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Introduction

The aim of the present course is to give a proof, due to Hanse®aof 1
an analogue of Mordell's conjecture. Mordell’'s conjectarys that if
Cis a curve, of genus 2, defined over a number field, then setCyx

of K-rational pointsC is finite . This conjecture applies in particular to
Fermat's curvex" + y" = 1(n > 4).

As a matter of notation i¥ is an algebraic variety defined over a
field K, Vk will denote the set oK-rational points ol/. If V is an dfine
(resp. projective) variety, we mean, byKarational point ofV, a point
whose #ine coordinates (resp. ratios of homogeneous coordindtes) a
lie in K.

An analogue of Mordell’s conjecture has recently been dtated
proved by Ju Manin and Hans Grauert. In this, number fieldsare
placed by function fields.

Theorem. Let k be an algebraically closed field of characterifijand
K a function field over k. If C is a curve of genus2 defined over K
such that G is infinite, then

a) C is birationally equivalent, over K, to a curvée @efined over k

b) C - C, is finite (in other words, almost all points of«@ome from
k).

The algebraist Manin|[([3]) has given an analytical proofwinich 2
k = C; the result, of course, remains valid for arbitré&ryy the principle
of Lefschetz. The analyst Grauelil([2]) gives a purely atgeieometric
proof, a large part of which is valid in characterisgie: 0. The finishing
touch in characteristip has been provided by the lecturer ([%], [6]):



Let k be an algebraically closed field of characterigtict 0, K a
function field overk andC a curve defined ovek with absolute genus
> 2, such that is infinite. Then,

(a) C is birationally equivalent( over some field ) to a cu®ede-
fined overk.

But unlike in characteristic 0, (see the example at the enthef
course) this birational equivalence is in generai defined oveK: one
cannot expedt; —C, to be finite; indeed, i€ is birationally equivalent
to a curveC’ defined over a finite fieldg, then for anyx € C} — C,, all
the pointsxd" obtained fromx by iterated applications of the Frobenius
automorphisnx — X3 (the point whose fline coordinates are thg"
powers of the fiine coordinates af) are again irCy —Cy. Interestingly
enough, it turns out that these are the only exceptionakcasere pre-
cisely, if C is not birationally equivalent to any curve defined over a
finite field, then the birational equivalen€~ C’ (C’ defined ovek)
is defined oveK. One can also prove that, in any case, the birational
equivalenceC ~ C’ is defined over a finite galois extensiéti of K
and that all the points df; — C; may be obtained from a finite number
among them, by applying the Frobenius process.

We assumed that thebsolutegenus ofC (i.e.. the genus o over
the algebraic closurk of K) is > 2; this is stronger than the assumption
genuskC > 2, since the genus of a curve may very well drop by an
inseparable base-extension; a classical example is thie cur

Y?=XP-a

, . p-1
(with p > 3 anda € K — KP) whose relative genus g— and absolute

genus is 0. At present, nothing is known for curves of retagienus> 2
and absolute genus 0 or 1.

The key to the proof isnot the inequalityg > 2 but the equivalent
inequality (2 — 2) > 0 which means that the canonical divisor @Gris
ample

The proof of Grauert's theorem may be divided into two parts.

1) Proving thatC is birationally equivalent to a curv@’ defined over
k. This is the hardest and most original part.



2) StudyingCy — C;. Here we are in the midst of nice old theorems on
algebraic curves. Fdf may be viewed as the function fiekdD) of
an algebraic varietpp overk then the points o€ - C, correspond
to nonconstant rational maps bfin C’ overk. The statement b)
of the theorem says that these maps are finite in number imchar
0; in charac. p. the separable ones are finite in number. We will
assume in our proof th& first a curve and then pass to the general
case by a simple induction. We have a theorem of F. Seveéri ([8]
,0. 291). the separable involutions of genu® on a curveD (i.e.,
the isomorphism classes of non-constant separable rhtitagas of
D into curves of genug 2) are finite in number. This is somewhat
stronger than the finiteness©f —C, since the image curv’ is not
fixed in Severi's theorem; but this stronger statement vélhieeded
in clarifying the characp case. As a corollary we get a well known
theorem ofH.A. Schwarz and F. Klein: for a cuni@ of genus> 2,
Aut D is finite.

The lecturer has felt that it will be more germane to the spifi
Grauert's theorem (in which fields and rationality questiqriay a
prominent part)- or may be easier for himself - to use theraddtgebro-
geometric language of Weil and Zariski which, by now, is badéstin-
guishable from the language of the ancient Italian Schoanyvhigh
powered classical tools of geometry will be used, (eg. thersection
theory, Chow coordinates, Zariski's Main Theorem etc.) Amdduc-
tory chapter will give the necessary definitions and states{y without
proofs) the theorems that will be used. A second chaptergiié the
theory of algebraic curves, with an emphasis on correspaade The
last chapter will give Grauert’s proof proper.

We remark, that, for the sake of ease, we will mostly be doimg &
geometry over “big” (universal) fields (i.e. fields that hdwknite tran-
scendence degree over the prime field).
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Chapter 1

Algebro-Geometric
Background

1. Algebraic Varieties: Affine and Projective

a) We consider thefine n-spaceK" over an algebraically closed fields
K. An algebraic seH in K" is, by definition, the set of common ze-
ros X) = (Xg,...,%) € K" of a family of polynomials F,),F, €
K[X1,...,Xq], or equivalently, of polynomials in an ided of K[Xy,
..., Xp]. A finite union of algebraic sets, and an arbitrary intetieec
of algebraic sets are easily seen to be themselves algamtsiso that,
in K", we have a topology, called the Zariski topology, whose edos
sets are precisely the algebraic setkih These algebraic sets are often
called the closed sets & or theaffine algebraic sets.

Given an #ine algebraic seH c K" we define theideal of H

J(H), as
JMH) ={F e K[Xq,..., Xn] : F(X) = 0V(X) € H}.

The affine ring of H or thecoordinate ring of His, by definition,
the ringK[ Xy, Xo, ..., Xn]/j(H) = K[H]. We remark that the elements
of K[H] are functions orH with values inK, in a natural manner.

1



2 1. Algebro-Geometric Background

We say that anféine algebraic setl is irreducible if it is non-void
and is not the union of two proper algebraic subsets; it is ndficlilt
to see thaH is irreduciblee J(H) is a prime ideal oK[ Xy, ..., X ] ©
K[H] is a domain. An irreducible algebraic set is often calledaaety
(We may also use the term sometimes for algebraic sets). @nshow
that any algebraic séi in K" can be written, in a unigue manner, as a
finite irredundant union of varieties K"

b) Letk be a subfield oK andV an algebraic set iK". We say that
V is defined ovek, or thatk is a field of definitionfor V if J(V) admits
a set of generators kj Xy, ..., Xp] € K[X4,..., Xy], or equivalently, ifd
a finite typek-algebrak[xy, . . ., Xn] such thatk[V] = K[Xq, ..., X,] ® K.
As, by the basis-theorem of Hilbegf;(V) admits finitely many genera-
tors inK[Xy, ..., Xy], any algebraic set iK" admits a field of definition
which is of finite type over the prime field.

Consider a variety/ in K"; thenK[V] is a domain. lts field of
fractions is called thdunction field(or the rational function field) of
V and denotes b (V). If kis any subfield ofK which is a field of
definition forV, then one defines theideal ofV by

JNV) ={G e KXy,..., Xn] : G(X) = 0V(x) € V}

and thek-ring of functions oV by
KIV] = K[X4q, ..., Xn] /Tk(V)

one sees that[V] is again a domain, and further thigtv] ® k, (k =
the algebraic closure &) is also a domain. One can check that this last
fact is equivalent to the fact that thefunction fieldk(V) = the field of
fractions ofk[V] is aregular extension ok (i.e. is separately generated
overk andk N k(V) = k) (cf. [4])

Let V be a variety inK" andk a field of definition forV. Consider
apoint §) = (y1,...,yn) € V and the homomorphisik[ X1, ..., Xn] —
K[y1,...,¥n] € K defined byX; — y;. By the definition ofk[V] this
homomorphism admits a factorization

K[X1, ..., Xn] Klys, Y2, ..., ¥n] €K

12
k[V]
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We say that the pointy] is ageneric pointfor V overk if ¢ is an iso-
morphism (note that the irreducibility &f overk is necessary for the
existence of such a point). One can show that a generic paint/k
exists ifK has infinite transcendence degree duer

On the other hand, It be a subfield oK and ) € K" such that
k(X) = k(x1,..., X)) be a regular extension &f If one defines an ideal
JInKXg,..., Xy by J ={F € K[Xq,...,Xq] : F(X) = 0} then the poly-
nomials ofJ define a variety in K" such that

() (x)is a generic point of//K 9
(i) K[V] =K[Xq,..., X/ T
(i) J(V) = J(V).K[Xq,...,Kp]
= TK[X1,...,Xn]
V is called thdocusof the point §) in K.

Example.k = Q, K = C, (X) = (€%, €%); then the locus of¥) is the curve
X3 - X3 =0.

¢) Dimension

Let V be an (irreducible) variety iK™ and K(V) the function field
of V. ThenK(V) is of finite type ovelK; its transcendence degree over
K, which is finite, is called thelimensionof the varietyV. Once has
then the classical

Theorem. dimension of ¥ the Krull dimension of RV].

We remark that the above equality makes the definition of itmeid-
sion of V more intuitive: it says precisely that dinV. is the maximum
length of strictly increasing chains of subvarieties/of

Any point P € K" is a variety of dimension 0; more precisely we
have: a varietyt ¢ K" has dimension 0

< Visapoint
< g (V) is amaximal ideal

(This is essentially the Hilbert-Zero-Theorem).
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Proposition. A variety V in K' ban dimensiorfn — 1) 10
& J(V) is principal

Proof. =: V has dimensionn-1) implies that7 (V) = 0. Thusdanon-
zero polynomial ing (V) and hence a non-zero irreducible polynonfial
in 7(V). Then 0+ (F) c J(V); as F) and 7 (V) are both prime ideals,
and as dinK[V] = coheighty (V) = (n—1), and dinK[Xy,...,X,] =n
one getsk) = J(V). m|

<= 1f (V) = (F), one haK[V] = K[Xq, ..., Xy] With F(X1,..., Xn)
= 0; F involves at least one variable, s&y, non-trivially. Thusx, is al-
gebraic orK(Xy, ..., X,-1). On the otherhand, #G # 0 in Xg1,..., Xn-1
such thatG(Xy, ..., Xn-1) = 0 thenG € (F); asF involves X, andG
does not, this is impossible. Therefaxg, ..., X,_1 are algebraically
independent oveK. Q.E.D

A variety in K" of dimension  — 1) is called ehypersurfaceof K",
the above proposition says merely that hypersurfaces aocisply those
varieties which admit a single “equation”.

d) The concept of an “abstract variety”

LetV be an algebraic set iK" j for any P € V, there is a maximal
ideal Mp of the coordinate rindg[V], nhamely, the ideal of functions in
K[V], null at P. The local ringdp = K[V] 4, is called thelocal ring
Op of P(or of V atP). More generally, ifW is an irreducible subvariety
of V, thend a prime idealP of K[V], namely, the ideal of functions in
K[V] null on W: the local ringK[V]y is called thdocal ring &y of W
in V. By the Hilbert Zero theorem, for any prime idealof K[V],d a
subvarietyW of V such thatoyy = K[V]e.

It is not difficult to see that the pair$>(Op)pey form, in a natural
way, a subsheaf of the sheaf of functions\éin to Ky: thus, we get,
what is called ainged space(V, ©). A pair (X, Ox) whereX is a topo-
logical space space ar@y a given a sheaf of rings oK, is called a
ringed space : here, we shall be interested only in the caseendl
the stalksty, x € X, are local rings; thus we will assume this additional
condition always satisfied). 18X, &), (Y, Oy) are two ringed spaces,

f
amorphism(X, 0x) — (Y, &v) is a pair (1,8) whereu is a continuous



1. Algebraic Varieties: Afiine and Projective 5

map of topological spaces afids a morphism (of sheaves of local rings
overY) Oy — u.(0x)(u.(0X) is the “direct image” oft’x underu)g; is
essentially a “nice collectiond = (6x)xex, Whereby : Oy — Oxis a
homomorphism of local rings (For details see EGA. Ch. I).

Our ringed spaces can thus be made objects of a category.

Definition. An (abstract) prevariety X over K is a ringed spde€ Ox)
such that there is a finite open coveri(id;); of the underlying space X
with the following property:

Vi, there is an fiine varietyV; overK such that the restricted ringed
space(;, Ox | Uj) is isomorphic to the ringed spabg &y, of the dfine
variety V;.

The notions of irreducibility, rational maps, morphismahs., prod- 12
ucts, fields of definition and a generic point of an irreduziptevariety
over a field of definition, can all be easily carried over. Intigalar, one
defines thaliagonal mapAy : X — X x X for a prevarietyX.

Definition. We say that a prevariety X is a variety if the diagonal map
Ax is closed

We remark that this condition is analogous to the Hau$dotiom
on a topological space.

In the category of varieties isomorphisms will be oftenaalbireg-
ular maps. We say that a morphisrfi biregular at a poink € X, if the
stalk-mapﬁ;(x — Oy defined byf is an isomorphism. One can show
that biregularity a implies biregularity in a neighbourhood &f

e) Projective Varieties

LetK be an algebraically closed field. Thojective n-space,(K)
overK is, by definition, the quotient k™1 — (0) for the action ofK*
by scalar multiplication. An algebraic set i(K) is the image of an
algebraic cone iK™, Any point in P,(K) can be represented, upto a
scalar multiplication, by am(+ 1)-tuple o, .. ., X,), thex; € K, not all
zero. Such a representation is called a system of (homogsheoordi-
nates ) for that point. An algebraic set if(K) is then the set of points
(X) € Pa(K) such that=,(X) = 0 for a family of homogeneous polyno-
mials (F.),F, € K[Xp,...,Xn]. One can again define a topology om3
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Pn(K) (the Zariski topology) whose closed sets are the algelseticin
Pn(K). One again defines as before the notion of a projective tyarie
Pn(K). For any algebraic sat in P,(K), one defines the homogeneous
ideal 577 (V) of V as the ideal generated by all homogeneous polyno-
mials inK[Xo, ..., Xp] vanishing onv, and the homogeneous coordinate
ring or thegraded ringof V as the quotienK[ Xy, ..., Xn] /22T (V).

A projective algebraic sé¥ is a variety— s J(V) is a prime
ideal not containing the idealX, ..., X,). One defines as before the
notion of a (homogeneous) generic point for a projectivéstal/, over
a subfieldk of K.

One has a bijective map &" onto the open seXy # 0 of Py(K)
given by §/1,...,¥n) +— (L, y1,...,¥n). This map is a homeomorphism
on to its imageXg # 0, which we will callKg. The hyper-planélg,given
by Xo = 0,is called the hyper-plane at infinity for thé&iae subspace
Ko. Similarly we have hyperplangs; = X; = 0, whose complements

n

Ki are dfine,1 < i < n. ClearlyP(K) = UK. If U is an dfine
i=0

algebraic set irk". given by prescribing a system of generators for
K[U], K[U] = K[ X4, ..., Xn] say, we get an imbedding &f as a subset
of Kg, hence ofP(K). The closure ofJ in P,(K) is called aprojective
closure of U.

n
Let V be a projective variety i®,(K) thenV = |J V; whereV; =
i-0
VNK; = V—H;, eachvV; as ***** of K; is an dfine algebraic set. Further,
if K[Xo,...Xy] with Xo # O is the homogeneous coordinate ring/oind
if we sety; = % 1 <i < n(then they; are in the quotient field dk[V])
thenVy = V — Hg is an dfine variety of &ine ringAg = K[y1,...,Vn]
andV,,i > 1, if nonvoid, is an fiine variety of #ine ring
1 ﬁ]

i =K|—, ...,
A [Yi Vi

To show that a projective to show varietyis a variety in the sense
of (@), it only remains to show that the diagonal\bfs closed; we leave

the verifications to the reader.
Finally, we define the function field of a projective varidtyas the
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subfieldK(V) of the quotient field ofK[V] defined byK(V) = {g :
a,b e K[V],b # 0, a b are of the same degree in the gradatiorkK¢w]

If Vis not contained irH;, then one can show th&t(V) is canoni-
cally isomorphic to the quotient field & (in the above notation).

Theorem 1. A projective variety V is complete in the following sense:
Every valuation ringZ’ of K(V) contains some A

Proof. Letw be the valuation defined by onK(V). If w(y;) > O for all
i, then& o> Ap; otherwise choose arsuch thatw(y;) is minimum; then
w(y)) < 0andd o A. O

Remark. One can define fields of definition for projective varieties as
for affine varieties. Ik s a field of definition forV, one can defing[V]

as before an is a finite union at fiine subvarieties for which again

is a field of definition. All our computations above go througtid the
obvious modifications of Theorelh 1 is also valid.

Theorem 2. If V is a projective variety, then for any variety U the pro-
jection p of Vx U on U is a closed map.

Proof. We have to show that for any closed subklebf V x U, p(H)
is closed inU. We may assum¥, U, H all to be irreducible. Let then
(y,X) € V x U be a generic point foH over a field of definitiork of
V,U andH. If X € p(H) thenx belongs to the locus of overk in U,
and there is a homomorphism (ov@k[x] 4 K[x'],mappingxonx’. As
K[X] c k(VxU) and ax is algebraically closed; extends to a valuation
ring R of k(V x U) as a homomorphisma : R — K. By (the remark
following) TheorentdL, there is a system dfiae coordinateg,, ..., z,
of (y) € V such that all the, are inR: thus there is a point/() € Pp(K)
with affine coordinatesd(Z,), ..., ¢(Zy)). But ask[X',y'] c k, K[x,y]
k(U x V) andy is a homomorphism mapping,fy) on (X, y’) it follows
that /', x') € H andx’ € p(H). m|

Finally we also draw the attention of the reader to the faat the
product of two projective spaceé®,(K),Pq(K) is a projective variety,
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this is shown by th&egre imbedding

Pr(K) x Pq(K) - IP)(n+1)(q+1)—l(k)
(%), (v})) — (xiyh)-

16  f) Dimension Theorems.
If Ais a noetherian ringx € A and? a minimal prime ideal oAXx
thenht? <i (Krull); if xis not a zero divisor oA, thenht% = 1.

