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Chapter 1

Differentiable functions inRn

1 Taylor’s formula

Let Ω be an open set inRn, and for 0≤ k < ∞ let Ck(Ω) denote the 1

set of real valued functions onΩ whose partial derivatives of order≤
k exist and are continuous;C∞(Ω) will stand for the set of functions
which belong toCk(Ω) for all k > 0. We writeCk, C∞, . . . for Ck(Ω),
C∞(Ω), . . . when no confusion is likely.

We shall use the following notation:

α = (α1, . . . αn), αi ≥ 0 being integers,

x = (x1, . . . , x1), xα = xα1
1 . . . xαn

n ,

Dα =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

, α! = α1! . . . αn!, |α| = α1 + · · · + αn

|x| = max
i
|xi |, ||x|| = (|x1|

2 + · · · + |xn|
2)

1
2 .

Similar notation will be used withRn replaced byCn, and for com-
plex valued functions. We shall writeCk

0(Ω) for the space ofCk func-
tions onΩ which vanish outside a compact subset ofΩ (which may
depend on the function in question).

Similar notation will be used for q-tuples of functions;Ck,q(Ω)
[Ck,q

0 (Ω)] is then the set of mappingsf = ( f1, . . . , fq): Ω → Rq for
which fi ∈ Ck(Ω)[Ck

0(Ω)] for 1 ≤ i ≤ q. We write simplyCk, or Ck(Ω) 2

1



2 1. Differentiable functions inRn

for Ck,p(Ω) when no confusion is likely; similarly, we sometimes write
Ck

0 for Ck,q
0 (Ω).

A real valued functionf defined onΩ is called (real) analytic(in Ω)
if for any a = (a1, . . . , an) ∈ Ω, there exists a power series

Pa(x) ≡
∑

cα(x− a)α ≡
∑

cα1···αn(x1 − a1)α1 · · · (xn − an)αn

which converges tof (x) for x in a neighbourhood ofa.
Remark that the power series is uniquely determined byf ; in fact

cα =
Dα f (a)
α!

in particular, if f = 0 in a neighbourhood of a, thencα = 0

for all α; further f ∈ c∞, and, in fact, for anyβ = (β1, . . . , βn),DβPa(x) =∑
α

cαDβ(x− a)α.

If U is an open set inCn, and f a complex valued function inU, then
f is called holomorphic(in U) if for any a ∈ U, there exists a power
series ∑

cα(z− a)α

which converges tof for all z in a neighbourhood ofa. We shall assume
some elementary properties of holomorphic functions, among them the
following. Proofs can be found in Herve’ [14].

1 A function f on U is holomorphic if and only if it is continuous and
for anyγ, 1 ≤ γ ≤ n, the partial derivatives

∂ f
∂z̄ν
≡

1
2

(
∂ f
∂xν
+
∂ f
∂yν

)

exist and zero; herezν = xν + iyν, xν, yν being real.3

2 (Principle of analytic continuation.) Iff is holomorphic in a con-
nected open setU in Cn, andDα f (a) = 0 for all α = (α1 . . . , αn),
and somea ∈ U, then f ≡ 0 in U; in particular, if f vanishes on a
nonempty open subset ofU, f ≡ 0.

3 Weierstrass’ theorem.If { fn} is a sequence of holomorphic functions
in U converging uniformly on compact subsets ofU to a function
f , then f is holomorphic inU; further, for anyα,Dα fν converges,
uniformly on compact sets, toDα f .



1. Taylor’s formula 3

4 Cauchy’s inequalities. If f is holomorphic inU, and| f (z)| ≤ M for
z∈ U, M > 0, then for any compact setK ⊂ U, we have, for anyα,

|Dα f (z)| ≤ Mδ−|α|α! for z ∈ K,

whereδ is the distance ofK from the boundary ofU.

Lemma 1. If f is real analytic inΩ ⊂ Rn, then there exists an open set
U ⊂ Cn, U ∩ Rn = Ω, in U a holomorphic function F such F|Ω = f .

Proof. Suppose, fora ∈ Ω, Pa(x) =
∑

cα(x− a)α converges tof (x) for
|x− a| < ra, ra > 0. Define

Ua = {z ∈ C
n
∣∣∣|z− a| < ra};

then, forz ∈ Ua,
Pa(z) =

∑
cα(z− a)α.

converges and is holomorphic inUa. � 4

Let U =
⋃

a∈Ω
Ua. We assert that ifUa ∩ Ub = Ua,b , φ thenPa =

Pb in Ua,b. In fact, Ua,b is convex, hence connected, andDαPa(c) =
DαPb(c) = Dα f (c) for anyα andc ∈ Ua,b ∩ R

n (which is, φ if Ua,bis).
Hence we may defineF onU by requiring thatF |Ua = Pa. ClearlyF is
holomorphic inU andF |Ω = f .

Let N be a neighbourhood of the closed unit interval 0≤ t ≤ 1 inR,
and let f ∈ Ck(N). Then, we prove the

Lemma 2. f (1) =
k−1∑
ν=0

f (ν)(0)
ν!

+
f (k)(ξ)

k!
, where0 ≤ ξ ≤ 1.

Proof. For continuousg, define

I0(g, t) = g(t), Ir (g, t) =

t∫

0

Ir−1(g, τ)dτ, r ≥ 1.

Clearly, if g ∈ Ck(N) andg(ν)(0) = 0 for 0≤ r ≤ k− 1, we have

g(t) = Ik(g
(k), t).



4 1. Differentiable functions inRn

If we apply this tog(t) = f (t) −
k−1∑
ν=0

f (ν)(0)
ν!

tν, we obtain

(1.1) f (1)−
k−1∑

ν=0

f (ν)(0)
ν!

= Ik(g
(k), 1) = Ik( f (k), 1).

Now, if m, M denote the lower and upper bounds off (k) in [0, 1],
we obviously have

m
k!
≤ Ik( f (k), 1) ≤

M
k!

Since f (k), being continuous, assumes all values betweenm andM,5

there isξ, 0≤ ξ ≤ 1 with

Ik( f (k), 1) =
f (k)(ξ)

k!
.

This proves lemma 2. �

It is easy to prove, by induction, that

Ik(g, t) =
1

(k − 1)!

t∫

0

g(τ)(t − τ)k−1dτ.

Hence (1.1) can be written

(1.2) f (1)−
k−1∑

ν=0

f (ν)(0)
ν!

=
1

(k− 1)!

1∫

0

(1− t)k−1 f (k)(t)dt.

Theorem 1 (Taylor’s formula). LetΩ be open inRn, and f ∈ Ck(Ω).
Then, if x, y∈ Ω and the closed line segment[x, y] joining x to y is also
contained inΩ, we have

f (x) =
∑

|α|≤k−1

Dα f (y)
α!

(x− y)α +
∑

|α|=k

Dα f (ξ)
α!

(x− y)α,

whereξ is a point of[x, y].



1. Taylor’s formula 5

This theorem follows at once from Lemma 2 applied to the function

g(t) = f (y+ t(x− y))

which belongs toCk(N), N being a neighbourhood of [0, 1].
If f ∈ Ck(Ω)(k being finite),K is a compact set inΩ and 0≤ m≤ k, 6

we set
|| f ||Km =

∑

|α|≤m

sup
x∈K
|Dα f (x)|.

We define a topology onCk(Ω) as follows: a fundamental system of
neighbourhoods off0 ∈ Ck(Ω) is given by the sets

B( f0,K, ε, k) = { f ∈ Ck
∣∣∣|| f − f0||

K
k < ε};

hereε runs over the positive real numbers, andK over all compact sub-
sets ofΩ. The topology onC∞(Ω) is obtained by taking for a funda-
mental system of neighbourhoods off0 the sets

B( f0,K, ε, k) ∩C∞(Ω)

with ε > 0, K compact inΩ andk > 0 an arbitrary integer.
The spaceCk(Ω) is metrisable; we may take, for example, as metric

the function

d( f , g) =
∞∑

ν=0

2−ν
|| f − g||Kν

k

1+ || f − g||Kν

k

;

here{Kν} is a sequence of compact sets withKν ⊂
◦

Kν+1, ∪Kν = Ω.
[OnC∞(Ω)], a metric can be defined by replacing|| f −g||Kν

k by || f −g||Kν
ν

in the function above ]

Theorem 2. Ck(Ω) is a complete metric space for 0≤ k ≤ ∞.

Proof. We have only to prove that if{gν} is a sequence of functions in
Ck and||gν − gµ||Km→ asµ, ν → ∞ for all integersm, 0 ≤ m≤ k and all 7

compactK ⊂ Ω, then there existsg ∈ Ck for which ||gν − gµ||Km → 0 as
ν→ ∞, 0≤ m≤ k, k compact.

Since by assumption, for|α| ≤ k, Dα(gν − gµ) → 0, uniformly on
any compact set, there exist continuous functionsgα, |α| ≤ k, for which
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||Dαgν−gα||K0 → 0. If we prove thatg0 ∈ Ck andDαg0 = gα then clearly
||gα − g||Km → 0, 0 ≤ m ≤ k, whereg = g0. To prove this assertion. we
have only to show that if|α| ≤ k − 1, andβ = (β1, . . . , βn) is such that
|β| = 1, thengα ∈ C1 andDβgα = gα+β in Ω. �

Now, if a ∈ Ω andx is sufficiently near a we have

(1.3) Dαgν(x) − Dαgν(a) =
∑

|β|=1

Dα+βgν(ξν)(x− a)β,

whereξν is a point on the segment [a, x]. We may choose a subsequence
{νp} such thatξνp → ξ ∈ [a, x]. Clearly, if we replaceν by νp in (1.3)
and letp→ ∞, we obtain

gα(x) − gα(a) =
∑

|β|=1

gα+β(ξ)(x− a)β

=
∑

|β|=1

gα+β(a)(x− a)β + o(|x− a|).

whereo (|x − a|) tends to zero faster than|x − a| as x → a. (The last
equality is a consequence of the continuity ofgα+β.) But this implies
thatgα ∈ C1 and that for|β| = 1, Dβgα(a) = gα+β(a).

Remark. If we write8

|| f ||Km =
∑

|α|≤m

q∑

i=1

sup
x∈K
|Dαt1(x)|

for f = ( f1, . . . , fq) ∈ Ck,q(Ω), m≤ k, we may replaceCk(Ω) by Ck,q(Ω)
in Theorem 2. Another consequence of Taylor’s formula is thefollow-
ing:

Proposition 1. If f ∈ C∞(Ω), then f is analytic if and only if for any
compact K⊂ Ω, there exists MK > 0 such that

|Dα f (x)| ≤ M |α|+1
K α! f orx ∈ and allα.



2. Partitions of unity 7

Proof. The necessity follows at once from Lemma 1 and Cauchy’s in-
equalities (Property 4. of holomorphic functions stated atthe begin-
ning). For the sufficiency, we remark that ifx is in a compact, convex
neighbourhoodK of a ∈ Ω, andξ ∈ [a, x], then

∣∣∣
∑

|α|=k+1

Dα f (ξ)
α!

(x− a)α
∣∣∣ ≤ (k+ 1)nMK+2

K |x− a|k+1.

�

If |x− a| < M−2
K , Taylor’s formula implies that

∑ Dα f (ξ)
α!

(x− a)α

converges tof (x).

Remark. As is easily verified, the above condition is equivalent with
the existence ofM′K > 0 such that

|Dα f (x)| ≤ M′|α|+1
K |α| for x ∈ K and allα.

2 Partitions of unity

The support of a functionϕ defined on the open setΩ ⊂ Rn, written
supp.ϕ, is the closure inΩ of the set of points a whereϕ(a) , 0.

A family of sets{Ei} is called locally finite if any pointa ∈ Ω has 9

a neighbourhood which meetsEi only for finitely manyi.
A family of sets{E′j} j∈J is called a refinement of the family{E j} j∈J

if there exists a mapτ: J→ I for which E′j ⊂ Eτ( j).
We shall use the following proposition due toJ. Dieudonne [9].

Proposition. If X is a locally compact, hausdorff space which is a count-
able union of compact sets, then X is paracompact, i.e. any open cov-
ering has a locally finite refinement. Further, for any locally finite open
covering {Ui}i∈I of X, there exists an open covering{Vi}i∈I for which
V̄i ⊂ Ui .
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Theorem 1. If Ω is an open subset ofRn andΩ =
⋃
i∈I

Ui , where the Ui

are open, then there exists a family of C∞ functions, say{ϕi}
′
i∈I such that

(i) 0 ≤ ϕi ≤ 1, supp.ϕi ⊂ Ui , (ii) {supp.ϕi} is a locally finite family,
and (ii)

∑
i∈I
ϕi(x) = 1 for any x∈ Ω.

Lemma 1. There exists a C∞ function k inRn with k ≥ 0, k(0) > 0,
supp.k ⊂ {x

∣∣∣||x|| < 1}.

Proof. Let s(r) be theC∞ function onR1 defined by

s(r) =


0−1/(c−r) if r < c,

0 if r ≥ c,

where 0< c < 1. We have only to takek(x) = s(x2
1 + · · · + x2

n). �

Lemma 2. If K is a compact set inRn, U ⊃ K is open, then there exists10

a C∞ functionψ with ψ(x) ≥ 0, ψ(x) > 0 if x ∈ K, supp.ψ ⊂ U.

Proof. Let δ be the distance ofK from Rn − U; for a ∈ K, let ψa(x) =

k
( x− a

δ

)
, wherek is as in Lemma 1. LetVa = {x ∈ Rn|ψa(x) > 0}.

Thena ∈ Va ⊂ U. SinceK is compact, there exist finitely many points

a1, . . . , ap ∈ K for whichvai∩. . .∩vap ⊃ K. Defineψ(x) =
p∑

i=1
ψai (x). �

Proof of theorem 1.Let {V j} j∈J be a locally finite refinement of{Ui}i∈I

by relatively compact open subset ofΩ(which exists by Dieudonne’s
proposition). Let{Wj} j∈J be an open covering ofΩ such thatW̄j ⊂ V j.
By Lemma 2, there existsψ j ∈ C∞(Ω), ψ j(x) > 0 for x ∈ Wj and
suppψ j ⊂ V j, ψ j ≥ 0. Letϕ′j = ψ j/

∑
k∈J

ψk. (SinceV j is locally finite,
∑
k∈J

ψk is defined and∈ C∞(Ω) and is everywhere> 0 sinceψ j > 0 on

Wj and∪Wj = Ω.) Clearly 0≤ ϕ′j ≤ 1, supp.ϕ′j ⊂ V j and
∑
j∈J
ϕ′j = 1.

Let τ: J → I be a map so thatV j ⊂ Uτ( j). Let Ji ⊂ J be the setτ−1(i),
i ∈ I . Defineϕi =

∑
j∈Ji

ϕ′j(an empty sum stands for 0). Since the sets

Ji are mutually disjoint and coverJ, we have
∑
ϕi = 1. It is clear that

suppϕi ⊂ Ui and that{supp.ϕi} form a locally finite family.
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Corollary. Let Ω be open inRn, X a closed subset ofΩ, U an open
subset ofΩ containing X. Then there exists a C∞ functionψ onΩ such 11

thatψ(x) = 1 for x ∈ X,ψ(x) = 0 for x ∈ Ω − U, 0 ≤ ψ ≤ 1 everywhere.

Proof. By Theorem 1, there existC∞ functionsϕ1, ϕ2 ≥ 0, supp.ϕ1 ⊂

U, suppϕ2 ⊂ Ω − X with ϕ1 + ϕ2 = 1 onΩ. We have only to take
ψ = ϕ1. �

Lemma 3. If {Ui} is an open covering ofΩ, then there exist C∞ func-
tionsψi with suppψi ⊂ Ui, 0 ≤ ψi ≤ 1, and

∑
ψ2

i = 1 onΩ.

In fact, if ϕi is a partition of unity relative to{Ui}, we may setψi =

ϕi/(
∑
ϕ2

i )

1
2.

3 Inverse functions, implicit functions and the rank
theorem

Let Ω be an open set inRn and f : Ω → Rm a map which is inC1(Ω)
[i.e. its components are inC1(Ω)]. Let a ∈ Ω.

Definition. (d f)(a) is defined to be the linear map ofRn in Rm for which

(d f)(a)(v1, . . . , vn) = (w1, . . . ,wm),

with w j =

n∑

i=1

(
∂ f j

∂xi
)vi .

We shall call (d f)(a) the differential of f ata.

Theorem 1. If f is a C1 maps ofΩ into Rn and for a ∈ Ω, (d f)(a) is
nonsingular, then there exist neighbourhoods U of a and V of f(a) such
that f|U maps U homeomorphically onto V.

Proof. Without loss of generality we may assume thata = 0, f (a) = 0.
Since (d f)(a) is nonsingular we may assume, by composingf with a 12

non-singular linear map ofRn into itself, that (d f)(a) = identity. Letg
be defined onΩ by

g(x) = f (x) − x. Then obviously (dg)(a) = 0.
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�

This implies that there exists a neighbourhoodW of 0, W ⊂ Ω,

W = {x
∣∣∣|xi | < r} such thatx, y ∈ W̄ implies |g(x) − g(y)

∣∣∣ ≤ 1
2
|x− y|. We

remark that| f (x) − f (y)| ≥
1
2
|x− y| if x, y ∈ W, so thatf is injective on

W. Let V = {x
∣∣∣|xi | <

1
2

r}, U = W ∩ f −1(V). Defineϕ0: V → W to be

ϕ0(y) = 0 and by inductionϕk(y) = y−g[ϕk−1(y)]. It is easily verified by
induction thatϕk(y) ∈ W for eachk, and further that|ϕk(y) − ϕk−1(y)| =

|g(ϕk−1(y)) − g(ϕk−2(y))| ≤
r

2k
. Henceϕk is uniformly convergent to a

functionϕ: V → Rn. Sinceϕk(y) ∈W for eachk, ϕ(y) ∈ W̄ and

(3.1) ϕ(y) = y− g[ϕ(y)].

Since|y| < r/2 and
∣∣∣g[ϕ(y)]

∣∣∣ ≤ r/2 we haveϕ(y) ∈ W. From (3.1) it
follows that f [ϕ(y)] = y. Sincef

∣∣∣W is injectiveϕ is the inverse off . The
continuity ofϕ follows from that ofϕk and the uniform convergence.

Remark. The theorem has an analogue for functions fromCn to Cn. If
Ω is an open set inCn, f a holomorphic map ofΩ intoCn and if (d f)(a)
is nonsingular at somea ∈ Ω, then there exist neighbourhoodU, V of a
and f (a) respectively such that (i) f

∣∣∣U mapsU homeomorphically onto
V and (ii ) the inverse mapping off

∣∣∣U is holomorphic onV. The proof
is identical with that given above; since eachϕk is holomorphic andϕk13

converges uniformly toϕ, ϕ is holomorphic.

Definition. Let f be aC1 map ofΩ1 × Ω2 into Rp, and let (a, b) ∈
Ω1×Ω2. Let f (a, y) = g(y). Then (d2 f )(a, b) is defined by (d2 f )(a, b) =
(dg)(b); (d1 f )(a, b) is defined similarly.

Theorem 2. LetΩ1×Ω2 be an open set inRm+n and f :Ω1×Ω2→ R
n a

function in C1. Suppose that for some(a, b) ∈ Ω1×Ω2, we have f(a, b) =
0 and (d2 f )(a, b) has rank n. Then there exists a neighbourhood U× V
of (a, b) such that for any x∈ U there is a unique y= y(x) ∈ V for which
f (x, y) = 0; the map x→ y(x) is continuous.
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Proof. ConsiderF: Ω1 × Ω2 → R
m+n defined byF(x, y) = (x, f (x, y)).

Then the statement that (d2 f )(a, b) has rankn is equivalent to saying
that (dF)(a, b) is nonsingular. Therefore by Theorem 1, there exists a
neighbourhoodU′ × V of (a, b) and a neighbourhoodW of (a, 0) such
that F

∣∣∣U′ × V → W is a homeomorphism. Letϕ: W → U′ × V be the
continuous inverse ofF. Then there exists a neighbourhoodU of a such
that x ∈ U implies (x, 0 ∈ W. Then forx ∈ U, let y(x) be the projection
of ϕ(x, 0) onV. Clearly if y ∈ V is such thatf (x, y) = 0 theny = y(x);
moreovery(x) is a continuous map withf (x, y(x)) = 0. �

Remark. The above theorem can be extended to a holomorphic mapf :
Cm+n→ Cn; y(x) it then a holomorphic function ofx.

Lemma 1. With the same notation as in Theorem 2, if A(x) = (d2 f ) 14

(x, y(x)) and B(x) = (d1 f )(x, y(x)) and if U is so small that A(x) is so
small that A(x) is invertible for x∈ U then y∈ C1(U) and

(3.2) (dy)(x) = −A(x)−1 ◦ B(x)

Proof. Let x, x+ξ ∈ U andη = y(x+ξ)−y(x). Then f (x+ξ, y(x)+η) = 0
and by Taylor’s formula

0 = f (x.y(x)) + B(x)ξ + A(x)η + ◦(|ξ| + |η|)

and η→ 0 asξ → 0.

�

HenceA(x)η = −B(x)ξ + ◦(|ξ| + |η|). If x ∈ K compact⊂ U then
A(x)−1 is bounded onK and

η = −A(x)−1 ◦ B(x)ξ + ◦(|ξ| + |η|).

This implies that|η| = ◦(|ξ|) and hence

y(x+ ξ) − y(x) = −A(x)−1 ◦ B(x)ξ + ◦(|ξ|).

Hencey(x) is differentiable and (3.2) holds.

Corollary. If in Theorem 2, f∈ Ck then y∈ Ck.
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Proof. We proceed by induction. Iff ∈ Ck andy ∈ Cr , r < k thenA(x),
B(x) ∈ Cr and by (3.2),y ∈ Cr+1. �

From the remark about holomorphic mappings made after Theorem
2 we deduce the following

Corollary 1. If f is real analytic so is y.

Corollary 2. In Theorem 1, if f is Ck (or analytic) then so is f−1

In fact we have only to apply the above corollaries to the mapF:15

Rn ×Ω→ Rn defined byF(x, y) = x− f (y).
The statement in Corollary 2 above is known as the inverse function

theorem: those contained in the corollary to Lemma 1 and Corollary 1
above form the content of the implicit function theorem.

Definition. A cube inRn is a set of the form{x
∣∣∣|xi − ai | < r i}. A poly-

cylinder inCn is set of the form{z
∣∣∣|zi − ai | < r i}.

Theorem 3(The rank theorem). If Ω is an open set inRn and f : Ω →
Rm, f ∈ C1 and if rank(d f)(x) = r is an integer independent of x then
there exist

(i) an open neighbourhood U of a,

(ii) an open neighbourhood V of b= f (a),

(iii) cubes Q1, Q2 in Rn andRm respectively,

(iv) homomorphisms u1: Q1 → U u2: V → Q2 such that u1, u2 and
their inverses are C1

with the property that ifϕ = u2. f . u1, then

ϕ(x1, x2 . . . , xn) = (x1, x2 . . . xr , 0 · · · 0).

Moreover if f ∈ Ck or is analytic, u1, u2 may be chosen to have the same
property.
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Proof. By affine automorphisms ofRn andRm we may suppose that
a = 0, b = 0 and that (d f)(0) is the linear map

(v1, . . . , vn)→ (v1, . . . , vr , 0, · · · , 0)

Consider the mapu: Ω→ Rn defined by

u(x) = ( f1(x), . . . , fr(x), nr+1, . . . , xn).

�

Then (du)(0) = identity, hence by the inverse function theorem there16

exists a neighbourhoodU of 0 and a cubeQ1 such thatu|U → Q1 is a
C1 homeomorphism and its inverse is inC1. Let u−1|Q1 = u1. Clearly
f (u1)(y) = (y1, . . . , yr , ϕr+1(y), . . . ϕm(y)). If ψ(y) = f (u1(y)), obviously
rank (dψ)(y) = r and hence

∂ϕ j

∂yk
= 0, j, k, > r,

i.e., ϕ j = ϕ j(yi , . . . , yr ) j > r

suppose thatQ1 = I r × In−r , whereI r , In−r are cubes inRr , Rn−r . Define
u′2: I r × Rm−r → Rm−r by

u2(y1, . . . , yr , . . . , ym) = (y1, . . . , yr , yr+1 − ϕr+1(y), . . . , ym− ym(y)).

Trivially u2 is bijective and its inverse isu−1
2 (y1, . . . , yr , . . . , ym) =

(y1, . . . yr , yr+1 + ϕr+1(u), . . . , ym + ϕm(y)). Let Q2 be a cube such that
u2ψ(Q1) ⊂ Q2 andV = u−1

2 (Q2) and clearly we have

ϕ(x1, . . . , xn) = (x1, x2, . . . , xr , 0, . . . , 0)

4 Sard’s theorem and functional dependence

Lemma 1. LetΩ be an open setRn and f : Ω→ Rn, aC1 map. Then f
carries sets of measure zero into sets of measure zero.
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Remark. If in Lemma 1, the condition thatf ∈ C′ is replaced by the
condition thatf satisfies a Lipschitz condition on every compactK ⊂ Ω,
i.e., | f (x)− f (y)| ≤ Mk|x−y| for x, y ∈ K, then f carriers sets of measure17

zero into sets of measure zero. This fact is trivial.

Lemma 2. If Ω is an open set inRn, f : Ω → Rm is a C1 map and if
m> n, then f(Ω) has measure zero inRm.

Proof. If we defineg: Ω × Rm−n → R by g(x1, x2, . . . , xm) = f (x1, . . .,
xn). Then by Lemma 1f (Ω) = g(Ω × 0) has measure zero. �

Let be an open set inRn and f : ω→ Rn, aC1 map

Definition. A point a ∈ Ω is called a critical point off if rank (d f)(a) <
m.

Remark. (1) If m> n, each point ofΩ is clearly a critical point off .

(2) The setA of critical points of f is closed inΩ.

(3) If m> n, f (a) has measure zero inRm.
We shall prove the following

Theorem 1 (Sard). If Ω is an open set inRn, f : Ω → Rm is a C∞ map
n ≥ m, and if A is the set of critical points of f then f(A) has measure
zero inRm

In what followsΩ will denote an open set inRn, f , a map ofΩ in
someRm andA, the set of critical points off in Ω.

Actually the theorem of Sard states that iff : Ω → Rm and f ∈
Cn−m+1(Ω), then f (A) has measure zero. The proof of this, however, re-
quires more delicate analysis; seeA. Sard [38] and A. P. Morse [30]. We
shall prove this stronger statement whenm= n before proving Theorem
1. H . Whitney [47] has given an example of anf ∈ Cn−m(Ω), n > m,18

for which f (A) has positive measure ( even coversRm).

Proposition 1. If f Ω→ Rn is a C1 map then f(A) has measure zero in
Rn.

Proof. Let a be inA. �



4. Sard’s theorem and functional dependence 15

Since (d f)(a) has rank< n, f (a) + (d f)(a)(x − a) lies in an affine
subspaceVa of Rn, the dimension ofVa being< n. Choose an orthonor-
mal basis (u1, u2, . . . , un) for Rn with centre f (a) such thatVa lies in the 19

subspace spanned byu1, . . . , un−1. Let Q be a closed in cube inΩ. It is
enough to show thatf (A ∩ Q) has measure zero inRn. For x ∈ Q∩ A,
by Taylor’s formula, we have

f (x) − f (a) = (d f)(a)(x − a) + r(x, a)

wherer(x, a) = 0(|x − a|) uniformly on Q × Q as |x − a| → 0. Hence
there exists a mapα : R+ → R+ such thatα(t)→ 0 ast → 0 and

||r(x, a)|| ≤ α(|x− a|).|x− a|.

Then for sufficiently smallε > 0, of x lies in a cubeQε of side
ε which containsa, f (x) lies in the region between the hyperplanes
un = α(ε). ∈ andun = −α(ε). ∈. Also since an orthonormal change
of basis preserves distance, by Taylor’s formula, there exists a constant
M such thatf (x) lies in the cube of sideMε with f (a) as its centre.
The volume of the intersection of the cube of sideMε and the region
between the hyperplanesun = ±α(ε). ε is ≤ 2mnεnα(ε). Since an or-
thonormal change of basis leaves the measure inRn invariant, we con-
clude that f (Qε) has measure≤ 2Mnεnα(ε). We can assume without
loss of generality thatQ has side 1. DivideQ into ε−n cubesQi of side
ε, i = 1, 2, . . . , ε−n. Then ifQi∩A , φ, f (Qi) has measure≤ 2Mnεnα(ε).

Hence measure of [f (A∩ Q)] ≤
∑

A∩Qi,φ
≤2Mnα(ε).

{ measuref (Qi ∩ A)}

Sinceα(ε)→ 0 asε→ 0, f (A∩ Q) has measure zero inRn.

Proposition 2. If f : Ω→ R1 is a C∞ map, then f(A) has measure zero
in R1.

Proof. DefineAk by

Ak =
{
a ∈ Ω|Dα f (a) = 0 for 0< |α| ≤ k

}
.

Obviously,{Ak} is monotone decreasing and we have

(4.1) A = (A1 − A2) ∪ (A2 − A3) ∪ · · · ∪ (An−1 ∪ An).
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If a ∈ An, by Taylor’s formula there exists a constantM such that
for x in a closed cubeQ abouta, we have| f (x) − f (a)| ≤ M|x− a|n+1 so
that image of the a cube of sideε about a has measure≤ εn+1M in R1.
Hence as in proposition 1,f (An ∩ Q) has measure< Mε; Whence,

(4.2) f (An) has measure zero inR1.

Note that ifn = 1, A = An, so that (4.2) is Prop. 2 withn = 1. We20

now suppose, by indication, that ifΩ′ is an open set inRn−1, g, a C∞

mapΩ′ → R and if A1 is the set of critical points ofg, theng(A1) has
measure zero.

Fork < n let Ak − Ak+1 = Bk. Let a ∈ Bk; it is sufficient to show that
a has a neighbourhood which goes into a set of measure zero. There
existsα = (α1, . . . , αn), with |α| = k + 1 , such thatDα f (a) , 0. If
αi , 0, defineβ = α − (0, . . . , 1, . . . , 0)1 in theith place.

Define g : Bk→ R
1 by g(x) = Dβ f (x).

(dg)(a) has maximal rank= 1. Therefore there exists an open neigh-
bourhoodU′ of a such that (dg)(x) has rank 1 forx in U′. Applying the
rank theorem toU′ there exist

(1) a neighbourhoodU of a , U ⊂ U′,

(2) a cubeQ1 in Rn,

(3) an invertible mapu : Q1→ U, u, u−1 beingC∞,

(4) a neighbourhoodV of g(a), such thatgou: Q1→ V is given by

gou(x1, . . . , xn) = x1(= p1(x)say).

Now, Bk ∩ U ⊂ B′ =
{
x ∈ U

∣∣∣g(x) = 0
}

so that

u−1(Bk ∩U) ⊂ B = {x ∈ Q1|p1(x) = 0}.

LetΩ′ =
{
(x2, . . . , xn) ∈ Rn−1|(0, x2, . . . , xn) ∈ Q1

}
. Let v : Ω′ → U

be the mapv(x2, . . . , xn) = u(0, x2, . . . , xn) and letψ = f ◦ v; ψ is aC∞

mapΩ′ → R. �



4. Sard’s theorem and functional dependence 17

Let A1= The set of critical points ofψ. Sinced(ψ)(x) = (d f)(v(x))◦21

(dv)(x), u−1(Bk∩U) ⊂ A1 . By induction hypothesis,ψ(A1) has measure
zero inR1. Sinceψ(A1) ⊃ f (Bk∩U), f (Bk∩U) has measure zero inR1,
for eachk which by (4.1) and (4.2) implies thatf (A) has measure zero
in R1.

Corollary. If f : Ω → Rm is a C∞ function, B=
{
x
∣∣∣(d f)(x) = 0

}
. then

f (B) has measure zero inRm.

Proof. Let f = ( f1, f2, . . . , fm)

B1 =
{
x
∣∣∣(d f1)(x) = 0

}
.

By prop 2. f1(B1) has measure zero inR1 and clearlyB ⊂ B1. Hence
f (B) ⊂ f (B1) ×Rm−1, so thatf (B) has measure zero inRm. In the proof
of Theorem 1, we shall use the following �

Theorem (Fubini). If F is a measurable set inRp, a point inRp denoted
by (x, y), x ∈ Rr , y ∈ Rp−r , o < r < p, then the set of y∈ Rp−r such that
(c, y) ∈ F has measurable zero inRp−r for almost all c if and only if F
has measure zero iRp.

Proof of theorem 1.Let Ek = {x|rank(d f)(x) = k} . We have

A =
⋃

k≤m

Ek.

If a ∈ Ek, k < ◦, then by a permutation of{ fi}1≤i≤m, we may sup-
pose thati f u = ( f1, . . . , fk), (du)(a) has rankk. We can then find
vk+1, . . . , vn, vi : Ω → R1, k + 1 ≤ i ≤ n, such that ifw is defined by
w(x) = ( f1, (x), . . . , fk(x), vk+1, . . . , vn(x)), then (dw)(a) is invertible. By 22

the inverse function theorem there exist neighbourhoodsU andV of a
andw(a) respectively, such thatW|U → V is a homeomorphism and
w|U andw−1|V areC∞. We may further suppose thatV is a cube inRn.
Defineg on V by

g(x) = f ◦ w−1(x).

If u = (x1, . . . , xk), v = (xk+1, . . . , xn) we haveg(u, v) = (u, h(u, v)) where

h : Rn→ Rm−k is aC∞map.
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Let w(a) = (α, β). α ∈ Rk, β ∈ Rn−k. Then (d f)(a) has rankk

⇔ (dg)(w(a)) has rankk

⇔ (d2h)(α, β) has rank 0.

Let Fk = g[w(Ek∩U)] = f (Ek∩U). If suffices to prove thatFk has mea-
sure zero. IfV′ is the projection ofV onRn−k, define the maphc: V′ →
Rm−k by hc(v) = h(c, v), when (c, v) ∈ V. Let W = {v ∈ V1|(dhc)(v) = 0}.
We have

Fk ∩ {u = c} = {u = c} × {hc(W)}.

hc: V′ → Rm−k is aC∞ function. Hence, by the corollary to Prop. 2,
hc(W) has measure zeroRm−k, i.e. the set of pointsy ∈ Rm−k such that
(c, y) ∈ Fk, has measure inRm−k, for all c. Hence, by Fubini’s theorem,
Fk has measure zero inRm for everyk < mand this proves the theorem.23

Definition. If f : Ω → Rm is aC∞ map andf = ( f1, f2, . . . , fm), then
{ fi}i≤i≤m are said to be functionally dependent if there exists an openset
Ω′ ⊃ f (Ω), and aC∞ mapg: Ω′ → R1 such that

(1) g−1(0) is nowhere dense inΩ′.

(2) g ◦ f = 0

If g can be chosen real analytic, we say that{ fi} are analytically depen-
dent.

Lemma 3. If E is any closed set inRn then there exists a C∞ function
ϕ: Rn→ R such that

{x ∈ Rn|ϕ(x) = 0} = E.

Proof. If E is closed, there exists{Up}p≥1, open sets inRn, such that
E =

⋂
p≥1

Up. There exist compact sets{Km}m≥1 in Rn such that

∞⋃

m=1

Km = R
n andKp ⊂ K0

p+1.
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By the corollary to Theorem 1, 2, there existϕp: Rn → R, C∞ maps
such that

(1) ϕp(x) =


0 for x ∈ E

1 for x ∈ Rn − Up

and

(2) 0≤ ϕp(x) ≤ 1.

Consider||ϕp||
Kp
p =

∑
|α|≤p

sup
x∈Kp

|Dαϕp(x)|. Each||ϕp||
Kp
p is finite. Hence 24

there exists a sequence (εp) of +venumbers such that

(4.3)
∞∑

p=1

εp||ϕp||
Kp
p < ∞.

Let fm be defined by

fm(x) =
m∑

p=1

εpϕp(x).

If K is any compact set inRn, K ⊂ Kr for somer. (4.3) implies in
particular that for integerm> r,

∑

p>m

εp||ϕp||
K
p ≤

∞∑

p>m

εp||ϕp||
Kp
p < ∞.

Hence{ fm} is a Cauchy sequence inC∞, and by the completeness of
C∞ [Theorem 1, §1],fm converges to a functionϕ, in C∞. Clearlyϕ has
the required properties. �

Theorem 2. If f : Ω → Rm is a C∞ map where f= ( f1, f2, . . . , fm),
then{ fi}1≤i≤m, are functionally dependent on every compact subset ofΩ

if and only if rank(d f)(x) < m for x∈ Ω.
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Proof. If { fi} are functionally dependent on the compact setK, let f =
Rm → R be aC∞ map such thatg ◦ f = 0 andg−1(0) nowhere dense
in Rm. clearly f (K) ⊂ g−1(0)is nowhere dense. If rank (d f)(x) = m for

somex ∈
◦

K, then rank (d f)(x) = m in an open neighbourhoodU ⊂
◦

K of
x and by the rank theoremf |U is open, so thatf (U) cannot be nowhere
dense. �

Conversely if rank (d f)(x) < m for x ∈ Ω, then by Theorem 1,25

for any subsetK of Ω, f (K) has measure zero inRm. Hence f (K) is
nowhere dense inRm. Also K being compact,f (K) is closed inRm.
Hence by the above, lemma, there exists aC∞ functiong: Rm→ R such
thatg−1(0) = f (K), so thatg ◦ f = 0 onK.

Only a somewhat weaker statement is true of analytic dependence.

Theorem 2′. If f : Ω → Rm is an analytic map, and if rank d f(x) < m
at every point ofΩ, then there exists a nowhere dense closed set E⊂ Ω
such that for any a∈ Ω−E, there exists a neighbourhood U of a, U⊂ Ω,
such that fi |U are analytically dependent.

Proof. We may suppose thatΩ is connected. Letp = max. rank (d f)(x),
and letb ∈ Ω be such thatp = rank(d f)(b). This means that there exist

i1, . . . ip, and j1, j2, . . . , jp, such that if we seth(x) = det|
∂ fir
∂x js
| , we have

h(b) , 0. LetE = {x ∈ Ω|h(x) = 0}. Sinceh is analytic inΩ and. 0, E
can contain no open set, and so is nowhere dense. �

Now clearly rank (d f) (x) = p for x ∈ Ω − E. By the rank theorem,
given a ∈ Ω − E, there exist neighbourhoodsU of a, V of f (a),cubes
Q1, in Rn, Q2 in Rm and analytic homeomorphismsu1: Q1 → U, u2:
V → Q2 such thatu2 ◦ f ◦u1 is the map which sends (y1, y2, . . . , yn) into
the point (y1, . . . , yp, . . . , 0). If u2 = (u(1), . . . , u(m)), and we take

g = u(r), r > p,

theng ◦ f = 0 onU.

Example. If ϕ(z) is an entire function of the complex variablez, not a26
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polynomial, and real on the real axis, (e.g.ϕ(z) = ez), consider the map
f : R2→ R3 given by

f (x1, x2) = (x1, x1x2, x1 f (x2))

It can be shown that there does not exist any analytic function g . 0
in a neighbourhood of 0∈ R3 with g ◦ f = 0 in a neighbourhood of
0 ∈ R2.

5 E. Borel’s theorem and approximation theorems

Notation. If f ∈ C∞, T( f ) will denote the formal power series
∑
|α|<∞

f α(0)
α!

xα andTm( f ) will denote the polynomial
∑
|α|≤m

f α(0)
α!

xα.

Definitions. (1) If f ∈ Ck(Ω) and if E is a closed subset ofΩ, then f
is said to bem−flat on E, (m ≤ k), if Dα f (x) = 0 for x ∈ E and
|α| ≤ m.

(2) If f ∈ C∞(ω), E is a closed subset ofΩ and if f is m−flat onE for
every positive integerm, then f is said to be flat onE.

Lemma 1. If f εC∞(Rn) and if f is m-flat at0, givenε > 0, there exists
gεC∞(Rn) such that g(x) = 0 in a neighbourhood of0 and||g− f ||R

n

m < ε.

Proof. By the corollary to Theorem 1, 2, there exists aC∞ function k:
Rn→ R, such that

k(x)


= 0 for |x| ≤

1
2

= 1 for |x| ≥ 1

and k(x) ≥ 0.

Let gδ(x) = k
( x
δ

)
f (x) for δ > 0. It is enough to prove that for each27

α, |α| ≤ m,

|(Dα fδ)(x) − Dα f (x)| → 0 uniformly onRn asδ→ 0.
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Now we have

sup
xεR
|(Dαgδ)(x) − (Dα f )(x)| = sup

|x|≤δ
|(Dαgδ)(x) − (Dα f )(x)|

and sincef is m-flat at 0.

sup
|x|≤δ
|(Dα f )(x)| → 0, asδ→ 0, for |α| ≤ m.

By Leibniz’ formula.

Dαgδ(x) =
∑

µ+ν=α

(αν )δ−|v|(Dν.k)(
x
δ

)(Dµ. f )(x).

For eachν, there exists a constantMν , such that|(Dνk)(x)| ≤ Mν.
Hence ∣∣∣(Dαgδ)(x)

∣∣∣ ≤
∑

µ+ν=α

Mν(
α
ν )δ−|v| |(Dµ f )(x)|

now (Dµ f )(x) is (m− |µ|) flat at 0. Therefore,

|(Dµ f )(x)| = ◦(|x|m−|µ|) asx→ 0

so that sup|x|≤δ |(D
µI )(x)| = ◦(δm−|µ|) and

δ−|ν||Dµ f (x)| = ◦(δm−|µ|−|ν))

= ◦(1).

Hence for|α| ≤ m, (Dαgδ)(x) → 0 uniformly asδ → 0 i.e., ||gδ −28

f ||MRn→ 0 asδ→ 0 Q.E.D. �

Note that the functiong in the above lemma ism in particular, flat at
0.

Theorem 1 (E. Borel). Given an arbitrarily family{Cα} of constants

there exists fεC∞(Rn) such that T( f ) =
∑
|α|<∞

Cαxα, i.e,
Dα f (0)
α!

= Cα

for all α.
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Proof. Let
∑
|α|≤m

Cαxα = Pm(x).

By the lemma above there, existsgmεC∞, flat at 0, such that

||Pm+1 − Pm − gm|| < 2−m.

Clearly because of the completeness ofC∞

f = P◦ +
∞∑

m=0

(Pm+1 − Pm − gm)εC∞,

and, for anyk,
∑

m≥k
(Pm+1 − Pm− gm) is k-flat at 0. Hence

Tk( f ) = Tk

P0 +

k−1∑

0

(Pm+1 − Pm− gm)

 = Pk.

This theorem of Borel is a very special case important theorems of
H. Whitney [46] on differentiable functions on closed sets. We state,
without proof, his main theorem in this direction. A simplified version
of his proof is container in the paper [12] ofG. Glaeser. A systematic
account of this circle of ideas will be found in a forthcomingbook B. 29

Malgrange [26] on ideals of differentiable functions. �

Extension theorem of Whitney

Part 1. Letk be an integer> 0, Ω open inRn andE a closed subset of
Ω. To everyn-tupleα = (α1, . . . , αn) of nonnegative integers with
|α| ≤ k, suppose given a continuous functionfα on E. Then there
exists fεCk(Ω) with Dα f |E = fα for |α| ≤ k if and only if for any
α, |α| ≤ k, we have

fα(x) =
∑

|β|≤k−|α|

fα + β(y)
β!

(x− y)β + ◦(|x− y|k−|α|)

uniformly for x, y in any compact subset ofE, as|x− y| → 0.
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Part 2. Given a continuous functionfα on E for all n- tuplesα, there
exists fεC∞(Ω) with

Dα f
∣∣∣∣∣E = fα for all α,

if and only if we have for any integerk > 0 and any compact
K ⊂ E,

fα(x) =
∑

|β|≤k

fα + β(y)
β!

(x− y)β + ◦(|x− y|k)

uniformly as|x− y| → 0, x, yεK

Borel’s theorem is the special case of this second part in which E
reduces to a single point.

Theorem 2 (Weierstrass). If f εCk(Ω), 0 ≤ k < ∞, given a compact
subset K ofΩ and ε > 0, there exists a polynomial p(x1, . . . , xn) such
that || f − p||kk < ε.

Proof. Without loss of generality we may assume thatf has compact30

support. �

Forλ > 0, definegλ(x) by

(5.1) gλ(x) = cλn/2
∫

Rn

f (y)e−λ||x−y||2 dy,

wherec is the constant given by

c
∫

Rn

e−||x||
2
dx= 1.

Then obviouslycλn/2
∫

Rn

e−λ||x||
2
dx = 1. We shall show that||gλ −

f ||Kk → 0 asλ → ∞. By uniform convergence of the integral in (5.1)
and by a suitable change of variable, we have,

Dαgλ(x) = cλn/2
∫

Rn

(Dα f )(y)e−λ||x−y||2 dy.
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Hence Dαgλ(x) − Dα f (x) = cλn/2
∫

Rn

[Dα f (y) − Dα f (x)]e−λ||x−y||2 dy.

Givenε > 0, there existsδ > 0 such that

(5.2) |(Dα f )(y) − (Dα f )(x)| < ε/2 for ||x− y|| ≤ δ.

Since f has compact support andfεCk, there exists a constantM
such that for anyα, |α| ≤ k,

(5.3) |Dα f (y)| < M.

