Lectures on Some Aspects of p-Adic Analysis

By

F. Bruhat

Notes by
Sunder Lal

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay-5

Tata Institute of Fundamental Research Bombay
 1963

Introduction

These lectures are divided in three parts, almost independent part I is devoted to the more less classical theory of valuated fields (Hensel's lemma, extension of a valuation, locally compact fields, etc.,)

In the second part, we give some recent results about representations of classical groups over a locally compact valuated field. We first recall some facts about induced representations of locally compact groups and representations of semi-simple real Lie groups (in connexion with the theory of "spherical functions"). Afterwards, we construct a class of maximal compact subgroups K for any type of classical group G over a p-acid field and the study of the left coset and double coset modulo K decomposition of G allows us to prove the first results about spherical functions on G. Some open problems are indicated.

Part III is devoted to Dwork's proof of the rationality of the zeta function of an algebraic variety over a finite field. We first need some results (well known, but nowhere published) about analytic and meromorphic functions on an algebraically closed complete valuated field. Then we settle the elementary facts about the zeta function of a scheme (in the sense of Grothendieck) of finite type over Z and we give, following Dwork, the proof of the rationality of these zeta functions

Contents

Introduction iii
I Classical Theory of Valuated Fields 1
1 Theory of Valuations-I 3
1 3
2 Valuation Rings and Places 7
3 Topology Associated with a Valuation 9
4 Approximation Theorem 10
5 Completion of a field with a valuation 12
6 Infinite Series in a Complete Field 14
7 Locally Compact Fields 15
8 Convergent Power Series 16
2 Theory of Valuations -II 19
1 Hensel's Lemma 19
2 Extension of Valuations - Transcendental case 27
3 Residual Degree and Ramification Index 29
4 Locally compact Fields 32
5 Extension of a Valuation to an Algebraic Extension.. 34
6 General Case 36
7 Complete Algebraic Closure of a p-adic Field 38
8 Valuations of Non-Commutative Rings 39
II Representations of classical groups over p-adic Fields 43
3 Representations of Locally Compact and Semi-Simple. 45
1 Representations of Locally Compact Groups 45
2 Irreducible Representations 52
3 Measures on Homogeneous spaces 56
4 Induced Representations 57
5 Semi Simple Lie Groups 59
4 Classical Linear Groups over p-adic Fields 63
1 General Definitions 63
2 Study of $G L_{n}(\widetilde{P})$ 65
3 Study of $O_{n}(\varphi, P)$ 74
4 Representations of p-adic Groups 83
5 Some Problems 88
III Zeta-Functions 93
5 Analvtic Functions over p-adic Fields 95
1 Newton Polygon of a Power-Series 95
2 Zeroes of a power series 96
3 Criterion for the Rationality of power-series 100
4 Elementary Functions 103
5 An Auxiliary Function 106
6 Factorisation of additive characters of a Finite Fields 108
6 Zeta-functions 111
1 111
2 Fields of finite type over Z 112
3 Convergence of the product 114
4 Zeta Function of a Prescheme 118
5 Zeta Function of a Prescheme over F_{P} 120
6 Zeta Function of a Prescheme over F_{d} 121
7 Reduction to a Hyper-Surface 125
8 Computation of N_{1}, 126
$9 \quad$ Trace and Determinant of certain Infinite Matrices 128
10 Meromorphic character of $\xi_{V}(t)$ in Ω. 131

Part I

Classical Theory of Valuated Fields

Chapter 1

Theory of Valuations-I

In this and the next chapter we give a short account of the classical 1 theory of valuated fields. Unless otherwise stated by a ring we mean a commutative ring with the unit element 1 and without zero divisors.

1

Definition. Let A be a ring and Γ a totally ordered comutative group [1]. A valuation v of the ring A is a mapping from A^{*} (the set of non-zero elements of A) into Γ such that
(I) $v(x y)=v(x)+v(y)$ for every x, y in A^{*}.
(II) $v(x+y) \geq \inf (v(x), v(y))$ for every x, y in $A *$.

We extend v to A by setting $v(0)=\infty$; where ∞ is an abstract element added to the group Γ satisfying the equation

$$
\infty+\infty=\alpha+\infty=\infty+\alpha=\infty \text { for } \alpha \text { in } \Gamma .
$$

We assume that $\alpha<\infty$ for every α in Γ. The valuation v is said to be improper if $v(x)=0$ for all x in A^{*}, otherwise v is said to be proper.

The following are immediate consequences of our definition.
(a) $v(1)=0$. For, $v(x .1)=v(x)=v(x)+v(1)$, therefore $v(1)=0$
(b) If for x in A, x^{-1} is also in A, we have $v\left(x^{-1}\right)=-v(x)$, because 2 $v(1)=v\left(x x^{-1}\right)=v(x)+v\left(x^{-1}\right)=0$
(c) If x is a root of unity, then $v(x)=0$. In particular $v(-1)=0$, which implies that $v(-x)=v(x)$
(d) Por n in Z (the ring of integers)

$$
v(n)=v(1+---+1) \geq \inf (v(1))=0 .
$$

(e) If for x, y in $A v(x) \neq v(y)$, then $v(x+y)=\inf (v(x), v(y))$. Let us assume that $v(x)>v(y)$ and $v(x+y)>v(y)$. Then $v(y)=v(x+y-$ $x) \geq \geq \inf (v(x+y), v(-x))>v(y)$, which is impossible.

If x_{i} belongs to A for $i=n, 1,2, \ldots, n$, then one can prove by induction on n that $v\left(\sum_{i=1}^{n} x_{i}\right) \geq \inf _{1 \leq i \leq n}\left(v\left(x_{i}\right)\right)$ and that the equality holds if there exists only one j such that $v\left(x_{j}\right)=\inf _{1 \leq i \leq n}\left(v\left(x_{i}\right)\right)$. In particular if $\sum_{i=1}^{n} x_{i}=0(n \geq 2)$ then $v\left(x_{i}\right)=v\left(x_{j}\right)=\inf _{1 \leq k \leq n}\left(v\left(x_{k}\right)\right)$ for at least one pair of unequal indices i and j. For, let x_{i} be such that $v\left(x_{i}\right) \leq v\left(x_{l}\right)$ for $i \neq l$. Then $v\left(x_{i}\right) \geq \inf _{1 \leq k \leq n}\left(v\left(x_{k}\right)\right)=v\left(x_{j}\right)$, which proves that $v\left(x_{i}\right)=v\left(x_{j}\right)$.

Obviously we have
Proposition 1. Let A be a ring with a valuation v. Then there exists one and only one valuation w of the quotient field K of A which extends v.

It is seen immediately that $w\left(\frac{x}{y}\right)=v(x)-v(y)$ for x, y in A.
So without loss of generality we can confine ourselves to a field. The image of K^{*} (the set of non-zero elements of field K) by v is a subgroup of Γ which we shall denote by Γ_{v}

Proposition 2. Let K be a field with a valuation v. Then
(a) The set $\mathscr{O}=\{x \mid x \in K, v(x) \geq 0\}$ is a subring of K, which we shall call the ring of integers of K with respect to the valuation v.
(b) The set $\mathscr{Y}=\{x \mid x \in K, v(x)>0\}$ is an ideal in \mathscr{O} called the ideal of valuation v.
(c) $\mathscr{O} *=\mathscr{O}-\mathscr{Y}=\{x \mid x \in K, v(x)=0\}$ is the set of inversible elements of \mathscr{O}
(d) \mathscr{O} is a local ring (not necessarily Noetherian) and \mathscr{Y} is the unique maximal ideal of \mathscr{O}.

We omit the proof of this simple proposition. The field $k=\mathscr{O} / \mathscr{Y}$ is called the residual field of the valuation v.

It is obvious form the proposition 2 that the valuation v of K which is a homomorphism form K^{*} to Γ can be split up as follows

$$
K^{*} \xrightarrow{v_{1}} K^{*} / \mathscr{O}^{*} \xrightarrow{v_{2}} \Gamma_{v} \xrightarrow{v_{3}} \Gamma .
$$

where v_{1} is the canonical homomorphism, v_{2} the map carrying an element $x \mathscr{O}^{*}$ to $v(x)$ and $\left(v_{3}\right)$ the inclusion map of Γ_{v} into Γ.

Definition. Two valuations v and v^{\prime} of a field K are said to be equivalent if there exists an order preserving isomorphism σ of Γ_{v} onto Γ_{V}^{\prime} such that

$$
v^{\prime}=\sigma \circ v .
$$

From the splitting of the homomorphism v it is obvious that a valuation of a field K is completely characterised upto an equivalence by any one of \mathscr{O}, or \mathscr{Y}.

A valuation of a field K is said to be real if Γ_{v} is contained in R (the field fo real numbers). Since any subgroup of R is either discrete i.e., isomorphic to a subgroup of integers or dense in R, either Γ_{v} is contained in Z or Γ_{v} is dense in R. In the former case we say that v is a discrete valuation and in the latter non-discrete. Moreover v is completely determined upto a real constant factor, because if v and v^{\prime} are two non-discrete equivalent valuations of K, the isomorphism of Γ_{v} onto Γ_{v}^{\prime} can be extended to R by continuity, which is nothing but multiplication by a element of R. If v and v^{\prime} are discrete and equivalent, the assertion is trivial. If $\Gamma_{v}=z$ we call v a normed discrete valuation.

Definition. Let K be a field with a normed discrete valuation v. In K we can find an element π with $v(\pi)=1$. The element π is called a uniformising parameter for the valuation v.

Let K be a field with a normed discrete valuation v and $\mathscr{O} \neq(0)$ an ideal in \mathscr{O}. Let $\alpha=\inf _{x \in \mathscr{O}}(v(x))$. Such an α exists because $v(x)>0$ for every x in \mathscr{O}. Moreover there exists an element x_{0} in \mathscr{O} such that $v\left(x_{\circ}\right)=\alpha$, because the valuation is discrete. Then $\mathscr{O}=\mathscr{O} x_{0}=\mathscr{O} \pi^{\alpha}$ For, x belongs to $\mathscr{O} \Longleftrightarrow v(x) \geq v\left(x_{0}\right) \Longleftrightarrow v\left(\frac{x}{x_{0}}\right) \geq 0 \Longleftrightarrow x / x_{0}$ belongs to $\mathscr{O} \Longleftrightarrow x$ belongs to $\mathscr{O} x_{0}$. Since $v\left(\frac{x_{0}}{\pi^{\alpha}}\right)=v\left(x_{0}\right)-\alpha v(\pi)=0$, we get that x_{0} is in $\mathscr{O} \pi^{\alpha}$, conversely π^{α} belongs to $\mathscr{O} x_{0}$ is obvious. Therefore $\mathscr{O}=\mathscr{O} \pi^{\alpha}$. In particular $\mathscr{Y}=\mathscr{O} \pi$. In general let v be any valuation of a field K. Let \mathscr{O} be any ideal of \mathscr{O} and $H_{\mathscr{O}}=\left\{\alpha \mid \alpha \in \Gamma_{\vartheta}\right.$, such that there exists x in \mathscr{O} with $v(x)=\alpha\}$. Then the map $\mathscr{O} \rightarrow H_{\mathscr{O}}$ is a $1-1$ correspondence between the set of ideals \mathscr{O} in \mathscr{O} and the subsets $H_{\mathscr{O}}$ of Γ_{v} having the property that if α belongs to $H_{\mathscr{O}}$ and β belonging to Γ_{v} is such that $\beta \geq \alpha$, then β belongs to $H_{\mathscr{O}}$. In particular if Γ_{v} is contained in R, then the ideals of \mathscr{O} are of one of the two kinds
(i) $I_{\alpha}^{\prime}=\{x \mid x \in \mathscr{O}, v(x) \geq \alpha\}$
(ii) $I_{\alpha}=\{x \mid x \in \mathscr{O}, v(x)>\alpha\}$
for any $\alpha>0$.
Examples. (1) Let Q be the field of rational numbers. For any m in Q we have $m= \pm p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ uniquely, where $\alpha_{1}, \ldots, \alpha_{r}$ are in Z and p_{1}, \ldots, p_{r} are distinct primes. If v is any valuation of Q, we have $v(m)=$ $\sum_{j=1}^{r} \alpha_{j} v\left(p_{j}\right)$. Therefore it is sufficient to define a valuation for primes in Z. We note that for a valuation v there exists atmost one p for which $v(p)>0$. If possible let us suppose that there exist two primes p_{1} and p_{2} such that $v\left(p_{i}\right)>0$ for $i=1,2$.

Since $\left(p_{1}, p_{2}\right)=1$, there exist two integers a and b such that $a p_{1}+$ $b p_{2}=1$. This implies that $\left.0=v(1) \geq \inf \left(v\left(a p_{1}\right)\right), v\left(b p_{2}\right)\right)>0$, which is impossible. Thus our assertion is proved, If there does not exist any prime p for which $v(p)>0$, then v is improper.

For a prime p we define $v_{p}(p)=1$ and $v_{p}(m)=\alpha$, where α is the highest power of p dividing m. It is easy to verify that this is a valuation of Q and any valuation of Q for which $v(p)>0$ is equivalent to this
valuation. It is a discrete normed valuation of Q. One can take p as a uniformising parameter and prove that the residual field is isomorphic to $Z /(p)$
(2) Let K be any field, $K((x))$ the field of formal power series over K. For any element $f(x)=\sum_{r=m}^{\infty} a_{r} x^{r}$ of $K((x))$ we define $v(f(x))=t$, if a_{t} is the first non-zero coefficient in $f(x)$. One an easily verify that v is a normed discrete valuation of $K((x))$. The ring of integers of the valuation is the ring of formal power series with non-negative exponents and the ideal is the set of those elements in the ring of integers for which the constant term is zero. One can take x as a uniformising parameter.

2 Valuation Rings and Places

This section is added for the sake of completeness. The results mentioned here will not be used in the sequel.

Remark. Let K be a field with a valuation v and ring of integers $\mathscr{O} .7$ Then for any x in K, either x belongs to \mathscr{O} or x^{-1} belongs to \mathscr{O}.

Motivated by this we define
A subring A of a field K is called a valuation ring of K if for any x in K either x belongs to A or x^{-1} belongs to A. In general a ring A is said to be a valuation ring if it is a valuation ring for its quotient field.

Proposition 3. A ring A is a valuation ring if and only if the set of principle of A is totally ordered by inclusion.

Proof. Let A be a valuation ring. Let $A x$ and $A y$ be two proper principle ideals of A. Consider $z=\frac{x}{y}$ belonging to K the quotient field of A. Since A is a valuation ring, either z or z^{-1} belongs A. But this implies that either $A x \subset A y$ or $A y \supset A x$. Therefore the set of principal ideals is totally ordered conversely let $x=\frac{y}{z}$, where y and z belong to A and $x \neq 0$, be an element of K which is not in $A . x \notin A$ implies that y does not belong to $A z$. But the set of principle ideals of A is totally ordered, therefore we get $A z \subset A y$ implying $z=a y$ for some a in A. But $a=x^{-1}$, therefore A is a valuation ring.

Corollary. A valuation ring is a local ring.
If possible let $\mathcal{M}_{1} \neq \mathcal{M}_{2}$ be two maximal ideals in a valuation ring A. $\mathcal{M}_{1} \neq \mathcal{M}_{2}$ implies that there exists $x_{1} \in \mathcal{M}_{1}, x_{1} \notin \mathcal{M}_{2}$ and $x_{2} \in \mathcal{M}_{2}$, $x_{2} \notin \mathcal{M}_{1}$.
$x_{1} \notin \mathcal{M}_{2} \Longrightarrow A x_{1}$ is not contained in \mathcal{M}_{2} which implies that $A x_{1}$ is not contained in $A x_{1}$. Similarly x_{2} not belonging to \mathcal{M}_{1} implies that Ax x_{1}. But this is impossible, therefore $\mathcal{M}_{1}=\mathcal{M}_{2}$.

Proposition 4. A ring A is a valuation ring if and only if A is the ring of a valuation of its quotient field K determined upto an equivalence.

Proof. Let \mathcal{M} be the unique maximal ideal of the valuation ring A and $A^{*}=A / \mathcal{M}$. For x, y in K^{*} we define $x \geq y$ if and only if x belongs to $A y$. It is easy to verify that this relation among the elements of K^{*} induces a total order in the group K^{*} / A^{*} and the canonical homomorphism K^{*} onto K^{*} / A^{*} is a valuation of K for which the ring of integers is A. The ring of integers of a valuation is a valuation ring has already been proved.

Let k be a fields. By $k \cup \infty$ we mean the set of elements of k together with an element ∞. We extend the laws of k to (not everywhere defined) laws in $k \cup \infty$ in this way
(i) $\infty+a=a+\infty=\infty$ for a in k^{*}
(ii) $\infty \times a=a \times \infty=\infty \times \infty=\infty$, for a in k^{*}
$0 \times \infty$ and $\infty+\infty$ are not defined.
Let K be a field with a valuation v and let $k=\mathscr{O} / \mathscr{Y}$ be the residual fields of v. Then the canonical homomorphism ρ of \mathscr{O} onto k extended to K by setting $\rho(x)=\infty$ for x not in \mathscr{O} gives rise to a map of K onto $k \cup \infty$ called a place of K.

In general, we define
A place of a field K is a mapping ρ form K to $k \cup \infty$ such that
(i) $\rho(a+b)=\rho(a)+\rho(b)$
(ii) $\rho(a b)=\rho(a) \rho(b)$
for a, b in K and whenever the right hand side is meaningful.
It is easy to prove that $\mathscr{O}=\rho^{-1}(K)$ is a valuation ring with the maximal ideal $\mathscr{Y}=\rho^{-1}(0)$.

Thus there exists a $1-1$ correspondence between the set of valuation rings and the set of inequivalent places of a field (Two places ρ_{1} and ρ_{2} of a field K carrying K into $k \cup \infty$ and $k^{\prime} \cup \infty$) respectively are said to be equivalent if there exists an isomorphism σ of k onto k^{\prime} such that $\rho_{2}=\sigma \circ \rho_{1}$, with $\sigma(\infty)=\infty$.

3 Topology Associated with a Valuation

Let K be a field with a valuation v. For any $\alpha \geq 0$ in Γ_{v} consider the ideal

$$
I_{\alpha}=\{x \mid x \in K, v(x)>\alpha\}
$$

Then there exists one and only topology on K for which
(1) I_{α} for different α in Γ_{v} form a fundamental system fo neighbourhoods of 0 .
(2) K is a topological group for addition.

We see immediately that the operation of multiplication in K is continuous in topology. I_{α} for any $\alpha \geq 0$ in Γ_{v} is an open subgroup and hence a closed subgroup of K. Thus the residual field k is discrete for the quotient topology. The topology of K is discrete if and only if the valuation v is improper (if $\Gamma_{v}=\{o\}$). In particular K with a discrete and proper valuation is not discrete as a topological space. The topology of K is always Hausdorff, because if $x \neq 0$, then x does note belong to I_{α} with $\alpha=v(x)$, therefore $\bigcup_{\alpha \in \Gamma_{v}} I_{\alpha \alpha}>0=(0)$ which proves our assertion.

Remark 1. If v is not improper, then the ideals I_{α}^{\prime} for $\alpha \geq o$ in Γ_{v} also constitute a fundamental system of neighbourhoods of 0 for the topology of K. For, I_{α}^{\prime} and for $\alpha>o I_{\alpha}$ contains $I_{2 \alpha}^{\prime}$.

Remark 2. Let A be a ring a with a decreasing filtration by ideals i.e. there exists a sequence $\left(A_{n}\right)_{n \geq 0}$ of ideals such that $A_{n} \supset A_{n+1}$ and
$A_{n} A_{m} \subset A_{m+n}$. Then there exists one and only one topology for which A is an additive topological group and $\left(A_{n}\right)_{n \geq o}$ constitute a fundamental system of neighbourhoods of $0 . A$ is a topological ring this topology.

Let \mathcal{M} be any ideals of a ring A. Then A can be made into a topological ring by taking $A_{n}=\mathcal{M}^{n}$. We call the topology defined by \mathcal{M} on A the \mathcal{M} - adic topology. In particular the ring of integers of a field K which a real valuation v has the \mathcal{M} - adic topology for every $\mathcal{M}=\{x / v(x) \geq \alpha>0\}$ We shall speak of this topology of K as the \mathcal{M}-adic topology.

If the valuation v is discrete and normed. We can take $\alpha=1$ and $\mathcal{M}=\mathscr{Y}$.

Remark 3. If K is a field with a real valuation v, then the \mathscr{Y}-adic topology completely characterises the valuation upto a constant factor, because x belongs to \mathscr{Y} if and only if x^{n} tends to zero as n tends to infinity.

4 Approximation Theorem

For the sake of simplicity we confine ourselves in this section to real valuations though analogous results could be prove for any valuation. In this section we deal with the question whether there exists any connection between various inequivalent valuations of a field. We first prove:-

Lemma 1. Let K be a field with two valuations v_{1} and v_{2}. Then v_{1} and v_{2} are inequivalent if an only if \mathscr{O}_{1}, the ring of integers of v_{1}, is not contained in \mathscr{O}_{2}, the ring of integers of v_{2}.

Proof. If $\mathscr{O}_{1} \subset \mathscr{O}_{2}$, then $K-\mathscr{O}_{1}$ contains $K-\mathscr{O}_{2}$ implying $\mathscr{Y}_{2} \subset \mathscr{Y}_{1} \subset$ $\mathscr{O}_{1} \subset \mathscr{O}_{2}$. Therefore \mathscr{Y}_{2} is a prime ideal in \mathscr{O}_{1}. Assume $\mathscr{Y}_{2} \neq \mathscr{Y}_{1}$, then there exists x in \mathscr{Y}_{1} which does not belong to \mathscr{Y}_{2}. Since \mathscr{V}_{2} is an ideal in \mathscr{O}_{1}, there exists $\alpha>0$ in $\Gamma_{v_{1}}$ such that \mathscr{Y}_{2} contains I_{α}. Let $v_{1}(x)=\beta$.

Then for large enough q we have

$$
v_{1}\left(x^{q}\right)=q v_{1}(x)=q \beta>\alpha,
$$

which means that x^{q} belongs to \mathscr{Y}_{2}, but \mathscr{Y}_{2} is a prime ideal, therefore x belongs to \mathscr{Y}_{2}. Hence our assumption is wrong.

Therefore $\mathscr{Y}_{2}=\mathscr{Y}_{1}$ and v_{1} is equivalent to v_{2}. The converse is obvious.

Lemma 2. Let K be a field with $v_{1}, \ldots, v_{n}(n \geq 2)$ proper valuations such that v_{i} is inequivalent to v_{j} for $i \neq j$. Then there exists an element z in K such that $v_{1}(z)>0, v_{2}(z)<0$ and $v_{i}(z) \neq 0$ for $i=1,2, \ldots, n$.

Proof. We shall prove the results by induction on n. When $n=2, v_{1}$ inequivalent to v_{2} implies that \mathscr{O}_{1} is not contained in \mathscr{O}_{2} (lemma11). Therefore there exists x in \mathscr{O}_{1} and not in \mathscr{O}_{2}. Moreover \mathscr{O}_{2} not contained in \mathscr{O}_{1} implies that \mathscr{Y}_{1} is not contained in \mathscr{V}_{2}.

Therefore there exists y in \mathscr{Y}_{1} and not in \mathscr{Y}_{2}. Then $z=x y$ is the required element.

When $n>2$. By induction there exists an element x in K such that $v_{1}(x)>0, v_{2}(x)<0$ and $v_{i}(x) \neq 0$ for $i=1,2, \ldots, n-1$. If $v_{n}(x) \neq 0$, we have nothing to prove. If $v_{n}(x)=0$, we take an element y with $v_{n}(y) \neq 0$. Let $z=y x^{s}, s$ a positive integer. Then for sufficiently large s, z fulfills the requirements of the lemma.

Theorem 1. Let K be a field with v_{1}, \ldots, v_{r} proper valuations such that v_{i} is inequivalent to v_{j} for $i \neq j$. Let K_{i} be the field K with the topology defined by v_{i} and ρ the canonical map from $K \rightarrow \prod_{i=1}^{r} K_{i}=P$ i.e. $\rho(a)=$ (a, a, \ldots, a). Then $\rho(K)=D$ is dense in P.

Equivalently stated if a_{1}, \ldots, a_{r} are any r elements in K, then for every $\alpha_{1}, \ldots, \alpha_{r}$ in R there exists an element x in K such that

$$
v\left(x-a_{i}\right)>\alpha_{i} \text { for } i=1,2, \ldots, r .
$$

Proof. The theorem is trivial for $r=1$. Let us assume that it is true in case the number of valuations is less then r.

By lemma 2 there exists an elements x in K such that $v_{1}(x)>$ $0, v_{r}(x)<0$ and $v_{i}(x) \neq 0$ for $1 \leq i \leq r$, then $y_{n}=\frac{x^{n}}{1+x^{n}}$ tends to

0 in K_{1}, to 1 in K_{r} and to 0 or 1 in others as n tends to infinity. Let the notation be so chosen that $\rho\left(y_{n}\right) \rightarrow(0,0, \ldots, 0,1, \ldots, 1)$ as n tends to infinity, 0 occurring in s places where $1 \leq s \leq r-1$. Now D is a subspace of P over K, therefore

$$
\operatorname{lt}_{n \rightarrow \infty} x \rho\left(y_{n}\right)=\operatorname{lt}_{n \rightarrow \infty} \rho\left(x y_{n}\right)=(0, \ldots 0, x, \ldots, x)
$$

and $(0,0, \ldots, 0, x, x, \ldots, x)$ is in \bar{D}. Consider the product $\prod_{i=s+1}^{r} K_{i}$, by induction assumption the diagonal of $\prod_{i=s+1}^{r} K_{i}$ which is imbedded in \bar{D} is dense in the product which implies that $\left(0, \ldots, 0, a_{s+1}, \ldots, a_{r}\right)$ belongs to \bar{D} for a_{i} in $K, s+1 \leq i \leq r$. Similarly $\left(a_{1}, a_{2}, \ldots, a_{s}, 0, \ldots, 0\right)$ belongs to \bar{D}. But \bar{D} is a vector space over K, therefore $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ is in \bar{D}. Hence $\prod_{i=1}^{r} K_{i}=\bar{D}$.
Corollary. Under the assumptions of the theorem for $\alpha_{j} \in \Gamma_{v_{j}}(j=$ $1,2, \ldots, r)$ there exists x in K such that $v_{j}(x)=\alpha_{j}$.

For α_{j} in $\Gamma_{v_{j}}$, there exists $a_{j} \in K$ such that $v\left(a_{j}\right)=\alpha_{j}$. By approximation theorem there exists an element x in K such that $v\left(x-a_{j}\right)>\alpha_{j}$. By definition we have $v(x)=v\left(x-a_{j}+a_{j}\right)=\inf v\left(\left(x-a_{j}\right), v\left(a_{j}\right)\right)=$ $v\left(a_{j}\right)=\alpha_{j}$.

5 Completion of a field with a valuation

Let K be a field with a valuation v. Since K is a commutative topological group for the topology defined by v, it is a uniform space. Let \hat{K} denote the completion K. The composition laws of addition and multiplication can be extended by continuity to \hat{K}, for which \hat{K} is a topological ring. In fact \hat{K} is a topological field, because if Φ is a Cauchy filter on K converging to $a \neq 0$, then Φ^{-1} (the image of Φ by the map $x \rightarrow x^{-1}$ in K) is a Cauchy filter. For Φ not converging to 0 implies that there exists $\alpha \geq 0$ in Γ_{v} and a set A in Φ such that $v(x)<\alpha$ for every x in A. Since Φ is a Cauchy filter, for every β in Γ_{v}, there exists a set B in Φ contained in A such that

$$
v(x-y)>2 \alpha+\beta \text { for } x, y \text { in } B .
$$

Then
$v\left(x^{-1}-y^{-1}\right)=v\left(x^{-1} y^{-1}(y-x)\right)=-v(x)-v(y)+v(y-x)>-\alpha-\alpha+2 \alpha+\beta$
which implies that Φ^{-1} is a Cauchy filter converging to a^{-1} in \hat{K}. The valuation v can also be extended to be valuation \hat{v} of \hat{K}, in fact it is a continuous representation of K^{*} onto Γ_{ν} considered as a discrete topological group, so v can be extended as a continuous representation \hat{v} of \hat{K}^{*} in Γ and we get $\hat{v}(x+y) \geq \inf (\hat{v}(x), \hat{v}(y))$ by continuity. Moreover $\mathscr{O}_{\hat{K}}$ (the ring of integers of $\left.\hat{K}\right)=\hat{\mathscr{O}}_{K}=\overline{\mathscr{O}}_{K}$, since $\mathscr{O}_{\hat{K}}$ is open in \hat{K} and K is hence in $\hat{K}, \mathscr{O}_{\hat{K}} \cap K=\mathscr{O}_{K}$ is dense in $\mathscr{O}_{\hat{K}}$, this implies that $\mathscr{O}_{\hat{K}} \supset \overline{\mathscr{O}}_{K}$. But $\overline{\mathscr{O}}_{K} \supset \mathscr{O}_{\hat{K}}$, therefore our result is proved. More generally

$$
\hat{I}_{\alpha}=\{x \mid \hat{v}(x)>\alpha, x \in \hat{K}\}=\bar{I}_{\alpha}=\overline{\{x \mid v(x)>\alpha, x \in K\}}
$$

In particular $\mathscr{Y}_{\hat{K}}=\overline{\mathscr{Y}}_{K}$. We have $\mathscr{Y}_{K}=\mathscr{O}_{K} \cap \mathscr{Y}_{\hat{K}}$, so we may identify $\mathscr{O}_{K} / \mathscr{Y}_{K}$ with a subset of $\mathscr{O}_{\hat{K}} / \mathscr{Y}_{\hat{K}}$, and $\mathscr{O}_{K} / \mathscr{Y}_{K}$ is dense in $\mathscr{O}_{\hat{K}} / \mathscr{\mathscr { Y }}_{\hat{K}}$. But $\mathscr{O}_{\hat{K}} / \mathscr{Y}_{\widehat{K}}$ is discrete, therefore $\mathscr{O}_{\hat{K}} / \mathscr{Y}_{\hat{K}}=\mathscr{O}_{K} / \mathscr{V}_{K}$.

Remark. Let K be a field with a real valuation v, with v we associate a map from K to R. We defined for any x in K the absolute value $|x|=$ $a^{-v(x)}$, where a is a real number >1. The map $\|$ satisfies the following properties
(1) $|x|=0$ if and only if $x=0$
(2) $|x y|=|x||y|$
(3) $|x+y| \leq \sup (|x|,|y|) \leq|x|+|y|$.

The absolute value of elements of K, which defines the same topology on K as the valuation v.

By Q_{p} we shall always denote the completions of the field Q for p-adic valuation and by Z_{p} the ring of integers in Q_{p}. For the absolute value associated to the p-adic valuation. We take $a=p$ so that $|x|_{p}=$ $p^{-v} p^{(x)}$

6 Infinite Series in a Complete Field

Let K be a complete field for a real valuation v. Since every Cauchy sequence in K has a limit in K, the definition of convergence of infinite series and Cauchy criterium can be given in the same way as in the case of real numbers. However in this case we have the following.

Theorem 2. A family $\left(u_{i}\right)_{i \in I}$ of an infinite number of elements of K is summable if and only if u_{i} tends to 0 following the filter of the complements of finite subsets of I.

Proof. The condition is clearly necessary. Conversely for any α in Γ_{v} we can find a finite subset J of I such that for i not in $J, v\left(u_{i}\right)>\alpha$, then for i_{1}, \ldots, i_{r} not in J we have $v\left(\sum_{j=1}^{r} \cup_{i_{j}}\right)>\alpha$ which is nothing but Cauchy Criterium. Hence the family is summable.

Corollary. Let $\sum_{n=0}^{\infty} u_{n}$ be infinite series of elements of K Then the following conditions are equivalent.
(a) $\sum_{n=0}^{\infty} u_{n}$ is convergent.
(b) $\sum_{n=0}^{\infty} u_{n}$ is commutatively convergent.
(c) u_{n} tends to 0 as n tends to infinity.

17 Application. Let K be a complete field for a normed discrete real valuation v, π a uniformising parameter for K, \mathscr{R} a fixed system of representatives in \mathscr{O} for the elements of the residual field K. Then the series $\sum_{q=m}^{\infty} r_{q} \pi^{q}$, where r_{q} belongs to \mathscr{R} is convergent to an element x in K and conversely every x in K can be represented in this form in one and only one way. The series is convergent because $v\left(r_{q} \pi^{q}\right) \geq q$ for $q \neq 0$ and therefore tends to infinity as q tends to infinity. Conversely by multiplying with a suitable power of π we can take x in \mathscr{O}, then there exists a unique $r_{0} \in \mathscr{R}$ such that $x \equiv r_{0}(\bmod \mathscr{Y})$.

This implies that $\left(x-r_{0}\right) \pi^{-1}$ is in \mathscr{O}. Therefore there exists unique r_{1} in \mathscr{R} such that
or

$$
\begin{array}{r}
\left(x-x_{0}\right) \pi^{-1} \equiv r_{1} \quad(\bmod \mathscr{Y}) \\
x \equiv r_{0}+r_{1} \pi \quad\left(\bmod \mathscr{Y}^{2}\right) .
\end{array}
$$

Proceeding in this way we prove by induction that

$$
x \equiv r_{o}+r_{1} \pi \cdots+r_{m} \pi^{m} \quad\left(\bmod \mathscr{Y}^{m+1}\right)
$$

Now it is obvious that the series $\sum_{r=0}^{\infty} r_{m} \pi^{m}$, is convergent and that $x=$ $\sum_{q=0}^{\infty} r_{q} \pi^{q}$. The uniqueness of the series is obvious from the construction.

In particular if, $K=Q_{P}$ then any x in Q_{p} can be represented in the form $\sum_{q=m}^{\infty} r_{q} p^{q}$, where $r_{q} \in\{0,1,2 \ldots, p-1\}$.

7 Locally Compact Fields

In this section we give certain equivalent conditions for valuated fields to be locally compact. Later on we shall completely characterise the locally compact valuated fields.

Theorem 3. Let K be a field with a proper valuation v. Then the following conditions are equivalent.
(a) K is locally compact.
(b) \mathscr{O} is compact.
(c) K is complete, v is a discrete valuation and k is a finite field.

Proof. $(a) \Longrightarrow(b)$. Since $\left(I_{\alpha}^{\prime}\right)_{\alpha \in \Gamma_{v}}$ form a fundamental system of closed neighbourhoods for 0 , there exists an α such that I_{α}^{\prime} is compact. But m $I_{\alpha}^{\prime}=\mathscr{O}_{x_{o}}$, if $v\left(x_{0}\right)=\alpha$, therefore $\mathscr{O}=x_{0}^{-1} I_{\alpha}$ is compact.
$(b) \Longrightarrow(a)$ is trivial, as \mathscr{O} is a compact neighbourhood of 0 .
$(a) \Longrightarrow(c) K$ is complete because it is a locally compact commutative group. For any $\alpha>0$ in $\Gamma_{\nu} \mathscr{O} / I_{\alpha}$ is compact because \mathscr{O} is compact.

But \mathscr{O} / I_{α} is a discrete space, therefore it contains only a finite number of elements. In particular $k=\mathscr{O} / \mathscr{Y}$ is finite field. For any β in $\Gamma_{v}, 0<\beta<\alpha$, we have $I_{\alpha} \subset I_{\beta} \subset \mathscr{O}$, therefore I_{β} / I_{α} is a nontrivial ideal of \mathscr{O} / I_{α} and distinct elements give rise to distinct ideals. But \mathscr{O} / I_{α} is a finite set, therefore there exist only a finite number of β with $0<\beta<\alpha$, so we get that
(i) Γ_{v} has a smallest positive element
(ii) Γ_{v} is Archimedian.

Thus Γ_{v} is isomorphic to Z and the valuation v is discrete. $(c) \Longrightarrow$ (b). We shall prove that discreteness of the valuation v and finiteness of k implies that \mathscr{O} is precompact, which together with the fact that K is complete implies that \mathscr{O} is compact. Let V be any neighbourhood of 0 . Since v is discrete, for some $n>0 V$ contains \mathscr{Y}^{n}. We shall show by induction on n that $\mathscr{O} / \mathscr{Y}^{n}$ is finite for $n>0$. The result is true for $n=1$; let us assume it to be true for all $r<n$. We have $\mathscr{O} / \mathscr{Y}^{n-1} \simeq$ $\mathscr{O} / \mathscr{Y}^{n} / \mathscr{Y}^{n-1} / \mathscr{Y}^{n}$ But $\mathscr{O} / \mathscr{Y}^{n-1}$ is finite by induction hypothesis and $\mathscr{Y}^{n-1} / \mathscr{Y}^{n}$ is finite because it is isomorphic to $\mathscr{O} / \mathscr{Y}$, therefore $\mathscr{O} / \mathscr{Y}^{n}$ is finite. Hence there exist a finite number of elements $x_{1}---x_{r}$ in \mathscr{O} such that $\mathscr{O} \subset \bigcup_{i=1}^{r}\left(x_{i}+\mathscr{Y}^{n}\right) \subset \bigcup_{i=1}^{r}\left(x_{i}+V\right)$ and since this is true for every neighbourhood of $0, \mathscr{O}$ is precompact.

8 Convergent Power Series

Let K be complete field with a real valuation v. Then the power series $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with coefficients from K is said to be convergent at a point x of K if the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is convergent. It has already been proved that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges if and only if

$$
\begin{equation*}
v\left(a_{n} x^{n}\right)=v\left(a_{n}\right)+n v(x) \rightarrow \infty \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

From (11) it is obvious that if take $t=\liminf _{n} \frac{1}{n}\left(v\left(a_{n}\right)\right)$, then the series f converges for all x which $v(x)>-t$ and does not converge for those x for which $v(x)<-t$ and for those x for which $v(x)=-t$ either the series converges for all x or does not converge at all. The number $-t$ is called the order of convergence of the power series f and the set $\{x \mid v(x)>-t\}$ or $\{x \mid v(x) \geq-t$, if the series converges at a point x with $v(x)=-t\}$ is called the disc of convergence, which we shall denote by D_{f}. If we consider the absolute value associated to v then the radius of convergence is

$$
\rho=a^{-t}=\left\{\lim _{n \rightarrow \infty} \sup \left(|a|_{n}\right)^{1 / n}\right\}^{-1}
$$

and $\quad D_{f}=\{x| | x \mid<\rho\} \quad$ or $\quad\{x||x| \leq \rho\}$
The mapping $x \rightarrow f(x)$ from D_{f} to K is continuous because it is a uniform limit of polynomials namely the partial sums of the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ in the disc $\left\{x \mid v(x) \geq-t_{1}\right.$, for all $\left.t_{1}>t\right\}$ or in the disc $\{x \mid v(x) \geq-t\}$ if the series converges on the disc. The classical results about addition and multiplication, ... of power series can be carried over to the power series with coefficient in a complete valuated field. For instance if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ are two power series with D_{f} and D_{g} as their discs of convergence respectively; then if for one x in $D_{f}, \quad \mathbf{2 1}$ $a_{i} x^{i}$ belongs to D_{g} for every $i, f(x)$ also belongs to D_{g} and we have

$$
\begin{aligned}
g(f(x)) & =\sum_{r=0}^{\infty} c_{r} x^{r}, \text { where } \\
c_{r} & =\sum_{q=0}^{\infty} b_{q} \sum_{i_{1}+i_{2}+\cdots+i_{q}=r} a_{i_{1}} a_{i_{2}} \ldots a_{i_{q}},
\end{aligned}
$$

all the series being convergent.
Remark 1. If $k=\mathscr{O} / \mathscr{Y}$ is an infinite field, then

$$
\inf _{i}\left(v\left(a_{i} x^{i}\right)\right)=\inf _{v(y)=v(x)}(v(f(y))) .
$$

For, $v(f(x)) \geq \inf _{i}\left(v\left(a_{i} x^{i}\right)\right)$. We get equality, if there does not exist any two terms of the same valuation. In the exceptional case as the series as the series $\sum_{n=0}^{\infty} a_{n} y^{n}$ is convergent, we have
$f(y)=\sum_{r=i_{\circ}}^{j_{\circ}} a_{r} y^{r}+$ terms of higher valuation, where $i_{\circ} \leq r \leq j_{\circ}<\infty$. and without loss of generality we can assume that $v(x)=0$ and $\inf _{i} v\left(a_{i} x^{i}\right)=0$. Now $v(f(y))>0$ if and only if $\sum_{r=i_{o}}^{j_{\circ}} a_{r} y^{r}$ belongs to \mathscr{Y} i.e., if and only if the polynomial $\sum_{r=i_{\circ}}^{j_{\circ}} \bar{a}_{r} \bar{y}^{r}$ (the image in k) $=0$. But k has infinite number of elements and the above polynomial not being identically zero has only a finite number of zeros, therefore there exists atleast one y for which $v(f(y))=0$ and $v(x)=v(y)$. Thus in this case whenever x is in D_{f} and $f(y)$ belongs to D_{g} for all those y for which $v(x)=v(y)$, we have

$$
\inf _{i} v\left(a_{i} x^{i}\right)=\inf _{v(y)=v(x)} v(f(y))
$$

$$
\begin{aligned}
& \text { Then } f(g(x))=\sum_{r=0}^{\infty} c_{r} x^{r} \text { with } \\
& \\
& c_{r}=\sum_{r=0}^{\infty} b_{q} \sum_{v_{1}+--+v_{q}=r} a_{v_{1}} \cdots a_{v_{q}} .
\end{aligned}
$$

Remark 2. Let A be a ring with a topology defined by a decreasing filtration $\left(A_{n}\right)_{n \geq 0}$ of ideals for which A is Hausdorff and complete space. Then the formal power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at x in A if and only if $a_{n} x^{n} \rightarrow 0$ as n tends to infinity and obviously the series converges everywhere in A if and only if a_{n} tends to 0 as n tends to infinity.

