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Foreword

The principle material of this course is taken from a paper ofwhitney
[7]. In the first chapter we recall some classical theorem (sec [1] and
[2]), explain the problem solved in [7] and give several examples. In
chapter II we study stratifications of an analytic set havingdifferent
properties. In chapter III we prove the theorem a) and b) of Whitney.
The main lines of the proofs are taken form [7] but for the theorem b)
our demonstrationis rather different (from the application of therorem a)
a result on field of frames tangent to the strata of a stratification of an
analytic set, along certain skeletons.

I have been lukcy enough to have the collaooration of Miss M.S.
Rajwade and Dr. Raghavan Narasimhan who had ideas for many im-
provements and worte the present notes. I thank them very much for
their help.

A-H. Sehwartz
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Chapter 1

Preliminaries

In this course of lectures we shall deal with various decompositions of 1

C-analytic set into manifold and then with some of their applications.
We shall first state some definitiens and a few theorem without

proofs on holomorphic funtionns andC-analytic sets which we shall
use in what follows.

Definitions 1. LetΩ be an open set inCn. A complex valued function
f , defined onΩ is side to he holomorphic onΩ, if for everyζ in Ω, there
exists(ρi), ρi > 0, 1 ≤ i ≤ n, aα ∈ Cn, such that

f (z) = f (ζ) +
∑

|α|≥1

aα((z− ζ))α for | zi − ζi |< ρi

where α = (α1, . . . , αn) ∈ Nn,

((u))α = uα1
1 , . . . , u

αn
n ,

| α | = α1 + α2 + . . . + αn.

We denote the set of holomorphic functions onΩbyOΩ

Theorem 1 (Hartogs). A complex valued function f is holomorphic on

Ω if and only if the partial derivatives
∂ f
∂zi

exist at each point ofΩ.

If V is an analytic manifold anda ∈ V, we denote byT(V, a) the
tangent space toV at a.

1



2 1. Preliminaries

Definition 2. Let Vn andWm be twoC-analytic manifolds andf : Vn→ 2

Wn an analytic map. Fora ∈ Vn, let (d f)(a) denote the linear map
T(Vn, a)→ T(Wm, f (a)), Then we define rank (d f)(a) as the dimension
of the image ofT(Vn, a) by this map.

Remark. If ( x1, . . . , xn) denote local coordinates in a neighbourhoodU
of a and if f (x) = ( f1(x), . . . , fm(x)) for x ∈ U, in local coordinates
in a neighbourhoodU of f (a), then rank (d f)(a) = rank of the matrix

(
∂ fi
∂x j

(a))1≤i≤m
1≤ j≤n

and it is independent of the coordinate neighbourhoods

chosen. We now state the important.

Theorem 2(Constant rank theorem). Let Vn and Wm be twoC analytic
manifolds and f : Vn → Wn be a holomorphic map. Let the rank
(d f)(x) = r, a constant, for x∈ an open setΩ ⊂ Vn. Then for every
a ∈ Ω, there exist neighbourhoods U of a, V of f(a), open cubes Q1 ⊂
Cn,Q2 ⊂ C

m and biholomorphic maps u: U → Q1, v : V → Q2 such
that if g= v o f o u−1, we have g(x1, . . . , x2, 0, . . . , 0).

Let Ω be an open set inCn such that 0∈ Ω. Then we denote the
inductive limit, lim

−−→
Ω

On
Ω

, by On
o or byOn. It is clear thatOn is a ring and

we call it the ring of germs of holomorphic functions at 0.
We shall assume the following properties ofOn.

1. On is isomorphic to the ring of convergent power series inn vari-
ables with complex coofficients.

2. On is a local ring.

3. On is an integral domain.3

4. On is a noetherian ring.

5. On is factorial.

Definition 3. 1 Given aC -analytic manifoldMn a subsetV of Mn

is defined to be aC-analytic set if for everya ∈ Mn there exists a

1We use the term analytic set for an analytic subvariety of an analytic manifold and
the term analytic space for a space that is locally an analytic set.



