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Preface To The Revised
Edition

Thanks are due to the Editor of the Tata Institute Lecture Notes in Math-
ematics for the suggestion to reissue my Lecture Notes of 1963, which
provided an opportunity to touch up the text with improvements in sev-
eral respects. In collaboration with Professor S. RaghavanI could ex-
pand the Errata from its original four pages to sixteen pages. He took
upon himself the task of inserting the necessary modifications in the
notes. A truly onerous undertaking! I am indebted to Professor E.
Grosswald for valuable proposals in this connection. We have now a
substantially revised version which we hope, is much more readable.
However, what is perfect in this world! I therefore seek the indulgence
of the reader for any possible error in the revised text.

Finally mention should be made of Dr. C.M. Byrne, Mathematics
Editor of Springer-Verlag, for her encouraging support at crucial stages
of the task and for making me occasionally forget, in a charming man-
ner, that decisions of the publishers are based on prosaic calculations.

It is a pleasure to thank everyone who has been involved in this
project.

Heidelberg

November 15, 1983 H. Maass
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Preface To The First Edition

These are notes of lectures which I gave at the Tata Instituteof Funda-
mental Research in 1962/63. They provide an introduction to the theory
of modular functions and modular forms and may be described as el-
ementary, in as much as basic facts from the theory of functions of a
complex variable and some properties of the elementary transcenden-
tal functions form the only prerequisites. (It must be addedthat I have
counted the Whittaker functions among the elementary transcendental
functions). It seemed to me that the investigations of Siegel on discrete
groups of motions of the hyperbolic plane with a fundamentalregion of
finite volume form a particularly suitable introduction, since they make
possible a simple characterization of groups conjugate to the modular
group by a minimal condition.

My thanks are due to Mr. Sunder Lal for his careful preparation of
these notes.

Hans Maass
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Horocyclic Groups

1 The Poincaŕe Model of the Hyperbolic Plane
1

Let H denote the upper half-plane{τ = x+ iy, x, y real andy > 0}. It is
well-known that any conformal mapping ofH onto itself is given by

τ→ τ∗ = x∗ + iy∗ = S < τ >=
aτ + b
cτ + d

, (1)

whereS =
(

a b
c d

)
is a matrix witha, b, c, d real and determinant|S| equal

to 1. All such matrices form a group under matrix multiplication and
we denote this group byΩ. ForS1,S2 in Ω, we clearly have (S1S2) <
τ >= S1 < S2 < τ >>. It is obvious that two elementsS1 andS2 of Ω
define the same mapping ofH if and only if S1 = ±S2. The domainH
together withΩ can be looked upon as a model for the hyperbolic plane.
The hyperbolic straight linesin this plane are defined by the segments
of the circles (Here and in the following, circles include straight lines)
orthogonal to the real axis, which lie in the upper half-plane. OnH, we
have a metric form

ds2 =
dτdτ̄

y2
=

dx2 + dy2

y2
. (2)

Since

dτ∗ = (cτ + d)−2dτ and y∗ = |cτ + d|−2y, (3)

the metric form (2) is left invariant by the transformationsof Ω. We
shall show that with respect to this metric form, the hyperbolic straight

1



2 1. Horocyclic Groups

line joining any two points ofH is the path of shortest distance joining
the two points. It is sufficient to prove this assertion for the pointsi and
iy0(y0 ≥ 1), since for any two pointsτ1 and τ2 in H, there exists an2

elementS ∈ Ω mappingτ1, τ2 respectively toi andiy0 (with a suitable
y0 ≥ 1) and further any transformation fromΩmaps hyperbolic straight
lines to hyperbolic straight lines, leaving the metric forminvariant. Let
τ = τ(t) = x(t) + iy(t) for a ≤ t ≤ b be a parametric representation of a
continuously differentiable curve joiningi andiy0. Then

s=
∫ b

a

√
ẋ(t)2 + ẏ(t)2

y(t)
dt ≥

∫ b

a

|ẏ(t)|
y(t)

dt ≥
∣∣∣∣∣∣

∫ b

a

ẏ(t)
y(t)

dt

∣∣∣∣∣∣ . (4)

It τ(t) were a curve of minimum length, equality must hold every-
where in (4), because, otherwise, the curveτ = iy(t) for a ≤ t ≤ b,
which also joinsi andiy0 would be of shorter length; or the given curve
τ = τ(t) would contain at least one double point, but this is impossible.
This shows, because of the continuity of ˙x(t), that ẋ(t) and thereforex(t)
also vanishes identically and finally thaty(t) is monotonically increas-
ing. Thus the curve of minimal length betweeni and iy0 must be the
hyperbolic straight line joining them, therefore we can chooset = y as a
parameter and obtain

s=
∫ b

a

ẏ(t)
y(t)

dt =
∫ y0

1

dy
y
= logy0 = log((i, iy0, 0,∞)), (5)

where (z1, z2, z3, z4) generally denotes the cross ratio of the four points
z1, z2, z3 andz4 in the extended complex plane defined by (z1, z2, z3, z4) =
(z2 − z3)(z1 − z4)
(z1 − z3)(z2 − z4)

. If one of the four points sayz4 = ∞, we take
z1 − z4

z2 − z4
= 1. Hence, for any two pointsτ1 andτ2 of H, we obtain from (5) the3

following formula for the shortest distance:

s= log((τ1, τ2, σ1, σ2)) = ρ(τ1, τ2), (6)
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Figure 1.1:

with σ1, σ2 representing the points of intersection of the hyperbolic
line joining τ1, τ2 and the real axis. It can be proved easily thatH pro-
vided with the distance formula (6) is a metric space and thismetric on
H is left invariant by elements ofΩ. Moreover, it is well known that
this metric defines onH the same topology as the usual topology i.e. the
topology induced from complex numbers. OnH, we have the measure

dω =
dxdy

y2
, (7)

which is invariant under transformations ofΩ in view of the formula

∂(x∗, y∗)
∂(x, y)

=

∣∣∣∣∣
dτ∗

dτ

∣∣∣∣∣
2

= y∗
2
/y2.

We shall prove that the areaI(A, B,C) with respect to the measure
in (7) of a hyperbolic triangle (A, B,C) i.e. a triangle with hyperbolic
straight lines as edges withα, β andγ as angles (see figure 1.2 isπ−α−
β − γ. In order to findI(A, B,C) it is sufficient to find the area of the
triangles (A, B,∞), (A,C,∞) and (B,C,∞), because

Figure 1.2:
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I(A, B,C) = I(A, B,∞) − I(A,C,∞) − I(B,C,∞). If (A, B,∞) is
a hyperbolic triangle, with the anglesα, β and 0 (see figure 1.3, then4

I(A, B,∞) = π − α − β; indeed,

Figure 1.3:

I(A, B,∞) =
"

A,B,∞

dxdy

y2

=

b∫

a

dx

∞∫

√
r2−(x−c)

y−2dy

=

b∫

a

dx√
r2 − (x− c)2

= arc sin

(
b− c

r

)
− arc sin

(a− c
r

)

=

(
π

2
− β

)
−

(
α − π

2

)
= π − α − β.

Let L denote the unit disc{z = u + iv, u, v real and|z| < 1}. The
mapping

τ→ z=
τ − i
τ + i

= A < τ > withA =
(

1 −i
1 i

)

mapsH conformally ontoL. If τ∗ = S < τ > is mapped toz∗ in L, then

z∗ = A < τ >∗= AS < τ >= AS A−1 < z>= L < z>,
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with L = AS A−1 =
(

1 −i
1 i

) (
a b
c d

) (
1 −i
1 i

)−1
, whereS =

(
a b
c d

)

This shows thatL is a matrix of the type
(
ᾱ β̄
β α

)
with

α =
a+ d + (c− b)i

2
, β =

a− d + (c+ b)i
2

andΩ0 = {
(
ᾱ β̄
β α

)
|αᾱ − ββ̄ = 1|} = AΩA−1 is the group of all conformal

mapping ofL onto itself. Therefore we can look uponL together with
Ω0 as a model for the hyperbolic plane. The metric form and measure
onL are given by

ds2 =
4(du2 + dv2)

(l − u2 − v2)2
, dω =

4dudv

(l − u2 − v2)2
(8)

The hyperbolic straight lines inL are segments of the circles orthog-5
onal to the unit circle. OnL, the metric is given by

δ(zl , z2) = ρ(τl , τ2), where A < τi >= zi , i = 1, 2. (9)

Definition . A hyperbolic circle of radius r and centreτ0 in the hyper-
bolic plane is the set of those points which are at a hyperbolic distance
r from τ0.

If δ(z, 0) = constant, then|z| = constant and so a hyperbolic circle
in L with centre 0 is some Euclidean circle with the same centre. In
general, a hyperbolic circle inL and therefore inH is some Euclidean
circle but their centres need not be the same. We shall find theEuclidean
centre and radius of a hyperbolic circle in terms of the hyperbolic centre
and radius. For the sake of simplicity, we take the hyperbolic circleU of
radiusρ with the centreih lying on the imaginary axis. It can be proved
easily that in this case the Euclidean centre also lies on theimaginary
axis. Letim andr be the Euclidean centre and radius ofU respectively.
Then (see Figure 1.4

ρ = log(y2/h) = log(h/y1),

whereiy1 andiy2 are the points of intersection ofU with the imaginary
axis. Thus
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Figure 1.4:

y1 = he−ρ, y2 = heρ

implying that

m=
1
2

(y1 + y2) = hcoshρ (10)

r =
1
2

(y2 − y1) = hsinhρ (11)

Consequently, the circleU is represented by

|τ − ih coshρ| hsinhρ.

6

Further, we have
sinα =

r
m
= tanhρ, (12)

which is independent ofh showing that

| x
y
| = tanα = sinhρ

is the locus of those points at a distanceρ from the line x = 0. In
particular, if the centre of the circleU is i, then its equation is

|τ − i coshρ| = sinhρ, with ρ = ρ(τ, i)

or x2 + (y− coshρ)2 = sinh2 ρ =⇒ coshρ =
x2 + y2 + 1

2y
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Moreover,|z|2 =
∣∣∣∣∣
τ − i
τ + i

∣∣∣∣∣
2

=
x2 + y2 + 1− 2y

x2 + y2 + 1+ 2y
=

coshρ − 1
coshρ + 1

= τh2ρ

2
.

So the hyperbolic polar coordinates can be introduced by

τ − i
τ + i

= tanh
ρ

2
· ei0 (13)

We have already defined a metric onL, namelyδ(z1, z2) = ρ(τl , τ2),
wherezi = A < τi >, i = 1, 2. In particular, we have

δ = δ(z, 0) = ρ(τ, i), δ∗ = δ(z∗, 0) = ρ(τ∗, i),

wherez∗ =
ᾱz+ β̄
βz+ α

= L < z >. This gives an interesting geometric

interpretation for the expression|βz+ α|. We have seen thatl − |z|2 =
1− tanh2 δ/2 = cosh−2 δ/2, from which it can be shown easily that

l − |z∗|2 = l − |z|2
|βz+ α|2

.

Therefore 7
coshδ∗/2
coshδ/2

= |βz+ α|.

Because of the invariance ofδ(zl , z2) byΩ0, |βz+ α| = 1 if and only
if

δ(z, L−1 < 0 >) = δ(z∗, 0) = δ(z, 0)

i.e. zhas the same hyperbolic distance from 0 andL−1 < 0 >= −β̄/ᾱ.

2 Discontinuous groups of motions

Let X be a topological space andG a group acting onX i.e.,

i) gx for g ∈ G andx ∈ X belongs toX and is uniquely defined,

ii) gl(g2x) = (glg2)x for gl , g2 ∈ G andx ∈ X and

iii) ex= x, wheree is the unit element ofG.
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Definition. Two points xl , x2 of X are said to be equivalent with respect
to G if there exists an element g in G such that g(xl) = x2. It is obvious
that the set of points{gx|g ∈ G} is a complete set of equivalent points.

Definition . The group G is said to act discontinuously on X, if no set
of equivalent points has a limit point in X. Here, we considergl x and
g2x with gl , g2 as different elements of the set of points equivalent to x
even if gl x = g2x.

In particular, ifG is a topological group, thenG can be considered
as acting on itself. We say thatG is discrete, if G acts discountinuously
on itself.

Lemma 1. A topological group G is discrete if and only if there exists8

a neighbourhood of the unit element containing only a finite number of
elements.

Proof. For the sake of simplicity, we assume thatG satisfies the first
axiom of countability.

(i) Let every neighbourhood of the unit elemente in G contain in-
finitely many elements. We can then choose a sequence{gn} in G
converging toewith gn , gn+1 for all n ≥ 1. Hence, for everyx in
G, the sequence{gnx} converges tox asn tends to infinity i.e. the
set{gx|g ∈ G} of elements inG equivalent tox hasx as a limit
point, implying thatG is not discrete.

(ii) Let G be not discrete, so thatG contains a subset{gx|g ∈ G} of
elements equivalent tox in G having a limit point, sayb. Thus,
we can find inG a sequence{gnx} converging tob as n tends
to infinity, with the property thatgn , gn+1 for every n ≥ 1.
Then clearly{gnxb−l } converges to the unit elementeand so does
the sequence{bx−lg−1

n+1}. This leads us to a (non-trivial) infinite
sequence{gng−1

n+1} converging toe. It follows that every neigh-
bourhood ofe contains infinitely many elements. Our lemma is
proved.

In the sequel, we takeX to be the hyperbolic plane andG to beΩ
or Ω0 according asX = H or L. The action ofG on X in either
case has been defined already in§1.
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�

Theorem 1. A subgroupΓ of G acts discontinuously on X if and only if
Γ is discrete.

Proof. We work withX = L for the proof. 9

(i) Let Γ act discontinuously onL. Then we shall show thatΓ is
discrete. Let, if possible,Γ be not discrete. Then there exists a

sequence

{
Sn =

[
ᾱn β̄n

βn αn

]}
in Γ such thatSn , Sn+1 andSn →

E =

(
1 0
0 1

)
asn→ ∞. This implies that

αn→ 1 and βn→ 0 i.e. Sn < 0 >= β̄n/αn→ 0 as n→ ∞.

Thus the set of equivalent points{S < 0 > |S ∈ Γ} has a limit
point, contradicting the discontinuous action ofΓ. HenceΓ is
necessarily discrete.

(ii) Let now Γ be discrete. IfΓ does not act discontinuously onL,
then there exists a pointz in L such that the set{S < z > |S ∈
Γ} has a limit point sayz∗. Therefore we can find a sequence{

Sn =

[
ᾱn β̄n

βn αn

]}
in Γ with Sn , Sn+1 such thatSn < z>→ z∗ as

n = ∞. Let zn = Sn < z>=
ᾱnz+ β̄n

βnz+ αz
. Then

1− |zn|2 =
1− |z|2
|βnz+ αn|2

→ 1− |z∗|2

=⇒ |βnz+ αn| →

√
1− |z|2
l − |z∗|2

asn→ ∞.

Since
∣∣∣∣∣
βn

αn

∣∣∣∣∣ < 1, |βnz + αn| = |αn|
∣∣∣∣ βn
αn

z+ 1
∣∣∣∣ ≥ |αn|(1 − |z|). This

shows that|αn| and therefore|βn| is bounded. Therefore we can
find a subsequence{Skn} of {Sn} such that{SknS

−1
kn+1
} → E as
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n→ ∞. But this is contrary to the discreteness ofΓ; therefore,Γ
acts discontinuously onL.

�

Definition . A conformal transformation of the hyperbolic plane with10

the corresponding matrix S, ±E is said to be hyperbolic or elliptic
or parabolic according as the two fixed points of the transformation
are distinct and lie on the boundary of the hyperbolic plane or the two
fixed points are inverse points with respect to the boundary circle of the
hyperbolic plane or the two fixed points coincide.

It can be proved easily that if the determinant|S| of S equals 1, then

ρ2(S) = (σ(S))2



> 4 if S is hyperbolic,

< 4 if S is elliptic,

= 4 if S is parabolic,

(1)

whereσ(S) denotes the trace ofS.
By a hyperbolic groupof transformations of the hyperbolic plane

we mean a group consisting wholly of hyperbolic transformations ex-
cept forE and possibly−E as well. We have the following remarkable
theorem for this hype of groups.

Theorem 2. If a subgroupΓ of Ω is a non-commutative hyperbolic
group, thenΓ acts discontinuously on the hyperbolic plane X.

Proof. We shall take the upper half-planeH as a model forX. Now Γ
contains a hyperbolic elementS , ±E with fixed pointsω,ω′ , ω. For
V in Ω defined byV < τ >= (τ − ω)(τ − ω′)−l , let S∗ = VS V−1 and
Γ∗ = VΓV−l. Thenσ(S∗) = σ(S) so thatS∗ is again hyperbolic and
furtherΓ∗ is also a hyperbolic group, which is discrete if and only ifΓ
is discrete. Thus passing over toΓ∗ if necessary, we may assume that

S has already 0 and∞ as its fixed points, so thatS =

(
ℓ 0
0 ℓ−1

)
with11

ℓ , ±1.
If possible, letΓ no act discontinuously onH. then by theorem 1,Γ is

not discrete and therefore contains a sequence{Tn} of elementsTn , ±E
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converging toE. We will show under the given circumstances, that

all but finitely manyTn are diagonal. ForTm =

(
a b
c d

)
, consider the

commutatorsCm = S TmS−1T−1
m and Dm = SCmS−1C−1

m . If is easily
checked that

Cm =

(
ad− bcℓ2 ab(ℓ2 − 1)

cd(ℓ−2 − 1) ad− bdℓ−2

)

=

(
1+ bc(1− ℓ2) ab(ℓ2 − 1)
cd(ℓ−2 − 1) 1+ bc(1− ℓ−2)

)

SinceΓ is hyperbolic, the elementCm is hyperbolic ifCm , ±E. In
any case,

σ2(Cm) = (2+ 2bc− bc(ℓ2 + ℓ−2))2 = (2− bc(ℓ − ℓ−1)2)2 ≥ 4.

Similarly, we have

σ2(Dm) = (2−ab(ℓ2−1)cd(ℓ−2−1)(ℓ−ℓ−1)2)2 = (2+abcd(ℓ−ℓ−1)4)2 ≥ 4.

Since{Tn} converges toE, {Cn} converges toE so that 1+ bc(1− ℓ2)
tends to 1. Sinceℓ , ±1 is fixed, this means thatbc tends to 0. We
claim thatbc = 0 for all large enoughm. In fact, if bc is positive and
sufficiently small, we have a contradiction fromσ2(Cm) = (2 − bc(ℓ −
ℓ−1)2)2 < 4. Sincead− bc = 1, ad tends to 1 and hence disregarding12

finitely manym, we can suppose thatad > 0, so thatabcdhas the same
sign asbc. Let nowbc < 0, if possible. Then consideringDm instead
of Cm, we see thatabcd tends to 0 asm tends to∞. But from bc < 0,
we obtain thatabcd < 0 and |abcd| is small for all largem, so that
σ2(Dm) < 4, a contradiction again. Thus, for all largem, bc = 0 and
thereforead = 1. Nowσ(Cm) = 2ad = 2 and sinceΓ is hyperbolic, this
means thatCm = E, for all largem i.e. ab = cd = 0. Sincead = 1,
we haveb = c = 0 i.e. Tm is diagonal, for all largem, as required to be
proved.

Dropping finitely manyTm, we have inΓ, a sequence{Tn} of diag-
onal matricesTn =

(
ℓn 0
0 1/ℓn

)
with ℓn , ±1. Let nowF =

( p q
r s

)
be an

arbitrary element ofΓ. To the sequence{TnFT−1
n F−1} (of commutators)
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converging toE (asn → ∞), we apply the same arguments as to{Cm}
above. Then we can conclude that necessarilyq = r = 0 andF is diago-
nal. In other words,Γ consists entirely of diagonal matrices and is hence
commutative, a contradiction. ThusΓ necessarily acts discontinuously
on X. �

3 Fundamental domain

Let Γ be a discrete group of motions of the hyperbolic plane.

Definition. A point-setF of the hyperbolic plane is called afundamental
domainfor Γ if

1) F contains at least one point from each set of equivalent points
with respect toΓ and

2) If z ∈ F ∩ FS (FS = Image ofF by S ), then z is a boundary point
of F andFS provided S, ±E.

In the following, we shall give a construction of a fundamental do-13

main for Γ by geometrical methods. First of all, we observe thatΓ is
countable. For, the number of matricesS =

(
ᾱ β̄
β α

)
with αᾱ ≤ n (n a

natural number) is finte, because if the number of such matrices were
infinite, thenαᾱ ≤ n and ββ̄ = αᾱ − l < n will imply that Γ is not
discrete. Since every elementS ∈ Γ different from±E can have atmost
one fixed point inL andΓ is countable, there exists a pointζ ∈ L which
is not a fixed point of any elementS of Γ different from±E. In the
following, we setS < ζ >= ζS. We shall show that the setF defined by

F = {z|δ(z, ζ) ≤ δ(z, ζS) for S ∈ Γ, z ∈ L} (1)

is a fundamental domain forΓ. It is obvious thatF consists of all points
z, whose distance fromζ is not greater than the distance from the equiv-
alent pointsζS. Obviously, we have

FT = {T < z> |δ(z, ζ) for S ∈ Γ, z∈ L}
= {z|δ(T−l < z>, ζ) ≤ δ(T−l < z>, ζS) for S ∈ Γ, z∈ L}
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= {z|δ(z, ζT ) ≤ δ(z, ζTS) for S ∈ Γ, z∈ L}
= {z|δ(z, ζT ) ≤ δ(z, ζS) for S ∈ Γ, z∈ L}.

We now claim that
L =

⋃

±T∈Γ
FT .

Indeed, for an arbitraryz∈ L the set{δ(z, ζS)|S ∈ Γ} has a minimum
because of the discreteness ofΓ, i.e. δ(z, ζT ) ≤ δ(z, ζS) for someT in Γ
and for allS in Γ; therefore,z∈ FT . In particular,F contains atleast one14

point from each set of equivalent points. In order to prove the second
condition forF to be a fundamental domain, we proceed as follows. Let
gS for S , ±E denote the locus of pointsz ∈ L such that

δ(z, ζ) = δ(z, ζS).

This is the equation of an orthogonal circle, which forζ = 0 as
shown in§1 can be represented by| − βz+ ᾱ| = 1 if S =

(
ᾱ β̄
β α

)
. The line

gS decomposes the hyperbolic plane into two parts. We denote byLS

the closed half plane which containsζ. In fact,

LS = {z ∈ L|δ(z, ζ) ≤ δ(z, ζS)}.

ThereforeF =
⋂
±S∈Γ
LS. In particular, since eachLS is a convex set

and an arbitrary intersection of convex sets is convex,F is a convex set.
Moreover, it can be verified easily that the boundary ofF in L consists
of some segments of the hyperbolic straight linesgT for T ∈ Γ. In other
words,z is a boundary point ofF if and only if δ(z, ζ) ≤ δ(z, ζS) for
S ∈ Γ and equality holds atleast for oneS , ±E. Thus if z ∈ F ∩ FT ,
then necessarily, we haveδ(z, ζ) ≤ δ(z, ζS) andδ(z, ζT ) ≤ δ(z, ζS) for
S ∈ Γ. TakingS = T in the first inequality andS = E in the second, we
obtain that

z∈ F ∩ FT =⇒ δ(z, ζ) = δ(z, ζT )

showing thatz is a boundary point ofF andFT . Hence the set defined
in (1) is a fundamental domain forΓ. Moreover, we shall now prove
that only finitely many linesgT for T in Γ, constituting the boundary
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of F, intersect a given compact setK. Let K be contained in the circle
U = {z|δ(z, ζ) ≤ R, z∈ L}. If z∈ gT ∩ U, then we must have 15

R≥ (z, ζ) ≥ 1
2
δ(ζ, ζT )

orδ(ζ, ζT ) ≤ 2R.

But Γ is discontinuous and therefore only finitely manyT exist for
which δ(ζ, ζT ) ≤ 2R. We thus conclude thatF as defined in (1) is a
convex set bounded by a countable number of hyperbolic lines, only a
finite number of which intersect a given compact set. We call such a
fundamental domainF anormal fundamental domainwith the centreζ.
The area ofF is given by

I(F) = lim
ρ→∞

4
∫

δ(z,ζ)≤ρ
z∈F

dudv

(l − u2 − v2)2
.

This integral may be an improper integral and can have an infinite
value. If the value is infinite, then the fundamental domain has limit
points on the boundary of the hyperbolic plane. If the fundamental do-
main is compact, its area is finite; the converse is not true ingeneral.
However, we have the following

Theorem 3. If Γ is a discrete group of motions of the hyperbolic plane
containing no parabolic motions and having a normal fundamental do-
mainF with finite area, thenF is compact.

Proof. Throughout the proof, the hyperbolic plane will be represented
by L. We decompose the boundary ofF in L into connected compo-
nents, the number of which will be atmost countable. The proof is given
in six steps.

1) If there exists one connected component which is a closed curve,16

then this cannot have double points, in view ofF being convex.
So this connected component represents a polygon. SinceF is
convex and therefore simply connected,F is in the interior of this
polygon and is obviously compact. We exclude this case from our
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considerations. Starting from a boundary point ofF in L (which
exists by the construction ofF), if we move along the boundary
of F in one of the two possible directions, then the following two
possibilities can occur:

(a) we come across only a finite number of vertices i.e. there
exists a last edge reaching the boundary ofL,

(b) we meet an infinite number of vertices.

The case in which we come back to the starting point has already
been discussed above. Let

. . . . . . , z−1, z0, z1, z2, . . . . . .

denote the vertices of one of the connected components ofF.
Here, if the sequence terminates on the right withzr , then through
zr pass two edges ofF, one joining the pointzr−1 to zr and the
other reaching the boundary ofL. If zr+1 is the point of intersec-
tion of the boundary ofL with the edge throughzr reaching the
boundary ofL, we definezr+1 to be a vertex of the fundamental
domainF. Similarly, if the sequence terminates on the left with
z−r , we define the pointz−r−1 to be a vertex ofF. The triangle∆k

with the verticesζ (the centre ofF), zk andzk+1 is contained inF,
sinceF is a convex set.

Let αk, βk andγ (as in figure 1.5 be the angles of∆k. Then 17

Figure 1.5:
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I(∆k) = π − αk − βk − γk.

If zk respectivelyzk+1 belongs to the boundary ofL, thenαk re-
spectivelyβk is equal to 0. Letωk = αk + βk−1.

Then, because of the convexity ofF, we have

0 < ωk < π. (2)

Summing the areas of the triangles∆k for p ≤ k ≤ q, we obtain

Ip,q =

q∑

k=p

I(∆k) =
q∑

k=p

(π − αk − βk − γk)

or Ip,q +

q∑

k=p

γk = π − αp − βq +

q∑

k=p+1

(π − ωk). (3)

But

Ip,q ≤ I(F) < ∞, Ap,q :=
q∑

k=p

γk ≤ 2π, (4)

and therefore, in case (b), the sequencesIp,q andAp,q converge
when p → −∞ and q → ∞. Sinceαp, βq < π from (2), the

series
q∑

k=p+1
(π − ωk) converges whenp → −∞ andq → ∞. The

convergence of the sequenceIp,q implies the convergence ofαp

whenp→ −∞ andβp whenq→ ∞. Let us write

lim
p→−∞

αp = α−∞, lim
q→∞

βq = β∞. (5)

In the case of the possibility (a), we choosep to be minimal and
q to be maximal and thenαp = βq = 0. We shall now show that18

the limiting values ofαp andβq in (5) satisfy the inequalities

α−∞ ≤
π

2
, β∞ ≤

π

2
. (6)
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Let rk = δ(zk, ζ). Then if there exists no extremalp (respectively
q), we have

rk → ∞, for k→ −∞(respectivelyk→ ∞).

For, only a finite number of edgeŝzkzk+1 ( ̂zkzk+1) denoting the
hyperbolic line joiningzk andzk+1) can meet a given compact set.
We must have

rk < rk+1 for infinitely manyk, (7)

since, otherwise, the sequencerk will be bounded. We now prove
that, in the triangle∆k for which rk < rr+1, opposite to the greater
side we have the greater angle (as in Figure 1.6 i.e.

βk < αk. (8)

Figure 1.6:

Let g denote the perpendicular bisector of̂zkzk+1 (in the sense of
hyperbolic geometry). Sincezk < zk+1, it follows thatη1, the point
of intersection ofg and the line throughζ andzk+1 lies betweenζ
andzk+1. This means that the angle∈ (see Figure 1.6 is positive.19

It is obvious that the triangles< zkη1η2 > and< ηlη2zk+1 > are
congruent in the hyperbolic sense. Therefore we haveβk = αk− ∈,
which proves our assertion (8). ButI(∆k)+ γk = π− αk − βk > 0;
therefore, from (8), we conclude that

βk <
π

2
for infinitely manyk. (9)
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Our assertionβ∞ ≤
π

2
in (6) now follows trivially. Similarly, it

can be proved thatα−∞ ≤
π

2
.

2) Letmdenote the maximalq if it exists, and otherwise, setm= ∞;
let n denote the minimalp if in exists and otherwise setn = −∞.
From (3), it follows that

m∑

k=n

γk +

m∑

k=n

I(∆k) = π − αn − βm+

m∑

k=n+1

(π − ωk). (10)

If we sum both sides of (10) over all the connected components
of the boundary ofF, then we still have

∑

k

γk ≤ 2π and
∑

k

I(∆k) ≤ I(F) < ∞. (11)

But π − αn − βm ≥ 0, therefore the series
∑

k(π − ωk) of positive
terms is convergent and for a given∈> 0, we have

0 < (π − ωk) <∈ for almost allk. (12)

3) We have defined the setF by means of the inequalities

δ(z, ζ) ≤ δ(z, ζS) for S ∈ Γ.

If equality holds precisely for oneS , ±E i.e. if z lies exactly on
one perpendicular bisector, thenz is a boundary point ofF and not
a vertex. Since the edgêzkzk+1 of F is a perpendicular bisector of20

ζ̂ζA for someA ∈ Γ, we have, for any pointzon this edge different
from zk andzk+1,

δ(z, ζ) = δ(z, ζA) andδ(z, ζ) < δ(z, ζS) for S , ±A,±E,

or δ(z, ζA) = δ(z, ζA−1A) andδ(z, ζA) ≤ δ(z, ζS A) for S , ±A−1,±E.

This shows thatz is a boundary point ofFA and not a vertex.
Moreoverzk and zk+1 are necessarily vertices ofFA. We now
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assert that a vertex ofF, sayz0, can be a vertex of only finitely
many images ofF by elements ofΓ. Let, if possible,z0 be a vertex
of FAi (i = 1, 2, . . .) with Ai ∈ Γ. Then we have

Figure 1.7:

δ(z0, ζ) = δ(z0, ζA1)
δ(z0, ζAl ) = δ(z0, ζA2)
. . . . . . . . . . . . . . . . . . . . . .

δ(z0, ζAi ) = δ(z0, ζAi+1)

and so on. Thus we obtain thatδ(z0, ζ) = δ(z0, ζAi ) for i = 1, 2, . . .
i.e. the pointsζAi lie on the hyperbolic circle with the radius
δ(z0, ζ). This implies, because of the discreteness ofΓ, that there
can exist only finitely many suchAi , proving our assertion above.
Let FAi , i = 1, 2, . . . , r(r ≥ 3) be all the images ofF with z0 as a
vertex and letω(i) denote the angle ofFAi atz0. Then

ω(1) + ω(2) + · · · + ω(r) = 2π (13)

SinceA−l
i < z0 > will be some vertex ofF, sayzjω

(i) must coin-
cide withω j .

We assume in the rest of the proof that−E ∈ Γ, without loss of
generality and denoteΓ/{±E} by Γ̄.

4) Let Bi < z0 > (i = 1, 2, . . . ,S) with Bi ∈ Γ be the complete set21

of different vertices ofF which are equivalent withz0. Denote by
Γ0 the subgroup consisting of those transformations ofΓ which
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leavez0 fixed. SinceA−l
i < z0 > with Ai as defined above is a

vertex ofF, we haveA−l
i < z0 >= B j < z0 > i.e. Ai B j < z0 >= z0

for some j with 1 ≤ j ≤ s and thereforeAiB j = L for some
L ∈ Γ0. The number of distinct transformationsA−1

i = ±B jL−1 is
ℓs, whereℓ is the order of̄Γ0 := Γ0/{±E}; for, if ±B jL−1

1 = BhL−1
2

for Lk ∈ Γ0(k = 1, 2), thenB j < z0 >= Bh < z0 > and this
is possible only if j = h, implying in turn that±L1 = L2. This
shows thatr = ℓs andℓ is finite; thereforeΓ̄0 is a cyclic group.
Let Γ̄0 be generated by the rotationL0 of angle 2π/ℓ. Then

{±A−1
i |i = 1, 2, . . . , r} = {±B jL

−t
0 | j = 1, 2, . . . , s; t = 0, 1, . . . , ℓ− l}.

Since the fundamental domainF has the angleω( j) at the vertex
B j < z0 >= B jL−t

0 < z0 >, the imageFAi = FLt
0B−1

j
has the same

angleω( j) at z0. Therefore, from (13), it follows that

ω(1) + ω(2) + · · · + ω(s) =
2π
ℓ

(sℓ ≥ 3) (14)

But, by (12),ωk >
2π
3

for almost allk; therefore, equation (13)

can be satisfied only by a finite number of systemsωk. Thus there
exist only finitely many classes of equivalent vertices ofF, since
each such class corresponds uniquely to a subsystem of{ωk} sat-
isfying (14) with someℓ and further any two such subsystems
are disjoint. We conclude that every connected component of
the boundary ofF has finitely many vertices. From (10) with
αn = βm = 0 now, we obtain that the right hand side of (10) is at
leastπ. But the left hand side of (10) when summed over all con-
nected component is finite. Therefore it follows that the number22

of connected components ofF is finite.

5) We shall now show that no arc of the boundary ofL can be con-
tained in the boundary ofF. Without loss of generality, we can
assume thatζ = 0. Let us suppose that the arĉAB with the angle
γ > 0 belongs to the boundary ofF. Then due to the convexity of
F, the whole sector belongs toF. But this is impossible, since the
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area of this sector is infinite whileF has finite area. For the same
reason,F can at most have only finitely many improper vertices
i.e. vertices on the boundary ofL.

Figure 1.8:

6) We prove next thatF does not have any improper vertex. Here,
for the first time, we shall make use of the assumption onΓ that it
does not contain parabolic transformations. Letz0 be an improper
vertex ofF so that|z0| = 1. SinceF does not contain any arc
of the boundary ofL. two edges ofF, sayg0 and f0, touch each
other atz0. Let FA1 be an image ofF by A1 ∈ Γ, which has
the edgeg0 in common withF. By the same argument as above,
FA1 must have two edgesg0 andg1 touching atz0. Proceeding in
this way, we obtain. . . . . . ,FA−2,FA−1,FA0,FA1,FA2, . . . . . . with
A0 = E and Ai ∈ Γ having z0 as the common improper vertex.
ObviouslyA−1

r < z0 > is an improper vertex ofF. ButF has only
finitely many vertieces; therefore, there exist two integers p andq 23
with p , q such that

A−1
p < z0 >= A−1

q < z0 >=⇒ C < z0 >= z0 with C = ApA−1
q , ±E.

Since, by assumption,Γ does not contain any parabolic transfor-
mation, the transformationC which has a fixed pointz0 on |z| = 1,
ought to be hyperbolic. Letz1 be the other fixed point ofC. Let,
further, τ = T < z > be a transformation which maps the unit
disc onto the upper-half plane and the pointsz0, z1 to ∞, 0 re-

spectively. ThenC = T−1

[
λ 0
0 λ−1

]
T, with λ , 0,±1. Clearly,

the cyclic group generated byTCT−1 maps the setg = {τ =
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x + iy, |x| ≤ y; τ ∈ H} onto itself. LetF0 be the fundamental
domain inT−1 < g > of the cyclic group generated byC, say,
with λ2 > 1, such that (see Figure 1.9

T < F0 >= {τ|τ = x+ iy, 1 ≤ |τ| ≤ λ2, |x| ≤ y}.

Figure 1.9:

ThenF0 is a compact set in the hyperbolic plane and therefore
there exists a constantM such thatδ(z∗, ζ) ≤ M for z∗ ∈ F0.

SinceT < F > has∞ as a boundary point, there exists a point
z ∈ F such thatδ(z, ζ) > M andT < z >∈ y. This implies that
Cp < z> belongs toF0 for some integerp and therefore

δ(Cp < z>, ζ) = δ(z, ζC−p) ≤ M

But M < δ(z, ζ) ≤ δ(z, ζC−p), sincez belongs toF; therefore, our
supposition thatz0 is an improper vertex ofF is untenable. ThusF24

is bounded by only finitely many edges, has no improper vertices
and is therefore a polygon. HenceF is compact and the proof of
theorem 3 is complete.

Concerning the existence of improper vertices of a fundamental
domain for a discrete group of transformations of the hyperbolic
plane, we prove the following

�
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Theorem 4. Let Γ be a discrete group of transformations of the hy-
perbolic plane andF a normal fundamental domain forΓ with I(F) <
∞. ThenF has at least one improper vertex if and only ifΓ contains
parabolic elements.

Proof. If Γ does not contain a parabolic element, then by theorem 3,F

does not have improper vertices. Conversely, we shall show that if F
does not have improper vertices (i.e.F is compact), thenΓ does not
contain parabolic elements.

If possible, letΓ contains a parabolic elementP. Then we assert
the existence of a sequence{z(k)} such thatδ(z(k),P < z(k) >) → 0 as
k→ ∞. Indeed, we can assume that∞ is the only fixed point ofP in H
i.e. P is defined byτ→ τ+ µ for some real numberµ, thenρ(τ, τ+ µ) <
µ/y <∈ for sufficiently largey and for arbitrary∈> 0. Let Sk ∈ Γ
be so determined thatSk < z(k) > belongs toF. Then the sequence
{δ(Sk < z(k) >, ζ)} is bounded. Therefore there exists a subsequence
of {Sk < z(k) >} convergent inH. Denoting this subsequence again by
{Sk < z(k) >}, let z∗ be its limit. It follows immediately that 25

δ(Sk < z(k) >,SkP < z(k) >)→ 0 =⇒ SkP < z(k) >→ z∗

=⇒ δ(SkP < z(k) >, z∗)→ 0 =⇒ δ(z(k),P−1S−1
k < z∗ >)→ 0 ask→ ∞.

But sinceδ(Sk < z(k) >, z∗)→ 0 and since further

δ(S−1
k < z∗ >,P−1S−1

k < z∗ >) ≤ δ(S−1
k < z∗ >, z(k))

+δ(z(k),P−1S−1
k < z∗ >), we see that

δ(S−1
k < z∗ >,P−1S−1

k < z∗ >)→ 0 ask→ ∞.

Thusδ(SkPS−1
k < z∗ >, z∗) → 0 ask → ∞ and the discreteness

of Γ implies thatSkPS−1
k < z∗ >= z∗ for sufficiently largek i.e. P has

S−1
k < z∗ > as a fixed point. But this is impossible, sinceS−1

k < z∗ >
belongs toH while P is a parabolic transformation. ThereforeΓ can not
contain any parabolic element.

The improper vertices ofF are nothing but fixed points of parabolic
transformations ofΓ; hereafter, we shall call themparabolic cusps.

In the following, we shall assume thatΓ is a discrete group of trans-
formations of the hyperbolic plane having a normal fundamental domain
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with centreζ andI(F) < ∞ i.e. F is bounded by finitely many hyper-
bolic straight lines and has finitely many parabolic cusps. Let k be an
edge ofF(⊂ L) joining z0 andz1 (see Figure 1.10. Letk be the perpen-
dicular bisector of̂ζζA.

Figure 1.10:

Thenk is an edge ofFA and thereforeA−1 < k > is an edge ofF.
If A−1 < k >= k, thenA−1 permutesz0 andzl , sinceA−1 preserves the26

orientation. It follows now thatA2 = ±E. SinceA−1 permutesζ andζA

also, the two lineŝζζA andẑ0z1 are mapped onto themselves and there-
fore the point of intersectionz∗ of these two lines must be a fixed point
of A. HenceA is an elliptic transformation of order 2. We introduce
z∗ as a vertex ofF. Then the two edgeŝz0z∗ and ẑ∗z1 are permuted by
A. If A−1 < k >, k, then we have an edge ofF different fromk but
equivalent tok by Γ. proceeding in this way, we obtain thatF is a closed
convex polygon bounded by a finite number of hyperbolic straight lines
ki , k∗i (i = 1, 2, . . . t) such thatki andk∗i are pairwise equivalent underΓ
i.e. there exist elementsAi ∈ Γ such thatAi < k∗i >= ki(i = 1, 2, . . . , t).
We shall call the transformationsAi the boundary substitutions ofF.
For a givenF, if {Ai |i = 1, 2, . . . , t} is a set of its boundary substitutions,
then the set{A±1

i , i = 1, 2, . . . , t} is uniquely determined byF.
We shall see that the set of boundary substitutions of the fundamen-

tal domainF generate the groupΓ. First, we prove the following �

Lemma 2. LetF be a normal fundamental domain of a discrete group
Γ of transformations of the hyperbolic plane. Then any compact set K
in the hyperbolic plane has non-empty intersection with only a finite
number of images ofF under elements ofΓ.
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Proof. Without loss of generality, we can assume thatK is a disc with
centreζ and radiusρ. If possible, letFSi ∩ K , φ for an infinity of
distinct Si(∈ Γ), i = 1, 2, . . . Picking z(i) in FSi ∩ K, we havez(i)

S−1
i

∈ F
and

δ(z(i), ζ) ≤ ρ =⇒ ρ > δ

(
z(i)
S−1

i

, ζS−1
i

)
≥ δ

(
z(i)
S−1

i

, ζ

)
.

27

Therefore

δ(ζ, ζSi ) ≤ δ(ζ, z(i)) + δ(z(i), ζSi ) ≤ ρ + ρ = 2ρ, for i = 1, 2, 3, . . .

which is impossible from the discreteness ofΓ. The proof of the lemma
is complete. �

Theorem 5. The set of the boundary substitutions of a normal funda-
mental domain for a discrete groupΓ of transformations of the hyper-
bolic plane generatesΓ.

Proof. Let F be a normal fundamental domain forΓ with the centreζ.
Let S be an arbitrary element ofΓ. Then by Lemma 2, the hyperbolic
straight lineζ̂ζS intersects only a finite number of images ofF under
elements ofΓ. Let FB0,FB1, . . . ,FBn be the images ofF, which inter-
sectζ̂ζS and are so arranged thatFBi−1 andFBi have an edge, saysi, in
common. ThenB0 = ±E andBn = ±S. Obviously,B−1

i−1(si) is an edge

of F and it is the perpendicular bisector of̂ζζB−1
i−1Bi

; therefore, we must

haveB−1
i−1Bi = ±A±1

ri , whereAr i is a boundary substitution ofF. It is
now immediate thats = ±B0B1B−1

1 B2B−1
2 B3 . . . B−1

n−1Bn = ±A±1
r1
. . .A±1

rn

and our theorem is proved.

Let d(U) denote the Euclidean diameter of an arbitrary point set
U. We now show that for∈> 0, d(FA) ≤∈ for almost allA in Γ. By
Lemma 2, only finitely many images ofF intersect the circle{z||z| ≤ h < 28

1}. LetFA with A in Γ be outside the disc|z| ≤ h.
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Figure 1.11:

Choosez0 ∈ FA so that|z0| = inf
z∈FA

(|z|). Then the hyperbolic tangent

to |z| = h at the point of intersection of|z| = h and the line joining 0 and
z0 is perpendicular to this line. We claim thatFA lies in the lens domain
bounded by the hyperbolic tangent mentioned above and the unit circle,
which is also defined by

∣∣∣∣∣∣z−
z0

|z0|
1+ h2

2h

∣∣∣∣∣∣ ≤
1− h2

2h
, |z| ≤ 1.

If possible, letz1 ∈ FA lie outside the above lens domain; then the
line ẑ0z1 is in FA, becauseFA is a convex set. But the angleα (see
Figure 1.11 is< π/2; therefore, there exists a pointz∗ on the hyperbolic
line ẑ0z1 such that|z∗| < |z0|, which contradicts the minimality of|z0|.
HenceFA lies in the above lens domain. It can be seen easily that the
diameter of this domain is 2(1− h2)/(1+ h2). Therefore it follows that

d(FA) < 2(1− h2)/(1+ h2)→ 0 ash→ 1.

We now assert that a discrete groupΓ with a normal fundamental
domain of finite area is aGrenzkreis group of the first kindin the sense
of Petersson [3]. In order to prove this assertion, we have toshow that,29

given a pointz∗ with |z∗| = 1, there exists a sequence of pointszn in L
and a sequence{Ln} of pairwise distinct transformationsLn ∈ Γ such
that

lim
n→∞

zn = lim
n→∞

Ln < zn >= z∗.

For given∈> 0, n − 1 elementsS1,S2,S3, . . . . . . ,Sn−1 in Γ and a
point z∗ with |z∗| = 1, we can findS in Γ with S , Si , i = 1, 2, . . . , n− 1
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and a pointz in |z| < 1 such that

|z− z∗| <∈, |zS − z∗| < 2 ∈ .

In order to prove this, we consider the point set

U∈ = {z||z− z∗| <∈, |z| < 1}.

SinceI(U∈) = ∞, infinitely many imagesFT will intersect U∈.
Therefore, we haveU∈ ∩ FT , ∅ for infinitely manyT andd(FT ) <∈,
for almost allT.

Let T1 andT2 be two elements ofΓ satisfying the above two condi-
tions and the additional condition

T2 , SiT1 for i = 1, 2, . . . , n− 1.

We choose a pointz ∈ FT1 ∩U∈ and setS = T2T−l
1 so thatS < z>∈

FT2. Let z′ be a point inU∈ ∩ FT2. Then|z′ − z∗| <∈ and |z′ − zS| <∈.
This shows that

|z∗ − zS| ≤ |z∗ − z′| + |z′ − zS| ≤ 2 ∈ .

But sincez belongs toU∈, |z− z∗| <∈; thereforez chosen above is30

a required point. Let∈= 1
n
, z = zn andS = Sn. Then obviously the

sequences{zn} and {Sn < zn >} converge toz∗ asn → ∞. Moreover,
by choice, the elements of the sequence{Sn} are pairwise distinct. This
completely proves our assertion thatΓ is a Grenzkreis group of the first
kind.

We mention only the validity of the converse fo the above state-
ment, namely: a Grenzkreis group of the first kind has a normalfun-
damental domainF with finite area. This assertion amounts essentially
to the statement thatF is bounded by a finite number of line segments
which lie on hyperbolic straight lines. This was proved by M.Heins, W.
Fenchel and J. Nielsen (jointly), L. Greenberg, A. Marden (cf. the arti-
cle of L. Greenberg in “Discrete Groups and Automorphic Functions”,
edited by W.J. Harvey, Academic Press 1977, and the cited literature).

Following Rankin [6], we call a discrete group with a normal fun-
damental domain of finite area ahorocyclic group. The boundary of a
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normal fundamental domain for a discrete group can be described by
means of the so-calledisometric circles of the groupdiscussed by Ford
[1]. �

4 Riemann surfaces

LetF be a closed normal fundamental domain for a horocyclic groupΓ.
Let ζ be the centre ofF. By joining ζ with the vertices ofF, we obtain a31

decomposition ofF into an even number of triangles. If we identify the
equivalent edges ofF, we get a closed orientable polyhedronR. Let p
denote the topological genus ofR. If e, k andd denote respectively the
number of vertices, the number of edges and the number of triangles of
R, then the Euler-Poincare characteristic formula states that

e− k + d = 2− 2p.

Let g1, g2, . . . gσ be the different classes of parabolic cusps andn1,

n2, . . . , ne1 be the classes of the proper cusps ofF. Let zi1, zi2, . . . , zir i be
all the vertices ofF in the classni andω(1)

i , ω
(2)
i , . . . , ω

(r i)
i be the angles

of F at the verticeszi j , j = 1, 2, . . . , r i . Then

ω
(1)
i + ω

(2)
i + · · · + ω

(r i )
i = 2π/ℓi (i = 1, 2, . . . e1)

for some natural numberℓi. We have already proved thatzi j for j =
1, 2, . . . , r i are fixed points of elliptic transformations in caseℓi > 1 and
the group of transformations which leavezi j fixed is of orderℓi. Since,
for a fixed i, the two pointszi j and zi j ′ for j , j′ are equivalent, the
groups leavingzi j andzi j ′ fixed are conjugate subgroups ofΓ. Let e0

be the number of classes of proper cusps ofF for which ℓi > 1. We so
choose our notation that

ℓi > 1 for i = 1, 2, . . . , e0.

It is obvious that the sum of the angles of all the triangles ofR is
given by32

2π +
e1∑

i=1

{ω(1)
i + ω

(2)
i + · · · + ω

(r i )
i } = πd − I(F).
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and consequently

1+
e1∑

i=1

1/ℓi =
1
2

d − 1
2π
I(F).

