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Introduction

The main topic of these notes is geodesics. Our aim is twofold. The
first is to give a fairly complete treatment of the foundations of rieman-
nian geometry through the tangent bundle and the geodesic flow on it,
following the path sketched in [2] and [19]. We construct thecanonical
spray of a riemannian manifold (M, g) as the vector fieldG on T(M)
defined by the equation

i(G) · dα = −1
2

dE,

wherei(G) · dα denotes the interior product byG of the exterior deriva-
tive dα of the canonical formα on (M, g) (see(III.6)) andE the energy
(square of the norm) onT(M). Then the canonical connection is intro-
duced as the unique symmetric connection whose associated spray isG.

The second is to give global results for riemannian manifolds which
are subject to geometric conditions of various types; theseconditions
involve essentially geodesics.

These global results are contained in Chapters IV, VII and VIII.
Chapter IV contains first the description of the geodesics ina symmetric
compact space of rank one (called here an S.C.-manifold) andthe de-
scription of Zoll’s surface (a riemannian manifold, homeomorphic to the
two-dimensional sphere, non isometric to it and all of whosegeodesics
through every point are closed). Then we sketch results of Samelson
and Bott to the effect that a riemannian manifold all of whose geodesics
are closed has a cohomology ring close to that of an S.C.-manifold. In
Chapter VII are contained the Hopf-Rinow theorem, the existence of
a closed geodesic in a non-zero free homotopy class of a compact rie-
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iv Introduction

mannian manifold, and the isometry between two simply connected and
complete riemannian manifolds of the same constant sectional curva-
ture.

In Chapter VIII one will find theorems of Myers and Synge, the
Gauss-Bonnet formula and a result on complete riemannian manifolds
of non-positive curvature. Then come the theorem of L.W. Green, which
asserts that, on the two-dimensional real-projective space, a riemannian
structure all of whose geodesics are closed has to be isometric to the
standard one, and the theorem ofE. Hopf: on the two-dimensional
torus, a riemannian structure all of whose geodesics are without conju-
gate points has to be a flat one. As a counterpoint we have quoted the
work of Busemann which shows that the theorems of Green and Hopf
pertain to the realm of riemannian geometry, for they no longer hold
good inG-spaces (see(VIII.10)). However, the result on complete man-
ifolds with non-positive curvature is still valid inG-spaces.

We have included in Chapter VIII theorems of Loewner and Pu,
which are “isoperimetric” inequalities on the two dimensional torus and
the two-dimensional real projective space (equality implying isometry
with the standard riemannian structures on these manifolds). These re-
sults do not involve geodesics explicitly, but have been included for their
great geometric interest. One should also note that the results of Green,
Hopf, Loewner and Pu are two-dimensional and so lead to interesting
problems in higher dimensions.

The tools needed for these results are developed in various chapters:
Jacobi fields, sectional curvature, the second variation formula play an
important role; see also the formulas in(VIII.4) and(VIII.8).

The reference for calculus is [36]; references for differential and rie-
mannian geometry are [14]; [16], [17], [18], [19], [21], [33], [35], and
lectures notes of I.M.Singer and a seminar held at Strasbourg University.
We have used some of these references without detailed acknowledge-
ment.

I am greatly indebted to N. Bourbaki, P. Cartier and J.L. Koszul
for communication and permission to use ideas and results oftheirs on
connections. For most valuable help I am glad to thank here P.Cartier,
J.L. Koszul, N. Kuiper and D. Lehmann.
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Chapter 0

Preliminaries

1

1

In this chapter we formulate certain notions connected withthe notion
of a manifold in a form we need later on and fix some notations and
conventions.

By means of a basis we identify ad-dimensional real vector space
V with setRd of all d-tuples of real numbers with the standard vector
space structure anddenotethe element with 1 in theith place and zeros
elsewhereby ei . Then{ei} form a basis ofRd, we call it thecanonical
basisof Rd, and itsdual basis(u1, . . . , ud) the canonical coordinate sys-
tem inRd. (ForR(= R1) we setu1

= t). With this identification any
real vector space becomes a manifold and this structure is independent
of the basis chosen.

A manifoldwill always be aC∞-manifold which is Hausdorff, para
compact and of constant dimensiond. Generally we denote it byM, a
typical chart of it by (U, r) and local coordinateswith respect to (U, r)
by xi

= ui ◦ r. Let us note that because of para compactness partitions
of unity for M exist.

We denote thetangent spaceof M at a by Ta(M) and define the
tangentbundleT(M) of M to be

(0.1.1)
⋃

a∈M

⋃

x∈Ta(M)

{x} = T(M)

and call elements ofT(M) vectorsof M. Then we have thenatural

1



2 Preliminaries

projection map pM (or simply p) from T(M) onto M which takes every
vector ofM ata ontoa.

We denotethe set of allmaps(C∞-maps, differentiable maps) of a2

manifold M into a manifoldN by D(M,N) and whenN = R we write
F(M) for D(M,R). Every f in D(M,N) induces a map ofF(N) into
F(M) defined by

g→ g ◦ f

and this in turna map fT of T(M) into T(N) defined by the equation

(0.1.2) (f T(x))(g) = x(g ◦ f ), g ∈ F(N).

Then we have the following commutative diagram

(0.1.3)

T(M)
f T

//

pM

��

T(N)

pN

��
M

f // N

1.4

Let us note that iff T restricted toTm(M) is one-one then we can choose
a local coordinate system (x1, . . . , xe) for N atn = f (m) such that{xi ◦ f }
(i = 1, . . . , d) form a local coordinate system atm for M. Also if f T

restricted toTm(M) is ontoTn(N) then we can choose a local coordinate
system (x1, . . . , xd) for M atmand a local coordinate system (y1, . . . , ye)
for N atn such thatxi

= yi ◦ f , i = 1, . . . , 0.

1.5

We call a manifoldN asub manifoldof M if

1) N ⊂ M,3

2) the topology onN is induced by that onM,



1. 3

3) to each pointp of N there is a chart (Up, rp) in the atlas ofM such
that for some positive integerk

rp(N ∩Up) =
{
(xi) ∈ rp(Up)

∣∣∣ xk+1 = . . . = xd = 0
}
.

1.6

Under these conditions a vectorx of Tm(M) will be in iT(Tm(N)) (where
i : N → M denotes the injection) if and only ifx(ϕ ◦ i) = 0∀ϕ ∈ F(N)
implies thatx = 0.

In case the manifoldM is an open sub manifoldA of a finite dimen-
sional real vector spaceV, we identifyT(A) with A× V as follows:

1.7

Fory ∈ V, f ∈ F(A), a ∈ A set

ζ−1
a (y) · ( f ) = lim

t→0

(
f (a+ ty) − f (a)

t

)
.

We see thatζ−1
a (y) ∈ Ta(M) and that the mapζ−1

a is an isomorphism
of V with Ta(M). We denote its inverse byζa and define a map from
T(A) ontoV by setting

(0.1.8) ζ(x) = ζpA(x)(x).

Then the identification is given by the map

(0.1.9) T(A) ∋ x→ (pA(x), ζ(x)) ∈ A× V.

Given (U, r) the mapsζ◦rT and (pr(U), ζ)◦rT are called theprincipal
part and thetrivialising maprespectively.

(See Lang [19] : p. 49). 4

The use of these maps instead of the explicit use of the local coordi-
nates has the advantages of the latter without its tediousness. So, more
explicitly, given (U, r) we write

x=
℧

(a, b)
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a = (pr(U) ◦ rT )(x) and b = (ζ ◦ rT )(x).

Generally we take (a1, . . . , ad), (b1, . . . , bd) as the coordinate represen-
tations ofa, b.

Now, we can consider the collection (T(U), (pr(U), ζ) ◦ rT) corre-
sponding to the charts (U, r) of M as an atlas onT(M) and thus define a
structure of a manifold onT(M). With this structure on (T(M)) we have
pM ∈ D(T(M),M) and furthermore ifN is a manifold andf ∈ D(M,N)
then f T ∈ D(T(M),T(N)).

1.10

SinceM is Hausdorff and hence there are functions with arbitrarily small
support we see that the class of all sections ofT(M), i.e.,

{
X ∈ D(M,T(M))

∣∣∣ p ◦ X = idM

}

can be identified withC (M), the set of all derivations of theR-algebra
F(M) into itself. Elements ofC (M) arecalled vector fieldson M.

1.11

Now let us take (U, r). Suppose that a vector (a, b) is given inU. In (a, b)
we vary the first coordinatea overU keepingb fixed. Thus, clearly, we
get a vector field overU. Now we take functionsϕ on M such that5

(i) 0 ≤ ϕ ≤ 1, and

(ii) ϕ is zero outsideU and is 1 in a neighbourhood ofa in U.

Then we set

Xℓc =


ϕ(x) · X(x) for x ∈ U

0x for x < U

This vector field so obtained is called alocally constant vector field
at a.



1. 5

If f ∈ D(M,V) is a map of a manifoldM into a finite dimensional
real vector space, we define, besidesf T , a map d f, calledthe differential
of f , from T(M) to V by setting

(0.1.12) d f = ζ ◦ f T .

Further ifM is a vector spaceV′, thendenoting the Jacobian of fby Df
we have (with the Df of [36]):

1.13

D f ◦ ζ = d f.

Let us write down explicitly the expression ford f and D f . Let V be
n-dimensional with a basis{e1, . . . , en} and corresponding coordinate
system (x1, . . . , xn) and, as usual, let (U, r) be a chart ofM with local
coordinate system (x1, . . . , xd). Then f onU is given byn C∞-functions

f
i
= xi ◦ f (i = 1, . . . , n) on U. The canonical local bases forC (U) and

C (V) are
{(

∂

∂xi

)}
and

{(
∂

∂xi

)}
respectively.

Then we have 6

(0.1.14) f T
(
∂

∂xi

)
=

∑

j

∂ f
j

∂xi

∂

∂xj
, i = 1, . . . , d.

Now is customary let us write the contra variant (tangent) vector as a
row vector. Now suppose thatd f takes a contra variant vector with
coordinates (x1, . . . , xd) to one with (x1, . . . , xn), i.e.

(0.1.15) (d f)


∑

i

xi
∂

∂xi

 =
∑

i

xi
∂ f

∂xi
.
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Then the coordinates are related by the matrix equation
(0.1.16)

i.e. (x1, . . . , xn) =



∂ f
1

∂x1

∂ f
2

∂x1
. . .

∂ f
n

∂x1

...
...

...

∂ f
1

∂xi

∂ f
2

∂xi
. . .

∂ f
1

∂xi

...
...

...

∂ f
1

∂xd

∂ f
2

∂xd
. . .

∂ f
n

∂xd



· (x1, . . . , xn); X = J · X

Hence the Jacobian isJ.

2 Forms

We considerC (M) as anF(M) module and denote itsdual by C ∗(M).
The elements ofC ∗(M) are called thedifferential formson M.7

2.1

Now we define thecotangent bundle T∗(M) to be

T∗(M) =
⋃

a∈M

⋃

x∗∈Ta(M)

{x∗},

and define a manifold structure onT∗(M) in a way analogous to that on
T(M). Forω ∈ T∗(M), X ∈ C (M) by evaluation ata in M we see that
ω(X)(a) depends only onX(a) and that we can identifyC ∗(M) with

(0.2.2)
{
ω ∈ D(M,T∗(M))|pM ◦ ω = idM

}
= C

∗(M)

More generally,M being any unitary module over a commutative
ring A we write Ls(M) (resp. Es(M)) for the A-module of all multi-
linear (resp. alternating multilinear) forms of degrees onM. There
is a map, calledmultiplication, from Ls(M) × Ls′(M) into Ls+s′(M) de-
fined by (ω,σ) → ω · σ, where (ω · σ)(X1, . . . ,Xs,Xs+1 . . . ,Xs+s′) =
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ω(X1, . . . ,Xs) · σ(Xs+1, . . . ,Xs+s′), and a map, calledexterior multipli-
cation, from Es(M) × Es′(M) into Es+s′(M), obtained by alternating the
latter one.

Now we set

L
s(M) = Ls(C (M))

and E
s(M)Es(C (M))

consideringC (M) as anF(M)-module, and

Ls(T(M)) =
⋃

a∈M

⋃

x∈Ls(Ta(M))

{x}

Es(T(M)) =
⋃

a∈M

⋃

x∈Es(Ta(M))

{x}

considering theTa(M) asR-modules. We can define a manifold struc-8
ture onLs(T(M)) and also onEs(T(M)) in a way analogous to that on
T∗(M). By evaluation ata of M we can show that forω ∈ L s(M)

ω(X1, . . . ,Xs)(a) depends only on (X1(a), . . . ,Xs(a))

and hence we can identifyL s(M) andE s(M) with

{
ω ∈ D(M, Ls(T(M)) | pM ◦ ω = idM

}
(0.2.3)

and
{
ω ∈ D(M,Es(T(M)) | pM ◦ ω = idM

}

respectively, and call thems-forms on Mand s-exterior forms on M
respectively. Now forω ∈ L s(M) anda ∈ M,ω(a) makes sense and we
oftendenote it byωa, and we have a similar convention for the elements
of E s(M)′s.

2.4

Given a chart (U, r), with the notation

[i] = i1 < . . . < is, dx[i] = dxi1 ∧ . . . ∧ dxis
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locally we can write anys-exterior form as

(0.2.5)
∑

[i]

ω[i]dx[i] , where ω[i] ∈ F(r(U)).

Every f ∈ D(M,N) induces a map f∗ of multilinear forms onN into
those onM. We have, by definition

(0.2.6) (f ∗ω)(x1, . . . , xs) = ω( f T(x1), . . . , f T(xs)) for ω ∈ L
s(N)

andx1, . . . , xs ∈ Ta(M). Thus f takesL s(N) into L s(M) and further-
more it takes elements ofE s(N) into those ofE s(M) and hence can be
considered as a map ofE s(N) into E s(M). f ∗ is a homomorphism of9

R-modules having the following properties:

i) f ∗(ω · σ) = f ∗(ω) · f ∗(σ) for ω ∈ L s(N), σ ∈ L s′(N),
(0.2.7) ii) f ∗(ω ∧ σ) = f ∗(ω) ∧ f ∗(σ), for ω ∈ E s(N), σ ∈ E s′(N)

iii) for g ∈ D(N, L), L a manifold, (g ◦ f )∗ = f ∗ ◦ g∗.
We definea map d, called exterior differentiation, from E s(M) into

E s+1(M) by setting

(dω)(X0, . . . ,Xs) =
s∑

i=0

(−1)i Xi(ω(X0, . . . , X̂i , . . . ,Xs)) +(0.2.8)

∑

0≤i< j≤s

(−1)i+ jω([Xi ,X j ],X0, . . . , X̂i , . . . , X̂ j , . . . ,Xs)

where [X,Y] = X ◦ Y − Y ◦ X for X, Y ∈ C (M), X0, . . . ,Xs ∈ C (M)
and the element under∧ is to be deleted from the sequence of elements.
This map has the following properties:

i) it is R-linear
(0.2.9) ii) d ◦ d = 0

iii) d(ω ∧ σ) = (dω) ∧ σ + (−1)degree ofωω ∧ dσ
iv) d ◦ f ∗ = f ∗ ◦ d for f ∈ D(M,N), N a manifold.

As an example we note

(0.2.10) (dω)(X,Y) = X(ω(Y)) − Y(ω(X)) − ω([X,Y])

for ω ∈ C ∗(M); X, Y ∈ C (M).
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For X ∈ C (M), ω ∈ L s(M) we define theinterior product i(x)ω ∈
L s−1(M) by the equation

(i(X)ω)(X1, . . . ,Xs−1) = ω(X,X1, . . . ,Xs−1)∀X1, . . . ,Xs−1 ∈ C (M).
(0.2.11)

2.12
10

We call multilinear forms on (C (M))s × (C ∗(M))t tensors of type (s, t)
and denote theF(M)-module of such tensors byL s

t (M).

3 Integration

3.1

a.1. LetV be a real vector space of finite dimensiond. We call any
nonzero element ofEd(V) an orientation onV A basis {x1, . . . , xd}, in
that order, ispositivewith respect to the orientationS on V is

(0.3.2) S(x1, . . . , xd) > 0.

3.3

Let V be a vector space.V together with a symmetric positive definite
bilinear formg onV, i.e. a bilinear form such that

g(x, y) = g(y, x), and g(x, x) > 0∀x , 0

is called ag-euclidean(or simplyeuclideanif there is no possible con-
fusion) space. Sometimes we describe this situation as “V is provided
with a euclidean structure g”. Two vectorsx andy are said to beor-
thogonal relativeto g if g(xy) = 0. A basis{e1, . . . , ed} of V is called
anorthogonal basis relativeto g or simply an orthogonal basis of (V, g)
if e1, . . . , ed are orthogonal i.e.g(ei , ej) = 0 if i , j. It is called an
orthonormal basis relativeto g if, further,

g(ei , ei) = 1.
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3.4

Example.Let V be provided with a euclidean structure and be oriented
by S (i.e. S is an orientation onV). Then it admits acanonicalorienta-11

tion SV defined by the equation

SV(x1, . . . , xd) = 1

for every orthonormal basis{x1, . . . , xd}, positive relative toS.

3.5

2. A volume t on Vis a mapVd → R such that it is the absolute value of
an orientationS : t = |S|, i.e.,

t(x1, . . . , xd) = |S(x1, . . . , xd)| for x1, . . . , xd in V, .

3.6

Example 3.2.Let V beg-euclidean. Then it admits acanonical volume
tV defined bytV(x1, . . . , xd) = (det(g(xi , x j)))1/2 ∀x1, . . . , xd ∈ V.

b. LetM be a manifold. We call an elementσ ∈ E d(M) anorienting
or volume formif ∀m ∈ M : σm is an orientation ofTm(M). In that case
we also say thatσ orientsM or thatM is oriented byσ.

3.7

Example.OnRd there is an orientationτ, calledthe canonical orienta-
tion, given by

(0.3.8) τ = du1 ∧ . . . ∧ dud.

We considerRd always with this orientation.

Now there is the notion of a diffeomorphism between oriented man-
ifolds preserving orientation. If M is oriented then every open sub-
manifold of M is oriented in a natural way. Now let (U, r) be a chart
of an oriented manifoldM. Then onU there is an induced orientation
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and onr(U) ⊂ Rd there is an induced orientation. We say that (U, r) is
positiveif r preserves orientation betweenU andr(U).

If M is oriented, using partition of unity, we can define anotion of12

integration for elementsof E d, denoted by
∫

M
ω whereω ∈ E d(M),

with some good properties some of which we proceed to state. The
integral

∫
M
ω exists ifω has compact support. Further ifM is an open

sub manifold of an oriented manifoldN andM is compact andω is the
restriction of an element ofE d(N) then also

∫
M
ω exists. LetM, N be

oriented manifolds andf be a diffeomorphism ofN with M preserving
orientation, and letω ∈ E d(M). Then if

∫
M
ω exists so does

∫
N

f ∗ω, and

(0.3.9)
∫

N

f ∗ω =
∫

M

ω.

3.10

Lemma. Let f ∈ D(N,M) where N, M are oriented and letω ∈ E d(M)
be an orienting form for M such that

∫
M
ω exists. Suppose that f is

subjective, preserves orientation and that fT
n is an isomorphism∀n ∈ N.

Then: ∫

N

f ∗ω ≥
∫

M

ω.

Proof. Under the assumptions onf T it follows that f is a local diffeo-
morphism. Now let us take an open covering{Vi} of N such thatf re-
stricted toVi is a diffeomorphism. Then{Ui = f (Vi)} form a covering of
M since f is onto. Let us take a partition of unity{ϕi} on N subordinate
to the covering{Vi}. Let us defineϕi on M by

ϕi = ϕi ◦ f −1 on Ui

= 0 otherwise.

Then
∑
i
ϕi ≥ 1 since a point inM has at least one inverse. Now 13

∫

N

f ∗ω =
∑

i

∫

N

ϕi · f ∗ω =
∑

i

∫

M

ϕiω by (0.3.9)
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≥
∫

M

ω since
∑

ϕi ≥ 1.

�

3.11

c. We call a domainD in M a nice domainif ∀m ∈ b(D) = D − D (D
being the closure ofD), there is an open neighbourhoodU of m in M
and aϕ ∈ F(M) such that

dϕm , 0 and U ∩ D = ϕ−1(] −∞, 0[).

3.12

Then it follows thatb(D) is a sub manifold ofM of dimensiond−1. The
notion of orientation can be extended to manifolds with goodboundary.
Then one sees thatb(D) is oriented in a natural way ifD is. Now letω
be ad−1 form onM and let us denote byi the injection ofb(D) into M.

Then Stokes theorem can be stated as follows:

3.13

If D is a nice domain ofM such thatD is compact then the Stokes’
formula holds: ∫

D

dω =
∫

b(D)

i∗ω.

Let us note that ifb(D) is empty, then
∫

D
dω = 0.

d. On a manifoldM apositive odd d-formis a mapω from C d with
values in the set of functions onM such that it is everywhere, locally,
the absolute value of a locald-exterior form. Avolume elementθ on M
is a positive oddd-form such that, for everym, θm is a volume ofTm(V).14

The volume elementτ the absolute value of the canonical orientation on
R

d, is called thecanonical volume elementof Rd.
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3.14

On a manifold there is a notion of integration for positive odd d-forms
and this allows us to define the integral of a positive oddd-form ω,
which we denote by

∫
M
ω.

3.15

If f ∈ D(N,M) is a diffeomorphism,ω a positive oddd-form of M then
we can, in a natural way, associate toω a positive oddd-form f ∗ω on
N. Then if

∫
M
ω exists so does

∫
N

f ∗ω and further we have
∫

M

ω =

∫

N

f ∗ω.

3.16

Remark . if M is a manifold oriented byω then |ω| is a positive odd
d-form and if

∫
M
ω exists then

∫
M
|ω| exists and

∫

M

ω =

∫

M

|ω|

e. LetE be a differentiable fibre bundle overM

p : E→ M,

with E andM oriented, so that the fibres are oriented in a natural way.
Let ω ∈ E d(M), ϕ ∈ E f (E) ( f being the dimension of a fibre) and
im : p−1(m) → E be the injection of the fibrep−1(m) into E. Using a
partition of unity and Fubini’s theorem we have

3.17 Integration along fibres
∫

E

ϕ ∧ (p∗ω) =
∫

m∈M

(
∫

p−1(m)

i∗m(ϕ))ω

provided thatM and the fibres are compact. 15
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4

a) Double tangent bundle.

4.1

We have the following commutative diagram;

T(T(M))
pT

//

pT(M)=p′

��

T(M)

p

��
T(M)

p // M

In the case of (U, r), a chart ofM, the situation in detail is given by the
following commutative diagram:

(0.4.2)

T(T(U))

��

((p,ζ)◦rT )T // T(r(U) × Rd)

��

%%KKKKKKKKKKK

(r(U) × Rd)(Rd × Rd)
((a,b), (c,d))

(a, b, c, d)

zz

(p1,ζ1)
::uuuuuuuuu

p′

��9
99

99
99

99
99

99
99

99

T(r(U)) × T(Rd)
((p, ζ), (p, ζ))

��
(r(U) × Rd) × (Rd × Rd)

pT
wwooooooooooo

T(U)
(p,ζ)◦rT

// r(U) × Rd

where the arrows with two heads denote isomorphisms and we identify16

corresponding spaces.

4.3

Generally we take (a1, . . . , ad), (b1, . . . , bd), (c1, . . . , cd), (d1, . . . , dd) as
coordinate representatives ofa, b, c, d if z=

∪
(a, b, c, d).
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4.4

LetΦ be aC∞ function onT(U). Then let us denoteΦ ◦ (r, ζ ◦ rT)−1 on
T(r(U)) by Φ and the canonical coordinates inT(r(U)) by (x1, . . . , xd,
y1, . . . , yd). Then

z(dΦ) = (a, b, c, d)(dΦ) =(0.4.5)

=

d∑

i=1

∂Φ

∂xi
((a); (b))ci +

d∑

i=1

∂Φ

∂yi
((a); (b))di .

As a particular case whenϕ = dΦ, ϕ ∈ C∞(U) we have

z(dϕ) = (a, b, c, d)(dϕ)

=

d∑

i=1

d∑

j=1

∂2
Φ

∂x j∂xi
(a)bic j +

∑ ∂ϕ

∂xi
(a)di .

Now let
T(T(U)) ∋ z=

∪
(a, b, c, d).

Then we have

(0.4.6) p′(z)=
∪
(a, b) and pT(z)=

∪
(a, c).

4.7

Example.Let φ ∈ F(M) and letφ ◦ r−1
= φ.

Thenφ ∈ F(r(U)) and we have

z(dφ) = (a, b, c, d)(dφ)

= D
o
φa(d) +

2
D

o
φa(b, c) by (0.4.5)(0.4.8)

where D
o
φ is the Jacobian of

o
φ. Note that

2
D

o
φ is symmetric 17

(see Dieudonne [36] : p. 174).
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4.9

b) Vertical vectors. For x in T(M) we define the space ofvertical
vectors Vx of T(M) at x to be (pT

x )−1(0). (From (0.4.6) it follows that
Y=
∪

(a, b, c, d) is vertical if and only ifc = 0). From the injection

im : Tm(M)→ T(M) at m= p(x)

and the fact thatp(Tm(M)) = mwe conclude that

(pT ◦ iTm)(Tx(Tm(M))) = 0

and hence that
iTm(Tp(x)(M)) ⊂ Vx.

But sincepT
x is surjective the kernel ofpT

x has dimensiond and since
the dimension ofiT(Tp(x)(M)), is d we have

(0.4.10) Vx = iTm(Tp(x)(M)).

For y ∈ T(T(M)) setx = pT(M)(y) and fory vertical set

(0.4.11) ξ(y) = (ζ ◦ (iTm)−1)(y).

(0.4.12)

Tx(Tp(x)(M))

iTm

��

ζx // Tp(x)(M)

Vx

77nnnnnnnnnnnnnnnnnnnnnn

4.13
18

If y=
∪

(a, b, c, d) then sincey is vertical c = 0, and it follows that

ξ(y)=
∪

(a, d).

Note thatξ is an isomorphism betweenVx andTm(M).

On T(M)×
M

T(M) = {(x, y) ∈ T(M) × T(M) | p(x) = p(y)}
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there is canonical manifold structure. Now we define a map

ξ−1 : T(M) × T(M)→ T(T(M))

by the equation

(0.4.14) ξ−1(x, y) = ξ−1
x (y) where ξ−1

x (y)

is uniquely defined by the conditions

1) ξ(ξ−1
x (y)) = y

2) ξ−1
x (y) ∈ Vx.

4.15

If x=
∪

(a, b), andy=
∪

(a, c) then it follows that

ξ−1
x (y)=

∪
(a, b, 0, c)

4.16

Lemma. If ω ∈ F(T(M)), restricted to Tm(M) is linear for every m of
M, and z is a vertical vector of T(M), then

z(ω) = ω(ξ(z)).

Proof. The proof follows from the definitions and that, for a linear map
f in a vector space, one hasD f = f . �

4.17

Lemma. If z ∈ T(T(M)) and

z(dϕ) = 0 ∀ϕ ∈ F(M)

then 19

z= 0
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Proof. With the notation of 4.1 a) letz=
∪

(a, b, c, d). Using 4.3 we get,

for every linear function

z(dφ) = Dφa(d) = φa(d) = 0

and henced is zero; and hence for every quadratic function

z(dφ) = (D2φa)(b, c) = 0

and hencec is zero. �

4.18

Let hθ denote the map of T(M) which takes every vector x intoθx. Then,
with the usual notation relative to (U, r) we have

hθ(a, b)=
∪

(a, θb)

and
hT
θ (a, b, c, d)=

∪
(a, θ · b, c, θ · d).

c. The canonical involution onT(T(M)).

4.19

Theorem.There isan involutionz→ z of T(T(M)) with the following
properties:

1) pT (z) = p′(z),

2) p′(z) = pT(z)

3) z(dφ) = z(dφ)∀ ∈ F(M)

and isuniquely determinedby these conditions.

Proof. In the case of (U, r) the map

z=
∪
(a, b, c, d) → (a, c, b, d)=

∪
z
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has the properties 1, 2 and 3 thanks to formula (0.4.2) and thesymmetry20

of D2φ. Conversely, ifz=
∪

(a, b, c, d) andz′=
∪

(a′, b′, c′, d′),

pT(z′) = p′(z)⇔ a = a′ and b = c′

p′(z′) = pT(z)⇔ a = a′ and b′ = c

andz′(dφ) = z(dφ)∀φ ∈ F(M) together witha = a′, b = c′, b′ = c
givesd = d′. Because of this uniqueness the problem becomes local
which has a solution. The definition being intrinsic the involution is
canonical. �

4.20

Remark. z= z⇔ p′(z) = pT(z).

d. Another vector bundle structure on T(T(M)).

4.21

Definition. If θ ∈ R, z, z′ ∈ T(T(M)) and pT(z) = pT(z′)

set z⊕ z′ =
(
z+ z′

)

and θ ⊙ z= θ · z

Relative to (U, r) if z=
∪

(a, b, c, d) andz′=
∪
(a′, b′, c′, d′) the formula are

z⊕ z′ =
∪

(a, b+ b′, c, d + d′)

and
θ ⊙ z=

∪
(a, θb, c, θd).

With this definition if f , g are curves (for a definition of a curve and
related notions see§5) in T(M) such thatp ◦ f = p ◦ g we have

( f + g)′ = f ′ ⊕ g′ and (θ · f )′ = θ ⊙ f ′.

This last definition of⊕ and⊙ holds good for any vector bundleE
p
−→ M.
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4.22

Lemma. For φ ∈ F(M), θ ∈ R and z, z′ ∈ T(T(M)) such that pT(Z) =21

pT(z′), we have
(z⊕ z′)(dφ) = z(dφ) + z′(dφ)

and
(θ ⊙ z)(dφ) = (θ · z)(dφ).

Proof. The first part follows from the definition of⊕ and property 3) of
the involution−, and similarly the latter. �

e.The canonical formsµ and dµ.
We have the following commutative diagram:

(0.4.23)

T(T∗(M))

pT(M)=p′′

��

(p∗)T
// T(M)

p

��
T∗(M)

p∗
// M

wherep∗ is the natural projection fromT∗(M) on M. Forz ∈ T(T∗(M))
we denotep′′(z)(pT (z)) by µ(z). Then

(0.4.24) µ ∈ ξ1(T∗(M)) = C
∗(T∗(M)).

To describe locally the situation above we have a diagram similar to the
one in (0.4.2). With a similar notation, ifz = (a, β, c, δ) then p′′(z) =
(a, β), p∗(z) = (a, c) and hence

(0.4.25) µ(z) = β(c) =
∑

i

βici

To computedµ, letz=
∪

(a, β, c, δ) andz′=
∪

(a, β′, c, δ′), and letZ, Z′ be local22

vector fields onT with constant principal parts such that

i) at (a, β) they are equal tozandz′ respectively and
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ii) [ Z,Z′] = 0 in a neighbourhood of (a, β).

Then we have (0.2.10):

dµ(Z,Z′) = Zµ(Z′) − Z′µ(Z)

around (a, β). Hence

(0.4.26) dµ(z, z′) = δ(c′) − δ′(c).

From this follows the

4.27

Lemma. dµ is a non degenerate element ofE 2(T∗(M)).

5 Curves

5.1

Definition . A curve in M is an open interval I together with an f∈
D(I ,M).

We denote, generally, a curve by (I , f ) and when no confusion is
possible we omitI . Generally, whenever we consider a curve we assume
that 0∈ I . A curve can also be viewed as a point setE obtained as the
image underf of an intervalI . Hence we sometimes say “the curveE is
parametrised byf ”, “the curve f is parametrised byt ∈ I ” and by these
we simply mean that the curve under consideration is (I , f ).

5.2
23

When we take a closed interval [a, b] and say f is a curve from[a, b]
to M we mean that there is an open intervalI ⊃ [a, b] such that f ∈
D(I ,M). We denote byP the element ofC (R) such thatζ ◦ P = 1, so

that

{
P =

d
dt

}
is a basis ofC (R), dual to the basisdt of C ∗(R). Let us

agree to denote the restriction ofP to an interval byP itself.
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5.3

The curvef −1(t) = f (b− (t − a)) is called theinverse of the curve for
the curvef described in the opposite way.

5.4

Definition. If f is a curve in M we define thespeedor thetangent vector
f ′ to f by f′ = f T ◦ P.

(0.5.5)

T(T(M))

pT

��

p′

��
T(I )

( f ′)T

77oooooooooooooooooooooooooooo

f T
// T(M)

p

��
I

P

OO

f ′′

>>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f ′

77nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

f
// M

5.7

Remarks . If N is a manifold andg ∈ D(M,N) and f is a curve inM
theng ◦ f is a curve inN and

(g ◦ f )′ = gT ◦ f ′.

Sometimes this will be used as a geometric device for computation.

5.8
24

To computex(φ) for x ∈ T(M) andφ ∈ F(M) one can start with a curve
f in M such thatf ′(0) = x and observe

x(φ) = f (0)(φ) = ( f T ◦ P)0(φ) = P(φ ◦ f )
∣∣∣
0 =

d
dt

(φ ◦ f )
∣∣∣
0
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b) We call the speed of the tangent vectorf ′ of f acceleration f′′ of
f and thus

f ′′ = ( f ′)′ = ( f ′)T ◦ P = ( f T)T ◦ PT ◦ P.

5.9

Remarks.We havef ′′ = f ′′, for

pT ◦ f ′′ = (p ◦ f T ◦ P)T ◦ P = f T ◦ P = p′ ◦ f ′′

and (4.20) now gives the result.

5.10

We have
d2(φ ◦ f )

dt2
= f ′′(0)(dφ). In fact

f ′′(0)(dφ) = (( f ′)T ◦ P)(0)(dφ) = P(dφ( f ′))
∣∣∣∣
0

=
d
dt

(dφ)( f T ◦ P)
∣∣∣∣
0
=

d
dt

(
d
dt

(φ ◦ f )

) ∣∣∣∣
0

=
d2

dt2
(φ ◦ f )

∣∣∣∣
0

5.11Change of parameter.

Fora, θ ∈ R, we define mapsτa andkθ by setting

τa(t) = a+ t and kθ(t) = θ · t,

for any t in R. It follows, directly, from the definition that

( f ◦ τk)
′
= f ′ ◦ τk, ( f ◦ kθ)

′
= θ( f ′ ◦ kθ)

and 25

( f ◦ kθ)
′′
= (hT

θ ◦ f ′′ ◦ kθ).

If φ is a diffeomorphism of an intervalI ′ with I then f ◦ φ is a curve.
This new curve is called the curve obtained from the curve (I , f ) by
re-parametrisation byφ. This situation is sometimes described as “φ

re-parametrisesf .”
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6 Flows

In this article we fix, once for all, a manifoldL and a vector fieldX ∈
C (L) of L.

a. Integral curves.

6.1

Definition. An integralor integral curveof X is a curve f∈ D(I , L) such
that

f ′ = X ◦ f .

From the fundamental existence theorem in the theory of differential
equations we know that through any point of L there is an integral curve
of X. Set

(0.6.2) ψ = {(t,m) ∈ R × L|∃I ⊃ [0, t] and an f∈ D(I , L)

such that i) f is an integral of X, ii) f(0) = m}. For m ∈ L we define
t+(m) by the equation

(0.6.3) t+(m) = sup{t ∈ R|(t,m) ∈ ψ} ,

and similarly t−(m). We can see that t+ (resp. t−) is lower (resp. upper)
semi continuous on L. Since L is Hausdorff we can see that there exists a
unique integral curve fm of X defined over]t−(m), t+(m)[ with f(0) = m,
and that it is maximal.

6.4
26

b. Flow. For t ∈]t−(m), t+(m)[

6.5

set

γ(t,m) = fm(t) = γt(m).
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Thenγ ∈ D(ψ, L) and in open sets ofL whereγt, γs andγt+s are defined
we have

(0.6.6) γt ◦ γs = γt+s

and, in particular,γt is a local diffeomorphism.

6.7

The family {γt} is also called the local one parameter group of transfor-
mations generated byX. We callγ the flow of X.

6.8

Now let us suppose that a mapf from a manifoldM ontoN is a diffeo-
morphism andX andY are vector fields inM andN respectively such
that

f T ◦ X = Y.

Then ifγM andγN are flows ofX andY respectively we have

(idR, f ) ◦ γM = γN.

c. Lie derivative. Let ω ∈ L r (L), m ∈ L and t ∈ R be suffi-
ciently small. Then

(γt)
∗ωγ(t,m) ∈ L

r(Tm(L))

for everyt and depends differentiably ont. So it makes sense to set

(0.6.9) (θ(X) · ω)(m) =
d
dt

((γt)
∗ωγ(t,m))|t=0.

Note that 27

θ(X) · ω ∈ L
r(L),

and thatθ(X) · ω is calledthe Lie derivativeof ω with respect to X.If
ω ∈ E r(L), it is easy to see thatθXω ∈ E r(L).
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6.10

We can see that

θXω(X1, . . . ,Xr) = X(ω(X1, . . . ,Xr)) −
r∑

i=1

ω(X1, . . . , [X,Xi], . . . ,Xr)

∀X1, . . . ,Xr ∈ C (L).

6.11

Further we recall that

θ(X)ω = 0⇔ γ∗t (ω) = ω∀t.

In this case we say thatω is invariant by Xor under the flow of X.We
also have

(0.6.12) θ(X) = i(X) ◦ d + d ◦ i(X).
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Sprays

Throughout this chapterM stands for a manifold and (U, r) for a typical 28

chart of it.

1 Definition.

27
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Our aim now is to define a “geodesic” so as to generalise a curve
which is intuitively the shortest distance between two points on it, which
are sufficiently close. Such a definition must have the following natural
properties:

1) A geodesic curve is uniquely determined by its initial position and
speed.

2) A change of parameter by a homothesy or a translation leaves
it a geodesic. So the family of geodesics determines a family29

of curves onT(M) one passing through each pointx of T(M).
Associating to each pointx of T(M) the tangent vector atx of the
unique curve of the family passing throughx we get a map (set
theoretic) :G : T(M)→ T(T(M)).

We have by the very definition and from 5.9 together with 4.20

(1) f ′′ = G ◦ f ′

and

(2) p′ ◦G = pT ◦G = idT(M)

for any geodesic curvef . Further we havef ◦ kθ is a geodesic curve,
and hence

(3) ( f ◦ kθ)
′′
= G ◦ ( f ◦ kθ)

′.

But we have forx = f ′(0) and by 5.11:

( f ◦ kθ)
′
= θ f ′(0) = θ · x

and
( f ◦ kθ)

′′(0) = θ · (hT
θ ◦ f ′′(0)) = θ · (hT

θ ◦G(x))

and so

(4) G ◦ hθ = θ(h
T
θ ◦G)

Thus from the concept of a geodesic we are led to aG with the
properties (2) and (4). Keeping this in mind we reverse the process and
first define a spray and then a geodesic as its integral curve.30



2. GEODESICS 29

1.1

Definition. A sprayG on M is an element ofC (T(M)) such that

1) pT ◦G = idT(M) and

2) G ◦ hθ = θ(hT
θ ◦G)∀θ ∈ R

1.2

Note.From 2) it follows that

G(0m) = 0∀m ∈ M

Generally we denote a spray byG.

1.3

If N is an open sub manifold ofM, G induces a spray onN and we
denote it by NG.

2 Geodesics

Now we define a geodesic curve.

2.1

Definition. A geodesicof M relative to a spray G is a curve f in M such
that f′ is an integral of G, i.e. f is such that

f ′′ = G ◦ f ′.

2.2

Remark. If f : [0, 1] → M is a geodesic, then the curveg : [0, 1] → M
defined byg(t) = f (1− t) is a geodesic.

When no confusion is possible, we shall speak simply of a geodesic
and omit the reference to the spray.
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2.3

Proposition . f is a geodesic if and only if there exists an integral g of
G such that

f = p ◦ g.

Proof. If g is an integral ofG theng′ = G ◦ g and then iff = p ◦ g, we31

have

f ′ = pT ◦ g = pT ◦G ◦ g = g since pT ◦G = idT(M) .

Hencef is a geodesic. For the other part, iff is a geodesic we can take
g = f ′ for the integral ofG. �

2.4

Remarks.From (0.6.2) one knows that givenx ∈ T(M) there is, locally,
a geodesicf of M such thatf ′(0) = x, and that it is unique.

2.5

From the fact thatG(0m) = 0 we see that∀m ∈ M f (R) = m is a
geodesic, called thetrivial geodesicat m.

2.6

Proposition. If f ∈ D(I ,M) is a geodesic so are

f ◦ τa ∈ D(τ−1
a (I ),M) and

f ◦ kθ ∈ D(k−1
θ (I ),M)∀a ∈ R,∀θ ∈ R, θ , 0.

This proposition is a direct consequence of the definitions.

2.7

Corollary. For x ∈ T(M), θ ∈ R and t∈ R we have

γ(t, θx) = θ · γ(tθ, x),

i.e. whenever one of these terms is defined so is the other and the equal-
ity holds.
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Proof. Let f be the geodesic withf ′(0) = x and letg = f ◦ kθ. Theng
is the geodesic withg′(0) = θ · x and we have by the definition ofγ 32

f ′(t) = γ(t, x)

and
g′(t) = γ(t, θx)

But then
γ(t, θx) = g′(t) = θ · f ′(θ · t) = θ · γ(θ · t, x).

�

2.8

Corollary. For x ∈ T(M) andθ ∈ R and, 0, we have

t+(θ · x) = θ−1(t+(x))

and t−(θ · x) = θ−1(t−(x))

Proof. If f is the geodesic ofM on ]t−(x), t+(x)[ then

f ◦ kθ on ]θ−1t−(x), θ−1t+(x)[

is a geodesic ofM with speedθ · x. Hence by the definitions oft− and
t+ (see 6.4)

t−(θ · x) ≤ θ−1 · t−(x)

and t+(θ · x) ≥ θ−1 · t+(x).

The other inequalities follow if we interchange the roles off and f ◦
kθ. �

3 Expressions for the spray in local coordinates

Let (U, r) be a chart and letx=
∪

(a, b), G(x)=
∪

(a, b, c, d) (see 4)
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Then from the condition 1) for a spray and from (0.4.6) we have
b = c. Settingd = ψ(a, b) we have

ψ ∈ D((r(U) × Rd),Rd), and

G(θ · x) = (a, θb, θb, ψ(a, θb)),

hT
θ (G(x)) = (a, θb, b, θ · ψ(a, b)),

and33

θhT
θ (G(x)) = (a, θb, θb, θ2 · ψ(a, b)).

Now from the second condition for a spray we get

G(θ · x) = θ(hT
θ (G(x)))

and hence

(1.3.1) ψ(a, θb) = θ2 · ψ(a, b)∀θ ∈ R

Using Euler’s theorem on homogeneous functions we see thatψ is,
for a fixeda, a quadratic form inb so that

(1.3.2) ψ(a, b) = (D2ψa)(b · b)

with D2ψ symmetric. Hence we have the following:

3.3

Proposition . If G is a spray then there exists, locally, a uniqueδ ∈
D(r(U)×Rd×Rd,R) such that, for a∈ r(U), its restriction to{a}×Rd×Rd

is bilinear, symmetric and

ψ(a, b) = δ(a, b, b).

3.4

SettingΓ j
ik(a) = −U j(δ(a, ei , ek)) for a ∈ r(U), we have

Γ
j
ik ∈ F(r(U)).
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Let f ∈ D(I ,M) be a geodesic and leta = r ◦ ( f |U), be its image in
r(U), then we have

f ′(t)=
∪

(a(t),
da(t)

dt
)

and f ′′(t)=
∪
(a(t),

da(t)
dt

,
da(t)

dt
,
d2a(t)

dt2
).

So if we write

a(t) =
∑

xi(t)ei

then we see thatf is a geodesic if and only if

(1.3.5)
d2x j

dt2
+

∑

i,k

Γ
j
ik

dxi

dt
· dxk

dt
= 0∀ j.
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4 The exponential map

Let us considerG and its flow. Setting

(1.4.1) Ω = (t+)−1(]1,+∞[) (see 6a)

we see, sincet+ is lower semi continuous, thatΩ is open inT(M). For
everym ∈ M, 0m the zero vector atm clearly belongs toΩ. Hence a
neighbourhood of 0m is inΩ.

4.2

If N is an open subset ofM then by 1.3 there is a natural sprayNG on N
and we can definet+NG

andt−NG
andΩ relative toNG andN. We denote

this open subset byNΩ. We identifyT(N) with an open sub manifold
of T(M) and then, clearlyNΩ ⊂ Ω ∩ T(N). Now let x be inΩ ∩ T(M).
Then by (0.6.a) it follows thatx belongs toNΩ if the image of ]0, 1[
underp ◦ γ(t,G(x)) is in N.
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4.3

Definition. The map p◦γ1 fromΩ into M is called the exponential map
(for the sprayG) of T(M) and is denotedby exp.

4.4

Note .exp ∈ D(Ω,M) becausep, γ are differentiable. We denote the
restriction ofexp toTm(M) ∩ Ω byexpm.

4.5

Lemma. For x inΩ the map

S : t → exp(tx)

defined for sufficiently small t is a geodesic of M and S′(0) = x. In
particular exp(x) is the point S(1) of this geodesic.

Proof. We have

S(t) = p ◦ γ1(tx) = p ◦ γ(1, tx)

= p(t, γ(t, x)) by (2.7)

= p(γ(t, x))

HenceS is a geodesic by (2.3). The fact thatS′(0) = x follows from the35

definition ofγ. �

4.6

We have

T0m(Tm(M))
expT

m //

ζ

��

Tm(M)

Tm(M)

idTm(M)

77oooooooooooooooooooo
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Proof. For x in Tm(M) andθ ∈ R setU with:

U (θ) = θ · x

so that
ζ0m(U ′(0)) = x.

Now we have

(expT ◦ζ−1
0m

)(x) = expT(U ′(0)) = (exp◦U )′(0) = S′(0).

and by the preceding lemma we have

S′(0) = x.

�

4.7

Hence it follows by the inverse function theorem that exp is adiffeo-
morphism between suitable neighbourhoods of 0m ∈ Tm(M) andm in 36

M.

4.8

Corollary. The map(p, exp)of Ω into M × M has maximal rank at0m

for every m in M.

Proof. Since the dimensions ofΩ andM × M are the same it is enough
to show that the map (p, exp)T is injective. Now letz ∈ T0m(T(M)) be
such that

(p, exp.)T(z) = 0.

Then since

(1) pT(z) = 0 we havez ∈ V0m.

By the previous proposition we have

(2) expT(z) = ζ(z) and henceζ(z) = 0.

The corollary follows from (1) and (2). �





Chapter 2

Linear connections

1 Linear connection
37

1.1

Definition . From 4.9 we see that, for x in T(M), if Hx is transverse to
Vx (i.e. a supplement to Vx in Tx(T(M)) then the restriction

pT |Hx : Hx→ Tp(x)(M)

is an isomorphism. So a natural question is whether it is possible to
choose an interesting map x→ Hx where x runs through M. For an
open subset A ofRd we see that the choice

(2.1.2) Hx = (ζT
x )−1(0)

gives us such a distribution of Hx. We look upon such a choice as a map

(2.1.3) C : T(M)×
M

T(M) ∋ (x, y) → C(x, y) ∈ T(T(M)).

where x determines the fibre containing Hx and y, by means of the in-
verse of the isomorphism(pT |Hx) : Hx → Tp(y)(M), the elementC(x, y)
in Hx such that pT(C(x, y)) = y.

Relative to (U, r), with the notation of 4 we have, by 1.1,

(2.1.4) C((a, b), (a, b′))=
∪
(a, b, b′, .).

Keeping this in mind we define aconnection.

37
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1.5

Definition. A connection on T(M) (or a linear connection on M) is a38

C0) C ∈ D(T(M)×
M

T(M),T(T(M)))

such that

C1) (p, pT ) ◦ C = id |T(M)×
M

T(M)

C2) (θ · x+ η · x′, y) = θ ⊙ C(x, y) ⊕ η ⊙ C(x′, y)

C3) (x, θ · y+ η · y′) = θ · C(x, y) + η · C(x, y′).

(Note that this definition would make sense for any vector bundle.)
Now let us considerthe image set Hx of {x} × Tp(x)(M) underC :

Hx = C(x,Tp(x)(M)).
By C3) it follows thatHx is a vector subspace ofTx(T(M)); and from

C1) that
pT(C(x, y)) = y

and hence that

i) C restricted to{x} × Tp(x)(M) is a monomorphism, and

ii) the only element common toVx andHx is zero.

Since the dimension ofTx(T(M)) is 2d and that ofVx is d it follows,
now, that

(2.1.6) Tx(T(M)) = Hx + Vx (direct sum)).

Now we give the following definitions.

1.7

Definition . For x ∈ T(M), Hx is called the horizontal subspaceor the
horizontal component ofTx(T(M)) relative to the connectionC. Gener-
ally we omit the reference toC.
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1.8

Definition. For x ∈ T(M) the map39

1.9

Tx(T(M)) ∋ z→ z− C(x, pT(z)) ∈ Tx(T(M)) is the projection ontoVx

parallel toHx.

1.10

Definition. For z in T(T(M)) the element

1.11

U (z) = ξ(z− C(p′(z), pT (z))) is called thevertical component of z.