1. Preliminaries 3

neighbourhoodU in Mn and a finite number of holomorphic functions{
fi
}
, 1 ≤ i ≤ mon U such thatU ∩ V = {z∈ U | fi(z) = 0, 1 ≤ i ≤ m}.

(4). A point a inV is said to be simple if there exists a neighbour-
hoodUa of a such thatUa ∩ V is an analytic submanifold ofUa.

Remark 1. An analytic set on aC -analytic manifold is closed.

Unless otherwise stated, in what follows, an analytic manifold and
an analytic set will mean aC -analytic manifold and aC -analytic set
respectively.

Notation. If z = (z1, . . . , zn) is a point inCn, z′ will denote the point
(z1, . . . , zn−1) in Cn−1. A poly-discDn in Cn will be D1× · · · ×Dn where
Di are discs inC. M n will denote the maximal ideal (i.e. the ideal of
germs vanishing at 0) ofOn andOn−1 will denote the ring of germs of
holomorphic functions at 0′ in Cn−1. We identifyOn−1 with a subring
of On.

Definitions 5. A distiniuished polynomial in zn of degree n is a polyno-4

mial zp
n +

p∑
k=1

ak(z′)z
p−k
n , where ak(z′) are holomorphic functions in z′ on

an open neighbourhood of0′ in Cn−1 and ak(0′) = 0.

Theorem 3 (Weierstrass preparation theorem). Let f ∈ M n, f , 0.
Then

1. There exists a basis(z1, . . . , zn) of Cn such that f(0′, zn) does not
vanish identically in any neighbourhood of zn = 0 in C.

2. With respect to any basis satisfying condition (1) above,there ex-
ists a unique distinguished polynomial P inOn−1[zn] such that
f = gP for some g inOn and g<M n.

3. If f (z) =
∞∑
1

ak(z) in a neighbourhood of0, where ak(z) are homo-

geneous polynomials of degree k, and if p is the least integersuch
that ap(z) . 0, then p is the minimum degree of a distinguished
polynomial P for which

f = gP where g∈ O
n and g<M

n.
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Theorem 4(The division theorem). Let f ∈M n and suppose the basis
for Cn so chosen that the condition (1) of Theorem 3 above is satisfied.
Then if f = uP, where P is a distinguished polynomial of degree p in
On−1

z′ [zn] and u∈ On, u < M n, then for any g inOn, there exists h in
On and r(z′, zn) in On−1

z′ [zn], with degree of r< p such that

g = h f + r

and the h and r are unique.5

Definition 6. An analytic setV is said to be irreducible if,V = V1 ∪ V2,
whereV1 andV2 are analytic sets, implies eitherV = V1 or V = V2.

Let V be an analytic set⊂ M,M being an analytic manifold. Then
the germ ofV at a pointa ∈ M is defined to be lim

−−→
Ω

V ∩ Ω whereΩ is

a neighbourhood ofa in M. The germ at a of an analytic setV is said
to be irreducible if a has a fundamental system of neighbourhoodsU
such thatU ∩ V is irreducible. The following Proposition is an easy
consequence of the property 4 ofOn.

Proposition 1. The germ of an analytic set V at a can be written uni-
quely as Va =

⋃
1≤i≤r

Via, where Via are irreducible germs of analytic sets

Via 1
⋃
j,i

V ja for any i.

Remarks 2.If I is the ideal inOa of germs of holomorphic functions
vanishing onVa, I is prime if and only ifVa is irreducible.

3. Here we give an example of an irreducible analytic setV and a
point a ∈ V such thatVa is reducible. LetV = {z ∈ C2

xy | x3 + y3 −

xy = 0}. Then since the set of simple points ofV is connected,V is

irreducible. Consider the pointsx = x(t) =
t

1+ t3
andy = y(t) =

t2

1+ t3
for t sufficiently small. Then the points (x(t), y(t)) are in V. Further,
f (x, t) ≡ (1 + t3)x(t) − t = 0 gives ft(0, 0) = −1 and hence by the

implicit function theorem the equationx =
t

1+ t2
can be solved fort,

for sufficiently smallx, i.e. there existsε > 0. such that for|x| < ε, t =6
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t(x) is an analytic function ofx. Thus the analytic setV1 defined by