Obviously, we havee= σ+e1+1. Since each edge belongs exactly

to two triangles, we have 3d = 2k. As a result,σ + e1 + 2p =
1
2

d + 1

and therefore

σ + e1 + 2p = 2+
e1∑

i=1

1/ℓi +
1
2π
I(F);

i.e.
1
2π
I(F) = 2p− 2+ σ + e1 −

e1∑

i=1

1/ℓi

= 2p− 2+ σ +
e0∑

i=1

(1− 1/ℓi), (1)

sinceℓi = 1 for e0 < i ≤ e1.
It can be shown easily that the right hand side of equation (1)has a

positive minimum equal to 1/42. This minimum is attained only for one
set of values, namely,p = 0,σ = 0, e0 = 3, ℓ1 = 2, ℓ2 = 3 andℓ3 = 7. It
can be proved that there exists a group for which a fundamental domain
has areaπ/21. (For the proof, see [2], page 621). Thus, in general,

I(F) ≥ π/21,

whereF is a fundamental domain for a horocyclic group. Forσ > 0, the
right hand side of (1) has the minimum 1/6 and therefore, in this case,
I(F) ≥ π/3. This minimum is again attained for only one set of values
given byp = 0,σ = 1, e0 = 2, ℓ1 = 2 andℓ2 = 3. We shall see later that33

this set of values is realised for ‘the modular group’.
We now prove that the area of a normal fundamental domain for a

horocyclic group does not depend on the choice of its centreζ. Assume
thatg is a fundamental domain forΓ bounded by only a finite number of
segments of hyperbolic straight lines. Then we conclude that

z ∈ F =⇒ zA ∈ g for someA ∈ Γ =⇒ z∈ ga−1 ∩ F
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or ⋃

±A∈Γ
(gA−1 ∩ F) = F.

The setsgA−1 ∩ F andgB−1 ∩ F intersect on their common boundary
for B , ±A. For, z ∈ (gA−1 ∩ F) ∩ (gB−1 ∩ F) implies thatzA andzB

belong to the boundary ofG i.e. z is a boundary point ofgA−1 andgB−1

and therefore of the setsgA−1 ∩ F andgB−1 ∩ F. Since the setsgA−1 ∩ F
for A ∈ Γ are measurable and the intersection of two such distinct sets
is a set of measure zero, we have

I(F) =
∑

±A∈Γ
I(gA−1 ∩ F) =

∑

±A∈Γ
I(G ∩ FA) = I(G)

and our assertion is completely proved.
It can be shown that the polyhedronR is topologically equivalent to

the space obtained by adding to the quotient-spaceH/Γ the equivalence
classes of parabolic cusps which are sufficient to compactify the space
g/Γ, provided the neighbourhoods of the cusps are defined in a suitable
way.

In the following, we shall speak ofH = H∪ {all parabolic cusps of34

Γ} as a covering surface ofR. Letg ∈ R; we say thatg is the trace point
of τ ∈ g if τ belongs toH.

Definition . An equivalence classg ∈ R of parabolic cusps is called a
logarithmic branch point.

Thus the number of logarithmic branch points ofR is σ.

Definition . Let g ∈ R be the trace point ofτ0 ∈ H. Then, for−E ∈
Γ, Γ0 = Γ0|{±E} whereΓ0 = {S|S < τ0 >= τ0,S ∈ Γ}, is a cyclic group
of order ℓ uniquely determined byg. We shall callg a branch point of
R of orderℓ − 1 or a pointτ0 ∈ g a point of ramification indexℓ − 1 if
ℓ > 1. If ℓ = 1, we shall callg a reqular point ofR.

We have already observed that there exist only finitely many branch
points of R. Therefore, given a branch pointg of R, there exists a
neighbourhood ofg which does not contain any other branch point of
R.
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We shall now introduce somelocal uniformising parametersor, as
we shall usually say,local coordinateson R which define an analytic
structure onR for which it is a Riemann surface. We shall callR the
Riemann surface associated to the groupΓ. A local coordinate at a
point g0 of R is a functiont(g) such that

1) t(g) maps topologically an open neighbourhoodU0 of g0 onto an
open neighbourhood of 0 in the complext-plane,

2) for another pointG of U0, t − t(G) is a local coordinate atG, and

3) if s = s(g) is another local coordinate atg0, then in a neighbour- 35

hood ofg0, the functionscan be expressed as a convergent power
series

s= c1t + c2t2 + . . . with c1 , 0

and conversely, every such convergent power series defines alocal
coordinate atg0.

Let g(g) be a function defined in a neighbourhood ofg0 such that

g(g) =
∞∑

r=k

cr t
r , ck , 0,

wheret = t(g) is a local coordinate atg0. Theng(g) is said to be of
degree kat g0. It can be verified thatk does not depend upon the choice
of a local coordinate atg0. If k ≥ 0, theng(g) is said to beregular atg0.
We call g0 a zero of order kof g(g) whenk > 0 and apole of order|k|
whenk < 0.

In what follows, by a domain we shall always understand an open
connected set.

Definition . LetG∗ be a domain inH. A function f(τ) defined inG∗ is
said to be an automorphic function with respect to a horocyclic group
Γ, if

f (τS) = f (τ) for S ∈ Γ, wheneverτ andτS are inG∗.
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NowG = {g|g ∈ R, g is the trace point of someτ in G∗} is a domain
in R and the functiong(g) defined byg(g) = f (τ), whereg is the trace
point of τ, is well-defined inG. Conversely, letG be a domain inR, 36

G∗ = {τ|τ ∈ H, the trace point ofτ belongs toG} andG∗0 a connected
component ofG∗. If g(g) is a function defined inG, then the function
f (τ) defined byf (τ) = g(g), whereg is the trace point ofτ, is an auto-
morphic function defined inG∗0 with respect toΓ.

We now describe a suitable system of local coordinates at various
points ofR.

1. Let g0 ∈ R be a branch point of orderℓ − 1. Letτ0 be a point in
H with the trace pointg0. Then the subgroupΓ0 ⊂ Γ(= Γ modulo
{±E}, if −E ∈ Γ) consisting of those transformations ofΓ which
leaveτ0 fixed is a cyclic group of orderℓ. Let L be a generator
of Γ0, which we can take to be a rotation through an angle 2π/ℓ.
Defining z by z = (τ − τ0)/(τ − τ̄0), the transformationτ → τL

corresponds to the mappingz → e2πi/ℓz. Actually, we have, for
L =

(
a b
c d

)
,

L < τ > −τ0

L < τ > −τ0
=

L < τ > −L < τ0 >

L < τ > −L < τ0 >
=

cτ0 + d
cτ0 + d

·τ − τ0

τ − τ0
= µ

τ − τ0

τ − τ0
,

where|µ| = 1. If U = {τ ∈ H||z| <∈} is an open disc with centre
τ0 and with∈ small enough to ensure that the equivalence ofτ1

andτ2 in U underΓ implies already their equivalence underΓ0,
then, only forτ = τ0, a pointτ in U is uniquely determined by its
trace point . Forτ , τ0 in U, there exist exactlyℓ different points
τ1, τ2, . . . , τℓ with the same trace pointg asτ. But precisely one
of theseℓ points belongs toU0 = {τ ∈ U ||z| <∈, 0 ≤ argz< 2π/ℓ}.
This τ → g is a 1− 1 mapping ofU0 onto a neighbourhood of
g0 in R. Moreover,z→ t = zℓ is a 1-1 mapping ofU0 onto the
open disc{t||t| <∈ℓ}. Finally, g → τ → t is a 1-1 mapping, via37

U0, of a neigbourhood ofg0 on R onto a neighbourhood of 0 in
the complex plane. Let us assume that there exists an analytic
structure onR such thatt is regular atg0 with respect to this
analytic structure. Then

t = c0 + c1s+ c2s2 + · · · ,
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wheres = s(g) is a local coordinate atg0. But t(g0) = s(g0) = 0
ands→ t is a 1-1 map, thereforec0 = 0 andc1 , 0. This shows
that t is necessarily a local coordinate atg0.

2. Let g0 be a logarithmic branch point ofR, τ0 a parabolic cusp
with trace pointg0 andA a transformation ofH onto itself which
mapsτ0 to∞. Thus the groupAΓA−1 has∞ as a parabolic cusp.
The subgroupΓ0 ⊂ Γ/{±E}, consisting of those transformations
leaving τ0 fixed is an infinite cyclic group generated by some
transformation, sayP. Settingτ∗ = A < τ >, the transforma-
tion τ → τP corresponds to a translationτ∗ → τ∗ + µ, where we
can assume thatµ > 0. We introduceU0 = {τ|τ∗ = x∗ + iy∗, 0 ≤
x∗ < µ, y∗ > m} and conclude, as in the preceding case, that, for
large enoughm, the mappingg → τ → t = e2πiA<τ>/µ(τ ∈ U0)
for g , g0, together withg0 → τ0 → 0 gives a 1-1 mapping of
a neighbourhood ofg0 onto a neighbourhood of 0 in the complex
plane. The assumption aboutt being regular atg0 with respect to a
given analytic structure onR implies again thatt(g) is necessarily
a local coordinate atg0.

It can be checked that the local coordinate system onR that we 38

have defined in (i) and (ii) above has all the properties required of
a local coordinate system onR.

Let f (g) be a meromorphic function defined in a neighbourhood
of g0 and of degreek. Then f (g) has a power-series expansion

f (g) =
∞∑

n=k

cntn with ck , 0,

wheret = ((τ − τ0)/(τ − τ0))ℓ or e2πiA<τ>/µ according asg0 is a
branch point of orderℓ − 1 or a logarithmic branch point.

5 Meromorphic functions and Differentials

In this section,Γ will denote a horocyclic group andR the Riemann
surface associated toΓ.
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Definition . A function f(g) defined in a domainG of R is said to be a
meromorphic function onG if, for every pointg0 ∈ G, the function has
a power series expansion, in terms of a local coordinate atg0, with only
a finite number of negative exponents.

If f (g) is defined on the whole ofR, then it will have at most a
finite number of poles becauseR is compact; otherwise,f (g) can have
an infinite number of poles in the domain of its definition. Theset of
all meromorphic functions onR forms a field. A meromorphic function
f (g) onR gives rise to an automorphic functionf (τ) onH for the group39

Γ with f meromorphic onH and having a Fourier expansion

f (τ) =
∞∑

n−k

cne2π in A<τ>/µ, ck , 0.

at a parabolic cuspτ0 of Γ, whereA denotes a transformation ofH on
to itself mapping the cuspτ0 to∞. Conversely, it is obvious that every
such automorphic function onH defines a meromorphic function onR.
In the following, we shall denote byvg( f ) the degree of the meromorphic
function f (g) at the pointg belonging to the domain of definition off .
We shall call the product

∏
g

gvg( f ) the divisor of fand the sum
∑
g

vg( f )

the degree of f onR and denote them by (f ) and v( f ) respectively.
Since f (g) can have only a finite number of zeros and poles onR, the
product (f ) is a finite product and the sumv( f ) is finite.

Definition . Let G be a domain inR. A meromorphic differential or
simply a differentialω onG is an assignment, for every local coordinate
t in G, of a meromorphic functionωt defined in the domain of definition
of t such that the following condition is satisfied:

It t ands are two local coordinates defined inG with Ut andUs as
their domain of definition, then

ωs
ds
dt
= ωt in Ut ∩ Us.

Two differentialsω andω∗ onG are equal, wheneverωt = ω
∗
t for ev-

ery local coordinatet defined inG. Using the condition in the definition
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of a differential, it can be shown, by means of the principle of analytic
continuation, that two differentialsω andω∗ are equal, ifωt = ω

∗
t holds

for some one local coordinatet. If f (g) is a meromorphic function de-40

fined onG, then it defines onG a meromorphic differentiald f for which

(d f)t =
d f
dt

. If ω is a differential andf (g) a meromorphic function onG,

then by fω we shall understand the differential which assigns the mero-
morphic functionfωt to the local variablet defined inG. It follows that
if ω is a differential defined inG, thenω = ωtdt; for,

(ωtdt)t = ωt
dt
dt
= ωt.

Thus if t is a local coordinate at a pointg0 of G, then

ω = ωtdt =


∞∑

n=k

cntn
dt.

We define thedegree ofω atg0 to be the leastk for whichck , 0 and
denote it byvg0(ω). It can be seen easily that the degree of a differential
at a point does not depend upon the choice of the local coordinate at the
point. We say thatg0 is azero or a pole ofω, if it is a zero or a pole of
ωt. If ω is a meromorphic differential onR, we define thedivisor (ω)
and degree v(ω) in the same way as we defined the divisor and degree of
a meromorphic function onR i.e. (ω) =

∏
g

gvg(ω) andv(ω) =
∑
g

vg(ω).

We shall call the coefficientc−1(c−1 = 0 if k ≥ 0) in the expansion ofω
at g0 mentioned above as theresidueof ω at g0 and write

resg0ω = c−1.

The independence of the residue ofω at g0 from the choice oft
follows from the integral representation for the residue given by 41

c−1 =
1

2πi

∮
ωt dt,

where the integral is over a closed curve winding round 0 exactly once
and contained in the domain of definition oft.

Letω be a differential onR. We say that
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1) ω is of the first kind, if vg(ω) ≥ 0 for everyg ∈ R,

2) ω is of the second kind, if ω has at least one pole and the residues
at the various poles vanish, and

3) ω is of the third kind, if ω is not any of the above two kinds i.e.ω
has at least one pole with a non-zero residue.

Let g0 be the trace point ofτ0 ∈ H and let further,g0 be a regular
point. Thenτ − τ0 and S < τ > −S < τ0 > for S ∈ Γ are local
coordinates atg0. If ω is a differential onR, then

ω(τ−τ0) = ω(S<τ>−S<τ0>)(cτ + d)−2, whereS =
(

a b
c d

)
.

For, by definition ofω, we have

ω(τ−τ0) = ω(S<τ>−S<τ0>)
d(S < τ > −S < τ0 >)

d(τ − τ0)

= ω(S<τ>−S<τ0>)(cτ + d)−2.

Moreover, if τ1 is another point such that the trace pointg1 of τ1

lies ‘sufficiently near’g0, theng1 is a regular point andτ − τ1 is a local
coordinate atg1. Therefore, we have42

ω(τ−τ0) = ωτ−τ1

d(τ − τ1)
dt

dt = ω(τ−τ1)

showing thatω(τ−τ0) is independent of the choice ofτ0 in a neighbour-
hood ofτ0. But if τ1 is not ‘sufficiently near’τ0, then we can join them
by a curve which does not pass through the parabolic and elliptic fixed
points ofΓ; it can then be seen easily thatω(τ−τ1) can be obtained by ana-
lytic continuation ofω(τ−τ0) along the curve joiningτ0 andτ1 mentioned
above. Hence we obtain a uniquely determined meromorphic function
f (τ) given by f (τ) = ω(τ−τ0), which is defined onH but for a setD con-
sisting of all elliption fixed points ofΓ. The definition off (τ) does not
depend upon the choice ofτ0, as has already been proved above. Since

ω(S<τ>−S<τ0>)(cτ + d)−2 = ω(τ−τ0) for S ∈ Γ,
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we obtain that
f (S < τ >)(cτ + d)−2 = f (τ). (1)

By vg( f ) we shall denote the degree off (τ) at the pointg. Obviously

vg( f ) = vg(ωt) = vg(ω)(g regular).

We shall now discuss the behaviour off (τ) at the points ofD. Since
the branch points ofR do not have a limit point,D is a discrete set
and thereforef (τ) has isolated singularities at the points ofD. We shall
show that f (τ) can have at most a pole at any point ofD. Let g0 be a
branch point ofR, of orderℓ−1 > 0, which is the trace point ofτ0 ∈ H.
Thent = ((τ − τ0)/(τ − τ0))ℓ is a local coordinate atg0. Let τ1 ∈ H be 43

such that its trace pointg1 is a regular point and lies in the domain of
definition oft. By the definition ofω, we have

ωtdt = ω(τ−τ1)
d(τ − τ1)

dt
dt = ω(τ−τ1)

dτ
dt

dt

= f (τ)
dτ
dt

dt =


∞∑

n=k

cntn
 dt.

with ck , 0 if vg0(ω) = k. But
dt
dτ
= 2iℓy0t1−1/ℓ(τ−τ0)−2(τ0 = x0+iy+0);

therefore

(τ − τ0)2 f (τ) = 2iℓy0

∞∑

n=k

cntn+1−1/ℓ, ck , 0 (2)

= 2iℓy0

∞∑

n=k

cn

(
τ − τ0

τ − τ0

)ℓ(n+1)−1

This shows thatf (τ) is meromorphic at the pointτ0 and our assertion
is established. We define thedegreeof f (τ) at the pointg0 to be the least
exponent which actually appears in thet-power series (2). Thus we see
immediately that

vg0( f ) = vg0(ω) + 1− 1/ℓ(g0 elliptic).
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Let g0 be a logarithmic branch point ofR andτ0 a point in the class
of g0. We have seen already thatt = e2πiA<τ>/µ, whereA =

( a0 a3
a1 a2

)
with

|A| = 1 is a transformation ofH onto itself mappingτ0 to∞ andµ is a
real number> 0, is a local coordinate atg0. Let τ1 ∈ H be such that the
trace pointg1 of τ1 is a regular point lying in the domain of definition of
t. Then, as in the preceding case, we get

ωtdt = ω(τ−τ1)
dτ
dt

dt = f (τ)
dτ
dt

dt =


∞∑

n=k

cntn
dt

with ck , 0 if vg0(ω) = k. But
dt
dτ
=

2πi
µ

(a1τ + a2)−2t; therefore we44

obtain that

(a1τ + a2)2 f (τ) =
2τi
µ

∞∑

n=k

cntn+1. (1)

We define thedegreeof f (τ) at g0 to be the least exponent which
actually appears in thet-power series (3) and obtain

vg0( f ) = vg0(ω) + 1(g0 parabolic).

It can be verified that the degree off (τ) at g0 does not depend upon the
choice ofτ0 in the class ofg0.

The above discussion shows that given a meromorphic differential
ω onR we can associate with it a meromorphic functionf (τ) onH with
the following properties:

1) f (S < τ >)(cτ + d)−2 = f (τ) for S =
(

a b
c d

)
∈ Γ, and

2) (a1τ + a2)2 f (τ) =
∑∞

n=k cne2πinA<τ>/µ at any parabolic cusp ofΓ,
mapped to∞ by A =

( a0 a3
a1 a2

) ∈ Ω.

We shall call such a meromorphic function ofH a meromorphic au-
tomorphic form of weight 2 forΓ. Conversely, it is obvious that given
on automorphic form of weight 2, there exists a differential onR of
which the associated meromorphic function onH is the given automor-
phic form. Later on, we shall speak of the series describing the be-
haviour of f (τ) at a parabolic cusp ofΓ, as the Fourier expansion of
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f (τ) at this cusp. We shall callf (τ) an integral automorphic formor45

simply anautomorphic formof weight 2 forΓ, if f (τ) is regular inH
and further, if no term with a negative exponent occurs in theFourier
expansions off (τ) at the parabolic cusps ofΓ. If ω is a differential
of the first kind onR, then the associated functionf (τ) on H has the
following two characteristic properties:

1) f (τ) is an integral automorphic form of weight 2 forΓ and

2) the constant term in the Fourier expansions off (τ) at the parabolic
cusps ofΓ, vanishes.

We call such an automorphic form acusp form a weight 2 forΓ.
Conversely, it is easy to verify that iff (τ) is a cusp form of weight 2,
then the associated differential onR is a differential of the first kind.

Let ( f ) =
∏
g∈R
gvg( f ) denote the divisor of a meromorphic automor-

phic form f (τ) of weight 2 forΓ. Then we have proved above that

( f ) = (ω)
σ∏

r=1

g1

e0∏

s=1

n
1−1/ℓs
s (4)

whereω is the associated differential onR; g1, g2, . . . , gσ are the loga-
rithmic branch points ofR andn1, n2, . . . , ne0 are the branch points of
finite positive order given byℓ1−1, ℓ2−1, . . . , ℓe0 −1 respectively. Sim-
ilarly, if

∑
g vg( f ) denotes the degreev( f ) of f (τ), then

v( f ) = v(ω) + σ +
e0∑

j=1

(1− 1/ℓ j ) (5)

The complete construction of all meromorphic functions anddiffer-
entials on a compact Riemann surface has been given by H. Petersson
in a series of papers with the help of the so-called ‘Poincareseries’.
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The Modular Group and its
Subgroups

1 The Modular Group
47

In § 4 of chapter 1, we observed that ifΓ is a hyperbolic horocyclic group
of motions of the hyperbolic plane, thenG is an unbranched covering
surface of the Riemann surfaceR associated toΓ, sinceΓ does not
have any elliptic or parabolic fixed points. Moreover, ifF is a normal
fundamental domain inG for Γ, then, by (1) of chapter 1,§ 4,

0 <
1
2π
I(F) = 2p− 2,

where p is the genus ofR. This shows thatp > 1 and therefore, a
closed Riemann surface of genus 1 cannot haveG as an unbranched
covering surface. Thus horocyclic groups whose associatedRiemann
surface is of genusp ≤ 1, must have parabolic or elliptic fixed points.
On the one hand, the study of such groups is of importance fromthe
point of view of applications in the Theory of Numbers; on theother
hand, it is naturally preferable to have an unbranched covering surface
for the Riemann surface when the study of the Riemann surfaceis of
foremost importance. The latter object can be achieved by means of the
uniformisation theory for Riemann surfaces. A principal result of this
theory states that all closed Riemann surfaces of genusp > 1 are asso-
ciated with hyperbolic horocyclic groups of motions of the hyperbolic
plane and in the same way, all closed Riemann surfaces of genus 1 are

43
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associated with the fixed pointfree discrete groups of Euclidean motions
of the whole complexz-plane with compact fundamental domain. In48

the following, we shall examine the latter case more closely. Let B be
a discrete group of motions of the whole complexz-plane generated by
two real-independent translationsz→ z+ ω andz→ z+ ω′. LetM be
the module generated byω andω′ over the ring of rational integers. It
is obvious thatM is isomorphic toB. We can assume, without loss of

generality, thatτ =
ω′

ω
has positive imaginary part, so thatτ belongs to

G . A fundamental domain forB is given by

F = {z|z= rω + r′ω′ with 0 ≤ r, r′ ≤ 1}.

If we identify the equivalent edges ofF, we obtain an orientable
polyhedronR. Let g0 ∈ R be the trace-point ofz0; then the function
t = t(g) = z − z0 is introduced as a local coordinate atg0. Provided
with the analytic structure defined by this local coordinatesystem,R
becomes a Riemann surface of genus 1, with the wholez-plane as an
unbranched covering surface. We shall call the complex numbersω and
ω′ periodscorresponding to the Riemann surfaceR andM theperiod
moduleassociated toR. We define two Riemann surfacesR andR∗ of
genusp (not necessarily 1) to beconformally equivalentif

1) there exists a topological mappingσ of R ontoR∗ and

2) if t = t(g) is a local coordinate at a pointg0 and t∗ = t∗(g∗) is a
local coordinate at the pointg∗0 = σ(g0) of R∗, then a neighbour-
hood of 0 in thet-plane is mapped conformally onto a neighbour-
hood of 0 in thet∗-plane by

t = t(g)→ g→ σ(g) = g∗ → t∗(t∗) = t∗,

i.e. in a neighbourhood of 0, we have

t∗ = c1t + c2t2 + . . . with cl , 0.

49

For the conformal equivalence of Riemann surfaces of genus 1, we
prove the following
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Theorem 6. Two Riemann surfacesR andR∗ of genus 1 withM and
M∗ as their respective period modules are conformally equivalent if and
only if there exists a complex number k, 0 such thatM∗ = kM =
{kα|α ∈ M}.

Proof. If M∗ = kM with a k , 0, thenz modM → z∗ modM∗

uniquely defined byz → z∗ = kz is a conformal mapping ofR onto
R∗. Let R andR∗ be conformally equivalent; then we shall show that
M∗ = kM for some complex numberk , 0. Letϕ (respectivelyϕ∗) be
the trace mapping from the complexz-plane toR (respectivelyR∗) i.e.

ϕ(z) = g for z ∈ g in R, and

ϕ∗(z∗) = g∗ for z∗ ∈ g∗ in R
∗.

�

Since the trace mappingϕ is locally a topological mapping, it fol-
lows that an arcW in thez-plane is uniquely fixed by its starting point
and its image inR by ϕ and to every arcW0 in R, there corresponds
an arcW in the z-plane such thatϕ(W) = W0, where the initial point
of W is a given point with the initial point ofW0 as its trace point. Let
g0 andg∗0 = σ(g0), whereσ denotes the conformal mapping ofR onto
R∗, be corresponding points ofR andR∗. We choose two pointsz0 and
z∗0 in the z-plane such thatz0 ∈ g0 andz∗0 ∈ g∗0. Let z be any arbitrary
point of thez-plane andW an arc joiningz0 andz. Then the arcσϕ(W)
in R∗, havingg∗0 as its initial point, uniquely determines an arcW∗ in 50

thez-plane with the initial pointz∗0. The end pointz∗ of W∗ is uniquely
determined because an arcW is closed in thez-plane if and only ifϕ(W)
is homotopic to zero inR and the latter property is preserved by a topo-
logical mapping. We define a 1− 1 mappingψ from thez-plane onto
itself by z∗ = ψ(z). Sinceψ = (ϕ∗)−1 · σ · ϕ locally, ψ is a conformal
mapping of thez-plane onto itself. Therefore necessarily we have

z∗ = kz+c for some complex numbersk andc with k , 0. Butϕ(W)
is closed or open if and only ifσϕ(W) is closed or open; therefore

z− z0 ≡ 0(modM)⇔ z∗ − z∗0 ≡ 0(modM∗)

with z∗ − z∗0 = k(z− z0). This proves our theorem.
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From the above theorem, it follows that if{ω∗, ω∗′} is a basis ofM∗,
then the conformal equivalence ofR andR∗ implies that{ω∗/k, ω∗′/k}
is a basis ofM i.e. there exists an integral matrixS =

(
a b
c d

)
with

determinant|S| = ±1 such thatω∗
′
/k = aω′+bω,ω∗/k = cω′+dωwhere

{ω,ω′} is a basis ofM. This shows that ifτ∗ = ω∗
′
/ω andτ = ω′/ω,

then

τ∗ = S < τ >=
aτ + b
cτ + d

.

We can assume without loss of generality thatτ as well asτ∗ has
positive imaginary part. Therefore|S| has necessarily to be equal to
1. Consider the differentiald(z/ω) on R, whereω is as above. It is a
differential of the first kind and its integral along any closed curve onR51

has a value which is a linear combination of 1 andτ. We shall callτ a
normed periodof R. So we have proved the following

Theorem 7. Two Riemann surfacesR and R∗ of genus 1 are confor-
mally equivalent if and only if their normed periods are equivalent under
the group

Γ = {a b
c d
|ad− bc= 1;a, b, c, d integral}.

We shall call the groupΓ defined in theorem 7the modular group
and, unless otherwise stated, denote it always byΓ. It is obvious that the
groupΓ acts discontinuously onG . The above discussion shows that
to every point of the quotient spaceG /Γ corresponds a class of confor-
mally equivalent Riemann surfaces of genus 1 and conversely, to every
such class is associated uniquely a point of the spaceG /Γ represented
by a normed period of some element of the class.

In the sequel, we shall adhere to the following notation:

U =

(
1 1
0 1

)
,T =

(
0 1
−1 0

)
andV = U−1T =

(
1 1
−1 0

)
.

In order to find a normal fundamental domainF for Γ, we proceed
as follows. A simple consideration shows thatiy0(y0 > 1) is not a fixed
point for Γ. The perpendicular bisectors of the lines joining the points
U < iy0 >= iy0 + 1,U−1 < iy0 >= iy0 − 1 andT < iy0 >= i/y0 to
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the pointiy0 are given by the equationsx =
1
2
, x = −1

2
and x2 + y2 =

1 respectively, whereτ = x + iy. Therefore the construction ofF in
chapter 1,§ 3, shows thatFmust be contained in the hyperbolic triangle

F0 = {τ
∣∣∣|x| ≤ 1

2
, x2 + y2 ≥ 1} bounded by the hyperbolic linesx = ±1

2
and x2 + y2 = 1. ObviouslyI(F0) = π/3. Moreover,I(F) ≥ π/3, 52

because the groupΓ contains a parabolic transformation and the area of
a fundamental domain of a discrete group of motions of the hyperbolic
plane, which contains parabolic transformations, is, as proved in ch. 1,
§ 4, at least equal toπ/3. SinceF ⊂ F0, we haveI(F) = I(F0) = π/3.
But bothF andF0 are closed sets, thereforeF = F0, proving that a
normal fundamental domain of the groupΓ is given by

F = {τ|τ = x+ iy, |x| ≤ 1
2
, x2 + y2 ≥ 1, y > 0} (1)

We shall show thatΓ cannot be a proper subgroup of a discrete
group of motions of the hyperbolic planei.e. Γ is a maximal discrete
subgroup ofΩ. If possible, letΓ be properly contained in a discrete
groupΓ∗. We choose the centreiy0 of F, the normal fundamental do-
main ofΓ constructed above, in such a way thatiy0 is not a fixed point
for Γ∗ also. Then the normal fundamental domainF∗ of Γ∗ with the cen-
tre iy0 is contained inF. ButF∗ has a parabolic cusp becauseΓ∗ contains
Γ and therefore at least one parabolic transformation; thusI(F∗) ≥ π/3
and as in the preceding case,F = F∗. Since the boundary substitutions
of F andF∗ are the same, the groupsΓ andΓ∗ are generated by the
same set of transformations in view of theorem 5. Hence we must have
Γ = Γ∗.

The normal fundamental domainF of Γ defined in (1) has 3 in-
equivalent fixed points, namely, the pointsi, ρ = e2πi/3 and∞. The two
fixed pointsi andρ are elliptic fixed points, because the subgroups of
Γ which leave them fixed are generated respectively byT andV. Since
T2 = V3 = −E, these points correspond to the branch points of order 1
and 2 respectively on the Riemann surface associated toΓ or, in other 53

words, i andρ are the elliptic fixed points of ramification index 1 and
2 respectively. From equation (1) of chapter 1,§ 4, we see that the
associated Riemann surface of the groupΓ is of genus zero.
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Remark . Any horocyclic groupΓ with a normal fundamental domain
F of volumeI(F) = π/3 and withσ > 0 is conjugate to the modular
group.

Proof. In the notation of ch. 1,§ 4 we haveσ = 1, e0 = 2, ℓ1 = 2, ℓ2 = 3.
Without loss of generality, we may assume that the fixed points ω(1)

1

andω(1)
2 coincide withi andρ = e2πi/3 respectively (replacingΓ by a

conjugate group, if necessary). ThenT,V ∈ Γ. But T andV generate
the modular group which is a maximal discrete group, as we have seen.
ThusΓ is identical with the modular group. �

Figure 2.12:

Theorem 8. The transformations T=
(

0 1
−1 0

)
and W= −V = −U−1T =54 (

−1 −1
1 0

)
generate the modular groupΓ. They satisfy the relations

T4 =W3 = E, WT2 = T2W

and these are the defining relations for the group.

Proof. SinceU andT are the boundary substitutions of the normal fun-
damental domainF for Γ given in (1), the transformationsU andT and
thereforeW = −V = −U−1T andT generateΓ. �
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It can be easily verified that the generators satisfy the given relations.
Let R = E be an arbitrary relation inΓ. Without loss of generality, we
can assume that

R≡ Tv1Wu1Tv2Wu2Tv2 · · ·Wun = E.

With the help of the given relations and cyclic permutationsof the
factors, we transform this relation into a reduced relationof the type

Mn = Te1We1Te2We2 · · ·TenWen = T2e0

with e0 = 0 or 1 andei = ±1(i = 1, 2, . . . , n). We shall show that
necessarilyn = 0 i.e. any given relation is a consequence of the relations
mentioned in the theorem, and this will complete the proof. We prove,
by induction onn, that if Mn =

(
an bn
cn dn

)
, thenan, bn, cn, dn ≥ 0 for n ≥ 1

and moreoverbn andcn are not simultaneously zero. Whenn = 1,

M1 =

(
1 0
1 1

)
or

(
1 1
0 1

)

according ase1 = 1 or −1. Let us assume that the assertion is true for
Mn. Then 55

Mn+1 = MnT
en+1Wen+1

=

(
an + bn bn

cn + dn dn

)
or

(
an an + bn

cn cn + dn

)

according asen+1 = 1 or −1. This shows that the relationMn = E is
satisfied if and only ifn = 0 and consequentlye0 = 0.

Finally, we shall mention the use of the modular group in the re-
duction theory of positive definite binary quadratic forms.Throughout
our discussion, we shall consider two-rowed real position symmetric
matrices as associated to positive definite binary quadratic forms. Let
A =

( a0 a1
a1 a2

)
be a real symmetric matrix. ThenA is positive (A > 0) if

and only ifa0 > 0 anda0a2 − a2
1 > 0.

Definition . Two positive symmetric matrices A and B are said to be
equivalent if there exists an integral matrix S with|S| = ±1 such that
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B = S AS′ where S′ is the transpose of S . We say that A and B are
properly equivalent if|S| = 1. If A =

( a0 a1
a1 a2

)
> 0, then the polynomial

(1 ξ)A

(
1
ξ

)
= a0 + 2a1ξ + a2ξ

2

has complex conjugate zeros. Let the two zeros be−τ and−τ, such that
τ belongs toG . Then

a0 + 2a1ξ + a2ξ
2 = a2(ξ + τ)(ξ + τ).

We shall say that the pointτ ∈ G obtained in this way is associated
to the matrix A. Obviously56

2a1/a2 = τ + τ = 2x, a0/a2 = ττ = x2 + y2(τ = x+ iy).

If w =
√
|A| > 0, then

w2 = a0a2 − a2
1 = a2

2(a0/a2 − a2
1/a

2
2)

= a2
2(x2 + y2 − x2) = a2

2y2.

This shows that the matrix A has the representation

A =
w
y

(
x2 + y2 x

x 1

)
.

If B =
(

b0 b1
b1 b2

)
is another positive symmetric matrix equivalent to A

i.e. B= S AS′, where S is some integral matrix of determinant±1, then
|B| = |A| and therefore

B =
w
y∗

(
x∗2 + y∗2 x∗

x∗ 1

)

with someτ∗ = x∗ + iy∗ such that−τ∗ and −τ∗ are the zeros of the
polynomial

(1ξ)B

(
1
ξ

)
= b0 + 2b1ξ + b2ξ

2.
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But with
(

a b
c d

)
, we have

(1 ξ)B

(
1
ξ

)
= (1 ξ)S AS′

(
1
ξ

)

= (1 ξ)

(
a b
c d

) (
a0 a1

a1 a2

) (
a c
b d

) (
1
ξ

)

= (a+ cξb+ ξd)

(
a0 a1

a1 a2

) (
a + cξ
b + dξ

)

= (a+ cξ)2a0 + 2a1(b+ dξ)(a+ cξ) + a2(b+ dξ)2

= a2{(a+ cξ)2ττ + (τ + τ)(b+ dξ)(a+ cξ) + (b+ dξ)2}
= a2{(a+ cξ)τ + (b+ dξ)}{(a+ cξ)τ + (b+ dξ)}
= a2{ξ(cτ + d) + (aτ + b)}{ξ(cτ + d) + aτ + b}
= a2|cτ + d|2(ξ + S < τ >)(ξ + S < τ >);

therefore 57

τ∗ = S < τ > for |S| = 1.

τ∗ = S(τ) for |S| = −1.

We shall say that a positive symmetric matrix A is reduced when the
pointτ ∈ G associated to A belongs to the fundamental domainF, of the
modular group given in(1). We have proved that in an equivalence class
of properly equivalent matrices there always exists a reduced matrix and
this matrix is uniquely determined if the associated pointτ belongs to
the interior ofF.

2 Subgroups of the Modular Group

In general, here and in the following, we shall consider those subgroups
Γ∗ of Γ which contain−E and are of finite index inΓ. We shall denote
the index (Γ : Γ∗) of Γ∗ in Γ by µ. Let S1,S2, . . . ,Sµ be a complete
system of representatives of the right cosets ofΓ by Γ∗, so that

Γ =

µ⋃

i=1

Γ∗Si .
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If F is a normal fundamental domain forΓ, we shall show thatF∗58

given by

F∗ =
µ⋃

i=1

FSi

is a fundamental domain forγ∗. Since

⋃

L∈Γ∗
F∗L =

⋃

L∈Γ∗

µ⋃

i=1

FLSi =
⋃

L∈Γ
FL = G ,

F∗ contains atleast one point from each set of equivalent points with
respect toΓ∗. In order to prove thatF∗ is a fundamental domain forΓ∗,
it remains to show that ifτ belongs toF∗∩F∗L for someL ∈ Γ∗, L , ±E,
then τ belongs to the boundary ofF∗. Our assumptionτ ∈ F∗ ∩ F∗L
for someL in Γ∗ implies thatτ is in FSi ∩ FLS j for somei, j with 1 ≤
i, j ≤ µ. If FLS j = Fsh for someh so thatLS j = ±Sh, we obtain j = h
andL = ±E, contradicting our assumption. ThereforeFLS j , FSh for
1 ≤ h ≤ µ. Now it is obvious that the interior points ofFLS j are exterior
points ofF∗; consequently,τ is a boundary point ofF∗ and therefore of
F∗L. HenceF∗ is a fundamental domain for the groupΓ∗. Conversely, if

the setF∗ =
t⋃

i=1
Fsi , whereSi ∈ Γ, is a fundamental domain forΓ∗, then

it can be easily proved thatt = µ and{S1,S2, . . . ,Sµ} is a complete set
of coset representatives ofΓmoduloΓ∗.

It is obvious that the parabolic cusps ofΓ∗ are the same as those of
Γ, namely the rational points on the real axis and∞. Let s1, s2, . . . , sσ
be a complete system of inequivalent parabolic cusps ofΓ∗. There exist59

transformationsAi in Γ such that

A−1
i < ∞ >= si , i = 1, 2, . . . , σ.

Consider the groupAiΓ
∗A−1

i ; it has∞ as a fixed point and therefore
containsUr for some integerr. Let Ni > 0 be so determined thatUNi is
the least positive power ofU belonging to the groupAiΓ

∗A−1
i . Then the

transformations−E andUNi generate the group contained inAiΓ
∗A−1

i
which leaves∞ fixed. The integerNi determined above does not depend
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upon the choice of the cuspsi in the class ofsi. If s′i = L < si > for
L ∈ Γ∗ andB−1

i < ∞ >= s′i for someBi ∈ Γ, then

si = A−1
i < ∞ >= L−1B−1

i < ∞ >=⇒ AiL
−1B−1

i < ∞ >= ∞ =⇒
=⇒ AiL

−1B−1
i = ±Ur for some integralr =⇒

=⇒ AiΓ
∗A−1

i = Ur BiΓ
∗B−1

i U−r =⇒ UNi ∈ BiΓ
∗B−1

i .

This shows that ifUN′i is the least positive power ofU belonging
to BiΓ

∗B−1
i , then N′i ≤ Ni. Similarly we getNi ≤ N′i , which proves

that N′i = Ni. We shall call the integerNi the width of the cusp sector
at the cuspsi . We shall now construct a fundamental domain forΓ∗

which shows a connection betweenµ and the widths of cusp sectors
at the various cusps ofΓ∗. As we have seen above, it is sufficient to
give a coset decomposition ofΓ moduloΓ∗ which indicates the desired

connection. We shall show that
σ⋃

i=1

Ni−1⋃
r=0
Γ∗A−1

i Ur , whereAi ∈ Γ and

Ni > 0 as determined above, is a coset decomposition ofΓ moduloΓ∗.
If S ∈ Γ, then, for somei with 1 ≤ i ≤ µ andL ∈ Γ∗, we have 60

S < ∞ >= L < si >= LA−1
i < ∞ >=⇒ S = ±LA−1

i U t for somet.

Let t = aNi + r with 0 ≤ r < Ni , then

S = ±L(A−1
i UNi Ai)

aA−1
i Ur ∈ Γ∗A−1

i Ur .

Hence we obtain that

Γ =

σ⋃

i=1

Ni−1⋃

r=0

Γ∗A−1
i Ur . (1)

Moreover, ifS is a common element ofΓ∗A−1
i Ur andΓ∗A−1

j Us with
1 ≤ i, j ≤ σ, 0 ≤ s < N j and 0≤ r < Ni, thenS < ∞ > is equivalent to
bothsi andsj with respect toΓ∗. Because of the choice of the cusps, this
is possible only ifi = j, thereforeA−1

i Ur−sAi belongs toΓ∗ showing that
r−s≡ 0(modNi). But 0≤ r, s< Ni ; therefores= r and this completely
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proves that the decomposition ofΓ given in (1) is a coset decomposition
of ΓmoduloΓ∗. Hence

F∗ =
σ⋃

i=1


Ni−1⋃

r=0

FU r


A−1

i

(2)

is a fundamental domain forΓ∗, which we shall use in the sequel. IfF
is the fundamental domain forΓ given by 1 of the previous section, the(

Ni−1⋃
r=0
FU r

)

A−1
i

is a cusp sector at the cuspsi and the width of this sector

is nothing but the ordinary width of
Ni−1⋃
r=0
FU r , namelyNi . In particular,

we obtain that

(Γ : Γ∗) = µ = N1 + N2 + · · · + Nσ. (3)

Obviously, the elliptic fixed points ofΓ∗ are either equivalent toi61

or e = e2πi/3 with respect toΓ; therefore an elliptic fixed point ofΓ∗ is
either of ramification index 1 or 2. Lete1 (respectivelye2) denote the
number of elliptic fixed points ofΓ∗ of ramification index 1 (respectively

2). SinceI(F∗) =
µπ

3
, we see from formula (1) in chapter 1,§ 4 that the

genusp of the Riemann surface associated to the groupΓ∗ is given by

p =
µ

12
+ 1− σ

2
− e1

4
− e2

3
.

Let us further assume thatΓ∗ is a normal subgroup ofΓ. If τ1 and
τ2 are two points ofG equivalent with respect toΓ, then the subgroups
Γ1 andΓ2 of Γ∗ which leave respectivelyτ1 and τ2 fixed, are conju-
gate subgroups inΓ. Let τ2 = A < τ1 > with A ∈ Γ. Then the group
A−1Γ2A ⊂ A−1Γ∗A = Γ∗ leavesτ1 fixed, thereforeA−1Γ2A ⊂ Γ1. Simi-
larly AΓ1A−1 ⊂ Γ2. HenceA−1Γ2A = Γ1 and therefore the fixed points
of Γ∗ which are equivalent with respect toΓ are of the same type. In
particular, all the widths of the cusp sectors at various parabolic cusps
of Γ∗ are equal and we obtain from 3

µ = Nσ, if Ni = N for i = 1, 2, . . . , σ.
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Moreover,e1 = N or 0 (respectivelye2 = N or 0) according asi (re-
spectivelyρ) is a fixed point ofΓ∗ or not. Thus we obtain the following
table the genus of a normal subgroupΓ∗ of Γ:

p Fixed points ofΓ∗

1− µ
2

(
1
N
+ 1

)
i, ρ,∞

1− µ
2

(
1
N
+

1
2

)
ρ,∞

1− µ
2

(
1
N
+

1
3

)
i,∞

1− µ
2

(
1
N
− 1

6

)
∞

(4)

62
In the above table,µ is the index ofΓ∗ in Γ andN is the width of the

cusp sector at any parabolic cusp ofΓ∗.
Let N be a natural number. Then the set of matricesS ∈ Γ with

S =

(
a b
c b

)
≡

(
1 0
0 1

)
(modN)

form a group which we shall denote byΓ[N]. In the following, we shall
determine the indexµ(N) of Γ[N] in Γ. It is obvious that two matricesA
andB of Γ belong to the same coset ofΓmoduloΓ[N] if and only if

AΓ[N] = BΓ[N] ⇐⇒ A−1B ∈ Γ[N] ⇐⇒ A ≡ B(modN).

This means thatµ(N) is the number of matricesS of Γ which are
incongruent moduloN. We assert thatµ(N) is also the number of in-
tegral matricesS =

(
a b
c d

)
which are incongruent moduloN and for

which the determinant|S| = ad − bc ≡ 1(modN). In order to prove
this assertion, we have to show that for any matrixS =

(
a b
c d

)
with 63

ab− bc ≡ 1(modN), there exists a matrixS1 in with S1 ≡ S(modN).
Sincead− bc ≡ 1(modN), it follows that (c, d,N) = 1. Let (d,N) = q;
then (c, q) = 1 and there exists an integerssuch that

s≡ d/p(modN/q) and (s, c) = 1.
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This shows thatd′ = sq = d + rN is such that (d′, c) = 1 and(
a b
c d′

)
≡

(
a b
c d

)
(modN). Let ad′ − bc = 1 + wN. Consider the matrix(

a+xN b+yN
c d′

)
wherex andy are integers so determined thatxd′ − yc =

w; such integersx andy exist, because (c, d′) = 1. It is obvious that(
a+xN b+yN

c d′

)
is a desired matrixS1 ≡ S(modN).

The functionµ(N) is a multiplicative function ofN i.e.

µ(N1 N2) = µ(N1)µ(N2) for (N1,N2) = 1.

For the proof, we observe that a solutionS =
(

a b
c d

)
of the matrix

congruences
S ≡ Si(modNi) (i = 1, 2)

exists and is uniquely determined moduloN1N2, since (N1,N2) = 1.
Further,|Si | ≡ 1(modNi) for i = 1, 2 imply that|S| ≡ 1(modN1N2) and
vice versa. The assertion is now a consequence of

SmodN1N2↔ SimodNi (i = 1, 2).

Thus, in order to evaluateµ(N), it is sufficient to determine its value
of N = pα, wherep is a prime number.

Let µk(pα), for 0 ≤ k ≤ α, denote the number of solutions of

ad− bc≡ 1(modpα), (a, pα) = pk,

which are distinct modulopα.64

1) k = 0. The congruencead≡ 1+bc(mod pα) will have a unique so-
lution for d modulopα whenb andc are given arbitrarily modulo
pα. But a modulopα can be any one of theϕ(pα) prime residue
classes modulopα; thereforeµ0(pα) = p2αϕ(pα).

2) k ≥ 1. Let, first of all, a be fixed. Then the congruence

ad ≡ 1+ bc(mod pα), (a, pα) = pk

will have a solution ford, if and only if l + bc≡ 0(modpk). For a
givenb, the congruencebc≡ −1(modpk) will have a unique solu-
tion for cmod pk and thereforepα−k solutions modulopα. But, for
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b, we can take any of theϕ(pα) prime residue classes modulopα;
therefore, the number of solutions modulopα of bc≡ −1(modpk)
is pα−kϕ(pα). For fixed a, b and c, the congruencead ≡ 1 +
bc(mod pα) determinesd uniquely modulopα−k. This means that,
for fixed a, b andc, the congruencead ≡ 1 + bc(mod pα) haspk

solutionsd modulo pα and therefore, for fixed a, it hasϕ(pα) pα

solutions. Since, for a fixedk, the integer a with (a, pα) = pk has
ϕ(p(α−k)) distinct values modulopα, we see that

µk(p
α) = ϕ(pα−k)ϕ(pα)pα for k ≥ 1.

The cases 1) and 2) above together give

µ(pα) = µ0(pα) +
α∑

k=1

µk(p
α)

= φ(pα)p2α +

α∑

k=1

ϕ(pα−k)ϕ(pα)pα

= pα ϕ (pα){pα + (pα−1 − pα−2) + (pα−2 − pα−3)

+ · · · + p− 1+ 1}
= p3α(1− p−2).

65

Hence we obtain that

µ(N) = N3
∏

p|N
(1− p−2)(p a prime number> 0). (5)

Obviously, the groupΓ[N] does not contain−E for N > 2. Let
Γ∗[N] denote the group generated by−E andΓ[N], so that

Γ∗[N] = {S|S ∈ Γ,S ≡ ±E(modN)}.

The indexµ∗(N) = (Γ : Γ∗[N]) is given by

µ∗(N) =


µ(N) = 6, for N = 2
1
2µ(N) = 1

2N3 ∏
p|N(1− p−2), for N > 2.

(6)
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We callΓ∗[N] the principal congruence subgroup of level N. It is
a normal subgroup ofΓ. Obviously,N is the width of the cusp sector
at any parabolic cusp ofΓ∗[N] and thereforeµ∗(N)/N is the number of
inequivalent parabolic cusps ofΓ∗[N]. Since, forN > 1,Γ∗[N] contains
neitherT =

(
0 1
−1 0

)
n or V =

(
1 1
−1 0

)
, i andρ are not fixed points ofΓ∗[N].

Together with (4), this shows that the genusp(N), of Γ∗[N], is given by

p(N) = 1+
µ∗(N)

2

(
1
6
− 1

N

)

Finally, we obtain by (5),

p(N) =


0, for N = 1, 2, 3, 4, 5.

1+ N2(N−6)
24

∏
q|N

(1− q−2), (7)

whereq runs over positive prime divisors ofN.66

A subgroupΓ∗ of Γ is called acongruence subgroup, if Γ∗ contains
a principal congruence subgroup of levelN for someN ≥ 1. The fol-
lowing remarkable theorem of Fricke-Wohlfahrt enables us to associate
with Γ∗ a uniquely determined principal congruence subgroup.

Theorem 9. Let N1,N2, . . . ,Nσ be the widths of the cusp sectors of a
complete system of inequivalent parabolic cusps of a congruence sub-
group Γ∗ and N the least common multiple of N1,N2, . . . ,Nσ. Then
Γ∗[N] ⊂ Γ∗ if and only ifN divides N.

Proof. Let us assume thatΓ∗[N] ⊂ Γ∗. Let s1, s2, . . . , sσ be a complete
system of inequivalent parabolic cusps ofΓ∗ and letA−1

i < ∞ >= si ,
Ai ∈ Γ for i = 1, 2, . . . , σ. ThenNi is the least natural number with the
property thatUNi belongs toAiΓ

∗A−1
i . ButΓ∗[N] ⊂ Γ∗; therefore

UN ∈ Γ∗[N] = AiΓ
∗[N]A−1

i ⊂ AiΓ
∗A−1

i .