1.12

Note.From the very definition we have

p ◦U = p ◦ p′.

1.13

Remark. By C1) we have the following equations:
For (x, y) ∈ T(M)×

M
T(M),

pT (C(x, y)) = y = p′(C(y, x))

and pT (C(y, x)) = x = p′(C(x, y)).

They show that the conditionC(x, y) = C(y, x) is compatible withC1),
C2), C3).

In view of the above, the following definition makes sense:
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1.14

Definition. A connectionC is calledsymmetricif

1.15

C4) C(x, y) = C(y, x)∀(x, y) ∈ T(M)×
M

T(M)

Examples.

1.16

Thecanonical connectionon an open subsetA ⊂ Rd is defined by

(2.1.17) Hx = (ζT
x )−1(0)

i.e.:

C((a, b), (a, c)) = (a, b, c, 0) ∀a ∈ A,∀b, c ∈ Rd.

From 4 one seesC1), C2), C3) andC4) are fulfilled so that this canonical40

connection is moreover symmetric.

1.18

If f : M → N is a diffeomorphism andC a connection onN, then
(x, y)→ (( f −1)T)TC( f T(x), f T (y)) defines a connection onM.

Exercise.Use 1.16, 1.18 and partitions of unity to build up a connection
on any manifold (a proof of that would follow also from 1.1.

1.19

Remark. If C is a connection onT(M) thenG(x) = C(x, x) for everyx
in T(M) is a spray, for

i) p′(G(x)) = p′(C(x, x)) = x = pT(C(x, x)) = pT (G(x)) and
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ii) (G ◦ hθ)(x) = G(θ · x) = C(θx, θx) = by 4.21

= θ ⊙ C(x, θ, x) = hT
θ (θ · C(x, x)) =

= θ · hT
θ (C(x, x)) = (θ · (hT

θ ◦G))(x).

This spray is calledthe spray associated to thegiven connection.

1.20

Claim. For an open subset A⊂ Rd the geodesics relative to the spray
associated to the canonical connection are open segments ofstraight
lines.

With the above notation, the definition shows thatf is a geodesic if
and only if

f ′′ −G ◦ f ′ = 0,

i.e. if and only if f ′′ − C(p′( f ′′), pT ( f ′′)) = 0. By the definition of 41

canonical connectionC and being horizontal we have

(2.1.21) ζT(C(p′( f ′′), pT ( f ′′)) = 0.

Hence, by (2.1.21), (4.20) and (5.9)f is a geodesic if and only if

(2.1.22) ζT( f ′′) = 0.

But

ζT( f ′′) = ζT ◦ f ′T ◦ P = (ζ ◦ f ′)T ◦ P =
d
dt

(ζ ◦ f ′)

Hence f is a geodesic if and only if
d(ζ ◦ f )

dt
= 0, i.e. if and only if

ζ ◦ f ′ = x, a constant vector.
But then

f (t) = tx+ y (for suitable values oft).

2 Connection in terms of the local coordinates

With the notation of 4 letx=
∪

(a, b) and y=
∪

(a, c). Then (x, y) ∈
T(M)×

M
T(M). Now given a connectionC on T(M) we have, by (1.5).
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2.1

C(x, y) = (a, b, c, δ(a, b, c)) whereδ depends onC, and thenC0) becomes

(2.2.2) δ ∈ D(r(U) × Rd × Rd,Rd).

NowC2) andC3) together mean that the restriction ofδ to {m} ×Rd×Rd

for m in r(U) is bilinear. FurtherC is symmetric if and only ifδ restricted
to {a}×Rd×Rd is (see (4.19)). Now we prove a theorem which completes
the remark (1.19).

2.3

Theorem [2], th. 2, p. 173.Given a spray G on M there exists a unique42

symmetric connectionC on T(M) such that

C(x, x) = G(x).

Proof. In view of the first paragraph of this article, locally, the problem
can be stated as follows:

Given aψ ∈ D(r(U) × Rd,Rd) such that for a fixedm in r(U), ψ is
a quadratic form in the other variable to construct aδ ∈ D(r(U) × Rd ×
R

d,Rd) which, for fixedm in r(U), is bilinear and symmetric in other
variables and to prove its uniqueness. This has been done in (3.3). The
uniqueness ofδ shows that the problem is local. �

2.4

Remark. Let us write downC explicitly in terms ofG. By (4.17) it is
enough to expressC in terms ofG ondφ for φ ∈ F(M). We have

G(x+ y)(dφ) = C(x+ y, x+ y)(dφ) = C(x+ y, x)(dφ)+

+ C(x+ y, y)(dφ) =

= (C(x, y) ⊕ C(x, x))(dφ) + (C(x, y) ⊕C(y, y))(dφ) =

= C(x, y)(dφ) +C(y, x)(dφ) +C(x, x)(dφ) + C(y, y)(dφ) =

by (4.19), (3)

= C(x, y)(dφ) +C(x, y)(dφ) +G(x)(dφ) +G(y)(dφ) =
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sinceC is symmetric

= 2C(x, y)(dφ) +G(x)(dφ) +G(y)(dφ) by (4.22).

Hence 43

(2.2.5) C(x, y)(dφ) =
1
2

[
G(x+ y) −G(x) −G(y)

]
(dφ)

which shows, once again, the uniqueness (4.17).

3 Covariant derivation

For the rest of this chapter we suppose given a manifoldM with a
connectionC.

3.1

Definition. Given a manifold N, an X∈ C (N) and g∈ D(N,T(M)), the
map N→ T(M) defined by

(2.3.2) DXg = U ◦ gT ◦ X

is calledthe covariant derivative ofg with respect toX. If x ∈ T(N) we
write Dxg = U(gT(x)).
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T(T(M))

p′

��

U

��
T(N)

gT

;;xxxxxxxxxxxxxxxxxxx

T(M)

p

��
N

X

OO

D×g

;;wwwwwwwwwwwwwwwwwwww

g

;;wwwwwwwwwwwwwwwwwwww

p◦g
// M

3.3

Remarks.SinceX, gT andU are differentiable we have

DXg ∈ D(N,T(M)).

3.4

We have44
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p ◦ DXg = p ◦U ◦ gT ◦ X =

= p ◦ p′ ◦ gT ◦ X by (1.12)=

= p ◦ g

and hence ifg is a lift of f thenDXg is again a lift of f .

3.5

Let f ∈ D(I ,M). Then f T can be considered as a map fromI to T(M).
Now we have:f is a geodesic for the sprayG associated to the connec-
tion C if and only if

DP f ′ = 0.

For we have

DP f ′ = U ◦ f ′T ◦ TP = U ◦ f ′′ = ξ( f ′′ − C( f ′, f ′)) =

= ξ( f ′′ −G ◦ f ′), and ξ is an isomorphism

between the vertical vectors at a point and the tangent spacecontaining
that point.

Writing f = p ◦ g we have

DXg = ξ(gT ◦ X −C(p′ ◦ gT ◦ X, pT ◦ gT ◦ X))(2.3.6)

= ξ(gT ◦ X − C(g, f T ◦ X)).

Now considering anω in E1(M) as a linear function onT(M) and ob-
serving thatgT ◦ X − C(g, f T ◦ X) is vertical we obtain, by (4.16) 45

ω(DXg) = (gT ◦ X − C(g, f T ◦ X))(ω) =

= X(ω ◦ g) − C(g, f T ◦ X)(ω).(2.3.7)

In particular, forω = dφ, whereφ ∈ F(M),

(2.3.8) dφ(DXg) = X(dφ ◦ g) − (g, f T ◦ X)(dφ).

Sometimes we writeDXg(φ) for dφ(DXg) andX(g(φ)) for X(dφ◦g).
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3.9

Example .For an open subsetA ⊂ Rd with respect to the canonical
connection we have

ν = ζT .

For ν(z) = ν(a, b, c, d)(2.3.10)

= ξ(z− C(p′(z), pT (z)))

= ξ((a, b, c, d) − (a, b, c, 0)) = ξ(a, b, o, d) = d.

andζT(a, b, c, d) = d. Hence

DXg = ν ◦ gT ◦ X = ζT ◦ gTX = (ζ ◦ g)T ◦ X

whereg ∈ D(A,T(A)).

3.11

In casef = p ◦ g is a constant map, i.e. in casef (y) = m for everyy
in N, g can be considered as a map fromN to Tm(M), and in this case
ν = ζ. Hence we have

DXg = ν ◦ gT X = ζ ◦ gT ◦ X = dg◦ X

and soDXg is nothing but the restriction of the differential map ofg46

to the subset{X(y)} of T(N) In particular ifg is a curve inTm(M), and
X = P onR we have

DPg =
dg
dt

and henceDPg is the ordinary derivative of a vector valued function.

3.12

If f ∈ D(N,M) andX, Y ∈ C (N) then f T ◦ Y ∈ D(N,T(M)) and by
(2.3.8) we have

(2.3.13) Dx( f T◦Y)(φ) = X(Y(φ◦ f ))−C( f T◦Y, f T◦X)(dφ)∀φ ∈ F(M).
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3.14

For f ∈ D(N,M), X ∈ C (N), Y ∈ C (M) andn ∈ N we have

DX(n)(Y ◦ f ) = v(YT( f T(X(n))) = D f T (X(n))Y.

In particular if f = idM andX, Y ∈ C (M), thenDXY ∈ C (M) and
so D can be considered as a mappingC (M) × C (M) → C (M). For
f ∈ D(N,M), ψ ∈ F(N), X, Y ∈ C (N) andg, g′ ∈ D(N,T(M)) such that
p ◦ g = p ◦ g′ we have

C.D. 1. DXg is F(N) − linear inX,

C.D. 2. DX(g+ g′) = DXg+ DXg′

C.D. 3. DX(ψg) = X(ψ)g+ ψ(DXg)(2.3.15)

C.D. 4. DX( f T ◦ Y) − DY( f T ◦ X) = f T ◦ [X,Y]

if C is symmetric.

Proof.

C.D. 1. follows directly from the definition. To prove the others, and for 47

simplicity let us use the convention following (2.3.8).

C.D. 2. Forφ ∈ F(M) we have, settingf = p ◦ g,

DX(g+ g′)(φ) = X(g+ g′)φ − C(g+ g′, f T ◦ X)(dφ) (by (2.3.8))

= X(g(φ) + g′(φ)) − (C(g, f T ◦ X) ⊕C(g′, f T ◦ X))(dφ)

= X(g(φ)) + X(g′(φ)) − C(g, f T ◦ X))(dφ) − C(g′, f T ◦ X)(dφ)

by 4.22.

C.D. 3. DX(ψg)(φ) = X(ψg)(φ) −C(ψ · g, f T ◦ x)(dφ) =

= X(ψ · g(φ)) − (ψ ⊙ C(g, f T ◦ X))(dφ) =

= X(ψ)g(φ) + ψX(g(φ))

−ψ ·C(g, f T ◦ X)(dφ), by (4.22)

C.D. 4. (DX( f T ◦ Y) − DY( f T ◦ X))(φ) =

= X(Y(φ ◦ f )) − ( f T ◦ Y, f T ◦ X)(dφ)
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−Y(X(φ ◦ f )) − ( f T ◦ X, f T ◦ Y)(dφ) =

= [X,Y](φ ◦ f ) becauseC is symmetric, and

property 3) of the involution−, in (4.19)

= ( f T ◦ [X,Y])(φ) = ( f T ◦ [X,Y])(φ).

�

3.16

Lemma. For f ∈ D(N,T(M)), X, Y∈ C (N) the map

(X,Y, f )→ ([DX,DY] − D[X,Y])( f )

if F (N) - trilinear.

Proof. We have forψ ∈ F(N):

(([DψX,DY] − D[ψX,Y])( f )

= ψDXDY f − DY(ψDX f ) − D[ψX,Y] f and by C.D. 1.,

= ψDXDY f − DY(ψDx f ) − ψD[X,Y] f + Y(ψ)DX f =

= ψDXDY f − ψDYDX f − Y(ψ) · DX f

− D[X,Y] f + Y(ψ) · DX f by C.D. 3.,

= ψ([DX,DY] − D[X,Y]) f .

Therefore the mapping isF(N)-linear in X and since the mapping is48

antisymmetric inX, Y it is F(N) - linear inY. �

Applying C.D. 3. twice we obtain, by straightforward calculation

([DX,DY] − D[X,Y])(ψ · f )

= ψ([DX,DY] − D[X,Y] f ).

4 The derivation law

4.1

In caseX, Y ∈ C (M) andφ ∈ F(M), with N = M, C.D.’s can be written,
respectively, as
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D.L.1. DXY is F(M)-linear inX,

D.L.2. DX(Y + Y′) = DXY+ DXY′

D.L.3. DX(φY) = X(φ)Y + φ · DXY

D.L.4. DXY − DYX = [X,Y] if C is symmetric.

4.2

Thus from a connection we obtain a mapping fromC (M) × C (M) into 49

C (M) satisfying D.L. 1, 2, 3. Any such map is called aDerivation Law
in M. It is said to besymmetric(or without torsion) if D.L.4 holds for it.

Conversely, given a derivation law inM there is a connection which
induces the given derivation law (see Koszul [18]: Th. 4. p. 94).

4.3

In local coordinates relative to (U, r), let {Xi} denote the dual basis of
dxi
= d(Ui ◦ r) and now let

4.4

DXi Xk =
∑
j
λ

j
ikX j. Then we have by 3.12

(DXi Xk)(x
j ) = Xi(Xk(x

j )) − C(Xk,Xi)(dxj ).

But Xk(x j) = δ j
k a constant and henceXi(Xk(x j))) = 0.

Hence

(DXi Xk)(x
j) = −C(Xk,Xi)(dxj )

= −U j(δ(a, ek, ei)) = Γ
j
ki (see (3.4)).

4.5

Thusλ j
ik = Γ

j
ki.

Givenω ∈ L r(M) andX ∈ C (M) we define a map

Dω : C
r+1(M)→ F(M) by setting
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4.6

(Dω)(X,X1, . . . . . . ,Xr) = X(ω(X1, . . . . . . ,Xr))−

−
r∑

i=1

ω(X1, . . . ,Xi−1,DXXi ,Xi+1, . . . ,Xr)

∀X1, . . . ,Xr ∈ C (M).
Then we have50

i) Dω is (r + 1)-additive

ii) (Dω)(φX,X1, . . . ,Xr ) =

φ ·X(ω(X1, . . . ,Xr ))−
r∑

i=1

ω(X1, . . . ,Xi−1, φ ·DXXi ,Xi+1, . . . ,Xr) =

by 4.1 D.L.1.

= φ(Dω)(X,X1, . . . ,Xr)

and

iii) D(ω)(X, φX1, . . . ,Xr ) = X(ω(φX1, . . . ,Xr))

− (DX(φX1),X2, . . . ,Xr) −
r∑

i=2

ω(φX1, . . . ,DXXi , . . . ,Xr) =

= φX(ω(X1, . . . ,Xr)) + (X(φ)ω(X1,X2, . . . ,Xr )

− ω(X(φ),X1,X2, . . . ,Xr) − ω(φDXX1,X2, . . . ,Xr)

−
r∑

i=2

φω(X1, . . . ,Xi−1,DXXi ,Xi+1, . . . ,Xr) =

= φ(Dω)(X,X1, . . . ,X2)

and similarly fori = 2, . . . , r.



4. THE DERIVATION LAW 51

4.7

HenceD ∈ L r+1(M). However, in general, ifω ∈ Er(M), Dω may
not belong toEr+1(M)). This formDω is called thecovariant derivative
of ω with the respect toD or C (the derivation law or the connection).
More generally:

Proposition 2.4.7 bis.Let X ∈ C (N), g1, . . . , gr ∈ D(N,T(M)), f ∈
D(N,M) maps such that p◦ gi = f∀i = 1, . . . , r; and ω ∈ E r (M).

Then(Dω)( f T ◦ X, g1, . . . , gr ) = X(ω(g1, . . . , gr )) −
r∑

i=1

ω(g1, . . . , gi−1,

DXgi , gi+1, . . . , gr ).

Proof. This follows from the local expression offT ◦ X given by (5.14) 51

and linearity. �

Now we set

(2.4.8) DXω = i(X) ◦ Dω

4.9

Proposition. For ω ∈ E 1(M) and(x, y) ∈ T(M)=
M

T(M) we have

(Dω)(x, y) = C(y, x)(ω).

Proof. Let X, Y ∈ C (M) be such that

X(p(x)) = x and Y(p(y)) = y.

Then by (2.3.7) we have

ω(DXY) = X(ω ◦ Y) − C(Y,X)(ω)

and so

C(Y,X)(ω) = X(ω(Y)) − ω(DXY) =

= (Dω)(X,Y) by the definition ofDω.

�
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4.10

Lemma. With the above notation

(dω)(x, y) = (Dω)(x, y) − (Dω)(y, x)

provided thatC is symmetric.

Proof. With the same notation, we have

(Dω)(X,Y) − (Dω)(Y,X)

= X(ω(Y)) − ω(DXY) − Y(ω(X)) + ω(DY(X))

= X(ω(Y)) − Y(ω(X)) − ω([X,Y])

sinceC is symmetric= (dω)(X,Y) (by the definition ofdω: see (0.2.10)).52

�

4.11

Definition. For φ ∈ F(M) Ddφ ∈ E 2(M) is calledthe Hessian ofφ with
respect to the connection C.

4.12

Corollary. If C is symmetric then

Ddφ is symmetric ∀φ ∈ F(M).

Proof. By the above proposition we have, with the same notation,

(Ddφ)(x, y) = C(y, x)(dφ)

= C(y, x)(dφ) = C(x, y)(dφ) (see 4.19 & 1.15)=

= (Ddφ)(y, x).

�
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4.13

Proposition. If f is a geodesic of M with respect to the spray associated
to C, then forφ ∈ F(M) we have

d2(φ ◦ f )

dt2
= (Ddφ)( f ′, f ′).

Proof. The fact thatf is a geodesic implies that

f ′′ = C( f ′, f ′) and hence

f ′′(dφ) = C( f ′, f ′)(dφ).

But f ′′(dφ) =
d2(φ ◦ f )

dt2
(see 5.10)

and by the proposition above

C( f ′, f ′)(dφ) = (Ddφ)( f ′, f ′).

�

5 Curvature

5.1

Let X, Y ∈ C (M) and let us write

R(X,Y) = [DX,DY] − D[X,Y] (defect of brackets).

Then by (3.16) it follows thatR ∈ L 3
1 (M). This mapR is called the 53

curvature tensor ofM for D.
Rhas the following properties:

5.2

C.T. 1. R(X,Y) = −R(Y,X),

C.T. 2. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 if C is symmetric.



54 Linear connections

The equalityC.T. 1. follows from the definition ofR, so let us consider
C.T. 2.We have in succession, applying the definition ofR andD.L. 4.,
4.1, six times.

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y

= DXDYZ − DYDXZ − D[X,Y]Z

+ DYDZX − DZDYX − D[Y,Z]X

+ DZDXY − DXDZY− D[Z,X]Y =

= DX(DYZ − DZY) + DY(DZX − DXZ) + DZ(DYX − DXY)

− D[Y,Z]X − D[Z,X]Y− D[X,Y]Z

= DX[Y,Z] − D[Y,Z]X + DY[Z,X] − D[Z,X]Y + DZ[Y,X] − D[Y,X]Z =

= [X, [Y,Z]] + [Y, [Z,X]] + [Z, [XY]]

which is zero by Jacobi identity inC (M).

Examples.

5.3

1. If the dimension ofM is 1 thenR= 0 by C.T. 1.

5.4

2. For an open subsetA of Rd we have

R= 0

the connection being the canonical connection. To see this let x, y, z be54

vectors andX, Y, Z be vector fields such thatX(m) = x, Y(m) = y, and
ζ ◦ Z = {ζ(Z)}. Then we have

DXZ = ν ◦ ZT ◦ X = ζT ◦ ZT ◦ X = (ζ ◦ Z)T ◦ X.

But ζ ◦ Z is constant and hence

(ζ ◦ Z)T
= 0.

This argument actually shows that

DXDYZ = 0,DYDXZ = 0,D[X,Y]Z = 0.
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5.5

Note .We can define the covariant derivativeDΩ for anyΩ ∈ L r
s (M)

and then forRwe can prove the Bianchi identity.

(2.5.6) DXR(Y,Z) + DYR(Z,X) + DZR(X,Y) = 0 (see [18]).

5.7

Lemma. For ω ∈ E 1(M), X, Y, Z∈ C (M):

([DX,DY] − D[X,Y])ω = −R(X,Y) · ω

Proof. For anyZ ∈ C (M) the left hand side, by definition 4.6, is equal
to

(DXDYω)(Z) − (DYDXω)(Z) − (D[X,Y]ω)(Z)

= X(DYω)(Z)) − (DYω)(DXZ) − Y((DXω))(Z))

+ (DXω)(DYZ) − [X,Y](ω(Z)) + ω(D[X,Y]Z)

= X(Y(ω(Z))) − X(ω(DYZ)) − Y(ω(DXZ))

+ ω(DYDXZ) − Y(X(ω(Z))) + Y(ω(DXZ))

+ X(ω(DYZ)) − ω(DXDYZ) − [X,Y](ω(Z)) + ω(D[X,Y]Z)

= ω(R(Y,X)Z) = (R(Y,X) · ω)(Z).

� 55

5.8

Definition. Given an X∈ C (M) by the horizontal liftof X, denoted by
XH, we mean the mapping T(M) to T(M) defined by

XH(x) = C(x,X(p(x))), x ∈ T(M).

Since C is differentiable it follows that

XH ∈ C (T(M)).
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5.9

Lemma. For X ∈ C (M) andω ∈ E 1(M)

XH(ω) = DXω

Proof. By (4.9) and the definition ofXH, we have

XH(ω)(x) = (x,X(p(x)))ω = (Dω)(X(p(x)), x) =

= (DXω)(x)∀x ∈ T(M).

�

5.10

Proposition. For X, Y ∈ C (M) andω ∈ E 1(M)

[XH,YH] − [X,Y]H is vertical

and ω(ξ([XH ,YH] − [X,Y]H)) = −R(X,Y) · ω.

Proof. SinceXH andYH are projectable bypT , i.e. images underpT

are again vector fields, we have

pT ◦ [XH,YH] = [pT XH, pTYH] = [X,Y]

= pT ◦ [X,Y]H.

�

Further we have (4.16):56

ω(ξ([XH,YH] − [X,Y]H)) = ([XH ,YH] − [X,Y]H) · ω
= XH(YH(ω)) − YH(XH(ω)) − [X,Y]H(ω) =

= XH(DYω) − YH(DXω) − D[X,Y]ω = by (5.9)

= DXDYω − DYDXω − D[X,Y]ω = by (5.9)

= −R(X,Y)ω by (5.7).
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5.11

Corollary. ∀x ∈ T(M)

ξ([XH ,YH] − [X,Y]H)x

= −R(X(p(x)),Y(p(x)))x

For the above proposition holds∀ω ∈ E 1(M) and the elements of both
sides of the equation are in T(M).

5.12 C.D. 5.

If N is a manifold,X, Y ∈ C (N) andg ∈ D(N,T(M)), then

([DX,DY] − D[X,Y])(g) = R( f T ◦ X, f T ◦ Y)(g)

where f = p ◦ g.

Proof. We first prove two lemmas. �

5.13

Lemma. If g ∈ D(N,T(M)) and f = p◦g then there exist, locally on N,
functionsψi and, locally on M, vector fields Ui such that, locally

g =
∑

i

ψi(Ui ◦ f ).

57

Proof. Relative to a chart (U, r) of M let Ui be a basis forC (U). Then
for n ∈ f −1(U) there existsψi(n) such that

g(n) =
∑

i

ψi(n)Ui( f (n)).

Theψi are the required functions. �
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5.14

Lemma. For f ∈ D(N,M), X, Y∈ C (N) locally let

f T ◦ X =
∑

i

ψi · (Ui ◦ f ) and fT ◦ Y =
∑

i

θi · (Ui ◦ f ).

Then, locally

f T ◦ [X,Y] =
∑

i

(X(θi) − Y(ψi))(Ui ◦ f )

+

∑

i, j

θ jψi([Ui ,U j] ◦ f ).

Proof. ∀φ ∈ F(M):

( f T ◦ [X,Y])(φ) = [X,Y](φ ◦ f )

= X(Y(φ ◦ f )) − Y(X(φ ◦ f ) =

= X(( f T ◦ Y)φ) − Y(( f T ◦ X)φ) =

= X(
∑

j

θ j(U j ◦ f )φ) − Y(
∑

i

ψi(Ui ◦ f )φ) =

= X(
∑

j

θ j(U j(φ) ◦ f )) − Y(
∑

i

ψi(Ui(φ) ◦ f )) =

=

∑

j

X(θ j)(U j ◦ f )(φ) +
∑

j

θ j ◦ X(U j(φ) ◦ f )

−
∑

i

Y(ψi)(Ui ◦ f )(φ) −
∑

i

ψiX(Ui(φ) ◦ f )

But58
∑

j

X(θ j)(U j ◦ f )(φ) −
∑

j

Y(ψ j)(U j ◦ f )(φ)

=

∑

j

(X(θ j) − Y(ψ j))(U j ◦ f )(φ)

and
∑

j

θ jX(U j(φ) ◦ f ) −
∑

i

ψiY(Ui(φ) ◦ f ) =
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=

∑

j

θ j(( f T ◦ X)U j(φ)) −
∑

i

ψi(( f T ◦ Y)Ui(φ))

=

∑

j

θ j(
∑

i

ψi(Ui ◦ f )U j(φ)) −
∑

i

ψi(
∑

j

θ j(U j ◦ f )Ui(φ))

=

∑

i, j

ψi · θ j · (Ui(U j(φ))) ◦ f −
∑

i, j

ψiθ j(U j(Ui(φ)) ◦ f )

=

∑

i, j

ψi · θ j · ([Ui ,U j] ◦ f )(φ).

Hence the result.
Now by (3.16) and (5.13) it is enough to prove the equation forg =

Z ◦ f whereZ ∈ C (M). Using the notations of (5.15) we see that

5.15

(DXDY)(Z ◦ f ) − (DYDX)(Z ◦ f ) − D[X,Y](Z ◦ f )

= DX(D f T◦YZ) − DY(D f T◦XZ) − D f T◦[X,Y]Z by (5.14)

= (DXD∑
j
θ j (U j◦ f )Z − DYD∑

i
ψi (Ui◦ f )Z.

− (D(X(θi)−Y(ψi ))(Ui◦ f )+
∑

i j θ jψi ([Ui ,U j ]◦ f )Z)

= DX(
∑

j

θ jDU j◦ f Z) − DY(
∑

i

ψiDUi◦ f Z)

− (X(θi) − Y(ψi))DUi◦ f Z −
∑

i, j

ψi ◦ θ j ◦ D[Ui ,U j ]◦ f Z

by 4.1 (D.L.1.)

= A− B−C − D say.

The, byD.L.2andD.L.3 59

A− B =
∑

j

X(θ j)(DU j◦ f Z +
∑

j

θ jDXDU j◦ f Z

−
∑

i

Y(ψi)DUi◦ f Z −
∑

i

ψiDYDUi◦ f Z.
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But the first and the third terms together equalC. Hence, by (3.14):

A− B−C − D =
∑

j

θ jD f T◦X(DU j Z) −
∑

i

ψiD f T◦Y(DUi Z)

−
∑

i, j

ψi · θ j(D[Ui ,U j ]Z ◦ f ).

=

∑

j

θ jD∑
ψi (Ui◦ f )(DU j Z) −

∑

i

ψiD∑
j
θ j (U j◦ f )(DU j Z)

−
∑

i, j

ψi · θ j(D[Ui ,U j ]Z ◦ f ) by (D.L.1)

=

∑

j,i

θ j · ψi · (DUi DU j Z ◦ f )

−
∑

i, j

θ j · ψi · (DU j DUi Z ◦ f )

−
∑

i, j

ψi · θ jD[Ui ,U j ]Z ◦ f

=

∑

i, j

ψi · θ j ·
{
(DUi DU j Z − DU j DUi Z − D[Ui ,U j ]Z)

}
◦ f

=

∑

i, j

ψi · θ j ·
{
R(Ui ,U j)Z

}
◦ f

=

∑

i, j

ψi · θ j ·R(Ui ◦ f ,U j ◦ f )(Z ◦ f )

= R(
∑

i

ψi(Ui ◦ f ),
∑

j

θ(U j ◦ f )(Z ◦ f ))

= R( f T ◦ X, f T ◦ Y)(Z ◦ f ) . . .

�60

6 Convexity

Throughout this article let us denote byM a manifold with a sprayG
and byΩ the open set ofT(M) on which the function exp is defined.
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6.1

Definition . We say that M isconvexif there exists s∈ D(M × M,Ω)
such that

(p, exp)◦ s= idM×M .

61

6.2

SinceM × M as well asΩ is of dimension 2d the above equation gives
thatsT onT(m,n)(M ×M) is one-one and hence ontoTs(m,n)(Ω). Hences
is a local diffeomrophism.

Supposing thatM is convex, letm, n ∈ M. Then, for sufficiently
small positive numberǫ, consider the mapf :] − ǫ, 1+ ǫ[→ M defined
by the equation

f (t) = exp.(t · s(m, n)).

From (4.5) we conclude thatf is a geodesic and, from the fact that
(p, exp.) ◦ s= idM×M that,

i) f (0) = exp.(0m), sincep(s(m, n)) = mand

ii) f (1) = exp((s(m, n)) = n.

Hencef is a geodesic connectingmandn. In the case of an open subset
A of Rd, with the canonical connection, we know that the geodesics are
segments of straight lines. Hence it follows that our convexity implies
the usual one. Conversely, if we set

(2.6.3) s(m, n) = ζ−1
m (n−m)

then, the convexity ofA in the usual sense implies thats(m, n) ∈ Ω
and hence it follows that convexity ofA in the usual sense implies the
convexity in our sense. This justifies our terminology.

6.4

Proposition. If M is convex, then

s◦ (p, exp)= idΩ .
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6.5

Remark. From this it follows, ifM is convex, that62

(p, exp) :Ω→ M × M

is a diffeomorphism and, in particular, that

expm : Ω ∩ Tm(M)→ M

is a diffeomorphism for everym ∈ M, and in particular givenm, n ∈ M
there is one and only one geodesic fromm to n.

In view of 6.2, the proposition follows from the following lemma.

Lemma 6.5(a). Let E and F be connected differentiable manifolds and
f : E → F and g: F → E be differentiable maps such that g is a local
diffeomorphism and f◦ g = IdF. Then g◦ f = IdE. (In other words, f
is bijective.)

Proof. Let A = {x|x ∈ E, g ◦ f (x) = x}. It is sufficient to prove that
A = E. Since the mapsf andg are continuous,A is closed. Evidently
A ⊂ g(F). On the other hand, ifx = g(y), y ∈ F,

g ◦ f (x) = g ◦ ( f ◦ g)(y) = g(y) = x.

HenceA = g(F); in particularA is non-empty. Finally,g being a local
diffeomorphism,A = g(F) is open inE. HenceA is a non-empty open
and closed subset of the connected spaceE. It follows thatA = E. �

As an immediate consequence of (6.4), we have

6.6

Corollary. Let f ∈ D(] − ǫ, 1+ ǫ[,M) be a geodesic in M. Then, if M63

is convex,
s( f (0), f (1)) = f ′(0).

Proof. It is sufficient to check that expf ′(0) = f (1); (4.5) asserts pre-
cisely this. �
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6.7

Definition. We say that an open subset U of M isconvexif U, as a sub
manifold of M, with the induced spray, is convex.

6.8

Theorem.For every point m of a manifold M there is an open neigh-
bourhood of m which is convex.

Proof. First let us select a functionφ ∈ F(M) such that

φ(m) = 0, dφm = 0 and Ddφm is positive definite,

i.e. (Ddφ)(x, x) > 0 for every non-zerox in Tm(M). For example let us
take any euclidean structure|| || on Tm(M), and, locally, defineφ to be||
||2 ◦ exp−1. Then clearly

φ(m) = 0 and dφm = 0.

To prove that (Ddφ)(x, x) > 0 for non-zerox ∈ Tm(M), let r > 0 be such
that

{x ∈ Tm(M)| ||x|| < r} ⊂ Ω.

Set:
u : t → tx(on ]− r, r[) and fx = exp◦u.

Then f ′x(0) = x andφ ◦ fx = || ||2 ◦ u and hence, sincef is a geodesic, by
(4.13)

(Ddφ)(x, x) =
d2(φ ◦ fx)

dt2

∣∣∣∣
t=0
= 2+ ||x|| > 0.

Thanks to the continuity ofDdφ, it is possible to findr′ such that 0< 64

r′ < r andDdφ is positive definite onW = exp({x ∈ Tm(M)
∣∣∣||x|| < r′}).

SinceM is Hausdorff andW compact inexp({x ∈ Tm(M)
∣∣∣ ||x|| < r}) then

W is compact in M.Now let WG be the spray onW induced byG and
W be the open set inT(W) on which the corresponding exp. is defined.
Now let us consider the map

(p, exp.) : W
Ω→W×W.
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From (4.8) and inverse function theorem it follows that there is an 0<
r′′ < r′ and an open neighbourhoodV of m in M such that for

V = exp.({x
∣∣∣ ||(x)|| < r′′}) the map

(p, exp.) : (p, exp.)−1(V × V)→ V × V is

a diffeomorphism. Now let us set

s1 = (p, exp.)−1 : V × V → (p, exp.)−1(V × V).

Sinceφ is continuous and is positive inV except atm and V − V is
compact, being a closed subset of the compact setW, it follows that

ǫ = inf
x∈V−V

φ(x) > 0.

Then by the selection ofV we haveǫ < r′′. Now let us setU = V ∩
φ−1(] − ∞, ǫ1[) where 0< ǫ1 < ǫ. Note also that:U = W ∩ φ−1(] − ∞,
ǫ1[) = exp({x ∈ Tm(M)

∣∣∣ ||x|| < ǫ1}). Thenm ∈ U, U is open and we have

(p, exp)◦ s1 = idU×U

since this equation holds inV ×V. Now if we show thats1(U ×U) ⊂ Ω65

then it follows, by definition, thatU is convex. Let (x, y) ∈ U ×U. Then
6.2 there is a geodesicf in V such that:

f1(t0) = x and f1(t1) = y.

But since f1 is a geodesic we have (by our choice ofW and by (4.13)):

d2(φ ◦ f1)

dt2
= (Ddφ)( f ′1, f ′1) > 0

and henceφ ◦ f1 is a convex function. Further sincex, y ∈ U we have

φ(x) < ǫ1, φ(y) < ǫ1.

Hence by the convexity ofφ ◦ f1 it follows that

f1
∣∣∣[t0, t1] ⊂W∩ φ−1(] −∞, ǫ1[) = U.

Now the result follows from (4.2). �
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7 Parallel transport

For the rest of this chapter let us suppose that a manifoldM with a
symmetric connectionC is given.

7.1

Example.Let us considerRd with its canonical connection. Letf be a
curve inRd. If g is a lift of f into T(Rd) such that

DPg = 0.

then, since (see (3.9))ν = ζT . 66

0 = DPg = ν ◦ gT ◦ P = ζT ◦ gT ◦ P = (ζ ◦ g)T ◦ P,

and henceζ ◦ g is a constant, i.e.g is the field of vectors obtained by
translating a constant vector alongf . Keeping this in mind, we define a
parallel lift.

7.2

Definition . A lift g of a curve f ∈ D(I ,M) into T(M) is said to bea
parallel lift of f if

DPg = 0.

7.3

Example.A curve f is a geodesic, if and only iff ′ is a parallel lift of f
(see 3.5).

Now we shall prove the existence and uniqueness of parallel lifts.

7.4

Proposition. Let f ∈ D(I ,M). Then corresponding to every t0 ∈ I and
x0 ∈ T f (t0)(M) there exists a unique parallel lift g of f such that

g(t0) = x0.
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Proof. Let t ∈ I and (U, r) be a chart ofM such thatf (t) ∈ U. Then,
by (5.13) relative to (U, r) the local existence of such ag is equivalent to
the existence of functionsψi on f −1(U) satisfying the equations

ψi(t)(Ui ◦ f )(t0) = x0,

DP(
∑

i

ψi(Ui ◦ f )) = 0,

wherex ∈ T f (t)(M) and{Ui} is a basis forC (U). By (4.1)C.D.2. and67

C.D.3. this is the same as
∑

ψi(t)(Ui ◦ f )(t0) = x0

and
∑

i

dψi

dt
(Ui ◦ f ) +

∑

i

ψiDP(Ui ◦ f ) = 0.

Setting
DP(Ui ◦ f ) =

∑

j

a ji (U j ◦ f )∀i

and
x0 =

∑

i

biUi( f (t0))

we see that the above equations are equivalent toψi(t0) = bi

dψi

dt
+

∑

j

ai jψ j = 0.

But we know that this system being linear admits a unique solution in
the whole domain of definition of theψ′i s. Hence locally the proposition
is true. But since the definition of parallel lift is intrinsic and because
we do have local solutions, we are done. �

7.5

Definition. A path C(t) in M consists of

i) a family fi ∈ D(I i ,M), i = 1, . . . , k and
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ii) a family [ai , bi ] ⊂ I i of intervals such that

fi(bi ) = fi+1(ai+1) for i = 1, . . . , k− 1.

f1(a1) is called theorigin of the path C and fk(bk) theend.

Let C = { fi ∈ D(I i ,M), [ai , bi ] ⊂ I i } be a path inM. Then for
every x ∈ T f1(a)(M) we can consider the end point of the parallel lift
g1 of f1 with g1(a1) = x; then the end point of the parallel liftg2 of f2 68

with g2(a2) = g1(b1), and so on; and thus arrive at the pointgk(bk) ∈
T fk(bk)(M).

7.6

The vectorgk(bk) is called the parallel transport of x along Cand is
denoted by

τ(C)(x).

7.7

Proposition . With the above notationτ(C) is an isomorphism between
T f1(a1)(M) and Tfk(bk)(M).

Proof. By (4.1) C.D.2.-3, it follows that the mappingτ(C) is linear.
Consider the path described in the opposite direction, i.e., the inverse
pathC−1 of C which consists of

{ f −1
i ∈ D(I i ,M)| f −1

k−i(t) = fi(bi − (t − ai))}.

This induces a linear map ofT fk(bk)(M) into T f1(a1)(M). Further the par-
allel lift of C described in the opposite direction is the parallel lift of
C−1 and hence

τ(C−1) ◦ τ(C) = idT f1(a1)(M).

andτ(C) ◦ τ(C−1) = idT fk(bk)(M) by the same token. �

Given a pathC we can cut off the path after a pointC(t) on C and
then the new path gives, by the above proposition, an isomorphism of
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T f1(a1)(M) onto TC(t)(M). This isomorphism will be denoted byτ(C, t),
or τt. Now given a curvef and a liftg of f into T(M) we can express69

DPg in terms ofτ(C, t) and ordinary derivatives of functions. To see this
let f ∈ D(I ,M), t0 ∈ I and let{x1, . . . , xd} be a fixed basis ofT f (t0)(M).
Then, let us denote byg1, . . . , gd the parallel lifts of f into T(M) with
initial points x1, . . . , xd respectively. Then, by the previous proposition
{g1(t), . . . , gd(t)} is a basis ofTC(t)(M) and hence any liftg of f can be
written as:

(2.7.8) g(t) =
∑

ψi(t)gi(t)

whereψi ∈ F(I ). By C.D.2.-3 we have

DPg =
∑

i

dψi

dt
· gi +

∑

i

ψi(DPgi)

=

∑

i

dψi

dt
· gi

sincegi is a parallel lift and henceDPgi = 0. Now,let us definêg by the
equation

(2.7.9) ĝ(t) = τ(C, t)−1(g(t))

Then, we have the following proposition

7.10

Proposition. DPg = τ(C, t)

(
d̂g(t)

dt

)

Proof. τ(C(t)) being linear we have

ĝ(t) =
∑

i

ψi(t)̂gi(t) =
∑

i

ψi(t)gi (0) =
∑

i

ψi(t)xi

and hence
d̂g(t)

dt
=

∑

i

dψi

dt
· xi .

But DPg =
∑ dψi

dt
· gi(t). �
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7.11

Remark . If C is a loop, i.e. a path whose origin and end coincide, in 70

general,

τ(C) , idT f1(a1)(M).

For letX, Y ∈ C (M) be such that

[X,Y] = 0

and letC be a curvilinear parallelogram inM whose sides are integral
curves ofX andY. Then the horizontal lift ofC is made up of the integral
curves ofXH andYH. But by (5.11)

ξ([XH ,YH]x) = −R(X,Y)x

and−R(X,Y)x is, in general, different from zero. Then, our contention
follows from the geometric interpretation of the bracket oftwo vector
fields.

8 Jacobi fields

8.1

Definition . A one-parameter familyf of curves in a manifoldM is an
f ∈ D(I × J,M) where I, J are open intervals.

8.2

We denote the first coordinate ofI × J ∈ R2 by t and the second by

α. We denote the canonical basis of (I × J) by P, Q (i.e. P =
∂

∂t
and

Q =
∂

∂α
). The one parameter familyf gives rise to a family{ fα}α∈J of

curves defined by the equation
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8.3

fα(t) = f (t, α), ∀(t, α) ∈ I × J, and to another family{Ct}t∈I of curves 71

Ct, calledtransversal curves, which are defined by the equation

(2.8.4) Ct(α) = f (t, α), (t, α) ∈ I × J.

Now setting

8.5

P = f T ◦ P andQ = f T ◦ Q, we observe thatP appears as the family

of tangent vectors to the curvesf ′αs andQ appears as the vectors of the

variation of thef ′αs i.e. as the family of tangent vectors to the transversal
curvesC′t s. Let us note that

(2.8.6) [P,Q] = 0.

8.7

Proposition. With the above notation if C is symmetric and∀α ∈ J, fα
is a geodesic, then

DPDPQ = R(P,Q)P.

Proof. By 5.12C.D.5.

DQDPP = DPDQP+ R(Q,P)P+ D[Q,P]P.

But since fα are geodesic by 3.5 we haveDPP = 0 and by (2.8.6) we72

haveD[P,Q]P = 0.
Hence we have

(2.8.8) DPDQP+ R(Q,P)P = 0.

But sinceC is symmetric we have by (C.D.4) (see (2.3.15))

DPQ− DQP = [P,Q] = 0
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and hence
DPDPQ = DPDQP

Now by (2.8.8) we have

DPDPQ = R(P,Q)P.

�

Now we give the following definition

8.9

Definition. A lift g of a geodesic f is calleda Jacobi fieldf if

DPDPg = R( f ′, g) f ′.

8.10

Example.Let f ∈ D(I ,M) be a geodesic and letψ ∈ F(I ).
Thenψ f ′ is, by definition, a Jacobi field alongf if and only if

DPDP(ψ f ′) = R( f ′, ψ f ′) f ′.

But byC.D.2.-3 (2.3.15)

DPDP(ψ f ′) =
d2ψ

dt2
· f ′

since f is a geodesic and henceDP f ′ = 0 by 3.5. Further

R( f ′, ψ f ′) f ′ = ψR( f ′, f ′) f ′ since R∈ L
1
3

= 0 by C.T.1.5.2.

Henceψ f ′ is a Jacobi field alongf if and only if 73

d2ψ

dt2
= 0

i.e. if and only ifψ is an affine function.
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8.11

Let A be an open subset ofRd with its canonical connection. Letf be a
geodesic. It is a segment of a straight line by (1.20). Further R = 0 for
A by (2.5.4). Hence a liftg of f is a Jacobi field alongf if and only if

DPDPg = 0.

But (by (3.9)):

DPDPg = DP(ζ ◦ g)′ = (ζ ◦ g)′′ =
d2(ζ ◦ g)

dt2
.

Henceg is a Jacobi field alongf if and only if

(2.8.12) ζ ◦ g = tx+ y, x, y in R.

Let us note that

(2.8.13) ĝ(t) = tx+ y.

8.14

Lemma. Given a geodesic f of M and x, y in Tf (0)(M) there exists at
most one Jacobi field g along f such that

g(0) = x and (DPg)(0) = y.

Proof. With the notation of (7), dropingt in ζt for simplicity, we have

DPg = τ(
d̂g
dt

),

DPDPg = τ(
d
dt

)(̂τ(
d̂g
dt

)) = τ(
d
dt

(
d̂g
dt

))

= τ(
d2̂g

dt2
).

Sog is a Jacobi field alongf if and only if74

(2.8.15)
d2̂g

dt2
= τ−1(R( f ′, g) f ′).
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Now for a givent let us define a transformation

R̂(t) = T f (0)(M)→ T f (0)(M)

by setting

(2.8.16) R̂(t)(y) = τ−1(R( f ′, τ(y)) f ′),∀y ∈ T f (0)(M).

Theng is a Jacobi field alongf if and only if

(2.8.17)
d2̂g

dt2
= R̂(t)̂g.

Thus, ifg is a Jacobi field alongf thenĝ satisfies a second order homo-
geneous linear differential equation. Further, since

τ0 = idT f (0)(M) and hencêg(0) = g(0)

and (DPg)(0) = τ0(
d̂g
dt

(0)) =
d̂g
dt

(0)

the requirementsg(0) = x and (DPg)(0) = y become the initial condi-
tions

ĝ(0) = x and
d̂g
dt

(0) = y

for the above differential equation. But under these circumstances it is
known that the above differential equation can have at most one solution;
the existence of the field would also follow from general theorems on
differential equations, but in our case this will follow from (8.26). �

8.18

Remark. If g is a Jacobi field alongf such thatg(0) = 0 then 75

ĝ(t) = t
d̂g
dt

(0)+
t3

6
R( f ′(0),

d̂g
dt

(0)) f ′(0)+ 0(t3),

where
0(t3)

t3
→ 0 with t.
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Proof. By (2.8.17)

d2̂g

dt2
(0) = R̂(0)̂g(0) = 0, since ĝ(0) = g(0) = 0;

and

d3̂g

dt3
(0) =

dR̂
dt

(0)̂g(0)+ R̂(0) · d̂g
dt

(0)

= R( f ′(0),
d̂g
dt

(0)) f (0).

Now we have only to apply Taylor’s formula with a remainder toĝ. �

Now let us see if, given a geodesicf0 ∈ D(I ,M) there exists a Jacobi
field passing through a given pointx, above the geodesic with a speed
whose vertical componenty is given. For simplicity, let us suppose that
all intervals occurring in this article contain zero.

Now let S ∈ D(J,M) be any curve inM with S′(0) = x, and letŨ
(resp.̃y) be the parallel lift ofS such that

Ũ (0) = f ′0(0) (resp.̃y(0) = y).

Now set

(2.8.19) S̃(α) = Ũ (α) + αỹ(α)∀α ∈ J

8.20

Remark. We have by (7.10)76

DQS̃ = τα(
d( f ′(0)+ αỹ)

dα
) = τα(y)

and in particular
(DQS̃)(0) = y.

Now, sincef0 is a geodesict f ′0(0) ∈ Ω for everyt in I . Let ]a, b[= I and
let

0 < ǫ < min{|a|, b},
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and let
]a′, b′[=]a+ ǫ, b− ǫ[= Iǫ .

Then the compact set [a′, b′]S̃(0) = {tS̃(0)|t ∈ [a′, b′]} is contained inΩ
andΩ is an open set. Hence there is an open neighbourhoodJǫ of α = 0
such that

(2.8.21) tS̃(α) ∈ Ω,∀t ∈ Iǫ and α ∈ Jǫ .

Now set

(2.8.22) f (t, α) = exp(t · S̃(α)) for (t, α) ∈ Iǫ × Jǫ .

Then f is a one parameter family of geodesics and

f (t, 0) is f0|Iǫ itself.

Now we claim that

(2.8.23) g(t) = Q(t, 0)∀t ∈ Iǫ

is a Jacobi field alongf0|Iǫ passing throughxwith a speed whose vertical
component isy, i.e. thatg(0) = x and (DPg)(0) = y. By (8.7) and the 77

definition of a Jacobi field it follows thatg is a Jacobi field alongf0. To
establish our claim we need only show that

g(0) = x and (DPg)(0) = y.

We have

g(0) = Q(0, 0) =
∂C0

∂α
(0),

but C0(α) = exp(0· S̃(α)) = S(α) and hence

(2.8.24) g(0) = (S′(α))α=0 = S′(0) = x.

Further we have, by the definition ofg,

(Dpg)(0) = (DPQ)(0, 0).



76 Linear connections

Since the connection is symmetric, using (2.3.15)C.D.4and the fact that
[P,Q] = 0 we have

(2.8.25) (DPQ)(0, 0) = DQP(0, 0).

But we know that for everyα

fα : t → exp(tS̃(α))

is a geodesic inM whose tangent vector at 0 is̃S(α) = P(0, α).
Hence

(DQP)(0, 0) = (DQS̃)(0) = y by the remark.

Hence we have proved the following proposition.

8.26

Proposition . Given a manifold M with a symmetric connection, a
geodesic f0 in M, a point m on f0 and x and y in Tm(M) there exists
a unique Jacobi field g along f0 such that g(0) = x and(DPg)(0) = y.78

Furthermore, if we cut off the geodesic at both ends, then the Jacobi
field can be realised as the vectors of the variations of a one parameter
family f with fα for α = 0 coinciding with the corresponding restriction
of f0.

Now let us follow the above notation and examine two special cases.

