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Chapter 1

Krull rings and factorial
rnngs

In this chapter we shall study some elementary properti€swfrings 1
and factorial rings.

1 Divisorial ideals

Let A be an integral domain (or a domain) aKdits quotient field. A
fractionary ideal % is an A-sub-module ofK for which there exists
an elemend € A(d # 0) such thatdZ < Ai.e.  has “common
denominator” d). A fractionary ideal is calledpaincipal ideal if it is
generated by one elemer# is said to bdantegral if 2 c A. We say
that7 is divisorial if %7 # (0) and if % is an intersection of principal
ideals. Let% be a fractionary ideal and” non-zeroA-submodule of
K. Thenthese% : 7 = {x e K|x”1/ Cc %} is a fractionary ideal. The
following formulae are easy to verify.

(1) (Q%3(%7/j)=ﬁ(% L )
QU VYV =H: V)V

(3) If xe K, x#0, then? : Ax= x17.

1



2 1. Krull rings and factorial rings

Lemma 1.1. Let % be a fractionary ideak: (0) and ¥ a divisorial
ideal. Theny : % is divisorial.

A_X') O
i a

I ae%

Proof. Let? = N Ax. Then? : % = (A% : %) =((N

Lemma 1.2. (1) Let# # (0) be a fractionary ideal. Then the smallest
divisorial ideal containingZ , denoted byZ ,is A: (A: ).

@ %,V +0),then” =V oAU =A:7V.

Proof. (1) By LemmdLILA : (A : %) is divisorial. ObviouslyZ c
A: (A: %). Suppose now thay c Ax, x # 0, x € K. Then
A:% >A:Ax=AxL ThusA: (A: %) c A: Ax! = Axand
(1) is proved.

(2) is a trivial consequence of (1) and the proof of Lenim& &.@om-
plete.
i

2 Divisors

Let I1(A) denote the set of non-zero fractionary ideals of the imtlegr
domainA. In I1(A), we introduce an equivalence relatisncalledArtin
equivalencgor quasi Gleichhejtas follows:

v~V o U="Y o A% =A: Y. The quotient set(A)/ ~
of I(A) by the equivalence relation is called the set oflivisors of A
Thus there is an I-1 correspondence between th@®§a} of divisors
and the set of divisorial ideals. Lekdenote the canonical mapping
d:I(A) — I(A)/ ~. Now, I(A) is partially ordered by inclusion and
we have?Z c v = % c ¥. Thus this partial order goes down to
the quotient set(A)/ ~ by d. If  c ¥, we writed(¥") < d(%). On

I (A) we have the structure of an ordered commutative monoichdiye
the composition law¥/, ¥) ~» % ¥ -with A acting as the unit element.
Letz, 7',V e l(Aand% ~ Z’'ie A: % = A: %Z’'. We have
AUy =A%) V=AYV =A:%"YV. Hence% ¥V ~
'V . ThusD(A) acquires the structure of a commutative monoid, with



2. Divisors 3

the composition law#/, ¥) — % ¥ . We write the composition law in
D(A) additively. Thusd(Z ¥) = d(%) + d(¥) for %, ¥V € | (A). Since
the order inD(A) is compatible with the compositional law ID(A),
D(A) is a commutative ordered monoid with unit. We note that

A N ) = supf(#), d(¥)

and
dZ + ) = inf(d(%),d(¥).

Let K* be the set of non-zero elements f For x € K*, we write
d(x) = d(AX); d(x) is called gprincipal divisor.

Theorem 2.1. For D(A) to be a group it is necessary andfgcient that
A be completely integrally closed.

We recall thatA is said to becompletely integrallyclosed if when-
ever, forx € K there exist am # 0, a € Ast.ax’ € A for everyn, then
xeA.

We remark that ifA is completely integrally closed, then it is inte-
grally closed. The converse also holdsAifs noetherian. A valuation
ring of height> 1 is an example of an integrally closed ring which is not
completely integrally closed.

Proof. SupposeéD(A) is a group. Lei € K and a be a non-zero element

of Asuch thaaX' € A, for everyn > 0. Then

ae (N Ax" = 7 which is divisorial. Setl(?) = ganda = d(x%). ©
n=0

Now 3 = sup(na). ButS + @ = Sup,;o((n + 1))
n>0
= sup (qga). ThusB + a < B. SinceD(A) is a group—g exists, 4
o>1
and therefore

a=B+a)-p<p-B=0ie.d(x) >0.

HenceAxc Ai.e. xeA.
Conversely suppose thétis completely integrally closed. Le¥ be
a divisorial ideal. Ther% = x%’,%’ c A. Since we already know
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that principal divisors are invertible, we have only to mdiiat integral
divisorial ideals are invertible. Let” be a divisorial ideak A. Then
Y(A:Y)CA Let¥(A:¥) c Ax for somex € K. Thenx 17/ (A :
) c A Thusx ¥ c A: (A: ¥) =¥, since? is divisorial. Thus
¥ c ¥'x. By inductiony” c ¥ X", for everyn > 0. Consider an element
b#0,be #. Thenb(x})" c ¥ c Afor everyn > 0. Hencex ! € A
i.e. AxD> A Thus¥'(A: 7) ~ A TheorenfZ1l is completely proved.
Notice that we havel(%) + d(A: %) = 0.

Let us denote by (A) the subgroup generated by the principal di-
visors. If D(A) is a group, the quotient group(A)/F(A) is called the
divisor class groupf A and is denoted bg(A).

In this chapter we shall study certain properties of the gO(A).

3 Krull rings

Let Z denote the ring of integers. Létbe a set. Consider the abelian
groupZ{"). We orderz(") by means of the following relation:
for (), (8;) € ZO), () = (B;) if a; =B, forall iel.

The ordered grouZ(") has the following properties:a) any two
elements ofz(") have a least upper bound and a greatest lower bound
i.e. Z0) is an ordered lattice bj The positive elements @ satisfy the
minimum condition i.e. given a nonempty subset of positieeents of
Z"), there exists a minimal element in that set. Conversely adgred
abelian group satisfying conditions (a) and (b) is of therf&(") for
some indexing sdt (for proof see Bourbaki, Algebre, Chapiét).

Let A be an integral domain. We cal aKrull ring if D(A) = Z(",
the isomorphism being order preserving.

Theorem 3.1. Let A be an integral domain. Then A is Krull if and only
if the following two conditions are satisfied.

(&) Ais completely integrally closed.

(b) The divisorial ideals contained in A satisfy the maxinaandition.

In fact the above theorem is an immediate consequence ofrdingal
and the characterization of the ordered gra@ip mentioned above. An
immediate consequence of Theorem 3.1 is:
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Theorem 3.2. A noetherian integrally closed domain is a Krull ring.

We remark that the converse of Theorem 3.2 is false. For ebeathe
ring of polynomials in an infinite number of variables overediK is a
Krull ring, but is not noetherian. In fact this ring is knowmhe factorial
and we shall show later that any factorial ring is a Krull ting

Lete = (6ij)ja € Z, wheregj; is the usual
Kronecker delta. The are minimal among the strictly positive eles
ments. LetA be a Krull ring and letp be the order preserving isomor-
phisme : D(A) — Z". LetP, = ¢~1(g). We call the divisor; the
prime divisors Let P(A) denote the set of prime divisors. Then any
d € D(A) can be written uniquely in the form

d= > ngP
PeP(A)

wherenp € Z andnp = O for almost allP. Now letx € K*. Consider
the representation

d® = > Ve(XP,Ve(X) € Z,Vp(X) = 0
PeP(A)

for almost allP € P(A). Sinced(xy) = d(x) + d(y) we have,vp(xy) =
vp(X) + vp(y) for all P. Furtherd(x +y) > d(Ax+ Ay) = inf(d(x), d(y)).
This, in terms ofvp, means thavp(x +y) > inf(vp(X), ve(y)). We set
vp(0) = +co. Thus thevp are all discrete valuations ¢€. These are
called theessential valuationsf A.

Let P be a prime divisor. Le¥ be the divisorial ideal corresponding
toP. AsPis positive,% is an integral ideal. We claim th& is aprime
ideal. Forletx,y € A, xy € #. Thend(xy) > Pi.e. d(x) + d(y) > P
i.e. vp(X) + vp(y) > 1. Asvp(x) > 0O, vp(y) > 0, we havevp(x) >
lorvp(y) > 1;ie. x e # ory € #. Further the divisorial ideal
corresponding tP is {x € A|VE(X) > n}, n > 0. The prime ideal 7
% is the centre of the valuation> on A (i.e. the set of all elements
x € As.t. vp(x) > 0). Since the prime divisors are minimal among the
set of positive divisors, the corresponding divisorialal$e which we
call prime divisorial ideals are maximal among the integral divisorial
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ideals. The following lemma shows that the divisorial ideahich are
prime divisorial and this justifies the terminology 'primeidorial’.

Lemma 3.3. Let¥ be a prime idea# (0). Then¥ contains some prime
divisorial ideal.

Proof. Take anx € ¢, x # 0. Letd(x) = X niP;, (finite sum),n; > 0,
|
P, € P(A). Let % be the prime ideal corresponding B. Lety €

[1#",y# 0. Thenvp,(y) > ni. Henced(y) > d(x) i.e. Ay c Ax Thus
YN c Axc 4. As¥ is prime,% c ¢ for somei. o
[1% p .

Corollary. A prime ideal is prime divisorial if and only if it is height 1.

(We recall that a prime ideal is dieight onéf it is minimal among
the non-zero prime ideals &).

Proof. Let # be a prime divisorial ideal. 1# is not of height 1, then
4 2 ¢, where¥ is a non-zero prime ideal. By the above lemffia

contains a prime divisorial ide&¥”. Thus% 2 2%/, This contradicts
the maximality of/” among integral divisorial ideals. Conversely let
% be a prime ideal of height 1. Then, by the above lem#iaontains a
prime divisorial ideal?”. HenceZ' = % and the proof of the Corollary
is complete. m|

Lemma 3.4. Let% be a divisorial ideal corresponding to a prime divi-
sor P. Then the ring of quotientsAis the ring of .

Proof. Let% € Ay,ac A se A-%. Thenvp(s) = 0, vp(a) > 0,
Vp (%) > 0. Conversely lek € K* with vp(x) > 0. Setd(x) = 3, n(Q)Q,
P 5

and let¢ be the prime divisorial ideal corresponding @ Let ¥ =

[1 9"Q. Asthe prime divisoQ, with n(Q) < 0 are diferent from
n(Q)<0 - -
P,wehave? ¢ . Takese 7, s¢ % . Thenvg(s¥ > O forallQi.e.
d(sX > 0i.e. sxe A. Hencex € Ay . This proves the lemma. m|
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Corollary. A = N Az, ¢ running through all prime ideals of height
v

one. We shall now give a characterization of Krull rings imnts of
discrete valuation rings.

Theorem 3.5("valuation Criterion”) Let A be a domain. Then the fol-
lowing conditions are equivalent:

(@ AisakKrullring.

(b) There exists a familfy;)ic; of discrete valuations of K such that

(1) A=NRy (i.e. xe Aifand only if y(x) > 0), where R, denotes the

|
ring of v,
(2) Forevery xe A, vi(x) =0, for almost all i I.

Proof. (a) = (b). InfactA = () R, and condition (2) of (b) is
PeP(A)
obvious from the very definition ofp.

(b) = (a). Since a discrete valuation ring is completely integralty
closed and any intersection of completely integrally aibdemains
is completely integrally closed, we conclude thats completely
integrally closed. Now lekx € K*. Then

Ax={y € K[i(y) > vi(x), foriel}.

Thus, because of condition (2), any divisorial ideal is af form
{x eKNM() =niiel,(m)e Z(')}, and conversely. Any integral di-
visorial ideal ¥ is defined by the conditiong(x) > n;, nj > O,
n; = 0 for almost alli € I. There are only finitely many diviso-
rial ideals?” containing”? (in fact the number of such ideals is
[1(1 + nj)). HenceA satisfies the maximum condition for integral

|
divisorial ideals therefore by Theordm3ALjs a Krull ring.
mi

Remark. Let ¢ be a prime divisorial ideal of defined byvi(x) > n;,
n > 0, nj = 0 for almost alli. Let % be the centre of; on A. Then
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[1#" c ¢. Hence# c ¢ for somei. But height¥ = 1. Hence
|

% = <¢. Thus every prime divisorial ideal is the centre of someéNow

Ay c Ry. But Ay, being a discrete valuation ring, is a maximal subring
of K. HenceAy = R, = ring of vg, whereQ is the prime divisor
corresponding t&/. Thus every essential valuation &fis equivalent

to somev;. The family §)ic; may be ‘bigger’, but contains all essential
valuations.

4 Stability properties

In this section we shall see that Krull rings behave well uridealisa-
tions polynomial extensions etc.

Proposition 4.1. Let K be a field and Aa family of Krull rings. Assume
that any xe B = (N Ay, X # Oisaunitin almost all A. Then B is a
3

Krull ring.

Proof. By theoren 3BA, = N R(V,,), whereR(v, ;) are discrete val-
i€l,

uation rings and every € A, is a unit in almost alR(v,), i € . Now
B = M R(Ve,i). Letx # 0, x € B. Then by assumption is a unit in

a,l
almost allA,, i.e. v, i(X) = O, for alli € I,, and almost alkv. Thenx
is not a unit in at most a finite number of thAg, sayAg,, ... Ag. Now
vg; (X) = 0 for almost alli, j = 1,...,t. Thusv,i(x) = 0 for almost allx
andi. The proposition follows immediately from Theor€éml3.5. O

Corollary. (a) A finite intersection of Krull rings is a Krull ring.

(b) Let A be a Krull ring, K its quotient field. Let L be a subfieldK.
Then AN L is a Krull ring.

Proposition 4.2. Let A be a Krull ring. Let S be any multiplicatively
closed set witl) ¢ S. Then the ring of quotients 5A is again a Krull
ring. Further the essential valuations of 5A are those valuation pv/
forwhich#' NS = ¢, % being the prime divisorial ideal corresponding
to P.
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Proof. By Theoren 36 we have only to prove tHatlA = N Az,
Vel
I, being the set of prime ideals of height one which do n(§t fitelr

S. Trivially, S™'A ¢ |J Ay. Conversely letx € |J Ay. We have
el Yed
vp(X) > 0, for any prime divisor corresponding t¢ € |. For a 11

prime divisorial idealy with ¥ NS # 0, choosesy € ¥ N S. Set

s= ] S;,VQ(X), whereQ is the prime divisor corresponding t6.
vo(X)<0

Thensxe Ai.e. x € S;! and the proposition is proved. ]

Proposition 4.3. Let A be a Krull ring. Then the ring [X] of polyno-
mials is again a Krull ring.

