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Chapter O

In 1900, at the international Congress of Mathematiciang?anmis, 1
Hilbert posed twenty-three problems. His complete addwess pub-
lished in Archiv.f. Math.U.Phys.(3),1,(1901) 44-63,2237 (one can
also find it in Hilbert's Gesammelte Werke).

The fourteenth problem may be formulated as follow$e Four-
teenth Problems. Let K be a field and x ., x, algebraically indepen-
dents elements over K. Let L be a subfield 6f;K .., x,) containing
K. Isthe ring K[Xy, ..., Xs] N L finitely generated over K?

The motivation for this problem is the following special eason-
nected with theory of invariants.

The Original fourteenth problem. Let K be a field and G a subgro
of the full linear group GIKn,K). Then G acts as a group of automor-
phisms of Kxq, ..., Xn]. Let Is be the ring of elements of[ly, ..., X4].
invariant under G. Is ¢ finitely generated over K?

Contributions to the original fourteenth problem were madpar-
ticular cases. In fact it was proved thigf is finitely generated in the
following cases.

1. Kis the complex number field artél = S L(n, K) acting by means
of its tensor representations. (D. Hilbert Math. Ann. 3&08
473 - 534).

2. Kis the complex number field ar@ satisfies the following con-
dition: there exists a conjuga@®’ of G such thatA € G* = 'A ¢
G*, where -’ and ‘t’ indicate complex conjugation and transpose
respectively (E. Fischer Crelle Journal 140(1911) 48-81). 2
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3. K is an arbitrary field an a finite group E.Noether , for char-
acteristicK = 0, Math. Ann. 77 (1916) 89 - 92, for characteristic
K # 0 Gottinger Nachr. (1926 28-35).

4. K is the complex number field an@, a one parameter group
(R. Weitzerbock Acta Math. 58 (1932) 231 - 293).

5. K is the complex number field ard, a connected semi-simple
Lie group (H. Weyl Classical groups (1936) Princeton Univ.
Press).

The next significant contribution was made by 0.Zariski iB3.9He
generalized (Bull. Sci., Math.78(1954) 155-168) the fearith problem
in the following way.

Problem of Zariski. Let K be a field and [&y,...,a,] an gfine
normal domain (i.e.a finitely generated integrally closemhin over
K). Let L be a subfield of Kay, ..., as) containing K. Is the ring K
[a1,...,ay] N L finitely generated over K?

He answered the question in th@m@mnative when trans. ded. < 2.
Later, in 1957 D. Rees (lllinois J. of Math. 2(1958) 145 - 149) gave a
counter example to the problem of Zariski when trans xdeg 3.

Finally, in 1958, Nagata (Proceedings of the Internati@@ahgress
of Mathematicians, Edinburgh (1958) 459 - 462) gave a cowxample
to the original fourteenth problem itself. This counter mxde was in
the case when trans. delg= 13. Then, in 1959, Nagata (Amer. J. Math.
91, 3(1959) 766 - 772) gave another counter example in trewhen
trans. deglL = 4.

The groups occurring in these examples are commutative.nSo i
view of Weyl's result we seek the answer to the original feartth
problem in the case whea is a non- comutative, non-semi-simple Lie
group. The examples mentioned above May be made to yield @ghe w
G non-commutative by considering what is essentially theatiprod-
uct by a non-commutative group. More interesting is the edsenG
is a connected Lie group such th&,[G] = G. Even in this case the
answer is in the negative as we shall see later in this codilsetares.



Chapter 1

A generalisation of the
original fourteenth problem

1. We first generalise the original fourteenth problem in théofo 4
ing way: Generalised fourteenth problem. Let K be a field. LetER
Klas,...,an] be afinitely generated ring over K (R need not be an inte-
gral domain). Let G be a group of automorphism of R over K. Assu

that for every fe R, 3, f9% is a finite dimensional vector space over
geG
K. Let Is be the ring of invariants of R under G. Ig finitely generated

over K?

Remark 1.Whena,...,a, are algebraically independent a@dis a
subgroup ofGL(n, k) acting onR in the ‘usual way’, elements d® sat-
isfy the finiteness condition we have imposed in the problem.

Remark 2. The omission of the assumption that,...,a, are alge-
braically independent is helpful. For instanceNebe normal subgroup
of G such thatly is finitely generated. The® acts only, asN is nor-
mal in G. HenceG/N acts only and (n)en = lg. So, for instance
if we know that our generalized problem is true for (i) finiteogp (ii)
connected semi-simple Lie groups, (iii) diagonalizableugs, then we
can get immediately that: i is an algebraic group whose radiddl
is diagonalizable then the answer to generalized problémtiee dfir-
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4 A generalisation of the original fourteenth problem

mative. Note thaty need not be polynomial ring evenat, . . ., a, are
algebraically independent.

Remark 3. We do not assumR is an integral domain, as the constant
field extension (083 below) of a finitely generated integral domain over
a fieldK need not be an integral domain.

2. Algebraic linear groups.n this section by anféine variety we
mean the set of rational points ovirof a certain #ine variety with
points in an universal domain. We shall give Zariski topgldg an
algebraic variety. The grougL(n, k), being the complement of the hy-
persurface defined by det() = 0 in K™, is an dfine variety (in fact it
is isomorphic to the hypersurfaalet(x;) = 1 in K”2+1). The group
operation ofGL(n, K) are regular i.e.GL(n, K) is an algebraic group.
In this course of lectures by an algebraic group we alwaysnkesed
subgroups ofsL(n, k). We define connectedness and irreducibility un-
der Zariski topology. In the case of algebraic groups thesecbncepts
coincide. IfGg is the connected component of an algebraic gréup
thenG, is a normal subgroup of finite index {B. An algebraic group
contains the largest connected normal solvable subgroup, @fhich
we call theradical of G. For details about algebraic groups we refer
to seminaireC. Chevalley Vol.1 (1956-1958) and. Borol Groups
Linéaires Algébriques, Annals of Mathematics, 64 (1958 remark
that in the generalized problem we may assumeGhiata subgroup of
GL(m, K) for somem. Because of the finiteness condition on the ele-

n
ments ofR = K[ay,....a,],V = 3, ¥ &K is finite dimensional vector
i=19eG

space. We choose a basis..., by for V. ThenR = K]by,...,by]
andG is a group of automorphisms &. Therefore in the generalised
problem we may assunte c GL(n, k). From now on, whenever we say
that a subgrouf of GL(n, K) acts orR = K[ay, ..., an] we mean that it

n
acts linearly on the vector spage Ka;. The following theorem shows

i=1
that in the problem we may assume tlils an algebraic group

Theorem 1. Let R= KJay,...,ay] and let GC G(n, k) act as a group
of automorphisms of R over K. Let ®e the closure of G in G[p, K).
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Then G acts as a group of automorphisms of R over K agd:llg-.
This theorem is a consequence of the following lemma ostls).

Lemma.Let S C R and let H be the set of elements of(@&lk) which
induce automorphisms of R over K and leave every S invariant.
Then H is algebraic.

Proof. Let Hy denote the set of elements@L(n, K) which induce au-
tomorphisms oR overK. Let U be the ideal of the ring of polynomials
K[X1,...,Xy] such thatK[ay,...,an] = K[X1,...,X%]/U. Nowg € Hy

if and only if U9 = U. Let fy,..., f;, generateld. We may assume
that fy,..., fy are linearly independent ovét. Extendfs,..., fhto a
linearly independent basis, ..., fm, fmi1,..., fi of the vector space

n |
VZZ Z figK. LetfitZZ/lij fj,i=1,...,m,
i=1 geGL(n,k) =1

wheret = (t;s), t;s are indeterminates. Thely are polynomials irt;s.
The condition/® = U is equivalent to O

Aij(@=0i=1....mj=m+1...,1I

HenceH; is algebraic.
Let nowH = {ge Hi| P =s s¢ S}.

Itis enough to prove the lemma wh&rconsists of a single element
s. Lets si,..., s be a linearly independent basis of the vector space
> K. Lety = (ys) be a generic points or may componentHbf
hEHl
k
over K. We haves = Aps+ 2 Ais, where; are polynomials iry;s.

The conditions’ = sis equi\llallent tal,(s) = 1, Ai(g) = O fori > O.
HenceH is algebraic.

3. Constant field extensioriWe shall now study the behaviour of
invariants under the constant field extensions. Reand R’ be two
commutative rings containing a field. Let G’ (respectivelyG”) act



6 A generalisation of the original fourteenth problem

on R (respectivelyR”) as a group of automorphisms ouér Then the
direct productG’ x G” acts onR®k R” as a group of automorphisms;
in fact we have only to definea(® a’)(¢,g”) = a9 ® a’9, & € R,
all e Rll, (gl’gll) E Gl X GH'

Lemma 1. Let lg'xg» denote the ring of elements ofgk R” invariant
under GxG” Let I (respectively ¥,) denote the ring of elements of R
(respectively R) invariant under G (respectively G). Then kyg» =
IG’ ®K 1Z,.

Proof. We have only to prove thdt xc C 15, &) 1Z,. Choose a lin-

K
early independent basig,)yea and (), )17~ for the vector spacds,
and| é’,, respectively oveK. Extend these bases to a linearly indepen-
dent bases dR andR’” respectively, say
R= > i,KR' = > i7,Kwith A’ C M"andA” c M".
ﬂ,EM, /JHEN”
Letf = 2(#/"“//) k;l’/l” (ly ® iﬂ//) € lgxg”, kﬂ/#// € K.

eM’xM”
For everyg € G, we have

= Z Ky (7 ®1}7) = Z(Z Ko ) @17, = 1.
(/1,5/1”) #” /1,

Hence
g 7 ’ r ’”
Zkﬂ,ﬂ”lﬂ, = Zk#/ﬂ//lﬂ,,g GG Ny e M”.
w w

Hencek,,» = 0, for= " ¢ A’. Similarly k,,» = 0, for u” ¢ A”.
i.e. f eI, ® Lg, and the lemma is proved. o

Lemma 2. With the above notation,’Rx R” is finitely generated over
K if and only if R and R’ are finitely generated over K.

Proof. It is clear that ifR and R” are finitely generated ovdf, so
is R ® R Now letR ®« R. be finitely generated ovef, say f; =

Zyi’j ®yi’j’, i =1,...,1 are the generators. Thé&t = K[yi’j] andR
]

K[yi’j’]. .
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LetR = K[ay,...,a,] and letG act onR as as group of automor-
phisms ofR over K. Let K’ be a filed containing. ThenG acts on
K’ ®« R which we denote bK’[a,...,a,]. Let 1., be the invariant
elements oK’ ® RunderG. Then in Lemmdll if we puR = K’,
R’'=RG = {1}, G’ = G, we getl = K’ & lg. Asin LemmdR it 9
follows that:

Proposition 1. 1/ is finitely generated over Kf and only if  is finitely
generated over K.

The above proposition helps us to confine ourselves to a emall
field whenK is ‘too big’. Let G’ be a subgroup o6 such thatG’ is
dense in the closur& of G. For instance wheK is of characteristic
zero orG is a torus group we can taka to be finitely generated. When
K is of characteristiqp # 0 we may takes’ to be countably generated.
Let K[X1,..., X ]/U =~ K[ay,...,a,] with the xq,..., X, algebraically
independent oveK. Let K’ be a subfield oK such that elements &’
areK’-rational andi{ is defined oveK’ For instance if we can choose
G’ finitely generatedK’ can be chosen to be finitely generated over
the prime field. IfG’ can be chosen countably generated, tKércan
be choosen to be countably generated over the prime field. &ow
the ideal is defined ovelK’,K®k:, K'[a1,...,an] = K[ag,...,an].
Hence by propositiofil 1l is finitely generated oveK is and only if
G’— invariants inK’ [ay, ..., a,] are finitely generated.

Of course, as we noted i§2, we can enlarg€&’ to an algebraic

group.
3. Invariants of a finite groupWe shall now consider the original 14th
problems (in fact the generalised problem) wiiis finite.

Theorem 2 (E. Noether) Let R= KJ[ay,...,an] and G a finite group
acting on R as a group of automorphisms of R over K. Thaafinitely 10
generated over K.

Proof. LetG={1=01,...,0n}. Letae R Set

h
Si = Zagi,sz = Zagiagi,...,sh =a% . . a%,
i—1

i<j
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ThenS; e lg,i=1,....handa" - S;a™ +..- + (-1)"Sp=0. O

HenceR is integral overlg. Now the theorem follows from the
following Lemma:

Lemma.Let R= KJ[ay,...,ay] and let S be subring of R containing K
such that R is integral over S. Then S s finitely generated Kve

Proof. There exisGj; € S, 1<i<n,0< j <m -1 such that
a™ + Cim-18" " +...+Cip = 0.
o

SetS’ = K[Cij] 1<i<n * ThenRis finite S’ module. AsS’ is noethe-
o<j<m-1

rian, sis also finiteS’-module. Hencé is finitely generated oveK.

Corollary. Let Gy be a normal subgroup of G (G not necessarily finite)
of finite index. Let G act on R as a group of automorphisms ovelf K
I, is finitely generated over K, then, so is. |

Proof. The groupG/Gq acts onlg, and (g,)c/c, = lc O

Remark. Suppose thaR (of the above corollary) is an integral domain
Then the converse of the above Corollary is also true. Kght be the
quotient oflg, andlg respectively. TherKo is a finite separable alge-
braic extension oL. Let I be finitely generated. AS/Gy is finite, Ig,

is integral ovellg. Hencelg, is a finitelg-module and therefore finitely
generated oveK.