This implies thatNi divides N for i = 1, 2, . . . , σ and thereforeN
dividesN. �

Let N be a natural number divisible byN. In order to prove that
Γ∗[N] ⊂ Γ∗, it is sufficient to prove thatΓ[N] ⊂ Γ∗, since−E ∈ Γ∗ and
Γ∗[N] ⊂ Γ∗[N]. Let S =

(
a b
c d

)
be an arbitrary element ofΓ[N].
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i) For any matrixA in Γ and any integerg, we claim that67

S1 = A−1
(

1 gN
0 1

)
A ∈ Γ∗.

In fact, sinceA−1 < ∞ > is equivalent tosj with respect toΓ∗

for some j with l ≤ j ≤ σ and sinceN j divides N, we see that(
1 gN
0 1

)
∈ AΓ∗A−1, which implies our claim.

ii) By the definition ofΓ∗, there exists a natural numbern such that
Γ∗[n] ⊂ Γ∗. Since (c, d) = 1 and furtherN divides d, we have
(cN, d) = 1. Therefore, we can find an integerg such thatd′ =
d+gcN is coprime ton. But

(
1 gN
0 1

)
∈ Γ∗ in view of (i) with A = E.

It follows that S2 = S
(

1 gN
0 1

)
=

(
a agN+b
c d′

)
∈ Γ∗ ⇐⇒ S ∈ Γ∗.

Hence we may assume, in the sequel, that (d, n) = 1 already.

iii) Consider the matrix

S3 =
(

a3 b3
c3 d3

)
=

(
1 hN
0 1

)
S

(
1 0

gN 1

)
=

(
∗ b+dhN

c+dgN d

)

whereg andh are arbitrary integers. SinceS ∈ Γ[N], we have
b = b1N, c = c1N with integralb1, c1. Now there exist integers
g, h such thatn divides bothc1 + dg andb1 + dh. Thusn divides
both b3 and c3; moreover,d3 = d and so (d3, n) = 1, by (ii).
Applying (i) with A =

(
0 1
−1 0

)
, if follows that

(
1 0
−gN 1

)
and therefore

also
(

1 0
gN 1

)
is inΓ∗. For the matrixS, we could have thus assumed

already, as in (ii) and wedo indeedassumein the sequel thatb ≡
c ≡ 0(modn) and (d, n) = 1.

We now complete the proof of theorem 9, using steps (i)-(iii)above. 68

Applying (i) with A =
(

1 0
1 1

)
shows that

(
1+gN gN
−gN 1−gN

)
∈ Γ∗ for any integer

g. SinceS ∈ Γ[N], we havea ≡ 1(modN) i.e. a = 1+ gN for an integer
g. It follows that

(
a a−1

1−a 2−a

)
∈ Γ∗. Moreover,d ≡ 1(modN) and hence

all the three matrices on the right hand side of

(
a ad−1

1−ad d(2−ad)

)
= S4 =

(
1 0

1−d 1

) (
a a−1

1−a 2−a

) (
1 d−1
0 1

)
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are inΓ∗, implying thatS4 ∈ Γ∗. Now

S S−1
4 =

(
a b
c d

) (
d(2−ad) 1−ad

ad−1 a

)
≡

(
a 0
0 d

) (
d 0
0 a

)
≡ E(modn),

sinceb ≡ c ≡ 0(modn) and consequentlyad ≡ 1(modn). ThusS S−1
4 ∈

Γ∗[n] ⊂ Γ∗ which together withS4 ∈ Γ∗ implies thatS ∈ Γ∗, proving the
theorem.

This theorem showsΓ∗[N] with N as defined above is the maxi-
mal principal congruence subgroup contained inΓ∗. We shall call this
uniquely determined numberN asthe level of the congruence subgroup
Γ∗. With the help of the above theorem, we shall show later that there
are subgroups of finite index inΓ which arenot congruence subgroups.

In what follows, unless otherwise stated,F will denote the normal
fundamental domain ofΓ given by (1) of the previous section. The
congruence subgroupsΓ0[N] and Γ0[N] (N a natural number) defined69

by

Γ0[N] = {S|S =
(

a b
c d

)
∈ Γ, c ≡ 0(modN)}

Γ0[N] = TΓ0[N]T−1

are of some importance. ObviouslyΓ0[N] containsΓ[N] and therefore

(Γ : Γ0[N]) = (Γ : Γ[N])/(Γ0[N] : Γ[N]).

But the index ofΓ[N] in Γ0[N] is equal to the number of integral
quadruplesa, b, c and d incongruent moduloN with ad ≡ 1(modN)
andc ≡ 0(modN); therefore (Γ0N : Γ[N]) = Nϕ(N). Using (5), we
obtain

(Γ : Γ0[N]) =
µ(N)

Nϕ(N)
= N

∏

q|N

(
1+

1
q

)
,

whereq runs over positive prime divisors ofN. It is obvious that the
groupΓ0[N] defined above consists of the matricesS =

(
a b
c d

)
∈ Γ with

b ≡ 0(modN) and further, (Γ : Γ0[N]) = (Γ : Γ0[N]). Since

Ur ∈ Γ0[N] ⇔ r ≡ 0(mod 1),Ur ∈ Γ0[N] ⇔ r ≡ 0(modN),
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the width of the cusp sector at the inequivalent cusps∞ and 0 forΓ0[N]
is 1 and N respectively and forΓ0[N] the respective widths areN and 1.
If N = q is a prime number, then

F∗ =



q−l⋃

j=0

FU j


⋃
FT ,

which consists of the two cusp sectors at the inequivalent cusps∞ and
0 for Γ0[q], is a fundamental domain ofΓ0[q]. This is a consequence
of relations (2) and (3), since there are only two inequivalent parabolic
cusps forΓ0[q]. 70

We now consider some special subgroups ofΓ. Let K be the com-
mutator subgroup ofΓ. In order to prove (Γ : K) = 12, we represent an
arbitrary elementS in Γ asS = Wa1Tb1Wa2Tb2 · · ·War Tbr . According
to the defining relations for the generatorsW, T of Γ given in theorem 8,
the sumse1(S) = a1+a2+ · · ·+ar (respectivelye2(S) = b1+b2+ · · ·+br )
are uniquely determined modulo 3 (respectively modulo 4). If S is a
commutator, it is obvious thate1(S) ≡ 0(mod 3) ande2(S) ≡ 0(mod 4).
Thus this is true also for an arbitrary element ofK, sinceK is generated
by commutators. Sincee1(W) ≡ 1(mod 3) ande2(T2) ≡ 2(mod 4), it
follows thatW andT2 are not inK but we have

(TK)4 = (WK)3 = K andWTK= TWK.

This proves thatΓ/K is an abelian group of order 12 and the group
K∗ generated byK andT2(= −E) is a normal subgroup of index 6 in
Γ. SinceUK = T3W−1K is an element of order 12 inΓ/K, we get

Γ =
5⋃

r=0
K∗Ur . This proves thatF∗ =

5⋃
r=0
FU r (see figure 2.13 is a funda-

mental domain forK∗. Since the normal subgroupK∗ does not contain
both T andV, neitheri nor ρ is a fixed point ofK∗. The width of the
cusp sector at the parabolic cusp ofF∗ is 6; therefore, from (4), we see
that the genus ofK∗ is 1. SinceTU−3 ≡ V3T−2 ≡ E(modK∗), it is
obvious that the transformations

A1 = U6,A2 = TU−3,A3 = UTU−4,A4 = U2TU−5
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belong toK∗. They are the boundary substitutions ofF∗; therefore to-
gether with−E they generateK∗. 71

0 1 2 3 4 5

Figure 2.13:

We shall now show that the groupK∗ is a congruence subgroup of
level 6. LetΓ0 denote the group generated byΓ∗[6] and K∗. It can be
verified thatΓ0/Γ

∗[6] is an abelian group and moreover,

A2
3 ≡ A4

2(modΓ∗[6])

A5
2A3 ≡ A4(modΓ∗[6])

A1 ≡ A6
2 ≡ E(modΓ∗[6]).

showing that, for 0≤ k < 6 and 0≤ ℓ < 2, Ak
2Aℓ3 represent the cosets of72

Γ0 moduloΓ∗[6]. Thus (Γ0 : Γ∗[6]) ≤ 12 and therefore

6 = (Γ : K∗) ≥ (Γ : Γ0) =
(Γ : Γ∗[6])
(Γ0 : Γ∗[6])

≥ 72
12
= 6,

which proves that (Γ : K∗) = (Γ : Γ0) or Γ0 = K∗ andΓ∗[6] ⊂ K∗. The
commutator subgroup is a particular example of the so-called ‘cycloid
subgroup’ ofΓ. In general, a subgroupZ of Γ is said to be acycloid
subgroup, if the fundamental domain ofZ has only one cusp sector i.e.
σ = 1. If µ is the index ofZ in Γ, then

⋃µ−1
i=0 FU i is a fundamental

domain forZ clearly. Petersson has constructed an infinite number of
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cycloid subgroups ofΓ and proved that exactly 1667868 are congruence
subgroups thus showing that there are infinitely many subgroups ofΓ
which are not congruence subgroups. He has further proved that all
subgroups of index≤ 6 in Γ are congruence subgroups.

In the following, we shall determine all congruence subgroups of
Γ of level 2. LetΓ∗ denote such a subgroup. Then, by theorem 9,Γ∗

containsΓ∗[2] = Γ[2]. Since the index ofΓ[2] in Γ is 6, the index ofΓ∗

in Γ is either 6 or 3 or 2. This shows that (Γ∗ : Γ[2]) = 1, 2, 3 according
as (Γ : Γ∗) = 6, 3, 2.

Let (Γ∗ : Γ[2]) = 1 i.e. Γ∗ = Γ[2]. SinceU2 belongs toΓ[2],
the width of the cusp sector at the cusp∞ is 2. ButΓ[2] is a normal
subgroup ofΓ and therefore the width of the cusp sector at any cusp of
Γ[2] is 2 and there are three inequivalent cusps ofΓ[2], for example 0,1
and∞. It is obvious that

F∗ = (F ∪ FU) ∪ (FT ∪ FTU) ∪ (FUT ∪ FUTU)

is a fundamental domain forΓ[2], because it consists of three cusp73

sectors at the inequivalent cusps ofΓ[2].

0 1

Figure 2.14:

It now follows that

Γ = Γ[2] ∪ Γ[2]U ∪ Γ[2]T ∪ Γ[2]TU ∪ Γ[2]UT ∪ Γ[2]UTU.

If we replace some parts ofF∗ in figure 2.14 by suitable equivalent
parts, then we obtain a fundamental domain as shown in figure 2.15.
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0 1

Figure 2.15:

74

It is obvious thatU2 andTU2T−1 are inΓ[2]; they are the boundary
substitutions of the fundamental domain in figure 2.15. ThereforeU2

andTU2T−1 together with−E generateΓ[2].

Let (Γ∗ : Γ[2]) = 3. ThenΓ∗/Γ[2] is a Sylow subgroup of order 3
in Γ/Γ[2]. But Γ∗/Γ[2] is of index 2 inΓ/Γ[2]; therefore it is a normal
subgroup. HenceΓ∗/Γ[2] is uniquely determined and thereforeΓ∗ is a
uniquely determined normal subgroup ofΓ. We shall denote it byN2.
The groupN2/Γ[2] is generated by any element of order 3. SinceV does
not belong toΓ[2] andV3 belongs toΓ[2], we have

N2 = Γ[2] ∪ Γ[2]V ∪ Γ[2]V2.

MoreoverU does not belong toN2; because, ifU belongs toN2,
thenT = UV belongs toN2 implying thatΓ = N2, a contradiction to75

(Γ : N2) = 2. Therefore

Γ = N2

⋃
N2U.

andF∗ = F
⋃
FU (see figure 2.16 is a fundamental domain forN2 with

the boundary substitutionsU2 andUVU−1.
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10

Figure 2.16:

Let (Γ∗ : Γ[2]) = 2. ThenΓ∗/Γ[2] is a Sylow subgroup of order
2 and there are three conjugate Sylow subgroups of order 2 inΓ/Γ[2].
One of these subgroups is the so-calledtheta-group

Γϑ = Γ[2]
⋃
Γ[2]T.

The groupΓϑ consists of the matricesS =
(

a b
c d

)
in Γ with either

b ≡ c ≡ 0(mod 2) ora ≡ d ≡ 0(mod 2) and it is not a normal subgroup76

of Γ. The width of the cusp sector at∞ is 2, becauseU2 is the least
positive power ofU belonging toΓϑ. Since (Γ : Γϑ) = 3, we obtain
from (3) thatΓϑ has only one cusp, say 1 (inequivalent to∞), the width
of the cusp sector at which is 1. It is obvious that

F∗ = (F
⋃
FU)

⋃
FUT

is a fundamental domain forΓϑ, since it consists of cusp sectors at the
two inequivalent cusps ofΓϑ. ThereforeΓ = Γϑ

⋃
ΓϑU

⋃
ΓϑUT is a

coset decomposition ofΓ moduloΓϑ. If we replace a part of the above
mentioned fundamental domain by a suitable equivalent part, we obtain
a fundamental domainF∗ given by

F∗ = {τ|τ = x+ iy, |x| ≤ 1, |τ| ≥ 1} (see figure 2.17)

with the boundary substitutionsT andU2.



66 2. The Modular Group and its Subgroups

Figure 2.17:

The above discussion shows that there exist only 5 congruence sub-77

groups ofΓ of level 2.

We shall now construct infinitely many subgroup of finite index in Γ,
which are not congruence subgroups. We consider configurations I and
II as shown in figure 2.18 and which formed by images ofF or images
of parts ofF underΓ.

1 0

I II

Figure 2.18:

We take a copies of the configurationI andb copies of the configu-
ration II and arrange them in some order so that the resultingfigure is a
connected domain sayF∗ (see figure 2.19 fora = 3, b = 2), which hasi
as a boundary point.
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Figure 2.19:
78

The transformationsA1,A2, . . . ,Ar(r = a + b) are elliptic transfor-
mations of order 2, because they are conjugates ofT in Γ. Any cir-
cular arc of the boundary ofF∗ is mapped onto itself by one of these
elliptic transformations. The vertical edges ofF∗ are equivalent under
P = U2a+b. LetΓ∗ denote the subgroup ofΓ generated byP,A1, . . . ,Ar .
We shall show thatF∗ is a fundamental domain forΓ∗ and that for a
suitable choice ofa and b, Γ∗ is not a congruence subgroup. From
the fact thatF∗ is a fundamental domain forΓ∗ (to be proved later), it
is obvious thatΓ∗ has only two inequivalent parabolic cusps, for ex-
ample∞ and 1, and the elliptic fixed points ofΓ∗ are equivalent to
i underΓ. Moreover, the widths of the cusp sectors at∞ and 1 are
given by N∞ = 2a + b, N1 = a + 2b respectively. Using (3), we get
µ = (Γ : Γ∗) = N∞ + N1 = 3(a + b). Let us suppose thatΓ∗ is a con-
gruence subgroup of levelN. Let us assume thatp = a + b is a prime
number anda, b ≥ 2. SinceΓ ⊃ Γ∗ ⊃ Γ[N], µ dividesµ(N) and therefore
p divides

µ(N) = N3
∏

q|N
(1− q−2) = N∗

∏

q|N
(q2 − 1)(N|N∗ |N3, q a prime number).

79

But N, by theorem 9, is the least common multiple ofN∞ = p + a
andN1 = p+ b, thereforep does not divideN. Thusp divides (q2 − 1)
for at least one primeq dividing N. Sincep ≥ 5, q ± 1 is even andp

divides
1
2

(q ± 1). Obviously,q divides eitherp+ a or p+ b, becauseq

dividesN which is the least common multiple ofp + a and p + b. But
a, b ≥ 2 anda+ b = p, thereforeq ≤ 2p− 2. This shows thatp divides
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1
2

(q± 1) which is different from zero and strictly less thanp. Hence our

supposition thatΓ∗ is a congruence subgroup is false whena + b = p
is a prime number anda, b ≥ 2. But there are infinitely many pairs of
natural numbers (a, b) with the above property; therefore our assertion
that there exist infinitely many subgroups ofΓ of finite index which are
not congruence subgroups is proved.

We shall prove now thatF∗ is a fundamental domain forΓ∗. In order
to prove thatF∗ contains atleast one point from each set of equivalent
points underΓ∗, it is sufficient to prove thatG =

⋃
±S∈Γ∗ FS. Let D′

andD′′ denote the two triangles into which the imaginary axis splits the
fundamental domainF for Γ. Let D0,D1, . . . ,Dn be a chain of triangles
such thatDi is equivalent toD′ and D′′ underΓ and the trianglesDi

andDi+1(i = 0, 1, . . . , n − 1) have an edge in common. Then we shall
show by induction onn that Dn is contained inF∗S for someS ∈ Γ∗,
providedD0 belongs to some image ofF∗ underΓ∗. Let us assume that
the triangleDt belongs toF∗St

for St ∈ Γ∗ for somet with 0 ≤ t < n.80

ThenS−1
t < Dt > is contained inF∗. Since the trianglesS−1

t < Dt >

andS−1
t < Dt+1 > have an edge in common, the triangleS−1

t < Dt+1 >

is either contained inF∗ or in F∗Rt
, whereRt is any one of the boundary

substitutionsp±1, A1,A2, . . .Ar of F∗. In any case,Dt+1 is contained in
F∗St+1

with St+1 = St or StRt. Since, by assumption,D0 belongs to some
image ofF∗ underΓ∗, it follows, by induction, thatDn belongs toF∗Sn

for someSn belonging toΓ∗. This proves that an arbitrary triangleD
equivalent toD′ or D′′ underΓ is contained in some image ofF∗ under
Γ∗, because we can always find a chainD0,D1, . . . ,Dn with the above
properties and with the additional property thatD0 is contained inF∗

andDn = D. Our assertion now follows easily.

Denote, in general, the set of interior points of a given point setM
by iM. In order to prove thatF∗ is a fundamental domain forΓ∗, it
remains to show thatiF∗

⋂ iF∗S , ∅ for someS in Γ∗ impliesS = ±E.
The domainF∗

pk is obviously bounded by two vertical lines and circular
arcs saybkℓ. We choose our notation in such a way that the arcbkℓ is
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mapped bypkAℓP−k(ℓ = 1, 2, . . . , r) onto itself. Consider the domain

F̂ =

∞⋃

k=−∞
F∗pk .

It is bounded by the circular arcsbkℓ(−∞ < k < ∞, ℓ = 1, 2, . . . , r).
Let Hkℓ denote that closed part of the hyperbolic plane which is bounded
by bkℓ and which does not contain̂F. Obviously Hkℓ

⋂
Hk′ℓ′ = ∅ if

(k, ℓ) , (k′, ℓ′). With the help of the relationsA2
ℓ
= −E(ℓ = 1, 2, . . . , r), 81

any elementS of Γ∗ can be written in the form

S = ±pk1Aℓ1P
k2Aℓ2 · · ·PknAℓnP

k,

wherek1, k2, . . . , kn, k are arbitrary integers. SinceA2
ℓ
= −E, we can

assume without loss of generality that ifki = 0, thenℓi−1 , ℓi for i =
2, 3, . . . , n. Let Akℓ = PkAℓP−k. ThenA2

kℓ = −E for all k and ℓ and
moreover,S can be written in the form

S = ±At1ℓ1At2ℓ2 · · ·AtnℓnP
t, (8)

wheret1 = k1, t2 = k1 + k2, . . . , tn = k1 + k2 + · · · + kn andt = k1 + k2 +

· · ·+ kn+ k. We shall now prove by induction onn thatFAt1ℓ1At2ℓ2 ...Atnℓn
is

contained inHt1ℓ1. Forn = 1, the assertion is trivial. Let us assume that
n > 1 andF̂At2ℓ2At3ℓ3 ...Atnℓn

is contained inHt2ℓ2. Since (t1, ℓ1) , (t2, ℓ2),
the substitutionAt1ℓ1 mapsHt2ℓ2 into Ht1ℓ1. Therefore, it follows that
F̂At1ℓ1At2ℓ2 ...Atnℓn

is indeed contained inHt1ℓ1. Let iF∗
⋂ iF∗S , ∅ whereS

has the form (8) above. In casen ≥ 1, we conclude that

iF∗
⋂

iF∗S ⊂ iF̂
⋂

iF̂At1ℓ1At2ℓ2 ...Atnℓn
⊂ iF̂

⋂
Ht1ℓ1 = ∅

in contradiction with our assumption. Thereforen = 0. But then
iF∗

⋂ iF∗pt , ∅ implying t = 0 i.e. S = ±E. HenceF∗ is a fundamental
domain forΓ∗.

3 Excursion into Function Theory
82

In this Section, we prove some results involving function theory on Rie-
mann surfaces to be used in the sequel. Until the end of this section, Γ



70 2. The Modular Group and its Subgroups

will denote a horocyclic group,F a normal fundamental domain forΓ in
G andR the Riemann surface associated toΓ.

Theorem 10. If ω is a meromorphic differential onR, then
∑

g∈R
resgω = 0.

Proof. Sinceω can have only finitely many poles onR, the sum men-
tioned in the statement of the theorem is a finite sum. Letf (τ) denote
the meromorphic automorphic form of weight 2 forΓ associated with
the differentialω in chapter 1§ 5, so thatω = f (τ)dτ. Let p be the
set consisting of those boundary points ofF which are either poles ofω
or proper or improper vertices ofF. For every pointτ0 ∈ p, we find a
hyperbolic discCτ0 with τ0 as centre and satisfying the conditions

1. S < Cτ0 >= Cτ1 if S < τ0 >= τ1,

2. Cτ0

⋂
Cτ1 = ∅ if τ0 , τ1, and

3. ω is regular on the boundary and interior ofCτ0 with the possible
exception ofτ0.

�

If is obvious that we can find a set of discsCτ0 satisfying conditions
1., 2. and 3. mentioned above. Ifτ0 is an improper vertex ofF, i.e. a
parabolic cusp ofΓ, and lies on the real axis, then forCτ0 we take a disc
touching the real axis atτ0. In particular, if we mapτ0 to∞, thenCτ083

will be mapped into the domainy ≥ c for somec > 0. Let D denote
the domain obtained fromF by removing the discsCτ0 for τ0 ∈ p i.e.
D = F\⋃τ0∈pCτ0. ThenD is bounded by hyperbolic lines, which are
pairwise equivalent, and hyperbolic circular arcs. Let∂D denote the
boundary ofD oriented in the positive direction. Then

1
2πi

∫

∂D

f (τ)dτ =
∑

τ0∈D
resτ0 f (τ)dτ =

∑

g∈R∗
resgω, (1)

whereR∗ is the set obtained fromR by removing the trace-points of all
τ0 ∈ p. If s1 ands2 are two equivalent edges ofD, then there exists an
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elementA in Γ such thatA < s1 >= s2. Since f (τA)dτA = f (τ)dτ
and A < s1 > is oriented in the negative direction, it follows that∫
s1+s2

f (τ)dτ = 0 and therefore

1
2πi

∫

∂D

f (τ)dτ =
∑

τ0∈p

1
2πi

∫

bτ0

f (τ)dτ, (2)

wherebτ0 is the circular arc contained in bothF and the boundary of
Cτ0. We decomposep into a complete system of equivalent pointsgi =
{τi1, τi2, . . . , τiki

}, i = 1, 2, . . . , r. Thengi can be interpreted as a point of
R and obviously we have

R = R
∗
⋃
{g1, g2, . . . , gr }. (3)

Let g = {τ1, τ2, . . . , τk} be any one of the pointsg1, g2, . . . , gr . Then
the contribution to the right hand side of (2) from the pointsfor whichg
is given by 84

∑

τ j∈g

1
2πi

∫

bτ j

f (τ)dτ.

Sinceg consists of equivalent points, there exist transformations A j

in Γ such thatA j < τ j >= τ1 for j = 1, 2, . . . , k and there exists a
neighbourhood ofτ1 in

⋃k
i=1FA j consisting of a complete sector of in-

equivalent points underΓ. We shall now discuss the two cases, namely
wheng is a branch point ofR of finite order or not, separately.

1. Let g be a branch point ofR of orderℓ − 1 ≥ 0. Thent = zℓ =
((τ − τ1)/(τ − τ1))ℓ is a local coordinate atg and the sector of
inequivalent points mentioned above can be described by

|z| ≤∈ and 0≤ argz<
2π
ℓ
.

In terms of the local coordinatet at g, it is given by |t| ≤∈ℓ but
oriented in the negative direction, where∈ is a suitable positive



72 2. The Modular Group and its Subgroups

real number. Therefore we obtain

∑

τ j∈g

1
2πi

∫

bτ j

f (τ)dτ =
k∑

j=1

1
2πi

∫

bτ j

f (τA j )dτAj

=
1

2πi

∫

|z|=∈
0≤argz<2π/ℓ

f (τ)dτ = − 1
2πi

∮

|t|=∈ℓ

ω

= −resgω.

2. Let g be a logarithmic branch point. Thenτ1 is a parabolic fixed
point of Γ. Let A denote a real matrix of determinant 1 which
mapsτ1 to∞. Thent = e2πiA<τ>/µ with a suitableµ > 0 is a local
coordinate atg. Let τ∗ = A < τ >= x∗ + iy∗. The sector of in-85

equivalent points, constituting a neighbourhood ofτ1 in
⋃k

j=1FA j

mentioned above, is described by

0 ≤ x∗ < µ andy∗ ≥ c

and in terms of the local coordinate it is described by|t| ≤ e−2πc/µ,
wherec is some positive real number. As above, we obtain that

k∑

j=1

1
2πi

∫

bτ j

f (τ)dτ = −resgω.

Thus, from (1) and (2), we get

∑

g0∈R∗
resg0ω = −

r∑

i=1

resgiω

and because of (3), we have

0 =
∑

g0∈R∗
resg0ω +

r∑

i=1

resgiω =
∑

g∈R
resgω,

which is the statement of our theorem.
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If f is a non-constant meromorphic function onR and if t is a local
coordinate at a pointg0 of R, then

f =
∞∑

n=k

cntn

whereck , 0, if the degree off at g0 is k.
It follows trivially that

d f
f
=

{
k
t
+ b0 + b1t + . . .

}
dt

and therefore resg0
d f
f
= k. Hence, from theorem 10, we obtain the86

following

Theorem 11. The degree of a non-constant meromorphic function on
R is zero or equivalently a non-constant meromorphic function has the
same number of zeros and poles onR counted with their multiplicity.

We call a pointg of R a c-place (for a complex numberc) of a
function f onR if the function f − c has a zero atg. Since the functions
f and f − c have the same number of poles onR, from theorem 11
it follows that a non-constant meromorphic function takes every value
equally often. We shall say that a non-constant meromorphicfunction
onR is of order nif it takes every valuen times. Consequently, we have

Theorem 12. A regular function onR which has no poles is a constant.

4 The Elliptic Modular Functions

It is well-known that the field of elliptic functions (i.e. doubly peri-
odic meromorphic functions, say with primitive periodsω,ω′ for which

τ =
ω′

ω
has positive imaginary part) consists precisely of all the rational

functions ofP andP′ with complex coefficients where is Weierstrass’
function given by

P(z) =
1

z2
+

∑

(m,n),(0,0)

{
1

(z−mω′ − n)2
− 1

(mω′ + nω)2

}



74 2. The Modular Group and its Subgroups

The elliptic functionP(z) satisfies the differential equation

(P′(z))2 = 4(P(z))3 − g2P(z) − g3

= 4(P(z) − e1)(P(z) − e2)(P(z) − e3)

with e1 = P(ω′/2), e2 = P(ω/2), e3 = P((ω + ω′)/2), g2 =87

60G4(ω′, ω) andg3 = 140G6(ω′, ω) where, in general,

Gk(ω
′, ω) =

∑

(m,n),(0,0)

(mω′ + nω)−k.

The seriesGk(ω′, ω) converges absolutely fork > 2 and obviously
vanishes identically whenk is an odd integer. The elliptic functionP(z)
is of order 2, because it has exactly one pole of order 2 in a period par-
allelogram. ThereforeP(z) takes every value twice in a period paral-
lelogram. SinceP′(ω′/2) = 0,P(z) takes the valuee1 atω′/2 twice
and thereforee1 is different frome2 ande3. Similarly, it is proved that
e2 , e3. This shows that the cubic equation

4t3 − g2t − g3 = 0

has distinct roots, which implies that its discriminant

∆0(ω′, ω) = 16(e1 − e2)2(e2 − e3)(e1 − e3)2 = g3
2 − 27g2

3 , 0.

It is obvious that the functionsGk(ω′, ω) and∆0(ω′, ω) are homoge-
neous functions ofω′, ω and therefore

Gk(ω
′, ω) = ω−kGk(τ),∆0(ω′, ω) = ω−12∆0(τ),

whereτ = ω′/ω belongs toG . Consequently, we have

∆0(τ) = 24 · 33 · 52{22 · 5G3
4(τ) − 72G2

6(T)}. (1)

In what follows,Γ will denote the modular group andF the fun-
damental domain ofΓ given in (1) of§1. The transformations, which
map the pair of primitive periodsω′ andω to another pair of primitive
periods, generating the same lattice asω′ andω are given by

ω′ −→ aω′ + bω,ω −→ cω′ + dω,
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whereS =
(

a b
c d

)
belongs toΓ if the sign of Im(ω′/ω) is preserved; or88

equivalently by

τ −→ S < τ > andω −→ ω(cτ + d).

Obviously these transformations leave the functionsGk(ω′, ω) and
∆0(ω′, ω) invariant; therefore, the effect of these transformations on
Gk(τ) and∆0(τ) is given by

(cτ + d)−kGk(S < τ >) = Gk(τ), (cτ + d)−12∆0(S < τ >) = ∆0(τ).

As we shall see, the functionsGk(τ) and∆0(τ) are meromorphic
modular forms of weightk and 12 respectively for the groupΓ. By a
meromorphic modular form of weight k (k a natural number) forthe
groupΓ we mean a functionf (τ) satisfying the following conditions:

1. f (τ) is a meromorphic function inG ,

2. (cτ + d)−k f (S < τ >) = f (τ) for everyS =
(

a b
c d

)
in Γ, and

3. at the parabolic cusp∞ of Γ, f (τ) has the Fourier expansion

f (τ) =
∞∑

n=k

cne2πinτ

with only finitely many negative exponents.

We call f (τ) an integral modular formor simply a modular form of
weightk for Γ if f (τ) is regular inG and if, in the Fourier expansion of
f (τ) at the cusp∞, no term with negative exponent occurs. Iff (τ) is
a modular form and the constant term in the Fourier expansionof f (τ) 89

at the parabolic cusp vanishes, then we callf (τ) a cusp form. We shall
now show thatGk(τ) is a modular form of weightk and∆0(τ) is a cusp
form of weight 12 for the modular groupΓ. The uniform convergence
of the so-calledEisenstein series Gk(τ) =

∑
(m,n),(0,0)(mτ + n)−k, can be

deduced from

Lemma 3. Let (c, d) be two real numbers and let y≥∈> 0, |x| ≤ ℓ. Then
there exists a numberδ = δ(ℓ, ∈) > 0 such that

|cτ + d| ≥ δ|ci + d| (τ = x+ iy).
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Proof. If c = d = 0, we have nothing to prove. Therefore we assume
that at least one ofc or d is non-zero. We can obviously assume further
that c2 + d2 = 1, for homogeneity. Now the proof takes an indirect
course. Assume there exist sequences{cn}, {dn} and{τn = xn+ iyn} such
that c2

n + d2
n = 1, |xn| ≤ ℓ, yn ≥∈> 0 and limn→∞ |cnτn + dn| = 0. This

shows that
(cnxn + dn)2 + c2

ny2
n→ 0 asn→ ∞,

and so|cnyn| → 0. Thusyn ≧∈ implies cn → 0 and nowdn → 0 as a
consequence of|cnxn+dn| → 0, |xn| ≦ ℓ in contradiction withc2

n+d2
n = 1.

This proves the lemma. �

Since the integral

"

x2+y2≥1

(x2 + y2)−k/2dxdy=

∞∫

1

2π∫

0

drdθ

rk−1
=

2π
k− 2

converges fork > 2, it follows that the seriesGk(i) is convergent for
k > 2. Therefore by using the above lemma, we see that the series
Gk(τ), for k > 2, converges absolutely and uniformly in the domain90

|x| ≤ ℓ, y ≥∈> 0. This proves thatGk(τ) is a regular function inG .
Moreover,Gk(τ + 1) = Gk(τ) andGk(τ) has Fourier expansion

Gk(τ) =
∞∑

n=−∞
cne2πinτ.

In order to calculate the coefficientscn, we consider the function

f (τ) =
∞∑

n=−∞
(τ + n)−k,

which obviously is regular inG . Since f (τ + 1) = f (τ), we have

f (τ) =
∞∑

n=−∞
ane2πinτ,
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where an =

1∫

0

f (τ)e−2πinτdx

=

∞∑

m=−∞

1∫

0

(τ +m)−ke−2πinτdx

= e2πny

∞∫

−∞

(x+ iy)−ke−2πinxdx.

By deforming the path of integration suitably in thez-place (with Re
z= x), it can be proved easily that

an =


0 for n < 0

−2πi e2πnyresz=−iy(z+ iy)−ke−2πinz for n ≥ 0

i.e. 91

an =


0 for n < 0
(−2πi)k

(k−1)! nk−1 for n ≥ 0.

Thus we have

f (τ) =
(−2πi)k

(k − 1)!

∞∑

n=1

nk−1e2πinτ.

We now consider the seriesGk(τ) only for even integralk, as we
know already thatGk(τ) ≡ 0 for odd integersk. By definition,

Gk(τ) =
∑

(m,n),(0,0)

(mτ + n)−k = 2
∞∑

n=1

n−k + 2
∞∑

m=1

∞∑

n=−∞
(mτ + n)−k

= 2
∞∑

n=1

n−k + 2
∞∑

m=1

f (mτ),

becausemτ belongs toG with τ. If ζ(s) denotes the Riemann zeta func-
tion defined by

ζ(s) =
∞∑

n=1

n−s(for Res> 1)
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then

Gk(τ) = 2ζ(k) + 2
∞∑

m=1

f (mτ)

= 2ζ(k) +
2(−2πi)k

(k− 1)!

∞∑

m=1

∞∑

n=1

nk−1e2πinmτ.

Collecting terms for whichℓ = mn, we obtain92

Gk(τ) = 2ζ(k) +
2(−2πi)k

(k− 1)!

∞∑

ℓ=1



∞∑

d|ℓ
d>0

dk−1


e2πiℓτ

= 2π(k) + 2
(−2πi)
(k − 1)!

∞∑

n=1

dk−1(n)e2πinτ,

wheredk(n) =
∑

d|n
d>0

dk.

Hence our assertion thatGk(τ) for k > 2 is a modular form of weight
k for Γ is proved.

The values of the Riemann zeta functionζ(s) for s = k(k an even
integer) are given by the formula

ζ(k) = (−1)
k
2−1 (2π)kBk

2 · k!
,

whereBk denotes the k-th Bernoulli number. The complete sequence
B1, B2, . . . of Bernoulli number is given by the formal equations

(B+ 1)n − Bn = 0 (n > 1)

where, in the binomial expansion on the left hand side,Bk is to be re-
placed byBk. The proof of the above formula can be found in [6], where
the Bernoulli numbers are also calculated. We mention here the values
of someBk:

B2 =
1
6
, B4 = −

1
30
, B6 =

1
42
, B8 =

−1
30
,
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B10 =
5
66
, B12 =

−691
2730

, B14 =
7
6
.

Using the above formula for the values ofζ(k), we obtain that93

Gk(τ) = (−1)
k
2−1 (2π)kBk

k!

1−
2k
bk

∞∑

n=1

dk−1(n)e2πinτ

 . (2)

Since the product of two modular forms of weightk1 and k2 is a
modular form of weight (k1+k2), it follows by (i) that∆0(τ) is a modular
form of weight 12 forΓ. Let t = e2πiτ. Then from (2) we get

G4(τ) ≡ π4

32 · 5(1+ 24 · 3 · 5t)(mod t2)

and

G6(τ) ≡ 2π6

35 · 5 · 7
(1− 23 · 32 · 7)(modt2).

Therefore equation (1) shows that

∆0(τ) ≡ (2π)12t(modt2)

or

∆0(τ) = (2π)12
∞∑

n=1

cne2πinτ

with suitable numberscn and in particularc1 = 1. Hence∆0(τ) is a
cusp form of weight 12 forΓ. Moreover, this property determines∆0(τ)
uniquely upto a constant factor. For iff (τ) is a cusp form of weight
12 for Γ, then the functionf (τ)/∆0(τ) which is invariant underΓ and
which has no singularities inG (due to the non-vanishing of∆0 in G ) is
constant, by theorem 12. We shall now show that the normed modular
form

∆(τ) = (2π)−12∆0(τ)

has integral coefficients in its Fourier expansion at the parabolic cusp.94

LetM be the module of power series int = e2πiτ with integral coeffi-
cients. Let us set

P(t) =
∞∑

n=1

d3(n)tn,Q(t) =
∞∑

n=1

d5(n)tn.
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Then by (1) and (2),

∆(τ) = (2π)−12∆0(τ) = 2−6 ·3−3{(1+24 ·3·5P(t))3− (1−23 ·32 ·2Q(t))2}.

But P(t) ≡ Q(t) ≡ 0(modM); therefore

∆(τ) ≡ 1
12
{5P(t) + 7Q(t)}(modM).

Thus∆(τ) has all the coefficients in its Fourier expansion at the
parabolic cusp integral if and only if

5d3(n) + 7d5(n) ≡ 0(mod 12) for everyn ≥ 1.

But all these congruences evidently hold since 5d3 + 7d5 ≡ 5d3(1−
d2) ≡ 0(mod 12) for every integerd.

As an object of special importance in the field of meromorphicfunc-
tions on the Riemann surfaceR associated toΓ, we introduce the func-
tion

J(τ) = g3
2/(g

3
2 − 27g2

3) = 26 · 33 · 53G3
4(τ)/∆0(τ).

SinceJ(τ) is a quotient of two modular forms of the same weight
for Γ, it is invariant under the groupΓ. ThusJ(τ) is an elliptic modular
function i.e. a meromorphic function onG /Γ whereG arises fromG

on adding the (set of) parabolic fixed points ofΓ (i.e the set of rational
numbers). ClearlyJ(τ) has a simple pole at the parabolic cusp∞ of Γ,
since

J(τ) ≡ 1/(1728t)(mod t0).

Since∆0(τ) , 0 for τ in G , J(τ) is regular inG and consequently95

takes every value exactly once on the Riemann surfaceR attached to
the groupΓ. We now show thatJ(i) = 1 andJ(ρ) = 0 with ρ = e2πi/3.
Sinceρ3 = 1 andρ2 + ρ + 1 = 0, we have

G4(ρ) = ρ
∑

(m,n),(0,0)

(mρ2 + nρ)−4 = ρ
∑

(m,n),(0,0)

((m− n)ρ +m)−4

= ρG4(ρ).
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Similarly

G6(i) =
∑

(m,n),(0,0)

(mi+ n)−6 = i−6
∑

(m,n),(0,0)

(m− in)−6 = −G6(i).

ThusG4(ρ) = G6(i) = 0, showing thatJ(i) = 1 andJ(ρ) = 0. Using the
fact that∆(τ) has integral coefficients in the Fourier series at∞, it can
be proved easily that

1728J(τ) =
1
t
+ a0 + a1t + · · · t = e2πiτ,

wherean are integers.

Theorem 13. A meromorphic modular function f(τ) for the modular
group Γ is a rational function of J(τ) with complex coefficients. If, in
addition, f(τ) is regular inG , then f(τ) is a polynomial in J(τ).

Proof. The functionJ(τ) maps the Riemann surfaceR associated to the
groupΓ onto theJ-sphere and this correspondence betweenR and the
J-sphere is one-one. Moreover, ifτ0 ∈ G , then obviouslyJ(τ) − J(τ0)
is a local coordinate at the trace point ofτ0 and if τ0 = ∞, then 1/J(τ)
is a local coordinate at the logarithmic branch point ofR. Therefore if 96

f (τ) is a meromorphic modular function forΓ, then f (τ) = g(J(τ)) is a
meromorphic function on theJ-sphere and therefore a rational function
of J(τ) with complex coefficients. If f (τ) is regular inG , then the only
possible pole off (τ) is atτ = ∞ and thereforeg(J) can have only one
pole at infinity on theJ-sphere. Hencef (τ) = g(J) must be a polynomial
in J(τ). �

In the following, we shall denote by [Γ, k] the linear space (over
the complex number field) of (integral) modular forms of weight k(k >
0, k integral) for the groupΓ. We shall calculate the dimension of this
(linear) space and indeed find a basis of [Γ, k] which consists of power-
products ofG4(τ) andG6(τ). If k is an odd integer, then the dimension
of [Γ, k] is zero, since anyf (τ) in [Γ, k] vanishes identically as evident
from (cτ+d)−k f (S < τ >) = f (τ) for S =

(
−1 0
0 −1

)
. In order to prove that
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the dimension of [Γ, 2] is zero, we proceed as follows. Let us suppose
that f (τ) belongs to [Γ, 2]. Consider the function

g(τ) =

τ∫

i

f (τ)dτ.

SinceG is simply connected,g(τ) does not depend upon the path of
integration betweeni andτ. It is obvious that

g(S < τ >) = g(τ) +CS for S ∈ Γ,

whereCS is a constant depending onS. TakingS to be an elliptic trans-
formation andτ its fixed point, we see immediately thatCS = 0 and in
particularCT = CV = 0. But T andV generateΓ andCRS = CR + CS

for R andS belonging toΓ; thereforeCS = 0 for all S in Γ. In particu-97

lar, C(U) = 0, which implies thatg(τ + 1) = g(τ), forcing the constant
term in the Fourier series off (τ) at∞ to be zero and showing thatg(τ)
is regular at∞. Now the functiong(τ), which is invariant underΓ and
which is regular inG and at∞, must be constant, by theorem 12. Hence
f (τ) ≡ 0, which proves that the dimension of [Γ, 2] is zero.

Let us now consider [Γ, k] for even integralk > 2. For any f in
[Γ, k], we first find the expansion at a pointτ0 in G of ramification index
ℓ − 1 ≥ 0. Since the functionJ′(τ) is a meromorphic modular form of
weight 2 forΓ, according to Chapter 1§ 5, we obtain that

(τ − τ0)2J′(τ) =
∑

n

antn−1/ℓ with t = ((τ − τ0)/(τ − τ0))ℓ.

Consider the functionf (τ)(J′(τ))1−k/2. It is a meromorphic modular
form of weight 2 forΓ; therefore, as above,

(τ − τ0)2 f (τ)(J′(τ))1−k/2 =
∑

n

bntn−1/ℓ,

which implies that

(τ − τ0)k f (τ) = {
∑

n

bntn−1/ℓ}{
∑

n

antn−1/ℓ}(k/2)−1
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=
∑

n

cntn−k/2ℓ.

Since f (τ) is regular atτ0, we must haven ≥ k/2ℓ in the above
expansion off (τ) at the pointτ0. As the functionsf (τ)J′(τ)1−k/2 and
J′(τ) have a well-defined degree at the trace-point ofτ0, the modular
form f (τ) also has a well-defined degree (possibly fractional) atτ0 mea- 98

sured in terms of a local coordinate atτ0. We callτ0 an ‘unavoidable
zero’of f (τ), if k/2ℓ is not an integer. Ifv(τ0) denote the multiplicity of
the zero at the pointτ0 in G , then forτ0 = i (respectivelyρ) with ℓ = 2
(respectively 3), we have

v(i) ≥ 1
2

if k ≡ 2(mod 4)

v(ρ) ≥


1
3 if k ≡ −2(mod 6)
2
3 if k ≡ 2(mod 6).

The sum of the multiplicities of all zeros off (τ) in the fundamental
domainF of Γ i.e. the degreev( f ) is k/12. For, the function (f (τ))12/

(∆(τ))k is a modular function for the modular group and therefore has
as many zeros as poles, so that 12v( f ) = k. In particular, it follows that

the degree ofG4(τ) is
1
3

. But we have proved thatv(ρ) ≥ 1
3

; therefore

G4(τ) does not vanish at any point ofG inequivalent toρ which is a

zero of multiplicity
1
3

. Similarly, it follows thatG6(τ) has a zero of

multiplicity
1
2

at i and has no zero inequivalent toi. Let
k
12
= g+

a
3
+

b
2

whereg ≥ 0, 0 ≤ a < 3, 0 ≤ b < 2 andg, a, b are integers uniquely
determined byk. Thenk ≡ 2b(mod 4) andk ≡ −2a(mod 6). Therefore

f (τ) has unavoidable zeros of order
b
2

at i and
a
3

at ρ. From the above

discussion, it follows thath(τ) = f (τ)G−a
4 (τ)G−b

6 (τ) belongs to [Γ, 12g]
and h(τ)∆−g(τ) is a modular function invariant underΓ, which has a
pole of multiplicity at mostg at the parabolic cusp∞ of Γ and no other
singularity. Thus by theorem 13,

h(τ)
∆g(τ)

= a0 + a1J(τ) + · · · + ag(J(τ))g =⇒
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h(τ) = {a0 + a1J(τ) + · · · + ag(J(τ))g}∆g(τ).

99

Conversely,{a0 + a1J(τ) + · · · + ag(J(τ))g}∆g(τ) for all choices of
complex numbersa0, a1, . . . , ag belongs to [Γ, 12g]. This shows that the
dimension of the space [Γ, 12g] is equal tog+1. But the mappingf (τ)→
h(τ) from [Γ, k] to [Γ, 12g] is linear and one-one, therefore we obtain
that the dimension of [Γ, k] is alsog+ 1. SinceJr (τ)∆g(τ) for 0 ≤ r ≤ g
coincides but for a constant factor withG3r

4 (τ) {20G3
4(τ) − 49G2

6(τ)}g−r ,
it follows that

f (τ) = {a0 + a1J(τ) + · · · + agJ(τ)g}∆g(τ)Ga
4(τ)Gb

6(τ)

can be written as a sum of power-products ofG4(τ) andG6(τ) i.e.

f (τ) =
∑

p,q

cpqG
p
4(τ)Gq

6(τ)

wherecpq are complex numbers and the sum is taken over all integral

p, q ≥ 0 with 4p+ 6q = k. But
k
12
= g+

a
3
+

b
2

; therefore
k
12
=

p
3
+

q
2

,

which implies thatp = a + 3r, q = b + 2s with integral r, s ≥ 0 and
consequentlyr + s= g. This shows that there areg+ 1 solutions of the
equation 4p+ 6q = k. Hence the productsGp

4(τ)Gq
6(τ) with 4p+ 6q = k

form a basis for [Γ, k]. Let [x] denote the greatest integer≤ x. Then,

obviously

[
k
12

]
= g, except whena = 2 andb = 1 i.e. whenk ≡

2(mod 12) and, in that case,

[
k
12

]
= g+ 1. Hence we obtain that100

dimension of [Γ, k] =



[
k
12

]
+ 1, if k . 2(mod 12)

[
k
12

]
, if k ≡ 2(mod 12).

We summarise that results proved above in the following

Theorem 14. The power products Gp4(τ)Gq
6(τ), where p, q are non-

negative integers with4p + 6q = k form a basis of the space[Γ, k] for
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any non-negative even integer k. The dimension of the space[Γ, k] for
such k is given by

[
k
12

]
+ 1, for k . 2(mod12)

and

[
k
12

]
, for k ≡ 2(mod12).

In particular, [Γ, k] has dimension 1 fork = 4, 6, 8, 10. Therefore
G8(τ) = cG2

4(τ) with some constantc , 0. By considering the nor-
malized Eisenstein series i.e. a suitable constant multiple of Gk(τ) and
having 1 as the constant term in the Fourier expansion at the parabolic
cusp forΓ, we obtain

1+ 25 · 3 · 5
∞∑

n=1

d7(n)e2πinτ = {1+ 24 · 3 · 5
∞∑

n=1

d3(n)e2πinτ}2.

Comparing the coefficients on both sides, we obtain with the help of
dk(mn) = dk(m)dk(n) for (m, n) = 1 the following interesting relation for
n = p, a prime number,

p3(p4 − 1) = 23 · 3 · 5 ·
∑

a+b=p
a,b≥k

d3(ab),

which is not true in general whenn is not a prime number. 101

The Eisenstein seriesG2(τ) =
∑

(m,n),(0,0)
(mτ + n)−2 is not absolutely

convergent, because otherwise it would represent a non-vanishing mod-
ular form of weight 2 forΓ, which contradicts the fact that dimension
of [Γ, 2] is zero. But it can be proved that this series is conditionally
convergent. By using the transformation properties of thisseries, Hur-
witz constructed a modular form of weight 12 forΓ in the form of an
infinite product, which vanishes at the parabolic cusp ofΓ and therefore
coincides with the modular form∆(τ). In the following, we shall prove
this fact by using a method of Hecke. Consider the series

G2(τ, s) =
∑

(m,n),(0,0)

(mτ + n)−2|mτ + n|−s,
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wheres is a complex number. It is obvious that the series is absolutely
convergent forRe(s) > 0. Further, forS =

(
a b
c d

)
in Γ, we have

G2(S < τ >, s)(cτ + d)−2|cτ + d|−s = G2(τ, s).

