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Chapter 1

1 Introduction: Abelian Functions
1

In this course of lectures, we shall be concerned with a systematic study
of Riemann matrices which arise in a natural way from the theory of
abelian functions. This introductory article will be devoted to explaining
this connections.

Let u1, . . . , un ben independent complex variables and 1etu =

( u1

...
un

)
.

We shall denote byCn, then-dimensional complex euclidean space and
by C, the field of complex numbers. Letf (u) be anabelian functionof
u; in other words,f (u) is a complex-valued function defined and mero-
morphic inCn and having 2n periodsω1, . . . ,w2n linearly independent
over the field of real numbers (i.e. for 1≤ i ≤ 2n, f (u + ωi) = f (u)).
We suppose further thatf (u) is a non-degenerateabelian function i.e.
there does not exist any complex linear transformation of the variables
u1, . . . , un such thatf (u) can be brought to depend on strictly less than
n complex variables.

The periods off (u) form a latticeΓ in Cn, which we may assume,
without loss of generality, to be generated byω1, . . . , ω2n over the ring
Z of rational integers. The matrixP = (ω1ω2 . . . ω2n) of n rows and 2n
columns is called aperiod-matrixof the latticeΓ. Any other period-
matrix P1 of Γ is of the formP U whereU is unimodular (i.e.U is a
rational integral matrix of determinant±1).

The abelian functions admitting all elements ofΓ as periods, form
a fieldG. It is known that there existn + 1 abelian functionsf0(u),

1



2 Chapter 1

f1(u), . . . , fn(u) inG such thatf1(u), . . . , fn(u) are algebraically indepen-2

dent overC (and, in fact, even analytically independent),f0(u) depends
algebraically uponf1(u), . . . , fn(u) and further
G = C( f0(u), . . . , fn(u)). In other words,G is an algebraic function

field of n variables overC.
Let nowL be another field of abelian functions of the formg(u) =

f (K−1u) for f (u) ∈ G and fixed complex nonsingular matrixK. Let us
further, suppose thatL has period-lattice∆ contained inΓ. Then it is
easy to show thatL is an algebraic extension ofG. Moreover, ifQ is a
period-matrix of∆, then, on the one hand,Q = KPU for a unimodular
U and, on the other hand,Q = PG1 for a nonsingular rational integral
matrixG1. Thus we have

KP = PG (1)

with complex nonsingularK and rational integralG. We call any suchK,
a complex multiplicationof P andG, amultiplier of P. Our object is to
study the nature of the set ofK andG satisfying the matrix equation (1).
To this end, we first relax our conditions and ask for all rational 2n-
rowed square matricesM satisfying the condition

KP = PM (2)

with a suitable complex matrixK. It is easy to verify that the set of such
M is an algebraM of finite rank over the fieldQ of rational numbers.
We denote this abstract algebra byM, while the set of matricesM give
a matrix representation ofM which we denote by (M).

For the period-matrixP, there exists a rational 2n-rowed alternate3

non-singular matrixA such that

i) PA−1P′ = 0 (3)

and ii ) H =
√
−1PA−1P

′
> 0 (i.e. positive hermitian)

We callA, aprincipal matrix for P.

Definition . Any complex matrix P of n rows and2n columns
satisfying(3) for some principal matrix A is called a (n-rowed)Riemann
matrix.
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Conditions (3) are known as Riemann’speriod relations. In the case
whenA =

(
0 E
−E 0

)
(E being then-rowed identity matrix), conditions (3)

were given by Riemann [16] as precisely the conditions to be satisfied by
the periods of a normalized complete system of abelian integrals of the
first kind on a Riemann surface of genusn. It was shown by Poincare
that conditions (3) are necessary and sufficient for P to be a period-
matrix of a nondegenerate abelian function.

Let nowQ =
(P
P

)
. Then conditions (3) may be rewritten as

i Q A−1 Q
′ ( H 0

0 −H

)
(i =
√
−1) (4)

with H positive hermitian. IfW = iQA−1Q
′

, thenW and thereforeQ
are nonsingular. We may now reformulate (2) as

TQ= QM (5)

whereT =
(

K 0
0 K

)
.

Following H. Weyl, we introduce the 2n-rowed matrixL =
(
−iE 0

0 iE

)

and consider, instead ofP, the matrix

R= Q−1LQ. (6)

Under the transformationP → DP or equivalentlyQ →
(

D 0
0 D

)
Q 4

(with arbitrary complex nonsingularD), R remains unchanged. IfP
is a period-matrix, this has the significance thatRas defined by (6) is in-
dependent of the choice of the differentialsdu1, . . . , dun of the first kind
on the abelian variety associated withP.

The advantage in working withR is that in the first placeR is real
as we shall see presently and, further, that equation (5) maybe written
simpler as

RM = MR (7)

using the fact thatLT = TL. ThusM has to be just a 2n-rowed rational
matrix commuting withR. Conversely, ifM is such a matrix, then defin-
ing T = QMQ−1, we haveLT = TL. But, from the form ofL, we see
thatT =

(
K 0
0 K1

)
with n-rowed square matricesK andK1. ButTQ= QM
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givesKP = PM = PM = K1P which, in turn, leads toK = K1 (sinceP
is of rankn). Thus the rational solutionsM of (7) are the same as those
of (5).

Proposition 1. The matrix R defined by(6) has the following properties:

(i) R is real

(ii ) R2
= −E(E being the2n-rowed identity matrix)

and (iii ) S = AR is positive symmetric.

Conversely, any2n-rowed rational matrix having properties (i), (ii)
and (iii) leads to a Riemann matrix P which is uniquely determined upto5

a left-sided nonsingular factor and P has A for a principal matrix.

Proof. Let V =
(

0 E
E 0

)
with E being then-rowed identity matrix. Since

Q = VQ andV−1LV = L, we haveR = Q
−1

L Q = Q−1V−1LVQ = R,
which proves (i). FromL2

= −E, (ii) follows. To prove (iii), we set
F = iQA−1Q

′
=

(
H 0
0 −H

)
. ThenF = F

′
andS = AR = AQ−1LQ =

iQ
′
F−1LQ = Q

′
F−1

(
E 0
0 −E

)
Q. But F−1

(
E 0
0 −E

)
=

(
H−1 0

0 H
−1

)
is positive

hermitian and so is its transformS. SinceS is real, our assertion (iii) is
proved.

Conversely, letR have the properties (i), (ii) and (iii). From (ii), the
eigen-values ofR are+i and−i and they occur with the same multiplic-
ity n, since the characteristic equation ofR is of degree 2n and has real
coefficients. Thus it may be seen that there is a complex non-singular
matrix C such thatR = C−1LC. If C0 also satisfiesC−1

0 LC0 = R, then

C0 =
(

B1 0
0 B2

)
C with complexn-rowed non-singular matricesB1 andB2.

Now from (i), C−1LC = C
−1

L C = (VC)−1L(VC) sinceL = V−1LV
so thatVC =

(
B1 0
0 B2

)
C or C =

(
0 B2
B1 0

)
C. Splitting up C as

(
C1
C2

)

with n-rowed C1, we haveC1 = B2C2 and C2 = B1C1. We may
now chooseQ =

(
C1
B2 C2

)
=

(
E 0
0 B2

) (
C1
C2

)
. Then Q−1LQ = R and if

we denoteC1 as P, Q =
(P
P

)
. We shall prove thatP is a Riemann6

matrix havingA for a principal matrix. In fact, from (iii), we have
AQ−1LQ = Q

′
F−1

(
E 0
0 −E

)
Q is positive hermitian, whereF = iQA−1Q

′
.
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But then this meansF−1
(

E 0
0 −E

)
is hermitian and positive. Therefore,

(
E 0
0 −E

)
F is again positive hermitian. WritingF =

(
F1 F2

F
′
2 F3

)
we have

(
F1 F2

−F
′
2 −F3

)
=

(
F
′
1 −F2

F
′
2 −F

′
3

)
. ThusF2 = 0 andF1, −F3 are positive hermitian.

Writing F =
(

H 0
0 H1

)
whereH, −H1 are positive hermitian, it is trivial to

seeH1 = −H. Thus our proposition is completely proved.
For the sake of brevity, we shall call a matrixR having properties

(i), (ii) and (iii) mentioned in Proposition 1, aR-matrix. A real matrix
satisfying just condition (iii) is referred to byH. Weyl [27] as a “gener-
alized Riemann matrix”. We shall call the matrixA, a ‘principal matrix’
for R, too.

�

2 The commutator-algebra of aR-matrix

In the last section we reduced the problem of finding the set ofrational
matricesM satisfying (2) for a suitable complexK, to that of finding
all 2n-rowed rational matricesM which commute with a 2n-rowedR-
matrix R. We may now forget the period matrixP which gave rise toR
and work withR instead. As we remarked, the set of such commutators
M of R is an algebra (M) of finite rank overQ.

We shall now see that in (M), we have an involutionM → M∗; this
involution is known as theRosati involution. Further, it is apositive
involution in the sense that for anyM ∈ (M), the traceσ(MM∗) of MM∗ 7

is a positive rational number unlessM = 0.
(For a complex square matrixX, we denote thetrace by σ(X) and

thedeterminantby |X|).

Proposition 2. We have inM, a positive involution.

Proof. For any 2n-rowed complex square matrixW, define

W∗ = A−1W′A.

Then it is easy to verify that

(W1 ±W2)∗ = A−1(W1 ±W2)′A =W∗1 ±W∗2
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(cW1)∗ = cW∗1 for anyc ∈ C. (8)

(W1W2)∗ = A−1W′2W′1A =W∗2W∗1
(W∗)∗ = A−1(A−1W′A)′A =W

If M ∈ (M), then MR = RM and by (8),M∗R∗ = R∗M∗. But
R∗ = A−1R′A = −A−1S = −R. Thus M∗R = RM∗. FurtherM∗ is a
rational matrix and thereforeM∗ ∈ (M). We now obtain from (8) that
the mappingM → M∗ of (M) is an anti-automorphism of order 2, i.e.
an involution.

Clearly σ(MM∗) = σ(MA−1M′A) = σ(MRS−1M′S R−1) =
σ(RMS−1M′S R−1) = σ(MS−1M′S) = σ(MC−1C′−1M′C′C) =
σ(CMC−1C′−1M′C′) whereC is a real nonsingular matrix such that
S = C′C. Now settingG = CMC−1, we haveσ(MM∗) = σ(GG′)
which is strictly positive forG , 0 and zero forG = 0. Equivalently,
σ(MM∗) > 0 for M , 0 in (M) andσ(MM∗) = 0 for M=0.

We shall see later that the property of (M) mentioned in Proposition8

2 serves to characterise the algebra of multiplications of aRiemann ma-
trix. More precisely, we shall prove that, except in some very special
cases, any matrix algebra overQ carrying a positive involution can be
realized as the algebra of multiplications of a Riemann matrix. To this
end, we need to prove some preliminary results.

A 2n-rowedR-matrix R is said to bereducible, if there exists a ra-
tional 2n-rowed non-singular matrixC1 such that

C−1
1 RC1 =

(
R1 R12
0 R2

)
(9)

whereR1 is a matrix ofn1(< 2n) rows andn1 columns. Otherwise, we
say thatR is irreducible.

Let us remark that ifR is a reducibleR-matrix, it is not a priori
obvious from the form (9) ofC−1

1 RC1 whetherR1 andR2 are againR-
matrices and whether atleastn1 is even. We obtain clear information
about this from �

Theorem 1(Poincare, [12]). If R is a2n-rowed reducible R-matrix then
there exists a rational non-singular matrix C such that

C−1RC=
(

R1 0
0 R2

)
(10)
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where R1 and R2 are again R-matrices of2r and 2(n − r) rows respec-
tively.

Proof. We may takeRalready in the form
(

R1 R12
0 R2

)
, without loss of gen-

erality. Letn1 andn2(= 2n − n1) be the number of rows ofR1 andR2 9

respectively and letEi be the identity matrix ofni rows (i = 1, 2). It is
then enough to find first a suitable rationalX such that forC =

(
E1 X
0 E2

)
,

we haveC−1RC in the form (10). Now

C−1RC=
(

E1 −X2
0 E2

) (
R1 R12
0 R2

) (
E1 X
0 E2

)
=

(
R1 R12+R1X−XR2
0 R2

)
.

If X is rational and satisfiesR12 + R1X − XR2 = 0, we will be through.
Breaking upA as

( A1 A12
−A′12 A2

)
andS as

( S1 S12
S′12 S2

)
in a similar way, we see

that A1 is a nonsingular alternate matrix, sinceS1 = A1R1 is positive
symmetric. Thusn1 is even and letn1 = 2r (say). Further fromA1R1 =

S1 = −R′1A1, we have

A1R12+ A12R2 = S12 = (−A′12R1)′ = −R′1A12 = A1R1A−1
1 A12.

SettingX = −A−1
1 A12, we have a rational matrixX satisfyingR12+R1X−

XR2 = 0.
To complete the proof, we first remark that ifR is replaced byC−1

RC, thenA, S andM have respectively to be replaced byC′AC, C′SC
andC−1MC. Now

C′AC =
(

E1 0
X′ E2

) ( A1 A12
−A′12 A2

) (
E1 X
0 E2

)
=

(
A1 0
0 A3

)

whereA3 = A2 − A′12A
−1
1 A12 is again an alternate 2(n − r)-rowed non-

singular matrix. Further from the form ofC′AC andC−1RC, it is clear
thatC′SC=

(
S1 0
0 S2

)
whereS1 andS2 are positive symmetric matrices

of 2r and 2(n− r) rows respectively. FromR2
= −E, we haveR2

1 = −E1, 10

R2
2 = −E2 and fromC′SC> 0, we see thatA1R1 = S1 andA3R2 = S2

are again positive symmetric. ThusR1 andR2 are againR-matrices. �

Remarks. (1) Theorem 1 was proved by Poincare only in the spe-
cial case when the underlying abelian variety is the Jacobian of a
Riemann surface of genusn (see also p.133, [26]).
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(2) If R is reducible andMR= RM, then althoughC−1MC commutes
with C−1RC, it is not necessary thatC−1MC should reduce to the
form (10).

(3) In terms of period matrices, the transformationR→ C−1RC cor-
responds to the transformationP→ PC whereP is a period ma-
trix associated toR (by Proposition 1). From (10), we can prove
that PC =

(
P1 0
0 P2

)
whereP1 andP2 are period matrices ofr and

n− r rows respectively. The field of abelian functions havingPC
for a period matrix is the composite of the fields of abelian func-
tions havingP1 andP2 for period matrices respectively.

Applying the reduction above successively, we can splitR into irre-
ducibleR-matrices.

If A, B,C, . . . are finitely many square matrices, then [A, B,C, . . .]
shall stand for the direct sum ofA, B,C, . . .. With this notation, we can
find by Theorem 1, a rational 2n-rowed non-singular matrixC such that

C−1RC= [R1,R2, . . .], (11)

and correspondingly

C′AC = [A1,A2, . . .].

If two of the matricesRi occurring on the right hand side in (11) are11

equivalent, sayR2 = C−1
1 R1C1, for a rational non-singularC1, then,

replacingC by C

(
E1 0 0
0 C−1

1 0
0 0 E

)
, we could suppose that alreadyR1 = R2.

In this process of changingC, A2 gets replaced byC′1A2C1. Now if
C′1A2C1 is not equal toA1, we could change the matrixA we started
from suitably so that this would be true. Thus grouping the equivalent
matricesRi in (11) together and choosingC properly, we could suppose
that

C−1RC=
[R1, R2, . . .]
f1 f2

(12)

whereRj is aR-matrix repeatedf j times in the direct sum. Correspond-
ingly we may suppose that

C′AC =
[A1, A2, . . .]
f1 f2

(13)
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where, again,A j are repeatedf j times. Now in (12),Rj is not equivalent
to Rk overQ for j , k. On the other hand, it could happen thatA j = Ak

for j , k, in (13).
We shall suppose, in the sequel, thatRandA are already in the form

given on the right hand side of (12) and (13) respectively.
Let us consider the set of linear equations defined by the single ma-

trix equationRM = MR. This is a system of 4n2 linear equations in 4n2

unknowns with roal coeffiecients, namely the elements ofR. In order to
reduce this to a set a equations with rational coefficients, we shall adopt12

the following procedure.
Let ρ1, ρ2, . . ., ρp be a maximal set of elementsrkl of R which are

linearly independent overQ. We may then write

R= ρ1L1 + . . . + ρpLp (14)

whereL1, . . . Lp are rational 2n-rowed square matrices. Denote byT

the abstract algebra generated byL1, . . . , Lp overQ and by (T ), the ma-
trix representation by theL′i s. In other words, (T ) is the algebra consist-
ing of elementsT of the formT =

∑
1≤k1,...,km≤p

ak1 . . .km Lk1 . . . Lkm(ak1...km

∈ Q) and the 2n-rowed identityE. By definition,T is uniquely deter-
mined byR, since a change ofρ1, . . . , ρp would merely involve taking
instead ofL1, . . . Lp matricesT1, . . .Tp which are rational linear combi-
nations ofL1, . . . , Lp and vice versa.

Incidentally, we remark that the determination ofL1, . . . , Lp in (14)
is not all that simple as it appears. For, take the the simple 2-rowed

R-matrix
(

0 −1/
√
γ√

γ 0

)
with A =

(
0 1
−1 0

)
andγ begin Euler’s constant. It

is rather ironical that one does not know whether
√
γ and 1/

√
γ are

linearly independent overQ.
The relationship between (M) and (T ) is given by

Proposition 3. The algebra (M) is the commutator algebra of (T ).
(Definition. By thecommutator algebraof (T ), we mean the set of
all 2n-rowed rational square matrices M for which T M= MT for all
T ∈ (T )).

Proof. For eachM ∈ (M), we have 13
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0 = RM− MR=
p∑

j=1

ρ j(L j M − ML j).

But nowρ1, . . . , ρp being linearly independent overQ and sinceL j M −
ML j, j = 1, 2, . . . , p are rational matrices, we deduce thatL j M = ML j

for 1 ≤ j ≤ p. HenceT M = MT for all T ∈ (T ). The converse is trivial,
since ifM is in the commutator algebra of (T ), thenM commutes with
L j for 1 ≤ j ≤ p and hence withR by (14). Thus (M) is precisely
commutator algebra of (T ). �

Proposition 4. The algebra(T ) admits the involution T→ T∗ =
A−1T′A.

Proof. First of all, we see that for the basis elementsL j , j = 1, 2,·p
of (T ), we haveL∗j = −L j. For, from A′ = −A, S = S′, we have
R∗ = −R and furtherR∗ = (ρ1L1 + . . . + ρpLp)∗ = ρ1L∗1 + . . . + ρpL∗p =
−(ρ1L1 + . . . + ρpLp). In other words, we have

ρ1(L1 + L∗1) + . . . + ρp(Lp + L∗p) = 0.

Again, sinceL j + L∗j , 1 ≤ j ≤ p are rational andρ1, . . . , ρp are linearly
independent overQ, we haveL∗j = −L j(1 ≤ j ≤ p). And now, for any
T =

∑
1≤k1,...,km≤p

ak1...kmLk1 . . . Lkm, we see that

T∗ =
∑

ak1...kmL∗km
. . . L∗k1

=

∑

1≤k1,...,km≤p

ak1...kmLkm . . . Lk1 ∈ (T ).

That the mappingT → T∗ is an involution of (T ) is quite clear.
Let us remark that the involutionT → T∗ of (T ) is not necessarily14

a positive involution. The fact thatS = AR is symmetric is equivalent
to the fact that (T ) is closed under an involutionT → T∗ such that
L∗j = −L j, 1 ≤ j ≤ p. Therefore, the condition thatS is positive
symmetric is much stronger than (T ) admitting the special involution
T → T∗.

SinceR = [R1, R2, ...]
f1 f2 , it is clear that everyLi is of the form asR, in

view of the linear independence ofρ1, . . . ρp overQ. Thus, anyT ∈ (T )
is of the form [T1, T2, ...]

f1 f2 with T j being repeatedf j times in the direct
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sum. For fixedj, let us denote by (T j) the algebra generated overQ by
such rational matricesT j and the corresponding abstract algebra byT j.
None of theT j can be the null-algebra for then we will haveRj = 0,
contradictingR2

= −E. �

Remark . For k , 1, it could happen thatTk andT1 are isomorphic.
But there cannot exist a nonsingular rational matrix B independent of
T = [T1, T2, ...]

f1 f2 ∈ (T ) such that for k, 1, Tk = B−1T1B for every

T ∈ (T ). For, if such aB were to exist thenRk = B−1R1B for k , 1,
which is a contradiction.

Each algebra (T j) is necessarily irreducible (since, if (T j) were re-
ducible, we would haveRj necessarily reducible).

By a simple algebra, we mean an irreducible matrix algebra [28].
This definition of a simple algebra can be identified with another of a 15

simple (matrix) algebra as one having no proper two-sided ideals. A
semi-simple algebrais, by definition, a direct sum of simple algebras.

Proposition 5. The algebra(T ) is semi-simple.

Proof. The algebras (T j) are simple and if we could show thatT is the
direct sum of the algebrasT j, then our proposition would be proved. For

this, it is sufficient to prove that ifT j ∈ (T j), thenT =
[
0 0 T1 0

]
f ,...,1 f1−1

′ f ,...,1 fp
∈

(T ) for every l with 1 ≤ l ≤ p. We might suppose, without loss of
generality thatl = 1. Let now, for 1≤ j ≤ p, (N j) be the set ofT j ∈ (T j)

such thatT =
[
∗,..., ∗, T j , 0,..., 0

]
f1 f j−1 f j f j+1 fp

is in (T ). It is easy to verify that (N j) is

a two-sided ideal in (T j). Now (T j) being simple, we have (N j) = (T j)
or (N j) is the null-algebra. If (N1) = (T1), we are through. Otherwise,
let k be the smallest positive integer greater than 1 such that (Nk−1) is
the null-algebra and (Nk) is the whole of (Tk). Then necessarily, 2≤
k ≤ p for otherwise (Tp) will be the null-algebra which is not true, as

we know. We now claim that ifT =
[
T1,..., Tk−1, Tk,..., 0

]
f1 fk−1 fk fp

is in (T ), then

corresponding toTk ∈ (Tk), Tk−1 in (Tk−1) is uniquely determined. For,

if T =
[
T1,..., Tk−1, Tk, 0,..., 0

]
f1 fk−1 fk fk+1 fp

∈ (T ) andM =
[
M1,..., Mk−1, Tk, 0... 0

]
f1 fk−1 fk fk+1 fp

∈ (T ),

thenTk−1 − Mk−1 ∈ (Nk−1) which is the null-algebra, by definition of16

k. Thus there is a one-one correspondenceTk ↔ Tk−1 between (Tk)
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and (Tk−1) which is actually an algebra isomorphism. But now (Tk)
and (Tk−1) are irreducible, and therefore there exists a constant non-

singular rational matrixB such that ifT =
[
... Tk=1, Tk, .

]
fk−1 fk

∈ (T ) , then

Tk−1 = B−1TkB, which is a contradiction to our Remark on p. 11. Then
(N1) = (T1) and similarly we can show (Nj) = (T j) for every j.

By a theorem on algebras, the commutator algebra of a semi-simple
matrix algebra is again semi-simple. Thus (M) which is the commutator-
algebra of (T ) is semi-simple. (Compare the proof of Theorem 1.4-A,
p.717, [28]). We shall however find the structure of (M) explicitly, as
follows.

We may writeR=
[

R1, R2,...,
f1 f2

]
as

R=
[
R(1),R(2), . . . ,

]

and correspondinglyT =
[

T1, T2...
f1 f2

]
∈ (T ) as

T = [T(1),T(2), . . . , ]

Again, we decomposeM ∈ (M) correspondingly as (Mkl). FromT M =
MT, it follows17

T(k)Mkl = MklT
(l) (15)

whereT(k), T(l) run over all elements of (T jk) and (T jl ) respectively.
But now the algebras (T j) are irreducible. Therefore applying Schur’s
lemma, we see that eitherMkl is the zero matrix or ifMkl is a square ma-
trix (different from the zero matrix), then it is necessarily non-singular.
Let us suppose now thatjk , j l . If Mkl is a square matrix different from
zero, then it is necessarily a nonsingular (rational) matrix and this con-
tradicts the remark on p. 1. Thus corresponding to the decomposition[

R1, R2...
f1 f2

]
of R, the matrixM ∈ (M ) takes the form [M1,M2, . . .] where

Mk = (M(k)
pq) and from (15),

TkM(k)
pq = M(k)

pqTk (16)

for everyTk ∈ (Tk). ThusM(k)
pq belongs to the commutator algebra of

(Tk) which we may denote by (Lk). By Schur’s lemma again, since
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(Tk) is irreducible, we see from (16) thatM(k)
pq = 0 or it is non-singular.