Chapter 2

A generalization of the
original fourteenth
problem(contd.)

1. In this chapter we shall consider the generalized probleititscer- 12
tain assumption on the representationf In fact we shall prove the
following:

Theorem 1. Let R= K[ay,...,ay] and let GC GL(n,K) acton R as a
group of automorphisms of R over K. Suppose G satisfies tloaviog
condition: ¢) If Ais a representation of G by a finite dimensiondlX-

Lo 1, 0.0
0 . .

module Mc R anda = | . t thena is equivalent t Y
0 0

Then k is finitely generated. We shall prove theorem in severakstep

Lemma 1. Let G satisfy the conditiof<) and let f € R. Then there
exists an f € Ig (X f9K) such that f- f* € Y (f9— f9)K.
g 9.9

Proof. Let M = Y f9K andN = 3 (f9 — f9)K. The vector spacell
g 99

andN areG-modules. Let the dimension &l bem. We shall prove

9
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the lemma by induction om. Suppose that for alh € R such that

dimension ofy, h¥ K is < m, there exist* € Ig (3 h%K) with h—h* €
g g

Y (h9 — h9)K. The assertion is trivial whem = 0. Further iff € N,
99
we may takef* = 0. Suppose’ ¢ N. ThenM = Kf + N and f is G-

invariant moduleN. Hence by the condition:] there exists &-Module
N* of dimension 1 inM and anf’ € Ig with M = Kf" + N*. If f” ¢ N,
thenM = Kf’ + N and the lemma is proved. SuppoBee N. Set
f = Af’ + hwith 1 € K, h € N*. SinceM; = Y} h%K c N*, we have

g
dimg M1 < dimN* = m- 1. Hence by induction hypothesis there exists

anh* € Ig (X h9K) such thath — h* € N; = 3 (h9 — h%)K. Since
9 9,01
N; € N, the proof of Lemmall is complete withi = h*. m|

Remark. If Ris a graded ring andl € Ris homogeneous, the represen-
tations ofG which occur in the above proof are all given Gymodules
generated by homogeneous elements of the same degree.

Proposition 1. Let R and G be as in Theordih 1 and léthe a ring
containing K. Let G act on Ras a group of automorphisms of Bver
K. Assume that there is a surjective homomorphisofi R onto Rsuch
thatp(a?) = p(a)9 for all a € R. Let [, denote the G-invariant elements
of R. Theny(lg) = I5.

Proof. We have only to show thaf, € ¢(Ig). Let f" € I,. Letf € R

be such thap(f) = f’. By Lemmal there exists aff € Ig such that

f-f*eN= Y (f9-f9)K. Butasf’ is G-invariant,N is contained in
99

the kernel Ofp: Hencep(f*) = f'. Henceyp(lg) = I§. m|

We shall now prove Theorefi 1 in the case wikeis a graded ring
i.,e. R=Kl[ay,...,an] = K[X1,...,X%]/U with x4, ..., X, algebraically
independent ovelk and{, a homogeneous ideal Bf{ X1, . .. Xy].

Lemma?2. LetS= § Si be a graded ring. Assume that the ideglS;
1=0 i>0
have a finite basis. Them S is finitely generated oyer S
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Proof. Leth;,i = 1,...,r be a set of generators for We may assume
thath; are all homogeneous, séy € Sj;), j(i) > 0. Then we assert
thatS = Sg[hy,...,h]. Itis enough to prove that every homogeneous
elementf of Sis in Sp[hy,...,h]. The proof is by induction on the
degreei of f. Fori = 0, there is nothing to prove. Assunhe> 0.

Suppose that for all < i, S; € Sp[hy,...,h]. We havef = Z Okhx,

Ok € Si—j(i). By induction hypothesigk € So[hy,...,h], 1 < k <r.
Hencef € Sg[h,...,h]. |

Lemma 3. Let R and G be as in Theordh 1. Lékf..., f, € Ig. Then
r r

(X iRNlec = X Icfi.

i=1 i=1

Proof. The proof is by |nduct|on om. Forr = O there |s nothing to
prove. Assume}] RNl = Z filcfors<r. Let f e(z fiRNlg.

Thenf = 2 hi fj, h € R. By Lemmdl there exists dti € N = Z (=
i-1

h?)X such thath, + " € Ig. As, forg,g e G,_Z_ »(h? - hig)fi =0,
1=1
r-1
there existhl € R, 1 < i < r - 1with ¥ h'fi + Wf, = 0. Hence
1=1

r-1
f—(h +h)f = 'Zl(hi + ) fi.
1=
But f — (hy + ") f; € Ig and therefore by induction hypothesis, there
existh!” € Ig, 1 <i <r - 1such thatz (hi + ) fi = h” fi.

The proof of Lemma&l3 is complete o 15

Remark. If Ris graded and; are homogeneous, it is enough to assume
the condition (*) for representations Gfgiven byG-modules generated
by homogeneous elements®bf the same degree.

Proposition 2. Let R = K[ay,...,a,] be a graded ring. Assume that
every representation of G given by a G-module generated by homoge-
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1 #---%
0
neous elements of R of the same degree and of thefer, v
0
1 0...0
is equivalent tq . vl Then k is finitely generated over K.
0

Proof. As R is graded, so i&s. Let | be ideal oflg of all elements of
positive degree. o

As R is noetherian, the ided®, | of R is finitely generated. Let
f1,..., fr, €, 1 generatdR, |. We may assume thk to be homogeneous.

r
By LemmalB and the remark following it we havé (R §)lc =
i=1

r
> lg fi = I. Hence by LemmBl 4 is finitely generated ove.
1=l

We shall now consider the non-graded case. LetiR[ay, ..., an].
Let be a transcendental element oRRelConsider the homogeneous ring
R* = K[at,...,ant,t]. ThenG acts onR* if we sett? = t, for every
g € G. Further theG-module homomorphisnp : R* — R defined
by o (f(ast, ... azt,t) = f(az ..., an, 1) induces an isomorphism of a
finite G-submodule ofR* generated by homogeneous elements of the
same degree d®* onto a finiteG-submodule oR. Hence the condition
(*) is satisfied by all representatio* of G given by G-submodules
of R* generated by homogeneous elements of the same degree. Hence
by proposition(R,L¢ the ring of G-invariant elements & is finitely
generated ovek. Further as every € Ris the image of a homogeneous
in R, it follows from Propositiorf 1l and the remark after Lemioha dtth
¢(1§) = l. Hencelg is finitely generated ove.

2. We now give examples where the condition (*) is satisfieds &h-
vious that if every rational representati@mf G is completely reducible
then it satisfies the condition (*). We shall later give somigeda of
complete reducibility of rational representation of anefligaic group.
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(1) Consider a torus group (i.e. a connected algebraic linear group
which is diagonalizable), acting dR= K [ay, ..., a,]. In this case
if G is diagonalized eacK & ...aJ is aG-module. ThuRRis the
direct sum of simpl&-modules. Hence every representatioof G
given by aG-sub-module oRis completely reducible. Hendgs is
finitely generated.

(2) LetK be afield of characteristic zero and&ic GL(n, K) be semi-
simple. Then it is well known that (see, Chevalley, Theors d
groupes de Lie, Ill) every rational representatiorGds completely
reducible. Hence in this case againis finitely generated.

(3) Combining (1) and (2) we have : @ is an algebraic group whose
radical is a torus group, thda is finitely generated.

We add here a Corollary to Theoréin 1:

Corollary. Assume that K is of characteristic zero and that an algebrait
group G ¢ GL(n,K) acts on R= K[ay,...,ay]. Let N be a normal
subgroup of G which contains the unipotent part of the raldadeG. If

In = the set of N-invariants of R is finitely generated over K, theris

le

Proof. Gacts only and (n)c = |- The closure oN being denoted by
N, the action ofG on Iy is really an action of5/N, whose radical is a
torus group. Therefore by (3) aboue, is finitely generated. O

As a further application of Theorelh 1 we prove the following:

Theorem 2 (Generalization of Fischer’s theoremlet K denote the
complex number field and let GGL(n, K) act on R= K[ay, ..., a,] as
a group of automorphisms of R over K. Assume that for eveey@\
t—A (complex conjugate of A) is in G. Thegis finitely generated over
K.

Proof. Let G be the closure o6. ThenG also satisfies the hypothesis
of the above theorem. Hence we may ass@ris algebraic. LeH be
the radical ofG. Let H, be the set of unipotent elementstbi{we recall
that A € GL(n, K) said to be unipotent if all the eigen values/Afre
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1). Itis well known thatH,, is an algebraic group. It is enough to prove
that H, consists of identity element only. For théhis a torus group
(A connected linear algebraic group which has no unipotemhees
other identity is a torus group if either the field is algebadly closed
or the group is solvable). It follows thdg is finitely generated by (3)
above. m]

It remains to prove that, consists of identity element only. Let
A c Hy. NowH is characteristic i (i.e. admists all automorphisms of

t—
G). Considering the automorphisgn— ('g)~%, we see that4)™* € H
- - -
and hence &) € H, since @)~ is unipotent. The elememA is
t—

unipotent and hermitian. Hend®A = E, the identity matrix. Hencé
is unitary. But the only unipotent unitary matrix is the icignmatrix.
ThusA = E and the theorem is proved.

3. LetR=K]ay,...,ay] be anintegral domain and |& C GL(n, K)
act onR and satisfy the condition (*). Le¥ be the #&ine K-variety
defined byR (the points ofV lie say, in the algebraic closut€ of K).
Let L be the function field oR and letLg be the field ofG-invariant
elements irL. The groupG acts onV in a natural way. A subsét of V
is said to beG-admissible if for evenP € F, P9 € F, for everyg € G.

Theorem 3. Let F be a G-admissible closed subset of V. Let {'f‘f €
Lg, f regular at every point of } Then T is a ring of quotients o]

Proof. Let S denote the multiplicatively closed set of alle Ig such
that s does not vanish at any point f We shall show thal = (Ig)s.
We have only to show thalt = (Ig)s. Let f € T. Consider the ideals

U = {g‘g eR gfe R} andU(F) = {h‘h e R h(F) = 0}. As the closed
set defined byl andF are disjoint, we haveld + U(F) = R. Hence
there exists @ e U, g € U(F) withg+ g = 1.
It is clear that the ideald/ and U(F) are G-admissible. Hence
Y (@ -g7)K CcUF)N(EZgK) ¢ Y g”KSU. By Lemmall of
G o o

o,0’€

Theorentll there existsd@ € I () >, g°K such thag - g* € Y, (g7 -
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g” )K. Henceg*(P) = 1 for everyP € F andg*f € R. The theorem is
proved. O

Consider the relatior in V defined byP ~ Q if {P®} N {QC} # ¢
for P,Q € V (whereP® is the orbit ofP, namely the set of alP” with
o € G andeo denotes the closure M).

Theorem 4. (1) ~ is an equivalence relation2) The quotient set N~
i.e. the set of all equivalence classes-bacquires the structure of an
affine K-variety with coordinate ringd such that the natural mapping
V — V/ ~is regular.

Proof of (1): We shall in fact give the following characterization which
proves that- is an equivalence relatior® ~ Q if and only if f(P) =
f(Q), for everyf € Ig. LetP ~ Q and letP’ € {PG} N {QC}. We have
f(P) = f(P®) = f(P") = f(Q®) = f(Q), for everyf € Ig. To prove
the converse we remark thathf andF, are twoG-admissible disjoint
closed sets, then as in the proof of Theofdm 3 we can finél anlg
such thatf(F;) = 1, f(F2) = 0. The closed seP®}, for P € V is
G-admissible. IfP, Q are not related by we can separate them by an
f € Is. Hence (1) is proved.

Proof of (2): By Theorem[ll,lg is finitely generated oveK. Let
f1(a), ..., fi(d) generatdg. Let W be theK-affine variety defined by
lc = K[f1,..., fi]. Consider the regular mapping: V — W defined 20

— — .
by p(P) = P = (fa(P),... fi(P)) € W c K. By (1), ¢(P) = ¢(Q) if
and only ifP ~ Q. Henceg(P) = {Q|P ~ Q} = P, say. LetM be
the maximal ideal corresponding to a pombf W. Then by Lemmal3
of TheorenTILMR N I = M. Hencey surjective and we identify the

equivalence clasB with the pointP of W. By TheoreniB the local ring
atP of Wis (Ig)s = (NUx) N Le, whereUy denotes the local ring at
xeP

the pointy of V.

Corollary 1. Let Qe {E}. Then(lg)s = (Q*Q@}UQ*) M Lg.
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Proof. We have only to prove

(| <o)y Let fe () Ug.

Qe{Q%}ug- Qe{Q°)

Then by Theorerfl3f = h/g, h, g € I, g(Q") # O, for everyQ* € Q°.
But asQ € {PC}, g(Q) = g(P’) for everyP’ € P. Hencef € (Ig)s. O

Corollary 2. Under the hypothesis of Corollafy 1, ifQs closed, then
m Up*

UoNle = (. qm) " )NLe.

