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Introduction

The aim of the present course is to give a proof, due to Hans Grauert, of 1

an analogue of Mordell’s conjecture. Mordell’s conjecturesays that if
C is a curve, of genus≥ 2, defined over a number fieldK, then setCK

of K-rational pointsC is finite . This conjecture applies in particular to
Fermat’s curvexn + yn = 1(n ≥ 4).

As a matter of notation ifV is an algebraic variety defined over a
field K, VK will denote the set ofK-rational points ofV. If V is an affine
(resp. projective) variety, we mean, by aK−rational point ofV, a point
whose affine coordinates (resp. ratios of homogeneous coordinates) all
lie in K.

An analogue of Mordell’s conjecture has recently been stated and
proved by Ju Manin and Hans Grauert. In this, number fields arere-
placed by function fields.

Theorem.Let k be an algebraically closed field of characteristic0, and
K a function field over k. If C is a curve of genus≥ 2 defined over K
such that CK is infinite, then

a) C is birationally equivalent, over K, to a curve C′ defined over k

b) C′K −C′k is finite (in other words, almost all points of CK come from
k).

The algebraist Manin ([3]) has given an analytical proof, inwhich 2

k = C; the result, of course, remains valid for arbitraryk by the principle
of Lefschetz. The analyst Grauert ([2]) gives a purely algebro-geometric
proof, a large part of which is valid in characteristicp , 0. The finishing
touch in characteristicp has been provided by the lecturer ([5], [6]):

iii
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Let k be an algebraically closed field of characteristicp , 0, K a
function field overk andC a curve defined overK with absolute genus
≥ 2, such thatCK is infinite. Then,

(a) C is birationally equivalent( over some field ) to a curveC′ de-
fined overk.

But unlike in characteristic 0, (see the example at the end ofthe
course) this birational equivalence is in generalnot defined overK: one
cannot expectC′K −C′k to be finite; indeed, ifC is birationally equivalent
to a curveC′ defined over a finite fieldFq, then for anyx ∈ C′K −C′k, all
the pointsxqn

obtained fromx by iterated applications of the Frobenius
automorphismx → xq (the point whose affine coordinates are theqth

powers of the affine coordinates ofx) are again inC′K −C′k. Interestingly
enough, it turns out that these are the only exceptional cases; more pre-
cisely, if C is not birationally equivalent to any curve defined over a
finite field, then the birational equivalenceC ∼ C′ (C′ defined overk)
is defined overK. One can also prove that, in any case, the birational
equivalenceC ∼ C′ is defined over a finite galois extensionK′ of K
and that all the points ofC′K −C′k may be obtained from a finite number3

among them, by applying the Frobenius process.
We assumed that theabsolutegenus ofC (i.e.. the genus ofC over

the algebraic closurēK of K) is≥ 2; this is stronger than the assumption
genusKC ≥ 2, since the genus of a curve may very well drop by an
inseparable base-extension; a classical example is the curve

Y2 = Xp − a

(with p ≥ 3 anda ∈ K −Kp) whose relative genus is
p− 1

2
and absolute

genus is 0. At present, nothing is known for curves of relative genus≥ 2
and absolute genus 0 or 1.

The key to the proof isnot the inequalityg ≥ 2 but the equivalent
inequality (2g − 2) > 0 which means that the canonical divisor onC is
ample.

The proof of Grauert’s theorem may be divided into two parts.

1) Proving thatC is birationally equivalent to a curveC′ defined over
k. This is the hardest and most original part.
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2) StudyingC′K −C′k. Here we are in the midst of nice old theorems on
algebraic curves. ForK may be viewed as the function fieldk(D) of
an algebraic varietyD overk then the points ofC′K −C′k correspond
to nonconstant rational maps ofD in C′ over k. The statement b)
of the theorem says that these maps are finite in number in charac.
0; in charac. p. the separable ones are finite in number: We will4

assume in our proof thatD first a curve and then pass to the general
case by a simple induction. We have a theorem of F. Severi ([8]
,0. 291). the separable involutions of genus≥ 2 on a curveD (i.e.,
the isomorphism classes of non-constant separable rational maps of
D into curves of genus≥ 2) are finite in number. This is somewhat
stronger than the finiteness ofC′K−C′k since the image curveC′ is not
fixed in Severi’s theorem; but this stronger statement will be needed
in clarifying the charac.p case. As a corollary we get a well known
theorem ofH.A. Schwarz and F. Klein: for a curveD of genus≥ 2,
Aut D is finite.

The lecturer has felt that it will be more germane to the spirit of
Grauert’s theorem (in which fields and rationality questions play a
prominent part)- or may be easier for himself - to use the older algebro-
geometric language of Weil and Zariski which, by now, is barely distin-
guishable from the language of the ancient Italian School. Many high
powered classical tools of geometry will be used, (eg. the intersection
theory, Chow coordinates, Zariski’s Main Theorem etc.) An introduc-
tory chapter will give the necessary definitions and state (mostly without
proofs) the theorems that will be used. A second chapter willgive the
theory of algebraic curves, with an emphasis on correspondences. The
last chapter will give Grauert’s proof proper.

We remark, that, for the sake of ease, we will mostly be doing our 5

geometry over “big” (universal) fields (i.e. fields that haveinfinite tran-
scendence degree over the prime field).
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Chapter 1

Algebro-Geometric
Background

1. Algebraic Varieties: Affine and Projective

a) We consider the affinen-spaceKn over an algebraically closed field6
K. An algebraic setH in Kn is, by definition, the set of common ze-
ros (x) = (x1, . . . , xn) ∈ Kn of a family of polynomials (Fα), Fα ∈
K[X1, . . . ,Xn], or equivalently, of polynomials in an idealO of K[X1,

. . . ,Xn]. A finite union of algebraic sets, and an arbitrary intersection
of algebraic sets are easily seen to be themselves algebraicsets so that,
in Kn, we have a topology, called the Zariski topology, whose closed
sets are precisely the algebraic sets inKn. These algebraic sets are often
called the closed sets ofKn or theaffine algebraic sets.

Given an affine algebraic setH ⊂ Kn we define the ideal of H
J(H), as

J(H) = {F ∈ K[X1, . . . ,Xn] : F(x) = 0 ∀(x) ∈ H} .

The affine ring of H, or thecoordinate ring of His, by definition,

the ringK[X1,X2, . . . ,Xn]
/
J(H) = K[H]. We remark that the elements

of K[H] are functions onH with values inK, in a natural manner.

1



2 1. Algebro-Geometric Background

We say that an affine algebraic setH is irreducible if it is non-void
and is not the union of two proper algebraic subsets; it is not difficult
to see thatH is irreducible⇔ J(H) is a prime ideal ofK[X1, . . . ,Xn] ⇔7

K[H] is a domain. An irreducible algebraic set is often called aVariety
(We may also use the term sometimes for algebraic sets). One can show
that any algebraic setH in Kn can be written, in a unique manner, as a
finite irredundant union of varieties inKn

b) Let k be a subfield ofK andV an algebraic set inKn. We say that
V is defined overk, or thatk is a field of definition for V if J(V) admits
a set of generators ink[X1, . . . ,Xn] ⊂ K[X1, . . . ,Xn], or equivalently, if∃
a finite typek-algebrak[x1, . . . , xn] such thatK[V] ≃ k[x1, . . . , xn] ⊗k K.
As, by the basis-theorem of Hilbert,J(V) admits finitely many genera-
tors inK[X1, . . . ,Xn], any algebraic set inKn admits a field of definition
which is of finite type over the prime field.

Consider a varietyV in Kn; then K[V] is a domain. Its field of
fractions is called thefunction field(or the rational function field) of
V and denotes byK(V). If k is any subfield ofK which is a field of
definition forV, then one defines thek-ideal ofV by

J(V) = {G ∈ k[X1, . . . ,Xn] : G(x) = 0 ∀(x) ∈ V}
and thek-ring of functions onV by

k[V] = k[X1, . . . ,Xn]/Jk(V) :

one sees thatk[V] is again a domain, and further thatk[V] ⊗k k̄, (k̄ =
the algebraic closure ofk) is also a domain. One can check that this last8

fact is equivalent to the fact that thek-function fieldk(V) = the field of
fractions ofk[V] is a regular extension ofk (i.e. is separately generated
overk andk̄∩ k(V) = k) (cf. [4])

Let V be a variety inKn andk a field of definition forV. Consider
a point (y) = (y1, . . . , yn) ∈ V and the homomorphismk[X1, . . . ,Xn] →
k[y1, . . . , yn] ⊂ K defined byXi → yi . By the definition ofk[V] this
homomorphism admits a factorization

k[X1, . . . ,Xn]

&&MMMMMMMMMM
// k[y1, y2, . . . , yn] ⊂ K

k[V]

ϕ

66nnnnnnnnnnnnn



1. Algebraic Varieties: Affine and Projective 3

We say that the point (y) is ageneric pointfor V over k if ϕ is an iso-
morphism (note that the irreducibility ofV over k is necessary for the
existence of such a point). One can show that a generic point for V/k
exists ifK has infinite transcendence degree overk.

On the other hand, letk be a subfield ofK and (x) ∈ Kn such that
k(x) = k(x1, . . . , xn) be a regular extension ofk. If one defines an ideal
J in k[X1, . . . ,Xn] byJ = {F ∈ k[X1, . . . ,Xn] : F(x) = 0} then the poly-
nomials ofJ define a varietyV in Kn such that

(i) (x) is a generic point ofV/K 9

(ii) k[V] ≃ k[X1, . . . ,Xn]/J

(iii) J(V) = Jk(V).k[X1, . . . ,Kn]

= J .K[X1, . . . ,Xn]

V is called thelocusof the point (x) in Kn.

Example.k = Q,K = C, (x) = (e2, e3); then the locus of (x) is the curve
X3

1 − X2
2 = 0.

c) Dimension
Let V be an (irreducible) variety inKn andK(V) the function field

of V. ThenK(V) is of finite type overK; its transcendence degree over
K, which is finite, is called thedimensionof the varietyV. Once has
then the classical

Theorem.dimension of V= the Krull dimension of K[V].

We remark that the above equality makes the definition of the dimen-
sion ofV more intuitive: it says precisely that dim.V is the maximum
length of strictly increasing chains of subvarieties ofV.

Any point P ∈ Kn is a variety of dimension 0; more precisely we
have: a varietyV ⊂ Kn has dimension 0

⇔ V is a point

⇔ J (V) is a maximal ideal

(This is essentially the Hilbert-Zero-Theorem).
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Proposition. A variety V in Kn ban dimension(n− 1) 10

⇔ J(V) is principal

Proof. ⇒: V has dimension (n−1) implies thatJ(V) = 0. Thus∃ a non-
zero polynomial inJ(V) and hence a non-zero irreducible polynomialF
in J(V). Then 0, (F) ⊂ J(V); as (F) andJ(V) are both prime ideals,
and as dimK[V] = coheightJ(V) = (n−1), and dimK[X1, . . . ,Xn] = n
one gets (F) = J(V). �

⇐: If J(V) = (F), one hasK[V] = K[x1, . . . , xn] with F(x1, . . . , xn)
= 0;F involves at least one variable, sayXn, non-trivially. Thus,xn is al-
gebraic onK(x1, . . . , xn−1). On the otherhand, if∃G , 0 in x11, . . . , xn−1

such thatG(X1, . . . ,Xn−1) = 0 thenG ∈ (F); asF involves Xn andG
does not, this is impossible. ThereforeX1, . . . ,Xn−1 are algebraically
independent overK. Q.E.D

A variety in Kn of dimension (n− 1) is called ahypersurfaceof Kn;
the above proposition says merely that hypersurfaces are precisely those
varieties which admit a single “equation”.

d) The concept of an “abstract variety”
Let V be an algebraic set inKn j for anyP ∈ V, there is a maximal

idealMP of the coordinate ringK[V], namely, the ideal of functions in
K[V], null at P. The local ringOP = K[V]MP is called thelocal ring
OP of P (or of V at P). More generally, ifW is an irreducible subvariety
of V, then∃ a prime idealP of K[V], namely, the ideal of functions in11

K[V] null on W: the local ringK[V]P is called thelocal ring OW of W
in V. By the Hilbert Zero theorem, for any prime idealP of K[V],∃ a
subvarietyW of V such thatOW = K[V]P.

It is not difficult to see that the pairs (P,OP)P∈V form, in a natural
way, a subsheaf of the sheaf of functions onV in to Kp: thus, we get,
what is called aringed space, (V,O). A pair (X,OX) whereX is a topo-
logical space space andOX a given a sheaf of rings onX, is called a
ringed space : here, we shall be interested only in the case where all
the stalksOx, x ∈ X, are local rings; thus we will assume this additional
condition always satisfied). If (X,OX), (Y,OY) are two ringed spaces,

a morphism(X,OX)
f
→ (Y,OY) is a pair (u, θ) whereu is a continuous
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map of topological spaces andθ is a morphism (of sheaves of local rings
overY) OY → u∗(OX)(u∗(OX) is the “direct image” ofOX underu)θ; is
essentially a “nice collection”:θ = (θx)x∈X, whereθx : Ou(x) → Ox is a
homomorphism of local rings (For details see EGA. Ch. I).

Our ringed spaces can thus be made objects of a category.

Definition. An (abstract) prevariety X over K is a ringed space(X,OX)
such that there is a finite open covering(Ui)i of the underlying space X
with the following property:

∀i, there is an affine varietyVi overK such that the restricted ringed
space (Ui ,OX | Ui) is isomorphic to the ringed spaceVi ,OVi of the affine
varietyVi.

The notions of irreducibility, rational maps, morphisms, subs., prod- 12

ucts, fields of definition and a generic point of an irreducible prevariety
over a field of definition, can all be easily carried over. In particular, one
defines thediagonal map∆X : X→ X × X for a prevarietyX.

Definition. We say that a prevariety X is a variety if the diagonal map
∆X is closed

We remark that this condition is analogous to the Hausdorff axiom
on a topological space.

In the category of varieties isomorphisms will be often called bireg-
ular maps. We say that a morphismf biregular at a pointx ∈ X, if the
stalk-mapO′f (x) → Ox defined byf is an isomorphism. One can show
that biregularity atx implies biregularity in a neighbourhood ofx.

e) Projective Varieties
Let K be an algebraically closed field. Theprojective n-spacePn(K)

overK is, by definition, the quotient ofKn+1 − (0) for the action ofK∗

by scalar multiplication. An algebraic set inPn(K) is the image of an
algebraic cone inKn+1. Any point inPn(K) can be represented, upto a
scalar multiplication, by an (n+1)-tuple (x0, . . . , xn), thexi ∈ K, not all
zero. Such a representation is called a system of (homogeneous) coordi-
nates (x) for that point. An algebraic set inPn(K) is then the set of points
(x) ∈ Pn(K) such thatFα(X) = 0 for a family of homogeneous polyno-
mials (Fα), Fα ∈ K[X0, . . . ,Xn]. One can again define a topology on13
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Pn(K) (the Zariski topology) whose closed sets are the algebraicsets in
Pn(K). One again defines as before the notion of a projective variety in
Pn(K). For any algebraic setV in Pn(K), one defines the homogeneous
idealH J(V) of V as the ideal generated by all homogeneous polyno-
mials inK[X0, . . . ,Xn] vanishing onV, and the homogeneous coordinate
ring or thegraded ringof V as the quotientK[X0, . . . ,Xn]/H J(V).

A projective algebraic setV is a variety⇐⇒ H J(V) is a prime
ideal not containing the ideal (X0, . . . ,Xn). One defines as before the
notion of a (homogeneous) generic point for a projective variety V, over
a subfieldk of K.

One has a bijective map ofKn onto the open setX0 , 0 of Pn(K)
given by (y1, . . . , yn) 7−→ (1, y1, . . . , yn). This map is a homeomorphism
on to its imageX0 , 0, which we will callK0. The hyper-planeH0,given
by X0 = 0,is called the hyper-plane at infinity for the affine subspace
K0. Similarly we have hyperplanesHi ≡ Xi = 0, whose complements

Ki are affine,1 ≤ i ≤ n. Clearly Pn(K) =
n⋃

i=0
Ki . If U is an affine

algebraic set inKn. given by prescribing a system of generators for
K[U],K[U] = K[X1, . . . ,Xn] say, we get an imbedding ofU as a subset
of K0, hence ofPn(K). The closure ofU in Pn(K) is called aprojective
closure of U.

Let V be a projective variety inPn(K) thenV =
n⋃

i−0
Vi whereVi =14

V∩Ki = V−Hi , eachVi as ***** of Ki is an affine algebraic set. Further,
if K[x0, . . . xn] with x0 , 0 is the homogeneous coordinate ring ofV and

if we setyi =
xi

x0
, 1 ≤ i ≤ n (then theyi are in the quotient field ofK[V])

thenV0 = V − H0 is an affine variety of affine ringA0 = K[y1, . . . , yn]
andVi , i ≥ 1, if nonvoid, is an affine variety of affine ring

Ai = K

[
1
yi
, . . . ,

yn

yi

]
.

To show that a projective to show varietyV is a variety in the sense
of (α), it only remains to show that the diagonal ofV is closed; we leave
the verifications to the reader.

Finally, we define the function field of a projective varietyV as the
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subfieldK(V) of the quotient field ofK[V] defined byK(V) =

{
a
b

:

a, b ∈ K[V], b , 0, a, b are of the same degree in the gradation onK[V]

}

If V is not contained inHi , then one can show thatK(V) is canoni-
cally isomorphic to the quotient field ofAi (in the above notation).

Theorem 1. A projective variety V is complete in the following sense:
Every valuation ringO of K(V) contains some Ai .

Proof. Letω be the valuation defined byO onK(V). If ω(yi) ≥ 0 for all
i, thenO ⊃ A0; otherwise choose ani such thatω(yi) is minimum; then
ω(yi) < 0 andO ⊃ Ai . �

Remark. One can define fields of definition for projective varieties as15

for affine varieties. Ifk is a field of definition forV, one can definek[V]
as before andV is a finite union at affine subvarieties for which againk
is a field of definition. All our computations above go throughand the
obvious modifications of Theorem 1 is also valid.

Theorem 2. If V is a projective variety, then for any variety U the pro-
jection p of V× U on U is a closed map.

Proof. We have to show that for any closed subsetH of V × U, p(H)
is closed inU. We may assumeV,U,H all to be irreducible. Let then
(y, x) ∈ V × U be a generic point forH over a field of definitionk of
V,U andH. If x′ ∈ p(H) thenx′ belongs to the locus ofx overk in U,

and there is a homomorphism (overk) k[x]
ϕ
−→ k[x′],mappingx on x′. As

k[x] ⊂ k(V×U) and asK is algebraically closed,ϕ extends to a valuation
ring R of k(V × U) as a homomorphism ¯ϕ : R → K. By (the remark
following) Theorem 1, there is a system of affine coordinatesz1, . . . , zn

of (y) ∈ V such that all thezi are inR: thus there is a point (y′) ∈ Pn(K)
with affine coordinates ( ¯ϕ(Z1), . . . , ϕ̄(Zn)). But ask[x′, y′] ⊂ k, k[x, y] ⊂
k(U × V) andϕ is a homomorphism mapping (x, y) on (x′, y′) it follows
that (y′, x′) ∈ H andx′ ∈ p(H). �

Finally we also draw the attention of the reader to the fact that the
product of two projective spacesPn(K), Pq(K) is a projective variety;
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this is shown by theSegre imbedding

Pn(K) × Pq(K) −→ P(n+1)(q+1)−1(k)

((xi), (y j)) 7−→ (xiyi).

f) Dimension Theorems.16

If A is a noetherian ring,x ∈ A andY a minimal prime ideal ofAx
thenhtY ≤ i (Krull); if x is not a zero divisor ofA, thenhtY = 1.

1) If V is an affine variety of dimensiond in Kn, andH a hyper surface
in Kn, then every component ofV ∩ H has dimensiond or (d − 1).

If H ≡ ( f = 0), f ∈ k[X1, . . .Xn] then V ∩ H is given by f̄ = 0 in
A = K[V] ( f̄ image of f in K[V]) and its components are given by
the minimal prime ideals ofAf̄ so that our assertion follows by our
remark at the beginning.

If V is irreducible andV 1 H then the same shows that every com-
ponent ofV ∩ H had dimension (d − 1).

