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Preface To The Revised
Edition

Thanks are due to the Editor of the Tata Institute Lectureeblot Math-
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upon himself the task of inserting the necessary modifinatio the
notes. A truly onerous undertaking! | am indebted to Prafess
Grosswald for valuable proposals in this connection. Weehaaw a
substantially revised version which we hope, is much moaelable.
However, what is perfect in this world! | therefore seek theulgence
of the reader for any possible error in the revised text.

Finally mention should be made of Dr. C.M. Byrne, Mathensatic
Editor of Springer-Verlag, for her encouraging supportracial stages
of the task and for making me occasionally forget, in a chagman-
ner, that decisions of the publishers are based on prosaidaizons.

It is a pleasure to thank everyone who has been involved & thi
project.

Heidelberg
November 15, 1983 H. Maass






Preface To The First Edition

These are notes of lectures which | gave at the Tata Instifufeinda-
mental Research in 19638. They provide an introduction to the theory
of modular functions and modular forms and may be descrilsedl-a
ementary, in as much as basic facts from the theory of funstaf a
complex variable and some properties of the elementargd¢eten-
tal functions form the only prerequisites. (It must be adtied | have
counted the Whittaker functions among the elementary ¢endental
functions). It seemed to me that the investigations of S$iegaliscrete
groups of motions of the hyperbolic plane with a fundamerdglon of
finite volume form a particularly suitable introductionneé they make
possible a simple characterization of groups conjugatédariodular
group by a minimal condition.

My thanks are due to Mr. Sunder Lal for his careful preparatib
these notes.

Hans Maass
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Horocyclic Groups

1 The Poinca Model of the Hyperbolic Plane

Let $ denote the upper half-plarfe = x + iy, X,y real andy > 0}. Itis
well-known that any conformal mapping §fonto itself is given by

ar+b
ct+d’

T T =X +iy'=S<1t>= QD
whereS = (28) is a matrix witha, b, ¢, d real and determinan®| equal

to 1. All such matrices form a group under matrix multiplioatand
we denote this group b®. ForS;, S, in Q, we clearly have$:S,) <
7T>=51 < S, <1 >>. Itisobvious that two elements; andS, of Q
define the same mapping §fif and only if S; = +S,. The domain$
together withQ can be looked upon as a model for the hyperbolic plane.
The hyperbolic straight linem this plane are defined by the segments
of the circles (Here and in the following, circles includeaght lines)
orthogonal to the real axis, which lie in the upper half-gla@n$, we
have a metric form

drdr  dx@ + dy?
ds = R 2
Since
dr* = (cr+d)2dr and y* = |cr +d| 2y, ©)

the metric form[R) is left invariant by the transformatiooksQ. We
shall show that with respect to this metric form, the hypécostraight

1



2 1. Horocyclic Groups

line joining any two points of) is the path of shortest distance joining
the two points. It is sfficient to prove this assertion for the point@nd
iYo(Yo = 1), since for any two point$; andt; in $, there exists an
elementS € Q mappingry, To respectively ta andiyg (with a suitable
Yo = 1) and further any transformation frofhmaps hyperbolic straight
lines to hyperbolic straight lines, leaving the metric fanwariant. Let

T = 71(t) = X(t) + iy(t) for a < t < b be a parametric representation of a
continuously diferentiable curve joiningjandiyp. Then

y(t)
Lwﬁ4 )

It 7(t) were a curve of minimum length, equality must hold every-
where in [4), because, otherwise, the curve iy(t) fora <t < b,
which also joind andiyp would be of shorter length; or the given curve
7 = 7(t) would contain at least one double point, but this is imgdesi
This shows, because of the continuityxgf), thatX(t) and therefore(t)
also vanishes identically and finally thgt) is monotonically increas-
ing. Thus the curve of minimal length betweeandiyy must be the
hyperbolic straight line joining them, therefore we canatei = yas a
parameter and obtain

f «/X(t)2 + y(t)2 0] YO, 5

a Y

by Yo
t d
Mae= [ = togyo = log((ivo.0).  ©)
(®) 1Y
where @, 2, 73, Z4) generally denotes the cross ratio of the four points
21, 2>, Zz andzy in the extended complex plane defined by &, 23, Z) =
(2 — z3)(z1 — za)

(Zl -) 2 -7)
= 1. Hence, for any two points; andr, of $, we obtain fromIIB) the

following formula for the shortest distance:

Z4

If one of the four points sagy = oo, we take

= log((r1, 72,01, 02)) = p(11, 72), (6)
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T2

[o51 ) 02

Figure 1.1:

with o1, o> representing the points of intersection of the hyperbolic
line joining 71, T2 and the real axis. It can be proved easily thatro-
vided with the distance formul&l(6) is a metric space andrttésric on
$ is left invariant by elements a2. Moreover, it is well known that
this metric defines o the same topology as the usual topology i.e. the
topology induced from complex numbers. @nwe have the measure

dw = —d;‘fy, @)
which is invariant under transformations @fin view of the formula
AX,y) ATt )P 2
axy ldr =YY

We shall prove that the arégqA, B, C) with respect to the measure
in ([@) of a hyperbolic triangleA, B,C) i.e. a triangle with hyperbolic
straight lines as edges with 8 andy as angles (see figurell.2ds o —

B —v. In order to findJ(A, B,C) it is suficient to find the area of the
triangles A, B, «), (A, C, ) and B, C, «), because

Figure 1.2:
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J(A,B,C) = I(A, B, ) — F(A,C,0) — J(B,C, ). If (A, B,o0)is
a hyperbolic triangle, with the angles 3 and 0 (see figurE1.3, then
J(A, B, ) = 7 — a — B; indeed,

Yy
AP g
\\\’(’\ t/’ B
(0] a c b x
Figure 1.3:

A,B,c0
b o
= f dx f y~2dy
R )

dx .n(b—c) _[a—-cC
= | ——— =arcsin— —arcsw(—)

Ges)-fo-5)-r-aos

Let € denote the unit dis¢z = u+iv,u,v real andlz < 1}. The
mapping

T—I -
z=——=A withA = (17
T — <T> Wit (1|)

maps$ conformally onto?. If 7* = S < v > is mapped t&" in £, then

Z=A<71>=AS<7t>=ASAl<z>=L<z>,
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with L = AS AL = (177)(25) (1), wheres = (21)
This shows that is a matrix of the typ¢ & £ ) with

_a+d+(c-Dh) _a-d+(c+h)
B 2 - P= 2

andQq = {(gg) lea — BB = 1|} = AQA L is the group of all conformal
mapping of2 onto itself. Therefore we can look upahtogether with
Qo as a model for the hyperbolic plane. The metric form and nreasu
on g are given by

_ AP +dV) _ 4dudv
_(I—u2—v2)2’ w_(|_u2_V2)2

ds )
The hyperbolic straight lines it are segments of the circles orthogs
onal to the unit circle. O®2, the metric is given by

6(z,2) = p(r,2), where A<ti>=2z, i=12 (9)

Definition. A hyperbolic circle of radius r and centrg) in the hyper-
bolic plane is the set of those points which are at a hypechditance
r from 7.

If 5(z, 0) = constant, theffig = constant and so a hyperbolic circle
in £ with centre 0 is some Euclidean circle with the same centre. |
general, a hyperbolic circle i and therefore ir is some Euclidean
circle but their centres need not be the same. We shall findubkdean
centre and radius of a hyperbolic circle in terms of the higpkc centre
and radius. For the sake of simplicity, we take the hypechmicle U of
radiusp with the centreh lying on the imaginary axis. It can be proved
easily that in this case the Euclidean centre also lies olinthhginary
axis. Letim andr be the Euclidean centre and radiudbfespectively.
Then (see Figurg1.4

p = log(y2/h) = log(h/y1),

whereiy; andiy, are the points of intersection bof with the imaginary
axis. Thus
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1Yo

Figure 1.4:

yi=he?, y,=he
implying that
m= 301 +y2) = hcoshy (10)
= 502~ y1) = hsinhp 1)
Consequently, the circld is represented by

|t — ih coshp| hsinhp.

Further, we have ;
sina = == tanhp, (12)

which is independent df showing that
X
|—| = tana = sinh
y /Y

is the locus of those points at a distanedrom the linex = 0. In
particular, if the centre of the circld is i, then its equation is

|t —icoshp| = sinhp, with p = p(7,i)
X +y?+1
2y

or X + (y — coshp)? = sintf p = coshp =
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-2 X+y?+1-2y coshp-1 P
o Iy = = th*=.
T+Ii X¥+y?+1+2y coshp+1 2
So the hyperbolic polar coordinates can be introduced by

Moreover,|z2 =

T P 4o

—— =tanh= - € 13
T+I an 2 (13)
We have already defined a metric @&n namelyd(z, ) = po(r, 12),

wherez = A< 1 >,i = 1, 2. In particular, we have

6 =06(z0)=p(r,i), & =6(Z,0)=p("i),

az+fB

Bz+

interpretation for the expressigéz + a|. We have seen that- |7 =
1 - tantf 5/2 = cosh?§/2, from which it can be shown easily that

wherez* =

= L < z >. This gives an interesting geometric

12
|- |z % = ol
1Bz + af?
Therefore o 2 7
coshs*
coshs/2 bz +al.

Because of the invariance 6z, z) by Qg, |62+ «| = 1 if and only
if
s(zL 1 <0>)=6(z,0)=6(z0)

i.e. zhas the same hyperbolic distance from 0 anti< 0 >= —g/a.

2 Discontinuous groups of motions

Let X be a topological space a@la group acting oiX i.e.,
i) gxforge Gandxe X belongs taX and is uniquely defined,
i) 91(g2X) = (gigz2)xfor g, g € Gandx € X and

iii) ex= x, whereeis the unit element of.
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Definition. Two points x x, of X are said to be equivalent with respect
to G if there exists an element g in G such th@ty= X,. It is obvious
that the set of pointggXg € G} is a complete set of equivalent points.

Definition. The group G is said to act discontinuously on X, if no set
of equivalent points has a limit point in X. Here, we considerand
g2x with g # g as djferent elements of the set of points equivalent to x
even if gx = goX.

In particular, ifG is a topological group, the@ can be considered
as acting on itself. We say th@tis discrete if G acts discountinuously
on itself.

Lemma 1. A topological group G is discrete if and only if there exists
a neighbourhood of the unit element containing only a finitenher of
elements.

Proof. For the sake of simplicity, we assume tl@atsatisfies the first
axiom of countability.

(i) Let every neighbourhood of the unit elemanin G contain in-
finitely many elements. We can then choose a sequigna¢en G
converging tee with g, # gn+1 for all n > 1. Hence, for everxin
G, the sequencfg, X} converges tx asn tends to infinity i.e. the
set{gXg € G} of elements inG equivalent tox hasx as a limit
point, implying thatG is not discrete.

(ii) Let G be not discrete, so th& contains a subségxg € G} of
elements equivalent te in G having a limit point, say. Thus,
we can find inG a sequencégnx} converging tob asn tends
to infinity, with the property that, # 0.1 for everyn > 1.
Then clearly{g,xb™'} converges to the unit elememtnd so does
the sequenc@of'g;&l}. This leads us to a (non-trivial) infinite
sequence{gng;jl} converging toe. It follows that every neigh-
bourhood ofe contains infinitely many elements. Our lemma is
proved.

In the sequel, we tak¥ to be the hyperbolic plane arm@lto beQ
or Qp according asX = $ or £. The action ofG on X in either
case has been defined alreadgin
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O

Theorem 1. A subgroud” of G acts discontinuously on X if and only if
I' is discrete.

Proof. We work withX = € for the proof. 9

(i) Let T act discontinuously ort. Then we shall show thdt is
discrete. Let, if possiblel’ be not discrete. Then there exists a
sequence{sn = [a” ’8”]} in T such thatS,, # Sp.1 andS,, —

n n

E= (é 2) asn — oo. This implies that

an—1 andﬂn—>0i.e.Sn<O>=,8_n/an—>O asn — co.

Thus the set of equivalent pointS < 0 > |S € I'} has a limit
point, contradicting the discontinuous actionIaf Hencerl is
necessarily discrete.

(i) Let now T be discrete. If" does not act discontinuously ah
then there exists a poitin £ such that the s€iS < z > |S €
I'} has a limit point sayz*. Therefore we can find a sequence

{Sn = [Q: 'g:]} in T with S, # Sn41 such thatS, < z>— 7* as

anZ+ PBn

- |72
|Bnz + anl?

1-|z2
| —|z|2

Nn=oo. Letz; =S, <z>= . Then

1- 1zl = -1z

Since < L |BnZ + an| = |an|

o
an

bz s 1| > |anl(1 - |2). This

shows thatay| and therefords,| is bounded. Therefore we can
find a subsequenctSy,} of {Sy} such that{San;nlﬂ} — E as
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n — oo. But this is contrary to the discretenesdptherefore I’
acts discontinuously of.

O

Definition . A conformal transformation of the hyperbolic plane with
the corresponding matrix & +E is said to be hyperbolic or elliptic
or parabolic according as the two fixed points of the transfation
are distinct and lie on the boundary of the hyperbolic plan¢he two
fixed points are inverse points with respect to the boundicjecof the
hyperbolic plane or the two fixed points coincide.

It can be proved easily that if the determinéitof S equals 1, then

>4 if Sis hyperbolic
0%(S) = ((S))°{< 4 ifSis elliptic, @
=4 if Sis paraboli¢

whereo(S) denotes the trace &.

By a hyperbolic groupof transformations of the hyperbolic plane
we mean a group consisting wholly of hyperbolic transfororet ex-
cept forE and possibly-E as well. We have the following remarkable
theorem for this hype of groups.

Theorem 2. If a subgroupI’ of Q is a hon-commutative hyperbolic
group, therl" acts discontinuously on the hyperbolic plane X.

Proof. We shall take the upper half-plageas a model foiX. Now I’
contains a hyperbolic eleme8t# +E with fixed pointsw, o’ # w. For
V in Q defined byV < 7 >= (r — w)(r — '), let S* = VSV and
I = VIV, Theno(S*) = o(S) so thatS* is again hyperbolic and
furtherI™ is also a hyperbolic group, which is discrete if and only if
is discrete. Thus passing overIo if necessary, we may assume that
S has already 0 ando as its fixed points, so th& = (é {,(_)1) with
¢+ +1.

If possible, lef” no act discontinuously ofy. then by theorem T; is
not discrete and therefore contains a sequéngeof elementsl, # +E
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converging toE. We will show under the given circumstances, that
all but finitely manyT, are diagonal. Fol, = (i 3) consider the

commutatorsCy, = ST,S™!T;! andDy, = SG,S™IC;L. If is easily
checked that

c - ad—bc?  ab(t? - 1)
™~ \ed(t2-1) ad- bdf2

_(Ll+Dbol-¢%)  ab(t?-1)
- ( cd(¢?-1) 1+bol- 5-2))

Sincerl is hyperbolic, the eleme@, is hyperbolic ifC, # +E. In
any case,

02(Cm) = 2+ 2bc— bo(£? + £72))? = (2 - bo(¢ - £71)?)? > 4.
Similarly, we have
?(Dm) = (2—ab(?—1)cd(¢~2-1)(¢-£71)?)? = (2+abede—£71)4)? > 4.

Since{T,} converges tde, {C,} converges td so that 1+ bo(1 - £2)
tends to 1. Sincé # +1 is fixed, this means thdic tends to 0. We
claim thatbc = 0O for all large enoughm. In fact, if bcis positive and
sufficiently small, we have a contradiction from?(Cp,) = (2 — bo(¢ —
1?2 < 4. Sincead - bc = 1, ad tends to 1 and hence disregardinge
finitely manym, we can suppose that > 0, so thatabcdhas the same
sign asbc. Let nowbc < 0, if possible. Then considerinQy, instead
of Cr, we see thaaibcdtends to 0 agn tends toco. But frombc < 0O,
we obtain thatabcd < 0 and|abcd is small for all largem, so that
o?(Dm) < 4, a contradiction again. Thus, for all large bc = 0 and
thereforead = 1. Nowo(Cp)) = 2ad = 2 and sincd’ is hyperbolic, this
means thaC,, = E, for all largemi.e. ab = cd = 0. Sincead = 1,
we haveb = ¢ = 0 i.e. Ty, is diagonal, for all largen, as required to be
proved.

Dropping finitely manyT,, we have inl’, a sequenc€T} of diag-

onal matricesT, = (g .} ) with £, # +1. Let nowF = (P d) be an

arbitrary element of. To the sequenc@,FT;1F~1} (of commutators)
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converging toE (asn — o), we apply the same arguments ag@g,}
above. Then we can conclude that necessariyr = 0 andF is diago-
nal. In other wordsl” consists entirely of diagonal matrices and is hence
commutative, a contradiction. Thilisnecessarily acts discontinuously
onX. O

3 Fundamental domain

LetT be a discrete group of motions of the hyperbolic plane.

Definition. A point-sety of the hyperbolic plane is calledfandamental
domainfor T if

1) & contains at least one point from each set of equivalent point
with respect td" and

2) If ze § N Fs (§s = Image ofg by S), then z is a boundary point
of § and §s provided S# +E.

In the following, we shall give a construction of a fundanatmio-
main forI" by geometrical methods. First of all, we observe thas
countable. For, the number of matricBs= “ﬁ) withaa < n(na
natural number) is finte, because if the number of such nestricere
infinite, thenaa < nandBB = a@ — | < n will imply that T is not
discrete. Since every elemédte I different from+E can have atmost
one fixed point in¢ andI" is countable, there exists a poift £ which
is not a fixed point of any eleme® of I' different from+E. In the
following, we setS < ¢ >= /5. We shall show that the s@tdefined by

§=1{26(z¢) <o(zs)forSel,ze ¢} 1)

is a fundamental domain fat. It is obvious thay consists of all points
z, whose distance fromiis not greater than the distance from the equiv-
alent pointg’s. Obviously, we have

Fr={T<z>16(z¢)forSel,ze ¢}
= {26(T ' <z2>,0)<6(T" <z>,45)forSeT,ze ¢}
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={40(z {1) < 0(z {rs) for SeT, ze ¢}
={26(z (1) < 0(zds)for SeT,ze L}

Q= UTYT-

+Tel

We now claim that

Indeed, for an arbitraryg € € the set{6(z {s)|S € T'} has a minimum
because of the discretenesdoi.e. 6(z 1) < 6(z {s) for someT in T’
and for allS in T; thereforez € §t. In particular,& contains atleast one14
point from each set of equivalent points. In order to prowe shcond
condition for& to be a fundamental domain, we proceed as follows. Let
gs for S # +E denote the locus of poinise ¢ such that

6(z8) = 6(z Ls).

This is the equation of an orthogonal circle, which for= 0 as
shown in§1 can be represented by Bz+a| = 1if S = (g ﬁ) The line
gs decomposes the hyperbolic plane into two parts. We denotgsby
the closed half plane which contaitisIn fact,

Ls ={z€ L16(z {) < 6(z Ls))-

Therefored = (| s. In particular, since eacfis is a convex set
+Sel’
and an arbitrary intersection of convex sets is congeis, a convex set.

Moreover, it can be verified easily that the boundangadh £ consists
of some segments of the hyperbolic straight liggdor T € I'. In other
words, z is a boundary point ofy if and only if 6(z, ) < 6(z ¢s) for
S e I" and equality holds atleast for o+ +E. Thusifze § N &7,
then necessarily, we hawz () < 6(z {s) andé(z &t) < 6(z &s) for
S eT'. TakingS = T in the first inequality an& = E in the second, we
obtain that

zeFNFr = 6(z¢) = 6(z L)
showing thatz is a boundary point off and &t. Hence the set defined

in @) is a fundamental domain fat. Moreover, we shall now prove
that only finitely many linegyr for T in T', constituting the boundary
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of &, intersect a given compact g€t Let K be contained in the circle
U=1{Z6(z¢) <Rze &}. If ze gr n U, then we must have 15

1
R2 (2.0) 2 50(¢.47)
or6(¢, &1) < 2R

But I is discontinuous and therefore only finitely manyexist for
which 6(Z, 1) < 2R. We thus conclude thak as defined in[{l) is a
convex set bounded by a countable number of hyperbolic,limely a
finite number of which intersect a given compact set. We aathsa
fundamental domaify a normal fundamental domainith the centre’.
The area ofy is given by

. dudv
3 =|im 4 _—
(%) P00 f (I - w2 — V2)2
8(z)=p
zey

This integral may be an improper integral and can have anitiefin
value. If the value is infinite, then the fundamental domaas himit
points on the boundary of the hyperbolic plane. If the fundatal do-
main is compact, its area is finite; the converse is not trugeimeral.
However, we have the following

Theorem 3. If T is a discrete group of motions of the hyperbolic plane
containing no parabolic motions and having a normal fundatakdo-
main & with finite area, ther§ is compact.

Proof. Throughout the proof, the hyperbolic plane will be représdn
by £. We decompose the boundary ®fin € into connected compo-
nents, the number of which will be atmost countable. Thefisgiven
in six steps.

1) If there exists one connected component which is a closeac
then this cannot have double points, in view®being convex.
So this connected component represents a polygon. Sirise
convex and therefore simply connect@ds in the interior of this
polygon and is obviously compact. We exclude this case fram o
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considerations. Starting from a boundary poinfyoh £ (which
exists by the construction &), if we move along the boundary
of & in one of the two possible directions, then the following two
possibilities can occur:

(@) we come across only a finite number of vertices i.e. there
exists a last edge reaching the boundarg of

(b) we meet an infinite number of vertices.

The case in which we come back to the starting point has ajread
been discussed above. Let

denote the vertices of one of the connected componeng. of
Here, if the sequence terminates on the right w&ittthen through

Z pass two edges d¥, one joining the pointz_1 to z and the
other reaching the boundary 8f If z,; is the point of intersec-
tion of the boundary oft with the edge througla. reaching the
boundary of¢, we definez,; to be a vertex of the fundamental
domaing. Similarly, if the sequence terminates on the left with
Z , we define the point_,_; to be a vertex ofy. The triangleAg
with the verticeg (the centre ofy), z andz, 1 is contained irf,
sincey is a convex set.

Let ay, Bk andy (as in figurd_Lb be the angles &f. Then 17

Figure 1.5:
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3(Ak) = — ak — Bk — Yk

If z respectivelyz., belongs to the boundary &f, thenay re-
spectivelyBy is equal to 0. Letvk = ak + Bk-1-

Then, because of the convexity ®f we have

O<wy<m. (2

Summing the areas of the trianglégfor p < k < g, we obtain

q

q
Ipa= ) (A = > (r - ax— =)

k=p k=p
q q
k=p k=p+1
But
q
Jpg S 3(F) <0, Apg= Zyk < 2rm, )

k=p

and therefore, in case (b), the sequerisgg and A, 4 converge
whenp — —oco andq — oo. Sinceap,Bq < n from (@), the

q

series ), (m — wy) converges whep — —oco andq — . The
k=p+1

convergence of the sequendgg implies the convergence of,

whenp — —co andpp whenq — co. Let us write

im ap=a_w, lim By =fe. (5)
q—)OO

p——00

In the case of the possibility (a), we chogs¢o be minimal and
g to be maximal and thea, = 84 = 0. We shall now show that
the limiting values ofr, andg, in @) satisfy the inequalities

: (6)

NI

/s
U < Ea ﬁoo <
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Letry = 6(z, ¢). Then if there exists no extrempl(respectively
g), we have

rk — oo, for k = —co(respectivelyjk — o).

For, only a finite number of edge&z;1 (zz.1) denoting the
hyperbolic line joiningz andz, 1) can meet a given compact set.
We must have

Ik < ko1 for infinitely manyk, (7)

since, otherwise, the sequengeawill be bounded. We now prove
that, in the triangle\k for whichry < r,,1, opposite to the greater
side we have the greater angle (as in Figure 1.6 i.e.

Bk < . 8

Figure 1.6:

Let g denote the perpendicular bisectora#, 1 (in the sense of
hyperbolic geometry). Sin&g < z1, it follows thatn1, the point

of intersection ofy and the line througlj andz, ; lies betweend
andz.1. This means that the angte(see Figuré_1l6 is positive.19
It is obvious that the triangles zmni7, > and< nnoz1 > are
congruent in the hyperbolic sense. Therefore we Pave ax— €,
which proves our assertiolll (8). BAk) + yk = 7 — ax — Bk > 0;
therefore, from[(B), we conclude that

Bk < g for infinitely manyk. 9)
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Our assertiorB., < g in @) now follows trivially. Similarly, it

can be proved that_, < g

Letmdenote the maximal if it exists, and otherwise, sat = co;
let n denote the minimap if in exists and otherwise set= —co.
From [3), it follows that

iyk+iS(Ak):ﬂ—a/n—,8m+ i(ﬂ—wk). (20)
= k=n

k=n k=n+1

If we sum both sides of{10) over all the connected components

of the boundary of¥, then we still have

> s 2rand ) 3(A) < 3(F) < . (11)
k k

But 7 — an — Bm = 0, therefore the seri€s, (r — wk) of positive

terms is convergent and for a gives 0, we have

0 < (7 — wy) <€ for almost allk. (12)

We have defined the sgtby means of the inequalities

0(z0) <6(zs)for S eT.

If equality holds precisely for on8 # +E i.e. if zlies exactly on
one perpendicular bisector, theis a boundary point of and not
a vertex. Since the edggz;, of  is a perpendicular bisector of
Z& for someA € T', we have, for any poirgon this edge dferent
from z, andzc, 1,

0(z ¢) = 6(z {a) ando(z {) < 6(z ¢s) for S # +A, +E,
or  8(za) = 6(z {a1a) aNdS(z, £p) < 6(z, Zs a) for S # +A™L +E.

This shows that is a boundary point ofya and not a vertex.
Moreoverz, and z,, are necessarily vertices @a. We now
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assert that a vertex @§, sayz, can be a vertex of only finitely
many images of by elements of . Let, if possible zp be a vertex
of Fa i =1,2,...)with Ai e T'. Then we have

fh,

0@

fh,
@

Fa,

Figure 1.7:

6(20’ g) = 6(207 gAl)
6(20,¢n) = 6(20.Ln,)

0(20,ln) =6(20,4n1)

and so on. Thus we obtain thiz, ¢) = 6(z0,¢p) fori=1,2,...
i.e. the points{ lie on the hyperbolic circle with the radius
8(20,¢). This implies, because of the discretenes¥,dhat there
can exist only finitely many such;, proving our assertion above.
Let Fa.i =1,2,...,r(r > 3) be all the images d§ with z as a
vertex and letw® denote the angle G§, atzy. Then

SinceA™ < zo > will be some vertex off, sayzjw® must coin-
cide withwj.

We assume in the rest of the proof theE € I', without loss of
generality and denoté/{+E} byT.

4) LetBj <z > (i = 1,2,...,S) with B € I" be the complete set21
of different vertices off which are equivalent witly. Denote by
I'o the subgroup consisting of those transformation§ @fhich
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leave z; fixed. SinceAi‘I < 7o > with A as defined above is a
vertex of§, we haveAi‘I <7>=Bj<z>ie ABj <7 >=1
for somej with 1 < j < sand thereforeAiB; = L for some
L € I'o. The number of distinct transformatioAs® = +B;L ™! is
¢s, wheret is the order of g := T'o/{+E}; for, if £BjL;* = BpL;*
for Ly € To(k = 1,2), thenBj < zp >= By < 7 > and this
is possible only ifj = h, implying in turn that+L; = L. This
shows thatr = ¢sand/ is finite; thereforely is a cyclic group.
LetI'o be generated by the rotatidng of angle 2r/¢. Then

(=AM =12,...,r={+BjLy1j=12...,5t=0,1,...,(-I}.

Since the fundamental domaghhas the angle)) at the vertex
Bj < 2 >= BjLy! < 20 >, the imageFa, = i1 has the same
J

anglew() atzy. Therefore, from[{13), it follows that

s
0@+ 0@ 1 0® = —(s23) (14)

But, by (12),wk > % for almost allk; therefore, equatiori{13)

can be satisfied only by a finite number of systespsThus there
exist only finitely many classes of equivalent verticessosince
each such class corresponds uniquely to a subsystéwyp$at-
isfying (I4) with somef and further any two such subsystems
are disjoint. We conclude that every connected component of
the boundary ofy has finitely many vertices. Froni{10) with
an = Bm = 0 now, we obtain that the right hand side bfl(10) is at
leastr. But the left hand side of{10) when summed over all con-
nected component is finite. Therefore it follows that the ham

of connected components @fis finite.

We shall now show that no arc of the boundar®afan be con-
tained in the boundary g§. Without loss of generality, we can
assume that = 0. Let us suppose that the 2B with the angle
v > 0 belongs to the boundary gt Then due to the convexity of
&, the whole sector belongs § But this is impossible, since the
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area of this sector is infinite whil@ has finite area. For the same
reason,§ can at most have only finitely many improper vertices
i.e. vertices on the boundary 6f

B

4‘

Figure 1.8:

6) We prove next thafy does not have any improper vertex. Here,
for the first time, we shall make use of the assumptiof’ tmat it
does not contain parabolic transformations. Zgdte an improper
vertex of § so that|zg]| = 1. Sinced does not contain any arc
of the boundary of. two edges ofy, saygp and fy, touch each
other atzy. Let ¥, be an image ofy by A; € T, which has
the edgego in common withF. By the same argument as above,
&a, must have two edgegy andg; touching atzg. Proceeding in
this way, we obtain..... s BA 2> BA 1> SAgs BALs SAgs v v v with
Ao = E andA € T having zy as the common improper vertex.
ObviouslyA-! < zy > is an improper vertex o§. But & has only
finitely many vertieces; therefore, there exist two intsgeandq 23
with p # q such that

A,;l<zo>=A51<zo>:C<zo>=zowithC=ApA51¢J_rE.

Since, by assumptiol; does not contain any parabolic transfor-
mation, the transformatio@ which has a fixed poirdy on|Z = 1,
ought to be hyperbolic. Let; be the other fixed point of. Let,
further,7 = T < z > be a transformation which maps the unit
disc onto the upper-half plane and the poir§sz; to 0,0 re-
A 0
0 at
the cyclic group generated BYCT~! maps the set = {r =

spectively. TherC = T2 T, with 2 # 0,+1. Clearly,
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X+ 1y, X < y;r € 9} onto itself. LetFo be the fundamental
domain inT~! < g > of the cyclic group generated g, say,
with A2 > 1, such that (see Figufel.9

T < Fo>={rlr=x+iy, 1< |r] < 22| <y}

<<f’>

Figure 1.9:

Then &g is a compact set in the hyperbolic plane and therefore
there exists a constaM such thati(z*, ) < M for Z* € Fo.

SinceT < § > haseo as a boundary point, there exists a point
z € § such thats(z ¢) > M andT < z >e y. This implies that
CP < z> belongs ta¥g for some integep and therefore

6(CP<z2>,0)=6(zlc») <M

But M < 6(z ¢) < 6(z {c-»), sincez belongs to¥; therefore, our
supposition thatg is an improper vertex df is untenable. Thug

is bounded by only finitely many edges, has no improper \astic
and is therefore a polygon. Henges compact and the proof of
theoreniB is complete.

Concerning the existence of improper vertices of a fundaahen
domain for a discrete group of transformations of the hyplkcb
plane, we prove the following
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Theorem 4. LetT be a discrete group of transformations of the hy-
perbolic plane andy a normal fundamental domain farwith 3(¥) <

oo. Thend has at least one improper vertex if and onlyicontains
parabolic elements.

Proof. If I" does not contain a parabolic element, then by theoref 3,
does not have improper vertices. Conversely, we shall shawvif &
does not have improper vertices (i.@. is compact), thed” does not
contain parabolic elements.

If possible, letl" contains a parabolic elemeRt Then we assert
the existence of a sequent®)} such thats(ZW,P < Z¥ >) — 0 as
k — oo. Indeed, we can assume thatis the only fixed point oP in $
i.e. Pis defined byr — 7+ u for some real number, theno(r, 7+ ) <
u/y <e for suficiently largey and for arbitrarye> 0. LetSy € T
be so determined th@ < Z¥ > belongs toF. Then the sequence
(6(Sk < 29 >,7)} is bounded. Therefore there exists a subsequence
of {Sx < Z¥ >} convergent inH. Denoting this subsequence again by
{Sk < Z¥ >}, letz* be its limit. It follows immediately that 25

6(Sk < s 5 p<AN >)—> 0= SxP< AN
= §(SkP <9 >,7) » 0= 6(Z9, P15t <7 >) —» D ask — c.

But sinces(Sk < Z9 >, z) — 0 and since further

6(8;1 <Z >, P—lsgl <Z>)< 6(5;1 <7 >,2¥9)
+6(Z9, P1S, 1 < 7 >), we see that
(S t<z > P1S <z >) - 0ask — o.

Thusé(SkPS;l < Z >,Z) - 0 ask —» o and the discreteness
of I' implies thatSkPSEl < Z* >= 7 for suficiently largek i.e. P has
S! < z > as a fixed point. But this is impossible, sinBg! < z* >
belongs ta) while P is a parabolic transformation. Therefdrean not
contain any parabolic element.

The improper vertices d§ are nothing but fixed points of parabolic
transformations of’; hereafter, we shall call thegarabolic cusps

In the following, we shall assume thais a discrete group of trans-
formations of the hyperbolic plane having a normal fundataedomain
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with centre/ and3(F) < « i.e. & is bounded by finitely many hyper-
bolic straight lines and has finitely many parabolic cuspst Kbe an
edge ofF(c L) joining Zp andz; (see Figur€1.10. L&t be the perpen-
dicular bisector ofa.

Ca

20
Figure 1.10:

Thenk is an edge offa and thereforeA! < k > is an edge ofy.
If A1 < k >= k, thenA~! permuteszy andz, sinceA™! preserves the
orientation. It follows now thaf? = +E. SinceA™! permutes” and/a
also, the two Iines_;?ZA andzyz; are mapped onto themselves and there-
fore the point of intersectiog” of these two lines must be a fixed point
of A. HenceA is an elliptic transformation of order 2. We introduce
Z' as a vertex ofy. Then the two edge®z* andz'z are permuted by
A. If A1 < k ># k, then we have an edge &f different fromk but
equivalent tdk by I'. proceeding in this way, we obtain this a closed
convex polygon bounded by a finite number of hyperbolic ghtlines
ki,k'(i = 1,2,...1) such that; andk’ are pairwise equivalent undér
i.e. there exist elements € I' such thath < k]* >=ki(i = 1,2,...,1).
We shall call the transformationd the boundary substitutions ofy.
For a giveng, if {Alli = 1,2,...,t} is a set of its boundary substitutions,
then the setAiﬂ,i =12,...,t}is uniquely determined b§.

We shall see that the set of boundary substitutions of theéafonen-
tal domain generate the group. First, we prove the following O

Lemma 2. Let§ be a normal fundamental domain of a discrete group
I' of transformations of the hyperbolic plane. Then any cormpatK

in the hyperbolic plane has non-empty intersection withy aalfinite
number of images @§ under elements df.
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Proof. Without loss of generality, we can assume tKais a disc with
centre and radiusp. If possible, letgs, N K # ¢ for an infinity of
distinct Si(e T),i = 1,2,... Pickingz) in §s N K, we havez(s'?_l €F

and
@) <p=p> 5(22_1,45;1) > 5(2(;?_1,4*).

27
Therefore

§(¢.0s) <6 AN+ 6, ts) <p+p=2p, fori=1,23,...

which is impossible from the discretenesdofThe proof of the lemma
is complete. O

Theorem 5. The set of the boundary substitutions of a normal funda-
mental domain for a discrete grodp of transformations of the hyper-
bolic plane generateE.

Proof. Let & be a normal fundamental domain fBiwith the centre’.
Let S be an arbitrary element @f. Then by Lemma 2, the hyperbolic
straight IineZég intersects only a finite number of images ®funder
elements ofl". Let ¥g,, &g, --, 5B, be the images ofs, which inter-
sethég and are so arranged th@g,_, and &g, have an edge, say, in
common. TherBy = +E andB, = +S. Obviously,B%(s) is an edge
of & and it is the perpendicular bisector@fBillBi; therefore, we must
haveB % Bj = +A*!, whereA, is a boundary substitution ¢f. It is
now immediate thas = +ByB;1B;'B,B,'Bs... B, 1 By = +AfL .. AL
and our theorem is proved.

Let d(U) denote the Euclidean diameter of an arbitrary point set
U. We now show that foe> 0, d(Fa) <e for almost allAin T. By
Lemmd2, only finitely many images @fintersect the circl¢z|z <h < 28
1}. Let & with Ain T be outside the disfig < h.
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?
K

Figure 1.11:

J

A

Choosezg € §a so thatizpg] = inf (|Z). Then the hyperbolic tangent
ZGSA

to |7 = h at the point of intersection ¢f = h and the line joining 0 and
Zp is perpendicular to this line. We claim th@ lies in the lens domain
bounded by the hyperbolic tangent mentioned above and iheirahe,
which is also defined by

1-h?

2
_zol+h -
- 2h

10 2h

14 <1

If possible, letzy € Fa lie outside the above lens domain; then the
line Zgz; is in §a, because¥p is a convex set. But the angle (see
Figure[T Tl i< /2; therefore, there exists a poiiton the hyperbolic
line Zpz; such thatiz‘| < |z|, which contradicts the minimality dfg|.
Henceda lies in the above lens domain. It can be seen easily that the
diameter of this domain is 2@ h?)/(1 + h?). Therefore it follows that

d(Fa) < 2(1-h?)/(1+h?) - 0ash — 1.

We now assert that a discrete grobipvith a normal fundamental
domain of finite area is &renzkreis group of the first kinid the sense
of Peterssor]3]. In order to prove this assertion, we hawhtov that,
given a pointz® with |Z*| = 1, there exists a sequence of poin{sn £
and a sequencfLy} of pairwise distinct transformations, € I" such
that

lim zn:r!i_rHOLn<zn>=z*.

Nn—oo

For givene> 0,n — 1 elementsS,, Sy, S3, ....... ,Sp_1inTand a
pointz: with |z| = 1,wecanfindsinT'withS # S;,i=1,2,...,n-1
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and a pointzin |7 < 1 such that
|lz—-Z| <€,|zs - Z'| < 2 €.
In order to prove this, we consider the point set
Uc={2lz-Z| <€, |4 < 1}.

Since3(Ue) = oo, infinitely many imagesyt will intersect Ue.
Therefore, we havblc N 1 # 0 for infinitely manyT andd(3T) <e,
for almost allT.

Let T, andT, be two elements df satisfying the above two condi-
tions and the additional condition

T, # ST fori=1,2,...,n-1.

We choose a poirg e &1, NUc and seS = T2T1‘I so thatS < z>¢
&T,. LetZ be a point inUe N &t,. Then|Z — Z'| <e and|Z - zg| <e.
This shows that

IZ'—zs|<|Z-Z|+|Z —-zs5| <2 €.

But sincez belongs taUc, |z — Z| <e€; thereforez chosen above is30
. . 1 .
a required point. Let= ﬁ,z = Z, andS = S,. Then obviously the

sequences$z,} and{S, < z, >} converge taz* asn — oco. Moreover,
by choice, the elements of the sequef8g are pairwise distinct. This
completely proves our assertion thiais a Grenzkreis group of the first
kind.

We mention only the validity of the converse fo the aboveestat
ment, namely: a Grenzkreis group of the first kind has a noforal
damental domaik with finite area. This assertion amounts essentially
to the statement th& is bounded by a finite number of line segments
which lie on hyperbolic straight lines. This was proved byHi&ins, W.
Fenchel and J. Nielsen (jointly), L. Greenberg, A. Mardeh ffoe arti-
cle of L. Greenberg in “Discrete Groups and Automorphic Fioms”,
edited by W.J. Harvey, Academic Press 1977, and the cit@dliire).