Proof. ForanyQ € V, ( (| Ug)NLs = Ug N Ls. As QC is closed,
Q*EQG
by Corollary1,UgNLec = (lc)s=( N Up)( Le. i
P*¢{PC}

As we noted before, our Theordih 1 implies the following

Theorem 1 Let R= K[ay,...,a,] and let GC GL(n,K) acton R as a
group of automorphisms of R. over K. If every rational reprgation
of G is completely reducible, theg Is finitely generated.

What we like to remark here is that when we want to prove this
Theorenlt, we need not use the technique at the endlgofand we
can prove as followsR is a homomorphic image of a polynomial ring
K[X, ..., X] on whichG acts naturally. The polynomial ring is graded,
hence the result on the graded case and PropoEltion 1 presedrl.



Chapter 3

The counter example

1. In this chapter we give some counter examples to the oridided 22
problem. For this we need some results on plane curves.

Lemma 1. Let C be a curve of positive genus on the projective plane
and let B,...,Pmn,Pmi1,....,Pn € C(m > 1) and let R,..., Py be
independent generic points of C ovéPk, 1, ..., Pn), where k is a field
of definition for C. Then for any set of natural numbef§l < i < n)

n

there does not exist any curvé guch that C.C = 3 «;P;.
i=1

n
Proof. Suppose there existsA with C’.C = Y «;.P;, letC” be a curve
i=1

of the same degree & with C”.C = Z ,BJ Q;withQ; algebraic over
k. ThenC’'.C |s linearly equwalent td:” C (notationC’.C ~ C”.C)
onC. HenceZ aiP; ~ Z ﬁJQJ Z atPt Let P be any point on

C. SpeC|aI|2|ng the above linear equalence under the alization
(Py,....,Pm) — (P,....,P) over k(Pm+1, ..., Pn) (wherek is the alge-

braic closure ok) we get (2 a;)P. Z ﬁJQJ Z a¢P;. Thus for any
j= =m+1

two pointsP,Q onC, we have B a.)P ~ (Z,B.)Q. This contradicts the

assumption that has positive genus. O

17
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Here after for a variety/, we denote byK (V) the smallest field of
definition forV containingk.

Lemma 2. Let Py, ..., P; be independent generic points of the projec-
tive plane over a field k and d an integer such that-a P'Z%?’d. Let L

be the linear system of curves of degree d passing through RP;.
Let C be a generic member of L ovdPk, ..., P;). ThenR,...,P; are
independent generic points of C ovéCl.

Proof. Setu = d2;3d. Let P4, ..., Py be independent generic points

of C overk(C) (P1,...,P;). ThenP,...,P, are independent generic
points of the projective plane ovérasu is the dimension of the lin-
ear systenlL’ of curves of degre@. Let Ry,...,R: be independent
generic points o€ overk(C, P4, ..., Py). Then we have a specializa-
tion (P1,...,Py) = (Re,..., R, Pya,...,Py) overkbecausd’y, ..., P,
are independent generic points of the projective plane Clgtecialize
to C’ under this specialization. £ # C’,thenRy + --- + R + Py1 +
.-+ Py, c CC’. SinceRy,...,R,Py1,..., Py are independent generic
points of C over k(C) and the dimension of the tradg. on C of the
linear systenl’ isn - 1, we get a contradiction. Hen€ = C’. Thus
(P1,...,Py) — (Ry,...,R) is a specialisation ove(C) and therefore
P4, ..., Py are independent generic points@bverk(C). m|

Proposition 1. Let Py, ..., P, be independent generic points of the pro-
jective plane over the prime field.

(1) Let C be a curve is degree d passing through thevh multi-

plicity my. Thenzim%, forr = &, s> 4.

(2) Furthermore if ¥ is a real number such that r> ir then there

exists a curve Cof degree ¢ such that f > Zd_m’ 1 where C
passes through;Rvith with multiplicity nd.

Proof. LetC specialize tar(C) under the specializatiorP(, ..., P;) —
(Po(1), - - -» Pory) Whereo runs through cyclic permutations of 1. ,r.
Considering the curvg o(C), we have only to prove (1) and (2) in the

case when all then, are equal, says = m. Thus we have to prove
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that% > +r = s. If there exists a curv€ with d/m < +/r, then by
suitably raising the degree we can get actually the equdiitys (1) is
equivalent to:

() There does not exist a curve of degree sm passing throudh the
with multiplicity at leastm.

Similarly (2) is equivalent to:

(2) Givenr” > +/r, there exist integerd, mand a curveC’ of degree

d passing through thB; with multiplicity m such that” > 4 >

V. ;

O

. 2
Proof of (). Case (i) s evenSets = S% LetCs, Cz, andCg, be
independent generic curves of degeeg, s, respectively.

g2 ss sg
Let C’S,.Cs/ = Y P;,Cs.Cy = > Qi andCs.CL = 3 Q;. As the
i=1 i=1 i=1

dimension of the linear systeh?” of curves of degres’ is §2+T3§ > 25,
among theP; there exist 2 points sayPs, .. ., P>s which are independent2s
generic points of the projective plane o). Then by Lemmd]2
P1, Py, ..., Pys are independent generic points ©f over k(Cs.C%,),
in fact overk(Cs, Cs/, Q) as all the curves considered are independent
generic curves.

Sincesz%35 > 2s, there exist curves of degreepassing through
the pointsPy,...,Pys. Let CS be the generic curve passing through
P1,...,Pos.
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Let
ss-2s ss-2s
CeCi= Y Q'+ Y P,
i=1 i=1
ss-2s 2s oy O
" « Vs
CsCs = Z Q + ) Pi C/s /P\ cl
i=1 i=1

By Lemmd2 Py, ..., Pxsare independent generic pointsGy. Fur-
ther, we claim that th&: and Qi*' are all distinct. For , consider the
linear systenL = |C5.Cs — 3 Pi| onCs . >, Q' is a generic member
of L. Since degree of = ss — 2s = 4.% = 4g(Cs), where
9(Cs') denotes the genus O%, L has no base points. Hence e&ghis
a generic points o€y overk(Cg, Py, ..., P2s). In particularQ; do not
lie onCg,. Again the degree of the linear systém Qf = sS-2s-1=
49(Cs) — 1 > 29(Cs’). Hencel — QF has no base point and therefore
Q;(j # i) are generic points ds overk(Cy, Q7). ThusQ; are all dis-
tinct. Similarly consideringC;,, we seeQ’, Qi*' are all distinct. We may
renumberQ; andQ’ such thatQ;, Q,1 < i < g‘TZS are specialized to

i*, Qi*' under the specializatiorPy, ..., P2s,Cs) — (P1,...,P2s,Cg)
overk(Cs, Cs).

Assume that for somm there exists a curve of degreepassing
throughr = & independent generic points of the projective plane with
multiplicity at leastm. Then there exists a cunkeof degree sm passing
through thePi(1 < i < 2s), the Q(1 < i < £2%) and theQ/(1 < i <

—52525) with multiplicity at leastm. ThenCg is component oE. For

$2-2s
2s =z
otherwise,E .Cy is defined and containg, mR + > mQ. As the
i=1 i=1
P25

|
genus ofCg(= %s’ (s — 3) + 1) is positive we get a contradiction by
Lemmall. Henc&€y is a component oE. Let E — Cy specialize to
E* under the specializatiorP(, ..., P2, Cs) — (P1,...,P2s, C5).E* is

a curve of degresm- s passing through thEj(1 < i < 2s) and the

2s
degreeE.Cs is sms, we haveE.Cy = Y} mP, + 3 mQ. Since the
i=1 =1
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Ql<ic 52%25) with the the multiplicity at least (m-1) and through
Q™ with the multiplicity at leasm. We shall show the non-existence of
such a curve by induction am. We assert thaCy is component oE*.
For, if not, E*.C5 is defined and contains

£2-2s 2-2s
2

2s 2
DUm-1Pi+ Y (M-1)Q + > mq’.
i=1 i=1

i=1
Inspecting the degrees we see that

25 52525 52525

E'Cs= Y (m-1)P+ » (m-1)Q + Y mQ".
i=1

i=1 i=1

2s
Hence ((n- 1)Cy + mC, — E*).C; = > mB. As the genus o€g(=
i=1

%s(s— 3)+1) is positive and since tHg are independent generic points
of C by lemméeR, we have a contradiction by Lemitha 1.
HenceCs; is a component oE*. If m= 1, degree oE* iss—-s'. 27
Hence we get a contradiction. i > 1, thenE" — Cg is of degree
s(m- 1) - s" and passes through th, QF, with multiplicity at least
m-2,m- 2 and - 1) respectively. Hence by induction hypothesis
E* - Cg does not exist and the lemma is proved, whésneven

Case (ii) s odd. Sets = 5+71 Let Cs,Cs/Cg, be independent generic
curves. LetPy,...,Ps be s points contained irCs,.Cg,. We take a
generic curveCg of degrees passing througl®y, . .., Ps and proceed as
in (i). We omit the details.

Remark. We remark that Propositidd 1 is not true fox 9. The follow-
ing are the example to thaffect. (1) For = 1, 2, a line passing through
theP; (2)r = 3, aline passing through two of tig (3) r = 4,5, a conic
through theP; (4) r = 6, a conic through 5 of the; (5) r = 7, a cubic
having a double point at one of t®% and passing through all the.
(6) r = 8, a curve of degree 6 having a triple point at one ofRhand
double points at all th®; (7) r = 9, a cubic passing through all tirg.
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Furthermore it is not known if > 9, is suficient to ensure the
inequality of Propositiofil1.

Proof of (2). Let LY be the linear system of curves of degelet
f(Xo, X1, X2) be a homogeneous polynomial of degteeThe condition
that the curve defined bfyshould pass through a poiptwith multiplic-
ity m mposesw linear conditions (not necessarily independent).

Thus
d(d + 3) _ rm(m+ 1) >0

r
dim(L? - >*mR) >
i=1

2 2 .
i d(d+3)2rm(m+ 1).
2 2
o -3(9) .
i.e. ifm> i . Now choose a rational numbgrsuch thatr’” >

(F)e—r
A > AJr. Writing A = % with suficiently large m we get a curvé’
of degree d passing through tRg with multiplicity m such thatr”” >

d/m> +/r and (2) is proved.

2. We now proceed to give the counter example where the tradeoen
degree of the sub-fieldg of invariants is four.

Letaj,i = 1,23, = 1,...,r be algebraically independent ele-
ments over the prime field . Letk be a field containing the;;. Con-
sider the projective planS overk. SetP; = (aij,ay,as),P; € S,i =
1,2,...,r. Then theP; are independent generic points $fover the
prime field . Letxy,..., %, Y1,...,Yr be algebraically independent ele-
ments ovek. Consider the subgroup of GL(2r, k) given by

B1 0
G= O'EGL(Zr,k)‘O'Z )
0 B,

Bi_(' G )Zb.a,. 0 j=123 ]—[c.—l}

The groupG acts onk[xa, Y1, ..., %, yr] with () = ci(% + biyi),
o) =ayi,i=1....r.
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Theorem 1. The ring of invariants 4 is not finitely generated the k. Set9
r

t=y,....¥% U = t/y, v = xu and w = 3> a;Vvi. We need some
i=1

lemmas.
Lemma 1. Ig = K[X1, Y1, ..., X, Yr] N K(wz, Wz, W3, t).

Proof. It is suficient to prove that the invariant sub-fields = k

(w1, Wp, W3, t). A straight forward verification shows that, wo, ws, t €
Lc. Hencek(wi, wo,w3,t) C Lg asa;j are independent ovdr], we
havek(X1, ..., X, Y1,...,¥r) = K(W1, Wo, W3, X4, ..., X, Y1,...,¥r). Now
G operates ok[wy, Wo, W3, X4, ..., X, Y1,...,Yr]. ASWi,t € Lg, to com-
pute Lg it is enough to consider the action & on k(wz, wa, wa, t)

[X4,...,%,V¥1,...,¥r—1]. Consider the subgroupl of G consisting of
elementss of G for whichg = 1,i = 1,...,r,b = 0,i > 5 andby
arbitrary. SinceH is infinite, k(wg, Wo, W3, t, X4, ..., X, V1,...,Yr_1) iS
a transcendental extensions lgf the fixed field ofH. Now, Ly 2
K(wq, Wo, W3, t, X5, ..., %, Y1,...,Yr-1). ThereforeLy = k(wy, Wy, Wa,
t,Xs,...,%,Y1,...,¥%r—1). Next we consider the action d& on

K(wq, Wo, W3, t)[Xs, . .., X, Y1, . .., Yr_1] and consider the subgrouy, of
G consisting of elements of G with bj = 0,i > 6,¢, =1,i=1,...,r.
The fixed fieldLy, of Hy is k(w1, Wo, Wa, t, Xe, . .., X, Y1, . .., Yr—1). Pro-
ceeding in the same way we arrivekéiv,, Wp, Wa, t,y1,...,¥_1). Con-
sider k(W]_,Wz, W3, t)[y]_,. .. ,yr_]_]. o € G acts on k(Wl,Wz,Wg,, t)

[V1,...,¥—1] with o(yi) = ¢y;,i = 1,...,r — 1, wherec; are arbitrary
non-zero elements ¢ Hencelg = k(wy, Wo, wa, t). O

As w1, W, W3 are algebraically independent oderwe may regard
H = k[wy, W, ws] as the homogeneous coordinate ring of the projectise
plansS. Let.% = (z,Z) denote the prime ideal id corresponding to
the pointP;, wherez = agw; — a;jws, z = agw, — axws. SetW, =

,rrwlz?/i(”), forn>0andW, =H,forn<0.
1=

Lemma?2. Ig = {Zant‘” | an € ﬂn}.
n
Assuming Lemnid 2 we shall first prove Theokém 1 and later prove
LemmdR. Supposg is finitely generated, sayl= K[ fy,..., fm]. We
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may assume; f= hjt_j,hj € Wj,h; homogeneous, # 1,...,m. Set

degree h . .
r=———j=1%1...,mand r = minr;. For any monomial
I i<j<m _ _

. . . o _ degreeg(h! ...hm)
fii. . fim = . pmtrii2z—emMing we have _— 1 — > r*
1 m 1 m 14204+ Miy

degree
Hence for any homogeneoug a Wy, we have%r > r*. By

proposition[1, ¥ > s = 4/, forr > 4. Again by the same proposition
there exists ange W, for some n, such that degreg/@a< r*. This is
a contradiction and thereforeslis not finitely generated.