Thus the matrix algebra (Lk) is indeed a division-algebra. Conversely,
if M = [M1, . . . ,Mk, . . .] where Mk = (M(k)

pq), and M(k)
pq ∈ (Lk), then

M ∈ (M). Thus (M) is the direct sum (M1) + (M2) + . . . where (Mk)
is the completefk-rowed matrix algebra over the division algebra (Lk).
Each (Mk) is a simple algebra, since it is the complete matrix algebra18

over a division algebra. Thus (M) is semi-simple.
Let us remark that one could prove the fact (M) is semi-simple also

directly by making use of the positive involution in (M).
In the direct sum decomposition (M) = (M1) + (M2) + . . . above,

each (Mk) is a complete matrix-algebra over a division-algebra (Lk) and
(Mk) carries a positive involution which, when restricted to (Lk) is again
a positive involution. Thus, in our study of the commutator algebra of a
R-matrix, we are finally reduced to the case of division algebras of finite
rank overQ, carrying a positive involution. �

3 Division algebras overQ with a positive involu-
tion

We now consider a division algebra (M) with a positive involution, re-
alised as the commutator algebra of a simple (matrix) algebra (T ).
From the theory of algebras, it is known that the commutator algebra
of (M) is precisely (T ).

Regarding the subalgebra (R) = (T ) ∩ (M), we have

Proposition 6. The algebra(R) coincides with the centre of(T ) as also
with the centre of(M).

Proof. Let K ∈ (R). Then, sinceK ∈ (M), K belongs to the centre of19

(T ). Conversely, ifL is in the centre of (T ), thenL ∈ (M), by our
remark on commutator algebras above and thereforeL ∈ (R). Again let
K ∈ (R). ThenK is in the centre of (M), sinceK ∈ (T ). Conversely, if
L belongs to the centre of (T ), thenL ∈ (M) clearly.

Since (M) is a division algebra, its centre (R) is a field which is a
representation of an algebraic number fieldR of degreeh, say, overQ.
We denote the conjugates ofR by R(1)(= R), R(2), . . . ,R(h). Forα ∈ R,
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we denote its conjugates byα(1) . . . . . . , α(h), and the ‘trace’α(1)
+ . . . +

α(h) and ‘norm’α(1), . . . α(h) respectively bytrR/Q(α), NR/Q(α).
The involution M → M∗ of (M), when restricted to (R), gives an

automorphismK → K∗ of R, of order 2. We now distinguish between
the following two cases:

(i) for every elementκ of R, κ∗ = κ.

(ii) there exists at least oneκ◦ ∈ R such thatκ∗◦ , κ◦.

In the case of (i), we say that theinvolution is of the first kindand in20

the case of (ii), we say it isof the second kind.
The positive involution in (R) enables us to characterise the fieldR

further, as follows. �

Theorem 2. In the case of positive involutions of the first kind,R is
totally real. In the case of positive involutions of the second kind,R is
a totally complex field which is an imaginary quadratic extension of a
totally real fieldL .

Proof. First, we take the case of a positive involution of the first kind in
R. To κ ∈ R, there correspondsK ∈ (R). Now σ(KK∗) = σ(K2) > 0
for everyK in (R), different from 0. But (R) is a multiple of the “regu-
lar representation” ofR overQ (upto equivalence) and henceσ(K2) =
m. trR/Q(κ2) where,m is a positive rational integer. Thus forκ , 0 inR,
we have

trR/Q(κ2) , 0 (17)

Suppose nowR is not totally real; in fact, letR(1) andR(2) be a pair of
complex conjugates, without loss of generality. Letω1, ω2, . . . , ωh be

a basis ofR overQ. Then we have, for 1≤ k ≤ h, κ(k)
=

h∑
j=1

x jω
(k)
j

with x j ∈ Q. Now trR/Q(κ2) = F(x1, . . . , xh) is a quadratic form in
x1, . . . , xh with coefficients inQ and it assumes positive (rational) val-
ues for rationalx1, . . . , xh not all zero. Hence, in the first placeF is21

nondegenerate since ifF is degenerate, there exists a rational column
x0 = 0 whereF1 is the matrix associated withF(x1 . . . xh) and then

x′0F1x0 = F(x(0)
1 , . . . x(0)

h ) = 0 for rationalx(0)
1 , . . . x(0)

h not all zero. By
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continuity, it can be seen that it is, in fact, a positive-definite quadratic
form in x1, . . . , xh. Since the matrix (ω( j)

k )(1 ≤ k, j ≤ h) is non-singular
andR(1),R(2) are complex fields, it is possible to find real numbers
x(0)

1 , . . . , x(0)
h such that

ω
(1)
1 x(0)

1 + . . . + ω
(1)
h x(0)

h = i

ω
(2)
1 x(0)

1 + . . . + ω
(2)
h x(0)

h = −i

ω
( j)
1 x(0)

1 + . . . + ω
( j)
h x(0)

h = 0 for 2< j ≤ h.

Now F(x(0)
1 , . . . x(0)

h ) = i2 + (−i)2
+ 0 + . . . + 0 = −2 < 0. We can,

by continuity of F(x1, . . . , xh) again, find rational numbersx′1, . . . , x
′
h

sufficiently close tox(0)
1 , . . . , x(0)

h such thatF(x′1, . . . , x
′
h) < 0, which is a

contradiction. ThusR is necessarily totally real.
We now take the case of involutions of the second kind. LetL be

the fixed field of the involution, viz. the set of allκ ∈ R such thatκ∗ = κ.
Since the involution is of the second kind, there existsκ0 ∈ R such that
κ0 , κ

∗
0; clearlyκ0 < L . We now claim thatρ = κ0 − κ∗0(, 0!) generates

R overL . Forρ = −ρ∗ andρ2
= δ ∈ L , δ , 0. An arbitraryκ ∈ R can

be written as
1
2

(κ+ κ∗)+
1
2ρ

(κ− κ∗) = λ+µρ (say). Obviouslyλ, µ ∈ L

and further,

if κ = λ + µρ with λ, µ ∈ L , thenκ∗ = λ − µρ. (18)

(It is trivial that anyλ+µρwith λ, µ ∈ L belongs toR). Now if K ∈ (R) 22

corresponds toκ ∈ R, thenσ(KK∗) > 0 for K , 0 implies thattrR/Q((λ+
µρ)(λ − µρ)) = trR/Q(λ2 − µ2δ) > 0 for all λ, µ ∈ L not both zero.
(Recall thatσ(KK∗) = m. trR/Q(κκ∗) for a positive integerm). But we
know thattrRQ(κκ∗) = trL /Q(trR/L (κκ∗)) = 2trL /Q(λ2) − 2trL /Q(µ2δ).
In particular, forλ , 0 in L , trL /Q(λ2) > 0 which implies, by the
foregoing arguments thatL is totally real. We now claim thatδ is
necessarily totally negative. For, if one particular conjugate, sayδ( j) >

0, then we can find an elementε in L such that|ε( j)| is large and|ε(k)| ≤
1 for k , j so thattrL /Q(−ε2δ) < 0 which gives a contradiction. Thus
R = L (

√
δ) i.e. R is an imaginary quadratic extension of the totally

real fieldL . �
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Remark. In the case of positive involutions of the second kind, thein-
volution is uniquely determinedby (18), viz. if κ = λ + µ

√
δ with λ,

µ ∈ L , thenκ∗ = λ − µ
√
δ which is just the complex conjugate ofκ.

If the involution is not positive, then it is not uniquely determined, in
general. Take the biquadratic field generated by

√
2 and

√
3 overQ; we

have two distinct involutions,
√

2→ −
√

2 and
√

3→ −
√

3.

Having known the structure of the centreR of the algebraM, we
wish to remark that the division algebraM can be considered as an al-
gebra even overR, or, in the notation of the theory of algebras, acentral
algebra. For, letκ1, . . . , κh be a basis ofR overQ and let us denote the23

identity inM by γ1. Thenκ1γ1, . . . . . . . . . , κhγ1 are linearly independent
overQ. If there existsγ2 inM linearly independent of theseh elements,
then it is easy to see thatκ1γ1, . . . κhγ1, κ1γ2, . . . , κhγ2 are linearly inde-
pendent overQ. In this way, we can findγ1, γ2, . . . γm in M such that
κ1γ1, . . . , κhγ1, κ1γ2, . . . , κhγ2, . . . , κhγm form a basis ofM overQ and
γ1, . . . , γm form a basis ofM overR. ThusM is a central algebra of
rank m overR. It is known from the theory of algebras thatm = s2,
wheres is a rational integer.

In connection with the problem of determining the division algebras
overQwith a positive involution, occurring as the complete commutator
algebra of aR-matrix, we shall find, as a first step, all division algebras
overQ carrying a positive involution. In view of our remark above,it
clearly suffices to find all central division algebras with a positive in-
volution over a given field of the type mentioned in Theorem 2.Then,
given one positive involution therein, we shall obtain all positive involu-
tions in the algebra. We shall also examine the possibility of expressing
the given positive involution in the specific formM → A−1M′A (in
the regular representation) with a rational non-singular skew-symmetric
matrix A and then getting from one suchA, all other principal matrices
for the same involution.

First we proceed to determine all central division algebrasV with a
positive involution, over a given number field.

Let V be commutative. Then, by Theorem 2,V is either a totally24

complex or a totally real number fieldR, of degreeh, say, overQ. Let
R(1), . . . ,R(h) be the conjugates ofR andω1, . . . , ωh be a basis ofR
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overQ. We now consider the so-calledregular representationof R over

Q (relative toω1, . . . , ωh). For anyδ ∈ R, we haveωkδ =
h∑

j=1
xk jω j,

1 ≤ k ≤ h, xk j ∈ Q.

ω
(1)
k δ(1)

=

h∑

j=1

xk jω
(1)
j , 1 ≤ k, 1 ≤ h. (19)

Denoting the matrices [δ(1), . . . , δ(h)], (ω(1)
k ) and (xk j) by (δ), Ω andD

respectively, we rewrite (19) in matrix form as

Ω(δ) = DΩ (19)′

The mapping (δ)→ D gives a faithful and irreducible rational repre-

sentation ofR. If ω1, . . . , ωh are replaced byω′1, . . . , ω
′
h where


ω′1
...
ω′h

 =

C

( ω1

...
ωh

)
whereC is rational and nonsingular, then we have the equiva-

lent representation (δ) → CDC−1. All irreducible representations ofR
are equivalent to the regular representation ofR and an arbitrary ‘non-
degenerate’ representation ofR is just a multiple of the same.

The involutionδ→ δ∗ in R is, in view of our remark on p. 16 given
by

δ∗ =


δ, if the involution is of the first kind

δ, if it is of the second kind.

Passing to the transpose conjugate in (19)′, we have

(δ∗)Ω
′
= Ω

′
D′

ButΩ(δ∗) = D∗Ω. Thus settingF−1
= ΩΩ

′
, we have 25

D∗ = F−1D′F.

Now, observing that the involution∗ commutes with all the isomor-

phisms ofR i.e. ω(k)
j = (ω j)(k), we see thatF−1

= (trR/Q(ωiω j)) is a
rational matrix but being positive hermitian, is positive symmetric.
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The rank of a central (matrix) division algebraV over its centre is
s2, wheres is a rational integer. Fors = 1, V itself is an algebraic
number fieldR and we have seen in detail, the structure ofR in order
that it might carry a positive involution.

Now supposes = 2. The algebraV is then a so-calledquaternion
algebra over the centreR. Any elementδ ∈ V is of the formδ =

x+ yi + z j+ tk wherei, j, k satisfy the multiplication table given below:

i2 = a ∈ R, j2 = b ∈ R, k2
= −ab, i j = − ji = k,

jk = −bi = −k jki = −a j = −ik.

It can be verified that if 1, i, j, k are linearly independent overQ and
satisfy the multiplication table above, then they generatean algebraV
of rank 4, with centreR.

When is this algebra a division algebra with a positive involution?
Now, in V , we have the mapping

δ = x+ yi + z j+ tk→ δ̃ = x− yi − z j− tk

and it is easy to check that this is an involution ofV . Under the regular26

representation,δ→ D whereD is given by
( 1

i
j
k

)
(x+ yi + z j+ tk) = D

( 1
i
j
k

)

i.e. D =


x y z t
ay x at z
bz −bt x −y
−abt bz −ay x



Now D̃ =


x −y −z −t
−ay x −at −z
−bz bt x y
abt −bz ay x

. DefiningF−1
= [1,−a,−b, ab] it can be seen

that D̃ = F−1D′F. The representationδ → D is not a representation
over Q, but we can get one by replacing eachα in D by its regular
representationΩ(α)Ω−1 overQ.

In order thatV is a division algebra, it is necessary and sufficient
that the norm ofδ ∈ V overR is different from zero, forδ , 0. But the
norm ofδ = x+ yi + z j+ tk overR is just x2 − ay2 − bz2

+ abt2. Hence
the necessary and sufficient condition forV to be a division algebra is
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that the quadratic form f(x, y, z, t) = x2 − ay2 − bz2
+ abt2 should not

represent 0 non-trivially overR.
We shall now find conditions under which the involutionδ → δ̃ in

V is a positive involution.
More generally, let us take a central division algebraM of rank m 27

over its centreR and letδ→ δ∗ be an involution inM, which is identity
onR. We shall now give the “regular representation” ofM overR. Let
γ1, . . . , γm be a basis ofM overR andω1, . . . , ωh be a basis ofR over

Q. Then, for anyδ =
m∑
j=1

x jγ j ∈ M, we have


γ1

...
γm

 γ = D


γ1

...
γm

 (20)

whereD = (dpq) is anm-rowed square matrix with elements inR. For
getting a rational representation ofM, we may proceed as follows. Un-
der the regular representation ofR with respect to the basisω1, . . . , ωh,
we know thatdpq → Dpq = Ω[d(1)

pq, . . . , d
(h)
pq]Ω−1 whereΩ = (ω(1)

g ),
1 ≤ g, 1 ≤ h. Let us now take as a basis ofM overQ, themhelements
β1, . . . , βmh defined byβk+(l−1)h = ωkγ1 for 1 ≤ k ≤ h, 1 ≤ l ≤ m. Then
we have forδ ∈ M, 

β1

...
βmh

 δ = D0


β1

...
βmh

 (21)

where D0 = (Dpq)(1 ≤ p, q ≤ m) is clearly rational. We can get
the relationship betweenD0 and D as follows. Suppose, instead of
β1, . . . , βmh, we take as a basis ofM themhelementsα1, . . . , αmh where
α1+(k−1)m = ωkγ1(1 ≤ k ≤ h, 1 ≤ l ≤ m) and supposeV is themh-rowed
permutation matrix taking (l+ (k−1)m)

th
··· row to (k+ (l−1)h)

th
··· row; then

with respect to the new basis,δ→ V−1D0V. It is now easy to verify that 28

V−1D0V = (Ω × Em)[D(1), . . . ,D(h)](Ω × Em)−1 (22)

whereD(1)
= (d(1)

pq) for 1 ≤ l ≤ h andΩ × Em denotes themh-rowed

square matrix (ω(1)
j Em), Em being them-rowed identity matrix.
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Let δ =
m∑
j=1

x jγ j ∈ M and δ → D, δ∗ → D∗ under (20). Then

σ(DD∗) = f (x1, . . . , xm) is a quadratic form inx1, . . . xm with coeffi-
cients inR.

Proposition 7. The involutionδ → δ∗ in M is positive if and only ifR
is totally real and f(x1, . . . , xm) is totally positive-definite (i.e. f(x1, . . . ,

xm) as well as its conjugates overQ are positive-definite quadratic
forms).

Proof. By definition, the involution is positive, if, for everyδ ∈ M we
haveσ(D0D∗0) positive for the imageD0 of δ under (21). Now, by (22),

σ(D0D∗0) =
h∑

j−1
σ(D( j)(D∗)( j)) =

h∑
j=1
σ(D( j)(D( j))∗) (defining (D( j))∗ =

(D∗)( j)). We have thus

σ(D0D∗0) = trR/Q(σ(DD∗))

Thus we should have, in particular,trR/Q(λ2) > 0 for λ , 0 inR. There-
foreR should be totally real, using the arguments in the proof of Theo-
rem 2.

By the foregoing, the involution is positive if and only iftrR/Q( f (x1,

. . . , xm)) > 0 for x1, . . . , xm in R not all zero. Now, foru , 0 in R, we29

have f (x1u, . . . , xmu) = u2 f (x1, . . . , xm). If, for x(0)
1 , . . . , x(0)

m not all zero,

some conjugate ofκ = f (x(0)
1 , . . . , x(0)

m ) is negative, then, by choosing
u ∈ R suitably, we can maketrR/Q(κu2) < 0, which is a contradiction.
Moreover, no conjugate off (x1, . . . , xm) overQ can be degenerate, for
then there will existx′1, . . . , x

′
m not all zero inR such thatf (x′1, . . . , x

′
m) =

0 andtrR/Q( f (x′1. . . . , x
′
m)) = 0. Thus the conjugates off (x1, . . . , xm)

are all nondegenerate and represent only totally positive numbers in the
respective conjugates ofR which implies that they are positive definite.
Our proposition is thus completely proved.

Going back to the quaternion division algebraV overR, we deduce
that the involutionδ → δ̃ is positive if and only ifR is totally real and
further, the quaternary form x2 − ay2 − bz2

+ abt2 is totally positive-
definite; in other words,−a,−b should both be totally positive numbers
in R.
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If −a, −b are not both totally positive, then the involutionδ → δ̃ is
not positive. We shall, in this case, look for other involutions inV which
might be positive. We shall first find the relationship between any two
involutions inV , which have the same effect onR.

�

Theorem 3 (Albert, [1]). Let δ → δ̃ andδ → δ∗ be two involutions in
a central division algebraM with centreR and let, forα ∈ R, α̃ = α∗.
Then there existsλ , 0 inM such that forδ ∈ M,

δ∗ = λ−1̃δλ, λ̃ = ±λ.

30

Proof. The mappingδ → (δ̃∗), being the composite of two involutions,
is an automorphism ofM and further it in identity onR. By a theo-
rem of T. Skolem [23], every automorphism of a central simplealgebra
which is identity on its centre, is an inner automorphism of the algebra.
Therefore, there existsλ , 0 inM such that

(̃δ∗) = λδλ−1 (23)

i.e. δ∗ = λ̃−1̃δλ̃.

Replacingδ by δ∗ in (23), we get

δ̃ = λδ∗λ−1

= λλ̃−1̃δλ−1λ̃.

In other words,λ−1̃λ commutes with all elements ofM and hencẽλ = κλ
for aκ ∈ R. Furtherλ = κ̃λ̃ = κ̃κλ. SinceM is a division algebra,̃κκ = 1.

Now, suppose thatκ = −1; thenλ̃ = −λ. If κ , −1, then setting
γ = κ + 1, we haveγ , C andγ̃κ = (̃κ + 1)κ = γ. Furtherλ̃γ = γ̃κλ =
γλ = λγ. Now δ∗ = λ−1̃δλ = (λγ)−1̃δλγ for κ , −1, we have

δ∗ = λ−1
1 δ̃λ1 with λ̃1 = −λ1 or λ̃1 = λ1.

Let nowδ → δ∗ be a positive involution of the first kind inV ; then
R is totally real. We know that the involutionδ → δ̃ in V is also of the
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first kind. Thus, by Theorem 3, there existsλ , 0 in V with λ̃ = ±λ,
such that forδ ∈ V .

δ∗ = λ−1̃δλ. (24)

If λ̃ = λ, thenλ ∈ R and thenδ∗ = δ̃ i.e. the involutionδ→ δ∗ coincides31

with the involutionδ→ δ̃.
Let us suppose now that̃λ = −λ. We shall constructρ ∈ V such

that ρ∗ = −ρ̃ , 0 i.e. λ−1ρ̃λ = −ρ̃ which meansλρ̃ + ρ̃λ = 0. But
then applying the involution∼, we haveρλ + λρ = 0. This again gives
(ρ+ ρ̃)λ+λ(ρ+ ρ̃) = 0. Butρ+ ρ̃ ∈ R. Thereforeρ+ ρ̃ = 0, sinceλ , 0.
The conditionρ∗ = −ρ̃ impliesρ̃ = −ρ. Expressingρ asx+yi+z j+tk, the
conditioñρ = −ρmeans thatx = 0. Further sincẽλ = −λ, λ = pi+q j+rk
with p, q, r ∈ R. Thus to findρ ∈ V such thatρ∗ = −ρ̃, we have only to
find numbersy, z, t in R satisfyingλρ+ρλ = 0, i.e.apy+bqz−abrt = 0.
But this last equation is a linear equation in three unknownsover the
field R and therefore admits of infinitely many solutions. Thus, there
existsρ0 = y0i + z0 j + t0k ∈ V such thatρ∗0 = −ρ̃0 andρ0 , 0.

We now observe that the involutionsδ → δ̃ and δ → δ∗ related
by (24), with λ̃ = −λ, cannot both be positive. For,trR/Q(ρ0ρ

∗
0) =

−trR/Q(ρ0ρ̃0). In the case when the involutionδ→ δ̃ is positive, we thus
conclude that no involutionδ → δ∗ with δ∗ = λ−1̃δλ can be positive
unless̃λ = λ in which case both the involutions coincide.

Let us suppose that the involutionδ → δ̃ is not positive. Then, in
the first place,f (x, y, z, t) cannot be totally positive definite and if the32

involution δ → δ∗(= λ−1̃δλ with λ̃ = −λ) is to be positive, then no
conjugate off (x, y, z, t) overQ can be negative definite either, since for
λ , 0 in Q, hλ2

= h. f (λ, 0, 0, 0) = trR/Q(λ2) = trR/Q(λλ∗) must be
positive. Now, we claim that no conjugate off (x, y, z, t) can be positive-
definite either. For,trR/Q(ρ0ρ

∗
0u2) must be positive for allu , 0 inR, i.e.

trR/Q(− f (0, y0, z0, t0)u2) must be positive for allu , 0 inR. But, now, if
some conjugate off (x, y, z, t) were positive-definite, we could chooseu
suitably so thattrR/Q(− f (0, y0, z0, t0)u2) < 0. We know already that no
conjugate off (x, y, z, t) can be negative definite. Thusf (x, y, z, t) and all
its conjugates must be indefinite, if the involutionδ→ δ∗(= λ−1̃δλ with
λ̃ = −λ) were to be positive. We are thus led to �



3. Division algebras overQ with a positive involution 23

Proposition 8. If the quadratic form f(x, y, z, t) = x2 − ay2 − bz2
+ abt2

is totally positive-definite, then the only positive involution in V is the
involution δ → δ̃; otherwise, in order that there might exist positive
involutions inV , f (x, y, z, t) should be totally indefinite.

In the case when the formx2 − ay2 − bz2
+ abt2 is totally indefinite,

we remark that by means of a linear transformation inx, y, z, t with co-
efficients inR, it can be brought to the formx2 − a1y2 − b1z2

+ a1b1t2

wherea1 and−b1 are totally positive. First, we note that the ternary form
ϕ(y, z, t) = −ay2 − bz2

+ abt2 is necessarily totally indefinite (This is be-
cause the three numbers−a( j),−b( j), a( j), b( j), 1 ≤ j ≤ h cannot all be of
the same sign, in view of the fact thata( j) andb( j) are not both negative).33

We can find a linear transformation overR which takesϕ(y, z, t) to the
form −αy2 − bz2

+ αbt2 where−α is any totally negative number repre-
sented byϕ(y, z, t) in R. Again noticing that the binary form−bz2

+αbt2

is totally indefinite, we can eventually transformϕ(y, z, t) to the form
−a1y2 − b1z2

+ a1b1t2 wherea1 and−b1 are totally positive. Thus we
could suppose that the totally indefinite formx2 − ay2 − bz2

+ abt2 has
already the property thata,−b are totally positive.

Forα ∈ R, α > 0 meansα is totally positive. Now sincea > 0, the
elementi =

√
a generates inV , a real fieldR (i). Any δ = x+yi+z j+ tk

can be written asξ + η j with ξ = x+ yi andη = z+ ti. Forα = a+ bi
in R(i), we denoteα = a− bi. Then we havejξ = ξ j. Then we obtain a
representation ofV (as a vector-space overR (i)) given byδ = ξ+η j →
D1 =

(
ξ η

bη ξ

)
;

(
1
j

)
δ = D1

(
1
j

)
(25)

Now

D1 =
(
ξ η
bη ξ

)
= FD1F

−1 (26)

whereF =
(

0 1
b 0

)
corresponds toδ = j under (25). Further

D̃1 =
(

ξ −η
−bη ξ

)
= JD′1J−1 (27)

whereD̃1 corresponds under (25) tõδ = x − yi − z j − tk = ξ − η j and 34
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J =
(

0 1
−1 0

)
. The regular representationδ → D of V may be seen to be

equivalent to the representationδ→
( D1 0

0 D1

)
as below, viz.

