r − 1. Now D is a
subspace ofP overK, therefore

lt
n→∞

xρ(yn) = lt
n→∞

ρ(xyn) = (0, . . . 0, x, . . . , x)

and (0, 0, . . . , 0, x, x, . . . , x) is in D̄. Consider the product
r∏

i=s+1
Ki , by

induction assumption the diagonal of
r∏

i=s+1
Ki which is imbedded in̄D is

dense in the product which implies that (0, . . . , 0, as+1, . . . , ar ) belongs
to D̄ for ai in K, s+ 1 ≤ i ≤ r. Similarly (a1,a2, . . . , as, 0, . . . , 0) belongs
to D̄. But D̄ is a vector space overK, therefore (a1, a2, . . . , ar ) is in D̄.

Hence
r∏

i=1
Ki = D̄.

Corollary. Under the assumptions of the theorem forα j ∈ Γvj ( j =
1, 2, . . . , r) there exists x in K such that vj(x) = α j .

Forα j in Γvj , there existsa j ∈ K such thatv(a j) = α j . By approxi-14

mation theorem there exists an elementx in K such thatv(x− a j) > α j .
By definition we havev(x) = v(x − a j + a j) = inf v((x − a j), v(a j )) =
v(a j ) = α j .

5 Completion of a field with a valuation

Let K be a field with a valuationv. SinceK is a commutative topological
group for the topology defined byv, it is a uniform space. Let̂K denote
the completionK. The composition laws of addition and multiplication
can be extended by continuity tôK, for which K̂ is a topological ring.
In fact K̂ is a topological field, because ifΦ is a Cauchy filter onK
converging toa , 0, thenΦ−1(the image ofΦ by the mapx → x−1 in
K) is a Cauchy filter. ForΦ not converging to 0 implies that there exists
α ≥ 0 in Γv and a setA in Φ such thatv(x) < α for everyx in A. SinceΦ
is a Cauchy filter, for everyβ in Γv, there exists a setB in Φ contained
in A such that

v(x− y) > 2α + β for x, y in B.
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Then

v(x−1−y−1) = v(x−1y−1(y−x)) = −v(x)−v(y)+v(y−x) > −α−α+2α+β

which implies thatΦ−1 is a Cauchy filter converging toa−1 in K̂. The
valuationv can also be extended to be valuation ˆv of K̂, in fact it is a
continuous representation ofK∗ ontoΓv considered as a discrete topo-
logical group, sov can be extended as a continuous representation ˆv of
K̂∗ in Γ and we get ˆv(x + y) ≥ inf(v̂(x), v̂(y)) by continuity. Moreover 15

OK̂ (the ring of integers of̂K) = ÔK = ŌK , sinceOK̂ is open inK̂ andK
is hence inK̂,OK̂ ∩ K = OK is dense inOK̂ , this implies thatOK̂ ⊃ ŌK.
But ŌK ⊃ OK̂ , therefore our result is proved. More generally

Îα =
{
x|v̂(x) > α, x ∈ K̂

}
= Īα =

{
x|v(x) > α, x ∈ K

}

In particularYK̂ = ȲK. We haveYK = OK ∩ YK̂, so we may identify
OK/YK with a subset ofOK̂/YK̂

, andOK/YK is dense inOK̂/YK̂
. But

OK̂/YK̂
is discrete, thereforeOK̂/YK̂

= OK/YK .

Remark. Let K be a field with a real valuationv, with v we associate a
map fromK to R. We defined for anyx in K the absolute value|x| =
a−v(x), where a is a real number> 1. The map|| satisfies the following
properties

(1) |x| = 0 if and only if x = 0

(2) |xy| = |x| |y|

(3) |x+ y| ≤ sup (|x|, |y|) ≤ |x| + |y|.

The absolute value of elements ofK, which defines the same topol-
ogy onK as the valuationv.

By Qp we shall always denote the completions of the fieldQ for
p-adic valuation and byZp the ring of integers inQp. For the absolute 16

value associated to thep-adic valuation. We takea = p so that|x|p =
p−vp(x)
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6 Infinite Series in a Complete Field

Let K be a complete field for a real valuationv. Since every Cauchy
sequence inK has a limit inK, the definition of convergence of infinite
series and Cauchy criterium can be given in the same way as in the case
of real numbers. However in this case we have the following.

Theorem 2. A family (ui)i∈I of an infinite number of elements of K is
summable if and only if ui tends to0 following the filter of the comple-
ments of finite subsets of I.

Proof. The condition is clearly necessary. Conversely for anyα in Γv

we can find a finite subsetJ of I such that fori not in J, v(ui ) > α,

then for i1, . . . , ir not in J we havev

(
r∑

j=1
∪i j

)
> α which is nothing but

Cauchy Criterium. Hence the family is summable. �

Corollary. Let
∞∑

n=0
un be infinite series of elements of K Then the follow-

ing conditions are equivalent.

(a)
∞∑

n=0
un is convergent.

(b)
∞∑

n=0
un is commutatively convergent.

(c) un tends to0 as n tends to infinity.

Application. Let K be a complete field for a normed discrete real val-17

uationv, π a uniformising parameter forK,R a fixed system of repre-
sentatives inO for the elements of the residual fieldK. Then the series
∞∑

q=m
rqπ

q, whererq belongs toR is convergent to an elementx in K and

conversely everyx in K can be represented in this form in one and only
one way. The series is convergent becausev(rqπ

q) ≥ q for q , 0 and
therefore tends to infinity asq tends to infinity. Conversely by multiply-
ing with a suitable power ofπ we can takex in O, then there exists a
uniquer0 ∈ R such thatx ≡ r0 (mod Y ).
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This implies that (x − r0)π−1 is in O. Therefore there exists unique
r1 in R such that

(x− x0)π−1 ≡ r1 (mod Y ).

or x ≡ r0 + r1π (mod Y
2).

Proceeding in this way we prove by induction that

x ≡ ro + r1π · · · + rmπ
m (mod Y

m+1)

Now it is obvious that the series
∞∑

r=0
rmπ

m, is convergent and thatx =

∞∑
q=0

rqπ
q. The uniqueness of the series is obvious from the construction.

In particular if,K = QP then anyx in Qp can be represented in the

form
∞∑

q=m
rqpq, whererq ∈ {0, 1, 2 . . . , p− 1}.

7 Locally Compact Fields

In this section we give certain equivalent conditions for valuated fields 18

to be locally compact. Later on we shall completely characterise the
locally compact valuated fields.

Theorem 3. Let K be a field with a proper valuation v. Then the fol-
lowing conditions are equivalent.

(a) K is locally compact.

(b) O is compact.

(c) K is complete, v is a discrete valuation and k is a finite field.

Proof. (a) =⇒ (b). Since (I ′α)α∈Γv form a fundamental system of closed
neighbourhoods for 0, there exists anα such thatI ′α is compact. Butm
I ′α = Oxo, if v(x0) = α, thereforeO = x−1

0 Iα is compact.
(b) =⇒ (a) is trivial, asO is a compact neighbourhood of 0.
(a) =⇒ (c)K is complete because it is a locally compact commuta-

tive group. For anyα > 0 in Γv O/Iα is compact becauseO is compact.
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But O/Iα is a discrete space, therefore it contains only a finite num-
ber of elements. In particulark = O/Y is finite field. For anyβ in
Γv, 0 < β < α, we haveIα ⊂ Iβ ⊂ O, thereforeIβ/Iα is a nontrivial ideal
of O/Iα and distinct elements give rise to distinct ideals. ButO/Iα is a
finite set, therefore there exist only a finite number ofβ with 0 < β < α,19

so we get that

(i) Γv has a smallest positive element

(ii) Γv is Archimedian.

ThusΓv is isomorphic toZ and the valuationv is discrete. (c) =⇒
(b). We shall prove that discreteness of the valuationv and finiteness
of k implies thatO is precompact, which together with the fact thatK
is complete implies thatO is compact. LetV be any neighbourhood of
0. Sincev is discrete, for somen > 0 V containsY n. We shall show
by induction onn thatO/Y n is finite for n > 0. The result is true for
n = 1; let us assume it to be true for allr < n. We haveO/Y n−1 ≃

O/Y n/Y n−1/Y n But O/Y n−1 is finite by induction hypothesis and
Y n−1/Y n is finite because it is isomorphic toO/Y , thereforeO/Y n

is finite. Hence there exist a finite number of elementsx1 − − − xr in O

such thatO ⊂
r⋃

i=1
(xi + Y n) ⊂

r⋃
i=1

(xi + V) and since this is true for every

neighbourhood of 0,O is precompact. �

8 Convergent Power Series

Let K be complete field with a real valuationv. Then the power series

f (x) =
∞∑

n=0
anxn with coefficients fromK is said to be convergent at a

point x of K if the series
∞∑

n=0
anxn is convergent. It has already been

proved that the series
∞∑

n=0
anxn converges if and only if20

v(anxn) = v(an) + nv(x) → ∞ as n→ ∞ (1)
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From (1) it is obvious that if taket = lim
n

inf
1
n

(v(an)), then the series

f converges for allx which v(x) > −t and does not converge for those
x for which v(x) < −t and for thosex for which v(x) = −t either the
series converges for allx or does not converge at all. The number−t
is called the order of convergence of the power seriesf and the set
{x|v(x) > −t} or {x|v(x) ≥ −t, if the series converges at a pointx with
v(x) = −t} is called the disc of convergence, which we shall denote by
D f . If we consider the absolute value associated tov then the radius of
convergence is

ρ = a−t =

{
lim
n→∞

sup(|a|n)1/n
}−1

and D f = {x| |x| < ρ} or {x| |x| ≤ ρ}

The mappingx→ f (x) from D f to K is continuous because it is a uni-

form limit of polynomials namely the partial sums of the series
∞∑

n=0
anxn

in the disc{x|v(x) ≥ −t1, for all t1 > t} or in the disc{x|v(x) ≥ −t}
if the series converges on the disc. The classical results about addi-
tion and multiplication,. . . of power series can be carried over to the
power series with coefficient in a complete valuated field. For instance

if f (x) =
∞∑

n=0
anxn andg(x) =

∞∑
n=0

bnxn are two power series withD f and

Dg as their discs of convergence respectively; then if for onex in D f , 21

ai xi belongs toDg for everyi, f (x) also belongs toDg and we have

g( f (x)) =
∞∑

r=0

cr xr , where

cr =

∞∑

q=0

bq

∑

i1+i2+···+iq=r

ai1ai2 . . .aiq,

all the series being convergent.

Remark 1. If k = O/Y is an infinite field, then

inf
i

(v(ai x
i)) = inf

v(y)=v(x)
(v( f (y))).
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For, v( f (x)) ≥ inf i(v(ai xi)). We get equality, if there does not exist
any two terms of the same valuation. In the exceptional case as the series

as the series
∞∑

n=0
anyn is convergent, we have

f (y) =
j◦∑

r=i◦
aryr+ terms of higher valuation, wherei◦ ≤ r ≤ j◦ < ∞.

and without loss of generality we can assume thatv(x) = 0 and

inf i v(ai xi) = 0. Now v( f (y)) > 0 if and only if
j◦∑

r=i◦
aryr belongs to

Y i.e., if and only if the polynomial
j◦∑

r=i◦
ār ȳr (the image ink) = 0. But

k has infinite number of elements and the above polynomial not being
identically zero has only a finite number of zeros, thereforethere exists
atleast oney for which v( f (y)) = 0 andv(x) = v(y). Thus in this case22

wheneverx is in D f and f (y) belongs toDg for all thosey for which
v(x) = v(y), we have

inf
i

v(ai x
i) = inf

v(y)=v(x)
v( f (y)).

Then f (g(x)) =
∞∑

r=0
cr xr with

cr =

∞∑

r=0

bq

∑

v1+−−+vq=r

av1 · · · avq.

Remark 2. Let A be a ring with a topology defined by a decreasing
filtration (An)n≥0 of ideals for whichA is Hausdorff and complete space.

Then the formal power series
∞∑

n=0
anxn converges atx in A if and only

if anxn → 0 asn tends to infinity and obviously the series converges
everywhere inA if and only if an tends to 0 asn tends to infinity.



Chapter 2

Theory of Valuations -II

1 Hensel’s Lemma

In this section we give a proof of Hensel’s lemma and deduce certain 23

corollaries which will be used quite often in the following.In this sec-
tion by a ring we mean a commutative ring with unity (It may have zero
divisors).

Definition. Let A be a ring. Two elementsx andy in A are said to be
strongly relatively prime if and only ifAx+ Ay = A i.e. if and only if
there exist two elementsu andv in A such thatux+ vy= 1.

In particular ifk[x] is the ring of polynomials over a filedk then any
two elements ink[x] are strongly relatively prime if and only if they are
coprime in the ordinary sense.

It is obvious that ifxandy are two strongly relatively prime elements
in a ringA, then for anyz in A xdividesy z implies thatx dividesz.

Lemma 1.Let P andP′ be two polynomials with coefficients in a ring
A such thatP is monic andP andP′ are strongly relatively prime. Let
us assume that degreeP = d(P) = s andd(P′) = s′. Then for every
polynomialQ in A[x] there exists one and only one pair of polynomials
U andV such that

Q = UP+ VP′ with d(V) < s

and for everyt > s′, d(Q) < t + s if and only if d(U) < t. 24

19
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Proof. The existence of one pairU andVsuch thatQ = UP + VP′ is
trivial. If d(V) > s, we write V = AP+ B whered(B) < s, which is
possible becauseP is a monic polynomial, so we get

q = (U + A).P+ BP′withd(B) < s. 2

Thus we can assume in the beginning itself thatd(V) < s. If possible
let there exists another pairU′ andV′ such that

Q = U′P+ V′P′, d(V′) < s.

Then
U′P+ V′P′ = UP+ VP′ implies that (U − U′)P = (V′ − V)P′.
But P andP′ are strongly relatively prime, thereforeP dividesV′ −

V. Sinced(V′ − V) < s,V′ − V = 0. This implies thatP(U − U′) = 0.
As P is monic we must haveU = U′. Let d(Q) < t + s. Thend(UP) =
d(Q − VP′). But d(V) < s andd(P′) = s′ < t, therefored(UP) < t + s,
which implies thatd(U) < t becauseP is a monic polynomial of degree
s. It is obvious thatd(V) < t (t > s′) implies thatd(Q) < t + s.

Definition. Let A be a ring, the intersection of all the maximal ideals is
called the radical ofA and shall be denoted byr(A).

It can be easily proved that any elementx of A belongs tor(A) if and
only if 1-xy is invertible for ally ∈ A.

Lemma 2.Let A be a ringO an ideal inA contained inr(A). Then25

two polynomialsP and P′ in A[x] ane of which (say P) is minic are
strongly relatively prime if and only if̄P andP̄′ (the images ofP andP′

in A/O[x]) are strongly relatively prime.

Proof. PandP′ are strongly relatively prime implies̄P andP̄′ are stron-
gly relatively prime is obvious. �

Suppose thatd(P′) = s′ and d(P) = s. Thend(P̄) = d(P) = s,
becauseP is monic. LetE = { f | f ∈ A[x], d( f ) < s+ t, for somet > s′}.
Then E is a module of finite type overA. Let Ē = E/OE, since P̄
and P̄′ are strongly relatively prime inA/O[x], Ē′ is generated by the
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polynomialsXuP̄ andXvP̄′ for 0 ≤ u ≤ s. For, by Lemma 1 for every
polynomialsQ̄ in Ē there exists one only one pair of polynomials̄U and
V̄ in A/O[X] such that

Q̄ = ŪP̄+ V̄′P̄′ d(V̄) < t + s.

But d(Q̄) < t + s, therefored(Ū) < t. Thus

Ū =
u∑

λ=0

āλXλ, 0 ≤ u ≤ t

V̄ =
v∑

µ=0

b̄µXµ, 0 ≤ v ≤ s

andQ̄ =
u∑
λ=0

āλ(XλP̄) +
v∑

µ=0
b̄µ(XµP̄′).

By a simple corollary of Nakayama’s lemma (For proof see Algebre
by N. Bourbaki chapter 8 section 6) which states that ifE is a module 26

of finite type over a ringA andq and ideal inr(A) then if (a1, . . . , an)
generateE moduleqE, they generateE also, we getXuP andXvP for
0 ≤ u ≤ t and 0≤ v ≤ sconstitute a set of generators forE. Therefore

1 =


u∑

r=0

ar X
r

 P+


v∑

k=0

bkXk

 P′

because 1 belongs toE. HenceP andP′ are strongly relatively prime in
A[X].

Let A be a ring with a decreasing filtration of ideals (On)n>0, defin-
ing a topology onA for which A is a complete Hausdorff space. If

f (X) =
∞∑

n=0
anXn is a power series overA converging everywhere inA

thenλn( f ) = sup
ai<On

(i)

(λn( f ) < ∞, becausean→ 0 asn→ ∞) is an increasing function of
n i.e., λn( f ) ≤ λn+1( f ) and f (x) is a polynomial if and only ifλn( f ) is
constant forn sufficiently large.

We shall denote bȳf the image off in A/O1[X].



22 2. Theory of Valuations -II

Hensel’s Lemma.Let A be a ring with a decreasing filtration of ideals
(On)n>0. Let A for this topology be a complete Hausdorff space. If

f (X) =
∞∑

n=0
anXn is an everywhere convergent power series overA and if

there exist two polynomialϕ andψ anA/O1[X] such that

(1) ϕ is monic of degrees

(2) ϕ andψ are strongly relatively prime

(3) f̄ = ϕψ

then there exists one and only pair (g, h) such that27

(a) g is a monic polynomial of degrees in A[X] and ḡ = ϕ.

(b) h is every where convergent power series overA andh̄ = ψ.

(c) f = gh

Moreoverλn(h) = λn( f )− s. If f is a polynomial thenh is a polyno-
mial andg andh are strongly relatively prime.

Proof. ExistenceWe construct two sequences of polynomials (gn) and
(hn) anA[X] by induction onn such that

(α) gn is monic of degree s, ḡn = ϕ and

gn + 1 ≡ gn (mod On+1) for n ≥ 0

(β) h̄n = ψ, hn+1 ≡ hn (mod On+1) and

d(hn) = λn+1( f ) − s

(γ) f ≡ gnhn (mod On+1), n ≥ 0

For n = 0, we takego =
s−1∑
r=0

arXr + Xs if

ϕ =

s−1∑

r=0

ār X
r + Xs andho =

t∑

u=0

buXu if
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ψ =

t∑

u=0

b̄uXu, with t = d(ψ) = d( f̄ ) − s= λ1( f ) − s.

Let us assume that we have constructed the polynomialsg1, g2 · · ·

gn−1 and h1, . . . , hn−1 satisfying the conditions (α), (β), and (γ). By
lemma (2)gn−1 andhn−1 are strongly relatively prime moduloOq for
every integerq ≥ 1, becausegn−1 andhn−1 are strongly relatively prime 28

in A/O1[X] = A/O
q

/
O1/Og

[X] andO1/Oq is contained inr(A/Oq), every

element ofO1/Og being nil potent. Therefore by lemma (1) there exist
polynomialsXn andYn in A(X) such that

f − gn−1hn−1 ≡ Yngn−1 + Xnhn−1 (mod On+1)

andd(Xn) < s. �

But by induction assumptionf − gn−1hn−1 ≡ 0 (modOn) there-
fore 0 ≡ Yngn−1 + Xnhn−1 (mod On). Thus from the uniqueness part
of lemma (1) we getXn ≡ 0 (modOn) andYn ≡ 0(On). We takegn =

gn−1+Xn andhn = hn−1+Yn obviously the polynomialsgn andhn satisfy
the conditions (α), (β) and (γ). Hence we get two sequences of polyno-
mials (gn) and (hn). The respective coefficients of (gn) and (hn) converge
asn tends to infinity because of the conditiongn+1 ≡ gn (mod On+1) and
hn+1 ≡ hn (mod On+1). Therefore lim

n→∞
gn = g is a monic polynomial

of degrees and lim
n→∞

hn = b is power series overA which converges ev-

erywhere inA, becauseh ≡ hn (mod On+1). We see immediately that
f = gh h̄ = ψ andḡ = ϕ. Moreoverλn(h) = d(hn) = λn( f ) − s, because
h ≡ hn (mod On+1) =⇒ λn+1(h) = λn+1(hn) = d(hn) ≤ λn+1( f ) − s but
f = gh implies thatλn+1( f ) ≤ s+λn+1(h), therefore we get our result. If29

f is a polynomial thenλn( f ) is constant forn sufficiently large implying
λn(h) is constant forn large, thereforeh is a polynomial. Sincegn and
hn are strongly relatively prime moduloOn+1, there exist by lemma (1)
polynomialsan andbn such that

1 ≡ angn + bnhn (mod On+1),

where d(bn) < s and d(an) < d(hn) = λn+1( f ) − s.
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Similarly we have polynomialsan+1 andbn+1 such that

1 ≡ an+1gn+1 + bn+1hn+1 (mod On+2)

where d(bn+1) < sandd(an+1) < d(hn+1) = λn+2( f ) − s.

Combining these two we get

(an+1 − an)gn + (bn+1 − bn)hn ≡ 0 (modOn+1)

Hence by uniqueness if lemma (1) we getan+1 ≡ an (mod On+1)
andbn+1 ≡ bn (mod On+1). Sinced(bn) < s for everyn, we get that
lim
n→∞

bn = b is a polynomial, moreover lim
n→∞

an = a is everywhere con-

vergent power series inA; a is a polynomial iff is a polynomial. Hence
we get 1≡ ag+ bh (mod On+1) for everyn ≥ 1, which implies thatg
andh are strongly relatively prime inA [[X]].

Uniqueness. If possible let us suppose that there exists another pair
(g′, h′) satisfying the requirements of the lemma. LetV = h − h′ and
U = g′ − g. Sinceḡ = ḡ′ = ϕ andh̄ = h̄′ = ψ, U is in O[X] andV is in
O1[[X]].

Let us assume thatU belongs toOn[X] andV belongs toOn[[X]] for30

all n < m,m> 1. We have

f = gh= g′h′ = (U + g)(V + h) = UV + Uh+ gV+ gh

which implies that−UV = Uh+ gV. But UV is in O2n−2[[X]] (2n− 2 >
n, asn > 1), therefore

Uh+ gV ≡ 0 (modOn)

Let ρn be the canonical homomorphism fromOnA[[X]] onto A/On

[[X]]. Obviously we have

ρn(U)ρn(h) + ρn(g)ρn(V) = 0, d(U) < s (1)

But ρn(h) andρn(g) are strongly relatively prime inAOn[[X]], be-
cause they are so inA/O1[[X]] and O1/On is contained inr(A/On),
therefore by uniqueness part of lemma (1) we get from (1)

ρn(U) = 0 andρn(V) = 0
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This means thatV = h − h′ ≡ 0 (modOn) andU = g − g′ ≡ 0
(mod On) for everyn. But ∩On = 0, becauseA is a Hausdorff space,
thereforeU = 0 andV = 0. Hence the uniqueness ofg andh is estab-
lished.

Corollary 1. Let K be a complete filed for a real valuation v. Let f(X) =
∞∑

n=0
anXn be an every-where convergent powerseries with coefficient from

O. Letϕ andψ be two polynomials inO/Y [X] = k[X] such that

(1) ϕ is monic of degree s. 31

(2) ϕ andψ are strongly relatively prime in k[X]

(3) f̄ (image of f in k[X])= ϕψ

Then there exists one and only one pair g and h such that

(1) g ∈ O[X], g is monic of degree s and̄g = ϕ

(2) h ∈ O[X], h converges everywhere inO andh̄ = ψ

(3) f = gh.

and the radius of convergence of h is the same as that of f . If f is
a polynomial, then h is a polynomial. Moreover g and h are strongly
relatively prime.

Proof. Suppose thatϕ =
s−1∑
r=o

ār Xr + Xs andψ =
t∑

u=0
b̄uXu. �

Let ϕ◦ =
s−1∑
r=0

ar Xr + Xs, ψ◦u =
t∑

u=0
āuXu.

Obviouslyϕ◦ is monic of degreesand f̄ = ϕ◦ψ◦, which implies that
f − ϕ◦ψ◦ belongs toY [[X]] i.e., if f − ϕ◦ψ◦ =

∑
bnXn, thenv(bn) >

0 for everyn. Let α = inf v(bn), α is obviously strictly positive. Let
O1 = {xn/x ∈ O , v(x) ≥ α}, then (On)n>0,On = On

1 defines a decreasing
filtration onO. Obviouslyϕ̃◦ and ψ̃◦ (images ofϕ andψ in O/O[X])
are strongly relatively prime moduloO1 and ϕ̃◦ and ψ̃◦ satisfy all the
requirements of Hensel’s lemma, therefore there exists oneand only
one pair (g, h) such that
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(i) g is monic polynomial of degreesandg̃ = ϕ̃◦ 32

(ii) h is an every where convergent powerseries inO, h̃ = ψ◦ and
λn( f ) − s.

(iii) f = gh

Form the choice ofϕ◦ andψ◦ it is obvious that this pair (g, h) satis-
fies the conditions (1), (2) and (3) of the corollary.