It now remains to prove Lemnfid 2. We first prove

g C {Zant‘” lan € H}. *)

n

As g; are algebraically independent ovewe have

K[va, ..., V] = K[w1, Wo, W3, Vg, ..., V(].
Hence
k[x X, Y1..Y) = 1]
1s o5 Ars Y1-- I"yla"'syr

—k[w Wo, Wa, X4 X ! 1]
- 1, 25 35 IR r9y19---yr,y19---9yr .

Now

1 1]

k[W17W27W37 X49---9Xr,y19---yr,_9---,_
Y1 Yr

1 1
ﬂ k(Wl’WZ’W3’y179yI') = k[WLWZ,WS,yl,---,Yr, R _]
Y1 Yr

Now by lemmdlL,

1 1
lc © K|W1, W2, W3, Y1, Yr, =, .. ]ﬂ k(wa, wa, w3, 1)

Y1 STr
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1 1 1
=KWy, Wo, W3, t, =, Vo, ...,V — .o, — k(wy, Wo, W3, t
[123,[)/2 Yry2 yr]ﬂ(123)

1
= k[Wl,Wz,W& t, T]'
31
Hence Ig C {Z ant‘”|an € H}. Let U; be the valuation ring
n

KIY1, .., X Y1, .- Wrl)» 1 < 1 < r and letV; be the corresponding
normalized valuation. We prove

@im:@i(m):{feH|Vi(f)2m}, ok

for everym. Sincez = } (agaij — agagj)Xjuj,Vi(z) = 1. Simi-
j#i

larly Vi(z) = 1. Itis easy to check thats, z/t, andZ/t modulo the
maximal ideal.#; of U; are algebraically independent over Now
Klwi, W, W3] = K[z,Z,ws]. If h ¢ %, thenh = h; (mod.#), with

0 # hy € k[wg]. HenceV;i(h) = 0. Therefore@i(m) c {h € H| V() >

m}. To prove {x*) we need only to prove that, fdr € H, Vi(f) > m

implies f € ™. This in turn will be proved if we prove that € ™,
f ¢ ™ impliesVi(f) = m If f € &M, f ¢ #™ " thenf can be

m . .
written asf = Y h;z'z"", with hj € Kiws], hy # 0 mod.#, for somel.
J:

Hencef/z™ = Eo hj(%)j. As 7z /z andws modulom; are algebraically
J:

independent ovek, f/z" # 0 (mod.#). HenceVi(f) = V(Z") = m
and =) is proved. Next, we prove

Vi(Q ant ") = minVi(art™).

for a, € H. Letd = mnin Vi(ant™"). For everyn, Vi(a,t™) > die. 32

n+d-j

n+d :
Vi(an) > n+d. Hence by £, =), a, € ™9, Leta, = 3, hyjz2Z
j=o

Theny % = 3 hnj(2)I(3)™9-1, If Vi(amt™) = d for somem, then
]
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0 # hy mod .7 € k[ws] for somel. Sincez /t andz /t modulo./; are
algebraically independent oviefwsz mod.#;), ft% # 0 (mod.#).
HenceV;(} a,t™) = d. "

Now Srl]JppOSGf € Ig. Then by ¢)f can be written ag = Y a,t™,
a, e H. Aslg € Uj,1<i<r,Vi(f) > 0. Hence by{**),vi(antgn) >0,
that isVi(a,) > nanda, € #". Hencelg C {Zant‘” | an € Un}. On
the other hand if, € #;, thenVi(a,) = n,i = 1,...,r. Hencea, is
divisible byt". Thusig 2 {Z at™" | a, € Wn} and the proof of Lemma
A is complete.

3. Inthe counter example we have given to the origind! pdoblem
in section 2, the grou is commutative. In this section we give an
example, where the group is such that@, G] = G.

If we make use of the structure of the rihg of invariants of the
subgroupH of G given in the last section such that all theare 1 then
we can give a direct construction of the required exampléd.sBice we
did not give the explicit structure dfy, we do it in an indirect way.

Letaj,i=1,23,j=1,...,r(r = 16) be algebraically independent
real numbers over the field of relational numbers. Set

V = {(bl,...,br) | bj real, > ajb; = 0( = 1,2,3,s = an even
i

number> 4,
B O 1 ... b
c
G. = o . B — 0 (bi,....bi) €V,
° : ! b.| G real [ =1
O Cr By 1S
0 1

Let K be the real number fields, acts on the polynomial ring
Ro = K[X11, X12, - - - » X1, Y1, X215 X225 + + 5 X285, Y25 + + +» Xe1s X2s - - - Xrs» Yr]-
Let Io be the ring ofG, - invariants inR,. Then setting = [y;
(i) wij = %aiaxajt/ya €lo
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(i) lo=RoMNK(W1g,...,Wis, Wo1,...,Wps, W3g,...,Wss,t).
Sincelo/lo N( X XijR) is isomorphic to previous examplg, we see
=2

thatl, is not finitely generated. We see also easily that every eleofe
I, can be expressed in the forfha;t™ (finite sum) such thad € % =
|

K[Wll, “e ,W3s], a|t_| € Io.
For eachT € SL(s K), let

T 0 T O
Tr: aT,:[ ]

0 T 0 1
(T"eSUs+1LK)),T e SUr(s+ 1),K)

{Tr ITesSqs K)}.

and G;

Then one can easily see thgis G-admissible and the modubd; =
> WijK is alsoG;-admissible and’ is the transformation oN; given by

i
T;. Therefore for a general linear transformatibre S L(s, K) we have
lojlon(x x;R)T IS isomorphic to the previous example.

=2

Therefore we see that the degege- 4i (for i > 0) and that for any

rational number greater tharﬁ. there is a homogeneous foanin w;; 34

such thatder# = a andat™ € I,.

Now consider a copy dR, sayR;,. The isomorphism oR, onto Ry,
we denote by/". Let G, be the subgroup i L(2r(s+ 1), K) generated

by

. ((B1 O o,
G = {( 01 Bz) | B e Go} (i.e.G: = Gy x Go)

G*l‘:{((T) $)|Teel}.

Then the ring of5§- invariants ido®l;. Let Miq be the module of homo-
geneous forms; in % of degreed such thagit~tis in |,. Then eaciMq
which is not zero defines a representatiorGef Hence we can choose
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a linearly independent basis ;g say fiql, ..., fign(i, d) such that the
representation is orthogonal. Thép = X fig; fy; is Gi-invariant and
j

figt‘i is Gy-invariant. Therefore the same reasoning as in the previous
examplelg can be applied to the rinig of Go-invariant and we see that
I, is not finitely generated. _

Let C be the complex number field and (&4 be the closure dB; in
S L(2r(s+1),C). We want to show thaB; contains a connected normal
algebraic subgrou@ such that

(i) G,/Gis a torus group and
(i) [G.G] =G

If the existence 06 is shown therG is the given example.

Let Goo be the subgroup dBo defined byc; = ... = ¢ = 1. Then
we can consider the same construction as don&§oG, andGzo.

We claim thatG is the requireds.

Proof. SinceGy is normal inG, we see thaG,o is normal inG,. Ob-
viously G;/g,, is a torus group. Itis also obvious ti@g, in connected.
Therefore we have only to show th& ]y, Gog] 2 Goo. Since B2g, Gag]

is a closed subgroup we have only to show that l&ifrandGg, are in
[G20, G20]. SinceG] is semi-simple and sinc€] < Gyo we see that
G; C [Goo.Gaol. Consider the setB;} = {(g g)} (E =identity in

S L(x(s+1),k)B € G). ForafixedT* € G;, B} ~» T*1B;"1T*B; gives
ahomomorphisniB] andB] (becauseB; is isomorphic to a vector space
overK). Since s is even, there isTa € G; such thafl*~1B;'T*B; =

O E O E
in B:. Therefore G20, G2o] contains the setB;}. Similarly [Gzo, Gzl

contains all the(E O) (B € Goo). Therefore Go, Gag] containGy,

(E O) implies B} = (E O). Therefore we see that image is dense

O B)’
and the proof is complete. m|



Chapter 4

Theorem of Weitzenlock

Theorem 1(Weitzenbtck) Let K be the complex number field and G
complex one parameter Lie subgroup of @,K) acting on the ring of
polynomials KXy, ..., X,]. Then the ring of invariantsgl of K[ Xy, ..., Xq]

is finitely generated over K. (see also C.S. Seshadri; On aréne of
Weitzenbdck in invariant Theory, J. Math. Kyoto Univ. 119§2), 403-
409).

Let G = {¢”\t € K} be a one parameter Lie group,being a con-
stant matrix. LetA = N + S, whereN and S are nilpotent and semi-
simple matrices respectively witiS = SN. LetG; = {¢N|t € K} and
Gy = {&5]t € K}. If N # O, then the mapping — &N of the addi-
tive groupK ontoG; is an algebraic isomorphism, sinbkis nilpotent.

Since every element @, is semi-simple, the closuf®@, of G is a torus
group. Further since the elements®f andG, commute, the mapping
(91, 92) — 0107 of Gy X G_z onto is an algebraic homomorphism. Hence
G1G» is a closed subgroup @&L(n, k). Hence the closuré of G is con-
tained inGl(_‘;z. SinceG; € G andG; C G, it follows thatG = GlG_z.

ThusG is a torus group or a direct product aftorus group and the
additive groupK. Hence Theorerl 1 is equivalent to the following, by
virtue of Chaptefl2, Section 2, Corollary to Theorgm 1.

Theorem 2. Let G be a unipotent algebraic group of dimension one

29
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of GL(n, k) acting on Kx,..., X,], where K is a field of characteristic
zero. Thend is finitely generated over K.

Our proof is mostly due to C. S. Seshadri.
We first prove two lemmas. Unless otherwise statedenotes a
field of characteristic zero.

Lemma 1. LetV be an gine variety and G a connected algebraic group
acting on V. Let W be a subvariety of V and H a subgroup of G. Let W

be stable under H and suppo%gh | he H} = {xg |ge G} NnWw, for

every xe W. Let f be a H-invariant regular function on W. Then there
exists a G-invariant rational function*fon WE such that f is integral

over the local ringUy in V\_/G for every xe WEC; f* takes unique value at
x, for xe W€, and such that finduces f on W. (Lemma of Seshadri).

Proof. Assume first\/\_/G is normal. The functionf definesa regular
function F on W x G defined byF(x, g) = f(x), forxe W,g € G.

Let Q be the regular mapping & x G into W€ defined byp(x, y) =
X9, 1f x8 = x9, for x, X € W.g,g € Gthenx3 ™" = x = x" for some
h € H, by hypothesis. Thu$§(x) = f(x") = f(x). Thus F is constant on

each fibrep=1(x9), for x e W, g € G. Let A be the coordinate ring a%©.

Let U be the &ine variety defined by theffine ring A[F]. The generic
fibre of the projection otJ onto WC is reduced taa single point. As
the ground fieldK is of characteristic zerd) andW®€ are birationally

equivalent. Thu§ inducesa rational functionf* on W€. By definition
of F, f* is G-invariant. Furtherf* assumes the unique finite valdiéx)

atx9, for x e W.g € G. As WC is normal f* is regular value ax? and

the lemma is proved in the ca®é® is normal. O

Supposan® is not normal. Without loss of generality we may as-

sumewe = V. Let\7 be the derived normal model vf Leth, .. .,Ws
correspond tdV, in V. How G operates oW. As WE is dense iV, so
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areV\/iG in V. The functionsf inducesH-invariant regular functiond;
on VK/il <i < s By what we have just proved, we g8tinvariant ra-
tional functionf*, 1 <i < sof V which is regular orWiG, and induces
fi. Now f*, and " take the same value ahf® N W. As W€ contains
a non-empty open-set G;af ff=...=1{ = f*. Thusf*is regular on
WE, 1 <i < s Hencef* is integral over the local ring of in W, for
x e W, g e G. Lemmdl is completely proved.

Remark 1. If the ground field is of characteristig # 0, then Lemmall
is true under the following modification of the rationalitgraition for
f*: f*isin a purely inseparable extension of the function fielaht.
Remark 2. It is interesting to note thatV® is open. For, each fibre
¢ 1(x9) is irreducible and of dimension equal to dimension of H, be-
cause of the condition on the orbits we have imposed. Thbas no
fundamental points and/® is open.