V1 =

{
z∈ C2

xy

∣∣∣|x| < ε, y = [t(x)]2

1+ [t(x)]3

}
is contained inV and similarly

V2 =

{
z ∈ C2

xy

∣∣∣|x| < ε′, y = [t′(x)]2

1− [t′(x)]3

}
wheret′(x) is a solution of (1−

t3)x + t = 0, in V. Hence there is a neighbourhoodU of 0 such that
U ∩ V = (U ∩ V1) ∪ (U ∩ V2) and thusVo is reducible.

We now recall the important theorem of local representationof an
analytic sec and some of its consequences that we shall need later.

Theorem 5. Let I be a prime ideal inOn, I , {0}, I , On. Then there
exist

(a) a basis(z1, . . . , zk, . . . , zn) for Cn, in integer k≥ 0and a fundamental
system of neighbourhoods Dn = Dk×Dn−k of 0,Dk ⊂ Ck

z1,...,zk
Dn−k ⊂

Cn−k
zk+1,...,zn

’ and if Ok denotes the ring of germs of holomorphic func-
tions at0′′ in Ck

z1,...,zk
,

(b) there exist polynomials Pk+1[x],Qk+ j [x],
∼

Qk+ j [x], 2 ≤ j ≤ n − k in

Ok[x] with degQk+ j , deg
∼

Qk+ j < degPk+ j . such that I is generated
by a finite number of holomorphic functions f1, . . . , fr on Dn and if
S is the analytic set defined as the set of zeros of these functions in
Dn, then following are satisfied

1. OK ∩ I = {O} 7

2. If η : On → On/I is the natural map, the quotient field of(On/I )
is generated byη(zk+1) over the quotient field ofOk.

3. Pk+1[x] is the minimal polynomial ofη(zk+1) overOk and if δ =
discriminant of Pk+1 overOk, thenδzk+ j − Qk+ j [zk+1] and

∂Pk+1

∂x
[zk+1]zk+ j −

∼

Qk+ j [zk+1]

are in I.
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4. For every z′ ∈ Dk with δ(z′) , 0, there exist precisely p points(p
= degree of Pk+1[x])(z′, zi) in S ,

zi =
Qk+ j [zi

k+1]

δ(z′)
=

∼

Qk+ j [z
i
k+1]

P′k+1[zk+1]

where(zi
k+1)1≤ i ≤ p are the roots of Pk+1[x] = 0.

5. The points S′ = {z ∈ S|δ(z′) , O} are simple points of dimension
k of S and S′ is connected and dense in S andπ : S′ ∩ Dn →

(Dk ∩ {z′|δ(z′) , 0}) is a covering.

6. The projectionπ : V ∩ Dn→ Dk is proper and open.

If 0 is in an anaytic setV and if V0 is irreducible, letI = the ideal
of germs at 0 of holomorphic functions vanishing onV0. Then coordi-
nate system (z1, . . . , zn) at 0 which satisfies the conditions (1)–(6) of the
above theorem with respect toI , is said to be proper forV0.

Theorem 6 (H. Cartan). If S is an analytic set in an open set U⊂ Cn,8

for any a0 ∈ U, there exist a neighbourhood Uo and a finite number of
holomorphic functions f1, . . . , fr on Uo such that for any point b in Uo,
the germs of f1, . . . , fr at b generate the ideal Ib associated to Sb over
On

b .

Definitions 8. If a is a simple point of V, let U be a neighbourhood of
a such that U∩ V is an analytic submanifold ofCn. Then the dimen-
sion of V at a, denoted bydima V is defined to be the dimension of the
submanifold U∩ V.

9. For any pointζ in V, the dimension ofV at ζ, denoted by dimζ V

is defined by lim
−−→
Uζ

( Sup
z is a simple

point inUζ∩V

dimz V
)
, whereUζ is a neighnourhood

of ζ.