Proof. Let A be defined by the discrete valuation ringsg);.,. If vis

a discrete valuation of\, thenv can be extended t&[X], by putting

V(ap + ar1X+ - - - + agx9) = min(v(a;)) and then to the quotient fiekd(X)
i

of A[X] (K is the quotient field oA) by puttingv(f/g) = v(f)—-v(g). Let
® = {vi};;,. On the other hand, |&¥ denote the segb(X)-adic valuation
of K(X), where p(X), runs through all irreducible polynomials[X].
We now prove tha#\[ X] is a Krull ring with ® | J ¥ as a set of valuations
defining it. Letf € K(X). If w(f) > O for all " € ¥, thenf e K[X],
sayf = ap + a1X + --- + agX9 : & € K. If further v(f) > 0, for all
v e @, thenv(a) > 0,ve ®&,i =1,...,9. SinceAis a Krull ring,
a €A i=1,...,q9 Hencef € A[X]. To prove thatA[ X] is a Krull ring,
it only remains to verify that forf € A[X], v(f) = 0 = w(f) for almost
allve @, we¥. SinceKX is a principal ideal domainy(f) = 0, for
almost allw € ¥. Furthervi(f) = mjin(vi(aj)) = 0 for almost alli € I,

sinceAis a Krull ring. O

Corollary. Let A be a Krull ring. Then BX,. .., Xy] is a Krull ring. 12

Remark. Since, in a polynomial ring in a an infinite number of vari-
ables, a given polynomial depends only on a finite number cabkes
the above proof shows that a polynomial ring in an infinite bemof
variables oveA is also a Krull ring,

Proposition 4.4. Let A be a Krull ring. Then the ring of formal power
series Al X]] is again a Krull ring.
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Proof. We note thatA[[X]] = N V.[[X]ls NK[[X]], whereS is the
multiplicatively closed sefl, x, ¥, ...}, K, the quotient field ofA and
V, the essential valuation rings 8f Now V,[[X]]|g andK[[X]], being
noetherian and integrally closed, are Krull rings, Now theppsition is
an immediate consequence of Proposifion 4.1. i

Proposition 4.5. Let A be a Krull ring and K its quotient field. Let’'K
be a finite algebraic extension of K and, Ahe integral closure of A in
K’. Then Ais also a Krull ring.

Proof. Let K” be the least normal extension Kf containingK’ and
let A be the integral closure oA in K”. SinceA” = A” N K’, by
Corollary ©), Prop.[41, it is sfficient to prove thaf\” is a Krull ring.
Let ® be the family of essential valuations Af Let ®” be the family
of all discrete valuations oK’ whose restriction td are in®. It is
well known (see Zariski-Samuel. Commutative algebra Vo). that
every discrete valuationof K extends to a discrete valuationkf and
that such extensions are finitely many in number. We shalivghat
A” is a Krull ring by using the valuation criterion wit®” as family
of valuations. We proveil x € A” if and only if ’(X) > 0, for all
w € D" O

Proof. Let x € A”. Thenx satisfies a monic polynomial, sa§ +
an_1X" 1+ 43, = 0,8 € A If possible letw(x) < 0, for somew € .
Thenw(-an_1X"1 — -+ — ag) > inf(w(@n-1x* 1), ..., w(@) > w(x"),
sincew(a) > 0. Contradiction. Conversely let # 0, x € K" with
w(X) > 0, for all w € ®@”. Leto be anyK-automorphism oK”. Then
woo € ®”. Hencew(o(x)) = 0 for all K-automorphismsr of K”.
Let us now consider the minimal polynomi&(X) of x over K; say
fOX) = X + a1 X"+ + ao, ai € K. Since they; are symmetric
polynomials in ther(X), we havev(e;) > 0, for allv € ®. SinceAis a
Krull ring, aj € Aand () is proved. (i) Forx # 0, x € A”, w(X) = 0, for
almost allw € ®”. i

Proof. Let X" + ap_1x"1 + --- + 8, = 0 be an equation satisfied by
(which expresses the integral dependence).ofVe may assuma, # O.
If w(X) > 0, thenw(ay) = w(X"+an_1 X"+ -+a;x) > w(X) > 0. Since
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Ais a Krull ring there are only a finitely manye @ such that(ag) > 0
and since every € ® admits only a finite number of extension#) (s
proved and with it, the proposition. O

5 Two classes of Krull rings

Theorem 5.1. Let A be a domain. The following conditions are equiva-
lent.

(&) Every fractionary ideal?” # (0) of A is invertible. (i.e. there existsi4
a fractionary ideal? ~* such thaty 7! = A).

(b) Ais aKrull ring and every non-zero ideal is divisorial.
(c) Ais aKrullring and every prime idea# (0) is maximal (minimal).

(d) A is a noetherian, integrally closed domain such thatrgygime
ideal # (0) is maximal.

Proof. (8) = (b). Let ¥ lexist. Then¥ 1 =A: 7. Fory v c
A= 71cA:7and?7?1 =Aand?(A : ¥) c Atogether
imply A : 7 c 7~ Further¥ = A: (A : ¥); the condition thatZ
and¥ are Artin equivalent becomes” = 7. ThusD(A) is a group.
The following lemma now proves the asserti@) (= (b) because of
TheorenZ11. m|

Lemma.? c A invertible= 7 is finitely generated. (and thus (a)
implies that A is noetherian).

Proof. Since? 7! = A, we have 1= 3 xyi, X € ¥,y € L. For
1
Xe€ ¥, we havex = 3 x(¥iX) i.0. ¥ = 3 AX. O
| |

(b) = (c), SinceAis a Krull ring and every non-zero ideal is divisorial,
every non-zero prime ideals is of height 1.

(c) = (a). Let ¥ be any fractionary ideal. The#(A: ¥) c Aand
sinceD(A) is a group,” (A : ¥) is Artin-equivalent toA. Hence? (A :
¥) is not contained in any prime divisorial ideal. But by (c)n& every
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prime ideal+ (0) is prime divisorial,” (A : ¥') is not contained in any
maximal ideal, and hencg&(A: 7) = A.

(@ = (d). ThatA is noetherian is a consequence of the lemma used
in the proof of the implicationd) = (b). ThatA is integrally closed
and every prime idea (0) is maximal is a consequence of the fact that
@ = (o).

(d) = (c). This is an immediate consequence of the fact that a noethe-
rian integrally closed domain is a Krull ring. The proof of&dren{&lL

is now complete.

Definition 5.2. A ring A is called a Dedekind ring if A is a domain
satisfying any one of the equivalent conditions of Thedrglin 5

Remark. (1) The condition €) can be restated a#:is a Dedekind ring
if Alis a Krull ring and its Krull dimension is atmost 1.

(2) LetAbe a Dedekind ring anl its quotient field. LeK’ be a finite
algebraic extension dk and A, the integral closure of in K’.
ThenA’ is again a Dedekind ring.

Proof. By Propositio 4} it follows tha#’ is a Krull ring. For a non-
zero prime ideat?”’ of A’, we have, by the Cohen-Seidenberg theorem,
height ) = height (#"NA) < 1. Now (2) is a consequence of Remark

).

(3) Let A be adomain and”, a fractionary ideal. Thef¥ is invert-
ible if and only if % is a projectiveA-module. If further,A is
noetherian, ther is projective if and only if7/ is locally prin-
cipal (i.e% , is principal for all maximal ideals# of A).

O

We shall say that a ring satisfies theondition(M) if A satisfies the
maximum condition for principal ideals. For instance Kmifigs satisfy

(M).
Theorem 5.3. For a domain A, the following conditions are equivalent.

a) Ais aKrull ring and every prime divisorial ideal is priral.
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b) Ais a Krull ring and every divisorial ideal is principal.

c) Ais aKrull ring and the intersection of any two principaeals is
principal.

d) A satisfiegM) and any elements of A have a least common multiple
(1.c.m.) (i.e. Aan Ab is principal for ab € A).

e) A satisfiedM) and any two elements of A have greatest common
divisor (g.c.d.).

f) A satisfie{M) and every irreducible element of A is prime.

(We recall that a= A isirreducible ifAais maximal among principal
ideals, an elemer € Ais prime if A p is a prime ideal).

g) A has the unique factorization property. More precistiigre exists
a subset P— A, 0 ¢ P such that every » 0, x € A can be written

in on and only way as x u. [T p"®, n(p) > 0, n(p) = O for almost
peP

all p, u being a unit.

Proof. (a) = (b). Since prime divisors generdifA), we haveD(A) =
F(A).

(b) = (c). Trivial.

(c) = (b). Let ¥ be any divisorial idea (0).
m|

We shall show that” is principal. We may assume th#t is integral.

Let ¥ = N Acy, ¢c; € K. Consider the set of all divisorial idealg = 17
Ael

M Ac, N A, whered runs over all finite subsetls We have? c ¥ c
Aed

A, for all finite subsets] c |. SinceA is a Krull ring, any integral
divisorial ideal is defined by the inequalitieéx) > n,, n, > 0,n, = 0
for almost allv, v running through all essential valuationsA&f Hence
there are only finitely many divisorial ideals betwe¢nand A. Hence
¥ = (Niey Ac, for some finite sef c |. By choosing a suitable common
denominator foc,, 4 € J, we may assume that € A. Now (c) = (b)

is immediate.
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(b) = (a). Trivial.
(©) = (d). Trivial.

(d) = (e). This is an immediate consequence of the following el-
ementary property of ordered abelian groups, namely: inran o
dered abelian grou@, the existence of su(b) is equivalent to
the existence of inf, b), for a, b € G. (Apply this, for instance to
F(A) (e) & (f) & (g). This follows from divisibility arguments
used in elementary number theory.

(9) = (). ForK € A x # 0, we writex = uy [] p*™, u being a
peP
unit. The set of allvp}pep, defines a seb of discrete valuations

of the quotient fieldX of A. Itis clear thatA satisfies the valuation

criterion for Krull rings with® as the set of valuations. Further,

for a, b € A, Aan Ab = Ac, wherec = uyuy [] pm@Cve@),
<P

P
Hence ¢) = (c) and the proof of Theorefn 3.3 is complete.

Definition 5.4. A is said to be factorial if A is a domain satisfying any
one of the conditions of Theordml5.3.

Remark 5.5.Let A be a noetherian domain with the property that every
prime ideal of height 1 is principal. Thehis factorial.

Proof. We shall prove the conditionf]. Setb € A be an irreducible
element. By Krull's Principal Ideal Theoremb c %/, %', a prime
ideal of height 1. By hypothesig? is principal. SinceAb is maximal
among principal idealsAb = %/. Of courseA satisfies ). m|

6 Divisor class groups

Let A be a Krull ring. We recall that the divisor class groz(d) of Ais
%, whereD(A) is the group of divisors of andF(A) the subgroup
of D(A) consisting of principal divisors of\. If Ais a Dedekind ring,
C(A) is called thegroup of ideal classesBy Theoreni 513, it is clear that

a Krull ring A is factorial if and only ifC(A) = 0.
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Let A and B be Krull rings, withA c B. From now on we shall
use the same notation for a prime divisor and the prime dikakmeal
corresponding to it. LeP, p be prime divisors 0B and A respectively.
We write P|pif P lies abovepi.e. PNA = p. If P|p, the restriction ofjp
to the quotient field ofA is equivalent tov,, and we denote bg(P, p),
the ramification index o, in vp. For ap € P(A), we define B

i(® =) eP.pP.PeP(B)

Elp

The above sum is finite sincee p, X # 0 is contained in only finite
manyP, P € P(B). Extendingj by linearity we get a homomorphism
of D(A) into D(B) which we also denote by. We are interested in19
the case in whiclj induces a homomorphism ¢f: C(A) — C(B) i.e.
J(F(A) c F(B). Forx € A, we writeda(X) = d(AX) € D(A) and
ds(X) = d(Bx) € D(B).

Theorem 6.1. Let A and B be Krull rings with Ac B. Then we
have [da(X)) = dg(X) if and only if the following condition is satisfied.
(NBU). For every prime divisor P of B, heigiiP N A) < 1.

Proof.

i@ = J( D" vp(¥)p)

PeP(A)
D Vo) D e pP= > vp(XP
PeP(A) Plp P.PIp

Vp(X)P.
P.PNAcP(A)

If PN A= (0), thenvp(x) = 0. Therefore,

i) = >, ve()P. (1)
heightPnA)<1
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Now, if (NBU) is true, thenj(da(X)) = > vp(X)P = dg(Xx). On the
PeP(B) —

other hand letj(da(X)) = dg(X) for everyx € A. Let P € P(B) with
PN A=+ (0). Choosexe Pn A, x# 0. We have by (1) above

@)= > ve(WP=ds()= > Ve(xP.
height PnA)<1 PeP(B)

Sincevp(x) > 0, we have heightR n A) = 1 and the theorem is proved.
When (NBU) is true we havej(F(A)) ¢ F(B) and thereforej in-
duces a canonical homomorphigmC(A) — C(B).
We now give two sfficient conditions in order that\BU) be true.

Theorem 6.2. Let A and B be as in Theordmb.1. TH&BU) is satis-
fied if any one of the following two conditions are satisfied.

(1) Bisintegral over A.

(2) Bis aflat A-module (i.e the funct%tB is exact).

Further, if (2) is satisfied we havg%) = % B, for every divisorial
ideal 7 of A.

Proof. If (1) is satisfied, NBU) is an immediate consequence of the
Cohen-Seidenberg theorem. m|

Suppose now that (2) is satisfied. [RE P(B) with % = PN A #
(0). SupposeZ is not divisorial. Choose a non-zero element % .
Letd() = 3 va(Xp.p, € P(A). Since heightr > 1 we have? ¢ p
fori = 1, I=1n By an easy reasoning on prime ideals there exists
ayew¥,y¢ f&l p. Thenda(X) andda(y) do not have any component

in common and therefore

da(xy) = da(X) + da(y) = Sup@a(X). da(y))-

This, in terms of divisorial ideals, means tatn Ay = Axy. SinceB is
A-flat, we haveBxy = Bxn By; that isdg(x) anddg(y) do not have any
component in common. But y € P N A. Contradiction.
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We shall now prove that for any divisorial ide@ c A, j(%) =
% B. SinceA is a Krull ring % is the intersection of finitely many
n

principal ideals, say”Z = (| AX, so thatda(%) = sup@a(x)). Since 21
i=1
B is A-flat, we haveB%Z = (n] Bx. ThusB% is again divisorial. On
i=1
the other handdg(B7%) = sup(ds(x)) = sup(j(da(x)). Noting thatj is
| |

order preserving and that any order preserving homomarpbisz()
into Z is compatible with the formation of sup and inf (to prove this
we have only to check it component - wise), we have

B% = SliJF(j(dA(Xi)) = j(SliJF(dA(Xi))) = j(da(%)).

Theorem 6.3(Nagata) Let A be a Krull ring and S, a multiplicatively
closed set in 0 ¢ S). Consider the ring of quotients$A (which is
A-flat). We have

(@) j: C(A) - C(SA) is surjective.
(b) If S is generated by prime elements ttj_w bijective.

Proof. (a) SinceP(S7A) = { _pS‘1A| p € P(A), pnS = ¢}, j is surjective
by Theoren 612, (2). o

Let us look at the kernel of LetH be the subgroup db(A) gener-
ated by prime divisorp with pn S # ¢. Then itis clear that

(H+F(A)  H
F(A) ~ (HNF(A)

Ker(j) = (6.4)

Suppose thab is generated by prime elements. Lgte P(A), with
pN S#¢,5ays--S € P, wheres are prime elements. Then since

pis minimal p = As for somes. ThusH c F(A) and hencej is a
bijection.

