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Chapter 1

1 Introduction: Abelian Functions

In this course of lectures, we shall be concerned with a Byaie study
of Riemann matrices which arise in a natural way from the hed
abelian functions. This introductory article will be desdtto explaining

this connections.
up

Letus,...,u, benindependent complex variables and @et | : |.

We shall denote b¢", then-dimensional complex euclidean spauE:e and
by C, the field of complex numbers. Lé(u) be anabelian functionof
u; in other words,f(u) is a complex-valued function defined and mero-
morphic inC" and having 2n periodss, . .., Wz, linearly independent
over the field of real numbers (i.e. fordi < 2n, f(u+ wi) = f(u)).
We suppose further thdt(u) is a non-degenerat@belian function i.e.
there does not exist any complex linear transformation efvériables
Ui, ..., Uy such thatf(u) can be brought to depend on strictly less than
n complex variables.

The periods off (u) form a latticel” in C", which we may assume,
without loss of generality, to be generatedd, . . ., wo, over the ring
Z of rational integers. The matriR = (wiw>...won) Of Nrows and A
columns is called geriod-matrix of the latticeI”. Any other period-
matrix P, of T is of the formP U whereU is unimodular (i.e.U is a
rational integral matrix of determinaatl).

The abelian functions admitting all elementsloés periods, form
a field G. It is known that there exish + 1 abelian functionsfp(u),
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2 Chapter 1

f1(u), ..., fa(u) in G such thatf1(u), . . ., f,(u) are algebraically indepen-
dent overC (and, in fact, even analytically independenfy(u) depends
algebraically uporfi(u), ..., fo(u) and further

G = C(fp(u), ..., fa(u)). In other wordsG is an algebraic function
field of n variables ovec.

Let now.Z be another field of abelian functions of the fogfu) =
f(K~tu) for f(u) € G and fixed complex nonsingular matri& Let us
further, suppose tha¥’ has period-lattice\ contained inl. Then it is
easy to show tha¥ is an algebraic extension &f. Moreover, ifQ is a
period-matrix ofA, then, on the one han@@ = KPU for a unimodular
U and, on the other han®Q = PG; for a nonsingular rational integral
matrix G;. Thus we have

KP = PG (1)

with complex nonsingulaK and rational integrak. We call any suclK,
acomplex multiplicatiorof P andG, amultiplier of P. Our object is to
study the nature of the set KfandG satisfying the matrix equatiofil(1).
To this end, we first relax our conditions and ask for all nadio2n-
rowed square matricdd satisfying the condition

KP=PM )

with a suitable complex matriK. It is easy to verify that the set of such
M is an algebralt of finite rank over the field) of rational numbers.
We denote this abstract algebra By while the set of matriced give
a matrix representation a@ft which we denote byt).

For the period-matriXP, there exists a rationalnzowed alternate
non-singular matriA such that

i) PAIP =0 3)
and i) H = V=1PAP >0 (i.e. positive hermitian)
We call A, aprincipal matrixfor P.

Definition . Any complex matrix P of n rows an@n columns
satisfying(@) for some principal matrix A is called a (n-roweRjemann
matrix.
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Conditions[(B) are known as Riemanpriod relations In the case
whenA = ( % §) (E being then-rowed identity matrix), conditiongX3)
were given by Riemann[16] as precisely the conditions taaltisfeed by
the periods of a normalized complete system of abelian iate@f the
first kind on a Riemann surface of genuisit was shown by Poincare
that conditions[{3) are necessary andfisient for P to be a period-
matrix of a nondegenerate abelian function.

P . .
Let nowQ = (5) Then conditions[{3) may be rewritten as

iQATQ (5 %) (=v-1 (4)
with H positive hermitian. W = iQA‘lﬁ' , thenW and thereforeQ
are nonsingular. We may now reformuldié (2) as

TQ=QM %)
(KO
whereT = ( \ R)' |
Following H. Weyl, we introduce ther2rowed matrixL = (F 2)
and consider, instead &f the matrix

R=Q'LQ. (6)
Under the transformatio® — DP or equivalentlyQ — (g%)Q
(with arbitrary complex nonsingulad), R remains unchanged. P
is a period-matrix, this has the significance tRats defined by[{6) is in-
dependent of the choice of theffdirentialsdug, . . ., du, of the first kind
on the abelian variety associated wirh
The advantage in working witR is that in the first place is real
as we shall see presently and, further, that equafilon (5)bmayritten
simpler as

N

RM= MR (7

using the fact that T = TL. ThusM has to be just ar2rowed rational
matrix commuting witHR. Conversely, ifM is such a matrix, then defin-
ingT = QMQ™%, we havelL.T = TL. But, from the form ofL, we see
thatT = (§ 2 ) with n-rowed square matricés andKy. ButTQ = QM



4 Chapter 1

givesKkP = PM = W = K1P which, in turn, leads t& = K (sinceP
is of rankn). Thus the rational solutions! of () are the same as those

of (@).

Proposition 1. The matrix R defined k@) has the following properties:

(i) Risreal
(i) R? = —E(E being the2n-rowed identity matrik
and (i) S = AR is positive symmettic

Conversely, angn-rowed rational matrix having properties (i), (ii)
and (iii) leads to a Riemann matrix P which is uniquely deteed upto
a left-sided nonsingular factor and P has A for a principaltma

Proof. LetV = (2 §) with E being then-rowed identity matrix. Since

O=VQandVIV =L, wehaveR=0 L O = QVIIVQ=R,
which proves (i). From.? = —E, (ii) follows. To prove (iii), we set

F =iQA'Q = (% %) ThenF = F andS = AR= AQlLQ =

iQFQ=QF(5%)Q ButF1(5§%)= (H; ﬁ%) is positive
hermitian and so is its transforB SinceS is real, our assertion (iii) is
proved.

Conversely, leR have the properties (i), (ii) and (iii). From (ii), the
eigen-values oR are+i and—i and they occur with the same multiplic-
ity n, since the characteristic equationR®fs of degree @ and has real
codficients. Thus it may be seen that there is a complex non-singul
matrix C such thalR = C™*LC. If Co also satisfie€;*LCo = R, then

Co= (Bol 5, ) C with complexn-rowed non-singular matriced; andB,.
Now from (i), C-1LC = T 'T C = (VC)"'L(VT) sincel = V1LV
so thatVC = (% g,)CorC = (g %)C. Spliting upC as(&)
with n-rowed C;, we haveC; = B,C, andC, = B;C;. We may
now chooseQ = (g ¢,) = (5&)(&). ThenQLQ = Rand if
we denoteC; asP, Q = (5) We shall prove thaP is a Riemann

matrix havingA for a principal matrix. In fact, from (i), we have
AQLQ = QF*(§ %)Qis positive hermitian, wherg = iQA Q.
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But then this meanE‘l(g _OE) is hermitian and positive. Therefore,
F1 F2

(5 %)F is again positive hermitian. Writing = (F’z F3) we have

( R ) = (El P ) ThusF, = 0 andF1, —F3 are positive hermitian.
-F2 ~Fs Fy —Fs

Writing F = ('3 Sl) whereH, —H; are positive hermitian, it is trivial to
seeH; = —H. Thus our proposition is completely proved.

For the sake of brevity, we shall call a matihaving properties
(i), (i) and (iii) mentioned in Propositiofl 1, B-matrix. A real matrix
satisfying just condition (iii) is referred to byl. Weyl |Z1] as a “gener-
alized Riemann matrix”. We shall call the matéxa ‘principal matrix’
for R, too.

m|

2 The commutator-algebra of aR-matrix

In the last section we reduced the problem of finding the seatainal
matricesM satisfying [2) for a suitable complex, to that of finding
all 2n-rowed rational matriced! which commute with a 2-rowed R-
matrix R. We may now forget the period matrixwhich gave rise t&R
and work withR instead. As we remarked, the set of such commutators
M of Ris an algebradt) of finite rank overQ.

We shall now see that i), we have an involutioM — M*; this
involution is known as thdRosati involution Further, it is apositive
involutionin the sense that for ariyl € (), the tracer(MM*) of MM* 7
is a positive rational number unlebs = 0.

(For a complex square matriX, we denote thdrace by o(X) and
thedeterminanty |X]).

Proposition 2. We have i), a positive involution.

Proof. For any 2--rowed complex square matrif¢/, define
W = AtwA

Then it is easy to verify that

(Wi = Wo)* = AL Wy + Wo) A=W, + W
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(cWy)* = cWj for anyc e C. (8)
(WIWL)* = AT'WHW, A = W W
(W* = A YA TWAYA=W

If M e (M), thenMR = RM and by [8), M*R* = R"M*. But
R = AIRA = —-A"!S = -R ThusM*R = RM*. FurtherM* is a
rational matrix and therefort* e (9). We now obtain from[{8) that
the mappingM — M* of (M) is an anti-automorphism of order 2, i.e.
an involution.

Clearly o(MM*) = o(MA*M’'A) = o(MRSIM’'SRY) =
cRMSIM'SRY) = o(MSIM’S) = o(MCIC'IM'CC) =
o(CMCIC’-tM’C’) whereC is a real nonsingular matrix such that
S = C’C. Now settingG = CMC™1, we havec(MM*) = (GG
which is strictly positive foiG # 0 and zero folG = 0. Equivalently,
o(MM*) > 0 for M # 0in (M) ando(MM*) = 0 for M=0.

We shall see later that the property Bt mentioned in Proposition
[ serves to characterise the algebra of multiplicationsRieanann ma-
trix. More precisely, we shall prove that, except in somey\agecial
cases, any matrix algebra ov@rcarrying a positive involution can be
realized as the algebra of multiplications of a Riemann mafifo this
end, we need to prove some preliminary results.

A 2n-rowed R-matrix R is said to beeducible if there exists a ra-
tional 2n-rowed non-singular matri€, such that

C{'RC = (Fg F;g;) 9)

whereR; is a matrix ofni(< 2n) rows andn; columns. Otherwise, we
say thatRis irreducible

Let us remark that iR is a reducibleR-matrix, it is not a priori
obvious from the form[{9) onRCl whetherR; andR; are againk-
matrices and whether atleast is even. We obtain clear information
about this from m]

Theorem 1(Poincare,[I12]) If R is a2n-rowed reducible R-matrix then
there exists a rational non-singular matrix C such that

C'RC=(% ) (10)
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where R and R are again R-matrices d¥r and 2(n — r) rows respec-
tively.

Proof. We may takeR already in the fornf % %2 ), without loss of gen-

erality. Letn; andny(= 2n — ny) be the number of rows d®; andR, 9
respectively and leE; be the identity matrix ofy rows ( = 1,2). Itis
then enough to find first a suitable rationabuch that foiC = (g £ ),

we haveC~'RCin the form (10). Now
C—lRC - ( %1 —éz)(%l RRlzz) ( %1 é(z) — (%1 R12+R§;(—XR2) ‘

If Xis rational and satisfieR;> + RiX — XR, = 0, we will be through.
Breaking upA as( _%12 ﬁf) ands as( 58,112 %122) in a similar way, we see
that A; is a nonsingular alternate matrix, sinSe = A;R; is positive
symmetric. Thusy is even and lebh; = 2r (say). Further fromA1R; =
S1 = -RjA1, we have

AqR12 + A1aRy = S1a = (-ALR1) = —Ri A1z = AIRIA M A,

SettingX = —A11A12, we have a rational matriX satisfyingRi>+Ry X—
XR, =0.

To complete the proof, we first remark thaiRfis replaced byC™*
RC, thenA, S andM have respectively to be replaced 6YAC, C'SC
andC~MC. Now

cnc=(%2)(4, (5 8)- (3 2)

whereAz = A, — A’leilAlz is again an alternate ¢ r)-rowed non-
singular matrix. Further from the form & AC andC~1RC, it is clear
thatC’'SC = (501 502) whereS; andS; are positive symmetric matrices
of 2r and 20— r) rows respectively. FrofR? = —E, we haveR = —E;, 10
R5 = —Ez and fromC’SC > 0, we see thafyR; = S; andAsR; = S
are again positive symmetric. ThRs andR, are agairR-matrices. O

Remarks. (1) Theorenfll was proved by Poincare only in the spe-
cial case when the underlying abelian variety is the Jacobia
Riemann surface of genug(see also p.133_[26]).
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(2) If Ris reducible andMR = RM, then althouglC~*MC commutes
with C™RC, it is not necessary th& *MC should reduce to the
form (10).

(3) In terms of period matrices, the transformatRr-» C~1RC cor-
responds to the transformatiéh— PC whereP is a period ma-
trix associated tdR (by Proposition 1). Froni{10), we can prove
that PC = (%1 F?z) whereP; andP, are period matrices af and
n — r rows respectively. The field of abelian functions havi*g
for a period matrix is the composite of the fields of abeliamcfu
tions havingP, andP, for period matrices respectively.

Applying the reduction above successively, we can $piitto irre-
ducibleR-matrices.

If A B,C,... are finitely many square matrices, thela B,C,.. ]
shall stand for the direct sum & B, C, .... With this notation, we can
find by Theorenfll, a rationahZowed non-singular matri€ such that

CRC=[RLR,,..], (11)
and correspondingly
C'AC = [A, Ay, .. ].

If two of the matricesR; occurring on the right hand side ib{11) are

equivalent, sayR, = CilRlcl, for a rational non-singula€,, then,
Et 0 0

replacingC by C( 0 c;t o) , we could suppose that alreally = R».
0 0E

In this process of changinG, A, gets replaced b{;A,C;. Now if

C]AC; is not equal toA;, we could change the matrik we started
from suitably so that this would be true. Thus grouping theiejent
matricesR; in () together and choosir@ properly, we could suppose

that
[Ri, Ro, ...]

fi £
whereR; is aR-matrix repeated; times in the direct sum. Correspond-
ingly we may suppose that

Cc!rRC= (12)

[A1, A, ...

C'AC = ot

(13)
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where, againA; are repeated; times. Now in[IR)R; is not equivalent
to R¢ overQ for j # k. On the other hand, it could happen tigt= Ay
for j # k, in (13).

We shall suppose, in the sequel, tRaindA are already in the form
given on the right hand side di{[12) afidl(13) respectively.

Let us consider the set of linear equations defined by thdesing-
trix equationRM = MR. This is a system ofr linear equations in
unknowns with roal ca@ecients, namely the elementsRfin order to
reduce this to a set a equations with rationalftoents, we shall adopt12
the following procedure.

Let p1, p2,. .., pp be a maximal set of elementg of R which are
linearly independent oved. We may then write

wherely,...L, are rational B-rowed square matrices. Denote by
the abstract algebra generatedly. . ., L, overQ and by (7), the ma-
trix representation by th/s. In other words, £) is the algebra consist-

ing of elementdT of the formT = > @Kk -k Lk - Ly (B ke
1<ky,...km<p
€ Q) and the 2-rowed identityE. By definition, .7 is uniquely deter-

mined byR, since a change ¢fy, ..., pp would merely involve taking
instead ofLy, ... Lp matricesTy, ... T, which are rational linear combi-
nations ofL,, ..., L, and vice versa.

Incidentally, we remark that the determinationlaf. .., L, in (I4)
is not all that simple as it appears. For, take the the simpian2d

I VIV A (01 . ,
R—matrlx( & o )wnh A = (9 }) andy begin Euler's constant. It

is rather ironical that one does not know whethgy and 1/ /y are
linearly independent ovep.
The relationship betweef{) and (7) is given by

Proposition 3. The algebra %t) is the commutator algebra ofA).
(Definition. By the commutator algebraf (), we mean the set of
all 2n-rowed rational square matrices M for which TM MT for all
T € (9)).

Proof. For eachM e (9t), we have 13
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p
0=RM-MR= > pi(LiM - ML)).
=1

But nowps, ..., pp being linearly independent ovérand since ;M —
ML;, j = 1,2,..., p are rational matrices, we deduce thaM = ML
forl< j<p.HenceTM = MT forall T € (7). The converse is trivial,
since ifM is in the commutator algebra off), thenM commutes with
L; for 1 < j < p and hence wittR by (I4). Thus i) is precisely
commutator algebra off). m|

Proposition 4. The algebra(.7") admits the involution T— T* =
AIT’A.

Proof. First of all, we see that for the basis elemehisj = 1,2,
of (7), we haveL]f = -L;. For, fromA" = -A, S = S, we have
R* = —Rand furthelR* = (o1L1 + ... + ppLp)* = p1L + ... + ppl} =
—(p1L1 + ... + ppLp). In other words, we have

pi(la +L7) +...+pp(Lp+Ly) =0.

Again, sinceL + L, 1< j < pare rational angy, ..., pp are linearly
independent ove®, we haveL].k = -Lj(1 < j £ p). And now, for any

T= > 8. kylk .- Lk,, We see that
1<ks,...km<p
T =Y ag kb L= D, &kl L € (7).
1<ky,....km<p

That the mappind — T* is an involution of (7) is quite clear.

Let us remark that the involutioh — T* of () is not necessarily
a positive involution. The fact th& = ARis symmetric is equivalent
to the fact that ) is closed under an involutiom — T* such that
L].‘ = —-Lj, 1 < j < p. Therefore, the condition thad is positive
symmetric is much stronger thary() admitting the special involution
T->T"

SinceR = [f I it is clear that every, is of the form asR, in
view of the linear independence of, . .. pp overQ. Thus, anyT € (7)
is of the form [{> 2 -1 with T; being repeated; times in the direct
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sum. For fixed], let us denote by.%;j) the algebra generated ov@rby
such rational matrice$; and the corresponding abstract algebrafy
None of the.7j can be the null-algebra for then we will hal®g = 0,
contradictingR? = —E. O

Remark. Fork # 1, it could happen thati and .91 are isomorphic.
But there cannot exist a nonsingular rational matrix B indepemidof
T = 221 € (7) such that for k# 1, T¢ = B™1T;B for every
T e (7). For, if such aB were to exist thelR, = B~*R;B for k # 1,
which is a contradiction.

Each algebra.fj) is necessarily irreducible (since, iff) were re-
ducible, we would hav&; necessarily reducible).

By a simple algebrawe mean an irreducible matrix algebfal[28].
This definition of a simple algebra can be identified with &eotof a 15
simple (matrix) algebra as one having no proper two-sidedlgl A
semi-simple algebras, by definition, a direct sum of simple algebras.

Proposition 5. The algebra.7") is semi-simple.

Proof. The algebras.¢;) are simple and if we could show th& is the
direct sum of the algebrag;, then our proposition would be proved. For

this, it is suficient to prove that i ; € (.7]), thenT = [ flol fT}“, (f’] €
— p

() for everyl with 1 < | < p. We might suppose Wlthout loss of
generality that = 1. Let now, for 1< j < p, (9j) be the set o j € (%))

such thall = [f’;" f*’l TfJ Cf”_;“l’ f] isin (7). Itis easy to verify thatl{;) is
a two-sided ideal |Jn:¢j |J\IOV\; (7}) being simple, we have)(j) = (7))
or (0j) is the null-algebra. If%t1) = (1), we are through. Otherwise,
let k be the smallest positive integer greater than 1 such fihat) is
the null-algebra andXy) is the whole of k). Then necessarily, Z

k < p for otherwise (7,) will be the null-algebra which is not true, as

we know. We now claim that il = [T;l’"" Tf';-i ka’;" (f’] is in (), then
— p
corresponding tdy € (%), Tk-1 in (k_1) is uniquely determined. For,
i1 _ [To T, T 0. 0] _[m 1 ..... Mc1. Tk, O.. 0]
T = L S o e 1, © () @M = e R e 1y € ()
thenTy1 — My1 € M 1) which is the null-algebra, by definition ofie

k. Thus there is a one-one correspondefige—~ Ty_1 between £4)
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and (%-1) which is actually an algebra isomorphism. But nagg)
and (%-1) are irreducible, and therefore there exists a constant non

singular rational matriX8 such that ifT = [ Tfti Tf‘; 1 e (), then
Tk_1 = B~1TyB, which is a contradiction to our Remark oril 11. Then
(9t1) = (Z1) and similarly we can show(;) = (.7;) for everyj.

By a theorem on algebras, the commutator algebra of a sempiesi
matrix algebra is again semi-simple. Thoi)(which is the commutator-
algebra of ) is semi-simple. (Compare the proof of Theorem 1.4-A,
p.717, [28]). We shall however find the structure 9f)(explicitly, as
follows.

