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Chapter 1

Krull rings and factorial
rings

In this chapter we shall study some elementary properties ofKrull rings 1

and factorial rings.

1 Divisorial ideals

Let A be an integral domain (or a domain) andK its quotient field.A
fractionary idealU is an A-sub-module ofK for which there exists
an elementd ∈ A(d , 0) such thatdU ⊂ A i.e. U has “common
denominator” d). A fractionary ideal is called aprincipal ideal if it is
generated by one element.U is said to beintegral if U ⊂ A. We say
thatU is divisorial if U , (0) and ifU is an intersection of principal
ideals. LetU be a fractionary ideal andV non-zeroA-submodule of
K. Then the setU : V =

{

x ∈ K
∣

∣

∣xV ⊂ U
}

is a fractionary ideal. The
following formulae are easy to verify.

(1) (
⋂

i
Ui : (

∑

j
V j) =

⋂

i, j
(Ui : V j).

(2) U : V V ′ = (U : V ) : V ′.

(3) If x ∈ K, x , 0, thenV : Ax= x−1V .

1



2 1. Krull rings and factorial rings

Lemma 1.1. Let U be a fractionary ideal, (0) and V a divisorial
ideal. ThenV : U is divisorial.

Proof. Let V =
⋂

i
Axi. ThenV : U =

⋂

i
(Axi : U ) =

⋂

i
(
⋂

a∈U

Axi

a
) �

Lemma 1.2. (1) LetU , (0) be a fractionary ideal. Then the smallest2

divisorial ideal containingU , denoted byŪ , is A : (A : U ).

(2) If U , V , (0), thenŪ = V̄ ⇔ A : U = A : V .

Proof. (1) By Lemma 1.1,A : (A : U ) is divisorial. ObviouslyU ⊂

A : (A : U ). Suppose now thatU ⊂ Ax, x , 0, x ∈ K. Then
A : U ⊃ A : Ax = Ax−1. ThusA : (A : U ) ⊂ A : Ax−1 = Ax and
(1) is proved.

(2) is a trivial consequence of (1) and the proof of Lemma 1.2 is com-
plete.

�

2 Divisors

Let I (A) denote the set of non-zero fractionary ideals of the integral
domainA. In I (A), we introduce an equivalence relation∼, calledArtin
equivalence(or quasi Gleichheit) as follows:
U ∼ V ⇔ Ū = V̄ ⇔ A : U = A : V . The quotient setI (A)/ ∼
of I (A) by the equivalence relation∼ is called the set ofdivisors of A.
Thus there is an l-1 correspondence between the setD(A) of divisors
and the set of divisorial ideals. Letd denote the canonical mapping
d : I (A) → I (A)/ ∼. Now, I (A) is partially ordered by inclusion and
we haveU ⊂ V ⇒ Ū ⊂ V̄ . Thus this partial order goes down to
the quotient setI (A)/ ∼ by d. If U ⊂ V , we writed(V ) ≤ d(U ). On
I (A) we have the structure of an ordered commutative monoid given by
the composition law (U ,V ) U V -with A acting as the unit element.
Let U , U ′, V ∈ I (A) andU ∼ U ′i.e. A : U = A : U ′. We have
A : U V = (A : U ) : V = (A : U ′) : V = A : U ′V . HenceU V ∼

U ′V . ThusD(A) acquires the structure of a commutative monoid, with3



2. Divisors 3

the composition law (Ū , V̄ ) → U V . We write the composition law in
D(A) additively. Thusd(U V ) = d(U ) + d(V ) for U , V ∈ I (A). Since
the order inD(A) is compatible with the compositional law inD(A),
D(A) is a commutative ordered monoid with unit. We note that

d(U ∩ V ) ≥ sup(d(U ), d(V )

and
d(U + V ) = inf (d(U ), d(V ).

Let K∗ be the set of non-zero elements ofK. For x ∈ K∗, we write
d(x) = d(Ax); d(x) is called aprincipal divisor.

Theorem 2.1. For D(A) to be a group it is necessary and sufficient that
A be completely integrally closed.

We recall thatA is said to becompletely integrallyclosed if when-
ever, forx ∈ K there exist ana , 0, a ∈ As.t.axn ∈ A for everyn, then
x ∈ A.

We remark that ifA is completely integrally closed, then it is inte-
grally closed. The converse also holds ifA is noetherian. A valuation
ring of height> 1 is an example of an integrally closed ring which is not
completely integrally closed.

Proof. SupposeD(A) is a group. Letx ∈ K and a be a non-zero element
of A such thataxn ∈ A, for everyn ≥ 0. Then
a ∈
⋂

n=0
Ax−n = V which is divisorial. Setd(V ) = β andα = d(x−1). �

Now β = sup
n≥0

(nα). But β + α = Supn≥0((n+ 1)α)

= sup
q≥1

(qα). Thusβ + α ≤ β. SinceD(A) is a group−β exists, 4

and therefore

α = (β + α) − β ≤ β − β = 0 i.e. d(x) ≥ 0.

HenceAx⊂ A i.e. x ∈ A.
Conversely suppose thatA is completely integrally closed. LetU be
a divisorial ideal. ThenU = xU ′,U ′ ⊂ A. Since we already know
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that principal divisors are invertible, we have only to prove that integral
divisorial ideals are invertible. LetV be a divisorial ideal⊂ A. Then
V .(A : V ) ⊂ A. Let V (A : V ) ⊂ Ax, for somex ∈ K. Thenx−1V (A :
V ) ⊂ A. Thusx−1V ⊂ A : (A : V ) = V , sinceV is divisorial. Thus
V ⊂ V x. By inductionV ⊂ V xn, for everyn ≥ 0. Consider an element
b , 0, b ∈ V . Thenb(x−1)n ⊂ V ⊂ A for everyn ≥ 0. Hencex−1 ∈ A
i.e. Ax⊃ A. ThusV (A : V ) ∼ A. Theorem 2.1 is completely proved.
Notice that we haved(U ) + d(A : U ) = 0.

Let us denote byF(A) the subgroup generated by the principal di-
visors. If D(A) is a group, the quotient groupD(A)/F(A) is called the
divisor class groupof A and is denoted byC(A).

In this chapter we shall study certain properties of the group C(A).

3 Krull rings

Let Z denote the ring of integers. LetI be a set. Consider the abelian
groupZ(I). We orderZ(I) by means of the following relation:
for (αi), (βi) ∈ Z(I), (αi) ≥ (βi) if αi ≥ βi , for all i ∈ I .

The ordered groupZ(I) has the following properties: (a) any two5

elements ofZ(I) have a least upper bound and a greatest lower bound
i.e. Z(I) is an ordered lattice. (b) The positive elements ofZ(I) satisfy the
minimum condition i.e. given a nonempty subset of positive elements of
Z(I), there exists a minimal element in that set. Conversely any ordered
abelian group satisfying conditions (a) and (b) is of the form Z(I) for
some indexing setI (for proof see Bourbaki, Algebre, ChapterVI).

Let A be an integral domain. We callA a Krull ring if D(A) ≈ Z(I),
the isomorphism being order preserving.

Theorem 3.1. Let A be an integral domain. Then A is Krull if and only
if the following two conditions are satisfied.

(a) A is completely integrally closed.

(b) The divisorial ideals contained in A satisfy the maximumcondition.

In fact the above theorem is an immediate consequence of Theorem 2.1
and the characterization of the ordered groupZ(I) mentioned above. An
immediate consequence of Theorem 3.1 is:
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Theorem 3.2. A noetherian integrally closed domain is a Krull ring.

We remark that the converse of Theorem 3.2 is false. For example the
ring of polynomials in an infinite number of variables over a field K is a
Krull ring, but is not noetherian. In fact this ring is known to be factorial
and we shall show later that any factorial ring is a Krull ring.

Let ei = (δi j ) j∈I ∈ Z
(I), whereδi j is the usual

Kronecker delta. Theei are minimal among the strictly positive ele-6
ments. LetA be a Krull ring and letϕ be the order preserving isomor-
phismϕ : D(A) → Z(I). Let Pi = ϕ−1(ei). We call the divisorsPi the
prime divisors. Let P(A) denote the set of prime divisors. Then any
d ∈ D(A) can be written uniquely in the form

d =
∑

P∈P(A)

nPP

wherenP ∈ Z andnP = 0 for almost allP. Now let x ∈ K∗. Consider
the representation

d(x) =
∑

P∈P(A)

vP(x)P, vP(x) ∈ Z, vP(x) = 0

for almost allP ∈ P(A). Sinced(xy) = d(x) + d(y) we have,vP(xy) =
vP(x) + vP(y) for all P. Furtherd(x+ y) ≥ d(Ax+ Ay) = inf(d(x), d(y)).
This, in terms ofvP, means thatvP(x + y) ≥ inf(vP(x), vP(y)). We set
vP(0) = +∞. Thus thevP are all discrete valuations ofK. These are
called theessential valuationsof A.

Let P be a prime divisor. LetY be the divisorial ideal corresponding
to P. As P is positive,Y is an integral ideal. We claim thatY is aprime
ideal. For letx, y ∈ A, xy ∈ Y . Thend(xy) ≥ P i.e. d(x) + d(y) ≥ P
i.e. vP(x) + vP(y) ≥ 1. As vP(x) ≥ 0, vp(y) ≥ 0, we havevP(x) ≥
1 or vP(y) ≥ 1; i.e. x ∈ Y or y ∈ Y . Further the divisorial ideal
corresponding tonP is

{

x ∈ A
∣

∣

∣vP(x) ≥ n
}

, n ≥ 0. The prime ideal 7

Y is the centre of the valuationvP on A (i.e. the set of all elements
x ∈ A s.t. vP(x) ≥ 0). Since the prime divisors are minimal among the
set of positive divisors, the corresponding divisorial ideals, which we
call prime divisorial ideals, are maximal among the integral divisorial
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ideals. The following lemma shows that the divisorial ideals which are
prime divisorial and this justifies the terminology ’prime divisorial’.

Lemma 3.3. LetG be a prime ideal, (0). ThenG contains some prime
divisorial ideal.

Proof. Take anx ∈ G , x , 0. Let d(x) =
∑

i
ni Pi, (finite sum),ni > 0,

Pi ∈ P(A). Let Yi be the prime ideal corresponding toPi. Let y ∈
∏

Y
ni

i , y , 0. ThenvPi (y) ≥ ni . Henced(y) ≥ d(x) i.e. Ay ⊂ Ax. Thus
∏

Y
ni

i ⊂ Ax⊂ G . As G is prime,Yi ⊂ G for somei. �

Corollary. A prime ideal is prime divisorial if and only if it is height 1.

(We recall that a prime ideal is ofheight oneif it is minimal among
the non-zero prime ideals ofA).

Proof. Let Y be a prime divisorial ideal. IfY is not of height 1, then
Y ⊃

,
G , whereG is a non-zero prime ideal. By the above lemmaG

contains a prime divisorial idealY ′. ThusY ⊃
,

Y ′. This contradicts

the maximality ofY ′ among integral divisorial ideals. Conversely let
Y be a prime ideal of height 1. Then, by the above lemma,Y contains a
prime divisorial idealY ′. HenceY = Y ′ and the proof of the Corollary
is complete. �

Lemma 3.4. LetY be a divisorial ideal corresponding to a prime divi-8

sor P. Then the ring of quotients AY is the ring of vP.

Proof. Let
a
s
∈ AY , a ∈ A, s ∈ A − Y . ThenvP(s) = 0, vP(a) ≥ 0,

vP

(a
s

)

≥ 0. Conversely letx ∈ K∗ with vP(x) ≥ 0. Setd(x) =
∑

Q
n(Q)Q,

and letG be the prime divisorial ideal corresponding toQ. Let V =
∏

n(Q)<0
G
−n(Q). As the prime divisorQ, with n(Q) < 0 are different from

P, we haveV 1 Y . Takes ∈ V , s < Y . ThenvQ(sx) ≥ 0 for all Q i.e.
d(sx) ≥ 0 i.e. sx∈ A. Hencex ∈ AY . This proves the lemma. �
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Corollary . A =
⋂

Y

AY , Y running through all prime ideals of height

one. We shall now give a characterization of Krull rings in terms of
discrete valuation rings.

Theorem 3.5(“valuation Criterion”). Let A be a domain. Then the fol-
lowing conditions are equivalent:

(a) A is a Krull ring.

(b) There exists a family(vi)i∈I of discrete valuations of K such that

(1) A=
⋂

i
Rvi (i.e. x∈ A if and only if vi(x) ≥ 0), where Rvi denotes the

ring of vi ,

(2) For every x∈ A, vi(x) = 0, for almost all i∈ I.

Proof. (a) ⇒ (b). In fact A =
⋂

P∈P(A)
RvP and condition (2) of (b) is

obvious from the very definition ofvP.

(b) ⇒ (a). Since a discrete valuation ring is completely integrally9
closed and any intersection of completely integrally closed domains
is completely integrally closed, we conclude thatA is completely
integrally closed. Now letx ∈ K∗. Then

Ax=
{

y ∈ K
∣

∣

∣vi(y) ≥ vi(x), for i ∈ I
}

.

Thus, because of condition (2), any divisorial ideal is of the form
{

x ∈ K
∣

∣

∣vi(x) ≥ ni , i ∈ I , (ni ) ∈ Z(I)
}

, and conversely. Any integral di-
visorial idealV is defined by the conditionsvi(x) ≥ ni , ni ≥ 0,
ni = 0 for almost alli ∈ I . There are only finitely many diviso-
rial idealsV ′ containingV (in fact the number of such ideals is
∏

i
(1 + ni)). HenceA satisfies the maximum condition for integral

divisorial ideals therefore by Theorem 3.1,A is a Krull ring.
�

Remark . Let G be a prime divisorial ideal ofA defined byvi(x) ≥ ni ,
ni ≥ 0, ni = 0 for almost alli. Let Yi be the centre ofvi on A. Then
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∏

i
Y

ni
i ⊂ G . HenceYi ⊂ G for somei. But heightG = 1. Hence

Yi = G . Thus every prime divisorial ideal is the centre of somevi . Now
AG ⊂ Rvi . But AG , being a discrete valuation ring, is a maximal subring
of K. HenceAG = Rvi = ring of vQ, whereQ is the prime divisor
corresponding toG . Thus every essential valuation ofA is equivalent
to somevi . The family (vi )i∈I may be ‘bigger’, but contains all essential
valuations.

4 Stability properties

In this section we shall see that Krull rings behave well under localisa-
tions polynomial extensions etc.

Proposition 4.1. Let K be a field and Aα a family of Krull rings. Assume10

that any x∈ B =
⋂

α
Aα, x , 0 is a unit in almost all Aα. Then B is a

Krull ring.

Proof. By theorem 3.5,Aα =
⋂

i∈Iα
R(vα,i), whereR(vα,i) are discrete val-

uation rings and everyx ∈ Aα is a unit in almost allR(vα,i), i ∈ I . Now
B =

⋂

α,i
R(vα,i). Let x , 0, x ∈ B. Then by assumption,x is a unit in

almost allAα, i.e. vα,i(x) = 0, for all i ∈ Iα, and almost allα. Thenx
is not a unit in at most a finite number of theAβ, sayAβ1, . . .Aβt . Now
vβ ji (x) = 0 for almost alli, j = 1, . . . , t. Thusvα,i(x) = 0 for almost allα
andi. The proposition follows immediately from Theorem 3.5. �

Corollary. (a) A finite intersection of Krull rings is a Krull ring.

(b) Let A be a Krull ring, K its quotient field. Let L be a subfieldof K.
Then A∩ L is a Krull ring.

Proposition 4.2. Let A be a Krull ring. Let S be any multiplicatively
closed set with0 < S . Then the ring of quotients S−1A is again a Krull
ring. Further the essential valuations of S−1A are those valuation vP
for whichY ∩S = φ, Y being the prime divisorial ideal corresponding
to P.
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Proof. By Theorem 3.5 we have only to prove thatS−1A =
⋂

Y ∈I
AY ,

I , being the set of prime ideals of height one which do not intersect
S. Trivially, S−1A ⊂

⋃

Y ∈I
AY . Conversely letx ∈

⋃

Y ∈I

AY . We have

vP(x) ≥ 0, for any prime divisor corresponding toY ∈ I . For a 11

prime divisorial idealG with G ∩ S , ∅, choosesG ∈ G ∩ S. Set
s =

∏

vQ(x)<0
s
−vQ(x)
G

, whereQ is the prime divisor corresponding toG .

Thensx∈ A i.e. x ∈ S−1
A and the proposition is proved. �

Proposition 4.3. Let A be a Krull ring. Then the ring A[X] of polyno-
mials is again a Krull ring.

