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Chapter 1

1 Preliminaries and function spaces
1

We will be concerned with functions and differential operators defined
on then-dimensional Euclidean space Rn. The points of Rn will be
denoted byx = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), etc. and we will use the
following abbreviations:

|x| =
(∑

x2
j

) 1
2
, λx = (λx1, . . . , λxn), x · ξ =

∑

j

x jξ j;

S will denote the sphere|x| = 1, dSx the element of surface area on
S, and dx will denote the standard volume element in Rn. If ν =
(ν1, . . . , νn)is a multi-index of non-negative integers|ν| = ν1 + · · · + νn

is called the (total) order ofν. We will also use the following standard
notation:

(
∂

∂x

)ν
=

(
∂

∂x1

)ν1

· · ·
(
∂

∂xn

)νn

, ξν = ξ
ν1
1 . . . ξ

νn
n ,

aν(x) = aν1···νn(x).

In generalaν(x) will be complex valued functions on Rn, unless oth-
erwise mentioned. We will also have occasion to use vectors and matri-
ces of complex valued functions. The notation will be obvious from the
context.

1



2 1.

A general linear partial differential operator can be written in the
form

(1.1) a

(
x,
∂

∂x

)
=

∑

ν

aν(x)

(
∂

∂x

)ν
.

The maximumm of the total orders|ν| of multi-indices occurring in

(1) for whichaν(x) . 0 is called the order of the operatora

(
x,
∂

∂x

)
. The2

transpose or the formal adjoint ofa

(
x,
∂

∂x

)
is defined by

(1.2) ta

(
x,
∂

∂x

)
[u] =

∑

|ν|≤m

(−1)|ν|
(
∂

∂x

)ν
[aν(x)u].

The adjoint ofa

(
x,
∂

∂x

)
in L2 is defined by

(1.3) a∗
(
x,
∂

∂x

)
[u] =

∑

|ν|≤m

(−1)|ν|
(
∂

∂x

)ν
[aν(x)u].

In most of our considerations we will be considering systemsof
linear differential equations of the first order. We refer to these as first
order. We refer to these as first order systems. A first order system can
therefore be written in the form:

(1.1′)

(
A

(
x,
∂

∂x

)
u

)

j
=

N∑

K=1

A jk

(
x,
∂

∂x

)
uk, j = 1, . . . ,N,

whereA jk

(
x,
∂

∂x

)
=

n∑
ρ=1

a jk, ρ(x)
∂

∂xρ
+ b jk(x) andu = (u1, . . . , uN). The

formal adjoint ofA

(
x,
∂

∂x

)
is defined by

(1.2′)

(
tA

(
x,
∂

∂x

)
v

)

j
=

∑

j

tA jk

(
x,
∂

∂x

)
v j , k = 1, . . . ,N,
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wheretA jk

(
x,
∂

∂x

)
u j =

∑n
ρ=1(−1)

∂

∂xρ
(a jk,ρ(x)u j ) + b jk(x)u, and the ad-

joint in L2 of A

(
x,
∂

∂x

)
is defined by

(1.3′)

(
A∗

(
x,
∂

∂x

)
v

)

k
=

∑

j

A∗jk

(
x,
∂

∂x

)
v j , k = 1, . . . ,N

whereA∗jk

(
x,
∂

∂x

)
v j =

∑
ρ

(−1)(
∂

∂xρ
)(a jk,ρ(x)v j) + b jk(x)v j .

We shall now introduce some function spaces used in the sequel. 3

U will denote an open set in Rn. D(U), E (U), E m(U), D ′(U), E ′(U),
S (Rn), S ′(Rn) will denote the function spaces of Schwartz provided
with their usual topologies. The space ofm times continuously differ-
entiable functions which are bounded together with all their derivatives
up to orderm in U will be denoted byBm(U). Bm(U) is provided with
the topology of convergence inL∞(U) of all the derivatives up to order
m.E m

Lp(U) stands for the space of functions inLp(U) whose distribution
derivatives up to orderm are functions inLp(U). For f ∈ E m

Lp(U) we
define

|| f ||E m
Lp(U) = || f ||p,m = (

∑

|ν|≤m

||
(
∂

∂x

)ν
f ||pLp(U))

1/p.

E m
Lp(U) is a Banach space with this norm. ClearlyE m

Lp(U) ⊂ E k
Lp(U) for

k ≤ m and the inclusion mapping is continuous. The space of distri-
butions f ∈ D ′(U) which are inE m

Lp(U′) for every relatively compact
subsetU′ of U is denoted byE m

Lp(loc)(U). This space is topologized by
the following sequence of semi-norms. If{Un} is a sequence of rela-
tively compact subsets ofU, coveringU, we define

pn( f ) = || f ||E m
Lp (Un) for f ∈ E

m
Lp(loc)(U).

E m
Lp(loc)(U) is a Frechet space with this topology. This space can also

be considered as the space of distributionsf ∈ D ′(U) such thatα f ∈
E m

Lp(U) for every α ∈ D(U). Evidently E m
Lp(U) ⊂ E m

Lp(loc)(U) with 4

continous inclusion form ≥ 0. The closure ofD(U) in E m
Lp(U) is de-

noted byDm
Lp(U) and is provided with the induced topology. As before



4 1.

Dm
Lp(U) ⊂ Dk

Lp(U) for everyk ≤ mwith continuous inclusion. In general
Dm

Lp(U) , E m
Lp(U) (for a detailed study of these spaces see Seminaire

Schwartz 1954 for the casep = 2). HoweverDm
Lp(Rn) = E m

Lp(Rn).
When we consider spaces of vectors or matrices of functions we use

the obvious notations, which, however will be clear from thecontext.
For instance, iff = ( f1, . . . , fN) where f j ∈ E m

L2(U) then || f ||E m
L2

stands

for

(∑
j
|| f j ||2

E 2
L2(U)

) 1
2

.

WhenU = Rn we simply writeD , E , E mDm
L2 etc. forD(U), . . .,

We will denote the space of all continuous functions oft in an inter-
val [0,T] with values in the topological vector spaceE m by E m[0,T].
It is provided with the topology of uniform convergence (uniform with
respect tot in [0,T]) for the topology ofE m. Similar definitions hold
for E m

L2[0,T], Dm
L2[0,T], Dm

L2(loc)
[0,T], Bm[0,T], etc.

We now recall, without proof, a few well-known results on thespa-
cesE m

Lp(U) andE m
Lp(loc)(U).

Proposition 1 (Rellich). Every bounded set inE m
Lp(U) is relatively com-5

pact inE m−1
Lp(loc)(U) for m≥ 1.

In other words, the proposition asserts that the inclusion mapping
of E m

Lp(U) into E m−1
Lp(loc)(U) is completely continuous.

The following is a generalization due to Sobolev of a result of F.
Riesz.

Proposition 2. Let g ∈ Lp, h ∈ Lq for p, q > 1 such that
1
p
+

1
q
> 1.

Then the following inequality holds:

(1.4)

∣∣∣∣∣∣∣∣∣∣

"

Rn×Rn

g(x)h(y)
|x− y|λ

dx dy

∣∣∣∣∣∣∣∣∣∣
≤ K||g||Lp · ||h||Lp

whereλ = n

(
2− 1

p
− 1

q

)
and K is a constant depending only on p, q, n

but not on g and h.
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Proposition 3 (Sobolev). If h ∈ Lp for p > 1 then the function

(1.5) f (x) =
∫

h(y)
|x− y|λ

dy,

where n> λ >
n
p′
= n(1− 1

p
), is in Lq where

1
q
=

1
p
+
λ

n
− 1.

Theorem 1(Sobolev). Let U be an open set with smooth boundary∂U
(for instance∂U ∈ C2). Then any functionϕ ∈ E m

Lp(U) with pm ≤ n

itself belongs to Lq(U) where q satisfies
1
q
=

1
p
− m

n
. Further we have

an estimate

(1.6) ||ϕ||Lq(U) ≤ C||ϕ||E m
Lp(U)

The contant C depends only on p, q, r and n but not on the function 6

u.

For the study of this inequality and delicate properties of the inclu-
sion mapping see S. Sobolev: Sur un Théorème d’analyse fonctionnelle,
Mat. Sbornik, 4(46), 1938.

2 Cauchy Problem

In this section we formulate the Cauchy problem for a linear differential

operatora

(
x,
∂

∂x

)
. To begin with we make a few formal reductions.

Let S be a hypersurface in Rn defined by an equationϕ(x) = 0
whereϕ is a sufficiently often continuously differentiable function with

its gradientϕx(x0) ≡
(
∂ϕ

∂x1
(x0), . . . ,

∂ϕ

∂xn
(x0)

)
, 0 at every pointx0 of S.

Let n denote the normal at the pointx0 to S and
∂

∂n
denote the derivation

along the normaln.
Supposex0 is a point onS; let u0, . . . , um−1 be functions onS de-

fined in a neighbourhood ofx0. A setψ = (u0, . . . , um−1) of such func-
tions is called a set of Cauchy data onS for any differeential operator
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of orderm. The Cauchy dataψ are said to be analytic (resp. of class
E m, resp. of classE ) if each of the functionsu0, u1, . . . , um−1 is an ana-
lytic (resp.m times continuously differentiable function resp. infinitely
differentiable function) in their domain of definition.

Let there be given a functionf defined in a neighbourhoodU in Rn

of a pointx0 of S and Cauchy dataψ in a neighbourhoodV of x0 onS.7

The Cauchy problem for the differential operatora

(
x,
∂

∂x

)
with the

Cauchy dataψ on S consists in finding a functionu defined in a neigh-
bourhoodU′ of x0 in Rn satisfying

(2.1) a

(
x,
∂

∂x

)
u = f in U′

and u(x) = u0(x),
∂

∂n
u(x) = u1(x); . . . ,

(
∂

∂n

)m−1

u(x) = um−1(x) for

x ∈ V ∩ U′. When such au exists we call it a solution of the Cauchy
problem.

In the study of the Cauchy problem the following questions arise:
the existence of a solutionu and its domain of definition, uniqueness
when the solution exists, dependence of the solution on the Cauchy data
and the existence of the solution in the large. The answers tothese ques-
tions will largely depend on the nature of the differential operator and
of the surfaceS (supporting the Cauchy data) in relation to the differ-
ential operator besides the Cauchy dataψ and f . In order to facilitate
the formulation and the study of the above questions we first make a
preliminary reduction.

By a change of variables

(x1, . . . , xn)→ (x′1, . . . , x
′
n)

with x′1 = x1, . . . , x′n−1 = xn−1 andx′n = ϕ(x) the equation

(2.1) a

(
x,
∂

∂x

)
u = f

is transformed into an equation of the form

h(x, ϕx)

(
∂

∂x′n

)m

u+
∑
· · · = f
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whereϕx =

(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn

)
andh(x, ξ) =

∑
|ν|=m

aν(x)ξν, ξ = (ξ1, . . . , ξn). 8

The summation above contains derivatives ofu of orders< m in the
x′n-direction.

(1) If h(x, ϕx(x)) , 0 in a neighbourhood of the point under consider-
ation we can divide the above expression for the equation by the
factorh(x, ϕx) and write

(2.2)

(
∂

∂x′n

)m

u+
∑

|ν|≤m
νn≤m−1

a′ν(x
′)

(
∂

∂x′

)ν
u =

f
h(x, ϕx)

.

This is called the normal form of the equation.

a

(
x,
∂

∂x

)
u = f .

The Cauchy problem is now given by

(
∂

∂x′n

) j

a(x′1 . . . , x
′
n−1, 0) = u j(x

′
1, . . . , x

′
n−1) for j = 0, 1, . . . ,m−1.

(2) In the case in whichh(x, ϕx) = 0 at a pointx0 of S the study of
the Cauchy problem in the neighbourhood ofx0 becomes consid-
erably more difficult. In what follows we only study the case (1)
where the equation can bebrought to the normal form by a suitable
change of variables. This motivates the following

Definition. A surfaceS defined by an equationϕ(x) = 0 (ψ being once
continuously differentiable) in Rn is said to be a characteristic variety or

characteristic hypersurface of the operatora

(
x,
∂

∂x

)
if h(x, gradϕ(x)) =

0 for all the pointsx on S. 9

A vector ξ ∈ Rn is said to be a characteristic direction atx with

respect to the differential operatora

(
x,
∂

∂x

)
if h(x, ξ) = 0.



8 1.

Clearly, if S is a characteristic variety of a differential operator

a

(
x,
∂

∂x

)
then the vector normal toS at any point on it will be a char-

acteristic direction at that point. For any pointx ∈ S the set of vectors
ξ which are characteristic directions atx form a cone in theξ-space
with vertex at the origin called the characteristic cone of the operator

a

(
x,
∂

∂x

)
at the pointx. In the following we restrict ourselves to the

case whereS is not characteristic for the differential operator at any
point and hence assume the operator to be in the normal form.

3 Cauchy - Kowalevsky theorem and Holmgren’s
theorem

The first general result concerning the Cauchy problem (local) is the fol-
lowing theorem due to Cauchy and Kowalevsky. This we recall without
proof. For a proof see for example Petrousky [1].

From now on we change slightly the notation and denote a pointof
Rn+1 by (x, t) = (x1, . . . ,Xn, t) and a point of Rn by x = (x1, . . . , xn).

Let

(3.1) L ≡
(
∂

∂t

)m

+

∑

|ν|+ j≤m
j≤m−1

aν, j(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

be a differential operator of orderm written in the normal form with
variable coefficients.

Theorem 1 (Cauchy-Kowalevsky). Let the coefficients aν, j of L be de-10

fined and analytic in a neighbourhood U of the origin in the(x, t) space.
Suppose that f is an analytic function on U andψ is an analytic Cauchy
datum in a neighbourhood V of the origin in the x-space. Then there
exists a neighbourhood W of the origin in the(x, t)-space and a unique
solution u of the Cauchy problem

Lu = f in W and
(
∂

∂t

) ju

= u j on W∩ {t = 0} for j = 0, 1, . . . ,m− 1,
(3.2)
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which is defined and analytic in W.

Remark . The domainW of existence ofu depends onU, V and the
maximum moduli ofaν, j .

It is not in general, possible to assert the existence of a solution of
the Cauchy problem when the Cauchy data are only of classE . Howevr
for a certain class of differential operators-such as Hyperbolic operators
- the existence (even in the large) of solutions of the Cauchyproblem
can be established under some conditions. This will be done in the sub-
sequent sections.

If u1 and u2 are two analytic solutions of the Cauchv problem in
a neighbourhood of the origin with the same analytic Cauchy data the
theorem of Cauchy-Kowalevsky asserts thatu1 ≡ u2. Holmgren showed
that for an operator with analytic coefficients the solution is unique, if it
exists, in the classE m (m, we recall., is the order ofL). More precisely
we have the

Theorem 2 (Holmgren). If the coefficients aν, j of the differential oper- 11

ator L are analytic functions in a neighbourhood U of the origin then
there exists a numberε0 > 0 satisfying the following: for any0 < ε < ε0

if the Cauchy dataψ vanish on(t = 0)∩Dε then any solution u∈ E m of
the Cauchy problem

Lu = 0 in Dε and
(
∂

∂t

) j

u = 0 on (t = 0)∩ Dε for j = 0, 1, . . . ,m− 1,

itself vanishes identically in Dε, where Dε denotes the set

{
(x, t) ∈ Rn−1

∣∣∣∣∣|x|
2
+ |t| < ε

}
.

Proof. By a change of variables (x, t) → (x′, t′) where x′k = xk(k =
1, . . . , n) andt′ = t + x2

1 + · · · + x2
n the half spacet ≥ 0 is mapped into

the domain

Ω =

{
(x′, t′) ∈ Rn+1

∣∣∣∣∣t
′ − |x′|2 ≥ 0

}
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in the (x′1, t
′) space. The transformed functionu′(x′, t′) and its deriva-

tives upto order (m − 1) in the direction of the interior normal to the
hypersurface{t′ − |x′|2 = 0} vanish identically on the hyper-surface.
Hence extendingu′ by zero outside the domainΩ we obtain a function
in E m, which we again denote byu, with support contained inΩ. The
differential operator is transformed into another differential operator of
ordermwith analytic coefficients. �

Thus we may assume thatu is a solution of an equation

(3.3) Lu ≡
(
θ

∂t

)m

u+
∑

|ν|+ j≤m
j≤m−1

aν, j(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

u = 0

with support contained inΩ. Let tL be the transpose operator ofL and12

V be a solution oftL[v] = 0 in Ωh = Ω ∩ {0 ≤ t ≤ h} satisfying the
conditions

(3.4) v(x, h) =
∂

∂t
v(x, h) = . . . =

(
∂

∂t

)m−2

v(x, h) = 0

on the hyperplane (t = h). Then we have

(3.5)
∫

Ωh

(utL[v] − v L[u])dx dt= 0.

On the other hand, integrating by parts with respect to the variables
t andx yields

∫

Ωh

(utL[v] − vL[u])dx dt=
∫

t=h
(−1)mu(x, t)

(
∂

∂t

)m−1

v(x, t)dx

because of the conditions (3.4).

(3.6) Hence
∫

t=h

(−1)mu(x, t)

(
∂

∂t

)m−1

v(x, t)dx = 0.

Now consider the Cauchy problems

tL[v] = 0
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(
∂

∂t

) j

v(x, 0) = 0, j = 1, . . .m,

(
∂

∂t

)m−1

v(x, 0) = P(x),

P(x) running through polynomials. By the Cauchy Kowalevsky Theo-
rem, there exists solutionsv(x), in a fixed neighbourhood|t| ≤ h sat-
isfying the above Cauchy problems. Hence there is ah > 0 such 13

that, for every polynomialP(x) there exist vin Ωh satisfying (3.4) with(
∂

∂t

)m−1

u(x, h) = P(x). Hence by (3.6)u(x, t) is orthogonal to every

polynomialP(x) for t ≤ h. Henceu(x, t) ≡ 0 for 0 ≤ t ≤ h. Replacing
t, by −t we obtainu(x, t) ≡ 0 for −h ≤ t ≤ 0. Henceu(x, t) ≡ 0 in Dε

which finishes the prove of the theorem.
Further general results on the uniqueness of the solution ofthe Cau-

chy problem were proved by Calderon [1]. We restrict ourselves to stat-
ing one of his results ([3]).

Theorem 3 (Calderon). Let L be an operator of the form(3.1) with
real coefficients. Assume that in a neighbourhood of the origin all the
coefficients aν, j(x, t), for |ν| + j = m, belong to C1+σ(σ > 0) and the
other coefficients are bounded. Further suppose that the characteristic
equation at the origin

(3.6) P(λ, ξ) ≡ λm
+

∑

|ν|+ j=m

aν, j(0, 0)ξνλ j
= 0

has distinct roots for any realξ , 0. If the solution u belong to Cm and
has zero Cauchy data (more precisely, Cauchy data, zero in a neigh-
bourhood of the hyperplane t= 0) then u≡ 0 in a neighbourhood of the
origin.

4 Solvability of the Cauchy problem in the classE m

In this section we make a few remarks on the existence of solutions of
the Cauchy problem in the classE m under weaker regularity conditions
on the coefficients of the differential operator. We begin with the fol-14

lowing formal definition.
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Let

(4.1) L ≡
(
∂

∂t

)m

+

∑

|ν|+ j≤m
j≤m−1

aν, j(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

be a differential operator of orderm in the normal form.

Definition. The Cauchy problem forL is said to be solvable at the origin
in the class if for any givenf ∈ Ex,t and any Cauchy datumψ of class
Ex there exists aneighbourhood Dψ, f of the origin in the (x, t) space and
a solutionu ∈ Ex,t(D(ψ, f )) of the Cauchy problem forL with ψ as the
Cauchy datum.

Remark. The Cauchy problem for a general linear differential operator
L is not in general solvable in the classE as is shown by the following
counter example due to Hadmard.

Counter example (Hadamard). Let L be the Laplacian∆ in R3

(4.2) ∆ ≡
(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2

and (z= 0) be the hyperplane supporting the Cauchy data. Consider for
the Cauchy data the conditions

u(x, y, 0) = u0(x, y) and
∂u
∂z

(x, y, 0) = 0.

Supposeu(x, y, z) ≡ u is a solution of∆u = 0 in z ≥ 0 with the
Cauchy data (u0, 0). Extendu to the whole of R3 by setting

ũ(x, y, z) = u(x, y, z) for z≥ 0 and

= u(x, y,−z) for z≤ 0.

ũ satisfies the equation∆ũ = 0 in the sense of distributions. In fact, for15

anyϕ ∈ D(R3) we have

〈ũ,∆ϕ〉 =
∫

R3

ũ(x, y, z)∆ϕ(x, y, z)dx dy dz
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= lim
ε→0

{
−

∫

|z|≥ε

∂ϕ

∂z
∂ũ
∂z

dx dy dz+
∫

|z|≥ε

(
∂2ũ

∂x2
+
∂2ũ

∂y2

)
ϕdx dy dz

and
∫

|z|≥ε

∂ũ
∂z
∂ϕ

∂z
dx dy dz=

∫ [
ϕ
∂ũ
∂z

]ε

−ε
dx dy−

∫

|z|≥ε

∂2ũ

∂z2
ϕdz dx dy

Hence

〈ũ,∆ϕ〉 = lim
ε→0

{∫
ϕ(x, y, ε)

∂ũ
∂z

(x, y, ε)dx dy−
∫

ϕ(x, y,−ε)∂ũ
∂z

(x, y,−ε)dx dy

}

= 0

By the regularity of solutions of elliptic equationsu is an analytic
function of x, y, z in R3. Sinceu0(x, y) = u(x, y, 0) = ũ(x, y, 0), u0 is an
analytic function of (x, y). Thus, ifu0 is taken to be inEx but non analytic
there does not exist a solution of the Cauchy problem for∆u = 0 with
the Cauchy data (u0, 0).

As far as the domain of existence of a solution of the Cauchy prob-
lem is concerned we know by the Cauchy Kowalevsky theorem that,
whenever the coefficients ofL, f and the Cauchy dataψ are of analytic
classes, there exists a neighbourhood of the origin and an analytic func-
tion u on it satisfyingL[u] = f with Cauchy dataψ. However it is not in 16

general possible to continue this local solutionu to the whole space as
a solution ofL[u] = f . This is domonstrated by the following counter
example which is again due to Hadamard.

Counter example. Let the differential operator be

L ≡
(
∂

∂x

)2

+

(
∂

∂y

)2

.

A solution ofL[u] = 0 is provided by

u(x, y) = Re
1

z− a
=

x− a

(x− a)2 + y2
where a > 0.
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Clearly u(0, y) and
∂u
∂x

(0, y) are analytic functions ofY. However

this solution can not be continued to the half planex ≥ a as can be
easily seen.

For a class of differential operators the existence of soluctions in the
large has been established by Hadamard, Petrowsky, Leray, Garding and
others. We shall prove some of these results later by using the method
of singular integral operators introduced by Calderon and Zygmund.



Chapter 2

In this chapter as well as in the next chapter we will be mainlycon- 17

cerned with the study of the Cauchy problem for systems of differential
equations of the first order, which will be referred to as firstorder sys-
tems.

1

If u(x, t) = (u1(x, t), . . . , uN(x, t)) and f (x, t) = ( f1(x, t), . . . , fN(x, t)) de-
note vector valued functions withN components, a first order system of
equations can be written in the form

(1.1) M[u] ≡ ∂

∂t
u−

n∑

1

AK(x, t)
∂

∂xk
u− B(x, t)u = f

whereAk(x, t), B(x, t) are matrices of orderN of functions whose rigu-
larity conditions will be made precise in each of the problems under
consideration.

Definition . The Cauchy problem for a first order systemM[u] = 0 is
said to be locally solvable at the origin in the spaceE (resp. B, resp.
D∞

L2) if for any givenψ ∈ E (U) (resp. B(U), resp. D∞
L2(U))U being

an arbitrary open set in thex-space containing the origin there exists a
neighbourhoodV of the origin in Rn+1 and a functionu ∈ E (V) (resp.
B(V), respD∞

L2(V)) satisfying

M[u] = 0 andu(x, 0) = ψ(x)

15
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(V may depend onψ).

The following proposition shows that when the systemM has an-
alytic coefficients the local solvability of the Cauchy problem implies18

the existence of a neighbourhoodV independent ofψ such that for any
ψ ∈ Ex there exists a unique solutionu ∈ E 1(V).

We define a family of open setsDε of Rn+1 by

(1.2) Dε =

{
(x, t) ∈ Rn+1

∣∣∣∣|t| + |x|2 < ε
}
.

Proposition 1 (P.D. Lax). [1]. Assume that the coefficients of M are
analytic and the Cauchy problem for M is locally solvable at the origin.
Then there exists aδ > 0 such that for any givenψ ∈ Ex(U) there exists
a unique solution u∈ E 1(Dδ) of M[u] = 0, u(x, 0) = ψ(x).

Proof. By Holmgren’s theorem there exists anε0 > 0 such that for
0 < ε ≤ ε0 a solution,u ∈ E 1

x,t with u(x, 0) = ψ(x) on Dε ∩ (t = 0) is
uniquely determined inDε. Let ε0 > ε1 . . . be a sequence of positive
numbersεn → 0. Denote byAk,m the set of allψ ∈ Ex(U) such that the
solutionu of M[u] = 0 with u(x, 0) = ψ(x) for x ∈ Dεk ∩ (t = 0) is in

E
[ n

2 ]+2

L2 (Dεk) and satisfies

||u||[ n
2 ]+2 ≤ m.

The setsAk,m are symmetric and convex. FurtherE (U) =
⋃
k,m

Ak,m,

by the local solvability at the origin. We shall now show thtAk,m is
closedfor everyk,m.

Let ψ j be a sequence inAk,m converging toψ0 in E (U). The corre-

sponding sequence of solutionsu j is a bounded set inE
[ n

2 ]+2

L2 (Dεk) and

hence has a subsequenceu jp(x, t) weakly convergent inE
[ n

2 ]+2

L2 (Dεk). In
view of the Prop. 1 of Chap. 1§ 1 we can, if necessary by choosing a19

subsequence, assume thatu jp(x, t) converges inE
[ n

2 ]+1

L2(loc)
(D∈k). Let this

limit be u0. Sinceu jp → u0 weakly inE
[ n

2 ]+2

L2 (D∈k) we have||u0||[ n
2 ]+2 ≤

m. By prop?? of Chap 1§ 1 (Sobolev’s lemma)u0 ∈ E 1(D∈k) and fur-

therM[u0] = 0. Againu jp → u0 in E
[ n

2 ]+1

L2(loc)
(D∈k) implies that this conver-
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gence is uniform on every compact subset ofD∈k and henceu0(x, 0) =
ψ0(x). ThusAk,m is a closed subset ofEx(U).

Now by Baire’s category theorem one of theAk,m, let us sayAk0,m0,
contains an open set ofEx(U). Ak0,m0, being symmetric and convex con-
tains therefore a neighbourhood of 0 inEx(U). Since anyψ ∈ Ex(U) has
a homothetic imageλψ in this neighbourhood, there is a unique solution

u ∈ E
[ n

2 ]+2

L2 (D∈k0
), a fortiori, inE 1(DEk0

) of M[u] = 0 withu(x, 0) = ψ(x).
∈k0 can be taken to be the requiredδ. �

Theorem 1. Let the coefficients Ak(x, t), B(x, t) of M be analytic. If the
Cauchy problem is locally solvable at the origin in the spaceE then the
linear mappingψ(x) → u(x, t) is continuous fromE (U) in to E 1(D∈0).

Proof. The graph of the mappingψ → u is closed inE (U)xE 1(D∈0)
because of the uniqueness of the solution ofM[u] = 0, with u(x, 0) =
ψ(x) in D∈0. Hence by the closed graph theorem of Banach the mapping
is continuous. �

This leads us to the notion of well-posedness of the Cauchy problem 20

in the sence of Hadamard. This we consider in the following section.

2 Well-posedness and uniform-well posedness of
the Cauchy problem

By a k-times differentiable function on a closed interval [0, h] we mean
the restriction to [0, h] of a k-times continuously defferentiable function
on an open interval containing [0, h].

The space of continuous functions oft in [0, h] with values in the
spaceE m

x is denoted byE m[0, h]. It is provided with the topology of
uniform convergence in the topology ofE m

x (uniform with respect tot
in [0, h]). In other words, a sequenceϕn ∈ E m[0, h] converges to 0 in
the topology ofE m[0, h] if ϕn(t) = ϕn(x, t) → 0 in E m

x uniformly with
respect tot in [0, h]. A vector valued functionu = (u1, . . . , uN) is said to
belong toE m[0, h] if each of its componentsu j belong toE m[0, h].

Similarly one can define the spacesBm[0, h] · Ds
L2[0, h], L2[0, h] =

D0
L2[0, h] etc. These will be the spaces which we shall be using in our
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discussions hereafter. We also writeB[0, h], E [0, h], DL2[0, h] instead
of B∞[0, h], E∞[0, h], D∞

L2[0, h]. Following Petrowesky [2] we give the

Definition . The forward Cauchy problem for a first order systemM is
said to be well posed in the spaceE in an interval [0, h] if

(1) for any given functionf belonging toE [0, h] and any Cauchy data
ψ ∈ Ex there exists a unique solutionu belonging toE [0, h] and
once continuously differentiable with respect tot in [0, h] (with its21

first derivative w.r.t. t having its values inEx) of M[u] = f with
u(x, 0) = ψ(x); and

(2) the mapping (f , ψ)→ u is continuous fromE [0, h]×Ex into E [0, h].

Definition . The forward Cauchy problem for a first order systemM is
said to be uniformly well posed in the spaceE if for every t0 ∈ [0, h] the
following condition is satisfied:

(1) for any given functionf belonging toE [0, h] and any Cauchy data
ψ ∈ Ex there exists a unique solutionu = u(x, t, t0) belonging to
E [t0, h] and once continuously differentiable with respect tot in
[t0, h] (the first derivative having its values inEx) of M[u] = f with
u(x, t0, t0) = ψ(x); and

(2) the mapping (f , ψ) → u is uniformly continuous fromE [0, h], Ex

into E [t0, h].

The condition of uniform continuity can also be analytically de-
scribed as follows: given an integerl and a compact setK of Rn there
exists an integerl′, a compact setK′ of Rn and a constantC (all inde-
pendent of t0 in [0, h]) such that

(2.1) sup
t0≤t≤h

|u(x, t, t0)|
E l

K
≤ C(|ψ(x)|

E l′
K′
+ sup

0≤t≤h
| f (x, t)|

E l′
K′

where|g(x)|E r
K
= sup

x∈K
0≤|ν|≤r

|
(
∂

δx

)ν
g(x)|.

Similar statements hold also for the spacesB andD∞
L2.22
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We shall now give some criteria for the well posedness of the for-
ward Cauchy problem for first order systemsM. For this purpose we
introduce the notions of characteristic equation and of thecharacteristic
roots of a first order systemM.

The polynomical equation

(2.2) det
(
λI − i

∑
Ak(x, t)ξk − B(x, t)

)
= 0

is called the characteristic equation ofM and the rootsλ1(x, t, ξ), . . . ,
λN(x, t, ξ) of this equation are called the characteristic roots ofM.

It will be useful for our future considerations to introducethe no-
tions of characteristic equation and of characteristic roots for a single
equation of orderm of the form

(2.3) L =

(
∂

∂t

)m

+

∑

|ν|+ j≤m
j≤m−1

aν, j(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

.

Consider the principal part ofL and write it in the form

(2.4)

(
∂

∂t

)m

+

m−1∑

j=0

a j

(
x, t,

∂

∂x

) (
∂

∂t

) j

wherea j(x, t, ξ) =
∑

|ν|=m− j
aν, j(x, t)ξν is a homogeneous polynomial inξ

of degreem− j. The characteristic equation ofL is defined to be

(2.5) λm
+

m−1∑

j=0

a j(x, t, ξ)λ
j
= 0

and its roots are called the characteristic roots ofL. 23

We remark here that if we take

u,
∂u
∂t
, . . . ,

(
∂

∂t

)m−1

u

 as a system of

unknown functions, say (u1, u2, . . . , um), we have
(2.6)

∂

∂t



u1
...

um


=



0 1 0. . . 0
0 0 1. . . 0

. . .

0 0 0. . . 1
−a0 − a1 −a2 . . . −am−1





u1
...

um


≡ H

(
x, t,

∂

∂x

) 

u1
...

um
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and det(λI −H(x, t, ξ)) = λm
+

∑m−1
j=0 a j(x, t, ξ)λ j . Thus the characteristic

roots ofL are the same as those of the system (2.6).
We now obtain necessary and sufficient condition for the well posed-

ness of the Cauchy problem for first order systems in the case where the
coefficients depend only ont:

(2.7)
∂u
∂t
=

∑
Ak(t)

∂u
∂xk
+ B(t)u.

These conditions depend on the nature of the roots of its character-
istic equation

(2.8) det(λI − i
∑

Ak(t)ξk − B(t)) = 0

In the case whereAk andB are constant matrices, we have the following
proposition.

Proposition 1 (Hadamard). Let the coefficients Ak and B of M be con-
stants. A necessary condition in order that the forward Cauchy problem
for M be well posed in the spaceB is that there exist constants c and p
such that

(2.9) Reλ j(ξ) ≤ p log(1+ |ξ|) + c ( j = 1, . . . ,N).

24

Proof. Assume that the forward Cauchy problem forM is well posed
but the condition (2.9) is not satisfied. First of all we observe that, ifλ(ξ)
is any characteristic root ofM there exists a non-zero vectorP(ξ) ∈ CN

with |P(ξ)| = 1 such that
(
λ(ξ)I − i

∑
Akξk − B

)
P(ξ) = 0.

Thenu(x, t) = exp(λ(ξ)t + ix · ξ). P(ξ) is a solution ofM[u] = 0.
By assumption for anyp > 0 there exists a vectorξ, |ξ| ≥ 2, and a
characteristic rootλ(ξ) such that,

Reλ(ξ) ≥ p log(1+ |ξ|).

For thisλ(ξ) we have
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(i) M[u] ≡ M[exp(λ(ξ)t + ix.ξ) · P(ξ)] = 0;

(ii) |u(x, t)| = exp(Reλ(ξ)t) · |P(ξ)| ≥ (1+ |ξ|)pt for t > 0; and

(iii)
∑
|ν|≤l |

(
∂

∂x

)ν
u(x, 0)| ≤ C(1)(1+ |ξ|)l .

The inequalities (ii) and (iii) show that the forward Cauchyproblem
is not well posed which contradicts the assumption. Hence Proposition
1 is proved. �

For a smooth functionu (for instance a function inL2 or S ) the
Fourier transform̂u with respect tox is defined by

(2.10) û(ξ, t) =
∫

u(x, t) exp(−2πix.ξ)dx.

More precisely ifu belongs toS ′ then its Fourier image is denoted
by û andû belongs toS ′.

Let us now assume that the coefficientsAk andB of M are continu- 25

ous functions oft in [0, h] but do not depend onx. Consider the system
of ordinary differential equations

(2.11)
d
dt

û(ξ, t) =

2πi
∑

k

Ak(t)ξk + B(t)

 û(ξ, t).

If v j
0 denotes the vector in RN whose jth component is 1 and the

other companents are 0, letv j(ξ, t, t0) be the fundamental system of so-
lutions of the system (2.11) (defined in [t0, h]) with the initial conditions
v j(ξ, t0, t0) = v j

0. Then we have the

Proposition 2 (Petrowsky). Let the coefficients Ak and B of M be con-
tinuous functions of t in[0, h]. A necessary condition in order that the
forward Cauchy problem for M be uniformly well posed in the spaces
B andD∞

L2 is that there exist constant c and p, both independent of t0 in
[0, h], such that

(2.12) |V j(ξ, t, t0)| ≤ c(1+ |ξ|)p.
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Proof. Necessity in the spaceB. Assume that the forward Cauchy prob-
lem is uniformly well posed in the spaceB but the condition (2.12) is
not fulfilled. Then for anyp, one can findξ∗, t∗, t∗0 andk such that we
have the inequality

|Vk(ξ∗, t∗, t∗0)| ≥ p(1+ |ξ∗|)p.

The functionu(x, t, t∗0) = (u1(x, t, t∗0), . . . , uN(x, t, t∗0)) with

(2.13) u(x, t, t∗0) = exp(ix.ξ∗) · vk(ξ∗, t, t∗0), t ∈ [t0, h]

is a solution ofM[u] = 0 and satisfies the inequalities26

(i) |u(x, t∗, t∗0)| ≥ p(1+ |ξ∗|)p wheret∗0 ≤ t∗ ≤ h, and

(ii)
∑
|ν|∈1

∣∣∣∣∣∣

(
∂

∂x

)ν
u
(
x, t∗0, t

∗
0

)∣∣∣∣∣∣ ≤ c(l)(1+ |ξ∗|)l ,

c(l) being a constant depending only onl which again show that the
forward Cauchy problem is not uniformly well posed, thus arriving at a
contradiction to the assumption. �

Necessity in the spaceD∞
L2. Again assume that the forward Cauchy

problem is uniformly well posed inD∞
L2 but the condition (2.12) does

not hold. We can therefore assume that for anyp, there existξ∗, t∗, t∗0
andk such that we have the inequality

|Vk(ξ, t∗, t∗0)| ≥ p(1+ |ξ|)p, t∗ ≥ t∗0.

holds for allξ in a neighbourhoodU of ξ∗0 in Rn. Let f ∈ L2 with its
support contained inU and || f || = 1. Then the functionu(x, t, t∗0) =
(u1(x, t, t∗0), . . . , uN(x, t, t∗0), with

(2.14) u(x, t, t∗0) =
∫

exp(ix.ξ)vk(ξ, t, t∗0) f (ξ)dξ for t ≥ t∗0,

is a solution ofM[u] = 0. By Plancheral’s theorem we have

||u|| = (2π)n/2(
∫
|vk(ξ, t, t∗0)|2| f (ξ)|2dξ)

1
2
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≥ (2π)n/2p(1+ |ξ̃∗|)p(2.15)

where |ξ̃∗| = dist (0, supp. f ). On the other hand again by applying
Plancheral’s theorem we have, for any 1, that

∑

|ν|≤1

||
(
∂

∂x

)ν
u(x, t∗0, t

∗
0)|| =

∑

|ν|≤ℓ
≤c(l)(1+|ξ∗ |l

(2π)n/2
(∫
|ξνvk(ξ, t∗0, t

∗
0)2| f (ξ)|2dξ

) 1
2

(2.16)

wherec(l) is a constant depending only on 1. The two inequalities27

(2.15), (2.16) together show that the forward Cauchy problem is not
uniformly well posed leading to a contradiction to the assumption.

Proposition 3 (Petrowsky). Let the coefficients Ak and B of M be con-
tinuous functions of t. Then the condition(2.12) is sufficient in order
that the forward Cauchy problem be uniformly well posed in the spaces
D∞

L2, B andC .

Proof. Sufficiency in the spaceD∞
L2. The inequality (2.12)

|v j(ξ, t, t0)| ≤ c(1+ |ξ|)p

shows that there exists aσ such that (1+ |ξ|)σv j(ξ, t, t0) ∈ B0
ξ

and this

depends continuously on (t, t0). In fact,v j(ξ, t, t0) satisfies (2.11)

d
dt

v j(ξ, t, t0) = (i ∧ ·ξ + B)v j(ξ, t, t0),A.ξ =
∑

Akξk

consider

V j(ξ, t, to) − v j(ξ, t0, t0) =

t∫

t0

(iA(s) · ξ + B(s))v j(ξ, s, t0)ds.

This implies that (1+ |ξ|)−p−1v j(ξ, t, t0) is continuous in (t, t0) in the
spaceB0

ξ
. Hence the inverse Fourier imageRj

x(t, t0) of V j(ξ, t, t0) with

respect toξ belongs toS ′ and the operatorRj
x(t, t0)∗(x) has the following

properties:
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(1) for anyϕ ∈ DS

L2 , Rj
x(t, t0) ∗(x) ϕ ∈ D s+σ

L2 [t0, h] and 28

(2) for any f ∈ D s
L2[0, h], the integral

t∫

t0

Rj
x(t, τ) ∗(x) f (x, τ)dτ

belongs toD s+σ
L2 [t0, h]. Further the linear mappings

(2.17) ϕ→ Rj
x(t, t0) ∗(x) ϕ, f →

t∫

t0

Rj
x(t, τ) ∗(x) f (x, τ)dτ

are continuous. Now givenψ = (ϕ1, . . . , ϕN) with ϕ j ∈ D s
L2 and

f = ( f1, . . . , fN) with f j ∈ DL2[0, h] defineu(x, t, t0) = (u1(x, t, t0),
. . . , uN(x, t, t0)) by

(2.18) u(x, t, t0) =
∑

j

Rj
x(t, t0)∗(x)ϕ j(x)+

t∫

t0

Rj
x(t, τ)∗(x) f j(x, τ)dτ.