1) If Vis an dfine variety of dimensiod in K", andH a hyper surface
in K", then every component & N H has dimensiom or (d — 1).

If H=(f =0),f ek[Xy,...Xs] thenV N H is given byf_: 0in

A = K[V] (f image off in K[V]) and its components are given by
the minimal prime ideals oAf so that our assertion follows by our
remark at the beginning.

If V is irreducible and/ ¢ H then the same shows that every com-
ponent ofV N H had dimensiond — 1).

2) By an inductive argument one gets thatVifs afine, of dimension
dandifHy,..., Hq are hypersurfaces, then every componeny of
Hin--- N Hghas dimensior (d - q).

3) If V. andW are dfine algebraic sets iK" andC a component of
V nWthen dimC > dimV + dimW —n.

In fact V. N W is isomorphic in a natural way with/(x W) N A in
K" x K", A being the diagonal ilK" x K", thus our assertion follows
from the facts that dimMy x W) = dimV + dimW, thatA in K" x K"
is the intersection af hyperplanes and 2) above.

We remark that 3) doesot say thatV N W # ¢ even if dimV +
dimW —n > 0; (e, .g) two parallel lines irk?. However we have the
following:

17 4) 9V, W are projective varieties iRy(K) such that dimV+dimW-n >
O, thenV N W # ¢, and each compone@tof V N W has dimension
>dimV +dimW —n.
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In fact V, W are images of cone¢’ W’ in K™ hasV' n W' # ¢
since the origin is iV N W’ are both cones and as

dimV’ +dimW - (n+ 1) =dimV +dmW-(n-1)>0

there is a ray throughout the origin KI"™* completely contained in
V' N W, this implies thav N W # ¢ in Py(K); any componenC of
V N'W corresponds to a componedt of V' N W’ so that by 3)

dimC’ > dimV’ + dmW’ — (n+ 1)
=dmV +dimW-n+1
and dimC =dimC’ —=1>dimV + dimW —n

5) LetU be an algebraic variety over an algebraically closed field
We say that a poin® € U is simple if the local ring&, of V atP is
regular.

Proposition. If P is a simple point on U and V and W are subvarieties
of U passing through P, then any component C of VW passingdhro
P has dimensior dimV + dimW — dimU.

Proof. The question being local we may assume thas an dfine va-
riety imbedded irK" andV, W are closed irreducible subvarietieslof
If d = codimknU then dimU = (n - d): andP being simple orlJ, the
tangent space df at P is a linear subvariety. in K" of dimension=
(n—d). LetL’ be a linead-dimensional variety transverse ltcandV’ 18
be the cylinder parallel th with baseV (locally, atP,V’ ~ V x L').
Then dimension o’ is equal to d + dimV). O
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L

It is not difficult to show that the only componentdf N U passing
throughP is V. Thus, we have only to show that for any compon@&nt
of V' N W passing throug, dimC > (dimV + dimW - dimU).

But by 3) we have:

dimC > dimV’ +dimW —-n
=dimV + dimW - (n - d)
Q.E.D. = (dimV + dimW - dimU)

g) Zariski's main theorem (ZMT).

A point P on an algebraic variety is said to benormal of the local
ring Op of V atP is integrally closed

An affine varietyV is normal (i.e. each poinP € V is normal)
< K][V]is a normal domain.

If V is an dfine variety an&K[V] its coordinate ring then the integral
closureK[V]" of K[V] in K(V) is aK-algebra of finite type which is a
domain and therefore is the coordinate ring offéiha varietyV*, which
is normal; and one has a morphis#i 2, V defined in a natural way
which is birational and onto.

We also remark that the same procedure can be adopted ingbe ca

of any arbitrary algebraic variety (cf. [[7]); one has only to construct
pairs of the typel;, p;) for an dfine open coveringl;) of V and patch
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up. We thus obtain a normal varie#y/ and a birational, onto, morphism

v* % V such that the pain(*, p) is universal for morphisms from nor-
mal varietiesv’ to V. ThenV* is called thenormalisationof V.

We shall show that iV is projective therV* is also projective. If
V is a projective variety then its homogeneous coordinaig KfV] is
a graded domain and its normal closiein its quotient field is again
a graded domain (is contained in the quotient-riigtA, F the set of

homogeneous (non-zero) elements). Be& Y, By, be the gradation of
n>0
B’ ; as aboveB' is a finite typeK-algebra. But one cannot assert that

B’ is generated ovef by homogeneous elements of degree 1; however,
it is not difficult to see thatl d € Z*" s.t. B” = ¥ B/, is a graded do-

n>0
main, and a finite typ&-algebra, generated by homogeneous elements

of degree 1 so thaB” defines a projective variety*, normal, with a
birational, onto regular ma‘¢*£>V with finite fibres; so we are through.
We shall now state the following theorem without proof.

Theorem.Let A be a domain and B an over-domain which is a finite
type A-algebra, B= A[x1,...,Xy]. Let p be a prime ideal in B which
is both minimal and maximal in the set of prime ideals of B hgthe
intersection p A with A. Then if Ais the integral closure of A in B,

one has B=Ay .

Remark. Finiteness conditions o\ are not needed, as shown by
Grothendieck, or more elementarily, by C. Peskine: “Uneegalisation
du main théoréme de Zariski”, Bull, Soc. Math. 1966.

Corollary. If Ais integrally closed in B then
Bp = ApmA.

Geometrically the above theorem says thdt ifY — X is a gener-
ically surjective (i.e., dominant) morphism of irredu@blarieties and
if y € Y is isolated in the fibref ~1(f(y)), then &, is a ring of fractions
of some finite extension of’s(y). If, in addition, we assume thdt is
birational K(X) = K(Y)) and f(y) normal inX then&y = Oy i.e. f is
biregular aty.
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Theorem (ZMT) . Let XY be irreducible varieties and f a birational
map Y— X. If yis a point in Y which is isolated in the fibre'{ f (y))
and if f(y) is normal in X, then f is biregular at y.

Corollary. If X is normal, any bijective birational map ¥ X is bireg-
ular.

Remarks.

1. Abijective rational map need not be birational eveX i normal

(e.g) K an algebraically closed field of charge+ 0; f : K —
K the map given bk — xP.

2. If Xis not normal, the above corollary in false. (e.g) Take a
non-normal curve with a single cusp, for instan¥g,— X3 = 0;
then the map from the normalisation (th@re line) to the curve
is birational bijective but certainly not biregular at 0.

2. Divisors, Invertible Sheaves and Line Bundles

a) LetX be an irreducible algebraic variety over an algebraicdthged
field K, which is locally factorial (i.,eactwy, (x € X) is factorial; this
will be the case, for instance, X is non-singular). We denote &y the
structure sheaf oK and by.#" the constant sheaf of rational functions
on X.
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If W be an irreducible subvariety of, of codimension 1, thety is
a normal local ring of dimension 1 and thusaigliscrete valuation ring;
Ow then defines discrete valuation ol (X) which we denote byyy.

Definition 1. A divisor on X is an element of the free abelian group
generated by irreducible subvarieties W of codimendiam X.

Thus a divisoD on X can be written ab = > n(W).W with n(W) €
Z, almost alln(W) being zero.

If f is arational function onX thenwy(f) = 0 for almost all irre-
ducible subvarieties of codimension 1) in fact if U andU’ are the
domains of definition off and f~* respectively, themy(f) # 0 = W
is contained in X — U n U’). Thereforef definesa divisor (f) =
Vzvvw(f)w on X; such divisors are callggrincipal divisors.

The quotient groupgD/» of the group of divisorsD on X by the
group of principal divisors? on X is called thePicard group Pic Xor
thegroup of divisor classesn X. We say that two divisor® andD’ are
linearly equivalent{D ~ D) if (D — D’) is principal.

Definition 2. Aninvertible sheabn X is a coherent sheaf 6f-modules, 23
which is locally free, of rankl. equivalently it is a coherent sheaf of
fractionary ¢-ideals which is locally principal.

Definition 3. Aline bundleon X is a pair(L, 7r) such that

(i) Lis an algebraic variety anda : L — X is a morphism or simply,
a map

[
(i) 3 a (finite) open coveringU;) of X with I_Izr‘l(Ui) — Ui x K.

In the intersections); N U, the isomorphismg; andy; define reg-
ular mapsg; : UinUj; — K* = K - {0}, such thatg;j. gjk = gi, in
Ui nUjnUgandg; = identity.

Conversely, any line bundle is described by giving a finiteropov-
ering U;) of X and regular mapgy(j) on the intersectionsl; NU; to K*
with the propertiesgij.gjx = gk onU; nU; N Uy andg; = identity. The
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bundle is obtained by “recollement” of the varietldsx K through the
biregular maps

UinUj))xK - U;jnUj)xK
(% 1) = (X gij (D).

We shall now show, by a series of constructions and reverse co
structions, that the three notions we have define above areadent.

(i) Divisor to a Bundle.

(ii)

(iii)

Since we have assumedto be locally factorial, any irreducible
subvarietyW of codim.1 is locally defined by a single equation
(in au.f.d, any prime ideal of height 1 is principal) and thus any
divisor D is locally principal. We therefore get a covering;)

of X such that orlJj, D = (g) for somez € K(X). If we define

gij =2/ or.Uiny; then all our requirement are satisfied and we
get a line bundle defined by th&( g;j).

Bundle to a sheaf

LetL = X be aline bundle oiX. For any open sef in X asection

of L overU is by definition a mapJ 3 L such thatros = identity
onU; these sections form a grotipu, L) which is also d'(U, 0)—
module in a natural way. As the fibres'(x) areK-vector spaces
of rank 1, these modules are locally free of rank 1 and we tetis g
an invertible sheaf.

Sheaf to a Divisor.

If # is a locally free¢'— module of rank 1, we choose an imbed-
ding . — J¢; at any pointd € X, % is a principal fractionary
ideal, say of the formopf, f € J#p = K(X); for any irreducible
subvarietyW of codimension 1 inX, wy(f) = n(W) (say); then
n(W) depends only on the imbedding’ c .# and not on the
choice of f and again one see that almostr@NV)’ are zero. One
then associates t&’, the divisor}, n(W)W.
W

We remark that in (i) if we had started withX ~ D oven then
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(iv)

v)

(Vi)

we would have arrived at the same line bundle; and in (iii) & w
had choosen a fierent imbedding? c .# then we would have
arrived at an equivalent divisor. Thus, what we have shovtinas
giving an element of PiX is equivalent to giving a line bundle or
an invertible sheaf.

Bundle to a divisor.

In a manner similar to the one defining a line bundleXgme may
define a projective line bundle oX whose fibres are projective
linesP1(K). By fixing a “point ateo” on P1(K), hence giving an
imbeddingK — P;(K), we get an imbedding of a line bundleon
X in a projective line bundI® on X. If U is an open set iiXX and
sis any section of. overU, different from the “O-sectionS, or
the “co-section”s, of P, takeT = s(U) c P. Then the intersection
cycleT - (55 — Sw) (see 84) is of codimension 2 inU, and its
projectiona(T - (S, — Sw)) is of codimension 1 ifJ and therefore
determines a divisoD on U.

Sheaf to a Bundle

Let . be an invertible sheaf, ang a point onX. Thend a
sectionz of . over a neighbourhootl) of P such that for any
P" € U’,zp = z(P’) generatesZp . We thus take a coverindgJ)
of X and sectiong, € I'(U;, .¥) such thatz generate$|ui; asz
andz; both generateZ onU; N U;.gj; = Z/ defines a regular
mapU; N U; — K* and we thus find a bundle.

Divisor to a sheaf 26
LetD = Y n(W)W be a divisor. For any open subsétof X, we
define "

ZU) = {f € K(X) : vw(f) > —n(W) for all W with WN U # ¢}.

Then%p is a presheaf oX; and ifU is open set such thét = (g)
on U for someg € K(X) then it is easily checked thatp(U) is
precisely= {f € K(X) : fg e 0pVYP € U} hence is free ofi(U, ©)
of rank 1, The sheat”(D) defined by.%p is thus invertible.
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(vii) Certain observations:

a) If D, D’ are divisors, corresponding to line bundled.” and
invertible sheaves? (D), .Z(D’) thenD + D’ corresponds to the
line bundIeL® L’ and the invertible sheai”(D)@Z(D ); and-D

corresponds to the dual bundlé and the dual shea%(D)
In fact if L is given by Ui, gij) andL’ by (Ui,gij) thenL c)zg L’ is

given by Ui, gij.g;;) andL" by (Ui, g;").

B) Letu : X’ — X be a morphism of nonsingular (or locally fac-
torial) irreducible varieties<’, X. Let D be a divisor onX corre-
sponding to a line bundle and a sheafZ; then the “pull-backs”
u*(L) andu*(.¥) are both well-defined but where is no way of as-
suring thatu~%(D) is always well-defined. But one can prove that
JadivisorD; ~ D onX such thau=1(D,) is (see §4) well-defined.
Thenu*(.¥) andu~1(D;) correspond to one another.

v) Suppose. %, X is a line bundle orX, and assume it admits
global sections,, ..., s, on X. Then thes are rational functions

on X and if we suppose that they do not vanish (as functions on
X) all together at any point oiX, for everyP € X, each ratio
S(P)/s;(p) is either inK or is co in P1(K). Then thes define a
morphism

X = Pn(K)
P  the point given by the homogeneous coofsléP)).

If the 5 do have common zeros, then we get only a rational map on
X with values inPy(K).

Definition 4. We say that the line bundle L ®&ry ampleif there exist
an integer n and global sections,s. ., s, of L over X givingan isomor-
phismof X on an algebraic subvariety &}(K). We say that L ismple

if 3a g > O such that B9 is very ample. We say that a divisor D on X
is very ample (resp. ample) if the line bundlg defined by D is so.

For any divisorD on X take global sectiond,, ..., f, of the sheaf
b defined byD; they are rational functions of such that )+ D > 0
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and correspond to global sections of the line buridiedefined byD.

As before we get a rational mag, of X with values inP,(K); ¢p is a
morphism if the divisors ) + D have no common point. If in addition,
we assume that thd;} are such that thep they define is an imbedding
of X in Py(K), then the divisorsf() + D on X correspond orpp(X) to 28
the hyperlane sections for dlle I'(X, £p).

Proposition 1. Let D, E be divisors on X and suppose D very ample.
Thendn, € Z* such that for any = n,, the sheafZ(E + nD) admits

a finite number of global sections, defining a morphigi + nD) on X
into a projective space.

Proof. We may assum& imbedded in &5 and thatD is a hyperplace
section. Leté,,...,&s) be a system of homogeneous coordinat®4n
and consider thefine open subsét; = (¢ # 0) in X. The E|Ui corre-
sponds to a fractionary ideal &f[U;]; a finite system of generators of
the ideal gives a finite systens;{) of sections of the line bundIEE|Ui,
without a common zero ob);. Then these sections extend to rational
sections §;) of Lg with poles only or¢ = 0.

If n(i) is the maximum of the orders of these poles thennfer n;
the (5; ® &) are sections ofg ® Lnp = Le+np 0N X without common
zeros orJ;. Then forn > supn(i) the (§; ® &) j are sections ofg.np

|
without common zeros and hence define a morphiggnp) from X,
into a projective space. Q.E,P O

Proposition 2. If F is an ample divisor theal a k, > 0 such that for
any k> kg, there exist global sections (finitely many).#§r defining a

morphismpyg.

Proof. By definition somegF is very ample. Now apply Propositigh 1
toD=qF E=F2F,...,qF. O

Proposition 3. If D is ample therdn, > 0 such that nD is very ample29
¥n > no.

Proof. SomeqD is very ample; also choodg as in Propositio]2 and
No = g+ ko. O
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Forn > no, 3 a morphismgn-gp : X — P, defined by global
sections {j) of £_q/p; and we have an imbedding

¢qp - X — Ps defined by global sectiong) of #;p. Therefore
the morphismy = (¢(n-qp, ¢qp) : X = P, X Psis an imbedding (its
composite with the projection is an imbedding); composirithwhe
Segre-imbeddin@®, x Ps — Prsiris We get an imbeddingnp of X in

Prs+r+s defined by global sectiond;{;) of ¢np. Q.E.D

Theorem(Grauert). Let X be a normal irreducible algebraic variety

over an algebraically closed field K and-’f_; X a line bundle on X

Let S, be the zero section of the dual bundlé £ X. Then L
is ample< 3 a morphism t from L on an gfine variety Z passing
through the origin in some Ksuch that

(i) %So)=0

t
(i) L*—S,— Z-(0).
For proving the theorem we shall need the following two lemma

Lemma 1. Let L be a line bundle on X and*L5 X the dual of L.
Suppose &..., S, are sections of L on X. One then defines a réap
L* — K™ by xe L* = §(x) = ((S(7()), X)L

We have also seen before that thelefine a rational mapon X to
P(K). We have the following:

a) §L*) c the dfine cone inK™?! of §(X), and if 1 € K, §Ax) =
A¥(x)

b) Any regular mapu : L* — K™ such thatu(ix) = Au(x),1 €
K, x € L* is of the formsTfor a system of sections, ..., s, of L.

c) LetS, be the image of the zero sectionlof Then sis a biregular
imbedding ofX in Py(K) & §is biregular outsidé&, on L*.

Proof.  a) The former assertion is clear, forsfx) # 0, sayS(X)o #

S(X)i _ si(7(x)

0, then, for each:

o o(n(¥)

: the latter assertion is trivial.
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b) Letu(X) = (Uo(X),...,un(X)),x € L*. Foranya € X if x €
(L*)athenx — ui(x) is a linear form onL}; and thus defines an
s(a) € (L*)* = Lg; and therefore we get sectiogse I'(X, L), 0 <
i < nwith the required property.

c) Assumes : X — Py is a biregular imbedding. Let € L* — Sq
anda € Xs. tx € Ly; if i is such thats(n(x)) # O theng(x); #
0 andg(x) # 0. Therefores(L* — Sg) c {cone ofs(X) — (0)} in
K™, We will prove that this inclusion is, in fact, an equality;
it is suficient to prove our assertion when we restti¢tto an
open atU > ain X s-tL* overU is isomorphic toJ x K. Then
L* - So ~ U x K*, while, the cone o§(U) — {0} is isomorphic to
s(U) x K*.
m]

As all these isomorphisms are compatible with restrictiohs) to 31
smaller open sets, we are through, we have, by hypotHgsis, s(U)

Conversely,les(L* — S,) — 3(L*) — {0}; again by choosing an open
U c X such thal.* ~ U x K we get

UxK* S s(U)xK* by an isomorphism compatible with restrictions
and identity ork* i. e.,U — s(U)); andsis thus a biregular imbedding
of Xin Py.