‘Theorem 6.3(Nagata)Let A be a noetherian domain and S a multi-
plicatively closed set of A generated by prime elem{a;_npgel. If STIA

is a Krull ring then A is a Krull ring andj is bijective. 22
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Proof. By virtue of Theoreni_6l3, we have only to prove tisais inte-
grally closed (then it will be a Krull ring, since it is noetien). Now
Aap is a local noetherian domain whose maximal ideal is priricipa
and henceAap is a discrete valuation ring. It flices to show that
A = STAN (N Aap). We may assumép # Ap; for i # j. Let

i€l

a/se S‘lAm(ﬂ Anp).ac A se S, s= T . We havev, (a/9) > 0,

wherevp, is the valuation corresponding mA By our assumption,
Vp (pj) = O for j # i. Hencevp, (a) > vp(9) = n(|) HenceS divides a
i.e.a/se A O

Corollary. Let Abe adomain and S a multiplicatively closed set gener-
ated by a set of prime elements. Let& be factorial. If A is noetherian
or a Krull ring, then A is factorial.

Proof. By Theorem§613 arld8.3,; C(A) — C(S™1A) is bijective. O

Theorem 6.4(Gauss) Let R be a Krull ring. Therj_: C(R) —» C(R[X])
is bijective. In particular, R is factorial if and only if[X] is factorial.

(SinceR[X] is R-flat, j is defined).

Proof. SetA = R[X], S = R, the set of nhon-zero elementsRf Then
S~1A = K[X], whereK is the quotient field oR. ThusC(S™*A) = 0i.e.

(H+F(A)
F(A)
whereH is the subgroup ob(A) generated by € P(A), with PN R #

(0) (see formula 6.4). Hend®(A) = H + F(A). SinceR[X] is R-flat, by
Theorenf&R, (2) we have

C(A) = Ker(j : C(A) —» C(S71A)) =

i(PAR) = (PN RR[X] = P, for P € P(A), PN R # (0).

Hencej(D(R)) = H and thereforg is surjective, sinc®(A) = H+F(A).
Now an idealZ of Ris principal if and only if%/R[X] is principal.
Thereforej is injective. Thusj is bijective.

Let A be a noetherian ring and? an ideal contained in the radical
of A(i.e. the intersection of all maximal ideals Af. If we put onAthe
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{//-adic topology, thenA, .#) is called aZariski ring. Tbe completion
A of Ais again a Zariski ring and it is well known thatis A-flat and
AcCA. O

Theorem 6.5(Mori). Let(A, .#) be a Zariski ring. Then i\ is a Krull
rjng, then so is A. Further j C(A) — C(A) is injective. In particular if
A is factorial, so is A.

Proof. Let K andL be the quotient fields ok andA respectivelyK c
L. To prove thatA is a Krull ring we observe thah = An K. For if

g € AnK,a be A thenae AbnA = Ab, i.e. g € A. Hence

A'is a Krull ring. By virtue of Theoreni 612 (2), to prove thEis an
injection it is enough to show that an ide#d of A, is principal if A% is

principal. LetA% = Ac; a € A. Now ./Z/@/ SV
a single element as anr—-module say bw( mod.# %), x € % . Then

U = Ax+ .#% . By Nakayama's-lemmé&” = Axand the theorem is24
proved. O

is generated by

7 Applications of the theorem of Nagata

We recall that a rincA is calledgradedif A = > A, A, being abelian

nez
groups such thad, Aq C Ap.q, for p, g € Z, and the sum being direct.
An ideal of A is gradedif it generated by homogeneous elements.
Proposition 7.1. Let A be a graded Krull ring. Let DHA) denote the

subgroup of MA) generated by graded prime divisorial ideals and let
FH(A) denote the subgroup of D(A) generated by principal ideals.

. . DH(A) . . .
Then the canonical mappi HA) — C(A), induced by the inclusion
i : DH(A) — D(A), is an isomorphism.
Proof. If A = A,, there is nothing to prove. Hence we may assume

A # A,. Let S be the set of non-zero homogeneous elementa. of

ThenS~!A is again a graded ring; infa@™1A = ¥ (S71A);, where
j€ez

(S'A); = {g|@ b € A a, b homogeneousi®a— d°b = j}. 0
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Here d°x denotes the degree of a homogeneous elementA. We
note that §71A), = K is a field and thaB~1A ~ K[t,t™%], wheret is
a homogeneous element of smallest strictly positive deghimv t is
transcendental ovef and thereforeS~*A is factorial. HenceC(A) ~
Ker(j), where] is the canonical homomorphisin: C(A) — C(S™tA),
andC(S™A) = 0. y

HenceC(A) ~ m whereH is the subgroup ob(A), gen-
erated by prime ideal® of height 1 with# N'S # ¢. SinceDH(A) N
F(A) = FH(A), and since prime divisorial ideals are of height 1, the
proposition is a consequence of the following

Lemma7.2. Let A= Y, A, be a graded ring and” a prime ideal in A
nez
and let be the ideal generated by homogeneous elemeri#s dthen

% is a prime ideal.

Proof. Letxy e %, X = X%, Y = XY, X & %,y ¢ %. Letx,y,
be the lowest components &f y such thatx, ¢ %, Yj, ¢ %. Then
Xi.Yj, € % C . Since? is prime, X, oryj, € ¢, sayx, € %. Then
Xi, € % , a contradiction. O

Corollary. Let A= 3, A, be a graded ring and?” a prime ideal of
nez
height 1. Ther# is greaded ifand only i#7 N'S # ¢.

Remark. If % is a graded ideal o\, then the least divisorial ided :

(A: %) containingZ is also graded (straight forward proof). Thus the
divisors corresponding to graded divisorial idealsAdbrm a subgroup

of D(A); this subgroup obviously contaii3H(A); furthermore, since,
given a graded integral divisorial ide@, all the prime divisorial ideals
containingZ are graded (by the corollary), we see that this subgroup is
in fact DH(A).

The above proposition can be applied for instance to the gemo
neous coordinate ring of a projective variety. The follogvjgroposition
connects the divisor class group of a projective variétyith the divisor
class group of a suitabldtme open subset of.
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Proposition 7.3. Let A be a graded Krull ring and p a prime homoge-
neous element 0 with d®p = 1. Let A be the subring of K (quotient

, a
field of A) generated by fAand — where a runs over the non-zero

homogeneous elements of A. Thé&WE~ C(A).

Proof. We note that\ = (S~1A), and thatp is transcendental oveY .
The inclusionst’ — A'[p] — A’[p, p~] induce isomorphismE(A’) =~
C(A'[p]), C(A'[p]) = C(A[p, p~Y]), the first isomorphism follows from
TheorenfGM and the second from Theofem 6.3. Mow ] = A'[p,
p~1]. But again by Theoreilid.8(A) ~ C(A[p~]) and the proof of the
proposition is complete. O

Let V be an arithmetically normal projective variety. We provatth
the homogeneous coordinate ringwois factorial if and only if the local
ring of the vertex of the projecting cone is factorial; intfage have the
following

Proposition 7.4. Let A= A, + A1 + Ao + --- be a graded Krull ring
and suppose thatAs a field. Let# be the maximal ideal A+Ax+- - -.
Then GA) ~ C(AZ).

Proof. We have only to prove that : C(A) — C(A.#) is injective.
Because of Propositidn .1 and of the remark following iti§isient to
prove that if¥ is a graded divisorial ideal such thAtA , is principal,
then so is¥’. Suppose that is a graded divisorial ideal with''A 4
principal. SinceA 4 is a local ring, there is a homogeneous element
u € ¥ such that¥A , = uA,. Letx € ¥ be any homogeneous

element. Thenx = gu, yeAze A-.Z. Let

Y=Yq+Ygr+ - Z=Z+0+2+ Vi €AI20QYq#0,
Zj €A, Z#0.ThusX(Zo+z1+ 22+ --+) = (Yg + Yge1 + -+ - U

27
Hencexz, = yqu. Sincez, is invertible, we conclude that” = Anand
the proposition is proved. O
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Adjunction of indeterminates.

Let A be a local ring and# its maximal ideal. We seA(X)joc =
A[X]{///A[x] and by inductionA(Xl, ceey Xn)loc = A(Xl, Ceey Xn—l)loc
(Xn)ioc. We remark thal\(X)oc is a local ring and that iA is noetherian,
properties ofA like its dimension, multiplicity, regularity and so on are
preserved in passing fromto A(X)oc. FurtherA(X)oc is A-flat (in fact
it is faithfully flat).

Proposition 7.5. Let A be a local Krull ring. Then
j_: C(A) — C(A(X1, ..., Xn)ioc)
is an isomorphism.

Proof. It is sufficient to prove this when = 1. Since by Theoref @.5
C(A) =~ C(A[X]), we see thatj is surjective. Let? be a divisorial
ideal of A for which ¥ A(X)joc is principal. SinceA(X)ioc is a local

ring, we may assume th&t A(X)ioc = A(X)iocr, @ € 7. Lety € 7.
f(X

Theny = %.a, where f(X), g(X) € A[X] and atleast one of the

codficients ofg(X) is invertible inA. Looking at a suitable power of

iny.g(X) = af(X) we see thay € Axi.e. ¥ = Aa. Hencej is injective.

This proves the proposition. m|

Proposition 7.6. Let A be a domain and a, ® A with Aan Ab = Aab.
The following results hold.
(@) The elemenaX — bis prime inA[X].

(b) If further, we assume thak is a noetherian integrally closed do-
main and that\a and Aa+ Ab are prime ideals, then the rirly =

@x—b) is again integrally closed and the groupéA) andC(A")

are canonically isomorphic.
Proof. (a) Consider théd-homomorphismy : A[X] — A[g] given
by ¢(X) = g. It is clear that the ideala(X — b) c Ker(yp). Con-

versely we show by induction on the degree that if a polyno-
mial P(X) € Ker(p), thenP(X) € (aX — b). This is evident if
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d°(P) = 0. If P(X) = X" + i X" + -+« + co(n > 0), the
relationP(=) = 0, shows thab"c, € Aa. SinceAan Ab = Aab it

follows thatc, € Aa, sayc, = dha, d, € A. Then the polynomial
P1(X) = P(X) — dn(aX — b)X"1 € Ker(p) and has degree n— 1.
By induction we havé®;(X) € (aX-b) and hencd’(X) € (aX-b).
Thus @X - b) = Ker(p) and @) is proved.

b 1 1 1
1. We note that#\’ = A[a] c A[a] andA[a] ~ A’[a]. By Theo-
rem[&.8, the proof ofl) will be complete if we show that is a
prime element irA’". But

A OAX]  AX A
Aa” (a,aX-b)  (ab) " (ab)

[X].
O

By assumptiond, b) is a prime ideal and therefore a is a prime element
in A 29

Remark 1.In (b), if a, b are contained in the radical &, and if the
ideal Aa+ Abis prime, thera andb are prime elements (for proof sée
Samuel: Sur les anneaux factoriels, Bull. Soc. math. Fra88&€1961),
155-173).

Remark 2. Let A be a noetherian integrally closed local domain and let
the elements, b € A satisfy the hypothesis of the above proposition.
SetA” =A%) |oc /(aX — b). Then it follows from @) thatA” is a Krull
ring. We have a commutative diagram

A—> A(X)iog £ . A’

AlX]/(@ax-b)

SinceA” is a ring of quotients ofA[X]/(ax-b), it follows from (b) that
Boa induces a surjective mapping: C(A) — C(A”). We do not know
if ¢ is an isomorphism. I is an isomorphism we can get another proof
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of the fact that a regular local ring is factorial (see P. SamSur les
anneaux factoriels, Bull. Soc. math. France, t.89, 1961).

Proposition 7.7 (C.P. Ramanujam)Let A be a noetherian analytically
normal local ring and let# be its maximal ideal. Let B A[[Xl, e

Xn]]. Then the canonical mapping: [C(B) — C(M_yB) is an isomor-
phism.

Proof. By TheoreniBB (a)] is surjective and Keijj = (H + F(B))/
F(B), whereH is the subgroup oD(B) generated by prime ideat®
of height one inB with # ¢ .#B and F(B) is the group of principal
ideals. Thus we have only to prove that4f is a prime ideal of height
one ofBwith & ¢ .4 B, the ther?? is principal. This, we prove in two
steps.

(i) Assume thatA is complete. Let” be a prime ideal of height
one with® ¢ .#B. It is clear that? is generated by a fi-
nite number of element§; € % such thatf; ¢ .#ZB. SetR =

A[[Xl,...,Xn_l]] and let.#(R) denote the maximal ideal d.
We claim that anyf € B — .#B is an associate of a polynomial
9(%n) = XA +aq 1 X 4+ +a0, & € .#(R). To prove this we first
remark that by applying an A-automorphism®given by X; >
Xi+XW t=1,...,n=1, X, w X, with t(i) suitably chosen, we
may assume that the seriésare regular inX,, (for details ap-
ply Zariski and P.Samuel : Commutative algebra p.147, Ler@ma
to the product of the‘j’s). Now since the Weierstrass Preparation
Theorem is valid for the ring of formal power series over a eom
plete local ring, it follows thaff = u(X? + aq 1 X + - + &),
uinvertible inB = R{[Xq]|, & € .#(R) andq being the order of

f mod.Z(R). Thus#? is generated by = %" N R[X,]. Now,
sinceB is R[X;] - flat it follows by TheorenT&12, (2), that is
divisorial. Now by Propositio Z1&(R[Xn]) — C(R(Xn)ioc) is an
isomorphism. Sincer ¢ .Z(R) R[Xq], it follows thato is princi-
pal. Hence? is principal.

(i) Now we shall deal with the case in whichis not complete. The
completionB of Bis the ringA[[Yl, o Yn]]. Let#? be a minimal
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prime ideal ofB, with # ¢ .#g. SinceB is B-flat, the ideal? B
is divisorial. Furthermore, sinc& ¢ . B, all the componentk
of % B are such that ¢ .# B, and therefore principal by)( Thus
% Bis principal. Hence? is principal by Theorem 6.6.

8 Examples of factorial rings

Theorem 8.1. Let A be a factorial ring. Let X, ..., X,] be graded by
assigning weights) to % (wj > 0). Let F(X4, ..., Xn) be an irreducible
isobaric polynomial. Let ¢ be a positive integer primadothe weight
of F. Set B= A[Xy,...Xn, Z]/(Z° = F(X1,..., X)) = AlX1,...,%n, 2],
Z = F(Xy,..., X)). Then B is factorial in the following two cases.

(@) c=1( modw)
(b) Every finitely generated projective A-module is free.

Proof. (a) SinceB,z;z = A[X1,..., Xn, Z]/(Z° - F,Z) = A[X1,..., Xnl/
(F), it follows thatz is prime inB. Now, setx = Zdoi X, where
C=1+dw. ThenZ = F(X,...,%) = ZF(X,....X), i.e.
z=F(X,....,x;) so thatB[z!] = A[X],...., %, F(X},.... %)™ .
Sincex,,..., X, are algebraically independent ow&y we see that
B[z1] is factorial. NowB = B[z'}] N K[xg,..., Xn, Z], whereK is
the quotient field ofAj for, let % € K[X1,...,%, 2] withy € B.

Then since €) is a primary ideal not intersecting, we havey €
BZ = BN K[xy,..., Xy, 2]Z. HenceB is a Krull ring and therefore
factorial by Theoreri 613.