Then u(x, t, t0) is a solution ofM[u] = f with the Cauchy data
u(x, t0, t0) = ψ(x). In view of (2.18) we conclude that the forward
Cauchy problem is uniformly well posed in the spaceD∞

L2.

Sufficiency in the spaceB. We recall that (v j(ξ, t, t0)) is a fundamental
system of solutions of the system (2.11)

d
dt

v = (2πi
∑

Ak(t)ξk + B(t))V.

Hence eachv j(ζ, t, t0) is an entire function of exponential type for

complexζ ∈ Cn. In fact, if |v(J, t, t0)|2 stands for
N∑

j=1
v j(ζ, t, t0)|2, we

have sinceAk(t) andB(t) are bounded

(2.19) |(2πi
∑

Ak(t)ζk + B(t))v(ζ, t, t0)| ≤ c(1+ |ζ |)|v(ζ, t, t0)|
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with a constantc independent ofζ andv, Further29

d
dt
|v(ζ, t, t0)|2 =

∑

j

(
dvj

dt
(ζ, t, t0).v j(ζ, t, t0) + v j(ζ, t, t0)

dvj

dt
(ζ, t, t0))

≤ 2
∣∣∣∣
d
dt

v(ζ, t, t0)||v(ζ, t, t0)
∣∣∣∣

= 2|(2πi
∑

Ak(t)ζ + B(t))v(ζ, t, t0)||v(ζ, t, t0)|

≤ 2c′|v(ζ, t, t0)|2(1+ |ζ |).

Hence|v(ζ, t, t0)| ≤ c′′ec′(1+|ζ |)|t−t0 | and consequently for largeζ, we
have, for eachj = 1, . . . ,N the inequality

|v j(ζ, t, t0)| ≤ c1ec2|ζ ||t−t0 |

Hence by Paley-Wiener’s theoremRj
x(t, t0) is a distribution with

compact support contained in{(x, t) ∈ Rn+1||x| < c2|t − t0|} and depends
continuousuly on (t, t0). By the structure of distribution with compact
supports we can wrte

(2.20) Rj
x(t, t0) =

∑

|ν|≤sj

(
∂

∂x
)[g j

ν(x, t, t0)]( j = 1, . . . ,N),

whereg j
ν(x, t, t0) ∈ B0

x[t0, t] with support contained in{x
∣∣∣|x| < c3} and

the derivatives are taken in the sense of distributions. This implies that

(1) for anyϕ ∈ B we haveRj
x(t, t0) ∗(x) ϕ ∈ B[t0, h],

(2) for any f ∈ B[0, h] the integral

t∫

t0

Rj
x(t, τ)

∗
(x) f (x, τ)dτ ∈ B[t0, h].

30

Further the linear maps

(2.21) ϕ→ Rj
x(t, t0) ∗(x) ϕ, f →

t∫

t0

Rj
x(t, τ) ∗(x) f (x, τ)dτ
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are continuous. Now the same argument as in the first part of the propo-
sition shows that the Cauchy problem is uniformly well posedin the
baseB.

Sufficiency in the spaceE . In the above proof we observe that, since
Rj

x(t, t0) is a distribution with compact support, we have

(1) for anyϕ ∈ E , Rj
x(t, t0) ∗(x) ϕ ∈ E [t0, h],

(2) for any f ∈ E [O, h] the integral

t0∫

t

Rj
x(t, τ) ∗(x) f (x, τ)dτ

belongs toE [t0, h]. Again the linear maps

ϕ→ Rj
x(t, t0) ∗(x) ϕ, f →

t∫

t0

Rj
x(t, τ) ∗(x) f (x, τ)dτ

are continuous and an argument similar to the one used earlier
shows that the forward Cauchy problem is uniformly well posed
in the spaceE .

This completes the proof of the proposition. �

3 Cauchy problem for a single equation of orderm

By an argument similar to thye ones used in the previous section we
shall presently prove a necessary and sufficient condition in order that
the forward Cauchy problem for a single equation of orderm be uni-
formly well posed in the spaceE . Let

(3.1) L ≡
(
∂

∂t

)m

+

∑

|ν|+ j≤m
j≤m−1

aν, j(t)

(
∂

∂x

)ν (
∂

∂t

) j

be a linear differential operators of ordermwhose coefficientsaν, j(t) are31
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(m− 1) times continuously differentiable functions oft in an interval
[0, h]. By Fourier transforms in thex-space we are lead to the following
oridinary differential equation of orderm with (m− 1)-times continu-
ously differentiable coefficients int:

(3.2) L̃[V] ≡
(

d
dt

)m

v(ξ, t) +
∑

|ν|+ j≤m
j≤m−1

aν, j(t)(iξ)
ν

(
d
dt

) j

v(ξ, t) = 0.

Let v(ξ, t, t0) be a solution of̃L[v] = 0 satifying the initial conditions
on (t = t0).

v(ξ, t0, t0) = 0, . . . , (
d
dt

)m−2v(ξ, t0, t0) = 0, (
d
dt

)m−1v(ξ, t0, t0) = 1.

Then we have the

Proposition 1. If the coefficients aν, j of L are m− 1 times continuously
diffenentiable functions of t in an interval[0, h] the forward Cauchy
problem for L is uniformly well posed in the spaceE if and only if there
exist constants c and p both independent of t0 such that

(3.3) |v(ξ, t, t0)| ≤ c(1+ |ξ|)p.

Proof. Suppose the Cauchy problem forL is uniformly well posed for
the future in the spaceE but the condition (3.3) does not hold. Then for
any givenp > 0 there existξ∗, t∗0 and t, t ≥ t∗0, such that we have the
inequality

|v(ξ∗, t, t∗0)| ≥ p(1+ |ξ∗|)p.

Then The functionu(x, t, t∗0) = exp(ix.ξ∗)v(ξ∗, t, t∗0) is a solution of
Lu = 0 and has the properties.

(i) u(x, t, t∗0) ∈ E [t∗0, h] and once continuously differentiable int with
values inEx,

(ii) |u(x, t, t∗0)| = |v(ξ∗, t, t∗0)| ≥ p(1+ |ξ∗|)p, and 32

(iii)
∑
|ν|≤1

∣∣∣∣∣∣

(
∂

∂x

)ν
u(x, t∗0, t

∗
0)

∣∣∣∣∣∣ =
∑
|ν|≤1

∣∣∣(iξ∗)νv(ξ∗, t∗0, t
∗
0)
∣∣∣ ≤ c(l)(1+ |ξ∗|)l
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The last two inequalities together show that forward Cauchyprob-
lem is not uniformly well posed in the spaceE which contradiction the
assumption.

Conversely, assume that the condition (3.3) is satisfied. The forward
Cauchy problem is uniformly well posed in the spaceE . First of all we
prove that the condition (3.3) implise thatv(ξ, t, t0) and all its derivatives
upto order (m− 1) with respect tot are uniformly majorized in [t0, h] by
polynominals inξ. For this purpose we rewrite the equationL̃[V] = 0 in
the form

(3.4) (
d
dt

)mv(ξ, t, t0) +
m−1∑

j=0

a j(t, ξ)(
d
dt

) jv(ξ, t, t0) = 0

wherea j(t, ξ) =
∑

|ν|=m− j
aν, j(t)(iξ)ν for j = 0, 1, . . . , (m− 1)a j (t, ξ) are

hence polynominals of degree at most (m − j) in ξ with coefficients
which are (m− 1)-times continuously differentiable functions oft in the
interval [0, h]. Hence we may assume that there exists a constantc such
that

(3.5) |a j (t, ξ)| ≤ c(1+ |ξ|)m− j , j = 0, 1, . . . , (m− 1) for t ∈ [0, h]

Integrating (3.4) once with respect tot over the interval [t0, h] we
obtain, after using the initial conditions att = t0,

(
d
dt

)m−1

v(ξ, t, t0) − 1 = −
m−1∑

j=0

t∫

t0

a j(τ, ξ)

(
d
dτ

) j

v(ξ, τ, t0)dτ.

Integrating by parts the terms in the right hand side in view of the33
initial conditions satisfied byv(ξ, t, t0) we obatain

(
d
dt

)m−1

v(ξ, t, t0) − 1 = −
m−1∑

j=0



j−1∑

p=0

(−1)p
(
α

dt

)p
(a j(t, ξ))

(
d
dt

) j−1−p

v(ξ, t, t0)

+(−1) j

t∫

t0

(
d
dτ

) j

(a j(τ, ξ))v(ξ, τ, t0)dτ


.
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By successive integration with respect tot over the interval [t0, h]
(m− 1)-times, using the initial conditions and the inequality (3.5) we

show that
d
dt

v(ξ, t, t0), . . . ,

(
d
dt

)m−1

v(ξ, t, t0) are all majorized by poly-

nominals of the formc j(1+ |ξ|)pj ( j = 1, 2, . . . ,m), C j , p j being indepen-
dent oft0.

Thus it follows that there existσ0, . . . , σm such that (1+ |ξ|)σ j

(
d
dt

) j

v(ξ, t, t0) ∈ B0
ξ
[t0, h] for j = 0, 1, . . . , (m− 1). Let Rj

x(t, t0) denote the

inverse Fourier image of

(
d
dt

) j

v(ξ, t, t0) in theξ-space.

We shall show that eachRj
x(t, t0) has compact support in thex-space.

In view of the theorem of Paley-Wiener we have only to show that each(
d
dt

) j

v(ζ, t, t0) are of exponential type for complexζ ∈ Cn.

Denoting (1+ |ζ |) for ζ ∈ Cn by K we have|a j(t, ζ)| ≤ cKm− j for all
j = 0, 1, . . . ,m− 1. The equation (3.4) can now be written in the form

(
d
dt

)m

v(ζ, t, t0) + am−1(t, ζ)

(
d
dt

)m−1

v(ζ, t, t0) +
am−2

K
K

(
d
dt

)m−2

v(ζ, t, t0)

+ . . . +
a0(t, ζ)

km−1
Km−1v(ζ, t, t0) = 0

Taking for the new set of functionw = (w0,w1, . . . ,wm−1) where

w0(ζ, t, t0) = Km−1v(ζ, t, t0),

w1(ζ, t, t0) = Km−2dv
dt

(ζ, t, t0)

wm−2(ζ, t, t0) = K

(
d
dt

)m−2

v(ζ, t, t0)

wm−1(ζ, t, t0) =

(
d
dt

)m−1

v(ζ, t, t0).

the above equation can be written as a system of oridinary differential
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equations in the following way:
(3.6)

d
dt



w0

w1
...

wm−1


= K



0 1 0 . . . 0 0
0 0 1 . . . · ·
· · · . . . · ·
− a0

Km − a1
Km−1 − a2

Km−2 . . . −am−2
K2 −am−1

K





w0

w1
...

wm−1



Denote the matrix of the system (3.6) byH(t, ζ). Since|a j(t, ζ)| ≤
cKm− j the elements of the matrixH(t, ζ) are bounded in modulus by a
constantC1 independent ofζ in Cn and henceH(t, ζ) as a linear trans-
formation in anm-dimensional vector space is bounded in norm by a
constantC2 which depends only onm but not onζ in Cn. Denoting by
|w(ζ, t, t0)|2 the sum

∑
j
|w j(ζ, t, t0)|2 and byw(ζ, t, t0) ·w′(ζ, t, t0) the sum

∑
j

w j(ζ, t, t0) · w′j(ζ, t, t0) we have

d
dt
|w(ζ, t, t0)|2 = d

dt
w(ζ, t, t0) · w(ζ, t, t0) + w(ζ, t, t0)

d
dt

w(ζ, t, t0)

= K(H(t, ζ) + H(t, ζ))|w(ζ, t, t0)|2

on account of the system of equation (3.6) satisfied byw(ζ, t, t0). Hence34
(

d
dt

)
|w(ζ, t, t0)|2 ≤ 2C2K|w(ζ, t, t0)|2

which, by integration with respect tot over the interval [t0, t] implies
that

|w(ζ, t, t0)|2 ≤ exp(2C2K|t − t0|) = exp 2C2(1+ |ζ)|t − t0|

since|w(ζ, t0, t0)| = 1 consequently we have, sincek ≥ 1,
∣∣∣∣∣∣∣

(
d
dt

) j

v(ζ, t, t0)

∣∣∣∣∣∣∣
≤ exp[C2(1+ |ζ |)|t − to|].

Hence, by the theorem of Paley-Wiener it follows thatRj
x(t, t0) are

distributions with compact support in thex-space and depend continu-
ously on (t, t0).
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LetΨ = (ϕ0, . . . , ϕm−1) with ϕ j ∈ Ex and f ∈ E [0, h] be given.
The above argument can be modified a little in order to get convolu-

tion operators̃Rj
x(t, t0) similar toRj

x(t, t0). This we do as follows:
Let v j(ξ, t, t0) be the solution ofL̃[v j ] = 0 with the initial values

given by (
∂

∂t

)i

v j(ξ, t, t0)
∣∣∣
t=t0
= δ

j
i .

(δ j
i are Kronecker’s symobls). We see thatv j(ξ, t, t0) is connected with

the solutionv(ξ, t, t0) in the following way.

Let w j(ξ, t, t0) = v j(ξ, t, t0) −
(t − t0)

j!
, t ≥ t0. Thenw j vanishes at

t = t0 together with derivatives upto order (m− 1). Noww j satisfies the
equation.

L̃

[
w j +

(t − t0) j

j!

]
= 0 or L̃[w j] = −

1
j!

L̃[(t − t0) j ] =µj (ξ, t, t0).

µ j(ξ, t, t0) are obviously polynomials inξ and we have 35

|µ j(ξ, t, t0)| ≤ c3(1+ |ξ|)m for 0 ≤ t0 ≤ t ≤ h,

herec3 is a constant. Hence

w j(ξ, t, t0) =

t∫

t0

v(ξ, t, τ)µ j(ξ, τ, t0)dτ.

This implies that

|w j(ζ, t, t0)| ≤
t∫

t0

|v(ζ, t, τ)||µ j(ζ, τ, t0)dτ

≤ c3(t − t0)(1+ |ζ |)m exp[c4(1+ |ζ |)(t − t0)].

Hence the inverse Fourier imageR̃j
x(t, t0) of v j(ξ, t, t0) = w j(ξ, t, t0)+

(t − t0) j

j!
has its support in|x| ≤ c′4(t − t0).
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Then the function

(3.7) u(x, t, t0) =
m−1∑

j=0

R̃j
x(t, t0) ∗(x) ϕ j +

t∫

t0

Rx(t, τ) ∗(x) f (x, τ)dτ

is a solution ofL[u] = f with Cauchy dataΨ on t = t0. (HereRx(t, t0))
stand for the inverse Fourier image ofv(ξ, t, t0)). The linear mappings

(3.8) ϕ j → Rj
x(t, t0) ∗(x) ϕ j , f →

t∫

t0

Rx(t, τ) ∗(x) f (s, τ)dτ

being continuous the forward Cauchy problem is uniformly well posed
in the spaceE . This completes the proof of the proposition. �

4
36

Proposition 1. Let the coefficients Ak and B of a first order system of
differential operators M be continuous functions of t in an interval [0, h].
If the forward Cauchy problem is well posed in the spaceE then it is
uniformly well posed inE .

Proof. In view of Prop. of§ 2 it is sufficient to prove that ifv j(ξ, t, t0) is
the fundamental system of solutions of the system of oridinary differen-
tial equations

(4.1)
d
dt

v(ξ, t, t0) = (iA(t)ξ + B(t))v(ξ, t, t0),A(t) · ξ =
∑

Ak(t)ξk

with intial conditionsv j(ξ, t0, t0) = v j
0 thenv j(ξ, t, t0) are majorized by

polynominals in|ξ|. (We recall thatv j
0 denotes the vector in RN having

1 for the jth component and 0 for the others). Ifξ0
=

ξ

|ξ| we can write

the above system as

(4.1′)
d
dt

v(ξ, t, t0) = (i|ξ|A(t) · ξ0
+ B(t))v(ξ, t, t0).
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The elementakl(t, ξ0) of the matrixA(t) · ξ0 are homogeneous func-
tions ofξ0 of degree one having for coefficients continuous functions of
t in [0, h]. We remark thatv j(ξ, t, 0) define the columns of the Wron-
skian W(t, ξ) of the above system of differential equations. From the
theory of linear ordinary differential equations we know that

(4.2) w(t, ξ) =W(0, ξ) exp
{
i|ξ|

∑

j

t∫

0

a j j (τ, ξ
0)dτ +

∑

j

t∫

0

b j j (τ)dτ.

The forward Cauchy problem being well posed we can assume that
∑
j

t∫

0

a j j (τ, ξ0)dτ is real for every (t, ξ0), ξ0 real. For otherwise we may37

assume, if necessary by changingξ0 to - ξ0 that

Rei
∑

j

t∫

0

a j j (τ, ξ
0)dτ > 0.

By the assumption of the well posedness of the forward Cauchy
problem it follows that

(4.3) |v j(ξ, t, 0)| ≤ c(1+ |ξ|)p

for suitable constantsc andp, and soW(t, ξ) is majorized by a polyno-
mial in |ξ|. On the other hand, asρ→ +∞,

|w(t, ξ)| ∼ |W(0, ξ)|exp
{
ρ|ξ0|

∑

j

Rei

t∫

0

a j j (τ, ξ
0)dτ

}
, ξ = ρξ0.

ThusW(t, ξ) tends to+∞ exponentially asρ → +∞ contradicting

the inequality (4.3). Hence it follows that
∑
j

t∫

0

a j j (τ, ξ0)dτ is real for

every (t, ξ0) with realξ0. We now have

|W(t, ξ)| = |W(0, ξ)|exp
{∑

j

Re

t∫

0

b j j (τ)dτ
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and hence

|W(t, ξ)| ≥ |W(0, ξ)|exp


−

∑

j

t∫

0

|b j j (τ)|dΓ


≥ δ > 0 for all (t, ξ).

ξ real. Further we observe that, asv j(ξ, t, 0) form a basis for the solutions
of the system of ordinary differential equations

vi(ξ, t, t0) =
∑

ci
j(ξ)v

j(ξ, t, 0).

38

Putting t = t0 solving forci
j(ξ) we see that, since det(vi

j(ξ, t0, 0)) is
the WronskianW(t0, ξ) which is minorized by a polynomial in|ξ| and
sincev j(ξ, t, 0) are majorized by polynomials in|ξ|, ci

j(ξ) are themselves

majorized by polynomials. Hencev j(ξ, t, t0) are majorized by polyno-
mials in |ξ| independently oft and t0 which implies that the forward
Cauchy problem is uniformly well posed forM. Hence proposition 1 is
proved.

Correspondingly we have the following result for a single differen-
tial equation of orderm. Let

(4.4) L ≡
(
∂

∂t

)m

+

∑

|ν|+ j≤m
j≤m−1

aν, j(t)

(
∂

∂x

)ν (
∂

∂t

) j

be a linear differential operator of order m with the oefficients depending
only ont in the interval [0, h]. �

Proposition 2. Let the coefficients aν, j of L be(m−1) times continuously
differentiable fucntions of t in an interval[0, h]. If the forward Cauchy
problem for L is well posed then it is uniformly well posed forthe future
for L.

Proof. Writing the operatorL in the form

(4.5)

(
∂

∂t

)m

+

m−1∑

j=0

a j

(
t,
∂

∂x

) (
∂

∂t

) j
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wherea j(t, ξ) =
∑

|ν|=m− j
aν, j(t)(iξ)ν ( j = 0, 1, . . . ,m− 1), we are lead to

the following oridinary differential equation of orderm:

(4.6)

(
d
dt

)m

v(ξ, t) +
m−1∑

j=0

a j(t, ξ)

(
d
dt

) j

v(ξ, t) = 0.

39

Denoting the Wronskian of the equation (4.6) byw(t, ξ) we have
from the theory of ordinary differential equations

(4.7) W(t, ξ) =W(0, ξ) exp


−

t∫

0

am−1(τ, ξ)dτ


.

Writeam−1(τ, ξ) = a(1)
m−1(τ, ξ)+b(τ) wherea(1)

m−1(τ, ξ) is homogeneous
in ξ of degree one with coefficients continuous functions oft in [0, h].
Then

a(1)
m−1(τ, ξ) = |ξ|a(1)

m−1(τ, ξ0), ξ = |ξ|ξ0

and so we can write

W(t, ξ) = W(0, ξ) exp


−|ξ|

t∫

0

a(1)
m−1(τ, ξ0dτ −

t∫

0

b(τ)dτ


.

�

Now arguing as in the proof of the proposition 1 one can show that
the Cauchy problem is uniformly well posed using again the prop. 36 of
§ 2. Finally we shall show that for first order systems with constant coef-
ficients the condition of Hadamard implies the condition of Petrowsky.
This will prove that for first order systems with constant coefficients
these two conditons are equivalent. For this we need the

Lemma 1 (Petrowsky). Let a system of differential equations with con-
stant coefficients

(4.8)
d
dt

v(t) = Av(t)
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where A = (a jk) and v(t) =


v1(t)
...

vN(t)

 with |a jk | ≤ K be given. Then,

given any positive numberε such thatε ≤ (N − 1)!2NK we can find a40

non-singular matrix C such that

(4.9) CA= DC where D=



a∗11 0
a∗22

. . .

a∗jk a∗nn



where all a∗jk, k < j satisfy|a∗jk | < ε. Moreover

(4.10) |detC| =
[
(N − 1)!2NK

∈

] N(N−1)
2

and the elements cjk of C satisfy

(4.10′) |c jk | ≤
[
(N − 1)!2NK

ε

](N−1)

.

For a proof see Petrowesky [2].

Proposition 3. Let the coefficients Ak and B of M be constants. Then
the condition 9 of§ 2 of Hadamard implies the condition 12 of§ 2.

Proof. Consider the system of ordinary differential equations

(4.11)
d
dt

v(ξ, t) = (iA.ξ + B)v(ξ, t).

Let us fixξ0. Taking (iA.ξ0
+ B) as the given matrix in the lemma 1

there exist constantsc0, c1 such that

(4.12) |ia jk(ξ0) + b jk | < c0|ξ|0 + c1

(c0, c1 are independent ofξ0). We takeK = c0|ξ|0 + c1 andξ = (N −
1)!2NK = (N − 1)!2N(c0|ξ|0 + c1). Then, by the lemma 1, we can find
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a matrixC(ξ0) such that (|detC(ξ0)| = 1 and its elementsc jk(ξ0) satisfy
|c jk(ξ0)| ≤ 1. So denotingc(ξ0)v by w we have

(4.13)
d
dt

w(ξ0, t) =



λ1(ξ0)
λ2(ξ0)

. . .

a∗jk(ξ0) λN(ξ0)


w(ξ0, t)

whereλ1(ξ0), . . . , λN(ξ0) are the roots of the equation 41

(4.14) det(λI − iA.ξ0 − B) = 0

and
∣∣∣a∗jk(ξ)

∣∣∣ ≤ (N−1)!2N(c0|ξ0|+c1). by Hadamard’s condition we have

Reλ j(ξ
0) < plog(1+ |ξ0| + logc.

Now sincew(ξ0, t, t0) is a solution of the above system it follows that

|w(ξ0, t, t0)| ≤ c′(1+ |ξ0|)poh for 0 ≤ t0 ≤ t ≤ h

with the constantsc′, p0 independent oft, to, ξ0. Finally sincev(ξ0, t, t0)
= c(ξ0)−1w(ξ0, t, t0) we have desired property. �

5 Hyperbolic and strongly hyperbolic systems

The notion of well posedness of the Cauchy problem is closelyrelated
to the nature of the given system of differential equations. In this section
we introduce hyperbolic and strongly hyperbolic systems ofdifferential
equations. We give criteria, in order that a given system of differen-
tial operators be of this type, in terms of the characteristic roots of the
system.

Ak ≡ Ak(x, t), B ≡ B(x, t) will be matrices of orderN of functions
on Rn × [0, h] the regularity conditions of which will be prescribed later
in each case. Consider the first order system of differential operators

(5.1) M ≡ ∂

∂t
−

∑

k

Ak(x, t)
∂

∂xk

42
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Definition. A system of differential operatorsM is said to be hyperbolic
if the forward and backward Cauchy problems are well posed.

Definition. A first order system of differential operatorsM is said to be
strongly hyperbolic if for any choice of the matrixB(x, t) the Cauchy
problem (forward as well as backward) is well posed for the system

(5.2)
∂

∂t
−

∑

k

Ak(x, t)
∂

∂xk
− B(x, t)

Let λ1(x, ξ, t), . . . , λN(x, ξ, t) be the roots of the equation

(5.3) det(λI − A(x, t) · ξ) = 0

whereA(x, t) · ξ denotes the matrix
∑
k

Ak(x, t) · ξk.

Proposition 1. If the coefficient matrices Ak of M are constant matrices
then a necessary condition in order that M be strongly hyperbolic is that

(1) λ j(ξ) is real for all real ξ , 0 ( j = 1, . . . ,N)

(2) the matrix A.ξ is diagonalizable for allξ.

We shall actually prove a slightly stronger result: If one oftheλ j(ξ)
is not real for some realξ , 0, then for any choice ofB (a constant
matrix) the Cauchy problem for

∂

∂t
−

∑

k

Ak
∂

∂xk
− B

is not well posed.

Proof. If the condition (1) is not satisfied for same realξ∗ , 0, there ex-43

ists a root, sayλ1(ξ∗), with non vanishing imaginary part of the equation
det(λI − A.ξ) = 0. Forξ = τξ∗, λ = τλ′ we can write

det(λI − iA.ξ − B) = τN det
(
λ′I − iA.ξ∗ − B

τ

)
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for any matrixB. Denoting det(λ′I − iA.ξ∗) by P(λ′) we have

(5.4) det(λI − iA · ξ − B) = τN
{

P(λ′) +
1
τ

Q(λ′, τ)

}

whereQ(λ′, τ) is a polynomial inλ′ of degree at mostN − 1 having
for coefficients polynomials inτ−1. Sinceλ1(ξ∗) is not real we may,
without loss of generality, assume that Imλ1(ξ∗) < 0 (if necessary after
changingξ∗ by −ξ∗ in the equation). Theniλ1(ξ∗) is a root ofP(λ′) = 0.

By continuity of the roots there exists a root ofP(λ′) +
1
τ

Q(λ′, τ) = 0 in

a neighbourhood ofiλ1(ξ∗) in the complex plane. More precisely there

exists a rootλ′1(τ) for largeτ of the equationP(λ′)+
1
τ

Q(λ′, τ) = 0 such

thatλ′1(τ) = iλ1(ξ∗)+ ∈ (
1
τ

) where∈ (τ) → 0 asτ → +∞. Hence Re

λ′1(τ) ≥ 1
2

(−Im λ1(ξ∗)) for large τ. In other words there exists a root

λ1(τ) of the equation

det(λI − iA.ξ − B) = 0

such that Reλ1(τ) ≤ cτ (with a positive constantc) , which tends to+∞
asτ→∞. Hence the forward Cauchy problem is not well posed for the
systemM − B by prop. 2 of§ 2.

(2) Assume again that the systemM is strongly hyperbolic, but that44

for a certainξ∗ the matrix A.ξ∗ is not diagonalizable. There exists a
non-singular matrixN0 such thatN0(A.ξ∗)N−1

0 has the Jordan canonical
form

(5.5)



λ1 0 . . . 0
1 λ1 . . . 0

∗ . . .



Consider forB a matrix determined by

N0BN−1
0 =



0 1 0 . . . 0
0 0 0 . . . 0
· · . . . . . . . . .

0 0 0 . . . 0





40 2.

We shall show that the Cauchy problem is not well posed for the
system of differential operators

∂

∂t
−

∑
Ak

∂

∂xk
− B.

Consider the characteristic equation of this system, namely

det(λI − iA.ξ − B) = 0.

Taking forξ the vectorτξ∗ (τ a real parameter→ ∞) this equation
becomes

det(λI − iτA.ξ∗ − B) = det(λI − iτN0(A.ξ∗)N−1
0 − N0BN−1

0 )

=

∣∣∣∣∣∣∣∣∣∣∣

λ − iτλ1 −1 0. . . 0
−iτλ1 λ − iτλ1 0 . . . 0
. . . . . . . . . . . . . . .X
. . . . . . . . . . . . . . .X

∣∣∣∣∣∣∣∣∣∣∣

Hence (λ− iτλ1)2− iτ = 0, the roots of which areλ(τ) = iτλ1±
√

iτ45

whose real partReλ(τ) → ∞ along withτ. Hence the Cauchy problem
for the systemM−B is not well posed by prop 2 of§ 2, which contradicts
the assumption. �

Proposition 2. A sufficient condition in order that the system M be
strongly hyperbolic is that one of the following two conditions is sat-
isfied:

(i) the characteristic rootsλi(ξ) are real and distinct for all realξ ,
0;

(ii) Ak are Hermitian.

Proof. Supposing the condition (i) is satisfied. We shall show that this
implies that the Cauchy problem is well posed for the systemM − B for
any choice ofB. Consider the equation det(λI − iA.ξ−B) = 0. Denoting

the projection
ξ

|ξ| of ξ on the unit sphere byξ0 and
λ

|ξ| by λ′(ξ) we can

write this equation in the form

det(λ′I − iA.ξ0 − B
|ξ|) = 0.
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If λ1(ξ0), . . . , λN(ξ0) are the roots of the equation (detλI −A.ξ0) = 0
we can write

(5.6) det(λ′I − iA.ξ0 − B
|ξ| ) =

N∏

j=1

(λ′ − iλ j(ξ
0)) +

Q(λ′, ξ0)
|ξ| = 0,

whereQ(λ′, ξ) is a polynomiala0(ξ)λ′N−1
+· · ·+aN−1(ξ) with coefficients

bounded for|ξ| ≥ 1. If Ω0 is the projection ofΩ on the unit sphere we
have

inf
ξ0∈Ω0

j,k

|λ j(ξ
0) − λk(ξ

0)| ≥ d > 0

sinceλ1(ξ0) . . . λN(ξ0) are all distinct. 46

Let K = sup
ξ0∈Ω0

1≤ j≤N

|λ j(ξ0) andm= sup
|ξ≥1|
|λ|≥K+1

|Q(λ′, ξ)|.

LetC be a positive number such thatC

(
d
2

)N−1

≥ 2mandΓ1, . . . , ΓN

be circles in the complex plane of radic
C
|ξ|

(
≤ d

2

)
with centresλ1(ξ0),

. . . , λN(ξ0) respectively. OnΓK we have

∣∣∣∣∣∣∣∣

∏

j

(λ′ − iλ j(ξ
0))

∣∣∣∣∣∣∣∣
≥ C
|ξ|

(
d
2

)N−1

≥ 2m
|ξ| and

|Q(λ′, ξ)|
|ξ| ≤ m

|ξ| .

Hence by Rouche’s theorem there exists a unique root of

∏

j

(λ′ − iλ j(ξ
0) +

Q(λ′, ξ)
|ξ| = 0

in the dise enclosed byΓk. More precisely there exists a rootλ′j(ξ) of

det(λ′I − iA.ξ0 − B
|ξ|

) = 0 such that

∣∣∣λ′j(ξ) − iλ j(ξ
0)
∣∣∣ < C
|ξ|
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or, what is the same, there exists a rootλ̃ j(ξ) of

det(λI − iA.ξ − B) = 0

such that|λ̃ j(ξ) − iλ j(ξ)| < C. Sinceλ j(ξ) are real it therefore follows
that

Reλ̃ jξ ≤ C ( j = 1, . . . ,N)

and by prop. 1 of§ 2 the forward Cauchy problem is well posed for the
systemM − B. This proves thatM is strongly hyperbolic.47

Next let us assume that the matricesAk are Hermitian. By Fourier
transforms in thex-space we obtain the first order system of ordinary
differential equations.

Now consider

d
dt
|v(ξ, t)|2 = d

dt
v(ξ, t) · v(ξ, t) + v(ξ, t)

d
dt

v(ξ, t)

= (iA.ξ + B)v(ξ, t) · v(ξ, t) + v(ξ, t)(iA.ξ + B)v(ξ, t)

Since theAk are Hermitian, we obtain,B being bounded,

d
dt
|v(ξ, t)|2 = 2 ReBv(ξ, t) · v(ξ, t) ≤ 2c|v(ξ, t)|2.

We obtain therefore

(5.7) |v(ξ, t)|2 ≤ |v(ξ, 0)|2 e2ct.

which shows that the forward Cauchy problem is well posed forthe
systemM − B and soM is strongly hyperbolic. This completes the
proof of the proposition. Let us now remark the following fact:

d
dt
||v(ξ, t)||2 = d

dt
〈v(ξ, t), v(ξ, t)〉

= 〈 d
dt

v(ξ, t), v(ξ, t)+〉v(ξ, t),
d
dt

v(ξ, t)〉

= 〈(iA.ξ + B)v(ξ, t), v(ξ, t)〉 + 〈v(ξ, t), (iA.ξ + B)v(ξ, t)〉.
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SinceAk are Hermitian we obtain

d
dt
||v(ξ, t)||2 = 2 Re〈Bv(ξ, t), v(ξ, t)〉 ≤ 2c||v(ξ, t)||2

with a constantc independent ofξ. Integrating both sides of the inequal-48

ity over [0, t] we obtain
||v(ξ, t)||2 ≤ ||v(ξ, 0)||2e2ct. Hence

(5.8) ||u|| ≤ ||u(x, 0)||ect.

We remark that the notions of hyperbolicity and strong hyperbolicity
can be anologously defined for a single differential operator of orderm.
Consider a differential operator of orderm

(5.9) L =

(
∂

∂t

)m

+

∑

|ν|+ j=m
j≤m−1

aν, j(x, t)

(
∂

∂t

)ν (
∂

∂t

) j

.

L is said to be hyperbolic if the Cauchy problem (both the forward and
the backward) is well posed forL. It is said to be strongly hyperbolic if
the Cauchy problem (both the forward and the backward) is well posed
for L − B for any choice of the lower order operatorB. Let

(5.10) P(λ, ξ) = λm
+

∑

|ν|+ j=m
j≤m−1

aν, j(x, t)ξ
µλ j

�

Proposition 3. A necessary and sufficient condition in order that a dif-
ferential operator L of order m with constant coefficients be strongly
hyperbolic is that for every real vectorξ(, 0) in Rn all the roots of the
equation P(λ, ξ) = 0 are real and distinct.

Proof. The proof of the fact that the roots ofP(λ, ξ) = 0 for all real
ξ(, 0) are real runs on the same lines as in Prop. 1. We shall now show
that for all realξ , 0 these roots are all distinct.

It the roots ofP(λ, ξ) = 0 are not distinct for all realξ , 0 let us
suppose that for some realξ∗ , 0 at least two roots ofP(λ, ξ∗) = 0 49
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coincide. WritingP(λ, ξ∗) explicitly

P(λ, ξ∗) = (λ − λ1(ξ∗))p
m−p+1∏

j=2

(λ − λ j(ξ
∗)),P ≥ 2,

whereλ2(ξ∗), . . . , λm−p+1 (ξ∗) are real, and different fromλ1(ξ∗). Take

for ξ the vectorτξ∗ with a real parameterτ and setλ′ =
λ

τ
− iλ1(ξ∗).

Now consider the equation

P(λ, iτξ∗) +Cτm−1
= 0

with a constantC to be chosen later suitably. From this equation we
obtain

λ′p
m−p∏

j=2

{
λ′ + i(λ1(ξ∗) − λ j(ξ

∗))
}
+

C
τ

= λ′p(a0(ξ∗) + a1(ξ∗)λ′ + · · · + am−p−1(ξ∗)λ′m−p−1
+ λ′m−p) +

C
τ
= 0

wherea0(ξ∗) , 0. Expanding this in a Puiseux series in a neighbourhood
of τ = ∞ we see that there existp roots

λ′K(τ) = exp

(
2πi
p

k

)
·
(
−C

a0(ξ∗)

) 1
p

τ
− 1

p + 0
(
τ
− 1

p

)
(k = 1, . . . , p)

p being at least 2 we can choose the constantC such that there exists a
root with positive real part; that is there exists ak0 such that

Reλ′k0
(τ) ≥ C0τ

−1/p for large τ.

(C0 being a positive constant). Hence

Reλk0(τ) ≥ C0τ
1− 1

p for largeτ.

There exist constantsbν such thatC =
∑

|ν|=m−1
b(iξ∗)ν. Thus it follows50
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from prop. 2§ 2 that the Cauchy problem is not well posed for the
operator

L +
∑

|ν|=m−1

bν

(
∂

∂x

)ν
.

This contradicts the assumption that the operatorL is strongly hy-
perbolic.

The sufficiency follows as in the proof of the prop. 2(i).
Finally we mention the following fact: Consider the following equa-

tion with coefficients inE .

M[u] =
∂

∂t
u−

∑
Ak(x, t)

∂

∂xk
u− B(x, t)u = 0.

If, at the origin, for someξ∗ real, 0, one of the characteristic roots
of det(λI − A(0, 0)ξ∗) = 0 is not real, then the Cauchy problem forM is
never well posed inE in any small neighbourhood of the origin. (See
Mizohata [3]). We shall prove this fact later, in a simple case. Here we
add an important remark: Garding has shown in his paper (Gårding [1]),
that the condition 9 of§ 2 of Hadmard is equivalent to the following:

Reλ j(ξ) is bounded from above whenξ runs through Rn for j =
1, . . . ,N.

Next Hörmander has systematized such inequalities by using Sei-
denberg’s lemma (see Hörmande [1]). �

Proposition 4. Let the coefficients Ak and B of M be continuous func-51

tions of t in an interval[0,T]. If the forward Cauchy problem is uni-
formly well posed then the backward Cauchy problem is also uniformly
well posed.

Proof. As before denoting
ξ

|ξ| by ξ0 let v j(ξ, t, t0) be a fundamental sys-

tem of solutions of the system of ordinary differential equations

d
dt

v(ξ, t) = (i|ξ|A(t)ξ0
+ B(t))v(ξ, t), 0 ≤ t ≤ t0

with initial conditionsv j(ξ, t0, t0) = v j ≡ (v j
1, . . . , v

j
N) wherev j

j = 1 and

v j
k = 0 for k , j. First of all we remark that ifW(t, ξ) is the Wronskian of
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this system thenv j(ξ, t, t0) define its colums. Since the forward Cauchy
problem is uniformly well posed we have

|v j (ξ, t, t0)| ≤ C(1+ |ξ|)p, j = 1, . . . ,N.

HenceW(t, ξ) is also majorized by a polynomial in|ξ|. From the
theory of ordinary differential equations we know that

W(T, ξ) = W(t, ξ) exp


i|ξ|

∑

j

(

T∫

t

a j j (s, ξ
0)ds+

T∫

t

b j j (s)ds


.

Now as in Prop. 1 it follows that
∑
j

T∫
t

a j j (s, ξ0)ds is real for anyt

andξ0. Thus we have

|W(T, ξ)| ≥ |w(t, ξ)|exp


−

∑

j

t∫

t

b j j (s)ds


.

That is,|W(T, ξ)| ≥ δ > 0 for all t andξ. Further we observe that as
v j(ξ, t, t0) form a basis for solutions of the system of equations we can52

write
v j(ξ, t, t0) =

∑

k

c j
k(ξ)v

k(ξ, t,T).

Puttingt = t0 and solving forc j
k(ξ) we see thatc j

k(ξ) are majorized
by polynomials in|ξ| since the determinant of this system of linear
equations is the WronskianW(ξ,T) which is minorized byδ > 0 and
v j(ξ, t, t0) are majorized by polynomials in|ξ|. Hencev j(ξ, t, t0) are ma-
jorized by polynomials in|ξ| independent oft and t0 in [0,T] which
proves that the backward Cauchy problem is uniformly well posed. This
completes the proof of the proposition. �



Chapter 3

There are obvious analogues of the function spaces introduced at the 53

begining of Chapter 1 for vector and matrix valued functions. We shall
use the same notations for these spaces and norms and scalar products
on them. For example, for two vectorsu = (u j) andv = (v j ) in E s

L2[0, h],
we define

(u(t), v(t)) =
∑

j

(u j(x, t), v j(x, t))s.

1 Energy inequalities for symmetric hyperbolic sys-
tems

Let Ak(x, t) andB(x, t) be matrices (of orderN) of functions. Consider
the following system of first order equations.

(1.1)
∂

∂t
u−

∑
Ak(x, t)

∂

∂xk
u− B(x, t)u = f

whereAk(x, t) are Hermitian matrices. Suppose that

Ak(x, t) ∈ B
1[0, h], B(x, t) ∈ B

0[0, h] and f ∈ D
0
L2[0, h].