If possible let there exist another pair (g′, h′) satisfying the condi-
tions stated in the corollary. Letg′′ = g−g′, h′′ = h−h′ Sinceḡ′′ andh̄′′

are inY [x], there existsα′ > 0 such thatg′′ andh′′ are inO′1[[ x]] where
O′1 = {x|x ∈ O , v(x) ≥ α′}. Let us take in Hensel’s lemma instead ofO

the idealO′1 and the filtration defined by (On) whereO′n = On
1 . But then

have two pairs (g, h) and (g′, h′) satisfying the conditions (a), (b), (c) of
the lemma, which is not possible, thereforeg = g′ andh = h′.

If f is a polynomial, the result about radius of convergence is obvi-
ous. Let us assume thatf is not a polynomial, thenλn( f ) tends to infinity

asn tends to infinity. It has already been proved thatt f = lim i inf
v(ai )

i
.

Since v is a real valuation, for anyi we can find an integerk such

that(k − 1)α ≤ v(ai ) ≤ kα,=⇒ λk( f ). Therefore
v(ai )

i
≥

(k− 1)α
λk( f )

and

lim inf
i→∞

v(ai)
i
≥ lim inf

i→∞

kα
λk( f )

moreover fori = λk( f ) we have33

kα
λk( f )

≥
v(ai )

i
.

Let k→ ∞, which implies thati = λk( f )→ ∞. Then we get

lim inf
i→∞

kα
λk( f )

≥
v(ai )

i

Thus lim inf
i→∞

v(ai)
i
= lim

n→∞

nα
λn( f )

= lim
n→∞

nα
λn(h)

This proves thatt f = tn.
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Corollary 2. Let K be a complete valuated field with a real valuation v
and f a polynomial inO[X]. Then ifα in k is a simple root off̄ , there
exists one and only one element a inO such that a is a simple root of f
andā = α.

Proof. Sinceα is a simple root off̄ , we havef̄ (X) = (X−α) ψ(X) where
ψ(α) = 0. Moreover (X − α) andψ(X) are strongly relatively prime in
k[X], (X − α) being a prime element. Therefore form corollary 1, we
have in one and only one wayf (X) = (X − a)h(X), whereh̄ = ψ and
ā = α. Moreover a is a simple root off because

¯h(a) = h̄(α) = ψ(α) = 0.

In particular ifK is a locally compact field such that characteristick , 2,
then we shall show thatK∗/(K∗)2 is a group of order 4.

K locally compact implies thatv is discrete andk is a finite. Letπ be 34

a uniformising parameter and letC ∈ O∗ = O − Y be an element such
thatC̄ is not a square ink, such an element exists becausek∗/(k∗)2 is of
order 2. Then it can be seen that 1,C, π,Cπ represent the distinct cosets
in K∗/(K∗)2 and any element inK∗ is congruent to one of them modulo
(K∗)2. �

2 Extension of Valuations - Transcendental case

In order to prove that a valuation of a field can be extended to an exten-
sion field it is sufficient to consider the following two cases:

(i) When the extension field is an algebraic extension.

(ii) When the extension field is a purely transcendental extension.

Proposition 1. Let L= K(X) be a purely transcendental extension of a
field K with a valuation v, letΓ′ be any totally ordered group containing
Γv. Then forξ in Γ′ there exists one and only one valuationωξn of L
extending v such that

wξ


n∑

j=0

a j x
j

 = inf
0≤ j≤n

(
v(a j ) + jξ

)
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Proof. It is sufficient to verify thatwξ satisfies the axioms of a valua-
tion for K[X]. The axiomsaξ(P) = ∞ ⇐⇒ P = 0 andwξ(P + Q) ≥
inf(wξ(P),wξ(Q)) can be easily verified. To provewξ(PQ) = wξ(P) +

wξ(Q), whereP =
n∑

j=0
a jX j,

Q =
m∑

i=0
biXi andPQ , 0, we writeP = P1 + P2,Q = Q1 + Q2,P1

being the sum of all termsa jX j of P such thatwξ(P) = v(a j )+ jξ andQ135

being the sum of those termsbiXi of Q for whichwξ(Q) = v(bi )+ iξ. Let
jo andko be the degree ofP1 andQ1 respectively. IfP1Q1 =

∑
Cr Xr ,

then we have

wξ(P1Q1) = v(C jo+ko) + ξ( jo + ko)

= v(a jo) + ξ jo + v(bko) + ξko = wξ(P1) + wξ(Q1).

Now

wξ(PQ) = wξ(P1Q1 + P1Q2 + Q1P2 + P2Q2) = wξ(P1Q1),

because the valuation of the other terms is greater thanwξ(P1Q1). �

This implies that

wξ(PQ) = wξ(P1Q1) = wξ(P1) + wξ(Q1) = wξ(P) + wξ(Q).

Corollary. There exists one and only one valuation w of K(X) such that

(i) w extends v.

(ii) w(X) = 0.

(iii) The classX̄ of X in kw is transcendental over kv.

The valuation w is the valuation wξ for ξ = 0 and kw is a purely
transcendental extension of degree1 over kv.

It is obvious thatwo(i.e. wξ for ξ = 0) satisfies (1) and (2) and that
kwo = kv(X̄n).If X̄ were algebraic overkv, then there exists a polynomial

P̄(Y) =
n∑

j=0
ā jYj such that at least one ¯a j , 0 andP̄(X̄) = 0, which means
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thatP(X) =
n∑

j=0
a jX j is in Yw, where at least onea j is not inYv and all36

a j are inOv. But this is impossible becausew(P(X)) = inf
j

v(a j) = 0.

Conversely letw be a valuation ofK(X) satisfying 1), 2), 3). Let P =
m∑

i=0
aiXi be a polynomial overK. We have to prove thatw(P) = inf v(ai ).

Let P =
m∑

i=0
aiXi be a polynomial overK. We can assume without loss

of generality thatai are inYv and at least one of them is not inYy, then
inf

i
v(ai ) = 0. If w(P) > 0, thenP̄ = 0 in kw, which implies, thatX̄ is

algebraic overkv, which is a contradiction. But we know that

w


∑

i

aiX
i

 ≥ inf
i
{v(ai) + iw(X)} = 0

thereforew(P) = inf
i

v(ai ).

3 Residual Degree and Ramification Index

Let L be a field andK a subfield ofL. Letw be a valuation ofL andv the
restriction ofw on K. SinceYw ∩ K = Yv, the filedkv can be imbedded
in the fieldkw. We shall say the dimension ofkw over kv the residual
degree of w with respect to vor of L with respect toK. We shall denote
it by f (w, v).

The index of the groupΓv in Γw is called theramification index of w
with respect tov or of L with respect toK and is denoted bye(w, v).

If no confusion is possible, we shall denotef (w, y) by f (L,K) and 37

e(w, v) by e(L,K).
If e(w, v) = 1, thenL is said to be anunramified extensionof K.
If f (w, v) = 1, L is said to betotally ramifiedextension ofK.
Since the group of values and residual field ofK̂ are the same as that

of K we have

e(L̂, K̂) = e(L,K) and f (L̂, K̂) = f (L,K)
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Proposition 2. Let L be a filed with a valuation w and let K be a field
contained in L and v the restriction of w on K. Then e(L,K) f (L,K) ≤
(L : K) = n, where(L : K) is dimension of L over K.

Proof. If n is infinite, the result is trivial. Let us assume thatn is a finite
number. Letr ≤ e ands ≤ f be two positive integers, then we can find
r elementsX1, . . . ,Xr in L∗ such thatw(Xi) . w(X j) (mod Γv) for i , j
and s elementsȲ1, . . . Ȳs in kw such that they are linearly independent
over kv. Let Y1, . . .Ys be a system of representatives forY1, . . .Ys in
O∗w. Then the elements (XiYj , i = 1, . . . , r; j = 1, 2, . . . s) are linearly
independent overK. If they are not linearly independent, then there
exists elementsai j in K not all 0 such that

∑

i, j

ai j XiYj = 0

Let α = inf
i, j

w(ai j XiYj), obviouslyα is finite and belongs toΓw.38

Thereforew(aklXkYl) = α for somek andl. We have

w(ai j XiYj) = w(ai j ) + w(Xi) + w(Yj)

= w(akl) + w(Xk) + w(Yl)

if w(ai j XiYj) = α for some i and j .

But w(Yj) = w(Yl) = 0, therefore we getw(Xi) ≡ w(Xk) (mod Γv),
which is possible only ifi = k. Thus we get

aklXkYl +
∑

j,l

ak jXkYj ≡ 0 (modO
′) (1)

whereO′ = {X/X ∈ L,w(X) > α}
Multiplying the congruence (1) witha−1

kl X−1
k we get

Yl +
∑

j,l

a−1
kl ak jYj ≡ 0 (modYw).

Therefore

Ȳl +
∑

j,l

(a−1
kl ak j)Ȳj = 0, wherea−1

kl ak j are inkv.
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But this is impossible, becausēY1−−− Ȳsare linearly independent over
kv, therefore (XiYj) are linearly independent overK. Since (L : K) = n,
the number of linearly independent vectors inL overK cannot be greater
thann.

Hencee f ≤ n. �

Corollary 3. If L is algebraic over K, then kw is algebraic over kv and
Γl/Γk is a torsion group of order≤ (L : K).

The assertion is trivial when (L : K) is finite. When (L : K) is
infinite we can writeL =

⋃
i∈I

Li and kL = ∪kLi , whereLi is a finite

algebraic extension ofK.
ThenΓL/ΓK is the union of the quotient groupsΓLi/ΓK for i in I and 39

therefore it is a torsion group.

Corollary 4. Suppose that L is algebraic over K, then w is improper if
and only if v is improper.

v improper implies thatΓv = {0}. Therefore by corollary (3)Γw is a
torsion group. ButΓw is a totally ordered and abelian group, therefore it
consists of identity only.

Corollary 5. Let (L : K) be finite. Then w is discrete if and only v is
discrete.

v discrete implies thatΓv is isomorphic toZ and (L : k) finite implies
Γw/Γv is of finite order. MoreoverΓw is Archimedian, because ifα and
β are inΓw, thennα andnβ where n= orderΓw/Γv, are inΓv; therefore
there exists an integerq such thatqnα > nβ, which shows thatqα > β.
There exists a smallest positive element inΓw. For, each coset ofΓw/Γv

has a smallest positive element, the smallest among them is the smallest
positive element foΓw. HenceΓw is isomorphic toz.

Corollary 6. If the valuation v on K is discrete, K is complete and
(L : K) is finite, then e f= (L : K).

Proof. Let π be a uniformising parameter inL. Let Ȳ1, . . . , Ȳf be a basis
of kw overkv andY1, . . . ,Yf their representatives inO∗w. Let R denote a
system of representatives ofkv in O∗v . �
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Then any elementX in Ow can be written in the form
f∑

i=1
αiYi modulo40

Yw with αi ∈ R in one and only one way. LetL′ be vector space
over K generated by (Yiπ

j) for i = 1, 2, . . . , f and j = 0, 1, 2, . . . , e−
1. SinceL′ is a finite dimensional vectorspace over a complete field
K, L′ is complete (for proof see Espaces Vectoriels Topologiquesby N.
Bourbaki, chapterI section 2) and therefore closed inL. But L′ is dense
in L, because for every elementX in L and an integern there exists an
elementXn is L′ such thatv(X − Xn) ≥ n e. For sufficiently smalln
the result is obviously true. Let us assume that it is true forall integers
r ≤ n. Since n e is inΓv, there exists an elementU in K such that
w(U) = v(U) = n e. ThereforeU−1(X − Xn) belongs toOw and we have

U−1(X − Xn) ≡
∑

i

αioYi (mod Yw = Owπ)

This means thatπ−1[(U−1(X − Xn) −
∑

i αioYi] belongs toOw, therefore

π−1

(U−1(X − Xn) −
∑

i

αioYi)

 ≡
∑

i

αi1Yi (mod Yw)

Proceeding in this way we obtain

U−1(X − Xn) ≡
∑

i

αioYi + · · · +
∑

i

αie−1Yiπ
e−1 (mod Y

e
w )

or (X − Xn) ≡ U


e−1∑

j=0

∑

i

αi j Yiπ
j

 (mod Y
(n+1)e

w )

Let us takeXn+1 = Xn + U

[
e−1∑
j=0

∑
i
αi j Yiπ

j

]
.41

Thenw(X − Xn+1) ≥ (n + 1)e. ThusL′ is dense inL and therefore
L′ = L. So n = (L : K) ≤ e f. But we know thate f ≤ n, therefore
n = e f.

4 Locally compact Fields

Proposition 3. If K is a locally compact filed of characteristic o with
a discrete valuation v, then K is a finite extension of Qp where p is
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characteristic of the residual field k.

Proof. Since characteristicK = 0,K containsQ the field of retinal num-
bers. We see immediately thatv is proper, because ifv is improper then
Q is contained ink which is a finite field by theorem in§7.1 and this
is impossible. The restriction ofv to Q is vp for somep becausep
adic valuations are the only proper valuations onQ and thisp is the
characteristic ofk. We have already proved in§7.1 thatK is complete,
thereforeK containsQP. The valuationv on K is discrete, thereforeΓv

is isomorphic toZ, but Γvp is also isomorphic toZ and is contained in
Γv, therefore= (Γv : Γvp) is finite. Moreoverf = (kv : kvp) is also finite,
becausekv is a finite filed. Hence (K : Qp) = e f (by corollary 4 of 42

§3.2) is finite. �

Proposition 4. Let K be complete filed for a real proper valuation v
such that

(1) characteristic K= characteristic k.

(2) k and all its sub fields are perfect.

Then there exists a subfield F⊂ O which is a system of representatives
of k inO. Moreover if v is discrete then K is isomorphic to k((x)).

Proof. LetΦ be the family of subfieldsS of O such that the restriction
of ϕ, the canonical homomorphism fromO onto k to S is an isomor-
phism onto a subfield ofk. The familyΦ , φ, because the prime fields
contained inO andk are the same. ObviouslyΦ is inductively ordered
by inclusion, therefore by Zorn’s lemma it has a maximal element F.
We shall prove thatk = ϕ(F). The fieldk is algebraic overϕ(F). If
possible let there exist an element ¯x in k transcendental overϕ(F). Let
ϕ(x) = x̄, wherex is in O, thenx is transcendental overF. It is obvious
thatF(x) is isomorphic toϕ(F)(x̄), which contradicts the maximality of
F, thereforek is algebraic overϕ(F). Suppose thatϕ(F), then there ex-
ists one element ¯x in k and not inϕ(F). Sinceϕ(F) is a perfect field, ¯x
is a simple root of an irreducible monic polynomialP̄ overϕ(F). Let

P̄ = Xs+ās−1Xs−1+· · ·+āo = (X− x̄)Q̄, whereQ̄ is some polynomial 43

overϕ(F) andQ̄(x̄) , 0.
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By Corollary (4) fo Hensel’s lemma we obtain that the polynomial
P = XS + as−1Xs−1 + · · · + a0 has a simple rootx in O such thatϕ(x) =
x̄ and Q is an irreducible polynomial. ThereforeF(x) is isomorphic
to F[X]/(P). But ϕ(F)(x̄) is isomorphic toϕ(F)[X]/(P̄) therefore we
see thatϕ is still an isomorphism fromF(x) ontoϕ(F)(x̄). But this is
impossible, becauseF is a maximal element ofΦ. Thus our theorem is
proved. �

When v is discrete, we have seen that every elementx in K is of

the form
∞∑

i=m
r iπ

i with r i in F and conversely. Therefore the mapping

∞∑
i=m

r iπ
i →

∞∑
i=m

ϕ(r i)Xi is from K ontok((x)). It is trivial to see that it is

an isomorphism.

Corollary. A non-discrete locally compact valuated field of character-
istic p > o is isomorphic to a field of formal power series over a finite
field.

Since we have already proved in§7.1 that a locally compact valuated
field K is complete, its valuation is discrete andk is finite, our corollary
follows from the theorem.

5 Extension of a Valuation to an Algebraic Exten-
sion (Case of a Complete Field)

Theorem 1. If L is an algebraic extension of a complete field K with a44

real valuation v, then there exists one and only valuation w on L extend-
ing v.

Proof. If v is improperw is necessarily improper. So we assume that
v is a proper valuation. Suppose thatL is a finite extension ofK. If
there exists a valuationw on L extendingv, thenw is unique, because
on L any valuation defines the same topology as that ofK(L:K) and the
topology onL determines the valuation upto a constant factor and in this
case the constant factor is also determined because the restriction of the
valuation toK is v. �
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Let L be a Galois extension ofK. Then if w is a valuation onL
extendingv, w oσ for anyσ in G(L/K) (the Galois group ofL overK)
is also a valuation extendingv. Therefore by uniqueness of the extension
w(x) =Woσ(x) for everyx in L. This shows that

v (N(x))
L/K

= w(
∏

σ

(x)) =
∑

σ

w oσ(x) = n o w(x)

where (L : K) = n.
Thus

w(x) =
1
n

v (N(x))
L/K

. (1)

Now suppose thatL is any finite extension ofK of degreen. We 45

define a mappingw on L by (1) and prove that it satisfies the axioms
for a valuation. It is well known that (Bourbaki, algebra chapter V, §8)
that if L is the separable closure ofK is L, and if p is the characteristic
exponent ofK (i.e., p = 1 if characteristicK = 0 and p= characteristic
K , 0), then

n = (L : K) = qpe

with q = (L′ : K) andpe = (L : L′). MoreoverL is a purely inseparable
extension ofL′, and for each K-isomorphismσi (1 ≤ i ≤ q) of L′, in an
algebraic closureΩ of K there exists one and only oneK-isomorphism
of L which extendsσi. This extended isomorphism will also be denoted
byσi . Then

NL/K(x) =
[ q∏

i=1

σi(x)
]pe

It is easy to prove thatw(x) = ∞ if and only if x = 0 andw(xy) =
w(x) + w(y) for x, y in L. To prove thatw(x + y) ≥ inf(w(x),w(y)), it
is sufficient to prove thatw(α) ≥ 0 implies thatw(1 + α) ≥ 0 for any
α in L. We know that ifP(X) = Xr + ar−1Xr−1 + · · · + ao is the monic
irreducible polynomial ofα over K, then N

L/K
α = (ao)

n
r andP(1− X) is

the irreducible polynomial of 1+ α. Thus

N
L/K

(1+ α) = (−1)r
{
(1+ ar−1 + · · · + (−1)rao)

} n
r = bo
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So to prove our result we have to show thatbo is in O whenao is 46

in O, becausew(α) =
v(ao)n/r

n
. This will follow from the following

theorem, which completely proves our theorem.

Theorem 2. Let K be complete field with a real valuation v and x any
element of an algebraic extension of K. If f(X) = Xr + ar−1Xr−1 · · ·+ ao

is the minimum polynomial of x over K, then ao belonging toO implies
that all the coefficients of f(X) are inO.

Proof. If possible suppose that allai are not inO, thenv(a j) < 0 for
some j, 0 < j < r. Let −α = inf v(a j ), α > 0 and j the smallest index
such thatv(a j ) = −α. We haveo < j < r. Sinceα belongs toΓv,
there exists an elementC in K suchv(C) = α. Consider the polynomial
g = C f(X) = CXk + · · · +Caj X

j + · · · +C◦a. Because of the choice of
j, ḡ = · · · + r̄ jX j, where ¯r j = c̄aj , 0. Therefore ¯g hasX j as a factor
which is a monic polynomial and if ¯g = X jψ, thenX j andψ satisfy the
requirements of Corollary (4) of Hensel’s lemma, which gives thatg is
reducible, which is a contradiction. Hence alla j are inO. �

When L is infinite algebraic extension ofK, we can expressL =⋃
i∈I

Li where eachLi is a finite algebraic extension ofK and the family

{Li}i∈I is a directed set by the relation of inclusion. We define the valua-47

tion w for anyx in L asw(x) = wi(x) if x is in Li andwi is the extension
of v on Li . It is obvious thatw is the unique valuation onL extendingv.

6 General Case

We shall study now how a valuation of an incomplete field can beex-
tended to its algebraic extension.

Let K be field with a valuationv andL an algebraic extension ofK.
If w is a valuation ofL extendingv, we can look at the completion̂L of
L. L̂ containsL andK̂, so it contains a well defined composite extension
Mw of L and K̂. Then there exist one and only one maximal idealmw

in L ⊗
K

K̂ such that the canonical mapping fromL ⊗
K

K̂ → Mw gives

an isomorphism fromL ⊗
K

K̂/mw onto Mw. So we get a mapϕ from
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the set of the valuationw extendingv to the set of the maximal ideals of
L ⊗

K
K̂. Conversely if we start from a maximal idealM in L ⊗

K
K̂, then

the corresponding composite extensionM = L ⊗ K̂/M is an algebraic
extension ofK and there one and only one valuationwM of M which
extendsv and the restriction ofwM to L gives a valuation ofL extending
v. So we get a mapψ from the set of the maximal ideals ofL ⊗

K
K̂ (or

of the classes of complete extensions) to the set of the valuations of L
extendingv.

Moreover the completion̂L of L with respect towM is exactly M̂ 48

and the composite extension ofL andK̂ contained inL̂ is M.So we have
ϕ ◦ ψ = I (identity map)

Now we have alsoψ ◦ ϕ = I , for if w is any valuation ofLthen
the valuationwMw is necessarily the same asw by the uniqueness of the
extension toM of the valuationv of K̂.

Hence there exists a 1-1 correspondence between the set of valua-
tions onL extendingv and the set of inequivalent composite extensions
of L andK̂.

In particular if (L : K) = n < ∞, then any composite extension ofL
andK̂ is complete which means thatL̂ = L ⊗

K
K/M, whereM is some

maximal ideal ofL ⊗
K

K̂.

SupposeL is an algebraic extension of an incomplete valuated field
K with a valuationv. Let (wi)i∈I be the set of valuations onL extending
v. We shall denote byLi the field L with the valuationwi , by ei the
ramification indexe(Li : K) = e(L̂i : K̂) by fi the residual degreef (L̂i :
K̂) = f (Li : K) and byni the dimension of̂Li over K̂.

The sequence

0→ r(L ⊗
K

K̂)→ (L ⊗
K

K̂)→
∏

i∈I

L̂i

is exact, because the radical ofL⊗
K

K̂ is the intersection of all the maximal

ideals ofL ⊗
K

K̂, that is of all the kernels of the mapL ⊗
K

K̂ → Li. If the 49

dimension ofL overK is finite we have the following result.



38 2. Theory of Valuations -II

Theorem 3. If L is a finite extension of degree n of a field K with a real
valuation v, then there exist, only finitely many different valuations(wi)
on L extending v. Moreover we have

∑
ni ≤ n and the sequence

0→ r(L ⊗
K

K̂)→ L ⊗
K

K →
∏

L̂i → 0

is exact.

Proof. We observe thatwi is not equivalent tow j for i , j, because
wi equivalent tow jmeans that they differ by a constant factor and since
their restriction toK is same, we havewi = w j

The number of different valuations (wi) on L extendingv is finite
because the number of inequivalent composite extensions ofL and K̂
is finite. To prove that the sequence is exact, we have to show that
the mappingρ : L ⊗

K
K̂ →

∏
L̂i is surjective.By the approximation

theorem of valuationsρ(L) is dense in
∏

L̂i, thereforeρ(L ⊗
K

K̂) is dense

in
∏

L̂i, whereρ is the canonical map fromL →
∏

L̂i . But ρ(L ⊗
K

K̂) is

a finite dimensional vector space overK̂ therefore it is complete. Hence
ρ(L ⊗

K
K̂) =

∏
L̂i i.e., ρ is onto. Obviously dim

∏
L̂i ≤ dim L ⊗

K
K̂ over

K̂,which means that
∑

ni ≤ n. �

Corollary. If K̂ or L is separable over K, then we have
∑

ni = n.50

K̂ or L separable over K implies that r(K̂ ⊗
K

L) = 0 (for proof see

Algebre by N. Bourbaki chapter 8 section 7), thereforeρ is an isomor-
phism.

7 Complete Algebraic Closure of ap-adic Field

Proposition 5. Let K be a complete field with a real valuation v andΩ
the algebraic closure of K.Then̂Ω the completion ofΩ by the valuation
extending v is algebraically closed.

We shall denote the extended valuation also byv.
Proof. To prove thatΩ̂ is algebraically closed we have to show that any
irreducible polynomialf (X) in Ω̂[X] has a root inΩ̂. Without loss of
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generality we a can assume thatf (X) is in OΩ̂[X] and leading coefficient
of f (X) is 1. Suppose thatf (X) = Xr +ar−1Xr−1+ · · ·+a0 then for every
integerm there exists a polynomialϕm(X) = Xr +b(m)Xr−1+ · · ·+b(m)

◦ in
OΩ[X] such that for everyx in O r−1

Ω̂
, v( f (x) − ϕm(x) > rm Let ϕm(X) =

r∏
j=1

(X − α jm), α jm are inOΩ asϕm(X) is in OΩ[X]. Then

ϕm+1(α jm) = ϕm+1(α jm) − f (α jm) + f (α jm) − ϕm(α jm)

implies that v(ϕm+1(α jm)) > rm

or
r∑

t=1

v(α jm − αtm+1) > rm. 2

Therefore there exists a rootαtm+1 of ϕm+1(X) such that

v(α jm − αtm+1) > m.