Corollary. If furthermore G is semi-simple and codimensior(\mﬁ)C

in WE is at least 2, then the ring4l of H-invariants in the coordinate
ring of W is finitely generated.

Proof. As codim 6/\/‘3)C > 2, any functionf on W€ which is integral
over the local rings of points &/C in W€ is integral over the coordinate
ring A of WC. Let B be the ring got by adjoining all rational functiong9

f* onWC, as in Lemmdll. SincB is contained in the derived normal
ring of A, Bis an dfine ring andG acts onB. As G is semi-simple, the
ring of invariantslg of Bis finitely generated. By Lemnia 1, the rihg
of H-invariants in the coordinate ring &¥ is the homomorphic image
of Ig and hence is finitely generated. O

Lemma 2. Let K be of characteristic zero and letbe a rational repre-
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01
there exists a rational representatigi of S L(2, k) in GL(n, 2) such that
p*=ponH.

sentation of the additive group H {(1 /1) | e K} in GL(n, k). Then

Proof. We shall denote the eleme(‘g; i) of H by 1. Choosed such
thatp(1) # 1(2 # O is enough). Let the Jordon normal formagft) be

110 . O
Ay 0 011 .0
A= , where A = . .
0 A 1
0. . 1

Let A; haven; rows. Letp; be the representation &L(2, K) given by
homogeneous forms of degree- 1 in two variables. It is easy to check
that the Jordan normal form pf (1) is Ai. Hence we may assume that
. ._|[pi O
“(2) = A. We tak :(' *) m|
p;i(A) “ =0 p
Remark 2. Lemmad2 is not true in the case whetds of characteristic
p # O, because the groud has non-faithful rational representations
which are not trivial.

Proof of theorem 2.Let G be given by a rational representatiprof

H = {(é /i) |2 € K} in GL(n,K). By Lemma® we extend this repre-

sentation ta rational representatiop® of SL(2, K). Let

G = {(p*c()g) 8) lgeSL2, k)}

{[p(ﬁ) 0
and H’ = 0 (1 /l)|/leK
0 1

The groupG’ acts onK = [Xq, . .., Xn, Xn+1, Xne2]. LetV = K" x K?
andW the subvariety defined by the equatiofs: — 1 = 0 = X,.2. The
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groupG’ acts onV andW is stable undeH’. If for a point
Q=(a....an,10)eW QY eW,

where g= (’0 (()g) 8) e G',ge SL2,K).

Then (10)® = (1,0). Henceg € H. Thatisg’ € H’. Hence the
orbit condition of Lemmd4ll is satisfied. A¥®’ contains the comple-
ment of the hyperplang,,; = 0, W® is dense iV. Further (W¢')C is
contained in the variety defined by the equatieRs = 0 = X,.2. The
conditions of the corollary to Lemnid 1 are satisfied. Heneerithg of
H’-invariantsly, in the coordinate ring oWV is finitely generated. That
is lg is finitely generated.






Chapter 5

Zarisk’'s Theorem and Rees’
counter example

1. ®-transform. Let R be an integral domain with quotient field Let 41
® be an ideal oR. The set

S(6;R) = {f | f elL, f6G" c R for some n}
is defined to be thé- transform ofR.
Remark 1. S(®; R) is an integral domain containirig

Remark 2. Itis clear that if® andb are two ideals with finite basis such
that V& = V6, thenS(6; R) = s(b; R) (we recall that for an idedb in

R, V6 = {x| xeR X" e (ﬁ,forsomen}).
Remark 3.If R is a noetherian normal ring and height > 2, then
S(6,R) = R.

Proof. Let f € S(®,R). The f6" C R, for somen. As ® is not con-
tained in any prime ideal of height 1,e Ry, for every prime ideat?
of height 1. Hencd € R, Rbeing normal. O

Corollary . Let R be as in Remalld 3 anél = ®; N ®, with height
®2 > 2. Then §6, R) = 5(61, R).

35
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Remark 4.If Ris an dfine ring and heights > 2, thenS(®;R) is
integral overr.

Proof. By passing to the derived normal ring we may assumeRiat
normal any apply RemaiR 3.

For any integen > 0, set®™" = {f | f eL, fG" C R} , Then
S(®;R) = U®G". We shall abbreviat&(®; R) to S when there is no
n
confusion. m|

Remark 5. If Ris noetherian® ™" is a finiteR-module.

Proof. "Cc Ri a+0,ae 6™ O
Proposition 1. Let® be an ideal in R with a finite basisa. ., a,, (& #

0,i =1,...,n). Lett,...,t,_1 be algebraically independent elements

n-1

over R. Sett= (1- 3 atj) | ay; thisis an element of R, ..., t 1, é].
i=1

Then

() S =R[t] nL, where t stands fofty, ..., ).

(i) Further if R is normal, then & R* n L, where R is the derived
normal ring Rt].

Proof. (i) Letc = f(t) € R[t] n L. Choose greater than the degree
n

of f. Then since}. aitj = 1, we have
i=1

alrc € R[t].? “ee 7ti—1aﬁati+l7 e ,tn],

where™ on t; indicates that; has been omitted. A, ..., t_1, i,
tiy1.....tn are algebraically independent overalc € Rji = 1,
...,Nn. Henceh"'c € Ri.ec € S. ThusR[ffnL € S. On the
other hand let € S. Thenc®" C R, for somer. Letmy,...,m
be all the monomials in the of degreer. Raising the equation

n |
at = 1 to the rth power, we havg,m; f; = 1, wheref; € R[t].
i=1 i=1
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[

Sincecm € Rji = 1,...,t, we havec = ), (cm)f; € R[t]. Hence
i=1
S C R[t] n L and proof of (i) is complete.

(i) To prove thatS = R* n L, we have only to show the inclusion
S 2R NL. Letc € R* nL. Thenc is integral overR[t] and
we have a monic equatic? + f1(t)cSt + ... + fs(t) = 0, fi(t) €
Rit],i=1,....,s

Letr > In_ax(degree offi). Thenalcis integral oveR]ty, ..., ti_1, 43
<I<S

fi,tii1,....t)). As Ris normal andty, ..., ti_1,§,tis1,...,t, are
algebraically independen®[ty, ..., t_1, &, tii1, ..., t:] is normal.
Hencea/c € R. Thereforec6™ C R, i.e.,ce S. HenceR'NL C S
and (ii is proved).

O

Let R be an #ine ring over a ground field. Let L’ be a field with
K c L’ Cc L, whereL is the quotient field oR. Then, isRN L” an dfine
ring? Let us call thisGeneralized Zariski's ProblemWe recall that
this is just the restatement of Zarisk’s Problem (see ChEtithout
the hyper thesis of normality dR. We shall later in this chapter give a
counter example to the above problem (with trdegL’ = 2).

Let Rbe an #ine ring. By propositiofill it follows that :

(i) If there exists an ideath in R such thatS(®; R) is not finitely
generated, theB(®; R) is a counter example to the Generalized
Zariski's Problem.

(i) If further R is normal and if there exists an ide@l in R such
that S(®; R) is not finitely generated, the8(®; R) is a counter
example to Zariski's Problem.

2. Krull Rings and ® - transforms

We shall now proceed to prove the converse of proposifloreé (s
proposition[#) in the case whdris normal. For that we need some
generalities on Krull rings. We say that an integral domRiis Krull
ring if there exists a set | of discrete valuations of the quotfesitd L 44
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of R, such that ()R = N Ry, whereR, denotes the valuation ring of
Vel
(i) Forae R,a # 0,v(a) = 0, for all but a finite number of € 1.

Proposition 2. An integral domain R is a Krull ring if and only if the
following two conditions are satisfied:

(i) For every prime ideal? of height 1, B is a discrete valuation
ring.

(i) Every principal ideal of R is the intersection of a finite nienbf
primary ideals of height one.

For the proof of Propositiofl] 2, we refer tdvl. Nagata “Local
Rings” Interscience Publishers, Now York, 1962).

Remark 1. It easily follows thatR = (N Ry, where#?  runs through all
prime ideals of height 1.

Remark 2. LetR = N R, be a Krull ring defined by a family of discrete

vel
valuations{R,},c| of the quotient field oR. Then for a prime ideat’
of R of height 1, we hav&R» = R,, for somev € |. (For prof seeM.
Nagata “Local rings”, Interscience Publishers, New Yoi%62).

Proposition 3. If R is a Krull ring then the®-transform S of R is also
a Krull ring.

Proof. Let J be the set of those prime ide&s of height 1 which do not

contain®. We shall prove tha® = (| Ry. Letx € S. Thenx®" C R,
el
for somen. As 6" ¢ %', for % € J,Xe N Ry. m|
Xel

Conversely lety € N Rz. Now asRis a Krull ring, ® is contained
el
in a finite number of prime ideals of height 1. Therefore thexists

ann > 0 such thay®" ¢ R, whereg is any prime ideal of height 1
contammg@ Hencey®G" C m R, 2 running through all prime ideals

of height 1. By the remark after Propositibhy®" ¢ R. Hencey € S
and the proposition is proved.
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Proposition 4. Let R be an fine normal ring over a ground field K.
Let L’ be a field such that KC L’ C L, where L is the quotient field of R.
Set R= RN L’. Then there exists arffae normal rings’ and an ideal
® of & such that R= S(6; 0).

We shall prove the assertion in several steps.

() R isaKrullring.

Proof. We haveR = (N Rs, wherey runs through all prime ideals
>
of height 1. NowR' = N(Rx» N L’). HenceR is a Krull ring. 0O
>

(i) For every prime ideag of height 1 inR’ there exists a prime ideal
g of height 1 inRlying abovegi.eg R =4¢’.

Proof. We may assume that is the quotient field oR'. We have
R = N(R» NL), as in (i) By Remarkl2 following Propositidd 2,
v

we haveR, = R;(L’ for some prime ideag of height 1 ofR.
This proves (ii). O

(iii) There exists a normalfeine ringd” € R’ such that for every prime
idealp’ of height 1 ofR’, we have heightd " ¢”) = 1.

Proof. We may assume that is the quotient field oR'. Take a
normal dfine ringR” € R’ such that’ is the quotient field oR”.
Let Q' be the set of prime idealsof height 1 inR’" with height
(6 NR’))1. LetT be set of prime ideal®” of height 1 ofRsuch 46
that heights # "YR”’) > 1. LetV,V” be the #ine varieties de-
fined by R andR” respectively. For & e T,% N R’ defines
isolated fundamental subvariety ®f’ with respect toV under
the morphismf : V — V” defined by the inclusiolR” € R
HenceT is finite. Therefore by (ii),Q’ is finite. LetR; be an
affine normal ring such th&®” ¢ R; ¢ R. Let Q] be the set of
prime idealsg; of height 1 ofR" such that heighte ( Ry) > 1.
ThenQ; € Q. We next prove that for @ € Q’, there exists
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(iv)
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an dfine normal ringR; with R” € R; € R such thaty’ ¢ Qf,
where Q] is as above. We clalm tha), is a discrete valuation

ring such thattransdeg?] eRy = transdeg L’ - 1. Letg

be a prime ideal of helght 1 R lying aboveg (see {i)). Let
1,...% € Rbe such that (ixy, ..., X are algebraically indepen-
dent oveR (ii)xy, ..., X mody from a transcendence base Ryfg
overR'/g’. Such a choice is possible singgandR;, are valuation
rings. SinceRis dfine andg is of height 1, we have tramegR/g

= transdegL - 1. Also transdegR/g transdegR’/g’ +r.
K
Hence transiegR’/g’ transdegL 1-r > transdegl’ —
K
Hence transiegR’/g’ = transdeg_’ 1. SinceR” is dfine and

height Gﬂ R’ > 1, we have trans: '/(Rumg)gtransdegL’ -
K

Letys,...,y € R be such thayy,...,yy mod G’ from a tran-
scendence base & /G’ overR'/zAr. Let R” be the derived
normal ring ofR”[y1,...,y]. Then height ¢’ YR”) = 1. Since

Q is finite, in a finite number of steps we arrive at a nornfaha
ring &’ € R, with the same quotient field & such that for every
prime idealg’ of height 1 of R we have heightd N ¢”’) < 1.
But ¢/ and R have the same quotient field. Therefore height
(0" N ¢') = 1. This proves (iii). m|

Let & be as in (iii). LetP be the set of prime idealg of height 1

in ¢’ for which there does not exist any prime ideal of height 1 in
R, lying over@G. LetV,V’ be the #ine varieties defined big and

%’ and letf : V — V’ be the morphism induced by the inclusion
%’ C R There are only a finite number of subvarieties of codi-
mension 1 inV’ to which there do not correspond any subvariety
of codimension 1 V. Hence the se® is finite. To prove Propo-
sition[d, we taker’ = 0, % = (| %. LetF be the set of prime

WeP
ideals of height 1 which do not conta@ ThenS(®; &) = N &,

geF

(See Propositiolll 3). We hav|, = N R, whereg’ runs through
v
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prime ideals ofR’ of height 1. Now it follows easily by our con-
struction of0 thatR’ = S(6; 0).

Let Rbe an integral domain and lét be an ideal oR. We say that
the ®-transform ofRis finiteif S(®; R) = R{G "] for somen > 0.

Theorem 1. Let R be a normalgine ring and® be an ideal of R. Then
the ®-transform S of R is finite if and only if th& P- transform of P is
finite for any P= Ry, where#/, is a prime ideal of R.