(b) Sincec is prime tow, there exists a positive integersuch that
ce=1( modw). Now by @ B = A[Xa,..., X, U], with u®® =
F(X1,...,Xn) is factorial. FurtheB’ = B[u], u°* = zandB’ is a free
B-module with 1u,u?,...,us ! as a basis. It follows thas is the

31

intersection ofB’ and of the quotient field oB, and is therefore a32
Krull ring. Now B can be graded by attaching a suitable weight to

Z. Let % be a graded divisorial ideal. Sin&? is factorial, Z B’ is
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principal. AsB’ is free overB, % is a projectiveB-module. Now
by Nakayama’s lemma for graded rings it follows tHatis free and
therefore principal. The proof ob) is complete.

i

Examples.(1) Leta, b, c be positive integers which are pairwise rela-
tively prime. LetA be a factorial ring. Then the ring = A[x,Y, 7],
with 2 = x@ + y°, is factorial.

(2) LetR denote the field of real numbers. Then the g R[X,Y, Z]
with 22 = X% + y? is factorial.

Theorem 8.2(Klein-Nagata) Let K be a field of characteristi¢ 2 and
A = K[X1,..., %] with F(Xq, ..., X,) = 0, where F is a non-degenerate
quadratic form and r= 5. Then A is factorial.

Proof. Extending the ground fiel& to a suitable quadratic extension
K’ if necessary, the quadratic forf(Xy, ..., X,) can be transformed
into X1 Xo — G(Xz,...,Xn). LetA” = K’ §>A = K'[X1,..., Xn], X1 X2 =
G(X3,...,%n). SinceF is non-degenerate amd> 5, G(X3,..., X,) is
irreducible and thereforg is a prime element i®\'. Now A’[X—] =

1

1

K’'[X1, X3, - - . » Xn, —
X1

]. i
Sincexy, Xs, . .., X, are algebraically independent, it follows from Theo-
rem@.B tha#\ is factorial. Now ag\’ is A-free, for any graded divisorial
ideal % of A, 7 A’ is divisorial and hence principal. Thereforg is a
projective ideal. Since a finitely generated graded priviechodule is
free overA, we conclude that/ is principal. ThusA is factorial.

Remark 1. The above theorem is not true far < 4. For instance,
A = K[Xq, X2, X3, X4] With X3 X2 = X3X4 is evidently not factorial.

Remark 2. We have proved that i\ is a homogeneous coordinate ring
over a fieldK such thatk’ (X) A is factorial for some ground field ex-

K
tensionK’ of K, thenAis factorial. This is not true forfeine coordinate
rings (see the study of plane conics later in this section).
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Remark 3. The above theorem is a particular case of theorems of Sev-
eri, Lefshetz and Andreotti, which in turn are particulases of the
following general theorem proved by Grothendieck.

Theorem . (Grothendieck) Let R be a local domain which is a com-
plete intersection such thatRis factorial for every prime ideal/” with
height%” < 3. Then R is factorial.

(We recall thatR is a complete intersection R = A/%, whereAis a
regular local ring and” an ideal generated by an A-sequence). (For
proof of the above theorem see Grothendieck: Seminaire denéteic
algebrique, exposé Xl, IHES (Paris), 1961-62).

Study of plane conics Let C be a projective non singular curve over a
ground fieldK. Let A be the homogeneous coordinate ringlof The
geometric divisors of can be identified with elements BfH(A). Then
FH(A) = G1(C) + Zh, whereG,(C) denotes set of divisors & linearly
equivalent to zero anld denotes a hyper plane section. Let nGvibe a
conic in the projective planB?. Since the genus o is zero we have
Gi(C) = Go(C) whereGy(C) is the set of divisors of degree zero®f 34
(i.e. its Jacobian variety is zero). Ldtdenote the homomorphism of
DH(A) into Z given byd(%) = degree of%, for 7 € DH(A). Then
d-1(2Z) = Go(C) + Zh = G|(C) + Zh = FH(A). HenceC(A) =~ Imd,2z.
ThusA is factorial if and only ifimd = 2Z.

SupposeC does not carry any K-rational points. Tharis factorial.
For if not, C(A) = Z/(2) and there exists a divisas# € DH(A) with
d(Z) = 1. By the Riemann-Roch Theorem, we hd{#') > d(%) -
g+ 1 = 2, wherel(%) denotes the dimension of the vector space of
functions f on C with (f) + # > 0. Thus there exists a functiohon
C with (f) + 7 = 0 and thus we obtain a positive divisor of degree 1,
i.e. C carries a rational point: Contradiction. ConverselgZitarries a
rational pointP, thenP is a divisor of degree 1 afd(A) =~ Z/(2) i.e. A
is not factorial. Thus we have proved (a) The homogeneousitwie
ring A of C is factorial if and only ifC does not have rational points over
K.

Let nowC’ be a conic in thefine place oveK. Let A’ be its coor-
dinate ring. LetC be its projective closure iR?. Let| be the subgroup
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of DH(A) generated by the divisors at infinityA (s the homogeneous
coordinate ring oC). ThenC(A’) ~ DH(A)/(FH(A) + 1). Thus

(i) if C has no rational points oveé{, then by 6)DH(A) = FH(A)
and thereforeC(A’) = 0, so thatd’ is factorial;

(i) if C has rational points ove€ at infinity, thenDH(A) = FH(A) +1
andA is factorial;

(i) if C has rational points, but not at infinity, thénc FH(A) and
C(A') ~ C(A) = Z,,; in this caseA is not factorial.

Examples. (i) C' = x> + 2y + 1 = 0 over the rationals. TheA’
is factorial. However the coordinate ring 6f over Q(i) is not
factorial.

(i) C' = x> +y?> -1 = 0. The coordinate ring of’ over Q is not
factorial. But the coordinate ring & overQ(i) is factorial.

The above examples show that unique factorization is prederei-
ther by ground field extension nor by ground field restriction

Study of the real sphere LetR denote the field of real numbers a@d
the field of complex numbers. We shall consider the coordinag of
the sphereX® + Y2 + 72 = 1 overR andC.

Proposition 8.3. (a) The ring A= R[x,y, z], X¥*+y?+Z* = 1is factorial
(b) Thering A= C[x,Y, 7], X% + y?> + Z2 = 1is not factorial.
Proof. (a) We haveA/(z— 1) ~ R[X,Y,Z]/(Z -1, X? + Y? + Z? - 1)

R[X, Y, Z]/(X3 + Y2, Z - 1) = R[X, Y]/(X? + Y?).

. . . 1 1
HenceZ — 1 is prime inA. Sett = ——t sothatz= 1+ T Now,

. 1 2 .
S|ncex2+y2+22—1:O,wehave<2+y2+1+t—2+Y—1:O|.e.

(9% + (ty)? = -2t - Lie. t € R[tx ty]. Now Alt] = R[tx ty, ] s
factorial. Hence by Theorel®.8,is factorial.
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(b) Since k+iy)(x—iy) = (z+1)(z— 1), we conclude thah = C[x, Y, 7,
X2 +y? + 72 = 1 is not factorial.
m]

Let K denote the field of complex numbers or the field of reals, agal
A=K XY,z X°+y’+7 = 1. LetM be the moduléVl = Adx+Ady+Adz
with the relationxdx+ ydy+ zdz= 0.

Proposition 8.4. The A-module M is projective
(a) If K =R, then M is not free
(b) If K =C, then M is free.

Proof. Since the elementg = (0,2 -Yy), Vo = (-2 0, X), v3 = (Y, —X,0)
of A3 satisfy the relatiorxv; + yw + z\5 = 0, we have a homomorphism
u: M — A3 given byu(dx) = vi, u(dy) = Vo, u(d? = vs. Lety be
the homomorphisny : A3 — M given byv(a,b,c) = a(ydz— zdy) +
b(zdx— xd2 + c(xdy— ydX. It is easy to verify thatou is the identity
on M. HenceM can be identified with a direct summandAt. Hence
M is projective. Now the linear fornp : A3 — A given byg(a, b, c) =
ax+ by + czis zero onM. But A3/M is a tossion-free module of rank
1. HenceM = kergp. On the other hand we hawgA3) = A, since
X2 +y?>+7° = 1. HenceM @ A ~ A3. ThusM is equivalent to a free
module. m|

(@) If K =R, thenM is not free. We remark thadl is the A-module of
sections of the dual bundle of the targent bundle to the spher
Since there are no non-degenerate continuous vector fial®,0
the tangent bundle is not trivial, nor is its dual.

(b) If K = C, thenM is free. For, the tangent bundle to the complex-
ification of S, is trivial (this complexification being the product of
two complex projective lines).

Remark. R.Swan (Trans, Amer. Math. Soc. 105(1962), 264-277(1962)
5

has proved the following. The ring = R[xq, X2,...,Xs], > xi2 =1is
i=0
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factorial. NowS7 can be fibred byS3, the base bein@s. LetV be
the bundle of tangent vectors along the fibres for this fioraindM,

the corresponding module. Thahis not free, where asl (X) C is free
R
overA @) C. FurtherA () C is factorial. MoreoveiM is not equivalent
R

R
to a free-module.

Grassmann varieties Let E be a vector space of dimensionover

a fieldK. LetG = Gpq be the set of alfj dimensional subspaces of
E(g < n). Then seiG can be provided with a structure of a projective
variety as given below.

We call an element KE a decomposed multi-vector Xfis of the
formxyA---AXq, Xi € E. We havexiA---AXg = Oifand only ifxq, . .., Xq
are linearly dependent. FurtherA---AXq = Ay1A---Ayg, 4 € K* ifand
only if xg,...,%q andys, ..., Yyq generate the same subspace. In the set
of all decomposed multivectors we introduce the equivatemtation
XP Ao Xg~ Y1 A= AYgif Xg Ao AXg= Ay;---Yq for somed € K*.
Then the seG,, o can be identified with the quotient set which is a subset

of P(/(iE) the G) — 1 dimensional projective space defined by the vector

space/c{E. It can be shown that with this identificatioB, q is a closed
subset oiP(ﬁ E) in the Zariski topology). The projective varieGh q is
known as the Grassmann variety. @& (n, K) acts transitively o1, g,
it is non-singular.

Let L be a generig-dimensional subspace & with a basisxy, ... Xg,

n
sayx = ), dijej, 1<i<q, 2 € K. Then
=

i1

whered;, i, = det(l;). Letxj, 1<i <q, 1< j<nbe algebraically

independent elements oviér Let B = K[Xij]1<i<q the polynomial ring
1<j<n
in nqg variables. For any subset = {i1,...,iqg}, i1 < i2 < --- < iq Of

cardinalityq, we denote byly(X) the q by g determinant de; ). It is
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clear thatA = K[dy(X)]},; WhereJ is the set of all subsets of cardinality
gof{i,...,n}, is the homogeneous coordinate ringG.

Proposition 8.5. The ring A is factorial.

Proof. Itis known that the ringA is normal (Sedl. Igusa: On the arith-
metic normality of Grassmann variety, Proc. Nat. Acad. S£iS.A.
first prove thatd is prime inA. Consider the subvarietg of G, q de-
fined byd = 0. LetE’ be the subspace generatedehy. .., e, andE”
the subspace generated &y 1,...,e,. (We recall thatey,...,e, is a
basis ofE). Now « € S if and only if dim(pre/(@)) < q, i.e. if and
onlyifanE” # (0). LetZ = (0,...,0,Zg41,...,Zn), Where theZ
are algebraically independent. Let ..., X;-1 be independent generic
points ofE, independent ovek(z). ThenZ A X1 A -+ A Xg-1 IS @ generic 39
point of S, and therefores is irreducible. Let? be the prime ideal
definingS. ThenA.d = %' for somes. We now look at the zeros of
A.d which are singular points. These zeros are given by the iemsat

0 : : .
x._-(d) =0,1<i<q 1<t <n,orequivalently, by equating to O

thte sub-determinants af of orderq — 1. Hencea is a singular zero
of Ad if and only if pre(e) has codimensior 2 i.e. if and only if
dim(@nE”) > 2. HenceA.d has at least one simple zero. Thatds; 1
andA.dis a prime. O

The co-ordinate ring of thefline open set) defined byd # 0 is the

rng A’ = |a eAa homogeneou}: A4+ We shall describe

a
{dd°(a)/q
the ring A’ in another way. Letr € Gnq. Thena e U © e N E” = (0).
Let y]_ = (l, O, ey O,y]_q+]_, .o .y]_n), ey yq = (0, ey 1, yq’q+]_, e ,yqn),
where they;; are algebraically independent ou€r Thenyy A --- A yq
is a generic point otJ. Sety = (yij)i<i<q Whereyj; = 6ij, i < q,
) 1<j<n )

j <0 ThenA” = K[du(Y)]qey- Butdy i qj(y) = 2yij, 1 <i <q,
g+1< j<n HenceA' = Kl[yjj] 1<i<q . HenceA' is factorial. Hence,
+1<j<n

q
by Propositiori 713, the ring is factorial.
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Remark 1. The ringA provides an example of a factorial ring which is
not a complete intersection.

Remark 2. We do not know any example of a factorial ring which is not
a Cohen-Macaulay ring.

Remark 3. We do not know any example of a factorial ring which is not
a Gorenstein ring.

Alocal ring Ais said to be &orenstein ringf Ais Cohen-macaulay
and every ideal generated by a system of parameters is gildelu

9 Power series over factorial rings

Theorem 9.1. Let A be a noetherian domain containing elementg x
satisfying

() yis prime, Ax0 Ay = AXxy;

(i) 21 ¢ Ax+ Ay, 2 € AX + A¥, where i, j, k are integers such
ijk —ij — jk—ki > 0.

ThenA[[T]] is not factorial
We first list here certain interesting corollaries of thexabtheorem.

Corollary 1. There exist factorial rings A (also local factorial ones)
such that A[T]] is not factorial. Let k be a field and let’' A= k[x,y, Z]
with 2 = xJ +yX, (i, k) = 1, ijk —ij — jk — ki > O (for instance i= 2,

j =5, k=7). Then by Theoreln 8.1 the rind & factorial, and so is
the local ring A= Afx,y,z)' But x y, z satisfy the hypothesis of the above
theorem. Therefore’{T]] and A[T]] are not factorial.

Corollary 2. There exists a local factorial ring B such that its comple-

tion B is not factorial. Set A= Axyz B = AlTlw.), where Alis as

in the proof of CorollanyL and/ is the maximal ideal of A. Thel
is factorial. NowB = A[[T]]. Further B is also the completion of the
local ring A[[T]]. Thus ifB is factorial, so is A'T]] by Mori’s Theorem
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(see for instance, Sur les anneaux factorials, Bull. SocthMBrance,
89, (1961), 155 - 173). Contradiction.

Corollary 3. There exists a local non-factorial ring B such that its as-
sociated graded ring @) is factorial.

We setA; = K[u,v, x,V, 7, Z = u>x? + V*y3. We observe thatis prime

in A; and thatAl[%] = K[X,y,u,vV, %], X=2X,y=22y,z=wx%+
vy, HenceAl[%] is factorial and therefore i8;. TakeA = Ay,,..»

B = A[[T]]. Sincex,y, z Asatisfy the hypothesis of the above theorem
withi = 7, j = 2, k = 3, the ringB = A[[T]] is not factorial. But
G(B) = G(A)[T] = Ay[T] is factorial.

Remark. 1. If Ais aregular factorial ring, then soA§[T]]. (see Chap-
terd, Theoreri 211).

2. If Alis a noetherian factorial ring such that,[[T]] is factorial for
every maximal ideal# of A, thenA[[T]] is factorial.