So we get a sequence
{
ϕm(X)

}
of polynomials converging tof and 51

a sequence of elements
{
βm

}
converging toβ in Ω̂ and eachβm is a

root of ϕm(X). Since polynomials are continuous functions, we have
lim

m→∞
f (βm) = f (β)

But lim
m→∞

f (βm) = 0, because given integerN > 0, for m > N we

havev( f (βm)) = v( f (βm) − ϕm(βm)) > rm > N.
Henceβ is a root of f (X).
One can easily prove that the residual field ofΩ̂ is the algebraic

closure of the residual field ofK. In particular if K = Qp, then the
residual field ofΩ̂ i.e., kΩ̂ is algebraic closure ofZ/(P).Thus

kΩ̂ = ∪Fi , where eachFi is a finite extension ofZ/(P)

8 Valuations of Non-Commutative Rings

We define a valuation of a non-commutative ringA without zero divisors
containing the unit element in the same way as of a commutative ring.
Almost all the results proved so far about valuated can be carried over to
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division rings with valuations with obvious modifications.WE mention
the following facts far illustration.

Let L be a division ring with a valuationv.Then

(1) The setOL =

{
x/x ∈ L, v(x) ≥ 0

}
is a non-commutative ring,which

we call the valuation ring ofL with respect to the valuationv.

(2) YL =

{
x/x ∈ L, v(x) > 0

}
is the unique two sided maximal ideal of52

OL.

(3) Any ideal inOL is a two sided ideal. For,v(x−1yx) = −v(x) + v(y) +
v(x) ≥ 0 for x in L andy in OL which means thatx−1yx belongs to
OL, thereforeyx= xzfor somez in OL. HenceOLx = xOL.

(4) The ideals ofOL are any one of the two kinds

Iα =
{
x|v(x) > α ≥ 0

}

I ′α =
{
x|v(x) ≥ α > 0

}

(5) The division ringL is locally compact non-discrete division ring for
the valuationv if and only if v is a discrete valuation,L is complete
andO/YL is finite

Regarding the extension of valuations to an extension division ring
we prove the following.

Theorem 4. Let P̃ be a division algebra of finite rank over a complete
valuated field P with a valuation v such that P is contained in the centre
of P̃. Then there exists one and only one valuation w ofP̃ which extends
v.

Proof. ExistenceWe define N
P̃/P

(x) = determinant of the endomorphism

ρxy→ xy of P̃, for any x in P̃.



8. Valuations of Non-Commutative Rings 41

We shall prove thatw(x) =
1
r

v( N
P̃|P

(x) is a valuation ofP̃ if r is the

rank of P̃ over P. The axiomsw(x) = ∞ if and only if x = 0 and53

w(xy) = w(x) + w(y) are obviously true.
To provew(x + y) ≥ inf(w(x),w(y)) it is sufficient to prove that

w(x) ≥ 0 impliesw(1+ y) ≥ 0. LetF = P(x) F is clearly a field contain-
ing P andP̃ is a vector space overF by left multiplication. The mapping
ρx is anF endomorphism. We know that ifU is anyF-endomorphism
andUp the P-endomorphism defined byU, then detUp = N

F/P
(det U)

and we have detρx = (x)(P̃:F) if ρx is considered as anF-endomorphism.
Therefore we have

w(x) =
1
r

(P̃ : F) = v( N
F/P

(x)).

�

Now w(x) ≥ 0⇐⇒ vv(N(x))
F/P

≥ 0 =⇒ v(N(1+ x))
F/P

≥ 0, because we

have proved this for commutative case.Hencew is a valuation oñP.

Uniqueness.SinceP is complete andP is of finite rankr over P, any
valuation defines the same topology onP̃ as that ofPr . But the topol-
ogy determines the valuation upto a constant factor, Ifw1 andw2 are
two valuations of̃P extendingv thenw1 = Cw2 for someC in P.But
restriction ofw1 to w2 to P is v, thereforeC = 1 andw1 = w2.





Part II

Representations of classical
groups over p-adic Fields
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Chapter 3

Representations of Locally
Compact and Semi-Simple
Lie Groups

1 Representations of Locally Compact Groups

In this section we give a short account of some definitions andresults 54

about the representations of locally compact groups.We assume the fun-
damental theorem on the existence and uniqueness (upto a constant fac-
tor) of right invariant Haar measure on a locally compact groups.For
simplicity we assume that the locally compact groups in our discus-
sion are unimodular i.e., the Haar measure is both right and left invari-
ant.By L(G) we shall denote the space of continuous complex valued
functions with compact support and byL(G,K), whereK is some com-
pact set ofG,the set of elements ofL(G) whose support is contained
in K.Obviously we haveL(G) = ∪

K⊂G
L(G,K) andL(G,K) is a Banach

space under the normf = sup
x∈K
| f (x)|.

The spaceL(G) can be provided with a topology by taking the direct
limit of the topologies ofL(G,K). This topology makesL(G) a locally
convex topological vector space.

Let G be a locally compact group andH a Banach space

45
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Definition 1. A continuous representationU of G in H is a mapx →
Ux ∈ Hom(H,H) such that

(i) Uxy = Ux ◦ Uy for x; y in G.

(ii) The mapH ×G→ H defined by (a, x) → Ux a is continuous.

Definition. Let H be a Hilbert space.The representationU is said to be55

Unitary if Ux is a unitary operator onH for everyx in H.

Let M(G) be the space of measures onG with compact support.The
spaceM(G) is an algebra for the convolution product defined by

µ ∗ ν( f ) =
∫ ∫

f (xy) dµ (x) dν (y)

The spaceL(G) can be imbedded intoM(G) by the mapf → µ f =

f (x)dx. It is infact a subalgebra ofM(G) becauseµ f ∗ µg = µ f ∗g where

f ∗ g(x) =
∫

f (xy−1)g(y)dy.

Moreover ifv is any element ofM(G), thenµ f ∗ ν belongs toL(G),
because for anyg ∈ L(G) we have

(µ f ∗ ν)(g) =
x

g(xy) f (x)dxdν(y)

=

∫
dν(y)

∫
g(x) f (xy−1)dx.

= µh(g) whereh(x) =
∫

f (xy−1)dν(y)

Thus we define the convolution of a measureµ and function f ∈
L(G) by setting

(µ ∗ f )(y) =
∫

f (x−1y)dµ(x)

( f ∗ µ)(y) =
∫

f (yx−1)dµ(x)
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Let U be a representation ofG in H. ThenU can be extended to
M(G) by setting

Uµ(a) =
∫

G
Uxadµ(x) (for a ∈ H, µ ∈ M(G)

Now let H be a Hibert space andU a Unitary representation. 56

Then ifµ andν are any two elements inM(G), we have

〈UνUµa, b〉 =
∫
〈UxUµa, b〉dν(x)

=

∫
〈Uµa,Ux−1b〉dν(x)

=

∫
dν(x)

∫
〈UyaUx−1b〉dµ(y)

=

∫
〈UxUya, b〉dν(x)dµ(y)

This means thatUµ∗ν = Uµ ◦ Uν i.e.,
U is a representation of the algebra M(G).It can be easily verified

that mapµ → Uµ is a continuous representation of the algebra M(G).
Moreover

〈U∗µa, b〉 = 〈Uµb, a〉

=

∫
〈Uxa, b〉dµ(x−1)

This shows thatU∗µ = Uµ̃, wheredµ̃(x) = dµ(x−1).
Thus the operatorUµ∗µ̃ on H is Hermitian.
In particular we get a representation ofL(G) in H given by f →

Uµ f = U f , where

U f (a) =
∫

G
Uxa f(x)dx.

We can also get a representation ofM(G) by considering regular rep-
resentations ofG i.e., representationsG by right or left translations inG
in any function space connected withG with some convenient topology,
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for instance the spaceL(G) or L2(G) (the space of square integrable
functions).

We shall denote byσx the left regular representations and byτx the 57

right regular representations ofG i.e., for any functionf onG we have

σx( f )(y) = f (x−1y), τx( f )(y) = f (yx)

we have for anyµ in M(G)

σµ( f ) = µ ∗ f

τµ( f ) = f ∗
v
µ whered

v
µ(x) = dµ(x−1)

Let K be a compact group,M an equivalence class of (unitary) ir-
reducible representations ofK. For anyx belonging toG, let Mx =

(CM
i j (x)) be the matrix ofMx with respect to some basis of the repre-

sentation space. LetrM be the dimension ofM andχM =
rm∑
i=1

CM
i i the

character ofM. For any two irreducible unitary representations ofK we
have the following orthogonality relation,

(1) CM
i j ∗CM′

kl if M , M′

(2) CM
i j ∗CM

kl =
l

rM
δ jkCM

il

where the value of the convolution product at the unit element e ofG is
given byCM

i j ∗CM
kl (e) =

∫
CM ji (y)CM

Kl(y)dx.
When we write (1) and (2) in terms of characters we get

(1) χM ∗ χM′ = 0 if M , M′

(2) χM ∗ χM =
l

rM
χM

Obviously we have58

(rMχM) ∗CM
i j = CM

i j ∗ χMrM = CM
i j

Let LM(K) be the vector space generated by the coefficientsCM̄
i j ,

whereM̄ is the complex conjugate representation ofM. If f is in L2(G),
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then by Peter-Weyl’s theorem,f =
∑

i, j,N
λi jNCN

i j .Further ifrmχM̄ ∗ f = f ,

then we havef =
∑
i, j
λi jM CM̄

i j , which means thatf belong toLM(K).

Conversely if f belongs toLM(K), then f =
∑
i, j
λi j M̄CM̄

i j . Therefore

rMχM̄ ∗ f = f .Hencef ∈ L2(G) is in LM(K) if and only if rMχM̄ ∗ f = f .
In this paragraph we give another interpretation of the space LM(K).

Definition. Let M be an irreducible unitary representation ofK andU
any representation ofK in a Banach spaceH.

We say that an element a∈ H is transformed byU following M, if a
is contained in a finite dimensional invariant subspaceF of H such that
the restriction ofU to F is direct sum representations of the equivalence
class ofM.

Let HU
M = HM = {a |∈ H, a transformed byU following M}. It is 59

easy to verify thatHM is a vector space.

Proposition 1. LM(K) is exactly the subspace of L2(K) formed by the
elements which are transformed following M (respectively following M)
by the left (respectively right) regular representation ofK.

Proposition 2. If U is a representation of K in H, then EM = UrMχM
is

a continuous projection from H→ HM .

In order to prove the proposition 1 and 2 prove the following results.

(1) Suppose thatϕ belongs toLM(K), thenϕ =
∑
i, j
λi jCM

i, j. For

x ∈ K,we have
(
σ
xCM

i j

)
(y) = CM

i j (x−1y) =
∑

k

CM
i j (x−1)CM

i j (y)

=
∑

k

(CM
ki (x))CM

k j (y).

So the spaceE j generated byCi j , · · · ,Cr j (rM = r) is invariant byσ
and the restriction ofσ to E j is of classM. ThereforeLM(K), which

is direct sum of theE j, is contained in (L2(G)
σ

)
M

.
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(2) If ϕ belongs toLM(K) and a belongs toH, then we show thatUϕa
belong toHM .

We have
UxUϕa = U∈x∗ϕap = Uσ

x
◦ϕa

whereεx is the Dirac measure at the pointx, and

Uεxb =
∫

K
Uyb dεx(y) = Uxb.

This shows thatϕ ∈ LM(K) → Uϕ a ∈ H is a morphism of rep-60

resentationσ and U. HenceUϕa is transformed byU following
M.

(3) If a belongs toHM, thenEMa = a. Since a belongs to some finite
dimensional invariant subspaceF of H and the restriction ofU to F
is the direct sum of representation of classM, we can find a basis
(ejk) of F such thatUxejk =

∑
K

CM
i j (x)eik

Let a=
∑
i, j
λi j ei j . Then

EM(a) = rM

∫ ∑

i, j,k

λ jkCM
jk (x)eikχM(x)dx

= rm

∑

i,k

(∑

j

λ jk

∫
CM

i j (x)χM(x)dx
)
eik

=
∑

i,k

λikeik = a.

Moreover
∫

rMCM
i j (x)χM(x−1)dx= rMχM ∗CM

i j (e) = δi j

(4) In particular ifϕ belongs toL2(G) it is transformed byσ following
M, then

σrMχMϕ = rM χM ∗ ϕ = ϕ
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Thereforeϕ belongs toLM(K).
Clearly the results (1)and (4) imply proposition 1.

Since EMĖM = U r
M
χM U r

M
χM U r

M
2χM ∗ χM

= UrMχM = EM ,

the proposition (2) is proved by result (3)
Similarly we prove thatEM · EM′ = 0 for M , M′. Thus we get a 61

family of projectionsEM with EM(H) = HM. The sum
∑

HM is direct
and is dense inH. It is sufficient to prove that ifa′ is a continuous linear
form onH, which is zero on everyHM, then〈a, a′〉 = o for everya ∈ H.
Let us putϕ(x) = 〈Uxa, a′〉. Then

〈ϕ,CM
i j 〉 =

∫
CM

i j (y)〈Uya, a
′〉dy.

= 〈Uga, a′〉 with g = CM
i j

But Uga′ belongs toHM̄ , therefore we get thatϕ is orthogonal to all
the coefficientsCM

i j for any M, soϕ = 0.
In particular ifU is unitary (for instance the regular representation in

L2(K)), then theEM are orthogonal projections andH is exactly Hilber-
tian sum of the closed subspacesHM.

LetG be a locally compact group,K a compact subgroup ofG. Sup-
pose thatU is a continuous representation ofG in H and M an equiv-
alence class of unitary representation ofK. By HU

M = HM we shall
mean the vector subspace ofH consisting of elements which are trans-
formed by the restriction ofU to K following M. As in the above case
EM = UrMχM

is a projection ofH to HM. Let

LM(G) =
{

f | f ∈ L(G), f ∗ rMχM = rMχM ∗ f = f
}

It is easy to prove thatLM(G) is a subalgebra ofL(G) and the map-
ping f → rMχM ∗ ∗̇rHχM is a projection fromL(G) to LM(G).

If f belongs toLM(G) and a belongs toH, then is inHM. If b 62



52 3. Representations of Locally Compact and Semi-Simple...

belongs toH′M, thenU f (a) = UrM (a)χM ∗ f = EM U f a⇒ U f a is in HM .
If b belongs toHM′ , then

U f b = U
f ∗ rM χM

EM′b = U f EMEM′b = 0

This shows thatU is a representation ofLM(G) in HM andU f =

EMU f EM. Moreover for f ∈ LM(G)

f (y) = rM

∫

K

f (k−1y)χM(k)dk.

In particular if M is the identity representation, thenχM is constant
and f is in LM(G) if and only if

f (y) = rM

∫

K

f (ky)dk = rM

∫

K

f (yk)dk

⇐⇒ f (hyk) = f ( f yk) = f (y).

Such functions are called spherical function onG with respect toK.
They can be considered as functions onG/K which are left invariant,
provided we writeG/K = {K, aK,− − −}

2 Irreducible Representations

In this section we study how we can get some information aboutthe
representation of a groupG by studying the representation of the algebra
LM(G).

Definition 1. A representationU of a groupG in a vector spaceV is
said to bealgebraically irreducibleif there exists no proper invariant
subspace ofV.

Definition 2. A representationU of a topological groupG in a locally63

convex spaceE said to betopologically irreducibleif there exists no
proper closed invariant subspaces ofE.
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Definition 3. A representationU of a topological groupG in a Ba-
nach spaceH is said to be completely irreducible ifU(L(G)) is dense
in Hom(H,H) in the topological of simple convergence i.e., given an
operatorT on H and elementa1, a2, · · · , ap in H, there exists for every
∈> 0 an elementf in L(G) such that

‖ (U f − T)ai ‖<∈ for i = 1, 2, · · · , p.
It is obvious that (1)⇒ (2). To prove that (3)⇒ (2), suppose that

F is a proper closed invariant subspace ofH. Let a , 0 be any element
of F, then for everyb in H there exists aT ∈ Hom(H,H) such that
T(a) = b. But by definition for everyε > 0 there exists an elementf
in L(G) such that‖ U f a − T(a) ‖< ε. This means thatF is dense inH
which is a contradiction becauseF was assumed to be a closed proper
subspace ofH.

The definitions (2) and (3) are equivalent for unitary representation
by Von Neumann and all the three representation are equivalent for finite
dimension representations. The proof can be found in [9]. The definition
(1) implies (3) (for proof see annals of Mathematics, 1954 Godement).

Lemma 1. If U is a completely irreducible representation ofG in a Ba-
nach spaceH, then the representationUM of LM(G) is H(M) is also
completely irreducible.

Proof. Suppose thatT belongs to Hom(H(M),H(M)). ExtendT to H
by settingT̃ = T on H(M) andO on E−1

M (0). ObviouslyT is continuous
on H. �

SinceU is completely irreducible,̃T can be approximated byU f for 64

f in L(G) i.e., T̃ = lim U fi . Therefore

EMT̃ EM = lim EMU fi EM

= lim UrMχM∗ fi∗rMχM

Hence inHM ,T = lim UrMχM∗ fi∗rMχM

whererMχM ∗ fi ∗ rMχM is in LM(G). ThusUM is completely irre-
ducible.
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Let U be a unitary irreducible representation ofG in a Hilbert space
H. By coefficient of Uwe means positive definite function〈Uxa, a〉 on
G. We state without proof the following theorem about the coefficients
of unitary representations.

Theorem 1. If two irreducible unitary representations have same non-
zero coefficient associated to them, they are equivalent.

We have seen that the representation U can be extended to the space
M(G) and the operator Uµ∗µ̃ for anyµ in M(G) is Hermitian. In partic-
ular if we takeµ = rMχ̄Mdk, we haveµ = µ̃. There fore Uµ∗µ = EM is
Hermitian.

Moreover for any f inL(G) and a inHM

〈U f a, a〉 = 〈U f EMa,EMa〉 = 〈EMU f EMa, a〉

= 〈U f0a, a〉

where f0 = rM χM ∗ f ∗ rMχM belongs toLM(G). Thus if we know65

nonzero coefficient associated toUM, we know coefficient associated to
U as a representation ofL(G), which determines coefficient of U as a
representation ofG. Thus a unitary irreducible representation ofG is
completely characterised by its restrictionUM to LG(G) if UM is not
zero.

Definition. A setΩ of representations of an algebraA in a vector space
is said to be complete if for every nonzerof in A there existsU ∈ Ω
such thatU f , O.

Proposition 3. If there exists a complete setΩ of representations of
an algebra A which are of dimension≤ K (K a fixed integer), then
every completely irreducible representation of A in a Banach space is of
dimension≤ k.

We first prove a lemma due to Kaplansky. LetA be any algebra. For
x1, · · · , xp in A we define [x1, · · · , xp] =

∑
σ∈Sp

εσxσ1 . . . xσp whereSp is

the set of all permutationsσ on 1, 2, · · · , p andεσ is the signature ofσ.
Obviously if dim A < p, then [x1, · · · , xp] = o for all x1, x2, · · · , xp in
A.
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In particular we takeA = Mn(C), algebra ofn× n matrix with coef-
ficient fromC, the field of complex numbers, We define

r(n) = inf(p)such that

[X1, · · · ,Xp] = 0,Xi ∈ Mn(C).

Clearlyr(n) ≤ n2 + 1. We shall prove thatr(n+ 1) ≥ r(n) + 2.
We haver(n) − 1 elementsX1,X2, · · ·Xr−1 in Mn(C)(r = r(n)) such 66

that [X1, · · · ,Xr−1] , 0, LetEkh be the canonical basis ofMn(C). Then

[X1, · · · ,Xr−1] =
n∑

k,h=1

λkhEkh.

Since [X1, · · · ,Xr−1] , 0, there existsk0 andh0 such thatλk0h0 , 0.
Let X̃i be the matrix obtained by adding a row and a column of zeros to
Xi. Then

[
X̃1, · · · , X̃r−1Eh0,n+1En+1,n+1

]
=

[
X̃1, · · · , X̃r−1

]
Eh0,n+1En+1n+1

=
∑

h,k

λkhẼkhEh0n+ 1

=
∑

λkh0Ek,n+1 , 0.

Thusr(n+ 1) ≥ r(n) + 2.
Now we prove the proposition. Suppose thatr(k) = r andU is a

complete irreducible representation of dim> K in a Banach spaceH.
Let F be a subspace ofH of dimk + 1. Sincer(k + 1) > r(k), there
exist operators [A1, . . . ,Ar ] in Hom(F, F) such that [A1, . . . ,Ar ] , 0.
We extend eachAi to the whole spaceH by definingAi to be zero on
F′, whereF′ is any closed subspace such thatH is the topological direct
sum ofF andF′. Suppose thatA1 = lim U fi1

, where fi1 ∈ A. We have

0 , [Ã1, · · · , Ãr ] =
∑

σ∈Sr

Ãσ1, . . . Ãσr = lim[U fi Ã2, · · · , Ãr ].

Therefore there existsf1 in A such that [U f1Ã2, · · · , Ãr ] , 0. Repeating 67

this process we obtain that there exist elementsf1, · · · , fr in A such that
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U[ f1,··· , fr ] = [U f1, · · · ,U fr ] , 0. But this is a contradiction because
[ f1, · · · , fr ] = 0 if [ f1, · · · , fr ] , 0, then there exists aV in Ω such that
V[ f1,··· , fr ](a) , 0⇒

[Vf1, · · · ,Vfr ](a) , 0. But r ≥ rk anddimV ≤ k, therefore [Vf1, · · · ,
Vfr ] = 0. Hence dimU < k.

Corollary. Let G be a locally compact group, K a compact subgroup,
M a class of irreducible unitary representations of K in a Banach space
H. If there exists a systemΩ of representations of G in a Banach space
such that (i) for every U inΩ, the representation UM of LM(G) is of
dim ≤ pdim M. Equivalently M occurs atmost p times in each U.

(ii) The representationsUM for U in Ω form a complete system of
representation of algebraLM(G).

ThenM occurs atmostp times in any completely irreducible repre-
sentation ofG.

3 Measures on Homogeneous spaces

Let G be a locally compact group,dx the right invariant Haar measure
and∆(x) the modular function onG i.e., d(yx) = ∆(y)dx. Let Γ be a
closed subgroup ofG. We shall denote byξ, η . . . the elements ofΓ
by dξ andδ the Haar measure and the modular function onΓ. It is well
known that there exists a right invariant Haar measure onG/Γ if and only68

if ∆(ξ) = δ(ξ). In general it is possible to find a quasi-invariant measure
on G/Γ. In order to show the existence, one shows that there exists a

strictly positive continuous functionρ onG such thatρ(ξx) =
δ(ξ)
∆(ξ)

ρ(x)

for every x in G andξ in Γ. Then the measureρ(x)dx gives rise to a
measuredµ(x) onG/Γ such that for anyf in L(G) we have

∫

G

f (x)ρ(x)dx =
∫

G/Γ

dµ(x)
∫

Γ

f (ξx)dξ (1)

It is obvious from (1)that

dµ((xy)) =
ρ(xy)
ρ(x)

dµ(x)
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where
ρ(xy)
ρ(x)

depends only on the cosets ofx moduloΓ. Thusµ(x) is a

quasi-invariant measure onG/Γ. The details could be found in [9].

4 Induced Representations

Let L be a representation ofΓ in Hilbert spaceH. We shall define two
types of induced representation onG given byL.

(1) Assume thatL is unitary. LetHL be the spaces of functionsf onG
such that

(1) f is measurable with values inH.

(2) f (ξx) = [p(ξ)]1/2Lξ f (x), for ξ ∈ Γ.

(3)
∫

G/Γ

(ρ(x))−1 ‖ f (x) ‖2 dx< ∞.

Since the function (ρ(x))−1 ‖ f (x) ‖2 is invariant on the left byΓ, it
can be considered as a function onG/Γ. Thus we define

‖ f ‖2=
∫

G/Γ

(ρ(x))−1 ‖ f (x) ‖2 dµ(x)

It can be proved thatHL is a Hilbert space with the scalar product 69

〈 f , g >,=
∫

G/Γ

(ρ(x))−1〈 f (x), g(x)〉dµ(x).

Let UL be the map fromG to HL such that

UL
x f (y) = f (xy)

ObviouslyUL is continuous. Since we have

‖ UL
y f ‖2 =

∫

G/Γ

(ρ(x))−1 ‖ f (xy) ‖2 dµ(x)
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=

∫

G/Γ

(ρ(xy−1))−1 ‖ f (x) ‖2
ρ(xy−1)
ρ(x)

dµ(x)

=‖ f ‖2

It follows thatUL is unitary. We say thatUL is the unitary represen-
tation induced byL.

(ii) Let L be any representation ofΓ. Let us suppose that there exists
a compact subgroupK of G such thatG = ΓK. Let CL be the space of
functions f such that

(1) f is continuous with values inH.

(2) f (ξx) = (ρ(ξ))

1
2Lξ( f (x)) for ξ ∈ Γ.

We define‖ f ‖= sup
x∈K
‖ f (x) ‖. Clearly CL with this norm is a

Banach space. Again right translation by elements ofG give rise to a
representation ofG in GL. We denote this also byUL.

Let f → restriction of f to K = f0 be the map from theCL to C(K)
(the set of continuous functions onK with values inH ). The image of
CL by this map is the set of elementsf0 ∈ C(K) which satisfy condition70

(2) above for allξ in Γ ∩ K and x is K. But ρ(ξ) = 1, becauseρ is a
positive real character ofK ∩ Γ, thereforef0(ξx) = f0(x). Through the
spaceCL is identified with a subspace ofC(K) yet the representation
UL cannot be defined on this subspace. However the restriction of UL

to K and the representation induced by the restriction ofL to Γ ∩ K are
identical.