Proposition 1 (Friedrichs). Let u be a solution of(1.1) belonging to
D1

L2[0, h]. Then we have

(1.2) ||u(t)|| ≤ exp(γt) · ||u(0)|| +
t∫

0

exp(γ(t − s))|| f (s)||ds

47
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whereγ is a constant depending only on the bounds of Ak, B.

Proof. Differentiating||u(t)||2 = u(t), u(t)) with respect tot we have the
identity

d
dt
||u(t)||2 =

(
du
dt

(t), u(t)

)
+

(
u(t),

du
dt

(t)

)
.

SinceAk are Hermitian matrices and sinceu ∈ D1
L2[0, h] we obtain54

from (1.1) the relation
(
u,

du
dt

)
=

∑

k

(
u,Ak

∂u
∂xk

)
+ (u, Bu+ f )

= −
∑

k

(
∂

∂xk
(Aku), u

)
+ (u, Bu+ f )

= −

∑

k

(
Ak

∂u
∂xk

, u

)
+

∑

k

(
∂Ak

∂xk
u, u

) + (u, Bu+ f ).

Hence
d
dt
||u(t)||2 = −

∑
k

(
∂Ak

∂xk
· u, u

)
+ 2 Re(u, Bu+ f )

≤ 2γ||u||2 + 2||u|||| f ||

whereγ is a constant depending only on the bounds of
∂Ak

∂xk
and B.

Hence
d
dt
||u(t)|| ≤ γ||u(t)|| + || f ||

which on integration with respect tot yields the required inequality

||u(t)|| ≤ exp(γt) · ||u(0)|| +
t∫

0

exp(γ(t − s))|| f (s)||ds.

The energy inequality involves theL2-norm of the solutionu of the
system in thex-space. It is possible to derive the energy inequality under
the weaker assumption thatu ∈ L2(0, h]. For this we use the method of
regularization in thex-space of the functionu by mollifiers introduced
by Friedrichs. We recall the notion of mollifiers and a few of their prop-
erties which we need. �
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Definition . Mollifiers of Friedrichs. Let ϕ ∈ D with its support con-
tained in the unit ball{|x| < 1} such thatϕ(x) ≥ 0 and

∫
ϕ(x) dx = 1. 55

Then for aδ > 0 define

ϕδ(x) =
1
δnϕ

( x
δ

)
.

are called mollifiers. 56

Proposition 2 (Friedrichs). Let a ∈ B1 and u∈ L2. Denote by Cδ the
commutator defined by

Cδu = ϕδ ∗
(
a(x)

∂u
∂x j

)
− a(x)

(
ϕδ ∗

∂u
∂x j

)
(3.1)

=

[
ϕδ∗, a

∂

∂x j

]
u.(1.3)

Than we have

(i) ||Cδu|| ≤ c||u|| wherec is a constant depending only onϕ and a

(ii) Cδu→ 0 in L2 asδ→ 0.

Before proving this proposition it will be useful to prove the follow-
ing

Lemma 1. If u ∈ Lp thenϕδ ∗ u→ u in Lp asδ→ 0. More generally, if
u ∈ Dm

Lp(m= 0, 1, . . .) thenϕδ ∗ u→ u in Dm
Lp.

Proof. Let ψδ = ϕδ ∗ u− u. Since
∫
ϕδ(x)dx= 1 we have

ψδ(x) =
∫

ϕδ(x− y)u(y)dy− u(x) =
∫

ϕδ(x− y)(u(y) − u(x))dy.

�

If p′ is such that
1
p
+

1
p′
= 1 by Hölder’s inequality we have

|ψδ(x)| ≤
(∫

ϕδ(x− y)dy

)1/p′ (∫
ϕδ(x− y)

∣∣∣u(y) − u(x)
∣∣∣pdy

)1/p

.
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Here we useϕδ = ϕ
1
p′

δ
· ϕ

1
p

δ
. Now since

∫
ϕδ(x − y)dy = 1 we have∫ ∣∣∣ψδ(x)

∣∣∣pdx ≤
!
ϕδ(x − y)|u(y) − u(x)|pdx dy=

!
|x−v|≤δ

ϕδ(x − y)|u(y) −

u(x)|pdx dy. By a change of variablesx′ = x− y we obtain
∫
|ψδ(x)|pdx≤

∫

|x′ |<δ
ϕδ(x

′)dx′
∫
|u(y) − u(x′ − v)|pdy.

57

If ε(δ) denotes sup
∫

|h|≤δ
|u(y) − u(y+ h)|pdy then

∫
|ψδ(x)|pdx ≤ ε(δ)

which tends to 0 asδ → 0. The second part is an immediate conse-

quence of this result since

(
∂

∂x

)ν
(ϕδ ⋆ u) = ϕδ ⋆

(
∂

∂x

)ν
u for ν| ≤ m if

u ∈ Dm
Lp.

Proof of Proposition 2:

(1.4) Cδu(x) = −
∫

ϕδ(x− y)(a(x) − a(y))
∂u
∂y j

(y)dy

where the integral on the right is taken in the sense of distributions. Now
we have

(1.5) Cδu =
∫

∂

∂y j
{ϕδ(x− y)(a(x) − a(y))} u(y)dy

where the integral is taken in the usual sense. In fact the integral in (1.5)
is equal to

−
∫

∂a
∂y j

(y)ϕδ(x− y)u(y)dy+
∫

(a(x) − a(y)
∂ϕδ

∂y j
(x− y)u(y)dy;

we now note that

|a(x) − a(y)| ≤ |a|Bδ1|x− y|,
∫
|x− y||∂ϕδ

∂y j
(x− y)|dx≤ c,

with c independent ofδ. Thus it follows from the Hausdorff-Young
theorem that the function represented by the above integralis majorized
in theL2-norm byc1|a|B1 ||u||. Now we see that the integration by parts
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is justified. In fact, the two integrals are equal foru ∈ D . Then for any
u ∈ L2 the equality is proved by taking a sequenceu jεD having for its58

limit u in L2. ThenCδu j tends to the second integral in the sense ofL2.
On the other handCδu j → Cδu in the sense of distributions. This proves
(i).

Since (a(x) − a(y))ϕδ(x− y) considered, for fixedx, as a function of
y has compact support we see that

∫
∂

∂y j
{(a(x) − a(y))ϕδ(x− y)} dy= 0.

Hence

Cδu(x) =
∫

∂

∂y j
{(a(x) − a(y))ϕδ(x− y)} (u(y) − u(x))dy

= −
∫

∂a
∂y j

(y)ϕδ(x− y)(u(y) − u(x))dy

−
∫

(a(x) − a(y))
∂ϕ j

∂x j
(x− y)(u(y) − u(x))dy

= φ1(x) + φ2(x), say.

Now as in the proof of lemma 1, we see that

||φi(x)|| → 0 asδ→ 0(i = 1, 2).

In fact, for instance,

|φ2(x)| ≤ |a|B1

∫
|x− y||∂ϕδ(x− y)

∂x j
||u(y) − u(x)|dv.

Since
∫
|x||∂ϕδ

∂x j
|dx ≤ c (independent ofδ) we obtain the desired

property by the same reasioning as earlier. As an immediate conse-
quence, we have

Corollary 1. If we assume a∈ Bm and u∈ Dm
L2 in proposition 2 then

(1) ||Cδu||Dm
L2
≤ c||u||Dm

L2
, 59
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(2) Cδu→ 0 in Dm
L2 asδ→ 0, m= 1, 2, . . .

Proposition 3 (Friedrichs). Let u be a solution of(1.1) belonging
L2[0, h] then the inequality(1.2)

||u(t)|| ≤ exp(γt)||u(0)|| +
t∫

0

exp(γ(t − s))|| f (s)||ds,

holds, whereγ is the same constant as in prop. 1.

Proof. By regularizingu in the x-space by mollifiersϕδ we obtain a
function belonging toD1

L2[0, h] to which we can apply the Prop. 1. Let
uδ = ϕδ ∗(x) u. Then

∂uδ
∂t
=
∂

∂t
(ϕδ ∗(x) u) = ϕδ ∗(x)

∂u
∂t
.

Form the equation (1.1) we obtain the following equation foruδ

∂uδ
∂t
=

∑

k

ϕδ ∗(x)

(
Ak

∂u
∂xk

)
+ ϕδ ∗(x) Bu+ ϕδ ∗ f ,

that is

∂uδ
∂t
=

∑

k

Ak
∂uδ
∂xk
+ Buδ + fδ +Cδu

whereCδu =
∑{

ϕδ ∗(x) (Ak
∂u
∂xk

) − Ak(ϕδ ∗(x)
∂u
∂xk

)
}

+

{
ϕδ ∗(x) Bu− R(ϕδ ∗ u)

}

=

∑[
ϕδ∗(x),Ak

∂

∂xk

]
u+

[
ϕδ∗(x), B

]
u.

Applying prop. 1 to the equation inuδ we obtain sinceuδ ⊂ D ′
L2[0, h]

||uδ(t)|| ≤ exp(γt)||uδ(0)|| +
∫

exp(γ(t − s))
∫
|| fδ(s)|| + ||Cδ(u)(s)||ds.

60
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Now it follows from the Friedrichs lemma (Prop. 2) that

||(Cδu)(s)|| ≤ c||u(s)||

wherec is a constant independent ofδ andCδu(s) → 0 asδ → 0. By
Lebesgue’s bounded convergence theorem it follows that

t∫

0

exp(γ(t − s)) · (|| fδ(s)|| + ||(Cδu)(s)||) ds

tends to
t∫

0

exp(γ(t − s))|| f (s)||ds. Thus passing to the limits asδ→ 0 we

obtain

||(u(t)|| ≤ exp(γt)||u(0)|| +
t∫

0

exp(γ(t − s)|| f (s)||ds.

�

2 Some remarks on the energy inequalities

In the previous section we obtained estimates for the solutions of sym-
metric hyperbolic systems inL2-norm in terms of theL2-norms of the
initial values and of the second member. One can ask whether such es-
timates can be proved in the maximum norm andLp-norm for p , 2.
Littman [1] has proved that such an energy inequality cannothold in the
Lp-norm for p , 2. The existence of such an inequality with the maxi-
mum norms of functions and of their derivatives is related tothe prop-
agation of regularity, a form of Huygens principle for differentiablity.
For instance, ifu(0) is m times continuously differentiable isu(t) also
m times continuously differentiable? In general an energy inequality in
the maximum norm does not hold as we shall show by a counter exam-
ple due to Sobolev. However, when the dimension of thex-space is one 61

an inequality for solutions of strongly hyperbolic systemsis valid in the
maximum norm. This result is due toT. Haar. We indicate his result
briefly.
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Haar’s inequality. Consider the system of equations of the first order

(2.1)
∂u
∂t
− A(x, t)

∂u
∂x
− B(x, t)u = f

where the matrixA(x, t) is such that det (λI − A) has real and distinct
roots. Then we have the inequality

(2.2) |u(t)|0 ≤ c(T)
{
|u(0)|0 + sup

0≤t≤T
| f (t)|0

}

where|u(t)|0 = sup
x∈D0

|u(x, t)|, D being a neighbourhood of the origin and

D0 = D ∩ {t = 0}.
In fact, let λ1(x, t), . . . , λN(x, t) be the roots of det (λI − A) = 0.

A(x, t) being diagonalizable there exists a non-singular matrixN(x, t)
such that

N(x, t)A(x, t) = D(x, t)N(x, t)

whereD(x, t) is the diagonal matrix



λ1(x, t) 0
. . .

0 λN(x, t)



and such that|detN(x, t)| > δ > 0. We have the identity

∂

∂t
(Nu) =

∂N
∂t

u+ N
∂u
∂t
.

Substituting for
∂u
∂t

from the given system the right hand side be-
comes

∂N
∂t

u+ N.A
∂u
∂x
+ N.Bu+ N f =

∂N
∂t

u+ DN
∂

∂x
u+ N.Bu+ N. f

= D
∂

∂x
.(Nu) + B1u+ N. f ,

whereB1 = −D
∂N
∂x
+ NB+

∂N
∂t

. If B2 denotesB1N−1 thenv = Nu62
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satisfies the system.

∂v
∂t
= D

∂v
∂x
+ B2v+ N f

which can be reduced to an integral equation of the Volterra type and
then can be solved by successive approximation. Let (x0, t0) by any
point in the (x, t)-plane. LetD be the domain enclosed by (t = 0), the
characteristic curves passing through (x0, t0) and having the maximum
and minimum slopes. LetD0 = D ∩ (t = 0). One can then show from
the integral equation that

|u(x0, t0)| ≤ c

sup
x∈D0

|u(x, 0)| + sup
(x,t)∈D

| f (x, t)|


with a constantc independent ofu.
That the energy inequality with the supremum norms does not hold

in general in shown by the following counter example due to Sobolev.

Counter example (Sobolev). We consider the wave operator

(2.3) � ≡ ∂2

∂t2
−

3∑

j=1

∂2

∂x2
j

in R3. We set

E1(t, u) = sup
x



∣∣∣∣∣
∂u
∂t

∣∣∣∣∣ +
∑

j

∣∣∣∣∣∣
∂u
∂x j

∣∣∣∣∣∣


.

We shall show that ift0 > 0 then an inequality

E1(t0, u) ≤ cE1(0, u)

does not hold, which proves that the differentiability of the solution 63

is not propagated in thet-direction. For this purpose, letΓ(x, t) be a
fundamental solution of� such that

Γ(x, 0) = 0,
∂Γ

∂t
(x, 0) = δ
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δ being the Dirac distribution. Letϕ ∈ D . For an∈> 0 define

ϕ(∈)(x) = ϕ
( x
∈

)
.

ExtendingΓ(x, t) to the whole space by setting

Γ̃(x, t) = Γ(x, t) for t ≥ 0

= −Γ(x,−t) for t ≤ 0.

We obtain a distribution solution of
∂2

∂t2
−

∑
j

∂2

∂x2
j

in the whole space

(−∞ < t < ∞) × R3. Setting

u∈(x, t) = Γ̃(x, t − to) ∗(x) ϕ
(∈)(x)

we obtain a solution of the homogeneous equation which satisfies

∂

∂t
u∈(x, to) =

∂Γ̃

∂t
(x, t0 − to) ∗(x) ϕ

(∈)(x) = δ ∗ ϕ(∈)(x) = ϕ(∈)(x)

and
∂

∂x j
u∈(x, t0) = Γ̃(x, 0) ∗(x)

∂

∂x j
ϕ(∈)(x) = 0.

HenceE1(t0, u∈) = sup
x
|ϕ(∈)(x)|.

On the other hand we first observe thatΓ(x, t) can be taken to be
1

4πt
δ|x|−t. Let us chooseaϕ ∈ D with its support contained in the unit

ball in R3 such thatϕ(0) = 1 and|ϕ(x)| ≤ 1. Then| ∂
∂x j

ϕ(∈)(x)| ≤ γ

∈
.64

Thus fort = 0 we see that

∂

∂t
u∈(x, 0) = +

∂Γ

∂t
(x, t0) ∗(x) ϕ

(∈)(x) =


∂

∂t
(

t
4π

)
∫

|ξ|=1

ϕ(∈)(x− t)dsξ)


t=t0

Now since
∫

B∈(x0)∩{|ξ|=1}
dsξ = O(ǫ2) it follows that

∂

∂t
uǫ(x, 0) = O(ǫ).

We also have
∂uǫ
∂x j

(x, 0) = O(ǫ) and soE1(0, uǫ ) = O(ǫ) which together

with E1(t0, uǫ) = sup|ϕ(ǫ)(x)| = 1 shows that an energy inequality of the
typeE1(t0, uǫ) ≤ cE1(0, uǫ ) does not hold.
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3 Singular integral operators

In this section we introduce the notion of singular integraloperators
and recall some of their properties which will be useful in the study
of the existence and uniqueness of solutions of the Cauchy problem.
The following considerations lead us to the notion of singular integral
operators.

Consider the system of equations

(3.1)
∂u
∂t
−

∑
Ak

∂u
∂xk
− Bu= f

whereAk andBare matrices whose entires are constants andf ∈ L2[0.h].
We assume (3.1) to be strongly hyperbolic in the sense that the roots of
the equation. det (λI − A.ξ) = 0 are real and distinct. Let the roots be
λ1(ξ), . . . , λN(ξ) for ξ , 0. We have the following.

Lemma 1. There exists a non-singular matrix N(ξ) which is homoge-
neous of degree zero and bounded such that

(1) |detN(ξ)| ≤ δ > 0 for all ξ.

(2) N(ξ)(A.ξ) = D(ξ)N(ξ) where D(ξ) is the diagonal matrix

D(ξ) =



λ1(ξ) 0
. . .

0 λN(ξ)
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Assume that there exists a solutionu ∈ L2[0, h]. Then, denoting for
every fixedt, the Fourier transform ofu in the x-space ˆu(ξ, t), we obtain
the following system of ordinary diffenential equations:

(3.2)
d
dt

û(ξ, t) = (2πiA.ξ + B)û(ξ, t) + f̂ (ξ, t)

Multiplying both sides of this system byN(ξ) and using lemma 1
we have

d
dt

(Nû)(ξ, t) = (2πiD(ξ) · N(ξ) + N(ξ)B)û(ξ, t) + N(ξ) f̂ (ξ, t).
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v(ξ, t) = N(ξ)û(ξ, t) satisfies the system of equations

(3.3)
dv
dt

(ξ, t) = (2πiD(ξ) + B′(ξ))v(ξ, t) + N(ξ) f̂ (ξ, t), where

B′(ξ) = N(ξ)BN(ξ)−1. Now

d
dt
||v(ξ, t)||2 =

∫ 
dv
dt
· v̄+ v · dv

dt

dξ

=

∫ {
2π(iD(ξ)v · v̄+ v · iD(ξ)v) + 2 Re(B′v, v̄)

+ 2 ReN(ξ) f̄ · v̄
}
dξ

= 2
∫

Re(B′(ξ)v · v̄+ N(ξ) f̂ · v̄)(ξ, t)dξ.

BecauseN(ξ) is bounded and condition (1) of lemma 1 holds. The
operatorsB′ is bounded and hence

d
dt
||v(ξ, t)||2 ≤ 2γ||v||2 + 2 Re(N(ξ) f̂ , v)

≤ 2γ||v||2 + 2||N(ξ) f̂ ||||v||

Thus we obtain66

||v|| ≤ exp(γt) · ||v(ξ, 0)|| +
t∫

0

exp(γ(t − s))||N(ξ) f̂ (ξ, s)||ds.

By Plancheral’s formula’s formula we have

||v(ξ, t)|| = ||N(ξ)û(ξ, t)|| ≤ c||u(t)||.

and again sinceN(ξ) has a bounded inverse by condition (1) we see that

(3.4) ||u(t)|| ≤ c(h)
{
||u(0)|| +

t∫

0

|| f (s)||ds
}
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wherec is a constant depending only onh.
Now we look at this reasoning without explicitly using the notion of

Fourier transforms.
N(ξ) is homogeneous of degree 0 inξ and so the convolution opera-

torsN (x)∗ defines a bounded operator in the spaceL2 since

||N (x) ∗ u|| = ||N(ξ)û|| ≤ c||u||
by Plancherel’s formula. HereN (x) is the inverse Fourier image of

N(ξ). Let D(x) be the distribution whose Fourier image isD

(
ξ

|ξ|

)
. De-

fine the operators∧ by
(∧̂u) = |ξ|û.

Then we obtain
d
dt

(N (x) ∗(x) u) = 2πiD(x) ∗(x) ∧(N (x) ∗(x) u)

+N (x) ∗(x) (Bu) +N (x) ∗(x) f .

In other wordsv = N ∗(x) u satisfies the system

dv
dt
= 2πiD ∗(x) ∧v+ B1v+N ∗(x) f ,

whereB1 ∈ L (L2, L2) because of condition (1). Integrating with re-67

spect tot in the interval [0, t] we have the inequality

||N ∗(x) u|| ≤ exp(γt)||N ∗(x) u(x, 0)||+
t∫

0

exp(γ(t− s))||N ∗(x) f (x, s)||ds

whereγ is a constant depending only onA and B. But there exists a
constantk (depending onA) such that

1
k
||u(x, t)|| ≤ ||N ∗(x) u(x, t)|| ≤ k||u(x, t)||

which gives an energy inequality foru.
Now in the case of systems with variable coefficients even though

we cannot apply Fourier transforms we may, however, write the system
in a form similar to (3.2) to which we can apply the above method to get
an energy inequality. For this purpose we introduce the singular integral
operators.
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4

For a functionf ∈ L2(R1) consider the integral transform defined by

(4.1) g(x) = v.p.

∞∫

−∞

f (t)
x− t

dt.

M. Riesz [1] has proved that the Cauchy principal value defining g ex-
ists andg ∈ L2(R1). f → g is a continuous linear mapping ofL2(R1)
into itself. In the language of the theory of distributions we can write

g = v.p.

(
1
x

)
∗ f . v.p.

(
1
x

)
is a tempered distribution whose Fourier im-68

age isχ(ξ) = −πi for ξ > 0 andπi for ξ < 0. We observe that
1
x

is

homogeneous of degree−1 and has mean value 0. If ˆg and f̂ are the
Fourier images ofg and f respectively then ˆg = ∂χ f̂ and||g = π|| f || by
Plancheral’s formula.

Calderon and Zygmund [1] generalized this theory to functions on
Rn. Let N(x) be a homogeneous function of degree -n on Rn(N(λx) =
λ−nN(x)) which is smooth in the complement of the origin and has mean
value

∫

|x|=1

N(x)dσx = 0. Then they proved thatg = v.p.N(x) ∗ f ∈ Lp

if f ∈ Lp. In particular f → g is a continuous linear map ofL2 into
itself. This latter fact can be seen observing thatv.p.N(x) is a tempered
distribution, its Fourier transformh(ξ) is a homogeneous function of
degree 0 and has mean value

∫

|ξ|=1

h(ξ)dσξ = 0. In this paragraphdσx

anddσξ stand for normalized volume element of the unit sphere; viz.
dσx = dSx/vol S.

Conversely, given any homogeneous functionh(ξ) of degree 0 with
mean value 0, ifγ(x) is its inverse Fourier image we can define an inte-
gral operatorsγ∗ by

(γ ∗ f )(x) =
∫

exp(2πix · ξ)h(ξ) f̂ (ξ)dξ.
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Now consider the differential operators

L

(
x,
∂

∂x

)
=

∑
a j(x)

∂

∂x j
.

For a functionu ∈ S we can write

(Lu)(x) =
∫

exp(2πixξ)(
∑

j

a j(x)ξ j)(2πi)û(ξ)dξ.

Denoteh(x, ξ) = 2πi
∑
j

a j(x)ξ j/|ξ|. If we define 69

(H f )(x) =
∫

exp(2πix.ξ)h(x, ξ) f̂ (ξ)dξ

H will be a bounded operator inL2. In fact,H can be written

(4.2) H f = 2πi
∑

a j(x)(Rj ∗ f )

whereRj is the inverse Fourier image ofξ j/|ξ|. It follows that

‖ H f ‖≤ 2π
∑
|a j(x)|0 ‖ Rj ∗ f ‖≤ (2π

∑
|a j |0)‖ f ‖.

Now L can be written in the form

Lu = H ∧ u.

We introduce the notation used by Calderon-Zygmund [1], [2].
Let U be an open set in Rn. A function u defined onU is said to

satisfy a uniform Holder condition of orderβ(0 ≤ β ≤ 1) if for any x,
x′ ∈ U we have

(4.3) |u(x) − u(x′)| ≤ c|x− x′|β.

c is called the Hölder constant foru. We shall denote byCβ(U), β ≥ 0,
the class of complex valued continuous bounded functions onU with
bounded continuous derivatives upto order [β] (the integral part ofβ)
and with the derivatives of order [β] satisfying a Hölder condition of
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orderβ − [β]. Eξ(Rn − {0}) will denote the space consisting of complex
valued functionsh(ξ), ξ ∈ Rn, homogeneous of degree 0 and infinitely
differentiable in Rn − {0} with respect toξ. This spaceEξ(Rn − {0}) is 70

topologized by the family of seminorms defined by

ps(h) =
∑

|ν|≤s

sup
|ξ|≥1
|( ∂
∂ξ

)νh(ξ)|.

We say thath(x, ξ) ∈ C∞
β

, β ≥ 0, if

(1) for β = 0 the functionx → h(x, ξ) ∈ Eξ(Rn − {0}) is continuous
and bounded;

(2) for 0 < β < 1, h(x, ξ) ∈ C∞0 and the functionx → h(x, ξ) ∈
Eξ(Rn−{0}) is uniformly Hölder continuous of orderβ in the sense
that for anyν

(4.4) sup
|ξ|≥1

∣∣∣∣∣∣

(
∂

∂ξ

)ν
h(x, ξ) −

(
∂

∂ξ

)ν
h(x′, ξ)

∣∣∣∣∣∣ ≤ cν|x− x′|β;

(3) if β ≥ 1,

(
∂

∂x

)ν
h(x, ξ) ∈ C∞0 for |ν| ≤ β and

(
∂

∂x

)ν
h(x, ξ) ∈ C∞

β−[β]

for |ν| = [β].

h(x, ξ) being a homogeneous function ofξ can be expanded as a series in
spherical harmonics. LetYl(ξ) be a normalized real spherical harmonic
of degreel, that is such that

(4.5)
∫

|ξ|=1

Yl(ξ)
2dσξ = 1

and Ylm(ξ) be a complete orthogonal system of normalized spherical
harmonics of degreel. Then we can write

(4.6) h(x, ξ) = a0(x) +
∑

l≥1,m

alm(x)Ylm(ξ)
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in terms of the spherical harmonics. Then

(4.7) alm(x) =
∫

|ξ|=1

h(x, ξ)Ylm(ξ)dσξ .

Let Ỹlm denote the inverse Fourier image ofYlm(ξ) 71

Ỹlm(x) =
∫

e2πix.ξYlm(ξ)dξ.

We define

(4.8) (H f )(x) = a0(x) f (x) +
∑

l,m

al,m(x)(Ỹlm ∗ f )(x).

Now we have the following estimates due to Calderon and Zyg-
mund:

(a) |Ylm(ξ)| ≤ cl
1
2(n−2), c being a positive constant;

(b) the number of distinct spherical harmonicsYlm(ξ) of degreel is of
the orderln−2;

(c) |alm(x)| ≤ cMl
−

3
2

n
whereM = sup

x∈Rn
,|ξ|≥1

|ν|≤2n

|( ∂
∂ξ

)νh(x, ξ)|.

More generally we have the following sharper estimates. LetL be
the operator defined by

L(F) = |ξ|2(△ξF) where△ξ =
n∑

j=1

(
∂

∂ξ j

)2

.

Then

(4.7)′ alm(x) = (−1)r l−r (l + n− 2)−r
∫

|ξ|=1

Lr
ξ(h(x, ξ)Ylm(ξ)dσξ .

From this it follows that
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(d) |alm(x)| ≤ c(n, r)M2r l
−2r+

n
2

whereM2r = sup
x∈Rn

,|ξ|≥1
|ν|≤2r

|( ∂
∂ξ

)νh(x, ξ)|

(e) sup
|ξ|≥1
|( ∂
∂ξ

)νYlm(ξ)| ≤ c(ν, n)l

1
2

(n−2)+|ν|
.72

These estimate show that the series definingH f is convergent in the
L2-sense.

In fact,

(4.9) ‖ H f ‖≤ (|a0(x)| +
∑
|alm(x)|o|ylm(ξ)|o) ‖ f ‖ .

From (a), (b) and (c) it follows that
∑
|alm|o|Ylm|o ≤ cM

∑

l

l−
3
2n+ 1

2 (n−2)+n−2
= cM

∑

l

l−3 < ∞.

Hence
‖ H ‖≤ cM,M being defined in (c).

A singular integral operator was defined by Calderon and Sygmund
by the following equation

(4.10) (Hu)(x) = a(x)u(x) +
∫

k(x, x− y)u(y)dy,

wherek(x, z) is a complex valued homogeneous function of degree−n
in z, of classE in Rn − {0} in the z-variable for every fixedx and the
functionk(x, z) has mean value zero in thez-space for every fixedx. Let
us expandk(x, z) in terms of spherical harmonics:

k(x, z) =
∑

alm(x)Ylm(z′)|z|−n, z′ =
z
|z| ,

wherealm(x) =
∫

|z′|=1

k(x, z′)dσz′ .

Then, taking into account the fact thatF [Ylm(z′)|z|−n] = γ1Ylm(ξ),73
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γ1 being a constant, we define the symbolσ(H) as

(4.11) σ(H) = a0(x) +
∑

alm(x)γ1Ylm(ξ).

We start from thisσ(H) in our definition. However the two defini-
tions are identical since there exists a one to one linear mapping σ of
the class of singular integral operators of the classC∞

β
into the class of

functionsh(x, ξ), x, ξ ∈ Rn homogeneous of degree zero with respect to
ξ and inC∞

β
. σ(H) is called the symbol of the singular integral opera-

tor H. Thus the series
∑
l,m

alm(x)Ylm(ξ) represents in a sense the Fourier

transform ofk(x, z) with respect toz. We recall without proof the fol-
lowing important theorems on these operators, which we shall require
for later use. For proofs see Calderon-Zygmund [1, 2].

Theorem 1(Calderon-Zygmund [1]). If H is a singular integral opera-
tor of type C∞

β
then its symbol is a homogeneous function of degree zero

and of class C∞
β

with respect toξ in |ξ| ≥ 1. Conversely every function
of x andξ which is homogeneous of degree zero and belongs to the class
C∞
β

in |ξ| ≥ 1 is the symbol of a unique singular integral operator of type
C∞
β

. If

M = sup
x∈Rn

,|ξ|≥1
|ν|≤2n

∣∣∣( ∂
∂ξ

)νσ(H)(x, ξ)
∣∣∣

then

(4.12) ‖ H f ‖p≤ MAp ‖ f ‖p

where Ap depends only on p and n. 74

If h1(x, ξ), h2(x, ξ) are of classC∞
β

in|ξ| ≥ 1 then it is easy to see that
h1(x, ξ) + h2(x, ξ) andh1(x, ξ)h2(x, ξ) are also of classC∞

β
and further if

|h2(x, ξ)| ≥ δ > 0 then
h1(x, ξ)
h2(x, ξ)

is also of classC∞
β

.

Theorem 2(Calderon-Zygmund [2]). Let h(x, ξ) = σ(H) be of type C∞
β

,
homogeneous of degree zero inE then

(1) for r ≤ β, H f ∈ D r
Lp for f ∈ D r

Lp(1 < p < ∞), and
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(2) if f ∈ Lp and Hölder continuous of orderα(α < β then H f ∈ Lp

and Hölder continuous of orderα(1 < p < ∞).

Let H# andH10H2 be singular integral operators whose symbols are
respectivelyσ(H) andσ(H1). σ(H2).

Theorem 3 (Calderon-Zygmund). If σ(H1), σ(H2) are independent of
x then

H1 ◦ H2 = H1H2 = H2 ◦ H1 = H2H1

and if σ(H) is independent of x and|σ(H)(ξ)| ≥ δ > 0 then H is in-
vertible and its inverse H−1 is also a singular integral operator. We
illustrate by a simple example the motivation for the definition of the
singular integral operators H1 ◦ H2 and H#. Consider the differential
operators

L =
∑

j

a j(x)
∂

∂x j
,M =

∑

j

b j(x)
∂

∂x j
, a j , b j ∈ B

1.

Then

LM =
∑

j,k

a j(x)bk(x)
∂2

∂x j∂xk
+

∑

j,k

a j(x)
∂bk

∂x j

∂

∂xk
.

Therefore, if we define75

L ◦ M =
∑

j,k

a j(x)bk(x)
∂2

∂x j∂xk

thenLM = L ◦ M modulo first order operators. Next if we define

L#
= −

∑
a j(x)

∂

∂x j

thenL∗ ≡ L# modulo bounded operators.
These considerations suggest that the product of two singular inte-

gral operators and the conjugate operatorH∗ will be approximated, in
some sense, by the singular integral operatorsH1 ◦ H2 andH# respec-
tively. More precisely we have the following:
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Theorem 4(Calderon-Zygmund). Let H be a singular integral operator
of type C∞

β
(β > 1) and M be a bound forσ(H)(x, ξ) and its derivatives

with respect to the coordinates ofξ of order 2n, the first derivatives of
these with respect to the coordinates of x and Hölder constants of the
latter. Then for every f∈ D1

Lp(1 < p < ∞) we have

‖ (H ∧ − ∧ H) f ‖Lp≤ ApM ‖ f ‖Lp , ‖ (H∗ ∧ − ∧ H∗) f ‖Lp≤ ApM ‖ f ‖Lp

‖ (H∗ − H#) f ‖Lp≤ ApM ‖ f ‖Lp , ‖ ∧(H∗H#) ‖Lp≤ ApM ‖ f ‖Lp

(4.13)

where Ap depends only on p, n, β. Further if H1 and H2 are two singular
integral operators of type C∞

β
and f ∈ E 1

Lp(1 < p < ∞) then H1 ◦ H2 is
an operator of type C∞

β
and

‖ (H1 ◦ H2 − H1H2) ∧ f ‖Lp≤ ApM1M2 ‖ f ‖Lp,

‖ ∧(H1 ◦ H2 − H1H2) f ‖Lp≤ ApM1M2 ‖ f ‖Lp
(4.14)

where again Ap depends only on p, n, β and M1,M2 being defined in the 76

same way as M.

We can write differential operators in the form of singular integral

operators as follows: LetA =
∑
|α|=m

aα(x)

(
∂

∂x

)α
be a homogeneous dif-

ferential operator of orderm with coefficientsaα(x) in Cβ, β ≥ 0. If
u ∈ Dm

L2 then∧mu is well defined,

(∧̂mu)(ξ) = |ξ|mû(ξ)

andAu= H∧mu whereH is a singular integral operator of typeC∞
β

and

(4.15) σ(H) = im
∑

|∝|=m

a∝(x)ξ∝|ξ|−m.

Similarly any general linear differential operator of orderm

A =
∑

k≤m

Ak,Ak =

∑

|ν|=k

ak,ν(x)

(
∂

∂x

)ν

with ak,ν(x) of classCβ can be written as

(4.16) Au=
∑

Hk ∧k u
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whereHk is a singular integral operator of classC∞
β

and

(4.17) σ(Hk) = ik
∑

|ν|=k

ak,ν(x)ξν|ξ|−k

for everyu ∈ Dm
L2.

A matrix of operators is called a singular integral matrix ifits ele-
ments are singular integral operators and its symbol is the matrix whose
elements are the symbols of the corresponding elements of the singular77

integral matrix. A system of differential operators can be written as a
singular integral matrix.

5 Extension of G̊arding’s inequality to singular in-
tegral operators

In this section we prove an inequality for the singular integral operators
whose symbol satisfies a condition of positivity. This is an analogue of
the well know inequality of Garding for elliptic differential operators.
Before stating the inequality we prove some preliminary results needed
in the proof of this inequality. These results are also of independent
interest.

The following lemma corresponds to the local property of differen-
tial operators, namely, that differential operators decrease supports.

Lemma 1 (Quasi localisation lemma). LetΩ be the ball of radius2η
and of centre a point x0 in Rn. Let H be a singular integral operator
whose symbolσ(H)(x, ξ) ∈ C∞

β
, with β > 0. If u ∈ D1

L2 has its support
in the ball of radiusη and of centre x0 then

(5.1) ‖ H ∧ u ‖L2(CΩ)≤ c(n, η)M′ ‖ u ‖

where M′ =
∑

|ν|≤3n+3
sup

x∈Rn
,|ξ|≥1

∣∣∣( ∂
∂ξ

)νσ(H)(x, ξ)
∣∣∣ and c(n, η) is a constant

depending only on n andη.

Proof. We decompose the operator∧ as∧ = ∧1 + ∧2 with ∧̂1(ξ) =
α(ξ)|ξ| and∧̂2(ξ) = (1− α(ξ))|ξ| whereα(ξ) ∈ D such thatα(ξ) ≡ 1 on
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|ξ| ≤ 1, 0 ≤ α(ξ) ≤ 1 and vanishes outside|ξ| ≤ 2. ∧̂2(ξ) is an infinitely78

differentiable function,̂∧1(ξ) has compact support and hence∧1 is a
bounded operator inL2. So it is enough to prove that

‖ H ∧2 u ‖L2(CΩ)≤ C(n, η)M′ ‖ u ‖ .

Let

(5.2) σ(H)(x, ξ) = a0(x) +
∑

l,m

alm(x)Ylm(ξ)

be the expansion ofσ(H) in terms of a complete system of spherical
harmonicsYlm(ξ). Let Y′lm(x) be the singular integral operator such that

Y′lm(x)→ Ylm(ξ)∧̂2(ξ)

by Fourier transforms. Then we can write

(5.3) (H ∧2 u)(x) = a0(x) ∧2 u(x) +
∑

l,m

alm(x)(Y′lm(x) ∗ u).

First we show that

(5.4) |Y′lm(x) ≤ |x|−2pc(p, n)|Ylm(ξ)|2p for x ∈c {0} for 2p ≥ n+ 2

where|Ylm(ξ)|2p =
∑
|ν|≤2p

sup
|ξ|≥1
|( ∂
∂ξ

)νYlm(ξ)|.

In fact,

Y′lm(x) = |x|−2p
{
|x|2pY′lm(x)

}

and|x|2pY′lm(x) is the inverse Fourier image of const

△p
ξ
(Ylm(ξ)(1− α(ξ))|ξ|.

Hence we have the estimate

|Y′lm(x)| ≤ |x|−2p
(

1
2π

)p ∫
|△p
ξ
((1− α(ξ))Ylm(ξ)|ξ|)|dξ

≤ |ξ|−2pc(n, p)|Ylm(ξ)|2p f or2p ≥ n+ 2.
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79

This establishes the assertion (5.4).
Now we show that for anyuǫD with support contained inω =

Bη(x0)

(5.5) || |x|−2p ∗ u||L2(CΩ) ≤ c(n, p, η)||u||

holds forp satisfying 4p > n.

In fact, for xǫ∁Ω, || |x|−2p∗u|| =
∣∣∣
∫ u(y)

|x− y|2p
dy

∣∣∣ by Schwarz inequal-

ity,
≤ ||u||( vol ω)1/2( dist. (x, ω))−2p

Hence|| |x|−2p ∗ u||L2(CΩ) ≤ ( volω)
1
2 ||u||(

∫

|x|≥2η

dx

(|x| − η)4p
)

1
2 . The in-

tegral in the right hand side converges for 4p > n which proves the
assertion (5.5). Now (5.4) and (5.5) together assert that

||H ∧2 u||L2(CΩ) ≤ ( vol ω)
1
2 c(p, n, η)


∑

l,m

|alm(x)|◦|Ylm(ξ)|2p

 ||u||

≤ C′(p, n, η)M′||u||.

This completes the proof of lemma 1. In the proofs of the following
results we use aC∞ partition of unity in Rn.

α jξD , α j ≥ 0,
∑

j

α2
j = 1.

80

To simplify the arguments we take a partition of unity satisfying
the following conditions: Letα0εD whose support is contained in the
ball of rediusε, ε being a small number to be determined by the sin-
gular integral operatorH. Let {x( j)} be a sequence of points of Rn

whose coordinates are multiples ofε′(= εn
−

1
2), α j(x) = α0(x − x( j)),

j = 0, 1, . . . , x(0)
= (0). The support ofα0 will be denoted byω0 and the

ball of centrex( j) and of radius 2ε will be denoted byΩ j . Let

α(p) =
∑

|ν|≤p

sup
x

∣∣∣
(
∂

∂x

)ν
α0(x)

∣∣∣.
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�

Lemma 2. Let H be a singular integral operator with its symbolσ(H)
(x, ξ)εc∞

β
, with β > 0 and(α j) be a C∞ partition of unity as constructed

above. Then for any uεD1
L2

(5.6)
∑

j

||((H∧)α j − α j(H∧))u||2 ≤ γ||u||2

In particular, takingσ(H) = 1 this wouls imply

(5.7)
∑

j

||[∧, α j ]u||2 ≤ γ||u||2.