Following Rankin [6], we call a discrete group with a normanh{
damental domain of finite areahmrocyclic group The boundary of a
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normal fundamental domain for a discrete group can be destiby
means of the so-calleédometric circles of the grougiscussed by Ford
(. O

4 Riemann surfaces

Let & be a closed normal fundamental domain for a horocyclic giaup
Let/ be the centre of. By joining ¢ with the vertices ofy, we obtain a
decomposition ofy into an even number of triangles. If we identify the
equivalent edges a§, we get a closed orientable polyhedr#h Let p
denote the topological genus &f. If e k andd denote respectively the
number of vertices, the number of edges and the number afjtaa of
%, then the Euler-Poincare characteristic formula statais th

e-k+d=2-2p.

Let g1, 92, ...0, be the diferent classes of parabolic cusps and
n,..., g be the classes of the proper cuspgotetzi, zy,. .., z, be
all the vertices ofy in the classy andwi(l),wi(z), . ,wi(”) be the angles
of ¥ at the verticeg;j, j = 1,2,...,r;. Then

wi(l)+wi(2)+"'+wi(”) =21/t (i=12...e)

for some natural numbef;. We have already proved thaj for j =
1,2,...,rj are fixed points of elliptic transformations in cage- 1 and
the group of transformations which leagg fixed is of ordert;. Since,
for a fixedi, the two pointszj andzj for j # |’ are equivalent, the
groups leavings; andzj. fixed are conjugate subgroups Iof Let &
be the number of classes of proper cuspg ébr which ¢, > 1. We so
choose our notation that

G >1fori=1,2,...,6e.
It is obvious that the sum of the angles of all the triangleszois

given by

e
2n + Z{wi(l) + cui(z) ot a)i(ri)} = nd — 3(F).
i=1
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and consequently
€1
1 1
1 1/¢6 = =d — —3(F).
+; /€i 5 - 5(%)

Obviously, we have = o+ ¢, + 1. Since each edge belongs exactly

. 1
to two triangles, we haved3= 2k. As a resulto + e, + 2p = Ed +1
and therefore

€1
Tre+2p=2+ > 1/ +%S(8);
i=1

€&
i.e. %S(?g) =2p-2+o+e- ) 1/
i=1

&
=2p-2+0+ Yy (1-1/6), 1)
i=1
sincel; = 1foreg <i <e.

It can be shown easily that the right hand side of equatiom#$)a
positive minimum equal to/42. This minimum is attained only for one
set of values, namelpg=0,0 =0, = 3,6, =2, =3 andl3 = 7. It
can be proved that there exists a group for which a fundarhéotaain
has arear/21. (For the proof, se&l[2], page 621). Thus, in general,

3(3) = 7/21,

whereg is a fundamental domain for a horocyclic group. Bos 0, the
right hand side off{l1) has the minimurni6land therefore, in this case,
3(F) = n/3. This minimum is again attained for only one set of values
givenbyp=0,0 =1, = 2,{, = 2andl, = 3. We shall see later that33
this set of values is realised for ‘the modular group’.

We now prove that the area of a normal fundamental domain for a
horocyclic group does not depend on the choice of its ceéntfessume
thatg is a fundamental domain fétrbounded by only a finite number of
segments of hyperbolic straight lines. Then we conclude tha

zeF=zpcgforsomeAel = ze g1 NF
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or

U (6a1 N F) = B.
+Ael’

The setgip-1 N § andgg-1 N § intersect on their common boundary
for B # £A. For,z € (ga-1 N &) N (gg-2 N F) implies thatza and zg
belong to the boundary & i.e. zis a boundary point of51 andgg-1
and therefore of the sets-1 N § andgg-1 N §. Since the setgy-1 N F
for A € T are measurable and the intersection of two such distinst set
is a set of measure zero, we have

3@ = ), MearnB) = ), AENTa) = I(6)

+Ael’ +Ael

and our assertion is completely proved.

It can be shown that the polyhedrésis topologically equivalent to
the space obtained by adding to the quotient-sggdethe equivalence
classes of parabolic cusps which ardfisient to compactify the space
a/T’, provided the neighbourhoods of the cusps are defined irtabdii
way.

In the following, we shall speak of = $U {all parabolic cusps of
I'} as a covering surface 6f. Letg € #; we say tha is the trace point
of r € g if T belongs ta%.

Definition. An equivalence class € # of parabolic cusps is called a
logarithmic branch point.

Thus the number of logarithmic branch points%fis o

Definition. Letg € # be the trace point ofg € 9. Then, for-E €
I',To = Tol{=E} wherel'g = {S|S < 19 >= 70, S € I}, is a cyclic group
of order ¢ uniquely determined by. We shall callg a branch point of
% of order£ — 1 or a pointtg € g a point of ramification indexX — 1 if
¢ > 1. If £ = 1, we shall callg a reqular point of%.

We have already observed that there exist only finitely maagdh
points of #. Therefore, given a branch poiptof %, there exists a
neighbourhood off which does not contain any other branch point of
X.
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We shall now introduce somecal uniformising parameterer, as
we shall usually saylocal coordinateson % which define an analytic
structure on for which it is a Riemann surface. We shall cé&dl the
Riemann surface associated to the grdup A local coordinate at a
point gg of Z is a functiont(g) such that

1) t(g) maps topologically an open neighbourhddg of g5 onto an
open neighbourhood of 0 in the compleglane,

2) for another poing of Uy, t — t(G) is a local coordinate a%, and

3) if s = g(g) is another local coordinate g4, then in a neighbour- 35
hood ofgg, the functionscan be expressed as a convergent power
series

s=cit+Ct?+... withc; £0

and conversely, every such convergent power series defloesla
coordinate aty.

Let g(g) be a function defined in a neighbourhoodgguch that
9() = ) Gt #0,
r=k

wheret = t(g) is a local coordinate aty. Theng(g) is said to be of
degree kat go. It can be verified thak does not depend upon the choice
of a local coordinate afy. If k > 0, theng(g) is said to baegular atgp.
We call gg a zero of order kof g(g) whenk > 0 and apole of order|k|
whenk < 0.

In what follows, by a domain we shall always understand amope
connected set.

Definition. Let G* be a domain inh. A function {r) defined inG* is
said to be an automorphic function with respect to a hordcygitoup
T, if

f(rs) = f(r) for S e I', whenever andrs are inG”.
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Now G = {glg € Z, g is the trace point of somein G*} is a domain
in # and the functiorg(a) defined byg(g) = f(r), whereg is the trace
point of 7, is well-defined inG. Conversely, letz be a domain iz, 36
G* = (1|t € 9, the trace point of belongs tog} andGj a connected
component ofG*. If g(g) is a function defined i, then the function
f(r) defined byf(r) = g(g), whereg is the trace point of, is an auto-
morphic function defined i with respect td.

We now describe a suitable system of local coordinates a&uer
points of%.

1. Letgp € # be a branch point of orddr— 1. Letrg be a point in
% with the trace pointp. Then the subgroupg c I'(= I’ modulo
{+E}, if —=E € I') consisting of those transformations Ibfvhich
leaver, fixed is a cyclic group of ordef. Let L be a generator
of Iy, which we can take to be a rotation through an anglg’2
Definingz by z = (v — 70)/(r — 70), the transformationr — 7.
corr((esp(;nds to the mappirmg— €*/{z. Actually, we have, for
L= (28)

L<t>-19 L<t>-L<719> Cro+dr-19 7-10

L<t>-T9 L<t>-L<To> Cro+dr-7o '71-70
where|u| = 1. If U = {r € 9||Z <€} is an open disc with centre
70 and withe small enough to ensure that the equivalence;of
andt, in U underT implies already their equivalence undgy,
then, only forr = 7g, a pointr in U is uniquely determined by its
trace point . For # 7o in U, there exist exactly different points
T1,72,...,T¢ With the same trace pointast. But precisely one
of thesef points belongs ttJg = {r € U||Z <€,0 < argz < 2r/¢}.
Thist — gis a 1- 1 mapping ofUg onto a neighbourhood of
go in %Z. Moreover,z — t = Z is a 1-1 mapping ofJg onto the
open disc{t|t| <€f}. Finally, g — t — tis a 1-1 mapping, via
Uy, of a neigbourhood ofy on % onto a neighbourhood of 0 in
the complex plane. Let us assume that there exists an analyti
structure onZ such thatt is regular atgg with respect to this
analytic structure. Then

t=Co+CiS+ S+ -,
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wheres = g(g) is a local coordinate ajy. Butt(gp) = S(gg) = 0
ands — tis a 1-1 map, thereforeg = 0 andc; # 0. This shows
thatt is necessarily a local coordinateggt

2. Letgp be a logarithmic branch point a#, o a parabolic cusp
with trace pointgy andA a transformation of onto itself which
mapstg to co. Thus the groupAl’A~1 haseo as a parabolic cusp.
The subgroudy c I'/{+E}, consisting of those transformations
leaving 7¢ fixed is an infinite cyclic group generated by some
transformation, say. Settingr. = A < v >, the transforma-
tion r — 7p corresponds to a translatiati — 7* + u, where we
can assume that > 0. We introducdJg = {7|t* = X" +iy*,0 <
X* < u,y* > m} and conclude, as in the preceding case, that, for
large enoughm, the mappingy —» 7 — t = eZA<™/i(r ¢ Uy)
for g # go, together withgy — 79 — 0 gives a 1-1 mapping of
a neighbourhood ofp onto a neighbourhood of 0 in the complex
plane. The assumption abdudeing regular adp with respect to a
given analytic structure a# implies again that(g) is necessarily
a local coordinate afp.

It can be checked that the local coordinate systentotiat we 38
have defined in (i) and (ii) above has all the properties regubf
a local coordinate system o#.

Let f(g) be a meromorphic function defined in a neighbourhood
of go and of degred&. Thenf(g) has a power-series expansion

f(a) = ) cat" with ¢ # 0,
n=k

wheret = ((t — 10)/(r — To))¢ or eA<™/1t gccording agp is a
branch point of ordef — 1 or a logarithmic branch point.

5 Meromorphic functions and Differentials

In this section,I” will denote a horocyclic group an& the Riemann
surface associated 0
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Definition. A function fg) defined in a domaig; of # is said to be a
meromorphic function og if, for every pointgg € G, the function has
a power series expansion, in terms of a local coordinatgatvith only
a finite number of negative exponents.

If f(g) is defined on the whole of?, then it will have at most a
finite number of poles becausé is compact; otherwisef,(g) can have
an infinite number of poles in the domain of its definition. Td&t of
all meromorphic functions o forms a field. A meromorphic function
f(g) onZ gives rise to an automorphic functidigr) on $ for the group
I with f meromorphic or and having a Fourier expansion

f(r) = > e A g £ 0,
n-k

at a parabolic cuspg of I', whereA denotes a transformation f on
to itself mapping the cuspy to 0. Conversely, it is obvious that every
such automorphic function of defines a meromorphic function ca.
In the following, we shall denote by ( f) the degree of the meromorphic
function f(g) at the pointg belonging to the domain of definition df.
We shall call the produdf] ¢%(" the divisor of fand the suny v,(f)

g g
the degree of f o7 and denote them byf} and v(f) respectively.
Since f(g) can have only a finite number of zeros and poles/Arthe
product () is a finite product and the suw(f) is finite.

Definition . Let G be a domain inZ. A meromorphic dierential or
simply a diferentialw on G is an assignment, for every local coordinate
tin G, of a meromorphic function, defined in the domain of definition
of t such that the following condition is satisfied:

It t and s are two local coordinates defined ghwith Uy andUs as
their domain of definition, then

ds ,

Two differentialsw andw* onG are equal, whenevey; = wy for ev-
ery local coordinaté defined inG. Using the condition in the definition
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of a differential, it can be shown, by means of the principle of aiwalyt
continuation, that two dierentialsw andw* are equal, itvy = w; holds

for some one local coordinate If f(g) is @ meromorphic function de-40
fined ong, then it defines o a meromorphic dferentiald f for which

(df) = % If wis a diferential andf (g§) a meromorphic function og,

then by f, we shall understand theftirential which assigns the mero-
morphic functionf w; to the local variablé defined inG. It follows that
if w is a diferential defined ig, thenw = wdt; for,

dt

(a)tdt)t = a)ta = Wt.

Thus ift is a local coordinate at a poing of G, then

w = wdt = [Z cnt”)dt.
n=k

We define thelegree ofw atgg to be the leask for which ¢k # 0 and
denote it byv,,(w). It can be seen easily that the degree offtedential
at a point does not depend upon the choice of the local caatedat the
point. We say thagy is azero or a pole ofw, if it is a zero or a pole of
wt. If w is a meromorphic dierential onZ, we define thalivisor (w)
and degree (w) in the same way as we defined the divisor and degree of
a meromorphic function of? i.e. @) = [T %) andv(w) = ¥, v4(w).

g g
We shall call the caicientc_;(c_; = 0 if k > 0) in the expansion ab
atgo mentioned above as thesidueof w at gg and write

res,w = C_1.

The independence of the residue wfat go from the choice oft
follows from the integral representation for the residueegiby 41

1
C_1 = % ~¢‘a)t dt,

where the integral is over a closed curve winding round O thxaace
and contained in the domain of definitiontof
Let w be a diferential onZ. We say that
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1) wis of the first kind if v,(w) > O for everyg € Z,

2) wis ofthe second kindf w has at least one pole and the residues
at the various poles vanish, and

3) wis of the third kind if w is not any of the above two kinds i.e.
has at least one pole with a non-zero residue.

Let go be the trace point ofg € $ and let furthergg be a regular
point. Thent —tgandS < v > -S < 19 > for S € T are local
coordinates afg. If w is a diferential onZ, then

W(r—rp) = W(S<r>-S<rp>)(CT + d) 2, whereS = (35).

For, by definition ofw, we have

dS<1t>-S<19>)
W(r-19) = W(S<r>-S<70>) d(r - 70)

= (-U(S<T>—S<T0>)(CT + d)_z-

Moreover, ifr; is another point such that the trace paiatof 71
lies ‘suficiently near'gg, theng; is a regular point and — 71 is a local
42  coordinate a;. Therefore, we have
d(r — 1)

W(r-19) = wT—Tlet = W(r-11)

showing thatw(;_) is independent of the choice of in a neighbour-
hood ofrg. But if 71 is not ‘suficiently near'rg, then we can join them
by a curve which does not pass through the parabolic andielfiged
points ofl'; it can then be seen easily that_-,) can be obtained by ana-
lytic continuation ofw(,_,) along the curve joiningo andr; mentioned
above. Hence we obtain a uniquely determined meromorpinictifun
f(r) given by (1) = w—+,), Which is defined orp but for a seD con-
sisting of all elliption fixed points of . The definition off(r) does not
depend upon the choice of, as has already been proved above. Since

W(S<ro-5<rp>)(CT + d) 2 = w(r_rp) fOr S €T,
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we obtain that
f(S <t >)cr+d) 2= f(r). (1)

By v,(f) we shall denote the degree fifr) at the pointy. Obviously
Vy(f) = Vg(wr) = vg(w)(g regular)

We shall now discuss the behaviourfdt) at the points oD. Since
the branch points ofZ do not have a limit pointD is a discrete set
and thereford () has isolated singularities at the pointsinfWe shall
show thatf(r) can have at most a pole at any point®f Let g9 be a
branch point ofZ, of orderf — 1 > 0, which is the trace point afy € $.
Thent = ((r — 70)/(r — To)) is a local coordinate afp. Letr; € $ be 43
such that its trace poini; is a regular point and lies in the domain of
definition oft. By the definition ofw, we have

dir —71) ., dr
d—dt W(r— Tl)d dt

= f(r)—dt = [Z cnt”} dt.
=k

widt = W(r-1)

with ¢ # 0if v, (w) = k. But —gt = 2ityotT Y (r—T0)%(1g = Xo+iy+0);
T
therefore

(r — To)?(7) = 2ityo Z cnt™ Y g £ 0 @)

— 2Ify0 Z Ch (T =

This shows thaf (7) is meromorphic at the point and our assertion
is established. We define thegreeof f(7) at the poinfyg to be the least
exponent which actually appears in thpower seried{2). Thus we see
immediately that

)t’(n+1)—1

Voo () = Vg (@) + 1 — 1/£(go elliptic).
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Let go be a logarithmic branch point &# andrg a point in the class
of go. We have seen already that e#"A<™/1 whereA = (% §) with
|Al = 1 is a transformation af onto itself mappingrg to co andu is a
real number- 0, is a local coordinate ap. Lett; € $ be such that the
trace pointy; of 71 is a regular point lying in the domain of definition of
t. Then, as in the preceding case, we get

wdt = w(T_H%dt = f(r)%dt = [Z cnt”] dt
n=k

. . dt  2xi
with ¢ # 0 if vy, (w) = k. But i - —I(alr + ap)~%t; therefore we
T U
obtain that
2 . (o0
(@t +a)’f(D) = =0 ) cat™. )
H n=k

We define thalegreeof f(r) at go to be the least exponent which
actually appears in thepower series (3) and obtain

Vgo(F) = Vo (w) + 1(g0 parabolic)

It can be verified that the degree ffr) at g9 does not depend upon the
choice ofrg in the class ofy.

The above discussion shows that given a meromorplierdntial
w ONZ we can associate with it a meromorphic functidm) on $ with
the following properties:

1) f(S<t>)(cr+d)?=f(r)forS=(28)eT,and

2) (@t + a)?f(r) = I, che?NA<™/k at any parabolic cusp df,
mapped too by A= (2 32) € Q.

We shall call such a meromorphic function®f meromorphic au-
tomorphic form of weight 2 foF. Conversely, it is obvious that given
on automorphic form of weight 2, there exists deliential on# of
which the associated meromorphic function$irs the given automor-
phic form. Later on, we shall speak of the series describimey kte-
haviour of f(r) at a parabolic cusp df, as the Fourier expansion of
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f(r) at this cusp. We shall call(r) anintegral automorphic forror
simply anautomorphic fornof weight 2 forT, if f(z) is regular in$
and further, if no term with a negative exponent occurs inRbarier
expansions off (r) at the parabolic cusps df. If w is a diferential
of the first kind on#, then the associated functidifr) on $ has the
following two characteristic properties:

1) f(r) is an integral automorphic form of weight 2 fbrand

2) the constant term in the Fourier expansion$(ej at the parabolic
cusps ofl’, vanishes.

We call such an automorphic formausp form a weight 2 forf.
Conversely, it is easy to verify that ff(r) is a cusp form of weight 2,
then the associatedftirential onZ is a diferential of the first kind.

Let (f) = T g%(") denote the divisor of a meromorphic automor-
QER
phic form f(7) of weight 2 forI". Then we have proved above that

o €
(=) Ja]| [n&Y" 4)
r=1 s=1

wherew is the associated fiierential onR; g1, g2, ..., 8, are the loga-
rithmic branch points oft andny, ny, ..., ng, are the branch points of
finite positive order given by —1, 6> —1,. .., fe, — 1 respectively. Sim-
ilarly, if 3, vy(f) denotes the degregf) of f(z), then

€
v(f) :V(a))+0'+Z(1—1/€j) (5)

j=1

The complete construction of all meromorphic functions difiér-
entials on a compact Riemann surface has been given by HsBate
in a series of papers with the help of the so-called ‘Poinsarees’.
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The Modular Group and its
Subgroups

1 The Modular Group

47
In § @ of chapte[IL, we observed thaf'ifs a hyperbolic horocyclic group

of motions of the hyperbolic plane, thefiis an unbranched covering
surface of the Riemann surfacg associated td’, sincel’ does not
have any elliptic or parabolic fixed points. Moreovergifis a normal
fundamental domain i# for T, then, by [1) of chaptéd % M,

0< %i‘s(?g) =2p-2,

where p is the genus ofZ. This shows thap > 1 and therefore, a
closed Riemann surface of genus 1 cannot hévas an unbranched
covering surface. Thus horocyclic groups whose associtedhann
surface is of genup < 1, must have parabolic or elliptic fixed points.
On the one hand, the study of such groups is of importance fham
point of view of applications in the Theory of Numbers; on thitber
hand, it is naturally preferable to have an unbranched auyeurface
for the Riemann surface when the study of the Riemann suifaoé
foremost importance. The latter object can be achieved @ansef the
uniformisation theory for Riemann surfaces. A principaule of this
theory states that all closed Riemann surfaces of genud are asso-
ciated with hyperbolic horocyclic groups of motions of thgarbolic
plane and in the same way, all closed Riemann surfaces okdeate

43
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associated with the fixed pointfree discrete groups of Baeln motions
of the whole complexz-plane with compact fundamental domain. In
the following, we shall examine the latter case more closkét B be

a discrete group of motions of the whole compleglane generated by
two real-independent translations- z+ w andz —» z+ «’. LetM be
the module generated lay andw’ over the ring of rational integers. It
is obvious thatt is i,somorphic toB. We can assume, without loss of

. w ., . .
generality, that = " has positive imaginary part, so thabelongs to
¢ . A fundamental domain foB is given by

F={dz=rw+r'ov with0O<rr <1}

If we identify the equivalent edges &, we obtain an orientable
polyhedronZ. Let go € # be the trace-point afy; then the function
t = t(g) = z- 7y is introduced as a local coordinate gt Provided
with the analytic structure defined by this local coordinsystem,%#
becomes a Riemann surface of genus 1, with the whalane as an
unbranched covering surface. We shall call the complex rusabpand
w’ periodscorresponding to the Riemann surfageand M the period
moduleassociated t&7. We define two Riemann surfacegand%* of
genusp (not necessarily 1) to beonformally equivalenif

1) there exists a topological mappingof % onto%* and

2) if t = t(g) is a local coordinate at a poigh andt* = t*(g*) is a
local coordinate at the poinf, = o(g0) of Z*, then a neighbour-
hood of 0 in the-plane is mapped conformally onto a neighbour-
hood of 0 in the*-plane by

t=t(g) 2 g-oo0(g =g > t°({t) =1,
i.e. in a neighbourhood of 0, we have

t* = gt + ot + ... with g # 0.

For the conformal equivalence of Riemann surfaces of gepuge 1
prove the following
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Theorem 6. Two Riemann surface® and %* of genus 1 witht and
M* as their respective period modules are conformally eqeivaif and
only if there exists a complex number=k 0 such thatdt* = ki =
{ka|a € M.

Proof. If M* = kM with ak # 0, thenz modM — Z* mod N*
uniquely defined by — z* = kzis a conformal mapping ofZ onto
x*. Let# andZ* be conformally equivalent; then we shall show that
NM* = kI for some complex numbde = 0. Lety (respectivelyy™) be
the trace mapping from the compleyplane toZ (respectivelyz*) i.e.

¢(2) = gforze gin %, and
" (Z)=g" forz e g iInZ".

O

Since the trace mapping is locally a topological mapping, it fol-
lows that an ardV in the z-plane is uniquely fixed by its starting point
and its image inZ by ¢ and to every ar®\p in %, there corresponds
an arcW in the z-plane such thap(W) = Wp, where the initial point
of W is a given point with the initial point 0¥\ as its trace point. Let
go andgg = o(go), Wwhereo denotes the conformal mapping &f onto
Z#*, be corresponding points & andZ*. We choose two pointg and
z, in the zplane such thaty € go andz, € gj. Letzbe any arbitrary
point of thez-plane and/V an arc joiningzy andz Then the arero(W)
in %", havinggg as its initial point, uniquely determines an ak¢ in 50
the z-plane with the initial poin;. The end point* of W is uniquely
determined because an &ktis closed in the-plane if and only ifp(W)
is homotopic to zero inZ and the latter property is preserved by a topo-
logical mapping. We define a-1 1 mappingy from the z-plane onto
itself by z* = y(2). Sincey = (¢*)1- o - ¢ locally, y is a conformal
mapping of thez-plane onto itself. Therefore necessarily we have

Z' = kz+ c for some complex numbeksandc with k # 0. Bute(W)
is closed or open if and only if¢o(W) is closed or open; therefore

z— 75 = O(ModM) & Z' — 7z, = O(modNt*)

with z* — 7, = k(z - ). This proves our theorem.
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From the above theorem, it follows that{ib*, »*'} is a basis of)t*,
then the conformal equivalence @f and®* implies that{w* /k, w* /K
is a basis of# i.e. there exists an integral matr& = (35) with
determinantS| = +1 such thatv*' /k = aw’ +bw, w*/k = cw’+dw where
{w,w'} is a basis oM. This shows that if* = w* /w andt = '/,

then
ar+b

cr+d’

We can assume without loss of generality thats well asr* has
positive imaginary part. Thereforl&| has necessarily to be equal to
1. Consider the dlierentiald(z/w) on %, wherew is as above. Itis a
differential of the first kind and its integral along any closetvelwon%
has a value which is a linear combination of 1 andVe shall callr a
normed periodof #Z. So we have proved the following

TT=S<1>=

Theorem 7. Two Riemann surface® and %* of genus 1 are confor-
mally equivalent if and only if their normed periods are a@liént under
the group

r= {2 3|ad —bc=1;a,b,c d integral.

We shall call the group’ defined in theoreril the modular group
and, unless otherwise stated, denote it alwayE.lyis obvious that the
groupT acts discontinuously off. The above discussion shows that
to every point of the quotient spaé&/T corresponds a class of confor-
mally equivalent Riemann surfaces of genus 1 and conveitsetyvery
such class is associated uniquely a point of the spgderepresented
by a normed period of some element of the class.

In the sequel, we shall adhere to the following notation:

(1 1. (0 1 e (101
U_(O 1),T_(_1 O) andVv =U T_(_1 0)'

In order to find a normal fundamental domgrfor I', we proceed
as follows. A simple consideration shows thaf(yo > 1) is not a fixed
point forT". The perpendicular bisectors of the lines joining the oint
U <iyg>=iyp+ 1 U <iyyg >=iyp— 1 andT < iy >= i/yg to
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o . . 1 1
the pointiyy are given by the equations= > X=—=andx’ +y* =
1 respectively, where = x + iy. Therefore the construction & in
chaptefll§ B, shows thaff must be contained in the hyperbolic triangle

o = {T||X| < % x? + y? > 1} bounded by the hyperbolic lines= J_rE

andx? + y? = 1. Obviously3(Fo) = n/3. Moreover,3(§) > /3, 52
because the groupcontains a parabolic transformation and the area of
a fundamental domain of a discrete group of motions of thestyagdic
plane, which contains parabolic transformations, is, asqd in ch[L,

§ M, at least equal ta/3. SinceyF C Fo, we haved(F) = I(Fo) = /3.

But both & and &g are closed sets, therefofe = &, proving that a
normal fundamental domain of the grolips given by

8:{T|T:x+iy,|x|s:—ZL,x2+y221,y>O} 1)

We shall show thal” cannot be a proper subgroup of a discrete
group of motions of the hyperbolic plane. T is a maximal discrete
subgroup ofQ. If possible, letl” be properly contained in a discrete
groupI™. We choose the centigy of &, the normal fundamental do-
main of " constructed above, in such a way thatis not a fixed point
for I'* also. Then the normal fundamental domginof I'* with the cen-
treiyp is contained iry. But &* has a parabolic cusp becadsecontains
I' and therefore at least one parabolic transformation; &%) > 7/3
and as in the preceding case= &*. Since the boundary substitutions
of § and §* are the same, the groupsandI™ are generated by the
same set of transformations in view of theofd@dm 5. Hence wé hawe
r=r1-.

The normal fundamental domai of I' defined in [1) has 3 in-
equivalent fixed points, namely, the poiitg = €¥/3 andeo. The two
fixed pointsi andp are elliptic fixed points, because the subgroups of
I" which leave them fixed are generated respectivelyf andV. Since
T2 = V3 = —E, these points correspond to the branch points of order 1
and 2 respectively on the Riemann surface associat€dotpin other 53
words,i andp are the elliptic fixed points of ramification index 1 and
2 respectively. From equation (1) of chapfér§l, we see that the
associated Riemann surface of the grbup of genus zero.
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Remark. Any horocyclic groupl” with a hormal fundamental domain
& of volume3(F) = n/3 and witho > 0 is conjugate to the modular

group.

Proof. In the notation of cHJI§A@we haver = 1,e5 = 2,61 = 2, £ = 3.
Without loss of generality, we may assume that the fixed pojjft)
and cu(zl) coincide withi andp = €¥"/3 respectively (replacing’ by a
conjugate group, if necessary). Th&nv € I'. But T andV generate
the modular group which is a maximal discrete group, as we Baen.
ThusT is identical with the modular group. m|

Figure 2.12:

Theorem 8. The transformations F ( 4 §) and W= -V = -U~'T =
(‘11 ‘01) generate the modular group. They satisfy the relations

T4=W3=E, WT?=T2W
and these are the defining relations for the group.

Proof. SinceU andT are the boundary substitutions of the normal fun-
damental domaify for I" given in [1), the transformatiorld andT and
thereforeW = -V = —U~1T andT generatd’. m|
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It can be easily verified that the generators satisfy thegietations.
Let R = E be an arbitrary relation ilv. Without loss of generality, we
can assume that

R=TYWHTY2WRTY2..o W = E,

With the help of the given relations and cyclic permutatiofshe
factors, we transform this relation into a reduced relatibthe type

Mp = TEWELTRWeR ... ToWen = T2

with eg = O or 1 andg = +1( = 1,2,...,n). We shall show that
necessarilyn = 0 i.e. any given relation is a consequence of the relations
mentioned in the theorem, and this will complete the prooé phbve,

by induction omn, that if M,, = (‘2‘”‘ 3:) thenay, b, ¢, dn > 0 forn > 1

and moreoveb, andc, are not simultaneously zero. Whare 1,

10 11

wefy 3erfo o
according a®; = 1 or—1. Let us assume that the assertion is true for
Mn. Then 55

Mn+1 — MnTaﬂlWeml
_ an+bn by or an an+by
ch+dy dy Ch Cn+ 0y
according a®,,1 = 1 or-1. This shows that the relatiokl,, = E is
satisfied if and only ih = 0 and consequentlgy = 0.

Finally, we shall mention the use of the modular group in the r
duction theory of positive definite binary quadratic fornThiroughout
our discussion, we shall consider two-rowed real positigmraetric
matrices as associated to positive definite binary quadfatins. Let

A = (2 %) be a real symmetric matrix. Thehis positive @ > 0) if
and only ifag > 0 andapa, — a2 > 0.

Definition . Two positive symmetric matrices A and B are said to be
equivalent if there exists an integral matrix S wii = +1 such that
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B = SAS where S is the transpose of S. We say that A and B are
properly equivalent ifS| = 1. If A = (£ &) > 0, then the polynomial

@ E)A(;) _ a0+ 2808 + e

has complex conjugate zeros. Let the two zeros#dand —7, such that
7 belongs tg4. Then

ao + 2a1¢ + B¢t = (¢ +T)(E+T).

We shall say that the pointe ¢ obtained in this way is associated
to the matrix A. Obviously

2a1/ay = T+ T = 2X, a0/ = 1T = X° + Y2(1 = X+ Iy).
If w= +]Al > 0, then
W = aga, — af = a5(ao/az — al/ad)
-8+ ) =

This shows that the matrix A has the representation

A:v_v(x2+y2 x).
y X 1

If B = ([ p¢) is another positive symmetric matrix equivalent to A
i.e. B= SAS, where S is some integral matrix of determinadt then
|B| = |Al and therefore

B:F X* 1

with somer* = x* + iy* such that—-v* and -7* are the zeros of the
polynomial

w (X*Z +y*2 X*)

(15)8@) = bo + 2bé + byt
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But with(25), we have

&

S i W [ g

_(a+ c§b+gd)(2‘l’ Z;)(g . dcg)

= (a+ c&)ag + 2a1 (b + d&)(a+ c£) + ap(b + d&)?

= ap{(a+ c&)%rT + (1 + T)(b + d&)(a+ c£) + (b + d&)?}
= af(a+c)r+ (b+doH(@+ )T + (b + dé)}

= ap{é(cr +d) + (ar + b)}{&(ct + d) + ar + b}
—alcr+dPE+S<T>)(E+S<T>);

@ 5)5(;) - (18SAS (1)

therefore 57

™=S<7> for|S| =1
" =S(7) for |S| = -1.

We shall say that a positive symmetric matrix A is reducedwithe
pointt € ¢ associated to A belongs to the fundamental dorfaiof the
modular group given iffl). We have proved that in an equivalence class
of properly equivalent matrices there always exists a redunatrix and
this matrix is uniquely determined if the associated peilelongs to
the interior of .

2 Subgroups of the Modular Group

In general, here and in the following, we shall consider ¢heighgroups
I'* of I' which contain-E and are of finite index if. We shall denote
theindex T : T*) of T* inT by u. LetSq,S,,..., S, be a complete
system of representatives of the right cosetk by T'™*, so that

u
= U IS
i=1
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If & is a normal fundamental domain fbr we shall show thaf*

given by
u
5 = J%s

i=1
is a fundamental domain for*. Since

u

U8t=U &si:UTSL:g,
1

Lel™ Lel™ i= Lel'

&* contains atleast one point from each set of equivalent oirith
respect td™. In order to prove thaf* is a fundamental domain far,
it remains to show that if belongs tady* N §; for somel € I'*, L # +E,
thenr belongs to the boundary @&*. Our assumptior € F* N F;
for someL in I'* implies thatr is in &, N JLs; for somei, j with 1 <
I, ] < p If Fs; = §s, for someh so thatl Sy = +S;, we obtainj = h
andL = +E, contradicting our assumption. Therefg¥gs, # &s, for
1 < h < u. Now itis obvious that the interior points @fsz are exterior
points of§*; consequentlyr is a boundary point of* and therefore of
&) . Henced" is a fundamental domain for the grolip. Conversely, if

t
the sety” = | &5, whereS; € I', is a fundamental domain fér, then

it can be ealsi}y proved that= u and{S;, Sy, ..., S,} is a complete set
of coset representatives BfmoduloI™.

It is obvious that the parabolic cuspslItfare the same as those of
I', namely the rational points on the real axis andLet s, S, ..., S
be a complete system of inequivalent parabolic cusfs of here exist
transformationsy; in I" such that

Ai‘1<oo>: s,i=12,...,0.

Consider the grouyAiF*Ai‘l; it hasoo as a fixed point and therefore
containsU" for some integer. Let N; > 0 be so determined that™ is
the least positive power &f belonging to the group‘il"*Ai‘l. Then the
transformations-E and UN' generate the group containedlk;f*Ai‘1
which leavesx fixed. The integeN; determined above does not depend
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upon the choice of the cuspin the class ofs. If § = L < 5 > for
L eI™ andB;! < oo >= ¢ for someB; €T, then

s=Al<o>=L'Bl<o>= AL Bl<o>=c0=
— AL'B! = +U" for some integrat =
= AA'=UBI"B U = UM e BB

This shows that iU is the least positive power dd belonging
to BB %, thenN’ < N;. Similarly we getN; < N/, which proves
that N/ = N;. We shall call the integel; the width of the cusp sector
at the cusps. We shall now construct a fundamental domain Fér
which shows a connection betwegmand the widths of cusp sectors
at the various cusps df*. As we have seen above, it isfBaient to
give a coset decomposition bfmoduloI™ which indicates the desired
connection. We shall show thdfy NUll“*Ai‘lur, whereA; € T and

i=1r=0
N; > 0 as determined above, is a coset decompositidnrabdulol™.

If S eI, then, forsoméwith 1 <i <y andL € I'*, we have 60
S<w>=L<s>= LAY <c0>= S=+LAU" for somet.
Lett=aN +rwith0<r < N;, then

S = +L(ATUNARAIUT e Tr AU

Hence we obtain that

o N-1

r={J{Jratu (1)

i=1 r=0

Moreover, ifS is a common element ¢fA—U" andl"*Aj‘luS with
1<i,j<o,0<s<Njand 0<r < Nj, thenS < o > is equivalent to
boths ands; with respect td™. Because of the choice of the cusps, this
is possible only if = j, thereforeA 2U"SA; belongs td™* showing that
r—s=0(modN;). But0<r, s< N;j; therefores = r and this completely
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proves that the decompositionlofjiven in (1) is a coset decomposition

of I’ moduloI'™*. Hence
N -1
[U &ur] (2)
r=0 A—l

5=
i=1
is a fundamental domain far*, which we shall use in the sequel. Jf
is the fundamental domain fargiven byl of the previous section, the

Ni—1
( U gur) is a cusp sector at the cuspand the width of this sector
r=0 Ai’l

N -1

is nothing but the ordinary width of J &ur, hamelyN;. In particular,
r=0

we obtain that

(C:T")=u=Ng+No+---+ N, 3

Obviously, the elliptic fixed points of* are either equivalent to
or ¢ = €21/3 with respect td"; therefore an elliptic fixed point df* is
either of ramification index 1 or 2. Le} (respectivelye,) denote the
number of elliptic fixed points df* of ramification index 1 (respectively
2). Since3(F*) = % we see from formuldJ1) in chaptgr i that the
genusp of the Riemann surface associated to the giGuis given by

B v i

Let us further assume that is a normal subgroup df. If 1, and
T, are two points of/ equivalent with respect tb, then the subgroups
I't andT, of I'" which leave respectively; andr; fixed, are conju-
gate subgroups ifi. Letty, = A < 71 > with A € T. Then the group
A1A ¢ A A = T leavesr; fixed, thereforeAI',A c I'y. Simi-
larly AT'1A™t c T, HenceA™I',A = I'; and therefore the fixed points
of I'" which are equivalent with respect fbare of the same type. In
particular, all the widths of the cusp sectors at variouslpalic cusps
of I'" are equal and we obtain frdm 3

u=No, if Nj=Nfori=212,...,0.



2. Subgroups of the Modular Group 55

Moreover,e; = N or O (respectivelye, = N or 0) according as(re-
spectivelyp) is a fixed point of™* or not. Thus we obtain the following
table the genus of a normal subgrdtipof I':

p Fixed points of™
1 :
1_%(N+1) i, 0,00
ufl 1
1-Z(=Z 4+ Z
2(N+2) £, 00 @)
1 1
1—%(N+§) I, 00
k(1 1 oo
2\N 6
62

In the above tabley is the index o™ in T" andN is the width of the
cusp sector at any parabolic cus@of
Let N be a natural number. Then the set of matriSesT" with

S= (‘Z‘ E) - (é (1’) (modN)

form a group which we shall denote BYN]. In the following, we shall
determine the indep(N) of I'[N] in T'. It is obvious that two matrice&
andB of " belong to the same cosetBimoduloI'[N] if and only if

AT[N] = BI[N] & A1B e I'[N] & A = B(modN).

This means thatz(N) is the number of matriceS of T which are
incongruent moduldN. We assert that(N) is also the number of in-
tegral matricesS = (23) which are incongruent moduldl and for
which the determinaniS| = ad — bc = 1(modN). In order to prove
this assertion, we have to show that for any masix= (25) with 63
ab - bc = 1(modN), there exists a matri$; in with S; = S(modN).
Sincead — bc = 1(modN), it follows that €,d,N) = 1. Let @, N) = q;
then €, g) = 1 and there exists an integesuch that

s=d/p(modN/g) and §,¢c) = 1.
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This shows that’ = sq = d + rN is such thatq’,c) = 1 and
ab) = (28)(modN). Letad - bc = 1+wN. Consider the matrix

(*2N PN ) wherex andy are integers so determined that - yc =

w; such integers andy exist, becausec(d’) = 1. It is obvious that
at N bYN) is a desired matri$; = S(modN).
The functionu(N) is a multiplicative function oN i.e.

H(N1 N2) = u(Ng)u(N2) for (Ng, N2) = 1.