8.27

1. Let the Jacobi fieldg be such thatg(0) = x and (DPg)(0) = 0. Then
y ≡ 0 is a parallel lift ofS with initial speed zero and so the vectors of
variations of the one parameter family

exp(t · Ũ (α))

realiseg. Further the initial tangent vectors of the{expt · Ũ (α) : t ∈ I }
are got simply by parallel transport off ′0(0) alongS.
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8.28

2. Let the Jacobi fieldg be such thatg(0) = 0. Then the trivial path
{ f (0)} can be taken forS. Then a one parameter family can be given by
exp(t·( f ′0(0)+αy)). Hence all the curvesfα start from f0(0). Furthermore
we have the following result.

8.29

Corollary. Let m∈ M, 0 , U ∈ Tm(M) ∩ Ω, and g be the Jacobi field
along the geodesic

f : t → exp(t ·U )

with g(0) = 0 and(DPg)(0) = y. ThenexpT
m(ξ−1

u y) = g(1).

Proof. Let us follow the notation of the previous proposition and take
the one parameter family given by

exp(t · S̃(α)) where S̃(α) = f ′(0)+ α · y.

Let us consider the transversal curve 79

C1 = exp(f ′(0)+ α · y).

We have

C1(α) = exp.S̃(α),

and hence

g(1) = Q(1, 0) = C′1(0) = (exp◦S̃)′(0) = expT(S̃′(0))

But

S̃′(0) = ξ−1
u y.

�
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8.30

Definition. Given anon trivialgeodesic f∈ D(I ,M) and t1, t2 in I such
that t1 , t2, the points f(t1) and f(t2) are said to beconjugate points on
f (or simply conjugate points when there is no possible confusion over
f ) if there exists a Jacobi field g along f such that

g(t1) = 0, g(t2) = 0 and g, 0.

8.31

Remark . Let us note that the fact thatf (t1) and f (t2) are conjugate
points on a geodesicf does not implythat there is a one parameter fam-
ily

f (t, α)

of geodesics such that

f (t1, α) = f0(t1) and f (t2, α) = f0(t2)∀α.

All we can say, thanks to 8.28, is that there exists one satisfying the first
condition, namely

f (t1, α) = f0(t1)∀α.

8.32

Corollary . Given a non trivial geodesic f , and two points f(0) and80

f (t) on f , then they are non-conjugate on f if and only ifexpT
f (0) is of

maximal rank at t· f ′(0) ∈ T f (0)(M).

Proof. Let g be any Jacobi field alongf . Then if we replacef by f 0
=

f ◦kt−1, we getf 0′(0) = t−1 f ′(0) andg0
= g◦kt−1 is a Jacobi field along

f 0, andg0(1) = g(t). It follows directly from definitions thatf (0) and
f (t) are conjugate points onf if and only if f 0(0) and f 0(1) are onf 0.
So let us taket to be 1. (See (6.23)). �

Let us suppose thatf (0) and f (1) are conjugate. Then there is a
Jacobi fieldg along f such that

g(0) = 0, g(1) = 0 and g , 0.
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Let the vertical component of the speed ofg at zero bey; i.e. let
(DPg)(0) = y. Theny , 0 since otherwiseg ≡ 0 by (8.14). Then
by the previous corollary (8.29) we have:

expT
f (0)(ξ

−1
f ′(0)(y)) = g(1) = 0.

Hence expTf (0) would not be of maximal rank atf (0).

Now suppose that expT is not of maximal rank atf ′(0). Then there
exists az in Vf ′(0) such thatz , 0 and expT z = 0, and a vectory such
that

ξ−1
p′(z)y = z.

Also, by the corollary, for the Jacobi fieldg along f with

g(0) = 0 and (DPg)(0) = y

we have
g(1) = expT z= 0

and hencef (0) and f (1) are conjugate.





Chapter 3

Riemannian manifolds

1.1

Definition . Let M be a manifold. An element g∈ L 2(M) is said to 81

define aRiemannian structure(or simply r.s.) on M, if for every m in M,
gm ∈ L 2(Tm(M)) defines a euclidean structure on Tm(M) (see (3.3)).
A manifold M with an r.s. is called aRiemannian manifold(or simply
r.m.). By (M, g) we denote the r.m. M with the r.s.g.

1.2

Example .1. As a first example of an r.m. we endowRd with the r.s.,
denoted byǫ; defined by the equation

ǫ(X,Y) = (ζ ◦ X) · (ζ ◦ Y),∀X,Y ∈ C (Rd)

where denotes the usual scalar product onRd.

1.3

Let (M, g) be any r.m., and letU be an open subset ofM. Then the
restriction ofg to U defines an r.s. onU, denoted sometimes byg|U.
Whenever we consider an open subset of an r.m. as an r.m. it is the
structure above we have in mind.

81
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1.4

Remarks.Given an r.s.g on M, we have, for everym of M, a positive
definite symmetric bilinear formgm on Tm(M) which depends differen-
tiably onm, i.e. the map

g : m→ gm

belongs toD(M, L2(T(M)). The converse of this statement follows from
(0.2.3).

The above examples make it possible to define an r.s. on every man-
ifold M. To see this, let (Ui , r i) be a family of charts ofM such that82

theUi coverM and let{ϕi} be a partition of unity (see (1)) subordinate
to the covering{Ui}. By (1.3) on eachUi we have an r.s. namelyr∗i (ǫi)
whereǫi = ǫ|r i (Ui) is the restriction ofǫ to r i(Ui). Now let us extend
the formϕir∗i (ǫi ) to the whole ofM by defining it to be zero outsideUi .
Then

ϕi · r∗i (ǫi ) ∈ D(M, L2(T(M)),

and set

h =
∑

i

ϕir
∗
i (ǫi).

Then we have for everyX, Y in C (M), andm in M,

h(X,Y) =
∑

i

ϕi · r∗i (ǫi)(X,Y) =

=

∑

i

ϕir
∗
i (ǫi)(Y,X) sinceǫ is symmetric

= h(Y,X),

and

h(X,X)(m) =
∑

i

ϕi(m)r∗i (ǫi)(X,X) =

=

∑

i

ϕi(m)ǫ(rT
i (X), rT

i (X))(m).
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Since
∑
ϕi(m) = 1 there is ani0 such thatϕi0(m) , 0 and sinceϕi ≥ 0

andr i are diffeomorphisms we have∑

i

ϕi(m) · ǫ(rT
i X(m), rT

i X(m)) ≥ ϕi0(m) · ǫ(rT
i0X(m), rT

i0X(m)) > 0,

if X(m) , 0. Henceh is symmetric and positive definite and clearly83

bilinear. Hence every manifold admits an r.s.
Given two vectorsx andy such thatp(x) = p(y) theng(x, y) is de-

fined and we callg(x, y) thescalar productof x andy. Associated to this
scalar product there is anorm, || ||, onT(M); namely

(3.1.5) ||x|| = (g(x, x))
1
2 .

1.6

We denoteg(x, x) = ||x||2 by E(x) and note thatE : T(M) → R is
differentiable and|| || is continuous (E stands forenergy).

1.7

On the tangent spaceTm(M) of M at m the topology induced byT(M)
and that induced by the norm|| || are the same.

1.8

Lemma.∀x ∈ T(M) and z∈ Vx we have

z(E) = 2g(x, ξ(z)).

Proof. Let
i : Tp(x)(M)→ T(M)

be the canonical injection. Then

z(E) = (iT )−1(z)(E ◦ i)

whereE ◦ i is the quadratic form onTp(x)(M) associated togp(x). Then
(see [36] and (0.4.11)):

z(E) = 2g(x, ζ((iT )−1)(z)) = 2g(x, ξ(z)).

�
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1.9

Definition . We say that an r.m.(M · g) is isometricto an r.m. (N, h) if84

there exists an f∈ D(M,N) such that

i) f is a diffeomorphism,

ii) f ∗h = g.

Then f is called anisometrybetween(M, g) and (N, h). We say that
(M, g) is locally isometricto (N, h) if, ∀m ∈ M, there exists an open
neighbourhood U of m in M and a map f∈ D(U,N) such that:

i) f (U) is open in N,

ii) f is an isometry between(U, g|U) and( f (U), h| f (U)).

1.10 Orthogonal vector fields.

Let us consider (Rd, ǫ). Then the canonical basis
∂

∂u1
, . . . ,

∂

∂ud
has the

following two properties:

i) orthogonality:ǫ

(
∂

∂ui
,
∂

∂u j

)
= 0 if i , j,

ii) commutativity:

[
∂

∂ui
,
∂

∂u j

]
= 0.

1.11

In the case of a manifold (M, g), locally, we can select an orthonormal
basis forC (M). To see this let (U, r) be a chart ofM and letX1, . . . ,Xd

be a basis ofC (U), say for example the one got by pulling back the
canonical basis onr(U). The defineY′i and Yi inductively by setting

Y′1 = Y1 =
X1

||X1||
, division by||X1|| is possible sinceX1 is a basis element85

and hence never zero,

Y′i = Xi −
i−1∑

k=1

g(Xi ,Yk)Yk
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Yi =
Y′i
||Y′i ||

, (Y′i is never zero since{Xi} is a basis).

ThenY1, . . . ,Yd is an orthonormal basis ofC (U).
By pulling back the canonical basis onC (r(U)) we get a commuta-

tive basis ofC (U). But, in general, there is not any local orthonormal
basis ofC (M) which is also commutative. For, relative to (U, r) a chart
of M, let Y1, . . . ,Yd be an orthonormal basis ofC (U) such that

[Yi ,Yj] = 0.

Then by Frobenius’s theorem there exists a local system of coordinates
y1, . . . , yd such that

Yi =
∂

∂yi
i = 1, . . . , d.

Then the map
f : m→ (y1(m), . . . , yd(m))

gives a local isometry betweenU andRd. For clearly f is a diffeomor-
phism, and

( f ∗ǫ)(Yi ,Yj) = ǫ( f T (Yi), f T(Yj))

= ǫ

(
∂

∂yi
,
∂

∂y j

)
= δi j = g(Yi ,Yj),

and henceg = f ∗ǫ. But in general r.m.’s are not locally isometric toRd 86

(see (5.2) and (5.4)).

2 Examples

2.1

Suppose that (M, g) is an r.m. andN any manifold such that there exists
a mapf ∈ D(N,M):

f : N→ M

such thatf T
n is injective for everyn ∈ N. Then f ∗g ∈ L 2(N) and (f ∗g)n

is symmetric onTn(N). Moreover forx ∈ Tn(N) if ( f ∗g)(x, x) = 0
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then 0= ( f ∗g)(x, x) = g( f T
n (x), f T

n (x)) and sinceg is positive definite
we have f T

n (x) = 0. But f T
n is injective and hencex = 0. Hencef ∗g

is positive definite. Thereforef ∗g defines an r.s. onN. We apply this
remark to the following cases.

A) Let N be an sub-manifold of (M, g). Then the injection

i : N → M

has the properties stated above forf and hence we have an r.s.,
called theinduced r.s.,on N. We denote it by (g|N).

The study, initiated by Gauss, of surfacesS in R3, i.e. of two
dimensional sub-manifoldsS with the induced structure was the
starting point for Riemann’s original investigations on this sub-
ject. On the other hand, the theorem of Nash ([34]) states that if
(M, g) is a connected r.m. then there exists an integerd′ and a
diffeomorphismf betweenM and a sub-manifoldN of Rd′ such
that f is an isometry between (M, g) and (N, ǫ|N).

B) Let us consider the sphereSd:87

S
d
= {x ∈ Rd+1|x · x = 1} ⊂ (Rd+1, ǫ).

Thenǫ|Sd is called the canonical r.s. onSd. Let us note that any
element of the orthogonal group ofRd+1 induces an isometry on
(Sd, ǫ|Sd).

C) Suppose that (N, h) is an r.m.,M is any manifold andf ∈ D(M,N)
is acovering mapi.e. a map such that to each pointn of N there is
a neighbourhoodU such thatf restricted to each connected com-
ponent of f −1(U) is a homeomorphism between that component
and U. Then f ∗h defines an r.s. onM and this situation is de-
scribed by saying thatf is aRiemannian covering. Note that, in
this case, (M, f ∗g) and (N, h) are locally isometric.

2.2

) Now let us suppose that (M, g) is an r.m. and thatG is a discrete group
of isometries of (M, g) without fixed points. If the quotientM/G is a
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manifold, then the canonical mapp:

p : M → M/G

is a covering map, and there is a unique r.s. onM/G, denoted byg/G,
for which p : M → M/G is a Riemannian covering.

To see this, letn ∈ M/G and letm ∈ p−1(n). Then sincep is a
covering map it is a local diffeomorphism, and we naturally define

hn = (p−1)∗gm

andhn defines a euclidean structure onTm(M). SinceG is a group of 88

isometries it follows thathn is independent of them chosen. Thus we
have a map

h : n→ hn

of N into L2(T(M/G)). Furthermore sincep is a local diffeomorphism,
and since the differentiability is a local property it follows thath is dif-
ferentiable. Hence there is an r.s. with the above properties.

D) Let us note two particular cases.

1. For (M, g) take (Sd, ǫ|Sd) and forG take the group generated
by the antipodal map ofSd, i.e. the one induced onSd by
the map− idRd+1 of Rd+1. ThenSd/G is the real projective
space (Pd(R)), can).

2. For (M, g) take (Rd, ǫ) and forG take a discrete subgroup of
the group of all translations ofRd such that the rank ofG is
d. Then thetorusRd/G considered as an r.m. with the r.s.
R

d/G is called aflat torusand denoted by (Rd/G, ǫ/G).

3 Symmetric pairs

3.1

Let G be a Lie group and letλ(s) andρ(s) denote the left and the right
multiplications bys ∈ G. Further let Gbe the Lie algebra ofG and
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exp : G→ G the associated exponential map. LetX ∈ G; then the
vector field defined by the one parameter group

λ(exp(tX)), t ∈ R

is the right invariant vector field whose value ate (the neutral element
of G) is X. To see this we have only to compute the speed of the curve89

t → (exp(tX))g, at t = 0.
But

(exp(tX))g = ρ(g)(exp(tX)),

so that
(ρ(g) ◦ (exp(tX)))′(0) = (ρ(g))T (exp(tX))′(0)

and by the definition of the exp map

(exp(tX))′(0) = X.

Hence the result.

3.2

Definition. A symmetric pair (G,H, σ) consists of

1) a connected Lie group G

2) a compact subgroup H of G and

3) an involutive automorphismσ of G such that
∑

0

⊂ H ⊂
∑

where
∑

is the subgroup of elements in G fixed byσ, and
∑

0 is
the connected component of the identity, e of

∑
.

When no confusion is possible, we shall speak of the symmetric pair
(G,H) without any reference toσ.
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Let M be the homogeneous space of left cosets ofH in G, p be the
projection map from G to G/H. Set m0 = p(e), and letτ denote the left
action of G on M, i.e.

τ(a)(xH) = ((ax).H), a ∈ G.

Let us denote the Lie algebra ofH by H and identify it with the corre-
sponding subalgebra of G. Let us denote by Mthe set of elementsX in
G such that

(3.3.3) σT(X) = −X.

Then we have 90

(3.3.4) G= H +M

where the right hand side denotes the direct sum ofvector spaces. We
have further

(3.3.5) pT |M : M → Tm0(M) is an isomorphism.

3.6

Let X ∈ M. Then for the two homomorphisms

t → σ ◦ exp(tX)

t → exp(t(−X))

fromR into G the differential maps are the same and hence

σ ◦ exp(tX) = exp(t(−X)).

For every elementa of G let us denote by Ad(a) = (Int(a))T
e the

automorphism of the Lie algebra Gcorresponding to the automorphism

Int(a) : u→ aua−1

of G. Since Int(h) andσ commute∀h ∈ H we have

(3.3.7) (AdH)(M) ⊂ M.
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3.8

Definition. The map̂σ from M to M is defined by the equation

σ̂ ◦ p = p ◦ σ i.e. σ̂(aH) = σ(a)H.

Now one sees that

pT ◦ Ad h = (τ(h))T ◦ pT ,∀h ∈ H,(3.3.9)

σ̂T
m0
= − idTm0(M),(3.3.10)

σ̂ ◦ τ(a) = τ(σ(a)) ◦ σ̂,∀a ∈ G.(3.3.11)

91

3.12

Proposition . With the above notation, there exists an r.s.γ on M such
that the transformationŝσ and τ(a) for every a in G are isometries of
(M, γ); moreoverγ is unique (upto a positive constant) ifAd H acts
irreducibly on M.

Proof. a) Existence.SinceH is compact there is a euclidean struc-
ture γ̂e on M which is invariant under the action of AdH. Now
define

γm0 ∈ L
2(Tm0(M))

by the equation

(3.3.13) p∗(γm0)|M = γ̂e.

Then by (3.3.9) we have

(3.3.14) (τ(h))∗(γm0) = γm0,∀h ∈ H.

Now, for m ∈ M, choose ana ∈ G such that

τ(a)(m0) = m
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and defineγm by the equation

(3.3.15) (τ(a))γm = γm0.

Then if a′ is another element ofG such that

τ(a′)(m0) = m

we havea′ = ah for someh ∈ H, and (3.3.14) shows thatγm is
independent of thea chosen. Now we can see that the map

γ : m→ γm

defines an r.s. onM. By the very definition ofγ it follows that 92

τ(a) is an isometry of (M, γ) for everya of G. Now let us consider
σ̂. Sinceσ̂ is a diffeomorphism, to show that̂σ is an isometry
it is enough to show thatγ is invariant under̂σT. To see this let
m ∈ M. Then sinceM is a homogeneous space there exists ana
in G such that

m= τ(a) ·m0.

Now let x andy be in Tm(M), and then definex0 andy0 by the
equations

x = τ(a)T (x0), y = τ(a)T (y0).

Then

(σ̂T)m(x, y) = γσ̂−1(m)(σ̂
T(x), σ̂T(y))

= γσ̂−1(m)(σ̂
T ◦ (τ(a))T (x0), σ̂T ◦ (τ(a))T (y0))

= γσ̂−1(m)(τ(σ(a))T ◦ σ̂T(x0), τ(σ(a))T ◦ σ̂T(y0))

by (3.3.11)

= γσ̂−1(m)(τ(σ(a))T (−x0), τ(σ(a))T (−y0))

by (3.3.10)

= γm0(x0, y0) by the definition ofγ.

Hence the existence.
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b) Uniqueness.Let γ1 be any r.s. for whichτ(a), for everya in G, 93

is an isometry. Then, in particularτ(h) is an isometry of (M, γ1)
for everyh of H and now by (3.3.9) it follows thatp∗(γ1)|M is
a euclidean structure on Mwhich is invariant under the action of
Ad h for everyh in H. Now the uniqueness is a consequence of
the well known lemma of Schur.

�

Remark . The transformation̂σ defined above is calledthe symmetry
around m0. By (3.3.10) it follows that it is an involution havingm0 as
isolated fixed point. SinceG acts transitively onM, given any pointm
of M, there exists ana of G such that

τ(a)(m0) = m.

Then we see that the transformation94

(3.3.16) τ(a) ◦ σ̂ ◦ τ(a)−1

is an involution havingmas isolated fixed point. We call this involution
thesymmetry around mand denote it by

(3.3.17) σ̂m.

Concerning these symmetries we have the following:
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3.18

Proposition. If m, m′ ∈ M are sufficiently near then∃n ∈ M such that

σ̂n(m) = m′.

Proof. SinceG acts transitively onM we can suppose thatm = m0.
Now since the map

pT ◦ (exp|M)T : M
(exp|M)T

−−−−−−−→ Te(G)
pT

−−→ Tm0(N),

is an isomorphism, the inverse function theorem shows, sincem′ is close
enough tom0; that there exists anX ∈ M such that

m′ = exp(X).

Now p(exp(
X
2

)) can be taken forn. �

3.19

The homogeneous Riemannian manifold (M, γ) is called thesymmetric
spaceassociated to the symmetric pair (G,H).

3.20

Remark. 1. Let
f : t → exp(tX).

Then from the above proof it is clear that 95

σ̂ f (t0)( f (t)) = f (2t0 − t).

3.21

Remark . 2. In fact, the condition thatm andm′ be sufficiently near is
superfluous: (see 4.3).
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4 The S.C.-manifolds

By K we denote one of the following fields:R (the real numbers),
C (the complex numbers),H (the quaternions); the conjugation inK
is z→ z and we setk = dimR K(k = 1, 2, 4). We, considerKn (for an
integern) as a left vector space overK, denote bye1, . . . , en its canonical
basis and use freely the two identifications:

Kn+1
= Kn × K : (z1, . . . , zn, zn+1) = (z= (z, . . . , zn), zn+1) = (z, zn+1).

Kn ⊂ Kn+1 : (z1, . . . , zn) = (z1, . . . , zn, 0).(3.4.1)

On Kn we consider the canonical hermitian structure<, >:

< (z1, . . . , zn), (w1, . . . ,wn) >=
∑

i

ziwi .

By U(Kn) we denote the set of allK-endomorphisms ofKn which leave
<, > invariant; for K = R, C we denote bySU(Kn) the subgroup of
U(Kn) of elements of determinant equal to one. We also set:

S0(n) = SU(Rn), 0(n) = U(Rn).(3.4.2)

S U(n) = SU(Cn),U(n) = U(Cn), n ≥ 1(3.4.2)

S p(n) = (SU(Hn) =)U(Hn).

All these are compact Lie groups, and, with the exception of 0(n), all96

are connected. The component of the identity of 0(n) is S0(n).

4.3

Proposition . SU(Kn) acts transitively on the K-directions and also on
theR-directions of Kn; also S0(n) acts transitively on the planes ofRn;
if K = C, then n> 1.

In particularSU(Kn) acts transitively on the sphere

(3.4.5) S(Kn) = {x ∈ Kn| < x, x >= 1};Sn
= S(Rn+1).
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OnKn+1−0 the equivalence relationR : z∼z′ if and only if∃ λ ∈ K with
z= λz′ yields theprojective space

(3.4.6) Pn(K) = (Kn+1 − {0})/R,

Kn+1 − {0}ar[d]p

Pn(K)

on whichSU(Kn+1) acts transitively. SoPn(K) is a homogeneous space;
and is a connected compact manifold, of dimension k.n. We write
Pn(K) = M = G/H whereG = SU(Kn+1) and H is the subgroup of
G leaving the pointm0 = p(en+1) fixed. We set

(3.4.7) H = S(U(Kn) × U(K)) = SU(Kn+1) ∩ (U(Kn) × U(K))

whereU(Kn) × U(K) is embedded inU(Kn+1) by (3.4.1). For elements
of H we use the notation (f , λ̂) where f ∈ U(Kn) andλ̂ ∈ U(K) stands
for the mapµ → µλ of K into itself which is associated to the element97

λ ∈ K (with < λ, λ >= 1), i.e.

(3.4.8) (f , λ̂)(z, zn+1) = ( f (z), zn+1λ).

From (3.4.7) and (3.4.7) we get the fibrations:

(3.4.10)

S
n

Z2

��

S
2n+1

S
1

��

S
4n+3

S
3

��
Pn(R) Pn(C) Pn(H)

We show now that (G,H) is canonically a symmetric pair; define an
endomorphismsof Kn+1 and an automorphismσ of G by:

s(ei) = ei for i = 1, . . . , n and s(en+1) = −en+1

σ : g→ σ(g) = s◦ g ◦ s.
(3.4.11)

As is easily verified, the subgroup of elements fixed underσ is nothing
but H = S(U(Kn) × U(K)).
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We study now the complement Min G = H + M as defined in (3),
by introducing the mapr : Kn→ G defined by:

r(z)(en+1) = z, r(z)(z) = −en+1, r(z)(u) = 0(3.4.12)

∀u| < u, z> = 0

when< z, z >= 1 and extension by linearity. Hence the one-parameter
subgroup ofG associated tor(z) : t → exp(t · r(z)) is nothing but:

(3.4.13) exp(t · r(z)) :



en+1→ (cost)en+1 + (sint)z

z→ −(sint)en+1 + (cost)z

u→ u∀u with < u, z>= 0.

Remark that dim(Kn) = k.n = dimG/H = dim M and thatr(Kn) ⊂ M
for a direct computation yields:

(exp(t.r(z)) = exp(−t.r(z)).

Hence:98

(3.4.14) r(Kn) = M, pT ◦ r : Kn→ Tm0(M)

is an isomorphism. To find the action of AdH on M we use (3.3.9) and
(3.4.14). Toz ∈ Kn we associate the curvel : t → p(en+1 + tz) in Pn(K).
For the imageτ(h) ◦ l underh = ( f , λ̂) ∈ H, by (3.4.8) and definition of
Pn(K) we have:

t → τ(h)(p(en+1 + tz)) = p(h(en+1 + tz)) = p(λ · en+1 + t · f (z)) =

= p(en+1 + t · λ−1 · f (z))

hence by (5.7) and (3.3.9):

(τ(h) ◦ l)′(0) = (pT ◦ r)(λ−1 · f (z)) = (τ(h))T (l′(0)) =

= ((τ(h))T ◦ pT ◦ r)(z) = (pT ◦ Ad(h))(r(z))

which yields:

(3.4.15) Ad((f , λ̂)) = r ◦ (λ−1 f ) ◦ r−1.
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4.16

Remarks . In the caseK = R, C the homomorphism H= S(U(Kn) ×
U(K))) → U(Kn) defined by (f , λ̂) → λ−1 · f in onto because the con-
dition ( f , λ̂) ∈ SU(Kn+1) is equivalent to the conditionλ · det f = 1,
so thatλ−1 · f = (det f ) · f (and this is injective whenn > 1.). This
explains why one sometimes writes:Pn(R) = S0(n + 1)/0(n); Pn(C) =
S U(n+ 1)/U(n). One also writes:

Pn(H) = Sp(n+ 1)/Sp(n) × Sp(1)

which is correct becauseSU(Hn) = U(Hn). For the sphereS0(n +
1)/S0(n) the computation as above (except that there is no projection
p) shows that AdH is isomorphic to the action ofS0(n) in Rn (under 99

(3.4.1)). From these remarks and from (4.3) we get:

4.17

Proposition. For Pn(K) = G/H the action ofAd H is transitive on the
directions of M; for Pn(R) or Sn the action ofAd H is transitive on the
planes of M.

In particular AdH acts irreducibly on Mso by (3.12) there exists
(upto a positive constant) a canonical r.s. onG/H; in fact there exists
a canonicalr.s. onG/H, for we see from (3.4.14) and (3.4.15) that the
canonical euclidean structure onKn (deduced from its canonical hermi-
tian form) gives a euclidean structure on Minvariant by AdH. So we
require by definition, that:

4.18

r : Kn→ M be a euclidean isomorphism.We write(Pn(K), can)for this
symmetric spaceand leave the reader to check in the case ofS

d
= S0(d+

1)/S0(d) that this procedure yields nothing but (Sd, can) as defined in
2.1.
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4.19

Remarks.we leave to the reader the proofs of the following facts:

A) the imbeddingKn → Kn+1 yields an imbedding ofpn−1(K) as a
sub manifold ofPn(K). Prove the canonical r.s. on thePn(K)’s
arehereditaryin the sense that the induced r.s. onPn−1(K) by the
canonical r.s. ofPn(K) is its canonical r.s.;

B) the first fibration in (3.4.10) is a riemannian covering. The two
last ones are excellent in the sense that for

E

��

F P

B

first the r.s. induced on the fibres is the canonical one; second: if100

one writes at anym ∈ E the orthogonal decomposition

Tm(E) = Tm(p−1(p(m))) + N

thenpTN : N → Tp(m)(B) is a euclidean isomorphism.

To those symmetric spaces we add the symmetric spaceP2(Γ) =
F4/Spin(9) the Cayley projective plane(see: [37]). We consider on it
the canonical r.s. (P2(Γ), can) such that all its geodesics are closed and
of lengthπ (see [14], p.356).

4.20

Definition. Any of the (Pn(K), can), (Sd, can), (P2(Γ), can) is called as
S.C.-manifold.

We will use also a non compact symmetric space defined as fol-
lows. Let S00(d, 1) be the identity component of the linear group of
R

d+1 which leaves invariant the quadratic form:

(x1, . . . , xd, xd+1)→ x2
1 + · · · + x2

d − x2
d+1
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For the sames andσ as in (3.4.2) we get the symmetric pair (G,H) =
(S00(d, 1),S0(d)). Again S0(d) acts by Ad on MasS0(d) on Rd; in
particular:

4.21

Ad H acts transitively on the planes of M.
In particular by 3.12 we get (upto a positive constant) a canonical

r.s. onM = G/H. In fact M is homeomorphic toRd; for,

A = {z= (x1, . . . , xdxd+1) ∈ Rd+1|xd+1 ≥ 0, < z, z>= 1} and

define the injection 101

i : A→ Pd(R) by i(x1, . . . , xd, xd+1) = p(x1, . . . , xd, 1).

Claim . S00(d, 1) acts transitively on i(A); in fact, for any z with<
z, z>= 1, we have in S00(d, 1) the one parameter subgroup

t → g(t)



en+1→ (ch t) · en+1 + (sh t) · z
z→ (sh t) · en+1 + (ch t) · z
u→ u∀u with < u, z>= 0,

so that

g(t))(p(en+1)) = p(g(t)(en+1) = p(ch t) · en+1 + (sh t) · z) =
= p(en+1 + (th t) · z).

Having an r.s. on i(A), we use a diffeomorphism between A andRd to
get a canonical r.s. onRd which we denote by(Rd, hyp).

4.22

(Rd, hyp) is called thehyperbolic space of dimension d.
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5 Volumes

Let (M, g) be an r.m. Then for everym ∈ M, Tm(M) has a euclidean
structure byg i.e. the one given by the symmetric positive definite bilin-
ear formgm. Hence it has a canonical volume (see 3.6)tm, and further
if ( M, g) is oriented thenTm(M) admits a canonical volume formSm

induced by the oriented formσ′, i.e. the orientation given byσ′m.

5.1

Proposition. With the above notation the map102

θ : m→ tm

is a volume element on M (called canonical volume element on M) and
if M is oriented the map

σ : m→ Sm

is a volume form (called the canonical volume form).

Proof. Let us consider the second case first. We know that forX1, . . . ,Xd

belonging toC (M), σ(X1, . . . ,Xd) is F(M)-multilinear. Hence to show
thatσ is a volume form we need only show thatσ(X1, . . . ,Xd) is differ-
entiable. To see this, since differentiability is a local property, let (U, r)
be a chart ofM, and letY1, . . . ,Yd be a basis ofC (U), orthonormal rela-
tive to the restriction ofg to U. We can suppose thatYi in that order are
positive relative toσ′. Then we have

σ(Y1, . . . ,Yd)(m) = 1,∀m ∈ U,

and hence, sinceσ is F(M)-multilinear, it is differentiable onU. �

Now let us take up the first part. We know thattm is a volume ele-
ment onTm(M). So to show thatθ is a volume element, it is enough to
show thatθ is, locally the modulus of a volume form. To see this let us
take an orientationσ′1 on U and then, clearly,

θ = |σ1|,

whereσ1 is related toσ′1 asσ is toσ′.
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5.2
103

Let us note that if {X1, . . . ,Xd} is any local basis ofC (M) the formula
(3.6) gives

θ(X1, . . . ,Xd) = (det(g(Xi ,X j)))
1
2 .

If ( M, g) is a compact manifold then we know that
∫

M

θ

exists. We call this number thevolume of(M, g) and denote it by Vol
(M, g). Generally, if no confusion is possible, we omit the reference to
g and say the volume ofM and write Vol(M). If the dimension of the
manifold is one, volume is called length and if it is two volume is called
area. They are denoted bylg(M) andar(M) respectively.

Let us note that in the oriented case, with the notation of (5.1),
∫

M

θ =

∫

M

σ

If N is a compact sub manifold ofM then there is an induced r.s. onN
(see (2.1)) A). Whenever we talk of volume ofN without any reference
to the r.s. onN this induced structure is the one that is considered.And
further, we set:Vol(N, g|N) = Vol(N).

5.3

In particular, suppose the dimension ofN is equal to one; then ifN
admits the parametric representationN = f (I ) whereI = [0, 1] and f is
a curvef : I → M, we have:

lg( f (I )) =
∫

f (I)

λ =

∫

I

f ∗λ =

1∫

0

( f ∗λ)(P)

whereλ is the length form of (N, g|N). But (f ∗λ)(P) = λ( f T ◦ P) = 104
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λ( f ′) = || f ′|| so that

lg(N) =

1∫

0

|| f ′||dt = lg( f (I )).

This leads to the following definition for paths (and a fortiori for curves):

Definition . Let C = { fi ∈ D(I i ,M), [ai , bi ] ⊂ I i} be a path in an r.m.
(M, g). Thenthe length ofC, denoted bylg(C), is by definition:

lg(C) =
∑

i

bi∫

ai

|| f ′i ||dt =
∑

i

lg( fi [ai , bi ]).

Now let us examine the volume element more closely.

5.4

Let (M, g) be an r.m. and letϕ be a differentiable function onM which
is everywhere positive. Thenϕg defined by the equation

ϕ · g(X,Y) = ϕ(pM(X)) · g(X,Y),X,Y ∈ C (M)

defines an r.s. onM. If we denote the volume element of (M, ϕ, g) by θϕ
and that ofM by θ then, from (5.2) it follows that they are related by the
equation

θϕ = ϕ
d/2 · θ

5.5

B. Let (M, g) and (N, h) be two compact r.m.’s which are isometric.
They by the definitions of isometry, volume and by (0.3.9) we have
Vol(M, g) = Vol(N, h).
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5.6
105

C. Let (M, g) and (N, h) be two r.m.’s and let

p : (M, g)→ (N, h)

be a riemannian covering. Further let us suppose thatN is compact and
the covering has a finite number,k, of sheets. Then Vol(M, g) exists and
further

Vol(M, g) = k,Vol(N, h).

To see this let us take an open covering{(Ui , r i)} by coordinate neigh-
bourhoods ofN, Ui taken so small as to makep−1(Ui) the union ofk dis-
joint componentsUi1, . . . ,Uik (this is possible becausep is ak-sheeted
covering map.) Then{Ui j , r i j = r i ◦ p|Ui j } is a complete atlas for (M, g).
Now let us take a partition of unity{ϕi} onN subordinate to the covering
Ui. Thenψi j defined by

ψi j =


ϕi ◦ p on Ui j

0 outsideUi j

is a partition of unity onM subordinate to the covering{Ui j }. Now since
p is a riemannian covering map, denoting the volume element of(M, g)
and (N, h) by θM andθN respectively, we have

∫

Ui j

ψi jθM =

∫

Ui j

(ϕi ◦ p)(p∗θN) =
∫

Ui j

p∗(ϕiθ)

=

∫

Ui

ϕiθ by (3.5.5).

Hence 106

Vol(M, g) =
∑

j

(
∑

i

∫

Ui j

ψi jθM) =
∑

j

(
∫

N

θ)

= k.Vol(N, h).
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Now let us note a particular case. If we take the real projective space
(Pd(R), can) for (N, h) and (Sd, can) for (M, g) and the natural map of
S

d ontoPd(R) for p then we havek = 2. Hence

Vol(Pd(R), can)=
1
2

Vol(Sd, can).

5.7

D. Let us consider the case of a flat torusRd/G (see (2.2) D.2). Let
(τ1, . . . , τd) be a set of generators forG. Thenτ1(0), . . . , τd(0) is a basis
of Rd. Let (v1, . . . , vd) be the corresponding coordinate system. Now let

W = {x ∈ Rd|0 < vi(x) < 1, for i = 1, . . . , d}.

ThenW is open inRd, W is compact and the restriction of

p : Rd → Rd/G

to W is a diffeomorphism ofW with p(W). Also p(W) = Rd/G and
W−W is of measure zero. Hence

Vol(Rd/G, ǫ/G) = Vol(p(W), ǫ/G) =

= Vol(W, ǫ) = |det(τ1(0), . . . , τd(0))| by ().(chap0:0.3.2)

6 The canonical formsα and dα

Let (M, g) be an r.m. Then there is a map

g♯ : C (M)→ C
∗(M)

given by the equation107

g♯(X)(Y) = g(X,Y),∀Y ∈ C (M).

Clearly it is anF(M)-linear map and sinceg is non-degenerate it follows
thatg♯ is an isomorphism ofF(M)-modules. Let us note that

g♯(X) = i(X)g.
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6.1

We setg♭ = (g♯)−1. Now evaluatingg♯ at each point ofT(M) we get a
vector bundle isomorphism ofT(M) with T∗(M). We denote this map
also by the symbolg♯ and it will be clear from the context which we
mean byg♯.

(3.6.2)

T(M)
g♭

g♯

p

��<
<<

<<
<<

<<
<<

<<
<

T∗(M)

p∗

����
��

��
��

��
��

��

M

6.3

Remark. Let us note thatg♯ andg♭ give rise, in a natural, way, to iso-
morphisms of

L
r±i
s∓i with L

r
s

between tensor spaces over (M, g) (these isomorphisms describe the op-
eration usually called “raising” or “lowering” subscripts).

Now we utilise the mapsg♭ andg♯ to associate an element ofC (M) 108

with everyϕ and to pullµ from T∗(M) to T(M) whereµ is defined in
(0.4.24).

6.4

Definition. For everyϕ ∈ F(M) we set

gradϕ = g♭(dϕ).

If U is an open subset of(Rd, ǫ) andϕ ∈ F(U) then we have

gradϕ =
∑

i

∂ϕ

∂ui

∂

∂ui
.
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6.5

Definition. α = (g♯)∗(µ).
If we have to consider theα’s associated to several manifolds(M, g),

(N, h), . . . at the same time, we write Mα, Nα for the correspondingα’s.

6.6

For everyz in T(T(M)) we have

α(z) = g(p′(z), pT (z)).

Proof. For

α(z) = (g♯)∗(µ(z)) = µ(g♯T(z)) =

= (p′′(g♯T (z)) = (p∗T (g♯T(z)).

T(T(M))
(g♯)T

//

p′

��

T(T∗(M))

p′′

��
T(M)

g♯ //

p

$$JJJJJJJJJJJJJ
T∗(M)

p∗

yytttttttttttttt

M

But p∗T ◦ g♯T = (p∗ ◦ g♯)T
= pT

M andp′′ ◦ g♯T = g♯ ◦ pM . Hence109

(z) = (g♯ ◦ p′M(z))(pT (z)) = g(p′(z), pT (z)).

�

6.7

If f : (M, g)→ (N, h) is an isometry, then

Mα=( f T )∗(N(α)) and d(Mα) = ( f T )∗(d(Nα)).
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Proof. In view of the formula (2.4) IV. We need only prove the first
equality. We have, by (6.6),

Mα(z)=g(p′M (z),pT
M(z)) and

( f T)∗(Nα)(z) = Nα( f T (z)) = h(p′N( f T )T(z)), pT
M( f T)T(z)

T(T(M))
( f T )T

//

p′M

��

pT
M

��

T(T(N))

pT
N

��

p′N

��
T(M)

f T
//

pM

��

T(N)

pN

��
M

f // N

But we have

p′N ◦ ( f T)T
= f T ◦ p′M and pT

N ◦ ( f T)T
= f T ◦ pT

M.

Hence 110

f T∗(Nα) = h( f T(p′M(z)), f T (pT
M(z)) =

= ( f ∗h)(p′M(z), pT
M(z)) =

= g(p′M(z), pT
M(z)) since f is an isometry.

Hence the result. �

Sinceg♯ is an isomorphism so is (g♯)∗. Now by lemma (4.27) we get
the following result.

6.8

Proposition. dα is non-degenerate everywhere on T(M).
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6.9

In particular it follows that
α
∧dα is a volume form forT(M) (see also

(2.5)).

6.10

Lemma. For every x∈ T(M), z∈ Vx and z′ ∈ Tx(T(M)) we have

(dα)(z, z′) = g(ξ(z), pT (z′)).

Proof. Let us chooseZ andZ′ in C (T(M)) such that

i) pT (Z) = 0 andZ(x) = z (for example let us take anyY ∈ C (M)
such thatY(p(x)) = ξ(z) and setZ(x) = ξ−1

U (Y(p(U)) for everyU
in T(M)); and

ii) there exists anX in C (M) for which pT(Z′) = X; (for example let
us take anyY in C (M) such thatY(p(x) = pT(z′) and setZ′ = YT

(see (4.19)).

Then

dα(z, z′) = (dα)(Z,Z′)x

= Z(α(Z′))x − Z′(α(Z))x − α([Z,Z′])x.

But by (6.6) we have111

(Z) = g(p′ ◦ Z′, pT ◦ Z) = g(p′ ◦ Z, 0) = 0;

α([Z,Z]) = g(p′ ◦ [Z,Z′], pT ◦ [Z,Z′])

= g(p′ ◦ [Z,Z′], [pT (Z), pT(Z′)])

= g(p ◦ [Z,Z′], 0) = 0,

and

α(Z′) = g(p′ ◦ Z′, pT ◦ Z′) = g(id)T(M), pT ◦ Z′),
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i.e. α(Z′)y = g(y, (pT ◦ Z′)(p(y)). Hence

dα(z, z′) = Z(α(Z′))x = z(α(Z′)).

Now let us consider the map ofT(M) into R defined by

T(M)→ y→ α(Z′)y = g(y,X(p(y)).

Clearly it is a linear function onT(M). Hence, by (4.16) we have

z(α(Z′)) = g(ξ(z),X(p(ξ(Z))

= g(ξ(z), pT (z′)).

Note that this gives another proof of the non-degeneracy ofdα, already
proved in (6.8). �

7 The unit bundle

7.1

Definition. The subset U(M) = E−1(1) = {x ∈ T(M)
∣∣∣ ||x|| = 1} of T(M)

is called theunit bundle ofM.
Let us set W= E−1( ] − ∞, 1[ ) = {x ∈ T(M)

∣∣∣ ||x|| < 1} and observe
that U(M) is the boundary of W in T(M).

7.2

Lemma. W is a nice domain. 112

Proof. We will be through if we show that∀x ∈ U(M) : (dE)x , 0. But
by (1.8) we have

(dEx)(ξ
−1
x x) = 2(g(x, x)) , 0.

Now by (3) we have the following result. �

7.3

Proposition. U(M) is a sub manifold of T(M) of dimension2d − 1.
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7.4

Let us note thatU(M) is compact ifM is. For,the fibre Um atm is

Um = {x ∈ Tm(M)|g(x, x) = 1}

and hence it is a sphere in the euclidean space (Tm(M), gm).
We denote the pullbacks ofα anddα to the sub manifoldU(M) by

α anddα themselves.

8 Expressions in local coordinates

Let (M, g) be an r.m. and let (U, r) be a chart of (M, g). Let Xi =

{
∂

∂xi

}

be the basis ofC (U) dual to the basisdxi
= d(ui ◦ r) of C ∗(U). Then

{(dxi · dxj )} (for this multiplication see (0.2.2)) is a basis ofL 2(U).
Hence there exists local functions{gi j } such that

8.1

g =
∑
i, j

gi j dyi · dxj , with g ji = gi j sinceg is symmetric. Now let us take

anyX =
∑
i

piXi and computeg♯(X). Settingg♯(X) =
∑

pidxi , we have,113

by definition,

(3.8.2) pi = g♯(X)(Xi) = g(
∑

j

p jX j ,Xi) =
∑

j

gi j p
j .

Sinceg is positive definite it follows that det(gi j ) is never zero and hence
pi can be calculated in terms ofp j . So let

(3.8.3) pi
=

∑

j

gi j p j .

Then we have ∑

1

gil gl j = δi j .
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8.4

Considering the set{x1, . . . , xd, p1, . . . , pd} of coordinates onT(U), and
by (6.6).

(3.8.5) α|U =
∑

i, j

gi j p
idxj

and hence

(3.8.6) dα|U =
∑

i, j,k

∂gi j

∂xk
pidxk ∧ dxj

+

∑

i, j

gi, jdpi ∧ dxj .





Chapter 4

Geodesics

1 The first variation
114

In this article, we study the following question; given two pointsm, n in
an r.m. (M, g), look for a curvef with end pointsm, n which has min-
imal length among all curves inM with end pointsm, n. Then the first
variation has to be zero for all one-parameter families of curves with
fixed endsm, n. This will lead us to asufficientcondition involving the
acceleration vectorf ′′ of f and from there to a spray on (M, g) canon-
ically, so to geodesics in (M, g). The necessity of this condition could
be proved directly but we will not do it, for it will be a consequence of
Chapter VII. We shall, in the course of these considerations, obtain a
useful formula for a geodesic in (M, g), the first variation formula.

Let us consider an r.m. (M.g) and two pointsm, n ∈ M; let f be
a one-parameter family of curves, for which we use the notation intro-
duced in (8). We suppose thatf : (I =] − ǫ, 1+ ǫ[ ) × J→ M with 0 ∈ J
andǫ > 0; moreover we suppose that|| f ′0(t)|| − 1∀t.

For the lengths of thefs’s we define thefirst variation l′(0) by:

(4.1.1) l′(0) =
d
ds

(lg( fs|[0, 1]))s=0.

To computel′(0), if α is the canonical form onT(M) (definition in (6.5),
we set

(4.1.2) β = P∗(α).

113
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We have:115

(4.1.3) E ◦ P = α(PT ◦ P) = β(P);

for, α(PT ◦ P) = g(p′ ◦ PT ◦ P,PT ◦ PT ◦ P). But p′ ◦ P ◦ P = P and

pT ◦ P ◦ P = P.

Since || f ′0(t)|| = 1 we have, by the very definition ofQ =
∂

∂s
, the

following commutative diagram:

T(T(M))

pT

��

p′

��
T(I × J)

f T
//

PT

77ooooooooooooooooooo

T(M)

p

��
I × J

P

OO

Q

OO
Q

77oooooooooooooooooooo
P

77oooooooooooooooooooo

f
// M

Further,

lg( fs|[0, 1]) =

1∫

0

|| f ′s(t)||dt =

1∫

0

(E ◦ P)
1
2 (t, s) dt =

=

1∫

0

β(P)
1
2 (t, s) dt,

and

l′(0) = Q(

1∫

0

(β(P))
1
2 (t, s) dt)

= (1/2)

1∫

0

Q(β(P))(t, 0) · (β(P)(t, 0))−1/2 dt =
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= (1/2)

1∫

0

Q(β(P))(t, 0) dt .

But 116

dβ(P,Q) = Pβ(Q)) − Q(β(P)) − β([P,Q]) and [P,Q] = 0

so we get

l′(0) = (1/2)

1∫

0

P(β(Q))(t, 0) dt−(1/2)

1∫

0

dβ(P,Q)(t, 0) dt .

From the definitionP =
∂

∂t
:

1∫

0

P(β(Q))(t, 0) dt = [β(Q)]1,0
(0,0)

but

β(Q) = α(PT ◦ Q) = (see (6.6))= g(p′ ◦ PT ◦ Q, pT ◦ P ◦ Q) =

= g(P,Q) to the effect:

(4.1.4) l′(0) = (1/2)[g(P,Q)](1,0)
(0,0) − (1/2)

1∫

0

dβ(P,Q)(t, 0) dt .

We can also write it as:

(4.1.5) l′(0) = (1/2)[g(P,Q)](1,0)
(0,0)−(1/2)

1∫

0

dα( f ′′0 (t), (PT ◦Q)(t, 0)) dt

for the accelerationf ′′0 (t) of f0 (see (5.8)).
Clearly:
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1.6

If f (0, s) = mand f (l, s) = n∀s ∈ J, then
[
g(P,Q)

](1,0)

(0,0)
= 0.

But this does not imply thatf ′′0 (t) should be such thati( f ′′0 (t))(dα) =
0 for PT ◦ Q(t, 0) is not an arbitrary element inT(T(M)). For, adding
(5.9), (6.10) and (1.8) we get:

1.7
117

if z vertical then (dα)( f ′′0 (t), z) = −(1/2)z(E).
But (PT ◦ Q)E = Q(β(P)) so we have

(i( f ′′0 (t))(dα) + (1/2)dE)(PT ◦ Q)(t, 0)

= (P(β(Q)) − Q(β(P)) + (1/2)Q(β(P)))(t, 0) =

= (P(β(Q)) − (1/2)Q(β(P))(t, 0)

and finally:
(4.1.8)

l′(0) = [g(P,Q)](1,0)
(0,0) −

1∫

0

((i( f ′′0 (t)(dα) + (1/2)dE))(PT ◦ Q)(t, 0) dt

from which we get:

1.9 i( f ′′0 (t)(dα) + (1/2)dE = 0 is a sufficient condition for f0 to
be of critical length among all curves with endsm, n.

And in particular

1.10

if the curve f0 is such thati( f ′′0 )(dα) + (1/2)dE = 0 then we have the

first variation formula: l′(0) = [g(P,Q)](1,0)
(0,0).

We are so lead to the following:
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2 The canonical spray on an r.m.(M, g)

By Proposition (6.8) it follows that there exists one and only oneG ∈
C (T(M)) such that

(4.2.1) i(G)(dα) = −1
2

dE.

Regarding theG we prove the following proposition.

2.2

Proposition. G is a spray on M.

Proof. First let us prove thatpT ◦ G = idT(M). For anyx ∈ T(M) and
z∈ Vx we have, on the one hand, by (1.8)

(dα)(G(x), z) = −1
2

z(E) = −g(x, ξ(z))

and, on the other by (6.10) 118

(dα)(G(x), z) = −g(T (G(x)), ξ(z))

and hence

g(pT (G(x)) − x, ξ(z)) = 0.