If L is unitary then f belongs toHL if and only if f0 belongs to
L2(K). We can chooseρ in such a way thatρ(xk) = ρ(x) for k ∈ K.
Since the groupK/K∩Γ is compact homogeneous space, there exits one
and only one invariant Haar measure on it. ButK/K ∩ Γ is isomorphic
to G/Γ therefore with the above choice ofρ, the quasiinvariant measure
onG/Γ gives rise to the invariant measure onK/K ∩ Γ. We have

∫

G/Γ

(ρ(x))−1 ‖ f (x) ‖2 dµ(x) =
∫

K/K∩Γ

‖ f (k) ‖2 dµ(k)
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=

∫

K

‖ f (k) ‖2 dk (A)

Our result is obvious from (A).

5 Semi Simple Lie Groups

Let G be a semi simple Lie group worth a faithful representation. We
state here two theorems the proof of which could be found in [19].

Theorem 2. The group G has a maximal compact subgroup and all the
maximal compact subgroup are conjugates.

Theorem 3. Suppose that K is maximal compact subgroup of G, then
there exists a connected solvable T of G such that G= TK.

We shall prove the following theorem about completely irreducible 71

representation ofG.

Theorem 4. Every irreducible representation M of K is contained at-
mostdim (M) times in every completely irreducible representation of
G.

Proof. (1) The finite dimensional irreducible representations ofG is a
vectorH is a complete system of representations ofL(G). Let x → ρx

be a representation ofG in a vector spaceH. We call the function
θ(x) = 〈ρxa, a′〉 where a belongs toH anda′ belongs toH∗ (the con-
jugate space ofH), a coefficient of the representation. LetV denote
the vector space generated by all coefficients of all finite dimensional
irreducible representations ofG. Since every finite dimensional repre-
sentation ofG is completely reducible,V contains all the coefficients of
all finite dimensional representations ofG. Let ρ1 andρ2 be two finite
dimensional irreducible representations ofG. Then we have

〈ρ1
xa1, a

′
1〉〈ρ

2
xa2, a

′
2〉 = 〈ρ

1
x ⊗ ρ

2
x a1 ⊗ a2, a

′
1 ⊗ a′2〉

showing thatV is an algebra. MoreoverV is a self adjoint algebra, be-
cause ifθ(x) = 〈ρa, a′〉 is in V, thenθ̄(x) = 〈ρ̄xā, ā′〉 is also inV. SinceG
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has a finite dimensional faithful representation,V separates points i.e., if
θ(x) = θ(x′) for every θ in V, then x = x′. Thus Stone- Weierstrass’
approximation theorem every continuous function onG can be approxi-
mated uniformly on every compact subset by elements ofV. Hence if f
is a non-zero elements ofL(G), then

∫
f (x)g(x)dx = 0 for every element

g of C(G) (the set of all continuous functions on G), because72

ρ f =

∫
ρx f (x)dx and

∫
< ρxa, a

′ > f (x)dx= 0

for every a inH anda′ in H∗ andρ. Thereforef must be=0
(2) The representations ofG induced by all characters ofT form a

complete system forL(G)
Let ρ be a finite dimensional irreducible representation ofG and let

v
ρ = (

t
ρ)−1) be the representation contragradient toρ. By Lie’s theorem

[19],the restriction of
v
ρ to T has an invariant subspace of dimension 1,

which implies that there exists a vectorb′ , 0 in E∗(the conjugate space
of the representation spaceE of, ρ) such that

v
ρ(t) = b′ = χ(t)b′ for every

t ∈ T. Consider the mapping a∈ E→ ãεcχ−1, wherẽa(x) =< ρxa, b′ >.
Since

ã(tx) =< ρtxa, b
′ >=< ρxa, ρ

r−1
t b′ >= χ−1(t) < ρxa, b

′ >= χ−1(t)̃a(x),

ã(x) is covariant by left translation. Obviously the mapa→ ã is contin-
uous. LetUχ−1 be the representation ofG induced byχ−1. The mapping
a→ ã is a morphism of representationsρ andUχ−1, because

ρ̃y a(x) = 〈ρx ρya, b
′〉 = ã(xy) = Uχ−1

y (̃a).

The mappinga → ã is not zero. Ifa , 0, then (ρxa) generates the
whole spaceE becauseρ is irreducible, therefore for atleast onx in
G〈ρxa, b′〉 , 0 ⇒ ã , 0. Let f be a non-zero element ofL(G). If
Uχ−1

f = 0. For everyχ thenρ f = 0 for everyρ which means thef = 0
by (1). This is a contradiction, hence our result is proved.

(3) We shall show that ifχ is a character ofT, then M occurs at-73

most dim (M) times in Uχ. Clearly Uχ/K(restriction ofUχtoK) =



5. Semi Simple Lie Groups 61

Uχ/K∩T .But the space of this representation is the space of continuous
functions f on K such that

f (tk) = χ(t) f (k) for t ∈ K ∩ T.

ThereforeUχ/K∩T is a subrepresentation of the right regular representa-
tion of K. Hence (Cχ)M ⊂ LM(K) which is a space of (dimM)2. ThusM
occurs at most dim(M) times inU. Our theorem follows from (2), (3)
and proposition 1.3. �





Chapter 4

Classical Linear Groups over
p-adic Fields

1 General Definitions

We shall study the following types of classical linear groups over field 74

P or over a division algebra.

(I) (a) GLn(P)- The group of all non-singular n x n matrices with
coefficients fromP is called the general linear group

(b) PrGLn(P) Let CLn(P) be the centre of the groupGLN(P).
The group prGLn(P) = GLn(P)/CLn(P) is called the projec-
tive linear group.

(c) S Ln(P)-The subgroup ofGLn(P) consisting of all the ma-
trices of determinant 1 is called the special linear group or
the unimodular group. It can be proved that PrS Ln(P) =
S Ln(P)/C(S Ln(P)) is a simple group

(II) -Let E = Pn andϕ a non-degenerate bilinear form overE

(a) S pn(P)-If ϕ is an alternating form,then the the set of all ma-
trices inGLn(P) which leave this bilinear form invariant is a
group called the linear symplectic group. We shall denote the
by S pn(P). This group is independent of the choice of the

63
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alternating bilinear form because any two such bilinear forms
are equivalent.

(b) If ϕ is a symmetric non-degenerate bilinear form, then the set
of elements inGLn(P) leavingϕ invariant is group called the
linear orthogonal group.

(III) Let P̃ be a separable quadratic extension ofP. Let ξ → ξ̄ be the
unique nontrivial automorphism of̃P. If ϕ is a non-degenerate
Hermitian bilinear form overE i.e.,ϕ(y, x) = ϕ(x, y), then the75

setUn(ϕ,P) of elements ofGLn(P) leavingϕ invariant is a group
called the unitary group.

(IV) Let P̃ be a division algebra of finite rank overP, such thatP is the
centre ofP̃. We defineGLn(P) as in I (a). The groupS Ln(P) can
be defined as the kernel of the mapσ(determinant of Dieudonne)
from GLn(P) to P̃∗/C whereC is the commutator subgroup ofP∗.

(V) Let P̃ be the algebra of quaternions overP. In this case there
exists an involution iñP i.e., an anti automorphism of̃P of order
2. So we can define as in (3) the groupUn(ϕ,P) which leaves
invariant the bilinear formϕ over P̃n. As in (1) one can define
S0n(ϕ,P) and S Vn(ϕ,P) and prove that their projective groups
are in general simple.

Suppose thatP is a locally compactp-adic field. All the groups of
type (1), (2) and (3) are locally compact, because onMn(P) (the set of
all nχn matrices with coefficients fromP) we have the topology ofPn2

andGLn(P) is an open subset ofMn(P) and the groupsS Ln(P) etc.are
closed subgroups ofGLn(P).

Let us assume that the rank of̃P over P in (4) is r. ThenMn(P̃)
may be imbedded inMnr(P), as P̃n can be considered as a space of
dimension nr overP, since a matrix is inversible inMn(P̃) if and only if
it is invertible inMnr(P), we have

GLn(P̃) = GLnr(P) ∩ Mn(P̃)

But GLnr(P) is an open subset ofMnr(P), thereforeGLn(P̃) is an
open subset ofMn(P̃). SinceMn(P̃) is locally compact, because it has76
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the same topology as thẽPn2
,GLn(P̃) is locally compact.Un(ϕ, P̃) is

locally compact, because it is a closed subgroup ofGLn(P̃).

2 Study ofGLn(P̃)

By P̃ we shall mean a division algebra of finite rank overP, which is
a locally compact valuated field, contained in the centre ofP̃. Let Õ

denote the ring of integers of̃P
As we have already seen that̃O is a compact subset of̃P, there-

fore Mn(Õ) which is homeomorphic toOn2 is compact inMn
˜(P̃). Let

GLn(Õ) be the set of elementsMn(Õ) which are invertible inMn(Õ).
ObviouslyGLn(P̃) containsGLn(Õ). Therefore

GLn(Õ) = GLn(P̃) ∩ Mn(Õ) ∩ [GLn(P̃) ∩ Mn(Õ)]−1

Since Õ is open inP̃,Mn(Õ) is open inMN(P̃). ThereforeGLn(Õ)
is open inMn(Õ). Similarly GLn(Õ) is open inGLn(P̃). Moreover
GLn(Õ) is closed inMn(Õ). For, let (Xp) be a sequence of elements in
GLn(Õ) such thatXp tends toX ∈ Mn(Õ) asp tends to infinity. Because
Mn(Õ) is compact, we can assume thatX−1

p has a limitZ in Mn(Õ). But
thenZX = XZ = I , thereforeX belongs toGLn(Õ). HenceGLn(Õ) is
compact.

We define in the following some subgroups ofGLn(P̃), which will
be of use later on.

(i)

Γ =


γ =



a1 ∗
. . .

0 an


|γ ∈ GLn(P̃)



where(*) indicates that there may be some non-zero entries.

(ii)

T =


t =



π̃α ∗
. . .

0 π̃α


|t ∈ GLn(P̃), αi ∈ Z



π̃ being a uniformising parameter iñP 77
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(iii)

N =


n =



1 ∗
. . .

1 1





(iv)

D =


d =



a11 0
. . .

0 a1n



∣∣∣∣∣∣ai j ∈ P̃, ai j , 0



(v)

∆ =





π̃α1 0
. . .

0 π̃αn



∣∣∣∣∣∣αi ∈ Z



We see immediately thatT = ∆N andΓ = DN. MoreoverT is a
solvable group, Γ is solvable ifP̃ is commutative andT (respectivelyΓ)
is a semi direct product of∆ andN(respectivelyD and N).

Proposition 1. GLn(P̃) = G = TK, where K= GLn(Õ).

Proof. Whenn = 1, the proposition is trivially true. Suppose that it is
true for all GLs(P̃) for s ≤ n − 1. We shall prove it forGLn(P̃). Let
g = (gi j ) be an element ofG. We can find integers (k j1)1≤ j≤n such that

n∑

j=1

gi j k j1 = 0 for 2≤ i ≤ n

= a11 , 0 for i = 1.

By multiplying on the right with a suitable element of̃P we can take78

atleast one ofk j1 to be 1. Letk = (γi j ) be a matrix, whereγi1 =

ki1 for i = 1, 2, . . . , n with k ji = 1, γ jr = 0 for r = 2, . . . , n and the other
γi j are so determined thatk belongs toK.

So we get

gk =

(
a11 ∗

0 ∗

)
=

(
π̃ 0
0 1

) (
1 ∗

0 g′

) (
y 0
0 1

)

whereg′ is n− 1 × n− 1 matrix anda11 = π̃
αy, y ∈ O∗. �
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But by induction hypothesisg′ = t′k′ wheret′ belongs toT′ and
k′ ∈ K′ the subgroupsT′ andK′ defined inGLn−1(P̃) in the same way
asT andK in G Thus we get

(
1 ∗

0 g′

)
=

(
1 ∗k′−1

0 t′

) (
1 0
0 k′

)

This implies that

gk=

(
π̃α 0
0 1

) (
1 ∗k′−1

0 t′

) (
1 o
0 k′

) (
y 0
0 1

)

= t1k1, t1 ∈ T andk1 ∈ K.

Hence our result follows:
We shall now prove an analogue of Elementary divisors theorem.

Let A be a ring with unity (but without any other condition). Let us
consider the following assertions(where module signifies left module):

(I a) any finitely generated module is isomorphic to a direct sum
i=r
⊕
i=1

A/ai, where ai are left ideals withA , a1 ⊃ · · · ⊃ ar 79

(I b) Such a decomposition, if it exists, is unique.

(II a) if M is a free module of finite type andN a finitely generated
submodule ofM, there exists a basise1, . . . , er and r elements
α1, . . . , αr of A such thatαi+1 ⊂ Aαi and such thatN is the direct
sum of submodulesAαiei .

(II b) if such elementsei andαi exist, the idealAαi are independent of
the choice of theei andαi satisfying (II a).

(III a) if g is am×n matrix with coefficients in A, there exists twom×m
andmxninvertible matricesp andq such thatd = pgq is am× n
“diagonal” matrix(i.e.,di j = for i , j) andαi = dii ∈ Aαi+1.

(III b) if such matricesp andq exist, the idealsAαi are independent of
the choice ofp andq (satisfying(III b)).
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It is obvious that (III a) implies (IIa): consider a basisx1, . . . , xn of M
and a system of generatorsy1, . . . , ym of N and define the matrix g by
y j =

∑
gi j xi. Thenei =

∑
(q−1)ik xk is basis ofM and theαiei =

∑
pikyk

generateN. if a is left Noetherian then (IIa) implies (Ia), for any finitely
generated module is a quotient M/N, with M free of finite type andN
finitely generated. Conversely,it is obvious that (I a) implies (II b) and
(II b) implies (III b).

It is well known that all these six assertions are true if A is acom-
mutative principal ideal ring (without zero divisors )(seefor instance
Bourbaki, Alg., ch VII, §4). We shall now prove the followingexten-
sion:

Theorem.Let A be a ring with unity (but A may be non-commutative80

and may have zero divisors),which satisfies the following conditions:

1) any left or tight ideal is two sided (equivalently, Ax=xA for any x∈ A

2) the set of the principal ideals is totally ordered by inclusion (hence
any finitely generated ideal is principal).

Then, the assertions (IIIa) and(Ia) are true (hence also(IIa),
and (IIIb ). If moreover A dis Noetherian (that is if any ideal is prin-
cipal),then(Ia) is also true

Proof of (III a): the result is obviously true formn = m = 1.
Assume it is proved for (m− 1) × (n − 1) matrices. Let us consider the
ideals Agi j : by(2) they are all contained in one of them, and we can
assume without loss of generality, thatg ji ∈ Ag11 for any indices i,j. Let
gi1 = cig11 for 2 ≤ i ≤ m. By multiplying g on the left by am×mmatrix
k where

k =



i 0 · · · 0
−c2 1 0· · · 0

· · ·

−cm o · · · 1



we get a matrix kg with (kg)11 = g11 and (kg)i1 = 0 for i ≥ 2. Moreover,
the matrixk is invertible. Similarly, using the fact thatgi j ∈ g11A. We



2. Study ofGLn(P̃) 69

find an× n inversible matrixh such that

kgh=



g11 0 · · · 0
0

g′

0



Now, we have just to apply the induction hypothesis tog′ (remember 81

that all the coefficients ofg, hence ofg′ belong toAg11).

Proof. (Ib): more generally, we shall prove that assumption 1) alone
implies (Ib). �

Let M =
n∑

i=1
A/ai =

m∑
j=1

A/bi , with a1 ⊃ a2 ⊃ · · · ⊃ an andb1 ⊃ b2 ⊃

· · · ⊃ bm, ai , A andbi , A for any i. Thenm = n andai = bi for i =
1, 2, . . . , n.

Proof. Let x′i (respectivelyy′j) be the canonical generator ofA/ai (re-
spectivelyA/b j) and xi (respectivelyy j) the canonical image ofx′i (re-

spectivelyy′j) in M. Theny j =
n∑

i=1
ai j xi , whereai j ∈ A and is determined

completely moduloai and therefore moduloai . Similarly xi =
m∑

k=1
bkiyk,

wherebki ∈ A and is completely determined modulob1. Let m be a
maximal left ideal containingb1. We see immediately that m is a two

sided ideal andA/m is a division algebra. Sincey j =
n∑

i=1
ai j =

n∑
i=1

bkiyk,

we have
n∑

i=1

ai j ≡ δk j (mod m)

But this is possible only whenn ≥ m, because ifVm andVn are
two vector spaces over a division ring of dimension m and n respec-
tively such thatϕ andψ are two linear transformations fromVm to Vn

andVn to Vm respectively. thenϕψ = I implies thatψ is an isomor-
phism ofVm onto a subspace ofVn. In the same way we get thatm≥ n.
Hencem= n. �
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If possible let us suppose thatai , bi for somei. Let us suppose that82

there exists an element a inai which does not belong tobi . Consider the
setaM, it is a submodule ofM. Therefore

aM =
n∑

i=1

aA/aA∩ ai =

n∑

i=1

aA/a∩ ai

because every left principal ideal inA is a right principal ideal inA. Let
x ∈ A → xa ∈ Aa be a map fromA to Aa/aA∩ ai , its kernel is the
set {x|xa ∈ ai} = B. Therefore we get thatAa/aA∩ ai is isomorphic
to A/B. MoreoverA/B = (0) if and only if a belongs toai . Now rank
of aM=number ofai such that a does not belong toai . Since a belongs
to ai , a belongs toa j for j ≤ i, therefore rank of aM ≤ n − i. On the
other hand rank ofaM = number ofb j , such that a does not belong to
b j . Since a does not belong tobi , rankaM > n− i. Hence we arrive at a
contradiction. Thusai = bi and our result is proved.

Remark. It can be shown that the six assertions (I a ) to (III b) are true
if the ring A satisfies the conditions 1) and:

1) any ideal is principal;

2) A has no zero divisors.

The proof works exactly as in the commutative case (see Bourbaki, loc.
cit.)

Obviously, the ringÕ of the integers of any valuated non - commu-
tative field satisfies 1)and 2).Moreover we have in this casedii = ˜(π)

βi

with yi ∈ Õ∗ and 1≤ i ≤ r anddii = 0 for i > r. The diagonaln × n
matrix y defined byyii = yi for 1 ≤ i ≤ r andyi = 1 for i > r is invert-
ible and multiplying d on the right byy−1 andq on the left byy, we get83

a decompositiong = p′d′q′ wherep′ andq′ are invertible andd′ is a
diagonal matrix whose diagonal coefficientsπ̃βi are positive powers of
the uniformising parameter̃π with β1 ≤ · · · ≤ βr , and theβi are com-
pletely determined by these conditions (we used the fact that ideal inÕ

is generated by one and only one power ofπ̃).



2. Study ofGLn(P̃) 71

Now, let us return to the groupG. For anyn-tuple of rational inte-
gers,α = (α1, . . . , αn), let dα be the diagonaln× n matrix with diagonal
coefficientsπ̃αi and let∆+ be the subset of the subgroup∆ consisting of
the matricesdα with α1 ≤ · · · ≤ αn.

Proposition 2. In each double coset KgK modulo K, there exists one
and only one element of∆+.

Proof. Let g = (gi j ) be any element ofG. Multiply g by a diagonal
matrix (aii ), whereaii = ak, a ∈ P, v(a) > 0 and k is a sufficiently large
integer so chosen that the matrixg′ = g(aii )belongs toK. Then by the
above theorem there exist matricesp′ andq′ in K such that

g(aii ) = g′ = p′dβq′ with dβ ∈ ∆+

Let us takeαi = βi − kv(a). Then we haveg = pdαq with q, p in K and
dα in ∆+. Conversely ifg belongs toKdαK. theng′ belongs toKdβK.
But dβ is unique, thereforedα is unique. �

Corollary 1. K is a maximal compact subgroup of G.

If possible letH ⊃ K be a compact subgroup ofG. Obviously there
existsα , 0 such thatdα belongs toH. Then

(dα)r =



π̃α1r 0
. . .

0 π̃αnr



If αi , 0, thenv(πrαi → ±∞ asr → ±∞, which is a contradiction as84

v is a continuous function form̃P to R. HenceH = K.
Let E be a vector space over̃P. Let I be a lattice inE i.e., a finitely

generatedÕ module such that its basis generateE. SinceI has no tor-
sion, basis ofI is a basis ofE. In particular if we takeE = P̃n and
I = Õn and if we identifyG with the group of endomorphisms ofE,
theng ∈ K and only if g(I)=I. Moreover if we take any latticeL, then
the subgroup ofG which leavesL invariant is a conjugate subgroup of
K.
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Let H be a compact subgroup ofG. Let e1, . . . , en be a basis ofE.
Let J be anÕ-module generated by the elementsh(ej ), 1 ≤ j ≤ n and
h ∈ H. Evidently we have

(1) J is invariant byH

(2) J ⊃ I

(3) The maph→ h(ej) is a continuous map fromH to E.

But H is compact, therefore the image ofH in E by the map defined in
(3) is compact and hence bounded. Therefore there exists an integerk
such thatJ ⊂ π̃−kI , which shows thatJ is finitely generated, butJ ⊃ I ,
thereforeJ is generated by a finite set of element which generateE.
HenceJ is a lattice. ThusH is contained in a conjugate subgroup of
K namely the subgroup ofG which leavesJ invariant. Hence we have
proved the the following.

Corollary 2. Any two maximal compact subgroups of G are conjugates
and any compact subgroup of G is contained in a maximal compact
subgroup of G.

Remark 3. Any double cosetKxK, x ∈ G, is a finite union of left cosets85

moduloK, becauseK is open and compact, therefore every double coset
and left coset moduloK is open and compact.

We introducea total ordering inZn by the lexicographic order i.e., if
α = (α1, · · · , αn) andβ = (β1, · · · , βn) are two elements ofZn, then we
say thatβ > α if βi > αi, for the least indexi for whichβi , αi.

Proposition 3. If NdβK ∩KdαK , φ, whereα · β are in Zn and dα ∈ ∆+

thenβ ≥ α and NdαK ∩ KdαK = dαK.

Proof. Let ndβ belongs to Ndβ K∩ KdαK, where

n =



1 ∗
. . .

0 1


, dβ =



π̃β1 0
. . .

0 π̃βn
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Thenndβ belongs toKdαK. But ndβ belongs toKdαK if and only

if the invariant factors ofndβ are
α1
π̃ , · · ·

αn
π̃ . Therefore we get that ˜πα1

divides π̃βi for i = 1, 2, · · · , n. If α1 < β1, our assertion is proved. If
α1 = β1, then we multiply the matrixndβ on the right bya matrix δ,
where

δ =



1 −π̃α1a12 · · · −π̃
α1a1n

0 1 · · · 0
0 0 · · · 1



if

ndβ =



π̃α1 a12 · · ·a1n

0 π̃β2

. . .

· · · ∗

0 0 π̃βn



So we get 86

ndβδ =



π̃α1 0 · · ·0
0 π̃β2

. . .

∗

0 0 π̃βn


=

(
π̃α1 0
0 g′

)

It is obvious thatδ belongs toK. Therefore ndβδ is in KdαK, which
means that its invariant factors are ˜πα1, · · · , π̃αn. Thusπ̃α2, · · · π̃αn are the
invariant factors forg′, which implies thatg′ belongs toKn−1dα − Kn−1

with obvious notations. Our assertion is trivially true forn = 1. If we
assume that it is true for all groupsGLr ˜(P) for r ≤ n− 1, we getα ≤ β.
But α = β, thereforeα ≤ β. We prove the second assertion also by
induction onn. For n = 1, it is trivially true. Let us assume that the
results is true for all groupsGLr(P) for r ≤ n− 1. We have to show that
d−1
α ndα belongs toK if ndα belongs toKdαK Let us suppose that

n =



1 a12 · · ·a1n

0 1
. . .

∗

0 0 0



Since ndα belongs toKdαKπ̃α1 dividesa1i for i = 2, · · · , n. Obvi-
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ously

d−1
α ndα =



1 x12 · · · x1n

0 1 y
0 0 1

 =
(
1 X
0 g′

)

whereX consists of integersxi j = π̃
−α1ai j , andg′ is a (n − 1 × n − 1)87

mat rix of the formd−1
α−

n′dα− and the invariant factors ofn′dα− are
π̃α2, · · · , π̃αn. Therefore by induction hypothesisg′ belongs toKn−1.
This shows thatd−1

α ndα belongs toK. �

3 Study ofOn(ϕ,P)

In this section we shall prove some of the results of §2 for thegroup
G = On(ϕ,P).The same results can be proved for other such groups of
GLn(P) namelyS Ln(P) etc. with obvious modifications. Throughout
our discussionP will denote a locally compactp-adic field such that
K = OP|YP has characteristic different from 2.

Definition 1. Let E bea vector space of dimensionn overP. A subspace
F ⊂ E is calledisotropic with respect toϕ (a bilinear form asE) if there
exists an elementx in F such thatϕ(x, y) = 0 for everyy in F, in other
words the bilinear form when restricted toF is degenerate.

Definition 2. A subspaceF ⊂ E is calledtotally isotropic with respect
to ϕ if the restriction ofϕ to F is zero i.e.,ϕ(x, y) = 0 for everyx, y in
F.