We may writeR = | T %%~ | as
R=[RV,R?, |
and correspondingl§f = [ % 2| € (7) as
T=[TO, 7@, . ]

Again, we decomposh® € (M) correspondingly asMy)). FromTM =
MT, it follows
TOMg = MgTO (15)

whereT®, TO run over all elements ofg;,) and (7;,) respectively.
But now the algebrasZj) are irreducible. Therefore applying Schur’s
lemma, we see that eith&fy is the zero matrix or iMy is a square ma-
trix (different from the zero matrix), then it is necessarily non-siaig
Let us suppose now thgt # ji. If M is a square matrix éierent from
zero, then it is necessarily a nonsingular (rational) matrd this con-
tradicts the remark on pl 1. Thus corresponding to the deositign
[T "] of R the matrixM € (.) takes the form {1z, My, ... where

My = (Mgg) and from [I5),
TiMpd = MEgTi (16)

for every Ty € (). Thus MS‘% belongs to the commutator algebra of
(%) which we may denote by2{). By Schur’'s lemma again, since
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(%) is irreducible, we see froni.{IL6) thmgg = 0 or it is non-singular.
Thus the matrix algebrag() is indeed a division-algebra. Conversely,
if M = [My,..., My,...] where My = (M), andM$ € (¢4), then

M e (M). Thus ) is the direct sum%i1) + (My) + ... where Qi)

is the completefg-rowed matrix algebra over the division algebg)(
Each (i) is a simple algebra, since it is the complete matrix algelisa
over a division algebra. Thu8)) is semi-simple.

Let us remark that one could prove the fagt)(is semi-simple also
directly by making use of the positive involution .

In the direct sum decompositiofli) = (1) + (W) + ... above,
each () is a complete matrix-algebra over a division-algelitg and
(M) carries a positive involution which, when restricted $£Q)(is again
a positive involution. Thus, in our study of the commutatigieara of a
R-matrix, we are finally reduced to the case of division algstwf finite
rank overQ, carrying a positive involution. O

3 Division algebras overQ with a positive involu-
tion

We now consider a division algebraif with a positive involution, re-
alised as the commutator algebra of a simple (matrix) aly€br).
From the theory of algebras, it is known that the commutakpekaa
of (M) is precisely ¢).

Regarding the subalgebr&) = () n (Mt), we have

Proposition 6. The algebrgR) coincides with the centre ¢£) as also
with the centre ofd).

Proof. Let K € (R). Then, sinceK € (9), K belongs to the centre of19
(). Conversely, ifL is in the centre of "), thenL € (M), by our
remark on commutator algebras above and therdfarg®R). Again let
K € (R). ThenK is in the centre of%t), sinceK € (7). Conversely, if
L belongs to the centre off), thenL € (M) clearly.

Since ) is a division algebra, its centr&] is a field which is a
representation of an algebraic nhumber fi#illdf degreeh, say, overQ.
We denote the conjugates Bifby RO(= R), RO, ... RO, Fora € R,
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we denote its conjugates b . ... .. ,a and the ‘tracea® + ... +
o™ and ‘norm’a), . .. oM respectively bytry/o(@), Ny /g(a).

The involutionM — M* of (M), when restricted to%), gives an
automorphisnK — K* of R, of order 2. We now distinguish between
the following two cases:

(i) for every elemenk of R, * = «.
(ii) there exists at least ong € R such thak® # «..

In the case of (i), we say that tlvolution is of the first kindnd in
the case of (ii), we say it isf the second kind

The positive involution inR) enables us to characterise the figld
further, as follows. O

Theorem 2. In the case of positive involutions of the first kigl,is
totally real. In the case of positive involutions of the satdind,R is
a totally complex field which is an imaginary quadratic esien of a
totally real field Z.

Proof. First, we take the case of a positive involution of the firsickin
R. Tok € R, there corresponds e (R). Now o-(KK*) = or(K?) > 0
for everyK in (R), different from 0. But®) is a multiple of the “regu-
lar representation” oft overQ (upto equivalence) and henog¢K?) =
m. tre,0(k?) where,mis a positive rational integer. Thus fer# 0 in R,
we have

trgR/Q(KZ) #0 (17)

Suppose nowk is not totally real; in fact, leR™) and%R@ be a pair of
complex conjugates, without loss of generality. Lt wo,...,ws be

h
a basis ofR overQ. Then we have, for x k < h, «® = ¥ xng")
=

with Xj € Q. Now trg;2(x?) = F(Xs,...,%n) is a quadratic form in
X1, ..., Xn With codficients inQ and it assumes positive (rational) val-
ues for rationalx,, ..., X, not all zero. Hence, in the first plade is
nondegenerate since i is degenerate, there exists a rational column
X, = 0 whereF is the matrix associated witR(x; ... X,) and then
X,F1xo = FO&O,.. X% = o for rationalx!?, ... X not all zero. By
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continuity, it can be seen that it is, in fact, a positive-aiédi quadratic
formin xq, ..., Xs. Since the matriXL()f(‘))(l <k, j < h)is non-singular
and %, R@ are complex fields, it is possible to find real numbers
x99 such that

SOHO 1 OO - |

WX 1 PN =

w(lj)x(10) +..+ wf]j)xf(?) =0for2<j<h

Now F(x?, .. .x9) = i2 4 (-i)2 + 0+ ...+ 0= -2 < 0. We can,
by continuity of F(xs, ..., X,) again, find rational numbers;, ..., X
suficiently close to?,..., X% such thafF(x;,..., x) < 0, which is a
contradiction. Thu& is necessarily totally real.

We now take the case of involutions of the second kind. #ebe
the fixed field of the involution, viz. the set of allke R such thak* = «.
Since the involution is of the second kind, there exigtg R such that
ko # K, Clearlyko ¢ . We now claim thap = ko — kj(# 0') generates
R over.Z. Forp = —p* andp? = § € .Z, 6 # 0. An arbitraryx € R can
be written as%(;<+/<*) + Z(K—K*) = 1+ up (say). Obviousiy, u € £

and further,
if Kk =A+pupwith 4, u €. 2, thenk” = 1 — up. (18)

(Itis trivial that anyd+up with 2, u € £ belongs tdR). Now if K € (R) 22
corresponds te € R, theno(KK*) > 0 for K # 0 implies thatrg,q((1+
up)(A — pp)) = tre (A% — u?s) > 0 for all A, u € . not both zero.
(Recall thato(KK*) = m.try,q(k«*) for a positive integem). But we
know thatter(KK*) = trg/Q(trm/g(KK*)) = 2trg/Q(/12) - 2trg/Q(/u26).

In particular, fora # 0 in %, tl'g/Q(/lz) > 0 which implies, by the
foregoing arguments tha¥’ is totally real. We now claim that is
necessarily totally negative. For, if one particular coajte, say() >

0, then we can find an elemenin .# such thate()| is large ande®| <

1 fork # j so thattr ,o(-£26) < 0 which gives a contradiction. Thus
R = Z(V6) i.e. R is an imaginary quadratic extension of the totally
real field.Z . O
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Remark. In the case of positive involutions of the second kind, ithe
volution is uniquely determinebdy (I8), viz. ifx = A1 + u V5 with 2,

u € &, thenk* = 1 — /6 which is just the complex conjugate of
If the involution is not positive, then it is not uniquely detined, in
general. Take the biquadratic field generatedv®and v3 overQ; we

have two distinct involutionsy2 — — V2 and V3 — — V3.

Having known the structure of the centieof the algebrait, we
wish to remark that the division algeb¥i can be considered as an al-
gebra even oveR, or, in the notation of the theory of algebragemtral
algebra For, letky, ..., x, be a basis oft overQ and let us denote the
identity in9t by y1. Thenkyy1,......... ,kny1 are linearly independent
overQ. If there existsy, in M linearly independent of theseelements,
then it is easy to see thatys, ... khy1, k1Y2, ..., khYy2 are linearly inde-
pendent ove. In this way, we can findq, y»,...ym in M such that
K1Y1s- -+ »KnY1, K1Y2s - - ., KnY2, . . ., knym form a basis of)i over Q and
Y1,...,¥m form a basis ofdt over R. Thus9 is a central algebra of
rank m over R. It is known from the theory of algebras that = <,
wheresis a rational integer.

In connection with the problem of determining the divisidgedras
overQ with a positive involution, occurring as the complete contar
algebra of &R-matrix, we shall find, as a first step, all division algebras
over Q carrying a positive involution. In view of our remark above,
clearly sufices to find all central division algebras with a positive in-
volution over a given field of the type mentioned in TheofénTBen,
given one positive involution therein, we shall obtain asjtive involu-
tions in the algebra. We shall also examine the possibifigxpressing
the given positive involution in the specific fortd — A*M’A (in
the regular representation) with a rational non-singutamnssymmetric
matrix A and then getting from one sué all other principal matrices
for the same involution.

First we proceed to determine all central division algebrasith a
positive involution, over a given number field.

Let ¥ be commutative. Then, by Theordih2,is either a totally
complex or a totally real number fiefd, of degreeh, say, overQ. Let
RD ..., %M be the conjugates dk and ws, ..., wn be a basis ofk
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overQ. We now consider the so-calleegular representatiomf R over
h
Q (relative tows, ..., wn). Foranys € R, we havewyd = 3 Xjwj,

j=1
1<k=<h xjeQ

h
w9&3=§:&wﬁl 1<k 1<h (19)
i=1

Denoting the matricessf?, ..., 6M], (wM) and ;) by (), @ andD
respectively, we rewrite (19) in matrix form as

Q(5) = DQ 19y

The mappingd) — D gives a faithful and irreducible rational repre-

/
Wh

wy
sentation ofR. If ws,...,wn are replaced by, ..., wy, Where[ : ] =

w1
C( : ) whereC is rational and nonsingular, then we have the equiva-
Wh
lent representations] — CDC™1. All irreducible representations &t
are equivalent to the regular representatiofRaind an arbitrary ‘non-
degenerate’ representation®fs just a multiple of the same.

The involutions — 6* in R is, in view of our remark on [._16 given

by

. _ o, ifthe involution is of the first kind
5, ifitis of the second kind.

Passing to the transpose conjugate in(19% have
0HQ =Q'D’

But Q(s*) = D*Q. Thus settinF 1 = QQ', we have 25
D*=F 'D'F.

Now, observing that the involution commutes with all the isomor-

phisms of i.e. wﬁk) = (@), we see thaF ! = (trg,o(wiw))) is a
rational matrix but being positive hermitian, is positiygrsnetric.
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The rank of a central (matrix) division algebva over its centre is
&, wheres is a rational integer. Fos = 1, 7 itself is an algebraic
number fieldR and we have seen in detail, the structuréioh order
that it might carry a positive involution.

Now supposes = 2. The algebra/” is then a so-calledquaternion
algebra over the centréR. Any elements € ¥ is of the form¢ =
X+ Yyi+ zj+ tk wherei, |, k satisfy the multiplication table given below:

i=aeR, j?=beR, K =-ab ij=-ji=k
jk = —bi = —kjki = —aj = —ik.

It can be verified that if J3i, j, k are linearly independent ovéy and
satisfy the multiplication table above, then they genesaatalgebray
of rank 4, with centreéR.
When is this algebra a division algebra with a positive intioh?
Now, in ¥, we have the mapping

S=X+Yyi+zj+tk>6=x-yi—-zj-tk

and it is easy to check that this is an involutionyof Under the regular
representationy — D whereD is given by

1 1
0)u+w+zp4mzo(0
k k
X y z t
o[ 5 ¥
—abt bz —ay x
X -y -z -t
Now D = [:?Z’ o _jJ DefiningF~ = [1, —a, —b, albj] it can be seen
abt —bz ay x
thatD = F-ID’F. The representatiod — D is not a representation
over Q, but we can get one by replacing eaehin D by its regular
representatiof(a)Q ! overQ.

In order that? is a division algebra, it is necessary andhsient
that the norm ob € ¥ overR is different from zero, foé # 0. But the
norm of§ = X+ yi + zj + tk overR is justx?> — ay? — bZ + abt’. Hence
the necessary and gicient condition for?” to be a division algebra is
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that the quadratic form (x,y, z t) = x2 — ay? — bZ + abt® should not
represent O non-trivially oveR.

We shall now find conditions under which the involutiér- ¢ in
¥ is a positive involution.

More generally, let us take a central division alge®taof rankm 27
over its centré® and leté — ¢* be an involution irt)t, which is identity
onR. We shall now give the “regular representation™@foverR. Let
Y1,...,¥m be a basis of)t overR andwsy, ..., wn be a basis ok over

m
Q. Then, forany = Y xjyj € M, we have
j=1

71 Y1
(ol
Ym Ym

whereD = (dpq) is anm-rowed square matrix with elementsinh For
getting a rational representation 8, we may proceed as follows. Un-
der the regular representation®fwith respect to the basis;, ..., wh,
we know thatdpq — Dpq = Q[d(plq), e dgg]Q‘l whereQ = (a)gl)),
1< g, 1< h. Letus now take as a basis %f overQ, themhelements
B1,....Bmndefined byBi.-1h = wry1 for L<k<h, 1<l <m Then

we have for € I,
B B1
[ : )(5 = Do[ : ) (21)
Brn Brnn

whereDg = (Dpg)(1 < p,g < m) is clearly rational. We can get
the relationship betweeBy and D as follows. Suppose, instead of
B1,...,Bmn We take as a basis @k themhelementsyy, ..., amnWhere
@1+(k-1)m = wky1(1 <k < h,1 <1 <m)and suppos¥ is themhrowed
permutation matrix takind ¢ (k— 1)m)¥ row to k+(I - 1)h)9 row; then
with respect to the new basis— VDgV. Itis now easy to verify that 28

VDoV = (Q x En)[DY, ..., DM(Q x Ep)~t (22)

whereD® = (d§)) for 1 < | < handQ x Ep, denotes thenhrowed
square matrixd)gl)Em), Em being them-rowed identity matrix.
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m
Lets = ) Xjyj € Mandé — D, §* — D* under [ZD). Then
j=1

J_
o(DD*) = f(Xq,...,Xm) is a quadratic form irx,, ... xm with codfi-
cients inR.

Proposition 7. The involutions — ¢ in M is positive if and only iR
is totally real and {xq, ..., Xm) is totally positive-definite (i.e. (ks, ...,
Xm) as well as its conjugates ovep are positive-definite quadratic
forms).

Proof. By definition, the involution is positive, if, for every € M we

haveo(DoDj) positive for the imagd®, of 6 under [Z1). Now, by[(22),
h _ . h . _ .

o(DoDy) = ¥ o(DO(D")D) = 3 o(DD(DW)*) (defining OV)* =
-1 =1

(D). We have thus

(DoDg) = tre,q(c(DD"))

Thus we should have, in particuldryq(42) > 0 for 2 # 0in®. There-
fore R should be totally real, using the arguments in the proof @drh
rem[2.

By the foregoing, the involution is positive if and onlytify o (f (X1,

.., %m)) > 0 for xq,...,Xm in R not all zero. Now, fou # 0 in R, we
havef(xu, ..., xmt) = WPF(xq, ..., Xm). If, for X2,..., X9 not all zero,
some conjugate of = f(x(lo), . ..,xﬁ?)) is negative, then, by choosing
u € R suitably, we can makﬂ'gn/Q(KUZ) < 0, which is a contradiction.
Moreover, no conjugate df(xy, ..., Xn) overQ can be degenerate, for
then there will exisk’l, ..., Xyynot all zero itk such thatf (X/, ..., x;,) =
0 andtryo(f(x}...., X)) = 0. Thus the conjugates df(xy,..., Xm)
are all nondegenerate and represent only totally positivebers in the
respective conjugates & which implies that they are positive definite.
Our proposition is thus completely proved.

Going back to the quaternion division algebfaoverR, we deduce
thatthe involutions — ¢ is positive if and only ifR is totally real and
further, the quaternary form?- ay? — bZ + abt is totally positive-
definite; in other words;-a, —b should both be totally positive numbers
in R.
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If —a, —b are not both totally positive, then the involutién— Sis
not positive. We shall, in this case, look for other invabuis in” which
might be positive. We shall first find the relationship betweay two
involutions in?’, which have the samefect on%i.

O

Theorem 3 (Albert, [1]). Lets — § ands — &* be two involutions in
a central division algebralt with centre® and let, fora € R, @ = o*.
Then there existg # 0in 9t such that fors € M,

& =151, A=+
30

Proof. The mappings — (5*), being the composite of two involutions,
is an automorphism dit and further it in identity ortR. By a theo-
rem of T. Skolem[[23], every automorphism of a central singigebra
which is identity on its centre, is an inner automorphismhef algebra.
Therefore, there exists # 0 in Mt such that

(6*) = 26271 (23)
i.e.6" = 1A
Replacings by 6* in (23), we get
§=a5"a"t
= A5t
In other wordsa—11 commutes with all elements #k and henca = k1
for ak € R. Furtherd = k1 =kkA. SinEeSJJE is a division algebrax = 1.
Now, suppose that = —1; thend = —-A. If « # -1, then setting

y = k+ 1, we havey # C andyk = (k + 1) = y. Furtherly = ki =
yA = dy. Now§* = 17164 = (Ay) L6y for k # -1, we have

6" = A7t6A  with 43 = A1 0r Ag = Ay,

Let nows — ¢* be a positive involution of the first kind int’; then
R is totally real. We know that the involutioh — & in ¥ is also of the
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first kind. Thus, by Theoreid 3, there exigtst 0 in ¥ with A= +A,
such that fow € 7.

5 =155, (24)

If 1 = A, thend € R and thers* = § i.e. the involutions — &* coincides
with the involutions — 6.

Let us suppose now that = —1. We shall construch € ¥ such
thatp* = —p # 0i.e. A71p1 = —p which meanslp + p1 = 0. But
then applying the involution-, we havepd + 1p = 0. This again gives
(o+p)1+A(o+p) = 0. Butp+p € R. Thereforep+p = 0, sinced # 0.
The conditiorp* = —pimpliesp = —p. Expressing asx+Yi+z j+tk, the
conditionp = —p means thak = 0. Further sinca = —1, 1 = pi+qj+rk
with p, g, r € R. Thus to findp € ¥ such thap* = —p, we have only to
find numbersgy, z, t in R satisfyinglp+p1 = 0, i.e.apy+bgz-abrt = 0.
But this last equation is a linear equation in three unknoower the
field R and therefore admits of infinitely many solutions. Thusr¢he
existspg = Yol + 2] + tok € ¥ such thapy = —po andpg # 0.

We now observe that the involutios —» ¢ ands — §* related
by (Z3), with 2 = -2, cannot both be positive. Foityq(poo)) =
—try/a(popo). In the case when the involutigh— § is positive, we thus
conclude that no involutios — &* with 6* = 1764 can be positive
unlesst = 1 in which case both the involutions coincide.

Let us suppose that the involuti@h— & is not positive. Then, in
the first place,f(x,y, zt) cannot be totally positive definite and if the
involution § — &*(= 17152 with 1 = —2) is to be positive, then no
conjugate off (x,y, z,t) overQ can be negative definite either, since for
A # 0inQ, ha2 = h.f(1,0,0,0) = tre;g(4?) = treo(21*) must be
positive. Now, we claim that no conjugate fifx, y, z, t) can be positive-
definite either. Fortry /Q(popguz) must be positive for alll # 0 in R, i.e.
try/o(—1(0, yo, 20, to)u?) must be positive for alll # 0 in R. But, now, if
some conjugate of(x,y, z,t) were positive-definite, we could choosge
suitably so thatrg,q(—f(0, yo, 20, to)u?) < 0. We know already that no
conjugate off (x,y, z t) can be negative definite. Thidi§x, y, z t) and all
its conjugates must be indefinite, if the involutiér- §*(= A-151 with
A = —1) were to be positive. We are thus led to m|
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Proposition 8. If the quadratic form {x,y, z t) = X2 — ay? — bZ + abt?

is totally positive-definite, then the only positive int@n in 7 is the
involution 5 — &; otherwise, in order that there might exist positive
involutions in?, f(x,y, zt) should be totally indefinite.

In the case when the for? — ay? — bZ + abf is totally indefinite,
we remark that by means of a linear transformatiow, iy z, t with co-
efficients inR, it can be brought to the form? — a;y? — b17% + ab;t?
wherea; and-b; are totally positive. First, we note that the ternary form
o(y, 2 t) = —ay? — bZ + abt is necessarily totally indefinite (This is be-
cause the three numbers(), -b®, al) b 1 < j < h cannot all be of
the same sign, in view of the fact thaft) andb() are not both negative).33
We can find a linear transformation ovrwhich takesy(y, z t) to the
form —ay? — bZ + abt® where—« is any totally negative number repre-
sented byp(y, z t) in R. Again noticing that the binary formbZ + abt?
is totally indefinite, we can eventually transforpfy, z t) to the form
—a1y? — b172 + a1bit? wherea; and—b, are totally positive. Thus we
could suppose that the totally indefinite fosth— ay? — bZ + abt? has
already the property that —b are totally positive.

Fora € R, @ > 0 means is totally positive. Now sinca > 0, the
element = +/agenerates i/, areal field® (i). Any 6 = x+yi+zj+tk
can be written ag + nj with ¢ = X+ yi andnp = z+ ti. Fora = a+ bi
in R(i), we denotér = a— bi. Then we havg¢ = £j. Then we obtain a
representation o (as a vector-space ov&r(i)) given bys = é+nj —

D1 = (Ii_y g)

(F)s=D1(}) (25)
Now
D1=({7)=7D17™" (26)

whereZ = (§ }) corresponds t6 = j under [Z5). Further

D1=(_; 7 ) =30 (27)

whereD; corresponds undef(P5) o= x —yi— zj—tk = £ - pj and 34
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J=(9 %) The regular representatian— D of 7 may be seen to be
equivalent to the representation- % 501) as below, viz.