Sinceξ is an isomorphism betweenVx andTx(M) andg is non - degen-
erate we have

pT(G(x)) = x,∀x ∈ T(M).

Now let us prove the homogeneity. �

First let us note that

α ◦ hT
θ = θ · α,
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In fact,∀z ∈ T(T(M)) we have:

T(T(M))
hT
θ //

pT

��

p′

��

T(T(M))

pT

��

p′

��
T(M)

hθ //

p

��

T(M)

p

��
M

idM

// M

α(hT
θ (z)) = g(pT (hT

θ (z)), p′ ◦ hT
θ (z)) =

= g((p ◦ hθ)
T(z), hθ ◦ p′(z)) = g(pT (z), θ · p′(z)) =

= θg(pT (z), p′(z)) = θ · α(z).

119

Hence, we have, for everyz, z′ in T(T(M)),

dα(hT
θ (z), hT

θ (z′)) = θ · dα(z, z′).

Now for anyZ ∈ C (T(M)) we have

dα(θ(hT
θ ◦G), hT

θ ◦ Z) = θ · dα(hT
θ ◦G, hT

θ ◦ Z))

= θ2 · dα(G,Z) = −1
2
θ2 · Z(E), and also

dα(G ◦ hθ, h
T
θ ◦ Z) = −1

2
hT
θ · Z(E)

= −1
2

Z(E ◦ hθ) = −
1
2

Z(θ2 · E) = −1
2
θ2 · Z(E).

Again, as above, sincedα is non-degenerate we have

G ◦ hθ = θ(h
T
θ ◦G).

Now we give the following definition.
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2.3

Definition. The spray G of the above proposition is calledthe canonical
spray of ther.m. (M, g).

Whenever we talk of a spray on an r.m. we always mean the canon-
ical spray. In view of this we can talk ofgeodesics on anr.m.

By the definition of isometryE is invariant under isometry and by
(6.7),dα is also invariant under isometry and we have the following:

2.4

Proposition. If 120

λ : (M, g)→ (N, h)

is an isometry, andMG (respectivelyNG) is the canonical spray of(M, g)
(respectively on(N, h)) then

NG = (λT )T ◦ MG ◦ (λ−1)T .

Proof. Let any Z′ ∈ C (T(N)); sinceλ is an isometry and hence in
particular, a diffeomorphism, there exists aZ ∈ C (T(M)) such that
Z′ = (λT )T ◦ Z ◦ (λ−1)T . Set moreover:

G′ = (λT)T ◦ MG ◦ (λ−1)T . Then, by ((6.7)), (0.2.6), (2.4),

we have:

(i(G′) · d(Nα))(Z′) = d(((α−1)T )∗(Mα))(G′,Z′) =

= ((λ−1)T)∗(d(Mα))(G′,Z′) =

= d(Mα)(((λ−1)T)T ◦G′ ◦ λT , ((λ−1)T)T ◦ Z′ ◦ λT)

= d(Mα)(G′,Z′) = (i(MG) · d(Mα))(Z).

�

Now, by the definition ofMG and becauseλ is an isometry implies
M ME = NE ◦ λT , we have:

(i(MG) · d(Mα))(Z) = −1
2

d(ME)(Z) = −1
2

d(NE)((λT )T ◦ Z ◦ (λ−1)T) =

= −1
2

d(NE)(Z′).



120 Geodesics

2.5

Corollary . If λ : (M, g) → (N, h) is an isometry and f a geodesic in
(M, g), thenλ ◦ f is a geodesic in(N, h).

Proof. Let (I , f ) be an integral curve ofMG in T(M). Then (I , λT ◦ f )121

is an integral curve ofNG = (λT)T ◦ MG ◦ (λ−1)T in T(N). �

For:

(λT ◦ f )′ = (λT ◦ f )T ◦ P = (λT)T ◦ f ′ = (λT)T ◦ MG ◦ f =

= (NG ◦ λT) ◦ f = NG ◦ (λT ◦ f )′.

2.6

Corollary . If λ : (M, g) → (N, h) is an isometry, thenλT(M
Ω) = N

Ω

and the following diagram is commutative:

MΩ

Mexp

��

λT
// NΩ

Nexp

��
M

λ // N

Proof. Apply (4.5). �

We slightly generalize the above results in the:

2.7

Proposition . Let (M, g) and (N, h) be two r.m.’s of the same dimension
and a mapλ ∈ D(M,N) be such thatλ∗h = g. Thenλ is a local isometry;
moreover, if(I , f ) is a geodesic in(N, h) and f̂ : I → M such that
λ ◦ f̂ = f , then f̂ is a geodesic in(M, g).

Proof. We note first the injectivity ofλT
m∀m ∈ M, which comes from

λ∗h = g andg positive definite; the equality of dimensions then implies
λT

m is an isomorphism∀m ∈ M; hence the inverse function theorem and
λ∗h = g imply the local isometry. �
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Remark. 2.7 can be applied, in particular, to a riemanniancovering. 122

2.8

Example.Let us determine the canonical spray of (Rd, ǫ).

First of all from the definition of the scalar product ofg we can
identify α andµ, anddα anddµ. Now by (0.4.26) we have, for everyz,
z′ of T(M),

dα(z, z′) = (ζT(z)) · (pT(z′) − (ζT(z)) · (pT(z)),

and hence∀x ∈ T(M) we have

dα(G(x), z) = (ζT(G(x))) · (pT (z)) − (ζT(z)) · (pT (G(x))) =

= (ζT(G(x))) · (pT (z)) − ζT(z) · ζ(x).

On the other hand

E(x) = (ζ(x)) · (ζ(x)),

and hence forz ∈ Tx(T(M)), by (0.4.5)

z(E) = 2(ζ(x)) · (ζT(z)).

Hence

(ζT ◦G(x)) · pT(z) = 0,∀z ∈ Tx(T(M)).

But sinceg is non-degenerate andpT is ontoTx(M) we have

(4.2.9) ζT(G(x)) = 0.

Consequently, by ((2.1.22)), the geodesics are segments ofstraight lines.
A more geometrical proof would be to use the symmetry around aline
in Rd (which is an isometry) and apply the local uniqueness of geodesics
and the lemma (2.6). We shall do this in a more general situation in§4.



122 Geodesics

3 First consequences of the definition
123

3.1

Proposition. G(E) = 0.

Proof. In fact, by definition, we have

G(E) = (dE)(G) = −2dα(G,G) = 0.

�

3.2

Corollary . E is constant along a geodesic f in particular|| f ′|| is con-
stant.

Proof. In fact, we have, with usual notation,

P(E ◦ f ′) = ( f ′T ◦ P)(E) = f ′′(E)

= (G ◦ f ′)(E) = G(E) ◦ f ′ = 0.

This corollary shows that any geodesic is parametrised by either the arc
length or by a constant times the arc length. Hence for a geodesic f we
have

(4.3.3) lg( f |[t1, t2]) = (t2 − t1)|| f ′(t1)||.

�

Hence follows the

3.4

Corollary . For every x inΩ, exp(x) is the end point of the geodesic f
with f ′(0) = x and of length equal to||x||.
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3.5

Now, for every positive numberr and every pointmof (M, g) we set

B(m, r) = {x ∈ Tm(M)
∣∣∣||x|| < r}

and call itthe ball of radius rin Tm(M).

3.6

By (4.2) and (4.7) it follows that, to every pointmof (M, g) there exists
anr(m) > 0 such that

B(m, r) ⊂ Ω

and 124

expm |B(m, r)→ exp(B(m, r))

is a diffeomorphism. We set:

B(m, r) = exp(B(m, r))

for such an image set and describe the situation when we have such
a diffeomorphismas expm is r-O.K. Hence to every pointm of (M, g)
there is anr(m) > 0 such that expm is r(m)-O.K. In fact, something
more is true. For, let us take, in the proof of (6.8), instead of an arbitrary
euclidean structure onTm(M) the one that is induced byg. Then the
following result is obtained:

3.7

For everym of (M, g) there exists anr(m) > 0 such that∀r′ ∈ [0, r] one
has:

B(m, r′) is convex.

3.8

Definition. The flow of the vector field G on T(M) is calledthe geodesic
flow of the r.m.(M, g).
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3.9

Remark . Combining (5.7) and (3.1) we conclude that flow leaves the
unit bundleU(M) of M invariant. Furthermore we have the following
result.

3.10

Proposition . The geodesic flow leaves dα on T(M) and α on U(M)
invariant.

Proof. By (0.6.9) we have only to show that onT(M)

θ(G)(dα) = 0,

and onU(M):125

θ(G) · α = 0.

Clearly, by 0.6.12, we have

θ(G)(dα) = (i(G)d + d ◦ i(G))dα = d(i(G)dα) = d(−1
2

dE) = 0.

Also

θ(G)α = d(i(G)α) + i(G)dα = d(α(G)) − 1
2

dE.

By (6.6)

α(G) = g(pT ◦G, p′ ◦G) = g(idT(M), idT(M)) = E.

Hence

θ(G) · α = 1
2

dE.

But E ≡ 1 onU(M). Hence the result. �

4 Geodesics in a symmetric pair

A symmetric pair is an example of a manifold where one can write down
all the geodesics explicitly. With the notations of (3) we prove the fol-
lowing proposition.
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4.1

Proposition. The geodesics of(M, γ) are the curves

f : t → (τ(g) ◦ p)(exptX)

where g runs through G and X through M.

Proof. Since, for every elementg of G, τ(g) is an isometry andG acts
transitively on the manifold we need only consider the situation atm0,
i.e. for the curvest → p(exp(t · X)). �

Let us fixX ∈ M; and choose a positiver for which expm0 is r-O.K.
and moreover such that

(i) B(m0, r) = V is convex, and 126

(ii) the only point inV fixed under̂σ is m0.

(This is possible: see the remark following the proof of (3.12)).
Let us note that by our construction

σ̂(V) = V

and denote the map
t → p(exp(t · X))

by f . Let t0 be such that

f |[−t0, t0] ⊂ V.

Then, sinceV is convex, for anyt1 such that 0< t1 < t0 there is a
geodesicg from f (−t1) to f (t1). By reparametrisingg if necessary, we
can assume that

g(−t1) = f (−t1) and g(t1) = f (t1).

Further from (6.5) it follows thatg is unique. Clearly by (2.5), (3.12),
(3.20), σ̂ ◦ g is a geodesic inV from f (t1) to f (−t1) and hencêσ ◦
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g ◦ k−1 (wherek−1 = − idR) is a geodesic fromf (−t1) to f (t1). By the
uniqueness ofg we have

σ̂ ◦ g ◦ k−1 = g.

In particular,
σ̂(g(0)) = g(0),

and sincem0 is the only point inV fixed byσ̂ we have

g(0) = m0 = f (0).

That is to say: the unique geodesic fromf (−t1) to f (t1) has to go through127

f (0). Because theτ’s are isometries andτ(exp(t12 · X)) sendsf (−t1) into
f (− t1

2 ) and f (0) into f ( t1
2 ), we see, by the above argument (applied for

t1
2 instead oft1) thatg should also go throughf ( t1

2 ). By the same token
it follows that f andg coincide at all pointst1

p
q where p

q is a fraction in

[−1, 1] andq is a power of 2. Since suchpq are dense in [−1, 1] we see,
using the continuity off andg, that f andg coincide everywhere.

4.2

By (4.3) it follows that

p ◦ expm0
: M → M

is onto. Hence given any pointm of M there is anX in M such that

m= p ◦ expm0
X

for (4.1) implies in particular:Ω ⊃ Tm0(M).

4.3

Now clearly the symmetry aroundp(expm0
( X

2 )):

σp(expm0
( X

2 ))

takesm0 onto m and it follows that the assumption thatm, m′ be suffi-
ciently close in (3.19) can be dropped.
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5 Geodesics in S.C.-manifolds

5.1

Definition. A curve f∈ D(R,M) in an r.m.(M, g) is said to be aclosed
geodesicif

(i) it is a geodesic,

(ii) it is periodic i.e.∃ t0 > 0| f (t + t0) = f (t)∀t ∈ R.

5.2

Definition . A closed geodesic is said to besimply closedif moreover 128

there exists a period t1 of f such that f is injective on[0, t1[.

In this article, we consider the S.C.-manifolds (4.19) but the state-
ments of (5.4) and (5.7) relative toP2(Γ) will not be proved; one can
find some of them in [14] p.355.358 and the remaining ones in [38],
Nos. 107 and 151.

5.4

Proposition. In an S.C. manifold all geodesics are simply closed and of
the same length. This length is2π for (Sd, can) andπ for the others.
Moreover, the geodesics for(Pd(R), can) are projective lines and for
(Sd, can)they are great circles.

Proof. Because of the existence of a transitive family of isometries it is
enough to examine the situation at one point, saym0. By (4.1) (4.18)
and (3.4.13) the geodesics throughm0 aret → cost.ed+1 + sint.z with
< z, z >= 1 andz ∈ Rd for (Sd, can), andt → p(cost · en+1 + sint · z)
with z ∈ Kn, < z, z >= 1 for the Pn(K)′s and in both cases they are
parametrized by arc length. Hence the result for (S

d, can) is proved as
also forPd(R). For aPn(K) if

p(cost.en+1 + sint.z) = p(cost′.en+1 + sint′.z)
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then∃ λ ∈ K with

cost.en+1 + sint.z. = λ(cost′.en+1 + sint′.z)

which implies that cost = λ · cost′, sint = λ · sint′ and henceλ ∈ R
andλ2

= 1; soλ = ±1 and all geodesics inPn(K) haveπ as the smallest129

period.

�

5.5

This result explains the terminology S.C.-manifolds (S.C.stands for
“symmetric circled”).
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5.6

Remark. In (Sd, can) two geodesics throughm ∈ Sd meet again at the
first time at the antipodal point−m of Sd. For the other S.C.-manifolds
the situation will be described in the proposition below; inits statement
in the case ofP2(Γ) one should replace “z, z′ are or notK-dependent”
by the following: “z, z′ belong or not to the same fibre of the canonical130

fibrationS15→ S8”.

5.7

Proposition . Let (M, g) be an S.C.-manifold other than an(Sd, can);
then two geodesics through m0 with tangent vectors pT(r(z)), pT(r(z′))
at m0 (for z, z′ ∈ Kn, < z, z>=< z′, z′ >= 1 and z′ , ±z)

i) never meet except at m0 if z, z′ are K-independent

ii) meet exactly at m0 and at their mid-point at distance
π

2
if z, z′ are

K-dependent.

Proof. By the argument in the proof of (5.4) our two geodesics meet at
distancest, t′ from m0 if and only if ∃ λ ∈ K such that

cost.en+1 + sint.z= λ(cost′ · en+1 + sint′ · z′)

hence

cost = λ · cost′ and sint.z= λ · sint′ · z′.

We can suppose thatt, t′ ∈]0, π[. Since|λ| = 1 either cost = cost′ = 0 or

λ ∈ R. In the first caset = t′ =
π

2
andz= λ · z′ soz, z′ areK-dependent.

In the secondλ ∈ R, < z, z >=< z′, z′ >= 1 and sint · z = λ · sint′ · z
would imply z= ±z′, a contradiction. �

Remark. For Pd(R) in fact z, ±z′, impliesz, z′ are neverR-dependent
so two distinct geodesics inPd(R) meet at most at one point as they
should since they are projective lines.
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5.12

Proposition. For every point m of an S.C.-manifold(M, g) we have

1) expm is π-O.K. if (M, g) is an(Sd, can)131

2) expm is
π

2
-O.K. in the other cases.

Proof. By (5.6) we see that forM = Sd, expm0
is one-one on. B(m0, π)

and if M , S
d by (5.7) that expm0

is one-one on B(m0,
π

2
). Thus it

suffices to show that expm0
is of maximal rank on B(m0, π) in the case

of Sd and on B(m0,
π

2
) in the other cases. We show, by example for the

Pn(K)’s, that the expression we had for geodesics proves in particular
that the map

h = expm0
◦pT ◦ r : Kn→ Pn(K)

is nothing but

(4.5.13) h : tz→ p(cost.en+1 + sint.z) with < z, z>= 1, t ∈ R.

We know thathT
tz(ζ
−1
tz z) , 0 by (6.32), and hence we studyhT

tz for z′ with
< z′, z′ >= 1 and orthogonal toz in theeuclideanstructure ofKn.

The curveα → t(cosα · z+ sinα · z′) (whose speed fors = 0 is
ζ−1

tz (tz′)) has for image underh the curve

α→ h(t(cosα · z+ sinα · z′) = p(cost · en+1 + sint(cosα · z+ sinα, z′))

whose speed forz = 0 is pT(ζ−1
tz (sint · z′)). Since t ∈]0,

π

2
[ and <

z′, z′ >= 1 one has sint · z′. , 0. From (pT)−1(0) ∩ Kn
= {0} one gets

the proof. �

Remark. (5.12) would also follows from (7.1).

6 Results of Samelson and Bott

In the previous article we have seen that in an S.C.-manifoldall geo-
desics are simply closed and of the same length. Now let us examine the
converse. Given a connected riemannian manifold (M, g) such that for
each pointmof (M, g)
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(i) each geodesic throughm is simply closed; 132

(ii) the length of each geodesic throughm is a number 1 independent
of the geodesic; and

(iii) 1 is independent ofm;

does it follow that (M, g) is isometric with an S.C.-manifold? (see article
8).

More generally we give the:

6.1

Definition. Given an r.m.(M, g) and some m∈ M we say that(M, g) is a
Cm-manifold if it is connected and if all geodesics through m are simply
closed and of same length.

Though there are no isometry relations between an arbitraryCm-
manifold and an S.C.-manifold we shall see that the cohomology ring
of aCm-manifold resembles that of an S.C.-manifold. Let us recallsome
definitions and results from algebraic topology.

Given a compact topological manifoldM we denote its graded co-
homology ring over a ring A byH∗(M,A).

6.2

Definition. The manifold M is said to be a TR(A)-manifold if H ∗(M,A)
is a truncated polynomial ring.

This meansH∗(M,A) is isomorphic toA[X]/A whereA is an ideal
generated by a positive power ofX. The image under that isomorphism
of X is a homogeneous element ofH∗(M,A); call its degreeα. If d =
dim M, then defineλ by d = α · λ. The following results are standard.

S
d is aTR(Z) manifold withα = d andλ = 1

Pn(C) is aTR(Z) manifold withα = 2 andλ = n

Pn(H) is aTR(Z) manifold withα = 4 andλ = n

P2(Γ) is aTR(Z) manifold withα = 8 andλ = 2

Pd(R) is aTR(Z2) manifold withα = 1 andλ = d.

(4.6.3)
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We shall prove a result due to Samelson to the effect that aCm-manifold133

is aTR(Z2)-manifold.

6.4

Remark . In the definition of aCm-manifold we have assumed that all
the geodesics throughm are of the same length. This property is not a
consequence of the former namely that each geodesic is simply closed.
To see this one can take either a suitable lens space or more precisely the
following example due to I.M. Singer. A compact Lie groupG is always
a symmetric space, when associated to the symmetric pair (G × G,G)
for the involutive automorphismσ(g, h) = (h, g). For r.s. as in (3) the
geodesics throughe are the one-parameter subgroups (as follows from
(4.1)). Take nowG = S0(3) and such an r.s. on it; ifH is the subgroup
generated by an element of order two then the quotientG/H is endowed
with an r.s. by (3), which makesG→ G/H a riemannian covering. Then
the geodesics throughp(e) are all of same length (as inS0(3)) with one
exception (the one which corresponds to that inS0(3) which contains
H) which is of length half that of the others.

However it is not known whether the assumption of equal length is,134

or is not, superfluous in the case ofsimply connectedmanifolds.

6.5

Proposition . Let (M, g) be a Cm-manifold for which the (common)
length of the geodesics through m equals1. Then,

1) Ω ⊃ Tm(M) and M= exp(B(m, 1/2)) in (particular M is compact)

2) if dim M ≥ 2, then:either M is simply connected, or the uni-
versal riemannian covering(M̃, g̃) → (M, g) is two-sheeted and
(M̃, g̃) is a C̃m-manifold∀m̃ ∈ p−1(m), with common length for
the geodesics through̃m equal to 21.

Proof. Because each geodesic is of length 1 we have

B(m,
1
2

) ⊂ Ω.
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Since every geodesic, and hence expm, is periodic with period 1 we have

Tm(M) ⊂ Ω.

SinceM is connected the Hopf-Rinow theorem (4.1) implies thatM =
exp(Tm(M)). Now the periodicity of expm implies that

M = expm(Tm(M)) = expm(B(m, 1/2)).

SinceB(m, 1/2) is a closed ball and hence compact and expm is deffer-
entiable and hence continuous, it follows thatM is compact (forM is
Hausdorff). This proves the first part. �

The second part of 2) follows from the remark after (2.7). To prove 135

the first part of 2) we remark first that all the closed geodesics of period
1 in aCm-manifold are homotopic as loops based atm (hereafter we use
notions and notations of (6)) if dimM ≥ 2; in fact if γ1, γ2 are two such
geodesics andλ : [0, 1] → Um(M) a path connectingγ′1(0) to γ′2(0) in
the unit tangent sphereUm(M) at m then the required homotopy is

(t, α)→ exp(t · λ(α))

for exp(0, λ(α)) = exp(1· λ(α)) = m∀α ∈ [0, 1].

In particular the homotopy class inπ1(M,m) of a closed geodesicγ of
period 1 throughm is independent ofγ, saya. moreoverγ−1 is again
such a geodesic and belongs toa−1 hencea = a−1 or a2

= 1. Now
we claim: anyb ∈ π1(M,m)(b , 0) is a power of a (which yields the
proposition). In fact letb ∈ π1(M,m), m̃ ∈ p−1(m) andm̃′ , m̃. By
(2.7) the covering (M, g) is complete hence by (4.10) there existsγ̃ ∈
S(m̃, m̃′). The projectionγ = p ◦ γ̃ is a geodesic fromm to m in (M, g)
so by (5.2) has to be a multiple of a closed geodesic of period 1through
m; henceb is a power ofa.

6.6

Theorem H. Samelson..ACm-manifold is a TR(Z2) manifold.
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6.7

Lemma. There exists a positive number r such that

B(m,
1
2

) ∩ exp−1
m (B(m, r)) = B(m, r).

Proof. Let r′ be a positive number such that expm is r′-O.K. Then let us136

set

W = expm

B

(
m,

1
2

)
− B(m, r′)

 .

Note that B(m,
1
2

) − B(m, r′) is a closed subset of the compact ball

B(m,
1
2

) and hence compact. ThereforeW is compact. Since the geo-

desics throughm aresimplyclosed it follows thatm < W. Hence there
is a positive numberr such that

i) 0 < r < r′ and

ii) B(m, r) ∩W = ∅.

Now letn ∈ B(m, r) and letn = expm(x) where||x|| < 1
2

. SinceB(m, r)∩

W = ∅ we see thatx < B(m,
1
2

) − B(m, r′) and hencex ∈ B(m, r′). But

since expm is r′-O.K. andr < r′ we have expm is one-one on B(m, r) and
sincen ∈ B(m, r) we havex ∈ B(m, r).
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�

Proof of the proposition. By (5.4) we can multiply the r.s. on (Pd(R),
can) by a constant so as to make the common length of its geodesics
equal to 1, the length of each closed geodesic of (M, g) throughm. Let 137

us fix a pointn on Pd(R) and a euclidean isomorphism

u : Tn(Pd(R))→ Tm(M).

Now wedefine a map f∈ D(Pd(R),M) by requiring the commutativity
of the diagram:

B(n,
1
2

)

exp

��

u // Tm(M)

exp

��
Pd(R)

f
// M

By (5.12) expn is
1
2

-O.K. and hence the map

expm◦u ◦ (expn |B(n,
1
2

))−1
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is well defined onB(n,
1
2

). On B(n,
1
2

) we definef to be this map. Now

let n′ ∈ exp(B(n,
1
2

) − B(n,
1
2

)). Then if x ∈ −B(n,
1
2

) and expx = n′,

since the length of every geodesic is equal to 1 we have exp(−x) = n′.
By (5.7) no two geodesics throughn meet outsiden and hence it follows
±x are the only inverse images ofn′ in

B(n,
1
2

) − B(n,
1
2

).

Since138

||u(x)|| = ||u(−x)|| = 1
2

and since the common length of geodesics throughm is 1, we conclude
that

exp(u(x)) = exp(u(−x)).

Now, we extendf to B(n,
1
2

) by setting

f (x) = exp(u(x)).

By (4.5.13) f is a differentiable map. (We need only the fact thatf is
continuous). Now we claim that the topological degree mod 2 of f is
one. First let us recall the process of getting the topological degree of a
map.

First we can define the fundamental class mod 2 of the compact
manifold M as follows.

We pick up a neighbourhoodU of an arbitrary pointm of M such
that U is homeomorphic to an open ball. Then we consider the exact
sequence

0→ Hd
c (U,Z2)

i−→ Hd(M,Z2)→ Hd(X − U,Z2)→ · · ·

([12]: p. 190. th. 4.10.1 and the following lines), in whichHd
c (U,Z2)

consists of exactly two elements 0 andγU . ThenϕM, the fundamental
class mod 2 ofM, is i(γU). Then, , the degree mod 2 of a map

f : N → M
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from a compact manifoldN into M is by definition such that

f ∗(ϕM) = δ · ϕN.

In our case we defineϕM with the help of the ballU = B(m, r) given by 139

the lemma and forN = Pd(R) andϕN with U′ = B(n, r).
Let us note that the lemma together with the definition off implies

that
f −1(U) = U′

and thatf |U′ is a diffeomorphism. Then we have ([12]: 4.16., p. 199)
the following commutative diagram

0 // Hd
c (U)

f ∗c

��

i // Hd
c (M)

f ∗

��

// · · ·

0 // Hd
c (U′)

i′ // Hd(Pd(R)) // · · ·

Since f : U′ → U is a homeomorphism we have

f ∗(γU) = γU′ .

SinceϕM = i(γU) andϕN = i′(γU′) the commutativity of the diagram
gives

(i′ ◦ f ∗c )(γU ) = i′( f ∗c (γU)) = i′(γU′) = ϕN = ( f ∗ ◦ i)(γU ) =

= f ∗(ϕM) = δ · ϕM .

Hence
δ = 1.

Now we assert that

f ∗ : H∗(M,Z2)→ H(Pd(R),Z2)

is injective. For Poincaré duality asserts that given any non-zeroe ∈ 140

H∗(M,Z2), ∃e′ ∈ H∗(M,Z2) such that

e∪ e′ = ϕM.
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Hence we have

f ∗(e) ∪ f ∗(e′) = f ∗(e∪ e′) = f ∗(ϕM) = ϕN

and hence
f ∗(e) , 0∀e i.e. f ∗ is injective.

HenceH∗(M,Z2) is isomorphic to a homogeneous sub-ringA of the
truncated polynomial ring

H∗(Pd(R),Z2) = Z2[X]/(Xd+1) (by (4.6.3)).

Let X be the image ofX in H∗(Pd(R),Z2) andX
θ

be the least positive

power ofX that is inA. Then∃e′ ∈ H∗(M,Z2) such thatX
θ
= f ∗(e′)

and by Poincaré duality∃e′1 ∈ H∗(M,Z2) such thate′∪e′1 = ϕM. Hence

f (e′1) = X
d−θ ∈ A. By the same token, fork with d > kθ we haveX

kθ ∈ A

andX
d−kθ ∈ A. So the choice ofθ implies∃ k|d = k · θ andH(M,Z2) is

isomorphic to the truncated polynomial ringZ2[X]/(Xk+1).

6.9

Remark. In fact Samelson’s result is sharper. But by using Morse the-
ory Bott proved the following theorem:

6.10

Theorem [6]: p.375.A simply connected Cm-manifold is a TR(Z)-mani-
fold. The universal covering of an r.m. which is not simply connected is
a homotopy sphere.

We will not go into the proof of this theorem but be content with the141

remark that recent theorems in algebraic topology and (4.6.3) imply the
following:

1) For a simply connectedTR(Z)-manifold the cohomology ringH∗

(M,Z) is isomorphic to that of an S.C. manifold.



7. EXPRESSIONS FORG IN LOCAL COORDINATES 139

2) a simply connectedCm-manifold of dimensiond odd andd > 5 is
homeomorphic toSd.

3) aCm-manifold, of dimension greater than or equal to 5 and which
is not simply connected is homeomorphic toPd(R).

7 Expressions forG in local coordinates

Given (M, g) let us expressG, locally, in terms ofg. Let us follow the
conventions of (4).

OnT(U) let us set

(4.7.1) G •

= (g♯)T ◦G ◦ g♭ and computeG •

.

Now for
ω = (x1, . . . , xd; p1, . . . , pd) ∈ T∗(U)

let

(4.7.2) G •(ω) = (x1, . . . , xd; p1, . . . , pd; v1, . . . , vd; w1, . . . ,wd).

Let {Y1, . . . ,Yd; P1, . . . ,Pd} be the basis ofC (T∗(U)) dual to the basis
dx1, . . . , dxd; dp1, . . . , dpd of C ∗(T∗(U)).

Now set

(4.7.3) H =
1
2

E ◦ g♭.

Then by the definition ofG we have

i(G •)(dµ) = −dH.

Hence 142

dµ(G •

,Yi) = −
∂H

∂xi
(4.7.4)

dµ(G,Pi) = −∂H
∂pi

(4.7.5)
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and hence by (0.4.26) we have

vi
=
∂H
∂pi

(4.7.6)

wi =
∂H

∂xi
(4.7.7)

Now we computeG on U. By the definition ofg♯ we have

(4.7.8) g♯(x1, . . . , xd; p1, . . . , pd) = (x1, . . . , xd; p1, . . . , pd)

where
pi =

∑

j

gi j p
j (see (8)).

Now let

(g♯)T(x1, . . . , xd; p1, . . . , pd; v1, . . . , vd; w1, . . . ,wd) =(4.7.9)

= (x1, . . . , xd; p1, . . . , pd; v1, . . . , vd; w1, . . . ,wd).

Then a straightforward calculation of the JacobianDg♯ gives that

(4.7.10) w1 =

∑

i,k

∂gi j

∂xk
· vk · p j

+

∑

j

gi j w
j .

Now let

G(x1, . . . , xd; p1, . . . , pd) = (x1, . . . , xd; p1, . . . , pd; p1, . . . , pd;G1, . . . ,Gd).

With the notation of ((1.3.2)) we have

(4.7.11) Gi
= −

∑

j,k

Γ
i
jk p j pk.

Hence we have to computeΓi
jk. We have143

G(x1, . . . , xd; p1, . . . , pd) = (x1, . . . , xd; p1, . . . , pd; p1, . . . , pd;G1, . . . ,Gd).

From (3.8.3) it follows that

(4.7.12) H =
1
2

∑

j,k

g jk p j pk
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and hence

(4.7.13)
∂H
∂xi
=

1
2

∑

j,k

∂g jk

∂xi
p j pk.

By (3.8.3) we have ∑

l

gil gl j = δi j

and hence for everyi

(4.7.14)
∑

j,k

∂g jk

∂xi
p j pk = −

∑

j,k

∂g jk

∂xi
p j pk.

Hence by (4.7.7), (4.7.10) and (4.7.14) we have

(4.7.15)
∑

j,k

∂gi j

∂xk
pkp j

+

∑

j

gi jG
j
=

1
2

∑

j,k

∂g jk

∂xi
p j pk,

or

(4.7.16)
∑

j

gi jG
i
+

∑

j,k

1
2

(
2
∂gi j

∂xk
− ∂gik

∂xi

)
p j pk

= 0.

Now if we set 144

(4.7.17) Γ jik =
1
2

(
∂gi j

∂xk
+
∂gik

∂x j
−
∂g jk

∂xi

)

then we have

(4.7.18)
∑

j

gi j G
j
+

∑

j,k

Γ jik p j pk
= 0.

Hence by the definition ofgi j we have

(4.7.19) Γ
i
jk =

∑

l

gil
Γ jlk

where theΓ jlk are given by (4.7.17).

Remark. (4.7.6) and (4.7.7) are nothing but Hamilton’s equations.
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7.1 Lagrange’s equation

In local coordinates (4.2.1) also yields Lagrange’s equations. OnT(U)
we introduce the local vector fields

{
Xi =

∂

∂xi

}
,

{
Pi =

∂

∂pi

}
and have :

pT ([Xi ,G]) = 0, α ([Xi ,G]) = 0, pT (Xi) = ξ(pi)

So by (1.8)

α(Xi) =
1
2
∂E

∂pi
.

And

dα(G,Xi) = G(α(Xi)) − Xi(α(G)) − α([G,Xi]) =
1
2

G

(
∂E
∂pi

)
− Xi(E) =

= −1
2

dE(Xi )

so:145

G

(
∂E

∂pi

)
=
∂E

∂xi
.

Working along a geodesic parametrized byt impliesG =
d
dt

hence the

Lagrange equations:

d
dt

(
∂E

∂pi

)
=
∂E
∂xi

.

8 Zoll’s surface

In this article we answer negatively the question which was posed at
the beginning of article 6 by giving a counter example due to Zoll of a
r.s. onS2 for which S2 is aCm-manifold∀m ∈ S−2 but not isometric to
(S2, can).
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To construct the surface in the (x, y, z)-space we take in the (z, r)-plane
two curvesr → fi(r) (i = 1, 2) with f1, f2 ∈ D([0, 1[,R+) and fi(1) = 0, 146

f ′i (0) = 0, f ′i ≤ 0 and f ′i (r)→ ∞
1

(i = 1, 2).

We generate a surface of revolutionM by setting:

M1 =

{
(x, y, z)|z= f1(

√
x2 + y2)

}
,M2 =

{
(x, y, z)|z= − f2(

√
x2 + y2)

}

henceM = M1 ∪ M2 is aC1-manifold. We have two charts (Ui , si)(i =
1, 2) onUi = Mi − (z−1(0)∪ (x−1(0)∩ y−1(0))) defined as follows:

if p(x, y, z) = (x, y) we set

si(m) = (||p(m)||, angle (e1, p(m))) ∈ R2(i = 1, 2)

(polar coordinates). OnUi the local coordinates will be denoted by
x1
= r = u1 ◦ si, x2

= ϕs = u2 ◦ si (i = 1, 2) so that

(4.8.1) s−1
1 (u1, u2) = (u1 · cosu2, u1 · sinu2, fi(u

1)).
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We drop the i in si and in fi . We have the vector fields

{X1,X2} dual basis of{dr, dϕ} on C (Ui),

{Y1,Y2} dual basis of{du1, du2} on C (R2).

We endowM with the r.s. induced by (R3, can) as in (2.1). Forg =∑
i, j

gi j dxidxj we have by definition ofǫ (see (1.2)):

gi j = g(Xi ,X j) = (ζ◦(s−1)T •◦Yi)·(ζ◦(s−1)T◦Yj) = (Ds−1◦Yi)·(Ds−1◦Yj)

whereDs−1 is the (Jacobian)−1 of s, i.e. by (4.8.1):

Ds−1
=


cosu2 −u1 · sinu2

sinu2 u1 · cosu2

f ′(u1) 0



hence, settingf ′ =
d f
dr

:147

(4.8.2) g = (1+ f ′2)dr2
+ r2 · dϕ2, g12 = 1+ f ′2, g12 = 0, g22 = r2

hence by (3.8.3)

g11
=

1

1+ f ′2
, g12
= 0, g22

=
1
r2

;

thus by (4.7.17) and (4.7.19):

Γ122 = r, Γ121 = Γ222 = 0, Γ2
12 =

1
r
, Γ2

11 = Γ
2
22 = 0.

Hence if
ψ : t → (r(t), ϕ(t))

is a geodesic, then by (1.3.5) we have

d2ϕ

dt2
+

2
r
· dr

dt
· dϕ

dt
= 0
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i.e.
d
dt

(
r2 dϕ

dt

)
= 0.

Thus, along a given geodesic, there exists an a such that

(4.8.3) r2 dϕ
dt
= a.

We suppose moreover thatψ is parametrized by arc length, so that by
(4.3.3) and (4.8.2):

(
1+ f ′2

) (dr
ds

)2

+ r2
(
dϕ
ds

)2

= 1

and hence 148∣∣∣∣∣
dϕ
ds

∣∣∣∣∣ ≤
1
r
.

Now by (4.8.3) we have

a ≤ 1
r(s)
· r2(s) = r(s),

and hence the geodesic never crosses the curve given by the section of
M by the planesz= fi(a) (i = 1, 2). Moreover:
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(4.8.4)
dϕ
dr
=

a
r

(
1+ f ′2

r2 − a2

)1/2

.

8.5

Let us note that (by continuity arguments, for our computations are not149

valid outsideU1 ∪ U2) that the geodesics corresponding toa = 0 are
the meridians and that toa = 1 corresponds the equator. So to ensure
that M is a Cm-manifold ∀m ∈ M we have only to take care of the
case 0< a < 1. Let thenm0 = (x0, y0, f1(a)) andm1 = x1, y1,− f2(a))
be extreme points ofψ such that the part ofψ between them does not
meet again the planesz = f1(a), z = − f2(a). Then - thanks to the
symmetry ofM-showing thatψ is simply closed amounts to showing
that the variationΦ(a) of the angleϕ from m0 to m1 is equal exactly to
π. Since the integral

1∫

a

a
r

(
1+ f ′2

r2 − a2

)1/2

· dr

exists we have by (4.8.4) applied for the part ofψ in U1 and for the part
in U2:

(4.8.6) Φ(a) =

1∫

a

a
r
·

(1+ f ′1)1/2
+ (1+ f ′22)1/2

(r2 − a2)1/2
· dr.

Then we have shown:

8.7

Theorem Darboux.The surface(M, ǫ|M) is a Cm-manifold∀m ∈ M if
and only ifΦ(a) = π∀a ∈]0, 1[, withΦ(a) as in(4.8.6).
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8.8

Theorem Zoll: [30]). There exists f1, f2 ∈ D([0, 1[,R+) such that:

i) M is a real-analytic sub manifold ofR3150

ii) M is a Cm-manifold∀m ∈ M

ii) M is not isometric to(S2, can).

Proof. A. To find f1, f2 we derive relations fromΦ(a) = π · a. Set

g = (1 + f ′21)1/2
+ (1 + f ′22)1/2,

1
r
= x + 1,

1

a2
= α + 1, x = α · u,

r · g(r) = 2 · θ(x); then we must have

α∫

0

θ(x)

(α − x)1/2
· dx= π∀α

and thus
1∫

0

θ(α · u)

(1− u)1/2

√
α · du= π∀α.

Differentiating the above equation with respect toα we have

(4.8.9) θ(αu) + 2α · uθ′(αu) = 0.

But the function

θ(x) =
k
√

x

satisfies the above equation, and since it is known that

1∫

0

dx

(x(1− x))1/2
= π

it follows that the function
1
√

x
can be taken forθ(x). Hence we should

try to find f1 and f2 such that:

(1+ f ′21)1/2
+ (1+ f ′2) =

2√
(1− r2)

.
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(Note that the choicef1(r) = f2(r) = (1 − r2)1/2 makes the associated
surface a sphere). We set:151

(1+ f ′21)1/2
= (1− r2)1/2

+ λ(r)

and
(1+ f ′22)1/2

= (1− r2)1/2 − λ(r)

where in order that the equations have meaning we should have

1
1− r2

± λ(r) ≥ 1.

There exist such functionsλ, for example the binomial expansion of
(1− r2)1/2 gives that the function

k · r2 for 0 < k <
1
2

is such a function. Hence we set:

(1+ f ′21)1/2
= (1− r2)−1/2

+ kr2

(1+ f ′22)1/2
= (1− r2)−1/2 − kr2,

and we know by (8.7) thatM is aCm-manifold∀m ∈ M.
B. We check (i) now. Analyticity has to be checked only atr = 1 and

we wish to expressr as a function ofz (instead ofz= f1(r), z= − f2(r)).
We have (sincef ′1 < 0, f ′2 < 0) and forz> 0:

dz
dr
= f ′1 =

−r√
(1− r2)

(1+ 2k(1− r2)1/2
+ k2r2(1− r2))

so if we sets= (1− r2)1/2:

ds
dz
=

1

1+ 2ks+ k2s2(1− s2)
= b(s)

with b(s) analytic ins. By Cauchy’s theorem
ds
dz
= b(s) has a unique152

analytic solution withs(0) = 0.
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Forz< 0 andt = −(1− r2)1/2:

−dz
dr
= f ′2 = −

r√
(1− r2)

(1− 2k
√

(1− r2) + k2r2(1− r2))

hence
dt
dz
=

1
1+ 2kt+ k2t2(1− t2)

= b(t)

with thesame b. So the unique analytic solution is the same forz > 0
and forz< 0.

C. We shall prove that (M, ǫ|M) is not isometric to (S2, can). One
can either compute the curvature of (M, ǫ|M) at a simple point or argue
as follows: in (S2, can) the meridians are the geodesics. The geodesics
through two antipodal pointsm, m′ have a closed geodesic as orthogo-
nal trajectory, and this geodesic is the locus equidistant fromm, m′. The
same should hold in a surface isometric to (S2, can). But for Zoll’s sur-
face and the two antipodal pointsm = (0, 0, f1(0)), m′ = (0, 0,− f2(0))
the only orthogonal trajectory is the equator, which is not equidistant
from m, m′ since the lengths of the meridians fromm to the equator and
from the equator tom′ are respectively:

1∫

0

(1+ f ′21)1/2dr =

1∫

0

(1− r2)−1/2dr +

1∫

0

kr2
= 2+

k
3

1∫

0

(1+ f ′22)1/2dr =

1∫

0

(1− r2)−1/2dr −
1∫

0

kr2
= 2− k

3
.

� 153

8.10

Remarks.A. Check with the choiceλ(r) =
3
2

r4 that the meridians have

inflexions
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So there exist surfaces (M, ǫ|M) which areCm-manifolds∀m ∈ M
and which contain points with strictlynegativecurvature (Zoll: [30]).

B. We will see ((9)) the striking fact that if (M, g) is aCm-manifold
∀m ∈ M for M homeomorphicto P2(R) then (M, g) is isometric to
(P2(R), can).

C. Note (4.8.3) is classical for motions with central acceleration (as
it is the case for geodesics of a surface of revolution since the normal
meets thez-axis). Note also the condition

α∫

0

θ(x)

(α − x)1/2
· dx= π∀α

is equivalent to the search of tautochronous motions on a vertical curve154

and yields the cycloidal pendulum.



Chapter 5

Canonical connection

1.1

Definition . By (2.2) an r.m.(M, g) has a canonical spray G. BY (2.3)155

there is a unique symmetric connection associated to G. Whenever we
consider(M, g) we consider it with the above connection and refer to C
as theconnectionor canonical connection on (M, g). Hence given an
r.m. (M, g) we can speak canonically of the concepts associated with a
connection, namely, the derivation law, the curvature tensor, the parallel
transport and Jacobi fields in(M, g).

1.2

Example.Now let us examine the connection on (Rd, ǫ). By (2.1.21) it
follows that the sprayG′ associated to the canonical connection satisfies
the equation

(5.1.3) ζT ◦G′ = 0.

By (4.2.9) the canonical sprayG on (Rd, ǫ) satisfies the equation

(5.1.4) ζT ◦G = 0.

We have the direct sumTz(T(M)) = (ζT)−1
z (0) + (pT )−1

z (0) and since
pT(G(z)) = pT(G′(z)) = p′(z) we haveG = G′. Hence by the uniqueness
of the associated symmetric connection we see the canonicalconnection
onRd is the same as the connection on (Rd, ǫ). Now we shall prove that

151
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the connection is carried into the connection by isometries. We know by
(2.4) that the canonical spray is carried into the canonicalspray and we156

have only to use ((2.2.5)).

1.5

Proposition. If (M, g) and (N, h) are r.m.’s and

f : (M, g)→ (N, h)

is an isometry, then

( f T)T(MC(x, y)) = NC( f T(x), f T (y))∀(x, y) ∈ T(M)×
M

T(M).

Proof. By (4.17) it is enough to show that both sides of the equality
have the same effect ondϕ ∈ F(T(N)) for everyϕ ∈ F(N). We have

f TT
(MC(x, y))(dϕ) = MC(x, y)(dϕ ◦ f T) = MC(x, y)(d(ϕ ◦ f )) =

=
1
2

(MG(x+ y)(d(ϕ ◦ f )) − MG(x)(d(ϕ ◦ f )) − MG(y)(d(ϕ ◦ f ))) =

by (2.2.5)

=
1
2

(MG(x+ y)(dϕ ◦ f T) − MG(x)(dϕ ◦ f T) − MG(dϕ ◦ f T)) =

=
1
2

( f T)T(MG(x+ y))(dϕ) − ( f T)T(MG(x))(dϕ)

− ( f T )T(MG(y))(dϕ)) =

=
1
2

(NG( f T(x+ y))(dϕ) − NG( f T(x))(dϕ) − NG( f T(y))(dϕ))

=
NC( f T(x), f T(y))(dϕ) by ((2.2.5)) and since

f T(x+ y) = f T(x) + f T(y).

�

1.6

Corollary. If f : (M, g)→ (N, h) is an isometry, then157
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i) Nv ◦ ( f T)T
= f T ◦ Mv

ii) if S is a manifold, X∈ C (S) andϕ ∈ D(S,T(M)), then NDX( f T ◦
ϕ) = f T ◦ DX

iii) For every X1, Y1 ∈ C (M)

ND f T◦X1◦ f −1( f T ◦ Y1 ◦ f −1) = f T ◦ (MDX1Y1) ◦ f −1.

Proof. (i) For everyZ in C (T(M)) we have

Mv ◦ Z = Mξ(Z −C(p′ ◦ Z, pT ◦ Z)).

But from the definition ofξ it follows that the following diagram
is commutative:

Tx(Tp(x)(M))
iTx

xxrrrrrrrrrrr
ζx

''PPPPPPPPPPPP

( f T)T

��

Vx Mξ

//

( f T )T

��

Tp(x)(M)

f T

��

Nf T (x)Tp( f T (x))(N)
iT
f T (x)

yyrrrrrrrrrr ζ f T (x)

''OOOOOOOOOOO

Vf T(x)
Nξ // Tp( f T(x))(N)

Hence 158

f T ◦ Mζ = Nξ ◦ ( f T)T .

Hence

f T ◦ Mv ◦ Z = Nζ ◦ ( f T)T ◦ (Z −C(p′ ◦ Z, pT ◦ Z)) =

=
Nζ(( f T )T(Z) − ( f T)T(C(p′ ◦ Z, pT ◦ Z))) =

=
Nζ ◦ (( f T)T ◦ Z −C( f T ◦ p′ ◦ Z, f T ◦ pT ◦ Z)) by (1.5)=

=
Nζ(( f T )T ◦ Z −C(p′ ◦ ( f T)T ◦ Z, pT ◦ ( f T)T ◦ Z)) =

=
N v ◦ ( f T)T ◦ Z.
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(ii) We have

NDX( f T ◦ ϕ) = Nv ◦ ( f T ◦ ϕ)T ◦ X by definition, =

=
Nv ◦ ( f T )T ◦ ϕT ◦ X =

= f T ◦ Mv ◦ ϕT ◦ X by (i) =

f T ◦ DXϕ by the definition ofDX.

(iii) We have only to apply (ii) and (3.14)
�

1.7 An application.

Let f : (M, g) → (N, h) be an isometry and letϕ be a curve in (M, g)
andψ a parallel lift ofϕ. ThenMDPψ = 0. Hence by (ii) it follows that
f T ◦ ψ is a parallel lift of f ◦ ϕ in (N, h).

1.8

Example .Let (G,H) be a symmetric pair and (M, γ) be an associated
riemannian homogeneous manifold, as in (3). LetX ∈ M and let159

ϕ : t → p(exp(t.X))

be the associated geodesic andψ a parallel lift ofϕ. Then weclaim :

ψ(t) = (τ(exp(t.X)))T(ψ(0))

i.e. the parallel transport is given by the tangent maps of the one param-
eter family of diffeomorphisms induced byX.

Proof. We know that for everyt0, τ(exp(t0 · X)) takes the image ofϕ
into itself and is an isometry. Hence (τ(exp(t0 · X)))T takesψ again into
a parallel lift thanks to (1.7). But we do not know if it coincides with
ψ. On the other hand we know that the mapσ̂ϕ(t0) is an isometry and
hence preserves parallel lifts, maps the image ofϕ into itself and further
(σ̂ϕ(t0))T is an isometry and acts as the negative of identity onT(t0)(M).
Henceψ(t) goes into−ψ(−t). Therefore we try to representτ(exp(tX))
as the composition of an even number of symmetries. �
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Clearly (̂σϕ(t0))T ◦ ψ is a parallel lift ofσ̂ϕ(t0) ◦ ϕ. But by (3.20) we
have

(σ̂ϕ(t0) ◦ f )(t) = f (2t0 − t),

and hence with the notation of (5)

σ̂ϕ(t0) ◦ f = f ◦ τ2t0 ◦ k−1.

Now consider 160

ψt0 = −
(
σ̂ϕ(t0)

)T
◦ ψ ◦ τ2t0 ◦ k−1.

Since (τ2t0 ◦ k−1)2
= idR, it follows thatψt0 is a parallel lift ofψ and at

t0 is equal to
−σ̂ϕ(t0) ◦ ψ(t0) = ψ(t0).