Proof. Let A be defined by the discrete valuation rings
{

vi
}

i∈I . If v is
a discrete valuation ofA, thenv can be extended toA[X], by putting
v̄(ao+ a1x+ · · ·+ aqxq) = min

j
(v(a j )) and then to the quotient fieldK(X)

of A[X] (K is the quotient field ofA) by puttingv̄( f /g) = v̄( f )− v̄(g). Let
Φ =
{

v̄i
}

i∈I . On the other hand, letΨ denote the setp(X)-adic valuation
of K(X), where p(X), runs through all irreducible polynomialsK[X].
We now prove thatA[X] is a Krull ring withΦ

⋃

Ψ as a set of valuations
defining it. Let f ∈ K(X). If ω( f ) ≥ 0 for all ω′ ∈ Ψ, then f ∈ K[X],
say f = ao + a1X + · · · + aqXq : ai ∈ K. If further v( f ) ≥ 0, for all
v ∈ Φ, thenv(ai ) ≥ 0, v ∈ Φ, i = 1, . . . , q. SinceA is a Krull ring,
ai ∈ A, i = 1, . . . , q. Hencef ∈ A[X]. To prove thatA[X] is a Krull ring,
it only remains to verify that forf ∈ A[X], v( f ) = 0 = ω( f ) for almost
all v ∈ Φ, ω ∈ Ψ. SinceKX is a principal ideal domain,ω( f ) = 0, for
almost allω ∈ Ψ. Furtherv̄i( f ) = min

j
(vi(a j)) = 0 for almost alli ∈ I ,

sinceA is a Krull ring. �

Corollary. Let A be a Krull ring. Then A
[

X1, . . . ,Xn
]

is a Krull ring. 12

Remark . Since, in a polynomial ring in a an infinite number of vari-
ables, a given polynomial depends only on a finite number of variables
the above proof shows that a polynomial ring in an infinite number of
variables overA is also a Krull ring,

Proposition 4.4. Let A be a Krull ring. Then the ring of formal power
series A[[X]] is again a Krull ring.
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Proof. We note thatA
[

[X]
]

=
⋂

Vα[[X]]S
⋂

K
[

[X]
]

, whereS is the
multiplicatively closed set

{

1, x, x2, . . .
}

, K, the quotient field ofA and
Vα the essential valuation rings ofA. Now Vα

[

[X]
]

S andK
[

[X]
]

, being
noetherian and integrally closed, are Krull rings, Now the proposition is
an immediate consequence of Proposition 4.1. �

Proposition 4.5. Let A be a Krull ring and K its quotient field. Let K′

be a finite algebraic extension of K and A′, the integral closure of A in
K′. Then A′ is also a Krull ring.

Proof. Let K′′ be the least normal extension ofK containingK′ and
let A′′ be the integral closure ofA in K′′. SinceA′ = A′′

⋂

K′, by
Corollary (b), Prop. 4.1, it is sufficient to prove thatA′′ is a Krull ring.
Let Φ be the family of essential valuations ofA. LetΦ′′ be the family
of all discrete valuations ofK′′ whose restriction toK are inΦ. It is
well known (see Zariski-Samuel. Commutative algebra Vol. 2) that
every discrete valuationv of K extends to a discrete valuation ofK′′ and
that such extensions are finitely many in number. We shall show that13

A′′ is a Krull ring by using the valuation criterion withΦ′′ as family
of valuations. We prove (i) x ∈ A′′ if and only if ω′(x) ≥ 0, for all
ω ∈ Φ′′ �

Proof. Let x ∈ A′′. Then x satisfies a monic polynomial, sayxn +

an−1xn−1+ · · ·+ao = 0, ai ∈ A. If possible letω(x) < 0, for someω ∈ Φ.
Thenω(−an−1xn−1 − · · · − ao) ≥ inf(ω(an−1xn−1), . . . , ω(ao) > ω(xn),
sinceω(ai) ≥ 0. Contradiction. Conversely letx , 0, x ∈ K′′ with
ω(x) ≥ 0, for allω ∈ Φ′′. Letσ be anyK-automorphism ofK′′. Then
ωoσ ∈ Φ′′. Henceω(σ(x)) ≥ 0 for all K-automorphismsσ of K′′.
Let us now consider the minimal polynomialf (X) of x over K; say
f (X) = Xr + αr−1Xr−1 + · · · + αo, αi ∈ K. Since theαi are symmetric
polynomials in theσ(x), we havev(αi) ≥ 0, for all v ∈ Φ. SinceA is a
Krull ring, αi ∈ A and (i) is proved. (ii ) For x , 0, x ∈ A′′,ω(x) = 0, for
almost allω ∈ Φ′′. �

Proof. Let xn + an−1xn−1 + · · · + ao = 0 be an equation satisfied byx
(which expresses the integral dependence ofx). We may assumeao , 0.
If ω(x) > 0, thenω(ao) = ω(xn+an−1xn−1+ · · ·+a1x) ≥ ω(x) > 0. Since
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A is a Krull ring there are only a finitely manyv ∈ Φ such thatv(ao) > 0
and since everyv ∈ Φ admits only a finite number of extensions, (ii ) is
proved and with it, the proposition. �

5 Two classes of Krull rings

Theorem 5.1. Let A be a domain. The following conditions are equiva-
lent.

(a) Every fractionary idealV , (0) of A is invertible. (i.e. there exists14

a fractionary idealV −1 such thatV V −1 = A).

(b) A is a Krull ring and every non-zero ideal is divisorial.

(c) A is a Krull ring and every prime ideal, (0) is maximal (minimal).

(d) A is a noetherian, integrally closed domain such that every prime
ideal, (0) is maximal.

Proof. (a) ⇒ (b). Let V −1 exist. ThenV −1 = A : V . For V V −1 ⊂

A ⇒ V −1 ⊂ A : V and V V −1 = A and V (A : V ) ⊂ A together
imply A : V ⊂ V −1. FurtherV = A : (A : V ); the condition thatU
andV are Artin equivalent becomes “U = V ′′. ThusD(A) is a group.
The following lemma now proves the assertion (a) ⇒ (b) because of
Theorem 2.1. �

Lemma . V ⊂ A invertible⇒ V is finitely generated. (and thus (a)
implies that A is noetherian).

Proof. SinceV V −1 = A, we have 1=
∑

1
xiyi , xi ∈ V , yi ∈ V −1. For

x ∈ V , we havex =
∑

i
xi(yi x) i.o. V =

∑

i
Axi. �

(b)⇒ (c), SinceA is a Krull ring and every non-zero ideal is divisorial,
every non-zero prime ideals is of height 1.
(c) ⇒ (a). Let V be any fractionary ideal. ThenV (A : V ) ⊂ A and
sinceD(A) is a group,V (A : V ) is Artin-equivalent toA. HenceV (A :
V ) is not contained in any prime divisorial ideal. But by (c). Since every
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prime ideal, (0) is prime divisorial,V (A : V ) is not contained in any
maximal ideal, and henceV (A : V ) = A.
(a) ⇒ (d). That A is noetherian is a consequence of the lemma used15

in the proof of the implication (a) ⇒ (b). That A is integrally closed
and every prime ideal, (0) is maximal is a consequence of the fact that
(a)⇒ (c).
(d) ⇒ (c). This is an immediate consequence of the fact that a noethe-
rian integrally closed domain is a Krull ring. The proof of Theorem 5.1
is now complete.

Definition 5.2. A ring A is called a Dedekind ring if A is a domain
satisfying any one of the equivalent conditions of Theorem 5.1.

Remark. (1) The condition (c) can be restated as:A is a Dedekind ring
if A is a Krull ring and its Krull dimension is atmost 1.

(2) Let A be a Dedekind ring andK its quotient field. LetK′ be a finite
algebraic extension ofK and A′, the integral closure ofA in K′.
ThenA′ is again a Dedekind ring.

Proof. By Proposition 4.5 it follows thatA′ is a Krull ring. For a non-
zero prime idealY ′ of A′, we have, by the Cohen-Seidenberg theorem,
height (Y ′) = height (Y ′∩A) ≤ 1. Now (2) is a consequence of Remark
(1).

(3) Let A be a domain andU , a fractionary ideal. ThenU is invert-
ible if and only if U is a projectiveA-module. If further,A is
noetherian, thenU is projective if and only ifU is locally prin-
cipal (i.eUM is principal for all maximal idealsM of △).

�

We shall say that a ringA satisfies thecondition(M) if A satisfies the
maximum condition for principal ideals. For instance Krullrings satisfy
(M).

Theorem 5.3. For a domain A, the following conditions are equivalent.16

a) A is a Krull ring and every prime divisorial ideal is principal.
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b) A is a Krull ring and every divisorial ideal is principal.

c) A is a Krull ring and the intersection of any two principal ideals is
principal.

d) A satisfies(M) and any elements of A have a least common multiple
(1.c.m.) (i.e. Aa∩ Ab is principal for a, b ∈ A).

e) A satisfies(M) and any two elements of A have greatest common
divisor (g.c.d.).

f) A satisfies(M) and every irreducible element of A is prime.

(We recall that a∈ A is irreducible ifAa is maximal among principal
ideals, an elementp ∈ A is prime if A p is a prime ideal).

g) A has the unique factorization property. More precisely,there exists
a subset P⊂ A, 0 < P such that every x, 0, x ∈ A can be written
in on and only way as x= u.

∏

p∈P
pn(p), n(p) ≥ 0, n(p) = 0 for almost

all p, u being a unit.

Proof. (a) ⇒ (b). Since prime divisors generateD(A), we haveD(A) =
F(A).

(b) ⇒ (c). Trivial.

(c) ⇒ (b). Let V be any divisorial ideal, (0).
�

We shall show thatV is principal. We may assume thatV is integral.
Let V =

⋂

λ∈I
Acλ, cλ ∈ K. Consider the set of all divisorial idealsVJ = 17

⋂

λ∈J
Acλ
⋂

A, whereJ runs over all finite subsetsI . We haveV ⊂ VJ ⊂

A, for all finite subsetsJ ⊂ I . SinceA is a Krull ring, any integral
divisorial ideal is defined by the inequalitiesv(x) ≥ nv, nv > 0, nv = 0
for almost allv, v running through all essential valuations ofA. Hence
there are only finitely many divisorial ideals betweenV andA. Hence
V =

⋂

λ∈J Ac, for some finite setJ ⊂ I . By choosing a suitable common
denominator forcλ, λ ∈ J, we may assume thatcλ ∈ A. Now (c) ⇒ (b)
is immediate.
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(b) ⇒ (a). Trivial.

(c) ⇒ (d). Trivial.

(d) ⇒ (e). This is an immediate consequence of the following el-
ementary property of ordered abelian groups, namely: in an or-
dered abelian groupG, the existence of sup (a, b) is equivalent to
the existence of inf(a, b), for a, b ∈ G. (Apply this, for instance to
F(A)) (e) ⇔ ( f ) ⇔ (g). This follows from divisibility arguments
used in elementary number theory.

(g) ⇒ (c). For K ∈ A, x , 0, we writex = ux
∏

p∈P
pvp(x), u being a

unit. The set of all{vp}p∈P, defines a setΦ of discrete valuations
of the quotient fieldX of A. It is clear thatA satisfies the valuation
criterion for Krull rings withΦ as the set of valuations. Further,
for a, b ∈ A, Aa∩ Ab = Ac, wherec = uxuy

∏

p∈P
pmax(vP(x)vP(g)).

Hence (g) ⇒ (c) and the proof of Theorem 5.3 is complete.

Definition 5.4. A is said to be factorial if A is a domain satisfying any
one of the conditions of Theorem 5.3.

Remark 5.5.Let A be a noetherian domain with the property that every18

prime ideal of height 1 is principal. ThenA is factorial.

Proof. We shall prove the condition (f ). Setb ∈ A be an irreducible
element. By Krull’s Principal Ideal Theorem,Ab ⊂ Y , Y , a prime
ideal of height 1. By hypothesis,Y is principal. SinceAb is maximal
among principal ideals,Ab= Y . Of courseA satisfies (M). �

6 Divisor class groups

Let A be a Krull ring. We recall that the divisor class groupc(A) of A is
D(A)
F(A)

, whereD(A) is the group of divisors ofA andF(A) the subgroup

of D(A) consisting of principal divisors ofA. If A is a Dedekind ring,
C(A) is called thegroup of ideal classes. By Theorem 5.3, it is clear that
a Krull ring A is factorial if and only ifC(A) = 0.
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Let A and B be Krull rings, withA ⊂ B. From now on we shall
use the same notation for a prime divisor and the prime divisorial ideal
corresponding to it. LetP, p be prime divisors ofB andA respectively.

We writeP
∣

∣

∣p if P lies abovep i.e. P∩A = p. If P
∣

∣

∣p, the restriction ofvP

to the quotient field ofA is equivalent tovp, and we denote bye(P, p),
the ramification index ofvp in vP. For ap ∈ P(A), we define

j(p) =
∑

P
∣

∣

∣p

e(P, p)P,P ∈ P(B).

The above sum is finite sincex ∈ p, x , 0 is contained in only finite
manyP,P ∈ P(B). Extending j by linearity we get a homomorphism
of D(A) into D(B) which we also denote byj. We are interested in19

the case in whichj induces a homomorphism of̄j : C(A) → C(B) i.e.
j(F(A)) ⊂ F(B). For x ∈ A, we write dA(x) = d(Ax) ∈ D(A) and
dB(x) = d(Bx) ∈ D(B).

Theorem 6.1. Let A and B be Krull rings with A⊂ B. Then we
have j(dA(x)) = dB(x) if and only if the following condition is satisfied.
(NBU). For every prime divisor P of B, height(P∩ A) ≤ 1.

Proof.

j(dA(x) = j(
∑

p∈P(A)

vp(x)p)

=
∑

p∈P(A)

vp(x)
∑

P|p

e(P, p)P =
∑

p,P|p

vP(x)P

=
∑

P,P∩A∈P(A)

vP(x)P.

�

If P∩ A = (0), thenvP(x) = 0. Therefore,

j(dA(x)) =
∑

height(P∩A)≤1

vP(x)P. (1)
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Now, if (NBU) is true, thenj(dA(x)) =
∑

P∈P(B)
vP(x)P = dB(x). On the

other hand letj(dA(x)) = dB(x) for every x ∈ A. Let P ∈ P(B) with
P∩ A , (0). Choosex ∈ P∩ A, x , 0. We have by (1) above

j(dA(x)) =
∑

height (P∩A)≤1

vP(x)P = dB(x) =
∑

P∈P(B)

vP(x)P.

SincevP(x) > 0, we have height (P∩ A) = 1 and the theorem is proved.
When (NBU) is true we havej(F(A)) ⊂ F(B) and thereforej in-

duces a canonical homomorphism̄j : C(A)→ C(B).
We now give two sufficient conditions in order that (NBU) be true.20

Theorem 6.2. Let A and B be as in Theorem 6.1. Then(NBU) is satis-
fied if any one of the following two conditions are satisfied.

(1) B is integral over A.

(2) B is a flat A-module (i.e the functor⊗
A

B is exact).

Further, if (2) is satisfied we have j(U ) = U B, for every divisorial
ideal U of A.

Proof. If (1) is satisfied, (NBU) is an immediate consequence of the
Cohen-Seidenberg theorem. �

Suppose now that (2) is satisfied. LetP ∈ P(B) with U = P∩ A ,
(0). SupposeU is not divisorial. Choose a non-zero elementx ∈ U .

Let d(x) =
n
∑

i=1
vpi (x)p

i
p

i
∈ P(A). Since heightσ > 1 we haveU 1 p

i

for i = 1, . . . , n. By an easy reasoning on prime ideals there exists

a y ∈ U , y <
n
⋃

f=1
p

i
. ThendA(x) anddA(y) do not have any component

in common and therefore

dA(xy) = dA(x) + dA(y) = Sup(dA(x), dA(y)).

This, in terms of divisorial ideals, means thatAx∩Ay= Axy. SinceB is
A-flat, we haveBxy= Bx∩ By; that isdB(x) anddB(y) do not have any
component in common. Butx, y ∈ P∩ A. Contradiction.
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We shall now prove that for any divisorial idealU ⊂ A, j(U ) =
U B. SinceA is a Krull ring U is the intersection of finitely many

principal ideals, sayU =
n
⋂

i=1
Axi, so thatdA(U ) = sup(dA(xi)). Since 21

B is A-flat, we haveBU =
n
⋂

i=1
Bxi. ThusBU is again divisorial. On

the other hand,dB(BU ) = sup
i

(dB(xi)) = sup
i

( j(dA(x)). Noting that j is

order preserving and that any order preserving homomorphism of Z(I)

into Z(J) is compatible with the formation of sup and inf (to prove this
we have only to check it component - wise), we have

BU = sup
i

( j(dA(xi)) = j(sup
i

(dA(xi))) = j(dA(U )).

Theorem 6.3(Nagata). Let A be a Krull ring and S , a multiplicatively
closed set in A(0 < S). Consider the ring of quotients S−1A (which is
A-flat). We have

(a) j̄ : C(A)→ C(S−1A) is surjective.

(b) If S is generated by prime elements thenj̄ is bijective.

Proof. (a) SinceP(S−1A) =
{

pS−1A
∣

∣

∣p ∈ P(A), p∩S = φ
}

, j̄ is surjective
by Theorem 6.2, (2). �

Let us look at the kernel of̄j. Let H be the subgroup ofD(A) gener-
ated by prime divisorsp with p∩ S , φ. Then it is clear that

Ker( j̄) =
(H + F(A))

F(A)
≈

H
(H ∩ F(A))

(6.4)

Suppose thatS is generated by prime elements. Letp ∈ P(A), with
p∩ S , φ, says1 · · · sn ∈ p, wheresi are prime elements. Then since
p is minimal p = Asi for somesi . ThusH ⊂ F(A) and hencēj is a
bijection.