For the proof, we observe that a solutién= (g g) of the matrix
congruences
S =Si(modN;) (i =1,2)

exists and is uniquely determined modN,, since (N1, Ny) = 1.
Further,|S;| = 1(modN;) for i = 1,2 imply that|S| = 1(modN;N;) and
vice versa. The assertion is now a consequence of

SmodN;N, & SimodN; (i = 1, 2).

Thus, in order to evaluagN), it is suficient to determine its value
of N = p?, wherepis a prime number.
Let uk(p®), for 0 < k < «, denote the number of solutions of

ad - bc = 1(modp?), (a, p*) = p¥,
which are distinct modul@®.

1) k=0. The congruencad = 1+bcmod p*) will have a unique so-
lution for d modulo p® whenb andc are given arbitrarily modulo
p®. But a modulop® can be any one of theg(p®) prime residue
classes modul@®; thereforeug(p®) = p*¢(p?).

2) k> 1. Let, first of all, a be fixed. Then the congruence
ad = 1+ bg(mod p*), (a, p*) = p*

will have a solution fod, if and only if| + bc = 0(mod p¥). For a
givenb, the congruencbce = —1(mod p¥) will have a unique solu-
tion for cmod p* and thereforgp®* solutions modulg?. But, for
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b, we can take any of the(p®) prime residue classes modyd;
therefore, the number of solutions modyibof bc = —1(mod pk)
is p**o(p*). For fixeda,b andc, the congruenced = 1 +
bo(mod p*) determines! uniquely modulop® . This means that,
for fixed a, b andc, the congruencad = 1 + bamod p®) haspX
solutionsd modulo p* and therefore, for fixed a, it hagp®) p*
solutions. Since, for a fixekl the integer a withd, p*) = p¥ has
o(p®~X) distinct values modul@?, we see that

k(p™) = (P )p(p®)p” for k > 1.

The cases 1) and 2) above together give
p(P") = po(P”) + D (P
k=1

= p(p")P* + > w(p (P p”
]
= P @ (PP + (P - p ) + (P - pY)
+--+p-1+1}
=p*(1-p7).
65
Hence we obtain that
u(N) = N3 1_[(1 - p~?)(p a prime number> 0). (5)
pIN

Obviously, the groud[N] does not contain-E for N > 2. Let
I'*[N] denote the group generated b andI'[N], so that

I*[N] = {S|S €T, S = +E(mod N)}.

The indexu*(N) = (I' : T*[N]) is given by

* _ u(N) = 6, forN =2
"= {%“(N) = 3N3 [Tpn(1 - p2), for N> 2. ©6)



66

58 2. The Modular Group and its Subgroups

We callI"™*[N] the principal congruence subgroup of level N is
a normal subgroup df. Obviously,N is the width of the cusp sector
at any parabolic cusp @[N] and therefore.*(N)/N is the number of
inequivalent parabolic cusps Bf[N]. Since, forN > 1, T*[N] contains
neitherT = (_01 é) norV = (_11 %) i andp are not fixed points af*[N].
Together with[(¥), this shows that the germ{$l), of I'*[N], is given by
#*(N) (1 1)

> 5N

p(N) =1+ 5N

Finally, we obtain by[{b),

0, forN=1234,5.
N) = 2(N— _ 7
q

whereq runs over positive prime divisors .

A subgroupl™ of T is called acongruence subgroyif I'* contains
a principal congruence subgroup of lewlfor someN > 1. The fol-
lowing remarkable theorem of Fricke-Wohlfahrt enablesauadsociate
with I'* a uniquely determined principal congruence subgroup.

Theorem 9. Let Ny, No, ..., N, be the widths of the cusp sectors of a
complete system of inequivalent parabolic cusps of a cargm@ sub-
group I'™* and N the least common multiple of{\NNo, ..., N,. Then
*[N] c IT'* if and only ifN divides N.

Proof. Let us assume that‘[N] c I'*. Lets;, S,..., S, be a complete
system of inequivalent parabolic cuspsItfand IetAi‘l < 00 >= §,

A eTfori=12...,0. ThenN; is the least natural number with the
property thatU™ belongs toAT*AL. ButI*[N] c I'*; therefore

UN e[N] = AT*[N]JA L c AT" AL

This implies thatN; dividesN fori = 1,2,...,0 and thereforeN
dividesN. O

Let N be a natural number divisible_lﬂ. In order to prove that
I["[N] c I', it is suficient to prove thaf'[N] c I'*, since—E € I'" and
*[N] ¢ I*[N]. Let S = (2 5) be an arbitrary element &1N].
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67 i) For any matrixA in I and any integeg, we claim that

sle—l(églﬁ) AeT™

In fact, sinceA™! < o > is equivalent tos; with respect ta™
for somej with | < j < o and sinceN; dividesN, we see that

(L9N) e Ar*AL, which implies our claim.

ii) By the definition of ™, there exists a natural numbesuch that
I*[n] c I'*. Since €,d) = 1 and furtherN dividesd, we have
(cN,d) = 1. Therefore, we can find an integgisuch thatd’ =
d+gcN is coprime tan. But( 1 9N) e I in view of (i) with A = E.
It follows thatS; = S(19N) = (2b) e I* = S e I™,
Hence we may assume, in the sequel, tdat) = 1 already.

iif) Consider the matrix

S3=(28)=(3T)S (1) = (cuan ™0™

whereg andh are arbitrary integers. Sinc® € I'[N], we have
b = biN, ¢ = ¢;N with integralby, c;. Now there exist integers
g, h such than divides bothc; + dgandb; + dh. Thusn divides
both bz and c3; moreover,d; = d and so ¢3,n) = 1, by (ii).
Applying (i) with A = ( 9 §), if follows that( _ g ?) and therefore
also( g 1) isinT*. For the matrixS, we could have thus assumed
already, as in (ii) and wdo indeedassumen the sequel thab =

¢ = 0(modn) and @, n) = 1.

We now complete the proof of theordiin 9, using steps (i)dlipve. 68

Applying (i) with A = ({ 9) shows tha( 1_+99NN 1?§N) e I'* for any integer

g. SinceS € I'[N], we havea = 1(modN) i.e. a = 1+ gN for an integer
g. It follows that(,2,5°1) € I*. Moreover,d = 1(modN) and hence
all the three matrices on the right hand side of

(1—aad cKaZC:;-d)) =S4 = (1}d :cL))(la—la g:g\)((l) dil)
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are inI'™*, implying thatS, € T'*. Now

S5 =(83) ("W 27) = (83)(82) = E(modn),
sinceb = ¢ = 0(modn) and consequentlsd = 1(modn). ThusS S;l €
I'*[n] c T'* which together witt54 € T'™* implies thatS € I'*, proving the
theorem.

This theorem show*[N] with N as defined above is the maxi-
mal principal congruence subgroup contained™in We shall call this
uniquely determined numbét asthe level of the congruence subgroup
I'*. With the help of the above theorem, we shall show later thextet
are subgroups of finite index inwhich arenot congruence subgroups.

In what follows, unless otherwise stategl will denote the normal
fundamental domain of given by (1) of the previous section. The
congruence subgrougg[N] and T°[N] (N a natural number) defined

by

To[N] = (SIS = (38) e T, c = O(modN)}
O[N] = TIo[N]T

are of some importance. Obvioudly[N] containsI'[N] and therefore
(I : To[N]) = (I" : TN])/(T'o[N] : T[N]).
But the index ofl [N] in Tg[N] is equal to the number of integral

quadruplesa, b, ¢ andd incongruent moduldN with ad = 1(modN)
andc = 0(modN); therefore [oN : T[N]) = Ng(N). Using [3), we

obtain N)
: _#(N) [ 1
(T : To[N] = No(N) ~ N | (1+ a)

whereq runs over positive prime divisors ™. It is obvious that the
groupI'[N] defined above consists of the matrics= (2 §) € T with

b = 0(modN) and further, [ : T°[N]) = (I : To[N]). Since

U" e Ig[N] & r = 0(mod 1) U" e T°[N] & r = 0(modN),
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the width of the cusp sector at the inequivalent cuspend 0 forT'g[N]
is 1 and N respectively and féF[N] the respective widths afg and 1.
If N = qis a prime number, then

5 ={Qfxuj}Uz§T,

which consists of the two cusp sectors at the inequivalespss and
0 for I'%[q], is a fundamental domain df°[q]. This is a consequence
of relations (2) and (3), since there are only two inequivafgrabolic
cusps fol[q]. 70

We now consider some special subgroup$ of_et K be the com-
mutator subgroup df. In order to provel( : K) = 12, we represent an
arbitrary elemens in I asS = WaTbr\WaeThz...\Wa T - According
to the defining relations for the generatd¥s T of I given in theorerill8,
the sum®,(S) = a;+ax+- - - +a; (respectivelyey(S) = by +by+---+by)
are uniquely determined modulo 3 (respectively modulo 4)S Is a
commutator, it is obvious thag (S) = 0(mod 3) ande,(S) = 0(mod 4).
Thus this is true also for an arbitrary elementgfsinceK is generated
by commutators. Sincei (W) = 1(mod 3) ande(T?2) = 2(mod 4), it
follows thatW andT? are not inK but we have

(TK)* = (WK)® = K andWTK = TWK

This proves thaf’/K is an abelian group of order 12 and the group
K* generated by and T%(= —E) is a normal subgroup of index 6 in
I'. SinceUK = T3WK is an element of order 12 ifi/K, we get

5
I' = | K*U". This proves thaf* = U Fur (see figuréZ 3 is a funda-

menta?l domain foK*. Since the normal subgroug® does not contain
both T andV, neitheri nor p is a fixed point ofK*. The width of the
cusp sector at the parabolic cuspfis 6; therefore, from[{4), we see
that the genus oK* is 1. SinceTU™® = V3T~2 = E(modK®), it is
obvious that the transformations

Ar=US A =TU3 A;=UTU™* A, =UTU®
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belong toK*. They are the boundary substitutions®f, therefore to-
gether with—E they generaté&*. 71

Figure 2.13:

We shall now show that the groug* is a congruence subgroup of
level 6. Letl'y denote the group generated B¥[6] and K*. It can be
verified thatl'o/T™*[6] is an abelian group and moreover,

A3 = A3(modT™[6])
ASA3 = Ay(modT[6])
A = AS = E(modT™[6]).

72 showing that, for < k < 6 and 0< ¢ < 2, A';Ag represent the cosets of
I'o moduloT™[6]. Thus (o : T*[6]) < 12 and therefore

(C:I[6]) _ 72

6=(r3K*)2(riro)=m_l—2= :

which proves thatl{ : K¥*) = (' : Tp) orI'o = K* andI'™*[6] c K*. The
commutator subgroup is a particular example of the so-atadigcloid
subgroup’ ofl". In general, a subgroup of I' is said to be aycloid
subgroup if the fundamental domain & has only one cusp sector i.e.

o = 1. If u is the index ofZ in T, then{J/; Fy: is a fundamental
domain forZ clearly. Petersson has constructed an infinite number of
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cycloid subgroups df and proved that exactly 1667868 are congruence
subgroups thus showing that there are infinitely many sulpgofT’
which are not congruence subgroups. He has further prowdath
subgroups of index 6 inT are congruence subgroups.

In the following, we shall determine all congruence subgsoof
I' of level 2. LetI™ denote such a subgroup. Then, by theofém™9,
contains™[2] = I'[2]. Since the index of [2] in T is 6, the index of™*
inT is either 6 or 3 or 2. This shows thdt*(: I'[2]) = 1, 2, 3 according
as(:I") =632

Let C : I2]) = 1i.e. I'* = I2]. SinceU? belongs tol[2],
the width of the cusp sector at the cuspis 2. ButI'[2] is a normal
subgroup of” and therefore the width of the cusp sector at any cusp of
I'[2] is 2 and there are three inequivalent cuspE|[@&i, for example 0,1
andco. It is obvious that

F =@ UFu) Y (FTYUSTUu) Y (FuT U BuTu)

is a fundamental domain fdr[2], because it consists of three cusps
sectors at the inequivalent cuspd§2].

E U
Ty uT

0 1

Figure 2.14:

It now follows that
I=T[2QUT2JU UT[2]T UT[2]TUUT[2JUT UT[2JUTU.

If we replace some parts §" in figure[ZI# by suitable equivalent
parts, then we obtain a fundamental domain as shown in figlife 2
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E U?

TU?T!

Figure 2.15:

It is obvious thatU? andT U2T ! are inI'[2]; they are the boundary
substitutions of the fundamental domain in figlre 2.15. &foee U2
andT U?T 1 together with-E generatd[2].

Let (C* : T'[2]) = 3. ThenI™/I'[2] is a Sylow subgroup of order 3
in T'/T[2]. ButI™/I'[2] is of index 2 inI'/T'[2]; therefore it is a normal
subgroup. Henc&*/T'[2] is uniquely determined and thereforé is a
uniquely determined normal subgroupIaf We shall denote it b\N,.
The groupN,/T'[2] is generated by any element of order 3. Sikcgoes
not belong td'[2] and V? belongs td[2], we have

N, = I'[2] UT[2]V U I[2]V2.

MoreoverU does not belong tdN,; because, iU belongs toN,,
thenT = UV belongs toN, implying thatI" = Ny, a contradiction to
(" : Np) = 2. Therefore

= N2U N,U.

andg* = F U Su (see figur¢ 216 is a fundamental domainKprwith
the boundary substitutiorid? andUvVU~1,
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U2

N T

Uvu
0 1

Figure 2.16:

Let (" : T'[2]) = 2. ThenI*/T[2] is a Sylow subgroup of order
2 and there are three conjugate Sylow subgroups of orded 2Iif2].
One of these subgroups is the so-calleeta-group

m:nathmr

The groupl’y consists of the matriceS = (28) in T with either
b= c=0(mod 2) ora=d = 0(mod 2) and it is not a normal subgroupé
of I. The width of the cusp sector at is 2, becauséJ)? is the least
positive power ofU belonging tol'y. Since [ : T'y) = 3, we obtain
from @) thatl'y has only one cusp, say 1 (inequivalentt), the width
of the cusp sector at which is 1. It is obvious that

5 =@ 50 Jsur

is a fundamental domain fdrg, since it consists of cusp sectors at the
two inequivalent cusps dfy. Thereforel' = T'y UI'yU JTyUT is a
coset decomposition af moduloT'y. If we replace a part of the above
mentioned fundamental domain by a suitable equivalent p&rbbtain

a fundamental domaiy* given by

F ={rlr=x+iy,N <17 >1  (see figurdZa7)

with the boundary substitutiors andU?2.



66 2. The Modular Group and its Subgroups

| |

N

T

Figure 2.17:

77 The above discussion shows that there exist only 5 congeusuiio-
groups ofl" of level 2.

We shall now construct infinitely many subgroup of finite irdter’,
which are not congruence subgroups. We consider confignsatiand
Il as shown in figur€Z18 and which formed by imagesyalr images
of parts of& underT.

Figure 2.18:

We take a copies of the configuratibandb copies of the configu-
ration 1l and arrange them in some order so that the resuiijuge is a
connected domain s&y* (see figur¢ 219 foa = 3, b = 2), which has
as a boundary point.
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P
7
~_ 7 ~__ 7 ~__ 7
Ay A, As . As
Figure 2.19:

78

The transformationg\y, Ay, ..., A/(r = a + b) are elliptic transfor-
mations of order 2, because they are conjugate$ of I'. Any cir-
cular arc of the boundary g§* is mapped onto itself by one of these
elliptic transformations. The vertical edges&f are equivalent under
P = U%*D_ | etI™ denote the subgroup dfgenerated by, Ay, ..., A,.
We shall show thaff* is a fundamental domain fdr* and that for a
suitable choice ol andb, T is not a congruence subgroup. From
the fact thaty* is a fundamental domain far* (to be proved later), it
is obvious that™ has only two inequivalent parabolic cusps, for ex-
ampleco and 1, and the elliptic fixed points @f* are equivalent to
i underI". Moreover, the widths of the cusp sectorscatand 1 are
given byN,, = 2a+ b, N; = a + 2b respectively. Using (3), we get
u=(T:T*) = Ns+ N7 =3@+b). Let us suppose that* is a con-
gruence subgroup of levél. Let us assume that = a+ bis a prime
number an@, b > 2. Sincel’ > T™* > I'[N], u dividesu(N) and therefore
p divides

u(N) = N3 1—[(1 -q?%) =N* l_I(q2 — 1)(N|N*IN3, g a prime number)
aiN aiN
79
But N, by theoreniD, is the least common multipleMf = p + a
andN; = p + b, thereforep does not divideN. Thusp divides 7 - 1)
for at least one primg dividing N. Sincep > 5, q= 1 is even and

divides%(q + 1). Obviously,q divides eithermp + a or p + b, becausey

dividesN which is the least common multiple @f+ aandp + b. But
a,b > 2 anda+ b = p, thereforeq < 2p — 2. This shows thap divides
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1 o .
E(q + 1) which is diferent from zero and strictly less th@anHence our

supposition thaf™ is a congruence subgroup is false wteen b = p

is a prime number and, b > 2. But there are infinitely many pairs of
natural numbersa b) with the above property; therefore our assertion
that there exist infinitely many subgroupsIobf finite index which are
not congruence subgroups is proved.

We shall prove now tha* is a fundamental domain far. In order
to prove thatg* contains atleast one point from each set of equivalent
points undef™, it is suficient to prove tha¥y = | J.ge+ &s. Let D’
andD” denote the two triangles into which the imaginary axis sjlie
fundamental domaify for I'. Let Dg, D4, ..., Dy be a chain of triangles
such thatD; is equivalent toD” and D”” underI” and the triangle®;
andDj,1(i = 0,1,...,n—1) have an edge in common. Then we shall
show by induction om that Dy, is contained ingg for someS € I™,
providedDg belongs to some image & underl™*. Let us assume that
the triangleD; belongs to‘{ygt for S; e " for somet with0 <t < n.
ThenS;t < Dy > is contained iry*. Since the triangle$;* < D; >
andS{1 < D¢y1 > have an edge in common, the trian@p1 < Diy1 >
is either contained if§* or in 8*Rt, whereR; is any one of the boundary
substitutionsp*?, Ay, Ao, ... A; of F*. In any caseDy,1 is contained in
?ygm with Si,1 = S; or S;R;. Since, by assumptiomq belongs to some
image of&* underT™, it follows, by induction, thaD, belongs to?ygn
for someS,, belonging toI™*. This proves that an arbitrary triangl®
equivalent taD’ or D”” underT is contained in some image &f under
I'*, because we can always find a ch@ig D4, ..., D, with the above
properties and with the additional property tiit is contained iny*
andD,, = D. Our assertion now follows easily.

Denote, in general, the set of interior points of a given peatM
by iM. In order to prove thaff* is a fundamental domain fdr*, it
remains to show thag* N'Fs # 0 for someS in T* implies S = +E.
The domair%’;k is obviously bounded by two vertical lines and circular
arcs saybg,. We choose our notation in such a way that thelsrds
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mapped bypkA,PX(¢ = 1,2,...,r) onto itself. Consider the domain

@I O ?Szk
k=—c0

It is bounded by the circular art®,(—o0 < k < 00, = 1,2,...,r).
Let Hy, denote that closed part of the hyperbolic plane which is Hedn
by by, and which does not contaif. Obviously Hxyy NHke = 0 if
(k, €) # (K, £’). With the help of the reIationA{? =-E((=12...,r), 81
any elemens of I'* can be written in the form

S = +p“A,PPA,, - - POA, PX,

wherekq, ko, .. ., kn, k are arbitrary integers. Sino@? = —E, we can
assume without loss of generality thakjf= 0, thenti_; # ¢ fori =
2,3,...,n. Let Ay, = PXA,P*. ThenAZ, = —E for all k and¢ and
moreoverS can be written in the form

S = Ay A, A, Pt’ (8)

wheret; = ki, to =k + ko, ..., th =k  + ko + --- + kg andt = k; + ko +

-+ +kn + K. We shall now prove by induction anthat§a, ., A,r,... Anem 1S
contained inHy,;,. Forn = 1, the assertion is trivial. Let us assume that
N> 1andFa,, a,..A, S cONtained itHy,,. Since (. £1) # (t2. 2),
the substitutionA;,;, mapsHy,, into Hy,.,. Therefore, it follows that
fyAthlAtzfzmAtnm is indeed contained iRly,¢,. Let'§* Mg # 0 whereS
has the form[{8) above. In case> 1, we conclude that

ii}* ﬂ I%*S c iﬁ ﬂ i(%’AtlflA‘zfz'"Atnfn c iﬁ ﬂ Htlfl =0

in contradiction with our assumption. Therefone= 0. But then
TN '8; # 0 implyingt = 0i.e. S = +E. Henceg"* is a fundamental
domain forT™.

3 Excursion into Function Theory

82
In this Section, we prove some results involving functioeaity on Rie-

mann surfaces to be used in the sequel. Until the end of thtoeel
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will denote a horocyclic grougdy a normal fundamental domain fbrin
¢ andZ the Riemann surface associated'to

Theorem 10. If w is a meromorphic dferential onZ, then

Z resw = 0.

QER

Proof. Sincew can have only finitely many poles o#, the sum men-
tioned in the statement of the theorem is a finite sum. fi(e} denote
the meromorphic automorphic form of weight 2 Brassociated with
the diferentialw in chapte 1§ B, so thatw = f(r)dr. Let p be the
set consisting of those boundary pointsioivhich are either poles @b
or proper or improper vertices @&. For every pointrg € p, we find a
hyperbolic disaC,, with g as centre and satisfying the conditions

1. S<C,>=Cpif S<tg>=11,
2. C,,NCy =0if 79 # 71, and

3. wis regular on the boundary and interior@f, with the possible
exception ofrg.

O

If is obvious that we can find a set of disCs, satisfying conditions
1., 2. and 3. mentioned above.f is an improper vertex of, i.e. a
parabolic cusp of, and lies on the real axis, then f0r, we take a disc
touching the real axis af. In particular, if we magrg to co, thenC,,
will be mapped into the domain > c for somec > 0. LetD denote
the domain obtained fror§ by removing the disc€,, for 7o € p i.e.
D = &\ Uryen Cro- ThenD is bounded by hyperbolic lines, which are
pairwise equivalent, and hyperbolic circular arcs. BBt denote the
boundary oD oriented in the positive direction. Then

% f f(r)dr = ) res,f()dr = ) resw, (1)
oD

70€D QER*

whereZ* is the set obtained from¥ by removing the trace-points of all
70 € p. If 5y ands, are two equivalent edges bf, then there exists an
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elementA in T such thatA < s >= . Since f(ra)dra = f(r)dr
and A < s > is oriented in the negative direction, it follows that
[ f(r)dr = 0 and therefore

S1+S
o [t = Y o [t @
brg

oD Toep

whereb,, is the circular arc contained in both and the boundary of
C,,- We decompose into a complete system of equivalent points=
{Tiy, Tigs .-, Ti 1l 1 = 1,2,...,1. Theng; can be interpreted as a point of
Z and obviously we have

% =% | Jior0z....a). ®)

Letg = {r1,72,...,7«} be any one of the pointg, g2,...,9;. Then
the contribution to the right hand side @1 (2) from the pofiotswhich g
is given by 84

Z% f f(r)dr.
br;

Tj€Q

Sinceg consists of equivalent points, there exist transformatidon
in T such thatA; < 7; >= 7y for j = 1,2,...,k and there exists a
neighbourhood of; in Uik:l &a, consisting of a complete sector of in-
equivalent points unddr. We shall now discuss the two cases, hamely
wheng is a branch point afZ of finite order or not, separately.

1. Letg be a branch point ofZ of order{ — 1 > 0. Thent = Z =
((r = t1)/(r = T1))¢ is a local coordinate a$ and the sector of
inequivalent points mentioned above can be described by

|7 <e and O< argz < %

In terms of the local coordinateat g, it is given by|t| <€’ but
oriented in the negative direction, whetds a suitable positive
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real number. Therefore we obtain

k
> % f f(r)dr = Z;% f f(ra)d,
br; br;

Ti€g |=

:% f f(T)de—% 9§w

|z2=€ [t)=ef
O<argz<2r/¢

= —regw.

2. Letg be a logarithmic branch point. Then is a parabolic fixed
point of I'. Let A denote a real matrix of determinant 1 which
mapsr; to co. Thent = eA<™/i with a suitableu > 0 is a local

85 coordinate at. Lett* = A < v >= X* +iy*. The sector of in-
equivalent points, constituting a neighbourhood pin U‘j(:l TA;
mentioned above, is described by

0<X <uandy" >c

and in terms of the local coordinate it is describedtpy e 2%/H,
wherec is some positive real number. As above, we obtain that

S
Z > f f(r)dr = —resw.
=1 ij

Thus, from 1) and{2), we get

;
Z reg,w = — Z res,w
QoEX* i=1

and because of(3), we have

0= Z reg,w+ ) regow = Z resw,

r
QoEX* i=1 0EX

which is the statement of our theorem.



4. The Elliptic Modular Functions 73

If fisa non-constant meromorphic function #hand ift is a local
coordinate at a poingy of Z, then

f = i cnt"
n=k

wherecy # 0, if the degree of atgg isk.
It follows trivially that

d—ff:{%+bo+b1t+...}dt

and therefore r%;,:,d—ff = k. Hence, from theorei_JLlO, we obtain thes
following

Theorem 11. The degree of a non-constant meromorphic function on
Z is zero or equivalently a non-constant meromorphic fumctias the
same number of zeros and poles4rcounted with their multiplicity.

We call a pointg of # a c-place (for a complex numba) of a
function f on Z if the function f — c has a zero at. Since the functions
f and f — ¢ have the same number of poles &) from theoren_II1
it follows that a non-constant meromorphic function takesrg value
equally often. We shall say that a hon-constant meromorfoimiction
onZ is of order nif it takes every valua times. Consequently, we have

Theorem 12. A regular function orZ which has no poles is a constant.

4 The Elliptic Modular Functions

It is well-known that the field of elliptic functions (i.e. dbly peri-
odic meromorphic functions, say with primitive periadsw’ for which
7= has positive imaginary part) consists precisely of all tteonal

w
functions of 2 and &?’ with complex cofficients where is Weierstrass’
function given by

1 1
gz(z) = 2 + Z { ’ 2 ’ 2}
Z oo (z-mw’ —n)?  (Mw’ + Nw)
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The elliptic function£?(2) satisfies the dierential equation
(7' =42@)° - 07D - g3
=429 - e)(P(D - )(F(2) - &)

with & = P(0'/2), & = P(w/2), &8 = P((w + ')/2), @ =
60G4(w’, w) andgs = 140Gg(w’, w) Where, in general,
Guw,w)= > (Mo +nw)™
(mn)#(0,0)

The seriesGy(w’, w) converges absolutely fde > 2 and obviously
vanishes identically whekis an odd integer. The elliptic functiog?(2)
is of order 2, because it has exactly one pole of order 2 iniag@ar-
allelogram. Therefore?(2) takes every value twice in a period paral-
lelogram. SinceZ?’(w’/2) = 0, #(2) takes the value; at w’/2 twice
and thereforee; is different frome, andes. Similarly, it is proved that
& # €3. This shows that the cubic equation

4 - gat-g3 =0
has distinct roots, which implies that its discriminant
Ao(w', w) = 16(e1 — €2)*(e2 — €3)(€1 — €3)° = g — 2705 # 0.

It is obvious that the functionS(w’, w) andAp(w’, w) are homoge-
neous functions of’, w and therefore

Gr(w', ) = W GK(T), Ao(e’, w) = W™ ?Aq(1),
wherer = «’/w belongs ta¢. Consequently, we have
Ao(7) = 2* - 3% . B%(2% . 5G}(r) — T°GL(T)}. (1)

In what follows, T" will denote the modular group ar@ the fun-
damental domain of given in [1) of§. The transformations, which
map the pair of primitive periods’ andw to another pair of primitive
periods, generating the same latticed®ndw are given by

W — aw’ + bw,w — cw’ + dw,
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whereS = (25) belongs tar if the sign ofIm(w’/w) is preserved; or
equivalently by

T— S<71> andw — w(cr + d).

Obviously these transformations leave the functiGpéw’, w) and
Ao(w’, w) invariant; therefore, thefiect of these transformations on
Gk(r) andAg(r) is given by

(cr + d)‘ka(S <71 >)=G(7),(cT + d)‘lZAO(S <71 >)=Ao(7).

As we shall see, the functionSy(r) and Ag(r) are meromorphic
modular forms of weighk and 12 respectively for the grodp By a
meromorphic modular form of weight k (k a natural number) tioe
groupI” we mean a functiorf (r) satisfying the following conditions:

1. f(r) is a meromorphic function i,
2. (cr+d)*f(S <7>) = f(r) for everyS = (2§)inT, and

3. at the parabolic cusp of I, f(r) has the Fourier expansion
f(r) = ) ce®™™
n=k

with only finitely many negative exponents.

We call f(r) anintegral modular formor simply a modular form of
weightk for T if f(7) is regular in and if, in the Fourier expansion of
f(r) at the cuspo, no term with negative exponent occurs. flfr) is
a modular form and the constant term in the Fourier expansidifr) 89
at the parabolic cusp vanishes, then we ¢ét)) a cusp form We shall
now show thatGy(t) is a modular form of weighk andAo(7) is a cusp
form of weight 12 for the modular group. The uniform convergence
of the so-callecEisenstein series (&r) = ¥ mn)«(0,0)(M7 + n)~K, can be
deduced from

Lemma 3. Let(c, d) be two real numbers and letye> 0, |x| < £. Then
there exists a number= §(¢, €) > 0 such that

lct +d| = 6lci+d| (r=Xx+1y).
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Proof. If ¢ = d = 0, we have nothing to prove. Therefore we assume
that at least one af or d is non-zero. We can obviously assume further
thatc® + d?> = 1, for homogeneity. Now the proof takes an indirect
course. Assume there exist sequencgs {dn} and{r, = X, + iyn} such
thatc + d2 = 1, %] < €, Yn 2€> 0 and limy_e [ChTn + dy| = 0. This
shows that

(CnXn + dn)? + c2y2 — 0 asn — oo,

and so|chyn| — 0. Thusy, =€ impliesc, — 0 and nowd, — 0 as a
consequence 6, x,+dn| — 0,[%,| < ¢ in contradiction withc2+d2 =
This proves the lemma. m|

Since the integral

0 21
f 02 +y2)" k/zdxdy_ff(:rde - ki
1 0

X2+y2>1

converges fok > 2, it follows that the serie§y(i) is convergent for

k > 2. Therefore by using the above lemma, we see that the series
Gk(1), for k > 2, converges absolutely and uniformly in the domain
X < £,y 2e> 0. This proves thaG(r) is a regular function ir¢.
Moreover,Gk(r + 1) = Gk(r) andG(r) has Fourier expansion

(o0

G(r) = ) €™

N=—0oc0

In order to calculate the cé&ientsc,, we consider the function

f(r) = i (T+n),

N=—oc0

which obviously is regular i7. Sincef(r + 1) = f(r), we have

[

f(0) = ), ™,

N=—oc0
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where

1
a, = f f(r)e 2" dx

M=—o00

1
Z f(r+m) kg=27inT ¢ x
0

= My f (x + iy) ke ZM™dx

By deforming the path of integration suitably in teelace (with Re
Z = X), it can be proved easily that

10 forn<0
~|-2ni e¥™res. y(z+iy) ke " forn> 0

CZ kL for n > 0.

01
{0 forn<0

Thus we have

27“) — II’]T
(k- 1)12 e

We now consider the serigsy(r) only for even integrak, as we
know already thaGy(r) = 0 for odd integers. By definition,

= Z (mr+n)*= ZZn_k+ZZ Z(mr+n)k
(m,n)#(0,0) m=1n=—co

:22 n‘k+ZZ f(mr),
n=1 m=1

becausenr belongs ta¢ with 7. If /(s) denotes the Riemann zeta func-
tion defined by

Gk(1)

L(s) = Z n~3(for Res> 1)
n=1
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then
Gi(7) = 2 (K) +2 )" f(mr)
m=1
= 2/ (k) + (k i ')I D> nictemin
( - 1)' m=1n=1
92 Collecting terms for whiclf = mn, we obtain

ok & & .
Gi(r) = 2£(K) + 2((k _2”1'))| DD dt e
=11 di¢
d>0
(=27i) < i
dv_ (n)eZmI’lT’
(k- 1)! nzz; k-1

= 21(K) + 2

wheredk(n) = 3 gn d.
d>0
Hence our assertion th@k(r) for k > 2 is a modular form of weight
k for I is proved.

The values of the Riemann zeta functiofs) for s = k(k an even
integer) are given by the formula

1(27)*By
2.kl

where Bx denotes the k-th Bernoulli number. The complete sequence
Bi, By, ... of Bernoulli number is given by the formal equations

(k) = (-1)

(B+1)"-B"=0 (n> 1)

where, in the binomial expansion on the left hand sBeis to be re-
placed byBk. The proof of the above formula can be foundih [6], where
the Bernoulli numbers are also calculated. We mention herealues

of someB:
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5 -691 7
56" Bi2= 730 Bi4a= 3
Using the above formula for the values&gk), we obtain that

Bio =

k e .
) = (V1T ] @)

Since the product of two modular forms of weightandk; is a
modular form of weightk; + ko), it follows by (i) thatAo(r) is a modular
form of weight 12 forT". Lett = 7. Then from [2) we get

4
5(1 +2%.3.5t)(modt?)

T

32

Gy(r) =

and
6

3p.5.7
Therefore equatioril1) shows that

Ao(7) = (27)*t(modt?)

Ge(7) = (1-2%-32. 7)(modt?).

or

Aole) = 20)12 Y co
n=1

with suitable numbers, and in particularc; = 1. HenceAg(7) is a
cusp form of weight 12 foF. Moreover, this property determinég(r)
uniguely upto a constant factor. For ff{r) is a cusp form of weight
12 for I', then the functionf(7)/Ao(r) which is invariant undef” and
which has no singularities i (due to the non-vanishing af, in ) is
constant, by theorem112. We shall now show that the normeditand
form
A(x) = (27)2Ao(7)

has integral ca@écients in its Fourier expansion at the parabolic cusp.
Let M be the module of power series in= €217 with integral codi-
cients. Let us set

P(t) = > ds(Mt”, Q(t) = ) ds(n)t".
n=1 n=1
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Then by [1) and{2),
A7) = (27) Ag(7) = 278-373((1+ 2% 3-5P(t))® — (1- 23- 32- 2Q(1))?}.

But P(t) = Q(t) = O(modM); therefore
Alr) = %2 {5P(t) + 7Q(t)}(mod M).

Thus A(r) has all the coicients in its Fourier expansion at the
parabolic cusp integral if and only if

5d3(n) + 7ds(n) = O(mod 12) for everyn > 1.

But all these congruences evidently hold sind@ 6 7d° = 5d3(1 —
d?) = 0(mod 12) for every intege.

As an object of special importance in the field of meromorjhiniac-
tions on the Riemann surface associated td, we introduce the func-
tion

() = G3/(05 — 273) = 2° - - 5°G{(x)/ Ao(1).

Since J(7) is a quotient of two modular forms of the same weight
for T, it is invariant under the group. ThusJ(r) is an elliptic modular
functioni.e. a meromorphic function o#/I" where¥ arises from¢
on adding the (set of) parabolic fixed pointsIofi.e the set of rational
numbers). Clearl(r) has a simple pole at the parabolic cuspf T,
since

J(7) = 1/(1728)(mod t°).

SinceAg(r) # 0 for rin ¢, J(7) is regular in4 and consequently
takes every value exactly once on the Riemann surfécatached to
the groupl’. We now show thadl(i) = 1 andJ(p) = 0 with p = €¥7/3,
Sincep® = 1 andp? + p + 1 = 0, we have

Gap)=p ), (MPP+mp)*=p > ((M-njp+m™

(m,n)#(0,0) (m,n)#(0,0)
= pGa(p).
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Similarly

Ge()= >, (Mi+m)®=i® > (m-in)®=-Gs).

(mn)#(0,0) (mn)=(0,0)

ThusGy(p) = Ge(i) = 0, showing thatl(i) = 1 andJ(p) = 0. Using the
fact thatA(r) has integral ca@cients in the Fourier series at, it can
be proved easily that

1 .
1728J(T):Y+a0+a1t+--- t=e",

wherea, are integers.

Theorem 13. A meromorphic modular function(#) for the modular
groupT is a rational function of {r) with complex coficients. If, in
addition, f(r) is regular in¢, then f(r) is a polynomial in Jr).

Proof. The functionJ(r) maps the Riemann surfagé associated to the
groupT onto theJ-sphere and this correspondence betwakand the
J-sphere is one-one. Moreover,7i§ € ¢, then obviouslyJ(t) — J(to)

is a local coordinate at the trace pointmgfand if rg = oo, then ¥ J(r)

is a local coordinate at the logarithmic branch poinggf Therefore if 96
f(r) is a meromorphic modular function foy, then f(r) = g(J(7)) is a
meromorphic function on thé-sphere and therefore a rational function
of J(r) with complex cofficients. If f(7) is regular in&, then the only
possible pole off () is att = o« and thereforg(J) can have only one
pole at infinity on theJ-sphere. Hencé(r) = g(J) must be a polynomial
in J(7). m]

In the following, we shall denote by'[k] the linear space (over
the complex number field) of (integral) modular forms of weig(k >
0, k integral) for the groug’. We shall calculate the dimension of this
(linear) space and indeed find a basisIafif which consists of power-
products ofG4(r) andGg(7). If kis an odd integer, then the dimension
of [T, K] is zero, since anyf(7) in [T, k] vanishes identically as evident
from (cr+d)™*f(S <7 >) = f(r) for S = (¢ 4 ). In order to prove that
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the dimension ofT, 2] is zero, we proceed as follows. Let us suppose
that f(r) belongs toT, 2]. Consider the function

o(r) = f f(7)dr.

Since¥ is simply connectedy(r) does not depend upon the path of
integration betweenandr. It is obvious that

gS<t>)=9g(r) +CsforSerT,

whereCs is a constant depending & TakingS to be an elliptic trans-
formation andr its fixed point, we see immediately th@g = 0 and in
particularCt = Cy = 0. ButT andV generatd” andCgrs = Cr + Cg
for RandS belonging tal’; thereforeCs = 0 for all Sin I'. In particu-
lar, C(U) = 0, which implies thag(r + 1) = g(7), forcing the constant
term in the Fourier series df(r) at oo to be zero and showing thgfr)
is regular ato. Now the functiong(r), which is invariant undefr” and
which is regular ir# and ateo, must be constant, by theorénd 12. Hence
f(r) = 0, which proves that the dimension &f,P] is zero.

Let us now considerI], K] for even integralk > 2. For anyf in
[T, K], we first find the expansion at a poirg in ¢4 of ramification index
¢ —1 > 0. Since the functiod’(r) is a meromorphic modular form of
weight 2 forl", according to Chapté&l $H, we obtain that

(r -T2 (x) = Y ant™ Y with t = ((r - 0)/(x - To))".