2) By an inductive argument one gets that: ifV is affine, of dimension
d and if H1, . . . ,Hq are hypersurfaces, then every component ofV ∩
H1 ∩ · · · ∩ Hq has dimension≥ (d − q).

3) If V and W are affine algebraic sets inKn andC a component of
V ∩W then dimC ≥ dimV + dimW− n.

In fact V ∩W is isomorphic in a natural way with (V ×W) ∩ ∆ in
Kn×Kn,∆ being the diagonal inKn×Kn, thus our assertion follows
from the facts that dim(V ×W) = dimV + dimW, that∆ in Kn × Kn

is the intersection ofn hyperplanes and 2) above.

We remark that 3) doesnot say thatV ∩ W , φ even if dimV +
dimW− n ≥ 0; (e, .g) two parallel lines inK2. However we have the
following:

4) G V,W are projective varieties inPn(K) such that dimV+dimW−n ≥17

O, thenV ∩W , φ, and each componentC of V ∩W has dimension
≥ dimV + dimW− n.
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In fact V, W are images of conesV′ W′ in Kn+1 hasV′ ∩W′ , φ

since the origin is inV′ ∩W′ are both cones and as

dimV′ + dimW′ − (n+ 1) = dimV + dimW− (n− 1) > 0

there is a ray throughout the origin inKn+1 completely contained in
V′ ∩W′, this implies thatV ∩W , φ in Pn(K); any componentC of
V ∩W corresponds to a componentC′ of V′ ∩W′ so that by 3)

dimC′ ≥ dimV′ + dimW′ − (n+ 1)

= dimV + dimW− n+ 1

and dimC = dimC′ − 1 ≥ dimV + dimW− n

5) Let U be an algebraic variety over an algebraically closed fieldK.
We say that a pointP ∈ U is simple if the local ringOp of V at P is
regular.

Proposition. If P is a simple point on U and V and W are subvarieties
of U passing through P, then any component C of VW passing through
P has dimension≥ dimV + dimW− dimU.

Proof. The question being local we may assume thatU is an affine va-
riety imbedded inKn andV, W are closed irreducible subvarieties ofU.
If d = codimKnU then dimU = (n − d): andP being simple onU, the
tangent space ofU at P is a linear subvarietyL in Kn of dimension=
(n− d). Let L′ be a lineard-dimensional variety transverse toL andV′ 18

be the cylinder parallel toL with baseV (locally, at P,V′ ≃ V × L′).
Then dimension ofV′ is equal to (d + dimV). �



10 1. Algebro-Geometric Background

It is not difficult to show that the only component ofV′ ∩U passing
throughP is V. Thus, we have only to show that for any componentC
of V′ ∩W passing throughP, dimC ≥ (dimV + dimW− dimU).

But by 3) we have:

dimC ≥ dimV′ + dimW− n

= dimV + dimW− (n− d)

= (dimV + dimW− dimU)Q.E.D.

g) Zariski’s main theorem (ZMT).
A point P on an algebraic varietyV is said to benormalof the local

ring OP of V at P is integrally closed.
An affine varietyV is normal (i.e. each pointP ∈ V is normal)

⇐⇒ K[V] is a normal domain.
If V is an affine variety andK[V] its coordinate ring then the integral19

closureK[V]′ of K[V] in K(V) is a K-algebra of finite type which is a
domain and therefore is the coordinate ring of at affine varietyV∗, which

is normal; and one has a morphismV∗
p
−→ V defined in a natural way

which is birational and onto.
We also remark that the same procedure can be adopted in the case

of any arbitrary algebraic varietyV (cf. [7]); one has only to construct
pairs of the type (U∗i , pi) for an affine open covering (Ui) of V and patch
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up. We thus obtain a normal varietyV∗ and a birational, onto, morphism

V∗
p
−→ V such that the pair (V∗, p) is universal for morphisms from nor-

mal varietiesV′ to V. ThenV∗ is called thenormalisationof V.
We shall show that ifV is projective thenV∗ is also projective. If

V is a projective variety then its homogeneous coordinate ring K[V] is
a graded domain and its normal closureB′ in its quotient field is again
a graded domain (is contained in the quotient-ringF−1A, F the set of
homogeneous (non-zero) elements). LetB′ =

∑
n≥0

B′n be the gradation of

B′ ; as aboveB′ is a finite typeK-algebra. But one cannot assert that
B′ is generated overK by homogeneous elements of degree 1; however,
it is not difficult to see that∃ d ∈ Z+ s.t. B′′ =

∑
n≥0

B′nd is a graded do-

main, and a finite typeK-algebra, generated by homogeneous elements
of degree 1 so thatB′′ defines a projective varietyV∗, normal, with a

birational, onto regular mapV∗
p
−→V with finite fibres; so we are through.

We shall now state the following theorem without proof.

Theorem.Let A be a domain and B an over-domain which is a finite20

type A-algebra, B= A[x1, . . . , xn]. Let p be a prime ideal in B which
is both minimal and maximal in the set of prime ideals of B having the
intersection p∩ A with A. Then if A′ is the integral closure of A in B,
one has Bp = A′p∩A′ .

Remark. Finiteness conditions onA are not needed, as shown by
Grothendieck, or more elementarily, by C. Peskine: “Une generalisation
du main théorème de Zariski”, Bull, Soc. Math. 1966.

Corollary. If A is integrally closed in B then

Bp = Ap∩A.

Geometrically the above theorem says that iff : Y→ X is a gener-
ically surjective (i.e., dominant) morphism of irreducible varieties and
if y ∈ Y is isolated in the fibref −1( f (y)), thenOy is a ring of fractions
of some finite extension ofO f (y). If, in addition, we assume thatf is
birational (K(X) = K(Y)) and f (y) normal inX thenOy = O f (y) i.e. f is
biregular aty.
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Theorem (ZMT) . Let X,Y be irreducible varieties and f a birational
map Y→ X. If y is a point in Y which is isolated in the fibre f−1( f (y))
and if f(y) is normal in X, then f is biregular at y.

Corollary. If X is normal, any bijective birational map Y→ X is bireg-
ular.

Remarks.

1. A bijective rational map need not be birational even ifX is normal

(e.g) K an algebraically closed field of charac.p , 0; f : K →
K the map given byx 7→ xp.

2. If X is not normal, the above corollary in false. (e.g) Take a21

non-normal curve with a single cusp, for instance,X3
1 − X2

2 = 0;
then the map from the normalisation (the affine line) to the curve
is birational bijective but certainly not biregular at 0.

0

2. Divisors, Invertible Sheaves and Line Bundles

a) LetX be an irreducible algebraic variety over an algebraically closed22

field K, which is locally factorial (i.,eachOx, (x ∈ X) is factorial; this
will be the case, for instance, ifX is non-singular). We denote byO the
structure sheaf ofX and byK the constant sheaf of rational functions
on X.
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If W be an irreducible subvariety ofX, of codimension 1, thenOW is
a normal local ring of dimension 1 and thus isa discrete valuation ring;
OW then definesa discrete valuation onK(X) which we denote byvW.

Definition 1. A divisor on X is an element of the free abelian group
generated by irreducible subvarieties W of codimension1 in X.

Thus a divisorD onX can be written asD =
∑

n(W).W with n(W) ∈
Z, almost alln(W) being zero.

If f is a rational function onX thenvW( f ) = 0 for almost all irre-
ducible subvarieties of codimension 1 inX; in fact if U andU′ are the
domains of definition off and f −1 respectively, thenvW( f ) , 0⇐⇒W
is contained in (X − U ∩ U′). Therefore f definesa divisor (f ) =∑
W

vW( f )W on X; such divisors are calledprincipal divisors.

The quotient groupD/P of the group of divisorsD on X by the
group of principal divisorsP on X is called thePicard group Pic Xor
thegroup of divisor classeson X. We say that two divisorsD andD′ are
linearly equivalent(D ∼ D′) if (D − D′) is principal.

Definition 2. An invertible sheafon X is a coherent sheaf ofO-modules, 23

which is locally free, of rank1. equivalently it is a coherent sheaf of
fractionaryO-ideals which is locally principal.

Definition 3. A line bundleon X is a pair(L, π) such that

(i) L is an algebraic variety andπ : L → X is a morphism or simply,
a map

(ii) ∃ a (finite) open covering(Ui) of X with L
∣∣∣π−1(Ui)

ϕi∼−→ Ui × K.

In the intersectionsUi ∩U j, the isomorphismsϕi andϕ j define reg-
ular mapsgi j : Ui ∩ U j → K∗ = K − {0}, such thatgi j . g jk = gik, in
Ui ∩ U j ∩Uk andgii = identity.

Conversely, any line bundle is described by giving a finite open cov-
ering (Ui) of X and regular maps (gi j ) on the intersectionsUi ∩U j to K∗

with the properties:gi j .g jk = gik onUi ∩U j ∩Uk andgii = identity. The
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bundle is obtained by “recollement” of the varietiesUi × K through the
biregular maps

(Ui ∩U j) × K → (U j ∩ Ui) × K

(x, t) 7→ (x, gi j (x)t).

We shall now show, by a series of constructions and reverse con-
structions, that the three notions we have define above are equivalent.

(i) Divisor to a Bundle.24

Since we have assumedX to be locally factorial, any irreducible
subvarietyW of codim.1 is locally defined by a single equation
(in a u. f .d, any prime ideal of height 1 is principal) and thus any
divisor D is locally principal. We therefore get a covering (Ui)
of X such that onUi ,D = (zi) for somezi ∈ K(X). If we define
gi j = zi/zj or. Ui ∩U j then all our requirement are satisfied and we
get a line bundle defined by the (Ui , gi j ).

(ii) Bundle to a sheaf.

Let L
π−→ X be a line bundle onX. For any open setU in X asection

of L overU is by definition a mapU
s−→ L such thatπos= identity

onU; these sections form a groupΓ(U, L) which is also aΓ(U,O)−
module in a natural way. As the fibresπ−1(x) areK-vector spaces
of rank 1, these modules are locally free of rank 1 and we thus get
an invertible sheaf.

(iii) Sheaf to a Divisor.

If L is a locally freeO− module of rank 1, we choose an imbed-
ding L ֒→ K ; at any pointsP ∈ X,LP is a principal fractionary
ideal, say of the formOP f , f ∈ KP = K(X); for any irreducible
subvarietyW of codimension 1 inX, vW( f ) = n(W) (say); then
n(W) depends only on the imbeddingL ⊂ K and not on the
choice of f and again one see that almost alln(W)′are zero. One
then associates toL , the divisor

∑
w

n(W)W.

We remark that in (i) if we had started with aD′ ∼ D oven then25
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we would have arrived at the same line bundle; and in (iii) if we
had choosen a different imbeddingL ⊂ K then we would have
arrived at an equivalent divisor. Thus, what we have shown isthat
giving an element of PicX is equivalent to giving a line bundle or
an invertible sheaf.

(iv) Bundle to a divisor.

In a manner similar to the one defining a line bundle onX, we may
define a projective line bundle onX whose fibres are projective
linesP1(K). By fixing a “point at∞” on P1(K), hence giving an
imbeddingK ֒→ P1(K), we get an imbedding of a line bundleL on
X in a projective line bundleP on X. If U is an open set inX and
s is any section ofL overU, different from the “O-section”So or
the “∞-section”s∞ of P, takeT = s(U) ⊂ P. Then the intersection
cycle T · (so − s∞) (see §4) is of codimension 2 inL|U, and its
projectionπ(T · (so − s∞)) is of codimension 1 inU and therefore
determines a divisorD on U.

(v) Sheaf to a Bundle.

Let L be an invertible sheaf, andP a point onX. Then∃ a
sectionz of L over a neighbourhoodU of P such that for any
P′ ∈ U′, zP′ = z(P′) generatesLP′ . We thus take a covering (Ui)
of X and sectionszi ∈ Γ(Ui ,L ) such thatzi generatesL

∣∣∣Ui; aszi

andzj both generateL on Ui ∩ U j . gi j = zi/zj defines a regular
mapUi ∩U j → K∗ and we thus find a bundle.

(vi) Divisor to a sheaf. 26

Let D =
∑
W

n(W) W be a divisor. For any open subsetU of X, we

define

LD(U) =
{
f ∈ K(X) : vW( f ) ≥ −n(W) for all W with W∩U , φ

}
.

ThenLD is a presheaf onX; and ifU is open set such thatD = (g)
on U for someg ∈ K(X) then it is easily checked thatLD(U) is
precisely=

{
f ∈ K(X) : f g ∈ OP∀P ∈ U

}
hence is free onΓ(U,O)

of rank 1, The sheafL (D) defined byLD is thus invertible.
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(vii) Certain observations:

α) If D,D′ are divisors, corresponding to line bundlesL, L′ and
invertible sheavesL (D),L (D′) then D + D′ corresponds to the
line bundleL⊗

X
L′ and the invertible sheafL (D)⊗

O

L (D′); and−D

corresponds to the dual bundleL∗ and the dual sheafL (D)∗.

In fact if L is given by (Ui , gi j ) andL′ by (Ui , g′i j ) thenL ⊗
X

L′ is

given by (Ui , gi j .g′i j ) andL∗ by (Ui , g−1
i j ).

β) Let u : X′ → X be a morphism of nonsingular (or locally fac-
torial) irreducible varietiesX′,X. Let D be a divisor onX corre-
sponding to a line bundleL and a sheafL ; then the “pull-backs”
u∗(L) andu∗(L ) are both well-defined but where is no way of as-
suring thatu−1(D) is always well-defined. But one can prove that
∃ a divisorD1 ∼ D onX such thatu−1(D1) is (see §4) well-defined.
Thenu∗(L ) andu−1(D1) correspond to one another.

γ) SupposeL
π−→ X is a line bundle onX, and assume it admits27

global sectionsso, . . . , sn on X. Then thesi are rational functions
on X and if we suppose that they do not vanish (as functions on
X) all together at any point onX, for every P ∈ X, each ratio
si(P)/sj (P) is either inK or is∞ in P1(K). Then thesi define a
morphism

X→ Pn(K)

P 7→ the point given by the homogeneous coords.(si(P)).

If the si do have common zeros, then we get only a rational map on
X with values inPn(K).

Definition 4. We say that the line bundle L isvery ampleif there exist
an integer n and global sections so, . . . , sn of L over X givingan isomor-
phismof X on an algebraic subvariety ofPn(K). We say that L isample
if ∃ a q > O such that L⊗q is very ample. We say that a divisor D on X
is very ample (resp. ample) if the line bundle LD defined by D is so.

For any divisorD on X take global sectionsfo, . . . , fn of the sheaf
LD defined byD; they are rational functions ofX such that (fi)+D ≥ 0
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and correspond to global sections of the line bundleLD defined byD.
As before we get a rational mapϕD of X with values inPn(K);ϕD is a
morphism if the divisors (fi) + D have no common point. If in addition,
we assume that the (fi) are such that theϕD they define is an imbedding
of X in Pn(K), then the divisors (f ) + D on X correspond onϕD(X) to 28

the hyperlane sections for allf ∈ Γ(X,LD).

Proposition 1. Let D,E be divisors on X and suppose D very ample.
Then∃no ∈ Z+ such that for any n≥ no, the sheafL (E + nD) admits
a finite number of global sections, defining a morphismϕ(E+ nD) on X
into a projective space.

Proof. We may assumeX imbedded in aPs and thatD is a hyperplace
section. Let (ξo, . . . , ξs) be a system of homogeneous coordinate inPs

and consider the affine open subsetUi ≡ (ξ , 0) in X. TheE
∣∣∣Ui corre-

sponds to a fractionary ideal ofK[Ui ]; a finite system of generators of
the ideal gives a finite system (si j ) of sections of the line bundleLE

∣∣∣Ui,
without a common zero onUi. Then these sections extend to rational
sections (¯si j ) of LE with poles only onξi = 0.

If n(i) is the maximum of the orders of these poles then forn ≥ ni

the (s̄i j ⊗ ξn
i ) j are sections ofLE ⊗ LnD = LE+nD on X without common

zeros onUi . Then forn ≥ sup
i

n(i) the (s̄i j ⊗ ξn
i )i, j are sections ofLE+nD

without common zeros and hence define a morphismϕ(E+nD) from X,
into a projective space. Q,E,P �

Proposition 2. If F is an ample divisor then∃ a ko > 0 such that for
any k≥ ko, there exist global sections (finitely many) ofLkF defining a
morphismϕkF.

Proof. By definition someqF is very ample. Now apply Proposition 1
to D = qF, E = F, 2F, . . . , qF. �

Proposition 3. If D is ample then∃no > 0 such that nD is very ample29

∀n ≥ no.

Proof. SomeqD is very ample; also chooseko as in Proposition 2 and
no = q+ ko. �
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For n ≥ no,∃ a morphismϕ(n−q)D : X → Pγ defined by global
sections (fi) of Ln−q/D; and we have an imbedding

ϕqD : X → Ps defined by global sections (g j ) of LqD. Therefore
the morphismϕ = (ϕ(n−q)D, ϕqD) : X → Pγ × Ps is an imbedding (its
composite with the projection is an imbedding); composing with the
Segre-imbeddingPr × Ps → Prs+r+s we get an imbeddingϕnD of X in
Prs+r+s defined by global sections (fig j) of ϕnD. Q.E.D

Theorem(Grauert). Let X be a normal irreducible algebraic variety

over an algebraically closed field K and L
π′−→ X a line bundle on X

Let So be the zero section of the dual bundle L∗ π−→ X. Then L
is ample⇐⇒ ∃ a morphism t from L∗ on an affine variety Z passing
through the origin in some Kn such that

(i) t(So) = 0

(ii) L∗ − So

t∼−→ Z − (0).

For proving the theorem we shall need the following two lemma.

Lemma 1. Let L be a line bundle on X and L∗
π−→ X the dual of L.

Suppose so, . . . , sn are sections of L on X. One then defines a maps̃ :
L∗ → Kn+1 by x∈ L∗ 7→ s̃(x) = (〈si(π(x)), x〉)n

i=0.

We have also seen before that thesi define a rational maps on X to30

P(K). We have the following:

a) s̃(L∗) ⊂ the affine cone inKn+1 of s(X), and if λ ∈ K, s̃(λx) =
λs̃(x)

b) Any regular mapu : L∗ → Kn+1 such thatu(λx) = λu(x), λ ∈
K, x ∈ L∗ is of the forms̃ for a system of sectionss0, . . . , sn of L.

c) LetSo be the image of the zero section ofL∗. Then s is a biregular
imbedding ofX in Pn(K)⇔ s̃ is biregular outsideSo on L∗.

Proof. a) The former assertion is clear, for if ˜s(x) , 0, say s̃(x)o ,

0, then, for each
s̃(x)i

s̃(x)o
=

si(π(x))
so(π(x))

; the latter assertion is trivial.
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b) Let u(x) = (uo(x), . . . , un(x)), x ∈ L∗. For anya ∈ X if x ∈
(L∗)a thenx → ui(x) is a linear form onL∗a and thus defines an
si(a) ∈ (L∗)∗ = La; and therefore we get sectionssi ∈ Γ(X, L), 0 ≤
i ≤ n with the required property.

c) Assumes : X → Pn is a biregular imbedding. Letx ∈ L∗ − So

anda ∈ X s. t x ∈ L∗a; if i is such thatsi(π(x)) , 0 then s̃(x)i ,

0 ands̃(x) , 0. Therefore ˜s(L∗ − S0) ⊂ {cone ofs(X) − (0)} in
Kn+1. We will prove that this inclusion is, in fact, an equality;
it is sufficient to prove our assertion when we restrictL∗ to an
open atU ∋ a in X s-t.L∗ over U is isomorphic toU × K. Then
L∗ − So ≃ U × K∗, while, the cone ofs(U) − {0} is isomorphic to
s(U) × K∗.

�

As all these isomorphisms are compatible with restrictionsof U to 31

smaller open sets, we are through, we have, by hypothesis,U
∼−→ s(U)

Conversely,lets(L∗ −So)
∼−→ s̃(L∗)− {0}; again by choosing an open

U ⊂ X such thatL∗ ≃ U × K we get
U×K∗

∼−→ s(U)×K∗ by an isomorphism compatible with restrictions
and identity onK∗ i. e.,U

∼−→ s(U)); ands is thus a biregular imbedding
of X in Pn.