Let βεDξ, 0 ≤ β(ξ) ≤ 1 with support contained in|ξ| < 1 which
takes the value 1 in a neighbourhood of the origin. Decompose∧ into
∧ = ∧1 + ∧2 where∧̂1(ξ) = β(ξ)|ξ| and∧̂2(ξ) = (1 − β(ξ))|ξ|. Clearly
|| ∧1 u|| ≤ ||u|| and hence

||H ∧1 α ju|| ≤ ||H|| ||α ju||L2(Ω j ) ≤ sup
x

∣∣∣α j(x)
∣∣∣||H|| ||u||L2(Ω j )

81

Hence ∑

j

||H ∧1 α ju||2 ≤ α(0)2||H||2k||u||2

wherek is the maximum number of sets{ωh} intersecting at any point
and ∑

j

||α jH ∧1 u||2 = ||H ∧1 u||2 ≤ ||H||2||u||2.

So we have only to consider
∑
j
||[H∧2, α j ]u||. Consider the term

ϕ j(x) = [H∧2, α j ]u(x).(5.8)

ϕ j(x) =
∑

l,m

alm(x)
∫

Ỹlm(x− y) ∧2 (x− y)(α j (y) − α j(x))u(y)dy.
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Let us denote the operatorỸlm ∗ ∧2 by Y′lm. First of all we consider
||ϕ j ||L2(Ω j ). Expandingα j(y) − α j(x) in a Taylor series, we obtain
(5.9)

α j(y) − α j(x) =
∑

1≤|ν|≤q−1

1
ν!

(
∂

∂x

)ν
α j(x)(y− x)ν +

∑

|ν|=q

α j,ν(x, y)(x− y)ν

whereq will be determined later. It follows that

ϕ j(x) =
∑

|ν|≤q−1

1
ν!

(−1)|ν|(
∂

∂x
)να j(x)

∑

l,m

alm(x)(xνY′lm)u+ ϕ(2)
j (x)

where

(5.10) ϕ
(2)
j (x) = Σalm(x)

∫
α j,ν(x, y)(x− y)νY′lm(x− y)u(y)dy.

Now the operatorsHν =
∑

alm(x)(xνY′lm) are singular integral opera-82

tors which operate onL2 as continuous linear operators since sup
x
|alm(x)|

is a rapidly decreasing sequence (more precisely, for any positive integer
σ we have

∑

1≥0

lσ sup
x

∣∣∣alm(x)
∣∣∣ < ∞) (see Calderon-Zygmund [1].

Hence for the first sum,

(5.11) ϕ
(1)
j (x) =

∑

|ν|≤q−1

(−1)|ν|

ν!
(
∂

∂x
)να j(x) · Hνu

and we have

(5.12)
∥∥∥ϕ(1)

j

∥∥∥2
L2(Ω j )

≤ c(q)α(q− 1)
∑

1≤|ν|q−1

∥∥∥Hνu
∥∥∥2

L2(Ω j )
.

To majorize the second sumϕ(2)
j (x) we begin by considering a typi-

cal term (xν · Y′) ∗ u. We have

|(xνY′) ∗ u| =
∣∣∣
∫

(x− y)νY′(x− y) · u(y) |dy
∣∣∣
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≤
∫
|(x− y)νY′(x− y)||u(y)|dy

=


∫

Ω
′
j

+

∫

CΩ′j

 |(x− y)νY′(x− y)||u||(y)|dy

whereΩ′j is a sphere of radius 6ε aboutx( j). The first integral is ma-
jorized by

sup
x
|xνY′(x)| ||u||Ω′j (vol Ω′0)

1
2

and the second integral is majorized by

sup
x

∣∣∣|x|2pxνY′(x)
∣∣∣
∫

CΩ′j

|u(y)|
|x− y|2p

dy.

Now I ≡
∫

CΩ′j

|u(y)|
|x− y|2p

dy ≤ ∑
k

∫
ωk

|u(y)|
|x− y|2p

dy where the sum is taken83

is taken over all theωk such thatd(Ω j , ωk) ≥ 3ε,Ω j being the support
of α j . Hence

I ≤
∑

k

22pd(ωk,Ω j)
−2p‖|u||ωk(vol ω0)

1
2 .

Hence the second integral is majorized by

sup
x

(|x|2p|xνY′(x)|)(vol ω0)
1
2 22p


∑

k

d(ωk,Ω j)
−2p||u||ωk



where theωk occuring in the summation are such thatd(ωk,Ω j) ≥ 3ε.
For |ν| = q sufficiently large it can be shown that

K(ν) =
∑

1≥0

sup
x
|alm(x)| · sup

x
|xνY′lm(x)| < ∞

and
K(ν, p) =

∑

1≥0

sup
x
|alm(x)

∣∣∣ · sup
x

∣∣∣ |x|2pxνY′lm(x)
∣∣∣ < ∞
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for p sufficiently large. So we have

∣∣∣
∣∣∣ϕ(2)

j

∣∣∣
∣∣∣2
Ω j
≤

∫

Ω j


∑

|ν|=q

∑

l,m

|alm(x)|
∫

α j,ν(x, y)(x− y)νY′lm(x− y)
∣∣∣
∣∣∣u(y)

∣∣∣dy

 dx

≤ c
( ∑

|ν|=q

K(ν)||u||2
Ω
′
j
+ K(ν, p)


∑

k

d(ωk,Ω j)−2p||u||Ω j


2

.(5.13)

But by Schwarz inequality we have

∑

k

d(ωk,Ω j)
−2p||u||ωk ≤


∑

k

d(ωk,Ω j)
−2p



1
2

∑

k

d(ωk,Ω j)
−2p||u||2ωk



1
2

and since (
∑

k d(ωk,Ω j)2p) < K, a constant we obtain after summing84

over j
∑

k, j

||u||2ωk
d(ωk,Ω j)

−2p
=

∑

k

||u||2ωk

∑

j

d(ωk,Ω j)
−2p

≤ Kp

∑

k

||u||2ωk
≤ Kpr ||u||2

whereKp is a constant depending onp andr is the maximum number
of ballsωk containing a point of Rn. Substituting in (5.13)

∑

k

||ϕ(2)
k ||

2
Ωk
≤ c||u||2

which together with (5.12) gives the estimate

(5.14)
∑

k

||ϕk||2Ωk
≤ c′||u||2.

It remains to estimate||ϕk||CΩk
in order to complete the proof of the

lemma. Forx ∈ C
Ωk a typical term in the expression forϕk(x) is of the

form

ψ(x) =
∫

ωk

Y′lm(x− y)α j(y)u(y)dy
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from which we obtain as before the estimate

|ψ(x)| ≤ sup
x

∣∣∣|x|2pY′lm(x)
∣∣∣ ·

∫

Ω j

|u(y)|
|x− y|2p

dy

≤ sup
x

∣∣∣|x|2pY′lm(x)
∣∣∣ · ||u||Ω j d(x,Ω j )

−2p|(volω0)
1
2 .

Hence

||ψ||CΩk
≤ sup

x

∣∣∣|x|2pY′lm(x)
∣∣∣ · ||u||Ω j (vol ω0)

1
2 (

∫

|x|≤2ε

1
d(x, ω1)4p

dx)
1
2 .

85

Taking 4p > n and observing thatK(ν, p) < ∞ we see that

||ϕk||2CΩk
≤ c′′||u||2Ω j ,

and again, summing overk,

(5.15)
∑

k

||ϕk||2CΩk
≤ c′′ · r ||u||2.

This completes the proof of the lemma.
The following is an extension to singular integral operators of Går-

ding’s inequality for elliptic differential operators.

Proposition 1. Let H be a singular integral operator such that its sym-
bol σ(H) = h(x, ξ) ∈ C∞

β
with β > 0 satisfies

(5.16) |h(x, ξ)| ≥ τ > 0

for every x∈ Rn and every vectorξ, δ being a positive constant. Then
there exists aδ′ > 0 such that

(5.17) ||H ∧ u||2 ≥ δ′|| ∧ u||2 − γ||u||2

for every u∈ D1
L2 whereγ is a positive constant.
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Proof. H being a singular integral operator we know that||Hu|| ≤
AM||u|| whereA is a constant depending only onn and

M =
∑

|ν|≤2n

sup
xεRn

, |ξ|≥1

∣∣∣( ∂
∂ξ

)νγ(H)(x, ξ)
∣∣∣.
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Given aδ > 0 there exists a numberǫ > 0 such that for everyx0 ∈ Rn

and for everyu ∈ L2

(5.18) ||(H − H(x0))u||2ω0
≤ δ2

4
||u||2

whereH(x0) is the singular integral operator with constant coefficients
such thatσ(H(x0))(ξ) = σ(H)(x0, ξ). (H(x0) is the tangential operator
at x0). ε can be chosen independent of the position ofx0. Consider the
C∞ partition of unity introduced earlier,

α j(x) ≥ 0, α j ∈ D ,
∑

α2
j (x) ≡ 1.

As we have
||H ∧ u||2 =

∑
||α jH ∧ u||2

it is sufficient to prove the inequality forα jH ∧ u.

||α jH ∧ u||2 ≥ 1
2
||Hα j ∧ u||2 − ||(Hα j − α jH) ∧ u||2

≥ 1
2
||Hα j ∧ u||2 − 2||H(∧α j − α j∧)u||2

− 2||((H∧)α j − α j(H∧))u||2.

Now we have
∑

j

H(∧α j − α j∧)u||2 ≤
∑

j

||H||2 ||(∧α j − α j∧)u||2 ≤ c′1||H||
2||u||2

≤ c1||u||2

and by lemma 2
∑

j

||(H∧)α j − α j(H∧))u||2 ≤ c2||u||2
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wherec1 andc2 are constants depending only on the norm ofH andn.87

Hence

(5.21) ||H ∧ u||2 ≥ 1
2

∑

j

||Hα j ∧ u||2 − c3||u||2

and we have only to consider||Hα j ∧ u||2.
For this purpose letH(x( j)) be the singular integral operator whose

symbol ish(x( j), ξ), so that

σ(H − H(x( j))) = h(x, ξ) − h(x( j), ξ).

So we have

||Hα j ∧ u||2 ≥ 1
2
||H(x( j))α j ∧ u||2 − ||(H − H(x( j)))α j ∧ u||2.

From the condition that|h(x, ξ)| > δ we have

1
2
||H(x( j))α j ∧ u||2 ≥ δ2

2
||α j ∧ u||2.

As in lemma 2, letΩ j denote the ball of radius 2ε and centrex( j).
We decompose the second term into a sum

||(H − H(x( j)))α j ∧ u||2 = ||(H − H(x( j)))α j ∧ u||2
Ω j

+ ||(H − H(x( j)))α j ∧ u||2CΩ j

As mentioned at the begining of the proof, the first term is majorized

by
δ2

4
||α j ∧ u||2. For the second term we have

||(H − H(x( j)))α j ∧ u||2CΩ j
≤ 2||(H − H(x( j)))(α j ∧ − ∧ α j)u||2CΩ j

+ 2||(H − H(x( j))) ∧ α ju||2CΩ j
.

By lemma 11,||(H −H(x( j)))∧α ju||2CΩ j
≤ c(n, η)M′||α ju||2 and since 88
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(H −H(x( j))) is a singular integral operator we obtain from lemma 2 the
inequality

∑

j

(H − H(x( j)))(α j ∧ − ∧ α j)u||2CΩ j
≤ c||u||2.

Hence

||H ∧ u||2 ≥ δ2

4

∑

j

||αδ ∧ u||2 − c(n, η)M′′
∑

j

||α ju||2 − c||u||2

≥ δ2

4
|| ∧ u||2 − γ||u||2

which completes the proof of the inequality. �

Proposition 2. Let H be a singular integral operator whose symbol
σ(H) = h(x, ξ) ∈ C∞

β
with β > 0. Let h(x, ξ) satisfy the condition

(5.19) Reh(x, ξ) ≤ −δ, δ > 0 for every x∈ Rn and every vectorξ.

Then there exists aδ′ > 0 such that

(5.20) ((H + H∗) ∧ u,∧u) ≤ −δ′|| ∧ u||2 + γ||u||2 for u ∈ D
1
L2

whereγ is a constant depending only on M,δ and n,δ′(δ′ < δ) can be
chosen as nearδ as one wishes.

Proof. One can writeH∗∧ = H# ∧ +(H∗ − H#)∧. By Th. 4 of § 4,
(H∗ − H#) is a bounded operator inL2 and hence it is enough to prove
that for P = H + H#, (P ∧ u,∧u) satisfies an inequality of the required
kind. The symbolσ(P) = h(x, ξ)+h(x, ξ) is real and≤ −2δ. Letα j ∈ D ,
α j(x) ≥ 0,

∑
α2

j (x) ≡ 1 be aC∞ partition of unity as in lemma 1. Then89

(P∧ u,∧u) =
∑

j

(α jP∧ u, α j ∧ u) =
∑

j

(Pα j ∧ u, α j ∧ u)

−
∑

j

((Pα j − α jP) ∧ u, α j ∧ u).
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For anyǫ′ > 0 we have, by Schwarz’s inequality

(Pα j − α jP) ∧ u, α j ∧ u) ≤ ||(Pα j − α jP) ∧ u|| · ||α j ∧ u||

≤ ǫ′ ||α j ∧ u||2 + 1
ǫ′
||(Pα j − α jP) ∧ u||2.

From lemma 2 we have
∑

j

||(Pα j − α jP) ∧ u||2 ≤ 2
∑

j

P(α j ∧ − ∧ α j)u||2 + 2
∑

j

(P∧)α j − α j(P∧)u||2

≤ c′||u||2

and we have only to estimate (Pα j ∧u, α j ∧u). Write P = P(x( j))+ (P−
P(x j)) where, as before,P(x( j)) is the singular integral operator whose
symbol isσ(P)(x( j), ξ). Sinceσ(P(x, ξ)) ≤ −2δ we have

(P(x j ))α j ∧ u, α j ∧ u) ≤ −2δ||α j ∧ u||2.

Again by Schwarz’s inequality
∣∣∣(P− P(x( j)))α j ∧ u, α j ∧ u)

∣∣∣ ≤ ||
{
P− P(x( j))

}
α j ∧ u|| · ||α j ∧ u||

≤ ε′′

4
||α j ∧ u||2 + 4

ε′′
||(P− P(x( j)))α j ∧ u||2.

Now, as in Prop. 1,

|(P− P(x(J)))α j ∧ u||2 ≤ η(ε)||α j ∧ u||2 + µ||(α j ∧ − ∧ α j)u||2 + µ||α ju||2.
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Putting all these inequalities together one sees that

(P∧ u,∧u) ≤
(
−2δ + ε′ +

ε′′

4
+

4
ε′′
η(ε)

)∑

j

||α j ∧ u||2|

+µ
∑

j

||(α j ∧ − ∧ α j)u||2 + ||u||2.

Choosingε′
ε′′

4
, nearδ and fixingε to have

4η(ε)
ε′′

small enough to

make−2δ + ε′ +
ε′′

4
+

4
ε′′
η(ε) as nearδ as required and using lemma 2

the desired inequality follows.
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We shall now prove a lemma which we require later. It is analogous
to lemma 2. We define, for any reals,∧s by (∧̂su) = |ξ|sû. �

Lemma 3. Let H be a singular integral operator whose symbolσ(H) =
h(x, ξ)εC∞

β
, with β = ∞. Then for any u∈ L2

(5.21) ||(H ∧s − ∧s H) ∧σ u|| ≤ c||u|| for s, σ ≥ 0 with s+ σ ≤ 1.

Proof. Let α ∈ Dξ be such that 0≤ α(ξ) ≤ 1, α(ξ) ≡ 1 on |ξ| ≤ 1
and vanish outside|ξ| ≥ 2. Writing |ξ|s = |ξ|sα(ξ) + |ξ|s(1 − α(ξ)) we
decompose the operator into a sum∧s

= ∧s
0 + ∧

s
1 with σ(∧s

0) = |ξ|sα(ξ)
andσ(∧s

1) = |ξ|s(1− α(ξ)). As |ξ|sα(ξ) has compact support∧s
0 defines

a continuous linear operator inL2 and hence it is enough to prove that

||(H ∧s
1 − ∧

s
1 H) ∧σ u|| ≤ c||u||.

Expandingσ(H) in terms of spherical harmonicsYlm as in lemma 2
and taking the inverse Fourier image we have

H = a0(x) + Σalm(x)Ỹlm ∗ .

91

Let P = a(x) · Ỹ∗ be a term in the sum. We consider

(P∧s
1 − ∧

s
1 P) ∧σ u =

∫
(a(x) − a(y)) ∧s

1 (x− y) ∧σ ϕ(y)dy

whereϕ(y) = (Ỹ ∗ u)(y). Expanda(x) − a(y) in Taylor series upto order
q, q to be determined later:

a(x) − a(y) = −
∑

|≤|ν|≤q−1

1
ν!

(
∂

∂x

)ν
a(x) · (y− x)ν −

∑

|ν|=q

aν(x, y)
ν!

(y− x)ν.

This gives

(P∧s
1 − ∧

s
1 P) ∧σ u =

∑

1≤|ν|≤q−1

(−1)|ν|+1
(
∂

∂x

)ν
a(x) · (xν∧s

1) ∗ (∧σϕ)

+

∑

|ν|=q

(−1)|ν|+1
∫

aν(x, y)
ν!

(x− y)ν ∧s
1 (x− y)(∧σϕ)(y)dy.(5.22)
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We estimate the first sum in (5.22). We have

| (x̂ν∧s
1)| =

∣∣∣∣∣∣

(
∂

∂ξ

)ν
(1− α(ξ))|ξ|s

∣∣∣∣∣∣ ≤ cν(1+ |ξ|)s−|ν|.

Hence

||(xν∧s
1) ∗ (∧σϕ)|| ≤ Cγ||(1+ |ξ|)s−|ν||ξ|σϕ̂|| ≤ cν||ϕ||

sinces+σ ≤ 1 and|ν| ≥ 1. Summing overν with |ν| ≤ q− 1, we obtain

(5.23)
∑

|ν|≤q−1

|| (−1)|ν|+1

ν!

[(
∂

∂x

)ν
a

] [
(xν∧s

1) ∗ (∧σϕ)
]
|| ≤ c(q)||ϕ|| |a|q−1

where

|a|p = sup
x,|ν|≤p

∣∣∣∣∣∣

(
∂

∂x

)ν
a(x)

∣∣∣∣∣∣ .

Since||ϕ|| = ||ϕ̂|| = ||Y(ξ)û|| ≤ |Y|0. ||u|| the right hand side of the92

inequality (5.23) is less than or equal to

c(q)|a|q−1|Y|0 · ||u||.

Now we estimate the second sum. Write|ξ|σ as

|ξ|σ = α(ξ)|ξ|σ + (1− α(ξ))|ξ|σ = α(ξ)|ξ|σ + |ξ|
{
(1− α(ξ))|ξ|σ−1

}

whereα(ξ) ∈ D , α(ξ) ≡ 1 in a neighbourhood of the origin. Thus
∧σ = B0 + ∧B1 whereB0 andB1 are bounded operators inL2. Hence
we have only to consider the part containing∧B1. Denote byψν the
integral

ψν(x) =
∫

aν(x, y)(x− y)ν ∧s
1 (x− y) ∧ B1ϕ(y)dy.

Now we can write|ξ| = Σξ j
ξ j

|ξ| and if Rj denote the Riesz operators

defined by (̂Rj f ) =
ξ j

|ξ|
f̂ we can write∧ = Σ ∂

∂x j
Rj . Substituting for∧

in ψν(x)

ψν(x) = −Σ j

∫
∂

∂x j

{
aν(x, y)(x− y)ν ∧s

1 (x− y)
}
· (RjB1ϕ)(y)dv.
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We observe that (xν∧s
1) is a bounded function together with its deri-

vatives of the first order for|ν| ≥ n + 2. In fact its Fourier image is(
∂

∂ξ

)ν
{(1− α(ξ))|ξ|s} and

|xν ∧s
1 | ≤

∫
|(x̂ν∧s

1)|dξ ≤ cγ

∫
(1+ |ξ|)s−|ν|dξ < ∞.

We can write

ψν(x) =
∫

aν(x, y)(x− y)ν ∧s
1 (x− y)(∧B1ϕ)(y)dy

= −Σ
{ ∫ [

∂aν
∂y j

(x, y)

]
(x− y)ν ∧s

1 (x− y)(Rj B1ϕ)(y)dy

+

∫
aν(x, y)

[
∂

∂y j
((x− y)ν ∧s

1 (x− y))

]
(RjB1ϕ)(y)dy.
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Set

(5.24) ψν(x) = I1 + I2.

We estimateI1 andI2 separately.

|I1| ≤
∑

j

∣∣∣
∫ [

∂aν
∂y j

(x, y)

]
(x− y)ν ∧s

1 (x− y)(Rj B1ϕ)(y)dy
∣∣∣

≤ |a|q+1

∑

j

∫
|(x− y)ν ∧s

1 (x− y)| |(RjB1ϕ)(y)dy.

The Fourier image of (1+ |x|2P)xν ∧s
1 (x) is

(
1

2πi

)|ν| (
∂

∂ξ

) [
(1− α(ξ))|ξ|s

]
+

(
1

2πi

)2p+|ν|
△p
ξ

(
∂

∂ξ

)ν [
(1− α(ξ))|ξ|s

]

and hence

|xν ∧s
1 (x)| ≤ 1

1+ |x|2p



(
1
2π

)|ν| ∫
|
(
∂

∂ξ

)ν [
(1− α(xi))|ξs|

]
|dξ
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+

(
1
2π

)2p+|ν| ∫
|△p
ξ

(
∂

∂ξ

)ν [
(1− α(ξ))|ξ|s] |dξ



≤ 1

1+ |x|2p
(C1(ν) +C2(p, ν))

and similarly we have
∣∣∣∣∣∣

(
∂

∂x j

)
(xν ∧s

1 (x))

∣∣∣∣∣∣ =
1

1+ |x|2p

∣∣∣∣∣∣(1+ |x|
2p)

∂

∂x j
(xν ∧s

1 (x))

∣∣∣∣∣∣

≤ 1
1+ |x|2p

{∣∣∣∣∣∣
∂

∂x j
(xν ∧s

1 (x))

∣∣∣∣∣∣ +
∣∣∣∣∣∣|x|

2p

(
∂

∂x j

)
(xν ∧s

1 (x))

∣∣∣∣∣∣

}

≤ 1
1+ |x|2p

(C2(ν) +C2
1(p, ν)).
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For sufficiently largep the quantitiesC2(p, ν), C′2(p, ν) are finite.
Thus we have

|I1| < |a|q+1

∑

j

∫ |(Rj B1ϕ)(y)|
1+ |x− y|2p

dy(5.25)

|I2| ≤
∑

j

∣∣∣∣∣∣

∫
aν(x, y)

∂

∂y j

[
(x− y)ν ∧s

1 (x− y)
]
· (Rj B1ϕ)(y)

∣∣∣∣∣∣ dy

≤ |a|qΣ
∫ ∣∣∣∣∣∣

∂

∂y j

[
(x− y)ν ∧s

1 (x− y)
]∣∣∣∣∣∣ (RjB1ϕ)(y)dy

|I2| ≤ M(p)|a|qΣ
∫

(Rj B1ϕ)(y)

1+ |x− y|2p
dy.(5.26)

This leads to the inequality

||I1(x)||L2 ≤ |a|q+1

n∑

j=1

||Rj B1ϕ||L2

(∫
1

(1+ |x|2p)
dx

)

because of the Hausdorff-Young theorem. We have the same kind esti-
mate for||I2(x)||L2.

Hence

||ψν|| ≤ C3(n)||(Rj B1ϕ)|| · |a|q+1 ≤ C4(n)|a|q+1||ϕ||
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≤ C4(n)|a|q+1|Y(ξ)|0 · ||u||.

Now summing up for alll,mwe have for anyu ∈ L295

||(H ∧s
1 − ∧

s
1 H) ∧σ u|| ≤

∑

l,m

||(alm ∧s
1 − ∧

s
1 alm) ∧σ (Ỹlm ∗ u)||

≤ C5(n)


∑

l,m

|alm|n+3|Ylm(ξ)|||0

 ||u||

≤ C5(n, s, σ)M||u||L2

and this completes the proof of the lemma. �

The following is a generalization of Friedrichs’ lemma to singular
integral operators (see Mizohota [1]).

Proposition 3. Let H be a singular integral operator such that its sym-
bol σ(H) = h(x, ξ) ∈ C∞1+σ, σ > 0. Let Cδu denote, for u∈ L2, the
commutator[H∧, ϕδ∗]u whereϕδ is the mollifier of Friedrichs.

Then

(1) ||Cδu|| ≤ cM′||u||
where M′ = |a0|β1+σ +

∑
l,m
|alm|β1+σ |Ylm|β0 and c depends only onϕ

and n

(2) Cδu→ 0 weakly in L2 asδ→ 0.

Proof. We expandh(x, ξ) in spherical harmonicsY′lm(ξ)

h(x, ξ) = a0(x) +
∑

l,m

alm(x)Y′lm(ξ)

and hence we can write, denoting the inverse Fourier image ofY′lm by
Ỹlm

Hu(x) = a0(x)u(x) +
∑

l,m

alm(x)(Ỹlm ∗ u)(x).

To prove (1) it is sufficient to prove it foru ∈ D . Now

Cδu = [H∧, ϕδ∗]u = H ∧ (u ∗ ϕδ) − (H ∧ u) ∗ ϕδ
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=

∑

l,m

{
alm(x)(Ỹlm ∗ ∧(u ∗ ϕδ)) − alm(x)(Ỹlm ∗ ∧u) ∗ ϕδ

}
.(5.27)
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Consider a typical term of this sum:

alm(x)(Ỹlm ∗ ∧(u ∗ ϕδ)) − (alm(x)(Ỹlm ∗ ∧u)) ∗ ϕδ

and substituteΣ
∂

∂x j
Rj for ∧ where Rj are the Riesz operators. Put

ψlm(x) = Ỹlm ∗ Rj ∗ u. We have

alm(x)(Ỹlm ∗
∂

∂x j
Rj ∗ (u ∗ ϕδ) − (alm(x)(Ỹlm ∗

∂

∂x j
Rj ∗ u)) ∗ ϕδ

= alm(x)

[
∂

∂x j
(Ỹlm ∗ Rj ∗ u) ∗ ϕδ

]
− (alm

∂

∂x j
(Ỹlm ∗ Rj ∗ u)) ∗ ϕδ

= alm(x)

[
∂

∂x j
ψlm(x) ∗ ϕδ

]
−

[
alm

∂

∂x j
ψlm

]
∗ ϕδ

=

∫ [
alm(x) − alm(y)

] [
∂

∂y j
ψlm(y)

]
ϕδ(x− y)dy

where the integral is taken in the sense of distributions. Bydefinition
this is

−
∫

∂

∂y j
{[alm(x) − alm(y)]ϕδ(x− y)}ψlm(y)dy

where the integral is taken in the usual sense.
Now,

∫ ∣∣∣∣∣∣
∂

∂y j

{[
alm(x) − alm(y)

]
ϕδ(x− y)

}
ψlm(y)dy

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫
ψlm(y)(alm(x) − alm(y))

∂ϕδ

∂y j
(x− y)dy

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∫
ψlm(y)ϕδ(x− y)

∂lm(y)
∂y j

dy)

∣∣∣∣∣∣

≤ ||ψ||lm
{
2|alm|0

∣∣∣∣∣∣

∣∣∣∣∣∣
∂ϕδ

∂x j

∣∣∣∣∣∣

∣∣∣∣∣∣
L1

+ |alm|1 · ||ϕδ||L1

}

≤ ||ψlm|| {2|alm|0c1(δ, n) + |alm|1c2(δ, n)}
≤ c(δ, n)|alm|1 · |Y′(ξ)|0 · ||u||

which proves (1). 97
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To prove (2) letv ∈ L2 and consider
∫

v(x)
∫

ψlm(y)
∂

∂y j
{(alm(x) − alm(y))ϕδ(x− y)}dy dx

=

∫
v(x)

∫
ψlm(y)

{
∂ϕδ

∂y j
(x− y) · (alm(x) − alm(y)) − ϕδ(x− y)

∂alm

∂y j
(y)

}
dy dx

=

∫
v(x)

∫
ψlm(y)


∑

k

(xk − yk)
∂alm

∂yk
(y) · ∂ϕδ

∂y j
(x− y) + σ(x, y)

∂ϕδ

∂y j
(x− y)

−ϕδ(x− y)
∂alm

∂y j
(y)

}
dy dx

whereσ(x, y) = alm(x) − alm(y) −∑
k

(xk − yk)
∂alm

∂yk
(y). Let

k1(y, x− y) =
∑

k

(xk − yk)
∂alm

∂yk
(y) · ∂ϕδ

∂y j
(x− y) − ϕδ(x− y)

∂alm

∂y j
(y)

= − ∂

∂x j

{∑
(xk − yk)

∂alm

∂yk
(y) · ϕδ(x− y)

}
(5.28)

and (5.28)′ k2(y, x− y) ≥ σ(x, v)
∂ϕδ

∂y j
(x− v)

Then|k2(y, x− y)| ≤ c|alm(x)|1+σ |x− y|1+σ
∣∣∣∣∣∣
∂ϕδ

∂x j
(x− y)

∣∣∣∣∣∣.
Applying the Hausdorff-Young inequality we have

||
∫

v(x)k2(y, x− y)dx|| ≤ c|alm|1+σ
(∑∫

|x− y|1+σ
∣∣∣∣∣∣
∂ϕδ

∂x j
(x− y)

∣∣∣∣∣∣ dx

)
· ||v||

= c|alm|1+σ||v||ε(δ)(5.29)

whereε(δ) =
∑∫
|x|1+σ

∣∣∣∣∣∣
∂ϕδ

∂x j

∣∣∣∣∣∣dx→ 0 asδ → 0. On the other hand we98

observe that
∫

k1(y, z)dz=
∫

∂

∂zj


∑

r

zr
∂alm

∂yr
(y) · ϕδz

dz= 0,

sinceϕδ has compact support. Now consider
∫ ∫

k1(y, x− y)v(x)ψlm(y)dy dx=
∫

ψlm(y)dy
∫

k1(y, x− y)v(x)dx.
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The right hand side can be written after a change of variablesz =
x− y in the form

∫
ψlm(y)dy

∫
v(y+ z)k1(y, z)dz.

Schwarz inequality gives

∣∣∣
∫

ψlm(y)dy
∫

v(y+ z)k1(y, z)dz
∣∣∣ ≤ ||ψlm||

∣∣∣∣∣
∣∣∣∣∣
∫

k1(y, z)v(y+ z)dz
∣∣∣∣∣
∣∣∣∣∣ .

Since
∫

k1(y, z)dz= 0 we can write

∣∣∣∣∣
∣∣∣∣∣
∫

k1(y, z)v(y+ z)dz
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∫

k1(y, z)
{
v(y+ z) − v(v)

}
dz

∣∣∣∣∣
∣∣∣∣∣ .

We shall now evaluate the right hand side. Let us set

ε′(δ) = sup
|h|≤δ

(∫
|v(y+ h) − v(y)|2dx

) 1
2

.

Schwarz inequality shows that

∣∣∣∣∣
∫

k1(y, x− y)(v(x) − v(y))dx
∣∣∣∣∣
2

≤
(∫
|k1(y, x− y)dx

) (∫
|k1(y, x− y)||v(x) − v(y)|2dx

)
.
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Clearly
∫
|k1(y, x− y)|dx ≤ c|alm|β1 wherec is a constant depending

only on ϕ andδ. Hence integrating both sides of this inequality with
respect toy we have

||
∫

k1(y, x− y)(v(x) − v(y))dx||2

≤ c|alm|β1

"
|k1(y, x− y)||v(x) − v(y)|2dx dy
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= c|alm|β1

∫

|z|≤δ

dz
∫
|k1(x− z, z)||v(x) − v(x− z)|2dx dz.

Sincek1(y, x− y) is a bounded function the right side is less than

(5.30) c′|alm|β1ε′(δ)2(vol ωδ).

whereε′(δ) → 0 asδ → 0 andωδ is the ball|z| ≤ δ. Combining the
inequalities (5.29) and (5.30) we obtain

∣∣∣
"

v(x)ψlm(y){k1(y, x− y) + k2(y, x− y)}dy dx
∣∣∣

≤ ||ψlm||(c|alm|β1+σ ||v||ε(δ) + c′′|alm|1ε′(δ))
≤ c′′||u||(|alm|1+σ|Ylm|o||v||ε(δ) + |alm|1|Ylm|0ε′(δ)),

which tends to 0 asδ→ 0. This completes the proof of the proposition.
�

Corollary 1. If we assume u∈ D1
L2 in proposition 3 then

(1) ||Cδu||D1
L2
≤ c||u||D1

L2

(2) Cδu→ 0 weakly inD1
L2 asδ→ 0.

Proof. We remark that100

(∗) ∂

∂x j
(Cδu) = Cδ

(
∂

∂x j

)
+

[
H( j)
∧ , ϕδ∗

]
u

whereH( j) denotes the singular integral operator defined by

H( j)
u = a( j)

0 u+
∑

a( j)
1m(Ỹ1m ∗ u), a( j)

1m =
∂

∂x j
alm,

or equivalently

σ(H( j)) = a( j)
0 (x) +

∑
a( j)

1m(x)Ylm(ξ) ∈ C∞σ with σ > 0.



6. Energy inequalities for regularly hyperbolic systems 89

Now, the latter term of the right hand side in (∗) tends to 0 inL2 as
δ→ 0. In fact,

[
H( j)∧, ϕδ∗

]
u = H( j)(ϕδ∗ ∧ u) − H( j)

∧u

+ H( j) ∧ u− ϕδ ∗ (H( j)
∧u ) and ∧ u ∈ L2.

Now applying Proposition (3) to (∗) we have the corollary.
From Prop. 1 it can be easily seen that the following proposition

holds. This plays the same role as Gårding’s inequalitv fordifferential
operators.

Proposition 4. Let H be a square matrix whose elements Hjk are sin-
gular integral operators (belonging to C∞

β
) with their symbolsσ(H jk) =

h jk(x, ξ) ∈ C∞
β

with β > 0 ( j, k = 1, . . . ,N). Supposeσ(H ) is the matrix
whose element areσ(H jk)(x, ξ) and satisfies the hypothesis

(5.31) |σ(H )α| ≥ δ|α| for every x, ξ ∈ Rn, δ > 0

whereα = (α1, . . . , αN) is a complex vector in CN. Then for every
u = (u1, . . . , uN) ∈ πD ′

L2 101

(5.32) ||H ∧ u||2 ≥ δ2

8
|| ∧ u||2 − γ1||u||2,

whereγ1 is a positive constant.

Remark. ||u||2, for u = (u1, . . . , uN) ∈ πD1
L2, denotes||u1||2 + · · · ||uN||2.

The proof runs on the same lines as in the proof of the Prop. 1.

6 Energy inequalities for regularly hyperbolic sys-
tems

LetΩ denote the subset Rn × [0, h] of Rn+1.

Definition. A first order system of differential operators

(6.1) M =
∂

∂t
−

∑
Ak(x, t)

∂

∂xk

is said to be regularly hyperbolic inΩ if
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(1) Ak(x, t) are bounded,

(2) for every (x, t) ∈ Ω andξ ∈ Rn the roots of the systems

(6.2) det
(
λI −

∑
Ak(x, t) · ξk

)
= 0

are real and distinct; further ifλ1(x, t, ξ) · · · λN(x, t, ξ) are these
roots then

(6.3) inf
(x,t)∈Ω

j,k

, |ξ| = 1|λ j (x,t,ξ)−λk(x,t,ξ)|>0

We write the system (6.1) in terms of singular integral operators, by

putting
∑

Ak(x, t)
∂

∂xk
= iH (t)∧ whereH (t) is a matrix of orderN of

singular integral operators whose symbol is the matrix

σ(H (t)) = 2π
∑

Ak(x, t)
ξk

|ξ| .

102

Thus (6.1) is written in the form

6.1)′ M =
∂

∂t
− iH (t) ∧

If the coefficients are such thatAk = Ak(x, t) ∈ β1+σ[0, h] with σ > 0
then for each fixedt, σ(H)(x, t, ξ) ∈ C∞1+σ, σ > 0. �

Proposition 1(Petrowsky). Let M be a regularly hyperbolic system with
Ak ∈ β1+σ[0, h]. Suppose Ak(x, t) are real. Then there exists a matrix
σ(N(t)) = σ(N)(x, t, ξ) except possibly when n= 2 such that

(i) σ(N(t))σ(H (t)) = σ(D(t))σ(N(t)) where

σ(D(t)) =



λ1(x, t, ξ) 0
. . .

0 λN(x, t, ξ)
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(ii) σ(N(t)) = σ(N)(x, t, ξ) is of class C1+σ for every fixed t, has real
elements and further

(6.4) |detσ(N(t))| ≥ δ′ > 0 for every (x, t)εΩ, ξεRn.

(iii) the mapping t→ σ(N(t)) ∈ C∞1+σ is once continuously differen-
tiable

Proof. Since the roots of (6.2) det (λI − ∑
Ak · ξk) = 0 are real and

distinct it follows thatλ j(x, t, ξ) are single valued functions on|ξ| = 1
for every fixed (x, t) ∈ Ω. This follows by the principle of monodromy103

in the casen > 2 and in the casen = 2 by virtue of hyperbolicity.
To see thatλ j(x, t, ξ) ∈ C∞1+σ, σ > 0 for fixedt denoting by

P(λ, x, t, ξ) = 0

the characteristic equation

det
(
λI −

∑
Ak · ξk

)
= 0

we have from the implicit function theorem

∂λ j

∂xk
= −

(
∂P
∂xk

∣∣∣∣∣
∂P
∂λ

)

λ=λ j

and further
∣∣∣
(
∂P
∂λ

)

λ=λ j

∣∣∣ ≥ dN−1 whered = inf
(x,t)∈Ω,|ξ|=1

j,k

|λ j − λk|. �

Construction of σ(N(t)). Supposen ≥ 3. To findσ(N(t)) such that
σ(N(t))σ(H (t)) = σ(D(t))σ(N(t)) is the same, if we writeσ(N = (n jk),
σ(N) = (a jk), as finding a matrix solution of

λ jn jl =

∑

k

n jkakl.

For a fixedj the vector (n j1, . . . , n jN) is an eigenvector of the matrix
A = (a jk) corresponding to the eigenvalueλ j . Consider the caseλ j = λ1.
We assert that the space of eigenvectors at the point (x, t, ξ) can be given
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by explicit expressions (the space of eigenvectors is one dimensional)
in such a way that this vector is continuous in (x, t, ξ) is classC∞1+σ and
continuously differentiable int. In fact, if M jk(t) is the (j, k)-cofactor
of (λ1I − A) then (M1 j ,M2 j , . . . ,MN j) ( j = 1, . . . ,N) span the space of104

eigenvectors. As the rank of (λ1I −A) is (N−1) everywhere one of these
is not trival.

Remark . In the case where the coefficientsAk(x, t) are not real there
will be topological difficulties in the above reasoning which proves the
existence of smoothσN(x, t, ξ). It should however be observed that the
theorem of local existence of smoothσN(x, t, ξ) remains valid. There-
fore it would be better to use a partition of unity to derive energy in-
equalities for such systems. Moreover this argument can be applied for
more general hyperbolic systems. (See: Le problème de Cauchy pour
les systèmes hyperboliques et paraboliques, Mem. Coll. Sc., Kyoto
Univ,. Ser. A. Math., 1959).

Proposition 2 (Energy inequality). Let

M =
∂

∂t
−

∑
Ak(x, t)

∂

∂xk

be a regularly hyperbolic system inΩ with the coefficients Ak(x, t) sat-
isfying

Ak ∈ B1+σ[0, h],
∂

∂t
Ak ∈ B0[0, h].

Suppose B∈ B0[0, h], f ∈ L2[0, h] given. Then, if u∈ L2[0, h] is a
solution of

(6.5)
∂u
∂t
−

∑
Ak(x, t)

∂u
∂xk
− B(x, t)u = f

we have the inequality

(6.6) ||u(t)|| ≤ c(h)


||u(0)|| +

t∫

0

|| f (s)||ds


.
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Proof. First we assume thisu ∈ D1
L2[0, h]. The given system is written105

in singular-integral-operator form as

(6.7)
∂u
∂t
− iH (t) ∧ u− B(t)u = f .

Multiplying this system by the matrixN obtained in Prop. 1 we
obtain

∂

∂t
(Nu) − iN(t)H (t)) ∧ u− (NB+

∂N

∂t
)u = N f .

By Prop. 1N ◦ N = D ◦ N which implies that

NH ∧ ≡ DN ∧ (mod. bounded operators)

because (NH )∧ ≡ (N) ◦H ∧ (mod bounded operators)

(DN)∧ ≡ (D ◦ N) ∧ (mod. bounded operators)

Also (DN)∧ = D ∧ N+ a bounded operator, and hence the new
system becomes

∂

∂t
(Nu) = iD ∧ (Nu) + (NB+

∂N

∂t
u+ N f .