D =W, (5 )Qptw (28)
whereQ, = (2 _Z, ), Ezis the 2-rowed identity and/ is a permutation
matrix.

Lets — 6* = 471641 with A3 = —A; be an involution in¥” and let

§* — D}, § — Dy anddy — Ly under [Z5). NowD?; = L7'D;L; where

Ly = (&2) = L1 = -3L,37%, by @7). Thus setting; = J7Ly,

we seeF is real symmetric which is equivalent to saying that —pu.
Further

D; = F{'D}F; (29)

Now o(DD*) = 20-(D1D3), in view of {Z8) and[(Z6). Hence, for the
involution 6 — ¢* to be positive, the quadratic form(D,D7) should
be totally positive-definite oveR. This again implies, by[{29), that
o-(DlFilD’lFl) should be totally positive. A necessary andhsient
condition for this is given by

Lemma 1. Let X = (Xa), 1 < k< 9,1 < | < h, be a real matrix and
let P, Q be real square matrices of h and g rows respectiveienTthe
quadratic formo(XPX Q) in Xy is positive-definite if and only if P and
Q are both positive-definite or both negative-definite.

Proof. There exist real non-singular matricg&ndB such thaBPB' =
[P1,...,pn] and C’'QC = [0y, ...,0g]. ReplacingX by CXB, we can
suppose that already® and Q are in the diagonal form. Now

g h
oc(XPXQ) = X > p|qu§| is positive-definite if and only ifogx are
k=11=1

all positive. Thus eithepy, ..., pn, d1,...,0g are all positive or all neg-
ative. In other words, the necessary anflisignt condition is thaP, Q
should be both positive-definite or both negative-definite.

The passage frord(= X + yi), n(= z + ti), & by to x,y,zt is a
nonsingular real linear transformation and we can thus lgodn the
elements oD as independent variables. Thus takidgfor X in lemma
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1, the criterion forcr(DlFilD’lFl) to be totally positive is that each
conjugate ofF1 is either positive-definite or negative-definite. Now we
can findk € R such that the conjugates othave prescribed signs and
if we choosex, instead ofd;, then we gekF, instead ofF;. Thus,
without changing the involution, we might require tha, = (‘}ﬁ ‘yﬁ)

is totally positive-definite. Now = — and therefore: = pi with pe R

and lety = g + ri. The conditions fofF; to be totally positive are
y>0, -by>0, puu-byy>0
But —b > 0 and therefore, these may be rewritten as
y>0, y>0, y+y=29>0, -p’a-b(-ar’)>0
It is easy to check that all these conditions can be complesse
q>0, -=b(g®-ar?) >ap’ (30)

It is possible to findp, g, r in R satisfying [3D) (for example, tale= 1, 36
p = r = 0) and therefore, the existence i of positive involutions
6 — 6*(= A7*611) with 2, = -1y is assured.

Let nows — A1~152 with 1 = -1 € ¥ be another positive involution
(of the first kind). Setting = 7%, we havep~26%p = 17151. Now,
Pt = ) = Rt ) T = p. Conversely, ifp = p,
theni = A1p satisfiest = —1. Thus all such involutions — 1751
are connected with — &* by 17161 = p~15*p for ap € ¥ satisfying
P =p.

Supposey — A;lg/lk, k = 1,2 are two positive involutions of,
with x = —A. If Ak — Ly under[Zb, therL, = L;R; whereR;
corresponds te = /111/12. Sincep* = p by the foregoing, we have
R} = Ri. ThenFy = J 1L (k = 1,2) should be totally positive. Further
F2 = F1Ry. Conversely, giverRy = R} such that=; = F1R; is totally
positive, then the elementt € ¥ corresponding td., = L1R; under
@3), given a positive involutiod —;*1 S in Y. O

Lemma 2. If F is a real m-rowed positive-definite matrix and R is a
real matrix such that FR is symmetric, then FR is positiviaite if
and only if all the eigenvalues of R are positive.
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Proof. SinceF is positive-definite an#R = R'F’, we can find real non-
singularC such thatF = C’C andFR = C’'BC with B = [by, ..., by].
ThenC’BC = C’CRi.e. B = CRCL. Thus the eigenvalues & andR
are the same. Our lemma easily follows.

Choosing the rational representati®r> Dg given by [21), we may
conclude as followslf Do — Dy, is a positive involution of the first kind
in ¥, then all other positive involutions can be obtained in tharf
Dy — R(‘)ngRo where R = R in 7" and further all the eigen-values of
Ro are positive. The quadratic fornf x ay? — bZ + abf is either totally
definite or totally indefinite oveR.

From [29) and[(28), it can be verified that

D*=F'D'F (31)
whereF = W'1Q"1, ("2 £ ) ;WL Now

-1 -1
Fi _?1)Q'zw’ :WQZ(Ll _(_)1)(WQ2)‘1WQZ
0 F, 0L

X (39) (W) WQQHW'.

Fl= WQZ(

. Lt o Ay

Further smceNQz( : E_l)Qzl‘N ! corresponds td;* under the regu-
1

lar representation of, it is a matrix with elements ifR; moreover it

is easy to verify that the matriceWQz(g?) (WQz)™t and WQ QW
have again their elements % ThusF~ has elements ik and more-

-1

. . (FL 0. .
over beinga transform of the totally positive matr|€< (1) E’l) is itself
1
totally positive overR. Going to the rational representation— Dg

again, we have, froni.(81), that
D, = Fy'DyFo (32)

whereFg is a rational positive symmetric matrix. The relati@nl(3®) i
analogous to what we obtained orlpl 25 for the case of fieldgrins
of the regular representation over

An important theorem due to Albert (p.16L] [1]) says that diw
sion algebra ove® admitting an involution of the first kind is either an
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algebraic number fieleR or a quaternion division algebra ovit We
have discussed precisely for these two cases, all the iiwotuof the
first kind. We may now proceed to study division algebrasy@agrin-
volutions of the second kind. Such algebras, again, have seelied
by Albert [1].

We have, in this connection, to deal with an important cldsdge-
bras callectyclic algebradirst introduced by L.E. Dickson in 1906.0

4 Cyclic algebras

39
Let 3 be a cyclic extension of degres¢> 1) over an algebraic number

field ® of degreeh overQ. Letr,72,...7t5%, 75 (=identity) be the dis-
tinct automorphisms off over k. Forn € 3, we denote by, the
effect of " onn; particular,n® = n = 5©.

Let M be the set of elements = & + £1] + ... + &x-1j5 L where
&o0,é1,...,&4 1 are in3 andj satisfies

i€ =¢0] (33)
for & € 3. By iteration, we get fron{33) 40

e = gl jk

This relation may be seen to be valid for all rational inteder 0 and
|, defining j° = 1. In particular,
e =92 =¢j°,
We now stipulate that,]j, j2, -, j5! are linearly independent ovgrand
i°’=Db (34)

for someb(# 0) € R. Under conditions[(d3) an@{B4), it can be verified
that 9t is an algebra of rank? over its centreéR. A central algebrai
overR, constructed as above with an auxiliary cyclic extensjoof ‘R
is called acyclic algebra The field3 is called asplitting field for 9.
The quaternion algebra is a special case of a cyclic algalhrans = 2.
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It is known that every cyclic algebra is a simple algebra. veosely,
by a theorem of Brauer-Hasse-Noetter [7], every simplebatgeverQ
can be realised as a cyclic algebra over its centre.

Ford = &+ &1j + ...+ és.1)51 € M, we have the representation
6 —» D of Min 3 given by

1 1
()=o)
jsfl jsfl

5(0) f(li" f(il
1 1 1
bff.s—l 50. fs.—2

where
D= ~ : : (35)
bfj(Lsfl) bfésfl)m f(()sfl)
Let us observe that all the terms below the diagon® afvolve b. The
regular representation &k over< is given by

§ - (Qx E[DW, ... DO(Q x Eg)™t

whereQ = (y(kl)), with y1 ...vs being a basis off over® and forD =
(dpq), DO = (d%)-

The algebralt is a division algebra if and only iD| # 0 for every
6 # 0in M. For, we knowdt is a simple algebra containing 1 and the
condition|D| # 0 for 6 # 0 would imply that)t is free from divisors of
zero and therefore, the ideal generated byagy0 would be the whole
of M. Conversely, iflt is a division algebra anél # 0 in M, it is trivial
to see thaiD| # 0. .

Writing every & € 3 as ), Xqy1, we see that corresponding to
I=1

s-1
5§ = 3 &j%, ID| is a homogeneous forry(..., Xq, ...) of degreesin
k=0

the variablesxy, with codficients inR. The necessary and figient
condition for9t to be a division algebra may thus be reformulated as
follows, viz. the formf(... Xy, ...) should not represent 0 nontrivially
overR.

In the case of the quaternion algebfeover®(s = 2), fors = £+nj,
&= X+Yi,np = z+ti, we havelD| = &€ — by = f(xy,z1t) = X2 —
ay? — bZ + abt?. We know that? is a division algebra if and only if
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f(x,y,z t) does not represent zero nontriviallysin Clearly, forn = 0,
ID] = x2 — ay® # 0, sincea is not a square ifR. We may then suppose
that, for givené = ¢ + njin ¥ n # 0. The condition thafD| = 0 is
equivalent to the fact thdt is the norm of an elemewt;* in R (i) over
R. Thus the quaternion algebré is a division algebra if and only if
b is not the norm of any element &f(i). In the cases > 2, we shall
find conditions analogous to this, which shalldagicientfor the cyclic
algebralt to be a division algebra.

Theorem 4 (Wedderburn,[[24]) Let 9t be a cyclic algebra constructed
as above with, j, ..., jS as basis over the splitting fie@land let =

b belong to the centr&. If for every integer r satisfyin@ <r < s—1, b

is not the norm of an elemefibf 3 overR thendt is a division algebra.

Proof. Lets = &g+ &1 +. .. + &j< where 0< k < s— 1, be an arbitrary
element ofi. If k = 0 ands # O, then, trivially,6 has an inverse. Let
thenk > 0 and let us suppos& # 0. We may, in fact, assume that
& = 1, without loss of generality.

We shall first findng, 71,...,7s.x € 3 such that{g + mj + ... +
NskiS )0 + &1j + ... + |4 is of the formpg + p1j + ... + prea j<°T
and is diterent from 0. By iteration of this process, we can eventually
obtain an inverse fop, under the hypotheses of the theorem. Now,

(o +mj + ... +nsxj¥)0 = po+p1j + ...+ ps1j5 where

po = 1Moo + Ns-kb
p1=mnoé1+ Ulfél)

Pk-1 = Noék-1 + 771§|((1_)2 + 772§|((2_)3 +eeet Uk—lfék_l)
Pk =10+ mf.((l_)l +ooot kaék)

et = M1+ MoED) +

K
Ps-1=TMNsk-1+ 775—k§|(i_1)

Takingns x = 1, we can findys k_1, 7s_k_2, - . . , 7o inductively such that
ps-1=0,ps2=0,...,0¢=0.
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If, now, it turns out thapg = p1 = -+ = px_1 = 0, we shall see that
we arrive at a contradiction to the hypotheses.
Replacingj by jo where, analogous t6(B3) arld134),satisfies

jot = éWjoforé e 3
1, jo--- j5* are linearly independent ovg; and
jg = x (an indeterminate)

we can verify easily that
(o +majo+ -+ J5)Eo + Exjo + - + J§) = nofo + 5 = X—b. (36)

Now, for anyu = po + p1jo + - -+ + ps-1j§ + With po, 1, ..., ps1in 3,
we have

1 1
Jo Jo
p=M| . (37)
is-1 is-1
Io Jo

whereM = (& B),C is ak-rowed square matrix with on the diagonal
and the factox only up to the first power below and zeros aboBds

a (s — k)-rowed square matrix with 1 on the diagonal and zeros above
and further the matrices, B, D are free fromx. Let M, M» correspond
respectively tojo + n1jo+ -+ + jS¥ andéo + £1jo + - - + j§ under [3V).
Further noting that

1 1
Jo Jo
(X=b) = (x-Db)Es
i1 is-1

]o JO

whereEg is the s-rowed identity matrix, we have, froli{B6],(37) by
taking determinants, that

IMy1[IM2] = (X - b)E| = (x — b)*.

But, by using Laplace’s expansion of the determinaniviefalong k-
rowed minors of the firgt columns ofM», we observe that

Ml = (1) %X + -+ + N(&)
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whereN(&) is the norm ofép overR. Since|M,| divides the polyno-
mial (x — b)S, it follows that it is necessarily equal te-1)S¥(x — b)¥.
Comparing the constant terms, we have

N(¢o) = (-b)*(-1)>*
i.e. b* = N(~&o)

which is a contradiction to the hypothesis thathi@ < r < s) is the
norm of an element . Our theorem is therefore proved. ]

Remark 1. In the hypotheses of Theordm 4, it isfistient to require
thatfor divisors tof ssatisfying 1<t < s, b" shall not be the norm of
any element of§ overR. For, let0<r < sandt = g-c-dofr and

s. Further, leth = N(¢) for £ € 3. Now there exist rational integers
p, q such thatpr + gqs = t. Thenb! = N(£PbY). In particular, ifsis

a prime, then all theses- 1) conditions reduce to the single condition
that b should not be the norm of an elemenin 3. In this caseit

is a division algebra. Conversely, as we shall see presehtit is a
cyclic division algebra ovep with s, a prime, then necessarib/cannot
be the norm of any element @f overR. It has been shown by Hasse
[9] that the conditions oM in TheorenTH are alsnecessanyor Mi to
be a division algebra. The proof by Hasse involves the uséaofdr
systems’ in the theory of algebras. We give, in simple casg@spof of
the necessity of Wedderburn’s conditions.

Proposition 9. With the notation %f Theorehl 4, let for a divisor r of s,
b" = N(&) for £ € 3 and letr andF be coprime. Theft cannot be a
division algebra.

Proof. Itis suficient to show tha®t contains divisors of zero, under thas
given conditié)ns.
Lets = p and let3s, be the fixed field of the group of the automor-

phisms 1%, ..., 0(~D% of 3 overR. Then the sedig of elements of
the forms = no + mj" +172j% + -+ + nslj(_si‘l)r with n; € 3¢, is again
an algebra. Nowlis, c 9t and we shall show thaits, contains divisors

of zero.
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The elementr = ££% - - - £0%17) lies in&g, and furthetd’ is the norm
of @ in &, over®. Moreover if jo = jo%, then 1jo. ..., jgl‘l is a
basis oflis, over 35, and jo satisfies a minimum polynomial equation
of degrees;. Now

jg =b'(Ng, (@) t=1
This gives us a factorization of O ks , viz.
0=(jo- 13 " +g 2+ +1)

and neither of the factors can be zero, since the minimummpotyal of
jo is of degrees;. m|

Corollary . If s is a product of distinct primes, then the conditions of
Wedderburn in Theorefd 4 are also necessarydoto be a division
algebra.

5 Division algebras overQ with involutions of the
second kind

Let ¥ be a division algebra oved. Then by a theorem due to Brauer-
Hasse-Noether, it is known thét is a cyclic algebra over its centtg,
with a certain cyclic extension ovét as splitting field.

Conditions necessary andf8aient for ¥ to have an involution of
the second kind have been given by Alb&ft [1]. Firstglet & be such
an involution in¥. If .Z is the fixed field of the involution contained in
the centre® of 7/, thenR = £(c) is a quadratic extension ovef, with
a suitablec in R satisfyingC = —c. In this case, Albert has shown (Chap
X, [1]) that one can find a cyclic extensign = -Z(s) of degrees over
% such that

i) the involution is identity or3g, and

ii) the algebra? is a cyclic algebra having for its
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splitting field the field3 = 3o(c) = -Z(c, ¢) which is abelian of degree
2sover.?.

Following our earlier notation, let 3;, j2, ..., j>* generate’ over
3 and letj2 = b € R. Now we claim thatjj commutes with all elements
of 3. For, first of all, any € 3 is of the formé& = ng + nic with g, 1 €
Ko andé = ng — n1c . Hence the mapping — ¢ is an automorphism of
3. Denote byo the generating automorphism gfover® and byn®,
the dfect of o ony € 3. Using the fact thag is abelian over?, we
have, foré = no + n1c (with 1o, 71 € Ko),

&0 = () + 1) = ng) ~ ) -c = @ (38)
Now, forn € 3, we have
il = n =n®j = [n® = j@H (39)
and therefore, fof € 3, we obtain 47
ji¢ = 1eWj = €l

using [39) withy = £. Now 3 is a maximal commutative system #i
and it follows immediately that

jj=ae3. (40)

Moreoverjj = jj and therefore € 3o, from {@8). Nowj$ = b and
is = bandbb = j5j = aa®...asD . Thus we arrive at the important
condition

Nat/.z(0) = N3o/.2(d). (41)

(See Theorem 18, p.160] [1])

Conversely, if/ is a cyclic algebra generated byj1j?, ... j>* over
its splitting field3 and if 3 is realisable as a field(c, ¢) as above and
further, if j° = bin R satisfies (41) for a suitabkee .Z(s), then we can
define an involution of the second kind#as follows. Fo& = ng+n1C
in 3 with ng, 11 € 30, we have only to define

&=mo—mnC
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j=aj? (42)

Extending [4R) to all elements of in the obvious way, we have an
involution of the second kind.

We shall now show that Wedderburn's conditiongfisient for a
cyclic algebra?” to be a division algebra are not incompatible with con-
dition @1) which is necessary andfBaient for a cyclic (division) alge-
bra to carry an involution of the second kind.

Let us take? = Q, c = V-1, R = Q(V-1), p an odd prime and
&, a primitive p root of unity. The field3p = Q(¢) with ¢ = & + &1

. . 1 . .
is cyclic of degrees = E(p —1) overZ. If now qis a primeq = 1(

. . -1
mod 4), therg = «« for « in R, since| — | = 1. Let us further suppose

that q is a primitive root modulop (There exist infinitely many such
q). If now 3 = R(s), it is clear that the integral ideak) generated by
k in 3 is prime; similarly &) is prime in3 and &) # (x). Now let us

defineb = «&%1. Then Ny, #(0) = N3,.2(0). Moreover, we claim
that for O<r < s, b" # &0 ...£6D for £ € 30. For, otherwise, let
b" = &£ ... &8 Dfor £ € &y and let¢ = «t - 2 where in the prime factor
decomposition ofJ), (k) does not occur. Now™® = «'1() and therefore

RSO Z sty @)D

As a consequenae= st, which is a contradiction, sinceQr < sandt
is a rational integer.

Thus the cyclic algebra generated by;,1. ., j over3 as splitting
field (wherej® = b) is, in fact, a division algebra with an involution of
the second kind.

p%l=3,q:17:(4+i)(4—i),:<=4+i,

b=@4+i)(4-i)%a=17,j*=b3 = Q(cosz%r, i).
Let 6 — D be the representation of the division algebra over its

splitting field, whereD is given by (35). Under this representation, we
have

Example.p = 7,s =

> F = (8 Egl), Es 1 being the § — 1)-rowed identity matrix
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and foré € 3,
£ - 660,65
Let nows — 6 be an involution of the second kind i and letD
correspond t@ under the representation above. The restriction of the
involution in ¥ to 3 is an automorphisrd — & of 3. Let us denote for
any matrixM = (my) with my € 3, the matrix fiq) by M. Then the
connection betweeb andD is given by

Proposition 10. There exists an s-rowed nonsingular symmetric matrix
F with elements i3 such that, for any € ¥/, we have

D=F'DF (43)

Proof. Since”?” has an involution of the second kind, we have, [y (41)
an element € 3 such that

bb = ad? - as (44)

Now to ] = aj~! corresponds? = [a,a®,...als™D] (0, 55" ) We shall
find elements(g, X1, ..., Xs_1 in 3¢ different from ZEero, such that

_ = 0 a
[%0. X0 .- s 1] (2, B) X0 X0 Xsa] H = F = ([a(n,._,a(w] 8)

This matrix equation is equivalent to the conditions 50
X sl _gen XD 2 (45)
Xo Xs-2 Xs-1 b

lfwesetforl<i < s—1,%x = ad?...a® andxy = a, then they
satisfy [4b) and the last condition i1{45) is nothing Iﬂl)(zrlzhus if we
setF = [aL, (@aa®)L, ..., (@aa® ... as D)1 thenF = FIF F and by
iteration, we have

F=F'F (46)
Forée 3,& — [£,&W, ... &Y and it is trivial to verify that

€60, 6N = [E6D, . 6N = FYE D, £SD)F
(47)
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From [46) and[{47), followd{43) for anyye ¥". Let us note thaF itself
does not correspond in general to an element’afnder the represen-
tations — D.