Lemma 2. Let E be a line bundle on X and vq be the morphism of fibre

spaces E
vq−→ E⊗q on X, defined by

x→ x⊗ · · · ⊗ x, (q times).

Supposeu is any morphismE → Kn such thatu(λx) = λqu(x).λ ∈
K, x ∈ E. Thenu admits a unique factorization

E
vq−→ E⊗q ū−→ Kn

such that ¯u is a morphism withu(λx) = λu(x), x ∈ E⊗q, λ ∈ K.

Proof. Is x, y ∈ E are s.t.vq(x) = vq(y) theny = αx, α ∈ K. Also,
vq(y) = (y⊗ · · · ⊗ y) = αq(x⊗ · · · ⊗ x) = x⊗ · · · x = vq(x) by assumption
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so thatα is aqth− root of unity. Thenu(y) = αqu(x) by hypothesis, and
sou(y) = u(x) so that the set theoretic mapu on E⊗q defined by

u(vq(x)) = u(x) is well-defined.

To show thatu is a morphism take any openU ⊂ X such thatE|U ≃
U × K andE⊗q|U ≃ U × k. If (x) = (z, λ) is a coordinate system for
E|U and (x′) = (z′, µ) a coordinate system forE⊗q|U thenvq is given
by (z, λ) → (z, λq) and u is given byu(z′, µ) = u(z′, 1).µ = u(z′, 1)µ
Q.E.D. �

Proof of Grauert’s theorem
32

(i) Necessity
If L is ample by Proposition 3,∃q > 0 and systems of sections (s)

of L⊗q and (s′) of L⊗(q+1) defining projective imbeddings

s : X→ Pn

and s′ : X→ P′n respectively.

As in Lemma 1, we obtain morphisms

s̃ : (L∗)⊗q→ Kn+1 and s̃ : (L∗)⊗
(q+1)
−−−−→ Kn′+1

which are biregular imbeddings outside the respective nullsections
(Lemma 1, c). We define now a morphismv : L∗ → Kn+n′+2 as the
composite

L∗ −−−−−−→
vq⊕vq+1

(L∗)⊗q ⊕ (L∗)⊗(q+1) −−−→
s̃+s̃′

Kn+n′+2.

We shall prove thev is a biregular imbedding outside the null section
So of L∗. It is enough to show thatvq ⊕ vq+1 is a biregular imbedding
outsideSo. Again it suffices to do this over open setsU ⊂ X such
that L∗|U ≃ U × K; over U the mapvq ⊕ vq+1 is given by (x, λ) 7→
(x, λq) ⊕ (x, λq+1); the inverse rational map form the image is given by
(x, t)⊕ (x, t′) 7→ (x, t′/t); vq⊕vq+1 is then certainly a biregular imbedding
on (L∗ − SO)|U ≃ U × K∗.
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(ii) Sufficiency.
Let t be a morphism onL∗ with the properties stated in the theorem.33

For anyx ∈ L∗ one obtains a mapK → Kn by λ 7→ t(λx): this is defined
on the whole ofK and vanishes precisely forλ = 0 or x ∈ So. Hence
there exist regular mapst1(x), . . . , tr(x) on L∗ to Kn such that

t(λx) = λt1(x) + · · · + λr tr (x).

Computingt(µλx) we easily see thatt j(µx) = µ j t j(x)∀x ∈ L∗
µ∈K

. The

map t(x) = t1(x) + · · · + tr(x) is an imbedding of (L∗ − So); thus the
mapu(x) = (t1(x), . . . , tr (x)) of L∗ in a suitable big affine space is also
an imbedding outsideSo.

Let t jk(x) be the components of the mapt j(x); we havet jk(µx) =
µ jt jk(x)∀µ ∈ K, x ∈ L∗. We form the graded ringA = K

[
(t jk) j,k

]
, the

degree oft jk being j. ThenA is a domain (it is the coordinate ring of the
imageu(L∗)); its integral closureA′ is a graded, finite typeK-algebra.
Then∃ q < 0 such that the homogeneous elements inA′ of degree
q generateA′(q) =

∑
ν≥0

A′νq as a gradedK-algebra; we may assumeq

to be a multiple of 1, 2, . . . , r. Let (wα) be a basis overK of the K-
spaceA′q; (wα) are regular functionsL∗ → K, homogeneous of degree
q. We obtain then a regular mapw : L∗ → KN for anN ∈ Z+ whore
components are the (w′α)s and which therefore has the propertyw(λx) =
λqw(x), x ∈ L∗, λ ∈ K. By Lemma 2, we get a factorization

L∗
vq−→ (L∗)⊗q w̄−→ KN

such thatw(µy) = µw(y), y ∈ (L∗)⊗q, µ ∈ K.We shall prove that (L)⊗q is 34

very ampleby showing thatw is an imbedding outside its null section
(see Lemma 1,c)).

As w((L∗)⊗q) = w(L∗) is anormal subvariety ofKN (its coordinate
ring is K[(wα)] we shall prove our ascertain by using Zariski’s main
theorem (ChapterI , g)) i.e. by proving thatw is bijective, birational
onto its image, outsideS◦((L∗)⊗q).
w is injective outsideSo((L∗)⊗q):

a) If w(x) = w(y), then∃ aqth root of unity ε such thatt jk(y) =
ε jt jk(x)∀ j,R.
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In fact, eachtq/ j
jk is a linear combination of thew′α sso thatw(x) =

w(y) implies tq/ j
jk (x) = tq/ j

jk (y),

i. e t jk(y) = ε jkt jk(x)

whereε jk is a (q/ j)throot of unity. In particular,ε = ε11 is aqth

root of unity. Nowt jktq− j
11 is again a linear combination of thew′αs

and therefore

t jktq− j
11 (y) = t jktq− j

11 (x)

i.e., ε jkε
q−1t jktq− j

11 (x) = t jktq− j
11 (x)

and forx < So, this meansε jk = ε
j.

b) Supposex′, y′ ∈ (L∗)⊗q such thatw(x′) = w(y′).35

Let x′ = vq(x), y′ = vq(y), with x, y ∈ L∗. Then by a) we obtain
t jk(y) = ε j t jk(x) = t jk(ε x)∀ j, k. This impliest(y) = t(εx) for the map
t = t1+ · · ·+tr ; but if x′, y′ ∈ (L∗)⊗q−So((L∗)⊗q) thenx, y ∈ L∗−So andt
is biregular onL∗−So by hypothesis. Thereforey = εx andy′ = vq(y) =
εqvq(x) = x′.

w is birational
We haveK(L∗) = K((t jk) j,k); the projectionπ : L∗ → X then gives

an imbeddingK(X) ֒→ K((t jk)). As locally L∗ is of the formX × K,
this means that∃ a homogeneous functionσ ∈ K(L∗) of deg 1,σ(λx) =
λσ(x), such thatK(L∗) = K(X)(σ). Obviously, thenK((L∗)⊗q) =
K(X)(σq).

On the other hand,K(X) is generated overK by the elements in

K((t jk)) which are products of the form
∏
j,k

tβ
( j,k)

jk with
∑
j,k
β( j, k) = 0. Thus

K(X) = K((wα/wαo

)
α) and the function fieldF of w((L∗)⊗q) is given by

F = K((wα)α) = K(X)(wαo).

Finally asσq/wαo ∈ K(X), we obtain

Q.E.D F = K(X)(σq) = K((L∗)⊗q).
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3. Chow Coordinates

a) Let V be an algebraic set of dimensiond in Pn (notation: Vd); we 36

assume thatV is pure of dimensiond, i.e., all the components ofV
have the same dimensiond. If H1 is a hyper plane not containing any
component ofV thenH1 ∩ V is pure of dimension (d − 1). If H2 is a
hyperplane not containing any component ofH1 ∩ V thenH2 ∩ H1 ∩ V
is pure of dimension (d − 2) and so on; and finallyHd+1 ∩ · · · ∩ H1 ∩ V
is empty in general.

Our purpose now is to study the systems of (d + 1) hyperplanes
Ho, . . . ,Hd such that (Ho ∪ · · · ∩ Hd) ∩ V is non-empty.

AssumeV to be irreducible. Any hyperplaneH will be defined by

an equation of the form
n∑

i=0
uiXi = 0 in Pn, ui ∈ K and is there fore deter-

mined by the point (uo, . . . , un) ∈ Kn+1. A system of (d+1) hyperplanes
will then be determined by a point in the affine spaceK(n+1)(d+1). We
shall now prove that the points inK(n+1)(d+1) corres ponding to systems
of (d+1) hyperplanesHP, . . . ,Hd in Pn such thatV ∩HO∩ · · · ∩Hd , φ

form an irreducible algebraic variety (in fact, a cone for obvious reasons
) in K(n+1)(d+1).

Let k be a field of definition forV and (x) = (x1, . . . , xn) be the affine
coordinates for a generic point (x) of V/k. Its homogeneous coordinates
are the (1, x1, . . . , xn). Consider a system

ui j , i = 0, . . . , d, j = 1, . . . , n

of algebraically independent elements ofK overk(x) and an equation

uio = −
n∑

j=1

u1 j x j defining (uio)i=0,...,d

Then (ui j ) is a generic point of an irreducible variety inK(n+1)(d+1) 37

(the locus of (ui j ) overk(x) which is the one we have been looking for.
Its dimension isd+n(d+1) = n(d+1)(d+1)−1 so that it is a hypersurface
in K(n+1)(d+1), defined by an equation:

F(uoo, . . . , uon; u1o, . . . , u1n;− − −−; udo,...,udn) = 0
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in (n+1)(d+1) variables; this equation is obviously multi homogeneous
in the set of variables indicated, of the same degreeδ, in each set of vari-
ables; if two sets of variables take the same values then the hyperplanes
they define are the same andHo∩ · · · ∩Hd∩V , φ in valid; this implies
thatF is containing and antisymmetric in the sets of variables indicated.

The polynomialF is called theChow form(or the associated form,
or the Cayley form or the Bertini form)ofV.

The Chow formF(V) of a varietyVd determines the varietyV back
uniquely. In fact for any linear varietyLn−d the points of intersection
of Ln−d andV are given by the Chow form F(V) and are preciselyδ =
degree ofF(V), in number.δ is called thedegree of the variety V.

b) Let V be any variety. By acycleon V we mean an element of
the free abelian group generated by irreducible subvarieties of V. If
X =

∑
nαVα is a cycle onV. the support ofX is the union

⋃
nα,=0

V.

We say thatX is of dimensiond if eachVα is of dimensiond; we
say thatX is positive(X ≥ 0) if eachnα is ≥ 0.

If X =
∑

nαVα is a positive cycle of dimensiond in Pn(K) andFα(u)38

is the Chow form of eachVα the formF(u) =
∏
α

(Fα(U))nα is called the

Chow form of the cycle X. The degree ofF(u) =
∑

nα degVα is called
the degree of the cycle X. We may write Chow formF(u) in the form∑

Cλ(X)uλ where theuλ are monomials; we then call the (Cλ(X)) the
Chow coordinatesof X, and the point whose homogeneous coordinates
are the (Cλ(X)λ) is called theChow pointof X.

Conversely, ifG(u) = d u is a given form multihomogeneous of the
same degree in each set of variables, alternating and antisymmetric,one
may ask “Under what condition are the (d) the Chow coordinates of a
positive cycle on a subvarietyU n?”.The answer is given by the follow-
ing theorem which we shall not prove here. (For a proof see Chapter
I,§9,5, Samuel [4]).

Theorem.The(dλ) are the Chow coordinates of a positive cycle X on a
subvariety U⊂ Pn(K) if and only if the(dλ) satisfy a system of homo-
geneous equation with coefficients in the smallest field of definition of
U.

We call a system of cycles (Xα) an irreducible system if the Chow
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points of theXα range over an irreducible variety.

Corollary. Any system of positive cycles onPn(K) with a given dimen-
sion d and a given degreeδ is a finite union of irreducible systems.

Example.

a) V = {(ao, . . . , an)}, a point inPn.

The Chow formF(u) of V is the linear form
n∑

i=1
uiai = 0.

b) V a hyperplane H given by
n∑

j=0
a jX j = 0. Then the Chow form ofV 39

is given by the determinant

∣∣∣∣∣∣∣∣∣∣∣

ao · · · an

uoo · · · uon

· · ·
un−1, o · · · un−1, n

∣∣∣∣∣∣∣∣∣∣∣
= 0

c) V a linear subvariety ofPn.

In this case the Chow coordinates are essentially the Grassmann co-
ordinates of the linear variety.

4. Results from Intersection Theorey

a) We fix, for our present consideration, an ambient varietyU, over an
algebraically closed fieldK, which we shall assume to be non singular.
Let V,W be irreducible closed subvarieties ofU. We say that a compo-
nentC of V∩W is proper if dim C = dimV + dimW− dimU. For such
a componentC, theintersection multiplicity iU(C; V.W) is defined in the
following manner:

Consider the product (nonsingular) varietyU × U and let△ be the
diagonal ofU×U; then the componentC corresponds to a componentC̃
of △∩ (V ×W); C̃ is an irreducible subvariety ofV×W and ifO is local
ring of C̃ on V ×W thenO ⊂ K(V ×W); then△ ∩ (CV ×W) is defined
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by equations (Xi −X′i ) in K[V×W] locally and these equations generate
an idealq in O, primary for the maximal ideal ofO. The intersection
multiplicity of V and W on Cis defined to be the multiplicitye(q) of the40

primary idealq in O.

It can be shown thatiU(C; V.W) = 1 means thatO (in the above
paragraph) is a regular local ring andq is the maximal ideal ofO. The
first condition means thatC is simple onV andW: the second condition
says precisely that the tangent spaces toV andW at a generic point of
C have for their intersection the tangent space toC at that point. We say
then thatV andW aretransversalonC.

Remark. We observe that so far we have not made any use whatever of
the fact thatC is a proper component ofV W. We could have defined
iU(C; V.W) for any componentC of V ∩W. But the advantage in con-
sidering a proper component is seen from the following fact (which we
shall not prove):

Let C be a proper component ofVd ∩Wd′ in a (nonsingular)Un;
suppose that the primary ideal ofV in O(C; U) (the local ring ofC in
U) is generated by (n−d) elementsy1, . . . , yn−d (this will be the case for
instance ifC in simple onV); then the multiplicityiU(C; V.W) is equal
to the multiplicity of the ideal ofO(C.W) generated by the classes of
(yi).

(For a proof see Chapter II, §5, no.7, Theorem 6), Samuel [4]

With the same notation,we define the “intersection”V ·W (or
V·W⋃

when all the componentsCα of V ∩W are proper, by:

V.W =
∑

iU(Cα : V.W)Cα

Then V · W is a cycle on V ∩ W. Under obvious condition, we41

may also define the cyclesX · Y
U

for two cycleX,Y on U, by extending

the above definition by linearity. When the ambient spaceU needs no
special mention we may also writeX.Y for X · Y

U
.
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Some properties

i)

X .
U

U = X

X .
U

Y = Y .
U

X

and (X .
U

Y) .
U

Z = X .
U

(Y .
U

Z)

(We remark that the associativity holds only when all the compo-
nent ofU ∩ V ∩W, (U,V,W being the components ofX, Y, Z re-
spectively are proper).

ii) If X,Y are cycles onU,X′,Y′ cycles onU′ thenX × X′ andY × Y′

are cycles onU×U′, and one has (X×X′).(Y×Y′) = (X.Y)×(X′.Y′)

iii) Let V be a closed, nonsingular subvariety ofU,X a cycle onV,Y a
cycleU then

X .
U

Y = X .
V
(V .

U
Y) (Induction formula).

iv) Let U,U′ be nonsingular varieties andp : U × U′ → U the set-
theoretic projection. LetV be a subvariety ofU ×U′; we define the
algebraic projection prU(V) of V as follows:

α) if dim p(V) < dimV, thenprU (V) is the “zero cycle” onU

β) if dim p(V) = dimV, them K(V) is a finite extension of
K(p(V)) andprU(V) is the cycle

[
K(V) : K(p(V))

]
p(V).

This notion of an algebraic projection extend by linearity to cycles 42

on U × U′.

Proposition. Let U′ be acompletenonsingular variety and X be a cycle
on U× U′. Then for any cycle Y on U.

prU(X · (Y × U′)) = prU(X) · Y

whenever both sides are defined.
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b) Given a morphismf : V → V′ of nonsingular varieties and a
cycleX′ onV′, one defines the inverse imagef −1(X′) asprv((V×X′)·Γ f )
whereΓ f is the graph off . LetV be a projective nonsingular variety and
T an irreducible variety, also nonsingular. For any cycleX anV×T, the
cycle Xt = prV((V × t) · X) on V is defined for “almost all”t ∈ T.
The system of cycles (Xt) thus defined onV is said to be anirreducible
algebraic family of cycles on V.

One can show that for an algebraic family (Xt) of cycles onV, the
Chow coordinatesc(Xt) of the cycleXt depend rationally ont ∈ T:thus
the dimension and degree of the cycleXt are independent oft ∈ T. Any
two members of the family (Xt) are said to bealgebraically equivalent.

Let (Xt)t∈T and (Yt′)t′∈T′ be algebraic families of cycles onV; we
may assume that the parametrizing varietiesT andT′ are the same by
passing toT × T′ in the obvious manner. Then it is checked that

Xt · Yt = prV((V × t) · (X · Y))

whereX andY are the “defining” cycles onV × T. Thus (Xt · Yt)t∈T is
again an algebraic family onV.

Examples.We shall be interested here only in cycle of dimension 1,43

i.e.linear combinations of irreducible curves.

(i) Let D andE be cycles of (dimension 1 and) degreesd ande in
P2. The intersection number (D.E) of D andE is the total number
of points of intersection ofD andE each point counted with the
appropriate multiplicity.

We have:(D.E) = de (Theorem of Bezoout). In fact , it is enough
to prove this for cyclesD′ and E′ such thatD is algebraically
equivalent toD′ andE is algebraically equivalent toF′. One can
construct an algebraic family containingD andD′ = dL(L a line)
as members and similarly forE andeL′. For the two linesL and
L′ our assertion is obvious.

Thus, we have a case where the intersection number is completely
determine by the degrees of the cycles
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ii) Consider the products of the projective linesP1 × P1 imbedded in
P3. Thus is the quadricξoξ1 − ξ2ξ3 = 0 in P3.

Let L1 andL2 be a ‘horizontal’ and a ‘vertical’ line of this product:
if d1 = (X · L2) andd2 = (X · L1) one may construct an algebraic
family on P1 × P2 containingX and (d1L1 + d2L2) as members.
Similarly for a second cycleX′ in P1 × P1

The intersection number of the cyclesX,X′ is then given by 44

(X · X′) =
(
(d1L1 + d2L2).(d′1L1 + d′2L′2)

)

= d1d′2 + d2d′1
while degX = d1 + d2 and

degX′ = d′1 + d′2

We have thus a case where the intersection number isnot deter-
mine by the degrees of the cycles.





Chapter 2

Algebraic Curves

Let K be an algebraically closed field. Analgebraic curveover K is a 45

variety overK all of whose irreducible components have dimension 1.
In this chapter, we shall be mainly concerned with irreducible complete,
nonsingular curves.

1. The genus

a) Let C be a nonsingular curve. Then for any pointP ∈ C, the lo-
cal ring OP is a discrete valuation ring of the function fieldK(C). If,
in addition,C is complete, then every discrete valuation ring ofK(C)
dominates someOP, P ∈ C and hence equals thatOP. Obviously the
point P is uniquely determined. Thus the structure sheaf of a nonsingu-
lar, complete, irreducible curveC is determined byK(C) and any two
birationally equivalent such curves are isomorphic. This fact enables us
to construct a projective “model”C for a function field of one variable
L oveK in the following manner:

Let L = K(x1, . . . , xn); consider any affine curveC′ in Kn whose
coordinate ring isK[x1, . . . , xn]. We take forC the projective normal-
isation of a projective closure forC′. The curve is normal (therefore
nonsingular) complete, irreducible, with function fieldL and is thus the
“model” we are looking for.

31
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But in the sequel, we need models ofL with “nicer” properties in
projective spaces of “small” dimension. We start with the following

Definition. A nonsingular curve C is said to bestrangeif all its tangents46

have a point in common, all if it is not a straight line. It is easily seen
that strange curves can occur only in characteristic p, 0.