Consider the functiori (r)(J () ¥/2. It is a meromorphic modular
form of weight 2 forT"; therefore, as above,

(r =T F@O@ @)% = ) bnt™

which implies that

(r = 7o) F(z) = () bt M) Y agt™ w2
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_ Z c K/t
n

Since f(7) is regular atrg, we must haven > k/2¢ in the above
expansion off (r) at the pointrg. As the functionsf(r)J (r)1 %2 and
J(7) have a well-defined degree at the trace-pointgfthe modular
form f(7) also has a well-defined degree (possibly fractionathabea- 98
sured in terms of a local coordinatet We callrg an ‘unavoidable
zero' of f(7), if k/2¢ is not an integer. [¥(rg) denote the multiplicity of
the zero at the pointp in ¢, then forrg = i (respectivelyp) with £ = 2

(respectively 3), we have

v(i) > % if k=2(mod 4)

Lif k= —2(mod 6)
3
Vo) 2 {g if k = 2(mod 6)

The sum of the multiplicities of all zeros d{r) in the fundamental
domain of I'i.e. the degree(f) is k/12. For, the function f{(r))*?/
(A(r))¥ is a modular function for the modular group and therefore has
as many zeros as poles, so that(f2 = k. In particular, it follows that

the degree 064(7) is 3 But we have proved thaip) > %; therefore
G4(r) does not vanish at any point &f inequivalent top which is a

T A .
zero of multiplicity 3 Similarly, it follows thatGg(r) has a zero of

T A . . . k a b
multiplicity > ati and has no zero inequivalentitd_et - g+ 3 + >
whereg > 0,0< a < 3,0< b < 2andg,a b are integers uniquely

determined bk. Thenk = 2b(mod 4) andk = —2a(mod 6). Therefore
f(r) has unavoidable zeros of ord%rati and%1 atp. From the above

discussion, it follows thali(r) = f(T)GZa(T)ng(T) belongs toT, 12g]
and h(r)A™9(r) is a modular function invariant undét, which has a
pole of multiplicity at mosqg at the parabolic cusg of I" and no other
singularity. Thus by theorem113,

h(7)
A9(7)

=ag+ard(r) +---+ag(J(n)? =
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h(r) = {ao + a1 J(7) + - - + ag(I(7))F}A%1).

Conversely{ag + a1 J(7) + - - - + ag(J(7))?}AY(7) for all choices of
complex numbersg, ay, . . ., ag belongs toT, 12g]. This shows that the
dimension of the spac&[12g] is equal tog+1. But the mappind (r) —
h(r) from [I',K] to [T, 12g] is linear and one-one, therefore we obtain
that the dimension ofi], K] is alsog + 1. SinceJ (r)A%r) forO<r <g
coincides but for a constant factor wiB}' (r) {20G3(r) — 49G3()}9",
it follows that

f(r) = {ao + aJ(r) + - - - + ag (1)) A%(7)G§(r)G()
can be written as a sum of power-products>a{r) andGg(7) i.€.

f(r) = ) cpaGh()GA(T)
p.g

wherecpq are complex numbers and the sum is taken over all integral
. k a b k p ¢
p,q > (.)Wlt!‘l 4p + 69 = k. Butl—2 =g+ 3 + 2 th.ereforel—2 =3 + >
which implies thatp = a+ 3r, g = b + 2s with integralr,s > 0 and
consequently + s = g. This shows that there aget+ 1 solutions of the
equation 4 + 6q = k. Hence the produc}(r)G(r) with 4p + 6q = k
form a basis forT,K]. Let [X] denote the greatest integer x. Then,

obviously[lﬁz] = g, except whera = 2 andb = 1 i.e. whenk =

. k .
2(mod 12) and, in that CaS[TZ] =g+ 1. Hence we obtain that

[%]+1  if k2(mod 12)
dimension of [, K] =

[%]. if k = 2(mod 12)
We summarise that results proved above in the following

Theorem 14. The power products §%7)Gi(r), where pq are non-
negative integers witdp + 6g = k form a basis of the spad€’, k] for
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any non-negative even integer k. The dimension of the gpakgfor
such k is given by

12

+ 1, for k £ 2(mod12)

and for k = 2(mod12).

k
12|’
In particular, I',K] has dimension 1 fok = 4,6,8,10. Therefore
Gg(r) = chl(T) with some constant # 0. By considering the nor-
malized Eisenstein series i.e. a suitable constant mellpGy(r) and

having 1 as the constant term in the Fourier expansion atafebplic
cusp forT', we obtain

1+ 25 . 3. SZ d7(n)e2ﬂin‘l' — {l + 24 .3. SZ ds(n)eZJTinT}Z.
n=1 n=1

Comparing the cdécients on both sides, we obtain with the help of
dk(mn) = de(M)dk(n) for (m, n) = 1 the following interesting relation for
n = p, a prime number,

P(p*-1)=2°3-5- > d(ab).

a+b=p
ab>k
which is not true in general whamis not a prime number. 101
The Eisenstein serig8,(r) = Y (mr + n)~2 is not absolutely
(mn)#(0,0)

convergent, because otherwise it would represent a nashing mod-
ular form of weight 2 forT", which contradicts the fact that dimension
of [T, 2] is zero. But it can be proved that this series is conditigna
convergent. By using the transformation properties of skises, Hur-
witz constructed a modular form of weight 12 fBbrin the form of an
infinite product, which vanishes at the parabolic cusp ahd therefore
coincides with the modular formy(7). In the following, we shall prove
this fact by using a method of Hecke. Consider the series

Go(t,9) = Z (mr + n)‘2|mr +n"S,
(mn)#(0,0)
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wheresis a complex number. It is obvious that the series is abdglute
convergent foRg(s) > 0. Further, forS = (28)in T, we have

G2(S < 7>, 9)(cr + d)?ler + d|° = G(t, 9).

In order to prove that the seri€(r, ) can be continued analyti-
cally to the left of the half-plan®€(s) > 0, we find the Fourier expan-
sion of Gy(1, 9). Let

f(r,9) = f (t+nN)2r+nS

Nn=—oo

and
o(r,u) = f(r+u,9),

whereu is a real variable and belongs to. Obviously ¢(z,u) is a
periodic function ofu and we can write

(o)

pr,u) = ) a(n 9™,

r=—oco
where the Fourier cdicientsa, (r, ) are given by

1

a(r,s) = f o(T, u)e & du,
0

1
(o]
= Z f(r +U+N) 2 +u+nSeMdu
0

N=—oco
= f(r +U) | + uSe &N du,
Rearranging the series f@»(r, s), we obtain that

Go(r,9) = 20(2+ 9) + 25: i (mr +n)~2jmr + n[~S

m=1nN=—c0
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=202+ 9 + Zi f(mr, 9),
m=1

because withr, mr also belongs ta¢ for m > 1. But f(mr,s) =
o(mr,0) = > a(mr,s) and from the integral representation of

r=—co

a;(mr, ) it follows thata, (mr, s) = m1~Sa,;m(7, 5); therefore

Go(r,9) = (2 + s)+2Zm 1-s Z am(7, 9

r=—o00

=22+ 9+ 21+ J2(r, 9 +2 ) 1> M ay(r,9).

nz0 | mn
m>0
In order to calculatey,(t, S), we proceed as follows. With the help
of the substitutionu? + 1 = v-1, we obtain that 103

1
®  du 1 _3 _1 1
@iy 3 [ via-vtav- 2T T
0

Sinceay(r, s) does not depend upon the real partpive have

ao(r, 9) = f(|y+ u)” |(|y+u)| Sdu= y f(l +u)” 2(u + 1) Zdu

2 S S
B (%)F(z) _5 T(S3Hr(3)
B y1+s I'(3+1) I3 +2)
IEhrG) (1_ LS+ 1) G RUC)
S YRS+ 1) s+2)  2ySI(5+2)

This shows that(1+ ) ag(r, S) is regular in the half planRes> -1,
because/(s+ 1) — 1 ass — 0. Moreover

{¢(1+ dao(r, 9}s=0 = —

z
>y



104

88 2. The Modular Group and its Subgroups

Forn= 0,
an(r, 9 = f (r+ U237 + u) 2e Mgy

We choose the branches of the multiple-valued functionfénin-
tegrand as follows:

(r+u)y@= e—alog(‘r+u)’ T+ u)—,B —eghB |Og(?+u)’
where

log(r + u) = log|r + u| +iarg(r+u),_—2” < argl +U) < =,

2
. i -3r s
log(z + u) = log 7 + ul + farg(r + u), —— < arge + u) < 3,

so that, in case is real, argt + u) + argfr + u) = 0. We denote in the
u-plane byC; the contour described lRgr + u) = 0, Im(r + U) < —;y

and the circlér+u| = %ywith the negative orientation. We denote®@y
the reflection ofZ; on the axigmu = 0. Under the assumptidrRes> 0,
the integral representirgy,(t, S) can be converted into a contour integral
overC; or Cy according as > 0 orn < 0.
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We decomposen(r, s) into two partsh,(t, s) andcy(r, S) such that
an(t, S) = bp(r, 9) + Cn(t, 5) with

$ (r+uyZiE+u)zeZduforn> 0

Ir+ul=3y
b 7,5 = 2 s s ;
n(®:9) $ (r+u) 22T +u)zeZduforn<0
T+ul=Jy
and
—2sinZfe?iT (17273 (t + 2y)"2e 2 ™dt for n > 0
1
CI"I(Tv S) = ) 23’0
~2sinZ$e?T [(t + 2y)2-Et"2e#™Mdt for n < 0.
1
3y

In any caseb,(r, s) andc,(t, S) are entire functions of. Moreover, 105
given a compact sef in the s-plane, there exists a positive constant
C = C(y, K) such that

lon(z, 9)l < Ce™W, |cn(, 9)| < Ce 2
for se K and therefore
lan(z, 9| < 2Ce ™MW

This shows that, ifRe$ < o for se K, then

4CZ anTo—l e—ﬂlnly

n#0 | mn
m>0

is a convergent majorant for

Go(r,9) — 272+ 9) — 2,(1 + s)ag(r, 9).

HenceGy(r, 5)—20(2+ ) — 27 (1+ )ag(r, 9) is an entire function ofand
thereforeGy(r, 9) is regular in the half-plan®es> -1, in view of our
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having already proved that'@ + s)ap(r, 9) is regular forRes> —-1. It
follows immediately from the integral representatiorncgfr, ), bn(r, 9)

that
cn(t,0) = O for everyn # 0,by(r,0) =0 forn < 0
and
bn(r, 0) = —27i res._.(u + 7)~2e 2N
= —47°né” ™ for n > 0.
106 Substituting the values @f,(z, 0) in (3), we obtain that
Ga(7) = Go(r,0) = 2£(2) — = — 87122[ > }eZ”‘”T
n=1 \mnm>0

—27r| 7'2
1-24
T— { Z 1- }’

whereq = €¥7, because

2| mler= 3 e = 3
n=1 rglrg) m=1lr=

Consider the analytic function

f(r)—Gz(r)+ﬂ=” [1 242l ]

ForS = (28)inT, it satisfies the transformation formula

2 _ 2ric
f(S<t>)(cr+d) ™ = 1f(7) Pt
becaus&,(S < 7 >)(cr + d)~2 = Gy(r) and
2ni  2ni (c?+d )_ —2ric

2ri 2
(CT+d) cr+d T cer+d

S<7t>-S<7 T-T T—-T7
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In the following, we take for log the principal branch i.e. with log
real for positive real values af Let us set

o(r) = 2t +24 )" log(1 - o).
n=1

Theng'(r) = ;—?f(‘r) and the transformation formula fdi(r) implies
that 107

C
dg(S < v >) =dg(r) + po— ddT

= dg(r) + 12d(log(cr + d)),

and therefore
g(S <7 >)-9g(r) - 12logr + d) = C(S),

whereC(S) is a constant depending & This shows that
h(r) = e =q[ [(@- ")
n=1

satisfies the transformation formula

h(S < 7 >)(cr + d)~12 = F(S)h(r) with €(S) = ), By iteration,
% (S1S2) = €(S1)%(S2) and€'(S) = ¥(-S). Buth(r + 1) = h(r) and
h(i) # O; thereforeg(U) = €(T) = 1 showing thats’(S) = 1 for every
SinT. Thush(z) is a modular form of weight 12 fdr, which vanishes
at the parabolic cusp. Hence it follows thH&tr) = cA(r) with some
constantc. But the coéficient of €™ in the Fourier expansion af(r)
atoo is 1, thereforec = 1 and we obtain that

A(T) — eZﬂi‘r ﬁ(l _ eerin‘r)24.
n=1

The exact value of the constaB(S) occurring in the transformation
formula forg(r) has been computed by Rademachellin [5].
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Modular forms of Real
Dimension

1 Modular forms and Partial Fraction Series
109

As the study of ‘the theta-series associated with a quadiatin’ amply
makes it clear, we need to consider modular forms of noniategeight
as well, if we wish to apply the theory of modular forms to nenb
theoretic problems. Keeping in mind such an objective, wesitter, a
little more generally, modular forms of arbitrary real wetigor a horo-
cyclic groupI’. Unless otherwise stated, the horocyclic groups under
consideration will contair-E.

Before defining a modular form of real weight for a horocydioup
I', we prove, for the sake of completeness, the transformdgionula
for the theta-series, which shows that, in general, thetbketies is not
a modular form of integral weight.

m
Let Q[¥] = Z ke Xk Xe(Oke = Qek)
Ki=1

be a real positive definite quadratic formrimvariables. Corresponding
to Q, we define the theta-series

N, Q) = Z griTQld]
9
whereg runs over allmrowed columns with integral cdiécients. The
seriesd(t, Q) obviously converges absolutely and uniformly in any com-

pact set of4 and therefore represents a regular functiomr af ¢. If

95
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110 the matrixQ associated to the quadratic foi@fx], is integral i.e.gx, is
an integer fok, £ = 1,2,...,m, and if, further, the determinat®| =
thend(t, Q) satisfies the transformation formula

o(-3.0) = oot 0.

where (it)* = e!°9C17) abd log(-it) is positive forx = 0. In order to
prove this, we consider the function

f(x, Q) = Z e 7Qlg+¥

with X' = (X1, %,...,Xn) and Q[X] a real positive definite quadratic
form. Sincef(x, Q) is a periodic function, it has a Fourier expansion

f(xQ =) a(@e™d™

9
where the cofficientsa(g) are given by

a(g) =

o%'_‘

1
..ff(x, Qe 9 Xdx (dx = dxdxs...dx,)
0

1
f QI 21 X

O%H

n
f fe—nQ[x] 2rig’ Xdx

(o0 (o0

= e q] f f e Qe gy

If Ris a real matrix such th&® = RR, letR'g = RQ!g = (&).
Then with the help of the substitution= Rx we obtain that

(o)

a(g) = |Q|—%e—ﬂQ‘1[g] f f e—lr(y+iR"1g)(y+iR"1g)dy
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(o)

m
- Qe ] | f e+ gy,
r=12;,

00 m
= |Q|_%e_”Q_1[g] {f e_”yzdy}

= 1QI 26 '[g]

111
Substituting the values a@f(g) in the Fourier expansion of(x, Q)
we get, forx = 0,

f0.Q =) e =3 ag) = Q) e ld.
g 9

g

If tis a positive real number, then replaci@gby tQ in the above
relation, we see immediately that

Z g tQldl _ (t)_%llQl_% Z e-%Q’l[g].
g g

Our assertion follows at once, on replacingy —i (i.e. essentially
invoking the principle of analytic continuation). Fingllwe assume
thatQ is integral andQ| = 1 so that on the right hand side of the last
relation we can replacg by Qg. We state the result proved above in the
following

Theorem 15. Let Q be an integral symmetric positive matrix of m rows
and determinant 1. Let [Q] be the quadratic form associated with Q.
Then the theta series 112

N, Q) = Z grimQld]

g

satisfies the transformation formulae:

ﬁ(_%, Q) - (039, Q). 9(r + 2,Q) = 3(r, Q).
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TheorenIb shows that the functigf(r, Q) behaves like a modular
form of weight 4n with respect to the substitutiorls and U2, which
generatel’y, the theta group. Indeed®(r, Q) is a modular form of
weight 4nfor I'y and therefore

98%(S < 7 >,Q) = (cr + d)*™98(r, Q), for S = (‘Z‘ 3) €Ty.

Thus
NS <7 >,Q) = v(S)(cr + d) 21, Q),

wherev(S) is a certain 8-th root of unity uniquely determined on fixing
a branch of the multiple-valued functioor(+ d)"i This shows that in
order to apply the theory of modular forms to theta-serigsofid m,
we require the notion of a modular form of semi-integral viaigith
multipliers. In particular, whe®[X] = X2,

9(r) = 9z, Q) = i i

N=—oc0

We shall call the multiplier system of this theta-series, théheta
multiplier system
Letr be a real number. We define

(ct +d)" = &'°9C+9) for real ¢, d) # (0,0) andr € ¥

with logz = log|Z + i argz, where lodZ is real and-n < argz < n.
Obviously

arg(r+ 9)+ (sgnc—1) forc#0

argcr +d) = {ﬂ
7(1 - sgnd) forc=0.

Let M = (myg, mp) be a pair of real numbers distinct from, @ and let
S = (28) be areal matrix with determinant 1. Then we have

(MS < 7 > +mp)(cr + d) = (M7 + M),
with (my, m;) = MS. Therefore it follows that

log(myS < 7 > +myp) = log(my 7 + m;) — log(cr + d) + 2riw(M, S)
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wherew(M, S) is an integer depending di andS. We can now con-
clude that

w(M, S) = %{arg(mls < 71> +Mp) —arg(m 7 + m;) + argr + d)}.

. 3 : .
Obviously w(M, S)| < > But w(M, S) is an integer, and therefore

W(M,S)| < 1. LetM = (m ) denote a real matrix of determinant
1, with M as second row. Defining(M, S) = w(M, S), we shall now

computew(M, S) explicitly for M = (f2 %), S = (38) andMS =

(r;kfl ”*é) with [M| = |S| = 1. Here and in the sequeM will always
denote the second row of the mathk 114

1. ment, # 0. By the definition ofw(M, S),

~ my m d
2nw(M, S) = argS < 7 > +m1) arg@r + m,1) +argf + c)

+ E(sgnml -1)- z(sgnn’{1 -1+ z(sgnc -1)
2 2 2
Let x = Rert be fixed and/ = Im7 — oo. Then

s m a m M
<T>4+— 5 —+ — = —,
m Cc m cm
mp n
argS <7 > +F) - —E(sgnmlcnfl -1),
1

n, i d T
arg@ + Wl) ~3 and argf + E) =3

This shows that

4w(M, S) = — sgnmycn, + sgnimy — sgnny, + sgnc.

2. cmy # 0, M} = 0. Obviously,m; = —cn, and

2rw(M,S) = argS < 7 > +%) +arg@ + g) + g(sgnm’2 -1)
1
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+ E(sgnml -1+ E(sgnc— 1).
2 2
d . .
Let us takex = s Then we see immediately that

S<T>+ﬁ:—+

am_ i .d
m ¢y c m

and

4w(M, S) = sgnmy — 1 + sgnm, + sgnc
= —(1 - sgnc)(1 — sgnmy).

3. cm # 0, m = 0. Itis obvious thatm; = myc and

m
m

2rw(M, S) = —argf + —=) + arglr + g) - %(sgnmz -1)

T T
- E(sgnnf1 -1+ E(sgnc -1)
115 Letting y tend toco for a fixed x, we obtain

4w(M, S) = 1 + sgnc — sgnmp — sgnim;
= (1 + sgnc)(1 - sgnmy,).

4. ¢ =0, mn, # 0. We obtain immediately thad = 1,S < 7 >=
a’r + aband

2rw(M,S) =argS <t > +@) —arglr + %) + E(sgnml -1)
my m’l 2

T , T
- E(sgnml -1)- E(sgnd -1).
or 4w(M,S) = 1+ sgnm — sgnn;, — sgnd
= (1 - sgna)(1 + sgnmy)
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5. c=m=nm, = 0. We havem, = myd, ad= 1 and

2rw(M, S) = _—Zﬂ(sgnmz -1+ g(sgnrﬂ2 -1)- g(sgnd -1)
or 4w(M,S) = 1 - sgnd — sgnm, + sgnnv,
= (1-sgna)(1 - sgnmy)
We collect the results above in

Theorem 16. Let M = (m, ), S = (28) be two real matrices with
determinantl and (m;, m,) the second row of the matrix MS. Then

%{sgnc +sgnmy — sgnny, — sgnfmcnt)),  if meent # 0

—1(1 - sgnc)(1 - sgnmy), if cmy # 0,m;, = 0
W(M, S) = 3(1+ sgnc)(1 - sgnny), ifcm, # 0,m; =0
(1 - sgna)(1 + sgnmy), if mym, # 0,c=0
(1 - sgna)(1 - sgnmy), fc=m=m =0

With the help of the summand systerfMuS), we form the factor 116
systemr((M, S) for an arbitrary real number r, by defining

o(M,S) = O-(r)(M’ S) = e2rinw(M.S)

It is immediate from the definition that
(M7 + )’
(ct+dy -

If S; andS, are two real two-rowed matrices with determinant 1,
then from the relatiors; < S, < 7 >>=S1S, < 7 >, we have

(MmS < 7> +mp) =a(M,S)

(M, $1S) 0(S1,S2) = 0(MS1, S2) (M, Sy).
In particular, we get from theorem]16 that
(S,S™Y) = o(S7L, S) ando(E, S) = o(S,E) = 1.

Since the value ofv(M, S) does not depend on the first row lgf or
the second column @&, we have

W(USM, SUT = w(M, S), (UM, SU") = oo(M, S),
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whereU¢ = (34 for any real numbe.
LetT be a horocyclic group and Id{(r) # 0 be a function with the
transformation property

f(S<7>)=vS)(cr+d) f(r)forS=(25)el.
It follows immediately from the transformation property tfr) that
V(-E)(-1) =1, i.e. V(-E) = & 1)
117 If S = $1Sp with S = (¥ b ') e I(j = 1,2), then

f(S<7>)=1f(S1S2<7>) =V(S1)(C1S2 < 7> +d1) f(Sz < 7>)
= V(S1)V(S2)a(S1, S2)(cr + d) f(7),

whereS = (c, d). Sincef(r) £ 0, we have
V(S1S2) = (S1, SAOUSV(S2). (2)

We shall call a system of numbev§S) defined for allS € " a mul-
tiplier systemfor the groupl’ and real weight, when|v(s)] = 1 and
v(S) satisfies equation§l(1) and (2). Vf(S) (respectivelyv,(S)) is a
multiplier system for the group and weightr; (respectivelyr;) then
ViV (S) = vi(S)v2(S) is a multiplier system fof and weightry + ro,
because

o(Sy, S2)o (S, Sp) = o 1*1D(Sy, Sy).

Moreover, wherr is an even integer(S) is aneven abelian char-
acterofI'i.e. S — V(S) is a homomorphism df into the multiplicative
group of complex humbers of absolute value 1 suchfaB) = v(S).
This shows that if/1(S) andv,(S) are two multiplier system foF and

the same weight, thenvy(S) = V—(S) is a multiplier system foF and

weight O; therefora/(S) is an abellan character df Hence we obtain

all multiplier systems fof" and weightr, from a fixed multiplier system

vy, in the formvivg, whenvp runs over the set of even abelian charac-

ters ofI'. But the group of even abelian characterd"aé isomorphic

to the groupl’/K*, whereK* denotes the group generated by the com-
118 mutator subgroup df and—E. Thus the number of distinct multiplier
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systems for any real weightand groupl is equal to the order of the
groupI'/K* provided there existsne multiplier system for the weight
r and otherwise, it is 0. In particular, If is the modular group, then
the number of distinct multiplier systems fbrand any real weight is 6,
since (" : K*) = 6 as already proved in Chapfér§]l and since at least
one multiplier system for an arbitrary real weight will beos to exist
(See proof of theorem L9 below).

Let us further assume that the above-mentioned fundt{ohis reg-
ular in¥¢. We shall now examine the behaviour bfr) at the fixed
points ofl". Letp be a parabolic cusp dfandA = (£ &) a real matrix
of determinant 1 such th& < p >= . Let N denote the least positive
real number with the property that

H=ATUNAE H=({°[).

Obviously, the subgroup df which leaveso fixed is generated b
and-E. We set

9(7) = (a7 + a) (7).
Using the transformation property é{r), we obtain that

gH <7>) = (a1H < 7 > +ap)"v(H)(hyt + hy)" f(7)
= o(A, H)V(H)(au7 + &) (1)

= &g(1),
where & = (A HV(H),0<x < 1. ©)
If we replacer by A™! < 7 >, then 119

gATUN < 7>) = ¥gAT <7 >)
and therefore the function
h(r) = g(A™ < 1 >)e2mixT/N
is a periodic function of, of periodN. Hence

h(r) = P(e™™/N)
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Or(a.]_T + az)l’ f(T) — eZﬂiKA<T>/N P(eZHiA<T>/N)’

whereP(2) is a convergent Laurent series4nIf we assume thaP(2)
does not contain negative powerszpthen

(a7 + @) f(r) = . Gy, 4)

n+x>0

Let g be an elliptic fixed point of’. Since the transformation

z:T_zO=A<T>, A:(

T—T0

1 —19
1 -7

maps the complex conjugate fixed poingsandT to the points 0 ando
respectively, the groupl’A~! has the elliptic fixed point pair 0 ang.
Therefore for some real numbeythe matrix( ¢ 9 ) belongs toAT A~
and the set of all real numbefss such tha( ¢ % ) belongs toArA~?,
is a discrete module containing If ¥ is the least positive number in

120 this discrete module, then= 9f for some integef > 0. Let us set

Cfa by (e 0
L_(c d)_A (O gnire| A

Then the order of is 2 i.e. LY = —E and the group of transforma-
tions ofI" which leavery fixed is generated bl. From the definition of
L, we obtain that— roc = €/¢. For

a- 7oC b-TOd)_(eﬂi/f 0) _(erri/f —eﬂi/ffo)

AL = (a - T0oC b-— ?Qd 0 e‘”i/[ e—ni/t’ —e_ﬂi/[?o,

Buta+d = €/ + g7/l and therefore
(cro+d) = (@a+d) — (a-roc) = e/,

If o(7) = (v — 70)", then

pll<t>)=(L<7>-L<T0>) :((CT+;)_((?o+d))
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= yr(L)(cr + d) (1),

with a certain constang; (L) depending orL. Puttingr = 7 in the
above relation, we see immediately that

(L) = (ero +d)f =™/t
Writing
9(r) = (r = 70) f(7)
and using the transformation propertygdf) and f(r), we obtain
gL <7>) =L <7t>)f(L <7>)=eyL)g().

But L = —E andg(r) # 0; therefore applying the mapping— L < 121
T > successively times, we get

ML) =€
orv(L) = e /te?/l(g < gy < ¢).
This implies that
gL < 7 >) = o/t

i/t ,
i.e.g(A™? (eﬂo e_gi/[) <z>)=e”llgAl < z>)

(withz=A<1>).
Thus the function
h(z) = z%g(At < z>),

which is invariant under the transformatian— €¥/¢, has a power-
series expansion in terms of the local coordinate((t—1o)/(t—70))¢ =
Z at the pointrg. We may now conclude that

Al<z>)= Cryan/ oo/t
g ao/
fn+ap>0

e -To) f()= D Cuage "%/ with t=((x - 70)/(r - 7).
n+ap/>0
(®)
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Definition. A function f(r) is said to be an automorphic form of weight
r (r a real number) for a horocyclic group and the multiplier system
v(S) if

1) f(z)isregularin¥,
2) f(S<t>)=vS)(cr+d)"f(r), forS=(28)inT, and

3) at every parabolic cusp A < « > of I, f(r) has a Fourier
expansion given bfd) i.e.

(a7 +3) F(1) = ) Gy (IR,

n+x>0

where A= (2‘1’ 5“2) is a real matrix of determinant 1. In particular, if,
for the horocyclic groud”, we take a subgroupy of finite index in the
modular group then, in condition 3), the matrix A alreadydrgjs to
the modular group, since every parabolic cusp of the sulqgigucan
be obtained in this way. We have shown above thag if an elliptic
fixed point ofl", then(r — 7p)" f(r) has a power series expansion given
by @) at the pointrg.

In the following, we shaltonfine ourselves to the subgroups of finite
index in the modular groupAs in chaptefR§ [, I" will denote the mod-
ular group and the subgroupg under consideration will be assumed to
contain—E. The set of all automorphic forms of weighfor the group
I'o and the multiplier system(S) forms a vector space over the complex
number field. We shall denote this vector spacelky, v].

We shall now show that the power series expansiorf§Qfat equiv-
alent points are of the same type, so that the degrdérdfat any point
on the Riemann surface associated Wighs well-defined.

123Case l.Letp=At <o >,p* =B l<oo>= LA <00>, L el be

two equivalent parabolic cusps B§. ThenB™1 = +L-1A-1UK
for some integek. Since—E belongs td" I'g, we can assume that

B=UXAL LetA= (4 &), B=(p, r)andL = (28). Replacing
T by L <7 >in @), we obtain that

(Ll <7>+8) f(L<7>)= ) Cp, OOALN

n+«>0
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or (L < 7 > +ay)"v(L)(cr + d) f(7) = Z Cpyp €KV B<r>/N

n+x>0

or (A, LV(L)(D17 + bo) (1) = " (Coye € 2HMHIN) grilnsniBer>/

n+«>0

orhr +bp) f(7) = > ¢, eBeN
n+«>0
Gy & 2 (MHK/N

h =
With G = = A VD)

Case 2.Let 7o andrj be two equivalent points of. Thent| = st

7o > for someS = (28)in Io. If we replacer by S < 7 > in (&),
we obtain that

= \r _ r T_?B '
(S <7 > 7o) f(S <7 >) = V(S)(cr + d) (( +d)(c_o+d)) f(7)

Z T-— To Cry+d (n+ao
Cn+ao/€ .
Pty -7 cry+d

Thus 124

- TS {n+ag
-7 @)= > cmao/f( _*)
n+ag /(>0
— tn+ag
Cty+d
. * " r 0
wherey(S, 7o) is a complex number of absolute value 1. Hence
our assertion is completely proved.

We define the degreg(f) of f(r) at the pointy of Zo, the Riemann
surface associated 1@, to be the least inder + « (respectivelyn +
ap/?) such thatc,,, # O (respectivelycy.a,/¢z0) according agy is an
equivalence class of parabolic cuspd'gior not. Obviously, the degree
of f(r) at any pointgg of %, is the multiplicity of the zero off () at
70 € go measured in terms of the local coordinate. Thus the totaledeg
of f(r) i.e. the sum of the degrees bfr) at all points 0f% is equal to
the ‘number of zeros’ of (7). It can be proved easily that the numher
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defined by[[B) does not depend upon the choice of the 8o$p< co >
in its equivalence class. We shall call the multiplier sgsteat a given
cuspA! < oo > unramified(respectivelyramified according as the
numberx defined above is zero (or not).

Let f(r) be an element ofi,r,v]. Then, at a parabolic cusp =
Al < oo >with A= (2 ) €T, the formf(r) has a Fourier expansion:

f(7) _ Z b, i(M)A<T>/N forp=c0 A=E
(r-p) f(7) e for p # oo,

because, ip # o, then ¢ — p)" = (r + az/a;)" is a constant multiple of
(a17 + a2)". We define the number

n+x>0

0, if vis ramified afo.
bp, if vis unramified ap.

C(.O)={

The complex numbet(p) defined above does not depend upon the
choice ofA, because iB is another element ifi such thaB™! < co >=
o, thenA = +UKB and this does notfect the cofficienthby. We asso-
ciate with f (r) the partial fraction series

G(r) = C(w) + ) Clo)T—p) ™"
pF

We shall prove that the seri€{(r) converges absolutely and uniformly
in every domairnjx < ¢,y >e> 0 forr > 2 and belongs tolp,r,V]. In
order to find the contributions of the various cusps to thégddraction
seriesG(t), we have to consider only those cusps at which the multiplie
system is unramified. In that case, the contribution of thepgu =
A1 < 0o > is the first term of the series

f(T) — (alT + az)—r Z CnezmnA<T>/N’ with ¢, = Cn(A).
n=0

LetL = (25) be an element dfy and letM = AL = (¢ fi¢). Then
replacingr by L < > in the above series fdi(r), we obtain that

f(T) — 1 Z CneerinAL<‘r>/N
n=0

(a1l < 7 > +ap)"v(L)(cr + d)f
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1 .
— C e2mnM<T>/N
(A DV(D)(mer + mp)! Z‘, "

This shows that the contribution of the cusptA™ < co >= L™ < 126
p > to the serie$s(7) is

Co(A)
o (A, V(L) (M7 + mp)"

Let ok = A;l <o > k=12,...,00be acomplete system of inequiv-
alent parabolic cusps &% at which the multiplier system is unramified.
Then

G(r) = > co(ANG(r, Ax)
k=1

1
o (Aw, V(L)(My + M)’

with G(r, A) = >

L-1<pi>

where (m, mp) is the second row of the matri&L and the sum runs
over those elementk of I'y which give rise to distinct cusps in the
equivalence class gfi. ObviouslyL;? < px >= Lt < pi > for L
inTo(i = 1,2) if and only if LZLIl belongs to the grou@dy generated
by -E andAlleNkAk, whereNy is the least positive real number such
that A,*UNA belongs td'o. This shows that in the summation of the
so-called ‘Eisenstein serie&(r, Ac), L runs over a complete represen-
tative system of the right cosets B§ moduloZy,. ThusG(7) is a finite
linear combination of Eisenstein series, which convergmhibely and
uniformly in every domainx < ¢,y >e> 0 forr > 2 and therefor&(7)

is regular inZ. In order to prove this statement, we have to use the same
argument as foB(7) in chaptefR§ @. Further, ifS = (2 §) belongs to
I'o, then

(cr+d)"'G(S <7 >, A

~ 1 1
B Z o (A, L) (et + dv(L)(mS < 7 > +np)’

L-1<p>

1
VO ) A DM AL ST gy
L-1<p>
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where (1, n,) is the second row of the matr&LS. But
a(Ax, L)o (AL, S)V(S)V(L) = o (Ax, LS)V(LS)

andLS for a fixedS in I'o whereL runs over a complete representative
system of right cosets d@fy moduloZy; therefore

(cr+d)"'G(S < 7>, A = V(S)G(1, A),
showing that
G(S <t >) = Vv(S)(cr + d)'G(7) for S € T

In order to prove thaG(r) belongs toT,r,V], it remains to show that
G(r) does not have negative exponents in its Fourier expansiaaria
ous cusps ofp. This follows immediately from

Lemma 4. Letp1, p2, p3, ... be a sequence of distinct real numbers and
Co,C1,Coy ... ... a sequence of complex numbers. If the series

o) =Co+ Y. Calr—pn)”"
n=1

converges absolutely at a point@f then

1) the series @) converges absolutely and uniformly in every do-
main|x| < ¢, y>e> 0and therefore §r) is regular in¢, and

. cn forp=
2) ImAl<r>—p)gAlcrs)=" PPN
y—oo 0 forp # o0,p1,02,...

Jim g(r) = Jim gAl<7t>) =coforp=oo,

uniformly in a given domaifx| < c. Here A is a real matrix of
determinant 1 such that= A™! < co >.

Proof. (i) Letg(r) be absolutely convergent at the poipt= Xp+iyg
of 4. Lett = x+ iy be in¥ such thatx| < ¢, y >e> 0. Then for

. T— .
T =X +iy = y_Xo we havex/| < ¢,y >€’> 0 for certainc’
0
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(ii)

ande’> 0 depending or ande. By lemmalB (chaptdd & E), it
follows that

- . - o
o+ 2P s g 2 2 o =

Yo Yo Yo
|t = pnl = 0|t — pn

for somes = 6(€,¢) > 0. From here follows immediately asser-
tion 1) of the lemma.

If p = oo, thenA™ = (éﬁl) andg(A™! < 7 >) is a series of
the same type ag(r). Therefore, it sffices to consider the case
A=E. But

)!im o(r) = cp, uniformly in|x < c

follows directly from lim(r — pn)~" = 0 for all n and the uniform
y—>oo
convergence of the serigér).

Let us now assume that# co. The case = p, for somenis 129
reduced to the cage+ ~, p1, 02, .. ., if we replace the seriegr)
by the serieg)(7)—cn(t—pn) ", which satisfies the requirements of

a
lemma. LetA= (P E)andp = Al <oo>=-= ¢p1,p2,...
After some computation, we get

Al<r>—p= —l/(a%(T—A<T>)),
Al<rt>—p 3 1
Al<t>—p, a2(on - p)T - A< 17 >)

Therefore

Al<r>—p)gAtl<r>)

_or Co €0 Cn(pon
— & {(T A<oo>) Z A<pn>)r}

with certaine, of absolute value 1 fon > 0. This is just a series
of the type described in lemma 4 but now without constant term
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Thus, as we have proved already

lim (A < 7> —p)'g(A™! < v >) = 0 uniformly in|x| < c.

y—)DO

This completes the proof of lemrh 4.

Hence our assertion that the serfe&) belongs to I, r, V] fol-
lows immediately from lemmid 4. Moreover, it is obvious frame t
above discussion thd{r) — G(7) is a cusp formi.e. in the Fourier
expansion off () — G(r) at various cusps dfy, the constant term
is equal to zero. Thus we have proved the following

i

Theorem 17. For every automorphic form(#) belonging to[T'o,r, V],
130 r > 2, there exists an automorphic form(£} of the same type in the
form of a partial fraction series

G(r) = C(e) + ) Clo)(z —p) "
p#o
wherep runs over all distinct parabolic cusps &% different fromoo,
such that {r) — G(r) is a cusp form.

With the help of the general theory, we completely charisg#esome
linear spaces of automorphic forms for the theta-group érféfiowing

Theorem 18. Let vy be the multiplier system for the theta seri¥s) =
Yo e"™ andTy, the theta group generated byand U?. Then the
space[T’, k/2,VX] is generated by*(z) fork = 1,2, 3,4,5,6, 7.

Proof. We have proved, in chaptEl £, thatI" has two inequivalent
parabolic cusps sag and 1. Obviously, the multiplier systemy is
unramified ato. We shall prove now thaty is ramified at the cusp 1.
LetA=TU™ = (9 1), sothatoo = A < 1>. Since the width of the
cusp sector at the cusp 1 is 1, the transformakioe A"*UA belongs
toI'. The transformatiorH = (_01 %) generates a cyclic subgroup of
I'y/{xE} which has 1 as a fixed point. By theoreim$ 15@add 16, we obtain
that with respect to the cusp 1

& = o(A, Hvg(H)
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i ((—1, 1) (_Ol ;)) (=1, 0), U2y (T)vg (U2
= vy(T) = &/

But by assumption & « < 1, thereforex = 1/8 and if f(r) belongs 131
to [y, k/2,v'1;] for 1 < k < 8, thenf(r) has an unavoidable zero at
T = 1 of multiplicity k/8. Sincev3(S) = 1 for everyS e Iy, f24()
belongs to [y, 12k, 1]. But we have already proved thaf(r) belongs
to [y, 12k, 1]; therefore, the functio?4(r)/AK(r) is invariant under the
transformations of y. This implies thatf24(r) andAX(r) have the same
number of zeros on the Riemann surfageassociated td'. SinceA(r)
has 3 zeros on the Riemann surface, namely a double zescaad a
simple zero at 1, the number of zerosfdf) is k/8. In particular, the
number of zeros of(r) is 1/8. Butd(r) has a zero of multiplicity 18 at

1; it follows that onZ, itis the only zero of}(r) andd(r) # Oforrin &.
Thus, for 1< k < 8,97%(z) f(r) is invariant under the transformations of
I'y and has no singularities. Consequentiy!(r) f (7) is constant, which
proves our theorem completely.

Itis an immediate consequence of the above theorem thagattialp
fraction series of(r) for 5 < k < 8 is a constant multiple of¥().
But that constant has to be equal to 1, because the constastitethe
Fourier series of the above-mentioned forms are equal tbetefore,
from the Fourier series @(7), we obtain the number of representations
of an integer as sum & squares for 5< k < 8. For 1< k < 5, the
analogous results could be obtained by using the method cifeHiee.
by considering the series of the tyfe(r, s), which we introduced in
chaptefR § @ for deducing an infinite product expression ).

We shall now determine all the multiplier systems for the olad 132
group. m|

Theorem 19. For the modular groud” and for every weight r, there
exist exactly 6 multiplier systems.