In otherwordsv = Nu satisfies

∂v
∂t
= iD ∧ v+ B1u+M f

whereB1 =

(
NB+

∂N

∂t

)
is a bounded operator in view of Prop. 1. Now

∂

∂t
(v, v) = (iD ∧ v, v) + (v, iD ∧ v) + 2 Re(B1u+ N f , v)

= i(D ∧ − ∧D
∗)v, v) + 2 Re(B1u+ N f , v).

But∧D∗ = ∧D#
+ a bounded operator, and sinceD is realD#

= D

and∧D = D ∧ + a bounded operator. HenceD ∧ − ∧ D is a bounded 106

operator and

∂

∂t
||v||2 ≤ 2γ1||v||2 + 2c||u|| ||v|| + 2||N f || ||v||,
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that is
∂

∂t
||v|| ≤ γ||v|| + c||u|| + ||N f ||.

By the regular hyperbolicity we have in view of Prop. 1

(6.4) |detσ(N(t))| ≥ δ′ > 0.

Hence by the generalized Garding inequality applied toN there exist
δ′′ > 0 andβ > 0 such that

(6.8) ||N ∧ u|| ≥ δ′′|| ∧ u|| − β||u||.

Define

(6.9) |||u||| = ||Mu|| + β||(∧ + 1)−1u||

where (∧+1)−1u
F−−→ 1

(1+ |ξ|)
û. It is clear that|||u||| ≤ c1||u|| sinceN and

(∧ + 1)−1 are bounded. On the other hand

Nu = N ∧ (∧ + 1)−1u+ N(∧ + 1)−1u

implies

||Nu|| ≥ ||N ∧ (∧ + 1)−1u|| − ||N(∧ + 1)−1u||
≥ δ′′|| ∧ (∧ + 1)−1u|| − β||(∧ + 1)−1u|| − ||N(∧ + 1)−1u||
≥ δ′′|| ∧ (∧ + 1)−1u|| − β′||(∧ + 1)−1u||
≥ δ′′||u|| − (β′ + 1)||(∧ + 1)−1u||

which proves that|||u||| ≥ c2||u|| consequently the norms|||u||| and||u|| are107

equivalent. It is therefore sufficient to prove the energy inequality for
the norm|||u|||.

∂

∂t
|||u(t)||| = ∂

∂t
(||Nu|| + β||(∧ + 1)−1u||)

≤ γ||N(u)|| + c||u|| + ||N f || + β ∂
∂t
||(∧ + 1)−1u||.(6.10)
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Considering
∂u
∂t
= iH ∧ u+ Bu+ f

(∧ + 1)−1∂u
∂t
= i(∧ + 1)−1

H ∧ u+ (∧ + 1)−1(Bu+ f )

but (∧+1)−1H ∧ = (∧+1)−1∧H + (∧+1)−1B2 whereB2 is a bounded
operator inL2 and hence

∂

∂t
||(∧ + 1)−1u|| ≤ δo||u|| + ||(∧ + 1)−1 f ||.

Substituting in the inequality (6.10) we obtain

∂

∂t
|||u(t)||| ≤ γ′|||u(t)||| + ||| f |||,

which, on integration with respect tot, gives

|||u(t)||| ≤ |||u(0)|||exp(γ′t) +
∫ t

0
||| f (S)|||exp(γ′(t − s))ds.

Since|||u(t)||| ∼ ||u(t)|| we obtain the required inequality

||u(t)|| ≤ c(h){||u(0)|| +
t∫

0

|| f (s)||ds.

In the general case in whichu ∈ L2[0, h] we regularize it by the
the mollifiersϕδ of Friendriche and apply the above argument to the
functionuδ = ϕδ ∗ (x)u and pass to the limits asδ → 0 in the inequality 108

for uδ to obtain the energy inquality foru. �

Remark. In the above proof the norm|||u||| depends a priori on the pa-
rametert since it involves the operatorN(t). When t runs through a
bounded set the constantβ in the definition of|||u||| can be chosen to be
independent ofN.

In the following proposition we prove that, ifAk and B are differ-
entiable of sufficiently high order, then there exists an energy inequality
for higher order derivatives.
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Proposition 3. Let M be a regularly hyperbolic system with Ak(x, t) ∈
Bmax(1+σ,m)[0, h], 0 < σ < 1,

∂

∂t
Ak(x, t) ∈ B0[0, h]. Suppose B(x, t) ∈

Bm[0, h], and f(x, t) ∈ Dm
L2[0, h] are given. If u∈ Dm

L2[0, h] is a solution
of

(M − B)u = f

then

(6.11) ||u(t)||m ≤ cm(h)

{
||u(0)||m +

∫ t

0
|| f (s)||mds

}
.

Proof. It is sufficient to prove the proposition for the casem= 1 and the
general case will follow by repeated application of the argument. Let
∂u
∂x j
= u( j). Then

M[u( j)] =
∑

k

∂Ak

∂x j
(x, t)

∂u
∂xk
+
∂B
∂x j

(x, t)u+
∂ f
∂x j

, j = 1, 2, . . . , n

that isu( j) satisfy a regularly hyperbolic system with newB and f . De-

noting
n∑

j=1
|||u( j) ||| by ϕ1(t) we obtain109

dϕ1

dt
(t) ≤ γ1ϕ1(t) +

∑

j

||| ∂ f
∂x j
||| +

∑

j

||| ∂B
∂x j

u|||

which on integration yields the required inequality

||u(t)||1 ≤ c1(h)


||u(0)||1 +

t∫

0

|| f (s)||1ds


.

In the following we duduce on energy inequality for solutions of a
single regularly hyperbolic differential equation of orderm.

Consider the evolution equation

(6.12)

(
∂

∂t

)m

u+
∑

j+|ν|≤m
j≤m−1

a j,ν(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

u = g.
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The principal part of this is by definition the homogeneous differen-
tial operator of orderm

(6.13)

(
∂

∂t

)m

+

∑

|ν|+ j=m
j≤m−1

a j,ν(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

≡ L

which we write in the form

L ≡
(
∂

∂t

)m

+

m∑

j=1

h j

(
x, t,

∂

∂x

) (
∂

∂t

)m− j

whereh j

(
x, t,

∂

∂x

)
=

∑
|ν|= j

am− j,ν(x, t)

(
∂

∂x

)ν
. The given operator is said

to be regularly hyperbolic if the polynomial equation

(6.14) λm
+

∑

j

h j(x, t, ξ)λ
m− j
= 0

has real and distinct roots for every (x, t)ǫΩ; |ξ| = 1. h j

(
x, t,

ξ

|ξ|

)
can be 110

considered as the symbol of a singular integral operatorH j and hence
we can represent

h j

(
x, t,

∂

∂x

)
= H j(i∧) j

and

(6.15) L ≡
(
∂

∂t

)m

+

m∑

j=1

H j(i∧) j
(
∂

∂t

)m− j

.

Setting

v1 =

(
∂

∂t

)m−1

u

v2 = i(∧ + 1)

(
∂

∂t

)m−2

u
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v j = {i(∧ + 1)} j−1
(
∂

∂t

)m− j

u

vm = {i(∧ + 1)}m−1u

We see that (i∧) j−1
= (i∧) j−1{i(∧ + 1)}−( j−1){i(∧ + 1)} j−1

= (1+ S j−1){i(∧ + 1)} j−1

whereσ(S j−1) =

(
|ξ|

1+ |ξ|

) j−1

− 1. S j−1∧ is a bounded operator inL2.

Then the principal part is rewritten as

L[u] =

(
∂

∂t

)m

u+ i
∑

H j ∧ (1+ S j−1){i(∧ + 1)} j−1
(
∂

∂t

)m− j

u

=
∂

∂t
v1 + i

∑
H j ∧ v j + i

∑
H j ∧ S j−1v j .

Thenv =



v1
...

vn


satisfies the system of first order equations

(6.16)
∂

∂t
v = iH ∧ v+ Bv+ f

where111

(6.17) σ(H ) =



1
1. . .

−h1 −h2 · · · − hm−1 −hm


,

B a bounded operator andf =



0
...

0
g


.

Let P(λ) = det(λI − σ(H )) = λm
+

∑
j h j

(
x, t,

ξ

|ξ|

)m− j

. Thus the

given equation is regularly hyperbolic if and only if the associated first
order system is.
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Proposition 4. Suppose P(λ) = 0 has real and distinct rootsλ1(x, t, ξ) <
· · · < λN(x, t, ξ) such that

(6.18) inf
(x,t)ǫΩ,|ξ|=1

j,k

∣∣∣λ j(x, t, ξ) − λk(x, t, ξ)
∣∣∣ = d > 0

and further the coefficients are such that

a j,νǫB
1+σ[0, h],

∂

∂t
a j,νǫB

0[0, h] for j + |ν| = m

a j,νǫB
0[0, h] for j + |ν| ≤ m− 1.

Let gǫL2[0, h] be given. IfuǫDm
L2[0, h] is a solution of (6.12) then

(6.19) ||v(t)||′ ≤ C0(h)

{
||v(0)||′ +

∫ t

0
|| f (s)||′ds

}

where||v(t)||12
=

m∑
j=1
||( ∂
∂t

)m− ju||2j−1.

This proposition is proved easily using the energy inequality for the
associated first order system. �

7 Uniqueness theorems
112

From the energy inequalities obtained in the previous section some re-
sults on the local uniqueness follow immediately. We shall show that
a solution of a homogeneous regularly hyperbolic system of equations
vanishes identically in a cone if the cauchy data is zero. This was first
proved by Holmgren and later made precise by F. John [1].

Consider the first order system of equations

(7.1) M[u] ≡ ∂u
∂t
−

∑
Ak(x, t)

∂u
∂xk
− B(x, t)u = 0

whereM is regularly hyperbolic inΩ = Rn × [0, h].

Proposition 1. Let M be regularly hyperbolic inΩ with AkǫB
1+σ
x,t ,

BǫB0
x,t. If uǫE 1

x,t satisfies M[u] = 0 and u(x, 0) ≡ 0 in a neighbour-
hood U of the origin in Rnx then u≡ 0 in a neighbourhood of the origin
in Ω.
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Proof. Let Dǫ ⊂ Ω be the set
{
(x, t)ǫΩ : |x|2 + t < ǫ, t ≥ 0

}
. We first

make a change of variables

(7.2) t′ = t +
∑

x2
j , x
′
j = x j( j = 1, . . . , n).

Under this transformation let ˜u(x′k, t
′) = u(x, t) then the system of

equations is transformed into the system

(7.3)
(
I − 2

∑
x′k · Ak

) ∂ũ
∂t′
=

∑
Ak

∂ũ
∂x′k
+ Bũ.

Dǫ is transformed into a strictly convex domaiñDǫ bounded byt′ =∑
x′2j , t′ = ǫ. ũ is defined in the domaiñDǫ and we extend ˜u outside113

ũǫ by 0 and we denote this again by ˜u. Clearly ũǫE 1 since it vanishes
identically in a neighbourhood oft′ =

∑
x′2j . Thusũ has its support in

D̃ǫ . It follows from lemma 1 that ifx′ is in a small neighbourhood of
the origin (it is sufficient to take 2|x′|A), (I − 2 ∈ x′kAk) is invertible and
the eigenvalues of (I − 2

∑
x′kAk)−1 ∑

Ak · ξk are real and distinct since
those of

∑
Ak · ξk are. Thus the transformed system remains regularly

hyperbolic in D̃ǫ . ExtendingAk(x, t), B(x, t) to the whole ofRn
x[0, h]

in such a way that the system remains regularly hyperbolic weobtain
M̃[u] = 0 in Rn× [0, h] (this can be achieved by taking the inverse image
by a suitable differentiableretractionof Rn × [0, h] to D̃ǫ .

(7.4)
∂ũ
∂t′
=

∑(
I − 2

∑
x′k · Ak

)−1
(
Ak

∂ũ
∂x′k

)
+

(
I − 2

∑
x′kAk

)−1
Bũ.

ũ has Cauchy data zero and hence the energy inequality shows that
ũ(x′, t′) ≡ 0 and henceu vanishes onDǫ . �

Similarly it can be proved thatu vanishes inD−1
ǫ = {(x, t) : t ≤ 0,∑

x2
j + t < ǫ and this completes the proof. We now prove the following

lemma due to H.F. Weinberger (Weinberger [1]).

Lemma 1. Suppose A is a constant matrix such that for all realξ , 0,
det(λI − ∑

Ak · ξk) = 0 has real and distinct rootsλ1(ξ) < . . . < λN(ξ).

If λmax denotessup
|ξ|=1

(λN(ξ)) and α =

( α1

...
αN

)
is a real vector, 0 with
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|α| ≤ 1
λmax

thendet(µB −
∑

Ak · ξk) = 0, B = I − A · α, has real and114

distinct roots for any realξ , 0.

Remark. From the choice ofα it follows thatB is invertible.

Proof. First we assert that all the eigen valuesνk of B are positive. For,
they are the roots of

det(νI − B) = det(νI − (I − A · α))

= (−1)N det((1− ν)I − A · α) = 0.

and hence
1− νk = λk(α) = |α|λk(

α

|α| )

which implies that

(7.5) νk = 1− |α|λk(
α

|α|
) > 0

sinceλk(ξ) <
1
|α|

on |ξ| = 1. Consider

det(µB− λI − A · ξ) = (−1)N det((λ − µ)I + A(ξ + µα)) = 0

and letϕ1(µ), . . . , ϕN(µ) be the roots of the equation (with respect toλ)

det((λ − µ)I + A(ξ + µ · α)) = 0

for a fixedξ. We can write

det((λ − µ)I + A(ξ + µ · α)) = (λ − ϕ1(µ)) · · · (λ − ϕN(µ)).

Now we assert that

(i) ϕ j(µ)→ I∞ asµ→ ±∞

(ii) ϕ j(µ) are strictly increasing functions ofµ. Since we have

ϕk(µ) − µ = λk(−ξ − µ − α) or
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ϕk(µ) = µ − λk(ξ + µ · α)(7.6)

it follows that for each fixedµ, ϕk(µ) are real and distinct. To115

show (i) consider det (µB− λI − A · ξ) = 0 which implies that det

(B− λ
µ

I − A · ξ
µ

) = 0. For a fixedξ,
ϕk(µ)
µ

tends to the eigen values

of B asµ → ∞ and hence for largeµϕk(µ) ∼ µ · νk. Sinceνk are
positive,ϕk(µ) behaves likeµ for largeµ.

As for (ii), suppose on the contrary there exists aj0 andµ1, µ2 with
µ1 < µ2 such thatϕ j0(µ1) > ϕ j0(µ2). Then there existsaλ0 such that for
three distinctµ′1, µ′2, µ′3 we have

ϕ j0(µ
′
1) = ϕ j0(µ

′
2) = ϕ j0(µ

′
3) = λ0.

Since eachϕ j(µ)( j , j0) contributes at least one root of det (µB −
λ0I − A · ξ) = 0 it will have at leastN + 2 roots. This being an equation
of degreeN we are lead to a contradiction. Now putting

λ = 0, det(µB− A.ξ) = (−1)Nϕ1(µ)ϕ2(µ) · · ·ϕN(µ).

Since everyϕ j(µ) has only one zero and the zeros are distinct, we
have the lemma. �

Remark. Sinceλ j(−ξ) = −λ j(ξ) for every j, λmax is positive and equal
to sup
|ξ|=1

1≤ j≤N

|λ j(ξ)|.

Corollary 1. Let M be a regularly hyperbolic system inΩ = Rn× [0, h],116

λ j(x, t, ξ) be the roots of det(λI − A · ξ) = 0 and let

(7.7) λmax = sup
|ξ|=1,(x,t)ǫΩ

1≤ j≤N

|λ j(x, t, ξ)|.

Suppose S is a hypersurface inΩ passing through a point(x0, t0)
and defined by an equationϕ(x, t) = 0, ϕǫE 2 with

(7.8)

(
∂ϕ

∂t

)2

≥ λ2
max

∑(
∂ϕ

∂x j

)2

.

If u is a C1 solution of M[u] = 0 with u(x, t) = 0 for (x, t)ǫS then
u(x, t) ≡ 0 in a neighbourhood of(x0, t0).
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Proof. By a change of coordinatesx′j = x j(1 ≤ j ≤ n)t′ = ϕ(x, t) the
systemM is transformed into the system

(7.9)

(
∂ϕ

∂t
I −

∑
Ak

∂ϕ

∂xk

)
∂ũ
∂t′
=

∑
Ak(x, t)

∂ũ
∂x′k
+ · · ·

whereũ is, as before, the image ofu by this mapping.S is mapped into
t′ = 0. Taking

α =

(
∂ϕ

∂x1

∣∣∣∣∣∣
∂ϕ

∂t
, . . . ,

∂ϕ

∂xn

∣∣∣∣∣∣
∂ϕ

∂t

)

the conditions of the lamma 1 are satisfied because of the assumptions

onα and hence

(
∂ϕ

∂t
I −∑

Ak
∂ϕ

∂xk

)
is invertible. Thus ˜u satisfies

(7.10)
∂ũ
∂t′
=

(
∂ϕ

∂t
I −

∑
Ak ·

∂ϕ

∂xk

)−1 ∑
Ak

∂ũ
∂x′k
+ . . .

This is again a regularly hyperbolic system since 117

det

λI −
(
∂ϕ

∂t
I −

∑
Ak(

∂ϕ

∂xk
)

)−1 ∑
Ak · ξk



= det

(
∂ϕ

∂t
I −

∑
Ak

∂ϕ

∂xk

)−1

· det

(
λ

(
∂ϕ

∂t
I −

∑
Ak

∂ϕ

∂xk

)
− A · ξ

)

and by the lemma its roots are real and distinct for

α = (
∂ϕ

∂x1

∣∣∣∣∣∣
∂ϕ

∂t
, . . . ,

∂ϕ

∂xn

∣∣∣∣∣∣
∂ϕ

∂t
).

Thus by the local uniqueness (Prop. 1) ˜u vanishes in a neighbour-
hood of the origin and henceu vanishes identically in a neighbourhood
of (x0, t0). �

Proposition 2. Let M be a regularly hyperbolic system inΩ = Rn ×
[0, h], (x0, t0)ǫΩ and C be the backward cone defined by

{
t − t0 = α0|x−

x0|, t < t0 whereα0 =
1

λmax

}
. Let D be the interior of this backward cone
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belonging toΩ. If u is aC 1 solution of M[u] = 0 in D, continuous upto
the cone, and vanishing on D0 = D∩ (t = 0), then u vanishes identically
in D +C in particular u(x0, t0) = 0.

Proof: (F. John [1])we first remark thatu(x, t) vanishes identically in a
neighbourhood of the hyperplanet = 0. Let Sθ(0 < θ ≤ t20) be a one
parameter family of hyper-surfacesϕ(x, t, θ) = 0 where

(7.11) ϕ(x, t, θ) = (t − t0)2 − α2
0|x− x0|2 − θ

Then∪Sθ ⊃ D and
(7.12)(

∂ϕ

∂t

)2 ∣∣∣∣∣∣
∑(

∂ϕ

∂xk

2)
=

(t − t0)2

α4
0|x− x0|2

=
α2

0|x− x0|2 + θ
α4

0|x− x0|2
>

1

α2
0

= λ2
max

Hence, it follows from the lemma that ifu vanishes onSθ0 for some118

θ0 then it vanishes onSθ for θ in a neighbourhood ofθ0. The set ofθ
for which u vanishes onSθ is therefore open. It is also closed and non-
empty. Hence it is the whole set. Thusu vanishes in the whole cone
D +C. �

Remark 1. This result holds also for a single equation of orderm and
can be proved by writing it as a system by means of singular integral
operators and applying the above arguments.

Remark 2. Form Prop. 2 above it follows that if the Cauchy data has for
support a small set containing the origin then the support ofthe solution

lies in some cone limited by lines whose slope
1
α
≥ λmax. This is inter-

preted as follows: the maximum speed of propagation of the disturbance
is less thanλmax.

Remark 3. The above proposition gives a unique continuation theorem
for solutions of systems of some semi linear equations:

(7.13) M[u] ≡ ∂u
∂t
− ΣAk(x, t)

∂u
∂xk
− f (x, t, u)

whereAk(x, t) satisfy the same conditions as in Prop.1 andf ǫE 1
x,t. More

precisely ifu1 andu2 are two solutions ofM[u] = 0 such thatu1(x, 0) =
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u2(x, 0) for xǫD0 thenu1 ≡ u2 in the whole of the coneD with D0 as
base. For,v = u1 − u2 satisfies

∂v
∂t
−

∑
Ak

∂v
∂xk
− { f (x, t, u1) − f (x, t, u2)} = 0.(7.14)

v(x, 0) = 0 for xǫD0

By the mean value theoremf (x, t, u1) − f (x, t, u2) = B(x, t)(u1,−u2) 119

= B(x, t)v, B(x, t) =
∂ f
∂u

(x, t, u2 + θ(u1 − u2). By Prop. 2 we havev ≡ 0

in C and henceu1 ≡ u2 in D.
Finally we apply the method of sweeping a cone by a one parameter

family of surfaces to show that the solutions of second orderparabolic
equations have no lacuna.

Consider a parabolic equation of the second order

(7.15)

(
∂

∂t
− L

)
[u] = 0

whereL =
n∑

j,k=1
a jk(x, t)

∂2

∂x j∂xk
+

∑
j

b j(x, t)
∂

∂x j
+ c(x, t) with infinitely

differentiable real coefficients anda jk satisfy further the condition

(7.16)
n∑

j,k=1

a jk(x, t)ξ jξk ≥ δ(x, t)|ξ|2,

δ(x, t) > 0, for realξ , 0. It is known that the unique continuation
across time like hyperplanes holds in the sense that ifu is aC2 solution
of the above parabolic equation with

u(x, t)
∣∣∣
x1=0 = 0,

∂u
∂x1

(x, t)
∣∣∣
x1=0 = 0.

in some neighbourhood of the origin inX1 = 0 thenu(x, t) ≡ 0 in
a neighbourhood of the origin in the (x, t)− space (see Mizohatai [4],
Memoines of the college of Science, Kyoto University, 1958)

Proposition 3. Suppose M is a parabolic operator of the second order120
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defined inΩ = Rn × [0, h] and suppose a C1 solution u of M[u] = 0
vanishes on a non-empty open setθ of Ω then u ≡ 0 in a horizontal
component T ofΩ containingθ.

By horizontal component T ofθ in Ω we mean the set{(x, t) ∈ Ω}
such that there exists an x′ with (x′, t) ∈ θ.

Proof. SupposeS is a hypersurface defined by an equation

ϕ(x, t) = 0, ϕεE 2
x,t

such that the tangent space ofS at the origin is not paralled tot = 0.

Then
∑
| ∂ϕ
∂x j

∣∣∣ , 0. Suppose
∂ϕ

∂x j
, 0; then one can solve forx1 in a

neighbourhood of the origin asx1 = ψ(x2, . . . , xn, t). By a change of
variables

t′ = t, x′1 = x1 − ψ(x2, . . . , xn, t), x′j = x j( j = 2, . . . , n)

S will be transformed into (x′1 = 0) and the form of the equation re-
mains unaltered. Hence by the remark above the transformed function
ũ vanishes in a neighbourhood of the origin and henceu vanishes in a
neighbourhood of the origin onS. We may assumeO to be a neighbour-
hood of the origin and consider a one-parameter family of ellipsoodsSθ

defined by

ϕ(x, t, θ) =
t2

a2
+
|x|2

θ2
− 1 = 0(0< θ < ∞)

with the condition that the tangent space to this is not parallet to (t =
0). Again by the argument of connectedness, as before, we obtain the
proposition. �

8 Existence theorems
121

In this section we prove some theorems on the existence of solutions of
the Cauchy problem for hyperbolic equation. To begin with werecall
the Hille-Yosida theorem on the infinitesimal generator of asemi group
of operators on a Banach space. This is used to assert the existence of
solutions.
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Theorem 1(Hille-Yosida). Let X be a Banach space and A be a linear
operator on X with domain of definitionDA dense in X. Assume that A
has the following property:

(P) there exists a real numberε0 > 0 such that for every real number
λ with |λ| < ε0 we have

(1) (I − λA) is a one to one surjective mapping ofDA onto X,

(2) there exists a constantγ > 0 such that

||(I − λA)u|| ≥ (1− γ|λ|)||u||

for every u∈ DA. Then for any given u0 ∈ DA there exists in
−∞ < t < ∞ a once continuously differentiable solution

(8.1)
du
dt

(t) = Au(t) with u(0) = u0

with values inDA.

Corollary . Let A be a linear operator with domain of definitionDA

dense in X and possessing the property (P) of Th. 1. If t→ f (t) ∈ DA

is a continuous function of t such that t→ A f(t) ∈ X is a continuous
function of t and a u0 ∈ DA is given there exists a once continuously
differentiable solution u(t) (with values inDA) of

(8.2)
du
dt

(t) = Au(t) + f (t) with u(0) = u0

122

We first consider the case of systems whose coefficients do not de-
pend ont.

We remark that for a differential operator it is not in general possible
to secure the conditionP(2) when we takeL2 for the Banach spaceX
even when (8.1) is well posed in the spaceL2. For, suppose the condition
P(2) is satisfied.

||(I − λA)u||2 = ||u||2 + λ2||Au||2 − λ((A+ A∗)u, u)

≥ (1− γ|λ|)||u||2.
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As |λ| can be taken arbitrarily small this would imply if|λ| is small
that

((A+ A∗)u, u) ≤ γ||u||2 for λ > 0 and

((A+ A∗)u, u) ≥ −γ||u||2 for λ < 0

which togeter imply

|((A+ A∗)u, u)| ≤ γ||u||2

This would mean, when we takeA =
∑

Ak(x)
∂

∂xk
, Ak ∈ B′, that

Ak = A∗k. In fact, A+ A∗ =
∑

(Ak − A∗k)
∂

∂xk
−
∂A∗k
∂xk

, and it is easy to see

that the above inequality holds if and only ifAk ≡ A∗k(k = 1, 2, . . . , n).
We then proceed to study the system

(8.3)
∂u
∂t

(t) =
∑

Ak(x)
∂u
∂xk
+ B(x)u+ f

We take for the operatorA the differential operator

(8.4) A =
∑

Ak(x)
∂

∂x
+ B(x)

in D1
L2. We take for the domain of definition ofA the set123

(8.5) DA =
{
u ∈ D

1
L2 : Au∈ D

1
L2

}
.

We remark thatD2
L2 ⊂ DA and consequentlyDA is dense inD1

L2.
A is a closed operator in the sense that its graph is closed. Infact, let
up ∈ DA be a sequence such thatup → u0, Aup → v0 in D1

L2. SinceA
is a continuous operator fromD1

L2 into L2 we haveAu0 = v0 in L2 and
since the injection ofD1

L2 into L2 is bi-uniqueAu0 = v0 in D1
L2, that is

u0 ∈ DA.

Proposition 1. Let

(8.3)
∂u
∂t
=

∑
Ak(x)

∂u
∂xk
+ B(x)u+ f
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be a regularly hyperbolic system inΩ = Rn × [0, h] with Ak ∈ Bi+σ,
B ∈ B1 and f ∈ DA[0, h]. Then, given u0 ∈ DA there exists a unique
solution u∈ DA[0, h], which is a differentiable function of t in the sense
of L2 with values inDA of (8.3) for which u(0) = u0.

Proof. We write the system in the singular integral operator form

(8.6)
d
dt

u = (iH ∧ +B)u+ f

andA = iH ∩ +B. By the condition of regular hyperbolicity of (8.3)
there exists a bounded singular integral operatorN such that

N0H = D0H

whereD is a singular integral matrix whose symbol is 124

σ(D) =



λ1(x, ξ) 0
. . .

0 λN(x, ξ)



and|detσ|(N)| > δ > 0.
Define a bilinear form by

(8.7) (Lu, v) = (N ∧ u,N ∧ v) + β(u, v) = ((λN ∗ NΛ + βI )u, v).

for u, vεD1
L2 with aβ to be chosen later. (Lu, u) defines a norm equivalent

to that of D1
L2 for sufficiently largeβ. In fact, sinceN is a bounded

operator inL2 we have

(Lu, u) ≤ ||N||2
L (L2,L2)|| ∧ u||2 + β||u||2 ≤ M||u||2

D1
L2
.

On the other hand by Gårding’s inequality there existsa γ > 0 such
that

(Lu, u) ≥ δ′|| ∧ u||2 − γ||u||2 + β||u||2,

then for sufficiently largeβ(> γ) this would imply that

(Lu, u) ≥ c||u||2
D1

L2
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which proves the assertion. We provideD1
L2 with the norm (Lu, u). We

proceed to verify conditions 1, 2, of the Hille-Yosida Theorem. To prove 125

conditionP(2) we must prove that for realλ near the origin

(8.8) (L(I − λA)u, (I − λA)u) ≥ (1− γ|λ|)(Lu, u) for every u ∈ DA.

To do this we assume at first thatu ∈ D2
L2 we have then,

(L(I − λA)u, (I − λA)u) = (Lu, u) + λ2(LAu,Au) − λ((LA+ A∗L)u, u)

≥ (Lu, u) − λ((LA+ A∗L)u, u).

SinceA = iH Λ + B we have

(LA+ A∗L) = (ΛN∗NΛ+ βI )(iN ∧ +B)+ (−i ∩H
∗
+ B∗)(∧N∗N∧ +βI )

But N ∧H ≡ D ∧ N mod (∧0) whereP1 ≡ P2 mod (∧0) means
thatP1 − P2 is a bounded operator inD1

L2.
In fact,

N ∧H ≡ NH ∧ ≡ (N ◦H ) ∧ −(N ◦H − NH )∧
≡ (N ◦H ) ∧ mod (Λ), (sinceN ◦H = D ◦ N)

≡ (D ◦ N)∧ ≡ DN∧ ≡ D ∧ Nmod(∧0).

Hence

((LA+ A∗L)u, u) = i{(D ∧ N ∧ u,N ∧ u) − (N ∧ u,D ∧ N ∧ u)

+ 2 Re(B1 ∧ u,N ∧ u),

whereB1 is a bounded operator inL2. Now

D ∧ − ∧D∗ ≡ D ∧ − ∧D
# ≡ (D ∧ −D#∧) ≡ (D −D

#) ∧ .

SinceD is a diagonal matrix andσ(D) is real, we see thatD = D#.
HenceD ∧ − ∧ D∗ ≡ mod(∧0). Hence there exists a constantγ1 such126

that
−γ1||u||2

D1
L2
≤ ((LA+ A∗L)u, u) ≤ γ1||u||2

D1
L2



8. Existence theorems 111

or equivalently we write following Leray [1]

−γ1(∧ + 1)2 ≤ LA+ A∗L ≤ γ1(∧ + 1)2

and thus, as||u||2
D1

L2

and (Lu, u) are equivalent we obtain

(L(I − λA)u, (I − λA)u) ≥ (1− γ1|λ|)(Lu, u)

for |λ| < 1
γ1

.

Next the inequality (8.8) holds for allu ∈ DA also. Supposeu ∈ DA.
If ϕδ are mollifiers of Friedrichs then the functionuδ = u ∗ ϕδ belongs
to D2

L2 and it follows from (8.8) that there exists a constantγ1 such that
for some real near the origin

(L(I − λA)uδ, (I − λA)uδ) ≥ (1− γ1|λ|)(Luδ, uδ).

But
Auδ → Au in D

2
L2 asδ→ 0.

In fact, Auδ − Au = (Auδ − ϕδ ∗ (Au)) + (ϕδ ∗ (Au) − Au) in which
the first term tends to 0 inD1

L2 by Friderich’s lemma and the latter term
tends to 0 inD1

L2 sinceAu ∈ D1
L2. Thus conditionP(2) of Hille-yosida

Theorem is verified. To prove conditionP(1) we must prove that (I−λA)
is a one-to-one surjective mapping ofDA ontoD1

L2 for sufficiently small 127

λ. From (8.8) it follows that (I − λA) is one-to-one for|λ| < 1
γ1

.

Next (I − λA)DA is closed inD1
L2. For, (I − λA)un → v0 in D1

L2 for
un ∈ DA means by (8.8) thatun is a Cauchy sequence for the new norm
hence has a unique limitu0 in D1

L2. Hence−λAun→ v0 − u0 in D1
L2. As

A is a closed mappingu0 ∈ DA and (I − λA)u0 = v0.
Finally we prove that (I − λA)DA is dense inD1

L2. The proof is by
contradiction. Suppose (I−λA)DA is not dense inD1

L2. Then there exists
aψ ∈ D1

L2, ψ , 0 such that ((I − λA)u, ψ)1 = 0 i.e. ((∧ + 1)(I − λA)u,
(Λ + 1)ψ) = 0 for all u ∈ DA, that is, (I − λA∗)(∧ + 1)ψ1 = 0 where
A∗ = −i ∧H ∗

+ B∗ andψ1 = (∧ + 1)ψεL2.
Now A∗(∧+ 1)ψ1 = (−i ∧H ∗

+ B∗)(∧+ 1)ψ1 = (∧+ 1)(−i ∧H ∗
+

B∗)ψ1 + B0ψ1. whereB0 = −i ∧ (H ∗ ∧ − ∧H ∗) + (B∗ ∧ − ∧ B∗).
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FurtherA∗(∧ + 1)ψ1 = (∧ + 1)(−iH # ∧ +B∗ + B1)ψ1 + B0ψ1 where
B1 = (−iH # ∧ +iH #∧)εL (L2, L2).

But B = B1+ (∧+1)−1B0+B∗ is a bounded operator inL2 and hence
(I−λA∗)(∧+1)ψ1 = 0 is equivalent to saying that [I−λ(−iH #∧+B̃]ψ1 =

0, which in turn is equivalent to saying that [I − λ(−iH # ∧ +B̃]ψ = 0.
Starting from the equation

(8.9)
∂

∂t
u = −

∑
tAk(x)

∂

∂xk
u− B̃u

and using (8.8) after observing thatψ ∈ DA we obtain an inequality128

(L1(I − λ(−iH # ∧ +B̃))ψ, (I − λ(−i(H # ∧ +B̃))ψ)(8.10)

≥ (1− γ|λ|) (L1ψ, ψ)

which implies that||ψ|| = 0 and henceψ = 0 which is a contradiction to
the assumption.

Now all the conditions of Hille-Yosida theorem forA = iH ∧ +B
are verified and hence there exists a solution of the equation

d
dt

u = (iH ∧ +B)u+ f with u(0) = u0

with the required properties. �

In the above proposition we proved the existence of solutions of
regularly hyperbolic systems whenu0 ∈ DA in particular whenu0 ∈ D2

L2

and f ∈ DA[0, h] and so in particular whenf ∈ D2
L2. This result can be

improved as follows.

Proposition 2. Suppose(8.3) is a regularly hyperbolic system inΩ =
Rn × [0, h] with Ak ∈ B1+σ, B ∈ B1, u0 ∈ D1

L2 and f ∈ D1
L2[0, h]. Then

there exists u∈ D1
L2[0, h] (once differentiable in t in the sense of L2)

satisfying the system in the L2-sense and u(0) = u0. Also the following
energy inequality holds:

(Lu(t), u(t)) ≤ exp(γt) · (Lu(0), u(0))
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+

t∫

0

(L( f (s)), f (s)) exp(γ(t − s))ds(8.12)

where(Lu, u) is defined in Prop. 1.

Proof. We regularizeu0 and f by mollifiers of Friedrichsϕδ to obtain 129

u0 ∗ ϕδ = uδ0 ∈ D2
L2, f ∗ ϕδ = fδ ∈ D2

L2[0, h]. By prop. 1 applied touδ0, fδ
there exists auδ continuous and with values inDA satisfying

(8.12)
∂

∂t
uδ =

∑
Ak(x)

∂

∂xk
uδ + Buδ + fδ

anduδ(0) = uδ0. Furtheruδ(t) − uδ′(t) satisfies the equation

∂

∂t
[uδ(t) − uδ′(t)] =

∑
Ak(x)

∂

∂xk
[uδ(t) − uδ′(t)] + B[uδ(t) − uδ′(t)] + ( fδ − fδ′ )

and hence by the energy inequality
(8.13)

||uδ(t) − uδ′(t)||1 ≤ c(h)


||uδ(0)− uδ′(0)||1 +

h∫

0

|| fδ(s) − fδ′(s)||1ds


,

which shows that{uδ(t)} is a Cauchy sequence in the space of continues
functions with values inD1

L2. Henceuδ(t)→ u(t) in the space of contin-
uous functions with values inD1

L2. On the other hand the equation

uδ(t) − uδ0 =

t∫

0

{Auδ(s) + fδ(s)}ds, A =
∑

Ak
∂

∂xk
+ B

holds inL2. Passing to the limits inL2 we obtain

u(t) − u0 =

t∫

0

{Au(s) + f (s)}ds.

Differentiating this, we see that the relation

d
dt

u(t) = Au(t) + f (t)
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holds in the sense ofL2 whereu ∈ D1
L2[0, h],

∂u
∂t
∈ L2[0, h] respectively. 130

Consider now

d
dt

(Luδ, uδ) =

(
L

d
dt

uδ, uδ

)
+

(
Luδ,

d
dt

uδ

)
+ (L′tuδ, uδ)

≤ ((LA+ A∗L)uδ, uδ) + 2 Re(L fδ, fδ) + γ
′(Luδ, uδ)

≤ γ(Luδ, uδ) + (L fδ, fδ).

Sinceuδ(t) and fδ(t) converge, uniformly int, to u(t), f (t) respec-
tively in D1

L2 asδ → 0 we have (8.12). This completes the proof of the
proposition. �

Remark. The above equation is a particular case of one involving sin-
gular integral operators. If in fact we consider an equation

d
dt

u(t) = iH ∧ u(t) + Bu(t) + f (t)

≡ Au(t) + f (t),(8.14)

with σ(H ) ∈ C∞1+σ, B ∈ L (L2, L2) ∩L (D1
L2,D

1
L2), which is regularly

hyperbolic, we could prove an analogous proposition in the same way.
We would have to use the Fridrichs’ lemma for singular integral opera-
tors, namely,

(8.15) [H ∧, ϕδ∗] → 0 weakly inD
1
L2.

Now we consider the general case of regularly hyperbolic systems
when the coefficients are functions of the variablet also. We use a
method similar to the one of Cauchy-Peano for ordinary differential
equations.

Theorem 2. LetΩ = Rn × [0, h] and131

(8.16)
∂

∂t
u =

∑
Ak(x, t)

∂

∂xk
u+ B(x, t)u+ f

be a regularly hyperbolic system inΩwith Ak ∈ B1+σ[0, h], B ∈ B1[0, h],
f ∈ D1

L2[0, h]. Given a u0 ∈ D1
L2 there exists a unique solution u of

(8.16), in the sense of L2, which belongs toD1
L2[0, h] and is differen-

tiable in the sense of L2 for which u(0) = u0.
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Proof. Consider a subdivision

∆ : 0 = t0 < t1 . . . < ts = h.

We define a functionu inductively as follows: Fort j−1 ≤ t ≤ t j ,
u∆(t) = u j(t) whereu j satisfies the system
(8.18)
∂

∂t
u j =

∑
Ak(x, t j−1)

∂

∂xk
u j + B(x, t j−1)u j + f , u j(t j−1) = u j−1(t j−1)

for j = 1, . . . , s. By Prop.?? there exists a unique solutionu j ∈ D1
L2 for

this system forj = 1, . . . , s. Thusu∆(t) is uniquely determined. We shall
show thatu∆ is uniformly bounded for small subdivisions (subdivisions
of small norms), that is,

sup
t∈[0,h]

||u∆(t)||1 ≤ M < ∞.

It follows from (8.18) using the given conditions on the coeficients
that

sup
t∈[0,h]

|| d
dt

u∆(t)||L2 ≤ M′ < ∞.