Proposition 2. If V is an irreducible analytic set, V′ is another analytic
set and V′ ⊂

,
V, thendimV′ < dimV.
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Proposition 3. If V is an analytic set, V⊂ Ω ⊂ Cn, and if0 ∈ V and Vo

is irreducible and ifdimo V = k and if{x1, . . . , xn} is a coordinate system
in a neighbourhood U of0 such that{x ∈ U |x1 = . . . = xk = 0} ∩ V =
{0} then by a linear change of coordinates, we can find a coordinate
system{y1, . . . , yn}y1 = x1, . . . , yk = xk such that{y1, . . . , yn} is a proper
coordinate system for V0, at 0.

Remark 3. If an analytic setV = ∪Vi, whereVi are distinct irreducible
analytic sets, the simple points ofV are theorem simple pointsz of Vi,
for eachi, such thatz< V j for j , i.

Theorem 7(Hilbert’s Nullstellensatz). For any ideal I inOn, there ex- 9

ists an integer n= n(I ) such that if f∈ On and if f vanishes on the germ
of the analytic set SI defined by I, then fn ∈ I.

Proposition 4. If V is an analytic set and W⊂ V is also an analytic set,
(V −W) is an analytic set anddim .(V −W) ∩W < dim(V −W).

Proposition 5. If V and W are analytic sets in an open setΩ in Cn, then
V ∩W is an analytic set anddim(V ∩W) ≥ dimV + dimW− n.

We now state the various types of decomositions of an analytic set
that we shall consider.

(i) Strict partitions into manifolds

Definition 10. An analytic setV is said to be partitioned strictly in to
manifolds if

V =
⋃

i

Mi , where

1. Mi are analytic submanifolds ofCn with Mi∩M j = φfor i , j and

2. if Ṁi = Mi − Mi , Ṁi ,Mi are analytic sets.

(ii) Canonical strict partitions into manifolds.
We shall prove in ChapterII that any analytic setV can be canon-

ically strictly partitioned into manifoldsV =
⋃

Mi, where, if Mi is a
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manifold of maximum dimensionp say, then it is a connected compo-
nent of the set of simple points ofV, if dimensionp and

p = max
a∈V

(dima V).

(iii) Stratifications10

Definition 11. A strict partition into manifolds is a stratification if and
only if

1. Mi − Mi = Ṁi =
⋃
jǫJ′i

M j for some subsetJ′i of T or

2. Mi ∩ M j , φ⇒ Mi ⊂ M j

Examples 1.Let V be the analytic set inC3xyt given by V =
{
z ∈

C3xyt
∣∣∣t2 = x2 = y2}. ThenV is a cone and ifD is a generator of the

cone, letM1 = D,M2 = V − D. ThenV = M1 ∪ M2 is a stratification.
However, it is clear that this stratification is not uniquelydetermined as
we may choose any generator forD and that either of two such stratifi-
cations is not finer than the other.

(iv) Whitney Stratifications
Given a stratificationV =

⋃
Mi, let Mi ⊂ M j . Let z0 be in Mi and

consider a sequence of points{zν}ǫM j , zν → z0. If T(M j , z) denotes the
tangent space atz for anyz in M j, let T(M j , zν)→ T (in a natural sense
of Grassmann manifold that we shall describe later) aszν → z0. The the
pair (Mi ,M j) is said to be (a) regular at z0, according to Whitney , if ,
for any such limitT, T ⊃ T(Mi , z0). This is clearly not the case in an
arbitrary stratification. Consider

Example 2 (Whitney). Let V be the analytic set inC3
xyt given byV ={

zǫC3
xyt

∣∣∣y2 = tx2} and the stratificationM1 = Ct and M2 = V − Ct.
Consider pointszν onCx such thatzν → 0. It is clear that ifT is the limit11

of T(M2, zν), T 2 T(M1, 0). However if we have the stratification given
by M0 = M1 = Ct − {0}, M2 = V −Ct then the pairs (M0,M1), (M1,M2)
are (a) regular at all points ofM◦ andM1 respectively.
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But in a set other than a complex analytic set, it may not be possible
to obtain a substratification which is (a) regular, i.e. for which all pairs
(Mi ,M j) of strata,Mi ⊂ M j , are (a) regular.