Hence by the uniqueness of parallel lifts (7.4) we have

ψ = ψt0.

Now if we sett0 = 0 we obtain

ψ = −σ̂T ◦ ψ ◦ k−1

and hence

ψ = −σ̂ϕ(t0) ◦ (−σ̂T ◦ ψ ◦ k−1) ◦ τ2t0 ◦ k−1.

But

σ̂ϕ(t0) ◦ σ̂ = τ(exp(2t0)X)) and hence

ψ = τ(exp 2t0X) ◦ ψ ◦ k−1 ◦ τ2t0 ◦ k−1

= τ(exp 2t0X) ◦ ψ ◦ τ−2t0 since

(τ2t0 ◦ k−1)2
= idR .

Hence in particular we have

ψ(2t0) = (exp(2t0 · X)))Tψ(0).
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2 Riemannian structures onT(M) and U(M)
161

Let (M, g) be an r.m.
For every elementx of T(M) the tangent space atx is the direct sum

of Hx andVx:
Tx(T(M)) = Hx + Vx.

The mapξ defines an isomorphism betweenVx andTp(x)(M) and so does
the restriction ofpT to Hx betweenHx andTp(x)(M):

ξ : Vx→ Tp(x)(M)

pT |Hx : Hx → Tp(x)(M).

By means of these isomorphisms and the euclidean structure on
Tp(x)(M) we define a euclidean structureg on Tx(T(M)). Precisely:

2.1

Definition. The canonicalr.s. onT(M), g, is defined by the equation

g(z, z′) = g(v(z), v(z′)) + g(pT (z), pT (z′)) ∀z, z′ ∈ Tx(T(M))

∀x ∈ T(M).

2.2

Lemma. With respect to this structureg for the function E on T(M) we
have (see 6.4):

grad(E) = Ξ ∈ C (T(M))

where
Ξ(x) = 2ξ−1

x x, x ∈ T(M).

Proof. Let Z be any vector field onT(M). Then162

Z(E) = (dE)(Z) = g♯(grad(E))(Z)(5.2.3)

= g(grad(E),Z).
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Let zbe a horizontal vector. Then we have fory = pT(z):

z= C(x, pT(z))

whereC is the canonical connection on (M, g). But by ((2.2.5)) and (3.1)
we have

z(E) =
1
2

(G(x+ y)(E) −G(x)(E) −G(y)(E)).

Hence for every horizontal vector fieldZ we have

g(grad(E),Z) = 0.

Hence grad(E) is a vertical vector field. Letx ∈ T(M) and letz ∈ Vx.
Then, by (1.8)z(E) = 2g(x, ξ(z)), and by (2.1), sincez and gradE are
vertical, we have:

g(grad(E)x, z) = g(ξ(grad(E)), ξ(z)).

Hence by (5.2.3) we have

g(2x− ξ(grad(E)x), ξ(z)) = 0

for every vertical vectorz. Sinceξ is an isomorphism betweenVx and
Tp(x)(M) andg is non-degenerate we have

2x− ξ(grad(E)x) = 0.

Hence:

grad(E)x = ξ
−1
x (2x) = 2ξ−1

x (x).

SinceU(M) is a sub manifold ofT(M) there is an induced r.s. onU(M). 163

�

2.4

Definition. The canonicalr.s.g on U(M) is the structureg |U(M) = g.
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2.5

Proposition . The volume elementsθ and θ of T(M) and U(M) are re-
spectively given by the equations

θ = |σ|, θ = |σ|

where

σ = (−1)
d(d−1)

2 · 1
d!
·

d
∧(dα)

and

σ = (−1)
d(d−1)

2 · 1
(d − 1)!

· α ∧ (
d−1
∧ (dα)).

2.6

Let us note, incidentally, that this implies thatT(M) andU(M) are ori-
ented canonically.

Proof. In view of (5.1) and (3.4) it is enough to show thatθ andθ take
value one on some orthonormal basis ofTx(T(M)) andTx(U(M)) for x
in T(M) andU(M) respectively.

a) Let us considerθ. Let x ∈ T(M) and let{x1, . . . , xd} be an or-
thonormal basis ofTp(x)(M). Setpi = ξ

−1
x xi andzi = C(x, xi) (i =

1, . . . , d). Then, by the definition ofg, it follows that{p1, . . . , pd,

z1, . . . , zd} is an orthonormal basis ofTx(T(M)). Further by (6.10)
we have

(dα)(pi , p j) = 0

(dα)(pi , zj) = δi j ∀i, j(5.2.7)

Hence by the definition of an exterior product through shuffles164

we have

(−1)
d(d−1)

2
d
∧(dα)(p1, . . . , pd, z1, . . . , zd) =

∑

σ∈Pd

d∏

i=1

(dα)(pσ(i) , zσ(i))
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whereσ runs through all possible permutations of{1, . . . , d}.
Hence

(−1)
d(d−1)

2
d
∧(dα)(p1, . . . , pd, z1, . . . , zd) = d!.

b) Now let us considerU(M). We want to look at the tangent vectors
to U(M) among those toT(M). Let us consider the injectioni :
U(M) → T(M). If x ∈ U(M) andz ∈ Tx(T(M)) is a vector in the
image ofTx(U(M)) by iT then there existsz1 in Tx(U(M)) such
that iT(z1) = z. But then sinceE is constant onU(M) we have by
(5.2.3) 0= z1(E ◦ i) = iT (z1)(E) = z(E) = g(grad(E), z). Hence
every such vectorz is orthogonal to grad(E). But the subspace in
Tx(T(M)) of vectors orthogonal to grad(E)x is of dimension 2d−1
which is equal to the dimension ofU(M). SinceiTx is injective we
have

(5.2.8) iTx (Tx(U(M)) = {z|g(grad(E)x, z) = 0}.

�

2.9

Now let x ∈ U(M) and let {x1, . . . , xd} be an orthonormal basis of
Tp(x)(M) with x1 = x. Set, as above,pi = ξ−1

x xi andzi = C(x, xi) for
i = 1, . . . , d. Then, since grad(E)x = 2ξ−1

x by (2.2), we see, by (5.2.7),
that

{p2, . . . , pd, z1, . . . , zd}

is an orthonormal basis ofTx(U(M)) and the relations (5.2.7) are valid.165

Moreover (see 6.6):α(pi) = 0 ∀i andα(z1) = g(x1, x1) = 1. Hence

(−1)
d(d − 1)

2
α ∧ (

d−1
∧ (dα))(p2, . . . , pd, z1, . . . , zd)

=

∑

σ∈Pd−1

α(z1)
d−1∏

i=2

(dα)(pσ(i) , zσ(i))
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whereσ runs through all permutations of{2, . . . , d}. Hence

α ∧ (
(d−1)
∧ dα)(p2, . . . , pd, z1, . . . , zd) = (d − 1).

Hence the result.

2.10

Now let us compute vol(U(M), g) whenM is compact.
First let us suppose thatM is oriented by a formσ1 ∈ ξd(M), and

denote (see (5)) the canonical orienting form corresponding toσ1 byσ.
Let {p1, . . . , pd; z1, . . . , zd} be as in the proof (a) of (2.5). Then we define
τ ∈ ξd(T(M)) by setting

τ(p1, . . . , pd) = ±,

according as{ξp1, . . . , ξpd} is a positive basis ofTm(M) or not, and zero
for any other combination from{p1, . . . , pd; z1, . . . , zd}, and extending,
multilinearly.

First let us note that the restriction ofτ to Tm(M) is the canonical
volume form of the euclidean space (Tm(M), gm). Then we have166

(5.2.11) σ = (−1)
d(d−1)

2 τ ∧ p∗Mσ

wherepM : T(M)→ M. For

(τ ∧ p∗Mσ)(p1, . . . , pd, z1, . . . , zd)

= τ(p1, . . . , pd) · σ(pT(z1), . . . , pT(zd)) =

= 1 by the definition ofτ.

Now let {p1, . . . , pd, z1, . . . , zd} be as in (2.9). Then defineω by set-
ting ω(p2, . . . , pd) = ±1 according as{ξp1, ξp2, . . . , ξpd} is positive or
negative with respect toσ, and zero for any other combination from
{p1, . . . , pd, z1, . . . , zd} and extending linearly. We note that the restric-
tion ofω to Um(M) is the canonical volume form on the sphere (Um(M),
gm|Um(M)) and check (as in the case ofτ ∧ p∗Mσ) that

(5.2.12) σ = ω ∧ p∗Mσ.
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Now we prove that

(5.2.13) Vol(U(M), g) =
�



�
	d − 1 . vol(M, g),

where we use the notation:

(5.2.14) d = Vol(Sd, ǫ|Sd).

Proof. First let us assume thatM is oriented. Thenω∧p∗Mσ is a volume
form onU(M) and we have

Vol(U(M), g) =
∫

U(M)

ω ∧ p∗Mσ =

=

∫

x∈M



∫

Um(M)

ω|Um(M)

σ, by (3.17)

But 167
∫

Um(M)

ω|Um(M) = Vol(Sd−1(Tm(M), gm|Sd−1(Tm(M))) = (by (3.15))

and because all euclidean structures on vector spaces of thesame finite
dimension are isometric, this

= Vol(Sd−1, ǫ|Sd−1) =
�



�
	d − 1 .

Hence

Vol(U(M), g) =
∫

x∈M

�



�
	d − 1 σ =

�



�
	d − 1 · Vol(M, g).

b) In the general case we take a partition of unity and proceed. Let
{Wi , ϕi} be a partition of unity onM, theW′i s being so small that they
can be oriented. Then we have

(5.2.15)
∑

(ϕi ◦ p) = 1 on U(M)
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wherep : U(M)→ M. Now letσi be an orienting form onWi such that

θ|U(Wi) = |σi |

where

(5.2.16) σi = ω ∧ (p∗σi).

Then we have
∫

U(Wi )

(ϕi ◦ p)θ =
∫

U(Wi )

(ϕi ◦ p)σ =

=

∫

U(Wi )

(ϕi ◦ p)ω ∧ p∗σi .

=

∫

m∈Wi



∫

Um(M)

ω|Um(M)

ϕi |σi | =
�



�
	d − 1
∫

Wi

ϕi |σi |.(5.2.17)

Now by (5.2.17) we have168

Vol(U(M), g) =
∫

U(M)

θ =
∑

i

∫

U(Wi )

(ϕi ◦ p)θ =

=

�



�
	d − 1
∑

i

∫

Wi

ϕi |σi | =
�



�
	d − 1 Vol(M, g).

�

3 Dg = 0

Let us denote the canonical derivation law of ther.m. (M, g) by D. Since
g ∈ L 2(M) and by 4.7, we can introduce the covariant derivative Dg∈
L 3(M). We shall prove that the 3-form Dg is zero.
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3.1

First let us note that the form Dg is symmetric in the last two variables
(becauseg is symmetric):

(5.3.2) Dg(X,Y,Z) = Dg(X,Z,Y) ∀X,Y,Z ∈ C (M).

To start with we shall prove a lemma.

3.3

Lemma.

Dg(y, x, x) = 2 Dg(x, x, y) ∀(x, y) ∈ T(M)×
M

T(M).

Proof. With the notation of (8) let us take a one-parameter familyf such
that

P(0, 0) = x, Q(0, 0) = y,

and f0 is a geodesic. �

Now let us follow the notations of (1). Then sincef0 is a geodesic
by (4.2.1), and (1.7) we have;

(5.3.4) P(β(Q))(0, 0) = 1/2Q(β(P))(0, 0).

Further since the connection is symmetric and [P,Q] = 0 we have 169

(5.3.5) DPQ = DQP

and sincef0 is a geodesic

(5.3.6) (DPP)(t, 0) = 0.

Further, by the definition ofD, we have,at the point(t, 0):

P(β(Q)) = P(g(P,Q))

= Dg(P,P,Q) + g(DpP,Q) + g(P,DpQ)
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= Dg(P,P,Q) + g(P,DpQ) by (5.3.6)

and Q(β(P)) = Q(g(P,P))

= Dg(Q,P,P) + 2g(DQP,P)

= Dg(Q,P,P) + 2g(DPQ,P) by (5.3.5).

Hence by (5.3.4) we have, at the point (t, 0)

2 Dg(P,P,Q) = Dg(Q,P,P),

and hence by the choice of the one parameter family

2 Dg(x, x, y) = Dg(y, x, x).

Proof ofDg = 0. Clearly, by the lemma

(5.3.7) Dg(x, x, x) = 0 ∀x ∈ T(M).

Further, we have, by the lemma,

Dg(y, x+ y, x+ y) = 2 Dg(x+ y, x+ y, y),

i.e. Dg(y, x, x) + Dg(y, y, y) + 2 Dg(y, x, y)

= 2 Dg(x, x, y) + 2 Dg(x, y, y) + 2 Dg(y, x, y) + 2 Dg(y, y, y).

Again by the lemma and (5.3.7) we have

(5.3.8) Dg(x, y, y) = 0.

Hence170

Dg(x, y+ z, y+ z) = 0

i.e. Dg(x, y, y) + Dg(x, y, z) + Dg(x, z, y) + Dg(x, z, z) = 0.

By (3.1) and (5.3.8) we have

2 Dg(x, y, z) = 0.

Hence
Dg = 0.

Hence we have the following
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3.9

Corollary.

(D.L.5) X(g(Y,Z)) = g(DxY,Z) + g(Y,DxZ) ∀X,Y,Z in C (M).

4 Consequences ofDg = 0

Now we shall complete the lemma (6.10) in the:

4.1

Proposition. For every x of T(M) we have

(dα)(z, z′) = g(v(z)), pT (z′)) − g(v(z′), pT(z)) ∀z, z′ ∈ Tx(T(M)).

Proof. We know that the result holds good if at least one ofz andz′ is
a vertical vector (see (6.10)). In view of the bilinearity ofboth the sides
and the direct sum decomposition

Tx(T(M)) = Hx + Vx

it is enough to prove the result∀z, z′ ∈ Hx. Now let Z, Z′ ∈ C (M) be
such that

(5.4.2) Z(p(x)) = pT(z) and Z′(p(x)) = pT(z′).

Then we contend that

dα(ZH ,Z′H) = 0 (see (5.8)).

We have by (0.2.10) 171

(5.4.3) dα(ZH ,Z′H) = ZH(α(Z′H) − Z′H(α(ZH) − α([ZH ,Z′H]).

But for everyX ∈ C (M) we have

α(ZH) ◦ X = g(p′ ◦ ZH ◦ X, pT ◦ ZH ◦ X)

= g(X,Z) by (1.5)C1.,
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and hence

(5.4.4) α(ZH) = g♯(Z).

Now by (5.4.4) and (5.4.3) we have

dα(ZH ,Z′H) = ZH(g♯(Z′)) − Z′H(g♯(Z)) − α([ZH ,Z′H]),

= DZ(g♯(Z′)) − DZ′(g
♯(Z)) − α([ZH,Z′H]) by (5.9).

Hence for everyX ∈ C (M) we have

dα(ZH ,Z′H) ◦ X = DZ(g♯(Z′))(X) − DZ′(g
♯(Z))(X) − α([ZH,Z′H] ◦ X)

(5.4.5)

= Z(g(Z′,X)) − g(Z′,DZX)

−Z′(g(Z,X)) − g(Z,DZ′X) − α([ZH ,Z′H] ◦ X) by (2.4.8)

= g(DZZ′,X) − g(DZ,Z,X) − α([ZH,Z′H] ◦ X) by (3.9).

But

α([ZH,Z′H] ◦ X) = g(p′ ◦ [ZH,Z′H] ◦ X, pT ◦ [ZH,Z′H] ◦ X)(5.4.6)

= g(X, [Z,Z′]) (see the proof of (5.10)).

Hence we have by (5.4.5) and (5.4.6)

(dα)(ZH ,ZH) ◦ X = g(DZZ′ − DZ′Z,X) − g(X, [Z,Z′])

= g([Z,Z′],X) − g(X, [Z,Z′]) by (4.1) D.L.4.

= 0 sinceg is symmetric.

This being so for everyX we have172

(dα)(ZH ,Z′H) = 0.

Now we shall extend the result (3.9). LetN be any manifold and leth,
h′ ∈ D(N,T(M)) be such thatp ◦ h = p ◦ h′. Then we can define a
function g(h, h′) on N by setting

(5.4.7) g(h, h′)(n) = g(h(n), h′(n)), n ∈ N.

Sinceh(n), h′(n) ∈ Tp(h(n))(M), we have the following result. �
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4.8

Corollary. With the above notation we have

(C.D.7) X(g(h, h′)) = g(DXh, h′) + g(h,DXh′)∀X ∈ C (N).

Proof. This follows directly from (4) and Dg= 0. �

4.9

Corollary. Parallel transport preserves g.

Proof. Clearly it is enough to prove the result for a curve instead offor
a path. Letf ∈ D(I ,M) be a curve and leth andh′ be parallel lifts of f
such that

h(0) = x and h′(0) = y.

Then we have
d
dt

(g(h(t), h′(t)) = P(g(h, h′)) =

g(Dph, h′) + g(h,Dph′) by (5.4.7)

= 0 since Dph = Dph′ = 0.

Henceg(h, h′) is constant onI . Hence 173

g(h(t), h′(t)) = g(h(0), h′(0)) ∀t ∈ I .

�

5 Curvature

From the definition ofR(see (5.1)) and from (1.6) iii) it follows, directly,
thatR is invariant under isometries, i.e.

5.1

Proposition. If
f : (M, g)→ (N, h)

is an isometry then∀X, Y, Z∈ C (M) we have

f T ◦ MR(X,Y)Z ◦ f −1
=

NR( f T ◦ X ◦ f −1, f T ◦ Y ◦ f −1)( f T ◦ Z ◦ f −1).
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5.2

Remark. Let us note that this result in particular implies that an r.m. in
general, is not locally isometric toRd. For, forRd, R= 0 by (5.4).

Now let us consider the map

(5.5.3) (X,Y,Z,T)→ g(R(X,Y)Z,T); C 4(M)→ R

and prove

g(R(X,Y)Z,T) = −g(R(X,Y)T,Z)(5.5.4) C.T.3

g(R(X,Y)Z,T) = g(R(Z,T)X,Y)(5.5.5) C.T.4

Proof. C.T.3. We have by the definition ofR

(5.5.6) g(R(X,Y)Z,Z) = g(DXDYZ,Z)− g(DYDXZ,Z)− g(D[X,Y]Z,Z).

By by (3.9) D.L.5. we have

g(D[X,Y]Z,Z) =
1
2

[X,Y](g(Z,Z))

g(DXDYZ,Z) = X(g(DYZ,Z)) − g(DYZ,DXZ)

and g(DYDX Z,Z) = Y(g(DXZ,Z)) − g(DXZ,DYZ)

and hence by (5.5.6)174

(5.5.7)

g(R(X,Y)Z,Z) = X(g(DYZ,Z)) − Y(g(DXZ,Z)) − 1
2

[X,Y](g(Z,Z));

and again by (3.9)

= X(
1
2

Yg(Z,Z)) − Y(
1
2

Xg(Z,Z)) − 1
2

[X,Y]g(Z,Z) = 0.

Now if we replaceZ by Z + T in (5.5.7) and carry out the cancellation
we get C.T.3. �

Note .We sketch here the geometrical reason for which (C.T.3) holds:
because parallel transport leavesg invariant, and thanks to (7.11), the
endomorphismR(X,Y) belongs to the tangent space of the orthogonal
group (i.e. its Lie algebra); this fact is nothing but (C.T.3).
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C.T.4

We use C.T.1., C.T.2. and C.T.3. and prove the result

In the octahedron, the sum of the terms at the three vertices of every 175

shaded triangle is zero by (C.T.1), (C.T.2) and (C.T.3). Nowadding the
terms corresponding to the triangles above and subtractingthe similar
sum for the lower ones from it we get

2(g(R(X,Y)Z,T)) − 2g(R(Z,T)X,Y)) = 0.

6 Jacobi fields in an r.m.

Suppose thatf ∈ D(I ,M) is a geodesic in an r.m. (M, g) and thath is a
Jacobi field alongf . Then we have the following proposition.

6.1

Proposition. If for some t0 ∈ I,

g( f ′(t0), h(t0)) = g( f ′(t0), (DPh)(t0)) = 0
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then
g( f ′, h) = 0 on I.

Proof. We have

d
dt

(g( f ′, h)) = P(g( f ′, h))(5.6.2)

= g(DP f ′, h) + g( f ′,DPh) by (4.8) (C.D.7)=

= g( f ′,DPh) by (7.3)

and again by (4.8) and (7.3).

d2

dt2
(g( f ′, h)) =

d
dt

(g( f ′,DPh)) =
d
dt

(g( f ′,DPh))(5.6.3)

= g( f ′,R( f ′, h) f ′) by the definition of a

of a Jacobi field (see (8.9))

= 0 by ((5.5.5) C.T.4) C.T.3.

Hence
g( f ′,DPh) is constant onI .

But, by hypothesisg( f ′,DPh)(0) = 0, and henceg( f ′, h)) is constant on176

I . But g( f ′, h)(0) = 0. Henceg( f , h) = 0. �

6.4

Definition. An r.m. of dimension two is called asurface.
As an application of the above proposition we prove the existence of

nice coordinate neighbourhoods for surfaces.

6.5

Application. Given a surface(M, g) and a point m of M there exists a
chart (U, r) such that m is in U and if we denote the local coordinates
with respect to(U, r) by x and y then

g|U = dx2
+ K(x, y)dy2.
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Proof. Let {x0, y0} be an orthonormal base ofTm(M) and let S ∈
D(J′′,M) be any curve inM such that

(5.6.6) S′(0) = x0 and ||S′(α)|| = 1.

�

6.7

Then choose the lift̃S(α) of S throughy0 such that at each pointα, S′(α)
andS̃(α) form an orthonormal basis forTS(α)(M) (see (1.2)). Now by
taking a suitable sub intervalJ′ of J′′ and an intervalI we can consider
the one parameter family

f : I × J′ → M(5.6.8)

f (t, α) = exp(t · S̃(α)).

As in the proof of (8.26) we get

P(0, 0) = ( f T ◦ P)(0, 0) = x0

Q(0, 0) = ( f T ◦ Q)(0, 0) = y0
(5.6.9)

and hencef T(0, 0) is an isomorphism. Therefore by choosingI and J
sufficiently small we see, by the inverse function theorem, that

(5.6.10) f : I × J→ f (I × J) = U

is a diffeomorphism. Now set 177

(5.6.11) f −1|U = r

and

(5.6.12) x = t ◦ r, y = α ◦ r.

Then we have

(5.6.13) g|U = g(P,P)dx2
+ 2g(P,Q)dx dy+ g(Q,Q)dy2.
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We have

g(P,P)(0, α) = ||S̃(α)|| = 1 by the definition of̃S(α)

and

g(P,P)(t, α) = g(P,P)(0, α)

by (3.2) since for eachα, fα(t) is a geodesic, and hence

(5.6.14) g(P,P) = 1.

Further from the proof of (8.26) it follows that for eachα

(5.6.15) t → Q(t, α) = hα(t)

is a Jacobi field along the geodesicfα(t). Further

g( f ′(0), hα(0) = g(P,Q)(0, α)(5.6.16)

= g(S̃(α),S′(α)) = 0

by our construction; and also

g( f ′α(0),DPhα(0)) = g(P,DPQ)(0, α)(5.6.17)

= g(P,DQP)(0, α) by 4.1 D.L.4.,

= g(S̃,DQS̃)(0, α)

=
1
2

Q(g(S̃, S̃)) by (4.8)

= 0 by the construction of̃S.

Now (6.1) gives that178

(5.6.18) g(P,Q)(t, α) = 0

Now the result follows if we setK(x, y) = g(Q,Q).
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6.19

Proposition. Let (M, g) be an r.m. let f∈ D(I ,M) be a geodesic and let
h be a Jacobi field along f . Then

i)
d(E ◦ h)

dt
= 2g(DPh, h)

ii )
d2(E ◦ h)

dt2
= E ◦ DPh+ g(R( f ′, h) f ′, h)

iii) if h(0) = 0 and(DPh)(0) = y with ||y|| = 1 then

||h(t)|| = t +
t3

6
g(R( f ′(0), y) f ′(0), y) + 0(t3),

where
0(t3)

t3
→ 0 with t.

Proof. By (4.8) we have

(5.6.20)
d
dt

(E ◦ h) = P(g(h, h)) = 2g(DPh, h)

and again by (4.8), we have

d2

dt2
(E ◦ h) = 2P(g(DPh, h))

= 2g(DPDPh, h) + 2g(DPh,DPh)

= 2g(R( f ′, h) f ′, h) + 2E ◦ DPh by the definition (8.9).

Now with the notation of (2.7.9) by (8.18) we have 179

(5.6.21) ĥ(t) = ty+
t3

6
(R( f ′(0), y) f ′(0)+ 0(t3)

and hence

||̂h(t)||2 = t2g(y, y) +
t4

3
g(R( f ′(0), y) f ′(0), y) + 0(t4)
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= t2
(
1+

t2

3
g(R( f ′(0), y) f ′(0), y) + 0(t2)

Sinceh(t) is the parallel transport of̂h(t) along f we have by (4.9)

||h(t)|| = ||̂h(t)||

Now the rest is the expansion formula for

√
1+ δ.

Sometimes it is convenient to re parametrise the arcs by their arc lengths
and then deal with them. In the case of geodesics which are nontrivial
this re parametrisation is always possible. Letf be a geodesic. Then we
know that|| f ′|| is constant, by (3.2), sayθ. Thenθ , 0 and for f ◦ k−θ
we have

||( f ◦ k−θ)
′|| = 1 (see (5.11)).

�

6.22

Now for any vectorx in U(M) let us denote the curve

t → exp(tx)

byγx(t).
By applying a change of parameter, from (8.29) we get the following

result.

6.23

Proposition. For every non zero x inΩ and y∈ Tp(x)(M), we have180

expT
m(ζ−1

x y) = h(||x||)

where h is the Jacobi field alongγx/||x|| such that h(0) = 0 and
(DPh)(0) = y/||x||.
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Proof. By (8.29) we have

expT
m(ζ−1

x y) =
◦
h(1)

where
◦
h is the Jacobi field along

◦
f : t → exp(t · x)

such that
◦
h(0) = 0 and (DP

◦
h)(0) = y.

Butγ

(
x

x/||x||

)
=

◦
f ◦k||x||−1 and if we set

◦
f ◦k||x||−1 = f and

◦
h◦k||x||−1 = h

thenh is a Jacobi field alongf such thath(0) =
◦
h(0) = 0 andh(||x||) =

◦
h(1) = expT

m

(
ζ−1

x y
)
.

But DPh = DP(
◦
h ◦ k||x|| − 1) = ||x||−1DP

◦
h, so that

DPh(0) = ||x||−1DP

◦
h = y/||x||.

�

6.24

Gauss Lemma.For every x and y in Tm(M) such that

(5.6.25) x , 0, x ∈ Ω and g(x, y) = 0

we have
g(expT

m(ζ−1
x x), expT

m(ζ−1
x y)) = 0.

Proof. Let h be the Jacobi field alongγx/||x|| such thath(0) = 0 and 181

(DPh)(0) =
y
||x|| . Then we haveγ′x/||x||(0) =

x
||x|| and hence

g(γ′x/||x|| , h)(0) = g

(
x
||x|| , 0

)
= 0,
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g(γ′x/||x|| ,DPh)(0) = g

(
x
||x|| ,

y
||x||

)
= 0 by (5.6.25).

Hence by (6.1) we have

(5.6.26) g(γ′x/||x|| , h) = 0,

and hence in particular

g(γ′x/||x|| , h)(x) = 0.

But by (6.23) we have

(5.6.27) h(||x||) = expT
m(ζ−1

x y).

Further

γ x
||x||

(t) = exp

(
t · x
||x||

)
= (expm◦S)(t)

where182
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S(t) = t · x
||x|| .

Hence
γ′x/||x|| = expT

m◦S′.

But

(5.6.28) S′(t) = ζ−1
tx
||x||

(
x
||x||

)

and hence

(5.6.29) γ′x/||x|| =
1
||x|| expT

m(ζ−1
x x).

Now our result follows from (5.6.26), (5.6.27) and (5.6.29).
Now for anm in M and a non zerox in Tm(M) set

Lx =
{
kζ−1

x x|k ∈ R
}

(5.6.30)

Nx =
{
ζ−1

x y|g(x, y) = 0
}
.(5.6.31)

Then we have the following corollary. �

6.32

Corollary. With the above notation, we have

i) ||expT
m(u)|| = ||u||, if u ∈ Lx

ii) g(expT
m(Lx), expT

m(Nx)) = 0.

Proof. The proof of the first part follows from the fact thatLx is one
dimensional and by (5.6.29), (7.3) and (4.9). The second part follows
from Gauss’ lemma. �





Chapter 6

Sectional Curvature

Let (M, g) be an r.m. of dimensiond greater than one, and letx andy 183

be two linearly independent tangent vectors at a pointm of M. Let us
denote the subspace generated by x and y by P(x, y). Let e1 ande2 be

an orthonormal basis ofP(x, y). We recall that the norm on
2
∧Tm(M) is

given by
||x∧ y||2 = ||x||2 · ||y||2 − (g(x, y))2.

Now we shall prove the following proposition.

0.33

Proposition . For (x, y) ∈ T(M)×
M

T(M), such that x and y are linearly

independentthe quantity

(6.1.2) A(x, y) = −g(R(x, y)x, y)

||x∧ y||2
,

depends only on P(x, y).

Proof. Let x′ andy′ be two vectors such that

P(x, y) = P(x′, y′).

Then we have numbersa, b, a′, b′ such that

x′ = ax+ by and y′ = a′x+ b′y.

179
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Then

R(x′, y′) = R(ax+ by, a′x+ b′y) = (ab′ − ba′)R(x, y), by (5.2) (C.R.1).

Hence

g(R(x′, y′)x′, y′) = (ab′ − ba′)g(R(x, y)x′, y′)

= (ab′ − ba′)g(R(x′, y′)x, y) by ((5.5.5) C.T.4)(C.T.4)

= (ab′ − ba′)2g(R(x, y)x, y)

and further184

x′ ∧ y′ = (ab′ − a′b)(x∧ y)

and hence

||x′ ∧ y′||2 = (ab′ − ba′)2 · ||x∧ y||2.

�

0.3

For any two dimensional subspaceP of the tangent spaceTm(M) we
denote the above quantity by

A(P) = A(x, y)

and call the “function” Athe sectional curvatureof (M, g).

0.4

We set

P(M) = {P ⊂ Tm(M)|m ∈ M and dimP = 2}
A(M) = {A(P)|P ∈P(M)}.
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0.5

Proposition. Let
λ : (M, g)→ (N, h)

be an isometry, then

MA(P) = NA(λT (P))∀P ∈P(M).

Proof. By (5.1) the curvature is invariant under isometry and by the
definition of isometry the r.s. is invariant under it. Hence the result. �

2 Examples
185

If ( M, g) is a surface then the tangent space at each pointm of M is
two dimensional and henceA assumes only one value on the set of two
dimensional subspaces ofTm(M). HenceA can be considered as a func-
tion on M itself. Now let us computeA and verify that it is nothing but
the so-called Gaussian (or total) curvature of our surface (M, g).

Let us take a coordinate system{x, y} which has been constructed in
(6.5) and follow the notations of that proof. We use propositions (8.7)
and (7.10) and computeC. Let

(6.2.1) ω : t → ωα(t)

be the parallel lift offα such that

(6.2.2) ωα(0) = Q(0, α).

Then by (4.9) we have

g(ωα(t), ωα(t)) = 1.

Since f ′α(t) is a parallel life offα by (4.9) we have

g(ωα(t), f ′α(t)) = g(ωα(0), f ′α(0)) = g(Q,P)(0, α) = 0.

Therefore
Q(t, α) = θ(t, α)ωα(t)
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and hence

(6.2.3) Q̂(t, α) = θ(t, α)ωα(0). (see (2.7.9)).

But186

g(Q̂(t, α), Q̂(t, α)) = g(Q(t, α),Q(t, α)) = k(t, α)

and hence by (6.2.3)

(6.2.4) θ(t, α) = (k(t, α))1/2.

Now by (8.7)

(6.2.5) R(P,Q)P = DPDPQ =
∂2θ(t, α)
∂t2

· ωα(t).

We have

g(R(P,Q)P,Q) = g

(
∂2θ(t, α)

∂t2
ωα(t), θ(t, α)ωα(t)

)
= θ(t, α)

∂2θ(t, α)

∂t2

Further
||P∧ Q||2 = θ(t, α)2.

Hence by the definition ofA we have

(6.2.6) A(t, α) = − t
θ(t, α)

∂2θ(t, )

∂t2
.

2.7

This is nothing but the value of the Gaussian curvature when computed
in a local coordinate system of the type of (6.5) (see, for example [31]:
formula (3, 2) on p.196).

2.8

The concept of sectional curvature is very powerful. Very simple re-
strictions onC can have deep implications. For example:
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2.9

Proposition . If A(M) ⊂] − ∞, 0] then for every m of M,expm is of
maximal rank on Tm(M) ∩ Ω.

Proof. To prove this we use (8.32). Letx ∈ Tm(M) ∩ Ω and let f : t → 187

exp(t · x) be a geodesic, and leth be a Jacobi field alongf such that

(6.2.10) h(0) = 0 and h . 0.

Then we have by (6.19) ii)

d2(E ◦ h)

dt2
= 2E ◦ DPh+ 2g(R( f ′, h) f ′, h) ≥ . . .(6.2.11)

. . . ≥ 2g(R( f ′, h) f ′, h) = −A( f ′, h)|| f ′ ∧ h||2 ≥ 0.

Hence the functionE ◦ h is a non-negative convex function which is not
identically zero and hence it can vanish at most at one point.Henceh
cannot vanish outside 0 and we are through by (8.32). �

2.12

By 5.4R= 0 for (Rd, ǫ). HenceA(Rd) = {0}.

2.13

Now let us consider the sectional curvature of the three symmetric pairs
(Sd, can), (Pd(R), can), (Rd, hyp) (see (4)). We write any of themM =
G/H; sinceG operates transitively and by isometries onM, (0.5) yields

(6.2.14) A(M) = A(Tm0(M))∀m0 ∈ M.

By (4.17) and (4.21) we have in fact:A(M) consists of a single real
number, sayk.

2.15

Definition. An r.m.(M, g) for which∃ k ∈ R with A(M) = {k} is called
an r.m. ofconstant sectional curvature.
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Hence the three symmetric pairs are of constant sectional curvature
and so is (Rd, can). The corresponding constant is 0 for (Rd, can), 1 for
(Sd, can) or (Pd(R), can) by (6.3.12) and (4.19) B. We shall **********

move that the constant is< 0 for (
•

R
d, hyp). We do this by global ar-188

guments and use the results of Chapters VII and VIII. First (R
d, hyp) is

completein the sense of (4) because geodesics throughm0 are defined
on the wholeRd (see 4.21 to 4.22). Now this remark together with the
fact that the sectional curvature is constant and is equal tok and (3.7) en-
ables us to exclude the casek > 0; and we are left to throw out the case
k = 0. If k = 0 then (Rd, hyp) would be locally isometric to (Rd, can)
by (6.4.35). By (1.8) theτ(expX) for X ∈ M in the symmetric space
(Rd, hyp) are products of symmetries around points ofM; those symme-
tries are determined by the r.s. of (M, g) hence those symmetries are the
same (locally) as in (Rd, can). In conclusion theτ(expX) are isomor-
phic to those in (Rd, can); but the latter are the translations and hence
commute. That would imply [M,M] = 0; it is easy to check that for
(S00(d, 1),S0(d)) this isnot the case. By using (6.3.12)we normalise k
in (Rd, hyp) so as to haveA(Rd, hyp)= {−1}.

2.16

Proposition. For any k∈ R there exists a simply connected r.m.(M, g)
such that A(M, g) = {k}. We may take

(Sd, k−1/2 · can) for k > 0

(Rd, can) for k = 0

(Rd, (−k)−1/2 · hyp) for k < 0.

3 Geometric interpretation
189

3.1

Definition. For P ∈P(M) set

S(P, r) =
{
x ∈ P

∣∣∣ ||x|| = r
}
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and when S(P, r) ⊂ Ω set:

S(P, r) = exp(S(P, r)).

We callS(P, r) the circle of radiusr in P.

3.2

Note.Let us note that ifP is a subspace ofTm(M) and expm is r′-O.K.
wherer < r′, then the image of the circle S(P, r) is a compact subman-
ifold of M of dimension one. So forr sufficiently small by 5.3 we can
consider the length (lg(S(P, r))). To compute lg(S(P, r)) let us take an
orthonormal basis{x, y} of P and the parametric representation

(6.3.3) v : [0, 2π] ∋ α→ r.e.(α) ∈ S(P, r)

where
e(α) = cosα · x+ sinα · y.

Now let us set

(6.3.4) S = exp◦v.

Then we have

(6.3.5) lg(S(P, r)) =

2π∫

0

||S′||dα.

We have
S′ = expT ◦v′

and by the definition ofv

ζ(v′(α)) = r.e.
(
α +

π

2

)

and hence

(6.3.6) S′ = expT
(
ζ−1

r.e(α)

(
r.e.

(
α +

π

2

)))
.
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3.7
190

Now if we denote byhα the Jacobi field alongγe(α) such that

hα(0) = 0 and (DPhα)(0) = e
(
α +

π

2

)
,

then by (6.23) and by (6.3.6) we have

S′(α) = hα(r).

Then by (6.19) iii) we have

||S′(α)|| = r +
r3

6
g(R(e(α), e(α +

π

2
))e(α), e(α +

π

2
)) + 0(r3) =(6.3.8)

= r − r3

6
A(P) + 0(r3).

Hence by (6.3.5) we have

(6.3.9) lg(S(P, r)) = 2πr − πr3

3
A(P) + 0(r3).

Therefore we get

(6.3.10) A(P) = lim
r→0

3

πr3
(2πr − lg(S(P, r))).

3.11

Application . As an application of the above formula we note the fol-
lowing: Let (M, g) be an r.m. and let us denote the A of the manifold
(M, kg) where k> d by A′. Then we have by (5.4) and(6.3.10).

(6.3.12) A′(P) =
1
k2

A(P).
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3.12

Example.Now let us calculateA for (Sd, can). We have

exp(S(α)) = cosr · ed+1 + sin r.e(α)

by the proof of (5.12) and hence

||S′|| = sinr.

Therefore 191

lg(S(P, r)) = 2π sinr

= 2π

(
r − r3

6
+ 0(r3)

)

and henceA(P) = 1∀P. Instead of proceeding with circles we can pro-
ceed, in a similar manner, with discs B(m, r) ∩ P (for someP ∈P(M))
and thus get

(6.3.15) A(P) = lim
r→0

12
πr4

(πr2 − ar(exp B(m, r) ∩ P)).

The proof is left to the reader as an exercise.

4 A criterion for local isometry

In this article we give a result of Elie Cartan which gives a criterion for
local isometry.

To start with we shall prove a result which is purely algebraic and
asserts, essentially, that the sectional curvature determines the curvature
tensor.

4.1

Proposition. Let V and V′ be vector spaces with euclidean structures g
and g′, and let

v : V → V′
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be a euclidean isomorphism. Let R and R′ be bilinear maps

R : V × V → End(V)

R′ : V′ × V′ → End(V′)

such that properties C.T.1, C.T.2, C.T.3 (and hence C.T.4) hold for R and
R′. Let A and A′ be the maps defined by means of R and R′ as in(6.1.2).
Then192

i) if an element x in V is such that for every y which is not linearly
dependent on x we have

(6.4.2) A(x, y) = A′(v(x), v(y))

then
R′(v(x), v(y))v(x) = v(R(x, y)x) ∀y ∈ V.

and

ii) if A′(v(x), v(y)) = A(x, y) for every x and y in V which are linearly
independent then

R′(v(x), v(y))v(x) = v(R(x, y)z) ∀x, y, z ∈ V.

Proof. i) Let y and z be elements inV such that the pairs{x, y},
{x, y} and{x, y+ z} are linearly independent. Then by hypothesis
we have

(6.4.2) A(x, y+ z) = A′(v(x), v(y+ z))− = A′(v(x), v(y) + v(z)).

Hence using trilinearity ofR and C.T.4 we have by definition of
A andA′

A(x, y) + A(x, z) − 2g(R(x, y)x, z)
||x∧ (y+ z)||2

= . . .(6.4.3)

. . . =
A′(v(x), v(y)) + A′(v(x), v(z)) − 2g(R(v(x), v(y))v(x), v(x)).

||v(x) ∧ (v(y) + v(z))||2
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By (6.1.2) and the fact thatV is a euclidean isomorphism and
(6.4.3) we have

(6.4.4) g(R(x, y)x, z) = g′(R′(v(x), v(y))v(x), v(z)).

Again sincev is a euclidean isomorphism we have

g(R(x, y)x, z) = g(v−1(R(v(x), v(y))v(x)), z)

and, sinceg is non-degenerate, varyingz, we have 193

(6.4.5) v(R(x, y)x) = R′(v, (x), v(y))v(x).

The proof is trivial in casex andy are linearly dependent (C.T.1).

ii) Substitutingx+ z for x in (6.4.5) and using (6.4.5) we have

v(R(x, y)z) + v(R(z, y)x) = R′(v(x), v(y))v(z) + R′(v(z), v(y))v(x).

i.e.
(6.4.6)
v(R(x, y)z) − R′(v(x), v(y))v(z) = −v(R(z, y)x) − R′(v(z), v(y))v(x).

This means that if we denote the map

(x, y, z) → v(R(x, y)z) − R′(v(x), v(y))v(z)

by θ we have

(6.4.7) θ(x, y, z) = −θ(z, y, x).

But by C.T.1 we also have

(6.4.8) θ(x, y, z) = −θ(y, x, z).

Now by (6.4.7) and (6.4.8) we have

(6.4.9) θ(x, y, z) = −θ(z, y, x) = θ(y, z, x)

i.e. a cyclic permutation ofx, y, zdoes not alterθ. Hence we have

3θ(x, y, z) = θ(x, y, z) + θ(y, z, x) + θ(z, x, y).
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But by using C.T.2. we have

θ(x, y, z) + θ(y, z, x) + θ(z, x, y) = 0.

Hence
θ(x, y, z) = 0.

�

Example.As an example let us note that ifA(M) = {0} thenR= 0.194

4.10

In what follows, if x ∈ U(M), we denote the parallel transport along the
geodesic

γx : t → exptx

from γx(0) toγx(t) by τ(x, t).
Then the main theorem can be stated as follows:

4.11

Theorem.Let (M, g) and (N, h) be two r.m.’s. Let m and n be points in
M and N such that there exists

i) a euclidean isomorphism u between(Tm(M), gm) and (Tn(N), gn)
and

ii) an r > 0 such thatexpm is r-O.K. and B(n, r) ⊂ N
Ω and further

that for every x, y in Um(M) which are linearly in dependent and
every t in]0, r[ we have
(6.4.12)

NC(τ(u(x), t)u(x), τ(u(x), t)u(y)) = MC(τ(x, t)x, τ(x, t)y).

Then there existsλ ∈ D(B(m, r), B(n, r)) such that

λ∗(h)|B(n, r) = g|(B(m, r)).

Proof. First let us prove a lemma. �
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4.13

Lemma . Under the assumptions of the above theorem, if x∈ Um(M)
and h and h1 are Jacobi fields alongγx andγu(x) respectively such that

(6.4.14) h1(0) = u(h(0)) and (DPh1)(0) = u((DPh)(0))

then
h1(t) = (τ(u(x), t) ◦ u ◦ τ(x, t)−1)h(t).

Proof. With the notations (2.7.9) and (2.8.16), by the definition ofτ(x, t) 195

we have

(6.4.15)
d2̂h

dt2
=

M̂R(t)̂h(t) = τ(x, t)−1(MR(γ′x(t), ĥ(t)γ′x(t)).

Sinceγ′x(t) is a parallel lift ofγx(t) andτ(x, t) is the parallel transport
alongγx we have

(6.4.16) γ′x(t) = τ(x, t)γ
′
x(0) = τ(x, t)x.

Hence, by (6.4.15) we have

(6.4.17)
d2̂h

dt2
= τ(x, t)−1(MR(τ(x, t)x, τ(x, t)̂h(t))(τ(x, t)x)).

Let us note that the map

(6.4.18) vt = τ(u(x), t) ◦ u ◦ τ(x, t)−1

FromTexptx(M) to Texpt·u(x)(N) is a euclidean isomorphism since paral-
lel transport preserves the euclidean structure (see (4.9)) and sinceu is
a euclidean isomorphism.

Now applying the first part of (4.1) tov we have

NR(τ(u(x), t)u(x), τ(u(x), t)u(̂h(t)))(τ(u(x), t))u(x)) = . . .

= vt

[
MR(τ(x, t)x, τ(x, t)̂h(t))(τ(x, t)x))

]
.

(6.4.19)

Hence sinceu is linear we have

d2(u ◦ ĥ)

dt2
= u ◦ d2h

dt2
= . . .
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. . . = τ(u(x), t)−1NR(τ(u(x), t)u(x), τ(u(x), t)u(̂h(t))τ(u(x), t)u(x).

(6.4.20)

Now let us note, as above (6.4.16), that196

γ′u(x)(t) = τ(u(x), t)u(x)

and hence by (6.4.20)

(6.4.21)
d2(u ◦ ĥ)

dt2
=

N̂R(t)((u ◦ ĥ)(t)).

But by (2.8.4) we have

(6.4.22)
d2̂h1

dt2
=

N̂R(t)̂h1(t).

Henceu ◦ ĥ andĥ1 satisfy the same second order differential equation;
and further the assumptions (6.4.14) are the same as

ĥ1(0) = (u ◦ ĥ)(0) and
d̂ht

dt
(0) = u


d̂h
dt

(0)

 =
d(u ◦ ĥ)

dt
(0)

sinceu is linear and this means thatĥ1 andu ◦ ĥ satisfy the same differ-
ential equation with the same initial conditions. Hence

(6.4.23) ĥ1 = u ◦ ĥ

and hence

(6.4.24) h1(t) = vt ◦ h(t) ∀t.

�

Proof of the theorem.By (2.6) we have to defineλ by:

(6.4.25) λ = N expn ◦u ◦ (M expm |B(m, r))−1;

we check thatλ is indeed a local isometry. To show this we have only
to prove that the map197
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λT
a : Ta(M)→ Tλ(a)(N)

is a euclidean isomorphism∀a ∈ B(m, r). We first note, sinceu is linear,
that

(6.4.26) uT ◦ ζ−1
x = ζ

−1
u(x) ◦ u, x ∈ Tm(M).

Now, for a = m, using (4.6) we have

λT
m = ζ0n ◦ uT ◦ ζ−1

0m
= ζ0n ◦ ζ−1

0n
◦ u = u

and hence we are through in casea = m. In the other case∃ t ∈]0, r[
andx ∈ Um(M) such that

(6.4.27) a = M expm(t · x).

Now let z be any element ofTa(M). SinceM expm is r-O.K. anda ∈
B(m, r) there exists anω in Tt·x(Tm(M)) such that

(6.4.28) z= M expT
m(ω).

Now set

(6.4.29) y = ζ(ω).

By (6.23) we have

(6.4.30) z= h(||t · x||) = h(t)

whereh is the Jacobi field alongγx such that

(6.4.31) h(0) = 0 and DPh(0) =
y
||t · x|| =

y
t
.

Further by the definition ofλ andy we have
(6.4.32)
λT(z) = (N expn)T ◦ uT ◦ (ζ−1

tx (y)) = (N expn)T ◦ ζ−1
tx (u(y)) by (6.4.25)

and hence, again by (6.23), we have 198
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(6.4.33) λT(z) = h1(||t · u(x)||) = h1(t)

(sinceu is a euclidean isomorphism) whereh1 is the Jacobi field along
λu(x) with

(6.4.34) h1(0) = 0 and DPh1(0) =
u(y)
||t · u(x)|| =

u(y)
t
= u

(y
t

)
.

Now consideringvt, h, h1 and applying (because of (6.4.31) and
(6.4.34)) the lemma we have

(6.4.35) h1(t) = vt ◦ h(t) ∀t

wherevt is given by (6.4.18). Butvt is a euclidean isomorphism and
hence the result follows by (6.4.33), (6.4.33) and (4.36).

4.35

Corollary. Any two r.m.’s of constant sectional curvature k are locally
isometric. Hence, by(6.3.12)any r.m. of constant sectional curvature k
is locally isometric to

(Sd, k−1/2, can) if k > 0

(Rd, ǫ) if k = 0

(Rd, k−1/2, hyp) if k < 0.

4.36

Remarks. 1) For a global result on manifolds of constant sectional
curvature see (7)

2) For a global result in general see [1]

3) In general the knowledge of sectional curvature (which isthe
same by (4.1) as that of curvature tensor) does not determine, even
locally, the r.s. In fact there exist r.m.’s (M, g) and (N, h) such that199

there exists a diffeomorphismλ such that
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i) MA(P) = NA(λT(P))∀P ∈P(M) and

ii) λ is not an isometry.

The theorem (4.11) says that if for all geodesics through a point, λ
preserves the sectional curvature of planes correspondingunder parallel
transport along geodesics, thenλ is a local isometry at this point.

5 Jacobi fields in symmetric pairs

In this article we assume that (M, g) is an r.m. associated to a sym-
metric pair (G,H) and follow the notation of (3) and of (4).