The relationship[{43) betwedd and D will be useful in examining
the positivity of the involutions — 5. Our next object will be to find all
involutions of the second kind i and to investigate the existence of a
positive involution. Results in this direction are agaireda Albert [1].

If 6 — ¢ is any other involution in” having the samefiect on
R as the involutions — 5, then we know that, for al # 0 in ¥ with
A= +4,5" = 17151. Since the involutions are of the second kind, we can
suppose without loss of generality that +4, by taking, if necessary
cd instead ofd. Now if 2 — L under the representatiagh— D, then
this means thab* = L-1DL = L-LF~D’FL. SettingG = FL, we have
fromL = L thatG = G . Thus we have

D'=G'D'G, G=FL=G. (48)

O

6 Positive involutions of the second kind in division
algebras

Lets — 6 be an involution of the second kind in a division algetfa
overQ, with centreéR > Q. Then we know fron§5 that?” has a splitting
field 3 which can be realised as an abelian extensifft, ¢) where.¥
is the fixed field of the involution ifR, 39 = .Z(s) is cyclic of degrees
over.Z andc = V—d = T € % for an elementl € .Z.

For the involutions — 6 to be positive, we should have necessarily
that .Z is totally real and-d > 0; thusR should be a totally complex
quadratic extension of the totally real field. For& e 3, € is just the
complex conjugate of. Furtheré is totally real and the involution is
identity on3o.

From the representation — D of ¥ given by [35) we first get a
representatiod — Do of ¥ overR by takingDg = (QxEg)[D, D), ...,
DD](Q x E)~* where ifD = (dpg), D® = (df3) (1 < k < s- 1), Es
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is the stowed identity and2 = (1) (1 < k.1 < 9), y1.....ys being

a basis of3 over.# and serving also as a ba&s”@bver‘ﬁ Now let 52
w1,...wn be a basis ofk overQ and letQ* = ( )(1 < pg<h.

If Do = (éw), denote byDg the corresponding matri (')) for 1 <

i < h. Then settingD = (Q* x E@)[Doy.. ., Don](Q* x Eg)™! where
Eg is the s?>-rowed identity matrix, we see that the mapping> D is

a representation of over Q by hs*-rowed matrices. Throughout this
section, we shall denote by1), the image of/” under the representation
6 — D over3.

Let us define, analogousl¥o by Fg! = (Q x Es) x [F,F®), ...,
F(D)(Q x Eg) and denote byFg(1 < i < h) the matrix(flg)) corre-
sponding toFg = (f). IntroducingF by the definitionF ! = (Q* x
Esz)[FOI,...,F&}](Q* x E¢), we see thaF is a hs-rowed rational
symmetric matrix and the relatioi{43) in terms®@fand F goes over
into

O

=F'DE, E=F (49)

DefiningG = F L, we see that (48) goes over into
G=

D* = G D’'G with

FL=G (50)

For the involutioné — ¢* to be positive we must require that for
6§+ 0,0(D D*) = o(D G !D'G) > 0. Nowo(D D*) = Zo-(Do,DOI)_
tre/o(o(DoDg)) (By defining Oo)* = D). Furthero-(DoD)

so(DD*) by using the fact thab®) = .#D.Z1 (Whereﬁ (o Es ))
and hence, by iteration,

DKW = zkp.zk (51)

Now (DD = o(D G 'D'G) = o(GD G1D) = o(DD*) and there- 53
fore forD € 7/, o(D D*) is real. The elements of D are linearly in-
dependent oveR and looking upon them as independent complex vari-
ables, we see that(DD*) is a hermitian formf( ..., Xq.,X«,.) inthe
&% complex variables. On the other hand, by using the arguments of
Propositiorl¥ the necessary andfiient condition fortrg,q(c(DoDg))
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to be positive is that-(DoDg) = SO'(DG_:LG/G) should be a totally
positive-definite hermitian form. Analogously to Lemma I2e neces-
sary and sfiicient condition for this may be seen to be that the hermitian
matrix G must be totally positive-Definite ovey. We have thus proved

Proposition 11. In terms of the representatiah— D of ¥ over3, any
positive involution of the second kind(i#) is of the form D— G-'D'G
where G= FL is totally positive-definite hermitian and & F-ILF
correspondstoa # 0in 7.

In particular, for the involutiod — D = F~D’F to be positive, the
necessary and fiicient condition is thaF = [a, aa®,...aa® ... a5 1]
is totally positive-definite i.ea > 0.

Suppose a is not totally positive i.e. the involutién— & is not
positive. Then we claim that the involutiah — 6* in ¥ defined by

j* = A7Yjaander = £for & € 3 is positive for suitably chosemin 3o.
(s-D) =
In fact, if we setd = , then fors € ¥, we haveD* = GID G

where

G =[ag,aaMee®), ... adV ... as VgD, g D).

NowG =G, N3,/2(0) = 1 and we have only to chooskin 3o such
thatG is totally positive. But we see that
~ As-1) a As-1) n As-1)

-1 D ... 5
G *=|a 2 ,aa A(l),...,aa a ik

Certainly we can find € 3¢ such that the numbers

a aab aa®. ash
_’ 2t (52)
A 20 A(s-1)
are all positive, since this merely involves choosihg 3o such that
4,40 a6 have prescribed signs. Further this entails &t >

0, since by[[@)aa? ...a D = bb > 0. Multiplying all the numbers
in &2) by A6 > 0, we see that the numbeag, ad(a)V), ag(ag)® - - -
(a9)sD are positive and hend® is positive-definite. In a similar way,
by properly choosing the signs of the other conjugates ofer Q, we



6. Positive involutions of the second kind in division algaeb 39

can actually ensure thapt > 0 and hencé& is totally positive-definite.
Thus the existence of positive involutions of the secondl km¥ is
ensured.

We have seen that any positive involution i#)((with £ as the
fixed field inR) is given byD — G'D'G whereG = FL is totally
positive-definite hermitian and = L = FILF e (7). We shall now
find that the real dimension of the linear clos@#'@f the corresponding

G in the space oft(’)-rowed real square matricesgs’, whereg = —.

For, L is equivalent over the field of complex numbersitgif. .., Lon]
and Loz is equivalent toI[, L@, ..., LD]. From (51), we know that
L,LD, ..., L&D are all equivalent to one another. Looking at the forss
of a generaL in (7), we see that its elements are linearly independent
overR and are of the formy + ¢ Vd wheren, ¢ are in3o. Pairing df

the h conjugates ofk over Q asR®, K@= RW),. .. RO-D RwO(=
R(M-1), we observe thato, = Lo, .. .,Lon = Lop-1). EXpressingy, ¢

in terms of a basiys, ..., ys of 3¢ over.Z, we can thus conclude that
the complex dimension of the linear closureLodnd hence o6 = F L

is g&2. The conditionG = G means that the real dimension ©fis
preciselygs’; the positivity ofG is expressed in terms of a finite number
of inequalities. Using the fact that the rational numbeesdense in the
reals, we can find. € (¥) such that the corresponding = F L is
suficiently close to an element & and to secur& = G, we have

only to take%(L + L) instead ofL.

We shall, without risk of confusion, denote till the end oistbec-
tion, the rational representatiols F, L, G etc. byD,F,L,G etc. re-
spectively. LetD — D* be a positive involution in¥); thenD* =
G1D’G with rationalG = G’ > 0. Now, any other positive involution
in (7) is of the formD — L~1D*L whereL = L* is in (¥ and further
GL is positive symmetric. By using Lemniih 2, this is equivalensay-
ing that the eigenvalues afare real and positive. Such an elemkri
(7)) may be called positive elemenin (¥). A nice characterisation of
positive elements is given by the following.

Proposition 12 (Albert [6]). Given a positive involution D—» D* of
(7), any other positive involution () is of the form D— L™D*L 56
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P
where L= 3} L¢Ly with Ly in (*) not all equal to0.
k=1

Proof. First, let, forL € (¥),D — L™1D*L be a positive involution.
Then, from above, we know that all the eigenvalued afre real and
positive. Letr be a root of the characteristic equatigre — L)| = 0.
Thenr is a totally positive algebraic number and &t be the field
generated by overQ. By a theorem of Siegel [19%,= rZ +r3+r3+r2,

N-1
where, for 1< k < 4,rc = 3 agr', (&g € Q) andN is the degree of
=0

N-1
Z overQ. Denoting, for 1< k < 4, the polynomial 3, agt' by pk(t)
1=0

and p3(t) + - -- + p3(t) — t by p(t), we see thap(r) = 0. Sincer is an
eigenvalue ofL, p(r) = 0 is an eigenvalue op(L). But p(L), being
an element of the division-algebr&’§, must consequently be 0. i.e.
L = L2+ L3+ L2 + L2 whereLy = pe(L)(1 < k < 4) are in (/). Now

L = L* implies thatl; = Lk i.e.

L= L1L§+~~~+L4LZ.
Clearly at least ongy is different from O.
p
Conversely, let, in factl = » LgLy # O with Ly € (7). Then
k=1

we claim that the mappin@® — L™'D*L is a positive involution of
(V). That it is an involution is clear. What remains to be shos/ithat
o(DL™ID*L) > 0 for D # 0in (¥). But now
o(DLID*L) = o(DL~ILL* ' D*L)(sincelL = L*)
= o(D;LDjL)(settingD; = DL™)

p
= > o(DilDiLL)
kl-1

= o(LD1Li(L; D1Li)").
kil

57 Sincel # 0, at least oné # 0 and hence at least ohg¢D;Ly # 0 in
() and by the positivity of the involutioD — D*, we see that the new
involution is also positive. m|
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7 Existence ofR-matrices with given commutator-
algebra

Let ¥ be a division algebra oved with an involution and let{(t) be a
rational representation of . Then @) is equivalent to a multiple, say
g times, of the regular representatiof’ of »" overQ. If M € (M),
then we can suppodd = [D,...D] = IqD (abbreviating @, . . . G] asG).

qtimes gtimes q
The involutions — ¢ in ¥ can be described ad — Fq‘lM’Fq where

F is rational symmetric anfi1 € (9%). In terms of {)t), the involution
q

§ — 6" — 17154 (for 1 # 0in ¥) is described ay! — M* = G IM'G
q q
whereG = FL, L = L € (M) andG = G'. If the involutions — &* is
9 4d9 g q qa d
positive, therG is positive.

In connection with the existence of &imatrix with the property
thatRM = MR for everyM e (M), we shall first look for a rational
nonsingular skew-symmetric matrix such that for allM € (9%), we
have

M* = A"1M’A (53)
and then ask for al for which (§3) is true. But sincé* = Gq‘lM’%, 58

&3) givesA(qs‘lM’ = M’AGq‘1 i.e. (AGq‘l)’ € (%) , the commutator-
algebra of {t). SettingTy = (Gq‘l)’A, we see thatg’To =A=-A =
-T/Gi.e.

Oq

To=-G TG (54)
q q

Now, for T € (%), we can show thaB~1T’G € (%) and the mapping
a q
T - G 1T'Gis, in fact, an involution of ). Actually, for T € (%),
a q
T=FTF=LGT'GL=GIT'G
9 9 499 gg a d
since elements of¥) commute Withla. Thus all the involution in ")

induce the same involutiolm — T in (%). Now, from [53), we have
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To = —To. The problem then is to find non-singul@rin (%) such that
T=-T.GivenTin(%), Ty = %(T—f) always satisfie$; = —Ty. But
if we can ensure thal; is also non-singular, then we will be through.
Let now T € % be of the form Ti)(1 < kI < q) with Ty being
hs-rowed rational square matrices. Then, for evlrg (7)), we have
DTy = TyD i.e. Ty belongs to ¢)*, the commutator-algebra of/). If
T should be equal te T, then we must have, in particulél’?kk = —Tkk
for 1 < k < g. If we can find nonsingulafy1 in (¥)* with Ti1 = -T1g,
thenT = [T11,..., T11] will meet our requirements. Now if{)* is
not commutative, there always exists at least dpe# O (and hence
non-singular) for whichl, # T, and then we can tak&; = To — T»
(# 0, since ¢)* is a division-algebra). (If, for everys € (¥)* we
haveTs = Ts, then for any two elementBy, Ts € (¥)*, we would have
TaTs = TaTs = TsTg = TsTy)

Taking a basisly, ..., A, of ¥ overQ, for anyé € ¥/, we have two
representations,

A1 A1
0 — there( : ]6:D( :]

In In
6 — Bwheres(1y,...14n) = (11,...,47)B

and furtherB = C~DC for a fixed rational nonsingular matri®. The
matricesB’ give a regular representation of *. NowB’ = C’'D’'C’"~! =
(C’G)D*(C’G)~. Hence the matriceB* for § € D give an equivalent
representation off{)*. Denoting this equivalent representation itself by
(7)*, we see that¥) and (*')* coincide as sets and their multiplicative
structure coincides on their centre (cf. Proposifibn 6}hé involution

in ¥ is of the second kind, then there exists alread§t jran element
with ¢ # C.

If finally the involution is of the first kind and furthef” = R, then
the commutator algebra of is itself and if6 — D is an irreducible rep-
resentation ot overQ, then, by (19), D = Q[c®), ...sM]Q1. Taking
T = Q[6, ...6M1Q T with 6 € R(L < k.| < g) for which the matrix
(6) is non-singular and skew-symmetric, we have then that thtgixn
A = (QqQ)(Tw) = (Q"l[é(k}),.. 6(h)]Q 1) is clearly rational, non-
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singular and skew-symmetric. A necessary antidant condition for
such a non-singular skew-symmetric matéy) over to exist is thag
is even. Itis easy to verify that deft = Ny o (dett@k))/(dett Q)=29 £ 0
i.e. Alis non-singular. Ifg = 2p, for example, we can choosé() =
(_gp 7). Ep being thep-rowed identity matrix.

Having found a rational skew-symmetric matéxsatisfying (53),
we proceed to look for aR-matrix R having i) for its commutator-
algebra. The following proposition prompts us to look ®in the linear
closure (%) with respect to the reals of the algebr&)

Proposition 13. Any real matrix T for which TM= MT for all M € ()
belongs ta.%).

Proof. Writing T = 01T + -+ + pT with T2,..., T? rational and
01, ..., pk being real numbers linearly independent o@emwe see from

k
TM = MT for M € (), that 3, pp(TSM — MTJ) = 0. By the linear
p-1
independence of the, overQ, we obtain that
Toe(F)forl<p<kie.Te(Z)

Denoting by {t) the linear closure ofi{t) with respect to the reals,
we deduce from Proposition 13 tha¥{ is precisely the set of all real
matrices commuting with all elements &fij.

Our object is then to finR € (%) such that

1) R? = —E (E being the identity matrix)
2) AR = Sis positive-definite symmetric, and
3) Any rationalM for which MR = RM belongs to ¥1t). 61

For the moment, we shall agree to ignore condition 3) and foolR
satisfying only conditions 1) and 2).

A necessary condition foR to exist is that the involutiorM —
M* = A"ITM’A in () is positive. In particular, ¥) should admit a
positive involution

D - D"=G!D'G, whereG=G" >0 (55)

and hence/” has to be one of the following four types:
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i) 7 =R, atotally real algebraic number field of degteeverQ.
i) ¥ = G, atotally indefinite quaternion algebra owof 15t kind
iy 7 = .7, totally definite quaternion algebra ovirof 15 kind

iv) 7 is a cyclic algebra with a positive involution (55) of the sed
kind, with centreR which is a totally imaginary quadratic exten-
sion of the fixed field?Z of the involution,.# being totally real
and of degreg overQ. Further?” has a splitting fiel@ of degree
s> 1 overR, with 3 being realisable as indicated at the beginning
of §6.

O

For the construction dR, we shall deal with these four cases sepa-
rately. We shall first find a simple normal form for element$%) and
then, for elements of%).

Case (i))¥ = R.
ForR, we have the regular representatiifa %) — D = (wﬂ)) [6),
-1 .
.., () with respect to abasisy, ..., ... ., wn Of % overQ. The
linear closure ¥) of (¥") with respect to the real number figddconsists

. -1
of all matrices of the fornﬁcuf(l)) [61, .. .6n] (wﬂ)) wheresy, ..., 6 are
arbitrary real numbers. Taking &requivalent representation fo¥|
(i.e. a representation equivalent over the reals), we mppase that

1 1
(M) consists of all real matrices of the forR = [Ry,..., Ry] where
q q

Ri,...,Ry are independent one-rowed real square matrices occurring
with multiplicity g. The commutator-algebraX) of (M) consists ex-

. q q .
actly of real matrice§ = [Ty,...,Tn] whereTy,..., T, are arbitrary
1 1

g-rowed real square matrices occurring with multiplicity Ih. passing

to the new representatioh —» D = [d1,...,6p] Of (¥), the positive

symmetric matri>xG in (B8) goes over into the-rowed indentity matrix

En. The positive involution in%t) is justR — (R)* = Ex(R'En = R
q q

and the induced involution in%) is justT — T'.
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Case (i) V =¥

Any elements € ¢ is of the formx + yi + zj + tk wherex, y, z,
teR,i?=a>0,j°=b,-b>0,abeR, &=x+Vyi&=x-Yi
n=z+ti,n =z-ti. For¥, we have the representation o¥miven

. — -1
bys =&+nj — DwhereD = ((} %) x E2)[De. D1l x ((} 1) x E2)
D1 =(57)D1= (bgn?) =(98) Dl(gé)_l. Further# has a rational

representatios — K[DW,...,DM]K-, K being a certain fixed ma-
trix. Going over to arR-equivalent representation, we see that)con-

2 2

sists of all real matrices of the for = [Ry,..., R, whereR;, ..., R,
2q 2q

are arbitrary 2-rowed real square matrices occurring withtiplicity

2g. Any real matrix commuting with all real matrices of the fongh 63

q
whereR s a real 2-rowed square matrix, is of the foriiy§ (1 < k,I <
2q) with Ty = tyEo, t € R. Thus (#7) consists of all the matrices

of the formT = ['Iz'j x Eo, .. 'f’?] x Ez] whereTy, ..., Ty are arbitrary
2g-rowed real square matrices. The positive involutioréins given
by D; — D] = GilD’lGl whereG; is symmetric and totally-positive
overR. This involution goes over ing) to the involutionD — D* =

12 12

V'R 6. . .cMV'R G(lh)l. For eachGY(I < k < h), there ex-
29 20 2q 29 29 2q

ists a real non-singular matrix such thatG(l'? = C,Ck. Taking for

(.#), the equivalent representatidh = lCl RiCiL..., Ch R%h C:l.

2q 29 2q 2q 29 q
we see that.¢) still consists of the same set of matrices as above but,
in terms of the new representation, the given positive imvoih is more
simply expressed bp — D" and the induced involution in%) is just
T->T=T.

Case (ii) 7 =R



46 Chapter 1

Fors = x+vyi+zj+tk € ¥, we have the 4-rowed representation

X y z t
ay X at z
bz -bt x -y

—abt bz -ay x

overR, viz.6 - D = and a rational

representation given by — Ki[DW,..., DW]K ! with a constant ma-
trix K;. Itis easy to see after passing to an equivalent repregemthat
() consists precisely of all matrices of the foltn= [Dy, ..., Dy],

q q
64  whereDq,...Dy are matrices of the same form Bsabove, except that
now x, y, z, t are arbitrary real numbers. Let

Cy = [1, V=a®, /—p®, \/a(k)b(k)] and C = [Cy,...,Chl.

: _ . . y z
TakingC™1DC instead ofD and replacingx, v, z, t by x, —, ——,
t B - 8 Vb
—— respectively, we obtain finally that#) consists of all real ma-
Vab

1 1
trices of the formD = [H4,...,Hp] whereHq, ..., Hy are independent
q q

4-rowed real representations of Hamiltonian quaternieash occur-
ring with multiplicity g. Let K denote the algebra of real Hamiltonian
and (K) denote the algebra of 4-rowed real matrices

X y z t
Ho|y x -tz

-z t X -y

-t -z y X

X y z t
go|y x t -z
-z -t X vy
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(with x, y, z t real) give a representation EffA the opposite algebra of
K. We denote byK) the set of such matricds.

The involution in® was, to start with, given b — F~1D’F where
~+ =[1,-a,—b,ab] and in terms of the new representatidnis to be
replaced by the identity. Thus the positive involution.i§ is given by

D — D’. The commutator-algebraXA) consists of all matrice$ of the
q q q

form T = [Hy, ... Hn] where, for 1< k < h, Hy is an arbitraryg-rowed
1 1

square matrix with elements which belong 1) @nd the involution in
(Z)isjustT —» T'.

Case (iv) 7, a cyclic algebra with a positive involution of the secongb
kind.