It is obvious from the definition that the set of totally isotropic sub-
spaces ofE is inductively ordered. Therefore there exist maximal totally
isotropic subspaces ofE. They are of the same dimension, which we call88

the index ofϕ. If index of ϕ = 0, ϕ is calleda non-isotropic form.
Witt’s decomposition. Let E1,E2 and E3 be three subspaces ofE

such that

(1) E = E1 ⊕ E2 ⊕ E3

(2) E1 andE3 are totally isotropic.
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(3) E1 + E3 is not isotropic.

(4) E2 is orthogonal toE1 + E3 i.e., for x in E2, ϕ(x, y) = o for every
y ∈ E1 + E3.

It can be proved that for the vector spaceE = Pn, there existsa Witt
decomposition and we can findabasise1, e2, · · · , er of E1, er+1, · · · , er+q

of E2 ander+q+1, · · · , en of E3, where 2r + q = n, in sucha way that
ϕ(ei , ej) = δi,n+1− j for 1 ≤ i ≤ r and r + q < j ≤ n.(I ) and that

rr+1, · · · , er+q is an orthogonal basis forE2. Clearly the matrix of the
bilinear formϕ with respect to this basis ofE is

Φ =



O O S
O A O
S O O

 whereS =



0 0 1
0 1 0
1 0 0



andA is a q× q matrix, which is the matrix ofϕ restricted toE2.
We shall now completely determine the restriction ofϕ to the non

- isotropic part. For simplicity we assume thatr = 0 andq = n. Let
e1, · · · , eq be an orthogonal basis ofE. If x = (x1, · · · , xq) is a point

of E with respect to these basis. Thenϕ(x, x) =
q∑

i=1
ai x2

i with ai ∈ P.

If
−a j

ai
for i , j is in (P∗)2, then the vector (o, · · · , a j , · · · , ai , · · · , o) 89

is an isotropic vector ofϕ, which is not possible. Thereforeai . a j

(mod P∗2), which implies thatq ≤ 4. We shall say that two bilinear
forms ϕ andϕ′ are equivalent if there existsa linear isomorphism of
the space ofϕ onto the space ofϕ′ and a constantc , 0, such that
ϕ′ ◦ λ = ◦ϕ. Then it can be proved that every non-isotropic bilinear
form overE is equivalent to one and only one of the following type:

(1) q=4

(a) x2
1 −Cx2

2 − πx2
3 +Cπx2

4

(2) q=3

(a) x2
1 −Cx2

2 − πx2
3
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(b) x2
1 −Cx2

2 −Cπx2
3

(3) q=2

(a) x2
1 −Cx2

2

(b) x2
1 − πx2

2

(c) x2
1 −Cπx2

2

(4) q=1

(a) x2
1

(5) q=o

(a) TheO-form as where (1,C, π,C π) is a set of representatives of90

P∗modulo (P∗)2 as obtained in Corollary 2 of Hensel’s Lemma.

We shall say thata basisei , . . . , en is a Witt basis forϕ if the relations
in (I) are satisfied and if the restriction ofϕ to E2 has one of the above
forms. It is obvious that forϕ or for a constant multiple foϕ, we can
always find a Witt besides and the matrix ofϕ with respect toa Witt
basis is independent of the choice of the Witt basis.

Proposition 4. If M = Mq(P) is a matrix such that M′AM belongs to
Mq(O) (M′ denotes the transpose of the matrix M and A denotes the
matrix of the restriction ofϕ to E2), then M belongs to Mq(O).

Proof. We prove first that if forx ∈ E, ϕ(x, x) is in O, then the co-
ordinates ofx are in O. Let us assume for instance thatq = 4. If
possible letv(x1) < 0 andv(x1) ≤ min(v(x2), v(x3), v(x4)). Suppose that
v(x1) = α. Sincev(x2

1 − cx2
2 − πx2

3 − cπx2
4) ≥ 0 we havex2

1 − Cx2
2 ≡ o

(mod Y 2r+1), wherer = max(0, α). Therefore (π−αx1)2− s(π−αx2)2 ≡ 0
(mod Y ).

But this is impossible, becauseC is nota square ink. Thus our result
is established. The other cases can be similarly dealt with. �

Let M = (mi j ), thenM′AM = (γi j ) whereγi j = ϕ(m1i , · · · ,mqimq j),
If M′AM belongs toMq(O) thenγii belongs toO, which implies that
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mri belongs toO for i, r = 1, 2, · · · , q. It is obvious that it is sufficient to
assume that only the diagonal elements ofM′AM are inO.

In the following we shall be dealing witha fixed Witt basis of the 91

spaceE. We shall adhere to the following notations throughout our
discussion.

Ko = G∩ K,To = G∩ T,No = G∩ N,∆o = G∩ ∆+ and

d◦α =



π−α1

. . .

π−αr 0
1 . . .1

παr

. . .

πα1



whereα = (α1, · · · , αr)

Proposition 5. G = ToKo

Proof. We have already proved thatGLn(P) = TK. Thereforeg ∈ G
implies thatg = tk wheret andK belong toT andK respectively. We
know that det (g) = ±1 and det (k) belongs toO∗. So det (t) belongs to
O∗. But det (t) is a power ofπ, therefore det (t) = 1. Now g belongs
to G if and only if g′Φg = Φ i.e., t′Φt = k−1′ΦK−1. Sincek−1′Φk−1

belongs toMn(O), t′Φt belongs toMn(O). �

Let us suppose that

t =



a1 X Z
O a2 Y
O O a2



then t′Φt =



o O a′1S a3

o a′2Aa2 X′S a3 + a′2AY
a′3S a1 Y′Aa2 + a3S X Z′S a3 + Y′AY+ a′3S Z.



This shows thata′1S a3 anda3 anda′2Aa2 belong toMn(O). More- 92
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over, we have 1= dett = (deta1)(deta2)(deta3) and (deta2) and
(deta1). (deta3) belong toO (for, a′1S a3 belongs toMn ( O)). So deta2

belongs toO∗ implying a2 belongs toK. By above proposition we get
that the matrixa2 has coefficients fromO. We shall finda matrix δ in
T ∩ K such thattδ belongs toG. Theng = tK = tδδ−1K implies that
δ−1K belongs toKo and our result will be proved. Multiply the matrixt
by the matricesh andh′ on the right. where

h =



b 0 0
0 a−1

2 0
0 0 1

 , h′ =



1 ξ ζ

0 1 0
0 0 1



we get t h h′ =



a1b a1b+ a−1
2 X a1bζ + z

0 1 Y
0 0 a3



We shall determine the matricesb, ξ and ζ in sucha way that t h h′

belongs toG. Now t h h′belongs toG if and only if
(t h h′)′Φ(t h h′) = Φ i.e., if and only if the following conditions are

satisfied

b′a′1S a3 = S (1)

AY+ X′a−1
2 S a3 + ξ

′b′a′1S a3 = 0 (2)

a′3S a1bζ + a′3S Z+ y′AY+ ζ′b′a′1S a3 + Z′sa3 = 0 (3)

Let us takeb′ = S(a′1S a3)−1. Thenh belongs toK ∩ T and the
conditions (2) and (3) reduce to93

AY+ X′(a−1
2 )′S a3 + ξ

′S = 0

Sζ + a′3S Z+ Y′AY+ ζ′S + Z′S a3 = 0

So if we takeSξ′ = −AY− X′a−1
2 S a3 and sζ = −

1
2

V whereV =

a′3S Z+ Y′AY + Z′S a3, we see that the matrixthh′ belongs toG. It
is obvious that the matrixhh′ belongs toT ∩ K.Hence we getg =
thh′.(hh′)−1k = t◦k◦, which proves our result completely.

Definition. Let I bea lattice inE. TheO moduleN(I ) generated by the
set of elementsϕ(x, y) for x, y in I is called thenorm of the latticeI .
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A lattice I is called a maximal lattice if it is maximal among the
lattices of normN(I ). It is easy to see that any lattice of a given norm
is contained ina maximal lattice of the same norm. The latticeIo gen-
erated by the Witt basis (e1, · · · , en) of E is a maximal lattice of norm

On. Let I bea lattice of normO containingIo. Let x =
n∑

i=1
xiei be any

element inI . Thenϕ(x, ei) = ±xn+1−i for 1 ≤ i ≤ r andr + q < i ≤ n.

let y=
r+q∑

i=r+1
xiei , sinceϕ(y, ej) is an integer forr + 1 ≤ j ≤ r + q, x j is

an integer forr + 1 ≤ q + r. Hencex belongs toIo. ThereforeIo is a
maximal lattice.

Theorem 2. Let I1 and I2 be two maximal lattices of normO, then there
exists a Witt basis( f1, f2, · · · , fn) of E and r integers

αi ≥ · · · ≥ αr ≥ 0, such that (r=indexϕ)

(1) I1 is generated by( f1, f2, . . . , fn) 94

(2) I2 is generated by

(
−α1
π f1, . . . ,

−αr
π fr , fr+1, . . . , fr+q,

αr
π fr+q+1, . . . ,

α1
π fn

)
.

Proof. We shall prove the theorem by induction onr. Whenr = 0, ϕ is
non-isotropic and there exists only one maximal lattice of normO which
is generated by any witt basis ofE. Let us assume that the theorem is
true for all bilinear forms of index< r. We first prove the following
result. �

If I is a maximal lattice of normO andX is an isotropic vector inI
such thatπ−1X does not belong toI , then there exists an isotropic vector
X′ ∈ I such thatϕ(X,X′) = 1.

If possible let us suppose that the result is not true. Let us assume
that ϕ(X,Y) belongs toY for everyY in I . Thenϕ(π−1X,Y) belongs
to O. ConsiderI ′ = I + Oπ−1X. It is a lattice becauseI ′ is finitely
generatedO module containingI . Moreover

ϕ(Y + απ−1X,Z + βπ−1X) = ϕ(Y,Z) + αϕ(π−1X,Z) + βϕ(π−1X,Y) is
an integer for everyα, β in O. Therefore norm ofI ′ is O. But this isa
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contradiction becauseI is a maximal lattice of normO. Therefore there
existsa vectorY in I such thatϕ(X,Y) belongs toO∗. By multiplying
Y by some inversible element ofO, we geta vectorY′ in I such that
ϕ(X,Y′) = 1. Let us take

X′ = Y′ −
1
2
ϕ(Y′,Y′)X. Obviouslyϕ(X,X′) = 1 andϕ(X′,X′) = O.

Now we shall prove the theorem. For every isotropic vectorX ∈ I1

(respectivelyI2) let t(X) (respectively u(X)) denote the smallest integer95

such that
t(x)
π X (respectivelyπu(X)X) belongs toI2(respectivelyI1). Such

an integer exists. becauseI1 is anO-module of finite type andI2 gen-
eratesE, therefore there exists an integert such thatπtI1 ⊂ I2. Thus
t(X) ≤ t always. LetX be an isotropic vector inI1 such thatπ−1X
does not belong toI1. ThenY = πt(X)X belongs toI2 andπ−1Y does
not belong toI2. Sinceπ−1X does not belong toI1, it is obvious that
u(Y) = −t(X). By the above result there existsa vectorX′ in I1 such that
ϕ(X,X′) = 1 andϕ(X′,X′) = 0. This shows thatπ−1X′ does not belong
to I1. By the definition oft(X) andt(X)′ we get that

ϕ
(
πt(X)X, πt(X′)X′

)
= πt(X)+t(X′)

Sinceϕ(πt(X)X, πt(X)X, πt(X′)X) belongs to0, we get that

t(X) + t(X′) ≥ 0. (1)

Similarly there exists an isotropic vectorY′ in I2 such that

ϕ(Y,Y′) = 1andu(Y) + u(Y′) ≥ 0.

Let Z = πu(Y′)Y′, thent(Z) = −u(Y′)
Therefore we get

t(X) + t(Z) ≤ 0 (2)

obviouslyZ is isot ropic andπ1Z does not belong toI1. Therefore there
existsa vectorZ′ in I1 such thatϕ(Z,Z′) = 1 andϕ(Z′,Z′) = 0 and

t(Z) + t(Z′) ≥ 0 (3)

Let us suppose that the vectorX is so chosen thatt(X) is of maximum
value, which exists becauset(X) ≤ t for everyX for some integert.
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Therefore in particular we gett(Z′) ≤ t(X). From (2) and (3) it96

follows that

t(X) + t(Z) = 0

t(X) + t(Z′) = 0

Thus we have found two vectorsX andZ in I1 such thatπα1X and
π−α1Z whereα1 = t(X) belong toI2 and

ϕ(Z,X) = ϕ(π−t(Z)Y′, πt(X)Y) = 1.

Let F denote the subspace ofE orthogonal to the subspace ofE
generated by the vectorsX andZ.Obviouslyϕ restricted toF is non -
de- generate and its index isr − 1. MoreoverI1 = OX ⊕ OZ ⊕ F ∩ I1,

because for anya in I1 we have
a = λX + µ Z + b, whereλ andO belong toρ andb belongs toF.
But ϕ(a,X) = µ, therefore it is an integer, similarlyλ is an integer.

Thus b belongs toI1 and the assertion is proved. Similarly we have
I2 = Oπα1X⊕Oπ−α1Z⊕ I2∩ F. It can be easily sen thatI j ∩ F( j = 1, 2)
is a maximal lattice of normO. Hence by induction hypothesis there
existsa Witt basis f2, f3, · · · , fn−1 of F and there exist r-1 integersα2 ≥

− − αr ≥ o such that

(1) f1, f2, · · · , fn−1 generateI1 ∩ F.

(2)
−α2
π f2, . . . ,

−αr
π fr , fr+1, . . . , fr+q,

αr
π fr+q+1′

α2
π fn−1 generateI2 ∩ F.

If we take f1 = Z, fn = X andα1 = t(X) we geta Witt basis (f1, · · · , fn) 97

of E andr integersα1, · · · , αr satisfying the requirements of the theorem
becauseα2 = t( fn−1) ≤ α1.

Corollary 3. The group G acts transitively on the set of lattices of norm
O.

The mappingg defined by

g( fi ) = π
γ fi , where

γ = αi for 1 ≤ i ≤ r
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= O for r + 1 ≤ i ≤ r + q

= 2r + q− i + 1 for r + q+ 1 ≤ i ≤ 2r + q.

leavesΦ invariant. Thereforeg belongs toG.

Proposition 6. In each double coset of G modulo Ko there exists one
and only one element dα of ∆o

+.

Proof. Let g be any element ofG. We shall denote byg itself the au-
tomorphism ofE with respect to the initial Witt basis(e1, · · · , en). The
latticeg(Io) is obviouslya maximal lattice of normO. Therefore by the
above theorem we geta Witt basis (f1, · · · , fn)of E such that

(1) Io is generated byf1, · · · , fn,

(2) g(Io) is generated byg1, · · · , gn wheregi = π
γ fi with

γ as defined in the corollary of above theorem. Letk1 (respectivelyk2)
be the matrix with respect to the basise1, . . . , en) (respectivelyg! , g2,

. . . gn) of the automorphismk1 (respectivelyk2) defined byk1(ei) = fi
(respectivelyk2(gi) = g(ei )) for i = 1, 2, · · · , n. We see immediately
that the matrixK1 and K2 are in Ko. Moreover the matrix of the
automorphismfi → gi with respect to the basisfi is do

α whereα =
(α1, α2, · · ·αr ). �

It is obvious that98

g(ei ) =
∑

j

(k2)
ji

g j

=
∑

j,k

(k2)
ji
(doα)k j fk

=
∑

j,k,l

(k2)
ji
(doα)k j (k1)

lk
el

Thus we getg = k2 d0
α k1, which meansdα belongs toK0gK0.The

uniqueness part of the propositional follows from the uniqueness ofdo
α

in K x K for x in GLn(P).
We introduce a total ordering inZn which is inverse of the lexico-

graphic ordering.
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Proposition 7. Letα andβ be two elements in Zr such that d0α ∈ △
0
+. If

N0 d0
β

K0∩K0 d0
α K0

, φ thenβ ≥ α. Moreover N0 d0
α K0 ∩ K0 d0

α K0 =

d0
α K0.

Proof. SinceN0 d0
β

K0 andK0 d0
α K0 are contained inN d′

β
K andK d′α K

respectively with

α′ = (−α1,−α2, . . . ,−αr , 0 · · · 0, αr , αr−1, . . . , α1)

β′ = (−β1,−β2, . . . ,−βr , 0 · · · 0, βr , βr−1, . . . , β1)

we haveN dβ,K ∩ K dα, K , φ. Thereforeβ′ ≥ α′ for the lexico-
graphic ordering introduced inZn before proposition 3 in this chapter.
It is obvious thatβ ≥ α for the new ordering ofZr . The other assertion
follows trivially from the fact that

d0
αK ∩G = d0

αK0. 2

4 Representations ofp-adic Groups

We prove here an analogue of the theorem about the representations 99

of semisimple Lie Groups in chapterI of this part. We shall give the
proof of the theorem for the general linear groupGLn(P) = G, though
the same theorem could be proved for other classical linear groups with
obvious modifications. We shall adhere to the notations adopted in the
earlier chapter.

Let λ denote a character ofT which is trivial on N. Since△ is
isomorphic toT/N, λ can be considered as a character of△. Let us
assume thatUλ

f = 0 for everyλ in △∗ (the group of characters of△) and
f ∈ L(G) such thatf , 0. We first try to find the condition under which
our assumptions are valid. Letϕ be an element ofCλ (the space of the
induced representation ofλ). Thenϕ(tx) = (ρ(t))

1
2λ(t)ϕ(x) for x ∈ G

andt ∈ T. Moreover

Uλ
fϕ(e) =

∫

G
ϕ(y) f (y)dy = 0, becauseUλ

f = 0 (I)
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Since
∑

the support off is a compact set, it intersect only a finite
number of double cosets moduloK. Let

S = S( f ) =
[
α|dα ∈ △+,

∑
∩K dα K , φ

]

α = α( f ) = min
β
{β ∈ S( f )} .

The setS is a finite non-empty set becausef , 0. Thereforeα
exists. For anydα in △+ the cosetK dα K is a finite union of left cosets
modulo K, the representatives for which could be found inT,because
G = TK. Let Iα be the set of left cosetsC moduloK such thatK dα K =⋃
C∈Iα

C, whereC = t(C)K, t(C) ∈ T. But we know thatT = N△, therefore100

t(C) = n(C) dγ(C) wheren(C) anddγ(C) belong toN and△ respectively.
Sincen(C) dγ(C) belongs toK dα K proposition 3 implies thatγ(C) ≥ α,
Thus we get thatK dα K = m

⋃
C∈ Iα

n(C) K, γ(C) ≥ α and if γ(c) = α,

then C = dα K and we can taket(c) = dα. Let us assume that the
right invariant Haar measure onG is such that its restriction toK is
normalised i.e.,

∫
k

dk = 1. Then for any left cosetC = t(C)K, we have

∫

G
f (g)dg = △(t(C))

∫

K
f (t(C)k) dk

and the equation (I ) gives

0 =
∫

G
ϕ(y) f (y) dy=

∑

β∈S

∑

C∈Iβ

△(t(C))
∫

K
ϕ(t(C)k) f (t(C)k)dk

=
∑

β

∑

C

σ(t(C))
∫

K
ϕ0(k) f (t(C)k) dk

with σ(t) = [δ(t)△(t)]

1
2 and whereϕ0 denotes the restriction ofϕ to K.

We have shown earlier thatϕ0(tx) = λ(t) ϕ0(x) for t ∈ T∩K = N∩K,
but λ(N) = 1, therefore the spaceCλ is independent ofλ. Moreover
there is only one term corresponding toβ = α in the summation, since
for othersγ(c) ≥ α. Separating the term forβ = α we getUλ

fϕ(e) =
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σ(dα)

1
2λ(dα)

∫
K
ϕo(k) f (dα k)dk+

∑
γ≥α

Qγ( f , ϕ)λ(dγ) with

Qγ( f , ϕ) =
∑

C∈Iβγ(C)=α

σ(t(C))
1
2

∫

K
ϕ0(k) f (t(C)k)dk (II)

It is obvious thatQγ( f , ϕ) is independent ofλ. For everyγ ∈ Zn, the 101

mappingdγ ∈ △ −→ χγ ∈ △
∗∗ given byχγ(λ) = λ(dγ)is an isomorphism

of the groups△ and△∗
∗

. But the characters of an abelian group are
linearly independent, therefore (II) gives usQγ( f , ϕ) = 0 for everyγ
and in particularQα( f , ϕ) = 0. Thus we obtain

∫

K
ϕ(k) f (dαk)dk = 0, for everyϕ with ϕ(nk) = ϕ(k) for n ∈ N ∩ K.

(III)
The equation (III) is true for left and right translations off by ele-

ments ofK becauseUλ
σxf
= Uλ

εxn∗ f
= Uλ

xUλ
f = 0 and

Uλ
τxf
= Uλ

f ∗εx
= Uλ

f Uλ
x = 0.

So if g(x) = f (k−1x) for k in K, we haveUλ
g = 0. ObviouslyS( f ) =

S(g) andα( f ) = α(g). Let K′α = K ∩ dαK d−1
α andKα = K ∩ d−1

α K dα
be two subgroups ofK. Now

∫

K
ϕ(k) f (dα(d−1

α hdα k))dk =
∫

K
ϕ(d−1

α hdα k) f (dαk)dk = 0

Thus the functionk → f (dα k) is orthogonal to all the functionsϕ
in Cλ = C and their left translates by the elements ofKα, whereϕ is
invariant on the left by the elements ofN ∩ K.

Lemma. For everyα ∈ Zn such that dα ∈ △+, the subgroup Kα contains
N′ ∩ K where N′ is the group consisting of the transpose of elements of
N.

Proof. By definition

dα =



πα1 0
. . .

0 παn


with α1 ≤ α2 ≤, . . . ,≤ αn. �
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102
Let h = (hi j ) be an element ofK. Then (dα h d−1

α )i j = παi−α j hi j

which shows that the groupsKα consist of matrixh in K such that
παi−α j hi j is integral. If we takeh ∈ N′ ∩ K, obviously h belongs to
Kα. ThusKα containsN′ ∩ K. This lemma shows that the groupsKα

andK′α are sufficiently big.
In addition to the above assumption aboutf , let us further assume

that f belongs toLM(G) where M is some irreducible representation
of K. Clearly M is a subrepresentation of left regular representation
of K in L2(K). Let E ⊂ L2(K) be an invariant subspace of the left
regular representationσ of K such thatσ when restricted toE is of
classM. ThereforeE ⊂ LM(K). DefineF(k) = f (dα k). We can assume
that F , 0. SinceF is transformed followingM̄ by the right regular
representation ofK, F belongs toLM(K). But F is orthogonal to all the
functionsϕ in C invariant on the left by the elements ofN ∩ K, the left
translates ofϕ by the elements ofK and the right translates ofϕ by the
elements ofK. Hence ifM satisfies the condition (S) i.e. The smallest
subspace ofE invariant byN′ and which contains elements invariant on
the left by the elements ofN ∩ K is E. ThenF is orthogonal toLM(K),
becauseLM(K) is generated by the right translates ofE. But this is a103

contradiction, becauseF ∈ LM(K). Thus we get the following

Theorem 3. The representations Uλ for λ ∈ △∗ form a complete system
of representations of the algebra LM(G) if the irreducible representation
M satisfies the condition (S ).

Corollary 1. If M satisfies (S ) then M occurs atmost (dim M) times in
any completely irreducible representation of G.

SinceUλ for anyλ in △∗ when restricted toK is a subrepresentation
of the left regular representation ofK,C ⊂ LM(K) which is a subspace
of dimension (dimM)2, thusM is contained at most (dimM) times in
Uλ. Our result follows from proposition 1.3.

Corollary 2. The identity representation of K occurs at most once in
any completely irreducible representation of G.

This follows from Corollary 1 as the identity representation satisfies
the condition (S).
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Corollary 3. If M is the identity representation of K, then the algebra
LM(G) is commutative.

The algebraLM(G) has complete system of representations of dim 1.
Therefore ifx andy are any two elements ofLM(G), thenUλ(x y) =
Uλ(y x) for everyλ ∈ △∗, becauseUλ is of dimension 1. Therefore
Uλ(xy−yx) = 0 for everyλ in △∗. But this is possible only ifxy−yx= 0
i.e., the algebraLM(G) is commutative.

Finally we try to find out what are the various representations of K
which satisfy the condition (S). It is obvious that a representation which
satisfies the condition (S) when restricted toN∩K contains the identity 104

representation ofN ∩ K. It is not known whether there exist or not
representations ofK which when restricted toN∩K contain the identity
representation but which do not satisfy the condition (S). However in
this connection we have the following result.

Theorem 4. Every irreducible representation M of K which comes from
a representation of GLn(O/Y ) and the restriction of which to N∩ K
contains the identity representation of N∩ K satisfies the condition(S).

It can be easily proved thatGLn(O/Y ) is isomorphic toK/H, where
H is a normal subgroupK consisting of the matrices (δi j +ai j ) whereai j

belongs toY . Therefore a representation ofGLn(O/Y ) gives rise to a
representation ofK.

Remark. We have proved that in the case of real or complex general
linear group the representations induced by the unitary characters ofT
form a complete system of representations of algebraL(G). But in the
case of general linear groups overp-adic fields the representations in-
duced by the characters of△ do not form a complete system. In fact
the algebraL(K) is a sub-algebra ofL(G), becauseK is open and com-
pact inG. Therefore if the representationsUλ form a complete system
for L(G), their restrictions toK will form a complete system of repre-
sentations ofL(K). But the restriction ofUλ to K is a representation
of K induced by the unit character ofN ∩ K, therefore by Frobenius
reciprocity theorem the irreducible representations ofK which occur in
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Uλ are precisely those which when restricted toN∩K contain the iden-
tity representation. But there exist representations ofK for which this
property is not satisfied.