Chapter 2

Theory of Valuations -II

1 Hensel's Lemma

In this section we give a proof of Hensel's lemma and deduce certain corollaries which will be used quite often in the following. In this section by a ring we mean a commutative ring with unity (It may have zero divisors).

Definition. Let A be a ring. Two elements x and y in A are said to be strongly relatively prime if and only if $A x+A y=A$ i.e. if and only if there exist two elements u and v in A such that $u x+v y=1$.

In particular if $k[x]$ is the ring of polynomials over a filed k then any two elements in $k[x]$ are strongly relatively prime if and only if they are coprime in the ordinary sense.

It is obvious that if x and y are two strongly relatively prime elements in a ring A, then for any z in $A x$ divides $y z$ implies that x divides z.

Lemma 1. Let P and P^{\prime} be two polynomials with coefficients in a ring A such that P is monic and P and P^{\prime} are strongly relatively prime. Let us assume that degree $P=d(P)=s$ and $d\left(P^{\prime}\right)=s^{\prime}$. Then for every polynomial Q in $A[x]$ there exists one and only one pair of polynomials U and V such that

$$
Q=U P+V P^{\prime} \text { with } d(V)<s
$$

and for every $t>s^{\prime}, d(Q)<t+s$ if and only if $d(U)<t$.

Proof. The existence of one pair U and V such that $Q=U P+V P^{\prime}$ is trivial. If $d(V)>s$, we write $V=A P+B$ where $d(B)<s$, which is possible because P is a monic polynomial, so we get

$$
q=(U+A) \cdot P+B P^{\prime} \text { with } d(B)<s
$$

Thus we can assume in the beginning itself that $d(V)<s$. If possible let there exists another pair U^{\prime} and V^{\prime} such that

$$
Q=U^{\prime} P+V^{\prime} P^{\prime}, d\left(V^{\prime}\right)<s
$$

Then
$U^{\prime} P+V^{\prime} P^{\prime}=U P+V P^{\prime}$ implies that $\left(U-U^{\prime}\right) P=\left(V^{\prime}-V\right) P^{\prime}$.
But P and P^{\prime} are strongly relatively prime, therefore P divides $V^{\prime}-$ V. Since $d\left(V^{\prime}-V\right)<s, V^{\prime}-V=0$. This implies that $P\left(U-U^{\prime}\right)=0$. As P is monic we must have $U=U^{\prime}$. Let $d(Q)<t+s$. Then $d(U P)=$ $d\left(Q-V P^{\prime}\right)$. But $d(V)<s$ and $d\left(P^{\prime}\right)=s^{\prime}<t$, therefore $d(U P)<t+s$, which implies that $d(U)<t$ because P is a monic polynomial of degree s. It is obvious that $d(V)<t\left(t>s^{\prime}\right)$ implies that $d(Q)<t+s$.

Definition. Let A be a ring, the intersection of all the maximal ideals is called the radical of A and shall be denoted by $r(A)$.

It can be easily proved that any element x of A belongs to $r(A)$ if and only if $1-x y$ is invertible for all $y \in A$.

Lemma 2. Let A be a ring \mathscr{O} an ideal in A contained in $r(A)$. Then two polynomials P and P^{\prime} in $A[x]$ ane of which (say P) is minic are strongly relatively prime if and only if \bar{P} and \bar{P}^{\prime} (the images of P and P^{\prime} in $A / \mathscr{O}[x])$ are strongly relatively prime.

Proof. P and P^{\prime} are strongly relatively prime implies \bar{P} and \bar{P}^{\prime} are strongly relatively prime is obvious.

Suppose that $d\left(P^{\prime}\right)=s^{\prime}$ and $d(P)=s$. Then $d(\bar{P})=d(P)=s$, because P is monic. Let $E=\left\{f \mid f \in A[x], d(f)<s+t\right.$, for some $\left.t>s^{\prime}\right\}$. Then E is a module of finite type over A. Let $\bar{E}=E / \mathscr{O} E$, since \bar{P} and \bar{P}^{\prime} are strongly relatively prime in $A / \mathscr{O}[x], \bar{E}^{\prime}$ is generated by the
polynomials $X^{u} \bar{P}$ and $X^{v} \bar{P}^{\prime}$ for $0 \leq u \leq s$. For, by Lemma for every polynomials \bar{Q} in \bar{E} there exists one only one pair of polynomials \bar{U} and \bar{V} in $A / \mathscr{O}[X]$ such that

$$
\bar{Q}=\bar{U} \bar{P}+\bar{V}^{\prime} \bar{P}^{\prime} \quad d(\bar{V})<t+s
$$

But $d(\bar{Q})<t+s$, therefore $d(\bar{U})<t$. Thus

$$
\begin{aligned}
& \bar{U}=\sum_{\lambda=0}^{u} \bar{a}_{\lambda} X^{\lambda}, 0 \leq u \leq t \\
& \bar{V}=\sum_{\mu=0}^{v} \bar{b}_{\mu} X^{\mu}, 0 \leq v \leq s
\end{aligned}
$$

and $\bar{Q}=\sum_{\lambda=0}^{u} \bar{a}_{\lambda}\left(X^{\lambda} \bar{P}\right)+\sum_{\mu=0}^{v} \bar{b}_{\mu}\left(X^{\mu} \bar{P}^{\prime}\right)$.
By a simple corollary of Nakayama's lemma (For proof see Algebre by N. Bourbaki chapter 8 section 6) which states that if E is a module of finite type over a ring A and q and ideal in $r(A)$ then if $\left(a_{1}, \ldots, a_{n}\right)$ generate E module $q E$, they generate E also, we get $X^{u} P$ and $X^{v} P$ for $0 \leq u \leq t$ and $0 \leq v \leq s$ constitute a set of generators for E. Therefore

$$
1=\left(\sum_{r=0}^{u} a_{r} X^{r}\right) P+\left(\sum_{k=0}^{v} b^{k} X^{k}\right) P^{\prime}
$$

because 1 belongs to E. Hence P and P^{\prime} are strongly relatively prime in $A[X]$.

Let A be a ring with a decreasing filtration of ideals $\left(\mathscr{O}_{n}\right)_{n>0}$, defining a topology on A for which A is a complete Hausdorff space. If $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}$ is a power series over A converging everywhere in A then $\lambda_{n}(f)=\sup _{a_{i} \notin \mathscr{O}_{n}}(i)$
$\left(\lambda_{n}(f)<\infty\right.$, because $a_{n} \rightarrow 0$ as $\left.n \rightarrow \infty\right)$ is an increasing function of n i.e., $\lambda_{n}(f) \leq \lambda_{n+1}(f)$ and $f(x)$ is a polynomial if and only if $\lambda_{n}(f)$ is constant for n sufficiently large.

We shall denote by \bar{f} the image of f in $A / \mathscr{O}_{1}[X]$.

Hensel's Lemma. Let A be a ring with a decreasing filtration of ideals $\left(\mathscr{O}_{n}\right)_{n>0}$. Let A for this topology be a complete Hausdorff space. If $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}$ is an everywhere convergent power series over A and if there exist two polynomial φ and ψ an $A / \mathscr{O}_{1}[X]$ such that
(1) φ is monic of degree s
(2) φ and ψ are strongly relatively prime
(3) $\bar{f}=\varphi \psi$

27 then there exists one and only pair (g, h) such that
(a) g is a monic polynomial of degree s in $A[X]$ and $\bar{g}=\varphi$.
(b) h is every where convergent power series over A and $\bar{h}=\psi$.
(c) $f=g h$

Moreover $\lambda_{n}(h)=\lambda_{n}(f)-s$. If f is a polynomial then h is a polynomial and g and h are strongly relatively prime.

Proof. Existence We construct two sequences of polynomials $\left(g_{n}\right)$ and $\left(h_{n}\right)$ an $A[X]$ by induction on n such that

$$
\begin{aligned}
& (\alpha) g_{n} \text { is monic of degree } \mathrm{s}, \bar{g}_{n}=\varphi \text { and } \\
& g_{n}+1 \equiv g_{n} \quad\left(\bmod \mathscr{O}_{n+1}\right) \text { for } n \geq 0 \\
& (\beta) \bar{h}_{n}=\psi, h_{n+1} \equiv h_{n} \quad\left(\bmod \mathscr{O}_{n+1}\right) \text { and } \\
& d\left(h_{n}\right)=\lambda_{n+1}(f)-s \\
& (\gamma) f \equiv g_{n} h_{n} \quad\left(\bmod \mathscr{O}_{n+1}\right), n \geq 0
\end{aligned}
$$

For $n=0$, we take $g_{o}=\sum_{r=0}^{s-1} a_{r} X^{r}+X^{s}$ if

$$
\varphi=\sum_{r=0}^{s-1} \bar{a}_{r} X^{r}+X^{s} \text { and } h_{o}=\sum_{u=0}^{t} b_{u} X^{u} \text { if }
$$

$$
\psi=\sum_{u=0}^{t} \bar{b}_{u} X^{u}, \text { with } t=d(\psi)=d(\bar{f})-s=\lambda_{1}(f)-s
$$

Let us assume that we have constructed the polynomials $g_{1}, g_{2} \ldots$ g_{n-1} and h_{1}, \ldots, h_{n-1} satisfying the conditions $(\alpha),(\beta)$, and (γ). By lemma (2) g_{n-1} and h_{n-1} are strongly relatively prime modulo \mathscr{O}_{q} for every integer $q \geq 1$, because g_{n-1} and h_{n-1} are strongly relatively prime in $A / \mathscr{O}_{1}[X]=A / \mathscr{O} \int_{q / \mathscr{O}_{1} / \mathscr{O}_{g}}[X]$ and $\mathscr{O}_{1} / \mathscr{O}_{q}$ is contained in $r\left(A / \mathscr{O}_{q}\right)$, every element of $\mathscr{O}_{1} / \mathscr{O}_{g}$ being nil potent. Therefore by lemma (11) there exist polynomials X_{n} and Y_{n} in $A(X)$ such that

$$
f-g_{n-1} h_{n-1} \equiv Y_{n} g_{n-1}+X_{n} h_{n-1} \quad\left(\bmod \mathscr{O}_{n+1}\right)
$$

and $d\left(X_{n}\right)<s$.
But by induction assumption $f-g_{n-1} h_{n-1} \equiv 0\left(\bmod \mathscr{O}_{n}\right)$ therefore $0 \equiv Y_{n} g_{n-1}+X_{n} h_{n-1}\left(\bmod \mathscr{O}_{n}\right)$. Thus from the uniqueness part of lemma (1) we get $X_{n} \equiv 0\left(\bmod \mathscr{O}_{n}\right)$ and $Y_{n} \equiv 0\left(\mathscr{O}_{n}\right)$. We take $g_{n}=$ $g_{n-1}+X_{n}$ and $h_{n}=h_{n-1}+Y_{n}$ obviously the polynomials g_{n} and h_{n} satisfy the conditions $(\alpha),(\beta)$ and (γ). Hence we get two sequences of polynomials $\left(g_{n}\right)$ and $\left(h_{n}\right)$. The respective coefficients of $\left(g_{n}\right)$ and $\left(h_{n}\right)$ converge as n tends to infinity because of the condition $g_{n+1} \equiv g_{n}\left(\bmod \mathscr{O}_{n+1}\right)$ and $h_{n+1} \equiv h_{n}\left(\bmod \mathscr{O}_{n+1}\right)$. Therefore $\lim _{n \rightarrow \infty} g_{n}=g$ is a monic polynomial of degree s and $\lim _{n \rightarrow \infty} h_{n}=b$ is power series over A which converges everywhere in A, because $h \equiv h_{n}\left(\bmod \mathscr{O}_{n+1}\right)$. We see immediately that $f=g h \bar{h}=\psi$ and $\bar{g}=\varphi$. Moreover $\lambda_{n}(h)=d\left(h_{n}\right)=\lambda_{n}(f)-s$, because $h \equiv h_{n}\left(\bmod \mathscr{O}_{n+1}\right) \Longrightarrow \lambda_{n+1}(h)=\lambda_{n+1}\left(h_{n}\right)=d\left(h_{n}\right) \leq \lambda_{n+1}(f)-s$ but $f=g h$ implies that $\lambda_{n+1}(f) \leq s+\lambda_{n+1}(h)$, therefore we get our result. If f is a polynomial then $\lambda_{n}(f)$ is constant for n sufficiently large implying $\lambda_{n}(h)$ is constant for n large, therefore h is a polynomial. Since g_{n} and h_{n} are strongly relatively prime modulo \mathscr{O}_{n+1}, there exist by lemma (1) polynomials a_{n} and b_{n} such that

$$
1 \equiv a_{n} g_{n}+b_{n} h_{n} \quad\left(\bmod \mathscr{O}_{n+1}\right)
$$

where

$$
d\left(b_{n}\right)<s \quad \text { and } \quad d\left(a_{n}\right)<d\left(h_{n}\right)=\lambda_{n+1}(f)-s
$$

Similarly we have polynomials a_{n+1} and b_{n+1} such that

$$
1 \equiv a_{n+1} g_{n+1}+b_{n+1} h_{n+1} \quad\left(\bmod \mathscr{O}_{n+2}\right)
$$

where

$$
d\left(b_{n+1}\right)<s \text { and } d\left(a_{n+1}\right)<d\left(h_{n+1}\right)=\lambda_{n+2}(f)-s
$$

Combining these two we get

$$
\left(a_{n+1}-a_{n}\right) g_{n}+\left(b_{n+1}-b_{n}\right) h_{n} \equiv 0 \quad\left(\bmod \mathscr{O}_{n+1}\right)
$$

Hence by uniqueness if lemma (1) we get $a_{n+1} \equiv a_{n}\left(\bmod \mathscr{O}_{n+1}\right)$ and $b_{n+1} \equiv b_{n}\left(\bmod \mathscr{O}_{n+1}\right)$. Since $d\left(b_{n}\right)<s$ for every n, we get that $\lim _{n \rightarrow \infty} b_{n}=b$ is a polynomial, moreover $\lim _{n \rightarrow \infty} a_{n}=a$ is everywhere convergent power series in A; a is a polynomial if f is a polynomial. Hence we get $1 \equiv a g+b h\left(\bmod \mathscr{O}_{n+1}\right)$ for every $n \geq 1$, which implies that g and h are strongly relatively prime in $A[[X]]$.

Uniqueness. If possible let us suppose that there exists another pair (g^{\prime}, h^{\prime}) satisfying the requirements of the lemma. Let $V=h-h^{\prime}$ and $U=g^{\prime}-g$. Since $\bar{g}=\bar{g}^{\prime}=\varphi$ and $\bar{h}=\bar{h}^{\prime}=\psi, U$ is in $\mathscr{O}[X]$ and V is in $\mathscr{O}_{1}[[X]]$.

Let us assume that U belongs to $\mathscr{O}_{n}[X]$ and V belongs to $\mathscr{O}_{n}[[X]]$ for all $n<m, m>1$. We have

$$
f=g h=g^{\prime} h^{\prime}=(U+g)(V+h)=U V+U h+g V+g h
$$

which implies that $-U V=U h+g V$. But $U V$ is in $\mathscr{O}_{2 n-2}[[X]](2 n-2>$ n, as $n>1$), therefore

$$
U h+g V \equiv 0 \quad\left(\bmod \mathscr{O}_{n}\right)
$$

Let ρ_{n} be the canonical homomorphism from $\mathscr{O}_{n} A[[X]]$ onto A / \mathscr{O}_{n} [$[X]]$. Obviously we have

$$
\begin{equation*}
\rho_{n}(U) \rho_{n}(h)+\rho_{n}(g) \rho_{n}(V)=0, d(U)<s \tag{1}
\end{equation*}
$$

But $\rho_{n}(h)$ and $\rho_{n}(g)$ are strongly relatively prime in $A \mathscr{O}_{n}[[X]]$, because they are so in $A / \mathscr{O}_{1}[[X]]$ and $\mathscr{O}_{1} / \mathscr{O}_{n}$ is contained in $r\left(A / \mathscr{O}_{n}\right)$, therefore by uniqueness part of lemma (1) we get from (1)

$$
\rho_{n}(U)=0 \text { and } \rho_{n}(V)=0
$$

This means that $V=h-h^{\prime} \equiv 0\left(\bmod \mathscr{O}_{n}\right)$ and $U=g-g^{\prime} \equiv 0$ $\left(\bmod \mathscr{O}_{n}\right)$ for every n. But $\cap \mathscr{O}_{n}=0$, because A is a Hausdorff space, therefore $U=0$ and $V=0$. Hence the uniqueness of g and h is established.

Corollary 1. Let K be a complete filed for a real valuation v. Let $f(X)=$ $\sum_{n=0}^{\infty} a_{n} X^{n}$ be an every-where convergent powerseries with coefficient from \mathscr{O}. Let φ and ψ be two polynomials in $\mathscr{O} / \mathscr{Y}[X]=k[X]$ such that
(1) φ is monic of degree s.
(2) φ and ψ are strongly relatively prime in $k[X]$
(3) \bar{f} (image of f in $k[X])=\varphi \psi$

Then there exists one and only one pair g and h such that
(1) $g \in \mathscr{O}[X], g$ is monic of degree s and $\bar{g}=\varphi$
(2) $h \in \mathscr{O}[X], h$ converges everywhere in \mathscr{O} and $\bar{h}=\psi$
(3) $f=g h$.
and the radius of convergence of h is the same as that of f. If f is a polynomial, then h is a polynomial. Moreover g and h are strongly relatively prime.

Proof. Suppose that $\varphi=\sum_{r=o}^{s-1} \bar{a}_{r} X^{r}+X^{s}$ and $\psi=\sum_{u=0}^{t} \bar{b}_{u} X^{u}$.
Let $\varphi_{\circ}=\sum_{r=0}^{s-1} a_{r} X^{r}+X^{s}, \psi_{\circ} u=\sum_{u=0}^{t} \bar{a}_{u} X^{u}$.
Obviously φ_{\circ} is monic of degree s and $\bar{f}=\varphi_{\circ} \psi_{\circ}$, which implies that $f-\varphi \circ \psi \circ$ belongs to $\mathscr{Y}[[X]]$ i.e., if $f-\varphi_{\circ} \psi \circ=\sum b_{n} X^{n}$, then $v\left(b_{n}\right)>$ 0 for every n. Let $\alpha=\inf v\left(b_{n}\right), \alpha$ is obviously strictly positive. Let $\mathscr{O}_{1}=\left\{x^{n} / x \in \mathscr{O}, v(x) \geq \alpha\right\}$, then $\left(\mathscr{O}_{n}\right)_{n>0}, \mathscr{O}_{n}=\mathscr{O}_{1}^{n}$ defines a decreasing filtration on \mathscr{O}. Obviously $\tilde{\varphi}_{\circ}$ and $\tilde{\psi}_{\circ}$ (images of φ and ψ in $\mathscr{O} / \mathscr{O}[X]$) are strongly relatively prime modulo \mathscr{O}_{1} and $\tilde{\varphi}_{\circ}$ and $\tilde{\psi}_{\circ}$ satisfy all the requirements of Hensel's lemma, therefore there exists one and only one pair (g, h) such that
(i) g is monic polynomial of degree s and $\tilde{g}=\tilde{\varphi}_{\circ}$
(ii) h is an every where convergent powerseries in $\mathscr{O}, \tilde{h}=\psi \circ$ and $\lambda_{n}(f)-s$.
(iii) $f=g h$

Form the choice of φ_{\circ} and ψ_{\circ} it is obvious that this pair (g, h) satisfies the conditions (1), (2) and (3) of the corollary.

If possible let there exist another pair (g^{\prime}, h^{\prime}) satisfying the conditions stated in the corollary. Let $g^{\prime \prime}=g-g^{\prime}, h^{\prime \prime}=h-h^{\prime}$ Since $\bar{g}^{\prime \prime}$ and $\bar{h}^{\prime \prime}$ are in $\mathscr{Y}[x]$, there exists $\alpha^{\prime}>0$ such that $g^{\prime \prime}$ and $h^{\prime \prime}$ are in $\mathscr{O}_{1}^{\prime}[[x]]$ where $\mathscr{O}_{1}^{\prime}=\left\{x \mid x \in \mathscr{O}, v(x) \geq \alpha^{\prime}\right\}$. Let us take in Hensel's lemma instead of \mathscr{O} the ideal \mathscr{O}_{1}^{\prime} and the filtration defined by $\left(\mathscr{O}_{n}\right)$ where $\mathscr{O}_{n}^{\prime}=\mathscr{O}_{1}^{n}$. But then have two pairs (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ satisfying the conditions $(a),(b),(c)$ of the lemma, which is not possible, therefore $g=g^{\prime}$ and $h=h^{\prime}$.

If f is a polynomial, the result about radius of convergence is obvious. Let us assume that f is not a polynomial, then $\lambda_{n}(f)$ tends to infinity as n tends to infinity. It has already been proved that $t_{f}=\lim _{i} \inf \frac{v\left(a_{i}\right)}{i}$. Since v is a real valuation, for any i we can find an integer k such that $(k-1) \alpha \leq v\left(a_{i}\right) \leq k \alpha, \Longrightarrow \lambda_{k}(f)$. Therefore $\frac{v\left(a_{i}\right)}{i} \geq \frac{(k-1) \alpha}{\lambda_{k}(f)}$ and

$$
\liminf _{i \rightarrow \infty} \frac{v(a i)}{i} \geq \liminf _{i \rightarrow \infty} \frac{k \alpha}{\lambda_{k}(f)}
$$

moreover for $i=\lambda_{k}(f)$ we have

$$
\frac{k \alpha}{\lambda_{k}(f)} \geq \frac{v\left(a_{i}\right)}{i}
$$

Let $k \rightarrow \infty$, which implies that $i=\lambda_{k}(f) \rightarrow \infty$. Then we get

$$
\liminf _{i \rightarrow \infty} \frac{k \alpha}{\lambda_{k}(f)} \geq \frac{v\left(a_{i}\right)}{i}
$$

Thus $\quad \liminf _{i \rightarrow \infty} \frac{v(a i)}{i}=\lim _{n \rightarrow \infty} \frac{n \alpha}{\lambda_{n}(f)}=\lim _{n \rightarrow \infty} \frac{n \alpha}{\lambda_{n}(h)}$
This proves that $t_{f}=t_{n}$.

Corollary 2. Let K be a complete valuated field with a real valuation v and f a polynomial in $\mathscr{O}[X]$. Then if α in k is a simple root of \bar{f}, there exists one and only one element a in \mathscr{O} such that a is a simple root of f and $\bar{a}=\alpha$.

Proof. Since α is a simple root of \bar{f}, we have $\bar{f}(X)=(X-\alpha) \psi(X)$ where $\psi(\alpha)=0$. Moreover $(X-\alpha)$ and $\psi(X)$ are strongly relatively prime in $k[X],(X-\alpha)$ being a prime element. Therefore form corollary 1 , we have in one and only one way $f(X)=(X-a) h(X)$, where $\bar{h}=\psi$ and $\bar{a}=\alpha$. Moreover a is a simple root of f because

$$
\overline{h(a)}=\bar{h}(\alpha)=\psi(\alpha)=0 .
$$

In particular if K is a locally compact field such that characteristic $k \neq 2$, then we shall show that $K^{*} /\left(K^{*}\right)^{2}$ is a group of order 4.
K locally compact implies that v is discrete and k is a finite. Let π be a uniformising parameter and let $C \in \mathscr{O}^{*}=\mathscr{O}-\mathscr{Y}$ be an element such that \bar{C} is not a square in k, such an element exists because $k^{*} /\left(k^{*}\right)^{2}$ is of order 2 . Then it can be seen that $1, C, \pi, C \pi$ represent the distinct cosets in $K^{*} /\left(K^{*}\right)^{2}$ and any element in K^{*} is congruent to one of them modulo $\left(K^{*}\right)^{2}$.

2 Extension of Valuations - Transcendental case

In order to prove that a valuation of a field can be extended to an extension field it is sufficient to consider the following two cases:
(i) When the extension field is an algebraic extension.
(ii) When the extension field is a purely transcendental extension.

Proposition 1. Let $L=K(X)$ be a purely transcendental extension of a field K with a valuation v, let Γ^{\prime} be any totally ordered group containing Γ_{v}. Then for ξ in Γ^{\prime} there exists one and only one valuation $\omega_{\xi_{n}}$ of L extending v such that

$$
w_{\xi}\left(\sum_{j=0}^{n} a_{j} x^{j}\right)=\inf _{0 \leq j \leq n}\left(v\left(a_{j}\right)+j \xi\right)
$$

Proof. It is sufficient to verify that w_{ξ} satisfies the axioms of a valuation for $K[X]$. The axioms $a_{\xi}(P)=\infty \Longleftrightarrow P=0$ and $w_{\xi}(P+Q) \geq$ $\inf \left(w_{\xi}(P), w_{\xi}(Q)\right)$ can be easily verified. To prove $w_{\xi}(P Q)=w_{\xi}(P)+$ $w_{\xi}(Q)$, where $P=\sum_{j=0}^{n} a_{j} X^{j}$,

$$
Q=\sum_{i=0}^{m} b_{i} X^{i} \text { and } P Q \neq 0, \text { we write } P=P_{1}+P_{2}, Q=Q_{1}+Q_{2}, P_{1}
$$

being the sum of all terms $a_{j} X^{j}$ of P such that $w_{\xi}(P)=v\left(a_{j}\right)+j \xi$ and Q_{1} being the sum of those terms $b_{i} X^{i}$ of Q for which $w_{\xi}(Q)=v\left(b_{i}\right)+i \xi$. Let j_{o} and k_{o} be the degree of P_{1} and Q_{1} respectively. If $P_{1} Q_{1}=\sum C_{r} X^{r}$, then we have

$$
\begin{aligned}
w_{\xi}\left(P_{1} Q_{1}\right) & =v\left(C_{j_{o}+k_{o}}\right)+\xi\left(j_{o}+k_{o}\right) \\
& =v\left(a_{j_{o}}\right)+\xi j_{o}+v\left(b_{k_{o}}\right)+\xi k_{o}=w_{\xi}\left(P_{1}\right)+w_{\xi}\left(Q_{1}\right)
\end{aligned}
$$

Now

$$
w_{\xi}(P Q)=w_{\xi}\left(P_{1} Q_{1}+P_{1} Q_{2}+Q_{1} P_{2}+P_{2} Q_{2}\right)=w \xi\left(P_{1} Q_{1}\right)
$$

because the valuation of the other terms is greater than $w_{\xi}\left(P_{1} Q_{1}\right)$.
This implies that

$$
w_{\xi}(P Q)=w_{\xi}\left(P_{1} Q_{1}\right)=w_{\xi}\left(P_{1}\right)+w_{\xi}\left(Q_{1}\right)=w_{\xi}(P)+w_{\xi}(Q)
$$

Corollary. There exists one and only one valuation w of $K(X)$ such that
(i) w extends v.
(ii) $w(X)=0$.
(iii) The class \bar{X} of X in k_{w} is transcendental over k_{v}.

The valuation w is the valuation w_{ξ} for $\xi=0$ and k_{w} is a purely transcendental extension of degree 1 over k_{v}.

It is obvious that $w_{o}\left(\right.$ i.e. w_{ξ} for $\xi=0$) satisfies (1) and (2) and that $k_{w_{o}}=k_{v}\left(\bar{X}_{n}\right)$.If \bar{X} were algebraic over k_{v}, then there exists a polynomial $\bar{P}(Y)=\sum_{j=0}^{n} \bar{a}_{j} Y_{j}$ such that at least one $\bar{a}_{j} \neq 0$ and $\bar{P}(\bar{X})=0$, which means
that $P(X)=\sum_{j=0}^{n} a_{j} X^{j}$ is in \mathscr{Y}_{w}, where at least one a_{j} is not in \mathscr{Y}_{v} and all a_{j} are in \mathscr{O}_{v}. But this is impossible because $w(P(X))=\inf _{j} v\left(a_{j}\right)=0$. Conversely let w be a valuation of $K(X)$ satisfying 1), 2), 3). Let $P=$ $\sum_{i=0}^{m} a_{i} X^{i}$ be a polynomial over K. We have to prove that $w(P)=\inf v\left(a_{i}\right)$. Let $P=\sum_{i=0}^{m} a_{i} X^{i}$ be a polynomial over K. We can assume without loss of generality that a_{i} are in \mathscr{Y}_{v} and at least one of them is not in \mathscr{Y}_{y}, then $\inf _{i} v\left(a_{i}\right)=0$. If $w(P)>0$, then $\bar{P}=0$ in k_{w}, which implies, that \bar{X} is algebraic over k_{v}, which is a contradiction. But we know that

$$
w\left(\sum_{i} a_{i} X^{i}\right) \geq \inf _{i}\left\{v\left(a_{i}\right)+i w(X)\right\}=0
$$

therefore $w(P)=\inf _{i} v\left(a_{i}\right)$.

3 Residual Degree and Ramification Index

Let L be a field and K a subfield of L. Let w be a valuation of L and v the restriction of w on K. Since $\mathscr{Y}_{w} \cap K=\mathscr{Y}_{v}$, the filed k_{v} can be imbedded in the field k_{w}. We shall say the dimension of k_{w} over k_{v} the residual degree of w with respect to v or of L with respect to K. We shall denote it by $f(w, v)$.

The index of the group Γ_{v} in Γ_{w} is called the ramification index of w with respect to v or of L with respect to K and is denoted by $e(w, v)$.

If no confusion is possible, we shall denote $f(w, y)$ by $f(L, K)$ and 37 $e(w, v)$ by $e(L, K)$.

If $e(w, v)=1$, then L is said to be an unramified extension of K.
If $f(w, v)=1, L$ is said to be totally ramified extension of K.
Since the group of values and residual field of \hat{K} are the same as that of K we have

$$
e(\hat{L}, \hat{K})=e(L, K) \text { and } f(\hat{L}, \hat{K})=f(L, K)
$$

Proposition 2. Let L be a filed with a valuation w and let K be a field contained in L and v the restriction of w on K. Then $e(L, K) f(L, K) \leq$ $(L: K)=n$, where $(L: K)$ is dimension of L over K.

Proof. If n is infinite, the result is trivial. Let us assume that n is a finite number. Let $r \leq e$ and $s \leq f$ be two positive integers, then we can find r elements X_{1}, \ldots, X_{r} in L^{*} such that $w\left(X_{i}\right) \not \equiv w\left(X_{j}\right)(\bmod \Gamma v)$ for $i \neq j$ and s elements $\bar{Y}_{1}, \ldots \bar{Y}_{s}$ in k_{w} such that they are linearly independent over k_{v}. Let $Y_{1}, \ldots Y_{s}$ be a system of representatives for $Y_{1}, \ldots Y_{s}$ in \mathscr{O}_{w}^{*}. Then the elements $\left(X_{i} Y_{j}, i=1, \ldots, r ; j=1,2, \ldots s\right)$ are linearly independent over K. If they are not linearly independent, then there exists elements $a_{i j}$ in K not all 0 such that

$$
\sum_{i, j} a_{i j} X_{i} Y_{j}=0
$$

Let $\alpha=\inf _{i, j} w\left(a_{i j} X_{i} Y_{j}\right)$, obviously α is finite and belongs to Γw. Therefore $w\left(a_{k l} X_{k} Y_{l}\right)=\alpha$ for some k and l. We have

$$
\begin{aligned}
w\left(a_{i j} X_{i} Y_{j}\right) & =w\left(a_{i j}\right)+w\left(X_{i}\right)+w\left(Y_{j}\right) \\
& =w\left(a_{k l}\right)+w\left(X_{k}\right)+w\left(Y_{l}\right) \\
\text { if } w\left(a_{i j} X_{i} Y_{j}\right) & =\alpha \text { for some } i \text { and } j .
\end{aligned}
$$

But $w\left(Y_{j}\right)=w\left(Y_{l}\right)=0$, therefore we get $w\left(X_{i}\right) \equiv w\left(X_{k}\right)\left(\bmod \Gamma_{v}\right)$, which is possible only if $i=k$. Thus we get

$$
\begin{equation*}
a_{k l} X_{k} Y_{l}+\sum_{j \neq l} a_{k j} X_{k} Y_{j} \equiv 0 \quad\left(\bmod \mathscr{O}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $\mathscr{O}^{\prime}=\{X / X \in L, w(X)>\alpha\}$
Multiplying the congruence (11) with $a_{k l}^{-1} X_{k}^{-1}$ we get

$$
Y_{l}+\sum_{j \neq l} a_{k l}^{-1} a_{k j} Y_{j} \equiv 0 \quad\left(\bmod \mathscr{Y}_{w}\right)
$$

Therefore

$$
\bar{Y}_{l}+\sum_{j \neq l} \overline{\left(a_{k l}^{-1} a_{k j}\right)} \bar{Y}_{j}=0, \text { where } \overline{a_{k l}^{-1} a_{k j}} \text { are in } k_{v}
$$

But this is impossible, because $\bar{Y}_{1}---\bar{Y} s$ are linearly independent over k_{v}, therefore $\left(X_{i} Y_{j}\right)$ are linearly independent over K. Since $(L: K)=n$, the number of linearly independent vectors in L over K cannot be greater than n.

Hence ef $\leq n$.
Corollary 3. If L is algebraic over K, then k_{w} is algebraic over k_{v} and Γ_{l} / Γ_{k} is a torsion group of order $\leq(L: K)$.

The assertion is trivial when $(L: K)$ is finite. When $(L: K)$ is infinite we can write $L=\bigcup_{i \in I} L_{i}$ and $k_{L}=\cup k_{L i}$, where L_{i} is a finite algebraic extension of K.

Then Γ_{L} / Γ_{K} is the union of the quotient groups $\Gamma_{L_{i}} / \Gamma_{K}$ for i in I and therefore it is a torsion group.

Corollary 4. Suppose that L is algebraic over K, then w is improper if and only if v is improper.
v improper implies that $\Gamma_{v}=\{0\}$. Therefore by corollary (3) Γ_{w} is a torsion group. But Γ_{w} is a totally ordered and abelian group, therefore it consists of identity only.

Corollary 5. Let $(L: K)$ be finite. Then w is discrete if and only v is discrete.
v discrete implies that Γ_{ν} is isomorphic to Z and $(L: k)$ finite implies Γ_{w} / Γ_{v} is of finite order. Moreover Γ_{w} is Archimedian, because if α and β are in Γ_{w}, then $n \alpha$ and $n \beta$ where $\mathrm{n}=$ order Γ_{w} / Γ_{v}, are in Γ_{v}; therefore there exists an integer q such that $q n \alpha>n \beta$, which shows that $q \alpha>\beta$. There exists a smallest positive element in Γ_{w}. For, each coset of Γ_{w} / Γ_{v} has a smallest positive element, the smallest among them is the smallest positive element fo Γ_{w}. Hence Γ_{w} is isomorphic to z.

Corollary 6. If the valuation v on K is discrete, K is complete and $(L: K)$ is finite, then ef $=(L: K)$.

Proof. Let π be a uniformising parameter in L. Let $\bar{Y}_{1}, \ldots, \bar{Y}_{f}$ be a basis of k_{w} over k_{v} and Y_{1}, \ldots, Y_{f} their representatives in \mathscr{O}_{w}^{*}. Let \mathscr{R} denote a system of representatives of k_{v} in \mathscr{O}_{v}^{*}.

Then any element X in \mathscr{O}_{w} can be written in the form $\sum_{i=1}^{f} \alpha_{i} Y_{i}$ modulo \mathscr{Y}_{w} with $\alpha_{i} \in \mathscr{R}$ in one and only one way. Let L^{\prime} be vector space over K generated by $\left(Y_{i} \pi^{j}\right)$ for $i=1,2, \ldots, f$ and $j=0,1,2, \ldots, e-$ 1. Since L^{\prime} is a finite dimensional vectorspace over a complete field K, L^{\prime} is complete (for proof see Espaces Vectoriels Topologiques by N . Bourbaki, chapter I section 2) and therefore closed in L. But L^{\prime} is dense in L, because for every element X in L and an integer n there exists an element X_{n} is L^{\prime} such that $v\left(X-X_{n}\right) \geq n e$. For sufficiently small n the result is obviously true. Let us assume that it is true for all integers $r \leq n$. Since n e is in Γ_{v}, there exists an element U in K such that $w(U)=v(U)=n e$. Therefore $U^{-1}\left(X-X_{n}\right)$ belongs to \mathscr{O}_{w} and we have

$$
U^{-1}\left(X-X_{n}\right) \equiv \sum_{i} \alpha_{i o} Y_{i} \quad\left(\bmod \mathscr{Y}_{w}=\mathscr{O}_{w} \pi\right)
$$

This means that $\pi^{-1}\left[\left(U^{-1}\left(X-X_{n}\right)-\sum_{i} \alpha_{i o} Y_{i}\right]\right.$ belongs to \mathscr{O}_{w}, therefore

$$
\pi^{-1}\left[\left(U^{-1}\left(X-X_{n}\right)-\sum_{i} \alpha_{i o} Y_{i}\right)\right] \equiv \sum_{i} \alpha_{i 1} Y_{i} \quad\left(\bmod \mathscr{Y}_{w}\right)
$$

Proceeding in this way we obtain

$$
\begin{gathered}
U^{-1}\left(X-X_{n}\right) \equiv \sum_{i} \alpha_{i o} Y_{i}+\cdots+\sum_{i} \alpha_{i e-1} Y_{i} \pi^{e-1}\left(\bmod \mathscr{Y}_{w}^{e}\right) \\
\left(X-X_{n}\right) \equiv U\left[\sum_{j=0}^{e-1} \sum_{i} \alpha_{i j} Y_{i} \pi^{j}\right]\left(\bmod \mathscr{Y}_{w}^{(n+1) e}\right)
\end{gathered}
$$

or

Let us take $X_{n+1}=X_{n}+U\left[\sum_{j=0}^{e-1} \sum_{i} \alpha_{i j} Y_{i} \pi^{j}\right]$.
Then $w\left(X-X_{n+1}\right) \geq(n+1) e$. Thus L^{\prime} is dense in L and therefore $L^{\prime}=L$. So $n=(L: K) \leq e f$. But we know that ef $\leq n$, therefore $n=e f$.