D =WΩ2

( D1 0
0 D1

)
Ω
−1
2 W−1 (28)

whereΩ2 =
(

E2 E2
iE2 −iE2

)
, E2 is the 2-rowed identity andW is a permutation

matrix.
Let δ → δ∗ = λ−1

1 δ̃λ1 with λ̃1 = −λ1 be an involution inV and let
δ∗ → D∗1, δ̃ → D̃1 andλ1 → L1 under (25). NowD∗1 = L−1

1 D̃1L1 where

L1 =
(
µ γ

bγ µ

)
= −L̃1 = −JL′1J−1, by (27). Thus settingF1 = J−1L1,

we seeF1 is real symmetric which is equivalent to saying thatµ = −µ.
Further

D∗1 = F−1
1 D′1F1 (29)

Nowσ(DD∗) = 2σ(D1D∗1), in view of (28) and (26). Hence, for the
involution δ → δ∗ to be positive, the quadratic formσ(D1D∗1) should
be totally positive-definite overR. This again implies, by (29), that
σ(D1F−1

1 D′1F1) should be totally positive. A necessary and sufficient
condition for this is given by

Lemma 1. Let X = (xkl), 1 ≤ k ≤ g, 1 ≤ l ≤ h, be a real matrix and
let P, Q be real square matrices of h and g rows respectively. Then the
quadratic formσ(XPX′Q) in xkl is positive-definite if and only if P and
Q are both positive-definite or both negative-definite.

Proof. There exist real non-singular matricesC andB such thatBPB′ =35

[p1, . . . , ph] and C′QC = [q1, . . . , qg]. ReplacingX by CXB, we can
suppose that alreadyP and Q are in the diagonal form. Now

σ(XPX′Q) =
g∑

k=1

h∑
l=1

plqkx2
kl is positive-definite if and only ifplqk are

all positive. Thus eitherp1, . . . , ph, q1, . . . , qg are all positive or all neg-
ative. In other words, the necessary and sufficient condition is thatP, Q
should be both positive-definite or both negative-definite.

The passage fromξ(= x + yi), η(= z + ti), ξ, bη to x, y, z, t is a
nonsingular real linear transformation and we can thus lookupon the
elements ofD1 as independent variables. Thus takingD1 for X in lemma
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1, the criterion forσ(D1F−1
1 D′1F1) to be totally positive is that each

conjugate ofF1 is either positive-definite or negative-definite. Now we
can findκ ∈ R such that the conjugates ofκ have prescribed signs and
if we chooseκλ1 instead ofλ1, then we getκF1 instead ofF1. Thus,
without changing the∗ involution, we might require thatF1 =

(
−bγ −µ
µ γ

)

is totally positive-definite. Nowµ = −µ and thereforeµ = pi with p ∈ R
and letγ = q+ ri . The conditions forF1 to be totally positive are

γ > 0, −bγ > 0, µµ − bγγ > 0

But −b > 0 and therefore, these may be rewritten as

γ > 0, γ > 0, γ + γ = 2q > 0, −p2a− b(q2 − ar2) > 0

It is easy to check that all these conditions can be compressed as

q > 0, −b(q2 − ar2) > ap2 (30)

It is possible to findp, q, r in R satisfying (30) (for example, takeq = 1, 36

p = r = 0) and therefore, the existence inV of positive involutions
δ→ δ∗(= λ−1

1 δ̃λ1) with λ̃1 = −λ1 is assured.
Let nowδ→ λ−1̃δλ with λ̃ = −λ ∈ V be another positive involution

(of the first kind). Settingρ = λ−1
1 λ, we haveρ−1δ∗ρ = λ−1̃δλ. Now,

ρ∗ = λ∗(λ∗1)−1
= (λ−1

1 λ̃λ1)(λ−1
1 λ̃1λ1)−1

= ρ. Conversely, ifρ = ρ∗,
thenλ = λ1ρ satisfies̃λ = −λ. Thus all such involutionsδ → λ−1̃δλ

are connected withδ → δ∗ by λ−1̃δλ = ρ−1δ∗ρ for a ρ ∈ V satisfying
ρ∗ = ρ.

Supposeδ → λ−1
k δ̃λk, k = 1, 2 are two positive involutions ofV ,

with λ̃k = −λk. If λk → Lk under 25, thenL2 = L1R1 whereR1

corresponds toρ = λ−1
1 λ2. Sinceρ∗ = ρ by the foregoing, we have

R∗1 = R1. ThenFk = J−1Lk(k = 1, 2) should be totally positive. Further
F2 = F1R1. Conversely, givenR1 = R∗1 such thatF2 = F1R1 is totally
positive, then the elementλ2 ∈ V corresponding toL2 = L1R1 under
(25), given a positive involutionδ→−1

z δ̃λ2 in V . �

Lemma 2. If F is a real m-rowed positive-definite matrix and R is a
real matrix such that FR is symmetric, then FR is positive-definite if
and only if all the eigenvalues of R are positive.
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Proof. SinceF is positive-definite andFR= R′F′, we can find real non-
singularC such thatF = C′C andFR = C′BC with B = [b1, . . . , bm].
ThenC′BC = C′CR i.e. B = CRC−1. Thus the eigenvalues ofB andR37

are the same. Our lemma easily follows.
Choosing the rational representationδ→ D0 given by (21), we may

conclude as follows.If D0→ D∗0 is a positive involution of the first kind
in V , then all other positive involutions can be obtained in the form
D0→ R−1

0 D∗0R0 where R0 = R∗0 in V and further all the eigen-values of
R0 are positive. The quadratic form x2−ay2−bz2

+abt2 is either totally
definite or totally indefinite overR.

From (29) and (28), it can be verified that

D∗ = F−1D′F (31)

whereF =W′−1
Ω
′−12

( F1 0
0 F1

)
Ω
−1
2 W−1. Now

F−1
= WΩ2

(
F−1

1 0

0 F
−1
1

)
Ω
′
2W
′
=WΩ2

(
L−1

1 0

0 L
−1
1

)
(WΩ2)

−1WΩ2

×
(

J 0
0 J

)
(WΩ2)

−1WΩ2Ω
′
2W′.

Further sinceWΩ2

(
L−1

1 0

0 L
−1
1

)
Ω
−1W−1
2 corresponds toλ−1

1 under the regu-

lar representation ofV , it is a matrix with elements inR; moreover it
is easy to verify that the matricesWΩ2

(
J 0
0 J

)
(WΩ2)−1 andWΩ2Ω

′
2W′

have again their elements inR. ThusF−1 has elements inR and more-

over beinga transform of the totally positive matrix
(

F−1
1 0

0 F
−1
1

)
is itself

totally positive overR. Going to the rational representationδ → D038

again, we have, from (31), that

D∗0 = F−1
0 D′0F0 (32)

whereF0 is a rational positive symmetric matrix. The relation (32) is
analogous to what we obtained on p. 25 for the case of fields, interms
of the regular representation overQ.

An important theorem due to Albert (p.161, [1]) says that anydivi-
sion algebra overQ admitting an involution of the first kind is either an
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algebraic number fieldR or a quaternion division algebra overR. We
have discussed precisely for these two cases, all the involutions of the
first kind. We may now proceed to study division algebras carrying in-
volutions of the second kind. Such algebras, again, have been studied
by Albert [1].

We have, in this connection, to deal with an important class of alge-
bras calledcyclic algebrasfirst introduced by L.E. Dickson in 1906.�

4 Cyclic algebras
39

Let Z be a cyclic extension of degrees(> 1) over an algebraic number
field R of degreeh overQ. Let τ, τ2, . . . τs−1, τs (=identity) be the dis-
tinct automorphisms ofZ overR. For η ∈ Z, we denote byη(r), the
effect ofτr onη; particular,η(s)

= η = η(0).
LetM be the set of elementsδ = ξ0 + ξ1 j + . . . + ξx−1 js−1 where

ξ0, ξ1, . . . , ξx−1 are inZ and j satisfies

jξ = ξ(1) j (33)

for ξ ∈ Z. By iteration, we get from (33) 40

jkξ(1)
= ξ(k+l) jk.

This relation may be seen to be valid for all rational integers k ≥ 0 and
l, defining j0 = 1. In particular,

jsξ = ξ(s) js = ξ js.

We now stipulate that 1, j, j2, ·, js−1 are linearly independent overZ and

js = b (34)

for someb(, 0) ∈ R. Under conditions (33) and (34), it can be verified
thatM is an algebra of ranks2 over its centreR. A central algebraM
overR, constructed as above with an auxiliary cyclic extensionZ of R
is called acyclic algebra. The fieldZ is called asplitting field for M.
The quaternion algebra is a special case of a cyclic algebra,whens= 2.
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It is known that every cyclic algebra is a simple algebra. Conversely,
by a theorem of Brauer-Hasse-Noether [7], every simple algebra overQ
can be realised as a cyclic algebra over its centre.

For δ = ξ0 + ξ1 j + . . . + ξs−1 js−1 ∈ M, we have the representation
δ→ D ofM in Z given by

( 1
j
·

js−1

)
δ = D

( 1
j
·

js−1

)

where

D =



ξ0 ξ1... ξs−1

bξ(1)
s−1 ξ

(1)
0 ... ξ

(1)
s−2· · ·

· · ·
bξ(s−1)

1 bξ(s−1)
2 ... ξ

(s−1)
0

 (35)

Let us observe that all the terms below the diagonal ofD involve b. The41

regular representation ofM overR is given by

δ→ (Ω × Es)[D
(1), . . .D(s)](Ω × Es)

−1

whereΩ = (γ(1)
k ), with γ1 . . . γs being a basis ofZ overR and forD =

(dpq), D(i)
= (d(i)

pq).
The algebraM is a division algebra if and only if|D| , 0 for every

δ , 0 inM. For, we knowM is a simple algebra containing 1 and the
condition |D| , 0 for δ , 0 would imply thatM is free from divisors of
zero and therefore, the ideal generated by anyδ , 0 would be the whole
ofM. Conversely, ifM is a division algebra andδ , 0 inM, it is trivial
to see that|D| , 0.

Writing every ξk ∈ Z as
s∑

l=1
xklγl , we see that corresponding to

δ =
s−1∑
k=0

ξk jk, |D| is a homogeneous formf (. . . , xkl, . . .) of degrees in

the variablesxkl, with coefficients inR. The necessary and sufficient
condition forM to be a division algebra may thus be reformulated as
follows, viz. the form f (. . . xkl, . . .) should not represent 0 nontrivially42

overR.
In the case of the quaternion algebraV overR(s= 2), forδ = ξ+η j,

ξ = x + yi, η = z+ ti, we have|D| = ξξ − bηη = f (x, y, z, t) = x2 −
ay2 − bz2

+ abt2. We know thatV is a division algebra if and only if
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f (x, y, z, t) does not represent zero nontrivially inR. Clearly, forη = 0,
|D| = x2 − ay2

, 0, sincea is not a square inR. We may then suppose
that, for givenδ = ξ + η j in V η , 0. The condition that|D| = 0 is
equivalent to the fact thatb is the norm of an elementξη−1 in R(i) over
R. Thus the quaternion algebraV is a division algebra if and only if
b is not the norm of any element ofR(i). In the cases > 2, we shall
find conditions analogous to this, which shall besufficient for the cyclic
algebraM to be a division algebra.

Theorem 4(Wedderburn, [24]). LetM be a cyclic algebra constructed
as above with1, j, . . . , js−1 as basis over the splitting fieldZ and let js =
b belong to the centreR. If for every integer r satisfying0 < r ≤ s−1, br

is not the norm of an elementξ ofZ overR thenM is a division algebra.

Proof. Let δ = ξ0+ ξ1 j + . . .+ ξk jk where 0≤ k ≤ s− 1, be an arbitrary
element ofM. If k = 0 andδ , 0, then, trivially,δ has an inverse. Let
thenk > 0 and let us supposeξk , 0. We may, in fact, assume that
ξk = 1, without loss of generality.

We shall first findη0, η1, . . . , ηs−k ∈ Z such that (η0 + η1 j + . . . +
ηs−k js−k)(ξ0 + ξ1 j + . . . + jk) is of the formρ0 + ρ1 j + . . . + ρk−1 jk−1

and is different from 0. By iteration of this process, we can eventually
obtain an inverse forδ, under the hypotheses of the theorem. Now,
(η0 + η1 j + . . . + ηs−k jk)δ = ρ0 + ρ1 j + . . . + ρs−1 js−1 where

ρ0 = η0ξ0 + ηs−kb

ρ1 = η0ξ1 + η1ξ
(1)
0

ρk−1 = η0ξk−1 + η1ξ
(1)
k−2 + η2ξ

(2)
k−3 + · · · + ηk−1ξ

(k−1)
0

ρk = η0 + η1ξ
(1)
k−1 + · · · + ηkξ

(k)
0

ρk+1 = η1 + η2ξ
(1)
k−1 + · · ·

. . . . . . . . . . . .

ρs−1 = ηs−k−1 + ηs−kξ
(s−k)
k−1

Takingηs−k = 1, we can findηs−k−1, ηs−k−2, . . . , η0 inductively such that
ρs−1 = 0, ρs−2 = 0, . . . , ρk = 0.



30 Chapter 1

If, now, it turns out thatρ0 = ρ1 = · · · = ρk−1 = 0, we shall see that
we arrive at a contradiction to the hypotheses.

Replacingj by j0 where, analogous to (33) and (34),j0 satisfies

j0ξ = ξ
(1) j0 for ξ ∈ Z

1, j0 · · · js−1
0 are linearly independent overZ, and

js0 = x (an indeterminate),

we can verify easily that43

(η0 + η1 j0 + · · · + js−k
0 )(ξ0 + ξ1 j0 + · · · + jk0) = η0ξ0 + js0 = x− b. (36)

Now, for anyµ = µ0 + µ1 j0 + · · · + µs−1 js−1
0 with µ0, µ1, . . . , µs−1 in Z,

we have 

1
j0
...

js−1
0

 µ = M



1
j0
...

js−1
0

 (37)

whereM =
(

A B
C D

)
,C is ak-rowed square matrix withx on the diagonal

and the factorx only up to the first power below and zeros above,B is
a (s− k)-rowed square matrix with 1 on the diagonal and zeros above
and further the matricesA, B,D are free fromx. Let M1, M2 correspond
respectively toη0+ η1 j0 + · · ·+ js−k

0 andξ0 + ξ1 j0 + · · ·+ jk0 under (37).
Further noting that



1
j0
...

js−1
0

 (x− b) = (x− b)Es



1
j0
...

js−1
0



whereEs is the s-rowed identity matrix, we have, from (36), (37) by
taking determinants, that

|M1||M2| = |(x− b)E| = (x− b)s.

But, by using Laplace’s expansion of the determinant ofM2 alongk-
rowed minors of the firstk columns ofM2, we observe that

|M2| = (−1)s−kxk
+ · · · + N(ξ0)
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whereN(ξ0) is the norm ofξ0 overR. Since|M2| divides the polyno-
mial (x − b)s, it follows that it is necessarily equal to (−1)s−k(x − b)k.44

Comparing the constant terms, we have

N(ξ0) = (−b)k(−1)s−k

i.e. bk
= N(−ξ0)

which is a contradiction to the hypothesis that nobr (0 < r < s) is the
norm of an element ofZ. Our theorem is therefore proved. �

Remark 1. In the hypotheses of Theorem 4, it is sufficient to require
that for divisors tof s satisfying 1≤ t < s, br shall not be the norm of
any element ofZ overR. For, let 0< r < s and t = g · c · d of r and
s. Further, letbr

= N(ξ) for ξ ∈ Z. Now there exist rational integers
p, q such thatpr + qs = t. Thenbt

= N(ξpbq). In particular, if s is
a prime, then all these (s− 1) conditions reduce to the single condition
that b should not be the norm of an elementξ in Z. In this case,M
is a division algebra. Conversely, as we shall see presently, if M is a
cyclic division algebra overZ with s, a prime, then necessarilyb cannot
be the norm of any element ofZ overR. It has been shown by Hasse
[9] that the conditions onb in Theorem 4 are alsonecessaryfor M to
be a division algebra. The proof by Hasse involves the use of ‘factor
systems’ in the theory of algebras. We give, in simple cases,a proof of
the necessity of Wedderburn’s conditions.

Proposition 9. With the notation of Theorem 4, let for a divisor r of s,

br
= N(ξ) for ξ ∈ Z and let r and

s
r

be coprime. ThenM cannot be a

division algebra.

Proof. It is sufficient to show thatM contains divisors of zero, under the45

given conditions.

Let s1 =
s
r

and letZs1 be the fixed field of the group of the automor-

phisms 1, σs1, . . . , σ(r−1)s1 of Z overR. Then the setMs1 of elements of
the formδ = η0 + η1 jr + η2 j2r

+ · · · + ηs1 j(s1−1)r
−1 with ηi ∈ Zs1 is again

an algebra. NowMs1 ⊂ M and we shall show thatMs1 contains divisors
of zero.
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The elementα = ξξs1 · · · ξ(rs1−r) lies inξs1 and furtherbr is the norm
of α in ξs1 overR. Moreover if j0 = jr

2
α−1, then 1, j0, . . . , js1−1

0 is a
basis ofMs1 overZs1 and j0 satisfies a minimum polynomial equation
of degrees1. Now

js1
0 = br (NZs1/R

(α))−1
= 1

This gives us a factorization of 0 inMs1, viz.

0 = ( j0 − 1)( js1−1
0 + js1−2

0 + · · · + 1)

and neither of the factors can be zero, since the minimum polynomial of
j0 is of degrees1. �

Corollary . If s is a product of distinct primes, then the conditions of
Wedderburn in Theorem 4 are also necessary forM to be a division
algebra.

5 Division algebras overQ with involutions of the
second kind

Let V be a division algebra overQ. Then by a theorem due to Brauer-
Hasse-Noether, it is known thatV is a cyclic algebra over its centreR,46

with a certain cyclic extension overR as splitting field.
Conditions necessary and sufficient for V to have an involution of

the second kind have been given by Albert [1]. First, letδ → δ̃ be such
an involution inV . If L is the fixed field of the involution contained in
the centreR of V , thenR = L (c) is a quadratic extension overL , with
a suitablec in R satisfying̃c = −c. In this case, Albert has shown (Chap
X, [1]) that one can find a cyclic extensionξ0 = L (ς) of degrees over
L such that

i) the involution is identity onZ0, and

ii) the algebraV is a cyclic algebra having for its
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splitting field the fieldZ = Z0(c) = L (c, ς) which is abelian of degree
2soverL .

Following our earlier notation, let 1,j, j2, . . . , js−1 generateV over
Z and let j2 = b ∈ R. Now we claim that̃j j commutes with all elements
of Z. For, first of all, anyξ ∈ Z is of the formξ = η0 + η1c with η0, η1 ∈
K0 andξ̃ = η0 − η1c . Hence the mappingξ → ξ̃ is an automorphism of
Z. Denote byσ the generating automorphism ofZ overR and byη(1),
the effect ofσ1 on η ∈ Z. Using the fact thatZ is abelian overL , we
have, forξ = η0 + η1c (with η0, η1 ∈ K0),

ξ̃(l) = ( ˜
η

(l)
0 + η

(l)
1 c) = η(l)

0 − η
(l)
1 · c = (̃ξ)(1) (38)

Now, for η ∈ Z, we have

η̃ j̃ = j̃η = η̃(1) j = j̃η̃(1) = j̃(η̃)(1) (39)

and therefore, forξ ∈ Z, we obtain 47

j̃ jξ = j̃ξ(1) j = ξ j̃ j

using (39) with ˜η = ξ. Now Z is a maximal commutative system inV
and it follows immediately that

j̃ j = a ∈ Z. (40)

Moreover ˜̃j j = j̃ j and thereforea ∈ Z0, from (38). Now js = b and
j̃s = b̃ andbb̃ = j̃s js = aa(1) · · · a(s−1) . Thus we arrive at the important
condition

NR/L (b) = NZ0/L (a). (41)

(See Theorem 18, p.160, [1])
Conversely, ifV is a cyclic algebra generated by 1, j, j2, . . . js−1 over

its splitting fieldZ and ifZ is realisable as a fieldL (c, ς) as above and
further, if js = b in R satisfies (41) for a suitablea ∈ L (ς), then we can
define an involution of the second kind inV as follows. Forξ = η0+η1c
in Z with η0, η1 ∈ Z0, we have only to define

ξ̃ = η0 − η1c
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j̃ = a j−1 (42)

Extending (42) to all elements ofV in the obvious way, we have an
involution of the second kind.

We shall now show that Wedderburn’s conditions sufficient for a
cyclic algebraV to be a division algebra are not incompatible with con-
dition (41) which is necessary and sufficient for a cyclic (division) alge-
bra to carry an involution of the second kind.48

Let us takeL = Q, c =
√
−1, R = Q(

√
−1), p an odd prime and

ε, a primitive pth root of unity. The fieldZ0 = Q(ς) with ς = ε + ε−1

is cyclic of degrees =
1
2

(p − 1) overL . If now q is a primeq ≡ 1(

mod 4), thenq = κκ for κ in R, since

(
−1
q

)
= 1. Let us further suppose

that q is a primitive root modulop (There exist infinitely many such
q). If now Z = R(ς), it is clear that the integral ideal (κ) generated by
κ in Z is prime; similarly (κ) is prime inZ and (κ) , (κ). Now let us
defineb = κκs−1. Then NR/L (b) = NZ0/L (q). Moreover, we claim
that for 0< r < s, br

, ξξ(1) · · · ξ(s−1) for ξ ∈ Z0. For, otherwise, let
br
= ξξ(1) · · · ξ(s−1) for ξ ∈ ξ0 and letξ = κt · λ where in the prime factor

decomposition of (λ), (κ) does not occur. Nowξ(1)
= κtλ(l) and therefore

κr · κ(s−1)r
= κstλ · λ(1) · · · λ(s−1)

As a consequencer = st, which is a contradiction, since 0< r < sandt
is a rational integer.

Thus the cyclic algebra generated by 1, j, . . . , js−1 overZ as splitting
field (where js = b) is, in fact, a division algebra with an involution of
the second kind.

Example . p = 7, s =
p− 1

2
= 3, q = 17 = (4 + i)(4 − i), κ = 4 + i,

b = (4+ i)(4− i)2, a = 17, j3 = b, Z = Q

(
cos

2π
7
, i

)
.

Let δ → D be the representation of the division algebra over its49

splitting field, whereD is given by (35). Under this representation, we
have

j → F =
(

0 Es−1
b 0

)
,Es−1 being the (s− 1)-rowed identity matrix
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and forξ ∈ Z,
ξ → [ξ, ξ(1), . . . ξ(s−1)]

Let nowδ → δ̃ be an involution of the second kind inV and letD̃
correspond tõδ under the representation above. The restriction of the
involution inV to Z is an automorphismξ → ξ of Z. Let us denote for
any matrixM = (mkl) with mkl ∈ Z, the matrix (mkl) by M. Then the
connection betweenD andD̃ is given by

Proposition 10. There exists an s-rowed nonsingular symmetric matrix
F with elements inZ0 such that, for anyδ ∈ V , we have

D̃ = F−1D
′
F (43)

Proof. SinceV has an involution of the second kind, we have, by (41)
an elementa ∈ Z such that

bb = aa(1) · a(s−1) (44)

Now to j̃ = a j−1 corresponds̃F = [a, a(1), . . .a(s−1)]
(

0 b−1

Es−1 0

)
We shall

find elementsx0, x1, . . . , xs−1 in Z0 different from zero, such that

[x0, x1, . . . , xs−1]
(

0 b
Es−1 0

)
[x0, x1, . . . , xs−1]−1

= F̃ =

(
0 a

b

[a(1),...,a(s−1)] 0

)

This matrix equation is equivalent to the conditions 50

x1

x0
= a(1), . . . ,

xs−1

xs−2
= a(s−1),

x0b
xs−1

=
a
b

(45)

If we set for 1≤ i ≤ s− 1, xi = aa(1) · · ·a(i) and x0 = a, then they
satisfy (45) and the last condition in (45) is nothing but (44). Thus if we
setF = [a−1, (aa(1))−1, . . . , (aa(1) · · · a(s−1))−1] then F̃ = F−1F

′
F and by

iteration, we have
F̃r
= F−1F

′r
F (46)

Forξ ∈ Z, ξ → [ξ, ξ(1), . . . , ξ(s−1)] and it is trivial to verify that

[ξ̃, ξ̃(1), . . . , ˜ξ(s−1)] = [ξ, ξ(1), . . . , ξ(s−1)] = F−1[ξ, ξ(1), . . . , ξ(s−1)]′F
(47)
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From (46) and (47), follows (43) for anyδ ∈ V . Let us note thatF itself
does not correspond in general to an element ofV under the represen-
tationδ→ D.