3. Suppose tha is a factorial Macaulay ring such thag [[T]] is fac-
torial for all prime ideals?” with height% = 2. ThenA[[T]] is
factorial (for proofs of (2) and (3), see P. Samuol, on unifpstor-
ization domains, lllinois J.Math. 5(1961) 1-17).

4. Open question Let A be acompletelocal ring which is factorial. 42
Then isA[[T]] factorial?

In ChapteEB we shall see that at least in characteristiccZ;dmple-
tion A of A of Corrolary[2 is not factorial. We shall also give examples
to show thatC(A) — C(A[[T]]) is not surjective. Finally it may be of
interest to note thal. Geiser has proved that there do not ez@nplete
factorial rings satisfying the hypothesis of Theolenj 9.1.

Proof of Theorem 9.1.Let S denote the multiplicatively closed set
1,x%%,.... SetA” = S7IA B = A[[T]]. ThenS™1B c A[[T]]; in
fact A’[[T]] is the T-adic completion ofS~'B. But, howeverS—'Bis
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not a Zariski ring with the -adic topology. LeS’ denote the set of ele-
ments ofB, whose constant cigcients are irS. ThenS'1Bis a Zariski
ring with the T-adic topology and its completion &'[[T]]. Consider
the elemenv = xy— 21T € B.

(@) No power serieg+aiT+a,T2+--- Bis an associate of = xy-Z 1T
in A’ T (nor, a fortiori inS’~1B).

Proof. If possible, suppose thatf—Z-1T) (;1( + x%T +---) € B, with

1 ¢ cy z1

=+—T+--- € A[[T]]. Then—==-=— € Ai.ecy-Z1x*2 ¢ Ax*"L,
X X xe-1 %

Sincez~! ¢ Ax+ Aywe havea > 2. Further sincéAxn Ay = Axywe
havec e Ax*~2, sayc = ¢'x*2. ThenzZ~! — ¢’y e Ax. Contradiction

. . b
(b) There exists an integérand an element’ = % + X—;T + et
b .
Xn—flT’”l +--- such thau = w € B, wherev = xy— Z2~1T.

O

Proof. Taket > ij. We have to find elements, by,...by,... of Asuch

that b b
a a2t e Ale by b2 e AX

Xn+l

forn > 1. We setbg = Y. Assume that théy for | < nij have been
determined and thdt; = YW F,(x), y¥), wheret(n) > ij andFq(X,Y)
is a form of degreai. This is trivially verified forn = 0. m|

The congruencénij.1y — bnijz™t € AX*1 may be solved by taking
Bnij+1 = yt(”)‘an(XJ,yk)z"_l. Similarly
brijar = YW TFa(x1, y)Z0-D, 0 < r < ij. Further the relation

bns 1)y — brijsij-12 1 € AXM DI

implies that

by — YO HEL (0, Y ZIED e Al
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ButZ € AX + Ay, sayZ = cx + dy*. Now we have to solve the
congruencep,1j = YO I*1G( mod AX™ D) whereG = (cX +
dy)I-DF(x],y¥). The formG(X,Y) = (cX + dY)I-DF(X,Y) is of
degreeni + (i — 1)j. The monomials inG(x},y*) are of the form
Xy o + B = ni + (i — 1)j. By reading moduloAX™ 1 we can
‘neglect’ the terms for whicha > (n + 1)ij i.e. @« > (n+ 1)i. For
the remaining terms we haye> ni+ (i - 1)j - (n+ 1)i = ij — j — 1.
ThusG(x, y¥) = yi=I=DkE_ o (xd, y€)( mod AX™DiT), whereF,1 is a
form of degreeni + (i — 1)j — (ij — j —i) = (n+ 1)i. Now bps1yijy =
y+(k=jk=ki=i+1E o (xd, yK) (- mod AX™DiI). We may solve this by
taking by, 1) = yWk-k=ki-E L (X, ¥K), i.e. we may take(n + 1) =
t(n) +ijk — jk —ki—1ij and (b) is proved.

(c) Bis not factorial. Suppose that, in fa&were factorial. 44

Setu = v, with v,V as in (b). Letu = uy, ... us be the decomposition
of u into prime factors inB; since the constant term af is a power
of y and sincey is prime, the constant term of eaghis a power ofy.
ConsideR = S'~1B; Ris factorial. Nowv’ € Rand thereforel R Rv=
Rv. Furtherv is prime inR (since the constant term ofis y times an
invertible element ir5~1A). Now unique factorization iR implies that
vis an associate of somg in R. This contradictsd).






Chapter 2

Regular rings

Let A be a noetherian local ring and” its maximal ideal. We say45
that A is regular if .# is generated by aA-sequence. We recall that
X1,..., % € Ais an A-sequence if, far=0,...,r — 1, ;1 is not a zero
divisor in A/(x1,...,X). It can be proved that a regular local ring is a
normal domain. LeA be a noetherian domain. We say tid regular

if A 4 is regular for every maximal idea# of A.

1 Regqular local rings

Let A be a noetherian local ring and its maximal ideal. LeE be a
finitely generated module ovéx. Let x;,..., X, € E be such that the
elements;, mod.#ZE form a basis folE/.Z E; then thex; generate
E (by Nakayama’s lemma). Such a system of generators is called
minimal system of generators. Lat,..., X, be a minimal system of
generators oE. LetF = _ilAa be a free module of rank. Then the
1=
sequence & E; — F, %, E - 0is exact where(g) = X. NowE; is
finitely generated. Choosing a minimal set of generator&iomwe can
expressE; as a quotient of a free module. Continuing in this fashion
we get an exact sequence of modules.

o5 FpoFp1 > > Fo> E—- O

37
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we call this aminimal resolutionof E. We say that the homological di-
mension ofE (notation hdE) is < nif Fn,1 = 0in a minimal resolution
of E. If Fj # O for everyi, then we puhdE = ~. It can be proved that
hd E does not depend upon the minimal resolution (since two nahim
systems of generators &f differ by an automorphism d&). We recall
that

E is free © the canonical mappingZ ® E — E is injective & Tor
'1A(E9A/ﬂ) =0.

From this it easily follows that for a finitely generated A-dute E
we havehdE < nif and only if Tor2 . (E, A, ,) = 0.

n+1

Theorem 1.1(Syzygies) Let A be aregular local ring and d the number
of elements in an A-sequence generating the maximal idgabf A.
Then for any finitely generated module E. We have kdE

We state a lemma which is notfficult to prove.

Lemma 1.2. Let A be a noetherian local ring and G a finitely generated
A-module with hdG< co. Let a be a non-zero divisor for G. Then

G
th_th+1.

Now if Z = (Xa,...,Xq), wherexa,..., Xq IS an A-sequence, then
by means of an immediate induction and a use of the above lenena
gethd(A, ,) = d. Hence To{lj"+1 (E,A, ,) = 0 for any moduleE’.
HencehdE < d.

Theorem 1.3(Serre) Let A be a local ring with maximal ideal# such
that hd# < «. Then A is regular.

We first observe that the hypothesis of the theorem impliasftr
anA-moduleE, we havehdE < hd(A/.#) = hd m+ 1.

We prove the theorem by induction on the dimengioof the A/,
vector space#/ ,.. If d = 0, then.#Z = 0;Ais a field and therefore
regular. Supposd > 0. Then we claim that under the hypothesis of the
theorem there exist an elemén¢ .# —.#? which is not a zero divisor.
This follows from the following lemma.
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Lemma 1.4. Let A be local ring. Suppose that evenex# — .#? is
a zero divisor. Then any finitely generated module of finiradlogical
dimension is free.

Proof. Let G be a module witthdG < ~. If hdG > 0, we find, by
resolvingG, an A-moduleE such thathdE= 1. Let0— F; —» Fg —

E — 0 be a minimal resolution dE. ThenF; is free andF, ¢ . #F,.
Now, since every element o7 — #? is a zero divisor, it follows that
every element of/Z is a zero divisor and# is associated to (0). Hence
there exists am # 0, such tha.#Z = 0. Hence aF; = 0. This
contradicts the fact thd&, is free. HencdndG = 0, andG is free. m]

Applying this lemma to ‘ourA we see that if every element of/ —
% is a zero divisor, then/ is free. Since# consists of zero divisors
we have# = 0i.e. Ais afield. Thusifd > O thereis & e .# — .#?
such thatb is not a zero divisor. Se\ = A/an, #’' = .# /Ab. We
claim that.# /Ab is a direct summand of#/.#b. Lety denote the
canonical surjection# / o — #,,. Letb, o, ..., qq¢-1 be a minimal

d

-1
set of generators of7. Seto = Z Ag. Lety be the canonical mapping
o= M| . Then Ker(p) =0 m ///b c o N Ab. On the other hand if
Ab € o, thenib = Z Aigi, 4i € A. Butb,q,...,qq is a minimal set of

generators of/# . Hence/l A€ . Thuso N .#b=0cn Ab.

oc+Ab e A .
Thus we have a canonical injecti = ——— — ——, since 48
jection /ab = —xp= = 73

o+ Ab/ap & 0/onab = O/onub. It is easy to see thatod = | 4.
Hence.Z | ap is a direct summand o# / ,». We now have the follow-
ing lemma easily proved by induction twl(E)).

Lemma 1.5. Let A be a commutative ring and E an A-module with
hdE < o. Let b € A be a non-zero divisor for A and E. Then
hdA/AbE/bE < 00,

From the above lemma, it follows thatapa#/ 40 < . Since
A [ np is a direct summand of#/ ,» we havehdajap # /Ab < co.
Since dllT,]\/ﬂ %/Ab////ZAb/Ab = d|mA//// e%/l//lz_'_Ab =d-1, A/Ab
is regular by induction hypothesis. Henc# /Ab is generated by an
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A/Ab-sequence, say, ... X4_1 moduloAb. Thenb, Xi,..., X4_1 IS an
A-sequence and generates. ThusA is regular.

For any local ringA we define the global dimension & to be
hdA/.#, where.# is the maximal ideal; notation gldimA = 6(A).
For anyA-moduleE we havehdaE < 6(A).

Corollary. Let A be a regular local ring and p prime ideal with p#
A , where.7 is the maximal ideal of A. ThenyAs regular ands(Ap) <
S(A). B B

Proof. We haves(Ap) = hda, Ap/pa, = hda,A/p ® Ay < hdaA/y,
the last inequality, being a consequence of the fact fhais A-flat.
Choosex € .# — p. Sincex is not a zero divisor foA;, we have by

P+ X
LemmaEElZ,hdAA/E/X(A/E) = hdpa= 5 =1+ hdAA/E < 6(A) i.e.
hdaA/p < 6(A) - 1. Hences(Ap) < 6(A). O

Theorem 1.6(Auslander-Buchsbaum)Any regular local ring is facto-
rial.

Proof. Let A be a regular local ring. We prove the theorem by induc-
tion on the global dimensiod(A) of A. If 6(A) = 0, thenA is a field
and therefore factorial. Supposé?) > 0. Letx be an element of an
A-sequence generatingZ. Thenx is a prime element. By Nagata’s

1. .
theorem, we have only to prove tHat= A[;(] is factorial. For any max-

imal ideal.# of B, we haveB , = Ap, wherep is a prime ideal with

X ¢ p. By the corollary to Theoreril.3, we see tiégtis regular and
6(Ap7< 5(A). Hence by the induction hypothesi, is factorial. Thus
B is factorial for every maximal idea¥” of B (i.e. Bis locally facto-
rial). Leto be a prime ideal of height 1 iB. Theno is locally principal
i.e. o is a projective ideal. NovB being a ring of quotients of the reg-
ular local ringA, the ideal admits a finite free resolution. By making
an induction on the length of the free resolutionsofve conclude that
there exist free modules, L such thato @ L ~ F. By comparing the
ranks we see thdt ~ B", F ~ B™! for somen. Taking the i + 1)

. N n+l-j . .
exterior power we havép A(c) ® A (L) ~ B. Sinceo is a modulo
j=1
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i . : . : .
of rank 1A (o), j = 2 is a torsion-module. Henge ~ B that is,o is
principal and therefor® is factorial. HenceA is factorial. O

2 Regular factorial rings

We recall that a regular riné is a noetherian domain such that, is 50
regular for any maximal ideal” of A. We say that domaiA is locally
factorial if A 4 is factorial for every maximal ideal” of A.

Theorem 2.1. If A is a regular factorial ring then the rings [X] and
A[[X]] are regular factorial rings.

Proof. We first prove thatA[ X] and A[[X]] are regular. LeB = A[X].

Let .# be a maximal ideal oB. Setp = An .#Z. ThenB, =
(Ap[X]).#za,[x1- Since a localisation of a regular ring is again regular,
we see thaf\, is regular. Thus to prove th&is regular we may assume
thatA is a local ring with maximal ideah(A) and that# N A = m(A).
SinceA is regular,m(A) is generated by aA-sequence, sasi, ..., a.
Now B/mae = A/ma[X]. Thus .Z/mae = (F(X)), whereF(X) €

A is such that the clasB(X) of F(X) ( modm(A)) is irreducible in

A .
M[X]. Now ag, ..., a, F(X) is B ,-sequence and generates/B_,

(infact.# = (a,...,aF(X))). HenceB_, is regular for every maximal
ideal.# i.e. Bis regular. We shall now prove th@t= A[[X]] is regular.
Let .# be a maximal ideal of. SinceX € RadC), M = .# + XC,
where.# is a maximal ideal ofA. Now A , c Cy. SinceA , is reg-
ular, .# A 4 is generated by aA ,- sequence, sagy,...,my. Then
my, ..., My, X is aCy-sequence which generat##Cy;. ThusCyy is
regular i.e.C is regular. O

We now prove thaB = A[X], C = A[[X]] are factorial. ThaB 51
is factorial has already been proved (see Chapt@heoreni6b). To
prove thatC is factorial, we note thaK is in the radical Rad) of C

C : . .
and— ~ Ais factorial. Now the following lemma completes the proof
of the theorem.
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Lemma 2.2. Let B be a locally factorial noetherian ring (for instance a
regular domain). Let x Rad(B). Assume that BB is factorial. Then
B is factorial.

Proof. Let o be a prime ideal of height 1 iB. Theno is locally prin-
cipal i.e. o is projective. Ifx € o, thenoc = Bx If x ¢ o, then
o NBx=ox Thuso/ox = 0/eney = (0 + BX)/Bxi.€. 0/sxis @
projective ideal inB/gyx. SinceB/gy is factorial andr/ . divisorial, we
see thatr/, is principal inB/gx. Hence, by Nakayama'’s lemma,is
principal. ]

Corollary. Let A be a principal ideal domain. Ther[Xq,..., Xy]] is
factorial.

In particular ifK is a field, therK[[ Xy, ..., Xy]] is factorial.

3 The ring of restricted power series

Let A be a commutative ring and le# be an ideal ofA. We provide
A with the .# - adic topology. Letf = Y a,X* € A[[X1,...,Xd]],
a = (a1,...,aq), X* = X{*--- X7, We say thaff is arestricted power
seriesif a, — 0 as|a| — oo, || = a1 +--- + ag. Itis clear that the
set of all restricted power series is a subringApfXy, . .., Xg]] which
we denote byA{xi, ..., Xq}; we have the inclusion&\[Xy, ..., Xq4] C
AlXy, .. XA[[X1, ..., Xd]]. In fact A{Xy,...,Xq} is the #Z (X, ...,
Xg)- adic completion ofA[Xy,..., Xq]. In particular, if A is noethe-
rian so isA{Xy, ..., Xq}. FurtherA[[X,..., Xq]] is the completion of
A{Xq, ..., Xg} for the (X1, ..., Xg)-adic topology. But this is not of inter-
est, sinceA{Xy, ..., Xq} IS not a Zariski ring with respect to th&{;, . . .,
Xg)-adic topology.