4 Locally compact Fields

Proposition 3. If K is a locally compact filed of characteristic o with a discrete valuation v, then K is a finite extension of Q_{p} where p is
characteristic of the residual field k.
Proof. Since characteristic $K=0, K$ contains Q the field of retinal numbers. We see immediately that v is proper, because if v is improper then Q is contained in k which is a finite field by theorem in $\S 7.1$ and this is impossible. The restriction of v to Q is v_{p} for some p because p adic valuations are the only proper valuations on Q and this p is the characteristic of k. We have already proved in $\S 7.1$ that K is complete, therefore K contains Q_{P}. The valuation v on K is discrete, therefore Γ_{v} is isomorphic to Z, but $\Gamma_{v_{p}}$ is also isomorphic to Z and is contained in Γ_{v}, therefore $=\left(\Gamma_{v}: \Gamma_{v_{p}}\right)$ is finite. Moreover $f=\left(k_{v}: k_{v_{p}}\right)$ is also finite, because k_{v} is a finite filed. Hence $\left(K: Q_{p}\right)=e f$ (by corollary 4 of $\S 3.2)$ is finite.

Proposition 4. Let K be complete filed for a real proper valuation v such that
(1) characteristic $K=$ characteristic k.
(2) k and all its sub fields are perfect.

Then there exists a subfield $F \subset \mathscr{O}$ which is a system of representatives of k in \mathscr{O}. Moreover if v is discrete then K is isomorphic to $k((x))$.

Proof. Let Φ be the family of subfields S of \mathscr{O} such that the restriction of φ, the canonical homomorphism from \mathscr{O} onto k to S is an isomorphism onto a subfield of k. The family $\Phi \neq \phi$, because the prime fields contained in \mathscr{O} and k are the same. Obviously Φ is inductively ordered by inclusion, therefore by Zorn's lemma it has a maximal element F. We shall prove that $k=\varphi(F)$. The field k is algebraic over $\varphi(F)$. If possible let there exist an element \bar{x} in k transcendental over $\varphi(F)$. Let $\varphi(x)=\bar{x}$, where x is in \mathscr{O}, then x is transcendental over F. It is obvious that $F(x)$ is isomorphic to $\varphi(F)(\bar{x})$, which contradicts the maximality of F, therefore k is algebraic over $\varphi(F)$. Suppose that $\varphi(F)$, then there exists one element \bar{x} in k and not in $\varphi(F)$. Since $\varphi(F)$ is a perfect field, \bar{x} is a simple root of an irreducible monic polynomial \bar{P} over $\varphi(F)$. Let
$\bar{P}=X^{s}+\bar{a}_{s-1} X^{s-1}+\cdots+\bar{a}_{o}=(X-\bar{x}) \bar{Q}$, where \bar{Q} is some polynomial 43 over $\varphi(F)$ and $\bar{Q}(\bar{x}) \neq 0$.

By Corollary (4) fo Hensel's lemma we obtain that the polynomial $P=X^{S}+a_{s-1} X^{s-1}+\cdots+a_{0}$ has a simple root x in \mathscr{O} such that $\varphi(x)=$ \bar{x} and Q is an irreducible polynomial. Therefore $F(x)$ is isomorphic to $F[X] /(P)$. But $\varphi(F)(\bar{x})$ is isomorphic to $\varphi(F)[X] /(\bar{P})$ therefore we see that φ is still an isomorphism from $F(x)$ onto $\varphi(F)(\bar{x})$. But this is impossible, because F is a maximal element of Φ. Thus our theorem is proved.

When v is discrete, we have seen that every element x in K is of the form $\sum_{i=m}^{\infty} r_{i} \pi^{i}$ with r_{i} in F and conversely. Therefore the mapping $\sum_{i=m}^{\infty} r_{i} \pi^{i} \rightarrow \sum_{i=m}^{\infty} \varphi\left(r_{i}\right) X^{i}$ is from K onto $k((x))$. It is trivial to see that it is an isomorphism.

Corollary. A non-discrete locally compact valuated field of characteristic $p>o$ is isomorphic to a field of formal power series over a finite field.

Since we have already proved in §7.1 that a locally compact valuated field K is complete, its valuation is discrete and k is finite, our corollary follows from the theorem.

5 Extension of a Valuation to an Algebraic Extension (Case of a Complete Field)

44 Theorem 1. If L is an algebraic extension of a complete field K with a real valuation v, then there exists one and only valuation w on L extending v.

Proof. If v is improper w is necessarily improper. So we assume that v is a proper valuation. Suppose that L is a finite extension of K. If there exists a valuation w on L extending v, then w is unique, because on L any valuation defines the same topology as that of $K^{(L: K)}$ and the topology on L determines the valuation upto a constant factor and in this case the constant factor is also determined because the restriction of the valuation to K is v.

Let L be a Galois extension of K. Then if w is a valuation on L extending v, wo σ for any σ in $G(L / K)$ (the Galois group of L over K) is also a valuation extending v. Therefore by uniqueness of the extension $w(x)=W o \sigma(x)$ for every x in L. This shows that

$$
\underset{L / K}{v(N(x))}=w\left(\prod_{\sigma}(x)\right)=\sum_{\sigma} w \text { o } \sigma(x)=\text { no } w(x)
$$

where $(L: K)=n$.
Thus

$$
\begin{equation*}
w(x)=\frac{1}{n} v \underset{L / K}{v(N(x)) .} \tag{1}
\end{equation*}
$$

Now suppose that L is any finite extension of K of degree n. We define a mapping w on L by (1) and prove that it satisfies the axioms for a valuation. It is well known that (Bourbaki, algebra chapter V, §8) that if L is the separable closure of K is L, and if p is the characteristic exponent of K (i.e., $p=1$ if characteristic $K=0$ and $\mathrm{p}=$ characteristic $K \neq 0$), then

$$
n=(L: K)=q p^{e}
$$

with $q=\left(L^{\prime}: K\right)$ and $p^{e}=\left(L: L^{\prime}\right)$. Moreover L is a purely inseparable extension of L^{\prime}, and for each K-isomorphism $\sigma_{i}(1 \leq i \leq q)$ of L^{\prime}, in an algebraic closure Ω of K there exists one and only one K-isomorphism of L which extends σ_{i}. This extended isomorphism will also be denoted by σ_{i}. Then

$$
N_{L / K}(x)=\left[\prod_{i=1}^{q} \sigma_{i}(x)\right]^{p^{e}}
$$

It is easy to prove that $w(x)=\infty$ if and only if $x=0$ and $w(x y)=$ $w(x)+w(y)$ for x, y in L. To prove that $w(x+y) \geq \inf (w(x), w(y))$, it is sufficient to prove that $w(\alpha) \geq 0$ implies that $w(1+\alpha) \geq 0$ for any α in L. We know that if $P(X)=X^{r}+a_{r-1} X^{r-1}+\cdots+a_{o}$ is the monic irreducible polynomial of α over K, then $\underset{L / K}{N} \alpha=\left(a_{o}\right)^{\frac{n}{r}}$ and $P(1-X)$ is the irreducible polynomial of $1+\alpha$. Thus

$$
\underset{L / K}{N}(1+\alpha)=(-1)^{r}\left\{\left(1+a_{r-1}+\cdots+(-1)^{r} a_{o}\right)\right\}^{\frac{n}{r}}=b_{o}
$$

So to prove our result we have to show that b_{o} is in \mathscr{O} when a_{o} is in \mathscr{O}, because $w(\alpha)=\frac{v\left(a_{o}\right)^{n / r}}{n}$. This will follow from the following theorem, which completely proves our theorem.

Theorem 2. Let K be complete field with a real valuation v and x any element of an algebraic extension of K. If $f(X)=X^{r}+a_{r-1} X^{r-1} \cdots+a_{o}$ is the minimum polynomial of x over K, then a_{o} belonging to \mathscr{O} implies that all the coefficients of $f(X)$ are in \mathscr{O}.

Proof. If possible suppose that all a_{i} are not in \mathscr{O}, then $v\left(a_{j}\right)<0$ for some $j, 0<j<r$. Let $-\alpha=\inf v\left(a_{j}\right), \alpha>0$ and j the smallest index such that $v\left(a_{j}\right)=-\alpha$. We have $o<j<r$. Since α belongs to Γ_{v}, there exists an element C in K such $v(C)=\alpha$. Consider the polynomial $g=C f(X)=C X^{k}+\cdots+C_{a_{j}} X^{j}+\cdots+C_{\circ} a$. Because of the choice of $j, \bar{g}=\cdots+\bar{r}_{j} X^{j}$, where $\bar{r}_{j}=\overline{c a} a_{j} \neq 0$. Therefore \bar{g} has X^{j} as a factor which is a monic polynomial and if $\bar{g}=X^{j} \psi$, then X^{j} and ψ satisfy the requirements of Corollary (4) of Hensel's lemma, which gives that g is reducible, which is a contradiction. Hence all a_{j} are in \mathscr{O}.

When L is infinite algebraic extension of K, we can express $L=$ $\cup L_{i}$ where each L_{i} is a finite algebraic extension of K and the family ${ }_{i \in I}$ ${ }^{i}\left\{L_{i}\right\}_{i \in I}$ is a directed set by the relation of inclusion. We define the valuation w for any x in L as $w(x)=w_{i}(x)$ if x is in L_{i} and w_{i} is the extension of v on L_{i}. It is obvious that w is the unique valuation on L extending v.

6 General Case

We shall study now how a valuation of an incomplete field can be extended to its algebraic extension.

Let K be field with a valuation v and L an algebraic extension of K. If w is a valuation of L extending v, we can look at the completion \hat{L} of $L . \hat{L}$ contains L and \hat{K}, so it contains a well defined composite extension M_{w} of L and \hat{K}. Then there exist one and only one maximal ideal m_{w} in $L \underset{K}{\otimes} \hat{K}$ such that the canonical mapping from $L \underset{K}{\otimes} \hat{K} \rightarrow M_{w}$ gives an isomorphism from $L \underset{K}{\otimes} \hat{K} / m_{w}$ onto M_{w}. So we get a map φ from
the set of the valuation w extending v to the set of the maximal ideals of $L \underset{K}{\otimes} \hat{K}$. Conversely if we start from a maximal ideal \mathcal{M} in $L \underset{K}{\otimes} \hat{K}$, then the corresponding composite extension $M=L \otimes \hat{K} / \mathcal{M}$ is an algebraic extension of K and there one and only one valuation w_{M} of M which extends v and the restriction of w_{M} to L gives a valuation of L extending v. So we get a map ψ from the set of the maximal ideals of $L \underset{K}{\otimes} \hat{K}$ (or of the classes of complete extensions) to the set of the valuations of L extending v.

Moreover the completion \hat{L} of L with respect to w_{M} is exactly \hat{M} and the composite extension of L and \hat{K} contained in \hat{L} is M. So we have $\varphi \circ \psi=I$ (identity map)

Now we have also $\psi \circ \varphi=I$, for if w is any valuation of L then the valuation $w_{M_{w}}$ is necessarily the same as w by the uniqueness of the extension to M of the valuation v of \hat{K}.

Hence there exists a 1-1 correspondence between the set of valuations on L extending v and the set of inequivalent composite extensions of L and \hat{K}.

In particular if $(L: K)=n<\infty$, then any composite extension of L and \hat{K} is complete which means that $\hat{L}=L \underset{K}{\otimes} K / \mathcal{M}$, where \mathcal{M} is some maximal ideal of $L \underset{K}{\otimes} \hat{K}$.

Suppose L is an algebraic extension of an incomplete valuated field K with a valuation v. Let $\left(w_{i}\right)_{i \in I}$ be the set of valuations on L extending v. We shall denote by L_{i} the field L with the valuation w_{i}, by e_{i} the ramification index $e\left(L_{i}: K\right)=e\left(\hat{L}_{i}: \hat{K}\right)$ by f_{i} the residual degree $f\left(\hat{L}_{i}\right.$: $\hat{K})=f\left(L_{i}: K\right)$ and by n_{i} the dimension of \hat{L}_{i} over \hat{K}.

The sequence

$$
0 \rightarrow r(L \underset{K}{\otimes} \hat{K}) \rightarrow \underset{K}{(L \otimes \underset{K}{\otimes})} \rightarrow \prod_{i \in I} \hat{L}_{i}
$$

is exact, because the radical of $L \otimes \underset{K}{\hat{K}}$ is the intersection of all the maximal ideals of $L \underset{K}{\otimes} \hat{K}$, that is of all the kernels of the map $L{\underset{K}{K}}_{\otimes}^{K} \rightarrow L_{i}$. If the 49 dimension of L over K is finite we have the following result.

Theorem 3. If L is a finite extension of degree n of a field K with a real valuation v, then there exist, only finitely many different valuations $\left(w_{i}\right)$ on L extending v. Moreover we have $\sum n_{i} \leq n$ and the sequence

$$
0 \rightarrow r(L \underset{K}{\otimes} \hat{K}) \rightarrow \underset{K}{\otimes_{K}} K \rightarrow \prod \hat{L}_{i} \rightarrow 0
$$

is exact.
Proof. We observe that w_{i} is not equivalent to w_{j} for $i \neq j$, because w_{i} equivalent to w_{j} means that they differ by a constant factor and since their restriction to K is same, we have $w_{i}=w_{j}$

The number of different valuations (w_{i}) on L extending v is finite because the number of inequivalent composite extensions of L and \hat{K} is finite. To prove that the sequence is exact, we have to show that the mapping $\rho: L \underset{K}{\otimes} \hat{K} \rightarrow \Pi \hat{L}_{i}$ is surjective.By the approximation theorem of valuations $\rho(L)$ is dense in $\prod \hat{L}_{i}$, therefore $\rho\left(L_{K}^{\otimes} \hat{K}\right)$ is dense in $\Pi \hat{L}_{i}$, where ρ is the canonical map from $L \rightarrow \Pi \hat{L}_{i}$. But $\rho(L \underset{K}{\otimes} \hat{K})$ is a finite dimensional vector space over \hat{K} therefore it is complete. Hence $\rho(L \underset{K}{\otimes} \hat{K})=\Pi \hat{L}_{i}$ i.e., ρ is onto. Obviously $\operatorname{dim} \Pi \hat{L}_{i} \leq \operatorname{dim} L \underset{K}{\otimes} \hat{K}$ over \hat{K},which means that $\sum n_{i} \leq n$.
$50 \quad$ Corollary. If \hat{K} or L is separable over K, then we have $\sum n_{i}=n$.
\hat{K} or L separable over K implies that $r(\hat{K} \underset{K}{\otimes} L)=0$ (for proof see Algebre by N. Bourbaki chapter 8 section 7), therefore ρ is an isomorphism.

7 Complete Algebraic Closure of a p-adic Field

Proposition 5. Let K be a complete field with a real valuation v and Ω the algebraic closure of K.Then $\hat{\Omega}$ the completion of Ω by the valuation extending v is algebraically closed.

We shall denote the extended valuation also by v.
Proof. To prove that $\hat{\Omega}$ is algebraically closed we have to show that any irreducible polynomial $f(X)$ in $\hat{\Omega}[X]$ has a root in $\hat{\Omega}$. Without loss of
generality we a can assume that $f(X)$ is in $\mathscr{O}_{\hat{\Omega}}[X]$ and leading coefficient of $f(X)$ is 1 . Suppose that $f(X)=X^{r}+a_{r-1} X^{r-1}+\cdots+a_{0}$ then for every integer m there exists a polynomial $\varphi_{m}(X)=X^{r}+b^{(m)} X^{r-1}+\cdots+b_{\circ}^{(m)}$ in $\mathscr{O}_{\Omega}[X]$ such that for every x in $\mathscr{O}_{\hat{\Omega}}^{r-1}, v\left(f(x)-\varphi_{m}(x)>r m\right.$ Let $\varphi_{m}(X)=$ $\prod_{j=1}^{r}\left(X-\alpha_{j m}\right), \alpha_{j m}$ are in \mathscr{O}_{Ω} as $\varphi_{m}(X)$ is in $\mathscr{O}_{\Omega}[X]$. Then

$$
\varphi_{m+1}\left(\alpha_{j m}\right)=\varphi_{m+1}\left(\alpha_{j m}\right)-f\left(\alpha_{j m}\right)+f\left(\alpha_{j m}\right)-\varphi_{m}\left(\alpha_{j m}\right)
$$

implies that

$$
v\left(\varphi_{m+1}\left(\alpha_{j m}\right)\right)>\mathrm{rm}
$$

or

$$
\sum_{t=1}^{r} v\left(\alpha_{j m}-\alpha_{t m+1}\right)>\mathrm{rm}
$$

Therefore there exists a root $\alpha_{t m+1}$ of $\varphi_{m+1}(X)$ such that

$$
v\left(\alpha_{j m}-\alpha_{t_{m+1}}\right)>m
$$

So we get a sequence $\left\{\varphi_{m}(X)\right\}$ of polynomials converging to f and
a sequence of elements $\left\{\beta_{m}\right\}$ converging to β in $\hat{\Omega}$ and each β_{m} is a root of $\varphi_{m}(X)$. Since polynomials are continuous functions, we have $\lim _{m \rightarrow \infty} f\left(\beta_{m}\right)=f(\beta)$

But $\lim _{m \rightarrow \infty} f\left(\beta_{m}\right)=0$, because given integer $N>0$, for $m>N$ we have $v\left(f\left(\beta_{m}\right)\right)=v\left(f\left(\beta_{m}\right)-\varphi_{m}\left(\beta_{m}\right)\right)>r m>N$.

Hence β is a root of $f(X)$.
One can easily prove that the residual field of $\hat{\Omega}$ is the algebraic closure of the residual field of K. In particular if $K=Q_{p}$, then the residual field of $\hat{\Omega}$ i.e., $k_{\hat{\Omega}}$ is algebraic closure of $Z /(P)$.Thus
$k_{\hat{\Omega}}=\cup F_{i}$, where each F_{i} is a finite extension of $Z /(P)$

8 Valuations of Non-Commutative Rings

We define a valuation of a non-commutative ring A without zero divisors containing the unit element in the same way as of a commutative ring. Almost all the results proved so far about valuated can be carried over to
division rings with valuations with obvious modifications. WE mention the following facts far illustration.

Let L be a division ring with a valuation v.Then
(1) The set $\mathscr{O}_{L}=\{x / x \in L, v(x) \geq 0\}$ is a non-commutative ring,which we call the valuation ring of L with respect to the valuation v.
(2) $\mathscr{Y}_{L}=\{x / x \in L, v(x)>0\}$ is the unique two sided maximal ideal of \mathscr{O}_{L}.
(3) Any ideal in \mathscr{O}_{L} is a two sided ideal. For, $v\left(x^{-1} y x\right)=-v(x)+v(y)+$ $v(x) \geq 0$ for x in L and y in \mathscr{O}_{L} which means that $x^{-1} y x$ belongs to \mathscr{O}_{L}, therefore $y x=x z$ for some z in \mathscr{O}_{L}. Hence $\mathscr{O}_{L} x=x \mathscr{O}_{L}$.
(4) The ideals of \mathscr{O}_{L} are any one of the two kinds

$$
\begin{aligned}
I_{\alpha} & =\{x \mid v(x)>\alpha \geq 0\} \\
I_{\alpha}^{\prime} & =\{x \mid v(x) \geq \alpha>0\}
\end{aligned}
$$

(5) The division ring L is locally compact non-discrete division ring for the valuation v if and only if v is a discrete valuation, L is complete and $\mathscr{O} / \mathscr{Y}_{L}$ is finite

Regarding the extension of valuations to an extension division ring we prove the following.

Theorem 4. Let \widetilde{P} be a division algebra of finite rank over a complete valuated field P with a valuation v such that P is contained in the centre of \widetilde{P}. Then there exists one and only one valuation w of \widetilde{P} which extends v.

Proof. Existence We define $\underset{\widetilde{P} / P}{N}(x)=$ determinant of the endomorphism

$$
\rho_{x} y \rightarrow x y \text { of } \tilde{P}, \text { for any } x \text { in } \tilde{P} .
$$

We shall prove that $w(x)=\frac{1}{r} v(\widetilde{\widetilde{P} \mid P}$ (x) is a valuation of \widetilde{P} if r is the
rank of \widetilde{P} over P. The axioms $w(x)=\infty$ if and only if $x=0$ and $w(x y)=w(x)+w(y)$ are obviously true.

To prove $w(x+y) \geq \inf (w(x), w(y))$ it is sufficient to prove that $w(x) \geq 0$ implies $w(1+y) \geq 0$. Let $F=P(x) F$ is clearly a field containing P and \widetilde{P} is a vector space over F by left multiplication. The mapping ρ_{x} is an F endomorphism. We know that if U is any F-endomorphism and U_{p} the P-endomorphism defined by U, then $\operatorname{det} U_{p}=\underset{F / P}{N}(\operatorname{det} U)$ and we have $\operatorname{det} \rho_{x}=(x)^{(\tilde{P} \cdot F)}$ if ρ_{x} is considered as an F-endomorphism. Therefore we have

$$
w(x)=\frac{1}{r}(\widetilde{P}: F)=v(\underset{F / P}{N}(x)) .
$$

Now $w(x) \geq 0 \Longleftrightarrow v \underset{F / P}{\nu(N(x))} \geq 0 \Longrightarrow \underset{F / P}{v(N(1+x))} \geq 0$, because we have proved this for commutative case. Hence w is a valuation on \tilde{P}.

Uniqueness. Since P is complete and P is of finite rank r over P, any valuation defines the same topology on \tilde{P} as that of P^{r}. But the topology determines the valuation upto a constant factor, If w_{1} and w_{2} are two valuations of \widetilde{P} extending v then $w_{1}=C w_{2}$ for some C in P.But restriction of w_{1} to w_{2} to P is v, therefore $C=1$ and $w_{1}=w_{2}$.

Part II

Representations of classical groups over p-adic Fields

Chapter 3

Representations of Locally Compact and Semi-Simple Lie Groups

1 Representations of Locally Compact Groups

In this section we give a short account of some definitions and results about the representations of locally compact groups. We assume the fundamental theorem on the existence and uniqueness (upto a constant factor) of right invariant Haar measure on a locally compact groups.For simplicity we assume that the locally compact groups in our discussion are unimodular i.e., the Haar measure is both right and left invariant.By $L(G)$ we shall denote the space of continuous complex valued functions with compact support and by $L(G, K)$, where K is some compact set of G,the set of elements of $L(G)$ whose support is contained in K. Obviously we have $L(G)=\underset{K \subset G}{\cup} L(G, K)$ and $L(G, K)$ is a Banach space under the norm $f=\sup _{x \in K}|f(x)|$.

The space $L(G)$ can be provided with a topology by taking the direct limit of the topologies of $L(G, K)$. This topology makes $L(G)$ a locally convex topological vector space.

Let G be a locally compact group and H a Banach space

Definition 1. A continuous representation U of G in H is a map $x \rightarrow$ $U_{x} \in \operatorname{Hom}(H, H)$ such that
(i) $U_{x y}=U_{x} \circ U_{y}$ for $x ; y$ in G.
(ii) The map $H \times G \rightarrow H$ defined by $(a, x) \rightarrow U_{x}$ a is continuous.

Definition. Let H be a Hilbert space. The representation U is said to be Unitary if U_{x} is a unitary operator on H for every x in H.

Let $M(G)$ be the space of measures on G with compact support.The space $M(G)$ is an algebra for the convolution product defined by

$$
\mu * v(f)=\iint f(x y) d \mu(x) d v(y)
$$

The space $L(G)$ can be imbedded into $M(G)$ by the map $f \rightarrow \mu_{f}=$ $f(x) d x$. It is infact a subalgebra of $M(G)$ because $\mu_{f} * \mu_{g}=\mu_{f * g}$ where

$$
f * g(x)=\int f\left(x y^{-1}\right) g(y) d y
$$

Moreover if v is any element of $M(G)$, then $\mu_{f} * v$ belongs to $L(G)$, because for any $g \in L(G)$ we have

$$
\begin{aligned}
\left(\mu_{f} * v\right)(g) & =\iint g(x y) f(x) d x d v(y) \\
& =\int d v(y) \int g(x) f\left(x y^{-1}\right) d x \\
& =\mu_{h}(g) \text { where } h(x)=\int f\left(x y^{-1}\right) d v(y)
\end{aligned}
$$

Thus we define the convolution of a measure μ and function $f \in$ $L(G)$ by setting

$$
\begin{aligned}
& (\mu * f)(y)=\int f\left(x^{-1} y\right) d \mu(x) \\
& (f * \mu)(y)=\int f\left(y x^{-1}\right) d \mu(x)
\end{aligned}
$$

Let U be a representation of G in H. Then U can be extended to $M(G)$ by setting

$$
U_{\mu}(a)=\int_{G} U_{x} a d \mu(x)(\text { for } \mathrm{a} \in H, \mu \in M(G)
$$

Now let H be a Hibert space and U a Unitary representation.
Then if μ and v are any two elements in $M(G)$, we have

$$
\begin{aligned}
\left\langle U_{v} U_{\mu} a, b\right\rangle & =\int\left\langle U_{x} U_{\mu} a, b\right\rangle d v(x) \\
& =\int\left\langle U_{\mu} a, U_{x^{-1}} b\right\rangle d v(x) \\
& =\int d v(x) \int\left\langle U_{y} a U_{x^{-1}} b\right\rangle d \mu(y) \\
& =\int\left\langle U_{x} U_{y} a, b\right\rangle d v(x) d \mu(y)
\end{aligned}
$$

This means that $U_{\mu * \nu}=U_{\mu} \circ U_{\nu}$ i.e.,
U is a representation of the algebra $\mathrm{M}(\mathrm{G})$.It can be easily verified that map $\mu \rightarrow U_{\mu}$ is a continuous representation of the algebra $\mathrm{M}(\mathrm{G})$. Moreover

$$
\begin{aligned}
\left\langle U_{\mu}^{*} a, b\right\rangle & =\left\langle\overline{U_{\mu} b, a}\right\rangle \\
& =\int\left\langle U_{x} a, b\right\rangle \overline{d \mu\left(x^{-1}\right)}
\end{aligned}
$$

This shows that $U_{\mu}^{*}=U_{\tilde{\mu}}$, where $d \tilde{\mu}(x)=\overline{d \mu\left(x^{-1}\right)}$.
Thus the operator $U_{\mu * \tilde{\mu}}$ on H is Hermitian.
In particular we get a representation of $L(G)$ in H given by $f \rightarrow$ $U_{\mu_{f}}=U_{f}$, where

$$
U_{f}(a)=\int_{G} U_{x} a f(x) d x
$$

We can also get a representation of $M(G)$ by considering regular representations of G i.e., representations G by right or left translations in G in any function space connected with G with some convenient topology,
for instance the space $L(G)$ or $L^{2}(G)$ (the space of square integrable functions).

We shall denote by σ_{x} the left regular representations and by τ_{x} the right regular representations of G i.e., for any function f on G we have

$$
\sigma_{x}(f)(y)=f\left(x^{-1} y\right), \tau_{x}(f)(y)=f(y x)
$$

we have for any μ in $M(G)$

$$
\begin{aligned}
\sigma_{\mu}(f) & =\mu * f \\
\tau_{\mu}(f) & =f * \stackrel{v}{\mu} \text { where } d \stackrel{v}{\mu}(x)=d \mu\left(x^{-1}\right)
\end{aligned}
$$

Let K be a compact group, M an equivalence class of (unitary) irreducible representations of K. For any x belonging to G, let $M_{x}=$ ($\left.C_{i j}^{M}(x)\right)$ be the matrix of M_{x} with respect to some basis of the representation space. Let r_{M} be the dimension of M and $\chi_{M}=\sum_{i=1}^{r_{m}} C_{i i}^{M}$ the character of M. For any two irreducible unitary representations of K we have the following orthogonality relation,
(1) $C_{i j}^{M} * C_{k l}^{M^{\prime}}$ if $M \neq M^{\prime}$
(2) $C_{i j}^{M} * C_{k l}^{M}=\frac{l}{r_{M}} \delta_{j k} C_{i l}^{M}$
where the value of the convolution product at the unit element e of G is given by $C_{i j}^{M} * C_{k l}^{M}(e)=\int C^{M_{j i}(y)} C_{K l}^{M}(y) d x$.

When we write (1) and (2) in terms of characters we get
(1) $\chi_{M} * \chi_{M^{\prime}}=0$ if $M \neq M^{\prime}$
(2) $\chi_{M} * \chi_{M}=\frac{l}{r_{M}} \chi_{M}$

58 Obviously we have

$$
\left(r_{M} \chi_{M}\right) * C_{i j}^{M}=C_{i j}^{M} * \chi_{M} r_{M}=C_{i j}^{M}
$$

Let $L_{M}(K)$ be the vector space generated by the coefficients $C_{i j}^{\bar{M}}$, where \bar{M} is the complex conjugate representation of M. If f is in $L^{2}(G)$,
then by Peter-Weyl's theorem, $f=\sum_{i, j, N} \lambda_{i j N} C_{i j}^{N}$.Further if $r_{m} \chi_{\bar{M}} * f=f$, then we have $f=\sum_{i, j} \lambda_{i j M} C_{i j}^{\bar{M}}$, which means that f belong to $L_{M}(K)$. Conversely if f belongs to $L_{M}(K)$, then $f=\sum_{i, j} \lambda_{i j \bar{M}} C_{i j}^{\bar{M}}$. Therefore $r_{M} \chi_{\bar{M}} * f=f$.Hence $f \in L^{2}(G)$ is in $L_{M}(K)$ if and only if $r_{M} \chi_{\bar{M}} * f=f$.

In this paragraph we give another interpretation of the space $L_{M}(K)$.
Definition. Let M be an irreducible unitary representation of K and U any representation of K in a Banach space H.

We say that an element a $\in H$ is transformed by U following M, if a is contained in a finite dimensional invariant subspace F of H such that the restriction of U to F is direct sum representations of the equivalence class of M.

Let $H_{M}^{U}=H_{M}=\{a \mid \in H$, a transformed by U following $M\}$. It is easy to verify that H_{M} is a vector space.

Proposition 1. $L_{M}(K)$ is exactly the subspace of $L^{2}(K)$ formed by the elements which are transformed following M (respectively following \bar{M}) by the left (respectively right) regular representation of K.

Proposition 2. If U is a representation of K in H, then $E_{M}=U_{r_{M} \bar{\chi}_{M}}$ is a continuous projection from $H \rightarrow H_{M}$.

In order to prove the proposition 1 and 2 prove the following results.
(1) Suppose that φ belongs to $L_{M}(K)$, then $\varphi=\sum_{i, j} \lambda_{i j} C_{i, j}^{\bar{M}}$. For

$$
\begin{aligned}
x \in K, \text { we have }\left(\begin{array}{l}
{ }_{x}^{x} C_{i j}^{\bar{M}}
\end{array}\right)(y) & =C_{i j}^{\bar{M}}\left(x^{-1} y\right)=\sum_{k} C_{i j}^{\bar{M}}\left(x^{-1}\right) C_{i j}^{\bar{M}}(y) \\
& =\sum_{k}\left(C_{k i}^{M}(x)\right) C_{k j}^{\bar{M}}(y) .
\end{aligned}
$$

So the space E_{j} generated by $C_{i j}, \cdots, C_{r j}\left(r_{M}=r\right)$ is invariant by σ and the restriction of σ to E_{j} is of class M. Therefore $L_{M}(K)$, which is direct sum of the E_{j}, is contained in $\left(L^{2}(G){ }_{M}^{\sigma}\right.$.
(2) If φ belongs to $L_{M}(K)$ and a belongs to H, then we show that $U_{\varphi} a$ belong to H_{M}.
We have

$$
U_{x} U_{\varphi} a=U_{\epsilon_{x} * \varphi^{a}}=U_{\sigma_{x} \circ \varphi^{a}}
$$

where ε_{x} is the Dirac measure at the point x, and

$$
U_{\varepsilon_{x}} b=\int_{K} U_{y} b d \varepsilon_{x}(y)=U_{x} b
$$

60 This shows that $\varphi \in L_{M}(K) \rightarrow U_{\varphi}$ a $\in H$ is a morphism of representation σ and U. Hence $U_{\varphi} a$ is transformed by U following M.
(3) If a belongs to H_{M}, then $E_{M} a=a$. Since a belongs to some finite dimensional invariant subspace F of H and the restriction of U to F is the direct sum of representation of class M, we can find a basis $\left(e_{j k}\right)$ of F such that $U_{x} e_{j k}=\sum_{K} C_{i j}^{M}(x) e_{i k}$
Let $\mathrm{a}=\sum_{i, j} \lambda_{i j} e_{i j}$. Then

$$
\begin{aligned}
E_{M}(a) & =r_{M} \int \sum_{i, j, k} \lambda_{j k} C_{j k}^{M}(x) e_{i k} \bar{\chi}_{M}(x) d x \\
& =r_{m} \sum_{i, k}\left(\sum_{j} \lambda_{j k} \int C_{i j}^{M}(x) \bar{\chi}_{M}(x) d x\right) e_{i k} \\
& =\sum_{i, k} \lambda_{i k} e_{i k}=a
\end{aligned}
$$

Moreover
$\int r_{M} C_{i j}^{M}(x) \chi_{M}\left(x^{-1}\right) d x=r_{M} \chi_{M} * C_{i j}^{M}(e)=\delta_{i j}$
(4) In particular if φ belongs to $L^{2}(G)$ it is transformed by σ following M, then

$$
\sigma_{r_{M X}} \varphi=r_{M} \bar{\chi}_{M} * \varphi=\varphi
$$

Therefore φ belongs to $L_{M}(K)$.
Clearly the results (1)and (4) imply proposition 1

$$
\text { Since } \quad \begin{aligned}
E_{M} \dot{E}_{M} & =U_{M}^{\gamma_{M}} U_{r_{M} \chi_{M}} U_{r^{2}} \chi_{M} * \chi_{M} \\
& =U_{r_{M} \chi_{M}}=E_{M},
\end{aligned}
$$

the proposition (2) is proved by result (3)
Similarly we prove that $E_{M} \cdot E_{M^{\prime}}=0$ for $M \neq M^{\prime}$. Thus we get a 61 family of projections E_{M} with $E_{M}(H)=H_{M}$. The sum $\sum H_{M}$ is direct and is dense in H. It is sufficient to prove that if a^{\prime} is a continuous linear form on H, which is zero on every H_{M}, then $\left\langle a, a^{\prime}\right\rangle=o$ for every $a \in H$. Let us put $\varphi(x)=\left\langle U_{x} a, a^{\prime}\right\rangle$. Then

$$
\begin{aligned}
\left\langle\varphi, C_{i j}^{M}\right\rangle & =\int C_{i j}^{\bar{M}}(y)\left\langle U_{y} a, a^{\prime}\right\rangle d y \\
& =\left\langle U_{g} a, a^{\prime}\right\rangle \text { with } g=C_{i j}^{\bar{M}}
\end{aligned}
$$

But $U_{g} a^{\prime}$ belongs to $H_{\bar{M}}$, therefore we get that φ is orthogonal to all the coefficients $C_{i j}^{M}$ for any M, so $\varphi=0$.

In particular if U is unitary (for instance the regular representation in $L^{2}(K)$), then the E_{M} are orthogonal projections and H is exactly Hilbertian sum of the closed subspaces H_{M}.

Let G be a locally compact group, K a compact subgroup of G. Suppose that U is a continuous representation of G in H and M an equivalence class of unitary representation of K. By $H_{M}^{U}=H_{M}$ we shall mean the vector subspace of H consisting of elements which are transformed by the restriction of U to K following M. As in the above case $E_{M}=U_{r_{M} \bar{\chi}_{M}}$ is a projection of H to H_{M}. Let

$$
L_{M}(G)=\left\{f \mid f \in L(G), f * r_{M} \bar{\chi}_{M}=r_{M} \bar{\chi}_{M} * f=f\right\}
$$

It is easy to prove that $L_{M}(G)$ is a subalgebra of $L(G)$ and the mapping $f \rightarrow r_{M} \bar{\chi}_{M} * \dot{*} r_{H} \bar{\chi}_{M}$ is a projection from $L(G)$ to $L_{M}(G)$.

If f belongs to $L_{M}(G)$ and a belongs to H, then is in H_{M}. If $b \mathbf{6 2}$
belongs to H_{M}^{\prime}, then $U_{f}(a)=U_{r_{M}}(a)_{\chi_{M} *}=E_{M} U_{f} a \Rightarrow U_{f} a$ is in H_{M}. If b belongs to $H_{M^{\prime}}$, then

$$
U_{f} b=\underset{f * r_{M} \bar{\chi}_{M}}{U} \quad E_{M^{\prime}} b=U_{f} E_{M} E_{M^{\prime}} b=0
$$

This shows that U is a representation of $L_{M}(G)$ in H_{M} and $U_{f}=$ $E_{M} U_{f} E_{M}$. Moreover for $f \in L_{M}(G)$

$$
f(y)=r_{M} \int_{K} f\left(k^{-1} y\right) \bar{\chi}_{M}(k) d k
$$

In particular if M is the identity representation, then χ_{M} is constant and f is in $L_{M}(G)$ if and only if

$$
\begin{aligned}
f(y) & =r_{M} \int_{K} f(k y) d k=r_{M} \int_{K} f(y k) d k \\
& \Longleftrightarrow f(h y k)=f(f y k)=f(y)
\end{aligned}
$$

Such functions are called spherical function on G with respect to K. They can be considered as functions on G / K which are left invariant, provided we write $G / K=\{K, a K,---\}$

2 Irreducible Representations

In this section we study how we can get some information about the representation of a group G by studying the representation of the algebra $L_{M}(G)$.

Definition 1. A representation U of a group G in a vector space V is said to be algebraically irreducible if there exists no proper invariant subspace of V.

Definition 2. A representation U of a topological group G in a locally convex space E said to be topologically irreducible if there exists no proper closed invariant subspaces of E.

Definition 3. A representation U of a topological group G in a Banach space H is said to be completely irreducible if $U(L(G))$ is dense in $\operatorname{Hom}(H, H)$ in the topological of simple convergence i.e., given an operator T on H and element $a_{1}, a_{2}, \cdots, a_{p}$ in H, there exists for every $\in>0$ an element f in $L(G)$ such that

$$
\left\|\left(U_{f}-T\right) a_{i}\right\|<\epsilon \quad \text { for } i=1,2, \cdots, p
$$

It is obvious that $(1) \Rightarrow(2)$. To prove that $(3) \Rightarrow(2)$, suppose that F is a proper closed invariant subspace of H. Let $a \neq 0$ be any element of F, then for every b in H there exists a $T \in \operatorname{Hom}(H, H)$ such that $T(a)=b$. But by definition for every $\varepsilon>0$ there exists an element f in $L(G)$ such that $\left\|U_{f} a-T(a)\right\|<\varepsilon$. This means that F is dense in H which is a contradiction because F was assumed to be a closed proper subspace of H.

The definitions (2) and (3) are equivalent for unitary representation by Von Neumann and all the three representation are equivalent for finite dimension representations. The proof can be found in [9]. The definition (11) implies (3) (for proof see annals of Mathematics, 1954 Godement).

Lemma 1. If U is a completely irreducible representation of G in a Banach space H, then the representation U^{M} of $L_{M}(G)$ is $H(M)$ is also completely irreducible.

Proof. Suppose that T belongs to $\operatorname{Hom}(H(M), H(M))$. Extend T to H by setting $\tilde{T}=T$ on $H(M)$ and O on $E_{M}^{-1}(0)$. Obviously T is continuous on H.

Since U is completely irreducible, \tilde{T} can be approximated by U_{f} for $\mathbf{6 4}$ f in $L(G)$ i.e., $\tilde{T}=\lim U_{f_{i}}$. Therefore

$$
\begin{aligned}
E_{M} \tilde{T} E_{M} & =\lim E_{M} U_{f_{i}} E_{M} \\
& =\lim U_{r_{M} \bar{\chi}_{M} * f_{i} * r_{M} \bar{\chi}_{M}}
\end{aligned}
$$

Hence in $H_{M}, T=\lim U_{r_{M} \bar{\chi}_{M} * f_{i} * r_{M} \bar{\chi}_{M}}$
where $r_{M} \bar{\chi}_{M} * f_{i} * r_{M} \chi_{M}$ is in $L_{M}(G)$. Thus U^{M} is completely irreducible.

Let U be a unitary irreducible representation of G in a Hilbert space H. By coefficient of U we means positive definite function $\left\langle U_{x} a, a\right\rangle$ on G. We state without proof the following theorem about the coefficients of unitary representations.