The relationship (43) betweeñD andD will be useful in examining
the positivity of the involutionδ→ δ̃. Our next object will be to find all
involutions of the second kind inV and to investigate the existence of a
positive involution. Results in this direction are again due to Albert [1].

If δ → δ∗ is any other involution inV having the same effect on
R as the involutionδ → δ̃, then we know that, for aλ , 0 in V with
λ̃ = ±λ, δ∗ = λ−1̃δλ. Since the involutions are of the second kind, we can51

suppose without loss of generality thatλ̃ = +λ, by taking, if necessary
cλ instead ofλ. Now if λ → L under the representationδ → D, then
this means thatD∗ = L−1D̃L = L−1F−1D

′
FL. SettingG = FL, we have

from L̃ = L thatG = G
′
. Thus we have

D∗ = G−1D
′
G, G = FL = G

′
. (48)

�

6 Positive involutions of the second kind in division
algebras

Let δ → δ̃ be an involution of the second kind in a division algebraV

overQ, with centreR ⊃ Q. Then we know from§5 thatV has a splitting
field Z which can be realised as an abelian extensionL (c, ς) whereL

is the fixed field of the involution inR, Z0 = L (ς) is cyclic of degrees
overL andc =

√
−d = −c̃ ∈ R for an elementd ∈ L .

For the involutionδ → δ̃ to be positive, we should have necessarily
that L is totally real and−d > 0; thusR should be a totally complex
quadratic extension of the totally real fieldL . For ξ ∈ Z, ξ̃ is just the
complex conjugate ofξ. Furtherξ0 is totally real and the involution is
identity onZ0.

From the representationδ → D of V given by (35) we first get a
representationδ→ D0 of V overR by takingD0 = (Ω×Es)[D,D(1), . . . ,

D(s−1)](Ω × Es)−1 where ifD = (dpq), D(k)
=

(
d(k)

pq

)
(1 ≤ k ≤ s− 1), Es
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is the s-rowed identity andΩ =
(
γ

(1)
k

)
(1 ≤ k, 1 ≤ s), γ1, . . . , γs being

a basis ofZ0 overL and serving also as a basis ofZ overR. Now let 52

ω1, . . . ωh be a basis ofR overQ and letΩ∗ =
(
ω

(q)
p

)
(1 ≤ p, q ≤ h).

If D0 = (δkl), denote byD0i the corresponding matrix
(
δ

(i)
kl

)
for 1 ≤

i ≤ h. Then settingD = (Ω∗ × Es2)[D01, . . . ,Doh](Ω∗ × Es2)−1 where
Es2 is thes2-rowed identity matrix, we see that the mappingδ → D is
a representation ofV overQ by hs2-rowed matrices. Throughout this
section, we shall denote by (V ), the image ofV under the representation
δ→ D overZ.

Let us define, analogously,F0 by F−1
0 = (Ω × Es) × [F, F(1), . . . ,

F(s−1)](Ω × Es)′ and denote byF0i(1 ≤ i ≤ h) the matrix
(
f (i)
kl

)
corre-

sponding toF0 = ( fkl). IntroducingF by the definitionF−1
= (Ω∗ ×

Es2)[F−1
01 , . . . , F

−1
oh ](Ω∗ × Es2)′, we see thatF is a hs2-rowed rational

symmetric matrix and the relation (43) in terms ofD andF goes over
into

D̃ = F−1D′F, F = F′ (49)

DefiningG = F L, we see that (48) goes over into

D∗ = G−1D′G with G = F L = G′ (50)

For the involutionδ → δ∗ to be positive we must require that for

δ , 0,σ(D D∗) = σ(D G−1D′G) > 0. Nowσ(D D∗) =
h∑

i=1
σ(D0iD∗0i) =

trR/Q(σ(D0D∗0)) (By defining (D0i)∗ = D∗oi). Furtherσ(D0D∗0) =

sσ(DD∗) by using the fact thatD(1)
= FDF−1

(
whereF =

(
0 Es−1
b 0

))

and hence, by iteration,

D(k)
= F

kDF
−k (51)

Now σ(DD∗) = σ(D G
−1

D′G) = σ(GD
′
G−1D) = σ(DD∗) and there- 53

fore for D ∈ V , σ(D D∗) is real. The elementsxkl of D are linearly in-
dependent overR and looking upon them as independent complex vari-
ables, we see thatσ(DD∗) is a hermitian formf ( , . . . , xkl. , xkl, . ) in the
s2 complex variablesxkl. On the other hand, by using the arguments of
Proposition 7 the necessary and sufficient condition fortrR/Q(σ(D0D∗0))
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to be positive is thatσ(D0D∗0) = sσ(DG−1G
′
G) should be a totally

positive-definite hermitian form. Analogously to Lemma 2, the neces-
sary and sufficient condition for this may be seen to be that the hermitian
matrixG must be totally positive-Definite overZ. We have thus proved

Proposition 11. In terms of the representationδ→ D of V overZ, any
positive involution of the second kind in(V ) is of the form D→ G−1D

′
G

where G= FL is totally positive-definite hermitian and L= F−1L
′
F

corresponds to aλ , 0 in V .

In particular, for the involutionD→ D̃ = F−1D
′
F to be positive, the

necessary and sufficient condition is thatF = [a, aa(1), . . . aa(1) · · · a(s−1)]
is totally positive-definite i.e.a > 0.

Suppose a is not totally positive i.e. the involutionδ → δ̃ is not
positive. Then we claim that the involutionδ → δ∗ in V defined by
j∗ = λ−1 j̃λ andξ∗ = ξ̃ for ξ ∈ Z is positive for suitably chosenλ in Z0.

In fact, if we setθ =
λ(s−1)

λ
, then forδ ∈ V , we haveD∗ = G−1D

′
G54

where

G−1
= [aθ, aa(1)θθ(1), . . . , aa(1) . . .a(s−1)θθ(1). . θ(s−1)].

Now G = G
′
, NZ0/L (θ) = 1 and we have only to chooseλ in Z0 such

thatG is totally positive. But we see that

G−1
=

[
a
λ(s−1)

λ
, aa(1)λ

(s−1)

λ(1)
, . . . , aa(1) · · · a(s−1)λ

(s−1)

λ(s−1)

]
.

Certainly we can findλ ∈ Z0 such that the numbers

a
λ
,
aa(1)

λ(1)
, . . . ,

aa(1). . a(s−1)

λ(s−1)
(52)

are all positive, since this merely involves choosingλ ∈ Z0 such that
λ, λ(1), . . . , λ(s−1) have prescribed signs. Further this entails thatλ(s−1) >

0 , since by (44),aa(1) . . . a(s−1)
= bb > 0. Multiplying all the numbers

in (52) byλ(s−1) > 0, we see that the numbersaθ, aθ(aθ)(1), aθ(aθ)(1) · · ·
(aθ)(s−1) are positive and henceG is positive-definite. In a similar way,
by properly choosing the signs of the other conjugates ofλ overQ, we
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can actually ensure thataθ > 0 and henceG is totally positive-definite.
Thus the existence of positive involutions of the second kind in V is
ensured.

We have seen that any positive involution in (V ) (with L as the
fixed field inR) is given byD → G−1D

′
G whereG = FL is totally

positive-definite hermitian andL = L̃ = F−1L
′
F ∈ (V ). We shall now

find that the real dimension of the linear closureC of the corresponding

G in the space of (hs2)-rowed real square matrices isgs2, whereg =
h
2

.

For, L is equivalent over the field of complex numbers to [L01, . . . , L0h]
andL01 is equivalent to [L, L(1), . . . , L(s−1)]. From (51), we know that
L, L(1), . . . , L(s−1) are all equivalent to one another. Looking at the form55

of a generalL in (V ), we see that its elements are linearly independent
overR and are of the formη + ς

√
d whereη, ς are inZ0. Pairing off

the h conjugates ofR over Q asR(1),R(2)(= R(1)), . . . ,R(h−1),R(h)(=
R(h−1)), we observe thatL02 = L01, . . . , L0h = L0(h−1). Expressingη, ς
in terms of a basisγ1, . . . , γs of Z0 overL , we can thus conclude that
the complex dimension of the linear closure ofL and hence ofG = F L

is gs2. The conditionG = G
′

means that the real dimension ofC is
preciselygs2; the positivity ofG is expressed in terms of a finite number
of inequalities. Using the fact that the rational numbers are dense in the
reals, we can findL ∈ (V ) such that the correspondingG = F L is
sufficiently close to an element ofC and to secureG = G

′
, we have

only to take
1
2

(L + L̃) instead ofL.

We shall, without risk of confusion, denote till the end of this sec-
tion, the rational representationsD, F, L, G etc. byD, F, L,G etc. re-
spectively. LetD → D∗ be a positive involution in (V ); then D∗ =
G−1D′G with rationalG = G′ > 0. Now, any other positive involution
in (V ) is of the formD → L−1D∗L whereL = L∗ is in (V ) and further
GL is positive symmetric. By using Lemma 2, this is equivalent to say-
ing that the eigenvalues ofL are real and positive. Such an elementL in
(V ) may be called apositive elementin (V ). A nice characterisation of
positive elements is given by the following.

Proposition 12 (Albert [6]). Given a positive involution D→ D∗ of
(V ), any other positive involution in(V ) is of the form D→ L−1D∗L 56
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where L=
p∑

k=1
LkL∗k with Lk in (V ) not all equal to0.

Proof. First, let, for L ∈ (V ),D → L−1D∗L be a positive involution.
Then, from above, we know that all the eigenvalues ofL are real and
positive. Letr be a root of the characteristic equation|(xE − L)| = 0.
Then r is a totally positive algebraic number and letF be the field
generated byr overQ. By a theorem of Siegel [19],r = r2

1+ r2
2+ r2

3+ r2
4,

where, for 1≤ k ≤ 4, rk =
N−1∑
l=0

aklr l , (akl ∈ Q) andN is the degree of

F overQ. Denoting, for 1≤ k ≤ 4, the polynomial
N−1∑
l=0

akltl by pk(t)

and p2
1(t) + · · · + p2

4(t) − t by p(t), we see thatp(r) = 0. Sincer is an
eigenvalue ofL, p(r) = 0 is an eigenvalue ofp(L). But p(L), being
an element of the division-algebra (V ), must consequently be 0. i.e.
L = L2

1 + L2
2 + L2

3 + L2
4 whereLk = pk(L)(1 ≤ k ≤ 4) are in (V ). Now

L = L∗ implies thatL∗k = Lk i.e.

L = L1L∗1 + · · · + L4L∗4.

Clearly at least oneLk is different from 0.

Conversely, let, in fact,L =
p∑

k=1
LkL∗k , 0 with Lk ∈ (V ). Then

we claim that the mappingD → L−1D∗L is a positive involution of
(V). That it is an involution is clear. What remains to be shown is that
σ(DL−1D∗L) > 0 for D , 0 in (V ). But now

σ(DL−1D∗L) = σ(DL−1LL∗
−1

D∗L)(sinceL = L∗)

= σ(D1LD∗1L)(settingD1 = DL−1)

=

p∑

k,l−1

σ(D1LkL∗kD∗1LlL
∗
l )

=

∑

k,l

σ(L∗l D1Lk(L
∗
l D1Lk)

∗).

SinceL , 0, at least oneLk , 0 and hence at least oneL∗kD1Lk , 0 in57

(V ) and by the positivity of the involutionD → D∗, we see that the new
involution is also positive. �



7. Existence ofR-matrices with given commutator-algebra 41

7 Existence ofR-matrices with given commutator-
algebra

Let V be a division algebra overQ with an involution and let (M) be a
rational representation ofV . Then (M) is equivalent to a multiple, say
q times, of the regular representation (V ) of V overQ. If M ∈ (M),
then we can supposeM = [D, . . .D

q times
] = D

q
(abbreviating [G, . . .G

q times
] asG

q
).

The involutionδ → δ̃ in V can be described asM → F−1
q

M′Fq where

F
q

is rational symmetric andM ∈ (M). In terms of (M), the involution

δ → δ∗ − λ−1̃δλ (for λ , 0 in V ) is described asM → M∗ = G
q
−1M′G

q

whereG
q
= F

q
L
q
, L

q
= L̃

q
∈ (M) andG

q
= G′

q
. If the involutionδ → δ∗ is

positive, thenG is positive.
In connection with the existence of anR-matrix with the property

that RM = MR for every M ∈ (M), we shall first look for a rational
nonsingular skew-symmetric matrixA such that for allM ∈ (M), we
have

M∗ = A−1M′A (53)

and then ask for allA for which (53) is true. But sinceM∗ = G−1
q

M′G
q
, 58

(53) givesAG
q
−1M′ = M′AG−1

q
i.e. (AG−1

q
)′ ∈ (F ) , the commutator-

algebra of (M). SettingT0 = (G−1
q

)′A, we see thatG′
q

T0 = A = −A′ =

−T′0Gq
i.e.

T0 = −G−1

q
T′0Gq

(54)

Now, for T ∈ (F ), we can show thatG−1
q

T′G
q
∈ (F ) and the mapping

T → G−1
q

T′G
q

is, in fact, an involution of (F ). Actually, for T ∈ (F ),

T̃ = F−1
q

T′F
q
= L

q
G−1

q
T′G

q
L−1

q
= G−1

q
T′G

q

since elements of (F ) commute withL
q
. Thus all the involution in (V )

induce the same involutionT → T̃ in (F ). Now, from (54), we have
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T0 = −T̃0. The problem then is to find non-singularT in (F ) such that

T̃ = −T. GivenT in (F ), T1 =
1
2

(T− T̃) always satisfies̃T1 = −T1. But

if we can ensure thatT1 is also non-singular, then we will be through.
Let now T ∈ F be of the form (Tkl)(1 ≤ k, l ≤ q) with Tkl being
hs2-rowed rational square matrices. Then, for everyD ∈ (V ), we have
DTkl = TklD i.e. Tkl belongs to (V )∗, the commutator-algebra of (V ). If
T̃ should be equal to−T, then we must have, in particular,̃Tkk = −Tkk

for 1 ≤ k ≤ q. If we can find nonsingularT11 in (V )∗ with T̃11 = −T11,
then T = [T11, . . . ,T11] will meet our requirements. Now if (V )∗ is59

not commutative, there always exists at least oneT2 , 0 (and hence
non-singular) for which̃T2 , T2 and then we can takeT11 = T2 − T̃2

(, 0, since (V )∗ is a division-algebra). (If, for everyT3 ∈ (V )∗ we
haveT̃3 = T3, then for any two elementsT4,T5 ∈ (V )∗, we would have
T4T5 = T̃4T̃5 = T̃5T4 = T5T4)

Taking a basisλ1, . . . , λn of V overQ, for anyδ ∈ V , we have two
representations,

δ→ D where


λ1

...
λn

 δ = D


λ1

...
λn



δ→ B whereδ(λ1, . . . λn) = (λ1, . . . , λn)B

and furtherB = C−1DC for a fixed rational nonsingular matrixC. The
matricesB′ give a regular representation of (V )∗. Now B′ = C′D′C′−1

=

(C′G)D∗(C′G)−1. Hence the matricesD∗ for δ ∈ D give an equivalent
representation of (V )∗. Denoting this equivalent representation itself by
(V )∗, we see that (V ) and (V )∗ coincide as sets and their multiplicative
structure coincides on their centre (cf. Proposition 6). Ifthe involution
in V is of the second kind, then there exists already inR, an elementc
with c , c̃.

If finally the involution is of the first kind and furtherV = R, then
the commutator algebra ofV is itself and ifδ→ D is an irreducible rep-
resentation ofR overQ, then, by (19)′, D = Ω[σ(1), . . . δ(h)]Ω−1. Taking
Tkl = Ω[δ(1)

kl , . . . δ
(h)
kl ]Ω−1 with δkl ∈ R(1 ≤ k, l ≤ q) for which the matrix

(δkl) is non-singular and skew-symmetric, we have then that the matrix
A = (ΩqΩ

′)−1(Tkl) = (Ω′−1[δ(1)
kl , . . . , δ

(h)
kl ]Ω−1) is clearly rational, non-60
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singular and skew-symmetric. A necessary and sufficient condition for
such a non-singular skew-symmetric matrix (δkl) overR to exist is thatq
is even. It is easy to verify that dett.A = NR/Q(dett(δkl))/(dett.Ω)−2q

, 0
i.e. A is non-singular. Ifq = 2p, for example, we can choose (δkl) =( 0 Ep
−Ep 0

)
,Ep being thep-rowed identity matrix.

Having found a rational skew-symmetric matrixA satisfying (53),
we proceed to look for anR-matrix R having (M) for its commutator-
algebra. The following proposition prompts us to look forR in the linear
closure (F ) with respect to the reals of the algebra (F ).

Proposition 13. Any real matrix T for which T M= MT for all M ∈ ()
belongs to(F ).

Proof. Writing T = σ1T0
1 + · · · + ρkT0

k with T0
1 , . . . ,T

0
k rational and

ρ1, . . . , ρk being real numbers linearly independent overQ, we see from

T M = MT for M ∈ (M), that
k∑

p−1
ρp(T0

pM − MT0
p) = 0. By the linear

independence of theρp overQ, we obtain that

T0
p ∈ (F ) for 1 ≤ p ≤ k i.e. T ∈ (F ).

Denoting by (M) the linear closure of (M) with respect to the reals,
we deduce from Proposition 13 that (F ) is precisely the set of all real
matrices commuting with all elements of (M).

Our object is then to findR ∈ (F ) such that

1) R2
= −E (E being the identity matrix)

2) AR= S is positive-definite symmetric, and

3) Any rationalM for which MR= RM belongs to (M). 61

For the moment, we shall agree to ignore condition 3) and lookfor R
satisfying only conditions 1) and 2).

A necessary condition forR to exist is that the involutionM →
M∗ = A−1M′A in (M) is positive. In particular, (V ) should admit a
positive involution

D→ D∗ = G−1D′G, whereG = G′ > 0 (55)

and henceV has to be one of the following four types:
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i) V = R, a totally real algebraic number field of degreeh overQ.

ii) V = G, a totally indefinite quaternion algebra overR of 1st kind

iii) V = F , totally definite quaternion algebra overR of 1st kind

iv) V is a cyclic algebra with a positive involution (55) of the second
kind, with centreR which is a totally imaginary quadratic exten-
sion of the fixed fieldL of the involution,L being totally real
and of degreeg overQ. FurtherV has a splitting fieldZ of degree
s≥ 1 overR, withZ being realisable as indicated at the beginning
of §6.

�

For the construction ofR, we shall deal with these four cases sepa-
rately. We shall first find a simple normal form for elements of(M) and
then, for elements of (F ).

Case (i)V = R.
ForR, we have the regular representationδ(∈ R)→ D =

(
ω

(l)
k

)
[δ(1),

. . . , δ(h)]
(
ω

(l)
k

)−1
with respect to a basisω1, . . . , . . . , ωh of R overQ. The

linear closure (V ) of (V ) with respect to the real number fieldR consists

of all matrices of the form
(
ω

(1)
k

)
[δ1, . . . δh]

(
ω

(l)
k

)−1
whereδ1, . . . , δh are62

arbitrary real numbers. Taking anR-equivalent representation for (V )
(i.e. a representation equivalent over the reals), we may suppose that

(M) consists of all real matrices of the formR = [
1

R1
q
, . . . ,

1
Rh
q

] where

R1, . . . ,Rh are independent one-rowed real square matrices occurring
with multiplicity q. The commutator-algebra (F ) of (M) consists ex-

actly of real matricesT = [
q

T1
1
, . . . ,

q
Th
1

] whereT1, . . . ,Th are arbitrary

q-rowed real square matrices occurring with multiplicity 1.In passing
to the new representationδ → D = [δ1, . . . , δh] of (V ), the positive
symmetric matrixG in (55) goes over into theh-rowed indentity matrix
Eh. The positive involution in (M) is just R→ (R)∗ = Eh

q
(R)′Eh

q
= R′

and the induced involution in (F ) is justT → T′.
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Case (ii)V = G

Any elementδ ∈ G is of the formx + yi + z j + tk wherex, y, z,
t ∈ R, i2 = a > 0, j2 = b, −b > 0, a, b ∈ R, ξ = x + yi, ξ = x − yi,
η = z+ ti, η = z− ti. For G , we have the representation overR given

by δ = ξ + η j → D whereD =
((

1 1
i −i

)
× E2

)
[D1,D1] ×

((
1 1
i −i

)
× E2

)−1
,

D1 =
(
ξ η

bη ξ

)
, D1 =

(
ξ η
bη ξ

)
=

(
0 1
b 0

)
D1

(
0 1
b 0

)−1
. FurtherG has a rational

representationδ → K[D(1), . . . ,D(h)]K−1, K being a certain fixed ma-
trix. Going over to anR-equivalent representation, we see that (M ) con-

sists of all real matrices of the formD = [
2

R1
2q
, . . . ,

2
Rh
2q

] whereR1, . . . ,Rh

are arbitrary 2-rowed real square matrices occurring with multiplicity
2q. Any real matrix commuting with all real matrices of the formR

2q
63

whereR is a real 2-rowed square matrix, is of the form (Tkl) (1 ≤ k, l ≤
2q) with Tkl = tklE2, tkl ∈ R. Thus (F1) consists of all the matrices

of the formT = [
2q
T1 × E2, . . . ,

2q
Th × E2] whereT1, . . . ,Th are arbitrary

2q-rowed real square matrices. The positive involution inG is given
by D1 → D∗1 = G−1

1 D′1G1 whereG1 is symmetric and totally-positive
overR. This involution goes over in (M ) to the involutionD → D∗ =G(1)−1

1
2q

2
R′1
2q

G(1)
1

2q

, . . . ,G(h)−1

1
2q

2
R′h
2q

G(h)
1

2q

. For eachG(k)
1 (l ≤ k ≤ h), there ex-

ists a real non-singular matrixCk such thatG(k)
12
= C′kCk. Taking for

(M ), the equivalent representationD =

C1
2q

R1
2q

C−1
1

2q
, . . . , Ch

2q

2
Rh
2q

C−1
h

2q

,

we see that (M ) still consists of the same set of matrices as above but,
in terms of the new representation, the given positive involution is more
simply expressed byD → D′ and the induced involution in (F ) is just
T → T̃ = T′.

Case (iii)V = R
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Forδ = x+ yi + z j+ tk ∈ V , we have the 4-rowed representation

overR, viz. δ→ D =



x y z t
ay x at z
bz −bt x −y
−abt bz −ay x


and a rational

representation given byδ → K1[D(1), . . . ,D(h)]K−1
1 with a constant ma-

trix K1. It is easy to see after passing to an equivalent representation that
(M ) consists precisely of all matrices of the formD = [D1

q
, . . . ,Dh

q
],

whereD1, . . .Dh are matrices of the same form asD above, except that64

now x, y, z, t are arbitrary real numbers. Let

Ck =

[
1,

√
−a(k),

√
−b(k),

√
a(k)b(k)

]
and C = [C1, . . . ,Ch].

TakingC−1DC instead ofD and replacingx, y, z, t by x,
y
√
−a

,
z
√
−b

,

t
√

ab
respectively, we obtain finally that (M ) consists of all real ma-

trices of the formD = [
1

H1
q
, . . . ,

1
Hh
q

] whereH1, . . . ,Hh are independent

4-rowed real representations of Hamiltonian quaternions,each occur-
ring with multiplicity q. Let K denote the algebra of real Hamiltonian
and (K) denote the algebra of 4-rowed real matrices

H =



x y z t
−y x −t z
−z t x −y
−t −z y x



(with real x, y, z, t) representing elements ofK. Then the matrices

Ĥ =



x y z t
−y x t −z
−z −t x y
−t z −y x


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(with x, y, z, t real) give a representation of̂K, the opposite algebra of
K. We denote by (K) the set of such matriceŝH.

The involution inRwas, to start with, given byD→ F−1D′F where
F−1
= [1,−a,−b, ab] and in terms of the new representation,F is to be

replaced by the identity. Thus the positive involution in (M ) is given by
D→ D′. The commutator-algebra (F ) consists of all matricesT of the

form T = [
q

Ĥ1
1
, . . .

q

Ĥh
1

] where, for 1≤ k ≤ h,
q

Ĥk is an arbitraryq-rowed

square matrix with elements which belong to (K) and the involution in
(F ) is justT → T′.

Case (iv)V , a cyclic algebra with a positive involution of the second65

kind.

