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Chapter 0

In 1900, at the international Congress of Mathematicians inParis, 1

Hilbert posed twenty-three problems. His complete addresswas pub-
lished in Archiv.f. Math.U.Phys.(3),1,(1901) 44-63,213-237 (one can
also find it in Hilbert’s Gesammelte Werke).

The fourteenth problem may be formulated as follows:The Four-
teenth Problems. Let K be a field and x1, . . . , xn algebraically indepen-
dents elements over K. Let L be a subfield of K(x1, . . . , xn) containing
K. Is the ring K[x1, . . . , xn]

⋂
L finitely generated over K?

The motivation for this problem is the following special case, con-
nected with theory of invariants.
The Original fourteenth problem. Let K be a field and G a subgroup
of the full linear group GL(n,K). Then G acts as a group of automor-
phisms of K[x1, . . . , xn]. Let IG be the ring of elements of K[x1, . . . , xn].
invariant under G. Is IG finitely generated over K?

Contributions to the original fourteenth problem were madein par-
ticular cases. In fact it was proved thatIG is finitely generated in the
following cases.

1. K is the complex number field andG = S L(n,K) acting by means
of its tensor representations. (D. Hilbert Math. Ann. 36(1890)
473 - 534).

2. K is the complex number field andG satisfies the following con-
dition: there exists a conjugateG∗ of G such thatA ∈ G∗ ⇒ tĀ ∈
G∗, where ‘−’ and ‘t’ indicate complex conjugation and transpose
respectively (E. Fischer Crelle Journal 140(1911) 48 - 81). 2
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3. K is an arbitrary field andG a finite group (E.Noether , for char-
acteristicK = 0, Math. Ann. 77 (1916) 89 - 92, for characteristic
K , 0 Göttinger Nachr. (1926 28-35).

4. K is the complex number field andG, a one parameter group
(R. Weitzerböck Acta Math. 58 (1932) 231 - 293).

5. K is the complex number field andG, a connected semi-simple
Lie group (H. Weyl Classical groups (1936) Princeton Univ.
Press).

The next significant contribution was made by 0.Zariski in 1953. He
generalized (Bull. Sci., Math.78(1954) 155-168) the fourteenth problem
in the following way.

Problem of Zariski. Let K be a field and K[a1, . . . , an] an affine
normal domain (i.e.a finitely generated integrally closed domain over
K). Let L be a subfield of K(a1, . . . , an) containing K. Is the ring K
[a1, . . . , an]

⋂
L finitely generated over K?

He answered the question in the affirmative when trans. degKL ≤ 2.
Later, in 1957,D. Rees (Illinois J. of Math. 2(1958) 145 - 149) gave a
counter example to the problem of Zariski when trans. degKL = 3.

Finally, in 1958, Nagata (Proceedings of the InternationalCongress
of Mathematicians, Edinburgh (1958) 459 - 462) gave a counter example
to the original fourteenth problem itself. This counter example was in
the case when trans. degKL= 13. Then, in 1959, Nagata (Amer. J. Math.
91, 3(1959) 766 - 772) gave another counter example in the case when
trans. degKL = 4.

The groups occurring in these examples are commutative. So in3

view of Weyl’s result we seek the answer to the original fourteenth
problem in the case whenG is a non- comutative, non-semi-simple Lie
group. The examples mentioned above May be made to yield one with
G non-commutative by considering what is essentially the direct prod-
uct by a non-commutative group. More interesting is the casewhenG
is a connected Lie group such that [G,G] = G. Even in this case the
answer is in the negative as we shall see later in this course of lectures.



Chapter 1

A generalisation of the
original fourteenth problem

1. We first generalise the original fourteenth problem in the follow- 4

ing way: Generalised fourteenth problem. Let K be a field. Let R=
K[a1, . . . , an] be a finitely generated ring over K (R need not be an inte-
gral domain). Let G be a group of automorphism of R over K. Assume
that for every f∈ R,

∑
g∈G

f gK is a finite dimensional vector space over

K. Let IG be the ring of invariants of R under G. Is IG finitely generated
over K?

Remark 1. When a1, . . . , an are algebraically independent andG is a
subgroup ofGL(n, k) acting onR in the ‘usual way’, elements ofR sat-
isfy the finiteness condition we have imposed in the problem.

Remark 2. The omission of the assumption thata1, . . . , an are alge-
braically independent is helpful. For instance letN be normal subgroup
of G such thatIN is finitely generated. ThenG acts onIN, asN is nor-
mal in G. HenceG/N acts onIN and (IN)G/N = IG. So, for instance
if we know that our generalized problem is true for (i) finite group (ii)
connected semi-simple Lie groups, (iii) diagonalizable groups, then we
can get immediately that: ifG is an algebraic group whose radicalN
is diagonalizable then the answer to generalized problem isin the affir-
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4 A generalisation of the original fourteenth problem

mative. Note thatIN need not be polynomial ring even ifa1, . . . , an are
algebraically independent.

Remark 3. We do not assumeR is an integral domain, as the constant5

field extension (of§3 below) of a finitely generated integral domain over
a fieldK need not be an integral domain.

2. Algebraic linear groups.In this section by an affine variety we
mean the set of rational points overK of a certain affine variety with
points in an universal domain. We shall give Zariski topology to an
algebraic variety. The groupGL(n, k), being the complement of the hy-
persurface defined by det(xi j ) = 0 in Kn2

, is an affine variety (in fact it
is isomorphic to the hypersurfacezdet(xi j ) = 1 in Kn2+1). The group
operation ofGL(n,K) are regular i.e.GL(n,K) is an algebraic group.
In this course of lectures by an algebraic group we always mean closed
subgroups ofGL(n, k). We define connectedness and irreducibility un-
der Zariski topology. In the case of algebraic groups these two concepts
coincide. IfGo is the connected component of an algebraic groupG,
thenGo is a normal subgroup of finite index inG. An algebraic group
contains the largest connected normal solvable subgroup ofG, which
we call theradical of G. For details about algebraic groups we refer
to seminaireC. Chevalley Vol.1 (1956-1958) andA. Borol Groups
Linéaires Algébriques, Annals of Mathematics, 64 (1956). We remark
that in the generalized problem we may assume thatG is a subgroup of
GL(m,K) for somem. Because of the finiteness condition on the ele-

ments ofR= K[a1, . . . , an],V =
n∑

i=1

∑
g∈G

ag
i K is finite dimensional vector

space. We choose a basisb1, . . . , bm for V. ThenR = K[b1, . . . , bm]
andG is a group of automorphisms ofV. Therefore in the generalised6

problem we may assumeG ⊆ GL(n, k). From now on, whenever we say
that a subgroupG of GL(n,K) acts onR= K[a1, . . . , an] we mean that it

acts linearly on the vector space
n∑

i=1
Kai . The following theorem shows

that in the problem we may assume thatG is an algebraic group

Theorem 1. Let R= K[a1, . . . , an] and let G⊆ G(n, k) act as a group
of automorphisms of R over K. Let G∗ be the closure of G in GL(n,K).



A generalisation of the original fourteenth problem 5

Then G∗ acts as a group of automorphisms of R over K and IG = IG∗ .

This theorem is a consequence of the following lemma (putS = IG).

Lemma. Let S ⊆ R and let H be the set of elements of GL(n, k) which
induce automorphisms of R over K and leave every s∈ S invariant.
Then H is algebraic.

Proof. Let H1 denote the set of elements ofGL(n,K) which induce au-
tomorphisms ofRoverK. LetU be the ideal of the ring of polynomials
K[x1, . . . , xn] such thatK[a1, . . . , an] ≈ K[x1, . . . , xn]/U. Now g ∈ H1

if and only if Ug = U. Let f1, . . . , fm generateU. We may assume
that f1, . . . , fm are linearly independent overK. Extend f1, . . . , fm to a
linearly independent basisf1, . . . , fm, fm+1, . . . , fl of the vector space

V =
n∑

i=1

∑

g∈GL(n,k)

f g
i K. Let f t

i =

l∑

j=1

λi j f j , i = 1, . . . ,m,

wheret = (trs), trs are indeterminates. Thenλi j are polynomials intrs.
The conditionUg = U is equivalent to �

λi j (g) = 0, i = 1, . . . ,m, j = m+ 1, . . . , l.

7

HenceH1 is algebraic.

Let nowH =
{
g ∈ H1 | sg = s, s∈ S

}
.

It is enough to prove the lemma whenS consists of a single element
s. Let s, s1, . . . , sk be a linearly independent basis of the vector space∑
h∈H1

shK. Let y = (yrs) be a generic points or may component ofH1

over K. We havesy = λ0s+
k∑

i=1
λi si , whereλi are polynomials inyrs.

The conditionsy = s is equivalent toλ◦(s) = 1, λi(g) = 0 for i > 0.
HenceH is algebraic.

3. Constant field extension.We shall now study the behaviour of
invariants under the constant field extensions. LetR′ and R′′ be two
commutative rings containing a fieldK. Let G′ (respectivelyG′′) act
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on R′ (respectivelyR′′) as a group of automorphisms overK. Then the
direct productG′ ×G′′ acts onR⊗K R′′ as a group of automorphisms;
in fact we have only to define (a′ ⊗ a′′)(g′, g′′) = a′g

′ ⊗ a′′g
′′
, a′ ∈ R′,

a′′ ∈ R′′, (g′, g′′) ∈ G′ ×G′′.

Lemma 1. Let IG′×G′′ denote the ring of elements of R′⊗KR′′ invariant
under G′×G′′ Let I′G (respectively I′′G′′) denote the ring of elements of R′

(respectively R′′) invariant under G′ (respectively G′′). Then IG′×G′′ =

IG′ ⊗K I ′′G′′ .

Proof. We have only to prove thatIG′×G′′ ⊆ I ′G′
⊗
K

I ′′G′′ . Choose a lin-

early independent basis (i′
λ′)λ′∈Λ′ and (i′′

λ′′ )λ′′∈Λ′′ for the vector spacesI ′G′
and I ′′g′′ respectively overK. Extend these bases to a linearly indepen-8

dent bases ofR′ andR′′ respectively, say

R′ =
∑

µ′∈M′
i′µ′K,R

′′ =
∑

µ′′∈N′′
i′′µ′′K with Λ′ ⊆ M′ andΛ′′ ⊆ M′′.

Let f =
∑

(µ′,µ′′) kµ′µ′′
∈M′×M′′

(iµ ⊗ iµ′′) ∈ IG′×G′′ , kµ′µ′′ ∈ K.

For everyg ∈ G, we have

f g′ =
∑

(µ′,µ′′)

kµ′µ′′(i
g′
µ ⊗ i′′µ′) =

∑

µ′′
(
∑

µ′
kµ′µ′′ i

g′
µ ) ⊗ i′′µ′′ = f .

Hence
∑

µ′
kµ′µ′′ i

′g′
µ′ =

∑

µ′
kµ′µ′′ i

′
µ′ , g

′ ∈ G′, µ′′ ∈ M′′.

Hencekµ′µ′′ = 0, for = µ′ < Λ′. Similarly kµ′µ′′ = 0, for µ′′ < Λ′′.
i.e. f ∈ I ′G′ ⊗K L′′G′′ and the lemma is proved. �

Lemma 2. With the above notation, R′ ⊗K R′′ is finitely generated over
K if and only if R′ and R′′ are finitely generated over K.

Proof. It is clear that ifR′ and R′′ are finitely generated overK, so
is R′ ⊗K R. Now let R′ ⊗K R. be finitely generated overK, say fi =∑
j
γ′i j ⊗ γ′′i j , i = 1, . . . , l are the generators. ThenR′ = K

[
γ′i j

]
andR′ =

K
[
γ′′i j

]
. �



A generalisation of the original fourteenth problem 7

Let R = K[a1, . . . , an] and letG act onR as as group of automor-
phisms ofR over K. Let K′ be a filed containingK. ThenG acts on
K′ ⊗K R which we denote byK′[a1, . . . , an]. Let I ′G′ be the invariant
elements ofK′ ⊗K R underG. Then in Lemma 1 if we putR′ = K′,
R′′ = R,G′ = {1}, G′′ = G, we getI ′G = K′ ⊗K IG. As in Lemma 2 it 9

follows that:

Proposition 1. I ′G is finitely generated over K′ if and only if IG is finitely
generated over K.

The above proposition helps us to confine ourselves to a smaller
field whenK is ‘too big’. Let G′ be a subgroup ofG such thatG′ is
dense in the closurēG of G. For instance whenK is of characteristic
zero orḠ is a torus group we can takeG′ to be finitely generated. When
K is of characteristicp , 0 we may takeG′ to be countably generated.
Let K[x1, . . . , xn]/U ≈ K[a1, . . . , an] with the x1, . . . , xn algebraically
independent overK. Let K′ be a subfield ofK such that elements ofG′

areK′-rational andU is defined overK′ For instance if we can choose
G′ finitely generated,K′ can be chosen to be finitely generated over
the prime field. IfG′ can be chosen countably generated, thenK′ can
be choosen to be countably generated over the prime field. Nowas
the idealU is defined overK′,K⊗K′, K′[a1, . . . , an] = K[a1, . . . , an].
Hence by proposition 1,IG is finitely generated overK is and only if
G′− invariants inK′ [a1, . . . , an] are finitely generated.

Of course, as we noted in§2, we can enlargeG′ to an algebraic
group.

3. Invariants of a finite group.We shall now consider the original 14th
problems (in fact the generalised problem) whenG is finite.

Theorem 2 (E. Noether). Let R = K[a1, . . . , an] and G a finite group
acting on R as a group of automorphisms of R over K. Then IG is finitely 10

generated over K.

Proof. Let G = {1 = g1, . . . , gh}. Let a ∈ R. Set

S1 =

h∑

i=1

agi ,S2 =
∑

i< j

agi agj , . . . ,Sh = ag1 . . . agn.
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ThenSi ∈ IG, i = 1, . . . , h andah − S1ah−1 + · · · + (−1)hSh = 0. �

HenceR is integral overIG. Now the theorem follows from the
following Lemma:

Lemma. Let R= K[a1, . . . , an] and let S be subring of R containing K
such that R is integral over S . Then S is finitely generated over K.

Proof. There existGi j ∈ S, 1 ≤ i ≤ n, 0≤ j ≤ mi − 1 such that

am1
i +Cimi−1ami−1

i + . . . +Cio = 0.

�

SetS′ = K
[
Ci j

]
1≤i≤n

0≤ j≤ni−1

. ThenR is finiteS′module. AsS′ is noethe-

rian, s is also finiteS′-module. HenceS is finitely generated overK.

Corollary. Let G0 be a normal subgroup of G (G not necessarily finite)
of finite index. Let G act on R as a group of automorphisms over K. If
IG0 is finitely generated over K, then, so is IG.

Proof. The groupG/G0 acts onIG0 and (IG0)G/G0 = IG �

Remark. Suppose thatR (of the above corollary) is an integral domain
Then the converse of the above Corollary is also true. LetK0L be the11

quotient ofIG0 and IG respectively. ThenK0 is a finite separable alge-
braic extension ofL. Let IG be finitely generated. AsG/G0 is finite, IG0

is integral overIG. HenceIG0 is a finiteIG-module and therefore finitely
generated overK.



Chapter 2

A generalization of the
original fourteenth
problem(contd.)