By (5.2) and (5.3) 31

∣∣∣(Dαgλ)(x) − (Dα f )(x)
∣∣∣

=

∣∣∣∣∣∣∣∣∣
cλn/2

∫

||x−y||<δ

[
Dα f (y) − Dα f (x)

]
e−λ||x−y||2dy+ cλn/2

∫

||x−y||≥δ

[Dα f (y) − Dα f (x)]e−λ||x−y||2 dy

∣∣∣∣∣∣∣∣∣

≤ ε/2cλn/2
∫

Rn

e−λ||x−y||2dy+ 2M.C.λn/2
∫

||x−y||≥δ

e−λ||x−y||2dy

≤ ε/2+ 2Mcλn/2e−λ
δ2
2

∫

||x−y||≥δ

e−
1
2λ||x−y||2dy.

The productcλn/2
∫

Rn

e
−
λ

2
||x−y||2

dy= 2n andλ

n
2e
−λ
δ2

2 → 0 asλ→ ∞.

Hence we have|(Dαgλ)(x) − (Dα f )(x)| → 0 uniformly asλ → ∞ for
|α| ≤ k; i.e.

||gλ − f ||Kk → 0 asλ→ ∞.

Chooseλ0 such that

||gλ0 − f ||Kk < ε/2.
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Now, e−λ0||x−y||2 =

∞∑

p=0

(−λ0)p

p!
||x− y||2p.

If we setQN(x, y) =
N∑

p=0

(−λ0)p

p!
||x − y||2p, thenDα

xQN(x, y) → Dα
x

e−λ0||x−y||2 asN → ∞, uniformly for x, y in a compact set. Hence, if32

PN(x) = cλn/2
0

∫
f (y)QN(x, y)dy,

thenPN is a polynomial and|| f − PN||
K
k → 0 for any compact setK.

Corollary 1. If Ωi is open inRni , i = 1, 2 then the finite linear combi-

nations
∑
µ,ν
ϕ(xi)ψγ(x2)

{
xi denoting a general point inRni

}
whereϕµ(x1)

is C∞ in Ω1, ψγ(x2) in Ω2, are dense in the space Ck(Ω1 ×Ω2).

Since the topology onCk(Ω1 ×Ω2) involves only approximation on
compact sets, by multiplyingϕµ, ψν by suitable functions with compact
support we obtain

Corollary 2. With the notation as in Cor.1. the finite linear combina-
tions

∑
ϕµ(x1)ψ(x2), where theϕµ, ψν are C∞ functions with compact

support inΩ1, Ω2 respectively, are dense in Ck(Ω1 ×Ω2).

Theorem 3 (Whitney). If Ω is an open set inRn and f : Rn → R is
a Ck map(0 ≤ k ≤ ∞) then for any continuous functionη > 0 onΩ,
there exists an analytic function g inΩ such that for any xεΩ, we have

|Dα f (x) − Dαg(x)| < η(x) for 0 ≤ |α| ≤ min

(
k,

1
η(x)

)
.

If Kp is any sequence of compact subsets ofΩ, Kp ⊂ K◦p+1,∪Kp = Ω

and if εp > 0, there exists a continuous functionη onΩ with η(x) < εp

on Kp+1−Kp. Consequently, Theorem 3 is equivalent with the following

Theorem 3′. If Ω is an open set inRn; f : Ω → R1 is Ck, 0, ≤ k ≤ ∞,33

and if {Kp} are compact subsets ofΩ such that
⋃
p≥1

Kp = Ω K0 = φ and

Kp ⊂ K◦p+1 then given a sequence{εp} of positive numbersεp ↓ 0, and
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a sequence{mp} of non-negative integers with0 ≤ mp ≤ k, there exists

an analytic function g:Ω → R such that|| f − g||
Kp+1−Kp
mp

> εp for every
p ≥ 0.

Proof. We may assume thatmp+1 ≥ mp for p ≥ 1. Using Leibniz’
formula we see at once that there is a sequence{Cp} of numbersCp ≥ 1,
such that forϕ, ψεCmp(Ω) and say subsetE of Ω, we have

||ϕψ||Emp
≤ Cp||φ||

E
mp
||ψ||Emp

.

By Theorem 1, §2, there exist functionsϕpεC∞(Ω), such that

ϕp has compact support inΩ,

ϕp(x) = 0 for x in a neighbourhood ofKp−1

= 1 for x is a neighbourhood of ( ¯Kp+1 − Kp).

Let Mp = ||ϕp||mp + 1. Choose a sequence{δp} of positive numbers
δp ↓ 0 such that

(5.4)
∑

q≥p

CmMq+1δ <
1
4
εp for all p ≥ 0.

For a continuous functionf , Iλ( f ) will denote the function with
Iλ( f )(x) = cλn/2

∫

Rn

f (y)e−||x−y||2 by wherec is chosen so thatc
∫

Rn

e−||x||
2

dx= 1. By theorem 2, we may chooseλ0 such that, ifg0 = Iλ0(ϕ0 f ), 34

||g0 − ϕ0 f ||K1
m0
< δ0.

For p ≥ 1, let

gp = Iλp

ϕp

 f −
p−1∑

0

gi





whereλp is so chosen that

(5.5) ||gp − ϕp

 f −
p−1∑

0

gi

 ||
Kp+1
mp < δp.
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Note that, forp ≥ 1, λp can be chosen to be any number> a con-
stantlp depending only onλ0, . . . , λp−1. The inequality (5.5) implies, in
particular, that

(5.6) ||gp||
Kp+1
mp

< δp

and

(5.7) || f −
p∑

0

gp||
Kp+1−Kp
mp

< δp

Consequently, (5.5), withp replaced byp+ 1, implies that

||gp+1||
Kp+1−Kp
mp

≤ ||ϕp+1

 f −
p∑

0

 gq||
Kp+1−Kp
mp

+ δp+1

≤ Cp||ϕp+1||mp||

 f −
p∑

0

gq

 ||
Kp+1−Kp
mp

+ δp+1

≤ CpMp+1δp + δp+1 ≤ 2δpCpMp+1;

also||gp+1||
Kp
mp
≤ δ + p+ 1.35

Hence

||gp+1||
KP+1
mp
≤ 2δpCpMp+1

i.e., ||

∞∑

p+1

||
Kp+1
mp
≤ 2

∑

q>p

δqCpMq+1 <
1
2
εp.

Hence by the completeness ofCk,

g =
∞∑

0

gqεC
mp

and|| f−g||
kp+1−Kp
mp

≤ || f−
p∑

◦

g1||
Kp+1−Kp
mp

+||

∞∑

p+1

gi ||
Kp+1−Kp
mp

< δp+
1
2
εp < εp.
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Now we shall prove thatg is analytic if theλp are suitably chosen.
By definition,

gq(x) = cλn/2
q

∫

Ωq

(y)

 f (y) −
q−1∑

0

gi(y)

 e−λq||x−y||2dy

andϕq has compact support. Hencegq is analytic for such eachq. Let
2µp = d(Kp,Ω − Kp+1); clearlyµp >. There is an open setUp in Cm,
Up ⊃ Kp such that ifzεUp, yεΩ − Kp+1, then

Re
[
(z1 − y1)2 + · · · + (zn − yn)2

]
> µp.

�

For anyq, define 36

gq(z) = cλn/2
q

∫

Ω

φq(y)

 f (y) −
q−1∑

r=0

gr (y)

 e−λq[(z1−y1)2+···+(zn−yn)2]dy

Sinceφq has compact support,gq is an entire function ofz1, . . . , zn.
Further, forq > p+1, the integral defininggq may be replaced by

∫

Ω−Kp+1

sinceϕq = 0 onKp+1; hence

(5.8)
∣∣∣gq(z)

∣∣∣ ≤ cλn/2
q Hqe−λqµp, for q > p+ 1, zεUp;

hereHq is a constant depending only onλo, . . . , λq−1. We can choose, by
induction,λq such thatλq > lq (the constant depending onλo, . . . , λq−1

which is involved in the validity of the inequality (5.5)) and such that
the series. ∑

λ
n/2
q Hqe−λqµ < ∞ for anyµ > 0.

[It suffices, e.g. to chooseλq such thatλn/2
q Hq(λ0, . . . λq−1)e

−λq
q <

1

q2
.]
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For this choice of the sequenceλq, the inequality (5.8) implies that
the series

∑
gq(z) converges uniformly forzεUp; hence the sum is holo-

morphic inUp for any p. Sinceg is the restriction of this sum toΩ, g is
real analytic inΩ.

We shall now consider analogues of these theorems for approxima-
tion by polynomials in complex variables. Clearly, since a uniform limit37

of holomorphic functions is holomorphic, we can at best hopeto approx-
imateholomorphicfunctions by polynomials. But there are geometric
and analytic conditions on an open setU in the spaceCn in order that
any holomorphic function onU be approximable by polynomials.

Definition. An open setU ⊂ Cn is called a Runge domain if every holo-
morphic function f on U can be approximated by polynomials, uni-
formly on every compact subset ofU.

The following theorem is contained in a general approximation the-
orem which we shall prove in Chap.III . For a simple direct proof based
on Cauchy’s integral formula (the original proof of Runge) see e.g [4].

Theorem (Runge).An open connected set U in the complex plane is
Runge domain if and only if U is simply connected.

Let U be an open set inCn andα: U → R, a continuous func-
tion such thatα(z) > 0. Let dv denote Lebesgue measure inCn, and
let A(α) denote the set of holomorphic functionsf on U for which∫
| f (z)2α(z)dv< ∞.

Lemma 1. For f , gεA(α), set( f , g) =
∫

f (z)g(z)α(z)dv. Then A(α) is a
Hilbert space with the inner product( f , g).

Proof. In view of the completeness of the spaceL2(α; dv) it suffices to
prove that if fpεA(α) and

∫

U

| fp(z) − fq(z)|2α(z)dv→ 0 asp, q→ ∞,

then fp converges uniformly on compact subsets ofU. Sinceα is bound-38

ed below by a positive constant on any compact subset ofU, this asser-
tion follows from the following �
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Lemma 2. If { fp} is a sequence of holomorphic functions such that∫

U

| fp − fq|2dv → 0 as p, q→ ∞, then fp is uniformly convergent on

every compact subset of U.

Proof. If g(z) is holomorphic in a neighbourhood of the closed disc|z−
a| ≤ ρ in the plane it follows from Cauchy’s integral formula that

g(a) =
1
πρ2

∫

|z−a|≤ρ

g(a+ z)dv.

�

Applying thisn times, we find that ifh(z1, . . . , zn) is holomorphic in
a neighbourhood of the set|z1 − a1| ≤ ρ, . . . , |zn − an| ≤ ρ, then

h(a) =
1

(πρ2)n

∫

|z−a|≤ρ

h(a+ z)dv.

Let K be a compact subset ofU and letρ > 0 be so small that the
setKρ = {zεCn

∣∣∣∃aεK with |z− a| ≤ ρ} is compact inU. Then, foraεK,
if f is holomorphic inU,

∣∣∣ f (a)
∣∣∣2 = 1

(πρ2)n

∣∣∣∣
∫

|z−a|≤ρ

( f (a+ z))2dv
∣∣∣∣

so that sup
aεK

∣∣∣ f (a)|2 ≤
1

(πρ2)n

∫

Kρ

| f (z)|2dv.

Lemma 2 follows if we apply this inequality to the differencesfp − 39

fq.
Let ϕν be a complete orthonormal system inA(α).Then we have, for

any fεA(α), f =
∑

Cνϕν whereCν = ( f , ϕν) and the series converges in
the Hilbert spaceA(α). From Lemma 2 we deduce

Lemma 3. If {ϕν} is a complete orthonormal system in A(α), then any
fεA(α) can be approximated, uniformly on compact subsets of U, by

finite (complex) linear combinations
p∑
ν=1

Cνρν.
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Proposition. If U is an open set inCn, V an open set inCm and α:
U → R, β: V → R are positive continuous functions and if{ϕν}, {ψµ}
are complete orthonormal systems in the Hilbert spaces A(α) and A(β)
respectively, then{ϕνψµ} is a complete orthonormal system in A(α × β)
whereα × β: U × V → R is defined by

(α × β)(z,w) = α(z)β(w).

Proof. We have only to show that{ϕνψµ} form a complete system in
A(α × β). �

Let f (z,w)εA(α) be such that
∫

f (z,w)α(z)β(w)ϕν(z) ψµ(w)dv= 0

for eachν andµ, dv, Lebesgue measure inCn+m.
We have to show thatf (z,w) = 0. Let dvz, dvw be the Lebesgue

measures inCn andCm respectively. If we show that for anyµ, the
integralg(z) = g(µ)(z) =

∫
f (z,w)β(w)ψµ(w)dvw, which exists for almost40

all z, defines a function inA(α), the proof follows immediately from the
completeness of{ϕν} and {ψµ}. Let Kp be compact subsets ofV such
that

⋃
Kp = V andKp ⊂ Kp+1.

Definegp(z) by

gp(z) =
∫

Kp

f (z,w)β(w)ψµ(w)dvw.

Thengp is holomorphic inU. We have forq > p,

gq(z) − gp(z) =
∫

Kq−Kp

f (z,w)β(w)ψµ(w)dvw.

By Schwarz’s inequality,

|gq(z) − gp(z)|2 ≤
∫

Kq−Kp

| f (z,w)|2β(w)dv
∫

Kq−Kp

|ψµ(w)|2β(w)dvw
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≤

∫

Kq−Kp

| f (z,w)|2β(w)dv, since||ψµ|| = 1 in A(β)

Hence
∫

U

|gq(z) − gp(z)|2α(z)dvz ≤

∫

U×(Kq−Kp)

| f (z,w)|2α(z)β(w)dvw

and
∫

U×(Kq−Kp)

| f (z,w)|2α(z)β(w)dvw → 0 asp, q→ ∞

since fεA(α × β).
Hence

∫

K

|gq(z) − gp(z)|2dvz → 0 as p, q → ∞ for any compact 41

subset ofU and, by Lemma 2,gq converges uniformly to a holomorphic
functiong(z). Further we clearly have∫

U

|gp(z)|2α(z)dvz ≤
∫

U×V

| f (z,w)|2α(z)β(w)dv, so thatgεA(α), and

proposition is proved.

Theorem 4. If U is an open set inCn, V an open set inCm, the linear
combinations

∑
ϕi(z)ψ j (w), whereϕi andψ j are holomorphic functions

on U and V respectively, are dense in the space of holomorphicfunc-
tions on U× V (with the topology of uniform convergence on compact
sets).

Proof. Let f (z,w) be a holomorphic function onU ×V. Since f is con-
tinuous onU ×V there exists a positive continuous functionη: U ×V →
R such thatfεA(η), i.e.

∫

U×V

| f |2ηdv is finite. LetKp, Lq be compact sub-

sets ofU andV respectively such that
⋃

p≥1 Kp = U and
⋃

q≥1 Lq = V

andKp ⊂
◦

Kp+1, Lq ⊂
◦

Lq+1. Then

⋃

p≥1

(Kp × Lp) = U × V.

�
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There exist positive numbersεp such thatη(z,w) ≥ εp > 0 onKp ×

Lp andεp ≤ 1. There exist positive continuous functionsα andβ on U
andV respectively such that

α(z) ≤ εp for z in (Kp − Kp−1)

and β(w) ≤ εp for w in (Lp − Lp−1).

This is easily deduced from Theorem 1. §2. Now42

{
Kp × Lp

}
−

{
Kp−1 × Lp−1

}
= {Kp × (Lp − Lp−1}

⋃
{Kp − Kp−1) × Lp}.

It follows trivially thatα(z)β(w) ≤ εp ≤ η(z,w) for (z,w)ε(Kp×Lp−

Kp−1 × Lp−1) for eachp i.e. η(z,w) ≥ α(z)β(w) for (z,w)εU × V. Hence
fεA(α × β).

If {ϕν} and {ψµ} form complete orthonormal systems ofA(α) and
A(β) respectively, then by the last proposition,{ϕνψµ} form a complete
orthonormal system ofA(α × β); by Lemma 3 the finite linear combina-
tions

∑
Cνµϕν(z)ψµ(w) approximatef uniformly on compact subsets of

U × V. q.e.d

Corollary. If U is Runge inCn and V is Runge inCm, then U× V is
Runge inCn+m; in particular, if U1, . . . ,Un are simply connected plane
domains, then U1 × · · · × Un is Runge inCn.

We shall deal with deeper properties of Runge domains inCn later.

6 Ordinary di fferential equations

Lemma 1. If I is an interval, containing0, in R and w: I → R is a

continuous map such that w(t) ≥ 0 and if w(t) ≤ M
t∫

0

w(s)ds+ η, then

w(t) ≤ ηeMt.

Proof. We have, fort ≥ 0,43

eMt d
dt


e−Mt

t∫

0

w(s)ds


= w(t) − M

t∫

0

w(s)ds≤ η.
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hence
d
dt


e−Mt

t∫

0

w(s)ds


≤ ηe−Mt

i.e.

t∫

0

w(s)ds≤ η
{1− e−Mt}

M
eMt.

�

Theorem 1. LetΩ andΩ′ be open sets inRn andRm respectively, I an
open interval inR1 with 0εI, f : Ω × I × Ω′ → Rn a continuous map.
We denote a point inΩ × I × Ω′ by (x, t, α). If f is uniformly Lipschitz
with respect to x on every subset K× I × K′ ofΩ × I ×Ω′, K, K′ being
compact subsets ofΩ andΩ′ respectively, then given x0εΩ, there exists
an interval I0 = {t

∣∣∣|t| < ε}, ε > 0 and a unique continuous map x:
I◦ × K′ → Ω such that

(6.1) f (x(t, α), t, α) =
∂x
∂t

(t, α)

and

(6.2) x(0, α) = x0.

Further if the condition that f is Lipschitz is replaced by the (stronger)
condition that fεCk(Ω × I ×Ω′), 1 ≤ k ≤ ∞, then xεCk(I0 × K′).

Proof. Let M be the Lipschitz constant, i.e.

|| f (x, t, α) − f (y, t, α)|| ≤ M||x− y|| for x, yεK andαεK′.

�

ConsiderΩ0 =
{
x
∣∣∣||x− x0|| ≤ r

}
⊂ Ω and letΩ0 ⊂ K. Clearly | f | is 44

bounded onΩ0 × I × K′, say byC. Let ε′ > 0 be such that

{
t
∣∣∣|t| < ε′} ⊂ I
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Let I0 =

{
t
∣∣∣|t| < ε, ε = min(ε′,

r
c

}
. For n ≥ 0, define functionsxn:

I0 × K′ → Ω0 by x0(t, α) = x0

(6.3) xn(t, α) = x0 +

t∫

0

f (xn−1(τ, α), τ, α)dτ.

It is easily seen, by induction, thatxn(t, α)εΩ0 and that||xn− xn+1|| ≤

mn−1|tn|C
n!

. Hence asn→ ∞, xn(t, α) converges uniformly to a function

x(t, α). clearly x(t, α) is continuous and from (6.3), it follows that

x(t, α) = x0 +

t∫

0

f (x(τ, α), τ, α)dτ

so that
∂x
∂t

(t, α) = f (x(t, α), t, α) and x(0, α) = x0. If x andy are two

continuous functions satisfying the differential equation (6.1) and the
initial condition (6.2), let

u(t, α) = x(t, α) − y(t, α); then u is continuous and||u(t, α)|| ≤ M
t∫

0

||u(τ, α)||dτ for t ≥ 0. By Lemma 1 withη = 0, we conclude that

u(t, α) = 0 for t ≥ 0. Similar arguments apply to the ranget ≤ 0. This45

proves the uniqueness of the solution.
To prove the last part of the theorem, we shall first show that if fεC1,

thenxεC1. If α = (α1, α2, . . . , αm), it is enough to prove that
∂x
∂αi

exists

and is continuous for eachi, since (6.1) implies apply ift < 0.
Consider

A(t, α) = (d1 f )(x(t, α), t, α);

B(t, α) =
∂ f
∂αi

(x(t, α), t, α).

A is, for eacht, α, a linear map ofRn into itself. Sincef isC1,A(t, α)
is a continuous linear map andB(t, α) is continuous. Therefore the linear
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differential equation

(6.4)
dy
dt
= A(t, α)y+ B(t, α)

for yεRn, has a solutiony(t, α), which is continuous int andα, and
for which y(0, α) = 0. If (c1, c2, . . . cm)εK′, hereafterα will denote
(c1, c2, . . . , αi , . . . , cm) andαh the point, (c1, c2, . . . , αi +h, . . . , cn). Con-

sider
x(t, αh) − x(t, α)

h
= βh(t). Then sincefεC1, by Taylor’s formula,

βh(t) =

t∫

0

[{
A(s, α) + ε1(h, α, s)

}
βh(s) + β(s, α) + ε2(s, h)

]
ds

where, for fixedh, α and s, ǫ1 is an endomorphism ofRn, ε2εR
n and 46

both tend uniformly to zero ash→ 0. Hence

∣∣∣βh(t)
∣∣∣ ≤ M1

t∫

0

|βh|ds+ M2

for someM1 andM2 independent ofh. Hence, by Lemma 1,∣∣∣βh(t)
∣∣∣ ≤ eM1tM2 andβh is bounded ash→ 0.

Let βh(t) − y(t, α) = zh(t); then

∣∣∣zh(t)
∣∣∣ ≤

t∫

0

∣∣∣A(s, α)
∣∣∣.
∣∣∣zh(s)

∣∣∣ ds+ ε1
1

t∫

0

∣∣∣zh(s)
∣∣∣ds+ ε′2

whereε′1 andε1
2→ 0 ash→ 0. Also

t∫

0

∣∣∣βh(s)
∣∣∣ds is bounded.

Hence
∣∣∣zh(t)

∣∣∣ ≤
t∫

0

|A(s, α)|
∣∣∣zh(s)

∣∣∣ds+ ε whereε→ 0 ash→ 0. By

Lemma 1, this implies that
∣∣∣zh(t)

∣∣∣→ 0 ash→ 0

i.e. xεC1 and
∂x
∂αi
= y(t, α).
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If fεCk, assume, by induction, that the result is proved for func-
tions inCk−1. ThenxεCk−1, so thatA(t, α), B(t, α)εCk−1; because of the
differential equation

dy
dt
= A(t, α)y+ B(t, α),

and the induction hypothesis,yεCk−1. Since
∂x
∂αi
= y(t, α) and

∂x
∂t
=47

f (x, t, α), if follows that xεCk.

Corollary. If f : Ω × I × Ω′ → Ω′ is in Ck, then the function x(t, α, xo)
for which

dx
dt
= f (x, t, α), x(0, α, x0) = x0

is Ck in I × Ω′ ×Ω.

We have only to consider the equation

(6.4)
dy
dt
= g(y, t, α, x0),

whereg(y, t, α, x0) = f (x0 + y, t, α), onΩ × I ×Ω′ ×Ω; we have

x(t, α, x0) = y(t, α),

if y(t, α) is the solution of (6.4) withy(0, α) = x0.

Remark. If the function f in the above theorem is real analytic, then
there exists a neighbourhoodU × D × U′ of Ω × I ×Ω′ in Cn+1+m such
that f has holomorphic extension toU × D × U′. Then the equation

dx
dt
= f (x, t, α) for (x, t, α)ǫU × D × U′

has a holomorphic solutionx(t, α) in D0 × U′. We setx0(t, α) = x0,

xk(t, α) = x0 +

t∫

0

f (xk−1(τ, α), τ, α) dτ,
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the integral being taken along the line joining 0 tot. Eachxk is holomor-
phic and hence so isx(t, α) = lim

k→∞
xk(t, α). Since by induction, eachxk48

is real for realt, so isx, so that by the uniqueness assertion, the restric-
tion of x to I0 ×Ω

′ is the solution of the differential equation inI0 ×Ω
′.

Hence this solution is real analytic.

{ For all this material and further developments, see Coddington and
Levinson [8].}





Chapter 2

Manifolds

1 Basic definitions

Definitions. (1) Let V be a hausdorff topological space. It is said to be49

a (C0) manifold of dimensionn if each x ∈ V has an open neigh-
bourhoodU, which is homeomorphic to an open set inRb.

(2) If V is a topological space which is hausdorff, V is said to be aCk

manifold, (0≤ k ≤ ∞), of dimensionn, or a differentiable manifold
of classCk, if there is given a family of pairs (Ui , ϕi), Ui an open set
in V andϕi , a homeomorphism ofUi onto an open set inRn such
that

∪ Ui = Vand, ifUi ∩U j , φ,

ϕ j ◦ ϕ
−1
i

∣∣∣ϕi(Ui ∩ U j) is aCk map ofϕi(Ui ∩ U j)into Rn.

(3) If V is aCk manifold of dimensionn, aCk atlas onV is a maximal
set{(Ui , ϕi)} such that∪Ui = V and wheneverUi ∩U j , φ,

ϕ j ◦ ϕ
−1
i

∣∣∣ϕi(Ui ∩ U j)is aCk map ofϕi(Ui ∩ U j)into Rn.

Remarks.1. Any set of pairs as in (2) can be completed to aCk atlas
and conversely an atlas defines the structure of aCk manifold.

41
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2. The dimension ofV is independent of the “coordinate systems”
{Ui , ϕi} according to a theorem ofL.E.J. Brouwer which asserts that
if a non-empty open set inRn is homeomorphic to one inRm, then
m = n. We shall not prove this theorem here. For a proof, see eg
[18].

3. A hausdorff topological spaceV is said to be a real analytic (complex50

analytic ) manifold if there is given a family of pairs (Ui , ϕi), Ui an
open set inV, ϕi , a homeomorphism ofUi onto an open set inRn

(an open set inCn), such that
⋃

Ui = V and wheneverUi ∩ U j , φ,
ϕ j◦ϕ

−1
i

∣∣∣ϕi(Ui∩U j) is real analytic (complex analytic= holomorphic).

4. If V is aCk manifold andU an open set inV, a mapf : U → R is
calledCr , 0 ≤ r ≤ k if for each coordinate neighbourhood (Ui , ϕi),
with Ui ∩ U , φ, f ◦ ϕ−1

i

∣∣∣ϕi(Ui ∩ U) is Cr . We denote the set ofCr

functions onV by Cr (V), 0 ≤ r ≤ k.

5. If V andV′ are twoCk manifolds of dimensionsn andm respectively,
U, an open set inV, a map f : U → V′ is calledCr , 0 ≤ r ≤ k
if for coordinate neighbourhoods (Ui , ϕi) and (U′j , ϕ

′
j) of V andV′

respectively, such thatUi ∩ U , φ and f (Ui ∩ U) ⊂ U′j , the map

ϕ′j ◦ f ◦ ϕ−1
i

∣∣∣ϕi(Ui ∩ U) is of classCr .

We denote set ofCk maps ofV into W by Ck(V,W). If a Ck map f :
V → W is a bijection andf −1: W → V is alsoCk, we say thatf is a
Ck-diffeomorphism, (or diffeomorphism orCk-isomorphism) ofV onto
W. Real analytic and holomorphic mappings between real and complex
analytic manifolds may be defined in the same way. We also introduce
real and complex analytic isomorphisms between such manifolds just as
we did diffeomorphisms.

Examples.1. S1 = {x ∈ R2
∣∣∣||x|| = 1} is aC∞ manifold of dimension 1.

2. If V is a Ck manifold andṼ a hausdorff space,p: Ṽ → V local
homeomorphism, there is a unique structure ofCk manifold onṼ51

such that for ˜a ∈ Ṽ, p(ã) = a, there exist neighbourhoods̃U of ã, U
of a such thatp: Ũ → U is aCk isomorphism.
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A more interesting class of Examples (Grassmann manifolds)is de-
scribed at the end of the section.

It is clear that a complex analytic manifold carries a natural real ana-
lytic structure; a real analytic manifold aC∞ structure and aCk manifold
(0 < k ≤ ∞) a Cr structure (0≤ r < k). Conversely, it follows from
results ofH. Whitney [48] that any paracompactC1 manifold carries
a real analytic structure. Further, the imbedding theorem of H.Grauert
[13] (see§9 for the statement) and the approximation theorem of Whit-
ney (Chap.I, §5 ) imply that this structure is unique. However, a C0

manifold may have no differentiable structure (M. Kervaire [20]) and
even when it has,this is not unique. For example, the sphereS7 can
carry two differentiable structures such that there isno diffeomorphism
of one onto the other (J. Milnor [28]). The problem of the existence
and uniqueness of complex structures is a problem of quite a different
nature, and had given rise to a vast literature (see in particular H. Hopf
[16], K.Kodaria and D.C. Spencer [21]).

Leta be a point in aCk manifoldV. Consider all ordered pairs (f ,U)
whereU is an open set containinga and f , a Ck mapU → R. In the
set of these ordered pairs we define an equivalence relation as follows.
( f ,U) ∼ ( f ′,U′) if there exists an open setΩ containinga such that
Ω ⊂ U ∩ U′, and such thatf

∣∣∣Ω = f ′
∣∣∣Ω. The equivalence classes of

these ordered pairs are called germs (ofCk functions) ata. We shall
frequently identify a germ with a function defining it when there is no 52

fear of confusion.

Definition. A germ f of a Ck functions,k ≥ 1, at a is said to be sta-
tionary at a if there exists a coordinate neighbourhood (U, ϕ) with a ∈ U
such that all the first partial derivatives off ◦ϕ−1 vanish ata. Here (f ,U)
is a pair definingf . It is clear that the above definition depends only on
the germf .

Notation. Ck
a denotes the set of allCk germs ata, Sk

a = Sa denotes the
set of all stationaryCk germs at a andmk

a = ma, the set of allCk germs
vanishing ata. Ck

a is a vector space overR; Sk
a andmk

a are subspaces..

Definition. (1) The quotient spaceCk
a/Sa is called the space of differ-

entials (or cotangent vectors or co vectors) and is denoted by T∗a(V).
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The image off ∈ Ck
a in T∗a(V) is denoted by (d f)a.

(2) The dual space ofT∗a(V), i.e., the space of all linear functionalsX:
Ck

a → R with X( f ) = 0 for f ∈ Sa, is called the tangent space at a
and is denoted byTa(V). A point in Ta(V) is called a tangent vector.

(3) A linear functionL: Ck
a → R is called a derivation if forf , g ∈

Ck
a(V),

L( f .g) = L( f ) g(a) + f (a)L(g).

Proposition 1. Any tangent vector X in Ta(V) is a derivation.

Proof. For any f , g ∈ Ck
a the functionϕ given by

ϕ = f g− f (a)g− f .g(a), is in Sa.

�

HenceX(ϕ) = 053

i.e X( f g) = f (a)X(g) + X( f ). g(a).

Definition. If (U, ϕ) is a coordinate neighbourhood and for a pointx ∈
U, (x1, . . . , xn) are the coordinates ofϕ(x) in Rn, for a C1 function f :
U → R, a ∈ U, we define

(
∂ f
∂x1

)

a
,

(
∂ f
∂x2

)

a
, . . . ,

(
∂ f
∂xn

)

a
by

(
∂ f ◦ ϕ−1

∂x1

)

ϕ(a)
, . . . ,

(
∂ f ◦ ϕ−1

∂xn

)

ϕ(a)

respectively. We define tangent vectors

(
∂

∂xi

)

a
at a by

(
∂

∂xi

)

a
f =

(
∂ f
∂xi

)

a
.

Proposition 2.
(
∂

∂x1

)

a
, . . . ,

(
∂

∂xn

)

a
are linearly independent in Ta(V)

and span Ta(V).
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Proof. If f ∈ Ck
a, g defined by

g(x) = f (x) − f (a) −
∑

xi

(
∂ f
∂xi

)

a
,

is in Sa. Hence forX ∈ Ta(V), X(g) = 0

i.e. X( f ) =
∑

X(xi)

(
∂ f
∂xi

)

a

i.e. X =
∑

X(xi)

(
∂

∂xi

)

a
. �

Therefore

(
∂

∂x1

)

a
, . . . ,

(
∂

∂xn

)

a
spanTa(V). Further

(
∂x j

∂xi

)

a
= δi j

hence

{(
∂

∂xi

)

a

}
, 1 ≤ i ≤ n, are linearly independent.

Corollary. Ta(V) and T∗a(V) are n dimensional vector spaces. 54

It follows from this that any tangent vector defines a linear function
on the germs ofC1 functions, which vanishes on stationary functions
and is a derivation.

Proposition 3. If X is a derivation of Ck−1
a , k ≥ 1, X is in Ta(V). [Note

that there is a natural injection of Cka in Ck−1
a ].

Proof. If f ∈ Sa, we can assume without loss of generality thatf is de-
fined on an open setU containinga, (U, ϕ) a coordinate neighbourhood,
and for some open setU′ ⊂ U, with a ∈ U′ and, ifx ∈ U′, tϕ(x) ∈ ϕ(U),
0 ≤ t ≤ 1. Then forx ∈ U′,

f (x) =

1∫

0

∂ f
∂t

[ϕ−1(tϕ(x))]dt

=
∑

xigi(x)

wheregi (x) =
1∫

0

∂ f
∂xi

[ϕ−1(tϕ(x)]dt. �
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Clearlyg ∈ Ck−1
a .

We may also assume thatϕ(a) = 0. Then

X( f ) =
∑

xi(a)X(gi ) +
∑

X(xi)gi(a)

but xi(a) = 0 = gi(a) 1 ≤ i ≤ n.
HenceX( f ) = 0 i.e. X is a linear mapCk−1

a → R which vanishes on
Sk

a i.e. X is a tangent vector.

Corollary 1. If V is a C∞ manifold and f∈ m∞a , then f is stationary at
a if and only if f ∈ (m∞a )2.

Proof. The mapsxi andgi in the above proof are inm∞a , which proves55

the necessity. The sufficiency is trivial. �

Corollary 2. For a C∞ manifold; we have T∗a = ma/(ma)2.

One has also the following “geometric” definition of tangentvectors.
Let γ: I → V be aCk curve (i.e. aCk map of a neighbourhood of the
unit intervalI = [0, 1] onR into V). Thetangent toγ at a= γ(0) is the
tangent vectorX at a defined by

X( f ) =
d
dt

f ◦ γ(t)
∣∣∣
t=0 for f ∈ C1

a.

[It is easily verified that this defines a tangent vector.] Onehas

Proposition 4. Any tangent vector at a∈ V is the tangent at a to some
curveγ with γ(0) = a.

Proof. We may suppose thatV is the open cube|xi | < 1 in Rn. Any
tangent vectorX at x = 0 is of the form

X =
∑

ai

(
∂

∂xi

)

0
.

�
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Let γi , 1 ≤ i ≤ n, be Ck functions in a neighbourhood ofI with
|γi | < 1, γi(t) = ai t in a neighbourhood oft = 0. We may take forγ the
curve given byγ(t) = (γ1(t), . . . , γn(t)).

Unless otherwise stated, in what followsV denotes aCk manifold
of dimensionn andW denotes aCk manifold of dimensionm. Let F :
V →W be aCk map. Then the maps

f∗ : Ta(V)→ T f (a)(W) and

f ∗ : T∗f (a)(W)→ T∗a(V)are defined by

f∗(X)(g) = X(g ◦ f )and (f ∗(dϕ))(a) = [d(ϕ ◦ f )]a

wheng ∈ Ck
f (a), (dϕ) ∈ T∗f (a)(W) andX ∈ Ta(V). Note that ifg ∈ S f (a), 56

g ◦ f ∈ Sa. It is easily verified thatf∗ and f ∗ are transposes of one
another.

Remark that if f1: V1 → V2, f2 : V2 → V3 areCk maps, then we
have, for anya ∈ V1, ( f2 ◦ f1)∗a = ( f ∗2 ) f1(a) ◦ ( f1)∗a. It follows that
if f : V → W is a Ck isomorphism, thenf ∗a is an isomorphism for
any a. HenceTa(V) andT f (a)(W) have the same dimension; henceV,
W have the same dimension. Thus the fact that the dimension of aCk

manifold, k ≥ 1, is invariant of the (Ck) local coordinates chosen, is
obvious. (Compare with Remark 2 after the definition of a manifold.)
Let T(V) =

⋃
a∈V

Ta(V). We shall prove the following

Theorem 1. If V is a Ck manifold , k ≥ 1, T(V) carries a natural
structure of a Ck−1 manifold dimension2n.

Proof. It follows from Proposition 2 that, relative to a coordinatesys-
tem (Ui , ϕi), with a ∈ Ui , a tangent vectorX in Ta(V) is completely
determined by{αν = X(xν)a}1≤ν≤n. Let (U j , ϕ j) be another coordinate
neighbourhood witha ∈ Ui and let the tangent vector be given by{βν =
X(yν)a}1≤ν≤n with respect to (U j , ϕ j). We denote by (x1, x2, . . . , xn) and
(y1, y2, . . . , yn), the local coordinates ofϕi(x) and ϕ j(x) respectively.
Then for anyg ∈ Ck

a, �

X(g) =
∑

i

αi

(
∂g
∂xi

)

a
=

∑

j

β j

(
∂g
∂y j

)

a



48 2. Manifolds

=
∑

j

β j


∑

ν

(
∂g
∂xν

)

a

(
∂xν
∂y j

)

a



=
∑

ν


∑

j

β j

(
∂xν
∂y j

)

a



(
∂g
∂xν

)

a

Hence57

(1.1) αi =
∑

j

β j

(
∂xi

∂y j

)

a

i.e.

(α1, . . . , αn) = (β1, . . . , βn)(mi j )a

where (mi j )a is the matrix (
∂x j

∂yi
)a. Clearly (mi j )a is non-singular and

(mi j )a(mji )a = I . Now consider the topological unionE−
⋃

i(Ui×R
n× i)

and define an equivalence relation,∼, by (x, v, i)
∑

(x′, v′, j) if x = x′ and
v = v′(mi j )x, [where (mi j )x is the matrix defined above]. Clearly there is
an obvious bijective map fromE/∼ onto T(V). It suffices to show that
E/∼ carries a natural structure ofCk−1 manifold.

It is clear that∼ is an open equivalence relation. Letη : E →
E/ ∼ denote the natural map, and letp′ : E → V the continuous map
p((x, v, i)) = x. Clearly p′ maps equivalent points onto the same point
in V, so thatp′ defines a continuous mapp: E/∼ → V. Furtherηi =

η {Ui × R
n × i} is a homeomorphism ontop−1(Ui); in particularp−1(Ui)

is hausdorff; we identityUi × R
n with Ui × R

n × i. We assert thatE/∼58

is hausdorff: in fact if e1, e2 ∈ E/ ∼ e1 , e2, then if p(e1) , p(e2) and
Ωi is a neighbourhood ofei , Ω1 ∩ Ω2 = φ, then p−1(Ω1), p−1(Ω2) are
disjoint neighbourhoods ofe1, e2 respectively. Ifp(e1) = p(e2), thene1,
e2ǫp−1(Ui) for somei, sincep−1(Ui) is open inE/∼ and is hausdorff, e1,
e2 can be separated.

If ϕi is the givenCk homeomorphism ofUi onto an open setU′i
in Rn, then (ϕi × id) ◦ η−1

i = Φi is a homeomorphism ofp−1(Ui) onto
U′i ×R

n; that the mappingsΦ j ◦Φ
−1
i areCk−1 follows at once from (1.1)

[note that (1.1) involves derivatives ofCk functions].
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We remark that theCk−1 structure ofT(V) so obtained does not de-
pend on the system{Ui , ϕi} used.

T(V) is an example of a real vector bundle (see Chap.III, §1).
If 0 ≤ p ≤ n, we consider the vector spaceΛpT∗a(V). An ele-

ment of this space is called ap-co vectorat the pointa. If (U, ϕ) is
a coordinate system ata, then the differentials (dx1)a, . . . , (dxn)a form
a basis ofT∗a(V). Hence a basis ofΛpT∗a(V) is given by the elements
(dxi1)aΛ · · ·Λ(dxip)a, i1 < · · · < ip. In exactly the same way as above,
we prove the following

Theorem 2. The set
p
ΛT∗(V) =

⋃
a∈V

p
ΛT∗a(V) carries a natural structure

of Ck−1manifold [of dimension n+ (n
p)].

Grassmann manifolds.
Let 0 < r < n, and letGr,n denote the set ofr-dimensional linear

subspaces ofRn . We shall show thatGr,n carries a natural structure of
real analytic manifold.

Let M(r, n) denote the space ofr × n real matrices andN = N(r, n) 59

the subset of matrices of rankr. M(r, n) is clearly homeomorphic toRrn

and N(r, n) to an open subset. LetG = GL(r,R) denote the group of
nonsingularr × r matrices. We have natural mapG×N→ N defined by
(A, B) A.B, whereA ∈ G, B ∈ N.

We assert that there is a natural bijectionp : N/G → Gr,n, where
N/G is the quotient ofN by the equivalence relation:B1 ∼ B2 if there is
A ∈ G with B2 = A, B1.

Proof. If B ∈ N we may look uponBas a column



v1
...

vr


wherevν ∈ Rn; let

p(B) denote the subspace spanned byv1, . . . , vr . If B ∈ N, this subspaces
has dimensionr. The assertion thatp is a bijection is equivalent with the
obvious assertion that the sets (v1, . . . , vr), (w1, . . . ,wr) of points ofRn

span the samer-dimensional subspace if and only if there is anA ∈ G
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with 

w1
...

wr


= A



v1
...

vr



�

We put onGr,n the quotient topology; clearly the equivalence rela-
tion defined above is open.

Let K denote the set ofr-tuples j1 < · · · < jr of integers jν with
1 ≤ jν ≤ n. For α ∈ K, let V be the subset ofM(r, n) consisting of
matricesB = (bi j )1≤i≤r,1≤ j≤m, for which

Bα = (bi j ν )1≤i≤r,1≤ν≤r , α = ( j1, . . . , jr )

is non -singular. We have
⋃

Vα = N. It is clear that ifB1, B2 ∈ N and
A ∈ G satisfiesB2 = AB1, and if B1 ∈ Vα, thenB2 ∈ Vα and we have60

Bα2 = ABα1.
For B1 ∈ Vα, we shall write symbolically,B = (Bα,Cα), whereB is

the matrix defined above andCα is ther × (n− r) matrix

Cα = (bi j ν ) with 1 ≤ i ≤ r, 1 ≤ j1 < · · · < jn−r ≤ n, jν < α.

We shall identifyM(r, n − r) with Rr(n−r). Let ψα : Vα → Rr(n−r)

denote the mapping
ψα(B) = (Bα)−1Cα;

ψα is clearly continuous and open. Then, ifUα is the subsetp(Vα) of
Gr,n, there is a homeomorphism

ϕα : Uα → R
r(n−r)

such that,ϕαop= ψα. In fact it is easy to verify thatψα(B1) = ψα(B2) if
and only ifB1 ∼ B2, which gives us the existence of a bijection. This is
continuous and open, sinceψα is

We assert next thatGr,n is Hausdorff. Since the equivalence rela-
tions is open, we have only to prove that its graphΓ consisting of pairs
(B1, B2) ∈ N × N with B1 ∼ B2 is closed inN × N. Suppose that

((B1)ν, (B2)ν) ∈ Γ, (Bi)ν → Bi ∈ N
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and letAν ∈ G satisfy
(B2)ν = Aν(B1)ν.

SinceB1 ∈ N, B1 ∈ Vα for someα. Then so does (B1)ν for sufficiently 61

largeν and we have

(B1)αν → Bα1 asν→ ∞

Then we have (B2)ν ∈ Vα and

(B2)
α
ν = Aν(B1)

α
ν .

Since (B1)αν → Bα1 ∈ G, and since (B2)αν converges to a matrixA(1) ∈

M(r, r) (since, by assumption, (B2)ν → B2 in N), the matrixAν con-
verges toA = (Bα1)−1A1 asν→ ∞. Since

(B2)ν = Aν(B1)ν,

we deduce thatB2 = AB1. However, sinceB2 has rankr, A has rank
≥ r; sinceA ∈ M(r, r), A ∈ G so thatB1 ∼ B2 and (B1, B2) ∈ Γ.

The covering{Uα}α∈K and the homeomorphismsϕα: Uα → R
r(n−r)

make ofGr,n an r(n − r) dimensional real analytic manifold. In fact the
coordinate changesϕα ◦ ϕ−1

β
are easily seen to berationalfunctions.

Let 0(n) denote the orthogonal group ofRn, i.e. the set ofn × n
matricesA for which

A · tA = I ;

hereI is the unitn × n matrix andtA is the transpose ofA. 0(n) acts
on Gr,n: if B1 ∈ N, 0 ∈ 0(n), thenB10 ∈ N and, if B1 ∼ B2 we have 62

B10 ∼ B20. It is easy to show that 0(n) is compact and that it acts
transitively onGr,n. We deduce the following

Proposition. The Grassmannian Gr,n is a compact, real analytic mani-
fold of dimension r(n− r).

Remarks. 1. The manifoldG1,n is called (n − 1) -dimensional pro-
jective spacePn−1(R).
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2. It can be proved in the same way that the setGr,n(C) of complex
r-dimensional subspaces ofCn is a compact complex manifold
of complex dimensionr(n− r), G1,n(C) is the complex projective
spacePn−1(C).

For much of the material contained in §§1, 2 see Schwartz [40].

2 Vector fields and differential forms

Let V be aCk manifold andp: T(V) → V the projection given by
p(X) = a for X ∈ Ta(V) for anya ∈ V.

Definition. A Cr Vector field X, 0 ≤ r ≤ k−1 is , by definition, aCr map
X : V → T(V) such that

poX= identity onV.

Clearly if X is a vector field,X(a) ∈ Ta(V) for anya ∈ V. If (U, ϕ)
is a coordinate neighbourhood, we may represent the vector field X by
the formula

Xa =
∑

ξi(a)

(
∂

∂xi

)

a
.

ThenX is of classCr if and only if theξi(a) areCr functions.63

Definition. A p differential formω of class Cr is a Cr mapω: V →
p
ΛT∗(V) such thatω(a) ∈

p
ΛT∗a(V) for each a∈ V.