5 Some Problems

I.

For any classical group, we have found a maximal compact sub-105

groupK. If G is the general linear group, it is easy to see that:
(i) any maximal compact subgroup is conjugate to K by an inner

automorphism;
(ii) any compact subgroup is contained in a maximal compact sub-

group. (For, letH be a compact subgroup ofGL(n, P̃) let e1, . . . , en be
the canonical basis of̃Pn. Let I0 be theÕ-module generated by theei

and letI be theÕ-module generated by theh ei for h ∈ H: becauseH is
compact, the coordinates of theh.ei are bounded and there is an integer
n ≥ 0 such thatI ⊂ π̃−nI0. HenceI is a lattice andH is contained in the
maximal compact subgroupK1 formed by theg ∈ G such thatg.I = I .
Moreover, ifg ∈ G is such thatg.Io = I , thenK1 = gKg−1.)

But for the other types of classical groups, it is not known ifthe
results (i) and (ii) are true or not. Actually, one cannot hope that (i) is
true: already inS L(n,P), we have only:

(i bis) any maximal compact subgroup is conjugate to K by an (not
necessarily inner) automorphism.

It seems possible that there exist several but a finite numberof class-
es of maximal compact subgroups: for instance, it seems unlikely that
the maximal compact subgroupK′ of the orthogonal group 0(n,P) which
leaves invariant a maximal lattice of normP is conjugate toK. But
perhaps, any maximal compact subgroup of 0(n,P) is conjugate toK or
to K′.

It may be noted that (i) and (ii) are not both true in theprojective
groupG = PGL(2,P): a maximal compact subgroupK is the canonical106

image ofGL(2, 0) in G; the determinant defines a mapd from G to
the quotient groupP∗/(P∗)n and the image of any conjugate ofK is
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contained in the imageD of 0∗ in P∗/(P∗)2. Now, let u be the image

of

(
0 π

1 0

)
in G: we haveu2 = 1 andd(u) < D. Hence, u generates a

compact subgroup which isnot contained in any conjugate ofK.

II.

It seems very likely that our results about classical groupsare valid
for any semi-simple algebraic linear group overP(at least if charP = 0).
The general meaning of the subgroupsN,D,T Γ is clear:N is a maximal
unipotent,D is a maximal decomposed torus (a decomposed torus is an
algebraic group isomorphic to (P∗)r), which normalisedN. ThenD can
be written asD = △.U, where△ ≈ Zr and U ≈ (0∗)r and we have
T = △.N. The subgroupΓ is the normaliser ofN. It can be proved
(A.Borel,unpublished) thatD andN exist in any suchG (at least if the
base fieldP is perfect) and are unique, upto an inner automorphism.
Now the problems are:

(i) define a maximal compact subgroupK;

(ii) prove thatG = T.K;

(iii) prove thatG = K.△.K and define△+ (which is certainly related
with the Weyl group and the Weyl chambers);

(iv) prove the key Lemma about the intersectionNdα K ∩ KdβK. For
(i), the simplest idea is to take a lattice I in the vector space in
which G acts, and to putK = {g|g ∈ G, g.I = I }. Then we get a
compact subgroup. But it is obvious thatK will be maximal and
satisfy (ii) and (iii) only if I is conveniently chosen. 107

Assume that charP = 0: then we may consider the Lie algebraG

of G and the adjoint representation. Then we can choose a latticeI in
G such that [I , I ] ⊂ I (in other words,I is a Lie algebra over 0);such a
lattice always exists: take a basisG and multiply it by a suitable power
of π in such a way that the constants of structure become integral. Now
there exist such lattices which are maximal, because [I , I ] ⊂ I implies
that I is a lattice of norm⊂ 0 for the Killing form ofG . As this form is
non-degenerate, it is impossible to get an indefinitely growing sequence
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of such lattices. Hence we can choose such a maximal latticeI and put
K = {g|g ∈ G, g.I = I }.

But let us look at thecompactcase: it can be shown thatG is com-
pact if any only if the Lie algebraG has no nilpotent elements. In this
case, we should haveK = G′. So we are led to the following conjec-
tures:

Conjecture 1. there is a unique lattice inG which is a maximal Lie
subalgebra over 0;

Conjecture 2. the setI if the X ∈ G such that the characteristic poly-
nomial of the operatorad Xhas its coefficients in 0, is a Lie subalgebra
over 0;

Conjecture 3. (A.Weil): any algebraic simple compact group over a
locally compactP-adic field of characteristic zero is (up to finite groups)
the quotient of the multiplicative group of adivision algebra QoverP
by its center.

It is easy to prove that (3) implies (2): the Lie algebraG is the108

quotient of the Lie algebraQ by its center and theX ∈ I are exactly
the images of the integers ofQ. It is obvious that (2) implies (1), be-
cause any Lie subalgebra over 0 is contained inI . Moreover, (3) is true
for the classical groups: we have only for compact groups thegroups
PGL1(P̃) ≈ P̃∗ / center and the orthogonal and unitary groups for an
anisotropic form; but 01 and 02 are abelian 03 gives the quaternion field,
04 is not simple, etc. But one does not know a general proof of (3).

On the other hand, we can look at the “anticompact” case, thatis the
case of the groups defined by Chevalley in (12). Then the results (i) to
(iv) can be proved (for the definition ofK and proof of (ii), see Bruhat
(10); for (iii) and (iv), my results are not yet published).

Then if one can prove one of the above conjectures, one can hope
to generalize these results to any semi-simple group by an argument by
induction on the dimension of a maximal nilpotent subalgebra ofG .

III. Extension to the representations ofK which do not satisfy
the condition (S).
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This problem is related with the construction of other representa-
tions ofG: we have seen that the representationUλ do not form a com-
plete system. Hence, by the Gelfand-Raikov theorem, there certainly
exist other irreducible unitary representations ofG.

We have two indications: first the case of a real semi-simple Lie
groupG. It seems very likely that to any class of Cartan subgroupsH
of G, corresponds a series of representations ofG, indexed by the char-
acters ofH. This has been verified in some particular cases (of.Harish-
Chandra and Gelfand-Graev). In particular, assume that there exists a 109

compact Cartan subgroupH: then in many cases (more precisely in the
cases whereG/K is a bounded homogeneous domain in the sense ofE.
Cartan (K is a maximal compact subgroup)), we can get irreducible uni-
tary representations ofG in the following way: take a characterλ of H.
take the unitary induced representationsUλ in the spaceH λ ; this rep-
resentation is not irreducible. But we have a complex-analytic structure
on G/H and we can look at the subspace ofH λ formed by the func-
tions which correspond toholomorphicfunctions onG/H. Then we get
an irreducible representation (of (22) or (21). This is in particular true
for compact semi-simple Lie groups (after Borel-Well,of (32)).

On the other hand, in the case of classical linear groups overafinite
field, for instance for the special linear groupG with 2, 3 or 4 variables,
one knows all the irreducible representations ofG and one sees that to
each class of Cartan subgroupH, corresponds a series of representa-
tions indexed by the characters ofH (of Steinberg (33)). But one does
not know how exactly this correspondence works. It seems likely that
the representationU(λ) associated with characterλ of H is a subrepre-
sentation of the induced representationUλ, and it would be extremely
interesting to get a “geometric” definition ofU(λ).

If one could get such a definition, it would perhaps be possible to
generalize it to the algebraic simple linear groups (or at least to the clas-
sical groups) over ap-adic field.

IV. Study of the algebra of spherical functions

Let M be the unity representation ofK and LetA be the algebra 110

LM(G): by our results,this is acommutativealgebra. It seems possible to
determine completely the structure ofA. The representationsUλ likely
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give all the characterŝλ of A. The λ describe a space isomorphic to
a spaceCr and the map a→ (λ̂(a)) is probably an isomorphism ofA
onto the algebra of polynomials onCr which are invariant by the Weyl
group ofG. (It seems that a recent work by Satake (unpublished) gives
a positive answer).

V. Computation of the “characters” of the Uλ.

The representationsUλ are “in general” irreducible (of (10)). More-
over, if f is a continuous function onG, with carrier contained inK, and
if f belongs to someLM(K), then it is trivial to show that the operatorUλ

f
if of finite rank, and hence has atrace. The same is obviously true iff is
a finite linear combination of translates of such functions.But the space
of those f is exactly whatI called the space of “regular” functions ofG
(spaceD(G)) and the mapf → Tr Uλ

f is a “distribution” onG(o f(10)).
A problem is to compute more or less explicitly this distribution (which
is the “character” ofUλ. It seems likely that, at least on the open subset
of the “regular” elementsg of G it is a simple function of the proper
values ofg (by analogy with the case of complex or real semi-simple
Lie groups, of works of Harsih-Chandra and Gelfand-Naimark).
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Chapter 5

Analytic Functions over
p-adic Fields

Unless otherwise statedK will denote a completed valuated field with111

a real valuationv. We shall adhere to the notations adopted in partI
throughout our discussion.

1 Newton Polygon of a Power-Series

Definition. Let f (x) =
∞∑

i=0
ai xi be a power-series overK. Let S be the

set of pointsAi = (i, v(ai )) in the Cartesian plane. The convex hull ofS
together with the pointy = ∞ on the ordinate axis is called theNewton
Polygonof the power seriesf .

It is obvious that the pointAi = (i, v(ai )) lies on the lineY+ v(x)X =
v(ai xi), wherev(ai xi) is the intercept cut off by the line on theY − axis.
If the series is convergent at the pointx = t then intercepts cut off on
the axis ofY by the lines through the pointsAi with the slope -v(t) tend
to infinity as i tends to infinity. Moreover it can be easily proved that
if (mi) is the sequence of slopes of the sides of Newton Polygon off ,

then (mi) is monotonic increasing and− lim
i→∞mi =

− lim inf
i→∞

v(an)
n
= ρ( f ) (the

order of convergence off ).

95
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2 Zeroes of a power series

Let f =
∞∑
i=0

ai xi be a power series overK. Let ρ( f ) =− lim inf
i→∞

v(ai)
i

. We

have already proved thatf is convergent for all pointsx in K for which112

v(x) > ρ( f ). Let r be a real number greater thanρ( f ). We shall try to
find the zeroes off on the circlev(x) = r. Let us assume thata◦ , 0.

(i) If there exists no side of the Newton Polygon off with slope-r,
then there exists there exists one and only term of minimum valuation
in

∑
ai xi . For, if v(x) = r anda = v(ai xi) = v(a j x j) =inf

k v(akxk), then
all the pointsAk are above the lineY + rX = a andAiA j is a side of the
Newton Polygon of slope-r. This is contrary to the hypothesis. Thus
v( f (x)) = v(ai xi) for somei and forv(x) = r, which implies that there is
no zero off on the circlev(x) = r.

(ii) If there exists a sideAp Aq of slope-r, then there exist at least
two terms of minimum valuation. Therefore there may to be a zero of f
on the circlev(x) = r. Assume thatp < q. Let v(x◦) = r for somex◦ in
K andc = v(aqxp

◦) = v(aqxq
◦). Consider the power series

f1(y) = a−1
q x−q
◦ f (x◦y) =

∑
biy

i

Obviously v(bp) = v(bq) = 0, v(bi ) ≥ 0 for i , p, q and v(y) = 0
wheneverv(x) = r. Hence without loss of generality we can taker =
0, v(ap) = v(aq) = 0, v(ai ) > 0 for i < o andi < p andi > q andaq = 1.
Therefore

f (x) = xq + · · · + apxp = xp(xq−p + · · · + ap) where ap , 0

The polynomialsxp and (xq−p + − − − + ap) satisfy the requirements of
Hensel’s lemma, therefore there exists a monic polynomialg of degree
q− p and a power seriesh, both with coefficients inO, such that

g = xq−p + · · · + ap, h = xp, f = gh

and the radius of convergence ofh is equal to the radius of convergence113

of f . Let us assume thatg = xq−p + · · · + g◦. Theng0 = ap , 0. Let us
further assume thatK is an algebraically closed field. Theng hasq− p
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zeroes inK which belong obviously toO∗. Moreoverh has no zeroes
on the circlev(x) = 0. Thus f has exactlyq − p zeroes on the circle
v(x) = 0 whereq − p is the length o the projection of the side of the
Newton Polygon off with slope 0. Ifλ1, λ2, . . . , λq−p are the zeroes of

f , onv(x) = 0 then f = h ·
q−p∏
i=1

(x− λi). We have also proved that iff is a

power series andλ is its zero on a circlev(x) = r > ρ( f ), then
f (x)

x− λ
is

also a power series with the same radius of convergence. Regarding the
zeroes off inside the circlev(x) ≥ r we prove the following.

Proposition 1. The power series f has a finite number of zeroesλ1, . . . ,

λk in the disc v(x) ≥ r > ρ( f ) and there exists a power series h such that

f (x) =i

k∏

1=1

(x− λi) · h(x) with ρ( f ) = ρ(h).

Proof. We have proved thatf (x) has zeroes on the circlev(x) = r i >

ρ( f ) if and only if there exists a side of the Newton Polygon off of slope
−r i. But we know that if (mi) is the sequence of slopes of sides of the
Newton Polygon off , thenlim

i→∞mi = −ρ( f ). Therefore there exist only a
finite number of sides of the Newton Polygon of slope−r1 < −r < −ρ( f )
i.e., there exists only a finite number ofr1 such thatr1 > r > ρ( f )
for which there are zeroes off (x) on v(x) = r1. Hence the theorem
follows. �

If f (x) =
∞∑

i=0
ai xi is convergent in a discv(x) > r, then we shall say 114

that f(x) is analyticv(x) > r.

Proposition 2. If f (x) has no zeroes in the disc v(x) ≥ r > ρ( f ) in

particular f(0) , 0, then the power series
1

f (x)
is analytic for v(x) > r.

Proof. Let us assume thatf (0) = 1. Since f has no zeroes inv(x) ≥
r,there exists no side of the Newton Polygon off of slope≤ −r. This

implies that
v(ai )

i
≥ −r for every i. Consideringf as a formal power



98 5. Analytic Functions overp-adic Fields

series overK we get

1
f
=

1
1+

∑
i>0

ai xi
=

∞∑

k=0

(−1)k

∑

i=0

ai x
i



k

=

∞∑

j=0

b j x
j

where b j =
∑

k

(−1)k
∑

i1+i2+···+ik= j

ai1 · · ·aik

Therefore v(b j ) ≥ inf
k

i,+−−+ik= j


k∑

l=1

v(ai1)

 > −
k∑

l=1

r il = −r j

⇒
v(b j)

j
> −r.

Hence ρ
(

1
f

)
≥ r. �

Proposition 3. If f is an entire function(i.e.,ρ( f ) = −∞) and has no
zeroes, then f is a constant.

Let f(x) =
∑∞

i=0 ai xi . As in the proof of the preceding proposition,
we see that:

v(a j) ≥ −r j for any r.

Hence, we have aj = 0 for j ≥ 1.115

From these propositions, we can deduce the complete structure of
entire functions:
Weierstrass’ Theorem. Let K be an algebraically closed complete field
with a real valuationv. Let f be an everywhere convergent power
series overK. Then the zeroes off different from zero form a se-
quence (λ1, λ2, . . . , λn, . . . , ) such thatv(λn) is a decreasing sequence
which tends to−∞ if the sequence (λn) is infinite and we have

f (x) = a◦x
k
∞∏

i=1

(
1−

x
λi

)
(1)

the infinite product being uniformly convergent in each bounded subset
of K. Conversely for any sequence (λn) such thatv(λn) is a decreasing
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sequence tending to−∞ asn tends to infinity, the infinite product (1)
is uniformly convergent in every bounded subset ofK and defines an
entire having zeros at the prescribed pointsλn.

Proof. We shall prove the latter part first. Consider

ϕN(x) =
i=1∏

N

(
1−

x
λi

)
=

N∑

k=0

akNxk,

where akN = (−1)k
∑

1≤i1<i2<−−−<ik≤N

1
λi1λi2 . . . λik

clearly v(akN) ≥ +

(
v

(
1
λ1

)
+ · · · + v

(
1
λ1
λk

))
= ρk. Since lim

i→∞
v(λi) =

−∞, lim
k→∞

ρk
k = ∞. Let

ϕ(x) =
∞∏

i=1

(
1−

x
λi

)
= 1+

∞∑

k=1

akxk, where

ak =
∑

1≤i1<i2<···<ik

1
λi1 · · · λik + lt

n→∞
akn

(obviously the series givingak is convergent and
v(ak)

k
≥
ρk

k
). There- 116

fore the seriesϕ(x)represents an entire function. We have to show that
the polynomialsϕN converge toϕ uniformly on every bounded subset of
K. Given two real numbersM andA there exists an integerq such that
v(akNxk) ≥ M for k ≥ q, for all x with v(x) ≥ Aand for allN,because
ρk

k
→ ∞ as k→ ∞. This implies that for anyN

v

ϕN(x) −
q∑

k=0

akN xk

 ≥ M for v(x) ≥ A. (2)

Similarly we get

v

ϕ(x) −
q∑

k=0

akN xk

 ≥ M for v(x) ≥ A. (3)
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SinceakN → aK asN tends to infinity, combining (2) and (3) we get
v(ϕ(x)−ϕN(k)) ≥ M for N sufficiently large. It can be easily proved that
theλi are the only zeroes of the functionϕ(x). �

Let us denote byf1 the product given by (1). Take a discv(x) ≥ r.
In this disc f (x) has only a finite number of zeroes. Let the zeroes off
in v(x) ≥ r be 0(k times) andλ1, λ2, . . . λp. Then

f (x) = xk
p∏

i=1

(
1−

x
λ1

)
g(x)

whereg(x) has no zeroes in the discv(x) ≥ r. Therefore
1
g

is analytic in

the discv(x) > r. Consider
f1
f
=

g1

g
=

∏∞
i=p+1

(
1− x

λi

)
1
g, whereg1 is

analytic and has no zeroes in the discv(x) > r. Therefore
f1
f

is analytic

in the discv(x) > r and has no zeroes in it. Since it is true for everyr,
f1
f

is a constant function. Hence our theorem is proved.
Form the proposition 2, we can derive some properties of the mero-

morphic functions:

Definition. A power seriesϕ =
∞∑

i=−m
ai xi over a fieldK is said to be a117

meromorphic function in a discv(x) ≥ r if and only if there exist two

functions f and g analytic in the same disc such thatϕ =
f
g

.

In any discv(x) ≥ r′ > r, g has a finite number of zeroes, therefore
g = Pg′ whereP is a polynomial andg′ has no zeroesv(x) ≥ r′ which
means that1g′ is analytic inv(x) > r′. Therefore we can can writeϕ =
f ′

P
, where f ′ = f

1
g′

is a convergent power series inv(x) > r′.

3 Criterion for the Rationality of power-series

Let F be any field andf =
∑∞

k=0 akxk an element inF
[
[x]

]
. It can be

easily proved thatf is a rational function if and only if there exists a
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finite sequences (qi )◦≤i≤h of elements ofF at least one of which is non-
zero and an integerk such that

anqh + an+1qh−1 + · · · + an+hqo = 0

for all integersn such thatn+ h > k. Let us denote byAh+1
n the determi-

nant of the matrix (an+i+ j )0≤i, j≤h.

Lemma 1.The power seriesf is a rational function if and only if there
exists integerh andn◦ such thatAh+1

n = 0 for all v > n◦.

Proof. It is obvious that the condition is necessary. We shall provethat
the condition is sufficient by induction onh. Whenh = 0, we have
an = 0 for n sufficiently large. Thereforef is actually a polynomial.
Let us assume thatAh+1

n = 0 for n > n◦. Moreover we may assume
thatAh

n , 0 for infinitely manyn, because ifAh
n = 0 for n large then by

induction hypothesis we get thatf is a rational function. SinceAh+1
n = 0 118

for n > n◦,Ah
n Ah

n+2 =
(
Ah

n+1

)2
. So it follows thatAh

n , 0 for n > n◦.
Consider the following system of linear equations

Er = an◦+r x1 + an◦+1+r x2 + · · · + an◦+h+r xh+1 = 0 for r = 0, 1, 2, ...

For anyq ≥ n◦ the system
∑

qof theh if h equationsEq,Eq+1, . . .Eq+h−1

is of rankh (becauseAh
q , 0). So has a unique solution upto a constant

factor. But the system
∑′

q of theh+ 1 equationsEq, . . . ,Eq+h is also of
rankh (becauseAh

q+1 , 0 andAh+1
q = 0) and therefore

∑′
q and

∑
q+1 on

the hand and
∑′

qand
∑

q + 1 on the other hand have the same solution.
Thus any solution of

∑
q is a solution of

∑
q+1 and any solution of

∑
no

is
a solution ofEq for q ≥ n◦. Thus we have found a finite sequence (xi)
such thatan◦+r x1+ · · ·+ an◦+h+r xh+1 = 0 for r ≥ 0. Hencef is a rational
function. �

Theorem 1. Let f(x) =
∑

ai xi be a formal power series with coefficients
in Z. Let R and r be two real numbers such that

(1) Rr > 1

(2) f considered as a power series over the field of complex numbers is 119

holomorphic in the disc|x| < R.
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(3) f considered as a power series overΩp(the complete algebraic clo-
sure of Qp) is meromorphic in the disc|x| ≤ r′ with r′ > r. (where
||p) is the absolute value associated to vp). Then f is a rational
function.

Proof. We can assume thatR ≤ 1, becauseR > 1 implies that f is a
polynomial and we have nothing to prove. Moreoverr > 1, because
Rr > 1. Sincef is meromorphic in|x|p ≤ r′, there exist two functionsg
andh analytic in|x|p ≤ r such thatf = g

h. If necessary by multiplyingf
by a suitable power ofx we can assume thatf has no pole atx = 0 and
hence thath is polynomial withh(0) = 1. Let

g
∞∑

i=0

gi x
i andh =

k∑

i=0

hi x
i

gn+k = anhk + an+1hk−1 + · · · an+k−1h1 + an+k (1)

By Cauchy’s inequality we obtain the following

(1) |as| ≤ MR−s

(2) |gs| ≤ Nr−s

By taking R and r smaller if necessary we assume that|as| ≤ R−s and
|gs|p ≤ r−s for s> s◦. Let

Am+1
n =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+k an+m

an+1 an+2 an+k+1 an+m+1

· · · · · · · · · · · ·

an+m an+m+1 an+m+k · · · an+2m

∣∣∣∣∣∣∣∣∣∣∣

wherem> k.
The equation (1) gives120

Am+1
n =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+k−1 gn+k gn+m

an+1 an+2 an+k an+k+1 · · ·

· · · · · · · · · · · · · · ·

an+m an+m+1 an+m+k−2 gn+m−k r2+2m

∣∣∣∣∣∣∣∣∣∣∣



4. Elementary Functions 103

Obviously forn > so we have

|Am+1
n | ≤ (m+ 1)!(R−(n+2m))m+1

and |Am+1
n |p ≤ (r−n)m−k+1

because|an|p ≤ 1 for everyn. If Am+1
n , 0, then

1 ≤ |Am+1
n ||Am+1

n | ≤ (m+ 1)!R−2m(m+1)rkn[Rr]−n(m+1) = k1[(R r)m+1r−k]−n

Let m be so chosen that (Rr)m+1r−k > 1. Then there exists an integern◦
such that forn > n◦

|Am+1
n ||Am+1

n | < 1.

This is a contradiction. ThereforeAm+1 = 0 for n > n◦. Hencef is
a rational function. �

Corollary. If f is a power series over Z such that f has a non-zero
radius of convergence considered as series over the complexnumber
field is meromorphic inΩp, then f is a rational function.

4 Elementary Functions

We consider the convergence of the exponential logarithmicand binom- 121

inal series in this section. We assume that the fieldK is of characteristic
0 and the real valuationv on Q induces ap-adic valuation.

The exponential seriese(x) =
∞∑

n=0

xn

n!
. Converges in the discv(x) >

1
p− 1

and in the domain of convergencev(e(x) − 1) = v(x). Let n =

a◦ + a1p+ · · · + ar pr wherepr ≤ n ≤ pr+1 and 0≤ ai ≤ p− 1. One can
easily prove that

v(n!) =

[
n
p

]
+ − − − +

[
n
pr

]
=

n− Sn

p− 1

whereSn =
r∑

i=0
ai Therefore

∴

v( 1
n! )

n
=
−1

p− 1
+

Sn

n(p− 1)
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But
Sn

p− 1
≤

(
log n
log p

+ 1

)
. Therefore lim

n→∞

v
(

1
n!

)

n
=
−1

p− 1
. Hence the

seriese(x) converges forv(x) >
1

p− 1
. If v(x) = 1

p−1, then
v(xn)

n!
=

1
p− 1

< ∞ whenevern is a power ofp. Thus the series does not con-

verge forv(x) =
1

p− 1
. The latter part of the assertion is trivial. We

see immediately thate(x + y) = e(x).e(y) ande(x) has no zeroes in the
domain of convergence.