Hence{u∆(t)} is a bounded set inE 1
L2(Ω) as∆ runs through subdi- 132

visions of small norm. Thus by choosing a suitable subsequence of∆,
u∆ → u weakly inE 1

L2(Ω) andu satisfies

∂u
∂t
=

∑
Ak(x, t)

∂u
∂xt
+ B(x, t)u+ f(8.18)

u∆ → u,
∂u∆
∂xk
→ ∂u

∂xk
,
∂u∆
∂t
→ ∂u

∂t
weakly inL2(Ω)

and these derivatives are taken in the sense of distributionin Ω.
Next we shall show thatu ∈ D1

L2[0, h] andu(0) = u0. For almost all
t, u(x, t), as a function oft for each fixedx, is absolutely continuous (see
Sehwartz [1]). Hence we can write

u(x, t′) − u(x, t′′) =

t′′∫

t′

∂u
∂t

(x, t) dt
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the derivative in the right hand side is taken in the distribution sense. By
the Schwarz inequality

|u(x, t′) − u(x, t′′)|2 ≤ |t′ − t′′|
t′′∫

t′

|∂u
∂t

(x, t)|2 dt

which on integration with respect tox gives

||u(x, t′) − u(x, t′′)||L2(Rn
) ≤ |t

′ − t′′|
1
2 ||∂u
∂t

(x, t)||L2(Ω)

proving thatu ∈ L2[0, h]. If ϕδ denote mollifiers of Friedrichs, the func-
tion u = u ∗ ϕδ satisfiesuδ ∈ D1

L2[0, h] and

(8.19)
∂

∂t
uδ(t) =

∑
Ak(x, t)

∂u
∂xk

uδ + B(x, t)u+ f +Cδu

where133

(8.20) Cδ =

∑[
Ak

∂

∂xk
, ϕδ∗

]
+ [B, ϕδ∗].

By Friedrichs’ lemma||Cδu||1 ≤ c||u||1 and||Cδu||1 → 0 asδ→ 0 for

fixed t. Since
h∫

0

||u(x, t)||1dt < ∞, it follows that|Cδu||1 is integrable, and

from Lebesgue’s bounded convergence theorem, we deduce that

h∫

0

||Cδu(x, t)||1 dt→ 0 asδ→ 0.

Now from the energy inequality for the system (8.19)

||uδ(t)||1 ≤ c(h)


||uδ(0)||1 +

h∫

0

(|| fδ(s)||1 + ||Cδu(s)||1)ds



it follows that sup
t∈[0,h]

||uδ(t)||1 ≤ M < ∞. Again uδ(t) − uδ′(t) satisfies an

equation

∂

∂t
(uδ(t) − uδ′(t)) =

∑
Ak(x, t)

∂

∂xk
(uδ(t) − uδ′(t)
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+ B(x, t)(uδ(t) − uδ′(t)) +Cδu(t) −Cδ′u(t)

and we have the energy inequality

||uδ(t) − uδ′(t)||1 ≤ c′(h)


||uδ(0)− uδ′(0)||1 +

h∫

0

||(Cδ −Cδ′)u(s)||1ds



which shows that||uδ(t) − uδ′(t)||1 → 0 asδ, δ′ → 0. So{uδ(t)} is a
Cauchy sequence inD1

L2[0, h] and hence its limit is inD1
L2[0, h]. By the 134

uniqueness of limits inL2[0, h], uδ → u andu ∈ D1
L2[0, h]. Since the

operation of restriction is continuous and the restrictionof u∆ to t = 0,
namelyu∆(x, 0)), isu0 we see thatu(x, 0) = u0.

Now it only remains to show that{u∆(t)} is a bounded set inE 1
L2. For

this we proceed as follows. We use the norm defined by

(Lu, u) = (N ∧ u,N ∧ u) + β(u, u)

for suitableβ > 0 (see (8.7)).D1
L2 is provided with this norm.

By the energy inequalities we have, forj = 1, . . . , s

(L(t j−1)u∆, u∆) = (L(t j−1)u j(t), u j(t))(8.21)

≤ exp(γ(t − t j−1))(L(t j−1)u j (t j−1), u j(t j−1))

+

t j∫

t j−1

exp(γ(t − s))(L(t j−1) f (s), f (s)) ds.

TheL(t) depends on theN(t) which form a bounded set of singular
integral operators and hence by the remark ater prop. 2,§ 6 we can use
the same constantβ to the new norm inD1

L2. Further lettingLk = L(tk)

(L ju∆, u∆) − (L j−1u∆, u∆) = ||N(t j) ∧ u∆||2 − ||N(t j−1) ∧ u∆||2

≤ C||(N(t j) − N(t j−1)||α(L2,L2)||u∆||α1 .

Since (L j−1u∆, u∆) ∼ ||u∆||21 we have||u∆||21 ≤ k(L j−1u∆, u∆) and
hence

(L ju∆, u∆) ≤ (1+ k||H (t j) − N(t j−1||α(L2,L2))(L j−1u∆, u∆)
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= (1+ ε(t j−1, t j))(L j−1u∆, u∆).

135

Using this in the above inequality (8.21) we have

(Ls−1u∆, u∆) ≤ exp(γt)(L0u(t0), u(t0))

+

h∫

0

exp(γ(t − s))(L0 f (s), f (s))ds
S∏

j=1

{1+ ε(t j−1), t j}.

But we have, by a will-known inequality,

S∏

j=1

{1+ ε(t j−1, t j)} ≤
(
1+

1
S

∑
∈ (t j−1, t j)

)s

≤ eγ0

where

γ0 = sup
∑

ε(t j−1, t j) = sup
∆

k
∑
||N(t j ) − N(t j−1)||α(L2,L2))

≤ k

h∫

0

sup
x∈Rn

∑

|ν|≤2n

sup
|ξ|≥1

∣∣∣∣∣∣

(
∂

∂ξ

)ν
∂

∂t
σ(N)(x, t, ξ)

∣∣∣∣∣∣ .

Hence{u∆(t)} is a bounded set inE 1
L2, this completes the proof.

If we assume taht that coefficients and the initial datau0 and f are
sufficiently smooth we can improve Theorem 2. We indicate this briefly.

We assume

Ak ∈ B2[0, h],
∂Ak

∂t
∈ B0[0, h], B ∈ B2[0, h], u0 ∈ D

2
L2, f ∈ D

2
L2, [0, h]

From theorem 2, we know that there exists a unique solutionu ∈
D1

L2[0, h] of

(8.16) M[u] = f .

Differentiating with respect tox j (denoting
∂

∂x j
by D j) we have136
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(8.22) M[D ju] −
∑

k

(D jAk)[Dku] = D j f + (D j B)[u] ( j = 1, 2, . . . , n)

where the second memberD j f + (D j B)[u] ∈ D1
L2[0, h] and D ju(0) ∈

D1
L2. Now (8.22) is a system of equations with unknown functions

(D1u, . . . ,Dnu) which has the same principal partM. We can show,
without any singnificant modification in the previous argument, that
there exists a unique solution (D1u, . . . ,Dnu) ∈ D1

L2[0, h]. On the other
hand, by the energy inequality, we can see that the system:

M[v j] − Σk (D jAk)[vk] = g jε L2[0, h]

has atmost one solutionv in L2[0, h]. This shows thatu ∈ D2
L2[0, h]. �

Corollary 1. Let (8.16)be a regularly hyperbolic system in the setΩ =
Rn × [0,T] with

(
Ak(x, t),

∂

∂t
Ak(x, t)

)
∈ (B2[0,T], B

1[0,T]),
(
B(x, t),

∂

∂t
B(x, t)

)
∈ (B2[0,T], B

1[0,T])

and f(x, t)εD2
L2[0,T].

Then, given an elementu0 ∈ D2
L2 there exists a unique solutionu ∈

D2
L2[0,T] of (8.3) with u(0) = u0.

Proof. Defferentiating both sides of the equation (8.3) with respect to
x j in the sense of distributions we have

∂

∂x j
M[u] =

∂

∂x j

∂

∂t
u− ∂

∂x j

(∑
Ak(x, t)

∂

∂xk

)
− ∂

∂x j
(B(x, t)u) =

∂ f
∂x j

which can be rewritten as 137

∂

∂t

(
∂u
∂x j

)
−

∑
Ak(x, t)

∂

∂x j

(
∂u
∂x j

)
−

∑ ∂Ak

∂x j
(x, t)

∂u
∂xk
− B(x, t)

∂u
∂x j

=
∂B
∂x j

(x, t)u+
∂ f
∂x j

.
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That is,

(8.22) M

[
∂u
∂x j

]
= −

∑ ∂Ak

∂x j
(x, t)

∂u
∂xk
=
∂ f
∂x j
+
∂B
∂x j

(x, t)u.

Setting
∂u
∂x j
= v j for j = 1, . . . , n we obtain a new system

M
[
v j

]
−

∑ ∂Ak

∂x j
(x, t)vk = ϕ j

and we can take forv j(0) the function
∂u0

∂x j
∈ D1

L2 (the derivative being

taken in the sense of distributions) sinceuo ∈ D2
L2. If we assumeu ∈

D1
L2 [0,T] it follows then thatϕ j ∈ D1

L2 [0,T] since f ∈ D2
L2 [0,T] and

B ∈ B2 [0,T]. Then by Th. 2 there exists a unique solution (inL2)
v = (v1, . . . , vn) with v j ∈ D1

L2 [0,T]. Henceu ∈ D2
L2 [0,T]. �

Corollary 2. Let (8.16)be regularly hyperbolic in the setΩ with

(
Ak,

∂Ak

∂t
, . . . ,

(
∂

∂t

)m

Ak

)
∈ (Bm [0,T] , . . . ,B0 [0,T]), B ∈ B

m [0,T]

and f ∈ Dm
L2 [0,T]; then given u0 ∈ Dm

L2 there exists a unique solution u
in Dm

L2 [0,T] of (8.3)with u(0) = u0.138

This can be proved by successively applying the argument of Corol-
lary 1.

Taking m=
[

n
2

]
+2 we obtain, using Sobolev’s lemma, the following

Corollary 3. Let (8.16)be regularly hyperbolic with

(
Ak,

∂Ak

∂t
, . . .

)
∈

(
D

[ n
2 ]+2

L2 [0,T] , D
[ n

2 ]+1

L2 , . . .

)
, B ∈ D

[ n
2 ]+1

L2 [0,T]

and f ∈ D
[ n

2 ]+2

L2 [0,T] then, given u0 ∈ D
[ n

2 ]+2

L2 there exists a solution

u ∈ E 1 of (8.16)with u(0) = u0, unique in L2.
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Corollary 4. Assume that(8.16) is regularly hyperbolic in an open
neighbourhood U of 0 in Rn+1, Ak, B ∈ E (U) then there exists a neigh-
bourhood U′ ⊂ U such that for any u0 ⊂ E (U ∩ {t = 0}), f ∈ E (U)
there exists a solution u∈ E (U′) of (8.16), unique in L2.

Remark. If we use a partition of unity the above arguments can be used
to proved results analogous to the above corollaries in the spacesE m

L2(loc)
in place ofDm

L2.
Finally we have the following result on the existence of solutions of

a single regularly hyperbolic equation of orderm.

Corollary 5. Let

(8.23) L [u] ≡
(
∂

∂t

)mu

+

∑

j+|ν|≤m
j<m

a j,ν(x, t)

(
∂

∂x

)ν (
∂

∂t

) j

u = g

be a regularly hyperbolic equation of order m in a neighbourhood of the 139

origin with infinitely differentiable coefficients aj,ν. Let g be infinitely
diffrentiable in a neighbourhood U of the origin. Then given the initial
conditions

(uo, u1, . . . , um−1) ∈
∏

E (U ∩ {t = 0})

there exists a solution u∈ E (U′) in a neighbourhood U′ such that

(
∂

∂t

) j

u(x, 0) = u j (x), j = 0, 1, . . . , (m− 1).

9 Necessary condition for the well posedness of the
Cauchy problem

In chapter 2 we considered necessary condition for well posedness of
the Cauchy problem when the coefficients were inependent ofx. In
Chapter 3 we considered some sufficiency condition for well posedness
e.g, hyperbolicity, when the coefficients depended onx.
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Now we consider some necessary conditions in this later case. For
simplicity we shall consider single, first order differential opearator,

(9.1)
∂u
∂t
=

∑
ak(x, t)

∂u
∂xk
+ b(x, t)u

(for a fuller treatement see Mizohata [3]).
If all ak(x, t), b(x, t) are real the classical method of characteristics

establishes the well posedness of the Cauchy problem. However if the
ak are complex the question of existence was not settled till recently.
The characteristic polynomial of the above equation is

∑
ak(2πξk) − λ.

If this has real eigenvalues i.e.ak’s are real, the Cauchy problem is well
posed as shown by the results of Chap III. We shall prove that if there140

is ξo such that im
∑

ak(0, 0)ξo
, 0 (say, 0), the problem is not well

posed. The idea of the proof is as follows: we construct a sequence of
solutionun(x), n = 1, 2 for which, on the hypothesis of well-posedness,
we must have sup|un(x, t)| = 0(nh) while on the other hand by using an
energy inequality for a suitable operator we, must have a minorization
by exp(n) for some functions closely related tou′n above which will give
a contradiction. More precisely we shall prove

Proposition 3. Let

(9.2)
∂u
∂t
= H ∧ u+ b(x, t)u+ f

be an equation in the singular integral form withσ(H) = h(x, t, ξ) sat-
isfying

(9.3) Reh(x, t, ξ) ≤ 0 for all (x, t, ξ) and t→ h(x, t, ξ) ∈ C∞1+σ

is continuous. Then given any uo ∈ D1
L2 and f ∈ D1

L2[0, h] there exists a
unique solution

u ∈ D
1
L2[0, h] of (9.2)with u(x, 0) = uo(x).

On the contrary, if there exists aξo such thatReh(x, t, ξo) > 0 then
the energy inequality cannot be obtained in the L2-space. Of course this
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does not immediately imply that the Cauchy problem is not well posed
in D∞

L2.
We see that a(x, t,−ξ) = −a(x, t, ξ) which shows that in the case141

of a differential operator(9.1) the conditionRea(x, t, ξ) ≡ 0 will be
necessary for the existence theorem. We analyse this situation more
clearly.

Theorem 1. Suppose there exists a real vectorξo ∈ Rn, ξo
, 0 and xo

such thatIm
∑

ak(xo, 0)ξo
k < 0. Then the forward Cauchy problem is not

well posed for(9.1) in E or in D∞
L2 or in B.

Remark. P.D. Lax [1] also proved a similar theorem, by using the char-
acteristic method, that if eigenvalues are simple for the well posedness
of the Cauchy problem it is necessary that the eigenvalues bereal.

We first prove an energy inequlity for a suitably modified opera-
tor and then establish two lemmas for commutators which together will
prove the theorem. Supposex0

= 0.
First of all we localize the differential operator given in (9.1). Sup-

poseu is a solution of (9.1) of classE 1. Let β(x) ∈ D with support
contained in a small neighbourhood of the origin. Now

(9.4)
∂

∂t
(βu) =

∑
ak

∂

∂xk
(βu) + b(βu) −

∑
ak
∂β

∂xk
u

Since the support ofβu and of
∂

∂xk
(βu) are contained in the support

of β we can modifyak andb outside the support ofβ. We can write

(9.4)′
∂

∂t
(βu) −

∑
ãk(x, t)

∂

∂xk
(βu) − b̃(x, t)(βu) = −

∑
ãk(x, t)

∂β

∂xk
· u

whereãk andb̃ are equal toak andb respectively on the support ofβ and 142

(i) ãk, b̃ ∈ B
∞
x,t

(ii) im
∑

ãk(x, t)ξ
o
k < −δ, δ > 0 for all (x, t) with x ∈ Rn and 0≤ t ≤ to

(9.5)
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We can assume|ξo| = 1 if necessary by multiplying by a suitable
constant. There exists a neighbourhoodV of ξo such that

(9.6) im
∑

ãk(x, t)ξk ≤ −δ for 0 ≤ t ≤ to, ξ ∈ V.

Let α̂ ∈ D with the support contained onV and α̂(ξ) ≡ 1 in a
neighbourhood ofξo. Defineα̂p by

(9.7) α̂p(ξ) = α̂(
ξ

p
), αp(x) = F̄ [α̂p(ξ)].

Convolving both sides of (9.4)′ with αp we obtain

(
∂

∂t
−

∑
ãk

∂

∂xk
− b̃

) (
αp ∗(x) (βu)

)
≡ L

[
αp ∗(x) (βu)

]

= −
[
αp∗, L

]
(βu) −

∑
ãk(αp ∗(x) (βku)) −

∑[
αp∗(x), ãk

]
(βku).(9.8)

whereβk =
∂β

∂xk
.

We rewrite

∑
ãk

∂

∂xk
(αp ∗(x) v) = H ∧ (αp ∗(x) v)

wherev = βu andσ(H) = 2πi
∑

ãk
ξk
|ξ| = h(x, t, ξ). That is

H ∧ (αp ∗(x) v) =
∫

exp(2πix.ξ) · h(x, t, ξ)|ξ|α̂p(ξ)v̂(ξ)dξ.

143

This operator depends only on the value of the symbolh on the set
{λV}λ≥0 since the support of|ξ|α̂pv̂ is contained in the set{λV}. Hence
we can modify the symbolh to h outside{λV} as follows:

(i) h̃(x, t, ξ) ≡ h(x, t, ξ) for ξ ∈ λV

(ii) Re h̃(x, t, ξ) ≥ δ′, δ′ > 0.
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Thus we have finally an equation

(9.9) (
∂

∂t
− H̃ ∧ −b̃)(αp ∗(x) (βu)) = f

where H̃ is the singular integral operator whose symbolσ(H̃) is h̃, f
being the right-hand side of (9.8).

Lemma 1. Suppose H(t) is a singular integral operator of class C∞
β

,
β = ∞ such that

(9.10) σ(H)(x, t, ξ) ≥ δ′ > 0.

Suppose f∈ L2[0, h] is given. If u∈ D1
L2[0, h] satisfies

(9.11)
∂

∂t
(αp ∗(x) u) = H ∧ (αp ∗(x) u) + b(x, t)(αp ∗(x) u) + f

then there exists aδ′′ > 0 such that

(9.12)
d
dt
‖αp ∗(x) u‖ ≥ δ′′p‖αp ∗(x) u‖ − ‖ f ‖

for sufficiently large p.

Proof. Let us denoteαp ∗(x) u by vp. Then we have 144

d
dt

(vp, vp) = ((H ∧ + ∧ H∗)vp, vp) + 2 Re(bvp, vp) + 2 Re(vp, f ).

But∧H∗ = H# ∧ (mod∧o) implies

d
dt

(vp, vp) = ((H +H#)∧vp, vp)+2 Re(bvp, vp)+2 Re(vp, f )+ (Bvp, vp),

with B a bounded operator. IfP denotes the singular integral operator
H + H# thenσ(P) ≥ 2s′. We remark that (P∧s− ∧s P)∧σ is a bounded

operator ifs, σ ≥ 0 ands+ σ ≤ 1. Takings= σ =
1
2

P∧ ≡ ∧
1
2 P∧

1
2 (mod∧0).
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Hence

(P∧ vp, vp) = P∧
1
2 vp,∧

1
2 vp) + ((Cvp, vp)

whereC = P∧ − ∧ 1
2 P∧ 1

2 is a bounded operator. Thus

(9.13)
d
dt

(vp, vp) ≥ Re((H + H#) ∧
1
2 vp,∧

1
2 vp) − γ1‖vp‖2 − 2vp‖ ‖ f ‖

on the other hand we have by Gårding’s lemma that

(9.14) Re((H + H#) ∧
1
2 vp,∧

1
2 vp) ≥ δ′(∧

1
2
p ,∧

1
2 vp) − γ2‖vp‖2.

Since the distance of the support of ˆvp(ξ, t) ≡ α̂p(ξ)û(ξ, t) from the
origin is larger thanσp, σ > 0, we have by Plancheral’s formula

(∧
1
2 vp,∧

1
2 vp) =

∫
|ξ|v̂p(ξ, t)|2dξ

≥ σp
∫
|v̂p(ξ, t)|2dξ = σp‖vp‖2

Thus we have145

d
dt
‖vp‖2 ≥ σδ

′
p‖vp‖2 − (γ1 + γ2)‖vp‖2 − 2‖vp‖ ‖ f ‖

which implies
d
dt
‖vp‖ ≥ (δp− γ)‖vp‖ − ‖ f ‖

whereδ > 0, γ > 0 are constants. Therefore for largep(δp − γ) ≥ δ′′p ,
δ′′ > 0.

For suchp we have

d
dt
‖vp‖ ≥ δ′′p‖vp‖ − ‖ f ‖.

In other words we have

(9.12)
d
dt
‖αp ∗(x) u‖ ≥ δ′′p‖αp ∗(x) u‖ − ‖ f ‖

completing the proof of the lemma. �



9. Necessary condition for the well posedness..... 127

Lemma 2. If a ∈ B and u∈ D1
L2 there exists a constant c> 0 such that

‖
[
αp∗, a(x)

∂

∂x j

]
u‖ ≤ c


∑

1≤|ρ|≤m−1

‖ ∂
∂x j

(xραp) ∗ u‖

+


∑

|ρ|=m

‖ ∂
∂x j

(xραp)‖L1 + ‖(xραp)‖L1

 ‖u‖


.(9.15)

Proof. Let v =

[
αp∗, a(x)

∂

∂x j

]
u; then

v(x) =
∫

(a(y) − a(x))αp(x− y)
∂u
∂y j

(y)dy.

Expandinga(y) − a(x) by mean value theorem upto orderm, to be 146

determine later,

a(y) − a(x) =
∑

1≤|̺|≤m−1

(y− x)ρ

ρ!
(
∂

∂x
)ρa(x) +

∑

|ρ|=m

aρ(x, y)(x− y)ρ

and hence

v(x) =
∑

1≤|ρ|≤m−1

(−1)ρ

ρ!
(
∂

∂x
)ρa(x)

∂

∂x j
(xραp) ∗ u

+

∑

|ρ|=m

∫
(x− y)ραp(x− y)aρ(x, y)

∂u
∂y j

(y) dy.

Now ϕ(x) =
∫

(x− y)ραp(x− y)aρ(x, y)
∂u
∂y j

(y) dy

= −
∫

∂

∂y j

{
(x− y)ραp(x− y)aρ(x, y)

}
u(y) dy

= −
∫ {

∂

∂y j

[
(x− y)ραp(x− y)

]
aρ(x, y)

+(x− y)ραp(x− y)
∂

∂y j
aρ(x, y)

}
u(y) dy.
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Hence‖ϕ(x)‖ ≤ c‖ |xραp| ∗ |u| + |
∂

∂x j
(xραp)| ∗ |u|‖. Applying Haus-

dorff-Young inequality to the right hand side we obtain the desired in-
equality.

Similarly one can prove that ifa ∈ B andu ∈ L2 then

(9.16) ‖[αp∗, a]u‖ ≤ c


∑

1≤|δ|≤m−1

‖(xραp) ∗ u‖ + (
∑

|ρ|=m

‖xραp‖L1)‖u‖



wherec is a positive constant.
Now we look at the terms appearing in the right hand side of (9.15).147

First of all
∂

∂x j
(xραp) ∗ u has its Fourier image (2πiξ j)(x̂ραp)û =

(2πiξ j)û. const.α̂ρp(ξ) which shows, since the support of ˆα
ρ
p(ξ) has diam-

eterσ′p whereσ′ is a constant depending only on ˆα, that,

(9.17) ‖ ∂
∂x j

(xραp) ∗ u‖ ≤ cp‖(xραp) ∗ u‖.

Next consider‖xραp‖L1 for |ρ| = m

sup
∣∣∣xραp

∣∣∣ ≤ const.
∫
|α̂(ρ)

p (ξ)|dξ = const.
∫
|( ∂
∂ξ

)ρα̂p(ξ)|dξ

= const. (
1
p

)|ρ|−n
∫
|( ∂
∂ξ

)ρα̂|dξ.

Similarly |x|2n|xραp| ≤ const

(
1
p

)|ρ|+n ∫ ∣∣∣∣∣∆n
ξ
(
∂

∂ξ
)ρα̂

∣∣∣∣∣dξ which implies

that

(1+ |x|2n)|xραp| ≤ const.

(
1
p

)|ρ|−n

.

Hence‖xραp‖L1 ≤ const.
∫ dx

1+ |x|2n
·
(
1
p

)|ρ|−n

≤ c

(
1
p

)|ρ|−n

. In the

same way one can show that

‖ ∂
∂x j

(xραp)‖L1 ≤ c

(
1
p

)|ρ|−n−1

.

�
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Thus we have proved the

Corollary of Lemma 2: If a ∈ B andu ∈ D1
L2 then 148

(9.18) ‖[αp∗, a(x)
∂

∂x j
]u‖ ≤ cp

∑

1≤|ρ|≤m−1

‖(xραp) ∗ u‖+O

(
1

pm−n−1

)
‖u‖.

This follows from (9.15).
Similarly it follows from (9.16) that

(9.18)′ ‖[αp∗, a(x)]u‖ ≤ c
∑

1≤|ρ|≤m−1

‖(xραp) ∗ u‖ +O(
1

pm−n )‖u‖.

Lemma 3. If L is a differential operator of the first order with its coef-
ficients inB

(9.19) L =
∑

ak(x)
∂

∂xk
+ b(x)

then for any u∈ D1
L2

(9.20) ‖[αp∗, L]u‖ ≤ c
∑

1≤|ρ|≤m−1

p‖(xραp) ∗ u‖ +O(
1

pm−n−1
)‖u‖.

This is an immediate consequence of the inequalities(9.18) and
(9.18)′. More generally one can prove exactlly in the same way

(9.21) ‖[(xναp)∗, L]u‖ ≤ c
∑

|ν|+1≤|ρ|≤m−1

‖(xραp) ∗ u‖ +O

(
1

pm−n+|ν|

)
‖u‖.

and

(9.22) ‖[(xναp)∗, L]u‖ ≤ cp
∑

|ν|+1≤|ρ|≤m−1

‖(xραp)∗u‖+O(
1

pm+1|ν|−n− )‖u‖.

for every u∈ D1
L2.
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Now we can complete the 149

Proof of Theorem 1: We prove this theorem in the spacesE . As we
shall see from the method of proof the same will be valid for the spaces
D∞

L2 andB. The proof is by contradiction.
Suppose the Cauchy problem is well posed in the spaces. We con-

struct a sequence of initial conditionsψq(x) and consider the corre-
sponding sequence of solutionsψq(x) are defined as follows:

Let V be a small a neighbourhood ofξo andα̂ ∈ D have its support
in V with α̂(ξ) ≡ 1 in neighbourhoodV′ of ξo, V′ ⊂ V. Takea ψ̂ ∈ D ,
ψ̂(ξ) , 0 with support contained inV′. Denoting

ψ̂q(ξ) = ψ̂(ξ − qξo)

we have by taking inverse Fourier transforms

(9.23) ψq(x) = exp(2πiqx.ξo)ψ(x)

ψq ∈ E (also inD∞
L2, B). Further

(9.24) ‖ψq‖E h = O(qh).

(We remark that (9.24) holds for the semi-norms inD∞
L2 andB also).

By hypothesis of the well posedness, the corresponding solution
uq(x, t) of (9.1) havingψq(x) as the initial data is estimated by

(9.25) sup
K
|uq(x, t)| = O(qh)

for some fixedh whereK is a compact set in the (x, t)-space. Also we
see that

(9.26) ‖αp ∗ (βψp)‖ ≥ c > 0.
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In fact,

αp ∗ (βψp) = β(αp ∗ ψp) + [αp∗, β]ψp.

‖β(αp ∗ ψp)‖ = ‖β̂ ∗ (α̂pψ̂p)‖ = ‖β̂ ∗ ψ̂p‖ = ‖βψp‖ = ‖βψ‖ > 0
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by using Plancheral’s formula and the fact that ˆαp ≡ 1 on the support
of ψ̂p, ψ being an analytic function and‖βψ|| > 0. On the other hand

it is easy to see that‖[αp∗, β]ψp‖ = O

(
1
p

)
. Now we prove this leads

to contradiction as follows. Instead ofαp ∗ (βu) in (9.8) we consider
(xναp) ∗ (βνup) with |ν| ≤ m− 1, |ν| ≤ m+mhwhich form a system of

localisers,βµ =

(
∂

∂x

)µ
β(x). Then we have

(
∂

∂t
−

∑
ãk

∂

∂xk
− b̃

)
((xναp) ∗ (βµup))

= [L, (xναp)∗](βµup) −
∑

ãk((x
ναp) ∗ (βµkup))

−
∑

[(xναp)∗, ãk](β
µkup)

whereµk = µ + ek, ℓk = (0, . . . , 1, . . . , 0) thekthcomponent is 1.
Applyinginequallity (9.12) for (xναp)∗ (βµup) and using inequalities

(9.21), (9.22) withm= h+ n+ 2, we have

d
dt
‖(xναp) ∗ (βµup)‖ ≥ δ′′p‖(xναp) ∗ (βµup)‖ − ‖ f ‖

≥ δ′′p‖(xναp) ∗ (β(µ)up)‖ − cp
∑

|ν|+1≤|ρ≤m−1

||(xραp) ∗ (βµup)‖

−c
∑

|ν|+1≤|ρ|≤m−1
|µ′ |=|µ|+1

‖(xραp) ∗ (β(µ′)up)‖ − c
∑

|µ′ |=|µ|+1

‖(xναp) ∗ (βµ
′
up)‖ −O

(
1
p

)

Now consider the functionsθp(ν, µ)up defined by 151

θp(ν, µ)up = pθ(|ν|−|µ|)(xν)αp) ∗ (β(µ)up)

where 0< θ < 1. In fact we takeθ =
1
m

. We have from above inequality

d
dt
||θp(ν, µ)up|| ≥ δ′′p||θp(ν, µ)up|| − cp1−θ

∑

|ν|+1≤|ρ|≤m−1

||θp(ρ, µ)up||
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−cpθ
∑

|µ|=|µ|+1

||θp(ν, µ′)up|| − c
∑

|ν|+1|≤1|ρ|≤m−1
|µ′|=|µ|+1

||θp(ρ, µ′)up||

−pθ(|ν|−|µ|)O(
1
p

).(9.27)

Now if |µ′| = m+mhwe have, by (9.25)

||θp(ν, µ)up|| ≤ cpθ(|ν|−|µ|) ||up|| ≤ c′pθ(|ν|−|µ|)+h.

But θ(|ν| − |µ|) ≤ θ(m− 1 −m− mh− 1) = θ(−mh− 2) = −h − 2θ

sinceθ =
1
m

. Thus||θp(ν, µ)up|| ≤ cp−2θ. Denoting

Sp(t) =
∑

0≤|ν|≤m−1
0≤|µ|≤m+mh

||θp(ν, µ)up(t)||

we have from (9.27) that

d
dt

Sp(t) ≥ δ′′pSp(t) − cp1−θSp(t) −O(1)

≥ γ′′pSp(t) −O(1) for largep, r′′ > 0.

Integrating this with respect tot

Sp(t) ≥ exp(γ′′pt)Sp(0)−
t∫

0

exp(r′′p(t − s))O(1)ds

= exp(γ′′ pt)

[
Sp(0)−O

(
1
p

)]
.
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But Sp(0) =
∑

0≤|ν|≤m−1
0≤|µ|≤m+mh

||θp(ν, µ)up(0)|| ≥ ||αp ∗ (βup)(0)|| ≥ c > 0 by

(9.26) for largep. Hence for every fixedt the functionSp(t) increases
exponentially with respect top i.e. Sp(t) ≥ ceγ

′′pt. On the other hand

||θp(ν, µ)up(t)|| = pθ(|ν|−|µ|)||(xναp) ∗ (βµup)||

and ||βµup(t)|| = 0(p)h. HenceSp(t) ≥ cpk for a largek. In fact
||θp(ν, µ)up(t)|| ≤ 0(ph+1) sinceθ|ν| < 1). This is a contradiction. This
completes the proof of the theorem 1.



Chapter 4

In this chapter we briefly discuss the existence of solutionsof the Cauchy 153

problem for parabolic equations.
In section 1 we introduce parabolic equations of orderm in the x-

variables and prove an existence theorem when coefficinets do not de-
pend ont. In section 2 we obtain an energy inequality for parabolic
equations which we use to prove the existence of solutions ofthe Cauchy
problem for parabolic equation with sufficiently smooth initial condi-
tions when coefficients depend ont as well.

1 Parabolic equations

Consider the differential equation

(1.1)
∂

∂t
u =

∑

|ν|≤2m

aν(x)

(
∂

∂x

)ν
u+ f = A

(
x,
∂

∂x

)
u+ f

whereA is negative elliptic of order 2m in R̄n in the sense that

(1.2) Re
∑

|ν|=2m

aν(x)(iξ)ν ≤ −δ|ξ|2m

δ being a positive constant. We assume that the coefficientsaν belong to
B

2m.
We prove the existence of a solution of (1.1) in the spaceL2. We

take for the domain of definitionDA of A the spaceD2m
L2 .

133
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Proposition 1. For smallλ > 0 the operator(I − λA) defines a one-to-
one surjective mapping ofD2m

L2 onto L2.

Proof. For u ∈ D2m
L2 andλ > 0154

(1.3) ||(I − λA)u||2 = ||u||2 − λ((A+ A∗)u, u) + λ2||Au||2.

SinceA is negatively elliptic we have, from Gårding’s lemma, that

(i) −((A+ A∗)u, u) ≥ δ||u||2m − γ1||u||2

(ii) ||Au||2 ≥ δ2

2
|| ∧2m u||2 − γ2||u||2.

whereγ1, γ2 are positive constants depending onδ. Hence it follows
from (1.3) that

(1.4) ||(I − λA)u||2 ≥ (1− γ1λ − γ2λ
2)||u||2 + δ

2

2
λ2|| ∧2m u||2,

which show that for sufficiently smallλ, (I − λA) is one-t-one fromD2m
L2

to L2 and that the image is closed.
Next we show that the image (I − λA)D2m

L2 is dense inL2, for λ > 0
small. This is done by contradiction. Suppose the image is not dense in
L2. Then there exists aψ ∈ L2, ψ , 0 such that

((I − λA)u, ψ) = 0 for all u ∈ D
2m
L2 ,

a fortiori for all u ∈ D . This implies that

(1.6) (I − λA∗)ψ = 0. Let ψ1 = (1− ∆)−m
ψ .

Thenψ1 ∈ D2m
L2 , ψ1 , 0 and

(I − λA∗)(1− ∆)mψ1 = 0

Hence ((I −λA∗)(1−∆)mψ1, ψ1) = ||ψ1||2m−λ(A∗(1−∆)mψ1, ψ1) = 0.155

Now the real part of (A∗(1− ∆)mψ1, ψ1) is

1
2

({A∗(1− ∆)m
+ (1− ∆)mA}ψ1, ψ1),
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and since{A∗(1− ∆)m
+ (1− ∆)mA} is an elliptic operator of order 4m,

we have by Gårding’s lemma,

(1.7)
1
2

({A∗(1− ∆)m
+ (1− ∆)mA})ψ1, ψ1) ≤ −δ

2
|| ∧2mψ1||2 + γ3||ψ1||2.

Hence, we have

Re{||ψ1||2m − λ(A∗(1− ∆)mψ1, ψ1)}

≥ ||ψ1||2m+ λ(
δ

2
|| ∧2m ψ1||2 − γ3||ψ1||2)

≥ (1− λγ3)||ψ1||2m.(1.8)

This implies thatψ1 = 0 contrary to the assumption, which proves
that (I − λA) is surjective for sufficiently smallλ. �

Corollary 1. If u ∈ L2 such that A[u] ∈ L2 then u∈ D2m
L2 .

Proof. Since from the Theorem for sufficiently smallλ, (I − λA) is sur-
jective it follows that there existsw ∈ D2m

L2 such that (I − λA)w =
(I − λA)u. Hence (I − λA)(w − u) = 0. Now in the course of the proof
of the theorem we have shown that (I − λA)v = 0, v ∈ L2 impliesv = 0.
Henceu = w ∈ D2m

L2 . �

Proposition 2. Given any initial data u0 ∈ D2m
L2 and any second member156

f ∈ D2m
L2 [0, h] then there exists a solution u∈ D2m

L2 [0, h] of (1.1) such

that u(0) = u0 where the deriative
∂

∂t
u is taken in the sense of L2.

Proof. The prop. 1 asserts that all the conditions of Hille-Yosida the-
orem are satisfied takingX = L2, DA = D2m

L2 . Hence we have the
proposition by the application of Hille-Yosida theorem. Let us remark
thatu,Au ∈ L2[0, h] implies u ∈ D2m

L2 [0, h].
We have proved the Proposition 2 under the assumption thatf ∈

D2m
L2 [0, h]. We shall improve it by proving it assuming only

f ∈ D
m
L2[0, h].

For this purpose we establish an energy inequality for the parabolic
equation (1.1). �



136 4.

2 Energy inequality for parabolic equations

Consider the parabolic equation

(2.1)
∂

∂t
u =

∑

|ν|≤2m

aν(x)

(
∂

∂x

)ν
u+ f = A

(
x,
∂

∂x

)
u+ f

Proposition 1. Let (2.1) be a parabolic equation with the coefficients
aν(x) of A belonging toB2m and the second member f∈ D2m

L2 [0, h]. If

u ∈ D3m
L2 [0, h] satisfies(2.1) then

(2.2) ||u(t)||22m ≤ exp(γ1t)||u(0)||22m + γ2(δ)

t∫

0

exp(γ(t − s))|| f (s)||2mds,

whereγ1, γ2 are positive constants.

Proof. Consider157

d
dt

(u(t), u(t))2m =

(
d
dt

u(t), u(t)

)

2m
+

(
u(t)

d
dt

u(t)

)

2m

= ((A+ A∗)u, u)2m + 2 Re(f , u)2m

= (((1− ∆)2mA+ A∗(1− ∆)2mu, u) + 2 Re(f , u)2m.

The first term in the right hand side is by Gårdings’s ineequality less
than

(2.3) − δ
2
||Λ3mu||2 + γ0||u||22m ≤ −

δ

2
||u||23m + γ1||u||22m

since (1− ∆)2mA is an elliptic operator of order 6m. Also

|( f , u)2m| ≤ || f ||m||u||3m ≤
2
δ
|| f ||2m +

δ

2
||u||23m

by the inequality between the arithmetic and geometric means. Hence

d
dt

(u, u)2m ≤
(
δ

2
− δ

)
||u||23m + γ1||u||22m +

2
δ
|| f ||2m
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that is

(2.4)
d
dt
||u(t)||22m ≤ −

δ

2
||u||23m + γ1||u||22m +

2
δ
|| f ||2m

a fortiori

(2.4)′
d
dt
||u(t)||22m ≤ γ1||u(t)||22m +

4
δ
|| f (t)||2m

and hence we obtain after integrating with respect tot in [0, h] the re-
quired inequality (2.2). �

Next we obtain the energy inequality of the form (2.2) under the 158

assumption thatu ∈ D2m
L2 [0, h] instead ofu ∈ D3m

L2 [0, h]. In the case
of hyperbolic systems such an improvement could be achievedeasily
by using Friedrichs’ lemma. This method will not work in our case
sinceA is not of the first order. However, as we shall show, by a slight
modification, we can use this method of regularisation by mollifiers.

As before we estimate the commutators of convolutions with molli-
fiersϕε of Friedrichs.

Lemma 1. For a ∈ B2m and v∈ L2 denote by Cεv the commutator

(2.5) Cεv = [ϕ∗ε, a]v.

Then there exists a constantγ0 such that for|ν| ≤ m

(2.6) ||
(
∂

∂x

)ν
Cεv|| ≤ γ0|a|B2m

{ ∑

1≤|ρ|≤m

||(xρ|ϕε) ∗ v||ν + ε|| v ||.

Proof. We have,

Cεv =
∫

[a(y) − a(x)]ϕε(x− y)v(y)dy.

Developinga(y) − a(x) by Taylor’s theorem

a(y) − a(x) =
∑

1≤|ρ|≤m

(y− x)ρ

ρ!

(
∂

∂x

)ρ
a(x) +

∑

|ρ|=m

aρ(x, y)(y− x)ρ,
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where sincea ∈ B2m

|
(
∂

∂x

)ν′
aρ(x, y)

∣∣∣∣∣ ≤ c1|y− x| |a|B2m for |ν′| ≤ m− 1

and

|
(
(∂)
∂x

)ν
aρ(x, y)| ≤ c2|a|B2 for |ν| = m.

In fact,159

aρ(x, y) =
m
ρ!

1∫

0

(1− θ)m−1
{
a(ρ)(x+ θ(y− x)) − a(ρ)(x)

}
dθ,

a(ρ)(x) =

(
∂

∂x

)ρ
a(x).

Hence

Cεv =
∑

1≤|ρ|≤m

(−1)|ρ|

ρ!

(
∂

∂x

)ρ
a(x)

[
(xρϕε) ∗ v

]

+

∑

|ρ|=m

(−1)m
∫

aρ(x, y)(x− y)ρϕε(x− y)v(y) dy.(2.7)

(2.7) implies the lemma. Obviously the terms of the first sum on the
right hand side contribute to the terms of the sum of the righthand
side of (2.6). As far as the second sum is concerned we remark that
∫
|x|

∣∣∣
(
∂

∂x

)ν
(xρϕε)

∣∣∣dx= O(ε) for |ν| ≤ mand|ρ| = m.