If (U, ϕ) is a coordinate neighbourhoodω has a representation

ωa =
∑

i1<i2<···<ip

ξi1···ip(a)(dxi j )aΛ(dxir )aΛ · · ·Λ(dxip).

againω is of classCr if and if theξi1···ip aCr functions. LetG denote the
module [ over the ringCk−1(V) of Ck−1 functions on V] ofCk−1 vector
fields onV. If ω is a p-form onV, it defines a p-linear map ofG p into
Ck−1(V); in fact we have only to set

ω(X1, . . . ,Xp)(a) = ωa((X1)a, . . . , (Xp)a).
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[Note that
p
ΛT∗a(V) is the dual of the space

p
ΛTa(V).] This map his

following two properties: (a) it is alternate; (b) it is multilinear over
Ck−1(V). Conversely, any alternate mapϕ of G p into Ck−1(V) , which
is multilinear overCk−1(V) defines a differential p-formω; in fact, if
(X1)a, . . . , (Xp)a are vectors ata ∈ V, and if X1, . . . ,Xp are vector fields
onV extending these vectors, we define thep-co vectorωa by

ωa((X1)A, . . . , (Xp)a) = ϕ(X1, . . . ,Xp).

It is easily verified, using the fact thatϕ is Ck−1(V)-linear that
ϕ(Y1, . . . ,Yp) = 0 at a pointb if (Yi)b = 0 for somei, so that the above64

definition is independent of the extension of the vectors (Xi)a to vector
fields onV. If f : V → W is aCk map anda ∈ V, b = f (a), we have
defined linear mapsf∗: Ta(V) → Tb(W) and f ∗: T∗f (a)(W) → T∗a(V).

This defines a map, which denotef ∗, of
p
ΛT∗ f (a)(W) →

p
ΛT∗a(V). f ∗ is

clearly an algebra homomorphism ofΛT∗f (a)(W) intoΛT∗a(V).
Hence ifω is a p form on W of classCr we may associate to any

a ∈ V the p co vector f ∗(ω f (a)). It is easy to see that this defines ap-
form f ∗(ω) of classCr on V. However, the mapf∗ does not in general,
transform vector fields.

Definition. If f : V →W is aCk map ,k ≥ 1, f is said to have rankr at
a ∈ V, if

rank f∗ : Ta(V)→ T f (a)(W) is r.

We can easily calculate the mapf∗ in terms of local coordinates
(U, ϕ) at a and (U′, ϕ′) atb = f (a). In terms if the bases

(
∂

∂x1

)

a
, . . . ,

(
∂

∂xn

)

a
and

(
∂

∂y1

)

b
, . . . ,

(
∂

∂ym

)

b

of Ta(V) andTb(W), if X =
∑

ai

(
∂

∂xi

)

a
, g ∈ Ck

b then

∑
b j

(
∂g
∂y j

)

b

= f∗(X).(g) = X(go f)
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=
∑

i

ai

∑

j

(
∂g
∂y j

)

b

(
∂ f j

∂xi

)

a

so that,f∗(a1, . . . , an) = (b1, . . . , bn), with

b j =
∑

ai

(
∂ f j

∂xi

)

a
.

This was precisely the mapd( f )(a) defined in Chap. I §1 , if we look65

upon f as a map of an open set inRn into Rm. We obtain therefore the
following theorems form the inverse function theorem, the rank theorem
and Sard’s theorem, proved in Chap. I.
Inverse function theorem. If V and W are Ck (real analytic) manifolds
of dimension n and f: V → W a Ck real analytic map, and if f∗ :
Ta(V) → T f (a)(W) is an isomorphism for some a∈ V, then there exist
neighbourhoodsΩ andΩ′ of a and f(a) receptively, such that f|Ω is a
Ck (real analytic) isomorphism ontoΩ′.
Rank Theorem. If Vn and Wm are Ck (real analytic) manifolds and
f : V → W, a Ck(real analytic) map such that rank f is a constant,
r, for all points in V, then for every point a∈ V, there exists coor-
dinate neighbourhoods(U, ϕ), (U′, ϕ′) of a and f(a) respectively such
thatϕ′o f oϕ−1|ϕΩ is given by

ϕ′1o f oϕ−1(x1, . . . , xn) = (x1, x2, . . . , xr , 0, . . . , 0)

Definition. If V andW areC1 manifolds of dimensionn andm respec-
tively, and f : V → W a C1 map a pointa ∈ V is called critical if rank

a f < m.

Definition. If W is aC′ manifolds of dimensionm, countable at∞, a set
E in W is said to have measure zero inW if for any coordinate neigh-
bourhood (U, ϕ), ϕ(E ∩ U) has measure zero inRm.

It is clear that the notion of a set being of measure zero is dependent
of the coordinate neighbourhoods used in the definition.
Sard’s theorem. If V and W are C∞ manifolds of dimension n and m
respectively which are countable at infinity,and f: V → WaC∞ map
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and if A is the set of critical points off in V, then f (A) is of measure
zero inW.

As in Chapter I, we can prove the existence of partitions of unity :66

we have only to use the fact that if (U, ϕ) is a coordinate neighbourhood
andK ⊂ U is compact, then there is aCk functionη onV with compact
support⊂ U such thatη(x) > 0 for x ∈ K. We formulate this as separate
theorem.

Partition of unity . Given an open covering{Ui}i∈I of aCk manifold (0≤
k ≤ ∞)V which is countable at infinity, there exists a family{ϕi}i∈I of
Ck functions,ϕi ≥ 0, with supp.ϕi ⊂ Ui such that the family{supp.ϕi}

is locality finite and
∑
ϕi(x) = 1 for anyx ∈ V.

Corollary. If F is a closed subset of V and U⊃ F is open, there exists

a Ck functionϕ on V withϕ(x) =


1 if x ∈ F

0 if x ∈ V − U
.

Let V be aCk manifold,k < 2. For anyCk−1vector fieldX, a ∈ V,

let x given byX =
∑
i
αi

∂

∂xi
in a neighbourhood of *****.

Then for f ∈ Ck
a, X( f ) can be considered as a function inCk−1

a , given
by

(1.2) X( f )(y) =
∑

i

αi(y)

(
∂ f
∂xi

)
(y) for y in a neighbourhood ofa.

If Y be anotherCk−1vector field given byY =
∑
βi

∂

∂xi
in a neigh-

bourhood ofa. We define aCk−2 vector field [X,Y] by

[X,Y]a( f ) = Xa[Y( f )] − Ya[X( f )]

and by (1.2),

Ya[X( f )] =
∑

j

β j(a)


∑

i

{(
∂αi
∂x j

)

a

(
∂ f
∂xi

)

a
+ αi(a)

(
∂2 f
∂x j∂xi

)}

a
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Hence 67

[X,Y]a( f ) =
∑

i


∑

j

α j(a)

(
∂βi

∂x j

)

a

− β j(a)

(
∂αi

∂x j

)

a



(
∂ f
∂xi

)

a

It can be easily verified that forCk−1 vector fieldsX, Y, Z, k ≥ 3, [X,Y] =
−[Y,X] and, if k ≥ 4,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0.

This is called theJacobi identity.

Differential forms on the product of two manifolds

Let V andV′ beCk manifolds (countable at infinity),W = V × V′,
andπ, π′ the projections ofW on V, V′ respectively. Then anyCk−1

form ω of degreep on V can be identified with the formπ∗(ω)on W; a
similar remark applies toV′.

Let A(V), . . . denote the space of forms onV, . . .We topologiseA(V)
as follows: a sequence{ων} of formsων ∈ A(V) tends to zero if, for any
coordinate neighbourhoodU onV (coordinatesx1, . . . , xn) and any com-
pact subsetK of U, if ωI

ν denotes the coefficient ofdxi1Λ · · ·Λdxip[I =
(i1, . . . , ip), i1 < · · · < ip, p = 0, 1, . . . , n], then for anyI , ωI

ν and all its
partial derivatives of order< k tend to zero asν→ ∞.

Using a partition of unity, we prove easily by applying Cor. 2to
Theorem 2 of Chap. I, §5, the following

Proposition 1. Finite linear combinations of forms of the type
∏∗(ω)68

Λ
∏∗(ω′), whereω is a form on V,ω′ one on V′, are dense in A(V×V′).

This implies of course that finite linear combinations of forms of the
type

∏∗(ω)Λ
∏∗(ω′) where degreeω+ degreeω′ = p are dense in the

space ofp-forms onW; for p = 0 this means that functions onW can be
approximated by finite linear combinations of products of functions on
V, V′ respectively.

Corresponding statement for holomorphic forms on the product of
two complex manifolds are also true. IfH (V) denotes the space of
holomorphic forms on the complex manifoldV, we topologies it by
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means of convergence of the coefficient on compact subsets of coor-
dinate neighbourhood, just as we did above, (the convergence of the
derivatives is here a consequence of the convergence of the coefficient
since they are holomorphic functions). The density can be proved along
the lines of Theorem 4 of Chap. I, §5; we have only to introducethe
Hilbert space corresponding to the spaceA(α) introduced in Chap. I,
§5.

Let {Ui} be a locally finite covering ofV by coordinate neighbour-
hoods, andα a positive continuous functions onV. Let ω be a homo-
morphic form onV, and let

ω =
∑

i

ω
(i)
I dz(i)

I


I = (i1, . . . , ip), i1 < · · · < ip, p = 0, . . . , n

ds(i)
I = dz(i)

i1
Λ · · ·Λdz(i)

ip

in Ui . Let HV(α) denote the set of formsω for which

||ω||2 =
∑

i

∑

I

∫

Ui

∣∣∣∣ω(i)
I

∣∣∣∣
2
α(z(i))dvz(i) < ∞.

Define the Scalar products ofω,ω′ ∈HV(α) by 69

(ω,ω′) =
∑

i

∑

I

∫

Ui

ω
(i)
I ω
′(i)
I α(z(i))dvz(i).

It is follows from Lemma 2 of Chap. I, §5 that convergence in
HV(α) implies verified thatHV(α) is complete. We can now prove,
exactly as Theorem 4 of ChapI , §5 the following

Proposition 2. If {Ui}, {U′j} are locally finite coverings of V, V′ and
α, α′ are positive continuous functions on V, V′, if {ϕ′µ}, {ϕ

′
ν} are or-

thonormal bases forHV(α), HV′ , (α′), then
∏∗(ϕν)A

∏∗(ϕ′µ) from an
orthonormal basis forHV×V′(α×α′) with respect to the covering Ui×U′j.

Further, finite linear combinations of forms of the type
∏∗(ω)Λ

′∗(ω′),
ω, ω′ holomorphic forms on V, V′ respectively, are dense in the space
of holomorphic forms on V× V′.
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3 Submanifolds

Definition. Let V be aCk manifold, k ≥ 1. A Cr submanifold ofV,
0 < r ≤ k is aCr manifold W and an injectioni: W → V such thati
is aCr map and the mapi∗: TA(W) → Ti(a)(V) is an injection for every
a ∈W.

We identity the submanifolds (W1, i1) and (W2, i2) if there exists a
Cr isomorphismh: W1→W2 such thati2oh= i1.

Remarks.1 It follows immediately that70

dim .W ≤ dimV.

Further, if the dimension ofW = m, from the rank theorem it follows
that fora ∈ W, there exist coordinate neighbourhoods (U1, ϕ1) of a and
(U2, ϕ2) of i(a) such that,

ϕ2 ◦ i ◦ ϕ−1
1 |ϕ1(U1) is given by

ϕ2 ◦ i ◦ ϕ−1
1 (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Hence given a system of local coordinates at a, it can be “extended
”(in an obvious sense) to a system ati(a).

2 If W is a closed subset ofV, V being aCk manifold of dimensionn, if
for eacha ∈ W, there exists a coordinate neighbourhood (U, ϕ), and
if the local coordinate (x1, . . . , xn) in U can be so chosen that

W∩ U =
{
x
∣∣∣∣∣xr+1 = xr+2 = · · · = xn = 0

}
,

thenW is aCk manifold of dimensionr, and is a submanifold ofV.

Proof. With the manifold structure defined in the obvious way,W is a
Ck manifold and the injectioni : W→ V is aCk map. It is easily verified
that i∗: Ta(W)→ Ti(a)(V) is an injection. �

3 If V is aCk manifold of dimensionn and if fr+1, . . . , fn areCk func-
tions onV such thatd fr+1, d fr+2, . . . , d fn are linearly independent at

all points ofW =
{
x ∈ V

∣∣∣∣∣ fr+1(x) = fr+2(x) = · · · = fn(x) = 0
}
, thenW

is a submanifold ofV, of dimensionr.
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Proof. Sinced fr+1, . . . , d fn are locally independent at any pointa ∈71

W, we can findCk functions f1, . . . , fr such that (d fi )a, 1 ≤ i ≤ n, are
linearly independent ata; if f = ( f1, . . . , fn) then, by the inverse function
theorem, f is a Ck diffeomorphism in a neighbourhood ofa, By the
change of coordinates (x1, . . . , xn) → (y1, . . . , yn), yi = fi(x1, . . . , xn),
we have,

W∩U =
{
x
∣∣∣∣∣yr+1 = · · · = yn = 0

}
.

�

Hence by remark 2),W is a sub manifold of dimensionr.

Remark. Similar definitions and results apply to real and complex ana-
lytic submanifolds.

Corollary. In Rn+1, the unit sphere given by

Sn =

{
x
∣∣∣∣∣x

2
0 + x2

1 + · · · + x2
n = 1

}
,

is a real analytic submanifold of dimension n.

Proof. If f is the functionx2
0 + · · · + x2

n − 1, df is, 0 at all points of

Sn =

{
x ∈ Rn+1

∣∣∣∣∣ f (x) = 0
}
. �

4 If V, V′ areCk (real, complex analytic) manifolds,V × V′ carriers a
natural structure ofCk (real, complex analytic) manifold.

Definitions. 1) Let V andW beCk manifolds. Then a continuous map
f : V →W is called locally proper if for everyy ∈ f (V), there exists
a compact neighbourhoodU of y in W such thatf −1(U) is compact .

2) If V andW areCk manifolds then a continuous mapf : V → W is 72

proper if for every compact setK in W, f −1(K) is compact.

Remark. If V andW areCk manifolds andf : V →W is locally proper,
then f is proper if and only iff (V) is closed inW.
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Proposition 1. If i: W → V is a submanifold of Vn, then the following
statement are equivalent.

1) i is a homeomorphism of W onto i(W) with the induced topology from
V.

2) The map i: W→ V is locally proper.

Proof. If the topology onW is same as that oni(W), for anya ∈W there
exists a compact neighbourhoodK in W for which i(K) is a compact
neighbourhood ofi(a) in i(W). Hencei(K) ⊃ U1 ∩ i(W), U1 open inV.
Let U2 be a relatively compact neighbourhood ofi(a) in U1; then

Ū2∩ i(W) ⊂ Ū1∩ i(W) and hencei(K) is compact and hence closed,
Ū1 ∩ i(W) ⊂ i(K),

i.e. Ū2 ∩ i(W) ⊂ i(K),
i.e. i−1(Ū2) ⊂ K andi−1(Ū2) is compact. �

Hence 1) implies 2).
If the mapi is locally proper, for eachi(a) there exists a compact

neighbourhoodU in V such that thati−1 is compact. Theni−1(U) is73

a compact neighbourhood of a such thati
∣∣∣∣i−1(U) is a homeomorphism

onto i(U) since a continuous bijective map form a compact space to a
hausdorff space is a homeomorphism. Hence 2) implies 1).

Note that if 1) or 2) is satisfied, theni(W) is locally closed inV. The
converse is, however, false.

Definition. A submanifoldW of V is called a closed submanifold ifi:
W→ V is proper.

We shall give an example of a submanifold for which the injection i
does not preserve the topology. For that we use the following

Theorem (Kronecker). Letα1, . . . , αn be n real numbers which are lin-
early independent over the ringZ of integers, Let Tn = S1 × · · · × S1 ={
eiθ1, . . . , eiθn)|θi real

}
, and letω: R → Tn denote the mapω(t) =

(eiα1t, . . . , eeαnt). Then the imageω(R) is dense in Tn.

The best proof of this theorem is, without question, that given byH.
Weyl [45].
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Example.Tn defined above is a real analytic manifold of dimensionn.
Consider the mapω: R → Tn defined above.ω is an injection for if
ω(x1) = ω(xr),

αi x1 = 2πmi + αi x2, i = 1, . . . , n,mi ∈ Z

and if x1 , x2, andd1, . . . kn are integers, not all zero, with
∑

kimi =

0, thenαk1 + · · · + αnkn = 0, which contradicts the hypothesis that74

α1, . . . , αn are linearly independent overZ. Also rank (di) is maximal
= 1 at all points ofR. HenceR is a submanifold ofTn. Letω(R) = D. If
ω preserves the topology, by the proposition proved above,D is locally
closed and henceD = D̄∩U, U open inTn. By Kronecker’s theoremD
is dense inTn i. e. D = Tn ∩ U = U. But D is not open inTn if n > 1,
and thus we arrive at a contradiction.

Proposition 2. If i: W → V is a Ck submanifold of V, and M is a Ck

manifold, then a continuous map f : M→ W is Ck if and only if io f :
M → V is Ck.

Proof. Let a ∈ W; choose coordinate neighbourhoodsU of a in W
and U′ of i(a) in V such thati

∣∣∣U → U′ is the mapi(x1, . . . , xm) =
(x1, . . . , xm, 0, . . . , 0). We may restrict ourselves to the subsetN =

f −1(U) of M. The proposition is than obvious since iff : N → U
has components given byf (u) = ( f1(u), . . . , fm(u)), theni ◦ f : N→ U′

has components given byi ◦ f (u) = ( f1(u), . . . , fm(u), 0, . . . , 0). �

Proposition 3. If i : W→ V is a Ck submanifold, then for a germ ga of
a continuous function at a∈ W to be Ck, it is necessary and sufficient
that there is a Ck germ Gb at b = i(a) such that Gboi = ga. Conversely.
if i is a continuous injection of the Ck manifold W into V having this
property, then i: W→ V is a submanifold.

Proof. Let i be a submanifold and choose coordinates ata, (U; x1, . . .,
xm), (U′; x1, . . . , xn) at b = i(a) such thati

∣∣∣∣U is the mapi(x1, . . . , xm) =

(x1, . . . , xm, 0, . . . , 0). If g is Ck on U, andG is theCk function onU′

defined byG(x1, . . . , xn) = g(x1, . . . , xm), clearlyG ◦ i = g. �
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Conversely, leti : W→ V be an injection such thatCk germsg at a 75

are precisely the germsG 0 i, G, aCk germ onV at b = i(a). Theni is
Ck for if, in terms of local coordinates (U′; x1, . . . , xn) at b, i1 . . . , in are
the components ofi, theni l = xl ◦ i, andxl ∈ Ck. We assert that there
exists a germ ofCk mapp : V →W atb ∈ V, p(b) = a, such thatp◦ i =
identity near a inW. In fact, if (U; x1, . . . , xm) are local coordinates at
a ∈ W, then, by hypothesis, there existCk germsPl , l = 1, . . . ,m at b
such thatxl − pl

circi; thepl may be looked upon as the germ of aCk mappingp: V → U
for which p(b) = a, poi = identity near a inU.

We then have

(p∗)i(a)o(i∗)a = identity onTa(W),

so that (i∗)a is injective.

Proposition 4. If i: W → V is a closed submanifold, i. e. i is proper,
then for any Ck function g on W, there exists a Ck function G on V such
that Goi= g.

Proof. We identifyW with i(W). Let Ua be a neighbourhood of a inV,
Ga aCk function inUa with Ga = g onUa∩W. Let

{
Uaα ,V −W

}
α∈A be

a locally finite covering ofV such that for eachα, Uaα ⊂ Ua for some
a ∈ W. Let (ϕα, ϕ) be aCk partition of unity relative to this covering
andhα = ϕα.Gaα in Uaα , 0 in V − Uaα . Clearly, if G =

∑
hα, thenG is

Ck on V and, for x ∈ W, G(x) =
∑

x∈Uaα

hα(x) =
∑

x∈Uaα

ϕα(x). Gaα(x) =

g(x)
∑

x∈Uaα

ϕα(x) = g(x). �

Remark. Propositions 2 and 3 and their proofs remain valid for real or76

complex analytic manifolds. Prop. 3 is true for real analytic manifolds,
but is very difficult to prove; seeH. Cartan [6] andH. Grauert [13], it is
false for complex manifolds in general. A very important special case,
due toK Oka, for which it is true will be dealt with later (§7).
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4 Exterior differentiation

If V is aCk manifold,Ap
r (V) denotes theCr differential forms of degree

p, onV, 0 ≤ r < k if p > 0, 0≤ r ≤ k if p = 0. In what followsV shall
denote aCk manifold which is countable at∞ with k ≥ 2.

Definition. An exterior differentiationd is a mapd: Ap
r (V) → Ap+1

r−1 (V)
for eachp ≥ 0 and 1≤ r < k if p > ◦, 1 ≤ r ≤ k if p = 0, satisfying the
following.

1) d isR-linear, i. e. d
[
αω1 + βω2

]
= αdω + βdω2 for α, β ∈ R, ω1,

ω2 ∈ Ap
r (V).

2) d|A0
k(V) is given by(d f)a = the image of f in T∗a(V).

3) d(d f) = 0 for f ∈ Ck
a.

4) If ω1 ∈ Ap
r (V),ω2 ∈ Aq

r (V), d(ω1∧ω2) = dω1∧ω2+ (−1)pω1∧dω2.

We deduce the following properties of an exterior differentiation
form its definition.

I. d is a local operator, i. e. if for an open set U we haveω ∤ U = 0.
then dω ∤U= 0.

Proof. If U′ is a coordinate neighbourhood⊂ U, andU′′ is a relatively 77

compact subset ofU, there exists aCk function f onU′ which is *****
on U′′ = 1 in a neighbourhood of∂U′; hence there existsf ∈ Ck(U)
such that

f (x) = 0 for x ∈ U′′

= U for x ∈ V − U.
�

Hence ifω ∤ U = 0, ω = fω so thatdω = (d f) ∧ ω + f dω Since
f = 0, and by 2),d f = 0 on U′′, we deduce thatdω ∤ U′′ = 0. It
follows thatdω vanishes in a neighbourhood of any point ofU, so that
dω|U = 0.

II. d2 = 0 ( if k ≥ 3).
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Proof. It is enough to prove this withV replaced by a coordinate neigh-
bourhood. Let

ω =
∑

i1<···<ip

fi1...ipdxi1 ∧ dxi2 ∧ . . . ∧ dxipǫA
p
k−1(V).

�

Then

d(dω) =
∑

i1<···<ip

d
[
d fi1...ip ∧ dxi1 ∧ . . . ∧ dxip + fi1...ipd(dx11 ∧ . . . ∧ dxip)

]
.

Now, by 3) and 4),d(dxi1 ∧ . . . dxip)

=

p∑

r=1

(−1)r−1(dxi1 ∧ . . . ∧ d2xir ∧ · · · ∧ dxip)

= 0.

Henced(dω) =
∑

i1<···<ip

{
d fi1...ip∧d(dxi1∧. . . dxip)+d2 fi1...ip∧dxi1 . . .∧

dxip

}
= 0.

We shall now provethe existence and uniqueness of the exterior78

differentiation. It suffices to prove the existence and uniqueness any
coordinate neighbourhood.

Define d1 by d1(ω) =
∑

i1<···<ip

d( fi1...ip)ΛdxiΛ . . .Λdxip whereω ∈

Ap
r (V) is given by

ω =
∑

i1<···<ip

fi1...ipdxi1Λdxi2Λ . . .Λdxip

It is easily seen thatd1 satisfies the conditions 1) and 2). As for 3)

d1 f =
∑

i

∂ f
∂xi

dxi
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⇒ d2
1 f =

∑

i


∑

j

∂2 f
∂x j∂xi

dxj

Λdxi

=
∑

i, j

∂2 f
∂x j∂xi

dxjΛdxi =
∑

j<i

(
∂2 f
∂x j∂xi

−
∂2 f
∂xi∂x j

)
dxjΛdxi

= 0

We shall show thatd1 satisfies 4). It is enough to verify this for
ω1 = f1dxI1, ω2 = f2dxI2, wheredxI1 = dxi1Λ . . .Λdxip and dxI2 =

dxj1Λ . . .Λdxjq.
Now, 79

ω1Λω2 = f1 f2dxI1ΛdxI2

d1(ω1Λω2) = d1( f1 f2)Λdx1ΛdxI2

=
[
(d1 f1). f2 + f1(d1 f2)

]
ΛdxI1ΛdxI2

= d1 f1ΛdxI1Λ f2dxI2 + (−1)p f1dxI1Λd1 f2ΛdxI2

= (d1ω1)Λω2 + (−1)pω1Λ(d1ω2).

We are using the obvious fact that thed in 2) of the definition of
exterior differentiation satisfiesd( f1 f2) = f1d f2 + f2d f1. Henced1

defined above is an exterior differentiation. Ifd2 is another exterior
differentiation,ω = f dxi1Λ · · ·Λdxip, it follows from 4) thatd2ω =

d2 fΛdxi1Λ · · ·Λdxip +
∑p

r=1(−1)r−1 f dxi1Λ · · ·Λd2(dxir )Λ · · ·Λdxip.
By 2) and 3) it follows thatd2 f = d1 f andd2(dxir ) = d2(d2dxir ) = 0.

Henced2ω = d fΛdxi1Λ · · ·Λdxip, i. e. the exterior differentiation is
unique.

We have already remarked thatT∗a(V) is the dual ofTa(V). Consider
p
ΛT∗a(V) as the dual of

p
ΛTa(V), i. e. for everyp-form ω.ωa defines

an alternate linear function of
p∑

r=1
Ta(V) which determinesωa uniquely.

Henceω gives rise to an alternate mapping ofp-tuples ofCk−1 vector
fields intoCk−1 functions.

Proposition 1. If ω is a p-form, X1, . . .Xp+1, Ck−1 vector fields, then for 80
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any a∈ V, dω is the linear function given by

(dω)(X1,X2, . . . ,Xp+1) =
p+1∑

1

(−1)i−1Xi(ω(X1, . . .Xi , . . . , xp+1))

+
∑

i< j

(−1)i− jω([Xi ,X j] ,X1, . . . , X̂i , . . . , X̂ j , . . . ,Xp+1).

Here theΛ over a term means that this term is to be omitted.
We shall prove the proposition only whenω is a 1-form. The general

case involves more complicated calculations. It is sufficient to prove the
formula in a coordinate neighbourhood. By linearity, it is enough to
prove it for forms of the typeω = f dg. If ω = f dg, f , g functions, then
dω = d fΛdg.

Hence

D = (d fΛdg)(X1,X2)

= det

∣∣∣∣∣∣∣∣∣

(d f)(X1) (d f)(X2)

(dg)(X1) (dg)(X2)

∣∣∣∣∣∣∣∣∣

where
(d f)X1 = X1( f ).

Hence

D = X1( f )X2(g) − X2( f )X1(g)

= X1( f X2(g) − X2( f X1(g)) − f X1(X2(g))) + f X2(X1(g)).

= X1(ω(X2)) − X2(ω(X1))ω([X1,X2])

which is the required formula.

Proposition 2. If V and W are Ck manifolds and f : V→W a Ck map,81

we have, for any p formω on W,

(3.1) d(V)( f ∗(ω)) = f ∗(d(W)(ω)).
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Proof. We may clearly suppose thatW is an open set inRm. Since
f ∗ is an algebra homomorphism ofΛT∗(W) into ΛT∗(V), it is enough
to prove (3.1) for a system of generators ofΛT∗(W) e.g. whenω is a
function or is the exterior derivative of a function. Ifω = ϕ is a function,

(dϕ) f (a) ∈ Ck
f (a)/Sk

f (a)

and f ∗
[
(dϕ) f (a)

]
= d(ϕ ◦ f )a by definition of f ∗. �

If ω = dϕ whereϕ is a function,

f ∗(d(dϕ)) = 0 and

d[ f ∗(dϕ)] = d[d(ϕo f)] = 0.

q.e.d.
For a somewhat different approach to exterior differentiation set

Koszul [22].

5 Orientation and Integration

Definition. On aCk manifold V with k ≥ 1, a continuousn-form ω

which is nowhere zero onV is called an orientation onV and if there
exists an orientation onV, V is called orientable.

Proposition 1. A manifold V is orientable if and only if there exists82

a system of coordinates(Ui , ϕi),
⋃

Ui = V, such that the transforma-
tion ϕi ◦ ϕ

−1
j |ϕ j(Ui∩U j ) has positive jacobian det|d(ϕi ◦ ϕ

−1
j )| whenever

Ui
⋂

U j , φ.

Proof. If ω is an orientation ofV, for any a ∈ V there exists a con-
nected coordinate neighbourhood (Ua, ϕ) of a such that in terms of lo-
cal coordinatesωx = f (x)dx1Λ · · ·Λdxn, for x ∈ Ua. Furtherϕ can
be so chosen thatf (x) > 0 for x ∈ Ua ( changex1 to −x1 if neces-
sary ). Consider a system of coordinate neighbourhoods (Ui , ϕi), such
that for anyx ∈ Ui, ωx in terms of local coordinates can be written as
ωx = fi(x)dx(i)

1 Λ · · ·Λdx(i)
n , fi(x) > 0. Then the jacobian of the transfor-

mationϕi ◦ ϕ
−1
j is a quotient of the functionsfi ◦ ϕ−1

i and so> d. �
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Conversely if there exists a system of coordinate neighbourhoods
(Ui , ϕi) with the above property, consider a partition of unity

{
Ψi

}
sub-

ordinate to the covering
{
Ui

}
. Defineωx in terms of local coordinates as

wx =
∑

i Ψi(x)dxi
1Λ · · ·Λdxi

n.
Thenωx is a continuousn form which is> 0 for everyx and hence

is an orientation ofV.

Remark. It follows that on aCk manifold, there is aCk−1n form which
is nowhere zero.

Let

E =
{
ξ ∈

n
ΛT∗(V)|ξ , 0

}

and p(ξ) = a if ξ ∈
n
ΛT∗a(V).

Define an equivalence relation inE by83

ξ1 ∼ ξ2 if x = p(ξ1) = p(ξ2), and there isλ > 0 with

ξ1 = λξ2.

Let Ṽ = E/∼.

Proposition 2. V is hausdorff andṼ → V is a covering.

Proof. The equivalence relation is clearly open and it is easily seen that
the graph of the equivalence relation inE × E is closed HenceV is
hausdorff. Let (U, ϕ) be a coordinate neighbourhood ofa ∈ V. Defineξ
andη in terms of local coordinates as

ξx = dx1Λ · · ·Λdxn

and ηx = −dx1Λ · · ·Λdxn.

�

Thenp−1(U) =

( ⋃
x∈U

ξx

)⋃ ( ⋃
x∈U

η̄x

)
andṼ is a covering.

Corollary 1. If V is connected, V is orientable if and only ifṼ is not
connected.
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Proof. If V is connected and orientable, letω be an orientation. Then⋃
x∈V

(ωx) is non- empty open and closed subset ofṼ and hencẽV is not

connected. �

If V is connected and̃V not connected, consider̄ξa ∈ Ṽ and letUa

be the connected component ofξ̄a in Ṽ. Then if p|Ua = π, π: → V
is a covering and ifp−1(x) = π−1(x) for somex ∈ V, p−1(y) = π−1(y)
for everyy ∈ V andUa = Ṽ which is a contradiction. Hence for any84

x ∈ V, π−1(x) contains exactly one point, so thatπ is a homeomorphism.
It is easily verified that there is a continuousn form ω on V for which
ωx ∈ π

−1(x) for any x; henceV is orientable.

Corollary 2. If V is a simply connected manifold it is orientable.

Proof. If V is simply connected, clearlỹV is not connected and the proof
follows form Corollary 1. �

It can be be show easily thatṼ is alwaysorientable; in fact if, for
a ∈ Ṽ, ωp(a) is ann-co vector atp(a) with ωp(a) ∈ a, we see at once (
partition of unity) that there is ann-form ω̃ on Ṽ with ω̃a = λap∗(ωp(a))
with λa > 0.

Let Rn
+ =

{
(x1, . . . , xn) ∈ Rn|x1 ≥ ◦

}
.

Definition. A hausdorff topological spaceV is said to be aCk manifold
with boundary and of dimensionn if there exists a system of “coordi-
nate neighborhoods” (Ui , ϕi), such that

⋃
Ui = V andϕi is a homeomor-

phism ofUi onto an open subset ofRn
+ for which wheneverUi ∩U j , 0,

then mapϕi ◦ ϕ
−1
j

∣∣∣∣ϕ j(Ui ∩Ui) is aCk map ofϕ j(Ui ∩U j) as a subset of
Rn
+.

If f is a real valued function onRn
+,

∂ f
∂xi

, i ≥ 2 are defined in the

same way as for a function onRn and

∂ f
∂x1

∣∣∣∣
a
= lim

h→+0

f (a1 + h, a2, . . . , an) − f (a1, . . . , an)
h

.

For aCk manifold V with boundary,k ≥ 1, Ck functions, tangent
vectors,Ta(V), differential forms etc. are defined in the same way as for85
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a manifold. Orientation is also defined in an analogous way. Hereafter
V will denote aCk manifold with boundary, which is countable∞.

Definition. A vectorX in Ta(V) is called a positive tangent vector or an
inner normal if for anyf ∈ mk

a with f (x) ≥ 0 for x in a neighbourhood
of a, we haveX( f ) ≥ 0 and if there exists anf ∈ mk

a, f (x) ≥ 0 in a
neighbourhood ofa, for whichX( f ) > 0. (mk

a is the set ofCk germs at a
which vanish ata.) A tangent vectorX is negative ( or an outer normal)
if −X is positive.

Let a be a point inV. If there exists a coordinate neighbourhood
(U, ϕ) of a, such thatϕ(U) is an open set inRn, for any f ∈ mk

a consider
f as a function of local coordinates. Iff (x) ≥ 0 for x in a neighbourhood

U′ of a, U′ ⊂ U, f has a minimum at a and hence
∂ f
∂xi

∣∣∣∣
a
= 0, 1≤ i ≤ n.

Hence for anyX ∈ Ta(V), X( f ) =
∑

x(xi)
∂ f
∂xi
|a = 0, i. e. there does not

exist a positive tangent vector inTa(V).

Proposition 3. Let a ∈ V and suppose that there exists a coordinate
neighbourhood(U, ϕ) of a such thatϕ(U) is an open set ofRn

+ andϕ(a) ∈
{
x ∈ Rn

+

∣∣∣∣x1 = 0
}
, then a tangent vector Xi ∈ Ta(V) given by X=

∑
αi

∂

∂xi
is a positive tangent vector if and only ifα1 > 0.

Proof. We may suppose thatϕ(a) = 0. If f ∈ mk
a and f (x) ≥ 0 in

a neighbourhoodU′ of a, considerf (a1, x2, . . . , xn) as a function of
(x2, . . . , xn), in terms of local coordinates. The setU1 =

{
(x2, . . . , xn)

(x1, . . . , xn) ∈ ϕ(U)
}
, is open inRn−1 and by the same argument as above

∂ f
∂xi

∣∣∣∣
a
= 0, 2≤ i ≤ n. Now, if f ∈ mk

a, f ≥ 0, we have

∂ f
∂x1

∣∣∣∣
a
= lim

h→+0

f (h, 0, . . . , 0) − f (0, . . . , 0)
h

= lim
h→+0

f (h, 0, . . . , 0)
h

≥ 0

and by choosingf (x) = x1, we see that86
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∂ f
∂x1

∣∣∣∣
a
= 1, f ∈ mk

a, and f (x) ≥ 0 for x in U.

�

Then X( f ) = α1

(
∂ f
∂x1

∣∣∣∣
a

)
= α1.

Hence ifα1 > 0, X is a positive tangent vector and conversely ifX
is a positive tangent vectorα1 > 0.

Definition. An elementω ∈ T∗a(V) is called positive (negative) ifω(X) >
0(< 0) for any positiveX ∈ Ta(V).

In terms of local coordinates (U, ϕ), ϕ(U) ⊂ Rn
+, ϕ(a) = 0, an ele-

mentω =
∑
αidxi is > 0 if and only ifα1 > 0,α2 = · · · = αn = 0.

Definition. The set∂V =
{
x ∈ V

∣∣∣∣ there exists a coordinate neighbour-

hood (U, ϕ) of x with ϕ(x) = 0
}

is called the boundary ofV.

Remark. It is clear from the above discussion thatx ∈ ∂V if and only
if there exists a positive tangent vector inTx(V). V is said to have no
boundary if∂V = φ.

Proposition 4. ∂V is a Ck manifold of dimension n− 1.

Proof. If a ∈ ∂V, there exists a coordinate neighbourhood (U, ϕ) of a
such thatϕ(a) = 0. �

Let U′ =
{
x ∈ U

∣∣∣∣ϕ(x) = ◦
}
. Clearly U′ = ∂V ∩ U. For x ∈ U′, 87

defineϕ′ by
ϕ′(x) = (xi)2≤i≤n

ϕ′ is obviously a homeomorphism ofU′ onto open set inRn−1. If
(U1, ϕ1), (U2, ϕ2) are coordinates inV inducing coordinates (U′1, ϕ

′
1),

(U′2, ϕ
′
2) on ∂V, the mapϕ′1 ◦ (ϕ′2)−1 is the restriction ofϕ1 ◦ ϕ

−1
2 to a

submanifold ofϕ2(U2), and so isCk and so isCk. Thus (U′i , ϕ
′
i ) is a

system of coordinate neighbourhood for∂V and∂V is aCk manifold of
dimensionn− 1. It is obvious that∂V has no boundary.

Further∂V is clearly aCk submanifold ofV which is in fact a closed
submanifold. We shall therefore identify, fora ∈ ∂V, the tangent space
Ta(∂V) with a subspace ofTa(V).
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Proposition 5. If a ∈ ∂V and X1, X2 are positive tangent vectors in
Ta(V), then there existsα > 0 such that X1 − αX2 ∈ Ta(∂V).

Proof. In terms of a local coordinate system (U, ϕ) at a, let

X1 =
∑

αi
∂

∂xi
,X2 =

∑
αi

∂

∂xi
.

�

Thenα1 > 0, β1 > 0. Letα =
α1

β1
, then

X1 − αX2 =

n∑

i=2

(αi − αβi)
∂

∂xi
∈ Ta(∂V).

Definition. ξ ∈
n−1
Λ Ta(V), is called positive if for any outer normale ∈

Ta(V), eΛξ, as an element of
n
ΛTa(V), is positive.

It is clear that we may look upon
n−1
Λ Ta(∂V) as a subspace of

n−1
Λ88

Ta(V); similar remarks apply to
n−1
Λ T∗a(∂V) and

n−1
Λ T∗a(V).

Proposition. If V is oriented, so is∂V.

Proof. As in the above definition, we say thatω1 ∈
n−1
Λ T∗a(∂V) is positive

if for any

ω2 ∈ T∗a(V), ω2 < 0, we haveω2Λω1 > 0.

�

Let ω be the orientation ofV and in terms of ”positive” local coor-
dinates suppose that

ωx = f (x)dx1Λ · · ·Λdxn, f (x) > 0 for eachx.

thenω′x = −dx2Λ · · ·Λdxn is in
n−1
Λ T∗a(∂V) and is positive for eachx in

∂V. The condition of the positivity of the Jacobians is trivially verified.
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Remark. If V is a Ck manifold andD an open set such that for any
a ∈ (D̄ − D), there exists a neighbourhoodU in V and aCk function g

in U with (dg)a , 0, D ∩ U =
{
x ∈ U

∣∣∣∣g(x) > 0
}
, thenD̄ is a manifold

with boundary and∂D coincides with the topological boundary (D̄−D)
of D.

Theorem 1(Formula for change of variable). LetΩ,Ω′ be open sets in
Rn and h:Ω′ → Ω a C1 homeomorphism ( so that h is bijective and the
jacobian det dh(y) , 0 for y ∈ Ω′). Then, if f is a continuous function
with compact support inΩ, we have

(5.1)
∫

Ω

f (x)dx1 . . . dxn =

∫

Ω′

( f ◦ h)(y).|det dh(y)|dy1 . . . dyn.

Proof. We first prove the formula whenh is a linear transformation.89

Let A denote the matrix ofh(with respect to the canonical basis ofRn).
By the elementary divisors theorem,A can be written as a product of
finitely many matricesAi each of which is either a diagonal matrix or
an elementary matrix viz. the matrix corresponding to one ofthe linear
transformations

(a) h(x1, . . . , xn) = (x1, . . . , xi−1, xk, xi+1, . . . , xk−1, xi , xk+1, . . . , xn)

(b) h(x1, . . . , xn) = (x1 + x2, x2, . . . , xn).

�

It is clearly sufficient to prove (1) for matrices of these special kinds.
For diagonal matrices of type (a), the formula (1) is a trivial conse-
quence of Fubini’s theorem. For transformationsh of type (b) we have,
by Fubini’s theorem

∫

Ω′

( f ◦ h)(y)|detdh(y)|dy1 · · · dyn

=

∫

Rn

f (x1 + x2, x2, . . . , xn)dx1 · · · dxn
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=

∫

Rn−1

dx2 · · ·dxn

∫

Rn

f (x1 + x2, . . . xn)dx1

=

∫

Rn−1

dx2 · · ·dxn

∫

R

f (x1, . . . , xn)dx1

(since Lebesque measure onR is translation invariant)

=

∫

Rn

f (x)dx1 · · ·dxn =

∫

Ω

f (x)dx1 · · · dxn.

To prove (5.1) in general, we remark that it suffices to prove the
inequality

(5.2)
∫

Ω

f (x)dx1 · · ·dxn ≤

∫

Ω′

( f ◦ h)(y)|detdh(y)|dy1 · · · dyn

for all non-negativef with compact support. (Apply the inequality to90

h−1 to obtain equality.) Moreover, by the definition of the Riemann
integral, it is sufficient to prove the following statement (90) IfQ is a
closed cube with equal sides contained inΩ′, we have

µ(h(Q)) ≤
∫

Q

|detdh(y)|dy1 · · · dyn

hereµ denotes Lebesgue measure inRn.

Proof of (5.3). Let K denote any closed cube, with equal sides say,δ,
contained inΩ′. For ann × n matrix A = (ai j ), set ||A|| = max

i

∑
j
|ai j |.

Note that ifI is the unit matrix, we have||I || = 1.
Let h = (h1, . . . , hn). Taylor’s formula shows that ifx, y ∈ K

hi(x) − hi(y) =
∑

j

∂hi

∂x j
(θi)(x j − y j), θi ∈ K,

so that |hi (x) − hi(y)| ≤ sup
a∈K
||dh(a)||.δ.



5. Orientation and Integration 75

Consequently,h(K) is contained in a cube of sideδ. sup
a∈K
||dh(a)|| so

that

(5.4) µ(h(K)) ≤ {sup
a∈K
||dh(a)||}nµ(K)

If we apply (5.4) to the transformationg = A.h, whereA is the in-
verse of the linear transformation (dh)(a) for a fixeda ∈ K, and observe 91

that, by (5.1) applied to the linear transformationA we have

µ(g(K)) = |detdh(a)|−1µ(h(K)),

we obtain

(5.5) µ(h(k)) ≤ |detdh(a)|{sup
b∈K
||(dh(a))−1dh(b)||}nµ(K).

We observe that as the sides ofK tend to zero, (dh(a))−1dh(b) → I ,
uniformly for b in any compact subset ofΩ′ (90) is now easy to prove.
Divide Q into ε−n cubesKi of side (ε. side ofQ ), and letai ∈ Ki . Then

sup
b∈Ki

||(dh(ai ))
−1dh(b)|| ≤ 1+ α(ε), whereα(ε)→ 0 asε→ 0.

The inequality (5) now gives

µ(h(Q)) ≤
∑

i

µ(h(Ki)) ≤ (1+ α(ε))n
∑

i

|det|dh(ai )|µ(Ki).

As ε → 0, by definition, the sum on the right converges to∫

Q

|detdh(y)|dy1 · · ·dyn, so that, sinceα(ε)→ 0, we obtain (5).

Integration.

Let V be an orientedn dimensionalCk manifold (with or without
boundary) countable at infinity (k ≥ 1). Letω be a continuousn form
onV with compact support. We shall define the integral

∫

V

ω
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as follows.
Let {Ui , ϕi} be a locally finite family of coordinate systems such that92

ϕi induces the given orientation onUi from that ofRn; the Jacobians det
|d(ϕi ◦ϕ

−1
j | are then all positive. Let{αi} be a partition of unity relative to

the covering{Ui}; letΩi = ϕi(Ui), and letx(i)
1 , . . . , x

(i)
n denote the running

coordinates inΩi . Let (ϕ−1
i )∗(αiω) = gi(x(i))dx(i)

1 ∧ · · · ∧ dx(i)
n . We set

∫

V

ω =
∑

i

∫

Ωi

gi(x
(i))dx(i)

1 , . . . , dx(1)
n

(the latter integral being an ordinary Riemann or Lebesgue integral);
the sum is finite sinceω has compact support. The integral so defined is
linear: we have

∫

V

(ω1+ω2) =
∫

V

(ω1+ω2) =
∫

V

ω1+ω2 and
∫

V

λω = λ
∫

V

ω

for λ ∈ R. It is, however, necessary in applications to know that the
definition above is independent of the coveringUi , and the functions
αi used in the definition. We shall denote the integral defined above
temporarily byI (ω). SinceI is linear, its invariance of the{Ui , αi} results
at once from the following.

Lemma 1. Let (U, ϕ) be any coordinate system such thatdet|d(ϕ ◦ ϕ−1
i |

is positive onϕi(Ui ∩ U) for each i. Letω be an n form with support in
U, and , in terms of the local coordinates inϕ(U) = Ω; let

ω = f (x)dxi ∧ · · · ∧ dxn.