′Theorem 6.3(Nagata). Let A be a noetherian domain and S a multi-
plicatively closed set of A generated by prime elements

{

p
i

}

i∈I . If S−1A

is a Krull ring then A is a Krull ring andj̄ is bijective. 22
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Proof. By virtue of Theorem 6.3, we have only to prove thatA is inte-
grally closed (then it will be a Krull ring, since it is noetherian). Now
AApi is a local noetherian domain whose maximal ideal is principal
and henceAApi is a discrete valuation ring. It suffices to show that
A = S−1A ∩ (

⋂

i∈I
AApi ). We may assumeApi , Apj for i , j. Let

a/s ∈ S−1A∩(
⋂

i
AApi ), a ∈ A, s∈ S, s=

∏

i pn(i)
i . We havevpi (a/s) ≥ 0,

wherevpi is the valuation corresponding toAApi
. By our assumption,

vpi (p j) = 0 for j , i. Hencevpi (a) ≥ vpi (s) = n(i). HenceS divides a
i.e. a/s ∈ A. �

Corollary. Let A be a domain and S a multiplicatively closed set gener-
ated by a set of prime elements. Let S−1A be factorial. If A is noetherian
or a Krull ring, then A is factorial.

Proof. By Theorems 6.3 and 6.3,̄j : C(A)→ C(S−1A) is bijective. �

Theorem 6.4(Gauss). Let R be a Krull ring. Then̄j : C(R)→ C(R[X])
is bijective. In particular, R is factorial if and only if R[X] is factorial.

(SinceR[X] is R-flat, j̄ is defined).

Proof. SetA = R[X], S = R∗, the set of non-zero elements ofR. Then
S−1A = K[X], whereK is the quotient field ofR. ThusC(S−1A) = 0 i.e.

C(A) = Ker( j̄ : C(A)→ C(S−1A)) =
(H + F(A))

F(A)

whereH is the subgroup ofD(A) generated byP ∈ P(A), with P∩ R ,23

(0) (see formula 6.4). HenceD(A) = H + F(A). SinceR[X] is R-flat, by
Theorem 6.2, (2) we have

j(P∩ R) = (P∩ R)R[X] = P, for P ∈ P(A),P∩R, (0).

Hencej(D(R)) = H and thereforēj is surjective, sinceD(A) = H+F(A).
Now an idealU of R is principal if and only ifU R[X] is principal.
Thereforej̄ is injective. Thus̄j is bijective.

Let A be a noetherian ring andM an ideal contained in the radical
of A (i.e. the intersection of all maximal ideals ofA). If we put onA the
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M -adic topology, then (A,M ) is called aZariski ring. The completion
Â of A is again a Zariski ring and it is well known thatÂ is A-flat and
A ⊂ Â. �

Theorem 6.5(Mori). Let (A,M ) be a Zariski ring. Then if̂A is a Krull
ring, then so is A. Further j: C(A)→ C(Â) is injective. In particular if
Â is factorial, so is A.

Proof. Let K andL be the quotient fields ofA andÂ respectively;K ⊂
L. To prove thatA is a Krull ring we observe thatA = Â ∩ K. For if
a
b
∈ Â ∩ K, a, b ∈ A, thena ∈ Âb∩ A = Ab, i.e.

a
b
∈ A. Hence

A is a Krull ring. By virtue of Theorem 6.2 (2), to prove thatj̄ is an
injection it is enough to show that an idealU of A, is principal if ÂU is

principal. LetÂU = Âα, α ∈ Â. Now
U

MU
≈

ÂU

ÂMU
is generated by

a single element as an
A
M

-module say byx( mod MU ), x ∈ U . Then

U = Ax+MU . By Nakayama’s-lemmaU = Ax and the theorem is24

proved. �

7 Applications of the theorem of Nagata

We recall that a ringA is calledgradedif A =
∑

n∈Z
An, An being abelian

groups such thatAp Aq ⊂ Ap+q, for p, q ∈ Z, and the sum being direct.
An ideal ofA is gradedif it generated by homogeneous elements.

Proposition 7.1. LetΛ be a graded Krull ring. Let DH(A) denote the
subgroup of D(A) generated by graded prime divisorial ideals and let
FH(A) denote the subgroup of DH(A) generated by principal ideals.

Then the canonical mapping
DH(A)
FH(A)

→ C(A), induced by the inclusion

i : DH(A)→ D(A), is an isomorphism.

Proof. If A = Ao, there is nothing to prove. Hence we may assume
A , Ao. Let S be the set of non-zero homogeneous elements ofA.
Then S−1A is again a graded ring; infactS−1A =

∑

j∈Z
(S−1A) j, where

(S−1A) j =
{a
b

∣

∣

∣a, b ∈ A, a, b homogeneous,doa− dob = j
}

. �
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Here dox denotes the degree of a homogeneous elementx ∈ A. We
note that (S−1A)o = K is a field and thatS−1A ≈ K

[

t, t−1], wheret is
a homogeneous element of smallest strictly positive degree. Now t is
transcendental overK and thereforeS−1A is factorial. HenceC(A) ≈
Ker( j̄), where j̄ is the canonical homomorphism̄j : C(A) → C(S−1A),
andC(S−1A) = 0.

HenceC(A) ≈
H

(H ∩ F(A))
, whereH is the subgroup ofD(A), gen-

erated by prime idealsY of height 1 withY ∩ S , φ. SinceDH(A) ∩25

F(A) = FH(A), and since prime divisorial ideals are of height 1, the
proposition is a consequence of the following

Lemma 7.2. Let A=
∑

n∈Z
An be a graded ring andY a prime ideal in A

and letU be the ideal generated by homogeneous elements ofY . Then
U is a prime ideal.

Proof. Let xy ∈ U , x =
∑

xi , y =
∑

yi , x < U , y < U . Let xioy jo
be the lowest components ofx, y such thatxio < U , y jo < U . Then
xioy jo ∈ U ⊂ Y . SinceY is prime,xio or y jo ∈ Y , sayxio ∈ Y . Then
xio ∈ U , a contradiction. �

Corollary . Let A =
∑

n∈Z
An be a graded ring andY a prime ideal of

height 1. ThenY is graded if and only ifY ∩ S , φ.

Remark. If U is a graded ideal ofA, then the least divisorial idealA :
(A : U ) containingU is also graded (straight forward proof). Thus the
divisors corresponding to graded divisorial ideals ofA form a subgroup
of D(A); this subgroup obviously containsDH(A); furthermore, since,
given a graded integral divisorial idealU , all the prime divisorial ideals
containingU are graded (by the corollary), we see that this subgroup is
in fact DH(A).

The above proposition can be applied for instance to the homoge-
neous coordinate ring of a projective variety. The following proposition
connects the divisor class group of a projective varietyV with the divisor
class group of a suitable affine open subset ofV.
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Proposition 7.3. Let A be a graded Krull ring and p a prime homoge-26

neous element, 0 with dop = 1. Let A′ be the subring of K (quotient

field of A) generated by Ao and
a

pdoa
, where a runs over the non-zero

homogeneous elements of A. Then C(A′) ≈ C(A).

Proof. We note thatA′ = (S−1A)o and thatp is transcendental overA′.
The inclusionsA′ → A′[p] → A′

[

p, p−1] induce isomorphismsC(A′) ≈
C(A′[p]),C(A′[p]) ≈ C(A′[p, p−1]), the first isomorphism follows from
Theorem 6.4 and the second from Theorem 6.3. NowA

[

p−1] = A′
[

p,
p−1]. But again by Theorem 6.3,C(A) ≈ C(A

[

p−1]) and the proof of the
proposition is complete. �

Let V be an arithmetically normal projective variety. We prove that
the homogeneous coordinate ring ofV is factorial if and only if the local
ring of the vertex of the projecting cone is factorial; in fact we have the
following

Proposition 7.4. Let A = Ao + A1 + A2 + · · · be a graded Krull ring
and suppose that Ao is a field. LetM be the maximal ideal A1+A2+ · · · .
Then C(A) ≈ C(AM ).

Proof. We have only to prove that̄j : C(A) → C(AM ) is injective.
Because of Proposition 7.1 and of the remark following it is sufficient to
prove that ifV is a graded divisorial ideal such thatV AM is principal,
then so isV . Suppose thatV is a graded divisorial ideal withV AM

principal. SinceAM is a local ring, there is a homogeneous element
u ∈ V such thatV AM = uAM . Let x ∈ V be any homogeneous

element. Thenx =
y
z
u, y ∈ A, z ∈ A−M . Let

y = yq + yq+1 + · · · , z= zo + z1 + z2 + · · · , yi ∈ Ai , i ≥ q, yq , 0,

zj ∈ A j , zo , 0. Thusx(zo + z1 + z2 + · · · ) = (yq + yq+1 + · · · )u.

27

Hencexzo = yqu. Sincezo is invertible, we conclude thatV = An and
the proposition is proved. �
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Adjunction of indeterminates.
Let A be a local ring andM its maximal ideal. We setA(X)loc =

A[X]M A[X] and by inductionA(X1, . . . ,Xn)loc = A(X1, . . . ,Xn−1)loc

(Xn)loc. We remark thatA(X)loc is a local ring and that ifA is noetherian,
properties ofA like its dimension, multiplicity, regularity and so on are
preserved in passing fromA to A(X)loc. FurtherA(X)loc is A-flat (in fact
it is faithfully flat).

Proposition 7.5. Let A be a local Krull ring. Then

j̄ : C(A)→ C(A(X1, . . . ,Xn)loc)

is an isomorphism.

Proof. It is sufficient to prove this whenn = 1. Since by Theorem 6.5
C(A) ≈ C(A[X]), we see that̄j is surjective. LetV be a divisorial
ideal of A for which V A(X)loc is principal. SinceA(X)loc is a local
ring, we may assume thatV A(X)loc = A(X)locα, α ∈ V . Let y ∈ V .

Then y =
f (X)
g(X)

.α, where f (X), g(X) ∈ A[X] and atleast one of the

coefficients ofg(X) is invertible inA. Looking at a suitable power ofX
in y.g(X) = α f (X) we see thaty ∈ Aα i.e. V = Aα. Hencej̄ is injective.
This proves the proposition. �

Proposition 7.6. Let A be a domain and a, b∈ A with Aa∩ Ab= Aab.28

The following results hold.

(a) The elementaX− b is prime inA[X].

(b) If further, we assume thatA is a noetherian integrally closed do-
main and thatAa andAa+ Ab are prime ideals, then the ringA′ =

A[X]
(aX− b)

is again integrally closed and the groupsC(A) andC(A′)

are canonically isomorphic.

Proof. (a) Consider theA-homomorphismϕ : A[X] → A
[b
a
]

given

by ϕ(X) =
b
a

. It is clear that the ideal (aX − b) ⊂ Ker(ϕ). Con-

versely we show by induction on the degree that if a polyno-
mial P(X) ∈ Ker(ϕ), then P(X) ∈ (aX − b). This is evident if
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do(P) = 0. If P(X) = cnXn + cn−1Xn−1 + · · · + co(n > 0), the

relationP(
b
a

) = 0, shows thatbncn ∈ Aa. SinceAa∩Ab= Aab, it

follows thatcn ∈ Aa, saycn = dna, dn ∈ A. Then the polynomial
P1(X) = P(X)− dn(aX− b)Xn−1 ∈ Ker(ϕ) and has degree≤ n− 1.
By induction we haveP1(X) ∈ (aX−b) and henceP(X) ∈ (aX−b).
Thus (aX− b) = Ker(ϕ) and (a) is proved.

1. We note thatA′ ≈ A
[b
a
]

⊂ A
[1
a
]

and A
[1
a
]

≈ A′
[1
a
]

. By Theo-

rem 6.3, the proof of (b) will be complete if we show thata is a
prime element inA′. But

A′

A′a
≈

A[X]
(a, aX− b)

=
A[X]
(a, b)

≈
A

(a, b)
[

X
]

.

�

By assumption (a, b) is a prime ideal and therefore a is a prime element
in A′. 29

Remark 1. In (b), if a, b are contained in the radical ofA, and if the
idealAa+Ab is prime, thena andb are prime elements (for proof seeP.
Samuel: Sur les anneaux factoriels, Bull. Soc. math. France, 89 (1961),
155-173).

Remark 2. Let A be a noetherian integrally closed local domain and let
the elementsa, b ∈ A satisfy the hypothesis of the above proposition.
SetA′′ =A(X) loc/(aX− b). Then it follows from (a) thatA′′ is a Krull
ring. We have a commutative diagram

A

$$IIIIIIIIII

α
// A(X)log

β
// A′′

A[X]/(aX−b)

99tttttttttt

SinceA′′ is a ring of quotients ofA[X]/(aX−b), it follows from (b) that
βoα induces a surjective mappingϕ : C(A) → C(A′′). We do not know
if ϕ is an isomorphism. Ifϕ is an isomorphism we can get another proof
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of the fact that a regular local ring is factorial (see P. Samuel : Sur les
anneaux factoriels, Bull. Soc. math. France, t.89, 1961).

Proposition 7.7(C.P. Ramanujam). Let A be a noetherian analytically
normal local ring and letM be its maximal ideal. Let B= A

[

[

X1, . . . ,

Xn
]

]

. Then the canonical mapping j: C(B) → C(MM B) is an isomor-
phism.

Proof. By Theorem 6.3 (a),̄j is surjective and Ker(j) = (H + F(B))/
F(B), whereH is the subgroup ofD(B) generated by prime idealsY
of height one inB with Y 1 M B andF(B) is the group of principal
ideals. Thus we have only to prove that ifY is a prime ideal of height30

one ofB with Y 1M B, the thenY is principal. This, we prove in two
steps.

(i) Assume thatA is complete. LetY be a prime ideal of height
one with Y 1 M B. It is clear thatY is generated by a fi-
nite number of elementsf j ∈ Y such thatf j < M B. SetR =

A
[

[

X1, . . . ,Xn−1
]

]

and letM (R) denote the maximal ideal ofR.
We claim that anyf ∈ B −M B is an associate of a polynomial
g(Xn) = Xq

n+aq−1Xq−1
n + · · ·+ao, ai ∈M (R). To prove this we first

remark that by applying an A-automorphism ofB given byXi  

Xi + Xt(i)
n , t = 1, . . . , n− 1,Xn  Xn with t(i) suitably chosen, we

may assume that the seriesf j are regular inXn, (for details ap-
ply Zariski and P.Samuel : Commutative algebra p.147, Lemma3
to the product of thef ′j s). Now since the Weierstrass Preparation
Theorem is valid for the ring of formal power series over a com-
plete local ring, it follows thatf = u(Xq

n + aq−1Xq−1
n + · · · + ao),

u invertible in B = R
[

[

Xn
]

]

, ai ∈ M (R) andq being the order of
f mod M (R). ThusY is generated byσ = Y ∩ R[Xn]. Now,
sinceB is R[Xn] - flat it follows by Theorem 6.2, (2), thatσ is
divisorial. Now by Proposition 7.5C(R[Xn]) → C(R(Xn)loc) is an
isomorphism. Sinceσ 1M (R) R[Xn], it follows thatσ is princi-
pal. HenceY is principal.

(ii) Now we shall deal with the case in whichA is not complete. The
completionB̂ of B is the ringÂ

[

[

Y1, . . . ,Yn
]

]

. Let Y be a minimal



8. Examples of factorial rings 25

prime ideal ofB, with Y 1 MB. SinceB̂ is B-flat, the idealY B̂
is divisorial. Furthermore, sinceY 1 M B, all the componentsk
of Y B̂ are such thatk 1M B̂, and therefore principal by (i). Thus
Y B̂ is principal. HenceY is principal by Theorem 6.6. 31

�

8 Examples of factorial rings

Theorem 8.1. Let A be a factorial ring. Let A
[

X1, . . . ,Xn
]

be graded by
assigning weightsωi to xi (ωi > 0). Let F(X1, . . . ,Xn) be an irreducible
isobaric polynomial. Let c be a positive integer prime toω, the weight
of F. Set B= A

[

X1, . . .Xn,Z
]

/(Zc − F(X1, . . . ,Xn)) = A
[

x1, . . . , xn, z
]

,
zc = F(x1, . . . , xn). Then B is factorial in the following two cases.

(a) c≡ 1( modω)

(b) Every finitely generated projective A-module is free.

Proof. (a) SinceB/zB ≈ A
[

X1, . . . ,Xn,Z]/(Zc − F,Z) ≈ A
[

X1, . . . ,Xn
]

/

(F), it follows that z is prime in B. Now, setxi = zdωi x′i , where
c = 1 + dω. Then zc = F(x1, . . . , xn) = zc−1F(x′1, . . . , x

′
n), i.e.

z = F(x′1, . . . , x
′
n) so thatB

[

z−1] = A
[

x′1, . . . , x
′
n, F(x′1, . . . , x

′
n)−1].

Sincex′1, . . . , x
′
n are algebraically independent overA, we see that

B
[

z−1] is factorial. NowB = B
[

z−1] ∩ K
[

x1, . . . , xn, z
]

, whereK is

the quotient field ofA j for, let
y
zr ∈ K

[

x1, . . . , xn, z
]

with y ∈ B.

Then since (zr ) is a primary ideal not intersectingA, we havey ∈
Bzr = B∩ K

[

x1, . . . , xn, z
]

zr . HenceB is a Krull ring and therefore
factorial by Theorem 6.3.