Lemma 3.1. Let A be a commutative ring and/ an ideal of A with
A c Rad(A). Let AXy,...,Xq} denote the ring of restricted power
series, A being provided with the7-adic topology. Then# c Rad
(A{Xq, ..., Xg}).
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Proof. Letm € .#. Consider I+ mgX), wheres(X) € A{Xy,..., X4}
Sets(X) = a, + t(X), t(X) being without constant term. Since+lma,

(1—muX)), whereu(X) is a

is invertible, we have * mgX) = Trma

. . , 1
restricted series without constant term. New——— = 1+ mu(X) +

1-muX)
mPu(X)? + --- is clearly a restricted power series. Thus IngX) is
invertible inA{Xg, ..., Xg} i.e. me Rad A{X4, ..., Xq}). m]

Theorem 3.2. [P. Salmon]Let A be a regular local ring and le# de-
note its maximal ideal. ThenRA{Xy, ..., Xy} is regular and factorial,
the power series being restricted with respected to the mabideal.

Proof. Let p be a maximal ideal oR. By Lemmal31l,.#R c Rad
(R) c p. Now p/_yr is a maximal ideal oR/_sr = (A ,)[X1.. ... Xd].

It is well known that any maximal ideal o] _,)[Xa, ..., X4] IS gener-
ated byd elements which form amd/_,)[ X1, ..., Xq] -sequence. Thuss3
p/.#r s generated by aR/_,r-sequence. But) being regular,ZRis
generated by aR-sequence. Therefogeis generated by aR-sequence.
By passing to the localisation, we see tipiR, is generated by &p-
sequence. Hendris regular. - [=!

We now prove thaR is factorial. The proof is by induction on
gl.dimA = 6(A). If 5(A) = 0, thenA'is a field andR = A[Xy,..., Xq4]
henceRis factorial. Lets = 6(A) > 0 andmy, ..., m; generate#. Now
Ris regular and therefore locally factorial. By Leminal 84 € Rad
(R). FurtherR/mr ~ (A/ma){X1, ..., Xd}, 6(A/ma) = 6 — 1; hence, by
induction hypothesisR/mr is factorial. Using LemmB22 we see that
Ris factorial.

Remark 1.Let A be a local ring which is factorial. Then it does not
imply that A{T} is factorial. TakeA = K[XY, Z]y, Z = X +Y'.
As in the proof of Theorerind.1, Chapfér 1, we can prove thaethgist
by, by, ... € Asuch thatxy—zT) (¥(+%T+%T2+- - -+%T”+1+- )=
ue B = A{T}. In fact it can be checked that we can take the elemgnts
such thati = y2—XxT2—xyT8-3xy?T1*. .. —anxy" T2+ wherea, is
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an integer such that € a, < 2°". By providing A with the (x, y, 7)-adic
topology, we see that the power serniess restricted. Now the proof of
Theoren 21 verbatum carries over and we conclude that #tected
power series ring\{T} is not factorial.

Remark 2. In the above example, if we take= R or C, the real number
field or the complex number field respectively, then we caalsjpé the
convergent power series ring ovar Now the above power seriesis
convergent since 8 a, < 2°". Hence the convergent power series ring

overA s also not factorial.
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Let A be a Krull ring and leK be its quotient field. LeG be a finite

group of automorphisms df. Let A’ denote the ring of invariants &

with respect tds and letK’ be the quotient field of’. ThenA” = AnK’,

so thatA’ is a Krull ring. SinceHG(x - 9(X)) = 0, x € A, we see that
Se

Ais integral overA’. Thus we have the homomorphisin D(A) —
D(A) andj : C(A") — C(A) (see Chaptelll §6). We are interested in
computing Ker ). LetD; = j~}(F(A)). Then Ker () = D1/r(n). LetS
be a system of generators@f Letd € D;, with j(d) = (a), a € K.

The divisor j(d) is invariant undelG, i.e. (8(a)) = (a), s € G. Hence
s(a)/a € U, the group of units ofA. Let h denote the homomorphism
h: K* — (K*)S given by x ~» (S(X)/x)ses. Thenh(a) € h(K*) n US,
Now if a=a'u, & € K, u e U, thens(a)/a = s(a)/a - S(u)/v’. Thus
h(a) is determined uniquely modulaU), and we therefore have a ho-
momorphismy : D1 — (h(K*) N US)pyy with d ~» h(a) ( mod h(U)),
wherea(d) = (a), a € K.

Theorem 1.1. The mapping induces a monomorphistn: Ker (j) —
(h(K*) N U®)
h(U)

A, thend is an isomorphism.

. Furthermore, if no prime divisor of A is ramified over

45
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Proof. Letd € D1. Thenyg(d) =0 © h(@) = h(u), u e U © s(a)/a =
s(u)/y, forall se S.

a, a a
o 9-)== forall seGe —=a €K’
u’ u u

& §(@) = @a= ) = @)a = (@w).
O

But, sincej is injective, we havel = (') i.e. Kerfp) = F(A’). Hence
0 is a monomorphism.

Now assume that no prime divisor &fis ramified overA’. Let
a € (h(K*) N US)/h(U), a = h(a) ( modh(U)). Sinceh(K*) = h(A*),
we may assume thate A. Sinces(a)/a € U, for s€ S, the divisor

(a) is invariant undef. Now, by hypothesis for any prime divisor
%’ e D(A), we havej(#’) = %1 + - - - + %, where theZ[ form
a complete set of prime divisor lying oveér’. Further the% are
conjugate to each other. Since the divisor (a) is invariadieuG,
the prime divisors which are conjugate to each other occtir wi
the same cd#cient in (a) so that (a) is the sum of divisors of
form (%), %" € P(A’). Hencef is surjective and therefore an
isomorphism.

Remark 1. ForS = G the group li(K*)n(U)®)/h(U) is thecohomology

group H'(G, U): in fact a systen(%)seg for x e K* is the most gen-

eral cocycle of G in K (since H(G1K*) = 0, as is well known), whence
h(K*)N(U)® = Z1(G, U); on the other hand (U) is obviously the group
BY(G, U) of coboundaries. The preceding theorem may also be proved
by the following cohomological argument. As usual, if G @pes on a
set E, we denote byCEhe set of invariant elements of E; we recall that
EC = HO(G, E). Now, since H(G, K*) = 0, the exact sequence

0-U->K'-FA) >0
gives the exact cohomology sequence

0 - U® 5 (K)® - F(A)® - HY(G,U) - 0.
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On the other hand, sindg® is the group of units i = A®, we have
0-5U® S (K S5 FA)>0
and therefore,
0—- F(A) - F(A® - HYG,U) - 0

In other wordsH(G, U) = (invariant principal divisors of) / (divisors
of Ainduced by principal divisors ok’). This gives immediately a
monomorphisn® : ker(j) — H(G,U). If Ais divisorially unramified
over A’, one sees, as in the theorem, that every invariant divisé of
comes fromA’, thus@ is surjective in this case.

Remark 2. Supposes is a finite cyclic group generated by an element
says. Then we may tak& = {s}. By Hilbert’s Theorem 90, the group
h(K*) is precisely the group of elements of norm 1. Thh&() n
U)/h(U) is the group of units of norm 1 modulgU).

Remark 3. The hypothesis of ramification is essential in the above the-
orem. For instance lek = Z[i], i* = -1, G = {1,0}, (i) = —i. Then

A =Z,C(A) = C(A) = 0. Hence Ker) = 0. HoweverU N h(K*) =
{1,-1,i,-i}, h(U) = {1, -1}. Thus f(K*) nU)/h(U) = Z/(2).

We note that the prime number 2 is ramifiedAn 58

Examples: Polynomial rings.

1. Letk be a fied andA = K[x,..., Xq], the ring of polynomials ird
variables,d > 2. Letn be an integer withr(, p) = 1, p being the
characteristic ok and letk contain a primitiven® root of unity w.
Consider the automorphiset A — Awith x; ~ wx, 1<i <dand
let G be the cyclic group of orden generated bys. Then the ring
of invariantsA’ is generated by the monomials of degreia the x;;
geometrically this is the-tuple model of the projective space. Set
Fi(X) = X" — x". Now any ramified prime divisor oA must contain
Fi(x) = n>¢‘1. Thus there is no divisorial ramification v Here
U = k* and the group of units of norm 1 is the grouprdf roots of
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unity. Furtherh(U) = {1}, (h(K*) n U)/h(V) ~ % by RemarkR.
SinceA is factorial, by Theorei 31, we ha®A’) ~ Z/(n).

2. Letk,w,n, be asin (1) and\ = k[x,Y]. Let sbe thek-automorphism
of A defined byx ~» wx, y ~ wly. The ring of G-invariants
A = K[ X", y", xy|, i.e. A’ is the dfince coordinate ring of the surface
Z" = XY. Again as in (1) there is no divisorial ramificatiad, = k*
andC(A) = Z/(n).

3. Letk be afield andA = Kk[X4,...X,]. Let A, denote the alternating
group. NowA,, acts onA. If the characteristic ok is # 2, then the
ring of Ap-invariants isA’ = K[sy, ..., S, 4] wheres; - - s, denote
the elementary symmetric functions and= H_)(xi - Xj). If char-

1<j

acteristick = 2, thena is also symmetric an&’ = k[sy,..., S, a],
1
wherea = Q(H(Xi - X)) + H_(xi + Xj))-
i<j

i<j

As the codicients of[](x — xj) + [1(x + x;) are divisible by 2, the
i<j

i<j
elementr has a meaning in characteristic 2. Further there is no digiso
ramification inA overA’. For the only divisorial ramifications @& over

K[St,...,sn] are those prime divisors which contdt(x) = [1(x; — %),
j#i
whereF(X) = [T(X - x;j). Sincea = [](x — Xj) € A’ (in characteristic

i<j

2, Aisin fact ink[si, ..., s]), there is no divisorial ramification iA
over A’. HenceC(A) ~ H(A,, U), by the remark following Theorem
L. ButU = k* andA, acts trivially onk*. HenceC(A’) ~ H1(A,, U) is
the group of homomorphisms &%, into k*. Thus ifn > 5, A, is simple
and thereforeC(A’) = 0 i.e. A’ is factorial. The only non-trivial cases
we have to consider ar@, = 3,4. Forn = 3, A, is the cyclic group
of order 3. Hence&(A’) = 0 if k does not contain cube roots of unity,
otherwiseC(A’) ~ Z/(3). We now consider the case= 4. We have
[As, Aa] = {1,(2 2)(3 4) (1 4)(2 3) (1 3)(2 4} andAs/[A4, As] ~ Z/(3).
Now the group of homomorphisms @, into k* is isomorphic to the
group of homomorphisms d&4/[A4, A4] into k*. Hence, is in the case
n = 3, C(A") = 0 if k does not contain cube roots of unity; otherwise
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C(A)-Z/(2).
Example. Power series rings. We first prove the following lemma.

Lemma 1.2. Let A be a local domain/ its maximal ideal. Let s be60
an automorphism of A of order n, (n, ch@k/.#)) = 1. Let U denote
the group of units of A and h the mapping K> K* with x ~» s(X)/X,

K being the quotient field of A. Thé + .#) N h(K*) c h(U) (i.e.
im(H'(G,| + .#) — H’(G,U)) = 0, where G is the group generated by
S).

Proof. Letu € 1+ .4, u = s(X)/x, X € K*. Thenu has norm 1, i.e.
N(U) = ubst+8"" = 1, Setv= 1+ u+ ul*S+ .- + U+ Thenv =
n.1( mod.Z). Sincenis prime to the characteristic &f.#, it follows
thatv s a unit. Further we have(v) = 1+ uS+ us*S + .- uSt1+s"" and
ugv) = vi.e.u= s(v')/v! e h(U) and the lemma is proved. O

In the examples (1) and (2) of polynomial rings we replaceritigs
A = K[Xy,...,Xq] andA = K[x,y] respectively byA = K[[xy,..., Xd]]
andA = K][[x,y]]. Since inAwe haveU/(1 + .#) ~ k*, we obtain the
same results as in the case of ring of polynomials, in vievhefabove
lemma.

Proposition 1.3. Let A be a local ring,.# its maximal ideal. Let G
be a finite group of automorphisms of A, acting trivially oe-kA/.# .
Further, assume that there are no non-trivial homomorpkigiG into
k* and that(Card(G), Char (k)) = 1. Then H (G, U) = 0, U being the
group of units of A. In particular, if A is factorial, so is'A

Proof. Let (us)sc, Us € U, be a 1-cocycle o6 with values inU. Then

Usg¢ = S(Ug).Us. Reducing moduloz, we getusg = Uy -Us, SinceG acts
trivially on k. We have made the hypothesis that there are no non-trivial
homomorphisms of into k*. Henceus e 1+ .#,se G. Sety = 3 u. 61

teG
Theny =Card G) -1 ( mod.#). Thusy € U. Now s(y) = >, s(u;) =
teG

5= uiyi.e. Us = s(y 1)/y *. HenceH(G, U) = 0. O
S

t Us
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Corollary . Let A = K[[X1,...,Xn]]. Let k be of characteristic p- n
or 0. Let A, be the alternating group on n symbols. Then for b,
H(G,U) = 0, i.e. the ring of invariants Ais factorial.

For further information about the invariants of the alteimggroup
we refer to Appendix 1.

2 The Purely inseparable case

Let A be a Krull ring of characteristip # 0, and letK be its quotient
field. Leta be a derivation oK such thata(A) c A. SetK’ = Ker(a)
andA’ = AnK’. ThenA' is again a Krull ring and\P c A’, KP c K’. In
particular,A is integral overA’. Hence the mapping : D(A’) — D(A)
of the group of divisors goes down to a mappihg C(A’) — C(A) of
the corresponding divisor class groups. We are interestedmputing
Ker(j). SetD; = j~Y(F(A)), so that Ker{) = D1/F(A). Letd € Dy,
and j(d) = (&), a € K*. From the definition ofj it follows that e,
divides vp(a), wherep is a prime divisor ofA, v, the corresponding
valuation ande, the ramification index ofj,. Hence there exists an
a € K™ such thatvp(a) = vp(@'), i.e. a = a.u, u being a unit inAp,.

Thusaa/a = ard’/a + AU/U = ﬁ. SinceAa(Ap) C Ay, it follows that
nra/a € Ap, for all prime divisorsp of A, i.e. Aa/a € A. We shall
call ax € K, alogarithmic derivativeif x = at/t for somet € K*.
The set of all logarithmic derivative is an additive subgraf K. Set
&L = {At/t|At/t € At e K*}. LetU denote, as before, the group of units
of A and set?” = {au/uju € U}. Now .¥¢’ c .¥. Forad € D; with
j(d) = (a), a € K*, ra/a € .Z is uniquely determined modul&”’. Let
¢ denote the homomorphisnD; —» .£/.%”, d ~» Aa/a( mod.Z”) if
j(d) = (@). Nowg(d) = 0 & ra/a= au/u,forue U & a(a/u) =0
ie. a/u=4a € K © (a)a = (@)a. Butj((@)n) = (@)a andj is
injective. Hencead = (a')a. Thus Kerp) = F(A’). We have proved the
first assertion of the following theorem.