1. In this chapter we shall consider the generalized problems with cer- 12

tain assumption on the representation ofG. In fact we shall prove the
following:

Theorem 1. Let R= K[a1, . . . , an] and let G⊆ GL(n,K) act on R as a
group of automorphisms of R over K. Suppose G satisfies the following
condition: (∗) If λ is a representation of G by a finite dimensional K(G)-

module M⊂ R andλ =



1 ∗...∗
0
... λ′

0


, thenλ is equivalent to



1, 0...0
0
: λ′

0


.

Then IG is finitely generated. We shall prove theorem in several steps.

Lemma 1. Let G satisfy the condition(∗) and let f ∈ R. Then there
exists an f∗ ∈ IG

⋂
(
∑
g

f gK) such that f− f ∗ ∈ ∑
g,g′

( f g − f g′)K.

Proof. Let M =
∑
g

f gK andN =
∑
g,g′

( f g − f g′)K. The vector spacesM

andN areG-modules. Let the dimension ofM be m. We shall prove

9



10 A generalization of the original fourteenth problem(contd.)

the lemma by induction onm. Suppose that for allh ∈ R such that
dimension of

∑
g

hg K is< m, there existh∗ ∈ IG
⋂

(
∑
g

hgK) with h− h∗ ∈
∑
g,g′

(hg − hg′)K. The assertion is trivial whenm = 0. Further if f ∈ N,

we may takef ∗ = 0. Supposef ′ < N. ThenM = K f + N and f is G-
invariant moduleN. Hence by the condition (∗) there exists aG-Module
N∗ of dimension 1 inM and anf ′ ∈ IG with M = K f ′ + N∗. If f ′ < N,13

then M = K f ′ + N and the lemma is proved. Supposef ′ ∈ N. Set
f = λ f ′ + h with λ ∈ K, h ∈ N∗. SinceM1 =

∑
g

hgK ⊂ N∗, we have

dimK M1 6 dim N∗ = m−1. Hence by induction hypothesis there exists
an h∗ ∈ IG

⋂
(
∑
g

hgK) such thath − h∗ ∈ N1 =
∑

g,g1

(hg − hg1)K. Since

N1 ⊆ N, the proof of Lemma 1 is complete withf ∗ = h∗. �

Remark. If R is a graded ring andf ∈ R is homogeneous, the represen-
tations ofG which occur in the above proof are all given byG-modules
generated by homogeneous elements of the same degree.

Proposition 1. Let R and G be as in Theorem 1 and let R′ be a ring
containing K. Let G act on R′ as a group of automorphisms of R′ over
K. Assume that there is a surjective homomorphismϕ of R onto R′ such
thatϕ(ag) = ϕ(a)g for all a ∈ R. Let I′G denote the G-invariant elements
of R′. Thenϕ(IG) = I ′G.

Proof. We have only to show thatI ′G ⊆ ϕ(IG). Let f ′ ∈ I ′G. Let f ∈ R
be such thatϕ( f ) = f ′. By Lemma 1 there exists anf ∗ ∈ IG such that
f − f ∗ ∈ N =

∑
g,g′

( f g − f g′)K. But as f ′ is G-invariant,N is contained in

the kernel ofϕ. Henceϕ( f ∗) = f ′. Henceϕ(IG) = I ′G. �

We shall now prove Theorem 1 in the case whenR is a graded ring
i.e. R = K[a1, . . . , an] ≈ K[x1, . . . , xn]/U with x1, . . . , xn algebraically
independent overK andU, a homogeneous ideal ofK[x1, . . . xn].

Lemma 2. Let S=
∞∑

1=0
Si be a graded ring. Assume that the ideal

∑
i>0

Si14

have a finite basis. Them S is finitely generated over S0.
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Proof. Let hi , i = 1, . . . , r be a set of generators forI . We may assume
that hi are all homogeneous, sayhi ∈ S j(i), j(i) > 0. Then we assert
thatS = S0[h1, . . . , hr ]. It is enough to prove that every homogeneous
element f of S is in S0[h1, . . . , hr ]. The proof is by induction on the
degreei of f . For i = 0, there is nothing to prove. Assumei > 0.

Suppose that for allt < i, St ⊆ S0[h1, . . . , hr ]. We have f =
r∑

k=1
gkhk,

gk ∈ Si− j(i). By induction hypothesisgk ∈ S0[h1, . . . , hr ], 1 ≤ k ≤ r.
Hencef ∈ S0[h1, . . . , hr ]. �

Lemma 3. Let R and G be as in Theorem 1. Let f01, . . . , fr ∈ IG. Then

(
r∑

i=1
fiR)

⋂
IG =

r∑
i=1

IG fi.

Proof. The proof is by induction onr. For r = 0 there is nothing to

prove. Assume (
s∑

i=1
fiR)

⋂
IG =

s∑
i=1

fi IG for s< r. Let f ∈ (
r∑

i=1
fiR)

⋂
IG.

Then f =
i∑

i−1
hi fi, hi ∈ R. By Lemma 1 there exists anh′ ∈ N =

∑
g,g′

(hg
r −

hg′
r )X such thathr + h′ ∈ IG. As, for g, g′ ∈ G,

r∑
i=i

∑
(hg

i − hg′

i ) fi = 0,

there existh′i ∈ R, 1 ≤ i ≤ r − 1 with
r−1∑
i=i

h′i fi + h′ fr = 0. Hence

f − (hr + h′) fr =
r−1∑
i=1

(hi + h′i ) fi .

But f − (hr + h′) fr ∈ IG and therefore by induction hypothesis, there

existh′′i ∈ IG, 1≤ i ≤ r − 1 such that
r−1∑
i=1

(hi + h′i ) fi =
r−1∑
i=1

h′′1 fi .

The proof of Lemma 3 is complete. � 15

Remark. If R is graded andfi are homogeneous, it is enough to assume
the condition (*) for representations ofG given byG-modules generated
by homogeneous elements ofR of the same degree.

Proposition 2. Let R = K[a1, . . . , an] be a graded ring. Assume that
every representationλ of G given by a G-module generated by homoge-
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neous elements of R of the same degree and of the formλ =



1 ∗ · · · ∗
0
... λ′

0



is equivalent to



1 0. . . 0
0
... λ′

0


. Then IG is finitely generated over K.

Proof. As R is graded, so isIG. Let I be ideal ofIG of all elements of
positive degree. �

As R is noetherian, the idealR, I of R is finitely generated. Let
f1, . . . , fr , ∈, I generateR, I . We may assume thefi to be homogeneous.

By Lemma 3 and the remark following it we have (
r∑

i=1
,R fi)

⋂
IG =

r∑
i=i

IG fi = I . Hence by Lemma 2,IG is finitely generated overK.

We shall now consider the non-graded case. Let R= K [a1, . . . , an].
Let be a transcendental element overR. Consider the homogeneous ring
R∗ = K[a1t, . . . , ant, t]. ThenG acts onR∗ if we set tg = t, for every
g ∈ G. Further theG-module homomorphismϕ : R∗ → R defined
by ϕ ( f (a1t, . . . an t, t) = f (a1 . . . , an, 1) induces an isomorphism of a
finite G-submodule ofR∗ generated by homogeneous elements of the
same degree ofR∗ onto a finiteG-submodule ofR. Hence the condition
(*) is satisfied by all representationλ∗ of G given by G-submodules16

of R∗ generated by homogeneous elements of the same degree. Hence
by proposition 2,L∗G the ring of G-invariant elements ofR∗ is finitely
generated overK. Further as everyf ∈ R is the image of a homogeneous
in R∗, it follows from Proposition 1 and the remark after Lemma 1 that
ϕ(I ∗G) = IG. HenceIG is finitely generated overK.

2. We now give examples where the condition (*) is satisfied. It is ob-
vious that if every rational representationλ of G is completely reducible
then it satisfies the condition (*). We shall later give some criteria of
complete reducibility of rational representation of an algebraic group.
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(1) Consider a torus groupG (i.e. a connected algebraic linear group
which is diagonalizable), acting onR = K [a1, . . . , an]. In this case
if G is diagonalized eachK ai1

1 . . . a
in
n is aG-module. ThusR is the

direct sum of simpleG-modules. Hence every representationλ of G
given by aG-sub-module ofR is completely reducible. HenceLG is
finitely generated.

(2) LetK be a field of characteristic zero and letG ⊆ GL(n,K) be semi-
simple. Then it is well known that (see, Chevalley, Theorie des
groupes de Lie, III) every rational representation ofG is completely
reducible. Hence in this case againIG is finitely generated.

(3) Combining (1) and (2) we have : IfG is an algebraic group whose
radical is a torus group, thenIG is finitely generated.

We add here a Corollary to Theorem 1:

Corollary. Assume that K is of characteristic zero and that an algebraic17

group G ⊆ GL(n,K) acts on R= K[a1, . . . , an]. Let N be a normal
subgroup of G which contains the unipotent part of the radical of G. If
IN = the set of N-invariants of R is finitely generated over K, thenso is
IG

Proof. Gacts onIN and (IN)G = IG. The closure ofN being denoted by
N̄, the action ofG on IN is really an action ofG/N̄, whose radical is a
torus group. Therefore by (3) above,IG is finitely generated. �

As a further application of Theorem 1 we prove the following:

Theorem 2 (Generalization of Fischer’s theorem). Let K denote the
complex number field and let G⊆ GL(n,K) act on R= K[a1, . . . , an] as
a group of automorphisms of R over K. Assume that for every A∈ G,
¯t−A (complex conjugate of A) is in G. Then IG is finitely generated over
K.

Proof. Let Ḡ be the closure ofG. ThenḠ also satisfies the hypothesis
of the above theorem. Hence we may assumeG is algebraic. LetH be
the radical ofG. Let Hu be the set of unipotent elements ofH (we recall
that A ∈ GL(n,K) said to be unipotent if all the eigen values ofA are
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1). It is well known thatHu is an algebraic group. It is enough to prove
that Hu consists of identity element only. For thenH is a torus group
(A connected linear algebraic group which has no unipotent elements
other identity is a torus group if either the field is algebraically closed
or the group is solvable). It follows thatIG is finitely generated by (3)18

above. �

It remains to prove thatHu consists of identity element only. Let
A ⊆ Hu. Now H is characteristic inG (i.e. admists all automorphisms of

G). Considering the automorphismg → (tḡ)−1, we see that (
t−
A)−1 ∈ H

and hence (
t−
A)−1 ∈ Hu since (

t−
A)−1 is unipotent. The element

t−
AA is

unipotent and hermitian. Hence
t−
AA = E, the identity matrix. HenceA

is unitary. But the only unipotent unitary matrix is the identity matrix.
ThusA = E and the theorem is proved.

3. Let R= K[a1, . . . , an] be an integral domain and letG ⊆ GL(n,K)
act onR and satisfy the condition (*). LetV be the affine K-variety
defined byR (the points ofV lie say, in the algebraic closureK of K).
Let L be the function field ofR and letLG be the field ofG-invariant
elements inL. The groupG acts onV in a natural way. A subsetF of V
is said to beG-admissible if for everyP ∈ F, Pg ∈ F, for everyg ∈ G.

Theorem 3. Let F be a G-admissible closed subset of V. Let T=
{

f
∣∣∣∣∣ f ∈

LG, f regular at every point of F
}
. Then T is a ring of quotients of IG.

Proof. Let S denote the multiplicatively closed set of alls ∈ IG such
that s does not vanish at any point ofF. We shall show thatT = (IG)s.
We have only to show thatT = (IG)s. Let f ∈ T. Consider the ideals

U =
{
g
∣∣∣∣∣g ∈ R, g f ∈ R

}
andU(F) =

{
h
∣∣∣∣∣h ∈ R, h(F) = 0

}
. As the closed

set defined byU andF are disjoint, we have,U +U(F) = R. Hence
there exists ag ∈ U, g′ ∈ U(F) with g+ g′ = 1.

It is clear that the idealsU andU(F) are G-admissible. Hence19 ∑
σ,σ′∈G

(gσ − gσ
′
)K ⊆ U(F)

⋂
(
∑
σ

gσK) ⊂ ∑
σ

gσK⊆U. By Lemma 1 of

Theorem 1 there exists ag∗ ∈ IG
⋂∑
σ

gσK such thatg− g∗ ∈ ∑
σ,σ′

(gσ −
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gσ
′
)K. Henceg∗(P) = 1 for everyP ∈ F andg∗ f ∈ R. The theorem is

proved. �

Consider the relation∼ in V defined byP ∼ Q if
{
PG}⋂ {

QG}
, φ

for P,Q ∈ V (wherePG is the orbit ofP, namely the set of allPσ with
σ ∈ G and∞̄ denotes the closure inV).

Theorem 4. (1) ∼ is an equivalence relation.(2) The quotient set V/ ∼
i.e. the set of all equivalence classes by∼ acquires the structure of an
affine K-variety with coordinate ring IG such that the natural mapping
V → V/ ∼ is regular.

Proof of (1): We shall in fact give the following characterization which
proves that∼ is an equivalence relation:P ∼ Q if and only if f (P) =
f (Q), for every f ∈ IG. Let P ∼ Q and letP′ ∈ {

PG} ∩ {
QG}

. We have
f (P) = f (PG) = f (P′) = f (QG) = f (Q), for every f ∈ IG. To prove
the converse we remark that ifF1 andF2 are twoG-admissible disjoint
closed sets, then as in the proof of Theorem 3 we can find anf ∈ IG
such thatf (F1) = 1, f (F2) = 0. The closed set

{
PG}

, for P ∈ V is
G-admissible. IfP,Q are not related by∼ we can separate them by an
f ∈ IG. Hence (1) is proved.

Proof of (2): By Theorem 1,IG is finitely generated overK. Let
f1(a), . . . , fl(a) generateIG. Let W be theK-affine variety defined by
IG = K[ f1, . . . , fl]. Consider the regular mappingϕ : V → W defined 20

by ϕ(P) = P = ( f1(P), . . . fl(P)) ∈ W ⊆ K
l
. By (1), ϕ(P) = ϕ(Q) if

and only if P ∼ Q. Henceϕ1(P) =
{
Q
∣∣∣P ∼ Q

}
= P, say. LetM be

the maximal ideal corresponding to a pointP of W. Then by Lemma 3
of Theorem 1MR

⋂
IG = M. Henceϕ surjective and we identify the

equivalence classP with the pointP of W. By Theorem 3 the local ring
at P of W is (IG)P = (

⋂
x∈P
℧x)

⋂
LG, where℧y denotes the local ring at

the pointy of V.

Corollary 1. Let Q∈ {
PG}

. Then(IG)P =

( ⋂
Q∗∈

{
QG

}℧Q∗
)⋂

LG.
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Proof. We have only to prove
⋂

Q∗∈
{
QG

}
℧Q∗

⊆ (IG)P. Let f ∈
⋂

Q∗∈
{
QG

}
℧Q∗ .

Then by Theorem 3,f = h/g, h, g ∈ IG, g(Q∗) , 0, for everyQ∗ ∈ QG.
But asQ ∈ {

PG
}
, g(Q) = g(P′) for everyP′ ∈ P. Hencef ∈ (IG)P. �

Corollary 2. Under the hypothesis of Corollary 1, if QG is closed, then

℧Q
⋂

LG =

( ⋂

P∗∈
{

PG
}℧p∗

)⋂
LG.