Theorem 1. If two irreducible unitary representations have same nonzero coefficient associated to them, they are equivalent.

We have seen that the representation U can be extended to the space $M(G)$ and the operator $U_{\mu * \tilde{\mu}}$ for any μ in $M(G)$ is Hermitian. In particular if we take $\mu=r_{M} \bar{\chi}_{M} d k$, we have $\mu=\tilde{\mu}$. There fore $U_{\mu * \mu}=E_{M}$ is Hermitian.

Moreover for any f in $L(G)$ and a in H_{M}

$$
\begin{aligned}
\left\langle U_{f} a, a\right\rangle & =\left\langle U_{f} E_{M} a, E_{M} a\right\rangle=\left\langle E_{M} U_{f} E_{M} a, a\right\rangle \\
& =\left\langle U_{f_{0}} a, a\right\rangle
\end{aligned}
$$

where $f_{0}=r_{M} \bar{\chi}_{M} * f * r_{M} \bar{\chi}_{M}$ belongs to $L_{M}(G)$. Thus if we know nonzero coefficient associated to U^{M}, we know coefficient associated to U as a representation of $L(G)$, which determines coefficient of U as a representation of G. Thus a unitary irreducible representation of G is completely characterised by its restriction U^{M} to $L_{G}(G)$ if U^{M} is not zero.

Definition. A set Ω of representations of an algebra A in a vector space is said to be complete if for every nonzero f in A there exists $U \in \Omega$ such that $U f \neq O$.

Proposition 3. If there exists a complete set Ω of representations of an algebra A which are of dimension $\leq K$ (K a fixed integer $)$, then every completely irreducible representation of A in a Banach space is of dimension $\leq k$.

We first prove a lemma due to Kaplansky. Let A be any algebra. For x_{1}, \cdots, x_{p} in A we define $\left[x_{1}, \cdots, x_{p}\right]=\sum_{\sigma \in S_{p}} \varepsilon_{\sigma} x_{\sigma_{1}} \ldots x_{\sigma_{p}}$ where S_{p} is the set of all permutations σ on $1,2, \cdots, p$ and ε_{σ} is the signature of σ. Obviously if $\operatorname{dim} A<p$, then $\left[x_{1}, \cdots, x_{p}\right]=o$ for all $x_{1}, x_{2}, \cdots, x_{p}$ in A.

In particular we take $A=M_{n}(C)$, algebra of $n \times n$ matrix with coefficient from C, the field of complex numbers, We define

$$
\begin{aligned}
r(n) & =\inf (p) \text { such that } \\
{\left[X_{1}, \cdots, X_{p}\right] } & =0, X_{i} \in M_{n}(C) .
\end{aligned}
$$

Clearly $r(n) \leq n^{2}+1$. We shall prove that $r(n+1) \geq r(n)+2$.
We have $r(n)-1$ elements $X_{1}, X_{2}, \cdots X_{r-1}$ in $M_{n}(C)(r=r(n))$ such that $\left[X_{1}, \cdots, X_{r-1}\right] \neq 0$, Let $E_{k h}$ be the canonical basis of $M_{n}(C)$. Then

$$
\left[X_{1}, \cdots, X_{r-1}\right]=\sum_{k, h=1}^{n} \lambda_{k h} E_{k h}
$$

Since $\left[X_{1}, \cdots, X_{r-1}\right] \neq 0$, there exists k_{0} and h_{0} such that $\lambda_{k_{0} h_{0}} \neq 0$. Let \tilde{X}_{i} be the matrix obtained by adding a row and a column of zeros to X_{i}. Then

$$
\begin{aligned}
{\left[\tilde{X}_{1}, \cdots, \tilde{X}_{r-1} E_{h_{0}, n+1} E_{n+1, n+1}\right] } & =\left[\tilde{X}_{1}, \cdots, \tilde{X}_{r-1}\right] E_{h_{0}, n+1} E_{n+1 n+1} \\
& =\sum_{h, k} \lambda_{k h} \tilde{E}_{k h} E_{h_{0}} n+1 \\
& =\sum \lambda_{k h_{0}} E_{k, n+1} \neq 0 .
\end{aligned}
$$

Thus $r(n+1) \geq r(n)+2$.
Now we prove the proposition. Suppose that $r(k)=r$ and U is a complete irreducible representation of $\operatorname{dim}>K$ in a Banach space H. Let F be a subspace of H of $\operatorname{dim} k+1$. Since $r(k+1)>r(k)$, there exist operators $\left[A_{1}, \ldots, A_{r}\right]$ in $\operatorname{Hom}(F, F)$ such that $\left[A_{1}, \ldots, A_{r}\right] \neq 0$. We extend each A_{i} to the whole space H by defining A_{i} to be zero on F^{\prime}, where F^{\prime} is any closed subspace such that H is the topological direct sum of F and F^{\prime}. Suppose that $A_{1}=\lim U_{f_{i_{1}}}$, where $f_{i_{1}} \in A$. We have

$$
0 \neq\left[\tilde{A}_{1}, \cdots, \tilde{A}_{r}\right]=\sum_{\sigma \in \mathcal{S}_{r}} \tilde{A}_{\sigma_{1}}, \ldots \tilde{A}_{\sigma_{r}}=\lim \left[U_{f_{i}} \tilde{A}_{2}, \cdots, \tilde{A}_{r}\right]
$$

Therefore there exists f_{1} in A such that $\left[U_{f_{1}} \tilde{A}_{2}, \cdots, \tilde{A}_{r}\right] \neq 0$. Repeating 67 this process we obtain that there exist elements f_{1}, \cdots, f_{r} in A such that
$U_{\left[f_{1}, \cdots, f_{r}\right]}=\left[U_{f_{1}}, \cdots, U_{f_{r}}\right] \neq 0$. But this is a contradiction because $\left[f_{1}, \cdots, f_{r}\right]=0$ if $\left[f_{1}, \cdots, f_{r}\right] \neq 0$, then there exists a V in Ω such that $V_{\left[f_{1}, \cdots, f_{r}\right]}(a) \neq 0 \Rightarrow$
$\left[V_{f_{1}}, \cdots, V_{f_{r}}\right](a) \neq 0$. But $r \geq r_{k}$ and $\operatorname{dim} V \leq k$, therefore $\left[V_{f_{1}}, \cdots\right.$, $\left.V_{f_{r}}\right]=0$. Hence $\operatorname{dim} U<k$.

Corollary. Let G be a locally compact group, K a compact subgroup, M a class of irreducible unitary representations of K in a Banach space H. If there exists a system Ω of representations of G in a Banach space such that (i) for every U in Ω, the representation U^{M} of $L_{M}(G)$ is of $\operatorname{dim} \leq p \operatorname{dim} M$. Equivalently M occurs atmost p times in each U.
(ii) The representations U^{M} for U in Ω form a complete system of representation of algebra $L_{M}(G)$.

Then M occurs atmost p times in any completely irreducible representation of G.

3 Measures on Homogeneous spaces

Let G be a locally compact group, $d x$ the right invariant Haar measure and $\Delta(x)$ the modular function on G i.e., $d(y x)=\Delta(y) d x$. Let Γ be a closed subgroup of G. We shall denote by $\xi, \eta \ldots$ the elements of Γ by $d \xi$ and δ the Haar measure and the modular function on Γ. It is well known that there exists a right invariant Haar measure on G / Γ if and only if $\Delta(\xi)=\delta(\xi)$. In general it is possible to find a quasi-invariant measure on G / Γ. In order to show the existence, one shows that there exists a strictly positive continuous function ρ on G such that $\rho(\xi x)=\frac{\delta(\xi)}{\Delta(\xi)} \rho(x)$ for every x in G and ξ in Γ. Then the measure $\rho(x) d x$ gives rise to a measure $d \mu(x)$ on G / Γ such that for any f in $L(G)$ we have

$$
\begin{equation*}
\int_{G} f(x) \rho(x) d x=\int_{G / \Gamma} d \mu(x) \int_{\Gamma} f(\xi x) d \xi \tag{1}
\end{equation*}
$$

It is obvious from (1)that

$$
d \mu(\overline{(x y)})=\frac{\rho(x y)}{\rho(x)} d \mu(x)
$$

where $\frac{\rho(x y)}{\rho(x)}$ depends only on the cosets of x modulo Γ. Thus $\mu(x)$ is a quasi-invariant measure on G / Γ. The details could be found in [9].

4 Induced Representations

Let L be a representation of Γ in Hilbert space H. We shall define two types of induced representation on G given by L.
(1) Assume that L is unitary. Let H^{L} be the spaces of functions f on G such that
(1) f is measurable with values in H.
(2) $f(\xi x)=[p(\xi)]^{1 / 2} L_{\xi} f(x)$, for $\xi \in \Gamma$.
(3) $\int_{G / \Gamma}(\rho(x))^{-1}\|f(x)\|^{2} d x<\infty$.

Since the function $(\rho(x))^{-1}\|f(x)\|^{2}$ is invariant on the left by Γ, it can be considered as a function on G / Γ. Thus we define

$$
\|f\|^{2}=\int_{G / \Gamma}(\rho(x))^{-1}\|f(x)\|^{2} d \mu(x)
$$

It can be proved that H^{L} is a Hilbert space with the scalar product

$$
\langle f, g\rangle,=\int_{G / \Gamma}(\rho(x))^{-1}\langle f(x), g(x)\rangle d \mu(x)
$$

Let U^{L} be the map from G to H^{L} such that

$$
U_{x}^{L} f(y)=f(x y)
$$

Obviously U^{L} is continuous. Since we have

$$
\left\|U_{y}^{L} f\right\|^{2}=\int_{G / \Gamma}(\rho(x))^{-1}\|f(x y)\|^{2} d \mu(x)
$$

$$
\begin{aligned}
& =\int_{G / \Gamma}\left(\rho\left(x y^{-1}\right)\right)^{-1}\|f(x)\|^{2} \frac{\rho\left(x y^{-1}\right)}{\rho(x)} d \mu(x) \\
& =\|f\|^{2}
\end{aligned}
$$

It follows that U^{L} is unitary. We say that U^{L} is the unitary representation induced by L.
(ii) Let L be any representation of Γ. Let us suppose that there exists a compact subgroup K of G such that $G=\Gamma K$. Let C^{L} be the space of functions f such that
(1) f is continuous with values in H.
(2) $f(\xi x)=(\rho(\xi))^{\frac{1}{2}} L_{\xi}(f(x))$ for $\xi \in \Gamma$.

We define $\|f\|=\sup _{x \in K}\|f(x)\|$. Clearly C^{L} with this norm is a Banach space. Again right translation by elements of G give rise to a representation of G in G^{L}. We denote this also by U^{L}.

Let $f \rightarrow$ restriction of f to $K=f_{0}$ be the map from the C^{L} to $C(K)$ (the set of continuous functions on K with values in H). The image of C^{L} by this map is the set of elements $f_{0} \in C(K)$ which satisfy condition (2) above for all ξ in $\Gamma \cap K$ and x is K. But $\rho(\xi)=1$, because ρ is a positive real character of $K \cap \Gamma$, therefore $f_{0}(\xi x)=f_{0}(x)$. Through the space C^{L} is identified with a subspace of $C(K)$ yet the representation U^{L} cannot be defined on this subspace. However the restriction of U^{L} to K and the representation induced by the restriction of L to $\Gamma \cap K$ are identical.

If L is unitary then f belongs to H^{L} if and only if f_{0} belongs to $L^{2}(K)$. We can choose ρ in such a way that $\rho(x k)=\rho(x)$ for $k \in K$. Since the group $K / K \cap \Gamma$ is compact homogeneous space, there exits one and only one invariant Haar measure on it. But $K / K \cap \Gamma$ is isomorphic to G / Γ therefore with the above choice of ρ, the quasiinvariant measure on G / Γ gives rise to the invariant measure on $K / K \cap \Gamma$. We have

$$
\int_{G / \Gamma}(\rho(x))^{-1}\|f(x)\|^{2} d \mu(x)=\int_{K / K \cap \Gamma}\|f(k)\|^{2} d \mu(k)
$$

$$
\begin{equation*}
=\int_{K}\|f(k)\|^{2} d k \tag{A}
\end{equation*}
$$

Our result is obvious from (A).

5 Semi Simple Lie Groups

Let G be a semi simple Lie group worth a faithful representation. We state here two theorems the proof of which could be found in [19].

Theorem 2. The group G has a maximal compact subgroup and all the maximal compact subgroup are conjugates.

Theorem 3. Suppose that K is maximal compact subgroup of G, then there exists a connected solvable T of G such that $G=T K$.

We shall prove the following theorem about completely irreducible representation of G.

Theorem 4. Every irreducible representation M of K is contained atmost $\operatorname{dim}(M)$ times in every completely irreducible representation of G.

Proof. (1) The finite dimensional irreducible representations of G is a vector H is a complete system of representations of $L(G)$. Let $x \rightarrow \rho_{x}$ be a representation of G in a vector space H. We call the function $\theta(x)=\left\langle\rho_{x} a, a^{\prime}\right\rangle$ where a belongs to H and a^{\prime} belongs to H^{*} (the conjugate space of H), a coefficient of the representation. Let V denote the vector space generated by all coefficients of all finite dimensional irreducible representations of G. Since every finite dimensional representation of G is completely reducible, V contains all the coefficients of all finite dimensional representations of G. Let ρ^{1} and ρ^{2} be two finite dimensional irreducible representations of G. Then we have

$$
\left\langle\rho_{x}^{1} a_{1}, a_{1}^{\prime}\right\rangle\left\langle\rho_{x}^{2} a_{2}, a_{2}^{\prime}\right\rangle=\left\langle\rho_{x}^{1} \otimes \rho_{x}^{2} a_{1} \otimes a_{2}, a_{1}^{\prime} \otimes a_{2}^{\prime}\right\rangle
$$

showing that V is an algebra. Moreover V is a self adjoint algebra, because if $\theta(x)=\left\langle\rho a, a^{\prime}\right\rangle$ is in V, then $\bar{\theta}(x)=\left\langle\bar{\rho}_{x} \bar{a}, \bar{a}^{\prime}\right\rangle$ is also in V. Since G
has a finite dimensional faithful representation, V separates points i.e., if $\theta(x)=\theta\left(x^{\prime}\right)$ for every θ in V, then $x=x^{\prime}$. Thus Stone- Weierstrass' approximation theorem every continuous function on G can be approximated uniformly on every compact subset by elements of V. Hence if f is a non-zero elements of $L(G)$, then $\int f(x) g(x) d x=0$ for every element
g of $C(G)$ (the set of all continuous functions on G), because

$$
\rho_{f}=\int \rho_{x} f(x) d x \text { and } \int<\rho_{x} a, a^{\prime}>f(x) d x=0
$$

for every a in H and a^{\prime} in H^{*} and ρ. Therefore f must be $=0$
(2) The representations of G induced by all characters of T form a complete system for $L(G)$

Let ρ be a finite dimensional irreducible representation of G and let $\left.\stackrel{\nu}{\rho}=(\stackrel{t}{\rho})^{-1}\right)$ be the representation contragradient to ρ. By Lie's theorem [19],the restriction of $\stackrel{v}{\rho}$ to T has an invariant subspace of dimension 1 , which implies that there exists a vector $b^{\prime} \neq 0$ in E^{*} (the conjugate space of the representation space E of, ρ) such that $\stackrel{\nu}{\rho}(t)=b^{\prime}=\chi(t) b^{\prime}$ for every $t \in T$. Consider the mapping a $\in E \rightarrow \widetilde{a} \varepsilon c^{\chi^{-1}}$, where $\widetilde{a}(x)=\left\langle\rho_{x} a, b^{\prime}\right\rangle$. Since

$$
\widetilde{a}(t x)=<\rho_{t x} a, b^{\prime}>=<\rho_{x} a, \rho_{t}^{r-1} b^{\prime}>=\chi^{-1}(t)<\rho_{x} a, b^{\prime}>=\chi^{-1}(t) \widetilde{a}(x),
$$

$\widetilde{a}(x)$ is covariant by left translation. Obviously the map $a \rightarrow \widetilde{a}$ is continuous. Let $U^{\chi-1}$ be the representation of G induced by χ^{-1}. The mapping $a \rightarrow \widetilde{a}$ is a morphism of representations ρ and $U^{\chi-1}$, because

$$
\widetilde{\rho}_{y} a(x)=\left\langle\rho_{x} \rho_{y} a, b^{\prime}\right\rangle=\widetilde{a}(x y)=U_{y}^{\chi-1}(\widetilde{a}) .
$$

The mapping $a \rightarrow \tilde{a}$ is not zero. If $a \neq 0$, then ($\rho_{x} a$) generates the whole space E because ρ is irreducible, therefore for atleast on x in $G\left\langle\rho_{x} a, b^{\prime}\right\rangle \neq 0 \Rightarrow \widetilde{a} \neq 0$. Let f be a non-zero element of $L(G)$. If $U_{f}^{\chi-1}=0$. For every χ then $\rho_{f}=0$ for every ρ which means the $f=0$ by (1). This is a contradiction, hence our result is proved.
(3) We shall show that if χ is a character of T, then M occurs atmost $\operatorname{dim}(M)$ times in U^{χ}. Clearly $U^{\chi} / K\left(\right.$ restriction of U^{χ} to $\left.K\right)=$
$U^{\chi / K \cap T}$.But the space of this representation is the space of continuous functions f on K such that

$$
f(t k)=\chi(t) f(k) \text { for } t \in K \cap T
$$

Therefore $U^{\chi / K \cap T}$ is a subrepresentation of the right regular representation of K. Hence $\left(C^{\chi}\right)_{M} \subset L_{M}(K)$ which is a space of $(\operatorname{dim} M)^{2}$. Thus M occurs at most $\operatorname{dim}(\mathrm{M})$ times in U. Our theorem follows from (2), (3) and proposition 1.3.

Chapter 4

Classical Linear Groups over p-adic Fields

1 General Definitions

We shall study the following types of classical linear groups over field $\mathbf{7 4}$ P or over a division algebra.
(I) (a) $G L_{n}(P)$ - The group of all non-singular $\mathrm{n} \times \mathrm{n}$ matrices with coefficients from P is called the general linear group
(b) $\operatorname{PrGL} L_{n}(P)$ Let $C L_{n}(P)$ be the centre of the group $G L_{N}(P)$. The group pr $G L_{n}(P)=G L_{n}(P) / C L_{n}(P)$ is called the projective linear group.
(c) $S L_{n}(P)$-The subgroup of $G L_{n}(P)$ consisting of all the matrices of determinant 1 is called the special linear group or the unimodular group. It can be proved that $\operatorname{Pr} S L_{n}(P)=$ $S L_{n}(P) / C\left(S L_{n}(P)\right)$ is a simple group
(II) -Let $E=P^{n}$ and φ a non-degenerate bilinear form over E
(a) $S p_{n}(P)$-If φ is an alternating form, then the the set of all matrices in $G L_{n}(P)$ which leave this bilinear form invariant is a group called the linear symplectic group. We shall denote the by $S p_{n}(P)$. This group is independent of the choice of the
alternating bilinear form because any two such bilinear forms are equivalent.
(b) If φ is a symmetric non-degenerate bilinear form, then the set of elements in $G L_{n}(P)$ leaving φ invariant is group called the linear orthogonal group.
(III) Let \widetilde{P} be a separable quadratic extension of P. Let $\xi \rightarrow \bar{\xi}$ be the unique nontrivial automorphism of \widetilde{P}. If φ is a non-degenerate Hermitian bilinear form over E i.e., $\varphi(y, x)=\varphi(x, y)$, then the set $U_{n}(\varphi, P)$ of elements of $G L_{n}(P)$ leaving φ invariant is a group called the unitary group.
(IV) Let \widetilde{P} be a division algebra of finite rank over P, such that P is the centre of \widetilde{P}. We define $G L_{n}(P)$ as in I (a). The group $S L_{n}(P)$ can be defined as the kernel of the map σ (determinant of Dieudonne) from $G L_{n}(P)$ to \widetilde{P}^{*} / C where C is the commutator subgroup of P^{*}.
(V) Let \widetilde{P} be the algebra of quaternions over P. In this case there exists an involution in \widetilde{P} i.e., an anti automorphism of \widetilde{P} of order 2. So we can define as in (3) the group $U_{n}(\varphi, P)$ which leaves invariant the bilinear form φ over \widetilde{P}^{n}. As in (1) one can define $S 0_{n}(\varphi, P)$ and $S V_{n}(\varphi, P)$ and prove that their projective groups are in general simple.

Suppose that P is a locally compact p-adic field. All the groups of type (1), (2) and (3) are locally compact, because on $M_{n}(P)$ (the set of all $n \chi n$ matrices with coefficients from P) we have the topology of $P^{n^{2}}$ and $G L_{n}(P)$ is an open subset of $M_{n}(P)$ and the groups $S L_{n}(P)$ etc.are closed subgroups of $G L_{n}(P)$.

Let us assume that the rank of \widetilde{P} over P in (4) is r. Then $M_{n}(\widetilde{P})$ may be imbedded in $M_{n r}(P)$, as \widetilde{P}^{n} can be considered as a space of dimension nr over P, since a matrix is inversible in $M_{n}(\widetilde{P})$ if and only if it is invertible in $M_{n r}(P)$, we have

$$
G L_{n}(\widetilde{P})=G L_{n r}(P) \cap M_{n}(\widetilde{P})
$$

But $G L_{n r}(P)$ is an open subset of $M_{n r}(P)$, therefore $G L_{n}(\widetilde{P})$ is an open subset of $M_{n}(\widetilde{P})$. Since $M_{n}(\widetilde{P})$ is locally compact, because it has
the same topology as the $\widetilde{P}^{2}, G L_{n}(\widetilde{P})$ is locally compact. $U_{n}(\varphi, \widetilde{P})$ is locally compact, because it is a closed subgroup of $G L_{n}(\widetilde{P})$.

2 Study of $G L_{n}(\widetilde{P})$

By \widetilde{P} we shall mean a division algebra of finite rank over P, which is a locally compact valuated field, contained in the centre of \widetilde{P}. Let $\tilde{\mathscr{O}}$ denote the ring of integers of \widetilde{P}

As we have already seen that $\tilde{\mathscr{O}}$ is a compact subset of \widetilde{P}, therefore $M_{n}(\tilde{\mathscr{O}})$ which is homeomorphic to $\mathscr{O}^{n 2}$ is compact in $M_{n}(\tilde{\widetilde{P}})$. Let $G L_{n}(\tilde{O})$ be the set of elements $M_{n}(\tilde{\mathscr{O}})$ which are invertible in $M_{n}(\tilde{\mathscr{O}})$. Obviously $G L_{n}(\widetilde{P})$ contains $G L_{n}(\tilde{\mathscr{O}})$. Therefore

$$
G L_{n}(\tilde{O})=G L_{n}(\widetilde{P}) \cap M_{n}(\tilde{O}) \cap\left[G L_{n}(\widetilde{P}) \cap M_{n}(\tilde{O})\right]^{-1}
$$

Since \tilde{O} is open in $\widetilde{P}, M_{n}(\tilde{\mathscr{O}})$ is open in $M_{N}(\tilde{P})$. Therefore $G L_{n}(\tilde{O})$ is open in $M_{n}(\tilde{\mathscr{O}})$. Similarly $G L_{n}(\tilde{\mathscr{O}})$ is open in $G L_{n}(\widetilde{P})$. Moreover $G L_{n}(\tilde{O})$ is closed in $M_{n}(\tilde{\mathscr{O}})$. For, let $\left(X_{p}\right)$ be a sequence of elements in $G L_{n}(\tilde{O})$ such that X_{p} tends to $X \in M_{n}(\tilde{O})$ as p tends to infinity. Because $M_{n}(\tilde{\mathscr{O}})$ is compact, we can assume that X_{p}^{-1} has a limit Z in $M_{n}(\tilde{\mathscr{O}})$. But then $Z X=X Z=I$, therefore X belongs to $G L_{n}(\tilde{\mathscr{O}})$. Hence $G L_{n}(\tilde{\mathscr{O}})$ is compact.

We define in the following some subgroups of $G L_{n}(\widetilde{P})$, which will be of use later on.
(i)

$$
\Gamma=\left\{\left.\gamma=\left(\begin{array}{lll}
a_{1} & & * \\
& \ddots & \\
0 & & a_{n}
\end{array}\right) \right\rvert\, \gamma \in G L_{n}(\widetilde{P})\right\}
$$

where ${ }^{(*)}$ indicates that there may be some non-zero entries.
(ii)

$$
T=\left\{\left.t=\left(\begin{array}{ccc}
\widetilde{\pi}^{\alpha} & & * \\
& \ddots & \\
0 & & \widetilde{\pi}^{\alpha}
\end{array}\right) \right\rvert\, t \in G L_{n}(\widetilde{P}), \alpha_{i} \in Z\right\}
$$

$\widetilde{\pi}$ being a uniformising parameter in \tilde{P}
(iii)

$$
N=\left\{\underline{\underline{\mathrm{n}}}=\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
1 & & 1
\end{array}\right)\right\}
$$

(iv)

$$
D=\left\{\left.\underline{\mathrm{d}}=\left(\begin{array}{ccc}
a_{11} & & 0 \\
& \ddots & \\
0 & & a_{1 n}
\end{array}\right) \right\rvert\, a_{i j} \in \widetilde{P}, a_{i j} \neq 0\right\}
$$

(v)

$$
\Delta=\left\{\left.\left(\begin{array}{ccc}
\widetilde{\pi}^{\alpha_{1}} & & 0 \\
& \ddots & \\
0 & & \widetilde{\pi}^{\alpha_{n}}
\end{array}\right) \right\rvert\, \alpha_{i} \in Z\right\}
$$

We see immediately that $T=\Delta N$ and $\Gamma=D N$. Moreover T is a solvable group, Γ is solvable if \widetilde{P} is commutative and T (respectively Γ) is a semi direct product of Δ and N (respectively D and N).
Proposition 1. $G L_{n}(\tilde{P})=G=T K$, where $K=G L_{n}(\tilde{O})$.
Proof. When $n=1$, the proposition is trivially true. Suppose that it is true for all $G L_{s}(\widetilde{P})$ for $s \leq n-1$. We shall prove it for $G L_{n}(\widetilde{P})$. Let $g=\left(g_{i j}\right)$ be an element of G. We can find integers $\left(k_{j 1}\right)_{1 \leq j \leq n}$ such that

$$
\begin{aligned}
\sum_{j=1}^{n} g_{i j} k_{j 1} & =0 \text { for } 2 \leq i \leq n \\
& =a_{11} \neq 0 \text { for } i=1
\end{aligned}
$$

By multiplying on the right with a suitable element of \widetilde{P} we can take atleast one of $k_{j 1}$ to be 1 . Let $k=\left(\gamma_{i j}\right)$ be a matrix, where $\gamma_{i 1}=$ $k_{i 1}$ for $i=1,2, \ldots, n$ with $k_{j i}=1, \gamma_{j r}=0$ for $r=2, \ldots, n$ and the other $\gamma_{i j}$ are so determined that k belongs to K.

So we get

$$
g_{k}=\left(\begin{array}{cc}
a_{11} & * \\
0 & *
\end{array}\right)=\left(\begin{array}{ll}
\tilde{\pi} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & * \\
0 & g^{\prime}
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)
$$

where g^{\prime} is $n-1 \times n-1$ matrix and $a_{11}=\tilde{\pi}^{\alpha} y, y \in \mathscr{O}^{*}$.

But by induction hypothesis $g^{\prime}=t^{\prime} k^{\prime}$ where t^{\prime} belongs to T^{\prime} and $k^{\prime} \in K^{\prime}$ the subgroups T^{\prime} and K^{\prime} defined in $G L_{n-1}(\widetilde{P})$ in the same way as T and K in G Thus we get

$$
\left(\begin{array}{cc}
1 & * \\
0 & g^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & * k^{\prime-1} \\
0 & t^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & k^{\prime}
\end{array}\right)
$$

This implies that

$$
\begin{aligned}
g k & =\left(\begin{array}{cc}
\widetilde{\pi}^{\alpha} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & * k^{\prime-1} \\
0 & t^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & o \\
0 & k^{\prime}
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right) \\
& =t_{1} k_{1}, t_{1} \in T \text { and } k_{1} \in K .
\end{aligned}
$$

Hence our result follows:
We shall now prove an analogue of Elementary divisors theorem. Let A be a ring with unity (but without any other condition). Let us consider the following assertions(where module signifies left module):
(I a) any finitely generated module is isomorphic to a direct sum $\underset{i=1}{\stackrel{i}{\oplus}} A / \underline{\mathrm{a}}_{i}$, where $\underline{\mathrm{a}}_{i}$ are left ideals with $A \neq a_{1} \supset \cdots \supset \underline{\mathrm{a}}_{r}$
(I b) Such a decomposition, if it exists, is unique.
(II a) if M is a free module of finite type and N a finitely generated submodule of M, there exists a basis e_{1}, \ldots, e_{r} and r elements $\alpha_{1}, \ldots, \alpha_{r}$ of A such that $\alpha_{i+1} \subset A \alpha_{i}$ and such that N is the direct sum of submodules $A \alpha_{i} e_{i}$.
(II b) if such elements e_{i} and α_{i} exist, the ideal $A \alpha_{i}$ are independent of the choice of the e_{i} and α_{i} satisfying (II a).
(III a) if g is a $m \times n$ matrix with coefficients in A, there exists two $m \times m$ and $m x n$ invertible matrices p and q such that $d=p g q$ is a $m \times n$ "diagonal" matrix(i.e., $d_{i j}=$ for $i \neq j$) and $\alpha_{i}=d_{i i} \in A \alpha_{i+1}$.
(III b) if such matrices p and q exist, the ideals $A \alpha_{i}$ are independent of the choice of p and q (satisfying(III b)).

It is obvious that (III a) implies (IIa): consider a basis x_{1}, \ldots, x_{n} of M and a system of generators y_{1}, \ldots, y_{m} of N and define the matrix g by $y_{j}=\sum g_{i j} x_{i}$. Then $e_{i}=\sum\left(q^{-1}\right)_{i k} x_{k}$ is basis of M and the $\alpha_{i} e_{i}=\sum p_{i k} y_{k}$ generate N. if a is left Noetherian then (IIa) implies (Ia), for any finitely generated module is a quotient M / N, with M free of finite type and N finitely generated. Conversely, it is obvious that (I a) implies (II b) and (II b) implies (III b).

It is well known that all these six assertions are true if A is a commutative principal ideal ring (without zero divisors)(see for instance Bourbaki, Alg., ch VII, §4). We shall now prove the following extension:

80 Theorem. Let A be a ring with unity (but A may be non-commutative and may have zero divisors), which satisfies the following conditions:

1) any left or tight ideal is two sided (equivalently, $A x=x A$ for any $x \in A$
2) the set of the principal ideals is totally ordered by inclusion (hence any finitely generated ideal is principal).

Then, the assertions (IIIa) and (Ia) are true (hence also (IIa), and (IIIb). If moreover A dis Noetherian (that is if any ideal is principal),then (Ia) is also true

Proof of (III a): the result is obviously true form $n=m=1$. Assume it is proved for $(m-1) \times(n-1)$ matrices. Let us consider the ideals $\mathrm{A} g_{i j}: b y(2)$ they are all contained in one of them, and we can assume without loss of generality, that $g_{j i} \in A g_{11}$ for any indices i,j. Let $g_{i 1}=c_{i} g_{11}$ for $2 \leq i \leq m$. By multiplying g on the left by a $m \times m$ matrix k where

$$
k=\left(\begin{array}{cc}
i & 0 \cdots 0 \\
-c_{2} & 10 \cdots 0 \\
& \cdots \\
-c_{m} & o \cdots 1
\end{array}\right)
$$

we get a matrix kg with $(\mathrm{kg})_{11}=g_{11}$ and $(\mathrm{kg})_{i 1}=0$ for $i \geq 2$. Moreover, the matrix k is invertible. Similarly, using the fact that $g_{i j} \in g_{11} A$. We
find a $n \times n$ inversible matrix h such that

$$
k g h=\left(\begin{array}{ccc}
g_{11} & 0 & \cdots 0 \\
0 & & \\
& g^{\prime} & \\
0 & &
\end{array}\right)
$$

Now, we have just to apply the induction hypothesis to g^{\prime} (remember that all the coefficients of g, hence of g^{\prime} belong to $A g_{11}$).

Proof. (Ib): more generally, we shall prove that assumption 1) alone implies (Ib).

Let $M=\sum_{i=1}^{n} A / \underline{a_{i}}=\sum_{j=1}^{m} A / \underline{b_{i}}$, with $\underline{a_{1}} \supset \underline{a_{2}} \supset \cdots \supset \underline{a_{n}}$ and $\underline{b_{1}} \supset \underline{b_{2}} \supset$ $\cdots \supset \underline{b_{m}}, \underline{a_{i}} \neq A$ and $\underline{b_{i}} \neq A$ for any i. Then $m=n$ and $\underline{a_{i}}=\underline{b_{i}}$ for $i=$ $1,2, \ldots, n$.

Proof. Let x_{i}^{\prime} (respectively y_{j}^{\prime}) be the canonical generator of A / \underline{a}_{i} (respectively $A / \underline{b_{j}}$) and x_{i} (respectively $\underline{y_{j}}$) the canonical image of $\overline{x_{i}^{\prime}}$ (respectively $\left.y_{j}^{\prime}\right)$ in M. Then $y_{j}=\sum_{i=1}^{n} a_{i j} x_{i}$, where $a_{i j} \in A$ and is determined completely modulo $\underline{a_{i}}$ and therefore modulo $\underline{a_{i}}$. Similarly $x_{i}=\sum_{k=1}^{m} b_{k i} y_{k}$, where $b_{k i} \in A$ and is completely determined modulo b_{1}. Let m be a maximal left ideal containing b_{1}. We see immediately that m is a two sided ideal and $A / \underline{\mathrm{m}}$ is a division algebra. Since $y_{j}=\sum_{i=1}^{n} a_{i j}=\sum_{i=1}^{n} b_{k i} y_{k}$, we have

$$
\sum_{i=1}^{n} a_{i j} \equiv \delta_{k j} \quad(\bmod \underline{m})
$$

But this is possible only when $n \geq m$, because if V^{m} and V^{n} are two vector spaces over a division ring of dimension m and n respectively such that φ and ψ are two linear transformations from V^{m} to V^{n} and V^{n} to V^{m} respectively. then $\varphi \psi=I$ implies that ψ is an isomorphism of V^{m} onto a subspace of V^{n}. In the same way we get that $m \geq n$. Hence $m=n$.

If possible let us suppose that $a_{\underline{i}} \neq b_{\underline{i}}$ for some i. Let us suppose that there exists an element a in $a_{\underline{i}}$ which does not belong to $b_{\underline{i}}$. Consider the set $a M$, it is a submodule of M. Therefore

$$
a M=\sum_{i=1}^{n} a A / a A \cap a_{\underline{i}}=\sum_{i=1}^{n} a A / a \cap a_{i}
$$

because every left principal ideal in A is a right principal ideal in A. Let $x \in A \rightarrow \overline{x a} \in A a$ be a map from A to $A a / a A \cap a_{i}$, its kernel is the set $\left\{x \mid x a \in \underline{a_{i}}\right\}=B$. Therefore we get that $A a / a A \bar{\cap} \underline{a_{i}}$ is isomorphic to A / B. Moreover $A / B=(0)$ if and only if a belongs to $\underline{a_{i}}$. Now rank of $\mathrm{aM}=$ number of $\underline{a_{i}}$ such that a does not belong to $\underline{a_{i}}$. Since a belongs to a_{i}, a belongs to \bar{a}_{j} for $j \leq i$, therefore rank of a $\bar{M} \leq n-i$. On the other hand rank of $a M=$ number of b_{j}, such that a does not belong to b_{j}. Since a does not belong to $\underline{b_{i}}, \operatorname{rank} \bar{a} M>n-i$. Hence we arrive at a

Remark. It can be shown that the six assertions (I a) to (III b) are true if the ring A satisfies the conditions 1) and:

1) any ideal is principal;
2) A has no zero divisors.

The proof works exactly as in the commutative case (see Bourbaki, loc. cit.)

Obviously, the ring $\tilde{\mathscr{O}}$ of the integers of any valuated non - commutative field satisfies 1) and 2).Moreover we have in this case $d_{i i}=(\tilde{\pi})^{\beta_{i}}$ with $y_{i} \in \tilde{\mathscr{O}}^{*}$ and $1 \leq i \leq r$ and $d_{i i}=0$ for $i>r$. The diagonal $n \times n$ matrix y defined by $y_{i i}=y_{i}$ for $1 \leq i \leq r$ and $y_{i}=1$ for $i>r$ is invertible and multiplying d on the right by y^{-1} and q on the left by y, we get a decomposition $g=p^{\prime} d^{\prime} q^{\prime}$ where p^{\prime} and q^{\prime} are invertible and d^{\prime} is a diagonal matrix whose diagonal coefficients $\tilde{\pi}^{\beta_{i}}$ are positive powers of the uniformising parameter $\widetilde{\pi}$ with $\beta_{1} \leq \cdots \leq \beta_{r}$, and the β_{i} are completely determined by these conditions (we used the fact that ideal in $\tilde{\mathscr{O}}$ is generated by one and only one power of $\widetilde{\pi}$).

Now, let us return to the group G. For any n-tuple of rational integers, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, let d_{α} be the diagonal $n \times n$ matrix with diagonal coefficients $\tilde{\pi}^{\alpha_{i}}$ and let Δ^{+}be the subset of the subgroup Δ consisting of the matrices d_{α} with $\alpha_{1} \leq \cdots \leq \alpha_{n}$.

Proposition 2. In each double coset $K g K$ modulo K, there exists one and only one element of Δ^{+}.

Proof. Let $g=\left(g_{i j}\right)$ be any element of G. Multiply g by a diagonal matrix $\left(a_{i i}\right)$, where $a_{i i}=a^{k}, a \in P, v(a)>0$ and k is a sufficiently large integer so chosen that the matrix $g^{\prime}=g\left(a_{i i}\right)$ belongs to K. Then by the above theorem there exist matrices p^{\prime} and q^{\prime} in K such that

$$
g\left(a_{i i}\right)=g^{\prime}=p^{\prime} d \beta q^{\prime} \text { with } d \beta \in \Delta^{+}
$$

Let us take $\alpha_{i}=\beta_{i}-k v(a)$. Then we have $g=p d \alpha q$ with q, p in K and d_{α} in Δ^{+}. Conversely if g belongs to $K d_{\alpha} K$. then g^{\prime} belongs to $K d_{\beta} K$. But d_{β} is unique, therefore d_{α} is unique.

Corollary 1. K is a maximal compact subgroup of G.
If possible let $H \supset K$ be a compact subgroup of G. Obviously there exists $\alpha \neq 0$ such that $d \alpha$ belongs to H. Then

$$
(d \alpha)^{r}=\left(\begin{array}{ccc}
\widetilde{\pi}^{\alpha_{1} r} & & 0 \\
& \ddots & \\
0 & & \widetilde{\pi}^{\alpha_{n} r}
\end{array}\right)
$$

If $\alpha_{i} \neq 0$, then $v\left(\pi^{r \alpha_{i}} \rightarrow \pm \infty\right.$ as $r \rightarrow \pm \infty$, which is a contradiction as v is a continuous function form \widetilde{P} to R. Hence $H=K$.

Let E be a vector space over \widetilde{P}. Let I be a lattice in E i.e., a finitely generated $\tilde{\mathscr{O}}$ module such that its basis generate E. Since I has no torsion, basis of I is a basis of E. In particular if we take $E=\widetilde{P}^{n}$ and $I=\widetilde{\mathscr{O}}^{n}$ and if we identify G with the group of endomorphisms of E, then $g \in K$ and only if $\mathrm{g}(\mathrm{I})=\mathrm{I}$. Moreover if we take any lattice L, then the subgroup of G which leaves L invariant is a conjugate subgroup of K.