Foré € ¥, we have the regular representation— D over 3
given by [35) and the rational representatibr D (see p[3l7). We
arrange the conjugates #ifoverQ as® = R®, R@ = R, RwO-1),

RO = ®(-1), Using [51) and passing to an equivalent representation
over the fieldC of complex numbers, we see that the linear closure
() of (7) (with respect to the reals) consists of all complex matri-

S —
cesM of the formM = [Dl, Dl, D3, D3,.. Dh 1, Dh 1] where Dy,

Ds3,...,Dp 1 areg mdependems-rowed complex square matrices oc-
currlng with multiplicity s. The positive involutiorD — D* = G_lD G
in (¥) corresponds exactly to a positive involutidh — P~*M P in
S S S
(7) whereP =[Gy, Gy, . .. Gt is positive-definite hermitian. Now, for
a complex non-singulaky, we haveGy = L L for 1 < k < hs Let
L = [Ly,Lo,...,Lsp). Taking the representationML ™! instead ofM,
the given involution in ¢) is expressed simply bWl — M'. Now,
every complex matri{§ 2) with o = g + V=Ty(g,y real) is equiva-
lent overC to (fyg). Thus passing to a suitable equivalent represen-
tation we obtain that ) consists precisely of all matrices of the form
S S
D =[Cy,...,Cg] whereCy,...,Cqare independerdg-rowed square ma-
sq

sq
trices with elements which are 2-rowed real representatrcomplex

numbers, eacl; occurring with multiplicity sq The positive involu-
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tion in (#) is justD — D’. The commutator-algebraX) consists of

all matricesT = ['Is'ix Es ..., ?Z x Es] whereTy, ..., Tq are independent
sgrowed square matrices with elements which are 2-rowedrepaé-
sentations of complex numbers. The involutibr- T in (%) induced
by the positive involution in.¢7) is justT — T’. We have thus proved

Theorem 5. With the notation as above, we have the following normal
forms for elements ¢f#) and (%), viz.

1 1 q q

Case ()7 =R D=[R,tA,R] T=[Ty, )Ty
q q 1 1

.. 2 2 2q 2q

Case (i)V =9 D=[Ry,....,R] T=[TixEp...,ThXEj]
2q 2q
1 1 A A

Case (i) 7 =R D=[Hs,....H] T =[Hyg,...,Hy
q q 1 1

sq sq
Case (iv)7, cyclic algebra D= [Csl, . .,ng] T=[CiXEs,...,CqyXx Eg]
sq sq

In all the four cases, the given positive involution(i) is given by
D — D’ and the involution i(.#)isT —» T'.

At the beginning of this section, we looked for a rational rixat
A = G Tp with Tp = —Tg in (%). With the simplification carried out
q

above in (%), we shall reduceA = Ty to a simple normal form by
making the real linear transformations i¥§. For reducingA to the
simplest form, we deal with each one of the four cases sepprat/e
denote, in the sequel, the mat(ixg, %) by e (Ex being thek-rowed
identity) and shall denote, by e, for brevity.

Case (i) ¥ = R. We have seen that a necessary anicgant condi-
tion for such anA to exist is thatq is even, sayg = 2p. Let A =

q q
[T1,...,Th] whereT,..., Ty are arbitrary p-rowed real nonsingular
skew-symmetric matrices. By passing to an equivalent seprtation of
(%) (which does not disturb the form of the elements .&f)( we can

suppose thah = ¢, already.
h
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Case (i) = ¢. Asin case (i), passing to an equivalent representation
of (#) which does not destroy the form of the elements .&f)( we

could suppose tha = «.
2h

Case (iii) ¥ = £2. For the sake of simplification, we might, to start
with, use for the Hamiltonian quaternions, the repres@ntatas ele-
ments of the opposite algebr&)( Thus, the elements off) are ex-

q q
actly all matrices of the forrT = [Hi,...,Hp] whereHa,...,Hy, are
1 1

g-rowed square matrices with elements i9).( We now make a sim-
ple transformation in.#) as follows (Of course, we have to make a
corresponding transformation also i#(), in order that ) might con-
tinue to be the commutator-algebra of), but, for the moment, we
can dford to forget (#)). If H € (K) corresponds to the Hamiltonian
quaternionx + yi + zj+ tk = &£ + nj (Where& = x+vyi,n = z+ ti are
in C andx, y, z, t € R), thenH is nothing but( _fﬁ g) whereé, 7, E -7
are just the two-rowed real representations of the corratipg com-
plex numbers. Passing to an equivalent representationZ9rwith a
suitable permutation matrix, we can suppose that the el )
are of the form

S I |
— [\-Ci2 C11)"" " \-Ch2 Ch1

whereCy (1 < k < h,| = 1, 2) are independerg-rowed square matricesss
with elements which are of the forr(rLXy ¥) with x, y € R. Further

Cy is obtained fronCy by just replacing a general eIeme(nfy ¥) in

Cwi by (§ ‘)%’). Let us consider each one of tlh\eblocks(_%k’kl’2 g‘:i)

in T, separately. By applying a suitable permutation-tramsédion to
Ck) which brings all the elementstogether, all they together, all the
elements-xtogether and all the elementy together, we could suppose
thatCy; = (_kak'l L";'I ) whereUy andVy, are independerg-rowed real

square matrices theBy = (3:]' _kakI" ) To start withA is an element of

(&) satisfyingA = —A’. By means of a transformation which does not
disturb the final form of the elements of4), we can supposé = ey
h

already.
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Case (iv) 7, a cyclic algebra with a positive involution of the second
kind.

sq sq
Let To = [Ty,..., Tg] be a non-singular skew-symmetric matrix in
S s
(%). Now e commutes witil, andMg = e Tx(1 < k < g) considered as
sq sq

a sgrowed complex matrix is hermitian and non-singular. Theists
asgrowed complex non-singular matrix such that, MyLy = [1, Bl]
A bk

sq sq
with ag + b = sg LetL = [Lg,...,Lg] where, now inL;, we have re-
S s

placed the complex elements by their 2-rowed real repragens. Tak-
ing the equivalent representatitut.#)L =" instead of {F), we see that
the elements of) are again of the same form as above but the matrix

To assumes the very simple forfe, —be], ..ole, —be] . We make now
a 1 ah h
a simple transformation onX). The elements of.#) are of the form

sq sq
[T1,...,Tg] where eachT; is a sgqrowed matrix with elements of the
S s

form (% %), x, y € R. Passing to an equivalent representation.®},(
by clubbing all thex’s together and all thg's together as in case (iii),

we may suppose that ea®h = ( { ¢ ) whereUy, Vi are arbitraryset

rowed real square matrices. Thliggoes over into'[f, ... ,Tg] where
S S

T = (h o) @ < k< g andP = [1,-1] with a + b = sq
k
As a further simplification, we take the representat®{t¥%)B~* where
B = [Bi,...,Bg] and By = [Slq, P(1 < k < g). Thus (¥) may be
) ) b A
supposed to be the set of all matrices of the fo@,[..,Cy] where
S s
Ck = (—lLDJkak PL/Lka EE) (1 < k < g) andUy, Vi are arbitrarysgrrowed real
square matrices. Our given matiy goes over into the simple matrix

[€sqp - - - Esql-
S S

Summing up, the elements ofq) have the normal form given in
the following table and in each of the four cases, the givetrimag in
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(&) assumes the simple fort

(&) Jo | J
2p 2p =
Y=R | T=[Ry..., Rn] & | Jo
1 1 h
2q 2q
Y = ff I = [Rl ..... Rh] Gq Jo
% 2q 2h
Y =R | T=[Hy,..., Hy] whereHy is of the form eq | Jo
1 1 h
cC, G (U Vv = (U =V (56)
oA 61)’01 - (—v u) andc, = (v u )
a a -
¥,cyclic| T =[Cy,..., Cg4] whereCy is of the form
algebra s s
Uk VkPk _ _ .
(—Pka PkUkPk)’ andpi = [}k’ bkl] with e ‘13
a + b =sq

70
We have to fincR € (%) such thaR?> = ~-E andJR=S = S’ > 0.
SinceR andJ are both in &), they decompose into similar blocks and
therefore confining ourselves to one of the components ahe, tour
problem reduces to finding all real matridesatisfying

JJR=S=5>0, RP=-E (57)

sq
and furtherR is of the forle, Rl, H1 orC; as in [G6). We shall call
sq

a real matrixR of the form Rl, Rl, I—?l or C; as in [56), armdmissible
matrix of typel, 2, 3 or 4 respectively.
From [B6), we ged,'SJ;!'S = -E, S =S’ > 0. SinceJ3 = -E, we
have
SJS=Jp, S=5>0. (58)

Thus we have to look for athdmissible positive symmetric symplectic
matricesS.

Let us now analysd (58). First note that S is positive symmetric 71
along withS. Let us seWV = 2(E + S)~%; thenW is positive symmetric
too and furthelS = —E + 2W~1. From [G8), we get

AW 1IoW L - 2W 130 - 230W L = 0, i.e. 2g = JoW + WJ.
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Settingdo—JoW = —F, this means tha = F’. FurtherF is admissible,
of the same type a% andW. Let us write

G H) . by
F_(H, K) with G=G',K =K

G andK having the same number of rows. NoMi= E — JoF, W = W’
together giveloF = (JoF). ButJoF = (" K,). ThusH = H’ and
K =-G.NowS = —E + 2(E — JoF) ! = (E + JoF)(E — JoF) 1. Thus

R=J,'S = +3;Y(E+ P)(E-P)™* (59)
where
H -G , e

andP is admissible, of one of the four types. (The parametripatibS
is quite similar to the Cayley parametric representatianofthogonal
matrices).

We now proceed to examine the nature of the set of all adnésRib
satisfyingR? = —E andJgR = (JoR)’ > 0, distinguishing between the
various types. For this purpose, we go back to the Riemannaest
associated with th&-matrix R. From§ 1, we know that we can find
a Riemann matrix?? uniquely up to a left-sided complex non-singular
matrix factor such that

P\ -HE 0\(Z P
(2 (F 22 sweo 157 0 e

(Herei = V-1). If 22 = (AB) with square matriceé andB, then we
know thatA, B are both non-singular and hence, we can assume without
loss of generality, that”? = (Z E) and the last two conditions i {61)
are, in terms of, just

Z=X+iY, X=X, Y=Y, Y>O. (62)
From [59), [&D) and the first condition in{61) we obtain

Gpesn-(F e
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i.e.
—iZ+iZH-iG=ZG+E+H
~iZG-IE-iH=-Z+ZH-G
Z(-IE+iH-G)=E+H+iG
Z(G+E-H)=-G-iE -iH

(63)

Let us seZy = H +iG. Then solving foiZy from the third equation
in @3), we haveE + Zy = Z(-iE +iZp), i.e. € —iZ)Zg = —(E +iZ).
(equivalently,Z = i(E + Zo)(E — Zg)™)

Zo=2y=—(E-iZ) {E +i2)
=—(E+izZ)(E-iz)™* (64)
The conditionS > 0 is equivalent toY > 0 and using[{@3), this is

equivalent to B
E- ZoZo > 0. (65)

The mappindZ — Z, takes thé'generalized upper half-plane of degree
n” consisting of alin-rowed complexXZ satisfying [&R) into the “gener-

alized unit circle” consisting of alt-rowedZ, = Z/ satisfying [Gb). 73
ThusRis an admissible matrix of the form
-1
E+H -G )\(E-H G
_ 11
R=Jg ( -G E—H)( G E+H) (66)

whereZy = H + iG satisfies

Zo=2), E-ZyZop>0 (67)

In case?” = Ror ¥ = ¢, anyg-rowed (respectively @rowed)
real square matrix is admissible and therefore, frooh (60} can be

arbitrary real square matrices gfandq rows respectively. Thugy =

H + iG is an arbitrary point of the generalized unit circle of dceggein

case? = R and of degreq, in case¥? = 4. The matrixZ is then an
arbitrary point of the generalized upper half-plane of thge&sponding
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degree. Taking into account all the components in the reptation
&8) of (#), we are led in the cas¥ = R, to ah-fold product of the

generalized upper half-plane of degr%ewhich is a complex space of

complex dimensiong (g + 1) 9. In the case? = ¢ we arrive at the

h-fold product of the generalized upper half-plane of degpeghich is

of complex dimensiorgq(q +1).

Let us take the cas¥ = R. From the form[[80) oP and from the
‘admissibility’ of P, we see thaH = H' = —-H, G = G’ = -G and
bothG andH have to be of the fornf Y, ) ) with U, V being arbitrary
g-rowed real square matrices. Fré = —H, G’ = -G, we obtainH =
(o) G=(v; ¢)with X, = —X; andY; = =Y;. NowZo = (2, )
with 21 =X+ |Y1 =-Z]. Condltlon [G)) is equalent to the condition
E- le’ > 0. We are thus led, in this case, to the sat-obwed complex
square matricezl satisfying

Z,=-21, Eq-21Z;>0 (68)

This space, like the ‘generalized unit circle’ met beforearlier cases,
is again one of the complex symmetric spaces of E. Cartasoftéom-
plex dimensiom(g — 1)/2. If we take into account all the components
in the representatiofi . {b6) 0ff), we are led to d-fold product of the
symmetric domain defined bz {68). We remark that there is maiap
advantage in interpretin§@(68) in terms®and in fact, it becomes more
complicated.

We now take up case (iv). Sin€eis admissible of type 4, it follows
that

H = -DHD, G = -DGD whereD = [%, —bl] with a+ b = sqg

Breaking upH as(ji: /) with a-rowed squareH;, we see thaH =
H’ = —DHD impliesHy = 0, Hy = 0, H = Hj. ThusH = (x, ¢ ) and
similarly G = ( 0 Y ) with arbitrary realX,, Y, of arows ando columns.

Now Zg = H +iG = ( 0 ZZ) with Z, = X + iY2 havinga rows andb
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columns. Condition{d5) is equivalent to the two conditions
Ea—Z2Z,>0, En—2,2>0 (69)

Now “E; — ZZZ§ > 0" is equivalent to the fact that the matrix 75

M = (Ea Zz) B (Ea Zz)(Ea—ZZZé o)(Ea o)
Zé Ep 0 Ep 0 Ep Zé Ep
is positive-hermitian. BuM > 0 if and only if M > 0. On the other

hand
s Ea 0 Ea O Ea ZZ
M == =/
Z, Ep)\0 Ep-7Z,2)\0 Ep
is positive-hermitian if and only iE, — 2'222 > 0. Thus the two condi-
tions in [€9) reduce to the single condition

Ea—22Z, >0 (69Y

The set of complex rectangular matricés of a rows andb columns
satisfying (69) is again a bounded symmetric domain of E. Cartan, of
complex dimensiorab (Let us recall thad + b = sg). As before, if we
take into account all the components in the representd&@hdf (%),
we are led to @-fold product of the domain defined by (69hich is

9

of complex dimensiony, aybx.

k=1
It is remarkable that in none of the four cases discussedealves
arrive at the fourth type of E. Cartan’s symmetric domains.
The results above may be formulated as

Theorem 6. Any R-matrix in(.%) satisfying the conditionsR= —E,
(JR) = (JR) > 0O'is of the form({&8) where the component matrices are
of the form(&3) with Zy = H + iG belonging to one of the three types
of E. Cartan’s bounded symmetric domains mentioned abbeegype
being determined biZ).

In each one of the four cases above, the set of 8uel{.%) is non-
empty; for exampleR = —J is always in this set, sinceJ? = E ¢ is 76
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positive symmetric. In case (iv), &by = 0 for all k, thenR = -J is the
only R-matrix occurring in ) with the normal form[(56).

Let us definel = hincase? = R, 4 or & andA = gin case?
is a cyclic algebra carrying an involution of the second kiRtom the
form (&8) of elements off), R = [Ry,. .., Ry] where each component
R«(1 < k < Q) occurs with multiplicityu equal to 1 in cases (i) and
(i) and equal to 2 orsin cases (ii) and (iv) respectively. We recall that
to eachR¢(1 < k < A) corresponds a Riemann matri under the
correspondenc® = (gt) 1@(%) wherelg = [-iEy,iE,], 2v being
the numbers of rows d®.. Now h% is an even integer, say2in all the
four cases. Let us denote hy the matrix FiEn, iEn]. Then to theR-
matrix Rin (&) corresponds the-rowed Riemann matri¥? by means

a\—1 14 . . '
of the relationR = (§) L(§). For a suitable permutation matii% we
haveV~1LV = Lg. From this, it is immediate that

ud
E.x%1 0. 0

P = 0 Eﬂxﬁzg. 0 (70)
0 ... Ex2

is a Riemann matrix corresponding® Each% is a Riemann matrix
of v rows and 2 columns withy = g g, 20, sqgin cases (i), (ii), (iii) and
(iv) respectively. Further eacty is of the form

E, +7Z
@k:(l T &

e 1)
wherezy = Z; andE, - Zkzl'( > 0. Let us denote by, the set of%? of
the form [Z0) with? of the form [71), corresponding to & matrices
in (). As we saw, consists of at least of one poig? of the form
@Q) with all #¢ = (iE,,E,)(1 < k < A) and consists exactly of this
point whenagby = 0(1 < k < 2).

We may now return to the problem of findiymatricesR in (%)
admitting (#) as theexactalgebra of commutators. For a givéh
matrix R in (%), let us denote by#) the algebra of all real matrices
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M commuting withR. Then clearly, #) > (#). If R were to have
at least one rational commutator not i#(), then the rank of4) over
R will be strictly greater thams> which is the rank of.(#) overR, or
what is the same as the rank o) overQ. Thus our problem is to find
out R-matricesR in (%) for which the corresponding real commutator-
algebra #) has rank exactins’ overR. The advantage in introducing
(£) is the following. Taking first the normal forms given in Them[3,
the algebra.¢) is the commutator-algebra off). LetC be a real non-
singular matrix such that the elements@f(.%#)C have precisely the
normal form given byl(86). Then%); = C~}(#)C is the commutator-
algebra of (#),. But the rank oveR of (.#) and (#), are the same.
Thus, in connection with the problem mentioned at the beggqaf this
paragraph, we are free to look among the elementsAf, (itself, for
R-matrices for which the corresponding algebra of@dll commutators
has rank exactlins® overR. By a “rational” commutator of & matrix in
(£)1, we shall mean a commutator of the fo@n*MC with rationalM.
The set of “rational” commutators is countable. We denotedlgebra 78
C~H4)C by ()1

We know that the equatioRM = MRfor aR-matrix R corresponds,
in terms of the associated Riemann mat# to the equation

PM =KD (72)

whereK is a complex matrix. Let then, for & € $, the equation[{42)
hold, for a realM. Splitting upM andK as (M) and Ky) correspond-
ing to the decompositiof . {¥0) o, we obtain

(Ex X Z)My = K(E, x &) (73)

forl <k, 1 < A. We break upMy; andKy, respectively into 2-rowed and
v-rowed square matrices corresponding to the decompositiBpx Z
andE, x &1 and denoting a typical block byl andKq respectively,
we have, from[(73)

DM = Ko 1 (74)

with complexKg. Now & and #2; are of the form[({1); splitting up
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Mo as(cA B) with v-rowed square, we have, from{Z4),

i-E”+ZkA+C:Ko i-E"+Zl
E, — Z E, -2,
. EV+Z|(
i-———B+D=K
E, -7 0

Elimination of Ky leads to the equations (fordk, | < 1)

i(Ev + Zk)A(Ev - Zl) + (Ev - Zk)C(Ev - Zl) + (Ev + Zk)B(Ev
+2Z1) - I(E, - Z)D(E, + Z;) = 0. (75)

Conditions [7b) are necessary andfisient for & € $ to haveM as a
multiplier. Referred to as the “singular relations theydaeen studied
thoroughly by G. Humberi[10] fon = 2.

For anyM € (.#)1, we know that equation§(I75) holdentically
for & € 9. If not & € $H admits a “rational” multiplierM (i.e. if M
is a “rational” commutator of the associatBematrix), then<? neces-
sarily belongs to the quadratic surface definedihy conditions [7b)
corresponding to this1,. (Of course, if it turns out that every? € $

admits thisM1 as a multiplier, then this quadratic surface coincides with

the whole of$). The number of such surfaces, foly ¢ (#),, is, at
any rate, countable. The complement of the union of thesatably
many surfaces may be seen to be densg in

Let us suppose that fall &2 € §, a real matrixM = (My) is a
multiplier. Then, with the same notation as above, cond#if/%) are
valid with arbitraryZy, Z in the “generalized unit disc” of degredsuch
that 2 € $). In particular, takingZy = 0 = Z;, & € $ and then[(Zb)
givesiA+C+B-iD =0i.e.A=D,B=-C. ThusMo = (% §). Now
the quadratic terms iliL{¥'5) cancel out and we are left withetiigation

2ZA - 2IAZ, +2Z2\B+2BZ; =0
SettingF = A + iB, we have then
ZF =FZ4 (76)

We split our further considerations into four parts acaogdas? = R,
¢, & or a cyclic algebra. First, we take up the c&se- R or¢4. Here
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u = 1 or 2 respectively. Furthegy, Z are arbitrary elements of the
“generalized unit disc” of degree TakingZx = Z =tE,(0 <t < 1)
in (Z8), we see thaf = F or B = 0. NowZF = FZ, and sinceZ, Z; 80
are arbitrary elements of the “generalized unit disc”, we show that
for k # 1, we haveA = 0 and fork = 1, A = «E, with arbitrarya in
R. Thus wheny” = §, we see thaMy, = 0 fork # 1 andMyk = akEy,;
with arbitrary reala. For ¥ = ¢, againMy = 0 for k # 1, while
Mk = (":Z 'jfkkéz) with arbitrary ax, Bk, yx, ok in R. Thus the rank
overR of the algebra of real matrices which are multipliers émery
& € Hishordth according a¥” = R or¥4. But the rank of (#) over
R is the same in both these cases. Thuk (75) does not holdadinfor
P e 9, if Mis a “rational” multiplier not in (#),. In fact, if &2 does
not belong to the countably many quadratic surfaces @orresponding
to such “rational” multipliers not in.¢)1, then it has .(#); as its exact
algebra of multipliers. Thusur problem of finding a R-matrix witfy#)
as exact commutator-algebra admits of a solution in thesedases.