Theorem 1. Any function field of one variable L over K admits:

i) a nonsingular model, which isnot strange, in P3.

ii) a model inP2 which has for its singularities only finitely many or-
dinary double points.

Proof. We shall prove i) in two stages. �

α) L admits a nonsingular, nonstrange, projective model.

Let C be a projective nonsingular model ofL in Pn, constructed as
above. We may assume thatC is strange; choose a system of homo-
geneous coordinates inPn, such thatC does not lie entirely in the hy-
perplaneXo = 0 and thatA = (1, 0, . . . , 0) is the common point of all
the tangents ofC. Let the homogeneous coordinate functions onC be
(1, x1 . . . , xn).

Let D be a nontrivial derivation ofL over K. For any pointP ∈ C,
the parametric equations of the tangentTp to C at P are given by

(1) Xi = αxi(P) + (Dxi)(P), α ∈ K, i = 0, . . . , n.

The parameterαA of A on TP is a rational function ofP, sayu ∈ L.
Thus,

(2) 0= uxi + Dxi fori = 1, 2, . . . , n

and the system of homogeneous coordinates ofA, given by (1) is
(u, 0, . . . , 0) whenceu , 0.47

We now claim that∃y ∈ L such thatuy+Dy is not proportional tou,
i.e., such thaty+ u−1 Dy ∈ K: in fact, as we are in characteristicp , 0,
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we may take anyy ∈ Lp − K (sinceDy = 0). Thus any model ofL for
which the system of homogeneous coordinates is of the form

(3) (1, x1 . . . , xn, y, z1 . . . , zo), y, zj ∈ L

is nonstrange. It remains to prove that there exists such a nonsingular
model.

Let G be a positive divisor onC such that (y) ≥ −G. Then 1,y
L(G) and C being projective,L(G) is finite dimensional with a basis
(1, y1 . . . , yr ) with y1 = y. These then define a morphismϕG : C → Pr

(Chapter I, §2) and as in Chapter I, §2. Proposition 3, we get an imbed-

dingψ : C
(1,ϕG)
−−−−−→ Pn × Pr

σ−→ Pnr+r+n of C in Pnr+r+n. The homogeneous
coordinate functions onψ(C) are the functions (xiy j) with xo = yo = 1
and among then we have 1, x1, . . . , xn, y;ψ(C) is nonsingular and we
have a model of type (3).

β) L admits a nonsingular, nonstrange model inP3.

Let C be a nonsingular, nonstrange model in somePn (by α)); let
n ≥ 4. The tangentsT,T′ at two generic points ofC do not meet:
otherwise any two tangents meet. We recall here that an irreducible
system of lines inPn such that any two lines in the system meet, either
is a system of coplanar lines or has the property that all the lines of
system pass through a point. This then implies thatC is either planar or 48

strange. Therefore the union
V
λ

of lines inPn which meetT andT′ has

dimension≤ 3 in Pn.
We now consider the set of all chordspp′ in Pn, P,P,′ ∈ C, P not

necessarily distinct fromP′ (thus, the tangents toC are also included);
we claim that the union of these chords forms an irreducible algebraic
variety W of dimension≤ 3 in Pn. In fact, letk be a field of definition
for C, (x) a generic point ofC/k, (x′) a generic point ofC/k(x). Then the
“generic” chord has the parametric equations

yi = txi + (1− t)x′i .

Taking t transcendental overk(x, x′), the point (y) is a generic point
overk for the “chord variety”, and our assertion is proved.
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We now take any point S inPn not in V ∪ W and projectPn into
P3 with S as the vertex of projection. This projectionπ is defined and
injective onC; also asC is nonsingular the “geometric tangent space”
is the same as the “Zariski tangent space” forC so that the mapping
induced byπ on the Zariski tangent space is also injective, which means
that the maximal ideal atP ∈ C is generated by the maximal ideal at
π(P) = P′ ∈ π(C) = C′. As π is an injection on C and on its Zariski
tangent spaces,π is birational which proves thatC is the normalisation
of π(C) = C′.

Now (by using the injectivity of
π again) one easily proves that
Opis a finite OP′-module. As
OP′ ⊂ OP and as both have the
same residue field, viz,K, and
as µP′,OP = µP, by Nakayama’s
lemma we getOP′ = OP. That is,
π is biregular. Therefore,C′ is
nonsingular; in addition it isnon-
strange: in fact, asS < V, the pro-
jectionsπ(T) andπ(T)′ are tangents
to C′ which do not meet.

49
(ii) L admits a (birational) model in P2(K) with only modes as

singular points.
Take a nonsingular nonstrange modelC of L in P3 (by (i)). The

tangents toC form a variety of dimension 2 inP3; and asC is nonstrange
the union of chordsPP′ of C such that tangents toC at P,P′ meet form
a variety of dimension≤ 2. Finally, the possibility that any chordPP′

is a trisecant (i.e.meetsC at a third point) is ruled out as in that case any
two tangents toC will have to meet; thus the union of trisecants toC
forms a variety of dimension≤ 2 in P3(K). Therefore, choose a point
S ∈ P3(K) avoiding:

α) the surface of tangents toC

β) the trisecants toC
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γ) the chords at whose “extremities” the tangents are coplanar.

ProjectP3(K) into P2(K) with S as vertex.γ) andα) ensure that the 50

projection is a birational mapC onto its imageC′.
β), γ) ensure that the only singularities onC′ and ordi-nary double

points.C′ is then the require models inP2(K) Q.E.D
b) The Riemann -Roch formula

A divisor D on a nonsingular projective curveC is a finite linear
combination, overZ, of points onC,D =

∑
P∈C

n(P).P, n(P) = 0 for

almost allP ∈ C. Thedegreeof D =
∑

n(P).P is by definitiond(D) =∑
n(P). Any x ∈ K(C) defines a divisor (x) =

∑
P∈C

Vp(x),P,Vp being

the valuation ofK(C) defined by the local ringOP ; we write (x) =
(x)◦ − (x)∞ where (x)◦ and (x)∞ are both positive and are disjoint, the
former defined by the zeros ofx and the latter by the poles. Elementary
valuation theory proves that (x)◦, (x)∞ have degrees equal to

[
K(C) :

K(x)
]
. One deduces that deg(x) = 0∀x ∈ K(C); thus one may talk of the

degree of a divisor class ofC.
For any divisorD onC, theK-space

L(D) = {x ∈ K(C) : (x) ≥ −D} = Γ(C,LD) is finite dimensional (asC is
projective), say of dimensionl(D). Then we have the following

Theorem 1. (Riemann-Roch) (Preliminary form).There exists an inte-
ger g ≥ 0 and a divisorΩ on C such that for any divisor D on C the51

following equality holds:

l(D) = d(D) − g+ 1+ l(Ω − D)

We shall assume the theorem in this (a proof can be found in Serre [7]
Ch. The, 1.4, or in Chevalley [1] Ch. II. §5, Th. 3).

Consequences of the theorem

(i) The integerg is uniquely determined by the above property.

In fact, letΩ′, g′ be another pair for which the above assertion
holds. Take a divisorD on C such thatd(D) > d(Ω) andd(D) >
d(Ω′); then for thisD, l(Ω − D) = 0 = l(Ω′ − D) and one obtains

g = g′ = d(D) − l(D) + 1.
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(ii) g = l(Ω), and 2g − 2 = d(Ω) as one sees by writingD = 0 and
D = Ω in the equality.

Proposition. Upto a linear equivalence the divisorΩ is uniquely deter-
mined by the properties: l(Ω) ≥ g and

d(Ω) = (2g− 2).

In fact, supposeΩ′ is a divisor onC such thatd(Ω′) = 2g − 2 and
l(Ω′) ≥ g; then

g ≤ (2g− 2)− g+ 1+ l(Ω −Ω′)
i. e., l(Ω −Ω′) ≥ 1;

on the other hand,d(Ω −Ω′) = 0.52

The former implies that∃ anx , 0 in K(C) such that (x) ≥ (Ω′−Ω);
but we know thatd((x)),= 0; it follows that (x) = Ω′ −Ω andΩ′ ∼ Ω.

Remark. The integerg occurring in the Riemann-Roch Theorem is
called thegenusof the curveC; it can be defined forany irreducible
curve and in fact forany function L of one variable overK; by defini-
tion it is the genus of any projective nonsingular modelC for L.

Theorem 2. Let C be any irreducible curve of degree d inP2(K). Then
the genus g of C is given by

g =
(d − 1)(d − 2)

2
−

∑

P∈C
dimK(O′P/Op)

whereO′P is the integral closure ofOP.

Proof. Choose a system of affine coordinatesx, y for C such thatC hasd
distinct points of intersection with the line at∞ and the affine equation
for C is of the formF(x, y) = 0, F a polynomial of degreed. The d
distinct points ofC at∞ define a positive divisorD on C, of degreed.
If A is the affine coordinate ring ofC andA′ its integral closure, one has
the equality

A′ =
⋃

n≥0

L(nD);

(Recall that foru ∈ K(C),P ∈ C,P is not a pole ofu ⇐⇒ u is
integral onOp). �
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DenoteL(nD) by A′n; andA′n∩A by An. As A′ is the integral closure 53

of A,∃ z, 0in A such thatzA′ ⊂ A.

Therefore dimK(A′/A) = dimK

(
zA′

zA

)
≤ dim

( A
zA

)
< ∞.

(A has Krull-dimension 1 and thereforeA/ZA Krull dimension 0,
this means thatA/

√
zAis a finite direct product of copies ofK.) It fol-

lows that (dimK O′P/OP) < ∞ for all finite P; and this is trivial forP at
infinity so that

∑
P∈C

dimK(O′P/OP)is a well defined integer, and is equal

to dimK(A′/A) by the properties of localization of the integral closure.
On the other handA′n/An

= A′n/A′n ∩ A is contained inA′/A; as, from
above, dimK(A′/A) < ∞ and as (A′n) is an increasing family it follows
that, for largen one must haveA′n/An

= A′/A and hence the equality

dimK A′n = dimK An + dimK(A′/A).

Now An consists of the classes moduloF of polynomials f ∈
K[X,Y] such thatd ◦ f ≤ n; thus

dimK An =
1
2

(n+ 1)(n+ 2)− 1
2

(n− d + 1)(n− d + 2)

= nd+ 1− 1
2

(d − 1)(d − 2).

Now applying the Riemann-Roch formula to the divisornD, for
large n we obtainnd+1− 1

2(d−1)(d−2)+dimK(A′/A) = nd−g+1+0 54

i.e., g =
1
2

(d − 1)(d − 2)− dimK(A′/A)

=
1
2

(d − 1)(d − 2)−
∑

P∈C
dimK(O′P/OP

)
Q.E.D

Examples.

(i) If C is nonsingular of degreed in P2(K), then the genus ofC =
(d − 1)(d − 2)

2
.

(ii) Let P bea node onC.

Choose a system of affine coordinates (x, y) onCλ such thatP is the
point (0, 0). ThenC is given atP by an equation of the form 0= (F ≡
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(ax2 + bxy+ cy2) + (terms of degree≥ 3); by hypothesis the square
terms do not form a perfect square and the tangents atP are given by
2ax + by = 0, bx + 2cy = 0; these are linearly independent and the
maximal ideal atP is given by

µ = (xy) = (F′x, F
′
y).

One can show easily that the integral closureO′ of O = Op satisfies
the relationF′xO

′ ⊂ O , F′yO
′ ⊂ O, henceµO′ ⊂ O and xO′ ⊂ O; we

then haveO ⊃ xO′ ⊃ xO; as dimK(O/xO ) = 2 and dimK(O/xO′) ≥ 1,

it follows that dimK

(
O′

O

)
= dimK

(
xO′

xO

)
= 1. Thus the contribution to

the sum
∑

P∈C
dimK(O′P/OP) from a node 1. In particular,if C is an an

irreducible plane curve, wish r nodes on it as the only singularities, and

of degreed, then the genusg of C is
(d − 1)(d − 2)

2
− r.

2. Differentials on an curve

Let A be aK-algebra. Then there is anA-moduleΩA/K which is univer-55

sal forK-derivations ofA in anA-module. It is called theA- module of
K-differentials ofA. If A is of finite type as aK-algebra,thenΩA/K is a
finite A-module; ifd; A→ ΩA/K is the structural derivation thenΩA/K is
generated overA by elementsdxα, (xα) being a system ofK- generators
of A.

If C is an algebraic curve overK thenΩK(C)/K is aK(C) module; if
x ∈ K(C) is a separating base ofK(C)/K thenΩK(C)/K has a base (dx).

One may also define a sheafΩ of differentials on the curveC (more
generally, on any variety); this is defined by the presheafU 7−→ ΩAu/K

on affine open setsU with affine algebraAU ; the stalkΩP of Ω at a point
P ∈ C is given byΩOP/K . The sheafΩ is locally free of rank 1 onO and
hence is a line bundle denoted byT∗(C), and called thecotangent
bundleonC; it is the dual of the tangent bundle onC as is shown by the
duality between derivations and differentials. Anω ∈ ΩK(C)/K is called
a rational differentialonC.

To any such differentialω on C we associate a divisor (ω) on C in
the following manner: at any point.P ∈ C, ω is of the formx. dt, x ∈
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K(C) andt a uniformising parameterP; sincet − t(Q) is a uniformising
parameter at allQ close toP, ω = x dt in a neighbourhood ofP and we 56

set (ω) =
∑

vp(x).P in this neighbourhood. It can be shown that this
expression is independent of the choice oft so that we obtain a divisor
(ω) onC, (ω) =

∑
P

vP(ω).P.

Proposition 1. Let C′ be a model inP2(K) for C, of degree d, such
that the only singularities of C′ are nodes. Choose a system of affine
coordinates(x, y) in 2(K) such that C′ has affine equation F(x, y) = 0
and all the nodes are at finite distance; assume also that the points x=
0, y = 0 on the line at∞ are not on C′. Let T be a polynomial in two
variables such that the curve T(x, y) = 0 passes through all the nodes
on C′. Then the differential

ω =
T(x, y)dx

F′y
=

T(x, y)dy
F′x

on C′ (i.e. of K(C′)) defines a differential ω on C with the property
that (ω) ≥ 0 at all points P at finite distance on C; if, in addition,
d◦T ≤ (d − 3) then (ω) ≥ 0 on C (we may say in this case thatω is
regular or is of the1st kind on C).

Proof.

Case (i). Let P be a simply point onC′. ThenF′x , 0 or F′y , 0
at P and correspondinglyy or x will serve as a uniformiser atP.Then
vp(ω) = vp(T) ≥ 0.

Case (ii). By hypothesis,T ∈ (F′x, F
′
y) (§1, Ch II) this proves that 57

vP(ω) ≥ 0 for every branch of a node; moreover ifT = 0 passes through
the nodes in a “nice” manner (i,e transversal to both the branches ofC′

at any node)T/F′x andT/F′y will be with invertible on each at any node,
andvP(ω) (which , in any case will be≥ 0) becomes zero.

Case (iii). If P is at∞ on C′, (by our choice of coordinates) we may

takez=
1
x

to be a uniformiser atP ; thenω takes the form
−T
F′y

dz

z2
and
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vP(ω) = (− deg.T − 2+ (d − 1))

= d − 3− d◦T;

if d◦T ≤ (d − 3), this means thatvP(ω) ≥ 0 for P at∞. Q.E.D. �

Consequences of Proposition 1.

Corollary 1. The differentialsω of the first kind on C form a K- space
of dimension≥ g, the genus of C.

By Proposition 1, case (iii), the space of regular differentials onC is

of dimension≥ (d − 3+ 1)(d − 3+ 2)
2

− r, whered is the degree of the

plane modelC′ of C andr its number of nodes; the number on the right
hand side is precisely the genusg of C′, hence ofC.

Corollary 2. For any differentialω in C, d((ω)) = 2g − 2. AsωK(0)/K58

is one dimensional ove K(C) and as d(( f )) = 0∀ f ∈ K(C), we may

takeω to be of the form
T dx
Fy

as in the proposition 1 with T such that

T(x, y) = 0 passes through the nodes on the plane model C′ of C in a
“nice” manner and doesnot pass through any point on C′ at∞.

Thus we have, on the one hand

d((ω)) =
∑

P finite
simple onC′

vP(T) + d(d − 3− doT)

and on te other hand

(T ·C′) = d · (doT)

=
∑

P finite
simple onC′

vP(T) + 2r

Thus, d((ω)) = d · (doT) − 2r + d(d − 3− doT)

= −2r + d(d − 3)

= 2g− 2.

Q.E.D
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LetC be a nonsingular, complete irreducible curve andω a differen-
tial on C. Then the divisor (ω) defined by has the propertiesl((ω)) ≥ g
(by Cor. 1 to Proposition 1: (f ) ≥ −(ω) ⇐⇒ ( fω) ≥ 0), andd((ω)) =
(2g− 2)(Cor.2). Thus, as we have seen before (niemann-Roch, prelimi-59

nary form) the divisor classΩ of (ω) satisfies

Theorem (Riemann Roch-Final form).For any divisor D on C, one
has the equality

l(D) = d(D) − g+ 1+ l(Ω − D).

AsΩK(C)/K is one -dimensional over K(C), it follows thatΩ is the
class of all differentials on C; we call it the canonical class on C.

3. Projective Imbeddings of a curve

LetC be a complete, nonsingular irreducible curve andD a divisor onC.
Let ( fo, . . . , fn) be a basis forL(D); as before, they define a morphism
ϕ = ϕD from C to Pn(K).

(i) Assume thatP is a point onC with L(D) ⊃
,

L(D−P) ⊃
,

L(D−2P).

ThenOϕ(P) contains a uniformising parameter forOp.

In fact, if x ∈ L(D)− L(D−P), andy ∈ L(D−P)− L(D− 2P) and
z= y/x thenz ∈ Oϕ(P) andvP(z) = vP(y) − vP(x)

= vP(−D) + 1− vP(−D) = 1.

(ii) Assume thatP,P′ ∈ C such that

L(D) ⊃
,

L(D − P− P) ⊃
,

L(D − P− P′).

Thenϕ(P) , ϕ(P′).

Let λ ∈ L(D) − L(D − P) andy ∈ L(D − P) − L(D − P − P′), and 60

u = y/x; thenu defines a function ˜u on the image in a natural way. And
ũ(ϕ(P′)) = u(P′) = 0 while ũ(ϕ(P′)) = u(P′) , so thatϕ(P) , (P′).
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Theorem.For a divisor D on C with deg. D≥ 2g+1ϕD is an imbedding.

Proof. ForP,P′ ∈ C one hasd(D−P) ≥ 2g andd(D−2P) = d(D−P−P′)
≥ 2g− 1 > (2g− 2) so that by the Riemann-Roch formula

l(D) = d(D) − g+ 1 ≥ g+ 2

l(D − P) = l(D) − 1 ≥ g+ 1

l(D − P− P′) = l(D) − 2 = 1(D − 2P) ≥ g

and one obtains:

L(D) ⊃
,

L(D − P) ⊃
,

L(D − 2P)

L(D) ⊃
,

L(D − P) ⊃
,

L(D − P− P′).

�

By (i) preceding the theorem,ϕD is an unramified morphism and
by (ii) it is injective. As C is nonsingular, one proves thatϕD is an
imbedding as in §1. Q.E.D

Examples.

(i) g = 0, 1: classical line, cubic curve.

(ii) g ≥ 2: the divisorD = 3Ω satisfiesd(D) ≥ 2g+1 and thus defines
an imbeddingϕD (the Tricanonical imbedding).

(iii) on (any nonsingular)C, any positive divisor is ample.

4. Morphisms of algebraic curves

(a) LetC be a nonsingular, irreducible complete curve and∆ the diag-61

onal in C × C. Then “self-inter section”∆ · ∆ is a divisor class on∆
defined in the following manner; letϕ be a function onC × C suchv∆
(ϕ) = 1; then∆.(∆−(ϕ′)) is well-defined on∆ ; if ϕ′ is any other function
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on C × C such thatv∆ (ϕ′) = 1 thenϕ′/ϕ can be restricted to a regular
functionθ on∆ and one has

∆ · (∆ − (ϕ)) − ∆ · (∆ − (ϕ′)) = ∆ · (ϕ
′

ϕ

)
= (θ)

so that the class of∆ · (∆ − (ϕ)) is independent of the choice ofϕ; call it
∆,∆. We have the

Theorem.∆ ·∆ = −Ω∆, the class on∆ defined by the canonical classΩ
on C; therefore, the intersection number (∆ · ∆) is (2− 2g).