By Hausdorff-Young inequality the second sum on the right hand
side of (2.7) is less thanO(ε)||v|| and this completes the proof of the
lemma. �

More generally we have the

Lemma 2. Let a∈ B2m and v∈ L2. If

(2.8) Cν
εv = [(xνϕε)∗, a]v for |ν| ≤ m− 1



2. Energy inequality for parabolic equations 139

then there exists a constantγ0 > 0 such that

(2.9) ||Cν
εv||m ≤ γ0|a|B2m


∑

|ν|+1≤|ρ|≤m

||(xρϕε) ∗ v||m + ε||v||

 .

The proof is completely analogous to that of lemma 1 and hencewe
do not repeat it here.

As a consequence of lemma 1 and 2 we have 160

Corollary 1. If A =
∑
|ν|≤2m

aν(x)(
∂

∂x
)ν is a differential operator of order

2m with aν ∈ B2m, then for any u∈ D2m
L2 and for any|ν| ≤ m

(2.10) ||[A, (xνϕε)∗]u||m ≤ c


∑

|ν|+1≤ρ≤m

||(xρϕε) ∗ u||3m + ε||u||2m



where c= γ0, sup
µ

|aµ(x)|B2mγ0 > 0, is a constant. We remark that(2.10)

asserts also that, for any|γ| ≥ m,

||[A, (xνϕε)∗]u|| ≤ c ε||u||2m.

Proposition 2. Let (2.1)be a parabolic equation of order2m inΩ with
aν ∈ B2m and f ∈ D2m

L2 [0, h]. If u ∈ D2m
L2 [0, h] satisfies(2.1) then

(2.11) ||u(t)||22m ≤ exp(γ, t)||u(0)||22m + c

t∫

0

exp(γ(t − s))|| f (s)||2mds,

Proof. Consider the function (xνϕε) ∗(x) u = uνε for 0 ≤ |ν| ≤ m. Clearly
uνε ∈ D3m

L2 [0, h] and satisfies the system

(2.12)
∂

∂t
uνε = Auνε + f νε + [(xνϕε) ∗ (x),A]u, 0 ≤ |ν| ≤ m.

Then inequality (2.4) of Prop. 1 applied to this system givesthe
system of inequalities

d
dt
||uγε(t)||22m ≤ −δ

′||uνε(t)||23m + γ1||uνε(t)||22m + γ2|| f νε (t)||2m
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+ γ2||[(xνϕε)∗(x),A]u||2m for 0 ≤ |ν| ≤ m.(2.13)

From the corollary 1 after lemma 2 applied to [(xνϕε)∗(x),A] we
obtain for all 0≤ |ν| ≤ m.161

||[(xνϕε)∗(x),A]u||m ≤ C1

( ∑

|ν|+1≤|ρ|≤m

||(xρϕε) ∗(x) u||3m + ε||u||m

= C


∑

|ν|+1≤|ρ|≤m

||uρε ||3m+ ε||u||2m

 .(2.14)

We defineννε = ε
−θ|ν|uνε whereθ > 0 is small constant. Multiplying

(2.13) byε−2θ|ν| and settingSε(t) =
∑
ν
||vνε(t)||22m we have (after adding

for ν over 0≤ |ν| ≤ m from (2.14)

d
dt

(Sε(t)) ≤ −δ′
∑

ν

||vνε(t)||23m + γ1Sε(t) + γ2Fε(t)

+ γ2

∑

ν

ε−2θ|ν|C2(
∑

|ν|+1≤|ρ|≤m

||uρε ||23m + ε
2||u||22m).(2.15)

But
∑

0≤|ν|≤m

ε−2θ|ν|
∑

|ν|+1≤|ρ|≤m

||uρε ||23m =

∑

ν

ε−2θ|ν|
∑

|ν|+1|≤|ρ|≤m

ε2θ|ρ|||vρε ||23m

≤ n′ε2θ
∑

ν

∑

ρ

||vρε ||23m.

Thus

d
dt

Sε(t) ≤ γ1Sǫ(t) + γ2Fε(t) + (γ2C2n′ε2θ − δ′)
∑

0≤|ν|≤m

||vνε||23m

+ c ε2(1−mθ)||u(t)||22m

For smallε > 0, (γ2C1n′ε2θ − δ′) < 0 and hence

d
dt

Sε(t) ≤ γ1Sε(t) + γ2Fε(t) +O(ε2(1−mθ)),



2. Energy inequality for parabolic equations 141

Integrating with respect tot
(2.16)

Sε(t) ≤ exp(γ1t)Sε(0)+ γ2

t∫

0

exp(γ1(t − s))
{
Fε(s) +O(ε2(1−mθ))

}
ds

162

But

||vρε ||22m = ||u
ρ
ε ||22mε

−2θ|ρ|

= (x̂ρϕε)û(ξ)(1+ |ξ|)2m||2ε−2θ|ρ|

by Plancherel’s formular where ˆg denotes the Fourier image ofg in the
x-space and

(x̂ρϕε)(ξ) =
∫

xρϕεe
−2πix.ξdx

= ε|ρ|
∫

xρϕ(x)e−2πi∈x.ξdx

Sinceϕ has its support in|x| < 1. We have

|(x̂ρϕε) (ξ)| ≤ ε|ρ|
∫

ϕ(x) dx= ε|ρ|

Hence
||vρε ||22m ≤ ε

2|ρ|(1−θ)||u||22m

and
∑

0≤|ρ|≤m

||vρε ||22m ≤ ||u||
2
2m

∑

0≤|ρ|≤m

ε2|ρ|(1−θ) ≤ ||u||22m(1+ cε2(1−θ))

which tends to||u||22m asε→ 0. HenceSε(t)→ ||u(t)||22m asε→ 0. Also
Fε(t)→ || f (t)||2m. Hence on taking limits asε→ 0 we have

||u(t)||22m ≤ exp(γ1t)||u(0)||22m + γ2

t∫

0

exp(γ1(t − s))|| f (s)||2mds.

This completes the proof of proposition. � 163
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Finally we consider the case parabolic systems in which the coeffi-
cients are functions of (x, t) in Ω. Let

(2.17)
∂

∂t
u−

∑

|ν|≤2m

aν(x, t)(
∂

∂x
)νu = f

be a parabolic equation of order 2m. That is we assume that

A =
∑

|ν|≤2m

aν(x, t)(
∂

∂x
)ν

is uniformaly negatively elliptic inΩ (Ω = {(x, t)|x ∈ Rn, 0 ≤ t ≤ h).
This means that

Re
∑

|ν|=2m

aν(x, t)(iξ)
ν ≤ −δ|ξ|2m

for all (x, t) ∈ Ω, ξ ∈ Rn, δ > 0.

Proposition 3. Let (2.17) be a parabolic system inΩ with aν ∈ B2m

[0, h] and f ∈ Dm
L2[0, h]. Then, given a u0 ∈ D2m

L2 there exists u∈
D2m

L2 [0, h] satisfying(2.17), with u
∣∣∣∣
t=0
= u0, and which satisfies the en-

ergey inequality(2.11).

Proof. Let 0 = t0 < t1 · · · < tk = h be a subdivision of [0, h] of equal
length. We defineu1(t), . . . , uk(t) in [t0, t1], . . . , [tk−1, tk] by the following
conditions

du1

dt
= A(t0)u1 + f , u1(t0) = u0 for t0 ≤ t ≤ t1

du2

dt
= A(t1)u2 + f , uk(t1) = u1(t1) for t1 ≤ t ≤ t2

duk

dt
= A(tk−1)uk + f , u2(t1) = u1(t1) for tk−1 ≤ t ≤ tk.

We denote byu(k)(t) the function which int j−1 ≤ t ≤ t j is equal to164

u j(t). It is easy to see that{u(k)(t)} is a uniformly bounded set. More
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precisely it is a bounded set in the Hilbert spaceE
2m,1
L2 (Ω), consisting of

all the functionsu ∈ L2 such that

∂u
∂t
∈ L2,

(
∂

∂x

)ν
u ∈ L2 for |ν| ≤ 2m,

where the derivatives are taken in the sense of distributions. E
2m,1
L2 (Ω)

provided with the scalar product

(u, v)
E

2m,1

L2 (Ω) = (u, v)L2(Ω) +

(
∂u
∂t
,
∂v
∂t

)

L2(Ω)
+

∑

|ν|≤2m

((
∂

∂x

)ν
u,

(
∂

∂x

)
v

)

L2(Ω)

is a Hilbert space. Hence
{
u(k)(t)

}
has a weak limit inE 2m,1

L2 (Ω), say
u(x, t) · u(x, t) satisfies the equation

(2.18)
∂u
∂t
= Au+ f

in the sense of distributions. We shall now show thatu ∈ D2m
L2 [0, h]. We

know thatu ∈ L2[0, h]. If ϕε be mollifiers of Friedrichs consider the
equation

∂

∂t
((xνϕε) ∗(x) u) = A((xνϕε)) ∗(x) u) + (xνϕε) ∗(x) f +

[
(xνϕε)∗(x),A

]
u

for |ν| ≤ m. The functionsuνε = (xνϕ∈) ∗(x) u form a Cauchy sequence as
ε→ 0. This can be proved by an argument similar to the one in Prop.2.
It can also be shown that 165

uνε → u(t) in D
2m
L2 for ν = 0,

→ 0 in D
2m
L2 otherwise

uniformly in t. This proves that the energy inequality (2.11) holds in
this case also.

Recent work by P. Sobolevskii develops the semi-group theory for
the equations of the parabolic type by using fractional powers. Equa-
tions of parabolic type in Banach space, Trudy Moscov Mat, Obsc.
10(1961), 297 - 350. �





Chapter 5

In this chapter we study non-linear equations. Much of this chapter is 166

inspired by the recent monograph of S.L. Sobolev: Sur les equations
aux derivees particlles hyperboliques non-lineaires (Cremonese, Roma
1961).

1 Preliminaries to the study of semi-linear
equations

In this section we recall, without giving the proofs, a few results of
Sobolev concering the differentiability properties of functions belonging
to the spacesDm

L2. More precisely we give estimates in theLp norm for
the derivatives of these functions in terms of their norms inthe space
Dm

L2. We shall also introduce the functions spacesD s
L2 for any aribitrary

real numbers≥ 0 and obtainL2 estimates of some non-linear functions
of derivatives of functions belonging to the spacesD s

L2.
To begin with the state the following important result due toSobolev

[1].

Proposition 1 (Sobolev’s lemma). Let p and q be positive numbers with

p > 1
q>1

, and
1
p
+

1
q
> 1. If g ∈ Lp and h∈ Lq then

(1.1)

∣∣∣∣∣∣

"
g(x)h(y)
|x− y|λ

dx dy

∣∣∣∣∣∣ ≤ K||g||Lp ||h||Lq,

145
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whereλ = n(2− 1
p
− 1

q
) and K is a constant depending only on p, q, n.

Suppose u∈ Lp and a numberλ such that0 < λ < n and
λ

n
> 1− 1

p
are given. Then the above inequality implies that the linearmapping

(1.2) h→
∫

(u(y) ∗ 1
|y|λ

) · h(y) dy

is a continuous linear functional on the space Lq for q > 1 with
1
q
=167

(
2− 1

p
− λ

n

)
. Hence u∗ 1

|x|λ
∈ Lq′ where q′ satisfies

1
q′
= 1 − 1

q
=

λ

n
+

1
p
− 1. This proves the following

Corollary 1. Let u ∈ Lp for a p > 1 andλ be a positive number such

that0 < λ < n and
λ

n
> 1− 1

p
. Then u∗ 1

|x|λ
∈ Lq′ where

1
q′
=
λ

n
+

1
p
−1.

In corollary 1 takingp = 2 andλ a number such that
n
2
< λ < n we

have the following

Corollary 2. If u ∈ L2 then for any positive numberλ such that
n
2
<

λ < n we have u∗ 1
|x|λ
∈ Lq where

1
q
=
λ

n
− 1

2
and

(1.3) ||u ∗ 1
|x|λ
||Lq ≤ K||u||L2

where K is a constant depending on n, λ.

We shall now introduce the function spaceD s
L2 ≡ D s

L2(R
n) for any

arbitrary real numbers> 0.
Let Ω be an open set in Rn and m be a non-negative integer. We

recall thatE m
L2(Ω) denotes the space of all square integrable functionsf

onΩ for which all the derivative

(
∂

∂x

)ν
f (in the sense of distributions)
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of orders|ν| ≤ m are again square integrable functions onΩ. E m
L2(Ω) is

provided with the scalar product
(1.4)

( f , g)Em
L2

(Ω) ≡ ( f , g)m =

∑

|α|≤m

((
∂

∂x

)α)
f ,

(
∂

∂x

)α
g)L2(Ω) for f , g ∈ E

m
L2(Ω)

168

Here

(
∂

∂x

)α
denotes a derivation in the sense of distributions.E m

L2(Ω)

is a Hilbet space for this scalar product. ClearlyD(Ω) ⊂ E m
L2(Ω). The

closure ofD(Ω) in E m
L2(Ω) is deoted byDm

L2(Ω) ·Dm
L2(Ω), with the scalar

product which is the restriction of that inE m
L2(Ω), is again a Hilbert

space. In generalDm
L2(Ω) , E m

L2(Ω). However whenΩ = Rn we have
Dm

L2(R
n) = E m

L2(R
n). We writeDm

L2(R
n) = E m

L2(R
n) = Dm

L2 for abbrevia-
tion. The elements ofDm

L2(Ω) can be considered as functions vanishing
upto order (m− 1) (in a generalized sense) on the boundary ofΩ.

We observe thatDm
L2 ⊂ L ′. Hence by Plancheral’s theorem we have

|| f ||2m = || f ||2Dm
L2
=

∑

|α|≤m

||
(
∂

∂x

)α
f ||2L2 =

∑

|α|≤m

||(2πiξ)α f̂ ||L2

where f̂ is the Fourier image off . Now there exist constantsc1, c2 > 0
such that

c2
1(1+ |ξ|)2m ≤

∑

|α|≤m

|(2πiξ)α|2 ≤ c2
2(1+ |ξ|)2m.

Thus, if f ∈ Dm
L2 then (1+ |ξ|)m f ∈ L2 and further

C1||(1+ |ξ|)m f̂ ||L2 ≤ || f ||m ≤ C2||(1+ |ξ|)m f̂ ||L2.

HenceDm
L2 can also be defined as the space of all tempered distribu-169

tions f such that (1+ |ξ|)m f̂ ∈ L2 where f̂ denotes the Fourier image of
f . This motivatives the following.

Definition. For any reals,D s
L2 is the space of tempered distributionsf

such that (1+ |ξ|)s f̂ ∈ L2.
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D2
L2 is provided with the scalar product

(1.5) (f , g)s ≡ ( f , g)D s
L2
= ((1+ |ξ|)s f̂ , (1+ |ξ|)sĝ)L2

For this scalar productD s
L2 is a Hilbert space. It is clear that ifs≥ s′

thenD s
L2 ⊂ D s′

L2 and the inclusion mapping is continuous.

Remarks. (1) The dual space ofD s
L2 is D−s

L2 : (D s
L2)
′
= D−s

L2 .

(2) The mappingu→ ∂u
∂x j

from D s
L2 into D s−1

L2 is continuous.

(3) The mappings defined by

(a(x), u) → a(x)u

(i) from Bm× Dm
L2 into Dm

L2 and (ii) fromBm × D−m
L2 into D−m

L2 are
continuous form= 0, 1, 2, . . .

Lemma 1. Let s be a real number≥ 0

(i) If u ∈ D s
L2 for 0 ≤ s<

n
2

then u∈ Lp where
1
p
=

1
2
− s

n
> 0 and

(1.6) ||u||Lp ≤ c(s, n)||u||s

where the constant c(s, n) depends only on s and n;170

(ii) If u ∈ D s
L2 for s>

n
2

then u∈ B0 and

(1.7) ||u||B0 ≤ c(s, n)||u||s

where the constant c(s, n) depends only on s, n.

More precisely, for anyσ ≤ 1 with 0 < σ < s− n
2

we have

(1.8) ||u||Bσ ≤ c(s, n, σ)||u||s

where the constant c(s, n, σ) depends only on s, n,σ.
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Remark . We recall that
1
|x|λ

is tempered distribution and we have the

formulae giving its Fourier image.

F

(
1
|x|m

)
=

1

Π
n
2−m

Γ(m−n
2 )

Γ(m
2 )

(
1
|ξ|n−m

)
for

n
2
≤ m< n and

F

(
1
|x|n−m

)
=

1

Π
m− n

2

Γ(m
2 )

Γ(n−m
2 )

(
1
|ξ|m

)
for 0 < m<

n
2
.

(1.9)

For proof of these formulae we refer to L. Schwartz, Theorie des
distributions, Vol. II, p. 113.

Proof of Lemma 1 : (i) The assertion (i) is trivial whens = 0. Hence
we may assume that 0< s <

n
2

. Let u ∈ D s
L2. Writing û as |ξ|−s(|ξ|sû)

we have

u = c · 1
|x|n−s ∗ (∧su)

by taking the inverse Fourier images and using the above remark (we
note thatc is a positive constant depending only onn, s). It follows now,
from cor. 2 after Prop. 1, thatu ∈ Lp and 171

||u||Lp = c|| 1
|x|n−s ∗ (∧su)||Lp ≤ c(s, n)|| ∧s u||L2

where
1
p
=

1
2
− s

n
(the constantc(s, n) depends only ons, n) . By

Plancheral’s theorem we have

|| ∧s u||L2 = || |ξ|2û||L2 ≤ ||(1+ |ξ|)sû||L2 = ||u||s.

This proves the inequality (1.6).

(ii) Let u ∈ D s
L2 for s >

n
2

. We have, using Cauchy-Schwarz in-

equality

|u(x)| ≤
∫
|û(ξ)|dξ ≤ ||(1+ |ξ|)sû||L2||(1+ |ξ|)−s||L2

which implies that|u(x)| ≤ c(s, n)||u||s wherec(s, n) is a constant de-
pending only ons, n.
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We shall now prove Hölder continuity ofu. Consider

u(x) − u(x′) =
∫

exp(2πi x.ξ · ξ)û(ξ)dξ −
∫

exp(2πix′.ξ)û(ξ)dξ

=

∫
exp(2πix.ξ){1− exp(2πi(x′ − x).ξ}û(ξ)dξ.

For any real numberσ such that 0< σ ≤ 1 let

(1.10) Mσ = sup
−∞<λ<∞

∣∣∣∣∣∣
eiλ − 1
λσ

∣∣∣∣∣∣

Clearly Mσ < ∞. Takingλ′ = 2Π(x− x′) · ξ we obtain

|1− exp(2πi(x′ − x) · ξ)| ≤ Mσ(2π|x− x′| |ξ|)σ.

Hence172

|u(x) − u(x′)|
|x− x′| ≤ (2π)σMσ

∫
|ξ|σ|û(ξ)|dξ

≤ (2π)σMσ||(1+ |ξ|)sû||L2||(1+ |ξ|σ−s)||L2.

We know thatσ − s < −n
2

implies ||(1 + |ξ|)σ−s||L2 < ∞ and this

proves the Holder continuity ofu. Thusu ∈ Bσ for anyσ ≤ 1 with

0 < σ < s− n
2

.

Proposition 2. If u ∈ D
[ n

2 ]+1

L2 then, for1 ≤ |ν| ≤
[n
2

]
+ 1,

(
∂

∂x

)ν
u ∈ Lp

wherep is a positive number such that

(a)
1
p
∈

[
|ν|
n
− 1

n
,
1
2

]
− {0} when n is even,

(b)
1
p
∈

[
|ν|
n
− 1

2n
,
1
2

]
when n is odd

Further the mapping u→
(
∂

∂x

)ν
u is continuous fromD

[ n
2 ]+1

L2 into L2

and we have the inequality

(1.11) ||
(
∂

∂x

)ν
u||Lp ≤ c(ν, n, p)||u||[ n

2 ]+1.
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The constant c(ν, n, p) depends only onν, n, p.
Before proceeding with the proof of this proposition we introduce

the following

Definition . The operatorΛs. For anyu ∈ Dσ
L2 with −∞ < σ < ∞ the

operatorΛs is defined by the condition thatΛsu is the inverse Fourier 173

image of|ξ|2û.

Proof. For any reals≥ 0 such thats≤
[n
2

]
+ 1, u ∈ D

[ n
2 ]+1

L2 implies that

u ∈ D s
L2. Since the inverse Fourier image of

1

|ξ|s−|ν|
is c(n, ν)

1

|x|n−(s−|ν|)

we can write
(
∂

∂x

)ν
u = c(n, ν)

1

|x|n−(s−|ν|) ∗
(
Λ

s−|ν|
(
∂

∂x

)ν
u

)

by taking inverse Fourier image of



∂̂

∂x


ν

u

 = (2πiξ)νû =
1

|ξ|s−|ν|
{|ξ|s−|ν|(2πiξ)νû}.

Hence it follows, from Cor. 2 of Prop. 1, that

||
(
∂

∂x

)ν
u||Lp = c(n, ν)‖ 1

|x|n−(s−|ν|) ∗ Λ
s−|ν|

(
∂

∂x

)ν
u||Lp

≤ c(s, n, ν)||Λs−|ν|
(
∂

∂x

)ν
u||L2

for
1
p
=

n− (s− |ν|)
n

− 1
2
=

1
2
− s− |ν|

n
. On the other hand we know that

||Λs−|ν|
(
∂

∂x

)ν
u||L2 ≤ ||u||s ≤ ||u||[ n

2 ]+1

which proves that

||
(
∂

∂x

)ν
u||Lp ≤ c(s, n, ν)||u||[ n

2 ]+1.



152 5.

Using the fact that|ν| ≤ s≤
[n
2

]
+ 1 we have, since

1
p
∈

[
1
2
−

[ n
2] + 1− |ν|

n
,
1
2

]
− {0},

that
1
p
∈

[
|ν|
n
− 1

n
,
1
2

]
−{0}whenn is even and similarly

1
p
∈

[
|ν|
n
− 1

n
,
1
2

]
174

whenn is odd.
An entirely analogous proof will yield �

Proposition 2′. If u ∈ D
[ n

2 ]+N

L2 we have

(
∂

∂x

)ν
u ∈ Lp where p is a

positive number such that

(a)
1
p
∈

[
|ν|
n
− N

n
,
1
2

]
− {0} when n is even and

(b)
1
p
∈

[
|ν|
n
− 2N − 1

2n
,
1
2

]
when n is odd, where1 ≤ N ≤ |ν| ≤

[n
2

]
+N.

Fourther the mapping u→
(
∂

∂x

)ν
u is continuous fromD

[ n
2 ]+N

L2 into

Lp and we have the inequality

(1.12) ||
(
∂

∂x

)ν
u||Lp ≤ c(ν, ||n,N, p)||u||[ n

2 ]+N

where the constant c(ν, n,N, p) depends onlyν, n, N, p.
The following result gives estimates in the L2 norm of some non-

linear functions of the derivatives of functions belongingto D s
L2. The

proofs are based essentially on the above result and a generalization of
Holder’s inequality which we recall without proof.

Proposition 3 (Generalized Hölder’s inequality). Letλ1, . . . , λp be pos-

itive numbers> 1 such that
∑ 1
λ j
= 1. If f1, . . . , fp are functions be-

longing to Lλ1, . . . , Lλp respectively then

(1.13)
∫
| f1(x) . . . fp(x)|dx≤ || f1||Lλ1, . . . || fp||Lλp.
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Proposition 4. Let l be an arbitrary integer≥ 1 and ν1, . . . , ν1 denote175

multi-indices

(i) If u ∈ D
[ n

2 ]+1

L2 and
∑
|ν j | ≤

[n
2

]
+ 1 then

(
∂

∂x

)ν1

u . . .

(
∂

∂x

)ν1

u ∈ L2

and satisfies

(1.14) ||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 ≤ c||u||l[ n
2 ]+1

where c depends on n,ν1, . . . , ν1 only.

(ii) If u ∈ D
[ n

2 ]+2

L2 and
∑ |ν j | ≤

[n
2

]
+ 2 then

(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u ∈ L2

and satisfies

(1.15) ||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)ν1

u||L2 ≤ c||u||l−1
[ n

2]+1
||u||[ n

2]+2;

the constant c depends only on n,ν1, . . . , νl .

(iii) If u ∈ D
[ n

2]+N+1

L2 and
∑ |ν j | ≤

[n
2

]
+N+1 then

(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u ∈

L2 and satisfies

(1.16) ||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 ≤ c||u||l−1
[ n

2]+N
||u||[ n

2]+N+1;

the constant c depend only on n, N,ν1, . . . , νl.

Proof. The casel = 1 is trivial. If ν j = 0 for somej one can majorize
u in the maximum norm by||u||[ n

2]+1. Hence we may assume thatl ≤ 2
and|ν j | ≥ 1.

(i) Sinceu ∈ D
[ n

2]+1

L2 it follows, from Prop. 2, that

(
∂

∂x

)ν j

u ∈ Lp j for 176

1 ≤ |ν j | ≤
[n
2

]
+ 1 wherep j is a real number such that

(a)
1
p j
∈

[ |ν j |
n
− 1

n
,
1
2

]
− {0} whenn is even and
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(b)
1
p j
∈

[ |ν j |
n
− 1

2n
,
1
2

]
whenn is odd.

Further we have

||
(
∂

∂x

)ν j

u||Lp j ≤ c(ν j , n, p j)||u||[ n
2]+1( j = 1, . . . , l).

Let
1
P j

denote the infimum of
1
p j

in this range.

If n is even (a) implies that

∑ 1
P j
=

∑( |ν j |
n
− 1

n

)
≤

n
2 + 1

n
−

∑ 1
n
<

1
2
+

1
n

and so. One can choosep1, . . . , pl satisfying (a) and such that
∑ 1

p j
=

1
2

. Similarly if n is odd (b) implies that

∑ 1
P j
=

∑( |ν j |
n
− 1

2n

)
≤

n−1
2 + 1

n
−

∑ 1
2n
≤ 1

2
+

1
2n
.

Again one can choosep1, . . . , p1 such that
∑ 1

p j
=

1
2

and satis-

fies (b). Applying the generalized Hölder’s inequality with these
p1, . . . , pl we obtain

∫
|
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u
∣∣∣∣
2
dx≤ Π j

(∫
|
(
∂

∂x

)ν j

u|2.
pj
2 dx

)2/p j

=

∏

j

‖
(
∂

∂x

)ν j

u||2L pj ≤ c(ν1, . . . , ν1,n)||u||2l
[ n

2 ]+1

(ii) Sinceu ∈ D
[ n

2]+2

L2 it follows, from Prop. 2′ that

(
∂

∂x

)ν j

u ∈ Lpj ( j =177

1, . . . , l) and

||
(
∂

∂x

)ν1

u||Lp1 ≤ c(ν1, n, p1)||u||[ n
2]+2′
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||
(
∂

∂x

)ν j

u||Lpj ≤ c(ν j , n, p j)||u||[ n
2]+1( j = 2, . . . , l)

for 1 ≤ |ν1| ≤
[n
2

]
+ 2, 1≤ |ν j | ≤

[n
2

]
+ 1 wherep1, . . . , pl are real

numbers such that

(a1)
1
p1
∈

[
|ν1|
n
− 2

n
,
1
2

]
− {0} whenn is even,

(b1)
1
p1
∈

[
|ν1|
n
− 3

2n
,
1
2

]
whenn is odd

and

(aj)
1
p j
∈

[ |ν j |
n
− 1

n
,
1
2

]
− {0} whenn is even,

(b j)
1
p j
∈

[ |ν j |
n
− 1

2n
,
1
2

]
whenn is odd (j = 2, . . . , l).

We may without loss of generality assume that|ν1| ≥ |ν j | for j =
2, . . . , l.

(1) Suppose|ν1| = 1. Since
∑l

2 |ν j | ≤
[n
2

]
+ 1 we have from

lemma 1 that

||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 ≤ sup|
(
∂

∂x

)ν1

u| · ||
(
∂

∂x

)ν2

u . . .

(
∂

∂x

)νl

u||L2

≤ c(n)||u||[ n
2]+2 · ||

(
∂

∂x

)ν2

u . . .

(
∂

∂x

)νl

u||L2

(iii) Suppose|ν j | ≥ 2( j = 2, . . . , l) then we have the estimates of the

type (1.11). As before we denote the infimum of
1
p j

by
1
P j

( j =

1, . . . , l).

If n is even (a1), (aj) imply that 178

∑ 1
P j
=
|ν1|
n
− 2

n
+

l∑

2

+

(
|ν j|
n
− 1

n

)
<

1
2
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and if n is odd (b1), (b j) imply that
∑ 1

P j
<

1
2

. In either of the cases we

can choosep2, . . . , pl such that
∑ 1

p j
=

1
2

.

Again applying the generalized Hölder’s inequality we obtain

||
(
∂

∂x

)ν1

u . . . ||
(
∂

∂x

)ν1

u||L2 ≤
∏

j

||
(
∂

∂x

)ν j

u||Lpj

≤ c(n, ν1, . . . , ν1)||u||l−1
[ n

2]+1
||u||[ n

2]+2.

As before we may assume that|ν1| ≥ |ν j | for j = 2, . . . , l. Let u ∈
D

[ n
2]+N+1

L2 . We distinguish the following three different cases:

(α)|ν1| ≤ N − 1, (β)|ν1| = N, (γ)|ν j | ≥ N.

�

Case(α). Since|ν j | ≤ |ν1| ≤ N − 1 by Sobolev’s lemma we have

sup|
(
∂

∂x

)ν j

u| ≤ c||u||[ n
2]+N.

Therefore we have

||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 ≤ ||
(
∂

∂x

)ν1

u||L2 ·
l∏

j=2

sup|
(
∂

∂x

)ν j

u|

≤ C||u|||ν1| · ||u||l−1
[ n

2]+N

≤ C||u||[ n
2]+N+1 · ||u|l−1

[ n
2]+N

.

Case(β). |ν1| = N implies that
l∑

j=2
|ν j ≤

[n
2

]
+ 1 and we have from179

lemma 1 that

||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 ≤ sup|
(
∂

∂x

)ν1

u| ||
(
∂

∂x

)ν2

u . . .

(
∂

∂x

)νl

u||L2.
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By Sobolev’s lemma we have

sup|
(
∂

∂x

)ν1

u| ≤ c(n,N, ν1)||u||[ n
2]+N+1

and on the other hand

(
∂

∂x

)ν j

u ∈ Lpj with

||
(
∂

∂x

)ν j

u||pj

L ≤ c(n,N, ν j , p j)||u||[ n
2]+N

for
1
p j
∈

[ |ν j |
n
− N

n
,
1
2

]
− {0} if n is even and

1
p j
∈

[ |ν j |
n
− 2N − 1

n
,
1
2

]
if

n is odd (from Prop. 2′).

Denoting inf
1
p j

by
1
p j

we see that
l∑

j=2

1
P j
=

∑( |ν j |
n
− N

n

)
<

1
2

if n

is even and
l∑

j=2

1
P j
=

∑( |ν j |
n
− 2N − 1

n

)
<

1
2

if n is odd. One can choose

p2, . . . , pl such that
l∑

j=2

1
p j
=

1
2

in both the cases. An application of the

generalized Hölder’s inequality with thesep2, . . . , pl gives

||
(
∂

∂x

)ν2

u . . . ||
(
∂

∂x

)νl

u||L2 ≤
l∏

j=2

||
(
∂

∂x

)ν j

u||Lp j

≤ c(n, ν2, . . . νl ,N, p2, . . . , pl)||u||l−1
[ n

2]+N

(γ) If |ν j | ≥ N for j = 2, . . . , l we have from Prop. 2′ that 180

||
(
∂

∂x

)ν1

u||Lp1 ≤ c(ν1, p1,N, n)||u||[ n
2]+N+1

and ||
(
∂

∂x

)ν j

u||Lp j ≤ c(ν j , p j ,N, n)||u||[n
2

]
+N

where p1, . . . , pl are real

numbers such that


1
p1
∈

[ |ν1|
n −

N+1
n , 1

2

]
− {0},

1
pj
∈

[ |ν j |
n −

N
n ,

1
2

]
− 0 for evenn and
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1
p1
∈

[ |ν1|
n −

2N+1
2n , 1

2

]

1
pj
∈

[ |ν j |
n −

2N−1
2n , 1

2

]
for oddn.

If
1
P j

denotes inf
1
p j

we have

l∑

j=1

1
P j
=

l∑

j=1

( |ν j |
n

)
− N + 1

n
−

l∑

j=2

N
n
<

1
2

for evenn and

l∑

j=1

1
P j
=

l∑

j=1

( |ν j |
n

)
− 2N + 1

2n
−

l∑

j=2

<
2N − 1

2n
<

1
2

for oddn.

Once again choosingp2, . . . , pl such that
l∑

j=2

1
p j
=

1
2

we obtain the

desired inequality after applying the genearlized Hölder’s inequality to

||
(
∂

∂x

)ν1

u . . .

(
∂

∂x

)νl

u||L2 with thesep1, . . . , pl and using the estimates of

the form (1.11).
By an argument completely analogous to the one in the prop. 4 one181

can establish the following more general result.

Proposition 5. Let l be an arbitrary integer andν1, . . . , ν1 be l multi-
indices.

(i) If u1, . . . , ul ∈ D
[ n

2]+1

L2 and
l∑

j=1
|ν j | ≤

[n
2

]
+ 1 then

(
∂

∂x

)ν1

u1 . . .

(
∂

∂x

)νl

ul ∈ L2. Further

(1.17) ||
(
∂

∂x

)ν1

u1 . . .

(
∂

∂x

)νl

ul ||L2 ≤ c
l∏

j=1

||u j ||[ n
2]+1

where the constant c depends only on n,ν1, . . . , νl.
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(ii) Let |ν1| ≥ |ν j for j = 2, . . . , l. If u1 ∈ D
[ n

2]+N+1

L2 , u2, . . . , ulD
[ n

2]+N

L2

and
∑ |ν j | ≤

[n
2

]
+ N + 1 then

(
∂

∂x

)ν1

u1 . . .

(
∂

∂x

)νl

ul ∈ L2 and

(1.18) ||
(
∂

∂x

)ν1

u1 . . .

(
∂

∂x

)νl

ul ||L2 ≤ c||u1||[ n
2]+N+1

l∏

j=2

||u j ||[ n
2]+N

where c depends only on n, ν1, . . . , ν1,N.

2 Regularity of some non-linear functions

Here we make a few remarks on the local properties of certain smooth
non-linear functions ofx, t, u which will be required for the study of
some quasi-linear differential equations. LetΩ denote the set

{
(x, t)

∣∣∣∣x ∈ Rn, 0 ≤ t ≤ T
}
.

Let f (x, t, u) be a function belonging toE [ n
2]+2(Ω × C). For a fixed

function α ∈ D(Rn) we denoteα(x) f (x, t, u) by f̃ (x, t, u). α localizes 182

f (x, t, u) in the x-space. We use the following abbreviations

(
∂

∂x
,
∂

∂u

)β

stands for a derivation of order|β| with respect tox and u; F(x, t),
F̃(x, t),G(x, t), . . . stand respectively for

f (x, t, u(x, t)), f̃ (x, t, u(x, t)), g(x, t, u(x, t)) . . . .

Let U be the subset ofΩ × C defined by

(2.1) U = {(x, t, u)|(x, t) ∈ Ω, |u| ≤ sup
Ω

|u(x, t)|}.

Throughout this sectionc1(n), c2(n), . . . denote constants depending
only onn.

Lemma 1. If u ∈ D
[ n

2]+1

L2 [0,T] thenF̃ = F̃(x, t) ∈ D
[ n

2]+1

L2 [0,T] and

(2.2) ||F̃ ||[ n
2]+1 ≤ c1(n)M

{
||1+ ||u||[

n
2]+1

[ n
2]+1

}
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where M= max
|β|≤ n

2+1
sup

U

∣∣∣∣
(
∂

∂x
,
∂

∂u

)β
f̃ (x, t, u)

∣∣∣∣.

Before proceeding with the proof of the lemma 1 we make the fol-

lowing two remarks. Letu ∈ D
[ n

2]+1

L2 [0,T]. Let ϕε be the mollifiers in
the x-space and letuε(x, t) = u(x, t) ∗(x) ϕε(x); then

(i) uε ∈ B0
x[0,T] and

(2.3) |uε(x, t)|B0
x
≤ |u(x, t)|B0

x
.

This is an immediate consequence of lemma 1§ 1 of Chap. 3.

(ii) uε ∈ D s
L2[0,T] and183

||uε||s ≤ ||u||s for 0 ≤ s≤
[n
2

]
+ 1.

In fact, we observe that ˆϕε(ξ) = ϕ̂(εξ) → ϕ̂(0) = 1 asε → 0.
Consider

||uε − u||s = ||(1+ |ξ|)s(ûε(ξ, t) − û(ξ, t))||L2

= ||(1+ |ξ|)sû(ξ, t) − (ϕ̂ε(ξ) − 1)||L2

which converges to 0 asε→ 0. Hence

||uε|| ≤ ||u|| + ||uε − u||

implies the assertion.

Proof of the Lemma.Through out the proof the derivatives with respect
to x are taken in the sense of distributions. Denotingf̃ (x, t, uε(x, t)) by
F̃ε(x, t) we see that̃Fε(x, t)→ F(x, t) asε→ 0. For,

||F̃ε(x, t) − F(x, t)||L2 = ||
[
∂ f̃
∂u

]
(x, t, u(x, t)) · (uε(x, t) − u(x, t))||L2

which tends to 0 asε→ 0. Now, for 1≤ j ≤ n,

∂

∂x j
F(x, t) = lim

ε→0

∂

∂x j
Fε(x, t)
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where the limit is taken in the spaceL2. In fact, we can write

∂

∂x j
F̃ε(x, t) =

[
∂ f̃
∂x j

]
(x, t, uε(x, t)) +

[
∂ f̃
∂u

]
(x, t, uε(x, t)) ·

∂uε
∂x j

(x, t)

in the sense of distributions. This function tends to
[
∂ f̃
∂x j

]
(x, t, u(x, t)) +

[
∂ f̃
∂u

]
(x, t, u(x, t)) · ∂u

∂x j
(x, t).

in the spaceL2[0,T], becauseu ∈ D
[ n

2]+1

L2 [0,T] implies that

[
∂ f̃
∂x j

]
184

(x, t, u(x, t)),

[
∂ f̃
∂u

]
(x, t, u(x, t)) belong to the spaceB0

x[0,T].

For a multi-indexν with |ν| ≤ [
n
2

] + 1 we have

(2.4)(
∂

∂x

)ν
F̃ε(x, t) =

∑

|ρ j |≤|ν|
l≤|ν|

Cρ1...ρl gρ1...ρl (x, t, uε(x, t))
l∏

j=1

(
∂

∂x

)ρ j

uε(x, t)

whereCρ1...ρl are constants andgρ1...ρl (x, t, u) is one of the derivatives(
∂

∂x
,
∂

∂u

)β
f̃ (x, t, u) of orders|β| ≤ |ν|. This identity is again taken in the

sense of distributions in thex-space. In view of the prop. 4§ 1, the
function.
(2.5)

gρ1...ρl (x, t, u(x, t))
l∏

j=1

(
∂

∂x

)ρ j

u(x, t) ≡ Gρ1...ρl (x, t)
1∏

j=1

(
∂

∂x

)ρ j

u(x, t)

belongs toL2[0,T]. Setting
(2.6)

Jε(x) = Gρ1...ρl ,ε(x, t)
l∏

j=1

(
∂

∂x

)ρ j

uε(x, t) −Gρ1...ρl (x, t)
l∏

j=1

(
∂

∂x

)ρ j

u(x, t)

we have

||Jε||L2 ≤M

||(uε − u)(x, t)
l∏

j=1

(
∂

∂xj

)ρ j

u(x, t)||L2
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+

l∑

j=1

||u(x, t)

(
∂

∂x

)ρl

u(x, t) . . .

(
∂

∂x

)ρ j

u(x, t)

(
∂

∂x

)ρ j+1

(uε − u)(x, t)

(
∂

∂x

)ρl

uε(x, t)||L2 .

The prop. 4 of§ 1 implies that185

(2.7) ||Jε||L2 ≤ c2(n)M||(uε − u)||[ n
2]+1||u||1−1

[ n
2 ||]+1

which tends to 0 asε→ 0. This proves that

(2.8)

(
∂

∂x

)ν
f̃ ((x, t), u(x, t)) =

∑
cρl ...ρlGρ1...ρl (x, t)

l∏

j=1

(
∂

∂x

)ρ j

u(x, t).

Again applying Prop. 4§ 1 to (2.8) it is easy to see that the estimate
(2.2) holds. The continuity int of F is proved as before. This completes
the proof of the lemma.