Proof. Clearly & "P = (6P)™", for everyn. Hence if®’ transform of 48
R finite, then so igH P- transform ofP, for everyP. Conversely assume
S is not finite. We then define an increasing sequence of norimgs r
by induction as follows:

SetRy = R Having definedR;,0 < j < i, we defineR,1 as

the derived normal ring oRi[((S(R,-))‘l]. Then we haveS > R >

Ri_1 ((Y)i_l)‘l], where suchRr; is an dfine normal ring. By the defini-
tion of ®-transform,S = UR,. Further®R;- transform ofR; is alsoS.

We claim that heightHR, - 1 for everyi. For if height®bR, > 1, then
the ®R —transform ofR; is integral ovelR; and therefores = R;. This
contradicts the assumption tHaiis not finite. Let®; be the intersection
of those prime ideals of height 1 & which contains®R,. Then we
have ®; C ®j,;. For letZ be a prime ideals of height 1 iR;,; con-
taining ®R; 1. If height y " R = 1), then by definition of &;, we have
G CZ NR" O

Otherwise let heightZ? "R;)1. Since theéb-transform ofR; is S (see
remark after the definition db-transform), we have(Y(Ri)‘lfﬁ{" c R,
for somem. Now if & ¢ Z N R, then GR)™! ¢ (R)#~r. Hence
R[((ﬁR,-)‘l] C (R)#nr - ThereforeRi;1 € (R)#nRr, SinceR; is normal.

Hence R.1)# = (R)#nr - This contradicts the assumption that height
ZNR > 1. Hence®; ¢ #Z N R,. Therefore®; € Gi,1, fori > 0. Set
G = U(Y). Then®* is a proper ideals db = UR. Let %™ be a prime 49

ideal contammgﬁ got? = #*R1 andP(Y)Rfy We now consider the
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®P-transfer ofP. We can R); = (R»)i WhereT = R—- % and Rw )
are defined by infection as follows:
We set R»)o = Ry and having definedRw )o, . . . , (R?); we define

(Ry i1 as the derived normal ring oR@)i[((ﬁ(Rg)i)‘l]. Since height

®(R)T = 1 by our construction,R;)t cannot be th&P-transform ofP.
Hence®P-transform is not finite.

3. Geometric meaning of the®-transform.

LetV be a variety. We call anféne varietyV’, anassociated gine
varietyof V if i) V/ 2 V. ii) The set of divisors oV’ coincide with that
Vi.e. the set of local rings of rank 1 &f andV’ are the same.

Theorem 2. Let F be a proper closed set of affiae variety V and le®
be an ideal which defines F in thgiae ring R of V. Then M F has an
associated gine variety if and only if thé-transform S of R is finite;
in this case S defines an associatgtha variety and S contains and is
integral over the gine ring of any associategfme variety of V- F.

Lemma 1. Let R be an integral domain and I€i be an ideal of R.
SetR = R[(Y)‘”] or S(®; R). Then the correspondencg” ~» %’ N R

establishes d — 1 corresponding between the set of prime ideals of
R’ not containing® and the set of prime ideals of R not containifig
Further, for a prime ideals?” of R with " » &, we have B, =

R ar.

Proof. Let % be a prime ideals oR which does not contain®. Let
ac,a¢ %. ThenR C R[%] Since@R[%] is a prime ideal, so is

v = @R[g] NR. Further?’ N\R= % andR),, = Ry.

Conversely if%” is a prime ideal oR’ which does not contaify,
then? = " (N Rdoes not contai® andRy =R),,,. O
Lemma 2. Let ® be an ideal of a noetherian domain R. Let S be the
®-transform of R and Ra subring of S containing R. Then tli&R -
transfer of Ris S.
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Proof. Let S’ be the®R' -transform ofR’. We have only to prove that
S’ € S. Let f € S’. Then there exists ansuch thatf ®&" ¢ R'. Let
a,...,a € 6" generate®". There exists am such thatfa,®6™ Cc R.
Hencef ®™™ c Rand the lemma is proved. m|

Corollary. With the above notation, if a S, then aS: S = aS and
consequentlysS is not of height 1.

Proof. Letf €S, f® c Sa i.e.%(ﬁ cS. g €S.

We now prove Theorefd 2. SuppoSes finite. ThenS is an dfine
ring and defines an associatefirse variety by lemm@ll and Corollary.
to Lemmd®2. Conversely assume tNétis an associatedfiane variety

of V- F. LetR be the #ine ring of V. Letx € R. SetGy = {y |

yeRyX € R}. Sincex’ € Ry, for % 7 6 (by the hypothesis) we have

Gy ¢ &, for @ » 6. Hence®Gy contains a power ofs. Therefore
X € Si.e.,,R € S. Since the divisors oY’ andV - F are the same,
height ®R’) > 2. HenceS is integral ovelR’. HencesS is an dfine ring
and therefore finite.

LetV be an &ine variety defined by anfiine ringR and letF be a 51
closed set defined by an ideal O

Theorem 3 The variety V- F is gffine if and only ifl € &S, where S
is the ®-transform of R. In this case F is pure of codimension 1 and S
is the gfine ring of V- F.

Proof. Supposé/—F is afine. TherlV—F is an associatediine variety
of V — f. LetR be the coordinated ring of — F. ThenR C S (by
TheorenTR). Now le GR'. Hence 1l S. Conversely suppose that

1 e ®S. Then 1€ 66" for somen. SetR’ = R[(B‘”]. Since®R > 1,

Lemmall of Theorerfil2, proves that thiree variety defined by’ is
V - F. R = S becausébR’ > 1 (by virtue of Lemm&R). O

It now remains to prove that is pure of codimension 1 ¥ — F is
affine. Suppose the contrary. LIE{ be an irreducible component &f
with codimensionF; > 1. Let f € R, with f not vanishing orf; and
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vanishing on all tho other irreducible components. Thensim®@ring
R[%] we may suppose thd& = F;. But this would mean tha$ is
integral overR. Hence 1¢ S. Contradiction.

Theorem 3.V —F is an gfine variety if and only ifs(&(P)~"(") 5 1 for
every local ring P of F (the integer(R) depending on P).

Proof. If V — F is afine, then by Theoreild 3,4 6Si.e 1€ GG " for
somen. Hence 1e G(®P)™" for everyP of F. Conversely assume that
1 € G(6GP)™P) for everyP of F. Then by lemma&l2 of Theorefi 2, the
®P-transform ofP is finite for everyP of F. Hence by Theoreild & is
finite. Then 1le S andV - F is an dfine variety. m|

Corollary 1. If V is an gfine variety and F a divisorial closed subset
of F such that some multiple of F is locally principle, ther-\F is an
affine variety.

Corollary 2. If V is a non-singular gine variety and F a divisorial
closed subset of V, thenVF is an gfine variety.

Corollary 3. If V is an gfine curve and F a closed subset of V, then
V — F is again gfine.

Proof. It is suficient to prove the Corollary whel consists of a single
point P. If P is normal then by theoref 3V - F is afine. If P is
not normal we consider the derived normal riagof P. Let C be the
conductor ofP” with respect taP. Then®" C C for somen, ® being

an ideal which defineB. By consideringR (5‘”] we are reduced to the
case wherfF consists of normal points. This proves the Corollary.c

4. Zariski's theorem and some related results.

Theorem 4 (Zariski’s). Let R be an fine ring over a ground filed K
and letQ be the quotient field of R. Let L be a subfieldofontaining
K.

Q If transdeg.k =1, then RO Lis an gfine ring
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(2) If Ris normal andransded. = 2, then RN L is an gfine ring.
K

Proof of (1) is a consequence of Propositldn 4, Theokém 2 and Corollary
B to theoreniB

Proof of (2) By virtue of Propositiolll4, (2) is contained in the following
theorem:

Theorem 4 Let R be an fine normal ring of dimension 2 over a ground3
field K. Then for any ideal§ if R the®-transform §®, R) is finite.

We require the following lemma

Lemma. Let S be a Krull ringg’ a prime ideal of height 1. Lab be an
ideal of S such thabR, = gR,. Then® : g ¢ g.

Proof. SinceRis a Krull ring R, is a discrete valuation ring.Therefore
there is am € 6 such thataR; = gR;. SinceRis a Krull ring, aR =
ganNgiN...Nan g being primary ideals of height 1 fiierent fromg .
Theng?pgiN...Ngh=aR:g< & : g. O

Proof of Theorem4’. We may assume that the ide#lis pure of height
1. Choose an elemebte ® such that?(b) = nj, 1 <i <r whereZx
is the normal valuation corresponding# Then% N * = bRwhere
' is an ideal pure of height 1 such tlatand%/’ do not have common
prime divisors of height 1. We hawS = bS (cf. Cor to LemmdR,
p.50). Choose an elementaae ® such that a is not contained in any
of the prime divisors of% and 7z (a) > 7#(b) = n,1 <i <r. Letx
be a transcendental element oiRerExtend the ground fiel& to K(x).
We remark that thé& K (x)[R]-transform ofR" = K(X)[R] is finite if and
only if the G-transfer ofR is finite. Now ®R = Jifl(”l) N...N %0

, Where. 7" is the centre ofR’ of the valuation”_, on Q(x) define by
V(Y arx) = mjin V#(a;). The elemena andb do not have a common

prime divisor inS. The choice of the elemertand the following any 54
lemma show that we may assume th8tis a prime ideal.

Lemma.Let S be a Krull ring and let @ € ¢ with a b not having a
common prime divisor. Then axb prime in §x].
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Now assume that thé-transformS of R is not finite. Then as in
the proof of Theoreril1 (of this chapter), there exist norrmaaél rings
(P, #), 0 <i < o0 such thatPy = Ry for suitable prime idealt’ > &
and @, #;) dominates R_1, #{-1). FurthermoreS* = JP; = S,

where M is a maximal ideals ofs. Set#”™* = U%. Cohsider%ﬂ =
#*NR. SincebSNR = &’, the canonical mapping: R/?’" — S/bSis
an injection. Fos € S, we haves®™ C Rfor somem. Since®G™ ¢ 6 is
of dimension 1, by the theorem of Krull-Akizuki (see M. Nagéltocal
rings”, Theorem 33.2, p.113/bS is noetherian an&/M is of finite
length overR/# . In particular?* is finitely generated. Hence exists
all such that#1S* = #* and thaiS*/# * is of finite length ovelP1/7#;.

We now proceed to prove th&t is noetherian. Since heigh#(*) =
2, by virtue of a theorem of Cohen we need only prove that epemge
ideal of height 1 ofS* is finitely generated. (see M. Nagata, “Local
rings” Theorem 3.4, p.8).

Letg* be a prime ideal of height 1. Sgt= ¢* NR. ThenS*g* = R,.
Hence by the lemma proved we hayé = S* : g ¢ g*. ButgS* C
g”. We claim that heighty” > 2. For if ¢ C R, a prime ideal of
height 1 ofS*, then 1.g = Sy = S Hence.# = g* a contradiction
to the fact thaty’4” |.Hence eitheg” = S* or ¢” is A" # -primary.
Hence# #*' C ¢’ for somet. SinceS/.# #*' is artinian and/ % *
is finitely generated we conclude thgt is finitely generated. Now
9" /4 1S @ finitely generated oved*/g*. But in S*/g* the only prime
ideals arem*/g* and (0) andS*/g* is Noetherian. Hencg* N g’ /g"g”
is finitely generated. Hena® N g*/gS*, being residue class module of
a” Ng*/g"q”, is finitely generated. Hengg N g* is finitely generated.
SinceS*/g” andS*/g* are noetherian, we ha®& /g’ Ng* is noetherian.
Henceg*/g” N g* is finitely generated. Henag is finitely generated.
HenceS* is noetherian.

The ring, P, being a geometric normal local ring, is analytically
normal. FurthelS* and P, have the some quotient fieldy # 1S* =
N W* andS*/ 4+ is of finite length ovelR/ -+ and therefore over
P1/ A% 1P1. Hence by Zariski’s main Theorem (sbk Megata, “Lo-
cal ring” Theorem 37.4 , P.13P®; = S*. This is contradiction to the
construction of the>;.
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Theorem 5. Let V be a normal fine variety of dimension 2 and lot F
be a divisorial closed subset of V. Then-\F is gffine.

Proof. Let % be the ideal definindg-. By Theoren{H# theZ -transfer
S of Ris finite. LetV’ be the &ine variety defined bg. Since height
% < 2andV is of dimension 2Y—F is isomorphic to an open sub3agt
of V’ such thatv’ — V" consists of atmost a a finite number of pointses
Let X’ € V' = V”. Consider the morphistv’ — V induced by the
inclusionR C S. Sincef_; f(x’) is discrete, by Zariski's Main Theorem
f is bio-holomorphic atx’. Let W be an irreducible component &f
passing througt (x'). Sincex’ and f(X’) are bio-holomorphic there is
subvariety of codimension 1 &f” passing through’ and laying over
W. This contradicts the fact that’ is the associatedfizne variety of
V — F. HenceV - V" is empty andV — F is dfine. O

We now proceed to give an example to show that Theddem 4(2) is
false if we do not assume th&tis normal. TakeR = K[X,Y, Z]/(f).
Where

1) FXY,2)=YZ+YT) + X YZ+ UyZ?)
(2) fisirreducible
(3) T,U1,€ Uz € K[X, Y].