Proof. For anyQ ∈ V, (
⋂

Q∗∈QG
℧Q∗)

⋂
LG = ℧Q ∩ LG. As QG is closed,

by Corollary 1,℧Q
⋂

LG = (IG)P = (
⋂

P∗∈{PG}
℧P∗)

⋂
LG. �

As we noted before, our Theorem 1 implies the following

Theorem 1′ Let R= K[al , . . . , an] and let G⊆ GL(n,K) act on R as a21

group of automorphisms of R. over K. If every rational representation
of G is completely reducible, then IG is finitely generated.

What we like to remark here is that when we want to prove this
Theorem 1∗, we need not use the technique at the end of§1, and we
can prove as follows:R is a homomorphic image of a polynomial ring
K[x1, . . . , xn] on whichG acts naturally. The polynomial ring is graded,
hence the result on the graded case and Proposition 1 prove Theorem 1∗.



Chapter 3

The counter example

1. In this chapter we give some counter examples to the original14th 22

problem. For this we need some results on plane curves.

Lemma 1. Let C be a curve of positive genus on the projective plane
and let P1, . . . ,Pm,Pm+1, . . . ,Pn ∈ C(m ≥ 1) and let P1, . . . ,Pm be
independent generic points of C over k(Pm+1, . . . ,Pn), where k is a field
of definition for C. Then for any set of natural numbersαi(1 ≤ i ≤ n)

there does not exist any curve C′ such that C′.C =
n∑

i=1
αiPi .

Proof. Suppose there exists aC′ with C′.C =
n∑

i=1
αi .Pi, letC′′ be a curve

of the same degree asC′ with C′′.C =
l∑

j=1
β jQ jwithQj algebraic over

k. ThenC′.C is linearly equivalent toC′′.C (notationC′.C ∼ C′′.C)

on C. Hence
m∑

i=1
αiPi ∼

l∑
j=1
β jQ j −

n∑
t=m+1

αtPt. Let P be any point on

C. Specializing the above linear equivalence under the specialization
(P1, . . . ,Pm) → (P, . . . ,P) over k(Pm+1, . . . ,Pn) (wherek is the alge-

braic closure ofk) we get (
m∑

i=1
αi)P∼

l∑
j=1
β jQ j −

n∑
t=m+1

αtPt. Thus for any

two pointsP,Q on C, we have (
∑
αi)P ∼ (

∑
βi)Q. This contradicts the

assumption thatC has positive genus. �

17
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Here after for a varietyV, we denote byK(V) the smallest field of
definition forV containingk.

Lemma 2. Let P1, . . . ,Pt be independent generic points of the projec-23

tive plane over a field k and d an integer such that a t< d2+3d
2 . Let L

be the linear system of curves of degree d passing through P1, . . . ,Pt.
Let C be a generic member of L over k(P1, . . . ,Pt). Then P1, . . . ,Pt are
independent generic points of C over k(C).

Proof. Setu = d2+3d
2 . Let Pt+1, . . . ,Pu be independent generic points

of C over k(C) (P1, . . . ,Pt). ThenP1, . . . ,Pu are independent generic
points of the projective plane overk asu is the dimension of the lin-
ear systemL′ of curves of degreed. Let R1, . . . ,Rt be independent
generic points ofC overk (C,Pt+1, . . . ,Pu). Then we have a specializa-
tion (P1, . . . ,Pu)→ (R1, . . . ,Rt,Pt+1, . . . ,Pu) overk becauseP1, . . . ,Pu

are independent generic points of the projective plane. LetC specialize
to C′ under this specialization. IfC , C′, thenR1 + · · · + Rt + Pt+1 +

· · · + Pu ⊂ C.C′. SinceR1, . . . ,Rt,Pt+1, . . . ,Pu are independent generic
points ofC over k(C) and the dimension of the traceL′C on C of the
linear systemL′ is n − 1, we get a contradiction. HenceC = C′. Thus
(P1, . . . ,Pt) → (R1, . . . ,Rt) is a specialisation overk(C) and therefore
P1, . . . ,Pt are independent generic points ofC overk(C). �

Proposition 1. Let P1, . . . ,Pr be independent generic points of the pro-
jective plane over the prime field.

(1) Let C be a curve is degree d passing through the Pi with multi-
plicity mi . Then d∑

mi

1√
r
, for r = s2, s≥ 4.

(2) Furthermore if r′ is a real number such that r′ > 1√
r
, then there24

exists a curve C′ of degree d′ such that r′ > d′∑
m′i

1
r , where C′

passes through Pi with with multiplicity m′i .

Proof. Let C specialize toσ(C) under the specialization (P1, . . . ,Pr)→
(Pσ(1), . . . ,Pσ(r)) whereσ runs through cyclic permutations of 1, . . . , r.
Considering the curve

∑
σ
σ(C), we have only to prove (1) and (2) in the

case when all themi are equal, saymi = m. Thus we have to prove
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that d
m >

√
r = s. If there exists a curveC with d/m ≤

√
r , then by

suitably raising the degree we can get actually the equality. Thus (1) is
equivalent to:

(1′) There does not exist a curve of degree sm passing through thePi

with multiplicity at leastm.

Similarly (2) is equivalent to:

(2′) Givenr′′ >
√

r, there exist integersd,mand a curveC′ of degree
d passing through thePi with multiplicity m such thatr′′ > d

m >√
r.

�

Proof of (1′). Case (i) s even.Sets′ =
s+ 2

2
. Let CS,C2, andC′S′ be

independent generic curves of degrees, s′, s′, respectively.

Let C′S′ .CS′ =
s′2∑
i=1

Pi ,CS.CS′ =
ss′∑
i=1

Qi andCS.C′S =
ss′∑
i=1

Qi . As the

dimension of the linear systemLS′ of curves of degrees′ is s′2+3s′

2 > 2s,
among thePi there exist 2spoints sayP1, . . . ,P2s which are independent25

generic points of the projective plane overk(Cs). Then by Lemma 2
P1,P2, . . . ,P2s are independent generic points ofCs′ over k(CS.C′S′),
in fact overk(CS,CS′ ,Q) as all the curves considered are independent
generic curves.

Since s2+3s
2 > 2s, there exist curves of degrees passing through

the pointsP1, . . . ,P2s. Let C∗S be the generic curve passing through
P1, . . . ,P2s.
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Let

CS′.C
∗
S =

ss′−2s∑

i=1

Q∗i +
ss′−2s∑

i=1

Pi ,

C′S.C
∗
S =

ss′−2s∑

i=1

Q∗
′

i +

2s∑

i=1

Pi .

By Lemma 2,P1, . . . ,P2s are independent generic points ofC∗S. Fur-
ther, we claim that theQ∗i and Q∗

′

i are all distinct. For , consider the
linear systemL =

∣∣∣C∗S.CS′ −
∑

Pi

∣∣∣ on CS′ .
∑

Q∗i is a generic member

of L. Since degree ofL = ss′ − 2s = 4. s
′2−3s′+2

2 = 4g(CS′), where
g(CS′) denotes the genus ofCS′ , L has no base points. Hence eachQ∗i is
a generic points ofCs′ overk(Cs′ ,P1, . . . ,P2s). In particularQ∗i do not
lie onC′S′ . Again the degree of the linear systemL−Q∗i = ss′−2s−1 =
4g(CS′) − 1 ≥ 2g(CS′). HenceL − Q∗i has no base point and therefore
Q∗j ( j , i) are generic points ofCS′ overk(Cs′ ,Q∗i ). ThusQ∗i are all dis-

tinct. Similarly consideringC′s′ , we seeQ∗i ,Q
∗′
i are all distinct. We may

renumberQi andQ′i such thatQi ,Q′i , 1 ≤ i ≤ s′−2s
2 , are specialized to

Q∗i , Q∗
′

i under the specialization (P1, . . . ,P2s,CS) → (P1, . . . ,P2s,C∗S)
overk(CS,CS).

Assume that for somem there exists a curve of degreesmpassing26

throughr = s2 independent generic points of the projective plane with
multiplicity at leastm. Then there exists a curveE of degree sm passing
through thePi(1 ≤ i ≤ 2s), the Qi(1 ≤ i ≤ s2−2s

2 ) and theQ′i (1 ≤ i ≤
s2−2s

2 ) with multiplicity at leastm. ThenCs′ is component ofE. For

otherwise,E .Cs′ is defined and contains
2s∑
i=1

mPi +

s2−2s
2∑

i=1
mQi . As the

degreeE.CS′ is sms′, we haveE.Cs′ =
2s∑
i=1

mPi +

s2−2s
2∑

i=1
mQi. Since the

genus ofCs′(= 1
2 s′(s′ − 3) + 1) is positive we get a contradiction by

Lemma 1. HenceCs′ is a component ofE. Let E − Cs′ specialize to
E∗ under the specialization (P1, . . . ,P2s,Cs) → (P1, . . . ,P2s,C∗s).E

∗ is
a curve of degreesm− s′ passing through thePi(1 ≤ i ≤ 2s) and the
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Q∗i (1 ≤ i ≤ s2−2s
2 ) with the the multiplicity at least (m-1) and through

Q′∗i with the multiplicity at leastm. We shall show the non-existence of
such a curve by induction onm. We assert thatC∗s is component ofE∗.
For, if not,E∗.C∗s is defined and contains

2s∑

i=1

(m− 1)Pi +

s2−2s
2∑

i=1

(m− 1)Q∗i +

s2−2s
2∑

i=1

mQ∗
′

i .

Inspecting the degrees we see that

E∗.Cs =

2s∑

i=1

(m− 1)Pi +

s2−2s
2∑

i=1

(m− 1)Q′i +

s2−2s
2∑

i=1

mQ∗
′

i .

Hence ((m− 1)Cs′ + mC′s′ − E∗).C∗s =
2s∑
i=1

mPi. As the genus ofC∗S(=

1
2 s(s−3)+1) is positive and since thePi are independent generic points
of C∗s by lemma 2, we have a contradiction by Lemma 1.

HenceC∗s is a component ofE∗. If m= 1, degree ofE∗ is s− s′. 27

Hence we get a contradiction. Ifm > 1, thenE∗ − C∗S. is of degree
s(m− 1) − s′ and passes through thePi ,Q∗i , with multiplicity at least
m− 2, m− 2 and (m− 1) respectively. Hence by induction hypothesis
E∗ −C∗S. does not exist and the lemma is proved, whenr is even

Case (ii) s odd.Set s′ = s+1
2 . Let CS,CS′C′S′ be independent generic

curves. LetP1, . . . ,Ps be s points contained inCS′ .C′S′ . We take a
generic curveC∗S of degreespassing throughP1, . . . ,Ps and proceed as
in (i). We omit the details.

Remark. We remark that Proposition 1 is not true forr ≤ 9. The follow-
ing are the example to that effect. (1) Forr = 1, 2, a line passing through
thePi (2) r = 3, a line passing through two of thePi (3) r = 4, 5, a conic
through thePi (4) r = 6, a conic through 5 of thePi (5) r = 7, a cubic
having a double point at one of thePi and passing through all thePi.
(6) r = 8, a curve of degree 6 having a triple point at one of thePi and
double points at all thePi (7) r = 9, a cubic passing through all thePi .
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Furthermore it is not known ifr ≥ 9, is sufficient to ensure the
inequality of Proposition 1.

Proof of (2′). Let Ld be the linear system of curves of degreed. Let
f (x0, x1, x2) be a homogeneous polynomial of degreed. The condition
that the curve defined byf should pass through a pointp with multiplic-
ity m imposesm(m+1)

2 linear conditions (not necessarily independent).
Thus28

dim(Ld −
r∑

i=1

mPi) ≥
d(d + 3)

2
− r

m(m+ 1)
2

≥ 0

if
d(d + 3)

2
≥ r

m(m+ 1)
2

.

i.e. if m ≥
r − 3( d

m)

( d
m)2 − r

. Now choose a rational numberλ such thatr′′ >

λ >
√

r. Writing λ = d
m with sufficiently large m we get a curveC′

of degree d passing through thePi with multiplicity m such thatr′′ >
d/m>

√
r and (2′) is proved.

2. We now proceed to give the counter example where the transcendence
degree of the sub-fieldLG of invariants is four.

Let ai j , i = 1, 2, 3, j = 1, . . . , r be algebraically independent ele-
ments over the prime fieldΠ . Let k be a field containing theai j . Con-
sider the projective plansS over k. SetPi = (a1i , a2i , a3i),Pi ∈ S, i =
1, 2, . . . , r. Then thePi are independent generic points ofS over the
prime field . Letx1, . . . , xr , y1, . . . , yr be algebraically independent ele-
ments overk. Consider the subgroupG of GL(2r, k) given by

G =


σ ∈ GL(2r, k)

∣∣∣∣∣σ =



B1 0
. . .

0 Br


,

Bi =

(
ci cibi

0 ci

)
,

r∑

i=1

bia ji = 0, j = 1, 2, 3,
r∏

i=1

ci = 1

 .

The groupG acts onk[x1, y1, . . . , xr , yr ] with σ(xi) = ci(xi + biyi),
σ(yi) = ciyi , i = 1, . . . , r.
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Theorem 1. The ring of invariants IG is not finitely generated the k. Set29

t = y1, . . . , yr , ui = t/yi , vi = xiui and wj =
r∑

i=1
a ji vi . We need some

lemmas.

Lemma 1. IG = k[x1, y1, . . . , xr , yr ] ∩ k(w1,w2,w3, t).

Proof. It is sufficient to prove that the invariant sub-fieldLG = k
(w1,w2,w3, t). A straight forward verification shows thatw1,w2,w3, t ∈
LG. Hencek(w1,w2,w3, t) ⊆ LG as ai j are independent over

∏
, we

havek(x1, . . . , xr , y1, . . . , yr) = k(w1,w2,w3, x4, . . . , xr , y1, . . . , yr ). Now
G operates onk[w1,w2,w3, x4, . . . , xr , y1, . . . , yr ]. As wi , t ∈ LG, to com-
pute LG it is enough to consider the action ofG on k(w1,w2,w3, t)
[x4, . . . , xr , y1, . . . , yr−1]. Consider the subgroupH of G consisting of
elementsσ of G for which ci = 1, i = 1, . . . , r, bi = 0, i ≥ 5 andb4

arbitrary. SinceH is infinite, k(w1,w2,w3, t, x4, . . . , xr , y1, . . . , yr−1) is
a transcendental extensions ofLH the fixed field ofH. Now, LH ⊇
k(w1,w2,w3, t, x5, . . . , xr , y1, . . . , yr−1). ThereforeLH = k(w1,w2,w3,
t, x5, . . . , xr , y1, . . . , yr−1). Next we consider the action ofG on
k(w1,w2,w3, t)[x5, . . . , xr , y1, . . . , yr−1] and consider the subgroupH1 of
G consisting of elementsσ of G with bi = 0, i ≥ 6, ci = 1, i = 1, . . . , r.
The fixed fieldLH1 of H1 is k(w1,w2,w3, t, x6, . . . , xr , y1, . . . , yr−1). Pro-
ceeding in the same way we arrive atk(w1,w2,w3, t, y1, . . . , yr−1). Con-
sider k(w1,w2,w3, t)[y1, . . . , yr−1]. σ ∈ G acts onk(w1,w2,w3, t)
[y1, . . . , yr−1] with σ(yi) = ciyi , i = 1, . . . , r − 1, whereci are arbitrary
non-zero elements ofk. HenceLG = k(w1,w2,w3, t). �

As w1,w2,w3 are algebraically independent overk, we may regard
H = k[w1,w2,w3] as the homogeneous coordinate ring of the projective30

plansS. Let Fi = (zi , z′i ) denote the prime ideal isH corresponding to
the pointPi , wherezi = a3iw1 − a1iw3, z′i = a3iw2 − a2iw3. SetWn =
r
∩
i=1

Y
(n)

i , for n > 0 andWn = H, for n ≤ 0.