Proof. Take a separating functionf ∈ K(C); thend f , 0. Defineϕ on
C ×C asϕ(P,Q) = f (P) − f (Q). One has clearlyv∆(ϕ) = 1.

Also, if f =
∑

n≥no

anun is

the Taylor expansion off
at a point P on C, then
ϕ is locally given byϕ =∑

an(un−vn) onC×C ; the
local equation of (ϕ) − ∆
is thus

∑
n≥n◦

an
un−vn

u−v ; from

this one deduces by an
easy computation that the
local education of

pr(∆ · ((ϕ) − ∆)) is
∑

n≥no

nanun−1 =
d f
du

and the coefficient of (P,P) in 62

∆ · ((ϕ) − ∆) is thereforevp(d f). Q.E.D. �

Corollary. Let f ∈ K(C); if ϕ ∈ K(C ×C) is given byϕ(P,Q) = f (P) −
f (Q), then the divisor∆.(∆ − (ϕ)) on∆ in C ×C is given by−(d f)∆.

(b) Let C,C′ be nonsingular, irreducible, complete curves andπ :
C → C′ a morphism; letπ∗ : K(C′) → K(C) be the cohomomorphism
of π. For anyP′ ∈ C′, the discrete valuationvP′ with centreP′ of
K(C′) extends to discrete valuationsvP1, . . . , vPr of K(C) with centres

P1, . . . ,Pr ; we thus define a divisorπ∗(P′) =
r∑

i=1
eiPi whereei is the
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ramification index of the extensionvPi overvP′ . The degree ofπ∗(P′) is

then equal to
r∑

i=1
ei = n =

[
K(C) : K(C′)

]
. The definition is extended by

linearity to all divisors onC′. We say thatπ is unramifiedif all the ei are
1. If ( f ′), f ′ ∈ K(C′), is a principal divisor onC′, π∗(( f ′)) is principal on
C defined byπ∗ f ′ ∈ K(C). If π is separable (i.e. ifK(C)/K(C′) is sepa-
rable) andω′ = x′dt′ is a differential onC′, thenπ∗(ω′) = π∗x′.d(π∗t′)
is a differential on C; and for anyz′ ∈ K(C′), π∗(z′ω′) = π∗z′.π∗(ω′). We
shall now prove a theorem which shows howπ∗((ω′)) and (π∗(ω′)) are
related onC.

Theorem (Hurwitz-Zenthem). If π is a separable morphism C→ C′,63

then for any differentialω′ on C′

(π∗(ω′)) − π∗(ω′) = d

where dis the different of K(C)/K(C′).

Proof. Let P ∈ C and P′ = π(P) ∈ C′, z a uniformising parameter at
P′, t a uniformising parameter atP. We haveO = Op⊃ OP′ = O′ and

K[[ t]] = Ô ⊃ Ô′ = K[[Z]] and finally Ô = Ô′[t]. One has an exact
sequence ofÔ-modules
Ω

Ô′/K ⊗ Ô → Ω
Ô/K → ΩÔ/Ô′ → 0. �

ThusΩ
Ô/Ô is identified to the quotient ofΩ

Ô/K bydF whereF is the

minimal polynomial oft overO′. IdentifyingΩ
Ô/K with Ô, thanks to

the basedt, one finds thatΩ
Ô/Ô is identified withÔ/(F′(t)). The different

of Ô/
Ô′ is thus generated by (F′(t)).

Now, we first observe that (π∗(ω′)) − π∗((ω′)) is independent ofω′;
thus, setω′ = dz. ThenvP′(Ω′) = 0; and therefore ifdz = ydt one
obtains

vP(dz) = vP′(π
∗(ω′)) = vP(y) = vP(F′(t))

and vP((π∗(ω′)) − π∗((ω′))) = vP(F′(t)) − vP′(ω
′) = vP(d) − 0.

One deduces then that64

(π∗(ω′)) − π∗((ω′)) = d..
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Q.E.D.
Corollaries. Let g andg′ be the genera ofC andC′.

(i) By the above theorem we obtain

2g− 2− n(2g′ − 2) = d◦(d) ≥ 0.

(ii) Luroth’s theorem.

If g = 0 then g′ = 0.

From (i), we obtain forg = 0,

−2− n(2g′ − 2) ≥ 0

n(2g′ − 2) ≤ −2

which implies thatg′ = 0.

(iii) g′ = 0, π unramified⇒ n = 1, g = 0.

Note thatπ unramified⇔ d = 0 so that by (i),

2− n(−2) = 0 andn = 1− g which impliesg = 0, n = 1.

(iv) g = 1⇒ g′ = 0, 1.

By (i), −n(2g′ − 2) ≥ 0, i.e.g′ = 0 or 1

(v) g = 1, g′ = 1⇒ π unramified

(vi) g′ = 1, π unramified⇒ g = 1.

(c) Let π : C → C′ be a separable morphism as in (b). Then the
graphT = (π × π)−1(∆′)(∆′ = diagonal inC′ × C′) of the equivalence
relation defined byπ on C is a cycle onC × C in a natural way. Ifd is 65

the different ofK(C)/K(C′) then one has

Theorem.
∆.(T − ∆) = (d)∆
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Proof. Write T = ∆ + S. Then the set of all pointsP′i in π(prC(∆ ∩ S))
is finite and one can find a functionf ′ on C′ which is a uniformiser at
all P′i s. We define a functionu′ on C′ × C′ by u′(P′,Q′) = f ′(P′) −
f ′(Q′). Thenv∆′(u′) = 1 and∆′.((u′) − ∆′) = (d f ′)∆ by the corollary
to the theorem of (a). We set f = π∗ f ′ andu = π∗u′ so thatu(P,Q) =
f (P) − f (Q) on C × C. Also, if (u′) = ∆′ + X′ then (u) = T + X with
π−1 = (X′) = X and thus (u) = ∆ + S + X. One then deduces that �

(∆ + S).X = π∗(∆′ · X′) = π∗(d f ′)∆
= (d f)∆ − d∆(by Hurwitz’s theorem).

On the other hand,

(∆ + S).X = ∆.((u) − ∆ − S) + S.X

= (d f)∆ − ∆.S + S.X.

Therefore,
∆ · S − d

∆
= S.X.

But if P ∈ S.X thenπ(P) = P′ ∈ S′.X′ so that

P ∈ (S.X) ∩ ∆⇒ P′ ∈ (S′.X′) ∩ ∆

and (d f ′)(P′) = 0. But we have chosenf ′ to be a uniformising param-
eter atP′ ∈ π(prC(∆ ∩ S)) and hence (d f ′)(P′) cannot be zero. This66

proves thatS.X as a cycle onC × C, disjoint from∆, and we deduce
then from the last equality that

S.X = 0

and ∆.S = d
∆

i.e. d∆ = ∆.(T − ∆) Q.E.D.

Theorem (Schwarz-Klein).A curve C of genus≥ 2 admits only finitely
many automorphisms.
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Proof. Let X be any cycle on the productC × C. If C1 andC2 are the
“horizontal” and “vertical” inC ×C, one defines theindicesof X as the
intersection numbers (X.C1) = d1 and (X.C2) = d2. If C ×C ֒→ Pn is a
projective imbedding ofC ×C andX is a cycle of dim 1 onC ×C, then
the projective degree ofX in Pn is completely determined by its indices
d1 and d2 in C × C and the degree ofC × C in Pn. More precisely,
consider an imbeddingC ֒→ Pr ; this defines an imbeddingC × C ֒→
Pr × Pr ֒→ Pr2+2r

and the homogeneous coordinates in the image are of
the form (zi j ) = (xiy j).

Consider a hyperplane
H ≡ ∑

i, j
a jb jzi j = 0

in Pr2+2r , which is the
product of two hyper
planesH1 ≡

∑
ai xi = 0

and H2 ≡
∑

bj xj
= 0

in Pr . If the degree of
C in Pr is d and d if X
is a cycle of inlicesd1

andd2 in C × C then the
intersectionH(C × C) in
Pr2+2r is given by

H(C ×C) = (H1.C) ×C +C × (H2.C)

so that the intersection number (H.X) is equal tod(d1 + d2). Thus, the 67

positive cycles of dim 1 onC × C with given indicesd1 and d2 form
a finite union of irreducible algebraic families. (of Theoryof Chow
coordinates). Now a positive cycleT of dimension 1 inC × C is the
graph of an automorphismσ of C ⇔ T has indices 1, 1; it follows in
particular that the graphs of automorphisms ofC form a finite union
of irreducible algebraic families. We will be through, therefore, if we
prove that every irreducible system of graphs of automorphisms ofC is
of dimension 0; let (Tσ)σ be such a system; if its dimension≥ 1, fixing
an automorphismσ◦ of C, the system (TσT−1

σ◦ )σ is irreducible, contains
∆ and aT , ∆ by assumption. We then have (T.∆) = (∆.∆). On the
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other hand, (T.∆) ≥ 0 while (∆.∆) = 2− 2g < 0(note thatg ≤ 2). This
contradiction proves our theorem. �

Corollary. Let K be an algebraically closed field and K′ any extension
of K. Let L1 and L2 be function fields of one variable over K, of genus
≥ 2 and linearly disjoint from K′ over K.Then any K′-isomorphism
K′(L1)→ K′(L2) is the extension of a K-isomorphism L1→ L2.

Proof. Choose a “big” algebraically closedΩ ⊃ K′ modelsC1 andC268

for K′(L1) andK′(L2) overΩ. We have bijections

{
K′−isomorphisms ofK′ (L1) on K′(L2)

}

↔
{

K′−isomorphisms ofC2 onC1

}

↔
{

K′−automorphisms ofC1

}
.

By hypothesis of linear disjointness, the genus ofC1 over the alge-
braic closureK̄′ of K′ is ≥ 2 and by the theorem of Schwarz-Klein the
number ofK′-automorphisms ofC1 is finite.

Consider anyK′-isomorphismsK′(L1) → K′(L2). If L1 =

K(x1,...,xp) and L2 = K(y,...,yq), this defines rational functionsRi and
S j overK such that

ϕ(xi) = Ri(y1,...,yq,λ1, . . . , λs)

ϕ−1(y j) = S j(x1,...,xp, λ1,...,λs)

with the λ′s in K′. The locus of (λ1, . . . , λs) ∈ Ωs over K is zero di-
mensional as each specialisation gives aK′-isomorphism. AsK is alge-
braically closed, one concludes that (λ1, . . . , λs) ∈ Ks. The corollary is
proved. �

Remark. This corollary shows that, ifC is a curve of genus≥ 2 defined
over an algebraically closed fieldK, then every automorphism ofC is
defined overK.



4. Morphisms of algebraic curves 49

Theorem (Severi).Let K be an algebraically closed field and L a func-
tion field of one variable over K. Then the intermediary extensions
K ⊂
,

L′ ⊂ L such that genus L′ ≥ 2 and L/L′ is separable, are finitely69

many in number.

Proof. Let C be a model forL over K. anyL′ with the given property,
take any modelC′ of L′ over K; the inclusionL′ ֒→ L defines a mor-
phismπ : C → C′ ; if genusC = g and genusC′ = g′; we have the
equality 2g−2 = n(2g′−2)+d◦(d) wheren = [K(C) : K(C′)] = [L : L′]
andd is the different ofL over L′. As d◦(d) ≥ 0 andg is given, the
number of choices forg′ ≥ 2 andn is finite. Thus we may assume that n
andg′ are also given. �

Take then a curveC′ such thatK(C′) is of genusg′ and K(C) is
separable of degreen overK(C′). Consider the graphT in C ×C of the
equivalence relation defined by the morphismπ : C → C′. ThenT is a
cycle of dimension 1 of the formT = ∆ + S, symmetric about∆.

T can be considered as a correspondence ofC in C, i.e. as a divisor
onC×C. Thus one can form the composite correspondenceToT; more
generally, ifA is a correspondence ofC1 in C2 andB is a correspondence
of C2 in C3, the composite correspondenceAoBof C1 in C3 is defined
by

AoB= pr13((A12×C3).(C1 × B23))

wherepr13 is thealgebraic projection C1 ×C2 ×C3→ C1 ×C3. Also,
if P ∈ C1 and the “value” ofA atP is defined asA(P) = pr2(A({p}×C2)),
one has the following equality

A(B(P)) = (AoB)(P).

Therefore, in the present case, if [K(C) : K(C′)] = n, it follows that 70

(I) T ◦ T = nT

From which one obtains:

(∆ + S)o(∆ + S) = n∆ + nS

i.e.∆ + 2S + S oS= n∆ + nS and thus
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(II) S ◦ S = (n− 1)∆ + (n+ 2)S

One concludes then that the correspondencesT onC×C, for a fixed
n, form a union of irreducible, algebraic system (cf. Theory of Chow
Coordinates ). Our aim now is to show that each irreducible system
(Tα)α of correspondences inC × C, defined as above by morphismsπ
of C into an arbitrary curveC′ such that genusC′ = g (fixed)≥ 2, and
[K(C) : K(C′)] = n (fixed) is zerodimensional. First note that ifA and
B are correspondence ofC in C then

(III) (A · B) = ((AoB) · ∆)

In fact, consider the 0-dimensional cycleZ = (A12×C3) · (C1×B23) ·
(∆13 ×C2) in C1 ×C2 ×C3 (eachCi = C).

One has

pr13(Z) = (A ◦ B) · ∆13 and

pr12(Z) = A.B.

As a 0-dimensional cycle has the same degree as its projections, our71

assertion is proved.
Write nowTα = ∆+Sα,Sα symmetric for everyTα in the irreducible

family (Tα). Assume that the dimension of the family is≥ 1. Then the
Sα are distinct from∆ and one has (∆.Sα) ≥ 0.

Case (i). All the components ofSα are “moving”, i.e., eachSα.Sβ, α ,

β is defined. In this case, one has (Sα.Sα) ≥ 0 while by (III) and (II) we
get

(Sα.Sα) = (n− 1)(2− 2g) + (n− 2).do(d)

= (n− 1)(2− 2g) + (n− 2)(2g− 2− n(2g′ − 2))

< 0asg, g′ ≥ 2.

This contradiction establishes the result in this case.

Case (ii). (General Case)In general, one may writeSα = F + mα,

whereF is “fixed” and Mα “moving”, both symmetric. One has then

SαoSα = FoF + FoMα + MαoF + MαoMα

= (n− 1)∆ + (n− 2)F + (n− 2)Mα.
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As (n− 2)Mα is not fixed whileFoF is fixed one obtains

(IV) F ◦ F ≤ (n− 1)∆ + (n− 2)F

Now consider the symmetric correspondence 72

G = ∆ + F in G×C.

From IV it follows easily that

G ◦G ⊂ G set theoretically.

ThusG can be identified with the graph (set theoretically) of the

equivalence relation defined by a morphismC
π−→ C′′ of C in another

curveC′′. (In fact, the set theoretic mapP → G(P)) gives a morphism
of C in a suitable symmetric power ofC)

The a priori set theoretic mapC′′
π−→ C′ which makes the diagram

C
π′′ //

π

  @
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@ C′′

π̄

��
C′

commutative can be easily checked to be a morphism. To prove the
zero dimensionality for graphs of equivalence relations defined by mor-
phismsπ : C → C′ it is enough to prove the same for the morphisms

C′′
π−→ C′. But the graphs of the equivalence relations defined by theπ′s

in C′′×C′′ areπ′′(Tα) = π′′(G+Mα) = ∆′′+π′′(Mα) and by hypothesis
the componentsπ′′(Mα) are all “moving” and we are back to case (i).
Q.E.D

Corollary 1. Let k be an arbitrary field and L a function fields of one73

variable over k, which is regular extension of k. Then the intermediary
fields k⊂ L1 ⊂ Lλ such that
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(i) L1 is a function of one variable overk, of genus (absolute)≥ 2.

(ii) L is separable over aL1

are finite in number.

Proof. By making a base changek→ the algebraic closurēk and using
the fact thatL andk̄ are linearly disjoint overk it follows that

L1 = k̄(L1) ∩ L

L k̄(L)

L1 k̄(L1)

k k̄

for any intermediaryL1. As, by hypothesis, the genus ofk̄(L1) over
k̄ is ≥ 2, it follows that the number of̄k(L1) is finite. Our assertion
follows. �

Corollary 2. Let k be an arbitrary field and L an algebraic function
field over k, regular over k. Then the number of intermediary fields
k ⊂ L1 ⊂ L such that (i) L1 is a function field of one variable over k of
absolute genus≥ 2 (ii) L is separable over L1, is finite.

Proof. As in Corollary 1, we may assumek algebraically closed
We apply an induction on the transcendence degreed of L/k. For

d = 1, we are through by Corollary 1. �

Let nowu1, . . . , ud be a separating base forL/K. We setM to be the74

algebraic closure ofk(u1, . . . , ud−1) in L.

Case (i). The number ofL1 with the required properties, contained in
M, is finite by induction hypothesis.
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Case (ii). Consider anL1 of the required type,L1 1 M. ThenM(L1) is
transcendental overM andL is hence separably algebraic overM(L1),

M ⊂ M(L1) ⊂ L.

ThusM andL1 are linearly disjoint and it follows that the absolute
genus ofM(L1) over M is ≥ 2 . As the transcendence degree ofL over
M is 1, it follows by Corollary 1 that the number ofM(L1), L1 being of
the required type overk, L,1 M, is finite.

M

(d−1)

M(L1)

ppppppppppppppppppppp

k L1

If L1, L2 are two extensions of the required type, withL1 1 M, L2 1

M, and if in additionM(L1) = M(L2), then by the corollary to Schwarz-
Klein it follows that there is ak-isomorphism

M M(L1) = M(L2)

L1

k

xxxxxxxxx
L2

ϕ

ddJJJJJJJJJJ

ϕ : L2→ L1

extending to identity onM(L1) = M(L2). Thusϕ has to be the identity
map. Case (ii) and thus corollary 2 is proved.

Corollary 3 (de Franchis). Let V be an algebraic variety and C an75

algebraic curve of absolute genus≥ 2, over a field k. Then almost all
rational maps V→ C are either constant or separate.
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Proof. Any nonconstant rational mapV −→ V defines an inclusion
k(C) ֒→ k(V) and if the map is separable the fieldk(V) is a separa-
ble extension ofk(C), whose absolute genus is≥ 2. By corollary 2, such
inclusion are finitely many An application of Schwarz-Kleinconcludes
the proof. �

Q.E.D.



APPENDIX TO CHAPTER II
Nonsingular strange curves

For proving the existence of a plane model of a function field with 76

only nodes (§1, Ch II), we had avoid the “strange” curves of characteris-
tic p, i.e, the curvesC in projective space all the tangents of which have
a fixed point in common. A posterior (i.e. by using facts aboutdivisors
of differentials) one can prove that we were fighting against a phantom
; more precisely:

Theorem.The only nonsingular projective strange curves are the lines,
and in characteristic2, also the plane conics.

That a plane conicayz+bzx+ cxy+dx2+d′y2+d′′z2 = 0 is strange
in characteristic 2 is well known and easily proved. The equation of the
tangent at (x, y, z) is

XF
′
x + YF

′
y + ZF

′
z = X(bz+ cy) + Y(cx+ az) + Z(ay+ bx) = 0

and is satisfied by the point (a, b, c) (we have(a, b, c) , (0, 0, 0), other-
wise our conic is a double line).

Conversely letC be a strange nonsingular curve inPn, defined over
an algebraically closed fieldK of characteristicp , 0. By a suitable
choice of coordinates, we may assume that the point A common to all
tangents toC has homogeneous coordinates (1, 0, . . . , 0, 0, 0) and that
(except perhaps forA) C does not contain point for which two coordi-
nates vanish. LetL be the function fieldK(C) of C, and (x, x2, . . . , xn)
(x, xi ∈ L) be the affine coordinate functions onC outside of the hyper- 77

planeH (last coordinate= 0). By hypothesis all point ofC ∩ H lie in

the affine piece with coordinates

(
1
x
,

x2

x
, . . . ,

xn

x

)
.