Lemma 2. Let E be a line bundle on X and e the morphism of fibre
V
spaces E— E®I on X, defined by

X— X®---® X, (qtimey.

Supposeu is any morphisnE — K" such that(1x) = 19%u(x).1 €
K, x € E. Thenu admits a unigue factorization

EX el Ko
such thau’is a morphism witii(1x) = AU(X), x € E®%, 1 € K.

Proof. Is x,y € Eare s.tvy(X) = vq(y) theny = ax,a € K. Also,
VoY) = (Y® - ®Y) = a9(X®---® X) = X® - - - X = Vg(X) by assumption
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so thate is ag™— root of unity. Theru(y) = a%(x) by hypothesis, and
sou(y) = u(x) so that the set theoretic mapmn E®Y defined by

TWA(X) = u(x) is well-defined

To show thafti is a morphism take any opdth c X such thatE|U =~
UxKandE®U ~ U x k. If (X) = (z 1) is a coordinate system for
ElU and ') = (Z,u) a coordinate system fdE*9|U theny is given
by (z1) — (z A% andu is given byu(Z,u) = GW(Z,1)u = u(Z,Lu
Q.E.D. O

Proof of Grauert’'s theorem

(i) Necessity
If L is ample by Propositiofl 3Jg > 0 and systems of sections) (
of L® and ) of L&@*Y defining projective imbeddings

S: X - Py
and s : X — P}, respectively

As in LemmddL, we obtain morphisms

1
51 (L)% = Kng ands: (L) 32 kypa

which are biregular imbeddings outside the respective sedtions

(Lemmall, c). We define now a morphism: L* — Kp.y,2 as the

composite

* *\ @ =\ ®(q+1
L s L0 (L7 = Koz,
We shall prove thg is a biregular imbedding outside the null section
So of L*. Itis enough to show thaly @ V4.1 is a biregular imbedding
outsideS,. Again it sufices to do this over open sets c X such
that L*|U ~ U x K; over U the mapvy & Vg.1 is given by & 1) —
(x, 29 @ (x, 19*Y); the inverse rational map form the image is given by
(X e (X t') = (X t'/1); Vg®Vqg+1 is then certainly a biregular imbedding
on (L* — Sp)lU =~ U x K*.
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(i) Sufficiency.

Lett be a morphism ol* with the properties stated in the theorem.
For anyx € L* one obtains a mald — K" by 1 - t(1x): this is defined
on the whole oK and vanishes precisely far= 0 orx € S,. Hence
there exist regular mapg(x), . .., t-(X) on L* to K" such that

t(AX) = Aty (X) + - - - + A"t (X).
Computingt(uix) we easily see thag(ux) = w tj(X)Vx eé_*. The
HE

mapt(x) = t1(X) + --- + t;(X) is an imbedding of I(* — Sg); thus the
mapu(x) = (t1(X),...,t (X)) of L* in a suitable big fiine space is also
an imbedding outsid8,.

Let tic(X) be the components of the maj§x); we havetj(ux) =
WtV € K,x € L*. We form the graded rind\ = K |(tjy),, |, the
degree ot beingj. ThenAis a domain (it is the coordinate ring of the
imageu(L*)); its integral closured’ is a graded, finite typ&-algebra.
Thend g < 0 such that the homogeneous elementg\irof degree
g generateA’(q) = ZOA’Vq as a gradekK-algebra; we may assuntg

>

to be a multiple ofviz, ...,r. Let (w,) be a basis oveK of the K-
spaceAy; (w,) are regular functiont” — K, homogeneous of degree
g. We obtain then a regular map : L* — KN foranN e Z* whore
components are thev,)s and which therefore has the propengix) =
A%w(X), x € L*, 1 € K. By Lemmd2, we get a factorization

L 24 (L7)=a 2 kN

such thatw(uy) = uW(y),y € (L*)®9, u € K.We shall prove thatl()®9 is 34
very ampleby showing thaiw is an imbedding outside its null section
(see Lemma 1,c)).

As W((L*)®9) = w(L*) is anormal subvariety ofkN (its coordinate
ring is K[(w,)] we shall prove our ascertain by using Zariski’s main
theorem (Chaptel, g)) i.e. by proving thatw is bijective, birational
onto its image, outsid&,((L*)®9).

w is injective outside Sy((L*)®9):

a) If w(x) = w(y), thend aq™ root of unity & such thatt(y) =
sltjk(X)Vj,R.
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In fact, each‘j‘k” is a linear combination of the’, sso thatw(x) =
w(y) impliesty’ (x) =t} ),

e tly) = extik(X)

whereej is a (@/j)™root of unity. In particulare = &1 is ag™
root of unity. Nowtjct{, is again a linear combination of thé s
and therefore

tity ) = titf (9
ie., Sjksq_ltjktglj(x) = '[Jk'[q J(X)

and forx ¢ S, this meang:j = &/.
b) Suppose(,y € (L*)® such thatw(x') = W(y’).

Let X' = vg(X),y = Vg(y), with x,y € L*. Then by a) we obtain
tik(y) = Sjtjk(X) = tik(e X)V], k. This impliest(y) = t(ex) for the map
t=ty+---+t; butif X,y € (L*)®9-So((L*)®%) thenx,y € L* - S, andt
is biregular orL* - S, by hypothesis. Therefore= exandy’ = vy(y) =
ghvg(x) = X
w is birational

We haveK(L*) = K((ti);k); the projectionr : L* — X then gives
an imbeddingK(X) — K((tj)). As locally L* is of the formX x K,
this means thall a homogeneous functian € K(L*) of deg 1,07(1x) =
Ac(X), such thatK(L*) = K(X)(c). Obviously, thenK((L*)®%) =
KX) ().

On the other handK(X) is generated oveK by the elements in
K((tj)) which are products of the forr‘ﬁ[ t'g with Z,B(J k) = 0. Thus

K(X) = K((W,/w,,),) and the functlon f|eI<F of w((L )®9) is given by
F= K((Wa)a) = K(X)(W%).
Finally asc9/w,, € K(X), we obtain

Q.E.D F = KX)(e9) = K((LY)®9,
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3. Chow Coordinates

a) LetV be an algebraic set of dimensianin P, (notation: V9); we 36
assume thaV is pure of dimensiord, i.e., all the components of
have the same dimensiah If H; is a hyper plane not containing any
component oV thenH; NV is pure of dimensiond - 1). If Hy is a
hyperplane not containing any componentafn V thenH, " Hy NV
is pure of dimensiond — 2) and so on; and finallidg,y N ---NHy NV
is empty in general

Our purpose now is to study the systems @f+ 1) hyperplanes
Ho,...,Hq such thatfo U --- N Hyg) NV is non-empty

AssumeV to be irreducible. Any hyperplanid will be defined by
an equation of the fomio uiXi = 0inPy, Ui € K and is there fore deter-

1=

mined by the pointi, . .., uy) € K™, A system of ¢ + 1) hyperplanes
will then be determined by a point in théfiae spacek ™D@+1)  \we
shall now prove that the points K™1@+1) corres ponding to systems
of (d+1) hyperplane$ip,...,Hgin P, suchthaV NnHoN---NHy # ¢
form an irreducible algebraic variety (in fact, a cone foviolis reasons
) in KM+1)@d+1)

Letk be a field of definition fol and k) = (x4, ..., Xn) be the &ine
coordinates for a generic point)(of V/k. Its homogeneous coordinates
are the (1x,..., Xn). Consider a system

Gj,i=0,....d, j=1,...,n
of algebraically independent elementskobverk(x) and an equation
n
Uio = — ) UgjX; defining @io)i-o....d
j=1

Then @) is a generic point of an irreducible variety f™ D@+ 37
(the locus of Tij;) overk(x) which is the one we have been looking for.
Its dimension igl+n(d+1) = n(d+1)(d+1)-1 so that it is a hypersurface
in KDE+1) defined by an equation:

F(Uoo, - - -, Uon; Uto, - - -, Utn; — — == Uda.._.ug,) = O
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in (n+1)(d+ 1) variables; this equation is obviously multi homogeneous
in the set of variables indicated, of the same degréeeach set of vari-
ables; if two sets of variables take the same values thenyjherplanes
they define are the same aHgN---NHg NV # ¢ in valid; this implies
thatF is containing and antisymmetric in the sets of variablegcited.

The polynomialF is called theChow form(or the associated form,
or the Cayley form or the Bertini form)of.

The Chow formF (V) of a varietyVV4 determines the variety back
uniquely. In fact for any linear variety"9 the points of intersection
of L9 andV are given by the Chow form F(V) and are precisély
degree of-(V), in numbers is called thedegree of the variety V

b) LetV be any variety. By a&ycleonV we mean an element of
the free abelian group generated by irreducible subveseatfV. If
X =>n,V, isacycle orV. the support oK is the union |J V.

n,#=0
We say thatX is of dimensiond if eachV, is of dimensiond; we

say thatX is positive(X > 0) if eachn, is > 0.
If X =>3,n,V, is a positive cycle of dimensiatin P,(K) andF,(u)
is the Chow form of eacN,, the formF(u) = [](F.(U))"« is called the

Chow form of the cycle XThe degree oF(u)a: > n, degV, is called

the degree of the cycle XWe may write Chow fornt(u) in the form

> Ca(X)u, where theu, are monomials; we then call th€ ((X)) the
Chow coordinate®f X, and the point whose homogeneous coordinates
are the C,(X),) is called theChow pointof X.

Conversely, ifG(u) = d uis a given form multihomogeneous of the
same degree in each set of variables, alternating and amtisyric,one
may ask “Under what condition are thd) the Chow coordinates of a
positive cycle on a subvariety n””.The answer is given by the follow-
ing theorem which we shall not prove here. (For a proof segt@ha
1,89,5, Samuell4]).

Theorem. The(d,) are the Chow coordinates of a positive cycle X on a
subvariety Uc P,(K) if and only if the(d,) satisfy a system of homo-
geneous equation with cfieients in the smallest field of definition of
u.

We call a system of cyclesX{) anirreducible system if the Chow
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points of theX,, range over an irreducible variety.

Corollary. Any system of positive cycles BR(K) with a given dimen-
sion d and a given degregis a finite union of irreducible systems.

Example.

a) V ={(ay,...,an)}, apointinPy,.

n
The Chow formF(u) of V is the linear form} uig; = 0.
i=1

n
b) V a hyperplane H given by’ a;X; = 0. Then the Chow form o¥/ 39
j=0

is given by the determinant

ao PPN an
Uoo s Uon | _ 0
Un—l, o oo Un—l, n

¢) V alinear subvariety oPp.

In this case the Chow coordinates are essentially the Geassao-
ordinates of the linear variety.

4. Results from Intersection Theorey

a) We fix, for our present consideration, an ambient vafietpver an
algebraically closed fiel&, which we shall assume to be non singular.
Let V, W be irreducible closed subvarietiesldf We say that a compo-
nentC of VN W is properif dim C = dimV + dimW - dimU. For such
a componen€, theintersection multiplicity i (C; V.W) is defined in the
following manner:

Consider the product (nonsingular) varidétyx U and leta be the
diagonal ofU x U; then the componei@ corresponds to a compondnt
of AN (V xW); Cis an irreducible subvariety &f x W and if ¢ is local
ring of € onV x W then& c K(V x W); thena n (CV x W) is defined
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by equationsX; — X/) in K[V x W] locally and these equations generate
an idealq in &, primary for the maximal ideal of’. The intersection
multiplicity of V and W on Gs defined to be the multiplicitg(q) of the
primary idealqin &.

It can be shown thaiy (C; V.W) = 1 means tha?’ (in the above
paragraph) is a regular local ring agds the maximal ideal ot’. The
first condition means that is simple onV andW: the second condition
says precisely that the tangent space¥ tandW at a generic point of
C have for their intersection the tangent space€ tat that point. We say
then thatv andW aretransversalon C.

Remark. We observe that so far we have not made any use whatever of

the fact thatC is a proper component &f W. We could have defined
iu(C; V.W) for any componen€ of V N W. But the advantage in con-
sidering a proper component is seen from the following fedtti¢h we
shall not prove):

Let C be a proper component &9 n WY in a (nonsingulary™;
suppose that the primary ideal ¥fin &(C; U) (the local ring ofC in
U) is generated byn(—d) elementsy,, . .., yn_g (this will be the case for
instance ifC in simple onV); then the multiplicityiy (C; V.W) is equal
to the multiplicity of the ideal of¢’(C.W) generated by the classes of
()

(For a proof see Chapter Il, 85, no.7, Theorem 6), Saniiel [4]

V-W
With the same notation,we define the “intersectidh* W (or
when all the components, of V N W are proper, by:

VW = 3" iy(Ca : VWIC,

ThenV - W is acycleonV nW. Under obvious condition, we
may also define the cyclésL-JY for two cycle X, Y on U, by extending

the above definition by linearity. When the ambient spdceeeds no
special mention we may also wri¥Y for XU Y.
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Some properties
i)
X.U=X
U
X.¥Y=Y.X
U U
and Y).Z2=X.(Y.Z
(Xu )u u( u )
(We remark that the associativity holds only when all the pom

nent ofU NV n W, (U, V, W being the components &, Y, Z re-
spectively are proper).

i) If X,Y are cycles otJ, X', Y’ cycles onU’ thenX x X’ andY x Y’
are cycles ot xU’, and one has{x X").(YxY’) = (X.Y)x(X".Y’)

i) Let V be a closed, nonsingular subvarietylgfX a cycle onV, Y a
cycleU then

X.Y =X.(V.Y) (Induction formula)
v VARV

iv) Let U,U’ be nonsingular varieties argl: U x U’ — U the set-
theoretic projection. Le¥ be a subvariety df) x U’; we define the
algebraic projection py(V) of V as follows:

a) ifdim p(V) <dimV, thenpry (V) is the “zero cycle” orlJ
pB) if dim p(V) = dimV, them K(V) is a finite extension of
K(p(V)) andpry (V) is the cyclg K(V) : K(p(V))] p(V).

This notion of an algebraic projection extend by lineardycycles 42
onU x U".

Proposition. Let U’ be acompletenonsingular variety and X be a cycle
on U x U’. Then for any cycle Y on U.

pry(X- (Y x U") = pry(X) - Y

whenever both sides are defined.
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b) Given a morphisnt : V — V’ of nonsingular varieties and a
cycleX’ onV’, one defines the inverse imaget(X’) aspry((VxX")-T'¢)
whererl'; is the graph off. LetV be a projective nonsingular variety and
T anirreducible variety, also nonsingular. For any cyXlanV x T, the
cycle X; = pry((V x t) - X) on V is defined for “almost all't € T.
The system of cyclesX) thus defined otV is said to be atirreducible
algebraic family of cycles on VvV

One can show that for an algebraic famik) of cycles onV, the
Chow coordinates(X;) of the cycleX; depend rationally oh € T:thus
the dimension and degree of the cy&leare independent dfe T. Any
two members of the familyX;) are said to balgebraically equivalent

Let (X)weT and (Vv )rer- be algebraic families of cycles ov; we
may assume that the parametrizing varielieand T’ are the same by
passing tal' x T’ in the obvious manner. Then it is checked that

Xe - Yy = pry((V x1) - (X-Y))

whereX andY are the “defining” cycles oW x T. Thus ; - Yt IS
again an algebraic family ovi.

Examples.We shall be interested here only in cycle of dimension 1,
i.e.linear combinations of irreducible curves.

(i) Let D andE be cycles of (dimension 1 and) degrekande in
P,. The intersection numbeD(E) of D andE is the total number
of points of intersection ob andE each point counted with the
appropriate multiplicity.

We have:D.E) = de(Theorem of Bezoout). In fact , it is enough
to prove this for cycledd’ and E’ such thatD is algebraically
equivalent taD’ andE is algebraically equivalent tB’. One can
construct an algebraic family containiiiyjandD’ = dL(L a line)
as members and similarly f& andel’. For the two lined. and
L’ our assertion is obvious.

Thus, we have a case where the intersection number is catyplet
determine by the degrees of the cycles
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ii) Consider the products of the projective linksx P; imbedded in
P3. Thus is the quadri€,é; — £263 = 0 in Pa.

Ly

Ly

LetL, andL; be a ‘horizontal’ and a ‘vertical’ line of this product:
if di = (X-Ly) andd; = (X - L1) one may construct an algebraic
family on P; x P, containingX and @;L1 + doLy) as members.
Similarly for a second cyclX’ in P; x Py

The intersection number of the cycl¥sX’ is then given by 44

(X-X) = ((dlLl + doLo).(dyLy + d’zL'z))

= d]_d’z + dzd’l
while degX=d; +d, and
degX’ =d; +d,

We have thus a case where the intersection numhbeotideter-
mine by the degrees of the cycles.






Chapter 2

Algebraic Curves

Let K be an algebraically closed field. Aalgebraic curveoverK is a 45
variety overK all of whose irreducible components have dimension 1.
In this chapter, we shall be mainly concerned with irredigcdmmplete,
nonsingular curves.

1. The genus

a) LetC be a nonsingular curve. Then for any polite C, the lo-
cal ring Op is a discrete valuation ring of the function fiekdC). If,
in addition, C is complete, then every discrete valuation ringkdfC)
dominates somé&p, P € C and hence equals thét. Obviously the
point P is uniquely determined. Thus the structure sheaf of a ngasin
lar, complete, irreducible curv@ is determined by (C) and any two
birationally equivalent such curves are isomorphic. Taid £nables us
to construct a projective “modelC for a function field of one variable
L oveK in the following manner:

Let L = K(Xg,...,Xy); consider any fiine curveC’ in K" whose
coordinate ring iK[xs,...,X,]. We take forC the projective normal-
isation of a projective closure fd€’. The curve is normal (therefore
nonsingular) complete, irreducible, with function fi¢lcind is thus the
“model” we are looking for.