(b) Sincec is prime toω, there exists a positive integere such that
c e ≡ 1( modω). Now by (a) B′ = A

[

x1, . . . , xn, u
]

, with uce =

F(x1, . . . , xn) is factorial. FurtherB′ = B[u], ue = z andB′ is a free
B-module with 1, u, u2, . . . , ue−1 as a basis. It follows thatB is the
intersection ofB′ and of the quotient field ofB, and is therefore a32

Krull ring. Now B can be graded by attaching a suitable weight to
Z. Let U be a graded divisorial ideal. SinceB′ is factorial,U B′ is



26 1. Krull rings and factorial rings

principal. AsB′ is free overB, U is a projectiveB-module. Now
by Nakayama’s lemma for graded rings it follows thatU is free and
therefore principal. The proof of (b) is complete.

�

Examples.(1) Let a, b, c be positive integers which are pairwise rela-
tively prime. LetA be a factorial ring. Then the ringB = A

[

x, y, z
]

,
with zc = xa + yb, is factorial.

(2) LetR denote the field of real numbers. Then the ringB = R
[

x, y, z
]

with z3 = x2 + y2 is factorial.

Theorem 8.2(Klein-Nagata). Let K be a field of characteristic, 2 and
A = K

[

x1, . . . , xn
]

with F(x1, . . . , xn) = 0, where F is a non-degenerate
quadratic form and n≥ 5. Then A is factorial.

Proof. Extending the ground fieldK to a suitable quadratic extension
K′ if necessary, the quadratic formF(X1, . . . ,Xn) can be transformed
into X1 X2 −G(X3, . . . ,Xn). Let A′ = K′ ⊗

K
A = K′

[

x1, . . . , xn
]

, x1x2 =

G(x3, . . . , xn). SinceF is non-degenerate andn ≥ 5, G(X3, . . . ,Xn) is

irreducible and thereforexl is a prime element inA′. Now A′
[ 1
x1

]

=

K′
[

x1, x3, . . . , xn,
1
x1

]

. �

Sincex1, x3, . . . , xn are algebraically independent, it follows from Theo-
rem 6.3 thatA′ is factorial. Now asA′ is A-free, for any graded divisorial
idealU of A, U A′ is divisorial and hence principal. ThereforeU is a
projective ideal. Since a finitely generated graded projective module is
free overA, we conclude thatU is principal. ThusA is factorial.33

Remark 1. The above theorem is not true forn ≤ 4. For instance,
A = K

[

x1, x2, x3, x4
]

with x1x2 = x3x4 is evidently not factorial.

Remark 2. We have proved that ifA is a homogeneous coordinate ring
over a fieldK such thatK′

⊗

K
A is factorial for some ground field ex-

tensionK′ of K, thenA is factorial. This is not true for affine coordinate
rings (see the study of plane conics later in this section).
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Remark 3. The above theorem is a particular case of theorems of Sev-
eri, Lefshetz and Andreotti, which in turn are particular cases of the
following general theorem proved by Grothendieck.

Theorem . (Grothendieck). Let R be a local domain which is a com-
plete intersection such that RY is factorial for every prime idealY with
heightY ≤ 3. Then R is factorial.

(We recall thatR is a complete intersection ifR = A/U , whereA is a
regular local ring andU an ideal generated by an A-sequence). (For
proof of the above theorem see Grothendieck: Seminaire de Geometric
algebrique, exposé XI, IHES (Paris), 1961-62).

Study of plane conics. Let C be a projective non singular curve over a
ground fieldK. Let A be the homogeneous coordinate ring ofC. The
geometric divisors ofC can be identified with elements ofD H(A). Then
FH(A) = G1(C) + Zh, whereGl(C) denotes set of divisors ofC linearly
equivalent to zero andh denotes a hyper plane section. Let nowC be a
conic in the projective planeP2. Since the genus ofC is zero we have
Gl(C) = Go(C) whereGo(C) is the set of divisors of degree zero ofC. 34

(i.e. its Jacobian variety is zero). Letd denote the homomorphism of
DH(A) into Z given byd(U ) = degree ofU , for U ∈ DH(A). Then
d−1(2Z) = Go(C) + Zh = Gl(C) + Zh = FH(A). HenceC(A) ≈ Imd/2Z.
ThusA is factorial if and only ifImd = 2Z.

SupposeC does not carry any K-rational points. ThenA is factorial.
For if not, C(A) ≈ Z/(2) and there exists a divisorU ∈ DH(A) with
d(U ) = 1. By the Riemann-Roch Theorem, we havel(U ) ≥ d(U ) −
g + 1 = 2, wherel(U ) denotes the dimension of the vector space of
functions f on C with ( f ) + U ≥ 0. Thus there exists a functionf on
C with ( f ) + U ≥ 0 and thus we obtain a positive divisor of degree 1,
i.e. C carries a rational point: Contradiction. Conversely ifC carries a
rational pointP, thenP is a divisor of degree 1 andC(A) ≈ Z/(2) i.e. A
is not factorial. Thus we have proved (a) The homogeneous coordinate
ring A of C is factorial if and only ifC does not have rational points over
K.

Let nowC′ be a conic in the affine place overK. Let A′ be its coor-
dinate ring. LetC be its projective closure inP2. Let I be the subgroup
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of DH(A) generated by the divisors at infinity (A is the homogeneous
coordinate ring ofC). ThenC(A′) ≈ DH(A)/(FH(A) + I ). Thus

(i) if C has no rational points overK, then by (a)DH(A) = FH(A)
and thereforeC(A′) = 0, so thatA′ is factorial;

(ii) if C has rational points overK at infinity, thenDH(A) = FH(A)+ I
andA′ is factorial;

(iii) if C has rational points, but not at infinity, thenI ⊂ FH(A) and35

C(A′) ≈ C(A) ≈ Z/(2); in this caseA is not factorial.

Examples. (i) C′ ≡ x2 + 2y2 + 1 = 0 over the rationals. ThenA′

is factorial. However the coordinate ring ofC′ overQ(i) is not
factorial.

(ii) C′ ≡ x2 + y2 − 1 = 0. The coordinate ring ofC′ overQ is not
factorial. But the coordinate ring ofC′ overQ(i) is factorial.

The above examples show that unique factorization is preserved nei-
ther by ground field extension nor by ground field restriction.

Study of the real sphere. LetR denote the field of real numbers andC,
the field of complex numbers. We shall consider the coordinate ring of
the sphereX2 + Y2 + Z2 = 1 overR andC.

Proposition 8.3. (a) The ring A= R
[

x, y, z
]

, x2+y2+z2 = 1 is factorial

(b) The ring A= C
[

x, y, z
]

, x2 + y2 + z2 = 1 is not factorial.

Proof. (a) We haveA/(z− 1) ≈ R
[

X,Y,Z
]/

(Z − 1,X2 + Y2 + Z2 − 1)

R
[

X,Y,Z
]/

(X3 + Y2,Z − 1) ≈ R
[

X,Y
]

/(X2 + Y2).

HenceZ − 1 is prime inA. Sett =
1

z− 1
, so thatz = 1 +

1
t
. Now,

sincex2 + y2 + z2 − 1 = 0, we havex2 + y2 + 1+
1
t2
+

2
t
− 1 = 0 i.e.

(tx)2 + (ty)2 = −2t − 1 i.e. t ∈ R[tx, ty]. Now A[t] = R[tx, ty,
1
t
] is

factorial. Hence by Theorem 6.3,A is factorial.
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(b) Since (x+ iy)(x− iy) = (z+1)(z−1), we conclude thatA = C[x, y, z],
x2 + y2 + z2 = 1 is not factorial.

�

Let K denote the field of complex numbers or the field of reals, and36

A = K x, y, z, x2+y2+z2 = 1. LetM be the moduleM = Adx+Ady+Adz,
with the relationxdx+ ydy+ zdz= 0.

Proposition 8.4. The A-module M is projective

(a) If K = R, then M is not free

(b) If K = C, then M is free.

Proof. Since the elementsv1 = (0, z,−y), v2 = (−z, 0, x), v3 = (y,−x, 0)
of A3 satisfy the relationxv1 + yv2 + zv3 = 0, we have a homomorphism
u : M → A3, given byu(dx) = v1, u(dy) = v2, u(dz) = v3. Let ν be
the homomorphismν : A3 → M given byν(a, b, c) = a(ydz− zdy) +
b(zdx− xdz) + c(xdy− ydx). It is easy to verify thatνou is the identity
on M. HenceM can be identified with a direct summand ofA3. Hence
M is projective. Now the linear formϕ : A3 → A given byϕ(a, b, c) =
ax+ by+ cz is zero onM. But A3/M is a tossion-free module of rank
1. HenceM = kerϕ. On the other hand we haveϕ(A3) = A, since
x2 + y2 + z2 = 1. HenceM ⊕ A ≈ A3. ThusM is equivalent to a free
module. �

(a) If K = R, thenM is not free. We remark thatM is the A-module of
sections of the dual bundle of the targent bundle to the sphere S2.
Since there are no non-degenerate continuous vector fields on S2,
the tangent bundle is not trivial, nor is its dual.

(b) If K = C, thenM is free. For, the tangent bundle to the complex-
ification of S2 is trivial (this complexification being the product of
two complex projective lines).

Remark. R.Swan (Trans, Amer. Math. Soc. 105(1962), 264-277(1962)37

has proved the following. The ringA = R
[

x1, x2, . . . , x5
]

,
5
∑

i=0
x2

i = 1 is
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factorial. NowS7 can be fibred byS3, the base beingS4. Let V be
the bundle of tangent vectors along the fibres for this fibration andM,
the corresponding module. ThenM is not free, where asM

⊗

R

C is free

overA
⊗

R

C. FurtherA
⊗

R

C is factorial. MoreoverM is not equivalent

to a free-module.

Grassmann varieties. Let E be a vector space of dimensionn over
a field K. Let G = Gn,q be the set of allq dimensional subspaces of
E(q ≤ n). Then setG can be provided with a structure of a projective
variety as given below.

We call an elementx ∈
q
∧E a decomposed multi-vector ifx is of the

form x1∧· · ·∧xq, xi ∈ E. We havex1∧· · ·∧xq = 0 if and only ifx1, . . . , xq

are linearly dependent. Furtherx1∧· · ·∧xq = λy1∧· · ·∧yq, λ ∈ K∗ if and
only if x1, . . . , xq andy1, . . . , yq generate the same subspace. In the set
of all decomposed multivectors we introduce the equivalence relation
x1 ∧ · · · xq ∼ y1 ∧ · · · ∧ yq if x1 ∧ · · · ∧ xq = λy1 · · · yq for someλ ∈ K∗.
Then the setGn,q can be identified with the quotient set which is a subset

of P(
q
∧E) the (nq) − 1 dimensional projective space defined by the vector

space
q
∧E. It can be shown that with this identification,Gn,q is a closed

subset ofP(q
∧E) in the Zariski topology). The projective varietyGn,q is

known as the Grassmann variety. AsGL(n,K) acts transitively onGn,q,
it is non-singular.
Let L be a genericq-dimensional subspace ofE with a basisx1, . . . xq,38

sayxi =
n
∑

j=1
λi j ej , 1≤ i ≤ q, λi j ∈ K. Then

x1 ∧ · · · ∧ xq =
∑

i1···iq

di1,...,iq(λ)ei1 ∧ · · · ∧ eiq,

wheredi1,...,iq = det(λki j ). Let xi j , 1 ≤ i ≤ q, 1 ≤ j ≤ n be algebraically
independent elements overK. Let B = K

[

xi j
]

1≤i≤q
1≤ j≤n

the polynomial ring

in nq variables. For any subsetH =
{

i1, . . . , iq
}

, i1 < i2 < · · · < iq of
cardinalityq, we denote bydH(x) theq by q determinant det(xki j ). It is
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clear thatA = K
[

dH(x)
]′
H∈J whereJ is the set of all subsets of cardinality

q of
{

i, . . . , n
}

, is the homogeneous coordinate ring ofGn,q.

Proposition 8.5. The ring A is factorial.

Proof. It is known that the ringA is normal (SeeJ. Igusa: On the arith-
metic normality of Grassmann variety, Proc. Nat. Acad. Sci.U.S.A.
Vol. 40, 309 - 313). Consider the elementd = d{1,...,q}(x) ∈ A. We
first prove thatd is prime inA. Consider the subvarietyS of Gn,q de-
fined byd = 0. Let E′ be the subspace generated bye1, . . . , eq andE′′

the subspace generated byeq+1, . . . , en. (We recall thate1, . . . , en is a
basis ofE). Now α ∈ S if and only if dim(prE′ (α)) < q, i.e. if and
only if α ∩ E′′ , (0). Let Z = (0, . . . , 0,Zq+1, . . . ,Zn), where theZi

are algebraically independent. Letx1, . . . , xq−1 be independent generic
points ofE, independent overk(z). ThenZ∧ x1∧ · · · ∧ xq−1 is a generic 39

point of S, and thereforeS is irreducible. LetY be the prime ideal
definingS. ThenA.d = Y (s) for somes. We now look at the zeros of
A.d which are singular points. These zeros are given by the equations
∂

xit
(d) = 0, 1 ≤ i ≤ q, 1 ≤ t ≤ n, or equivalently, by equating to 0

the sub-determinants ofd of order q − 1. Henceα is a singular zero
of A.d if and only if pr′E(α) has codimension≥ 2 i.e. if and only if
dim(α∩E′′) ≥ 2. HenceA.d has at least one simple zero. That is,s= 1
andA.d is a prime. �

The co-ordinate ring of the affine open setU defined byd , 0 is the

ring A′ =
{ a

ddo(a)/q

∣

∣

∣a ∈ A, a homogeneous
}

= A/(1−d) . We shall describe

the ringA′ in another way. Letα ∈ Gn,q. Thenα ∈ U ⇔ α ∩ E′′ = (0).
Let y1 = (1, 0, . . . , 0, y1q+1, . . . y1n), . . ., yq = (0, . . . , 1, yq,q+1, . . . , yqn),
where theyi j are algebraically independent overK. Theny1 ∧ · · · ∧ yq

is a generic point ofU. Set y = (yi j )1≤i≤q
1≤ j≤n

whereyi j = δi j , i ≤ q,

j ≤ q. ThenA′ = K
[

dH(y)
]

H∈J. But d1,...,i,...,q, j(y) = ±yi j , 1 ≤ i ≤ q,
q+ 1 ≤ j ≤ n. HenceA′ = K

[

yi j
]

1≤i≤q,
q+1≤ j≤n

. HenceA′ is factorial. Hence,

by Proposition 7.3, the ringA is factorial.
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Remark 1. The ringA provides an example of a factorial ring which is
not a complete intersection.

Remark 2. We do not know any example of a factorial ring which is not40

a Cohen-Macaulay ring.

Remark 3. We do not know any example of a factorial ring which is not
a Gorenstein ring.

A local ringA is said to be aGorenstein ringif A is Cohen-macaulay
and every ideal generated by a system of parameters is irreducible.

9 Power series over factorial rings

Theorem 9.1. Let A be a noetherian domain containing elements x, y, z
satisfying

(i) y is prime, Ax∩ Ay= Axy;

(ii) zi−1
< Ax+ Ay, zi ∈ Axj + Ayk, where i, j, k are integers such

i jk − i j − jk − ki ≥ 0.

ThenA
[

[T]
]

is not factorial.
We first list here certain interesting corollaries of the above theorem.

Corollary 1. There exist factorial rings A (also local factorial ones)
such that A

[

[T]
]

is not factorial. Let k be a field and let A′ = k
[

x, y, z
]

with zi = x j + yk, (i, j, k) = 1, i jk − i j − jk − ki ≥ 0 (for instance i= 2,
j = 5, k = 7). Then by Theorem 8.1 the ring A′ is factorial, and so is
the local ring A= A′(x,y,z). But x, y, z satisfy the hypothesis of the above
theorem. Therefore A′

[

[T]
]

and A
[

[T]
]

are not factorial.

Corollary 2. There exists a local factorial ring B such that its comple-41

tion B̂ is not factorial. Set A= A′(x,y,z), B = A[T](M ,T), where A′ is as

in the proof of Corollary 1 andM is the maximal ideal of A. Then̂B
is factorial. NowB̂ = Â

[

[T]
]

. Further B̂ is also the completion of the
local ring A

[

[T]
]

. Thus ifB̂ is factorial, so is A
[

[T]
]

by Mori’s Theorem
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(see for instance, Sur les anneaux factorials, Bull. Soc. Math. France,
89, (1961), 155 - 173). Contradiction.

Corollary 3. There exists a local non-factorial ring B such that its as-
sociated graded ring G(B) is factorial.

We setA1 = k[u, v, x, y, z], z7 = u5x2 + v4y3. We observe thatz is prime

in A1 and thatA1
[1
z
]

= k
[

x′, y′, u, v,
1
z
]

, x = z3x′, y = z2y′, z = u5x
′2 +

v4y3. HenceA1
[1
z
]

is factorial and therefore isA1. TakeA = A1(u,v,x,y,z) ,

B = A
[

[T]
]

. Sincex, y, z Asatisfy the hypothesis of the above theorem
with i = 7, j = 2, k = 3, the ringB = A

[

[T]
]

is not factorial. But
G(B) = G(A)[T] = A1[T] is factorial.

Remark. 1. If A is a regular factorial ring, then so isA
[

[T]
]

. (see Chap-
ter 2, Theorem 2.1).

2. If A is a noetherian factorial ring such thatAM

[

[T]
]

is factorial for
every maximal idealM of A, thenA

[

[T]
]

is factorial.

3. Suppose thatA is a factorial Macaulay ring such thatAY

[

[T]
]

is fac-
torial for all prime idealsY with height Y = 2. ThenA

[

[T]
]

is
factorial (for proofs of (2) and (3), see P. Samuol, on uniquefactor-
ization domains, Illinois J.Math. 5(1961) 1-17).