For δ ∈ V , we have the regular representationδ → D over Z
given by (35) and the rational representationδ + D (see p. 37). We

arrange the conjugates ofR overQ asR = R(1), R(2)
= R(1), . . . ,R(h−1),

R(h)
= R(h−1). Using (51) and passing to an equivalent representation

over the fieldC of complex numbers, we see that the linear closure
(V ) of (V ) (with respect to the reals) consists of all complex matri-

ces M of the form M = [
s

D1
s
,D1

s
,

s
D3

s
,D3

s
, . . . ,

s
Dh−1

s
,Dh−1

s
] where D1,

D3, . . . ,Dh−1 areg independents-rowed complex square matrices oc-
curring with multiplicity s. The positive involutionD → D∗ = G−1D

′
G

in (V ) corresponds exactly to a positive involutionM → P−1M
′
P in

(V ) whereP = [
s

G1,
s

G2, . . .
s

Gsh] is positive-definite hermitian. Now, for
a complex non-singularLk, we haveGk = L

′
kLk for 1 ≤ k ≤ hs. Let

L = [L1, L2, . . . , Lsh]. Taking the representationLML−1 instead ofM,
the given involution in (V ) is expressed simply byM → M

′
. Now,

every complex matrix
(
α 0
0 α

)
with α = β +

√
−1γ(β, γ real) is equiva-

lent overC to
(
β γ
−γ β

)
. Thus passing to a suitable equivalent represen-

tation we obtain that (M ) consists precisely of all matrices of the form

D = [
s

C1
sq
, . . . ,

s
Cg
sq

] whereC1, . . . ,Cg are independents-rowed square ma-

trices with elements which are 2-rowed real representations of complex
numbers, eachCi occurring with multiplicity sq. The positive involu-



48 Chapter 1

tion in (M ) is just D → D′. The commutator-algebra (F ) consists of

all matricesT = [
sq
T1×Es, . . . ,

sq
Tg×Es] whereT1, . . . ,Tg are independent66

sq-rowed square matrices with elements which are 2-rowed realrepre-
sentations of complex numbers. The involutionT → T̃ in (F ) induced
by the positive involution in (M ) is justT → T′. We have thus proved

Theorem 5. With the notation as above, we have the following normal
forms for elements of(M ) and(F ), viz.

Case (i)V = R D = [
1

R1
q
, (M ). . . ,

1
Rh
q

] T = [
q

T1
1
, (F ). . . ,

q
Th
1

]

Case (ii)V = G D = [
2

R1
2q
, . . . ,

2
Rh
2q

] T = [
2q
T1 × E2, . . . ,

2q
Th × E2]

Case (iii)V = R D = [
1

H1
q
, . . . ,

1
Hh
q

] T = [
q

Ĥ1
1
, . . . ,

q

Ĥh
1

]

Case (iv)V , cyclic algebra D= [
s

C1
sq
, . . . ,

s
Cg
sq

] T = [
sq
C1 × Es, . . . ,

sq
Cg × Es]

In all the four cases, the given positive involution in(M ) is given by
D→ D′ and the involution in(F ) is T→ T′.

At the beginning of this section, we looked for a rational matrix
A = G

q
T0 with T̃0 = −T0 in (F ). With the simplification carried out

above in (F ), we shall reduceA = T0 to a simple normal form by
making the real linear transformations in (F ). For reducingA to the
simplest form, we deal with each one of the four cases separately. We
denote, in the sequel, the matrix

(
0 Ek
−Ek 0

)
by ǫk (Ek being thek-rowed

identity) and shall denoteǫ1 by ǫ, for brevity.

Case (i)V = R. We have seen that a necessary and sufficient condi-
tion for such anA to exist is thatq is even, say,q = 2p. Let A =

[
q

T1, . . . ,
q

Th] where T1, . . . ,Th are arbitrary 2p-rowed real nonsingular67

skew-symmetric matrices. By passing to an equivalent representation of
(F ) (which does not disturb the form of the elements of (F ), we can
suppose thatA = ǫp

h
already.
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Case (ii)V = G . As in case (i), passing to an equivalent representation
of (F ) which does not destroy the form of the elements of (F ), we
could suppose thatA = ǫq

2h
.

Case (iii) V = P. For the sake of simplification, we might, to start
with, use for the Hamiltonian quaternions, the representation, as ele-
ments of the opposite algebra (K̂). Thus, the elements of (F ) are ex-

actly all matrices of the formT = [
q

H1
1
, . . . ,

q
Hh
1

] whereH1, . . . ,Hh are

q-rowed square matrices with elements in (K). We now make a sim-
ple transformation in (F ) as follows (Of course, we have to make a
corresponding transformation also in (M ), in order that (F ) might con-
tinue to be the commutator-algebra of (M ), but, for the moment, we
can afford to forget (M )). If H ∈ (K) corresponds to the Hamiltonian
quaternionx + yi + z j + tk = ξ + η j (whereξ = x + yi, η = z+ ti are
in C andx, y, z, t ∈ R), thenH is nothing but

(
ξ η

−η ξ

)
whereξ, η, ξ, −η

are just the two-rowed real representations of the corresponding com-
plex numbers. Passing to an equivalent representation for (F ) with a
suitable permutation matrix, we can suppose that the elements of (F )
are of the form

T =

[(
C1,1 C1,2

−C1,2 C1,1

)
, . . . ,

(
Ch,1 Ch,2

−Ch,2 Ch,1

)]

whereCk,l(1 ≤ k ≤ h, l = 1, 2) are independentq-rowed square matrices68

with elements which are of the form
(

x y
−y x

)
with x, y ∈ R. Further

Ck,l is obtained fromCk,l by just replacing a general element
(

x y
−y x

)
in

Ck,l by
(

x −y
y x

)
. Let us consider each one of theh blocks

(
Ck,1 Ck,2

−Ck,2 Ck,1

)

in T, separately. By applying a suitable permutation-transformation to
Ck,l which brings all the elementsx together, all they together, all the
elements−x together and all the elements−y together, we could suppose
thatCk,l =

(
Uk,l Vk,l
−Vk,l Uk,l

)
whereUk,l andVk,l are independentq-rowed real

square matrices thenCk,l =
(

Uk,l −Vk,l
Vk,l Uk,l

)
. To start withA is an element of

(F ) satisfyingA = −A′. By means of a transformation which does not
disturb the final form of the elements of (F ), we can supposeA = ǫ2q

h
already.
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Case (iv)V , a cyclic algebra with a positive involution of the second
kind.

Let T0 = [
sq
T1
s
, . . . ,

sq
Tg
s

] be a non-singular skew-symmetric matrix in

(F ). Now ǫ
sq

commutes withTk andMk = ǫ
sq

Tk(1 ≤ k ≤ g) considered as

a sq-rowed complex matrix is hermitian and non-singular. Thereexists
a sq-rowed complex non-singular matrixLk such thatL

′
kMkLk = [1

ak
,−1

bk

]

with ak + bk = sq. Let L = [
sq
L1
s
, . . . ,

sq
Lg
s

] where, now inLi, we have re-

placed the complex elements by their 2-rowed real representations. Tak-
ing the equivalent representationL(F )L−1 instead of (F ), we see that69

the elements of (F ) are again of the same form as above but the matrix

T0 assumes the very simple form

[
[ ǫ
a1
,− ǫ

b1

], . . . , [ ǫ
ah
,− ǫ

bh

]

]
. We make now

a simple transformation on (F ). The elements of (F ) are of the form

[
sq
T1
s
, . . . ,

sq
Tg
s

] where eachTi is a sq-rowed matrix with elements of the

form
(

x y
−y x

)
, x, y ∈ R. Passing to an equivalent representation of (F ),

by clubbing all thex’s together and all they’s together as in case (iii),
we may suppose that eachTk =

(
Uk Vk
−Vk Uk

)
whereUk, Vk are arbitrarysq-

rowed real square matrices. ThusT0 goes over into [T0
1
s
, . . . ,T0

g
s

] where

T0
k =

(
0 Pk
−Pk 0

)
(1 ≤ k ≤ g) and Pk = [1

ak
,−1

bk

] with ak + bk = sq.

As a further simplification, we take the representationB(F )B−1 where
B = [B1

s
, . . . , Bg

s
] and Bk = [1

sq
,Pk](1 ≤ k ≤ g). Thus (F ) may be

supposed to be the set of all matrices of the form [
sq

Ĉ1
s
, . . . ,

sq

Ĉg
s

] where

Ĉk =
(

Uk Vk Pk
−PkVk PkUk Pk

)
(1 ≤ k ≤ g) andUk, Vk are arbitrarysq-rowed real

square matrices. Our given matrixT0 goes over into the simple matrix
[ǫsq

s
, . . . , ǫsq

s
].

Summing up, the elements of (F ) have the normal form given in
the following table and in each of the four cases, the given matrix T0 in
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(F ) assumes the simple formJ.

(F ) J0 J

V = R T = [
2p
R1
1
, . . . ,

2p
Rh
1

] ǫp J0
h

V = G T = [
2q
R1
2
, . . . ,

2q
Rh
2

] ǫq J0
2h

V = R T = [
q

H1
1
, . . . ,

q
Hh

1
] whereHk is of the form ǫ2q J0

h(
C1 C2

−C2 C1

)
,C1 =

(
U V
−V U

)
andC1 =

(
U −V
V U

)

V , cyclic
algebra

T = [
sq

Ĉ1
s
, . . . ,

sq

Ĉg
s

] whereĈk is of the form

(
Uk VkPk

−PkVk PkUkPk

)
, andPk = [1

ak
,−1

bk
] with ǫsq J0

sq

ak + bk = sq

(56)

70

We have to findR ∈ (F ) such thatR2
= −E andJR = S = S′ > 0.

SinceR andJ are both in (F ), they decompose into similar blocks and
therefore confining ourselves to one of the components at a time, our
problem reduces to finding all real matricesRsatisfying

J0R= S = S′ > 0, R2
= −E (57)

and furtherR is of the form
2p
R1,

2q
R1,

q
H1 or

sq

Ĉ1 as in (56). We shall call

a real matrixR of the form
2p
R1,

2q
R1,

q
H1 or

sq

Ĉ1 as in (56), anadmissible
matrix of type1, 2, 3 or 4 respectively.

From (56), we getJ−1
0 SJ−1

0 S = −E, S = S′ > 0. SinceJ2
0 = −E, we

have
SJ0S = J0, S = S′ > 0. (58)

Thus we have to look for alladmissible positive symmetric symplectic
matricesS.

Let us now analyse (58). First note thatE +S is positive symmetric 71

along withS. Let us setW = 2(E + S)−1; thenW is positive symmetric
too and furtherS = −E + 2W−1. From (58), we get

4W−1J0W−1 − 2W−1J0 − 2J0W−1
= 0, i.e. 2J0 = J0W+WJ0.
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SettingJ0−J0W = −F, this means thatF = F′. FurtherF is admissible,
of the same type asJ0 andW. Let us write

F =

(
G H
H′ K

)
with G = G′,K = K′

G andK having the same number of rows. NowW = E − J0F, W =W′

together giveJ0F = (J0F)′. But J0F =
(

H′ K
−G −H

)
. ThusH = H′ and

K = −G. Now S = −E + 2(E − J0F)−1
= (E + J0F)(E − J0F)−1. Thus

R= J−1
0 S = +J−1

0 (E + P)(E − P)−1 (59)

where

P =

(
H −G
−G −H

)
, H = H′, G = G′. (60)

andP is admissible, of one of the four types. (The parametrization of S
is quite similar to the Cayley parametric representation for orthogonal
matrices).

We now proceed to examine the nature of the set of all admissible R
satisfyingR2

= −E andJ0R = (J0R)′ > 0, distinguishing between the
various types. For this purpose, we go back to the Riemann matrices
associated with theR-matrix R. From§ 1, we know that we can find
a Riemann matrixP uniquely up to a left-sided complex non-singular
matrix factor such that

R=

(
P

P

)−1 (
−iE 0
0 iE

) (
P

P

)
, PJ−1

0 P
′
= 0, iPJ−1

0 P
′
> 0. (61)

(Herei =
√
−1). If P = (AB) with square matricesA andB, then we72

know thatA, B are both non-singular and hence, we can assume without
loss of generality, thatP = (Z E) and the last two conditions in (61)
are, in terms ofZ, just

Z = X + iY, X = X′, Y = Y′, Y > 0. (62)

From (59), (60) and the first condition in (61) we obtain
(
P

P

)
J−1

0 (E + P) =

(
−iE 0
0 iE

) (
P

P

)
(E − P)
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i.e.

− iZ + iZH − iG = ZG+ E + H

− iZG− iE − iH = −Z + ZH −G

Z(−iE + iH −G) = E + H + iG

Z(iG + E − H) = −G− iE − iH

(63)

Let us setZ0 = H + iG. Then solving forZ0 from the third equation
in (63), we haveE + Z0 = Z(−iE + iZ0), i.e. (E − iZ)Z0 = −(E + iZ).
(equivalently,Z = i(E + Z0)(E − Z0)−1)

Z0 = Z′0 = −(E − iZ)−1(E + iZ)

= −(E + iZ)(E − iZ)−1 (64)

The conditionS > 0 is equivalent toY > 0 and using (63), this is
equivalent to

E − Z0Z0 > 0. (65)

The mappingZ→ Z0 takes the“generalized upper half-plane of degree
n” consisting of alln-rowed complexZ satisfying (62) into the “gener-
alized unit circle” consisting of alln-rowedZ0 = Z′0 satisfying (65). 73

ThusR is an admissible matrix of the form

R= J−1
0

(
E + H −G
−G E− H

) (
E − H G

G E+ H

)−1

(66)

whereZ0 = H + iG satisfies

Z0 = Z′0, E − Z0Z0 > 0 (67)

In caseV = R or V = G , any q-rowed (respectively 2q-rowed)
real square matrix is admissible and therefore, from (60),G, H can be

arbitrary real square matrices of
q
2

andq rows respectively. ThusZ0 =

H + iG is an arbitrary point of the generalized unit circle of degree
q
2

in

caseV = R and of degreeq, in caseV = G . The matrixZ is then an
arbitrary point of the generalized upper half-plane of the corresponding
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degree. Taking into account all the components in the representation
(56) of (F ), we are led in the caseV = R, to ah-fold product of the

generalized upper half-plane of degree
q
2

which is a complex space of

complex dimension
h
2

(q
2
+ 1

) q
2

. In the caseV = G we arrive at the

h-fold product of the generalized upper half-plane of degreeq, which is

of complex dimension
h
2

q(q+ 1).

Let us take the caseV = R. From the form (60) ofP and from the
‘admissibility’ of P, we see thatH = H′ = −H, G = G′ = −G and
bothG andH have to be of the form

(
U V
−V U

)
with U, V being arbitrary

q-rowed real square matrices. FromH′ = −H, G′ = −G, we obtainH =( 0 X1
X′1 0

)
, G =

( 0 Y1
Y′1 0

)
with X1 = −X′1 andY1 = −Y′1. Now Z0 =

( 0 Z1
Z′1 0

)
74

with Z1 = X1 + iY1 = −Z′1. Condition (65) is equivalent to the condition
E−Z1Z′1 > 0. We are thus led, in this case, to the set ofq-rowed complex
square matricesZ1 satisfying

Z′1 = −Z1, Eq − Z1Z′1 > 0 (68)

This space, like the ‘generalized unit circle’ met before inearlier cases,
is again one of the complex symmetric spaces of E. Cartan. It is of com-
plex dimensionq(q − 1)/2. If we take into account all the components
in the representation (56) of (F ), we are led to ah-fold product of the
symmetric domain defined by (68). We remark that there is no special
advantage in interpreting (68) in terms ofZ and in fact, it becomes more
complicated.

We now take up case (iv). SinceP is admissible of type 4, it follows
that

H = −DHD, G = −DGD whereD = [1
a
,−1

b
] with a+ b = sq.

Breaking upH as
(

H1 H2
H3 H4

)
with a-rowed squareH1, we see thatH =

H′ = −DHD impliesH4 = 0, H1 = 0, H2 = H′3. ThusH =
( 0 X2

X′2 0

)
and

similarly G =
( 0 Y2

Y′2 0

)
with arbitrary realX2, Y2 of a rows andb columns.

Now Z0 = H + iG =
( 0 Z2

Z′2 0

)
with Z2 = X2 + iY2 havinga rows andb
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columns. Condition (65) is equivalent to the two conditions,

Ea − Z2Z′2 > 0, Eb − Z
′
2Z2 > 0 (69)

Now “Ea − Z2Z′2 > 0” is equivalent to the fact that the matrix 75

M =

(
Ea Z2

Z′2 Eb

)
=

(
Ea Z2

0 Eb

) (
Ea − Z2Z′2 0

0 Eb

) (
Ea 0
Z′2 Eb

)

is positive-hermitian. ButM > 0 if and only if M > 0. On the other
hand

M =

(
Ea 0
Z
′
2 Eb

) (
Ea 0
0 Eb − Z

′
2Z2

) (
Ea Z2

0 Eb

)

is positive-hermitian if and only ifEb − Z
′
2Z2 > 0. Thus the two condi-

tions in (69) reduce to the single condition

Ea − Z2Z′2 > 0 (69)′

The set of complex rectangular matricesZ2 of a rows andb columns
satisfying (69)′ is again a bounded symmetric domain of E. Cartan, of
complex dimensionab (Let us recall thata+ b = sq). As before, if we
take into account all the components in the representation (56) of (F ),
we are led to ag-fold product of the domain defined by (69)′, which is

of complex dimension
g∑

k=1
akbk.

It is remarkable that in none of the four cases discussed above, we
arrive at the fourth type of E. Cartan’s symmetric domains.

The results above may be formulated as

Theorem 6. Any R-matrix in(F ) satisfying the conditions R2 = −E,
(JR) = (JR)′ > 0 is of the form(56) where the component matrices are
of the form(59) with Z0 = H + iG belonging to one of the three types
of E. Cartan’s bounded symmetric domains mentioned above, the type
being determined by(F ).

In each one of the four cases above, the set of suchR ∈ (F ) is non-
empty; for example,R = −J is always in this set, since−J2

= Ehs2 is 76
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positive symmetric. In case (iv), ifakbk = 0 for all k, thenR= −J is the
only R-matrix occurring in (F ) with the normal form (56).

Let us defineλ = h in caseV = R, G or P andλ = g in caseV
is a cyclic algebra carrying an involution of the second kind. From the
form (56) of elements of (F ), R = [R1, . . . ,Rλ] where each component
Rk(1 ≤ k ≤ λ) occurs with multiplicityµ equal to 1 in cases (i) and
(iii) and equal to 2 ors in cases (ii) and (iv) respectively. We recall that
to eachRk(1 ≤ k ≤ λ) corresponds a Riemann matrixPk under the

correspondenceRk =
(
Pk

Pk

)−1
L0

(
Pk

Pk

)
whereL0 = [−iEv, iEv], 2v being

the numbers of rows ofRk. Now hs2
q is an even integer, say 2n, in all the

four cases. Let us denote byL, the matrix [−iEn, iEn]. Then to theR-
matrixR in (F ) corresponds then-rowed Riemann matrixP by means

of the relationR=
(
P

P

)−1
L
(
P

P

)
. For a suitable permutation matrixV, we

haveV−1LV = L0
µλ

. From this, it is immediate that

P =



Eµ ×P1 0 . . . 0
0 Eµ ×P2 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . Eµ ×Pλ


(70)

is a Riemann matrix corresponding toR. EachPk is a Riemann matrix

of ν rows and 2ν columns withν =
q
2

, q, 2q, sq in cases (i), (ii), (iii) and

(iv) respectively. Further eachPk is of the form

Pk =

(
i
Eν + Zk

Eν − Zk
,Eν

)
(71)

whereZk = Z′k andEν − ZkZ′k > 0. Let us denote byH, the set ofP of77

the form (70) withPk of the form (71), corresponding to allR-matrices
in (F ). As we saw,H consists of at least of one pointP of the form
(70) with all Pk = (iEν,Eν)(1 ≤ k ≤ λ) and consists exactly of this
point whenakbk = 0(1≤ k ≤ λ).

We may now return to the problem of findingR-matricesR in (F )
admitting (M ) as theexactalgebra of commutators. For a givenR-
matrix R in (F ), let us denote by (R) the algebra of all real matrices
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M commuting withR. Then clearly, (R) ⊃ (M ). If R were to have
at least one rational commutator not in (M ), then the rank of (R) over
R will be strictly greater thanhs2 which is the rank of (M ) overR, or
what is the same as the rank of (M ) overQ. Thus our problem is to find
out R-matricesR in (F ) for which the corresponding real commutator-
algebra (R) has rank exactlyhs2 overR. The advantage in introducing
(R) is the following. Taking first the normal forms given in Theorem 5,
the algebra (F ) is the commutator-algebra of (M ). LetC be a real non-
singular matrix such that the elements ofC−1(F )C have precisely the
normal form given by (56). Then (F )1 = C−1(F )C is the commutator-
algebra of (M )1. But the rank overR of (M ) and (M )1 are the same.
Thus, in connection with the problem mentioned at the beginning of this
paragraph, we are free to look among the elements of (F )1 itself, for
R-matrices for which the corresponding algebra of allreal commutators
has rank exactlyhs2 overR. By a “rational” commutator of aR-matrix in
(F )1, we shall mean a commutator of the formC−1MC with rationalM.
The set of “rational” commutators is countable. We denote the algebra 78

C−1(M )C by (M )1.
We know that the equationRM = MR for aR-matrixRcorresponds,

in terms of the associated Riemann matrixP, to the equation

PM = KP (72)

whereK is a complex matrix. Let then, for aP ∈ H, the equation (72)
hold, for a realM. Splitting upM andK as (Mkl) and (Kkl) correspond-
ing to the decomposition (70) ofP, we obtain

(Eµ ×Pk)Mkl = Kkl(Eµ ×Pℓ) (73)

for l ≤ k, 1 ≤ λ. We break upMkl andKkl respectively into 2ν-rowed and
ν-rowed square matrices corresponding to the decompositionof Eµ×Pk

andEµ ×P1 and denoting a typical block byM0 andK0 respectively,
we have, from (73)

PkM0 = K0P1 (74)

with complexK0. Now Pk andP1 are of the form (71); splitting up



58 Chapter 1

M0 as
(

A B
C D

)
with ν-rowed squareA, we have, from (74),

i · Eν + Zk

Eν − Zk
A+C = K0 i · Eν + Z1

Eν − Z1

i · Eν + Zk

Eν − Zk
B+ D = K0

Elimination ofK0 leads to the equations (for 1≤ k, l ≤ λ)

i(Eν + Zk)A(Eν − Z1) + (Eν − Zk)C(Eν − Z1) + (Eν + Zk)B(Eν

+ Z1) − i(Eν − Zk)D(Eν + Z1) = 0. (75)

Conditions (75) are necessary and sufficient forP ∈ H to haveM as a
multiplier. Referred to as the “singular relations they have been studied
thoroughly by G. Humbert [10] forn = 2.

For anyM ∈ (M )1, we know that equations (75) holdidentically79

for P ∈ H. If not P ∈ H admits a “rational” multiplierM1 (i.e. if M1

is a “rational” commutator of the associatedR-matrix), thenP neces-
sarily belongs to the quadratic surface defined inH by conditions (75)
corresponding to thisM1. (Of course, if it turns out that everyP ∈ H
admits thisM1 as a multiplier, then this quadratic surface coincides with
the whole ofH). The number of such surfaces, forM1 < (M )1, is, at
any rate, countable. The complement of the union of these countably
many surfaces may be seen to be dense inH.

Let us suppose that forall P ∈ H, a real matrixM = (Mkl) is a
multiplier. Then, with the same notation as above, conditions (75) are
valid with arbitraryZk, Zl in the “generalized unit disc” of degreeν (such
thatP ∈ H). In particular, takingZk = 0 = Z1, P ∈ H and then (75)
givesiA+C+B− iD = 0 i.e. A = D, B = −C. ThusM0 =

(
A B
−B A

)
. Now

the quadratic terms in (75) cancel out and we are left with theequation

2iZkA− 2iAZ1 + 2ZkB+ 2BZ1 = 0

SettingF = A+ iB, we have then

ZkF = FZ1 (76)

We split our further considerations into four parts according asV = R,
G , P or a cyclic algebra. First, we take up the caseV = R or G . Here
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µ = 1 or 2 respectively. Further,Zk, Zl are arbitrary elements of the
“generalized unit disc” of degreeν. TakingZk = Zl = tEν(0 < t < 1)
in (76), we see thatF = F or B = 0. NowZkF = FZl and sinceZk, Zl 80

are arbitrary elements of the “generalized unit disc”, we can show that
for k , 1, we haveA = 0 and fork = 1, A = αEν with arbitraryα in
R. Thus whenV = H, we see thatMkl = 0 for k , 1 andMkk = αkE2ν;
with arbitrary realα. For V = G , againMkl = 0 for k , 1, while
Mkk =

(
αkE2ν kβk E2ν

γkE2ν δkE2ν

)
with arbitraryαk, βk, γk, δk in R. Thus the rank

overR of the algebra of real matrices which are multipliers forevery
P ∈ H is h or 4th according asV = R or G . But the rank of (M ) over
R is the same in both these cases. Thus (75) does not hold identically for
P ∈ H, if M is a “rational” multiplier not in (M )1. In fact, if P does
not belong to the countably many quadratic surfaces inH corresponding
to such “rational” multipliers not in (M )1, then it has (M )1 as its exact
algebra of multipliers. Thusour problem of finding a R-matrix with(M )
as exact commutator-algebra admits of a solution in these two cases.