31
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But in the sequel, we need modelslofwith “nicer” properties in
projective spaces of “small” dimension. We start with thiéofeing

Definition. A nonsingular curve C is said to lsrangef all its tangents
have a point in common, all if it is not a straight line. It issiig seen
that strange curves can occur only in characteristie: 9.

Theorem 1. Any function field of one variable L over K admits:
i) a nonsingular model, which isot strangein Ps.

ii) a model inP, which has for its singularities only finitely many or-
dinary double points.

Proof. We shall prove i) in two stages. m]

a) L admits a nonsingular, nonstrange, projective model

Let C be a projective nonsingular model bfin Py, constructed as
above. We may assume thatis strange; choose a system of homo-
geneous coordinates #y, such thaiC does not lie entirely in the hy-
perplaneX, = 0 and thatA = (1,0,...,0) is the common point of all
the tangents o€. Let the homogeneous coordinate functionshe
(Lxg...,%n).

Let D be a nontrivial derivation of overK. For any pointP € C,
the parametric equations of the tang&gtto C at P are given by

1) X; = axi(P) + (DX)(P),a € K,i = 0,...,n.

The parametetip of A onTp is a rational function oP, sayu € L.
Thus,

(2) O=ux+Dxfori=12,...,n

and the system of homogeneous coordinateAofjiven by [1) is
(u,0,...,0) whenceu # 0.

We now claim thafly € L such thauy+ Dy is not proportional ta,
i.e., such thay + u™ Dy € K: in fact, as we are in characterisfic 0,
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we may take any € LP — K (sinceDy = 0). Thus any model of for
which the system of homogeneous coordinates is of the form

) (LXe....%.Y.21....%), Y.zjel

is nonstrange It remains to prove that there exists such a nonsingular
model.

Let G be a positive divisor o€ such thaty) > -G. Then ly
L(@) and C being projective,L(G) is finite dimensional with a basis
(Ly1...,yr) with y; = y. These then define a morphissg : C — Py

(Chapter I, 82) and as in Chapter I, 82. Proposifibn 3, we gétnded-

1, .
dingy : C % Pn X Py Z Parsren Of C in Poryren. The homogeneous

coordinate functions oir(C) are the functionsxXy;) with X, = yo = 1
and among then we have X, ..., X, Y; ¥(C) is nonsingular and we
have a model of typd]3).

B) L admits a nonsingular, nonstrange model irPs.

Let C be a nonsingular, nonstrange model in sdipeby «)); let
n > 4. The tangent§,T’ at two generic points o€ do not meet:
otherwise any two tangents meet. We recall here that anuicible
system of lines irP, such that any two lines in the system meet, either
is a system of coplanar lines or has the property that all ithes lof
system pass through a point. This then implies @&t either planar or 48

strange. Therefore the uni%of lines inP, which meetT andT’ has

dimension< 3 in Py,

We now consider the set of all chorggy in P, PP,/ € C, P not
necessarily distinct fron®” (thus, the tangents 10 are also included);
we claim that the union of these chords forms an irreducilelaaic
variety W of dimension< 3 in Py. In fact, letk be a field of definition
for C, (X) a generic point o€/k, (x’) a generic point o€/k. Then the
“generic” chord has the parametric equations

yi =tx + (1-1)X.

Takingt transcendental ovéq(x, x'), the point ) is a generic point
overk for the “chord variety”, and our assertion is proved.
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We now take any point S i, notin V U W and projectP, into
P3 with S as the vertex of projection. This projectianis defined and
injective onC; also asC is nonsingular the “geometric tangent space”
is the same as the “Zariski tangent space” @so that the mapping
induced byr on the Zariski tangent space is also injective, which means
that the maximal ideal @ € C is generated by the maximal ideal at
7(P) = P’ € n(C) = C’. Asnris an injection on C and on its Zariski
tangent spaceg, is birational which proves tha€ is the normalisation
of 7(C) = C’.
Now (by using the injectivity of
m again) one easily proves that
Opis a finite Op-module.  As
Op C Op and as both have the
same residue field, vizK, and
as up, Op = up, by Nakayama'’s
lemma we getvp = Op. That is,
nm is biregular. ThereforeC’ is
nonsingular; in addition it ision-
strange in fact, asS ¢ V, the pro-
jectionsz(T) andn(T)’ are tangents
to C’ which do not meet.

(i) L admits a (birational) model in P»(K) with only modes as
singular points.

Take a nonsingular nonstrange mo@ebf L in P53 (by (i)). The
tangents t& form a variety of dimension 2 iRz; and asC is nonstrange
the union of chord$ P of C such that tangents t© at P,P” meet form
a variety of dimensiorx 2. Finally, the possibility that any chofedP’
is a trisecant (i.e.mee@G at a third point) is ruled out as in that case any
two tangents taC will have to meet; thus the union of trisecantsGo
forms a variety of dimensioa 2 in P3(K). Therefore, choose a point
S € P3(K) avoiding:

«) the surface of tangents @

B) the trisecants t€
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v) the chords at whose “extremities” the tangents are coplana

ProjectP3(K) into Po(K) with S as vertex:y) anda) ensure that the 50
projection is a birational ma@ onto its imageC’.

B),v) ensure that the only singularities @1 and ordi-nary double
points.C’ is then the require models #p(K) Q.E.D

b) The Riemann -Roch formula

A divisor D on a nonsingular projective curv@ is a finite linear
combination, ovelZ, of points onC,D = Z n(P).P, n(P) = 0O for

almost allP € C. Thedegreeof D = Y n(P). P is by definitiond(D) =
> n(P). Any x € K(C) defines a divisorx) = Z Vp(X), P, Vp being

the valuation ofK(C) defined by the local rlngﬁp ; we write X) =
(X)o — (X Where &), and )., are both positive and are disjoint, the
former defined by the zeros &fand the latter by the poles. Elementary
valuation theory proves thak), (X).. have degrees equal {&(C) :
K(X)]. One deduces that deg(= 0¥x € K(C); thus one may talk of the
degree of a divisor class @f.

For any divisorD onC, theK-space
L(D) = {xe K(C) : (X) = —D} = T'(C, %p) is finite dimensional (a€ is
projective), say of dimensioltD). Then we have the following

Theorem 1. (Riemann-Roch) (Preliminary formY.here exists an inte-
ger g > 0 and a divisorQ on C such that for any divisor D on C thes1
following equality holds:

I(D) = d(D) — g+ 1 +1(Q - D)

We shall assume the theorem in this (a proof can be found ire $ér
Ch. The, 1.4, or in Chevalley][1] Ch. II. 85, Th. 3).

Consequences of the theorem

() The integeryis uniquely determined by the above property.

In fact, letQ’, g’ be another pair for which the above assertion
holds. Take a divisob on C such thad(D) > d(2) andd(D) >
d(©Y’); then for thisD, I(Q — D) = 0 = |(©2’ — D) and one obtains

g=g =d(D)-1(D) + 1.
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(i) g=1(Q), and 3 - 2 = d(QQ) as one sees by writinp = 0 and
D = Q in the equality.

Proposition. Upto a linear equivalence the divisér is uniquely deter-
mined by the properties(®) > g and

d(Q) = (29 - 2).

In fact, suppos&?’ is a divisor onC such thatd(Q’) = 2g — 2 and
1(Q") > g; then

0<(20-2)-g+1+1(Q-Q)
i e, I(Q-Q)>1;

on the other handj(Q2 — Q') = 0.
The former implies thafl anx # 0 in K(C) such that§) > (Q' - Q);
but we know that((x)), = 0; it follows that ) = Q" — Q andQ’ ~ Q.

Remark. The integerg occurring in the Riemann-Roch Theorem is
called thegenusof the curveC; it can be defined foany irreducible
curve and in fact foany function L of one variable oveK; by defini-
tion it is the genus of any projective nonsingular moddor L.

Theorem 2. Let C be any irreducible curve of degree dig(K). Then
the genus g of C is given by

d-1)d-2

g- @-D@-2)

o~ dimk(p/5,)

PeC
whered} is the integral closure of/p.

Proof. Choose a system offine coordinates, y for C such thatC hasd
distinct points of intersection with the line at and the #ine equation
for C is of the formF(x,y) = O,F a polynomial of degree. Thed
distinct points ofC at oo define a positive divisob on C, of degreed.
If Ais the dfine coordinate ring of andA’ its integral closure, one has
the equality
A = JLmD);
n>0

(Recall that foru € K(C),P € C,Pis not a pole ofu < uis

integral ond)). m|
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DenotelL (nD) by A;; andA;, N Aby A,. As A’ is the integral closure 53
of A,dz+ 0in A such thazX c A.

o zA (A
Therefore ding (A’/A) = dimg ( zA) < d'm(ﬂ) =

(A has Krull-dimension 1 and therefom&/z Krull dimension 0,
this means tha#/ vzAis a finite direct product of copies #f.) It fol-
lows that (dink &7,/ 0p) < oo for all finite P; and this is trivial forP at
infinity so thatp%]cdimK(ﬁ,;/ﬁp)is a well defined integer, and is equal

to dimk (A’ /A) by the properties of localization of the integral closure.

On the other hanet\;/An = A;/A,n N Alis contained iMA'/a; as, from

above, dimg(A’/a) < o and as 4, is an increasing family it follows
that, for largen one must havé\;VAn = A’/A and hence the equality

dimg A;.I =dimg An + dimK(A’/A).
Now A, consists of the classes modulo of polynomials f €
K[X, Y] such thatd o f < n; thus
dimg A, = %(n+1)(n+2)— %(n—d+1)(n—d+2)
=nd+1- %(d— 1)d - 2).

Now applying the Riemann-Roch formula to the divisuD, for
large n we obtaimd + 1 — %(d -1)d-2)+dimk(A’/a) =nd-g+1+0 54

ie, g= %(d ~1)(d - 2) - dim (A /A)

= %(d -1)d-2)- PZCdimK(ﬁ.’:/ﬁp)

Q.E.D

Examples.
(i) If Cis nonsingular of degred in P,(K), then the genus of =
d-1)d-2)
s
(ii) Let P beanode orC.

Choose a system offine coordinatesx y) onC, such that is the
point (0 0). ThenC is given atP by an equation of the form & (F =
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(ax? + bxy + cy?) + (terms of degree> 3); by hypothesis the square
terms do not form a perfect square and the tangenBsat given by

2ax + by = 0,bx+ 2cy = 0; these are linearly independent and the
maximal ideal aP is given by

= () = (Fi Fy).
One can show easily that the integral closdfeof & = &), satisfies

the relationF 0" c 0O, FW” C 0, henceud’ c 0 andxo’ c O; we
then haver’ > x0” > x0'; as dink(0'/xs) = 2 and dink(€'/x0”") > 1,

: . ’ . % I

it follows that dimk (%) = dimk ())((—ﬁ) = 1. Thus the contribution to

the sum 3. dimg(&7/0p) from a node 1. In particular,if C is an an
PeC

(Sl
irreducible plane curve, wish r nodes on it as the only siagigs, and

of degreed, then the genug of C is W —T.

2. Differentials on an curve

Let Abe aK-algebra. Then there is atmoduleQa,/k which is univer-
sal for K-derivations ofA in an A-module. It is called thé- module of
K-differentials ofA. If Ais of finite type as d&-algebra,thefk is a
finite A-module; ifd; A — Qa/k is the structural derivation the®a k is
generated oveA by elementslx,, (X,) being a system dk- generators
of A.

If C is an algebraic curve ovéd thenQ c)/k is aK(C) module; if
x € K(C) is a separating base Bf(C)/K thenQg ),k has a based).

One may also define a she@fof differentials on the curv€ (more
generally, on any variety); this is defined by the preshéat— Qayx
on dfine open setd with affine algebrad; the stalkQp of Q at a point
P € Cis given byQg, . The sheaf2 is locally free of rank 1 oo’ and
hence is aline bundle denoted byT*(C), and called the cotangent
bundleon C; it is the dual of the tangent bundle @as is shown by the
duality between derivations andfi@irentials. Anw € Qg c)/kis called
a rational differentialon C.

To any such dferentialw on C we associate a divisot on C in
the following manner: at any poinP € C, w is of the formx. dt, x €



2. Differentials on an curve 39

K(C) andt a uniformising parametd?; sincet — t(Q) is a uniformising
parameter at al close toP, w = x dtin a neighbourhood dP and we 56
set @) = X Vp(X).P in this neighbourhood. It can be shown that this
expression is independent of the choice eb that we obtain a divisor
(w)onC, (w) = %Vp(a)).P.

Proposition 1. Let C be a model inP,(K) for C, of degree d, such
that the only singularities of Care nodes. Choose a system gfiree
coordinates(x, y) in 2K) such that C has gfine equation Fx,y) = 0
and all the nodes are at finite distance; assume also that dirtp x =
0,y = 0 on the line ateo are not on C. Let T be a polynomial in two
variables such that the curve(X,y) = 0 passes through all the nodes
on C. Then the dferential

_ T y)dx _ T(x y)dy
“TTFR TR

on C (i.e. of K(C’)) defines a dferential w on C with the property
that (w) > O at all points P at finite distance on C; if, in addition,
d°T < (d - 3) then(w) = 0 on C (we may say in this case thatis
regular or is of thels kind on C).

Proof.

Case (i). Let P be a simply point orC’. ThenF} # OorFj # 0
at P and correspondingly or x will serve as a uniformiser &.Then

Case (ii). By hypothesis,T € (F},F;) (81, Ch II) this proves thats7
vp(w) > O for every branch of a node; moreovefif= 0 passes through
the nodes in a “nice” manner (i,e transversal to both thediras ofC’
atany nodeY /F} andT/Fj will be with invertible on each at any node,
andvp(w) (which , in any case will be: 0) becomes zero.

Case (iii). If Pis atco onC’, (by our choice of coordinates) we may

1 , . -Tdz
takez = ” to be a uniformiser a® ; thenw takes the formF—,§ and
y
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Vp(w) = (-deg.T =2+ (d - 1))
=d-3-d°T;

if d°T < (d — 3), this means thatp(w) > 0 for P ateo. Q.E.D. m]

Consequences of Proposition 1.

Corollary 1. The dfferentialsw of the first kind on C form a K- space
of dimensiore g, the genus of C.

By Propositiorf1L, cas&giii), the space of regulafatientials orC is
of dimension> d-8+1)d-3+2) r, whered is the degree of the

2
plane modeC’ of C andr its number of nodes; the number on the right
hand side is precisely the gengisf C’, hence ofC.

Corollary 2. For any djferential w in C, d((w)) = 29 — 2. Aswko)/k
is one dimensional ove (K) and as ¢(f)) = Ovf e K(C), we may

take w to be of the formF—X as in the propositiofl1 with T such that

y
T(x,y) = 0 passes through the nodes on the plane modef in a
“nice” manner and doesiot pass through any point on’Git co.

Thus we have, on the one hand

d@)= > ve(T)+d(d-3-dT)
P finite
simple o’

and on te other hand

(T-C)=d-(d°T)

= > v+
P finite
simple orC’
Thus, d((w)) =d- (d°T) - 2r + d(d — 3—d°T)
=-2r +d(d - 3) Q.E.D

=29-2
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LetC be a nonsingular, complete irreducible curve aradiferen-
tial on C. Then the divisor ¢) defined by has the propertiggw)) > g
(by Cor. 1 to Propositiofl1:f) > —(w) < (fw) > 0), andd((w)) =
(29 — 2)(Cor.2). Thus, as we have seen before (niemann-Roch, preligagi-
nary form) the divisor clas® of (w) satisfies

Theorem (Riemann Roch-Final form).For any divisor D on C, one
has the equality

I(D) = d(D) — g+ 1 +1(Q - D).

As Qg c)/k is one -dimensional over (€), it follows thatQ is the
class of all diferentials on C; we call it the canonical class on C.

3. Projective Imbeddings of a curve

LetC be a complete, nonsingular irreducible curve &raldivisor onC.
Let (fo,..., fn) be a basis fok(D); as before, they define a morphism
¢ = pp from C to P,(K).

(i) Assume thaP is a point onC with L(D) 2 L(D-P) 2 L(D-2P).

Thend,p contains a uniformising parameter 6.

In fact, if xe L(D) - L(D - P), andy € L(D — P) - L(D — 2P) and
z=y/xthenze Oy p) andvp(2) = vp(y) — Vp(X)

=vp(-D)+1-vp(-D) = 1
(i) Assume thatP, P’ € C such that
L(D)2 LD -P-P)>L(D-P-P).
Theng(P) # ¢(P’).

Letd e L(D) - L(D-P)andy € L(D-P)-L(D-P-P),and 60
u = y/x; thenu defines a functiom ©n the image in a natural way. And
U(e(P)) = u(P’) = 0 while G(¢(P")) = u(P’) # so thatp(P) # (P).
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Theorem. For a divisor D on C with deg. > 2g+1 ¢p is an imbedding.

Proof. ForP, P’ € C one hasl(D-P) > 2g andd(D—-2P) = d(D-P-F’)
>2g-1> (29 - 2) so that by the Riemann-Roch formula

(D) =d(D)—g+1>g+2
D-P)=I(D)-1>g+1
ID-P-P)=I(D)-2=1D-2P)>g

and one obtains:
L(D) 2 L(D - P) 2 L(D - 2P)
L(D) 2 L(D - P) 2 L(D-P-P).
O

By (i) preceding the theorenyp is an unramified morphism and
by (ii) it is injective. AsC is nonsingular, one proves thap is an
imbedding as in 81. Q.E.D

Examples.

() g=0, 1: classical line, cubic curve.