The following results are proved in exactly the same manner as the
lemma 1.

Corollary 1. If f (x, t, u) ∈ E [ n
2]+N+1(Ω× ∈) and u ∈ D

[ n
2]+N+1

L2 [0,T]
then

(2.9) ||F̃(x, t)||[ n
2]+N+1 ≤ C3(n)M1

{
1+ (1+ ||u||[

n
2]+N

[ n
2]+N+1

)||u||[ n
2]+N+1

}

where M1 = max
|β|≤[ n

2]+N+1
sup

U

∣∣∣∣∣∣∣

(
∂

∂x
,
∂

∂u

)β
f̃ (x, t, u)

∣∣∣∣∣∣∣
.

Corollary 2. If f (x, t, u1, . . . , us) ∈ E [ n
2]+2(Ω × Cs) and uj ∈ D [ n

2]+1

[0,T](1 ≤ j ≤ s) thenα(x) ∈ D implies that

α(x) f (x, t, u1(x, t), . . . , us(x, t)) ∈ D
[ n

2]+1

L2 [0,T]

and

||α(x) f (x, t, u1(x, t), . . . , us(x, t))||[ n
2]+1

≤ C4(n)M2{1+
s∑

j=1

||u j(x, t)||[
n
2]+1

[ n
2]+1

(2.10)

where M2 = max
|β|≤[ n

2]+1
sup
Us

|
(
∂

∂x
,
∂

∂u

)β
[α(x) f (x, t, u1(x, t), . . . , us(x, t))]|.186
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HereUs is the subset ofΩ × Cs defined by

(2.11) Us =

{
(x, t, u1, . . . , us)

∣∣∣∣∣|u j | ≤ sup
Ω

|u j(x, t)|, 1 ≤ j ≤ s

}
.

Corollary 3. If f (x, t, u) is a vector valued function



f1(x, t, u)
...

fm(x, t, u)



with fk ∈ E [ n
2]+2(Ω×C) for 1 ≤ k ≤ m and u∈ D

[ n
2]+1

L2 [0,T] thenα ∈ D

implies thatα(x) fk(x, t, u(x, t)) belong to the spaceD [ n
2]+1

L2 [0,T] and

||α(x) f (x, t, u(x, t))||[ n
2]+1 =

∑

k

||α(x) fk(x, t, u(x, t))||[ n
2]+1

≤ C5(n)M3(1+ ||u(x, t)||[
n
2]+1

[ n
2]+1

)(2.12)

where M3 = max
k,|β|≤[ n

2]+1
sup

U
|
(
∂

∂x
,
∂

∂u

)β
[α(x) fk(x, t, u)]|.

Similar results hold whenu is a vector (u1, . . . , us) and whenu j ∈
D

[ n
2]+N+1

L2 [0,T].
Finally we state a result which is a consequence of these and will be

of importance.

Corollary 4. Let f(x, t, u1, . . . , us) ∈ E [ n
2]+2(Ω × Cs) andν1, . . . , νs de- 187

note multi-indices. If u∈ D [ n
2]+m+1[0,T] and |ν1| + · · · + |νs| ≤ m then

α(x) f

(
x, t,

(
∂

∂x

)ν1

(u(x, t)), . . . ,

(
∂

∂x

)νs

u(x, t)

)
∈ D

[ n
2]+1

L2 [0,T]

and

||α(x) f

(
x, t, . . . ,

(
∂

∂x

)ν1

u(x, t), . . .

)
||[ n

2]+1
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≤ M′c(n,m)
{
1+ ||u||[

n
2]+1

[ n
2]+m+1

}
,(2.13)

where M′ = max
|β|≤[ n

2]+2
sup
U′s

(
∂

∂x
,
∂

∂u1
, . . . ,

∂

∂us

)β
[α(x) f (x, t, u1, . . . , us)]|.

Here again
(2.14)

U′s =

{
(x, t, u1, . . . , u2)

∣∣∣∣∣(x, t) ∈ Ω, |u j | ≤ sup|
(
∂

∂x

)ν j

u(x, t)|, 1 ≤ j ≤ s

}
.

Proof. From Prop. 4§ 1 we have that, ifu1, . . . , us ∈ D
[ n

2]+1

L2 [0,T] and

if ν1, . . . , νs are multi-indices with
∑ |ν j | ≤

[n
2

]
+ 1 then

(2.15) ||
s∏

j=1

(
∂

∂x

)ν j

u||L2 ≤ C(n, ν1, . . . , vs)
s∏

j=1

||u j ||[ n
2]+1.

Taking u j =

(
∂

∂x

)ν j

u we apply this inequality and the rest of the

proof is the same as in the previous corollaries. �

3 An example of a semi-linear equation

In this section we consider an example of a semi-linear partial differ-
ential equation of the second order and we recall a theorem onthe ex-188

istence of solutions of the Cauchy problem for such an equation. This
result is due to K. Jörgens (see: Das Anfangswertproblem inGrossen
fur eine Klasse nichtlinearer Wellengleichungen, Math.Zeit., 77 (1961),
295-308). This theorem will be proved in§5.

Let u → f (u) be a real valued infinitely differentiable function de-
fined in−∞ < u < ∞. We consider the following semi-linear wave
equation

(3.1)

(
∂

∂t

)2

u− ∆u+ f (u) = 0.
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We assume thatf (0) = 0. We shall show that, under certain condi-
tions on the functionf , for a given smooth initial data (u0,U1) on the
hyperplanet = 0 there exists a unique solutionu of (3.1) in t ≥ 0 with

u(x, 0) = u0(x),
∂

∂t
u(x, 0) = u1(x). For instance, we shall show that if

u0 ∈ D
[ n

2]+2

L2 ∩ E 1, u1 ∈ D
[ n

2]+1

L2 ∩ E 1 then there exists a unique solution
u of (3.1) such that

u ∈ D
[ n

2]+2

L2 ∩ E
′,
∂u
∂t
∈ D

[ n
2]+1

L2 ∩ E
′

both depnding continuously ont in 0 ≤ t ≤ ∞ and such that

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x).

Under the assumptionf (0) = 0 one can also show that if the sup-

ports ofu0 andu1 are contained in{|x| ≤ R0} then the supports ofu,
∂u
∂t

are contained in{|x| ≤ R0 + t}.
Let u0 ∈ D

[ n
2]+3

L2 ∩E ′, u1 ∈ D
[ n

2]+2

L2 ∩E ′ be given with their supports189

contained in{|x| ≤ R0}. Assume that a solution of (3.1) with the initial
data (u0, u1) on t = 0 exists locally. More precisely we assume that
there exists at0 > 0 such that there exists a solutionu of (3.1) defined
in {x ∈ Rn, 0 ≤ t ≤ t0} with the property that

(1) u ∈ (D [ n
2]+3

L2 ∩ E 1)[0, t0]
∂u
∂t
∈ (D [ n

2]+2

L2 ∩ E 1)[0, t0],

(
∂

∂t

)2

u ∈ (D [ n
2]+1

L2 ∩ E 1)[0, t0]) and

1. u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x).

We say that ana priori estimate in theL2-sense for the solution

of the Cauchy problem for (3.1) of order
[n
2

]
+ 1 holds if the follow-

ing conditions is satisfied: for any given initial data (u0, u1) with u0 ∈
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D
[ n

2]+3

L2 ∩ E 1, u1 ∈ D
[ n

2]+2

L2 ∩ E ′ and a numberT > 0 there exists a
constantc ≡ c(T, u0, u1) such that

||u(t)||[ n
2]+1 ≤ c

for all 0 ≤ t ≤ T. whereu exists anu(x, 0) = u0,
∂u
∂t

(x, 0) = u1(x). c is

called an a priori bound.
The following is a special case of a theorem that will be proved in §

5. We state it here to motivate Prop. 1.

Theorem 1. Let f be an infinitely differentiable function in−∞ < u <190

∞ with f(0) = 0. Assume that a priori estimate in the L2-sense for the

solution of the Cauchy problem for(3.1)of order
[n
2

]
+1 holds. Then, for

any intial data(u0, u1) with u0 ∈ Dm
L2∩E 1, u1 ∈ Dm−1

L2 ∩E 1(m≥
[n
2

]
+3)

there exists a unique solution u of(3.1)such that

(1) u ∈ Dm
L2 ∩ E 1,

∂u
∂t
∈ Dm−1

L2 ∩ E 1,

(
∂

∂t

)2

u ∈ Dm−2
L2 ∩ ε′ all depending

continuously on t,

(2) u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x).

Proposition 1. Let f be an infinitely differentiable function in−∞ <

u < ∞ with f(0) = 0. Then

(i) for n = 1 an a priori estimate of order one for the solutions of the
Cauchy problem for(3.1)holds when

(a)
u∫

0

f (v)dv≡ F(u) > −L0 (L0 a positive constant),

(ii) assume further that f(u) satisfies the condition

(b) if n = 2 there existα and k such that

|d f(u)
du
| ≤ α(1+ |u|)k
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and if n= 3 there exists anα such that

|d f(u)
du
| ≤ α(1+ u2).

Then an a priori estimate of order 2 for solutions of the Cauchy
problem for(3.1)holds.

Proof. Assume thatu0 ∈ Dm
L2 ∩ ε1, u1 ∈ Dm−1

L2 ∩ E 1(m ≥
[

n
2

]
+ 3) are 191

given and also that there exists a solutionu of the Cauchy problem for
(3.1) with initial data (u0, u1) such that

u ∈ (Dm
L2 ∩ E

′)[0,T],
∂u
∂t
∈ (Dm−1

L2 ∩ E
′)[0,T],

(
∂

∂t

)2

u ∈ (Dm−2
L2 ∩ E

′)[0,T].

Let Rbe a number such thatR0 + t < R for t ≤ T.

(i) SetE1(t) =
∫

|x|<R


1
2



(
∂u
∂t

)2

+

n∑

j=1

(
∂u
∂x j

)2

+ F(u) + c

 dx

wherec is a constant to be chosen later. Differentiating with respect tot

d
dt

E1(t) =
∫

|x|≤R


∂u
∂t

(
∂

∂t

)2

u+
∑

j

∂u
∂x j

(
∂u
∂x j

) (
∂

∂t

)
u+ f (u)

∂u
∂t


dx.

Since
∂u
∂x j

,

(
∂

∂x j

) (
∂

∂t

)
u have compact supports the second term in

the right hand side becomes after integration by parts
∫
∆

u · ∂u
∂t

dx

and so we have

d
dt

E1(t) =
∫

|x|≤R

(�u+ f (u))
∂u
∂t
· dx= 0

(where� =

(
∂

∂t

)2

− ∆) since�u + f (u) = 0. HenceE1(t) is a constant

= E10. �
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Takingc > L0 we haveF(u) + c > 0 and so

(3.2)
∫

1
2



(
∂u
∂t

)2

+

∑

j

(
∂u
∂x j

)2


dx≤ E1(t) = E1(0).

192

Since the support ofu is compact there existsc1 such that

(3.3) ||u||L2 ≤ c1

∑

j

|| ∂u
∂x j
||L2.

In fact,u ∈ Dm
L2 ⊂ D

n
2+3

L2 implies thatu is in E 1. We can hence write

u(x, t) =
∫ xj

−∞

∂u
∂x j

(y, t)dyj , j = 1, . . . , n.

Using Cauchy-Schwarz inequality and calculating the norm of u in
L2 we obtain (3.3). The estimates (3.2), (3.3) together show that an a
priori estimate of order one holds thus proving (i).
(ii) Differentiating (3.1) with respect tox j we have

(3.4) �u j +
d f
du

u j = 0 where u j =
∂u
∂x j

.

Denoting
∂

∂x j

∂

∂xk
u by u jk and

∂

∂x j

∂

∂t
u by u jt we define

E2(t) =
n∑

j=1

∫
1
2

u
2
jt +

n∑

k=1

u2
jk

 dx.

DifferentiatingE2(t) with respect tot

d E2

dt
(t) =

∑

j

∫ u jt · u jtt +

∑

k

u jk · u jkt

 dx

=

∑

j

∫
(�u j) · u jt dx
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since
∑
k

∫
u jk · u jktdx= −

∑
k

∫
u jkk · u jt dx by integration by parts. using193

the equation (3.4) we obtain

dE2

dt
(t) = −

∑

j

∫
d f
du
· u ju jt dx.

From the generalized Hölder’s inequality it follows that

|
∫

d f
du
· u j · u jt dx| ≤ ||u jt ||L2||u j ||L6 · ||

d f
du
||L3.

If n = 2 by Prop. 2§ 1 we see that

||u j ||L6 ≤ c1(n)||u||2

wherec1(n) is a constant depending only onn. From (b) we have, with
a suitable constantα′ depending onα, sinceu has compact support in
|x| < R

∫

|x|<R

|d f
du
|3 dx≤ α′3

∫
(u6
+ 1)dx ≤ α′3||u||6

L6 +C2(α′,R, n)

≤ C3(n, α′,R)(1+ ||u||61).

These estimates together show that

dE2

dt
(t) ≤ γ1E2(t).

Multiplying by e−γ1t and integrating with respect tot we obtain

(3.5) E2(t) ≤ E2(0) · eγ1t.

This proves that there is an a priori bound of order 2. A similar
argument holds for the casen = 3. This completes the proof of the
proposition.

Exercise. Consider the semi-linear hyperbolic equation 194

(3.6) M[u] + f (u) = 0
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where

M =

(
∂

∂t

)2

−
∑

a jk(x, t)
∂2

∂x j∂xk
−

∑
a j(x, t)

∂

∂x j
− a0(x, t)

∂

∂t

with (1◦) a jk ∈ B1[0,T],
∂

∂t
a jk ∈ B0[0,T], a0a j ∈ B0[0,T],

(2◦)
∑

a jk(x, t)ξ jξk ≥ δ|ξ|2, δ > 0 is a constant.

Prove, under the same hypothesis onf as in Prop. 1, that an a priori
estimate of order 2 holds and consequently there exists a global solution
of (3.6).

4 Existence theorems for first order systems of
semi-linear equations

In this section we establish theorems on the existence of local and global
solutions of the Cauchy problem for semi-linear regularly hyperbolic
first order systems of differential equations.

LetΩ be the set{(x, t)|x ∈ Rn, 0 ≤ t ≤ T}. Consider the semi-linear
first order system of equations

(4.1) M[u] =
∂u
∂t
−

n∑

k=1

Ak(x, t)
∂u
∂xk
= f (x, t, u),

where we assume that the coefficientsAk of M and f satisfy the follow-
ing regularity conditions:

(a) Ak ∈ B[ n
2 ]+2[0,T],

∂Ak

∂t
∈ B0[0,T] and

(b) f ∈ E [ n
2 ]+3 in Ω ×C.

We also assume thatM is regularly hyperbolic. As we shall show195

later that under stronger differentiabililty conditions on the coefficients
Ak and f the Cauchy problem has more regular solutions: For instance
we assume
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(a′) Ak ∈ Bm[0,T],
∂Ak

∂t
∈ B0[0,T] and

(b′) f ∈ E m+1 in Ω ×C,

wherem≥
[n
2

]
+ 2.

Although we are interested here mainly in the local existence theo-
rem we consider the following equation (4.1)′ instead of (4.1) in order
to elucidate our construction. We decomposef into two parts

f (x, t, u) = f (x, t, 0)+ ( f (x, t, u) − f (x, t, 0)) = f (x, t, 0)+ g(x, t, u)

where

(4.2) g(x, t, u) = f (x, t, u) − f (x, t, 0).

We remark thatg(x, t, 0) ≡ 0. Define the functionf̃ ∈ E [ n
2]+3 in

Ω ×C by setting

f̃ (x, t, u) = α(x)g(x, t, u) + β(x) f (x, t, 0)

whereα, β ∈ D , and consider the first order system of semi-linear
equaions

(4.1)′ M[u] = f̃ .

Clearly f̃ = f whereeverα(x) = 1 = β(x). If the initial datau0 ∈ E ′ 196

has compact support then, sinceβ(x) f̃ (x, t, u) has compact support in the
x-space, the solutionualso has a fixed compact support for all 0≤ t ≤ T.

Now we find a sequence of fucntions{u j} which will converge to a
limits u giving the solution. Letψ be the solution of Cauchy problem

(4.3) M[ψ] = β(x) f (x, t, 0) with ψ(0) = u0.

Hence by the theory of linear equations, there exists a constant γ0

depending onT such that

||ψ(t)||[ n
2]+2 ≤ γ0{||u0||[ n

2]+2 + sup
0≤t≤T

||||β f (x, t, 0)|| n
2
+ 2
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||ψ(t)||[ n
2]+1 ≤ γ0{||u0||||[ n

2]+1 + sup
0≤t≤T

||β f (x, t, 0)||[ n
2]+1.(4.4)

The Cauchy problem for (4.1)′ is therefore reduced to the following

problem: to find a solutionu ∈ D
[ n

2]+2

L2 [0,T] of

M[u] = g̃(x, t, ψ + u)

with the initial datau0. Here

g̃(x, t, ψ + u) = α(x)( f (x, t, u+ ψ) − f (x, t, 0)).

Our main interest here is to determine how does the domain of exis-
tenceRn × {0 ≤ t ≤ h} of the solution depend on the initial datau0, after
fixing α, β ∈ D . The functionsu j are defined inductively as solutions of197

the Cauchy problem for the first order system of equations:

M[u1] = g̃(x, t, ψ), u1(0) = 0,

M[u2] = g̃(x, t, u1 + ψ), u2(0) = 0,

· · · · · · · · · · · · · · ·
M[u j] = g̃(x, t, u j−1 + ψ), u j(0) = 0,

· · · · · · · · · · · · · · ·

Now sinceψ ∈ D
[ n

2]+2

L2 [0,T] we haveg̃(x, t, ψ(t)) ∈ D
[ n

2]+2

L2 [0,T]
and hence by the theory of linear equations there exists a solution u1 of
the Cauchy problem

M[u1] = g̃(x, t, ψ), u1(0) = 0,

andu1 ∈ D
[ n

2]+2

L2 [0,T]. Again we have ˜g(x, t, (ψ + u1)(x, t)) ∈ D
[ n

2]+2

L2

[0,T] and hence there exists a solutionu2 of

M[u2] = g̃(x, t, u1 + ψ), u2(0) = 0

andu2 ∈ D
[ n

2]+2

L2 [0,T]. This proceedure can be used to obtainu j induc-
tively.

Now we have the
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Proposition 1. There exists a positive, non-increasing functionsϕ(ξ) of
ξ > 0 such that

h = ϕ(||u0||[ n
2]+1) > 0

and the set

{
sup

0≤t≤h
||u j(t)||[ n

2]+1

}
is bounded. 198

Proof. Let γ denote the sup
(x,t)∈Ω

|ψ(x, t)|. In view of (4.4)γ is less than or

equal toc0 + c1||u0||[ n
2]+1 wherec0, c1 are constants depending onT. If

b is a positive number letF be the set

F = {(x, t, u)|(x, t) ∈ Ω, |u| < b+ γ}

and put

(4.5) M = sup
F,|α|≤[ n

2]+2
|
(
∂

∂x
,
∂

∂u

)α
g̃(x, t, u)|

where

(
∂

∂x
,
∂

∂u

)α
denotes a derivation of order|α| with respect tox and

u. M = M(b + γ) is an increasing function of the parameter. Ifu ∈
D

[ n
2]+1

L2 [0,T] with |u(x, t)| ≤ b for (x, t) ∈ Ω then we have

(4.6) ||g̃(x, t, (u+ ψ)(x, t))||[ n
2]+1 ≤ Mc{1+ ||u(t)||k[ n

2]+1
},

k =
[n
2

]
+ 1. Now, sinceu j(0) = 0, we have by the energy inequality

||u j(t)||[ n
2]+1 ≤ c(T)

T∫

0

||g̃(x, s, (u j−1 + ψ)(x, s))||[ n
2]+1ds.

Hence from (4.6) we obtain

(4.7) ||u j(t)||[ n
2 ]+1 ≤ Mcc(T)

T∫

0

(1+ ||u j−1(s)||k[ n
2 ]+1)ds.
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We recall that this was derived with the assumption that|u j−1(x, t)| <
b which, we shall show, holds whenh is small and 0≤ t ≤ h. Put 199

c2 = Mc · c(T)

γ1 = 1+ 2k sup
0≤t≤T

||ψ(t)||k[ n
2]+1

.(4.8)

Since||(ψ+u j−1)(t)||k[ n
2]+1
≤ 2k

{
||u j−1(t)||k[ n

2 ]+1 + ||ψ(t)||kn
2+1

}
(4.7) can

be written as

||u j (t)||[ n
2 ]+1 ≤ 2Kc2

t∫

0

{γ1 + ||u j−1(s)||k[ n
2 ]+1ds,

whereu0(t) ≡ 0. Putting again 2kc2 = c3 we have

(4.9) ||u j(t)||[ n
2]+1 ≤ c3

t∫

0

{γ1 + ||u j−1(s)||k[ n
2]+1
}ds.

Let cs(n) denote the Sobolev’s constant, namely the constant in the
inequality

sup|ϕ(x)| ≤ cs(n)||ϕ||[ n
2]+1.

Defineb′ by

(4.10) b′ =
b

cs(n)

and denotec3(γ1 + b′k) by M̃. Take

(4.11) h =
b′

M̃
=

b′

c3(γ1 + b′k)
.

Consider the sequencey j(t) defined by the sequence of integral equa-200

tions

y j(t) = c3

t∫

0

{
γ1 + y j−1(s)k

}
ds for t ≥ 0, y0(t) ≡ 0.
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Then we assert that

0 ≤ y j(t) ≤ b′ for 0 ≤ t ≤ h, j = 1, 2, . . .

In fact, y1(t) ≤ c3γ1t ≤ M̃t ≤ M̃h = b′,

y2(t) ≤ M̃t ≤ M̃h = b′ and so on.

Evidently ||u j(t)||[ n
2]+1 ≤ y j(t) and

(4.12) ||u j(t)||[ n
2]+1 ≤ b′ for 0 ≤ t ≤ h

which, a fortiori, implies (by using Sobolev’s lemma) that

sup|u j(x, t)| ≤ b′cs(n) = b (see (4.10)).

From (4.11) we obtain

1
h
=

c3(γ1 + b′k)
b′

= 2kc · c(T)
b′k + γ1

b′
M

≤ c0(n,T)
bk
+C′0(n) + c′′0 (n)||ψ(t)||k[ 2

n

]
+1

b
M,

whereM = M(γ + b). M(ξ) > 0 is an increasing function ofξ > 0.
So, if ||u0||[ n

2]+1 runs through a bounded set, fixingb, h has a positive
infimum (M is taken to be a fixed positive number). This completes the201

proof. �

Remark . Instead of taking hte initial data to be given att = 0 we
can take the initial data to be given at an arbitrayt0(0 ≤ t0 ≤ T).
We defineψ(t, t0) corresponding toψ(t) in the above arguments. Here
||ψ(t, t0)||[ n

2]+1 is majorized byC0 + C1||u0||[ n
2]+1, C0,C1 can be taken

independently. The expression for
1
h

shows thath has a positive infi-

mum independent oft0 if the initial datau0 runs through a bouded set in

D
[ n

2]+1

L2 .
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Next we prove that the sequence{u j(t)} is a Cauchy sequence in

D
[ n

2]+2

L2 [0, h]. First of all we shall show that{ sup
0≤t≤h

||u j (t)||[ n
2]+2} is boun-

ded. In fact, we have

||u j(t)||[ n
2]+2 ≤ c(T)

t∫

0

||g̃(x, s(u j−1 + ψ)(x, s))||[ n
2]+2ds

≤ cM′
t∫

0

{1+ (1+ ||(ψ + u j−1)(s)||k[ n
2 ]+1)||u j−1 + ψ(s))||[ n

2 ]+2ds,

k =
[n
2

]
+ 1.

||u2(t) − u1(t)||[ n
2 ]+2 ≤ Kc′t,

||u3(t) − u2(t)||[ n
2 ]+2 ≤ K

(c′t)2

2!
, . . . ,

||u j+1 − u j(t)||[ n
2 ]+2 ≤ K

(c′t) j

j!
, . . .

Hence{u j(t)} is a Cauchy sequence inD
[ n

2 ]+2

L2 [0, h] and therefore

converges to a limitu(t) in D
[ n

2 ]+2

L2 [0, h].202

If m≥ [
n
2

] + 3 we now assume thatAk ∈Bm[0,T],
∂Ak

∂t
∈ B0[0,T]

and f ∈ E m+1(Ω × C). Let u0 ∈ Dm
L2 be given. Then the limitu(t)

in D
[ n

2 ]+2

L2 [0, h] of the sequence{u j(t)} obtianed above itself belongs

to Dm
L2[0, h]. In fact, it is enough to prove that

{
sup0≤t≤h ||u j (t)||m

}
is

bounded and{u j(t)} is a Cauchy sequence inDm
L2[0, h]. For this we have

only to use the following lemma which results by arguments similar to
those used in§2.

Lemma 1. Let u∈ Dm
L2[0,T] and f ∈ G m+1(Ω ×C) for an m≥

[n
2

]
+ 2.
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Then there exists constants Cm, Mm such that

||
(
∂

∂x

)ν
f (x, t, u(x, t))||mCmMm

{
1+ (1+ ||u(t)||m−1

m−1)||u(t)||m.

Thus we have proved the following:

Theorem 1 (local existence theorem). Given any intial data u0 ∈ Dm
L2,

m ≥
[n
2

]
+ 2 and any initial time t0, 0 ≤ t0 ≤ T there exists a unique

solution u(t) ∈ Dm
L2[t0, t0 + h] of the equation

(4.1)′ M[u] = f̃ (x, t, u) = β(x) f (x, t, 0)+ α(x){ f (x, t, u) − f (x, t, 0)}

with u(t0) = u0. Moreover h can be chosen to be independent of t0 in
[0,T] when||u0||[ n

2]+2 runs through a bounded set.

Now we obtain a global existence theorem for solutions of theCau- 203

chy problem for regularly hyperbolic first order systems of semi-linear
equations. For this we assume that an apriori estimateof the following
type holds.

If β ∈ D consider the regularly hyperbolic first order system of
equations

(4.13) M[u] = β f (x, t, 0)+ ( f (x, t, u) − f (x, t, 0)).

By A priori estimatewe mean the following: For any initial datau0

in D
[ n

2]+2

L2 ∩E ′ and anyt0(0 ≤ t0 ≤ T) the solutionu(t) ∈ D
[ n

2]+2

L2 [t0,T] of
(4.13) satisfies the following condition: there exists a constantc = c(T)
such that

(4.14) ||u(t)||[ n
2]+1 ≤ c for all t0 ≤ t ≤ T.

Theorem 2(global existence theorem). Suppose an a priori estimate of
the type(4.14)holds for solutions of(4.13). Then, given any initial data

u0 ∈ E m
L2(loc)

, m≥
[n
2

]
+ 2 there exists a unique solution u(t) of

(4.1) M[u] = f with f ∈ E
m+1(Ω ×C)

for 0 ≤ t ≤ T such that u(0) = u0, u ∈ E m
L2(loc)

[0,T] and
∂u
∂t
∈

E m−1
L2(loc)

[0,T].
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Proof. As we have seen in the section on dependence domain there ex-
ists a retrograde coneK such that the value of a solutionu of M[u] = f
at a point (x0, t0) ∈ Ω depends only on the second member in the set
(x0, t0) + K and on the value of the initial data in the intersection of this204

translated cone with (t = 0). LetD be the subset ofΩ swept by (x,T)+K
asx runs through a ball|x| < RandD0 be the setD∩ {t = 0}. Let β ∈ D

such thatβ(x) ≡ 1 for x ∈ D0. Given any initial datau0 ∈ E m
L2(loc)

we
consider the Cauchy problem

M[u1] = β(x) f (x, t, 0)+ ( f (x, t, u) − f (x, t, 0))

with u1(x, 0) = β(x)u0(x) ∈ D
m
L2.(4.15)

This solutionu1(x, t) has an a priori estimate||u1(t)||[ n
2]+1 ≤ C. On

the other hand this solutionu1 has compact support as far as the solution
exists. Hence, if we takeα ∈ D such thatα(x) ≡ 1 for |x| ≤ R, (4.15) is
equivalent to

(4.1)′ M[u1] = β(x) f (x, t, 0)+ α(x)( f (x, t, u) − f (x, t, 0)).

Now sinceu1 has an a priori estimate||u1(t)||[ n
2]+1 ≤ C, it follows,

by using theorem 1 to continue the solution step by step, thatthere exists
a solutionu1(x, t) for 0 ≤ t ≤ T. Clearlyu(x, t) = u1(x, t) for (x, t) ∈ D
and this completes the proof of theorem 2. �

5 Existence theorems for a single semi-linear equa-
tion of higher order

In this section we obtain theorems on existence of solutions, local and
global, of the Cauchy problem for a single semi-linear equation of order
m.

As beforeΩ be the set{(x, t)|x ∈ Rn, 0≤ t ≤ T and

(5.1) M =

(
∂

∂t

)m

+

∑

j+|ν|≤m
j<m

a j,ν(x, t)

(
∂

∂t

) j (
∂

∂x

)ν
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be a regularly hyperbolic operator inΩ. Consider the quasi-linear equa-205

tion

(5.2) M[u] = f

x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u, . . . ,

(
∂

∂t

) js ( ∂
∂t

)αs

u



where jk + |αk| ≤ m− 1(k = 1, . . . , s). We make the following assump-
tions on the coefficients ofM and f :

a j,ν ∈ B
[ n

2 ]+2[0,T],
∂

∂t
a j,ν ∈ B

0[0,T] and f ∈ E
[ n

2 ]+3(Ω ×Cs).

When we consider the regularity properties of higher degrees. We

assume forN ≥ [
n
2

] + 3

a j,ν ∈ B
N[0,T],

∂

∂t
a j,ν ∈ B

0[0,T] and f ∈ E
N+1(Ω ×Cs).

The reasoning used in the case of the first order system (see§ 4) can
be applied to this case without any significant change. We will indicate
the necessary modifications very briefly.

The space of all functionsu such that

u ∈ D
k+m−1
L2 [0,T],

∂u
∂t
∈ D

k+m−2
L2 [0,T], . . . ,

(
∂

∂t

)m−1

u ∈ D
k
L2[0,T]

is denoted byD̃k
L2[0,T]. We introduce a topology oñDk

L2[0,T] by a
norm ||u(t)|||k defined by

(5.3) |||u|||2k = ||u(t)||2k+m−1 + · · · +
(
∂

∂t

)m−1

u(t)||2k.

Now we recall the result in the linear case. Given the equation 206

(5.4) M[u] = f

with fεD
[ n

2+1]
L2

[0,T] (resp. f ∈ D
[ n

2]+2

L2 [0,T]) and the initial datau(0) ∈

D̃L2
[ n

2]+1
(resp.u(0) ∈ D̃

[ n
2]+2

L2 ) the solutionu(t) of the Cauchy problem
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belongs toD̃ [ n
2]+1

L2 [0,T] (resp. toD̃
[ n

2]+2

L2 [0,T]) and further we have the
energy inequality

|||u(t)|||[ n
2]+1 ≤ c(T)


||u(0)||[ n

2]+1 +

t∫

0

|| f (s)||[ n
2]+1ds


(
resp.|||u(t)|||[ n

2]+2 ≤ c(T)

{
||u(0)||[ n

2]+2 +

∫ t

0
|| f (s)||[ n

2+2]ds

})

for 0 ≤ t ≤ T.
In the semi-linear case we use the following

Lemma 1. If u(t) ∈ D̃
[ n

2]+1

L2 [0,T] then for anyα ∈ D the function

f̃ = α f satisfies

f̃

x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u(x, t), . . . ,

(
∂

∂t

) js ( ∂
∂x

)αs

u(x, t)

 ∈ D
[ n

2]
L2 [0,T]

and

|| f̃ (x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u(x, t), . . . ,

(
∂

∂t

) js ( ∂
∂x

)αs

u(x, t))|| n
2+1

≤ C M
{
1+ |||u(t)|||[

n
2]+1

[ n
2]+1

}
.(5.5)

Proof. We writevk(t) for

(
∂

∂t

) jk (
∂

∂x

)αk

u(x, t) and f̃ (x, t, v1(t), . . . , vs(t))207

for f̃

x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u(x, t), . . .

. Now we see that||vk(t)||[ n
2]+1 ≤

c|||u(t)|||[ n
2]+1(k = 1, . . . , s). In fact,

||vk(t)||[ n
2]+1 = ||

(
∂

∂t

) jk (
∂

∂x

)αk

u(t)||[ n
2]+1 ≤ c||

(
∂

∂t

) jk

u(t)||[ n
2]+|αk|+1.

Since jk+ |αk| ≤ m−1 we have
[n
2

]
+ |αk|+1 ≤

[n
2

]
+1+ (m−1− jk)

and hence

||vk(t)||[ n
2 ]+1 ≤ c||

(
∂

∂t

) jku

||[ n
2 ]+1+(m−1− jk) ≤ c|||u|||[ n

2 ]+1.
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The assertion follows from this by an application of Cor. 2 after
lemma 1 of§ 2.

The following lemma is proved on the same lines and we omit the
proof. �

Lemma 2. If u ∈ D̃
[ n

2]+1+N

L2 [0,T] for an integer N≥ 1 then for any
α ∈ D

f̃

x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u(x, t), . . . ,

(
∂

∂t

) js ( ∂
∂x

)αs

u(x, t)

 ∈ D̃
[ n

2]+1+N

L2 [0,T]

and

|| f̃
x, t,

(
∂

∂t

) j1 (
∂

∂x

)α1

u(x, t), . . .

(
∂

∂t

) js ( ∂
∂x

)αs

u(x, t)

 ||[ n
2]+1+N

≤ cMn

{
1+

(
1+ |||u(t)|||[

n
2]+N

[ n
2]+N

)
|||u(t)|||[ n

2]+N+1(5.6)

As in the local existence theorem for the first order systems we de- 208

fine

f̃ (x, t, v1, . . . , vs) = β(x) f (x, t, 0, . . . , 0)

+ α(x){ f (x, t, v1, . . . , vs) − f (x, t, 0, . . . , 0)}

whereα, β ∈ D . Then the same arguments as in the first order systems
prove the following

Theorem 1(local existence theorem). For fixedα, β ∈ D and T let

(5.7) M[u] = f

x, t,

(
∂

∂t

) j1 (
∂

∂t

)α1

u(x, t), . . .



be a semi-linear regularly hyperbolic equation of order m. Given any

initial data u(0) ∈ DN
L2, N ≥

[n
2

]
+ 2 (more precisely, given

(u0, u1, . . . , um−1)

with uj ∈ D
N+m− j
L2 ) and the initial time t0(0 ≤ t0 ≤ T) there exists a

unique solution u(x, t) = u(t) for t0 ≤ t ≤ t0 + h of (5.7) such that u∈
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D̃N
L2[t0, t0+h],

∂u
∂t
∈ D̃N−1

L2 [t0, t0+h] taking the initial value u(0) at t = t0.

h can be taken to be a fixed number independent of t0 when
{
|||u(0)|||[ n

2]+1

}

is a bounded set. More precisely, there exists a non-increasing function
α(ξ) > 0 of ξ > 0 such that

h = ϕ
(
|||u(0)||[ n

2]+1

)
.

Now we state a global existence theorem for a single semi-linear
regularly hyperbolic equation of orderm. We assume an apriori esti-209

mateof the following type holds:

For any initial datau(0) ∈ D
[ n

2]+2
N ∩ E ′, β ∈ D the solutionu(t) of

(5.8) M[u] = β f (x, t, 0, . . . , 0)+ α( f , x, t, v1, . . . , vs) − f (x, t, 0, . . . , 0))

(wherevk =

(
∂

∂t

) jk ( ∂
∂t

)αk

u) satisfies

(5.9) ||u(t)||[ n
2 ]+m+ ||

∂

∂t
u(t)||[ n

2 ]+m−1 + · · · + ||
(
∂

∂t

)m−1

u(t)||[ n
2 ]+1 ≤ ||c.

Theorem 2(global existence theorem). under the assumption that there
exists an a priori estimate of the above type, given any initial data

(u0, u1, . . . , um−1) with uk ∈ E N+m−k−1
L2(loc)

, N ≥
[n
2

]
+2, there exists a unique

solution u(t) = u(x, t) for 0 ≤ t ≤ T of (5.2)such that

u ∈ E
N+m−1
L2(loc) [0,T],

∂u
∂t

u ∈ E
N+m−2
L2(loc) [0,T], . . . ,

(
∂u
∂

)m

u ∈ E
N−1
L2(loc)[0,T].|

Remark 1. As a particular case of the Theorem we have Theorem 1 of
§ 3.

Remark 2. We assumed an a priori estimate (5.9) for the theorem of exs-

tence of global solutions. If inf (x, t, v1, . . . , vs)

vk =

(
∂

∂t

) jk (
∂

∂x

)αk

u


the ordersjk + |αk| are less than (m− 1) the following remark will be
useful. If we have an estimate of derivatives ofu of the form

||
(
∂

∂t

) jk (
∂

∂x

)αk

u(t)||[ n
2 ]+1 ≤ c (k = 1, . . . , s)
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then we have an a priori estimate of the form (5.9). In fact, first of all210

we have, ifg(x, t, v1, . . . , vs) denotesf (x, t, v1, . . . , vs) − f (x, t, 0, . . . , 0)
then for anyα ∈ D the functiong̃ = αg satisfies the inequality

||g̃
x, t,

(
∂

∂t

) j1

u(x, t), . . . ,

(
∂

∂t

js
) (

∂

∂x

)αs

u(x, t)

 |||[ n
2 ]+1 ≤ c′

with a constantc′. Now as in the case of first order systems this in-
equality, together with the energy inequality in the linearcase, implies
(5.9).

We illustrate this by the following simple example. Take forM the

operator� =
∂

∂

2

∆ and consider the semi-linear equation

�u+ f (u) = 0.

We assumef (0) = 0. We show that it is enough to obtain an esti-
mate of||u(t)||[ n

2 ]+1. in order to get an a priori estimate of||u(t)||[ n
2]+2 +

||∂u
∂t (t)||[ n

2]+1. First we obeserve that the conditonf (0) = 0 can be re-
moved. In fact, ifC0 = f (0) we consider the equation

�u+ ( f (u) − f (0))′ + β(x) f (0) f (0) = 0;

that is,
�u+C0β(x) + ( f (u) −C0) = 0,

whereβ ∈ D .
It is enough to obtain an a priori estimate for solutions of this equa-

tion. If u0, u1, ∈ E ′ then we know that for 0≤ t ≤ T the solutionu(t) 211

has its support contained in some compact set: say in|x| < R.
Define

E1(t) =
∫

|x|<R


1
2



(
∂u
∂t

)2

+

∑

j

(
∂u
∂x j

)2

+ F(u) − c0u+ γ(u2

+ 1)

 dx

whereF(u) =
u∫

0

f (τ)dτ andγ is chosen so large thatF(u)− c0u+ γ(u2
+

1) ≥ 0 for anyu. This is always possible if we assumeF(u) > −L.
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DifferentiatingE1(t) with respect tot and using integration by parts we
have

d
dt

E1(t) =
∫

|x|<R

{
∂u
∂t
. �u+ ( f (u) − c0)

∂u
∂t
+ 2γu.

∂u
∂t

}
dx

=

∫
2γu.

∂u
∂t
− c0β(x)

∂u
∂t

dx since�u+ f (u) − c0 = −β(x)c0.

≤ CE1(t).

HenceE1(t) ≤ ect ≤ ecT
= c′. This, together with the expression for

E1(t), shows that we have the assertion.
By considering the equation obtained by differentiating the equation

�u+ c0β(x) + ( f (u) − c0) = 0 with respect tox j

�
∂u
∂x j
+ f ′(u)

∂u
∂x j
+ c0

∂β

∂x j
= 0 ( j = 1, 2, . . . , n),

we can obtain an estimate forE2(t) in an analogous way. Thus we have
the following result:

Suppose the functionf satisfies the conditions212

(1) F(u) > −L,

(2) | f ′(u)| < α(u2
+ 1) for n = 3

≤ a polynomial forn = 2.

For any initial data (u0, u1) with u0 ∈ E m
L2(loc)

, u1 ∈ E m−1
L2(loc)

, m ≥

[
n
2

] + 3, there exists a unique solutionu(t) = u(x, t) for 0 ≤ t < ∞ such

that

u ∈ E
m
L2(loc)[0,∞),

∂u
∂t
∈ E

m−1
L2(loc)[0,∞),

(
∂

∂t

)2

u ∈ E
m−2
L2(loc)[0,∞).
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