Example.If g = 1 and? = Q, then any point# = (r,1) € $ (with
7 = a+B Vd, , B, d(< 0) in Q) admits all the elements of = Q(Vd) as
multipliers. Clearly.# containsQ properly. Such points are countably
many and constitute a dense set in the complex upper haléplkhe
complement of this set also is dense in the upper half-plane.

We now take up for consideration the cases (iii) and (iv). hese
two casesd = horg, u = 1 ors, v = 2q or sqrespectively. Further, for
1<k<a,

E +Zk
D= 1= ,
“ (Ev—zk

EV) with zkz(o W")

W, 0

Further in case (iiiWx = -W, is ag-rowed complex matrix satisfyings1
Eq - V_kali > 0 while, in case (iv)Wk is a complex matrix oby rows
andby columns such theE,, — V_kali > 0 anday + by = sq If, in case
(iii), g =1, thenW = 0; in case (iv), ifaxbx = 0, thenZy is to be taken
just as the zero matrix afgrows and columns.

We start from condition[{26) and splitting up as (. {2 ) with
squareF; having the same number of rows\Ag, we may rewrite[(76)
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as follows, namely,

WiF3 = FaW,
WkE4 =FW; (76)
W F1 = FaW,
W F2 = FaW;

Let now? = &2 and q= 3. (The situation whert’ = &2 andqg = 1
or 2 is more complicated and will be dealt with later on). Wasider
first, fork # 1, the equatiofF3 = FoW; in (76). Let Wi = (Uyp),
F3 = (&), F2 = (0yr), W1 = (Vi,). Comparing thex )" element on
both sides of the matrix equation, we have

q q
Z UewBws = Z s Vs (77)
w=1 (=1

Here, except for the relationg, = 0, v, = —U, and similar relations
for the elements ofV;, we may regard the elementg, of W and the

elementsv;s of Wp as independent variables. As a consequence, it can

be shown thafF, = 0, F3 = 0, fork # 1. Similarly using the equation
WiF4 = —F1W; in (76Y, it can be proved tha;, = 0, F4 = 0 fork # 1.

Thus, fork # 1, the matrixF occurring in [Z6) is 0. We may now take
up the discussion of (¥6) fdc = 1. Then we have, in particular, from

(76Y

WiF3 = FaW, (78)
WiF4 = —F1W, (79)
Using the same notation as [0177), we obtain frem (78) that
q q
Z UewBs = Z bK{uci{ (80)
w=1 =1

We now proceed to show that, fer# 6, a.s = 0. Sincev = g > 3, there
existsn # ¢, 6 such thau,, # 0 and then withx = n, 80) becomes

q q
Z Unwéﬂ,5 - Z bn§U5§ =0 (81)
w=1 (=1
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But the left hand side of{81) is a linear form in the variablgg with
the codficient of u,. equal toa,;. Hencea,; = 0. Similarly, we can
show thatb,, = 0 forn # {. ThusF,, F3 are diagonal matrices; using
(19), it would follow again thaf,, F4 are also diagonal. Now, from

@1),
un6 a55 + bm] Z ur]wawé - Z b (u&f -

w#é {?&TI

By the same arguments as above, we have
Q55 = _br]r] (82)

g g
Analogous to[(81), we havg; U,,a,: — X, by U, = 0. From this we 83
w=1 =1

may deduce as above that
Qe = _bnn (83)

From [82) and[{83), it follows thaEs = a;1Eq and now from [ZB) we
deduce thaF, = —F3. In a similar manner, we can ugel79) to show that
Fa=Fp= XEq wherex is a complex number. Thus finally we see that,
for k = 1, the matrix* occurring in [Zb) is of the forr(l y X)x Eq Where
X, y are arbitrary complex. Referring #0{72) Nf is a real matrix which
is a multiplier forall &2 € §, thenM = [M11,..., Mk, ..., Mnn] Where
eachMyy is a real matrix with 4 independent real parameters. Thus the
rank overR of the algebra of all real matrices commuting with all the
R-matrices in &) is 4h, which is precisely the rank ovéx of (.Z).
We may conclude, as before, that f6r= &2 andq > 3, there exist R-
matrices in(.#) admitting(.#) as the exact commutator-algebra.

We now take up case (iv) whefi is a cyclic algebra with an involu-
tion of the second kind analssumdurther thatqs> 3 andnot all acby
are equal to zeroWe may, without loss of generality, suppose that for
1 <k<r <g wehaveagby > 0. Observe thasby > 0,gs > 3
together imply that at least one af, by is greater than 1. We go back
to consider equatio {(¥6). K> r and 1< r, then we havé-Z; = 0 for
all Z; and consequentliz = 0. Similarly, if 1 > r andk < r, we have
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againF = 0in (Z8). Let us now suppose thatlk, 1 < r. From (76},
we may deduce a relation analogous[id (77). But now the elesnoén
W are independent complex variables which are again indeeroaf
the elements oV, (for 1 # k). Further, at least one @k, by is greater
than or equal to 2 and similarly fan, b;. It is easy to deduce as before
that fork # 1, 1< k, 1 <r, we haveF = 0, whilefor 1< k=1<rr,
we see thaF = (¥9) x E, wherex s arbitrary complex. Thus, refer-

ring to {Z3), My« is a real matrix with & real parameters. We may then
conclude that any real matrid which is a multiplier for all Riemann
matrices?? € $ is necessarily of the form

M :[Mll,...,Mrr,N] (84)

whereMyy, ..., M,, are real matrices with€ independent real param-
eters andN is a 2@ — r)s’g-rowed real square matrix.

If r = g, in other words,agbx > 0 for 1 < k < gandgs > 3,
then the rank oveR of the algebra of all such matric&sis 29* = hs
which is precisely the rank ov@& of (.#). Thus in the case whefi is a
cyclic algebra with an involution of the second kind andHiertqs > 3,
akbk > 0(1 < k < g), we see thathere exist R-matrices with#) as the
complete commutator-algebra.

If 1 <r < g, we know nothing about the nature of the mathx
appearing in[{84). Therefore, before we proceed to disdussase
whengs> 3 and 1< r < g, we need to prove

Lemma 3. Let.Z be an algebraic numberfield of degree g o@with
w1, ...,wg as a basis oveR and letQ stand for the g-rowed square
matrix (cu(kl)) (1 < kI < h). Further, let Q be a g-rowed square matrix
of the form(& &) with a complex number a and I&QQ ! be rational.
Then, necessarily a 2 and furthermore, Q= [a), ..., a9].

Proof. Let QQQ 1 = (pk|)(1 < k| < g). ThenQQ = (pk|)Q and, in

particular, we havesa = Z puwi(p € Q). Hencea = Z pll—l €
w1

2 (sincew; # 0) anda(l) =a a?,...,a9 are its conjugates over
Q. But we know thatQ[a®, ..., a9] = (py)Q and thereforeQ =
[a®, ..., a9]. O
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Remark. We shall use, in the sequel, a generalization of Lefima 3 (the
proof of which is exactly on the same lines) namely, the feifg.

Let d > 1 be a rational integer and?, Q as in the hypothesis of
LemmdB. Let @ (1) with a d-rowed complex square matrix H and

let (Q x Eq)Q(Q x Eg)~* be rational. Then necessarily, the elements of
H are in 2 and further, Q= [HD, ..., H@].

We may proceed now to discuss case (iv) with the assumptan th
gs> 3, 1<r < g. In order that the application of the above-mentioned
generalization of LemmBl 3 be feasible, we do not go right ugh&
eventual normal form(%6) of%) but we stop short somewhat earlier.
So let us start de novo. From the representadiohr Dg of ¥ overR
given on p[3l, we first get a representatibr> D; of ¥ over.Z as
follows; namely, if (1 v/c) is a basis ofR over 2, then denoting the
matrix 7z _ g ) by Q1, we defineD; by D1 = (Q1 X Eg)[Do, Do](Q1 x
Ee)~L. Now, we can get from this a rational representation D of 7
by the prescription

1 -
5quc4mﬂ“qmﬂcf
q q

whereCy = Q] x Exgq, Q] = (6&1)), d1,...,0g is a basis ofZ overQ 86
andD(ll), e D(lg) are the conjugates @f; overQ. Thus the elements of
the algebra.¢#), = C;1(.#)C, are of the form pY, ..., D(lg)] where
D, is a X?g-rowed square matrix with elements i#f. Defining the
algebra &), by (#), = Cil(z)cl, we shall look forR-matrices in
(F)2 with the required properties. Applying taA)» the procedure
given earlier to reducef) to the normal form[(36), we remark that
this merely involves going over to the representaﬁgﬁ(ﬁ)zcz (where
Cz = [Ca1,...,Cag] With 28%g-rowed real square matric&yy). Let
Mo be arational matrix commuting with alR-matrices in ). Then

M = C5C;*MC1C, commutes with all the correspondifgmatrices

in c;l(z)zcz. Sincer > 1, it follows, by using the same arguments
as for the case = g above, thatM and henceM, = CZMC51 is of
the form [84). As yet we know nothing about the number of patens
involved inN. But nowMq = C1M2C11 is rational and appealing to our
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Remark on p[{85), we conclude tHd; has elements i and further
M, itself is of the form

Mz = [M{)

110 Mggl)] (85)

If we take Mg to be real instead of being rational, and furtheMM§
commutes with all thdR-matrices in &) we see, by arguments as in
the caser = g, that ClMOCIl is of the form [B%) again, with each
M(1 < k < r) having 2° independent real parameters. Now such
M3, constitute precisely the linear closure of the matriM%) occur-

ring in (83) with elements iZ. Thus the matriceMill) in 3) form
an algebra of rank € over . Let indeed therfF, ..., F,s be a ba-

28
sis of this algebra so that every suMﬁ = Y xFk (with xx € £).
k=1

: W _E W@ pi
Hence, in[[8b) M}/ = X x'F.”. This enables us to conclude that
k=1

if Mg is a real commutator of aR-matrices in &), then, by virtue of
Mo lying in the linear closure of rational commutators of thesekind,

2¢
CiMoCit = [Miy,..., Mggl Where My = 2%, FY andxy, ..., Xg

are arbitrary real numbers. In other words, the rank of tigelat of
real commutators oflll R-matrices in &) is 298 = hs’. Thusfor
gs=> 3,1 <r < g, there do exist R-matrices wifb#) as the complete
commutator algebra.

We shall now prove that fogs > 2 andr = 0 (i.e. axbx = O for all
k), there cannot exist R-matrices with#) as the complete commutator-
algebra. Sinceakbk = 0 for 1 < k < g, the onlyR-matrix in (¥)1 =
CY(#)C (referring to the notation on [ 56) is] = [-Jo, ..., —=Jo]-

gtimes
Now the matricesP, occurring in case (iv) in[{36) are altEsq and

therefore all the matrices inX); commute with-J. Thus all elements
of (%) commute with thdr-matrixR = —CJC™1; in particular, every el-
ement of (#) commutes withR. If now Rwere to have.¢) as its exact
commutator algebra, thetq) c (.#), necessarily. But, by Proposition
6, () N (A) = (R). Hence ) = (R). Now, if gs > 2, then either
g>1lors>1. Ifg> 1, then (¥#) is theg-rowed matrix-algebra over
the commutator algebr&/()* of (¥) and therefore it is not commutative.
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But then (#) = (R) gives a contradiction. Again, if = 1 ands > 1,
then () is non-commutative and so isA) = (¥)*, which contradicts
(%) = (R). Thus our assertion above is proved.

The exceptional cases which remain to be considered areothe f
lowing, namely a)» = £, q = 1 or 2 and b)7/, a cyclic algebra
with an involution of the second kind witgs = 1 or withqgs = 2
and not allagbk equal to zero. We shall slightly reformulate our prob-
lem of finding R-matrices in &) for which 1)AR =S =S > 0
where A = %To with To = -Tg in (%), 2) R2 = —E and 3) (#)

is the complete commutator-algebra. Let usiMet TgR. Then bar-
ring the last condition, in terms df, these conditions are meLer that
)N e (£)2)N=GING = LFFL = (FINF)LL = N and

a q aq a q

3) (T;1N)? = —E. On the other hand, by Lemria 8,= %N > 0 and
% > 0 together imply that all the eigenvaluesifare real and positive.
Thus our problem reduces to findibge (%) for which

N = N, TyIN TyIN = —E; the eigenvalues dfl are real and positive
(86)
We shall first take up the case wheh= 22,q = 1. Choosing for
(), the 4-rowed representation of the opposite algeBiaof &2 with-
out loss of generality, we may suppose th&t)(is the 4-rowed rep-
resentations — D of & over R, given on p[46. We observe that
the involutionT — T in (%) is a positive involution since-(TT) =
o(T Fq‘lT’Ic:]) is a positive definite form over the centiein view of

F being positive definite. But now we know that the abstracallpt 89
definite quaternion algebr&” has a unigue positive involution, viz.
§=X+Yyi+zj+tk > 6 = x—Vyi—zj—tk. Thus, forN € (#), N = N
implies thatN is in the center of #). This givesR = T;IN = NT;?

i.e. ToR = N = RTo. Now suppose that there existdRematrix R in
(&) for which (#) is the exact commutator-algebra. ThEnbeing a
rational commutator oR, Tg € (.#). SinceTy € (#) too, we have
To € (%) N (A) = (R). This gives usTy = Tp but the we have a con-
tradiction toTy = —Tp from which we started. We may thus conclude
that in the cas¢/ = &2, q = 1, there cannot exist R-matrices with#)
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as the exact commutator-algebra.

Next we consider the case wheh= % andq = 2. By choosing
a suitable representationq) of &2, we can suppose, without loss of
generality, that for the elementsof the commutator-algebra) of
(2), we already have the representatibr> [DW), ..., DM] over the
centreR and its conjugates ovéd, as indicated on _#6. NoWy =

(5251) = =To with a1, B1, y1, 61 in (). We first remark that there

exists a 2-rowed non-singular mathiX with elements in @) such that
WTOW (‘62[? ) with @y = —ap, B2 = —ﬁz in (ﬁ) If now for somep

in (%), we haveg, = pay, then we can easily find # 0 in (&) such
thatiﬂz/l does not commute with,. Therefore, choosing, for example,
W(é 2) instead oW, we could suppose that for no elemgrin (R) do
we haveB, = paz. The matrixN € (&) has the properties mentioned
in @8). Now it is trivial to see thatV NWis again symmetric under the
involution in (¥). Moreover, from[(86), we have, in view of Lemiia 2,
thatEN is symmetric and positive-definite. HengéENW = I;\TVNW

is again symmetric and positive-definite. By LemMa 2 agsityW
has its eigen-values real and positive. Thus takidRW, WNWand
WToW instead ofR, N andTo respectively we could suppose from the
beginning thaffy* = (§ 7) with @ = —@, 8 = —Bin (Z) andN = ( )

has the properties mentionedin}(86). Denoting®ythe centre ofﬁ),
we see that

X=[Xt,..., %] >0, y=[Y1,...,¥n] > 0 arein R)
4 4 4 4 (87)
w=we(L),xy-—wo >0.

(The last assertion il.(87) is a consequence of the relation

[ 1 0\(x 0 1 xlw
“Ix*o 1J\0 y-xtow/\0 1 )

Now R = TgIN = (£7) where¢ = xa, = ew, { = @ andr = yB. The
conditionR? = —E may be written as
— X + awfa = -1, Cxw = Yawp

88
Boaw — dy? = -1, dyo = afoa (88)
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wheree? = —aa = —c, f2 = -8 = —-d with ¢ = [c1,...,cn] > O,
4 4
d =[d,....dy] > 0in (R). Writing x = py, with p € (R), we obtain
4 4
from (88),

ww

c(X - pww) = 1= d( _ _)

p
leading top? = dc™t. Thusp = xy ! is the positive square root dc™!; 91
[d®
kG

x> 01in (R) andw € (2) for which

i.e.px = . Our problem orR-matrices now reduces to finding

awf = Cpw (89)
cX - cpwa =1 (90)

p 1% - Gw>0

As a particular solution of(89), we haug = pa—p (observe thadyg #

0). The most general solution ¢f{89) is givendy= two wheret € (£2)

andta = at. Clearlyt = u+va withu=[ug,...,Us], V=[V1,..., VW] in
4 4 4 4

(R). Now, the first condition in{30) may be written as
e — cpwowo(W? + cVP) = 1 (90Y

Equation (90) defines a “two-sheeted hyperboloid” in theu, v-space;
the zh components ofi andv are independent real parameters while the
h components ok are linearly independent of the componentsuof
although quadratically related to them. We finally arrivéhatfollowing
parameterization for thB-matrix R, namely

B Py« a(u + va)wg
2= (s ") &Y

wherecp?y? — cpwowo(U? + V) = 1.
Letyi,...,yn be a basis off overQ and letQ = (y(kl)) with 1 <

k., 1 < h Foré € (97), we took the rational representatiof® &
E4)[DW, ..., DM])(Q x E4)~L. Let, under this representatiom,— (Q x
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E)[AD, ..., AD(QxEs)TandB — (QxEl)[BY,...,BO|(QxEs) L. 92
It is trivial to verify thatR = (Q X Eg)[Ry, . .., Ra](Q x Eg)~* where

Rq = Py~ AY (UkEs + AR (pA® — BX)
~ {BY(pA® — BO)(AY — ucEd) yBY

for 1 < k < h. Let nowMg be any &-rowed rational matrix commuting
will all R-matrices in £). ThenM = (Q x Eg) 1Mp(Q x Eg) has to
commute with Ry, ..., Ry] and moreover@ x Eg)M(Q x Eg)™! has to
be rational. From the mutual independence of the parametevs, Y«
anduy, vi, y1 (for k # 1), itis clear thatM = [Mq, ..., My] and further
by our LemmaM; has elements it while My = Mgk) forl<k<h.In
addition Mg commutes withR,. We proceed to determine the structure
of My, writing My = (ﬁ ’;) with 4-rowed square matrices with elements
in R. For the sake of brevity in notation, let us for the presegtea

to understand by, 3 the corresponding matrice$?, B and further
let us omit the subscript ipy, y1, U, V. Then we see thail; has to

commute necessarily with the mat(i, <4 «2). EquivalentlyM;

has to commute with®' ),

0 awg 0 —Cwo)| _ 0 wo
(ﬂao 0 ) and (—ﬂaoa’ 0 ) - _C(pao 0/
The last matrix is the product of the first two upto a scalatdiaddence
it suffices to requireM; to commute with the two matricdsy 2 ) and
(40, “°)- We have now to distinguish between three cases.

(i) px¢ R® for some k, (say k= 1). Since 1,p are linearly in-
dependent oveR, it is clear thatM; has, of necessity, to com-
mute with(§ 3), (8 2) and( 42, “°)- It follows immediately that
M; = (§ ) wherep commutes withr and and hence with all
elements ofﬁ). Thusp is in (£2). SinceMy = Mgk)(l <k<h),
we see that the rank ov€r of the algebra of all rational matrices
Mo commuting with allR-matrices in &) in this case is B which
is the same as the rank of) overQ. Thus, in this case, there
existR-matrices admitting.¢) as the exact commutator-algebra.
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(i) pe (R but p= ML <k<h)forreR.

As in case (i), we know thalvl; has to commute with®' ;) and

(ﬂoa a‘()’o). Further, for at least ong(1 < k < g), px = ® and for

somel(1 < | < g), p = —7). Thus, from the fact thaMR, =
R«My and My = Ml(k), we see thaM, has to commute with

(5 8 M T ol 757

Thus, agairM; commutes with

a 0} (0O 0| (O ap and 0 -c
0 0/\0 B)’\d O a O
and thereforeVl| has to be of the same form as in case (i) above.

We conclude as above that there eRsmnatrices admitting.¢)
as the exact algebra of commutators.

(i) pe(®). In this caseM; commutes withP = (%' 7) andQ = 94

(ﬂgo "‘g"), as before. But sinc®? = —dEg, Q? = CpwowoEs,
QP = —PQ, we see thaEg, P, Q generate an abstract quaternion
algebra ovefR and this 8-rowed representation contains its irre-
ducible representation ovérexactly twice. Sincévl; commutes
with P, Q it follows that the rank oveR of the algebra formed by
the matricedV, is 16. Thus, in this case, the rank ogrof the
algebra of rational matrices commuting with all fRematrices in
(&£2) is 16 which is greater thanhl the rank of (#) overQ. In
other words, there do not exiBtmatrices in@ with (.#) as the
exact algebra of commutators, in this case.