Then we have
∫

Ω

f (x)dx1 · · · dxn = I (ω).

Proof. It is enough to prove that if93

αiω = fi(x)dx1 ∧ · · · ∧ dxn = gi(x
(i))dx(i)

1 ∧ · · · ∧ dx(i)
n

then ∫

Ω

fi(x)dx1, . . . , dxn =

∫

Ωi

gi(x
(i))dx(i)

1 , . . . , dx(i)
n .

�
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The integrals are respectively
∫

ϕ(Ui∩U)

and
∫

ϕi (Ui∩U)

; let hi : ϕ(U ∩

Ui) → ϕ(U ∩ Ui) be the mappingϕ ◦ ϕ−1
i ; sinceαiω = fi(x)dxi ∧

· · · ∧ dxn = gi (x
(i)
i )dx(i)

1 ∧ · · · ∧ dx(i)
n , we have

fi ◦ h(x(i)), det(dhi )(x
(i)) = gi(x

(i));

however, by hypothesis, det (dhi )(x(i)) > 0, and the assertion follows
from the formula for change of variable.

Theorem 2(Stokes’ theorem). If V is an oriented manifold of dimension
n,V an (n - 1) form of class C1, having compact support, we gave

∫

∂V

ω =

∫

V

dω.

In particular, the above formula holds for all C1 formsω if V is compact

Proof. If (Ui , ϕi) is a locally finite system of coordinate neighbour-
hoods, (ηi) a partition of unity subordinate to{Ui}, it is enough to prove
that ∫

∂V

ηiω =

∫

V

d(ηiω)

�

Case I. If ϕi(Ui) is open inRn, 94

∫

∂V

ηiω = 0

Further, ifηiω =
n∑

j=1
f jdx1 ∧ · · · ∧ dx̂ j ∧ · · · ∧ dxn, we gaved(ηiω) =

∑ ∂ f j

dxj
(−1) j−1dx1 ∧ · · · ∧ dxn

and
∫

V

d(ηiω) =
∫

ϕi (Ui )

∑
(−1) j−1 ∂ f j

∂x j
dx1 ∧ · · · ∧ dxn
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=

∫

Rn

(∑
(−1) j−1 ∂ f j

∂x j

)
dx1dx2 · · · dxn

since f j has compact support for eachj,
∫

R

∂ f j

∂x j
dxj = 0. Hence it follows

from Fubini’s theorem that
∫

V

d(ηiω) = 0 =
∫

∂V

ηiω.

Case II. If ϕi(Ui) is not an open set inRn

∫

V

d(ηiω) =
∫

Rn
+

(∑
(−1) j−1 ∂ f j

∂x j

)
dx1 · · ·dxn.

Now ∫

Rn
+

∂ f j

∂x j
dx1 · · · dxn = 0 if j = 1 as in case I :

further, if j , 1, f jdx1 ∧ · · · ∧ dx̂ j ∧ · · · ∧ dxn|∂V = 0. Also

∫

Rn
+

∂ f1
∂x1

dx1 · · · dxn =

∫

R

dxn

∫

R

dxn−1 · · ·

∫

x1≥0

∂ f1
∂x1

dx1.

Hence95

∫

Rn
+

∂ f1
∂x1

dx1 · · · dxn = −

∫

Rn−1

f1(0, x2, . . . , xn)dx2 · · · dxn

and
∫

V

d(ηiω) = −
∫

Rn−1

f1(0, x2, . . . , xn)dx2 · · · dxn

=

∫

V

ηiω
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6 One parameter groups and the theorem of Frobe-
nius

In what followsV denotes aCk manifold countable at∞ with k ≥ 3.

Definition. A Cr mapϕ: R×V→ V, 0 < r ≤ k, is called a one parameter
group ofCr transformations of it satisfies the following conditions:

(1) for everyt ∈ R, ϕ(t, x) = ϕt(x) is aCr diffeomorphism ofV onto
itself;

(2) ϕt+s(x) = ϕt ◦ ϕs(x) for s, t ∈ R andx ∈ V.

Definition. If U is an open subset ofV, a local one parameter group of
Cr transformations ofU into V is aCr mapϕ: Iε × U → V, Iε = {t ∈
R
∣∣∣|t| < ε}, ε > 0, which satisfies the following conditions:

1. for anyt ∈ Iε, ϕ(t, x) = ϕt(x) is aCr diffeomorphism ofU into V 96

(i.e. onto an open subset ofV);

2. if s, t, s+ t ∈ Iε andx, ϕt(x) ∈ U, thenϕs+t(x) = ϕS ◦ ϕt(x)

Given a one parameter groupϕ: R × V → V we can associate to

it a vector fieldXϕ defined by (Xϕ)a( f ) =
∂( f ◦ ϕt)

∂t

∣∣∣(0, a) for f ∈ Ck
a;

i.e. (Xϕ)a is precisely the tangent to the curvet → ϕt(a) at a, Xϕ is
called the vector field induced byϕ. A local one parameter group of
transformations ofU into V induces a vector field onU in the same
way.

Proposition 1. Given a Ck−1 vector field X, there exists, for every a∈
V, a neighbourhood U of a and a local one parameter group of Ck−1

transformations of U,ϕ : Iε × U which induces X on U, i.e. we have

Xb( f ) =
∂( f ◦ ϕ)
∂t

(0, b) for b ∈ U and f ∈ Ck
b.

Proof. Let the vector fieldX be given by

X =
∑

ai(x)
∂

∂xi
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in terms of local coordinates in an open setU′ ∋ a. We have then to
solve the differential equation

∑ ∂ϕi

∂t
∂

∂xi
=

∑
ai
∂

∂xi

i.e.
∂ϕ

∂t
= a(ϕ(t1, x))

with the initial conditionϕ(0, x) = x; [hereϕ stands for ann-tuple of
functions]. �

SinceX is aCk−1 vector field, (k ≥ 3), ai ∈ Ck−1 and by Chapter I,97

§6, there existsε > 0, a neighbourhoodU of a and a uniqueCk−1 map
ϕ: Iε × U → V satisfying the differential equation

∂ϕ

∂t
= a(ϕ(t, x)), ϕ(0, x) = x.

For s, t, s+tǫIε andx, ϕt(x)ǫU, it can be easily verified thatϕs◦ϕt(x)
andϕs+t(x) are both solutions of the differential equation

∂ψ

∂s
= a(ψ(s, x)), ψi (0, x) = ϕi(t, x).

Hence by the uniqueness of the solution of equations of this form, we
have

ϕs ◦ ϕt(x) = ϕs+t(x) for x, ϕt(x) ∈ U.

It now remains to show that fort ∈ Iε, ϕt(x) is a diffeomorphism of
U into V. Since

(d2ϕ)(0, x) = identity, andϕ ∈ Ck−1, it

follows that for sufficiently smallε, t ∈ Iε implies (d2ϕ)(t, x) is non-
singular and hence, by the rank theorem,ϕt(x) is a diffeomorphism of
U into V if U is chosen small enough (see also proof of the following
corollary).

Corollary. Given a Ck−1 vector field X on V and a relatively compact
open set U, there exists a local one parameter groupϕt of Ck−1 trans-
formations of U into V which induces X on U.
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Proof. Let U′ be an open set withU ⊂⊂ U′ ⊂⊂ V. (We writeA ⊂⊂ B98

to mean thatA is relatively compact inB.) For any aa ∈ U′ there is a
neighbourhoodUa in V and a local one parameter groupϕ(a)

t : Ua → V,
|t| < ε(a), which inducesX on Ua. Supposea1, . . . , ak so chosen that⋃

Uai ⊃ U′. Let ε′ = minε(ai). If Uai

⋂
Uaj , φ, thenϕ(ai )

t , ϕ
(aj )
t

induceX onUai ∩Uaj , and hence coincide there. Defineϕt(x) = ϕ(ai )
t (x)

for x ∈ Uai . Let ε < ε′ be so small thatϕt(U) ⊂ U′ for |t| < ε. Since
eachϕt is a 1-parameter group, we have only to show that eachϕt is
injective onU. But this is obvious sinceϕ−t(ϕt(x)) = x for x ∈ U. (Note
thatϕt(x)ǫU′ andϕ−t is defined onU′). �

Remark. If V is compact,X gives rise to a global 1- parameter group
ψs. In fact, as is easily deduced from the above corollary, there isε > 0
such thatϕt : V → V is a diffeomorphism (onto) for|t| < ε. Given
s ∈ R, we setψs = (ϕs/k)k wherek is an integer so chosen that|s/k| < ε
and (ϕs/k)k denotes the composite of (ϕs/k) with itself k times. (ψs is
independent of thek chosen).

We have remarked earlier that a differentiable map does not transfer
vector fields into vector fields. However, letσ be aCr diffeomorphism
of an open setU ⊂ V, into V and X, a Cr−1 vector field onU, let
U′ = σ(U). The assignment toa ∈ U′ of the vector

σ
∗(Xσ−1(a)) at a, is

clearly aCr−1 vector field onU′, denoted by
σ
∗(X) or

σ
∗X. If f is a Ck

function onU′, we have,

σ∗(X)( f ) = X( f ◦ σ) ◦ σ−1.

If X, Y are two vector fields onU, we have 99

[
σ
∗X, σ∗Y]( f ) =

σ
∗(X)[Y( f ◦ σ) ◦ σ−1] −

σ
∗(Y)[X( f ◦ σ) ◦ σ−1]

= [X(Y( f ◦ σ)) − Y(X( f ◦ σ))] ◦ σ−1

=
σ
∗([X,Y])( f ),

i.e. [
σ
∗X,

σ
∗Y] =

σ
∗[X,Y].

Proposition 2. If σ is a diffeomorphism U→ U′ and if a local one
parameter group of transformationsϕ: (U∪U′)→ V induces the vector
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field X, then
σ
∗X is induced by the local one parameter groupσ◦ϕ◦σ−1 :

U′ → U.

Proof.

σ
∗(X)( f ) = X( f ◦ σ) ◦ σ−1

=
∂

∂t
( f ◦ σ ◦ ϕt)|t=0 ◦ σ

−1

=
∂

∂t
( f ◦ σ ◦ ϕt0σ

−1|t=0

�

Corollary 1. σ commutes withϕt for every t if and only ifσ∗(X) = X.

Definition. A local one parameter groupϕ is said to leave a vector field
X invariant if (ϕt∗)(X) = X for everyt.

Remark. If ϕ induces the vector fieldXϕ, Xϕ is invariant underϕ.100

Definition. If ϕ is a local one parameter groupU → V, of C2 transfor-
mations, andY, a vector field onV, and if (ϕt)∗Y = Yt, we define the

vector field
dYt

dt
by

(
dYt

dt

)
( f ) =

d
dt

[Yt( f )].

Proposition 3. If Y is a Ck−1 vector field on V, k≥ 3 and if a one
parameter groupϕ induces the k− 1 vector field X on U we gave

dYt

dt

∣∣∣∣∣
t0
= [Yt0,X] on U.

Proof. We shall first prove the result fort0 = 0. We have �

dYt

dt

∣∣∣∣∣
0
( f ) = lim

t→0

1
t
[Yt − Y]( f )

= lim
t→0

1
t
[Y[ f ◦ ϕt] ◦ ϕ−t − Y( f )]
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= lim
t→0

1
t
[Y( f ◦ ϕt) − Y( f ) ◦ ϕt] ◦ ϕ−t

= lim
t→0

1
t
[Y( f ◦ ϕt) − Y( f ) − ◦Y( f ) ◦ ϕt + Y( f )] ◦ ϕ−t

= lim
t→0

Y( f ◦ ϕt − f )
t

− lim
t→0

Y( f ) ◦ ϕt − Y( f )
t

,

since lim
t→0

ϕ−t = identity. Now

lim
t→0

Y( f ) ◦ ϕt − Y( f )
t

= X(Y( f ))

by definition ofX. Considerh(t, x) = f ◦ ϕt(x). Clearlyh ∈ C2 since 101

h ∈ Ck−1 and
h(t, x) − h(0, x)

t
=

f ◦ ϕt − f
t

∈ C1.

Hence lim
t→0

Y[ f ◦ ϕt − f ]
t

= Y

[
lim
t→0

f ◦ ϕt − f
t

]

= Y(X( f )).

Hence
dYt

dt

∣∣∣∣∣
t=0

( f ) = Y[X( f )] − X[Y( f )]

= [Y0,X]( f ).

i.e.
dYt

dt

∣∣∣∣∣
t=0
= [Y0,X].

For anyt0 in the interval of definition.

(ϕt0)∗

(
dYt

dt

)

t=0
=

(
dYt

dt

)

t=t0

and (ϕt0)∗[Y0,X] = [(ϕt0)∗Y0, (ϕt0)∗X]

= [Yt0,X].

HencedYt
dt |t=t0 = [Yt0,X].

Corollary. If X, Y are vector fields on V which give rise to local one
parameter groupsϕ andψ: U → V respectively, then for all t, s,ϕt and
ψs commute (i.e.ϕt ◦ ψs = ψs ◦ ϕt on the common of definition) if and
only if [X,Y] = 0.
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Proof. If ϕt andψs commute for sufficiently smallt and s, ϕt leavesY102

invariant.
Hence dYt

dt = [Yt,X] = [Y,X] = 0. �

Conversely if [Y,X] = 0

dYt

dt

∣∣∣∣∣
t=t0
= [Yt0,X] = [Yt0,Xt0]

= (ϕt0)∗[Y,X] = 0.

Henceϕt leavesY invariant, which, with the corollary to Prop.2,
completes the proof.

In what follows we consider aCk manifoldV. The vector fields will
beCk−1 and differentiable functions, mappings will beCk.

Definition. 1. A distribution (or differential system )D of rank p,
on (aCk manifold) V is an assignment to each pointaǫV of a
subspaceD(a) of Ta(V), of dimensionp.

2. A distributionD is called differentiable if for everya ∈ V there
exists a neighbourhoodU of a and differentiable vector fieldsX1,
X2, . . . ,Xp such thatX1b, X2b, . . .Xpb form a basis ofD(b) for
everyb ∈ U.

3. A submanifoldi: W → V of V (more generally, aCk mapping
i: W → V) is called an integral ofD if for a ∈ W, i∗(Ta(W)) ⊂
D(i(a)).

4. A distributionD is said to be completely integrable if for every
a ∈ V, there exists a neighbourhoodUa and a system of local
coordinates (x1, . . . , xn), such that for sufficiently smallci , p+1 ≤103

i ≤ n, the submanifolds given byUc = {xǫU |xi = ci , i ≥ p+ 1} are
integrals ofD .

Remark. Any submanifold of an integral is itself an integral.

Lemma 1. If D is a completely integrable differentiable distribution
and if W ⊂ U is a connected integral ofD , then W⊂ Uc for some
c = (ci)p+1≤i≤n, [where U carries a coordinate system as in(4) above].
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Proof. We havei∗(Ta(W)) ⊂ D(i(a)). Now for anyc,Ti(a)(Uc) has di-
mensionp and henceTi(a)(Uc) = D(i(a))

Hence i∗(Ta(W)) ⊂ Ti(a)(Uc). �

Now Ti(a)(Uc) is the subspace ofTi(a)(V), orthogonal to the 1- forms
{dxi}i>p. Hence{dxi}i>p are orthogonal toi∗(Ta(W)), i.e. dxi |W = 0, i >
p and hencexi = ci for some constantci , i > p, sinceW is connected.

Definition. A differentiable distributionD is called involutive (or com-
plete ) if for anya ∈ V, there is a neighbourhoodU and vector fields
X1, . . . ,Xp generatingD in U such that, we gave, forb ∈ U

[Xi ,X j]b ∈ D(b) for i, j ≤ p.

Note that there then exist differentiable functionsak
i j in U such

[xi , x j ] =
p∑

k=1
ak

i j Xk.

Remark. The above definition is independent of the basicsX1, . . . ,Xp.

Lemma 2. If a differential systemD is involutive, for any a∈ V there 104

exists a neighbourhood U of a and a basis X1, . . . ,Xp of D in U such
that [Xi ,X j] = 0 in U.

Proof. Let (Yi)1≤i≤p be a basis ofD
∣∣∣U. �

In terms of local coordinates, let

Yi =

n∑

r=1

air
∂

∂xr
.

We may assume without loss of generality that the matrix (air (x)) =
A(x), 1 ≤ i ≤ p, 1 ≤ r ≤ p is of rankp at the pointx = a. If U is small
enough,A(x) has rankp for x ∈ U. If B(x) = (bir )(x) = [A(x)]−1, then
thebir are differentiable. Let

Xi =

p∑

k=1

bikYk.
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ThenXi =
∂

∂xi
+

∑

r>p

Cir
∂

∂xr
and (Xi)1≤i≤p

form a basis ofD
∣∣∣U. SinceD is involutive, we have

[Xi ,X j] =
p∑

r=1

λr Xr .

But

(
∂

∂xi

)

1≤i≤p
commute with each other and, if [Xi ,X j ] =

n∑
r=1

µr

(
∂

∂xr

)
, thenµr = 0 for r ≤ p. Clearly we therefore have

λr = µr = 0 for r ≤ p.

Proposition 4. Let X1, . . . ,Xp be vector fields on V which are linearly105

independent at every point of V and such that[Xi ,X j] = 0, then for any
a ∈ V there exists a neighbourhood U and coordinates t1, t2, . . . , tp,

xp+1, . . . , xn in U such that Xi =
∂

∂ti
for i ≤ p.

Proof. We can assume thatX1, . . . ,Xp are induced by local one param-
eter groups of transformations,ϕ(1), ϕ(2), . . . , ϕ(p) in a neighbourhoodU
of a. We suppose thatϕ(i)

t are defined for|t| <. After a linear change of
coordinates onU we may suppose that the vectors

(X1)a, . . . , (Xp)a,

(
∂

∂xp+1

)

a

, . . . ,

(
∂

∂xn

)

a

are linearly independent. We suppose further that the coordinates of a
are zero. LetU′ ⊂ Rn−p be the set ofx′ = (xp+1, . . . , xn) with (0, x′) ∈
U, Q ⊂ Rp, the set|ti | < δ and leth: Q× U′ → U be the mapping

h(t1, . . . , tp, xp+1, . . . , xn) = ϕ(1)
t1 ◦ . . . ϕ

(p)
tp

(0, x′),

ε being chosen so small that the composites are all defined. �
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For anyCk function f on U, we have
∂

∂t1
[ f oh]t=0 = (X1)a( f ), by

definition ofϕ(1)
t , and since theϕ(i)

ti commute, (because [Xi ,X j] = 0), we
have

h∗

[(
∂

∂ti

)

o

]
= (Xi)a, 1 ≤ i ≤ p.

It is obvious that

h∗

(
∂

∂xi

)

0
=

(
∂

∂xi

)

0
, i > p.

This, however, implies thath∗ has the maximum rank= n and is a 106

diffeomorphism in a neighbourhood of 0. Hencet1, . . . , tp, xp+1, . . . , xn

may be considered as local coordinates inU if U is small enough. Fur-
ther, exactly as above, we show thath∗( ∂

∂ti
) = Xi , i ≤ p, which gives the

proposition.

Theorem 1 (Frobenius). A differential system on V is involutive if and
only it is completely integrable.

Proof. If D is a completely integrable system fora ∈ V there exists
a neighbourhoodU of a such that for all sufficiently small (Ci)p+1≤i≤n,

Uc = {x ∈ U |xi = si, i > p} are integrals ofD Hence

(
∂

∂xi

)

1≤i≤p
form

a basis ofD |U andD is involutive. This together with Lemma 2 and
Proposition 4 above proves the theorem. �

Remark. We have proved the theorem of Frobenius forC2 distributions,
i.e. distributions having a basis ofC2 vector fields [ We have used the
condition essentially in the proof of Prop. 3.] However the theorem is
valid also forC1 vector fields. We have only to prove Prop. 3 forC1

vector fields. This can be by approximating the fields byC2 fields and
using the results of Chap I, §6, to conclude that the local 1-parameter
group associated to a vector fieldX depends continuously onX.

Letωp+1, . . . , ωn be 1-forms onV which are linearly independent at
every point. We can define a distributionD by setting

D(a) = {X ∈ Ta(V)
∣∣∣∣∣(ωi)a(X) = 0 for i = p+ 1, . . . , n}.
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If theωi are differentiable then so isD . In fact, considering suitable
linear combinations of theωi with differentiable coefficients, we may107

suppose that, in a neighbourhood of any given point a ofV, we have

ωi = dxi +
∑

r≤p

air dxr , i > p.

ThenD is the distribution spanned by the vector fields

Xr =
∂

∂xr
−

∑

j>p

a jr
∂

∂x j
, 1 ≤ r ≤ p :

(it is obvious that theXr are orthogonal to theωi and they are clearly
linearly independent).

For distributions given in this form, the theorem of Frobenius is as
follows.

Theorem 2. Let ωp+1, . . . , ωn be 1-forms which are linearly indepen-
dent at every point. Then, in order that the distributionD defined by
them be completely integrable, it is necessary and sufficient that every
point a∈ V has a neighbourhood in which there exists 1-formsαr

jn
such

that, for j> p,

(6.1) dω j =

n∑

k=p+1

ωk ∧ α
r
j ;

i.e. dω j belongs to the ideal generated by theωk.

[Note that the condition (6.1) is invariant under ‘change ofbasis’,
i.e. if η j are 1-forms which span the same subspace ofT∗a(V) for any
a, then the condition (6.1) is satisfied if and only if the corresponding
condition on theη j is.]

Proof. If D is completely integrable, anda ∈ V, choose coordinates108

at a such that the “planes”xp+1 = cp+1, . . . , xn = cn are integrals of
D . ThenD(b) is the space orthogonal to (dxp+1)b, . . . , (dxn)b. Hence
dxp+1, . . . , dxn span the same subspace ofT∗b(V) asωp+1, . . . , ωn for b ∈
U. The equation (6.1) for thedxj is trivial. �
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Suppose conversely that there existαr
j satisfying (6.1). LetX1, . . .,

Xp be vector fields in a neighbourhood of a generatingD . We have

(dωk)(Xi ,X j) = Xiωr(X j) − X jωr(Xi) − ωr ([Xi ,X j ]).

Because of (6.1) (dωk)(Xi ,X j) = 0; and by definition,ωr(Xi) = ωr(X j) =
0. Henceωr ([Xi ,X j]) = 0 so that [Xi ,X j]b is orthogonal to (ωr )b for all
r, so that [Xi ,X j]b ∈ D(b). This proves thatD is involutive, hence
completely integrable

One can prove that through any point passes a maximal integral.
More precisely, we have

Theorem 3′. If D is completely integrable, then for any a∈ V, there
exists a connected integral i: W→ V of D such that if j: W′ → V is
any connected integral ofD with j(a′) = a then W′ is a submanifold of
W.

Proof. Let W be the set of pointsx of V with the following property:
there exists a chain of differentiable mappingsγi : I → V, 0 ≤ i ≤ N
(I being the closed unit interval) withγ◦(0) = a, γN(1) = x, γi+1(0) =
γi(1)(0 ≤ i < N), such that eachγi is an integral ofD (in the obvious
sense). We topologizeW as follows. Letx0 ∈ W, andU an open set
about x0 carrying coordinatesx1, . . . , xn, xi(x0) = 0, such that all the 109

“planes” Uc = {xp+1,= cp+1, . . . , xn = cn} are integrals ofD . We may
suppose thatU is a “cube”, so that these planes are connected. Clearly

every point ofU0 belongs toW. The setsWε(x0) = U0 ∩ {x ∈ U
∣∣∣∣∣|x| < ε}

will, by definition, form a fundamental system of neighbourhoods of
x0 in W. [Note that by Lemma 1 thesets Uc are completely deter-
mined byD ] Also if γ0, . . . , γN is a chain as in the definition ofW,
γN(I ) ⊂ U0 ⊂ W̄. It is clear that this topology is Hausdorff. We
makeW into aCk−1 manifold by requiring that the obvious mappings

Wε(x0) → {(x1, . . . , xp) ∈ Rp
∣∣∣∣∣|xi | < ε} determine coordinates onW. It is

then clear thatW is a connected integral ofD . �

If j : W′ → V is any connected integral withj(a′) = a, let, for
w′ ∈W′, γ′0, γ

′
1, . . . , γ

′
N be diffeomorphism ofI into W′ such thatγ′0(0) =
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a′, γ′i+1(0) = γ′i (1) = w′. Let w = j(w′). Thenγi = j(γ′i ) is a chain
as in the definition ofW joining a to w. Hencew ∈ W. Thus there
is a mappingη : W′ → W with ioη = j. Clearly η makes ofW′ a
submanifold ofW.

Finally, we give the Frobinius theorem in another form. In this form,
it may be looked upon as a direct generalisation of the existence theorem
for ordinary differential equations proved in Chap. I, §6.

Theorem 4. LetΩ be an open set inRn with coordinates(x1, . . . , xn),Ω′

an open set inRm with coordinates(t1, . . . , tm). Let fi : Ω × Ω′ → Rn

be Ck functions, i= 1, . . . ,m(k ≥ 2). In order that to every t0 ∈ Ω′

and x0 ∈ Ω there is a neighbourhood U of t0 and a unique Ck map
x : U → Ω such that

(6.2)
∂x(t)
∂ti
= fi(x(t), t), i = 1, . . . ,m, x(t0) = x0,

it is necessary and sufficient that we have110

∂ fi
∂t j

(x, t) + (d1 fi)(x, t). f j(x, t)

=
∂ f j

∂ti
(x, t) + (d1 f j)(x, t). fi(x, t)

for 1 ≤ i, j ≤ m, (x, t) ∈ Ω ×Ω

[Note thatd1 fi is a linear mapping ofRn into itself.]

Proof. The uniqueness of the solution, if it exists, follows from the
uniqueness theorem for solutions of ordinary differential equations pro-
ved in Cha. I, §6. If the equations (6.2) are solvable, the equations (6.3)
hold; in fact the two sides of the equality at the point (x0, t0) are then
simply

∂2x(t)
∂t j∂ti

∣∣∣∣∣
t=t0

.

�
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To prove the converse, we proceed as follows. The equations (6.2)
can be written

(6.4)
∂xr

∂ti
= fir (x, t), fi = ( fi1, . . . , fin), r = 1, . . . , n.

Consider the differential forms

(6.5) dxr −

m∑

i=1

fir (x, t)dti , r = 1, . . . , n

onΩ × Ω′, and letD be the form differential system of rankm defined
by them. IfD has an integral manifold of the formx−ϕ(t) = 0, whereϕ 111

is aCk map of a neighbourhood oft0 intoΩ with ϕ(t0) = x0, thenx = ϕ
is a solution of (6.2). Suppose now thatu1, . . . , un areCk functions near
(x0, t0) such that (du1)(x0, t0), . . . , (dun)(x0, t0) are linearly independent.
Then if the manifoldW = {u1 = . . . = un = 0} [ in a neighbourhood
of (x0, t0) this is a manifold by the rank theorem] is an integral ofD ,
it is clear that the forms (6.5) and the formsdu1, . . . , dun generate the
same subspace ofT∗(x0,to)(Ω×Ω

′). Hence (d1u1)(x0, t0), . . . , (d1u1)(x0, t0)
are linearly independent. Hence by the implicit function theorem,W is
given by equationsx − ϕ(t) = 0, and by our remark above, the equa-
tions (6.2) are solvable. Thus, ifD is completely integrable, then the
equations (6.2) are solvable.

Now, as we have seen before,D has a basis given by the vector
fields

(6.6) Xi =
∂

∂ti
+

n∑

r=1

fir (x, t)
∂

∂xr
;

further, we have seen in the proof of Lemma 2 thatD is completely
integrable if and only if

[Xi ,X j] = 0 for i, j ≤ m.

It is easily verified that these latter conditions are precisely the con-
dition (6.3). Thus, if conditions (6.3) are satisfied,D is completely
integrable, and in particular the equations (6.2) are solvable.



92 2. Manifolds

Remark. Theorem 4 is true also forC1 functions fi ; a proof of this 112

statement can be obtained by using the remark made after the proof of
Frobenius’ theorem.

We remark that if, in Theorem 4, we taken = 1 and thefi to be
functions independent ofx, we obtain the following result.

In order that there exist aCk function x(t1, . . . , tm) for which, in a
neighbourhood oft0, we have

∂x
∂ti
= fi(t),

it is necessary and sufficient that

∂ fi
∂ti
=
∂ f j

∂ti

This can be formulated as follows. Consider the 1-formω =
m∑

i=1
fi(t)

dti . Then there is a functionf with d f = ω in a neighbourhood of any
point if and only ifdω = 0.

This result is a special case of Poincare’s lemma, which we shall
prove later.

For the material concerning 1-parameter groups, see Nomizu[33].
A different treatment of the Frobenius theorem (in the first form given
here) will be found in Chevalley [7].

7 Poincare’s lemma, the type decomposition of com-
plex co vectors, and Grothendieck’s lemma

Definition. If V is aCk manifold of dimensionn a differential formω,
of degreep, is said to be closed ifdω = 0 and is said to be exact if there113

exists a formω1 of degreep− 1, such thatdω11 = ω.

Sinced2 = 0, an exact form is closed. We denote the set of closed
p-differential forms byZp(V) and the set of exactp-differential forms
by Bp(V). The quotientHp(V) = Zp/Bp(V) is called thepth de Rham
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group of V. A basic theorem of de Rham, which we shall not prove
here, implies that theHp(V) are topological invariants. i.e., ifV, V′ are
homeomorphic, thenHp(V) ≈ Hp(V′). For a proof, see e.g. A.Weil
[44].

Poincare’s lemma. If D is a convex open setRn, every closed form of
degree≥ 1 onD is exact, i,e.Hp(D) = 0 for p ≥ 1.

Proof. We may suppose without loss of generality that 0∈ D. Let
I = (0, 1), be the open unit interval. Consider the maph : D × I → D
given byh(x, t) = t.x. �

If ω is a closedp form onD, p ≥ 1, letω =
∑
I

aI (x). dxI in terms of

the coordinates ofRn. Thenh∗(ω) is a form onD × I given by

h∗(ω) =
∑

I

aI (tx)d(txI ), I = (i1, . . . , ip), i1 < i2 . . . < ip

=
∑

I

aI (tx)tpdxI + tp−1
∑

I

aI (tx)(
∑

j

(−1) j−1x jdt∧ dxI , j)

where

dxI , j = dxi ∧ . . . ∧ dx̂ j ∧ . . . ∧ dxin if j ∈ I

= 0 otherwise.

Henceh∗(ω) =
∑

aI (tx)tpd(xI ) + dt∧ ω′ whereω′ is a (p− 1) form 114
on D × I . We have

0 = h∗(dω) = d(h∗(ω)),

so that
∑

I

∂

∂t
(tpaI (tx))dt∧ dxI + tp

∑

j,I

∂

∂x j
(aI (tx))dxj ∧ dxI − dt∧ dω′ = 0.

This implies that

∑ ∂

∂x j
(aI (tx))dxj ∧ dxI = 0

and that
∑ ∂

∂t
(tpaI (tx))dt∧ dxI
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= dt∧ dω′.

SincedxI does not containdt, this implies that

∂

∂t

(∑
tpaI (tx)dxI

)
= dxω

′

where dxω
′ =

∑
dxi ∧

∂ω′

∂xi

Hence

1∫

0

∂

∂t

(∑
aI (tx)tpdxI

)
dt = ω (sincep ≥ 1)

=

1∫

0

dxω
′dt.

= dx

[ 1∫

0

ω′dt
]
.

i.e. ω = dω1 whereω1 =

1∫

0

ω′dt.115

Compare this proof with the one given in A. Weil [44].
We introduce onR2n the structure of a vector space overC by means

of theR isomorphism ofR2n isomorphism ofR2n ontoCn given by

(x1, . . . , x2n)↔ (z1, . . . , zn)

wherezj = x2 j−1 + ix2 j .
If E is a vector space overC, of dimensionn, consider the complex

vector spaceE ∗ = HomR(E,C), of R-linear mappings ofE into C.

Let F ={ f | f anR linear form :E→ C such that f (iv) = i f (v)}.

F̄ ={ f | f anR linear form :E→ C such that f (iv) = −i f (v)}.

Then E ∗ = F ⊕ F̄.
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[For if g ∈ E ∗, considerf ′ and f ′′ defined by

f ′(v) =
1
2
{g(v) − ig(iv)}

f ′′(v) =
1
2
{g(v) + ig(iv)}.

Theng = f ′ + f ′′ and f ′ ∈ F, f ′′ ∈ F̄]
We denoteF by E(1, 0) andF̄ by E(0,1). Conjugationz → z̄ in C

defines anR-isomorphism ofF onto F̄. Let (e1, e2, . . . , en) form aC
basis ofF. Then (ē1, . . . , ēn) forms aC basis ofF̄.

We shall have to consider the vector space∧rE ∗. For fixedp, q with
p + q = r, let E ∗p,q denote the complex subspace of∧rE ∗ generated by 116

the elements of the form

eI ∧ ēJ = ei1 ∧ . . . ∧ei p
∧ēj1 . . . ∧ ējq

where i1 < . . . < ip, j1 < . . . < jq (but there is no relation between
the i and thej). Then the elementseI ∧ ēJ are linearly independent and
span∧rE ∗ if I , J run over all increasing sequences ofp andq integers
respectively, so that∧rE ∗ =

∑
p+q=r

E ∗p,q.

In what follows,V is a complex analytic manifold of complex di-
mensionn, (x1, y1, . . . , xn, yn) denotes the real local coordinates and
(z1, . . . , zn), zj = x j + iy j , complex coordinates. LetTa = Ta(V) be
the tangent space toV at a considered as aC∞ manifold of dimension
2n overR.

Let T ∗
a = HomR(Ta,C).

Clearly T ∗
a , as a vector space overC has dimension 2n. Since

(dxj)a, (dyj )a ∈ HomR(Ta,R) ⊂ HomR(Ta,C), the expressions (dzj )a =

(dxj)a + i(dyj )a, (dz̄j )a = (dxj)a − i(dyj )a are well defined elements of
J∗a; it is clear that they form aC basis ofT ∗

a . Note that for any complex
valuedC∞ functiong onV, the differential (dg)a ∈ T ∗

a .
We note the mappingTa(V) → R2n defined byX → (dx1(X),

dy1(X), . . . , dxn(X), dyn(X)) is anR-isomorphism. Hence the mapx→
(dz1(X), . . . , dzn(X) is anR- isomorphism ofTa(V) ontoCn. This iso-
morphism defines the structure of complex vector space onTa(V). This
structure is independent of the complex coordinate system used. It is 117
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seen at once that it is uniquely characterised by the following property.
If f is a germ of holomorphic function ata ∈ V, we have

(d f)a((α + iβ)X) = (α + iβ)(d f)a(X), α, β ∈ R,X ∈ Ta(V).

We may also consider the spaceTa(V) = Ta(V) ⊗R C = Hom(T ∗
a ,

C). This is called the space of complex tangent vectors ata. Ta(V) has
a basis. dual to the basisdz1, . . . , dzn, dz̄1, . . . dz̄n of T ∗

a ; this basis is

denoted by
∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z̄1
, . . .,

∂

∂z̄n
. It is easily verified that, in terms

of the tangent vectors
∂

∂x j
,
∂

∂y j
(which also form a basis ofTa(V) we

have,
∂

∂zj
=

1
2

(
∂

∂x j
− i

∂

∂y j

)
,
∂

∂z̄j
=

1
2

(
∂

∂x j
+ i

∂

∂y j

)
.

T ∗
a is the complexification ofT∗a and elements ofT ∗

a are called complex
co vectors ata. ∧pT ∗(V) is aC∞ manifold of real dimension 2n+ (4n

p ).
Hereafter, by ap differential formω, we mean a complexp differential
form, i.e., aC∞ mapω : V → ∧pT ∗(V) such thatω(a) ∈ ∧pT ∗

a (V).
We return now to our remarks on∧rE ∗ for a complex vector space

E, whereE ∗ = HomR(R,C). We take forE, the spaceTa = Ta(V) with
the complex structure introduced above. It is immediate that E ∗1,0 is the
space spanned bydz1, . . . , dzn,E

∗
0,1, that spanned bydz̄1, . . . , dz̄n. Hence

E ∗p,q is spanned by the convectorsdzI ∧ dz̄J = dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧

· · · ∧ dz̄jq118

A differential formω is said to be of type (p, q) if for eacha ∈ V,
ω ∈ E ∗p,q that is to say,

ωa =

a∑

i1<...<ip
j1<...< jp

ωIJdzI ∧ dz̄J, I = (i1, . . . , ip), J = ( j1, . . . , jp).

The operatord of exterior differentiation defined on real valued forms
extends obviously to aC linear map fromC∞p forms toC∞(p+1) form,
with properties similar to those proved before.

If f is a complex valued function, we have a decomposition

d f = ∂ f + ∂̄ f
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where∂ f is of type (1, 0) and∂̄ f of type (0, 1), since the spaceE ∗ =
E1,0 ⊕ ε

∗
1,0. In terms of local coordinates, we have

∂ f =
∑ ∂ f

∂zk
dzk, ∂̄ f =

∑ ∂ f
∂z̄k

dz̄k.

If ω is a form of type (p, q) say,

ω =
∑

ωIJdzi1 ∧ . . . ∧ dzip ∧ dz̄j1 . . . ∧ dz̄jq

=
∑

ωIJdzI ∧ dz̄J say,

then dω =
∑

dωIJ ∧ dzI ∧ dz̄J

=
∑

(∂ωIJ + ∂ωIJ) ∧ dzI ∧ dz̄J

so thatdω = ∂ω + ∂̄ω, where∂ω is of type (p + 1, q) and ∂̄ω of type
(p, q+ 1). From the fact that the decomposition∧rE ∗ =

∑
E ∗p,q is direct

we see at once that the fact thatd2 = 0 is equivalent with the three
conditions

∂2 = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄2 = 0.

Note further that we havē∂ f = ∂̄( f̄ ) [ The operation∂̄ f is the con- 119

jugationE ∗1,0→ E ∗0,1 defined earlier].

Definition. A differential formω is holomorphic ifω is of type (p, 0)
and∂̄ω = 0.

Remark. If f is a 0− form, it is holomorphic if and only iff , as a
function of (z1, . . . , zn), the complex local coordinates is holomorphic.
Further ifω is of type (p, 0), if ω =

∑
fI (z)dzI in local coordinates,ω is

holomorphic if and only iffI (z) is holomorphic for eachI .

We make two further remarks.

1. Any complex manifold is orientable. In fact the jacobian determi-
nant of a holomorphic mapf : Ω → Cn, Ω open inCn, consid-
ered as aC∞ map of an open set inR2n into R2n (in terms of the
identification ofR2n andCn made earlier ) is equal to|D|2, where

D = det

(
∂ fi
∂x j

)
.
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2. Let V, V′ be complex manifolds,f : V → V′ a holomorphic
map. f induces aC linear mapTa(V) → T f (a)(V′) sinceϕ ◦
f is holomorphic for any holomorphicϕ. Hence, the mapf ∗ :
T ∗

f (a) → T ∗
a maps (E ∗1,0) f (a) into (E ∗1,0)a. Hencef ∗(ω′) is of type

(p, q) if ω′ is of type (p, q). Since moreover, for any formω′ of
type (p, q) onV′, we have,

∂( f ∗(ω′)) + ∂̄( f ∗(ω′)) = d f∗(ω′) = f ∗(dω′)

= f ∗(∂ω′) + f ∗(∂̄ω′),

and f ∗ preserves the type, we deduce that120

∂ f ∗(ω′) = f ∗(∂ω′), ∂̄ f ∗(ω′) = f ∗(∂̄ω′).

[Note that this is not true for anyC∞ map f .] As in the case of aCk

manifold, we setZp,q(V) = set ofC∞ formsω of type (p, q) with ∂̄ω = 0
andBp,q(V) = set ofC∞ formsω of type (p, q), for which there is aC∞

form ω′ of type (p, q − 1) with ∂̄ω = ω. Then, sincē∂2 = 0, we have
Bp,q(V) ⊂ Zp,q(V). We setHp,q(V) = Zp,q(V)/Bp,q(V). These groups
are called the Dolbeault groups ofV.

These groups are not topological invariants ofV. They depend es-
sentially on the holomorphic structure ofV.

We now look for an analogue of Poincare’s lemma, i.e. for a class
of domainsD in Cn for which Hp,q(D) = 0 for q ∗ ∗ ∗ ∗ ∗ 1. We begin
with the following lemma.

Lemma. Let K, L and L′ be compact sets inC,Cr andRn, respectively.
We denote a point in K× L× L′ by (z,w, t). If g is a C∞ function defined
in a neighbourhood of K× L × L′ and if g is holomorphic in w for each
fixed z and t, then there exists a C∞ function f in a neighbourhood of

K × L × L′ which is holomorphic in w for fixed z and t such that
∂ f
∂z̄
= g

in a neighbourhood of K× L × L′.

Proof. We may assume thatg has compact support inC for any fixedw
andt [Multiply g if necessary, byϕ(z) whereϕ has compact support and
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= 1 in a neighbourhood ofK ]. Define

f (z,w, t) = −
1
π

∫

C

g(ζ,w, t)
ζ − z

dξ ∧ dη

�

Then 121

∂ f
∂z̄
= −

1
π

∫

C

∂g(ζ + z,w, t)
∂z̄

−
1
ζ

dξ ∧ dη

= lim
E→0
−

1
π

∫

|ζ |≥E

∂g(ζ + z,w, t)

∂ζ̄
−

1
ζ

dξ ∧ dη

= lim
E→0
−

1
2πi

∫

|ζ |≥E

∂g(ζ + z,w, t)

∂ζ̄
−

1
ζ

dξ̄ ∧ dη

= lim
E→0
−

1
2πi

∫

|ζ |≥E

d

(
g(ζ + z,w, t)dζ

ζ

)
.

Now by Stoke’s theorem,

− lim
E→0

1
2πi

∫

|ζ |≥E

d
(g(ζ + z,w, t)dζ

ζ

)

= lim
E→0

1
2πi

∫

|ζ |=E

d(ζ + z,w, t)dζ
ζ

= g(z).

Clearly f is aC∞ function and holomorphic inw for fixed z and t
Grothendieck’s lemma (or Poincare’s lemma for∂̄). If D = D1×· · ·×Dn,

whereDi is a domain inC, 1 ≤ i ≤ n, then if
(p,q)
ω is aC∞ differential

form onD with ∂̄ω = 0, q ≥ 1, then there exists aC∞ differential form
ω′ on D such that̄∂ω = ω; in other wordsHp,q(D) = 0 for q ≥ 1.

Proof. To make clear the basic idea we shall first prove the lemma for
(0, 1) forms onK = K1 × · · · × Kn whereKi are compact sets in. �
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[i.e. for forms in some neighbourhood ofK, the above equations
holding in some neighbourhood ofK (not necessarily the same)].

Letω = a1dz̄1+· · ·+andz̄n. By the lemma, there exists aC∞ function122

bn in a neighbourhood ofK1 × · · · × Kn such that

∂bn

∂z̄n
= an.

Letωn−1 = (ω − ∂̄bn) = a′1dz̄n + · · · + an−1dz̄n−1.
Then∂̄ω = 0⇒ ∂̄ωn−1 = 0.
Hence

dz̄n ∧
∑

i≤n−1

∂a′i
∂z̄n

dz̄i = 0

i.e. a′i are holomorphic inzn.
Hence by the lemma there exists aC∞ function bn−1 in a neigh-

bourhood ofK1 × · · · × Kn which is holomorphic inzn and for which
∂bn−1

∂z̄n−1
= a′n−1.

Letωn−2 = ω − ∂̄bn − ∂̄bn−1.
Thenωn−2 = a′′1 dz̄1 + · · ·a′′n−2dz̄n−2 with a′′1 holomorphic inzn−1,

zn−2. We continue the process and obtain

ω1 = ω − ∂̄bn − ∂̄bn−1 · · · − ∂̄b1 = 0

i.e. ω = ∂̄(bn + bn−1 · · · + bn).

We shall now prove by induction the lemma for forms on

K = K1 × · · · × Kn,Ki compact inC.

Let Ok = the set of differential forms of type (p, q) not containing
dz̄k, . . . dz̄n in their expressions in local coordinates.

Assume that the lemma is proved for differential forms inOi , i ≤ k.123

(The lemma is trivial forO1). Letω be a differential form inOk+1. Then

ω = dz̄k ∧ ω1 + ω2 where

ω
p,q−1
1 , ω

p,q
2 ∈ Ok.
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If ∂̄ω = 0, dz̄k ∧ ∂̄ω1 + ∂̄ω2 = 0 hence
∂ω1

∂z̄j
= 0 for j > k.

Since, by assumption,
∂ω2

∂z̄j
= 0 for j ≥ k. By the lemma, there

exists
p,q−1
Φ in a neighbourhood ofK, holomorphic inzj , j > k such that

∂Φ

∂z̄k
= ω1. Thenω − ∂̄Φ ∈ Ok, ∂̄(ω − ∂̄Φ) = 0 and by the induction

hypothesis there existsψ such that

∂̄ψ = ω − ¯∂Φ

i.e. ω = ∂̄(Φ + ψ).

We shall now prove the lemma forD = D1 × · · · × Dn. Let Kν
i be a

sequence of compact sets,Kν
i ↑ Di asν→ ∞ and letKν = Kν

1×· · ·×Kν
n.

By what we have proved above, there exist differential formsων of type
(p, q− 1) in neighbourhood ofKν such that

∂̄ων = ω in a neighbourhood ofKν.

We shall consider two different cases

(i) q ≥ 2 and (ii) q= 1

(i) If q > 1, ∂̄(ων+1 − ων) = 0 in a neighbourhood ofKν.