Theorem 2.1. (a) We have a canonical monomorphigm Ker(j) —
Z1L.
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(b) If [K : K] = pandifa(A) is not contained in any prime ideal of
height 1 of A, therp is an isomorphism.

Proof. To complete the proof of the theorem, we have only to show
that ¢ is surjective under the hypothesis of (b). KgK’ is a purely
inseparable extension, every prime divisorfuniquely extends to a

prime divisor ofA. Thus a divisod =}, npp € Im(j) if and only
peP(A) —

if ep/np wheree, denotes the ramification index of SinceAP c A,

it follows that for any prime divisiorp of A, e, = 1 or p. Leta € K*
be such thaha/a € A. It is suficient to prove that for a prime divisor
p of A, if n = vp(a) is not a multiple ofp, thene, = 1. Lett be a
uniformising parameter ofp. Leta = ut", u being a unit inA,. Then
AU/U+ N At/t = Aa/a € Ap. Hence,at/t € Ay, ie. A induces a 63
derivationa on the residue class field= Ap/tAp. By hypothesis, since
AA ¢ p, we havea # 0. Letk’ be the residue class field gfn A'.
Thenk’ C Ker(a) < k. Thusf = [k: K] # 1. Since K : K’] = p, and
kP c k’, we havef = p. Now the inequalitye, f < [K : K’] = p gives
ep = 1. The proof of Theorefi 2.1 is complete. O

3 Formulae concerning derivations

Let K be a field of characteristip # 0 and letD : K — K be a deriva-
tion. LettD denote the derivatior ~» t. D(x). We note thaDP, the pi"
iterate ofD, is again a derivation.

Proposition 3.1. Let D: K — K be a derivation of K(char k= p # 0).
Assume thaiK : K’] = p. Then

() DP =aD, ae K’ = KerD.

(b) If Ais a Krull ring with quotient field K such that @) c A, that
aeA =K nA.

Proof. (a) By hypothesiK = K’(2), z° € K’. For anyK’- derivation
AZ .
AoOf K, A = D_zD' In particularDP = aD for a € K. Hence
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DR = D(DPa) = D(a- Da) = (Da)? + aD2a. On the other hand,
DaP*! = DP(Da) = aD?a. HenceDa=0i.e.ae K.

(b) SinceA = (\ ApandD(Ap) c A, we have only to deal with
peP(A) — - -
the case wheA is a discrete valuation ring. L&tdenote the corre-

sponding valuation. Ldte A, with v(t) = 1. We haveDPt = a - Dt.

1
If v(Dt) = 0, thena = ot DPt € A. Assumev(Dt) > 0. Then for
x € A, we havev(Dx) > v(x). Forisx = ut" with v(u) = 0. In
particular,v(DPt) > v(Dt) i.e.a € A.
i

Proposition 3.2. Let D: K — K be a derivation of, K(char k= p # 0).
Let K = KerD and[K : K’] = p. An element € K is a logarthmic
derivative (i.e. there exists anexK such that t= Dx/X) if and only if

DP (1) - at +tP =0,
where P = aD.

Proof. We state first the following formula of Hochschild (Trans.
A.M.S. 79(1955), 477-489). i

Let K be afield of characteristip # 0 andD a derivation oK. Then
(tD)P = tPDP + (tD)P1(t).D

(t € K, tD denotes the derivation ~» t.DX). We have to prove the
proposition only in the case wher 0.

. o 1
Let nowt be a logarthmic derivative, sdy= Dx/x. Seta = TD'
Then by Hochschild’s formula, we have,

DP = (ta)P = tPAP + (ta)P (1) a.

= tPAP + DP(t) - A = aD.
But A"x = x, for n > 1. Hencea.Dx = tPx + DP1(t)x, i.e.

tP — at + DtP1(t) = 0.
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Conversely assume thais such thaDP~'t — at+tP = 0. Seta =
1 . .
Y'D' Again by Hoschschild’s formula, we hai@® = (ta)P = tPaP +

DPL(t).a = aD = ata,i.e.ata = tPAP + (at—tP)a i.e. tP(aP - A) = O,
ie.aP—a=0,ie.a—(p-2DI)---(a-21)(a—-1) =0, wherel is the
identity mapping oK into K. Choosey € K withy; = Ay # 0 and set 65
Yo=(a=Ny1,....¥p = (& = (p— DI)yp-1(= 0). Then, there exists p
such thaj_; # 0 andy; = (2 - jl)yj-1 = 0.

Hence

AYj-1 = [¥j-1, 1€ AYjafyj1=]€Fp,Fp

being the prime field of characteristic Letn be the inverse of modulo

AX j— . : .
p. Setx = y’j‘_l. Then7 = n% =nj=1,i.e.AX=Xxi.e.t = Dx/x
-1

4 Examples: Polynomial rings

Let k be a factorial ring of characteristig # 0. SetA = K[x,y]. Let D

be ak-derivation ofA andA” = Ker(D). The group of unitd) of Ais

the group of units ok. Hence hereZ” = 0. SinceA is factorial, we by
TheorenZ1L, an injection @(A’) = Ker(j) into .. (We recall that?

is the group of logarthmic derivatives containeddiand thatZ” is the
group of logarthmic derivatives of units.) We shall now ddes certain
specialk-derivations ofA.

(@) The Surface ZP = XY. Consider the derivatio of A KXx,y]
with Dx = x andDy = —y. Thenk[xP,y?, xy] ¢ A’ = Ker(D).
Let L, K, K’ denote the quotient fields &f A, A’ respectively. Now
L[xP,yP, xy] is the coordinate ring of thefline surfaceZP = XY.
Since the surfac&P = XY has only an isolated singularity (at the
origin), it is normal. Buk[xP, yP, xy] = L[xPyP, xy] Nk[x,y]. Hence
k[xP, yP, xy] is normal. Since is integral ovek|xP, yP, xy] and has
the same quotient field &§xP, yP, xy], we haveA’ = K[xP, yP, xy].
We note that the hypothesis of Theor€ml 2.1 (b) is satisfied. hes
HenceC(A) = .. Now .# = {DP/P|P € K,DP/P € A}. For
P € A, we haved°(DP) < d°(P). HenceDP/P € .Z if and only if
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DP/P € k. The formulaD(xy?) = (a - b)x®y? shows that? = F,
the prime field of characteristip. HenceC(A') ~ Z/(p).

The surfaceZP = X' + Y. Again we takeA = k[x, y], k a factorial
ring of characteristig # 0. LetD be thek-derivation ofA given by
Dx = jyi-1, Dy = —ix"1, wherei, j are positive integers prime to
p. Let K,K’, L denote the quotient fields &, A’ = Ker(D) andk
respectively. We havi[xP, yP, X +yi] ¢ A’ and [L(xP, yP, X + y}) :

K] = p. HenceK’ = L(xP,yP,x +yl). Now L[xP,yP,x + yi]

is the coordinate ring of theffine surfacezP = X' + Y! which

is normal since it has only an isolated singularity (at thigio}.
HenceL[xP,yP, X + yi]is integrally closed. BUK[xP,yP, X +yi] =
L[xP,yP, X +y/]nK[x, y]. Hencek[xP, yP, X +yl]is integrally closed.
SinceA’ is integral ovek[xP, yP, X +yl], we haveA’ = k[xP, yP, X' +
yl]. We remark that oub satisfies the hypothesis of Theorgml 2.1
(b). HenceC(A) = {DP/P|P e K,DP/P € A}. We shall now
compute.Z. We attach weight§ andi to x andy respectively.
By Proposition[31l, we hav®P = aD with a € A’. It is easily
checked that iG is an isobaric polynomial of weight, thenDG is
isobaric weightv+ij —i— j and thereforddPG is isobaric of weight
w+ p(ij —i— j). NowDPx = aDx Comparing the weights we see
thata is isobaric of weightp — 1)(ij — i — j).

Let F be a polynomial which is a logarthmic derivative. L€} of
weight o (respectivelyFg of weight ) be the component of smallest
(respectively largest) weight &. By Propositiod-3.2F is a logarthmic
derivative if anly only ifDP~1F —aF = —FP. Comparing the weights of
the components with smallest and largest weights on bo#s side get

weight OP1F, - aF,) < weight ) and weight DP1F; — aF) >
weight (Fg) Thatispa > a+(p-1)({j—i—j), p8 < B+(p-L)(j—i—})).

Hencelj—i—j<a<pB<ij—i—jie.a=B=ij—i—j. HenceF must
be isobaric of weighij —i — j. Setd = (i, j), i = dr, j = ds Thus, the
monomials that can occur i are of the formxy*, Aj +ui =ij —i— j

i.e.As+ur =drs—r-s,i.e. @ +1)s=(ds—u— 1. Since (,s) = 1,
A+ 1is a multiple ofr. Thus the smallest value afadmissible ig — 1,
the corresponding being d—1)s— 1. ThusF is necessarily of the form
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d-1
F =Y byx"1y@-ns1 |fd =1, then” = 0 andA’ is factorial. If
n=1

d > 1, the coéficients ofDP~1F —aF will be linear forms inby, . . ., b4_1
and those of-FP are p" powers ofby, ...,bq_1. ThusF is a logarth-
mic derivative if and only ifof = La(b), L/, (b)) = 0,1<n<d-1,
1 <’ <t, whereLy(b), L/, (b) are linear forms occuring as the dbe
cient of DP~1F — aF.

L, (b) indicates the ones which do not occur+RP. The hypersur-
facesbl = Ln(b) intersect at a finite number of points in the profective
spaceP%1 and, by Bezout’s theorem, the number of such points in the
algebraic closure df is atmostpd~t. As.Z is an additive subgroup of
A, % is ap-group of type b, ..., p) of orderpf, f < d— 1. Hence we 68
have proved the

Theorem 4.1. Let k be a factorial ring of characteristic g 0, and let
i, | be two positive integers prime to p and=d (i, j). Then the group
C(A) of divisor classes of A= k[X, Y, Z] with ZP = X + Y! is a finite

group of type(p, ... p) of order p' with f < d— 1. In particular A is

factorial if i and j are coprime.

We can say more abo@(A’) in the casep = 2. Letk be of char-
acteristic 2. TherD? = 0, i.e. a = 0. The equation for the logarth-
mic dgzrilvative then becomeBF = F2. As aboveF is of the form
F = 3 box"1yd-Ns-1 Herei, j, r, s, d are all odd integers. If

n=1
nis odd, thenD(b,x"~-1y(d-Ns-1 — p yr-1+dr-1y(d-Ns-2 = The corre-
sponding term inD?F is b2 x?M-2y2@-ms-2 where n = n+d =
20+ 1+d(n =29+ 1), b, = b2. Setd = 2c- 1. Thenm = q+c.
Thusbyg,1 = b§+c. On the other hand lat be even, say = 2g. The
D(by X" -1y(d-ns-1) = p ynr-2y(d-n)s-1+ds-1 The corresponding term in
D?F is b2 x2™-2y2@-ms-2 '\yhereb, = b, andnr — 2 = 2mr - 2 i.e.
2m = n = 2g. Hencebyy = bg. ThusF is a logarthmic derivative if and
only if the equation$,q,1 = b, andbyg = b, d+1 = 2c, are satisfied.

Consider the permutatioff of (1,2,...,d-1) given by,[1(29) = q,
1<g<c-1,TI(2g-1)=q+c,0<q<c-2. Now the equations for
the logarthmic derivative can be written lag = bﬁ(q), l1<g<2c-2
Let Uq,..., U be the orbits of the group generated [dyand let Card
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(Ui) = u(i). Thenu(1)+---+u(l) = 2c-2. If Ue = (0, . . . Que)), then the
. . u(e)
equationddg, = bf, ).+ boyy = bﬁ(qu(e)) are equivalent 3" = by,.
Thus the solutions d@?“® = b give rise to solution oby, = bﬁ(m), where
m e U,. But the solutions ob?® = bin kis the groug(2“©)nk, where

F(2Y®) is the field consisting of ¥ elements. Hence the groug of
1
logarthmic derivatives is isomorphic fd (F(2“®) n k). Hence we have
e=1
proved the following

Theorem 4.2. Let k be a factorial ring of characteristic 2 and let i, |
be odd integers and & (i, j). Let A = k[X,Y,Z], Z2 = X' + YI. The
group QA) is of the typg2, ..., 2) and of order2Y withu<d - 1. Ifk
contains the algebraic closure of the prime field, then thdeoof A")

is 20-1,

Remark. It would be interesting to know if the above theorem is true
for arbitrary non-zero characteristics. We remark thatgfer 3 and for
the surfaceg® = X2 + Y4, Z8 = X* + Y8, the analogue of the above
result can be checked.

5 Examples: Power series rings

Let Abe a Krull ring andD : A — A, a derivation ofA. Let ¥ denote
the group of logarthmic derivatives containedAmand .’ the group
of logarthmic derivatives of units oA. Setq = A - D(A). We have,
&’ cqn.Z. We prove the other inclusion in a particular case.

Lemmab5.1. Let A be a factorial ring of characteristic 2and DA — A
be a derivation of A satisfying D= aD, with ac Ker(D). Assume that
there exist xy € Rad(A) such that g= (Dx,Dy). ThenZ” =2 n q.

Proof. Lett € £ N q, sayt = cDx+ dDy. If r = (Dx, Dy). By consid-

: o1 :
ering the derlvatlonr— D, we may assume th&ix and Dy are relatively

prime. Sincet € ., by Propositior 312, we havbt + at + t*> = 0.
Substitutingt = cDx+ dDy in this equation, we get

Dx(Dc + c?Dx) = Dy(Dd + d?Dy).
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SinceDx andDy are relatively prime, there is ane A such that
Dc + ¢?Dx = aDy, Dd + d?Dy = aDx.

Setu = 1+ cx+dy+ (cd+ a)xy. The elementiis a unit inA. A straight
forward computation shows th&tu = tu. The proof of the lemma is
complete.

(a) The surface Z2 = XY in characteristic 2. Let k be a regular
factorial ring. Then, by Theorem 2.4, = k|[[x,y]] is factorial. Let
D be the k-derivation oA\ given byDx = x,Dy = y. Then as in
§4, A = ker(D) = K[[x2,y2, xy]] = K[[X,YZ]], Z? = XY. Here,q =
(x,y) and K : K’] = 2. Hence, by Theorel@2.G(A) ~ .£/.Z".
By Lemma&ll, we have?’/ ¥ = Z/(£ nq = (£ +0q/q. This,
and the formuldD(>x2y?) = (a—b)xdy° show that (Z + g)/q ~ F =
Z/(2).

(b) The SurfaceZz? = X2+ 4+ Y2i+! in characteristic 2. Letk be a 71
regular factorial ring and\ = k[[x,y]]. Let D be thek-derivation
defined byDx = y?, Dy = ¥¥. ThenA’ = K[[*2, y?, X2 *1+y?I+1]] =
K[[X, Y, Z]], 2% = X@+14+Y2+1 We havey = AD(A) = (x?,y?)) and
[K : K’] = 2. HenceC(A) ~ .Z /.. SinceD? = 0, an element
F € Ais a logarthmic derivative if and only BF = F2. We assign
the weights 2 + 1 and 2 + 1 to x andy respectively. For afr € A

with F = 3 F}, whereF, is an isobaric polynomial of weigHht
I>q
Fq # 0, we callq the order ofF, O(F) = g. As in Theoren4l1,

D elevates the weight of an isobaric polynomial by 4 1, Hence,
if F e ZandOf) = q, then OF) = 29 = O(DF) = q+ 4ij — 1.
Henceq > 4ij — 1.