We define log (1+ y) =
∞∑

k=1
(−1)k−1 yk

k
as a formal power series over

K. We shall show that the series log(1+ y) converges forv(y) > 0 and122

v(log(1+ y)) = v(y) for v(y) >
1

p− 1
we have

v

(
(−1)nyn

n

)
= nv(y) − v(n)

But v(n) ≤
logn
log p

thereforev
( (−1)nyn

n

)
tends to infinity asn→ ∞ when-

everv(y) > 0. On the other handv(n) = 0 if (n, p) = 1, therefore the

series is not convergent forv(y) ≤ 0. Forn > 1 andv(y) >
1

p− 1
, it can

easily proved thatv
( (−1)n−1yn

n

)
> v(y), which proves our last assertion.

Moreover forv(x) >
1

p− 1
we have the equalities

e(log(1+ x)) = 1+ x (1)

log(e(x)) = x (2)

Let

G =

{
x|x ∈ K, v(x) >

1
p− 1

}

G =

{
x+ 1|x ∈ K, v(x) >

1
p− 1

}
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be subgroups ofK+ (the additive group ofK) andK∗ respectively. The
mappingx→ e(x) is an isomorphism ofG ontoG′, the inverse of which
is the mapping 1+ x → log(1 + x). In fact the mapping 1+ y →
log(1+7) is a homomorphism of the group 1+YΩ(Ω begin the complete
algebraic closure ofK) into the subgroup ofΩ+, wherev(y) > 0.It is not

an isomorphism because itζ is ap−th root of unity, thenv(ζ−1) =
1

p− 1
and logζ = 0.

We define (1+ Y)Z =
∞∑

m=0
h(m,Z)Ym = e(Z log(1 + Y)) where

h(m,Z) =
Z(Z − 1) · · · (Z −m+ 1)

m!
as a formal power series in the vari-

ablesY andZ over K. Since h(m,Z) is a polynomial inZ, we can sub-
stitute forZ any element ofK to get a power series in the one variable
Y.

Proposition 4. For any element t in K the power function(1+x)t defined 123

above is analytic for v(x) >
1

p− 1
(respectively for v(x) > −v(t)+

1
p− 1

)

if v(t) ≥ 0 (respectively if v(t) < 0) Moreover if t belongs Zp, then(1+x)t

is analytic for v(x) > 0.

Proof. Whenv(t) < 0

v(h(m, t)) = m(v(t)) − v(m!) ≥ mv(t) −
m− 1
p− 1

Thereforelim inf
m→∞

v(h(m, t))
m

= v(t) −
1

p− 1
Hence (1+ x)t is analytic

in v(x) >
1

p− 1
− v(t). Similarly one can prove the convergence when

v(t) ≥ 0. �

Let t be inZp. Thenh(m, t) is a p-adic integer. Suppose thatv(m!) +
1 = α, then there exists an elementkm in Z such that

t ≡ km (mod pk)

Therefore

t(t − 1) . . . (t −m+ 1) ≡ km(km − 1)
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or h(m, t) ≡ h(km,m) (mod p).

But h(km,m) is a rational integer, thereforev(h(m, t)) ≥ 0. From this our
assertion follows easily.

5 An Auxiliary Function

Throughout our discussionFq shall denote a finite field consisting ofq
elements. Let us consider the infinite product

F(Y,T) = (1+ Y)T(1+ YP)

TP − T
P (1+ YPm

)

Tpm
− Tpm−1

pm
(1)

The product is well defined as formal power series in two variables

Y and T over Q. Clearly (1) is convergent inQ
[[

Y,T
]]

. Expressing

F(Y,T) as a power series overQ
[[

T
]]

andQ
[[

Y
]]

we obtain

F(Y,T) =
∞∑

m=0

Bm(T)Ym, d(Bm(T)) ≤ m

=

∞∑

m=0

αm(Y)Tm,

whereαm(Y) is a power series, the terms being of degree≥ m.124

Lemma 2.The coefficients ofF(T,Y) arep-adic integers.

Lemma 3. If F is an element ofQ
[
[Y,Z]

]
such thatF(0, 0) = 1, thenF

belongs toZp

[
[Y,Z]

]
if only if the coefficients of

(F(Y,Z))p

F(Yp,Zp)
are inpZp

excepts for the first.

Proof of Lemma 3. Let us suppose thatF(Y,Z) = 1−
∑

i+ j>0
ai j YiZ j, then

G =
(F(Y,Z))p

F(Yp,Zp)
= F1xF2 where
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F1 = 1− p
∑

i+ j>0

ai j y
iZ j + · · · + (p

r )(−1)r


∑

i+ j>0

ai j Y
iZ j



r

+ · · · + (−1)p


∑

i+ j>0

ai j Y
iZ j



p

.

F2 = 1+
∞∑

k=1


∑

i+ j>0

ai j Y
piZp j



k

If G = 1+
∑

i+ j>0
bi j YiZ j, then

bi j = −pai j+ (terms of the formpX polynomials in a with rational
integers coefficients with

r + s< i + j) +
∞∑

k=1

∑
ai1 j1 . . .aik jk

i1 + · · · + ik = i′

j1 + · · · + jk = j′

ir + jr > 0

+(−1)p
∞∑

k=1

ap
i1

j1ai2 j2 · · ·aik jki1 + · · · + ik = i′

j1 + · · · + jk = j′

ir + jr > 0

where the last two sums appear only ifi and j are divisible byp and in 125

this casepi′ = i, p j′ = j.

Assume thatbi j belongs topZp for i + j > 0. We shall prove that
ai j are inZp by induction. Obviouslya00 is in Zp. Assume thatars ∈ Zp

for r + s < i + j; then in the formula givingbi j all the terms except
perhaps−pai j . But a − ap belongs topZp if a belongs toZp, therefore
pai j belongs topZp andai j belongsZp. The other part of the assertion
is trivial
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Proof of Lemma 2.

(F(Y,T))p

F(Yp,Tp)
=

(1+ Y)pT
∞∏

m=1
(1+ Ypm

)

Tpm− Tpm−1

pm−1

(1+ Yp)T p
∞∏

m=2
(1+ Ypm)

Tpm
− Tpm−1

pm−1

=

[
(1+ Y)p

(1+ Yp)

]T

=

a+ p
∞∑

k=1

bkY
k



T

wherebk arep-adic integers.
Moreover

1+ p
∞∑

k+1

bkY
k



T

=

∞∑

m=0

h(m,T)pm


∞∑

k=1

bkY
k



m

But
v(pm)

m!
≥ m −

m− 1
p− 1

> 0, therefore
F(Y,T)

F(Yp,Tp)

p

− 1 has its

coefficients inpZp. Thus by lemma (3) the coefficients ofF(Y,T) are
p-adic integers.

One deduces from lemma (2) thatF(y, t) is analytic forv(t) ≥ 0126

andv(y) > 0, because ifv(t) ≥ 0, thenv(Bm(t)) ≥ 0 becauseBm(t) is a

polynomial with coefficients fromZp. Therefore the series
∞∑

m=0
Bm(t)ym

converges forv(y) > 0.

6 Factorisation of additive characters of a
Finite Fields

Let Rs =

{
x | x ∈ Ωp = Ω, xPs

= x
}
. We have the canonical map from

R2 to Fps namely the restriction on the canonical homomorphism ofOΩ
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ontokΩ. In order t prove that this map is bijective, it is sufficient to prove
that is surjective ; because bothRs andFps haveps elements. If ¯x , 0 is
in Fps, thenx̄ps−1−1 = 0 andx̄ is a simple root of the polynomialXps−1−

1. Therefore by Hensel’s lemma there exists an elementα belonging to
Ω such that ¯α = x̄ andαps−1 − 1 = 0, which proves thatα is in R2 and
the mapping is onto. Infact the canonical homomorphism ofOΩ onto

kΩ when restricted toR =
∞⋃

s=1
R2 is an isomorphism ontokΩ. Finally

Hensel’s lemma shows thatR1 is contained inQp.
Let Us = Qp(Rs). ClearlyUs is a Galois extension ofQp and the

Galois group is cyclic generated by the automorphismσ : ρ → ρp,
whereρ is a primitive ps − 1 th root of unity. MoreoverUs is an un-
ramified extension ofQp, because [Us; Qp] = [Fps; Fp]. If we take

U =
∞⋃

s=1
Us, then the completion ofU is the maximum unramified ex-

tension ofQp in Ω andσ is called the Frobenius automorphism ofU. If
t′ is an elements isR2, then

Tr
Us

t′
/ Qp

= t′ + t
′p + · · · + t

′ps−1

belongs toZp. Thus the function (1+ Y)Tr t′ is analytic forv(y) > 0. 127

Let t′ be the representative oft ∈ Fp2 in R2. If y belongsy belongs
to YΩ then (1+ y)Tr t′ belongs toΩ. We shall choosey in such a way
that mappingt → (1+ y)Tr t′ is a character of the additive group ofFps.
Obviously for anyu andv in Fps we have

(u+ v)′ ≡ u′ + v′ (mod YΩ)

Tr(u′ + v′) ≡ Tr u′ + tr v′ (mod YΩ)

≡ Tr u′ + Tr v′ (mod pZp)

because Tru′ is a p-adic integer. Therefore

(1+ y)tr(u+v)′ = (1+ y)Tr u′(1+ y)Tr v′(1+ y)a,

where a belongs topZp. Let us take 1+ y = ζ whereζp = 1 andζ , 1.
It follows that (1+ y)a = 1. Thus the mappingu→ ζTr u′ is a character
of FPs. We shall show that it is a non -trivial character. Firstly,ζa = 1 if
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and only if a belongs topZp proved that a already belongs toZp. For by

choice ofy we havev(y) =
1

p− 1
> 0 and

ζa = (1+ y)a = 1+ ay+ · · · + h(m, a)ym + · · ·

Since a isp-adic integer,v(h(m, a) ≥ 0 and hencev(h(m, a)ym ≥
2

p− 1
for m≥ 2, (a+y)a

, 1 if v(ay) <
2

p− 1
. Thereforev(ay) ≥

2
p− 1

,

which implies thatv(a) ≥
1

p− 1
< 0, thus a belongs topZp. But the

canonical image of Tru′ in Fp is the trace ofu as an element ofFps

over Fp, therefore there exists as least oneu′ such that Tru′ is not in
pZp. Hence the mappingu→ ζTr u′ is a non-trivial character ofFps. By
definition of the productF(Y,T) we have

F(y, u′) = (1+ y)u′ · · · (1+ ypm
)

u′p
m
− u′p

m−1

pm

F(y, u′p) = (1+ y)u′p · · · (1+ ypm
)

u′p
m+1−−u′p

m

−pm

F(y, u′p
s−1

) = (1+ y)u′p
g−1

· · · (1+ ypm
)

u′p
m+s−1
− u′p

m+s−2

pm

Sinceu′p
s
= u′, by multiplying these identities we get128

s−1∏

r=0

F(y, u′p
r
) = (1+ y)Tr u′

ThusζTr u′ =
s−1∏
k=0

ϕ(u′p
k
) whereϕ(T) = F(ζ − 1,T), is the splitting of

additive characters ofFps which we shall require later.



Chapter 6

Zeta-functions

1

It is well known that the Riemann zeta functionζ(s) =
∏
p

(1 − p−s)−1, 129

wherep runs over all prime numbers, is absolutely convergent for Re
s >. We can generalise this definition for any commutative ring with
unit element . In the case of ring of integersp is nothing but the gener-
ating element of the maximal ideal (p) and it is also equal to the number
of elements in the fieldZ/(p). Motivated by this we define for any com-
mutative ringA with identity

ζA(s) =
∏

M

(1− N(M)−s)−1 (I)

whereM runs over the set of all maximal ideals ofA andN(M) is the
number of elements in the fieldA/M. But in generalN(M) is not finite
and even ifN(M) is finite the produce (I) is not convergent, therefore
we have to put some more restrictions on the ring. In the following we
shall prove that ifA is finitely generated overZ i.e., if there exist a finite
number of elementsx1, . . . , xk in A such that the homomorphism from

Z
[
X1, . . . ,Xk

]
to A which sendsXi to xi is surjective, thenN(M) is finite

and the infinite product (I) is absolutely convergent fot Res > dim A,
where the dimension ofA is defined as follows.

Definition. If A is an integral domain, the dimension ofA is the tran-
scendence degree (respectively transcendence degree+1) of the quotient

111
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field of A overZ/(p) (respectivelyQ) if characteristic ofA is p (respec-
tively 0). In the general case dimA is the supremum of the dimension130

of the ringsA/Y whereY is any minimal prime ideal.

It can be proved that dimension ofA is equal to the supremum of
the lengths of strict maximal chains of prime ideals. Beforeproving
the convergence of the zeta function we give some examples offinitely
generated rings of overZ.

1. The ringZ is finitely generated over itself.

2. Any finite fieldFq.

3. The ring of polynomials in a finite number of variables overFq

i,e., the ringFq[X1, . . . ,Xk]

4. The ringFq[X1, . . . ,Xr ]/U , whereU is any prime ideal ofFq[X1,
. . . ,Xr ]. This is the set of regular functions defined overFq on the
varietyV defined by the idealU affine space.

5. Let K be any algebraic number field. The ring of integersA in K
is finitely generated overZ.

6. LetV be an affine variety defined over the algebraic number field
K and letO ⊂ K[X1, . . . ,Xr ] be the ideal ofV. Then the ring of
regular functions onV i.e., K[X1, . . . ,Xr ]/O is not finitely gen-
erated overZ. But the idealO is generated by the idealO0 =

O ∩ A[X1, . . . ,Xr ] of the ringA[X1, . . . ,Xr ] and we can associate
to V the quotient ringA[X1, . . . ,Xr ]/O which is obviously finitely
generated overZ. It is to be noted that this ring is not intrinsic and
depends on the choice of the coordinates inKr

2 Fields of finite type overZ

We shall require the following lemma in the course of our discussion.
Normalisation lemma of Noether. Let K be a field. LetR andS be131

subrings ofK containing a unit elements such thatS is finitely generated
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overR. Then there exists an elementsa , 0 in R and a finite number pf
elementX1, . . . ,Xr in S such that

1. X1, . . . ,Xr are algebraically independent over the quotient fields
of R.

2. Any elements ofS is integer overR[a−1,X1, . . . ,Xr ].

Proposition 1. Let K be a field. Let R be a subring of K and L the
quotient field of R. If K as a ring is finitely generated over R, then
(K : L) is finite and there exists an element a in R such that L= R[a−1].

We first prove the following: If a fieldK is integral over a subringR
thenR is a field.

Let x be any element ofR, then x−1 belongs toK and therefore
satisfies an equation

Xn + a1Xn−1 + · · · + an = 0, ai ∈ R

This implies thatx−1 is a polynomial inx over R. But R[x] = R,
thereforex−1 belongs toR. HenceR. HenceR is a field
Proof of proposition 1. SinceK is finitely generated overR, by the
normalisation lemma, there exists an elementa , 0 in R and a finite
family (x1, . . . , xr) in K algebraically independent overL such thatK
is integral overR[a−1, x1, . . . , xr ]. By the remark above it follows that
R[a−1, x1, . . . , xr ] is a field. Butx1, . . . , xr are algebraically independent
over L, thereforer = 0 andL = R[a−1]. SinceK is finitely generated
and integral overL, (K : L) is finite.

Proposition 2. If a commutative ring A is finitely generated over Z, then
WN(M) is finite for any maximal idealM of A.

Proof. SinceA is finitely generated overZ, the fieldK = A/M is finitely 132

generated overZ. If characteristic ofK is zero thenK containsZ. There-
fore by proposition (1)Q = Z(a−1) for somea , 0 anda in Z, which is
impossible. Thus characteristic ofK is p and by proposition (1)K is a
finite extension ofFp, henceK is a finite field. �
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3 Convergence of the product

Proposition 3. The infinite productζA(s) is a absolutely convergent for
Re s> dimA and uniformly convergent for Re s> dim A + ε for every
ε > 0.

Proof. We shall prove the result by induction onr = dimA. If r = 0
thenA is a finite field. Let us assume thatA = Fq. Then

ζA(s) =
1

1− q−s

is a meromorphic function in the plane with a simple pole ats = 0.
Let us assume that the result is true for all those rings whichare finitely
generated overZ and dimension of which are less thanr. Before proving
the result for rings of dimensionr we prove the following result. �

Let A be a finitely generated ring overZ andB = A[X], the ring of
polynomials in one variable overA, thenζB(s) = ζA(s− 1) in a suitable
domain of convergence. In fact ifζA(s) is convergent for Res> x, then
ζB(s) is convergent for Res> x+ 1.

If dim A = 0, thenA = Fq for someq and B = Fq[X]. Since he
maximal ideals inB are generated by irreducible polynomials, which
can be assumed to be monic, we get

ζB(s) =
∏

P

(1− qsd(p))−1

whereP runs over the set of monic irreducible polynomials overA. In133

order to prove the absolute convergence ofζB(s), it is sufficient to prove
the convergence of the infinite series

S =
∑

P

∣∣∣∣∣q
−d(P)

∣∣∣∣∣
σ

wheres= σ + it

Since the number of monic polynomials of degreer is qr , we have

S =
∑

P

|q−d(P)|σ ≤

∞∑

r=1

qr |q−r |σ
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=

∞∑

r=1

q(1− σ)r

Obviously the seriesS is convergent if 1− σ < 0 i.e.,σ > 1. More-
over in this domain

ζB(s) =
∑

Q

1

qsd(Q)
(Q a monic polynomial inB)

=

∞∑

k=0

qk

qsk
=

∞∑

k=0

1

qk(s−1)
=

1
1− q1−s

Hence
ζB(s) = ζA(s− 1).

Now let the dimension ofA be arbitrary andB = A[X].
We shall denote by Spm(B) the set of maximal ideals ofB. For

anyM in Spm(B),M ∩ A is in Spm(A), becauseA/M ∩ A, being a
subring of the finite fieldB/M, is a field. Letπ denote the mapping
M ∈ Spm(B) −→ M ∩ A ∈ Spm(A). It can be easily proved that the set
π−1
N and Spm(A/N[X]) are isomorphic, whereN is any maximal ideal

of A. Therefore

ζB(s) =
∏

M∈Spm(B)

[1 − (N(M))−s]−1

=
∏

N∈Spm(A)

∏

M∈π−1(N)

(1− N(M)−s)−1

=
∏

N∈Spm(A)

ζA/M[X](s)

134

But A/N is a finite field, thereforeζA/N[X](s) = ζA/N(s− 1)
So we get

ζB(s) =
∏

N∈Spm(A)

(ζA/N(s− 1))

=
∏

N∈Spm(A)

(1− N(N)1−s)−1
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= ζA(s− 1).

It follows thatζFq(s)[X1,...,Xk] =
1

1− qk−s
andζZ[X1,...,XK ] = ζZ(k − s)

whereζZ is nothing but the Riemann zeta function.
Now we shall prove our main proposition. Assume thatA is an

integral domain.
Let K be the quotient field andR the prime ring ofA.
SinceA is finitely generated overR, by the normalisation lemma we

have the following:
(1) If characteristicA = p , 0, then there existr elementsx1, x2, . . . ,

xr in A such thatA is integral overR[x1, . . . , xr ], where x1, . . . , xr are135

algebraically independent overR = Fp. (ii)- If characteristicA = 0,
then there exits an element a inR = Z andr − 1 elementsx1, . . . , xr−1

in A such that every element ofA is integral overZ[a−1, x1, . . . xr−1] and
the elementsx1, . . . , xr−1 are algebraically independent overQ.

We getr elements in the first case andr − 1 elements in the second
case becauser is the dimension ofA which is equal to the transcendence
degree ofK overFp or transcendence degree ofK overQ+ 1 according
as the characteristic ofA is non-zero or not. It can be proved thatA (re-
spectivelyA′ = A(a−1)) is a finite module overB = Fp[x1, . . . , xr ] ( re-
spectivelyB′ = Z[a−1, x1, . . . , xr−1]) and the mappingπ from Spm(A)→
Spm(B) (respectively from Spm(A′) → Spm(B′)) is onto. LetA (re-
spectivelyA′) be generated byk elements as aB (respectivelyB′) mod-
ule. We shall prove thatπ−1(N) for anyN in Spm(B) ( respectively in
Spm(B′)) has at mostk elements. LetC = A/AN. It is an algebra of
rank t ≤ k over B/N. Sinceπ−1(M) is isomorphic to Spm(A/AN) it is
sufficient to prove thatC has at mostk maximal ideals. This will follow
from the following.

Lemma II. Let A be any commutative ring with identity and(Ui1≤i≤m a
finite set of prime ideals in A such that

A = Ui +U j for i , j

Then the mappingθ : A→ P =i

m∏
i=1

AUi is surjective
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Proof. It is sufficient to prove that 1=
m∑

i=1
ai whereai belongs toU j for 136

j , i because if (t1, . . . , tm) is any element ofP, then

θ

(
m∑

i=1
t′i ai

)
= (t1, . . . , tm), wheret′i is a representative ofti in A.

If m= 2, the result is obvious i.e., 1= a1+ a2 wherea1 is in O2 and
a2 is in O1. Let us assume that it is true for less thanm ideals.

Then 1=
m−1∑
i=1

vi wherevi ∈ O j for 1 ≤ j ≤ m− 1 and j , i. Since

A = Oi + Om, we have 1= xi + yi for 1 ≤ i ≤ m− 1 with xi ∈ Om and

Yi ∈ Oi . Clearly
m−1∑
i=1

xivi +
m−1∑
i=1

viyi = 1.

Let us takeui = vi xi for i ≤ i ≤ m− 1 andum =
m−1∑
i 1

yivi , then

m∑
i=1

ui = 1 andui ∈ O j for j , i. �

LetM1,M2, . . . ,Mt be any finite set of distinct maximal ideals ofC.

Then by lemma (1)C/i

t⋂
i=1
Mi is isomorphic to

t
⊕
i=1

C/Mi(⊕ indicates the

direct sum). Thust ≤ k.
Assume that the characteristic ofA is 0. LetM be any maximal

ideals ofA. If a does not belong toM, thenMA[a−1] is a maximal ideal
in A[a−1], becauseA[a−1]/MA[a−1] is isomorphic toA/M. If a belongs
toM, thenM contains one and only one primePi occurring in the unique
factorisation ofa and the set of maximal ideals which containspi . is
isomorphic to Spm(A/piA). Therefore ifa = pα1

1 , . . . , p
αt
t , then

ζA(s) = ζA[a−1](s)
t∏

i=1

ζ
A/piA

(s)

But dimA/piA < dim A, therefore inorder to prove the convergence137

of ζA(s) it is sufficient to considerζA[a−1](s). We have

ζA[a−1](s) =
∏

NSpm(B′)

∏

N∈−1π(N)

(1− (NM)−s)−1
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SinceN(M) ≥ N(M), we get
∑

N∈Spm(B)

∑

N∈π−1(M)

|NM|−σ ≤ k
∑

N∈Spm(B′)

|NN|−σ ≤ kζz(r − σ − 1)

ThereforeζA[a−1](s) is convergent forℜs> dim A.
If characteristicA = p, then we get

∑

N∈Spm(B)

∑

M∈π−1(N)

|NM|−σ ≤ k
∑

N∈Spm(B′)

|NN|−σ ≤ kζFp(r − s)

which gives the same result as above, Now we have to prove our theorem
in the general case(A is not an integral domain). But we shall prove in
the next§ a more general result.

4 Zeta Function of a Prescheme

Let A be a commutative ring with unity. We shall denote by Sp (A)
the set of all prime ideals ofA. On Sp (A) we define a topology by
classifying the setsF(O) as closed sets, where

F(O) = {Y |Y ⊃ O ,Y ∈ Sp (A)}.

andO is any ideal inA. This topology is referred to as the Jacobson
Zariski topology. It is obvious that in this topology a pointis closed if
and only if it is a maximal ideal ofA. We associate with every pointY

of Sp(A) a local ringA namely the ring of quotient ofA with respect to
the multiplicatively closed setA − Y . OnO the sum of all these local138

rings we define a sheaf structure by giving“sufficiently many” sections.
For anya, b, ∈,A we consider the open subset

V(b) = {Y |Y ∈ Sp(A),Y = b}.

For anyY ∈ v(b),
(a
b

)

Y

the, fraction
a
b

, is an element ofAY . Then

the mappingY →

(a
b

)

Y

gives a sectionS(a, b) of O. The pair (X,O)

together with the sheaf of local ringsO is called anaffine scheme, where
X = Sp(A).
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Definition. Let (X,O) be a ringed space. We say thatX is a prescheme if
every point has an open neighbourhood which is isomorphic asa ringed
space to Sp(A) for some ringA. Such a neighbourhood is called an affine
neighbourhood.

We shall assume that the pre-schemeX satisfies the ascending chain
condition for open sets, thenX is quasi-compact and it can be written
as the union of a finite number of affine open setsXi . We shall denote
by Ai the ring such thatXi is isomorphic to Sp(Ai). Then the ringAi is
Noetherian and has a finite number of minimal prime idealsYi j . Each
prime ideal ofAi contains aYi j and Xi = Sp(Ai) is the union of the
si j = Sp(Ai j ) (with Ai j ) = Ai/Yi j ) , eachSi j being a closed subset of
Xi and theAi j being integral domains. Moreover the residue field of the
local ring associated to a pointx ∈ Si j is the same for the sheaf of the
schemeX and for the sheaf of the scheme Sp(Ai j )

We define the dimension ofX as the maximum of the dimensions of
the ringsAi(or of the ringsAi j ). It can be proved that ifX is irreducible
(i.e. if X cannot be represented as union of two proper closed subsets).
thenAi = dimA j for i , j.