4. Open question. Let A be acompletelocal ring which is factorial. 42

Then isA
[

[T]
]

factorial?

In Chapter 3 we shall see that at least in characteristic 2, the comple-
tion Â of A of Corrolary 2 is not factorial. We shall also give examples
to show thatC(A) → C(A

[

[T]
]

) is not surjective. Finally it may be of
interest to note thatJ. Geiser has proved that there do not existcomplete
factorial rings satisfying the hypothesis of Theorem 9.1.

Proof of Theorem 9.1.Let S denote the multiplicatively closed set
1, x, x2, . . .. Set A′ = S−1A, B = A

[

[T]
]

. ThenS−1B ⊂ A′
[

[T]
]

; in
fact A′

[

[T]
]

is theT-adic completion ofS−1B. But, however,S−1B is
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not a Zariski ring with theT-adic topology. LetS′ denote the set of ele-
ments ofB, whose constant coefficients are inS. ThenS′−1B is a Zariski
ring with theT-adic topology and its completion isA′

[

[T]
]

. Consider
the elementv = xy− zi−1T ∈ B.

(a) No power seriesy+a1T+a2T2+· · ·B is an associate ofv = xy−zi−1T
in A′ T (nor, a fortiori inS′−1B).

Proof. If possible, suppose that (xy− zi−1T) (
1
x
+

c
xα

T + · · · ) ∈ B, with

1
x
+

c
xα

T+ · · · ∈ A′
[

[T]
]

. Then
cy

xα−1
−

zi−1

x
∈ A i.ecy−zi−1xα−2 ∈ Axα−1.

Sincezi−1
< Ax+ Ay we haveα ≥ 2. Further sinceAx∩ Ay = Axywe

havec ∈ Axα−2, sayc = c′xα−2. Thenzi−1 − c′y ∈ Ax. Contradiction

(b) There exists an integert and an elementv′ =
yt

x
+

b1

x2
T + · · · +

bn

xn+1
Tn+1 + · · · such thatu = vv′ ∈ B, wherev = xy− zi−1T.

�

Proof. Taket ≥ i j . We have to find elementsb1, b2, . . .bn, . . . of A such
that

bn

xn+1
xy−

bn−1

xn zi−1 ∈ A i.e. bny− bn−1zi−1 ∈ Axn

for n ≥ 1. We setb0 = yt. Assume that thebl for l ≤ ni j have been43

determined and thatbni j = yt(n)Fn(x j , yk), wheret(n) ≥ i j andFn(X,Y)
is a form of degreeni. This is trivially verified forn = 0. �

The congruencebni j+1y − bni jzi−1 ∈ Axni j+1 may be solved by taking
bni j+1 = yt(n)−1Fn(x j , yk)zi−1. Similarly
bni j+r = yt(n)−r Fn(x j , yk)zr(i−1), 0 ≤ r < i j . Further the relation

b(n+1)i j y− bni j+i j−1zi−1 ∈ Ax(n+1)i j

implies that

b(n+1)i j y− yt(n)−i j+1Fn(x j , yk)Zi j (i−1) ∈ Ax(n+1)i j .
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But zi ∈ Axj + Ayk, sayzi = cxj + dyk. Now we have to solve the
congruence,b(n+1)i j ≡ yt(n)−i j+1G( mod Ax(n+1)i j ) whereG = (cxj +

dyk) j(i−1)Fn(x j , yk). The formG(X,Y) = (cX + dY) j(i−1)Fn(X,Y) is of
degreeni + (i − 1) j. The monomials inG(x j , yk) are of the form
x jαykβ, α + β = ni + (i − 1) j. By reading moduloAx(n+1)i j we can
‘neglect’ the terms for whichjα ≥ (n + 1)i j i.e. α ≥ (n + 1)i. For
the remaining terms we haveβ > ni + (i − 1) j − (n + 1)i = i j − j − i.
ThusG(x j , yk) ≡ y(i j− j−i)kFn+1(x j , yk)( mod Ax(n+1)i j ), whereFn+1 is a
form of degreeni + (i − 1) j − (i j − j − i) = (n + 1)i. Now b(n+1)i j y ≡
yt(n)+(i jk− jk−ki−i j )+1Fn+1(x j , yk) ( mod Ax(n+1)i j ). We may solve this by
takingb(n+1)i j = yt(n)+i jk− jk−ki−i j Fn+1(x j , yk), i.e. we may taket(n+ 1) =
t(n) + i jk − jk − ki − i j and (b) is proved.

(c) B is not factorial. Suppose that, in fact,B were factorial. 44

Setu = vv′, with v, v′ as in (b). Letu = u1, . . .us be the decomposition
of u into prime factors inB; since the constant term ofu is a power
of y and sincey is prime, the constant term of eachul is a power ofy.
ConsiderR = S′−1B; R is factorial. Nowv′ ∈ R̂ and thereforeu R Rv=
Rv. Furtherv is prime inR (since the constant term ofv is y times an
invertible element inS−1A). Now unique factorization inR implies that
v is an associate of someu j in R. This contradicts (a).





Chapter 2

Regular rings

Let A be a noetherian local ring andM its maximal ideal. We say45

that A is regular if M is generated by anA-sequence. We recall that
x1, . . . , xr ∈ A is an A-sequence if, fori = 0, . . . , r − 1, xi+1 is not a zero
divisor in A/(x1, . . . , xi). It can be proved that a regular local ring is a
normal domain. LetA be a noetherian domain. We say thatA is regular
if AM is regular for every maximal idealM of A.

1 Regular local rings

Let A be a noetherian local ring andM its maximal ideal. LetE be a
finitely generated module overA. Let x1, . . . , xn ∈ E be such that the
elementsxi mod M E form a basis forE/M E; then thexi generate
E (by Nakayama’s lemma). Such a system of generators is calleda
minimal system of generators. Letx1, . . . , xn be a minimal system of

generators ofE. Let F =
n
∑

i=1
Aei be a free module of rankn. Then the

sequence 0→ E1→ Fo
ϕ
−→ E→ 0 is exact whereϕ(ei) = xi. Now E1 is

finitely generated. Choosing a minimal set of generators forE1, we can
expressE1 as a quotient of a free moduleF2. Continuing in this fashion
we get an exact sequence of modules.

· · · → Fn→ Fn−1→ · · · → Fo→ E→ 0;

37
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we call this aminimal resolutionof E. We say that the homological di-
mension ofE (notation hdE) is < n if Fn+1 = 0 in a minimal resolution
of E. If Fi , 0 for everyi, then we puthdE = ∞. It can be proved that
hd E does not depend upon the minimal resolution (since two minimal46

systems of generators ofE differ by an automorphism ofE). We recall
that

E is free⇔ the canonical mappingM ⊗ E → E is injective⇔ Tor
A
1 (E,A/M ) = 0.

From this it easily follows that for a finitely generated A-moduleE
we havehdE< n if and only if Tor A

n+1(E,A/M ) = 0.

Theorem 1.1(Syzygies). Let A be a regular local ring and d the number
of elements in an A-sequence generating the maximal idealM of A.
Then for any finitely generated module E. We have hdE≤ d.

We state a lemma which is not difficult to prove.

Lemma 1.2. Let A be a noetherian local ring and G a finitely generated
A-module with hdG< ∞. Let a be a non-zero divisor for G. Then

hd
G
aG
= hd G+ 1.

Now if M = (x1, . . . , xd), wherex1, . . . , xd is an A-sequence, then
by means of an immediate induction and a use of the above lemmawe
get hd(A/M ) = d. Hence TorAd+1 (E,A/M ) = 0 for any moduleE′.
HencehdE≤ d.

Theorem 1.3(Serre). Let A be a local ring with maximal idealM such
that hdM < ∞. Then A is regular.

We first observe that the hypothesis of the theorem implies that for
anA-moduleE, we havehdE≤ hd(A/M ) = hd m+ 1.

We prove the theorem by induction on the dimensiond of the A/m

vector spaceM /M 2. If d = 0, thenM = 0;A is a field and therefore
regular. Supposed > 0. Then we claim that under the hypothesis of the47

theorem there exist an elementb ∈M −M 2 which is not a zero divisor.
This follows from the following lemma.
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Lemma 1.4. Let A be local ring. Suppose that every x∈ M −M 2 is
a zero divisor. Then any finitely generated module of finite homological
dimension is free.

Proof. Let G be a module withhdG < ∞. If hdG > 0, we find, by
resolvingG, an A-moduleE such thathdE = 1. Let 0→ F1 → Fo →

E → 0 be a minimal resolution ofE. ThenF1 is free andF1 ⊂ M Fo.
Now, since every element ofM −M 2 is a zero divisor, it follows that
every element ofM is a zero divisor andM is associated to (0). Hence
there exists ana , 0, such thataM = 0. Hence aF1 = 0. This
contradicts the fact thatF1 is free. HencehdG= 0, andG is free. �

Applying this lemma to ‘our’A we see that if every element ofM −

M 2 is a zero divisor, thenM is free. SinceM consists of zero divisors
we haveM = 0 i.e. A is a field. Thus ifd > 0 there is ab ∈M −M 2

such thatb is not a zero divisor. SetA′ = A/Ab, M ′ = M /Ab. We
claim thatM /Ab is a direct summand ofM /M b. Let ψ denote the
canonical surjectionM /M b → M/Ab. Let b, q1, . . . , qd−1 be a minimal

set of generators ofM . Setσ =
d−1
∑

i=1
Aqi. Letϕ be the canonical mapping

σ →M /M b. Then Ker(ϕ) = σ ∩M b ⊂ σ ∩ Ab. On the other hand if

λb ∈ σ, thenλb =
d−1
∑

i=1
λiqi , λi ∈ A. But b, q1, . . . , qd is a minimal set of

generators ofM . Henceλ, λi ∈M . Thusσ ∩M b = σ ∩ Ab.

Thus we have a canonical injectionM /Ab =
σ + Ab

Ab
θ
−→

M

M b
, since 48

σ + Ab/Ab ≈ σ/σ∩Ab = σ/σ∩M b. It is easy to see thatψoθ = IM .
HenceM /Ab is a direct summand ofM /M b. We now have the follow-
ing lemma easily proved by induction onhd(E)).

Lemma 1.5. Let A be a commutative ring and E an A-module with
hdE < ∞. Let b ∈ A be a non-zero divisor for A and E. Then
hdA/AbE/bE < ∞.

From the above lemma, it follows thathdA/bAM /M b < ∞. Since
M /Ab is a direct summand ofM /M b we havehdA/Ab M /Ab < ∞.
Since dimA/M M /Ab

/

M 2Ab/Ab = dimA/M M /M 2+Ab = d − 1, A/Ab
is regular by induction hypothesis. HenceM /Ab is generated by an
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A/Ab-sequence, sayx1, . . . xd−1 moduloAb. Thenb, x1, . . . , xd−1 is an
A-sequence and generatesM . ThusA is regular.

For any local ringA we define the global dimension ofA to be
hdA/M , whereM is the maximal ideal; notation :gl dimA = δ(A).
For anyA-moduleE we havehdAE ≤ δ(A).

Corollary. Let A be a regular local ring and pa prime ideal with p,
M , whereM is the maximal ideal of A. Then Ap is regular andδ(Ap) <
δ(A).

Proof. We haveδ(Ap) = hdAp Ap/pAp = hdApA/p ⊗ Ap ≤ hdAA/p,
the last inequality, being a consequence of the fact thatAp is A-flat.
Choosex ∈ M − p. Sincex is not a zero divisor forA/p we have by49

Lemma 1.2,hdAA/p/x(A/p) = hdA

p+ x

p
= 1 + hdAA/p ≤ δ(A) i.e.

hdAA/p ≤ δ(A) − 1. Henceδ(Ap) < δ(A). �

Theorem 1.6(Auslander-Buchsbaum). Any regular local ring is facto-
rial.

Proof. Let A be a regular local ring. We prove the theorem by induc-
tion on the global dimensionδ(A) of A. If δ(A) = 0, thenA is a field
and therefore factorial. Supposeδ(A) > 0. Let x be an element of an
A-sequence generatingM . Then x is a prime element. By Nagata’s

theorem, we have only to prove thatB = A
[1
x
]

is factorial. For any max-

imal idealM of B, we haveBM = Ap, wherep is a prime ideal with
x < p. By the corollary to Theorem 1.3, we see thatAp is regular and
δ(Ap) < δ(A). Hence by the induction hypothesis,Ap is factorial. Thus
BM is factorial for every maximal idealM of B (i.e. B is locally facto-
rial). Letσ be a prime ideal of height 1 inB. Thenσ is locally principal
i.e. σ is a projective ideal. NowB being a ring of quotients of the reg-
ular local ringA, the ideal admits a finite free resolution. By making
an induction on the length of the free resolution ofσ we conclude that
there exist free modulesF, L such thatσ ⊕ L ≈ F. By comparing the
ranks we see thatL ≈ Bn, F ≈ Bn+1 for somen. Taking the (n + 1)th

exterior power we have
n
⊕

j=1

j
∧(σ) ⊗

n+1− j
∧ (L) ≈ B. Sinceσ is a modulo
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of rank 1
j
∧ (σ), j ≥ 2 is a torsion-module. Henceσ ≈ B that is,σ is

principal and thereforeB is factorial. HenceA is factorial. �

2 Regular factorial rings

We recall that a regular ringA is a noetherian domain such thatAM is 50

regular for any maximal idealM of A. We say that domainA is locally
factorial if AM is factorial for every maximal idealM of A.

Theorem 2.1. If A is a regular factorial ring then the rings A[X] and
A
[

[X]
]

are regular factorial rings.

Proof. We first prove thatA[X] and A
[

[X]
]

are regular. LetB = A[X].
Let M be a maximal ideal ofB. Set p = A ∩ M . Then BM =

(Ap[X])M Ap[X]. Since a localisation of a regular ring is again regular,
we see thatAp is regular. Thus to prove thatB is regular we may assume
thatA is a local ring with maximal idealm(A) and thatM ∩ A = m(A).
SinceA is regular,m(A) is generated by anA-sequence, saya1, . . . , ar .
Now B/m(A)B ≈ A/m(A)[X]. Thus M /m(A)B = (F̄(X)), whereF(X) ∈
M is such that the class̄F(X) of F(X) ( mod m(A)) is irreducible in

A
m(A)

[X]. Now a1, . . . , ar , F(X) is BM -sequence and generatesM /BM

(in factM = (a1, . . . , ar F(X))). HenceBM is regular for every maximal
idealM i.e. B is regular. We shall now prove thatC = A

[

[X]
]

is regular.
Let M be a maximal ideal ofC. SinceX ∈ Rad(C), M = M + XC,
whereM is a maximal ideal ofA. Now AM ⊂ CM. SinceAM is reg-
ular, M AM is generated by anAM - sequence, saym1, . . . ,md. Then
m1, . . . ,md, X is a CM-sequence which generatesMCM. ThusCM is
regular i.e.C is regular. �

We now prove thatB = A[X], C = A
[

[X]
]

are factorial. ThatB 51

is factorial has already been proved (see ChapterI , Theorem 6.5). To
prove thatC is factorial, we note thatK is in the radical Rad (C) of C

and
C

XC
≈ A is factorial. Now the following lemma completes the proof

of the theorem.
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Lemma 2.2. Let B be a locally factorial noetherian ring (for instance a
regular domain). Let x∈ Rad(B). Assume that B/xB is factorial. Then
B is factorial.

Proof. Let σ be a prime ideal of height 1 inB. Thenσ is locally prin-
cipal i.e. σ is projective. If x ∈ σ, thenσ = Bx. If x < σ, then
σ ∩ Bx = σx. Thusσ/σx = σ/(σ∩Bx) ≈ (σ + Bx)/Bx i.e. σ/σx is a
projective ideal inB/Bx. SinceB/Bx is factorial andσ/σx divisorial, we
see thatσ/σx is principal inB/Bx. Hence, by Nakayama’s lemma,σ is
principal. �

Corollary. Let A be a principal ideal domain. Then A
[

[X1, . . . ,Xn]
]

is
factorial.

In particular ifK is a field, thenK
[

[X1, . . . ,Xn]
]

is factorial.

3 The ring of restricted power series

Let A be a commutative ring and letM be an ideal ofA. We provide
A with the M - adic topology. Letf =

∑

aαXα ∈ A
[

[X1, . . . ,Xd]
]

,
α = (α1, . . . , αd), Xα = Xα1

1 · · ·X
αd
d . We say thatf is a restricted power

seriesif aα → 0 as|α| → ∞, |α| = α1 + · · · + αd. It is clear that the
set of all restricted power series is a subring ofA

[

[X1, . . . ,Xd]
]

which
we denote byA

{

x1, . . . ,Xd
}

; we have the inclusionsA
[

X1, . . . ,Xd
]

⊂52

A{X1, . . .Xd}A
[

[X1, . . . ,Xd]
]

. In fact A
{

X1, . . . ,Xd
}

is the M (X1, . . . ,

Xd)- adic completion ofA
[

X1, . . . ,Xd
]

. In particular, if A is noethe-
rian so isA

{

X1, . . . ,Xd
}

. FurtherA
[

[X1, . . . ,Xd]
]

is the completion of
A
{

X1, . . . ,Xd
}

for the (X1, . . . ,Xd)-adic topology. But this is not of inter-
est, sinceA

{

X1, . . . ,Xd
}

is not a Zariski ring with respect to the (X1, . . . ,

Xd)-adic topology.