(i) g=> 2: the divisorD = 3Q satisfiedd(D) > 2g+ 1 and thus defines
an imbeddingpp (the Tricanonical imbedding)

(iii) on (any nonsingularlC, any positive divisor is ample

4. Morphisms of algebraic curves

(a) LetC be a nonsingular, irreducible complete curve anthe diag-
onal inC x C. Then “self-inter section’A - A is a divisor class om
defined in the following manner; let be a function orC x C suchv,
(¢) = 1; thenA.(A-(¢")) is well-defined om\ ; if ¢’ is any other function
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on C x C such thaw, (¢’) = 1 theny’/,, can be restricted to a regular
functiong on A and one has

A~<A—(¢))—A-(A—(so'»=A~(%)=(e)

so that the class of - (A — (¢)) is independent of the choice of call it
A, A. We have the

Theorem.A- A = —Q,, the class om defined by the canonical class
on C; therefore, the intersection number-(A) is (2 — 29).

Proof. Take a separating functiohe K(C); thendf # 0. Defineg on
C x Casg(P,Q) = f(P) — f(Q). One has clearlyx(y) = 1.
Also, if f = > a,u"is

n>ny
v the Taylor expansion of

at a pointP on C, then
A @ is locally given byy =
> an(u"-v") onCxC ; the
local equation of ¢) — A

i un\t.
is thus }, a,==-; from
nx=n,

this one deduces by an
easy computation that the
local education of

pr(A - ((¢) — A) is Y na,u™?! = % and the cofficient of (P,P) in 62

n>ny

A - ((¢) — A) is thereforevp(d f). QED. o+

Corollary. Let f € K(C); if ¢ € K(C x C) is given byy(P, Q) = f(P) —
f(Q), then the divison\.(A — (¢)) on A in C x C is given by-(df),.

(b) Let C,C’ be nonsingular, irreducible, complete curves and
C — C’ a morphism; letr* : K(C') — K(C) be the cohomomorphism
of 7. For anyP’ € C’, the discrete valuationp: with centreP’ of
K(C’) extends to discrete valuations,, ..., vp, of K(C) with centres

r
P1,...,Pr; we thus define a divisat*(P’) = >, gP; whereg is the
i=1
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ramification index of the extensiorm, overvp.. The degree of*(P’) is
then equal toz g = n=[K(C) : K(C")]. The definition is extended by

linearity to aII dIVISOI’S orC’. We say thatr is unramifiedif all the g are
1. If(f"), f" € K(C’), is a principal divisor ol’, 7*((f”)) is principal on
C defined byr* f’ € K(C). If 7 is separable (i.e. iK(C)/K(C’) is sepa-
rable) andw’ = X'dt’ is a diferential onC’, thenn*(w’) = #*X.d(x*t")

is a diferential on C; and for ang € K(C'), 7*(Zw’) = n*Z .n*(w’). We

shall now prove a theorem which shows hei{(w’)) and @*(w’)) are
related orC.

63  Theorem (Hurwitz-Zenthem). If x is a separable morphism & C’,
then for any dferential w’ on C

(r*(0)) -m*(w) =d
where dis the djfferent of KC)/K(C’).

Proof. Let P € C andP’ = n(P) € C’,z a uniformising parameter at
P’, t a uniformising parameter & We haved = 0> Op = 0’ and

K[t = 6 > 6" = K[[Z]] and finally & = ¢"[t]. One has an exact
sequence of’-modules

Q/},/K®ﬁ—>§2é/K—>Qé/{},—>O. O

ThusQ ; is identified to the quotient &b ; . by dF whereF is the
minimal polynomial oft over &”. ldentifying Qs with £, thanks to
the baselt, one finds thaf ; 5 is identified with'/ (). The diferent
of 0/ ;, is thus generated by((t)).

Now, we first observe thak{(w’)) — 7*((w”)) is independent ob)’;
thus, setw’ = dz Thenvp/(Q') = 0; and therefore itiz = ydt one
obtains

vp(d2) = vp (7" (")) = Ve(y) = Vp(F' (1))
and  Vvp((r*(w")) - 7" (o)) = Ve(F'(1)) - VP () = Vp(d) - O.

64 One deduces then that

(7" (@) - 7*(()) = d
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Q.E.D.
Corollaries. Letgandg be the genera o andC’.

() By the above theorem we obtain
29-2-n(2g' —2)=d°(d) > 0.
(i) Luroth’s theorem.

Ifg=0thend = 0.

From (i), we obtain fog = 0,

-2-n(2g' -2)>0
n2g -2)< -2
which implies thay’ = 0.

(i) g = 0,7 unramified=> n=1,9=0.
Note thatr unramifiede d = 0 so that by (i),
2-n(-2) = 0 andn = 1 — g which impliesg = 0,n = 1.

(iv) g=1=9g =0,1.

By (i), -n(2g' - 2) > 0,i.e.gd =0or1
(v) g=1,d¢ = 1= munramified
(vi) o =1, 7 unramified= g = 1.

(c) Letmr : C — C’ be a separable morphism as b).( Then the
graphT = (7 x 7)"}(A")(A” = diagonal inC’ x C’) of the equivalence
relation defined byr on C is a cycle onC x C in a natural way. Id is 65
the diferent ofK(C)/k () then one has

Theorem.
A(T = A) = (d)a
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Proof. Write T = A + S. Then the set of all pointB; in 7(prc(A N S))
is finite and one can find a functiofi on C’ which is a uniformiser at
all P{s. We define a function’ onC" x C’ by u'(P", Q") = f'(P’) -
f/(Q"). Thenva (W) = 1 andA’.((U') — A’) = (df’)a by the corollary
to the theorem ofd). We setf = n*f’ andu = 7*u’ so thatu(P, Q) =
f(P) - f(Q) onC x C. Also, if () = A’ + X' then (1) = T + X with
at = (X) = Xand thus ) = A + S + X. One then deduces that O

(A+S).X=7r"(A"-X)=r"(df)a
= (df)a — da(by Hurwitz's theorem)

On the other hand,

(A+S).X=A((U)-A-S)+SX
= (df)s —AS +SX

Therefore,
A-S-d, =SX

Butif P € S.X thenn(P) = P’ € S’.X’ so that
Pe(SX)yYNA=P (8. X)nA

and df’)(P’) = 0. But we have choseft to be a uniformising param-

66 eter atP’ € n(prc(A N S)) and hencedf)(P’) cannot be zero. This
proves thatS.X as a cycle orC x C, disjoint from A, and we deduce
then from the last equality that

SX=0
and AS=d,
i.e. da = A(T - A) Q.E.D.

Theorem (Schwarz-Klein).A curve C of genus 2 admits only finitely
many automorphisms.
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Proof. Let X be any cycle on the produ& x C. If C; andC, are the
“horizontal” and “vertical” inC x C, one defines thimdicesof X as the
intersection numbersX(C;) = d; and X.C;) = do. fFC X C — Pisa
projective imbedding of x C andX is a cycle of dim 1 orC x C, then
the projective degree of in P,, is completely determined by its indices
d; andd; in C x C and the degree o x C in P,. More precisely,
consider an imbeddin@ < P, ; this defines an imbedding x C —

Pr x Pr — P2,, and the homogeneous coordinates in the image are of
the form @;) = (xiy;).

Consider a hyperplane
H = izj;ajbjzij =0

2 in P.2,,, which is the
product of two hyper
andH; = Ypx = 0
in Pr. If the degree of
&
andd; in C x C then the
¢ intersectionH(C x C) in

X planesH; = Y ax = 0
\—/ CinP isdandd if X
is a cycle of inlicesd;

P25 IS given by

H(C xC) = (H1..C) xC+C x (H».C)

so that the intersection numbéi.X) is equal tod(d; + do). Thus, the 67
positive cycles of dim 1 o€ x C with given indicesd; andd, form
a finite union of irreducible algebraic families. (of Theasy Chow
coordinates). Now a positive cycle of dimension 1 inC x C is the
graph of an automorphismr of C & T has indices ]11; it follows in
particular that the graphs of automorphismsQform a finite union
of irreducible algebraic families. We will be through, tafare, if we
prove that every irreducible system of graphs of automarmbiofC is
of dimension 0; letT, ). be such a system; if its dimensienl, fixing
an automorphisnar, of C, the system'(UT(;Ol)(T is irreducible, contains
A and aT # A by assumption. We then havé.A) = (A.A). On the
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other hand, T.A) > 0 while (A.A) = 2 - 2g < O(note thatg < 2). This
contradiction proves our theorem. m|

Corollary. Let K be an algebraically closed field and Eny extension
of K. Let Ly and Ly be function fields of one variable over K, of genus
> 2 and linearly disjoint from K over K.Then any kisomorphism
K’(L1) — K’(Lp) is the extension of a K-isomorphism & Lo.

Proof. Choose a “big” algebraically closed > K’ modelsC; andC,
for K’(L1) andK’(L») overQ. We have bijections

{ K’~isomorphisms oK’ (L) onK’'(Lo)}
<—>{ K’—isomorphisms o€, on Cl}

©{ K’-automorphisms ot }.

By hypothesis of linear disjointness, the genu£efover the alge-
braic closureK’ of K’ is > 2 and by the theorem of Schwarz-Klein the
number ofK’-automorphisms of; is finite.

Consider anyK’-isomorphismsK’(L;) — K’(Lp). If Ly =

..........

S; overK such that

SD(X|) = R|(y1 ..... yq,/lla ey /ls)
¢ HYj) = Sj(X.. Xp. A1, As)

with the I’sin K’. The locus of {;,...,1s) € Q% overK is zero di-
mensional as each specialisation givé§ asomorphism. A«K is alge-
braically closed, one concludes thai ..., 1s) € KS. The corollary is
proved. m|

Remark. This corollary shows that, € is a curve of genus 2 defined
over an algebraically closed field, then every automorphism & is
defined oveK.
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Theorem (Severi).Let K be an algebraically closed field and L a func-
tion field of one variable over K. Then the intermediary esiens
K ¢ L’ c L such that genus’L> 2 and L/, is separable, are finitely

many in number.

Proof. Let C be a model fol. overK. anyL’ with the given property,
take any modeC’ of L’ overK; the inclusionL” — L defines a mor-
phismz : C —» C’; if genusC = g and genuC’ = ¢’; we have the
equality -2 = n(2g’' — 2)+d°(d) wheren = [K(C) : K(C’)] = [L : L']
andd is the diferent ofL overL’. Asd°(d) > O andg is given, the
number of choices fay > 2 andn is finite. Thus we may assume that n
andg’ are also given. O

Take then a curv€’ such thatK(C’) is of genusg’ and K(C) is
separable of degraeoverK(C’). Consider the grapfi in C x C of the
equivalence relation defined by the morphismC — C’. ThenT is a
cycle of dimension 1 of the forii = A + S, symmetric abouh.

T can be considered as a correspondendg iafC, i.e. as a divisor
onC x C. Thus one can form the composite corresponddhc& more
generally, ifAis a correspondence 6f in C, andB s a correspondence
of C; in C3, the composite correspondengeB of C; in Cz is defined
by

AoB = pri3((A12 x C3).(C1 X Bz3))
wherepry3 is thealgebraic projection @ x C, x C3 — C1 x C3. Also,
if P € C;and the “value” ofA at P is defined ag\(P) = pra(A({p}xC>)),
one has the following equality

A(B(P)) = (AoB)(P).
Therefore, in the present case,K([C) : K(C)] = n, it follows that 70
0
From which one obtains:

(A+S)o(A+S)=nA+nS
i.,eA+2S+S0S=nA+nS andthus
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(D) SoS=(n-1)A+(n+2)S|

One concludes then that the corresponderices C x C, for a fixed
n, form a union of irreducible, algebraic system (cf. TheofyChow
Coordinates ). Our aim now is to show that each irreducibktesy
(To). Of correspondences i@ x C, defined as above by morphisms
of C into an arbitrary curve&’ such that genu€’ = g (fixed) > 2, and
[K(C) : K(C)] = n (fixed) is zerodimensional. First note thatAfand
B are correspondence @fin C then

(D | (A-B)=((AoB) - A) |

In fact, consider the 0-dimensional cy@de= (A12x C3)-(C1 X Bp3)-
(A13 X Cz) inCy xCy x Cs (eachCi = C)
One has
priz(Z) = (Ao B)- A3 and
pri2(Z) = A.B.
As a 0-dimensional cycle has the same degree as its prajectar
assertion is proved.
Write nowT, = A+S,,, S, symmetric for everyl, in the irreducible

family (T,). Assume that the dimension of the familysl. Then the
S, are distinct fromA and one hasA'S,) > 0.

Case (i). All the components 08, are “moving”, i.e., eacl®,.Sg, o #
Bis defined. In this case, one h&,(S,,) > 0 while by [I) and [II) we
get

(S¢-So) = (= 1)(2—-29) + (n—2).d°(d)
=(n-1)(2-29) +(n-2)(29-2-n(2g - 2))
<Oasgg > 2
This contradiction establishes the result in this case.

Case (ii). (General Case)n general, one may writ&, = F + m,,
whereF is “fixed” and M, “moving”, both symmetric. One has then

S,0S, = FoF + FoM, + M,0oF + M,0M,
=(n-DA+(n-2F +(nh-2)M,.
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As (n - 2)M, is not fixed whileFoF is fixed one obtains

(IV) [FoF<(n-1A+(n-2)F|

Now consider the symmetric correspondence 72
G=A+FinGxC.
From IV it follows easily that
G o G c G set theoretically.

Thus G can be identified with the graph (set theoretically) of the
equivalence relation defined by a morphiﬁ'ni C” of C in another
curveC”. (In fact, the set theoretic md — G(P)) gives a morphism
of C in a suitable symmetric power &)

The a priori set theoretic map”’ Z, ¢’ which makes the diagram

'’

C

CN

C/

commutative can be easily checked to be a morphism. To piwre t
zero dimensionality for graphs of equivalence relatiorfinge by mor-
phismsz : C — C’ it is enough to prove the same for the morphisms

c” % ¢’ Butthe graphs of the equivalence relations defined by'the
inC”"xC” aren”(T,) = #"(G+ M,) = A” +n””(M,) and by hypothesis
the componentg’”(M,) are all “moving” and we are back to cagk (i).
Q.E.D

Corollary 1. Let k be an arbitrary field and L a function fields of ones
variable over k, which is regular extension of k. Then therimediary
fields kc L1 c L, such that
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() Ly is afunction of one variable ovér of genus (absolute} 2.
(i) L is separable overla;

are finite in number.

Proof. By making a base chande— the algebraic closurkeand using
the fact thatl. andk are linearly disjoint ovek it follows that

Ly = k(L) NL
I‘_i k(L)
L‘l ————k(Ly)
k——k

for any intermediaryL;. As, by hypothesis, the genus 5¢L1) over
kis > 2, it follows that the number ok(L1) is finite. Our assertion
follows. O

Corollary 2. Let k be an arbitrary field and L an algebraic function
field over k, regular over k. Then the number of intermediaejd$é

k c Ly c L such that (i) L is a function field of one variable over k of
absolute genus 2 (ii) L is separable over L, is finite.

Proof. As in Corollaryll, we may assunkealgebraically closed
We apply an induction on the transcendence dedreéL/k. For
d = 1, we are through by Corollafy 1. m|

Let nowuy, ..., Uq be a separating base fofK. We setM to be the
algebraic closure df(uy,...,uq_1) in L.

Case (i). The number ol; with the required properties, contained in
M, is finite by induction hypothesis.
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Case (ii). Consider ar; of the required typel,.; ¢ M. ThenM(L,) is
transcendental oveM andL is hence separably algebraic ow(L),

M c M(L1) c L.

ThusM andL; are linearly disjoint and it follows that the absolute
genus ofM(L1) overM is > 2 . As the transcendence degred_ajver
M is 1, it follows by Corollanfdl that the number d(L,), L, being of
the required type oveg, L, ¢ M, isfinite.

M M(L1)

(d-1)

k L1

If L1, L, are two extensions of the required type, withg M, L, ¢
M, and if in additionM(L1) = M(L>), then by the corollary to Schwarz-
Klein it follows that there is &-isomorphism

M——M(L1) = M(Lo)
Ly

/ X

k L,
gDZLz—)L]_

extending to identity oiM(L1) = M(L2). Thuse has to be the identity
map. Case{ii) and thus corolldy 2 is proved.

Corollary 3 (de Franchis) Let V be an algebraic variety and C arvs
algebraic curve of absolute genas?2, over a field k. Then almost all
rational maps V— C are either constant or separate.
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Proof. Any nonconstant rational mag — V defines an inclusion
k(C) — Kk(V) and if the map is separable the fidi{\VV) is a separa-
ble extension ok(C), whose absolute genusis2. By corollanf2, such
inclusion are finitely many An application of Schwarz-Kl@ancludes
the proof. i

Q.E.D.



APPENDIX TO CHAPTER I
Nonsingular strange curves

For proving the existence of a plane model of a function fieith w76
only nodes (81, Ch Il), we had avoid the “strange” curves @irabteris-
tic p, i.e, the curve€ in projective space all the tangents of which have
a fixed point in common. A posterior (i.e. by using facts aldivisors
of differentials) one can prove that we were fighting against a phant
; more precisely:

Theorem. The only nonsingular projective strange curves are thesline
and in characteristi, also the plane conics.

That a plane coniayz+ bzx+ cxy+ dx? + d’y? + d”Z = 0 is strange
in characteristic 2 is well known and easily proved. The ¢&iquaof the
tangent atX,y, 2) is

XFy+ YR, + ZF, = X(bz+ cy) + Y(cx+ a2 + Z(ay+ bx) = 0

and is satisfied by the poina,(b, c) (we haveq, b, c) # (0,0, 0), other-
wise our conic is a double line).

Conversely leCC be a strange nonsingular curvelp, defined over
an algebraically closed field of characteristicpo # 0. By a suitable
choice of coordinates, we may assume that the point A commaii t
tangents tdC has homogeneous coordinatesQl..,0,0,0) and that
(except perhaps foh) C does not contain point for which two coordi-
nates vanish. Let be the function fieldK(C) of C, and &, X, ..., Xn)

(%, % € L) be the &ine coordinate functions dd outside of the hyper- 77
planeH (last coordinate= 0). By hypothesis all point o€ N H lie in

. . . 1 x
the dfine piece with coordlnate(s)—(, ?2 e X”)

; .
Since all tangents t€ pass through®, we haveDxp = --- = Dx, =
0 for anyK-derivationD of L, i.e.