Example . If q = 1 andV = Q, then any pointP = (τ, 1) ∈ H (with
τ = α+β

√
d,α, β, d(< 0) inQ) admits all the elements ofF = Q(

√
d) as

multipliers. ClearlyF containsQ properly. Such pointsτ are countably
many and constitute a dense set in the complex upper half-plane; the
complement of this set also is dense in the upper half-plane.

We now take up for consideration the cases (iii) and (iv). In these
two cases,λ = h or g, µ = 1 or s, ν = 2q or sqrespectively. Further, for
1 ≤ k ≤ λ,

Pk =

(
i
Eν + Zk

Eν − Zk
,Eν

)
with Zk =

(
0 Wk

W′k 0

)

Further in case (iii)Wk = −W′k is aq-rowed complex matrix satisfying81

Eq −WkW′k > 0 while, in case (iv),Wk is a complex matrix ofak rows
andbk columns such thatEak −WkW′k > 0 andak + bk = sq. If, in case
(iii), q = 1, thenWk = 0; in case (iv), ifakbk = 0, thenZk is to be taken
just as the zero matrix ofsqrows and columns.

We start from condition (76) and splitting upF as
(

F1 F2
F3 F4

)
with

squareF1 having the same number of rows asW1, we may rewrite (76)
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as follows, namely,

WkF3 = F2W′1
WkF4 = F1W1

W′kF1 = F4W′1
W′kF2 = F3W1

(76)′

Let nowV =P and q≥ 3. (The situation whenV =P andq = 1
or 2 is more complicated and will be dealt with later on). We consider
first, for k , 1, the equationWkF3 = F2W′1 in (76)′. Let Wk = (uαβ),
F3 = (aγδ), F2 = (bρζ), W1 = (vκω). Comparing the (κ, δ)th element on
both sides of the matrix equation, we have

q∑

ω=1

uκωaωδ =
q∑

ζ=1

bκζvδζ (77)

Here, except for the relationsuκκ = 0, vκζ = −uζκ and similar relations
for the elements ofW1, we may regard the elementsvκω of Wk and the82

elementsvζδ of W1 as independent variables. As a consequence, it can
be shown thatF2 = 0, F3 = 0, for k , 1. Similarly using the equation
WkF4 = −F1W′1 in (76)′, it can be proved thatF1 = 0, F4 = 0 for k , 1.
Thus, fork , 1, the matrixF occurring in (76) is 0. We may now take
up the discussion of (76) fork = 1. Then we have, in particular, from
(76)′

WkF3 = F2W′k (78)

WkF4 = −F1W′k (79)

Using the same notation as in (77), we obtain from (78) that
q∑

ω=1

uκωaωδ =
q∑

ζ=1

bκζuδζ (80)

We now proceed to show that, forε , δ, aεδ = 0. Sinceν = q ≥ 3, there
existsη , ε, δ such thatuηε . 0 and then withκ = η, (80) becomes

q∑

ω=1

uηωaωδ −
q∑

ζ=1

bηζuδζ = 0 (81)
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But the left hand side of (81) is a linear form in the variablesuαβ with
the coefficient of uηε equal toaεδ. Henceaεδ = 0. Similarly, we can
show thatbηζ = 0 for η , ζ. ThusF2, F3 are diagonal matrices; using
(79), it would follow again thatF1, F4 are also diagonal. Now, from
(81),

uηδ
(
aδδ + bηη

)
+

q∑

ω=1
ω,δ

uηωaωδ −
q∑

ζ=1
ζ,η

bηζuδζ = 0

By the same arguments as above, we have

aδδ = −bηη (82)

Analogous to (81), we have
q∑

ω=1
uηωaωε −

q∑
ζ=1

bηζuεζ = 0. From this we 83

may deduce as above that

aεε = −bηη (83)

From (82) and (83), it follows thatF3 = a11Eq and now from (78) we
deduce thatF2 = −F3. In a similar manner, we can use (79) to show that
F4 = F1 = xEq wherex is a complex number. Thus finally we see that,
for k = 1, the matrixF occurring in (76) is of the form

( x y
−y x

)
×Eq where

x, y are arbitrary complex. Referring to (72), ifM is a real matrix which
is a multiplier forall P ∈ H, thenM = [M11, . . . ,Mkk, . . . ,Mhh] where
eachMkk is a real matrix with 4 independent real parameters. Thus the
rank overR of the algebra of all real matrices commuting with all the
R-matrices in (F ) is 4h, which is precisely the rank overR of (M ).
We may conclude, as before, that forV =P andq ≥ 3, there exist R-
matrices in(F ) admitting(M ) as the exact commutator-algebra.

We now take up case (iv) whenV is a cyclic algebra with an involu-
tion of the second kind andassumefurther thatqs≥ 3 andnot all akbk

are equal to zero.We may, without loss of generality, suppose that for
1 ≤ k ≤ r ≤ g, we haveakbk > 0. Observe thatakbk > 0, qs ≥ 3
together imply that at least one ofak, bk is greater than 1. We go back
to consider equation (76). Ifk > r and 1≤ r, then we haveFZ1 = 0 for
all Z1 and consequentlyF = 0. Similarly, if 1 > r andk ≤ r, we have
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againF = 0 in (76). Let us now suppose that 1≤ k, 1 ≤ r. From (76)′,
we may deduce a relation analogous to (77). But now the elements of
Wk are independent complex variables which are again independent of84

the elements ofW1 (for 1 , k). Further, at least one ofak, bk is greater
than or equal to 2 and similarly fora1, b1. It is easy to deduce as before
that fork , 1, 1 ≤ k, 1 ≤ r, we haveF = 0, while for 1≤ k = 1 ≤ r,
we see thatF =

(
x 0
0 x

)
× Eν wherex is arbitrary complex. Thus, refer-

ring to (73),Mkk is a real matrix with 2s2 real parameters. We may then
conclude that any real matrixM which is a multiplier for all Riemann
matricesP ∈ H is necessarily of the form

M = [M11, . . . ,Mrr ,N] (84)

whereM11, . . . ,Mrr are real matrices with 2s2 independent real param-
eters andN is a 2(g− r)s2q-rowed real square matrix.

If r = g, in other words,akbk > 0 for 1 ≤ k ≤ g and qs ≥ 3,
then the rank overR of the algebra of all such matricesR is 2gs2

= hs2

which is precisely the rank overR of (M ). Thus in the case whenV is a
cyclic algebra with an involution of the second kind and furtherqs≥ 3,
akbk > 0(1≤ k ≤ g), we see thatthere exist R-matrices with(M ) as the
complete commutator-algebra.

If 1 ≤ r < g, we know nothing about the nature of the matrixN
appearing in (84). Therefore, before we proceed to discuss the case
whenqs≥ 3 and 1≤ r < g, we need to prove

Lemma 3. LetL be an algebraic numberfield of degree g overQ, with
ω1, . . . , ωg as a basis overQ and letΩ stand for the g-rowed square
matrix (ω(1)

k ) (1 ≤ k, l ≤ h). Further, let Q be a g-rowed square matrix
of the form

( a ∗
0 B

)
with a complex number a and letΩQΩ−1 be rational.

Then, necessarily a∈ Z and furthermore, Q= [a(1), . . . , a(g)].

Proof. Let ΩQΩ−1
= (pkl)(1 ≤ k, l ≤ g). ThenΩQ = (pkl)Ω and, in85

particular, we haveωka =
g∑

1=1
pklω1(pkl ∈ Q). Hencea =

g∑
1=1

p11
ω1

ω1
∈

L (sinceω1 , 0) anda(1)
= a, a(2), . . . , a(g) are its conjugates over

Q. But we know thatΩ[a(1), . . . , a(g)] = (pkl)Ω and thereforeQ =
[a(1), . . . , a(g)]. �
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Remark. We shall use, in the sequel, a generalization of Lemma 3 (the
proof of which is exactly on the same lines) namely, the following.

Let d ≥ 1 be a rational integer andL , Ω as in the hypothesis of
Lemma 3. Let Q=

(
H ∗
Q ∗

)
with a d-rowed complex square matrix H and

let (Ω × Ed)Q(Ω × Ed)−1 be rational. Then necessarily, the elements of
H are inZ and further, Q= [H(1), . . . ,H(g)].

We may proceed now to discuss case (iv) with the assumption that
qs≥ 3, 1≤ r < g. In order that the application of the above-mentioned
generalization of Lemma 3 be feasible, we do not go right up tothe
eventual normal form (56) of (F ) but we stop short somewhat earlier.
So let us start de novo. From the representationδ → D0 of V overR
given on p. 37, we first get a representationδ → D1 of V over L as
follows; namely, if (1,

√
c) is a basis ofR over Z , then denoting the

matrix
(

1 1√
c −
√

c

)
byΩ1, we defineD1 by D1 = (Ω1×Es2)[D0,D0](Ω1×

Es2)−1. Now, we can get from this a rational representationδ→ D of V

by the prescription

δ→ D = C1

D
(1)
1
q
, . . . ,D(g)

1
q

C−1
1

whereC1 = Ω
∗
1 × E2s2q, Ω∗1 = (δ(1)

k ), δ1, . . . , δg is a basis ofL overQ 86

andD(1)
1 , . . . ,D(g)

1 are the conjugates ofD1 overQ. Thus the elements of

the algebra (M )2 = C−1
1 (M )C1 are of the form [D(1)

1 , . . . ,D(g)
1 ] where

D1 is a 2s2q-rowed square matrix with elements inL . Defining the
algebra (F )2 by (F )2 = C−1

1 (F )C1, we shall look forR-matrices in
(F )2 with the required properties. Applying to (F )2 the procedure
given earlier to reduce (F ) to the normal form (56), we remark that
this merely involves going over to the representationC−1

2 (F )2C2 (where
C2 = [C2,1, . . . ,C2,g] with 2s2q-rowed real square matricesC2,k). Let
M0 be arational matrix commuting with allR-matrices in (F ). Then
M = C−1

2 C−1
1 M0C1C2 commutes with all the correspondingR-matrices

in C−1
2 (F )2C2. Sincer ≥ 1, it follows, by using the same arguments

as for the caser = g above, thatM and henceM2 = C2MC−1
2 is of

the form (84). As yet we know nothing about the number of parameters
involved inN. But nowM0 = C1M2C−1

1 is rational and appealing to our
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Remark on p. (85), we conclude thatM11 has elements inZ and further
M2 itself is of the form

M2 = [M(1)
11 , . . . ,M

(g)
11 ] (85)

If we take M0 to be real instead of being rational, and further ifM0

commutes with all theR-matrices in (F ) we see, by arguments as in
the caser = g, that C1M0C−1

1 is of the form (84) again, with each
Mkk(1 ≤ k ≤ r) having 2s2 independent real parameters. Now such
M11 constitute precisely the linear closure of the matricesM(1)

11 occur-

ring in (85) with elements inZ . Thus the matricesM(1)
11 in (85) form87

an algebra of rank 2s2 over Z . Let indeed thenF1, . . . , F2s2 be a ba-

sis of this algebra so that every suchM(1)
11 =

2s2∑
k=1

xkFk (with xk ∈ Z ).

Hence, in (85),M(1)
11 =

2s2∑
k=1

x(1)
k F(1)

k . This enables us to conclude that

if M0 is a real commutator of allR-matrices in (F ), then, by virtue of
M0 lying in the linear closure of rational commutators of the same kind,

C1M0C−1
1 = [M11, . . . ,Mgg] where Mkk =

2s2∑
l=1

xl , F(k)
l and x1, . . . , x2s2

are arbitrary real numbers. In other words, the rank of the algebra of
real commutators ofall R-matrices in (F ) is 2gs2

= hs2. Thus for
qs≥ 3, 1 ≤ r ≤ g, there do exist R-matrices with(M ) as the complete
commutator algebra.

We shall now prove that forqs≥ 2 andr = 0 (i.e. akbk = 0 for all
k), there cannot exist R-matrices with(M ) as the complete commutator-
algebra. Sinceakbk = 0 for 1 ≤ k ≤ g, the onlyR-matrix in (F )1 =

C−1(F )C (referring to the notation on p. 56) is−J = [−J0, . . . ,−J0
g times

].

Now the matricesPk occurring in case (iv) in (56) are all±Esq and
therefore all the matrices in (F )1 commute with−J. Thus all elements
of (F ) commute with theR-matrixR= −CJC−1; in particular, every el-
ement of (F ) commutes withR. If now Rwere to have (M ) as its exact
commutator algebra, then (F ) ⊂ (M ), necessarily. But, by Proposition
6, (F ) ∩ (M ) = (R). Hence (F ) = (R). Now, if qs ≥ 2, then either
q > 1 or s > 1. If q > 1, then (F ) is theq-rowed matrix-algebra over
the commutator algebra (V )∗ of (V ) and therefore it is not commutative.88
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But then (F ) = (R) gives a contradiction. Again, ifq = 1 ands > 1,
then (V ) is non-commutative and so is (F ) = (V )∗, which contradicts
(F ) = (R). Thus our assertion above is proved.

The exceptional cases which remain to be considered are the fol-
lowing, namely a)V = P, q = 1 or 2 and b)V , a cyclic algebra
with an involution of the second kind withqs = 1 or with qs = 2
and not allakbk equal to zero. We shall slightly reformulate our prob-
lem of finding R-matrices in (F ) for which 1) AR = S = S′ > 0
where A = G

q
T0 with T0 = −T̃0 in (F ), 2) R2

= −E and 3) (M )

is the complete commutator-algebra. Let us setN = T0R. Then bar-
ring the last condition, in terms ofN, these conditions are merely that
1) N ∈ (F ) 2) N = G−1

q
N′G

q
= L−1F−1

q
F
q
L = (F−1

q
N′F

q
)L−1L = Ñ and

3) (T−1
0 N)2

= −E. On the other hand, by Lemma 2,S = G
q

N > 0 and

G
q
> 0 together imply that all the eigenvalues ofN are real and positive.

Thus our problem reduces to findingN ∈ (F ) for which

N = Ñ,T−1
0 N T−1

0 N = −E; the eigenvalues ofN are real and positive.
(86)

We shall first take up the case whenV =P , q = 1. Choosing for
(M ), the 4-rowed representation of the opposite algebraP∗ of P with-
out loss of generality, we may suppose that (F ) is the 4-rowed rep-
resentationδ → D of P over R, given on p. 46. We observe that
the involutionT → T̃ in (F ) is a positive involution sinceσ(TT̃) =
σ(TF−1

q
T′F

q
) is a positive definite form over the centreR in view of

F being positive definite. But now we know that the abstract totally 89

definite quaternion algebraP has a unique positive involution, viz.
δ = x+ yi + z j+ tk→ δ̃ = x− yi − z j− tk. Thus, forN ∈ (F ), N = Ñ
implies thatN is in the center of (F ). This givesR = T−1

0 N = NT−1
0

i.e. T0R = N = RT0. Now suppose that there exists aR-matrix R in
(F ) for which (M ) is the exact commutator-algebra. ThenT0 being a
rational commutator ofR, T0 ∈ (M ). SinceT0 ∈ (F ) too, we have
T0 ∈ (F ) ∩ (M ) = (R). This gives usT0 = T̃0 but the we have a con-
tradiction toT0 = −T̃0 from which we started. We may thus conclude
that in the caseV =P , q = 1, there cannot exist R-matrices with(M )
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as the exact commutator-algebra.
Next we consider the case whenV =P andq = 2. By choosing

a suitable representation (P) of P, we can suppose, without loss of
generality, that for the elementsδ of the commutator-algebra (̂P) of
(P), we already have the representationδ → [D(1), . . . ,D(h)] over the
centreR and its conjugates overQ, as indicated on p. 46. NowT0 =(
α1 β1
γ1 δ1

)
= −T̃0 with α1, β1, γ1, δ1 in (P̂). We first remark that there

exists a 2-rowed non-singular matrixW with elements in (̂P) such that
W̃T0W =

(
α2 0
0 β2

)
with α2 = −α̃2, β2 = −β̃2 in (̂β). If now for somep

in (R), we haveβ2 = pα2, then we can easily findλ , 0 in (P̂) such
that λ̃β2λ does not commute withα2. Therefore, choosing, for example,
W

(
1 0
0 λ

)
instead ofW, we could suppose that for no elementp in (R) do

we haveβ2 = pα2. The matrixN ∈ (F ) has the properties mentioned
in (86). Now it is trivial to see that̃WNWis again symmetric under the90

involution in (F ). Moreover, from (86), we have, in view of Lemma 2,
thatF

2
N is symmetric and positive-definite. HenceW′F

2
NW = F

2
W̃NW

is again symmetric and positive-definite. By Lemma 2 again,W̃NW
has its eigen-values real and positive. Thus takingW−1RW, W̃NWand
W̃T0W instead ofR, N andT0 respectively we could suppose from the
beginning thatT−1

0 =
(
α 0
0 β

)
with α = −α̃, β = −β̃ in (P̂) andN =

(
x ω
ω̃ y

)

has the properties mentioned in (86). Denoting by (R) the centre of (̂P),
we see that

x = [x1
4
, . . . , xh

4
] > 0, y = [y1

4
, . . . , yh

4
] > 0 are in (R)

ω = ω̃ ∈ (P̂), xy− ωω̃ > 0.
(87)

(The last assertion in (87) is a consequence of the relation

N =

(
1 0

x−1ω̃ 1

) (
x 0
0 y− x−1ω̃ω

) (
1 x−1ω

0 1

)
.

Now R= T−1
0 N =

(
ξ η
ζ τ

)
whereξ = xα, η = αω, ζ = βω̃ andτ = yβ. The

conditionR2
= −E may be written as

− cx2
+ αωβω̃ = −1, cxω = yαωβ

βω̃αω − dy2
= −1, dỹω = αβω̃α

(88)



7. Existence ofR-matrices with given commutator-algebra 67

whereα2
= −αα̃ = −c, β2

= −ββ̃ = −d with c = [c1
4
, . . . , ch

4
] > 0,

d = [d1
4
, . . . , dh

4
] > 0 in (R). Writing x = py, with p ∈ (R), we obtain

from (88),

c(x2 − pωω̃) = 1 = d

(
y2 − ωω̃

p

)

leading top2
= dc−1. Thusp = xy−1 is the positive square root ofdc−1; 91

i.e. pk =

∣∣∣∣∣∣∣

√
d(k)

c(k)

∣∣∣∣∣∣∣
. Our problem onR-matrices now reduces to finding

x > 0 in (R) andω ∈ (P̂) for which

αωβ = cpω (89)

cx2 − cpωω̃ = 1 (90)

p−1x2 − ω̃ω > 0

As a particular solution of (89), we haveω0 = pα−β (observe thatω0 ,

0). The most general solution of (89) is given byω = tω0 wheret ∈ (P̂)
andtα = αt. Clearlyt = u+ vα with u = [u1

4
, . . . , uh

4
], v = [v1

4
, . . . , vh

4
] in

(R). Now, the first condition in (90) may be written as

cx2 − cpω0ω̃0(u2
+ cv2) = 1 (90)′

Equation (90)′ defines a “two-sheeted hyperboloid” in thex, u, v-space;
the 2h components ofu andv are independent real parameters while the
h components ofx are linearly independent of the components ofu, v
although quadratically related to them. We finally arrive atthe following
parameterization for theR-matrix R, namely

R=

(
pyα α(u+ vα)ω0

βω̃0(u− vα) yβ

)
(91)

wherecp2y2 − cpω0ω̃0(u2
+ cv2) = 1.

Let γ1, . . . , γh be a basis ofR overQ and letΩ = (γ(1)
k ) with 1 ≤

k, 1 ≤ h. For δ ∈ (P̂), we took the rational representation (Ω ×
E4)[D(1), . . . ,D(h)](Ω × E4)−1. Let, under this representation,α→ (Ω ×
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E4)[A(1), . . . ,A(h)](Ω×E4)−1 andβ→ (Ω×E4)[B(1), . . . , B(h)](Ω×E4)−1. 92
It is trivial to verify thatR= (Ω × E8)[R1, . . . ,Rh](Ω × E8)−1 where

Rk =

(
pkykA(k) A(k)(ukE4 + vkA(k))(pkA(k) − B(k))

B(k)(pkA(k) − B(k))(vkA(k) − ukE4) ykB(k)

)

for 1 ≤ k ≤ h. Let nowM0 be any 8h-rowed rational matrix commuting
will all R-matrices in (F ). ThenM = (Ω × E8)−1M0(Ω × E8) has to
commute with [R1, . . . ,Rh] and moreover (Ω × E8)M(Ω × E8)−1 has to
be rational. From the mutual independence of the parametersuk, vk, yk

andu1, v1, y1 (for k , 1), it is clear thatM = [M1, . . . ,Mh] and further
by our Lemma,M1 has elements inR while Mk = M(k)

1 for 1 ≤ k ≤ h. In
addition Mk commutes withRk. We proceed to determine the structure
of M1, writing M1 =

(
ρ κ
µ ν

)
with 4-rowed square matrices with elements

in R. For the sake of brevity in notation, let us for the present, agree
to understand byα, β the corresponding matricesA(1), B(1) and further
let us omit the subscript inp1, y1, u1, v1. Then we see thatM1 has to
commute necessarily with the matrix

(
pyα α(u+vα) ω0
βω0(vα−u) yβ

)
. EquivalentlyM1

has to commute with
(

pα 0
0 β

)
,

(
0 αω0

βω̃0 0

)
and

(
0 −cω0

−βω̃0α 0

)
= −c

(
0 ω0

pω̃0 0

)
.

The last matrix is the product of the first two upto a scalar factor. Hence
it suffices to requireM1 to commute with the two matrices

(
pα 0
0 β

)
and(

0 αω0
βω̃0 0

)
. We have now to distinguish between three cases.

(i) pk < R
(k) for some k, (say k= 1). Since 1, p are linearly in-93

dependent overR, it is clear thatM1 has, of necessity, to com-
mute with

(
α 0
0 0

)
,
(

0 0
0 β

)
and

(
0 αω0
βω̃0 0

)
. It follows immediately that

M1 =
(
ρ 0
0 ρ

)
whereρ commutes withα andβ and hence with all

elements of (̂P). Thusρ is in (P). SinceMk = M(k)
1 (1 ≤ k ≤ h),

we see that the rank overQ of the algebra of all rational matrices
M0 commuting with allR-matrices in (F ) in this case is 4h which
is the same as the rank of (M ) overQ. Thus, in this case, there
existR-matrices admitting (M ) as the exact commutator-algebra.
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(ii) p < (R) but pk = |τ(k)|(1 ≤ k ≤ h) for τ ∈ R.

As in case (i), we know thatM1 has to commute with
(

pα 0
0 β

)
and(

0 αω0
βω̃ 0

)
. Further, for at least onek(1 ≤ k ≤ g), pk = τ

(k) and for

somel(1 ≤ l ≤ g), pl = −τ(l). Thus, from the fact thatMkRk =

RkMk andMk = M(k)
l , we see thatMl has to commute with

(
pα 0
0 β

)
,

(
−pα 0

0 β

)
,

(
0 αω0

βω̃0 0

)
and

(
0 α(−pα − β)

β(pα + β) 0

)
.

Thus, againMl commutes with

(
α 0
0 0

)
,

(
0 0
0 β

)
,

(
0 αβ

d 0

)
and

(
0 −c
βα 0

)

and thereforeMl has to be of the same form as in case (i) above.
We conclude as above that there existR-matrices admitting (M )
as the exact algebra of commutators.

(iii) p ∈ (R). In this caseMl commutes withP =
(

pα 0
0 β

)
and Q = 94(

0 αω0
βω̃0 0

)
, as before. But sinceP2

= −dE8, Q2
= cpω0ω̃0E8,

QP= −PQ, we see thatE8, P, Q generate an abstract quaternion
algebra overR and this 8-rowed representation contains its irre-
ducible representation overR exactly twice. SinceM1 commutes
with P, Q it follows that the rank overR of the algebra formed by
the matricesMl is 16. Thus, in this case, the rank overQ of the
algebra of rational matrices commuting with all theR-matrices in
(P̂) is 16h which is greater than 4h, the rank of (M ) overQ. In
other words, there do not existR-matrices in (̂P) with (M ) as the
exact algebra of commutators, in this case.