Lemma 2. IG =
{∑

n
ant−n | an ∈ ⊓n

}
.

Assuming Lemma 2 we shall first prove Theorem 1 and later prove
Lemma 2. Suppose IG is finitely generated, say IG = k[ f1, . . . , fm]. We
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may assume fj = h j t− j , h j ∈ W j , h j homogeneous, j= 1, . . . ,m. Set

r j =
degree hj

j
, j = 1, . . . ,m and r∗ = min

i≤ j≤m
r j . For any monomial

f i1
1 . . . f

im
m = hi1

1 . . .h
im
m t−i1−2i2−···−mim, we have

degree(hi1
1 . . .h

im
m)

i1 + 2i2 + · · · +mim
≥ r∗.

Hence for any homogeneous an ∈ Wh, we have
degree an

n
≥ r∗. By

proposition 1, r∗ > s =
√

r, for r ≥ 4. Again by the same proposition
there exists an an ∈ Wn, for some n, such that degree an/n < r∗. This is
a contradiction and therefore IG is not finitely generated.

It now remains to prove Lemma 2. We first prove

IG ⊆
{∑

n

ant−n | an ∈ H
}
. (∗)

As ai j are algebraically independent overk we have

k[v1, . . . , vr ] = k[w1,w2,w3, v4, . . . , vr ].

Hence

k

[
x1, . . . , xr , y1..yr ,

1
y1
, . . . ,

1
yr

]

= k

[
w1,w2,w3, x4, . . . , xr , y1, . . . yr ,

1
y1
, . . . ,

1
yr

]
.

Now

k

[
w1,w2,w3, x4, . . . , xr , y1, . . . yr ,

1
y1
, . . . ,

1
yr

]

⋂
k(w1,w2,w3, y1, . . . , yr ) = k

[
w1,w2,w3, y1, . . . , yr ,

1
y1
, . . . ,

1
yr

]
.

Now by lemma 1,

IG ⊆ k

[
w1,w2,w3, y1, . . . , yr ,

1
y1
, . . . ,

1
yr

]⋂
k(w1,w2,w3, t)
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= k

[
w1,w2,w3, t,

1
t
, y2, . . . , yr ,

1
y2
, . . . ,

1
yr

]⋂
k(w1,w2,w3, t)

= k

[
w1,w2,w3, t,

1
t

]
.

31

Hence IG ⊆
{∑

n
ant−n

∣∣∣an ∈ H

}
. Let ℧i be the valuation ring

k[y1, . . . , xr , y1, . . . , yr ](yi ), 1 ≤ i ≤ r and letVi be the corresponding
normalized valuation. We prove

Y
m

i = Y
(m)

i =

{
f ∈ H | Vi( f ) ≥ m

}
, ∗∗

for every m. Sincezi =
∑
j,i

(a3ia1 j − a1ia3 j)x ju j ,Vi(zi) = 1. Simi-

larly Vi(z′i ) = 1. It is easy to check thatw3, zi/t, andz′i /t modulo the
maximal idealMi of ℧i are algebraically independent overk. Now
k[w1,w2,w3] = k[zi , z′i ,w3]. If h < Yi , then h ≡ h1 (mod Mi), with

0 , h1 ∈ k[w3]. HenceVi(h) = 0. ThereforeY (m)
i ⊆

{
h ∈ H | Vi(h) ≥

m
}
. To prove (∗∗) we need only to prove that, forf ∈ H, Vi( f ) ≥ m

implies f ∈ Y m
i . This in turn will be proved if we prove thatf ∈ Y m

i ,
f < Y m+1

i implies Vi( f ) = m. If f ∈ Y m
i , f < Y m−1

i then f can be

written asf =
m∑
j=

h jz
j
i z
′m− j

i , with h j ∈ k[w3], hl , 0 modM , for somel.

Hence f /z′mi =
m∑
j=0

h j(
zi
zi

) j . As zi/z′i andw3 modulomi are algebraically

independent overk, f /z′
m

i . 0 (modMi). HenceVi( f ) = V(z′
m

i ) = m
and (∗∗) is proved. Next, we prove

Vi(
∑

n

ant−n) = min
n

Vi(ar t
−n),

for an ∈ H. Let d = min
n

Vi(ant−r ). For everyn, Vi(ant−n) ≥ d i.e. 32

Vi(an) ≥ n + d. Hence by (∗, ∗), an ∈ Y n+d
i . Let an =

n+d∑
j=0

hn jz
j
i z
′n+d− j
i .

Then
∑
n

an

tn+d =
∑
n

∑
j

hn j(
zi
t ) j(

z′i
t )n+d− j . If Vi(amt−m) = d for somem, then
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0 , hml mod Mi ∈ k[w3] for somel. Sincezi/t andz′i /t moduloMi are

algebraically independent overk(w3 mod Mi),
m∑
n

an
tn+d . 0 (modMi).

HenceVi(
∑
n

ant−n) = d.

Now supposef ∈ IG. Then by (∗) f can be written asf =
∑
n

ant−n,

an ∈ H. As IG ⊆ ℧i , 1 ≤ i ≤ r,Vi( f ) ≥ 0. Hence by (∗∗∗), Vi(ant−n) ≥ 0,

that isVi(an) ≥ n andan ∈ Y n
i . HenceIG ⊆

{∑
ant−n | an ∈ ℧n

}
. On

the other hand ifan ∈ Wn, thenVi(an) ≥ n, i = 1, . . . , r. Hencean is

divisible by tn. ThusIG ⊇
{∑

ant−n | an ∈ Wn

}
and the proof of Lemma

2 is complete.

3. In the counter example we have given to the original 14th problem
in section 2, the groupG is commutative. In this section we give an
example, where the groupG is such that [G,G] = G.

If we make use of the structure of the ringIH of invariants of the
subgroupH of G given in the last section such that all theci are 1 then
we can give a direct construction of the required example. But since we
did not give the explicit structure ofIH, we do it in an indirect way.

Let ai j , i = 1, 2, 3, j = 1, . . . , r(r = 16) be algebraically independent
real numbers over the field of relational numbers. Set

V =

{
(b1, . . . , br) | bi real,

∑
j

ai j b j = 0(i = 1, 2, 3, s = an even33

number≥ 4,

Go =





c1B1 ©
. . .

© cr Br


Bi =



1 . . . . . . bil
. . . 0

. . . bis

0 1


,

(bli , . . . , bri ) ∈ V,
ci real,

∏
ci
= 1



Let K be the real number field.Go acts on the polynomial ring

R0 = K[x11, x12, . . . , x1s, y1, x21, x22, . . . , x2s, y2, . . . , xr1, xs2, . . . , xrs, yr ].

Let I0 be the ring ofGo - invariants inRo. Then settingt =
∏

y j

(i) wi j =
∑
α

aiαxα j t/yα ∈ Io
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(ii) Io = Ro
⋂

K(w11, . . . ,w1s, w21, . . . ,w2s, w31, . . . ,w3s, t).

SinceIo/Io
⋂

(
∑
j≥2

xi j R) is isomorphic to previous exampleIG, we see

that Io is not finitely generated. We see also easily that every element of
Io can be expressed in the form

∑
i

ai t−i (finite sum) such thatai ∈ Y =

K[w11, . . . ,w3s], ai t−i ∈ Io.
For eachT ∈ S L(s,K), let

Tr =



T′ 0
. . .

0 T′


,T′ =


T 0

0 1



(T′ ∈ S L(s+ 1,K)),Tr ∈ S L(r(s+ 1),K)

and G1 =

{
Tr | T ∈ S O(s,K)

}
.

Then one can easily see thatIo isG-admissible and the moduleMi =∑
j

wi j K is alsoG1-admissible andT is the transformation onNi given by

Tr . Therefore for a general linear transformationT ∈ S L(s,K) we have
Io/Io∩(

∑
j≥2

xi j R)T is isomorphic to the previous exampleIG.

Therefore we see that the degreeai > 4i (for i > 0) and that for any
rational numberα greater than14. there is a homogeneous formal in wi j 34

such thatdeg al
r l
= α andal t−l ∈ Io.

Now consider a copy ofRo sayR′o. The isomorphism ofRo ontoR′o,
we denote by “/”. Let G2 be the subgroup inS L(2r(s+ 1),K) generated
by

G∗o =

{(
B1 0
0 B2

)
| Bi ∈ Go

}
(i.e.G∗o = Go ×Go)

G∗1 =

{(
T 0
0 T

)
| T ∈ G1

}
.

Then the ring ofG∗o- invariants isIo⊗I ′o. Let Mid be the module of homo-
geneous formsai in Y of degreed such thatai t−1 is in Io. Then eachMid

which is not zero defines a representation ofG1. Hence we can choose
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a linearly independent basis ofMid say fidl , . . . , fidn(i, d) such that the
representation is orthogonal. Thenf ∗id =

∑
j

fid j f ′id j is G∗1-invariant and

f ∗idt−i is G2-invariant. Therefore the same reasoning as in the previous
exampleIG can be applied to the ringI2 of G2-invariant and we see that
I2 is not finitely generated.

LetC be the complex number field and let̄G2 be the closure ofG2 in
S L(2r(s+ 1),C). We want to show that̄G2 contains a connected normal
algebraic subgroup̄G such that

(i) Ḡ2/Ḡ is a torus group and

(ii) [ Ḡ, Ḡ] = Ḡ

If the existence ofḠ is shown thenḠ is the given example.
Let Goo be the subgroup ofG0 defined byc1 = . . . = cr = 1. Then

we can consider the same construction as done forG∗0,G2 andḠ20.
We claim thatḠ20 is the requiredḠ.

Proof. SinceḠ20 is normal inG2 we see thatḠ20 is normal inḠ2. Ob-35

viously Ḡ2/Ḡ20
is a torus group. It is also obvious that̄G20 in connected.

Therefore we have only to show that [Ḡ20, Ḡ20] ⊇ Ḡ20. Since [Ḡ20, Ḡ20]
is a closed subgroup we have only to show that bothG∗1 andG∗oo are in
[Ḡ20, Ḡ20]. SinceG∗1 is semi-simple and sinceG∗1 ⊆ Ḡ20 we see that

G∗1 ⊆ [Ḡ20, Ḡ20]. Consider the set{B∗1} =
{ (

B O
O E

) }
(E =identity in

S L(x(s+1), k)B ∈ G∞). For a fixedT∗ ∈ G∗1, B
∗
1 T∗−1B∗−1

1 T∗B∗1 gives
a homomorphismB∗1 andB∗1 (becauseB∗1 is isomorphic to a vector space
overK). Since s is even, there is aT∗ ∈ G∗1 such thatT∗−1B∗−1

1 T∗B∗1 =(
E O
O E

)
implies B∗1 =

(
E O
O E

)
. Therefore we see that image is dense

in B∗1. Therefore [̄G20, Ḡ20] contains the set{B∗1}. Similarly [Ḡ20, Ḡ20]

contains all the

(
E O
O B

)
, (B ∈ Goo). Therefore [̄G20, Ḡ20] containG∗oo

and the proof is complete. �



Chapter 4

Theorem of Weitzenb̈ock

Theorem 1(Weitzenböck). Let K be the complex number field and G a36

complex one parameter Lie subgroup of GL(n,K) acting on the ring of
polynomials K[x1, ..., xn]. Then the ring of invariants IG of K[x1, ..., xn]
is finitely generated over K. (see also C.S. Seshadri; On a theorem of
Weitzenböck in invariant Theory, J. Math. Kyoto Univ. 1-3 (1962), 403-
409).

Let G = {etA|t ∈ K} be a one parameter Lie group,A being a con-
stant matrix. LetA = N + S, whereN andS are nilpotent and semi-
simple matrices respectively withNS = S N. Let G1 = {etN|t ∈ K} and
G2 = {etS|t ∈ K}. If N , O, then the mappingt → etN of the addi-
tive groupK ontoG1 is an algebraic isomorphism, sinceN is nilpotent.

Since every element ofG2 is semi-simple, the closure
−

G2 of G is a torus

group. Further since the elements ofG2 and
−

G2 commute, the mapping

(g1, g2)→ g1g2 of G1 ×
−

G2 onto is an algebraic homomorphism. Hence

G1Ḡ2 is a closed subgroup ofGL(n, k). Hence the closure
−
G of G is con-

tained inG1
−

G2. SinceG1 ⊆ G andG2 ⊆ G, it follows that
−
G = G1

−
G2.

Thus
−
G is a torus group or a direct product ofa torus group and the

additive groupK. Hence Theorem 1 is equivalent to the following, by
virtue of Chapter 2, Section 2, Corollary to Theorem 1.

Theorem 2. Let G be a unipotent algebraic group of dimension one

29
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of GL(n, k) acting on K[x1, . . . , xn], where K is a field of characteristic37

zero. Then IG is finitely generated over K.

Our proof is mostly due to C. S. Seshadri.
We first prove two lemmas. Unless otherwise statedK denotes a

field of characteristic zero.

Lemma 1. Let V be an affine variety and G a connected algebraic group
acting on V. Let W be a subvariety of V and H a subgroup of G. Let W

be stable under H and suppose
{
xh | h ∈ H

}
=

{
xg | g ∈ G

}
∩W, for

every x∈ W. Let f be a H-invariant regular function on W. Then there
exists a G-invariant rational function f∗ on WG such that f∗ is integral

over the local ring℧x in
−

WG for every x∈WG; f ∗ takes unique value at
x, for x∈WG, and such that f∗ induces f on W. (Lemma of Seshadri).

Proof. Assume first
−

WG is normal. The functionf definesa regular
functionF onW×G defined byF(x, g) = f (x), for x ∈W, g ∈ G.

Let Q be the regular mapping ofW×G into
−

WG defined byϕ(x, y) =
xg. If xg = x′g

′
, for x, x′ ∈ W, g, g′ ∈ G thenxgg′−1

= x′ = xh for some
h ∈ H, by hypothesis. Thusf (x′) = f (xh) = f (x). Thus F is constant on

each fibreϕ−1(xg), for x ∈W, g ∈ G. Let A be the coordinate ring of
−

WG.
Let U be the affine variety defined by the affine ring A[F]. The generic
fibre of the projection ofU onto WG is reduced toa single point. As
the ground fieldK is of characteristic zero,U andWG are birationally

equivalent. ThusF inducesa rational functionf ∗ on
−

WG. By definition
of F, f ∗ is G-invariant. Furtherf ∗ assumes the unique finite valuef (x)

at xg, for x ∈ W, g ∈ G. As
−

WG is normal f ∗ is regular value atxg and

the lemma is proved in the case
−

WG is normal. �

Suppose
−

WG is not normal. Without loss of generality we may as-38

sume
−

WG = V. Let
∼
V be the derived normal model ofV. Let

∼
W1, . . . ,

∼
Ws

correspond toW, in Ṽ. How G operates on
∼
V. As WG is dense inV, so
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are
∼

WG
i in

∼
V. The functionsf inducesH-invariant regular functionsfi

on
∼

Wi1 ≤ i ≤ s. By what we have just proved, we getG-invariant ra-

tional function f ∗i , 1 ≤ i ≤ s of
∼
V which is regular on

∼
WG

i , and induces

fi. Now f ∗i , and f ∗j take the same value on
∼

WG
i ∩

∼
WG

j . As
∼

WG
i contains

a non-empty open-set of
∼
V, f ∗1 = . . . = f ∗s = f ∗. Thus f ∗ is regular on

∼
WG

i , 1 ≤ i ≤ s. Hencef ∗ is integral over the local ring ofxg in WG, for
x ∈W, g ∈ G. Lemma 1 is completely proved.