Example 3.Let f : R3
xyt → R be the continous function given by

f (x, y, t) = t sin

(
x
t

sin
1
t

)
− y if t , 0 and f (x, y, 0) = −y. We define

the setV in R3
xyt by V =

{
(x, y, t)ǫR3

xyt

∣∣∣ f (x, y, t) = 0
}
. Consider the parti-

tion M1 = Rx andM2 = V − Rx, of V.

We havet
d
dt

(
1
t

sin
1
t

)
= −

1
t

(
sin

1
t
+ t cos

1
t

)
. Let tν be a sequence

of points such thattν → 0 and

[
t
d
dt

(
1
t

sin
1
t

)]

t=tν

= 0. Then clearly

tan
1
tν
= −

1
tν

and
∣∣∣∣∣sin

1
tν

∣∣∣∣∣ =
1√

1+ t2ν
→ 1. We suppose, without loss of

generality, that sin
1
tν
→ 1. Let xν,k =

2πktν

sin
1
tν

andzν,k = (xν,k, 0, tν)ǫV.

We have, by direct computation,

∂ f
∂x

(zν,k) = sin
1
tν
,
∂ f
∂y

(zν,k) = −1,
∂ f
∂t

(zν,k) = 0.

Let z◦ = (x0, 0, 0) and xν = zν,k(ν) where k(ν) is the largest in-

teger such thatk(ν) ≤
x◦

2πtν
sin

1
tν

. Then clearlyzν ∈ V and zν → 12

z0. T(ν, zν,k(ν)) has a limit, namely, the plane orthogonal to the vector
(1,−1, 0). This plane does not containRx and hence a condition corre-
sponding to the condition (a) is not satisfied in this example.

However, it follows from the whitney’s theorem that we shallprove,
that such a situation cannot arise in anC- analytic case.

If we assume that the stratification is (a) regular and ifMi ⊂ M j ,Mi

and M j being two strata, letzo be in Mi and {zν} be a sequence in
M j, zν → z0. Let {ζν} be a sequence inMi , ζν → z0 and {λν}, a se-
quence of complex numbers such thatλν(zν − ζν), is convergent to (a
vector)v say. Then the pair (Mi ,M j) is said to be(b) regular (according
to Whitney) if every suchvǫT = LimT(M j , zν).
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Example 4(Whitney). Consider the analytic set

V = {zǫC3
xyt | t

2(x2 − y2) + x3 − y4 = 0}.

Let
M1 = Ct,M2 = V − Ct,V = M1 ∪ M2

be the stratification. Consider the pointsz =

(
−

1

ν2
, 0,

1
ν

)
on M2 and

ζν =

(
0, 0,

1
ν

)
on M1. Clearlyzν, ζν → 0 andν2(zν − ζν)→ (−1, 0, 0) and

obviously the pair (M1,M2) is not (b) regular at 0 for the normal to the

surfacef (x1, y1, t) = t2(x2 − y2) + x3 − y4 = 0 at

(
−

1

ν2
, 0,

1
ν

)
is parallel

to

(
1, 0,−

2
ν

)
and this tends to (1, 0, 0) atν→ ∞.

We give here a example of setV which is notC -analytic and a
stratificatonV = ∪Mi ,M1 ⊂ M2 and the pair (M1,M2) is not (b) regular
at any point ofM1.

Example 5.Let V ⊂ R3
xyt be given as follows. Consider the parameters13

ρ, θ in R2 wherex = ρ cosθ, y = ρ sinθ. ThenV = {(x1, y1, t) | ρ =
eθ,−∞ ≤ θ ≤ 1}. Let M1 = Rxy = {(x, y, t) | x = y = 0} and M2 =

V − M1. Then for any point (0, 0, t0) on M1, considerzν = {(z, y, t) | θ =
−2πν, t = t0}, i.e. zν = (e−2πν, 0, t0). Let ζν = (0, 0, t0), λν = e2πν, i.e.
v = (1, 0, 0). Now the planes tangent toM2 are all orthogonal to (1, 0, 0)
and the pair (M1,M2) is not (b) regular at any point (0, 0, t0) of M1.