Since all tangents toC pass throughA, we haveDx2 = · · · = Dxn =

0 for anyK-derivationD of L, i.e.

(1) x2, . . . , xn ∈ Lp.
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We are going to compute the divisor (dx) . At a point P ∈ C −
(C ∩ H),C is transversal to the hyperplaneX1 = 0, whencex− x(P) is
uniformizing atP. Thus

(2) vP(dx) = 0.

For pointsP ∈ C ∩ H, we sety =
1
x
, y1 =

xi

x
(i = 2, . . . , n); thus

y ∈ LpYi for i = 2, . . . , n. Suppose, first, thatP , A. We havey(P) =
0, yi(P) , 0 for i = 2, . . . , n. Since the maximal ideal of the local ring
Op (i.e. of the valuation ring ofvP) is generated byy, y2−y2(P), . . . , yn−
yn(P), there exists an indexi such thatyi−yi(P) is a uniformizing variable
t at P. Sincey ∈ Lpyi and sincevP(y) > 0, the power series equation of
y with respect tot is

y = (yi(P) + t)(α0tp jP + α1tp( jP+1) + · · · ), (α0 , 0, jP > 0);

it contains terms of degreep jp and p jp + 1 with nonzero coefficients.

HencevP(y) = p jP, vP

(
dy
dt

)
= p jP. Sincedx= −dy

y2
, we have

(3) vP(dx) = −p jp, ( jP > 0).

Now, if A ∈ C we havey(A) = y2(A) = · · · = yn(A) = 0. As78

above one of theyi is a uniformizing variable t atA. Fromy ∈ Lpyi and
vA(y) > 0, we get the power series expansion

y = t(α0tp jA + α1tp( jA+1) + · · · ), (α0 , 0, jA ≥ 0).

HencevA(y) = p jA+ 1, vP

(
dy
dt

)
= p jA. Fromdx= −dy

y2 , we get now

(4) vA(dx) = −p jA − 2, ( jA ≥ 0).

From (2), (3) and (4), and from the fact thatC ∩ H , φ we see that
the degree of the divisor (dx) is < 0. Since it is 2g − 2 (g denoting the
genu ofC), it is necessarily 2 and we haveg = 0. Looking at (3) and
(4), we see that only two cases may happen:
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a) C ∩ H consists on only one pointP , A. ThenvP(dx) = −2, p =
2, jP = 1, vP(y) = 2; this last relation shows thatC.H = 2P Whence
C has degree 2; we get a conic in characteristic 2.

b) C ∩ H contains onlyA. ThenvA(dx) = −2, jA = 0, vA(y) = 1C.H =
A; thusC has degree 1 and is a straight line.

Remark. There exist, of course many,singular strange curves in char-
acteristicp: take a function fieldL of transcendence degree 1 overK,
functions, z2, . . . zn ∈ L which generateLp over K and z ∈ L − Lp

thenL = K(z, z2, . . . , zn); the affine curveD with coordinates function
(z, z2, . . . , zn) is a model ofL; take its projective closurēD; It i easily
seen that all tangent tōD pass through the point (1, 0 . . .),





Chapter 3

The Theorem of Grauert
(Mordell’s conjecture for
function fields)

1. Description of the method

In this section we shall describe, often rather loosely, themethod of 79

attack in the proof of Grauert. (Paragraphs which do make a precise
mathematical sense will be starred).
(∗) Let k be an algebraically closed field andK, a function field over
k; let C be a curve defined overK, with its absolute genusg(≥ 2) equal
to its relative genus overK. We shall do the geometry over a “big”
universal domainΩ. Following Grauert ([2]) we are going to analyse
the cases when the setCK of K- rational point ofC (i.e. the points of
C having coordinates) inK is infinite. The complete results (at least in
characteristic 0) have been stated at the beginning of thesenotes. Our
first aim will be to prove the following
(∗)
Theorem 1. If CK is infinite then C is birationally equivalent (over some
extension of K) to a curve C′ defined over k.

If this is done, the theorems of Severi and be Franchis provedin

59
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chapter II will enable us to study easily the rational pointsof C′ over
K (or some extension ofK) and to obtain complete result about the
structure ofCK .
(∗) We shall first prove theorem 1 under the additional hypothesis that80

the transcendence degree ofK/k is 1. Then an easy inductiond on
will give theorem 1. It should be noted that this is not reallyessential
(Grauert studies case of arbitraryd).

However, this makes the proof simpler and more understandable.
Gruert’s method is the inverse of the so called “Picard’s Method”

whereas Picard liked to consider a surface as “curve over a function
field” here the curveC will be interpreted as a surface overk. Roughly
speaking letF(x, y) = 0 be a plane model ofC the coefficients ofF are
elements ofK, i.e. rational functions of parameterst = (t1, . . . , tn) such
that K = k(t). Then (upto a factor ink(t)) we may writeF(x, y) as a
polynomialG(t, x, y) overk. The surface will beG(t, x, y) = 0.

(∗) Let us be more precise. The fieldK is k-isomorphic to the function
field k(R) of an affine curveR, which we may assume to be nonsingular;
thus we may writeK = k(r) wherer is a generic point ofR overk. We
may also assume thatC is a nonsingular curve in somePn(Ω); let x be a
generic point ofC over K. Then our surfaceX will be the locus of the
point (r, x) ∈ R× Pn over k. The projection on the first factor gives a
fibrationπ : X→ R; for t ∈ R, we setXt = π

−1(t) (a priori, this is a cycle
on X). The generate fibreXr is essentially to curveC.

Lemma 1. Almost all fibres Xt, t ∈ R, are irreducible nonsingular cur-81

ves, having the same genus g as C.

Irreducibility is proved elements by taking a plane modelC1 of C,
the corresponding surfaceX1 ⊂ R× P2 and by noticing that the non-
absolutely - irreducible homogeneous polynomials in 3 variables of a
given degreed form a closed subset of the space of all homogeneous
polynomials of degreed. As to nonsingularity, the singular setX′ of X
does not intersect the generic fibreXr(Xr is nonsingular); Sinceπ : X→
R is proper, it mean thatX

′
is in a finite union of fibres say

q⋃
i=1

Xti ; then

for t , ti ,Xt is nonsingular. Finally all the nonsingular fibresXt have the
same genus according to a theorem of Igusa:
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Sketch of the proof : Consider the fibre productXx
R
X and the iagonal∆t

in Xt×Xt ⊂ Xx
R
X; the genusgt of Xt is given by 2−2gt= (∆t.∆t) (Chapter

II); this intersection number is constant by the “principleof conservation
of the intersection number”(of. The Theory of Chow coordinates).
(∗) A rational point (x′) of C over K = k(r) corresponds to a rational
sections : R→ X of π : X → R : the coordinates of (x′i ) are rational
function x′i (r) (overk); thus the section is given by7→ (x′i (t)). SinceR is
nonsingular andX is completes is even amorphism R→ X.

Suppose that we have prove thatC is birationally equivalent to a82

curve defined overk. ThenX is birationally equivalent toR× C′ and
the sectionR→ X correspond to mapsR→ C′. By the theorem of de
Franchis (Chapter II) almost all these maps are constant or inseparable,
i.e have a derivative equal to 0: in other words, their graphsare tangent
to the “horizontal directions field” or R× C′. Coming back toX we
see that we shall have onX,a fieldE of tangent directions, everywhere
transversal to the fibres and such that almost all sectionss : R→ X are
tangent toE.

(∗) More precisely, we replaceR by an openRo ⊂ R such that every
fibre of X | R0 is irreducible and nonsingular. We denoteRo by R and
X | R0 by X, so thatX is nonsingular. At each point (t, x) ∈ X the tangent
directions toX form a projective line, with a marked point namely the
tangent to the fibreXt at (t, x). We thus get aprojective line bundle
θ : F̂ → X (bundle of tangent direction) with a sectionF∞ (the tangent
to the fibres); we setF = F̂ −F∞; this is an affineLine bundleon X. For
t ∈ R. We setF̂t = F̂ | Xt, Ft = F | Xt andF∞t = F∞ | Xt.

Sine an affine space “carries functionally in the its structure” its vec-
tor space of “translations”Ft admits avector-line-bundleof translation
St.

Lemma 2. The translation bundle St → Xt of Ft → Xt is isomorphic to 83

the tangent bundle T(X).

Proof. Let T(X),T(R) be the tangent bundles toX,R and T̃(R) be the
pull backπ∗T(R) of T(R) to X. We have the exact sequence

(1) 0 // T(Xt) // T(X) | Xt
// T̃(R) | Xt

// 0.
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Local sectionsα, β of Ft → Xt give in each fibreT(X) | Xt supple-
mentary subspaces of the corresponding fibres ofT(Xt). Hence they
be viewed as local spittingα, β : T̃(R) | Xt → T(X) | Xt of the ex-
act sequence (1). Thus theirdifferenceα − β is a local section of Hom
(T̃(R) | Xt,T(Xt)). Now, for a fixedt ∈ R, the bundleT̃(R) | Xt is trivial
whence Hom (̃T(R) | Xt,T(Xt)) ≃ T(Xt).
Q.E.D. �

If the “horizontal direction field”E exists, it is a section ofF → X.
For fixedt ∈ R,Et = E | Xt is a section ofFt → Xt which then identifies
Ft with T(Xt)(Lemma 2) (fixing a point in an affine space makes it a
vector space). Now since (2g − 2) > 0,T(Xt) admits only the zero sec-
tion; thus, ifE exists, it isunique. Furthermore, we have, by Grauert’s
criterion, (Chapter I) a morphism ofT(Xt) into an affine space which
contracts the zero section to a point and which is biregular elsewhere.
Thus we should look for a nice morphismϕt of Ft into an affine space
the curves on the surfaceFt which are contracted to points byϕt.

In order to be “coherent” with respect tot” we will look for a nice84

morphismϕ of F into an affine spaces. We shall successively:

a) construct the morphismϕ

b) study the “blowing down setE” of ϕ (i.e. the set of ally ∈ F such
that dimy ϕ

−1(ϕ(y) > 0) and prove that it is a section ofF → X

c) prove that almost all sections s:R→ X are tangent toE

d) prove that the existence of a direction fieldE or X enables us to
“descend” to a smaller field of definition for the generic fibreXr

namelyk(r p) (p = charac.k, so thatk(r p) = k if p = 0)

e) in casep= charack , 0 lower the field of definition ofXr succes-
sively tok(r ps

), s≥ 1; then use a lemma (a construction analogous to
the one used by Mumford in his theory of module) to prove thatXr

is birationally equivalent to a curveC′ defined over
⋂
s≥1

k(r ps
) = k.
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2. The Proof

(A) Construction of a morphism.

For t ∈ R, the dualT(Xt)∗ of the tangent bundleT(Xt)
µ
−→ Xt corre-

sponds to the canonicalk−t on Xt. As (2g− 2) > 0 this bundle is ample
and it follows that∃ a should sections of T(Xt)∗ such that the divisor
class of (s) is kt on Xt (class are denoted by the same symbol as the di-
visors) on the bundleL = T(Xt) one may then define a homogeneous
linear map by.

s̃(y) =
〈
s(µ(y)) · y〉, y ∈ L.

CompletingL to a projective line bundlêL and extending ˜s to L̂, we 85

complete immediately the divisor of
∼
s or L̂:

(s̃) = L◦ − L∞ + µ−1(kt)

whereL◦, L∞ are the null and infinite sections ofL̂ andµ : L̂ → Xt the
canonical projection.

Take now any rational sectionσ of F̂t over Xt, asXt is nonsingular
andF̂t completeσ is in fact a section. Ifx ∈ Ft, x−σ(θ(x)) is in the affine
spaceL for almost allx and the rational functionx 7−→ ∼

s(x−σ(θ(x)) on
Ft extends to a rational functionα on F̂t:

α(x) =
∼
s(x− σ(θ(x)), x ∈ Ft.

The divisor class of (α) is then

(α) = M − F∞t + θ
−1(kt) − θ

−1(M.F∞t )

whereM = Im.σ, θ : F̂t −→ Xt the canonical projection, with an iden-
tification F∞t ∽→

Xt. Under this identification the self-intersection of the

divisor D = F∞t on the ruled - surfacêFt corresponds to the canonical
classkt on Xt; in fact, this class is given by

F∞t .(F
∞
t + (α)) = M.F∞t + kt − MF∞t = kt

Consider the divisornD = nF∞t on F̂t for large values ofn;the corre-
sponding line bundleLnD on F̂t induces, as is seen above, the line bundle86
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Lnkt on F∞t . On F̂t we have the exact sequence of coherent sheaves

0 // L ((n− 1)D) // L (nD) // L (nkt) // 0

which gives a cohomology exact sequence:

0 −→ H◦(F̂t, (n− 1)D) −→ H◦(F̂t, nD)
γ
−→ H◦(F∞t , kt −→

β
−→ H′(F̂t, (n− 1)D)

α−→ H′(F̂t, nD) −→ H′(F∞t , (1− n)kt).

On F∞t , one hasH1(F∞t , nkt)∽H◦(F∞t , (1 − n)kt (cf. Serre [7], ch
II) and if n is large enoughH◦(F∞t , (1 − n)kt) = 0 so thatα is surjec-
tive. Now theH′(F̂t, nD) are finite dimensional vector spaces overk and
from the surjectivity ofαλ it follows thath1(nD) = dimk H1(F̂t, nD) is
a decreasing positive integral valued function ofn and has therefore to
remain constant forn large. It follows thatα is an isomorphism forn
large and therefore thatγ is surjective. Fix such ann.

The surjectivity ofγ means that the liner system| nD |= {( f ) + nD :
( f ) ≥ −nD} induces onD = F∞t the complete linear system| nk

−t
|; since

|nk
−t
| has no base point onF∞t and asnD as a member of|nD|, it follows

that |nD| has no base point. This means that the rational mapϕnD of
F̂t into a projective space, defined by a basis forL(nD) is a morphism
(Chapter I). On the other handnkt is very ample forn large (Chapter
II)and the surjectivity ofγ means thatϕnkt

is induced onF∞t by ϕnD. Let87

1 = u◦, u1, . . . , ur be a basis ofL(nD). We setgt = ϕnD; we have thus
proved a major part of

Lemma 1. (i) gt(F∞t ) ⊂ H, the hyperplane at∞ in Pr , for the affine
coordinates(u1(x), . . . , ur (x)); gt | F∞t is an imbedding.

(ii) gt(Ft) ⊂ Pr − H.

Proof. If u1 is the function with a pole of maximum order alongF∞t
among theui , it is clear that, for

x ∈ F∞t , gt(x) =

(
1

u1(x)
, . . . ,

ur (x)
u1(x)

)
∈ H.
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Also, by choice,gt | F∞t is a multicanonical imbedding. This proves
(i) To prove (ii ) it is enough to observe that the polar varieties of (ui) lie
in F∞t . Q.E.D �

Fix a generic pointt◦ of R/K. The varietiesF∞t◦ , F̂t◦ , Ft◦ are all
defined overk(t◦) = k(R) = K and D = F∞t is a K-rational divi-
sor onFt◦ . Thus, by the “last theorem of Weils Foundations” theui

can be assumed to be functions ink(t◦)(F̂t◦ ) = k ˆ(F) and defined over
K(t◦) = K. As the homogeneous system (ui) of functions onF̂ does
not have common zeros on the generic fibreF̂t◦ , by restrictingt to an
open subset ofR, we may assume that the system (ui ) does not have
common zeros on̂F. Then we and define a homomorphism̂F → Pr by
x 7−→ (1 = u◦(x), . . . , ur (x)).

The following two lemmas are then easy deductions from lemma1.

Lemma 2. (i) g(F∞) ⊂ H, the hyperplane at∞ in Pr for the affine 88

coordinates(u1(x), . . . , ur (x)); also, g restricted to each F∞t is an
imbedding.

(ii) g(F) ⊂ Pr − H.

Thus, if we define a morphism ˆϕ = πθ × g : F̂ → R× Pr , then:

Lemma 3. (i) ϕ̂ | F∞ is biregular into R× H

(ii) ϕ̂(F) ⊂ R× (Pr − H).

(B) The contraction set of the morphismϕ̂.

Definition. Let Y
g
−→ z be a dominant morphism of varieties; thecon-

tractionset E(g) of g is, by definition, the set

E(g) =
{
y ∈ Y : dimy(g

−1g(y)) > 0
}
.

Our aim in this section will be to study the contraction setE(ϕ̂) of
the morphism̂(ϕ) we have constructed above.
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(i) E(ϕ̂) is a closed subset of̂F.

Infact, we will prove that the contraction setE(g) of an arbitrary

dominant morphismY
g
−→ Z is closed; by an obvious reduction

one may assume successively thatY is normal,Z is normal, and
then by replacingZ by its normalisation ink(Y) thatg is birational
(note that the case dimZ = dimY is the only non-trivial one). But
then, byZMT g is a local isomorphism an all pointsy < E(g). Our
assertion follows.

(ii) If ϕ = ϕ̂ | F, thenE(ϕ) = E ˆ(ϕ).89

This follows from (i) of Lemma 3, (A). In particular.E = E(ϕ) ⊂
F.

(iii) Et = E | Ft = E ∩ Ft = E(ϕ | Ft).

Follows from the fact thatϕ separates fibres.

(iv) Et is complete.

Follows from (iii) and (i).

(v) If Et , φ thenθ | Et : Et −→ Xt is a bijection.

Let
∼
Et =

{
e− e′ | e, e′ ∈ Et such thatθ(e) = θ(e′)

}
.

Then
∼
Et ⊂ T(Xt);

∼
Et is one-dimensional, sinceEt is one-dimen-

sional: Furthermore the mapEt ××t
Et −→ T(Xt) given by (e, e′) 7−→

(e− e′) hasEt for its image which is therefore complete.
Now, as the cotangent bundleT(Xt)∗ on Xt is ample ((2g− 2) > 0),

it follows, by Grauert’s criterion of amplitude (Chapter I,§2), that∃ a
morphismτ : T(Xt)→ U,U affine, such thatτ contracts the null section

of T(Xt) to a point and is biregular outside it; as
∼
Et ⊂ T(Xt) is complete,

its image underτ, which is affine, reduces to a finite subset ofU. From

the one-dimensionality of
∼
Et and the biregularity ofτ outside the null

section ofT(Xt), one deduces that
∼
Et is contained in the null section of

T(Xt), in other words, thate= e′ if θ(e) = θ(e′), e, e′ ∈ E.
Consider the morphismϕ = ϕ̂ | F; we have seen thatϕ(F) ⊂ R×90
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(Pr −H) which is affine; replacing the affine closureϕ(F) in R× (Pr −H)
by its normalisation ink(F) we may assume thatϕ is a morphism ofF
into an affine spaceA, which isbirational ontoϕ(F), and therefore (by
ZMT) biregular outside the contraction set E.

(C) Finiteness of sections ofX/Rnot tangent to E.
Let s : R→ X be any section ofX/R. For t ∈ R, the tangent tos(R)

at s(t) is then well defined and not “vertical” and is thus inFt; one can
therefore define a section

∼
s : R→ F so thats = θ.

∼
s. To say that “s is

tangent toE′′ means precisely that
∼
s(R) ⊂ E. Denote by

∑
the set of all

sectionssof X/R and by
∑′ the subset of allssuch that

∼
s(R) 1 E.

Proposition 1.
∑′ is a finite subset of

∑
.

Proof. For any section s ofX|R the compositeϕ ◦ ∼s belongs to Mor
(R,A) = V. �

a) The maps 7−→ ϕo
∼
s is a map of

∑
into V and is injective on

∑′
.

The first assertion is trivial; to prove the second, takes, s′ ∈ ∑
, s ,

s′, such that
∼
s(R) 1 E and s̃′(R) 1 E; then∃.t ∈ R such that

∼
s(t) ,

s̃′(t) and
∼
s(t), s̃′(t) 1 E. By the biregularity ofϕ outsideE, one gets

ϕo
∼
s(t) , ϕ ◦ s̃′(t).

b) The elementsϕo
∼
s, s ∈ ∑

, belong to afinite dimensionalvector sub-
spaceV1 of V.