Remark 1. If the ground field is of characteristicp , 0, then Lemma 1
is true under the following modification of the rationality condition for

f ∗ : f ∗ is in a purely inseparable extension of the function field of
∼

WG.

Remark 2. It is interesting to note thatWG is open. For, each fibre
ϕ−1(xg) is irreducible and of dimension equal to dimension of H, be-
cause of the condition on the orbits we have imposed. Thusϕ has no
fundamental points andWG is open.

Corollary. If furthermore G is semi-simple and codimension of(WG)
C

in
−

WG is at least 2, then the ring IH of H-invariants in the coordinate
ring of W is finitely generated.

Proof. As codim (WG)
C ≥ 2, any functionf on

−
WG which is integral

over the local rings of points ofWG in
−

WG is integral over the coordinate

ring A of
−

WG. Let B be the ring got by adjoining all rational functions39

f ∗ on
−

WG, as in Lemma 1. SinceB is contained in the derived normal
ring of A, B is an affine ring andG acts onB. As G is semi-simple, the
ring of invariantsIG of B is finitely generated. By Lemma 1, the ringIH

of H-invariants in the coordinate ring ofW is the homomorphic image
of IG and hence is finitely generated. �

Lemma 2. Let K be of characteristic zero and letρ be a rational repre-
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sentation of the additive group H=
{ (

1 λ

0 1

)
| λ ∈ K

}
in GL(n, k). Then

there exists a rational representationρ∗ of S L(2, k) in GL(n, λ) such that
ρ∗ = ρ on H.

Proof. We shall denote the element

(
1 λ

0 1

)
of H by λ. Chooseλ such

thatρ(λ) , 1(λ , 0 is enough). Let the Jordon normal form ofρ(λ) be

A =



A1 0
. . .

0 Ar


, where Ai =



110 . 0
011 ..0
.. ..

1
0.. . 1


.

Let Ai haveni rows. Letρ∗i be the representation ofS L(2,K) given by
homogeneous forms of degreeni −1 in two variables. It is easy to check
that the Jordan normal form ofρ∗i (λ) is Ai. Hence we may assume that

ρ∗i (λ) = Ai. We takeρ∗ =

(
ρ∗i 0
0 ρ∗r

)
. �

Remark 2. Lemma 2 is not true in the case whereK is of characteristic
p , 0, because the groupH has non-faithful rational representations
which are not trivial.

Proof of theorem 2.Let G be given by a rational representationρ of40

H =
{ (

1 λ

0 1

)
| λ ∈ K

}
in GL(n,K). By Lemma 2 we extend this repre-

sentation toa rational representationρ∗ of SL(2, K). Let

G′ =

{(
ρ∗(g) 0

0 g

)
| g ∈ S L(2, k)

}

and H′ =




ρ(λ) 0

0

(
1 λ

0 1

)
 | λ ∈ K



The groupG′ acts onK = [x1, . . . , xn, xn+1, xn+2]. Let V = Kn × K2

andW the subvariety defined by the equationsxn+1 − 1 = 0 = xn+2. The
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groupG′ acts onV andW is stable underH′. If for a point

Q = (a1, . . . , an, 1, 0) ∈W, Qg′ ∈W,

where g′ =

(
ρ∗(g) 0

0 g

)
∈ G′, g ∈ S L(2,K).

Then (1, 0)g = (1, 0). Henceg ∈ H. That isg′ ∈ H′. Hence the
orbit condition of Lemma 1 is satisfied. AsWG′ contains the comple-
ment of the hyperplanexn+1 = 0,WG′ is dense inV. Further (WG′)C is
contained in the variety defined by the equationsxn+1 = 0 = xn+2. The
conditions of the corollary to Lemma 1 are satisfied. Hence the ring of
H′-invariantsIH′ in the coordinate ring ofW is finitely generated. That
is IG is finitely generated.





Chapter 5

Zarisk’s Theorem and Rees’
counter example

1. G-transform . Let R be an integral domain with quotient fieldL. Let 41

G be an ideal ofR. The set

S(G; R) =
{

f | f ∈ L, fGn ⊆ R for some n
}

is defined to be theG- transform ofR.

Remark 1. S(G; R) is an integral domain containingR.

Remark 2. It is clear that ifG andb are two ideals with finite basis such
that
√
G =

√
G, thenS(G; R) = s(b; R) (we recall that for an idealG in

R,
√
G =

{
x | x ∈ R, xn ∈ G, for somen

}
).

Remark 3. If R is a noetherian normal ring and heightG ≥ 2, then
S(G,R) = R.

Proof. Let f ∈ S(G,R). The fGn ⊆ R, for somen. As G is not con-
tained in any prime ideal of height 1,f ∈ RY , for every prime idealY
of height 1. Hencef ∈ R, Rbeing normal. �

Corollary . Let R be as in Remark 3 andG = G1 ∩ G2 with height
G2 ≥ 2. Then S(G,R) = s(G1,R).

35
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Remark 4. If R is an affine ring and heightG ≥ 2, thenS(G; R) is
integral overR.

Proof. By passing to the derived normal ring we may assume thatR is
normal any apply Remark 3.

For any integern ≥ 0, setG−n =

{
f | f ∈ L, fGn ⊆ R

}
, Then

S(G; R) =
⋃
n
G−n. We shall abbreviateS(G; R) to S when there is no

confusion. �

Remark 5. If R is noetherian,G−n is a finiteR-module.42

Proof. G−n ⊆ R1
a, a , 0, a ∈ G−n. �

Proposition 1. LetG be an ideal in R with a finite basis a1, . . . , an, (ai ,

0, i = 1, . . . , n). Let t1, . . . , tn−1 be algebraically independent elements

over R. Set tn = (1−
n−1∑
i=1

ai ti) | an; this is an element of R[t1, . . . , tn−1,
1
an

].

Then

(i) S = R[t] ∩ L, where t stands for(t1, . . . , tn).

(ii) Further if R is normal, then S= R∗ ∩ L, where R∗ is the derived
normal ring R[t].

Proof. (i) Let c = f (t) ∈ R[t] ∩ L. Chooser greater than the degree

of f . Then since
n∑

i=1
ai ti = 1, we have

ar
i c ∈ R[t1, . . . , ti−1, t̂i , ti+1, . . . , tn],

where ‘̂’ on ti indicates thatti has been omitted. Asti , . . . , ti−1, t̂i ,
ti+1, . . . , tn are algebraically independent overR, ar

i c ∈ R, i = 1,
. . . , n. HenceGnrc ⊆ R, i.e.c ∈ S. ThusR[t] ∩ L ⊆ S. On the
other hand letc ∈ S. ThencGr ⊆ R, for somer. Let m1, . . . ,ml

be all the monomials in theai of degreer. Raising the equation
n∑

i=1
ai ti = 1 to the rth power, we have

l∑
i=1

mi fi = 1, wherefi ∈ R[t].
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Sincecmi ∈ R, i = 1, . . . , t, we havec =
l∑

i=1
(cmi) fi ∈ R[t]. Hence

S ⊆ R[t] ∩ L and proof of (i) is complete.

(ii) To prove thatS = R∗ ∩ L, we have only to show the inclusion
S ⊇ R∗ ∩ L. Let c ∈ R∗ ∩ L. Thenc is integral overR[t] and
we have a monic equationcs + f1(t)cs−1 + . . . + fs(t) = 0, fi(t) ∈
R[t], i = 1, . . . , s.

Let r ≥ max
1≤i≤s

(degree offi). Thenar
i c is integral overR[t1, . . . , ti−1, 43

t̂i , ti+1, . . . , tn]. As R is normal andt1, . . . , ti−1, t̂i , ti+1, . . . , tn are
algebraically independent,R[t1, . . . , ti−1, t̂i , ti+1, . . . , tn] is normal.
Hencear

i c ∈ R. ThereforecGnr ⊆ R, i.e.,c ∈ S. HenceR∗∩L ⊆ S
and (ii is proved).

�

Let R be an affine ring over a ground fieldK. Let L′ be a field with
K ⊆ L′ ⊆ L, whereL is the quotient field ofR. Then, isR∩ L′ an affine
ring? Let us call thisGeneralized Zariski’s Problem.We recall that
this is just the restatement of Zarisk’s Problem (see Chapter 0) without
the hyper thesis of normality onR. We shall later in this chapter give a
counter example to the above problem (with transdegkL′ = 2).

Let Rbe an affine ring. By proposition 1 it follows that :

(i) If there exists an idealG in R such thatS(G; R) is not finitely
generated, thenS(G; R) is a counter example to the Generalized
Zariski’s Problem.

(ii) If further R is normal and if there exists an idealG in R such
that S(G; R) is not finitely generated, thenS(G; R) is a counter
example to Zariski’s Problem.

2. Krull Rings and G - transforms
We shall now proceed to prove the converse of proposition 1 (see

proposition 4) in the case whenR is normal. For that we need some
generalities on Krull rings. We say that an integral domainR is Krull
ring if there exists a set I of discrete valuations of the quotientfield L 44
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of R, such that (i)R =
⋂
v∈I

Rv, whereRv denotes the valuation ring ofv.

(ii) For a ∈ R, a , 0, v(a) = 0, for all but a finite number ofv ∈ I .

Proposition 2. An integral domain R is a Krull ring if and only if the
following two conditions are satisfied:

(i) For every prime idealY of height 1, RY is a discrete valuation
ring.

(ii) Every principal ideal of R is the intersection of a finite number of
primary ideals of height one.

For the proof of Proposition 2, we refer to:M. Nagata “Local
Rings” Interscience Publishers, Now York, 1962).

Remark 1. It easily follows thatR=
⋂

RY , whereY runs through all
prime ideals of height 1.

Remark 2. Let R=
⋂
v∈I

Rv be a Krull ring defined by a family of discrete

valuations{Rv}v∈I of the quotient field ofR. Then for a prime idealY
of R of height 1, we haveRY = Rv, for somev ∈ I . (For prof seeM.
Nagata “Local rings”, Interscience Publishers, New York, 1962).

Proposition 3. If R is a Krull ring then theG-transform S of R is also
a Krull ring.

Proof. Let J be the set of those prime idealsY of height 1 which do not
containG. We shall prove thatS =

⋂
Y ∈J

RY . Let x ∈ S. ThenxGn ⊆ R,

for somen. AsGn
1 Y , for Y ∈ J, X ∈ ⋂

Y ∈J
RY . �

Conversely lety ∈ ⋂
Y ∈J

RY . Now asR is a Krull ring,G is contained45

in a finite number of prime ideals of height 1. Therefore thereexists
an n ≥ 0 such thatyGn ⊆ Rg whereg is any prime ideal of height 1
containingG. HenceyGn ⊆ ⋂

Y

RY ,Y running through all prime ideals

of height 1. By the remark after Proposition 2,yGn ⊆ R. Hencey ∈ S
and the proposition is proved.
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Proposition 4. Let R be an affine normal ring over a ground field K.
Let L′ be a field such that K⊆ L′ ⊆ L, where L is the quotient field of R.
Set R′ = R∩ L′. Then there exists an affine normal ringO and an ideal
G of O such that R′ = S(G; O).

We shall prove the assertion in several steps.

(i) R′ is a Krull ring.

Proof. We haveR =
⋂
Y

RY , wherey runs through all prime ideals

of height 1. NowR′ =
⋂
Y

(RY

⋂
L′). HenceR′ is a Krull ring. �

(ii) For every prime idealg of height 1 inR′ there exists a prime ideal
g of height 1 inR lying aboveg i.e.g

⋂
R′ = g′.

Proof. We may assume thatL′ is the quotient field ofR′. We have
R′ =

⋂
Y

(RY

⋂
L′), as in (i) By Remark 2 following Proposition 2,

we haveR′
g′ = Rg

⋂
L′ for some prime idealg of height 1 ofR.

This proves (ii). �

(iii) There exists a normal affine ringO′ ⊆ R′ such that for every prime
idealρ′ of height 1 ofR′, we have height (g′

⋂
O′) = 1.

Proof. We may assume thatL′ is the quotient field ofR′. Take a
normal affine ringR′′ ⊆ R′ such thatL′ is the quotient field ofR′′.
Let Q′ be the set of prime idealsg of height 1 inR′ with height
(g′

⋂
R′′)

〉
1. LetT be set of prime idealsY of height 1 ofR such 46

that heights (Y
⋂

R′′) > 1. Let V,V′′ be the affine varieties de-
fined by R and R′′ respectively. For aY ∈ T,Y ∩ R′′ defines
isolated fundamental subvariety ofV′′ with respect toV under
the morphismf : V → V′′ defined by the inclusionR′′ ⊆ R.
HenceT is finite. Therefore by (ii),Q′ is finite. Let R1 be an
affine normal ring such thatR′′ ⊆ R1 ⊆ R′. Let Q′1 be the set of
prime idealsg′1 of height 1 ofR′ such that height (g′1

⋂
R1) > 1.

Then Q′1 ⊆ Q′. We next prove that for ag′ ∈ Q′, there exists
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an affine normal ringR1 with R′′ ⊆ R1 ⊆ R′ such thatg′ < Q′1,
whereQ′1 is as above. We claim thatR′

g′ is a discrete valuation
ring such thattrans.deg

K
R′
g′/g′R′g′ = trans.deg

K
. L′ − 1. Let g

be a prime ideal of height 1 ofR lying aboveg′ (see (ii )). Let
x1, . . . xr ∈ R be such that (i)x1, . . . , xr are algebraically indepen-
dent overR′(ii )x1, . . . , xrmodg from a transcendence base forR/g
overR′/g′. Such a choice is possible sinceRg andR′

g′ are valuation
rings. SinceR is affine andG is of height 1, we have trans.deg

K
.R/G

= trans.deg
K

.L − 1. Also trans.deg
K

.R/G = trans.deg
K

.R′/G′ + r.

Hence trans.deg
K

.R′/G′ = trans.deg
K

.L − 1 − r ≥ trans.deg
K

.L′ − 1.

Hence trans.deg
K

.R′/G′ = trans.deg
K

L′ − 1. SinceR′′ is affine and

height (G⋂
R′′) > 1, we have trans.R

′′
/(R′′

⋂G)≤trans.deg
K

.L′ − 2

Let y1, . . . , yl ∈ R′ be such thaty1, . . . , yl mod G′ from a tran-
scendence base ofR′/G′ over R′′/G⋂

R′′ . Let R′′′ be the derived
normal ring ofR′′[y1, . . . , yl]. Then height (G′⋂ R′′) = 1. Since
Q′ is finite, in a finite number of steps we arrive at a normal affine47

ring O′ ⊆ R′, with the same quotient field asR′ such that for every
prime idealg′ of height 1 ofR′ we have height (g′

⋂
O′) ≤ 1.