Let f be a geodesic inM. Then by (1.8) the parallel transportτ( f ′, t)
along f is given by the tangent maps of isometries. Hence by (1.6) we
have the:

5.1

Proposition. Let m be a point of(M, g). Then

i) τ(x, t)(R(x, y)x) = R(τ(x, t)x, τ(x, t)y)τ(x, t)x ∀x ∈ Um(M), ∀y ∈
Tm(M) and

ii) A(x, y) = A(τ(x, t)x, τ(x, t)y) if x, y are linearly independent.

5.2

Remark. The converse of (5.1) ii) is true: an r.m. where parallel trans-
port preserves sectional curvature is locally isometric toa symmetric
space: see Chapter IV of [14]. The relation (5.1) i) gives a complete in- 200

formation about Jacobi fields ofM. For now the formula (6.4.15) gives

(6.5.3)
d2̂h

dt2
= R(x, ĥ(t))x.

Now let us introduce the endomorphismR(x) of Tm(M) by setting:

(6.5.4) R(x)y = R(x, y)x ∀y ∈ Tm(M).
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Then by ((5.5.5) C.T.4) we have

g(R(x)y, z) = g(R(x, y)x, z) = g(R(x, z)x, y) = g(R(x)z, y)

and henceR(x) is symmetric. Now by the reduction process of quadratic
forms to diagonal form we see that there exist real numbersλ1, . . . , λd

and an orthonormal basis{x1, . . . , xd} of Tm(M) such that

(6.5.5) R(x)xi = λi xi , i = 1, . . . , d.

But sinceR(x)x = 0, andx is in Um(M) we can assume thatx1 = x
andλ1 = 0. For any lift h of f into T(M) there correspond functions
ψ1, . . . , ψd such that

ĥ(t) =
∑

i

ψi(t)xi

and by (7.10) we have

d2̂h(t)

dt2
=

∑

i

d2ψi(t)

dt2
· xi .

Further ifh is a Jacobi field then by (6.5.3) we have

(6.5.6)
d2ψi

dt2
= λiψi .

In particular we define fori = 1, . . . , d a Jacobi fieldhi by201

hi(0) = 0 and (DPhi)(0) = xi .

Then we have

(6.5.7) hi(t) =



(−λi)−1/2 · sin(
√
−λi · t) · xi if λi < 0

t · xi if λi = 0

(λi)−1/2 · sh(
√
λi · t) · xi if λi > 0.

Let us note that by ((5.5.5) C.T.4)

(6.5.8) λi = g(R(x)xi , xi) = g(R(x, xi)x, xi) = −A(x, xi).
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6 Sectional curvature of S.C.-manifolds

In this article we assume that (M, g) stands for an S.C.-manifold and
follow the notations of (4). We already know (by (2)) thatA(M) = {1}
for (Sd, can) and (Pd(R), can). In the following proposition we think of
the remark (5.6) for the case ofP2(Γ): then “y is orthogonal toK · x”
stands for “y is orthogonal to the fibre throughx”. Note that the proof
below, for the case ofP2(Γ), uses only (5.7).

6.1

Proposition. Let (M, g) be an S.C.-manifold, which is(Pn(K), can)with
n > 1, K , R or P2(Γ).

Then
A(M) = {1, 4};

more precisely, if x, y areR-independent: 202

i) A(x, y) = 4 if x, y are K-dependent

ii) A(x, y) = 1 if y is orthogonal to K· x.

Proof. ***** (6.6.2). By (5.4) all geodesics throughm0 are closed and
are of lengthπ. By (8.26) every Jacobi field along a geodesicγx can be
realised as the variations of vectors along a family of geodesic curves.
Hence it follows that any Jacobi field along a geodesic through m0 which
vanishes atm0 for t = 0 vanishes again fort = π. Now let x ∈ Um0(M)
and the corresponding objects

{x = x1, x2, . . . , xd}, {λ1 = 0, λ2, . . . , λd}, {h1, h2, . . . , hd}

be as in (5). Hencehi (π) = 0 implies, necessarily by (6.5.7) thatλi < 0
and we have

(6.6.3) hi(t) = (−λi)
−1/2 · sin(

√
−λi · t) · xi .

Againhi(π) = 0 impliesλi ∈ {−1,−4,−9, . . .}. Now by (8.32) and (5.12)

we knowhi(t) cannot vanish on ]0,
π

2
[, henceλi = −1 or−4.

This implies already thatA(M) ⊂ {1, 4} for the eigen values ofR(x)
on the orthogonal complement ofx are 1 or 4 (by (6.5.8)).
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(i) Now let xi beK-dependent onx and leth be the Jacobi field along
γx given by the variations of vectors along the one parameter fam-
ily of geodesics

γ(cosα)·x+(sinα)·xi (t).

Then, since each (cosα) · x+ (sinα) · xi is K-dependent onx by203

(5.7) (ii), it follows that all of them meet att =
π

2
and hence

hi

(
π

2

)
= 0,

henceλi = −4.

(iii) Suppose conversely thatλi = −4 and set

e(α) = (cosα) · x+ (sinα) · xi and S(α) = exp
(π
2
· e(α)

)
.

Then (see (6.3.6)) we have

S′(α) = expT
m0

(
ζ−1
π
2 ·e(α)

(π
2
· e

(
α +

π

2

)))
.

But by (6.23) we have

(6.6.6) S′(α) = h
(
π

2

)

whereh is the Jacobi field alongγe(α) satisfying the equations

h(0) = 0 and DPh(0) = e
(
α +

π

2

)
.

Since the subspaces generated by the pairs{e(α), e(
π

2
+ α)} and

{x, xi} are the same we have

A
(
e(α), e

(
π

2
+ α

))
= A(x, xi) = 4.

Since 4 is themaximum valueof the quadratic formA(e(α), ∗), it

follows thate(α+
π

2
) is an eigen vector ofR(e(α)). Hence in view

of (6.6.3) we have

h
(
π

2

)
= 0
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and hence by (6.6.6) we have

S′(α) = 0 ∀α.

HenceS(α) = S(0) = exp(
π

2
· x) for everyα, and hence in partic-204

ular
exp

(
π

2
· xi

)
= S(1) = S(0) = exp

(
π

2
· x

)
.

Then by (5.7) we see that{x, xi} areK-dependent. We conclude
that λi = −4 if and only if xi is K-dependent onx. Since{xi}
is an orthogonal basis, we see thatλi = −1 if and only if xi is
orthogonal toK · x. HenceR(x) is −4 times the identity on the
orthogonal complement ofx in Kx and−1 times the identity on
the orthogonal complement ofKx(in Tm0). Thus, if K , R, ∃ i
such thatλi = −4; if n > 1, then∃ i such thatλi = −1.

�

6.8

Remark. Let (M, g) be any S.C.-manifold andx ∈ U(M). Then (upto a
permutation of thei’s) we have for the associated set{λi}(i ≥ 2)

Pd(R), Sd(R) : λi = −1∀i
Pn(C) : λ2 − 4, λi = −1 i ≥ 3
Pn(H) : λ2 = λ3 = −4, λi = −1 i ≥ 5
P2(Γ) : λi = −4 : i = 2, . . . , 8, λi = −1 : i = 9, . . . , 16.

7 Volumes of S.C. manifolds

Now we give an example of calculation. We show how the exponential
map and Jacobi fields can be used to estimate the volume of an r.m. In
sharper recent results this has been systematically done toget bounds for
Vol(M, g) in terms of those ofA(M) (see [33], Ch. 11)). Here we shall
be content with the treatment of a case where the computationcan be
explicitly carried out and, at the same time, is simple enough to exhibit 205



200 Sectional Curvature

clearly the method involved. The same method works in more general
situations but we do not have space here to handle them.

We compute the volume of an S.C. manifold. Since we know (see
(5.6)) that

Vol(Sd, can)= 2 Vol(Pd(R), can),

we may assume that (M, g) is different fromSd. First let us note that
the fact that any pointm can be joined tom0 by a geodesic (see proof
of (5.4)) together with the fact that each geodesic is of length π implies
that

expm0
(B(m0, π/2)) = M.

But expm0
is aC∞-map and the setB(m0, π/2)−B(m0, π/2) has measure

zero. Hence we have

Vol(M, g) = Vol(expm0
(B(m0, π/2))

= Vol(expm0
(B(m0, π/2))

= Vol(B(m0, π/2)).

By (5.12) expm0
is π/2-O.K., and if we fix an orientation onTm0(M) and

pass to the canonical volume formσ on B(m0, π/2), (see (5))we have

Vol(B(m0, π/2)) =
∫

B(m0,π/2)

σ =

∫

B(m0,
π
2 )

(expm0
)∗σ.

To compute the latter we look uponB(m, π/2)− {0} as diffeomorphic to206

the product manifold

W =]0, π/2[×Um0(M),

under the map

n : W ∋ (t, x)→ t · x ∈ B(m0, π/2)− {0}.

Heren clearly is a diffeomorphism and since the pointm0 has zero mea-
sure we have

vol(M, g) =
∫

B(m0,π/2)

(expm0
)∗σ
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=

∫

W

(expm0
◦n)∗σ.

Now let us introduce two projection maps onW defined by the equations

p(t, x) = t and q(t, x) = x.

Denoting the canonical volume form onUm0(M) by θ we get a volume
form

ω = p∗(dt)∧ q∗(θ)

onW. But then there exists a functionϕ such that

(expm0
◦n)∗σ = ϕω.

and we will be through if we knowϕ.

7.1

Lemma. With the above notation

ϕ(t, x) =

(
sin 2t

2

)α
(sint)d−α−1

for every x inSd−1 and t in]0, π/2[, where

α = 0 for Pd(R);α = 1 for Pd(C);

α = 3 for Pd(H);α = 7 for P2(Γ).

207

Proof. Let us follow the notation of article 6. The tangent spaceT(t,x)

(W) is in a natural way isomorphic toTt( ]0, π/2[ ) × Tx(Um0(M)). But
(see 2.9) the vectors{ζ−1

x x2, . . . , ζ
−1
x xd} form a basis forTx(Um0(M)) and

hence
{(P, 0), (0, ζ−1

x x2), . . . , (0, ζ−1
x xd)}

is a basis forT(t,x)(M) such that

ω((P, 0), (0, ζ−1
x x2), . . . , (0, ζ−1

x xd)) = 1.
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Hence we have

ϕ(t, x) = ((expm0
◦n)∗)((P, 0), (0, ζ−1

x x2), . . . , (0, ζ−1
x xd)) =

= (expT
m0

(nT(P, 0), expT
m0

(nT(0, ζ−1
x x2), . . . , )

. . . , expT
m0

(nT (0, ζ−1
x xd))).

Since the map
n : (t, x)→ t · x

is bilinear, we have

nT(0, ζ−1
x xi) = t · ζ−1

t·x xi and nT (P, 0) = ζ−1
tx x.

Further by (6.32) the images

expT
m0

(ζ−1
tx x1), expT

m0
(ζ−1

tx x2), . . .

are mutually orthogonal and

||expT
m(ζ−1

tx x)|| = ||ζ−1
tx x|| = 1.

Hence we have208

ϕ(t, x) =
∏

i>2

||expT
m0

(ζ−1
tx t · xi)||.

But by (6.23) we have

expT
m0

(ζ−1
t·x (t · xi)) = hi (||tx||) = hi(t)

wherehi is the Jacobi field alongγx such that

hi(0) = 0 and (DPhi)(0) =
t · xi

||t · xi ||
= xi .

But then by (6.5.7) we have

hi(t) = (−λi)
−1/2 · sin(

√
−λi · t) · xi

and hence

(6.7.2) ϕ(t, x) =
∏

i>2

(−λi)
−1/2 · sin(

√
−λi · t)

and we are through by (6.8). �
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Now let us note that since all euclidean structures of the same di-
mension are isomorphic we have

Vol(Um(M), gm) = Vol(Sd−1, can)∀m ∈ M.

We set

(6.7.3) Vol(Sd, can)= d .

Hence by (3.17):

∫

W

ϕ(t, x) · p∗(dt)∧ q∗(θ) =
∫

Um0(M)



π/2∫

0

ϕ(t, x) · dt

 · θ =

=



∫

Um0(M)

θ


·
π/2∫

0

ϕ(t, x) · dt

sinceϕ is independent ofx. 209

Hence

(6.7.4) Vol(M, g) =
�



�
	d − 1 ·

π/2∫

0

(
sin 2t

2

)α
· sind−α−1 t · dt .

First (6.7.4) gives for thed ’s the recurrence formula:

d = 2 · Vol(Pd(R), can)= 2
�



�
	d − 1

π/2∫

0

sind−1 t · dt .

The value of
∫ π/2
0 sind−1 t · dt is well known. Using this, we get

�



�
	2n = 2 · (2π)n

(2n− 1) · (2n− 3) . . .3.1
,
�



�
	2n− 1 = 2 · πn

(n− 1)!
(6.7.5)

Vol(P2n(R), can)=
(2π)n

(2n− 1) · (2n− 3) . . .3.1
,Vol(P2n−1(R), can)=

πn

(n− 1)!
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Note, in particular, that

(6.7.6) 2 = Vol(S2, can)= 4π,Vol(P2(R), can)= 2π.

For Pn(C) we compute

π/2∫

0

sin 2t
2
· sin2n−2 t · dt =

π/2∫

0

sin2n−1 t · cost · dt =
1
2n

;

with (6.7.5) this gives

(6.7.7) Vol(Pn(C), can)=
πn

n!

By the same kind of straightforward computations,210

Vol(Pn(H), can)=
π2n

(2n+ 1)!
,(6.7.8)

Vol(P2(Γ), can)=
π8

11.10.9.8.7.6.5.4.
.(6.7.9)

7.10

Remark. Using (3.4.10) and (4.19), and the formula (3.17) one would
get

Vol(Pn(C), can)=
�



�
	2n+ 1 / 1 ,

Vol(Pn(H), can)=
�



�
	4n+ 3 / 3 ,

which agrees with (6.7.5), (6.7.6), (6.7.7).
Note also that

P2(Γ) = 23 / 7 .

But here it is impossible to get that formula through a fibration because
one knows from algebraic topology (non existence of elements of Hopf
invariant one) that there does not exist a fibration

S
23

S
7

��
P2(Γ)
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Next, we give a formula which will be used later on:

(6.7.11) I =
∫

x∈Sd

|x · x0| · σ =
2
d

�



�
	d − 1 ,

whereσ is the canonical volume form of (Sd, can) andx0 a fixed point
in Sd.

Proof. If x is at the distancet from x0 on Sd then x · x0 = cost. We 211

make the computations onPd(R) instead ofSd using the remark that
x→ |x · x0| is invariant under the antipodal map ofSd.

ThusI = 2
∫

pd(R) p(|x·x0|)·σwhereσ denotes the volume element on

pd(R). We follow the computation of Vol(Pd(R), can) as above, taking
p(x0) = m0. This gives

I = 2
∫

Um0(M)



π/2∫

0

ϕ(t, x) · | cost| · dt

 = . . .

= 2
�



�
	d − 1

π/2∫

0

sind−1 t · cost · dt =
2
d

�



�
	d − 1 .

�
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8 Ricci and Scalar curvature

In this article we assume that the dimensiond of the manifold (M, g)
is greater than one.

For every pointmof M and positive numberr we get

S(m, r) = {x ∈ Tm(M)
∣∣∣ ||x|| = r}

and when S(m, r) ⊂ Ω we set

S(m, r) = exp(S(m, r)).

If expm is r-O.K. then for everyr′ in ]0, r[S(m, r′) is a sub manifold of
M of dimensiond − 1. Now we calculate the volume212

σ(m, r′) = Vol(S(m, r′), g|S(m, r′)).

First let us relateUm(M) andS(m, r) by defining the map

r ′ : Um(M) ∋ x→ r′ · x ∈ S(m, r′)

so that if expm is r-O.K. then taking some orientation onTm(M) we get
by means of exp−1

m0
|B(m, r) and r ′ a volume formσ on S(m, r′). Then

we have

σ(m, r′) =
∫

S(m,r ′)

σ =

∫

Um(M)

(expm◦r′)∗σ.

But if we denote the canonical volume form onUm(M) by θ then there
exists aϕ in F(U(M)) such that

(6.8.1) (expm◦r ′)∗σ = ϕ · θ,

and we will be through if we can computeϕ. Now let{x = x1, x2, . . . , xd}
be an orthonormal basis ofTm(M). Then by the definition ofθ we have

θ(ζ−1
x x2, ζ

−1
x x3, . . .) = 1.

Now let us note that

r ′T(ζ−1
x xi) = ζ

−1
r ′x(r

′xi) for i = 2, . . . , d
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and that Gauss’ Lemma (see (6.24)) gives that the vectors

(expm◦r ′)T(ζ−1
x xi) = expT

m(ζ−1
r ′xr
′xi), i ≥ 2

are all orthogonal to the vector expT
m(ζ−1

r ′xx) and hence are tangent to213

S(m, r′). Hence we have

ϕ(x) = ((expm◦r ′)∗σ)(ζ−1
x x2, . . . , ζ

−1
x xd)

= σ(expT
m(ζ−1

r ′xrx2), . . . , expT
m(ζ−1

r ′xrxd).

But by (6.23)
expT

m(ζ−1
r ′xr
′xi) = hi(r

′)

wherehi is the Jacobi field alongγx satisfying the conditions

hi(0) = 0 and (DPhi)(0) =
r′xi

||r′xi ||
= xi .

Hence

ϕ(x) = σ(h2(r′), . . . , hd(r′)) = ||h2(r′) ∧ . . . ∧ hd(r′)|| = . . . (by (4.9))

= ||τ(x, r′)−1h2(r′) ∧ . . . ∧ τ(x, r′)−1hd(r′)|| = . . .

= ||̂h2(r′) ∧ . . . ∧ ĥd(r′)||.
(6.8.2)

But by (8.18) we have

hi (r
′) = r′xi +

r′3

6
R(x, xi)x+ 0(r′3).

Hence we have (forR as introduced in (5)):

ϕ(x) = ||(r′)d−1(x2 ∧ . . . ∧ xd) +
(r′)d+1

6
d∑

i=2

x2 ∧ . . . ∧ xi−1 ∧ R(x)xi ∧ xi+1 . . . ∧ xd + 0(r′d+1)||.(6.8.3)

But 214
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d∑

i=2

x2 ∧ . . .∧xi−1 ∧ R(x)xi ∧ xi+1 ∧ . . . ∧ xd = . . .

=

d∑

i=2

g(R(x)xi , xi)(x2 ∧ x3 ∧ . . . ∧ xd)

= (Trace (R(x))) · (x2 ∧ . . . ∧ xd).

8.4

Definition. We set for x∈ T(M):

Ric(x) = −Trace(R(x))

and call it the Ricci curvature of (M, g) at x.
Then we have

(6.8.5) ϕ(x) = (r′)d−1
(
1− (r′)2

6
Ric(x) + 0((r′)2)

)

8.6

Note. If x ∈ U(M), we have, sincex andxi are orthonormal,

g(R(x)xi , xi) = g(R(x, xi)x, xi)

= −A(x, xi).

Hence{x = x1, x2, . . . , xd} are orthonormal and we have

Ric(x) =
d∑

i=2

A(x, xi).

8.7

Remarks. i) Ric is a quadratic form onC (M). To see this let us

define forX, Y ∈ C (M) a mapR(X,Y) : C (M) → C(M) by the
equation

R(X,Y)(Z) = R(X,Z)Y.
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Then the trace of the mapR(X,Y) is a symmetric bilinear map215

on C (M) × C (M): for, if {x1, . . . , xd} is an orthonormal base of
Tm(M), then we have

Trace(R(x, y)) =
∑

i

g(R(x, xi)y, xi) =

∑

i

g(R(y, xi)x, xi by C.T.4 = Trace(R(y, x)).

Hence we have

Ric(X) = Trace(R(X)) = Trace(R(X,X)).

ii) Since Ric can be considered as a quadratic form onTm(M) the
trace of Ric gives a function onM.

8.8

Definition. We set
Γ = Trace(Ric)

and call it thescalar curvatureof M.
Then if{xi} is an orthonormal basis of Tm(M) we have

(6.8.9) Γ(m) =
∑

i

Ric(xi) =
∑

i, j

A(xi , x j).

In particular if the dimension is2 we haveΓ = 2A where A, the sectional
curvature, is considered as a function on the manifold.

Now let us take up the calculation ofσ(m, r). By (6.8.1) we have

σ(m, r) =
∫

Um(M)

ϕ(x)θ =

=

∫

Um(M)

(r′)d−1
(
1− r′2

6
Ric(x) + 0(r′)2

)
=(6.8.10)
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= (r′)d−1 ·
�



�
	d − 1 − (r′)d+1

6

∫

Um(M)

Ric(x) · θ + 0((r′)d+1).

Since Ric is a quadratic form onTm(M), there exist constantsλ1, . . . , λd 216

and a system of orthonormal vectorsx1, . . . , xd such that, ifx = x1x1 +

· · · + xdxd, then
Ric(x) =

∑
λi(x

i)2.

Then ∫

Um(M)

Ric(x)θ =
∑

i

λi

∫

Um(M)

(xi)2θ.

But since by symmetry
∫

Um(M)

(xi)2θ =

∫

Um(M)

(x j)2θ ∀i, j

we have

d ·
∫

Um(M)

(x1)2θ =

∫

Um(M)

((x1)2
+ (x2)2

+ · · · + (xd)2)θ = . . .

=

∫

Um(M)

θ since ||x|| = 1.

Hence we have
∫

Um(M)

Ricθ =
∑

λi

�



�
	d − 1

d
=

�



�
	d − 1

d
· Trace(Ric)= . . .(6.8.11)

= Γ(m) ·
�



�
	d − 1

d
.

Hence by (6.8.10) we have

(6.8.12) σ(m, r′) =
�



�
	d − 1 (r′)d−1

(
1− (r′)2

6
Γ(m) + 0(r′)2

)
.

Now by (6.8.12) we have

(6.8.13) Γ(m) = lim
r→0

6d

rd+1
(rd−1 ·

�



�
	d − 1 − σ(m, r)).
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8.14

Remark. When the dimension of the manifold is two the Gaussian cur-217

vature has deep implications on the topology of the manifold(see Gauss-
Bonnet formula (6.1)). But for dimension greater than two the situation
is quite different. For example onS3 we can define a homogeneous r.s.
for whichΓ is constant and is of given sign. Further letM be a compact
manifold which is oriented by a formω. Then there exists an r.s.g on M
such that, if we denote the canonical orientation of (M, g) byω1, then

∫

M

Γω1

has a preassigned sign, (see [3]). However, ifΓ is everywhere positive
then there are certain topological restrictions onM (see [20]: theorem
2, p.9).





Chapter 7

The metric structure

1.1
218

In this chapter we assume that all the manifolds we consider are con-
nected.
1. Identity of balls

1.2

Definition. For every pair of points m and n in(M, g) we set

P(m, n) = {C|C is a path from m to n}.

Since we have assumed thatM is connected it follows thatM is arc
wise connected and hence that

P(m, n) , ∅ ∀m, n ∈ M.

Now set

(7.1.3) d(m, n) = inf
C∈P(m,n)

lg(C).

1.4

Then, since the length of a path is non-negative we have

d(m, n) ≥ 0;

213
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since every path fromm to n gives rise to a path fromn to m with the
same length we have

d(m, n) = d(n,m);

and since a path fromm to p and another fromp to n give rise to one
from m to n we have

d(m, n) ≤ d(m, p) + d(p, n).

Henced has all the properties of a metric structure except perhaps the
one which asserts thatd(m, n) = 0 only if m= n. Now we shall proceed
to show that this property is also valid; in fact, we shall prove much219

more, namely, that locally geodesics realise the distanced.

1.5

Now throughout this article, let us fix a pointmand a positive numberr
such tht expm is r-O.K., and set:

λ = (expm |B(m, r))−1.

1.6

Lemma. Let n and n′ be points in B(m, r) and let the map

C : [0, t0] → M

be a path such that

i) the image of C does not contain m,

ii) the image of C lies wholly in B(m, r).

Then we have
lg(C) ≥

∣∣∣ ||λ(n′)|| − ||λ(n)||
∣∣∣,

and equality holds if and only if

i) the three points0m, λ(n) andλ(n′) are in a straight line and
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ii) λ ◦C lies in the segment[λ(n), λ(n′)] and is injective.

Proof. SinceC is made up of finite number of curves and for any three
real numbersa, b andc we have

|a− c| ≤ |a− b| + |b− c|

we need only prove that results for curves. So let us assume that C is a
curve:

C ∈ D([0, t0],M),

and set 220

(7.1.8) b = λ ◦C.

Since by i) 0m is not in the image ofC the map
b
||b|| makes sense and we

write x for it:

(7.1.9) x =
b
||b||

Then we have

(7.1.10) b′ = ||b||′ · ζ−1
x x+ ||b||x′.

By the definition ofx we have||x|| = 1 and hence we have

g(ζ−1
x x, x′) = 0

and hence by Gauss’ lemma (see (6.24)) we have

(7.1.12) g(expT
m(||b|| · ζ−1

x x), expT
m(||b|| · x′)) = 0.

Now by (7.1.8) and (7.1.10) we have

||C′||2 = ||expT
m◦b′||2 =

= ||expT
m(||b||′ · ζ−1

x x)||2 + 2g(expT
m(||b||′ζ−1

x x), expT
m(||b|| · x′)) +

(7.1.13)

+ ||expT(||b|| · x′)||2 =
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= ||expT
m(||b||′ · ζ−1

x x)||2 + ||expT
m(||b||x′)||2, by (7.1.12).

But by (6.32) i) we have

||expT
m(ζ−1

x x)|| = ||x|| = 1

and hence

(7.1.14) ||C′||2 = (||b||′)2
+ ||expT

m(||b||x′)||2,≥ (||b||′)2

equality holding if and only if||expT
m x′|| = 0. �221

1.15

Since expm is r-O.K., this is equivalent to saying that

||C′|| ≥ ||b||′,

and that equality holds if and only ifx′ = 0.
Now we have

(7.1.16) lg(C) =

t0∫

0

||C′||dt ≥
t0∫

0

||b||′ dt ≥
∣∣∣ ||λ(n′)|| − ||λ(n)||

∣∣∣.

1.17

Further the last inequality becomes equality if and only if||b||′ is of the
same sign.

1.18

Hence by (1.15), (7.1.16) and (1.17) we have

lg(C) ≥
∣∣∣ ||λ(n′)|| − ||λ(n)||

∣∣∣

where equality holds if and only ifx′ = 0 and||b||′ is of the same sign.
This means that equality holds if and only ifx is constant, andb is

injective. This means thatb should lie on the line joining 0m andλ(n)
andb is injective.
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1.19

Note . In the caseλ ◦ C lies on a line through 0m and is injective we
say, for simplicity, thatC is a monotonic image byexpm of the segment
[(λ ◦C)(0), (λ ◦C)(t0)].

1.20

Lemma. If 0 < r′ < r, then 222

exp(B(m, r′)) = B(m, r′)

and the latter is a compact set.

Proof. Since B(m, r′) is compact, exp continuous andM Hausdorff,
exp(B(m, r′)) is compact. In particular exp(B(m, r′)) is closed.

But since exp(B(m, r′)) ⊂ exp(B(m, r′)) it follows that

exp(B(m, r′)) ⊂ exp(B(m, r′)).

In our case the other inclusion follows from the fact that expis a diffeo-
morphism onB(m, r). �

1.21

Lemma. Let

C : [0, 1] → M
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be a path in M such that

C(0) = m and C[(0, 1]) 1 B(m, r).

Then∀r′ ∈]0, r[, ∃ t0 ∈]0, 1[ such that

||λ(C(t0))|| = r′ and C([0, t0[) ⊂ B(m, r′).

Proof. Let J = {s ∈]0, 1[|C(s) < B(m, r′)}. By (1.20) and the conti-
nuity of C, J is closed so thatt0 = inf J > 0. We claim thatt0 has
the property required above. By continuity:C(t0) = limt−→

<
t0 C(t); and

C(t) ⊂ B(m, r′)∀t < t0 since,J being closed,t0 ∈ J.
Hence by (1.20):C(t0) ∈ B(m, r′) = exp(B(m, r′)), i.e. ||λ(C(t0))|| ≤

r′. But t0 ∈ J implies that||λ(C(t0))|| ≥ r′. Further,C([0, t0[) ⊂ B(m, r′)223

by definition oft0. �

1.22

Lemma. Let n∈ B(m, r) and let

C : [0, t0] → M

be a path, such that C(0) = n and C(t0) = m and whose image lies in
B(m, r). Then

i) lg(C) ≥ ||λ(n)|| and

ii) in i) the equality holds if and only if C is a monotonic image by
expm of the segment[λ(n), 0m].

Proof. Let t1 = inf t∈[0,t0] t|C(t) = m.
Then for every sufficiently small positive numberǫ we have

(7.1.23) lg(C) ≥ lg(C|[0, t1]) ≥ lg(C|[0, t1 − ǫ]).

Sincem < C([0, t1 − ǫ]) by (1.6) we have

(7.1.24) lg(C|[0, t1 − ǫ]) ≥
∣∣∣ ||λ(n)|| − ||(λ ◦C)(t1 − ǫ)||

∣∣∣.
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Since lg(C|[0, t]) is a continuous function oft, taking limit asǫ → 0 we
have

lg(C|[0, t1]) ≥ lim
∣∣∣ ||λ(n)|| − ||(λ ◦C)(t1 − ǫ)||

∣∣∣ =
=

∣∣∣ ||λ(n)|| − ||λ(m)||
∣∣∣ = ||λ(n)||.(7.1.25)

�

1.26

To prove ii) let us note that if equality holds above then

(i) lg(C|[t1, t0]) = 0 and henceC([t1, t0]) = {m} and

(ii) in the following sequence of inequalities equality should hold ev-
erywhere:

lg(C|[0, t1]) = lg(C|[0, t1 − ǫ]) + lg(C|[t1 − ǫ, t1])

≥
∣∣∣ ||λ(n)|| − ||(λ ◦C)(t1 − ǫ)||

∣∣∣ + ||(λ ◦C)(t1 − ǫ)|| (by i) ≥ ||λ(n)||.

Hence it follows that the above inequalities are equalities. Now 224

from (1.6) it follows from the first equality that∀ǫ:

(λ ◦C)(t1 − ǫ) ∈ [0m, λ(n)] and that C|[0, t1 − ǫ]

is a monotone image by expm of the segment [λ(n), (λ◦C)(t1−ǫ)].

1.28

Lemma. Let n be a point in M and let

C : [0, t0] → M

be a path from m to n such that

C([0, t0]) 1 B(m, r).

Then
lg(C) ≥ r.
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Proof. Let 0< r′ < r. Then by (1.21)∃ t1 such that

||λ(C(t1))|| = r′ and C([0, t1[) ⊂ B(m, r′).

Hence, by (1.22) we have

lg(C) ≥ lg(C|[0, t1]) ≥ ||λ(C(t1))|| = r′.

This being true for everyr′ < r we are through. �

1.29

Theorem.Let n∈ B(m, r). Then

i) d(m, n) = ||λ(n)||, and the geodesic

γ
λ(n)/||λ(n)||

∣∣∣ [0,λ(n)]

realises the distance d(m, n), and

ii) it is the only one, i.e. if C∈P(m, n) is such thatlg(C) = d(m, n),
then C is a monotone image byexpm of the segment[0m, λ(n)].

Proof. The geodesic defined above has length||λ(n)||: see (4.3.3).225

Henced(m, n) ≤ ||λ(n)||.
But if C ∈P(m, n) then by (1.22) i) and (1.28) we have

lg(C) ≥ ||λ(n)||.

Henced(m, n) ≥ ||λ(n)|| and the first part follows.
To prove ii) letC ∈P(m, n) and let lg(C) = ||λ(n)||. Then by (1.28)

the image ofC lies in B(m, r) and the part ii) states the same thing as
(1.22) ii). �

1.30

Notation. We set

D(n, s) = {n′ ∈ M|d(n, n′) < s}.
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1.31

Corollary. If expn is s-O.K. then

B(n, s) = D(n, s).

Proof. We have only to prove thatD(n, s) ⊂ B(n, s); so letn′ ∈ D(n, s).
Then s′ = d(n, n′) < s and hence by the definition ofd there exists a
C ∈ P(n, n′) such thats′ < lg(C) < s. Then by (1.28) the image ofC
has to lie inB(n, s). Hence

n′ ∈ B(n, s).

�

2 The metric structure

2.1

Proposition. d is a metric structure.

Proof. By (1.4) we have only to prove thatd(m, n) = 0 impliesm = n.
Now letd(m, n) = 0. Then there exists anr > 0 such that expm is r-O.K.
Hence by (1.31) it follows thatn ∈ B(m, r). Then by (1.29) the result
follows. �

2.2
226

Whenever we consider the manifold (M, g) as a metric space,it is this
metric we deal with. Hence we speak ofdistancewithout any mention
of the metric structure involved. In particular, we may speak of bounded
sets, of completeness. . . , in a r.m. (M, g).

2.3

Remark. Throughout we have assumed thatM is Hausdorff. This is a
necessary condition for a topology to come from a metric; Hausdorff-
ness was used only in proofs of (1.20) and (1.21).
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2.4

Proposition . For a riemannian manifold(M, g), the underlying topol-
ogy of M considered as a differentiable manifold and that induced by
the metric structure are the same.

Proof. Let M be a point ofM and let expm ber-O.K. Then by (1.31) we
have

D(m, r′) = B(m, r′) if 0 < r′ < r.

But every neighbourhood ofm in the topology induced by the metric
d containsD(m, r′) for sufficiently smallr′, and every neighbourhood
of m in the original topology containsB(m, r′) for sufficiently smallr′

becauseλ is a diffeomorphism. Hence the neighbourhood system ofm
in either topology is the same as that in the other. Hence the result. �

The following is a direct consequence of the above proposition.

2.5

Corollary. The function d: M × M → R is continuous.

2.6

Corollary. We have227

D(m, r) = {n ∈ M|d(m, n) ≤ r}∀r > 0.

Proof. In view of (1.31) and (2.5) we have only to prove that

{n ∈ M|d(m, n) = r} ⊂ D(m, r).

Supposen be such thatd(m, n) = r; ∀ǫ > 0 (small enough)∃C ∈
P(m, n) such that lg(C) ≤ r + ǫ; by continuity we can findnǫ on the
image ofC with d(m, nǫ ) = r − ǫ and so:nǫ ∈ D(m, r); moreover:

d(n, nǫ ) ≤ lg(C|n to nǫ ) = lg(C) − lg(C|m to nǫ ) ≤ r + ǫ − d(m, nǫ ) ≤ 2ǫ

in particularnǫ
ǫ→0−−−→ n, hencen ∈ D(m, r). �
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2.7

Example .Let m be a point of (Sd, can) andσ(m) its antipodal point.
Then sinceσ(m) < B(m, π) and expm is π-O.K. (see (5)) we have
d(m, σ(m)) ≥ π.

But since there exists a great circular arc (geodesic) of lengthπ join-
ing mandσ(m) we have

d(m, σ(m)) ≤ π

Hence
d(m, σ(m)) = π.

3 Nice balls

If expm is r-O.K. then we know thatD(m, r) = B(m, r) and further that
for any pointn in B(m, r) the distanced(m, n) is realised by a geodesic
and that such a realisation is essentially unique. Further (see (6.8) and 228

(3.7) we know that for sufficiently smallr, B(m, r) is convex and hence
any two pointsn andn′ of it can be joined by a geodesicfn,n′ which
is completely contained inB(m, r) and that such a curve is unique. So
a natural question is whetherfn,n′ realises the distance betweenn and
n′ and if so if it is the unique path with that property. Before trying
to answer this question we give a name to the balls for which this (and
more) is true.

3.1

Definition. A ball B(m, r) is called anice ballif

i) B(m, r) is convex

ii) expn is r-O.K.∀n ∈ B(m, r) and

iii) ∀n, n′ ∈ B(m, r) the geodesic fn,n′ realises d(n, n′) uniquely, i.e.,
that d(n, n′) = lg( fn,n′) and upto a re parametrisation by a func-
tion fn,n′ is the only path that realises d(n, n′).

Now we shall prove that there are nice balls with assigned centres.
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3.2

Lemma. Suppose that x∈ Um(M) and that∃ t0 > 0 such that

i) [0, t0[·x ⊂ Ω and

ii) there exists a sequence{tn} of numbers in[0, t0[ and a point p in
M such that tn→ t0 andγx(tn)→ p as n−∞.

Then t0x ∈ Ω.

Proof. a) First let us prove that229

γx(t)→ P as t → t0.

Sinced is a metric it is enough to prove thatd(γx(t), p)
t→t0−−−→ 0.

We have

d(γx(t), p) ≤ d(γx(t), γx(tn)) + d(γx(tn), p).

Sinced is continuous by (2.5) and sinceγx(tn) tends top as n
tends to infinity by hypothesis the second term on the right hand
side tends to zero asn tends to infinity. Further, by (4.3.3),

lg(γx|[tn, t]) ≤ |t − tn|

sincex ∈ Um(N). Hence

lg(γx|[tn, t]) ≤ |t − t0| + |t0 − tn|,

and hence

d(γx(t), p) ≤ d(γx(tn), p) + |tn − t0| + |t − t0|.

So for t in [t0 − ǫ, t0] we have

d(γx(t), p) ≤ d(γx(tn), p) + |tn − t0| + ǫ,

and hence the result.
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b) LetW be a convex ball with centre atp, and let

s : W×W→ W
Ω

be the associated map (see (6)). Sinceγx(t)
t→t0−−−→ t0 then∃ t1 ∈ 230

[0, t0[ such that
γx([t1, t0) ⊂W.

Setu = γ′x(t1); by (6.6) we have

s(γx(t1), γx(t)) = (t − t1) · u for t1 < t < t0.

Now sbeing continuous we have

s(γx(t1), p) = lim
t→t0

s(γx(t1), γx(t)) = lim
t→t0

(t − t1) · u = (t0 − t1) · u.

Hence by the definition ofs it follows that (t0 − t1) · u ∈ W
Ω. SinceW

Ω

is an open set there exists a positive numberδ such that

[t1, t0 + δ] · u ⊂ W
Ω

and sinceWΩ ⊂ Ω we have

[t1, t0 + δ] · u ⊂ Ω.

But this means simply that the geodesicsγx can be extended to the point
exp(t0 + δ) · x and hencet0 · x ∈ Ω. �

Lemma 7.3.2 bis.Let m be a point of(M, g) such thatexpm is r-O.K.
Then

Ω ⊃ B(n, r − d(m, n)) · nB(m, r).
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Proof. Let n ∈ B(m, r), x ∈ Un(M).

We have to show that (see (6.4))

s= t+G(x) ≥ r − d(m, n).

We suppose the contrary and deduce a contradiction.
Let231

s< r − d(m, n).

Then settingr′ = d(m, n) + swe haver′ < r.
Further∀t ∈ [0, s], we have

d(m, exp(tx)) ≤ d(m, n) + d(n, exp(tx))

≤ d(m, n) + s= r′ < r.

Now we take a sequence{tn} of numbers in [0, s[ tending tosasn→ ∞.
Then the sequence of points{exptnx} lies in B(m, r′) and sinceB(m, r′)
is compact (see (1.20)) andB(m, r′) = exp(B(m, r′)), a sub sequence of
{exptnx} converges to a pointp ∈ B(m, r). Hence the above lemma gives
that

s · x ∈ Ω

and this contradicts the definition ofs= t+G(x). �

3.3

Theorem.For every m of M there exists an r> 0 such that B(m, r) is a
nice ball.
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Proof. Let r1 be a positive number such that expm is r1-O.K. and
B(m, r1) is convex.

We claim that we have only to setr =
r1

3
.

i) By (3.7) B(m, r) is convex.

ii) Let n be inB(m, r). Then, by (1.31) we getd(m, n) < r. Hence by
(28):

B
(
n, r1 −

r1

3

)
= B(n, 2r) ⊂ Ω.

Further by (6.5) expn is 2r-O.K. and in particularr-O.K.

iii) Let n, n′ ∈ B(m, r). Thend(n, n′) ≤ d(n,m) + d(m, n′) < 2r so we
are through because of (1.29).

�

3.4

Corollary . Let K be a compact subset of M. Then there existsδ > 0 232

such thatexpm is δ −O.K.∀m ∈ K.

Proof. By the compactness ofK we can cover it with a finite number of
nice ballsB(mi , r i). Then we are through if we setδ = inf i r i . �

3.5

Corollary. Let n, n′ ∈ M and C∈P(n, n′) be such that

lg(C) = d(n, n′).

Then (upto injective re parametrisation) C is a geodesic.

Proof. Let C = {[ai , bi ] ⊂ I i , fi ∈ D(I i ,M)}.
Since being a geodesic is a local property, it is enough to show that

for each pointn = fi(ti) there is a neighbourhood ofti in which C is a
geodesic. Now letB(n, r′) be a nice ball.
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Then sinceC is continuous there exists aδ > 0 such that

C([ti − δ, ti + δ]) ⊂ B(n, r′).

Now let f be the geodesic inB(n, r′) from C(ti − δ) to C(ti + δ).
Then by the definition of a nice ball, ifC restricted to (ti − δ, ti + δ)

were not a geodesic, we would have lg(C) > lg( f ), and hence replacing
that part ofC by f we would get

d(n, n′) < lg(C|[a1, ti − δ]) + lg(C|[ti + δ, bk]) + lg f < lg(C),

a contradiction. �

As an application of the above corollary we prove the following re-233

sult called“the corner condition” or “the strict triangle inequality”.

3.6

Application. Let f be a geodesic from n to n′ and g be a geodesic from
n′ to n′′ both being parametrised by the arc length. Then if f′(n′) ,
g′(n′) then d(n, n′′) < d(n, n′) + d(n′, n′′).

Proof. For if d(n, n′′) = d(n, n′) + d(n′, n′′) the above corollary gives
that the path fromn to n′′ given by f from n to n′ together withg from
n′ to n′′ is a geodesic. Then since both are parametrised by arc length
we should havef ′(n′) = g′(n′). �



3. NICE BALLS 229

3.7

We insert here a result we will need later on (see (10)). LetB(m, r) be a
nice ball,n, n′ ∈ B(m, r). We associate ton, n′ andt ∈ [0, 1] the point
(n, n′, t) defined as follows: (n, n′, t) is on the geodesic fromn to n′ in
B(m, r) and such thatd(n, (n, n′ , t)) = t · d(n, n′). In particular (n, n′, 1

2)
can be called themid-pointof n, n′.

3.8

Proposition . Let (M, g) be an r.m. such that A(M) ⊂] − ∞, 0] and let
B(m, r) be a nice ball. Then

d((m, n, t), (m, n′, t)) ≤ t · d(n, n′) ∀t ∈ [0, 1],∀n, n′ ∈ B(m, r).

Proof. Set 1 = d(n, n′) and define a one parameter family of curves
f : [0, 1] × [0, 1] → M by:

f (t, α) =
(
m,

(
n, n′,

α

1

)
, t
)
.

Then with the notations of (8): eachfα is a geodesic, sot → Q(t, α) is a

Jacobi field alongfα. By A(M) ⊂] −∞, 0] and (6.19) we have12
d2

dt2
(E ◦ 234

Q) ≥ E ◦DPQ. We normalizeQ in H, so thatQ = ϕ ·H with E ◦H = 1.

Then:g(H,DPH) = 0 so thatE ◦ DPQ =

(
dϕ
dt

)2

+ E ◦ DPH ≥
(
dϕ
dt

)2

as
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E ◦ Q = ϕ2, we get
d2ϕ

dt2
> 0. Soϕ is a positive function, vanishing at

t = 0, in a particularϕ(t) ≤ t · ϕ(1), which reads||Q(t, α)|| ≤ t||Q(1, α)||.
But Q(t, α) is the speed of the transverse curvect which connects (m, n, t)

and (m, n′, t) so: d((m, n, t), (m, n′, t)) ≤ lg(ct) =
∫ 1
0 ||Q(t, α)||dα

≤
1∫

0

t||Q(1, α)||dα = t · lg(c1) = t · d(n, n′).

�

4 Hopf-Rinow theorem

4.1

Definition . We set:T (n, n′) = {C ∈ P(n, n′)| lg(C) = d(n, n′)}. Then
each path is a geodesic by (3.5) and we will always normalize it requir-
ing it to be parametrized by its arc length. We put only such paths in
T (n, n′).

Let us note that, in general,T (n, n′) is neither empty nor consists of
a single element, as can be seen from the manifold (S

d−p, can) obtained
from the sphereSd by deleting one pointp: T (m,m′) = ∅ andT (n, n′)
has continuous elements.
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4.2
235

Suppose thatT (n, n′) is non-empty. Then there exists an

f : [0, 1] → M

such thatf is a geodesic parametrised by the arc length,f (0) = n and
f (1) = n′. Let x be the initial speed off . Then the curve

t → γx(t) = exp(tx)

is a geodesic throughn with the initial speedx. Hence it follows thatf
is the restriction ofγx to [0, 1] and hence that

n′ = exp(1x)

i.e. n′ ∈ exp(B(n, 1)) and 1· x ∈ Ω,

since f is parametrised by the arc length and hencex is a unit vector.

4.3

Theorem 4.1(Hopf-Rinow). The following four properties are equiva-
lent.

i) Every closed bounded set in M is compact.

ii) M is complete.

iii) Ω = T(M).

iv) There exists a point m in M such that Tm(M) ⊂ Ω.

Proof. We shall prove that

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

Since every Cauchy sequence is bounded the first implicationis clear.
�
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To prove thatΩ = T(M) it is enough to show that∀x ∈ U(M) one
hast+(x) = +∞.

Supposet+(x) < ∞; then there exists a Cauchy sequence

{tn} ⊂ [0, t+(x)[

such that236

tn→ t+(x).

n→∞

Then we have:d(exp(ti · x), exp(t j · x)) ≤ |ti − t j | · ||x|| = |ti − t j | and hence
expti x is a Cauchy sequence. So ifM is complete this sequence has a
limit point and an application of (3.2) gives the second implication

The third implication is clear.

So we are left with proving the fourth implication. It will

be a consequence of the following:

4.4

Proposition. If for some point m in M

Tm(M) ⊂ Ω

then
T (m, n) , ∅ ∀n ∈ M

(In fact if K is closed and bounded,∃ r |K ⊂ D(m, r) but D(m, r) ⊂
exp(B(m, r)) which is compact. So K is closed in a compact, hence
compact)

Proof of the proposition. Set:

Dt = D(m, t), Ft = {n ∈ Dt |T (m, n) , ∅}, I = {t ≥ 0|Dt = Ft}.

We remark thatFt is closed: this follows easily from the fact thatΩ ⊃
Tm(M). Moreover∃ r |I ⊃ [0, r], for (1.29) implies thatI ⊃ [0, r] as soon
as expm is r-O.K. We are going to prove thatI is both closed and open.
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4.5

Lemma. Let r ∈ I, n < Dr ; then∃ p ∈ Dr such that d(m, p) = r and 237

d(m, n) = d(m, p) + d(p, n).

Proof of the lemma.Dr = Fr being compact,∃ p ∈ Dr such that

d(p, n) = inf {d(n, q)|q ∈ Dr}.

We claim: p is the right one. For∀ǫ > 0, ∃C ∈ P(m, n) such that
lg(C) < d(m, n) + ǫ. Becauset → d(m,C(t)) is continuous∃b such that
d(C(b),m) = r.

But:

r + d(p, n) ≤ r + d(C(b), n) ≤
≤ lg(C|m to C(b)) + lg(C|C(b) to n) = lg(C) ≤
≤ ǫ + d(m, n)

so : r + d(p, n) ≤ ǫ + d(m, n).

Letting ǫ → 0, we obtain

r + d(p, n) ≤ d(m, n) ≤ d(m, p) + d(p, n) ≤ r + d(p, n)

hence

d(m, p) + d(p, n) = d(m, n).
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4.6

I is closed. Let{r i} ⊂ I be such that lim
i→∞

r i = r, and letn ∈ Dr . If 238

d(m, n) < r, then∃ i|d(m, n) < r i soT (m, n) , ∅. If d(m, n) = r and if
n < Dr i∀i then by (4.5)∃ pi ∈ Dr i with d(m, n) = r = r i +d(pi , n). When
i → ∞ : d(pi , n) → 0, so pi → n. But ∀i : pi ∈ Fr i ⊂ Fr andFr is
closed; son ∈ Fr . In any case thenn ∈ Fr i.e. Dr = Fr .

4.7

I is open.SupposeI = [0, r0] and get a contradiction as follows. From
the compactness ofFr0 = Dr0 we can by (3.4) findr > 0 such that expp
is r-O.K. ∀p ∈ Dr0.
Claim: Fr ′ = Dr ′∀r′|r0 < r′ < r0 + r. In fact if n ∈ M with r0 <

d(m, n) < r′ < r0 + r thenn < Dr0. By (4.5) ∃ p with d(m, p) = r0

andd(m, p) + d(p, n) = d(m, n) henced(p, n) < r0 + r − r = r so by
(1.29)∃g ∈ T (p, n) and∃ f ∈ T (m, n) and lg(f ∪ g) = d(m, n) so
f ∪ g ∈ T (m, n). Let us note the results proved in the course of the
proof of the Hopf-Rinow theorem as corollaries.