However, we shall prove that such a situation does not arise in C-
analytic sets. We shall prove the following

Theorem (Whitney). Every stratification of aC -analytic set admits a
substratification which is (a) and (b) regular.



Chapter 2

Some theorems on
stratification

Lemma 1. If V is aC-analytic set in an open set U⊂ Cn and if f1, . . . , fr 14

are holomorohic functions on U such that the germs of f1, . . . , fr at any
point b in U generate the ideal Ib of Vb, then V is a submanifold of
dimension p in a neighbourhood U0 ⊂ U of any point a0 if and,only if

rank

(
∂ fi
∂zj

)

z

= n− p for z in U′∩V where U′ is a certain neighbourhood

of a0.

Proof. If a◦ is a simple point of dimensionp, then there exists a neigh-
bourhoodU0 of a0 and holomorphic functionsg1, . . . , gn−p on U0 such

that rank

(
∂gi

∂zj

)

z

= n− p for anyz in U0 and the germs (gi )z generate the

ideal Iz for z in U0. Clearlygi =
∑
j
λi j f j and hence rank

(
∂ fi
∂zj

)

z

≥ n− p

for z in U0. Since (gi)z also generateIz, we have conversely, rank(
∂gi

∂zj

)

z

≥ rank

(
∂ fi
∂zj

)

z

≥ n − p i.e. rank

(
∂ fi
∂zj

)

z

= n − p for z in U0.

Conversely if rank

(
∂ fi
∂zj

)

z

= n− p for z in U′, U′ being a neighbourhood

of a0, we can find a subset{ f1, . . . , fn−p} of { f1, . . . , fr } such that rank

11
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(
∂ fi
∂Z j

)
(a)i≤n−p

j≤n
= n− p. ConsiderV′ = {zǫU′ | fi(z) = 0, i ≤ n− p}.

Let U′′ ⊂ U′ be a neighbourhood ofa0 such thatU′′ ∩ V ⊂ V′ ∩
U′′ dimV′ = p andV′ ∩ U′′ is a manifold. Hence by Proposition 2 of15

Chapter 1 ifV ∩ U′′ ⊂
,

V′ ∩ U′′, dimV = p′ < p in U′, and if b is a

simple point ofV in U′′, rank

(
∂ fi
∂zj

)
(b) = n− p′ by the converse proved

above. Thus rank

(
∂ fi
∂zj

)
(b) = n− p′ > n− p and we have a contradiction

and this proves the lemma. �

Lemma 2. If V is an irreducible analytic set and if M is the set of its
simple points and ifdimV = p thenV̇ = V − M is an analytic set and
dim V̇ < p.

Proof. For anya◦ǫV, there exists a neighbourhoodU and holomorphic
functions f1, . . . , fr onU (by Theorem 6, Chapter 1) such that the germs
( fib) generate the idealIb at any pointb in U. By the above lemma a

point b in U is a simple point if and only if rank

(
∂ fi
∂zj

)

b

= n − p i.e. a

pointz is in U ∩ V̇ if and only if determinants of all submatrices of order

≥ n − p of

(
∂ fi
∂zj

)

z

are zero. Since
∂ fi
∂zj

and hence the determinants are

holomorphic onU, the lemma is proved. �

Lemma 3. Let V = UVi be an analytic set when Vi are its irreducible
components and let the maximum dimension of V= p. Then if M=
{zǫV | z is a simple point of dimension p} then the set V1 = V − M and
the setV̇ of singular points of V are analytic sets of dimension< p.

Proof. It follows from the remark of Chapter 1 that16

V̇
⋃

i

V̇i ∪


⋃

i, j

Vi ∩ V j

 .