Lemma 3.1. Let A be a commutative ring andM an ideal of A with
M ⊂ Rad (A). Let A

{

X1, . . . ,Xd
}

denote the ring of restricted power
series, A being provided with theM -adic topology. ThenM ⊂ Rad
(A{X1, . . . ,Xd}).
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Proof. Let m ∈ M . Consider 1+ ms(X), wheres(X) ∈ A
{

X1, . . . ,Xd
}

.
Sets(X) = ao + t(X), t(X) being without constant term. Since 1+ mao

is invertible, we have 1+ms(X) =
1

1+mao
(1−mu(X)), whereu(X) is a

restricted series without constant term. Now,
1

1−mu(X)
= 1+mu(X) +

m2u(X)2 + · · · is clearly a restricted power series. Thus 1+ ms(X) is
invertible inA

{

X1, . . . ,Xd
}

i.e. m ∈ Rad (A
{

X1, . . . ,Xd
}

). �

Theorem 3.2. [P. Salmon]Let A be a regular local ring and letM de-
note its maximal ideal. Then R= A{X1, . . . ,Xd} is regular and factorial,
the power series being restricted with respected to the maximal ideal.

Proof. Let p be a maximal ideal ofR. By Lemma 3.1,M R ⊂ Rad
(R) ⊂ p. Now p/M R is a maximal ideal ofR/M R = (A/M )

[

X1, . . . ,Xd
]

.
It is well known that any maximal ideal of (A/M )

[

X1, . . . ,Xd
]

is gener-
ated byd elements which form an (A/M )

[

X1, . . . ,Xd
]

-sequence. Thus53

p/M R is generated by anR/M R-sequence. But,A being regular,M R is
generated by anR-sequence. Thereforep is generated by anR-sequence.
By passing to the localisation, we see thatpRp is generated by aRp-
sequence. HenceR is regular. �

We now prove thatR is factorial. The proof is by induction on
gl. dim A = δ(A). If δ(A) = 0, thenA is a field andR = A

[

X1, . . . ,Xd
]

henceR is factorial. Letδ = δ(A) > 0 andm1, . . . ,mδ generateM . Now
R is regular and therefore locally factorial. By Lemma 3.1m1 ∈ Rad
(R). FurtherR/m1R ≈ (A/mA)

{

X1, . . . ,Xd
}

, δ(A/m1A) = δ − 1; hence, by
induction hypothesis,R/m1R is factorial. Using Lemma 2.2 we see that
R is factorial.

Remark 1. Let A be a local ring which is factorial. Then it does not
imply that A{T} is factorial. TakeA = k

[

x, y, z
]

(x,y,z), z2 = x3 + y7.
As in the proof of Theorem 9.1, Chapter 1, we can prove that there exist

b1, b2, . . . ∈ Asuch that (xy−zT) (
y
x
+

b1

x2
T+

b2

x3
T2+· · ·+

bn

xn+1
Tn+1+· · · ) =

u ∈ B = A{T}. In fact it can be checked that we can take the elementsbi

such thatu = y2−xT2−xyT8−3xy2T14 · · · ,−αnxynT2+6n . . ., whereαn is
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an integer such that 0≤ αn ≤ 23n. By providingA with the (x, y, z)-adic
topology, we see that the power seriesu is restricted. Now the proof of
Theorem 9.1 verbatum carries over and we conclude that the restricted
power series ringA{T} is not factorial.

Remark 2. In the above example, if we takek = R orC, the real number
field or the complex number field respectively, then we can speak of the54

convergent power series ring overA. Now the above power seriesu is
convergent since 0≤ αn ≤ 23n. Hence the convergent power series ring
overA is also not factorial.
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Descent methods

1 Galoisian descent
55

Let A be a Krull ring and letK be its quotient field. LetG be a finite
group of automorphisms ofA. Let A′ denote the ring of invariants ofA
with respect toG and letK′ be the quotient field ofA′. ThenA′ = A∩K′,
so thatA′ is a Krull ring. Since

∏

s∈G
(x − s(x)) = 0, x ∈ A, we see that

A is integral overA′. Thus we have the homomorphismj : D(A′) →
D(A) and j̄ : C(A′) → C(A) (see Chapter 1§6). We are interested in
computing Ker (̄j). Let D1 = j−1(F(A)). Then Ker (̄j) = D1/F(A). Let S
be a system of generators ofG. Let d ∈ D1, with j(d) = (a), a ∈ K.
The divisor j(d) is invariant underG, i.e. (s(a)) = (a), s ∈ G. Hence
s(a)/a ∈ U, the group of units ofA. Let h denote the homomorphism
h : K∗ → (K∗)S given by x (s(x)/x)s∈S. Thenh(a) ∈ h(K∗) ∩ US,
Now if a = a′u, a′ ∈ K, u ∈ U, thens(a)/a = s(a′)/a′ · s(u)/u′. Thus
h(a) is determined uniquely moduloh(U), and we therefore have a ho-
momorphismϕ : D1→ (h(K∗) ∩ US)h(U) with d h(a) ( mod h(U)),
wherea(d) = (a), a ∈ K.

Theorem 1.1. The mappingϕ induces a monomorphismθ : Ker ( j̄) →
(h(K∗) ∩ US)

h(U)
. Furthermore, if no prime divisor of A is ramified over

A′, thenθ is an isomorphism.

45
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Proof. Let d ∈ D1. Thenϕ(d) = 0 ⇔ h(a) = h(u), u ∈ U ⇔ s(a)/a =56

s(u)/u, for all s∈ S.

⇔ s(
a
u

) =
a
u

for all s∈ G⇔
a
u
= a′ ∈ K′

⇔ j(d) = (a)A = (
a
u

)A = (a′)A = j((a′)A′).

�

But, since j is injective, we haved = (a′)A′ i.e. Ker(ϕ) = F(A′). Hence
θ is a monomorphism.

Now assume that no prime divisor ofA is ramified overA′. Let
α ∈ (h(K∗) ∩ US)

/

h(U)
, α = h(a) ( mod h(U)). Sinceh(K∗) = h(A∗),

we may assume thata ∈ A. Sinces(a)/a ∈ U, for s ∈ S, the divisor

(a) is invariant underG. Now, by hypothesis for any prime divisor
Y ′ ∈ D(A′), we havej(Y ′) = Y1 + · · · + Yg, where theYi form
a complete set of prime divisor lying overY ′. Further theYi are
conjugate to each other. Since the divisor (a) is invariant underG,
the prime divisors which are conjugate to each other occur with
the same coefficient in (a) so that (a) is the sum of divisors of
form j(Y ′), Y ′ ∈ P(A′). Henceθ is surjective and therefore an
isomorphism.

Remark 1. ForS = G the group (h(K∗)∩(U)G)
/

h(U) is thecohomology

group H1(G,U): in fact a system(
s(x)

x
)s∈G for x ∈ K∗ is the most gen-

eral cocycle of G in K∗ (since H1(G1K∗) = 0, as is well known), whence
h(K∗)∩(U)G = Z1(G,U); on the other hand h(U) is obviously the group
B1(G,U) of coboundaries. The preceding theorem may also be proved
by the following cohomological argument. As usual, if G operates on a
set E, we denote by EG the set of invariant elements of E; we recall that57

EG = Ho(G,E). Now, since H1(G,K∗) = 0, the exact sequence

0→ U → K∗ → F(A)→ 0

gives the exact cohomology sequence

0→ UG → (K∗)G → F(A)G → H1(G,U)→ 0.
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On the other hand, sinceUG is the group of units inA′ = AG, we have

0→ UG → (K∗)G → F(A′)→ 0

and therefore,

0→ F(A′)→ F(A)G → H1(G,U)→ 0

In other words,H1(G,U) = (invariant principal divisors ofA) / (divisors
of A induced by principal divisors ofA′). This gives immediately a
monomorphismθ : ker( j̄) → H1(G,U). If A is divisorially unramified
over A′, one sees, as in the theorem, that every invariant divisor ofA
comes fromA′, thusθ is surjective in this case.

Remark 2. SupposeG is a finite cyclic group generated by an element
says. Then we may takeS = {s}. By Hilbert’s Theorem 90, the group
h(K∗) is precisely the group of elements of norm 1. Thus (h(K∗) ∩
U)/h(U) is the group of units of norm 1 moduloh(U).

Remark 3. The hypothesis of ramification is essential in the above the-
orem. For instance letA = Z[i], i2 = −1, G = {1, σ}, σ(i) = −i. Then
A′ = Z, C(A′) = C(A) = 0. Hence Ker(̄j) = 0. However,U ∩ h(K∗) =
{1,−1, i,−i}, h(U) = {1,−1}. Thus (h(K∗) ∩ U)

/

h(U) ≈ Z/(2).

We note that the prime number 2 is ramified inA. 58

Examples: Polynomial rings.

1. Let k be a fied andA = k
[

x1, . . . , xd
]

, the ring of polynomials ind
variables,d ≥ 2. Let n be an integer with (n, p) = 1, p being the
characteristic ofk and letk contain a primitiventh root of unity w.
Consider the automorphisms : A→ A with xi  wxi , 1 ≤ i ≤ d and
let G be the cyclic group of ordern generated bys. Then the ring
of invariantsA′ is generated by the monomials of degreen in the xi ;
geometrically this is then-tuple model of the projective space. Set
Fi(X) = Xn − xn

i . Now any ramified prime divisor ofA must contain
F′i (xi) = nxn−1

i . Thus there is no divisorial ramification inA. Here
U = k∗ and the group of units of norm 1 is the group ofnth roots of
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unity. Furtherh(U) = {1}, (h(K∗) ∩ U)
/

h(U) ≈
Z

(n)
, by Remark 2.

SinceA is factorial, by Theorem 3.1, we haveC(A′) ≈ Z/(n).

2. Letk,w, n, be as in (1) andA = k[x, y]. Let sbe thek-automorphism
of A defined byx  wx, y  w−1y. The ring ofG-invariants
A′ = k

[

xn, yn, xy
]

, i.e. A′ is the affince coordinate ring of the surface
Zn = XY. Again as in (1) there is no divisorial ramification,U = k∗

andC(A′) ≈ Z/(n).

3. Let k be a field andA = k
[

X1, . . .Xn
]

. Let An denote the alternating
group. NowAn acts onA. If the characteristic ofk is , 2, then the
ring of An-invariants isA′ = k

[

s1, . . . , sn,△
]

wheres1 · · · sn denote
the elementary symmetric functions and△ =

∏

1< j)
(xi − x j). If char-59

acteristick = 2, then△ is also symmetric andA′ = k
[

s1, . . . , sn, α
]

,

whereα =
1
2

(
∏

i< j
(xi − x j) +

∏

i< j
(xi + x j)).

As the coefficients of
∏

i< j
(xi − x j) +

∏

i< j
(xi + x j) are divisible by 2, the

elementα has a meaning in characteristic 2. Further there is no divisorial
ramification inA overA′. For the only divisorial ramifications ofA over
k
[

s1, . . . , sn
]

are those prime divisors which containF′(xi) =
∏

j,i
(x j− xi),

whereF(X) =
∏

(X − x j). Since△ =
∏

i< j
(xi − x j) ∈ A′ (in characteristic

2, △ is in fact in k
[

s1, . . . , sn
]

), there is no divisorial ramification inA
over A′. HenceC(A′) ≈ H1(An,U), by the remark following Theorem
1.1. ButU = k∗ andAn acts trivially onk∗. HenceC(A′) ≈ H1(An,U) is
the group of homomorphisms ofAn into k∗. Thus ifn ≥ 5, An is simple
and thereforeC(A′) = 0 i.e. A′ is factorial. The only non-trivial cases
we have to consider are,n = 3, 4. For n = 3, An is the cyclic group
of order 3. HenceC(A′) = 0 if k does not contain cube roots of unity,
otherwiseC(A′) ≈ Z/(3). We now consider the casen = 4. We have
[A4,A4] =

{

1, (2 2)(3 4), (1 4)(2 3), (1 3)(2 4)
}

andA4
/[

A4,A4
]

≈ Z/(3).
Now the group of homomorphisms ofA4 into k∗ is isomorphic to the
group of homomorphisms ofA4

/[

A4,A4
]

into k∗. Hence, is in the case
n = 3, C(A′) = 0 if k does not contain cube roots of unity; otherwise
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C(A′)≈Z/(2).

Example.Power series rings. We first prove the following lemma.

Lemma 1.2. Let A be a local domain,M its maximal ideal. Let s be60

an automorphism of A of order n, (n, char(A/M )) = 1. Let U denote
the group of units of A and h the mapping K∗ → K∗ with x s(x)/x,
K being the quotient field of A. Then(1 +M ) ∩ h(K∗) ⊂ h(U) (i.e.
im(H′(G, I +M )→ H′(G,U)) = 0, where G is the group generated by
s).

Proof. Let u ∈ 1 +M , u = s(x)/x, x ∈ K∗. Thenu has norm 1, i.e.
N(u) = u1+s+···+sn−1

= 1. Setv = 1+ u+ u1+s+ · · ·+ u1+···+sn−2
. Thenv ≡

n.1( modM ). Sincen is prime to the characteristic ofA/M , it follows
thatv is a unit. Further we haves(v) = 1+us+us+s2

+ · · · us+1···+sn−1
and

us(v) = v i.e. u = s(v−1)
/

v−1 ∈ h(U) and the lemma is proved. �

In the examples (1) and (2) of polynomial rings we replace therings
A = K

[

x1, . . . , xd
]

andA = K[x, y] respectively byA = K
[

[x1, . . . , xd]
]

andA = K
[

[x, y]
]

. Since inA we haveU
/

(1 +M ) ≈ k∗, we obtain the
same results as in the case of ring of polynomials, in view of the above
lemma.

Proposition 1.3. Let A be a local ring,M its maximal ideal. Let G
be a finite group of automorphisms of A, acting trivially on k= A/M .
Further, assume that there are no non-trivial homomorphisms of G into
k∗ and that(Card(G), Char (k)) = 1. Then H1 (G,U) = 0,U being the
group of units of A. In particular, if A is factorial, so is A′.

Proof. Let (us)s∈G, us ∈ U, be a 1-cocycle ofG with values inU. Then
uss′ = s(us′ ).us. Reducing moduloM , we getūss′ = ūs′ · ūs, sinceG acts
trivially on k. We have made the hypothesis that there are no non-trivial
homomorphisms ofG into k∗. Henceus ∈ 1+M , s∈ G. Sety =

∑

t∈G
ut. 61

Theny = Card (G) · 1 ( modM ). Thusy ∈ U. Now s(y) =
∑

t∈G
s(ut) =

∑

t

ust

us
=

1
us

y i.e. us = s(y−1)
/

y−1. HenceH1(G,U) = 0. �
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Corollary . Let A = k
[

[x1, . . . , xn]
]

. Let k be of characteristic p> n
or 0. Let An be the alternating group on n symbols. Then for n≥ 5,
H1(G,U) = 0, i.e. the ring of invariants A′ is factorial.

For further information about the invariants of the alternating group
we refer to Appendix 1.

2 The Purely inseparable case

Let A be a Krull ring of characteristicp , 0, and letK be its quotient
field. Let△ be a derivation ofK such that△(A) ⊂ A. SetK′ = Ker(△)
andA′ = A∩K′. ThenA′ is again a Krull ring andAp ⊂ A′, Kp ⊂ K′. In
particular,A is integral overA′. Hence the mappingj : D(A′) → D(A)
of the group of divisors goes down to a mappingj̄ : C(A′) → C(A) of
the corresponding divisor class groups. We are interested in computing
Ker( j̄). SetD1 = j−1(F(A)), so that Ker(̄j) = D1/F(A′). Let d ∈ D1,
and j(d) = (a), a ∈ K∗. From the definition ofj it follows that ep

divides vp(a), where p is a prime divisor ofA, vp the corresponding
valuation andep the ramification index ofvp. Hence there exists an
a′ ∈ K′∗ such thatvp(a) = vp(a′), i.e. a = a′.u, u being a unit inAp.

Thus△a/a = △a′/a′ + △u/u =
△u
u

. Since△(Ap) ⊂ Ap, it follows that

△a/a ∈ Ap, for all prime divisorsp of A, i.e. △a/a ∈ A. We shall62

call ax ∈ K, a logarithmic derivativeif x = △t/t for somet ∈ K∗.
The set of all logarithmic derivative is an additive subgroup of K. Set
L =

{

△t/t
∣

∣

∣△t/t ∈ A, t ∈ K∗
}

. Let U denote, as before, the group of units
of A and setL ′ =

{

△u/u
∣

∣

∣u ∈ U
}

. Now L ′ ⊂ L . For ad ∈ Di with
j(d) = (a), a ∈ K∗, △a/a ∈ L is uniquely determined moduloL ′. Let
ϕ denote the homomorphism :D1 → L /L ′, d △a/a( mod L ′) if
j(d) = (a). Now ϕ(d) = 0 ⇔ △a/a = △u/u, for u ∈ U ⇔ △(a/u) = 0
i.e. a/u = a′ ∈ K′ ⇔ (a)A = (a′)A. But j((a′)A′) = (a′)A′ and j is
injective. Henced = (a′)A′ . Thus Ker(ϕ) = F(A′). We have proved the
first assertion of the following theorem.