But O′ and R′ have the same quotient field. Therefore height
(O′

⋂
g′) = 1. This proves (iii). �

(iv) Let O be as in (iii). LetP be the set of prime idealsG of height 1
in G ′ for which there does not exist any prime ideal of height 1 in
R, lying overG. Let V,V′ be the affine varieties defined byR and
G ′ and let f : V → V′ be the morphism induced by the inclusion
G ′ ⊆ R. There are only a finite number of subvarieties of codi-
mension 1 inV′ to which there do not correspond any subvariety
of codimension 1 inV. Hence the setP is finite. To prove Propo-
sition 4, we takeO = O′,G =

⋂
Y ∈P

Y . Let F be the set of prime

ideals of height 1 which do not containG. ThenS(G; O) =
⋂
g∈F

Og

(See Proposition 3). We have,R′ =
⋂
g′

R′
g′ , whereg′ runs through
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prime ideals ofR′ of height 1. Now it follows easily by our con-
struction ofO thatR′ = S(G; O).

Let R be an integral domain and letG be an ideal ofR. We say that
theG-transform ofR is finite if S(G; R) = R[G−n] for somen ≥ 0.

Theorem 1. Let R be a normal affine ring andG be an ideal of R. Then
theG-transform S of R is finite if and only if theG P- transform of P is
finite for any P= RY , whereY , is a prime ideal of R.

Proof. ClearlyG−nP = (GP)−n, for everyn. Hence ifG′ transform of 48

Rfinite, then so isGP- transform ofP, for everyP. Conversely assume
S is not finite. We then define an increasing sequence of normal rings
by induction as follows:

Set R0 = R. Having definedRj , 0 ≤ j ≤ i, we defineRi+1 as

the derived normal ring ofRi

[
(G(Ri))−1

]
. Then we haveS ⊃ Ri ⊃

Ri−1

[
(Gi−1)−1

]
, where suchRi is an affine normal ring. By the defini-

tion of G-transform,S = ∪
i
Ri. FurtherGRi- transform ofRi is alsoS.

We claim that heightGRi = 1 for everyi. For if heightGRi > 1, then
theGRi−transform ofRi is integral overRi and thereforeS = Ri . This
contradicts the assumption thatS is not finite. LetGi be the intersection
of those prime ideals of height 1 ofRi which containsGRi . Then we
haveGi ⊆ Gi+1. For letR be a prime ideals of height 1 inRi+1 con-
tainingGRi+1. If height (y∩ Ri = 1), then by definition of “Gi , we have
Gi ⊆ Y ∩ Ri”. �

Otherwise let heightR∩Ri〉1. Since theG-transform ofRi is S (see
remark after the definition ofG-transform), we have (GRi)−1Gm

i ⊆ Ri,
for somem. Now if Gi 1 R ∩ Ri, then (GRi)−1 ⊆ (Ri)R∩Ri . Hence

R
[
(GRi)−1

]
⊆ (Ri)R∩Ri . Therefore,Ri+1 ⊆ (Ri)R∩Ri , sinceRi is normal.

Hence (Ri+1)R = (Ri)R∩Ri . This contradicts the assumption that height
R ∩ Ri > 1. HenceGi ⊆ R ∩ Ri. ThereforeGi ⊆ Gi+1, for i ≥ 0. Set
G∗ = ∪

i
Gi . ThenG∗ is a proper ideals ofS = ∪

i
Ri. Let Y ∗ be a prime 49

ideal containingG∗, gotY = Y ∗Ri1 andPGRY . We now consider the
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GP-transfer ofP. We can (Ri)i = (RY )i WhereT = R− Y and (RY )i

are defined byn infection as follows:
We set (RY )o = RY and having defined (RY )o, . . . , (RY )i we define

(RY )i+1 as the derived normal ring of (RY )i

[
(G(RY )i)−1

]
. Since height

G(Ri)T = 1 by our construction, (Ri)T cannot be theGP-transform ofP.
HenceGP-transform is not finite.

3. Geometric meaning of theG-transform.
Let V be a variety. We call an affine varietyV′, anassociated affine

varietyof V if i) V′ ⊇ V. ii) The set of divisors ofV′ coincide with that
Vi.e. the set of local rings of rank 1 ofV andV′ are the same.

Theorem 2. Let F be a proper closed set of an affine variety V and letG
be an ideal which defines F in the affine ring R of V. Then V− F has an
associated affine variety if and only if theG-transform S of R is finite;
in this case S defines an associated affine variety and S contains and is
integral over the affine ring of any associates affine variety of V− F.

Lemma 1. Let R be an integral domain and letG be an ideal of R.

Set R′ = R
[
G−n

]
or S(G; R). Then the correspondenceY ′

 Y ′ ∩ R

establishes a1 − 1 corresponding between the set of prime ideals of
R′ not containingG and the set of prime ideals of R not containingG.
Further, for a prime idealsY ′ of R′ with Y ′

2 G, we have R′
Y ′ =

RY ′∩R.

Proof. Let Y be a prime ideals ofR which does not containsG. Let50

a ∈ U , a < Y . ThenR′ ⊆ R
[

1
a

]
. SinceY R

[
1
a

]
is a prime ideal, so is

Y ′ = Y R
[

1
a

]⋂
R′. FurtherY ′⋂ R= Y andR′

Y ′ = RY .

Conversely ifY ′ is a prime ideal ofR′ which does not containG,
thenY = Y ′⋂R does not containG andRY = R′

Y ′ . �

Lemma 2. LetG be an ideal of a noetherian domain R. Let S be the
G-transform of R and R′ a subring of S containing R. Then theGR′-
transfer of R′ is S .
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Proof. Let S′ be theGR′-transform ofR′. We have only to prove that
S′ ⊆ S. Let f ∈ S′. Then there exists ann such thatfGn ⊆ R′. Let
a1, . . . , al ∈ Gn generateGn. There exists anm such thatf aiG

m ⊆ R.
HencefGn+m ⊆ Rand the lemma is proved. �

Corollary. With the above notation, if a∈ S , then aS: GS = aS and
consequentlyGS is not of height 1.

Proof. Let f ∈ S, fG ⊆ S a i.e. f
aG ⊆ S. f

a ∈ S.
We now prove Theorem 2. SupposeS is finite. ThenS is an affine

ring and defines an associated affine variety by lemma 1 and Corollary.
to Lemma 2. Conversely assume thatV′ is an associated affine variety

of V − F. Let R′ be the affine ring ofV′. Let x′ ∈ R′. SetGx′ =

{
y |

y ∈ R, yx′ ∈ R
}
. Sincex′ ∈ RY , for Y 2 G (by the hypothesis) we have

Gx′ 1 Y , for Y 2 G. HenceGx′ contains a power ofG. Therefore
x′ ∈ S i.e., R′ ⊆ S. Since the divisors ofV′ andV − F are the same,
height (GR′) ≥ 2. HenceS is integral overR′. HenceS is an affine ring
and therefore finite.

Let V be an affine variety defined by an affine ringR and letF be a 51

closed set defined by an idealG. �

Theorem 3′ The variety V− F is affine if and only if1 ∈ GS , where S
is theG-transform of R. In this case F is pure of codimension 1 and S
is the affine ring of V− F.

Proof. SupposeV−F is affine. ThenV−F is an associated affine variety
of V − f . Let R′ be the coordinated ring ofV − F. ThenR′ ⊆ S (by
Theorem 2). Now 1∈ GR′. Hence 1∈ GS. Conversely suppose that

1 ∈ GS. Then 1∈ GG−n for somen. SetR′ = R
[
G−n

]
. SinceGR′ ∋ 1,

Lemma 1 of Theorem 2, proves that the affine variety defined byR′ is
V − F. R′ = S becauseGR′ ∋ 1 (by virtue of Lemma 2). �

It now remains to prove thatF is pure of codimension 1 ifV − F is
affine. Suppose the contrary. LetF1 be an irreducible component ofF
with codimensionF1 > 1. Let f ∈ R, with f not vanishing onF1 and
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vanishing on all tho other irreducible components. Then considering

R
[

1
f

]
we may suppose thatF = F1. But this would mean thatS is

integral overR. Hence 1< GS. Contradiction.

Theorem 3. V−F is an affine variety if and only ifG(G(P)−n(P) ∋ 1 for
every local ring P of F (the integer n(P) depending on P).

Proof. If V − F is affine, then by Theorem 3, 1∈ GS i.e 1 ∈ GG−n for
somen. Hence 1∈ G(GP)−n for everyP of F. Conversely assume that
1 ∈ G(GP)−n(P) for everyP of F. Then by lemma 2 of Theorem 2, the
GP-transform ofP is finite for everyP of F. Hence by Theorem 2,S is
finite. Then 1∈ GS andV − F is an affine variety. �52

Corollary 1. If V is an affine variety and F a divisorial closed subset
of F such that some multiple of F is locally principle, then V− F is an
affine variety.

Corollary 2. If V is a non-singular affine variety and F a divisorial
closed subset of V, then V− F is an affine variety.

Corollary 3. If V is an affine curve and F a closed subset of V, then
V − F is again affine.

Proof. It is sufficient to prove the Corollary whenF consists of a single
point P. If P is normal then by theorem 3′, V − F is affine. If P is
not normal we consider the derived normal ringP′ of P. Let C be the
conductor ofP′ with respect toP. ThenGn ⊆ C for somen,G being

an ideal which definesF. By consideringR
[
G−n

]
we are reduced to the

case whenF consists of normal points. This proves the Corollary.�

4. Zariski’s theorem and some related results.

Theorem 4 (Zariski’s). Let R be an affine ring over a ground filed K
and letΩ be the quotient field of R. Let L be a subfield ofΩ containing
K.

(1) If trans.deg.L
K
= 1 , then R

⋂
L is an affine ring
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(2) If R is normal andtrans.deg
K

L = 2 , then R
⋂

L is an affine ring.

Proof of (1) is a consequence of Proposition 4, Theorem 2 and Corollary
3 to theorem 3′.

Proof of (2) By virtue of Proposition 4, (2) is contained in the following
theorem:

Theorem 4′ Let R be an affine normal ring of dimension 2 over a ground53

field K. Then for any idealsG if R theG-transform S(G,R) is finite.

We require the following lemma

Lemma. Let S be a Krull ring,g′ a prime ideal of height 1. LetG be an
ideal of S such thatGRg = gRg. ThenG : g 1 g.

Proof. SinceR is a Krull ring Rg is a discrete valuation ring.Therefore
there is ana ∈ G such thataRg = gRg. SinceR is a Krull ring, aR =
g ∩ g1 ∩ . . . ∩ gn, gi being primary ideals of height 1 different fromg .
Theng 2 g1 ∩ . . . ∩ gn = aR : g ⊆ G : g. �

Proof of Theorem4′. We may assume that the idealG is pure of height
1. Choose an elementb ∈ G such thatVYi (b) = ni , 1 ≤ i ≤ r whereUYi

is the normal valuation corresponding toYi . ThenU ∩U 1 = bRwhere
U ′ is an ideal pure of height 1 such thatU andU ′ do not have common
prime divisors of height 1. We haveGS = bS (cf. Cor to Lemma 2,
p.50). Choose an element aa ∈ G such that a is not contained in any
of the prime divisors ofG andVYi (a) > VYi (b) = ni , 1 ≤ i ≤ r. Let x
be a transcendental element overR. Extend the ground fieldK to K(x).
We remark that theGK(x)[R]-transform ofR′ = K(x)[R] is finite if and
only if theG-transfer ofR is finite. NowGR′ = K

(n1)
1

⋂
. . .

⋂
K

(nr )
r

, whereK is the centre onR′ of the valuationVKi onΩ(x) define by
VKi (

∑
a1xi) = min

j
VYi (a j). The elementa andb do not have a common

prime divisor inS. The choice of the elementa and the following any 54

lemma show that we may assume thatbS is a prime ideal.

Lemma. Let S be a Krull ring and let a, b ∈ c with a, b not having a
common prime divisor. Then ax− b prime in S[x].
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Now assume that theG-transformS of R is not finite. Then as in
the proof of Theorem 1 (of this chapter), there exist normal local rings
(Pi ,W ), 0 ≤ i < ∞ such thatP0 = RY for suitable prime idealY ⊃ G
and (Pi ,Wi) dominates (Pi−1,Wi−1). FurthermoreS∗ =

⋃
i
Pi = SM ,

where M is a maximal ideals ofS. SetW ∗ = ∪Wi . ConsiderW =

W ∗∩R. SincebS∩R= G′, the canonical mappingϕ : R/V ′ → S/bS is
an injection. Fors∈ S, we havesGm ⊆ R for somem. SinceGm

1 G′ is
of dimension 1, by the theorem of Krull-Akizuki (see M. Nagata “Local
rings”, Theorem 33.2, p.115)S/bS is noetherian andS/M is of finite
length overR/W . In particularW ∗ is finitely generated. Hence exists
all such thatW1S∗ = W ∗ and thatS∗/W ∗ is of finite length overP1/W1.

We now proceed to prove thatS∗ is noetherian. Since height (W ∗) =
2, by virtue of a theorem of Cohen we need only prove that everyprime
ideal of height 1 ofS∗ is finitely generated. (see M. Nagata, “Local
rings” Theorem 3.4, p.8).

Let g∗ be a prime ideal of height 1. Setg = g∗ ∩R. ThenS∗g∗ = Rg.
Hence by the lemma proved we haveg′′ = S∗ : g 1 g∗. But gS∗ ⊆
g′′. We claim that heightg′′ ≥ 2. For if g′′ ⊆ R, a prime ideal of55

height 1 ofS∗, then 1.g = S∗K = S∗
g∗ . HenceK = g∗ a contradiction

to the fact thatg′′4′′ |.Hence eitherg′′ = S∗ or g′′ is N W -primary.
HenceN W

∗t ⊆ g′′ for somet. SinceS/N W
∗r is artinian andN W

∗r

is finitely generated we conclude thatg′′ is finitely generated. Now
g′′/gg′′ is a finitely generated overS∗/g∗. But in S∗/g∗ the only prime
ideals are⊞∗/g∗ and (0) andS∗/g∗ is Noetherian. Henceg∗ ∩ g′′/g∗g′′
is finitely generated. Henceg′′ ∩ g∗�gS∗, being residue class module of
g′′ ∩ g∗�g∗g′′, is finitely generated. Henceg” ∩ g∗ is finitely generated.
SinceS∗/g′′ andS∗/g∗ are noetherian, we haveS∗�g′′∩g∗ is noetherian.
Henceg∗/g′′ ∩ g∗ is finitely generated. Henceg∗ is finitely generated.
HenceS∗ is noetherian.

The ring, P1 being a geometric normal local ring, is analytically
normal. FurtherS∗ and P1 have the some quotient field,N W 1S∗ =
N W

∗ andS∗/N W
∗ is of finite length overR/N W

∗ and therefore over
P1/N W 1P1. Hence by Zariski’s main Theorem (seeM. Megata, “Lo-
cal ring” Theorem 37.4 , P.137)P1 = S∗. This is contradiction to the
construction of thePi.
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Theorem 5. Let V be a normal affine variety of dimension 2 and lot F
be a divisorial closed subset of V. Then V− F is affine.