In order to prove that the seriesG2(τ, s) can be continued analyti-
cally to the left of the half-planeRe(s) > 0, we find the Fourier expan-
sion ofG2(τ, s). Let

f (τ, s) =

∞∫

n=−∞

(τ + n)−2|τ + n|−s

and
ϕ(τ, u) = f (τ + u, s),

whereu is a real variable andτ belongs toG . Obviouslyϕ(τ, u) is a102

periodic function ofu and we can write

ϕ(τ, u) =
∞∑

r=−∞
ar (τ, s)e

2πiru ,

where the Fourier coefficientsar (τ, s) are given by

ar (τ, s) =

1∫

0

ϕ(τ, u)e−2πirudu.

=

∞∑

n=−∞

1∫

0

(τ + u+ n)−2|τ + u+ n|−se−2πirudu

=

∞∫

−∞

(τ + u)−2|τ + u|−se−2πirudu.

Rearranging the series forG2(τ, s), we obtain that

G2(τ, s) = 2ζ(2+ s) + 2
∞∑

m=1

∞∑

n=−∞
(mτ + n)−2|mτ + n|−s
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= 2ζ(2+ s) + 2
∞∑

m=1

f (mτ, s),

because withτ, mτ also belongs toG for m ≥ 1. But f (mτ, s) =

ϕ(mτ, 0) =
∞∑

r=−∞
ar (mτ, s) and from the integral representation of

ar (mτ, s) it follows thatar (mτ, s) = m−1−sarm(τ, s); therefore

G2(τ, s) = 2ζ(2+ s) + 2
∞∑

m=1

m−1−s
∞∑

r=−∞
arm(τ, s)

= 2ζ(2+ s) + 2ζ(1+ s)a0(τ, s) + 2
∑

n,0



∑

m|n
m>0

m−1−s


an(τ, s).

In order to calculatean(τ, s), we proceed as follows. With the help
of the substitutionu2 + 1 = v−1, we obtain that 103

γ(α) =
∫ ∞

0

du

(u2 + 1)α
=

1
2

1∫

0

vα−
3
2 (1− v)−

1
2 dv=

1
2

Γ
(
α − 1

2

)
Γ
(

1
2

)

Γ(α)
.

Sincea0(τ, s) does not depend upon the real part ofτ, we have

a0(τ, s) =

∞∫

−∞

(iy + u)−2|(iy + u)|−sdu= y−1−s

∞∫

−∞

(i + u)−2(u2 + 1)−
s
2 du

= y−1−s

∞∫

−∞

u2 − 1

(u2 + 1)2+
s
2
du=

2
y1+s
{γ(1+

s
2

) − 2γ(2+
s
2

)}

=
1

y1+s


Γ( s+1

2 )Γ(1
2)

Γ( s
2 + 1)

− 2
Γ( s+3

2 )Γ(1
2)

Γ( s
2 + 2)



=
Γ( s+1

2 )Γ(1
2)

y1+sΓ( s
2 + 1)

(
1− 2

s+ 1
s+ 2

)
=
−sΓ( s+1

2 )Γ(1
2)

2y1+sΓ( s
2 + 2)

.

This shows thatζ(1+s) a0(τ, s) is regular in the half planeRes> −1,
becausesζ(s+ 1)→ 1 ass→ 0. Moreover

{ζ(1+ s)a0(τ, s)}s=0 = −
π

2y
.
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For n , 0,

an(τ, s) =

∞∫

−∞

(τ + u)−2− s
2 (τ + u)−

s
2 e−2πinudu.

We choose the branches of the multiple-valued functions in the in-
tegrand as follows:

(τ + u)−α = e−α log(τ+u), (τ + u)−β = e−β log(τ+u),

where104

log(τ + u) = log |τ + u| + i arg(τ + u),
−π
2
≤ arg(τ + u) <

3π
2
,

log(τ + u) = log |τ + u| + i arg(τ + u),
−3π

2
< arg(τ + u) ≤ π

2
,

so that, in caseu is real, arg(τ + u) + arg(τ + u) = 0. We denote in the

u-plane byC1 the contour described byRe(τ + u) = 0, Im(τ + u) ≤ −3
2

y

and the circle|τ+u| = 1
2

y with the negative orientation. We denote byC2

the reflection ofC1 on the axisImu= 0. Under the assumptionRes> 0,
the integral representingan(τ, s) can be converted into a contour integral
overC1 or C2 according asn > 0 or n < 0.
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We decomposean(τ, s) into two partsbn(τ, s) andcn(τ, s) such that
an(τ, s) = bn(τ, s) + cn(τ, s) with

bn(τ, s) =



∮

|τ+u|= 1
2y

(τ + u)−2− s
2 (τ + u)−

s
2 e−2πinudu for n > 0

∮

|τ+u|= 1
2y

(τ + u)−2− s
2 (τ + u)−

s
2 e−2πinudu for n < 0

and

cn(τ, s) =



−2 sin πs
2 e2πinτ

∞∫
1
2y

t−2− s
2 (t + 2y)−

s
2 e−2πntdt for n > 0

−2 sin πs
2 e2πinτ

∞∫
1
2y

(t + 2y)−2− s
2 t−

s
2 e2πntdt for n < 0.

In any case,bn(τ, s) andcn(τ, s) are entire functions ofs. Moreover, 105

given a compact setK in the s-plane, there exists a positive constant
C = C(y,K) such that

|bn(τ, s)| < Ce−π|n|y, |cn(τ, s)| < Ce−2π|n|y

for s ∈ K and therefore

|an(τ, s)| < 2Ce−π|n|y

This shows that, if|Res| < σ0 for s∈ K, then

4C
∑

n,0



∑

m|n
m>0

mσ0−1


e−π|n|y

is a convergent majorant for

G2(τ, s) − 2ζ(2+ s) − 2ζ(1+ s)a0(τ, s).

HenceG2(τ, s)−2ζ(2+s)−2ζ(1+s)a0(τ, s) is an entire function ofsand
thereforeG2(τ, s) is regular in the half-planeRes> −1, in view of our
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having already proved that 2ζ(l + s)a0(τ, s) is regular forRes> −1. It
follows immediately from the integral representation ofcn(τ, s), bn(τ, s)
that

cn(τ, 0) = 0 for everyn , 0, bn(τ, 0) = 0 for n < 0

and

bn(τ, 0) = −2πi resu=−τ(u+ τ)
−2e−2πinu

= −4π2ne2πinτ for n > 0.

Substituting the values ofan(τ, 0) in (3), we obtain that106

G2(τ) = G2(τ, 0) = 2ζ(2)− π
y
− 8π2

∞∑

n=1


∑

mn,m>0

m

e2πinτ

=
−2πi
τ − τ +

τ2

3

1− 24
∞∑

n=1

nqn

1− qn

 ,

whereq = e2πiτ, because

∞∑

n=1



∑

m|n
m>0

m


qn =

∞∑

m=1

∞∑

r=1

mqmr =

∞∑

m=1

mqm

1− qm .

Consider the analytic function

f (τ) = G2(τ) +
2πi
τ − τ =

π2

3

1− 24
∞∑

n=1

nqn

1− qn

 .

For S =
(

a b
c d

)
in Γ, it satisfies the transformation formula

f (S < τ >)(cτ + d)−2 = f (τ) − 2πic
cτ + d

,

becauseG2(S < τ >)(cτ + d)−2 = G2(τ) and

2πi
S < τ > −S < τ >

(cτ + d)−2 − 2πi
τ − τ =

2πi
τ − τ

(
cτ + d
cτ + d

− 1

)
=
−2πic
cτ + d

.
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In the following, we take for logz the principal branch i.e. with logz
real for positive real values ofz. Let us set

g(τ) = 2πiτ + 24
∞∑

n=1

log(1− qn).

Theng′(τ) =
−6
πi

f (τ) and the transformation formula forf (τ) implies

that 107

dg(S < τ >) = dg(τ) +
12c

cτ + d
dτ

= dg(τ) + 12d(log(cτ + d)),

and therefore

g(S < τ >) − g(τ) − 12 log(cτ + d) = C(S),

whereC(S) is a constant depending onS. This shows that

h(τ) = eg(τ) = q
∞∏

n=1

(1− qn)24

satisfies the transformation formula
h(S < τ >)(cτ + d)−12 = C (S)h(τ) with C (S) = eC(S). By iteration,

C (S1S2) = C (S1)C (S2) andC (S) = C (−S). But h(τ + 1) = h(τ) and
h(i) , 0; thereforeC (U) = C (T) = 1 showing thatC (S) = 1 for every
S in Γ. Thush(τ) is a modular form of weight 12 forΓ, which vanishes
at the parabolic cusp. Hence it follows thath(τ) = c∆(τ) with some
constantc. But the coefficient ofe2πiτ in the Fourier expansion ofh(τ)
at∞ is 1, thereforec = 1 and we obtain that

∆(τ) = e2πiτ
∞∏

n=1

(1− e2πinτ)24.

The exact value of the constantC(S) occurring in the transformation
formula forg(τ) has been computed by Rademacher in [5].
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[3] A. Hurwitz: Über die Theorie der elliptischen Modulfunktionen,
Math. Ann., 58 (1904), 343-360.
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Modular forms of Real
Dimension

1 Modular forms and Partial Fraction Series
109

As the study of ‘the theta-series associated with a quadratic form’ amply
makes it clear, we need to consider modular forms of nonintegral weight
as well, if we wish to apply the theory of modular forms to number-
theoretic problems. Keeping in mind such an objective, we consider, a
little more generally, modular forms of arbitrary real weight for a horo-
cyclic groupΓ. Unless otherwise stated, the horocyclic groups under
consideration will contain−E.

Before defining a modular form of real weight for a horocyclicgroup
Γ, we prove, for the sake of completeness, the transformationformula
for the theta-series, which shows that, in general, the theta-series is not
a modular form of integral weight.

Let Q[x] =
m∑

k,ℓ=1

qkℓxkxℓ(qkℓ = qℓk)

be a real positive definite quadratic form inmvariables. Corresponding
to Q, we define the theta-series

ϑ(τ,Q) =
∑

g

eπiτQ[g]

whereg runs over allm-rowed columns with integral coefficients. The
seriesϑ(τ,Q) obviously converges absolutely and uniformly in any com-
pact set ofG and therefore represents a regular function ofτ in G . If

95
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the matrixQ associated to the quadratic formQ[x], is integral i.e.qkℓ is110

an integer fork, ℓ = 1, 2, . . . ,m, and if, further, the determinant|Q| = 1,
thenϑ(τ,Q) satisfies the transformation formula

ϑ

(
−1
τ
,Q

)
= (−iτ)m/2ϑ(τ,Q),

where (−iτ)α = eα log(−iτ) abd log(−iτ) is positive forx = 0. In order to
prove this, we consider the function

f (x,Q) =
∑

g

e−πQ[g+x]

with x′ = (x1, x2, . . . , xm) and Q[x] a real positive definite quadratic
form. Sincef (x,Q) is a periodic function, it has a Fourier expansion

f (x,Q) =
∑

g

a(g)e2πig′x

where the coefficientsa(g) are given by

a(g) =

1∫

0

. . .

1∫

0

f (x,Q)e−2πig′xdx (dx= dx1dx2 . . .dxn)

=
∑

n

1∫

0

. . .

1∫

0

e−πQ[h+x]−2πig′xdx

=

∞∫

−∞

. . .

∞∫

−∞

e−πQ[x]−2πig′xdx

= e−πQ−1
[g]

∞∫

−∞

. . .

∞∫

−∞

e−πQ[x+iQ−1g]dx.

If R is a real matrix such thatQ = R′R, let R′−1g = RQ−1g = (at).
Then with the help of the substitutiony = Rx, we obtain that

a(g) = |Q|− 1
2 e−πQ−1[g]

∞∫

−∞

. . .

∞∫

−∞

e−π(y+iR′−1g)(y+iR′−1g)dy
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= |Q|− 1
2 e−πQ−1[g]

m∏

r=1

∞∫

−∞

e−π(yr+iar )2
dyr

= |Q|− 1
2 e−πQ−1[g]



∞∫

−∞

e−πy2
dy



m

= |Q|− 1
2 e−πQ−1

[g]

111

Substituting the values ofa(g) in the Fourier expansion off (x,Q)
we get, forx = 0,

f (0,Q) =
∑

g

e−πQ[g] =
∑

g

a(g) = |Q|− 1
2

∑

g

e−πQ−1[g] .

If t is a positive real number, then replacingQ by tQ in the above
relation, we see immediately that

∑

g

e−πtQ[g] = (t)−
m
2 |Q|− 1

2

∑

g

e−
π
t Q−1[g] .

Our assertion follows at once, on replacingt by −iτ (i.e. essentially
invoking the principle of analytic continuation). Finally, we assume
that Q is integral and|Q| = 1 so that on the right hand side of the last
relation we can replaceg by Qg. We state the result proved above in the
following

Theorem 15. Let Q be an integral symmetric positive matrix of m rows
and determinant 1. Let Q[x] be the quadratic form associated with Q.
Then the theta series 112

ϑ(τ,Q) =
∑

g

eπiτQ[g]

satisfies the transformation formulae:

ϑ

(
−1
τ
,Q

)
= (−iτ)

m
2 ϑ(τ,Q), ϑ(τ + 2,Q) = ϑ(τ,Q).
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Theorem 15 shows that the functionϑ8(τ,Q) behaves like a modular
form of weight 4m with respect to the substitutionsT andU2, which
generateΓϑ, the theta group. Indeed,ϑ8(τ,Q) is a modular form of
weight 4m for Γϑ and therefore

ϑ8(S < τ >,Q) = (cτ + d)4mϑ8(τ,Q), for S =

(
a b
c d

)
∈ Γϑ.

Thus
ϑ(S < τ >,Q) = v(S)(cτ + d)

m
2 ϑ(τ,Q),

wherev(S) is a certain 8-th root of unity uniquely determined on fixing
a branch of the multiple-valued function (cτ + d)

m
2 . This shows that in

order to apply the theory of modular forms to theta-series for odd m,
we require the notion of a modular form of semi-integral weight with
multipliers. In particular, whenQ[x] = x2,

ϑ(τ) = ϑ(τ,Q) =
∞∑

n=−∞
eπiτn2

.

We shall call the multiplier systemv of this theta-series, thetheta
multiplier system.

Let r be a real number. We define113

(cτ + d)r = er log(cτ+d) for real (c, d) , (0, 0) andτ ∈ G

with logz = log |z| + i argz, where log|z| is real and−π < argz ≤ π.
Obviously

arg(cτ + d) =


arg

(
τ + d

c

)
+ π

2(sgnc− 1) for c , 0
π
2(1− sgnd) for c = 0.

Let M = (m1,m2) be a pair of real numbers distinct from (0, 0) and let
S =

(
a b
c d

)
be a real matrix with determinant 1. Then we have

(m1S < τ > +m2)(cτ + d) = (m′1τ +m′2),

with (m′1,m
′
2) = MS. Therefore it follows that

log(m1S < τ > +m2) = log(m′1τ +m′2) − log(cτ + d) + 2πiw(M,S)
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wherew(M,S) is an integer depending onM andS. We can now con-
clude that

w(M,S) =
1
2π
{arg(m1S < τ > +m2) − arg(m′1τ +m′2) + arg(cτ + d)}.

Obviously |w(M,S)| ≤ 3
2

. But w(M,S) is an integer, and therefore

|w(M,S)| ≤ 1. Let M =
( m0 m3

m1 m2

)
denote a real matrix of determinant

1, with M as second row. Definingw(M,S) = w(M,S), we shall now

computew(M,S) explicitly for M =
( m0 m3

m1 m2

)
, S =

(
a b
c d

)
and MS =( ∗ ∗

m′1 m′2

)
with |M| = |S| = 1. Here and in the sequel,M will always

denote the second row of the matrixM. 114

1. m1cm′1 , 0. By the definition ofw(M,S),

2πw(M,S) = arg(S < τ > +
m2

m1
) − arg(τ +

m′2
m′1

) + arg(τ +
d
c

)

+
π

2
(sgnm1 − 1)− π

2
(sgnm′1 − 1)+

π

2
(sgnc− 1)

Let x = Reτ be fixed andy = Im τ→ ∞. Then

S < τ > +
m2

m1
→ a

c
+

m2

m1
=

m′1
cm1

,

arg(S < τ > +
m2

m1
)→ −π

2
(sgnm1cm′1 − 1),

arg(τ +
m′2
m′1

)→ π

2
and arg(τ +

d
c

)→ π

2
.

This shows that

4w(M,S) = − sgnm1cm′1 + sgnm1 − sgnm′1 + sgnc.

2. cm1 , 0, m′1 = 0. Obviously,m1 = −cm′2 and

2πw(M,S) = arg(S < τ > +
m2

m1
) + arg(τ +

d
c

) +
π

2
(sgnm′2 − 1)
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+
π

2
(sgnm1 − 1)+

π

2
(sgnc− 1).

Let us takex = −d
c

. Then we see immediately that

S < τ > +
m2

m1
=

i

c2y
+

a
c
+

m2

m1
=

i

c2y
, τ +

d
c
= iy.

and

4w(M,S) = sgnm1 − 1+ sgnm′2 + sgnc

= −(1− sgnc)(1− sgnm1).

3. cm′1 , 0, m1 = 0. It is obvious thatm′1 = m2c and

2πw(M,S) = − arg(τ +
m′2
m′1

) + arg(τ +
d
c

) − τ
2

(sgnm2 − 1)

− π
2

(sgnm′1 − 1)+
π

2
(sgnc− 1)

Letting y tend to∞ for a fixedx, we obtain115

4w(M,S) = 1+ sgnc− sgnm2 − sgnm′1
= (1+ sgnc)(1− sgnm2).

4. c = 0, m1m′1 , 0. We obtain immediately thatad = 1, S < τ >=

a2τ + aband

2πw(M,S) = arg(S < τ > +
m2

m1
) − arg(τ +

m′2
m′1

) +
π

2
(sgnm1 − 1)

− π
2

(sgnm′1 − 1)− π
2

(sgnd − 1).

or 4w(M,S) = 1+ sgnm1 − sgnm′1 − sgnd

= (1− sgna)(1+ sgnm1)
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5. c = m= m′1 = 0. We havem′2 = m2d, ad= 1 and

2πw(M,S) =
−π
2

(sgnm2 − 1)+
π

2
(sgnm′2 − 1)− π

2
(sgnd − 1)

or 4w(M,S) = 1− sgnd − sgnm2 + sgnm′2
= (1− sgna)(1− sgnm2)

We collect the results above in

Theorem 16. Let M =
( ∗ ∗

m1 m2

)
, S =

(
a b
c d

)
be two real matrices with

determinant1 and(m′1,m
′
2) the second row of the matrix MS . Then

w(M,S) =



1
4{sgnc+ sgnm1 − sgnm′1 − sgn(m1cm′1)}, if m1cm′1 , 0
− 1

4(1− sgnc)(1− sgnm1), if cm1 , 0,m′1 = 0
1
4(1+ sgnc)(1− sgnm2), if cm′1 , 0,m1 = 0
1
4(1− sgna)(1+ sgnm1), if m1m′1 , 0, c = 0
1
4(1− sgna)(1− sgnm2), if c = m1 = m′1 = 0

With the help of the summand system w(M,S), we form the factor 116

systemσ(r)(M,S) for an arbitrary real number r, by defining

σ(M,S) = σ(r)(M,S) = e2πirw(M,S).

It is immediate from the definition that

(m1S < τ > +m2)r = σ(M,S)
(m′1τ +m′2)r

(cτ + d)r .

If S1 andS2 are two real two-rowed matrices with determinant 1,
then from the relationS1 < S2 < τ >>= S1S2 < τ >, we have

σ(M,S1S2) σ(S1,S2) = σ(MS1,S2) σ(M,S1).

In particular, we get from theorem 16 that

σ(S,S−1) = σ(S−1,S) andσ(E,S) = σ(S,E) = 1.

Since the value ofw(M,S) does not depend on the first row ofM or
the second column ofS, we have

w(UξM,S Uη) = w(M,S), σ(UξM,S Uη) = σ(M,S),
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whereUξ =
(

1 ξ
0 1

)
for any real numberξ.

Let Γ be a horocyclic group and letf (τ) . 0 be a function with the
transformation property

f (S < τ >) = v(S)(cτ + d)r f (τ) for S =
(

a b
c d

)
∈ Γ.

It follows immediately from the transformation property off (τ) that

v(−E)(−1)r = 1, i.e. v(−E) = e−πir . (1)

If S = S1S2 with S j =
( aj bj

cj dj

)
∈ Γ( j = 1, 2), then117

f (S < τ >) = f (S1S2 < τ >) = v(S1)(c1S2 < τ > +d1)r f (S2 < τ >)

= v(S1)v(S2)σ(S1,S2)(cτ + d)r f (τ),

whereS = (c, d). Since f (τ) . 0, we have

v(S1S2) = σ(S1,S2)v(S1)v(S2). (2)

We shall call a system of numbersv(S) defined for allS ∈ Γ a mul-
tiplier systemfor the groupΓ and real weightr, when |v(s)| = 1 and
v(S) satisfies equations (1) and (2). Ifv1(S) (respectivelyv2(S)) is a
multiplier system for the groupΓ and weightr1 (respectivelyr2) then
v1v2(S) := v1(S)v2(S) is a multiplier system forΓ and weightr1 + r2,
because

σ(r1)(S1,S2)σ(r2)(S1,S2) = σ(r1+r2)(S1,S2).

Moreover, whenr is an even integer,v(S) is aneven abelian char-
acterof Γ i.e. S→ v(S) is a homomorphism ofΓ into the multiplicative
group of complex numbers of absolute value 1 such thatv(−S) = v(S).
This shows that ifv1(S) andv2(S) are two multiplier system forΓ and

the same weightr, thenv0(S) :=
v1

v2
(S) is a multiplier system forΓ and

weight 0; thereforev0(S) is an abelian character ofΓ. Hence we obtain
all multiplier systems forΓ and weightr, from a fixed multiplier system
v1, in the formv1v0, whenv0 runs over the set of even abelian charac-
ters ofΓ. But the group of even abelian characters ofΓ is isomorphic
to the groupΓ/K∗, whereK∗ denotes the group generated by the com-
mutator subgroup ofΓ and−E. Thus the number of distinct multiplier118
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systems for any real weightr and groupΓ is equal to the order of the
groupΓ/K∗ provided there existsonemultiplier system for the weight
r and otherwise, it is 0. In particular, ifΓ is the modular group, then
the number of distinct multiplier systems forΓ and any real weight is 6,
since (Γ : K∗) = 6 as already proved in Chapter 2,§ 1 and since at least
one multiplier system for an arbitrary real weight will be shown to exist
(See proof of theorem 19 below).

Let us further assume that the above-mentioned functionf (τ) is reg-
ular in G . We shall now examine the behaviour off (τ) at the fixed
points ofΓ. Let ρ be a parabolic cusp ofΓ andA =

( a0 a3
a1 a2

)
a real matrix

of determinant 1 such thatA < ρ >= ∞. Let N denote the least positive
real number with the property that

H = A−1UNA ∈ Γ,H =
(

h0 h3
h1 h2

)
.

Obviously, the subgroup ofΓ which leavesρ fixed is generated byH
and−E. We set

g(τ) = (a1τ + a2)r f (τ).

Using the transformation property off (τ), we obtain that

g(H < τ >) = (a1H < τ > +a2)rv(H)(h1τ + h2)r f (τ)

= σ(A,H)v(H)(a1τ + a2)r f (τ)

= e2πiκg(τ),

where e2πiκ = σ(A,H)v(H), 0 ≤ κ < 1. (3)

If we replaceτ by A−1 < τ >, then 119

g(A−1UN < τ >) = e2πiκg(A−1 < τ >)

and therefore the function

h(τ) = g(A−1 < τ >)e−2πiκτ/N

is a periodic function ofτ, of periodN. Hence

h(τ) = P(e2πiτ/N)
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or(a1τ + a2)r f (τ) = e2πiκA<τ>/NP(e2πiA<τ>/N),

whereP(z) is a convergent Laurent series inz. If we assume thatP(z)
does not contain negative powers ofz, then

(a1τ + a2)r f (τ) =
∑

n+κ≥0

cn+κe
2πi(n+κ)A<τ>/N. (4)

Let τ0 be an elliptic fixed point ofΓ. Since the transformation

z=
τ − τ0

τ − τ0
= A < τ >, A =

(
1 −τ0

1 −τ0

)

maps the complex conjugate fixed pointsτ0 andτ0 to the points 0 and∞
respectively, the groupAΓA−1 has the elliptic fixed point pair 0 and∞.
Therefore for some real numberϑ, the matrix

(
eiζ 0
0 e−iϑ

)
belongs toAΓA−1

and the set of all real numbersϑ, such that
(

eiϑ 0
0 e−iϑ

)
belongs toAΓA−1,

is a discrete module containingπ. If ϑ0 is the least positive number in
this discrete module, thenπ = ϑ0ℓ for some integerℓ > 0. Let us set120

L =

(
a b
c d

)
= A−1

(
eπi/ℓ 0

0 e−πi/ℓ

)
A.

Then the order ofL is 2ℓ i.e. Lℓ = −E and the group of transforma-
tions ofΓ which leaveτ0 fixed is generated byL. From the definition of
L, we obtain thata− τ0c = eπi/ℓ. For

AL =

(
a− τ0c b− τ0d
a− τ0c b− τ0d

)
=

(
eπi/ℓ 0

0 e−πi/ℓ

)
A =

(
eπi/ℓ −eπi/ℓτ0

e−πi/ℓ −e−πi/ℓτ0 .

)

But a+ d = eπi/ℓ + e−πi/ℓ and therefore

(cτ0 + d) = (a+ d) − (a− τ0c) = e−πi/ℓ.

If ϕ(τ) = (τ − τ0)r , then

ϕ(L < τ >) = (L < τ > −L < τ0 >)r =

(
τ − τ0

(cτ + d)(cτ0 + d)

)r
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= γr(L)(cτ + d)−rϕ(τ),

with a certain constantγr (L) depending onL. Puttingτ = τ0 in the
above relation, we see immediately that

γr (L) = (cτ0 + d)r = e−πir /ℓ

Writing
g(τ) = (τ − τ0)r f (τ)

and using the transformation property ofϕ(τ) and f (τ), we obtain

g(L < τ >) = ϕ(L < τ >) f (L < τ >) = e−πir /ℓv(L)g(τ).

But Lℓ = −E andg(τ) . 0; therefore applying the mappingτ → L < 121

τ > successivelyℓ times, we get

(v(L))ℓ = eπir

or v(L) = eπir /ℓe2πia0/ℓ(0 ≤ a0 < ℓ).

This implies that

g(L < τ >) = e2πia0/ℓ

i.e. g(A−1
(
eπi/ℓ 0

0 e−πi/ℓ

)
< z>) = e2πia0/ℓg(A−1 < z>)

(with z= A < τ >).

Thus the function

h(z) = z−a0g(A−1 < z>),

which is invariant under the transformationz → e2πi/ℓ, has a power-
series expansion in terms of the local coordinatet = ((τ−τ0)/(τ−τ0))ℓ =
zℓ at the pointτ0. We may now conclude that

g(A−1 < z>) =
∑

ℓn+a0≥0

cn+a0/ℓ tn+a0/ℓ

i.e(τ − τ0)r f (τ) =
∑

n+a0/ℓ≥0

cn+a0/ℓ tn+a0/ℓ with t = ((τ − τ0)/(τ − τ0))ℓ.

(5)
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Definition. A function f(τ) is said to be an automorphic form of weight
r (r a real number) for a horocyclic groupΓ and the multiplier system
v(S) if

1) f(τ) is regular inG ,122

2) f(S < τ >) = v(S)(cτ + d)−r f (τ), for S =
(

a b
c d

)
in Γ, and

3) at every parabolic cusp A−1 < ∞ > of Γ, f (τ) has a Fourier
expansion given by(4) i.e.

(a1τ + a2)r f (τ) =
∑

n+κ≥0

cn+κe
2πi(n+κ)A<τ>/N,

where A=
( a0 a3

a1 a2

)
is a real matrix of determinant 1. In particular, if,

for the horocyclic groupΓ, we take a subgroupΓ0 of finite index in the
modular group then, in condition 3), the matrix A already belongs to
the modular group, since every parabolic cusp of the subgroup Γ0 can
be obtained in this way. We have shown above that ifτ0 is an elliptic
fixed point ofΓ, then(τ − τ0)r f (τ) has a power series expansion given
by (5) at the pointτ0.

In the following, we shallconfine ourselves to the subgroups of finite
index in the modular group. As in chapter 2,§ 1,Γ will denote the mod-
ular group and the subgroupsΓ0 under consideration will be assumed to
contain−E. The set of all automorphic forms of weightr for the group
Γ0 and the multiplier systemv(S) forms a vector space over the complex
number field. We shall denote this vector space by [Γ0, r, v].

We shall now show that the power series expansions off (τ) at equiv-
alent points are of the same type, so that the degree off (τ) at any point
on the Riemann surface associated withΓ0 is well-defined.

Case 1.Letρ = A−1 < ∞ >, ρ∗ = B−1 < ∞ >= L−1A−1 < ∞ >, L ∈ Γ0, be123
two equivalent parabolic cusps ofΓ0. ThenB−1 = ±L−1A−1U−k

for some integerk. Since−E belongs toΓ Γ0, we can assume that
B = UkAL. Let A =

( ∗ ∗
a1 a2

)
, B =

( ∗ ∗
b1 b2

)
andL =

(
a b
c d

)
. Replacing

τ by L < τ > in (4), we obtain that

(a1L < τ > +a2)r f (L < τ >) =
∑

n+κ≥0

cn+κ e2πi(n+κ)AL<τ>/N
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or (a1L < τ > +a2)
rv(L)(cτ + d)r f (τ) =

∑

n+κ≥0

cn+κ e2πi(n+κ)U−κB<τ>/N

orσ(A, L)v(L)(b1τ + b2)r f (τ) =
∑

n+κ≥0

(cn+κ e−2π(n+κ)k/N) e2πi(n+κ)B<τ>/N

or (b1τ + b2)r f (τ) =
∑

n+κ≥0

c′n+κ e2πi(n+κ)B<τ>/N

with c′n+κ =
cn+κe−2πi(n+κ)k/N

σ(A, L)v(L)
.

Case 2. Let τ0 andτ∗0 be two equivalent points ofG . Thenτ∗0 = S−1 <

τ0 > for someS =
(

a b
c d

)
in Γ0. If we replaceτ by S < τ > in (5),

we obtain that

(S < τ > −τ0)r f (S < τ >) = v(S)(cτ + d)r
(

τ − τ∗0
(cτ + d)(cτ∗0 + d)

)r

f (τ)

=
∑

ℓn+a0≥0

cn+a0/ℓ

(
τ − τ∗0
τ − τ∗0

·
cτ∗0 + d

cτ∗0 + d

)ℓn+a0

.

Thus 124

(τ − τ∗0)r f (τ) =
∑

n+a0/ℓ≥0

c∗n+a0/ℓ

(
τ − τ∗0
τ − τ∗0

)ℓn+a0

with c∗n+a0/ℓ
= (cτ∗0 + d)rcn+a0/ℓ

(
cτ∗0 + d

cτ∗0 + d

)ℓn+a0

γ(S, τ0)

whereγ(S, τ0) is a complex number of absolute value 1. Hence
our assertion is completely proved.

We define the degreevg( f ) of f (τ) at the pointg of R0, the Riemann
surface associated toΓ0, to be the least indexn + κ (respectivelyn +
a0/ℓ) such thatcn+κ , 0 (respectivelycn+a0/ℓ,0) according asg is an
equivalence class of parabolic cusps orΓ0 or not. Obviously, the degree
of f (τ) at any pointg0 of R0 is the multiplicity of the zero off (τ) at
τ0 ∈ g0 measured in terms of the local coordinate. Thus the total degree
of f (τ) i.e. the sum of the degrees off (τ) at all points ofR0 is equal to
the ‘number of zeros’ off (τ). It can be proved easily that the numberκ
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defined by (3) does not depend upon the choice of the cuspA−1 < ∞ >

in its equivalence class. We shall call the multiplier system v at a given
cuspA−1 < ∞ > unramified(respectivelyramified) according as the
numberκ defined above is zero (or not).

Let f (τ) be an element of [Γ0, r, v]. Then, at a parabolic cuspρ =
A−1 < ∞ > with A =

( a0 a3
a1 a2

) ∈ Γ, the form f (τ) has a Fourier expansion:

f (τ)

(τ − ρ)r f (τ)

 =
∑

n+κ≥0

bn+κ e2πi(n+κ)A<τ>/N for ρ = ∞ A = E
for ρ , ∞,

because, ifρ , ∞, then (τ − ρ)r = (τ + a2/a1)r is a constant multiple of125

(a1τ + a2)r . We define the number

C(ρ) =


0, if v is ramified atρ.

b0, if v is unramified atρ.

The complex numberC(ρ) defined above does not depend upon the
choice ofA, because ifB is another element inΓ such thatB−1 < ∞ >=

ρ , thenA = ±UkB and this does not affect the coefficientb0. We asso-
ciate with f (τ) thepartial fraction series

G(τ) = C(∞) +
∑

ρ,∞
C(ρ)(τ − ρ)−r .

We shall prove that the seriesG(τ) converges absolutely and uniformly
in every domain|x| ≤ c, y ≥∈> 0 for r > 2 and belongs to [Γ0, r, v]. In
order to find the contributions of the various cusps to the partial fraction
seriesG(τ), we have to consider only those cusps at which the multiplier
system is unramified. In that case, the contribution of the cusp ρ =
A−1 < ∞ > is the first term of the series

f (τ) = (a1τ + a2)−r
∞∑

n=0

cne2πinA<τ>/N, with cn = cn(A).

Let L =
(

a b
c d

)
be an element ofΓ0 and letM = AL =

( m0 m3
m1 m2

)
. Then

replacingτ by L < τ > in the above series forf (τ), we obtain that

f (τ) =
1

(a1L < τ > +a2)rv(L)(cτ + d)r

∞∑

n=0

cne2πinAL<τ>/N
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=
1

σ(A, L)v(L)(m1τ +m2)r

∑

n=0

cne2πinM<τ>/N

This shows that the contribution of the cuspL−1A−1 < ∞ >= L−1 < 126

ρ > to the seriesG(τ) is

c0(A)
σ(A, L)v(L)(m1τ +m2)r .

Let ρk = A−1
k < ∞ >, k = 1, 2, . . . , σ0 be a complete system of inequiv-

alent parabolic cusps ofΓ0 at which the multiplier system is unramified.
Then

G(τ) =
σ0∑

k=1

c0(Ak)G(τ,Ak)

with G(τ,Ak) =
∑

L−1<ρk>

1
σ(Ak, L)v(L)(m1 +m2)r

where (m1,m2) is the second row of the matrixAkL and the sum runs
over those elementsL of Γ0 which give rise to distinct cusps in the
equivalence class ofρk. Obviously L−1

1 < ρk >= L−1
2 < ρk > for Li

in Γ0(i = 1, 2) if and only if L2L−1
1 belongs to the groupZk generated

by −E andA−1
k UNkAk, whereNk is the least positive real number such

that A−1
k UNkAk belongs toΓ0. This shows that in the summation of the

so-called ‘Eisenstein series’G(τ,Ak), L runs over a complete represen-
tative system of the right cosets ofΓ0 moduloZk. ThusG(τ) is a finite
linear combination of Eisenstein series, which converge absolutely and
uniformly in every domain|x| ≤ c, y ≥∈> 0 for r > 2 and thereforeG(τ)
is regular inG . In order to prove this statement, we have to use the same
argument as forGk(τ) in chapter 2,§ 4. Further, ifS =

(
a b
c d

)
belongs to

Γ0, then

(cτ + d)−rG(S < τ >,Ak)

=
∑

L−1<ρ>

1
σ(Ak, L)

1
(cτ + d)rv(L)(m1S < τ > +m2)r

= V(S)
∑

L−1<ρ>

1
σ(Ak, L)v(S)v(L)σ(AkL,S)(m′1τ +m′2)r
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where (m′1,m
′
2) is the second row of the matrixAkLS. But127

σ(Ak, L)σ(AkL,S)v(S)v(L) = σ(Ak, LS)v(LS)

andLS for a fixedS in Γ0 whereL runs over a complete representative
system of right cosets ofΓ0 moduloZk; therefore

(cτ + d)−rG(S < τ >,Ak) = v(S)G(τ,Ak),

showing that

G(S < τ >) = v(S)(cτ + d)rG(τ) for S ∈ Γ0.

In order to prove thatG(τ) belongs to [Γ0, r, v], it remains to show that
G(τ) does not have negative exponents in its Fourier expansion at vari-
ous cusps ofΓ0. This follows immediately from

Lemma 4. Letρ1, ρ2, ρ3, . . . be a sequence of distinct real numbers and
c0, c1, c2, . . . . . . a sequence of complex numbers. If the series

g(τ) = c0 +

∞∑

n=1

cn(τ − ρn)−r

converges absolutely at a point ofG , then

1) the series g(τ) converges absolutely and uniformly in every do-
main |x| ≤ c, y≥∈> 0 and therefore g(τ) is regular inG , and

2) lim
y→∞

(A−1 < τ > −ρ)rg(A−1 < τ >) =


cn for ρ = ρn

0 for ρ , ∞, ρ1, ρ2, . . .

lim
y→∞

g(τ) = lim
y→∞

g(A−1 < τ >) = c0 for ρ = ∞,128

uniformly in a given domain|x| ≤ c. Here A is a real matrix of
determinant 1 such thatρ = A−1 < ∞ >.

Proof. (i) Let g(τ) be absolutely convergent at the pointτ0 = x0+ iy0

of G . Let τ = x+ iy be inG such that|x| ≤ c, y ≥∈> 0. Then for

τ′ = x′ + iy′ =
τ − x0

y0
, we have|x′| ≤ c′, y′ ≥∈′> 0 for certainc′
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and∈′> 0 depending onc and∈. By lemma 3 (chapter 2,§ 4), it
follows that

|τ′ + x0 − ρn

y0
| ≥ δ|i + x0 − ρn

y0
| = δ

y0
|τ0 − ρn| =⇒

|τ − ρn| ≥ δ|τ − ρn|

for someδ = δ(∈, c) > 0. From here follows immediately asser-
tion 1) of the lemma.

(ii) If ρ = ∞, thenA−1 =
(
λ a
0 λ−1

)
andg(A−1 < τ >) is a series of

the same type asg(τ). Therefore, it suffices to consider the case
A = E. But

lim
y→∞

g(τ) = c0, uniformly in |x| ≤ c

follows directly from lim
y→∞

(τ − ρn)−r = 0 for all n and the uniform

convergence of the seriesg(τ).

Let us now assume thatρ , ∞. The caseρ = ρn for somen is 129

reduced to the caseρ , ∞, ρ1, ρ2, . . ., if we replace the seriesg(τ)
by the seriesg(τ)−cn(τ−ρn)−r , which satisfies the requirements of

lemma 4. LetA =
( a0 a3

a1 a2

)
andρ = A−1 < ∞ >= −a2

a1
, ρ1, ρ2, . . .

After some computation, we get

A−1 < τ > −ρ = −1/(a2
1(τ − A < τ >)),

A−1 < τ > −ρ
A−1 < τ > −ρn

=
1

a2
1(ρn − ρ)(τ − A < τn >)

Therefore

(A−1 < τ > −ρ)rg(A−1 < τ >)

= a−2r
1


c0 ∈0

(τ − A < ∞ >)r +

∞∑

n=1

cn(ρn − ρ)−r ∈n

(τ − A < ρn >)r



with certain∈n of absolute value 1 forn ≥ 0. This is just a series
of the type described in lemma 4 but now without constant term.
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Thus, as we have proved already

lim
y→∞

(A−1 < τ > −ρ)rg(A−1 < τ >) = 0 uniformly in |x| ≤ c.

This completes the proof of lemma 4.

Hence our assertion that the seriesG(τ) belongs to [Γ0, r, v] fol-
lows immediately from lemma 4. Moreover, it is obvious from the
above discussion thatf (τ)−G(τ) is a cusp form i.e. in the Fourier
expansion off (τ)−G(τ) at various cusps ofΓ0, the constant term
is equal to zero. Thus we have proved the following

�

Theorem 17. For every automorphic form f(τ) belonging to[Γ0, r, v],
r > 2, there exists an automorphic form G(τ) of the same type in the130

form of a partial fraction series

G(τ) = C(∞) +
∑

ρ,∞
C(ρ)(τ − ρ)−r

whereρ runs over all distinct parabolic cusps ofΓ0 different from∞,
such that f(τ) −G(τ) is a cusp form.

With the help of the general theory, we completely characterise some
linear spaces of automorphic forms for the theta-group in the following

Theorem 18. Let vϑ be the multiplier system for the theta seriesϑ(τ) =∑∞
n=−∞ eπiτn2

andΓϑ, the theta group generated byτ and U2. Then the
space[Γ, k/2, vk] is generated byϑk(τ) for k = 1, 2, 3, 4, 5, 6, 7.

Proof. We have proved, in chapter 2§ 1, thatΓ has two inequivalent
parabolic cusps say∞ and 1. Obviously, the multiplier systemvϑ is
unramified at∞. We shall prove now thatvϑ is ramified at the cusp 1.
Let A = TU−1 =

(
0 1
−1 1

)
, so that∞ = A < 1 >. Since the width of the

cusp sector at the cusp 1 is 1, the transformationH = A−1UA belongs
to Γ. The transformationH =

(
0 1
−1 2

)
generates a cyclic subgroup of

Γϑ/{±E}which has 1 as a fixed point. By theorems 15 and 16, we obtain
that with respect to the cusp 1

e2πiκ = σ(A,H)vϑ(H)
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= σ

(
(−1, 1),

(
0 1
−1 2

))
σ((−1, 0),U−2)vϑ(T)vϑ(U−2)

= vϑ(T) = eπi/4

But by assumption 0≤ κ < 1, thereforeκ = 1/8 and if f (τ) belongs 131

to [Γϑ, k/2, vk
ϑ
] for 1 ≤ k < 8, then f (τ) has an unavoidable zero at

τ = 1 of multiplicity k/8. Sincev8
ϑ
(S) = 1 for everyS ∈ Γϑ, f 24(τ)

belongs to [Γϑ, 12k, 1]. But we have already proved that∆k(τ) belongs
to [Γϑ, 12k, 1]; therefore, the functionf 24(τ)/∆k(τ) is invariant under the
transformations ofΓϑ. This implies thatf 24(τ) and∆k(τ) have the same
number of zeros on the Riemann surfaceR associated toΓ. Since∆(τ)
has 3 zeros on the Riemann surface, namely a double zero at∞ and a
simple zero at 1, the number of zeros off (τ) is k/8. In particular, the
number of zeros ofϑ(τ) is 1/8. Butϑ(τ) has a zero of multiplicity 1/8 at
1; it follows that onR, it is the only zero ofϑ(τ) andϑ(τ) , 0 for τ in G .
Thus, for 1≤ k < 8,ϑ−k(τ) f (τ) is invariant under the transformations of
Γϑ and has no singularities. Consequently,ϑ−k(τ) f (τ) is constant, which
proves our theorem completely.

It is an immediate consequence of the above theorem that the partial
fraction series ofϑk(τ) for 5 ≤ k < 8 is a constant multiple ofϑk(τ).
But that constant has to be equal to 1, because the constant terms in the
Fourier series of the above-mentioned forms are equal to 1; therefore,
from the Fourier series ofG(τ), we obtain the number of representations
of an integer as sum ofk squares for 5≤ k < 8. For 1≤ k < 5, the
analogous results could be obtained by using the method of Hecke i.e.
by considering the series of the typeG2(τ, s), which we introduced in
chapter 2,§ 4 for deducing an infinite product expression for∆(τ).

We shall now determine all the multiplier systems for the modular 132

group. �

Theorem 19. For the modular groupΓ and for every weight r, there
exist exactly 6 multiplier systems.

Proof. For the proof of the theorem, it is sufficient to prove that for
every weightr, there exists a multiplier system as we have already stated
above.
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Since∆(τ) , 0 for τ belonging toG , we can defineg(τ) = log∆(τ)
uniquely inG , so that

g(τ) = 2πiτ + 24
∞∑

n=1

log(1− e2πinτ).

We set∆r (τ) = erg(τ). From∆(S < τ >) = (cτ + d)12∆(τ), follows
that

∆r/12(S < τ >) = v0(S)(cτ + d)r∆r/12(τ).

for S =
(

a b
c d

)
∈ Γ with a certain multiplier systemv0(S) for the groupΓ

and the weightr. Hence the theorem is established.
In order to calculate the multiplier systems explicitly, weproceed as

follows. Letτ0 denote any one of the elliptic fixed pointse2πi/3, i of Γ.
ThenV =

(
1 1
−1 0

)
(respectivelyT =

(
0 1
−1 0

)
) generates the subgroup ofΓ

leavinge2πi/3 (respectivelyi) fixed. Letv(S) be a multiplier system for
Γ and the weightr. Since

V3 = T2 = −E,w(T,T) = w(V2,V) = −1 andw(V,V) = 0,

we have

e−πir = σ(V2,V) σ(V,V)(v(V))3 = σ(T,T)(v(T))2

= e−2πir (v(V))3 = e−2πir (v(T))2,

showing that133

v(V) = e
πir
3 +

2πi
3 a, (a = 0, 1, 2)

v(T) = e
πir
2 +

2πi
2 b, (b = 0, 1).

But the multiplier systemv is uniquely determined byv(V) andv(T);
therefore the six sets of pairs (a, b) completely determine the multiplier
system.

SinceUV = T, we have obviously

v(T) = σ(U,V)v(U)v(V) = v(U)v(V)

= e2πiκv(V), 0 ≤ κ < 1,



1. Modular forms and Partial Fraction Series 115

becausev(U) = e2πiκ, 0 ≤ κ < 1.
Therefore the following congruence holds:

r
12
≡ κ + a

3
+

b
2

( mod 1). (6)

It is obvious that for a givenr, the integersa, b are uniquely determined
by the numberκ. Moreover

κ ≡ r − h
12

( mod 1) forh = 4a+ 6b.

Hence we obtain the following table for the values ofh, a andb,

h 0 4 6 8 10 14

a 0 1 0 2 1 2

b 0 0 1 0 1 1

which shows that the multiplier system is uniquely determined byh. For 134

instance, for the multiplier systemv0(S) given in the proof of theorem 19
it can be proved easily that

v0(U) = e
πir
6 =⇒ κ ≡ r/12( mod 1)=⇒ h = 0 =⇒ a = 0, b = 0,

showing thatv0 is the multiplier system forΓ and weightr determined
by h = 0. We deduce immediately that the theta multiplier system can-
not be extended to a multiplier system for the groupΓ, because if it were
true, then

vϑ(U2) = 1 =⇒ vϑ(U) = ±1 =⇒ κ = 0 or
1
2

and this contradicts the congruence equation (6) whenr =
1
2

.

Before concluding this section, we give an application of the theory
of modular forms to the theory of quadratic forms. We shall prove here
that an even integral matrixQ > 0 with |Q| = 1 exists only ifm ≡
0( mod 8), wherem is the number of rows and columns ofQ. By
theorem 15,

ϑ(τ,Q) =
∑

g

eπiτQ[g]
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belongs to [Γ,m/2, v] for some multiplier systemv. SinceQ[x] is an
even integer for every integral vectorx, it follows immediately that
v(U) = 1 implying thatκ = 0. Similarly, we obtain thatv(T) = eπim/4

and thereforeb = 0. The result now follows from the congruence rela-
tion 6. Conversely, ifm ≡ 0( mod 8), then there existm-rowed even
integral matrices, as is well known from the theory of quadratic forms. A135

nice construction of such forms has been given by E. Witt withthe help
of the theory of lattices in Abh. Math. Sem. Hamburg 14 (1941). �

2 Poincare Series and Eisenstein Series

In this section, we shall denote, as before, the modular group byΓ and a
subgroup of finite index inΓ by Γ0. Moreover, unless otherwise stated,
Γ0 will be assumed to contain−E. We shall construct some special
modular forms called ‘Eisenstein series’ and ‘Poincaré series’ which
not only belong to the space [Γ0, r, v] but also generate the same. The
proof of this statement will be completed in the next section. First of
all, we show that [Γ0, r, v] is a vector space of finite dimension over
the complex number field. Letf (τ) and g(τ) be two modular forms
belonging to [Γ0, r, v] such that f (τ) . 0, g(τ) . 0; then f (τ)/g(τ) is
an automorphic function for the groupΓ0, which is either a constant or
has the order zero. In any case,f (τ) andg(τ) have the same number of
(always inequivalent) zeros. Letν be the number of zeros off (τ) and
N0 the least integer greater thanν. Let

f (τ) =
∑

n+κ≥0

cn+κe
2πi(n+κ)τ/N , (0 ≤ κ < 1)

be the Fourier expansion off (τ) at the cusp∞. Then f (τ) is determined
uniquely by the coefficientscn+κ for n ≤ N0. Indeed, ifcn+κ = 0 for
n ≤ N0, then f (τ) must vanish identically, since the total numberν of
zeros of f (τ) . 0 is less thanN0. This shows that a modular formf (τ)
belonging to [Γ0, r, v] is uniquely determined byN0 + 1 coefficients in
its Fourier series at∞ and therefore the dimension of [Γ0, r, v] is atmost
N0 + 1.

We shall now explain the construction of Poincaré series for Γ0. Let136
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f (τ) be a modular form belonging to the space [Γ0, r, v]. Then at the
cuspA−1 < ∞ > with A =

( a0 a3
a1 a2

) ∈ Γ, f (τ) has the Fourier expansion

(a1τ + a2)r f (τ) =
∑

n+κ≥0

cn+κe
2πi(n+κ)A<τ>/N

whereN is the least natural number so thatH = A−1UNA belongs toΓ0

andκ is a real number determined by

σ(A,H)v(H) = e2πiκ, 0 ≤ κ < 1.