For γ ∈ (P̂), define the “reduced norm”NR(γ) of γ over R by
NR(γ) = γγ̃ (which certainly belongs toR) and forT0 =

(
α−1 0
0 β−1

)
define

the “reduced norm”NR(T0) of T0 by NR(T0) = NR(α−1β−1). It is then

clear thatNR

(
α

β

)
andNR(T0) are the same upto the square of a totally

positive number inR. We conclude thus, that in the case whenV =P,
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q = 2, there exist R-matrices with
(
P

2

)
as exact commutator-algebra

except when
NR(T0) = τ2 for τ > 0 in R.

The next case for discussion is whenV is a cyclic algebra of type
(iv) with qs = 1 i.e. q = s = 1. ThenV is the same as its centre
R(= Z (

√
a)) which is totally complex of degree 2 over a totally real

subfieldZ of degree
h
2

overQ. Let γ1, . . . , γh be a basis ofR overQ

andΩ = (γ(1)
k )(1 ≤ k, l ≤ h). Then we have

ΩT0Ω
−1
= [τ(1), . . . , τ(h)] with τ(k)

= −τ(k),

ΩNΩ−1
= [p1, . . . , ph] > 0

ΩRΩ−1
= [i1, . . . , ih]

and necessarilyik = ±
√
−1 in view of the fact thatR2

= −Eh. Thusτ(k)95

andik are purely imaginary and lie in opposite half-planes.
Let R be anyR-matrix in (F ) which is the same as (R) and let (L)

denote the algebra of rational commutators (Of course, by construction,
(L) contains (R)). We know (L) is semi-simple but since (L) is an alge-
bra ofh-rowed rational matrices containing an irreducible representation
of R (of degreeh overQ), we see by considering the characteristic poly-
nomial of a generator overQ of (R), that (L) is necessarily simple. Let
then (L) be the total matrix-algebra of order 1 over a division algebra
V1 and letV1 be a division algebra with centreg which is an algebraic
number field of degreeg overQ. By considering the representation of
a generator ofR overQ with respect to a splitting field ofV1, we see
thatV1 = g. Now the degree of a maximal commutative system in (L)
is necessarilygl and it is easy to deduce thatgl = h and (g) ⊂ (R). Let
g(1)(= g), g(2), . . . , g(g) be the conjugates ofg overQ. Let R(1)(= R),
R(2), . . . ,R(1) be the conjugates ofR over g(1) andR(1+1), . . . ,R(21) the
conjugates ofR(1+1) over g(2) and so on. Taking a representation over
g(1), . . . , g(g), let T0 = [T(1), . . . ,T(g)] and R = [R1, . . . ,Rg]. Since
M1((g)) is the complete rational commutator-algebra ofR, it follows
thatRk = ±iEl (for 1 ≤ k ≤ g). Thusiτ(kl+1), . . . iτ(kl+1) have all the same96

sign (for 1≤ k ≤ g). If L = (R), then we must have necessarilyl = 1
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andg = h. The criterion forR to have (R) an exact commutator-algebra
is then clearly thatl should not be greater than 1. We may reformu-
late this condition as follows, namely, that there should exist no proper
subfieldg of R such that the conjugates ofτ with respect to each con-
jugateg(k) of g should not all lie in the same complex half-plane (lower
or upper). In other words,

√
aT0 should not be totally-definite over any

proper subfieldg ofR.

We proceed to discuss the case whenV = R of type (iv) butq = 2.
ThenR = Z (

√
a) with Z totally real and−a > 0 in Z . For α =

x+ y
√

a in R with x, y ∈ Z , we always take the 2-rowed representation(
x y
ay x

)
over Z and denote it byα again. Forα =

(
x y
ay x

)
∈ R, α̃ =

α =
(

x −y
−ay x

)
. In particular, to

√
a correspondsε =

(
0 1
a 0

)
. Any α =

x+y
√

a ∈ R, is then equal toxE2+yε. If Z (k) is a conjugate ofZ over

Q, then corresponding toα =
(

x y
ay x

)
in R, we defineα(k) by

(
x(k) y(k)

(ay)(k) x(k)

)
.

Let γ1, . . . , γg be a basis ofZ overQ andΩ = (γ(1)
k )(1 ≤ k, l ≤ g).

For elementsT of F , we have first a representationT =
(
α β
γ δ

)
overZ ,

whereα, β, γ, δ are inR and a rational representation forT is given by

(Ω × E4)[T(1), . . . ,T(g)](Ω × E4)−1 where T(k)
=

(
α(k) β(k)

γ(k) δ(k)

)
.

We shall in the sequel, use sometimes for the elementsT of F , the
representation (F ) given byT → [T(1), . . . ,T(g)] over Z and its con- 97

jugates as mentioned above. We then extend this representation linearly
to the linear closure (F ) of (F ). When there is no risk of confusion,
we shall denoteT ∈ (F ) merely by

(
α β
γ δ

)
as above without referring to

all theg components every time.

Let thenT0 = −T̃0 be a nonsingular element of (F ). By the same
arguments as in the caseV = P, q = 2, we can suppose thatT−1

0 =(
α 0
0 β

)
with α = −α̃, β = −β̃ in R. Let N = [N1, . . . ,Ng] with Nk =( xk zk

zk yk

)
be in (F ), satisfyingN = Ñ and having all eigenvalues real and

positive. It follows thatxk, yk are positive real scalar multiples ofE2,
while Zk = ckE2 + dkε with ck, dk ∈ R and furtherxkyk − zkzk > 0.
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Let nowR= T−1
0 N be anR-matrix in (F ). Then

R= (Ω × E4)[R1, . . . ,Rg](Ω × E4)−1 (92)

with Rk =
(
ξk ηk
ζk τk

)
andξk = xkα

(k), ηk = α
(k)zk, ζk = β

(k)zk, τk = ykβ
(k).

Now R2 = −E gives, for 1≤ k ≤ g,

ξ2
k + ηkζk = −1, τ2

k + ηkζk = −1, (ξk + τk)ηk = 0 = (ξk + τk)ζk (93)

Now there are two possibilities, namely, either a)ξk + τk , 0, in which
case we have necessarilyζk = 0 = ηk, or b) ξk + τk = 0. In case a),

we see thatRk =
(
ξk 0
0 τk

)
, where, from (93),ξk = ±

1
√
−a(k)

ε(k), τk =98

±
1

√
−a(k)

ε(k). Sinceξk + τk , 0, it follows thatξk = τk = ±
1

√
−a(k)

ε(k)

and thus

Rk = ±
1

√
−a(k)

(
ǫ(k) 0
0 ǫ(k)

)
(94)

Now ξk = τk is equivalent to the fact that
α(k)

β(k)
=

yk

xk
> 0, which, in turn,

is equivalent to the fact thatakbk = 0, in our former notation. Let us

now consider case b), whenξk + τk = 0 or equivalently
α(k)

β(k)
= −

yk

xk
< 0.

Thus, in this case,akbk = 1. Nowξk = −τk and we have

Rk =

(
xkα

(k) α(k)

β(k)zk −xkα
(k)

)
(95)

From (93), we obtain (xkα
(k))2
+ α(k)β(k)xkzk = −1, i.e.

−(α(k))2x2
k − α

(k)β(k)zkzk = 1 (96)

Sinceα(k) = −α(k), β(k) = −β(k), it is clear that−(α(k))2 > 0 while
−α(k)β(k) < 0. Thus equation (96) defines a two-sheeted hyperboloid in

thexk, zk-space. As a consequence of (96), we also have−α
(k)

β(k)
x2

k−zkzk =

1

α(k)β(k)
> 0 which meansxkyk − zkzk > 0.
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We may rule out the possibility that when case a) could occur for all
theg components, since thenakbk = 0 for all k and this case has been
discussed already.

So then let us assume that at least one component ofR, say R1,
without loss of generality is of the form (95). LetM be a rational matrix 99

commuting with allR-matrices in (F ). Then using the form (92) for
R-matrices,M1 = (Ω × E4)−1M(Ω × E4) commutes with

[
R1, . . . ,Rg

]
.

We split upM1 as (Mkl)(1 ≤ k, l ≤ g) with 4-rowed square matricesMkl.
Now in R1, the three real parameters inx1, z1 are linearly independent
and thereforeM21 = 0 = . . . = Mgl. We are now in a position to
apply Lemma 3 and deduce that all the elements ofM11 are inZ while
Mkk = M(k)

11 andMkl = 0 for k , 1. FurtherMkkRk = RkMkk.
Let us now suppose thatnot all of the components Rk are of the form

(95) i.e. neither akbk = 0 for all k nor akbk = 1 for all k. Further, without
loss of generality, letR1 be of the form (95) whileR2 is of the form
(94). Then writingM22 =

(
λ µ
κ ν

)
with 2-rowed square matricesλ, κ, µ,

ν having elements inZ (2), we obtain each one of them commutes with
ε(2)
=

(
0 1

a(2) 0

)
and thereforeλ, κ, µ, ν represent elements inZ (2)(

√
a(2)).

SinceMkk = M(k)
11 , we knowM11, M22, . . . ,Mgg are conjugate overZ

and hence the elements ofMkk are inZ (k)(
√

a(k)) and in particularM11

has elements inR.
FromM11R1 = R1M11 for all R1 of the form (95) it follows thatM11

has to commute with
(
α 0
0 −α

)
,
(

0 α
β 0

)
and

(
0 αε
−βε 0

)
(dropping the suffixes

and superscripts). Let us now setβα−1
= p; p lies in Z , in fact. The

matrix M11 which already commutes with
(
ε 0
0 ε

)
has also to commute

with

A =

(
ε 0
0 −ε

)
, B =

(
0 ε

−pε 0

)
and C =

(
0 ε2

+pε2 0

)
= AB= −BA

(97)
Thus M11 has to commute with

(
ε 0
0 0

)
,
(

0 0
0 ε

)
and

(
0 ε
−pε 0

)
. Therefore 100

M11 =
(
λ 0
0 λ

)
with λ ∈ R. Hence the rank overQ of the algebra of

rational matrices commuting with allR-matrices in (F ) is 2 · g = h
which is exactly the rank ofM overQ. We conclude, as before, that in
this case, there existR-matrices with (M ) as exact commutator-algebra.
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On the other hand, let allRk be of the form (95). TheM11 is an
arbitrary 4-rowed square matrix with elements inZ and commuting
with A, B andC as defined in (97). But from (97) and fromA2

= aE,
B2
= −paE, we see that 1,A, B generate a quaternion algebraΦ over

Z and M11 has then to lie precisely in the commutator-algebra ofΦ.
Hence the rank of the algebra of all rational matrices commuting with
all theR-matrices in (F ) is precisely 4g = 2h which is greater than the
rank ofM overQ. Thus in the case whenakbk = 1 for all k, there exist
no R-matrix with (M ) as its exact commutator-algebra. Nowakbk = 1
for all k or akbk = 0 for all k is respectively equivalent to the fact that
εT0 is totally indefinite or totally definite overR. Or, putting it in other
words, except when|T0|−1

= αβ (by definition) is either totally positive
or totally negative inZ , there existR-matrices with (M ) as the exact
algebra of commutators.

We now deal with the last of the exceptional cases, namely when V

is a cyclic algebra of type (iv) ands= 2, q = 1. ThusV is a quaternion
algebra with centreRwhich is obtained by adjoiningǫ =

√
a to a totally

real fieldZ of degreeg overQ and−a > 0 is in Z . As before, we101

can find a totally real fieldZ0 = Z(ρ) with ρ =
√

d andd > 0 in Z

such thatZ = Z0(ε) serves as a splitting field forV . There are two
automorphisms ing which are identity onZ and commute with each
other, namely forξ ∈ Z,

ξ = x+ yρ→
•

ξ = x− yρ(x, y ∈ R)

ξ = p+ qε→ ξ = p− qǫ(p, q ∈ Z0)

The algebraV is generated overZ by an elementJ which satisfiesJ2
=

b ∈ R andJξ =
•

ξJ. Further, there existsc ∈ Z0 such thatc
•

c = bb. For
η ∈ Z0, the mappingη→

•

η is an automorphism ofZ0 overZ .
Forδ = ξ+ η j ∈ V with ξ, η ∈ Z, we have overZ the representation

δ → D =
(
ξ η

b
•

η
•

ξ

)
. Further

•

D =
(

•

ξ
•

η
bη ξ

)
= FDF−1 whereF =

(
0 1
b 0

)
. In

terms ofD, the positive involution inV is expressed as


ξ η

b
•

η
•

ξ

 = D→ D̃ = F−1D
′
F =


ξ
c

b

•

η

•

cη
•

ξ

 , F
−1
= [c, c

•

c] > 0 (98)
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We obtain forV , a representationδ→ D0 = (Ω1×E2)[DD](Ω1×E2)−1

whereΩ1 =
(

1 1
ε −ε

)
. It is clear thatD0 =

(
ξ η

b
•

η
•

ξ

)
where nowξ, η, b

•

η,
•

ξ

stand for their 2-rowed representations overZ0 with respect to the basis
1, ε. From this, we pass to a representation ofV over Z given by

δ → D = K1[D0

•

D0]K−1
1 whereK1 = Ω2 × E4, Ω2 =

(
1 1
ρ −ρ

)
and then to

the rational representation

δ→ (Ω3 × E8)[D(1), . . . ,D(g)](Ω3 × E8)−1 (99)

whereΩ3 = (γ(1)
k ), γ1, . . . , γg being a basis ofZ overQ. 102

For the abstract algebra, we may start with the regular representation
of its opposite algebra and assume that for the elements of the commu-
tator algebra (F ) of (V ), we already have the rational representation
of the form (99). (Let us remark that this arrangement is purely for the
sake of convenience in working. Even if we had started with the regular
representation (V ) of the abstract algebraV , the positive involution in

(V ) will correspond to the involutionT → T̃ =
•

F
−1

T
′ •

F in (F ). This

is different from (98) only in as much asF has to be replaced by
•

F but
observe that this involution is again positive).

Let T0 = −T̃0 be a nonsingular element of (F ) and letT0 = (Ω3 ×
E8)[T(1)

0 , . . . ,T(g)
0 ](Ω3× E8)−1 whereT(k)

0 are defined as follows. LetT0

have the representation
(
α β

b
•

β
•

α

)
overZ and letZ(k)

= Z (k)(
√

d(k),
√

a(k)).

Defineα(k), β(k), (b
•

β)(k), (
•

α)(k) to be the images ofα,
•

β, b
•

β,
•

α respectively
under the isomorphism ofZ ontoZ(k) takingZ ontoZ (k). Then

T(k)
0 =


α(k) β(k)

(b
•

β)(k) (
•

α)(k)

 (100)

where for the elements ofT(k)
0 , we have taken their regular representa-

tion overZ (k). FromT̃0 = −T0, we obtainα = −α, β = −
c
b

•

β, b
•

β = −
•

cβ,
•

α = −
•

α or α− α, b
•

β = −
•

cβ. Let N = (Ω3 × E8)[N1, . . . ,Ng](Ω3 × E8)−1

be in (F ) having the properties mentioned in (86) and analogous to
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(100), let Nk =

(
λk µk

b(k)
•

µk

•

λk

)
whereλk, µk are in the linear closure of103

Z(k) and hence commute with elements ofZ(k). Then λk = λk and

b
•

µ =
•

cµ. FurtherNk has all its eigenvalues real and positive i.e.λk

•

λk −
b(k)µk

•

µk > 0. Now R = T−1
0 N is a R-matrix in (F ) and let again

R = (Ω3 × E8)[R1, . . . ,Rg](Ω3 × E8)−1 with Rk =

(
ξk ηk

b(k)
•

ηk

•

ξk

)
. From

R2
= −E, we obtain,

ξ2
k + b(k)ηk

•

ηk = −1 =
•

ξ
2

k + b(k)ηk
•

ηk, (ξk +
•

ξk)ηk = 0 = (ξk +
•

ξk)b
(k) •

ηk
(101)

Let us denoteα
•

α − bβ
•

β by δ. Thenδ ∈ Z . We know thatδ(k)

is negative or positive according asakbk = 0 or 1 respectively, in our
former notation. On the other hand, taking determinants,|Rk|δ(k)

= |Nk|
which, in view of (86) is positive. Further, sinceR2

= −E, we have
|Rk| = ±1. Now, in (101), one of two possibilities arises, namely, either

a) ξk +
•

ξk , 0, in which caseηk = 0,
•

ηk = 0, or b)ξk = −
•

ξk.

In case a), using (101), we see thatξk =
•

ξk = ±
1
√

a(k)
ε(k). Since

we |Rk| = −1, we see thatδ(k) < 0 and thus case a) corresponds to the
situation whenakbk = 0 and then

Rk = ±
1
√

a(k)

(
ε(k) 0
0 ε(k)

)
(102)

When case b) occurs,ξk = −
•

ξk and therefore|Rk| = −ξ2
k − b(k)ηk

•

ηk = 1,
in view of (101). Thus case b) corresponds precisely to the situation

δ(k) > 0 or equivalentlyakbk = 1. Thus in case b),Rk =

(
ξk ηk

b(k)
•

ηk −ξk

)
and104

Rk contains “a priori” eight free real parameters. FromNk = T(k)
0 Rk, we

obtain, dropping the inconvenient suffix k and the superscriptk every-
where without risk of confusion, that

λ = αξ + bβ
•

η, µ = αη − βξ,
•

λ = b
•

βη −
•

αξ, b
•

µ = b(
•

βξ +
•

α
•

η) (103)

Sinceα = −α, ε = −ε, λ = λ andαβ , 0, we can definer = r , s= s by
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λ = αεr,
•

λ =
•

αεs. Then from (103), we have

b
•

βη =
•

α(ξ + εs), bβ
•

η = α(εγ − ξ) (104)

But, from N = Ñ, we haveb
•

µ =
•

cµ and again, in view of (103),

•

c(−αη − βξ) = b(
•

βξ +
•

α
•

η) (105)

Multiplying both sides of (105) byβ and using (103), (104), we obtain

bβ
•

βξ + α
•

α(εr − ξ) = −
•

cβηα −
•

cββξ

= b
•

βηα + bβ
•

βξ

= −α
•

α(εs+ ξ) + bβ
•

βξ

= α
•

α(εs− ξ) + bβ
•

βξ

Thus
1
2

(ξ − ξ) = α
•

α

δ
ε · 1

2
(r − s) (106)

While r, s andt = 1
2(ξ + ξ) are free, the imaginary part ofξ is fixed by

(106). We now set

u = b
β

•

β

δ

r − s
2

, v =
r + s

2
, q =

α
•

α

bβ
•

β

Then obviouslyq ∈ Z and furthermore, sincebβ
•

β = −
•

cββ < 0 and
δ > 0, we have

q− 1 < 0 (107)

From (106), we haveξ = t + qεu. From (104), we get

b
•

β
•

α
η = εs+ ξ = t + ε(u+ v) (108)

and similarly 105
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bβ
α

•

η = εr − ξ = −t + ε(v− u) (109)

Thus t, u, v are real parameters which, in view of (108) and (109) are
subject to the conditions

•

t = −t,
•

u = −u,
•

v = v (110)

The relationξ2
+ bη

•

η = −1 can be rewritten in terms ofu, v, t asξ2
+

α
•

α

bβ
•

β

· b
•

βη

α
· bβ

•

η
•

α
= −1 and using (108) and (109), we obtain

(t + qεu)2
+ q(t + ε(v+ u))(−t + ε(v− u)) = −1

i.e.
(1− q)t2 − aq(1− q)u2

+ aqv2
= −1 (111)

In view of (107), exactly one ofaq and−aq(1 − q) is a negative while
the coefficient oft2 is positive. Further fort, u, v satisfying (111),r , 0.

For, if r = 0, we should necessarily have (1−q)t2−aq(1−q)


bβ

•

β

2δ



2

s2
+

aq
s2

4
= −1. But the left hand side is just (1− q)t2 − aq2

4(1− q)
s2 which

is always non-negative. We thus see that in thet, u, v-space, equation
(111) defines a “two-sheeted hyperboloid”.

Thus in the case whenakbk = 1, using (108) and (109), we have for
Rk the parametrization

Rk = Vk

(
tk + qukε

(k) q(tk + ε(k)(uk + vk))
−tk + ε(k)(−uk + vk) −tk − qukε

(k)

)
V−1

k (112)

whereVk = [1, (
α

β
)(k)].106

We proceed to discuss the algebra of commutators of theR-matrices
R. As before, we rule out the occurrence of case a) for all theg com-
ponents ofR. Let then at least one component ofR, sayR1, be of the
form (112). If M is a rational matrix commuting with allR-matrices in
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(F ), thenM1 = (Ω3 × E8)−1M(Ω3 × E8) commutes with [R1, . . . ,Rg]
and by the same arguments as on p.99,M1 = [M(1)

11 , . . . ,M
(g)
11 ] where

M11 = M(1)
11 is an 8-rowed square matrix with elements inZ commut-

ing with

R1 =

[
V1

(
t1 + qεu1 q(t1 + ε(v1 + u1)

−t1 + ε(v1 − u1) −t1 − qεu1

)
V−1

1 ,

•

V1

(
−t1 − qεu1 q(−t1 + ε(v1 − u1)

t1 + ε(v1 + u1) t1 + qεu1

)
•

V
−1

1

]
(113)

For the elements of the matrices in (113) of whichR1 is a direct sum,
we have taken theZ-rowed representation over the linear closure ofZ0

so thatR1 is an 8-rowed square matrix. Taking into account the rela-

tions
•

t1 = −t1,
•

u1 = −u1 and
•

v1 = v1 and replacingt1 by
√

dt1, u1

by
√

du1, we see thatM11 has to commute with [V1,
•

V1]A[V1,
•

V1]−1,

[V1,
•

V1]B[V1,
•

V1]−1 and [V1,
•

V1]C[V1,
•

V1]−1 where

A =

[√
d

(
1 q
−1 −1

)
,−
√

d

(
1 q
−1 −1

)]
,

B =

[√
dε

(
q q
−1 −q

)
,−
√

dε

(
q q
−1 −q

)]

C =

[
ε

(
0 q
1 0

)
, ε

(
0 q
1 0

)]
(114)

For the elements in the matrices in (114). We have taken the 2-rowed 107

representation overZ0.
Let us now suppose at least one of the components ofR is of the

form (102). Then we can conclude as on p.99,M11 has elements inR.
But now it is easy to verify that the matricesA, B, C defined by (114)
satisfy

A2
= d(1− q)E, C2

= aqE, AC = B = −CA

and therefore generate a quaternion algebraΦ overR. The matricesM11

belong to the commutator algebra ofΦ overR and therefore constitute
an algebra of rank 8 overZ . We may then conclude that the algebra of
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all the rational matrices commuting with all theR-matrices in (F ) is, in
this case, exactly 8g = 4h which is nothing but the rank of (M ) overQ.

Finally, let us suppose that all the components ofR are of the form
(112) i.e.akbk = 1 for all k. ThenM11 is, as before, an 8-rowed square
matrix with elements inZ which commutes with the 8-rowed repre-
sentation ofΦ overZ . But this latter representation ofΦ contains the
irreducible representation ofΦ overZ exactly twice and therefore, it is
clear that the matricesM11 generate an algebra of rank 16 overZ . It
is now immediate that the algebra of all rational matricesM commuting
with all theR-matrices in (F ) is, in this case, equal to 16g = 8h which
is greater than the rank of (M ) overQ.

Thus, in the case whenV is of type (iv) ands= 2, q = 1, there exist108

R-matrices with (M ) as exact commutator-algebra unlessεT0 is totally
- definite hermitian or totally indefinite hermitian overR.

We shall sayT0 is skew-symmetric totally definiteor totally indef-
inite according asεT0 is totally definite hermitian or totally indefinite
hermitian.

We have thus completely solved our problem on Riemann matrices
and we may summarize our results in the following theorem. (We re-
mark that the matrixT0, which appears in the statement of Theorem 7, is
precisely the given non-singular matrix in (F ) which is skew-symmetric
for the involution in (F ) andA = G

q
T0 is a principal matrix for ourR-

matrices).

Theorem 7. With the notation of Theorem 5, there always exists a R-
matrix with the given A as principal matrix and having(M ) = (g) as
the exact algebra of commutators except when

a) V = R with a positive involution of the first kind, q is odd

b) V =P, q = 1.

c) V =P, q = 2, NR(|T0|) = τ2 for τ > 0 in R.

d) V is of type(iv), q = s= 1 and there exists a proper subfieldJ of
V = R over which iT0 is totally definite.
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e) V is of type(iv), s = 1, q = 2 and T0 is skew-symmetric totally
definite or totally indefinite overV = R, and

f) V is of type(iv), s = 2, q = 1 and T0 is skew-symmetric totally
definite or totally indefinite over the centreR.