Proof. For the proof of the theorem, it is ficient to prove that for
every weight, there exists a multiplier system as we have already stated
above.
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SinceA(r) # 0 for T belonging to, we can defing(r) = log A(7)
uniquely in¢, so that

g(r) = 2nit + 245} log(1 - 7).
n=1

We setA’ (1) = €90). FromA(S < 7 >) = (cr + d)*2A(1), follows
that
A2(S < 7 5) = vo(S)(cr + d) AT 2(7).

for S = (28) e I with a certain multiplier syster(S) for the groupl
and the weight. Hence the theorem is established.

In order to calculate the multiplier systems explicitly, pr@ceed as
follows. Letto denote any one of the elliptic fixed poirg&™/3 i of T
ThenV = (4 §) (respectivelyT = ( 9 §)) generates the subgroupof
leavinge?™/2 (respectivelyi) fixed. Letv(S) be a multiplier system for
I' and the weight. Since

V3=T%=-E,wW(T,T) =w(V2V) = -1andw(V,V) =0,
we have
e = o(VZ,V) o(V,V)UV))® = o(T, TY(UT))?
= e 7 (V)% = e 2™ ((T))?,
showing that

v(V) = €533 (a=0,1,2)
nir | 2ri

v(T) =e2*ZP (b=0,1).

But the multiplier systenv is uniquely determined by(V) andv(T);
therefore the six sets of paira, ) completely determine the multiplier
system.

SinceUV = T, we have obviously

V(T) = o (U, VIV(U)W(V) = v(U)v(V)
= *Y(V),0 < k < 1,
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because/(U) = e7* 0 < k < 1.
Therefore the following congruence holds:

r a b
1—2=K+§+§( mOdl) (6)

It is obvious that for a given, the integers, b are uniquely determined
by the numbek. Moreover

K= %( mod 1) forh = 4a + 6b.

Hence we obtain the following table for the valueshoh andb,

h 0 4 6 8 10 14
a 0 1 0 2 1 2
b 0 0 1 0 1 1
which shows that the multiplier system is uniquely deteedibyh. For 134

instance, for the multiplier systewg(S) given in the proof of theoref L9
it can be proved easily that

Vo(U)=€e® = x=r/12( mod )= h=0=—a=0,b=0,

showing thatyg is the multiplier system foF and weightr determined
by h = 0. We deduce immediately that the theta multiplier system ca
not be extended to a multiplier system for the grdupecause if it were
true, then

1
vg(U?) = 1 = vy(U) = 1= k=00r3

and this contradicts the congruence equafidn (6) wher%.

Before concluding this section, we give an application efttieory
of modular forms to the theory of quadratic forms. We shadiverhere
that an even integral matrip > 0 with |Q] = 1 exists only ifm =
0( mod 8), wheram is the number of rows and columns @ By
theoren{1b,

9, Q) = Z gritQlg]
9
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belongs to I, m/2,v] for some multiplier systenv. SinceQ[X] is an
even integer for every integral vector it follows immediately that
v(U) = 1 implying thatx = 0. Similarly, we obtain thay(T) = e™m/4
and thereford = 0. The result now follows from the congruence rela-
tion[@. Conversely, iim = 0( mod 8), then there existrrowed even
integral matrices, as is well known from the theory of quédifarms. A
nice construction of such forms has been given by E. Witt dithhelp

of the theory of lattices in Abh. Math. Sem. Hamburg 14 (1941) o

2 Poincare Series and Eisenstein Series

In this section, we shall denote, as before, the modulangbyd” and a
subgroup of finite index if" by I'y. Moreover, unless otherwise stated,
I'o will be assumed to contairE. We shall construct some special
modular forms called ‘Eisenstein series’ and ‘Poincangéese which
not only belong to the spac&{, r, V] but also generate the same. The
proof of this statement will be completed in the next sectiéiirst of
all, we show thatTo,r,V] is a vector space of finite dimension over
the complex number field. Let(r) and g(r) be two modular forms
belonging to o, r,V] such thatf(r) £ 0, g(r) # O; thenf(r)/g(7) is
an automorphic function for the grodfy, which is either a constant or
has the order zero. In any cadér) andg(r) have the same number of
(always inequivalent) zeros. Letbe the number of zeros df(r) and
No the least integer greater thanLet

fD)= > @™ (0<k < 1)

n+«>0

be the Fourier expansion &{r) at the cuspo. Thenf(7) is determined
uniquely by the cofficientscy,, for n < Np. Indeed, ifch,, = 0 for
n < Np, then f(r) must vanish identically, since the total numiveof
zeros off(r) # 0 is less tharNg. This shows that a modular forif(r)
belonging to [, r,V] is uniquely determined by + 1 codficients in
its Fourier series ab and therefore the dimension dafg, r, V] is atmost
No + 1.

We shall now explain the construction of Poincaré serie$§oLet
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f(r) be a modular form belonging to the spa€®.,fr,v]. Then at the
cuspA! < co > with A= (2 ) T, f(r) has the Fourier expansion

(a]_T + aZ)r f(T) — Z Cn+K92”i(n+K)A<T>/N

n+«>0

whereN is the least natural number so that= A~2UNA belongs td
and is a real number determined by

(A H)V(H) = ¥ 0 <k < 1.

If we replacer by L < 7 > with L = (gg) € Iy, then by using the
transformation formula fof (7), we obtain

e271i(n+/<)M<‘z->/N
()= D, e m Ty mar + oy

n+x>0

whereM = AL = (m{ e ). We now make use of therinciple of cross
summationi.e. in the above expansion fér), we putc,,, = 0 for all
n except for one fixeah for which we putc,,, = 1 and then formally
> over a complete system(A, T'g) of transformationsM = AL with
L € I'p such that the second rowsy, mp) of various matricesvl = AL
are distinct. In other words, we form the function

e27ri(n+/<)M<‘r>/N
o (A L)V(L)(my7 + mp)"

Gi(r,v,ATg,n+«) =
ME’y(A,ro)

(1)

This series is a so-calldébincaré series for the groupy. We shall
now show that the Poincare seri@gr, v, A, 7o, N + ) does not dependi137
upon any special choice of the systef#\, I'p) and forr > 2, it belongs
to the spacel], r,Vv]. Let L andL* be two transformations dfy such
thatM = AL and M* = AL* have the same second row. Thiti =
UXM for some integek, therefore

L*L~t = A"YUXA € Ip = N dividesk
— L*Lt = HYif k= N¢ andH = A" TUNA
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Consequently, we have

e27ri(n+l<)M"<‘r>/N — eZﬂineZﬂi(n+K)M<‘r>/N )
Further

Pe = o (A HOWH) = o(A H)o(H HTHVH)V(H )
= (A HY) o(A H)VH)V(H ) = e p,_g = &%,

But

o (A, L)V = o(A HL)V(HL)
_ o(AH)o (A H)o(H L) .
= o(H.1) V(HO)V(L)

(A L)pv(L) = %o (A, L)V(L);

therefore, if we takeM* instead ofM in y(A,T), the contribution to
the serie$s, (1, v, A, To, N+ k) remains unchanged, which proves that the
series does not depend upon any special choice of the sygfei).

The series ), My + mp|™", which converges uniformly in ev-
(my,my)#(0,0) , _ _
ery domain|x| < ¢,y 2> 0 forr > 2, is a majorant for the series

Gi(r, v, A Tg, n+k). It follows in the same manner as foe 1,n+x = 0,
that the serie§s( (1, v, A, T, n + k) converges absolutely and uniformly
in every domainx < ¢,y =e> 0 forr > 2 and therefore represents a
regular function in. In order to examine the behaviour of the series
G (r,V, A, T'o, n + k) under the transformations of the modular group,we
define, for anys € T, the transform/® of the multiplier systenv by

o(L,S)

ith L* = S7ILS.
o(S,L*) w

V(LY = V(L)

If L = STILSfor Lj € I'o(i = 1,2), then
V(LiL3) = oLy, LYV (LOVE(LY)

o(Lil2,S) . .
(S L*L*) (L > LZ)V(Ll)

o(L1,S)
(S, L))

o(L2, S)
a(S,L3)

— V(L1L2)

V(L2)
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oLy, Lo)o(L1L,, S)  o(Ll, Ly)o(Ls, S)o(Lz, S)
o (S, LiL3) o(S, L))o (S, L))
& o(L1, L3S)o(S, LYo (S, L) = o(Ly, S)or(S, LYo (L1 S, L)
& o(L1, LyS)o(S, LYo (S, L) = o(La, S)or(S, LYo (L1 S, L)
& o(L1, LS)o(S, Ly) = o(S, Ly)or(Ly, L2S).

Thusv® is a multiplier system for the group—I'xS and weightr.

particular, wherg belongs td o,

a(S7L, LS)o(L, S) _ o(L,S)
o(S5L,9) L) = (S, L¥) L),

vS(sILS) =

showing that® = v. It can be verified easily that

¥(A,T0)S =T'(A,To) for S € Iy,
(A, To)S = y”(AS, S IIS) for SeT,

wherey’ andy” are systems of the same typesas Let S = (25)

119
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cd

be an arbitrary element éfand (], m}) the second row of the matrix

MS = ALS. Since

o(A L)o(AL S)o (S, LY)
oL, S)

= (A, LS)o (S, L)V(LY)

= (A S)r(AS, L)WV (L"),

vo(L¥)

we have

G (S<t>V,Algn+«k)

(cr + d)
1 eZﬂi(n+K)M*<‘r>/N
= * * K <\ I
TAS) .oy s arsey TAS LWL (M + 15)

whereM* = MS = ALS. This shows that
G(S<7>V,Alo,N+k) 1
(cr +d) - o(AS)

G (1, V°, AS, SIS, n + «).

139
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In particular, whers belongs td'g, we have

Gi(S<1>V,ATo Nn+k) _\(S) g2 (N+M* <7>/N ”
(cr+dy w- Sty A LSVLS)(my7 + my)”
Gi(S<t>V,AToNn+«k)
(CT + d)l' = V(S)GT(T9 Vv, A, FO, n+ K),
140 since

AL S - LA
_ o(A LS)V(LS)
RO

The above discussion shows that for> 2, G,(r,v, A, Tg,n + «)
belongs toT, r, V] provided the Fourier expansion & (r,v, A,T'p, n +
k) at the cuspo contains no terms with a negative exponent. But the

latter is obvious from the fact that the majorant } M7 + mp|™"
] ) _ (m,mz)#(0,0) o
of G/ (1, v, A, Tg, n+«) is bounded uniformly ik wheny tends to infinity.

Hence we have proved

v(LS)

Theorem 20. The Poincaré series
eZﬂi(n+K)M<T>/N
a(A, L)V(L) (M7 + mp)

Gi(r,v,A,To,Nn+ k) = Z
Mey(Ao)

represents a modular form of weight r for the grolipand multiplier
system v, provided ¥ 2. Moreover, it is a cusp form, for # « > 0.

If the multiplier systemv is unramified at the cusp™ < oo > i.e.
k=0,thenforn=0

1
o (A L)V(L)(my7 + mp)"

GI‘(T7 V7 A7 FO, 0) =
Mey(AIo)

Since we can assume that wiltL, also—AL belongs toy(A,T) and
the contribution of both these transformationsGdr, v, A, T'g, 0) is the
same, we see immediately that

Gr(r,v, A T, 0) = 2G(r, A),
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141 whereG(r, A) is the series introduced in the previous section. We refer
to the seriess, (1, v, A, I'g, 0) as the Eisenstein series for the gragp
In what follows, we shall adhere to the following notation:

(fIS)(7) = f(S<t>)(cr+d)"

for real S = (2 8) with [S| > 0 and anyf defined ong. It is obvious
that
(f1S1S2)(r) = o(S1, SA(FIS1)IS2)(7)

for two real matrice$s; andS. If f(r) belongs toT, r, v], then
(fIS)(7) = W(S)f(7) for S e I'y.

If S; andS; are two transformations belonging to the modular group,

then
(VSI)SZ — V5152;
for, if L belongs td"; then

o(S7*LS1, S2)
(S2, S;1S1LS:S))
o (L, S1)o(S7'LS1, S?)
0(S1, STILS1) o (S2, S;1S1LS:S)

(L, S1)o(S7t LS1S2)0(LS1, So)or(S7h LSy)
(S5 LS1)or (S, S, )0 (S,75152. S, S, LS, S,)
(ST LS1S2)0(S1, Sp)or(L, S1S2)0 (ST, S1S2)
(S1, ST (ST LS1S2)0(S1S2, S;1S; LS Sy)

o(L,S:Sy)
o(S:S,, Sglsgllesz)

(VSI)SZ (3518;1 lesz) =V (Sill-sl)

= v(L)

=v(L)

= V(L)

=v(L) =Vvo15%2(S1ST1LS; S)).

With the help of this composition rule for multiplier systeihis 142
easy to see that the mapping

f(7) = 9(r) = (fIA)(r) (AeT)

is a bijection linear transformation from the vector spdgg, v] to the
vector spaceA oA, r,vA]. If f(r) belongs toIo,r,V], then (f|A)(r)
belongs to A 1ToA, r, vA]; indeed, forL e I,

(FINIATILA)(7) = o (AL LAY(((FIAIADILA)(T)
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_o(ALLA)
oA A
_o(ALLA)(L,A)
- o(AAY

_o(ALLA)(L,A)
B a(A AL

VAATILA)(FIA) (7).

(fILA)(7)

((FILIA)(T)

v(D)(FIA)(T)

It is, moreover, trivial to see thatf(A)(r) is regular in% and in its
Fourier expansion at the various parabolic cusp&\dilgA, no term
with a negative exponent occurs. Conversely,gff) belongs to
[A-1ToA, 1,vA], then as aboveg{A-1)(z) belongs to [, r, (VA)A']. but
(VAT = VAA™L = v; therefore gJA1)(r) belongs to[o, 1, V], proving
our assertion above.

The following theorem gives explicitly the dimension of thgace
[T, r,V].

Theorem 21. Let v be a multiplier system for the modular group and
weight r such that

mir , 2nib

V(U) = &K (V) = €5+ W(T) = e %,
where0<k<1,0<a<3,0<b<2andab are integers. Then

r a_b
. . s—-k—2-3+1 ,forr-12% >0
dimensionT,r,v] = { 12 k73727
0 ,forr—12 <0

Proof. (i) If kis a negative even integer, then the dimension of the
spaceT,k, 1] is zero. Assume thdt is a negative even integer
and the modular forni () belongs toT, k, 1]. Then the function
f2(r)G,¥/*(r), which is invariant under the transformationsIof
and has no poles, must be a constant. But we have already seen
thatGa(p) = 0 for p = €/3; thereforef2(r)G,*(r) = 0, im-
plying thatf(r) = 0. Hence the dimension of the spatel, 1] is
zero for negativek.
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(i) Let r* be the weight an&* the multiplier system of the modular
form A*(r) for the groupl'. Let «*, @ andb* be the numbers
determined by in the sense of theoremI21. Obviously = «

r .
andr* = 12; thereforex* = k = 1 But we have proved in the

* * *

, . r a ,
previous section th =K+ 3 + E( mod 1); therefore, it
follows thata* = b* = 0. Consequently, we obtain

E+§_E_2K=6+§( mod 1)
r b r* r b
Z+E_Z_3K=2+§( mOdl)

showing thatv andv* take the same values for the transformations
U,V andT. Sincer = 12 = r*( mod 2)v andVv* are identical. Let 144
f(r) be a modular form belonging to the spater[v]. Thenf(r) has an
unavoidable zero of multiplicity at least equaltat the cuspo and the
above discussion shows thg{t) = f(r)A™(r) belongs toT, r — 12, 1].
Conversely, ifg(r) belongs to I, r — 12, 1], theng(r)A*(r) belongs to
[, r — 12, 1], theng(r)A*(7) belongs toT,r,Vv]. Thus it is proved that
the dimensions off[,r,v] and [[',r — 12, 1] are the same. Therefore, if

r—12 a b

12 ~9f3* 3%

whereg, a andb are integers such thatf a < 3, 0 < b < 2, then by
theorenTH it follows that, for — 12« > O (due tor — 12 being an even
integer),

dimension[,r - 12,1]=g+1= ——— - = - =+ 1.

Forr — 12 < 0, the dimension ofl[, r — 12, 1] is zero by part (i) of our
proof. Hence the theorem is established.

As in the case of modular forms of integral weight for the madu
group, the number of zeros of a modular fofifr) belonging toT, r, V]
isr/12. Indeed, the number of zeros fffr) is equal to the sum of the
number of zeros oA*(r) andg(r) = f(r)A™(r). Now we have seen in
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the course of the proof of theordml 21 thyét) is a modular form the
integral weightr — 12« and so the number of zeros gffr) is a modular

form of integral weightr — 12« and so the number of zeros ofr) is
r—12 . r—-12« r
. Therefore the number of zeros foffr) is k + 2 -1

3 Metrisation and Completeness Theorem

The general transformation formula
1
o(AS)

145  proved for the Poincaré series defined By (1) SoBl shows that
Gi(r,v, A To,b + k) is a cusp form fom+ « > 0; incasen+« = 0
i.e. n =0 = «, G(r,v,A Tp, 0) does not represent a cusp form, since
the constant term in its Fourier expansion at the cdsp < « > is
different from zero. In order to prove that the Poincaré serid€&asen-
tein series together generate the sp@iger|Vv], it is sufficient in view of
theorenIl to prove the same for the spdge, o] of cusp forms con-
tained in ['o, 1, v]. By usingPetersson’s Metrisation Principjave shall
prove presently that the seri&€(r,v, A, To, n + k) generate the space
[To, 1, V]o for any (fixed and) giverd.

Let D be a hyperbolic triangle i# with proper or improper vertices
and f(r), g(r) two functions, which are continuous D and are such
that the functionf(r)g(r)y'(r = x + iy) is bounded inD. Then the
integral

(G (7, v, A, T, N+ K)|A)(7) = G (r,V°,AS, SIS, n+ «)

x(D, f,g) = f(r)g(r)y ~“dxdy
"

exists. IfS = (28} is any real matrix of determinant 1, then

X(Ds_l’ flS, gls) = X(Da f’ g)a

whereDg-1 is the image oD by S~1; indeed, if we replace by S < 7 >
in the integrand iry(D, f, g) and use the invariance gf?dxdy, we have

f(S < 7 >)9(S < 7 >){y/(cr + d)(cT + d)}'y?dxdy
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= (fIS)(")(@S) @)y ~*dxdy

which proves the assertion. In particular, fifr) and g(r) belong to 146
[[o,r, V], then the integrak(D, f, g) exists provided that eithefr(r) of

o(r) vanishes at an improper vertex Bf Moreover, ifS belongs td o,

then obviously

X(DS_J'? f’ g) :X(Ds_l’ flS, gls) :X(Da f’ g)

Let &g be a fundamental domain fbg, which consists of a finite num-
ber of hyperbolic triangles. Further, let at least ond @f) andg(r) in
[T, r,V], be a cusp form. Then the integral

(f. O, = %m f f {(DEY ~2dxdy

exists, wherel3(&o) is the hyperbolic area dfy. From the transfor-
mation property of(D, f, g) above, it follows that the integralf (Q)r,
does not depend upon the choiceff As a matter of fact, f, 9)r, is
independent ofy as well, in the sense that if andg are two mod-
ular forms of weightr for two subgroupd’y andI'; of finite index in

I, then (f,9)r, = (f,9)r,. We consider first the case when one of the
groupsI'; or I', contains the other. Let us assume thais contained
inTpand (o : T'1) = u. Letlp = U’i‘zl I'1A; for someA; belonging
toTp,i = 1,2,...,u be a coset decomposition B§ moduloI';. Then

F1 = Uflzl((&o)Ai is a fundamental domain foh. Since3(F1) = u3(Fo) 147
andJ(Fo)a fori = 1,2,...,u is a fundamental domain fdrp, it fol-
lows immediately that

1l 1 2
(t9r =1, ), S, )f f(JgY 2dx dy
o)A

f t(1)g@y ~2dx dy

LiJ(T?o)A.-

B 1
— 13(Fo)

__1 —N 2 _
" 5 ) [ feamy 2ax ay= (1.0
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In the general case, consider the gratigenerated by andI;. Itis
obvious that bothi’; andT'g are subgroups of finite index I and f ()
andg(r) are modular forms of weight for the groupl™ and the same
multiplier system. Hence, by the particular case consitlat®ve, we
get (f.9r, = (f.9)r- = (f.9)r,.

In the following, so long as no confusion is possible, welshiaiply
write (f, g) for (f, g)r,. We call (f, g) the scalar producof f andg. The
following properties of the scalar produdt, ¢) are immediate from the
definition:

1) (f,g)islinearinf.

2) (.9) = (g f).

3) (f,f)>0,(f,f)=0= f = 0.
4) (flIA,glA) = (f,g)for AinT .

Properties 1), 2) and 3) show that the scalar prodfid)(defines a
positive-definite unitary metric on the spad®,[r, v]o.

For the explicit calculation of the scalar product of a cuzmprf and
a Poincaré series, we need to prove

Lemma 5. If f(7) is a cusp form ifTo,r,V], then|f(7)ly"/? (with r =
X + iy) is bounded ir¢.

Proof. If in |f(r)ly"/2, we replacer by A < 7 > (A € I), then|f(7)ly"/2
is transformed td(f|A)(7)ly'/?. In particular, whenA belongs tolg,
I(fIA)(7)] = MA)f(7)] = |f(r)] and thereforef(r)ly'/? is left invariant
by . Thus, in order to complete the proof of the lemma, it ifisient
to prove that f(r)ly/? is bounded in a fundamental doméig or I'o.
Letp1, 02,...,p, be a complete system of inequivalent cusp§gpand
letoo = Aj < pj > Ajelforj=12...,0. Letpj(j=12...,0)

be cusp sectors at the cuggsf I'c. ThenFo = U pj is a fundamental
j=1

domain forTo and for the proof of the lemma, it is Sicient to prove that
| (7)ly"/? is bounded in each;. It is obvious thatf(z)ly"/2 is bounded
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in p; if and only if |(f|Aj‘1)(r)|y'/2 is bounded inA; < pj >. Since
(fIA-1;)(r) has the Fourier expansion

Z Cn+Kj62ﬂi(n+Kj)T/Nj.

n+«j>0

it tends to zero exponentially 35 — oo, uniformly in x. It follows
that|(f|Aj‘1)(r)|y'/2 tends to zero ag — co and therefore is bounded in
Aj < pj >. Hence the lemma is proved. |

For the sake of brevity, we set= y(E,Tg) and 149
e(T) — eZni(n+K)‘r/N‘
By the definition of Poincaré series, we have

G(r) := Gi(r,V, E,To,n+ ) = ) AL)(EL)().
er

For the scalar productf(G) of a cusp formf(z) in [, r, v] with G(7),
formal calculation yields

0= 555 [/ ) 2, LEDIEY ey

— 1 () (1) 2
- 55 2 [ (LEEDEY dxay

Ley 3

-t n)e(r)y 2
= S 2 J | 1Y Faxay

Y (o)L

-2 f () ~2dxdy 1)
<

3(Fo)

where.Z = | (&o)L. The factor 2 appears on the right hand siddbf (1),
Ley

because we can assume that biothnd —-L belong to the set and their
contributions to the sum are the same. The interchange ofnstiaon
and integration would be justified in the above formal corapan, if
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we prove that the last integral converges absolutely. 4.denote the
subgroup of’g generated byN, whereN is the least natural number so
determined that)N belongs td . LetIg = | J; ZL;, L; € I'o, be a coset
decomposition of'g moduloZ. Then the set of all the matricéds is a

150 possible choice for the setand therefore? is a fundamental domain
for Z. We decompose the séft into a countable number of sef4 such
that the images af# by element& belongs to the domai = {r|r =
X+iy,0 < x < N,y > 0}, which is a fundamental domain f@r Since the
integrand f (r)e(r)y’ ~2dxdy is invariant under the transformatian —
7+ N, we get immediately that

2 L, 2

Lemma 6 can be used to see that the integral on the right hdadsi
@) converges absolutely for> 2. Hence the formal computation for
obtaining (1) is justified and we have indeed

f(r)e()y 2dxdy (2)

O%Z

o N
(.G) = S(go) f f f(r)e 2nITNy =2 xdly
0 0

Using the Fourier expansion défat the cuspo given by

f(@) = ). Cene( )it

k+x>0

with

N
ckﬂ(f):% f f(r)e?rlk/N gy
0

it follows immediately that {, G) = 0 in casen + « = 0 and otherwise,

o N
(f,G) — S(go) f{f f(T)eZHi(nﬂ()‘r/NdX}GZHi(nﬂ()(‘r—ﬂ/Nyr—Zdy
0 O
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2N
— ik f —4r(n+x)y/N —2d

S(%o)c ( )of © y~"dy
L (4r(n + &) /N)Y'T(r — 1)cnee(f) forn+ x>0
BN, ~ W T

The general case can be reduced to this particular ¢asek), if we 151
note that

(f.G/( ,v,ATg,n+«)) =

= (fIA°L,G( ,v,ATon+«)AL)
1

~ oA ATD

We are thus led to thiindamental formula of the metrisation principle
as stated in

(FIAL G VN E,AToA™L n+x)).

Theorem 22. Let f(r) be a cusp form belonging {&,r, V] for r > 2,
and let _
(FAD)@) = > Cauel f, AN

n+«>0

be the Fourier expansion of(f) at the parabolic cusp A < co > 0f g
with A inT. Then we have

(f,G/( ,v,ATo.n+k))
1-
:{ (D) (4x(0e) "Coe(f,A), forn+ x>0

(A ADI(Fo)
0 forn+x=0

We call two modular forms(f) and dr) orthogonal, if(f, g) exists
and is equal to 0. The above theorem enables us to charaetdres
Poincaré series completely. In this connection, we prove

Theorem 23. For r > 2, the Poincaré series @r,Vv, A, I'g,n + k) is
uniquely determined upto a constant factor, by the follgwroperties:

() n+«> 0. The series is a cusp form, which is orthogonal to all th&2
forms f(r) of the spacgl'y, r, v] for which the(n + ) — th Fourier
cogficient G,..(f, A) at the cusp Al < co > 0f I'g vanishes.
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n + k = 0. The series is orthogonal to all the forms of the space
[TCo,r,v]o. Moreover, the constant term in the Fourier series of
Gi(t,V, A T, 0) at a parabolic cusp ofg is different from zero or
equal to zero according as the cusp under considerationusveq
alent to At < co > or not.

Proof. (i) n+« > 0. The fact that the seri&s; (7, v, A, Tp, n + k) has

(ii)

the property (i) is an immediate consequence of thedrdm £2. |
Cnic(Gr, A) = 0 then applying theorem P2 tidr) = G/ (r, v, A, T,

N+ k), this series vanishes identically and therefgre(f,A) = 0

for every form f(z) in [I'o,r,v]. Hence, ifg(r) is a cusp form
which has the property (i) of theoreml23, there exists ojearl
constantc such that

Cn+:<(g7 A) = CCn+K(Gn A) o Cn+K(g -cG, A) =0.

This shows that the modular form- cG; is orthogonal tog as
well as toG, and thereforey — cG; is orthogonal to itself. Hence
g-cG =0i.e.g=cG.

n+« = 0. If G(r,v, A, Tp,0) has in its Fourier expansion at the
cuspB~! < oo > (B € T) a constant term dfierent from zero, then

(Gi( ,V,ATo,0)BY(7) = Gi(r,v® ", ABL, B[L,B L, 0)

1
o(A, B
does not vanish at the parabolic cusp But this is possible if
and only if AB1BIoB™! = AI'oB™! contains a matriM whose
second row is (Q+1) i.e. for some integral, Al'oB~! contains
+U' or equivalently+A~1U! = LB~ for somel in I’y and an
integert. The last condition means precisely that the cusp's<
oo > andB™! < « > are equivalent unddry. It is now clear that
the Eisenstein serieS, = G(r,V, A T'g,0) satisfies the second
assertion in (ii) of theorei23; by theordml 22, is orthogonal
to [[o, 1, V] i.e. G, has the property (ii) of theorem123. Lgtr)
be any modular form inl], r, v] which has the same property. We
know that, for some constanf g — cG; is a cusp form. But then
g - cG; is orthogonal not only t&, but also tog. Thusg—cG; is
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also orthogonal to itself leading = cG;, proving theoreni 43
completely.
An other important consequence of theolemh 22 is m|

Theorem 24(Completeness TheoremY]he system of Eisenstein series
for the groupl’y can be completed into a basis of the spHcgr, V], r >

2, by adding a finite number of Poincaré seriegfv, A,T'g, n + ) for
any (fixed and) given A.

Proof. By theoreniIl7, it is sfficient to prove that the Poincaé series se-
riesG,(r, Vv, A, To, n + ) for some fixed generat&{, r,v]p. Let T be the
subspace ofi[y, r, v]g generated by the Poincaré sei@4r, v, A, I'g, n+
K)(n+ « > 0). Lett be the dimension o and{fy, f,..., f;} an or-
thonormal basis of i.e.

(fi, f) =6 fori,k=12,2,...,t.
For an arbitrary elemertt(r) of [T, 1, V]o, let

(f,f)=afori=12...,t

t
It is obvious that the cusp forrh— 3 g; fj is orthogonal tofy, fo, ..., fi 154
i=1
and therefore to every cusp for@y(r,v, A,To,n+ k) (n+ x> 0). But
t
this implies, by theorerh 22, thdt— 3’ afi = 0 i.e. f belongs toT.

i=1
HenceX = [I'g, I, V]o, Which proves theorefn P5. m|

By using the theory of the ‘Weierstrass’ points’, Peterdsasishown
how to choose the values, ny, ..., n; so that the serieG;(t, v, A, Tg, nj
+k)i =1,2,...,tform a basis of the spacg&(,r, V]o.

In the case of the modular grodij theoren2ll enables us to make
a very precise statement. We observed already fthat fA™ defines
a bijective linear mappain of[r,Vv] onto [[',r — 12, 1], showing that
the dimensioru of [T, r, V] is positive if and only ifr — 12« > 0 and
r — 12 # 2 (sincer — 12 always is even). The assumption> 2
guarantees the convergence of the Poincaré series. BrethEfdl, we

get
1L2:,u+/<+g+g—1forr—12kgo
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and as we have proved already, this number coincides withuheber
of zeros of a modular forni in [T, r, V] not vanishing identically.

Theorem 25. If [T, r, V] has positive dimensiom and r > 2, the series
Gi(r,v,n+«) = G(r,v,E,T,n+«) forn=0,1,2,...,u—1form a
basis for[I,r,V].

Proof. Every formf(r) € [T, r, V] has a Fourier expansion of the type
f(T) — Z Cn+K92ﬂi(n+K)T.
n=0

The necessary and figient condition thatf (7) vanishes identically is
thatch,, = 0forn=0,1,...,u — 1. For, if the firstu codficientsc,,,

vanish, therf(r) has unavoidable zeros of orderg, 9 and an ordinary
zero of orde, which cannot happen unle$gr) = 0. Let

gm(t) = Y I (mM=0,1,2,...,u-1)
n=0

form a basis ofT, r, v]. Then the matrix
C=c™mn=012...,u-1

is non-singular. If the matrixC were singular, then there exist complex
numbersxo, X1, . . ., X,—1 not all zero such that

n-1
D G =0, n=012.. . u-1
m=0

This implies that

(o)

pu-1 u-1
D Xapm(®) = Y1) XD = 0
m=0

n=0 m=0

showing thateo(r), ¢1(7),...,¢,.-1(r) are not linearly independent,
which is a contradiction. Thu8is non-singular and therefo@?* trans-
forms{eo(7), ¢1(7), . .., ¢,-1(7)} into a new basis for which the analogue
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of the matrixC is the unit matrix. Thus we can assume, without loss of
generality, that alreadyo(7), ¢1(7), ¢2(7), . . ., ¢,—1(7) form such a basis
i.e.

prn(7) = T 1 N (D @AM (m=0,1,...,u-1).
n=u

We now prove the linear independenceG{r,v,n+ «x)(n=0,1,2,...,
u—1). Let

u-1
Z XnGr(r,v,n+«) = 0.
n=0

Then, by theoreri 22, fan + « > 0, m < g, it follows that 156
/1_1 6
0= (pm(r). ) XaGr(r. VN + 1)) = ~T(r — D)(4r(n + )" i

n=0

As aresult, foxk > 0, X, =0form=0,1,...,u -1, and ifk = O, then
xm=0form=12,...,u—1. But, in the latter caseG:(t,v,0) = 0
implies thatxy = 0, sinceG,(r,Vv,0) # 0. HenceG,(r,v,n+«) (n =
0,1,2,...,u—1)inany case are linearly independent and the@rédm 25 is
proved.

We have already shown that the spaEelp, 1] is of dimension 1
and is generated by the modular for(r), which has a Fourier expan-
sion

[

A@) = ) t(n)e ™

n=1

at the parabolic cuspo of I', wherer(n) is Ramanujan’s function. By
using theorerfi23, we shall now show that the Poincaré Biigs, 1, n)
vanishes identically if and only if(n) = 0. If 7(n) = 0, then, by theo-
rem[Z3, the serie§12(t, 1, n) is orthogonal toA(r) and therefore to all
cusp form including itself, which implies th&ti,(r,1,n) = 0. Con-
versely, ifG1,(r, 1,n) = 0, then obviouslyr(n) = 0. It has been proved
in 1959 by D.H. Lehmer that(n) # O for n < 113740230287998. O
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4 The Fourier Codficients of Integral
Modular forms

LetT'p be a subgroup of finite index in the modular grdupnd letv be
a multiplier system for the group, and the weight > 0. We shall find
some estimates for the Fourier édgentsc,,, in the Fourier expansion
at the cuspo of a modular formf(r) € [T, r, V], namely

f(r) = Z Gy €2TMHRTIN @)

n+x>0

whereN > 0 is the least integer such tHat' belongs td’g andv(UN) =
ek,

Lets, = A/t < o0 > (¢ =1,2,...,0) with A, € T be a complete
system of pairwise inequivalent parabolic cusp§®fIn particular, let
s1 = oo andA; = E. Let P, be the subgroup dfy consisting of those
transformations of g which leaves; fixed i.e.

P,={LIL < s >=5,,L €TI9}.

It is nothing but the group generated b andH, = A;*UN A, where
N, is the least natural number such tiaf U™ A, belongs td'o. Let

I'o= U Pelie
K
be a coset decomposition B§ moduloP,. We set

ae bk(’)
Ce O/’

My = ALk = (

Since we can replade by —Ly,, we can assume without loss of gen-
erality that eitherc, > 0 or ¢, = 0 anddy, = 1. The mappingMy, —
M/} < o > is one-to-one; because,M;} < co >= Mgé < o >, then

S = A;l <oo>ands = Aal < oo > are equivalent with respect I,
which is possible only ify = £. It follows now thatLngE{,1 <§g>=g
ie. Lng;t,1 belongs toP, and thereforgp = k. Every rational number
s can be represented in the fonm\;t,l < oo >, Sincesis a parabolic
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cusp ofly, sis equivalent tos, = A{jl < oo > for some suitable i.e.
s = L™A;1 < o0 > for L belonging tolp. LetL = K/Li, WhereK,
belongs taP,. Then

_1-1lp-1p-1 _1-1p-1 _ -1
S—LkgK[ A[ <oo>—Lk€A[ <oo>—|\/|k€<oo>.

We form the set .
F* = U UM< R >,
Nn=—
whereg is the fundamental domain dfgiven by
§={rllrl > 1,12 < 1}.

It can be seen easily that

%zOUM;€1<8*>,
K

-1

becausel\/l,;t,1 < §* > consists exactly of those images ®funderT,

V3

which haveMIZ{,1 < o0 > as an improper vertex. Singg c {rly > 7},
it follows thatMIZ{,1 < oo™ > is contained in the circle

X+ =) +-—=3)< = )
Cie V32" T 3¢,
whencyg > 0. We shall now find out a set of necessary conditions,
which have to be satisfied, if the domah'tl];t,l < & > is to intersect a
given line

n={r0<x<N,y=n},

: 3. .
with 0 < n < \/7_ in at least two points. Ity = 0, then Mlzé,l < 159

T >= " and thereforel\/l,;é,l < &* > does not interseat. Therefore
Cke is necessarily greater than zero. SilMt%1 < &* > is contained in
the circle defined in{1), the ling = n must intersect this circle in two
points, if it is to have at least two points in common with tkmaMlz[l <
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&* >. This means that the coordinates of the points of intersecfiven

by
dkg 2n 5
X=——= f -2,y =
Cw \/§ Cﬁg ney=n

must satisfy the conditions

O<cy < ‘/%77 (3)

d 2n
X1 = X1(My¢) = —C—::j - N -2 <N, 4)
ke
d 2
X2 = Xo(Mig) = —C—;‘j + \@’; —2>0. 5)
(44

If the condition [B) were not satisfied, then the lye 1 will intersect
the circle 1) in at most one point. Moreovend > N or x; < 0, then,
from x; < X, the liney = n and the circle will have again at most one
point in common. Fronf{4) andl(5), we have

2 5 Ok 2n
-2 <-—— <N+ - n?
Vac, Gt V3c,

-1< —dk[/Ckg <N+1 (6)

and therefore

Moreover, it is immediate fronT13) that the interval < X < X is

. . . _ . 2
contained in the intervak + di,/Cie| < hck{;1 i with h = /7§. Conse-
quently

_ . i _
e = Mt < & > c {rly = n,Ix+ ol hG Vb

It is obvious thatny, consists of at most a finite number of connected
segments and
n= U Mke,s
k.t
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whereny, contains at least two points only if
h d
O<c < —,—1<—ﬁ <N+1
\Vn Cke

Let
(FIAHE = ), o, e

N+kp>0

be the Fourier expansion df(r) at the cuspb\{jl < oo > of Tp(¢ =
1,2,...,0). If £ =1, this series is identical with the series (1). We set

T= M,Zt,l <7t">= LE}A;l <7 > Ly = (;K ﬂ) andA, = (a b).

6 c d
Then
F@ = [FLGA <7 >) = |- yAL <7 > +al [F(A Y < 7 >))
= [(—yAt < T > +a)[(-c" + &) (FIA; ()
= (=t + ae) I(FIA D ),
which implies that 161

|£(2)] = ket + Al T I(FIA () @)

Sincel(flA;l)(r*)l is bounded forr* € &*, we can assume after any
necessary normalization that

I(FIADE) < 1fort* e §*,0=1,2,...,0, (8)

The Fourier cofficientcy,, of f(7) is given by

N
1 .
Crix = fo(T)e—Zﬂl(nﬂ()‘r/Ndx
0

Choosing the path of integration along the line r, we obtain that

Nicns| < eI f | (2)ldx
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< lmanN f |f(2)ldx 9)
k.

T

But, by the definition ofi,, we see that it belongs tony,, thent* =
My, < 7 > belongs tay* and therefore, by{7) anfl(8),

|f ()| < |Cket + O] ™" fOr 7 € nie.