Let the imageX, Y, Z, T, U4, U, be denoted by, y,z t,u; and  re-
spectively so thaR = K[x,y,Z = 0. Set#? = (x,y). SinceR/y =
KIX, Y, Z]/¢t.xy) = K[Z], the ideal? is prime. Similarlyg = (y,2) is
prime. We shall show that th& -transfer ofR is not finite. We first
prove that
*) Z1=R+zRz =(z+y)/X

Proof. We have k) = 2" N (X, 2 + yt). For letAx + uy = ax+ B(z+ yt).
Thenuy? € (X) and thereforany?t € (x) i.e. uyz € (X). Butzis not
a zero divisor modulexX). Hence| (y € (X). Therefore ) = # n
(xz+yt). Lotnowg € #~1 Theng = Z = Liuy € (0 (¥
Since ) = Z N(XZ + yt), we have ¥) : (Y) = (X,Z+yt) : (y). 57
But ¢ € K[x,y] and therefore y is not a zero divisor modube £ +
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yt). Hence &,Z +yt) : (y) = (X, Z + yt). Hencey € R+ z;F. This
proves (¥). SetR; = R# ] = Rz] = K[xy.,z1] K[X,Y.Z1]/%
(say) whereZ; = (Z+ YT)/x. We havefi(X,Y2) = Xf1(X, Y, Z1) where
f1(X,YZ) = Xfu(X, Y, Z1) = Y(Za+Y 1)+ X(U;Y Z1+U5Z2), Ty = UpT2-
UiT, U] = Up - 2U,T, U = UZX. Now f(x,y,2) = Xfi(X,y,z1) = 0.
Hencefi(x,y,z) = 0i.e fi(X.y,z) = 0 € . We claim next that
the elementf1(X,y,z;) = 0 is prime inK[X, Y, Z;]. Suppose,(X, Y, z1).

Then one of they; saygy is a unit in K[X,Y,Z, >—1(] Thusfi(x,y,z) =
X'g1(x,y,z1) = O for somer > 0. But f1(x,Y,Z;) is not divisible by

in K[X,Y,Z1]. hencefi(X,Y, Z;) is irreducible. Hence it follow that
Ry = Ri#1] = K[X, Y, Z1] /(1. Furtherf; satisfied the same condition
asf. Proceeding in the same way we see that#hransformS of Ris
obtained by the successive adjunction of elem&ni&,, Z3, . . ., where

Zn+1%,tn € K[x,y]. This shows tha$ is not finite. O

5. Rees’ counter example.
Let K be a field of an arbitrary characteristic and @the a non-
singular plane cubic curve defined ou€r For a natural numbar and

a fixed pointQ of C, T, = {P | npor nQ} is a finite act, becauge is of

positive genus. We choose hegeto be a point of inflexion (it is well
known that a non-singular plan cubic has 9 points of inflexiofhen

P € T4 if and only if there is a plane curn&q of degreed such that
Cq4.C = 3dP. Thus we are that the set of poiRsandC, such thatzy4.C

is a multiple ofP on suitable curv€y of positive degree, is a countable
set. Therefore there is a poiRtof C such that no np (0> 0) is linearly
equivalent to angZ.Cq4 (onC). (Note that the system @fy.C is complete
linear this follows from the arithmetic normality &.) We fix such a
point P also and we enlargl, if necessary, so th& andQ are rational
overK.

LetH = K[Xx, Y, Z] be the homogeneous coordinate rind{x, y, 2)
being a generic point of over K. Let % be the prime ideals oH
which defines. Lett be a transcendental element oteand consider
the ringS generated by all oéit™" with a € ™ (n runs through all
natural numbers) oveH[t].
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We want to show that:
(1) Sis not finitely generated ové.

(2) There is a normalfine ringR such thatS = Rn L,wherelL is the
field of quotient ofS.

This S is the Roes’ counter example to Zariski problem in the case
of transcendence degree 3.

Proof of (1). Consider degZ™ (=minimum if degree of elements of
2 ™). if a homogeneous elemembf degreed is in (™, thenh defines
C4.C with a suitable plane curv@y of degreed. Sinceh € (™ Cy.C
containsnP. By the choice of°, C4.C # nP, whence 8 = deg(G.C >
nandd > n/3. Leto be one of 1, 2, 3 and such thato in divisible by 59
3. Setd = (n + 0)/3. SinceC is an abelian variety, there is a poRDf
Csuchthan(P-Q) + (R- Q) ~ 0. Then

NP+ R+ (0cc-1)~3U ~Cy.C,

whereCy is a curve of degred. SinceC is a non-singular plane curve,
the system of alC4.C (with fixedd) is a complete linear system, whence
there is &4 such thanP+ R+ (o — 1)Q = C4.C. Let h be the homoge-
neous form of degree in H defined byCq. Thenh #/(n). Thus we see
that

(%) degZ™ = (n+0)/3,1<0 <3

This (x) being shown, we see th& is not finitely generated over
K by the same way an in the construction of the fourteenth probh
Chapter L.

Proof of (2). We first show that
() S=H[tLt NV,

whereV is the valuation ring obtained as follows:

Let p be a prime element of the valuation ritd. Thent/p is
transcendental ovefly, whence we have a valuation rifdy (t/p)(=
Ha [t/ Pl pHa 1t/01)-Har (t/p) is independent of the particular choice of
and this valuation ring is denoted ®y
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It is obvious thatS < H[t,t™1] N V. Let f be an arbitrary element
of H[t,t™}] N V. Thenf is of the form Y, ait' (finite sum) withajeH 60
(i may be negative). Let be a valuation defined by. Then by the
construction ofV, (3 ait') = minV(ait) > 0. Thereforea e () if
i < U, which implies thatf eS. Thus =) is proved.

This being settled, it remains only to prove the followingikma by
virtue of Propositiof11§1).

Lemma. Let R be a normalgne ring of a function field L over a field K
and let \, ..., V, be divisional valuation rings of L (i.e.,;\ére discrete
valuation rings of L over K such that trandeg L — 1 = trans. deg of
the residue class field of;\V Then there is a normalfgne ringV with
anideal® suchthat Vi n--- NV, = S(G; V).

The proof is substantially the same as that of Propodiicy2%4nd
we omit the detail.



Chapter 6

Complete reducibllity of
rational representation of a
matrix group

This chapter is mostly a representation of M. Nagata: Cotaple- 61
ducibility of rational representation of a matric groupMhath. Kyoto
Univ. 1-1 (1961), 87-99.

It is well known in the classical case that every rationalrespn-
tation of a semi-simple algebraic linear group is compjetetucible.
But the same argument becomes false in the case where thersativ
domain is of characteristip # 0. For instance, wheK is a universal
domain of characteristic 2, the simple gra8j(2, K) has the following
rational representatiomwhich is not completely reducible:

a b 1 ac b
p(c d): 0 a% P?|.
0 & o
(Thisp is not completely reducible becauaeandbd are not linear
polynomials ina?, b?, ¢?,d?.) Therefore it is an interesting question to
ask conditions for an algebraic linear gro@®so that every rational

representation db is completely reducible.
Now, our answer of the above question, can be stated as fllow

51
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(1) Whenp # 0 : Every rational representation &f is completely
reducible if and only if there is a normal subgroGp of finite
index such thatifG, is a subgroup of a torus group (i.G., diag-
onalizable) andii) the index ofG, in G is prime top. If Gis
connected, then the above condition is equivalent to thditon
that the representation & by homogeneous forms of degree
is completely reducible. On the other handGifis an algebraic
group (which may not be connected), then the complete rbituci
ity of all rational representations @ is equivalent to the condi-
tion that every element @ is semi-simple (i.e., diagonalizable).

(2) Whenp = 0 : Each of the following two conditions is equivalent
to the complete reducibility of all rational representai®@fG.

(I) The closure ofG has a faithful rational representation which is
completely reducible.

(I The radical of the closure d& is a torus group.

We shall prove also the following interesting theorem conice
the complete reducibility of rational representations abanected al-
gebraic linear group:

If Gis a connected algebraic linear group, then every ratic@ r
resentation o6 is completely reducible if (and only if) the following is
true:

1 . . . . .
If o/ = (0 ;) is a rational representation & thenp’ is equivalent

to the representatioﬁl) 2)

1. Preliminaries on connected algebraic linear groups.

Throughout this chapteK denotes a universal domain of an arbi-
trary characteristic, unless the contrary is explicitigtetl. LetG be a
connected algebraic linear group containedin(n, K). A Borel sub-
group B of G is defined to be a maximal connected solvable subgroup
of G. Then as was proved by Borel, the following is true:

Lemma 1. The homogeneous variety/B is a projective variety. On
the other hand, every element of G is in some conjugate of B.
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Now we have:

Lemma 2. If u € G is unipotent, G being a connected algebraic linear
group, then there is a closed connected unipotent subgré@which
contains u.

Proof. By the last half of LemmEBl1, we see thais in a Borel subgroup
B of G. SinceB is solvable, the sdt of all unipotent elements @ is a
closed connected subgroup, which proves the assertion. O

On the other hand, the following was proved by Borel:

Lemma 3. If a connected algebraic linear group G consists merely of
semi-simple elements, then G is commutative, hence is s gooup.

Next we shall concern with an algebraic group which is not-con
nected:

Lemma 4. Let G be an algebraic linear group and let,®e the con-
nected component of the identity of G. Then each cosgfgGe G)
contains an element of finite order.

Proof. Let A be the smallest algebraic group containgignd letA, be
the connected component of the identity/of SinceA is commutative
and sinceA, is infinitely divisible (in the additive formulation)A.g 64
contains an element of finite order, which proves the asserti m]

2. Preliminaries on group representations.

Let G be an abstract group, |&, be a normal subgroup @ and
let K be a field of characteristip which may be zero, throughout this
section, except for in Lemmas 8 aid 9.

The following lemma is well known :

Lemma 5. If a finite K-module M is a simple k G-module, then M is
the direct sum of a finite number of KG,—modules which are simple.

Corollary . If a representationo of G in GL(n,K) is completely re-
ducible, then the restriction @f on G, is completely reducible.
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The converse of the above Corollary is not true in generpl# 0,
but we have:

Lemma 6. Letp be a representation of G in Gh, K). If the restriction
0. Of p on G, is completely reducible and if the indext[G : G,] is
finite and not divisible by p, themitself is completely reducible.

Proof. If p is not completely reducible, thencontains a representation

pP1

of the form( T) which is not completely reducible and such that

0 p2
p1r T
0 p2
p1, p2 areirreducible. Let the representation modulg bé M*.M* con-
tains the representation modweof p, andM*/M is the representation
module ofp1. Sincepg is completely reducible, we see thdtis a direct
summand oM* are aG, — K— module. HencéM* = M@&N;&---®N;,
whereN; are simpleG, — K— modules. For eachl; we fix a linearly
independent basig ..., a;s overK; we note here that the numbeiis
independent of becauseM*/M is a simpleG — K-module (remember
the well know proof of Lemmal5). For each §)— matrix b = (k)
over the moduleM, we defineN(b) = 3;j(a; + bij)K. Thus we have a
one-one correspondence between alh ahd all of submodulebl such
thatM* = M @ N as aK-module. We may assume, on the other hand,
that p; is given by the linearly independent basis, ..., a;s modulo

M of M*/M. Eachg € G defines a linear transformatiof{(g) on the
module of ¢, s)-matrices oveM* as follows: If (X11,...,%s)o1(Q) =
(Y11 - - -» Xes), then &;).f(g) = (x;). We define also anr(s) - ma-
trix ¢(g) over M by the relationN(c(g)) = N(0)®. If b andb’ are such
thatN(b)? = N(b"), then we haveg;j + bj)? = (aj + bi;)-f(g). Since
(aj)? = (aij + c(g)). f(g), we see tha’ = ¢(g) + b9.f(g)~L. Thus:

o1, p2 are irreducible. Hence we may resume ihat and that

(1) N(b)® = N(c(g) + b°.f(@) ™).

If we apply this formula to the case wheve- c(h) with h € G, then we
have

(2) o(hg) = c(g) +c(h). f(@)~*
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Now, letg; ..., g be such thaG = Y G.g and we sed = t*
(2 c(gi)). We want to show that(d)? = N(d) for everyg € G. Indeed,
c(g) + d%.f(9)* = (@) + XX c(g)?.f(9) ) = c(g) + tH(N(c(gig) -
c(@) = t71(2 c(gig)) = d. ThereforeM* = M @ N(d) is a representation66
module ofG, which completes the proof. O

Corollary. If p = 0, then the coverer, of the Corollary to Lemida 5 is
true, provided that the indgG : G,] is finite.

Lemma 7. Let H be a subgroup of finite index of G. If a representation
p of H in GL(n, K) is not completely reducible, then the representation
p* of G included by is not completely reducible.

Proof. Let M be the representation module®fM contains arK — H-
moduleN which is not a direct summand &f. Let M* be the repre-
sentation module gb*. ThenM* is of the formM & }, My whereg;
are such thaG = H + X Hg (g ¢ H). It is obvious that}, Mg, is H-
admissible.M* containsN* = N @ 3 Ng.. If N* is a direct summand of
M* as aG - K-module , then we hav®l @ 3, Mg = N@® } Ng ® N’ as
anH - K — Module . Then we see tht = N& (M N (X Ng + N’)) as
anH — K- module, which is a contradiction. Hend¥ is not a direct
summand oM* andp* is not completely reducible. O

Corollary. If a finite group G has order which is divisible by p, then
G* has a representation which is not completely reducible.