Remarks. (1) In solving our problem onR-matrices, we have al-109

lowed forA the fullest possible generality; we emphasize that the
transformations which we performed on (F ) there, to reduceA to
the simple formJ, were merely to make the discussion easier and
constituted no diminution of the generality ofA.

(2) SupposeV is of type (iv),Z = Q andqs = 2. Thenthere can-
not exist nonsingular T0 = −T̃0 in (F ) which are neither skew-
symmetric totally definite nor skew-symmetric totally indefinite
over R (which is now an imaginary quadratic extension ofQ),
since there cannot exist inQ non-zero numbers which are neither
positive nor negative!

8 Modular groups associated with Riemann matri-
ces

In this concluding section, we shall make a close study of thespaceF
which we associated on p. 56 with the given division algebraV . We
shall see, for example, how far (M ) = (V

q
) determinesM and find all

the principal matrices for a generalR-matrix. Later we shall define the
general modular groups which act onF as groups of transformations
of H onto itself. The scope of these lectures prevents us from making
a function-theoretic study of these modular groups analogous to some
recent work of I. I. Pyatetskii Shapiro ([13], [14]). We merely remark
that the preparatory material for this study is contained in[21] and [22].

We may first briefly recall howH was defined. We had first a divi-
sion algebraV of rank hs2 overQ, with centreR of degreeh overQ
and carrying a positive involution. Further (M ) was upto equivalence110

overQ, a q-fold multiple of (V ), the rationalhs2-rowed representation
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of V . In the algebra (V ), we had an involutionD → D̃ = F−1D
′
F and

the matrixG
q

defined by

G
q
= F

q
M0 > 0 (115)

was a positive symmetric matrix withM0 being in (M ) such thatM̃0 =

F−1
q

M′0Fq. FurtherT0 was a given nonsingular element of (F ) (the

commutator algebra of (M )) for which

T̃0 = F−1
q

T′0F
q
= −T0 (116)

The matrixA defined by
A = G

q
T0 (117)

was a nonsingular rational skew-symmetric matrix defining the Resati
involution M → M∗ = A−1M′A in (M ). Our problem was first to find
R-matricesR in (F ) for which

AR= S = S′ > 0 (118)

(We recall that the matrixA in (118) is a‘principal matrix’ for R). Asso-
ciated with each suchR-matrix R, we had defined ann-rowed Riemann
matrix P of the form (70), uniquely determined byR, upto a left sided
complex non-singular factor. We denoted byH, the set ofP of the form
(70) associated in this way. In the sequel, however, we shalldenote by
H the set ofR-matrices in (F ) themselves.

So H depends, a priori, on (M ), M0 ∈ (M ) given in (115) and
T0 ∈ (F ) given in (116). Given (M ), we shall now see how farH is
determined by (M ). For our subsequent discussion, we shall exclude111

V from being of the type of the six exceptional cases mentionedin the
statement of Theorem 7. HenceHwill always contain aR-matrix having
(M ) as its exact commutator-algebra. Such aR-matrix shall be referred
to as ageneric R-matrix. We now prove

Proposition 14. LetH be the space of R-matrices associated with(M ),
M0 and T0 as above andH1 with (M ), M1 and T1 in a similar manner.
ThenH = H1 if H ∩ H1 contains a generic R-matrix.



8. Modular groups associated with Riemann matrices 83

Before proving the proposition, we remark that ifR in H also lies
in H1, then bothA = F

q
M0T0 andA1 = F

q
M1T1 are principal matrices.

The following proposition gives the form of all principal matrices for a
genericR-matrix R ∈ H. It is not hard to extend it also to the case when
theR-matrix is not necessarily irreducible.

Proposition 15. If A is a principal matrix for a generic R∈ H, then any
other principal matrix A1 of R is of the form AM, where M is a positive
element of(M ) and conversely, A1 = AM is a principal matrix for R,
for every such M∈ (M ).

Proof. From (118), we obtainS = AR = −R′A, S1 = A1R = −R′A1

and thereforeA−1A1R= RA−1A1. But Rbeing generic andA−1A1 being
rational, we see thatA−1A1 = M ∈ (M ). In the first place,M∗ =
A−1M′A = −A−1M′A′ = −A−1A′1 = M. Further fromS > 0, and
from S M = ARM = AMR = S1 > 0, we see, by Lemma 2, that the
eigenvalues ofM are real positive. In other words,A1 = AM for a
positive elementM of (M ). Conversely, ifM is a positive element of
(M ) (M = M∗), then A1 = AM = M′A = −A′1 and furtherA1R = 112

AMR = ARM is symmetric and positive by Lemma 2. We now give
the �

Proof of Proposition 14.LetRbe a genericR-matrix inH∩H1. Then, by
proposition 15,A1 = AM for a positive elementM in (M ). If R0 ∈ H,
then AR0 > 0. But now A1R0 = AMR0 = AR0M is again positive
symmetric, using Lemma 2. ThusA1 is a principal matrix forR0 and
so R0 ∈ H1. ThusH ⊂ H1 and similarlyH1 ⊂ H which proves our
proposition.

In the set ofT0 of the form (116), we introduce an equivalence re-
lation as follows, namely, two such matricesT0 areequivalentif they
differ by a factorK ∈ (Z ) which is totally positive. We denote by [K0]
the equivalence class ofK0.

Proposition 16. If H is the space of R-matrices associated with(M ),
M0 and T0 as above, thenH depends essentially only on(M ) and [T0].
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Proof. Let H1 be the space ofR-matrices associated with (M ), M1 and
KT0 whereK is in (Z ) and has positive eigenvalues. We shall show
thatH = H1. Let R ∈ H. Then we know thatF

q
M0T0R is symmetric and

positive. If we could show that

F
q

M1KT0R= (F
q

M1KT0R)′ > 0 (119)

it would follow thatH ⊂ H1 and then takingK−1 instead ofK, the re-
verse inclusion would hold leading toH = H1. To prove (119), we first
remark that fromF

q
M0(F

q
M0)′ > 0, F

q
M1 = (F

q
M1)′ = F

q
M0M−1

0 M1 < 0,

it follows in view of Lemma 2 thatM−1
0 M1 ∈ (M ) has positive eigenval-113

ues. Hence the productM−1
0 M1K has again positive eigenvalues (since

they commute). Now (F
q

M1KT0R)′ = (T0R)′K′F
q

M1 = (T0R)′F
q

KM1 =

(T0R)′F
q

M0M−1
0 M1K = F

q
M0T0RM−1

0 M1K = F
q

M1KT0R. Further since

F
q

M1KT0R is symmetric andF
q

M0T0R> 0, it follows thatF
q

M1KT0R=

F
q

M0T0RM−1
0 M1K > 0 by Lemma 2. �

Conversely, if (M ), M1, T1 lead to the sameH, then we claim [T1] =
[T0]. For, let R be a genericR-matrix in H. ThenF

q
M0T0 andF

q
M1T1

are both principal matrices forR and hence by Proposition 15,M0T0 =

M1T1M for a positive elementM ∈ (M ) which meansM−1
0 M1M =

T0T−1
1 . From Proposition 6, it follows thatT0T−1

1 = M−1
0 M1M = K

in (R). From T0 = −T̃0, T̃1 = −T1, it follows that K ∈ (Z ). Fur-
ther fromF

q
M1 = M′1F

q
, F

q
M0 = M′0F

q
, it follows that (M−1

0 M1)′F
q

M0 =

F
q

M0M−1
0 M1 i.e. M−1

0 M1 is symmetric under the given positive involu-

tion in (M ). Moreover, by the same arguments as above,M−1
0 M1 has

positive eigenvalues. HenceM−1
0 M1 is a positive element in (M ). Since

M−1
0 M1M = K is in the centre, it follows that the positive elementsM

and M−1
0 M1 in (M ) commute. HenceK = K∗ and furtherK has all

eigenvalues positive. ThusT0T−1
1 ∈ (Z ) and has all its eigenvalues

positive is [T0] = [T1].
From Proposition 15, we know that ifA is a principal matrix for a

genericR in H, then any other principal matrixA1 = AM whereM is
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a positive element of (M ). We shall investigate the cases whenA1A−1

is alwaysrE wherer > 0 in Q. This will be indeed true if the only
elementsM ∈ (M ) for which M∗ = M and all the eigenvalues are real
and positive and are precisely of the formrE wherer > 0 andr ∈ Q, A 114

necessary condition for this is thatZ = Q. But even ifZ = Q, we know
that in the case whenV = g or V is a noncommutative cyclic algebra,
there exist positive elements in (V ) other than the positive elements in
(Q). But in the case whenV = H, (Z = Q) is of type (i) or (iv) or
V =P with H = Z = Q, the only positive elements in (M ) are of the
form rE with r > 0 in Q. Therefore, in these cases, any two principal
matrices forH differ at most by a positive rational scalar factor.

We now go back to our definition of a multiplier of a Riemann matrix
P. We called anintegralmatrix M a multiplier ofP if PM = KP for
a complex nonsingularK and later we relaxed the condition thatM be
integral and allowedM to be rational and not necessarily non-singular.
We constructed in§6, Riemann matricesP with the given division al-
gebra (M ) as exact algebra of multipliers. The integral matricesM in
this representation (M ) form an order (U ) in (M ) andP admits all
elements of (U ) as (integral) multipliers. One could ask the more dif-
ficult question of constructing Riemann matricesP with (U ) as the
exact ring of multipliers. Now, when we say “an integral multiplier of
P”, it is necessary to mention the specific representation (M ). For, an
integral matrixM in (M ), will not, in general, go into an integral matrix
in aQ-equivalent representationC−1(M )C. But it is true that (U ) will
go over into an order inC−1(M )C. If C is a unimodular matrix and
C−1(M )C = (M ), thenC−1(U )C will again be equal to (U ). In this
connexion, it is then of interest to study the mappingsR→ U−1RU for
R∈ H and unimodularU. This, as we shall presently see, leads us to the
general modular groups associated with (M ). 115

Proposition 17. Let U be a unimodular matrix such that the map-
ping R → U−1RU is a mapping ofH into itself whereH is a space
of R-matrices associated with(M ) as above. Then the mapping M→
U−1MU is an automorphism of(M ). Further, the mapping R→ U−1

RU is ontoH.

Proof. Let R be generic inH. ThenU−1RU ∈ H and by the very con-
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struction ofH, U−1RU admits elements of (M ) as commutators. In
other words, the elements ofU(M )U−1 commute withR. But R is
generic and the elements ofU(M )U−1 are rational so thatU(M )U−1 ⊂
(M ). By considerations of rank, we see thatU(M )U−1

= (M ), actu-
ally. Let R ∈ H; then we claim thatR= U−1R1U for someR1 ∈ H. For,
the algebraU−1(M )U leads us to another spaceH1 of R-matrices having
U′AU for a principal matrix and admitting (M ) = U−1(M )U as alge-
bra of multipliers. But for the generic elementsRof H, U−1RU is again
generic and belongs toH ∩ H1. Thus by Proposition 14,H = H1 and in
other words, the mappingR → U−1RU is ontoH. The proposition is
proved. �

From the working above, we see that, for a genericR ∈ H, both A
andU′AU are principal matrices. Hence by Proposition 15,U′AU =
AM for a positive element in (M ). Rewriting this, we have (sinceU∗ =
A−1U′A)

U∗U = M, for a positive elementM ∈ (M ). (120)

If U is a unimodular matrix satisfying (120), then it is easy to verify
that the mappingR→ U−1RU is a mapping ofH onto itself and hence
U−1(M )U = (M ).

It is easy to verify that the 2n-rowed unimodular matricesU satis-116

fying (120) for some positive elementM ∈ (M ) constitute a groupΓ0

which is themost generalform of thehomogeneous modular group of
degree n. The groupΓ0 contains a trivial normal subgroup∆ consist-
ing of all U ∈ Γ0, for which U−1RU = R for everyR ∈ H. For any
U ∈ Γ0, the mappingsR → U−1RU and R → (MU)−1RMU are the
same, whatever beM in ∆. The groupΓ0/∆ is the most general form of
the inhomogeneous modular group of degree n.

It is trivial to see that forU ∈ ∆, UM ∈ (M ) for everyM ∈ (M ).
For, taking a genericR ∈ H, UMR= URM = RUM, i.e. UM ∈ (M ).

We shall now define two subgroupsΓ1, Γ2 of Γ0 such thatΓ1 is of
finite index inΓ0 andΓ2 is of finite index inΓ1 and each one of them
containing∆.

Now, under the automorphismM → U−1MU of (M ), the centre
(R) is taken onto itself i.e.U−1(R)U = (R). But the centreR being an
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algebraic number field of finite degree overQ, admits only finitely many
automorphisms overQ and we defineΓ1 to be the subgroup ofU ∈ Γ0

which correspond to the identity automorphism ofR. In other words,

Γ1 =

{
U ∈ Γ0

∫
U−1KU = K, for every K ∈ (R)

}

It is easy to see thatΓ1 is of finite index inΓ0. MoreoverΓ1 ⊃ ∆;
for, if K ∈ (R) andU ∈ ∆, then, by our remark above,U ∈ (M ) and
thereforeKU = UK. We call the groupΓ1, thehomogeneous modular
group of degree n in the wide senseand the quotient groupΓ1/∆, the 117

inhomogeneous modular group of degree n in the wide sense.
If U ∈ Γ1, we see than that the mappingM → U−1MU of (M )

is an automorphism of (M ) which is identity on the centre (R). Thus,
by Skolem’s Theorem (23), here existsM1 ∈ (M ) such that for every
M ∈ (M ), we haveU−1MU = M−1

1 MM1 i.e. UM−1
1 M = MUM−1

1 . In
other words,UM−1

1 = T1 ∈ (F ), or

U = M1T1 = T1M1 with T1 ∈ (F ),M1 ∈ (M ) (121)

The decomposition (121) ofU ∈ Γ1 is clearly not unique. NowU∗U =
M0 for a positive elementM0 ∈ (M ) and this givesT∗1 M∗1M1T1 = M0

or T∗1T1 = (M−1
1 )∗M0M−1

1 = M2 in (M ). SinceM0 is a positive element
in (M ), so isM2, by Proposition 12. But sinceM2 ∈ (M ) ∩ (F ) = (R)
and sinceM2 = M∗2, it is immediate thatM2 represents a totally positive
number inZ . Thus, forT1 in (121), we have

T∗1T1 = K1 totally positive in (L ) (122)

Suppose forU ∈ Γ1, we have two decompositions as in (121), say
U = T1M1 = T2M2. Then it is immediate thatT1 = T2K for someK ∈
(R). We now claim that in the decompositionU = T1M1 as in (121), we
can, by replacingT1, M1 respectively byT1K−1, KM1 with suitableK ∈
(R), ensure thatKM1 is integral and furthermore thatT2 = T1K−1 has
the following property, namely,there exists d> 0 in Z (depending only
on (M ) and not on T2) for which dT2 is integral.Thus in (121), we can
suppose already thatM1 is integralandT1 if of “bounded denominator” 118
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(We shall briefly sketch a proof of this fact in a special case.LetV be an
indefinite quaternion algebra overQ andq = 1. ThenV has a splitting
field Z = Q(

√
a) with a < 0 in Z. For a elementδ = ξ + η j ∈ V with

ξ, η ∈ Z and j2 = b(> 0) in Z, we have the representation (M ) of V

given byδ → M = K1[D D]K−1
1 whereD =

(
ξ η

bη ξ

)
, P1 =

(
1 1√
a −
√

a

)
,

K1 = P1 × E2. The commutator algebra (F ) of (M ) is precisely the set

of T = K1

(
λE2 µF

µF λE2

)
K−1

1 whereλ, µ ∈ Z andF =

(
0 1
b 0

)
. Let T ∈ (F )

be such that
T M = U (∗)

with Mε(M ) and U, unimodular. In (∗), we can suppose thatM is
integral already, by replacingT, M respectively bym−1T, mM for a
suitablem ∈ Z. Let ω1, ω2 be a basis overZ for the integers inZ.
Denote the matrix

(
ω1 ω1
ω2 ω2

)
by P and P1P−1 by P2. We can findν1,

ν2 ∈ Z such thatν1P1, ν1P−1
1 , ν2P2, ν2P−1

2 have elements which are

integers inZ. SinceM = K1

(
D 0
0 D

)
K−1

1 andU = K1

(
λE2 µF

µF λE2

)
K−1

1 M

are both integral, we see thatν2
1D, ν2

1λD, ν2
1µFD, ν2

1D are all inte-
gral. LetG1, . . . ,Gh0 be fixed integral ideals (say, of minimum norm)
in the h0 ideal classes ofZ. Then there existsα ∈ Z and an ideal

Gρ(1 ≤ ρ ≤ h0) such thatν2
1D = α

(
ξ1 η1

bη1 ξ1

)
andξ1, η1, bη1, ξ1 have the

greatest common divisorGρ. DefineT1 = (ν1ν2)−2K1

(
λαE2 µαF

µαF λαE2

)
K−1

1119

andM1 = (ν1ν2)2K1

(
α−1D 0

0 α−1D

)
K−1

1 . It is clear thatM1 is in (M ) and is

integral; furtherT1M1 = U. Moreover, if we defined = bν4
1ν

2
2

h0∏
k=1

N(Gk)

(whereN(Gk) denotes the norm ofGk overQ), we see thatdT1 is inte-
gral).

Let us denote byΓ2, the subgroup ofU ∈ Γ1 for which there is a
decomposition of the form (121) with unimodularT1 and M1 in (F )
and (M ) respectively. We now prove

Proposition 18. The groupΓ2 is of finite index inΓ1.

Proof. Let U1, U2 be inΓ1 andU1 = T1M1, U2 = T2M2 be the decom-
positions ofU1, U2 as in (121). Now, as we remarked,M1, M2 may be
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supposed to be integral. We shall now prove that ifM1 ≡ M2 (mod d),
thenU−1

2 U1 ∈ Γ2. Since the number of residue classes of 2n-rowed inte-
gral square matrices modulod, is finite, it will follow that Γ2 is of finite
index inΓ1. So let

M1 ≡ M2 (mod d) (123)

It is clear thatdM−1
1 = dU−1

1 T1 and dM−1
2 = dU−1

2 T2 are integral.
But from (123), we havedE2n ≡ dM2M−1

1 (mod d) which means that
M2M−1

1 is integral. In a similar way,M1M−1
2 is also integral so that

M2 = WM1 with unimodularW. But nowU2U−1
1 = T2M2M−1

1 T−1
1 =

T2T−1
1 W so thatT2T−1

1 is itself unimodular in (F ). ThusU2U−1
1 is in

Γ2 which is what we sought to prove.
If U ∈ ∆, thenU ∈ (M ) and therefore∆ ⊂ Γ2. �

We define now another group
•

Γ2 consisting of unimodular matrices120

T1 ∈ (F ) for whichT∗1T1 = K which represents a totally positive unit in

L . It is clear that
•

Γ2 ⊂ Γ2. Defining
•

∆2 as the subgroup of
•

Γ2 consisting

of unimodularU ∈ (R), we see that
•

∆2 ⊂ ∆.
Any U ∈ Γ2 is of the formT1M1 with unimodularT1 in (F ) satis-

fying (122) and unimodularM1 in (M ). SinceT1 andT∗1 in this decom-
position commute, we get, by iteration,

(T∗1)−1T1
1 = (T1

1)∗T1
1 = K1

1 (124)

for every positive integerl. Now althoughT1 is unimodular,T∗1 is not
necessarily integral so thatK1 is not necessarily integral. But sincedTl

1
is integral andA is fixed, we see thatK l

1 is of bounded denominator for
every l > 0, from (124). This is impossible, unlessK1 represents an
integer in (Z ). By the same argument, we can show thatK1 is integral
so thatK1 is actually a (totally positive) unit in (Z ). Thus forU =

T1M1 ∈ Γ2 with T1 ∈ (F ), we see first thatT1 ∈
•

Γ2 and furthermore,

for anyT1 ∈
•

Γ2.

T∗1T1 = K1, a totally positiveunit in (Z ) (125)

We construct a mappingψ of Γ2 into
•

Γ2/
•

∆2 by definingψ(U) =

the coset of
•

Γ2 modulo
•

∆2 containingT1 whereT1 in (F ) occurs in
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the decompositionU = T1M1. It is clear thatψ is well-defined, for if

U = T1M1 = T2M2, thenT−1
2 T1 ∈

•

∆2 by using (125). Further clearlyψ

is a homomorphism ofΓ2 onto
•

Γ2/
•

∆2, the kernal being exactly∆. Thus
we have proved that

Γ2/∆ is isomorphic to
•

Γ2/
•

∆2

The group
•

Γ2/
•

∆2 is referred to as theinhomogeneous modular group121

of degree n.

Finally, we define the group
•

Γ3 as the subgroup ofT ∈
•

Γ2 for which

T∗T = E (126)

and
•

∆3 as the subgroup ofK in
•

Γ3 for which K ∈ (R). It is easy to

see that
•

∆3 is precisely the set of roots of unity in (F ) which belong to

the order (U ) in (M ) and therefore,
•

∆3 is finite. Although, in view of

(117), the definition (126) of
•

Γ3 apparently depends onG
q
, it is trivial to

verify that (126) depends only onF
q
.

Proposition 19. The group
•

Γ3/
•

∆3 is of finite index in
•

Γ2/
•

∆2.

Proof. Let E be the group of all totally positive units in (Z ), E1 =

E ∩ (U ) andE2, the group of squares of elements inE1. By Dirichlet’s
theorem on units in algebraic number fields, there exist finitely many
elementsL1, . . . , La of E such that anyK in E is of the formK = NLν

for someN ∈ E2 and someLν. Let nowT1 ∈
•

Γ2 satisfy (125) and let
K1 = N2

1Lν for someN1 ∈ E1 and someLν. Thus

(N−1
1 T1)∗(N−1

1 T1) = Lν (127)

On the other hand, letAν unimodular in (F ) be a fixed matrix satisfying

A∗νAν = Lν, for 1 ≤ ν ≤ a. Then clearlyN−1
1 T1A−1

ν ∈
•

Γ3 i.e. T1 = N1BAν

for N1 ∈ (Z ), B ∈
•

Γ3 and one of the finitely many matricesA1, . . . ,Aa.

It is immediate using (127) that
•

Γ3/
•

∆3 is of finite index in
•

Γ2/
•

∆2. �
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The group
•

Γ3 is called thehomogeneous modular group of degree n122

in the restricted sense.The quotient
•

Γ3/
•

∆3 is theinhomogeneous mod-
ular group in the restricted sense.

The groups
•

Γ2/
•

∆2 and
•

Γ3/
•

∆3 occur in the literature already in spe-
cial cases.

In face, takingV = R, a totally real field overQ, q = 2 and with
obvious restrictions on (M ) we see that they are nothing but the inho-
mogeneous Hilbert modular group overR, in the wide sense and in the
narrow sense respectively.

It might be of interest to construct fundamental regions forthese
groups inH and study the automorphic functions onH relative to these
groups. We refer the interested reader to some recent work ofK.G.
Ramanathan (15) in this direction.

We might conclude with an outline of a method of constructinga
fundamental region in theH-space, for one of the groups above, say
•

Γ3. The group
•

Γ3 acts onH as follows; namely, toT ∈
•

Γ3 corre-
sponds the mappingR → T−1RT of H onto itself. LetA be a prin-
cipal matrix forH. We simplify our problem by considering the ma-
trices AR = S = S′ > 0 (for R ∈ H). In terms ofS, the mapping
R→ T−1RT is just the mappingS → T′S T. By Minkowski’s “reduc-
tion theory” for unimodular matrices acting on the space of 2n-rowed
real symmetric positive-definite matrices, we know that corresponding
to the givenS, there exists a unimodular matrixT such thatS1 = T′S T
lies in the “reduced” Minkowski domainF2n. But T may not belong to 123
•

Γ3. On the other hand, we know thatR2
= −E2n i.e. A−1S A−1S = −E2n

i.e. A′S−1A = S i.e. (T′AT)′S−1
1 (T′AT) = S1. Again, sinceS1 is “re-

duced” in the sense of Minkowski, we conclude by a theorem of Siegel
(Satz 5, p.200 [20]) thatT′AT belongs to a finite set of matrices, say
T′1AT1, T′2AT2, . . . ,T′µATµ. Now, for any “reducing” matrixT obtained
as above, we haveT′AT = T′kATk for some

Tk(1 ≤ k ≤ µ).i.e. (TT−1
k )′A(TT−1

k ) = A.

In other words, (TT−1
k )∗(TT−1

k ) = E i.e. TT−1
k ∈

•

Γ3. It may now be
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verified as usual that

F =

µ⋃

k=1

(A−1T′−1
k F2nT−1

k ∩ H)

is a fundamental region for
•

Γ3 in theH-space.
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