If we replaceτ by L < τ > with L =
(

a b
c d

)
∈ Γ0, then by using the

transformation formula forf (τ), we obtain

f (τ) =
∑

n+κ≥0

cn+κ
e2πi(n+κ)M<τ>/N

σ(A, L)v(L)(m1τ +m2)r

whereM = AL =
( m0 m3

m1 m2

)
. We now make use of theprinciple of cross

summationi.e. in the above expansion forf (τ), we putcn+κ = 0 for all
n except for one fixedn for which we putcn+κ = 1 and then formally∑

over a complete systemγ(A, Γ0) of transformationsM = AL with
L ∈ Γ0 such that the second rows (m1,m2) of various matricesM = AL
are distinct. In other words, we form the function

Gr(τ, v,A, Γ0, n+ κ) =
∑

M∈γ(A,Γ0)

e2πi(n+κ)M<τ>/N

σ(A, L)v(L)(m1τ +m2)r . (1)

This series is a so-calledPoincaré series for the groupΓ0. We shall
now show that the Poincare seriesGr(τ, v,A, τ0, n+ κ) does not depend137

upon any special choice of the systemγ(A, Γ0) and forr > 2, it belongs
to the space [Γ0, r, v]. Let L andL∗ be two transformations ofΓ0 such
that M = AL and M∗ = AL∗ have the same second row. ThenM∗ =
UkM for some integerk, therefore

L∗L−1 = A−1UkA ∈ Γ0 =⇒ N dividesk

=⇒ L∗L−1 = Hℓ if k = Nℓ andH = A−1UNA.
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Consequently, we have

e2πi(n+κ)M∗<τ>/N = e2πiκℓe2πi(n+κ)M<τ>/N .

Further

pℓ = σ(A,Hℓ)v(Hℓ) = σ(A,Hℓ)σ(H,Hℓ−1)v(H)v(Hℓ−1)

= σ(A,Hℓ−1) σ(A,H)v(H)v(Hℓ−1) = e2πiκpℓ−1 = e2πiℓκ.

But

σ(A, L∗)v(L∗) = σ(A,HℓL)v(HℓL)

=
σ(AHℓ)σ(A,Hℓ)σ(Hℓ, L)

σ(Hℓ, L)
v(Hℓ)v(L)

= σ(A, L)pℓv(L) = e2πiℓκσ(A, L)v(L);

therefore, if we takeM∗ instead ofM in γ(A, Γ0), the contribution to
the seriesGr (τ, v,A, Γ0, n+ κ) remains unchanged, which proves that the
series does not depend upon any special choice of the systemγ(A, Γ0).
The series

∑
(m1,m2),(0,0)

|m1τ + m2|−r , which converges uniformly in ev-

ery domain|x| ≤ c, y ≥∈> 0 for r > 2, is a majorant for the series138

Gr(τ, v,A, Γ0, n+κ). It follows in the same manner as forv = 1,n+κ = 0,
that the seriesGr(τ, v,A, Γ0, n + κ) converges absolutely and uniformly
in every domain|x| ≤ c, y ≥∈> 0 for r > 2 and therefore represents a
regular function inG . In order to examine the behaviour of the series
Gr(τ, v,A, Γ0, n+ κ) under the transformations of the modular group,we
define, for anyS ∈ Γ, the transformvS of the multiplier systemv by

vS(L∗) = v(L)
σ(L,S)
σ(S, L∗)

with L∗ = S−1LS.

If L∗i = S−1LiS for Li ∈ Γ0(i = 1, 2), then

vS(L∗1L∗2) = σ(L∗1, L
∗
2)vS(L∗1)vS(L∗2)

⇐⇒ v(L1L2)
σ(L1L2,S)
σ(S, L∗1L∗2)

= σ(L∗1, L
∗
2)v(L1)

σ(L1,S)
σ(S, L∗1)

v(L2)
σ(L2,S)
σ(S, L∗2)
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⇐⇒ σ(L1, L2)σ(L1L2,S)
σ(S, L∗1L∗2)

=
σ(L∗1, L

∗
2)σ(L1,S)σ(L2,S)

σ(S, L∗1)σ(S, L∗2)

⇐⇒ σ(L1, L2S)σ(S, L∗1)σ(S, L∗2) = σ(L1,S)σ(S, L∗1)σ(L1S, L∗2)

⇐⇒ σ(L1, L2S)σ(S, L∗1)σ(S, L∗2) = σ(L1,S)σ(S, L∗1)σ(L1S, L∗2)

⇐⇒ σ(L1, L2S)σ(S, L∗2) = σ(S, L∗2)σ(L1, L2S).

ThusvS is a multiplier system for the groupS−1Γ0S and weightr. In
particular, whenS belongs toΓ0,

VS(S−1LS) =
σ(S−1, LS)σ(L,S)

σ(S−1,S)
v(L) =

σ(L,S)
σ(S, L∗)

v(L),

showing thatvS = v. It can be verified easily that 139

γ(A, Γ0)S = Γ′(A, Γ0) for S ∈ Γ0,

γ(A, Γ0)S = γ′′(AS,S−1Γ0S) for S ∈ Γ,

whereγ′ and γ′′ are systems of the same type asγ. Let S =
(

a b
c d

)

be an arbitrary element ofΓ and (m∗1,m
∗
2) the second row of the matrix

MS = ALS. Since

σ(A, L) σ(AL,S)v(L) =
σ(A, L)σ(AL,S)σ(S, L∗)

σ(L,S)
vS(L∗)

= σ(A, LS)σ(S, L∗)vS(L∗)

= σ(A,S)σ(AS, L∗)vS(L∗),

we have

Gr(S < τ >, v,A, Γ0, n+ κ)
(cτ + d)r

=
1

σ(A,S)

∑

M∗∈γ′′(AS,S−1Γ0S)

e2πi(n+κ)M∗<τ>/N

σ(AS, L∗)vS(L∗)(m∗1τ +m∗2)r

whereM∗ = MS = ALS. This shows that

Gr(S < τ >, v,A, Γ0,N + κ)
(cτ + d)r =

1
σ(A,S)

Gr(τ, v
S,AS,S−1Γ0S, n+ κ).
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In particular, whenS belongs toΓ0, we have

Gr (S < τ >, v,A, Γ0, n+ κ)
(cτ + d)r

= v(S)
∑

M∗∈γ′(A,Γ0)

e2πi(n+κ)M∗<τ>/N

σ(A, LS)v(LS)(m∗1τ +m∗2)r
i.e.

Gr (S < τ >, v,A, Γ0, n+ κ)
(cτ + d)r

= v(S)Gr(τ, v,A, Γ0, n+ κ),

since140

σ(A, L)σ(AL,S)v(L) =
σ(A, L)σ(AL,S)
σ(L,S)v(S)

v(LS)

=
σ(A, LS)v(LS)

v(S)
.

The above discussion shows that forr > 2, Gr(τ, v,A, Γ0, n + κ)
belongs to [Γ0, r, v] provided the Fourier expansion ofGr(τ, v,A, Γ0, n+
κ) at the cusp∞ contains no terms with a negative exponent. But the
latter is obvious from the fact that the majorant

∑
(m1,m2),(0,0)

|m1τ +m2|−r

of Gr (τ, v,A, Γ0, n+κ) is bounded uniformly inx wheny tends to infinity.
Hence we have proved

Theorem 20. The Poincaré series

Gr(τ, v,A, Γ0, n+ κ) =
∑

M∈γ(A,Γ0)

e2πi(n+κ)M<τ>/N

σ(A, L)v(L)(m1τ +m2)r

represents a modular form of weight r for the groupΓ0 and multiplier
system v, provided r> 2. Moreover, it is a cusp form, for n+ κ > 0.

If the multiplier systemv is unramified at the cuspA−1 < ∞ > i.e.
κ = 0, then forn = 0

Gr(τ, v,A, Γ0, 0) =
∑

M∈γ(A,Γ0)

1
σ(A, L)v(L)(m1τ +m2)r .

Since we can assume that withAL, also−AL belongs toγ(A, Γ0) and
the contribution of both these transformations toGr(τ, v,A, Γ0, 0) is the
same, we see immediately that

Gr(τ, v,A, Γ0, 0) = 2G(τ,A),
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whereG(τ,A) is the series introduced in the previous section. We refer141

to the seriesGr(τ, v,A, Γ0, 0) as the Eisenstein series for the groupΓ0.
In what follows, we shall adhere to the following notation:

( f |S)(τ) := f (S < τ >)(cτ + d)−r

for real S =
(

a b
c d

)
with |S| > 0 and anyf defined onG . It is obvious

that
( f |S1S2)(τ) = σ(S1,S2)(( f |S1)|S2)(τ)

for two real matricesS1 andS2. If f (τ) belongs to [Γ0, r, v], then

( f |S)(τ) = v(S) f (τ) for S ∈ Γ0.

If S1 andS2 are two transformations belonging to the modular group,
then

(vS1)S2 = vS1S2;

for, if L belongs toΓ0; then

(vS1)S2(S−1
2 S−1

1 LS1S2) = vs1(S−1
1 LS1)

σ(S−1
1 LS1,S2)

σ(S2,S−1
2 S−1

1 LS1S2)

= v(L)
σ(L,S1)σ(S−1

1 LS1,S2)

σ(S1,S−1
1 LS1)σ(S2,S−1

2 S−1
1 LS1S2)

= v(L)
σ(L,S1)σ(S−1

1 , LS1S2)σ(LS1,S2)σ(S−1
1 , LS1)

σ(S−1
1 , LS1)σ(S1,S−1

1 )σ(S−1
1 S1S2,S−1

2 S−1
1 LS1S2)

= v(L)
σ(S−1

1 , LS1S2)σ(S1,S2)σ(L,S1S2)σ(S−1
1 ,S1S2)

σ(S1,S−1
1 )σ(S−1

1 , LS1S2)σ(S1S2,S−1
2 S−1

1 LS1S2)

= v(L)
σ(L,S1S2)

σ(S1S2,S−1
2 S−1

1 LS1S2)
= vS1S2(S−1

2 S−1
1 LS1S2).

With the help of this composition rule for multiplier system, it is 142

easy to see that the mapping

f (τ)→ g(τ) = ( f |A)(τ) (A ∈ Γ)

is a bijection linear transformation from the vector space [Γ0, r, v] to the
vector space [A−1Γ0A, r, vA]. If f (τ) belongs to [Γ0, r, v], then (f |A)(τ)
belongs to [A−1Γ0A, r, vA]; indeed, forL ∈ Γ0,

(( f |A)|A−1LA)(τ) = σ(A−1, LA)((( f |A)|A−1)|LA)(τ)
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=
σ(A−1, LA)
σ(A,A−1)

( f |LA)(τ)

=
σ(A−1, LA)σ(L,A)

σ(A,A−1)
(( f |L)|A)(τ)

=
σ(A−1, LA)σ(L,A)

σ(A,A−1)
v(L)( f |A)(τ)

= vA(A−1LA)( f |A)(τ).

It is, moreover, trivial to see that (f |A)(τ) is regular inG and in its
Fourier expansion at the various parabolic cusps ofA−1Γ0A, no term
with a negative exponent occurs. Conversely, ifg(τ) belongs to
[A−1Γ0A, r, vA], then as above (g|A−1)(τ) belongs to [Γ0, r, (vA)A−1

]. but
(vA)A−1

= vAA−1 = v; therefore (g|A−1)(τ) belongs to [Γ0, r, v], proving
our assertion above.

The following theorem gives explicitly the dimension of thespace
[Γ, r, v].

Theorem 21. Let v be a multiplier system for the modular group and
weight r such that143

v(U) = e2πik, v(V) = e
πir
3 +

2πia
2 , v(T) = e

πir
2 +

2πib
2 ,

where0 ≤ κ < 1, 0 ≤ a < 3, 0 ≤ b < 2 and a, b are integers. Then

dimension[Γ, r, v] =


r

12 − κ −
a
3 −

b
2 + 1 , for r − 12κ ≥ 0

0 , for r − 12κ < 0

Proof. (i) If k is a negative even integer, then the dimension of the
space [Γ, k, 1] is zero. Assume thatk is a negative even integer
and the modular formf (τ) belongs to [Γ, k, 1]. Then the function
f 2(τ)G−k/2

4 (τ), which is invariant under the transformations ofΓ
and has no poles, must be a constant. But we have already seen
that G4(ρ) = 0 for ρ = e2πi/3; therefore f 2(τ)G−k/2

4 (τ) = 0, im-
plying that f (τ) ≡ 0. Hence the dimension of the space [Γ, k, 1] is
zero for negativek.
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(ii) Let r∗ be the weight andv∗ the multiplier system of the modular
form ∆κ(τ) for the groupΓ. Let κ∗, a∗ and b∗ be the numbers
determined byv∗ in the sense of theorem 21. Obviouslyκ∗ = κ

andr∗ = 12κ; thereforeκ∗ = κ =
r∗

12
. But we have proved in the

previous section that
r∗

12
≡ κ∗ +

a∗

3
+

b∗

2
( mod 1); therefore, it

follows thata∗ = b∗ = 0. Consequently, we obtain

r∗

6
+

a∗

3
=

r∗

6
= 2κ ≡ r

6
+

a
3

( mod 1)

r∗

4
+

b∗

2
=

r∗

4
= 3κ ≡ r

4
+

b
2

( mod 1),

showing thatv andv∗ take the same values for the transformations
U,V andT. Sincer ≡ 12κ = r∗( mod 2), v andv∗ are identical. Let 144

f (τ) be a modular form belonging to the space [Γ, r, v]. Then f (τ) has an
unavoidable zero of multiplicity at least equal toκ at the cusp∞ and the
above discussion shows thatg(τ) = f (τ)∆−κ(τ) belongs to [Γ, r−12κ, 1].
Conversely, ifg(τ) belongs to [Γ, r − 12κ, 1], theng(τ)∆κ(τ) belongs to
[Γ, r − 12κ, 1], theng(τ)∆κ(τ) belongs to [Γ, r, v]. Thus it is proved that
the dimensions of [Γ, r, v] and [Γ, r − 12κ, 1] are the same. Therefore, if

r − 12κ
12

= g+
a
3
+

b
2
,

whereg, a andb are integers such that 0≤ a < 3, 0 ≤ b < 2, then by
theorem 14 it follows that, forr − 12κ ≥ 0 (due tor − 12κ being an even
integer),

dimension [Γ, r − 12κ, 1] = g+ 1 =
r − 12κ

12
− a

3
− b

2
+ 1.

For r − 12κ < 0, the dimension of [Γ, r − 12κ, 1] is zero by part (i) of our
proof. Hence the theorem is established.

As in the case of modular forms of integral weight for the modular
group, the number of zeros of a modular formf (τ) belonging to [Γ, r, v]
is r/12. Indeed, the number of zeros off (τ) is equal to the sum of the
number of zeros of∆κ(τ) andg(τ) = f (τ)∆−κ(τ). Now we have seen in
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the course of the proof of theorem 21 thatg(τ) is a modular form the
integral weightr − 12κ and so the number of zeros ofg(τ) is a modular
form of integral weightr − 12κ and so the number of zeros ofg(τ) is
r − 12κ

12
. Therefore the number of zeros off (τ) is κ+

r − 12κ
12

=
r

12
. �

3 Metrisation and Completeness Theorem

The general transformation formula

(Gr (τ, v,A, Γ0, n+ κ)|A)(τ) =
1

σ(A,S)
Gr(τ, v

S,AS,S−1Γ0S, n+ κ)

proved for the Poincaré series defined by (1) of§ 2 shows that145

Gr(τ, v,A, Γ0, b + κ) is a cusp form forn + κ > 0; in casen + κ = 0
i.e. n = 0 = κ, Gr(τ, v,A, Γ0, 0) does not represent a cusp form, since
the constant term in its Fourier expansion at the cuspA−1 < ∞ > is
different from zero. In order to prove that the Poincaré series and Eisen-
tein series together generate the space [Γ0, r, v], it is sufficient in view of
theorem 17 to prove the same for the space [Γ, r, v0] of cusp forms con-
tained in [Γ0, r, v]. By usingPetersson’s Metrisation Principle, we shall
prove presently that the seriesGr(τ, v,A, Γ0, n + κ) generate the space
[Γ0, r, v]0 for any (fixed and) givenA.

Let D be a hyperbolic triangle inG with proper or improper vertices
and f (τ), g(τ) two functions, which are continuous inD and are such
that the functionf (τ)g(τ)yr (τ = x + iy) is bounded inD. Then the
integral

χ(D, f , g) =
"

D

f (τ)g(τ)yr−2dxdy

exists. IfS =
(

a b
c d

)
is any real matrix of determinant 1, then

χ(DS−1, f |S, g|S) = χ(D, f , g),

whereDS−1 is the image ofD by S−1; indeed, if we replaceτ by S < τ >

in the integrand inχ(D, f , g) and use the invariance ofy−2dxdy, we have

f (S < τ >)g(S < τ >){y/(cτ + d)(cτ + d)}ry−2dxdy
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= ( f |S)(τ)(g|S)(τ)yr−2dxdy,

which proves the assertion. In particular, iff (τ) and g(τ) belong to 146

[Γ0, r, v], then the integralχ(D, f , g) exists provided that eitherf (τ) of
g(τ) vanishes at an improper vertex ofD. Moreover, ifS belongs toΓ0,
then obviously

χ(DS−1, f , g) = χ(DS−1, f |S, g|S) = χ(D, f , g).

LetF0 be a fundamental domain forΓ0, which consists of a finite num-
ber of hyperbolic triangles. Further, let at least one off (τ) andg(τ) in
[Γ0, r, v], be a cusp form. Then the integral

( f , g)Γ0 =
1
I(F)

"

F0

f (τ)g(τ)yr−2dxdy

exists, whereI(F0) is the hyperbolic area ofΓ0. From the transfor-
mation property ofχ(D, f , g) above, it follows that the integral (f , g)Γ0

does not depend upon the choice ofF0. As a matter of fact, (f , g)Γ0 is
independent ofΓ0 as well, in the sense that iff and g are two mod-
ular forms of weightr for two subgroupsΓ0 andΓ1 of finite index in
Γ, then (f , g)Γ0 = ( f , g)Γ1. We consider first the case when one of the
groupsΓ1 or Γ2 contains the other. Let us assume thatΓ1 is contained
in Γ0 and (Γ0 : Γ1) = µ. Let Γ0 =

⋃µ

i=1 Γ1Ai for someAi belonging
to Γ0, i = 1, 2, . . . , µ be a coset decomposition ofΓ0 moduloΓ1. Then
F1 =

⋃µ

i=1(F0)Ai is a fundamental domain forΓ1. SinceI(F1) = µI(F0) 147

and
⋃

(F0)Ai for i = 1, 2, . . . , µ is a fundamental domain forΓ0, it fol-
lows immediately that

( f , g)Γ0 =
1
µ

µ∑

i=1

1
I((F)Ai )

"

(F0)Ai

f (τ)g(τ)yr−2dx dy

=
1

µI(F0)

"
⋃
i
(F0)Ai

f (τ)g(τ)yr−2dx dy

=
1
I(F1)

"

F1

f (τ)g(τ)yr−2dx dy= ( f , g)Γ1 .
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In the general case, consider the groupΓ∗ generated byΓ0 andΓ1. It is
obvious that bothΓ1 andΓ0 are subgroups of finite index inΓ∗ and f (τ)
andg(τ) are modular forms of weightr for the groupΓ∗ and the same
multiplier system. Hence, by the particular case considered above, we
get (f , g)Γ0 = ( f , g)Γ∗ = ( f , g)Γ1.

In the following, so long as no confusion is possible, we shall simply
write ( f , g) for ( f , g)Γ0. We call (f , g) the scalar productof f andg. The
following properties of the scalar product (f , g) are immediate from the
definition:

1) ( f , g) is linear in f .

2) ( f , g) = (g, f ).

3) ( f , f ) ≥ 0, ( f , f ) = 0 =⇒ f = 0.

4) ( f |A, g|A) = ( f , g) for A in Γ .

Properties 1), 2) and 3) show that the scalar product (f , g) defines a148

positive-definite unitary metric on the space [Γ0, r, v]0.
For the explicit calculation of the scalar product of a cusp form and

a Poincaré series, we need to prove

Lemma 5. If f (τ) is a cusp form in[Γ0, r, v], then | f (τ)|yr/2 (with τ =
x+ iy) is bounded inG .

Proof. If in | f (τ)|yr/2, we replaceτ by A < τ > (A ∈ Γ), then| f (τ)|yr/2

is transformed to|( f |A)(τ)|yr/2. In particular, whenA belongs toΓ0,
|( f |A)(τ)| = |v(A) f (τ)| = | f (τ)| and therefore| f (τ)|yr/2 is left invariant
by Γ0. Thus, in order to complete the proof of the lemma, it is sufficient
to prove that| f (τ)|yr/2 is bounded in a fundamental domainF0 or Γ0.
Let ρ1, ρ2, . . . , ρσ be a complete system of inequivalent cusps ofΓ0 and
let∞ = A j < ρ j >, A j ∈ Γ for j = 1, 2, . . . , σ. Let p j( j = 1, 2, . . . , σ)

be cusp sectors at the cuspsρ j of Γ0. ThenF0 =
σ⋃

j=1
p j is a fundamental

domain forΓ0 and for the proof of the lemma, it is sufficient to prove that
| f (τ)|yr/2 is bounded in eachp j . It is obvious that| f (τ)|yr/2 is bounded
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in p j if and only if |( f |A−1
j )(τ)|yr/2 is bounded inA j < p j >. Since

( f |A−1 j)(τ) has the Fourier expansion
∑

n+κ j>0

cn + κ je
2πi(n+κ j )τ/Nj .

it tends to zero exponentially asy → ∞, uniformly in x. It follows
that |( f |A−1

j )(τ)|yr/2 tends to zero asy→ ∞ and therefore is bounded in
A j < p j >. Hence the lemma is proved. �

For the sake of brevity, we setγ = γ(E, Γ0) and 149

e(τ) = e2πi(n+κ)τ/N.

By the definition of Poincaré series, we have

G(τ) := Gr(τ, v,E, Γ0, n+ κ) =
∑

∈Γ
v(L)(e|L)(τ).

For the scalar product (f ,G) of a cusp formf (τ) in [Γ0, r, v] with G(τ),
formal calculation yields

( f ,G) =
1
I(F0)

"

F0

f (τ)
∑

L∈γ
v(L)(e|L)(τ)yr−2dxdy

=
1
I(F0)

∑

L∈γ

"

F

( f |L)(τ)(e|L)(τ)yr−2dxdy.

=
1
I(F0)

∑

L∈γ

"

(F0)L

f (τ)e(τ)yr−2dxdy

=
2
I(F0)

"

L

f (τ)e(τ)yr−2dxdy, (1)

whereL =
⋃
L∈γ

(F0)L. The factor 2 appears on the right hand side of (1),

because we can assume that bothL and−L belong to the set and their
contributions to the sum are the same. The interchange of summation
and integration would be justified in the above formal computation, if
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we prove that the last integral converges absolutely. LetZ denote the
subgroup ofΓ0 generated byUN, whereN is the least natural number so
determined thatUN belongs toΓ0. Let Γ0 =

⋃
i ZLi, Li ∈ Γ0, be a coset

decomposition ofΓ0 moduloZ. Then the set of all the matricesLi is a
possible choice for the setγ and thereforeL is a fundamental domain150

for Z. We decompose the setL into a countable number of setsLk such
that the images ofLk by elementsZ belongs to the domainG = {τ|τ =
x+ iy, 0 ≤ x < N, y ≥ 0}, which is a fundamental domain forZ. Since the
integrand f (τ)e(τ)yr−2dxdy is invariant under the transformationτ →
τ + N, we get immediately that

2
I(F0)

∫ ∫

L

f (τ)e(τ)yr−2dxdy=
2
I(F0)

∞∫

0

N∫

0

f (τ)e(τ)yr−2dxdy (2)

Lemma 6 can be used to see that the integral on the right hand side of
(2) converges absolutely forr > 2. Hence the formal computation for
obtaining (1) is justified and we have indeed

( f ,G) =
2
I(F0)

∞∫

0

N∫

0

f (τ)e−2πi(n+κ)τ̄/Nyr−2dxdy.

Using the Fourier expansion off at the cusp∞ given by

f (τ) =
∑

k+κ>0

ck+κ( f )e2πi(k+κ)τ/N

with

ck+κ( f ) =
1
N

N∫

0

f (τ)e2πi(k+κ)τ/Ndx,

it follows immediately that (f ,G) = 0 in casen+ κ = 0 and otherwise,

( f ,G) =
2
I(F0)

∞∫

0

{
N∫

0

f (τ)e2πi(n+κ)τ/Ndx}e2πi(n+κ)(τ−τ̄)/Nyr−2dy
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=
2N
I(F0)

cn+κ( f )
∫

0

e−4π(n+κ)y/Nyr−2dy

=
2N
I(F)

(4π(n+ κ)/N)1−rΓ(r − 1)cn+κ( f ) for n+ κ > 0

The general case can be reduced to this particular case (A = E), if we 151

note that

( f ,Gr( , v,A, Γ0, n+ κ)) =

= ( f |A−1,Gr( , v,A, Γ0, n+ κ)|A−1)

=
1

σ(A,A−1)
( f |A−1,Gr( , vA−1

,E,A, Γ0A−1, n+ κ)).

We are thus led to thefundamental formula of the metrisation principle
as stated in

Theorem 22. Let f(τ) be a cusp form belonging to[Γ0, r, v] for r > 2,
and let

( f |A−1)(τ) =
∑

n+κ>0

cn+κ( f ,A)e2πi(n+κ)τ/N

be the Fourier expansion of f(τ) at the parabolic cusp A−1 < ∞ > of Γ0

with A inΓ. Then we have

( f ,Gr ( , v,A, Γ0, n+ κ))

=


2NΓ(r−1)

σ(A,A−1)I(F0)

(
4π(n+κ)

N

)1−r
cn+κ( f ,A), for n+ κ > 0

0 for n+ κ = 0

We call two modular forms f(τ) and g(τ) orthogonal, if( f , g) exists
and is equal to 0. The above theorem enables us to characterise the
Poincaré series completely. In this connection, we prove

Theorem 23. For r > 2, the Poincaré series Gr(τ, v,A, Γ0, n + κ) is
uniquely determined upto a constant factor, by the following properties:

(i) n + κ > 0. The series is a cusp form, which is orthogonal to all the152

forms f(τ) of the space[Γ0, r, v] for which the(n+ κ)− th Fourier
coefficient cn+κ( f ,A) at the cusp A−1 < ∞ > of Γ0 vanishes.
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(ii) n + κ = 0. The series is orthogonal to all the forms of the space
[Γ0, r, v]0. Moreover, the constant term in the Fourier series of
Gr (τ, v,A, Γ0, 0) at a parabolic cusp ofΓ0 is different from zero or
equal to zero according as the cusp under consideration is equiv-
alent to A−1 < ∞ > or not.

Proof. (i) n+ κ > 0. The fact that the seriesGr(τ, v,A, Γ0, n+ κ) has
the property (i) is an immediate consequence of theorem 22. If
cn+κ(Gr ,A) = 0 then applying theorem 22 tof (τ) = Gr(τ, v,A, Γ0,

n+ κ), this series vanishes identically and thereforecn+κ( f ,A) = 0
for every form f (τ) in [Γ0, r, v]. Hence, if g(τ) is a cusp form
which has the property (i) of theorem 23, there exists clearly a
constantc such that

cn+κ(g,A) = ccn+κ(Gr ,A) =⇒ cn+κ(g− cGr ,A) = 0.

This shows that the modular formg − cGr is orthogonal tog as
well as toGr and thereforeg− cGr is orthogonal to itself. Hence
g− cGr = 0 i.e. g = cGr .

(ii) n+ κ = 0. If Gr(τ, v,A, Γ0, 0) has in its Fourier expansion at the
cuspB−1 < ∞ > (B ∈ Γ) a constant term different from zero, then

(Gr ( , v,A, Γ0, 0)|B−1)(τ) =
1

σ(A, B−1)
Gr (τ, v

B−1
,AB−1, BΓ0B−1, 0)

does not vanish at the parabolic cusp∞. But this is possible if
and only if AB−1BΓ0B−1 = AΓ0B−1 contains a matrixM whose
second row is (0,±1) i.e. for some integralt, AΓ0B−1 contains153

±U t or equivalently±A−1U t = LB−1 for someL in Γ0 and an
integert. The last condition means precisely that the cuspsA−1 <

∞ > andB−1 < ∞ > are equivalent underΓ0. It is now clear that
the Eisenstein seriesGr = Gr(τ, v,A, Γ0, 0) satisfies the second
assertion in (ii) of theorem 23; by theorem 22,Gr is orthogonal
to [Γ0, r, v]0 i.e. Gr has the property (ii) of theorem 23. Letg(τ)
be any modular form in [Γ, r, v] which has the same property. We
know that, for some constantc, g − cGr is a cusp form. But then
g− cGr is orthogonal not only toGr but also tog. Thusg− cGr is
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also orthogonal to itself leading tog = cGr , proving theorem 23
completely.

An other important consequence of theorem 22 is �

Theorem 24(Completeness Theorem). The system of Eisenstein series
for the groupΓ0 can be completed into a basis of the space[Γ0, r, v], r >
2, by adding a finite number of Poincaré series Gr(τ, v,A, Γ0, n+ κ) for
any (fixed and) given A.

Proof. By theorem 17, it is sufficient to prove that the Poincaé series se-
riesGr(τ, v,A, Γ0, n+ κ) for some fixed generate [Γ0, r, v]0. LetT be the
subspace of [Γ0, r, v]0 generated by the Poincaré seriesGr(τ, v,A, Γ0, n+
κ)(n + κ > 0). Let t be the dimension ofT and { f1, f2, . . . , ft} an or-
thonormal basis ofT i.e.

( fi , fk) = δik for i, k = 1, 2, . . . , t.

For an arbitrary elementf (τ) of [Γ0, r, v]0, let

( f , fi) = ai for i = 1, 2, . . . , t.

It is obvious that the cusp formf −
t∑

i=1
ai fi is orthogonal tof1, f2, . . . , ft 154

and therefore to every cusp formGr(τ, v,A, Γ0, n+ κ) (n+ κ > 0). But

this implies, by theorem 22, thatf −
t∑

i=1
ai fi = 0 i.e. f belongs toT.

HenceT = [Γ0, r, v]0, which proves theorem 25. �

By using the theory of the ‘Weierstrass’ points’, Peterssonhas shown
how to choose the valuesn1, n2, . . . , nt so that the seriesGr(τ, v,A, Γ0, ni

+ κ)i = 1, 2, . . . , t form a basis of the space [Γ0, r, v]0.
In the case of the modular groupΓ, theorem 21 enables us to make

a very precise statement. We observed already thatf → f∆−κ defines
a bijective linear mappain of [Γ, r, v] onto [Γ, r − 12κ, 1], showing that
the dimensionµ of [Γ, r, v] is positive if and only ifr − 12κ ≥ 0 and
r − 12κ , 2 (sincer − 12κ always is even). The assumptionr > 2
guarantees the convergence of the Poincaré series. By theorem 21, we
get

r
12
= µ + κ +

a
3
+

b
2
− 1 for r − 12κ ≧ 0
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and as we have proved already, this number coincides with thenumber
of zeros of a modular formf in [Γ, r, v] not vanishing identically.

Theorem 25. If [Γ, r, v] has positive dimensionµ and r > 2, the series
Gr(τ, v, n + κ) := Gr(τ, v,E, Γ, n + κ) for n = 0, 1, 2, . . . , µ − 1 form a
basis for[Γ, r, v].

Proof. Every form f (τ) ∈ [Γ, r, v] has a Fourier expansion of the type

f (τ) =
∞∑

n=0

cn+κe
2πi(n+κ)τ.

The necessary and sufficient condition thatf (τ) vanishes identically is
thatcn+κ = 0 for n = 0, 1, . . . , µ − 1. For, if the firstµ coefficientscn+κ155

vanish, thenf (τ) has unavoidable zeros of orderκ,
a
3
,
b
2

and an ordinary

zero of orderµ, which cannot happen unlessf (τ) = 0. Let

ϕm(τ) =
∞∑

n=0

c(m)
n+κe

2πi(n+κ)τ(m= 0, 1, 2, . . . , µ − 1)

form a basis of [Γ, r, v]. Then the matrix

C = (c(m)
n+κ)m, n = 0, 1, 2, . . . , µ − 1

is non-singular. If the matrixC were singular, then there exist complex
numbersx0, x1, . . . , xµ−1 not all zero such that

µ−1∑

m=0

xmc(m)
n+κ = 0, n = 0, 1, 2, . . . , µ − 1.

This implies that

µ−1∑

m=0

xmϕm(τ) =
∞∑

n=0

{
µ−1∑

m=0

xmc(m)
n+κ}e2πi(n+κ)τ = 0

showing thatϕ0(τ), φ1(τ), . . . , ϕµ−1(τ) are not linearly independent,
which is a contradiction. ThusC is non-singular and thereforeC−1 trans-
forms{ϕ0(τ), ϕ1(τ), . . . , ϕµ−1(τ)} into a new basis for which the analogue
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of the matrixC is the unit matrix. Thus we can assume, without loss of
generality, that alreadyϕ0(τ), ϕ1(τ), ϕ2(τ), . . . , ϕµ−1(τ) form such a basis
i.e.

ϕm(τ) = e2πi(m+κ)τ +

∞∑

n=µ

c(m)
n+κe

2πi(m+κ)τ (m= 0, 1, . . . , µ − 1).

We now prove the linear independence ofGr(τ, v, n+ κ)(n = 0, 1, 2, . . . ,
µ − 1). Let

µ−1∑

n=0

xnGr(τ, v, n+ κ) = 0.

Then, by theorem 22, form+ κ > 0, m< µ, it follows that 156

0 = (ϕm(τ),
µ−1∑

n=0

xnGr(τ, v, n+ κ)) =
6
π
Γ(r − 1)(4π(n+ κ))1−r xm.

As a result, forκ > 0, xm = 0 for m= 0, 1, . . . , µ − 1, and ifκ = 0, then
xm = 0 for m = 1, 2, . . . , µ − 1. But, in the latter case,x0Gr(τ, v, 0) = 0
implies thatx0 = 0, sinceGr(τ, v, 0) . 0. HenceGr(τ, v, n + κ) (n =
0, 1, 2, . . . , µ− 1) in any case are linearly independent and theorem 25 is
proved.

We have already shown that the space [Γ, 12, 1] is of dimension 1
and is generated by the modular form∆(τ), which has a Fourier expan-
sion

∆(τ) =
∞∑

n=1

τ(n)e2πinτ

at the parabolic cusp∞ of Γ, whereτ(n) is Ramanujan’s function. By
using theorem 23, we shall now show that the Poincaré seriesG12(τ, 1, n)
vanishes identically if and only ifτ(n) = 0. If τ(n) = 0, then, by theo-
rem 23, the seriesG12(τ, 1, n) is orthogonal to∆(τ) and therefore to all
cusp form including itself, which implies thatG12(τ, 1, n) = 0. Con-
versely, ifG12(τ, 1, n) = 0, then obviouslyτ(n) = 0. It has been proved
in 1959 by D.H. Lehmer thatτ(n) , 0 for n ≤ 113740230287998. �
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4 The Fourier Coefficients of Integral
Modular forms

Let Γ0 be a subgroup of finite index in the modular groupΓ and letv be
a multiplier system for the groupΓ0 and the weightr > 0. We shall find
some estimates for the Fourier coefficientscn+κ in the Fourier expansion157

at the cusp∞ of a modular formf (τ) ∈ [Γ0, r, v], namely

f (τ) =
∑

n+κ≥0

cn+κe
2πi(n+κ)τ/N , (1)

whereN > 0 is the least integer such thatUN belongs toΓ0 andv(UN) =
e2πiκ.

Let sℓ = A−1
ℓ

< ∞ > (ℓ = 1, 2, . . . , σ) with Aℓ ∈ Γ be a complete
system of pairwise inequivalent parabolic cusps ofΓ0. In particular, let
s1 = ∞ andA1 = E. Let Pℓ be the subgroup ofΓ0 consisting of those
transformations ofΓ0 which leavesℓ fixed i.e.

Pℓ = {L|L < sℓ >= sℓ, L ∈ Γ0}.

It is nothing but the group generated by−E andHℓ = A−1
ℓ

UNℓAℓ where
Nℓ is the least natural number such thatA−1

ℓ
UNℓAℓ belongs toΓ0. Let

Γ0 =
⋃

k

PℓLkℓ

be a coset decomposition ofΓ0 moduloPℓ. We set

Mkℓ = AℓLkℓ =

(
akℓ bkℓ

ckℓ dkℓ

)
.

Since we can replaceLkℓ by −Lkℓ, we can assume without loss of gen-
erality that eitherckℓ > 0 or ckℓ = 0 anddkℓ = 1. The mappingMkℓ →
M−1

kℓ < ∞ > is one-to-one; because, ifM−1
kℓ < ∞ >= M−1

pq < ∞ >, then
sℓ = A−1

ℓ
< ∞ > andsq = A−1

q < ∞ > are equivalent with respect toΓ0,
which is possible only ifq = ℓ. It follows now thatLpℓL−1

kℓ < sℓ >= sℓ
i.e. LpℓL−1

kℓ belongs toPℓ and thereforep = k. Every rational number158

s can be represented in the formM−1
kℓ < ∞ >. Sinces is a parabolic
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cusp ofΓ0, s is equivalent tosℓ = A−1
ℓ

< ∞ > for some suitableℓ i.e.
s = L−1A−1

ℓ
< ∞ > for L belonging toΓ0. Let L = KℓLkℓ, whereKℓ

belongs toPℓ. Then

s= L−1
kℓ K−1

ℓ A−1
ℓ < ∞ >= L−1

kℓ A−1
ℓ < ∞ >= M−1

kℓ < ∞ > .

We form the set

F∗ =
∞⋃

n=−∞
Un < K >,

whereF is the fundamental domain ofΓ given by

F = {τ||τ| ≥ 1, |2x| ≤ 1}.

It can be seen easily that

G =

σ⋃

ℓ−1

⋃

k

M−1
kℓ < F

∗ >,

becauseM−1
kℓ < F∗ > consists exactly of those images ofF underΓ,

which haveM−1
kℓ < ∞ > as an improper vertex. SinceF∗ ⊂ {τ|y ≥

√
3

2
},

it follows that M−1
kℓ < ∞∗ > is contained in the circle

(x+
dkℓ

ckℓ
)2 + (y− 1

√
3c2

kℓ

) ≤ 1

3c4
kℓ

, (2)

when ckℓ > 0. We shall now find out a set of necessary conditions,
which have to be satisfied, if the domainM−1

kℓ < F∗ > is to intersect a
given line

n = {τ|0 ≤ x ≤ N, y = η},

with 0 < η <

√
3

2
in at least two points. Ifckℓ = 0, then M−1

kℓ < 159

F∗ >= F∗ and thereforeM−1
kℓ < F∗ > does not intersectn. Therefore

ckℓ is necessarily greater than zero. SinceM−1
kℓ < F∗ > is contained in

the circle defined in (1), the liney = η must intersect this circle in two
points, if it is to have at least two points in common with the set M−1

kℓ <



136 3. Modular forms of Real Dimension

F∗ >. This means that the coordinates of the points of intersection given
by

x = −dkℓ

ckℓ
±

√
2n
√

3c2
kℓ

− η2, y = η

must satisfy the conditions

0 < ckℓ <

√
2
√

3η
, (3)

x1 = x1(Mkℓ) = −
dkℓ

ckℓ
−

√
2n
√

3c2
kℓ

− η2 < N, (4)

x2 = x2(Mkℓ) = −
dkℓ

ckℓ
+

√
2η
√

3c2
kℓ

− η2 > 0. (5)

If the condition (3) were not satisfied, then the liney = η will intersect
the circle (1) in at most one point. Moreover ifx1 ≥ N or x2 ≤ 0, then,
from x1 < x2, the liney = η and the circle will have again at most one
point in common. From (4) and (5), we have

−
√

2η
√

3c2
kℓ

− η2 < −dkℓ

ckℓ
< N +

√
2η
√

3c2
kℓ

− η2

and therefore
−1 < −dkℓ/ckℓ < N + 1. (6)

Moreover, it is immediate from (3) that the intervalx1 ≤ x ≤ x2 is160

contained in the interval|x+ dkℓ/ckℓ | ≤ hc−1
kℓ
√
η with h =

√
2√
3
. Conse-

quently

nkℓ = M−1
kℓ < F

∗ > ∩n ⊂ {τ|y = η, |x+ dkℓ

ckℓ
| < hc−1

kℓ
√
η}.

It is obvious thatnkℓ consists of at most a finite number of connected
segments and

n =
⋃

k,ℓ

nkℓ,
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wherenkℓ contains at least two points only if

0 < ckℓ <
h
√
η
,−1 < −dkℓ

ckℓ
< N + 1.

Let
( f |A−1

ℓ )(τ) =
∑

n+κℓ≥0

c(ℓ)
n+κℓe

2πi(n+κℓ)τ/Nℓ

be the Fourier expansion off (τ) at the cuspA−1
ℓ

< ∞ > of Γ0(ℓ =
1, 2, . . . , σ). If ℓ = 1, this series is identical with the series (1). We set

τ = M−1
kℓ < τ

∗ >= L−1
kℓ A−1

ℓ < τ∗ >, Lkℓ =

(
α β

γ δ

)
andAℓ =

(
a b
c d

)
.

Then

| f (τ)| = | f (L−1
kℓ A−1

ℓ < τ∗ >)| = | − γA−1
ℓ < τ∗ > +α|r | f (A−1

ℓ | < τ
∗ >)|

= |(−γA−1
ℓ < τ∗ > +α)r |(−cτ∗ + a)r ( f |A−1

ℓ )(τ∗)|
= |(−ckℓτ

∗ + akℓ)
r |( f |A−1

ℓ )(τ∗)|,

which implies that 161

| f (τ)| = |ckℓτ + dkℓ |−r |( f |A−1
ℓ (τ∗))|. (7)

Since |( f |A−1
ℓ

)(τ∗)| is bounded forτ∗ ∈ F∗, we can assume after any
necessary normalization that

|( f |A−1
ℓ )(τ∗)| ≤ 1 for τ∗ ∈ F∗, ℓ = 1, 2, . . . , σ, (8)

The Fourier coefficientcn+κ of f (τ) is given by

cn+κ =
1
N

N∫

0

f (τ)e−2πi(n+κ)τ/Ndx.

Choosing the path of integration along the liney = η, we obtain that

N|cn+κ | ≤ e2π(n+κ)η/N
∫

n

| f (τ)|dx
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≤ e2π(n+κ)η/N
∑

k,ℓ

∫

nkℓ

| f (τ)|dx. (9)

But, by the definition ofnkℓ, we see that ifτ belongs tonkℓ, thenτ∗ =
Mkℓ < τ > belongs toF∗ and therefore, by (7) and (8),

| f (τ)| ≤ |ckℓτ + dkℓ |−r for τ ∈ nkℓ.

Consequently

|
∫

nkℓ

f (τ)dx| ≤
∫

|x+ dkℓ
ckℓ
|≤hc−1

kℓ

√
n

{(ckℓx+ dkℓ)
2 + c2

kℓη
2}− r

2 dx

≤ 2c−r
kℓ

hc−1
kℓ
√
η∫

0

(u2 + η2)−
r
2 du

≤ 2c−r
kℓ {

η∫
η−rdu+

∫ hc−1
kℓ
√
η

η

u−rdu},

because 0< η < hc−1
kℓ
√
η by (3). It follows now that162

∫

nkℓ

| f (τ)|dx =


0(c−r

kℓ η
1−r , c−1

kℓ η
1−r
2 ) for r > 0, r , 1

0(c−1
kℓ log( he

ckℓ
√
η
)) for r = 1

(10)

Here and in the following, 0(ω) means in general that|0(ω)
ω
| is

bounded by a constant depending only onΓ0 and r. Summing up the
right hand side of (10) over all pairs of integers (ckℓ, dkℓ) (not necessar-
ily coprime) which satisfy the inequalities (3) and (6), we get

∑

k,ℓ

∫

nkℓ

| f (τ)|dx=


η1−ro(

∑
k,ℓ c−r

kℓ ) + η
1−r
2 0(

∑
k,ℓ c−1

kℓ ), for r > 0, r , 1

0(
∑

k,ℓ c−1
kℓ ) log( eh

ckℓ
√
η
), for r = 1,

(11)
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since the right hand side certainly includes the pairs (ckl, dkl) occurring
on the left hand side. In what follows, all summations overk, ℓ are
carried out in this sense. It can be proved easily that

∑

k,ℓ

c−ρkℓ ≤ (N + 2)
[hη1/2]∑

c=1

c1−ρ

=



o(1) for ρ > 2,

o(log 1
η
) for ρ = 2,

o(ηρ/2−1) for 0 < ρ < 2.

and

∑

k,ℓ

c−1
kℓ log{ eh

ckℓ
√
η
} ≤ (N + 2)

[hη−1/2]∑

c=1

log{ eh
c
√
η
} = o(η−1/2);

by Stirling’s formula, namely 163

n! = αnnn+ 1
2 e−n, lim

n→∞
αn =

√
2π,

with hη−1/2 = n+ϑ, where 0≤ ϑ < l andn is an integer, we have indeed

[hη−1/2]∑

c=1

log{ eh
c
√
η
} = n+ n log(n+ ϑ) − logαn − (n+

1
2

) logn+ n

= 2n+ n log(1+
ϑ

n
) − logαn −

1
2

logn

< 2n+ ϑ − logαn −
1
2

logn = o(n) = o(η−
1
2 ).

Therefore, equation (11) gives

∑

k,ℓ

∫

nkℓ

|( f (τ)|dx=



o(η1−r ) for r > 2,

o(1
η

log 1
η
) for r = 2,

o(η−r/2) for 0 < r < 2.

(12)

With n+ κ =
1
η

, (9) and (12) lead us then to
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Theorem 26. LetΓ0 be a subgroup of finite index in the modular group
and v a multiplier system for the groupΓ0 and weight r> 0. Let

f (τ) =
∑

n+κ

cn+κe
2πi(n+κ)τ/N

be the Fourier expansion of a modular form belonging to the space
[Γ0, r, v]. Then we have

cn+κ =



o((n+ κ)r − 1) for r > 2,

o((n+ κ) log(n+ κ)) for r = 2, as n+ κ → ∞,
o((n+ κ)r/2) for 0 < r < 2,

For the Fourier coefficients of a cusp formf (τ) belonging to [Γ0, r, v]164

with r ≥ 2, we have sharper estimates given by the following

Theorem 27. Let

f (τ) =
∑

n+κ>0

cn+κe
2πi(n+κ)τ/N

be a cusp form in[Γ0, r, v], whereΓ0 is a subgroup of the modular group
with finite index and v is a multiplier system for the groupΓ0 and weight
r. Then

cn+κ = o((n+ κ)
r
2 ) as n+ κ → ∞

for all r ≥ 2.

Proof. Since f (τ) is a cusp form, by§ 3, lemma 5, the function| f (τ)|y r
2

is bounded inG i.e.

| f (τ)| ≤ Cy−
r
2 for some constantC.

Therefore for the Fourier coefficientcn+κ we have

|cn+κ | =
1
N
|

N∫

0

f (τ)e−2πi(n+κ)τ/Ndx|

≤ Cy−
r
2 e2π(n+κ)y/N

The estimate forcη+κ stated in theorem 27 follows immediately on tak-
ing y = 1/(n+ κ). �
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We have seen in chapter 1§ 5, that then− th Fourier coefficient of
the Eisenstein seriesGk(τ), for any even integerk ≥ 4, coincides with
dk−1(n) but for a constant factor independent ofn. But 165

nk−1 < dk−1(n) < ζ(k− 1)nk−1, (k > 2)

since

dk−1(n) =
∑

d|n
(
n
d

)k−1 < nk−1
∞∑

d=1

1

dk−1
= ζ(k− 1)nk−1.

Therefore, fork > 2, the Fourier coefficients of the Eisenstein series
increase more rapidly than the Fourier coefficients of cusp forms. Hence
the estimates given in theorem 26 forr > 2 can not be sharpened, in
general. However, sharper estimates for the Fourier coefficients of cusp
forms belonging to the congruence subgroups of the modular group have
been obtained by using some estimates of the so-calledKloosterman
sumsgiven by A. Weil. For this, we refer to a paper of K.B. Gundlach
[1].
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Non-Analytic Modular
Forms

1 The Invariant Differential Equations
168

The theory of non-analytic modular forms has a close connection with
Siegel’s researches in the theory of indefinite quadratic forms and is
decisively influenced by this theory. The Eisenstein series

G(τ, τ̄);α, β) =
∑

(c,d),(0,0)

(cτ + d)−α(cτ̄ + d)−β, (Re(α + β) > 2)

whereα−β is an even integer and the sum runs over all pairs of integers
(c, d) , (0, 0) is the prototype of a non-analytic modular form. In what
follows, the functions (cτ+d)−α and (cτ̄+d)−β for real numbers (c, d) ,
(0, 0) andτ ∈ G will be defined by

(cτ + d)−α = e−α log(cτ+d), (cτ̄ + d)−β = e−β log(cτ̄+d)

with log(cτ + d) = log |cτ + d| + i arg(cτ + d),−π < arg(cτ + d) ≤ π
and log(cτ̄ + d) = log |cτ̄ + d| + i arg(cτ̄ + d),−π ≤ arg(cτ̄ + d) < π;

here the branches of the logarithm are so chosen that always

log(cτ + d) + log(cτ̄ + d) is real.