Proof. G' has an element a whose ordemisThen the sub-groufa'}

is represented b&(é |1) } and we see the assertion by Lenitha 7o

Next we observe relationship between rational representabf a
matric groupG and those of the closure &f.

Lemma 8. Let G be a matric group and let'@oe the closure of G. Lete67
p* be arational representation of'Gand letp be the restriction ob* on

G. Therp is irreducible if and only ifo* is irreducible. p is completely
reducible if and only ip* is completely reducible.

Proof. p(G) is dense ip*(G*) and we see the assertions easily. O
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Lemma 9. Let N be a normal subgroup of a matric group G and let
p be an irreducible rational representation of G into GLK), K being

an universal domain. If N consists only of unipotent elesighten N is
contained in the kernel of the irreducible representation

Proof. Since the set of all unipotent matricesGi.(n, K) is closed, and
since the image of unipotent element under a rational reptagon is
again unipotent, the closuié* of p(N) consists only of unipotent ele-
ments. Therefor®&\* is nilpotent, hence is solvable. Therefore we may
assume that every elemer;{ of p(N) is such thata;; = 0 if i > j,
whencea; = 1 for everyi. On the other hand, the Corollary to Lemma
says that the restriction @f on N is completely reducible, whence
©o(N) must consist only of the identity, which completes the firoo o

3. The main result in the case wheré&s is connected andp # 0.

Theorem 1. Let K be a universal domain of characteristic#0 and
let G be a connected matric group contained in (&LK). Then the
following three conditions are equivalent to each other:

(I) Every rational representation of G is completely reducible

(I G is contained in a term group, i.e., there is an element a of
GL(n, K) such that alGa is a subgroup of the diagonal group.

() The representation of G by homogeneous forms of degree p is
completely reducible.

Proof. It is obvious by virtue of LemmEl 8 that such of the above condi-
tions forG is equivalent to that for the closure Gf Therefore we may
assume thaG is a connected algebraic linear group. It is well known
that (I1) implies (1) and it is obvious that (I) implies (IL)rhus we have
only to show that (1) implies (II). Assume that (lll) is teuand that (Il)

is not true and we shall lead to a contradiction. Leniiina 3 shibatss
contains an elemeigtwhich is not semi-simple. Then the unipotent part
gu of g is different from the identity and is contained@(cf. Borel's
paper “Groupes leneaires algebriques, Ann. of Math 64, NtP56)
20-82), hencés contains a connected closed unipotent subgtdup 1
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by LemmdR2. The representation modEigof the representatiopof G
by homogeneous forms of degrpés nothing but the module of homo-
geneous forms of degrgein n variablesXy, ..., X, on which element
g of G operates by the rulb(Xy, ..., Xn)9 = h((X1, ..., Xn)g). Fp con-
tainsM = 3, XipK, which is also a representation module&f Hence
(1) implies that M is a direct summand df,. ThusF, = N® M.
For each monomiah;, ;, = Xill...xhn with ij such thati; < p and
2.ij = p, there is a uniquely determined elememt _;, of M such that
fi, i, = Niy_i, + m_i, form linearly independent basis ftf. We note
thatN and M are representation modulesldf Hence we have only to
show that: O

The decompositiorr, = N @ M as a representation module of the
connected closed unipotent groupead us to a contradiction.

Let u = (ujj) be a generic point df) over the universal domaik. 69
We may replacd) with conjugate ofJ. Hence we may assume first
thatuj; = Oif i > j, whereu;; = 1 fori. setK* = K({uﬁ}), and we
choose K, 1) thatux ¢ 1%, Ujjjek- u;ex- If I > K and such thati; € K*
if j > 1. for eachAtUA (A being a triangular unipotent matrix), we
can associate sudfk, 1) and we may assume that the p#irl() for U
is lexicographically smallest among thoseX() for A"TUA. assume for
a moment that is a linear relatign; ajuy € K* with @3 € kanda; # 0.
We may assume that; = 1 andthaty = 0 if u; € k*. Hence, in
particular,ay = ... = ax = @131 = ... an = 0. Consider the unit matrix
1 and the matrixc! = (ct) such that (i)c§ = 01if j # 1, (i) ¢, = ai f
i # 1 and (iii)cf, = 0. Setc = 1+c’. Then obviouslyc™ = 1-c’. Since
¢ 'u = umodulok* , We see easily that such la 1) defined forc™tUc
has the samK& and a smaller 1 than ouk,(1), which is a contradiction.
Therefore:

(1) If o € K and ifay # 0, then ) iouii ¢ K.

Now, leta = (a;) be an arbitrary element &f. Then ua is also a
generic point olU overK. Sinceugj(j > 1) is in K*, the §, j). compo-
nent of ua must be iK*. This shows by virtue of (1) above thaj = 0
if j > 1. since ais arbitrary, we see that = O for everyj # . ThusX;
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is U-invariant. Now we consider the elemeriis. . .in(ij < p, 2 ij = p).
We denote byg; the elementf;, ... i, such thai; = 1,i; = p~! for each
j=kk+1,...,1-11+1,...,n. Since we have

2) (ka|'o_|)u = Z UijjX,p_I,

we see that
®) g = > Ugg;.
j#l
Consider the ca@cient onf in g, let it bed. (3) shows that d is
a linear combination ol j(j # I) with codficients inK. On the other
hand, (2) shows that — uy must be inK*. Thus we have a contradiction
to (1) above, which completes the proof of Theofdm 1.

4. The main result in the case wherg # 0.

Theorem 2. Let K be a universal domain of characteristic#0 and
let G be a matric group contained in G, k). Then the following con-
ditions are equivalent to each other:

() Every rational representation of G is completely redei

(I There is a normal subgroup &of finite index such that (i) Gis
a subgroup of a torus group and (ii) the index of @& G is not
divisible by p.

(1) The connected component,®f the identity of G is a subgroup of
a torus group andG : Go] is not divisible by p.

If G is an algebraic linear group, then the above conditioms a
equivalent to the following condition:

(IV) Every element of G is semi- simple.

Proof. It is obvious that (lll) implies (II) and that (II) implies Xlby
virtue of LemmdBb. Therefore, by Lemrh 8, we have only to pitbee
equivalence of (1), (lll), (IV) in the case whef& is an algebraic linear
group. Thus we assume th@tis algebraic letG, be the connected
component of the identity db. Assume first that (1V) is true. The@,
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consists merely of semi simple elements, heGgds a torus group by
Lemmd3B. If a semi-simple a has a finite order, then the ordmirise to

p. Therefore LemmBl4 implies th&[: G,] is not divisible byp. Thus
(IV) implies (111). As we have remarked above, (lll) impli€§. Assume
now that (V) is not true. Then, as we have seen in the proohefofem

[, there is a unipotent elemambf G which is diferent from the identity,

If ue Go, thenGg has a rational representation which is not completely
reducible, hencé& itself has such one by Lemnh 7 or by the corollary
to Lemmd®. Ifu ¢ G,, then the finite grou/Gp has a representation
which is not completely reducible, which is a rational regemetation of
G. Thus we see that (l) is not true. Therefore (I) implies (IWhich
completes the proof of Theordm 2. O

5. The main result in the case wherg = 0.

Theorem 3. Let K be a universal domain of characteristic=p0 and
let G be a matric group contained in Gih, k). Then the following con-
ditions are equivalent to each other:

(I) Every rational representation of G is completely redhlei

(I) The closure of G has a faithful rational representatiarich is
completely reducible.

(I The radical of the closure of G is a torus group.

Proof. It is obvious that (1) implies (ll) by virtue of Lemn{d 8. Lemma
shows that (1) implies (Ill). In order to show that (l11) jpfies (1), we
shall prove the following lemma: O

Lemma 10. Let G be a connected algebraic linear group and let R e
the radical of G. If R is a torus group, then there is a closedraxted
normal subgroup S such that (i) 8RS and (i) R S is a finite group.
Furthermore, R is contained in the center of G (hence R istimaected
component of the identity of the center of G).

Proof. For the fact thaR is contained in the center &, see Borel's
paper. LetS be the subgroup generated by all unipotent elements of
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G. ThenS is obviously a normal subgroup. Each unipotent element is
in a closed connected unipotent subgrougsefhenceS is generated

by closed connected subgroups, and there®ie a closed connected
subgroup of5. Now, we may assume thRtis a diagonal group and that
eachg € G is given by

p1(9) 712(Q) - - 71r(Q)
o | © p2(@) - w2 (0)
g o

with irreducible representations, ..., or. If ue G is unipotent, then
pi(U) is unipotent, whence the determinantefu) is 1. Therefore we
see that ifse S, then the determinant @f(s) is 1. On the other hand,
sinceR is in the center of5, pi(R) is in the center opi(G), hence by
the famous lemma of Schur every elemenpi@R) is of the formk.p;j(1)
with k € K. Therefore we see th&nN S is a finite group. Sinc& a is
closed normal subgrou@Sis a closed normal subgroup. SinG¢R is
semi- simple, we see th@&/RSis semi-simple, unless = RS. If G #
RS, thenG/RS contains a non-trivial unipotent element, whence there
must be a unipotent element®@foutside oRS, which is a contradiction
to our construction o8. ThereforeG = RS, which completes the proof.

Now we proceed with the proof of Theordih 3. By the Corollary to
Lemmal®, we may assume tHatis connected. Lemnid 8 allows us to
assume thaG is an algebraic linear group. L& be the radical ofc
and letS be the normal subgroup given in Lemind 10. SiRce S is
a finite group and sinc& = RS, we see tha$ is semi-simple, whence
every rational representation & is completely reducible. Leb be
an arbitrary rational representation @ We may assume tha{R) is
a diagonal group, whence the completes reducibility of tdriction
of p on S implies the complete reducibility gf, which completes the
proof. m|
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6. Another result.
Let G be a connected algebraic linear group with universal domain
K, throughout this section.

Theorem 4. Every rational representation of G is completely reducible
if (and only if) the following is true:

If o = (é pO’) is a rational representation of G, the#' is equiva-

lent to the representatio(‘é /S)

Proof. Letp = (’%1 pT) be a rational representation @f We have only
2

to show thap is equivalent to the representatiéggL pO). O
2

Since quagb(ab) = p(a)p(b), we have 74

1)
7(ab) = p1(a)r(b) + T(a)p2(b) for anya, b — G.
Let x be a generic point dB overK considerf(x) = T(x) p2(X) 2.
f(a) is then well defined for ang € G. The relation (1) implies that

f(ab) = p1(a)r(L)o2(b) *p2(a) +7(@)p2(a) " = pa(a) f (b)p2(a) *+
f(a) for anya, b € G, whence

(2)
f(xa) = p1(X) f(a)fa(x)~* + f(x) for anya e G.

Let m, n be such thaT is an(m,n) matrix and consider the module
L of all (m, n)-matrices oveK(x). Each element of G defines an
K-linear mapgg or. L as follows:

Bg(Wij (X)) = (Wij(xg)).

ThusL become«K — G - module. LetM be the set of alb1(X)co>
(x)~* with (m, n)-matricesc over K. ThenM is a finite K-module

contained inL. Sincep1(xa)coz(xa)™ = p1(X)(p1(a)co2(a)~L, X0z
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(X~ Y(a € G), M is G-admissible. SeN = f(X)K + M. Then the
relation (2) shows thatl is also a finiteK — G -module. We consider
a representatiop* of G by the moduleN. The relation (2) shows
that f(X) is G-invariant moduloM, hence eitherf(x) € M or p*

is equivalent to a representation of the fo% ;,) The former

case implies thaf (x) + p1(X)co(X)™t = 0 with some n, n)-matrix
c over K. By our assumption, the latter case implies that there is
an elemenp1(X)co2(X)~t of M such thatf (X) + p1(X)co2(X) L is G-
invariant. Hence, in any case, there is amrf)-matrix ¢ over K
such thatf (x) + p1(X)co2(X) ! is G-invariant. Set* = 7—Cps + p1C.

1) ¢ :
0 pz(l)),weseethap is

equivalent to the representatiéf%1 ; ) Setf*(x) = 7 (X)p2(x) L.
2

Then, transforming by the matrix(p

Then f*(X) = f(X) — ¢ + p1(X)co2(X)~%, which is G-invariant by

our choice ofc. Thereforef*(xa) = f*(x) for anya € G, whence

f¥(x) = f*(xx1) = 0. This shows that* = O, which completes the
proof of Theorenil4.

We note by the way that the matri{x) has an interesting property
as follows:

PLT)is a rational representation of
0 p2

G. Set H= {hlh € G,r(h) = 0}. Then the homogeneous variety 5
= {gH} is a quasi-#ine variety, on which the coordinates of a point gH
are given by fg).

Proposition. Assume thap =

Proof. Sincer(1) = 1, the formula (1) in the above proof shows that
(@) = ~pa(@) r(@)pa(@) Y, hencer(ab) = pu(@) | r(Bloa() * -
T(a)pz(a)_l]pz(b). There foref(a) = f(b) if and only if aH = bH,
which prove the assertion. m|

Remark . Note that the above preposition only proves tdgH is a
guasi-dfine and not fiine as stated in M. Nagata: Complete reducibility
of rational representations, J. Math. hyeto Univ., 1-1 (1987-99.
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