Let H be a compact subgroup of G. Let e_{1}, \ldots, e_{n} be a basis of E. Let J be an $\tilde{\mathscr{O}}$-module generated by the elements $h\left(e_{j}\right), 1 \leq j \leq n$ and $h \in H$. Evidently we have
(1) J is invariant by H
(2) $J \supset I$
(3) The map $h \rightarrow h\left(e_{j}\right)$ is a continuous map from H to E.

But H is compact, therefore the image of H in E by the map defined in (3) is compact and hence bounded. Therefore there exists an integer k such that $J \subset \widetilde{\pi}^{-k} I$, which shows that J is finitely generated, but $J \supset I$, therefore J is generated by a finite set of element which generate E. Hence J is a lattice. Thus H is contained in a conjugate subgroup of K namely the subgroup of G which leaves J invariant. Hence we have proved the the following.

Corollary 2. Any two maximal compact subgroups of G are conjugates and any compact subgroup of G is contained in a maximal compact subgroup of G.

Remark 3. Any double coset $K x K, x \in G$, is a finite union of left cosets modulo K, because K is open and compact, therefore every double coset and left coset modulo K is open and compact.

We introduce a total ordering in Z^{n} by the lexicographic order i.e., if $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$ are two elements of Z^{n}, then we say that $\beta>\alpha$ if $\beta_{i}>\alpha_{i}$, for the least index i for which $\beta_{i} \neq \alpha_{i}$.

Proposition 3. If $N d_{\beta} K \cap K d_{\alpha} K \neq \phi$, where $\alpha \cdot \beta$ are in Z^{n} and $d_{\alpha} \in \Delta^{+}$ then $\beta \geq \alpha$ and $N d_{\alpha} K \cap K d_{\alpha} K=d_{\alpha} K$.

Proof. Let $n d_{\beta}$ belongs to $\mathrm{N} d_{\beta} K \cap K d_{\alpha} K$, where

$$
\underline{n}=\left(\begin{array}{cc}
1 & \\
& * \\
& \ddots \\
0 & \\
0
\end{array}\right), d_{\beta}=\left(\begin{array}{ccc}
\tilde{\pi}^{\beta_{1}} & & 0 \\
& \ddots & \\
& \ddots & \\
0 & & \tilde{\pi}^{\beta_{n}}
\end{array}\right)
$$

Then $n d_{\beta}$ belongs to $K d_{\alpha} K$. But $\underline{n} d_{\beta}$ belongs to $K d_{\alpha} K$ if and only if the invariant factors of $\underline{n} d_{\beta}$ are $\stackrel{\alpha_{1}}{\tilde{\pi}}, \ldots \stackrel{\alpha}{n}_{\tilde{\pi}}^{n}$. Therefore we get that $\tilde{\pi}^{\alpha_{1}}$ divides $\tilde{\pi}^{\beta_{i}}$ for $i=1,2, \cdots, n$. If $\alpha_{1}<\beta_{1}$, our assertion is proved. If $\alpha_{1}=\beta_{1}$, then we multiply the matrix $\underline{n} d_{\beta}$ on the right by a matrix δ, where

$$
\delta=\left(\begin{array}{cccc}
1 & -\tilde{\pi}^{\alpha_{1}} a_{12} & \cdots & -\tilde{\pi}^{\alpha_{1}} a_{1 n} \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

if

$$
\underline{\mathrm{n}} d_{\beta}=\left(\begin{array}{ccc}
\tilde{\pi}^{\alpha_{1}} & a_{12} & \cdots a_{1 n} \\
0 & \tilde{\pi}^{\beta_{2}} & \cdots * \\
& \ddots & \\
0 & 0 & \tilde{\pi}^{\beta_{n}}
\end{array}\right)
$$

So we get

$$
\underline{\mathrm{n}} d_{\beta} \delta=\left(\begin{array}{ccc}
\tilde{\pi}^{\alpha_{1}} & 0 & \cdots 0 \\
0 & \tilde{\pi}^{\beta_{2}} & * \\
& \ddots & \\
0 & 0 & \tilde{\pi}^{\beta_{n}}
\end{array}\right)=\left(\begin{array}{cc}
\tilde{\pi}^{\alpha_{1}} & 0 \\
0 & g^{\prime}
\end{array}\right)
$$

It is obvious that δ belongs to K. Therefore $\underline{\mathrm{n}} d_{\beta} \delta$ is in $K d_{\alpha} K$, which means that its invariant factors are $\tilde{\pi}^{\alpha_{1}}, \cdots, \tilde{\pi}^{\alpha_{n}}$. Thus $\tilde{\pi}^{\alpha_{2}}, \cdots \tilde{\pi}^{\alpha_{n}}$ are the invariant factors for g^{\prime}, which implies that g^{\prime} belongs to $K_{n-1} d_{\alpha}-K_{n-1}$ with obvious notations. Our assertion is trivially true forn $=1$. If we assume that it is true for all groups $G L_{r}(\tilde{P})$ for $r \leq n-1$, we get $\bar{\alpha} \leq \bar{\beta}$. But $\alpha=\beta$, therefore $\alpha \leq \beta$. We prove the second assertion also by induction on n. For $n=1$, it is trivially true. Let us assume that the results is true for all groups $G L_{r}(P)$ for $r \leq n-1$. We have to show that $d_{\alpha}^{-1} \underline{\mathrm{n}} d \alpha$ belongs to K if $\underline{\mathrm{n}} d_{\alpha}$ belongs to $K d_{\alpha} K$ Let us suppose that

$$
n=\left(\begin{array}{ccc}
1 & a_{12} & \cdots a_{1 n} \\
0 & 1 & * \\
& \ddots & \\
0 & 0 & 0
\end{array}\right)
$$

Since $\underline{\mathrm{n}} d_{\alpha}$ belongs to $K d_{\alpha} K \tilde{\pi}^{\alpha_{1}}$ divides $a_{1 i}$ for $i=2, \cdots, n$. Obvi-
ously

$$
d_{\alpha}^{-1} \underline{\mathrm{n}} d_{\alpha}=\left(\begin{array}{ccc}
1 & x_{12} & \cdots x_{1 n} \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & X \\
0 & g^{\prime}
\end{array}\right)
$$ mat rix of the form $d_{\alpha^{-}}^{-1} \underline{\mathrm{n}}^{\prime} d_{\alpha^{-}}$and the invariant factors of $n^{\prime} d_{\alpha^{-}}$are $\tilde{\pi}^{\alpha_{2}}, \cdots, \tilde{\pi}^{\alpha_{n}}$. Therefore by induction hypothesis g^{\prime} belongs to K_{n-1}. This shows that $d_{\alpha}^{-1} \underline{\mathrm{n}} d_{\alpha}$ belongs to K.

3 Study of $O_{n}(\varphi, P)$

In this section we shall prove some of the results of $\$ 2$ for the group $G=O_{n}(\varphi, P)$.The same results can be proved for other such groups of $G L_{n}(P)$ namely $S L_{n}(P)$ etc. with obvious modifications. Throughout our discussion P will denote a locally compact p-adic field such that $K=\mathscr{O}_{P} \mid \mathscr{Y}_{P}$ has characteristic different from 2.

Definition 1. Let E be a vector space of dimension n over P. A subspace $F \subset E$ is called isotropic with respect to φ (a bilinear form as E) if there exists an element x in F such that $\varphi(x, y)=0$ for every y in F, in other words the bilinear form when restricted to F is degenerate.

Definition 2. A subspace $F \subset E$ is called totally isotropic with respect to φ if the restriction of φ to F is zero i.e., $\varphi(x, y)=0$ for every x, y in F.

It is obvious from the definition that the set of totally isotropic subspaces of E is inductively ordered. Therefore there exist maximal totally isotropic subspaces of E. They are of the same dimension, which we call the index of φ. If index of $\varphi=0, \varphi$ is called a non-isotropic form.

Witt's decomposition. Let E_{1}, E_{2} and E_{3} be three subspaces of E such that
(1) $E=E_{1} \oplus E_{2} \oplus E_{3}$
(2) E_{1} and E_{3} are totally isotropic.
(3) $E_{1}+E_{3}$ is not isotropic.
(4) E_{2} is orthogonal to $E_{1}+E_{3}$ i.e., for x in $E_{2}, \varphi(x, y)=o$ for every $y \in E_{1}+E_{3}$.

It can be proved that for the vector space $E=P^{n}$, there exists a Witt decomposition and we can find a basis $e_{1}, e_{2}, \cdots, e_{r}$ of $E_{1}, e_{r+1}, \cdots, e_{r+q}$ of E_{2} and e_{r+q+1}, \cdots, e_{n} of E_{3}, where $2 r+q=n$, in such a way that $\varphi\left(e_{i}, e_{j}\right)=\delta_{i, n+1-j}$ for $1 \leq i \leq r$ and $r+q<j \leq n .(I)$ and that r_{r+1}, \cdots, e_{r+q} is an orthogonal basis for E_{2}. Clearly the matrix of the bilinear form φ with respect to this basis of E is

$$
\Phi=\left(\begin{array}{lll}
O & O & S \\
O & A & O \\
S & O & O
\end{array}\right) \text { where } S=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and A is $a q \times q$ matrix, which is the matrix of φ restricted to E_{2}.
We shall now completely determine the restriction of φ to the non - isotropic part. For simplicity we assume that $r=0$ and $q=n$. Let e_{1}, \cdots, e_{q} be an orthogonal basis of E. If $x=\left(x_{1}, \cdots, x_{q}\right)$ is a point of E with respect to these basis. Then $\varphi(x, x)=\sum_{i=1}^{q} a_{i} x_{i}^{2}$ with $a_{i} \in P$. If $\frac{-a_{j}}{a_{i}}$ for $i \neq j$ is in $\left(P^{*}\right)^{2}$, then the vector $\left(o, \cdots, a_{j}, \cdots, a_{i}, \cdots, o\right)$ is an isotropic vector of φ, which is not possible. Therefore $a_{i} \not \equiv a_{j}$ $\left(\bmod P^{* 2}\right)$, which implies that $q \leq 4$. We shall say that two bilinear forms φ and φ^{\prime} are equivalent if there exists a linear isomorphism of the space of φ onto the space of φ^{\prime} and a constant $c \neq 0$, such that $\varphi^{\prime} \circ \lambda=\circ \varphi$. Then it can be proved that every non-isotropic bilinear form over E is equivalent to one and only one of the following type:
(1) $q=4$
(a) $x_{1}^{2}-C x_{2}^{2}-\pi x_{3}^{2}+C \pi x_{4}^{2}$
(2) $q=3$
(a) $x_{1}^{2}-C x_{2}^{2}-\pi x_{3}^{2}$
(b) $x_{1}^{2}-C x_{2}^{2}-C \pi x_{3}^{2}$
(3) $q=2$
(a) $x_{1}^{2}-C x_{2}^{2}$
(b) $x_{1}^{2}-\pi x_{2}^{2}$
(c) $x_{1}^{2}-C \pi x_{2}^{2}$
(4) $\mathrm{q}=1$
(a) x_{1}^{2}
(5) $\mathrm{q}=\mathrm{o}$
(a) The O-form as where $(1, C, \pi, C \pi)$ is a set of representatives of P^{*} modulo $\left(P^{*}\right)^{2}$ as obtained in Corollary 2 of Hensel's Lemma.

We shall say that a basis e_{i}, \ldots, e_{n} is a Witt basis for φ if the relations in (I) are satisfied and if the restriction of φ to E_{2} has one of the above forms. It is obvious that for φ or for a constant multiple fo φ, we can always find a Witt besides and the matrix of φ with respect to a Witt basis is independent of the choice of the Witt basis.

Proposition 4. If $M=M_{q}(P)$ is a matrix such that $M^{\prime} A M$ belongs to $M_{q}(O)\left(M^{\prime}\right.$ denotes the transpose of the matrix M and A denotes the matrix of the restriction of φ to $\left.E_{2}\right)$, then M belongs to $M_{q}(\mathscr{O})$.

Proof. We prove first that if for $x \in E, \varphi(x, x)$ is in \mathscr{O}, then the coordinates of x are in \mathscr{O}. Let us assume for instance that $q=4$. If possible let $v\left(x_{1}\right)<0$ and $v\left(x_{1}\right) \leq \min \left(v\left(x_{2}\right), v\left(x_{3}\right), v\left(x_{4}\right)\right)$. Suppose that $v\left(x_{1}\right)=\alpha$. Since $v\left(x_{1}^{2}-c x_{2}^{2}-\pi x_{3}^{2}-c \pi x_{4}^{2}\right) \geq 0$ we have $x_{1}^{2}-C x_{2}^{2} \equiv o$ $\left(\bmod \mathscr{Y}^{2 r+1}\right)$, where $r=\max (0, \alpha)$. Therefore $\left(\pi^{-\alpha} x_{1}\right)^{2}-s\left(\pi^{-\alpha} x_{2}\right)^{2} \equiv 0$ $(\bmod \mathscr{Y})$.

But this is impossible, because \bar{C} is not a square in k. Thus our result is established. The other cases can be similarly dealt with.

Let $M=\left(m_{i j}\right)$, then $M^{\prime} A M=\left(\gamma_{i j}\right)$ where $\gamma_{i j}=\varphi\left(m_{1 i}, \cdots, m_{q i} m_{q j}\right)$, If $M^{\prime} A M$ belongs to $M_{q}(\mathscr{O})$ then $\gamma_{i i}$ belongs to \mathscr{O}, which implies that
$m_{r i}$ belongs to \mathscr{O} for $i, r=1,2, \cdots, q$. It is obvious that it is sufficient to assume that only the diagonal elements of $M^{\prime} A M$ are in \mathscr{O}.

In the following we shall be dealing with a fixed Witt basis of the space E. We shall adhere to the following notations throughout our discussion.

$$
\begin{aligned}
& K^{o}=G \cap K, T^{o}=G \cap T, N^{o}=G \cap N, \Delta^{o}=G \cap \Delta^{+} \quad \text { and } \\
& d_{\alpha}^{\circ}=\left(\begin{array}{lllllll}
\pi^{-\alpha_{1}} & & & & & & \\
& \ddots & & & & & \\
& & \pi^{-\alpha_{r}} 0 & & & & \\
& & & 1 \cdot \ddots \cdot 1 & & & \\
& & & & \pi^{\alpha_{r}} & & \\
& & & & & \ddots & \\
& & & & & & \\
& & & & & & \pi^{\alpha_{1}}
\end{array}\right)
\end{aligned}
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{r}\right)$
Proposition 5. $G=T^{o} K^{o}$
Proof. We have already proved that $G L_{n}(P)=T K$. Therefore $g \in G$ implies that $g=t k$ where t and K belong to T and K respectively. We know that $\operatorname{det}(g)= \pm 1$ and $\operatorname{det}(k)$ belongs to \mathscr{O}^{*}. So det (t) belongs to \mathscr{O}^{*}. But det (t) is a power of π, therefore $\operatorname{det}(t)=1$. Now g belongs to G if and only if $g^{\prime} \Phi g=\Phi$ i.e., $t^{\prime} \Phi t=k^{-1^{\prime}} \Phi K^{-1}$. Since $k^{-1^{\prime}} \Phi k^{-1}$ belongs to $M_{n}(\mathscr{O}), t^{\prime} \Phi t$ belongs to $M_{n}(\mathscr{O})$.

Let us suppose that

$$
t=\left(\begin{array}{ccc}
a_{1} & X & Z \\
O & a_{2} & Y \\
O & O & a_{2}
\end{array}\right)
$$

then $\quad t^{\prime} \Phi t=\left(\begin{array}{ccc}o & O & a_{1}^{\prime} S a_{3} \\ o & a_{2}^{\prime} A a_{2} & X^{\prime} S a_{3}+a_{2}^{\prime} A Y \\ a_{3}^{\prime} S a_{1} & Y^{\prime} A a_{2}+a_{3} S X & Z^{\prime} S a_{3}+Y^{\prime} A Y+a_{3}^{\prime} S Z .\end{array}\right)$
This shows that $a_{1}^{\prime} S a_{3}$ and a_{3} and $a_{2}^{\prime} A a_{2}$ belong to $M_{n}(\mathscr{O})$. More- 92
over, we have $1=\operatorname{det} t=\left(\operatorname{det} a_{1}\right)\left(\operatorname{det} a_{2}\right)\left(\operatorname{det} a_{3}\right)$ and $\left(\operatorname{det} a_{2}\right)$ and (det a_{1}). (det a_{3}) belong to \mathscr{O} (for, $a_{1}^{\prime} S a_{3}$ belongs to $M_{n}(\mathscr{O})$). So $\operatorname{det} a_{2}$ belongs to \mathscr{O}^{*} implying a_{2} belongs to K. By above proposition we get that the matrix a_{2} has coefficients from \mathscr{O}. We shall find a matrix δ in $T \cap K$ such that $t \delta$ belongs to G. Then $g=t K=t \delta \delta^{-1} K$ implies that $\delta^{-1} K$ belongs to K^{o} and our result will be proved. Multiply the matrix t by the matrices h and h^{\prime} on the right. where
we get

$$
\begin{gathered}
h=\left(\begin{array}{ccc}
b & 0 & 0 \\
0 & a_{2}^{-1} & 0 \\
0 & 0 & 1
\end{array}\right), h^{\prime}=\left(\begin{array}{lll}
1 & \xi & \zeta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
t h h^{\prime}=\left(\begin{array}{ccc}
a_{1} b & a_{1} b+a_{2}^{-1} X & a_{1} b \zeta+z \\
0 & 1 & Y \\
0 & 0 & a_{3}
\end{array}\right)
\end{gathered}
$$

We shall determine the matrices b, ξ and ζ in such a way that $t h h^{\prime}$ belongs to G. Now $t h h^{\prime}$ belongs to G if and only if
$\left(t h h^{\prime}\right)^{\prime} \Phi\left(t h h^{\prime}\right)=\Phi$ i.e., if and only if the following conditions are satisfied

$$
\begin{align*}
& b^{\prime} a_{1}^{\prime} S a_{3}=S \tag{1}\\
& A Y+X^{\prime} a_{2}^{-1} S a_{3}+\xi^{\prime} b^{\prime} a_{1}^{\prime} S a_{3}=0 \tag{2}\\
& a_{3}^{\prime} S a_{1} b \zeta+a_{3}^{\prime} S Z+y^{\prime} A Y+\zeta^{\prime} b^{\prime} a_{1}^{\prime} S a_{3}+Z^{\prime} S a_{3}=0 \tag{3}
\end{align*}
$$

Let us take $b^{\prime}=S\left(a_{1}^{\prime} S a_{3}\right)^{-1}$. Then h belongs to $K \cap T$ and the conditions (2) and (3) reduce to

$$
\begin{gathered}
A Y+X^{\prime}\left(a_{2}^{-1}\right)^{\prime} S a_{3}+\xi^{\prime} S=0 \\
S \zeta+a_{3}^{\prime} S Z+Y^{\prime} A Y+\zeta^{\prime} S+Z^{\prime} S a_{3}=0
\end{gathered}
$$

So if we take $S \xi^{\prime}=-A Y-X^{\prime} a_{2}^{-1} S a_{3}$ and $s \zeta=-\frac{1}{2} V$ where $V=$ $a_{3}^{\prime} S Z+Y^{\prime} A Y+Z^{\prime} S a_{3}$, we see that the matrix $t h h^{\prime}$ belongs to G. It is obvious that the matrix $h h^{\prime}$ belongs to $T \cap K$.Hence we get $g=$ $t h h^{\prime} .\left(h h^{\prime}\right)^{-1} k=t_{0} k_{0}$, which proves our result completely.

Definition. Let I be a lattice in E. The \mathscr{O} module $\mathfrak{M (I) \text { generated by the }}$ set of elements $\varphi(x, y)$ for x, y in I is called the norm of the lattice I.

A lattice I is called a maximal lattice if it is maximal among the lattices of norm $\mathfrak{N}(I)$. It is easy to see that any lattice of a given norm is contained in a maximal lattice of the same norm. The lattice I_{o} generated by the Witt basis $\left(e_{1}, \cdots, e_{n}\right)$ of E is a maximal lattice of norm \mathscr{O}_{n}. Let I be a lattice of norm \mathscr{O} containing I_{o}. Let $x=\sum_{i=1}^{n} x_{i} e_{i}$ be any element in I. Then $\varphi\left(x, e_{i}\right)= \pm x_{n+1-i}$ for $1 \leq i \leq r$ and $r+q<i \leq n$. let $\mathrm{y}=\sum_{i=r+1}^{r+q} x_{i} e_{i}$, since $\varphi\left(y, e_{j}\right)$ is an integer for $r+1 \leq j \leq r+q, x_{j}$ is an integer for $r+1 \leq q+r$. Hence x belongs to I_{o}. Therefore I_{o} is a maximal lattice.

Theorem 2. Let I_{1} and I_{2} be two maximal lattices of norm \mathscr{O}, then there exists a Witt basis $\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ of E and r integers
$\alpha_{i} \geq \cdots \geq \alpha_{r} \geq 0$, such that ($r=$ index φ)
(1) I_{1} is generated by $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
(2) I_{2} is generated by

$$
\left(\stackrel{-\alpha_{1}}{\pi} f_{1}, \ldots, \stackrel{-\alpha_{r}}{\pi} f_{r}, f_{r+1}, \ldots, f_{r+q}, \stackrel{\alpha_{r}}{\pi} f_{r+q+1}, \ldots, \stackrel{\alpha_{1}}{\pi} f_{n}\right) .
$$

Proof. We shall prove the theorem by induction on r. When $r=0, \varphi$ is non-isotropic and there exists only one maximal lattice of norm \mathscr{O} which is generated by any witt basis of E. Let us assume that the theorem is true for all bilinear forms of index $<r$. We first prove the following result.

If I is a maximal lattice of norm \mathscr{O} and X is an isotropic vector in I such that $\pi^{-1} X$ does not belong to I, then there exists an isotropic vector $X^{\prime} \in I$ such that $\varphi\left(X, X^{\prime}\right)=1$.

If possible let us suppose that the result is not true. Let us assume that $\varphi(X, Y)$ belongs to \mathscr{Y} for every Y in I. Then $\varphi\left(\pi^{-1} X, Y\right)$ belongs to \mathscr{O}. Consider $I^{\prime}=I+\mathscr{O} \pi^{-1} X$. It is a lattice because I^{\prime} is finitely generated \mathscr{O} module containing I. Moreover
$\varphi\left(Y+\alpha \pi^{-1} X, Z+\beta \pi^{-1} X\right)=\varphi(Y, Z)+\alpha \varphi\left(\pi^{-1} X, Z\right)+\beta \varphi\left(\pi^{-1} X, Y\right)$ is an integer for every α, β in \mathscr{O}. Therefore norm of I^{\prime} is \mathscr{O}. But this is a
contradiction because I is a maximal lattice of norm \mathscr{O}. Therefore there exists a vector Y in I such that $\varphi(X, Y)$ belongs to \mathscr{O}^{*}. By multiplying Y by some inversible element of \mathscr{O}, we get a vector Y^{\prime} in I such that $\varphi\left(X, Y^{\prime}\right)=1$. Let us take
$X^{\prime}=Y^{\prime}-\frac{1}{2} \varphi\left(Y^{\prime}, Y^{\prime}\right) X$. Obviously $\varphi\left(X, X^{\prime}\right)=1$ and $\varphi\left(X^{\prime}, X^{\prime}\right)=O$.
Now we shall prove the theorem. For every isotropic vector $X \in I_{1}$ (respectively I_{2}) let $t(X)$ (respectively $\mathrm{u}(\mathrm{X})$) denote the smallest integer such that ${ }^{t(x)} X$ (respectively $\left.\pi^{u(X)} X\right)$ belongs to I_{2} (respectively I_{1}). Such an integer exists. because I_{1} is an \mathscr{O}-module of finite type and I_{2} generates E, therefore there exists an integer t such that $\pi^{t} I_{1} \subset I_{2}$. Thus $t(X) \leq t$ always. Let X be an isotropic vector in I_{1} such that $\pi^{-1} X$ does not belong to I_{1}. Then $Y=\pi^{t(X)} X$ belongs to I_{2} and $\pi^{-1} Y$ does not belong to I_{2}. Since $\pi^{-1} X$ does not belong to I_{1}, it is obvious that $u(Y)=-t(X)$. By the above result there exists a vector X^{\prime} in I_{1} such that $\varphi\left(X, X^{\prime}\right)=1$ and $\varphi\left(X^{\prime}, X^{\prime}\right)=0$. This shows that $\pi^{-1} X^{\prime}$ does not belong to I_{1}. By the definition of $t(X)$ and $t(X)^{\prime}$ we get that

$$
\varphi\left(\pi^{t(X)} X, \pi^{t\left(X^{\prime}\right)} X^{\prime}\right)=\pi^{t(X)+t\left(X^{\prime}\right)}
$$

Since $\varphi\left(\pi^{t(X)} X, \pi^{t(X)} X, \pi^{t\left(X^{\prime}\right)} X\right)$ belongs to \mho, we get that

$$
\begin{equation*}
t(X)+t\left(X^{\prime}\right) \geq 0 \tag{1}
\end{equation*}
$$

Similarly there exists an isotropic vector Y^{\prime} in I_{2} such that

$$
\varphi\left(Y, Y^{\prime}\right)=1 \text { and } u(Y)+u\left(Y^{\prime}\right) \geq 0
$$

Let $Z=\pi^{u\left(Y^{\prime}\right)} Y^{\prime}$, then $t(Z)=-u\left(Y^{\prime}\right)$
Therefore we get

$$
\begin{equation*}
t(X)+t(Z) \leq 0 \tag{2}
\end{equation*}
$$

obviously Z is isot ropic and $\pi^{1} Z$ does not belong to I_{1}. Therefore there exists a vector Z^{\prime} in I_{1} such that $\varphi\left(Z, Z^{\prime}\right)=1$ and $\varphi\left(Z^{\prime}, Z^{\prime}\right)=0$ and

$$
\begin{equation*}
t(Z)+t\left(Z^{\prime}\right) \geq 0 \tag{3}
\end{equation*}
$$

Let us suppose that the vector X is so chosen that $t(X)$ is of maximum value, which exists because $t(X) \leq t$ for every X for some integer t.

Therefore in particular we get $t\left(Z^{\prime}\right) \leq t(X)$. From (2) and (3) it follows that

$$
\begin{aligned}
& t(X)+t(Z)=0 \\
& t(X)+t\left(Z^{\prime}\right)=0
\end{aligned}
$$

Thus we have found two vectors X and Z in I_{1} such that $\pi^{\alpha_{1}} X$ and $\pi^{-\alpha_{1}} Z$ where $\alpha_{1}=t(X)$ belong to I_{2} and

$$
\varphi(Z, X)=\varphi\left(\pi^{-t(Z)} Y^{\prime}, \pi^{t(X)} Y\right)=1
$$

Let F denote the subspace of E orthogonal to the subspace of E generated by the vectors X and Z. Obviously φ restricted to F is non -de- generate and its index is $r-1$. Moreover $I_{1}=\mathscr{O} X \oplus \mathscr{O} Z \oplus F \cap I_{1}$, because for any a in I_{1} we have
$a=\lambda X+\mu Z+b$, where λ and \mathscr{O} belong to ρ and b belongs to F.
But $\varphi(a, X)=\mu$, therefore it is an integer, similarly λ is an integer. Thus b belongs to I_{1} and the assertion is proved. Similarly we have $I_{2}=\mathscr{O} \pi^{\alpha_{1}} X \oplus \mathscr{O} \pi^{-\alpha_{1}} Z \oplus I_{2} \cap F$. It can be easily sen that $I_{j} \cap F(j=1,2)$ is a maximal lattice of norm \mathscr{O}. Hence by induction hypothesis there exists a Witt basis $f_{2}, f_{3}, \cdots, f_{n-1}$ of F and there exist r-1 integers $\alpha_{2} \geq$ $--\alpha_{r} \geq o$ such that
(1) $f_{1}, f_{2}, \cdots, f_{n-1}$ generate $I_{1} \cap F$.
(2) $\stackrel{-\alpha}{\pi}_{\pi}^{\alpha_{2}}, \ldots, \stackrel{-\alpha_{r}}{\pi} f_{r}, f_{r+1}, \ldots, f_{r+q}, \stackrel{\alpha_{r}}{\pi} f_{r+q+1}, \stackrel{\alpha_{2}}{\pi} f_{n-1}$ generate $I_{2} \cap F$.

If we take $f_{1}=Z, f_{n}=X$ and $\alpha_{1}=t(X)$ we get a Witt basis $\left(f_{1}, \cdots, f_{n}\right)$ of E and r integers $\alpha_{1}, \cdots, \alpha_{r}$ satisfying the requirements of the theorem because $\alpha_{2}=t\left(f_{n-1)} \leq \alpha_{1}\right.$.

Corollary 3. The group G acts transitively on the set of lattices of norm \mathscr{O}.

The mapping g defined by

$$
\begin{aligned}
g\left(f_{i}\right) & =\pi^{\gamma} f_{i}, \text { where } \\
\gamma & =\alpha_{i} \text { for } 1 \leq i \leq r
\end{aligned}
$$

$$
\begin{aligned}
& =O \text { for } r+1 \leq i \leq r+q \\
& =2 r+q-i+1 \text { for } r+q+1 \leq i \leq 2 r+q
\end{aligned}
$$

leaves Φ invariant. Therefore g belongs to G.
Proposition 6. In each double coset of G modulo K^{o} there exists one and only one element d_{α} of Δ_{+}^{o}.
Proof. Let g be any element of G. We shall denote by g itself the automorphism of E with respect to the initial $\operatorname{Witt} \operatorname{basis}\left(e_{1}, \cdots, e_{n}\right)$. The lattice $g\left(I_{o}\right)$ is obviously a maximal lattice of norm \mathscr{O}. Therefore by the above theorem we get a Witt basis $\left(f_{1}, \cdots, f_{n}\right)$ of E such that
(1) I_{o} is generated by f_{1}, \cdots, f_{n},
(2) $g\left(I_{o}\right)$ is generated by g_{1}, \cdots, g_{n} where $g_{i}=\pi^{\gamma} f_{i}$ with
γ as defined in the corollary of above theorem. Let $\underline{k_{1}}$ (respectively $\underline{k_{2}}$) be the matrix with respect to the basis e_{1}, \ldots, e_{n}) $\overline{\left(\text { respectively } g_{!}, \overline{g_{2}} \text {, }\right.}$ $\ldots g_{n}$) of the automorphism k_{1} (respectively k_{2}) defined by $k_{1}\left(e_{i}\right)=f_{i}$ (respectively $\left.k_{2}\left(g_{i}\right)=g\left(e_{i}\right)\right)$ for $i=1,2, \cdots, n$. We see immediately that the matrix K_{1} and K_{2} are in K^{o}. Moreover the matrix of the automorphism $f_{i} \xrightarrow{\rightarrow} g_{i}$ with respect to the basis f_{i} is d_{α}^{o} where $\alpha=$ $\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{r}\right)$.

It is obvious that

$$
\begin{aligned}
& g\left(e_{i}\right)=\sum_{j} \underline{\left(k_{2}\right)} j i i \\
&=\sum_{j}, \underline{\left(k_{2}\right)} j i i \\
&\left.=d^{o} \alpha\right)_{k j} f_{k} \\
&\underline{(k-k 2})_{j i}\left(d^{o} \alpha\right)_{k j} \underline{\left(k_{1}\right)}{ }_{l k} e_{l}
\end{aligned}
$$

Thus we get $g=\underline{k_{2}} d_{\alpha}^{0} \underline{k_{1}}$, which means d_{α} belongs to $K^{0} g K^{0}$.The uniqueness part of the propositional follows from the uniqueness of d_{α}^{o} in $K x K$ for x in $G L_{n}(P)$.

We introduce a total ordering in Z^{n} which is inverse of the lexicographic ordering.

Proposition 7. Let α and β be two elements in Z^{r} such that $d_{\alpha}^{0} \in \Delta_{+}^{0}$. If $N^{0} d_{\beta}^{0} K^{0} \cap K^{0} d_{\alpha}^{0} K^{0} \neq \phi$ then $\beta \geq \alpha$. Moreover $N^{0} d_{\alpha}^{0} K^{0} \cap K^{0} d_{\alpha}^{0} K^{0}=$ $d_{\alpha}^{0} K^{0}$.

Proof. Since $N^{0} d_{\beta}^{0} K^{0}$ and $K^{0} d_{\alpha}^{0} K^{0}$ are contained in $N d_{\beta}^{\prime} K$ and $K d_{\alpha}^{\prime} K$ respectively with

$$
\begin{aligned}
& \alpha^{\prime}=\left(-\alpha_{1},-\alpha_{2}, \ldots,-\alpha_{r}, 0 \cdots 0, \alpha_{r}, \alpha_{r-1}, \ldots, \alpha_{1}\right) \\
& \beta^{\prime}=\left(-\beta_{1},-\beta_{2}, \ldots,-\beta_{r}, 0 \cdots 0, \beta_{r}, \beta_{r-1}, \ldots, \beta_{1}\right)
\end{aligned}
$$

we have $N d_{\beta}, K \cap K d_{\alpha}, K \neq \phi$. Therefore $\beta^{\prime} \geq \alpha^{\prime}$ for the lexicographic ordering introduced in Z^{n} before proposition 3 in this chapter. It is obvious that $\beta \geq \alpha$ for the new ordering of Z^{r}. The other assertion follows trivially from the fact that

$$
d_{\alpha}^{0} K \cap G=d_{\alpha}^{0} K^{0} .
$$

4 Representations of p-adic Groups

We prove here an analogue of the theorem about the representations of semisimple Lie Groups in chapter I of this part. We shall give the proof of the theorem for the general linear group $G L_{n}(P)=G$, though the same theorem could be proved for other classical linear groups with obvious modifications. We shall adhere to the notations adopted in the earlier chapter.

Let λ denote a character of T which is trivial on N. Since Δ is isomorphic to $T / N, \lambda$ can be considered as a character of Δ. Let us assume that $U_{f}^{\lambda}=0$ for every λ in Δ^{*} (the group of characters of Δ) and $f \in L(G)$ such that $f \neq 0$. We first try to find the condition under which our assumptions are valid. Let φ be an element of C^{λ} (the space of the induced representation of λ). Then $\varphi(t x)=(\rho(t))^{\frac{1}{2}} \lambda(t) \varphi(x)$ for $x \in G$ and $t \in T$. Moreover

$$
\begin{equation*}
U_{f}^{\lambda} \varphi(e)=\int_{G} \varphi(y) f(y) d y=0 \text {, because } U_{f}^{\lambda}=0 \tag{I}
\end{equation*}
$$

Since \sum the support of f is a compact set, it intersect only a finite number of double cosets modulo K. Let

$$
\begin{aligned}
& S=S(f)=\left[\alpha \mid d \alpha \in \Delta_{+}, \sum \cap K d_{\alpha} K \neq \phi\right] \\
& \alpha=\alpha(f)=\min _{\beta}\{\beta \in S(f)\} .
\end{aligned}
$$

The set S is a finite non-empty set because $f \neq 0$. Therefore α exists. For any d_{α} in Δ_{+}the coset $K d_{\alpha} K$ is a finite union of left cosets modulo K, the representatives for which could be found in T, because $G=T K$. Let I_{α} be the set of left cosets C modulo K such that $K d_{\alpha} K=$ $\cup C$, where $C=t(C) K, t(C) \in T$. But we know that $T=N \Delta$, therefore $t(C)=n(C) d_{\gamma}(C)$ where $n(C)$ and $d_{\gamma}(C)$ belong to N and Δ respectively. Since $n(C) d_{\gamma}(C)$ belongs to $K d_{\alpha} K$ proposition 3 implies that $\gamma(C) \geq \alpha$, Thus we get that $K d_{\alpha} K=m \bigcup_{C \in I_{\alpha}} n(C) K, \gamma(C) \geq \alpha$ and if $\gamma(c)=\alpha$, then $C=d_{\alpha} K$ and we can take $t(c)=d_{\alpha}$. Let us assume that the right invariant Haar measure on G is such that its restriction to K is normalised i.e., $\int_{k} d_{k}=1$. Then for any left $\operatorname{coset} C=t(C) K$, we have

$$
\int_{G} f(g) d_{g}=\Delta(t(C)) \int_{K} f(t(C) k) d k
$$

and the equation (I) gives

$$
\begin{aligned}
0=\int_{G} \varphi(y) f(y) d y & =\sum_{\beta \in S} \sum_{C \in I_{\beta}} \Delta(t(C)) \int_{K} \varphi(t(C) k) f(t(C) k) d k \\
& =\sum_{\beta} \sum_{C} \sigma(t(C)) \int_{K} \varphi^{0}(k) f(t(C) k) d k
\end{aligned}
$$

with $\sigma(t)=[\delta(t) \Delta(t)]^{\frac{1}{2}}$ and where φ^{0} denotes the restriction of φ to K.
We have shown earlier that $\varphi^{0}(t x)=\lambda(t) \varphi^{0}(x)$ for $t \in T \cap K=N \cap K$, but $\lambda(N)=1$, therefore the space C^{λ} is independent of λ. Moreover there is only one term corresponding to $\beta=\alpha$ in the summation, since for others $\gamma(c) \geq \alpha$. Separating the term for $\beta=\alpha$ we get $U_{f}^{\lambda} \varphi(e)=$

$$
\begin{array}{r}
\sigma\left(d_{\alpha}\right)^{\frac{1}{2}} \lambda\left(d_{\alpha}\right) \int_{K} \varphi^{o}(k) f\left(d_{\alpha} k\right) d k+\sum_{\gamma \geq \alpha} Q_{\gamma}(f, \varphi) \lambda(d \gamma) \text { with } \\
Q_{\gamma}(f, \varphi)=\sum_{C \in I_{\beta} \gamma(C)=\alpha} \sigma(t(C))^{\frac{1}{2}} \int_{K} \varphi^{0}(k) f(t(C) k) d k \tag{II}
\end{array}
$$

It is obvious that $Q_{\gamma}(f, \varphi)$ is independent of λ. For every $\gamma \in Z^{n}$, the mapping $d_{\gamma} \in \Delta \longrightarrow \chi_{\gamma} \in \Delta^{*^{*}}$ given by $\chi_{\gamma}(\lambda)=\lambda\left(d_{\gamma}\right)$ is an isomorphism of the groups Δ and $\Delta^{*^{*}}$. But the characters of an abelian group are linearly independent, therefore (III) gives us $Q_{\gamma}(f, \varphi)=0$ for every γ and in particular $Q_{\alpha}(f, \varphi)=0$. Thus we obtain

$$
\begin{equation*}
\int_{K} \varphi(k) f\left(d_{\alpha} k\right) d k=0, \text { for every } \varphi \text { with } \varphi(n k)=\varphi(k) \text { for } n \in N \cap K \tag{III}
\end{equation*}
$$

The equation (III) is true for left and right translations of f by elements of K because $U_{\sigma_{x} f}^{\lambda}=U_{\varepsilon_{x_{n} * f}}^{\lambda}=U_{x}^{\lambda} U_{f}^{\lambda}=0$ and

$$
U_{\tau_{x} f}^{\lambda}=U_{f * \varepsilon_{x}}^{\lambda}=U_{f}^{\lambda} U_{x}^{\lambda}=0
$$

So if $g(x)=f\left(k^{-1} x\right)$ for k in K, we have $U_{g}^{\lambda}=0$. Obviously $S(f)=$ $S(g)$ and $\alpha(f)=\alpha(g)$. Let $K_{\alpha}^{\prime}=K \cap d_{\alpha} K d_{\alpha}^{-1}$ and $K_{\alpha}=K \cap d_{\alpha}^{-1} K d_{\alpha}$ be two subgroups of K. Now

$$
\int_{K} \varphi(k) f\left(d_{\alpha}\left(d_{\alpha}^{-1} h d_{\alpha} k\right)\right) d k=\int_{K} \varphi\left(d_{\alpha}^{-1} h d_{\alpha} k\right) f\left(d_{\alpha} k\right) d k=0
$$

Thus the function $k \rightarrow f\left(d_{\alpha} k\right)$ is orthogonal to all the functions φ in $C^{\lambda}=C$ and their left translates by the elements of K_{α}, where φ is invariant on the left by the elements of $N \cap K$.

Lemma. For every $\alpha \in Z^{n}$ such that $d_{\alpha} \in \Delta_{+}$, the subgroup K_{α} contains $N^{\prime} \cap K$ where N^{\prime} is the group consisting of the transpose of elements of N.