4.8

Corollary . If (M, g) satisfies any one of the four equivalent conditions
of (4.3) then

T (n, n′) , ·∅ ∀ n, n′ ∈ M.

4.9

Corollary . If (M, g) satisfies any one of the four equivalent conditions
of (6.4.3)then for any point n of M and every s> 0 we have

D(n, s) = exp(B, (n, s)).

Corollary. If (M, g) is complete and n, n′ and n′′ are points of M such
that d(n, n′′) = d(n, n′) + d(n′, n′′) then∃ f ∈ T (n, n′) such that the
image set of f contains n′.
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For one can takef1 ∈ T (n, n′) and f2 ∈ T (n′, n′′) and joining them239

get the elementf1 ∪ f2 of T (n, n′′) by (3.5).

4.10

Remarks. 1) The converse of (4.8) is false. For example in a eu-
clidean ball for any two pointsn andn′ we haveT (n, n′) , ∅.
But it is not complete.

2) The completeness, in general, depends ong. For example the
manifold S1 × R with the product r.s. is homeomorphic to the
manifoldR2 − {0} with the r.s. induced fromR2. But the former
is complete and the later is not. But ifM is compact then for any
r.s.g(M, g) is complete by (2.4) and hence complete.

3) The Hopf-Rinow theorem and corollary (4.7) are the starting
points for obtaining global results in riemannian geometry. We
shall give typical examples in the next articles and in Chapter
VIII.

4.12

Symmetric pairs give r.m.’s.M = G/K which are always complete: in
fact use (4.1) to check (iv) in (4.3) form= m0 = p(e).

5 A covering criterion

5.1

Proposition. Let two r.m.’s(M, g) and(N, h) of the same dimension and
a map p∈ D(M,N) be such that

i) p is onto,

ii) g = p∗h,

iii) ( M, g) is complete.
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Then p is a covering map.

Proof. By the definition of a covering map we have to show that given
any pointn of N there exists a neighbourhoodV of n such that each
connected component ofp−1(V) is homeomorphic toV throughp. We
shall show that if expn is s-O.K., thenB(n, s) is a neighbourhood with240

the above property.

a) Letm ∈ p−1(n); then from ii) it follows thatpT
m is injective, and

since the manifolds are of the same dimension thatpT
m is bijec-

tive. Hence by (ii) it follows thatpT
m is a euclidean isomorphism

betweenTm(M) andTn(N). Let us set

λ = (expn |B(n, s))−1.

Then since (M, g) is complete and henceT(M) = M
Ω we can

define the map

q = M exp◦(pT
m)−1 ◦ λ : B(n, s)→ M.

Let us note, sincepT
m is a euclidean isomorphism, that the image

of q is B(m, s). Further sinceg = p∗h by (2.6) we have

p ◦ M exp= N exp◦pT
m

and hence

(pT
m)−1 ◦ λ ◦ p ◦ M exp= (pT

m)−1 ◦ λ ◦ N exp◦pT
m

= (pT
m)−1 ◦ idB(n,s) ◦pT

m = idB(m,s)

and hence (pT
m)−1◦λ◦ p is the inverse ofM exp onB(m, s). In par-

ticular M exp is s-O.K., andp andq are diffeomorphisms which
are inverses of each other.

b) Now suppose thatm′ is any point inp−1(n). Let u ∈ B(m, s) ∩
B(m′, s). Since by a) expm is s-O.K, by (1.29) there is a unique
geodesicγ1 parametrised by the arc length fromm to u realising
the distance betweenm andu, and a similar oneγ2 from m′ to241
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u. Then sincep is a local isometry by ii) it follows thatp ◦ γ1 is
a geodesic (parametrised by the arc length) realising the distance
betweenn andp(u), andp ◦ γ2 is also one such. Hencep ◦ γ1 =

p ◦ γ2. Thereforeγ1 andγ2 are lifts of the same curve having a
common pointu. Sincep is local diffeomorphismγ1 = γ2 and
hencem= γ1(0) = γ2(0) = m′. So we haveB(m, s)∩B(m, s′) = ∅
as soon asm, m′.

c) We now prove that

p−1(B(n, s)) =
⋃

m∈p−1(n)

B(m, s).

Let u ∈ p−1(B(n, s)) and let

γ : [0, 1]→ N

be an element ofT (p(U), n) andγ̂ be the geodesic in (M, g) such
that

γ̂′(0) = (pT
u )−1(γ′(0)).

Since (M, g) is complete the geodesiĉγ is defined for every value
of the parameter. Sincep ◦ γ̂ has the initial speedγ′(0) it follows
that

p ◦ γ̂ = γ
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and hence
(p ◦ γ̂)(1) = γ(1) = n

and hencêγ(1) is in p−1(n). Henceu is in
⋃

m∈p−1(n)
B(m, s).

�

5.2

Remarks.1) We have assumed thatM andN are of the same dimension.
Actually this can be deduced from ii) Since we have seen thatpT

m is242

injective for everym of M it follows that given any pointm there exists
a neighbourhoodU of m which is mapped by aC∞-map intop(U) by
means ofp. Hence the dimension ofN is greater than or equal to that of
M. If it is greater, thenU will be mapped into a set of measure zero inN,
and sinceM is paracompact and connected it is the union of countable
number of the neighbourhoods of the typeU; it follows that p(M) is of
measure zero. But by i)p(M) = N and hence this is a contradiction.

2) Completeness of (M, g) is essential as this picture shows:

5.3

Proposition . Let (M, g) be a complete r.m, and let m be a point of M
such thatexpm is of maximal rank everywhere. Then the mapexpm is a
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covering map.

Proof. First let us note that expm is onto by (4.8). By (2.1)̂g = (expm)∗g
is a r.s. on the manifoldTm(M). Hence if we prove that (Tm(M), g) is
complete then by (5.1) we shall be through. Letx ∈ Tm(M), x , 0 and 243

v : R → Tm(M) be defined byv(t) = t.x. Then expm◦v is a geodesic in
(M, g) (because (M, g) is complete). Hence by (2.7),v is a geodesic in
(Tm(M), ĝ). This being so∀× ∈ Tm(M) we have fulfilled condition (iv)
of (4.3) for 0m ∈ Tm(M). �

5.4

Remark. If we suppose, in addition to the maximality of rank for expm
and completeness of (M, g), that M is simply connected then the above
result gives that expm is actually a diffeomorphism.

5.5

Corollary . If (M, g) is complete and simply connected and further
A(M) ⊂] −∞, 0] then M is diffeomorphic toRd.

Proof. By (2.9) it follows that expm is of maximal rank everywhere for
everym. Now we have only to apply the above remark. �

5.6

Remark. 1) The completeness assumption on (M, g) cannot be re-
moved as the example ((R3 − {0}), can) shows.

2) There is a converse to the above corollary see (7.2).

6 Closed geodesics

In this article we prove that if (M, g) is a compact r.m, then in every
non-zero free homotopy class there exists a closed geodesic(see (5)) the
length of which is the least among the lengths of all paths in that class.
Given a non-zero homotopy class, (M, g) being compact we construct a
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curve in that class which is of the smallest length and then show that it is
a closed geodesic. Before proceeding further we recall a fewdefinitions
and results.

6.1
244

1) For any pointsm1 andm2 of M let usdenotethe class of all con-
tinuous mapsσ of I = [0, 1] into M such that

σ(0) = m1, σ(1) = m2

by Lm1,m2. If m1, m2 and m3 are points ofM and,σ and ζ are
elements ofLm1,m2 andLm2,m3 respectively then there is an element
ζ ◦ σ ∈ Lm1,m3 which corresponds to the pair (σ, ζ) in a natural
way:

(ζ ◦ σ)(t) =


σ(2t) if ◦ ≤ t ≤ 1

2

ζ(2t − 1) if 1
2 ≤ t ≤ 1

If m1 andm2 are points ofM then there is a homotopy relation in
the classLm1,m2 : σ andζ in Lm1,m2 arehomotopicif there exists a
map

f : I × I → M

such that

f (t, 0) = σ(t), f (t, 1) = ζ(t) ∀t ∈ I

and f (0, α) = m1, f (1, α) = m2 ∀α ∈ I . We denote this byσ ∼ ζ.

The particular case whenm1 andm2 coincide is of special impor-
tance for us. In this case, we setLm1 = Lm1,m1 and call elements ofLm1

loopsbased atm1; in Lm there is a law of composition◦ and the relation
∼. This relation is an equivalence relation inLm and the law of com-
position passes down to the quotient set which is denoted byπ1(M,m).
Further this law of composition in the quotient set defines the structure
of a group on this quotient set.π1(M,m) is called thefundamental group245

of M at m.



6. CLOSED GEODESICS 241

6.2

Definition . Let m1, m2 ∈ M, σ ∈ Lm1, ζ ∈ Lm2. Then they arefree
homotopicif there exists a map

f : I × I → M

such that

f (t, 0) = σ(t), f (t, 1) = ζ(t), f (0, α) = f (1, α) ∀t ∈ I ,∀α ∈ I .

If this is so then the map F:

I × I ∋ (t, α)→ F(t, α) =



f (0, 3α · t) if 0 ≤ t ≤ 1
3

f (3t − 1, α) if 1
3 ≤ t ≤ 2

3

f (0, 3(1− t) · α) if 2
3 ≤ t ≤ 1

is a homotopy betweenσ and f(0, α)−1 ◦ ζ ◦ f (0, α), where f(0, α) ∈
Lm1,m2. The quotient set is denoted byF(M); it does not carry a natural
group structure. But it has a zero element, the class of loopsreduced to
a point. Conversely ifγ is a path from m1 to m2 andΓ is a homotopy
betweenσ andγ−1 ◦ ζ ◦ γ then the mapΦ:

I × I ∋ (t, α)→ Φ(t, α) =



γ(α − 3t · α) if 0 ≤ t ≤ 1
3

Γ(3t − 1, α) if 1
3 ≤ t ≤ 2

3

γ((3t − 2) · α) if 2
3 ≤ t ≤ 1

is a free homotopy betweenσ andζ. Hence, we obtain (6.3). An element
σ of Lm1 is free homotopic to an elementζ of Lm2 if and only if there
exists a pathγ from m1 to m2 such that the loopsσ andγ−1 ◦ ζ ◦ γ are
homotopic. Thus there is a map

f :
⋃

m∈M
π1(M,m)→ F(M)

from
⋃

m∈M
π1(M,m) into the free homotopy group of M. Further from 246
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6.3

if follows that the imagef (u) of an elementu in π1(M,m) is not zero
in F(M) if u is not. Further from (6.3) we conclude that for everya in
F(M), if we write am for π1(M,m) ∩ f −1(a), then

(7.6.4) vamv−1
= am ∀v ∈ π1(M,m).

6.5

3. Let

p : M̃ → M

be the universal covering ofM. Then letσ be an element ofπ1(M,m),
m̃ ∈ p−1(m) andm̃′ be the end point of the lift̂σ of σ throughm̃. Then
m̃′ depends only on the class ofσ in π1(M,m), not onσ itself. This
is related to thedeck transformationsof the coveringp : M̃ → M as
follows: a deck transformation is a mapf : M̃ → M̃ such thatp◦ f = p;
they operate transitively on a given fibrep−1(m); and there exists a map
fromπ1(M,m) into the set of all deck transformations, denoted byu→ û
such that, givenu ∈ π1(M,m), then̂u(m) is the common end point̃m′ of
lifts throughm̃of all loopsσ ∈ u.

We endowM̃ with the r.s.̃g = p∗g (see (2.1) C) so that (̃M, g̃) →
(M, g) is a riemannian covering; and denote byd̃ the metric structure
of (M̃, g̃). Note g̃ = p∗g and p ◦ f = p imply f ∗g̃ = g̃, i.e. deck
transformations are isometries.

We fix from now on ana ∈ F(M) such thata , 0 and define a
functionϕ on M by setting:ϕ(m) = inf {d̃(m̃, û(m̃)), m̃ ∈ p−1(m), u ∈ a}
the geometrical meaning of which is:ϕ(m) is the infimum of lengths of247

all loops inLm whose free homotopy class is in a; we are going to show
thatϕ is continuous onM and that its minimum on the compact setM
is realized by a closed geodesic.

We remark that, for a lift̃σ in (M̃, g̃) of a curveσ in (M, g), we have:
lg(σ̃) = lg(σ).
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6.6

Lemma. Let m be a point of M. Then

ϕ(m) = inf {d̃(m̃, û(m̃)|u ∈ am}∀m̃ ∈ p−1(m).

Proof. Let m̃′ ∈ p−1(m); since deck transformations act transitively and
each deck transformation is induced by an element ofπ1(M,m), then
∃ v ∈ π1(M,m) such that̃m′ = v̂(m̃).

Then we have

d̃(m̃′, û(m̃′)) = d̃(̂v(m̃), û(̂v(m̃))) = d̃(m̃, ( ̂v−1 ◦ u ◦ v)(m̃))

since each deck transformation is an isometry. But, by (6.3), v−1◦u◦v ∈
am for u ∈ am. Hence the result. �

6.7

Lemma. If p : (N, h) → (M, g) is an r. covering and(M, g) is complete
then(N, h) is complete.

Proof. We check iii) of (4.3); lety ∈ U(N) andx = pT(y); the geodesic
t → M exp(tx) is defined for all values oft since (M, g) is complete; its
lift in ( N, h) is by (2.7) nothing but the geodesict → N exp(ty), which is
therefore defined for all values oft. �

6.8

Lemma. If (M, g) is complete, then∀m ∈ M, ∀m̃ ∈ p−1(m), ∃u ∈ am

such thatϕ(m) = d̃(m̃, ĥ(m̃)).

Proof. By (6.6) 248

ϕ(m) = inf {d̃(m̃, d̂(m̃))|u ∈ am}.

Looking for an infimum we can work inside a given ballD(m, r) for a
suitabler, which is compact by (5.3); thenp−1(m)∩D(m, r) is a discrete
set in the compact setD(m, r), so is finite; a fortiori the pointŝu(m) in
D(m, r) are finite in number. �
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6.9

Lemma.ϕ is continuous on M.

Proof. Let m be a point ofM and letr be a positive real number such
thatB(m, r) is a nice ball. Letn ∈ B(m, r), m̃ ∈ p−1(m). By the proof of
(5.1)∃ ñ with B(m̃, r) ∩ p−1(n) = {̃n}, and further̃d(m̃, ñ) = d(m, n). But
∀u ∈ π1(M,m):

d̃(m̃, û(m̃)) ≤ d̃(m̃, ñ) + d̃(̃n, û(̃n)) + d̃(̂u(m̃), û(̃n))

and sincêu is an isometry we have

d̃(̂u(̃n), û(m̃)) = d̃(̃n, m̃) = d(n,m).

Hence we have

d̃(m̃, û(m̃)) ≤ d̃(̃n, û(̃n)) + 2d(m, n)

Hence by the definition ofϕ we have

ϕ(m) ≤ d̃(̃n, û(̃n)) + 2d(m, n)

and hence taking the infimum on the right asu varies througham,

ϕ(m) ≤ ϕ(n) + 2d(m, n).

SinceB(m, r) is a nice ball we can interchange the roles ofm andn and
get

ϕ(n) ≤ ϕ(m) + 2d(m, n).

Hence

|ϕ(m) − ϕ(n)| ≤ 2d(m, n) < 2r.

This holds for anyr small enough, so we are through. �249



6. CLOSED GEODESICS 245

6.10

Theorem .Let (M, g) be a compact r.m., and let a be a non zero free
homotopy class on M. Then∃ γ ∈ a such that:

i) γ is a closed geodesic,

ii) lg(ξ) ≥ lg(γ) ∀ζ ∈ a.

Proof. SinceM is compact andϕ is continuous∃m ∈ M such that

ϕ(m) ≤ ϕ(n) ∀n ∈ M.

Let m̃∈ p−1(m); then by (6.8)∃u ∈ am such that

ϕ(m) = d̃(m̃, û(m̃)).

By (6.7) and by (4.8),T (m̃, ĥ(m̃)) , ∅. Let

γ̃ : [0, 1]→ M̃, γ̃ ∈ T (m̃, û(m̃));

and setγ = p◦ γ̃. We check ii) first: we have lg(γ) = ϕ(m) by construc-
tion. Then letτ ∈ a with τ ∈ u; and let̃n ∈ p−1(n) andτ̃ be the lift ofτ
through̃n. Then by (6.6)

lg(τ) = lg(̃τ) ≥ d̃(̃n, û(̃n)) ≥ ϕ(n) ≥ ϕ(m) = lg(γ).

We prove i) now: we have to prove thatγ has no corner. Suppose, by
contradiction, thatγ did have a corner atm; choose a nice ballB(m, r).
Suppose, to simplify the notation, thatm = γ(0) = γ(1); denote byfǫ
the unique geodesic inB(m, r) from γ(ǫ) to γ(1− ǫ) (see (3.1)); because
γ′(0) , γ′(1), we have, by (3.6),

lg(γ|[0, ǫ]) + lg(γ|[1 − ǫ, 1]) < lg( fǫ).

The family of loops{ fǫ∪(γ|[ǫ, 1−ǫ])} for ǫ ∈ [0, ǫ0], with ǫ0 < r, is a free
homotopy, sofǫ0∪ (γ|[ǫ0, 1− ǫ0]) ∈ a and lg(fǫ0 ∪ (γ|[ǫ0, 1− ǫ0]) < lg(γ), 250

contradicting ii),
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�

6.11

Remarks. 1) Let us note that the compactness condition onM is, in
general, necessary. For if we take the curve

{(x, y) ∈ R2|y = e−x}

and take the surface
∑

of revolution it generates inR3 by rotation
around thex-axis the theorem does not hold for

∑
. For the cross

sections of the surface by the planes orthogonal to thex-axis are
all in the same non zero free-homotopy class but the infinimumof
their lengthsiz zero.

2) From (6.10) one sees that if (M, g) is any non-simply-connected
compactm., it has at least one closed geodesic. This remains true
when this (M, g) is simply connected compact but the proof is far
more difficult, for it uses Morse theory: the oldest proof is in [11]

7 Manifolds with constant sectional curvature
251

In (4) we have seen that every r.m. of constant sectional curvature is upto
a scalar, locally isometric to one of the three standard r.m.of constant
sectional curvature:

(Sd, can), (Rd, ǫ), (Rd,Hyp).
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These standard r.m.s are complete. Use (4.12) and the fact that the
geodesics in (Rd, ǫ) are well known (see (4.2.9)). Further they are sim-
ply connected. Now we prove that every simply connected r.m.with
constant sectional curvature is essentially one of the manifolds listed
above.

7.1

Proposition . Let (M, g) be an r.m. of constant sectional curvature k
which is complete and simply connected. Then(M, g) is isometric to

(Rd, (−k)−
1
2 · Hyp)), (Rd, ǫ), (Sd, k−

1
2 · can)

(k < 0, k = 0, k > 0).

Proof. Let us denote each of the simply connected r.m.s of constant
sectional curvature by (N, h).

a) Suppose first thatk ≤ 0. Then by (2.9) exp has maximal rank
everywhere, and hence, by (5.4), we conclude that for any point n
of N, expn is∞-O.K. Letmbe any point inM. Then, since (M, g)
is complete, expm is defined on the whole ofTm(M). Now if u
is any euclidean isomorphism fromTn(N) to Tm(M), then by the
proof of (4.11) (see (6.4.25)) it follows that the map

λ = expm◦u ◦ exp−1
n

is a local isometry betweenN and M. Then by (5.1) it follows 252

thatλ is a covering map. But since (M, g) is simply connectedλ
is one-one and henceλ is an isomorphism.

b) Now suppose thatk > 0. Letn be a point ofN and letn′ , n and
different from the antipodal point ofn. Then by (5.12) and (4.18)
it follows that expn and expn′ are (π/

√
k)-O.K. Now letm be any

point of (M, g) and letu : Tn(N) → Tm(M) be any euclidean
isomorphism. Then since (M, g) is complete expm is defined on
Tm(M) and hence by the proof of Cartan’s theorem (4.11) the map

λ = M expm◦u ◦ (N expn |B(n, π/
√

k))−1
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is a local isometry; in particularλT
n′ is an euclidean isomorphism,

so again

λ′ = M expλ(n′) ◦λT
n′ ◦ (N expn′ |B(n′, π/

√
k))−1

is a local isometry.

�

We claim thatλ, λ′ coincide on their common domain of definition,
i.e. B(n, π/

√
k)∩ B(n′, π/

√
k). For we haveλT

n′ = (λ′)T
n′ hence the asser-

tion follows from the diagram (2.6).
Now sinceB(n, π/

√
k) together withB(n′, π/

√
k) coversN andλ

andλ′ coincide on the intersectionB(n, π/
√

k)∩ B(n′, π/
√

k) we have a
mapλ′′ from N to M. Sinceλ andλ′ are local isometries it follows that
λ′′ is. Now if we can show thatλ′′(N) = M then by (5.1) it follows that
λ′′ is a covering map, but sinceM is simply connected we get thatλ′′253

is an isometry. SinceN is compactλ′′(N) is compact (M is Hausdorff)
and henceλ′′(N) is closed inM. But sinceλ andλ′ are local isometries
and hence in particular open maps we have

λ′′(N) = λ(B(n, π/
√

k)) ∪ λ′(B(n′, π/
√

k))

is open inM. But M is connected and hence:

λ′′(N) = M.



Chapter 8

Some formulas and
applications

In this chapter we assume that all the manifolds we consider are of di- 254

mension greater than or equal to two.

1 The second variation formula

To investigate whether a geodesicγ with γ(0) = m, γ(1) = n belongs
to T (m, n) or not, we are led to proceed as follows (where we use the
notations of (8) and (1).

1.1

Let f be a one parameter family

f :] − ǫ, 1+ ǫ[×J→ M(ǫ > 0)

with fixed end points, i.e.

f (0, α) = γ(0) and f (1, α) = γ(1) ∀α ∈ J,

and such thatf0 = γ. Then the first variation formula (see (4.1.2), (2.1))
gives that

l′f (0) =
∂

∂α
(lg( fα|[0, 1]) = 0.

249
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Then ifγ is in T (γ(0), γ(1)), we have

lg( fα|[0, 1]) ≥ lg(γ|[0, 1]) = lg( f0|[0, 1]);

therefore the so-calledsecond variation l′′f (0) verifies:

l′′f (0) =
∂2

∂α2
(lg( fα|[0, 1])) ≥ 0.

Later on we will use the fact thatl′′f (0) < 0 implies thatγ < T (m, n)
(see (1.12). So we wish to computel′′f (0).

1.2
255

Now let us assume thatf is such that

i) f0 is a geodesic parametrised by the arc length,

ii) g(P,Q)(t, 0) = 0 and then computel′′f (0) (we do not require that

the end points be fixed).

We have

l′′f (0) =
∂2

∂α2
(lg( fα|[0, 1]))

= . . . . . . = Q(Q

1∫

0

g(P,P)1/2 dt))

=

1∫

0

Q(Q(g(P,P)1/2)) dt;(8.1.3)

Q(g(P,P)1/2) = 1/2Q(g(P,P))g(P,P)−
1
2

= g(DQP,P)g(P,P)−
1
2 by (4.8) (C.D.7).(8.1.4)

Hence, using the fact that

Q(Q(g(P,P)1/2)) = Q(g(DQP,P))g(P,P)1/2,
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we obtain

−(1/2)g(DQP,P) · Q(g(P,P)) · g(P,P)−3/2
= . . .(8.1.5)

. . . = g(DQDQP,P) + g(DQP,DQP)g(P,P)
1
2 − g(DQP,P)2g(P,P)−3/2.

Now we use (1.2). We have

g(DQP,P) = g(DPQ,P) since [P,Q] = 0 andD is symmetric

= P(g(Q,P)) − g(Q,DP,P) by (4.8).

Since f0 is a geodesic (DPP)(t, 0) = 0 and hence by (1.2) ii) we have

(8.1.6) g(DQP,P)(t, 0) = 0.

Again sinceD is symmetric and [P,Q] = 0 we have 256

g(DQDQP,P) = g(DQDPQ,P) = g(DPDQQ,P) + g(R(Q,P)Q,P)

by (5.12) (C.D.5)

= P(g(DQQ,P)) − g(DQQ,DPP) + g(R(P,Q)P,Q).

Now sincef0 is a geodesic we have (DPP)(t, 0) = 0 and hence we have

(8.1.7) g(DQDQP,P)(t, 0) = P(g(DQQ,P))(t, 0)+g(R(P,Q)P,Q)(t, 0).

Combining (8.1.5), (8.1.6) and (8.1.7) with the fact thatf0 is parametri-
sed by the arc length and henceg(P,P)(t, 0) = 1 we have the following
proposition.

Proposition 1.8. If f is a one parameter family of curves satisfying the
conditions (1.2)(i) and(ii) then

l′′f (0) =
[
g(DQQ,P)

](1,0)

(0,0)
+

1∫

0

(||DPQ||2 + g(R(P,Q)P,Q))(t, 0) dt

Noticing the fact that the integral in (1.8) depends only on the curve f0
and on the lift Q(t, 0) of that curve we give the following definition.
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Definition 1.9. Let
γ : [0, 1]→ M

be a curve and let h be a lift ofγ into T(M).
Then we define

l′′h (0) =

1∫

0

(||DPh||2 + g(R(γ′, h)γ′, h))(t) dt .

In general it is easier to construct a lift h along a curveγ and com-257

pute l′′h (0) then to construct a family f of curves and compute l′′
f (0). A

relation between the two processes is given by the:

Proposition 1.10. Let

γ : [0, 1] ⊂ I → (M, g)

be a geodesic parametrised by the arc length and let h be a liftof γ into
T(M) such that

g(γ′, h) = 0.

Then, there exists an interval J containing zero and a one parameter
family

f :] − ǫ, 1+ ǫ[×J→ M(ǫ > 0)

of curves such that

a) f0 = γ and (1.2)i) ii) hold for f

b) l′′f (0) = l′′h (0).

Proof. We wish to set:

f (t, α) = exp(α · h(t)).

But the right hand side makes sense only ifα · h(t) ∈ Ω. So we adjustJ
so that this happens. Let 0< ǫ′ < ǫ; the map

[−ǫ′, 1+ ǫ′] × J ∋ (t, α)→ α · h(t) ∈ T(M)
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is continuous. Under this map the compact set [−ǫ′, 1 + ǫ′] × {0} goes
into the open setΩ sinceΩ ∋ 0P∀p ∈ M. Hence there existsr > 0 such
that under the above map [−ǫ′, 1 + ǫ′] × [−r, r] goes intoΩ. Hence we
can set

f (t, α) = exp(α · h(t))∀(t, α)ǫ[−ǫ′ , 1+ ǫ′] × [−r, r].

Then 258

f0(t) = exp(0· h(t)) = exp(0p(h(t))) = exp(0γ(t)) = γ(t)

and hencef0 is a geodesic parametrised by the arc length; and since
Q(t, 0) = h(t) we have

g(P,Q)(t, 0) = g(γ′, h)(t) = 0.

�

1.11

Hence f satisfies a) i). For ii) we see thath(t) = Q(0, t) (as in (8)), and

hence:

l′′f (0) =
[
g(DQQ,P)

](1,0)

(0,0)
+

1∫

0

(||DPQ||2 + g(R(PQ)P,Q))(t, 0) dt .

But since the map
α→ exp(α · h(t))

is a geodesic we have
(DQQ) = 0.

Hence we are through by (1.11) and the definition ofl′′h (0).

Corollary 1.12. Let m and n be points of M and letγ ∈ P(m, n) be a
geodesic in(M, g); suppose that there exists a lift h(t) of γ such that

1) g(h, γ′) = 0,
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2) h(0) = h(1) = 0,

3) l′′h (0) < 0.

Thenγ < T (m, n).

Proof. Let us take the one parameter family defined in the above propo-
sition. Then we have

∂

∂α
(lg( fα|[0, 1])) = 0

and259
∂2

∂α2
(lg( fα|[0, 1])) = l′′r (0) = l′′h (0) < 0.

Hence using Taylor’s formula with a remainder we see that there exist
α’s such that

(8.1.13) g( fα|[0, 1]) < g( f0|[0, 1]).

But we have

f (0, α) = exp(α · h(0)) = exp(α · 0γ(0)) = γ(0) = m

and f (1, α) = exp(α · h(1)) = exp(α · 0γ(1)) = γ(1) = n

and hence by (8.1.13) there exist curves fromm to n with length less
than that ofγ. Henceγ is not inT (m, n). �

2 Second variation versus Jacobi fields

2.1

Notation. For x ∈ U(M) let us set (see (8.30)):

j(x) = inf {t > 0|γx(0) and γx(t) are conjugate onγx}.

If expm is r-O.K. then by (8.32) it follows that

j(x) ≥ r ∀x ∈ Um(M).

Hence j(x) is a strictly positive function onU(M).
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2.2

Proposition. Let x∈ U(M), l ∈ [0, j(x)] and let

h : [0, 1]→ T(M)

be a lift ofγx such that h(0) = h(1) = 0. Then l′′h (0) ≥ 0 and equality
holds if and only if h is a Jacobi field.

Proof. Let {x = x1, x2, . . . , xd} be a basis ofTm=p(x)(M) and lethi be the
Jacobi field alongγx such thathi(0) = 0 and (DPhi)(0) = xi (see (8.26)).
Then∀t ∈ [0, 1] : {h1(t), . . . , hd(t)} form a basis of Tγx(t)(M): for if for
somet0 > 0 we have: ∑

i

aihi(t0) = 0.

then the Jacobi fieldk : t → ∑
i

aih(t) vanishes att = 0 and att = t0 so 260

by (8.30):k = 0.
Hence

DPk =
∑

i

aiDPhi = 0;

in particular
(DPk)(0) =

∑

i

ai xi = 0.

Since{x1, . . . , xd} is a basis ofTm(M) we have

a1 = . . . = ad = 0. Q.E.D.

Hence corresponding to every lifth of γx into T(M) we have functions
{ f1, . . . , fd} on ]0, 1[ such that

(8.2.3) h(t) =
∑

i

fi(t)hi (t).

Then we have
DPh =

∑

i

f ′i hi +

∑

i

fi(DPhi)
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and setting

(8.2.4) u =
∑

i

f ′i hi and v =
∑

i

fi(DPhi)

we have
DPh = u+ v.

Hence

(8.2.5) ||DPh||2 = ||u||2 + 2g(u, v) + ||v||2

and

g(R(γ′x, h)γ′x, h) = g(R(γ′x,
∑

fihi)γ
′
x, h) =(8.2.6)

=

∑

i

fig(R(γ′x, hi)γ
′
x, h) =

∑

i

fig(DPDPhi , h),

(sincehi are Jacobi fields).

�

2.6
261

= g(
∑

i

fiDPDPhi , h) = g(DPv−
∑

i

f ′i DPhi , h)

= g(DPv, h) −
∑

i

f ′i g(DPhi , h).

= P(g(v, h)) − g(v,DPh) −
∑

i, j

f ′i f jg(DPhi , h j =

by (4.8) (C.D.7)

= P(g(v, h)) − g(v, u+ v) −
∑

i, j

f ′i f jg(DPhi , h j).

But if we set

ξ = g(DPhi , h j) − g(DPh j , hi) (a classical Sturmain argument)
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then

ξ′ = P(ξ) = g(DPDPhi , h j) + g(DPhi ,DPh j)

− g(DPDPh j , hi) − g(DPh j ,DPhi)

= g(DPDPhi , h j) − g(DPDPh j , hi) =

= g(R(γ′x, hi)γ
′
x, h j) − g(R(γ′x, h j)γ

′
x, hi) = 0

by ((5.5.5) C.T.4).

Henceξ is constant, butξ(0) = 0 for hi(0) = 0∀i. Soξ = 0. Hence we
have

∑

i, j

f ′i f jg(DPhi , h j) =
∑

i, j

f ′i f jg(DPh j , hi)

= g(
∑

j

f jDPh j ,
∑

i

f ′i hi) = g(u, v).

Hence by (8.2.5) and (8.2.6) we have

||DPh||2 + g(R(γ′x, h)γ′x, h) = P(g(v, h)) + ||u||2.

Hence 262

l′′h (0) =
[
g(v, h)

]1
0 +

1∫

0

||u||2 dt,

and sinceh(0) = h(1) = 0 we have

(8.2.7) l′′h (0) =

1∫

0

||u||2 dt .

Hencel′′h (0) ≥ 0 and equality holds if and only ifu is identically zero.
But since{h1(t), . . . , hd(t)} from a basis for everyt, u is identically zero
if and only if eachf ′i is zero, i.e. if and only if eachfi is a constant.

Henceh =
∑
i

fihi is a Jacobi field.
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2.9

Proposition. Let x∈ U(M) and l> j(x); then

γx|[0, 1] ∈ T (γx(0), γx(1)).

Proof. First we prove two lemmas. �

2.10

Lemma. Let h be a Jacobi field alongγx. Then

l′′h (0) =
[
g(Dph, h)

]1

0
.

Proof. We have by definition

l′′h (0) =

1∫

0

g(Dph,DPh) + g(R(γ′x, h)γ′x, h) dt =

=

1∫

0

g(DPh,DPh) + g(DPDPh, h) dt (sinceh is a Jacobi field)

=

1∫

0

P(g(DPh, h)) dt by (4.8) (C.D.7)=
[
g(DPh, h)

]1
0 .

�

2.11

Lemma. Let h be a Jacobi field alongγx such that

h(0) = 0 and (DPh)(0) , 0.

Then given any positive numberη we can choose a positive numberǫ
less thanη and a Jacobi field k alongγx|[−ǫ, ǫ] such that263

i) k(−ǫ) = h(−ǫ)
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ii) k(ǫ) = 0

iii) g(DPh, h)(−ǫ) < g(DPk, k)(−ǫ).

Proof. Let r be a positive number such thatB(m, r) is convex. Then
∀t ∈]0, r[ there exists a Jacobi fieldkt alongγ|[−t, t] such that

(8.2.12) kt(−t) = h(t) and kt(t) = 0.

In fact we setfα = the geodesic from exp(α ·h(−t)) to γ(t) parametri-
sed by the arc length, then the family{ fα} of the curvesfα so obtained is
a one-parameter family of geodesics and thek(s) = Q(s, 0) satisfy our

requirements. Now let us set

u = (DPh)(0) and k̂t(t
′) = at + t′bt + 0(t′).

Then
ĥ(t′) = t′ · u+ 0(t′), ĥ′(t′) = u+ 0(1)

and
k̂′t (t
′) = bt + 0(1).

Then by (8.2.12) we have

at − tbt + 0(t) = k̂t(−t) = ĥ(−t) = −tu+ 0(t)

and
k̂t(t) = at + tbt + 0(t) = 0.

Hence 264

bt =
u
2
+ 0(t).

�
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2.13

Hence

g(DPh, h)(−t) = g(̂h′(−t), ĥ(−t)) = g(u+0(1),−tu+0(t)) = −t||u||2+0(t),

and

g(DPkt, kt)(−t) = g(̂k′t (−t), k̂t(−t))

= g
(u
2
+ 0(1), ĥ(−t)

)
= g

(u
2
+ 0(1),−tu+ 0(t)

)
=

t
2
||u||2 + 0(t).

Sinceu is non zero by our hypothesis we have||u|| > 0 and hence by
(2.13) we can chooset so small that

g(DPh, h)(−t′) < g(DPk, k)(−t′)

for 0 < t′ < t.
Now let us take up the proof of (2.6). Since 1> j(x) there exists a

t0 ∈]0, 1[ and a Jacobi fieldh alongγx such that

h , 0, h(0) = h(1) = 0.

Setη = −t0. Then applying the lemma (2.11) for the Jacobi fieldh
around the pointt0 we getǫ ∈]0, η[ and a Jacobi fieldkǫ alongγx|[t0 −
ǫ, t0 + ǫ]. Now let f be the lift ofγx such that:

h1 = f |[0, t0 − ǫ] = h|[0, t0 − ǫ]
h2 = f |[t0 − ǫ, t0 + ǫ] = kǫ
h3 = f |[t0 + ǫ, 1] = 0.

Then we have265

l′′f (0) = l′′h1
(0)+ l′′h2

(0)+ l′′h3
(0).

But by (2.10) we have

l′′h1
(0) =

[
g(DPh1, h1)

]1−ǫ
0 = g(DPh1, h1)(1− ǫ) since h1(0) = h(0) = 0;

and

l′′h2
(0) =

[
g(DPh2, h2)

]1+ǫ
1−ǫ = −g(DPh2, h2)(1− ǫ) since h2(1+ ǫ) = 0

and
l′′h3

(0) = 0 since h3 = 0.

Hencel′′f (0) < 0 so we are done with (1.12).
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2.14

Remark . The two propositions (2.2) and (2.6) are essential parts of
Morse’s index theorem.

3 The theorems of Synge and Myers

First let us recall that Ricci curvature (Ric) is a function from T(M) to
R.

3.1

Proposition. Let (M, g) be an r.m. of dimension d such that

Ric(U(M)) ⊂ [k,∞[

for some k> 0. Let γ be a geodesic inP(m, n) where m and n are
points of M. Now if

lg(γ) > π

(
d − 1

k

)1/2

thenγ < T (m, n). 266

Proof. Let us suppose thatγ is parametrised by the arc length and then
take an orthonormal basis{x1 = γ

′(0), x2, . . . , xd} of Tγ(0)(M). Let hi be
the parallel lift alongγ with hi(0) = xi , and set

si(t) = sin
(
π

1
t
)
· hi(t).

Then sincehi is a parallel lift we haveDPhi = 0 and hence by (4.1)
D.L.3 we have

(DPsi)(t) =
π

1
cos

(
πt
1

)
· hi(t),

and since parallel transport preservesg we have

(8.3.2) ||(DPsi)(t)||2 =
π2

12
cos2

(
πt
1

)
.
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Again since parallel transport preservesg by the definition ofA (see
(6.1.2)) and sinceγ′(0) andhi(0) are orthogonal we have

g(R(γ′, h)γ′, h) = −A(γ′, si)||si ||2 = −A(γ′, hi) sin2 πt
1
.

Hence by the definition (1.9) we have

(8.3.3) l′′si
(0) =

1∫

0

π2

12
cos2

(
π

1
t
)
− sin2

(
πt
1

)
A(γ′, hi) dt .

By (8.6) we have
d∑

i=2

A(γ′, hi) = Ric(γ′) ≥ k

and hence
(8.3.4)

d∑

i=2

l′′si
(0) ≤

∫

0

π2

l2
· (d−1) cos2

(
πt
1

)
−ksin2

(
πt
1

)
dt =

1
2

(
π2

12
(d − 1)− k

)
.

Hence ifl > π

(
d − 1

k

) 1
2

then
d∑

i=2
l′′si

(0) < 0 and hence267

∃ i|l′′si
(0) < 0;

hence, by (1.12),γ < T (m, n). �

3.5

Definition. The real number d(M, g) defined as

d(M, g) = sup{d(m, n)|m, n ∈ M}

is called thediameter of ther.m. (M, g).
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3.6

Remarks. 1) If d(M, g) < ∞ and the manifold (M, g) is complete
then by Hopf-Rinow theorem it follows thatM is compact.

2) Let us note that (8.6) implies that if

A(M) ⊂ [k,∞[ then Ric(U(M)) ⊂ [(d − 1)k,∞[

3.7

Corollary Myers. Suppose that(M, g) is a complete r.m. such that there
exists a k> 0 satisfying

Ric(U(M)) ⊂ [k,∞[.

Then

d(M, g) ≤ π
(
d − 1

k

) 1
2

.

In particular M is compact and the fundamental group of M is finite.

Proof. Suppose that there existm andn in M such that

d(m, n) > π

(
d − 1

k

) 1
2

.

Then by (8.4.8) there exists a geodesicγ joining mandn such that

lg(γ) > π

(
d − 1

k

) 1
2

.

But this contradicts (3.1); henced(M, g) ≤ π
(
d − 1

k

) 1
2

. 268

By (3.6) it follows thatM is compact. Now let

p : (M̃, g̃)→ (M, g)
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be the universal riemannian covering of (M, g). Then sincep is a local
isometry we obtain

Ric(U(M̃)) = Ric(U(M)) ⊂ [k,∞[.

Hence the first part of the corollary gives thatM̃ is compact. Hence the
coveringp : M̃ → M has finite number of sheets. �

3.8

Remarks. 1) This result was first proved by Bonnet for two dimen-
sional manifolds.

2) In the above inequality (3.7) the equality occurs for

S
d,

(
d − 1

k

) 1
2

· can

 ⊂ R
d+1.

The proof here would not yield easily the result that equality in

(3.7) is attained only if (M, g) is isometric to (Sd, (
d − 1

k
)

1
2 · can).

However the validity of this result can be deduced easily from
[33]: Corollary 4, p.256-257.

3.9

Theorem. (Synge) Let(M, g) be an r.m. such that

i) M is compact

ii) M is orientable

iii) the dimension of M is even

iv) A(M) ⊂]0,∞[.

Then M is simply connected.
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Proof. By contradiction: suppose thatM is not simply connected; then269

(see (6.3)) there exists inM at least one non-zero free homotopy class.
Let γ denote the closed geodesic which fulfills the conditions i) and ii)
of theorem (6.10). Letl = lg(γ) andτ(t) denote the parallel transport
alongγ from 0 to t. Sinceγ(0) = γ(1) thenτ(1) is an endomorphism of
Tγ(0)(M); by (4.9) we see thatτ(1) belongs to the orthogonal group of
Tγ0(M). In fact τ(1) is a rotation. For: suppose thatσ is the orienting
form and that{γ′(0) = x1, . . . , xd} is a positive orthonormal base of
Tγ(0)(M). Then the function

σ(τ(t)(x1), . . . . . . , τ(t)(xd))

never vanishes sinceσ is never zero andτ(t) is an isomorphism; hence

σ(τ(1)(x1), . . . , τ(1)(xd)) = 1.

Set
H =

{
y ∈ Tγ(0)(M)|g(γ′(0), y) = 0

}
;

then since parallel transport preservesg andτ(1)(γ′(0)) = γ′(1) = γ′(0)
by (3.5) we getτ(1)(H) = H. But H is odd dimensional and hence
∃ y ∈ H, y , 0, with τ(1)(y) = y (becauseτ(1) is a rotation).

Let h be the parallel lift ofγ such thath(0) = y. sinceτ(1)(y) = y
we have

h(0) = h(1) = y.

Now let f be the parameter family of curves associated toh in the man- 270

ner of (1.10). Then by the definition off we see thatfα is a closed curve
∀α and (see (1.9)):

l′′f (0) = l′′h (0) = −
1∫

0

A(γ′, h)||h||2 dt < 0

sinceh(t) is non zero andA(M) ⊂]0,∞[. Hence∃α0 such that

lg( fα0) < lg(γ).

Moreover the restrictionf |[0, 1] × [0, α0] defines a free homotopy be-
tweenγ, and fα0. This contradicts our choice ofγ. �



266 Some formulas and applications

3.12

Remark . The manifold (P3(R), can) shows that this result cannot be
improved.

4 A formula

We prove an integral formula (4.7) which will be used in articles 7 and
9 (see [13]: theorem 5.1).

In this article we assume that the r.m.(M, g) is complete. In particu-
lar (4.3)the geodesic flowis defined on the wholeR×M. We denote the
flow by Gt. We recall the fact that Ric is the Ricci curvature of (M, g)
(see (8)).

4.1

Definition. We say that an r.m. (M, g) is NCB(k) if k is a positive num-
ber and (see (2.1))

j(U(M)) ⊂ [k,∞[.

Now for any positive number k and for any x∈ U(M) we set:271

(8.4.2) fk(x) =

k/2∫

−k/2

(
(d − 1)

π2

k2
sin2

(
πt
k

)
− cos2

(
πt
k

)
· Ric(Gt(x))

)
dt .

Note that by the definition of a flow and becauseγ′x is an integral curve
of G we have:

Gt(x) = γ′x(t).

4.3

Proposition. If (M, g) is NCB(k) then

fk(x) ≥ 0 ∀x ∈ U(M),
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equality occurring for a given x if and only if∀t ∈
[
−k

2
,
k
2

]
and∀y which

is linearly independent of Gt(x) we have

A(Gt(x), y) = π2/k2.

Proof. As in the proof of (3.1) for a givenx let {x = x1, x2, . . . , xd} be
an orthonormal basis ofTp(x)(M), let hi be the parallel lift ofγx through
xi and letsi be the lift defined by the equation

(8.4.4) si(t) = cos
(πt

k

)
· hi(t) for − k

2
≤ t ≤ k

2
.

Then (1.9):

(8.4.5) l′′si
(0) =

k/2∫

−k/2

(
π2

k2
sin2

(
πt
k

)
− A(Gt(x), hi (t)) cos2

(
πt
k

))
dt .

Hence by (8.6) and (8.4.2) we have

(8.4.6) fk(x) =
d∑

i=2

l′′si
(0).

Now let us note that, by the definition,si vanishes at±k
2

and the fact 272

that (M, g) is anNCB(k) implies thatj(γ′(−k
2

)) ≥ k. Hence by (2.1) and

(2.2) we have
l′′si

(0) ≥ 0 ∀i = 2, . . . , d

and equality occurs if and only ifsi is a Jacobi field. Now suppose that
fk(x) = 0. Thensi is a Jacobi field∀i. Hence

DPDPsi = R(Gt(x), si)(Gt(x)).

But

DPDPSi = −
π2

k2
cos

(
πt
k

)
· hi(t)
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and
R(Gt(x), si)Gt(x) = cos

(
πt
k

)
· R(Gt(x), hi (t))Gt(x).

Further cos(
πt
k

) does not vanish in ]− k
2

,
k
2

[ and hence we have

R(Gt(x), hi (t))Gt(x) = −π
2

k2
· hi(t)∀i.

and since{h1(t), h2(t), . . . , hd(t)} form a basis ofTγx(t)(M) (see the proof
of (2.2)) we have (see (6.8.2))

R(Gt(x))y = −π
2

k2
y

whenevery is orthogonal toGt(x). In particular if{Gt(x), y} are orthonor-
mal we have

A(Gt(x), y) = −g(R(Gt(x), y)Gt(x), y) =
π2

k2
g(y, y) =

π2

k2
.

Before stating the next proposition let us recall thatΓ denotes the scalar
curvature of (M, g) (see (8)) �

4.7

Proposition. Let(M, g) be an oriented compact manifold. Then if(M, g)273

is NCB(k) we have

Vol(M, g) ≥ k2/π2

d(d − 1)
·
∫

M

Γ · σ

(whereσ is the canonical volume form of(M, g)) and the equality occurs
if and only if A(M) = {π2/k2}.

Further, if k= ∞,
∫
Γ · σ = 0, then A(M, g) = {0}.

Proof. Letσ = ω ∧ (p∗σ) (see (6.2.5)) be the volume form ofU(M) so
that for everymof M,ω|Um(M) is the volume form ofUm(M). Now set

ϕk(x, t) = (d − 1)
π2

k2
sin2

(
πt
k

)
− cos2

(
πt
k

)
· Ric(Gt(x)) ∀x ∈ U(M), t ∈ R
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and defineI by the equation

I =
∫

U(M)

fk(x) · σ =
∫

U(M)



k
2∫

− k
2

ϕk(x, t) · dt


σ.

SinceM is compact we may interchange the order of integration and
obtain

(8.4.8) I =

k/2∫

−k/2



∫

U(M)

ϕk(x, t)σ

dt = A− B,

where

(8.4.9) A =

k/2∫

−k/2



∫

U(M)

(d − 1)
π2

k2
sin2

(
πt
k

)
σ

 dt

and

(8.4.10) B =

k/2∫

−k/2



∫

U(M)

cos2
(
πt
k

)
Ric(Gt(x))σ

dt .

But 274

A = (d − 1)
2

k2
·

k/2∫

−k/2

sin2 πt
k



∫

U(M)

σ

dt .(8.4.11)

= (d − 1)
π2

k2

�



�
	d − 1 Vol(M, g)

k/2∫

−k/2

sin2 πt
k
· dt =

= (d − 1)
2
k2

�



�
	d − 1 Vol(M, g) · k

2
by (5.2.13).

By (3.10) and (2.5) we have:

Gt(σ) = σ.
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Hence by (0.3.9) we have
∫

U(M)

Ric(Gt) · σ =
∫

U(M)

(Ric◦Gt)Gt(σ) =
∫

U(M)

Gt(Ric◦σ) = (by (0.3.9))

=

∫

U(M)

Ric◦σ =
∫

U(M)

Ric◦(ω ∧ p∗σ) =

=

∫

m∈M



∫

Um(M)

Ric |Um(M)

 · ω))σ by (3.17).

But by (6.8.11) we get

∫

U(M)

Ricσ =
∫

M

�



�
	d − 1

d
Γ(m) · σ =

�



�
	d − 1

d

∫

M

Γ · σ

and hence

(8.4.12) B =

k/2∫

−k/2

cos2
(
πt

k

) �



�
	d − 1

d

∫

M

Γ · σ dt =

�



�
	d − 1

d
k
2

∫

M

Γ · σ.

But
k/2∫

−k/2

sin2 πt
k

dt =

k/2∫

−k/2

cos2
πt
k

dt =
k
2
.

Hence we have275

I =

�



�
	d − 1 k

2


(d − 1) · π2

k2
Vol(M, g) − 1

d

∫

M

Γ · σ

 .

But by (4.3)I ≥ 0 and sincek ·
�



�
	d − 1 > 0 we have

(8.4.13) Vol(M, g) ≥ k2π−2

(d − 1)d

∫

M

Γ · σ
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where the equality occurs if and only ifI = 0 i.e. if and only if fk(x) = 0
for everyx.