Proof. Let U be the ideal definingF. By Theorem 4 theU -transfer
S of R is finite. LetV′ be the affine variety defined byS. Since height
U ≤ 2 andV is of dimension 2,V−F is isomorphic to an open subsetV′′

of V′ such thatV′ − V′′ consists of atmost a a finite number of points.56

Let ×′ ∈ V′ − V′′. Consider the morphismV′ → V induced by the
inclusionR⊆ S. Since f−1 f (×′) is discrete, by Zariski’s Main Theorem
f is bio-holomorphic atx′. Let W be an irreducible component ofF
passing throughf (x′). Sincex′ and f (X′) are bio-holomorphic there is
subvariety of codimension 1 ofV′ passing throughx′ and laying over
W. This contradicts the fact thatV′ is the associated affine variety of
V − F. HenceV − V′′ is empty andV − F is affine. �

We now proceed to give an example to show that Theorem 4(2) is
false if we do not assume thatR is normal. TakeR = K[X,Y,Z]/( f ).
Where

(1) f (X,Y,Z) = Y(Z + YT) + X(u1YZ+ U2Z2)

(2) f is irreducible

(3) T,U1, ∈ U2 ∈ K[X,Y].

Let the imageX,Y,Z,T,U1,U2 be denoted byx, y, z, t, u1 and u2 re-
spectively so thatR = K[x, y, z] = 0. SetY = (x, y). SinceR/Y =
K[X,Y,Z]/( f ,X,Y) ≈ K[Z], the idealY is prime. Similarlyg = (y, z) is
prime. We shall show that theY -transfer ofR is not finite. We first
prove that
(*) Y −1 = R+ z1R, z1 = (z+ yt)/X.

Proof. We have (x) = Y ∩ (x, 2+ yt). For letλx+ µy = ax+ β(z+ yt).
Thenµy2 ∈ (x) and thereforeµy2t ∈ (x) i.e. µyz ∈ (x). But z is not
a zero divisor module (x). Hence| (y ∈ (x). Therefore (x) = Y ∩
(x, z + yt). Lot now g ∈ Y −1. Theng = γ

x =
γ

y i.u.γ ∈ (x) : (y).
Since (x) = Y

⋂
(x,Z + yt), we have (x) : (y) = (x,Z + yt) : (y). 57

But ℓ ∈ K[x, y] and therefore y is not a zero divisor module (x, z +
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yt). Hence (x,Z + yt) : (y) = (x,Z + yt). Henceγ ∈ R+ z1F. This
proves (*). SetR1 = R[Y −1] = R[z1] = K[x, y, z1] K[X,Y,Z1]/U
(say) whereZ1 = (Z+YT)/X. We havef1(X,YZ) = X f1(X,Y,Z1) where
f1(X,YZ) = X f1(X,Y,Z1) = Y(Z1+Yt1)+X(U′1YZ1+U′2Z2

1),T1 = U2T2−
U1T,U′! = U1 − 2U2T,U′2 = U′2X. Now f (x, y, z) = X f1(x, y, z1) = 0.
Hence f1(x, y, z1) = 0 i.e. f1(x, y, z1) = 0 ∈ U . We claim next that
the elementf1(x, y, z1) = 0 is prime inK[X,Y,Z1]. Supposeg2(x, y, z1).

Then one of theg1 sayg2 is a unit inK
[
X,Y,Z, 1

X

]
. Thus f1(x, y, z1) =

Xrg1(x, y, z1) = 0 for somer ≥ 0. But f1(x,Y,Z1) is not divisible by
in K[X,Y,Z1]. hence f1(X,Y,Z1) is irreducible. Hence it follow that
R1 = R[Y −1] = K[X,Y,Z1]/( f1). Further f1 satisfied the same condition
as f . Proceeding in the same way we see that theY -transformS of R is
obtained by the successive adjunction of elementsZ1,Z2,Z3, . . . , where
Zn+1

zn+ytn
X , tn ∈ K[x, y]. This shows thatS is not finite. �

5. Rees’ counter example.
Let K be a field of an arbitrary characteristic and lotC be a non-

singular plane cubic curve defined overK. For a natural numbern and

a fixed pointQ of C,Tn =

{
P | np or nQ

}
is a finite act, becauseC is of

positive genus. We choose hereQ to be a point of inflexion (it is well
known that a non-singular plan cubic has 9 points of inflexion). Then
P ∈ T3d if and only if there is a plane curveCd of degreed such that58

Cd.C = 3dP. Thus we are that the set of pointsP andC, such thatCd.C
is a multiple ofP on suitable curveCd of positive degree, is a countable
set. Therefore there is a pointP of C such that no np (0. > 0) is linearly
equivalent to anyC.Cd (onC). (Note that the system ofCd.C is complete
linear this follows from the arithmetic normality ofC.) We fix such a
point P also and we enlargeK, if necessary, so thatP andQ are rational
overK.

Let H = K[x, y, z] be the homogeneous coordinate ring ofC, (x, y, z)
being a generic point ofC over K. Let Y be the prime ideals ofH
which definesP. Let t be a transcendental element overH and consider
the ringS generated by all ofat−n with a ∈ Y (n) (n runs through all
natural numbers) overH[t].
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We want to show that:

(1) S is not finitely generated overK.

(2) There is a normal affine ringR such thatS = R∩ L,whereL is the
field of quotient ofS.

This S is the Roes’ counter example to Zariski problem in the case
of transcendence degree 3.

Proof of (1). Consider degY (n) (=minimum if degree of elements of
Y (n)). if a homogeneous elementh of degreed is in Y (n), thenh defines
Cd.C with a suitable plane curveCd of degreed. Sinceh ∈ Y (n),Cd.C
containsnP. By the choice ofP,Cd.C , nP, whence 3d = degCd.C >
n andd > n/3. Letσ be one of 1, 2, 3 and such thatm′σ in divisible by 59

3. Setd = (n+ σ)/3. SinceC is an abelian variety, there is a pointRof
C such thatn(P− Q) + (R− Q) ∼ 0. Then

nP+ R+ (σ − 1) ∼ 3U ∼ Cd.C,

whereCd is a curve of degreed. SinceC is a non-singular plane curve,
the system of allCd.C (with fixedd) is a complete linear system, whence
there is aCd such thatnP+R+ (σ− 1)Q = Cd.C. Let h be the homoge-
neous form of degreed in H defined byCd. Thenh Y (n). Thus we see
that

(∗) degY
(n) = (n+ σ)/3, 1 ≤ σ ≤ 3.

This (∗) being shown, we see thatS is not finitely generated over
K by the same way an in the construction of the fourteenth problem in
Chapter III.

Proof of (2). We first show that

(∗∗) S = H[t, t−1] ∩ V,

whereV is the valuation ring obtained as follows:
Let p be a prime element of the valuation ringHY . Then t/p is

transcendental overHY , whence we have a valuation ringHY (t/p)(=
HY [t/p]pHY [t/p]).HY (t/p) is independent of the particular choice ofp
and this valuation ring is denoted byV.
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It is obvious thatS ≤ H[t, t−1] ∩ V. Let f be an arbitrary element
of H[t, t−1] ∩ V. Then f is of the form

∑
ai ti (finite sum) withaiǫH 60

(i may be negative). Letv be a valuation defined byV. Then by the
construction ofV, v(

∑
ai ti) = minV(ai ti) ≥ 0. ThereforeaiǫY

(−i) if
i < U, which implies thatf ǫS. Thus (∗∗) is proved.

This being settled, it remains only to prove the following lemma by
virtue of Proposition 1 (§1).

Lemma. Let R be a normal affine ring of a function field L over a field K
and let V1, . . . ,Vn be divisional valuation rings of L (i.e., Vi are discrete
valuation rings of L over K such that trans.degk L − 1 = trans. deg. of
the residue class field of Vi). Then there is a normal affine ringV with
an idealG such that R∩ V1 ∩ · · · ∩ Vn = S(G;V).

The proof is substantially the same as that of Proposition 4 (§2) and
we omit the detail.



Chapter 6

Complete reducibility of
rational representation of a
matrix group

This chapter is mostly a representation of M. Nagata: Complete re- 61

ducibility of rational representation of a matric group, J.Math. Kyoto
Univ. 1-1 (1961), 87-99.

It is well known in the classical case that every rational represen-
tation of a semi-simple algebraic linear group is completely reducible.
But the same argument becomes false in the case where the universal
domain is of characteristicp , 0. For instance, whenK is a universal
domain of characteristic 2, the simple groupS L(2,K) has the following
rational representationρ which is not completely reducible:

ρ

(
a b
c d

)
=


1 ac bd
0 a2 b2

0 c2 d2

 .

(Thisρ is not completely reducible becauseacandbd are not linear
polynomials ina2, b2, c2, d2.) Therefore it is an interesting question to
ask conditions for an algebraic linear groupG so that every rational
representation ofG is completely reducible.

Now, our answer of the above question, can be stated as follows:

51
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(1) When p , 0 : Every rational representation ofG is completely
reducible if and only if there is a normal subgroupG◦ of finite
index such that (i)G◦ is a subgroup of a torus group (i.G., diag-
onalizable) and (ii ) the index ofG◦ in G is prime to p. If G is
connected, then the above condition is equivalent to the condition62

that the representation ofG by homogeneous forms of degreep
is completely reducible. On the other hand, ifG is an algebraic
group (which may not be connected), then the complete reducibil-
ity of all rational representations ofG is equivalent to the condi-
tion that every element ofG is semi-simple (i.e., diagonalizable).

(2) Whenp = 0 : Each of the following two conditions is equivalent
to the complete reducibility of all rational representations ofG.

(I) The closure ofG has a faithful rational representation which is
completely reducible.

(II) The radical of the closure ofG is a torus group.

We shall prove also the following interesting theorem concerning
the complete reducibility of rational representations of aconnected al-
gebraic linear group:

If G is a connected algebraic linear group, then every rational rep-
resentation ofG is completely reducible if (and only if) the following is
true:

If ρ′ =

(
1 τ

0 ρ

)
is a rational representation ofG, thenρ′ is equivalent

to the representation

(
1 0
0 ρ

)
.

1. Preliminaries on connected algebraic linear groups.
Throughout this chapter,K denotes a universal domain of an arbi-63

trary characteristic, unless the contrary is explicitly stated. LetG be a
connected algebraic linear group contained inGL(n,K). A Borel sub-
groupB of G is defined to be a maximal connected solvable subgroup
of G. Then as was proved by Borel, the following is true:

Lemma 1. The homogeneous variety G/B is a projective variety. On
the other hand, every element of G is in some conjugate of B.
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Now we have:

Lemma 2. If u ∈ G is unipotent, G being a connected algebraic linear
group, then there is a closed connected unipotent subgroup of G which
contains u.

Proof. By the last half of Lemma 1, we see thatu is in a Borel subgroup
B of G. SinceB is solvable, the setU of all unipotent elements ofB is a
closed connected subgroup, which proves the assertion. �

On the other hand, the following was proved by Borel:

Lemma 3. If a connected algebraic linear group G consists merely of
semi-simple elements, then G is commutative, hence is a torus group.

Next we shall concern with an algebraic group which is not con-
nected:

Lemma 4. Let G be an algebraic linear group and let G◦ be the con-
nected component of the identity of G. Then each coset G◦g(g ∈ G)
contains an element of finite order.

Proof. Let A be the smallest algebraic group containingg and letA◦ be
the connected component of the identity ofA. SinceA is commutative
and sinceA◦ is infinitely divisible (in the additive formulation),A◦g 64

contains an element of finite order, which proves the assertion. �

2. Preliminaries on group representations.
Let G be an abstract group, letG◦ be a normal subgroup ofG and

let K be a field of characteristicp which may be zero, throughout this
section, except for in Lemmas 8 and 9.

The following lemma is well known :

Lemma 5. If a finite K-module M is a simple K−G-module, then M is
the direct sum of a finite number of K−G◦−modules which are simple.

Corollary . If a representationρ of G in GL(n,K) is completely re-
ducible, then the restriction ofρ on G◦ is completely reducible.
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The converse of the above Corollary is not true in general ifp , 0,
but we have:

Lemma 6. Letρ be a representation of G in GL(n,K). If the restriction
ρ◦ of ρ on G◦ is completely reducible and if the index t= [G : G◦] is
finite and not divisible by p, thenρ itself is completely reducible.

Proof. If ρ is not completely reducible, thenρ contains a representation

of the form

(
ρ1 τ

0 ρ2

)
which is not completely reducible and such that

ρ1, ρ2 are irreducible. Hence we may resume thatρ =

(
ρ1 τ

0 ρ2

)
and that

ρ1, ρ2 are irreducible. Let the representation module ofρ beM∗.M∗ con-
tains the representation moduleM of ρ2 andM∗/M is the representation
module ofρ1. Sinceρ0 is completely reducible, we see thatM is a direct65

summand ofM∗ are aG◦−K−module. HenceM∗ = M⊕N1⊕ · · · ⊕Nr ,

whereNi are simpleG◦ − K− modules. For eachNi we fix a linearly
independent basisa, . . . , ai s over K; we note here that the numbers is
independent ofi becauseM∗/M is a simpleG − K-module (remember
the well know proof of Lemma 5). For each (r, s)− matrix b = (bi j )
over the moduleM, we defineN(b) =

∑
i j (ai j + bi j )K. Thus we have a

one-one correspondence between all ofb and all of submodulesN such
that M∗ = M ⊕ N as aK-module. We may assume, on the other hand,
that ρ1 is given by the linearly independent basisa11, . . . , ars modulo
M of M∗/M. Eachg ∈ G defines a linear transformationf (g) on the
module of (r, s)-matrices overM∗ as follows: If (x11, . . . , xrs)ρ1(g) =
(y11, . . . , xrs), then (xi j ). f (g) = (xi j ). We define also an (r, s) - ma-
trix c(g) over M by the relationN(c(g)) = N(0)g. If b andb′ are such
that N(b)g = N(b′), then we have (ai j + bi j )g = (ai j + b′i j ). f (g). Since

(ai j )g = (ai j + c(g)). f (g), we see thatb′ = c(g) + bg. f (g)−1. Thus:

(1) N(b)g = N(c(g) + bg. f (g)−1).

If we apply this formula to the case whereb = c(h) with h ∈ G, then we
have

(2) c(hg) = c(g) + c(h)g. f (g)−1.
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Now, let g1 . . . , gt be such thatG =
∑

G◦gi and we setd = t−1

(
∑

c(gi)). We want to show thatN(d)g = N(d) for everyg ∈ G. Indeed,
c(g) + dg. f (g)−1 = c(g) + t−1(

∑
c(gi )g. f (g)−1) = c(g) + t−1(

∑
(c(gig) −

c(g)) = t−1(
∑

c(gig)) = d. ThereforeM∗ = M ⊕N(d) is a representation66

module ofG, which completes the proof. �

Corollary . If p = 0, then the coverer, of the Corollary to Lemma 5 is
true, provided that the index[G : G◦] is finite.

Lemma 7. Let H be a subgroup of finite index of G. If a representation
ρ of H in GL(n,K) is not completely reducible, then the representation
ρ∗ of G included byρ is not completely reducible.