By Lemmma 2 proved above,̇Vi is an analytic set and hence it fol-
lows thatV̇ is an analytic set of dimension< p. Also V1 = V − M =
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⋃

dimVi<p
Vi

∪
(⋃
i, j

Vi ∩ V j

)
∪


⋃

dimV j=p
V̇ j

 is an analytic set of dimension

< p. �

Proposition 1. If V is anyC-analytic set there exists a strict partition
V =

⋃
Mi of V.

Proof. Let M1 be the set of simple points of maximum dimesionp say,
of V andM1 = ∪Mp

i ,Mp
i being the connected components ofM1. Then

M̄p
i is an analytic set and by the Lemma 2 above,V − M1 is an analytic

set of dim< p. HenceṀp
i = M̄p

i ∩ (V − M1) is an analytic set. Now
considerV1 = V − M1 · dimV1 < p. Let M2 be the set of simple points
of maximum dimensionp1, of V1. Then if M2 =

⋃
Mp1

i M−p1
i andṀp1

i
are analytic sets andV −M2 is an analytic set of dimension< p1 and so

on. We finally getV =
P⋃

i=0
(
⋃
ν

Mi
ν) and this is clearly a strict partition into

manifolds. This strict partition is a canonical one. �

Remark 1. If V is aC -analytic space thenV has a strict partition into
manifolds.

Proof. Let Vk =
⋃

Vα⊂V
and dimVα≤k

Vα, Vα being irreducible analytic sets con-

tained inV. ThenVk has a strict partition into manifolds and ifVk =

U
i
Mki is the partition, since{Vα} are locally finite, we defineMi =

lim
−−→
k→∞

Mki and it can be easily verified thatV = UMi is a strict partition 17

in to manifolds. �

Examples. 1. LetV ⊂ C3
xyt be given by

V =
{
zǫC3

xyt

∣∣∣x(x2 − y2 − t) = 0,V(x2 − y2 − t) = 0
}
.

Then clearly ifM1 = Ct and M2 = V − Ct,V = M1 ∪ M2 is the
canonical strict partition into manifolds. But this is not astratifi-
cation sinceṀ2 = {0} is not a union of manifolds in the partition.
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2. LetV = V1 ∪ V2 ∪ V3, where

V =
{
zǫC5

xytrs

∣∣∣x2 − y2 − t2 = 0, r = s= 0
}
,

V2 =
{
zǫC5

xytrs

∣∣∣x = y = r = 0
}

and V3 =
{
zǫC5

xytrs

∣∣∣t = y = s= 0
}
.

Then if

M0
1 = {0},M

2
1 = V1 − {0},M

2
2 = V2 − {0},

M2
3 = V3 − {0},V = M0

1 ∪


3⋃

i=1

M2
i



is the canonical strict partition into manifolds and clearly this is a strat-
ification.

Notation. In what follows, a partition into manifolds of an analytic set
V shall be written asV = ∪Mk

ν is a manifold of dimensionk andMk =

∪Mk
ν is the union of all manifolds of dimensionk.

Lemma 4. Let V be an analytic set and V= ∪Mh
ν be a strict partition

into manifolds and V= ∪Sk
µ, a stratification.Then the following are

equivalent.

(1) Sh
ν ∩ Mk

µ , φ⇒ Sh
ν ⊂ M

k
µ18

(2) Sh
ν ∩ Mk

µ , φ⇒ Sh
ν ⊂ Mk

µ (i.e. {Sk
µ} is a refinement of{Mk

ν}).

Proof. Obviously (2)⇒ (1). Conversely suppose that (1) holds. Let
z ∈ Mk

µ ∩ Sh
ν . Then there is a neighbourhoodU of z such thatU ∩

Mk
µ = U ∩ M

k
µ. SinceSh

ν ⊂ M
k
µ, it follows thatU ∩ Sh

ν ⊂ U ∩ Mk
µ. If

A = {z ∈ Sh
ν

∣∣∣z ∈ Mk
µ} then this proves thatA is open inSh

ν . If zν ∈ A and
zν → zo ∈ Sh

ν , let if possible,z0 < Mk
µ and letz0 ∈ Ml

λ
, (l, λ) , (k, µ).