Let S =
(

a b
c d

)
be a real matrix with|S| = ad− bc> 0 and letα, β be

two complex numbers. Then for anyf (τ, τ̄), we definef |S
α,β

by

( f |S
α,β

)(τ, τ̄) = (cτ + d)−α(cτ̄ + d)−β f (S < τ >,S < τ̄ >).

145
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It is obvious that the series defined above satisfies the transformation
formula169

(G( , ;α, β)|α,βS)(τ, τ̄) = G(τ, τ̄;α, β)

for S belonging to the modular group. In this section, our aim is to
find a differential equation, which has the given seriesG(τ, τ̄;α, β) as a
solution and which is left invariant by the transformationsf → f |S

α,β

.

Following a method of Selberg, we shall show here that this problem
can be reduced in a natural way to the eigen-value problem forLaplace’s
differential operator in a certain 3-dimensional Riemannian space to be
defined. LetR denote the direct product of the upper half-plane and the
real t-axis i.e.

R = {(τ, t)|τ = x+ iy, y > 0 andt real}.

To any real matrixR =
( ∗ ∗

c d
)

with |R| = 1 and any real number a, we
associate a transformationRa of R defined by

Ra(τ, t) = (R< τ >, t + arg(cτ + d) + 2πa).

If R andS are two elements of the groupΩ of all real matrices of de-
terminant 1, anda, b are any two real numbers, then we define the com-
posite of two transformationsRa andSb by

(Ra · Sb)(τ, t) = Ra(Sb(τ, t)).

We shall now show that the composite of two transformationsRa and
Sb is again a transformation of the same type associated toRS. Let
(m1,m2), (c, d) and (m∗1,m

∗
2) be the second rows of the matricesR,S and

RS respectively. Then, by definition, we have170

(Ra · Sb)(τ, t) = Ra(S < τ >, t + arg(cτ + d) + 2πa)

= (RS< τ >, t + arg(cτ + d) + 2πa+ arg(m1S < τ > +m2) + 2πb)

= (RS< τ >, t + arg(m∗1τ +m∗2) + 2π(a+ b+ w(R,S)))

= (RS)a+b+w(R,S)(τ, t),

showing that
Ra · Sb = (RS)a+b+w(R,S). (1)
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It is obvious from the definition of the mappingRa thatRa is equal to the
identity mapping on the spaceR whenR= E anda = 0 orR= −E and

a = −1
2

. From (1), it follows that the mapping (S−1)−b−w(S,S−1) is the

inverse (Sb)−1 of the mappingSb. Thus the set̂Ω of all transformations

Ra constitutes a group. If we substituteR = −E anda = −1
2

in (1), we

see that
Sb = (−S)b− 1

2+w(−E,S),

which shows that every elementRa of Ω̂ has two representations namely,
one associated to the matrixRand the other to the matrix−R. Let Z de-
note the subgroup ofΩ consisting of the two elements±E andẐ denote
the subgroup of̂Ω consisting of the elements (±E)a for every real num-
ber a. It can be verified that the kernel of the homomorphism

Ra→ RZ

from Ω̂ toΩ/Z is Ẑ i.e. Ω̂/Z andΩ/Z are isomorphic. Given a discrete
subgroupΓ of Ω, we are interested in finding arelation preserving rep- 171

resentationof Γ/Z in the groupΩ̂ i.e. we want to find a special set of
representatives for the cosets of a subgroupΓ̂ of Ω̂ modulo Ẑ, where
Γ̂ = {Sa|S ∈ Γ, a arbitrary real}, such that these representatives them-
selves form a group isomorphic withΓ/Z. We shall obtain one such
representation, if we define a real-valued functionw(R) for everyR ∈ Γ
satisfying the equations

Rw(R) = (−R)w(−R) (2)

Rw(R)Sw(S) = (RS)w(RS) (3)

for R andS belonging toΓ. For the existence of such a functionw(R),
it is obviously necessary and sufficient that the following two equations
are satisfied:

w(−R) = w(R) − 1
2
+ w(−E,R) (4)

w(RS) = w(R) + w(S) + w(R,S). (5)
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It can be shown that equations (4) and (5) are simultaneouslysolvable
for a horocyclic group for which the system of generators anddefining
relations are well-known. We shall give here a solution for the modular
group, which we denote byΓ. SinceV3 = T2 = −E, we must have

(Vw(V))
3 = (Tw(T))

2 = (−E)w(−E) = E0,

whereE0 is the unit elements of̂Ω. This implies that

3w(V) + w(V,V) + w(V,V2) = 2w(T) + w(T,T) = w(−E) = −1
2
.

It now follows that

w(V) =
1
6
, w(T) =

1
4
.

Let Γ̂0 be the subgroup of̂Ω generated byV1
6

andT1
4

. Then the cor-172

respondenceV1
6

→ VZ andT1
4

→ TZ can be extended to a homomor-

phism ofΓ̂0 ontoΓ/Z. Therefore all the relations, which are satisfied by
v1
6

andT1
4

, will hold betweenVZ andTZ. But the converse is also true,

because the defining relationsV3Z = Z andT2Z = Z for the groupΓ/Z
are trivially satisfied byV1

6

andT1
4

. Therefore the groupŝΓ0 andΓ/Z

are isomorphic. This shows that ifSa andSb are two elements of̂Γ0,
thenSa = Sb and thereforea = b. Thus we can writea = w(S) and it is
obvious that the functionw(S) satisfies the equations (4) and (5). From
T = UV, it follows that

w(T) = w(U) + w(V),w(U) =
1
12
.

The groupΩ/Z cannot have a relation-preserving representation in
Ω̂; for, if it were true, then

(
λ 0
0 λ−1

) (
1 1
0 1

) (
λ−1 0
0 λ

)
=

(
1 λ2

0 1

)
for realλ > 0
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would imply that

w(

(
1 λ2

0 1

)
) = w(

(
λ 0
0 λ−1

)
) + w(

(
1 1
0 1

)
) + w(

(
λ−1 0
0 λ

)
)

= w(

(
1 1
0 1

)
) =

1
12
,

whereasw(U2) = 2w(U) =
1
6

, leading to a contradiction forλ =
√

2. 173

We define a positive definite metric form onR by

ds2 =
dx2 + dy2

y2
+ (dt − dx

dy
)2. (6)

This metric form onR is invariant under the transformation ofΩ̂. In

order to prove this, it is sufficient to prove thatdt − dx
2y

is invariant

under the transformations of̂Γ, because we have already shown that
dx2 + dy2

y2
is invariant underΓ and therefore under̂Γ. Let S =

(
α β
γ δ

)
and

(τ∗, t∗) = Sa(τ, t) for some real numbera. Then

dt∗ − dt = d(argγτ + δ) =
1
2i
{d log(γτ + δ) − d log(γτ̄ + δ)}

=
γ

2i
{ dτ
γτ + δ

− dτ̄
γγ̄ + δ

}

and

dx∗

2y∗
− dx

2y
=

dτ∗ + dτ̄∗

4y∗
− dτ + dτ̄

4y

=
1
4y
{(γτ̄ + δ
γτ + δ

− 1)dτ + (
γτ + δ

γτ̄ + δ
− 1)dτ̄}

=
γ

2i
{ dτ
γτ + δ

− dτ̄
γτ̄ + δ

}

implying what we wanted to show. HenceR is a Riemannian space
with the groupΓ̂ acting on it. The Laplacian∆ on the spaceR is given
by

∆ = y2(
∂

∂x2
+
∂2

∂y2
) + y

∂2

∂x∂t
+

5
4
∂2

∂t2
. (7)
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We shall adopt the notation

(ϕ|Sa)(τ, t) = ϕ(Sa(τ, t)),

whereϕ(τ, t) is any function defined onR andSa is an element of̂Γ. We174

now formulate the indicated eigen-value problem. LetΓ0 be a subgroup
of finite index inΓ andv1 an even abelian character ofΓ0. Moreover,
let Γ̂0 denote the relation-preserving representation ofΓ0 in Ω̂. Then
Γ̂0 consists of the transformationsSw(S)(S ∈ Γ0). We look for a real
analytic functionϕ(τ, t) which satisfies the conditions:

1) (∆ + λ)ϕ(τ, t) = 0 for some realλ ≥ 0,

2) (ϕ|Sw(S))(τ, t) = v1(S)ϕ(τ, t) (S ∈ Γ0),

3) lim
T→∞

1
2T

T∫

−T

∫ ∫

F0

ϕ(τ, t)ϕ(τ, t)y−2dxdydt< ∞,

whereF0 is a fundamental domain forΓ0 in G .
It can be seen that the functions

ϕ(τ, t) = g(τ)e−irt

satisfy conditions 1), 2) and 3), wherer is a given real number andg(τ)
satisfies the conditions:

1’) {y2(
∂2

∂x2
+
∂2

∂y2
) − iry

∂

∂x
+ λ − 5

4
r2}g(τ) = 0,

2’) g(S < τ >)e−ir arg(cτ+d) = v0(S)v1(S)g(τ), with v0(S) = e2πiw(S)

andS =
(

a b
c d

)
∈ Γ0,

3’)
∫ ∫

F0

g(τ)g(τ)y−2dxdy< ∞.

By (4) and (5), we have175

v0(RS) = σ(r)(R,S)v0(R)v0(S), v0(−E) = eπir

showing thatv0 is a multiplier system for the groupΓ0 and weightr and
thereforev(S) = v0(S)v1(S) runs over all the multiplier systems for the
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groupΓ0 and weightr whenv1 runs over all the even abelian characters
of Γ0. As a matter of fact,v0(S) is the multiplier system for∆r/12(τ)
mentioned in theorem 19. Finally, we have

e−ir arg(cτ+d) = e
r
2{log(cτ̄+d)−log(cτ+d)} = (cτ̄ + d)

r
2/(cτ + d)

r
2 .

Let α =
q+ r

2
, β =

q− r
2

andq an arbitrary number. We introducef (τ)

by
g(τ) = y

q
2 f (τ).

Then the conditions 1’), 2’) and 3’) lead to the following conditions for
f :

1”) {y2(
∂2

∂x2
+
∂2

∂y2
) − iry

∂

∂
+ qy

∂

∂y
+ λ − 5

4
r2 +

q
2

(
q
2
− 1)} f (τ) = 0,

2”) ( f |Sα,β)(τ) = v(S) f (τ) for S ∈ Γ0,

3”)
∫ ∫

F0

f (τ) f (τ)yRe(α+β)−2
dxdy< ∞.

Let us chooseq in such a manner that the sum of the constant terms in
the differential equation 1”) vanishes. Then 1”) reduces to

Ωαβ f (τ) = 0 (8)

with Ωαβ = −y2(
∂2

∂x2
+
∂2

∂y2
) + i(α− β)y

∂

∂x
− (α+ β)y

∂

∂y
, whereα andβ 176

are now given by

α + β = 1+
√

5r2 − 4λ + 1, α − β = r.

We shall show that the differential equation (8) has the invariant
property mentioned above. Since we are interested in the functions f (τ)
which are non-analytic inτ but analytic in both the independent vari-
ablesτ = x+ iy andτ̄ = x− iy, we shall writef (τ, τ̄) instead off (τ) for
the solutions of (8), as it seems to be a more suitable notation. Changing
the variables fromx, y to τ andτ̄ in Ωαβ we obtain

Ωαβ = (τ − τ̄)2 ∂2

∂τ∂τ̄
− β(τ − τ̄) ∂

∂τ
+ α(τ − τ̄) ∂

∂τ̄
, (9)
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with
∂

∂τ
=

1
2

(
∂

∂x
− i

∂

∂y
),
∂

∂τ̄
=

1
2

(
∂

∂x
+ i

∂

∂y
). (9a)

We look upon (9a) as a definition of
∂

∂τ
and

∂

∂τ̄
. The invariance property

of the Laplacian∆ expressed by

∆((ϕ|Sa)(τ, t)) = (∆ϕ|Sa)(τ, t) for Sa ∈ Ω̂

implies forΩα,β the invariance property

Ωα,β(( f |S
α,β

)(τ, τ̄)) = (Ωα,β f |S
α,β

)(τ, τ̄), for S ∈ Ω. (10)

This is the invariance property of the differential equation mentioned in
the beginning. The two parameter domains defined by

1) r, λ real andλ ≥ 0, 2) α, β both real (11)

will be of particular interest. In the theory of indefinite quadratic forms,
(2α, 2β) will occur as the signature of an indefinite quadratic form.177

We shall now define certain linear differential operators, which
transform the seriesG(τ, τ̄;α, β) into one of the seriesG(τ, τ̄;α±1, β±1)
and which are connected in a natural way to the operatorΩαβ. We set

Kα = α + (τ − τ̄) ∂
∂τ
= α + y(i

∂

∂x
+
∂

∂y
). (12)

Λβ = −β + (τ − τ̄) ∂
∂τ̄
= −β + y(i

∂

∂x
− ∂

∂y
). (13)

It is an immediate consequence of the definition that

KαG(τ, τ̄;α, β) = αG(τ, τ̄;α + 1, β − 1)

ΛβG(τ, τ̄;α, β) = −βG(τ, τ̄;α − 1, β + 1),

where the differentiation is formally carried out term by term, which
is quite justified under the assumption Re(α + β) > 2. It can now be
deduced thatG(τ, τ̄;α, β) satisfies the two differential equations:

{Λβ−1Kα + α(β− 1)}G(τ, τ̄;α, β) = {Kα−1Λβ + β(α− 1)}G(τ, τ̄;α, β) = 0.
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But by the definition ofΩα,β, Kα andΛβ, we have

Λβ−1Kα + α(β − 1) = Kα−1Λβ + β(α − 1) = Ωαβ; (14)

therefore the two differential equations are identical. With the help of
(14), we obtain the following commutation relations:

ΩαβΛβ−1 = Λβ−1Ωα+1,β−1,

KαΩαβ = Ωα+1,β−1Kα (15)

Let {α, β} denote the space of functionsf (τ, τ̄), which are real ana-178

lytic in G and are solutions of the differential equationΩαβ f = 0. We
define the operatorsK andΛ on the space{α, β} by

K f = Kα f ,Λ f = Λβ f for any f ∈ {α, β}. (16)

With the help of (15), we see immediately that

K{α, β} ⊂ {α + 1, β − 1},Λ{α, β} ⊂ {α − 1, β + 1}.

This shows that, for integraln ≥ 0, then− th iterateKn (respectivelyΛn)
of K (respectivelyΛ), is well-defined and is identical with the operator
Kα+n−1 . . .Kα+1Kα (respectivelyΛβ+n−1 . . .Λβ+1Λβ) on the space{α, β}.
For any real matrixS with positive determinant, we also define

f |S = f |S
α,β

for f ∈ {α, β}.

We shall now prove that the operatorsK andΛ commute with this oper-
ator corresponding toS =

(
a b
c d

)
with |S| > 0: namely,

(K| f )|S = K( f |S), (Λ f )|S = Λ( f |S). (17)

For the proof, we can assume without loss of generality that|S| = 1. Let
us setτ1 = S < τ >, τ̄1 = S < τ̄ >. Then indeed

(K f )|S(τ, τ̄) = (cτ + d)−α−1(cτ̄ + d)−β+1{α + (τ1 − τ̄1)
∂

∂τ1
} f (τ, τ̄1)

= (cτ + d)−α−1(cτ̄ + d)−β+1{α + (τ − τ̄)cτ + d
cτ̄ + d

∂

∂τ
} f (τ1, τ̄1)
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= {α + (τ − τ̄) ∂
∂τ
}(cτ + d)−α(cτ̄ + d)−β f (τ1, τ̄1)

= K( f |S)(τ, τ̄).

The second statement follows in a similar way.179

For any functionf (τ, τ̄) we define the operatorX by

X f (τ, τ̄) = f (−τ̄,−τ), (18)

which is equivalent to the substitutionx→ −x leavingy fixed. It is an
easy consequence of the definition that

X{α, β} = {β, α}.

If S =
(

a b
c d

)
belongs toΩ andS∗ =

(
1 0
0 −1

)
S

(
1 0
0 −1

)−1
=

(
a −b
−c d

)
, then,

for any f ∈ {α, β}, we have

(X f )|S∗
β,α

= u(S)X ( f |S)α,β, (19)

whereu(S) is the factor system given by

u(S) = uα,β(S) =


1 for c , 0

e(α−β)iπ(1−sgnd) for c = 0.

For, withg = X f , we haveg(τ, τ̄) = f (−τ̄,−τ) and

((X)|S∗)
β,α

(τ, τ̄) = (g|S∗)
β,α

(τ, τ̄) = (−cτ + d)−β(−cτ̄ + d)−αg(S∗ < τ >,S∗ < τ̄ >)

= u(S)(c(−τ̄) + d)−α(c(−τ) + d)−β f (S < −τ̄ >,S < −τ >)

= u(S)X ( f |S)
α,β

(τ, τ̄).

The factor systemu(S) appears on the right hand side of 19, because
the definitions of the powers of (cτ + d) and (cτ̄ + d) are different in the
upper and lower half-planes. It can be verified easily that

X2 = 1,KX = −XΛ,XK = −ΛX.

We introduce here an operatorΘ, which will be used in the theory of180
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Hecke operators in the next chapter and which acts on the space {α, β}
under the assumptions

r = α − β integral ≥ 0, Γ(β) , ∞.

It is defined by

Θ =
Γ(β)
Γ(α)

XΛr . (20)

We shall show that

Θ{α, β} = {α, β}, Θ2 = 1.

By definition, we have

Θ{α, β} = XΛr{α, β} ⊂ X{α, r, β + r} = X{β, α} = {α, β}.

MoreoverKX = −XΛ implies that the operator

Θ2 = (
Γ(β)
Γ(α)

)2XΛrXΛr = (−1)r (
Γ(β)
Γ(α)

)2KrX2Λr

= (−1)r (
Γ(β)
Γ(α)

)2KrΛr = (−1)r (
Γ(β)
Γ(α)

)2Kα−1Kα−2 . . .KβΛα−1 . . .Λβ

on the space{α, β}. But on the space{β+n−1, α−1−n}, Kβ+nΛα−1−n =

−(β + n)(α − 1− n); therefore, it follows that

Θ2 = (
Γ(β)
Γ(α)

)2
r−1∏

n=0

(β + n)(α − 1− n) = (
Γ(β)
Γ(α)

)2
r−1∏

n=0

(β + n)2 = 1.

Consequently{α, β} ⊂ Θ{α, β}, which proves that

Θ{α, β} = {α, β}.

2 Non-Analytic Forms
181

For our later use, we determine all the periodic functions which are con-
tained in the space{α, β} and increase at most as a power ofy uniformly
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in x, wheny tends to infinity. We define, fory > 0 and∈= ±1, the
functionW(∈ y;α, β) by

W(∈ y;α, β) = y−
1
2qW1

2 r∈, 12 (q−1)(2y) (1)

whereq = α+ β, r = α− β andWℓ,m(y) is Whittaker’s function which is
a solution of Whittaker’s differential equation

{4y2 d2

dy2
+ 1− 4m2 + 4ℓy− y2}W(y) = 0 (2)

We set, fory > 0,

u(y, q) =
y1−q − 1

1− q
=



∑∞
n=1

(logy)n

n! (1− q)n−1 for q , 1

logy for q = 1.

Lemma 6. Let g∈(y)ei∈x ∈ {α, β} and let g∈(y) = o(yk) for y =→ ∞ with
a certain constant K if∈, 0. Then

g0(y) = a u(y, q) + b, g∈(y) = aW(∈ y, α, β) for ∈2= 1.

Proof. Sinceg∈(y)ei∈x belongs to{α, β}, it satisfies the differential equa-
tionΩαβg∈(y)ei∈x = 0, which shows that

{y d2

dy2
+ q

d
dy
+ ∈ r− ∈2 y}g∈(y) = 0. (3)

If ∈= 0, then 1 and the functionu(y, q) form a system of independent
solutions and thereforeg0(y) = au(y, q) + b for some constantsa and

b. Let ∈2= 1. Substitutingg∈(y) = y
−

1
2

q
W0(

1
2

r ∈, 1
2

(q − 1), 2y) in (3)182

we see thatW(y) = W0(ℓ,m, y) is a solution of differential equation (2).
But Whittaker’s differential equation has two independent solutions, one
of which tends to∞ exponentially wheny → ∞ and therefore cannot
occur ing∈(y); the other solution of (2) isWℓ,m(y) with the asymptotic
behaviour given by

Wℓ,m(y) ≈ e−
1
2yyℓ{1+

∞∑

n=1

1
n!yn

n∏

q=1

[m2 − (ℓ +
1
2
− q)2]}. (5)
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Therefore we see by (1) that

g∈(y) = aW(∈ y;α, β)

and the lemma is proved.
The behaviour of the functions mentioned in lemma 6 under the

action of the operatorsKα,Λβ andX is given by �

Lemma 7. 1. X1 = 1,Xu(y, q) = u(y, q),

XW(∈ y, α, β)ei∈x =W(− ∈ y, β, α)e−i∈x(∈2= 1).

2. Kα1 = α,Kαu(y, q) = (1− β)u(y, q) + 1

KαW(∈ y;α, β)ei∈x =


−W(∈ y;α + 1, β − 1)ei∈x for ∈= 1

−α(β − 1)W(∈ y;α + 1, β − 1)ei∈x for ∈= −1.

3. Λβ1 = −β,Λβu(y, q) = (α − 1)u(y, q) − 1.

ΛβW(∈ y;α, β)ei∈x =


(α − 1)βW(∈ y;α − 1, β + 1)ei∈x for ∈= 1

W(∈ y;α − 1, β + 1)ei∈x for ∈= −1.

Proof. The assertion about the action of the operatorsX, Kα andΛβ 183

on the functions 1 andu(y, q) is trivial. SinceW(∈ y;α, β) = W(− ∈
y; β, α), it follows that X(W(∈ y;α, β)ei∈x) = W(− ∈ y; β, α)e−i∈x. In
order to prove the remaining statements in the lemma, we shall make
use of certain identities between the solutionsW0(ℓ,m, y) of Whittaker’s
differential equation for different values of the parametersℓ andm. It
can be verified that

yW′0(ℓ,m, y) ± (ℓ − 1
2

y)W0(ℓ,m, y)

is again a solution of the typeW0(ℓ ± 1,m, y). Let us assume that
W0(ℓ,m, y) = Wℓ,m(y). Then the asymptotic behaviour of this function
shows that, but for a constant factor,W0(ℓ ± 1,m, y) is identical with
Wℓ±1,m(y). This constant factor can be determined by considering the
asymptotic expansion (5) ofWℓ,m(y). Thus we obtain the identities

yW′ℓ,m(y) − (ℓ − 1
2

y)Wℓ,m(y) = −(m2 − (ℓ − 1
2

)2)Wℓ−1,m(y),



158 4. Non-Analytic Modular Forms

yW′ℓ,m(y) + (ℓ − 1
2

y)Wℓ,m(y) = −Wℓ+1,m(y).

By the definition of the operatorKα, we have

KαW(∈ y;α, β)ei∈x = {α + y(i
∂

∂x
+
∂

∂y
)}y− 1

2 qW1
2 r∈, 1

2 (q−1)(2y)ei∈x

= y−
1
2 qei∈x{α − 1

2
q− ∈ y+ y

∂

∂y
}W1

2 r∈, 1
2 (q−1)(2y)

= y−
1
2 qei∈x(α − 1

2
q− ∈ y)W1

2 r∈, 12 (q−1)(2y) + 2yW′1
2 r∈, 1

2 (q−1)
(2y)

=


−y−

1
2 qW1

2 r+1, 12 (q−1)(2y)eix for ∈= 1

− q+r
2

q−r−2
2 y−

1
2 qW− 1

2 r−1, 1
2 (q−1)(2y)e−ix for ∈= −1.

=


−W(y;α + 1, β − 1)eix for ∈= 1

−α(β − 1)W(−y;α + 1, β − 1)eix for ∈= −1.

184

The corresponding result forΛβW(∈ y;α, β)ei∈x can be proved in a
similar way or could be derived from above with the help of theidentity
Λβ = −XKβX.

We shall now find the asymptotic behaviour of the functionW(∈
y;α, β) asy→ 0 andy→ ∞. �

Lemma 8. For y > 0 and ∈= ±1, the following asymptotic formulae
hold:

W(∈ y;α, β) ∼ 2
1
2 r∈y

1
2 (q−∈r)e−y(y→ ∞),

W(∈ y;α, β) ∼ 2
1
2 (2−q)Γ(q− 1)

Γ(q−∈r
2 )

y1−q(y→ 0),

provided that in the latter caseRe(q− 1) > 0, Re(q± ∈ r) > 0.

Proof. The first formula follows from the asymptotic expansion (5) for
Wℓ,m(y) and the second from the integral representation

Wℓ,m(y) =
y

1
2−me−

1
2y

Γ(m+ 1
2 − ℓ)

∞∫

0

e−uum−ℓ− 1
2 (u+ y)m+ℓ− 1

2 du,
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for Re(m+
1
2
± ℓ) > 0 and Rem> 0. It is now clear that

Wℓ,m(y) ∼ Γ(2m)

Γ(m+ 1
2 − ℓ)

y
1
2−m(y→ 0).

�

Let α andβ be two arbitrary complex numbers withr = α − β real. 185

LetΓ denote a horocyclic group andva multiplier system for the groupΓ
and weightr. We assume that−E belongs toΓ. By anautomorphic form
of the type{Γ, α, β, v}, we mean a functionf (τ, τ̄) with the following
properties:

1) f (τ, τ̄) is real analytic inG and is a solution of the differential
equationΩαβ f = 0,

2) ( f |S)(τ, τ̄) = v(S) f (τ, τ̄) for S ∈ Γ and

3) If A−1 < ∞ > is a parabolic cusp ofΓ, then with some constant
K > 0, (f |A−1)(τ, τ̄) = o(yK) for y→∞, uniformly in x.

We shall denote the space of these automorphic forms by [Γ, α, β, v]. Let
N > 0 be the least number so determined thatH = A−1UNA belongs to
Γ and let

σ(A,H)v(H) = σ(H,A−1)v(H) = vA−1
(UN) = e2πiκ, 0 ≤ κ < 1.

Using the characterising properties 1), 2), 3) above forf (τ, τ̄) ∈ [Γ, α, β,
v], we shall show that, at the parabolic cuspA−1 < ∞ >, there exists for
f a Fourier expansion of the type

( f |A−1)(τ, τ̄) = a0u(y, q) + b0 +
∑

nκ,0

an+κW(
2π(n+ κ)

N
y;α, β)e2πi(n+κ)x/N

(6)
wherea0 and b0 are equal to 0 in caseκ > 0. Since the substitution186

τ→ τ+ N transforms (f |A−1)(τ, τ̄) to e2πiκ( f |A−1)(τ, τ̄), we have, in any
case, the Fourier expansion

( f |A−1)(τ, τ̄) =
∞∑

n=−∞
αn+κ(y)e2πi(n+κ)x/N
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with αn+κ(y) =
1
N

N∫

0

( f |A−1)(τ, τ̄)e−2πi(n+κ)x/Ndx.

Because of property 3) above, we conclude that, fory → ∞, αn+κ(y)
increases atmost as a power ofy. But Ωα|β( f |A−1) = (Ωαβ f )|A−1 =

0, which implies thatαn+κ(y)e2πi(n+κ)x/N satisfies the requirements of
lemma 6. Therefore, the Fourier expansion of (f |A−1)(τ, τ̄) may be seen
to be of the type (6). Conversely, iff (τ, τ̄) is such that for a real matrix
A with |A| = 1, (f |A−1)(τ, τ̄) has a series expansion as in (6), then lemma
8 shows that

( f |A−1)(τ, τ̄) = o(yK) for y→∞,
with some positive constantK.

Applying Kα,Λβ to (6) and making use of lemma 7 and (17) of§ 1,
we get

((Kα f )|A−1)(τ, τ̄) = (1− β)a0u(y, q) + a0 + αb0−

−
∑

n+κ>0

an+κW(
2π(n+ κ)

N
)y;α + 1, β − 1)e2πi(n+κ)x/N − (7)

− α(β − 1)
∑

n+κ<0

an+κW(
2π(n+ κ)

N
y;α + 1, β − 1)e2πi(n+κ)x/N ,

((Λβ f )|A−1)(τ, τ̄) = (α − 1)a0u(y, q) − a0 − βb0+

+ (α − 1)β
∑

n+κ>0

an+κW(
2π(n+ κ)

N
y;α − 1, β + 1)e2πi(n+κ)x/N +

(8)

+
∑

n+κ<0

an+κW(
2π(n+ κ)

N
y;α − 1, β + 1)e2πi(n+κ)x/N .

187

With the help of (7), (8) and§ 2 of chapter 3, in which the trans-
formation properties of a multiplier system have been described, the
following relations can be established:

[Γ, α, β, v]|S = [S−1ΓS, α, β, vS] for S ∈ Ω, (9)

X[Γ, α, β, v] = [Γ∗, β, α, v∗] (10)
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with v∗(S∗) = u(S)v(S), S∗ =
(

1 0
0 −1

)−1
S

(
1 0
0 −1

)
, Γ∗ =

(
1 0
0 −1

)−1
Γ
(

1 0
0 −1

)
,

Kα[Γ, α, β, v] ⊂ [Γ, α + 1, β − 1, v], (11)

Λβ[Γ, α, β, v] ⊂ [Γ, α − 1, β + 1, v]. (12)

If, further α(β − 1) , 0, thenKα maps the space [Γ, α, β, v] onto the

space [Γ, α+1, β−1, v], because the operatorKα

1
α(1− β)

Λβ−1 acts as the

identity on the space [Γ, α+1, β−1, v] and therefore anyf ∈ [Γ, α+1, β−
1, v] is the image of

1
α(1− β)

Λβ−1 f ∈ [Γ, α, β, v] underKα. Similarly,

it can be seen thatΛβ maps the space [Γ, α, β, v] onto the space [Γ, α −
1, β + 1, v], in caseβ(α − 1) , 0. Thus from (11) and (12), we see that

Kα[Γ, α, β, v] = [Γ, α + 1, β − 1, v], in caseα(β − 1) , 0 (11’)

Λβ[Γ, α, β, v] = [Γ, α − 1, β + 1, v], in caseβ(α − 1) , 0 (12’)

For r = α − β integral≥ 0 andΓ(β) , ∞, we have

Θ[Γ, α, β, v] = [Γ∗, α, β, v∗], (13)

because of the relations 188

Θ[Γ, α, β, v] = XΛr [Γ, α, β, v] ⊂ X[Γ, α − r, β + r, v]

= X[Γ, β, α, v] = [Γ∗, α, β, v∗]

andΘ2 = 1.
By complete induction onh, it follows from (8) that

((Λh f )|A−1)(τ, τ̄) =

Γ(α)
Γ(α − h)

a0u(y, q) + a0

h−1∑

ℓ=0

(−1)h−1 Γ(α)Γ(β + h)
Γ(α − 1)Γ(β + ℓ + 1)

+ (−1)h
Γ(β + h)
Γ(β)

b0+

+
Γ(β + h)Γ(α)
Γ(β)Γ(α − h)

∑

n+κ>0

an+κW(
2π(n+ κ)

N
y;α − h, β + h)e2πi(n+κ)x/N

+
∑

n+κ<0

an+κW(
2π(n+ κ)

N
y;α − h, β + h)e2πi(n+κ)x/N.
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where theΓ-functions
Γ(β + h)
Γ(β)

and
Γ(β + h)
Γ(β + ℓ + 1)

represent the value of

the analytic functions
Γ(z+ h)
Γ(z)

and
Γ(z+ h)
Γ(z+ ℓ + 1)

at the pointz = β. Us-

ing lemma 7 and (19) of§ 1 for r = α − β integral≥ 0 andΓ(β) , ∞,
we now see withu(A−1) = uα,β(A−1) that

u(A−1)(Θ f |A∗−1)(τ, τ̄) = u(A−1)
Γ(β)
Γ(α)

((XΛr f )|A∗−1)(τ, τ̄) =

=
Γ(β)
Γ(α)

(X{(Λr f )|A−1})(τ, τ̄)

= a0u(y, q) +
r−1∑

ℓ=0

(−1)r−ℓ
Γ(β)Γ(α)

Γ(α − ℓ)Γ(β + ℓ + l)
· a0 + (−1)rb0+

+
Γ(α)
Γ(β)

∑

n+κ>0

an+κW(
−2πi(n+ κ)

N
y;α, β)e−2π(n+κ)x/N+

+
Γ(β)
Γ(α)

∑

n+κ<0

an+κW(
−2π(n+ κ)

N
y;α, β)e−2πi(n+κ)x/N .

Let κ∗ be so chosen thatκ ≡ −κ∗( mod 1). Thenn + κ = −(n∗ + κ∗)189

for some integern∗. Therefore, if, finally, we replacen∗ again byn, we
obtain

u(A−1)(Θ f |A∗−1)(τ, τ̄)

= a0u(y, q) +
r−1∑

ℓ=0

(−1)r−ℓ
Γ(β)Γ(α)

Γ(α − ℓ)Γ(β + ℓ + 1)
a0 + (−1)rb0+

+
Γ(β)
Γ(α

∑

n+κ∗>0

a−n−κ∗W(
2π(n+ κ∗)

N
y;α, β)e2πi(n+κ∗)x/N+

+
Γ(α)
Γ(β)

∑

n+κ∗>0

a−n−κ∗W(
2π(n+ κ∗)

N
y;α, β)e2πi(n+κ∗)x/N. (14)

HereA∗ =
(

1 0
0 −1

)
A

(
1 0
0 −1

)−1
. Since

(
1 N
0 1

)∗
=

(
1 −N
0 1

)
, it can be proved,

using just the properties of multiplier systems, that

v∗
A∗
−1

(UN)vA−1
(UN) = 1
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corresponding toκ + κ∗ ≡ 0( mod 1). Ifr ≡ 0( mod 2), then applying
Θ on both sides of (14) and using the fact thatΘ2 = 1, we see immedi-
ately that

r−1∑

ℓ=0

(−1)r−ℓ
Γ(α)Γ(β)

Γ(α − ℓ)Γ(β + ℓ + 1)
= 0 (for r ≡ 0( mod 2)), (15)

which can also be proved directly.
We remark here that the space [Γ, α, v] of analytic modular forms of

real weightα and multiplier systemv is contained in the space [Γ, α, 0, v]

and it is determined in this space by the condition
∂ f
∂τ̄
= 0.

Following a method of Siegel, we shall now prove that, under some
assumptions, the space [Γ, α, β, v] is a vector space of finite dimension
over the complex number field.

Theorem 28. LetΓ0 be a subgroup of finite index in the modular group190

Γ. Let r = α − β be real and p= Re(α + β) ≥ 0. Then the space
[Γ0, α, β, v] is of finite dimension over the complex number field.

Proof. We shall prove that theorem in a number of steps.

1) Sincer = α − β is real, we have

|(cτ + d)α(cτ̄ + d)β| = |cτ + d|p for real (c, d) , (0, 0).

For L ∈ Γ0 andA ∈ Γ we set

τ∗ = L < τ >, τ̂ = A < τ > .

We shall denote byy, y∗ and ŷ the imaginary part ofτ, τ∗ and τ̂
respectively. Letf be a function in [Γ0, α, β, v]. Then obviously

y
p
2 | f (τ, τ̄)| = y∗

p
2 | f (τ∗, τ̄∗)| = ŷ

p
2 |( f |A−1)(τ̂, ¯̂τ)|.

Let A−1
1 < ∞ >, . . . ,A−1

σ<∞> with Aℓ ∈ Γ for 1 ≤ ℓ ≤ σ be
a complete system of inequivalent parabolic cusps ofΓ0 and let
L1, . . . ,Lσ be cusp sectors at these cusps. Then

F0 =

σ⋃

n=1

Ln
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is a fundamental domain forΓ0. Let Nℓ denote the width of the
cusp sectorLℓ and letN = max

1≤ℓ≤σ
Nℓ. Net

( f |A−1
ℓ )(τ, τ̄) = a(ℓ)

0 u(y, q) + b(ℓ)
0

+
∑

n+κℓ,0

a(ℓ)
n+κℓW(

2π(n+ κℓ)y
Nℓ

;α, β)e2πi(n+κℓ )x/Nℓ

be the Fourier expansion at the cuspA−1
ℓ

< ∞ > for any f in
[Γ0, α, β, v]. Let us suppose that191

a(ℓ)
0 = b(ℓ)

0 = a(ℓ)
n+κℓ = 0 for |n+ κℓ | ≤ m, ℓ = 1, 2, . . . , σ.

Then we shall show thatf vanishes identically form chosen suf-
ficiently large; this will establish the theorem. In the following,
C1,C2, . . . will denote constants which depend only onΓ0, α, β, v
and not onf .

2) We estimate (f |A−1
ℓ

)(τ, τ̄) in Aℓ < Lℓ >. Since the Fourier expan-
sion of (f |A−1

ℓ
)(τ, τ̄) converges in the whole ofG , we see that

|a(ℓ)
n+κℓW(

2π(n+ κℓ)
Nℓ

η;α, β)| ≤ C(η).

for all n, ℓ andη > 0. We normalise the modular formf in the

beginning itself, so thatC(η) = 1 for η =
1

2
√

3
. Moreover, with

this η, we havey ≥ 3η for τ ∈ Aℓ < Lℓ >. Using the asymtotic
formula for the functionW(∈ y;α, β) given in lemma 8, we obtain

∣∣∣∣∣∣∣
W(2π(n+κℓ)

Nℓ
y;α, β)

W(2π(n+κℓ)
Nℓ

η;α, β)

∣∣∣∣∣∣∣
∼ (

η

y
)

1
2 (p−∈r) e−2π|n+κℓ |(y−η)/Nℓ

for |n + κℓ| → ∞, where∈= sgn(n + κℓ). With the special choice

of η =
1

2
√

3
and forτ ∈ Aℓ < Lℓ >, it follows now that

∣∣∣∣∣∣∣
W(2π(n+κℓ)

Nℓ
y;α, β)

W(2π(n+κℓ)
Nℓ

η;α, β)

∣∣∣∣∣∣∣
≤ C1e−2π|n+κℓ |y/(3Nℓ)
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for n+ κℓ , 0. This implies that

|( f |A−1
ℓ )(τ, τ̄)| ≤

∑

|n+κℓ |>m

∣∣∣∣∣∣∣
W(2π(n+κℓ)

Nℓ
y;α, β)

W(2π(n+κℓ)
Nℓ

η;α, β)

∣∣∣∣∣∣∣

≤ C1

∑

|n+κℓ |>m

e−2π|n+κℓ |y/(3Nℓ)

≤ C2e−2πmy/(3Nℓ).

In particular, we see that the function 192

|( f |A−1
ℓ )(τ, τ̄)|e−2πmy/(3Nℓ ) → 0 asy→∞,

uniformly in x. Therefore it has in the domainAℓ < Lℓ > a non-
negative maximumMℓ which is attained at a finite pointτℓ of this
domain. Thus

|( f |A−1
ℓ (τ, τ̄))| ≤ Mℓe

−2πmy/(3Nℓ) for τ ∈ Aℓ < Lℓ >

and euqality holds whenτ = τℓ. Let

Mℓ ≤ Mh for ℓ = 1, 2, . . . , σ.

3) We shall now estimate (f |A−1
h )(τ, τ̄) in G . For a given pointτ ∈ G ,

we setτ′ = A−1
h < τ >, τ′′ = L < τ′ >, whereL belongs toΓ0

and is so chosen thatτ′′ belongs toF0. SinceF0 =
⋃σ

n=1 Ln, the
pointτ′′ belongs to at least one of the cusp sectorsLℓ, 1 ≤ ℓ ≤ σ.
Let τ′′ ∈ Lℓ; then we setτ∗ = Aℓ < τ′′ >. We shall denote by
y, y′, y′′ andy∗ the imaginary parts ofτ, τ′, τ′′ andτ∗ respectively.
By 1), we have

|y
p
2 ( f |A−1

h )(τ, τ̄)| = y′
p
2 | f (τ′, τ̄′)| = y′′

p
2 || f (τ′′, τ̄′′)|

= y∗
p
2 |( f |A−1

ℓ )(τ∗, τ̄∗)|.

Using the estimates of 2), we get 193
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|( f |A−1
h )(τ, τ̄)| ≤ y−

p
2 y∗

p
2 Mℓe

−2πmy∗/(3Nℓ)

≤ Mh(
3pNℓ
4πemy

)
p
2 ≤ Mh(

3pN
4πemy

)
p
2 ,

because the functionyp/2e−2πmy/(3Nℓ ) has the maximum (
3pNℓ
4πem

)p/2

at the pointy =
3pNℓ
4πm

. This estimate holds even whenp = 0, in

which case we assume thatpp = 1.

4) We proceed to find a bound for|( f |A−1
h )(τh, τ̄h)| whereτh is the

point mentioned in 2) i.e. the point belonging toAh < Lh > such
that

Mhe−2πmyh/(3Nh) = |( f |A−1
h )(τh, τ̄h)| with τh = xh + iyh.

Let τ = x+
i
3

yh. Then

a(h)
n+κh

W(
2π(n+ κh)

Nh

yh

3
;α, β)

=
1

Nh

N∫

0

( f |A−1
h )(τ, τ̄)e−2πi(n+κh)x/Nhdx.

With the help of the preceding step 3), we see now that

|a(h)
n+κh

W(
2π(n+ κh)

Nh

yh

3
;α, β)| ≤ Mh(

9pN
4πemyh

)p/2,

so that

Mhe−2πmyh/(3Nh) = |( f |A−1
h )(τh, τ̄h)|

≤ Mh(
9pN

4πemyh
)p/2

∑

|n+κh|>m

W(2π(n+κh)
Nh

yh;α, β)

W(2π(n+κh)
3Nh

yh;α, β)

≤ C3Mh(
9pN

4πemyh
)p/2

∑

|n+κh|>m

e−π|n+κh|yh/Nh
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≤ C4Mh(
9pN

4πemyh
)p/2e−πmyh/Nh

showing that194

Mheπmyh/(3Nh) ≤ C4Mh(
9pN

4πemyh
)p/2.

Thus

Mheπmη/N ≤ C5Mh(
3pN

4πemη
)p/2

for p ≥ 2. Now it is obvious thatMh = 0, if m is sufficiently large,
which implies thatf = 0. Hence the theorem is proved.

�

3 Eisenstein Series

We associate to two functionsf (τ, τ̄) ∈ {α, β} andg(τ, τ̄) ∈ {α′, β′} a
differential formω( f , g) defined by

ω( f , g) = yγ−1{ fΛβ′gdτ̄ + gKα f dτ},

whereα′, β′, γ are complex numbers which independently ofα, β, will
be so determined thatdω( f , g) = 0. With the help of the differential
equations satisfied byf andg, we see by simple calculation that

dω( f , g) = { ∂
∂τ

(yγ−1 fΛβ, g) − ∂

∂τ̄
(yγ−1gKα f )}dτΛdτ̄

=

{
i
2

(γ − 1)(β′ − α)yγ−2 f · g+ (γ − α − α′)yγ−1 f
∂g
∂τ
+

+ (γ − β − β′)yγ−1g
∂ f
∂τ
}dτΛdτ̄.

This differential vanishes trivially, if any one of the following twocon- 195

ditions is satisfied:

α′ = β, β′ = α, γ = α + β, (1)
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α′ = 1− α, β′ = 1− β, γ = 1. (2)

We shall denote in the following byω( f , g)|S(S ∈ Ω) the differential
form which is obtained by substitutingS < τ > for τ inω( f , g). We shall
show that if the numbersα, β andα′, β′ satisfy any one of the conditions
(1) and (2), then

ω( f , g)|S = ω( f |S, g|S).

Let S =
(

a b
c d

)
with |S| = 1. We set

τ̂ = S < τ > andM̂ = M(S < τ >,S < τ̄ >),

whereM = M(τ, τ̄) denotes an arbitrary function or operator. By defini-
tion

ω( f |S, g|S) = yγ−1{( f |S)Λβ, (g|S)dτ̄ + (g|S)Kα( f |S)dτ}
= yγ−1{( f |S)(Λβ, g)|S d̄τ + (g|S)(Kα f )|S dτ}
= yγ−1

{
(cτ + d)−α−α

′+1(cτ̄ + d)−β−β
′−1 f̂ Λ̂β, ĝdτ̄+

+(cτ + d)−α−α
′−1(cτ̄ + d)−β−β

′+1ĝK̂α f̂ dτ
}

= ŷγ−1{ f̂ Λ̂β, ĝd¯̂τ + ĝK̂α f̂ dτ̂}
= ω( f , g)|S.

We shall say that two spaces [Γ, α, β, v] and [Γ, α′, β′, v′] areadjoint of
the first or the second kindaccording asα, β andα′, β′ satisfy condi-
tion (1) or (2) above andv · v′ = 1. If f andg belong to the adjoint
spaces [Γ, α, β, v] and [Γ, α′, β′, v′] respectively, then it follows from the196

transformation formula forω( f , g) that

ω( f , g)|S = ω( f , g) for S ∈ Γ.

We shall now examine what the existence of an invariant differential
for two adjoint spaces of the first kind for a subgroupΓ0 of finite index
in the modular group means. Letf ∈ [Γ0, α, β, v], g ∈ [Γ0, α

′, β′, v′] and
let α′ = β, β′ = α, γ = q andv · v′ = 1. As before, letL1,L2, . . . ,Lσ

be cusp sectors at the cuspsA−1
1 < ∞ >, A−1

2 < ∞ >, . . . ,A−1
σ of Γ0,
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which constitute a complete system of inequivalent parabolic cusps of
Γ0. Then

F0 =

σ⋃

ℓ=1

Lℓ

is a fundamental domain forΓ0. Let Nℓ, ℓ = 1, 2, . . . , σ be the width of
the cusp sectorLℓ. We remove the parabolic cusp from the domainLℓ

with the help of a circular arccℓ, which is mapped by the transformation
τ → Aℓ < τ > onto a segmentsℓ of a line y = yℓ > 1, and denote the
remaining compact part byL ∗

ℓ
. Sincedω( f , g) = 0, it follows that

∫

∂L ∗
ℓ

ω( f , g) = 0,

where∂L ∗
ℓ

is the boundary ofL ∗
ℓ

oriented in the positive direction.
Consequently, we obtain

σ∑

ℓ=1

∫

∂L ∗
ℓ

ω( f , g) = 0

and here the sum of the integrals along those edges, which areequiva-
lent but oriented in the opposite direction, vanishes, becauseω( f , g) is
invariant under the transformations ofΓ0. Using again the transforma-197

tion formula forω( f , g), we see that

σ∑

ℓ=1

∫

∂L ∗
ℓ

=

σ∑

ℓ=1

∫

cℓ

ω( f , g) =
σ∑

ℓ=1

∫

sℓ

ω( f , g)|A−1
ℓ

=

σ∑

ℓ=1

∫

sℓ

ω( f |A−1
ℓ , g|A−1

ℓ ) = 0 (3)

Let

( f |A−1
ℓ )(τ, τ̄) = ϕℓ(y) +

∑

n+κℓ,0

an+κℓW(
2π(n+ κℓ)

Nℓ

y;α, β)e2πi(n+κℓ )x/Nℓ
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and

(g|A−1
ℓ )(τ, τ̄) = ψℓ(y) +

∑

n+κ′
ℓ
,0

an+κ′
ℓ
W(

2π(n+ κ′
ℓ
)

Nℓ

y;α, β)e2πi(n+κ′
ℓ
)x/Nℓ

be the Fourier expansions forf (τ, τ̄) andg(τ, τ̄) at the cupsA−1
ℓ
< ∞ >

of Γ0. Here

ϕℓ(y) = a′ℓu(y, q) + a′′ℓ and

ψℓ(y) = b′ℓu(y, q) + b′′ℓ .

These functions vanish whenv and consequentlyv′ too, is ramified at
the cuspA−1

ℓ
< ∞ >. Moreover we haveκℓ + κ′ℓ ≡ 0( mod 1), because

v · v′ = 1. By § 2, lemma 7, we get

Kα( f |A−1
ℓ ) = (Kα f )|A−1

ℓ

= Kαϕℓ(y) −
∑

n+κℓ>0

an+κℓW(
2π(n+ κℓ)

Nℓ

y;α + 1, β − 1)e2πi(n+κℓ )x/Nℓ

− α(β − 1)
∑

n+κℓ<0

an+κℓW(
2π(n+ κℓ)

Nℓ

y;α + 1, β − 1)e2πi(n+κℓ)x/Nℓ

and198

(Λβ′g)|A−1
ℓ = Λβ′(g|A−1

ℓ )

= Λβ′ψℓ(y) + (α′ − 1)β′
∑

n+κ′
ℓ
>0

bn+κ′
ℓ
W(

2π(n+ κ′
ℓ
)

Nℓ

y;

α′ − 1, β′ + 1)e2πi(n+κ′
ℓ
x/Nℓ )+

+
∑

n+κ′
ℓ
<0

bn+κ′
ℓ
W(

2π(n+ κ′
ℓ
)

Nℓ

y;α′ − 1, β′ + 1)e2πi(n+κ′
ℓ
)x/Nℓ .

Since dy vanishes onSℓ, it is sufficient to calculate the value of
ω( f |A−1

ℓ
, g|A−1

ℓ
) modulo dy. By the definition ofω( f , g), we have

ω( f |A−1
ℓ , g|A−1

ℓ ) = yq−1{ f |A−1
ℓ (Λβ, g)|A−1

ℓ (Kα f )A−1
α }dx( mod dy).