Theorem 2.1. (a) We have a canonical monomorphismϕ : Ker( j̄) →
L
/

L ′.
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(b) If [K : K′] = p and if△(A) is not contained in any prime ideal of
height 1 of A, then̄ϕ is an isomorphism.

Proof. To complete the proof of the theorem, we have only to show
that ϕ̄ is surjective under the hypothesis of (b). AsK/K′ is a purely
inseparable extension, every prime divisor ofA′ uniquely extends to a
prime divisor ofA. Thus a divisord =

∑

p∈P(A)
npp ∈ Im( j) if and only

if ep
/

np whereep denotes the ramification index ofp. SinceAp ⊂ A′,
it follows that for any prime divisionp of A, ep = 1 or p. Let a ∈ K∗

be such that△a/a ∈ A. It is sufficient to prove that for a prime divisor
p of A, if n = vp(a) is not a multiple ofp, thenep = 1. Let t be a
uniformising parameter ofvp. Let a = utn, u being a unit inAp. Then
△u/u + n △t/t = △a/a ∈ Ap. Hence,△t/t ∈ Ap, i.e. △ induces a 63

derivation△̄ on the residue class fieldk = Ap
/

tAp. By hypothesis, since
△A 1 p, we have△̄ , 0. Let k′ be the residue class field ofp ∩ A′.
Thenk′ ⊆ Ker(△̄) ⊂

,
k. Thus f = [k : k′] , 1. Since [K : K′] = p, and

kp ⊂ k′, we havef = p. Now the inequalityep f ≤ [K : K′] = p gives
ep = 1. The proof of Theorem 2.1 is complete. �

3 Formulae concerning derivations

Let K be a field of characteristicp , 0 and letD : K → K be a deriva-
tion. Let tD denote the derivationx t. D(x). We note thatDp, thepth

iterate ofD, is again a derivation.

Proposition 3.1. Let D : K → K be a derivation of K(char K= p , 0).
Assume that[K : K′] = p. Then

(a) Dp = aD, a∈ K′ = KerD.

(b) If A is a Krull ring with quotient field K such that D(A) ⊂ A, that
a ∈ A′ = K′ ∩ A.

Proof. (a) By hypothesisK = K′(z), zp ∈ K′. For anyK′- derivation

△ of K, △ =
△z
Dz

D. In particularDp = aD for a ∈ K. Hence
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Dp+1
a = D(Dpa) = D(a · Da) = (Da)2 + aD2a. On the other hand,

Dap+1 = Dp(Da) = aD2a. HenceDa = 0 i.e. a ∈ K′.

(b) SinceA =
⋂

p∈P(A)
Ap and D(Ap) ⊂ Ap, we have only to deal with

the case whenA is a discrete valuation ring. Letv denote the corre-
sponding valuation. Lett ∈ A, with v(t) = 1. We haveDpt = a · Dt.

If v(Dt) = 0, thena =
1
Dt

, Dpt ∈ A. Assumev(Dt) > 0. Then for

x ∈ A, we havev(Dx) ≥ v(x). For is x = utn with v(u) = 0. In
particular,v(Dpt) ≥ v(Dt) i.e. a ∈ A.

�

Proposition 3.2. Let D : K → K be a derivation of, K(char K= p , 0).64

Let K′ = KerD and [K : K′] = p. An element t∈ K is a logarthmic
derivative (i.e. there exists an x∈ K such that t= Dx/x) if and only if

Dp−1(t) − at + tp = 0,

where Dp = aD.

Proof. We state first the following formula of Hochschild (Trans.
A.M.S. 79(1955), 477-489). �

Let K be a field of characteristicp , 0 andD a derivation ofK. Then

(tD)p = tpDp + (tD)p−1(t).D

(t ∈ K, tD denotes the derivationx  t.Dx). We have to prove the
proposition only in the case whent , 0.

Let now t be a logarthmic derivative, sayt = Dx/x. Set△ =
1
t
D.

Then by Hochschild’s formula, we have,

Dp = (t△)p = tp△p + (t△)p−1(t)△.

= tp△p + Dp−1(t) · △ = aD.

But △nx = x, for n ≥ 1. Hencea.Dx = tpx+ Dp−1(t)x, i.e.

tp − at + Dtp−1(t) = 0.
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Conversely assume thatt is such thatDp−1t − at+ tp = 0. Set△ =
1
t
.D. Again by Hoschschild’s formula, we haveDp = (t△)p = tp△p +

Dp−1(t).△ = aD = a.t△, i.e. a.t△ = tp△p+ (at− tp)△ i.e. tp(△p−△) = 0,
i.e. △p − △ = 0, i.e. (△ − (p− 1)I ) · · · (△ − 2I )(△ − I ) = 0, whereI is the
identity mapping ofK into K. Choosey ∈ K with y1 = △y , 0 and set 65

y2 = (△ − I )y1, . . . , yp = (△ − (p− 1)I )yp−1(= 0). Then, there exists aj
such thaty j−1 , 0 andy j = (△ − jI )y j−1 = 0.
Hence

△y j−1 = jy j−1, i.e. △y j−1
/

y j−1 = j ∈ F∗p, Fp

being the prime field of characteristicp. Letnbe the inverse ofj modulo

p. Setx = yn
j−1. Then

△x
x
= n

y j−1

y j−1
= n j = 1, i.e.△x = x i.e. t = Dx/x.

4 Examples: Polynomial rings

Let k be a factorial ring of characteristicp , 0. SetA = k[x, y]. Let D
be ak-derivation ofA andA′ = Ker(D). The group of unitsU of A is
the group of units ofk. Hence hereL ′ = 0. SinceA is factorial, we by
Theorem 2.1, an injection ofC(A′) = Ker( j̄) into L . (We recall thatL
is the group of logarthmic derivatives contained inA and thatL ′ is the
group of logarthmic derivatives of units.) We shall now consider certain
specialk-derivations ofA.

(a) The Surface Z p
= XY. Consider the derivationD of A k[x, y]

with Dx = x and Dy = −y. Thenk[xp, yp, xy] ⊂ A′ = Ker(D).
Let L,K,K′ denote the quotient fields ofk,A,A′ respectively. Now
L[xp, yp, xy] is the coordinate ring of the affine surfaceZp = XY.
Since the surfaceZp = XY has only an isolated singularity (at the
origin), it is normal. Butk[xp, yp, xy] = L[xpyp, xy]∩k[x, y]. Hence
k[xp, yp, xy] is normal. SinceA′ is integral overk[xp, yp, xy] and has
the same quotient field ask[xp, yp, xy], we haveA′ = k[xp, yp, xy].
We note that the hypothesis of Theorem 2.1 (b) is satisfied here. 66

HenceC(A′) = L . Now L =
{

DP/P
∣

∣

∣P ∈ K,DP/P ∈ A
}

. For
P ∈ A, we havedo(DP) ≤ do(P). HenceDP/P ∈ L if and only if
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DP/P ∈ k. The formulaD(xayb) = (a− b)xayb shows thatL = Fp,
the prime field of characteristicp. HenceC(A′) ≈ Z/(p).

(b) The surfaceZ p
= Xi

+ Y j. Again we takeA = k[x, y], k a factorial
ring of characteristicp , 0. LetD be thek-derivation ofA given by
Dx = jy j−1, Dy = −ixi−1, wherei, j are positive integers prime to
p. Let K,K′, L denote the quotient fields ofA,A′ = Ker(D) andk
respectively. We havek[xp, yp, xi + y j] ⊂ A′ and [L(xp, yp, xi + y j) :
K] = p. HenceK′ = L(xp, yp, xi + y j). Now L[xp, yp, xi + y j ]
is the coordinate ring of the affine surfaceZp = Xi + Y j which
is normal since it has only an isolated singularity (at the origin).
HenceL[xp, yp, xi + y j ] is integrally closed. Butk[xp, yp, xi + y j ] =
L[xp, yp, xi+y j ]∩k[x, y]. Hencek[xp, yp, xi+y j ] is integrally closed.
SinceA′ is integral overk[xp, yp, xi+y j], we haveA′ = k[xp, yp, xi+

y j ]. We remark that ourD satisfies the hypothesis of Theorem 2.1
(b). HenceC(A′) =

{

DP/P
∣

∣

∣P ∈ K,DP/P ∈ A
}

. We shall now
computeL . We attach weightsj and i to x and y respectively.
By Proposition 3.1, we haveDp = aD with a ∈ A′. It is easily
checked that ifG is an isobaric polynomial of weightw, thenDG is
isobaric weightw+ i j − i− j and thereforeDpG is isobaric of weight
w+ p(i j − i − j). Now Dpx = aDx. Comparing the weights we see
thata is isobaric of weight (p− 1)(i j − i − j).

Let F be a polynomial which is a logarthmic derivative. LetFα of67

weight α (respectivelyFβ of weight β) be the component of smallest
(respectively largest) weight ofF. By Proposition 3.2,F is a logarthmic
derivative if anly only ifDp−1F −aF = −Fp. Comparing the weights of
the components with smallest and largest weights on both sides, we get
weight (Dp−1Fα − aFα) ≤ weight (Fp

α) and weight (Dp−1Fβ − aFβ) ≥
weight (Fp

β
). That ispα ≥ α+(p−1)(i j− i− j), pβ ≤ β+(p−1)(i j− i− j).

Hencei j − i− j ≤ α ≤ β ≤ i j − i− j i.e. α = β = i j − i− j. HenceF must
be isobaric of weighti j − i − j. Setd = (i, j), i = dr, j = ds. Thus, the
monomials that can occur inF are of the formxλyµ, λ j + µi = i j − i − j
i.e. λs+ µr = drs− r − s, i.e. (λ + 1)s= (ds− µ − 1)r. Since (r, s) = 1,
λ + 1 is a multiple ofr. Thus the smallest value ofλ admissible isr − 1,
the correspondingµ being (d−1)s−1. ThusF is necessarily of the form
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F =
d−1
∑

n=1
bnxnr−1y(d−n)s−1. If d = 1, thenL = 0 andA′ is factorial. If

d > 1, the coefficients ofDp−1F−aF will be linear forms inb1, . . . , bd−1

and those of−Fp are pth powers ofb1, . . . , bd−1. ThusF is a logarth-
mic derivative if and only ifbp

n = Ln(b), L′n′(b) = 0, 1 ≤ n ≤ d − 1,
1 ≤ n′ ≤ t, whereLn(b), L′n′(b) are linear forms occuring as the coeffi-
cient ofDp−1F − aF.

L′n′(b) indicates the ones which do not occur in−Fp. The hypersur-
facesbp

n = Ln(b) intersect at a finite number of points in the profective
spacePd−1 and, by Bezout’s theorem, the number of such points in the
algebraic closure ofL is atmostpd−1. As L is an additive subgroup of
A, L is a p-group of type (p, . . . , p) of orderpf , f ≤ d − 1. Hence we 68

have proved the

Theorem 4.1. Let k be a factorial ring of characteristic p, 0, and let
i, j be two positive integers prime to p and d= (i, j). Then the group
C(A′) of divisor classes of A′ = k[X,Y,Z] with Zp = Xi + Y j is a finite
group of type(p, . . . p) of order pf with f ≤ d − 1. In particular A′ is
factorial if i and j are coprime.

We can say more aboutC(A′) in the casep = 2. Let k be of char-
acteristic 2. ThenD2 = 0, i.e. a = 0. The equation for the logarth-
mic derivative then becomesDF = F2. As aboveF is of the form

F =
d−1
∑

n=1
bnxnr−1y(d−n)s−1. Here i, j, r, s, d are all odd integers. If

n is odd, thenD(bnxnr−1y(d−n)s−1 = bnxnr−1+dr−1y(d−n)s−2. The corre-
sponding term inD2F is b2

mx2mr−2y2(d−m)s−2, where 2m = n + d =
2q + 1 + d(n = 2q + 1), bn = b2

m. Setd = 2c − 1. Thenm = q + c.
Thusb2q+1 = b2

q+c. On the other hand letn be even, sayn = 2q. The
D(bnxnr−1y(d−n)s−1) = bnxnr−2y(d−n)s−1+ds−1. The corresponding term in
D2F is b2

mx2mr−2y2(d−m)s−2, wherebn = b2
m andnr − 2 = 2mr − 2 i.e.

2m= n = 2q. Henceb2q = b2
q. ThusF is a logarthmic derivative if and

only if the equationsb2q+1 = b2
q+c andb2q = b2

q, d+1 = 2c, are satisfied.
Consider the permutation

∏

of (1, 2, . . . , d−1) given by,
∏

(2q) = q,
1 ≤ q ≤ c− 1,

∏

(2q− 1) = q+ c, 0 ≤ q ≤ c− 2. Now the equations for
the logarthmic derivative can be written asbq = b2

Π(q), 1 ≤ q ≤ 2c − 2.
Let U1, . . . ,Ul be the orbits of the group generated by

∏

and let Card
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(Ui) = u(i). Thenu(1)+· · ·+u(l) = 2c−2. If Ue = (q1, . . . qu(e)), then the69

equationsbq1 = b2
Π(q1), . . . , bqu(e) = b2

Π(qu(e))
are equivalent tob2u(e)

q1
= bq1.

Thus the solutions ofb2u(e) = bgive rise to solution ofbm = b2
Π(m), where

m ∈ Ul . But the solutions ofb2u(e)
= b in k is the groupF(2u(e))∩k, where

F(2u(e)) is the field consisting of 2u(e) elements. Hence the groupL of

logarthmic derivatives is isomorphic to
1
∏

e=1
(F(2u(e))∩ k). Hence we have

proved the following

Theorem 4.2. Let k be a factorial ring of characteristic 2 and let i, j
be odd integers and d= (i, j). Let A′ = k[X,Y,Z], Z2 = Xi + Y j. The
group C(A′) is of the type(2, . . . , 2) and of order2u with u≤ d − 1. If k
contains the algebraic closure of the prime field, then the order of C(A′)
is 2d−1.

Remark . It would be interesting to know if the above theorem is true
for arbitrary non-zero characteristics. We remark that forp = 3 and for
the surfacesZ3 = X2 + Y4, Z3 = X4 + Y8, the analogue of the above
result can be checked.

5 Examples: Power series rings

Let A be a Krull ring andD : A→ A, a derivation ofA. Let L denote
the group of logarthmic derivatives contained inA andL ′ the group
of logarthmic derivatives of units ofA. Setq = A · D(A). We have,
L ′ ⊂ q∩L . We prove the other inclusion in a particular case.

Lemma 5.1. Let A be a factorial ring of characteristic 2 and D: A→ A70

be a derivation of A satisfying D2 = aD, with a∈ Ker(D). Assume that
there exist x, y ∈ Rad(A) such that q= (Dx,Dy). ThenL ′ = L ∩ q.

Proof. Let t ∈ L ∩ q, sayt = cDx+ dDy. If r = (Dx,Dy). By consid-

ering the derivation
1
r

D, we may assume thatDx andDy are relatively

prime. Sincet ∈ L , by Proposition 3.2, we haveDt + at + t2 = 0.
Substitutingt = cDx+ dDy in this equation, we get

Dx(Dc+ c2Dx) = Dy(Dd + d2Dy).
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�

SinceDx andDy are relatively prime, there is anα ∈ A such that

Dc+ c2Dx = αDy,Dd + d2Dy = αDx.

Setu = 1+ cx+ dy+ (cd+α)xy. The elementu is a unit inA. A straight
forward computation shows thatDu = tu. The proof of the lemma is
complete.

(a) The surface Z2
= XY in characteristic 2. Let k be a regular

factorial ring. Then, by Theorem 2.1,A = k
[

[x, y]
]

is factorial. Let
D be the k-derivation ofA given byDx = x,Dy = y. Then as in
§4,A′ = ker(D) = k

[

[x2, y2, xy]
]

= k
[

[X,YZ]
]

,Z2 = XY. Here,q =
(x, y) and [K : K′] = 2. Hence, by Theorem 2.1,C(A′) ≈ L /L ′.
By Lemma 5.1, we haveL /L ′ = L

/

(L ∩ q = (L + q
/

q. This,

and the formulaD(xayb) = (a−b)xayb show that (L +q)/q ≈ F2 =

Z/(2).

(b) The SurfaceZ2
= X2i+1

+ Y2 j+1 in characteristic 2. Let k be a 71

regular factorial ring andA = k
[

[x, y]
]

. Let D be thek-derivation
defined byDx = y2 j ,Dy = x2i . ThenA′ = k

[

[x2, y2, x2i+1+y2 j+1]
]

=

k
[

[X,Y,Z]
]

,Z2 = X2i+1+Y2 j+1. We haveq = AD(A) = (x2i , y2 j) and

[K : K′] = 2. HenceC(A′) ≈ L /L ′. SinceD2 = 0, an element
F ∈ A is a logarthmic derivative if and only ifDF = F2. We assign
the weights 2j + 1 and 2i + 1 to x andy respectively. For anF ∈ A
with F =

∑

l≥q
Fl , whereFl is an isobaric polynomial of weightl,

Fq , 0, we callq the order ofF, 0(F) = q. As in Theorem 4.1,
D elevates the weight of an isobaric polynomial by 4i j − 1, Hence,
if F ∈ L and 0(F) = q, then 0(F) = 2q = 0(DF) = q + 4i j − 1.
Henceq ≥ 4i j − 1.