Proof. By definition

$$
d_{\alpha}=\left(\begin{array}{ccc}
\pi^{\alpha_{1}} & & 0 \\
& \ddots & \\
0 & & \pi^{\alpha_{n}}
\end{array}\right) \text { with } \alpha_{1} \leq \alpha_{2} \leq, \ldots, \leq \alpha_{n}
$$

Let $h=\left(h_{i j}\right)$ be an element of K. Then $\left(d_{\alpha} h d_{\alpha}^{-1}\right)_{i j}=\pi^{\alpha_{i}-\alpha_{j}} h_{i j}$ which shows that the groups K_{α} consist of matrix h in K such that $\pi^{\alpha_{i}-\alpha_{j}} h_{i j}$ is integral. If we take $h \in N^{\prime} \cap K$, obviously h belongs to K_{α}. Thus K_{α} contains $N^{\prime} \cap K$. This lemma shows that the groups K_{α} and K_{α}^{\prime} are sufficiently big.

In addition to the above assumption about f, let us further assume that f belongs to $L_{M}(G)$ where M is some irreducible representation of K. Clearly M is a subrepresentation of left regular representation of K in $L^{2}(K)$. Let $E \subset L^{2}(K)$ be an invariant subspace of the left regular representation σ of K such that σ when restricted to E is of class M. Therefore $E \subset L_{M}(K)$. Define $F(k)=f\left(d_{\alpha} k\right)$. We can assume that $F \neq 0$. Since F is transformed following \bar{M} by the right regular representation of K, F belongs to $L_{M}(K)$. But F is orthogonal to all the functions φ in C invariant on the left by the elements of $N \cap K$, the left translates of φ by the elements of K and the right translates of φ by the elements of K. Hence if M satisfies the condition (S) i.e. The smallest subspace of E invariant by N^{\prime} and which contains elements invariant on the left by the elements of $N \cap K$ is E. Then F is orthogonal to $L_{M}(K)$, because $L_{M}(K)$ is generated by the right translates of E. But this is a contradiction, because $F \in L_{M}(K)$. Thus we get the following
Theorem 3. The representations U^{λ} for $\lambda \in \Delta^{*}$ form a complete system of representations of the algebra $L_{M}(G)$ if the irreducible representation M satisfies the condition (S).

Corollary 1. If M satisfies (S) then M occurs atmost $(\operatorname{dim} M)$ times in any completely irreducible representation of G.

Since U^{λ} for any λ in Δ^{*} when restricted to K is a subrepresentation of the left regular representation of $K, C \subset L_{M}(K)$ which is a subspace of dimension $(\operatorname{dim} M)^{2}$, thus M is contained at most $(\operatorname{dim} M)$ times in U^{λ}. Our result follows from proposition 1.3.
Corollary 2. The identity representation of K occurs at most once in any completely irreducible representation of G.

This follows from Corollary \square as the identity representation satisfies the condition (S).

Corollary 3. If M is the identity representation of K, then the algebra $L_{M}(G)$ is commutative.

The algebra $L_{M}(G)$ has complete system of representations of dim 1. Therefore if x and y are any two elements of $L_{M}(G)$, then $U^{\lambda}(x y)=$ $U^{\lambda}(y x)$ for every $\lambda \in \Delta^{*}$, because U^{λ} is of dimension 1 . Therefore $U^{\lambda}(x y-y x)=0$ for every λ in Δ^{*}. But this is possible only if $x y-y x=0$ i.e., the algebra $L_{M}(G)$ is commutative.

Finally we try to find out what are the various representations of K which satisfy the condition (S). It is obvious that a representation which satisfies the condition (S) when restricted to $N \cap K$ contains the identity representation of $N \cap K$. It is not known whether there exist or not representations of K which when restricted to $N \cap K$ contain the identity representation but which do not satisfy the condition (S). However in this connection we have the following result.

Theorem 4. Every irreducible representation M of K which comes from a representation of $G L_{n}(\mathscr{O} \mid \mathscr{Y})$ and the restriction of which to $N \cap K$ contains the identity representation of $N \cap K$ satisfies the condition (S).

It can be easily proved that $G L_{n}(\mathscr{O} / \mathscr{Y})$ is isomorphic to K / H, where H is a normal subgroup K consisting of the matrices $\left(\delta_{i j}+a_{i j}\right)$ where $a_{i j}$ belongs to \mathscr{Y}. Therefore a representation of $G L_{n}(\mathscr{O} / \mathscr{Y})$ gives rise to a representation of K.

Remark. We have proved that in the case of real or complex general linear group the representations induced by the unitary characters of T form a complete system of representations of algebra $L(G)$. But in the case of general linear groups over p-adic fields the representations induced by the characters of Δ do not form a complete system. In fact the algebra $L(K)$ is a sub-algebra of $L(G)$, because K is open and compact in G. Therefore if the representations U^{λ} form a complete system for $L(G)$, their restrictions to K will form a complete system of representations of $L(K)$. But the restriction of U^{λ} to K is a representation of K induced by the unit character of $N \cap K$, therefore by Frobenius reciprocity theorem the irreducible representations of K which occur in
U^{λ} are precisely those which when restricted to $N \cap K$ contain the identity representation. But there exist representations of K for which this property is not satisfied.

5 Some Problems

I.

For any classical group, we have found a maximal compact subgroup K. If G is the general linear group, it is easy to see that:
(i) any maximal compact subgroup is conjugate to K by an inner automorphism;
(ii) any compact subgroup is contained in a maximal compact subgroup. (For, let H be a compact subgroup of $G L(n, \tilde{P})$ let e_{1}, \ldots, e_{n} be the canonical basis of \tilde{P}^{n}. Let I_{0} be the \tilde{O}-module generated by the e_{i} and let I be the \tilde{O}-module generated by the $h e_{i}$ for $h \in H$: because H is compact, the coordinates of the $h . e_{i}$ are bounded and there is an integer $n \geq 0$ such that $I \subset \tilde{\pi}^{-n} I_{0}$. Hence I is a lattice and H is contained in the maximal compact subgroup K_{1} formed by the $g \in G$ such that $g . I=I$. Moreover, if $g \in G$ is such that $g . I_{o}=I$, then $K_{1}=g K g^{-1}$.)

But for the other types of classical groups, it is not known if the results (i) and (ii) are true or not. Actually, one cannot hope that (i) is true: already in $S L(n, P)$, we have only:
(i bis) any maximal compact subgroup is conjugate to K by an (not necessarily inner) automorphism.

It seems possible that there exist several but a finite number of classes of maximal compact subgroups: for instance, it seems unlikely that the maximal compact subgroup K^{\prime} of the orthogonal group $0(\mathrm{n}, \mathrm{P})$ which leaves invariant a maximal lattice of norm \mathscr{P} is conjugate to K. But perhaps, any maximal compact subgroup of $0(n, P)$ is conjugate to K or to K^{\prime}.

It may be noted that (i) and (ii) are not both true in the projective group $G=P G L(2, P)$: a maximal compact subgroup K is the canonical image of $G L(2,0)$ in G; the determinant defines a map d from G to the quotient group $P^{*} /\left(P^{*}\right)^{n}$ and the image of any conjugate of K is
contained in the image D of 0^{*} in $P^{*} /\left(P^{*}\right)^{2}$. Now, let u be the image of $\left(\begin{array}{ll}0 & \pi \\ 1 & 0\end{array}\right)$ in G : we have $u^{2}=1$ and $d(u) \notin D$. Hence, u generates a compact subgroup which is not contained in any conjugate of K.

II.

It seems very likely that our results about classical groups are valid for any semi-simple algebraic linear group over $P($ at least if char $P=0)$. The general meaning of the subgroups $N, D, T \Gamma$ is clear: N is a maximal unipotent, D is a maximal decomposed torus (a decomposed torus is an algebraic group isomorphic to $\left.\left(P^{*}\right)^{r}\right)$, which normalised N. Then D can be written as $D=\Delta . U$, where $\Delta \approx Z^{r}$ and $U \approx\left(0^{*}\right)^{r}$ and we have $T=\Delta . N$. The subgroup Γ is the normaliser of N. It can be proved (A.Borel, unpublished) that D and N exist in any such G (at least if the base field P is perfect) and are unique, upto an inner automorphism. Now the problems are:
(i) define a maximal compact subgroup K;
(ii) prove that $G=T . K$;
(iii) prove that $G=K . \Delta . K$ and define Δ_{+}(which is certainly related with the Weyl group and the Weyl chambers);
(iv) prove the key Lemma about the intersection $N d_{\alpha} K \cap K d_{\beta} K$. For (i), the simplest idea is to take a lattice I in the vector space in which G acts, and to put $K=\{g \mid g \in G, g . I=I\}$. Then we get a compact subgroup. But it is obvious that K will be maximal and satisfy (ii) and (iii) only if I is conveniently chosen.

Assume that char $P=0$: then we may consider the Lie algebra \mathscr{G} of G and the adjoint representation. Then we can choose a lattice I in \mathscr{G} such that $[I, I] \subset I$ (in other words, I is a Lie algebra over 0); such a lattice always exists: take a basis \mathscr{G} and multiply it by a suitable power of π in such a way that the constants of structure become integral. Now there exist such lattices which are maximal, because $[I, I] \subset I$ implies that I is a lattice of norm $\subset 0$ for the Killing form of \mathscr{G}. As this form is non-degenerate, it is impossible to get an indefinitely growing sequence
of such lattices. Hence we can choose such a maximal lattice I and put $K=\{g \mid g \in G, g . I=I\}$.

But let us look at the compact case: it can be shown that G is compact if any only if the Lie algebra \mathscr{G} has no nilpotent elements. In this case, we should have $K=G^{\prime}$. So we are led to the following conjectures:

Conjecture 1. there is a unique lattice in \mathscr{G} which is a maximal Lie subalgebra over 0 ;

Conjecture 2. the set I if the $X \in \mathscr{G}$ such that the characteristic polynomial of the operator $a d X$ has its coefficients in 0 , is a Lie subalgebra over 0 ;

Conjecture 3. (A.Weil): any algebraic simple compact group over a locally compact P-adic field of characteristic zero is (up to finite groups) the quotient of the multiplicative group of a division algebra Q over P by its center.

It is easy to prove that (3) implies (2): the Lie algebra \mathscr{G} is the quotient of the Lie algebra Q by its center and the $X \in I$ are exactly the images of the integers of Q. It is obvious that (2) implies (11), because any Lie subalgebra over 0 is contained in I. Moreover, (3) is true for the classical groups: we have only for compact groups the groups $P G L_{1}(\tilde{P}) \approx \tilde{P}^{*} /$ center and the orthogonal and unitary groups for an anisotropic form; but 0_{1} and 0_{2} are abelian 0_{3} gives the quaternion field, 0_{4} is not simple, etc. But one does not know a general proof of (3).

On the other hand, we can look at the "anticompact" case, that is the case of the groups defined by Chevalley in (12). Then the results (i) to (iv) can be proved (for the definition of K and proof of (ii), see Bruhat (10); for (iii) and (iv), my results are not yet published).

Then if one can prove one of the above conjectures, one can hope to generalize these results to any semi-simple group by an argument by induction on the dimension of a maximal nilpotent subalgebra of \mathscr{G}.

III. Extension to the representations of K which do not satisfy the condition (S).

This problem is related with the construction of other representations of G : we have seen that the representation U^{λ} do not form a complete system. Hence, by the Gelfand-Raikov theorem, there certainly exist other irreducible unitary representations of G.

We have two indications: first the case of a real semi-simple Lie group G. It seems very likely that to any class of Cartan subgroups H of G, corresponds a series of representations of G, indexed by the characters of H. This has been verified in some particular cases (of.HarishChandra and Gelfand-Graev). In particular, assume that there exists a compact Cartan subgroup H : then in many cases (more precisely in the cases where G / K is a bounded homogeneous domain in the sense of E. Cartan (K is a maximal compact subgroup)), we can get irreducible unitary representations of G in the following way: take a character λ of H. take the unitary induced representations U^{λ} in the space \mathscr{H}^{λ}; this representation is not irreducible. But we have a complex-analytic structure on G / H and we can look at the subspace of \mathscr{H}^{λ} formed by the functions which correspond to holomorphic functions on G / H. Then we get an irreducible representation (of (22) or (21). This is in particular true for compact semi-simple Lie groups (after Borel-Well, of (32)).

On the other hand, in the case of classical linear groups over a finite field, for instance for the special linear group G with 2,3 or 4 variables, one knows all the irreducible representations of G and one sees that to each class of Cartan subgroup H, corresponds a series of representations indexed by the characters of H (of Steinberg (33)). But one does not know how exactly this correspondence works. It seems likely that the representation $U(\lambda)$ associated with character λ of H is a subrepresentation of the induced representation U^{λ}, and it would be extremely interesting to get a "geometric" definition of $U(\lambda)$.

If one could get such a definition, it would perhaps be possible to generalize it to the algebraic simple linear groups (or at least to the classical groups) over a p-adic field.

IV. Study of the algebra of spherical functions

Let M be the unity representation of K and Let A be the algebra $L_{M}(G)$: by our results,this is a commutative algebra. It seems possible to determine completely the structure of A. The representations U^{λ} likely
give all the characters $\hat{\lambda}$ of A. The λ describe a space isomorphic to a space C^{r} and the map a $\rightarrow(\hat{\lambda}(a))$ is probably an isomorphism of A onto the algebra of polynomials on C^{r} which are invariant by the Weyl group of G. (It seems that a recent work by Satake (unpublished) gives a positive answer).

V. Computation of the "characters" of the U^{λ}.

The representations U^{λ} are "in general" irreducible (of (10)). Moreover, if f is a continuous function on G, with carrier contained in K, and if f belongs to some $L_{M}(K)$, then it is trivial to show that the operator U_{f}^{λ} if of finite rank, and hence has a trace. The same is obviously true if f is a finite linear combination of translates of such functions. But the space of those f is exactly what I called the space of "regular" functions of G (space $D(G)$) and the map $f \rightarrow \operatorname{Tr} U_{f}^{\lambda}$ is a "distribution" on $G(o f(10))$. A problem is to compute more or less explicitly this distribution (which is the "character" of U^{λ}. It seems likely that, at least on the open subset of the "regular" elements g of G it is a simple function of the proper values of g (by analogy with the case of complex or real semi-simple Lie groups, of works of Harsih-Chandra and Gelfand-Naimark).

Part III

Zeta-Functions

Chapter 5

Analytic Functions over p-adic Fields

Unless otherwise stated K will denote a completed valuated field with
a real valuation v. We shall adhere to the notations adopted in part I throughout our discussion.

1 Newton Polygon of a Power-Series

Definition. Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ be a power-series over K. Let S be the set of points $A_{i}=\left(i, v\left(a_{i}\right)\right)$ in the Cartesian plane. The convex hull of S together with the point $y=\infty$ on the ordinate axis is called the Newton Polygon of the power series f.

It is obvious that the point $A_{i}=\left(i, v\left(a_{i}\right)\right)$ lies on the line $Y+v(x) X=$ $v\left(a_{i} x^{i}\right)$, where $v\left(a_{i} x^{i}\right)$ is the intercept cut off by the line on the Y-axis. If the series is convergent at the point $x=t$ then intercepts cut off on the axis of Y by the lines through the points A_{i} with the slope $-v(t)$ tend to infinity as i tends to infinity. Moreover it can be easily proved that if $\left(m_{i}\right)$ is the sequence of slopes of the sides of Newton Polygon of f, then $\left(m_{i}\right)$ is monotonic increasing and $\lim _{i \rightarrow \infty} m_{i}=-\operatorname{liminin}_{i \rightarrow \infty} \frac{v\left(a_{n}\right)}{n}=\rho(f)$ (the order of convergence of f).

2 Zeroes of a power series

Let $f=\sum_{i=0}^{\infty} a_{i} x^{i}$ be a power series over K. Let $\rho(f)==_{i \rightarrow \infty}^{-\lim \inf } \frac{v\left(a_{i}\right)}{i}$. We 112 have already proved that f is convergent for all points x in K for which $v(x)>\rho(f)$. Let r be a real number greater than $\rho(f)$. We shall try to find the zeroes of f on the circle $v(x)=r$. Let us assume that $a_{\circ} \neq 0$.
(i) If there exists no side of the Newton Polygon of f with slope- r, then there exists there exists one and only term of minimum valuation in $\sum a_{i} x^{i}$. For, if $v(x)=r$ and $a=v\left(a_{i} x^{i}\right)=v\left(a_{j} x^{j}\right)==_{k}^{\text {inf }} v\left(a_{k} x^{k}\right)$, then all the points A_{k} are above the line $Y+r X=a$ and $A_{i} A_{j}$ is a side of the Newton Polygon of slope- r. This is contrary to the hypothesis. Thus $v(f(x))=v\left(a_{i} x^{i}\right)$ for some i and for $v(x)=r$, which implies that there is no zero of f on the circle $v(x)=r$.
(ii) If there exists a side $A_{p} A_{q}$ of slope- r, then there exist at least two terms of minimum valuation. Therefore there may to be a zero of f on the circle $v(x)=r$. Assume that $p<q$. Let $v\left(x_{\circ}\right)=r$ for some x_{\circ} in K and $c=v\left(a_{q} x_{\mathrm{o}}^{p}\right)=v\left(a_{q} x_{\mathrm{o}}^{q}\right)$. Consider the power series

$$
f_{1}(y)=a_{q}^{-1} x_{\circ}^{-q} f\left(x_{\circ} y\right)=\sum b_{i} y^{i}
$$

Obviously $v\left(b_{p}\right)=v\left(b_{q}\right)=0, v\left(b_{i}\right) \geq 0$ for $i \neq p, q$ and $v(y)=0$ whenever $v(x)=r$. Hence without loss of generality we can take $r=$ $0, v\left(a_{p}\right)=v\left(a_{q}\right)=0, v\left(a_{i}\right)>0$ for $i<o$ and $i<p$ and $i>q$ and $a_{q}=1$. Therefore

$$
\overline{f(x)}=x^{q}+\cdots+\overline{a_{p}} x^{p} \quad=x^{p}\left(x^{q-p}+\cdots+\bar{a}_{p}\right) \text { where } a_{p} \neq 0
$$

The polynomials x^{p} and ($x^{q-p}+---+\bar{a}_{p}$) satisfy the requirements of Hensel's lemma, therefore there exists a monic polynomial g of degree $q-p$ and a power series h, both with coefficients in \mathscr{O}, such that

$$
\bar{g}=x^{q-p}+\cdots+\bar{a}_{p}, \bar{h}=x^{p}, f=g h
$$

113 and the radius of convergence of h is equal to the radius of convergence of f. Let us assume that $g=x^{q-p}+\cdots+g_{\circ}$. Then $\overline{g_{0}}=\overline{a_{p}} \neq 0$. Let us further assume that K is an algebraically closed field. Then g has $q-p$
zeroes in K which belong obviously to \mathscr{O}^{*}. Moreover h has no zeroes on the circle $v(x)=0$. Thus f has exactly $q-p$ zeroes on the circle $v(x)=0$ where $q-p$ is the length o the projection of the side of the Newton Polygon of f with slope 0 . If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q-p}$ are the zeroes of f, on $v(x)=0$ then $f=h \cdot \prod_{i=1}^{q-p}\left(x-\lambda_{i}\right)$. We have also proved that if f is a power series and λ is its zero on a circle $v(x)=r>\rho(f)$, then $\frac{f(x)}{x-\lambda}$ is also a power series with the same radius of convergence. Regarding the zeroes of f inside the circle $v(x) \geq r$ we prove the following.

Proposition 1. The power series f has a finite number of zeroes λ_{1}, \ldots, λ_{k} in the disc $v(x) \geq r>\rho(f)$ and there exists a power series h such that

$$
f(x)={ }_{i} \prod_{1=1}^{k}\left(x-\lambda_{i}\right) \cdot h(x) \text { with } \rho(f)=\rho(h) .
$$

Proof. We have proved that $f(x)$ has zeroes on the circle $v(x)=r_{i}>$ $\rho(f)$ if and only if there exists a side of the Newton Polygon of f of slope $-r_{i}$. But we know that if $\left(m_{i}\right)$ is the sequence of slopes of sides of the Newton Polygon of f, then $\lim _{i \rightarrow \infty} m_{i}=-\rho(f)$. Therefore there exist only a finite number of sides of the Newton Polygon of slope $-r_{1}<-r<-\rho(f)$ i.e., there exists only a finite number of r_{1} such that $r_{1}>r>\rho(f)$ for which there are zeroes of $f(x)$ on $v(x)=r_{1}$. Hence the theorem follows.

$$
\text { If } f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \text { is convergent in a disc } v(x)>r \text {, then we shall say }
$$ that $\mathrm{f}(\mathrm{x})$ is analytic $v(x)>r$.

Proposition 2. If $f(x)$ has no zeroes in the disc $v(x) \geq r>\rho(f)$ in particular $f(0) \neq 0$, then the power series $\frac{1}{f(x)}$ is analytic for $v(x)>r$.

Proof. Let us assume that $f(0)=1$. Since f has no zeroes in $v(x) \geq$ r,there exists no side of the Newton Polygon of f of slope $\leq-r$. This implies that $\frac{v\left(a_{i}\right)}{i} \geq-r$ for every i. Considering f as a formal power
series over K we get
where

$$
\frac{1}{f}=\frac{1}{1+\sum_{i>0} a_{i} x^{i}}=\sum_{k=0}^{\infty}(-1)^{k}\left(\sum_{i=0} a_{i} x^{i}\right)^{k}=\sum_{j=0}^{\infty} b_{j} x^{j}
$$

$$
b_{j}=\sum_{k}(-1)^{k} \sum_{i_{1}+i_{2}+\cdots+i_{k}=j} a_{i_{1}} \cdots a_{i_{k}}
$$

Therefore

$$
\begin{aligned}
v\left(b_{j}\right) & \geq \inf _{\substack{i,+-+i_{k}=j}}\left(\sum_{l=1}^{k} v\left(a_{i 1}\right)\right)>-\sum_{l=1}^{k} r_{i l}=-r_{j} \\
& \Rightarrow \frac{v\left(b_{j}\right)}{j}>-r .
\end{aligned}
$$

Hence $\rho\left(\frac{1}{f}\right) \geq r$.
Proposition 3. If f is an entire function(i.e., $\rho(f)=-\infty$) and has no zeroes, then f is a constant.

Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$. As in the proof of the preceding proposition, we see that:

$$
v\left(a_{j}\right) \geq-r j \text { for any } r .
$$

Hence, we have $a_{j}=0$ for $j \geq 1$.
From these propositions, we can deduce the complete structure of entire functions:
Weierstrass' Theorem. Let K be an algebraically closed complete field with a real valuation v. Let f be an everywhere convergent power series over K. Then the zeroes of f different from zero form a sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots,\right)$ such that $v\left(\lambda_{n}\right)$ is a decreasing sequence which tends to $-\infty$ if the sequence $\left(\lambda_{n}\right)$ is infinite and we have

$$
\begin{equation*}
f(x)=a_{\circ} x^{k} \prod_{i=1}^{\infty}\left(1-\frac{x}{\lambda_{i}}\right) \tag{1}
\end{equation*}
$$

the infinite product being uniformly convergent in each bounded subset of K. Conversely for any sequence $\left(\lambda_{n}\right)$ such that $v\left(\lambda_{n}\right)$ is a decreasing
sequence tending to $-\infty$ as n tends to infinity, the infinite product (1) is uniformly convergent in every bounded subset of K and defines an entire having zeros at the prescribed points λ_{n}.

Proof. We shall prove the latter part first. Consider

$$
\varphi_{N}(x)=\prod_{N}^{i=1}\left(1-\frac{x}{\lambda_{i}}\right)=\sum_{k=0}^{N} a_{k N} x^{k}
$$

where

$$
a_{k N}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<---<i_{k} \leq N} \frac{1}{\lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{k}}}
$$

clearly $v\left(a_{k N}\right) \geq+\left(v\left(\frac{1}{\lambda_{1}}\right)+\cdots+v\left({\frac{1}{\lambda_{1}}}_{1} \lambda_{k}\right)\right)=\rho_{k}$. Since $\lim _{i \rightarrow \infty} v\left(\lambda_{i}\right)=$ $-\infty, \lim _{k \rightarrow \infty} \frac{\rho k}{k}=\infty$. Let

$$
\begin{aligned}
\varphi(x) & =\prod_{i=1}^{\infty}\left(1-\frac{x}{\lambda_{i}}\right)=1+\sum_{k=1}^{\infty} a_{k} x^{k}, \text { where } \\
a_{k} & =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}} \frac{1}{\lambda_{i_{1}} \cdots \lambda_{i_{k}}+\operatorname{lt}_{n \rightarrow \infty} a_{k n}}
\end{aligned}
$$

(obviously the series giving a_{k} is convergent and $\frac{v\left(a_{k}\right)}{k} \geq \frac{\rho_{k}}{k}$). Therefore the series $\varphi(x)$ represents an entire function. We have to show that the polynomials φ_{N} converge to φ uniformly on every bounded subset of K. Given two real numbers M and A there exists an integer q such that $v\left(a_{k N} x^{k}\right) \geq M$ for $k \geq q$, for all x with $v(x) \geq A$ and for all N, because $\frac{\rho_{k}}{k} \rightarrow \infty$ as $k \rightarrow \infty$. This implies that for any N

$$
\begin{equation*}
v\left(\varphi_{N}(x)-\sum_{k=0}^{q} a_{k_{N}} x^{k}\right) \geq M \text { for } v(x) \geq A \tag{2}
\end{equation*}
$$

Similarly we get

$$
\begin{equation*}
v\left(\varphi(x)-\sum_{k=0}^{q} a_{k_{N}} x^{k}\right) \geq M \text { for } v(x) \geq A . \tag{3}
\end{equation*}
$$

Since $a_{k N} \rightarrow a_{K}$ as N tends to infinity, combining (2) and (3) we get $v\left(\varphi(x)-\varphi_{N}(k)\right) \geq M$ for N sufficiently large. It can be easily proved that the λ_{i} are the only zeroes of the function $\varphi(x)$.

Let us denote by f_{1} the product given by (11). Take a disc $v(x) \geq r$. In this disc $f(x)$ has only a finite number of zeroes. Let the zeroes of f in $v(x) \geq r$ be $0(k$ times $)$ and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{p}$. Then

$$
f(x)=x^{k} \prod_{i=1}^{p}\left(1-\frac{x}{\lambda_{1}}\right) g(x)
$$

where $g(x)$ has no zeroes in the disc $v(x) \geq r$. Therefore $\frac{1}{g}$ is analytic in the disc $v(x)>r$. Consider $\frac{f_{1}}{f}=\frac{g_{1}}{g}=\prod_{i=p+1}^{\infty}\left(1-\frac{x}{\lambda_{i}}\right) \frac{1}{g}$, where g_{1} is analytic and has no zeroes in the $\operatorname{disc} v(x)>r$. Therefore $\frac{f_{1}}{f}$ is analytic in the disc $v(x)>r$ and has no zeroes in it. Since it is true for every $r, \frac{f_{1}}{f}$ is a constant function. Hence our theorem is proved.

Form the proposition 2 we can derive some properties of the meromorphic functions:

117 Definition. A power series $\varphi=\sum_{i=-m}^{\infty} a_{i} x^{i}$ over a field K is said to be a meromorphic function in a disc $v(x) \geq r$ if and only if there exist two functions f and g analytic in the same disc such that $\varphi=\frac{f}{g}$.

In any disc $v(x) \geq r^{\prime}>r, g$ has a finite number of zeroes, therefore $g=P g^{\prime}$ where P is a polynomial and g^{\prime} has no zeroes $v(x) \geq r^{\prime}$ which means that $\frac{1}{g^{\prime}}$ is analytic in $v(x)>r^{\prime}$. Therefore we can can write $\varphi=$ $\frac{f^{\prime}}{P}$, where $f^{\prime}=f \frac{1}{g^{\prime}}$ is a convergent power series in $v(x)>r^{\prime}$.

3 Criterion for the Rationality of power-series

Let F be any field and $f=\sum_{k=0}^{\infty} a_{k} x^{k}$ an element in $F[[x]]$. It can be easily proved that f is a rational function if and only if there exists a
finite sequences $\left(q_{i}\right)_{\circ \leq i \leq h}$ of elements of F at least one of which is nonzero and an integer k such that

$$
a_{n} q_{h}+a_{n+1} q_{h-1}+\cdots+a_{n+h} q_{o}=0
$$

for all integers n such that $n+h>k$. Let us denote by A_{n}^{h+1} the determinant of the matrix $\left(a_{n+i+j}\right)_{0 \leq i, j \leq h}$.

Lemma 1. The power series f is a rational function if and only if there exists integer h and n_{\circ} such that $A_{n}^{h+1}=0$ for all $v>n_{\circ}$.

Proof. It is obvious that the condition is necessary. We shall prove that the condition is sufficient by induction on h. When $h=0$, we have $a_{n}=0$ for n sufficiently large. Therefore f is actually a polynomial. Let us assume that $A_{n}^{h+1}=0$ for $n>n_{0}$. Moreover we may assume that $A_{n}^{h} \neq 0$ for infinitely many n, because if $A_{n}^{h}=0$ for n large then by induction hypothesis we get that f is a rational function. Since $A_{n}^{h+1}=0$ for $n>n_{\circ}, A_{n}^{h} A_{n+2}^{h}=\left(A_{n+1}^{h}\right)^{2}$. So it follows that $A_{n}^{h} \neq 0$ for $n>n_{\circ}$. Consider the following system of linear equations

$$
E_{r}=a_{n_{o+r}} x_{1}+a_{n_{o+1+r}} x_{2}+\cdots+a_{n_{o+h+r}} x_{h+1}=0 \text { for } r=0,1,2, \ldots
$$

For any $q \geq n_{\circ}$ the system \sum_{q} of the h if h equations $E_{q}, E_{q+1}, \ldots E_{q+h-1}$ is of rank h (because $A_{q}^{h} \neq 0$). So has a unique solution upto a constant factor. But the system \sum_{q}^{\prime} of the $h+1$ equations E_{q}, \ldots, E_{q+h} is also of rank h (because $A_{q+1}^{h} \neq 0$ and $A_{q}^{h+1}=0$) and therefore \sum_{q}^{\prime} and \sum_{q+1} on the hand and \sum_{q}^{\prime} and $\sum q+1$ on the other hand have the same solution. Thus any solution of \sum_{q} is a solution of \sum_{q+1} and any solution of $\sum_{n_{o}}$ is a solution of E_{q} for $q \geq n_{\circ}$. Thus we have found a finite sequence $\left(x_{i}\right)$ such that $a_{n_{\circ}+r} x_{1}+\cdots+a_{n_{\circ}+h+r} x_{h+1}=0$ for $r \geq 0$. Hence f is a rational function.

Theorem 1. Let $f(x)=\sum a_{i} x^{i}$ be a formal power series with coefficients in Z. Let R and r be two real numbers such that
(1) $R r>1$
(2) f considered as a power series over the field of complex numbers is holomorphic in the disc $|x|<R$.
(3) f considered as a power series over Ω_{p} (the complete algebraic closure of Q_{p}) is meromorphic in the disc $|x| \leq r^{\prime}$ with $r^{\prime}>r$. (where $\|_{p}$) is the absolute value associated to v_{p}). Then f is a rational function.

Proof. We can assume that $R \leq 1$, because $R>1$ implies that f is a polynomial and we have nothing to prove. Moreover $r>1$, because $R r>1$. Since f is meromorphic in $|x|_{p} \leq r^{\prime}$, there exist two functions g and h analytic in $|x|_{p} \leq r$ such that $f=\frac{g}{h}$. If necessary by multiplying f by a suitable power of x we can assume that f has no pole at $x=0$ and hence that h is polynomial with $h(0)=1$. Let

$$
\begin{gather*}
g \sum_{i=0}^{\infty} g_{i} x^{i} \text { and } h=\sum_{i=0}^{k} h_{i} x^{i} \\
g_{n+k}=a_{n} h_{k}+a_{n+1} h_{k-1}+\cdots a_{n+k-1} h_{1}+a_{n+k} \tag{1}
\end{gather*}
$$

By Cauchy's inequality we obtain the following
(1) $\left|a_{s}\right| \leq M R^{-s}$
(2) $\left|g_{s}\right| \leq N r^{-s}$

By taking R and r smaller if necessary we assume that $\left|a_{s}\right| \leq R^{-s}$ and $\left|g_{s}\right|_{p} \leq r^{-s}$ for $s>s_{0}$. Let

$$
A_{n}^{m+1}=\left|\begin{array}{cccc}
a_{n} & a_{n+1} \cdots & a_{n+k} & a_{n+m} \\
a_{n+1} & a_{n+2} & a_{n+k+1} & a_{n+m+1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n+m} & a_{n+m+1} & a_{n+m+k} \cdots & a_{n+2 m}
\end{array}\right|
$$

where $m>k$.
The equation (11) gives

$$
A_{n}^{m+1}=\left|\begin{array}{ccccc}
a_{n} & a_{n+1} \cdots & a_{n+k-1} & g_{n+k} & g_{n+m} \\
a_{n+1} & a_{n+2} & a_{n+k} & a_{n+k+1} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{n+m} & a_{n+m+1} & a_{n+m+k-2} & g_{n+m-k} & r_{2+2 m}
\end{array}\right|
$$

Obviously for $n>s_{o}$ we have

$$
\begin{gathered}
\left|A_{n}^{m+1}\right| \leq(m+1)!\left(R^{-(n+2 m)}\right)^{m+1} \\
\left|A_{n}^{m+1}\right|_{p} \leq\left(r^{-n}\right)^{m-k+1}
\end{gathered}
$$

and
because $\left|a_{n}\right|_{p} \leq 1$ for every n. If $A_{n}^{m+1} \neq 0$, then
$1 \leq\left|A_{n}^{m+1}\right|\left|A_{n}^{m+1}\right| \leq(m+1)!R^{-2 m(m+1)} r^{k n}[R r]^{-n(m+1)}=k_{1}\left[(R r)^{m+1} r^{-k}\right]^{-n}$
Let m be so chosen that $(R r)^{m+1} r^{-k}>1$. Then there exists an integer n_{\circ} such that for $n>n$ 。

$$
\left|A_{n}^{m+1}\right|\left|A_{n}^{m+1}\right|<1
$$

This is a contradiction. Therefore $A^{m+1}=0$ for $n>n_{\circ}$. Hence f is a rational function.

Corollary. If f is a power series over Z such that f has a non-zero radius of convergence considered as series over the complex number field is meromorphic in Ω_{p}, then f is a rational function.

4 Elementary Functions

We consider the convergence of the exponential logarithmic and binominal series in this section. We assume that the field K is of characteristic 0 and the real valuation v on Q induces a p-adic valuation.

The exponential series $e(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Converges in the disc $v(x)>$ $\frac{1}{p-1}$ and in the domain of convergence $v(e(x)-1)=v(x)$. Let $n=$ $a_{\circ}+a_{1} p+\cdots+a_{r} p^{r}$ where $p^{r} \leq n \leq p^{r+1}$ and $0 \leq a_{i} \leq p-1$. One can easily prove that

$$
v(n!)=\left[\frac{n}{p}\right]+---+\left[\frac{n}{p^{r}}\right]=\frac{n-S_{n}}{p-1}
$$

where $S_{n}=\sum_{i=0}^{r} a_{i}$ Therefore

$$
\therefore \frac{v\left(\frac{1}{n!}\right)}{n}=\frac{-1}{p-1}+\frac{S_{n}}{n(p-1)}
$$

But $\frac{S_{n}}{p-1} \leq\left(\frac{\log n}{\log p}+1\right)$. Therefore $\lim _{n \rightarrow \infty} \frac{v\left(\frac{1}{n!}\right)}{n}=\frac{-1}{p-1}$. Hence the series $e(x)$ converges for $v(x)>\frac{1}{p-1}$. If $v(x)=\frac{1}{p-1}$, then $\frac{v\left(x^{n}\right)}{n!}=$ $\frac{1}{p-1}<\infty$ whenever n is a power of p. Thus the series does not converge for $v(x)=\frac{1}{p-1}$. The latter part of the assertion is trivial. We see immediately that $e(x+y)=e(x) . e(y)$ and $e(x)$ has no zeroes in the domain of convergence.

We define $\log (1+y)=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{y^{k}}{k}$ as a formal power series over
$122 K$. We shall show that the series $\log (1+y)$ converges for $v(y)>0$ and $v(\log (1+y))=v(y)$ for $v(y)>\frac{1}{p-1}$ we have

$$
v\left(\frac{(-1)^{n} y^{n}}{n}\right)=n v(y)-v(n)
$$

But $v(n) \leq \frac{\log n}{\log p}$ therefore ${ }^{v}\left(\frac{(-1)^{n} y^{n}}{n}\right)$ tends to infinity as $n \rightarrow \infty$ whenever $v(y)>0$. On the other hand $v(n)=0$ if $(n, p)=1$, therefore the series is not convergent for $v(y) \leq 0$. For $n>1$ and $v(y)>\frac{1}{p-1}$, it can easily proved that $v\left(\frac{(-1)^{n-1} y^{n}}{n}\right)>v(y)$, which proves our last assertion.
Moreover for $v(x)>\frac{1}{p-1}$ we have the equalities

$$
\begin{align*}
& e(\log (1+x))=1+x \tag{1}\\
& \log (e(x))=x \tag{2}
\end{align*}
$$

Let

$$
\begin{aligned}
& G=\left\{x \mid x \in K, v(x)>\frac{1}{p-1}\right\} \\
& G=\left\{x+1 \mid x \in K, v(x)>\frac{1}{p-1}\right\}
\end{aligned}
$$

be subgroups of K_{+}(the additive group of K) and K^{*} respectively. The mapping $x \rightarrow e(x)$ is an isomorphism of G onto G^{\prime}, the inverse of which is the mapping $1+x \rightarrow \log (1+x)$. In fact the mapping $1+y \rightarrow$ $\log (1+7)$ is a homomorphism of the group $1+\mathscr{Y}_{\Omega}(\Omega$ begin the complete algebraic closure of K) into the subgroup of Ω_{+}, where $v(y)>0$.It is not an isomorphism because it ζ is a $p-$ th root of unity, then $v(\zeta-1)=\frac{1}{p-1}$ and $\log \zeta=0$.

We define $(1+Y)^{Z}=\sum_{m=0}^{\infty} h(m, Z) Y^{m}=e(Z \log (1+Y))$ where $h(m, Z)=\frac{Z(Z-1) \cdots(Z-m+1)}{m!}$ as a formal power series in the variables Y and Z over K. Since $\mathrm{h}(\mathrm{m}, \mathrm{Z})$ is a polynomial in Z, we can substitute for Z any element of K to get a power series in the one variable Y.

Proposition 4. For any element t in K the power function $(1+x)^{t}$ defined
above is analytic for $v(x)>\frac{1}{p-1}$ (respectively for $v(x)>-v(t)+\frac{1}{p-1}$) if $v(t) \geq 0($ respectively if $v(t)<0)$ Moreover if t belongs Z_{p}, then $(1+x)^{t}$ is analytic for $v(x)>0$.

Proof. When $v(t)<0$

$$
v(h(m, t))=m(v(t))-v(m!) \geq m v(t)-\frac{m-1}{p-1}
$$

Therefore $\liminf _{m \rightarrow \infty} \frac{v(h(m, t))}{m}=v(t)-\frac{1}{p-1}$ Hence $(1+x)^{t}$ is analytic in $v(x)>\frac{1}{p-1}-v(t)$. Similarly one can prove the convergence when $v(t) \geq 0$.

Let t be in Z_{p}. Then $h(m, t)$ is a p-adic integer. Suppose that $v(m!)+$ $1=\alpha$, then there exists an element k_{m} in Z such that

$$
t \equiv k_{m} \quad\left(\bmod p^{k}\right)
$$

Therefore

$$
t(t-1) \ldots(t-m+1) \equiv k_{m}\left(k_{m}-1\right)
$$

or

$$
h(m, t) \equiv h\left(k_{m}, m\right) \quad(\bmod p)
$$

But $h\left(k_{m}, m\right)$ is a rational integer, therefore $v(h(m, t)) \geq 0$. From this our assertion follows easily.