Sinceων+1 − ων is of type of (p, q− 1) andq− 1 ≥ 1, there exists a 124

differential formϕν+1 of type (p, q−1) in D such that̄∂ϕν+1 = ων+1−ων

on K.
Let ψν+1 = ων+1 − ∂̄ϕν+1 − · · · − ¯∂ϕ1.

Then ψν+1 − ψν = ων+1 − ων − ∂̄ϕν+1

= 0 in a neighbourhood ofKν.

Hence the formψ = ψν in Kν, ν ≥ 1, is well defined, and̄∂ψ = ω.
We suppose thatKν

i have the property that any holomorphic func-
tion in a neighbourhood ofKν

i can be approximated, uniformly onKν
i

by holomorphic functions inDi [It is a classical theorem that any do-
main inC can be approximated by such compact sets: this result is a
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consequence of the Runge theorem proved in Chap. III.] From Chap I,
§5, it follows that any holomorphic function onKν can be approximated
on Kν by holomorphic functions inD and in view of the remark follow-
ing the definition of holomorphic forms, there exist holomorphic forms

ϕν+1 of type (p, 0) onD such that||ϕν+1− (ων+1−ων)|| <
1
2ν

on Kν. [the

inequality holding for all coefficients]. Hence
∞∑
1
{ϕν+1 − (ων+1 − ων)} is

uniformly convergent on any compact subset ofD.

Letω′ =
∞∑
0
{ων+1 − ων − ϕν+1} whereω0 = 0; we have

ω′ = ωr − ϕr − ϕ1 +

∞∑

r

(ων+1 − ων − ϕν+1)

on Kr ; since theϕν and
∞∑
r
(ων+1 −ων − ϕν+1) are holomorphic onKr we

conclude that̄∂ω′ = ω in D, and thatω′ is C∞.
The proof of Grothendieck’s lemma on compact sets given above125

follows essentially the exposition by Serre [42] of the original proof of
Grothendieck. It is to be remarked that also the proof of Poincare’s
lemma (for cubes instead of arbitrary convex sets) can be given on the
same lines as that of the Grothendieck lemma. This is essentially the
proof given by E. Cartan [5]; this proof ofE. Cartan was in fact the
origin of the proof of the Grothendieck lemma.

8 Applications to complex analysis. Hartogs’ con-
tinuation theorem and the Oka-Weil theorem

Proposition 1. LetΩ be a convex open set inCn andϕ a real valued
C∞ function onΩ. In order the there exist a holomorphic function f on
Ω such that Re f= ϕ, it is necessary and sufficient that

∂2ϕ

∂zi∂z̄j
= 0 for 1 ≤ i, j ≤ n.
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Proof. If ϕ = Re f =
1
2

( f + f̄ ), then
∂2ϕ

∂zi∂z̄j
= 0 since

∂ f
∂z̄j
= 0,

∂ f̄
∂zi
=

∂ f
∂z̄i
= 0. Suppose conversely that these equations are satisfied. Wesee

at once that the form of type (1.1)

∂̄∂ϕ = 0.

Sinced = ∂ + ∂̄ and ∂̄2 = 0, this can be writtend∂ϕ = 0. By
Poincare’s lemma, there is a complex valued functiong onΩ with

dg= ∂ϕ.

Since∂ϕ is of type (1, 0), we have∂g = ∂ϕ, ∂̄g = 0, so thatg is 126

holomorphic. Further

d(g+ ḡ) = dg+ dg= ∂ϕ + ∂ϕ = dϕ,

so thatg+ ḡ− ϕ is constant, and the proposition follows.
This implies the following

Proposition 1′. Letϕ be a C∞ real valued function on the complex mani-
fold V. In order thatϕ be locally the real part of a holomorphic function,
it is necessary and sufficient that∂̄∂ϕ = 0.

Lemma 1. If D = {(z1, . . . , zn) ∈ Cn||zi | < Ri}, n ≥ 2, U is a neighbour-
hood of∂D in Cn and if f is a holomorphic function in U∩ D, there
exists a neighbourhood V of∂D and a holomorphic function F in D
such that F|V ∩ D = f .

Proof. LetE1, E2 be two positive numbers such that ifU1 = {(z1, . . . , zn)
|R1 − E1 < |z| < R1, |z2| < R2, . . . , |zn| < Rn} andU2 = {(z1, . . . , zn)|z1| <

R1,R2 − E2 < |z2| < R2, . . . , |zn| < Rn} , thenU1 ∪ U2 ⊂ U. �

For any holomorphic functionf onU1 there exist holomorphic func-

tionsar in {|z2| < R2, . . . , |zn| < Rn} such thatf (z) =
∞∑
−∞

ar (z′)zr
1 where

z′ = (z2, . . . , zn). Let z′ = (z2, . . . , zn) be any point with

R2 − ε2 < |z2| < R2, . . . , |zn| < Rn.
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Then f (z1, z′) is holomorphic for|z1| < R1 since f is holomorphic
in U2. Hence there can be no terms containing negative powers ofz1 in 127

the Laurent as expansion off : thusar (z′) = 0 for r < 0, if R2 − ε2 <

|z2| < R2. By the principle of analytic continuation, this implies that
ar (z′) = 0, for r < 0, |z2| < R2, . . . |zn| < Rn, and

f (z) =
∞∑

0

ar (z
′)zr

1 in U1 ∪U2.

By Abel’s lemma,
∞∑
0

ar (z′)zr
1 is uniformly convergent on compact sub-

sets ofD and hence

F(z) =
∞∑

0

ar (z
′)zr

1

is a holomorphic extension off |U1 ∪ U2 to D. HenceF = f in the
connected componentΩ of U ∩ D containingU1 ∪ U2; since∂D is
connected,Ω = V ∩ DwhereV is a neighbourhood ofD.

Lemma 2. If ω is a differential form of type(0, 1) with compact support
in Cn, n ≥ 2, and if ∂̄ω = 0, there exists a C∞ functionϕ on Cn, with
compact support, such that̄∂ϕ = ω.

Proof. ChooseR> 0 such that if

2 D
{
(z1, . . . , zn)

∣∣∣∣|zi | < R
}
, then supp.ω ⊂ D.

By Poincare’s lemma for̄∂, there exists aC∞ function f onCn such
that

∂̄ f = ω.

Now we haveω = ∂̄ f = 0 in a neighbourhood of∂D, i.e. f is
holomorphic in a neighbourhood of∂D. Hence by Lemma 1 there exists
a functionF, holomorphic onD such thatF(z) = f (z) for x in a certain128

neighbourhood of∂D. Consider

ϕ(z) =


f (z) − F(z) for z ∈ D

0 for z < D.
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Then clearlyϕ is C∞ function with compact support and̄∂ϕ = ω.
We shall now prove the following important theorem of Hartogs.

Theorem 1(Hartogs). Let D be a bounded open connected subset ofCn,
n ≥ 2, such thatCn−D is connected, and U, a neighbourhood of∂D. If
f is a holomorphic function on U, then there exists a neighbourhood V
of ∂D and a holomorphic function F on D such that F|V ∩ D = f .

Proof. We can assume without loss of generality thatf ∈ C∞ in D. [If
not, multiply f by aC∞ functionα with compact support inU such that
α(z) = 1 for z in a neighbourhood of∂D.] Let ω = ∂̄ f in D; since f is
holomorphic near∂D, ω has compact support inD. We extend it toCn

by settingω = 0 outsideD. �

Thenω is of type (0, 1) and has compact support and∂̄ω = 0. Hence
by Lemma 2, there exists aC∞ functionϕ, in Cn, with compact support
such that̄∂ϕ = ω.

In particularϕ is holomorphic on each open set on whichω vanishes
and henceϕ is holomorphic in a neighbourhood ofCn − D. Also ϕ has
compact support andCn − D is connected. Hence, by the principle of
analytic continuationϕ = 0 in a connected neighbourhood ofCn − D
and henceϕ = 0 in a neighbourhoodV of ∂D. ConsiderF = f − ϕ; we
have

∂̄F = 0 in D, F = f near∂D.

HenceF is a holomorphic function with the required properties. 129

Definition. A domainD in Cn is said to be a Cousin domain if given a
differential formω of type (p, q), q ≥ 1, p ≥ 0, such that̄∂ω = 0, there
exists a differential formω′ of type (p, q− 1) such that̄∂ω′ = ω; (in this
case we shall also any thatD is Cousin).

Theorem 2 (Oka). Let B = {z ∈ C
∣∣∣|z| < 1}. If D is a domain inCn

such that D× B is Cousin and if f is a holomorphic function on D,
D f = {z ∈ D

∣∣∣| f (z)| < 1}, then Df is Cousin. Further given a differential

form
(p,q)
ω , q ≥ 0 on Df , such that∂̄ω = 0, there exists a formΩ of type

(p, q) on D×B with ∂̄Ω = 0 such that if i: D f → D×B is the map given
by i(z) = (z, f (z)), we have i∗(Ω) = ω.
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Proof. We begin with the remark thati: D f → D × B is injective and
proper; furtheri∗ is injective at every point, so thati(D f ) is a closed
complex analytic submanifold ofD × B. Let π: D × B → D be the
projection

π(z, z′) = z, (z, z′) ∈ D × B.

�

Let π−1(D f ) = D f × B = V. ThenV is a neighbourhood ofi(D f ) in
D × B.

Let V′ be a neighbourhood ofi(D f ) in V such thatV̄′ ⊂ V. Then
there exists aC∞ functionα on D × B such that

α(z, z′) = 1 if (z, z′) is in a neighbourhood ofi(D f )

= 0 if (z, z′) < V′.

Let ϕ = π∗(ω) on V; sinceπ is holomorphic,ϕ is of type (p, q).
Further, sinceπ ◦ j = identity onD f , we havei∗(ϕ) = ω. Then ifϕ′ is130

defined onD × B asϕ′ = αϕ on V = 0 outsideV, ϕ′ is aC∞ form of
type (p, q) on D × B, and sinceϕ′ = ϕ neari(D f ) we havei∗(ϕ′) = ω.
Letω1 be the form defined onD × B by

ω1 = in a neighbourhood ofi(D f )

=
1

z′ − f (z)
∂̄(ϕ′) in D × B− i(D f ).

Then ∂̄ω1 = 0 andω1 is of type (p, q + 1), q ≥ o. [ω1 is C∞ since
∂̄(ϕ′) = ∂̄(ϕ) − 0 in a neighbourhood ofi(D f ).] Hence there existsψ of
type (p, q) such that̄∂ψ = ω1.

Consider∂̄(ϕ′ + (z′ − f (z))ψ)

= ∂̄(ϕ′) − (z′ − f (z))∂̄ψ.

Clearly ∂̄[ϕ′ + (z′ − f (z))ψ] = 0 onD × B andi∗[ϕ′ + (z′ − f (z))ψ] =
i∗(ϕ′) = ω.

Hence given a differential form
(p,q)
ω , q ≥ 0 onD f with ∂̄ω = 0 there

exists a formΩ{= ϕ′ + (z− f (z))ψ}, on D × B such thati∗(Ω) = ω and
∂̄Ω = 0. SinceD×B is Cousin it follows immediately thatD f is Cousin.
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Corollary. With the same notation as in the theorem, if D×Br is Cousin
for every positive integer r, so is Df × Br for every positive integer r.

Proof. ConsiderD × Br+1, a point in D × Br+1 being denoted by
(z,w1, . . . ,wr+1). Then, if D′ = (D × Br), D′f = Dr × Br and by ap-
plying the lemma toD′ the corollary is proved. �

Theorem 3(Oka). If z = (z1, . . . , zn) ∈ Cn and if fi(z)1≤i≤r are holomor- 131

phic functions inCn and if U =
{
z ∈ Cn

∣∣∣∣| fi(z)| < 1i, 1 ≤ i ≤ r
}

the map

U → Cn × Br given by i(z) = (z, f1(z), . . . , fr (z)), then given a holomor-
phic function g on U, there exists a holomorphic function F onCn × Br

such that G◦ i = g.

Proof. Let

D0 = C
n,Dk+1 = {z ∈ Dk

∣∣∣∣∣| fk+1(z)| < 1}; 0 ≤ k < r.

ClearlyDr = U. �

Let ir be the mapDr → Dr−1 × B defined byir(z) = (z, fr (z)), ir−1:
Dr−1 × B→ Dr−2 × B2 the map defined byir−1(z,w1) = (z,w1, fr−1(z)),
and so on. Then we havei = i1 ◦ i2 ◦ · · · ◦ ir . Further, sinceCn × Bm

is Cousin for everym (by Poincare’s lemma for̄∂), it follows by the
corollary to Theorem 2 thatDk × Bm is Cousin for 0≤ k ≤ r, and all
m≥ 0, so that, by Theorem 2, for any formωk of type (p, q) onDk×Br−k

with ∂̄ωk = 0, there is a formωk+1 of type (p, q) on Dk−1 × Br−k+1 with
∂̄ωk+1 = 0 and i∗k(ωk+1) = ωk. Hence, by induction for anȳ∂ closed
form ω of type (p, q) on U = Dr , there is a∂̄ closed formΩ of type
(p, q) onCn × Br with i∗(Ω) = ω. Theorem 3 is the special case of this
for which p = 0, q = 0.

Theorem 4 (Oka - Weil approximation theorem). If { fi(z)}1≤i≤r are en-

tire functions in z1, z2, . . . , zn, and if U =
{
z∈ Cn

∣∣∣∣∣| fi(z)| < 1, 1 ≤ i ≤ r
}
,

then U is a Runge domain.

Proof. With the notation of Theorem 3, given a holomorphic function132

G onCn × Br such thatG ◦ i = g. Let a point inCn × Br be denoted by
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(z,w). ThenG can be expanded in a uniformly convergent Taylor series,
G(z,w) =

∑
aαβzαwβ. �

HenceG(z,w) = lim
k→∞

gk(z,w), uniformly on compact sets where

gk(z,w) are polynomials inz1, . . . , zn,w1, . . . ,wr .

Hence g = G ◦ i = lim
k→∞

gk ◦ i

= lim
k→∞

∑

α+β≤k

aαβz
α f β, uniformly on compact

subsets ofU, where f = ( f1(z), . . . , fr(z)). Thusg can be approximated
by polynomials inz1, . . . , zn, f1, . . . , f1. Since, thefi being entire, thefi
can be approximated by polynomials inz1, . . ., zn, so cang, andU is a
Runge domain.

Remark. We have used Grothendieck’s lemma for a domain of the form
D = D1 × · · · × Dn; however, for the proof of the Oka-weil theorem, it
would suffice to use it forcompactsetsK = K1 × · · · × Kn. However,
the extension theorem of Oka (Theorem 3) is very important, so that we
have given the proof for open, rather than compact, sets.

As a corollary to the Oka-Weil theorem we have the following

Proposition 2. A convex open set inCn is a Runge domain.

Proof. It is enough to prove that a bounded convex set in Runge. Con-
siderU as a convex set inR2n. Then for any pointz0 on the boundary,

there exists a linear functionl, l(z) =
n∑
1

ai xi +
n∑
1

biyi + c such thatU ⊂133
{
z
∣∣∣∣∣l(z) < 0

}
andl(z0) = 0. LetL(z) be a linear function,L(z) =

n∑
i

dizi+e,

di , e ∈ C such that 1(z) = Re[L(z)]. HenceU ⊂
{
z
∣∣∣∣∣ReL(z) < 0

}
, while

ReL(z0) = 0. Let K be any compact subset ofU. If z0 ∈ ∂U, we may
therefore find a linear functionL with ReL(z) < 0 for z ∈ K, ReL(z0) > 0
(replace theL constructed above byL + δ whereδ > 0 is sufficiently
small).Then ReL(z) > 0 for z in a neighbourhood ofz0. Since∂U
is compact, there exist finitely many linear functionsL1, . . . , Lr such
that �
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Re Li(z) < 0 for z ∈ K, ReLj(z) > 0 for at least onej if z ∈ ∂U.
Hence the set

ΩU =

{
z ∈ U

∣∣∣∣∣ReLi(z) < 0, i = 1, . . . , r
}

containsK and is relatively compact inU. Since the set.Ω = {z ∈

Cn
∣∣∣∣∣ReLi(z) < 0, i = 1, . . . , r} is convex, hence connected andΩ ∩ U =

ΩU is relatively compact inU, it follows thatΩ ⊂ U. Now

ΩU =

{
z∈ Cn

∣∣∣∣∣| fi(z)| < 0, i = 1, . . . , r
}

where fi(z) = eLi (z), so thatΩ is Runge by theorem 4. Hence any holo-
morphic function onU(⊃ Ω)can be approximated, uniformly onK, by
polynomials. SinceK is an arbitrary compact subset ofU, the proposi-
tion is proved.

The proof of Hartogs’ theorem given here is suggested by the proof 134

of the Runge theorem of Malgrange-Lax (see Chap. III §10; also Mal-
grange [27]). That of the Oka-well theorem is merely a translation of
Oka’s own proof [34] into the language of differential forms.

9 Immersions and imbeddings: the theorems of
Whitney

In what followsV, V′ areCk manifolds, 1≤ k ≤ ∞ countable at infinity.

Definitions. (1) A Ck map f : V → V′ is called an immersion if for
everya ∈ V, f∗: Ta(V) → T f (a)(W) is injective . If f∗: Ta(V) →
T f (a)(W) is injective for every a in a subsetE of V, we say thatf is
regular onE.

(2) A Ck map f : V → V′ is called an imbedding iff is an immersion
and f is injective.

(3) An imbedding (immersion)f : V → V′ is called a closed imbedding
(immersion) if f is proper.
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[Note that the set of points wheref is regular is open.]
Let {Ui} be a locally finite covering ofV, Ui being relatively compact

coordinate neighbourhoods. Then there exist compact setsKi ⊂ Ui with
∪Ki = V. Let η be a continuous function onV, η(x) > 0 for all x, and
N, a non- negative integer≤ k. Given aCk function f on V, anotherCk

functiong is said to approximatef within η uptoNth order (with respect
to the covering{Ui}), if

|Dα f (x) − Dαg(x)| < η(x) for |α| ≤ N andx ∈ Ki

and we denote this fact byg approximatesf with respect to (Ui , η,N)′′.
If {Ui} is given, we say thatg approximatesf within η upto orderN.135

Remark. If {Ui}, {U′j} are two locally finite coverings ofV, Ki ⊂ Ui ,
K j ⊂ U j , Ki , K′j compact sets ofV such that∪Ki = ∪K′j = V then there
exists a positive continuous functionδ such that ifg approximatesf with
respect to (Ui , η,N) theng approximatesf with respect to (U′j , δη,N).

Proof. Since{U′j} is locally finite, it suffices to prove that if{y j
1, . . . , y

j
n},

{xi
1, . . . , x

i
n} are coordinate inU′j ,Ui respectively, then for anyCk func-

tion h onV, we have
∣∣∣∣∣D

α
yj h(y)

∣∣∣∣∣ ≤ C j sup
K′j∩Ui,0

∑

|β|≤N

∣∣∣∣∣D
β

xi h(x(i))
∣∣∣∣∣

for y in K′j and some constantC j independent ofh. This is, however,
obvious. �

This remark implies that if{Ui}, N are such thatf can be approxi-
mated by functionsg in a given classC with respect to (η,N) for anyη
then the same is true if{V)i} is replaced by any other locally finite cov-
ering {U′j} consisting of relatively compact coordinate neighbourhoods.

Proposition 1. If f : Vn → Rp is a C1 map which is an immersion,
given any locally finite{Ui} as above, there exists a positive continuous
functionη on Vn such that if g approximates f with respect to(Ui , η, 1),
then g is an immersion.
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Proof. The rank (d f)(x) = n = dimV for any x ∈ V. Hence there
exists a locally finite covering{Ui} , compact setsKi ⊂ Ui , ∪Ki = V,
and positive numbersδi < 1 such that if|Dα f (x) − Dαg(x)| < δi for x 136

in Ui , |α| ≤ 1, then rank (dg)(x) = n. Let {αi} be a partition of unity
subordinate to{Ui} and δ′1 = inf .{δi1, δ1p}, then infimum being over
thoseik for which Ki ∩ Uik , φ. We may then takeη =

∑
δ′iαi. �

Lemma 1. If K is a compact set in V, L a neighbourhood of K and f :
V → Rp is an imbedding, there exists a positive numberδ such that for
any C1 map g: V→ Rp such that‖ f − g ‖L1< δ, g|K is injective.

Proof. Since rank (d f)(x) = n, for anyx in V, the rank theorem implies
that for anyxǫV there is a relatively compact neighbourhoodU and a
positive numberδ′ such that| f (x′) − f (x′′)| ≥ δ′|x′ − x′′| for x′, x′′ ∈ U.
Let 0 < ε < δ′ and‖ g − f ‖U1 is sufficiently small, andh = g − f , we
have

|h(x′) − h(x′′)| ≤ ε ‖ x′ − x′′ ‖ for x′, x′′ ∈ U.

�

Then|g(x′)− g(x′′)| ≥ (δ′ − ε)|x′ − x′′|, i.e. g|U is injective. SinceK
compact, there exists a finite number of pointsx1, . . . xn and neighbour-
hoodU1, . . .Un, L ⊃ ∪Ui ⊃ K, such that if‖ g − f ‖Ui

1 is sufficiently
small, g|Ui is injective. Hence there exists a neighbourhoodΩ of the
diagonal∆ in K×K and a positive numberδ1 such that if‖ g− f ‖L1< δ1,
we haveg(x) , g(y) for any (x, y) ∈ Ω − ∆. Again there existsδ2 > 0

such that for (x, y) ∈ K × K −Ω, | f (x)− f (y)| ≥ δ2. Let δ = min(δ1,
δ2

4
).

Then if ‖ g − f ‖L1< δ, and (x, y)ǫK × K − Ω, ‖ g(x) − g(y) ‖≥
δ2

2
and

clearlyg|K is injective.
We shall not need the next proposition, but have included it because 137

it is of interest and is useful in many questions.

Proposition 2. If f : V n → Rp is an imbedding and f is locally proper,
there exists continuous functionη on V such that if g approximates f
within η upto1st order, then g is an imbedding.
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Proof. It follows from Proposition 1 that there exists a continuousfunc-
tion η1, such that ifg approximatesf within η1, upto 1st order,g is an
immersion. Now forg satisfying this condition, we shall find a positive
continuous functionη2 such that ifg approximatesf within η2 upto 1st

orderg is an imbedding. LetKm be compact sets such thatKm ⊂
◦

Km+1

and∪Km = V. DefineLm = Km+1 − Km. Then sincef is locally proper,
(therefore proper into and open setΩ in Rp), there exist open setsUm in
Rp such thatf (Lm) ⊂ Um andUm ∩ Um′ = φ if m′ ≥ m+ 2. [This is
because{ f (Lm)} is a locally finite system of compact sets inΩ such that
f (Lm) ∩ f (Lm′) = φ if m′ ≥ m+ 2]. Now chooseδm > 0 such that

‖ f − g ‖Lm
1 < δm for all m⇒ g(Lm) ⊂ Um

and g|Lm ∪ Lm+1 is injective. Then ifη2(x) < δm for x in Lm and g
approximatesf within η2 upto 1st order,g is injective. For ifg(x) = g(y),
x ∈ Lm, and x , y, sinceg|Lm ∪ Lm+1 is injective y ∈ Lm′ , where
m′ ≥ m+2 orm′ ≤ m−2. Butg(Lm) ⊂ Um for everymandUm∩Um′ = φ

if m′ ≥ m+ 2 or m′ ≤ m− 2. Hence we have a contradiction i.e.g is
injective. �

The proposition is false if we drop the assumption thatf is locally138

proper. Further even on compact subsets, an approximation to an injec-
tive map (which is not regular) need not be injective.

Lemma 2. If Ω is bounded open set inRn, f a Ck map: Ω → Rp,
p ≥ 2n, then for anyε > 0 there exists a Ckmap g:Ω → Rp such that

‖ g− f ‖Ω1< ε and(
δg
δxi

)1≤i≤n are linearly independent at any point ofΩ.

Proof. We may suppose thatf ∈ C2 because of Whitney’s approxima-
tion theorem (Chap. 1 §5). Letf0 = f . If f1, . . . , fr areCk maps such

that ‖ fs − f ‖Ω1< ε and
δ fs
δx1

, . . .
δ fs
δxs

are linearly independent onΩ, for

0 ≤ s≤ r < n we shall definefr+1 such that

‖ fr+1 − f ‖Ω1< ε and
∂ fr+1

∂x1
, . . . ,

∂ fr+1

∂xr+1

are linearly independent onΩ. �
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Let vi(x) =
∂ fr
∂x1

1 ≤ i ≤ n.

Define

ϕ : Rr ×Ω→ Rp by

ϕ(λ1, . . . , λr , x) =
r∑

1

λi
∂ fr
∂xi
− vr+1(x).

Now we have dimRr × Ω < p andϕ ∈ C1. Hence the image of
Rr ×Ω byϕ has measure zero inRp. Hence given anyδ > 0, there exists
a ∈ Rp such that‖ a ‖< δ anda < ϕ(Rr × Ω). For sufficiently smallδ,
if we define fr+1(x) = fr (x) + a.xr+1, a ∈ Rp having the above property,139

we have
∂ fr+1

∂xi
=
∂ fr
∂xi

for i ≤ r and
∂ fr+1

∂xr+1
= vr+1(x)+a which is linearly

independent of
∂ fr
∂xi

, 1 ≤ i ≤ r sincea < ϕ(Rr ×Ω). The lemma is proved

with g = fn.
Note that in the above lemma,g|Ω is an immersion.

Theorem 1. If p ≥ 2n, f : Vn→ Rp is a Ck map ifη is positive continu-
ous function on V and{Ui} any locally finite covering of V by relatively
compact coordinate neighbourhoods, then there exists an immersion g:
Vn→ Rp such that g approximates f with respect to(Ui , η, 1).

Proof. Because of the remark made at the beginning, we may replace
{Ui} by any other similar covering. We may therefore suppose that{Ui}

is a locally finite covering ofV by relatively compact coordinate neigh-
bourhoods such thatUi are diffeomorphic to bounded open sets inRn.
Let Ki be compact sets withKi ⊂ Ui and∪Ki = V. Let f0 = f . Assume
that f1, . . . , fm are defined and have the following properties

(i) fm approximatesf with respect to (Ui , η, 1),

(ii) fm is regular on
⋃
i≤m

Ki ,

(iii) Supp.( fm+1 − fm) ⊂ Um+1.

�
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Let αm be aC∞ function: V → R, having compact support inUm+1,
while αm(x) = 1 for x in a neighbourhood ofKm+1. By the lemma
proved above,fm|Um+1 has approximationhm within δm upto 1st order
such thathm is regular onUm+1; let η′ be a positive continuous function,140

η′ < η such that, ifg approximatesfm within η′ upto 1st order, theng is
regular on

⋃
i≤m

Ki

Define
fm+1 = fm+ αm(hm − fm).

Then clearly ifδm is small enough,

i) fm+1 approximatesf within η upto the 1st order,

ii) fm+1 is regular on
⋃
i≤m

Ki (since it approximatesfm within η′) and

fm+1 = hm in neighbourhood ofKm+1 and so regular on
⋃
i≤m

Ki ,

iii) Supp(fm+1 − fm) ⊂ Um+1.

Hence by induction we have functions{ fm}m≥1 satisfying (i), (ii) and
(iii) above. We now defineg = lim

m→∞
fm. Since{Ui} is locally finite and

Supp.( fm+1 − fm) ⊂ Um+1, g is well defined and it is easily verified that
g satisfies the conditions stated in the theorem.

Theorem 2. Let f : Vn→ Rp be an immersion, p≥ 2n+1, {Ui} a locally
finite covering of V by relatively compact coordinate neighbourhoods,
Ki compact sets, Ki ⊂ Ui , ∪Ki = V, such that f|Ui is injective and letη
be a positive continuous function on V. Then there exists an imbedding
g, approximating f withinη upto1st order.

Proof. We shall define, by induction, regular mapsfm: V → R, m≥ 1,

(i) fm|Ui is injective for eachi,

(ii) fm is injective on
⋃
i≤m

Ki,

(iii) fm approximatesf within η upto 1st order and Supp.( fm+1− fm) ⊂141

Um+1.
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Let f0 and assume thatf1, . . . , fn are define. Letαm be aCk function
αm: V → R with compact support inUm+1 such thatαm(x) = 1 in a
neighbourhood ofKm+1. LetΩ be the open subset ofV × V defined by
Ω = {(x, y)|αm(m) , αm(y)}. ThenΩ is aCk manifold of dimension 2n;
defineϕ: Ω→ Rp by

ϕ(x, y) =
fm(y) − fm(x)
αm(x) − αm(y)

.

Sincep ≥ 2n+1 andϕ ∈ C1, ϕ(Ω) has measure zero inRp. Hence we
can choosea ∈ Rp, arbitrarily near 0, such that a< ϕ(Ω) and if fm+1(x) =
fm(x)+aαm(x), fm+1 approximatesfm within a suitable positive function
η′ so that fm+1 is regular andfm+1 approximatesf within η. We shall
now prove thatfm+1 thus defined satisfies (i), (ii) and (iii). Iffm+1(x) =
fm+1(y), then

(9.1) a{αm(x) − αm(y)} = fm(y) − fm(x)

and it follows from the choice of a that

αm(x) − αm(y) = 0 i.e. fm(x) = fm(y).

�

Hence fm+1|Ui is injective for each if andfm+1|
⋃
i≤m

Ki is injective.

Moreover if x ∈ Km+1 and fm+1(x) = fm+1(y) for y ∈
⋃

i≤m+1
Ki then

y ∈ Um+1, [for otherwiseαm(x) = 1 andαm(y) = 0 which contradicts the 142

choice of because of (9.1)] and sincefm+1|Um+1 is injective x = y i.e.
fm+1|

⋃
i≤m+1

Ki is injective. Hence we have, by induction, a family{ fm}

satisfying (i) (ii) and (iii) and ifg lim
m→∞

fm, g is seen to have the required

properties.

Lemma 3. If f : V n→ R is continuous proper map and g: Vn→ R is a
continuous map which satisfies| f (x) − g(x)| < 1 then g is proper.

Proof. Clearly {x ∈ V
∣∣∣|g(x)| ≤ C} ⊂ {x ∈ V

∣∣∣| f (x)| ≤ C + 1} and so is
compact for everyC. �
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Theorem 3 (Whitney). If V is a Ck manifold, k≥ 1, of dimension n,
then there exists a closed immersion of V intoR2n and there exists a
closed imbedding of V intoR2n+1.

Proof. Let {Ui} be a locally finite covering ofV as before, and let{Ki}

be compact sets,Ki ⊂ Ui and∪Ki = V. Let {αi} be Ck functions,
supp.αi ⊂ Ui andαi(x) = 1 for x in a neighbourhood ofKi . Define

ϕ : V → R by ϕ(x) =
∑

i≥1

iαi(x).

clearly ϕ is Ck. Moreover if x ∈ Km, we haveϕ(x) ≥ mαm(x) = m.
Henceϕ−1[0,m] ⊂

⋃
i≤m+1

Ki and so is compact. Henceϕ is proper. de-

fine ϕ′: V → R2n by ϕ′(x) = (ϕ(x), 0, . . . , 0). Chooseη1, a positive
continuous function, with 0< η1(x) < 1. By the lemma above iff ap-
proximatesϕ′ within η1, it is proper. Then by Theorem 1, there exists
an immersionf which approximatesϕ′ within η1/2 and this proves the143

first part of the theorem. �

Let f : V → R2n be a proper immersion. Choose a locally finite
covering {Ui} of V such that f |Ui is injective and there exists com-
pact sets{Ki}, Ki ⊂ Ui, ∪Ki = V. DefineF: V → R2n+1 by F(x) =
( f1(x), ., f2n(x), 0). Then by Theorem 2, there exists an imbeddingg,
approximatingF within η1/2 upto 1st order. Henceg approximatesϕ′

within η1 and hence is proper i.e.g: V → R2n+1 is a closed imbedding.
We add a note about th embedding of real analytic manifolds. Let

V be real analytic, and suppose thatV admits a proper real analytic
imbeddingi in Rp for somep. Then if f is C∞ on V, there existsF ∈
C∞ on Rp with F ◦ i = f . If follows easily from this and Whitney’s
approximation theorem (Chap. I, §5) that for any locally finite {Ui},
η > 0 andN > 0, andC∞ function f can be approximated a real analytic
functiong with respect to{Ui , η,N} (we have only to approximateF by
G and setg = G ◦ i). Hence it follows, from Whitney’s Theorem 3 and
Proposition 2 that such a manifold has a closed immersion inR2n, and a
closed imbedding inR2n+1. These results immersion inR2n, and a closed
imbedding inR2n+1. These results have been completed by H.Grauert
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[13] by showing that any real analytic manifold countable at∞ can be
analytically imbedded inRp for somep. It follows from our remarks
above that we have the following theorem.

Theorem.Any real analytic manifold of dimension n which is countable
at∞ admits a real analytic closed immersion inR2n, and a real analytic
closed imbedding inR2n+1.

The problem of holomorphic imbeddings of complex manifoldsis 144

of a different nature. Only so calledStein manifolds(see Chap. III
for definition) can be imbedded as closed submanifolds ofCp. (See R.
Narasimha [31] and E. Bishop [3]).

Whitney [50] has proved that ifV is aCk manifold (k ≥ 1) of dimen-
sionn(≥ 2) andg: V → R2n−1 is any continuous map, then there is aCk

immersion f : V → R2n−1 approximatingf . From our remarks above it
follows that any realdifferentiable manifold(Ck or analytic)admits aa
closed immersion inR2n−1. (This is obviously false forn = 1; the circle
cannot be immersed in the line.) He has further proved [49] that anyCk

manifold of dimensionn can be imbedded inR2n. In particular, compact
haveclosedimbeddings inR2n. These results have been completed by
M.W Hirsch [15] by proving thata non-compact manifold of dimension
n has an imbedding inR2n (hence, a closed imbedding inR2n−1).

These results are best possible.

Note. The proof of the imbedding theorem (Theorem 3 above) given
here is essentially that of Whitney [51].





Chapter 3

1 Vector bundles

Definition. Let X andE be hausdorff spaces andp: E→ X a continuous 145

map. 1 Theotriple (E, pX) is called a continuous complex (real) vector
bundle of rankq if the following conditions are satisfied.

(i) For x ∈ X, Ex = p−1(x) is a vector space of dimensionq overC(R).

(ii) If x ∈ X, there is a neighbourhoodU of x and a homeomorphismh
of EU = P−1(U) ontoU×Cq(U×Rq) such that ifπ is the projection
of U ×Cq(U ×Rq) ontoU, we haveπ(h(y)) = x if y ∈ Ex andh|Ex

is aC(R)-isomorphism ofEx onto {x} × Cq({x} × Rq).

If E andX areCk manifolds (1≤ k ≤ ∞), if p is aCk map and if the
isomorphismshU can be chosen to beCk diffeomorphisms,p: E → X
is called aCk bundle (or differentiable bundle of classCk).

If X is a real (complex) analytic manifold real (complex) analytic
vector bundle can be defined in the same way. Complex analyticbundles
are also called holomorphic vector bundles. A vector bundleof rank 1
is called a line bundle.

It follows from the definition that ifp : E → X is a complex vector
bundle of rankq there exists an open covering{Ui} of X and homeo-
morphismsϕi : EUi → UiC

q such that ifUi j = Ui ∩ U j , thenϕ j ◦ ϕ
−1
i :

Ui j×C
q→ Ui j×C

q is a homeomorphism andϕ j◦ϕ
−1
i (x, y) = (x, gi j (x)v)

where, for eachx, gi j (x) is in GL(q,C) and gi j (x)g jk(x) = gik(x) for
x ∈ Ui jk = Ui ∩ U j ∩ Uk. Clearlygi j : Ui j → GL(q,C) is continuous. 146

Thegi j are called transition map (or transition functions) of the bundle.

119



120 3.

If the bundle isCk (or real or complex analytic), the transition maps
gi j : Ui j → GL(q,C) areCk (or real or complex analytic).

Conversely letX be a hausdorff topological space,{Ui}i∈I an open
covering of X and gi j : Ui j → GL(q,C) continuous map satisfying
gi j (x)g jk(x) = gik(x) for x ∈ Ui jk (= Ui ∩ U j ∩ Uk). Then letS be the
topological sum∪

i
{Ui × C

q × ×i}. Define an equivalence relation∼ on

S by (x, v, i) ∼ (x′, v′, j) if x = x′ andv′ = gi j (x).v. It is easily verified
that the equivalence relation is open and that the graph is closed. Hence
E = S/ ∼ is hausdorff. Let p′ : S → X be defined byp′(x, v, i) = x.
Clearly equivalent points have the same image inX so thatp′ defines a
map p : E → X. Then p−1(Ui) = {(x, v, i)|x ∈ Ui , v ∈ Cq} and hence
p−1(Ui) is “isomorphic” toUi × C

q andp : E → X is a complex vector
bundle of rankq. Thus a vector bundlep : E→ X is characterised by an
open covering{Ui} of X such thatp−1(Ui) is isomorphic toUi ×C

q, and
the transition mapsgi j : Ui j → GL(q,C). If X is aCk manifold, and the
gi j areCk, maps, then the vector bundle constructed above is alsoCk. A
similar remark applies to real and complex analytic vector bundles.

(Compare the above construction with the introduction of the topol-
ogy on the tangent bundle as given in Chap. II §1).

Definition. Let p : E→ X, p′ : E′ → X be two complex vector bundles147

on X. A bundle map or a homomorphismh : E → E′ is a continuous
maph : E → E′ such that for anyx ∈ X, h|Ex[= p−1(x)] is aC-linear
map intoE′x[= p−1(x)]. If in addition h is a homeomorphism (so that
h|Ex is an isomorphism ontoE′x), h is called an isomorphism.E andE′

are isomorphic if there is an isomorphic ofE ontoE′.

Similar definitions apply toCk, real analytic and holomorphic bun-
dle maps and isomorphisms.

Remark. Let a vector bundlep : E→ X be given by the open covering
{Ui}i∈I and the transition mapgi j : Ui j → GL(q,C). Let {Vα}α∈A be a
refinement of{Ui} andτ : A→ I a map such thatVα ⊂ Uτ(α). Consider
the vector bundlep′ : E′ → X whereE′ = S′/ ∼, S′ = {(x, v, α)|x ∈
Vα, v ∈ Cq} constructed with the transition mapsg′

αβ
= βτ(α)τ(β) |Vα ∩Vβ.

The mapτ defines a continuous maph′ : S′ → S, viz. h′(x, v, α) =
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(x, v, τ(α)). It is easily verified thath′ maps equivalent points into equiv-
alent points, and so define a continuous maph : E′ → E. This map is
easily seen to be an isomorphism of the vector bundlesE andE′.

Proposition 1. Let p : E → X and p′ : E′ → X be two vector bundles
given by the open coverings{Ui}i∈I , {Vα}α∈A and transition map(gi j ),
(g′
αβ

). Then a necessary and sufficient condition that the two vector bun-
dles are isomorphic is the following: there exists a common refinement
{Wk}k∈K of {Ui} and {Vα}, refinement mapsτ1 : K → I, τA : K → A,
[i.e. Wk ⊂ UτI (k) ∩ VτA(k)] and continuous maps h: Wk → GL(q,C) 148

such that if gkl, g′kl denote the restrictions to Wkl of gτI (k),τI (l), g′
τA(k),τA(l)

respectively, we have

hlgklh
−1
k = g′kl on Wkl.

Proof. Let p : E → X andp′ : E′ → X be isomorphic andh : E → E′

and isomorphic between then. Let{Wk} be a common refinement of{Ui}

and {Vα}. In view of the remark made above, we may suppose thatE
andE′ are constructed using the covering{Wk} and the transition maps
gkl, g′kl respectively. Letϕk : EWk → Wk × C

q andϕ′k : E′Wk
→ Wk × C

q

be the isomorphisms corresponding toE andE′ respectively. Leth′k =
ϕ′kohoϕ−1

k : Wk × C
q → Wk × C

q. Definehk : Wk → GL(q,C) by the
formula

h′k(x, v) = (x, hk(x), v).

Then sinceh′k◦ϕk◦ϕ
−1
1 ◦h

′−1
1 = ϕ′k◦ϕ

′−1
l and (x, gkl(x)v) = ϕk◦ϕ

−1
1 (x, v),

we obtain at once the relationhkglkh−1
1 = g′lk. For the converse, suppose

that p : E → X and p′ : E′ → X are two vector bundles and let{Wk}

be a common refinement of the covering{Ui}, {Vα} corresponding toE
andE′ respectively. If there exists maphk : Wk → GL(q,C), satisfying
hlgklh−1

k , let ϕk : EWk → Wk × C
q andϕ′k : E′Wk

→ Wk × C
q be the

isomorphisms corresponding toE andE′ respectively. Thenh : E→ E′

is defined as follows: leth′k : Wk × C
q → Wk × C

q be the isomorphism
defined by

h′k(x, v) = (x, hk(x)v);

seth(k) = ϕ′−1
k ◦ h′k ◦ ϕk on EWk. We haveh(k) = h(l) on EWkl because of 149

the formulahlgklh−1
k = g′kl. �
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Examples.(1) Let Iq = X × Cq and p : Iq → X be the projectionp,
(x, v) = x. Thenp : Iq → X is a complex vector bundle of rankq
and is called the trivial vector bundle of rankq. A bundle of rank
q is trivial if it is isomorphic to Iq. Since given a vector bundle
p : E→ X, every pointx ∈ X has a neighbourhoodU such thatEU

is isomorphic toU × Cq, every vector bundle is locally trivial.

(2) Let p1 : E1 → X and p2 : E2 → X be two vector bundles of
rank q1 and q2 respectively. SetF =

⋃
x∈X

(E1x ⊗ E2x) and define

the mapp : F → X by (E1x ⊗ E2x) = x. For anyx ∈ X, there
exists a neighbourhoodU such thatE1U andE2U are isomorphic to
U × Cq1 andU × Cq2 respectively. Letϕ1 : E1U → U × Cq1 and
ϕ2 : E2U → U × Cq2 be such isomorphisms. Defineϕ : FU →

×ϕ1 : E1U → U × Cq1+q2 by ϕ(e1x ⊗ e2x) = (x, ϕ̄1(e1xϕ̄2(e2x)),
whereeix ∈ Eix and ϕ̄i(ei) is the projection onRqi of ϕi(ei); here
ei ∈ EiU . Clearly there exists a unique topology onF such that
above maps are homeomorphisms andp : F → X is a vector bundle.
The transition mapsgi j of F are given bygi j = g1

i j ⊕ g2
i j andg2

i j are
transition maps ofE1 andE2 respectively.F is called the direct (or
Whitney) sum ofE1 andE2 and we writeF = E1 ⊕ E2.

If p : E → X and p′ : E′ → X are complex vector bundles, then⋃
x∈X

Ex ⊕ Ex′
⋃
x∈X

Hom(Ex,E′x) and
⋃
x∈X
∧pEx can be given, in the same150

way, suitable topologies so as to make them vector bundles. They are

denoted byE ⊗ E′, Hom (E,E′),
p
∧E respectively. WhenE′ is a trivial

bundle of rank 1, Hom(Ex,E′x) = E∗x is the dual ofEx and we wroteE∗

for the corresponding bundle.E ⊗ E′ is called the tensor product ofE
andE′,∧pE, the p-fold exterior products ofE.

We remark explicitly that ifgi j , g′i j are transition maps ofE, E′

relative to a covering{Ui}, those ofE ⊗ E′ are gi j ⊗ g′i j (Kronecker

or tensor product of matrices), those ofE∗ are (tgi j )
−1, tA denoting the

transpose of the matrixA. In particular if E′ is a line bundle,E ⊗ E′

has transition mapsg′i j .gi j . If we apply this to a line bundleE its dual
E∗ = E′, we see thatif E is a line bundle, E⊗ E∗ is trivial.

This isomorphism is intrinsically defined as follows: forx ∈ X, we
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have a bilinear mapEx ⊕ E∗x → C, viz. (e⊕ e∗) → e∗(e). This defines
a linear mapEx ⊗ E∗x → C, and so a maph : E ⊗ E∗ → 11; h is an
isomorphism.

Other examples of vector bundles are the following. IfV is a Ck

manifold of dimensionn, T(V) =
⋃

a∈V
Ta(V) is a vector bundle of class

Ck−1 and rankn; it is called the tangent bundle ofV. The bundle of
p-forms onV is the space∧pT∗(V) =

⋃
a∈V
∧pT∗a(V). [Note that∧pT∗(V)

is in fact the p-fold exterior product ofT∗(V).]
Let E, F,E′, F′ be vector bundles onX, h : E → F, h′ : E′ → F′

bundle maps. For anyx, we have a linear maphx ⊗ h′x : Ex ⊗ E′x →
Fx ⊗ F′x; this defines a bundle maph ⊗ h′ : E ⊗ E′ → F ⊗ F′. In
the same way, we have a transpose bundle maph∗ : F∗ → E∗ and a
map∧ph : ∧pE → ∧pF. [If h, h′ areCk, analytic, holomorphic, so are
h⊗ h′, h∗,∧ph.]

Definitions. (1) Let V be aCk manifold p : E → V aCk vector bundle 151

andU an open set inV. Then aCk sections of E on U is a Ck map
s : U → E such thatp o s= identity onU.

Ck(U,E) denotes the set of allCk sections ofE over U. Analytic
(holomorphic) sections of analytic (holomorphic) bundlesare similarly
defined.

(2) The support of a sectionsof E overU is defined to be the closure
U of {x|xǫU, s(x) , 0} [0 stands for the zero of the vector spaceEx].
The set ofCk sections onU saving compact support inU is denoted by
Ck

0(U,E).