1) X2, ..., %, € LP.
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We are going to compute the divisadX) . At a pointP € C —
(C n H),Cis transversal to the hyperplaxg = 0, whencex — x(P) is
uniformizing atP. Thus

2 vp(dx) = 0.

For pointsP € C n H, we sety = ;1(,y1 = %(i = 2,...,n); thus
y € LPY; fori = 2,...,n. Suppose, first, thad® # A. We havey(P) =
0,vi(P) # Ofori = 2,...,n. Since the maximal ideal of the local ring
O (i.e. of the valuation ring ofp) is generated by, y>—y>(P), ..., Yn—
Vn(P), there exists an indexsuch that;—y;(P) is a uniformizing variable
t atP. Sincey € LPy; and since/p(y) > 0, the power series equation of
y with respect td is

y = ¥i(P) + )(aot’® + a1 tPUPD) .Y, (a0 2 0, jp > 0);

it contains terms of degreej, and pjp + 1 with nonzero cogicients.

Hencevp(y) = pjp,Vp(%’) = pjp. Sincedx = —%, we have
3) Ve(dX) = —pjp, (ip > 0)
Now, if A € C we havey(A) = y»(A) = --- = Vo(A) = 0. As

above one of thg; is a uniformizing variable t af. Fromy € LPy; and
va(y) > 0, we get the power series expansion

y = t(aotP + aatPUAD) oy (ap # 0, ja = 0).

Henceva(y) = pja+ 1, vp (%) = pja. Fromdx = —%’, we get now

4 VA(dY) = —pja—2.(ja = 0).

From [2), [3) and[{4), and from the fact tHath H # ¢ we see that
the degree of the divisod§) is < 0. Since it is g — 2 (g denoting the
genu ofC), it is necessarily 2 and we hage= 0. Looking at [B) and
@), we see that only two cases may happen:
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a) C n H consists on only one poiR # A. Thenvp(dX) = -2,p =
2, jp = 1L, vp(y) = 2; this last relation shows th&H = 2P Whence
C has degree 2; we get a conic in characteristic 2.

b) C N H contains onlyA. Thenva(dx) = =2, ja =0, va(y) = 1C.H =
A; thusC has degree 1 and is a straight line.

Remark. There exist, of course mansingular strange curves in char-
acteristicp: take a function field. of transcendence degree 1 over
functions, z,...z, € L which generatd P overK andz € L — LP
thenL = K(z z,...,z); the dfine curveD with coordinates function
(2 2,...,2z)) is a model ofL; take its projective closur®; It i easily
seen that all tangent 0 pass through the point (@...),






Chapter 3

The Theorem of Grauert
(Mordell's conjecture for
function fields)

1. Description of the method

In this section we shall describe, often rather loosely, riteghod of 79
attack in the proof of Grauert. (Paragraphs which do makeeaigs
mathematical sense will be starred).

() Letk be an algebraically closed field aikd a function field over
k; let C be a curve defined ovét, with its absolute genug(> 2) equal
to its relative genus ovelK. We shall do the geometry over a “big”
universal domair2. Following Grauert ([2]) we are going to analyse
the cases when the sk of K- rational point ofC (i.e. the points of
C having coordinates) iK is infinite. The complete results (at least in
characteristic 0) have been stated at the beginning of thetss. Our
first aim will be to prove the following

(*)
Theorem 1. If Ck is infinite then C is birationally equivalent (over some
extension of K) to a curve’Glefined over k.

If this is done, the theorems of Severi and be Franchis praved

59
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chapter Il will enable us to study easily the rational poioftsC’ over
K (or some extension oK) and to obtain complete result about the
structure ofCk.
(x) We shall first prove theorefd 1 under the additional hypashist
the transcendence degree kfk is 1. Then an easy inductiod on
will give theorem 1. It should be noted that this is not reasential
(Grauert studies case of arbitrady,

However, this makes the proof simpler and more understamdab

Gruert’'s method is the inverse of the so called “Picard’s hddt
whereas Picard liked to consider a surface as “curve ovenetitin
field” here the curveC will be interpreted as a surface oderRoughly
speaking leF(x,y) = 0 be a plane model & the codficients ofF are
elements oK, i.e. rational functions of parameters: (ty,...,t,) such
thatK = k(t). Then (upto a factor ik(t)) we may writeF(x,y) as a
polynomialG(t, x, y) overk. The surface will be&s(t, x,y) = 0.

(*) Letus be more precise. The fighdis k-isomorphic to the function
field k(R) of an dfine curveR, which we may assume to be nonsingular;
thus we may writek = Kk(r) wherer is a generic point oR overk. We
may also assume th@tis a nonsingular curve in sonig(Q); let x be a
generic point ofC over K. Then our surfac& will be the locus of the
point (r,X) € Rx P, over k The projection on the first factor gives a
fibrationz : X — R; fort € R, we setX; = 771(t) (a priori, this is a cycle
on X). The generate fibr¥, is essentially to curv€.

Lemma 1. Almost all fibres Xt € R, are irreducible nonsingular cur-
ves, having the same genus g as C.

Irreducibility is proved elements by taking a plane moGelof C,
the corresponding surfac& c R x P, and by noticing that the non-
absolutely - irreducible homogeneous polynomials in 3aldds of a
given degreal form a closed subset of the space of all homogeneous
polynomials of degred. As to nonsingularity, the singular sgt of X
does not intersect the generic fibfg(X; is nonsingular); Since : X —

! . . - - - . q
R is proper, it mean thaX is in a finite union of fibres say) Xy, then

i=1
fort # t;, X; is nonsingular. Finally all the nonsingular fibréshave the
same genus according to a theorem of Igusa:
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Sketch of the proof : Consider the fibre produatgx and the iagonak;

in X¢x X; C xéx; the genugy; of X; is given by 2- 2g.= (At.A;) (Chapter
I); this intersection number is constant by the “principfeconservation
of the intersection number”(of. The Theory of Chow coor sy

(*) A rational point ') of C over K = k(r) corresponds to a rational
sections: R — Xof 7 : X — R : the coordinates ofx) are rational
function x{(r) (overk); thus the section is given by (X (t)). SinceRis
nonsingular anc is completesis even anorphism R— X.

Suppose that we have prove ti@atis birationally equivalent to as2
curve defined ovek. ThenX is birationally equivalent tdR x C’ and
the sectiorR — X correspond to mapR — C’. By the theorem of de
Franchis (Chapter Il) almost all these maps are constamiseparable,
i.e have a derivative equal to O: in other words, their gragplestangent
to the “horizontal directions field” or R x C’. Coming back taX we
see that we shall have ofia field E of tangent directions, everywhere
transversal to the fibres and such that almost all secgor® — X are
tangent tcE.

() More precisely, we replacB by an operR, c R such that every
fibre of X | Ry is irreducible and nonsingular. We dendtg by R and
X| Ro by X, so thatX is nonsingular. At each point, ) € X the tangent
directions toX form a projective line, with a marked point namely the
tangent to the fibrex; at (, X). We thus get grojective line bundle
0 : F — X (bundle of tangent direction) with a sectié® (the tangent
to the fibres); we sdf = F — F*; this is an &ineLine bundleon X. For
te R WesetF; = F | X;, Fy = F | X; andF® = F® | X,.

Sine an &ine space “carries functionally in the its structure” its-vec
tor space of “translationsF; admits avector-line-bundleof translation
St-

Lemma 2. The translation bundle S— X; of F; — X; is isomorphic to 83
the tangent bundle (X).

Proof. Let T(X), T(R) be the tangent bundles ¥ R and T(R) be the
pull backz*T(R) of T(R) to X. We have the exact sequence

1) 0——=TX) ——=TX) | Xk —=T(R) | X, —=0.
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Local sectionsey, 8 of Fi — X; give in each fibreT (X) | X; supple-
mentary subspaces of the corresponding fibre$ (). Hence they
be viewed as local spitting,3 : T(R) | X — T(X) | X of the ex-
act sequencdl(1). Thus thdlifferencea — S is a local section of Hom
(T(R) | X T(X0). Now, for a fixedt € R, the bundleT (R) | X; is trivial
whence Hom T(R) | X, T(%)) = T(X%).

Q.E.D. O

If the “horizontal direction field’E exists, it is a section df — X.
For fixedt € R E; = E | X; is a section of; — X; which then identifies
F¢ with T(X;)(Lemmal2) (fixing a point in anfiine space makes it a
vector space). Now sinced2- 2) > 0, T(X;) admits only the zero sec-
tion; thus, ifE exists, it isuniqgue Furthermore, we have, by Grauert’s
criterion, (Chapter 1) a morphism af(X;) into an dfine space which
contracts the zero section to a point and which is biregutawhere.
Thus we should look for a nice morphispa of F; into an dfine space
the curves on the surfa¢g which are contracted to points lpy.

In order to be “coherent” with respect towe will look for a nice
morphismg of F into an dfine spaces. We shall successively:

a) construct the morphisip

b) study the “blowing down set” of ¢ (i.e. the set of aly € F such
that dim, 0 1(e(y) > 0) and prove that it is a section Bf — X

c) prove that almost all sectiond=s— X are tangent t&

d) prove that the existence of a direction fididor X enables us to
“descend” to a smaller field of definition for the generic fibe
namelyk(rP) (p = charack, so thatk(r?) = kif p=0)

e) in casep= charack # 0O lower the field of definition ofX; succes-
sively tok(rP’), s> 1; then use a lemma (a construction analogous to
the one used by Mumford in his theory of module) to prove tat
is birationally equivalent to a cur® defined over k(r?) = k.

s>1
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2. The Proof

(A) Construction of a morphism.

Fort € R, the dualT (X;)* of the tangent bundl& (X;) LN X corre-
sponds to the canonicll; on X;. As (29 — 2) > 0 this bundle is ample
and it follows thatd a should sectiors of T(X;)* such that the divisor
class of ) is k; on X; (class are denoted by the same symbol as the di-
visors) on the bundlé = T(X;) one may then define a homogeneous
linear map by.

Ay) = (s(u(y)) - y).y € L.

CompletingL to a projective line bundlé and extendingfo L, we 85
complete immediately the divisor afor L:

(9 =L~ L™ + (k)

whereL®, L™ are the null and infinite sections bfandy : L — X; the
canonical projection.

Take now any rational sectian of F; overX;, asX; is nonsingular
andF, completer is in fact a section. Ik € Fy, x—o(6(X)) is in the dfine
spacel for almost allx and the rational functio® — S(x — o(6(X)) on
F; extends to a rational functionon F;:

a(X) = S(x— o(8(X)), X € Fr.
The divisor class ofd) is then
(@ =M-F?+6*k) -6 (MFD)

whereM = Im.c, 6 : Ift — X; the canonical projection, with an iden-
tification F{° — X;. Under this identification the self-intersection of the

divisor D = F{ on the ruled - surfacé corresponds to the canonical
classk, on X;; in fact, this class is given by

FOFS +(2)) = MFP + k — MF® = k.

Consider the divisonD = nF{ on F; for large values ofi;the corre-
sponding line bundl&é,p onF; induces, as is seen above, the line bundie
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Lnk, onF{®. On F; we have the exact sequence of coherent sheaves
0—— Z((n-1)D) — £ (nD) —— Z(nk) ——0

which gives a cohomology exact sequence:

0 — H°(Fi. (n— 1)D) — H°(F,nD) 5 Ho(F&, k, —>
2 W (n- 1)D) S H/(F.nD) — H/(FS, (1 - n)k,).

On F{°, one hasHl(Ff",nk[) ~H°(F{", (1 - n)k, (cf. Serrel[¥], ch
II) and if nis Iarge enoughH°(F{°, (1 - n)k,) = 0 so thate is surjec-
tive. Now theH’(F¢, nD) are finite dimensional vector spaces okend
from the surjectivity ofe, it follows thath!(nD) = dimy H1(F, nD) is
a decreasing positive integral valued functiomaind has therefore to
remain constant fon large. It follows thatw is an isomorphism fon
large and therefore thatis surjective. Fix such an.

The surjectivity ofy means that the liner systgmD |= {(f) + nD:
(f) > —nD} induces orD = F{* the complete linear systejmk |; since
|nk| has no base point df* and asD as a member ghD, it tfoIIows
that|nD| has no base point. This means that the rational mapof
F; into a projective space, defined by a basislfamD) is a morphism
(Chapter 1). On the other hamik, is very ample fom large (Chapter
I)and the surjectivity ofy means thapr is induced orF;* by ¢np. Let
1=u.,U,...,u be a basis of.(nD). We setg; = ¢np; we have thus
proved a major part of

Lemmal. (i) a(F°) c H, the hyperplane ato in Py, for the gfine
coordinates(uy(X), ..., Ur(X)); ot | F{° is an imbedding.

(i) gi(Fy) cPr—H.

Proof. If uy is the function with a pole of maximum order aloffg°
among thay;, it is clear that, for

xe R, a(x) =

(g ) e
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Also, by choiceg; | F{* is a multicanonical imbedding. This proves
(i) To prove (i) it is enough to observe that the polar varietieswy fe
in F. QED o

Fix a generic point, of R/K. The varietiesF;”, Ifto, Fi are all
defined overk(t,) = k(R) = K andD = F{° is a K-rational divi-
sor onF¢,. Thus, by the “last theorem of Weils Foundations” the
can be assumed to be functionskift,)(Fy ) = k(F) and defined over
K(t,) = K. As the homogeneous system)(of functions onF does
not have common zeros on the generic fiBgg by restrictingt to an
open subset oR, we may assume that the syster)) (does not have
common zeros ofr. Then we and define a homomorphigm— P, by
X (L= U (X),...,u(X).

The following two lemmas are then easy deductions from lerhma

Lemma2. (i) g(F®) c H, the hyperplane ato in P, for the gfine 88
coordinates(ui(x), . . ., Ur(x)); also, g restricted to each#is an
imbedding.

(i) o(F) cP,—H.
Thus, if we define a morphism < 79 x g: F — Rx P, then:
Lemma3. (i) ¢|F*isbiregular into Rx H
(i) @(F) c Rx (Pr — H).
(B) The contraction set of the morphismg.

Definition. Let Y — z be a dominant morphism of varieties; then-
tractionset Hg) of g is, by definition, the set

E@@) = {y < Y : dimy(g"gy) > O}

Our aim in this section will be to study the contraction Bép) of
the morphisni(y) we have constructed above.
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(i)

(ii)

(iii)
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E($) is a closed subset ¢F.

Infact, we will prove that the contraction setg) of an arbitrary

dominant morphismy 2 zis closed; by an obvious reduction
one may assume successively thas normal,Z is normal, and
then by replacing by its normalisation irk(Y) thatg is birational
(note that the case difh= dimY is the only non-trivial one). But
then, byZMT gis a local isomorphism an all poingsz E(g). Our
assertion follows.

If ¢ = ¢ | F, thenE(p) = E(¢).

This follows from (i) of Lemmd1, (A). In particulaiE = E(p) C
F.

Et:E|Ft=EﬂFt:E(g0|Ft).
Follows from the fact thap separates fibres.

(iv) E;is complete.

Follows from (iii) and (i).

(V) If E; # ¢ thend | E; : Ex — X is a bijection.

Let Et = {e— € | € € E; such thab(e) = e(e’)}.

Then Et c T(X); Et is one-dimensional, sincE; is one-dimen-

sional: Furthermore the mag, X E: — T(X) given by € €¢) +—
t
(e - €) hask; for its image which is therefore complete.

Now, as the cotangent bundlgX;)* on X; is ample ((g — 2) > 0),

it follows, by Grauert’s criterion of amplitude (ChaptergR), thatd a
morphismr : T(X;) — U, U affine, such that contracts the null section

of T(X;) to a point and is biregular outside it; ésc T(X;) is complete,

its i
the

mage undet, which is dfine, reduces to a finite subsetdf From
one-dimensionality oE; and the biregularity of outside the null

section of T (X;), one deduces th#&i; is contained in the null section of
T(X), in other words, thae = € if 9(e) = 0(¢'),e, € € E.

Consider the morphism = ¢ | F; we have seen that(F) c R x
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(P, —H) which is dfine; replacing thefiine closurep(F) in Rx (P, — H)
by its normalisation irk(F) we may assume thatis a morphism of
into an dfine spaceA, which isbirational onto ¢(F), and therefore (by
ZMT) biregular outside the contraction set E

(C) Finiteness of sections oK/R not tangent to E.

Lets: R— X be any section oK/R. Fort € R, the tangent t&(R)
at §(t) is then well defined and not “vertical” and is thuskg one can
therefore define a sectish: R — F so thats = 6.s. To say that §is
tangent toE” means precisely tha(R) c E. Denote by}, the set of all
sectionss of X/Rand byY’ the subset of al such thats(R) ¢ E.

Proposition 1. Y} is a finite subset of.

Proof. For any section s oK|R the compositey o s belongs to Mor
(RA) =V. O

a) The mays —> ¢0sis a map ofy, into V and is injective on 3.

The first assertion is trivial; to prove the second, tak& € >, s #
s, such thas(R) ¢ E ands'(R) ¢ E; thend.t € R such thats(t) #
S(t) ands(t), S (t) ¢ E. By the biregularity ofp outsideE, one gets
@OS(t) # @ o S(t).

b) The elementsos, s € 3, belong to dinite dimensionalector sub-
spaceV; of V.

For a largeq, one had= imbedded irR x Pg; letR be a nonsingular 91
projective closure oR andF be the closure oF in Rx Pg. Any

sections : R — extends to a rational secti@& R — F in a natural
way. Also, becausR is non singular anéf completeSis a section;
Ais a projective closure of, the morphismp : F — A extends to
a rational magp : F — A and the compositgos : R — Ais a
morphism.

Let (¢1, . .., ¢q) be the coordinate functions @f eachy; is finite on
F but may have poles of — F ¢ (R- R) x Bq. Chose a rational
functionu on Rsuch that eachy; is finite on R — R) x Pg; thenu,
is finite on R — R) x Pg. Therefore the composit&(09) : R —
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Ais finite onR — R; if (t1,...,1) are the coordinate functions of
@ o s, it follows that thet; which are rational functions OR have the
property:

(t)>-h on R-R

whereh is the_polar divisor ofionR - R; in other words, we have
ti € L(h) on R and this is a finite dimensional vector space. Our
assertion follows.