For a largeq, one hasF imbedded inR× Pq; let R be a nonsingular 91

projective closure ofR and F be the closure ofF in R× Pq. Any

sections :
∼
R−→ extends to a rational sections : R−→ F in a natural

way. Also, becauseR is non singular andF complete,s is a section;
A is a projective closure ofA, the morphismϕ : F → A extends to
a rational mapϕ : F → A and the compositeϕos : R −→ A is a
morphism.

Let (ϕ1, . . . , ϕd) be the coordinate functions ofϕ; eachϕi is finite on
F but may have poles onF − F ⊂ (R− R) × Pq. Chose a rational
functionu on Rsuch that eachuϕi is finite on (R− R) × Pq; thenuϕi
is finite on (R− R) × Pq. Therefore the compositeu(ϕos) : R −→
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A is finite on R − R; if ( t1, . . . , tl) are the coordinate functions of
ϕ ◦ ∼s, it follows that thet j which are rational functions onRhave the
property:

(ti ) ≥ −h on R− R

whereh is the polar divisor ofu on R− R ; in other words, we have
ti ∈ L(h) on R and this is a finite dimensional vector space. Our
assertion follows.

c) The elementsϕo
∼
s, s ∈ ∑′, form a closed subset of the linear variety

V1.

In fact, if v ∈ V1(⊂ Mor (R,A)) is of the formϕ ◦ ∼s, s ∈ ∑
, then it

has the following properties:

(1) v(R) ⊂ ϕ(F) (More precisely∀t ∈ R, v(t) ∈ ϕ(Ft)).92

(2) if v(R) 1 ϕ(E) thenϕ−1.v is defined and is a sectionR → F;
also θ.ϕ−1 · v is a sectionR → X; furthermore the “direction
function” involved in ϕ−1v must be the “derivative” (i.e must
give the tangent direction) of the “point function”θ · ϕ−1 · v with
the above notation we can write asθϕ̃−1v = ϕ−1v.

Conversely, ifv ∈ V1 satisfies (1), we have eitherv(t) = ϕ(Et)∀t, so
thatv comes from a section tangent toE or (2) holds so thatv = ϕos

∼
with s= θϕ−1v. Now notice that (1) and (2) are algebraic conditions
on v ∈ V1 (taking into account the fact that there is at most one
vo ∈ V1 such thatv1(t) = ϕ(Et)∀t ∈ R).

ThereforeIm
∑
, Im

∑′ are closed subs.of the linear varietyV1.

As the map
∑→ V1 is injective on

∑′ (by a)) the algebraic structure
on Im

∑′(c)) can be pulled to
∑′. To prove Proposition 1, it is then

enough to prove that:

d) dim.
∑′ = 0

We shall show that any morphismQ
ψ
→ ∑′ of on irreducible curve

Q into
∑′ is constant.
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We first remark thatQ may be assumed to be complete. Indeed for
every fixed t∈ R the morphism

Q→ Xt

q 7−→ ψ(q)(t)

admits as extension a morphism̄Q
ψ
→ Xt (Q̄ a projective closure ofQ)

so thatψq = ψ(q) is a section in
∑′, for all q ∈ Q.

Now consider, for a fixedt ∈ R. the morphism 93

Q̄ −→ A

q 7−→ ϕ ◦
∼
ψq(t).

The image, being affine, is point ; this means thatϕoψ̃q(t) = ϕoψ̃q′(t)
for all q, q′ ∈ Q̄. This is true for allt ∈ Rand asϕ is biregular outsideE

while ψ̃q(t) < E for almost allt it follows that
∼
ψq(t) = ψ̃q(t) for almost

all t ∈ R. One then concludes thatψq = ψq′ . Q.E.D.

(D) Case of an infinity of sections.

Proposition 2. If X
π→ R admits an infinity of sections then

a) E is an irreducible surface on F

b) θ|E : E→ X is biregular.

In view of Proposition 1, it follows that there exists at least one section
s : R→ X which is tangent to E i.e., s(t) ∈ Et for all t; this means that
Et , φ for any t∈ R. Assertion a) is proved.

Regarding b), as we have already seen thatθ | Eα bijective we will
be through, byZMT, if we prove the birationality ofθ|E.

Characteristic 0 offers no trouble.We assume therefore that charac
k = p, p , 0, to prove the birationality ofθ|E.

We have a chain 94

k ⊂ k(R) ⊂ k(X).

Let k(X) = k(x1, x2, x3) and assume thatx1, x2 form a separating
bases ofk(X)|k. We consider the minimal equation



70 3. The Theorem of Grauert...

1). G(x1, x2, x3) = 0 with an irreducibleG ∈ k[X1,X2,X3] with
G′x3

(x1, x2, x3) , 0.

A tangent direction at (x) ∈ X is defined by homogeneous coordi-
nates (y1, y2, y3) satisfying

2).
3∑

i=1
yiG′xi

(x) = 0.

As G′x3
(x) , 0 this direction is defined completely byy = y2/y1.

Now sinceθ|E is bijective,θ|E is purely inseparable so that

3). the directionE is defined by an equation

ypn
= H(x1, x2, x3);

we assume thatH is not a pth power ink(X).

Any section s of X → R defined bys1, s2, s3 ∈ k(R) such that
G(s1, s2, s3) = 0. Then the tangent tos(R) the parametersDs1, Ds2,
Ds3 (whereD is any non-trivial derivation ofk(R)/k). To say that
∼
s(R) ⊂ E is then equivalent to

4).

(
Ds2

Ds1

)pn

= H(s1, s2, s3).

If pn = 1, then trivially θ | E will be birational; assume then that95

pn
, 1.

Now deriving 4 we obtain

5). 0=
3∑

i=1
H′xi

(s)Dsi .

Consider now the locusY of the tangent direction
(
(x1, x2, x3),

G′x1
H′x3
− H′x1

G′x3

G′x2H
′
x3 + H′x2G

′
x3

)
at (x1, x2, x3),overk. Theny is

an irreducible variety whose elements satisfy

6).
3∑

i=1
H′xi

(x)yi = 0.
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We claim thatY is not the whole ofF; in fact, if it were, for any
k-derivation∆ of K(X) = k(x1, x2, x3), the tangent direction (∆x1,∆x2,

∆x3) will be in Y so that
∑

H′xi
(x)∆xi = ∆(H(x)) = 0. This means that

H is a pth power. ThusY is a surface.
By the very definition ofY, θ | Y is birational fromY onto X. from

5), it follows that for anys <
∑′, s̃(R) ⊂ Y. By hypothesis, there are an

infinity of s <
∑′ (Proposition 1); thus, the two irreducible surfacesE

andY have an infinity of common curves, and therefore must coincide:
E = Y. In particular, it follows thatθ | E is birational andpn = 1 in 3).
Q.E.D

(E) Conclusion in charac. p , 0.

Proposition 3. With the same notation as before, let C be a curve de-96

fined over K= k(R) such that

genusK
C = absolute genus C≥ 2.

If CK is infinite, then C is birationally equivalent, over K, to a curve C1

defined over KP.

Proof. Proceeding as in (D), we may first assume thatx1 ∈ k(R). Let D
be the nontrivial derivation ofk(R)/k such thatDx1 = 1. We extend this
to a derivationD of k(X) such thatDx2 = H(x). (see 3) of the proof of
proposition 2, (D). Then one has

DPk(R) = 0 and

G′x1
+G′x2

H +G′x3
Dx3 = 0.

�

Take any sectionsα = (sα1, s
α
2 , s

α
3) of X/R; thensα1 = x1 and

G(sα1, s
α
2, s

α
3) = 0. Also ,

s̃α(R) ⊂ E meansDsα2 = H(sα1 , s
α
2, s

α
3).

Now sα(R) is a curve onX thus defines a discrete valuation ringOα

in k(X); sα(R) is k(R)-rational means that, for the canonical homomor-
phism

σα : Oα → k(R) = K
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of Oα onto its residue field, we have 97

σα(xi) = sαi .

The equations that we have obtained above mean thatσαD = Dσα
or, more precisely, that ifD′ = D | k(R) then

σαD = D′σα.

Iteration gives:σαDp = D′pσα = 0. As this is true for an infinity
of α′ s we conclude thatDp = 0.( if y ∈ k(X), σα(Dpy) = 0 means that
Dpy, which is a rational function, hassα(R) as part of its polar variety;
recall that a rational function cannot have an infinite number of polar
varieties).

Consider now the diagram of field extensions:

Lp

EE
EE

EE
EE

E KerD k(X) = L

k Kp p
K = k(R).

As K andL are function fields of one and two variables respectively
over the algebraically closedk, it follows that [K : KP] = P and [L :
Lp] = p2. We also have dimLp(kerDp) ≤ p. dimLp(kerD). (This can
be proved easily as follows: ifu, v ∈ EndV, V a vector space, then the
sequence

0 −→ Ker v −→ Ker uv
v−→ Keru

is exact so that dim(keruv) ≤ dim(ker u) + dim(ker v).

Recalling that kerDp = L, one gets98

p2 ≤ p. dimLp(ker D)

i.e., [kerD : Lp] ≤ p; as kerD , L, it follows that [kerD : Lp] = [L :
kerD] = p. Consequently,K(= k(R)) and kerD areKP-linearly disjoint;
thus if C1 is a (nonsingular) curve overKP such thatKP(C1) = kerD,
thenK(C1) = K(kerD) = L = k(X) = K(C). Q.E.D.
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Corollary 1. (C1)kP is infinite. With notations as in the proof of the
above proposition, letO′α = Oα∩Kp(C1); then theO′α are discrete valua-
tion rings in Kp(C1) and are infinitely many in number (since L/Kp(C1))
is purely inseparable,Oα , Oα′ ,⇒ O′α′ , O′

α′ .To prove that theO′α de-
fine Kp-rational sections of C1, one has to prove thatσα(O′α) ⊂ Kp.

In fact, if σα(y) = ȳ, y ∈ Kp(C1) = kerD, then Dȳ = Dσαy =
σαDy = 0, whence ¯y ∈ Kp.

Corollary 2.

genusKpC1 = absolute genus ofC1

= absolute genus ofC.

We shall prove the corollary by showing that∃ a projective model
D1 of C1 over Kp, such thatD1 is absolutely normal. (We recall here
that the genus drop of a curve for extension of base fields comes from
nonabsolutely normal points on it.)

By corollary 1, onC1 there exist an infinity ofKp-rational points; 99

we form a divisorO1 on C1, with such points, and with such a large
degree thatO1 is very ample; in view of proposition 3, this induces a
very ample divisorO on C. By the last theorem of Weil’s Foundations,
one obtains an isomorphism overK

LK(O,C)
∼← L

Kp
(O,C1) ⊗

Kp
K.

Thus, we may assume that there exist rational functions inK(C1) =

K(C), which give a projective imbeddingsC
η
−→ C′, C1

η
−→ C′1 in the

samePn. We may assume in addition that∃ pointsP1,0,P1,1,...,P1,n,P1,n+1

in C1, corresponding to some of the above defined valuation ringsOα
such that

η1(P1,i) = (0, 0 . . . ,
i
1, . . . , 0) ∈ Pn, 0 ≤ i ≤ n,

andη1(P1,n+1) = (1, 1, . . . , 1) ∈ Pn. After a projective transformation,
we may also assume that the corresponding pointsP0,...,Pn+1 ∈ C are
such that

η(Pi) = (0, 0, . . .
i
1, . . . , 0) ∈ Pn, 0 ≤ i ≤ n,
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η(Pn+1) = (1, 1, . . . , 1) ∈ Pn.

This follows from: Dσα = σαD. But as the national functions defining
η andη1 generate the same vector space there is a projective transfor-
mationu of Pn such that.

C

��

η // C′

u/C′

��

birational

C1
η1 // C′1

is commutative. But asu fixes the base points (0, . . . , 0,
i
1, 0, . . . , 0) and100

the unit point (1, 1, . . . , 1) in Pn, u has be the identity inPn; so thatC′ =
C′1. By hypothesisC is absolutely normal and thusC′1 = C′ is the
absolutely normal model forC1 that we were looking for. Q.E.D.

This done, one may now suppose that curveC1 again satisfies the
conditions in the enunciation of proposition 3 (Corollaries 1, 2). Thus,
one obtains, by iteration, a sequence (Ci)i≥0,C◦ = C, of absolutely nor-
mal curves defined respectively over fieldsKi/k and such thatCi ∼

Ki

Ci+1.

The proof of the Grauert-Manin theorem will thus be completed, in
charac.p , 0, by the following two lemmas.

Lemma 4. If K is an algebraic function field over an algebraically
closed K, charac. k= P , 0, then

⋂
n≥0

Kpn
= k.

Proof. F =
⋂
n≥0

Kpn
is clearly perfect; secondly, asF is a subfield of

a finite type extension ofk, F is also of finite type overk. We claim
that F is purely algebraic overk; in fact, for any finite type extension
L/k, [L : Lp] equals pd meansd = t tr degL

k as F = FP our lemma
follows. �

Lemma 5. Let (Cn)n≥0 be a sequence of also normal curves, each Cn101
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defined over a Kn, such that k=
⋂
n≥0

Kn is algebraically closed. Assume

that, for each n, genusKnCn(=absolute genus of Cn) ≥ 2 and that Cn ∼
Cn+1 over some field. Then each Cn is birationally equivalent to a curve
D defined over K.

Proof. Let g = genus Cn(∀n). As g ≥ 2 by hypothesis, eachCn is
tricanonically imbedded inP5g−6, as a positive one dimensional cycle of
degree (6g−6). LetG = PGL(5g−6). ThenG acts, in a natural way, on
the Chow varietyZ of positive one dimensional cycles of degree (6g−6)
in P5g−6 ( we recall that this variety is defined over a “small” subfield
of k and in particular overk itself.) This action is given by a morphism
G × Z −→ Z. As Cn andCn+1 are birationally equivalent, the Chow
pointsxn of Cn all lie in the same orbitV = Gxn for this action ofG. �

Let V̄ be the closure of this orbitV in Z. As xn is Kn-rational,V̄ is
defined overKn; thus the smallest field of definition for̄V is contained
in Kn for eachn and hence ink.

By the Hilbert-Zero -Theorem it follows that∃ an x ∈ V, rational
over k; then x is the Chow point of a curveD in P5g−6 defined over
k; x ∈ V means thatCn ∼ D. Q.E.D.

Remark. We have made same construction above as Mumford has done
in construction the moduli variety for curves. But when as Mumford
naturally had to consider the entire orbit space we had to deal only with
a single orbit; hence our result is quite elementary.

(F) Conclusion in charac. 0.
102

Proposition 4. Let C be e curve defined over function field of one vari-
able K/k of genus≥ 2. If CK is infinite, then C∼ D. a curve defined
over k.

Proof. With the same notations and procedure as above, we obtain a
towerk ⊂ k(R) = K ⊂ k(X) = L. A contrivial derivationD′ of K/k is
extended toD on L; corresponding to an infinity of sections ofX | R,
we obtain, as before, valuation ringsOα of L/K such that the residue
field of eachOα is K and such that ifσα : Oα −→ K is the canonical
homomorphism, thenσαD = D′σα. �
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Now observe that for any valuation ringO of L/K,DO ⊂ O (geo-
metrically if f is a function onX, which is finite along the divisor de-
fined byO, then Df is also finite along that divisor; this is due to the fact
that the direction fieldE is a morphismX −→ F, not merely a rational
map). Consider now that formal power series fieldsK((T)) ⊂ L((T)).
We define an automorphismS of L((T))( that restricts to an automor-
phism ofK((T)) as follows:

S(T) = T

S(y) = y+ TDy+ · · · + Tn Dny
n!
+ · · · , y ∈ L.

(One can divide byn! in charac. 0 !) The Leibnitz’ formula readily
shows thatS(yy′) = S(y)S(y′)∀y, y′ ∈ L. Also, asσαD = D′σα one
obtains

σαS = Sσα.

Now consider the curveC as a overK((T)); its function field is103

thenK((T))(x, y) whereL = K(x, y) is the function field ofC/K. The
automorphismC of K((T)) defines a curveCS, the S-conjugate ofC
(replace the coefficients in the defining equations ofC/K((T)) by their
S-conjugates). Then

genusK((T))C = genus (absolute) of C

= absolute genus ofCS

= genusK((T))C
S ≥ 2.

Also the K((T))-function field ofCS is K((T))(S x,S y); we claim
thatC andCS are birationally equivalent overK((T)). In fact, in view
of the above relation on their genera and in view of Hurwitz-Zenthen
(Chapter II) it is enough to prove that

K((T))(S x,S y) ⊂ K((T))(x, y).

To start with we know already thatDOα ⊂ Oα for all α; in addition
if µα is the maximal ideal ofOα then for x′ ∈ µα one hasσα(Dx′) =
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D(σαx′) = 0, i.e. Dx′ ∈ µα so thatDµα ⊂ µα. Also we claim that the
valuationvα on L/K defined byOα has the property

vα(Dz) ≥ vα(z) ∀z ∈ L.

In fact, if t is a uniformiser forOα thenDt = at, a ∈ Oα from above,
and thus ifz= urn, u ∈ ϑα, n ∈ Z,

DZ = tnDu+ nutn−1Dt

= tn(Dn+ nua)

whencevα(Dz) ≥ vα(Z),( since (Du+ nua) ∈ Oα).
Now consider the divisorPα on X defined of someOα; for large 104

q ∈ Z,O◦ = qpα is a divisor onX such thatL(O◦) contains anx tran-
scendental overK. Then we may writeL = K(x, y) with y integral

on K[X]

(
charac.K = 0

ThusL/K separable

)
If we writeO = max(−vα(x),−vα(y)).P,

thenx, y ∈ L(O).
From the fact thatϑα(Dz) ≥ vα(z) it follows thatDx,Dy ∈ L(O) and

by iterationDnx,Dny ∈ L(O).
Therefore,

S(x) =
∑

n≥0

Tn Dnx
n!

∈ L(O)[[T]]

= K[[T]][ L]

⊂ K((T))(x, y).

Similarly for S(y). Our assertion is proved.
Now we take, as before, projective imbeddings ofC andCS over

K((T)); we fix, as before, base and unit pointsPα1, . . . ,Pαn+2 ∈ C corre-
sponding to some of the valuation ringsOα defined above; ifu : C→ CS

is the birational correspondence overK((T)) constructed above, then the
imageu(Pα) of Pα is Ps

α (defined byOS
α)U follows easily from the equal-

ity Sσα = σαS. One proves as be for thatC = CS.
We projectC andCS now into the place, from a centre of projection105
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(linear variety of dimension (n − 3)) which is rational/k. If the images
C1 andCS

1 are defined by polynomial equationsϕ(X,Y) = 0 (coefficients
ai j ) andϕS(X,Y) = 0 (coefficientsS(ai j )) then the equality ofC andCS

(hence ofC1 andCS
1 ) gives thatS(ai j ) are proportional toai j ; but since

we may assume that someai j = 1 we obtainS(ai j ) = ai j∀i, j. This
means theai j ∈ ker D = k.

The projection onto the plane is a birational map (defined over k)
from C ontoC1 ; asC1 is defined overk the proposition is proved.

Q.E.D.

3. Definite Results

We still have to remove the extra hypothesis onK that we made in II
namely, tr. degk K = 1. We are now going to do it and later we shall see
over what fieldsC andC′ are isomorphic and then analyseCK.

Proposition 1. Let K be any field L a regular finite type extension of K.
Let C be a curve defined over K such that genusKC = absolute genus of
C ≥ 2. Then either CL − CK is finite or C∼ D a curve defined over a
finite field.

Proof. Eachxα ∈ (CL −CK) satisfiesK(xα) ≃ K(C) so that

K ⊂ K
⌢

(xα) ⊂ K(X) = L.

tr . deg.1

By Severi∃ only finitely manyK(xα) such thatL is separable over106

K(xα); and by Sobwarz-Klein,∃ only finitely manyxα such thatK(xα)
has a given value.Therefore CL − CK infinite rules out the possibility:
charac. K = 0. Let p , 0 be charac.K. For eachxα , let q(α) be the
largest power ofp such thatK(xα) ⊂ K(Lq(α)

). �

Then

K

(
x

1
q(α)
α

)
⊂ L
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1 K(Lp)

and L/K

(
x

1
q(α)
α

)
is separable. By Severi, therefore, the number of

K

(
x

1
q(α)
α

)
is finite; moreover, we have

K

(
x

1
q(α)
α

)
⊂

sep.
L⇐⇒ K(xα) ⊂

sep.
K(Lq(α))

so that for a givenq(α), the number ofxβ such thatK(xβ) ⊂
sep.