Consequently

| f f(r)dx < f (G X+ dhe)? + CE?)2dx
et e L <hg VR
he vir
<2c; f (W% + 19 2du

0
n

—r -r hc;(,l\/ﬁ —r
SZCk[{fn du+f udu,
n

162 because & n < hc} /i by @). It follows now that

oc ", cln’?) forr > 0,r # 1
f|f(‘r)|dx: “ ‘ 10)
Nike O(Ck[ Iog(w)) forr=1

Here and in the following, @) means in general that(¥| is

bounded by a constant depending onlyIgnandr. Summing up the
right hand side of{{JI0) over all pairs of integecg/(dy,) (not necessar-
ily coprime) which satisfy the inequalitiell (3) arid (6), wet g

Zf|f(r)|dx=

{nl‘ro(Zu Cy)+ n%O(ij c), forr>0r=1

0k G log(G2s). forr =1,
(11)
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since the right hand side certainly includes the paigs dx) occurring
on the left hand side. In what follows, all summations okgef are
carried out in this sense. It can be proved easily that

[h'2]
Zc;f <(N+2) Z ctr
k¢ c=1
o(1) forp > 2,

= {o(log %) forp = 2,
o>y for0<p<2.

and
thy~*/2]
1 eh eh ~1/2y.
c., log{ J<(N+2 logi——=} =0 X
%kt’ gck“/ﬁ ( ); gc\/ﬁ (%)
by Stirling’s formula, namely 163

1 _ .
n =a,n™2e™, lim ap = V2nr,
n—oo

with hp~1/2 = n+ 9, where 0< ¢ < | andnis an integer, we have indeed
[hy-2/2] oh 1
log{——=} =n+nlog(n+ ) — loga, — (N + 5) logn+n
& oVn
1
=2n+nlog(l+ %) —logan — > logn
1

<2n+9—logan - > logn = o(n) = o(;"2).

Therefore, equatiol . {11) gives

o(nt™) forr > 2,

> f (f(D)ldx = {o(tlogd) forr =2, (12)
k¢

e on"?  forO<r <2

. 1
Withn+« = ot @ and [IR) lead us then to
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Theorem 26. LetI'g be a subgroup of finite index in the modular group
and v a multiplier system for the grodijp and weight r> 0. Let

f(T) — Z Cn+Ke27ri(n+K)‘r/N
N+«

be the Fourier expansion of a modular form belonging to thacsp
[To,r,V]. Then we have

o((n+xr —1) forr > 2,
Chix =40((N+ k) log(n+«)) forr =2, as n+ x — oo,
o((n + «)''?) forO<r <2,

For the Fourier ca@icients of a cusp fornfi(r) belonging to[ o, r, V]
with r > 2, we have sharper estimates given by the following

Theorem 27. Let
f(T) — Z Cn+K627ri(n+K)‘r/N

n+x>0

be a cusp form ifilCg, r, v], wherel is a subgroup of the modular group
with finite index and v is a multiplier system for the grdigand weight
r. Then

Crix = O((N + %)2) @S N+ k — o0

forallr > 2.

Proof. Sincef(r) is a cusp form, by B, lemmdb, the functioff (7)|yz
is bounded ir i.e.

|f(7)| < Cy 2 for some constare.

Therefore for the Fourier cfigcientc,., we have

N
1 .
(Cread = 3] f f(r)e Ny
0

< Cy‘5 eZn(n+K)y/N

The estimate foc,. stated in theorefd 27 follows immediately on tak-
ingy = 1/(n+ «). m|
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We have seen in chapt@r$1g, that then — th Fourier codficient of
the Eisenstein serigsy(7), for any even integek > 4, coincides with
dk_1(n) but for a constant factor independentrofBut 165

N1 < de1(n) < Z(k— 1)L, (k> 2)

since

o 1
dea(n) = Y () <ty = = flk— D,
din d=1

Therefore, fork > 2, the Fourier co@cients of the Eisenstein series
increase more rapidly than the Fourier fim@ents of cusp forms. Hence
the estimates given in theordml 26 for- 2 can not be sharpened, in
general. However, sharper estimates for the Fouriefficints of cusp
forms belonging to the congruence subgroups of the modtdaipghave
been obtained by using some estimates of the so-célledsterman
sumsgiven by A. Weil. For this, we refer to a paper of K.B. Gundlach

[,
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Non-Analytic Modular
Forms

1 The Invariant Differential Equations
168
The theory of non-analytic modular forms has a close coimeetith

Siegel's researches in the theory of indefinite quadratim$oand is
decisively influenced by this theory. The Eisenstein series

G(r,1);a,B) = Z (ct +d)*(ct + d)”, (Re@ + ) > 2)
(c.d)#(0.,0)

wherea — 8 is an even integer and the sum runs over all pairs of integers
(c,d) # (0,0) is the prototype of a non-analytic modular form. In what
follows, the functionsdr +d)~* and €7+ d) for real numbersq, d) #

(0,0) andr € ¢4 will be defined by

(cr +d) = g @109CT+d) (o7 4 d)h = ghlogler+d)
with log(cr + d) = loglcr + d| +iargcr + d),—mr <argEr+d) <n
and log€r + d) = loglcr + d| +iarglcr + d), - < argcr + d) < 7;
here the branches of the logarithm are so chosen that always
log(ct + d) + log(ct + d) is real

LetS=(2 g) be a real matrix withS| = ad - bc > 0 and leta, 8 be

two complex numbers. Then for ariyr, 7), we definef|S by
ap

(fIS)(r,7) = (ct +d) “(ct+d) Pf(S< 7t >,S < T>).
af

145
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It is obvious that the series defined above satisfies theftnanation
formula

G( .;a.BlapS)(r.7) = G(r, T, . B)

for S belonging to the modular group. In this section, our aim is to
find a diferential equation, which has the given sef&s, 7; a,8) as a
solution and which is left invariant by the transformatidns> f|S.

@,
Following a method of Selberg, we shall show here that ttgblpm
can be reduced in a natural way to the eigen-value probleirefaliace’s
differential operator in a certain 3-dimensional Riemanniatso be
defined. Let#Z denote the direct product of the upper half-plane and the
realt-axis i.e.

Z = {(t, )|t = x+1iy,y > 0 andt real.

To any real matrixR = (¢ ) with |R| = 1 and any real number a, we
associate a transformatidty of # defined by

Ra(r,t) = (R< 7 >,t + argcr + d) + 27a).

If RandS are two elements of the group of all real matrices of de-
terminant 1, and, b are any two real numbers, then we define the com-
posite of two transformationR; andSy, by

(Ra* Sp)(7,1) = Ra(Sp(r. 1)).

We shall now show that the composite of two transformatiBpsnd
Sy is again a transformation of the same type associatdfSo Let
(myg, mp), (c, d) and (], M) be the second rows of the matridesS and
RSrespectively. Then, by definition, we have

(Ra- Sp)(1,t) = Ry(S < 7 >, t + argcr + d) + 27a)
= (RS< 1 >,t+arglr +d) + 2ra+ argmS < v > +my) + 27h)
= (RS< 7> t+argmr+m)+ 2r(a+b+wR, S)))
= (RS)arbrwrs)(7: 1),

showing that
Ra - Sb = (RSasbw(RS)- (1)



1. The Invariant Diferential Equations 147

It is obvious from the definition of the mappimy thatR, is equal to the
identity mapping on the spac® whenR = E anda=0orR=-E and

1 : : .
a=-2. From [1), it follows that the mappindS(*)_, s s-1 is the
inverse Bp)~* of the mappingSy,. Thus the se) of all transformations

, : 1.
R, constitutes a group. If we substituR= —E anda = -3 in @), we
see that
Sp = (_S)b—%+w(—E,S)’

which shows that every elemeRy of Q has two representations namely,
one associated to the matixand the other to the matrixR. LetZ de-
note the subgroup ab consisting of the two elementsE andZ denote
the subgroup of) consisting of the elementsE), for every real num-
ber a. It can be verified that the kernel of the homomorphism

R, — RZ

from Qto Q/Z is Z i.e. Q/Z andQ/Z are isomorphic. Given a discrete
subgroud” of Q, we are interested in findingralation preserving rep- 171
resentationof I'/Z in the groupQ i.e. we want to find a special set of
representatives for the cosets of a subgrbupf Q modulo Z, where

[ ={SiJS €T, a arbitrary regl such that these representatives them-
selves form a group isomorphic wilfyZ. We shall obtain one such
representation, if we define a real-valued functigiR) for everyR e I’
satisfying the equations

Ru® = (-Rw(-Rr) 2
RurSws) = (RSOwRrs) (3

for RandS belonging tal'. For the existence of such a functiafR),
it is obviously necessary andffigient that the following two equations
are satisfied:
1
W(-R) = W(R) - 5 +W(-E.R) (4)
W(RS) = W(R) + W(S) + W(R, S). (5)
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It can be shown that equatiorid (4) ahH (5) are simultaneaadxable
for a horocyclic group for which the system of generators @gfihing
relations are well-known. We shall give here a solution fer tnodular
group, which we denote Y. SinceV3 = T2 = —E, we must have

Vuv)® = (Twm)? = (-E)ucg) = Eo,

whereEg is the unit elements d®. This implies that
(V) + WY, V) + W(V, V) = 20(T) + W(T, T) = W(-E) = _%.

It now follows that 1 1
V) = = T)=1.
WV) = 5. W(T) =7

Let ['p be the subgroup o generated byq andTq. Then the cor-

6 4
respondenc® 1 — VZandTq — TZcan be extended to a homomor-

.6 4
phism oflg ontoI'/Z. Therefore all the relations, which are satisfied by

vq andT 1, will hold betweervVZandT Z. But the converse is also true,

6 4
because the defining relatiok§Z = Z and T2Z = Z for the groupl’/Z
are trivially satisfied byvq andT 1. Therefore the groups, andI'/Z

6 4 X

are isomorphic. This shows that®; and S, are two elements df,
thenS, = Sp and therefore = b. Thus we can writea = w(S) and it is
obvious that the functiom(S) satisfies the equationsl (4) ahd (5). From
T = UV, it follows that

w(T) = w(U) + w(V),w(U) = %2

_ The groupQ/Z cannot have a relation-preserving representation in
Q; for, if it were true, then

A0\ (1 1t O _ (L v forreald >0
o 21\ 1)/\o 1/ \0o 1
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would imply that

ot et 2oy o'
ol -2

1 . _
whereasv(U?) = 2w(U) = 5 leading to a contradiction fot = /2. 173
We define a positive definite metric form oa by

dx® + dy2 dt- 2()2. ©)

ds? = dy

This metric form onZ is invariant under the transformation &f In
order to prove this, it is dficient to prove thatlt - — is invariant

2y

under the transformations @f, because we have already shown that
¢ +dy*

T2
(r*,t) = Sa(r, 1) for some real numbex. Then

is invariant undef and therefore unddt. LetS = (%) and

dt* — dt = d(argyr + 6) = %{d log(yt + 6) — dlog(yt + 6)}

_y, 9 dr
2 yt+6 yy+96
and
dx* dx drf+dr* dr+dr
W‘z_y‘lw 6_ 4y )
T+ T+
TR
vy dr B dr

~ 2 YT+6 yT+6
implying what we wanted to show. Hencg is a Riemannian space
with the groupl” acting on it. The Laplacian on the space? is given
by
62 #? 5
-V

o) Vot a0 (7)
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We shall adopt the notation
(¢ISa)(. 1) = ¢(Sa(T. 1)),

wherey(r, t) is any function defined o andS, is an element of. We

now formulate the indicated eigen-value problem. Lgbe a subgroup
of finite index inT" andv; an even abelian character 6. Moreover,
let T’y denote the relation-preserving representatiom@in Q. Then
I'o consists of the transformatior®ys)(S € I'p). We look for a real
analytic functione(r, t) which satisfies the conditions:

174

1) (A + A)e(r,t) = 0 for some real > 0,

2) (@ISws))(7.1) = vi(S)e(t,1) (S € TY),

1 T S
3) lIim — 7, )oo(7, )y 2dxdydt< oo,
)T[T(]OZTif%fosO( )e(r, )y 2dxdydt<

wheregg is a fundamental domain faip in ¢.

It can be seen that the functions
—irt

o(r.1) = g(r)e

satisfy conditions 1), 2) and 3), wherés a given real number arg{r)
satisfies the conditions:

? P d 5
’ 2 i _ Y2 —
) g+ oy iry =~ +4-7r79(r) =0,

2) g(S < 1 >)e " A = yy(S)vy(S)g(r), with vo(S) = e
andS = (38) e T,

3) [ [ 9@)gr)y 2dxdy< oo.

Jo

175 By @) and [), we have
Vo(RS) = (R S)vo(RVo(S). Vo(~E) = "

showing thaty is a multiplier system for the groupy and weightr and
thereforev(S) = vp(S)v1(S) runs over all the multiplier systems for the
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groupI'p and weightr whenv; runs over all the even abelian characters
of I'o. As a matter of factyg(S) is the multiplier system fon'/1%(r)
mentioned in theoreilm1l9. Finally, we have

e—ir arglcr+d) _ 'i log(cT+d)-log(cr+d)} _ (CT + d)Z/(CT + d)2
q+r q-
Leta = — —_—
@="5h="7
by

andq an arbitrary number. We introduddr)

o) = Y2 ().
Then the conditions 1'), 2') and 3’) lead to the following ctitions for
f:
62) |ra+ £+/l——r2+ -1if(r) =0
X2 ay2 Y3 qyc’)y 4

2") (fIS,)(x) = U(S)f(7) for S € T,

3) [ [ f@FEYRee  dxdy< oo,

Jo

Let us choose in such a manner that the sum of the constant terms in
the diferential equation 1”) vanishes. Then 1”) reduces to

Qupf(r) =0 (8)

r)

2
with Q.5 = yz((9 8 +i(a— ,B)y— —(a+ ﬁ)y— wherea andB 176

are now given by

a+B=1+Vor2—41+La-p=r.

We shall show that the fierential equation[{8) has the invariant
property mentioned above. Since we are interested in thaifuns f (1)
which are non-analytic i but analytic in both the independent vari-
ablesr = x + iy andr = x — iy, we shall writef(r, 7) instead off (r) for
the solutions off{B), as it seems to be a more suitable natafibanging
the variables fronx, y to r andr in Q. we obtain

92 0 0
Qup=(r- ;)ZaTaT——ﬁ(T—aE +a(r - ;)a—; 9
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with
a J—

010 0,0 10
or  2°0x dy

.0
) P E(a_x + |@)- (9a)

We look upon[[Ja) as a definition 36# and i_ The invariance property
T T
of the Laplaciam expressed by
A(ISa)(T 1) = (ApISa)(r. 1) for Sa € O

implies forQ, s the invariance property
Qo p((fIS)(7, 7)) = (Qup IS)(z, 7), for S € Q. (10)
B ap
This is the invariance property of thefidirential equation mentioned in
the beginning. The two parameter domains defined by
1) r,Aarealandl >0, 2) «,Bbothreal (12)

will be of particular interest. In the theory of indefiniteagiratic forms,
(2«, 2B) will occur as the signature of an indefinite quadratic form.
We shall now define certain linear fiirential operators, which
transform the serieS(r, 7; @, B) into one of the serieG(r, 7;a+ 1,5+ 1)
and which are connected in a natural way to the opefigr We set

KQ:a+(T—F)£=a+y(iaﬁx+%). (12)
0 .0 0
Ap = —ﬁ"‘(T—aa—T—: _’8+y(|8_x_ @) (13)

It is an immediate consequence of the definition that

K.G(r,7;a,B) = aG(r, T, + 1, — 1)
AgG(r,7;a,B) = —BG(r, T, — 1,5 + 1),
where the dierentiation is formally carried out term by term, which

is quite justified under the assumption Ref 8) > 2. It can now be
deduced tha®(r, 7; a, B) satisfies the two dierential equations:

{Ap-1Ka + a(B - VIG(7, 7; @, B) = {Ko-1Ap + B(a = 1)}G(r, 750, 8) = 0.
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But by the definition of, g, K, andAg, we have
A,B—lKa + a/(ﬁ — 1) = Ka,_]_/\'g +ﬂ(a/ — 1) = Qa,’g, (14)

therefore the two dierential equations are identical. With the help of
(@3a), we obtain the following commutation relations:

QupNp-1 = Ap-1Q0+15-1,
K(IQ(Iﬁ = Qa+l,,8—lKa (15)

Let {a, B} denote the space of functiori$r, 7), which are real ana-178
lytic in ¢ and are solutions of the fiierential equatio2,zf = 0. We
define the operatois andA on the spacéx, 8} by

Kf =K,f,Af = Agf foranyf € {a, ). (16)
With the help of [Ib), we see immediately that
K{o,8} c{a+1,-1},Ala,B} Cc{a—-1,8+1)}.

This shows that, for integral > 0, then—thiterateK" (respectivelyA")

of K (respectivelyA), is well-defined and is identical with the operator
Kosn-1 ... Ko1K, (respectivelyAgin-1 ... Agr1Ag) on the spacéw, ).
For any real matridXS with positive determinant, we also define

fIS = f|S for f € {a,B}.
a’ﬁ
We shall now prove that the operatdtsand A commute with this oper-
ator corresponding t6 = (& %) with |S| > 0: namely,
(KIDIS = K(fIS),  (AF)IS = A(f]S). 17)

For the proof, we can assume without loss of generality|8jat 1. Let
ussetry =S <71>,71 =S < 7> Thenindeed

(KRISE@T) = (or + d)2(cT + ) F*La + (ry a)a%}f(r, )

cr+d o _
c?+d£}f(Tl’Tl)

=(cr+d) Her+d) P Ha+(r-7)
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={a+(r- a%}(m +d)"(ct + d) P f(r1. 71)
= K(19)(z 7).

179 The second statement follows in a similar way.
For any functionf(z, 7) we define the operatof by

Xf(r,7) = f(-7,-7), (18)

which is equivalent to the substitution— —x leavingy fixed. It is an
easy consequence of the definition that

Xia, B} = (B, a}.

or
I
Lo
I
A
Il
~~
|
o
I
Qo
SN—
~—+
>0
[0}
>

If S = (25) belongs ta2 ands* = (§ 9)S(
forany f € {a, B8}, we have

(X;)IS* = US)X (fIS)ass (19)

whereu(S) is the factor system given by

HS) = ealS) = {i(a—mmu—sgnw reso
For, withg = X f, we havey(r, 7) = f(-7,-7) and
((Xﬁ)|S*)(T,¥) = (9IS (7, 7) = (et + d) P(—cT + d)g(S* < 7 >,S" < T >)
= u(ﬁg)(c(—%) +d)(c(=7) + d)PF(S < -T>,S < -7 >)
= u(S)X (Llﬁs)(tﬂ.

The factor systenmu(S) appears on the right hand side[dl 19, because
the definitions of the powers off + d) and ¢t + d) are diferent in the
upper and lower half-planes. It can be verified easily that

X2 =1, KX = =XA, XK = —AX.

180 We introduce here an opera®r which will be used in the theory of
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Hecke operators in the next chapter and which acts on the $pgg}
under the assumptions

r = a—pBintegral > 0,T'(B) # .
It is defined by

r'®),

=t

(20)
We shall show that
Oa.B) = (a,B), ©%=1.
By definition, we have
Ofla, B} = XA'{a,B} ¢ X{a,1,B+ 1} = X{B,a} = {a,B).

MoreoverKX = —X A implies that the operator

F(ﬂ) 2 r r_ (_1Y (ﬂ) 2 2AT
(r())XAXA—(l)(())KXA
= 1 (Byirar - Cay(EByK, Ko Kohaoa.. A

() I'(@)

on the spacéw, ). Buton the spacgg+n—1,a—1-n}, Kg;nAg-1-n =
—(B + n)(@ — 1 — n); therefore, it follows that

l"(ﬂ) F(ﬂ) 2
0= (o ))Zl_[wn)(a 1= = (g ))21_[«3+n)

Consequentlya, 8} C B{a, 8}, which proves that

O{a, B} = {a, B}.

2 Non-Analytic Forms

181
For our later use, we determine all the periodic functiongtvire con-

tained in the spacgr, 8} and increase at most as a poweyofhiformly
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in X, wheny tends to infinity. We define, foy > 0 ande= +1, the
functionW(e y; a, B) by

W(ey,a.p) = y_%qW%FE,%(Q—l)(zy) (1)

whereq = a + 8, r = a — B andW, n(y) is Whittaker’s function which is
a solution of Whittaker's dferential equation

2
(4 55 + L= 4P+ 4ty IWG) = 0 @
We set, fory > 0,

yia -1 {2;7;1%(1—@“—1 forq# 1

u A = — =
.9 l1-q logy forq=1.

Lemma 6. Let g-(Y)€<* € {a, 8} and let g.(y) = o(y¥) for y =— oo with
a certain constant K i€+ 0. Then

go(y) = a u(y,q) + b, ge(y) = aW(e y, e, 8) for €= 1.

Proof. Sin(:eg_e(y)eiex belongs td«, B}, it satisfies the dferential equa-
tion Q,50:(y)€<* = 0, which shows that

2
{yo(lj—y2 + q%+ er- e’ yige(y) = 0. ®3)

If e= 0, then 1 and the function(y, q) form a system of independent
solutions and thereforgg(y) = au(y, g) + b for some constanta and
1

182 b. Lete?= 1. Substitutingge(y) = y_ZqWO(%r €, %(q -1),2y)in @
we see thaW(y) = Wo(¢, m,y) is a solution of diferential equatiori{2).
But Whittaker’s diferential equation has two independent solutions, one
of which tends tox exponentially whery — oo and therefore cannot
occur inge(Yy); the other solution of[{2) i¥V, m(y) with the asymptotic
behaviour given by

Wenly) > &1L+ Y o [ [P - o 5- 0 )
n=1 "~ g=1
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Therefore we see bfl(1) that

9e(y) = aW(e y; @, B)

and the lemma is proved.
The behaviour of the functions mentioned in lemibha 6 under the
action of the operatori,, Az andX is given by O

Lemma?7. 1. X1=1 Xu(y,q) = u(y,Qq),
XW(e y, a, B)E = W(- € y,5,a)e” (€= 1),

2. Kyl=a,Kuu(y,g) = (L-p)u(y.q) +1

K, W(e y; , B)g = Wy, a+18-1)¢ | for e=1
—a(B-YW(ey;a+1,5-1)g* for e= -1

3. A,Bl = _ﬂ’ Aﬂu(y7 q) = ((Y - 1)U(y, q) -1

(@—1)BW(E Y, a-1,8+1)d>* for e=1

AW @, eiex: .
ey eh) {W@wa—LB+D*X for &= -1

Proof. The assertion about the action of the operatdrK, and Az 183
on the functions 1 and(y, ) is trivial. SinceW(e y;a,B8) = W(- €

y; 3, a), it follows that X(W(e y; a, B)€*) = W(- € y;B,a)e"*. In
order to prove the remaining statements in the lemma, we stade

use of certain identities between the solutigg/, m, y) of Whittaker's
differential equation for dierent values of the parametetandm. It

can be verified that

1
yVV(,)(& m, y) + (f - Ey)WO(g’ m, y)

is again a solution of the typ@p(f = 1, my). Let us assume that
Wo(¢, my) = Wy m(y). Then the asymptotic behaviour of this function
shows that, but for a constant fact®p(¢ = 1, m,y) is identical with
We.1m(y). This constant factor can be determined by considering the
asymptotic expansiofil(5) &%, m(y). Thus we obtain the identities

YW, o) = (€ = 5YWen(y) = ~(1P = (€ = YW 11m),
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YW, (W) + (€~ %y)Wz,m(y) = —Weram(Y).

By the definition of the operatdf,, we have

: 0 0 1 .
KaWE y; B = (e yli5 + Y HWy g (@)

— 50 AEX 1 6
=y 2% {a——Q—EY+Y@} tred@-n()

~1q4ex
=y 29(a - _q € Y)W%re 2(qfl)(zy) + ZyW%re’%(qfl)(Zy)

B {—v%qw§,+1,1(q_1)(2y)e for e=1
- _%&Z‘Z)rzqw_%r_lv%(q_l)(Zy)e“x for e= -1
—W(y; a + 1,8 - 1)&* for e=1
- {—a/(,B CDW(-y;a + 18- )& for e= -1
184
The corresponding result fax;W(e y, @, B)é<* can be proved in a
similar way or could be derived from above with the help ofitentity
Ag = —XKgX.
We shall now find the asymptotic behaviour of the functibife
y; a,8) asy — 0 andy — co. O

Lemma 8. Fory > 0 ande= +1, the following asymptotic formulae
hold:

W(e y; , B) ~ 28"y2@Ne Y (y — o),

W(ey, a,B) ~ 22(2 ) l—l;(((l erl)yl Ay —

provided that in the latter casee(@— 1) > 0, Re@@= €r) > 0.

Proof. The first formula follows from the asymptotic expansibh &) f
W, m(y) and the second from the integral representation

Imly R
Wem(y) = —y2 ¢ e U™ 3 (U + Y™ 2dy,
r(m+3- f)
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1 .
for Re(n + 5t ¢) > 0and Ren > 0. Itis now clear that

I'(2m)

——2 yi My - 0).
tmei-g V7Y

Wé’,m(Y) ~

O

Let @ andB be two arbitrary complex numbers with= « — B real. 185
LetT" denote a horocyclic group and multiplier system for the group
and weight. We assume thatE belongs td". By anautomorphic form
of the type{l’, @, 3, v}, we mean a functiorf(z, 7) with the following
properties:

1) f(r,7) is real analytic inZ and is a solution of the fferential
equationQ.zf = 0,

2) (fIS)(r,7) = U(S)f(r,7) forSeT and

3) If A1 < 0 > is a parabolic cusp df, then with some constant
K > 0, (fIA")(r,7) = o(y¥) for y — oo, uniformly in x.

We shall denote the space of these automorphic formE,ay B, v]. Let
N > 0 be the least number so determined tHat A~*UNA belongs to
I' and let

o(A HV(H) = o(H, A)v(H) = A (UN) = ™ 0 <k < 1.

Using the characterising properties 1), 2), 3) abovef{orr) € [T, a, 5,
v], we shall show that, at the parabolic cusp' < oo >, there exists for
f a Fourier expansion of the type

(A7) = Uy, ) + B + Y WO Dy g grepriamon

nk#0
(6)
whereap and by are equal to 0 in case > 0. Since the substitution186
7 — 7+ N transforms {|A™1)(r, 7) to €7%(f|A 1)(r, T), we have, in any
case, the Fourier expansion

(fIA Y (r,7) = i A () ZA O
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N
. 1 .
with an(y) = N f(ﬂA_l)(T’ ae—Zm(n+K)x/NdX

Because of property 3) above, we conclude thatyfep oo, an..(Y)
increases atmost as a poweryof But Quz(fIA™) = (Quef)IAT =
0, which implies thatay,,(y)eZ %N satisfies the requirements of
lemma®. Therefore, the Fourier expansion 9A(1)(r, 7) may be seen
to be of the type[{6). Conversely, fz, 7) is such that for a real matrix
Awith |Al = 1, (flA™Y)(z, 7) has a series expansion aslih (6), then lemma
8 shows that

(fIA)(7,7) = o(y") fory — o,

with some positive constait.
Applying K,, Ag to @) and making use of lemni 7 afdl(17)d,

we get
(Ko DIA™)(r.7) = (1 ,B)aou(y o) + ag + abo-
- Z an+KW( ))y +1,8— 1)eriHxN _ @)
n+«>0

—a(B-1) Z A W(—— ( 9y, yia + 1,8 — 1)e (XN

n+k<0

(A FIA(T, 7) = (@ - L)aouly, &) — o — Bbo+
+ (a - 1)B Z an+KW(2ﬂ( * K) -1,8+ 1)e277|(n+K)X/N

n+x>0

(8)
+ ) A W(—— ( Dyrar— 1,5+ DN,

n+x<0
187
With the help of [¥), [[B) ang [ of chapteB, in which the trans-
formation properties of a multiplier system have been deedr the
following relations can be established:

[[,a,B, V]IS = [STITS, e, B,V°] for S € Q, 9)
X[T, @, B,V] = [T*, B, @, V'] (10)
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with v'(S") = uSIS), 8" = (§.9) "s(3 %) = (39) T(39).

Ko[T, @, V] C [T, + 1,8 1\, (11)
AgIT,a.BV] € [T — 1A+ 1V]. (12)

If, further a(B — 1) # 0, thenK, maps the spacd|«,,V] onto the
spacel, a+1,8-1,V], because the operath, al—_Aﬁ_l acts as the
identity on the spacd| a+1,5-1,v] and therefore any € [I', a+1, 8-

1,v] is the image of;ﬁ)Aﬁ_lf € [T, a,B,V] underK,. Similarly,
all -

a
it can be seen thatg maps the spacd[a, S, v] onto the spacell, a -
1,8+ 1,V], in caseB(a — 1) # 0. Thus from[Tll) and{12), we see that

KoL, B,V] = [T,a+1,8-1,V], incasex(8—1) # 0 a1)
Ag[T,a,B,V] = [, —1,+1,V], incaseb(a — 1) # 0 (12)

Forr = a — B integral> 0 andI'(B) # o, we have
O[l,a,B,V] = [T, a,B,V], (13)
because of the relations 188

O[T, a,B,V] = XA"[[,a,B,V] c X[[,a = 1,8 +1,V]
= X[, B,a,V] = [T, @, B, V']

and@®? = 1.
By complete induction oh, it follows from (@) that
(A"DIA (T 7) =
I(a) o1 T@T(B+h) 2T(8+h)
T - U0 @)+ a ;(_1) Te-1r@ei+n Vg ™
I'(6+hI(a) 2r(n+x) i(+)x/N
* T~ n;OaMKW( Vi —hp+he
> aWW(Z”(T\I+ yra—h,g + Wy

n+«<0
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(B +h) (B + h)

e TG D
the analytic functions [z+h) nd F(l;(j;-?l) at the pointz = g. Us-
ing lemmd¥ and(19) o§|.)I]forr = a — Bintegral> 0 andI'(B) # oo,
we now see withu(A™1) = u, g(A™1) that

where thd -functions represent the value of

A O T (r. ) = u(A ) LB (A DA ) -

_TB) onriua
= Fay U DA )

_ N r— (B () r
=200+ ) (N e gy %t b

F(a) 27”(” + K) 2n(n+)X/N
) Zo B W(———Y; @, B)E”

F(B) Z +KW( 277(n )y a’ﬁ)e—zm(nw)x/N.

n+K<O

189 Let «* be so chosen that = —«*( mod 1). Them + k = —(n* + «*)
for some integen®. Therefore, if, finally, we replace* again byn, we
obtain

u(A‘l)(®f|A*‘1)(r 7)

r- (B () r
= agu(y. 9 +Z( Y e or@ s ra et Y ot

F(IB) Z _ W(ZJT(H + K ) ﬂ)62n|(n+;< XN

n+k*>0

F(a’) 2r(n+«*) i(NHK*)X
@ ZO e WY f)eZ TN (14)

HereA* = (3 9)A(3 _01)_1. since(§%) = (§N). it can be proved,
using just the properties of multiplier systems, that

v UMA UM = 1
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corresponding ta + «* = 0( mod 1). Ifr = 0( mod 2), then applying
® on both sides of{14) and using the fact th&t= 1, we see immedi-
ately that

r-1
- I'(a)I'(B)
1yt — =
;( 1) R 0 (forr=0( mod2) (15)
which can also be proved directly.

We remark here that the spadg ¢, v] of analytic modular forms of
real weighte and multiplier systemv is contained in the spacE,|a, O, V]

L . o Of
and it is determined in this space by the condlt(9 =0.

=

Following a method of Siegel, we shall now prove that, undene
assumptions, the spack, fr, 3, V] is a vector space of finite dimension
over the complex number field.

Theorem 28. LetI'g be a subgroup of finite index in the modular groupeo

I Letr = @« — B be real and p= Ref + 8) > 0. Then the space
[To, @, B, V] is of finite dimension over the complex number field.

Proof. We shall prove that theorem in a number of steps.
1) Sincer = @ — Bis real, we have
|(ct + d)*(cT + d)P| = |cr + d|P for real ,d) # (O, 0).
ForL eI'gandA € T we set
TT=L<t>T=A<1>.

We shall denote by, y* andy the imaginary part of, 7* and+
respectively. Leff be a function inTy, «, 8, V]. Then obviously

Vel D) = Y2 (", 7)) = 92I(FIAY)E, F)L.
Let A/t < o0 > AL withAs e Tforl < ¢ < o be

> T lo<oo>

a complete system of inequivalent parabolic cuspEgénd let
A, ..., 2, be cusp sectors at these cusps. Then

8o = O “n
n=1
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is a fundamental domain fdrg. Let N, denote the width of the
cusp sector?; and letN = max N¢. Net

(A7) = &u(y, 6) + b(“
Z a0 w 271(n+/<g)y e, )N
K{
[

N+ke#0

be the Fourier expansion at the cut;*sp1 < oo > foranyf in
[Co, @, B, V]. Let us suppose that

a) = =) =oforn+xl<me=12...,0

Then we shall show that vanishes identically fom chosen suf-
ficiently large; this will establish the theorem. In the @wlling,
C1,Cy, ... will denote constants which depend only By «, 8, v
and not onf.

We estimate f(|A;1)(T,F) in Ay < % >. Since the Fourier expan-
sion of (f|Agl)(T, 7) converges in the whole &, we see that

A W 0 1 < Clo,

for all n,£ andn > 0. We normalise the modular formin the
1
beginning itself, so that(n) = 1 forp = ——. Moreover, with
g g () n= 3 NG

this 5, we havey > 3p for r € Ay < % >. Using the asymtotic
formula for the functionV(e y; @, B) given in lemmdB, we obtain

(Q)%(p_er) g 2rIn+xel(y—m)/Ne

W( 27'((n+Kg) y, Cl’,ﬂ)
y

W( 27T(I"I+K[) ﬁ)

for |n + k;| — o, wheree= sgnf + «,). With the special choice
1 .
of n = —— and forr € A, < % >, it follows now that
2V3

< Cpe Zrin+rely/(3Ne)

| W(My; )
W( 27'((n+Kp) ﬂ)
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for n+ k; # 0. This implies that

FAD@DI < )
IN+xe|>m

<C; Z @ 2rin+cly/(3Ne)

IN+ke|>m
< Cze—277mY/(3N{’) .

w(Edy, a,ﬁ)‘
WEGy; . )

In particular, we see that the function 192
I(FIA; L) (7, 7)enZ™EN) 5 0 asy — oo,

uniformly in x. Therefore it has in the domaily < .%; > a hon-
negative maximunM, which is attained at a finite point of this
domain. Thus

I(FIAF (7, D)l < Mg Z™/CND for r e A, < % >
and eugqality holds when= 7,. Let

M, < Mpfor¢=12,...,0.

3) We shall now estimatef(A.1)(r,7) in ¢. For a given point € ¢,
we setr’ = Al <7 > 7" =L <7 > whereL belongs tolg
and is so chosen that’ belongs ta¥o. Sincedo = U;_; -Zh, the
pointt” belongs to at least one of the cusp secigfsl < ¢ < o.
Lett” € %; then we set* = A, < 7 >. We shall denote by
v,Y,y’ andy* the imaginary parts of, 7/, 7" andr* respectively.
By 1), we have

Iyg(flAﬁl)(Tﬂl = )/LZ)If(T’,;)| = y’L2)||f(T",T71)|
=y 3 (fIA Y ).

Using the estimates of 2), we get 193
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I(FIA) (7, 7)| < y—gy“% M e 2mY /3N

3N gy 3PN

<M 2 ,
- h(47rem)) (4arem

because the functioyf/2e-2mY/(\e) has the maximumi% p/2
JT

at the pointy = % This estimate holds even whegn= 0, in

i TT
which case we assume thalt = 1.

4) We proceed to find a bound fqirflAgl)(rh,FhN wheret, is the
point mentioned in 2) i.e. the point belongingAg < %, > such
that

Mpe 2 M/ GN) = |(£| AL (T, 7)| With Th = Xq + iYh.
i
Lett = x+ :—%yh. Then

" w( 27T(n + Kh) Yh

Anii,

;. B)

N

1 .
N_f f|AH1)(T,7_')9_2ﬂ|(n+Kh)X/thX
0

With the help of the preceding step 3), we see now that

27T(n + Kh) yh 9

Bl < Mn(ooPN_yor2.

(h)
B, W( Nh 4remy,

so that

Mie™ 2™/ N — (£ | A2 7y, 7))

PN op o Wy a.p)
Mh(4 m ) Z 2n(ntkn) -
emy, W(=55 " Yh; @, B)

[n+xp|>m 3N

p/2 @ 7In+khlyn/Nn
CaMn(7 v emy]) Z

[N+xp|>m
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9pN

P/2g-mih/Nn
4remy, )

< C4Mp(

showing that

9pN

M-eMh/GNn) < c,M
h =4 h(47remy]

)D/Z.

Thus
3pN

4remm

for p > 2. Now it is obvious thaMy, = 0, if mis sufficiently large,
which implies thatf = 0. Hence the theorem is proved.

Mheﬂ”‘”/N < C5|\/|h( )p/2

3 Eisenstein Series

We associate to two functionf(r,7) € {@,8} andg(r,7) € {«’,5'} a
differential formw(f, g) defined by

w(f,q) = Y H{fAggdr + gK, fdr},

wherea’, 8/, y are complex numbers which independentlyagB, will
be so determined thakw(f,g) = 0. With the help of the dierential
equations satisfied bfyandg, we see by simple calculation that
0, .,1 0, 1 _
do(f,g) = {- (" fAg 0) — =(y" 9K, f)ldrAdr
or or

- {lw SDE -y gl a )y
2 ot

+(y-B-B)Y"~ l (9f dTAdT

This differential vanishes trivially, if any one of the following tveon- 195
ditions is satisfied:

o =8 B =a y=a+p, (1)
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o =1-a, pB'=1-8, yv=1 2

We shall denote in the following by(f, 9)|S(S € Q) the diferential
form which is obtained by substitutirfg) < = > for 7 in w(f, g). We shall
show that if the numbers, 8 anda’, 8’ satisfy any one of the conditions

@@ and [2), then
w(f,9)IS = w(f|S, gIS).

LetS = (258) with |S| = 1. We set
2=S<7> andM = M(S<71>S<T1>),

whereM = M(z, ) denotes an arbitrary function or operator. By defini-
tion

w(f1S,gIS) = Y H(fIS)As, (IS)dT + (gIS)K,(fIS)dr}
=y H(fIS)(Ap, 9)IS o + (9IS)(K, F)IS i}
=y H(er + d)y e + d) FF A, G+
+(cr + d) " Her + d) P HIGK,, fdr]
= Y fAg, g + 9K, fd?)
= w(f,g)IS.

We shall say that two spacek, |, 8,v] and [, o, 8, V'] are adjoint of
the first or the second kindccording asy,8 and«’, 8’ satisfy condi-
tion (@) or [2) above and - v = 1. If f andg belong to the adjoint
spacesT, «,B,v]and [I', o, 8, V'] respectively, then it follows from the
transformation formula fow(f, g) that

w(f,0)IS = w(f,g) for S eT.