Note that if E = 1q, Ck(U, 1q) can be canonically identified with
the space ofCk mapsU → Cq(Rq). Let E be a vector bundle,{Ui}

a covering ofX, ϕi : EU i → Ui × C
q isomorphisms andgi j : Ui j →

GL(q,C) the corresponding transition maps. Ifs : X → E is a section,
we have elementssiǫCk(Ui , 1q), viz.si = ϕi ◦ s and hence mappings
σi : Ui → C

q; sinceϕ j ◦ ϕ
−1
i ◦ si = sj on Ui j , we haveσ j = gi jσi on

Ui j . Conversely, mappingσi : Ui → C
q with σ j = gi jσi on Ui j define a

sections : X→ E. This section isCk, analytic, holomorphic, according
as theσi areCk, analytic, holomorphic.
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We denote the set ofCk mapsU → Cq( or Rq) by Ck,q(U); those
with compact support byCk,q

0 (U).

2 Linear differential operators: the theorem of Pee-
tre

In what follows,V is aC∞ manifold and all vector bundles overV are
C∞, real vector bundles.C∞0 (V,E) denotes the set ofC∞ sections ofE152

overV having compact support.

Definition. Given aC∞ manifoldV and vector bundlesp1 : E→ V and
p2 : F → V, a differential operatorL from E to F (written L : E → F)
is anR linear mapL : C∞0 (V,E) → C0(V, F) such that supp. (Ls) ⊂
supp(s) for everysǫC∞0 (V,E). These are also called operators (or sheaf
maps). Note thatL does not define a bundle mapE→ F.

Remarks.A differential operator gives rise to anR linear mapL :
C∞(V,E)→ C0(V, F) as follows. ForxǫV, let U be a relatively compact
neighbourhood ofx. Let ϕ be aC∞ functionϕ : V → R such that fory
in a nighbourhood ofx, ϕ(y) = 1 andϕ(y) = 0 for y < U. Then for any
sǫC∞(V,E), we set

(Ls)(x) = L(ϕs)(x); sinceϕ has compact support,L(ϕs) is well de-
fined. (Ls)(x) is independent of theϕ chosen sinceL does not increase
supports.

If E, E′ areC∞ vector bundles of rankq, q′ respectively, and if,
U is a coordinate neighbourhood ofV such thatEU andE′U are trivial
then C∞0 (U,E) can be identified withC∞,q0 (U), the set ofq tuples of
C∞ functions with compact support inU. A linear differential operator
defines then anR linear mapL : C∞,q0 (U)→ C0,q′(U).

Lemma 1. Let V be a C∞ manifold and U,a coordinate neighbourhood
on V, (coordinate system x1, . . . , xn). Let L be a defferential operator
C∞,q0 (U) → C0,p(U) [i.e. an operator from1q → 1p on U]. Then for
any point aǫU, there exists a neighbourhood U′ of a, a positive integer
m and a constant C> 0, such that

||L f ||0 ≤ C|| f ||m for any fǫC∞,q0 (U′ − {a}).
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We recall that the norms on Ck,q(U) are defined by 153

|| f ||m =
∑

|α|≤m

q∑

i=1

sup|Dα fi(x)| if f = ( f1, . . . , fq).

Proof. Let aǫU and suppose that the lemma does not hold. LetU0 be a
neighbourhood of a, relatively compact inU. Then there exists an open
setU1 ⊂⊂ (U0 − {a}) and f1ǫC

∞,q
0 (U1) such that

||L f1||0 > 22|| f1||1.

�

Now consider the open neighbourhood (U0 − Ū1) of a; by our as-
sumption there exists an open setU2,U2 ⊂⊂ (U0 − Ū1 − {a}), and
f2ǫC

∞,q
0 (U2) such that

||L f2||0 > 22.2|| f2||2.

By induction we have a sequence of open sets{Uk} with Ūk ⊂ {U0−

a} andŪk
⋂

Ū1 = φ if k , 1 and fkǫC
∞,q
0 (Uk) with ||L fk||0 > 22k|| fk||k

Let f =
∞∑

k=1

2−k fk
|| fk||k

. Since
∑ 2−k fk
|| fk||

is convergent in theC∞ topology,

f ǫC∞,q0 (U0) and f |Uk =
2−k fk
|| fk||k

so thatL( f )|Uk = 2−kL( fk)|Uk
/
|| fk||k.

Since||L fk||0 > 22k|| fk||k, we have a sequence (xk), xkǫUk such that
∣∣∣L fk(xk)

∣∣∣〉22k|| fk||k.

Hence|L f (xk)| ≥ 2k. But L f is continuous inU, while (L f )(xk) is 154

unbounded and{xk} lie in the relatively compact subsetU0 of U. This
is contradiction, so that the lemma is established.

Theorem (Peetre).Let V be a C∞ manifold and E, F, C∞ vector bun-
dles of rank q and p respectively. Let Lbe a differential operator C∞0 (V,
E)→ C0(V, F) and let U be a coordinate neighbourhood such that EU

and FU are trivial. We identify Ck(U,E) with Ck,q(U). Then for any
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relatively compact open subsetΩ of U there exists a positive integer m
and continuous functions aα onΩ, |α| ≤ m [with values in the space of
linear maps fromRq to Rp, i.ep× q matrices] such that for fǫC∞,q(U)
and xǫΩ we have

(2.1) (L f )(x) =
∑

|α≤m|

aα(x)(Dα f )(x).

Proof. LetΩ′ be an open subset ofΩ. We shall first prove equation (2.1)
onΩ′ with the following additional assumption: there exists a constant
C > 0 and an integermsuch that iff ǫC∞,q0 (Ω′), we have

(2.2) ||L f ||0 ≤ C|| f ||m.

�

First we remark that ifϕǫC∞,q0 (Ω′) and if ϕ is m-flat aǫΩ′ then
(Lϕ)(a) = 0. In fact by §5 ChapterI , there exists a sequence{ fν} of
functions inC∞,q0 (Ω′) such thatfν(x) = 0 for x in a neighbourhood ofa
and||ϕ − fν||Ω

′

n → 0. Since supp(L fν) ⊂ suppfν we haveL fν(a) = 0 and
because of the inequality (2.2), (Lϕ)(a) = lim

ν→∞
(L fν)(a) = 0. ForaǫΩ′

and f ǫC∞,q(Ω′), Taylor’s formula gives us the following:155

f (x) =
∑

|α|≤m

(x− a)α

α!
.Dα f (a) + g(x),

whereg is m-flat ata. Hence by the remark above,

(Lg)(a) = 0

i.e (L f )(a) =
∑

|α|≤m

L[(x− a)αDα f (a)](a)
α!

.

In what follows we write elements ofC∞,q as columns. Letf =



f1
...

fq


,

fi beingC∞ functions and letek =



0
...

1
0


, where 1 occurs in thekth place.
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Then
(x− a)αDα f (a)

α!
=

∑

1≤k≤q

Dα fk(a).(x− a)αek

α!
. Hence

(L f )(a) =
∑

|α|≤m

∑

1≤k≤q

Dα fk(a)
α!

L[(x− a)αek](a).

[Recall our remark thatL can be applied toC∞ functions which are not
compactly supported.] Now

(x− a)αek =
∑

β≤α

(αβ )xβ(−a)α−βek,

and, by definition,L(xβek) is continuous onU (and not just onΩ′).
Hence (L(x − a)αek)(a) is a continuous function of a inU and can be
identified with a p-tuple

[L(x− a)αek](a) =



a1k
α (a)
...

apk
α (a)


.

Thus, ifΩ′ is an open subset ofU and if there existsm, C such that 156

||L f ||0 ≤ C|| f ||m for f ∈ C∞,q0 (Ω′),

there exist continuous functionsaα onΩ such that

(L f )(x) =
∑

|α|≤m

aα(x)Dα for f ǫC∞,q(Ω′), xǫΩ′.

Moreover ifL f =
∑

aαDα f for all f ǫC∞,q(W), whereW is an open
subset ofΩ, theaα are uniquely determined onW by L. Consequently,
if suffices to prove that every aǫΩ has a neighbourhoodW such that
(2.1) holds for allf ǫC∞,q(W). Now, by the remark above and Lemma 1
there is aW such that

(L f )(x) =
∑

|α|≤m

aα(x)Dα f (x), xǫW − {a}, f ǫC∞,q(W− {a})
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where theaα are continuous inW. Since, for f ǫC∞,q(W), both sides of
this equation are continuous inW, the result is proved.
Note. A result even somewhat more general than the one proved here is
due to J. Peetre [35].

3 The Cauchy Kovalevski Theorem

Lemma 1. Let D=
{
wǫC

∣∣∣|w| < R
}

and h, be a holomorphic function on
D. If, for wǫD, |h′(w)| ≤ A|w|r and h(0) = 0, then

|h(w)| ≤ A
|w|r+1

r + 1
.

Lemma 2. Let D =
{
wǫC

∣∣∣|w| < R
}

and h be a holomorphic function on157

D. If

h(0) = 0,
∣∣∣h′(w)

∣∣∣ < A

(R− |w|)r+1
for wǫD,

then |h(w)| <
A

r(R− |w|)r .

The proof of the above lemmas follows at once from the equation∫ w

0 h′(z)dz= h(w).

Lemma 3. If D =
{
wǫC

∣∣∣|w| < R
}

and h s is a holomorphic function on
D, and if

|h(w)| <
A

(R− |w|)r , for wǫD,

then
∣∣∣h′(w)

∣∣∣ < 3A(r + 1)

(R− |w|)r+1
.

Proof. Let w0ǫD and 0< ǫ < R− |w0|. Then by Cauchy’s inequality we
have ∣∣∣h′(w0)

∣∣∣ ≤ 1
ε

sup
|w−w0|=ε

|h(w)| .

Hence|h′(w0)| ≤
A

ε{R− |w0| − ε}
r for anyε with o < ε < R− |w0|.
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Takeε =
R− |w0|

r + 1
.

Then|h′(w0)| ≤
A(r + 1)

(R− |w0|)r+1
.

(
r + 1

r

)r

.

Hence|h′(w0)| <
3A(r + 1)

(R− |w0|)r+1
. � 158

Theorem (Cauchy -Kovalevski).Let Ω =
{
(z1, . . . , zn)ǫCn

∣∣∣∣|zi | < r i

}
.

Let g,ϕ: Ω → Cq be holomorphic functions onΩ and letβ = (β1, . . . ,

βn), βiǫZ
+ with βn > 0. Let α run over the multiindices with|α| ≤

|β|, αn < βn, and suppose that for eachα is given a holomorphic map aα
ofΩ into the space of q× q matrices. Then exists a neighbourhood U of
0 and a unique holomorphic functions f on U, f: U → Cq such that

(3.1) Dβ f (z) =
∑

|α|≤|β|
αn<βn

aα(z).Dα f (z) + g(z),

and

(3.2)

(
∂

∂zi

)l

( f − ϕ) = 0 for zi = 0 and0 ≤ l < βi .

Proof. We may suppose without loss of generality thatr i ≤ 1 and that
ϕ = 0, since if h = f − ϕ, the problem then would be to solve the
equation

Dβh =
∑

|α|≤|β|
αn<βn

aαDαh+ g′,

with (
∂

∂zi
)l(h) = 0, for zi = 0 and 0≤ l < βi, whereg′ is holomor-

phic onΩ. We may further suppose that theaα are bounded inΩ. � 159

We first remark that for a holomorphic functionh onΩ, there exists
a unique holomorphic functionu onΩ such that

Dβu = h

and

(
∂

∂zi

)l

u = 0 for zi = 0 and 0≤ l < βi .
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To prove this it is enough to show that there exists a unique holo-

morphic functionu onΩ such that
∂u
∂zi
= h andu = 0 on z1 = 0. But

this is immediate; we must setu(z) =
∫ z

0
h(ζ)dζ. We define holomorphic

functions fk : Ω → Cq as follows: f0(z) = 0 for zǫΩ, and fk(z), for
k ≥ 1, is defined, by induction, as the unique holomorphic solution of

Dβ fk =
∑

|α|≤|β|
αn<βn

aαDα fk−1 + g

with

(
∂

∂zi

)l

fk = 0 for zi = 0 and 0≤ l < βi

It is clear from the remark made above that{ fk}k≥0 are defined onΩ.
Let u0(z) = 0, uk(z) = fk(z) − fk−1(z). Thenuk satisfies

(3.3) Dβuk+1 =
∑

|α|≤|β|
αn<βn

aαDαuk

with
(
∂
∂zi

)l
uk = 0 for zi = 0, 0 ≤ l < βi .

Let ρ(z) = (r1 − |z1|) · · · (rn−1 − |zn−1|) and let|β| = m. We shall now
prove that there exists a constant A such that the relations (3.3) imply160

the estimates

(3.4)
∣∣∣Dβur (z)

∣∣∣ ≤ Ar |zn|
r

{ρ(z)}mr+1
. for zǫΩ.

Assume that (3.4) holds forr = k. Then

∣∣∣Dβuk(z)
∣∣∣ ≤ Ak|zn|

k

{ρ(z)}mk+1
.

Applying Lemma 1 with respect tozn, (βn − αn) times and Lemma
2 with respect tozi , βi times for 1≤ i ≤ n− 1, we have, sincer i ≤ 1,

∣∣∣∣∣∣

(
∂

∂zn

)αn

uk(z)

∣∣∣∣∣∣ ≤
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Ak|zn|
k+βn−αn

(k+ 1), . . . , (k + βn − αn)
n−1∏

q
(r i − |zi |)mk+1(mk), . . . , (mk+ 1βi)

hence, sinceαn < βn,

∣∣∣∣∣∣

(
∂

∂zn

)αn

uk(z)

∣∣∣∣∣∣ ≤
Ak|zn|

k+1

[ρ(z)]mk+1
. k−(m−αn)

Now using Lemma 3 with respect tozi , αi times, for 1≤ i ≤ n− 1,
we obtain

∣∣∣Dαuk(z)
∣∣∣ ≤ 3mAk|zn|

k+1

[ρ(z)]m(k+1)+1
.

[
m(k+ 1)+ 1

k

]m−αn

.

Hence by equation (3.3), since theaα are bounded,

∣∣∣Dβuk+1(z)
∣∣∣ ≤ Ak|zn|

k+1

[ρ(z)]m(k+1)+1
.3m.M

[
m(k+ 1)+ 1

k

]m−αn

for some constantM (independent ofα andk).

Hence ifA = sup
k

. 3m. M

[
m(k+ 1)+ 1

k

]m

, the inequality (3.4) is 161

proved. Consequently, ifz satisfies|zn| <
[
bρ(z)

]m
,
∑
k

∣∣∣Dβuk(z)
∣∣∣ is con-

vergent. Hence there exists a neighbourhoodU of 0 such that
∑
k
|Dβuk|

is uniformly onU. This clearly implies thatfk is uniformly convergent
onU and if f (z) = lim

k→∞
fk(z), f (z) is a holomorphic function which satis-

fies equation (3.1) with the initial conditions (3.2). Againif f and f ′ are
two holomorphic solutions of (3.1) satisfying (3.2) letf (z)− f ′(z) = u(z).
Then ifuk(z) = u(z), k ≥ 1, we have

Dβuk+1(z) =
∑

aαDαuk

and

(
∂

∂zi

)l

uk = 0 for zi = 0 and 0≤ l ≤ βi ,

i.e (uk) satisfies equations (3.3) and by the discussion above, there exists
a neighbourhoodU′ of 0 such that

∑
|uk| is uniformly convergent onU′.

But this implies thatu(z) = uk(z) = 0, which proves the uniqueness of
the solution.
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4 Fourier transforms, Plancherel’s theorem

Definitions. (1) If f ǫL′(Rn), the fourier transform of f , denoted bŷf ,
is defined by

f̂ (ξ) =
1

(2π)n/2

∫

Rn

f (x)e−ixξdx.

(2) LetS be the set ofC∞ functions f onRn such that for any polyno-162

mial P onRn and anyα, we have, sup
xǫRn
|P(x)Dα f (x)| < ∞. The spaceS

is called Schwartz space.

Remarks. (1) For everyp ≥ 1, S ⊂ Lp andS is dense inLp (in Lp

norm) if p < ∞.

(2) If f ǫS , Dα f ǫS for everyα.

(3) Any function inS is bounded.

(4) If f ǫS , it is verified by integration by parts that (i)(Dα f ) ˆ(ξ) =
i |α|ξα f̂ (ξ) and (ii )Dα f̂ (ξ) = {(−iξ)α f (ξ)}.

(5) For anyf ǫL′.

sup
ξǫRn

∣∣∣ f̂ (ξ)
∣∣∣ ≤ sup

ξǫRn

∫ ∣∣∣e−ixξ f (x)
∣∣∣ dx.

(6) It follows from remarks (4) and (5) that iff ǫS , so is f̂ .

Proposition 1 (Inversion formula). If f ǫS , we have,

f (y) =
1

(2π)
n
2

∫

Rn

f̂ (ξ)eiyξdξ.

Proof. Let ϕǫS . Consider
∫

Rn

ϕ(ξ) f̂ (ξ)eiyξdξ

=
1

(2π)
n
2

∫

Rn
ϕ(ξ)eiyξ(

∫

Rn
f (x)e−ixξdx)dξ.

�



4. Fourier transforms, Plancherel’s theorem 133

By Fubini’s theorem, we have
∫

ϕ(ξ) f̂ (ξ)eiyξdξ =
1

(2π)
n
2

∫
f (x)dx

∫
ϕ(ξ)e−i(x−y)ξdξ

=
1

(2π)
n
2

∫
f (y+ t)eitξϕ(ξ)dξdt [x− y = t]

=

∫
f (y+ t))ϕ̂(t)dt.(4.1)

Now, setϕ(ξ) = ψ(ǫξ), whereψǫS . Then, as is easily verified, we163

have
ϕ̂(t) = ε−nψ̂(

t
ε

).

Hence
∫

ϕ(ξ) f̂ (ξ)eiyξdξ =
∫

ψ(εξ) f̂ (ξ)eiyξdξ

=

∫
f (y+ t)ε−nψ̂

( t
ε

)
dt

i.e
∫

Rn

ψ(εξ) f̂ (ξ)eiyξdξ =
∫

Rn

f (y+ εt)ψ̂(t)dt.

Since f andψǫS , we can take the limits asε → 0 under the inte-
grals, so that

ψ(0)
∫

Rn
f̂ (ξ)eiyξdξ = f (y)

∫

Rn
ψ̂(t)dt.

If we setψ(t) = e−
t2
2 , it is easily verified thatψ(0) = (2π)

n
2

∫
Rn

ψ̂(t)dt, so that

(2π)−
n
2

∫

Rn

f̂ (ξ)eiyξdξ = f (y).

Corollary. For f andϕǫS , we have, 164
∫

Rn

ϕ(ξ) f̂ (ξ)dξ =
∫

Rn

f (ξ)ϕ̂(ξ).dt

This follows from equation (4.1) on putting y= 0.
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Remark. As is evident from the proof, (4.1) holds wheneverf ǫL1(Rn)
andϕǫS .

Lemma. If f ǫS , we have|| f ||L2 = || f̂ ||L2

[
For gǫLp, ||g||Lp = norm of g in Lp

=

(∫
|g(ξ)|pdξ

) 1
p

when1 ≤ p < ∞,

||g||L∞ = ess. sup|g(x)|.
]

Proof. It follows from the inversion formula that forf ǫS
∣∣∣, ˆ̂f (−y) =

f (y). Defineψ: Rn→ C by

ψ(t) =
{
f̂ (t)

}
; we have

f̂ (t) =
∫

f (ξ)e−itξdξ

=

(∫
f̄ (ξ)eitξdξ

)
.

Hence

(4.2) ¯̂f (t) = ˆ̄f (−t)

i.e
ψ̂(t) = f̄ (t).

By the corollary to the inversion formula,165

∫
f (t)ψ̂(t)dt =

∫
ψ(t) f̂ (t)dt.

Now ψ(t) = ¯̂f andψ̂(t) = f̄ , from which it follows that

|| f ||L2 = || f̂ ||L2.

�
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Definition. If f ǫLp for somep ≥ 1, f̂ is defined as the linear functional
on S , for which f̂ (ψ) =

∫
f (t)ψ̂(t)dt, ψǫS . If there exists a function

gǫLp (for somep with 1 ≤ p ≤ ∞), such
∫

g(t)ψ(t)dt =
∫

f (t)ψ̂(t)dt
for all ψǫS , we shall identifyf with the functiong. Note that if f ǫL1,
this compatible with the definition given at the beginning (as follows the
remark after the inversion formula).

Theorem (Plancherel).If f ǫL2, then there exists gǫL2 such that the lin-
ear mapf̂ is given by

f̂ (ψ) =
∫

ψ(t)g(t)dt

and || f ||L2 = ||g||L2.

In other words, f̂ ǫL2 and || f ||L2 = || f̂ ||L2.

Proof. SinceS is dense inL2, there is a sequence{ fν} of function in
S such that|| fν − f ||L2 → 0. It follows from the lemma above that

|| fν − fµ||L2 = || f̂ν − f̂µ||L2

so that|| f̂ν − f̂µ||L2 → asν, µ→ ∞. Hence there existsgǫL2 such that 166

|| f̂ν − g||L2 → 0.

�

Clearly || f ||L2 = ||g||L2.
Now for anyψǫS , we have

∫
fk(t)ψ̂(t)dt =

∫
f̂k(t)ψ(t)dt.

Since || fk − f ||L2 → 0 and || f̂k − g||L2 → 0, we have, taking limits as
k→ ∞, ∫

f (t)ψ̂(t)dt =
∫

g(t)ψ(t)dt.
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Remark. The inversion formula can be written

ˆ̂f (−y) = f (y), for f ǫS .

It is an immediate consequence of Plancherel’s theorem thatthis rela-
tionship holds if f ǫL2. Further, if f ǫL1, then as in the proof of the
inversion formula, we have, forψǫS ,

∫
ψ(εξ) f̂ (ξ)eiyξdξ =

∫
f (y+ εt)ψ̂(t)dt,

so that if we suppose that we have alsof̂ ǫL1 we may take limits as
ε→ 0, [the term on the right converges tof

∫
ψ̂(t)dt in L1 norm].

From this we conclude that̂f (−y) = (−y). [This implies in particular167

that f is then bounded and continuous.]

Proposition 2. If f , gǫL1, then
∫

Rn

| f (x− y)g(y)|dy < ∞ for almost all x

and if

( f ∗ g)(x) =
∫

f (x− y)g(y)dy,

|| f ∗ g||L1 ≤ || f ||L1.||g||L1.

Proof. It is enough to prove the proposition forf ≥ 0 andg ≥ 0. We
have by Fubini’s theorem

∫
dx

∫
f (x− y)g(y)dy =

∫
g(y)dy

∫
f (x− y)dx.

=

(∫
f (x)dx

) (∫
g(y)dy

)
< ∞

and the proposition follows. �

Proposition 3. If f , gǫS , f ∗ gǫS and

( f ∗ g)̂ = (2π)
n
2 f̂ ĝ.
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Proof. It is clear thatf ∗ gǫS . Now,

( f ∗ g)̂(x) = (2π)−
n
2

∫
e−ixtdt

∫
f (t − y)g(y)dy

= (2π)−
n
2

∫
g(y)dy

∫
f (t − y)e−ixtdt

= (2π)−
n
2

∫
g(y)e−ixydy

∫
f (t)e−ixtdt

= (2π)
n
2 f̂ (x).ĝ(x).

�

Corollary. For f , gεS , we have, 168

( f g)̂ = (2π)−
n
2 f̂ ∗ ĝ.

This follows from the above proposition and the inversion formula.

Remark. In fact, the above result is true forf ǫLi , i = 1, 2 andgǫS .

Proof. Let { fν} be a sequence inS such that

|| fν − f ||Li → 0

Then (fν.g)∧ = (2π)
−

n
2 f̂ν ∗ ĝ.

If f ∈ L2,= π2 f̂ν ∗ ĝ(t) − f̂ ∗ ĝ(t)

=

∫
( f̂ν − f̂ )(t − y)ĝ(y)dy,

and using Schwarz’s inequality,

lim
ν→∞

f̂ν ∗ ĝ(t) = f̂ ∗ ĝ(t).

�
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If f ǫL1 and|| fν− f ||L1 → 0. then f̂ν → f̂ uniformly, so thatf̂ν∗ĝ(t)→
f̂ ∗ ĝ(t) uniformly and hence lim

ν→∞
f̂ν ∗ ĝ(t) = f̂ ∗ ĝ(t). Further, sinceg

is bounded,fνg → f g in Li , so that (fνg)̂(t) → ( f g))̂(t) [pointwise for
i = 1, in L2 for i = 2].

Hence, if f ǫL1 or f ǫL2, we have,

( f g)̂(t) = lim
ν→∞

( fνg)̂(t) = lim
ν→∞

(2π)−n/2 f̂ν ∗ ĝ(t)

= (2π)−n/2 f̂ ∗ ĝ(t).

5 The Sobolev spacesHm,p

In this section we have given proofs of the most important results in Lp;169

however since we shall need only theL2 statements, we have included
simple proofs in this special case (based on Plancherel’s theorem).

Let Ω be an open set inRn, p, a real number,p ≥ 1, q,m integers,
q > 0,m≥ 0. Let f = ( f1, . . . , fq) : Ω→ Cq be aC∞ map. Consider the
space{ f : Ω→ Cq, f ∈ C∞(Ω)|

∑
|α|≤m
1≤i≤q

∫
|Dα fi(x)|pdx< ∞}.

Define a norm| f |m,p on this space by

| f |pm,p =
∑

|α|≤m

∑

1≤i≤q

∫
|Dα fi |

pdx.

We shall write| f |Ωm,p for this norm when its dependence onΩ is
relevant. The completion of the above space is called the Sobolev space
Hm,p(Ω). If a sequence{ fν} of C∞ functions converges inHm,p(Ω), the
sequenceDα fν is convergent inLp, to f α, say. The limit offν in Hm,p(Ω)
is denoted byf and f α is called the derivative of orderα of f , and we
write Dα f = f α. [We shall see below thatf α is independent of the
sequence{ fν}]. We shall denoteHm,2(Ω) by Hm(Ω). For a mapping
f = ( f1, . . . , fq): Ω→ Cq, we write f ∈ Lp if fiǫLp for each i: for f ǫLp,
we define|| f ||Lp by.

|| f ||pLp =

q∑

i=1

|| fi ||
p
Lp.



5. The Sobolev spacesHm,p 139

Let C∞,qo be the subspace ofHm,p(Ω), of c∞ functionsg : Omega→170

Cq, with compact support. Then the closure ofC∞,qo in Hm,p(Ω) is de-
noted byH0

m,p(Ω).
For vectorsv1, v2 ∈ C

q (orRq) we shall denote by (v1, v2), the usual
scalar product, i.e. ifvi = (v1

i , . . . , v
q
i ), then (v1, v2) =

∑q
k=1 vk

1vk
2 ; sim-

ilarly, for mappings f = ( f1, . . . , fq), g = (g1, . . . , gq) : Ω → Cq, we
write

( f , g) =
q∑

i=1

∫

Ω

fi(x)gi (x)dx.

Definitions. (1) If f ∈ Lp and if f ∈ Hm,p(Ω′) for every relatively
compact subsetΩ′ of Ω, then f is said to be strongly differentiable, upto
orderm, in Lp. If p = 2, we speak simply of strong differentiability.

(2) If f ∈ Lp and if there exist functionshα in Lp, |α| ≤ m, such that
for anygǫC∞,q◦ ,

∫

Ω

( f (x),Dαg(x))dx= (−1)|α|
∫

Ω

(hα(x), g(x))dx,

then f is said to have weak derivatives upto orderm in Lp and thehα are
called the weak derivatives off .

Remark. (1) If
∫
Ω

(hα(x), g(x))dx =
∫
Ω

(h
′α(x), g(x))dx for all functions

gǫC∞0 , clearly hα(x) = h
′α(x)Ω almost everywhere and hence the

weak derivatives off , if they exist, are uniquely determined.

(2) If a function inLp has strong derivatives upto orderm they are weak 171

derivative of f . This follows at once from Holder’s inequality. In
particular, if fνǫC∞,q and fν → f in Hm,p, the limits lim

ν→∞
Dα fν in Lp

are independent of the sequence{ fν}, being weak derivatives off .

(3) Let 0 ≤ m′ ≤ m and f ǫHm,p. Then there exists a sequence{ fν} of
C∞ functions such thatfν → f in Hm,p. But this implies thatfν → f
in Hm′,p and ifDα fν → f α in Lp, f o = f almost everywhere. Hence
there exists a mapi: Hm′,p(Ω) → Hm,p(Ω) with i( f ) = Limit in
Hm′,p(Ω) of { fν}. Further ifi( f ) = 0 in Hm′,p(Ω), then f o = 0 in Lp.
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Now , for gǫC∞,q,o we have
∫

Ω

(Dα fν(x), g(x))dx = (−1)|α|
∫

Ω

( fν(x),Dαg(x))dx(|α| ≤ m)

and by Holder’s inequality,

∫

Ω

(Dα f (x), g(x))dx = (−1)|α|

∫
( f o(x),Dαg(x))dx = o for anyg ∈ C∞,qo .

HenceDα f = 0, for |α| ≤ m i.e the mapi : Hm,p(Ω) → Hm′,p(Ω) is

an injection. Of coursei maps
◦

Hm′,p into
◦

Hm′,p.

(4) If f ǫHm,p(Ω) andϕǫC∞,1o , thenϕ f ǫHm,pΩ andDα(ϕ f ) =
∑
β≤α

(
α
β

)

DβϕDα−β f .

Proof. If { fν} is a sequence ofC∞ functions converging tof in Hm,p, ϕ fν
→ ϕ f in Hm,p, i.e.172

Dα(ϕ fν)→ Dα(ϕ f ) in Lp.

Hence Dα(ϕ f ) = lim
ν→∞

Dα(ϕ fν) =
∑
β≤α

(α
β
)DβϕDα−β f . �

(5) If f ∈
◦

Hm(Ω), there exists a sequence{ fν} of C∞ functions with
compact support⊂ Ω, such thatfν → f in Hm(Ω). If we extend
fν to functions onRn by setting fν(x) = 0 for x < Ω, then{ fν} is

convergent inHm(Rn), to f ′ say. We definei′ :
◦

Hm(Ω)→
◦

Hm(Rn),
by i′( f ) = f ′. Theni′ is injective and preserves norms.

(6) If Ω is bounded, we have, for anyf ∈ C∞,qo (Ω), f (x) =
x1∫

−M

∂ f
∂x1

(t, x2, . . . , xn) dt, for largeM, so that

|| f ||Lp ≤ C(Ω)||
∂ f
∂x1
||Lp.
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It follows that for anyf ∈
◦

Hm,p(Ω), we have,

| f |m,p ≤ Cm(Ω)
∑

|α|=m

|Dα f |o,p.

(This is sometimes called Poincare’s inequality.)

Lemma 1. Let ϕ ≥ 0 be a C∞ function withsuppϕ ⊂ {x
∣∣∣|x| < 1} and∫

ϕdx= 1. Letϕε(x) = ε−nϕ(
x
ε

). Then ifΩ is an open set inRn and, for

x ∈ Rn, we setϕε ∗ f (x) =
∫
Ω
ϕε(x− y) f (y)dy, then

(i) for any f ∈ Lp(Ω), ϕε ∗ f → f in Lp(Ω) and (ii) for any f ∈
◦

Hm,p(Ω)

Dα(ϕε ∗ f ) = ϕε ∗ Dα f .

Proof. If we extend f to Rn by setting f (x) = 0 for x < Ω, we have 173

(ϕε ∗ f − f )(x) =
∫

ϕε(x− y)[ f (y) − f (x)]dy

=

∫

|y|≤ε

ϕε(y)[ f (y+ x) − f (x)]dy,

so that, by Holder’s inequality, ifp′−1 = 1− p−1,

||ϕε ∗ f − f ||Lp ≤
{ ∫

|y|≤ε

[ϕε(y)]p′dy
} 1

p′
{ ∫

|y|≤ε

dy
∫
| f (x+ y) − f (x)|pdx

} 1
p

≤ C.||ϕ||Lp′ . sup
|y|≤ε

{ ∫
| f (x+ y) − f (x)|pdx

} 1
p → 0 asε→ 0.

�

[Note that
{ ∫

|y|≤ε

[ϕε(y)]p′dy
} 1

p′ = ε
− n

p .||ϕ||Lp′ ; that the last term tends

to zero is trivial if f is continuous with compact support and follows for
general f ∈ Lp since continuous functions with compact supports are
dense inLp].
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If f ∈
◦

Hm,p(Ω), let { fν} be a sequence ofC∞ functions with compact
support converging tof in m,p(Ω). Then

Dα(ϕε ∗ f )(x) =
∫

Ω

Dαϕε(x− y) f (y)dy

= lim
ν∞

∫

Rn
Dαϕε(x− y) fν(y)dy

= lim
ν→∞

∫

Rn

ϕε(x− y)Dα fν(y)dy

=

∫

Ω

ϕε(x− y)Dα f (y)dy

= ϕε ∗ Dα f (x).

Remark. This proposition, whenp = 2, follows immediately from174

Plancherel’s theorem. In fact, if we extendf to Rn by setting it= 0
outsideΩ, we have,

(ϕε ∗ f )∧(ξ) = (2π)
n
2 ϕ̂ε(ξ). f̂ (ξ) = (2π)

n
2 ϕ̂(εξ) f̂ (ξ)

→ (2π)
n
2 ϕ̂(0) f̂ (ξ) = f̂ (ξ) in L2, asε→ 0.

Proposition 1. If f ∈ Hm,p(Ω) and if the Dα f , for |α| ≤ m, are strongly
differentiable upto order m′ in Lp, then f is strongly differentiable upto
order m+m′ in Lp.

Proof. It is enough to prove the proposition for a functionf with com-
pact support⊂ Ω′,Ω′ being a relatively compact open subset ofΩ. If ϕε
is defined as in the lemma above, thenϕε ∗ f (x) =

∫
Ω
ϕε(x− y) f (y)dy is

aC∞ function of x and for|α| ≤ m, we have by (ii ) in the lemma above,

Dα(ϕε ∗ f ) = ϕε ∗ Dα f .

�

Again sinceDα f ∈
◦

Hm′,p(Ω), we have, for|α| ≤ m, |β| ≤ m′

Dα+β(ϕε ∗ f ) = Dβ[Dα(ϕε ∗ f )] = Dβ(ϕε ∗ Dα f ) = ϕε ∗ Dβ(Dα f )
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(the last two equations hold because of Lemma 1).
If fν(x) = ϕ1/ν ∗ f (x), then by Lemma 1 (i),fν → f in Hm+m′,p(Ω′)

and hence the proposition is proved.

Proposition 2. LetΩ be a bounded open set inRn. If ϕε is defined as in 175

the lemma above, then for any f∈
◦

Hm,p(Ω), we have

|ϕε ∗ f − f |m−1,p ≤ Aε||ϕ||Lp′ | f |m, p,where
1
p
+

1
p′
= 1

and A is a constant depending onΩ.

Proof. We shall first prove that ifΩ′ is a bounded open set withΩ ⋐ Ω′,

andε is small enough, then forf ∈
◦

Hm,p(Ω),

|ϕε ∗ f − f |Ω
′

0,p′ ≤ Aε||ϕ||Lp′ | f |1,p.

�

SinceC∞,q0 (Ω) is dense in
◦

H1,p(Ω), it is enough to prove this in-
equality for f ∈ C∞,q0 (Ω). We have

f (x+ y) − f (x) =
n∑

i=1

yi

∫ 1

0

∂ f
∂xi

(x+ ty) dt

so that | f (x+ y) − f (x)|p ≤ np
n∑

i=1

|yi |
p

1∫

0

∂ f
∂xi

(x+ ty)
∣∣∣pdt.

Hence, ifgy(x) = f (x+ y) − f (x), we have

||gy||
p
Lp ≤ np

n∑

i=1

|yi |
p

1∫

0

dt
∫

Rn

∣∣∣ ∂ f
∂xi

(x+ ty)
∣∣∣pdx

≤

np
n∑

1

|yi |
p

 | f |
p
1,p,
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so that

(5.1) ||gy||
p
Lp ≤ np+1εp| f |p1,p if |y| ≤ ε.

Now 176

ϕε ∗ f (x) − f (x) =
∫

Rn

ϕε(x− y)[ f (y) − f (x)]dy

=

∫

Rn

ϕε(y)[ f (x+ y) − f (x)]dy.

Since supp.ϕε ⊂
{
x
∣∣∣|x| < ε}, this gives

ϕε ∗ f (x) − f (x) =
∫

|y|<ε

ϕε(y)[ f (x+ y) − f (x)]dy.

If p > 1, we use Holder’s inequality and obtain

∣∣∣ϕε ∗ f (x) − f (x)
∣∣∣ ≤

(∫
|ϕε(y)|p

′

dy

) 1
p′



∫

|y|<ε

| f (x+ y) − f (x)|pdy



1
p

.

Since, as is easily verified,

(∫
|ϕε(y)|p

′

dy

) 1
p′

= ε
− n

p ||ϕ||Lp′

this gives |ϕε ∗ f (x) − f (x)|p ≤ ε−n||ϕ||
p

Lp′

∫
| f (x+ y) − f (x)|pdy.

This inequality clearly holds also ifp = 1, if we replace||ϕ||Lp′ by v.
||ϕ||L∞ = v. sup

x
|ϕ(x)|, wherev =

∫

|y|<1

dy. Hence

∫

Ω′

∣∣∣ϕε ∗ f (x) − f (x)
∣∣∣pdx≤ v.ε−n||ϕ||

p
Lp′

∫

Ω′

dx
∫

|y|<ε

| f (x+ y) − f (x)|pdy
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= v.ε−n||ϕ||
p
Lp′

∫

|y|<ε

||gy||
p
Lpdy

≤ Apεp||ϕ||
p
Lp′ | f |

p
1,p (because of (5.1))

[
Ap = v2.np+1

]
.

Hence|ϕε ∗ f − f |0,p ≤ Aε||ϕ||Lp′ .| f |1,p for some constantA. 177

Now, for |α| ≤ m− 1,Dα f ∈
◦

H1,p and

|ϕε ∗ Dα f − Dα f |Ω
′

0,p ≤ Aε .||ϕ||Lp′ |Dα f |1,p,

which prove the proposition.

Lemma 2. Let Ω be a bounded open set inRn and k, a continuous
function with compact support. Then for fǫLp(Ω), the function

(K f )(x) =
∫

Ω

k(x− y) f (y)dy ∈ Lp(Rn)

and the operator K: Lp(Ω)→ Lp(Rn) is completely continuous.

Proof. The first part is obvious sinceK f is clearly continuous and with
compact support, with support⊂ {a + b|a ∈ Ω, b ∈ supp.k}, which
is relatively compact. Further, by Holder’s inequality,K f is uniformly
bounded on the set|| f ||Lp ≤ 1. By Ascoli’s theorem, it suffices to prove
that the familyK f , || f ||Lp ≤ 1, is equicontinuous. Ifη(ε) = sup

|a−b|≤ε
|k(a)−

k(b)|, we have

|(K f )(x) − (K f )(x′)| ≤ η(|x− x′|)|| f ||L1 ≤ Apη(|x− x′|)|| f ||Lp

(sinceΩ is bounded), which proves the lemma. � 178

Theorem 1(Rellich). LetΩ be a bounded open set inRn and0 ≤ m′ <

m. Then the natural map i:
◦

Hm,p(Ω) →
◦

Hm′,p(Ω) is completely contin-
uous.

Proof. Let Ω′ be a bounded open set,̄Ω ⊂ Ω′. We have only to prove

that the natural mapj :
◦

Hm′,p(Ω) →
◦

Hm′,p(Ω′) composite ofi and the

isometry
◦

Hm′,p(Ω)→
◦

Hm′,p(Ω′) is completely continuous. �
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For any operatorT between these two spaces, we set

||T || = sup
f,0
·
|T f |m′,p
| f |m,p

.

Let Tε be the operatorTε( f )(x) = ϕε ∗ f (x). If ε is sufficiently small,

Tε( f ) ∈
◦

Hm′,p(Ω′), and because of Prop. 2, we have

||Tε − j|| → 0 asε→ 0.

Since the uniform limit of completely continuous operatorsis com-
pletely continuous, the theorem follows at once from Lemma 2.

Proposition 3. There exist positive constants C1 and C2 such that for

any f ∈
◦

Hm(Rn),

C1

∫
(1+ |ξ|2)m| f̂ (ξ)|2dξ ≤ | f |2m ≤ C2

∫
(1+ |ξ|2)m| f̂ (ξ)|2dξ

(| f̂ | denotes the norm inCq).

Proof. Since functions with compact support are dense inH0
m(Rn), it is179

enough to prove the proposition forf with compact support. Now,

| f |2m =
∑

|α|≤m

∑

i≤q

∫
|Dα fi(x)|2dx

=
∑

|α|≤m

∑

i≤q

|Dα̂ fi |
2
0, by Plancherel’s theorem, sinceDα f ∈ |L2.

�

Hence| f |2m =
∑
|α|≤m

∑
i≤q
|ξα|2| f̂i(ξ)|2dξ.

Now there exist constantsC1 andC2 such that

C1(1+ |ξ|2)m ≤
∑

|α|≤m

|ξα|2 ≤ C2(1+ |ξ|2)m for ξ ∈ Rn

and hence the proposition.
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Remark. When p = 2, Theorem 1 can be proved very simply, using

Plancherel’s theorem. In fact, iff ∈
◦

Hm(Ω) and | f |m ≤ 1, clearly f̂ is

bounded and so is
∂ f̂
∂ξk
= (2π)−n/2

∫
ixkeiξx f (x)dx sinceΩ is bounded,

so that the{ f̂ } form an equicontinuous family. Hence given a sequence
{ fν}, | fν|m ≤ 1, we may select a subsequence{ fνk} such that{ f̂vk} con-
verges uniformly on compact sets ofRn. Now,

| fνp − fνq|
2
m−1 ≤ C2

∫

R

(1+ |ξ|2)m−1| f̂vp − f̂vq |
2dξ. Givenε > 0,

we may chooseA that 1+ |ξ|2 >
1
ε

for |ξ| > A, so that

∫

|ξ|>A

(1+ |ξ|2)m−1| f̂νp − f̂vq |
2dξ ≤ C3ε| fνp − fνq|

2
m < 2C3ε.

while, if p, q are large,
∫

|ξ|≤A

(1 + |ξ|2)m−1| f̂vp − f̂vq |
2dξ < ε since { f̂vp} 180

converges uniformly on compact sets. This shows that{ fνp} converges
in Hm−1,p.

Proposition 4. We have

H0
m(Rn) = Hm(Rn) =


f | f ∈ L2,

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ < ∞


.

Proof. Let f ∈ Hm(Rn) andϕ, a beC∞ function with compact support,
ϕ : Rn→ R such thatϕ(x) = 1 for |x| ≤ 1 and 0≤ ϕ(x) ≤ 1. �

Let ϕν(x) = ϕ
( x
ν

)
. Thenϕν(x) → 1 and eachϕν has compact sup-

port. By remark (3) above,

Dαϕν f =
∑

β≤α

(
α

β

)
DβϕνD

α−β f .
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Since Dβϕν are bounded and tend to zero ( for|β| ≥ 1) every-
where, it follows from Lebesgue’s theorem on bounded convergence
thatDβϕν.Dα−β f → 0 in L2 for |β| ≥ 1, so that

Dα(ϕν f )→ Dα f in L2, for |α| ≤ m.

Henceϕν f → f in Hm(Rn) and since{ϕν} is a sequence of functions

with compact support, it follows thatf ∈
◦

Hm(Rn). This proves that

Hm(Rn) =
◦

Hm(Rn). It is clear from Proposition 3 that

◦

Hm(Rn) ⊂


f
∣∣∣ f ∈ L2,

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ < ∞


.

Conversely, iff ∈ L2 and
∫

Rn

(1+|ξ|2)m| f̂ (ξ)|2dξ < ∞, (1+|ξ|2)
m
2 f̂ (ξ) ∈181

L2. Hence there exists a sequence ˆgν in S such that ˆgν(ξ) → (1 +
|ξ|2)

m
2 f̂ (ξ) in L2. Let hν ∈ S be such that its Fourier transform̂hν =

ĝν
/
(1+ |ξ|2)m/2 [which exists by the inversion theorem]. Thenhν ∈ Hm

and
∫

Rn

(1 + |ξ|2)m|ĥν(ξ) − ĥµ(ξ)|2dξ → 0 asµ, ν → ∞, i.e., by Proposi-

tion 3, hν is convergent inHm. It is clear thathν → f in L2. Hence
f ∈ Hm(Rn), which proves the proposition.

Lemma 3. Let η be the mapη : R+ × Sn−1 → Rn − {0}, given by
η(t, x) = tx = y. Then there exists an(n − 1) formω on Sn−1 such that
η∗(dy1 ∧ · · · ∧ dyn) = tn−1dt ∧ ω. [A point in R − {0} is denoted by
y = (y1, . . . , yn).]

Proof. In fact if x1, . . . , xn are the restrictions toSn−1 of the coordinate

functions inRn, we may takeω =
n∑

k=1
xkdx1∧ · · · ∧dx̂k∧ · · · ∧dxn. (The

hat over a term means that the term is omitted.) �

Remark. Since
∫

U

dy1∧· · ·∧dyn, over any non-empty open setU ⊂ Rn−0

is positive, we have
∫

Sn−1

ω , 0.
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Theorem 2(Sobolev’s lemma). LetΩ be an open set inRn and m>
n
p

.

Then for any compact set K⊂ Ω,there exists a constant CK such that
for any C∞ function f : Ω→ Cq with supp: f⊂ K, we have

sup
x∈K
| f (x)| ≤ CK,m| f |m,p.