5 An Auxiliary Function

Throughout our discussion F_{q} shall denote a finite field consisting of q elements. Let us consider the infinite product

$$
\begin{equation*}
F(Y, T)=(1+Y)^{T}\left(1+Y^{P}\right){\frac{T^{P}-T}{P}\left(1+Y^{P^{m}}\right)}^{\frac{T^{p^{m}}-T^{p^{m-1}}}{p^{m}}} \tag{1}
\end{equation*}
$$

The product is well defined as formal power series in two variables Y and T over Q. Clearly (1) is convergent in $Q[[Y, T]]$. Expressing $F(Y, T)$ as a power series over $Q[[T]]$ and $Q[[Y]]$ we obtain

$$
\begin{aligned}
F(Y, T) & =\sum_{m=0}^{\infty} B_{m}(T) Y^{m}, d\left(B_{m}(T)\right) \leq m \\
& =\sum_{m=0}^{\infty} \alpha_{m}(Y) T^{m}
\end{aligned}
$$

where $\alpha_{m}(Y)$ is a power series, the terms being of degree $\geq m$.
Lemma 2. The coefficients of $F(T, Y)$ are p-adic integers.
Lemma 3. If F is an element of $Q[[Y, Z]]$ such that $F(0,0)=1$, then F belongs to $Z_{p}[[Y, Z]]$ if only if the coefficients of $\frac{(F(Y, Z))^{p}}{F\left(Y^{p}, Z^{p}\right)}$ are in $p Z_{p}$ excepts for the first.

Proof of Lemma 3. Let us suppose that $F(Y, Z)=1-\sum_{i+j>0} a_{i j} Y^{i} Z^{j}$, then

$$
G=\frac{(F(Y, Z))^{p}}{F\left(Y^{p}, Z^{p}\right)}=F_{1} x F_{2} \quad \text { where }
$$

$$
\begin{gathered}
\left.F_{1}=1-p \sum_{i+j>0} a_{i j} y^{i} Z^{j}+\cdots+{ }_{r}^{p}\right)(-1)^{r}\left(\sum_{i+j>0} a_{i j} Y^{i} Z^{j}\right)^{r} \\
+\cdots+(-1)^{p}\left(\sum_{i+j>0} a_{i j} Y^{i} Z^{j}\right)^{p} . \\
F_{2}=1+\sum_{k=1}^{\infty}\left(\sum_{i+j>0} a_{i j} Y^{p i} Z^{p j}\right)^{k}
\end{gathered}
$$

If $G=1+\sum_{i+j>0} b_{i j} Y^{i} Z^{j}$, then
$b_{i j}=-p a_{i j}+$ (terms of the form $p X$ polynomials in a with rational integers coefficients with

$$
\begin{gathered}
r+s<i+j)+\sum_{k=1}^{\infty} \sum a_{i_{1}} j_{1} \ldots a_{i k} j_{k} \\
i_{1}+\cdots+i_{k}=i^{\prime} \\
j_{1}+\cdots+j_{k}=j^{\prime} \\
i_{r}+j_{r}>0 \\
+(-1)^{p} \sum_{k=1}^{\infty} a_{i_{1}}^{p} j_{1} a_{i_{2}} j_{2} \cdots a_{i_{k}} j_{k} i_{1}+\cdots+i_{k}=i^{\prime} \\
j_{1}+\cdots+j_{k}=j^{\prime} \\
i_{r}+j_{r}>0
\end{gathered}
$$

where the last two sums appear only if i and j are divisible by p and in this case $p i^{\prime}=i, p j^{\prime}=j$.

Assume that $b_{i j}$ belongs to $p Z_{p}$ for $i+j>0$. We shall prove that $a_{i j}$ are in Z_{p} by induction. Obviously a_{00} is in Z_{p}. Assume that $a_{r s} \in Z_{p}$ for $r+s<i+j$; then in the formula giving $b_{i j}$ all the terms except perhaps $-p a_{i j}$. But $a-a^{p}$ belongs to $p Z_{p}$ if a belongs to Z_{p}, therefore $p a_{i j}$ belongs to $p Z_{p}$ and $a_{i j}$ belongs Z_{p}. The other part of the assertion is trivial

Proof of Lemma 2.

$$
\begin{aligned}
\frac{(F(Y, T))^{p}}{F\left(Y^{p}, T^{p}\right)} & =\frac{(1+Y)^{p T} \prod_{m=1}^{\infty}\left(1+Y^{p^{m}}\right) \frac{T^{p m}-T^{p^{m-1}}}{p^{m-1}}}{\left(1+Y^{p}\right)^{T^{p}} \prod_{m=2}^{\infty}\left(1+Y^{p^{m}}\right) \frac{T^{p^{m}}-T^{p^{m-1}}}{p^{m-1}}} \\
& =\left[\frac{(1+Y)^{p}}{\left(1+Y^{p}\right)}\right]^{T} \\
& =\left[a+p \sum_{k=1}^{\infty} b_{k} Y^{k}\right]^{T}
\end{aligned}
$$

where b_{k} are p-adic integers.
Moreover

$$
\left(1+p \sum_{k+1}^{\infty} b_{k} Y^{k}\right)^{T}=\sum_{m=0}^{\infty} h(m, T) p^{m}\left(\sum_{k=1}^{\infty} b_{k} Y^{k}\right)^{m}
$$

But $\frac{v\left(p^{m}\right)}{m!} \geq m-\frac{m-1}{p-1}>0$, therefore ${\frac{F(Y, T)}{F\left(Y^{p}, T^{p}\right)}}^{p}-1$ has its coefficients in $p Z_{p}$. Thus by lemma (3) the coefficients of $F(Y, T)$ are p-adic integers.

One deduces from lemma (2) that $F(y, t)$ is analytic for $v(t) \geq 0$ and $v(y)>0$, because if $v(t) \geq 0$, then $v\left(B_{m}(t)\right) \geq 0$ because $B_{m}(t)$ is a polynomial with coefficients from Z_{p}. Therefore the series $\sum_{m=0}^{\infty} B_{m}(t) y^{m}$ converges for $v(y)>0$.

6 Factorisation of additive characters of a Finite Fields

Let $\mathscr{R}_{s}=\left\{x \mid x \in \Omega_{p}=\Omega, x^{P^{s}}=x\right\}$. We have the canonical map from \mathscr{R}_{2} to $F_{p^{s}}$ namely the restriction on the canonical homomorphism of \mathscr{O}_{Ω}
onto k_{Ω}. In order t prove that this map is bijective, it is sufficient to prove that is surjective ; because both \mathscr{R}_{s} and $F_{p^{s}}$ have p^{s} elements. If $\bar{x} \neq 0$ is in $F_{p^{s}}$, then $\bar{x}^{p^{s}-1}-1=0$ and \bar{x} is a simple root of the polynomial $X^{p^{s}-1}-$ 1. Therefore by Hensel's lemma there exists an element α belonging to Ω such that $\bar{\alpha}=\bar{x}$ and $\alpha^{p^{s}-1}-1=0$, which proves that α is in \mathscr{R}_{2} and the mapping is onto. Infact the canonical homomorphism of $\mathscr{O} \Omega$ onto k_{Ω} when restricted to $\mathscr{R}=\bigcup_{s=1}^{\infty} \mathscr{R}_{2}$ is an isomorphism onto k_{Ω}. Finally Hensel's lemma shows that R_{1} is contained in Q_{p}.

Let $U_{s}=Q_{p}\left(\mathscr{R}_{s}\right)$. Clearly U_{s} is a Galois extension of Q_{p} and the Galois group is cyclic generated by the automorphism $\sigma: \rho \rightarrow \rho^{p}$, where ρ is a primitive $p^{s}-1$ th root of unity. Moreover U_{s} is an unramified extension of Q_{p}, because $\left[U_{s} ; Q_{p}\right]=\left[F_{p} ; F_{p}\right]$. If we take $U=\bigcup_{s=1}^{\infty} U_{s}$, then the completion of U is the maximum unramified extension of Q_{p} in Ω and σ is called the Frobenius automorphism of U. If t^{\prime} is an elements is \mathscr{R}_{2}, then

$$
\operatorname{Tr}_{U_{s}} I_{Q_{p}} t^{\prime}=t^{\prime}+t^{\prime p}+\cdots+t^{\prime p^{s-1}}
$$

belongs to Z_{p}. Thus the function $(1+Y)^{\mathrm{Tr} t^{\prime}}$ is analytic for $v(y)>0$. Let t^{\prime} be the representative of $t \in F_{p^{2}}$ in \mathscr{R}_{2}. If y belongs y belongs to \mathscr{V}_{Ω} then $(1+y)^{\operatorname{Tr} t^{\prime}}$ belongs to Ω. We shall choose y in such a way that mapping $t \rightarrow(1+y)^{\operatorname{Tr} t^{\prime}}$ is a character of the additive group of $F_{p^{s}}$. Obviously for any u and v in $F_{p^{s}}$ we have

$$
\begin{aligned}
(u+v)^{\prime} & \equiv u^{\prime}+v^{\prime} \quad\left(\bmod \mathscr{Y}_{\Omega}\right) \\
\operatorname{Tr}\left(u^{\prime}+v^{\prime}\right) & \equiv \operatorname{Tr} u^{\prime}+\operatorname{tr} v^{\prime} \quad\left(\bmod \mathscr{Y}_{\Omega}\right) \\
& \equiv \operatorname{Tr} u^{\prime}+\operatorname{Tr} v^{\prime} \quad\left(\bmod p Z_{p}\right)
\end{aligned}
$$

because $\operatorname{Tr} u^{\prime}$ is a p-adic integer. Therefore

$$
(1+y)^{\operatorname{tr}(u+v)^{\prime}}=(1+y)^{\operatorname{Tr} u^{\prime}}(1+y)^{\operatorname{Tr} v^{\prime}}(1+y)^{a},
$$

where a belongs to $p Z_{p}$. Let us take $1+y=\zeta$ where $\zeta^{p}=1$ and $\zeta \neq 1$. It follows that $(1+y)^{a}=1$. Thus the mapping $u \rightarrow \zeta^{\text {Tr }} u^{\prime}$ is a character of $F_{P s}$. We shall show that it is a non -trivial character. Firstly, $\zeta^{a}=1$ if
and only if a belongs to $p Z_{p}$ proved that a already belongs to Z_{p}. For by choice of y we have $v(y)=\frac{1}{p-1}>0$ and

$$
\zeta^{a}=(1+y)^{a}=1+a y+\cdots+h(m, a) y^{m}+\cdots
$$

Since a is p-adic integer, $v\left(h(m, a) \geq 0\right.$ and hence $v\left(h(m, a) y^{m} \geq\right.$ $\frac{2}{p-1}$ for $m \geq 2,(a+y)^{a} \neq 1$ if $v(a y)<\frac{2}{p-1}$. Therefore $v(a y) \geq \frac{2}{p-1}$, which implies that $v(a) \geq \frac{1}{p-1}<0$, thus a belongs to $p Z_{p}$. But the canonical image of $\operatorname{Tr} u^{\prime}$ in F_{p} is the trace of u as an element of $F_{p^{s}}$ over F_{p}, therefore there exists as least one u^{\prime} such that $\operatorname{Tr} u^{\prime}$ is not in $p Z_{p}$. Hence the mapping $u \rightarrow \zeta^{\operatorname{Tr} u^{\prime}}$ is a non-trivial character of $F_{p^{s}}$. By definition of the product $F(Y, T)$ we have

$$
\begin{gathered}
F\left(y, u^{\prime}\right)=(1+y)^{u^{\prime}} \cdots\left(1+y^{p^{m}}\right) \frac{u^{\prime p^{m}}-u^{\prime p^{m-1}}}{p^{m}} \\
F\left(y, u^{\prime p}\right)=(1+y)^{u^{\prime} p} \cdots\left(1+y^{p^{m}}\right) \frac{u^{\prime} p^{m+1-}-u^{\prime p^{m}}}{-p^{m}} \\
F\left(y, u^{\prime p^{s-1}}\right)=(1+y)^{u^{\prime p^{g-1}} \cdots\left(1+y^{p^{m}}\right) \frac{u^{\prime p^{m+s-1}}-u^{\prime p^{m+s-2}}}{p^{m}}}
\end{gathered}
$$

128 Since $u^{\prime p^{s}}=u^{\prime}$, by multiplying these identities we get

$$
\prod_{r=0}^{s-1} F\left(y, u^{\prime p^{r}}\right)=(1+y)^{\operatorname{Tr} u^{\prime}}
$$

Thus $\zeta^{\operatorname{Tr} u^{\prime}}=\prod_{k=0}^{s-1} \varphi\left(u^{\prime} p^{k}\right)$ where $\varphi(T)=F(\zeta-1, T)$, is the splitting of additive characters of $F_{p^{s}}$ which we shall require later.

Chapter 6

Zeta-functions

1

It is well known that the Riemann zeta function $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}, \quad 129$ where p runs over all prime numbers, is absolutely convergent for Re $s>$. We can generalise this definition for any commutative ring with unit element. In the case of ring of integers p is nothing but the generating element of the maximal ideal (p) and it is also equal to the number of elements in the field $Z /(p)$. Motivated by this we define for any commutative ring A with identity

$$
\begin{equation*}
\zeta_{A}(s)=\prod_{\mathcal{M}}\left(1-N(\mathcal{M})^{-s}\right)^{-1} \tag{I}
\end{equation*}
$$

where \mathcal{M} runs over the set of all maximal ideals of A and $N(\mathcal{M})$ is the number of elements in the field A / \mathcal{M}. But in general $N(\mathcal{M})$ is not finite and even if $N(\mathcal{M})$ is finite the produce (I) is not convergent, therefore we have to put some more restrictions on the ring. In the following we shall prove that if A is finitely generated over Z i.e., if there exist a finite number of elements x_{1}, \ldots, x_{k} in A such that the homomorphism from $Z\left[X_{1}, \ldots, X_{k}\right]$ to A which sends X_{i} to x_{i} is surjective, then $N(\mathcal{M})$ is finite and the infinite product (II) is absolutely convergent fot $\operatorname{Re} s>\operatorname{dim} A$, where the dimension of A is defined as follows.

Definition. If A is an integral domain, the dimension of A is the transcendence degree (respectively transcendence degree +1) of the quotient
field of A over $Z /(p)$ (respectively Q) if characteristic of A is p (respectively 0). In the general case $\operatorname{dim} A$ is the supremum of the dimension of the rings A / \mathscr{Y} where \mathscr{Y} is any minimal prime ideal.

It can be proved that dimension of A is equal to the supremum of the lengths of strict maximal chains of prime ideals. Before proving the convergence of the zeta function we give some examples of finitely generated rings of over Z.

1. The ring Z is finitely generated over itself.
2. Any finite field F_{q}.
3. The ring of polynomials in a finite number of variables over F_{q} i,e., the ring $F_{q}\left[X_{1}, \ldots, X_{k}\right]$
4. The ring $F_{q}\left[X_{1}, \ldots, X_{r}\right] / \mathscr{U}$, where \mathscr{U} is any prime ideal of $F_{q}\left[X_{1}\right.$, $\left.\ldots, X_{r}\right]$. This is the set of regular functions defined over F_{q} on the variety V defined by the ideal \mathscr{U} affine space.
5. Let K be any algebraic number field. The ring of integers A in K is finitely generated over Z.
6. Let V be an affine variety defined over the algebraic number field K and let $\mathscr{O} \subset K\left[X_{1}, \ldots, X_{r}\right]$ be the ideal of V. Then the ring of regular functions on V i.e., $K\left[X_{1}, \ldots, X_{r}\right] / \mathscr{O}$ is not finitely generated over Z. But the ideal \mathscr{O} is generated by the ideal $\mathscr{O}_{0}=$ $\mathscr{O} \cap A\left[X_{1}, \ldots, X_{r}\right]$ of the ring $A\left[X_{1}, \ldots, X_{r}\right]$ and we can associate to V the quotient ring $A\left[X_{1}, \ldots, X_{r}\right] / \mathscr{O}$ which is obviously finitely generated over Z. It is to be noted that this ring is not intrinsic and depends on the choice of the coordinates in K^{r}

2 Fields of finite type over Z

We shall require the following lemma in the course of our discussion.
131 Normalisation lemma of Noether. Let K be a field. Let R and S be subrings of K containing a unit elements such that S is finitely generated
over R. Then there exists an elements $a \neq 0$ in R and a finite number pf element X_{1}, \ldots, X_{r} in S such that

1. X_{1}, \ldots, X_{r} are algebraically independent over the quotient fields of R.
2. Any elements of S is integer over $R\left[a^{-1}, X_{1}, \ldots, X_{r}\right]$.

Proposition 1. Let K be a field. Let R be a subring of K and L the quotient field of R. If K as a ring is finitely generated over R, then $(K: L)$ is finite and there exists an element a in R such that $L=R\left[a^{-1}\right]$.

We first prove the following: If a field K is integral over a subring R then R is a field.

Let x be any element of R, then x^{-1} belongs to K and therefore satisfies an equation

$$
X^{n}+a_{1} X^{n-1}+\cdots+a_{n}=0, a_{i} \in R
$$

This implies that x^{-1} is a polynomial in x over R. But $R[x]=R$, therefore x^{-1} belongs to R. Hence R. Hence R is a field
Proof of proposition 1. Since K is finitely generated over R, by the normalisation lemma, there exists an element $a \neq 0$ in R and a finite family $\left(x_{1}, \ldots, x_{r}\right)$ in K algebraically independent over L such that K is integral over $R\left[a^{-1}, x_{1}, \ldots, x_{r}\right]$. By the remark above it follows that $R\left[a^{-1}, x_{1}, \ldots, x_{r}\right]$ is a field. But x_{1}, \ldots, x_{r} are algebraically independent over L, therefore $r=0$ and $L=R\left[a^{-1}\right]$. Since K is finitely generated and integral over $L,(K: L)$ is finite.

Proposition 2. If a commutative ring A is finitely generated over Z, then $W \mathfrak{N}(\mathfrak{M})$ is finite for any maximal ideal \mathfrak{M} of A.

Proof. Since A is finitely generated over Z, the field $K=A / \mathfrak{M}$ is finitely
generated over Z. If characteristic of K is zero then K contains Z. Therefore by proposition (1) $Q=Z\left(a^{-1}\right)$ for some $a \neq 0$ and a in Z, which is impossible. Thus characteristic of K is p and by proposition (1) K is a finite extension of F_{p}, hence K is a finite field.

3 Convergence of the product

Proposition 3. The infinite product $\zeta_{A}(s)$ is a absolutely convergent for Re $s>\operatorname{dim} A$ and uniformly convergent for $\operatorname{Re} s>\operatorname{dim} A+\varepsilon$ for every $\varepsilon>0$.

Proof. We shall prove the result by induction on $r=\operatorname{dim} A$. If $r=0$ then A is a finite field. Let us assume that $A=F_{q}$. Then

$$
\zeta_{A}(s)=\frac{1}{1-q^{-s}}
$$

is a meromorphic function in the plane with a simple pole at $s=0$. Let us assume that the result is true for all those rings which are finitely generated over Z and dimension of which are less than r. Before proving the result for rings of dimension r we prove the following result.

Let A be a finitely generated ring over Z and $B=A[X]$, the ring of polynomials in one variable over A, then $\zeta_{B}(s)=\zeta_{A}(s-1)$ in a suitable domain of convergence. In fact if $\zeta_{A}(s)$ is convergent for $\operatorname{Re} s>x$, then $\zeta_{B}(s)$ is convergent for $\operatorname{Re} s>x+1$.

If $\operatorname{dim} A=0$, then $A=F_{q}$ for some q and $B=F_{q}[X]$. Since he maximal ideals in B are generated by irreducible polynomials, which can be assumed to be monic, we get

$$
\zeta_{B}(s)=\prod_{P}\left(1-q^{s d(p)}\right)^{-1}
$$

133 where P runs over the set of monic irreducible polynomials over A. In order to prove the absolute convergence of $\zeta_{B}(s)$, it is sufficient to prove the convergence of the infinite series

$$
S=\sum_{P}\left|q^{-d(P)}\right|^{\sigma} \text { where } s=\sigma+i t
$$

Since the number of monic polynomials of degree r is q^{r}, we have

$$
S=\sum_{P}\left|q^{-d(P)}\right|^{\sigma} \leq \sum_{r=1}^{\infty} q^{r}\left|q^{-r}\right|^{\sigma}
$$

$$
=\sum_{r=1}^{\infty} q(1-\sigma) r
$$

Obviously the series S is convergent if $1-\sigma<0$ i.e., $\sigma>1$. Moreover in this domain

$$
\begin{aligned}
\zeta_{B}(s) & =\sum_{Q} \frac{1}{q^{s d(Q)}}(Q \text { a monic polynomial in } B) \\
& =\sum_{k=0}^{\infty} \frac{q^{k}}{q^{s k}}=\sum_{k=0}^{\infty} \frac{1}{q^{k(s-1)}}=\frac{1}{1-q^{1-s}}
\end{aligned}
$$

Hence

$$
\zeta_{B}(s)=\zeta_{A}(s-1) .
$$

Now let the dimension of A be arbitrary and $B=A[X]$.
We shall denote by $\operatorname{Spm}(B)$ the set of maximal ideals of B. For any \mathfrak{M} in $\operatorname{Spm}(B), \mathfrak{M} \cap A$ is in $\operatorname{Spm}(A)$, because $A / \mathfrak{M} \cap A$, being a subring of the finite field B / \mathfrak{M}, is a field. Let π denote the mapping $\mathfrak{M} \in \operatorname{Spm}(B) \longrightarrow \mathfrak{M} \cap A \in \operatorname{Spm}(A)$. It can be easily proved that the set $\pi^{-1} \mathfrak{N}$ and $\operatorname{Spm}(A / \mathfrak{N}[X])$ are isomorphic, where \mathfrak{N} is any maximal ideal of A. Therefore

$$
\begin{aligned}
\zeta_{B}(s) & =\prod_{\mathfrak{M} \in \operatorname{Spm}(B)}\left[1-(N(\mathfrak{M}))^{-s}\right]^{-1} \\
& =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)} \prod_{\mathfrak{M} \in \pi^{-1}(\mathfrak{N})}\left(1-N(\mathfrak{M})^{-s}\right)^{-1} \\
& =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)} \zeta_{A / \mathfrak{M}}[X]^{(s)}
\end{aligned}
$$

But A / \mathfrak{N} is a finite field, therefore $\zeta_{A / \mathfrak{M}[X]^{(s)}}=\zeta_{A / \mathfrak{R}}(s-1)$
So we get

$$
\begin{aligned}
\zeta_{B}(s) & =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)}\left(\zeta_{A / \mathfrak{N}}(s-1)\right) \\
& =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)}\left(1-N(\mathfrak{M})^{1-s}\right)^{-1}
\end{aligned}
$$

$$
=\zeta_{A}(s-1)
$$

It follows that $\zeta_{F_{q}}(s)_{\left[X_{1}, \ldots, X_{k}\right]}=\frac{1}{1-q^{k-s}}$ and $\zeta_{Z\left[X_{1}, \ldots, X_{K}\right]}=\zeta_{Z}(k-s)$ where ζ_{Z} is nothing but the Riemann zeta function.

Now we shall prove our main proposition. Assume that A is an integral domain.

Let K be the quotient field and R the prime ring of A.
Since A is finitely generated over R, by the normalisation lemma we have the following:
(1) If characteristic $A=p \neq 0$, then there exist r elements x_{1}, x_{2}, \ldots, x_{r} in A such that A is integral over $R\left[x_{1}, \ldots, x_{r}\right]$, where x_{1}, \ldots, x_{r} are algebraically independent over $R=F_{p}$. (ii)- If characteristic $A=0$, then there exits an element a in $R=Z$ and $r-1$ elements x_{1}, \ldots, x_{r-1} in A such that every element of A is integral over $Z\left[a^{-1}, x_{1}, \ldots x_{r-1}\right]$ and the elements x_{1}, \ldots, x_{r-1} are algebraically independent over Q.

We get r elements in the first case and $r-1$ elements in the second case because r is the dimension of A which is equal to the transcendence degree of K over F_{p} or transcendence degree of K over $Q+1$ according as the characteristic of A is non-zero or not. It can be proved that A (respectively $A^{\prime}=A\left(a^{-1}\right)$) is a finite module over $B=F_{p}\left[x_{1}, \ldots, x_{r}\right]$ (respectively $\left.B^{\prime}=Z\left[a^{-1}, x_{1}, \ldots, x_{r-1}\right]\right)$ and the mapping π from $\operatorname{Spm}(A) \rightarrow$ $\operatorname{Spm}(B)$ (respectively from $\operatorname{Spm}\left(A^{\prime}\right) \rightarrow \operatorname{Spm}\left(B^{\prime}\right)$) is onto. Let A (respectively A^{\prime}) be generated by k elements as a B (respectively B^{\prime}) module. We shall prove that $\pi^{-1}(\mathfrak{M})$ for any \mathfrak{N} in $\operatorname{Spm}(B)$ (respectively in $\left.\operatorname{Spm}\left(B^{\prime}\right)\right)$ has at most k elements. Let $C=A / A \mathfrak{N}$. It is an algebra of rank $t \leq k$ over B / \mathfrak{N}. Since $\pi^{-1}(\mathcal{M})$ is isomorphic to $\operatorname{Spm}(A / A \mathfrak{N})$ it is sufficient to prove that C has at most k maximal ideals. This will follow from the following.

Lemma II. Let A be any commutative ring with identity and $\left(\mathcal{U}_{i_{1 \leq i \leq m}} a\right.$ finite set of prime ideals in A such that

$$
A=\mathcal{U}_{i}+\mathcal{U}_{j} \text { for } i \neq j
$$

Then the mapping $\theta: A \rightarrow P=i \prod_{i=1}^{m} A \mathcal{U}_{i}$ is surjective

Proof. It is sufficient to prove that $1=\sum_{i=1}^{m} a_{i}$ where a_{i} belongs to \mathcal{U}_{j} for $\quad \mathbf{1 3 6}$ $j \neq i$ because if $\left(t_{1}, \ldots, t_{m}\right)$ is any element of P, then
$\theta\left(\sum_{i=1}^{m} t_{i}^{\prime} a_{i}\right)=\left(t_{1}, \ldots, t_{m}\right)$, where t_{i}^{\prime} is a representative of t_{i} in A.
If $m=2$, the result is obvious i.e., $1=a_{1}+a_{2}$ where a_{1} is in \mathscr{O}_{2} and a_{2} is in \mathscr{O}_{1}. Let us assume that it is true for less than m ideals.

Then $1=\sum_{i=1}^{m-1} v_{i}$ where $v_{i} \in \mathscr{O}_{j}$ for $1 \leq j \leq m-1$ and $j \neq i$. Since $A=\mathscr{O}_{i}+\mathscr{O}_{m}$, we have $1=x_{i}+y_{i}$ for $1 \leq i \leq m-1$ with $x_{i} \in \mathscr{O}_{m}$ and $\mathscr{Y}_{i} \in \mathscr{O}_{i}$. Clearly $\sum_{i=1}^{m-1} x_{i} v_{i}+\sum_{i=1}^{m-1} v_{i} y_{i}=1$.

Let us take $u_{i}=v_{i} x_{i}$ for $i \leq i \leq m-1$ and $u_{m}=\sum_{i}^{m-1} y_{i} v_{i}$, then $\sum_{i=1}^{m} u_{i}=1$ and $u_{i} \in \mathscr{O}_{j}$ for $j \neq i$.

Let $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \ldots, \mathfrak{M}_{t}$ be any finite set of distinct maximal ideals of C. Then by lemma (1) $C / i \bigcap_{i=1}^{t} \mathfrak{M}_{i}$ is isomorphic to $\underset{i=1}{\oplus} C / \mathfrak{M}_{i}(\oplus$ indicates the direct sum). Thus $t \leq k$.

Assume that the characteristic of A is 0 . Let \mathfrak{M} be any maximal ideals of A. If a does not belong to \mathfrak{M}, then $\mathfrak{M A}\left[a^{-1}\right]$ is a maximal ideal in $A\left[a^{-1}\right]$, because $A\left[a^{-1}\right] / \mathfrak{M} A\left[a^{-1}\right]$ is isomorphic to A / \mathfrak{M}. If a belongs to \mathfrak{M}, then \mathfrak{M} contains one and only one prime P_{i} occurring in the unique factorisation of a and the set of maximal ideals which contains p_{i}. is isomorphic to $\operatorname{Spm}\left(A / p_{i} A\right)$. Therefore if $a=p_{1}^{\alpha_{1}}, \ldots, p_{t}^{\alpha_{t}}$, then

$$
\zeta_{A}(s)=\zeta_{A\left[a^{-1}\right]}(s) \prod_{i=1}^{t} \underset{A / p_{i} A}{\zeta}(s)
$$

But $\operatorname{dim} A / p_{i} A<\operatorname{dim} A$, therefore inorder to prove the convergence $\mathbf{1 3 7}$ of $\zeta_{A}(s)$ it is sufficient to consider $\zeta_{A\left[a^{-1}\right]}(s)$. We have

$$
\zeta_{A\left[a^{-1}\right]}(s)=\prod_{\mathfrak{S p m}\left(B^{\prime}\right)} \prod_{\mathfrak{M} \in^{-1} \pi(\mathfrak{M i})}\left(1-(N \mathfrak{M})^{-s}\right)^{-1}
$$

Since $N(\mathcal{M}) \geq N(\mathcal{M})$, we get

$$
\sum_{\mathfrak{N} \in \operatorname{Spm}(B)} \sum_{\mathfrak{M} \in \pi^{-1}(\mathcal{M})}|N \mathcal{M}|^{-\sigma} \leq k \sum_{\mathfrak{M} \in \operatorname{Spm}\left(B^{\prime}\right)}|N \mathfrak{M}|^{-\sigma} \leq k \zeta_{z}(r-\sigma-1)
$$

Therefore $\zeta_{A\left[a^{-1}\right]}(s)$ is convergent for $\mathfrak{R}_{s}>\operatorname{dim} A$.
If characteristic $A=p$, then we get

$$
\sum_{\mathfrak{M} \in \operatorname{Spm}(B)} \sum_{\mathfrak{M} \in \pi^{-1}(\mathfrak{M})}|N \mathcal{M}|^{-\sigma} \leq k \sum_{\mathfrak{M} \in \operatorname{Spm}\left(B^{\prime}\right)}|N \mathfrak{M}|^{-\sigma} \leq k \zeta_{F_{p}}(r-s)
$$

which gives the same result as above, Now we have to prove our theorem in the general case(A is not an integral domain). But we shall prove in the next \S a more general result.

4 Zeta Function of a Prescheme

Let A be a commutative ring with unity. We shall denote by $\mathrm{Sp}(A)$ the set of all prime ideals of A. On $\mathrm{Sp}(A)$ we define a topology by classifying the sets $F(\mathscr{O})$ as closed sets, where

$$
F(\mathscr{O})=\{\mathscr{Y} \mid \mathscr{Y} \supset \mathscr{O}, \mathscr{Y} \in \operatorname{Sp}(A)\}
$$

and \mathscr{O} is any ideal in A. This topology is referred to as the Jacobson Zariski topology. It is obvious that in this topology a point is closed if and only if it is a maximal ideal of A. We associate with every point \mathscr{Y} of $\operatorname{Sp}(A)$ a local ring A namely the ring of quotient of A with respect to the multiplicatively closed set $A-\mathscr{Y}$. On \mathscr{O} the sum of all these local rings we define a sheaf structure by giving"sufficiently many" sections. For any a, b, \in, A we consider the open subset

$$
V(b)=\{\mathscr{Y} \mid \mathscr{Y} \in \operatorname{Sp}(A), \mathscr{Y} \nexists b\} .
$$

For any $\mathscr{Y} \in v(b),\left(\frac{a}{b}\right)_{\mathscr{Y}}$ the, fraction $\frac{a}{b}$, is an element of $A_{\mathscr{Y}}$. Then the mapping $\mathscr{Y} \rightarrow\left(\frac{a}{b}\right)_{\mathscr{Y}}$ gives a section $S(a, b)$ of \mathscr{O}. The pair (X, \mathscr{O}) together with the sheaf of local rings \mathscr{O} is called an affine scheme, where $X=\operatorname{Sp}(A)$.

Definition. Let (X, \mathscr{O}) be a ringed space. We say that X is a prescheme if every point has an open neighbourhood which is isomorphic as a ringed space to $\operatorname{Sp}(A)$ for some ring A. Such a neighbourhood is called an affine neighbourhood.

We shall assume that the pre-scheme X satisfies the ascending chain condition for open sets, then X is quasi-compact and it can be written as the union of a finite number of affine open sets X_{i}. We shall denote by A_{i} the ring such that X_{i} is isomorphic to $\operatorname{Sp}\left(A_{i}\right)$. Then the ring A_{i} is Noetherian and has a finite number of minimal prime ideals $\mathscr{Y}_{i j}$. Each prime ideal of A_{i} contains a $\mathscr{Y}_{i j}$ and $X_{i}=\operatorname{Sp}\left(A_{i}\right)$ is the union of the $s_{i j}=\operatorname{Sp}\left(A_{i j}\right)\left(\right.$ with $\left.\left.A_{i j}\right)=A_{i} / \mathscr{Y}_{i j}\right)$, each $S_{i j}$ being a closed subset of X_{i} and the $A_{i j}$ being integral domains. Moreover the residue field of the local ring associated to a point $x \in S_{i j}$ is the same for the sheaf of the scheme X and for the sheaf of the scheme $\operatorname{Sp}\left(A_{i j}\right)$

We define the dimension of X as the maximum of the dimensions of the rings A_{i} (or of the rings $A_{i j}$). It can be proved that if X is irreducible (i.e. if X cannot be represented as union of two proper closed subsets). then $A_{i}=\operatorname{dim} A_{j}$ for $i \neq j$.

A prescheme S is a finite type over Z if there exists a decomposition of S into a union of a finite number of open affine sets X_{i} such that each A_{i}, the ring associated to X_{i}, is finitely generated over Z. It can be proved that the same is true for any decomposition into a finite number of affine open sets. In particular, a ring A is finitely generated over Z if and only if the scheme $\operatorname{Sp}(A)$ is of finite tyte over Z and an open prescheme of S is also of finite type over Z.

Let S be a prescheme of finite type over Z. A point $x \in S$ is closed if and only if the residue field of the local ring of x is finite (we shall denote by $N(x)$) the number of elements of this field). In particular, if $S=U X_{i}^{\prime}$, then a point $x \in X_{i}$ is closed in S if and only if it is closed in X_{i} Now we define the ζ-function of S by:

$$
\zeta_{S}(s)=\prod\left(1-(N(x))^{-s}\right)^{-1}
$$

where x runs over the set of closed points of S. It is clear that if $S=S_{P}(A)$, then $\zeta_{S}=\zeta_{A}$. As above, we can write S as a union of a finite number of subsets S_{i}, each S_{i} being affine open subset, with
$S_{i}=\operatorname{Sp}\left(A_{i}\right)$, where A_{i} is an integral domain finitely generated over Z. Then it is obvious that:

$$
\begin{equation*}
\zeta_{S}=\frac{\left.\left(\prod_{\pi} \zeta_{S_{i}}\right)\left(\prod_{i<j<k} \zeta_{s_{i} \cap S_{j} \cap S_{k}}\right) \cdots\right)}{\left(\prod_{i<j} \zeta_{S_{i} \cap S_{j}}\right) \cdots} \tag{I}
\end{equation*}
$$

Now we shall prove the following generalisation of the Theorem 1 bis:The ζ function of a prescheme S of finite type over Z is convergent for Re $s>\operatorname{dim} S$.

Of course, theorem 1 bis implies theorem 1 Assume we have proved the theorem 1 bis for prescheme of dimension $<\operatorname{dim} S$. Then we get as in the preceding \S the convergence of ζ_{A} for any integral domain A finitely generated over Z of dimension $\leq \operatorname{dim} S$, and in particular the convergence of the $\mathcal{Z}_{S_{i}}$. After (I), we have just to prove this: if U (resp. F) is an open (resp. closed) subset of $X=\operatorname{Sp}(A)$ (with $\operatorname{dim} A \leq$ $\operatorname{dim} S$), then $\zeta_{U \cap F}$ is convergent for $\operatorname{Re}(s)>\operatorname{dim} S$. But let $G=X-U$; we have:

$$
\zeta_{\cup \cap F}=\zeta_{F} / \zeta_{F \cap G}
$$

and $F \cap G$ is closed in X. Hence we have just to prove the convergence of ζ_{F}. But F is defined by an ideal of A and $F=\operatorname{Sp}(A / \mathscr{O})$ and $\zeta_{F}=$ $\zeta_{A / \mathscr{O}}$. If $\mathscr{O}=\{0\}$, we have $\zeta_{F}=\zeta_{A}$ and if $\mathscr{O} \neq\{0\}$ then the minimal prime ideals of A / \mathscr{O} give non trivial prime ideals of A and we have $\operatorname{dim} A / \mathscr{O}<\operatorname{dim} S:$ the induction hypothesis ensures the convergence of ζ_{F}. Hence we have completely proved the theorems 1 and 1 bis

5 Zeta Function of a Prescheme over F_{P}

Let S be a prescheme over Z of finite type. We have a canonical map from a prescheme S to $\operatorname{Sp}(Z)$ given by $\pi(x)=$ characteristics of the residue field of local ring of x for any x in S. Suppose that $\pi(x)=p$ for every x in S. In this case each A_{i} is of characteristic p and the canonical map from Z into A_{i} can be factored through F_{P}. In this case we say that the prescheme S is over F_{P}.

Let S be a prescheme of finite type over F_{P}. Then the residue field $k(x)$ of the local ring associated to a closed point x is of characteristic P for every x in S. Therefore $k(x)=F_{P^{d(x)}}$ where $d(x)$ is a strictly positive integer. thus

$$
\zeta_{S}(s)=\prod_{\bar{x}=x \in S}\left(1-p^{-s d(x)^{-1}}\right)
$$

Let us take $t=p^{-s}$. Then

$$
\zeta_{S}(s)=\prod_{\bar{x}=x \in S}\left(1-t^{d(x)^{-1} 1}\right)=\bar{\zeta}_{S}(t)
$$

The function $\tilde{\zeta}_{s}(t)$ is also called a zeta function on S. It is absolutely convergent in the disc $|t|<P^{-\operatorname{dim}(s)}$. we have

$$
\tilde{\zeta}_{s}(t)=\prod_{\bar{x}=x \in S} \sum_{k=0}^{\infty} t^{k d(x)}=\sum_{h=0}^{\infty} a_{h} t^{h}
$$

with $a_{0}=1$ and $a_{n} \in Z$. The end of these lectures will be devoted to the proof of the following theorem (Dwork's theorem):

Theorem 1. The function $\tilde{\zeta}_{S}(t)$ of a prescheme S of finite type over F_{P} is a rational function of t.

6 Zeta Function of a Prescheme over F_{q}

In order to prove Dwork's theorem it is sufficient to prove it for an affine scheme and open sets of an affine scheme because of the equation (1). Then we have to look at thezeta function of a ring A finitely generated over F_{P}. Such a ring can be considered as the quotient of $F_{P}\left[X_{1}, \ldots, X_{k}\right]$ by some ideal \mathscr{O} and we can associate to A the variety V defined by \mathscr{O} in K^{k} where K is the algebraic closure of F_{P}. It may be noted that V is not necessary irreducible. We shall call ζ_{A} the zeta function of the variety V.