(4)
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Let Xℓ(y)dx denote the terms independent ofx on the right hand side of
equation (4). Then

y1−qXℓ(y)

= ϕℓ(y)Λβ′ψℓ(y)Kαϕℓ(y)+

+ (α′ − 1)β′
∑

n+κℓ<0

an+κℓb−n−κℓW(
2π(n+ κ)ℓ

Nℓ

y;α, β)W(−2π(n+ κℓ)
Nℓ

y;α′ − 1, β′ + 1)+

+
∑

n+κℓ>0

an+κℓb−n−κℓW(
2π(n+ κℓ)

Nℓ

y;α, β)W(−2π(n+ κℓ)
Nℓ

y;α′ − 1, β′ + 1)−

−
∑

n+κℓ>0

b−n−κℓW(−2π(n+ κℓ)
Nℓ

y;α′, β′)W(
2π(n+ κℓ)

Nℓ

y;α + 1, β − 1)−

− α(β − 1)
∑

n+κℓ<0

b−n−κℓan+κℓW(−2π(n+ κℓ)
Nℓ

y;α′, β′)W(
2π(n+ κℓ)

Nℓ

;α + 1, β − 1).

Using the relationsW(−y;α, β) = W(y; β, α), α′ = β andβ′ = α, we
obtain

y1−qχℓ(y) = ϕℓ(y)Λβ′ψℓ(y) + ψℓ(y)Kαϕℓ(y).

Since the value of the integral of the terms containingx explicitly on 199

the right hand side of (3) vanishes, in view of the integrand being then a
periodic function of periodNℓ, equal also to the length ofsℓ, it follows
that

σ∑

ℓ=1

∫

sℓ

ω( f |A−1
ℓ , g|A

−1
ℓ ) =

σ∑

ℓ=1

∫

sℓ

χℓ(y)dx= 0 (5)

But a simple calculation shows that

χℓ(y) = b′′ℓ a′ℓ − a′′ℓ b′ℓ.

Therefore (5) implies that
σ∑

ℓ=1

Nℓ(b
′′
ℓ a′ℓ − a′′ℓ b′ℓ) = 0. (6)

Let the notation be so chosen that the multiplier systemv and therefore
v′ be unramified at the parabolic cuspsA−1

ℓ
< ∞ > (1 ≤ ℓ ≤ σ0). Then

(6) leads to the bilinear relation
σ0∑

ℓ=1

Nℓ(b
′′
ℓ a′ℓ − a′′ℓ b′ℓ) = 0
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i.e.G′nb = 0

wheren respectivelyb denote the column vector with componentsa′1, a
′
2,

. . . , a′σ0
, a′′1 , a

′′
2 , . . . , a

′′
σ0

respectivelyb′1, b
′
2, . . . , b

′
σ0

, b′′1 , b
′′
2 , . . . , b

′′
σ0

and

n =

(
0 D
−D 0

)

is a 2σ0-rowed square matrix andD, theσ0-rowed diagonal matrix with
N1,N2, . . . ,Nσ0 on the diagonal. If there existµ forms f with linearly200

independent vectorsG andν formsg with linearly independent vectors
, then a consideration of the rank shows that

µ + ν ≥ 2σ0.

We formulate the results proved above in

Theorem 29. LetΓ0 be a subgroup of finite index in the modular group
and let A−1

ℓ
< ∞ > (ℓ = 1, 2, . . . , σ0) be a complete system of in-

equivalent parabolic cusps ofΓ0 at which a multiplier system v for the
group Γ0 and real weightα − β is unramified. LetR (respectively
Γ) be the linear space of the vectors{ϕ1(y), . . . , ϕσ0(y)} (respectively
{ψ1(y), . . . , ψσ0(y)}), whereϕℓ(y) (respectivelyψℓ(y)) is the term inde-
pendent of x in the Fourier expansion for f∈ [Γ0, α, β, v] (respectively
g ∈ [Γ0, β, α, v1]), at the parabolic cusp A−1

ℓ
< ∞ >, ℓ = 1, 2, . . . , σ0.

Then
dimensionR + dimensionγ ≤ 2σ0.

Under the additional assumption Re(α + β) > 2, which enables us
to give Eisentein series as explicit examples of modular forms, we shall
prove that the spacesR andγ have dimension at least equal toσ0, so
that we have indeed the relation

dimensionR = dimensionγ = σ0.

Let v be unramified at the cuspA−1 < ∞ >. Then we define the Eisen-
stein series

G(τ, τ̄;α, β, v,A, Γ0) =
∑

M∈γ(A,Γ0)

{σ(A, L)v(L)(m1τ +m2)α(m1τ̄ +m2)β}−1
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where M = AL =
( ∗ ∗

m1 m2

)
and γ(A, Γ0) has the same meaning as in201

chapter 3,§ 2. As in the analytic case, the following transformation
formulae can be proved:

(G( , ;α, β, v,A, Γ0) |
α,β

S)(τ, τ̄)

=
1

σ(A,S)
G(τ, τ̄;α, β, vS,AS,S−1Γ0S) for S ∈ Γ,

(G( , ;α, β, v,A, Γ0) |
α,β

L)(τ, τ̄)

= v(L)G(τ, τ̄;α, β, v,A, Γ0) for L ∈ Γ0.

These transformation formulae show that the Eisenstein series is a mod-
ular form in [Γ0, α, β, v]. Moreover, it is not difficult to prove that the
form G(τ, τ̄;α, β, v,A, Γ0) does not vanish at a cuspB−1 < ∞ > if and
only if B−1 < ∞ > is equivalent toA−1 < ∞ > underΓ0. Thus there
exist as many linearly independent Eisentein series as the number of in-
equivalent parabolic cusps ofΓ0 at whichv is unramified. Hence our
assertion about the dimensions ofR andγ is proved. We call a form
f ∈ [Γ0, α, β, v] a cusp form, when the functionsϕ1(y), . . . , ϕσ0(y) men-
tioned in theorem 29 vanish. Thus we have

Theorem 30. LetΓ0 be a subgroup of finite index in the modular group.
If Γ = α − β is real andRe(α + β) > 2, then for every form f belonging
to [Γ0, α, β, v], there exists a linear combination G(τ, τ̄) of Eisenstein
series, so that f(τ, τ̄) −G(τ, τ̄) is a cusp form.

Regarding the existence of cusp forms in the space [Γ0, α, β, v], we
prove the following

Theorem 31. If, in addition to the assumptions of theorem 30, we as-
sume thatReα > 0, Reβ > 0 then the space[Γ0, α, β, v] is generated by
Eisenstein series and its dimension is equal to the number ofinequiva-
lent parabolic cusps ofΓ0 at which the multiplier system v is unramified.

Proof. For the proof of the theorem, it is sufficient to prove that iff ∈ 202

[Γ0, α, β, v] is a cusp form, thenf = 0. Following the proof of lemma 5
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(chapter 3,§ 3) it can be shown thatyp/2| f (τ, τ̄)| is bounded inG , where
p = Re(α + β). Let

f (τ, τ̄) =
∑

n+κ,0

an+κW(
2π(n+ κ)

N
y;α, β)e2πi(n+κ)x/N

be the Fourier series off (τ, τ̄) at the parabolic cusp∞ of Γ0. Then

|an+κy
p/2W(

2π(n+ κ)
N

y;α, β)| = | 1
N

N∫

0

yp/2 f (τ, τ̄)e−2πi(n+κ)x/Ndx| ≤ C

with a suitable positive constantC. But by§ 2, lemma 8,

yp/2W(
2π(n+ κ)

N
y;α, β)

is unbounded asy → 0, becausep = Req > 2; therefore, the above
inequality can hold only ifan+κ = 0 for n+ κ , 0. Hence the theorem is
proved.

In some special cases, using the method adopted in the proof of
theorem 28, it can be proved that the cusp forms identically vanish even
when the assumptions of theorem 31 are not satisfied. The following
theorem is an example in this regard. �

Theorem 32. Let v be an even abelian character of the theta groupΓϑ
with v2 = 1 and letα ≥ 0. Then the space[Γϑ, α, α, v] contains no cusp
form which does not vanish identically.

First of all, we remark that there exist exactly 4 charactersof Γϑ of
the type mentioned in theorem 32. SinceΓ[2] is a subgroup of index 2
andΓϑ = Γ[2] ∪ Γ[2]T is a coset decomposition ofΓϑ moduloΓ[2], it
follows thatv1(T) = −1, v1(S) = 1 for S ∈ Γ[2] defines an even abelian203

character ofΓϑ and v2
1 = 1. But we have proved already thatΓϑ is

generated byT andU2; therefore,v1 is uniquely defined byv1(T) = −1

andv1(U2) = 1. Let A denote the matrix
1
√

2

(
−1 3
−1 1

)
. Then it can be

seen that the mappingS→ AS A−1 is an automorphism of the groupΓϑ,
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which mapsT to U2TU−2 andU2 to TU−2. This shows thatv2(S) =
v1(AS A−1) is another even abelian character ofΓϑ such thatv2

2 = 1;v2

is different fromv1 becausev2(U2) = −1. A third characterv3 of Γϑ
of the same type as above is defined byv1v2 so thatv3(T) = 1 and
v3(U2) = −1. Thus we have obtained four characters namely 1, v1, v2

andv3 = v1v2 of the desired type. Since the groupΓϑ is generated byT
andU2, these are all the even abelian charactersv of Γϑ, with v2 = 1.

Proof of theorem 3.32.The caseα > 1 follows from theorem 31. If
α = 0, then any functionf ∈ [Γϑ, 0, 0, v] is a harmonic function. If
f ∈ [Γϑ, 0, 0, v] is a cusp form and does not vanish identically, then
f (τ, τ̄) attains its maximum at a finite pointτ0 of a fundamental do-
main of Γϑ. But this contradicts the maximum modulus principle for
harmonic functions unlessf is constant in which case it vanishes iden-
tically; therefore the theorem is proved forα = 0.

In what follows, we confine ourselves to the case 0< α ≤ 1. LetF0

be the fundamental domain ofΓϑ given by

F0 = {τ|τ = x+ iy, |x− 1| ≤ 1, |τ| ≥ 1, |τ − 2| ≥ 1, y > 0}.

The domainF0 is decomposed by the circle|τ − 1| =
√

2 into two
parts, one of which, sayL1, is unbounded and the other,L2 is bounded.
Moreover, the above-defined elliptic transformationA mapsL2 onto 204

L1. We setA1 = E andA2 = A. ObviouslyA1 < L1 >= A2 < L2 >=

L1, which implies thaty ≥ 1 for τ ∈ Aℓ < Lℓ >.
Let f (τ, τ̄) be a cusp form belonging to [Γϑ, α, α, v]. Since the width

of the cusp sectorAℓ < Lℓ > is 2, we have a Fourier expansion of the
type

( f |A−1)(τ, τ̄) =
∑

n+κℓ,0

a(ℓ)
n+κℓW(π(n+ κℓ)y;α, α)eπi(n+κℓ )x(ℓ = 1, 2).

Hereκℓ = 0 or
1
2

(ℓ = 1, 2), becausev2 = 1. Now g = yα| f (τ, τ̄)| is
invariant under the transformations ofΓϑ and forτ′ = x′ + iy′ = A2 <

τ >, we obviously have

yα| f (τ, τ̄)| = y′α|( f |A−1
2 )(τ′, τ̄′)|.
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It follows thatg attains its maximumM at a pointτ∗ , ∞, 1 of F0. Let
τ∗ belong toLℓ. Then we setτ0 = x0 + iy0 = Aℓ < τ∗ >. It is obvious
thaty0 ≥ 1. Moreover

M = yα0 |( f |A−1
ℓ )(τ0, τ̄)|.

We shall now prove thatM = 0; this will imply that f = 0 and prove the
theorem when 0< α ≤ 1. From the integral representation

W(±y;α, α) =
y−αe−y

Γ(α)

∞∫

0

e−uuα−1(1+
u
2y

)α−1du,

it is evident that
yαW(y;α, α)ey

increases monotonically to 1 fory→ ∞, so that

(
a
y

)αW(a;α, α)ea−y ≤W(y;α, α) ≤ y−αe−y for 0 < a ≤ y. (7)

Since 0≤ 1− α < 1, it follows that205

(1+
u
2y

)1−α ≤ 1+ (1− α)
u
2y

=⇒(1+
u
2y

)α−1 ≥ (1+ (1− α)
u
2y

)−1 ≥ 1− (1− α)
u
2y

=⇒ 1
Γ(α)

∞∫

0

e−uuα−1(1+
u
2y

)α−1du≥ 1
Γ(α)

∞∫

0

e−uuα−1{1− (1− α)
u
2y
}du

=
1
Γ(α)

{Γ(α) − (1− α)
2y

Γ(α + 1)} = 1− α(1− α)
2y

≥ 1− 1
8y
.

This implies that

yαW(y;α, α)ey ≥ 1− 1/(8y) for 0 < α ≤ 1 andy > 0. (8)

We shall now estimatea(ℓ)
n+κℓ with the help of

a(ℓ)
n+κℓW(π(n+ κℓ)ρy0;α, α) =

1
2

2∫

0

( f |A−1
ℓ )(τ, τ̄)e−πi(n+κℓ)xdx,
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whereτ = x+ iy0ρ with ρ an arbitrary constant belonging to the interval
0 < ρ < 1. We obtain from above that

|a(ℓ)
n+κℓ |W(π(n+ κℓ)ρy0;α, α) ≤ M(ρy0)−α(n+ κℓ , 0).

Using (7), we see that

M = yα0( f |A−1
ℓ )(τ0τ̄0)|

≤ ρ−αM
∑

n+κℓ,0

W(π|n+ κℓ|y0;α, α)
W(π|n+ κℓ|ρy0;α, α)

≤ ρ−αM
∑

n+κℓ,0

W(π|n+ κℓ|y0;α, α)
W(π(1− κℓ)ρ;α, α)

(π|n+ κℓ|ρy0)αeπ|n+κℓ |ρy0

(π(1− κℓ)ρ)αeπ(1−κℓ)ρ

sinceκℓ = 0 or
1
2

implies that|n+κℓ | ≥ 1−κℓ. On using (8), this estimate206

gives the inequality

M ≤ 2M

1− 1
8π(1−κℓ)ρ

∑

n+κℓ>0

e−π(n+κℓ)(1−ρ).

Replacingn + κℓ by n + 1 − κℓ and summing up the right hand side of
this inequality, we see that

M ≤ 2M

1− 1
8π(1−κℓ)ρ

e−π(1−κℓ)(1−ρ)

1− e−π(1−ρ)
(9)

It is now obvious thatM = 0, if there exists a real numberρ with 0 <

ρ < 1 such that

2 < (1− 1
8π(1− κℓ)ρ

)(eπ(1−κℓ)(1−ρ) − e−πκℓ(1−ρ))

i.e. 2< (1− 1
8πρ

)(eπ(1−ρ) − 1) whenκℓ = 0

and 1< (1− 1
4πρ

) sinh
π

2
(1− ρ) whenκℓ =

1
2
.
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For the first case, it is sufficient to takeρ =
1
2

, because

1− 1
4π

>
11
12

ande
π
2 − 1 > 3.

For the second case, let the real numberρ be so determined that
π

2
(1 −

ρ) = 1.185. Then 0< ρ < 1 and

sinh
π

2
(1− ρ) = 1.482470. . . > 1.4824

4πρ
4πρ − 1

=
4π − 9.48
4π − 10.48

< 1.4794,

which together imply that the second inequality is possible. Hence the
proof of theorem 32 is complete.

A direct consequence of theorem 31 is207

Theorem 33. LetΓ be the modular group and letα, β ge complex num-
bers such that r= α − β is real andReα, Reβ, Re(α + β − 2) > 0.
Then

dimension[Γ, α, β, v] =


1 if r ≡ 0( mod 2), v = 1

0 otherwise.

Proof. By theorem 31, the dimension of [Γ, α, β, v] is equal to 1 if and
only if the multiplier systemv is unramified at∞ i.e. κ = 0. Then it
follows from (6) of chapter 3,§ 1 thatr ≡ 0( mod 2) andv = 1. Hence
theorem 33 is proved. �

We shall now determine the Fourier coefficients of the Eisenstein
series for the modular groupΓ under the assumptionsr = α − β ≡ 0(
mod 2) andv = 1. Instead of considering the seriesG(τ, τ̄;α, β, 1,E, Γ),
we consider the series

G(τ, τ̄, α, β) =
∑

(m,n),(0,0)

(mτ + n)−α(mτ̄ + n)−β,

because the Fourier coefficients turn out to be simple in this case. It is
obvious thatG(τ, τ̄;α, β) defines a modular form in [Γ, α, β, 1] in case
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p = Re(α+ β) > 2. First of all, we find the Fourier series of the periodic
function

f (τ, τ̄;α, β) =
∞∑

n=−∞
(τ + n)−α(τ̄ + n)−β(ρ > 2)

defined forτ ∈ G . Let

f (τ, τ̄;α, β) = eπi(β−α)/2
∞∑

n=−∞
hn(y;α, β)e2πinx

with 208

hn(y;α, β) = eπi(α−β)/2

∞∫

−∞

τ−ατ̄−βe−2πinxdx

=

∞∫

−∞

(−iτ)−α(iτ̄)−βe−2πinxdx

= y1−α−β
∞∫

−∞

(1− ix)−α(1+ ix)−βe−2πinyxdx.

Here the integrand is defined by

(1− ix)−α = e−α log(1−ix), (1+ ix)−β = e−β log(1+ix),

where the branch of the logarithm is chosen in such a way that log (1±ix)
is real forx = 0. In order to express the function

h(t;α, β) =

∞∫

−∞

(1− ix)−α(1+ ix)−βe−itxdx (Re(α + β) > 1)

in terms of Whittaker’s function, we consider the gamma integrals

(1− ix)−αΓ(α) =

∞∫

0

e−(1−ix)ξξα−1dξ (Reα > 0)
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(1+ ix)−βΓ(β) =

∞∫

0

e−(1+ix)ηηβ−1dη (Reβ > 0)

which imply that

(1− ix)−α(1+ ix)−βΓ(α)Γ(β) =

∞∫

0

∞∫

0

e−(1−ix)ξ−(1+ix)ηξα−1ηβ−1dξdη.

The substitutionξ + η = u, ξ − η = t leads us to

2q−1Γ(α)Γ(β)(1− ix)−α(1+ ix)−β

=

∞∫

−∞

eitx



∫

u>|t|

e−u(u+ t)α−1(u− t)α−1(u− t)β−1du


dt,

with q = α + β. This shows that the function (1− ix)−α(1+ ix)−β is the
Fourier transform of theu-integral. Let Re(α + β) > 1. Then the inverse209

of the above Fourier transform exists and we get

Γ(α)Γ(β)2q−1

2π

∞∫

−∞

(1−ix)−α(1+ix)−βe−itxdx=
∫

u>|t|

e−u(u+t)α−1(u−t)β−1du.

Consequently, we obtain

h(t;α, β) =
2π

Γ(α)Γ(β)
21−q

∫

u>|t|

e−u(u+ t)α−1(u− t)β−1du.

Making use of the integral representation of Whittaker’s function given
in the proof of lemma 8, we see that

h(t;α, β) =
2π

Γ(q+∈Γ
2 )

2−
1
2q|t|q−1W(t;α, β) (∈= sgnt)

and in particular,

h(0;α, β) =
2πΓ(q− 1)
Γ(α)Γ(β)

21−q.
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By the definition of the functionh(t;α, β), the Fourier coefficients of
f (τ, τ̄;α, β) are given by

hn(y;α, β) = y1−qh(2πny;α, β). (10)

We shall now determine the Fourier expansion of the Eisenstein series
G(τ, τ̄;α, β). Here we shall make use of the assumptionr = α − β ≡ 0(
mod 2). Let us setr = 2k (k integral). Then

G(τ, τ̄;α, β) = 2
∞∑

n=1

n−α−β + 2
∞∑

m=1

∞∑

n=−∞
(mτ + n)−α(mτ̄ + n)−β

= 2ζ(q) + 2
∞∑

m=1

f (mτ,mτ̄;α, β),

because, form> 0, mτ belongs toG with τ. Thus 210

G(τ, τ̄;α, β) = 2ζ(q) + 2
∞∑

m=1

∞∑

n=−∞
hn(my;α, β)e2πimnx.

But from (10), it is obvious that

hn(my;α, β) = (my)1−qh(2πnmy;α, β)

= m1−qy1−qh(2πnmy;α, β)

= m1−qhmn(y;α, β);

therefore

G(τ, τ̄;α, β) = 2ζ(q) + 2(−1)k
∞∑

m=1

m1−q
∞∑

n=−∞
hmn(y;α, β)e2πimnx.

Collecting the terms for whichmn= ℓ, we get

G(τ, τ̄;α, β) = 2ζ(q) + 2(−1)k
∞∑

ℓ=−∞
{
∑

d|ℓ
d>0

d1−q}hℓ(y;α, β)e2πiℓx

= ϕk(y, q) + 2(−1)k(
√

2π)q
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∑

n,0

dq−1(n)

Γ(q
2+ ∈ k)

W(2πny;α, β)e2πinx

with ∈ = sgnn, dq−1(n) =
∑

d|n
d>0

dq−1 and

ϕk(y, q) = 2ζ(q) + 2(−1)kζ(q− 1)h0(y;α, β)

= 2ζ(q) + (−1)k23−qπ
Γ(q− 1)ζ(q− 1)

Γ(q
2 + k)Γ(q

2 − k)
{(1− q)u(y, q) + 1}

= 2ζ(q) + (−1)k23−qπ
Γ(q− 1)ζ(q− 1)

Γ(q
2 + k)Γ(q

2 − k)
+

(−1)k23−qπ
Γ(q− 1)ζ(q− 1)

Γ(q
2 + k)Γ(q

2 − k)
(1− q)u(y, q).

The analytic continuation of the functionG(τ, τ̄;α, β) − ϕk(y, q), which211

is so far defined for Req > 2, in the whole of theq-plane (for a fixed
integerk) is obvious from the series as well as the estimate

W(±y;α, β) ≤ Ce−(1−∈)y for y ≥ y0 > 0, |α| ≤ m, |β| ≤ m

with a positive constantC = C(y0, ∈,m), where∈, y0 andm are given
positive numbers. In order to obtain this estimate for the function
W(y;α, β), we consider the well-known integral representation for
Wk,m(y) (see Whittaker and Watson: A Course on Modern Analysis)
of which the following two integrals are an immediate consequence:

W(y;α, β) =
2r/2y−βe−y

Γ(β)

∞∫

0

uβ−1(1+
u
2y

)α−1e−udu for Reβ > 0,

W(y;α, β) =
−2r/2Γ(1− β)e−yyβ

2πi

(0+)∫

+∞

(−u)β−1(1+
u
2y

)α−1e−udu

for Γ(1− β) , ∞.

In the second integral, the path of integration is a loop, which starts from
∞, circles round the point 0 in the positive direction so that the points
0 and−2y are separated and then goes over again to∞. The integrand



3. Eisenstein Series 183

is uniquely defined by the requirements|arg(−u)| ≤ π, in caseu is not

≥ 0 and|arg(1+
u
2y

)| < π in case (1+
u
2y

) is not≤ 0. The estimate for

the functionW(−y;α, β) follows from that ofW(y;α, β) because of the
identity

W(−y;α, β) =W(y;α, α).

For the analytic continuation of the functionϕk(y, q) in the complex
q-plane, we shall make use of the well-known facts that the functions

ξ(s) = s(l − s)π−s/2Γ(
s
2

)ζ(s) is an entire function ofs, satisfies the func- 212

tional equationξ(1− s) = ξ(s) and for 0≤ Res≤ 1 has the same zeros
as the zeta functionζ(s) and does not vanish outside this strip. Further,
we need the identity

Γ(s) =
1√
π

2s−1Γ(
s
2

)Γ(
s+ 1

2
)

for theΓ-function.
By the definition of the functionϕk(y, q), we have

ϕk(y, q) =
πq/2

(1− q)Γ(q
2 + 1)

ξ(1− q) +
(−1)kπq/2Γ(q

2 − 1)

(1− q)Γ(q
2 + k)Γ(q

2 − k)
ξ(q− 1)+

+
(−1)kπq/2Γ(q

2 − 1)

Γ(q
2 − k)Γ(q

2 + k)
ξ(q− 1)u(y, q).

But obviously
Γ(2−q

2 + |k|)
Γ(2− q

2)
= (−1)k+1 Γ(

q
2 − 1)

Γ(q
2 − |k|)

;

therefore

ϕk(y, q) =
π

q
2

Γ( q
2 + |k|)

1
(1− q)


Γ( q

2 + |k|)
Γ( q

2 + 1)
ξ(1− q) −

Γ( 2−q
2 + |k|)
Γ(2− q

2)
ξ(q− 1)

+

+
(−1)kπq/2Γ( q

2 − 1)

Γ( q
2 + k)Γ( q

2 − k)
ξ(q− 1)u(y, q).

The expression in the brackets is an odd function ofq− 1 and therefore
has atq = 1 a zero of order at least equal to 1.
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We introduce 213

G∗(τ, τ̄;α, β) =
q
2

(1− q
2

)π−q/2Γ(
q
2
+ |k|)G(τ, τ̄;α, β),

ϕ∗k(y, q) =
q
2

(1− q
2

)π−q/2Γ(
q
2
+ |k|)ϕk(y, q)

=
1

1− q

(1− q
2

)
Γ(q

2 + |k|)
Γ(q

2)
ξ(1− q)

−q
2

Γ(1− q
2 + |k|)

Γ(1− q
2)

ξ(q− 1)

+

+ (−1)k+1 q
2

Γ(q
2)

Γ(q
2 − |k|)

ξ(q− 1)u(y, q).

It is obvious thatϕ∗k(y, q) as well as

G∗(τ, τ̄;α, β) − ϕ∗k(y, q)

= 2(−1)k(2π)q/2 q
2

(1− q
2

)
∑

n,0

Γ(q
2 + |k|)

Γ(q
2+ ∈ k)

dq−1(n)W(2πny;α, β)e2πinx

with ∈= sgnn, for the given integerk =
1
2

(α − β), is an entire function

of q. The transformation formula ofG(τ, τ̄;α, β) and therefore of the
function G∗(τ, τ̄;α, β) was proved for Req > 2 but remains valid by
analytic continuation; thus

G∗(ττ̄;α, β) ∈ [Γ, α, β, 1].

With the help of

ζ(0) = −1
2
, ζ′(0) = −1

2
log 2π, Γ′(1) = −γ(γ = Euler’s constant)

we obtain, by simple calculation, that

ξ(0) = −1, ξ′(0) = 1+
1
2

(γ − log 4π)
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and finally, for some special values ofk andq,

ϕ∗k(y, q) =



−1 for k = 0, q = 0

−1
y for k = 0, q = 2
Γ(k+ 1

2 )

Γ( 1
2 )
{∑k

h=1
1

2h−1 +
1
2(γ + log y

4π )} for k ≧ 0, q = 1.

Corresponding tok = 0, q = 0, 2, 1 we get the following Eisenstein214

series

G∗(τ, τ̄; 0, 0) = −1,G∗(τ, τ̄; 1, 1) = −1
y
,

G∗(τ, τ̄;
1
2
,
1
2

) =
1
2

(γ + log
y

4m
) +

∑

n,0

d0(n)K0(2π|n|y)e2πinx

where

K0(y) =

√
π

2
W(±y;

1
2
,
1
2

)

is the well-known Bessel function of pure imaginary argument. Since
ξ(q) vanishes only in the critical strip 0< Req < 1 of Riemann’s zeta
function ζ(q), it is easy to see thatϕ∗k(y, q) for given q andk (integral)

does not represent a cusp form for any choice ofα, β providedk =
1
2

(α−
β) is integral.

Sincey

1
2

q
W(∈ y;α, β) with y > 0, ∈2= 1, according to the definition

of this function, depends only ony, r ∈ and (q − 1)2, it is not hard to
prove thatG∗ satisfies the following functional equations

G∗(τ, ¯τ; β, α) = G∗(−τ̄,−τ;α, β),

G∗(τ, τ̄; 1− α, 1− β) = yq−1G∗(τ, τ̄; β, α).

The following is an immediate consequence of the results proved
above.

Theorem 34. The linear space[Γ, α, α, 1], whereΓ is the modular 215

group, has dimension 1 over the complex number field in caseα ≥ 0
and in that case it is generated by G∗(τ, τ̄;α, α).
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Proof. By theorem 32, there exist no cusp forms in [Γ, α, α, 1] which
do not vanish identically. Thus by theorem 29, the space [Γ, α, α, 1] is
isomorphic with the spaceR = γ and therefore dimension [Γ, α, α, 1] =
dimensionR ≤ 1. But, forα ≥ 0, there exists a form in [Γ, α, α, 1],
which does not vanish identically, namely, the Eisenstein series. Hence
the theorem is proved. �
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Dirichlet Series and Euler
Products

1 Gamma Functions and Mellin Transforms
216

In this section, we study some generalised gamma functions and Mellin
transforms of some functions, which will be required in the sequel for
the investigation of the connection between Dirichlet series and modular
forms.

We introduce the gamma functions

Γ(s;α, β) =

∞∫

0

W(y;α, β)ys−1dy (1)

as the Mellin transform of the functionW(y;α, β), which satisfies the
differential equation

yW′′(y;α, β) + qW′(y;α, β) + (r − y)W(y;α, β) = 0 (2)

wherer = α − β andq = α + β. This differential equation has 0 as a
‘place of determinacy’ so that

W(y;α, β) = o(y−K )(y→ 0)

for K > K0 = max(0,Re(q−1)). SinceW(y;α, β) tends to zero exponen-
tially wheny→ ∞, it follows that the functionΓ(s;α, β), in any case, is

189
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regular in the half planeσ = Res > K0. The integral representation of
Whittaker’s function mentioned in lemma 8 (chapter 4,§ 2) gives

W(y;α, β) = y−
1
2qW1

2 r, 12 (q−1)(2y)

=
21− 1

2q

Γ(β)

∞∫

1

e−yu(u− 1)β−1(u+ 1)α+1du (Reβ > 0), (3)

which leads to217

Γ(s;α, β) = 21− 1
2qΓ(s)
Γ(β)

∞∫

1

(u− 1)β−1(u+ 1)α−1u−sdu (Reβ > 0) (4)

for σ > Re(q− 1). Substitutingu = 1/(1− v) in (4), we get

Γ(s;α, β) = 21−q/2Γ(s)
Γ(β)

1∫

0

vβ−1(1− v)s−q(2− v)α−1dv

= 2r/2Γ(s)
Γ(β)

∞∑

n=0

(
α − 1

n

)
(−1)n

2n

1∫

0

vβ+n−1(1− v)s−qdv

= 2r/2Γ(s)
Γ(β)

∞∑

n=0

(1− α)n

n!2n

Γ(β + n)Γ(s+ 1− q)
Γ(s+ n+ 1− α)

,

where, in general

(a)n =
Γ(a+ n)
Γ(a)

= a(a+ 1) . . . (a+ n− 1), (a)0 = 1.

We can thus, conclude finally that

Γ(s;α, β) = 2r/2Γ(s)Γ(s+ 1− q)
∞∑

n=0

(1− α)n(β)n

n!2nΓ(s+ n+ 1− α)
(5)

This series converges for alls, α andβ showing thatΓ(s;α, β) is a mero-
morphic function, which has singularities at most at the poles ofΓ(s)
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Γ(s+ 1− q). In particular, whenα = β, we see, from (4), that

Γ(s;α, α) = 21−α Γ(s)
Γ(α)

∞∫

1

(u2 − 1)α−1u−sdu.

On substitutingu2 = 1/(1− v), we are led to

Γ(s;α, α) = 2−α
Γ(s)
Γ(α)

1∫

0

vα−1(1− v)
s−1
2 −αdv

= 2−α
Γ(s)Γ( s+1

2 − α)

Γ( s+1
2 )

.

Using Legendre’s relation 218

Γ(s) =
1√
π

2s−1Γ(
s
2

)Γ(
s+ 1

2
),

we obtain from above that

Γ(s;α, α) =
2s−α−1

√
π
Γ(

s
2

)Γ(
s+ 1

2
− α). (6)

If β = 0, then it follows immediately from (5) that

Γ(s;α, 0) = 2α/2Γ(s). (7)

With the help of the differential equation (2), we shall show that the
functionΓ(s;α, β) satisfies the functional equation

Γ(s+ 2;α, β)+ (β−α)Γ(s+ 1;α, β)− s(s+ 1−α− β)Γ(s;α, β) = 0. (8)

It is obvious that

0 =

∞∫

0

{−y2W′′(y;α − β) − qyW′(y;α, β) + (y2 − ry)W(y;α, β)}ys−1dy
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=

∞∫

0

{W(y;α, β) −W′′(y;α, β)}ys+1dy− r

∞∫

0

W(y;α, β)ysdy− q

∞∫

0

W′(y;α, β)ysdy

=

∞∫

0

{W(y;α, β) +
r

s+ 1
W′(y;α, β) − s(s+ 1− q)

s(s+ 1)
W′′(y;α, β)}ys+1dy.

(9)

But, by the definition ofΓ(s;α, β), we have

Γ(s+ 2;α, β) =

∞∫

0

W(y;α, β)ys+1dy,

Γ(s+ 1;α, β) =

∞∫

0

W(y;α, β) ysdy= − 1
s+ 1

∞∫

0

W′(y;α, β) ys+1dy,

Γ(s;α, β) =

∞∫

0

W(y;α, β)ys−1dy= −1
s

∞∫

0

W′(y;α, β)ysdy

=
1

s(s+ 1)

∞∫

0

W′′(y;α, β)ys+1dy.

Therefore equation (8) is an immediate consequence of (9).219

We now consider the determinant

D(s;α, β) =

∣∣∣∣∣∣
Γ(s;α, β) Γ(s; β, α)

−Γ(s+ 1;α, β) Γ(s+ 1;β, α)

∣∣∣∣∣∣ (10)

which shall be of use later. With the help of (8), we see thatD(s;α, β)
satisfies the functional equation

D(s+ 1;α, β) =

∣∣∣∣∣∣
Γ(s+ 1;α, β) Γ(s+ 1;β, α)
−Γ(s+ 2;α, β) Γ(s+ 2;β, α)

∣∣∣∣∣∣ .
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= s(s+ 1− q)

∣∣∣∣∣∣
Γ(s+ 1;α, β) Γ(s+ 1;β, α)
−Γ(s;α, β) Γ(s, β, α)

∣∣∣∣∣∣
= s(s+ 1− q) D(s;α, β). (11)

Let us set

H(s) =
D(s;α, β)

Γ(s)Γ(s+ 1− q)
.

Then it can be seen easily from (11) thatH(s) is a periodic function
of period 1. SinceH(s) is regular in the half planeσ = Res > K1,
whereK1 is a sufficiently large number, it follows thatH(s) is an entire
function ofs. We shall now show that lims→∞ H(s) = 2, which together
with the periodicity ofH(s) will imply that H(s) = 2 for all s. In order
to calculate the limit ofH(s) as Res → ∞, we consider equation (5)
which shows that

Γ(s;α, β) = 2r/2Γ(s)Γ(s+ 1− q)
Γ(s+ 1− α)

F(β, 1− α; s+ 1− α;
1
2

), (12)

whereF(a, b; c; z) is the hypergeometric function defined by 220

F(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn.

As a result, we have

H(s) =
Γ(s)Γ(s+ 2− q)

Γ(s+ 1− α)Γ(s+ 1− β)

∣∣∣∣∣∣
a1(s) a2(s)
a3(s) a4(s)

∣∣∣∣∣∣

with

a1(s) = F(β, 1− α; s+ 1− α;
1
2

),

a2(s) = F(α, 1− β; s+ 1− β;
1
2

),

a3(s) = − s
s+ 1− αF(β, 1− α; s+ 2− α;

1
2

),

a4(s) =
s

s+ 1− βF(α, 1− β; s+ 2− β;
1
2

).
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But is is well known that

lim
σ→∞

Γ(s+ a)
Γ(s)

e−a log s = lim
σ→∞

F(α, β; s;
1
2

) = 1,

and therefrom it is clear that lim
σ→∞

H(s) = 2. Consequently, we have

proved that
D(s;α, β) = 2Γ(s) Γ(s+ 1− α − β). (13)

By the general theory of Mellin transforms (see H. Mellin, Math.
Ann. 68 (1910), 305-337), in order to invert relation (1) i.e. to show
that

W(y;α, β) =
1

2πi

σ+i∞∫

σ−i∞

Γ(s;α, β)y−sds (14)

for σ > max(0,Re(q−1)) = K0, it suffices to know thatΓ(s;α, β) is reg-
ular forσ > K0(s= σ+ it) and satisfies the following growth condition:221

Γ(s;α, β) = o(e−(1−∈) π2 |t|) for |t| → ∞ (15)

uniformly in any given stripσ1 ≤ σ ≤ σ2, with given ∈> 0. The
regularity of the functionΓ(s;α, β) in the half planeσ > K0 has been
already established. We shall therefore prove only the latter assertion. It
is well known that

C1 ≤ |Γ(s)|e
π
2 |t||t| 12−σ ≤ C2 for |t| ≥ 1, σ1 ≤ σ ≤ σ2

with certain positive constantsCℓ = Cℓ(σ1, σ2) (ℓ = 1, 2). This in-

equality together with (12) leads to (15), because
∣∣∣∣∣
s+ n− α

n

∣∣∣∣∣ ≥ 1− ∈
and|(s+ 1− α)n| ≥ (1− ∈)nn! for σ1 ≤ σ ≤ σ2, |t| ≥ t0(∈, α, σ1, σ2), for
all n ≥ 1 and for a given∈> 0. Thus we have

lim
|t|→∞

F(β, 1− α, s+ 1− α;
1
2

) = 1

uniformly inσ1 ≤ σ ≤ σ2 and relation (14) is proved.
Finally, we shall calculate the Mellin transformξ(s) of an infinite

series

F(y) =
∑

n,0

anW(
2πn
λ

y;α, β) (λ > 0) (16)
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with an = o(|n|K1) (n→ ∞).
Let K0 = max(0,Re(q − 1)). We shall thatξ(x) exists forσ >

max(K0,K1 + 1); moreover, in this domain, we can calculate it by term-
wise integration of the seriesF(y). Without loss of generality, we can
assume, in the very beginning, that

|an| < |n|K1 for n , 0.

Now it is not hard to prove that for a given∈> 0 andK > K0, there 222

exists a positive constantC = C(K, ∈), such that

|W(±y;α, β)| < Cy−Ke−(1−∈)y for y > 0.

Having fixedσ, the numberK is supposed in the sequel, to lie between
σ andK0. Consider

G(y) = 2C
∞∑

n=1

nK1(
2πny
λ

)−Ke−2π(1−∈)ny/λ

which is a series of positive terms and converges fory > 0. It is obvious
from the above discussion that the seriesG(y) majorises the seriesF(y).
Since the series

2C(
λ

2π
)σ(1− ∈)K−σ(σ − K)

∞∑

n=1

nK1−σ

obtained by the term-wise integration of the series representing the func-
tion G(y)ys−1 converges forσ > max(K0,K1 + 1), it follows that

ξ(s) =

∞∫

0

F(y)ys−1dy=
∑

n,0

an

∞∫

0

W(
2πn
λ

y;α, β)ys−1dy

=
∑

n>0

an

∞∫

0

W(
2πn
λ

y;α, β)ys−1dy+
∑

n<0

an

∞∫

0

W(
2π|n|
λ

y; β, α)ys−1dy

= (
λ

2π
)sΓ(s;α, β)

∑

n>0

an

ns + (
λ

2π
)sΓ(s; β, α)

∑

n<0

an

|n|s (17)
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under the assumption that Res> max(K0,K1 + 1).
Now relation (17) can be inverted i.e.

F(y) =
1

2πi

σ+i∞∫

σ−i∞

ξ(s)y−sds (for σ > max(K0,K1 + 1)) (18)

and the right hand side of (18) can be calculated by term-wiseintegra-
tion of the series representing the functionξ(s)y−s. Indeed, the function
ξ(s) satisfies the requirements for the inversion of relation (17), in view

of (15) and the fact that the Dirichlet series
∑

n>0
an

ns
and

∑
n<0

an

|n|s can223

be majorised by
∑∞

n=1 nK1−σ = ζ(σ − K1), which is independent oft.

2 Automorphic Forms and Dirichlet Series

The following lemma will be used often to prove the equality of func-
tions of the space{α, β}.

Lemma 9. A function g(x, y) belonging to the space{α, β} vanishes
identically if and only if

g(0, y) =

(
∂q(x, y)
∂x

)

x=0
= 0.

Proof. Sinceg(x, y) satisfies the differential equationΩα,βg = 0, it can
be written as a power series inx of the type

g(x, y) =
∞∑

n=0

gn(y)xn,

so that the coefficientsgn satisfy the recursion formula

(n+ 2)(n+ 1)ygn+2 + (β − α)i(n+ 1)gn+1 + yg′′n + (α + β)g′n = 0.

It is an obvious consequence that ifg0 = g1 = 0, thengn = 0 for all
n and the lemma is proved.
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In the following, we shall consider automorphic forms for the group
Γ < λ > generated by

uλ =

(
1 λ

0 1

)
, T =

(
0 1
−1 0

)
(λ > 0).

We know from Hecke that the groupΓ < λ > is discontinuous if and
only if λ satisfies any one of the two conditions:

1. λ ≥ 2

2. λ = 2 cosπ/ℓ (ℓ = 3, 4, 5, . . .).

�

Hecke has also shown that the domain{τ|τ = x+ iy, |2x| ≤ λ, |τ| ≥ 1} 224

is a fundamental domain for the groupΓ < λ >. It is evident that the
subgroups of the modular group that occur among these groupsare the
modular groupΓ = Γ < 1 > itself and the theta groupΓϑ = Γ < 2 >.
Moreover, in caseλ > 2, the groupΓ < λ > is no more a Grenzkreis
group.

We shall now derive, for the multiplier systemv of the groupΓ <
2 cosπ/ℓ > and weightr, certain relations which are analogues of the
relations for the modular group given in chapter 3,§ 1 and coincide with
them in caseℓ = 3. It is easy to see that the transformation

V = U−λT =

(
λ 1
−1 0

)
, λ = 2 cosπ/ℓ

leaves the point−e−πi/ℓ = − cosπ/ℓ + i sinπ/ℓ fixed and therefore is an
elliptic transformation. Since

V =

(
1 e−πi/ℓ

1 eπi/ℓ

)−1 (
eπi/ℓ 0

0 e−πi/ℓ

) (
1 e−πi/ℓ

1 eπi/ℓ

)
,

it follows that Vℓ = −E. If there exists an automorphic form for the
groupΓ < 2 cosπ/ℓ >, the multiplier systemv and weightr, then it can
be proved, as in chapter 3,§ 1, that

v(V) = e(πir /ℓ)+2πia/ℓ (0 ≤ a < ℓ), v(T) = e(πir /2)+2πib/2 (0 ≤ b < 2).
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Let v(Uλ) = e2πiκ, 0 ≤ κ < 1. Thus

v(T) = v(UλV) = v(Uλ)v(V)

implies that
ℓ − 2
4ℓ

r ≡ κ + a
ℓ
+

b
2

( mod 1).

We setv(T)(−τ)r = γ(−iτ)r so thatv(T) = γeπir /2, showing that225

e2πib/2 = γ or b = (1− γ)/2, (γ2 = 1).

For the unramified case (κ = 0), we have

ℓ − 2
4ℓ

r =
g− (1− γ)/2

ℓ
+

1− γ
4

,

i.e. r =
4q
ℓ − 2

+ 1− γ(κ = 0),

whereg is an integer. Ifr = 0, thenκ is a rational number. Let us write
κ = k/h with h > 0 and (k, h) = 1. Then it can be seen easily thath
dividesℓ or 2ℓ according as 2 dividesℓ or does not divideℓ.

An entire functionϕ(s) is said to be offinite genus, if, in every strip
σ1 ≤ σ ≤ σ2 (s= σ + it),

ϕ(s) = o(e|t|K ) for |t| → ∞

uniformly inσ1 ≤ σ ≤ σ2, with some positive constantK.

Theorem 35. Suppose we are given complex numbersα, β with real
r = α − β, real λ > 0, γ = ±1 and realκ with 0 ≤ κ < 1 such that the
equalitiesγ = 1, κ = 0 andα = β = 0 or 1 do not all hold at the same
time. Let us consider

I) functions f(τ, τ̄) with the properties:

1) f(τ, τ̄) ∈ {α, β},
2) f(τ, τ̄) = o(yK1) for y→ ∞,

f (τ, τ̄) = o(y−K2) for y→ 0,

uniformly in x with suitable positive constants K1,K2,
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3) f(τ + λ, τ̄ + λ) = e2πiκ f (τ, τ̄)226

4) f(−1
τ
,−1
τ

) = γ(−iτ)α(iτ̄)β f (τ, τ̄), and

II) pairs of functionsϕ = ϕ(s), ψ = ψ(s) having the properties:

1) the functionsϕ andψ are meromorphic and can be repre-
sented by Dirichlet series of the type

ϕ(s) =
∑

n+κ>0

an+κ

(n+ κ)s , ψ(s) =
∑

n+κ<0

an+κ

|n+ κ|s

in some half-plane,

2) for ξ, η defined by

ξ(s) = (
λ

2π
)s{Γ(s;α, β)ϕ(s) + Γ(s; β, α)ψ(s)},

η(s) + λ
α − β

4π
ξ(s) = (

λ

2π
)s+1{Γ(s+ 1;α, β)ϕ(s) − Γ(s+ 1;β, α)ψ(s)}

and for q= α + β, the functions

ξ(s) − a0

s(s+ 1− q)
− γa0

(q− s)(1− s)
+

b0

s
+

γb0

q− s
(1)

and

η(s)+λ
α − β

4π
ξ(s)−λα − β

2π

{
γb0

s− q
+

γa0

(s− q)(s− 1)

}
, (2)

for a suitable choice of the constants a0 and b0, are entire
functions of finite genus and moreover, forκ , 0, a0 and b0

are both equal to zero.

3) the functionsϕ andψ satisfy the functional equations

ξ(q− s) = γξ(s), η(q− s) = −γη(s).

Then the linear space of functions f mentioned in I) is mappedby
means of the Mellin transformation onto the linear space of pairs
of functions described in II) and this correspondence between the 227

two spaces is invertible.
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Remark. As we shall see later, the functionf (τ, τ̄) has the Fourier ex-
pansion

f (τ, τ̄) = a0u(y, q) + b0 +
∑

n+κ,0

an+κW(
2π(n+ κ)

λ
y;α, β)e2πi(n+κ)x/λ (3)

with a0 andb0 as determined by II), 2). Clearly, a one-one invertible
correspondencef ←→ (φ, ψ) may now be seen to exist only if the con-
stantsa0 andb0 are uniquely determined by the condition II), 2). It may
be verified that this happens except whenκ = 0, γ = 1 andα = β = 0
or 1. We recall that both these possibilities have been excluded in the
statement of theorem 35. It can also be checked that these areexactly
the cases for which the identity

a0u(
y
ττ̄
, q) + b0 = γ(−iτ)α(iτ̄)β{a0u(y, q) + b0}

has a non-trivial solution fora0 andb0.

Proof. A) We start with a functionf (τ, τ̄) with the properties men-
tioned in I) and prove the existence of a pair of functionsϕ andψ
with the properties in II). It is an immediate consequence ofI), 1),
2), 3) that the functionf (τ, τ̄) has a Fourier expansion of the type

f (τ, τ̄) = a0u(y, q)+b0+
∑

n+κ,0

an+κW(
2π(n+ κ)

λ
y;α, β)e2πi(n+κ)x/λ ,

wherea0 andb0 both vanish whenκ , 0. Since the function

g(x, y) = f (−1
τ
,−1
τ̄

)(−iτ)−α(iτ̄)−β − γ f (τ, τ̄)

satisfies the differential equationΩαβg = 0, it follows from
lemma 9 that the conditions228

g(0, y) = [
∂

∂x
g(x, y)]x=0 = 0 (5)

are equivalent with I), 4). It now follows, by simple calculation,
that

F∗(
1
y

)y−q = γF∗(y),
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H∗(
1
y

)y−q = −γH∗(y) (6)

with

F∗(y) = f (iy,−iy) = a0u(y, q) + b0 + F(y)

H∗(y) = G(y) − λα − β
4π

F∗(y) (7)

H(y) = G(y) − λα − β
4π

F(y),

where

F(y) =
∑

n+κ,0

an+κW(
2π(n+ κ)

λ
y;α, β), (8)

G(y) =
∑

n+κ,0

(n+ κ)an+κyW(
2π(n+ κ)

λ
y;α, β).

With the help of I), 2), the equation

an+κW(
2π(n+ κ)

λ
y;α, β) =

1
λ

λ∫

0

f (τ, τ̄)e−2πi(n+κ)x/λdx

entails that

an+κW(
2π(n+ κ)

λ
y;α, β) = o(y−K2) for y→ 0.