The elementgos, s € Y/, form a closed subset of the linear variety
V1.

In fact, if v e Vi(c Mor (R, A)) is of the formp o s, s € 3, then it
has the following properties:

(1) V(R) c ¢(F) (More preciselyt € R, v(t) € ¢(Fy)).

(2) if (R) ¢ ¢(E) theny~t.vis defined and is a sectioR — F;
alsof.o™1 - vis a sectionR — X; furthermore the “direction
function” involved in ¢~lv must be the “derivative” (i.e must
give the tangent direction) of the “point function® ¢~ 1 vwith
the above notation we can write @s-1v = ¢~ 1v.

Conversely, ifv € V; satisfies (1), we have eithgft) = ¢(E;)Vt, so
thatv comes from a section tangentEoor (2) holds so that = ¢0s

with s = 6¢~1v. Now notice that (1) and (2) are algebraic conditions
onv € Vi (taking into account the fact that there is at most one
Vo € V1 such that(t) = ¢(E))Vt € R).

Thereforelm >, Im}.” are closed subs.of the linear variaty.

As the mapy, — Vi is injective on}’ (by a)) the algebraic structure
onIm}Y’(c)) can be pulled t@.". To prove Propositioll1, it is then
enough to prove that:

dm.}' =0

We shall show that any morphis@ 2 >" of on irreducible curve
Qinto Y is constant.
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We first remark thaQ may be assumed to be complete. Indeed for
every fixed te R the morphism

Q- X
q+— w(a)(t)

admits as extension a morphiﬁ]i Xt (Qa_projective closure o)
so thatyq = y(q) is a section ir;’, for allg € Q.
Now consider, for a fixetle R. the morphism 93

Q— A
A ¢ o ug(0)
The image, beingfine, is point ; this means thabyq(t) = ¢oj (t)

forall g, € Q. This is true for allt € Rand asp is biregular outsidé

while iq(t) ¢ E for almost allt it follows thaty(t) = yq(t) for almost
allt € R. One then concludes that, = . Q.E.D.

(D) Case of an infinity of sections.

Proposition 2. If X 5 R admits an infinity of sections then
a) E is anirreducible surface on F

b) 9IE : E — X is biregular.

In view of Propositiori1l, it follows that there exists at lease section
s: R— X which is tangent to E i.e.(8 € E; for all t; this means that
E; # ¢ forany te R. Assertion pis proved.

Regarding b), as we have already seen fhakE,, bijective we will
be through, byZ MT, if we prove the birationality of|E.
Characteristic 0 foers no trouble We assume therefore that charac
k= p, p+# 0, to prove the birationality of|E.
We have a chain 94
k c k(R) c k(X).

Let k(X) = Kk(xz, X2, X3) and assume that;, xo form a separating
bases ok(X)k. We consider the minimal equation
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G(X1, X2, X3) = 0 with an irreducibleG e Kk[Xz, Xp, X3] with
G}, (X1, X2, X3) # 0.

A tangent direction atX) € X is defined by homogeneous coordi-
nates Y1, Y, y3) satisfying

3
.Zl)IiG;q (¥ =0.

i=

As G}, (x) # O this direction is defined completely lyy=y>/y;.
Now sinced|E is bijective,0|E is purely inseparable so that

the directiork is defined by an equation
Y7 = H(x1, X2, Xa);

we assume thatl is not a p power ink(X).

Any sections of X — R defined bys;, s, s3 € k(R) such that
G(s1, &, s3) = 0. Then the tangent tg(R) the parameterBs;, Ds,
Ds; (whereD is any non-trivial derivation ok(R)/k). To say that
S(R) c E is then equivalent to

Ds,\”"

—=| =H :

(Dsl) (s1, 52, 3)

If p" = 1, then triviallyd | E will be birational; assume then that
p"# 1.

Now deriving 4 we obtain

3
0= _Zl H; (S)Ds.
1=

Consider now the locu¥ of the tangent direction
G}, Hy, — HY G},
G, Hi, + H,GX,

an irreducible variety whose elements satisfy

(X1, X2, X3), ) at (xq, X2, X3),0overk. Theny is

LMo

H (X)yi = 0.



2. The Proof 71

We claim thatY is not the whole ofF; in fact, if it were, for any
k-derivationA of K(X) = k(x1, X2, X3), the tangent directionAx;, Axo,
Ax3) will be in Y so that} H} (Y)Ax = A(H(X)) = 0. This means that
H is ap" power. ThusY is a surface.

By the very definition ofY, 6 | Y is birational fromY onto X. from
5), it follows that for anys ¢ 3", §R) c Y. By hypothesis, there are an
infinity of s ¢ " (Propositior1l); thus, the two irreducible surfades
andY have an infinity of common curves, and therefore must coecid
E = V. In particular, it follows that) | E is birational andp" = 1 in 3).
Q.E.D

(E) Conclusion in charac.p # 0.

Proposition 3. With the same notation as before, let C be a curve des-
fined over K= k(R) such that

genus¢® = absolute genus C 2.

If Ck is infinite, then C is birationally equivalent, over K, to aree C;
defined over K.

Proof. Proceeding as in (D), we may first assume that k(R). Let D
be the nontrivial derivation df(R)/k such thaDx; = 1. We extend this
to a derivationD of k(X) such thatDx, = H(X). (see 3) of the proof of
propositior R, (D). Then one has

DPk(R) =0  and
G}, + G, H + G, ,Dxz = 0.

Take any sectiors, = (s], s, s3) of X/R; thens] = x; and

G(s],s5,s3) = 0. Also,
% (R) c EmeansDs; = H(s[, s}, 53).

Now s*(R) is a curve orX thus defines a discrete valuation riagy
in k(X); s*(R) is k(R)-rational means that, for the canonical homomor-
phism
Oq: Oy = Kk(R) =K



72 3. The Theorem of Grauetrt...

of &, onto its residue field, we have 97
oo(X) = ﬁa

The equations that we have obtained above mearvifiat= Do,
or, more precisely, that D’ = D | k(R) then

o,D=D'o,,.

Iteration gives:o,DP = D’Po, = 0. As this is true for an infinity
of @’ s we conclude thabP = 0.( if y € k(X), o»(DPy) = 0 means that
DPy, which is a rational function, has¥(R) as part of its polar variety;
recall that a rational function cannot have an infinite nurrdfepolar
varieties).

Consider now the diagram of field extensions:

LP——KerD ——k(X) =L

K Kp— "

K = k(R).

As K andL are function fields of one and two variables respectively
over the algebraically closed it follows that K : KP] = Pand L :
LP] = p?. We also have dim(kerDP) < p.dim,(kerD). (This can
be proved easily as follows: i,v € EndV, V a vector space, then the
sequence

0 — Kerv —s Keruv— Keru
is exact so that dim(kenv) < dim(ker U) + dim(ker v).

Recalling that keDP = L, one gets
p? < p.dimgp(ker D)

i.e., [kerD : LP] < p; as keD # L, it follows that [kerD : LP] = [L :
kerD] = p. ConsequentlyK (= k(R)) and kerD areKP-linearly disjoint;
thus if C; is a (nonsingular) curve ové¢” such thatk °(C,) = kerD,
thenK(C;) = K(kerD) = L = k(X) = K(C). Q.E.D.
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Corollary 1. (Cy)e is infinite. With notations as in the proof of the
above proposition, let’, = ¢,NKP(C,); then thes, are discrete valua-
tion rings in KP(C1) and are infinitely many in number (sinc¢KP(C,))

is purely inseparableg, # 0, ,= 0’y # 0!,.To prove that the/, de-
fine KP-rational sections of ¢, one has to prove that,(¢”,) c KP.

In fact, if o,(y) = y,y € KP(C1) = kerD, thenDy = Do,y =
oDy = 0, whencey € KP,

Corollary 2.

genug,C! = absolute genus dt;
= absolute genus df.

We shall prove the corollary by showing thata projective model
D; of C; overKP, such thatD; is absolutely normal (We recall here
that the genus drop of a curve for extension of base fields sdrom
nonabsolutely normal points on it.)

By corollary[d, onC; there exist an infinity oKP-rational points; 99
we form a divisorO; on Cq, with such points, and with such a large
degree thaD; is very ample; in view of propositiofll 3, this induces a
very ample divisolO on C. By the last theorem of Weil's Foundations,
one obtains an isomorphism ouér

LK(O, C) — }l_p((), Cl) % K.

Thus, we may assume that there exist rational functio§(@y) =
K(C), which give a projective imbeddinds R c,C N C]inthe
sameP,. We may assume in addition thapointsP1 9 P11, P1nP1in+1
in Cy, corresponding to some of the above defined valuation 1ihgs
such that

i
7]1(P1’i):(0,0...,1,...,O)€Pn,0§iS n,

andni(Pin:1) = (L 1,...,1) € P,. After a projective transformation,
we may also assume that the corresponding pd®tsPn.1 € C are
such that

i
n(P)=(,0,...1,...,00e P,,0<i<n,
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U(Pn+1) = (17 la ceey l) € Pn-

This follows from: Do, = o,D. But as the national functions defining
n andn; generate the same vector space there is a projective transfo
mationu of P,, such that.

C (04
biratjonal u/C’
Cl n Cg_

is commutative. But aa fixes the base points (0., 0, I1 0,...,0)and
the unit point (11,...,1) in Py, u has be the identity if?,; so thatC’ =
C;. By hypothesisC is absolutely normal and thus; = C’ is the
absolutely normal model faZ; that we were looking for. Q.E.D.
This done, one may now suppose that cuBseagain satisfies the
conditions in the enunciation of propositibh 3 (Corollaflk[2). Thus,
one obtains, by iteration, a sequen®)ito,C, = C, of absolutely nor-
mal curves defined respectively over fieigk and such that; ~ Cis1.

The proof of the Grauert-Manin theorem will thus be corﬁpﬂet’m
charac.p # 0, by the following two lemmas.

Lemma 4. If K is an algebraic function field over an algebraically
closed K, charac. ke P # 0, then ) KP" = k.

n>0

Proof. F = N KP" is clearly perfect; secondly, & is a subfield of
n>0
a finite type extension df, F is also of finite type ovek. We claim

that F is purely algebraic ovek; in fact, for any finite type extension
L/k,[L : LP] equalsp? meansd = ttrdeq asF = FP our lemma
follows. m]

Lemma 5. Let (Cp)ns0 be a sequence of also normal curves, eagh C
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defined over a K such that k= (" K, is algebraically closed. Assume
n>0

that, for each n, genusCn(=absolute genus of § > 2 and that G, ~
Cn.1 over some field. Then each @ birationally equivalent to a curve
D defined over K.

Proof. Let g = genus G(Yn). Asg > 2 by hypothesis, eac@, is
tricanonically imbedded iitsg_¢, as a positive one dimensional cycle of
degree (§—6). LetG = PGL(5g - 6). ThenG acts, in a natural way, on
the Chow varietyZ of positive one dimensional cycles of degreg{®)

in Psg_e ( We recall that this variety is defined over a “small” subfield
of k and in particular ovek itself.) This action is given by a morphism
GxZ — Z. AsC, andCy,1 are birationally equivalent, the Chow
pointsx, of Cy, all lie in the same orbiV = Gx, for this action ofG. 0O

Let V be the closure of this orbl in Z. As x, is Kq-rational,V is
defined ovelK,; thus the smallest field of definition f&f is contained
in K,, for eachn and hence irk.

By the Hilbert-Zero -Theorem it follows that an x € V, rational
over k; then x is the Chow point of a curv® in Psy_g defined over
k; x € V means tha€,, ~ D. Q.E.D.

Remark. We have made same construction above as Mumford has done
in construction the moduli variety for curves. But when asnvord
naturally had to consider the entire orbit space we had tbaiedyawith

a single orbit; hence our result is quite elementary.

(F) Conclusion in charac. 0.
102

Proposition 4. Let C be e curve defined over function field of one vari-
able K/k of genus> 2. If Ck is infinite, then C~ D. a curve defined
over k.

Proof. With the same notations and procedure as above, we obtain a
towerk c k(R) = K c k(X) = L. A contrivial derivationD’ of K/k is
extended td on L; corresponding to an infinity of sections ¥f| R,

we obtain, as before, valuation rings, of L/K such that the residue
field of eachd, is K and such that it-, : , — K is the canonical
homomorphism, theor,D = D’o,. O
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Now observe that for any valuation rirg of L/K, D& c & (geo-
metrically if f is a function onX, which is finite along the divisor de-
fined by, then Df is also finite along that divisor; this is due to thetfa
that the direction field is a morphismX — F, not merely a rational
map). Consider now that formal power series fiekd$T)) c L((T)).
We define an automorphis®@® of L((T))( that restricts to an automor-
phism ofK((T)) as follows:

S(M=T

n
S(y):y+TDy+---+T”%/+---,ye L.

(One can divide by! in charac. 0!) The Leibnitz’ formula readily
shows thatS(yy) = S(y)S(Y')Vy,y € L. Also, aso,D = D’o, one
obtains

0,S = So,.

Now consider the curv€ as a overK((T)); its function field is
thenK((T))(x,y) whereL = K(x,y) is the function field ofC/K. The
automorphisnC of K((T)) defines a curve&eS, the S-conjugate ofC
(replace the ca#cients in the defining equations 6fK((T)) by their
S-conjugates). Then

genugmyc = genus (absolute) of C
= absolute genus o€°
= genugmyC° > 2.
Also the K((T))-function field of CS is K((T))(SxS}); we claim
thatC andCS are birationally equivalent ové€((T)). In fact, in view

of the above relation on their genera and in view of Hurwienthen
(Chapter 1l) it is enough to prove that

KIM)(ESxSY c KI(TH(X. ).

To start with we know already th&d,, c &, for all «; in addition
if u, is the maximal ideal o, then forx € u, one hasr,(DX) =
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D(oo.X) = 0, i.e. DX € u, so thatDu, C u,. Also we claim that the
valuationv,, on L/K defined byZ, has the property

Vo(D2) > V,(2) Vzel.

In fact, if t is a uniformiser forg,, thenDt = at, a € &, from above,
and thus ifz=ur",ue J,,ne Z,

DZ = t"Du + nut™ 1Dt
=t"(Dn + nug

whencev,(D2) > v,(Z),(since Du+ nua) € G,).

Now consider the divisoP, on X defined of some/,,; for large 104
g€ Z,0, = qp, is a divisor onX such thatL(O,) contains arx tran-
scendental oveK. Then we may writel = K(X,y) with y integral
onK[X] charack =0

ThusL/K separabl
thenx,y € L(O).

From the fact tha#,(D2) > v,(2) it follows thatDx, Dy € L(O) and
by iterationD"x, D"y € L(O).

Therefore,

llf we write O = maxv,(X), -V, (¥)).P,

SM=> T"Dn—r:X
n>0 )
€ LOO)ITI]
= K[[TII[L]
< KM y).

Similarly for S(y). Our assertion is proved.

Now we take, as before, projective imbeddingsCoand CS over
K((T)); we fix, as before, base and unit poiRg, ..., P,,,, € C corre-
sponding to some of the valuation rin@s defined above; ifi: C — CS
is the birational correspondence o¥g(T)) constructed above, then the
imageu(P,) of P, is PS (defined by0oS)U follows easily from the equal-
ity So, = 0,S. One proves as be for th&t= CS.

We projectC andCS now into the place, from a centre of projectionos
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(linear variety of dimensionn(— 3)) which is rationgk. If the images
C andCf are defined by polynomial equatiopéX, Y) = 0 (codficients
ajj) andg>(X,Y) = 0 (codficientsS(a;;)) then the equality of andC®
(hence ofC, andCf) gives thatS(a;;) are proportional t@;;; but since
we may assume that sonag = 1 we obtainS(a;j) = &;Vi, j. This
means theyj € kerD = k.

The projection onto the plane is a birational map (defined &ye
from C ontoC; ; asC; is defined ovek the proposition is proved.

Q.E.D.

3. Definite Results

We still have to remove the extra hypothesiskrhat we made in |
namely, tr. degK = 1. We are now going to do it and later we shall see
over what field<C andC’ are isomorphic and then analySg.

Proposition 1. Let K be any field L a regular finite type extension of K.
Let C be a curve defined over K such that geris- absolute genus of
C > 2. Then either ¢ — Ck is finite or C~ D a curve defined over a
finite field.

Proof. Eachx, € (C_ — Ck) satisfiesK(x,) = K(C) so that
K c K(x,) c K(X) = L.
tr.deg.1

By Severid only finitely manyK(x,) such that_ is separable over
K(x,); and by Sobwarz-Klein;l only finitely manyx, such thatk(x,)
has a given valueTherefore ¢ — Ck infinite rules out the possibility
charac K = 0. Letp # 0 be characK. For eachx, , let gq(a) be the
largest power op such thatk (x,) c K(Lq(")). m|

Then
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¢ K(LP)
1
and L/K(xg(")) is separable. By Severi, therefore, the number of

a1
K (x(‘j‘”)) is finite; moreover, we have

1
@) ()
K (xa ) Sgp L < K(X,) S%p K(L®Y)
so that for a givemy(a), the number oks such thatK(xﬂ)sgp K(L%) s
1
finite (Severi). If follows thaBg(e), q(8), q(a) # q(8) such thaK (xjj("))

1
=K (xg(")). If we write sayq(a) = p".q(8), n > 1, then it follows that

K(X,) = K(xgn) = K(x})(say )

(We remark that sinck andK are linearly disjoint, to prove the above
equalities, we could have assumed tat algebraically closed). This
means that the curv@? conjugate taC under the isomorphism — x4
of K, is K-birationally equivalent te.

Thus, to prove propositidd 1, we shall now prove the 107

Proposition 2. Let C be a curve defined over K, characKp # 0. Let
g=p",n>1. Then C- C9= C ~ D a curve defined over a finite field.

Proof. For C we choose an absolutely normal model, defined over
Fp(zi,...,z) say (this is a finite type extension B); thenCY is ab-
solutely normal, defined ovﬁp(zq) and so on; we also know from our
computations preceding the proposition tGat C% an so on. Thus, by
lemmal® I, it follows thatC ~ D’ defined ovelF ,; obviously, we can
considerD as defined over a finite field. O

Q.E.D.