Proof. We may suppose thatΩ = Rn. Further, we can choose a compact182

setK′ such that for anyx ∈ K, g(y) = f (x + y) is aC∞ function with
supp.g ⊂ K′. Hence it is enough to prove that there exists a constantC
such that forC∞ f with supp. f ⊂ K, we have,

| f (0)| ≤ C| f |m,p.

�

Let η : R+ × Sn−1 → Rn − {0} be the map as defined in the lemma
above.

Let f (y) = g(tx), wherey = tx for y , 0, t ∈ R+, x ∈ Sn−1 and
g(0) = f (0).

Then fi(0) = C1

M∫

0

∂gi(tx)
∂tm

tm−1dt for some constantsM = MK and

C1 = C1(m).
Multiplying by ω and integrating overSn−1, we have

fi(0)
∫

Sn−1

ω = C1

∫

Sn−1

M∫

0

∂mgi(tx)
∂tm

tm−1dt∧ ω

= C1

∫

Sn−1

M∫

0

tm−n∂
mg(tx)
∂tm

tn−1dt∧ ω.

Since
∫

Sn−1

ω , 0, this gives

(5.2) fi(0) = C2

∫

|y|<M

tm−n∂
mgi(tx)
∂tm

dy
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for some constantC2 andt = |y|.
Now for p > 1, using Holder’s inequality,183

| fi(0)| ≤ C2



∫

|y|<M

t(m−n)p′dy



1
p′



∫

|y|<M

∣∣∣∂
mgi(tx)
∂tm

∣∣∣pdy



1
p

where
1
p′
+

1
p
= 1. Hence

| fi(0)| ≤ C2.



∫

Sn−1

M∫

0

t(m−n)p′ tn−1dt∧ ω



1
p′



∫

|y|<M

∣∣∣∂
mgi(tx)
∂tm

∣∣∣pdy



1
p

.

Sincem >
n
p

, we have (m− n)p′ + n − 1 > −1 and hence
∫

Sn−1

M∫

0

t(m−n)p′ tn−1dt∧ ω < ∞. Now

∂mgi(tx)
∂tm

=
∑

|α|≤m

qα(y)Dα fi(y),

whereqα(y) are bounded functions ofy and hence there exists a constant
C3 such that ∫

|y|<M

∣∣∣∂
mgi(tx)
∂tm

∣∣∣pdy≤ C3(| f |m,p)p.

Hence| f (0)| ≤ C4| f |m,p, for some constantC4 depending onK. This
proves the theorem forp > 1.

If p = 1,m ≥ n, it follows immediately from that (5.2)| f (0)| ≤
CK | f |m,1 for a constantCK

Corollary 1. If Ω is an open set inRn, and K is a compact subset ofΩ,
then, for any f∈ C∞,q(Ω), we have

sup
x∈K
| f (x)| ≤ CK,Ω,m| f |m,p for m> n/p.
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Proof. Apply Theorem 2 toη f , whereη is a fixed function with compact184

support inΩ, which is= 1 onK. �

Corollary 2. If Ω is an open subset ofRn and m >
n
p

, then if f ∈

Hm,p(Ω), there exists a function g∈ Hm,p(Ω) such that f = g almost
everywhere and g has continuous derivatives of all orders

≤ m−

[
n
p

]
− 1.

Proof. By multiplying f by a suitable function, we may suppose that

f ∈
◦

Hm,p(Ω); moreover, we may suppose, thatΩ is bounded. Let{ fν}
be a sequence ofC∞ functions, with compact support inΩ, converging
to f in Hm,p(Ω). ClearlyDα( fν − fµ) ∈ Hm−|α|,p, for 0 ≤ |α| ≤ m, and if

m− |α| >
n
p

, andK ⊂ Ω is compact, we have, by Sobolev’s lemma,

suppx∈K |D
α fν(x) − Dα fµ(x)| ≤ CK | fν − fµ|m, p.

�

HenceDα fν is uniformly convergent onK, for |α| < m−
n
p

; if g =

lim fν, this implies thatg has continuous derivatives upto order≤ m−[
n
p

]
− 1.

Remark. The proof of Sobolev’s lemma, forp = 1 or 2, simplifies as

follows If p = 1, fi(x) =
x∫

−M

· · ·

xn∫

−M

∂n fi(t1, . . . , tn)
∂x1 · · · ∂xn

dt1 · · · dtn for a con-

stantM depending onK.

Hence| f (x)| ≤ A| f |n,1 ≤ A| f |m,1, for m≥ n and a constantA. 185

Further, by Holder’s inequality applied to this formula, weget

| f (x)| ≤ CK,p| f |m,p if m≥ n, andp ≥ 1.

Thus, the statement that anyf ∈ Hm,p has continuous derivatives of
order≤ m− n is trivial. If p = 2, by the remark following the inversion
formula in §4,
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fi(x) =
1

(2π)n/2

∫
eixξ f̂i(ξ)dξ

=
1

(2π)n/2

∫
eixξ(1+ |ξ|2)

m
2

f̂i(ξ)

(1+ |ξ|2)m/2
dξ,

and by Schwarz’s inequality

| fi(x)| ≤ A

(∫
(1+ |ξ|2)−mdξ

)1
2

(∫
| f̂i(ξ)|

2(1+ |ξ|2)mdξ

)1
2

for some constantA.
Now,

∫

Rn

(1+ |ξ|2)−mdξ < ∞ if m>
n
2

.

Hence it follows from Prop. 2, that form >
n
2
, | f (x)| ≤ B| f |m,2,

for some constantB. This latter proof applies to a such larger class of
functions than functions with support in a fixed compact set.

Rellich’s lemma remains true if we replace
◦

Hm,p(Ω) by Hm,p(Ω) if
the boundary ofΩ is sufficiently smooth (see Rellich [37]).

Several proofs of Sobolev’s lemma have been given; Sobolev [43]
obtained several very precise inequalities. However most of these proofs
are more complicated than the one given here.

6 Elliptic di fferential operators: the inequalities of
Gårding and Friedrichs

In what follows,Ω is an open set inRn and L is a linear differential186

operator,L : C∞,q0 (Ω)→ C∞,p0 (Ω).

Definition. (1) If L can be written asL f =
∑
|α|≤m

aα.Dα f , with contin-

uous mappingsaα of Ω into the space ofp × q complex matrices,
and if there existsα such that|α| = m andaα . 0 onΩ, thenL is
said to have ordermonΩ.
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(2) If L is a differential operator of orderm on Ω, for ξ ∈ Rn, the
characteristic polynomial ofL is defined byp(x, ξ) =

∑
|α|=m

ξαaα(x);

it is a mapping ofΩ × Rn into the space ofp× q matrices.

(3) If p(x, ξ) is the characteristic polynomial ofL and if for anyξ ∈ Rn,
ξ , 0 andx ∈ Ω, the mapp(x, ξ) : Cq → Cp is injective, thenL is
said to be elliptic.

(4) If p = q and p(x, ξ) is the characteristic polynomial ofL and
if for any ξ , 0, ξ ∈ Rn, x ∈ Ω and v ∈ Cq, v , 0, we have
Re(p(x, ξ)v, v) , 0, thenL is said to be strongly elliptic.

(5) If p = q, L is of orderm, andp(x, ξ) is its characteristic polynomial,
and if there exists a constantc > 0 such that for anyξ ∈ Rn, x ∈ Ω
andv ∈ Cq,Re(p(x, ξ)v, v) ≥ c|ξ|m|v|2, thenL is said to be uniformly
strongly elliptic.

If n > 1, then a strongly elliptic operator (or its negative) is uni-
formly strongly elliptic an any connected subsetΩ′ ⊂⊂ Ω.

In fact, sinceSn−1 is connected, Re (p(x, ξ)v, v) has constant sing on187

Ω′ × Sn−1.
Further, ifn > 1, then any strongly elliptic operator is of even order.

In fact, for fixedx andv , 0,Q(ξ) = Re(p(x, ξ)v, v) is a homogeneous
polynomial of degreem = orderL. It is clear that for almost all values
of a, b ∈ Rn, the polynomialQ(a+ λb) of the real variableλ has degree
m, hence has a real zero ifm is odd. If n > 1, we may choosea, b such
thata + λb , 0 for all realλ andQ would then have a real, non-trivial
root.

Let L1 and L2 be differential operators,L1 : C∞,q0 (Ω) → C0,p(Ω)
and L2 : C∞,p0 (Ω) → C0,r(Ω), then if L1 can be written asL1 f =∑
|α|≤m

aαDα f , aα beingC∞ functions with values inp × q matrices, then

we defineL2 ◦ L1 : C∞,q0 (Ω)→ C0,r(Ω) by

(L2 ◦ L1)( f )(x) = (L2(L1 f ))(x).

We also writeL2.L1 for L2 ◦ L1.
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Let L2 be given by

(L2 f )(x) =
∑

|β|≤m′
bβ(x)Dβ f (x), for f ∈ C∞,p(Ω).

ThenL2 ◦ L1 is given by

(L2 ◦ L1)( f )(x) =
∑

|γ|≤m+m′
cγ(x)Dγ f (x)

where cγ(x) =
∑

α+β=γ

bβ(x)aα(x) for |γ| ≤ m+m′.

HenceL2 ◦ L1 has order≤ m+ m′ and if p1(x, ξ), p2(x, ξ) are the188

characteristic polynomials ofL1 andL2 respectively, the characteristic
polynomialp(x, ξ) of L2 ◦ L1 is given by

p(x, ξ) = p2(x, ξ).p1(x, ξ), unlessp2(x, ξ).p1(x, ξ) = 0 for all x andξ.

If L1 andL2 are elliptic differential operators andL2 ◦ L1 is defined
as above, thenL2 ◦ L1 is elliptic. This obvious since ifp1(x, ξ), p2(x, ξ)
are injective,p(x, ξ) is injective.

Let L be a differential operator of orderm, L : C∞,q0 → Co,p and
L f =

∑
|α|≤m

aαDα f , whereaα areC∞ functions onΩ. Then we define the

(formal) adjoint operatorL∗ : C∞,p0 → C0,q by

(L f , ϕ) = ( f , L∗ϕ) for any f ∈ C∞,q0 (Ω)andϕ ∈ C∞,p0 (Ω).

We shall show that the operatorL∗ exists and is unique.
If for ϕ1, ϕ2 ∈ C∞,q0 (Ω), (ϕ1, f ) = (ϕ2, f ) for every f ∈ C∞,q0 (Ω),

then clearlyϕ1 = ϕ2. HenceL∗ϕ, if it exists, is unique.
Sinceϕ and f areC∞ functions with compact supports,

(L f , ϕ) =
∑

α

p∑

i=1

q∑

j=1

ai j
α (x)Dα f j(x)ϕi(x)dx

=
∑

α

(−1)|α|
p∑

i=1

q∑

j=1

∫
f j(x)Dα(ai j

α (x).ϕi(x))dx
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=
∑

α

(−1)|α|( f (x),Dα(taα (x).ϕ(x))),

whereta is the transpose of the matrixa. Hence if we defineL∗ϕ by 189

L∗ϕ =
∑

α

(−1)|α|Dα[taα · ϕ],

we have, (f , L∗ϕ) = (L f , ϕ), for f ∈ C∞,q0 (Ω) andϕ ∈ C∞,p0 (Ω).

This prove the existence and uniqueness of the adjoint operator L∗:
C∞,p0 (Ω) → C∞,q0 (Ω). Moreover order ofL∗ = order ofL. Further, for
|α| = m,

Dα(tāαϕ) = tāα .D
αϕ +

∑

|β|<m

bβD
βϕ , bβ

being functions onΩ with values inq× p matrices.
Hence ifp∗(x, ξ) is the characteristic polynomial ofL∗,

p∗(x, ξ) = (−1)m
∑

|α|=m

ξαtāα (x) = (−1)mtp(x,ξ).

Remark. If L is an elliptic operator of orderm, L: C∞,q0 → C∞,po and if
L∗: C∞,p0 → C∞,q0 is the adjoint ofL, then the operator (−1)mL∗. L is
strongly elliptic.

Proof. If A = (−1)mL∗. L, p(x, ξ), p∗(x, ξ) and p′(x, ξ) are the charac-
teristic polynomials ofL, L∗ andA respectively, and ifξ ∈ Rn, x ∈ Ω,
v ∈ Cq, ξ , 0, v , 0, have,

Re(p′(x, ξ)v, v) = Re((−1)mp∗(x, ξ).p(x, ξ)v, v)

= Re(p(x, ξ)v, p(x, ξ)v) > 0.

�

Corollary. If Ω′ is relatively compact inΩ and L: C∞,q0 (Ω)→ C∞,p0 (Ω) 190

is an elliptic operator, of order, m,(−1)mL∗ ◦ L is uniformly strongly
elliptic onΩ′, of even order, namely2m.

We remark further that ifL is an elliptic operatorL: C∞,q0 → C∞,q0
(i.e. if q = p), thenL∗ is also elliptic. In fact, forξ , 0, p(x, ξ) is an
automorphism ofCq and hence so istp(x,ξ) = (−1)mp∗(x, ξ).
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Proposition 1. LetΩ be an open set inRn. Then forε > 0, there exists

a constant C(ε) such that for any f∈
◦

Hm(Ω), (m> 0), we have

| f |2m−1 ≤ ε| f |
2
m+C(ε)| f |20.

Proof. It is enough to prove the inequality forC∞ functions f with com-
pact support⊂ Ω. By proposition 3, §5, there exists a constantC2 such
that

| f |2m−1 ≤ C2

∫

Rn

(1+ |ξ|2)m−1| f̂ (ξ)|2dξ.

�

Now givenε, there existsC′(ε) such that

(
1+ |ξ|2

)m−1
≤

ε

C2

(
1+ |ξ|2

)m
+C′(ε) for ξ ∈ Rn.

Hence| f |2m−1 ≤ ε
∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ+C(ε). | f |20, which by Proposition

3, §5, proves the required inequality.

Theorem 1(Garding’s inequality). Let L be a uniformly strongly elliptic
differential operators of even order2m onΩ, Ω being an open set in191

Rn. Then for any relatively compact open subsetΩ′ of Ω, there exist
constants C> 0 and B> 0 such that for any C∞ function f : Ω → Cq

with supp. f ⊂ Ω′, we have

Re(−1)m(L f , f ) ≤ C| f |2m− B| f |20.

Proof. We shall prove the theorem in three steps. �

Step I. Let L be given by

L f =
∑

|α|≤2m

aαDα f ,

where the aα are constant matrices. Then we have, by Plancherel’s
theorem,

(L f , f ) = (L̂ f , f̂ ).
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Now

L̂ f (ξ) =
∑

|α|≤2m

aαDα̂ f (ξ)

= (−1)m
∑

|α|=2m

aα.ξ
α f̂ (ξ) +

∑

|α|≤2m−1

aαi |α|.ξα f̂ (ξ).

Clearly the characteristic polynomial is independent ofx; we denote
it by p(ξ). Then

(L f , f ) = (−1)m
∫

Rn

(p(ξ) f̂ (ξ), f̂ (ξ))dξ +
∑

|α|<2m

∫

Rn

(i |α|aαξ
α f̂ (ξ), f̂ (ξ))d.ξ

SinceL is uniformly strongly elliptic onΩ, there exists, by defini-
tion, a constantC1 such that

Re(p(ξ)v, v) ≥ C1|ξ|
2m|v|2 for ξ ∈ Rn andv ∈ Cq.

Hence 192

Re(−1)m(L̂ f , f̂ ≥ C1

∫

Rn

|ξ|2m| f̂ (ξ)|2dξ − M1

∫

Rn

(1+ |ξ|)2m−1| f̂ (ξ)|2dξ

whereM1 is a constant, depending only on the matricesaα, |α| ≤ 2m−1.
Let A be a constant such that

C1|ξ|
2m− M1(1+ |ξ|)2m−1 ≥ C2(1+ |ξ|2)m

for |ξ| ≥ A and a suitable constantC2 > 0. Then

Re(−1)m(L f , f ) ≥ C2

∫

|ξ|>A

(1+ |ξ|2)m| f̂ (ξ)|2dξ

− M
∫

|ξ|≤A

(1+ |ξ|)2m−1| f̂ (ξ)|2dξ

≥ C2

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ
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−C2

∫

|ξ|≤A

(1+ |ξ|2)m| f̂ (ξ)|2dξ

− M
∫

|ξ|≤A

(1+ |ξ|)2m−1| f̂ (ξ)|2dξ.

Let B be constant such that

C2(1+ |ξ|2)m+ M(1+ |ξ|)2m−1 < B for |ξ| ≤ A.

Then

Re(−1)m(L f , f ) ≥ C2

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ − B
∫

Rn

| f̂ (ξ)|2dξ.

By Proposition 3, §5 there exists a constantC such that

C2

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2dξ ≥ C| f |2m

i.e. the inequality is proved whenL has constant coefficients.193

Step II. We shall now prove that for any x0 ∈ Ω, there exist a relatively
compact neighbourhood U of x0, U ⊂ Ω, and constants C, B such that
for any C∞ f : Ω→ Cq with supp. f ⊂ U, we have

Re (−1)m (L f , f ) ≧ C | f |2m − B | f |20.

We may writeL asL =
k∑

i=1
(Bi)∗Ai for somek, whereAi andBi are

differential operators of orders≤ m. For anyx0 ∈ Ω, Ai andBi can be
written asAi = A0

i + A′i , Bi = B0
i + B′1, whereB0

i , A0
i are differential

operators with constant coefficients andA′i , B′i are differential operators
whose coefficients vanish atx0. Then

(L f , f ) =∑

i

(A0
i f , B0

i f ) +
∑

i

(A′i f , B0
i f ) +

∑

i

(A0
i f , B′i f ) +

∑

i

(A′i f , B′i F)
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Let L0 be the differential operator with constant coefficients, defined
by

L0 =
∑

(B0
i )∗ A0

i .

Since the coefficients ofA′i andB′i vanish atx0 and are continuous
functions onΩ, givenε > 0 there exists a relatively compact neighbour-
hoodU of x0, U ⊂ Ω such that forf with supp. f ⊂ U,

|B′i f |U0 + |A
′
i f |U0 ≤ ε| f |m.

Then 194

Re (−1)m(L f , f ) ≧ Re(−1)m (L0 f , f ) − ε M | f |2m

whereM is a constant depending onAi , Bi. Now by the result in Step I,
there exist constantsC′, B′ such that forC∞ f with suppf ⊂ U,

Re(−1)m(Lo f , f ) ≥ C′| f |2m − B′| f |20.

Hence Re (−1)m(L f , f ) ≧ (C′ − ε M)| f |2m − B′| f |20; sinceε → 0 as
U shrinks tox0, our assertion is proved.

Step III. This is the general case. By step II above, for any relatively
compact open subsetΩ′ of Ω, there exist points xi , 1 ≤ i ≤ N, and
neighbourhoods Ui of xi , ∪Ui ⊃ Ω̄

′ and constants C, B such that for a
C∞ f with supp. f ⊂ Ui , Re(−1)m(L f , f ) ≧ C| f |2m−B| f |20. We write, as in

II, L =
k∑

i=1
(Bi)∗ Ai , where Ai , Bi are differential operators of orders≤ m.

Let ηk be C∞ functions,ηk: Ω → R, with supp.ηk ⊂ Uk, 0 ≤ ηk(x) ≤ 1,
and

∑
η2

k(x) = 1 for x ∈ Ω′. (Theηk exist : see Chap. I, §2.) We
first remark that ifϕ is a C∞ function with compact support and△ is a
differential operator of order m, then

△(ϕ f ) − ϕ△ f =
∑

|α|<m

aα Dα f ,

where the aα are continuous function with compact supports (depending
onϕ). Now for C∞ f with supp. f ⊂ Ω′,

|ηk f |2m ≤
1
C

(−1)m Re.
∑

(Ai ηk f , Bi ηk f ) +
B
C
|ηk f |20.
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By the remark made above, there exists a constantC1 depending on 195

Ai , Bi, such that

(−1)m Re.
∑

i

(Ai ηk f , Bi ηk f ) ≤ (−1)m

Re
∑

i

(ηk Ai f , ηk Bi f ) +C1| f |m.| f |m−1.

Hence

|ηk f |2m ≤
1
C

(−1)m Re.
∑

i

(Ai f , η2
k Bi f ) +

C1

C
| f |m| f |m−1 +

B
C
|ηk f |20.

SinceDα ηk f = ηk Dα f +
∑
β<α

(α
β
) Dβ f Dα−β ηk, we have

|
∑

k

| ηk f |2m− | f |
2
m| ≤ C2| f |m.| f |m−1

for some constantC2.
Hence summing overk,

| f |2m ≤ C3(−1)m Re.(L f , f ) +C4 | f |m | f |m−1 +C5| f |
2
0

for some constantsC3, C4, C5. Now

| f |m | f |m−1 ≤
1
2
.(ε| f |2m +

1
ε
| f |2m−1), 0 < ε <

1
2
.

Hence

| f |2m −
ε

2
| f |2m ≤ C3(−1)m Re(L f , f ) +

C4

2ε
| f |2m−1 +C5| f |

2
0.

By Proposition 1, there exists a constantC6 such that

| f |2m−1 ≤ ε
2| f |2m +C6| f |

2
0.

Hence (1−ε). | f |2m ≤ C3(−1)m Re. (L f , f )+C7| f |20 which proves the196

theorem.
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Remark. If L is a uniformly strongly elliptic differential operator of or-
der 2m which is homogeneous and has constant coefficients, i.e. L =∑
|α|=2m

aα Dα, then the above inequality holds in a stronger form, i.e. for

Ω′ ⊂⊂ Ω, there exists a constantC such that forC∞ f with supp. f ⊂ Ω′,

(−1)m Re.(L f , f ) ≥ C.| f |2m.

Proof. We have, as in Step I above,

(L f , f ) = (L̂ f , f̂ ) = (−1)m
∫

(p(ξ) f̂ (ξ), f̂ (ξ)) dξ,

and there exists constantC such that

Re.(−1)m(L f , f ) ≥ C.
∫

Rn

|ξ|2m | f̂ (ξ)|2 dξ.

�

By Plancherel’s theorem

|Dα f |20 = |D
α̂ f |20 =

∫

Rn

|ξ2α|| f̂ (ξ)|2 dξ.

Hence Re.(−1)m(L f , f ) ≥ C′
∑
|α|=m

|Dα f |20 and sincef is aC∞ func-

tion with compact support⊂ Ω′ we have
∑
|α|=m
|Dα f |20 ≥ C′′| f |2m for

some constantC′′ > 0 (Poincare’s inequality; see Remark (6) after the
Definitions in §5), which proves the required inequality.

Proposition 2. If Ω is a bounded open subset ofRn and m is an integer 197

> 0, then for any A> 0, there exists a constant C such that for f∈
H0

m(Ω),

∫

Rn

(1+ |ξ|2)m| f̂ (ξ)|2 dξ ≤ C
∫

|ξ|>A

(1+ |ξ|2)m| f̂ (ξ)|2 dξ.
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[This Proposition may be looked upon as a stronger version, in the
casep = 2, of Poincare’s inequality (Remark (6) at the beginning of
§5)].

Proof. If the proposition is false, there exists a sequence{ fν}ν≥1 of C∞

functions with compact support⊂ Ω, such that| fν|m = 1 and

(6.1)
∫

|ξ|>A

(1+ |ξ|2)m| f̂ν (ξ)|2d ξ → 0 asν→ ∞.

�

By Rellich’s lemma the mapi:
o
Hm(Ω)→

o
H0(Ω) is completely con-

tinuous. Hence we may assume that{ fν} converges inL2 to f any. Now

f̂ν(ξ) is an analytic function ofξ, ν ≥ 1, and sincef ∈
o
H0(Ω) andΩ is

relatively compact,f ∈ L1; clearly

f̂ (ξ) = (2π)−n/2
∫

Ω

e−i ξ x f (x) dx

is analytic inξ sinceΩ is bounded; moreover̂fν converges uniformly to
f̂ on compact subsets ofRn.

Now, because of assumption (6. 11), for every compact setK with
K ⊂ {ξ||ξ| > A}, we have

∫

K

| f̂ν (ξ)|2 d ξ → 0. Hence
∫

K

| f̂ (ξ)|2 d ξ = 0,

so that f̂ (ξ) = 0 for ξ ∈ K and hencef = 0 since we may chooseK198

such that
o
K , φ. Hence f̂ν converges to zero uniformly on compact

sets so that
∫

|ξ|≤A

(1 + |ξ|2)m| f̂ν(ξ)|2 dξ → 0 and by assumption
∫

|ξ|>A

(1 +

|ξ|2)m| f̂ν(ξ)|2 dξ → 0.
But | f |m = 1 and thus we have a contradiction. This proves the

proposition.

Lemma 1. Let Ω, Ω′, Ω′′ be open sets inRn,Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Let
ϕ be in C∞(Ω) such thatϕ(x) = 1 for x in a neighbourhood ofΩ̄′′ and
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ϕ(x) = 0 for x < Ω′. Then for anyε > 0, there exists a constant C(ε),
such that for k≥ 1 and for f ∈ C∞(Ω),

∑

|β|=k

|ϕk Dβ f |20 ≤ ε
∑

|β|=k+1

|ϕk+1 Dβ f |20 +C(ε)
∑

|β|=k−1

|ϕk−1 Dβ f |20

[ϕ0 stands for1 onΩ′, 0 outside].

Proof. It is enough to prove that fork ≥ 1, and|β| = k we have

|ϕk Dβ f |20 ≤ ε
∑

|α|=k+1

|ϕk+1 Dα f |20 +C(ε)
∑

|α|=k−1

|ϕk−1 Dα f |20.

�

Now
(ϕk Dβ f , ϕk Dβ f ) = (Dβ f , ϕ2k Dβ f )

Let β = γ + e, where|e| = 1. Then

(ϕk Dβ f , ϕk Dβ f ) = −(Dγ f ,De.ϕ2kDβ f )

= −(Dγ f , 2k ϕ2k−1Deϕ.Dβ f ) − (Dγ f , ϕ2k Dβ+e f ).

= −(ϕk−1 Dγ f , 2k ϕk De ϕ.Dβ f )

− (ϕk−1 Dγ f , ϕk+1 Dβ+e f ).

By Schwarz’s inequality, this gives, 199

|ϕk Dβ f |20 ≤ |ϕ
k−1 Dγ f |0.C1|ϕ

k Dβ f |0 + |ϕ
k−1 Dγ f |0.|ϕ

k+1 Dβ+e f |0

for a constantC1 depending onϕ. Now

|ϕk−1 Dγ f |0.|ϕ
k Dβ f |0 ≤

1
2

{
ε

C1
|ϕk Dβ f |20 +

C1

ε
|ϕk−1 Dγ f |20

}

and|ϕk−1 Dγ f |0.|ϕ
k+1 Dβ+e f |0 ≤

1
2

{
ε|ϕk+1Dβ+e f |20 +

1
ε
|ϕk−1 Dγ f |20

}
.

Hence

(1− ε)|ϕk Dβ f |20 ≤ ε|ϕ
k+1 Dβ+e f |20 +C(ε).|ϕk−1 Dγ f |20.

This proves our assertion.
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Theorem 2 (Friedrichs’ inequality). Let Ω be a bounded open set in
Rn and L, an elliptic differential operator onΩ of order m, given by
L =

∑
|α|≤m

aα Dα. Let r be an integer, r≥ 0.

(I) If a′α s are constant, there exists a constantC such that forf ∈200

C∞(Ω),
| f |m+r ≤ C |L f |r .

(II) For any x0 ∈ Ω, there exists a neighbourhoodU of x0 and a con-
stantC1 such that for anyC∞ f with supp. f ⊂ U, we have

| f |m+r ≤ C1 |L f |r .

(III) There exists a constantC2 such that for anyf ∈ C∞(Ω), supp. f ⊂
Ω,

| f |m+r ≤ C2{|L f |r + | f |0}.

(IV) If Ω′′, Ω′ are open subsets ofΩ, Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, then there
exists a constantC3 such that forf ∈ C∞(Ω),

| f |Ω
′′

m+r ≤ C3{|L f |Ω
′

r + | f |
Ω′

0 }.

The proofs of this theorem are completely parallel to those of Gård-
ing’s inequality, but in this form do not follow at once from Theorem
1. In the caser = 0 (III) and (I) and (II) with the inequality| f |m ≤
C|L f |0 replaced by| f |m ≤ C{|L f |0+ | f |0} follows at once from Gårding’s
inequality applied to△ = (−1)m L∗ L.

Proof. (I) SinceL is elliptic, there exists a constantB1 > 0 such that

(6.2) |p(ξ).v| ≥ B1|ξ|
m|v| for ξ ∈ Rn andv ∈ Cq.

�

Let L1 =
∑
|α|=m

aα Dα and L2 =
∑
|α|<m

aα Dα. Then there exists a201

constantM depending onL2 such that

(6.3) |L̂2 f (ξ)|2 ≤ M.(1+ |ξ|2)m−1 | f̂ (ξ)|2.
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Also there exists a constant A such that
B2

1

2
|ξ|2m−M(1+ |ξ|2)m−1 ≥ B2 (1+ |ξ|2)m for |ξ| > A whereB2 is

a suitable constant> 0. By §5, Proposition 3, we have

|L f |2r ≥ c′
∫

Rn

(1+ |ξ|2)r |L̂ f (ξ)|2d ξ

≥ c′
∫

|ξ|>A

(1+ |ξ|2)r |L̂1 f (ξ) + L̂2 f (ξ)|2d ξ

≥ c′
∫

|ξ|>A

(1+ |ξ|2)r {|
1
2

p(ξ) f̂ (ξ)|2 − M(1+ |ξ|2)m−1| f̂ (ξ)|2} d ξ

( since|a+ b|2 ≥ |
1
2
|a|2 − |b|2 for a, b ∈ C)

≥ c′
∫

|ξ|>A

(1+ |ξ|2)r {
1
2

B1|ξ|
2m − M(1+ |ξ|2)m−1}| f̂ |(ξ)|2 d ξ

(by (6.2) and — (6.3)).

Now by the choice ofA,

|L f |2r ≥ B2c
′

∫

|ξ>A

(1+ |ξ|2)m+r | f̂ (ξ)|2dξ

and hence by Proposition 2, there exists a constantc such that

|L f |r ≥ c| f |m+r .

II Let L = L0 + L1 whereL0 and L1 are differential operators of 202

orders≤ m such thatL0 has constant coefficients ofL1 vanish at
x0. Since the coefficients ofL1 are continuous functions onΩ,
there exists a neighbourhoodU of x0 such that for anyC∞ f with

supp. f ⊂ U, |L1 f |2r ≤
ε

2
| f |2m+r , ε depending onU and tending to

zero asU → {x0}
1. Then

|L0 f + L1 f |2r ≥
1
2
|L0 f |2r − |L1 f |2r .

1If r > 0, this involves integration by parts.
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By (I) there exists a constantB such that

|L0 f |2r ≥ B| f |2m+r .

Hence

|L f |2r ≥ (
B
2
− ε)| f |2m+r .

III Because of (II), there is a finite covering{U1, . . . ,Uh} of Ω̄′ such
that if supp f ⊂ Ui for somei, then

|L f |r ≥ C| f |m+r .

Let suppf ⊂ Ω′ andϕ1, . . . , ϕh be C∞ functions, 0≤ ϕi ≤ 1,
suppϕi ⊂ Ui ,

∑
ϕ2

i = 1 onΩ′. Now, since suppf ⊂ Ω′, we have∣∣∣ | f |2m+r −
∑

i |ϕi f |2m+r

∣∣∣ ≤ C′| f |m+r−1, and
∣∣∣ |L f |2r −

∑
i
|L(ϕi f )|2r

∣∣∣ ≤
C′| f |m+r−1, so that, since

|L(ϕi f )|r ≥ C|ϕi f |m+r , and| f |m+r−1 ≤ ε| f |m+r +C(ε)| f |0,

we obtain the required inequality.203

IV Define aC∞ functionϕ onΩ such thatϕ(x) = 1 for x in a neigh-
bourhood ofΩ̄′′ andϕ(x) = 0 for x < Ω′. Then if f ∈ C∞(Ω),
m′ = m+ r, we have

Dα(ϕm′ f ) =
∑

β≤α

(αβ ) (Dβ ϕm′) Dα−β f .

Now, Dβ ϕm′(x) = Cβ(x)ϕm′−|β|(x), whereCβ(x) is aC∞ function and
|Cβ(x)| ≤ A1 for some constantA1. Then

Dα(ϕm+r f ) = ϕm+r Dα f +
∑

β≤α
β,0

C′β ϕ
m+r−|β| Dα−β f

whereC′β = (αβ )Cβ.



6. Elliptic differential operators:... 167

Now squaring both sides, using Schwarz’s inequality and summing
overα, |α| ≤ m+ r, we obtain,

(6.4)
∣∣∣ |ϕm+r f |2m+r −

∑

|α|≤m+r

|ϕm+r Dα f |20
∣∣∣ ≤ A2

∑

|β|≤m+r

|ϕ|β|.Dβ f |20

for a suitable constantA2.
By Part III above, we have, since supp.ϕm′ f ⊂ Ω′,

(6.5) |ϕm+r |2m+r ≤ C{|L(ϕm+r f )|2r + (| f |Ω
′

0 )2}.

By a repeated application of Lemma 1 to|ϕ|β| Dβ f |20 for |β| < m+ r,
we have

(6.6)
∑

|β|<m+r

|ϕ|β| Dβ f |20 ≤ ε
∑

|β|=m+r

|ϕm+r Dβ f |20 +C(ε)(| f |Ω
′

0 )2.

It follows from (6.4), (6.5) and (6.6) that 204

∑

|α|≤m+r

|ϕm+r Dα f |20 ≤ C
{
|ϕm+r L f |2r +

(
| f |Ω

′

0

)2
}

+ε
∑

|α|≤m+r

|ϕm+r Dα f |20 +C(ε)
(
| f |Ω

′

0

)2

so that
∑

|α|≤m+r

|ϕm+r Dα f |20 ≤ C2

{
ϕm+r L f |2r +

(
| f |Ω

′

0

)2
}

for a suitable constantC2.
Sinceϕ(x) = 1 for x ∈ Ω′′ and supp.ϕ ⊂ Ω̄′, the theorem follows.

Remark. As in the remark following Gårding’s inequality, parts (I)and
(II) of Theorem 2 can be proved for homogeneous elliptic operatorsL,
without appealing to Proposition 2; the reasoning is the same.

The proofs given in this section are essentially those of Garding [11]
and Friedrichs [10].
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7 Elliptic operators with C∞ coefficients: the regu-
larity theorem

LetΩ be an open set inRn.

Definition. If L is an elliptic differential operatorL : C∞,q0 , (Ω) →
C∞,p0 (Ω) and f ∈ H0(Ω), we define (L f ) as a linear functional onC∞,p0205

(Ω), by
(L f )(ϕ) = ( f , L∗ϕ) for ϕ ∈ C∞,p0 (Ω).

Further, (L f ) is said to be inH0(Ω) ( or Hm(Ω) or to be strongly dif-
ferentiable) if there existsg ∈ H0(Ω) (or Hm(Ω) or which is strongly dif-
ferentiable) such that (L f )(ϕ) = (g, ϕ) = ( f , L∗ϕ) for anyϕ ∈ C∞,p0 (Ω).

In what follows upto the regularity theorem,L denotes a uniformly
strongly elliptic operator of order 2m with C∞ coefficients, L: C∞,q0

(Ω) → C∞,q0 (Ω) and L =
r∑

i=1
B∗i Ai , Ai , Bi being differential operators

of orders≤ m. For ϕ, ψ ∈ Hm(Ω), we defineQ(ϕ, ψ) by Q(ϕ, ψ) =
r∑

i=1
(Aiϕ, Biψ). LetΩ′ ⊂⊂ Ω andh ∈ R, h , 0 be so small that (x1, . . . ,

xn) ∈ Ω′ implies (x1 + h, x2, . . . , xn) ∈ Ω. We write (x + h) for (x1 +

h, x2, . . . , xn). For g ∈ Hm(Ω), we definegh: Ω′ → Cq by gh(x) =
g(x+ h) − g(x)

h
.

Lemma 1. (a) If η ∈ C∞,10 (Ω), there exists a constant C such that for
any f ∈ H0(Ω), and h small enough, we have

|(η f )h − η f h|0 ≤ C| f |0.

(b) For f ∈ H0
m(Ω), there is a constant C> 0 such that| f h|m−1 ≤ C| f |m.

Proof.

(η f )h(x) − (η f h)(x) =
η(x+ h) − η(x)

h
f (x+ h)

= ηh(x) f (x+ h).

�
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This proves (a). The proof of (b), forf ∈ C∞,q0 , follows at once from206

f h(x) =

1∫

0

∂ f
∂x1

(x1 + th, x2, . . . , xn) dt,

and, for f ∈
o
Hm(Ω), by passage to the closure.

Proposition 1. If f ∈
o
Hm(Ω) and has compact support, and there exists

a constant C such that for anyϕ ∈ C∞,q0 (Ω), |Q( f , ϕ)| ≤ C|ϕ|m−1, then
f ∈ Hm+1(Ω).

Proof. We have
Q( f h, ϕ) =

∑

i

(Ai f h, Bi ϕ).

SinceDα f h = (Dα f )h, it follows from Lemma 1 (a) that|Ai f h −

(Ai f )h|0 ≤ C1| f |m for a constantC1 depending onL. Hence

Q( f h, ϕ) =
∑

((Ai f )h, Biϕ) + 0(|ϕ|m.| f |m).

�

Now

((Ai f )h, Biϕ) = −(Ai f , (Biϕ)−h)

= −(Ai f , Biϕ
−h) + 0(|ϕ|m) ( Lemma 1 (a)).

Hence
Q( f h, ϕ) = −Q( f , ϕ−h) + 0(|ϕ|m);

by hypothesis,

|Q( f , ϕ−h) ≤ C|ϕ−h|m−1 ≤ C′|ϕ|m( Lemma 1 (b)).

Hence there exists a constantC2 such that 207

|Q( f h, ϕ)| ≤ C2|ϕ|m.



170 3.

This holds for anyϕ ∈ C∞,q0 (Ω). Since f h has compact support⊂ Ω,
choose a sequence{ϕν} of functions inC∞,q0 (Ω), ϕν → f h in Hm. Then,
we have,

|Q( f h, ϕν)| ≤ C2|ϕν|m

and passing to the limit,

(7.1) |Q( f h, f h)| ≤ C2| f
h|m.

Now by Garding’s inequality, there exists a constantB such that

|ϕν|
2
m ≤ B(−1)m Re(Lϕν, ϕν)| + |ϕν|

2
0,

hence
|ϕν|

2
m ≤ B|Q(ϕν, ϕν)| + |ϕν|

2
0;

taking limits asν→ ∞ and using (7.1), this gives

| f h|2m ≤ B C2| f
h|m + | f |

2
0.

Hence there exists a constantM such that

| f h|m ≤ M.

Consider f h for sufficiently smallh. This is a bounded set in the
Hilbert spaceHm(Ω); hence there is a sequence{hν}, hν → 0 such that

f h
ν is weakly convergent to a functiong in Hm(Ω). Also f h →

∂ f
∂x1

in

H0(Ω). This implies that
∂ f
∂x1
∈ Hm(Ω). Similarly we can show that208

∂ f
∂xi

, i ≥ 2 are inHm(Ω). Hence it follows from Proposition 1, §5, that

f is (m+ 1) times strongly differentiable, sincef has compact support,
f ∈ Hm+1(Ω).

Proposition 2. Suppose f∈ Hm(Ω) and for a given r,0 < r ≤ m, there
exists a constant C such that|Q( f , ϕ)| ≤ C|ϕ|m−r for anyϕ ∈ C∞,q0 (Ω);
then f is(m+ r) times strongly differentiable.

Proof. We shall prove the proposition by induction. �
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Caser = 1. Suppose that

|Q( f , ϕ)| ≤ C|ϕ|m−1.

We assert that for anyη ∈ C∞,10 , there is a constantC′ such that

|Q(η f , ϕ)| ≤ C′|ϕ|m−1;

the caser = 1 of Proposition 2 then follows from Proposition 1. To
prove the existence ofC′, we note that

(Ai η f , Biϕ) = (η Ai f , Biϕ) + (A′ f , Biϕ)

[whereA′ has order≤ m− 1 and has coefficients with compact support]

= (Ai f , Biηϕ) + (A′ f , Biϕ) + (Ai f , B′ϕ)

whereB′ has order≤ m− 1. Clearly

|(Ai f , B
′ϕ)| ≤ C′′|ϕ|m−1.

Now we can writeBi =
∑
k

Dk B′′k whereB′′k have order≤ m− 1, Dk

has ordered.
Since f ∈ Hm(Ω), we then have, 209

|A′ f , Biϕ)| = |
∑

(D∗kA′ f , B′′k ϕ)| ≤ C′′|ϕ|m−1.

Hence
Q(η f , ϕ) = Q( f , ηϕ) + 0(|ϕ|m−1)

and the result follows.
Let us now suppose that the result is proved forr = k − 1 > 0; then

f is (m+ k− 1) times strongly differentiable; by restricting ourselves to
Ω′ ⊂⊂ Ω, we may then suppose thatf ∈ Hm+k−1(Ω). Let |β| = 1. Now
since f ∈ Hm+k−1(Ω), we have

Q(Dβ f , ϕ) =
∑

(AiD
β f , Biϕ)

=
∑

(DβAi f , Biϕ) +
∑

(A′i f , Biϕ)
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where theA′i s are differential operators of order≤ m. Hence

Q(Dβ f , ϕ) = −
∑

(Ai f ,DβBiϕ) +
∑

(A′i f , Biϕ)

= −
∑

(Ai f , BiD
βϕ) +

∑
(A′′i f , B′′i ϕ)

whereA′′i andB′′i are differential operators such that ord.A′′i ≤ m+k−1
ord. B′′i ≤ m−k+1 [for this last equality, writeBi Dβ−Dβ Bi as a linear
combination

∑
L j L′j where ord.L j ≤ k− 1, ord.L′j ≤ m− k+ 1 and use

the fact thatf ∈ Hm+k−1(Ω), to shift L j to Ai] . Since

|Q( f , ϕ)| ≤ C|ϕ|m−k,

this gives210

∣∣∣∣
∑

(AiD
β f , Biϕ)

∣∣∣∣ ≤ C|Dβϕ|m−k +C1|ϕ|m−k+1

for some constantC1.
Hence

|Q(Dβ f , ϕ)| ≤ C2|ϕ|m−k+1

and by the induction hypothesis,Dβ f is (m + k − 1) times strongly
differentiable. By Proposition 1 of § 5 this implies thatf is (m+ k)
times strongly differentiable.

Proposition 3. If f ∈ Hm(Ω) and L f is r times strongly differentiable,
them f is(2m+ r) times strongly differentiable.

Proof. We shall prove the proposition by induction; by restrictingour-
selves toΩ′ ⊂⊂ Ω, we may suppose thatL f ∈ Hr(Ω). Let L f = g ∈
H0(Ω); then forϕ ∈ C∞,q0 (Ω), by definition,

Q( f , ϕ) = ( f , L∗ϕ) = (g, ϕ);

so that |Q( f , ϕ)| ≤ C|ϕ|0 for some constantC > 0.

�

Now using Proposition 2 withr = m, we conclude thatf is 2m times
strongly differentiable. Let us suppose that proposition is true forr = k.
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Then if L f ∈ Hk+1(Ω), by the induction hypothesis,f is (2m+ k) times
strongly differentiable. For|β| ≤ k+ 1,

L(Dβ) − DβL = △β is a differential operator of order≤ 2m+ k, and
since f is (2m+ k) times strongly differentiable, we have

LDβ f = Dβ(L f ) + △β f andDβ(L f ) + △β f ∈ H0(Ω′).

Therefore by what we have proved above (Dβ f ) is 2m times strongly 211

differentiable. This, together with Proposition 1, §5 implies that f is
(2m+ k+ 1) times strongly differentiable.

Proposition 4. Let △ denote the operator
n∑

i=1

∂2

∂x2
i

acting on q-tuples

of C∞ functions. Ifϕ ∈ H0(Rn) and r ≥ 1 is an integer, there exists
ϕ′ ∈ H2r(Rn) such that(I − △)rϕ′ = ϕ, I being the identity.

Proof. By Plancherel’s theorem ˆϕ ∈ H0(Rn). Defineϕ′ by

ϕ̂′(ξ) =
ϕ̂(ξ)

(1+ ξ2
1 + · · · + ξ

2
n)r
∈ H0(Rn).

�

Then ∫

Rn

(1+ |ξ|2)2r |ϕ̂′(ξ)|2dξ = |ϕ̂|0 < ∞.

Hence by Proposition 4, §5,ϕ′ ∈ H2r . Moreover using the fact that
Dα̂ f (ξ) = i |α|ξα f̂ (ξ) and the inversion formula we see immediately that

(I − △)rϕ′(ξ) = ϕ(ξ).

In the next theorem,L need no longer have the properties stated at the
beginning.

Theorem (The regularity theorem). If L is an elliptic differential op-
erator of order m with C∞ coefficients, L: C∞,q0 (Ω) → C∞,p0 (Ω) and for
an f ∈ H0(Ω), L f = g is in H0(Ω), and if g∈ C∞, so is f .
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Proof. Let A = (−1)mL∗ ◦ L; by restricting ourselves toΩ′ ⊂⊂ Ω, we 212

may suppose thatA is uniformly strongly elliptic andA: C∞,q0 → C∞,q0 .
Then we shall prove that for anyf ∈ H0(Ω), if A f ∈ C∞, then f ∈ C∞.
Since (−1)mL∗oL f = (−1)mL∗(L f ) ∈ C∞, this will imply the theorem.
We may extendf toRn by f (x) = 0 for x < Ω. Let r be a positive integer,
r ≥ m. Then by Proposition 4, there exists aq-tuple f (r) ∈ H2r (Rn) such

that if △ =
n∑

i=1

∂2

∂x2
i

, (I −△) f (r) = f . ConsiderB = (−1)r A(I −△)r . Then

B is uniformly strongly elliptic and is of order 2(m+ r); further

B f (r) = (−1)r A f ∈ C∞.