K(Lq(α)) is

finite (Severi). If follows that∃q(α), q(β), q(α) , q(β) such thatK

(
x

1
q(α)
α

)

= K

(
x

1
q(α)
α

)
. If we write sayq(α) = pn.q(β), n ≥ 1, then it follows that

K(xα) = K
(
xpn

β

)
= K

(
xq
β

)
( say ).

(We remark that sinceL andK are linearly disjoint, to prove the above
equalities, we could have assumed thatK is algebraically closed). This
means that the curveCq conjugate toC under the isomorphismx 7→ xq

of K, is K-birationally equivalent toC.
Thus, to prove proposition 1, we shall now prove the 107

Proposition 2. Let C be a curve defined over K, charac K= p , 0. Let
q = pn, n ≥ 1. Then C∼ Cq⇒ C ∼ D a curve defined over a finite field.

Proof. For C we choose an absolutely normal model, defined over
Fp(z1, . . . , zr) say (this is a finite type extension ofFp); thenCq is ab-
solutely normal, defined overFp(zq) and so on; we also know from our
computations preceding the proposition thatC ∼ Cq an so on. Thus, by
lemma 5 II, it follows thatC ∼ D′ defined overFp; obviously, we can
considerD as defined over a finite field. �

Q.E.D.

Theorem 1. Let k be an algebraically closed field, K/k any function
field, and C be an algebraic curve defined over K such that K-genus of
C = absolute genus C≥ 2. If CK is infinite then
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1) C ∼ C′ defined over k

2) An isomorphism C→ C′ is defined over K if C is not birationally
equivalent to any curve defined over a finite field

Proof. 1) We shall prove 1) by induction on the transcendence degree
d of K/k. The cased = 1 has already been tackled (part II). If, at any
stage of the inductive proof, we obtainC ∼ D,D defined over a finite
field, we will be through; therefore we will rule out this possibility in
the entire proof (so that we may Proposition 1 effectively).

Let tr . degk K = d; choose aK1, k ⊂ K1 ⊂ K such that tr. degK1
K =108

1. By part II,C ∼ C1,C1 defined overK1; we may assume thatC1 is
defined over a finite extensionL1 of K1 ; the birational correspondence
C ∼ C1 is then defined over a finite extensionK′ of L1(K); replacingL1

by a finite extensionL2 of L1, we may assume thatK′ is separable over
L1; again replacingL1 by its algebraic closure inK′ we may assume that
L1 is algebraically closed inK′. ThusK′ is a regular extension ofL1 and
by hypothesis (C1)K′ is infinite; by the remark is made at the beginning
and by Proposition 1 we obtain: (C1)K′ − (C1)K′ is finite so that (C1)K′

is infinite. The inductive assumption now completes the proof of 1).
2) Let u : C → C′ be an isomorphism, defined over a finite exten-

sionK′ of K. We haveC′K′ infinite; then by hypothesis and by proposi-
tion 1, (C′K′ −C′K) ⊂ (C′K′ −C′K) is finite. �

This means that there are an infinity ofxi ∈ CK such thatu(xi) ∈
C′K . We now take tricanonical modelsD and D′ in Pr of C and C′

respectively (these imbeddings are defined overK, by hypothesis). We
may choose onD base points and unit pointx1 . . . , xr+2 among the (xi)
all rational overK: and onD′ choose the base points and unit point as
the K-rational pointsu(xi). The isomorphismu : C→ C′ then defined a
projective transformationu : D→ D′ which is necessarily defined over
K as the base points an unit point areK-rational. Q.E.D.

Remark. If v : C′ → C is an isomorphism defined overK, then v109

defines a bijectionC′k→ CK ; but C′K −C′k is finite by Proposition 1,
which means that almost all points inCK are inν(C′k).
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We had left out some “exceptional cases” in Theorem 1, 2. Our aim
now is to study the situation in this “exceptional case”. (Inthe following
we shall use the term “isomorphism” for a “birational map”).

Theorem 2. Let k be algebraically closed, K any function field over k; C
is a curve (as usual projective nonsingular) defined over K such that K-
genus of C= absolute genus of C≥ 2 and CK infinite. Assume that
C ∼ C′,C′ defined over a finite field Fp such that all the members of Aut
C′ (by Schwarz-Klein these are all defined over Fp) are defined over Fq.
Let f be the automorphism x7→ xq of Fq(C′) giving an automorphism
f : C′ 7→ C′. Then

(1) ∃ a finite galois extension K′ of K, a K′- isomorphism u: C → C′

and a monomorphismσ 7→ hσ of G = G(K′/K) into Aut C′ such
that

hσ = uσ ◦ n−1

(2) ∃ a finite family(zi) of transcendental points of C′K′ such that zσi =
hσ(zi)∀σ ∈ G. Also every x∈ CK is either some u−1( f n(zi)) or some
u−1(z) with z∈ C′K and

zσ = hσ(z) ∀σ ∈ G.

Proof. (1) Let w : C → C′ be the birational correspondence given; we110

may assume thatw is defined over a finite extensionK′′ of K. Let (xi)
be the infinite family of points ofCK ; for eachi, one hask(w(xi)) ⊂
K′′ and by Severi almost all of thek(w(xi)) are contained inK′′p by
iteration of this procedure, we may assume thatw is defined over a finite
separable extension, whence also over a finite galois extension K′′/K.
If σ ∈ G(K′′/K) thengσ = wσ.w−1 ∈ Aut C′; we claim thatσ 7→ gσ is
a homomorphism: in fact, thatgσ is a cocycle follows from

gστ = wστ.w−1 = (wσ)τw−τwτw−1

= (gσ)τgτ

and, asgσ is defined overK, we are through. �
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Now consider the kernel of this homomorphismσ 7→ gσ; it is the
galois group ofK′′ over a galois extensionK′ of K. Forσ ∈ G(K′′/K′)
then one haswσ = w and thusw is defined overK′, denote it byu. For
σ ∈ G(K′/K) if we sethσ = uσ.u−1 thenσ 7→ hσ is a monomorphism.
Hence (1).

(2) Supposez∈ C′ is of the formu(x), x ∈ C . Then

x ∈ CK ⇐⇒ {z∈ C′K′ andzσ = hσ(z),∀σ}

In fact⇒ is trivial ; on the other hand observing that for everyσ ∈
G(K′/K)

zσ = hσ(z)⇔ zσ = uσu−1(z)

⇐⇒ u−1(z) = u−σ(zσ)

⇐⇒ u−1(z) = (u−1(z))σ

and thusz ∈ C′K′ , hσ(z) = zσ,∀σ, imply that x = u−1(z) ∈ CK .111

Now by an easy iteration of Severi we prove that there are only
finitely many (transcendental) pointsy1, . . . , yr ∈ C′K′ such thatk(yi) 1
K′q. If z∈ (C′K′ −C′k′) then it follows that for somen,

k ⊂
,

k(zq
1
n ) ⊂ K′

1 K′q

i. e. zq
1
n
= yi for some i

i. e. z= f n(yi) for some i.

Now if z ∈ C′K′ −C′k and if zσ = hσ(z)∀σ, then they j for which z=
f n(y j) has the propertyyσj = hσ(y j)∀σ: this follows from the equality
hσ f n = f nhσ (recall thathσ is defined overFq).
The proof of the theorem is complete. Q.E.D.

We shall end up by giving an example which will show that the part
(2) of Theorem 2 cannot be strengthened.

Example.Let k be an algebraically closed field of characteristicp ,
2. Let C′ be the plane curve defined overk whose affine equation is112
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x4 + y4 + 1 = 0;C′ is nonsingular: indeed, the derivatives 4x3, 4y3, 4z3

of x4 + y4 + z4 cannot all vanish at any point onx4 + y4 + z4 = 0(in P2),
thus genusC′ = 3, and the imbeddingC′ ֒→ P2 is canonical.

Let K′ = k(r, s), r transcendental overk andssuch that atr4+s4+1 =
0. Letσ be the automorphism ofK′/k such thatσ(r) = −r, σ(s) = −s;
then the fixed fieldK of σ is k(r2, s2, rs), andK′/K is a galois extension
of degree 2 whose galois group isG = {1, σ}.

Let C be the curveX4 + Y4 + r4 = 0 defined overK.

a) CK is infinite.

In fact, the infinity of points (r1+pn
, rspn

) are K - rational (if p >

2, pn + 1 is even; alsorspn
= rs.spn−1 andpn − 1 is even)

b) C ∼
K′

C′

In fact, the homothetyu : C′ → C given by X = rx,Y = ry is a
projective transformation inP2, defined overK′.

The automorphismhσ of C′ is then the automorphism (x, y) →
(−x,−y)

c) C is not K - isomorphic to any curve defined overk(in particular
C /

K
C′). Indeed, ifC ∼

K
D, D defined overk thenDK̃′C

′ from b); as

D andC′ are both defined overk, k algebraically closed, it follows
thatD ∼

k
C′; thusC ∼

K
C′ , say throughw : C→ C′ defined overK;

thenwu ∈ Aut C′ is defined overk so thatu = w−1(wu) is defined
overK. This is clearly false sincer < K.

d) However, C is K - isomorphic to Cp
n

for all n ≥ 1. 113

Write

X′ = r pn−1.X

Y′ = r pn−1.Y.

Then this is a projective transformation defined overK(pn − 1) is
even) and transformsC ≡ X4 + Y4 + r4 = 0 into

(X′)4 + (Y′)4 + (r4)pn
= 0
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Which is the curve (C′)pn
.

e) Rational points P′ of C′K′ and P of CK.

By theorem 2, part (2), the transcendental points ofC′K are obtained
by applying the “iterated Frobenius maps” to points (x1, x2) such that
k(x1, x2) is of transcendence degree 1 overk andk(x1, x2) ⊂ k(r, s)

(separably)
= K′.

As these fields have the same genus 3, it follows by Hurwitz′ theorem
thatk(x1, x2) = k(r, s) = K′. Thus to find theK′ - rational points onC′

one has to find andk-automorphisms ofC′. Some of them, for instance,
are given by (see appendix 3 for a complete determination of Aut (C′))

i) (r, s) 7→ (r,−s)

ii) ( r, s) 7→ (−r,−s)

iii) ( r, s) 7→ (αr, βs), α4 = β4 = 1.

iv) (r, s) 7→
(
1
s
,
1
r

)
.

As we have seen in the proof of theorem 2, the rational pointsP of
CK − Ck are given by rational pointsP′ of C′K′ − C′K which have the114

propertyP′σ = hσ(P′),∀σ ∈ G. For instance, from among the above
four automorphisms it is clear that (i), (ii), (iii) satisfythis requirement
but the fourth does not.

Finally, to get thek-rational pointsP onC, we takek-rational points
P′ on C′ which have the propertyhσ(P′) = P′ These are the points at
infinity of C′, and give the points at infinity onC.



APPENDICES TO CHAPTER III
Appendix 1. For a purely aesthetic reason, we shall prove here a stron-115

ger form of Proposition 2, III of Chapter III.

Proposition 2̃. Let C be a curve of absolute genus≥ 2 in characteristic
p , 0. Suppose C is birationally equivalent to Cq with q = pn, n > 0.
Then C∼ D a curve defined overFq (the finite field with q elements).

Proof. In view of Proposition 2, III, we may now assume thatC is de-
fined over anFqn; by choosingn large, we may also assume that the
elements of AutC, which are finitely many, are all defined overFqn.
We shall setFq = F, . . . , Fqr = Fr , . . . and Gr = the group of all F-
automorphisms ofFr (C)(r large). We now define a homomorphism

Gr −→ G(Fr/F)

σ 7−→ σ|Fr .

�

If r is large, (ifn | r) the kernel of this homomorphism is the group of
Fr -automorphisms ofFr (C) i. e. is AutC. We claim that this homomor-
phism is onto. In fact, ifϕ denotes the Frobenius automorphismx 7→ xq

of Fr , ϕ extends to aϕ : Fr (C) −→ Fr (Cq) ; on the other hand, the hy-
pothesisC ∼ Cq (we may assume that this birational correspondence is
defined overFqn = Fn) gives an isomorphismω : Fr (Cq) → Fr (C) so
thatωϕ ∈ G; if n | r, we have

ωϕ|Fr = ϕ|Fr = ϕ.

Thus, we get an exact sequence (forn | r) 116

(1) 1→ Aut C→ Gr → G(Fr/F)→ 1.

(2) We now assert that

C ∼
Fγ

D defined overF

(⇐⇒ the above sequence “splits”)
⇐⇒ ∃ r-cyclic subgroupG′r of Gr
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such thatG′r∩ Aut c = (1).

i.e. ⇐⇒ ∃ aσ ∈ Gr

with σγ = 1 and σ | Fr = ϕ.

⇒ : is quasi obviousD, whence forC.

⇐: Suppose∃ such aσ ∈ Gr

Let L be the fixed field ofσ. By galois theory [Fr (C) : L] = r so
that Fr andL areF-linearly disjoint. If L = F(D), D a curve defined
overF thenFr(C) = Fr (D) Q.E.D.

L
r Fr(C)

F r Fr

Our aim therefore will obviously be to make (1) “split” for large
multiplesr of n. For larger, r′ with n | r andn | r′ andr′ | r, we have an
obvious commutative diagram

1 // Aut C // Gr
// G(Fr/F) // 1

1 // Aut C // Gr ′

OO

// G(Fr ′/F)

OO

// 1

so that we have an inverse system of exact sequences; as the so-called117

Mittag-Leffler condition is trivially verified, in the limit we get an exact
sequence

1→ Aut C→ G→ G(F̄/F)→ 1.

The groupG(F̄/F) is the limit of the inverse system (Z/rZ)r and is
thus the “universal pro-cyclic group̂Z. (It is the completion ofZ for
the topology where a fundamental system of neighbourhoods of U is
(rZ)r,o). It is topologically one-generated (with the limit topology it
is compact, Hausdorff and totally disconnected) viz , by the Frobenius
automorphismϕ of F̄/F. We take aσ ∈ G which maps ontoϕ ∈ Ẑ. If
G′ is the closed topological subgroup ofG generated byσ ∈ G, then
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G′ maps ontoẐ. But by a well-known property of̂Z (namely that for
compact, totally disconnected Hausdorff group H and anyh ∈ H,∃ a
continuous homomorphismfh : Ẑ −→ H, such thatϕ 7−→ h, (see Corps
Locaux, Sence Chapter XIII)) it follows thatG′ → Ẑ is injective.

Therefore, AutC ∩G′ = (1)
Let θr : G → Gr be the canonical homomorphisms; setG′r = θ −

r(G′) = subgroup generated byθr(σ). Obviously, one has

G′r ∩ Aut C ⊃ G′r ′ ∩ Aut C ∀r′|r;

since all these groups are finite, the decreasing chain (G′r ∩ Aut C)r is
stationary for large forr. We will through if we prove that, for large
ϕG′r ∩AutC = (1). For this we have merely to show that

⋂
r

(G′r Aut C) =

(1); in fact, if α ∈ ⋂
r

(G′r∩ Aut C) then consideringα as element of 118

G,∀r, θr(α) ∈ G′r = θr (G′) so thatϕ ∈ Aut C ∩G′ = (1). Q.E.D.

Appendix 2. Our aim in this appendix is to remove from hypotheses on
our curve of investigationC the condition (in characp , 0) : genusKC
= absolute genusC ≥ 2 we shall prove now the

Theorem.Let k be an algebraically closed field of charac. p, 0,K
a function field over k , and C a curve defined over K, with absolute
genus C≥ 2. If CK is infinite, then C admits an absolutely normal
model defined on K (so that genusKC = absolute genus of C). ( More
precisely, the normalisation of C is absolutely normal).

Proof. We may assumeC normal. The normalisationC′ of C in Kp−∞

is absolutely normal so that we may assume that∃ a finite, purely in-
separable, extensionK′/K over which the normal modelC′ of C is ab-
solutely normal. By hypothesis, genusC′ ≥ 2 and we may apply our
results in section III. Letu : C → C′ be the (natural) birational cor-
respondence (defined overK′). By Theorem 2 III , of Chapter III,∃ a

curveC′′ defined overk and a birational correspondenceC′
v→ C′′ de-

fined over a finite galois extensionk′′/k′ such that for almost all points
x ∈ CK, v.u(x) is in K′′p

n
(n that large whence in the separable closure

L of K in K′′. One may again choose imbeddings and argue as before119

with base points and unit point to prove thatv · u is defined overL :
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as L is separable overK and as genusKC = genusLC = genuskC′′ =
genusK′c′ = abs. genus ofC it follows that C, which is normal/L, is
already absolutely normal. �

Q.E.D.
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Automorphisms of the curvex4 + y4 + z4 = 0

We have seen that, in characteristic, 2, the plane curveC : x4+y4+ 120

z4 = 0 has genus 3 and that imbeddingC ֒→ P2 is the canonical one.
Thus automorphisms ofC are induced by projective transformations.
Among those we immediately see:

a) The permutations of the variablesx, y, z; these form a groupG1 of
order 6;

b) The multiplications ofx, y, z by arbitrary fourth roots of unity; these
form a groupG2 of order 16.

Clearly G1 andG2 are permutable subgroups ofPGL(2) such that
G1∩G2 = {1}. Thus they generate a subgroupG ⊂ PGL(2) of order 96.
We claim that:

The group G is the group of automorphisms ofC.
To determine Aut (C) we may look for projective peculiarities ofC.

Let us call a pointP of C asuperflexif the tangent toC atP intersectsC
with multiplicity 4 at P (and therefore has no other common point with
C ). Clearly the points ofC on the coordinate axis (e.g.(1, α, 0) with
α4 = −1) are superflexes (the tangent at (1, α, 0) beingy− αx = 0). We
are going to find all superflexes ofC. Disregarding the points at infinity
(z= 0), and the points at which the tangent passes through (0, 1, 0) (i.e.
the points ony = 0), we may take affine coordinates, consider a point
(a, b) ∈ C(a4 + b4 + 1 = 0), and express that a line

x = a+ λy = b+ tλ(b , 0)

89
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has a quadruple intersection withC at (a, b); in other wordsλ = 0 must121

be a quadruple root of

(a+ λ)4 + (b+ tλ)4 + 1 = 0.

This means

a4 + b4 + 1 = 0, 4(a3 + tb3) = 0, 0(a2 + b2t2) = 0, 4(a+ bt3) = 0.

We deducet = −a3

b3
whencea − b

a9

b9
=

a

b8
(x − a8) = 0. We have

solutionsa = 0, b4 = −1, t = 0 on the axisx = 0, thus we may assume
a , 0. In characteristic, 3, the relationsa2 + b2t2 = 0, t = −a3/b3

give a4 + b4 = 0 impossible. In characteristic 3 the third relation in (1)
disappears. Fromb8 − a8 = 0 anda4 + b4 = −1 we deducea4 − b4 = 0,
whence 2a4 = −1, a4 = 1, anda, b are 4th roots of unity. Thus the
superflexes ofC are:

a) The 12 points ofC on the coordinate axis (for any characteristic, 2)

b) In addition the 16 points (a, b, 1) such thata4 = b4 = 1, in character-
istic 3.

Notice that, in characteristic 3, the 23 tangents toC at the superflexes
are the famous 28 bitangents toC (replaced with the 27 Lines on a cubic
surface).

Through each base point paseC lines in the general case (resp. 6
lines in characteristic 3) such that each line contains 4 superflexes. The
base points are the only points with this property: this is clear in the
general case; a simple computation has to be made in characteristic 3
(here the 28 superflexes are rational overFq).

Hence the base points are characterized by an invariant projective122

property ofC. Therefore any automorphism ofC is induced by a projec-
tive transformationu which permutes the base points. Thenuv−1, with
somev ∈ G1, leaves fixed the base points, i.e.,uv−1(x) = λx, uv−1(y) =
µy, uv−1(z) = νz. SinceC is globally invariant byuv−1, this implies that
λ, µ, γ, are proportional to 4th roots of unity, i.e.,uv−1 ∈ G2. Therefore
u ∈ G. Q.E.D.
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