Theorem 1. Let k be an algebraically closed field,/K any function
field, and C be an algebraic curve defined over K such that Kugef
C = absolute genus € 2. If Ck is infinite then
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1) C ~ C’ defined over k

2) An isomorphism G- C’ is defined over K if C is not birationally
equivalent to any curve defined over a finite field

Proof. 1) We shall prove 1) by induction on the transcendence degree
d of K/k. The casal = 1 has already been tackled (part ). If, at any
stage of the inductive proof, we obtath ~ D, D defined over a finite
field, we will be through; therefore we will rule out this pdskty in
the entire proof (so that we may Propositidnfieetively).

Lettr.deg K = d; choose &,k c K; c K such that trdeg(1 K=
1. By part Il,C ~ Cy1,C; defined overK;; we may assume tha; is
defined over a finite extensidn of K; ; the birational correspondence
C ~ C; is then defined over a finite extensi&n of L1 (K); replacinglLy
by a finite extensior., of L1, we may assume th#t’ is separable over
L1; again replacingd., by its algebraic closure i’ we may assume that
L1 is algebraically closed iK’. ThusK’ is a regular extension a&f; and
by hypothesis@,)k- is infinite; by the remark is made at the beginning
and by Propositiofll1 we obtainC{)x: — (C1)k is finite so that C1)k-
is infinite. The inductive assumption now completes the pobd).

2) Letu: C — C’ be an isomorphism, defined over a finite exten-
sionK’ of K. We haveC’k- infinite; then by hypothesis and by proposi-
tion[, C'k — C'k) c (Cy, — Cy) is finite. m|

This means that there are an infinity xfe Cx such thatu(x) €
Cx- We now take tricanonical model® and D’ in P, of C andC’
respectively (these imbeddings are defined d¢eby hypothesis). We
may choose o base points and unit poing .. ., X,» among the X;)
all rational overK: and onD’ choose the base points and unit point as
the K-rational pointsi(X;). The isomorphismu : C — C’ then defined a
projective transformation : D — D’ which is necessarily defined over
K as the base points an unit point &erational. Q.E.D.

Remark.If v : C' — C is an isomorphism defined ovét, thenv
defines a bijectiorC; — Ck; but C; - C, is finite by Propositiorill,
which means that almost all points@x are inv(Cy).
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We had left out some “exceptional cases” in Theokéfd 1, 2. @ar a
now is to study the situation in this “exceptional case”.tfia following
we shall use the term “isomorphism” for a “birational map”).

Theorem 2. Let k be algebraically closed, K any function field ove€k
is a curve (as usual projective nonsingular) defined over éhdhat K-
genus of C= absolute genus of G 2 and G infinite. Assume that
C ~ C’,C’ defined over a finite field fsuch that all the members of Aut
C’ (by Schwarz-Klein these are all defined ove)) Bre defined over §
Let f be the automorphism e x4 of Fy(C’) giving an automorphism
f:C’—C’. Then

(1) 3 afinite galois extension Kof K, a K’- isomorphism u C — C’
and a monomorphisrr — h, of G = G(K’/K) into Aut C such
that

h, =u” on?t

(2) 3 afinite family(z) of transcendental points of,C such that 7 =
h-(z)Yo € G. Also every x Ck is either some T(f"(z)) or some
u~1(2) with ze C} and

Z =h,(2 VYoeG.

Proof. (1) Letw : C — C’ be the birational correspondence given; weo
may assume that is defined over a finite extensid&’ of K. Let (x)

be the infinite family of points o€y ; for eachi, one hak(w(x;)) c

K’ and by Severi almost all of thiw(x)) are contained irK”’P by
iteration of this procedure, we may assume tha defined over a finite
separable extension, whence also over a finite galois eateRs’ /K.

If o € G(K”/K) theng, = w”.w™! € Aut C’; we claim thatr — g, is

a homomorphism: in fact, that, is a cocycle follows from

Oor = WE.W L = (W)W wWw L

= (g(r)rgr

and, agy,- is defined oveK, we are through. m]
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Now consider the kernel of this homomorphism— g.; it is the
galois group oK”” over a galois extensio’ of K. Foro € G(K”/K’)
then one hag” = w and thusw is defined oveK’, denote it byu. For
o € G(K’/K) if we seth, = u”.u™! theno — h, is a monomorphism.
Hence (1).

(2) Suppose e C’ is of the formu(x), x e C . Then

x € Ck & {ze Cy, andZ” = h,(2), Yo}

In fact = is trivial ; on the other hand observing that for every
G(K’/K)

Z=h(@eZ=uul®
= ul=u’E@)

= uld=u'E)

111 and thug e Cp,,h,(2) = 2, Yo, imply thatx = u(2) € Ck.
Now by an easy iteration of Severi we prove that there are only
finitely many (transcendental) poinys, .. ..y € Ci, such thak(y;) ¢

K’4. If ze (Cy, — C},) then it follows that for some,

ke KA ¢ K’
¢ K™
i. e. zqul =i for somei
i. e. z=f"(y) for somei.

Now if ze Ci, — C, and ifZ = h,(2)Vo, then they; for whichz =
f"(y;) has the propertyj?‘ = hy(y;)Vo: this follows from the equality
h, f" = f"h, (recall thath, is defined oveF).

The proof of the theorem is complete. Q.E.D.

We shall end up by giving an example which will show that thg pa
(2) of Theoreni R cannot be strengthened.

Example.Let k be an algebraically closed field of characterigtic~
112 2. LetC’ be the plane curve defined ovewhose #ine equation is
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x* +y*+ 1 = 0;C’ is nonsingular: indeed, the derivativeg*44y®, 473
of x* + y* + 7 cannot all vanish at any point ot + y* + 7* = 0(in P»),
thus genu€’ = 3, and the imbeddin@’ — P, is canonical.

LetK’ = k(r, ), r transcendental ovérandssuch that at*+s*+1 =
0. Leto be the automorphism df’/k such thato(r) = —r, o(s) = -5,
then the fixed fiel&K of o isk(r?, s, rs), andK’/K is a galois extension
of degree 2 whose galois groupGs= {1, o’}.

Let C be the curveX* + Y# + r* = 0 defined oveK.

a) Cg is infinite
In fact, the infinity of points I:*P", rsP") areK - rational (if p >
2,p" + 1is even; alsos?" = rs.sP" -1 andp" — 1 is even)
b)C~C
K/
In fact, the homothetys : C" — C given byX = rx,Y = ryisa
projective transformation i, defined oveK’.
The automorphisnh, of C’ is then the automorphismx,(y) —
(_ X, _y)
¢) C is not K- isomorphic to any curve defined ovkfin particular
C ?2 C". Indeed, ifC ~ D, D defined ovek thenDg,C’ from b); as
D andC’ are both defined ovek, k algebraically closed, it follows
thatD ~ C’; thusC ~ C’ , say throughw : C — C’ defined oveK;

thenwu e Aut C’ is defined ovek so thatu = w(wu) is defined
overK. This is clearly false since¢ K.

d) HoweverC is K - isomorphic to & for all n > 1. 113
Write
X' =Pt x
Y =rPhy

Then this is a projective transformation defined okép" — 1) is
even) and transforn@ = X* + Y4+ r* = 0 into

X+ (Y)Y + Y =0



114

84 3. The Theorem of Grauetrt...

Which is the curve@’)?".

e) Rational points Pof C, and P of (.

By theorenlR, part (2), the transcendental point§jpfare obtained
by applying the “iterated Frobenius maps” to poinks, &) such that

k(x1, X2) is of transcendence degree 1 okemdk(xy, X2) c k(r, s)= K’.
(separably)

As these fields have the same genus 3, it follows by Huhlitzorem
thatk(xy, X2) = k(r, s) = K’. Thus to find theK” - rational points orC’
one has to find ankF-automorphisms of’. Some of them, for instance,
are given by (see appendix 3 for a complete determinationub{@))

i)y (r,9) - (r,—9)
ii) (r,s) > (-r,—9)
i) (r,9) ~ (ar,B9),a* =p*=1.

. 11
iv) (r,s) (E’ F)'

As we have seen in the proof of theorEn 2, the rational pdraé
Ck — Cx are given by rational point®’ of C, — C which have the
propertyP’” = h,(P"),Yo € G. For instance, from among the above
four automorphisms it is clear that (i), (ii), (iii) satistitis requirement
but the fourth does not.

Finally, to get thek-rational pointsP on C, we takek-rational points
P’ on C’ which have the properti,(P’) = P’ These are the points at
infinity of C’, and give the points at infinity o@.



APPENDICES TO CHAPTER Il

Appendix 1. For a purely aesthetic reason, we shall prove here a strars-
ger form of Propositiofi]2, 11l of Chapter llI.

Proposition 2. Let C be a curve of absolute genw<2 in characteristic
p # 0. Suppose C is birationally equivalent td! @ith g = p",n > 0.
Then C~ D a curve defined ovefy (the finite field with g elements).

Proof. In view of PropositiorLR, Ill, we may now assume tliats de-
fined over anFy; by choosingn large, we may also assume that the
elements of AutC, which are finitely many, are all defined ovigg.
We shall seffq = F,...,Fqy = F¢,... andG, = the group of all F-
automorphisms of, (C)(r large). We now define a homomorphism

Gr — G(Fr/F)
o +— o|Fy.
O

If r is large, (ifn | r) the kernel of this homomorphism is the group of
Fr -automorphisms df, (C) i. e. is AutC. We claim that this homomor-
phism is onto. In fact, ifp denotes the Frobenius automorphigm> x9
of Fy,p extends to @ : F,(C) — F,(CY) ; on the other hand, the hy-
pothesisC ~ C% (we may assume that this birational correspondence is
defined oveify = Fp) gives an isomorphism : F(CY% — F(C) so
thatwy € G; if n| r, we have

welFr = ¢lFr = ¢
Thus, we get an exact sequence (i) 116
(1) 1> AutC = G, - G(Fr/F) — 1.
(2) We now assert that

C oy D defined ovelF

(= the7 above sequence “splits”)
&= Jr-cyclic subgrougs; of G,
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such thatG;n Aut ¢ = (1).

ie. — Jdaoc eG
with o’=1 and o|Fr=¢

= ! is quasi obviou®, whence foIC.

<: Supposdl such aor € G,
Let L be the fixed field otr. By galois theory F,(C) : L] = r so
that F, andL are F-linearly disjoint. If L = F(D), D a curve defined

overF thenF,(C) = F(D) Q.E.D.
L——— F(C)
F Fr

r

Our aim therefore will obviously be to make (1) “split” forrgge
multiplesr of n. For larger,r’ withn| r andn| r’ andr’ | r, we have an
obvious commutative diagram

1 Aut C Gy G(FiFp) —1
1 Aut C Gy G(Fr/F)—1

so that we have an inverse system of exact sequences; asth#ezb
Mittag-Leflier condition is trivially verified, in the limit we get an exac
sequence _

1- AutC—->G-G(F/F) > L

The groupG(F/F) is the limit of the inverse systenZ(,z), and is
thus the “universal pro-cyclic grougZ. (It is the completion ofZ for
the topology where a fundamental system of neighbourhodds is
(rZ)rz0). It is topologically one-generated (with the limit topgloit
is compact, Hausdfirand totally disconnected) viz , by the Frobenius
automorphismy of F/F. We take ar € G which maps ont@ € Z. If
G’ is the closed topological subgroup Gfgenerated byr € G, then
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G’ maps ontdZ. But by a well-known property of, (namely that for
compact, totally disconnected HausfiggroupH and anyh € H,3 a
continuous homomorphistf, : Z — H, such thatp — h, (see Corps
Locaux, Sence Chapter Xl1)) it follows th&' — Z is injective.
Therefore, AuC NG’ = (1)
Letd, : G — G, be the canonical homomorphisms; &t= 6 —
r(G’) = subgroup generated Isy(c-). Obviously, one has

G n AutC> G, n AutC Vvr'r;

since all these groups are finite, the decreasing cl@{im( Aut C), is
stationary for large for. We will through if we prove that, for large
¢G; NAULC = (1). For this we have merely to show tha{G; Aut C) =

r
(1); in fact, if @ € N(G;N Aut C) then consideringr as element of 118
r
G,Vr, 6 (@) € G; = 6,(G") so thaty ¢ AutC NG’ = (1). Q.E.D.

Appendix 2. Our aim in this appendix is to remove from hypotheses on
our curve of investigatioi© the condition (in charap # 0) : genugC
= absolute genu€ > 2 we shall prove now the

Theorem. Let k be an algebraically closed field of charac. #0, K

a function field over k , and C a curve defined over K, with alisolu
genus C> 2. If Ck is infinite, then C admits an absolutely normal
model defined on K (so that gem{ = absolute genus of C). ( More
precisely, the normalisation of C is absolutely normal).

Proof. We may assum€ normal. The normalisatio@’ of C in KP~*

is absolutely normal so that we may assume thatfinite, purely in-
separable, extensidf’ /K over which the normal modé&’ of C is ab-
solutely normal By hypothesis, genug8’ > 2 and we may apply our
results in section Ill. Leti : C — C’ be the (hatural) birational cor-
respondence (defined oviér). By TheorentR Il , of Chapter IlI3 a
curveC” defined ovek and a birational correspondenCé 5 ¢ de-
fined over a finite galois extensidtY/k’ such that for almost all points

x € Ck, v.u(x) is in K”P" (n that large whence in the separable closure
L of K in K”. One may again choose imbeddings and argue as befage
with base points and unit point to prove thatu is defined ovelL :
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asL is separable oveK and as genwC = genusC = genugC” =
genug-c = abs. genus o€ it follows that C, which is normal, is
already absolutely normal. m|

Q.E.D.
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Automorphisms of the curvex* + y* + 2 = 0

We have seen that, in characteristi@, the plane curv€ : xX*+y*+ 120
7 = 0 has genus 3 and that imbeddiBg— P, is the canonical one.
Thus automorphisms dof are induced by projective transformations.
Among those we immediately see:

a) The permutations of the variablgsy, z, these form a groufs; of
order 6;

b) The multiplications ok, y, z by arbitrary fourth roots of unity; these
form a groupG, of order 16.

Clearly G; and G, are permutable subgroups BGL(2) such that
G1 NGy = {1}. Thus they generate a subgraBp- PGL(2) of order 96.
We claim that:

The group G is the group of automorphisms ofC.

To determine Aut@) we may look for projective peculiarities @f.
Let us call a poinP of C asuperflexf the tangent taC at P intersectsC
with multiplicity 4 at P (and therefore has no other common point with
C ). Clearly the points of on the coordinate axis@.(1, @, 0) with
a* = —1) are superflexes (the tangent at«(10) beingy — ax = 0). We
are going to find all superflexes 6f Disregarding the points at infinity
(z = 0), and the points at which the tangent passes through@(i.e.
the points ory = 0), we may take #fine coordinates, consider a point
(a,b) e C(a* + b* + 1 = 0), and express that a line

Xx=a+Ady=b+tia(b£0)

89
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has a quadruple intersection withat (g, b); in other wordst = 0 must
be a quadruple root of

(@a+)*+(b+t)*+1=0.
This means

a*+b*+1=04@%+th% = 0,0@° + b’t?) = 0,4(a + bt%) = 0.

3

9
We deducd = —% whencea - b

a
9
solutionsa = 0,b* = —1,t = 0 on the axisx = 0, thus we may assume
a # 0. In characteristic+ 3, the relations? + bt2 = 0,t = —a3/b?
give a* + b* = 0 impossible. In characteristic 3 the third relation in (1)
disappears. Fromf — a8 = 0 anda® + b* = -1 we deducex* - b* = 0,
whence 2* = —1,a* = 1, anda b are 4" roots of unity. Thus the
superflexes o€ are:

= b%(x_ a®) = 0. We have

a) The 12 points of on the coordinate axis (for any characteristi)

b) In addition the 16 pointsa(b, 1) such thag* = b* = 1, in character-
istic 3.

Notice that, in characteristic 3, the 23 tangentS &t the superflexes
are the famous 28 bitangents@dqreplaced with the 27 Lines on a cubic
surface).

Through each base point pa8elines in the general case (resp. 6
lines in characteristic 3) such that each line contains 4dlgxes. The
base points are the only points with this property: this @aclin the
general case; a simple computation has to be made in chastict8
(here the 28 superflexes are rational dvgr

Hence the base points are characterized by an invariareqbinag
property ofC. Therefore any automorphism Gfis induced by a projec-
tive transformatioru which permutes the base points. Then?, with
somev € Gy, leaves fixed the base points, i.ev;y1(x) = Ax, uvi(y) =
uy, uv1(2) = vz. SinceC is globally invariant byuv1, this implies that
A, u,y, are proportional to% roots of unity, i.e.uv! € G,. Therefore
ueG. Q.E.D.



Bibliography

[1] C. Chevalley Algebraic functions of one variable (A.MRBublica-
tion, 1951)

[2] H. Grauert Mordell's Vermutung uber Punkte auf algescaen
kurven and Functionen- korper(l.H.E.S. Publication, 1965

[3] J. Manin Rational points of algebraic curves over fuoetfields
(Izvestija Akad. Nauk. SSSR,Ser.Mat., t.27, 1963)

[4] P. Samuel Methodes dialgebre abstraite en geo -meg@bdatue
(Ergebnisses der Mathematik, 1955)

[5] Seminaire Bourbaki talkn®287, 1965)

[6] Complements a un article de Hans Grauert sur la conjeatier
mordell (I.H.E.S. Publicatiom®29)

[7] J.P. Serre Groupes algebriques et corps de classes @rpriRaris,
1959)

[8] F. Severi Trattato di geometria algebrica (Vol I, Partédnichelli,
Bologna, 1926)

[9] A.Weil Foundations of algebraic gemetry (Coll.No. 2%WYork,
1946)

91



	Introduction
	Algebro-Geometric Background
	Algebraic Varieties: Affine and Projective
	Divisors, Invertible Sheaves and Line Bundles
	Chow Coordinates
	Results from Intersection Theorey

	Algebraic Curves
	The genus
	Differentials on an curve
	Projective Imbeddings of a curve
	Morphisms of algebraic curves

	The Theorem of Grauert...
	Description of the method
	The Proof
	Definite Results

	Appendix 3