A preschemeS is a finite type overZ if there exists a decomposition
of S into a union of a finite number of open affine setsXi such that each 139

Ai, the ring associated toXi , is finitely generated overZ. It can be proved
that the same is true for any decomposition into a finite number of affine
open sets. In particular, a ringA is finitely generated overZ if and only
if the scheme Sp(A) is of finite tyte overZ and an open prescheme ofS
is also of finite type overZ.

Let S be a prescheme of finite type overZ. A point x ∈ S is closed
if and only if the residue field of the local ring ofx is finite (we shall
denote byN(x)) the number of elements of this field). In particular, if
S = UX′i , then a pointx ∈ Xi is closed inS if and only if it is closed in
Xi Now we define theζ-function ofS by:

ζS(s) =
∏

(1− (N(x))−s)−1

where x runs over the set of closed points ofS. It is clear that if
S = SP(A), then ζS = ζA. As above, we can writeS as a union of
a finite number of subsetsSi , eachSi being affine open subset, with
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Si = Sp(Ai), whereAi is an integral domain finitely generated overZ.
Then it is obvious that:

ζS =

(
∏
π
ζSi

) (
∏

i< j<k
ζsi∩S j∩Sk

)
· · · )

(
∏
i< j
ζSi∩S j

)
· · ·

(I)

Now we shall prove the following generalisation of the Theorem 1 bis:-
The ζ function of a prescheme S of finite type over Z is convergent for
Re s> dimS.

Of course, theorem 1 bis implies theorem 1. Assume we have proved
the theorem 1 bis for prescheme of dimension< dimS. Then we get
as in the preceding§ the convergence ofζA for any integral domainA
finitely generated overZ of dimension≤ dimS, and in particular the
convergence of theZSi . After (I), we have just to prove this: ifU140

(resp.F) is an open (resp. closed) subset ofX = Sp(A) (with dimA ≤
dimS), thenζU∩F is convergent for Re(s) > dimS. But letG = X − U;
we have:

ζ∪∩F = ζF/ζF∩G

andF ∩G is closed inX. Hence we have just to prove the convergence
of ζF . But F is defined by an ideal ofA andF = Sp(A/O) andζF =

ζA/O . If O = {0}, we haveζF = ζA and if O , {0} then the minimal
prime ideals ofA/O give non trivial prime ideals ofA and we have
dim A/O < dimS : the induction hypothesis ensures the convergence
of ζF. Hence we have completely proved the theorems 1 and 1 bis

5 Zeta Function of a Prescheme overFP

Let S be a prescheme overZ of finite type. We have a canonical map
from a preschemeS to Sp(Z) given by π(x) = characteristics of the
residue field of local ring ofx for any x in S. Suppose thatπ(x) = p for
everyx in S. In this case eachAi is of characteristicp and the canonical
map fromZ into Ai can be factored throughFP. In this case we say that
the preschemeS is overFP.
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Let S be a prescheme of finite type overFP. Then the residue field
k(x) of the local ring associated to a closed pointx is of characteristicP
for everyx in S. Thereforek(x) = FPd(x) whered(x) is a strictly positive
integer. thus

ζS(s) =
∏

x=x∈S

(
1− p−sd(x)−1)

Let us taket = p−s. Then

ζS(s) =
∏

x=x∈S

(
1− td(x)−1

)
= ζS(t).

The functionζ̃s(t) is also called a zeta function onS. It is absolutely 141

convergent in the disc|t| < P−dim(s). we have

ζ̃s(t) =
∏

x=x∈S

∞∑

k=0

tkd(x) =

∞∑

h=0

ahth

with a0 = 1 andan ∈ Z. The end of these lectures will be devoted to the
proof of the following theorem (Dwork’s theorem):

Theorem 1. The functionζ̃S(t) of a prescheme S of finite type over FP

is a rational function of t.

6 Zeta Function of a Prescheme overFq

In order to prove Dwork’s theorem it is sufficient to prove it for an affine
scheme and open sets of an affine scheme because of the equation (1).
Then we have to look at thezeta function of a ringA finitely generated
overFP. Such a ring can be considered as the quotient ofFP[X1, . . . ,Xk]
by some idealO and we can associate toA the varietyV defined byO in
Kk whereK is the algebraic closure ofFP. It may be noted thatV is not
necessary irreducible. We shall callζA the zeta function of the variety
V.

More generally we consider a varietyV overFq, whereq = pf . The
varietyV is completely determined by the ring
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A = Fq[X1, . . .Xn]/O ∩Fq[X1, . . . ,Xn] whereO is an ideal inK[X1,
. . . ,Xn] generated byO0 = Fq[X1, . . . ,Xn] ∩ O K being the algebraic
closure ofFq. We define

ζv = ζA andζ̃v = ζ̃A.

For every maximal idealM of Fq[X1, . . .Xn] there exists a maxi-142

mal idealM in K[X1, . . . ,Xn] such thatFq[X1, . . . ,Xn] ∩M′ = M. But
Spm(K[X1, . . . .Xn]) is isomorphic toKn, therefore a maximal idealM of
Fq[X1, . . . ,Xn] is determined by one pointx of Kn. Moreover this point
x belongs toV if and only ifM ⊃ O However this correspondence be-
tween the maximal ideals ofFq[X] and the points ofKn is not one-one.
So we want to find the condition when two pointsx andy of Kn cor-
respond to the same maximal ideal ofFq[X1, . . . ,Xn] = Fq[X]. LetMx

andMy be the maximal ideals ofK[X] corresponding tox = (x1, . . . , xn)
andy = (y1, . . . , yn) respectively such thatMx ∩ Fq[x] = My ∩ Fq[x]. It
is obvious thatFq[X]/Mx ∩ Fq[x] = F[x]/My ∩ Fq[x] is isomorphic to
Fq[x1, . . . , xn] = Fqf for some f > 0. We shall show that the necessary
and sufficient condition that
Mx ∩ Fq[X] = My ∩ Fq[X] is that there exists an elementσ in

G(Fqf /Fq) such thatσ(x) = y. For n = 1 the existence ofσ is trivial.
Let us assume that there exists aσ in G(Fq f /Fq) such thatσ(xi) = yi

for i = 1, 2, . . . , r − 1 for ≤ n. Let σ(x j) = zj for j ≥ r. Let P(x) be
the polynomial ofzr over Fq(y1, . . . , yr−1). ThenP(y1, . . . , yr−1zr ) = 0,
which gives on applyingσ the equationP(x1, . . . , xr−1, yr ) = 0. There-
fore P is in My ∩ Fq[X] i.e., P(y1, . . . yr−1, yr ) = 0. Thusyr and zr

are conjugate overFq(y1, . . . , yr−1). Let τ be the automorphism ofK
over Fq(y1, . . . , yr−1) such thatτ(ar ) = yr . Thenτoσ is an element of
G(Fqf /Fq) such thatτoσ(xi) = yi for i = 1, 2, . . . , r. Our result fol-
lows by induction. The converse is trivial. Hence we see thatif M is a143

maximal ideal ofFq[X] containingO with N(M) = qf , then there exist
exactly f points conjugate overFq, in Kn ∩ V and f = (Fq(x) : Fq) if
and only if f is the smallest integer such thatx belongs to (Fqf )n. Let

Nf = number of points inV ∩ (Fqf )n

Jf = number of points inV ∩ (Fqf qf )
n − U

f ′< f
(V ∩ (Fqf )n)



6. Zeta Function of a Prescheme overFq 123

I f = number of maximal ideals ofA of normqf .

We have proved thatJf = f I f . By definition of theζ- function ofV
we have

ζV(s) = ζA(s) =
∏

M∈Spm(A)

(1− (nM)−s)−1

=
∏

M∈Spm(A)

(1− q−s f (M))−1

where f (M) is defined by the equationN(M) = qf (M) So we see that we
can substitutet = q−s in the zeta function (and not onlyt = p−s as in the
general case) and get a new zeta function.

ζV(s) =
∏

M∈Spm(A)

(1− t f (M))−1 =

∞∏

f=1

(1− t f )−I f = ζ̃v,q(t)

Therefore

Log ζ̃v,q(t) =
∞∑

f=1

−I f log(1− t f )

=

∞∑

f=q

∞∑

k=1

I f
tk f

k

=
∑

f

∑

k

Jf

f
tk f

k

=

∞∑

n=1


∑

f /n

Jf


tn

n

=

∞∑

n=1

Nn
tn

n

144

Thus ζ̃v,q(t) exp

(
∞∑

n=1
Nn

tn

n

)
, whereNn is the number of points ofV

in Fn
q. We have already seen that this is a power series with integral

coefficients.
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Theorem 1′. ζ̃V,q(t) is a rational function of t.

We shall show that in order to prove the rationality ofζ̃A(t) where
t = q−s, it is sufficient to prove the rationality of̃ζA(t) wheret = p−s.
Since ζ̃v,q(t) and ζ̃v(t) are both convergent in a neighbourhood of the
origin, we have

ζ̃v,q(t f ) = ζ̃v(t) with q = pf .

Let µ be anyf -th root of unity. Then

ζ̃v(µt) = ζ̃v,q(µ f t f ) = ζ̃v,q(t f ) = ζ̃v(t)

If we have

ζ̃v(t) =

∑n
k=0 bktk∑n
k=0 Cktk

then also

ζ̃v(t) =

∑
µ(
∑n

k=0 bkµ
ktk

∑
µ

∑n
k=0 Ckµktk

=

∑n
k=0 bk(

∑
µ µ

k)tk
∑n

k=0 Ck(
∑
µ µ

k)tk

=

∑
0≤k≤[n/ f ] bk f tk f

∑
0≤k≤[n/ f ] Ck f tk f

because
∑
µ
µk = 0 if k . 0 (mod f )145

Thus we get

ζ̃v(t) =

∑
0≤k≤[n/ f ]

bk f tk f

∑
0≤k≤[n/ f ]

Ck f tk f
= ζ̃v,q(t f )

i.e., ζ̃V,q(t) =

∑
0≤k≤[n/ f ]

bk f tk

∑
0≤k≤[n/ f ]

Ck f tk

Hence ˜ζV,q(t) is a rational function oft.
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7 Reduction to a Hyper-Surface

We shall show that to prove our theorem it is sufficient to consider the
zeta function of a hypersurfaceV defined by a polynomialP(X1, . . . ,Xn)

in FP[X1, . . . ,Xn]. We know that we can writeV =
r⋂

i=1
Vi where eachVi

is a hyper surface. LetE be any subset of{1, 2. . . . , r} andVE =
i⋂

iǫE
Vi.

Let NV(respectivelyNVE) be the number of points ofV(respectivelyVE)
in any fieldFPn. We now prove that

NV =
∑

E

(−1)1 + n(E)NVE (I)

wheren(E) is the number of elements inE.
Let any pointx in V belong tok hypersurfaceVi where 1≤ k ≤ r.

Thenx appearsl times in the right hand side of equation (I), where

I = r−kC0
kC1 −

(
r−kC0

kC2 +
r−kC1

)
+ · · · + (−1)s+1

(
kCs+

r−kC1
kCs−1 + · · · +

kCh
r−kCs−h + · · ·

)
+ · · ·

=

∞∑

t=0

r − kCt


∞∑

h=1

(−1)h+t−1Ck
h



=

∞∑

t=0

(−1)t−1 r−kCt

146

ThusI = 0 or 1 according asr < k or r = k. Hence the equality (I)
is established. This proves that

ζ̃V(t) =
∏

E

[ζ̃VE(t)](−1)1+n(E)
(2)

This proves that it is enough to prove theorem 1 for a hypersurface.
Let V be a hypersurface defined by the polynomialP(X1,X2, . . .Xn)

in FP[X1, . . .Xn]. Let B be any subset of{1, 2, . . . , n}. Let

WB = {x|x ∈ V, xi = 0 for i not in B}
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UB =

x|x ∈WB,
∏

i∈B

xi = 0



It is obvious thatV is union of disjoint subsetsWB − UB whereB
runs over all the subsets of{1, 2, . . . , n}. Hence the zeta function ofV
is the product of the zeta functions of the varieties (WB − UB) and the
theorem 1 will be a consequences of the following lemma.

Lemma 2.Let P be a polynomial inFP[X1, . . . ,Xn]. then the zeta func-

tion of the open subset defined by
n∏

i=1
xi = 0 in the hyper surfaceW

defined byP is a rational function.

8 Computation of Nr

We shall adhere to the following notation throughout our discussion.147

x = (x1. . . . , xn+1), xi ∈ FPr .

α = (α1, . . . , αn+1), αi ∈ Z.

xα = xα1
1 · · · x

αn+1
n+1

|α| = α1 + α2 + · · · + αn+1.

Let X be any additive character ofFpr . Then we have

∑

U∈FPr

X (UP(X1, . . . ,Xn)) = 0 if P(x1, . . . , xn) , 0

= pr if P(x1, . . . , xn) = 0

Therefore
∑

x1∈F∗pr

∑

U∈Fpr

X (UP(x1, . . . ,Xn)) = pr Nr

where prNr = (pr − 1)n +
∑

x∈(F∗
Pr )

n+ 1X (xn+1P(x1, . . . , xn))
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Let
xn+1P(x1, . . . , xn) =

∑

α

aαxα

where only a finite number ofaα are nonzero. Then

X (xn+1P) =
∏

α

X (aαxα).

Therefore pr Nr = (pr − 1)n +
∑

x∈(F∗
pr )n+1

∏

α

X (aα, . . . , x
α)

We take the characterX defined byX (t) =
r−1∏
k=0

ϕ(t′p
k
). where 148

t′ ∈ Rr such thatt′ = t andϕ(y) = F(ζ − 1, y), ζ being a primitive p-th
root of unity. Thus from equation (1) we get

pr Nr = (pr − 1)n +
∑

x∈(F∗
Pr )n+1

∏

α

r−1∏

k=0

ϕ(bαξ
α)pk

whereξi = xi , ξi ∈ R∗r , bα = aα andbα belongs toR1. Let

G(§) =
∏

ϕ(bα§
α) andGr (§) =

r−1∏

k 0

G(ξpk
).

Then
pr Nr = (pr − 1)n +

∑

ξ∈(R∗r )n+1

Gr(ξ)

We have already proved thatG(ξ) is analytic forξ integral. There-
fore

Gr(ξ) =
∑

α∈Zn+1

grαξ
α

Then

pr Nr = (pr − 1)n +
∑

ξ∈(R∗r )n+1

G(ξ)

= (pr − 1)n +
∑

α∈Zn+1

grα

∑

ξ∈(R∗r )n+1

ξα
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= (pr − 1)n +
∑

α∈Zn+1

grα

n+1∏

i=1


∑

i

ξ
αi
i



But
∑
i
ξ
αi
i = 0 if αi . 0 (mod pr − 1)

= pr − 1 if αi ≡ 0 (mod pr − 1)

Therefore

prNr = (pr − 1)n +
∑

α=(pr−1)

grα(p
r − 1)n+1

= (pr − 1)n +
∑

α

gprα−α(pr − 1)n+1 (I)

149

9 Trace and Determinant of certain Infinite Matri-
ces

Let K be any field andA = K
[
[X1, . . . ,Xn+1]

]
be the ring of formal

power series inn+ 1 variables overK. Let H =
∑
α

hαXα by any element

of A. We define an operatorTH on A as follows

TH(H′) = HH′ for every H′inA.

For any integerr we define an operatorλr Such that

λr


∑

α

aαXα

 =
∑

α

arαXα.

It can be easily proved that these two operators are continuous for
the topology given by the valuation onA defined earlier. Let us set
ΓH,r = λr ◦TH. It is obvious that the monomials constitute a topological
basis ofA and the operatorΓH,r has a matrix (γαβ) with respect to this
basis, whereγαβ = hrα−β. It is trivial to see thatTHH′ = TH ◦T′H for any
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two elementsH′ andH′ of A andλrr ′ = λr ◦ λ
′
r for any two integersr

andr′. Moreover we have

Γs
H,r = λrS ◦ TH·H(r)····HrS−1

whereH(r)(X) = H(Xr ).
In order to prove the above identity it is sufficient to prove that the

action of the two sides is the same on the monomials. We have
TH0λr (Xβ) = 0 if β is not a multiple ofr

TH ◦ λr (X
β) = TH(X

β

r ) if β is a multiple of r

=
∑

hαXα+
β

r =
∑

hαX
rα + β

r

with the convention that coefficient ofX

rα + β
r = 0 if r does not divide 150

β.
Therefore

TH ◦ λr (X
β) = λr


∑

α

hαXrα

 Xβ)

= λr ◦ T(r)
H

Thus

Γ2
H,r = λr ◦ TH ◦ λr ◦ TH

= λr ◦ λr ◦ TH(r) ◦ TH

= λr2 ◦ TH,H(r)

Let us assume that we have proved that

Γs
H,r = λrS ◦ TH◦H(r)◦...◦H(rs−1)

Then

Γs+1
H,r = Γ

s
H,r ◦ ΓH,r = λrSTH◦H(2) · · · ◦ HrS−1

◦ λ◦r TH

= λrSTH◦TH(2)TH(rS−1) ◦ λr ◦ TH
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= λrS+1TH ◦ TH(r) ◦ · · · ◦ TH(rs)

We see immediately thatΓs
H,r is an operator of the same type asΓH,r

namelyΓs
H,r = Γ

s
H′ ◦ r ′ wherer′ = rs andH′ = H H(r) . . .H(rS−1).

Lemma 3.Let us assume thatK = Ω the complete algebraic closure of151

QP andr = pf . Let us further assume that the coefficientshα tend to 0
as |α| tends to infinity. Then the series Tr(Γs

H,r) =
∑
α

(Γs
H,r)αα giving the

trace ofΓs
H,r with respect to the basis (Xα) is convergent and we have

Tr(Γs
H,r) =

1

(rs − 1)n+1
=

∑

ξ∈(R∗f s)
n+1

H(ξ) . . . . . . . . .H
(
ξrS−1)

Proof. For any monomialXβ in K
[
[X1, . . . ,Xn+1]

]

ΓH,r(X
β) = λr ◦

∑

α

hαXα+β

=
∑

α

hαr X
α+β

Therefore the matrix of the operatorΓH,r with respect to the basis
(Xβ) is (γαβ) with γαβ = hrα−β andTr (ΓH,r) =

∑
α

hrα−α. But hα tends to

0 as| α | tends to infinity, therefore the series
∑
α

hrα−α is convergent in

K. We have already proved that

∑

r−1
ρ=1

H(ρ) = (r − 1)n+1
∑

α≥0

hrα−α

Therefore

Tr (ΓH,r) =
1

(r − 1)n+1

∑

ρr−1=1

H(ρ)

Hence our lemma is proved fors= 1 for s> 1, Γs
H,r is of the same type

asΓH,r .Thus our lemma is completely established. �
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Corollary. psNs = (ps− 1)n+ (ps− 1)n+1 TrΓs whereΓ = ΓG,p we have152

already proved that

psNs = (ps − 1)n +
∑

ξ∈(R∗s)n+1

s−1∏

k=0

G(ξpk
)

Therefore the corollary follows from the lemma.

10 Meromorphic character of ξV(t) in Ω

We have seen that

ζ̃V(t) = exp


∞∑

s=1

Ns
ts

s

 , where

Ns =

n∑

i=0

(
n
i

)
(−1)n−i ps(i−1) +

n+1∑

i=0

(
n+ 1

i

)
(−1)n+1−i ps(i−1) TrΓs

Therefore

∞∑

s=1

Nsts

s
=

∞∑

s=1

n∑

i=0

(−1)n−i
(
n
i

)
(pi−1t)s

s

=

∞∑

s=1

n+1∑

i=0

(−1)n+1−i
(
n+ 1

i

)
(pi−1t)s

s
TrΓs

exp


∞∑

s=1

Nsts

s

 =
n∏

i=0

exp


∞∑

s=1

[
(pi−1t)s

s

] (−1)n+1−i
(
n+ 1

i

)

=

n+1∏

i=0

exp
∞∑

s=1

[
(pi−1t)s

s
TrΓs

](−1)n+1−i (
n+ 1

i

)

=

n∏

i=0

(1− pi−1t)(−1)n−i
(
n
i

)
)

n+1∏

i=0

∆(pi−1t)(−1)n−i
(
n+ 1

i

)
)

where∆(t) = exp

(
−
∞∑

s=1

ts

s
TrΓs

)
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So in order to prove that̃ζv(t) is meromorphic inΩ, it is sufficient to 153

prove that∆(t) is every where convergent inΩ.
If Γ were a finite matrix, then its trace is well defined. If the order

of the matrix isN, then

TrΓs =

N∑

i=1

λs
i are the eigen values ofΓ.

Moreover

∆(t) = exp

−
N∑

i=1

∞∑

s=1

ts

s
λs

i

 =
N∏

i=1

(1− tλi)

= det(I − tΓ)

If Γ is an infinite matrix, we define det(I − tΓ) =
∞∑

m=0
dmtm, where

dm = (−1)m
∑

1≤i1<<im

∑

σ

εσγi1γiσ(1)
. . . γimiσ(m)

εσ being the signature of any permutationσ in sm.
Then forΓ = ΓG,p we get

dm = (−1)m
∑

αi

,
∑

1≤i≤m

∑

σ∈sm

εσγα1ασ(1) . . . γαmασ(m)αi being distinct.

Let us assume that there exists a constantM such thatv(gα) ≥ M |
α |. Then

v(γαβ) = v(gpα−β) ≥ M | pα − β |

≥ M(p | α | − | β |)

We consider one term of the series givingdm

v


m∏

j=1

γα jγσ( j)

 =
m∑

j=1

v(γα jασ( j))
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≥ M
∑

j

p | α j | − | ασ( j) |

≥ M(p− 1)
∑

j

α j

154

Now there exist only a finite number of indicesαi such that their
length| α | is less than some constant, therefore the seriesdm converges.

Moreover we getv(dm) ≥ M(p − 1) inf
m∑
j=1
α j where infimum is taken

over all the sequenceα1, . . . , αm. Let ρm = inf
m∑
j=1
| α j |. Now let us

order the sequence of indicesα ∈ Zn+1
+ in such a way that| αi |<| αi+1 |,

then we haveρm =
m∑

i=1
| αi | and we see immediately that

lim
m→∞

ρm

m
=

m∑

i=1
m

αi = ∞

Therefore
v(dm)

m
tends to infinity asm tends to infinity. Hence we get

the following lemma.

Lemma 4. If an elementG =
∑

α∈Zn+1
+

gαXα satisfies the condition

(C) v(gα) ≥ M | α |

then the series det(I − tΓ) with Γ = ΓG is well defined as an element of
Ω
[
[t.]

]
and is an every where convergent power series inΩ.

It is evident from the above discussion that if we prove that

(i) The functionG defined by= πϕ(aαξα) satisfies the condition (C) 155

(ii) The formal power series exp

(
−
∞∑

s=1

ts TrΓs

s

)
and det(I − tΓ) are

identical.
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Then∆(t) is every where convergent inΩ which implies that̃ζv(t) is
meromorphic inΩ.

We have already proved the result (ii) whenΓ is a finite matrix. Let
Γh denote the matrix of firsth rows and columns ofΓ.

Then

det(I − tΓh) = exp−
∞∑

s=1

tsTrΓs
h

s

=

∞∑

m=0

dh
mtm

wheredh
m = (−1)m

∑
≤i1≤i2<...<im≤h

γi1iσ(1) . . . γimiσ(m)
being an element ofSm.

Therefore

log


∞∑

m=0

dh
mtm

 = −
∞∑

s=1

ts
TrΓs

h

s

We shall show thatdh
m converges todm and TrΓs

h tends to TrΓs ash tends
to infinity. We have

dm − dh
m = (−1)m

∑

α1,...,αm

∑

σ∈Sm

γα1ασ(1) . . . γαmασ(m)

− (−1)m
∑

αi≤h

∑

σ∈Sm

γα1ασ(1) . . . γαmασ(∗)

Obviouslyv(dm−dh
m) tends to infinity ash tends to infinity. Similarly156

one can prove that

v
(
Tr Γs− Tr Γs

h

)
= v


∑

α1...αs

gpα1−α2 . . .gpαs−α1



−


∑

α1...αs ≤h

gpα1−α2 . . .gpαs−α1



tends to infinity ash tends to infinity. In order to prove that the
functionG satisfies (1) it is sufficient to prove that each termϕ(aαξα) of
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the product satisfies (1). We have

ϕ(t) = F(ζ − 1, t)

But F(Y, t) =
∞∑

m=o
Am(Y)tm with Am(Y) = YmBm(Y) andBm(Y) belongs

to O
[
[Y]

]
. Therefore

ϕ(aαξ
α) =

α∑

m=0

(ζ − 1)mBm(ζ − 1)(aαξ
α)m

=

α∑

β=0

hβξ
β.

Thushβ = 0 if β , αm

= (ζ − 1)
β

α Bβ/α(ζ − 1)a
β

α
α .

which shows that

v(hβ) ≥
|β|

|α|

1
p− 1

=

(
1

p− 1
1
|α|

)
|β|

becauseBβ/α(ζ − 1)aβ/αα is of positive valuation. HenceG satisfies (I ).
We have proved that̃ζv(t) is convergent in a disc|t| < δ < 1 as 157

a series of complex numbers and is meromorphic in the whole ofΩ,
therefore by the Criterion of rationality proved earlier weobtain that
∼

ζv(t) is a rational function oft. Hence the lemma 2 of §7 is completely
proved and also the theorem 1.
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