We shall now examine what the existence of an invariaffiedintial
for two adjoint spaces of the first kind for a subgrdugpof finite index
in the modular group means. Léte [I'g,@,3,V], g € [I'o, @, 8 ,V] and
leta’ =B,8 =a,y =qandv-Vv = 1. As before, let#, %, ..., %,
be cusp sectors at the cusps® < o0 >, ASt < o0 >,..., A7t of I,
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which constitute a complete system of inequivalent paralmlsps of

I'g. Then
8o = U 2
=1

is a fundamental domain fdfy. LetN,, £ = 1,2, ..., 0 be the width of
the cusp sectaf;. We remove the parabolic cusp from the domath
with the help of a circular arc,, which is mapped by the transformation
T — A/ < T > onto a segmerd, of a liney = y, > 1, and denote the
remaining compact part by’ Sincedw(f, g) = 0, it follows that

[ wtr.a-o

(')_Z}*
whered.Z; is the boundary ofZ}" oriented in the positive direction.
Consequently, we obtain

[

> fw(f,g):o

= 1{7_2” 1t

and here the sum of the integrals along those edges, whickgarea-

lent but oriented in the opposite direction, vanishes, bsea(f, g) is
invariant under the transformations Igf. Using again the transforma-197
tion formula forw(f, g), we see that

Zf mem wamw

6,2”* -
y w(fIAL gAY =0 (3)
-3 fmo

Let

27T(n + Kg)

(f|A 1)(7- 7) = @p(y) + Z A W(——= ﬂ)e2ﬂ'|(n+Kg)X/N[

N+ke#0
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and
(n + Kt,)

GA@D) = ge) + D B W(——Ly; @, e N

N+, #0

be the Fourier expansions féfr, ) andg(r, 7) at the cupsA;l < o0 >
of I'g. Here

ee(y) = ayu(y, ) + &’ and
we(y) = bpu(y, ) + by

These functions vanish whanand consequently’ too, is ramified at
the cuspAgl < o0 >. Moreover we have, + «, = 0( mod 1), because
v-Vv =1, By§@Q lemmdy, we get

Ko(FIA) = (K, F)IAT

= Kage(y) - Z an+K,W(M @ + 1,8 — 1)e&rrxN;
N+k,>0
_ a/(ﬁ ]_) Z an+K[W(2ﬂ'(n+ Kt’)y + 18- 1)e27'(|(n+K(7)X/N(
N+k;<0

198 and

(ApQ)IA = Ap (QIAY)

2z(n+ « )
= Aptre®) + (@ = 1) D" b W(——
N+x;>0 Ne
Of, _ 1,ﬁ, + l)eZITi(n+K;,X/N{')+
+ ) g W(——= ( f’) — 1,8 + 1) N
N+x;<0

Since dy vanishes oi%,, it is suficient to calculate the value of
w(fIA;L, g/A7Y) modulo dy. By the definition of(f, g), we have

w(fIAL dAY) = Y HEIA (Ag, 9)IA (K, A dX( mod dy).
(4)
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Let X,(y)dx denote the terms independentxadn the right hand side of
equation[(®). Then
Y IX(y)

= oA (Y)Kepe(Y)+
27T(n + K)p

+(@ = 1B D, Bn Do W( @ B)W(- W)ﬂ o - LB + 1)+
n+k;<0 d
+ Z a”*’([b*n K[W(M @, BW(- 271.(n—jlq)y; o -1.5 +1)
n+x¢>0
- 3 b W2y i EE )
n+x¢>0
—alp=1) 3] by ann W Dy pyw R s 1 1),

n+k;<0

Using the relation®(-y; a,B8) = W(y;8,a), o = g andp = «, we
obtain
Y hey) = e Apvey) + we(y)Kape(y)-

Since the value of the integral of the terms containingxplicitly on 199
the right hand side of13) vanishes, in view of the integraethdy then a
periodic function of periodN,, equal also to the length &, it follows

that
w(fIAL gAY = () dx=0 )
;S(f y s OIA, ;J){[y X

But a simple calculation shows that
xely) = byal - aby.
Therefore[(b) implies that
D" Ne(by/ @ — a/by) = 0. (6)
(=1

Let the notation be so chosen that the multiplier systeand therefore
V' be unramified at the parabolic cus@§1 <o > (1<t <o) Then
@) leads to the bilinear relation

o0
D" Ne(bya) - ay/by) = 0
=1
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i.e.G'nmb=0

wheren respectivelyp denote the column vector with componeatsa’,
.. .,a{m, a,ay,..., ago respectivelyo’l, b’2, e, b(’TO, b’l’, b’2’, e b{;o and

e 0 D
“\-D 0
is a 2ro-rowed square matrix arid, theoo-rowed diagonal matrix with
N1, No, ..., Ns, on the diagonal. If there exigtforms f with linearly

independent vectorg andv forms g with linearly independent vectors
, then a consideration of the rank shows that

u+v =200
We formulate the results proved above in

Theorem 29. LetI'g be a subgroup of finite index in the modular group
and let Agl <o > (¢ =1,2...,00) be a complete system of in-
equivalent parabolic cusps &f at which a multiplier system v for the
group I'p and real weighta — 8 is unramified. LetZ (respectively
I') be the linear space of the vectofgi(y),....¢s(y)} (respectively
{W1(y), ..., ¥ (Y)}), Whereg,(y) (respectivelyy,(y)) is the term inde-
pendent of x in the Fourier expansion foref[Ig, @, 8, V] (respectively
g € [[o.B. @, VY]), at the parabolic cusp A < o0 >, £ = 1,2,...,00.
Then

dimensionZ + dimensiony < 207.

Under the additional assumption Re{ 8) > 2, which enables us
to give Eisentein series as explicit examples of modulanfmve shall
prove that the space® andy have dimension at least equaldg, so
that we have indeed the relation

dimensionZ = dimensiony = o.

Let v be unramified at the custi'* < c >. Then we define the Eisen-
stein series

G(T, ‘F: a?ﬁ? v, A? FO) = Z {O-(A’ L)V(L)(mlT + m2)a(ml;+ mZ)ﬂ}_l
Mey(Alo)
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whereM = AL = (m, m,) andy(A,Tp) has the same meaning as in
chapteB,§ @. As in the analytic case, the following transformation
formulae can be proved:

G( .;a.B.V.AT) IB S)(x.7)

1 _
= —— ; VS, AS, S7IrgS) f I
( ’S)G(T, T,a,B,Vv°,AS, ST ToS) for S eT,

G( ,;a,B,v,ATo) Iﬁ L)(z, 7)
= V(L)G(T, ‘[T, a,ﬂ, v, A, FQ) forL € Io.

These transformation formulae show that the Eisensteiessisra mod-
ular form in [I'o, @, 8,V]. Moreover, it is not dficult to prove that the
form G(r, 7; , 8, v, A, Tp) does not vanish at a cu®p! < « > if and
only if B! < « > is equivalent toA™ < c > underlg. Thus there
exist as many linearly independent Eisentein series asuimber of in-
equivalent parabolic cusps bf at whichv is unramified. Hence our
assertion about the dimensions4fandy is proved. We call a form
f € [0, @, B, V] a cusp form, when the functions(y), . . . , ¢, (y) men-
tioned in theoreri 29 vanish. Thus we have

Theorem 30. LetT"y be a subgroup of finite index in the modular group.
If I = a — Bis real andRef + B) > 2, then for every form f belonging
to [0, @, 3,V], there exists a linear combination(&7) of Eisenstein
series, so that (fr, 7) — G(t, 7) is a cusp form.

Regarding the existence of cusp forms in the sp&gad, 3, V], we
prove the following

Theorem 31. If, in addition to the assumptions of theorém 30, we as-
sume thaRea > 0, Res > 0 then the spacfl’y, a, 3, V] is generated by
Eisenstein series and its dimension is equal to the numbieeqgtiiva-
lent parabolic cusps dfp at which the multiplier system v is unramified.

Proof. For the proof of the theorem, it is Sicient to prove that iff € 202
[To, @, B, V] is a cusp form, therf = 0. Following the proof of lemm@al 5
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(chaptefBg§ @) it can be shown that*’?|f (r, 7)| is bounded ir¢, where
p = Re( + B). Let

(CHEDY «'stmkw(—z’r(r,]\l+ Dy, gy
n+«#0
be the Fourier series df(r, ) at the parabolic cusg of I',. Then

N

y;a,B) = Iﬁ f yP/2 £ (1, 7)e XNy < C
0

2r(n+ «
lansy” 2W(%

with a suitable positive consta@t But by § @, lemmd3,

y”/ 2W(@y: a,p)

is unbounded ag — 0, becausg = Req > 2; therefore, the above
inequality can hold only if,,, = 0 for n + x # 0. Hence the theorem is
proved.

In some special cases, using the method adopted in the pfoof o
theorenfZB, it can be proved that the cusp forms identicalhyjsh even
when the assumptions of theorém 31 are not satisfied. Tenioky
theorem is an example in this regard. m|

Theorem 32. Let v be an even abelian character of the theta groyp
with V2 = 1 and leta > 0. Then the spacf’y, a, @, V] contains no cusp
form which does not vanish identically.

First of all, we remark that there exist exactly 4 charactérgy of

the type mentioned in theordml32. Sidd@] is a subgroup of index 2
andT'y = I'[2] UT[2]T is a coset decomposition dfy moduloI[2], it

203 follows thatv,(T) = -1, v1(S) = 1 for S € I'[2] defines an even abelian
character ofl’y and vf = 1. But we have proved already thB} is
generated byl andU?; therefore vy is uniquely defined by (T) = -1

1 .
andvi(U?) = 1. LetA denote the matn)TZ(j 3). Then it can be

seen that the mappir§ — AS Al is an automorphism of the groiij,
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which mapsT to U2TU=2 andU? to TU2. This shows that»(S) =
v1(AS A1) is another even abelian characterdgfsuch thalv% =1:v
is different fromvy becausen(U?) = —1. A third charactens of I'y
of the same type as above is defined\ay, so thatvs(T) = 1 and
v3(U?) = —1. Thus we have obtained four characters namety, 1
andvs = v;v, of the desired type. Since the grolipis generated by
andU?, these are all the even abelian charactesI 'y, with v2 = 1.

Proof of theorem 3.32.The casar > 1 follows from theoreniz31. If

a = 0, then any functionf € [I'y,0,0,v] is a harmonic function. If

f € [T'y,0,0,v] is a cusp form and does not vanish identically, then
f(r,7) attains its maximum at a finite point of a fundamental do-
main of I'y. But this contradicts the maximum modulus principle for
harmonic functions unleskis constant in which case it vanishes iden-
tically; therefore the theorem is proved for= 0.

In what follows, we confine ourselves to the case @ < 1. Letgg
be the fundamental domain Bj, given by

Fo={rlr=x+iy,Ix-U<Ljr=L|r-2>1y> 0}

The domaing, is decomposed by the circle — 1] = V2 into two
parts, one of which, say’, is unbounded and the othe#; is bounded.
Moreover, the above-defined elliptic transformatidmrmaps.# onto 204
Z. We setA; = EandAy = A ObviouslyA; < A >= Ay < % >=
2, which implies thay > 1 forr € Ay < % >.

Let f(r, 7) be a cusp form belonging td'§, «, @, v]. Since the width
of the cusp sectoh, < % > is 2, we have a Fourier expansion of the

type
(FAY@D) = >l Wrn+ k)y; a, @)X = 1,2).

N+x,#0

1 .
Herex, = 0 or§(€ = 1,2), because? = 1. Nowg = y*|f(r,7)| is
invariant under the transformations Iof and fort’ = X' + 1y’ = A <
T >, we obviously have

Y (@ 7) = YUFIADE, 7).
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It follows thatg attains its maximunM at a pointr* # oo, 1 of §p. Let
7" belong to.%;. Then we setg = Xg +iyg = Ar < 7" >. Itis obvious
thatyp > 1. Moreover

M = y*o|(f|A; 1) (7o, 7).

We shall now prove thatl = 0; this will imply thatf = 0 and prove the
theorem when & « < 1. From the integral representation

) y oy & Uy -1 Uie-1
W(zy; @, ) = fe YU (1 + ==)*duy,
r
() . 2y

it is evident that
Y*W(Y; @, a)e’

increases monotonically to 1 fgr— oo, so that
a
(;/)“W(a; @, @)Y <W(y,a,0) <y *eYforO<a<y. (7)
205 Since 0< 1-a < 1, it follows that
u 1-a _ i
(1+2y) <1+(1 a/)2y

=+ i)w-1 > (1+(1- a)i)-1 >1-(1- a)i

—ual a-1 1 ( al u
r()f L+ ) du> r_f (1- (- a)g Jdu
0
a(l-a) 1

(12ya/)1"(a+1)}=1—2—y Zl—a{

r( ) {[(a) -
This implies that
Y'W(Y; @, )¢’ > 1—-1/(8y) for 0 < @ < 1 andy > 0. (8)

We shall now estimata,(QK with the help of

afﬁ,q,W(n(n + K0)PYo; @, @) = % f (f| Agl)(r, T)emikxgy
0
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wherer = X+ iypp with p an arbitrary constant belonging to the interval
0 < p < 1. We obtain from above that

188, IW(x(n + ke)pYo; @, @) < M(pYo)™(n + k¢ # 0).

Using ), we see that

M = y2(fIA;H)(roTo)l

< M Z W(rtIn + k¢lyo; @, @)
W(rn + k¢|pyo; @, @)

N+ke#0

o W(rln + kelyo; @, @) (N + ke|pyo)® € melpyo
<p ™M E
W(r(1 - ke)p; ) (n(1 — ke)p)rerdxap

N+kp#0

. 1. . . .
sincex, = 0 oré implies thain+«,| > 1-«,. On using[(B), this estimate206
gives the inequality

M<_2M S e,

1o 1
8r(1-«)p N+x>0

Replacingn + «; by n + 1 — x, and summing up the right hand side of
this inequality, we see that

~n(1-k¢)(1-p)
M < 2M € )

- 1 _ 1-
1- gy 1m0

It is now obvious thaM = O, if there exists a real numbgrwith 0 <
p < 1such that

1

g(L-x)(1-p) _ gnxe(1=p)
Br(l )" )

2<(1-
i L etn)
ie.2< (1- =—)Ee""* —1)whenk, =0
8np

1 T 1
1< (1- —)sinh=(1- h =-.
and 1< ( 4ﬂp)sm 2( p) whenk, 5
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. - . 1
For the first case, it is $licient to takep = > because

1 11 x
- — —_ 7 —
1 y > 12ande 1>3

For the second case, let the real numbée so determined th%(l -
p) =1.185. Then < p < 1 and

sinhg(l —p) = 1.48247Q .. > 1.4824

dnp  4r—9.48
4rp— 1 4r—1048

< 14794

which together imply that the second inequality is possilblence the
proof of theorenfiL:32 is complete.
A direct consequence of theorém 31 is

Theorem 33. LetI" be the modular group and let, 8 ge complex num-
bers such that r= @ — g is real andRea, Regs, Re@@ + 8 - 2) > 0.
Then

1 ifr=0( mod?2)v=1

dimensionT, «, B, V] = )
il A {O otherwise

Proof. By theoren3l, the dimension df [a,B,V] is equal to 1 if and
only if the multiplier systenv is unramified ato i.e. k = 0. Then it
follows from (@) of chaptefl3§ [ thatr = 0( mod 2) and’ = 1. Hence
theoreni3B is proved. i

We shall now determine the Fourier ¢beients of the Eisenstein
series for the modular grodp under the assumptions= a — 8 = 0(
mod 2) andv = 1. Instead of considering the seri@ér, 7; a, 5,1, E,I),
we consider the series

Grrap= ), (M+nmr+n?
(mn)#(0,0)

because the Fourier dbeients turn out to be simple in this case. Itis
obvious thatG(r, 7; a, 8) defines a modular form i a, 3, 1] in case
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p = Ref +B) > 2. First of all, we find the Fourier series of the periodic
function

f(r,7;0,B) = i (+n) T +n) P> 2)

N=—co

defined forr € 4. Let

fr T ) = €2 3" hoy; a, g™

N=—co

with 208
hn(y; . B) = @ F)/2 f T e Mdx

—00

= f (-it) (i) Pe ™ dx
=y 7 f (1-ix)™(1 + ix) Pe2WXdx

Here the integrand is defined by
1-ix) =g Iog(l—ix)’ 1+ iX)_ﬁ — e—ﬁlog(1+ix)’

where the branch of the logarithm is chosen in such a waydlafliix)
is real forx = 0. In order to express the function

ht; @, 8) = f(l —ix)" (1 +ix)Pe™dx (Re@ +p) > 1)

in terms of Whittaker’s function, we consider the gammagras

(o0

(1-ix)"T(a) = f e Xt ge-lde (Rea > 0)
0
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(o)

(1+ix)Pr@) = f e W+ f-1lgn (ReB > 0)

0

which imply that

(1-iX)" (L +iX)PT()I(B) = f g (I Pe=(L+n ga=1p =1y,
0

o —s

The substitutiorf + n = u, £ —n =t leads us to

21 (@)T(B)(L — iX) (L + ix) P

= f g f e+ 1) Hu-t*tu -1’ dul dt,

u>|t|

with g = @ + 8. This shows that the function @ix)~*(1 + ix)# is the
Fourier transform of the-integral. Let Ref + 8) > 1. Then the inverse
of the above Fourier transform exists and we get

Lz(f)zq_l f (1-iX)"*(1+ix) Pe ™dx = f e Y(u+t)* H(u-ty’1du

00 u>[t|
Consequently, we obtain

2n

1-qg —u a=1¢,_ \8-1
F(a)F(ﬁ)Z fe (u+ ) tu-tftdu

u>|t|

h(t; ., 8) =

Making use of the integral representation of Whittakerisction given
in the proof of lemma&l8, we see that

h(t; @, ) = ~2944 MWt @, B) (e= sgnt)

F( q+2€F)

and in particular,
277F(q — 1) 1-q

"B T
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By the definition of the functiom(t; «, 8), the Fourier cofficients of
f(r,7; @, B) are given by

ha(y; @, B) = y*~9h(2my; o, B). (10)

We shall now determine the Fourier expansion of the Eisenstries
G(t, 7; @, B). Here we shall make use of the assumpticaa — 8 = 0(
mod 2). Let us sat = 2k (kintegral). Then

G(r. 7, ) = zi o +2 i i (mr -+ n)~*(mz + n) 7
n=1

m=1n=-o0

= 20(0) +2 ), f(mr,mT, o B),
m=1
because, fom > 0, mr belongs ta¢ with . Thus 210

G(r,1;a,B8) = 2£(q) + 2 i i hn(My; a, 8)eZimnx.

m=1n=-o0

But from (I0), it is obvious that

ha(my; @, B) = (my)*~9h(2rnmy, e, B)
= m 9 9h(2znmy; @, B)
= ml_qhmn(y; @, B);

therefore

G(r. T B) = 24(@) + 2-1) ) M > hane(y; o HE™™
m=1

N=—oo

Collecting the terms for whicmn= ¢, we get

[ee)

G(r, 7, 8) = 2(q) + 2(-1) )" (> dhy(y; e, B
{=—co d|t
d>0

= (Y, 0) + 2(-1)*( V2n)"
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> o) W(2rny; a, B)e? ™

q
v I'(z+€k)
with € = sgnn, dg_1(n) = Z d% ! and
&0

ey, o) = 22(0) +2(-1)¢( ~ Dho(y; @ B)

= 2@+ (—1)k23—qn£((‘_§ - i))i iq% = 1k;
= 2/(d) + (—1)“23—%;(‘_5 - i))i iq% = B ¥
.

{1 -quly.q) + 1}

(1 - aq)u(y,9).

The analytic continuation of the functidd(z, 7; @, 8) — ¢k(Y, 0), which
is so far defined for Re > 2, in the whole of they-plane (for a fixed
integerk) is obvious from the series as well as the estimate

W(zy, a,8) < Ce N ifory > yy > 0,lal < m |8 < m

with a positive constant = C(yp, €, m), wheree, yp andm are given
positive numbers. In order to obtain this estimate for thecfion
W(y; «,8), we consider the well-known integral representation for
Wikm(y) (see Whittaker and Watson: A Course on Modern Analysis)
of which the following two integrals are an immediate congstge:

(o)

r/2y-Bay
Zlyre fu""l(l+ zﬂy)"‘le‘“dufor Res > 0,

W(y; a,B) = TG
0

(0+)
_or/2 _ ~
Wi p) = TG [Cupaas Syteta

forT'(1—pB) # co.

In the second integral, the path of integration is a loop cWistarts from
o0, circles round the point 0 in the positive direction so theg points
0 and-2y are separated and then goes over agair.td he integrand
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is uniquely defined by the requirementrg(u)| < &, in caseu is not
> 0 and|larg(1+ —)| < min case (1+ —) is not< 0. The estimate for
the functionW(-y; a, B) follows from that ofW(y; «, 8) because of the
identity
W(=y; @, B) = W(y; @ @).

For the analytic continuation of the functigi(y, q) in the complex
g-plane, we shall make use of the well-known facts that thetfans
&) = Sl — 9 21"(5)4“(3) is an entire function o$, satisfies the func- 212
tional equatiort(1 — s) = £(s) and for 0< Res < 1 has the same zeros

as the zeta functiori(s) and does not vanish outside this strip. Further,
we need the identity

s+1

1 s+l
2

I'(s) = e

2N

for theT-function.
By the definition of the functiorpk(y, g), we have
n9/2 (-1)*x%2rd - 1)
—q‘f(l - q) + q 2 q
(1-9r@+1) (1-9r@G+Kkri -k
(-1)*29%1(3 - 1)
1"(% - k)l"(% +K)

e(y: Q) = £a-1)+

£(q-1)u(y, 9).

But obviously

(%2 + 1K) w1 TG -1)
q = (_l) + q ;
r2-s7) I'(3 — k)
therefore
e 3 1 (TE+1K) . )_r(%ﬂkl) @-Db+
w0 = -9 | T@r YT g

(-1)fr9?r(3 - 1)

PRI — S e

The expression in the brackets is an odd functiog efl and therefore
has atg = 1 a zero of order at least equal to 1.
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We introduce 213

ey, 0) = 9(1 - 9)7r‘q/ 2F(9 + [KD)ex(y, 9)
F(z + |K)
_2 1—
{( D & £1-0)

ql(1-3 +1k)
e (q—l)}+

k+1q (2)
+(=1) 21 |k|)§(q—1)U(y, Q).

It is obvious thatp(y, g) as well as
G'(r. 7. B) — ¢ (y. )
_ (1Ko 29
= 2(-1f(@n)?5(1 - )Z

n#0

r(q + 1) dq_l(n)W(Zﬂny, a, B)eZ

: : . 1 . . .
with e= sgnn, for the given integek = E(a - B), is an entire function
of g. The transformation formula d&(z, 7; @, 8) and therefore of the
function G*(r, 7; @, 8) was proved for Rg > 2 but remains valid by
analytic continuation; thus

G'(rr;e.p) € [T, @, 5, 1].

With the help of
1 74 1 74 ]
2(0) = —E,g 0) = -5 log 27,I"(1) = —y(y = Euler’s constant)
we obtain, by simple calculation, that

EO)=-1 £(0)=1+ 5y ~log4n)



3. Eisenstein Series 185

and finally, for some special valueslofndg,

-1 fork=0,9=0
* _1 _ _
ey, =4{-5 fork=0,g=2
T(k+1)

T%){zﬁzl st +3(y+log )} fork>0,g=1.

Corresponding t& = 0, q = 0,2,1 we get the following Eisenstein214
series

_ _ 1
G'(r,7;0,00=-1,G'(r,7;1L,1) = —;/,

* } } = } L inx
G'(r.T5.5) = 5(r +10g 70) + ) do(m)Ko(2rlnly)e®”

n#0

o) = |3 Wey 3.3

is the well-known Bessel function of pure imaginary argutne®ince
£(g) vanishes only in the critical strip @ Req < 1 of Riemann’s zeta
function (), it is easy to see that(y, g) for givenq andk (integral)
. : 1
does not represent a cusp form for any choice,@fprovidedk = E(a_
B) is integral.
1

SinceyEqW(e y: @, B) with y > 0, €2= 1, according to the definition
of this function, depends only onr € and @ — 1), it is not hard to
prove thaiG* satisfies the following functional equations

G'(r,7;8,a) = G'(-7, -1; @, B),
G'(r,7il-a,1-p) =y"'G'(r.7i5,).

The following is an immediate consequence of the resultsgato
above.

Theorem 34. The linear spacdTl, «, «, 1], whereT" is the modular 215
group, has dimension 1 over the complex number field in eaase0
and in that case it is generated by @, 7; a, @).
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Proof. By theoren3R, there exist no cusp forms ind, «, 1] which
do not vanish identically. Thus by theorém 29, the space,a, 1] is
isomorphic with the spac& = vy and therefore dimensiol'[a, a, 1] =
dimensionZ < 1. But, fora > 0, there exists a form inf| a, a, 1],
which does not vanish identically, namely, the Eisensteiies. Hence
the theorem is proved. m|
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Dirichlet Series and Euler
Products

1 Gamma Functions and Mellin Transforms
216

In this section, we study some generalised gamma functiotid/ellin
transforms of some functions, which will be required in tleeel for
the investigation of the connection between Dirichleteseind modular
forms.

We introduce the gamma functions

r(sa.f) = [ Wosapy”tdy M
0
as the Mellin transform of the functiow/(y; «, 8), which satisfies the
differential equation

YW'(y; @, B) + QW (y; @, B) + (r —y)W(y; @,5) =0 (2)

wherer = @ — 8 andq = « + 8. This diferential equation has 0 as a
‘place of determinacy’ so that

W(y; @, 8) = oy ")(y — 0)

for K > Kg = max(Q Re(@—1)). SinceW(y; a, ) tends to zero exponen-
tially wheny — oo, it follows that the functiod'(s; «, 8), in any case, is

189
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regular in the half plane- = Res > K. The integral representation of
Whittaker’s function mentioned in lemrlia 8 (chagiks #) gives

_1
W(y1 a’ﬁ) = y qu:—er,:—zL(q—]_)(zy)

ol-3q
= eMu-1F"1tu+1)"du (Rep>0), (3)
') 1f

which leads to

(s f (u-1F"u+1)tusdu (Re>0) (4)

I'(s o, B) = 2434

for o > Re(g— 1). Substitutingu = 1/(1 - v) in @), we get

1
a — 1—q/2@ -1r1 _\\S-U(o _\p\a-1
I'(s,a,p) =2 i) Of V1 -v)S 92 - v)*idy

r/zr(s) (CK 1\ (= 1) +n-1 s—q
T(p) 4 ) f\/” (1-v)S%v

_ o2 (s < Z (-a)n I'(B+nl(s+1-0)
() ni2"n  I(s+n+1-a)

where, in general

I'la+ n)
I'(a)

We can thus, conclude finally that

@n = a@a+1)...(a+n-1),(ao =1

I(sa.f) = 2/20(I(s+1-0) ) (1= n(B)n -

— n2"T(s+n+1-a)

This series converges for ala andg showing thal (s, , 8) is a mero-
morphic function, which has singularities at most at theepa@fI'(s)
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I'(s+ 1-0). In particular, whenr = 8, we see, from (4), that

WO [ et
I(s a ) =2 @!(uz—l) Lusdu,

On substitutings? = 1/(1 - v), we are led to

1
(s a.a) = 2‘“% Of V(1 -v) 7 dv

TG - o)
(%)

Using Legendre’s relation

1 1S, St1
we obtain from above that
se-l g 541
I'(s a,a) = I F(E)F( > @).

If B8 =0, then it follows immediately fronf5) that

(s, a,0) = 2*/21(s).

191

218

(6)

()

With the help of the dferential equatior2), we shall show that the

functionT (s, a, B) satisfies the functional equation

I'(s+2;a,8)+(B-a)(s+1;a,8) — (s+1-a-PB)I(s a,B)=0. (8)

It is obvious that

0= f =YW (y; @ = B) — ayW (y; . B) + (¥* — ry)W(y; @, B}y tdy
0
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(o0

= f{W(y: a"ﬁ) - Wl,(y: a?ﬁ)}y5+1dy_ r fW(y1 a?ﬁ)ysdy_ q
0 0

f W(y; o By dy
0

s(s+1-0)

11\ +1
i D) W (y; @, B)ly*""dy.

ro r
= f{W(y, (Y,ﬂ) + mw (y! (Y,ﬂ) -
0

©)
But, by the definition of*(s; a, 8), we have

I(s+2;a,p) = f W(y; a, B)y=dy,
0

(o)

s+1

I(s+1e.p) = f Wy a.8) yody= ——— [ Wy a.p) y*ridy
0 0

I'(sa.pB) = f W(y; @, B)y* tdy = ——i f W (y; @, B)y°dy
0 0

= @ f W (y; @, B)y*+dy.
0

219 Therefore equatiorf8) is an immediate consequendg of (9).
We now consider the determinant

(s a,p) I'(spB,a)

D(s @, B) = ‘—F(s+ Le,8) T(s+1;8 ) (10

which shall be of use later. With the help &1 (8), we see &t @, 8)
satisfies the functional equation

I'(s+1;a,8) TI(s+1;8,a)
-T'(s+2;a,8) T(s+2;8,a)

D(s+1;a,B) :‘
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B I'(s+1;a,8) TI(s+1,6,a)
=1 rsap)  T(spa)

=9s+1-0q) D(s a,p). (11)

Let us set D(s . )
, (Y

H(S) = =

= forer1-9
Then it can be seen easily frofi11) thd(s) is a periodic function
of period 1. SinceH(s) is regular in the half plane- = Res > Ky,
whereKj is a suficiently large number, it follows thadi(s) is an entire
function of s. We shall now show that liq,., H(s) = 2, which together
with the periodicity ofH(s) will imply that H(s) = 2 for all s. In order
to calculate the limit oH(s) as Res — oo, we consider equatiohl(5)
which shows that

r(9r(s+1-9) 1

. r/2 — — =

I'(s a,B) =2 —F(S+ 1-a) FB,1-a;s+1-q; 2), (12)
whereF(a, b; c; 2) is the hypergeometric function defined by 220

Fabic) Z (@n(0)n

(©)nnt!
As a result, we have

[(Ir(s+2-aq) (9 a(9

H(S) = [(s+1-a)(s+1-5)|as(s) au(s)
with
1
a(9) =F@B,1-a;s+1-aq; 5),
a(s) = F(a,1-B;s+1-4; %),
s . 1
a3(S)=—S+l_aF(ﬁ,1—a,S+2—a/,§),

1
as(s) = " f_ﬁF(a,l—ﬁ; S+2-4 5).
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But is is well known that
r
im L+23)
o T(9)
and therefrom it is clear that linfk(s) = 2. Consequently, we have
T—00
proved that

. 1
e2l°9s = |im F(a.B;52) = 1,
o—00 2

D(s ,f) = 20() T(s+1-a-p). (13)

By the general theory of Mellin transforms (see H. Mellin, thla
Ann. 68 (1910), 305-337), in order to invert relatidn (1) it®e show
that

o+ico

Wyaf) = 5o [ Tisapyeds 14)
o—ico
for o > max(Q Re(@- 1)) = Ko, it suffices to know thak(s; , 8) is reg-
ular foro > Ko(s = o +it) and satisfies the following growth condition:

(s, @, B) = o(e” 93 for |t| — oo (15)

uniformly in any given stripoy < o < o, with givene> 0. The
regularity of the functiorl'(s; a, 8) in the half planes > K has been
already established. We shall therefore prove only therlatisertion. It
is well known that

Cy < N9tz < Cyfor |t > 1,01 < & < o

with certain positive constantS, = Cy(o1,02) (€ = 1,2). This in-

equality together with[{12) leads tB{15), beca@%‘ >1- €

and|(s+1-a)nl = (1- €)"™nl for o1 < o < 0y, [t] > to(€, @, 01, 072), for
all n > 1 and for a givere> 0. Thus we have

. 1
lim F(8,1-a,s+1-a;z)=1
fti—eo 2
uniformly in o1 < o < 0 and relation (14) is proved.
Finally, we shall calculate the Mellin transforégs) of an infinite
series o
FOY) = > aW(=-yia.8) (1> 0) (16)

n+0
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with a, = o(Jn|X1) (n — o).

Let Ko = max(QRe@ - 1)). We shall thatt(x) exists foro >
maxKo, Ky + 1); moreover, in this domain, we can calculate it by term-
wise integration of the serids(y). Without loss of generality, we can
assume, in the very beginning, that

lan| < [n|%t for n # 0.

Now it is not hard to prove that for a given> 0 andK > Ko, there 222
exists a positive constaft = C(K, €), such that

W(zy; o, B)] < Cy Ke @< fory > 0.

Having fixedo, the numbekK is supposed in the sequel, to lie between
o andKg. Consider

G(y) 2C Z nKl( 271(1 e)ny/A

which is a series of positive terms and convergesg/for0. It is obvious
from the above discussion that the sefBg) majorises the serids(y).
Since the series

20(%)(’(1— &) (o - K) i k=
n=1

obtained by the term-wise integration of the series reptesgthe func-
tion G(y)y>* converges fotr > maxKo, K1 + 1), it follows that

€9 = f Foytdy= Y a, f WLy, gy dy

0 n+0

—Zanfw(—yaﬁ)ys 1dy+Zaan( Uy:5, )y ey

n>0 n<0

= (—)Sr(s ) Z =+ (—)Sr(s;ﬂ, Q) e (17)
n<0
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under the assumption that Re- maxKp, K1 + 1).
Now relation [I¥) can be inverted i.e.

o+ico
1
F(y) = o f &(s)y3ds (for o > max(Ko, K1 + 1)) (18)
o—ico
and the right hand side dE{}L8) can be calculated by term-inisgra-

tion of the series representing the functi(s)y S. Indeed, the function
&(s) satisfies the requirements for the inversion of relatiof ,(In view

223 of ([I8) and the fact that the Dirichlet serigs,. % and Y <o % can

be majorised byr> , n1= = £(o — K3), which is independent df
2 Automorphic Forms and Dirichlet Series

The following lemma will be used often to prove the equalifyfunc-
tions of the spacéx, 8}.

Lemma 9. A function dx,y) belonging to the spacér, s} vanishes
identically if and only if

9(0.y) =(M) -

X

Proof. Sinceg(x,y) satisfies the dierential equatiof2,zg = 0, it can
be written as a power series xof the type

g6 y) = > Gn()X",
n=0

so that the ca@icientsg, satisfy the recursion formula

(N+2) N+ 1)yGni2 + (B - @)i(N+ 1)gns1 + Y&y + (@ + )Gy = 0.

It is an obvious consequence thagif= g; = 0, theng, = 0 for all
n and the lemma is proved.
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In the following, we shall consider automorphic forms foe tjroup
I' < A > generated by

M=@‘3,T=C23u>m

We know from Hecke that the grodp < A > is discontinuous if and
only if A satisfies any one of the two conditions:

1.1>2
2. A=2cosn/t (€ =3,4,5,...).
m|

Hecke has also shown that the domfir = x+iy, 12X < A, || > 1} 224
is a fundamental domain for the grolip< A >. It is evident that the
subgroups of the modular group that occur among these garephe
modular groug” = T’ < 1 > itself and the theta groupy =T < 2 >.
Moreover, in casel > 2, the groupl’ < A1 > is no more a Grenzkreis
group.

We shall now derive, for the multiplier systewof the groupl’ <
2cosr/t > and weightr, certain relations which are analogues of the
relations for the modular group given in chajifeg Bl and coincide with
them in casée = 3. Itis easy to see that the transformation

v:u”T:(l ﬂ

1 o A=2cosrn/t

leaves the pointe™/¢ = —cosr/¢ + i sinr/¢ fixed and therefore is an
elliptic transformation. Since

B 1 e—ni/t’ -1 erri/t’ 0 1 e—ni/t’
V= 1 eﬂi/t’ 0 e—ni/t’ 1 eﬂi/t’ >

it follows thatVV! = —E. If there exists an automorphic form for the
groupI” < 2 cosr/¢ >, the multiplier systenv and weightr, then it can
be proved, as in chaptgr [, that

v(V) = glrir /6)+2ria/¢ (0O<a<),vT) = glrir /2)+27ib/2 (0<b<2).
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Letv(U1) = ¥ 0 <k < 1. Thus
V(T) = v(UAV) = v(UHV(V)

implies that
-2
g—r EK+?+g(mOd 1)

We setv(T)(—7)" = y(—it)" so thaty(T) = ye'/2, showing that
P2 =yorb=(1-7)/2.(*=1).
For the unramified cas& & 0), we have

-2 _ QJ—(l—“y)/ZJr 1-y

a¢ ¢ 4’

ie. rZ%ﬁ-l—’y(K:O),
whereg is an integer. If = 0, thenk is a rational number. Let us write
k = k/hwith h > 0 and k,h) = 1. Then it can be seen easily that
divides¢ or 2¢ according as 2 divide&or does not divide.
An entire functiony(s) is said to be ofinite genusif, in every strip
oc1<o <o (s=0+it),

¢(s) = o(e!®) for [t| —» oo
uniformly in o1 < o < o, with some positive constait.

Theorem 35. Suppose we are given complex numher8 with real
r=a-preald > 0,y = +£1 and realx with 0 < x < 1 such that the
equalitiesy = 1, k = 0anda = g = 0 or 1 do not all hold at the same
time. Let us consider

I) functions f(r, 7) with the properties:

1) f(z.7) € {a,8},
2) f(r,7) = o(y*1) fory — oo,
f(r,7) = o(y K2) fory — 0,
uniformly in x with suitable positive constantg,Ko,
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226 3) f(r+A,7+A) =e¥%f(r,7)
&) 1(-2,~2) = /(-0 (7P 1(x. ), and
II) pairs of functionsy = ¢(9), ¥ = ¥(s) having the properties:

1) the functionsy and ¢ are meromorphic and can be repre-
sented by Dirichlet series of the type

QD(S) — Z Antk l//(S) — An+k

s’ S
n+x>0 (n + K) n+k<0 |n + Kl

in some half-plane,
2) for &, n defined by

£(9 = (5 )°I0(S @Bl + T(S B, au(9),

19+ L9 = () HI(s+ L B9 ~ T(s+ LB a)u(9)
T 2r
and for g= a + 3, the functions
ag Yao bo  vbo
O gsv1-9 @-91-9 stg-s P
and

a-pB =B [ ¥ Y&
b { I ) @

for a suitable choice of the constants and k), are entire
functions of finite genus and moreover, ko 0, ag and ky
are both equal to zero.

3) the functiong andy satisfy the functional equations
§(@-9 =v£(9), n@-s) =-yn(s).

Then the linear space of functions f mentioned in I) is magped
means of the Mellin transformation onto the linear spaceaif

of functions described in Il) and this correspondence betwbe 227
two spaces is invertible.
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Remark. As we shall see later, the functidrir, 7) has the Fourier ex-
pansion

277(n K)

f(r,7) = aou(y, @) +bo + ) ansW( y; @, T (3)

n+«x#0

with ag andbg as determined by Il), 2). Clearly, a one-one invertible
correspondencé «— (¢, ) may now be seen to exist only if the con-
stantsag andbg are uniquely determined by the condition Il), 2). It may
be verified that this happens except whea 0,y = 1 ande =8 =0

or 1. We recall that both these possibilities have been drclun the
statement of theoreB5. It can also be checked that thesxacty
the cases for which the identity

80U(2=. ) + bo = y(~i7)" (7 1aou(y. @) + bol

has a non-trivial solution foag andby.