Let £ = {F|F € £.0(F) > q}. Now {Ly}q.4j_, filters £ and
Ly = Lyn L filters £7. HenceC(A) = £ /2" is filtered byCq =
(Lq+ Z')] 1~Zg 29 In view of Lemmd B, we havey = £ for
g large, ie.eCq = 0, for q large. Since th€, are vector spaces ovEs,
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the extension problem here is trivial. HenCéA') ~ 3, Cq/Cgq1.
g>4ij-1

Since 0§%) = 2i(2j + 1) > 4ij and 0¢%) = 2j(2i + 1) > 4ij, we
have ¥ = ¥ n gc 34”'. ThereforeC4ij_1/C4ij = .,%4”_1/34”‘. By
TheoreniZR.%;-1/%4ij is a finite group of type (2. ., 2) of order 2,

with f <d-1,d = (2 +1,2j + 1). We now determin€,/Cq.1, for

q > 4ij. Let A@ denote the k-free module generated by monomials of
weighta. Letyq : % — A@ be the homomorphism given lpyy(F) =
component of of weightq, F € 7. Then kerfq) = Z4,1. We shall
now prove

eo( L) = AV N A, q 2 4ij, *)
oq(Zy) =AY N A Ng.q24ij. (**)

Note that ¢+) is a consequence of)and the fact that

Proof if (*). Let F = Fq+ Fg.1 + - - - € 24, Fq being of weight g. Since
DF = F?, and weight Dl = q + 4ij — 1 < 29, we have DF= 0,
i.e. pq(F) = Fq € A9 n A" Conversely, let F € A® n A, We
have to find I, n > q, F,, isobaric polynomial weight n, such that £

2. Fn € 4, i.e. DF = F2. Hence we have to determing Buch
n>q

that DF, = O, if nis even or n+ 4ij — 1 < 2q and DR, = F2m, if
2m = n+4ij — 1(m < n). Thus F have to determined by ‘integrating’
the equation DF = G?, where G= 0 or an isobaric polynomial of
weight g. Because of the additivity of the derivation, weehanly to
handle the case G= x?y%, (2] + 1) + B(2i + 1) > q > 4ij. In this
case, eitherr > ior 8 > j. If @ > i, we take F, = x2@-)y2+1 gnd
if B> j, we take | = x2*y26-1_ Thus provegx) and hence also
(++). This gives G/Cqi1 = (AQ N A')/(AD N A’ N q), > 4ij. Hence
Cqy/Cq+1,0 > 4ij is a k-free module of finite rank, say(qg). Hence
C(A") = Cy4j-1/Caij ® C4ij, where G;; is a k-free module of finite rank

NG, ) = > n(g). We now determine the integer(ilNj). We observe
>4
that in A, the ideal qadmits a supplement generated by the monomials
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x4yP such that a< 2i,b < 2j. Since #*1 + y2+1 € q, in A, the ideal
qn A admits a supplement generated by the monomi&lg?k such
that2a < 2i,2b < 2j. Thus Nj, j) is equal to the number of monomials
x2y® Wwith 0 < 20 < 2i,0 < 28 < 2j and weight of 2y® > 4ij.
Hence we have the

Theorem 5.2. Let k be a factorial ring of characteristic 2, and i, j
two integers with(2i + 1,2j + 1) = d. Let A = K[[X,Y,Z]], where
Z2 = X4+1 1 Y2+l Then the divisor class group(&) ~ H® G, where,
H is a group of typd?2, ..., 2) of order2f, f < d - 1; (if k contains the
algebraic closure of the prime fielfp, then H is of orde2%-1); further
G ~ kNG@D | where Nj, j) is the number of pairs of integefs, b) with
O<a<i,0<b<jand(2j+1)a+ (2 +1)b > 2ij.

Remarks.1) The functionN(, j) ~ij/2

2) N(, j) = 0 if and only if the pair §b) = (i — 1, j — 1) does not
satisfy the inequality (+ 1)a+ (2i + 1)b > 2ij, i.e. if (i, j) satisfies
the inequality 2 —i — j < 2. This is satisfied only by the pairs (1,
1), (1, 2) and (1, 3), barring the trivial cases 0 or j = 0. Hence,
upto a permutation the only factorial ring we obtain is, gtder the
trivial casesk[[X, Y, Z]], Z? = X3 + Y°. In view of TheoreniZ]1 and
Theoreni LR, the pairsi(2 1, 2j + 1) # (3,5), (5, 3), forwhich2+1 74
and 2 + 1 are relatively prime, provide examples of factorial rings
whose completions are not factorial.

(c) Power series ring. Let k be a regular factorial ring of characteris-
tic 2. LetA = K[xy] (resp. k[[x,y]]) andR = A[[T]]. We define a
k-derivationD : R — Rby Dx = y?), Dy = x¥, DT = 0. Then KeD =
A[[T]], whereA’ = k[X2, y2, x2*1 +y2i+1] (Resp.k[[ X2, y2, x2*+1 +y21)).
For a Krull ring B, let £ (B) and.#”’(B) denote the group of logarthmic
derivatives inB and the group of logarthmic derivatives of the units of
B, respectively. We will comput€(R) = Z(R)/.Z’(R). AnF € Ris
in Z(R) if and only if DF = F2? (sinceD? = 0). LetF = Y a,T"

n

ThenF e Z(R) if and only if Da, = a2, Dagn;1 = 0, Dagy, = a2.
Since by LemmaBbl17’'(R) = Z(R) n g, whereq = (Dx,Dy), we
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haveF ¢ .Z'(R) if and only if Da, = a3, Dagy;1 = 0, Dagy = &2
anda, € (Dx,Dy). ThusF € Z(R) (resp ..2’(R)) impliesa, €
Z(A) resp .ap € Z'(A). Further, 4(R/Z'(R) ~ Z(A))ZL'(A) &
ZRNTR
Z'RNTR
spectively. Lefy(n) = O(a,). Now if F € .Z(R), thenDa, = a2. Hence
g(2n)+q < 2q(n), whereq = 4ij—1. Thatis g(2n)—q < 2(q(n)—q). By
induction, we geg(2'n) — q < 2'(q(n) — g) for r > 1. Sinceq(2'n) > 0,
we conclude thati(n) > g. A computation similar to that in Theorem
shows that the ‘integration’ dday, = a2 is possible. Further if
an € g = (Dx, Dy), thenay, can be chosen iq.

Let A9 be the set of elements of orderg. In computingF € .Z(R),
each integration introduces an ‘arbitrary element®f A@. In com-
puting F € .Z’(R), each integration introduces an arbitrary constant of
A'NnAQ@Ng. Hence (Z(R)NTR)/.Z’(RNTRis the product of countably
many copies ol = (A N AD/(A’ n A®D N g). As in the last example,
V is ak-free module of rank equal to the numb¥éi, j) of pairs @, b)
withO<a<i,0<b<j,(2j+1)2a+ (2 +1)20 > q=4ij — 1 and this
inequality is equivalent to (2+ 1)a + (2i + 1)b > 2ij. Hence we have
the

As before we assign weightg 2 1, 2 + 1 to x andy re-

Theorem 5.3. Let k be a factorial ring of characteristic 2, and i, j two
integers. Let A= K[X,Y,Z] (or k[[X,Y,Z]]) with Z2 = X@+1 4 Yy2i+1,
Then QA'[[T]])/C(A) =~ (K[TIYNED where Ni, j) is the number of
pairs(a,bywithO<a<i,0<b< jand(2j + 1)a+ (2i + 1)b > 2ij.

Remarks. (1) TakeA = k[X2,y?, x2*1 + 2+ with (2i + 1,2j+1) = 1
andN(, j) > 0. ThenA' is factorial, butA’[[T]] is not. (We have
thus to exclude only? = X3 + Y® and trivial cases.)

(2) LetA’ be the complete local ring’ = K[[X,Y,Z]], Z? = X2+ +
Y2i+1 ThenA’ andA'[[T]] are simultaneously factorial or simulta-
neously non-factorial.

(3) In general, the mappin@(A’) — C(A’[[T]]) is not surjective.
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The alternating group operating on a power series
rng
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We have seen (Chafl ) that the ringA’ of invariants of the
alternating groupA, operating on the polynomial ring[xy, ..., Xn] is
factorial forn > 5. Let us study the analogous question for the power
series ringA = K[[X1,..., Xn]]; let U be the group of units id, mthe
maximal ideal ofA, and A’ the ring of invariants ofA, (operating by
permutations of the variables). We recall (Chap.§B) thatC(A’) ~
H1(A,, U) sinceA is divisorially unramified ove®'. We have already
seen (Chapld 3, Corollary to Propositiofi11.3) thad*(A,, U) = O if
the characteristip of k is prime to the order of,, i.e. if p > n. Thus
what we are going to do concerns only fields of “small” chaegstic.

Theorem. Suppose that g 2, 3. Then with the notation as above), A
is factorial for n> 5. For n = 3, 4, C(A’) is isomorphic to the group of
cubic roots of unity contained in k.

Our statement means th&(A’) ~ H(An, k) = Hom(A,, k*). In
view of the exact sequence-8 1+.# — U — k* — 0, we have only
to prove thaH*(A,, 1 + .#) = 0. For this it is stficient to prove that

HY(An, (1 +.4 9/(1 +.4 s+ 1) = 0 for everyj > 1. (1)

In fact, given a cocyclexg) in 1+ .#Z(se€ A, Xs € 1+ .#), itisa 77
coboundary modulo £ .72, i.e. there existy; € 1+ .# such thatxs =
s(y1)y;t mod 1+ .72, We setx s = Xsy1(y1)~%; now Xy s is a cocycle

61
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in 1+ .42, and therefore a coboundary module 1#°. By induction

we find elementys, ..., yj1---(yj € 1+ .#') andxjs € 1+ .#! such

that X3 s = Xs andXj,1s = xj,syjs(yj’l). The product[] y; converges
j=1

sinceA is complete calling y its value, we havesysy 1) = 1 for every

s € An, which proves thatxs) is a coboundary.

In order to prove[{1), we notice that the multiplicative goo{d +
A1 + .#'*1) is isomorphic to the additive group?!/.#1+1, i.e.
to the vector spac®/; of homogeneous polynomials of degrgeOur
theorem is thus a consequence of the following lemma:

Lemma 1. Let Sy(resp .Ay) operate on kx, ..., X;] by permutations
of the variables, and let \Wbe the vector space of homogeneous poly-
nomials of degree j. Then

a) HY(Sn, W) = 0if the characteristic p is- 2;
b) HY(An, W) =0if p#2,3

We consider a monomiad = x/... ™ of degreej and its trans-
forms by S (resp .A,). These monomials span a stable subspaoé
W;, andW,; is a direct sum of such stable subspadveswWe need only
prove thatH(S,, V) = O(resp .H(A,, V) = 0). Now the distict trans-
forms xy of the monomialx are indexed bys/H(G = S,, or A,), where
H is the stability group ofk; we haves(xy) = Xy for a € G. We are
going to prove, in a moment, that

HY(G,V) = Hom (H,Kk) (G = S, or A,) 2)

Let us first see how]2) implies Lemrak 1. The stability subgrelu
is the set of allsin S, (or Ay) such thaf[] XV = x = s(x) = [] X&) =
| |
1 X6 j.e. such thaj(s1(i)) = j(i) for everyi. ThusH is the set

olf all sin Sy, or A, which, for every exponent, leave the set of indices
s1({r}) globally invariant. Denote by(r) the cardinality ofs 2({r})
(i.e. the number of variableg having exponent in the monomialx).
In the case ofS,, H is the direct product of the grousy); since a
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nontrivial factor group ofSy() is necessarily cyclic of order 2, we have
Hom(H, K) = 0 in characteristict 2; hence we ged) in Lemmall. In
the case of\,, H is the subgroup of | Sy consisting of the elements

r
(sr) such that the number of indices for whishe Sy — Ay is even;
thusH containsH! = [] Ay as an invariant subgroup, aitfH* is a

commutative group ofr type (2,...,2); on the other hand a nontrivial
commutative factor group oky) is necessarily cyclic of order 3 (this
happens only fon(r) = 3,4); thus, ifp # 2 and 3, who have Hom
(H,Kk) = 0, and this proveb).

We are now going to prov&l(2). More precisely we have the ¥ello
ing lemma (probably well known to specialists in homologaigebra;
probably, also, high-powered cohomological methods conddke the
proof less computational).

Lemma 2. Let G be a finite group, H a subgroup of k5a ring, V a 79
free k-module with a basi®,) indexed by GH. Let G operate on V by
s(&) = eg. Then H(G, V) ~ Hom(H, k).

Asystemys= Y asy&) (se G,agy € K)is acocycle if and only
0G/H
if vsg = Vs + S(Vg) i.e. if and only if
asg’Q = asg + as/’s—le. (3)
It is a coboundary if and only if there exisgs= Y, by e such that
0eG/H
Vs = S(y) -y, i.e. if and only if there exist elemenips of k such that

Let ¢ denote the unit claskl in G/H and, given a cocyclevf) as
above, sepy(h) = an for hin H. Sincehe = ¢(h € H), @) shows that
¢y is @a homomorphism dfl into k. We obviously havey, = ¢y + ¢y,
whence a homomorphism

¢ ZYG,V) (“cocycles’) —» Hom (H, K).

By @), we see thap is zero on the coboundaries. Conversely if
¢y = 0, we prove that\;) is a coboundary. In fact, fare G/H, choose
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t € G such thab = t~1¢, and seby = a; this element does not depend
on the choice of since, iftle = u g, thenut™t € H andu = ht with

h e H; by @), we havea,; = anye = ane + 8 p-1, = &, (SinCepa = 0).
Now, if # = t;* and if s € G, we haves 6 = (ts)~16, whenceb, = a
andbg 14 = &s,. From [3) we gebg 1, — by = &, —ay . = ag-1, = agg,
thus proving that\) is a coboundary.

Thus the proof of lemmABl 2 will be complete if we show thais
surjective. Letc be a homomorphism dfl into k. For everyd in G/H,
we choosé(d) in G such that = t(d)te. Then everys € G may be
written uniquely ass = h.t(u) (h € H, u = s71H). We set

asg = c(h), (5)

whereh is the unique element dfl such thatt(6) - s = h.t(s™%6) (no-
tice thatt(d).st(s26)t.e = t(#)s.s10 = t(d).0 = &, whencet(d).st
(s26)1 € H). Let us verify the “cocycle condition'TI3). We have
asgg = ¢(h),asp = c(hy) anday <19 = c(hp), with t(f)ss = ht
(s71s719), t(0)s = t()s = Mt(s1h) andt(s16).s = hot(s1s716).
From this we immediately deduce that hih,. Sincecis a homomor-
phism, we have(h) = c(hy) + c(hy), i.e. asg,0 = asg + ags1y. Thus
Vs = . ashey is a cocycle. For this cocycle, we have (foe H)gd(h) =
[

an. = c(hy), where, by[[b)h; is such that(e).h = hit(h~1e) = hyt(e);
since the additive group & is commutative, we have(h) = c(hy),
whencep,(h) = c(h) for everyh € H. Q.E.D
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