Let us choosey =
c

|n+ κ| , where the constantc is so determined

thatW(±2π
λ

c;α, β) , 0. Then it results from above that

an+κ = o(|n+ κ|K2) (|n+ κ| → ∞). (9)

This shows, as already proved in§ 1, that the Mellin transforms 229

ξ(s) =

∞∫

0

F(y)ys−1dy (10)
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η(s) =

∞∫

0

H(y)ys−1dy=

∞∫

0

G(y)ys−1dy− λα − β
4π

ξ(s)

can be calculated by term-wise integration on making use of the
series representation (8) forF(y) andG(y). Thus we obtain that
ξ(s) andη(s) have the form II), 2), where

ϕ(s) =
∑

n+κ>0

an+κ

(n+ κ)s , ψ(s) =
∑

n+κ<0

an+κ

|n+ κ|s

which converge in some half-plane, because of condition (9)satis-
fied by the coefficientsan+κ. In order to get the functional equation
for ϕ andψ we proceed as follows. From (10), we have

ξ(s) =

∞∫

1

F(y)ys−1dy+

1∫

0

F(y)ys−1dy

=

∞∫

1

{F(y)ys + F(
1
y

)y−s}dy
y

and similarly

η(s) =

∞∫

1

{H(y)ys + H(
1
y

)y−s}dy
y
.

With the help of the transformation formulae

F(
1
y

) = γF(y)yq + γ{a0u(y, q) + b0}yq − a0u(
1
y
,q) − b0,

H(
1
y

) = −γH(y)yq + λ
α − β

4π
γ{a0u(y, q) + b0}yq + λ

α − β
4π
{a0u(

1
y
,q) + b0},

which result from (6) and (7), we obtain by integrating the ele-
mentary terms that

ξ(s) =

∞∫

1

F(y){ys + γyq−s}dy
y
− b0

s
− γb0

q− s
+

a0

s(s+ 1− q)
+

a0γ

(q− s)(1− s)
,
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ηs=

∞∫

1

H(y){ys − γyq−s}dy
y
+ λ

α − β
4π

{
b0

s
− γb0

q− s
− a0

s(s+ 1− q)
+

γa0

(q− s)(l − s)

}
. (11)

The functional equations forϕ andψ are now trivial conseque-230

nces. Both the integrals are obviously entire functions ofs, which
are bounded in any stripσ1 ≤ σ ≤ σ2. Thusξ(s) andη(s) are
meromorphic functions ofs, the singularities of which are explic-
itly given by (11). Finally, it remains to prove that the functions
(1) and (2) are entire functions of finite genus. But this follows
easily from (11) and the fact that

ξ(s) = o(1), η(s) = o(1) for |t| → ∞ (12)

uniformly in any stripσ1 ≤ σ ≤ σ2. Therefore the pair of func-
tionsϕ andψ defined above satisfies all the requirements of theo-
rem 35, II).

B) We now start with a pair of functionsϕandψ with the properties
mentioned in II) and prove the existence of a functionf satisfying
the properties mentioned in I). We define the functionf (τ, τ̄) by

f (τ, τ̄) = a0u(y, q) + b0 +
∑

n+κ,0

an+κW(
2π(n+ κ)

λ
y;α, β)e2πi(n+κ)x/λ

and prove that it has the desired properties. Since the Dirichlet
seriesϕ andψ converge in some half-plane, it follows that the co-
efficientsan+κ satisfy the growth condition (9) with some positive
constantK2. Thus, forσ > K2 + 1, the series converge abso-
lutely and the considerations of§1 show that formula (10) can be
inverted i.e.

F(y) =
1

2πi

σ0+i∞∫

σ0−i∞

ξ(s)y−sds,

σ0 > max(K2 + 1,Re(α + β − 1)). (13)
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H(y) =
1

2πi

σ0+i∞∫

σ0−i∞

η(s)y−sds.

We choose the line of integration in such a way that the singular-231

ities of ξ(s) andη(s) lie in the half planeσ < σ0. If we replace
in the integrals (10) the functionsξ(s) andη(s) by the functions
given in II), 2) and substitute the Dirichlet series forϕ andψ, then
we obtain the functionsF andG given in (8), by term-wise inte-
gration which is justified. Moving the line of integration in(13)
from σ = σ0 toσ = σ1 = Re(α + β) − σ0, we shall show that

F(y) =
1

2πi

σ1+i∞∫

σ1−i∞

ξ(s)y−sds+
∑

Resξ(s)y−s,

H(y) =
1

2πi

σ1+i∞∫

σ1−i∞

η(s)y−sds+
∑

Resη(s)y−s. (14)

In order to prove (14), it is sufficient to show that for every∈> 0

ξ(s), η(s) = o(e−(1−∈) π2 |t|) for |t| → ∞ (15)

uniformly in σ1 ≤ σ ≤ σ0. Such an estimate forξ(s) andη(s)
holds on the lineσ = σ0 because of (15) of§ 1, and therefore
holds also on the lineσ = σ1 in view of the functional equation
II), 3). If t0 is sufficiently large, then functionsξ(s)e−πi(1−∈)s/2 and
η(s)e−πi(1−∈)s/2 are regular in the domaint ≥ t0, σ1 ≤ σ ≤ σ0 and
are bounded on its boundary. But by II), 2) there exists a constant
K such that both the functions areo(etK ) in the interior of the232

above domain; therefore, by the principle of Phragmen-Lindelöf
both the functions are bounded in the whole of the above domain.
Consequently, (15) is proved fort → ∞. In a similar way, it
is proved fort → −∞. Replacingξ(s) and η(s) by γξ(q − s)
and−γη(q− s) respectively in the integrals (14) and applying the
substitutions→ q− swe see that

F(y) = γy−qF(
1
y

) +
∑

Resξ(s)y−s,
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H(y) = −γy−qH(
1
y

) +
∑

Resη(s)y−s. (16)

The sum of the residues ofξ(s)y−s can be evaluated with the help
of II), 2). As a matter of fact, it can be seen that
∑

Resξ(s)y−s = −a0u(y, q) − b0 + γ{a0u(
1
y
, q) + b0}y−q

∑
Resη(s)y−s = λ

α − β
2π

γ{a0u(
1
y
, q) + b0}y−q − λα − β

4π

∑
Resξ(s)y−s

= λ
α − β

4π
{a0u(y, q) + b0 + γ(a0u(

1
y
, q) + b0)y−q}.

Thus formulae (16) are identical with formulae (6) from which
I), 4) follows by lemma 9. The assertions in I), 1), 2), 3) follow
form the Fourier series off (τ, τ̄) and the estimate (9). Hence the
theorem is proved.

�

In order to determine the singularities of the functionsϕ andψ we
solve the equations

Γ(s;α, β) ϕ(s) + Γ(s; β, α) ψ(s) = (
2π
λ

)sξ(s),

Γ(s+ 1;α, β)ϕ(s) − Γ(s+ 1;β, α)ψ(s) = (
2π
λ

)s+1{η(s) + λα − β
4π

ξ(s)},

for ϕ andψ. These equations are nothing but trivial modifications of233

those in theorem 35, II), 2). Using the value of the functional determi-
nantD(s;α, β) obtained in§ 1 we get

2Γ(s)Γ(s+ 1− q)ϕ(s) = (
2π
λ

)sΓ(s+ 1;β, α)ξ(s)

+ (
2π
λ

)s+1Γ(s; β, α)

{
η(s) + λ

(α − β)
4π

ξ(s)

}
,

2Γ(s)Γ(s+ 1− q)ψ(s) = (
2π
λ

)sΓ(s+ 1;α, β)ξ(s)

− (
2π
λ

)s+1Γ(s;α, β)

{
η(s) + λ

(α − β)
4π

ξ(s)

}
.

(17)
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Let us set

w(s;α, β) =
Γ(s;α, β)

Γ(s)Γ(s+ 1− q)
(18)

Then it is immediate from (5) of§1 that

w(s;α, β) = 2
1
2 (α−β)

∞∑

n=0

(β)n(1− α)n

2nn!Γ(s+ n+ 1− α)
, (19)

which implies thatw(s;α, β) is an entire function ofs. Moreover, the
functional equation (8) of§ 1 for Γ(s;α, β) shows thatw(s;α, β) satisfies
the functional equation

s(s+ 1− q) w(s+ 1;α, β)+ (β− α) w(s;α, β)−w(s− 1;α, β) = 0. (20)

Expressing the functionΓ(s;α, β) in (17) in terms of the function
w(s;α, β), we obtain

2ϕ(s) = (
2π
λ

)sw(s+ 1;β, α)s(s+ 1− q)ξ(s) + (
2π
λ

)s+1w(s; β, α)
{
η(s) +

λ(α − β)
4π

ξ(s)

}
,

2ψ(s) = (
2π
λ

)sw(s+ 1;α, β)s(s+ 1− q)ξ(s) − (
2π
λ

)s+1w(s;α, β)
{
η(s) + λ

α − β
4π

ξ(s)
}
. (21)

In the following,Ai(s) (i = 1, 2 . . .) will denote an entire function ofs.
From theorem 35, II), 2), we have the relations

s(s+ 1− q)ξ(s) = s(s+ 1− q){ γb0

s− q
+

γa0

(s− q)(s− 1)
} + A1(s),

η(s) + λ
α − β

4π
ξ(s) = λ

(α − β)
2π

{γb0

2π
+

γa0

(s− q)(s− 1)
} + A2(s),

which, on using (20), give234

2ϕ(s) = (
2π
λ

)sw(s− 1;β, α){ γb0

s− q
+

γa0

(s− q)(s− 1)
} + A3(s),
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2ψ(s) = (
2π
λ

)sw(s− 1;α, β){ γb0

s− q
+

γa0

(s− q)(s− 1)
} + A4(s). (22)

For computing the principal parts of the functionsϕ andψ, we shall
require the following special values of the functionw(s;α, β) and its
derivative:

w(0;α, β) =
2q/2

Γ(1− α)
,w(q− 1;α, β) =

21−q/2

Γ(β)
(q = α + β)

w′(0; 1− β, β) =
−√2
Γ(β)
{Γ
′

Γ
(β) + log 2}.

The first two values are immediate consequences of the seriesrepresen-
tation (19), when we take into consideration the fact that

(1− x)−β =
∞∑

n=0

(β)n

n!
xn =

1
Γ(β)

∞∑

n=0

Γ(β + n)
n!

xn.

For the third, differentiating the series (19) term by term and substituting
s= 0 andα = 1− β yield

w′(0;α, β) = −2
1
2 (α−β)

∞∑

n=0

(β)n(1− α)n

2nn!Γ(n+ 1− α)
Γ′

Γ
(n+ 1− α)

= − 2
1
2−β

(Γ(β))2

∞∑

n=0

Γ′(n+ β)
2nn!

= − 2
1
2−β

(Γ(β))2
(Γ(β)2β)′

=

√
2
Γ(β)
{Γ
′

Γ
(β) + log 2}.

Consequently, we have 235

ϕ(s) =


γ·2q/2

q−1
π
λ
{( π
λ
)q−1 a0+(q−1)b0

Γ(α)
1

s−q −
a0
Γ(1−β)

1
(s−1)} + A5(s), for q , 1

γ·21/2

Γ(α)
π
λ
{ a0

(s−1)2 + (b0 + a0{log π
λ
− Γ′
Γ

(α)}) 1
s−1} + A6(s), for q = 1

(23)
and

ψ(s) =


γ·2q/2

q−1
π
λ
{( π
λ
)q−1 a0+(q−1)b0

Γ(β)
1

s−q −
a0

Γ(1−α)
1

s−1} + A7(s), for q , 1
γ·21/2

Γ(β)
π
λ
{ a0

(s−1)2 + (b0 + a0{log π
λ
− Γ′
Γ

(β)}) 1
s−1} + A8(s), for q = 1.

(24)



208 5. Dirichlet Series and Euler Products

In particular, we see that

(s− 1)(s− q)ϕ(s) and (s− 1)(s− q)ψ(s)

are entire functions ofs. Moreover, using the well-known asymptotic
behaviour of theΓ-function, § 1, (15), and the fact that the functions
ξ(s) andη(s) are of finite genus, it can be seen that (s−1)(s−q)ϕ(s) and
(s− 1)(s− q)ψ(s) are also entire functions of finite genus.

We remark here that conversely, from (23), (24) and the functional
equations ofϕ andψ, it cannot be concluded that the functions men-
tioned in (1) and (2) are entire functions.

From the various properties ofΓ(s;α, β) derived in§1, it follows that
the poles of the functionξ(s) are contained in the sequences of numbers

1, 0,−1,−2, . . . andq, q− 1, q− 2, . . .

But ξ(q− s) = γξ(s); therefore the poles ofξ(s) are also contained in the
sequences of numbers

q− 1, q, q+ 1, q+ 2, . . . , and 0, 1, 2, . . .

In any case, the common points of these two sets of sequences of num-236

bers are 0, 1, q − 1 andq. There will be some more common points, in
caseq is an integer andq ≤ −2 or q ≥ 4. Thus the poles ofξ(s) are
contained in

{0, 1, 2, . . . , q− 1, q}, for integralq ≥ 4,

{q− 1, q, . . . , 0, 1, }, for integralq ≤ −2, and

{0, 1, q− 1, q}, otherwise.

If q = 4, the regularity ofξ(s) at s= 2 leads to a relation between some

special values ofϕ andψ. Since lim
s→−n

(s+ n)Γ(s) =
(−1)n

n!
(n ≥ 0), it

follows that

lim
s→2

(s− 2)ξ(s) = −
(
λ

2π

)2

{w(2;α, β)ϕ(2)+ w(2;β, α)ψ(2)}.
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But, for q = 4,

w(2;α, β) =
2

1
2 (α−β)

Γ(β − 1)

∞∑

n=0

(β)n(β − 3)
2nn!(β − 1)n

=
2

1
2 (α−β)

Γ(β)

∞∑

n=0

(β + n− 1)(β − 3)
2nn!

=
2

1
2 (α−β)(β − 1)
Γ(β)

∞∑

n=0

(β − 3)
2nn!

+
2

1
2 (α−β)

2Γ(β)

∞∑

n=1

(β − 2)n−1

2n−1(n− 1)!
.

Therefore, we get the condition

β − 2
Γ(β)

ϕ(2)+
α − 2
Γ(α)

ψ(2) = o(α + β = 4)

Conversely, if this condition is satisfied, thenξ(s) is regular ats = 2
providedα + β = 4.

The case of analytic modular forms considered by Hecke appears
as a particular case of our considerations when we assume that β = 0, 237

a0 = 0 andψ(s) = 0. Under these assumptions we obtain, using (7) of
§ 1, that

ξ(s) = (
λ

2π
)sΓ(s;α, 0)ϕ(s) = 2α/2(

λ

2π
)sΓ(s)ϕ(s)

η(s) = (
λ

2π
)s+1{Γ(s+ 1;α, 0)− α

2
Γ(s;α, 0)}ϕ(s)

= 2α/2(
λ

2π
)s+1(s− α

2
)Γ(s)ϕ(s).

The functionξ(s) as given above is a constant multiple of the function

(
λ

2π
)sΓ(s)ϕ(s) considered by Hecke and both the functional equations

for ξ(s) andη(s) lead to the same conclusion.
In the non-analytic caseα = β, by § 1, (6), we have

ξ(s) = (
λ

2π
)sΓ(s;α, α){ϕ(s) + ψ(s)}

=
2−α−1

√
π

(
λ

π
)sΓ(

s
2

)Γ(
s+ 1

2
− α){ϕ(s) + ψ(s)},
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η(s) = (
λ

2π
)s+1Γ(s+ 1;α, α){ϕ(s) − ψ(s)}

=
2−α−1

√
π

(
λ

π
)s+1Γ(

s+ 1
2

)Γ(
s
2
+ 1− α){ϕ(s) − ψ(s)}.

For λ ≤ 2, the linear space of functionsf = f (τ, τ̄) characterised
in theorem 35, I) coincides with the space [Γ < λ >, α, β, v], where the
multiplier systemv is defined by

v(Uλ) = e2πiκ andv(T) = γeπir /2.

We prove here this statement in the two special casesλ = 1 and 2.
In these two cases, the assertion results easily from the following two
lemmas.

Lemma 10. Let Γ0 be a subgroup of finite index in the modular group238

Γ and let r= α − β be real, whereα andβ are two complex numbers. If
f (τ, τ̄) belongs to the space[Γ0, α, β, v], then

f (τ, τ̄) = o(y−K2) for y→ 0 (with τ = x+ iy)

uniformly in x, with a positive constant K2.

Proof. Let µ be the index ofΓ0 in Γ and

Γ =

µ⋃

n=1

Γ0Sn

be a coset decomposition ofΓmoduloΓ0. We may assume thatS1 = E.
Consider

g(τ, τ̄) =
µ∑

n=1

|( f |Sn)(τ, τ̄)|,

which obviously does not depend upon the choice of the coset represen-
tativesSn. Since, along with the set{Sn}, the set{Sn S} for S ∈ Γ is also
a representative system for the left cosets ofΓ moduloΓ0 and since

|(cτ + d)α(cτ̄ + d)β| = |cτ + d|p (p = Re(α + beta)),
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we obtain
(g|S) p

2 ,
p
2
(τ, τ̄) = g(τ, τ̄) for S ∈ Γ,

showing thatyp/2g(τ, τ̄) is invariant under the transformation ofΓ. For

a given pointτ = x+ iy with y <

√
3

2
we determine an equivalent point

τ0 = x0 + iy0 = S < τ > with y0 ≥
√

3
2
,S =

(
a b
c d

)
∈ Γ. It is obvious that

c , 0 and 239

y0 =
1

|cτ + d|2
≤ 1

c2y
≤ 1

y
.

SinceSn < ∞ > is a parabolic cusp ofΓ0, we have, by the definition of
a non-analytic modular form,

( f |Sn)(τ0, τ̄0) = o(yK1
0 ) for y0→ ∞,

uniformly in x0 with a positive constantK1. Consequently,

g(τ0, τ̄0) ≤ CyK1
0 for y0 ≥

√
3

2
,

with some suitable constantC. It follows from above that

| f (τ, τ̄)| ≤ g(τ, τ̄) = (
y0

y
)p/2g(τ0τ̄0) ≤ Cy−p/2yp/2+K1

0

≤ Cy−p−K1 for y ≤
√

3
2
,

becauseK1 can be so chosen thatK1 +
p
2
≥ 0. Hence the lemma is

proved. �

Lemma 11. LetΓ0 be a subgroup of finite index in the modular groupΓ
and let f(τ, τ̄) be a continuous function inG , which satisfies the trans-
formation formula

( f |S)
α,β

(τ, τ̄) = f (τ, τ̄) for every S∈ Γ0,

whereα andβ are complex numbers withα − β real. Further, let

f (τ, τ̄) = o(yK1) for y→ ∞
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f (τ, τ̄) = o(y−K2) for y→ 0

uniformly in x(τ = x+ iy) with positive constants K1 and K2. Then

( f |A−1

α,β

)(τ, τ̄) = o(yK) for y→∞,

uniformly in x with a suitable constant K for every A belonging toΓ.240

Proof. Obviously, for the proof of the lemma, it is sufficient to confine
ourselves to those elementsA =

(
a b
c d

)
of Γ for which c , 0. We set

τ1 = x1+ iy1 = A−1 < τ > for y ≥ 1. Then we havey1 =
y

| − cτ + a|2 ≤ 1

and
| f (τ1, τ̄1)| ≤ Cy−K2

2 for y1 ≤ 1.

with a certain constantC. HereK2 can be so chosen thatK2 ≥
p
2

, where

p = Re(α + β). Let us consider the pointsτ with

|x− a
c
| ≤ m, 1 ≤ m≤ y,

m being a given constant. Then we have

|( f |A−1

α,β

)(τ, τ̄)| = | f (τ1, τ̄1)|| − cτ + a|−p

≤ Cy−K2
1 | − cτ + a|−p

= Cy−K2| − c+ a|2K2−p

= C|c|2K2−py−K2{y2 + (x− a
c

)2}K2−p/2

≤ C|√2c|2K2−pyK2−p

But ( f |A−1

α,β

)(τ, τ̄) is periodic inx; therefore our assertion follows with

K = K2 − p.
In the sequel, we shall give some applications of theorem 35 to the

spaces [Γ < λ >, α, α, v] with λ = 1 or 2, α > 0, α , 1 where the mul-
tiplier systemv is determined byv(Uλ) = e2πiκ, v(T) = γ, and satisfies
the conditionv2 = 1. We have proved already in (10) of chapter 4,241
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§ 2, that the operatorX = Θ(r = 0) maps the space [Γ < λ >, α, α, v]
onto the space [(Γ < λ >)∗, α, α, v∗] with (Γ < λ >)∗ andv∗ as defined
in the above-mentioned chapter. Butv2 = 1 implies thatv∗ = v and
(Γ < λ >)∗ = Γ < λ > for λ = 1 or 2; therefore, the operatorX = Θ
leaves the spaces [Γ < λ >, α, α, v] invariant. Since every functionf
belonging to [Γ < λ >, α, α, v] can be written as

f =
1
2

( f + Θ f ) +
1
2

( f − Θ f ),

if follows that the space [Γ < λ >, α, α, v] can be represented as a direct
sum

[Γ < λ >, α, α, v] = L
(1)(λ, α, v) +L

(−1)(λ, α, v)

so that
Θ f =∈ f for f ∈ L

∈(λ, α, v), (∈= ±1).

Moreover, if f ∈ L ∈(λ, α, v) has the Fourier expansion

f (τ, τ̄) = a0u(y, q) + b0 +
∑

n+κ,0

an+κW(
2π(n+ κ)

λ
y;α, α)e2πi(n+κ)x/λ,

we obtain, from (14) of chapter 4,§ 2, the following relations for the
coefficients:

a0 =∈ a0, b0 =∈ b0, an+κ =∈ a−n−κ for n+ κ , 0.

This shows that iff belongs toL (−1)(λ, α, v) thena0 = b0 = 0 i.e. f is a
cusp form, in caseλ = 1. Letϕ andψ be the Dirichlet series associated
to the functionf ∈ L (∈)(λ, α, v). Thenϕ(s) = ψ(s) and

ξ(s) =
2−α√
π

(
λ

π
)sΓ(

s
2

)Γ(
s+ 1

2
− α)ϕ(s), η(s) = 0 for ∈= 1,

ξ(s) = 0, η(s) =
2−α√
π

(
λ

π
)s+1Γ(

s+ 1
2

)Γ(
s
2
+ 1− α)ϕ(s) for ∈= −1.

We shall denote byϑ∈(λ, α, κγ) the linear space of meromorphic func-242

tionsϕ(s), which withβ = α andψ = ϕ satisfy the conditions of theo-
rem 35, II), so that the linear mappingf → ϕ is an isomorphism between
the spacesL (∈)(λ, α, v) andϑ(∈)(λ, α, κ, γ). In the following theorem, we
explicitly give a basis for the spaceϑ(∈)(λ, α, κ, γ) . �
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Theorem 36. Under the assumptionsα > 0, α , 1 the spaceϑ(∈)(λ, α,
κ, γ) is generated by

ζ(s)ζ(s+ 1− 2α), in caseλ = 1, κ = 0, γ = 1, ∈= 1,

2−sζ(s)ζ(s+ 1− 2α)

2−s(2s + 22α−s)ζ(s)ζ(s+ 1− 2α)

 , in caseλ = 2, κ = 0, γ = 1, ∈= 1

2−s(2s − 22α−s)ζ(s)ζ(s+ 1− 2α), in caseλ = 2, κ = 0, γ = −1, ∈= 1,

2sL(s, χ) L(s+ 1− 2α, χ), in caseλ = 2, κ =
1
2
, γ = −1, ∈= −1

and 0, otherwise so long asλ = 1 or 2 andκ = 0 or
1
2

.

The functionsζ(s) and L(s, χ) are defined forRes> 1 by

ζ(s) =

∞∫

n=1

n−2 and L(s, χ) =
∞∑

n=1

χ(n)n−s

where x is the proper character modulo 4.

Proof. Using the well-known properties of the functionsζ(s) and
L(s, χ), it can be shown without any difficulty that the given functions
belong to the spaceϑϑ(λ, α, κ, γ). Thus to complete the proof of the
theorem, it is sufficient to establish that the dimension ofϑ(∈)(λ, α, κ, γ)
is not greater than the number of functions mentioned in theorem 36 in
each individual case. Since

dimensionϑ(∈)(λ, α, κ, γ) ≤ dimension [Γ < λ >, α, α, v],

it suffices to prove the following under the assumptionsα > 0 and243

v2 = 1: namely,

dimension [Γ < λ >, α, α, v] ≤



1, in caseλ = 1, v = 1,

2, in caseλ = 2, v = 1

1, in caseλ = 2, v = v1 or v2

0, otherwise,
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wherev1 andv2 are even abelian characters ofΓϑ mentioned before the
proof of theorem 32. Since under the given assumptions, [Γϑ, α, α, v]
does not contain any cusp form, which does not vanish identically, and
sinceΓϑ ⊂ Γ, the dimension of the space [Γ < λ >, α, α, v] for λ = 1 or 2
is at most equal, by theorem 29, to the number of inequivalentparabolic
cusps ofΓ < λ > at which the multiplier systemv is unramified. But
we have already shown that in caseλ = 1, the multiplier systemv is
unramified at∞ only if v = 1 and in caseλ = 2, the multiplier system
v1 respectivelyv2, respectivelyv3 = v1v2 is ramified at 1 respectively
∞, respectively 1 as well as∞. Therefore the above estimates hold for
the dimension of [Γ < ∞ >, α, α, v]. Hence the proof of the theorem is
complete. �

Theorem 36 provides us three examples of functions which areuni-
quely fixed upto a constant factor by their functional equation and the
fact that they can be represented by Dirichlet series in somehalf-plane.
One of these functions, namely, the function defined by 2sL(s, χ)L(s+
1− 2α, χ), is an entire function.

3 The Hecke OperationsTn
244

In this section, we shall investigate the multiplicative properties of the
Fourier coefficients of non-analytic modular forms in connection with
the Euler product development of the corresponding Dirichlet series.
For the sake of simplicity, we shall confine ourselves to the modular
groupΓ, though almost the same type of results as proved by Hecke
and Petersson for the analytic case can be obtained for subgroups of the
modular group, of arbitrary level.

For defining Hecke operatorsTn, we consider the setOn of all in-
tegral matrices

(
a b
c d

)
of determinantn (n a natural number). LetOn,g

denote the subset ofOn consisting of matrices
(

a b
c d

)
with (a, b, c, d) = g.

Then obviously

On,g =
(

g 0
0 g

)
Ong−2,1 for g2|n,On =

⋃

g2|n
g>0

On,g. (1)
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Since, withS, the setΓSΓ of matrices is also contained inOn, it follows
thatOn can be decomposed completely into left and right cosets modulo
Γ. Moreover, any two left or right cosets are either identicalor disjoint,
becauseΓ is a group. For our later considerations, we shall need

Lemma 12. 1) The subset ofOn defined by

{(
a b
0 d

)
|ad = n, d > 0, b mod d

}

forms a complete system of representatives of left cosets ofOn

moduloΓ.

2) There exists a common system of representatives for left and right
cosets ofOn moduloΓ.245

Proof. 1) For everyS =
(

a b
c d

)
∈ On, there exists a matrixL =

(
α β
γ δ

)

such thatLS =
( ∗ ∗

0 ∗
)
, because the equationγa + δc = 0 has a

solution forγ andδ with (γ, δ) = 1 and then with suitableα and
β we can construct a matrixL =

(
α β
γ δ

)
belonging toΓ. Since

−E belongs toΓ, it follows that every left coset ofOn moduloΓ
contains a matrix of the type

(
a b
0 d

)
with d > 0. If

L

(
a b
0 d

)
=

(
a∗ b∗

0 d∗

)
with L =

(
α β
γ δ

)
∈ Γ,

thenγ = 0 and fromd > 0, d∗ > 0, we haveα = δ = 1 implying
thata = a∗, d = d∗ andb∗ = b + βd i.e. b∗ ≡ b( modd). Hence
the assertion 1) of the lemma is proved.

2) Since any matrixS ∈ On,1 has 1 andn as its elementary divisors,
we have

On,1 = ΓSnΓ with Sn =

(
1 0
0 n

)
.

Let {SnLi} (i = 1, 2, . . . , ρ(n)) be a system of representatives of
left cosets ofOn,1 modulo Γ, with Li ∈ Γ. Then the matrices
Ai = L′i SnLi (i = 1, 2, . . . , ρ(n)) (L′i , the transpose ofLi) in any
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case form a system of representatives for the left cosets ofOn,1

moduloΓ and therefore

On,1 =

ρ(n)⋃

i=1

ΓAi .

By transposition, we get

On,1 =

ρ(n)⋃

i=1

AiΓ.

Thus there exists a common representative system for the left and 246

right cosets ofOn,1 moduloΓ. Our assertion 2) now follows from
the decomposition (1) above.

Letα, β be complex numbers such thatr = α−β is an integer. Let
Vn denote a system of representatives of left cosets ofOn modulo
Γ. We define the linear operatorTn on the space [Γ, α, β, 1]

f |Tn = nq−1
∑

S∈Vn

f |S(q = α + β). (2)

The definition of the operatorTn is independent of the choice of
Vn, because, if we replaceS belonging toVn by LS for any L in
Γ, then

f |(LS) = ( f |L)|S = f |S for f in [Γ, α, β, 1].

�

Theorem 37. The linear space[Γ, α, β, 1] is mapped into itself by f→
f |Tn.

Proof. Let f = f (τ, τ̄) be an element of [Γ, α, β, 1]. Then by (10) of
chapter 4,§ 1, f |Tn belongs to{α, β} and forL ∈ Γ, we have

( f |Tn)|L = nq−1
∑

S∈Vn

f |(S L) = f |Tn,
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because, along withS, the matrixS Lalso runs over a system of repre-
sentatives of left cosets ofOn moduloΓ. Thus, in order to complete the
proof of the theorem, it remains to show that, at the parabolic cusp∞ of
Γ,

( f |Tn)(τ, τ̄) = o(yK) for y→ ∞
with some positive constantK. For this, we shall compute explicitly the247

Fourier expansion off |Tn. In the following, we shall take, forVn, the
special set of representatives given in lemma 12. Let

f (τ, τ̄) = a(0)u(y, q) + b(0)+
∑

k,0

a(k)W(2πy;α, β)e2πiκx (3)

be the Fourier expansion off (τ, τ̄) at the parabolic cusp∞. Then

( f |Tn)(τ, τ̄) = nq−1
∑

d|n
d>0

d−q
∑

b modd

{a(0)u(
ay
d
, q) + b(0)}+

+ nq−1
∑

d|n
d>0

d−q
∑

b modd

∑

k,0

a(k)W(
2πak

d
y;α, β)e2πik ax+b

d .

=
∑

d|n
d>0

(
n
d

)q−1{a(0)u(
ny

d2
, q) + b(0)}+

+
∑

k,0
d|n
d>0

(
n
d

)q−1
∑

k,0

a(kd)W(
2πnk

d
;α, β)e

2πink
d x

Let us setm=
nk
d
= ak. Thenkd =

m
a
· n
a

, where a runs over all positive

divisors of (m, n). Writing d in place ofa, we obtain from above, by a
brief calculation, that

( f |Tn)(τ, τ̄) = a∗(0)u(y, q) + b∗(0)+
∑

k,0

a∗(k)W(2πky;α, β)e2πikx (4)

with

a∗(0) = dq−1(n)a0, b∗(0) = dq−1(n)b(0)



3. The Hecke OperationsTn 219

a∗(m) =
∑

d|(m,n)
d>0

dq−1a(
mn

d2
). (5)

Consequently, theorem 37 is proved. � 248

Theorem 38. The operators Tn = T(n) (n = 1, 2, . . .) commute with
each other and satisfy the composition rule

T(m)T(n) =
∑

d|(m,n)
d>0

T(mn/d2)dq−1.

Proof. (i) Let (m, n) = 1. For f ∈ [Γ, α, β, 1], we have, by definition,

f |T(m)T(n) = ( f |T(m))|T(n)

= (nm)q−1
∑

a′d′=m
b′ modd′

∑

ad=n
b modd

f |
(
a′ b′

0 d′

) (
a b
0 d

)

= (nm)q−1
∑

a′d′=m
b′ modd′

∑

ad=n
b modd

f |
(
a′a a′b+ b′d
0 dd′

)
.

But, for (m, n) = 1, the productd′d runs over the positive divisors
of mn whend′ (respectivelyd) runs over positive divisors ofm
(respectivelyn) anda′b+ bd′ runs through all the residue classes
modulodd′ whenb′ (respectively b) does so modulod′ (respec-
tively d); therefore, the matrix

(
a′a a′b+b′d
0 dd′

)
runs over a systemVmn

and we have
T(m)T(n) = T(mn).

(ii) Let m = p, n = pr , r ≥ 1 andp a prime number. We shall show
that

T(pr )T(p) = T(pr+1) + pq−1T(pr−1).

Let f be any element of the space [Γ, α, β, 1]. Then from

f |T(p) = pq−1{ f |
(
p 0
0 1

)
+

∑

ℓ mod p

f |
(
1 ℓ

0 p

)
}
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and 249

f |T(pr ) = pr(q−1)
∑

0≤t≤r
bt mod pt

f |
(
pr−t bt

0 pt

)
,

it follows that

f |T(pr )T(p) = p(r+1)(q−1)
∑

0≤t≤r
bt mod pt

f |
(
pr+1−t bt

0 pt

)
+

+ p(r+1)(q−1)
∑

0≤t≤r
bt mod pt

∑

ℓ mod p

f |
(
pr−t pr−tℓ + bt p
0 pt+1

)
.

It is obvious that the first sum along with the termt = r from the
second double sum gives the termf |T(pr+1). Thus, on simplify-
ing the second sum by taking out the factorp, we get

f |T(pr )T(p) = f |T(pr+1) + p(r+1)(q−1)p−q

∑

0≤t<r
bt mod pt

∑

ℓ mod p

f |
(
pr−l−t pr−1−tℓ + bt

0 pt

)

= f |T(pr+1) + p(r+1)(q−1)pq−1p−q+1

∑

0≤t<r
bt mod pt

f |
(
pr−1−t bt

0 pt

)

= f |T(pr+1) + pq−1 f |T(pr−1).

This shows thatT(pr ) is a polynomial inT(p) with complex num-
bers as coefficients and therefore the operatorsT(pr )(r = 0, 1,
2, . . .) commute with each other. By (i), it follows trivially that
the operatorsT(n) commute with each other.

(iii) In order to prove the second assertion of the theorem, it is suffi-250

cient, because of (i), to prove that

T(pr )T(ps) =
∑

0≤u≤min(r,s)

pu(q−1)T(pr+s−2u).
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Without loss of generality, we can assume thatr ≤ s. The asser-
tion is clearly true forr = 0, 1. Let us assume that 1≤ r < s and
that the assertion is proved forr andr − 1 instead ofr. Then we
shall establish it forr + 1 instead ofr. By (ii) and the induction
hypothesis, we have

T(p)T(pr )T(ps) = T(pr+1)T(ps) + pq−1T(pr−1)T(ps)

=
∑

0≤u≤r

pu(q−1)T(p)T(pr+s−2u),

which implies that

T(pr+1)T(ps) =
∑

0≤u≤r

pu(q−1)T(pr+s+1−2u)

+
∑

0≤u≤r

p(u+1)(q−1)T(pr+s−1−2u)−

− pq−1T(pr−1)T(ps)

=
∑

0≤u≤r

pu(q−1)T(pr+s+1−2u) + p(r+1)(q+1)T(ps−1−r )

=
∑

0≤u≤r+1

pu(q−1)T(pr+1+s−2u).

Hence the assertion is proved for allr, s and the proof of theo-
rem 38 is complete.

�

Theorem 39. Under the assumptions that r= α − β is an even non-
neqative integer andΓ(β) , ∞, we have, for all natural numbers n and
for all f ∈ [Γ, α, β, 1].

(Θ f )|T(n) = Θ( f |T(n)),

whereΘ is the operator defined in chapter IV,§1, (20). 251

Proof. By (17) and (19) of chapter 4,§ 1, we have

(Θ f )|T(n) = nq−1
∑

S∈Vn

(Θ f )|S
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= nq−1Γ(β)
Γ(α)

∑

S∈Vn

X(Λr f |S∗)

= nq−1Γ(β)
Γ(β)

∑

S∈Vn

XΛr( f |S∗)

= Θnq−1
∑

S∈Vn

f |S∗,

whereS∗ =
(

1 0
0 −1

)
S

(
1 0
0 −1

)−1
. But S∗, along withS, runs over a rep-

resentative system of left cosets ofOn moduloΓ; therefore it follows
that

(Θ f )|T(n) = Θ( f |T(n)).

In the following, unless otherwise stated,α− β will be an even non-
negative integer andΓ(β) , ∞. Under these assumptions, the operator
Θ is well-defined on the space [Γ, α, β, 1] and maps it onto itself. Since
Θ2 = 1, the space [Γ, α, β, 1] can be expressed as a direct sum of the
subspacesL (1)

α,β
andL

(−1)
αβ

defined by

L
(∈)
αβ
= { f |Θ f =∈ f , f ∈ [Γ, α, β, 1]}(∈2= 1).

Let f ∈ [Γ, α, β, 1] have a Fourier expansion of the type (3). Then, by
(14) of chapter 4,§ 2, we have252

Θ f (τ, τ̄) = a(0)u(y, q) + b(0)+

+
Γ(β)
Γ(α)

∑

k>0

a(−k)W(2πky;α, β)e2πikx+

+
Γ(α)
Γ(β)

∑

k<0

a(−k)W(2πky;α, β)e2πikx. (6)

If we further assume thatf belongs toL (∈)
αβ

, thenΘ f =∈ f . Therefore,
comparing the coefficients of the Fourier expansion (6) and that off , we
obtain

∈ a(0) = a(0), ∈ b(0) = b(0),

∈ a(k) =
Γ(β)
Γ(α)

a(−k) (k > 0) (7)
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This shows that the Eisenstein seriesG∗(τ, τ̄;α, β) introduced in the pre-
vious chapter belongs toL (1)

αβ
. Since the termϕ∗k(y) (r = 2k) indepen-

dent ofx in the Fourier expansion ofG∗(τ, τ̄;α, β) under the assumption
of theorem 39 never vanishes, it follows, by theorem 29, thatwith the
help of G∗(τ, τ̄;α, β), any modular form of the spaceL (1)

αβ
can be re-

duced to a cusp form. Moreover, the spaceL
(−1)
αβ

consists of cusp forms
only. It is an immediate consequence of theorem 39 that the operators
T(n) leave the spacesL (∈)

αβ
invariant.

In addition to the spacesL (∈)
αβ

, we shall be interested also in the
spaceLα consisting of analytic modular forms belonging to the space
[Γ, α, 0, 1], whereα is an even integer≥ 4. With the help of the Eisentein
seriesG(τ, τ̄;α, 0), which belongs to the spaceLα, every form ofLα can
be reduced to a cusp form. Moreover, the operatorsT(n) leave the space253

Lα invariant.
It follows immediately from the preceding results that the Dirichlet

series

ϕ(s) =
∞∑

n=1

a(n)
ns , ψ(s) =

∞∑

n=1

a(−n)
ns

associated to the forms ofL
(∈)
αβ

differ from each other only by a constant
factor so that

f → ϕ(s)

is a one-one invertible correspondence between modular forms and
Dirichlet series except whenα = β = 0 or 1. �

Theorem 40. The Eisenstein series G∗(τ, τ̄;α, β) is an eigen-function of
all operators T(n) and

(G∗( , ;α, β)|T(n))(τ, τ̄) = dq−1(n)G∗(τ, τ̄;α, β) (n ≥ 1).

Proof. Since we have seen already in the previous chapter that them-th
Fourier coefficient of the seriesG∗(τ, τ̄;α, β) is, upto a constant factor,
dependent only on sgnm, equal todq−1(m), it is obvious from (5) that
the assertion of the theorem is equivalent with

dq−1(n)dq−1(m) =
∑

d|(m,n)
d>0

dq−1dq−1(mn/d2)(m, n ≥ 1). (8)
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The proof of theorem 37 shows that the term independent ofx in the
Fourier expansion of (G∗(, ;α, β)|T(n))(tau, τ̄) is obtained by multiply-
ing ϕ∗k(y) with dq−1(n). Therefore our assertion (8) follows immediately
from theorem 38.

The theorem above shows that in order to prove the decomposabil-254

ity of the linear spacesL (∈)
αβ

(∈2= 1) andLα(β = 0) as direct sums of
subspaces of dimension 1, which are invariant under the operatorsT(n),
it is sufficient to confine ourselves to the linear spaces of cusp forms
which are invariant by the operatorsT(n) and are contained in any one
of the three above-mentioned spaces. We shall denote one such space
by γ and prove with the help of Petersson’s Metrisation Principle that it
can be decomposed into subspaces of dimension 1 which are invariant
under the operatorsT(n).

Let Γ0 be a subgroup of finite index in the modular group and let
F0 be a fundamental domain forΓ0 consisting of a finite number of
hyperbolic triangles. Letf andg be two modular forms belonging to
the space [Γ0, α, β, 1] such that at least one of them is a cusp form. Then
we define as in chapter 3,§ 3, the scalar product off andg by

( f , g) =
1
I(F0)

"

F0

f ḡyp−2dxdy (p = Req = Re(α + β)),

whereI(F0) denotes the hyperbolic area ofF0. In the same way as for
the analytic modular forms, it can be proved that the scalar product is
independent of the choice of a fundamental domain and does not depend
upon the groupΓ0 in the sense described before. �

Theorem 41. The operators T(n) acting on the space[Γ, α, β, 1] are
Hermitian operators i.e.

( f |T(n), g) = ( f , g|T(n)),

for any two cusp forms f and g belonging to the space[Γ, α, β, 1].255

Proof. For S ∈ On, we have

Γ[n] ⊂ SΓS−1. (9)
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Since the principal congruence subgroups are normal subgroups ofΓ
andS = L1

(
g 0
0 gd

)
L2 with Li ∈ Γ(i = 1, 2) andg2d = n, it suffices to

prove (9) forS =
(

1 0
0 d

)
, whered is a divisor ofn. If L =

(
α β
γ δ

)
is a

matrix belonging toΓ[n], then the matrix

S−1LS =

(
α βd

γd−1 δ

)

obviously belongs toΓ. Thus assertion (9) is proved. Since the matrix
nS−1 along withS is inOn, relation (9) remains true whenS is replaced
by S−1.

Let f andg be two modular forms belonging to the space [Γ, α, β, 1].
Then it is an immediate consequence of (9) that, forS ∈ On, the forms
f |S andg are modular forms for the groupsS−1Γ[n]S andΓ[n]. More-
over, it is obvious that, when it exists, the scalar product of f |S andg
defined for either of the two groups is the same. IfFn is a fundamen-
tal domain forΓ[n], thenS−1 < Fn > is a fundamental domain for the
groupS−1Γ[n]S. Let us setS =

√
nS∗(|S∗| = 1) andp = Req. Then

( f |S, g) =
1
I(Fn)

"

S−1<Fn>

f |S · ḡyp−2dxdy

=
n−q/2

I(Fn)

"

S−1<Fn>

f |S∗ · ḡyp−2dxdy.

Since the substitutionτ → S∗−1 < τ > with S∗ =
(

a b
c d

)
transforms the 256

function (f |S∗)(τ, τ̄)g(τ, τ̄)yp into the function

f (τ, τ̄)g(S∗−1 < τ >,S∗−1 < τ̄ >)yp

(cS∗−1 < τ > +d)α(cS∗−1 < τ̄ > +d)β|(−cτ + a)α(−cτ̄ + a)β|2

= f (τ, τ̄)(g|S∗−1)(τ, τ̄)yp

and leaves the measure
dxdy

y2
invariant, it follows that

( f |S, g) =
n−q/2

I(Fn)

"

Fn

f · g|S∗−1yp−2dxdy
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=
1
I(Fn)

"

Fn

f · g|nS−1yp−2dxdy

= ( f , g|nS−1).

Let Vn denote a common representative system of left and right cosets
of On moduloΓ; such a representative system exists, by lemma 12. By
the definition of the operatorT(n), we have

( f |T(n), g) = nq−1
∑

S∈Vn

( f |S, g) = nq−1
∑

S∈Vn

( f , g|nS−1)

= ( f , g|T(n)),

because it can be seen easily that wheneverS runs through a representa-
tive system of right cosets ofOn moduloΓ, thennS−1 runs through the
left cosets ofOn. Hence the theorem is proved. �

Lemma 13. Let m be a set of pairwise commuting Hermitian matri-
ces. Then there exists a unitary matrix U such that the matrixŪ′HU =
U−1HU for every H inm is a diagonal matrix.257

Proof. It suffices to prove the assertion for a finite setH1,H2, . . . ,Hr of
Hermitian matrices, because there exist inm only finitely many linearly
independent matrices over the field of real numbers. We shallprove the
assertion by induction onr. It is well-known that the assertion is true
for r = 1. Let us assumer > 1 and the assertion to be true for any
set of r − 1 mutually commuting Hermitian matrices. SincēU′HU is
Hermitian along withH and since the unitary matrices form a group, we
can assume, without loss of generality, thatH1,H2, . . . ,Hr−1 are already

diagonal matrices. We can also assume that the matrixH =
r−1∑
k=1

xkHk

with xk as real variables has the form

H =



ℓ1E(k1) 0
ℓ2E(k2)

·
·

0 ℓtE(kt)


,
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whereℓ1, ℓ2, . . . , ℓt are pairwise distinct linear forms in the variablesxk

and in generalE(k) denotes thek-rowed unit matrix. FromHHr = HrH,
it follows thatHr must be of the form

Hr =



A(k1)
1 0

A(k2)
2

·
·

0 A(kt)
t



where eachA(ki ) is a Hermitian matrix. We now find unitary matricesUi

so thatŪ′i A
(ki )
i Ui(i = 1, 2, . . . t) are diagonal matrices. Let us set 258

U =



U1 0
U2

·
·
·

0 Ut



·

Then it is obvious thatU transforms the matricesH1,H2, . . . ,Hr into
diagonal matrices. �

Theorem 42. A linear spaceγ of cusp forms contained in any one of the
spacesL (∈)

αβ
(∈2= 1) andLα(β = 0) and invariant under the operators

T(n) has an orthonormal basis g1, g2, . . . , gt (t = dimensionγ) so that

gi |Tn = ρi(n)gi

for all n ≥ 1 and i= 1, 2, . . . , t.

Proof. Let { f1, f2, . . . , ft} be an orthonormal basis forγ i.e.

( fi , fk) = δik (δik, Kronecker’s symbol).

Let

fi |Tn =

t∑

k=1

λik fk.
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Then, by theorem 41, we have

λik(n) = ( fi |Tn, fk) = ( fk, fi |Tn)

= ( fk|Tn, fi) = λki(n)

showing that the matrixΛ(n) = (λik(n)) is Hermitian. But, by theo-
rem 38, the operatorsT(n) commute with each other; therefore, the ma-
tricesΛ(n), which define a representation of the operatorsT(n), com-259

mute pairwise. Thus, by lemma 13, there exists a unitary matrix U such
that

U−1Λ(n)U =



ρ1(n) 0
ρ

(n)
2
·
·
·

0 ρt(n)



If 

f1
...

ft


= U



g1
...

gt


,

theng1, g2, . . . , gt constitute a basis ofγ having the properties mentioned
in theorem 42.

Denoting the Fourier coefficients ofgi by ai(m) with m ≥ 1, we
claim that for everyn ≥ 1, ρi(n) is equal toai(n) upto a constant factor
independent ofn. In fact, from (5), we have

ρi(n)ai (m) =
∑

d|(m,n)
d>0

ai(mn/d2)dq−1(m, n ≥ 1)

and on takingm= 1,

ρi(n)ai (1) = ai (n)n = 1, 2, . . .

Consequentlyai(1) , 0, for i = 1, 2, . . . , t. Moreover, it follows imme-
diately that

ρi(n)ρi (m) =
∑

d|(m,n)
d>0

ρi(mn/d2)dq−1 (10)
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If we drop the condition of orthonormality for the basis{g1, g2, . . . , gt} 260

of γ and assume only the orthogonality withai(1) = 1, then the Dirichlet
series

ϕi(s) =
∞∑

n=1

ai(n)
ns

associated withgi(s) (i = 1, 2, . . . , t) has an Euler product development
of the type

ϕi(s) =
∏

p

{1− ai(p)p−s + pq−1−2s}−1,

wherep runs over all primes. For, it can be seen, by using (10), that

∞∑

k=0

ai(pk)

pks
{1− ai(p)p−s + pq−1−2s} = 1

and ∏

p

{
∞∑

k=0

ai(pk)

pks
} =

∞∑

n=1

ai(n)
ns

.

Thus it follows, from theorem 40, that the Dirichlet series corresponding
to the normalised Eisenstein series (i.e. withai(1) = 1) has an Euler
product development i.e.

∞∑

n=1

dq−1(n)

ns =
∏

p

{1− dq−1(p)p−s + pq−1−2s}−1 = ζ(s)ζ(s+ 1− q).

Consequently, we have proved the following �

Theorem 43. For every linear spaceL (∈)
αβ

(∈2= 1) andLα(β = 0) there
exists a basis{h1, . . . , ht} so that the Dirichlet series corresponding to hi

can be represented as an Euler product.

Finally, we remark that the functions mentioned in theorem 36 have 261

an Euler product development which can be obtained using thewell-
known product representation

ζ(s) =
∏

p

(1− p−s)−1, L(s, χ) =
∏

p

(1− χ(p)p−s)−1v
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for the functionsζ(s) andL(s, χ). In caseλ = 2, these Euler products
coincide with the Euler products of the Dirichlet series corresponding
to certain modular forms of level 4 as for as the contributions of the
odd primes are concerned, because the space [Γϑ, α, α, v](v2 = 1) is
contained in the space [Γ[4], α, α, 1].



Bibliography
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