Proof. A) We start with a functionf (r, ) with the properties men-
tioned in 1) and prove the existence of a pair of functigrendy
with the properties in Il). It is an immediate consequench,df),
2), 3) that the functiorf (7, 7) has a Fourier expansion of the type

() = Uy D rbo+ Y anwW(ZL Dy eiomn

n+«#0

whereap andbg both vanish wher # 0. Since the function

0cy) = F(-2,~2)-in) (D * ()

satisfies the dierential equationQ.,zg = O, it follows from
lemma® that the conditions

00.9) = [-90 Yo = O ©

are equivalent with 1), 4). It now follows, by simple calctidan,
that

* 1— —q _ *
F (y)y =7vF(y),
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H QY= -H'0) ©)
with
F(y) = f(iy,-iy) = aoU(y, a) +bo + F(y)
H'0) = 60) - 12 LR ) @
H(y) = G(y) - AWF(y),
where
F() = Zoan+Kw<2”(” 9y a.5), ®)
6= 3 (n+ any Wy )

With the help of 1), 2), the equation

A
+KW(27r(n+K) w.f) = %ff(T’q—_)e—Zﬂi(n+K)X//ldX

entails that

2ﬂ(n + k)

A W( y; @, ) = ofy ") fory — 0.

c . .
Let us choosg = A where the constartis so determined
K

2n .
thatW(J_rTc; a,B) # 0. Then it results from above that

an+x = o(IN +41%2) (In+ «| — ). )

This shows, as already proved§il, that the Mellin transforms 229

(o0

&9 = f Fy)y*dy (10)

0
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(o9

29 = [ ROl iy f Gy dy- 12 Le(s)
0
can be calculated by term-wise integration on making uséef t

series representatiofl (8) fé(y) andG(y). Thus we obtain that
&(s) andn(s) have the form Il), 2), where

90( ) — Z Ank ’ w(s) — An+

5 5
n+«>0 (n + K) n+k<0 |n + K|

which converge in some half-plane, because of condifilbedf3-
fied by the cofficientsa,,,. In order to get the functional equation
for ¢ andy we proceed as follows. Frofi{10), we have

(o)

1
&9 = f Fy)y>dy+ f Fy)y>idy
0

1
T 1, dy
_ 1[ FO)Y + FQY 5
and similarly
[ 10y
n(s)—lf{H(y)yS+H(y)y E

With the help of the transformation formulae

F(%) — YF(y)Y? + y{aouly. o) + boly - aoU(Es o -

HZ) = =rHOW + 1%L rtacuty.a) + by + 15 L aou(S. o) + b,
which result from [[b) and{7), we obtain by integrating the-el
mentary terms that

bo ybo+ Qo N Aoy
s gq-s Ss+1-09 (g-9(1-9°

£ = f FO)Y® + 7 dy

1
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nS=fH(y){yS—Wq’S}d—;/+ﬂ%g
1

{@_ybo_ T 7. }

s g-s ss+l-0) (@-9(-9])°

The functional equations fas andy are now trivial conseque-230
nces. Both the integrals are obviously entire functions ofhich

are bounded in any strig; < o < 0. Thusé(s) andn(s) are
meromorphic functions aof, the singularities of which are explic-
itly given by (I1). Finally, it remains to prove that the ftions

(@ and [2) are entire functions of finite genus. But thisdoi
easily from [I1) and the fact that

(11)

&(s) =0(1), n(s) =o0(1) for|t| - oo (12)

uniformly in any strips; < o < 2. Therefore the pair of func-
tions andy defined above satisfies all the requirements of theo-
rem(35, II).

B) We now start with a pair of functionsandy with the properties
mentioned in Il) and prove the existence of a functfosatisfying
the properties mentioned in I). We define the functign 7) by

(r7) = Uy +bo+ Y an WLy g greriomons

n+x#0

and prove that it has the desired properties. Since thelilatic
seriesp andy converge in some half-plane, it follows that the co-
efficientsa,, satisfy the growth conditior{9) with some positive
constantK,. Thus, foro > Kj + 1, the series converge abso-
lutely and the considerations §1 show that formuld{10) can be

inverted i.e.
a'o+ic>o
FO) =5 | €Oy
oo—loo

oo > maxKz + 1, Ref + 8 — 1)). (13)
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O’o+ioo
1
HY) = — ~d
=5 | noys
oop—loo
231 We choose the line of integration in such a way that the sargul

ities of £(s) andn(s) lie in the half planer < 0. If we replace
in the integrals[{T0) the functionqs) andn(s) by the functions
given in 1), 2) and substitute the Dirichlet series §oandy, then
we obtain the function& andG given in [3), by term-wise inte-
gration which is justified. Moving the line of integration {@3)
fromo = og to o = 01 = Ref + B) — 0o, we shall show that

o1+ico

FO) =5 | &9y ds+ ) Rest(9y™

o1—ico

o1+ico

HO) =5 [ 9y ds+ Y Resy9y ™ (14)

o1—ico
In order to provel(14), it is gticient to show that for everg> 0
£(9),1(9) = o(e” 92 for || — oo (15)

uniformly in o1 £ o < 0g. Such an estimate faf(s) andz(s)
holds on the liner = o because of[{15) of [, and therefore
holds also on the line- = o1 in view of the functional equation
1), 3). If to is suficiently large, then functiong(s)e™(1-€)/2 and
n(9)e™(1-€)%/2 gre regular in the domain> to, o1 < o < 09 and
are bounded on its boundary. But by II), 2) there exists ateois
232 K such that both the functions auée‘K) in the interior of the
above domain; therefore, by the principle of Phragmen-gliid
both the functions are bounded in the whole of the above domai
Consequently,[{15) is proved for— co. In a similar way, it
is proved fort —» —oco. Replacingé(s) andn(s) by y&(q — 9)
and—yn(q — s) respectively in the integralE{lL4) and applying the
substitutions — q - swe see that

FO) = IF() + 3 Rest(9y ™
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HO) = - H() + 3 Resi(9y ™ (16)

The sum of the residues &fs)y S can be evaluated with the help
of 1), 2). As a matter of fact, it can be seen that

1
2 Rest(9)y = —aqu(y. ) — bo + {aou(5 @)+ boly

> Resy(g)y == zﬂﬂ aou( ) + boly~ _ﬂ = D Rest(9y

= 4 ’8 {agu(y, q) + bg + y(aou( ,0) + bo)y™}

Thus formulae[(1I6) are identical with formule@ (6) from whic
), 4) follows by lemmdD. The assertions in |), 1), 2), 3) éo¥l
form the Fourier series off(r, 7) and the estimat¢}(9). Hence the
theorem is proved.

m]

In order to determine the singularities of the functignandy we
solve the equations

M(S@.8) o9+ T(s6.0) U = (2O,

(s+ L B)e(9) ~ T(s+ 18, (9 = ()= Hn(9 + %7 L),

for ¢ andy. These equations are nothing but trivial modifications 243
those in theorerf 235, Il), 2). Using the value of the functlatetermi-
nantD(s; @, 8) obtained in§ [ we get

2S5+ 1- () = (2)T(5+ 15, (9

+(Z (@ —p)

; 2411 (s:.) {n(s) AT

6(8)}
27T S
20(9N(s+ 1 - () = (TIT(s+ L9

- Earsa {9 + 17 es).
a7)




206 5. Dirichlet Series and Euler Products

Let us set . ___sap) (18)
W(s @, p) = [(9T(s+1-q)
Then it is immediate from (5) of1 that
. _ o3(a S (,B)n(l —a)n
wW(s,a,B) =2 (@=h) nZ=0 2l (s+n+1-a)’ a9

which implies thatw(s; @, ) is an entire function ok. Moreover, the
functional equatior{8) of [ for I'(s; a, 8) shows thatv(s; a, B) satisfies
the functional equation

S(s+1-g)wW(s+1;a,8)+(B—a) W(s,a,B) —wW(s—1;a,8) = 0. (20)

Expressing the functiod’(s,a,p) in (Id) in terms of the function
w(s; a, B), we obtain

26(9) = ()5 + 18, )5+ 1~ (9 + (30" W(s . 0)
{9+ X5 Pets.

20(9 = (Z)W(s+ L B)s(s+ 1~ (9 ~ (2" w(si e )
{9 +1°Le9). @y

In the following, Ai(s) (i = 1,2...) will denote an entire function of.
From theoreni 35, 11), 2), we have the relations

S5+ 1 QS = S5+ 1 @ T2 + gy il + A,
NG ybo Yao
77(3)"‘/l f( s)=4 o {E+m + Ao(s),
234 which, on using[(20), give
2609 = (Gl Lipa)l 2 4 =Ly« Aq(o)

Ts-a-1
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Yao
T s-as-1)
For computing the principal parts of the functionandy, we shall

require the following special values of the functiafs; «,8) and its
derivative:

2y(s) = (—)SW(S La ,3)

F+A4(9). (22)

q/2 1-q/2
w(0;a,B) = - ),W(q -1a,p8) = %) (Q=a+p)
W(0; 1-B.5) = r(ﬁ Z (@) +10g2.

The first two values are immediate consequences of the sepessen-
tation [I9), when we take into consideration the fact that

(1-x)7F = Z(ﬁ)n n_F(ﬁ)ZF(ﬁ"‘n) N
n=0 )

For the third, diferentiating the serieE{[L9) term by term and substituting
s=0anda = 1-pByield

Bhn(l-a)y I’
nNr'n+1-a)T

w(0ia.p) = 220§ —(n+1-a)
n=0

- ir’(nw )2 ey

(F(ﬂ))2 2n! T )?
\/2
=T ([3) T (,8) +log 2}.
Consequently, we have 235

21/2

T(a) f{(s_l)z + (o + aoflog 7 - —(a) 1+ As(9), forg=1

2“/2 ~1a0+(q-1bo _1 a 1
p(s) = {y 1O G T ey +A5(S) forg#1

d (23)
an
/2 +
(S = yzjjﬁ ( )a- 13 (q 1)bo 1q _ r(1 . &1 +A7(s) forq 1
2+ (b alog - FEN) k) + A9, fora - 1.

(24)
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In particular, we see that

(s—1)(s-a)¢(s) and 6 1)(s - a)u(9)

are entire functions oé. Moreover, using the well-known asymptotic
behaviour of tha -function, § [, (I3), and the fact that the functions
&(9) andn(s) are of finite genus, it can be seen that (L)(s— g)¢(s) and
(s—1)(s— q)y(s) are also entire functions of finite genus.

We remark here that conversely, froml(28)1(24) and the fanat
equations ofp andy, it cannot be concluded that the functions men-
tioned in [1) and[{R) are entire functions.

From the various properties B(s, «, 8) derived in§1, it follows that
the poles of the functio#(s) are contained in the sequences of numbers

1,0,-1,-2,... andg,q-1,9-2,...

But£(g- s) = v£(s); therefore the poles @f(s) are also contained in the
sequences of numbers

g-1gq9+19g+2...,andQ12,...

236 In any case, the common points of these two sets of sequehoame
bers are 01, q — 1 andg. There will be some more common points, in
caseq is an integer andj < —2 org > 4. Thus the poles of(s) are
contained in

{0,1,2,...,9-1,q}, forintegralq > 4,
{g-1,0,...,0,1,}, forintegralg < -2, and

{0,1,,g-1,q}, otherwise
If g = 4, the regularity o&(s) at s = 2 leads to a relation rt])etween some
, . . -1 .
special values of andy. Smceslm(s+ nI(s) = ( nl) (n>0),it

follows that

2
im(s - 2(9 = - (5] W2 . B)p(2) + W25 W ).
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But, forq = 4,

250D & (BB~ 3)
TB-1) Z 4 21(5 — 1)

2B S (Brn-1)(B-3)
T Z 2!

_ 2%(“‘ﬂ’(ﬁ—1) (B=3)  220P & (B2
B r'(B) Z 2! 2r(/3) Zzn—l(n—l)!‘

Therefore, we get the condition

B -

G ¢>( )+ mw(Z) ofa+p=4)
Conversely, if this condition is satisfied, th&(s) is regular ats = 2
provideda + 8 = 4.

The case of analytic modular forms considered by Hecke appea

as a particular case of our considerations when we assumg thd, 237
ap = 0 andy/(s) = 0. Under these assumptions we obtain, usihg (7) of
§ [, that

wW(2;a,B) =

£(9 = (5)°T(S 0, 0)p(9) = 22(5)T(Ie(9
1S = () HI(+ L, 0) - 3T(S 2, )l
= 2722y (5= STl

The function&(s) as given above is a constant multiple of the function

(Z)SF(S)QD(S) considered by Hecke and both the functional equations

for £(s) andn(s) lead to the same conclusion.
In the non-analytic case = g, by § I, (@), we have

£(9 = (3)°T(S @ )lg(9) + (9)

—a—1
-2 - CITEICES - a9+ U9,
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29 = () I(5+ Lia, )il - ()

—a—1
- S ESING + 1 (9 - u(9),

For A < 2, the linear space of functions = f(z, 7) characterised
in theoren3b, 1) coincides with the spade{ A >, @, 3, V], where the
multiplier systenv is defined by

v(U?) = e andv(T) = ye™" /2,

We prove here this statement in the two special cases 1 and 2.
In these two cases, the assertion results easily from thanfiolg two
lemmas.

Lemma 10. LetTy be a subgroup of finite index in the modular group
I' and let r= « — B be real, wherer andg are two complex numbers. If
f(z, 7) belongs to the spadé&y, «, B, V], then

f(r,7) = oy ¥?) for y — 0 (with 7 = x + iy)
uniformly in X, with a positive constant,K

Proof. Letu be the index ofp inT" and

I'= O I'oSh
n=1

be a coset decomposition BimoduloI'y. We may assume th&; = E.
Consider

M
o) = D (fIS)(E 7)),
n=1

which obviously does not depend upon the choice of the cepetsen-
tativesSy,. Since, along with the s¢B,}, the sefS,, S} for S e I'is also
a representative system for the left cosetF afodulol'y and since

l(ct + d)?(ct + d)’| = [er + d|P (p = Re + betd),
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we obtain
(9S)s.8(r.7) = g(r.7) for S e,
showing thaty”/2g(r, 7) is invariant under the transformation Bf For

V3

a given pointr = x + iy with y < - we determine an equivalent point

. . 3 . .
To=Xo +iyo =S <7 >withyp > %,s:(gg)er. It is obvious that
c# 0and 239

1 11
y0_|CT+d|2_c2y_y'

SinceS, < o > is a parabolic cusp dfy, we have, by the definition of
a non-analytic modular form,

(fISn) (7o, 7o) = O(Ys?) for yo — oo,
uniformly in Xp with a positive constari;. Consequently,
_ 3
9(to, o) < Cy,* for yo > \/7
with some suitable constagt It follows from above that

F(r.7)] < g(r.7) = (y—;)p/ZQ(ToT_o) < Cy PPz

3
<CyPKifory< \/7
because&K; can be so chosen thé + Ep > 0. Hence the lemma is
proved. O

Lemma 11. LetI'g be a subgroup of finite index in the modular grdup
and let f(r, 7) be a continuous function i#, which satisfies the trans-
formation formula

(f1S)(z, 7) = (7, 7) for every Se Iy,
a’ﬁ

wherea andg are complex numbers with— g real. Further, let

f(r,7) = ofy") fory — co
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f(r,7) = o(y K?) fory —» 0
uniformly in X = X + iy) with positive constants Kand K,. Then

(fIA)(x,7) = o(y) fory — o,
a’ﬁ

240 uniformly in x with a suitable constant K for every A belongtoTI".

Proof. Obviously, for the proof of the lemma, it is ficient to confine
ourselves to those elemems= (38) of I' for which ¢ # 0. We set
=x;+iy; = At <7 >fory> 1. Thenwe havgy = ——— <
T1 = X1+ly1 T y &1 “cr+ a2
and
|f(r1,T1)l < Cy; ? fory; < 1.

with a certain constar@. HereK, can be so chosen thisp > Ep where

p = Ref + B). Let us consider the pointswith
a
|x—E|§m, l1<mcxy,

m being a given constant. Then we have

|(f|A;)(rﬂ| =|f(ri, Tl —cr+a P

<Cy?l-cr+a™®

= Cy 2| - c+ a2 P

= CIoPPy a2 4+ (x = 22012
Cc

< Cly2c/2KePykep

But (f|A1)(r, 7) is periodic inx; therefore our assertion follows with
K:&ﬁp
In the sequel, we shall give some applications of thedréino 3b
spacesl[ < A >,a,a,V]with A = 1 or 2a > 0, # 1 where the mul-
tiplier systemv is determined byw(U*) = €%, \(T) = v, and satisfies
241 the conditionv® = 1. We have proved already ii{10) of chadiér 4,
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§ [, that the operatoX = O(r = 0) maps the spacd’[< 1 >,a, ,V]

onto the space[{ < 1 >)*, a,a, V] with (T < 4 >)* andv* as defined
in the above-mentioned chapter. Bdt = 1 implies thatv* = v and
T'<Aa>)*=T<a>fora=1or2; therefore, the operatdr = ®

leaves the space¥ [< 1 >, «,a,V] invariant. Since every functiori

belonging toT < A >, «, @, V] can be written as

1 1
f=35(f+0f)+5(f -0,

if follows that the spacel] < 1 >, @, @, V] can be represented as a direct
sum
[ <> aaV] =290 av) + 250, a,v)

so that
Of = f for f € Z°(1,,V), (6= +1).

Moreover, iff € £€(4, a, V) has the Fourier expansion

f(r,7) = agu(y, q) + bo + Z an+KW(M y: @, @)X

n+«#0

we obtain, from[(IK) of chaptél 4,[, the following relations for the
codficients:

ag=€ay, bg=€bg, an=€anforn+x«=#0.

This shows that iff belongs taZ1(1, e, V) thenag = by = 0i.e. fisa
cusp form, in casd = 1. Lety andy be the Dirichlet series associated
to the functionf € Z©)(4, a,v). Theng(s) = y(s) and

£(9 = %(1)5( LT~ a)p(9)n(9) = Ofor e=1,
&9 =0, n(s= 2\/_0(/1)s+1 (S+1)F( +1-a)p(s) for e= —1.

We shall denote by<(1, «, «y) the linear space of meromorphic funcz42
tions ¢(s), which with8 = @ andy = ¢ satisfy the conditions of theo-
rem[35, I1), so that the linear mappirig— ¢ is an isomorphism between
the spacesZ©)(1, , v) and¥®)(1, a, «, 7). In the following theorem, we
explicitly give a basis for the spac (4, a, «, y) . O



243

214 5. Dirichlet Series and Euler Products

Theorem 36. Under the assumptions > 0, # 1 the space¥®(4, a,
k,y) is generated by

{(9¢(s+1-2a), incased =L k=0,y=1e=1,
275(9)¢(s+ 1 - 20a)
275(2% + 2279/ (9)¢ (s + 1 - 20)
275(25 - 2279)¢(9)¢(s+ 1 - 20), incased = 2,k = 0,y = —1,e= 1,

}, incased=2«k=0,y=1€e=1

. 1
2°L(s,x) L(s+1-2a,y), incasel = 2,k = > = -1,e=-1
. 1
and 0, otherwise so long as= 1 or 2 andx = 0 or >
The functiong(s) and L(s, y) are defined foRes > 1 by

(o)

(9= [n2and s = Y n®
n=1

n=1
where x is the proper character modulo 4.

Proof. Using the well-known properties of the functiongs) and
L(s x), it can be shown without any filiculty that the given functions
belong to the spacé”(1,a,«,y). Thus to complete the proof of the
theorem, it is sflicient to establish that the dimension®f (1, a, «, y)

is not greater than the number of functions mentioned inrdmafB®6 in
each individual case. Since

dimension?€(1, e, x,y) < dimension[ < 1 >, e, @, V],

it suffices to prove the following under the assumptians- 0 and
V2 = 1: namely,

incasel =1,v=1,
incasel =2,v=1

dimensionT <A >,a,a,V] < )
incasel = 2,v=Vvi 0rv,

otherwise

O RPN P
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wherev; andv, are even abelian charactersIgf mentioned before the
proof of theorenfZ32. Since under the given assumptidng,df, a, V]
does not contain any cusp form, which does not vanish idahtiand
sincel’y c T, the dimension of the spacEk A >, @, @,v]for A = 1or 2

is at most equal, by theorem]29, to the number of inequivadarabolic
cusps ofl" < A > at which the multiplier systena is unramified. But
we have already shown that in cage= 1, the multiplier systenv is
unramified ato only if v = 1 and in casel = 2, the multiplier system
vy respectivelyv,, respectivelys = vivo is ramified at 1 respectively
o0, respectively 1 as well a®. Therefore the above estimates hold for
the dimension of[ < o >, a, a,V]. Hence the proof of the theorem is
complete. O

Theoren3b provides us three examples of functions whichiire
quely fixed upto a constant factor by their functional equatnd the
fact that they can be represented by Dirichlet series in duaifeplane.
One of these functions, namely, the function defined Hy(& y)L(s +
1- 2a,y), is an entire function.

3 The Hecke OperationsT,

244
In this section, we shall investigate the multiplicativeperties of the

Fourier codicients of non-analytic modular forms in connection with
the Euler product development of the corresponding Dieicskries.
For the sake of simplicity, we shall confine ourselves to thedufar
groupTI’, though almost the same type of results as proved by Hecke
and Petersson for the analytic case can be obtained forayigof the
modular group, of arbitrary level.

For defining Hecke operatoi,, we consider the s&?, of all in-
tegral matrices{"é1 g) of determinantn (n a natural number). LeDng

denote the subset 6k, consisting of matrice62 ) with (a, b, ¢, d) = g.
Then obviously

On,g = (8 (g)) Ongz,l for 92|n, On = LZJ On,g. Q)
g“In
g>0
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Since, withS, the sef’'STI" of matrices is also contained @, it follows
thatO,, can be decomposed completely into left and right cosets fnodu
I'. Moreover, any two left or right cosets are either identmatlisjoint,
becausd is a group. For our later considerations, we shall need

Lemmal12. 1) The subset ad, defined by

a b
{(0 d)lad_n, d>0,bmod(%

forms a complete system of representatives of left cosefy, of
modulor".

2) There exists a common system of representatives fonieftight

245

cosets 00, modulor.

Proof. 1) ForevensS = (g 3) € O,, there exists a matrik = (;’@)

2)

such thatLS = (), because the equatiora + 5¢ = 0 has a
solution fory andé with (y,§) = 1 and then with suitable and
B we can construct a matrik = ;’{;) belonging toI'. Since
—E belongs tdl, it follows that every left coset a@, moduloI’

contains a matrix of the typ §) with d > 0. If

a b a” bt . o B
"(o d):(o d*) with L= (7)€

theny = 0 and fromd > 0, d* > 0, we havexr = § = 1 implying
thata = a*, d = d* andb* = b+ gd i.e. b* = b( modd). Hence
the assertion 1) of the lemma is proved.

Since any matrid§ € On1 has 1 and as its elementary divisors,
we have

Let{SpLi} (i = 1,2,...,p(n)) be a system of representatives of
left cosets of0,,1 moduloT, with Lj € T'. Then the matrices
A = LS (i = 1,2,...,p(n) (Li, the transpose df;) in any
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case form a system of representatives for the left coset, of
moduloI” and therefore

p(n)

On’]_ = U FA|
i=1
By transposition, we get
p(n)
On,l = U Air-
i=1

Thus there exists a common representative system for thandf 246
right cosets 0Op 1 moduloI'. Our assertion 2) now follows from
the decompositiorf]1) above.

Let a, 8 be complex numbers such that a — g is an integer. Let
V,, denote a system of representatives of left cose,ahodulo
I'. We define the linear operatdy, on the spacel], a, 8, 1]

fiTa =0T 3" fIS(q=a+p). 2)

SeVy

The definition of the operatdr, is independent of the choice of
Vn, because, if we replac® belonging toV, by LS for anyL in
I, then

fI(LS) = (fIL)IS = fIS for f in [, @, 3, 1].
O

Theorem 37. The linear spacérl’, a, 3, 1] is mapped into itself by
fITh.

Proof. Let f = f(r,7) be an element ofl], @, 5,1]. Then by [ID) of
chaptef#§ [, f|T, belongs tda, 8} and forL € I', we have

(FITwIL = n% 3" FISY = Ty,

SeVy,
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because, along witB, the matrixS Lalso runs over a system of repre-
sentatives of left cosets @i, moduloT’. Thus, in order to complete the
proof of the theorem, it remains to show that, at the paralmispeo of
T,

(fITa)(r, 7) = oY) fory — oo
with some positive constat. For this, we shall compute explicitly the
Fourier expansion of [T,. In the following, we shall take, fov,, the
special set of representatives given in lenima 12. Let

f(z,7) = a0)u(y, Q) + b(0) + ) a(W(2ry; @, p)&™™  (3)

k#0

be the Fourier expansion dfr, 7) at the parabolic cusg. Then

(@D =T a9 S @O, o) + b))+
c(ijﬂ) b modd

Pt a0 ST S algw ey
éjl% b modd k#0

= Z(g)q—l{a(O)u(% ,d) + b(0)}+

din
d>0

N\g-1 2rnk 2rink
+ kZ(a)q D AkIW(= =i p)e
#0 k#0
din
d>0

, Where a runs over all positive
a, we obtain from above, by a

Let us setn = ﬂ( = ak. Thenkd =
divisors of fn,n). Writing d in plac
brief calculation, that

(f|Tn)(T, a = a*(O)U(y, CI) + b*(o) + Z a* (k)W(ZJTky; a’ﬁ)ehrikx (4)

k#0

o3
DS

(¢
=h

o

with
a’(0) = dg-1(N)ag, b*(0) = dy-1(n)b(0)
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. _,_.mn
ams= > d 1a(¥). (5)
di(m,n)
d>0
Consequently, theoreml37 is proved. O 248

Theorem 38. The operators T = T(n) (n = 1,2,...) commute with
each other and satisfy the composition rule

TMTM) = > T(myd)di?.
iy

Proof. (i) Let(m,n) =1. Forf € [T, @,p, 1], we have, by definition,

fIT(MT(n) = (FIT(M)IT(n)

=(mrt Y f'(%, gi)(g 3)

a’d’=m ad=n
b’ modd’ b modd

— (nm)q—l Z Z f| (aé)a a’bd-;,b’d) .

ad’=m ad=n

b’ modd’ b modd
But, for (m, n) = 1, the product!’d runs over the positive divisors
of mnwhend’ (respectivelyd) runs over positive divisors ah
(respectivelyn) anda’b + bd’ runs through all the residue classes
modulodd whenb’ (respectively b) does so moduth (respec-
tively d); therefore, the matrig®? #5:8'd) runs over a systein,
and we have

T(mM)T(n) = T(mn).

(i) Letm= p,n=p",r>1andpa prime number. We shall show
that
T(PNT(P) = T(p"™) + pPTT (P,

Let f be any element of the spadeg {, 8, 1]. Then from

f|T(p)=pq—1{f|(8 2)+ 2 f|(é f;)}

£ modp
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and - 249
r _ ~r(g-1) Pt by
T = P& > fl( 0 pt),
o<t<r
by mod pt

it follows that

r+1-t
TR =preed S (P X

t
o<t<r P
by mod pt

. r—t r—t€+
sprnen Y f|(p0 P lebtp).

O<t<r ¢modp
by mod pt
It is obvious that the first sum along with the tetra r from the
second double sum gives the tefifT (p'**). Thus, on simplify-
ing the second sum by taking out the facpme get

f|T(pr)T(p) — flT(pr+l) + p(r+1)(q_1)p_q

f| (pr—l—t pr—l—tf + bt)
0 p
O<t<r ¢ modp
by mod pt

— fl-l-(pr+l) + p(r+1)(q—l)l:)q—lp—q+l
r—1-t
>, fl (p 0 2?)
O<t<r
by mod pt
= fIT(p"™") + p*HIT(p'Y).

This shows thaT (p') is a polynomial inT (p) with complex num-
bers as ca@icients and therefore the operatarép’)(r = 0,1,
2,...) commute with each other. By (i), it follows trivially that
the operatord (n) commute with each other.

250 (i) In order to prove the second assertion of the theordns, $ufi-
cient, because of (i), to prove that

TEOT(p) = >, p@HT(ps2).

O<u<min(r,s)
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Without loss of generality, we can assume that s. The asser-
tion is clearly true for = 0,1. Let us assume thatd r < sand

that the assertion is proved folandr — 1 instead ofr. Then we
shall establish it for + 1 instead ofr. By (ii) and the induction
hypothesis, we have

T(ET(E)T(P®) = T(P™HT(P®) + p* 1 T(p"HT(p°)
= D PEIT(RT (),

O<usr
which implies that

T(pr+1)-|—(p5): Z pu(q—l)T(pr+s+1—ZU)

O<usr

4 Z p(u+1)(q—l)T(pr+s—1—ZU)_

O<us<r
- pTETHT(PY)
— Z pu(q—l)T(pr+s+l—ZU)+ p(r+1)(q+1)-|-(l:)s—1—r)

O<usr

— Z pu(q—l)-l— ( pl’+l+S—ZU).

O<u<r+1

Hence the assertion is proved for alk and the proof of theo-
rem[38 is complete.
m|

Theorem 39. Under the assumptions that+ « — 8 is an even non-
neqative integer anfi(B) # oo, we have, for all natural numbers n and
forall f € [T, a,B,1].

@)T(n) = 6(f[T(n)),
where® is the operator defined in chapter 1§41, (20). 251
Proof. By (1) and [IB) of chaptéd 4,0, we have
CHINOETWCIHIS

SeV,
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— na-1 (ﬁ) r *
=n F()S;nX(A f1S%)

— no- 1F(ﬁ) r *
=n F(ﬁ)s;nXA (f1S%)

= @nt1 Z f|S*,

SeV,

whereS* = ((1) _01)5((1) _01)_1. But S*, along withS, runs over a rep-
resentative system of left cosets @f moduloT"; therefore it follows
that

©f)IT(n) = B(fT(N).

In the following, unless otherwise stated;- 8 will be an even non-
negative integer anb(8) # co. Under these assumptions, the operator
0 is well-defined on the spac€, e, 3, 1] and maps it onto itself. Since
®? = 1, the spacel[, o, 8, 1] can be expressed as a direct sum of the
subspace.ﬁf’lﬁ) and.,éfff‘gl) defined by

28 = 1f10f =€ f, f € [, 0.8,1]}(’= 1).

Let f € [I',a,B, 1] have a Fourier expansion of the ty& (3). Then, by
(@3) of chaptef4s B, we have

Of(r,7) = a(O)u(y g) + b(0)+

r( ) Z a1 W(2ky, a. )P+

r(a) o, ikx
T éa( KW (2rky, o ). (6)

If we further assume thatt belongs toi”é;), then®f =< f. Therefore,
comparing the cd#cients of the Fourier expansidd (6) and thaf pfve
obtain

€ a(0) = a(0), € b(0) = b(0),

e ak) = gﬂ; a(-k) (k> 0) (7)
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This shows that the Eisenstein sel@&%r, 7; «, ) introduced in the pre-
vious chapter belongs tﬁ”a%). Since the ternp,(y) (r = 2k) indepen-
dent ofx in the Fourier expansion @& (r, 7; @, 8) under the assumption
of theoren{ 3P never vanishes, it follows, by theofem 29, witt the

help of G*(z, 7; @, 8), any modular form of the spac;é”é;) can be re-

duced to a cusp form. Moreover, the sp%cgl) consists of cusp forms

only. Itis an immediate consequence of theofein 39 that tleeatmrs
T(n) leave the spacesﬂcs? invariant.

In addition to the spacesﬂé;), we shall be interested also in the
space%, consisting of analytic modular forms belonging to the space
[T, @, 0, 1], wherea is an even integer 4. With the help of the Eisentein
seried5(r, T; , 0), which belongs to the spacé,, every form of¥, can
be reduced to a cusp form. Moreover, the operaldrg leave the space253
%, invariant.

It follows immediately from the preceding results that thigidhlet
series

w9=3 20 9= 3 AN

ns’ ns
n=1 n=1

associated to the forms sﬁ”é;) differ from each other only by a constant
factor so that

f — (9
is a one-one invertible correspondence between modulansfand
Dirichlet series except whan= 8 =0 or 1. O

Theorem 40. The Eisenstein series‘G, 7; @, 8) is an eigen-function of
all operators T(n) and

G( .;a.pITM)(r,7) = dg-1(NG* (1, 7;,8) (n=>1).

Proof. Since we have seen already in the previous chapter that-the

Fourier codficient of the serie&*(r, 7; a, f) is, upto a constant factor,
dependent only on sgn, equal todg-1(m), it is obvious from [[b) that

the assertion of the theorem is equivalent with

g 1(Mdga(m) = > dTdga(myd(mn=1).  (8)

di(m,n)
d>0
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The proof of theorenl37 shows that the term independent infthe
Fourier expansion of@*(, ;a,B)|T(n))(tau, 7) is obtained by multiply-
ing ¢ (y) with dq_1(n). Therefore our assertiohl(8) follows immediately
from theoreniz38.

The theorem above shows that in order to prove the decomiposab
ity of the linear space.éfa(;)(ezz 1) and %, (B = 0) as direct sums of
subspaces of dimension 1, which are invariant under theatqursi (n),
it is suficient to confine ourselves to the linear spaces of cusp forms
which are invariant by the operatofgn) and are contained in any one
of the three above-mentioned spaces. We shall denote ohespace
by v and prove with the help of Petersson’s Metrisation Prirctpht it
can be decomposed into subspaces of dimension 1 which anéaint/
under the operators(n).

Let 'y be a subgroup of finite index in the modular group and let
&o be a fundamental domain fdry consisting of a finite number of
hyperbolic triangles. Lef andg be two modular forms belonging to
the spacelly, @, 8, 1] such that at least one of them is a cusp form. Then
we define as in chaptEl 8[3, the scalar product df andg by

L | tgp2 _ Req =
(19 = 55 || 19 axay (b= Rea= et + ),

where3(Fo) denotes the hyperbolic area®§. In the same way as for
the analytic modular forms, it can be proved that the scaledyct is
independent of the choice of a fundamental domain and ddetepend
upon the groufip in the sense described before. m|

Theorem 41. The operators {n) acting on the spacél’, «,3,1] are
Hermitian operators i.e.

(FIT(n), @) = (f, 9T (M),
for any two cusp forms f and g belonging to the spte, 5, 1].
Proof. ForS € &,,, we have

I[n] c srs— )
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Since the principal congruence subgroups are normal supgrofI’
andS = Ly (§ o) L2 with Lj € I'(i = 1,2) andg?d = n, it suffices to
prove [9) forS = (33), whered is a divisor ofn. If L = ($%)is a
matrix belonging td[n], then the matrix

-1 a ﬂd
STLS = (yd‘l 5 )
obviously belongs t&. Thus assertior19) is proved. Since the matrix
nS~! along withS is in O,,, relation [®) remains true wheis replaced
by S7L.

Let f andg be two modular forms belonging to the spaEed, 8, 1].
Then it is an immediate consequenceldf (9) thatSar O,, the forms
f|S andg are modular forms for the grouf*I'[n]S andI'[n]. More-
over, it is obvious that, when it exists, the scalar prodict|8 andg
defined for either of the two groups is the samegifis a fundamen-
tal domain forl'[n], thenS™! < &, > is a fundamental domain for the
groupS~II[n]S. Let us se6 = y/nS*(|S*| = 1) andp = Req. Then

__1 G2
(159 =5 [[ 11s-a¥ 2axy

S 1<Fn>
n—’il/2

= — f1S* - gy*2dxdy.
3G f IS7- gy dxdy

S—1<Fn>

Since the substitution — S < 7 > with S* = (2 }) transforms the 256
function (f|S*)(r, 7)g(r, 7)yP into the function

f(r,7)9(S 1 <7>,S <7 >)P
(€St < 7> +d)?(cS1 < 7 > +d)f|(—cr + @)?(—cT + )P
= 15 NES D P

dxdy . . .
and leaves the measu*e)r/z—y invariant, it follows that

n-9/2

)

ff g1S*1yP2dxdy

Sn
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l -
f . gnS-1yP2dxd
3(F0) ﬂ ginS—y"“dxdy

= (f,ginS™).

Let V,, denote a common representative system of left and rightsose
of O, moduloT’; such a representative system exists, by lerfioha 12. By
the definition of the operatadr(n), we have

(FIT(M),0) =™ > (f1S,9) = ) (f,glns™)

SeVy SeVn

= (£,9T(),

because it can be seen easily that when8wems through a representa-
tive system of right cosets @, moduloT’, thennS~? runs through the
left cosets oD),,. Hence the theorem is proved. O

Lemma 13. Let m be a set of pairwise commuting Hermitian matri-
ces. Then there exists a unitary matrix U such that the méattiU =
U~1HU for every H inm is a diagonal matrix.

Proof. It suffices to prove the assertion for a finite bt Ho, . . ., H, of
Hermitian matrices, because there existionly finitely many linearly
independent matrices over the field of real numbers. We phale the
assertion by induction on It is well-known that the assertion is true
forr = 1. Let us assume > 1 and the assertion to be true for any
set ofr — 1 mutually commuting Hermitian matrices. SindéHU is
Hermitian along wittH and since the unitary matrices form a group, we

can assume, without loss of generality, tHatHo, . .., H,_1 are already
r-1

diagonal matrices. We can also assume that the miitrix >, xcHg
k=1

with x¢ as real variables has the form

glE(kl) 0
€2E(k2)

0 gtE(kt)
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wherefy, {, ..., {; are pairwise distinct linear forms in the variablgs
and in generaE® denotes thé-rowed unit matrix. FromHH, = H,H,
it follows thatH, must be of the form

(k1)
A . 0
A22

Hr =
0 AL

where eactA®) is a Hermitian matrix. We now find unitary matrices
o) thatUi’Ai('“) Ui(i = 1,2,...t) are diagonal matrices. Let us set 258

U, 0
U,

0 Ut
Then it is obvious that) transforms the matriceld{, Ho, ..., H, into

diagonal matrices. O

Theorem 42. A linear spacey of cusp forms contained in any one of the
spaces,%a(;)(ezz 1) and %, (B8 = 0) and invariant under the operators
T(n) has an orthonormal basis;ggy, .. ., g: (t = dimensiony) so that

GilTn = pi(N)g
foralln>1andi=12,...,t.

Proof. Let{fy, fo,..., f} be an orthonormal basis feri.e.
(i, f) = 6ik (dik, Kronecker's symbol)
Let

t
filTh = Z Aik T
k=1



259

228 5. Dirichlet Series and Euler Products

Then, by theoreri 41, we have
Aik(n) = (filTn, f) = (fk, filTn)
= (fulTh, fi) = Ai(n)

showing that the matrixA(n) = (2ik(n)) is Hermitian. But, by theo-
rem[38, the operatorB(n) commute with each other; therefore, the ma-
trices A(n), which define a representation of the operafb(s), com-
mute pairwise. Thus, by lemnial13, there exists a unitaryiritisuch

that
p1(n) 0
P
U tA(NU =
0 pt(n)
If
f1 01
f=Up s
fi Ot

thengs, gz, . . ., g; constitute a basis gfhaving the properties mentioned
in theorent4R.

Denoting the Fourier cdicients ofg; by a(m) with m > 1, we
claim that for everyn > 1, pi(n) is equal toa(n) upto a constant factor
independent of. In fact, from [$), we have

pia(m = ) amyd)d(mn = 1)

di(m,n)
d>0

and on takingn = 1,
pi(Na(l)=a(mn=12...

Consequently;(1) # 0, fori = 1,2,...,t. Moreover, it follows imme-
diately that
piMpi(m) = " pi(mryd?)dT (10)

di(m,n)
d>0
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If we drop the condition of orthonormality for the ba$@s, gz, ..., Q) 260
of y and assume only the orthogonality wiff1) = 1, then the Dirichlet

series
o ai(n)
¢i(s) = Z o
n=1
associated witlg;(s) (i = 1,2,...,t) has an Euler product development
of the type

(9 = [ [I1-a(pps+pt2t
p

wherep runs over all primes. For, it can be seen, by using (10), that

and

a(pk) ai(n)
1_[ ka Z :
k=0 n=
Thus it follows, from theorerﬂo, that the Dirichlet seriesresponding
to the normalised Eisenstein series (i.e. wat{il) = 1) has an Euler
product development i.e.

d
Z q- 1(n) _ 1_[ 1 dq 1(p)p + pq 1= 25 4(3)4(34-1 q)

n=1
Consequently, we have proved the following O

Theorem 43. For every linear spacéfé;)(ezz 1) and %, (B = 0) there
exists a basighg, . . ., h} so that the Dirichlet series corresponding to h
can be represented as an Euler product.

Finally, we remark that the functions mentioned in theokdhin&ve 261
an Euler product development which can be obtained usingvtike
known product representation

(9= Ja-p sy = [a-x(pp v
p p
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for the functions/(s) andL(s, x). In cased = 2, these Euler products
coincide with the Euler products of the Dirichlet seriesresponding
to certain modular forms of level 4 as for as the contribugiar the
odd primes are concerned, because the spager[a,V](V2 = 1) is
contained in the spac€[@], «, a, 1].
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