Fory € (55), define the “reduced normRig(y) of v over R by

Ng(y) = vy (which certainly belongs t&) and forTo = (“_1 BE’l) define
the “reduced normNg(Tg) of Tg by Nk(To) = Ng(a~8™1). Itis then
clear thatNy (%) and Ng(To) are the same upto the square of a totally

positive number it. We conclude thus, that in the case whér= &2,
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gq = 2, there exist R-matrices wit(g ) as exact commutator-algebra
except when
Ng(To) =72 for >0 in R

The next case for discussion is whehis a cyclic algebra of type
(iv) with gs = 1i.e.q = s = 1. Then? is the same as its centre
R(= Z(+/a)) which is totally complex of degree 2 over a totally real

subfield & of degreez overQ. Letys,...,yn be a basis ok overQ
andQ = (y")(1 < k,I < h). Then we have

QT =M, .. ™ with 8 =70,
ONQ ™' =[py,....pn] >0
QRO =Tiy,....1n]

and necessariliy = + V-1 in view of the fact thaR2 = —Ey,. Thust®
andi are purely imaginary and lie in opposite half-planes.

Let R be anyR-matrix in (&) which is the same ast) and let &)
denote the algebra of rational commutators (Of course, hgtoaction,
(2) contains §)). We know &) is semi-simple but sincet] is an alge-
bra ofh-rowed rational matrices containing an irreducible repngstion
of R (of degreeh overQ), we see by considering the characteristic poly-
nomial of a generator ovép of (R), that ) is necessarily simple. Let
then @) be the total matrix-algebra of order 1 over a division atgeb
71 and let#; be a division algebra with centgewhich is an algebraic
number field of degreg over Q. By considering the representation of
a generator off over Q with respect to a splitting field of1, we see
that?; = g. Now the degree of a maximal commutative systemgin (
is necessarilgl and it is easy to deduce thglt= h and ¢) c (R). Let
a®M(= q), ¢@,...,39 be the conjugates af over Q. Let RW(= R),
%@, ..., %D pe the conjugates 6t over g andRAD, .. RED the
conjugates ofR*1 over ¢® and so on. Taking a representation over
oW, 9@, let To = [TW,...,T@] and R = [Ry,...,Ry]. Since
#1((g)) is the complete rational commutator-algebraRyfit follows
thatRy = +iE| (for 1 < k < g). Thusiz*D___ iz(+1) have all the same
sign (for 1< k < g). If € = (R), then we must have necessaliily 1
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andg = h. The criterion forR to have {t) an exact commutator-algebra
is then clearly that should not be greater than 1. We may reformu-
late this condition as follows, namely, that there shouldtaxo proper
subfieldg of R such that the conjugates efwith respect to each con-
jugateg® of g should not all lie in the same complex half-plane (lower
or upper). In other wordsy/aTy should not be totally-definite over any
proper subfieldy of R.

We proceed to discuss the case whénr= R of type (iv) butq = 2.
Then®R = Z(+/a) with Z totally real and-a > 0in 2. Fora =
X+Yy+ain R with x, y € 27, we always take the 2-rowed representation
(a{‘y ¥<) over Z and denote it byr again. Fore = (é(y ¥<) eR, @ =
@ = (%) In particular, to+a corresponds: = (33). Any @ =
X+Yy+a e R, is then equal tE; + ye. If () is a conjugate o over

Q, then corresponding @ = (g‘y ¥() in %, we definea® by((;;)kzk) {(3 )

Letyy,...,y9 be a basis ofZ” overQ andQ = (yf(l))(l <kl < 9).
For elementd of .%#, we have first a representatidn= (;’ 5) over%,
wherea, B, v, 6 are inR and a rational representation fbiis given by

K pK
_ (0
@x Eq)[T, ... TOYQx Ef)™* where TV = (m /;(k))‘

We shall in the sequel, use sometimes for the elem&ntd .%, the
representation.) given by T — [T®, ... . T©®] over 2 and its con- 97
jugates as mentioned above. We then extend this reprdseriiaearly

to the linear closure.#) of (#). When there is no risk of confusion,
we shall denotd € (%) merely by(;’g) as above without referring to
all theg components every time.

Let thenTo = —To be a nonsingular element ofA). By the same
arguments as in the cagé = &, q = 2, we can suppose thigl =
(69)with @ = —@, 8 = —Bin K. LetN = [Ny,...,Ng] with Ny =
(% v ) be in (Z), satisfyingN = N and having all eigenvalues real and
positive. It follows thatxy, yk are positive real scalar multiples &b,
while Z = ¢Ep + dke with ¢, dk € R and furthemyx — z«z > 0.
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Let nowR = TN be anR-matrix in (#). Then
R=(QxEg)[Ry,...,RJ(Qx Eg)* (92)

Now R, = —E gives, for 1< k < g,

&+ k= ~Lri+ k= 1 (E+ )= 0= (& + 1)&k  (93)

Now there are two possibilities, namely, eithe&g} 7 # 0, in which
case we have necessarify = 0 = rnx, or b) & + 7« = 0. In case a),

haR, = (), where, f =+ ®, 7 =
we see thaR (0 Tk), where, from[@B) & = =+ @g Tk
1
K gj i — — ®
+ W, Sinceg, + ¢ # 0, it follows thaté, = 7 = + £
==, frm T
and thus @
1 € 0
==l ) 4

K
Now & = 1 is equivalent to the fact th‘%@ = % > 0, which, in turn,
k

is equivalent to the fact thatbx = 0, in our former notation. Let us
(]

now consider case b), whép+1x =0 or equivalentlyl% = —2’(—'; < 0.
Thus, in this caseakbk = 1. Now& = —1x and we have
K K
Rq = (2’2%;: _)(fk( a)(k)) (95)
From [93), we obtainxa®)? + «®WpKxz, = -1, i.e.
~(@)22 - a¥pWzz, = 1 (96)
Sincea® = —o®, g0 = —g® it is clear that-(a®)2 > 0 while

-a®BM < 0. Thus equatior(96) defines a two-sheeted hyperboloid in

(K
X 2 s
thexy, z-space. As a consequence[ofl(96), we also halg(%xk—qa( =
1

a(Tlg(k) > 0 which meansqyk — zz > O.
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We may rule out the possibility that when case a) could ocoualt
the g components, since themby = 0 for all k and this case has been
discussed already.

So then let us assume that at least one componeR, shy Ry,
without loss of generality is of the forri(P5). Lt be a rational matrix 99
commuting with allR-matrices in ). Then using the form{92) for
R-matrices,M; = (Q X E4)IM(Q x E4) commutes withRy, ..., Rg].
We split upM; as My)(1 < k, | < g) with 4-rowed square matricédy,.
Now in Ry, the three real parameters xq, z; are linearly independent
and thereforeMy; = 0 = ... = Mg. We are now in a position to
apply LemmdB and deduce that all the element§lof are in 2 while
Mik = MY andMyq = 0 fork # 1. FurtherMRq = RcMi.

Let us now suppose thabt all of the componentsiRre of the form
@3)i.e. neither aby = Ofor all k nor acby = 1 for all k. Further, without
loss of generality, leR; be of the form [8b) whileR; is of the form
@3). Then writingMz; = (#) with 2-rowed square matrices «, ,

v having elements i@, we obtain each one of them commutes with
£® = (% §)and thereforel, , u, v represent elements igf?( Va®).

SinceMyy = Mg"l) we know My, Moo, .., Mgg are conjugate oveg”
and hence the elements My are in 27 ®(/ak) and in particulaMy;
has elements ifk.

FromM7;R; = Ry My for all Ry of the form [@%) it follows that1;
has to commute witlig 2,), (3 &) and(_3, §") (dropping the sfiixes
and superscripts). Let us now gei~! = p; p lies in 2, in fact. The
matrix My; which already commutes Wit(]é 2) has also to commute
with

2
A= (‘g _08),8: (_(;g g) and C= (+882 %) = AB= -BA

(97)
Thus My, has to commute witf§8), (§2) and(_9. §). Therefore 100
M1 = (39) with 2 € ®. Hence the rank ove of the algebra of
rational matrices commuting with aR-matrices in &) is 2-g = h
which is exactly the rank af#Z overQ. We conclude, as before, that in
this case, there exifmatrices with (#) as exact commutator-algebra.
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On the other hand, let aR be of the form[[8b). TheéM;; is an
arbitrary 4-rowed square matrix with elements4i and commuting
with A, B andC as defined in[{d7). But froni{®7) and froA? = aE,
B? = —paE, we see that 1A, B generate a quaternion algelbaover
% and Mj; has then to lie precisely in the commutator-algebrabof
Hence the rank of the algebra of all rational matrices conmguiith
all the R-matrices in {#) is precisely 4 = 2h which is greater than the
rank of .Z overQ. Thus in the case wheamby = 1 for all k, there exist
no R-matrix with (.#) as its exact commutator-algebra. Nawbyx = 1
for all k or agbx = O for all k is respectively equivalent to the fact that
eTo is totally indefinite or totally definite oveR. Or, putting it in other
words, except whefTo| ™t = a8 (by definition) is either totally positive
or totally negative inZ’, there existR-matrices with (#) as the exact
algebra of commutators.

We now deal with the last of the exceptional cases, namehnwhe
is a cyclic algebra of type (iv) ansl= 2, q = 1. Thus¥  is a quaternion
algebra with centr& which is obtained by adjoining = +/ato a totally
real field 2 of degreeg overQ and-a > 0 is in &. As before, we
can find a totally real fielo = 3(p) with p = Vd andd > 0in 2
such that = 3o(¢) serves as a splitting field fof. There are two
automorphisms iy which are identity onZ and commute with each
other, namely fo¥ € 3,

§=X+Yyp = &=X-Yp(XyeR)
£=p+0gs—&=p-ae(p.ge 3o)
The algebra/ is generated ove} by an elemeng; which satisfie$y? =
be®Rand3¢ = 53 Furth‘er, there exists € 3¢ such thatc = bb. For

n € 30, the mapping; — n is an automorphism q§o over Z.

Fors = &+nje ¥ with & n € 3, we have ovep the representation

§—-D :(5.7). FurtherD :(52 '3) = D7 ! where.7 = (8%) In
bn & by &

terms ofD, the positive involution in/ is expressed as

N
(f_ 7.7):D_>5:F‘15'F= d 3_",F—1:[c,c61>o (98)
by & Eﬁ g
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We obtain for¥’, a representatiofi — Do = (Q1 x E2)[DD](Q1 x Ep) 1
whereQ; = (1 1). Itis clear thatDo = (j Z) where nowg, i, bn, &

7 ¢
stand for their 2-rowed representations oggmwith respect to the basis
1, &. From this, we pass to a representation’ofover 2 given by

& = D = Kq[DoDo]K;* whereK; = Q;, x E4, Q2 = (1 ) and then to
the rational representation

§ - (Qa x Eg)[DY, ..., D9)(Qz x Eg)™* (99)

whereQg = (yf(l)), ¥1,...,Yq being a basis of overQ. 102
For the abstract algebra, we may start with the regular septation

of its opposite algebra and assume that for the elementeafdinmu-

tator algebra .#) of (¥), we already have the rational representation

of the form [@9). (Let us remark that this arrangement is lyuia the

sake of convenience in working. Even if we had started wighrdgular

representation’() of the abstract algebrd’, the positive involution in

. -1,
() will correspond to the involutiom — T = F T Fin (&%). This

is different from [@B) only in as much &shas to be replaced Wy but
observe that this involution is again positive).

Let To = —Tp be a nonsingular element of4) and letTy = (Q3 X
Eg)[Igl), . ,Igg)](Qg x Eg)™t Wherelg‘) are defined as follows. Ldt
have the representati(érj; 'B) over3 and let3® = 2®(Vd®, Va®).

DO
Definea®, M, (18)X, (@)™ to be the images af, 3, b3, a respectively
under the isomorphism ¢ onto 3% taking 2 onto 2°®. Then

() (k)

w_[ o A
to [(bﬁ)“" (c'x)(”] 1o

where for the elements d_‘fg‘), we have taken their regular representa-

. ~ . _ c— —

tion overz®. FromTy = —To, we obtaine = —a, 8 = —Bﬁ, b3 = —cB,

& =—-aora—a,bB = -G. LetN = (Q3 x Eg)[Ny. ..., Ng](Qs x Eg)~*
be in (#) having the properties mentioned I{86) and analogous to
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Ak Hk . .
. ) where Ay, ux are in the linear closure of103

(@0), letN = (-
b9 ik >
3® and hence commute with elements 3. ThenA, = A« and
bu = cu. FurtherNy has all its eigenvalues real and positive itgly —
b®suqy, > 0. NowR = T3IN is a R-matrix in (¥) and let again
R = (Q3 X Eg)[Ry,...,Rg)(Q3 x Eg)™t with R¢ = (

R? = —E, we obtain,

&

. - |. From
b®y, fk)

.2 . .
& +bMnay = -1 = &+ b, G+ EIme = 0= (& + &Jb®n,
(101)
Let us denotera — b3B by 5. Thens € Z. We know thats®
is negative or positive according aghx = 0 or 1 respectively, in our
former notation. On the other hand, taking determinad®ig® = [N
which, in view of [8B) is positive. Further, sind® = —E, we have
IR« = £1. Now, in [I0O1), one of two possibilities arises, namelihei

a) & + & # 0, in which casey, = 0,7, = 0, or b)& = —&,.

In case a), usind{ID1), we see that= &, = + (k)s(k). Since
we R = -1, we see thas® < 0 and thus case a) corresponds to the
situation whergcb, = 0 and then

1 (¥ 0
o\ 0 e (102)

When case b) occurgy = —ék and thereforgRy| = —£2 - ™y = 1,
in view of (I01). Thus case b) corresponds precisely to theson

6 > 0 or equivalentlyacby = 1. Thus in case bRy = (bi)k:} ngk) and
.-

R« contains “a priori” eight free real parameters. Frdin= Ig‘)Rk, we
obtain, dropping the inconvenientfin k and the superscrigt every-
where without risk of confusion, that

A= aé + B, u = an— BE,A = 1By — aé, b = bBE +am)  (103)

Sincea = —a,e = -5, 1=41 andap # 0, we can define =7, s=Shy
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A= asr, 1 = aes. Then from [I0B), we have

BB = a(é + £9), by = aley — &) (104)

But, fromN = N, we havebu = ¢z and again, in view of {103),

(o - BE) = b(B¢ + an) (105)
Multiplying both sides of[[105) by and using[[I03) [{104), we obtain
bBé + ad(er — €) = ~Gpifor — CHBE
= b7 + bBBE
= ~aa(zs+2) + bppE
= aa(ss— E) + bEBE
Thus
—(§ £ = —8 —(r -9 (106)

While r, sandt = % £ + &) are free, the imaginary part ¢fis fixed by
(@I08). We now set

,8,8 r+s aa

u=b== - -

62 2 bas

Then obviouslyg € & and furthermore, sincbﬁ,é = —¢BB < 0 and
6 > 0, we have
q-1<0 (107)

From [I086), we haveé =t + qeu. From [I0%), we get

%n:ss+§=t+5(u+v) (108)
a

and similarly

105
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b?f;‘]:gr—fz—t+8(v—u> (109)

Thust, u, v are real parameters which, in view ¢ {108) ahd {109) are
subject to the conditions

t=-t, U=-U V=V (110)
The relation£? + by = —1 can be rewritten in terms of v, t as¢? +

o BBn . @ = —1 and using[{1d8) an@{I09), we obtain
(t + geu)® + qt + e(v + U))(—-t + s(v—U)) = -1

(1-qt?—agl-qu® +aqV = -1 (111)
In view of (IOT), exactly one afiqand-ag(1 — q) is a negative while
the codficient oft? is positive. Further fot, u, v satisfying [[TTIL)r # O.
2

For, ifr = 0, we should necessarily have{fj)t* —ag(1-q) {bzif] S+

aq% = —1. But the left hand side is just @ g)t> — 4(iq2q)sz which
is always non-negative. We thus see that intthe v-space, equation
([@11) defines a “two-sheeted hyperboloid”.

Thus in the case wheskby = 1, using [I0B) and(109), we have for
R« the parametrization

t+ que At + £ (Ui + vi)
—ti + M (—u + v —t — que®

Re = Vk )vlgl (112)

whereVy = [1, (%)(‘0].

We proceed to discuss the algebra of commutators dRilmatrices
R. As before, we rule out the occurrence of case a) for allgticem-
ponents ofR. Let then at least one componentRfsayR;, be of the
form (II2). If M is a rational matrix commuting with aR-matrices in
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(Z), thenM; = (Q3 x Eg)tM(Q3 x Eg) commutes with Ry, . .., Ry]
and by the same arguments as on p8g, = [Mgll),..., Mggl)] where
M1 = Mgll) is an 8-rowed square matrix with elements%hcommut-

ing with

3 t1 + geuy q(ty + &(vy + U1)) -1
Rl B [Vl (—tl + S(V]_ — Ul) -t — Jeus Vl ’

. I _ _ -1
1( ti—geur  g(-ty +&(vs Ul))vl (113)

t1 + S(V]_ + U]_) L+ Jeuz

For the elements of the matrices [D{1113) of whighis a direct sum,
we have taken th&-rowed representation over the linear closurejgf
so thatR; is an 8-rowed square matrix. Taking into account the rela-

tionst; = —t;, Uy = —u; andvy = v; and replacing; by Vdt, ug
by Vdui, we see thaMi; has to commute with\[1, V1]A[V1, V4] 1,
[V1, V1]B[V1, V1]t and Vs, V1]C[V1, V1] where

A=l G-y )
B::‘ﬁs(—ql —qQ)’_‘ﬁs(—ql —qQ)]
£ 369

For the elements in the matrices [N 14). We have taken ttosved 107
representation oveso.
Let us now suppose at least one of the componen®® isfof the
form (I02). Then we can conclude as on p.BB; has elements ifR.
But now it is easy to verify that the matricés B, C defined by [T14)
satisfy
A’=d(1-gE, C?=agE AC=B=-CA

and therefore generate a quaternion algdboarerR. The matricesvii1
belong to the commutator algebra®fover® and therefore constitute
an algebra of rank 8 ove#". We may then conclude that the algebra of



108

80 Chapter 1

all the rational matrices commuting with all tRematrices in &) is, in
this case, exactly@= 4h which is nothing but the rank of#') overQ.

Finally, let us suppose that all the componentRaire of the form
[@12) i.e.axbx = 1 for allk. ThenMy; is, as before, an 8-rowed square
matrix with elements inZ which commutes with the 8-rowed repre-
sentation ofd over &. But this latter representation df contains the
irreducible representation df over 2 exactly twice and therefore, it is
clear that the matricebl,; generate an algebra of rank 16 ov&t. It
is now immediate that the algebra of all rational matrivdésommuting
with all the R-matrices in ) is, in this case, equal to §6= 8h which
is greater than the rank af#) overQ.

Thus, in the case whefi is of type (iv) ands = 2, g = 1, there exist
R-matrices with (#) as exact commutator-algebra unle3sg is totally
- definite hermitian or totally indefinite hermitian ovir

We shall sayTg is skew-symmetric totally definiter totally indef-
inite according a%Ty is totally definite hermitian or totally indefinite
hermitian.

We have thus completely solved our problem on Riemann nestric
and we may summarize our results in the following theoreme (&
mark that the matriXy, which appears in the statement of Theofém 7, is
precisely the given non-singular matrix ig¢() which is skew-symmetric
for the involution in (#) andA = (;;To is a principal matrix for ouR-

matrices).

Theorem 7. With the notation of Theorefd 5, there always exists a R-
matrix with the given A as principal matrix and havifGg?) = (g) as
the exact algebra of commutators except when

a) ¥ = R with a positive involution of the first kind, g is odd
b) v =2,q=1.
c) ¥ =2,q=2 Na(Tol) = w2 for r > 0in R.

d) 7 is of type(iv), g = s= 1 and there exists a proper subfiekdof
¥ = R over which iT is totally definite.
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e) ¥ is of type(iv), s= 1, g = 2 and Ty is skew-symmetric totally
definite or totally indefinite ove¥” = R, and

f) ¥ is of type(iv), s= 2, g = 1 and Ty is skew-symmetric totally
definite or totally indefinite over the centie

Remarks. (1) In solving our problem orR-matrices, we have al-109
lowed for A the fullest possible generality; we emphasize that the
transformations which we performed of | there, to reducé to
the simple formJ, were merely to make the discussion easier and
constituted no diminution of the generality Af

(2) Suppose’ is of type (iv), 2 = Q andqs = 2. Thenthere can-
not exist nonsingular F= —Tp in (%) which are neither skew-
symmetric totally definite nor skew-symmetric totally ifidée
over R (which is now an imaginary quadratic extension @y,
since there cannot exist i non-zero numbers which are neither
positive nor negative!