More generally we consider a variety V over F_{q}, where $q=p^{f}$. The variety V is completely determined by the ring
$A=F_{q}\left[X_{1}, \ldots X_{n}\right] / \mathscr{O} \cap F_{q}\left[X_{1}, \ldots, X_{n}\right]$ where \mathscr{O} is an ideal in $K\left[X_{1}\right.$, $\left.\ldots, X_{n}\right]$ generated by $\mathscr{O}_{0}=F_{q}\left[X_{1}, \ldots, X_{n}\right] \cap \mathscr{O} K$ being the algebraic closure of F_{q}. We define

$$
\zeta_{v}=\zeta_{A} \text { and } \tilde{\zeta}_{v}=\tilde{\zeta_{A}}
$$

For every maximal ideal \mathfrak{M} of $F_{q}\left[X_{1}, \ldots X_{n}\right]$ there exists a maximal ideal \mathfrak{M} in $K\left[X_{1}, \ldots, X_{n}\right]$ such that $F_{q}\left[X_{1}, \ldots, X_{n}\right] \cap \mathfrak{M}^{\prime}=\mathfrak{M}$. But $\operatorname{Spm}\left(K\left[X_{1}, \ldots X_{n}\right]\right)$ is isomorphic to K^{n}, therefore a maximal ideal \mathfrak{M} of $F_{q}\left[X_{1}, \ldots, X_{n}\right]$ is determined by one point x of K^{n}. Moreover this point x belongs to V if and only if $\mathfrak{M} \supset \mathscr{O}$ However this correspondence between the maximal ideals of $F_{q}[X]$ and the points of K^{n} is not one-one. So we want to find the condition when two points x and y of K^{n} correspond to the same maximal ideal of $F_{q}\left[X_{1}, \ldots, X_{n}\right]=F_{q}[X]$. Let \mathfrak{M}_{x} and \mathfrak{M}_{y} be the maximal ideals of $K[X]$ corresponding to $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ respectively such that $\mathfrak{M}_{x} \cap F_{q}[x]=\mathfrak{M}_{y} \cap F_{q}[x]$. It is obvious that $F_{q}[X] / \mathfrak{M}_{x} \cap F_{q}[x]=F[x] / \mathfrak{M}_{y} \cap F_{q}[x]$ is isomorphic to $F_{q}\left[x_{1}, \ldots, x_{n}\right]=F_{q^{f}}$ for some $f>0$. We shall show that the necessary and sufficient condition that
$\mathfrak{M}_{x} \cap F_{q}[X]=\mathfrak{M}_{y} \cap F_{q}[X]$ is that there exists an element σ in $G\left(F_{q^{f}} / F_{q}\right)$ such that $\sigma(x)=y$. For $n=1$ the existence of σ is trivial. Let us assume that there exists a σ in $G\left(F_{q} f / F_{q}\right)$ such that $\sigma\left(x_{i}\right)=y_{i}$ for $i=1,2, \ldots, r-1$ for $\leq n$. Let $\sigma\left(x_{j}\right)=z_{j}$ for $j \geq r$. Let $P(x)$ be the polynomial of z_{r} over $F_{q}\left(y_{1}, \ldots, y_{r-1}\right)$. Then $P\left(y_{1}, \ldots, y_{r-1} z_{r}\right)=0$, which gives on applying σ the equation $P\left(x_{1}, \ldots, x_{r-1}, y_{r}\right)=0$. Therefore P is in $\mathfrak{M}_{y} \cap F_{q}[X]$ i.e., $P\left(y_{1}, \ldots y_{r-1}, y_{r}\right)=0$. Thus y_{r} and z_{r} are conjugate over $F_{q}\left(y_{1}, \ldots, y_{r-1}\right)$. Let τ be the automorphism of K over $F_{q}\left(y_{1}, \ldots, y_{r-1}\right)$ such that $\tau\left(a_{r}\right)=y_{r}$. Then $\tau o \sigma$ is an element of $G\left(F_{q^{f}} / F_{q}\right)$ such that $\operatorname{\tau o\sigma }\left(x_{i}\right)=y_{i}$ for $i=1,2, \ldots, r$. Our result follows by induction. The converse is trivial. Hence we see that if \mathfrak{M} is a maximal ideal of $F_{q}[X]$ containing \mathscr{O} with $N(\mathfrak{M})=q^{f}$, then there exist exactly f points conjugate over F_{q}, in $K^{n} \cap V$ and $f=\left(F_{q}(x): F_{q}\right)$ if and only if f is the smallest integer such that x belongs to $\left(F_{q^{f}}\right)^{n}$. Let

$$
\begin{aligned}
N_{f} & =\text { number of points in } V \cap\left(F_{q^{f}}\right)^{n} \\
J_{f} & =\text { number of points in } V \cap\left(F_{q^{f}} q^{f}\right)^{n}-\underset{f^{\prime}<f}{U}\left(V \cap\left(F_{q^{f}}\right)^{n}\right)
\end{aligned}
$$

$$
I_{f}=\text { number of maximal ideals of } A \text { of norm } q^{f} .
$$

We have proved that $J_{f}=f I_{f}$. By definition of the ζ - function of V we have

$$
\begin{aligned}
\zeta_{V}(s)=\zeta_{A}(s) & =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)}\left(1-(n \mathfrak{M})^{-s}\right)^{-1} \\
& =\prod_{\mathfrak{M} \in \operatorname{Spm}(A)}\left(1-q^{-s} f(\mathfrak{M})\right)^{-1}
\end{aligned}
$$

where $f(\mathfrak{M})$ is defined by the equation $N(\mathfrak{M})=q^{f(\mathfrak{M})}$ So we see that we can substitute $t=q^{-s}$ in the zeta function (and not only $t=p^{-s}$ as in the general case) and get a new zeta function.

$$
\zeta_{V}(s)=\prod_{\mathfrak{M} \in \operatorname{Spm}(A)}\left(1-t^{f(\mathfrak{M})}\right)^{-1}=\prod_{f=1}^{\infty}\left(1-t^{f}\right)^{-I_{f}}=\tilde{\zeta}_{v, q}(t)
$$

Therefore

$$
\begin{aligned}
\log \quad \tilde{\zeta}_{v, q}(t) & =\sum_{f=1}^{\infty}-I_{f} \log \left(1-t^{f}\right) \\
& =\sum_{f=q}^{\infty} \sum_{k=1}^{\infty} I_{f} \frac{t^{k f}}{k} \\
& =\sum_{f} \sum_{k} \frac{J_{f}}{f} \frac{t^{k f}}{k} \\
& =\sum_{n=1}^{\infty}\left(\sum_{f / n} J_{f}\right) \frac{t^{n}}{n} \\
& =\sum_{n=1}^{\infty} N_{n} \frac{t^{n}}{n}
\end{aligned}
$$

Thus $\tilde{\zeta}_{v, q}(t) \exp \left(\sum_{n=1}^{\infty} N_{n} \frac{t^{n}}{n}\right)$, where N_{n} is the number of points of V in F_{q}^{n}. We have already seen that this is a power series with integral coefficients.

Theorem $1^{\prime} \cdot \tilde{\zeta}_{V, q}(t)$ is a rational function of t.
We shall show that in order to prove the rationality of $\tilde{\zeta}_{A}(t)$ where $t=q^{-s}$, it is sufficient to prove the rationality of $\tilde{\zeta}_{A}(t)$ where $t=p^{-s}$. Since $\tilde{\zeta}_{v, q}(t)$ and $\tilde{\zeta}_{v}(t)$ are both convergent in a neighbourhood of the origin, we have

$$
\tilde{\zeta}_{v, q}\left(t^{f}\right)=\tilde{\zeta}_{v}(t) \text { with } q=p^{f}
$$

Let μ be any f-th root of unity. Then

$$
\tilde{\zeta}_{v}(\mu t)=\tilde{\zeta}_{v, q}\left(\mu^{f} t^{f}\right)=\tilde{\zeta}_{v, q}\left(t^{f}\right)=\tilde{\zeta}_{v}(t)
$$

If we have

$$
\tilde{\zeta}_{v}(t)=\frac{\sum_{k=0}^{n} b_{k} t^{k}}{\sum_{k=0}^{n} C_{k} t^{k}}
$$

then also

$$
\begin{aligned}
\tilde{\zeta}_{v}(t) & =\frac{\sum_{\mu}\left(\sum_{k=0}^{n} b_{k} \mu^{k} t^{k}\right.}{\sum_{\mu} \sum_{k=0}^{n} C_{k} \mu^{k} t^{k}} \\
& =\frac{\sum_{k=0}^{n} b_{k}\left(\sum_{\mu} \mu^{k}\right) t^{k}}{\sum_{k=0}^{n} C_{k}\left(\sum_{\mu} \mu^{k}\right) t^{k}} \\
& =\frac{\sum_{0 \leq k \leq[n / f]} b_{k f} t^{k f}}{\sum_{0 \leq k \leq[n / f]} C_{k f} t^{k f}}
\end{aligned}
$$

145 because $\sum_{\mu} \mu^{k}=0$ if $k \not \equiv 0(\bmod f)$
Thus we get

$$
\begin{aligned}
& \qquad \tilde{\zeta}_{v}(t)=\frac{\sum_{0 \leq k \leq[n / f]} b_{k f} t^{k f}}{\sum_{0 \leq k \leq[n / f]} C_{k} f t^{k f}}=\tilde{\zeta}_{v, q}\left(t^{f}\right) \\
& \text { i.e., } \quad \tilde{\zeta}_{V, q}(t)=\frac{\sum_{0 \leq k \leq[n / f]} b_{k f} t^{k}}{\sum_{0 \leq k \leq[n / f]} C_{k f} t^{k}}
\end{aligned}
$$

Hence $\zeta_{V, q}(t)$ is a rational function of t.

7 Reduction to a Hyper-Surface

We shall show that to prove our theorem it is sufficient to consider the zeta function of a hypersurface V defined by a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$ in $F_{P}\left[X_{1}, \ldots, X_{n}\right]$. We know that we can write $V=\bigcap_{i=1}^{r} V_{i}$ where each V_{i} is a hyper surface. Let E be any subset of $\{1,2 \ldots, r\}$ and $V_{E}=\bigcap_{i \in E}^{i} V_{i}$. Let N_{V} (respectively $N_{V_{E}}$) be the number of points of V (respectively V_{E}) in any field $F_{P^{n}}$. We now prove that

$$
\begin{equation*}
N_{V}=\sum_{E}(-1)^{1}+n(E) N_{V_{E}} \tag{I}
\end{equation*}
$$

where $n(E)$ is the number of elements in E.
Let any point x in V belong to k hypersurface V_{i} where $1 \leq k \leq r$. Then x appears l times in the right hand side of equation (I), where

$$
\begin{aligned}
I & ={ }^{r-k} C_{0}{ }^{k} C_{1}-\left({ }^{r-k} C_{0}{ }^{k} C_{2}+{ }^{r-k} C_{1}\right)+\cdots+(-1)^{s+1} \\
& \quad\left({ }^{k} C_{s}+{ }^{r-k} C_{1}{ }^{k} C_{s-1}+\cdots+{ }^{k} C_{h}{ }^{r-k} C_{s-h}+\cdots\right)+\cdots \\
& =\sum_{t=0}^{\infty} r-k_{C_{t}}\left[\sum_{h=1}^{\infty}(-1)^{h+t-1} C_{h}^{k}\right] \\
& =\sum_{t=0}^{\infty}(-1)^{t-1}{ }^{r-k} C_{t}
\end{aligned}
$$

Thus $I=0$ or 1 according as $r<k$ or $r=k$. Hence the equality (I) is established. This proves that

$$
\begin{equation*}
\tilde{\zeta}_{V}(t)=\prod_{E}\left[\tilde{\zeta}_{V_{E}}(t)\right]^{(-1)^{1+n(E)}} \tag{2}
\end{equation*}
$$

This proves that it is enough to prove theorem 1 for a hypersurface.
Let V be a hypersurface defined by the polynomial $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$ in $F_{P}\left[X_{1}, \ldots X_{n}\right]$. Let B be any subset of $\{1,2, \ldots, n\}$. Let

$$
W_{B}=\left\{x \mid x \in V, x_{i}=0 \text { for } i \text { not in } B\right\}
$$

$$
U_{B}=\left\{x \mid x \in W_{B}, \prod_{i \in B} x_{i}=0\right\}
$$

It is obvious that V is union of disjoint subsets $W_{B}-U_{B}$ where B runs over all the subsets of $\{1,2, \ldots, n\}$. Hence the zeta function of V is the product of the zeta functions of the varieties $\left(W_{B}-U_{B}\right)$ and the theorem 1 will be a consequences of the following lemma.

Lemma 2. Let P be a polynomial in $F_{P}\left[X_{1}, \ldots, X_{n}\right]$. then the zeta function of the open subset defined by $\prod_{i=1}^{n} x_{i}=0$ in the hyper surface W defined by P is a rational function.

8 Computation of N_{r}

$\mathbf{1 4 7}$ We shall adhere to the following notation throughout our discussion.

$$
\begin{aligned}
x & =\left(x_{1} \ldots, x_{n+1}\right), x_{i} \in F_{P^{r}} . \\
\alpha & =\left(\alpha_{1}, \ldots, \alpha_{n+1}\right), \alpha_{i} \in Z . \\
x^{\alpha} & =x_{1}^{\alpha_{1}} \cdots x_{n+1}^{\alpha_{n+1}} \\
|\alpha| & =\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n+1} .
\end{aligned}
$$

Let \mathscr{X} be any additive character of $F_{p^{r}}$. Then we have

$$
\begin{aligned}
\sum_{U \in F_{P r}} \mathscr{X}\left(U P\left(X_{1}, \ldots, X_{n}\right)\right) & =0 \text { if } P\left(x_{1}, \ldots, x_{n}\right) \neq 0 \\
& =p^{r} \text { if } P\left(x_{1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

Therefore
where

$$
\begin{gathered}
\sum_{x_{1} \in F_{p^{*}}^{*}} \sum_{U \in F_{p^{r}}} \mathscr{X}\left(U P\left(x_{1}, \ldots, X_{n}\right)\right)=p^{r} N_{r} \\
p^{r} N_{r}=\left(p^{r}-1\right)^{n}+\sum_{x \in\left(F_{p r}^{*}\right)} n+1 \mathscr{X}\left(x_{n+1} P\left(x_{1}, \ldots, x_{n}\right)\right)
\end{gathered}
$$

Let

$$
x_{n+1} P\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha} a_{\alpha} x^{\alpha}
$$

where only a finite number of a_{α} are nonzero. Then

$$
\mathscr{X}\left(x_{n+1} P\right)=\prod_{\alpha} \mathscr{X}\left(a_{\alpha} x^{\alpha}\right) .
$$

Therefore

$$
p^{r} N_{r}=\left(p^{r}-1\right)^{n}+\sum_{x \in\left(F_{p^{*}}\right)^{n+1}} \prod_{\alpha} \mathscr{X}\left(a_{\alpha}, \ldots, x^{\alpha}\right)
$$

We take the character \mathscr{X} defined by $\mathscr{X}(t)=\prod_{k=0}^{r-1} \varphi\left(t^{\prime} p^{k}\right)$. where
$t^{\prime} \in R_{r}$ such that $\overline{t^{\prime}}=t$ and $\varphi(y)=F(\zeta-1, y), \zeta$ being a primitive p-th root of unity. Thus from equation (1) we get

$$
p^{r} N_{r}=\left(p^{r}-1\right)^{n}+\sum_{x \in\left(F_{P r}^{*}\right)^{n+1}} \prod_{\alpha} \prod_{k=0}^{r-1} \varphi\left(b_{\alpha} \xi^{\alpha}\right)^{p^{k}}
$$

where $\bar{\xi}_{i}=x_{i}, \xi_{i} \in \mathscr{R}_{r}^{*}, \bar{b}_{\alpha}=a_{\alpha}$ and b_{α} belongs to \mathscr{R}_{1}. Let

$$
G(\S)=\prod \varphi\left(b_{\alpha} \S^{\alpha}\right) \text { and } G_{r}(\S)=\prod_{k}^{r-1} G\left(\xi^{p^{k}}\right)
$$

Then

$$
p^{r} N_{r}=\left(p^{r}-1\right)^{n}+\sum_{\xi \in\left(\mathscr{R}_{r}^{*}\right)^{n+1}} G_{r}(\xi)
$$

We have already proved that $G(\xi)$ is analytic for ξ integral. Therefore

$$
G_{r}(\xi)=\sum_{\alpha \in Z^{n+1}} g_{r \alpha} \xi^{\alpha}
$$

Then

$$
\begin{aligned}
p^{r} N_{r} & =\left(p^{r}-1\right)^{n}+\sum_{\xi \in\left(\mathscr{R}^{*}\right)^{n+1}} G(\xi) \\
& =\left(p^{r}-1\right)^{n}+\sum_{\alpha \in Z^{n+1}} g_{r \alpha} \sum_{\xi \in\left(\mathscr{R}_{r}^{*}\right)^{n+1}} \xi^{\alpha}
\end{aligned}
$$

$$
=\left(p^{r}-1\right)^{n}+\sum_{\alpha \in Z^{n+1}} g_{r_{\alpha}} \prod_{i=1}^{n+1}\left(\sum_{i} \xi_{i}^{\alpha_{i}}\right)
$$

But $\sum_{i} \xi_{i}^{\alpha_{i}}=0$ if $\alpha_{i} \not \equiv 0\left(\bmod p^{r}-1\right)$

$$
=p^{r}-1 \text { if } \alpha_{i} \equiv 0 \quad\left(\bmod p^{r}-1\right)
$$

Therefore

$$
\begin{align*}
p^{r} N_{r} & =\left(p^{r}-1\right)^{n}+\sum_{\alpha=\left(p^{r}-1\right)} g_{r_{\alpha}}\left(p^{r}-1\right)^{n+1} \\
& =\left(p^{r}-1\right)^{n}+\sum_{\alpha} g_{p^{r} \alpha-\alpha}\left(p^{r}-1\right)^{n+1} \tag{I}
\end{align*}
$$

9 Trace and Determinant of certain Infinite Matrices

Let K be any field and $A=K\left[\left[X_{1}, \ldots, X_{n+1}\right]\right]$ be the ring of formal power series in $n+1$ variables over K. Let $H=\sum_{\alpha} h_{\alpha} X^{\alpha}$ by any element of A. We define an operator T_{H} on A as follows

$$
T_{H}\left(H^{\prime}\right)=H H^{\prime} \text { for every } H^{\prime} i n A
$$

For any integer r we define an operator λ_{r} Such that

$$
\lambda_{r}\left(\sum_{\alpha} a_{\alpha} X^{\alpha}\right)=\sum_{\alpha} a_{r \alpha} X^{\alpha}
$$

It can be easily proved that these two operators are continuous for the topology given by the valuation on A defined earlier. Let us set $\Gamma_{H, r}=\lambda_{r} \circ T_{H}$. It is obvious that the monomials constitute a topological basis of A and the operator $\Gamma_{H, r}$ has a matrix $\left(\gamma_{\alpha \beta}\right)$ with respect to this basis, where $\gamma_{\alpha \beta}=h_{r \alpha-\beta}$. It is trivial to see that $T_{H H^{\prime}}=T_{H} \circ T_{H}^{\prime}$ for any
two elements H^{\prime} and H^{\prime} of A and $\lambda_{r r^{\prime}}=\lambda_{r} \circ \lambda_{r}^{\prime}$ for any two integers r and r^{\prime}. Moreover we have

$$
\Gamma_{H, r}^{s}=\lambda_{r} s \circ T_{H \cdot H^{(r)} \ldots \cdot H^{s-1}}
$$

where $H^{(r)}(X)=H\left(X^{r}\right)$.
In order to prove the above identity it is sufficient to prove that the action of the two sides is the same on the monomials. We have
$T_{H} 0 \lambda_{r}\left(X^{\beta}\right)=0$ if β is not a multiple of r

$$
\begin{aligned}
T_{H} \circ \lambda_{r}\left(X^{\beta}\right) & =T_{H}\left(X^{\frac{\beta}{r}}\right) \text { if } \beta \text { is a multiple of } r \\
& =\sum h_{\alpha} X^{\alpha+\frac{\beta}{r}}=\sum h_{\alpha} X \frac{r \alpha+\beta}{r}
\end{aligned}
$$

with the convention that coefficient of $X^{\frac{r \alpha+\beta}{r}}=0$ if r does not divide $\mathbf{1 5 0}$ β.

Therefore

$$
\begin{aligned}
T_{H} \circ \lambda_{r}\left(X^{\beta}\right) & \left.=\lambda_{r}\left(\sum_{\alpha} h_{\alpha} X^{r \alpha}\right) X^{\beta}\right) \\
& =\lambda_{r} \circ T_{H}^{(r)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\Gamma_{H, r}^{2} & =\lambda_{r} \circ T_{H} \circ \lambda_{r} \circ T_{H} \\
& =\lambda_{r} \circ \lambda_{r} \circ T_{H^{(r)}} \circ T_{H} \\
& =\lambda_{r^{2}} \circ T_{H, H^{(r)}}
\end{aligned}
$$

Let us assume that we have proved that

$$
\Gamma_{H, r}^{s}=\lambda_{r^{s}} \circ T_{H \circ H^{(r)} \circ \ldots \circ H^{\left(r^{s-1}\right)}}
$$

Then

$$
\begin{aligned}
\Gamma_{H, r}^{s+1} & =\Gamma_{H, r}^{s} \circ \Gamma_{H, r}=\lambda_{r^{s}} T_{H \circ H^{(2)}} \cdots \circ H^{r^{S-1}} \circ \lambda_{r}^{\circ} T_{H} \\
& =\lambda_{r} s T_{H \circ} T_{H^{(2)}} T_{H\left(r^{s-1}\right)} \circ \lambda_{r} \circ T_{H}
\end{aligned}
$$

$$
=\lambda_{r^{s+1}} T_{H} \circ T_{H^{(r)}} \circ \cdots \circ T_{H^{(r s)}}
$$

We see immediately that $\Gamma_{H, r}^{s}$ is an operator of the same type as $\Gamma_{H, r}$ namely $\Gamma_{H, r}^{s}=\Gamma_{H^{\prime} \circ r^{\prime}}^{s}$ where $r^{\prime}=r^{s}$ and $H^{\prime}=H H^{(r)} \ldots H^{\left(r^{S-1}\right)}$.

151 Lemma 3. Let us assume that $K=\Omega$ the complete algebraic closure of Q_{P} and $r=p^{f}$. Let us further assume that the coefficients h_{α} tend to 0 as $|\alpha|$ tends to infinity. Then the series $\operatorname{Tr}\left(\Gamma_{H, r}^{s}\right)=\sum_{\alpha}\left(\Gamma_{H, r}^{s}\right)_{\alpha \alpha}$ giving the trace of $\Gamma_{H, r}^{s}$ with respect to the basis $\left(X^{\alpha}\right)$ is convergent and we have

$$
\operatorname{Tr}\left(\Gamma_{H, r}^{s}\right)=\frac{1}{\left(r^{s}-1\right)^{n+1}}=\sum_{\xi \in\left(\mathscr{R}_{f s}^{*}\right)^{n+1}} H(\xi) \ldots \ldots \ldots . H\left(\xi^{r^{S-1}}\right)
$$

Proof. For any monomial X^{β} in $K\left[\left[X_{1}, \ldots, X_{n+1}\right]\right]$

$$
\begin{aligned}
\Gamma_{H, r}\left(X^{\beta}\right) & =\lambda_{r} \circ \sum_{\alpha} h_{\alpha} X^{\alpha+\beta} \\
& =\sum_{\alpha} h_{\alpha r} X^{\alpha+\beta}
\end{aligned}
$$

Therefore the matrix of the operator $\Gamma_{H, r}$ with respect to the basis $\left(X^{\beta}\right)$ is $\left(\gamma_{\alpha \beta}\right)$ with $\gamma_{\alpha \beta}=h_{r \alpha-\beta}$ and $T_{r}\left(\Gamma_{H, r}\right)=\sum_{\alpha} h_{r \alpha-\alpha}$. But h_{α} tends to 0 as $|\alpha|$ tends to infinity, therefore the series $\sum_{\alpha}^{\alpha} h_{r \alpha-\alpha}$ is convergent in K. We have already proved that

$$
\sum_{\substack{r-1 \\ \rho=1}} H(\rho)=(r-1)^{n+1} \sum_{\alpha \geq 0} h_{r \alpha-\alpha}
$$

Therefore

$$
T_{r}\left(\Gamma_{H, r}\right)=\frac{1}{(r-1)^{n+1}} \sum_{\rho^{r-1}=1} H(\rho)
$$

Hence our lemma is proved for $s=1$ for $s>1, \Gamma_{H, r}^{s}$ is of the same type as $\Gamma_{H, r}$. Thus our lemma is completely established.

152 Corollary. $p^{s} N_{s}=\left(p^{s}-1\right)^{n}+\left(p^{s}-1\right)^{n+1} \operatorname{Tr} \Gamma^{s}$ where $\Gamma=\Gamma_{G, p}$ we have already proved that

$$
p^{s} N_{s}=\left(p^{s}-1\right)^{n}+\sum_{\xi \in\left(R_{s}^{*}\right)^{n+1}} \prod_{k=0}^{s-1} G\left(\xi^{p^{k}}\right)
$$

Therefore the corollary follows from the lemma.

10 Meromorphic character of $\xi_{V}(t)$ in Ω

We have seen that

$$
\begin{gathered}
\tilde{\zeta}_{V}(t)=\exp \left(\sum_{s=1}^{\infty} N_{s} \frac{t^{s}}{s}\right), \quad \text { where } \\
N_{s}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} p^{s(i-1)}+\sum_{i=0}^{n+1}\binom{n+1}{i}(-1)^{n+1-i} p^{s(i-1)} \operatorname{Tr} \Gamma^{s}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\sum_{s=1}^{\infty} \frac{N_{s} t^{s}}{s} & =\sum_{s=1}^{\infty} \sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} \frac{\left(p^{i-1} t\right)^{s}}{s} \\
& =\sum_{s=1}^{\infty} \sum_{i=0}^{n+1}(-1)^{n+1-i}\binom{n+1}{i} \frac{\left(p^{i-1} t\right)^{s}}{s} \operatorname{Tr} \Gamma^{s} \\
\exp \left(\sum_{s=1}^{\infty} \frac{N_{s} t^{s}}{s}\right) & =\prod_{i=0}^{n} \exp \left(\sum_{s=1}^{\infty}\left[\frac{\left(p^{i-1} t\right)^{s}}{s}\right]\right)(-1)^{n+1-i}\binom{n+1}{i} \\
& =\prod_{i=0}^{n+1} \exp \sum_{s=1}^{\infty}\left[\frac{\left(p^{i-1} t\right)^{s}}{s} \operatorname{Tr} \Gamma^{s}\right]^{(-1)^{n+1-i}}\binom{n+1}{i} \\
& \left.\left.=\prod_{i=0}^{n}\left(1-p^{i-1} t\right)^{(-1)^{n-i}}\binom{n}{i}\right) \prod_{i=0}^{n+1} \Delta\left(p^{i-1} t\right)^{(-1)^{n-i}}\binom{n+1}{i}\right)
\end{aligned}
$$

where $\Delta(t)=\exp \left(-\sum_{s=1}^{\infty} \frac{t^{s}}{s} \operatorname{Tr} \Gamma^{s}\right)$

So in order to prove that $\tilde{\zeta}_{v}(t)$ is meromorphic in Ω, it is sufficient to prove that $\Delta(t)$ is every where convergent in Ω.

If Γ were a finite matrix, then its trace is well defined. If the order of the matrix is N, then

$$
\operatorname{Tr} \Gamma^{s}=\sum_{i=1}^{N} \lambda_{i}^{s} \text { are the eigen values of } \Gamma
$$

Moreover

$$
\begin{aligned}
\Delta(t) & =\exp \left(-\sum_{i=1}^{N} \sum_{s=1}^{\infty} \frac{t^{s}}{s} \lambda_{i}^{s}\right)=\prod_{i=1}^{N}\left(1-t \lambda_{i}\right) \\
& =\operatorname{det}(I-t \Gamma)
\end{aligned}
$$

If Γ is an infinite matrix, we $\operatorname{define} \operatorname{det}(I-t \Gamma)=\sum_{m=0}^{\infty} d_{m} t^{m}$, where

$$
d_{m}=(-1)^{m} \sum_{1 \leq i_{1} \ll i_{m}} \sum_{\sigma} \varepsilon_{\sigma} \gamma_{i_{1}} \gamma_{i_{(1)}} \ldots \gamma_{i_{m}} i_{\sigma_{(m)}}
$$

ε_{σ} being the signature of any permutation σ in s_{m}.
Then for $\Gamma=\Gamma_{G, p}$ we get

$$
d_{m}=(-1)^{m} \sum_{\alpha_{i}}, \sum_{1 \leq i \leq m} \sum_{\sigma \in s_{m}} \varepsilon_{\sigma} \gamma_{\alpha_{1} \alpha_{\sigma(1)}} \ldots \gamma_{\alpha_{m} \alpha_{\sigma}(m)} \alpha_{i} \text { being distinct. }
$$

Let us assume that there exists a constant M such that $v\left(g_{\alpha}\right) \geq M \mid$ $\alpha \mid$. Then

$$
\begin{aligned}
v\left(\gamma_{\alpha \beta}\right)=v\left(g_{p \alpha-\beta}\right) & \geq M|p \alpha-\beta| \\
& \geq M(p|\alpha|-|\beta|)
\end{aligned}
$$

We consider one term of the series giving d_{m}

$$
v\left(\prod_{j=1}^{m} \gamma_{\alpha_{j}} \gamma_{\sigma(j)}\right)=\sum_{j=1}^{m} v\left(\gamma_{\alpha_{j}} \alpha_{\sigma(j)}\right)
$$

$$
\begin{aligned}
& \geq M \sum_{j} p\left|\alpha_{j}\right|-\left|\alpha_{\sigma(j)}\right| \\
& \geq M(p-1) \sum_{j} \alpha_{j}
\end{aligned}
$$

Now there exist only a finite number of indices α_{i} such that their length $|\alpha|$ is less than some constant, therefore the series d_{m} converges. Moreover we get $v\left(d_{m}\right) \geq M(p-1)$ inf $\sum_{j=1}^{m} \alpha_{j}$ where infimum is taken over all the sequence $\alpha_{1}, \ldots, \alpha_{m}$. Let $\rho_{m}=\inf \sum_{j=1}^{m}\left|\alpha_{j}\right|$. Now let us order the sequence of indices $\alpha \in Z_{+}^{n+1}$ in such a way that $\left|\alpha_{i}\right|<\left|\alpha_{i+1}\right|$, then we have $\rho_{m}=\sum_{i=1}^{m}\left|\alpha_{i}\right|$ and we see immediately that

$$
\lim _{m \rightarrow \infty} \frac{\rho_{m}}{m}=\sum_{\frac{i=1}{m}}^{m} \alpha_{i}=\infty
$$

Therefore $\frac{v\left(d_{m}\right)}{m}$ tends to infinity as m tends to infinity. Hence we get the following lemma.

Lemma 4. If an element $G=\sum_{\alpha \in Z_{+}^{n+1}} g_{\alpha} X^{\alpha}$ satisfies the condition (C) $v\left(g_{\alpha}\right) \geq M|\alpha|$
then the series $\operatorname{det}(I-t \Gamma)$ with $\Gamma=\Gamma_{G}$ is well defined as an element of $\Omega[[t]$.$] and is an every where convergent power series in \Omega$.

It is evident from the above discussion that if we prove that
(i) The function G defined by $=\pi \varphi\left(a_{\alpha} \xi^{\alpha}\right)$ satisfies the condition (C)
(ii) The formal power series $\exp \left(-\sum_{s=1}^{\infty} \frac{t^{s} \operatorname{Tr} \Gamma^{s}}{s}\right)$ and $\operatorname{det}(I-t \Gamma)$ are identical.

Then $\Delta(t)$ is every where convergent in Ω which implies that $\tilde{\zeta}_{v}(t)$ is meromorphic in Ω.

We have already proved the result (ii) when Γ is a finite matrix. Let Γ_{h} denote the matrix of first h rows and columns of Γ.

Then

$$
\begin{aligned}
\operatorname{det}\left(I-t \Gamma_{h}\right) & =\exp -\sum_{s=1}^{\infty} \frac{t^{s} \operatorname{Tr} \Gamma_{h}^{s}}{s} \\
& =\sum_{m=0}^{\infty} d_{m}^{h} t^{m}
\end{aligned}
$$

where $d_{m}^{h}=(-1)^{m} \sum_{\leq i_{1} \leq i_{2}<\ldots<i_{m} \leq h} \gamma_{i_{1} i_{\sigma(1)}} \ldots \gamma_{i_{m} i_{\sigma(m)}}$ being an element of S_{m}.
Therefore

$$
\log \left(\sum_{m=0}^{\infty} d_{m}^{h} t^{m}\right)=-\sum_{s=1}^{\infty} t^{s} \frac{\operatorname{Tr} \Gamma_{h}^{s}}{s}
$$

We shall show that d_{m}^{h} converges to d_{m} and $\operatorname{Tr} \Gamma_{h}^{s}$ tends to $\operatorname{Tr} \Gamma^{s}$ as h tends to infinity. We have

$$
\begin{aligned}
d_{m}-d_{m}^{h}=(-1)^{m} \sum_{\alpha_{1}, \ldots, \alpha_{m}} & \sum_{\sigma \in S_{m}} \gamma_{\alpha_{1}} \alpha_{\sigma(1)} \ldots \gamma_{\alpha_{m} \alpha_{\sigma(m)}} \\
& -(-1)^{m} \sum_{\alpha_{i} \leq h} \sum_{\sigma \in S_{m}} \gamma_{\alpha_{1}} \alpha_{\sigma(1)} \ldots \gamma_{\alpha_{m} \alpha_{\sigma(*)}}
\end{aligned}
$$

Obviously $v\left(d_{m}-d_{m}^{h}\right)$ tends to infinity as h tends to infinity. Similarly one can prove that

$$
\begin{aligned}
& v\left(\operatorname{Tr} \Gamma^{s}-\operatorname{Tr} \Gamma_{h}^{s}\right)=v\left[\sum_{\alpha_{1} \ldots \alpha_{s}} g_{p \alpha_{1}-\alpha_{2}} \ldots g_{p \alpha_{s}-\alpha_{1}}\right] \\
&-\left(\sum_{\alpha_{1} \ldots \alpha_{s} \leq h} g_{p \alpha_{1}-\alpha_{2}} \ldots g_{p \alpha_{s}-\alpha_{1}}\right)
\end{aligned}
$$

tends to infinity as h tends to infinity. In order to prove that the function G satisfies (1) it is sufficient to prove that each term $\varphi\left(a_{\alpha} \xi^{\alpha}\right)$ of
the product satisfies (1). We have

$$
\varphi(t)=F(\zeta-1, t)
$$

But $F(Y, t)=\sum_{m=0}^{\infty} A_{m}(Y) t^{m}$ with $A_{m}(Y)=Y^{m} B_{m}(Y)$ and $B_{m}(Y)$ belongs to $\mathscr{O}[[Y]]$. Therefore

$$
\begin{aligned}
\varphi\left(a_{\alpha} \xi^{\alpha}\right) & =\sum_{m=0}^{\alpha}(\zeta-1)^{m} B_{m}(\zeta-1)\left(a_{\alpha} \xi^{\alpha}\right)^{m} \\
& =\sum_{\beta=0}^{\alpha} h_{\beta} \xi^{\beta}
\end{aligned}
$$

Thus $h_{\beta}=0$ if $\beta \neq \alpha_{m}$

$$
=(\zeta-1)^{\frac{\beta}{\alpha}} B_{\beta_{/ \alpha}}(\zeta-1) a_{\alpha}^{\frac{\beta}{\alpha}}
$$

which shows that

$$
v\left(h_{\beta}\right) \geq \frac{|\beta|}{|\alpha|} \frac{1}{p-1}=\left(\frac{1}{p-1} \frac{1}{|\alpha|}\right)|\beta|
$$

because $B_{\beta_{/ \alpha}}(\zeta-1) d_{\alpha}^{\beta_{/ \alpha}}$ is of positive valuation. Hence G satisfies (I).
We have proved that $\tilde{\zeta}_{v}(t)$ is convergent in a disc $|t|<\delta<1$ as 157 a series of complex numbers and is meromorphic in the whole of Ω, therefore by the Criterion of rationality proved earlier we obtain that $\tilde{\zeta}_{v}(t)$ is a rational function of t. Hence the lemma 2 of $\S 7$ is completely proved and also the theorem 1 .

Bibliography

[1] E. Artin Algebraic Theory of Numbers, Gottingen 1960.
[2] E. Artin Geometric Algebra.
[3] A. Borel Groupes linearies algebriques, Annals of Math., 64 1956, p.20-82.
[4] N. Bourbaki Algebre Ch.. VII
[5] N. Bourbaki Algebre Ch.. VIII
[6] N. Bourbaki Algebre Ch.. IX
[7] N. Bourbaki Algebre commutative, Ch. I-VI (to appear).
[8] F. Bruhat Sur les representations induties des groupes de Lie, Bull. Soc. Math. Fr., 84, 1956, p.97-205.
[9] F. Bruhat Lecture on Lie groups and representations of locally compact groups, Tata Institute 1958.
[10] F. Bruhat Distributions sur, les groupes localement compacts et applications aux representations des groupes p-adiques, Bull. Soc. Math. Fr., 89, 1961, p.43-76.
[11] F. Bruhat Sur les representations des groupes classiques p-adiques, Amer. Journal of Math., 84, 1961.
[12] C. Chevalley Sur certains groupes simples, Tohoku Math. JOur. 7, 1955, p.14-66.
[13] J. Dieudonne Sur les groupes classiques, Hermann 1948.
[14] J. Dieudonne La geometrie des groupes classiques, Springer 1955.
[15] B. Dwork Norm residue symbol in local number fields, Abh. Math. Sem. Hamburg, 22, 1958, p.180-190.
[16] B. Dwork On the retionality of zeta function of an algebraic variety, Amer. Jour. of Math., 82, 1960, p.631-648.
[17] M. Eichler Quadratische Formen and orthogonale Gruppen, Berlin 1952.
[18] I. Gelfand and M. Naimark Unitare Darstellungen der klassische Gruppen, Berlin 1957.
[19] R. Godement A theory of spherical functions, Trans. A.M.S., 73, 1952, p.496-556.
[20] A. Grothendieck et J. Dieudonne Elements de geometrique Algebrique, I, Publications Mathematiques de 1'I. H.E.S. no4, Paris 1960.
[21] Harishchandra Travaux de Harishchandra Seminaire Bourbaki February 1957.
[22] Harishchandra Representations of Semi-simple Lie Groups V Amer. Jour. of Math., 78, 1956, p.1-40.
[23] H. Hasse Zahlentheorie, Berlin 1949.
[24] I. Kaplansky Groups with representations of bounded degree, Canad. Jour. of Math., 1, 1949, p.105-112.
[25] I. Kaplansky Elementary divisors and modules, Trans. A.M.S., 66,1949, p. 464-491.
[26] M. Krasner Theorie des corps values, C.R.Acad. Sci., 239, 1954, p.745-747.
[27] G.W. Mackey Induced representations of locally compact groups Annals of Math. 55, 1952, p.101-134.
[28] F.I. Mautner Spherical functions on p-adic fields, Amer. Jour. of Math., 80, 1958, p.441-457.
[29] P. Samuel Algebre locale, Memorial des Sci. Math., 123, Paris, 1953.
[30] O. Schilling Theory of valuations, New-York, A.M.S., 1950.
[31] L. Schnirelmann Sur les fonctions dans les corps normes algebriquement clos, Bull. Acad. Sci. U.R.S.S., 19 p.487-497.
[32] J.P. Serre Representations lineaires et espaces homogenes Kahleriens des groups de Lie Compacts. Seminaire Bourbaki Mai 1954.
[33] R. Steinberg The representations of GL(3, q), GL(4, q), PGL(3. q) and PGL(4, q), Canad. Jour. of Math., 3, 1951, p. 225.
[34] A. Weil L'integration dans les groupes topologiques, Paris 1940.
[35] A. Weil Sur les courbes algebriques et les varietes qui s'en deduisent, Paris, 1948.
[36] A. Weil Numbar of solutions of equations in finite fields, Bull. A.M.S., 5, 1949, p. 497.

For Part【 see (1), (7), (23), (29), (30)
For Part [I] see (9), (19), (24), (27) and (34) for the theory of spherical functions in general. See (2), (6), (13), (14), (17), (24), for classical groups. See (10), (11), (17) and (28) for p-adic groups.

For Part III see (15), (16), (26) and (31) for analytic functions and (16), (34), (36) for zeta-function.