Proof. Let M be the representation module ofρ. M contains anK − H-
moduleN which is not a direct summand ofM. Let M∗ be the repre-
sentation module ofρ∗. ThenM∗ is of the formM ⊕ ∑

Mgi wheregi

are such thatG = H +
∑

Hgi (gi < H). It is obvious that
∑

Mgi is H-
admissible.M∗ containsN∗ = N ⊕∑

Ngi . If N∗ is a direct summand of
M∗ as aG − K-module , then we haveM ⊕∑

Mgi = N ⊕∑
Ngi ⊕ N′ as

anH − K − Module . Then we see thatM = N ⊕ (M ∩ (
∑

Ngi + N′)) as
an H − K− module, which is a contradiction. HenceN∗ is not a direct
summand ofM∗ andρ∗ is not completely reducible. �

Corollary . If a finite group G∗ has order which is divisible by p, then
G∗ has a representation which is not completely reducible.

Proof. G∗ has an element a whose order isp. Then the sub-group{ai}

is represented by
{ (

1 i
0 1

) }
, and we see the assertion by Lemma 7.�

Next we observe relationship between rational representations of a
matric groupG and those of the closure ofG.

Lemma 8. Let G be a matric group and let G∗ be the closure of G. Let67

ρ∗ be a rational representation of G∗ and letρ be the restriction ofρ∗ on
G. Thenρ is irreducible if and only ifρ∗ is irreducible.ρ is completely
reducible if and only ifρ∗ is completely reducible.

Proof. ρ(G) is dense inρ∗(G∗) and we see the assertions easily. �
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Lemma 9. Let N be a normal subgroup of a matric group G and let
ρ be an irreducible rational representation of G into GL(n,K),K being
an universal domain. If N consists only of unipotent elements, then N is
contained in the kernel of the irreducible representationρ.

Proof. Since the set of all unipotent matrices inGL(n,K) is closed, and
since the image of unipotent element under a rational representation is
again unipotent, the closureN∗ of ρ(N) consists only of unipotent ele-
ments. ThereforeN∗ is nilpotent, hence is solvable. Therefore we may
assume that every element (ai j ) of ρ(N) is such thatai j = 0 if i > j,
whenceaii = 1 for everyi. On the other hand, the Corollary to Lemma
5 says that the restriction ofρ on N is completely reducible, whence
ρ(N) must consist only of the identity, which completes the proof. �

3. The main result in the case whereG is connected andp , 0.

Theorem 1. Let K be a universal domain of characteristic p, 0 and
let G be a connected matric group contained in GL(n,K). Then the
following three conditions are equivalent to each other:

(I) Every rational representation of G is completely reducible.

(II) G is contained in a term group, i.e., there is an element a of
GL(n,K) such that a−1Ga is a subgroup of the diagonal group.

(III) The representation of G by homogeneous forms of degree p is68

completely reducible.

Proof. It is obvious by virtue of Lemma 8 that such of the above condi-
tions forG is equivalent to that for the closure ofG. Therefore we may
assume thatG is a connected algebraic linear group. It is well known
that (II) implies (I) and it is obvious that (I) implies (III). Thus we have
only to show that (III) implies (II). Assume that (III) is true and that (II)
is not true and we shall lead to a contradiction. Lemma 3 showsthatG
contains an elementg which is not semi-simple. Then the unipotent part
gu of g is different from the identity and is contained inG (cf. Borel’s
paper “Groupes leneaires algebriques, Ann. of Math 64, No.1(1956)
20-82), henceG contains a connected closed unipotent subgroupU , 1
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by Lemma 2. The representation moduleFp of the representationp of G
by homogeneous forms of degreep is nothing but the module of homo-
geneous forms of degreep in n variablesX1, . . . ,Xn on which element
g of G operates by the ruleh(X1, . . . ,Xn)g = h((X1, . . . ,Xn)g). Fp con-
tainsM =

∑
Xp

i K, which is also a representation module ofG. Hence
(III) implies that M is a direct summand ofFp. ThusFp = N ⊕ M.
For each monomialni1...in = Xi1

1 . . .X
in
n with i j such thati j < p and∑

i j = p, there is a uniquely determined elementmi1...in of M such that
fi1...in = ni1...in + mi1...in form linearly independent basis forN. We note
thatN andM are representation modules ofU. Hence we have only to
show that: �

The decompositionFp = N ⊕ M as a representation module of the
connected closed unipotent groupU lead us to a contradiction.

Let u = (ui j ) be a generic point ofU over the universal domainK. 69

We may replaceU with conjugate ofU. Hence we may assume first

that ui j = 0 if i > j, whereui j = 1 for i. setK∗ = K(
{
up

i j

}
), and we

choose (K, 1) thatuk1 < 1∗, ui j j∈k∗ ,ui j∈K∗ if i > K and such thatuk j ∈ K∗

if j > 1. for eachA−1UA (A being a triangular unipotent matrix), we
can associate sucha(k, 1) and we may assume that the pair (k, 1) for U
is lexicographically smallest among those (k, 1) for A−1UA. assume for
a moment that is a linear relation

∑
i αiuki ∈ K∗ with α1 ∈ k andα1 , 0.

We may assume thatα1 = 1 and thatαi = 0 if uki ∈ k∗. Hence, in
particular,α1 = . . . = αk = α1+1 = . . . αn = 0. Consider the unit matrix
1 and the matrixc1 = (c1

i j ) such that (i)c1
i j = 0 if j , 1, (ii) c′i1 = αi if

i , 1 and (iii)c1
11 = 0. Setc = 1+c′. Then obviouslyc−1 = 1−c1. Since

c−1u ≡ u modulok∗ , We see easily that such a (k, 1) defined forc−1Uc
has the sameK and a smaller 1 than our (k, 1), which is a contradiction.
Therefore:

(1) If αi ∈ K and ifα1 , 0, then
∑

iαiuki < K∗.

Now, let a = (ai j ) be an arbitrary element ofU. Then ua is also a
generic point ofU overK. Sinceuk j( j > l) is in K∗, the (k, j). compo-
nent of ua must be inK∗. This shows by virtue of (1) above thatal j = 0
if j > 1. since a is arbitrary, we see thatul j = 0 for every j , l.ThusX1
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is U-invariant. Now we consider the elementsfi1 . . . in(i j < p,
∑

i j = p).
We denote byg j the elementfil . . . in such thati j = 1, i1 = p−1 for each
j = k, k+ 1, . . . , 1− 1, 1+ 1, . . . , n. Since we have

(2) (XkXp−l
l )u =

∑
uk jZ jX

p−l
l ,

we see that70

(3) gu
k =

∑

j,l

uk jg j .

Consider the coefficient ofZp
1 in gu

k; let it bed. (3) shows that d is
a linear combination ofuk j( j , l) with coefficients inK. On the other
hand, (2) shows thatd − ukl must be inK∗. Thus we have a contradiction
to (1) above, which completes the proof of Theorem 1.

4. The main result in the case wherep , 0.

Theorem 2. Let K be a universal domain of characteristic p, 0 and
let G be a matric group contained in GL(n, k). Then the following con-
ditions are equivalent to each other:

(I) Every rational representation of G is completely reducible.

(II) There is a normal subgroup Go of finite index such that (i) Go is
a subgroup of a torus group and (ii) the index of Go in G is not
divisible by p.

(III) The connected component Go of the identity of G is a subgroup of
a torus group and[G : Go] is not divisible by p.

If G is an algebraic linear group, then the above conditions are
equivalent to the following condition:

(IV) Every element of G is semi- simple.

Proof. It is obvious that (III) implies (II) and that (II) implies (I) by
virtue of Lemma 6. Therefore, by Lemma 8, we have only to provethe
equivalence of (I), (III), (IV) in the case whereG is an algebraic linear71

group. Thus we assume thatG is algebraic letGo be the connected
component of the identity ofG. Assume first that (IV) is true. ThenGo
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consists merely of semi simple elements, henceGo is a torus group by
Lemma 3. If a semi-simple a has a finite order, then the order isprime to
p. Therefore Lemma 4 implies that[G : Go] is not divisible byp. Thus
(IV) implies (III). As we have remarked above, (III) implies(I). Assume
now that (IV) is not true. Then, as we have seen in the proof of Theorem
1, there is a unipotent elementuof G which is different from the identity,
If u ∈ Go, thenGo has a rational representation which is not completely
reducible, henceG itself has such one by Lemma 7 or by the corollary
to Lemma 8. Ifu < Go, then the finite groupG/G0 has a representation
which is not completely reducible, which is a rational representation of
G. Thus we see that (I) is not true. Therefore (I) implies (IV),which
completes the proof of Theorem 2. �

5. The main result in the case wherep = 0.

Theorem 3. Let K be a universal domain of characteristic p= 0 and
let G be a matric group contained in GL(n, k). Then the following con-
ditions are equivalent to each other:

(I) Every rational representation of G is completely reducible.

(II) The closure of G has a faithful rational representationwhich is
completely reducible.

(III) The radical of the closure of G is a torus group.

Proof. It is obvious that (I) implies (II) by virtue of Lemma 8. Lemma
9 shows that (II) implies (III). In order to show that (III) implies (I), we
shall prove the following lemma: �

Lemma 10. Let G be a connected algebraic linear group and let R be72

the radical of G. If R is a torus group, then there is a closed connected
normal subgroup S such that (i) G= RS and (ii) R∩S is a finite group.
Furthermore, R is contained in the center of G (hence R is the connected
component of the identity of the center of G).

Proof. For the fact thatR is contained in the center ofG, see Borel’s
paper. LetS be the subgroup generated by all unipotent elements of
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G. ThenS is obviously a normal subgroup. Each unipotent element is
in a closed connected unipotent subgroup ofG, henceS is generated
by closed connected subgroups, and thereforeS is a closed connected
subgroup ofG. Now, we may assume thatR is a diagonal group and that
eachg ∈ G is given by

g =



ρ1(g) τ12(g) · · · τ1r (g)
0 ρ2(g) · · · τ2r (g)

...................................

0 .................... ρr (g)



with irreducible representationsρ1, . . . , ρr . If u ∈ G is unipotent, then
ρi(u) is unipotent, whence the determinant ofρi(u) is 1. Therefore we
see that ifs ∈ S , then the determinant ofρi(s) is 1. On the other hand,
sinceR is in the center ofG, ρi(R) is in the center ofρi(G), hence by
the famous lemma of Schur every element ofρi(R) is of the formk.ρi(1)
with k ∈ K. Therefore we see thatR∩ S is a finite group. SinceS a is
closed normal subgroup.RS is a closed normal subgroup. SinceG/R is
semi- simple, we see thatG/RS is semi-simple, unlessG = RS. If G ,73

RS, thenG/RS contains a non-trivial unipotent element, whence there
must be a unipotent element ofG outside ofRS, which is a contradiction
to our construction ofS. ThereforeG = RS, which completes the proof.

Now we proceed with the proof of Theorem 3. By the Corollary to
Lemma 6, we may assume thatG is connected. Lemma 8 allows us to
assume thatG is an algebraic linear group. LetR be the radical ofG
and letS be the normal subgroup given in Lemma 10. SinceR∩ S is
a finite group and sinceG = RS, we see thatS is semi-simple, whence
every rational representation ofS is completely reducible. Letρ be
an arbitrary rational representation ofG. We may assume thatρ(R) is
a diagonal group, whence the completes reducibility of the restriction
of ρ on S implies the complete reducibility ofρ, which completes the
proof. �
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6. Another result.
Let G be a connected algebraic linear group with universal domain

K, throughout this section.

Theorem 4. Every rational representation of G is completely reducible
if (and only if) the following is true:

If ρ′′ =

(
1 0
0 ρ′

)
is a rational representation of G, thenρ′′ is equiva-

lent to the representation

(
1 0
0 ρ′

)
.

Proof. Letρ =

(
ρ1 τ

0 ρ2

)
be a rational representation ofG. We have only

to show thatρ is equivalent to the representation

(
ρ1 0
0 ρ2

)
. �

Since quadρ(ab) = ρ(a)ρ(b), we have 74

(1)
τ(ab) = ρ1(a)τ(b) + τ(a)ρ2(b) for anya, b−G.

Let x be a generic point ofG overK considerf (x) = T(x) ρ2(x)−1.
f (a) is then well defined for anya ∈ G. The relation (1) implies that
f (ab) = ρ1(a)τ(1)ρ2(b)−1ρ2(a)−1+τ(a)ρ2(a)−1 = ρ1(a) f (b)ρ2(a)−1+

f (a) for anya, b ∈ G, whence

(2)
f (xa) = ρ1(x) f (a) fa(x)−1 + f (x) for anya ∈ G.

Let m, n be such thatT is an(m,n) matrix and consider the module
L of all (m, n)-matrices overK(x). Each elementC of G defines an
K-linear mapφg or. L as follows:

φg(wi j (x)) = (wi j (xg)).

ThusL becomesK −G - module. LetM be the set of allρ1(x)cρ2

(x)−1 with (m, n)-matricesc over K. ThenM is a finiteK-module
contained inL. Sinceρ1(xa)cρ2(xa)−1 = ρ1(x)(ρ1(a)cρ2(a)−1, xρ2
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(x)−1(a ∈ G), M is G-admissible. SetN = f (x)K + M. Then the
relation (2) shows thatN is also a finiteK−G -module. We consider
a representationρ∗ of G by the moduleN. The relation (2) shows
that f (x) is G-invariant moduloM, hence eitherf (x) ∈ M or ρ∗

is equivalent to a representation of the form

(
1 λ

0 ρ′

)
. The former

case implies thatf (x) + ρ1(x)cρ(x)−1 = 0 with some (m, n)-matrix
c over K. By our assumption, the latter case implies that there is
an elementρ1(x)cρ2(x)−1 of M such thatf (x) + ρ1(x)cρ2(x)−1 is G-
invariant. Hence, in any case, there is an (m, n)-matrix c over K75

such thatf (x)+ρ1(x)cρ2(x)−1 is G-invariant. Setτ∗ = τ−cρ2+ρ1c.

Then, transformingρ by the matrix

(
ρ1(1) c

0 ρ2(1)

)
, we see thatρ is

equivalent to the representation

(
ρ1 τ∗

0 ρ2

)
. Set f ∗(x) = τ∗(x)ρ2(x)−1.

Then f ∗(x) = f (x) − c + ρ1(x)cρ2(x)−1, which is G-invariant by
our choice ofc. Thereforef ∗(xa) = f ∗(x) for any a ∈ G, whence
f ∗(x) = f ∗(xx−1) = 0. This shows thatτ∗ = O, which completes the
proof of Theorem 4.

We note by the way that the matrixf (x) has an interesting property
as follows:

Proposition . Assume thatρ =

(
ρ1 τ

0 ρ2

)
is a rational representation of

G. Set H= {h|h ∈ G, τ(h) = 0}. Then the homogeneous variety G/H
= {gH} is a quasi-affine variety, on which the coordinates of a point gH
are given by f(g).

Proof. Sinceτ(1) = 1, the formula (1) in the above proof shows that

τ(a−1) = −ρ1(a)−1τ(a)ρ2(a)−1, henceτ(a−1b) = ρ1(a)−1
[
τ(b)ρ2(b)−1 −

τ(a)ρ2(a)−1
]
ρ2(b). There fore f (a) = f (b) if and only if aH = bH,

which prove the assertion. �

Remark . Note that the above preposition only proves thatG/H is a
quasi-affine and not affine as stated in M. Nagata: Complete reducibility
of rational representations, J. Math. hyeto Univ., 1-1 (1961), 87-99.
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