�

Sincer ≥ m, f (r) ∈ Hm+r and hence, by Proposition 3,f (r) is 2m+
2r + s strongly differentiable for anys > 0. Hencef is 2m+ s times
strongly differentiable for anys> 0.

It follows from the corollary to Sobolev’s lemma thatf has contin-
uous derivatives of order≤ 2m+ s− n for any s, and hencef ∈ C∞.

Remark. We have in fact proved the following proposition in the case
whenL is strongly elliptic of even order.

Proposition 5. Let L be an elliptic operator of order m, and f∈ H0(Ω).
If L f is r times strongly differentiable, r being an integer≥ 0, then f is
r +m times strongly differentiable.

The above proposition, for arbitraryL can be reduced, to the case
of strongly elliptic operators of even order by considering△1 = L∗L, if
r ≥ m (= order ofL). The general case requires the use of the space

H−k(Ω) which is the dual of
o
Hk(Ω), k > 0. We do not enter into the213

details.
The proof of the regularity theorem given here is a somewhat sim-

plified version of that of Nirenberg [32]. There are now several other
proofs available. The oldest, which operates with “fundamental solu-
tions” was proposed byL. Schwartz [39]; very strong theorems that
can be obtained by this method will be found in Hörmander [17]. The
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first proof using only ‘a priori’ estimates is due to Friedrichs [10] (who
proves, however, only a slightly weaker assertion). Other proofs are
due toF. John [19] andP. Lax [24] ; that of Lax is both brief and
elegant. Schwartz has recently given another very elegant and very gen-
eral proof, which operates, however, with singular integral operators;
see [41]. There is a vast literature that has sprung up aroundthis theo-
rem and its generalizations (particularly the so called “regularity at the
boundary”). References may be found in [1].

8 Elliptic operators with analytic coefficients

Lemma 1. If K is a compact set inRn and if Kε = {x|d(x,K) < ε},
there existsϕε ∈ C∞,10 (Rn) such that0 ≤ ϕε ≤ 1, ϕε(x) = 1 for xǫK,

supp.ϕε ⊂ K2ε and |Dαϕε| ≤
Cα

ε|α|
for some constants Cα independent of

ε and K.

Proof. Let ϕ be aC∞ function such that
∫

Rn

ϕ(x)dx = 1 andϕ ≥ 0,

supp.ϕ ⊂ {x|||x|| < 1}. Let χε(x) = 1 for x ∈ Kε andχε(x) = 0 for
x < Kε. �

Let ϕε(x) = ε−n
∫
ϕ

( x− y
ε

)
. χε(y) dy.

Then clearlyϕ(x) = 1 for x ∈ K and supp.ϕε ⊂ K2ε. Also 214

Dαϕε(x) = ε−|α|ε−n
∫

Dαϕ

( x− y
ε

)
χε(y)dy.

Hence|Dαϕε(x)| ≤ ε−|α|
∫
|Dαϕ(y)|dy, which proves the lemma.

Notation. In what follows,R, ρ are real numbers, 0< ρ < min{1,R},
andMρ( f ) is given by

[Mρ( f )]2 =

∫

|x|<R−ρ

| f (x)|2 dx.
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Proposition 1. Let L be an elliptic operator of order m, with C∞ coeffi-

cients, on{x
∣∣∣∣|x| < R+ δ}. Then there exists a constant C (independent of

f , ρ, ρ1) such that forρ, ρ1 > 0 and f ∈ C∞,q, we have

ρmMρ+ρ1(D
α f ) ≤ C


ρmMρ1(L f ) +

∑

|β|<m

ρ|β|Mρ1(Dβ f )


.

for |α| = m.

Proof. By Lemma 1 above there exists aC∞ functionϕ onRn such that

ϕ(x) = 1 for |x| < R− ρ − ρ1, 0 ≤ ϕ(x) ≤ 1, supp.ϕ ⊂ {x
∣∣∣∣|x| < R− ρ1}

and|Dαϕ| ≤
Cα

ρ|α|
whereCα are constants independent ofρ andρ1.

By Friedrichs’ inequality, (Part III), there exists a constantC1, inde-
pendent off andρ1 such that

|Dαϕ f |0 ≤ C1{|L(ϕ f )|0 + |ϕ f |0}.

�

Let215

L =
∑

|λ|≤m

aλDλ.

Then

L(ϕ f ) = φL f +
∑

β<λ
|λ|≤m

aλ

(
λ

β

)
Dλ−β(ϕ)Dβ f .

Sinceaλ areC∞ in |x| < R+δ and|Dαϕ| ≤
Cα

ρ|α|
, there exist constants

Cλ,β, independent ofρ such that

|aλ

(
λ

β

)
Dλ−βϕ| ≤

Cλ,β

ρ|λ−β|
for |x| ≤ R.

Hence

|Dαϕ f |0 ≤ C2


Mρ1(L f ) +

∑

|β|<m

β−m+|β|Mρ1(D
β f )



for a constantC2 and this proves the proposition.
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Proposition 2. LetΩ be an open set inRn, 0 ∈ Ω, and let L: C∞,q(Ω)→
C∞,q(Ω) be an elliptic operator of order m with coefficients which are
analytic inΩ (note that L=

∑
|λ|≤m

aλDλ where aλ are q× q matrices of

analytic functions). Then if R> 0 and R1 > R are sufficiently small
there exists a constant A> 0 such that for allρ, 0 < ρ < min(1,R), and
f ∈ C∞,q(Ω), we have, for|α| ≤ mr, r = 1, 2, . . .,

(8.1) ρ|α|M|α|ρ(D
α f ) ≤ A|α|+1


r∑

s=1

|Ls f |R1
0 ρ

(s−1)m + | f |R1
0

 ;

here| f |R1
0 =

∫

|x|<R1

| f (x)|2dx; Ls denotes the iterate of L, s times.

Proof. We chooseR1 so small that theaλ have holomorphic extensions216

to the polycylinder|z| ≤ R1. Let C1 =
∑
|λ|≤m
|z|≤R1

sup.|aλ(z)|; then we have

(Cauchy’s inequality)

(8.2)
∑

|λ|≤m

|Dαaλ(x)| ≤ C1α!ρ−|α| for |x| ≤ R− ρ.

�

Let
r∑

s=1

|Ls f |R1
0 ρ

(s−1)m + | f |R1
0 = Sr ( f ).

We first remark that

(8.3) ρmSr(L f ) ≤ Sr+1( f ).

We shall prove the proposition by induction. Forr = 1, i. e. for|α| ≤
m, we apply Friedrichs’ inequality, PartIV. There-exists a constantsC2

such that
M0(D

α f ) ≤ C2{|L f |R1
0 + | f |

R1
0 } for |α| ≤ m.

Hence
ρ|α|M|α|ρ(D

α f ) ≤ C2{|L f |R1
0 + | f |

R1
0 },
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so that (8.1) is true forr = 1 if A ≥ C2. Now let mr < |α| ≤ m(r + 1),
r ≥ 1, and assume that (8.1) is already proved for allβ with |β| < |α|.

Let α = α0 + α
′ where|α0| = m. Then we have by Proposition 1

with ρ1 = (|α| − 1)ρ, (andα0 in place ofα)

ρ|α|M|α|ρ(D
α f ) ≤

C


ρ|α|M(|α|−1)ρ(LDα′ f ) +

∑

|β|<m

ρ|β|+|α
′ |M(|α|−1)ρ

(
Dβ+α′ f

)


(8.4)

Further,217

Dα′L f = LDα′ f +
∑

|λ|≤m

∑

γ<α′

(α
′

γ )Dα−γaλDγ+λ f .

Now, for |x| ≤ R−mrρ, we have

|Dα′−γaλ(x) ≤ C1(α′ − γ)!(ρmr)−|α
′−γ|.

and
(
α′

γ

) (α′ − γ)!
|α′ − γ|

≤

(
|α′|

mr

)|α′−γ|
≤ 1 since|α′| = |α| −m≤ mr. Hence for

|x| ≤ R−mrρ, a fortiori for |x| ≤ R− (|α| − 1)ρ, we have,

(8.5) |Dα′L f − LDα′ f | ≤ C1

∑

|λ|≤m

∑

γ<α′

ρ−|α
′−γ||Dγ+λ f |.

Hence, by (8.4) and (8.5), we have formr < |α| ≤ m(r + 1),

(8.6)

ρ|α|M|α|ρ(D
α f ) ≤ C


ρ|x|M|α′|ρ(D

α′L f ) +
∑

|β|<m

ρ|β|+α
′

M|β+α′|ρ(D
β+α′ f )

+C1

∑

|λ|≤m

∑

γ<α′

ρm+|γ|M(m+|γ|)ρ(D
γ+λ f )


.

We can apply our induction hypothesis to each of the three terms in
brackets on the right.

The first term is≤ ρmA|α
′ |+1Sr (L f ) ≤ Aα

′ |+1( f ).



8. Elliptic operators with analytic coefficients 179

The second≤
∑
|β|<m

A|β+α
′ |/+1Sr+1( f ) and similarly for the third. This

gives

ρ|α|M|α|ρ(D
α f ) ≤ A|α|+1Sr+1( f )


C
Am +C

∑

|β|≤m

1
A
+C′1

∑

γ<α′

A−|α
′−γ|


.

Now 218∑

γ<α′

A−|α
′−γ| =

∑

0<β≤α′
A−|β| ≤ A−1

∑

|β|≥0

A−|β|

which clearly→ 0 asA → ∞. Hence we can chooseA ≥ C2 so large
that

C
Am +C

∑

|β|≤m

1
A
+C′1

∑

γ<α′

A−|α
′−γ| < 1,

which gives us (8.1).

Theorem 1(T. Kotake -M.S. Narasimhan). Let L: C∞,q(Ω)→ C∞,q(Ω)
be an elliptic operator of order m with analytic coefficients. If f ∈
C∞,q(Ω) and for anyΩ′ ⊂⊂ Ω, there exists a constant M> 0, such that

|Lr f |Ω
′

0 ≤ Mr+1(rm)!,

then f is analytic inΩ.

Proof. We may suppose that 0∈ Ω; it suffices moreover to show thatf
is analytic in a neighbourhood of 0. We chooseR1 such that Proposition
1 is true; we the have

|Lr f |R1
◦ ≤ Mr+1(rm)!

so that Sr ( f ) ≤
r∑

s=1

ρ(s−1)mMs+1(sm)! + M.

If ( r − 1)m < |α| ≤ rm, we chooseρ =
c
|α|

, wherec is small. Since, 219

then (sm)!ρ(s−1)m ≤ (rm)2m for s ≤ r, we conclude thatSr ( f ) ≤ Br+1
1

for a suitable constantB1. By Proposition 2, this implies that| f |R−c
k ≤
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Bk+1
2 kk; if K is a compact subset of the set|x| < R− c, it follows from

(the weak form of) Sobolev’s lemma that

sup
x∈K
|Dα f (x)| ≤ B3Bk+n+1

2 (k + n)k+n if |α| = k.

�

Stirling’s formula shows then that

sup
x∈K
|Dα f (x)| ≤ Bk+1

4 k! if |α| = k.

so thatf is analytic in|x| < R− c by Chap I, §1.

Lemma 2. Let L be any differential operator of order m, with coeffi-
cients which are holomorphic q×q matrices on D= {z∈ Cn

∣∣∣|zi | < r i ≤ 1}
and let f be a bounded holomorphic map D→ Cq. Then there exists a
constant A such that

|Lr f (z)| ≤
(3A)r+1(mr)!∏

(r i − |zi |)mr for z ∈ D.

Proof. We shall prove the lemma by induction. Forr = 0, the lemma is
trivial. Assume that it is true forr = k− 1. Then

|Lk−1 f (z)| ≤
(3A)k{m(k− 1)}!∏

(r i − |zi |)m(k−1)
for z ∈ D.

�

Let
∑
|α|≤m
|aα(z)| ≤ A, whereL =

∑
aαDα. We have, by Lemma 3, §3,

|DαLk−1 f (z)| ≤
3(3A)k(mk)!

Π(r i − |zi |)m(k−1)+|α|

and since
∑
|α|≤m
|aα(z)| ≤ A on D, this implies that220

|Lk f (z)| ≤
(3A)k+1(mk)!

Π(r i − |zi |)mk
.
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Theorem 2 (Petrovsky). If L is an elliptic operator of order m, with
analytic coefficients onΩ, and if L f is analytic, then f is analytic.

Proof. By replacingL by L∗L if necessary, we may suppose thatL is
an operatorC∞,q(Ω) → C∞,q(Ω) with analytic coefficients. LetL =∑
|α|≤m

aαDα. We may assume thatΩ = {x
∣∣∣|xi | < r i} and thataλ andL f

extend to holomorphic functions onD = {z ∈ C
∣∣∣|zi | < r i}. Let g = L f .

Then it follows from Lemma 2 that for any compact subsetK ofΩ, there
exists a constantM such that

|Lr f |K0 ≤ Mr+1(mr)!

Theorem 2 then follows from Theorem 1. �

Note: We indicate briefly how the proof of Theorem 1 simplifies in the
special case needed for Theorem 2. We use inequalities (8.4)and (8.5).
But now sinceg = L f is analytic, we apply the Cauchy inequalities to a
holomorphic extension ofg and conclude that

|DαL f | ≤
C3α!

(mrρ)|α|
in |x| ≤ R−mrρ

so that ρ|α
′ |M(|α|−1)ρ(D

α′L f ) ≤ C4;

this leads easily to the estimate 221

ρ|α|M|α|ρ(Dα f ) ≤ A|α|+1 for all α, (A now depends onf ) and the
proof is completed as before. The point is that one does not need the
somewhat complicated PartIV of Friedrichs’ inequality. The main the-
orem of this section (Theorem 2) is a special case of results of Petrovsky
[36] who considered also non-linear systems of differential equations.
His proof is however very difficult. The main idea in the proof given
here is contained in the paper of Morrey-Nirenberg [29]. Theproof by
Koteke-Narasimhan [23] of Theorem 1 involves more careful analysis
although it is also based on the idea of Morrey-Nirenberg.

9 The finiteness theorem

Let V be an orientedC∞ manifold,E, F, C∞ vector bundles of ranksq,
p respectively overV. Let L be a differential operatorL : C∞0 (V,E) →
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C∞(V, F). All coordinates systems considered will be assumed to be
positive.

Definition. (1) The order ofL at a pointa ∈ V is the largest integer
m such thatL(Fms)(a) , 0 for some f ∈ m∞a and some section
s∈ C∞0 (V,E).

(2) The order ofL onV is defined to be max
a∈V

order ofL at a.

(3) A differential operatorL of orderm is said to be elliptic if, fora ∈ V,
and every (real valued)f ∈ m∞a such that (d f)(a) , 0, we have222

L( f ms)(a) , 0 for everys∈ C∞0 (V,E) for which s(a) , 0.

Note that if f ∈ m∞0 and s(a) = 0, thenL( f ms)(a) = 0. Further if
(d f)(a) = 0, L( f ms)(a) = 0 for anys. HenceL( f ms)(a) defines a map
(not linear) fromEa ⊗ T∗a(V) → Fa; this gives rise to aC∞ mapσ(L):
E ⊗ T∗(V)→ F (which preserves fibres). This map is called thesymbol
of L (and replaces the characteristic polynomial which we considered
earlier).

Remarks 1.(1) We shall prove that the definition (2) above is consis-
tent with the definition (1) of §6. LetE, F be trivial and fora ∈ V,
let Ua be a coordinate neighbourhood ofa and letL be given by
L =

∑
|α|≤m1

aαDα, aα′ . 0 for some|α′| = m1. Then it is enough to

show that the order ofL onUa = m1. But this follows at once from

(i) (Dα f m)(a) = 0 for |α| < m, if f ∈ m∞a and

(ii) (Dα f m)(a) = (m!)(
∂ f
∂x1

)α1(a) · · · (
∂ f
∂xn

)αn(a) for |α| = m, if f ∈

m∞a .

(2) If L has orderm onV, with the same notation as in the remark (1),

L( f ms)(a) = m!
∑

|α|=m

ξαaα(a)S(a), ξ =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)

Hence it follows that the definition (3) above and the definition (3) of §6
are consistent.
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Examples.(1) LetV be aC∞manifold of dimensionn, and let
p
A denote 223

the set ofp differential forms onV. Then
p
A = C∞(V,Ep), whereEp

is a vector bundle of rank (n
p) overV for which the fibre ata ∈ V is

p
∧T∗a(V). The exterior differentiationd :

p
A→

p
Ap+1 is a differential

operator of degree 1. Ifp = 0, for f ∈ m∞a andg ∈
◦

A, we have

d( f g)(a) = (d f)(a)g(a) + f (a)(dg)(a).

Hence if (d f)(a) , 0, d( f g)(a) , 0 wheneverg(a) , 0 i. e. d :
◦

A→
1
A is elliptic.

(2) Let V be a complex manifold of complex dimensionn and letεp,q

denote the set of all differential forms of type (p, q). Thenεp,q =

C∞(V,Ep,q), whereEp,q is a vector bundle of rank (n
p)(n

q) over V;
[Ep,q is a bundle whose fibre overa ∈ V is the spaceεp,q

a of complex
convectors of type (p, q) at a].

Clearly ∂̄: εp,q → εp,q+1 is a differential operator of order 1. Let
q = 0, f ∈ m∞a and (d f)(a) , 0. Sincef is real valued, we have

(d f)(a) = (∂̄ f )(a) + (∂̄ f )(a)

and hence (d f)(a) = φ implies (∂̄ f )(a) , 0. If g ∈ εp,0 and g(a) ,
0 ∂̄( f g)(a) = (∂̄ f )(a)g(a) , 0, sinceg(a) is of type (p, 0). i.e. ∂̄: εp,0→

εp,1 is elliptic.

In what follows,
n
A(V) is the (complex) line bundle∧nJ∗(V), where

J∗(V) is the bundle of complex covectors onV i. e. fora ∈ V,J∗a(V) = 224

T∗a(V) ⊗R C andE′ is the vector bundle onV, given by

E′ = E∗ ⊗ An(V).

SinceE′ = E∗a ⊗ An(V), we have a mapη: Ea × E′a → An
a(V), given

by
η(x, y∗ ⊗ ωa) = (x, y∗)ωa ∈ An

a(V).
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Now for any open subsetU of V, η defines a map (which we again
denote byη)

η : Γ(U,E) × Γ(U,E′)→ Γ(U,An(V))

given by η(s, s′)(a) = η(s(a), s′(a)).

If one of sands′ has compact support, we define〈s, s′〉 by

〈s, s′〉 =
∫

V

η(s, s′).

Remarks. (1) Since for all line bundleD, D⊗D∗ is (canonically) trivial,
it follows that

(E′)′ = E′∗ ⊗
n
A(V)

= E ⊗ (
n
A(V))∗ ⊗

n
A(V) ≃ E.

(2) If τ: E→ V×Cq is an isomorphism ofE with the trivial bundle and
t
τ−1 : E∗ → V × Cq, the associated isomorphism of the duals and if

τ(x) = a× (x1, . . . , xq),tτ−1 (y∗) = a× (y1, . . . , yq),

then y∗(x) =
∑

xiyi . We shall also writeτ(x) for the projection225

(x1, . . . , xq) of τ(x) onCq.

Lemma 1. If L is differential operator C∞0 (V,E)→ C∞(V, F) then there
exists a unique differential operator

L′ : C∞0 (V, F′)→ C∞(V,E′), such that

(9.1) 〈s, L′σ〉 = 〈Ls, σ〉 if s ∈ C∞(V,E)σ ∈ C∞0 (V, F′).

Proof. It is clear that an operatorL′, if it satisfies (9.1), is local (i.
e. supp.L′σ ⊂ supp.σ) and is uniquely determined. We have there-
fore only to prove the existence locally. LetU be a positive coordi-
nate neighbourhood with coordinates (x1, . . . , xn). We remark that any

σ ∈ F′a = F∗a ⊗
n
Aa(V) can be uniquely written as

σ = g⊗ (dx1 ∧ · · · ∧ dxn)a, g ∈ F∗a.

�
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Suppose now thatτE: EU → U × Cq, τF: FU → U × Cq are iso-
morphisms andτ∗E: E∗U → U × Cq is the transpose inverse. We suppose
that, in terms of the isomorphismτE, τF, L is written

L =
∑

|α|≤m

aαDα onU.

We defineL′σ by L′σ = λσdx1∧· · ·∧dxn whereτ∗E(λσ) = L̄∗(τ∗F(g)),
if σ = g ⊗ dx1 ∧ · · · ∧ dxn. (For any operatorA =

∑
CαDα, we denote

by Ā the operator
∑

C̄αDα.) We have, ifσ ∈ C∞0 (U, F′), s∈ C∞(V,E),

〈Ls, σ〉 =
∫

U

(LτE(s), τ∗F(g))dx1 ∧ · · · ∧ dxn

=

∫

U

(τE(s), L∗τ∗F(g))dx1 ∧ · · · ∧ dxn

= 〈s, L′σ〉.

Definition. The L′ defined by Lemma 1 is called the transpose of the226

operatorL.

Remarks. If rank E = rankF andL is elliptic, thenL′ is elliptic.

If p: E→ V is a vector bundle, in what follows a sections: V → E,
is a mapV → E (not necessarily continuous) such that

p ◦ s= identity onV.

Definition. A section s: V → E is said to be locally inHm is every
point a ∈ V has a coordinate neighbourhoodU such that there is an
isomorphismτ: EU → U × Cq for which τ ◦ s is in Hm(U).

[We may speak of locally measurable, integrable sections inthe
same way.] The theorems proved in §7, §8, extend to differential op-
erators between vector bundles. We state those results thatwe need.
The proofs are immediate, and the details will be omitted.
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If L : C0
0(V,E) → C∞(V, F) is an elliptic differential operator, then

for any locally (square) integrable sectionsof E on the open setU ⊂ V,
Lsdenotes the linear functional onC∞0 (U, F′) defined by

(Ls)(s′) = 〈s, L′s′〉 for s′ ∈ C∞0 (U, F′).

If there existsσ which is a locally square integrable (orC∞, . . .)227

section ofF onU for which

(Ls)(s′) = 〈σ, s′〉 for s′ ∈ C∞0 (U, F′),

we say thatLs is locally square integrable (orC∞, . . .).

Regularity theorem. If L is an elliptic operator, L: C∞0 (V,
E) → C∞(V, F) and s is a locally square integrable section of E such
that Ls is C∞, then s is itself C∞(i. e. equal almost everywhere to a C∞

section).

Analyticity theorem Let V be an analytic manifold, E, F analytic vec-
tor bundles on V and L an elliptic operator from E to F with analytic
coefficients (i. e. for any analytic section s: U→ E, Ls is an analytic
section U→ F). Then if s is a locally square integrable section such
that Ls is analytic, then s is itself analytic.

Let K be a compact set inV. Then Hm(K,E) denotes the set of
sectionss : V → E, which are locally inHm for which supp.s ⊂ K.
Let U = {U1; . . . ,Uh} be a finite covering ofK, Ui being coordinate
neighbourhoods such thatE restricted to a neighbourhoodU′i of Ūi is
trivial. Let τi : EU′i

→ U′i ×C
q be isomorphisms. Letϕi beC∞ functions

with supp.ϕi ⊂ Ui and
∑
ϕi = 1 in a neighbourhood ofK. Then for

s ∈ Hm(K,E), τi(ϕi s) ∈ Hm(Ui) and|τi(ϕi s)|2m < ∞. We define the norm228

|s|m,U by |s|2m,U =
h∑

i=1
τi(ϕi s)|2m. ThenHm(K,E) is a complete normed

linear space and in fact a Hilbert space.
Let H denote the Hilbert space⊕hHm(Ui) andη: Hm(K,E) → H

the map given byη(s) = ⊕τi(ϕi s). Clearlyη is an isometry ofHm(K,E)
onto a closed subspace ofH .

We also haveτi(s|Ui) ∈ Hm(Ui) and if ||s||m,U denotes

(
∑
|τi(s|Ui)|

2
m)

1
2 ,Hm(K,E)
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is a complete normed linear space with the norm|| ||m,U .
Clearly |s|m,U ≤ c||s||m,U and

|τi(s|Ui)|m ≤
h∑

j=1

|τi(ϕ j s|Ui)|m

≤ C
h∑

j=1

|τ j(ϕ j s|U j)|m

whereC is a constant depending on the isomorphismsτi .
Hence the two norms are equivalent. It is easy to see that ifU1 and

U2 are two finite coverings having the same properties asU , | |m,U1 and
| |m,U2 are equivalent.

Rellich’s lemma. The natural injectioni: Hm(K,E) → Hm−1(K,E) is
completely continuous.

This follows at once from the result of §5 and the definition ofthe
norms onHr (K,E).

Proposition 1. For any continuous linear functional l on H0(K,E), there 229

exists a unique s′ ∈ H0(K,E′) such that l(s) = 〈s, s′〉 for any s ∈
Ho(K,E).

Proof. It is clear that if there existss′ ∈ Ho(K,E′) such thatl(s) = 〈s,
s′〉 for any s ∈ Ho(K,E′) then s′ is unique. LetU be a coordinate
neighbourhood such thatF restricted to a neighbourhoodU′ of Ū is
trivial, then it is enough to show that there existss′ ∈ Ho(U,E) such that

l(s) = 〈s, s′〉 for any s∈ Ho(U,E).

�

If τ : EU′ → U′ × Cq is an isomorphism, letτ∗ : E∗U′ → U′ × Cq

be the corresponding isomorphism ofE∗U . Let s ∈ Ho(U,E) correspond
to τ(s) = (s1, . . . , so); then (s1, . . . , sq) ∈ L2(U). Then by the theorem of
Riesz sinceL2(U) is a Hilbert space, there existst = (t1, . . . , tq) ∈ L2(U)
such that

l(s) = (s, t) =
∫

U

q∑

i=1

si t̄idx1 ∧ · · · ∧ dxn.
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Let s′ ∈ Ho(U,E′) be given by

s′ = (τ′)−1(t̄1, . . . , t̄q) ⊗ dx1 ∧ · · · ∧ dxn.

Then clearly

l(s) =
∫

U

∑
si t̄idx1 ∧ · · · ∧ dxn = 〈s, s

′〉.

Remark. If L is a differential operator of orderm, L: C∞o (V,E) →230

C∞(V, F) and if K is a compact subset ofV, L gives rise to a map
LK : Hm(K,E)→ Ho(K, F).

We shall need the following result

Theorem 1. If H1, H2 are Hilbert spaces and if A, B are continuous
linear maps, H1 → H2 such that A is injective and A(H1) is closed
while B is completely continuous, then(A + B)(H1) is closed and the
kernel of(A+ B) is of finite dimension.

Proof. It follows from the closed graph theorem thatA−1: A(H1)→ H1

is continuous. LetA+B = T. If the kernel ofT is of infinite dimension,
there exists an orthonormal sequence (xn) in H1 such thatT xn = 0. By
the complete continuity ofB, there exists a subsequence (xnk) of (xn)
such thatBxnk is convergent. HenceA. xnk → Ax0. It follows from
the continuity ofA−1 that xnk → xo which contradicts the hypothesis
that (xn) are orthonormal. This proves that the kernel ofT is of finite
dimension. �

Let N be the kernel ofT and letM be the orthogonal complement of
N in H1 and letT̃ be the restriction ofT to M. Clearly T̃ is continuous
and injective. It is enough to prove thatT̃−1 defined onT(H1) is contin-
uous. Letyn ∈ T(H1), yn → 0 andyn = T̃ xn, xn ∈ M. If xn 6→ 0, we

may assume||xn|| ≥ ρ > 0 for some positive numberρ. Putzn =
xn

||xn||
;

then T̃zn → 0. Let (znk) be a subsequence ofzn such thatBznk is con-
vergent. ThenAznk is convergent and letAznk → Azo. It follows that
znk → zo and obviously||zo|| = 1. But T̃ zn → 0, i.e. T̃zo = 0 and this is
a contradiction.
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Theorem 2. Let V be an oriented C∞ manifold and E, F, C∞ vector231

bundles on V of rank q and p respectively. Let L be an elliptic differ-
ential operator of order m, L: C∞o (V,E) → C∞(V, F) and K, a compact
subset of V. Then LK : Hm(K,E) → Ho(K, F) has a closed image and
the kernel of LK has finite dimension.

Proof. Let A : Hm(K,E) → Ho(K, F) ⊕ Hm−1(K,E) be the mapAu =
(Lu) ⊕ i(u), wherei: Hm(K,E) → Hm−1(K,E) is the natural injection.
By Friedrichs’ inequality (PartIII ), for anya ∈ V, there exists a neigh-
bourhoodUi and a constantC such that|ϕi f |m ≤ C(|Lϕi f |0 + |ϕi f |0) for
C∞ϕi with supp.ϕi ⊂ Ui. �

It follows that we have an inequality of the form

| f |m,U ≤ C{|L f |o,U + || f ||m−1,U }.

(with respect to a suitable coveringU of K). Since||r,U, ||||r,U are equiv-
alent, this leads to an inequality

| f |m ≤ C1{|L f |o + | f |m−1}.

Now, sincei is an injection, so isA. Further, because of the above
inequality,A(Hm(K,E)) is closed. LetB: Hm(K,E)→ Ho(K, F)⊕Hm−1

(K,E) be the mapBu = 0 ⊕ i(u). By Rellich’s lemma,B is completely
continuous. Hence, by Theorem 1,A− B = LK ⊕ 0 has a closed image
and a finite dimensional kernel. The theorem clearly followsfrom this.

Proposition 2. Let V be a compact oriented C∞ manifold, E, F, C∞ 232

vector bundles of rank q, p respectively on V. Let L be an elliptic differ-
ential operator, L: C∞(V,E) → C∞(V, F). Let L(Hm(V,E)) = M. Then
M = {s ∈ Ho(V, F)| < s, s′ >= 0 for every s′ ∈ Ho(V, F′) such that
L′s= 0}.

Proof. Let N = {s∈ Ho(V, F)| < s, s′ >= 0 for s′ ∈ Ho(V, F′), L′s′ = 0}
[the equationL′s′ = 0 means, of course, that< Lu, s′ >= 0 for all
u ∈ C∞(V,E)]. By definition of the equationL′s′ = 0 we haveM ⊂ N.
Suppose thatM , N, then sinceM is closed by Theorem 2, there is
a continuous linear functionall on H0(V, F) such thatl(M) = 0, but
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l(N) , 0. Now, there iss′ ∈ Ho(V, F′) such thatl(s) =< s, s′ > for
s ∈ Ho(V, F). Sincel(m) = 0, we have< Lu, s′ >= 0 if u ∈ C∞(V,E).
But this means precisely thatL′s′ = 0 and by definition ofN, we have
l(N) = 0, a contradiction. �

The same reasoning gives the following

Proposition 2′. Let V be an oriented C∞ manifold, E, F C∞ vector bun-
dles on V and L: C∞0 (V, F) → C∞(V, F) an elliptic operator. Let K be
a compact subset of V and s∈ Ho(K, F) be such that< s, s′ >= 0 for

any s′ ∈ Ho(K, F′) with L′s′ = 0 on
◦

K. Then there isσ ∈ Hm(K,E) with
Lσ = s.

Proposition 3. If V is a compact C∞ manifold , E, F, C∞ vector bun-
dles of the same rank on V, L is an elliptic differential operator L:
C∞(V,E)→ C∞(V, F), then the image of Lis of finite codimension

Proof. Consider the operatorLV: Hm(V,E) → H0(V, F) and let LV233

[Hm(V,E)] = M. By Proposition 2,M = {s ∈ Ho(V, F)| < s, s′ >= 0
for everys′ ∈ H0(V, F′) such thatL′s′ = 0}. Hence it follows that cok-
ernel LV ≃ kernel L′V(L′V : Hm(V, F′) → H0(V,E′)). Since rankE =
rank F, L′ is also elliptic, so that by Theorem 2, kernalL′V has finite
dimension. Now, ifs′ ∈ H0(V, F′) and L′s′ = 0, we haves′ ∈ C∞.
HenceM∩C∞(V, F) = L(C∞(V,E)). SinceM has finite codimension in
H0(V, F), L(C∞(V,E)) has finite codimension inC∞(V, F) �

Remark. It can actually be shown that we have

C∞(V, F)/L[C∞(V,E)] ≃ kernelL′V.

Definition. If V is a compact orientedC∞manifoldE, F areC∞ bundles
of the same rank,L : C∞(V,E) → C∞(V, F) an elliptic operator, the
integer dim. (kernalL) - dim. (cokernelL) is called the index ofL.

The study of the index of elliptic operators has recently become very
important and has led to beautiful relationships between topology and
analysis.

The results provided in the section are due mainly toL. Schwartz.
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10 The approximation theorem and its application
to open Riemann surfaces

Definition. Let V be a manifold, andS a subset ofV. Ŝ denotes the
union ofS with the relatively compact connected components ofV −S.

Remarks. (1) If K is compact,K̂ is compact. For ifU is a relatively 234

open set containing,K, letΩ1, . . . ,Ωh be open connected sets that
∪Ωi ⊃ ∂U,Ωi ∩ K = φ. Then there exists at mosth relatively
compact connected components ofV − K which are not contained
in U; henceK̂ is relatively compact and sinceV−K̂ = ∪{ unbounded
components ofV − K}, V − K̂ is open i.e.K̂ is compact.

(2) If K is a compact subset of an open setΩ and ifV−Ω has no compact
components then̂K ⊂ Ω. For if Uα is a bounded component of
V − K, not contained inΩ, let a ∈ Uα and a < Ω. If Va is the
connected component ofV − Ω containinga, we haveVa ⊂ Uα,
henceVa is relatively compact and thus we have a contradiction.

(3) If S1 ⊂ S2, it is easy to see that̂S1 ⊂ Ŝ2.

(4) If U is open set then̂U is also open; this fact is not so trivial and
since we shall not need it, we omit the proof; the same appliesto

(5) If K is a compact set andK = −K̂, thenK has a fundamental system
of open (compact) neighbourhoodsU(L) such thatU = Û(L = L̂).

Lemma 1. Let V be an oriented C∞ manifold , E, F C∞ vector bundles
and L: E → F, an elliptic differential operator with C∞ coefficients.
If Ω is an open set on V and if L f= 0 on V and L fν = 0 on V, the
following are equivalent.

(i) fν → f in L2 locally onΩ.

(ii) f ν → f uniformly on compact subsets ofΩ. 235

(iii) f ν and Dα fν, for everyα, converge to f and Dα f respectively, uni-
formly on compact subsets ofΩ. (Note that because of the regu-
larity theorem f, fν are C∞.)
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Proof. We may suppose thatE, F are trivial and thatV is an open aet
in Rn. Let K ⊂ U ⊂⊂ U′ ⊂⊂ Ω,K being compact andU, U′ open. Let
r > 0. Then by Friedrichs’ inequality (PartIV) there is a constantC
such that for anyg ∈ C∞(Ω),

|g|Um+r ≤ C{|Lg|U
′

r + |g|
U′
o }.

�

If fν → f in L2(U′) andL fν = 0 onV andL f = 0 onΩ this gives

| fν − f ′|Um+r ≤ C| fν − f |U
′

o → for everyr ≥ 0.

By Sobolev’s lemma, there exists a constantCK such that

|| fν − f ||Kr ≥ CK | fν − f |Um+r+n,

and hence (i) implies (iii). Since trivially (iii) implies (ii) and (ii) implies
(ii), the lemma is proved.

Theorem 1(Malgrange-Lax). Let V be an oriented real analytic mani-
fold, E, F analytic vector bundles of the same rank and L: E→ F, an
elliptic operator of order m, with analytic coefficients. Then ifΩ is an
open set in V and if V−Ω has no compact connected components, then
any f ∈ C∞(Ω,E) with L f = 0 onΩ can be approximated uniformly on236

compact subsets ofω, by solutions s∈ C∞(V,E) of the equation Ls= 0.

Proof. Let K be a compact set inΩ. Then by the remarks (1) and (2)
above,K̂ is compact and̂K ⊂ Ω. �

Let K′ be a compact set inV such thatK̂ ⊂
◦

K′. Let

A(K′) = { f ∈ Ho(K′,E)|L f = 0 on
◦

K′}

andS(K) = { f |L f = 0 in a neighbourhood of̂K}. Consider the mapη:
Ho(V,E)→ Ho(K̂,E), given by

η(s) =


s on K̂

0 outsideK̂.
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If η(A(K′)) = M, we shall prove thatM is dense inη(S(K)){ clearly
M ⊂ η(S(K))}. Let l be a continuous linear functional onHo(K̂,E) such
that l(s) = 0 for s∈ M. By §9, proposition 1, there existsu ∈ Ho(K̂,E′)
such thatl(s) =< s, u > for s ∈ Ho(K,E). Then< s, u >= 0 for

every s with Ls = 0 on
◦

K′. Hence by §9. Proposition 2′, there exists
v ∈ Hm(K′, F′) such thatL′v = u.

Now suppu ⊂ K̂ i.e. L′v = 0 on V − K̂. Hence by the analyticity
theorem,v is analytic onV − K̂. Hence by the analyticity theorem,v is
analytic onV−K̂. But supp .v ⊂ K′ andV−K̂ has no relatively compact
connected components; hencev = 0 onV − K̂, i,e, v ∈ Hm(K̂, F′). For
any s ∈ S(K), let U be a neighbourhood of̂K so thats is defined and
Ls = 0 onU. Then< η(s), u >=< s, u >=< s, L′v >U=< Ls, v >U= 0
( since supp .v ⊂ K̂), i.e. l(s) = 0 for any s ∈ η(S(K)). By the
Hahn- Banach Theorem, this implies thatM is dense inη(S(K)). Thus
if L f = 0 in a neighbourhood of̂K, there exists a sequence of functions237

{ fν} in A(K′) such that fν → f in Ho(K̂,E); by Lemma 1, fν → f
uniformly on compact sets in (K̂)0.

Let {Kr} be a sequence of compact sets such that∪Kr = V andK̂ ⊂
Ko

1, K̂1 ⊂ Ω, K̂r ⊂ Ko
r+1 for r ≥ 1. Then ifL f = 0 in a neighbourhood

of K̂1 there existsf1 ∈ A(K2) such that

|| f − f1||
K̂ < ε/2

By induction, we have a sequencefν ∈ A(Kν+1) such that|| fν −

fν+1||
K̂ν <

ε

2ν
; of course,fν ∈ C∞(Ko

ν+1).

Defineg on V by g = gr ≡ fr +
∞∑

s=r+1
( fs − fs−1)(= lim

s→∞
fs) on Kr ;

clearly the series converges uniformly on compact sets ofV, and we
havegr = gr+1 on Kr . MoreoverLg = 0; in fact, for any sectionu ∈
C∞o (V, F′) we have (Lg)(u) =< g, L′u >= lim

s→∞
< fs, L′u >= lim

s→∞
< L fs,

u >= 0 [We have< fs, L′u >=< L fsu > if supp.u ⊂ Ks.] It is clear that
|| f − g||K̂ < ε.

(The fact thatLg = 0 also follows from Lemma 1.)

Remarks. (1) It follows from Theorem 2 and remark (5) after the defi-
nition of Ŝ that the following proposition holds.
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Proposition 4. If K is a compact set such that K= K̂, then any solution
of the equation Ls= 0 in a neighbourhood of K can be approximated,
uniformly on K, by solutions of the equation on V.

(2) It can be proved that the condition thatV − Ω have no compact
component is also necessary for every solution onΩ to be approximable238

by solutions onV. The proof depends on the existence theory for equa-
tionsLs= f , f being given, which we have not treated. See Malgrange
[27].

(3) Let V be a complex manifold of complex dimensionn and
let εp,q denote the set of differential forms of type (p, q). Consider∂̄:
εp,0 → εp,1, discussed in example (2) of §9. In particular, ifp = 0 and
if the rank of (0, 0) forms= rank of (0, 1) forms, i.e. ifn = 1, we may
apply Theorem 1 tō∂: ε0,0→ ε0,1 and obtain the following result.

Theorem 2 (Runge theorem for open Riemann surfaces: H. Behnke
-K.Stein). If V is an open Riemann surface, (i.e. a connected, non com-
pact complex manifold of complex dimension1) and if Ω is an open
subset of V such that V− Ω has no complete connected components,
then if f is a holomorphic function onΩ, for any compact subset K of
Ω, f is the uniform limit on K of a sequence of holomorphic functions
on V.

Note that whenV is an open set inC, the condition onΩ is also nec-
essary. in fact it is seen easily that if{ fν} is a sequence of holomorphic
functions onV, converging uniformly on compact subsets ofΩ, then
{ fν} converging uniformly on compact subsets ofΩ̂. It follows that any
holomorphic function onΩ which can approximated by holomorphic
functions onV, admits a holomorphic extension tôΩ. If Ω , Ω̂, this is

not the case for at least one holomorphic function onΩe.g.
1

z− a
where

a ∈ Ω̂ − Ω. One can further use the Runge theorem to prove this latter
statement also whenV is an arbitrary open Riemann surface, so that the239

condition is necessary for any open Riemann surface.

Definition. LetV be a complex manifold and letH =H (V) denote the
set of all holomorphic function onV. V is said to be a Stein manifold if
the following three condition are satisfied.
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(i) H separates points.

(ii) For any pointa ∈ V, there exists functions inH , which form a
system of local coordinates in a neighbourhood of a.

(iii) For any compact subsetK of V, the setK̂H = {x ∈ V| f (x) ≤ sup
y∈K

.

| f (y)|, for every f ∈H }, is compact.

Theorem 3 (Behnke-Stein). Every open Riemann surface V is a Stein
manifold

Proof. For a, b ∈ V, a , b, let (U1, ϕ1), (U2, ϕ2) be coordinate neigh-
bourhood of a andb such thatU1 ∩ U2 = φ and

ϕ1(U1) = {z ∈ C|z| < 1} = ϕ2(U2).

�

If U′1 = {x ∈ U1

∣∣∣∣|ϕ2(x)| < r < 1} andU′2 = {x ∈ U2

∣∣∣∣|ϕ2(x)| < r < 1},
thenV −U′1 andV −U′2 are connected and so isV −U′1 −U′2. Hence if
Ω = U′1 ∪ U′2, V −Ω has no compact connected and by Theorem 2, any
holomorphic function onΩ, can be approximated uniformly on compact
subsets ofΩ, by functions inH .

Let f be given by 240

f (x) = 0 for x ∈ U′1
and= 1forx ∈ U′2.

Then f is holomorphic onΩ and hence there existsgǫH such that

|| f − g||U
′
1, || f − g||U

′
2 <

1
2
,

i.e. |g(a)| <
1
2

and |g(b)| >
1
2

and henceH separates points. For

a ∈ V, let f be a holomorphic function in a neighbourhoodW of a with
(d f) (a) , 0. Then f gives local coordinates ata. Let (U, ϕ) be a coor-

dinate neighbourhood,U ⊂ W such thatϕ(U) = {z ∈ C
∣∣∣∣|z| < 1}. Then,
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with the same notation as above,V − U′ is connected and sincef is
holomorphic onU′, there existsg ∈ H such that|| f − g||U

′

< ε. Since
uniform convergence of holomorphic functions implies the uniform con-
vergence of their derivatives, ifε is small enough, we have (dg)(a) , 0,
so thatg gives local coordinates at a. We shall now prove that for a com-
pact setK in V, K̂ = K̂H . Let a < K̂; thena ∈ Uα, Uα being component
of V − K which is not relatively compact. Let (U, ϕ) be a coordinate

neighbourhood of a such thatϕ(U) = {z ∈ C
∣∣∣∣|z| < 1}, Ū ⊂ Uα. Let S be

a discrete unbounded set, contained inUα and letS′ = S∪Ū. ThenS′ is
a closed set,S′ ⊂ Uα. Hence there exists a closed connected setA such
that S′ ⊂ A ⊂ Uα. Let L be a compact neighbourhood ofK̂ such that
L∩A = φ. Then clearlyA∩ L̂ = φ andL̂ is a neighbourhood of̂K, V− L̂241

has no relatively compact connected component. ClearlyV − {L̂ ∩ Ū}
has no relatively compact connected component. Letf be defined on a
neighbourhood of̂L ∪ Ū by f (x) = 0 for x nearL̂ f (x) = 1 for x near
Ū. Then f is holomorphic in a neighbourhood ofL̂ ∪ Ū. According to
the proof of Theorem 1 (for the operator∂̄: ε0,0→ ε0,1) f is the limit of
holomorphic functions onV in Ho(L̂ ∪ Ū, ε0,0). SinceK′ = K̂ ∪ {a}is
contained in the interior of̂L ∪ Ū, andL2convergence implies uniform
convergence on compact subsets of the interior,f is the uniform limit,
on K′, of holomorphic functions onV. Hence there existsg ∈ H such
that

|g(x)| <
1
2

for x ∈ K̂

and |g(a)| >
1
2
,

so thata < K̂H . HenceK̂H ⊂ K̂. It follows from the theorem of
maximum modulus that̂K ⊂ K̂H .

The main Theorem 1 is due to Malgrange [27] and Lax [25]. The ap-
plication to open Riemann surfaces is essentially as in Malgrange [27].
The original treatment of Behnke - Stein [2] is quite different, and rather
more difficult, but enables one to solve also the so called First and Sec-
ond Problems of Cousin” on arbitrary open Riemann surfaces with little
extra effort.
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