But by (4.3), this happens if and only if whenever

x ∈ U(M), t ∈] − k
2
,
k
2

[ andy is linearly independent ofGt(x),

we have

A(Gt(x), y) =
π2

k2
.

This is clearly equivalent to the fact that

A(M) =
{
π2/k2

}
.

Now suppose that (M, g) is NCB(∞) and
∫

M

Γ · σ = 0. First by (4.3)

letting k tend to infinity we havef∞(x) ≥ 0 ∀x ∈ U(M) and then by
(8.4.8), (8.4.10) and (8.4.12) we have

I =
∫

U(M)

f∞(x) · σ = −
k
�



�
	d − 1

2d

∫

M

Γ · σ = 0.

Hence

(8.4.14) f∞(x) = 0 ∀x ∈ U(M).

Now by (8.2.7) we have

0 ≤ l′′si (k) =

k/2∫

−k/2

π2

k2
sin2

(
πt
k

)
− A(Gt(x), hi (t)) cos2

(
πt
k

)
dt

and because of (8.4.6) and (8.4.14) 276

d∑

i=2

l′′si (k)(0)→ 0 as k→ ∞.
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Since each of the terms is non-negative we have

lim
k→∞

k/2∫

−k/2

(
π2

k2
sin2

(
πt
k

)
− A(Gt(x), hi (t) cos2

(
πt
k

))
dt = 0.

But by (8.2.7) the integrand is non-negative, and hence

cos2
(πt

k

)
A(Gt(x), hi(t)) ≤

π2

k2
sin2 πt

k
.

Fixing t and lettingk to infinity we have

A(Gt(x), hi (t) ≤ 0.

Hence the sequencefn(t) of functions defined by the equation

fn(t) =


−A(Gt(x), hi (t)) cos2

(
πt
n

)
in ] − n

2,
n
2[

0 outside

is a non decreasing sequence of functions. Hence

0 = lim
n→∞

∫
fn(t) dt =

∫
lim
n→∞

fn(t) dt =
∫

A(Gt(x), hi(t) dt .

SinceA(Gt(x), hi (t)) is of the same sign we have

A(Gt(x), hi (t)) = 0 ∀t.

Puttingt = 0 we get
A(x, xi) = 0

wheneverx andxi are orthogonal. But the sectional curvature is a func-
tion of the two dimensional subspaces and hence the result. �

5 Index of a vector field
277

In the case of a compact oriented r.m. (M, g), we have seen that
∫

M

Γ · σ

plays a role. In the two dimensional cases we haveΓ = 2A, and the
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Gauss-Bonnet formula (see next article) says that
∫

M

A · σ = 2π · χ(M),

whereχ(M) is the Euler-Poincaré characteristic of M.In the next sec-
tion we give that part of the proof which involves riemanniangeometry.
Now we collect some facts from algebraic topology.
1. Let us takeRd with its canonical r.s.ǫ and denote bŷω ∈ E d(U(Rd))
the form calledω in (5.2.11). Letm ∈ Rd and B an open set ofRd

containingm and X a vector field onRd which does not vanish inB
except atm. We defineX on B− {m} by the equation

X = X/||X||.

Then
X ∈ D(B− {m},U(Rd)).

Let r > 0 be sufficiently small; we consider the number

(8.5.1)
1

�



�
	d − 1

∫

S(m,r)

(X)∗(ω̂)

(for
�



�
	d − 1 see (6.7.3) and forS(m, r) see (8). It is known that the above

number is an integer depending only onX and m but not onr. This
number is calledthe index of the vector field X at m and is denoted by
i(X,m). In fact this index can be viewed as the degree (in the sense of278

algebraic topology; see the proof of (6.6) or [35]: theorem 4.2 p. 127)
of the map:

(8.5.1.bis) ζ ◦ X ◦ ζ−1
m : Sd−1→ Sd−1.

2. Let M be an oriented manifold and letX be an element ofC (M)
having an isolated zero at the pointmof M. Now let (A,U) be a positive
chart aroundm, such thatX does not vanish onA−{m}. Then it is known
that for a sufficiently small positive numberr

(8.5.2) i(UT ◦ X ◦ U−1,U(m)) =
1

�



�
	d − 1

∫

S(U(m),r)

(UT ◦ X ◦ U−1)∗(ω̂)
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depends only onX andm but not on (A,U).
This number is calledthe index of X at m and is denoted by i(X,m).

If we defineω̂0 by:

ω̂0 = ω̂|U0(Rd)

then

(8.5.3) i(X,m) =
1

�



�
	d − 1

∫

S(U(m),r)

(UT ◦ X ◦ U−1)∗(ζ∗(ω̂0)).

3. It is known that on a compact oriented r.m. (M, g) there exist vector
fields which vanish only at a finite number of points, and that for any
such vector fieldX, if we denote the set of points where it vanishes by
ms, we have

(8.5.4)
∑

x

i(X,ms) = χ(M)

whereχ(M) is the Euler-Poincaré characteristic ofM. A proof of this279

fact is usually got either by using the Lefschetz fixed point theorem or
by using Morse theory.

6 Gauss-Bonnet formula

In this section we assume that (M, g) is a compact oriented surface, that
σ denotes its canonical volume form and thatA is its sectional curvature.
We follow the notation of the preceding article.

6.1

Theorem. (Gauss-Bonnet formula)

∫

M

A · σ = 2π · χ(M).
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6.2

Lemma. For the formω ∈ E 1(U(M)) (defined in(5.2.11)) we have

dω = −p∗(A · σ).

Proof of the lemma.For every elementx of U(M) let x be the unique
element ofTp(x)(M) such that{x, x} forms a positive orthonormal basis
of Tp(x)(M).

By the definition ofω.

(8.6.3) ω(z) = 0 ∀z ∈ Hx, ω(ζ−1
x x) = 1.

First let us note that a basis ofTx(U(M)) is given by

{a1 = ζ
−1
x x, a2 = C(x, x), a3 = C(x, x)}

and then that to prove the lemma we have only to check the equality on
pairs of these vectors. To computedω let us extenda1, a2, a3 to vector
fields onU(M).

6.4
280

We take arbitrary vector fieldsX, X on M such that

X(p(x)) = x,X(p(x)) = x and [X,X] = 0

and set
Z(y) = ξ−1

y y ∀y ∈ U(M).

Then clearlyZ, XH, XH are extensions ofa1, a2 anda3 respectively. By
construction we have

[
XH,Z

]
=

[
XH ,Z

]
= 0,

for pT andv vanish on both since they can be taken inside the brackets.
Hence by (0.2.10) we have

(8.6.5) dω(XH ,Z) = 0 and dω(XH ,Z) = 0,
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and further

p∗(A · σ)(XH ,Z) = A · σ(pT ◦ X, pT ◦ Z) = 0

sinceZ is vertical, and similarly

p∗(A · σ)(XH,Z) = 0.

Now on the one hand we have

dω(a2, a3) = dω(XH ,XH)x = −ω(R(x, x)x) by (5.10)

= g(R(x, x)x, x) = −A(x, x)

sincex andx are orthonormal.
On the other hand

p∗(A · σ)(a2, a3) = A(p(x))σ(pT (a2), pT(a3))

= A(p(x))σ(x, x) = A(p(x))

since {x, x} is a positive orthonormal basis ofTp(x)(M). Hence the
lemma.
Proof of the theorem.281

a) LetX be a vector field onM which vanishes only on the finite set

{ms}. Let M = M − {ms} and onM setX =
X
||X|| . We choose a

positive numberǫ such that

i) expms
is ǫ-O.K. ∀s

ii) B(ms, ǫ) ∩ B(mt, ǫ) = φ if s, t.

In particular,ms is the only zero ofX in B(ms, ǫ), hence

M ∩ B(ms, ǫ) = B(ms, ǫ) − {ms}∀s.

b) For everyr in ]0, ǫ[, the setMr = M−⋃
s

B(ms, r) is a nice domain

of M, for expms
is ǫ-O.K. andB(ms, r) is a nice domain inTms(M).

The boundary ofMr is the union
⋃
s

S(m, r). Note that the set

S(ms, r) as the boundary ofB(ms, r) has the orientation opposite
to that on it as a part of the boundary ofB(ms, ǫ) − B(ms, r).
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c) By (6.2) noting thatp ◦ X = idM we have

(X)∗dω = −X(p∗(C · σ)) = −A · σ;

and further by (2.4) iv,

(X)∗(dω) = d((X)∗ω).

Hence
∫

•

Mr

A · σ = −
∫

•

Mr

d((X)∗ω) = −
∫

b(
•

Mr )

i∗(X)∗ω

by Stokes formula ((3.13)) and hence

(8.6.6)
∫

•

Mr

A · σ =
∑

s

∫

S(ms,r)
i∗((X)∗ω).

Let λs = (expms
|B(ms, ǫ))−1. Thenλs is a diffeomorphism of 282

S(ms, r) ontoS(ms, r). Hence by (0.3.9) we have

(8.6.7)
∫

S(ms,r)

i∗((X)∗ω) =
∫

S(ms,r)

(λT ◦ X ◦ λ−1)(((λT )−1)∗(ω).

By (8.5.3) we have (since1 = 2π)

(8.6.8) i(X,ms) =
1
2π

∫

S(ms,r)

(
λT ◦ X ◦ λ−1

)∗ (
λ∗(ω̂0)

)
,

d) Now let us look at ((λT )−1∗)(ω) andζ∗(ω̂0).

We haveλ−1
i = expmi

and hence

((λT )−1)∗(ω) = (expT)∗(ω);

from (4.6) it follows that
[
(expT)∗ω

]
0mi

=
[
ζ∗(ω)

]
0mi
= ζ∗(ω̂0).
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Hence

((λT )−1)∗(ω) − ζ∗ms
(ω̂0)n→ 0 as n→ ms.

Now ∀m ∈ M and∀z ∈ T0m(Tm(M)) we have (4.6),

||λ−1(z)|| = ||expT(z)|| = ||ζ−1
0m

(z)|| = ||z||

and hence

(ζT ◦ X ◦ λ−1)n − (λT ◦ X ◦ λ−1)n→ 0 as n→ ms.

Hence by (8.6.7) and (8.6.8) it follows that

1
2π

∫

S(ms,r)

((X
∗
)(ω) − i(X,ms))ω→ 0 as r → 0.

Hence we have283

lim
r→0

∫

•

Mr

A · σ = 2π


∑

s

i(X,ms)

 = 2π · χ(M) by (8.5.4).

But since{ms} has measure zero we have

lim
r→0

∫

•

Mr

A · σ =
∫

M

A · σ.

6.9

Corollary. If M is homeomorphic toS2 then
∫

M

A · σ = 4π,

and if M is homeomorphic toS1 × S1 then
∫

M

A · σ = 0.
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6.10

Remarks. a) In the case of dimensions greater than three we have a
formula:

χ(M) =
∫

M

ϕ · σ

whereϕ is an element ofF(M) depending on the curvature tensor
R of (M, g). The relation betweenϕ andR is complicated. The
proof of the above formula proceeds analogously; one provesthat
there exists a formψ such that

dψ = p∗(ϕ · σ)

on U(M); hereψ is not the formω of (5.2.11) but one far more
complicated, which involvesR: for details see [9]: pp. 38-41.

b) The formula
∫

M

A · σ = 2π(
∑
s

i(X,ms)) proves that the sum
∑
s

i(X,ms) does not depend on the vector fieldX on M (put any

r.s. onM) so we know that this sum is an invariant. Then (8.5.4)
gives us its value.

c) The formula
∫

M

A · σ = 2π(
∑
s

i(X,ms)) proves that
∫

M

A · σ does 284

not depend on the r.s. chosen onM but only on the differentiable
manifold M.

d) In order to be self-contained, we prove (6.9) without appeal to
(8.5.4); we will, in fact, use (6.1) in the next articles onlyfor the
sphere and for the torus. WhenM is homeomorphic to the torus
we use the fact there exists onM a nowhere zero vector field.
Then there is a mapX : M → U(M) and, by Stokes formula,

∫

M

A · σ = −
∫

M

d((X)∗ω) = 0.

WhenM is homeomorphic to the sphere, we compute
∑
s

i(X,ms)

for a particularly simple vector field onS2 and apply the remark
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c). Let p denote the projection (x, y, z) → (x, y) in R3 andX the
vector field onS2 such that

∀m ∈ S2 : pT(X(m)) = ζ−1
p(m)(p(m))

wherex → x denotes rotation by
π

2
in R2. Because the restric-

tions ofp to the northern and southern hemispheres are charts, the
formula (8.5.2) (8.5.1.bis) give the index ofX at the north and the
south polesP, P′:

i(X,P) = i(X,P′) = 1.

In fact the mapsS1→ S1 so obtained are the rotations by
π

2
or by

−π
2

, and the degree of either is 1.

7 E. Hops’s theorem
285

Using (2.6) we prove the:

7.1

Lemma. If (M, g) is a complete r.m., and if m∈ M and r > 0 are such
that expm |B(m, r) is injective, thenexpm is r-O.K.

Proof. If the result were false,∃ x ∈ Um(M) with 1 = j(x) < r. Let ǫ be
so that 1< 1+ ǫ < r and letn = γx(1+ ǫ). Then, by (2.6), the restriction
γx|[0, 1+ǫ] < T (m, n). Hence 1+ǫ > d(m, n). By (8.4.8) we see that∃ y
such that||y|| = d(m, n) and exp(y) = n. Hence exp(y) = exp((1+ ǫ)x)
andy , (1+ ǫ)x, which is the required contradiction. �

7.2

Proposition. Let m be a point of a complete r.m.(M, g).
Then the following conditions are equivalent:

1) expm : Tm(M)→ M is injective.
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2) M is simply connected andexpT
m is everywhere of maximal rank.

Proof. The fact that (2) implies (1) is (5.3). Now by (7.1) from (1) itfol-
lows that expm is of maximal rank, and hence expm is a diffeomorphism
betweenTm(M) andM. Hence (1) implies (2).

Now suppose that (M, g) is complete and that for every pointm of
M, expm is injective onTm. Then it follows that∀m, n ∈ M the set
T (m, n) consists of exactly one element. Then the geodesics have the
set theoretic properties of straight lines in euclidean or hyperbolic ge-
ometry. It is of interest to see whether there exist compact r.m.s (M, g)
whose universal riemannian covering (M̃, g̃) have geodesics sharing that
property. In the case of surfaces any surface withA(M) ⊂] − ∞, 0] will 286

do. But if we require thatM be homeomorphic to a torus we have the
following theorem due to E. Hopf ([15]). �

7.3

Theorem. If (M, g) is an r.m. such that

1) M is NCB(∞)

2) M is homeomorphic toS1 × S1

then A(M, g) = {0}.

Proof. By the inequality in the first part of (4.7), lettingk tend to infinity,
we get ∫

M

A · σ = 0,

and then by the last part of (4.7) and (6.9) we get:

A(M) = {0}.

�
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7.4

Remarks. 1) For the dimensions greater than two the question is
open.

2) For further considerations see article 10.

8 Another formula

In this article, we prove an inequality of integral geometry, which is
slightly weaker than a formula of Santalo: see the remark at the end of
the article.

Let us consider (M, g) a complete, oriented r.m. of dimensiond and
A ⊂ M a sub manifold ofM of dimensiond − 1. For pointsn ∈ A we
identify Tn(A) with its image inTn(M) and define

U(A) =
⋃

n∈A
(U(M) ∩ Tn(A))

U(M)|A =
⋃

n∈A
Tn(M).

Clearly the orthogonal ofTn(A) is one-dimensional and we assume from287

now on that we can choose unit vectors in this one dimensionalsubspace
such that they can be extended into avector field N of M; then, (see
(2.9)) we have (8)

U(A) = (U(M)|A) ∩ (g♯(N)−1(0))

8.1

Lemma. The subset

W = {U(M)|A} − U(A)

of U(M) is a sub manifold of dimension2d − 2.

Proof. Suppose that locallyA is given byϕ−1(0) whereϕ ∈ F(M). Then
U(M)|A is given by (ϕ ◦ p)−1(0) (for p : U(M) → M). FurtherU(M)



8. ANOTHER FORMULA 283

is a (2d − 1) dimensional. Hence it follows thatU(M)|A is (2d − 2)
dimensional. ButU(A) is closed inU(M)|A since, by (1.10),U(A) =
(g♯(X))−1(0). Hence the given set is an open sub manifold ofU(M)|A.
Hence the result.

In this section we compute the volume of the set

(8.8.2) E1 = {Gt(W)|0 < t < 1},

whereGt is the geodesic flow.
To do this we introduce the map

f : R ×W→ U(M)

defined by the equation

(8.8.3) f (t, x) = Gt(x)

((Gt(x) makes sense, sinceM is complete and henceGt is defined for all
t.).

We define an orientation onA in a natural way by means ofN: a ba-
sis{x2, . . . , xd} of Tn(A) is said to be a positive basis if{N(n), x2, . . . , xd}
is a positive basis forTn(M) relative to the orientation onM. Let α be 288

the volume form of this oriented r.m. (A, g|A). We use the symbolω
exclusively for the restriction ofω (see (5.2.12)) toU(M)|A. Then the
canonical volume formα of (U(M)|A)) is given by the equation,

(8.8.4) α = ω ∧ (p∗(α)).

On the other hand a volume formβ onR ×W is given by

(8.8.5) β = p∗1(dt)∧ p∗2(α)

wherep1 andp2 denote the projections fromR ×W toR andW respec-
tively.

Hence∃ϕ ∈ F(R ×W) such that

(8.8.6) f ∗(σ) = ϕ · β

whereσ is the canonical volume form of (U(M), g). Clearly the com-
putation of Vol(W, g) amounts to that ofϕ. �
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8.7

Lemma.∀x ∈W, t∈ R we have

ϕ(t, x) = ϕ(0, x).

Proof. This merely asserts the invariance ofσ under the geodesic flow.
To be more precise letτt denote the transformation ofR ×W into itself
taking (s, x) into (s + t, x). Then sinceGt+s = Gt ◦ Gs we have the
following commutative diagram:

R ×W

τt

��

f // V(M)

Gt

��
R ×W

f
// V(M)

Hence we have

ϕ · β = f ∗(σ) = f ∗(G∗t (σ)) = (Gt ◦ f )∗(σ) [by (3.10) and (5.2.7)]

= ( f ◦ τt)
∗(σ) = τ∗t ( f ∗(σ)) = τ∗t (ϕ ◦ β) = τ∗t (ϕ)τ∗t (β).

But by constructionβ is invariant underτt and hence we have289

ϕ · β = τ∗t (ϕ) · β.

Sinceβ is never zero we have

ϕ(0, x) = ϕ(t, x).

�

8.8

Lemma.∀x ∈W : ϕ(0, x) = g(x,N(p(x))).
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Proof. Let p(x) = n and let{y1, . . . , yd} and{x1, . . . , xd} be orthonormal
bases ofTn(M) with y1 = N(n) andx1 = x. Then if we set

ui = C(x, yi) and vi = ζ
−1
x xi for i = 1, . . . , d,

we see, by definition of the r.s. onT(M), that

{u2, u3, . . . , ud; v2, . . . , vd}

is an orthonormal basis ofTx(W). Hence by the definition ofβ we have

β((P, 0), (0, u2), (0, ud); (0, v2), . . . , (0, vd)) = 1.

Hence

ϕ(0, x) = f ∗(σ)(P, 0); (0, u2), . . . , (0, ud); (0, v2), . . . , (0, vd)) = . . .

. . . = ( f T (P, 0), f T(0, u2), . . . , f T(0, vd)).

SinceG0 = idU(M) we have

f T
(0,x)(0, z) = z∀z ∈ Tx(W);

and f T
(0,x)(P, 0) is the initial speed of the curvet → Gt(x). But this is

C(x, x) by the definition ofGt (see (0.33)) and hence we have

ϕ(0, x) = σ(C(x, x), u2, . . . , ud, v2, . . . , vd).

Now let us write 290

x = g(x,N(n)) · N(n) + k with g(k,N(n)) = 0.

Then

C(x, x) = g(x,N(n)) ·C(x,N(n)) +C(x, k) = g(x,N(x)) · u1 +C(x, k).

�

Sincek is orthogonal toN(n) it is a linear combination ofy2, . . . , yd

and henceC(x, k) is that ofu2, . . . , ud. Hence we have

σ(C(x, k), u2, . . . , ud, v2, . . . , vd) = 0.

Hence we have

ϕ(0, x) = g(x,N(n)) · σ(u2, . . . , ud, v2, . . . , vd) = g(x,N(n)).
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8.9

Remarks.This lemma together with (8.7) in particular shows thatf is
of maximal rank. HenceE is open inU(M).

Now we come to our computation.

8.10

Proposition. If Vol(A, g|A) is finite, thenVol(E1, g) is finite and

Vol(E1, g)
21 ·

�



�
	d − 2

d − 1
· Vol(A, g|A).

Proof. We know (8.9) thatf T is everywhere of maximal rank and that
f is onto. Hence we have by (3.10)

Vol(E1, g) ≤
∫

[0,1]×W

| f ∗(σ)|

But the definition ofβ andϕ and (3.17) gives

∫

[0,1[×W

| f ∗(σ)| =
∫

]0,1[×W

|ϕ|(p∗1(dt)∧ p∗2(α)) =

1∫

0

∫

{t}×W

|ϕ|p∗2(α) dt

But neitherϕ nor p∗2(α) depends ont by (8.7), and hence we have291

∫

{t}×W

|ϕ|p∗2(α) =
∫

{0}×W

|ϕ|p∗2(α) =
∫

W

|ϕ|α

where we have identified{0} ×W with W (sinceG0 = idU(M)). �

Hence we have

Vol(E1, g) ≤ 1 ·
∫

W

|ϕ|α.
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Now sinceU(M)|A is of measure zero inU(M), we have
∫

W

|ϕ|α =
∫

U(M)|A

|ϕ|α.

Using the fact thatα = ω ∧ p∗(α) together with (3.17), (8.8), we get

∫

U(M)

|ϕ|α =
∫

n∈A



∫

Un(M)

|g(x,N(n))|(ω|Un(M))

α.

But by (6.7.11)
∫

Un(M)

|g(x,N(n))|(ω|Un(M)) =
2

d − 1
·
�



�
	d − 2 ∀n;

hence

∫

U(M)

|ϕ|α = 2
d − 1

·
�



�
	d − 2
∫

A

α =
2 ·

�



�
	d − 2

d − 1
· Vol(A, g|A).

8.11

Remark . If we assume thatA, in addition to satisfying the conditions
of the above sections, isconvex(i.e. everywhere locallyA is given by
ϕ−1(0) with ϕ having a non-negative Hessian formD dϕ (see (4.11))
and if we set

W+ = {x ∈ Un(M)|g(x,N(p(x))) > 0},

then, one can show that, for sufficiently smalll, actually f is a diffeo- 292

morphism between ]0,l[×W+ and f (]0, l[×W+), so that one has the
equality

Vol( f (]0, l[×W+)) =
1 ·

�



�
	d − 2

d − 1
· Vol(A, g|A)

(see [27]: formula (21) p. 488).
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9 L.W. Green’s theorem

In (8) we have built up an r.m. (M, g) which isCm-manifold∀m ∈ M,
which is homeomorphism toS2 but is not isometric to (S2, k. can) for any
real numberk. It is somewhat striking that if we replace “homeomorphic
to S2” by “homeomorphic toP2(R)”, then there exists a positive real
numberk such that (M, g) is isometric to (P2(R), k. can). This theorem
(9.5) is due to L.W. Green: [13]

For the rest of this section let us assume that (N, h) is aCm-manifold
∀m ∈ N and thatN is homeomorphic toP2(R).

Under the above assumption it follows that the common lengthof
the geodesics through a pointn is independent ofn. For if n′ is any
other point, then by the Hopf-Rinow theorem and (4.8) it follows that
there exists a geodesicγ throughn andn′, and all geodesics throughn′

have the same length asγ. Hence, by multiplying, if necessary, the r.s.
on (N, h) by a positive constant we can assume thatthe length of each
geodesic isπ. Now let (M, g) be the universal riemannian covering of
(N, h). Then by (6.5) it follows that

i) M is homeomorphic toS2293

ii) ( M, g) is a Cm-manifold for everym of M, and every geodesic
starting fromm and of lengthπ ends atσ(m), whereσ is the non
trivial deck transformation of (M, g).

9.1

Lemma.∀m, m′ ∈ M,

d(m,m′) ≤ π,

and equality occurs if and only if m′ = σ(m).

Proof. ≤ follows from ii). Now d(m, σ(m)) < π is absurd for takeγ ∈
T (m, σ(m)). Thenp◦ γ would be a geodesic fromp(m) to p(m) and of
length< π contradicting the definition of aCm-manifold. �
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9.2

Lemma. For every m of Mexpm is π-O.K.

Proof. Because of (7.1) we need only show that expm |B(m, π) is injec-
tive. Now letγ1 andγ2 be two geodesics meeting at a pointm′ different
from bothmandσ(m). Then we can suppose that the length of the curve
γ1 betweenmandσ(m) is less than or equal to that ofγ2. Then sinceγ1

andγ2 are distinct geodesics we haveγ′1(m′) , γ′2(m′). Hence by (3.8)
we have

d(m, σ(m)) < lg γ1| from m to m′ + lg γ2| from m′ toσ(m)

≤ lg γ2| from m toσ(m) = π.

But this contradicts (9.1). � 294

9.3

Corollary . One has: ar(M, g) ≥ 4π and equality occurs if and only if
A(M, g) = {1}.

Proof. By (9.2), (M, g) is NCB(π). Then the results follows from (4.7)
and (6.9). �
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9.4

Lemma . Any closed geodesicγ1 in (M, g) meets any geodesicγ of
lengthπ.

Proof. Let us suppose that they do not meet and thatγ is a geodesic
from m to σ(m). Then sinceM is homeomorphic to the sphere andγ1

is a simple closed curve (by Jordan curve theorem) it dividesthe rest
of M into two connected components. Sinceγ is connected it is in one
connected component. Letm′ be a point in the other. Then letγ2 be a
geodesic curve fromm to σ(m) passing throughm′. Thenm′ andσ(m)
are in two different connected components ofM − γ1 andγ2 from m′

to σ(m) joins them. Henceγ2 from m′ to σ(m) meetsγ1 and similarly
γ2 from m to m′ does. Henceγ2 meetsγ1 in at least two pointsm1 and
m2. Then we have a part of the geodesic curveγ2, of length less than
π, joining m1 andm2; and a part of the geodesic curveγ1 with the same
property. But this contradicts the fact that expm1

|B(m1, π) is injective.
Hence the result. �

9.5

Theorem. (L.W. Green) Let(N, h) be an r.m. such that

i) N is homeomorphic to P2(R),

ii) (N, h) is a Cn-manifold ∀n ∈ N (the common length beingπ).
Then(N, h) is isometric to(P2(R), can.).

Proof. (a) Let A be a closed geodesic of length 2π chosen once for295

all. It is a sub manifold of (M, g). Using the notation of (8) and
(8.10) we have

(8.9.6) Vol(Eπ, g) ≤ 8π2.

(b) Now we claim that

Eπ = U(M) − U(M)|A.
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Since, any two geodesics through a pointmmeet only atσ(m) by
the definition ofEπ it follows that

Eπ ⊂ U(M) − U(M)|A.

Now let x ∈ U(M) − U(M)|A, and letγ be the curve:

t → expt.x, t ∈ [−π, 0].

But (9.4) it follows that∃ t0 ∈ [−π, 0] such that exp(t0x) ∈ A and
hence, if we sety = γ′(t0) we havey ∈ U(M)|A. Clearly sinceA
is a geodesic we have

Gt(U(A)) = U(A)

and hencey < U(A). Furthert0 , −π. Hencey ∈W and

G−t0(y) = x ∈ Eπ.

(c) Now since U(M)|A is of measure zero inU(M) we have
by (5.2.13)

Vol(Eπ, g) = Vol(U(M), g) = 2π · ar(M, g).

But this together with (8.9.6) gives

ar(M, g) ≤ 4π.

But then by (9.3) we have first

ar(M, g) = 4π,

and then A(M, g) = {1}.

Now by (7.1) it follows that (M, g) is isometric to (S2, can) and, 296

since the deck transformationσ is such that

d(m, σ(m)) = π,

σ is nothing but the antipodal map ofS2 hence (N, h) is isometric
to (P2(R), can).

�
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9.7

Remarks. 1) The theorem was proved by Green under a slightly dif-
ferent assumption, namely that (M, g) is a complete two dimen-
sional r.m. such thatj(x) = π for everyx in U(M). In this form,
the theorem was conjectured by Blaschke a long time ago.

2) In the proof of (9.5) one can replace the use of (8.10) by that of
(12.9).

3) The question is open for thePd(R)’s, d ≥ 3.

10 ConcerningG-spaces

In order to bring out the results that are special to riemannian geometry
and do not belong to distance geometry in general, H.Busemann was led
to introduce metric spaces having the following properties.

i) Every closed bounded set is compact.

ii) Any two points can be joined by a geodesic.

iii) Geodesics can be prolonged locally.

iv) These prolongations are unique.

The results that follow are in [7]; the precise definition of the spaces
is as follows.

10.1
297

A G- space Mis a metric spaceM whose distance mapd verifies the
following conditions:

i) every closed bounded set is compact;

ii) ∀m, n ∈ M, ∃ p such that

p , m, p , n and d(m, n) = d(m, p) + d(p, n);
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iii) ∀a ∈ M∃ ra > 0 such that∀m, n ∈ M with

d(a,m) < ra, d(a, n) < ra,∃ p with

p , m, p , n and d(m, p) = d(m, n) + d(n, p);

iv) if m, n ∈ M andp1, p2 are such that

d(m, pi) = d(m, n) + d(n, pi )(i = 1, 2), d(n, p1) = d(n, p2)

thenp1 = p2.

Under the above conditions i) and ii) one can define a set analogous to
T (m, n) and the notion of geodesics. Then iii) gives local prolongability
and iv) uniqueness of such prolongations.

Whether aG-space is necessarily a topological manifold is an open
question in dimensions greater than two.

Now any complete r.m. is indeed aG-space; for i) comes from (4.3);
ii) follows from (4.8), iii) comes from the existence of niceballs and iv)
from (3.6).

The essential result of Busemann is that the theorem (5.5) pertains
to G-spaces theory, whereas the theorems (7.3) and (9.5) pertain to rie-
mannian geometry.

Concerning (5.5) the first thing to do is to find a metric definition
equivalent to that of non positive curvature for a r.m.; sucha definition
is suggested by (3.8); in aG-spaceM and inside a ballD(a, ra) = {m ∈ 298

M|d(a,m) < ra} one proves the uniqueness of a geodesic between two
points, in particular of a midpoint (n, n′, 1

2) ∀n, n′ ∈ D(a, ra), defined by

d(n, (n, n′ ,
1
2

)) + d((n, n′,
1
2

), n′) = d(n, n′).

Then

10.2

Definition . A G-space is said to have non positive curvature if∀a ∈
M∃◦ < sa < ra such that

d((m, n,
1
2

), (m, n′,
1
2

)) ≤ 1
2

d(n, n′) ∀n, n′ ∈ D(a, sa).

Then Busemann proved the following theorems [7] (38.2) and (39.1):
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10.3

Theorem.A simply connected G-space M with non positive curvature
is such that one can take ra = ∞ in (10.1) iii) ∀a ∈ M. In particular any
two geodesics in M meet in at most one point and M is homeomorphic
to someRd.

On the other hand the theorems of L.W. Green and E. Hopf are not
true forG-spaces, as shown by the following

10.4

Theorem. ([7], theorem (33.3)) There exists onS′ × S a G-space struc-
ture whose universal covering is not isomorphic to the canonical G-
spaceR2, such that any two geodesics meet at most at one point.

Theorem (33.3) of [7] gives far more: it characterizes completely the
systems of curves inR2 which are the set of geodesics of the universal
covering of aG-space structure onS1 × S1; then it is easy to pick out
such a system which is not arguesian, although the canonicalG-space
structure onR2 is arguesian.

10.5

Theorem . (Skornyakov: [28], see also [8]) Let
∑

be any system of299

closed Jordan curves in P2(R) such that any two distinct points in P2(R)
lie exactly on one curve of

∑
. Then there exists a G-space structure on

P2(R) whose set of geodesics is
∑

.

11 Conformal representation

If ( M, g) is an oriented surface we can define a map

J : T(M)→ T(M)

by extending linearly the map

x→ x
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appearing in the beginning of the proof of (6.2). It follows directly from
the definition that the mapJ has the following properties:

(i) J2
= − idT(M)

(ii) g ◦ J = g

i.e. g(J ◦ X, J ◦ Y) = g(x,Y), ∀X, Y ∈ C (M)

(iii) If f : M → M is an isometry, then

f T ◦ J = J ◦ f T if f preserves orientation,

f T ◦ J = −J ◦ f T if f reverses orientation.

(iv) If h is any other r.s. onM such thath ◦ J = h then there exists a
ϕ in F(M) such thath = ϕ · g. Now suppose that on the tangent
bundleT(M) of an even dimensional manifoldM a mapJ

J : T(M)→ T(M)

satisfying the equation 300

J2
= − idT(M)

is given. Then in order that there exists onM a complex analytic
structure for whichJ coincides with the multiplication byi it is
necessary and sufficient that the map defined by

[X,Y] − J ◦ [J ◦ X, J ◦ Y] + J ◦ [J ◦ X,Y] + [J ◦ X, J ◦ Y] = 0

∀X,Y ∈ C (M)

be the zero map: see [23].

In the case of our (M, g), because of the bilinearity of the expression
above, we can assume thatJ ◦ X = Y in the expression above; then it is
zero. Hence it follows that every two dimensional oriented r.m. admits
a complex analytic structure the associatedJ of which satisfies ii).

This construction, applied to (S2, can) leads to the Riemann sphere.
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11.1

Remark. In out two dimensional case for the existence, we do not ac-
tually need the deep theorem of [23]. What we need is “the existence
of isothermal coordinates” which is easier: see [10].Now for the rest
of this article, let̃h0 denote the canonical r.s. onS2, andh0 the canon-
ical r.s. on a flat torus (see (2.2)) or that onP2(R). It is clear that a
flat torus admits a canonical complex structure, coming downfrom that
of R2, and we denote the associated multiplication by

√
−1 on its tan-

gent bundle byJ0; we denote also byJ0 the multiplication by
√
−1 on

the tangent bundle of the Riemann sphere (S
2, h̃0). Then the conformal

representation theorem for Riemann surface gives, in particular the301

11.2

Theorem.Let M be a one dimensional complex manifold. Then

i) if M is homeomorphic toS1 × S1 there exists a flat torus(N, h0)
and a diffeomorphism

λ : N→ M

such that
λT ◦ J0 = J ◦ λT

ii) if M is homeomorphicS2 there exists a diffeomorphismλ : S2 →
M such that

λT ◦ J0 = J ◦ λT

(the conditionλT ◦ J0 = J ◦ λT simply means indeed thatλ is
holomorphic).

Now suppose that we take the complex analytic structure associated
to the r.s. g on(M, g). Then on the flat torus(N, h0) or on (S2, can)

λ∗(g) ◦ J0 = g ◦ λT ◦ J0 = g ◦ J ◦ λT
= g ◦ λT

= λ∗(g)

which together with (iv) gives the
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11.3

Proposition. Let (N, g) be an r.m. Then

(1) if M is homeomorphic toS1 × S1 then there exists a flat torus
(N, h0) and a diffeomorphismλ : N → M and aϕ ∈ F(N) such
thatλ∗(g) = ϕ · h0.

(2) if M is homeomorphic toS2, then there exists a diffeomorphism
λ : S2→ M and aϕ ∈ F(S2) such thatλ∗(g) = ϕ · h̃0.

11.4

Corollary. Let (M, g) be an r.m. that is homeomorphic to P2(R). Then 302

there exists a diffeomorphism

λ : P2(R)→ M and a ϕ ∈ F(P2(R)) such that

λ∗(g) = ϕ · h0.

Proof. Let (M̃, g̃) be the universal riemannian covering of (M, g)

(M̃, g̃)

p

��

(p∗(g) = g)

(M, g)

Then M̃ is homeomorphic toS2 and for theJ associated tog and by
(8.2.3), there exists a diffeomorphismµ : S2→ M such that

µT ◦ J0 = J ◦ µT

Let us denote the non trivial deck transformation ofM̃ by σ̃ and set

σ̂ = µ−1 ◦ σ̃ ◦ µ

The deck transformatioñσ is an isometry (see in (6.5)) reversing the
orientation and hence by (iii) we have

σ̃T ◦ J = −J ◦ σ̃T
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which gives
σ̂T ◦ J0 = −J ◦ σ̂T

Henceσ̂ is an automorphism ofS2 which reverses the sign ofJ, i.e.
an antiholomorphic map, and further̂σ is an involution without fixed
points (sincẽσ is). All antiholomorphic maps of the Riemann sphere
being of the type

z→ az+ b
cz+ d

one deduces that there exists a holomorphic mapθ : S2 → S2 such that303

σ̂ = θ ◦ σ ◦ θ−1 whereσ = − id |R3|S2 is the antipodal map onS2. Now
if we set λ̃ = µ ◦ θ then λ̃ is a diffeomorphism betweenS2 and M and
we have

λ̃−1 ◦ σ̃ ◦ λ̃ = σ

and hence we have a mapλ defined by the following commutative dia-
gram

(M̃, g̃)

p

��

(S2, h̃0)

p

��

λ̃oo

(M, g) (P2(R), h0)
λoo

Sincẽλ is holomorphic by (iv) there exists aψ in F(S2) such that

(̃λ)∗(̃g) = ψh̃0.

We have
(̃λ)∗(̃g) = λ̃∗(p∗(g)) = p∗(λ∗)(g)

and hence
p∗((λ∗(g)) = ψp∗(h0)

which implies, sincepT is of maximal rank, that there exists aϕ in
F(P2(R)) such that

ψ = ϕ · p and λ∗(g) = ϕ · h0

Hence the result. �
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12 The theorems of Loewner and Pu

In this article we consider a given manifoldM of dimension two and
various r.s. on it.

We set
a(g) = ar(M, g)

and in caseF(M) is non trivial (see (6)) 304

c(g) = inf {lg(τ))|τ ∈ F(M) − {0}}

i.e.c(g) is the infimum of the lengths of all closed curves in (M, g) which
are not homotopic to zero. The theorem of Loewner gives a lower bound

for
a(g)

(c(g))2
for any r.s. onS1 × S1 and that ofPu in the case ofP2(R).

Before giving them we computea(g)/(c(g))2 in the standard cases.

A) Let us takeP2(R) and denote its canonical r.s. byh0. By (6.7.6)
a(h0) = 2π. To computec(h0) we look at the universal riemannian
covering:

(S2, can) (P2(R), h0).

For everyτ in F(P2(R)) − {0} the lift τ of τ throughm ends in
σ(m)(σ = − idR3 |S2) so that lg(̃τ) ≥ π and equality occurs if̃τ is
a geodesic. Hence we have

(8.12.1)
a(h0)

c2(h0))2
=

2
π
.

B) Now let us take a flat torus (T, h0) = (R2/G, ǫ/G).

Let us denote the metric on (Rd, ǫ) by ρ. Now let{s, t} be a system
of generators ofG such that

ρ(0, s(0)) = inf {ρ(0, k(0))|k , 0, k ∈ G}.

We seta = s(0) andb = t(0). To computec(h0) we look at the
universal riemannian covering:

(R2, ǫ)→ (T, h0).
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By our selection ofs it follows that the lift of any closed curveτ
is such that

lg(τ) = lg(̃τ) ≥ ρ(0, a),

and equality is attained. Further we have305

ρ(0, a) ≤ ρ(0, b), and ρ(0, a) ≤ ρ(a, b)

becauses− t ∈ G, we have

c(h0) ≤ 1
3

(perimeter of 0ab).

On the other hand we have by (5.7)

a(h0) = det(0a, 0b) = 2 (area of 0ab).

But the well known isoperimetric inequality for triangles gives
that

(8.12.2) (area of 0ab) ≤
√

3
36

(perimeter of 0ab)2

where equality occurs if and only if 0ab is equilateral.

12.3

Definition . A flat torus inR2 is said to be equilateral if there exists
a similitude ofR2 transforming it into the torus got by the group G
generated by

s : 0→ s= (0, 1) and t : 0→ t =

(
1
2
,
3
2

)
.

Then by(8.12.2)we have
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12.4

Lemma. For a flat torus

a(h0)/c2(h0) ≥
√

3
2

where equality occurs if and only if the torus is equilateral.

C) The underlying idea of the proofs of the theorems of Loewner and
Pu is as follows: first using 11 we get an isometry between (M, g)
and an r.s. of the typeϕ · h0 on the standard manifold. Then we
use the transitive group of isometries these standard manifolds
possess to average the functionϕ in such a waya(h) decreases
and c(h) increases. First we prove two lemmas, relative to the306

following situation: (N, ǫ) is a compact surface andC a compact
Lie group operating transitively, by isometries, on (N, ǫ); denote
by τ any volume form onC such that

Vol(C ) =
∫

C

τ = 1.

We suppose given onN an everywhere strictly positive function
and we consider the averageϕ̂, byC , of its square root, i.e. we set

ϕ̂ =



∫

t∈C

(ϕ ◦ t)
1
2 · τ



2

.

In this context we have the following two lemmas.

12.5

Lemma . a(ϕ̂ · ǫ) ≤ a(ϕ · ǫ) and the equality holds if and only if the
functionϕ is constant on N.

Proof. Let σϕǫ be the volume element of the r.m. (N, ϕ · ǫ); by (5.4),
σϕǫ = ϕσǫ so that

a(ϕ̂ · ǫ) =
∫

N

σϕ̂ǫ =

∫

N

ϕ̂σǫ =

∫

N

∫

C

(ϕ ◦ t)
1
2 · τ)2σǫ ;
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by Schwarz’ inequality



∫

C

(ϕ ◦ t)
1
2 · τ



2

≤
∫

C

(ϕ ◦ t) · τ
∫

C

τ =

∫

C

(ϕ ◦ t) · τ

and

a(ϕ̂ · ǫ) ≤
∫

N×C

(ϕ ◦ t)(τ × σǫ) =
∫

t∈C

∫

N

(ϕ ◦ t) · σǫ) · τ.

But the fact thatt is an isometry implies thatt∗σǫ = σǫ and hence
∫

N

(ϕ ◦ t) · σǫ =
∫

N

t∗ϕ · t∗σǫ =
∫

N

t∗(ϕ · σǫ) =
∫

N

ϕσǫ (by (3.15))

= a(ϕ · ǫ);

Consequently307

a(ϕ̂ · ǫ) ≤
∫

t∈C

a(ϕ · ǫ) · τ = a(ϕ · ǫ) · Vol(C ) = a(ϕ · ǫ).

Equality occurs if and only if it occurs in Schwarz’ inequality, ie. if and
only if the functiont → ϕ ◦ t on C is constant, which implies thatϕ
itself is constant becauseC acts transitively onN. �

12.6

Lemma. c(ϕ̂ · ǫ) ≥ c(ϕ · ǫ).

Proof. Let γ be any curve inN; we suppose it given in the formγ :
[0, 1] → N. Then

lg(γ, ϕ̂ · ǫ) =
1∫

0

((ϕ̂ · ǫ)(γ′, γ′)) 1
2 · dt =

1∫

0

ϕ̂
1
2 (ǫ(γ′ · γ′) 1

2 dt =

=

1∫

0



∫

t∈C

(ϕ ◦ t)
1
2 · τ

 (ǫ(γ′, γ′))
1
2 · dt =
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=

∫

[0,1]×C

(ϕ ◦ t)
1
2 (ǫ(γ′, γ′))

1
2 · τ × dt =

=

∫

C



1∫

0

(((ϕ ◦ t) · ǫ)(γ′, γ′))
1
2 · dt

 τ

But sincet is an isometry

((ϕ ◦ t)ǫ)(γ′, γ′) = (t∗ϕ · t∗ǫ)(γ′, γ′) = t∗(ϕ · ǫ)(γ′, γ′) = . . .
. . . = (ϕ · ǫ)(tT ◦ γ′, tT ◦ γ′) = (ϕ · ǫ)(t ◦ γ)′, (t ◦ γ)′).

Now
1∫

0

((ϕ · ǫ)(t ◦ γ)′, (t ◦ γ))
1
2 · dt = lg(t ◦ γ, ϕ · ǫ)

so we get

lg(γ, ϕ̂ · ǫ) =
∫

t∈C

lg(t ◦ γ, ϕ · ǫ) · τ.

Suppose now thatτ is closed and non homotopic to zero inN; then the 308

same holds for the curvest ◦ γ, because thet’s are diffeomorphisms;
hence by the definition ofc(ϕ · ǫ),

lg(γ, ϕ̂ · ǫ) ≥
∫

C

c(ϕ · ǫ) · τ = c(ϕ · ǫ) · Vol(C ) = c(ϕ · ǫ).

Now this holds for any suchγ, so that, by the definition ofc(ϕ̂ · ǫ), we
get

c(ϕ̂ · ǫ) ≥ c(ϕ · ǫ).
�

12.7

Proposition. With the hypothesis of the lemmas, we have

a(ϕ · ǫ)
(c(ϕ · ǫ))2

≥ a(ǫ)
(c(ǫ))2

and equality holds if and only ifϕ is constant.
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Proof. We have only to remark that the transitivity ofC implies the
averagêϕ is constant onN; let k be that constant value, thena(ϕ̂ · ǫ) =
k2 · a(ǫ) andc(ϕ̂ · ǫ) = k · c(ǫ); hence the two lemmas yield

a(ϕ · ǫ)
(c(ϕ · ǫ))2

≥ k2 · a(ǫ)
k2 · (c(ǫ))2

=
a(ǫ)

(c(ǫ))2

�

12.8

Corollary. (Loewner, unpublished) Let(M, g) be such that M is home-
omorphic toS1 × S1. Then

a(g)
(c(g))2

≥
√

3
2

where equality holds if and only if(M, g) is isometric to an equilateral
flat torus.

Proof. By (8.2.3) there exists a flat torus (N, h), a diffeomorphismf
from N to M andϕ ∈ F(N) such that

f ∗(g) = ϕ · h.

So that (M, g) and (N, ϕ, h) are isometric underf and in particular309

a(g) = a(ϕ · h), c(g) = c(ϕ · h).

Now the corollary follows from (12.7) combined with (12.4). �

12.9

Corollary . (Pu: [25]) Let (M, g) be such that M is homeomorphic to
P2(R). Then

a(g)

(c(g))2
≥ 2
π

where equality holds if and only if there is k> 0 such that(M, g) is
isometric to(P2(R), k. can).



12. THE THEOREMS OF LOEWNER AND PU 305

Proof. This time we get the transitive groupC of isometries of (P2(R) ·
can) by writingP2(R) as the homogeneous space

P2(R) = S0(3)/0(2).

�

12.10

Remarks. A. The result (12.8) has been generalized by Blatter in
[5], to compact orientable manifolds of genusγ ≥ 2; precisely:
for any integerγ ≥ 2 there exists a real numbernγ such that

a(g)
(c(g))2

≥ nγ

for any surface (M, g) whereM is compact, orientable, of genus
γ. The proof is definitely deeper than the one above.But here
the equalityis never attained. We sketch here the proof (based on
an idea of N. Kuiper): suppose (M, g) is such that the equality is
attained andcall m-curvein (M, g) a curve of length equal toc(g)
(they are closed geodesics); then first: given any pointm ∈ M
and any neighbourhoodV of m there exists anm-curve which 310

meetsV (in fact, if not, change slightly the r.s. insideV in order
to have a smallera(g); this change would not affectc(g) and so it
is impossible). By continuity one shows now that∀m ∈ M there
exists a one-parameter familyf of m-curves such thatf (0, 0) = m.
Looking at the corresponding Jacobi fields, such a Jacobi field
either never vanishes or vanishes at least at two points (thanks to
the fact thatM is oriented); but it cannot vanish at two points for
(2.6) would imply that the geodesic is not anm-curve. Finally
following such a family by continuity one would get a vector field
on M, which is never zero, contradicting the fact that the genus of
M is greater than one.

B. The theorems of Loewner and Pu are answers to particular cases
of the following general question: given a compact differentiable
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manifold M and some homology or homotopy class or set of
classesδ, and an r.s.g on M, set

a(g) = Vol(M, g) and c(g) = inf {Vol(N, g|N)|N ∈ δ}.

Then: does one have an inequalitya(g) ≥ k · (c(g))n, valid for any
g; if so, what are the cases of equality? (the integern is defined

so that the quotient
a(g)

(c(g))n be homogeneous of degrees zero).

The good candidates for generalizing the Pu theorem are the S.C.-
manifolds (excepting the spheres), when one takes forδ the class of a
projective subspace. Except in the case ofP2(R) the question is com-311

pletely open. However, the answer cannot be so simple; in fact, for the
complex projective space eitherk has not the value of the canonical r.s.
or the equality can be attained for an r.s. non isometric to the canonical
one. The proof of this fact consists simply in deforming the canonical
kählerian r.s. by adding to it

√
−1 · d′d′′ f (where f is a real function);

Stokes formula (3.13) and an inequality of Wirtinger show easily that
botha(g) andc(g) are unchanged.
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