Let Lq =
{

F
∣

∣

∣F ∈ L , 0(F) ≥ q
}

. Now
{

Lq
}

q≥4i j−1 filters L and
L ′

q = Lq ∩L ′ filters L ′. HenceC(A′) = L /L ′ is filtered byCq =

(Lq +L ′)/L ′≈Lq/L ′q. In view of Lemma 5.1, we haveLq = L ′
q for

q large, ie.eCq = 0, for q large. Since theCq are vector spaces overF2,
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the extension problem here is trivial. HenceC(A′) ≈
∑

q≥4i j−1
Cq/Cq+1.

Since 0(x2i ) = 2i(2 j + 1) > 4i j and 0(y2 j ) = 2 j(2i + 1) > 4i j , we
haveL ′ = L ∩ q ⊂ L4i j . ThereforeC4i j−1

/

C4i j = L4i j−1
/

L4i j . By

Theorem 4.2,L4i j−1
/

L4i j is a finite group of type (2, . . . , 2) of order 2f ,
with f ≤ d − 1, d = (2i + 1, 2 j + 1). We now determineCq

/

Cq+1, for
q ≥ 4i j . Let A(q) denote the k-free module generated by monomials of72

weightq. Let ϕq : Lq → A(q) be the homomorphism given byϕq(F) =
component ofF of weightq, F ∈ Lq. Then ker(ϕq) = Lq+1. We shall
now prove

ϕq(Lq) = A(q) ∩ A′, q ≥ 4i j, (*)

ϕq(L ′
q) = A(q) ∩ A′ ∩ q, q ≥ 4i j. (**)

Note that (∗∗) is a consequence of (∗) and the fact that

L
′
q = Lq ∩ q.

Proof if (*). Let F = Fq + Fq+1 + · · · ∈ Lq, Fq being of weight q. Since
DF = F2, and weight DFq = q + 4i j − 1 < 2q, we have DF= 0,
i.e. ϕq(F) = Fq ∈ A(q) ∩ A′. Conversely, let Fq ∈ A(q) ∩ A′. We
have to find Fn, n ≥ q, Fn isobaric polynomial weight n, such that F=
∑

n≥q
Fn ∈ Lq, i.e. DF = F2. Hence we have to determine Fn such

that DFn = 0, if n is even or n+ 4i j − 1 < 2q and DFn = F2m, if
2m = n+ 4i j − 1(m < n). Thus Fn have to determined by ‘integrating’
the equation DFn = G2, where G= 0 or an isobaric polynomial of
weight q. Because of the additivity of the derivation, we have only to
handle the case G= xαyβ, α(2 j + 1) + β(2i + 1) ≥ q ≥ 4i j. In this
case, eitherα ≥ i or β ≥ j. If α ≥ i, we take Fn = x2(α−i)y2β+1 and
if β ≥ j, we take Fn = x2α+iy2(β− j). Thus proves(∗) and hence also
(∗∗). This gives Cq

/

Cq+1 ≈ (A(q) ∩ A′)
/

(A(q) ∩ A′ ∩ q), q ≥ 4i j. Hence
Cq
/

Cq+1, q ≥ 4i j is a k-free module of finite rank, say n(q). Hence
C(A′) ≈ C4i j−1

/

C4i j ⊕ C4i j , where C4i j is a k-free module of finite rank73

N(i, j) =
∑

q≥4i j
n(q). We now determine the integer N(i, j). We observe

that in A, the ideal qadmits a supplement generated by the monomials
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xqyb such that a< 2i, b < 2 j. Since x2i+1 + y2i+1 ∈ q, in A′, the ideal
q ∩ A′ admits a supplement generated by the monomials x2ay2b such
that 2a < 2i, 2b < 2 j. Thus N(i, j) is equal to the number of monomials
x2ay2b, with 0 ≤ 2α < 2i, 0 ≤ 2β < 2 j and weight of x2ay2b ≥ 4i j.
Hence we have the

Theorem 5.2. Let k be a factorial ring of characteristic 2, and i, j
two integers with(2i + 1, 2 j + 1) = d. Let A′ = k

[

[X,Y,Z]
]

, where
Z2 = X2i+1+Y2 j+1. Then the divisor class group C(A′) ≈ H ⊕G, where,
H is a group of type(2, . . . , 2) of order2f , f ≤ d − 1; (if k contains the
algebraic closure of the prime fieldF2, then H is of order2d−1); further
G ≈ kN(i, j), where N(i, j) is the number of pairs of integers(a, b) with
0 ≤ a < i, 0 ≤ b < j and (2 j + 1)a+ (2i + 1)b ≥ 2i j.

Remarks.1) The functionN(i, j) ∼ i j/2

2) N(i, j) = 0 if and only if the pair (a, b) = (i − 1, j − 1) does not
satisfy the inequality (2j + 1)a+ (2i + 1)b ≥ 2i j , i.e. if (i, j) satisfies
the inequality 2i j − i − j < 2. This is satisfied only by the pairs (1,
1), (1, 2) and (1, 3), barring the trivial casesi = 0 or j = 0. Hence,
upto a permutation the only factorial ring we obtain is, except for the
trivial cases,k

[

[X,Y,Z]
]

, Z2 = X3 + Y5. In view of Theorem 4.1 and
Theorem 5.2, the pairs (2i +1, 2 j +1) , (3,5), (5, 3), for which 2i +1 74

and 2j + 1 are relatively prime, provide examples of factorial rings
whose completions are not factorial.

(c) Power series ring.Let k be a regular factorial ring of characteris-
tic 2. Let A = k[x, y] (resp. k

[

[x, y]
]

) and R = A
[

[T]
]

. We define a
k-derivationD : R→ R by Dx = y2 j , Dy = x2i , DT = 0. Then KerD =
A′
[

[T]
]

, whereA′ = k[x2, y2, x2i+1+y2 j+1] (Resp.k
[

[x2, y2, x2i+1+y2i ]
]

).
For a Krull ringB, let L (B) andL ′(B) denote the group of logarthmic
derivatives inB and the group of logarthmic derivatives of the units of
B, respectively. We will computeC(R) = L (R)

/

L ′(R). An F ∈ R is
in L (R) if and only if DF = F2 (sinceD2 = 0). Let F =

∑

n
anTn.

Then F ∈ L (R) if and only if Dao = a2
o, Da2n+1 = 0, Da2n = a2

n.
Since by Lemma 5.1,L ′(R) = L (R) ∩ q, whereq = (Dx,Dy), we
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haveF ∈ L ′(R) if and only if Dao = a2
o, Da2n+1 = 0, Da2n = a2

n
and an ∈ (Dx,Dy). Thus F ∈ L (R) (resp. .L ′(R)) implies ao ∈

L (A) resp. .ao ∈ L ′(A)). Further,L (R)
/

L ′(R) ≈ L (A)
/

L ′(A) ⊕
L (R) ∩ TR
L ′(R) ∩ TR

. As before we assign weights 2j + 1, 2i + 1 to x andy re-

spectively. Letq(n) = 0(an). Now if F ∈ L (R), thenDan = a2
n. Hence

q(2n)+q ≤ 2q(n), whereq = 4i j−1. That is ,q(2n)−q ≤ 2(q(n)−q). By
induction, we getq(2rn) − q ≤ 2r (q(n) − q) for r ≥ 1. Sinceq(2rn) ≥ 0,
we conclude thatq(n) ≥ q. A computation similar to that in Theorem
5.2 shows that the ‘integration’ ofDa2n = a2

n is possible. Further if
an ∈ q = (Dx,Dy), thena2n can be chosen inq.

Let A(q) be the set of elements of order≥ q. In computingF ∈ L (R),75

each integration introduces an ‘arbitrary element’ ofA′ ∩ A(q). In com-
puting F ∈ L ′(R), each integration introduces an arbitrary constant of
A′∩A(q)∩q. Hence (L (R)∩TR)

/

L ′(R)∩TRis the product of countably

many copies ofV = (A′ ∩ A(q)/(A′ ∩ A(q) ∩ q). As in the last example,
V is ak-free module of rank equal to the numberN(i, j) of pairs (a, b)
with 0 ≤ a < i, 0≤ b < j, (2j + 1)2a+ (2i + 1)2b ≥ q = 4i j − 1 and this
inequality is equivalent to (2j + 1)a + (2i + 1)b ≥ 2i j . Hence we have
the

Theorem 5.3. Let k be a factorial ring of characteristic 2, and i, j two
integers. Let A′ = k[X,Y,Z] (or k

[

[X,Y,Z]
]

) with Z2 = X2i+1 + Y2 j+1.
Then C(A′

[

[T]
]

)
/

C(A′) ≈ (k
[

[T]
]

)N(i, j) where N(i, j) is the number of
pairs (a, b) with 0 ≤ a < i, 0 ≤ b < j and (2 j + 1)a+ (2i + 1)b ≥ 2i j.

Remarks. (1) TakeA′ = k
[

x2, y2, x2i+1+ y2 j+1] with (2i +1, 2 j +1) = 1
andN(i, j) > 0. ThenA′ is factorial, butA′

[

[T]
]

is not. (We have
thus to exclude onlyZ2 = X3 + Y5 and trivial cases.)

(2) Let A′ be the complete local ringA′ = k
[

[X,Y,Z]
]

, Z2 = X2i+1 +

Y2 j+1. ThenA′ andA′
[

[T]
]

are simultaneously factorial or simulta-
neously non-factorial.

(3) In general, the mappingC(A′)→ C(A′
[

[T]
]

) is not surjective.



Appendix

The alternating group operating on a power series
ring

76
We have seen (Chap. 3,§1) that the ringA′ of invariants of the

alternating groupAn operating on the polynomial ringk[x1, . . . , xn] is
factorial for n ≥ 5. Let us study the analogous question for the power
series ringA = k

[

[x1, . . . , xn]
]

; let U be the group of units inA, m the
maximal ideal ofA, andA′ the ring of invariants ofAn (operating by
permutations of the variables). We recall (Chap. 3,§1) thatC(A′) ≈
H1(An,U) sinceA is divisorially unramified overA′. We have already
seen (Chap. 3,§1, Corollary to Proposition 1.3) thatH1(An,U) = 0 if
the characteristicp of k is prime to the order ofAn, i.e. if p > n. Thus
what we are going to do concerns only fields of “small” characteristic.

Theorem.Suppose that p, 2, 3. Then with the notation as above, A′

is factorial for n≥ 5. For n = 3, 4, C(A′) is isomorphic to the group of
cubic roots of unity contained in k.

Our statement means thatC(A′) ≈ H1(An, k∗) = Hom(An, k∗). In
view of the exact sequence 0→ 1+M → U → k∗ → 0, we have only
to prove thatH1(An, 1+M ) = 0. For this it is sufficient to prove that

H1(An, (1+M s)
/

(1+M s+ 1) = 0 for every j ≥ 1. (1)

In fact, given a cocycle (xs) in 1 +M (s ∈ An, xs ∈ 1 +M ), it is a 77

coboundary modulo 1+M 2, i.e. there existsy1 ∈ 1+M such thatxs ≡

s(y1)y−1
1 mod 1+M 2. We setx2,s = xsy1s(y1)−1; now x2,s is a cocycle

61
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in 1+M 2, and therefore a coboundary modulo 1+M 3. By induction
we find elementsy1, . . . , y j1 · · · (y j ∈ 1 +M j) and x js ∈ 1 +M j such

that x1,s = xs and x j+1,s = x j,sy j s(y−1
j ). The product

∞
∏

j=1
y j converges

sinceA is complete; calling y its value, we havexsys(y−1) = 1 for every
s∈ An, which proves that (xs) is a coboundary.

In order to prove (1), we notice that the multiplicative group (1+
M j)
/

(1 +M j+1) is isomorphic to the additive groupM j/M j+1, i.e.
to the vector spaceWj of homogeneous polynomials of degreej. Our
theorem is thus a consequence of the following lemma:

Lemma 1. Let Sn(resp. .An) operate on k
[

x1, . . . , xn
]

by permutations
of the variables, and let Wj be the vector space of homogeneous poly-
nomials of degree j. Then

a) H1(Sn,Wj) = 0 if the characteristic p is, 2;

b) H1(An,Wj) = 0 if p , 2, 3

We consider a monomialx = x j(1)
1 · · · x j(n)

1 of degreej and its trans-
forms bySn(resp. .An). These monomials span a stable subspaceV of
Wj, andWj is a direct sum of such stable subspacesV. We need only
prove thatH1(Sn,V) = 0(resp. .H1(An,V) = 0). Now the distict trans-
forms xθ of the monomialx are indexed byG/H(G = Sn or An), where78

H is the stability group ofx; we haves(xθ) = xsθ for a ∈ G. We are
going to prove, in a moment, that

H1(G,V) = Hom (H, k) (G = Sn or An) (2)

Let us first see how (2) implies Lemma 1. The stability subgroup H
is the set of alls in Sn (or An) such that

∏

i
x j(i)

i = x = s(x) =
∏

i
x j(i)

s(i) =

∏

i
x j(s−1(i)), i.e. such thatj(s−1(i)) = j(i) for every i. ThusH is the set

of all s in Sn or An which, for every exponentr, leave the set of indices
s−1({r}) globally invariant. Denote byn(r) the cardinality ofs−1({r})
(i.e. the number of variablesxi having exponentr in the monomialx).
In the case ofSn, H is the direct product of the groupsSn(r); since a



5. Examples: Power series rings 63

nontrivial factor group ofSn(r) is necessarily cyclic of order 2, we have
Hom(H,K) = 0 in characteristic, 2; hence we geta) in Lemma 1. In
the case ofAn, H is the subgroup of

∏

r
Sn(r) consisting of the elements

(sr) such that the number of indices for whichsr ∈ Sn(r) − An(r) is even;
thusH containsH1 =

∏

r
An(r) as an invariant subgroup, andH/H1 is a

commutative group of type (2, 2, . . . , 2); on the other hand a nontrivial
commutative factor group ofAn(r) is necessarily cyclic of order 3 (this
happens only forn(r) = 3, 4); thus, if p , 2 and 3, who have Hom
(H, k) = 0, and this provesb).

We are now going to prove (2). More precisely we have the follow-
ing lemma (probably well known to specialists in homological algebra;
probably, also, high-powered cohomological methods couldmake the
proof less computational).

Lemma 2. Let G be a finite group, H a subgroup of G, k a ring, V a 79

free k-module with a basis(eθ) indexed by G/H. Let G operate on V by
s(eθ) = esθ. Then H1(G,V) ≈ Hom(H, k).

A system (vs =
∑

θ∈G/H
as,θeθ) (s∈ G, as,θ ∈ k) is a cocycle if and only

if vss′ = vs+ s(vs′ ) i.e. if and only if

ass′,θ = as,θ + as′,s−1θ. (3)

It is a coboundary if and only if there existsy =
∑

θ∈G/H
bθ eθ such that

vs = s(y) − y, i.e. if and only if there exist elementsbθ of k such that

as,θ = bs−1θ − bθ. (4)

Let ε denote the unit classH in G/H and, given a cocycle (vs) as
above, setϕv(h) = ah,ε for h in H. Sincehε = ε(h ∈ H), (3) shows that
ϕv is a homomorphism ofH into k. We obviously haveϕv+v′ = ϕv+ ϕv′ ,
whence a homomorphism

ϕ : Z1(G,V) (“cocycles′′)→ Hom (H, k).

By (4), we see thatϕ is zero on the coboundaries. Conversely if
ϕv = 0, we prove that (vs) is a coboundary. In fact, forθ ∈ G/H, choose



64 3. Descent methods

t ∈ G such thatθ = t−1ε, and setbθ = at,ε; this element does not depend
on the choice oft since, if t−1ε = u−1ε, thenut−1 ∈ H andu = ht with
h ∈ H; by (3), we haveau,ε = ahv,ε = ah,ε + at,h−1ε = at,ε (sinceϕa = 0).
Now, if θ = t−1

ε and if s ∈ G, we haves−1θ = (ts)−1θ, whencebθ = at,ε80

andbs−1θ = ats,ε. From (3) we getbs−1θ −bθ = ats,ε −at,ε = as,t−1ε = as,θ,
thus proving that (vs) is a coboundary.

Thus the proof of lemma 2 will be complete if we show thatϕ is
surjective. Letc be a homomorphism ofH into k. For everyθ in G/H,
we chooset(θ) in G such thatθ = t(θ)−1ε. Then everys ∈ G may be
written uniquely ass= h.t(µ) (h ∈ H, µ = s−1H). We set

as,θ = c(h), (5)

whereh is the unique element ofH such thatt(θ) · s = h.t(s−1θ) (no-
tice that t(θ).s.t(s−1θ)−1.ε = t(θ)s.s−1θ = t(θ).θ = ε, whencet(θ).s.t
(s−1θ)−1 ∈ H). Let us verify the “cocycle condition” (3). We have
ass′,θ = c(h), as,θ = c(h1) and as′,s−1θ = c(h2), with t(θ)ss′ = h.t
(s′−1s−1θ), t(θ)s = t( )s = h1t(s−1θ) and t(s−1θ).s′ = h2t(s′−1s−1θ).
From this we immediately deduce thath = h1h2. Sincec is a homomor-
phism, we havec(h) = c(h1) + c(h2), i.e. ass′ , θ = as,θ + as′s−1θ. Thus
vs =

∑

θ
asθeθ is a cocycle. For this cocycle, we have (forh ∈ H)ϕθv(h) =

ah,ε = c(h1), where, by (5),h1 is such thatt(ε).h = h1t(h−1ε) = h1t(ε);
since the additive group ofk is commutative, we havec(h) = c(h1),
whenceϕv(h) = c(h) for everyh ∈ H. Q.E.D
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