8 Modular groups associated with Riemann matri-
ces

In this concluding section, we shall make a close study oftfleces
which we associated on p.156 with the given division algetraWe
shall see, for example, how far4) = (”1q/) determines# and find all

the principal matrices for a genef@matrix. Later we shall define the
general modular groups which act ¢h as groups of transformations
of $ onto itself. The scope of these lectures prevents us fromngak
a function-theoretic study of these modular groups analego some
recent work of I. I. Pyatetskii Shapird([13],_[14]). We mireemark
that the preparatory material for this study is containef@fj and [22].
We may first briefly recall howh was defined. We had first a divi-
sion algebray” of rank hs over Q, with centreR of degreeh over Q
and carrying a positive involution. Further() was upto equivalence110
overQ, ag-fold multiple of (¥), the rationahs’-rowed representation



111

82 Chapter 1

of 7. In the algebra’}’), we had an involutiod — D = F-ID'F and
the matrix(a?- defined by

G=FEMg>0 (115)
q q

was a positive symmetric matrix witkl being in (#) such thatMg =
Fq‘lM(’)Fq. Further To was a given nonsingular element of] (the

commutator algebra of4)) for which

To= Fq‘lT(’,E =-To (116)
The matrixA defined by
A= (;;TO (117)

was a nonsingular rational skew-symmetric matrix definimg Resati
involution M — M* = A"M’Ain (.#). Our problem was first to find
R-matricesRin (%) for which

AR=S=5 >0 (118)

(We recall that the matriA in (I18) is aprincipal matrix’ for R). Asso-
ciated with each sucR-matrix R, we had defined an-rowed Riemann
matrix &2 of the form [ZD), uniquely determined I upto a left sided
complex non-singular factor. We denotedspythe set of%? of the form
(Z0) associated in this way. In the sequel, however, we sleaibte by
9 the set oR-matrices in &) themselves.

So $ depends, a priori, on), My € (#) given in [II%) and
To € (%) given in [II6). Given.¢), we shall now see how fa is
determined by .¢7). For our subsequent discussion, we shall exclude
¥ from being of the type of the six exceptional cases mentionede
statement of Theorel 7. Hengawill always contain &R-matrix having
(A) as its exact commutator-algebra. SudR-matrix shall be referred
to as ageneric R-matrixWe now prove

Proposition 14. Let $ be the space of R-matrices associated \i#),
Mg and Ty as above and; with (.#), M1 and T in a similar manner.
Then$ = 91 if H N H1 contains a generic R-matrix.
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Before proving the proposition, we remark thaRifin $ also lies
in 91, then bothA = I;MOTO andA; = I;MlTl are principal matrices.

The following proposition gives the form of all principal tniaes for a
genericR-matrixR € $. It is not hard to extend it also to the case when
the R-matrix is not necessarily irreducible.

Proposition 15. If A is a principal matrix for a generic R $, then any
other principal matrix A of R is of the form AM, where M is a positive
element of.#) and conversely, A= AM is a principal matrix for R,
for every such Me ().

Proof. From [IIB8), we obtairs = AR = —R'A, S1 = AR = -R'A;

and thereforeA*A;R = RA1A;. But R being generic ané1A; being
rational, we see thaA™lA; = M e (.#). In the first place M* =
ATM'A = -ATMA = —-AIA] = M. Further fromS > 0, and
fromSM = ARM = AMR = S; > 0, we see, by Lemnid 2, that the
eigenvalues oM are real positive. In other word#y; = AM for a
positive elementM of (.#). Conversely, ifM is a positive element of
(A#) (M = M), thenA; = AM = M’A = -A] and furtherAJR = 112
AMR = ARM s symmetric and positive by Lemnfid 2. We now give
the O

Proof of Proposition 14.Let Rbe a generi®-matrix in 9)NH1. Then, by
propositionZIbA; = AM for a positive elemenM in (7). If Ry € 9,

thenARy > 0. But nowA1Ry = AMRy = ARyM is again positive
symmetric, using Lemmi@@ 2. Thul is a principal matrix forRy and
SORy € $1. ThusH c $H; and similarlyH, c $ which proves our
proposition.

In the set ofTy of the form [1II6), we introduce an equivalence re-
lation as follows, namely, two such matric&s are equivalentif they
differ by a factoK € (£) which is totally positive. We denote b¥{]
the equivalence class &f.

Proposition 16. If $ is the space of R-matrices associated wii),
Mo and Ty as above, the) depends essentially only ¢n7) and[Tg].
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Proof. Let $; be the space dR-matrices associated with4), M1 and
KTo whereK is in (2) and has positive eigenvalues. We shall show
thatH = 1. LetR € $. Then we know that; MgToR is symmetric and

positive. If we could show that

FMiKToR = (FMiKToR)' > 0 (119)

it would follow that$ c $1 and then takinK ! instead ofK, the re-

verse inclusion would hold leading 9 = $;. To prove [1IB), we first

remark that fromFMg(FMp)’ > 0, FM; = (FMy) = FMoMalMl <0,
q q q q q

it follows in view of Lemmd2 thaM(;lMl € (.#) has positive eigenval-
ues. Hence the produMglMlK has again positive eigenvalues (since
they commute). Nowl('}’MlKToR)’ = (TOR)’K’EMl = (TOR)’EKMl =

(ToR)FMoMgtM1K = FMgToRM;*M1K = FM1KToR. Further since
q q q

FM1KToRis symmetric andMgToR > 0, it follows thatF M;KToR =

q q q

FMoToRM;*M:1K > 0 by Lemm4R. O

q

Conversely, if (#), My, T1 lead to the samg, then we claimT1] =
[To]. For, letR be a generidR-matrix in . ThenFMgTg andFM;T;
q q

are both principal matrices fd&® and hence by Propositidn]1®oTy =
M;T1M for a positive elemenM e (.#) which meansMyM;M =
ToT; 1. From Propositiori6, it follows thafoT;* = M;*MiM = K
in (R). FromTg = —To, T1 = Ty, it follows thatK € (%). Fur-
ther froml;Ml = Mil;, I;Mo = Mél;, it follows that (I\/I51M1)’|;Mo =

FMoMg'M; i.e. Mg*My is symmetric under the given positive involu-
q

tion in (.#). Moreover, by the same arguments as abM@}Ml has
positive eigenvalues. Hendé;*M; is a positive element in4). Since
MalMlM = K is in the centre, it follows that the positive elemeMs
and M51M1 in (#) commute. Henc& = K* and furtherK has all
eigenvalues positive. Thu'EoTl‘1 € (Z) and has all its eigenvalues
positive is [Tg] = [T4].

From Propositiofi 15, we know that X is a principal matrix for a
genericR in 9, then any other principal matri&; = AM whereM is
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a positive element of ). We shall investigate the cases whgpA™!
is alwaysrE wherer > 0 in Q. This will be indeed true if the only
elementsM e (.#) for which M* = M and all the eigenvalues are real
and positive and are precisely of the forBawherer > 0 andr € Q, A 114
necessary condition for this is th#t = Q. Buteven ifZ = Q, we know
that in the case whew = g or 7" is a noncommutative cyclic algebra,
there exist positive elements iff') other than the positive elements in
(Q). Butin the case whent" = 9, (Z = Q) is of type (i) or (iv) or
¥V = & with § = Z = Q, the only positive elements in#) are of the
form rE with r > 0 in Q. Therefore, in these cases, any two principal
matrices for$ differ at most by a positive rational scalar factor.

We now go back to our definition of a multiplier of a Riemann rixat
2. We called anntegral matrix M a multiplier of & if M = K. for
a complex nonsingulak and later we relaxed the condition tHdtbe
integral and allowedM to be rational and not necessarily non-singular.
We constructed ii§6, Riemann matrices? with the given division al-
gebra (#) as exact algebra of multipliers. The integral matrié&sn
this representation4) form an order /) in (.#) and & admits all
elements of ¢/) as (integral) multipliers. One could ask the more dif-
ficult question of constructing Riemann matricés with (%) as the
exact ring of multipliers. Now, when we say “an integral nplier of
2", it is necessary to mention the specific representatigf).(For, an
integral matrixM in (.#), will not, in general, go into an integral matrix
in aQ-equivalent representaticd®1(.#)C. But it is true that ¢ ) will
go over into an order i€ 1(.#)C. If C is a unimodular matrix and
CY(.#)C = (), thenC (% )C will again be equal to%). In this
connexion, it is then of interest to study the mappiRgs> U~1RU for
R e $ and unimodulat). This, as we shall presently see, leads us to the
general modular groups associated wit# ). 115

Proposition 17. Let U be a unimodular matrix such that the map-
ping R - U~'RU is a mapping of into itself where$ is a space
of R-matrices associated wi(h#) as above. Then the mapping M
U~IMU is an automorphism of #). Further, the mapping R> U~1
RU is onto%.

Proof. Let R be generic in. ThenU™'RU € $ and by the very con-
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struction of %, U™'RU admits elements of.4) as commutators. In
other words, the elements &f(.#)U~1 commute withR. But R is
generic and the elements B{.#)U ! are rational so thatl(.#)U~! c
(.#). By considerations of rank, we see thdt#)U~t = (.#), actu-
ally. LetR € $; then we claim thaR = U*R;U for someR; € $. For,
the algebra) ~1(.#)U leads us to another spa$e of R-matrices having
U’AU for a principal matrix and admitting4) = U~1(.#)U as alge-
bra of multipliers. But for the generic elememof $, UIRU is again
generic and belongs 9 N $1. Thus by Propositioi14) = $; and in
other words, the mappinB — U~'RU is onto $. The proposition is
proved. m]

From the working above, we see that, for a gen&ie 9, both A
andU’AU are principal matrices. Hence by Proposition IBAU =
AM for a positive element ing). Rewriting this, we have (sindd* =
AIU’A)

U*U = M, for a positive elementM € (.Z). (120)

If U is a unimodular matrix satisfying_{IR0), then it is easy toifye
that the mappind? — U~'RU is a mapping of onto itself and hence
U2 = ().

It is easy to verify that therrowed unimodular matriceld satis-
fying (I20) for some positive elemeM € (.#) constitute a groupg
which is themost generaform of thehomogeneous modular group of
degree n The groupl’y contains a trivial normal subgroup consist-
ing of all U € Iy, for whichU™'RU = R for everyR € $. For any
U e Iy, the mappingR — U™'RU andR — (MU)"!RMU are the
same, whatever bl in A. The groupl’p/A is the most general form of
theinhomogeneous modular group of degree n.

It is trivial to see that fold € A, UM € (.#) for everyM € (#).
For, taking a generiR € $, UMR=URM=RUM, i.e. UM € (.Z).

We shall now define two subgroups, I'> of I'g such thafl’; is of
finite index inT'g andT'; is of finite index in"; and each one of them
containingA.

Now, under the automorphistl — U~tMU of (.#), the centre
(R) is taken onto itself i.eU~X(R)U = (R). But the centrer being an
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algebraic number field of finite degree o@radmits only finitely many
automorphisms ove® and we defind’; to be the subgroup dfl € T’y
which correspond to the identity automorphisntofin other words,

I = {u € l"ofU‘lKU =K, foreveryK e (ER)}

It is easy to see thdf; is of finite index inTg. Moreoverl'; D A;
for, if K € (R) andU € A, then, by our remark abovél € (#) and
thereforeKU = UK. We call the grougd';, thehomogeneous modular
group of degree n in the wide senand the quotient groupi/A, the 117
inhomogeneous modular group of degree n in the wide sense.

If U e I'y, we see than that the mappifg — U*MU of (.#)
is an automorphism of £) which is identity on the centrer). Thus,
by Skolem’s Theoren(23), here exidtty € (.#) such that for every
M € (.#), we haveU™*MU = MMMz i.e. UM*M = MUML. In
other wordsUM;* = Ty € (%), or

U=MiTy=T1M;1 with Ty € (ﬁ), M; € (.//) (121)

The decompositiof(I21) & € I'; is clearly not unique. Now*U =
Mo for a positive elemenkp € (.#) and this givesT;MIM1T; = Mg
or T; Ty = (M{1)*MoM;t = My in (.#). SinceMg is a positive element
in (.#), so isMy, by Propositiod 2. But sinckl; € (.#Z) N (%) = (R)
and sinceM; = M3, it is immediate thaM; represents a totally positive
number inZ. Thus, forTy in @21), we have

TiT; = K; totally positive in (%) (122)

Suppose fotJ € I'r, we have two decompositions as [0 {lL21), say

U = T1M; = ToM,. Then it is immediate thalf; = ToK for someK ¢

(R). We now claim that in the decompositith= T1M; as in [IZL), we
can, by replacing 1, M1 respectively byl 1K=, KM with suitableK e

(M), ensure thaK M1 is integral and furthermore thd = T;K~! has

the following property, namelythere exists d- 0 in Z (depending only

on (.#) and not on B) for which dT; is integral. Thus in [IZ1), we can
suppose already thdd is integralandT if of “bounded denominator” 118
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(We shall briefly sketch a proof of this fact in a special cds#.?” be an
indefinite quaternion algebra ov@randqg = 1. Then¥” has a splitting
field 3 = Q( \/5) with a < 0 inZ. For a elemend = ¢ + nj € ¥ with
& n e 3andj? = b(> 0) inZ, we have the representatiop%() of ¥
given bys —» M = Ky[D D]K;* whereD = ( ) P, = (\}5_}/5)
K1 = P71 x E>. The commutator algebraX) of (///) is precisely the set

AE, u 7\, ,
of T = Kl(ﬁ; %Ez)Kllwhere/I,y €3andZ =(D}) LetT e (2)
be such that

TM=U (+)

with Me(.#) and U, unimodular. In ¢), we can suppose thail is
integral already, by replacing, M respectively bym 1T, mM for a
suitablem € Z. Let w;, wy be a basis oveE for the integers in3.
Denote the matr»(“’1 “’1) by P and P;P~! by P,. We can findvy,

vo € Z such thatv1P1, v1P1 , voPo, va have elements which are

integers in3. SinceM = KJDO)KlwmdU..K(fggé)KfM

are both integral, we see thefD, v2AD, v2u.Z D, v2D are all inte-
gral. Let¥,...,%,, befixedintegral ideals (say, of minimum norm)
in the hy ideal classes off. Then there existax € 3 and an ideal
%,(1 < p < ho) such that?D = a/( o 71) andéq, n1, b, & have the

o771 &1
greatest common divisaf,. DefineT; = (v1v2) 2Ky Ao jw 7 ) -1
. 1 1v2 EaF Jakp | ™M1

andMy = (vlvz)ZKl(‘f _,1D)K -1 ltis clear thatMy is in (///) and is

integral; furtherT; M1 = U. Moreover, if we definel = by$v3 H N(%)

(whereN(%) denotes the norm ofi overQ), we see thadTl |s inte-
gral).

Let us denote by, the subgroup otJ € I'; for which there is a
decomposition of the fornr{IP1) with unimoduldg and M; in (%)
and (#) respectively. We now prove

Proposition 18. The groupl'; is of finite index ifM';.

Proof. LetUq, U, be inT'; andU1 = T{M4, U> = ToM> be the decom-
positions ofU,, U, as in [IZ1). Now, as we remarkell;, M> may be
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supposed to be integral. We shall now prove thalif= M, (mod d),
thenU2‘1U1 € I',. Since the number of residue classesmf@wed inte-
gral square matrices moduth is finite, it will follow thatT'; is of finite
index inI';. So let

M1 = M, (modd) (123)
It is clear thatdM;* = dU;*T; anddM;? = dU,'T, are integral.
But from {IZ23), we havelE,, = dM;M; (mod d) which means that
MoM; 1 is integral. In a similar wayM;M,? is also integral so that
M2 = WM, with unimodularW. But nowU,U ! = ToMoMATE =
ToT;'W so thatT,T % is itself unimodular in ). ThusU,U7t is in
I'> which is what we sought to prove.

If U € A, thenU e (/) and therefore\ c I';. O

We define now another grou'b consisting of unimodular matricesi20
T1 € (#) for which T T1 = K which represents a totally posmve unitin

Z. ltisclear thail"z cTIo. DefmmgAz as the subgroup 01‘2 consisting

of unimodularU € (R), we see thaAz CA.

Any U € TI'; is of the formT1 M1 with unimodularTy in (%) satis-
fying (I2Z2) and unimodulaMy in (.#). SinceT; andT] in this decom-
position commute, we get, by iteration,

T T =TT =K (124)

for every positive integel. Now althoughT is unimodular,T] is not
necessarily integral so th& is not necessarily integral. But smdé’ '
is integral andA is fixed, we see that(' is of bounded denominator for
everyl > 0, from (IZ3). This is |mp053|ble unlesy represents an
integer in (¥). By the same argument, we can show tKatis integral
so thatK; is actually a (totally positive) unit in%). Thus forU =

T1M; € I'> with T1 € (%), we see first thal; € I'» and furthermore,
forany T, € Ty,
T;T1 = Ky, atotally positiveunitin (Z) (125)

We construct a mapping of I's into fz/Az by definingy(U) =
the coset off’, modulo A, containingT; where Ty in (%) occurs in
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the decompositiod = T1M;. It is clear thaty is well-defined, for if
U = T1M; = ToMj, thenT,1T; € A, by using [IZb). Further clearly

is a homomorphism df, ontoI'>/A,, the kernal being exactlg. Thus
we have proved that

I'>/A is isomorphic td:‘z/Az

The groupilz/A'z is referred to as thmhomogeneous modular group
of degree n.

Finally, we define the grouﬁg as the subgroup daf € fz for which

T T=E (126)

and Ag as the subgroup df in fg for which K € (R). Itis easy to
see thaT(.Xg, is precisely the set of roots of unity it¥{) which belong to
the order @) in (.#) and therefore[xg is finite. Although, in view of
([@132), the definition[{126) (ji°3 apparently depends d;m it is trivial to
verify that [IZ6) depends only dgﬂ

Proposition 19. The groupfg/Ag is of finite index irfz/Az.

Proof. Let & be the group of all totally positive units inX), &1 =
& N (%) and &>, the group of squares of elementsdn By Dirichlet’s
theorem on units in algebraic number fields, there existelinitany
elementd. 4, ..., L, of & such that anK in & is of the formK = NL,

for someN € & and some.,. Let nowT; € I'; satisfy [12b) and let
Ky = NZL, for someN; € & and somd.,. Thus

(NT'T)*(N;'Ty) = L, (127)
On the other hand, I&t, unimodular in (#) be a fixed matrix satisfying
AA, =L, for1< v <a ThenclearlyN; ' T:A;? € fg i.e.T1 = N;\BA,
for Ny € (2),B e fg and one of the finitely many matricés, ..., Aa.
It is immediate using(127) thitg/Ag is of finite index infz/Az. m]
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122 The groupfg is called thehomogeneous modular group of degree n

in the restricted sensélhe quotient’s/Az is theinhomogeneous mod-
ular group in the restricted sense.

The groupd™2/A, andT'3/Az occur in the literature already in spe-
cial cases.

In face, taking?” = R, a totally real field oveQ, g = 2 and with
obvious restrictions on#) we see that they are nothing but the inho-
mogeneous Hilbert modular group ov&rin the wide sense and in the
narrow sense respectively.

It might be of interest to construct fundamental regionstfarse
groups in$ and study the automorphic functions $rrelative to these
groups. We refer the interested reader to some recent wokk @f
Ramanatharf{15) in this direction.

We might conclude with an outline of a method of constructing
fundamental region in th&-space, for one of the groups above, say

I's. The groupI's acts on$ as follows; namely, tol' € I's corre-
sponds the mappin® — T~IRT of $ onto itself. LetA be a prin-
cipal matrix for 9. We simplify our problem by considering the ma-
tricesAR = S = S > 0 (for R € 9). In terms ofS, the mapping
R — T~!RTis just the mapping — T’ST. By Minkowski’s “reduc-
tion theory” for unimodular matrices acting on the space f@ved
real symmetric positive-definite matrices, we know thatregponding
to the givenS, there exists a unimodular matrixsuch thatS; = T'ST
lies in the “reduced” Minkowski domai#>,. But T may not belong to 123
I'3. On the other hand, we know that = —E,, i.e. A"ISA1S = —E,,
i.e. ASTIA = Si.e. (T'AT)'S;}(T’AT) = S;. Again, sinceS; is “re-
duced” in the sense of Minkowski, we conclude by a theoremieg&
(Satz 5, p.200120]) that’AT belongs to a finite set of matrices, say
T]ATy, TJAT,, ..., T/;AT#. Now, for any “reducing” matrixT obtained
as above, we have’AT = T, AT for some

Tl <k<p).ie TTYATTY = A

In other words, TT,)*(TT,Y) = Eie. TT ! € T It may now be
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verified as usual that

F=| JA T TN 9)

u
k=1

is a fundamental region fd'T3 in the H-space.
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