Then by the same argument as above there is a neighbourhoodU0 of z0

such thatU0 ∩ Sh
ν ⊂ U0 ∩ Ml

λ
but then there arezν ∈ Ml

λ
∩ Mk

µ and we
have a contradiction. This proves thatA is closed and hence that lemma
is proved. �
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Definition 1. For an analytic setV, a stratificationV = ∪Sk
µ is defined

to be a narrow stratification if for every open setU of V, the connected
components ofSk

µ ∩ U form a stratification ofV ∩ U.

Remark 2. An arbitrary stratification may not be a narrow stratification.
For example, letV = C2

xy. Consider the stratificationM1 =
{
z ∈ C2

xy

∣∣∣x =
0
}

andM2 = V−M1. Consider the pointa = (1, 1) ∈ M2. Let f : C2
xy→

Cn be a bolomorphic map.n sufficiently large, such that

(1) f is proper

(2) f (z1) , f (z2) if (z1, zo) , (0, a)

(3) f (a) = f (0) and 19

(4) rank (d f)(z) = 2 for anyz∈ C2
xy.

Then f (C2
xy) is an analytic set and ifM1 = f (M1),N2 = f (M2 − {a})

then f (C2
xy) = N1 ∪ N2 is a stratification off (C2

xy) but it is not a narrow
stratification. For ifU is a sufficiently small neighbourhood off (a), then
f −1(U) = U1 ∪U2,U1 ∩U2 = φ, whereU1 andU2 are neighbourhoods
of 0 anda respectively and henceN2∩U has two connected components
f (U1 ∩M2) and f (U1 ∩M2) andU ∩ f (V) = (N1 ∩U)∪ f (U1 ∩ M2) ∪
f (U2 ∩ M2) is not a stratification.

Proposition 2. If V is aC- analytic set and V= ∪Mi
r is a strict partition

into manifolds there exists a narrow stratification V= ∪Sk
µ which is a

refinement of(Mi
r).

Proof. We shall assume that there exist integersn0 > n1 > . > nk with
the following properties

(1) for everyi ≤ k, there exists an analytic setVi+1 ⊂ V with V0 = V,
dim .Vi+1 < ni and dimVi+1 = ni+1 if i < k with

(2) V−Vi+1 =
i⋃

j=o
S

nj
ν where (S

nj
ν ) is a locally finite family of connected

manifolds andSh
r ∩ Sk

s = φ if (h, r) , (k, s).S
h
r andṠh

r are analytic
sets forh ≥ ni and if for h ≥ k ≥ ni andU open,Sh

r,r ′ , Sk
s,s′ are
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connected components ofSh
r ∩ U and Sk

s ∩ U respectively, then
Sh

r,r ′ ∩ Sk
s,s′ , φ⇒ Sh

r,r ′ ⊂ Sk
s,s′ ,

(3) for h ≥ ni ,Sh
r ∩ M

k
s , φ⇒ Sh

r ⊂ M
k
s.

For k = 0, the above statement is trivial. Assuming that the result holds
for k = r − 1 we shall prove it fork = r. �

Let dimVr = nr < nr−1 and letMnr = ∪Mnr
ν be the set of simple20

points ofVr of dimensionnr , whereMnr
ν are its connected components.

By Lemma 3 above,M
nr

ν and Vn − Mnr are analytic sets. We define
Wi

r+1, i = 1, 2 as follows.
W1

r+1, is the set ofz ∈ M̄nr such that there is a neighourhoodU

of z and irreducible component
∑

of U ∩ S
h
ν with h ≥ nr such that

0 ≤ dimz
∑
∩M

n
r < nr ; W2

r+1 is the set ofzǫM
nr such that there is a

neighbourhoodU of z and an irreducible component
∑

1 of U ∩ M
k
µ, k

andµ arbitrary, such that 0≤ dimz U ∩
∑

1∩M
nr
< nr .

Let Wr+1 = W′r+1 ∪W2
r+1. Since (Mk

µ) and (Sh
ν), h > nr are locally

finite, W′r+1,W
2
r+1 and henceWr+1 are anaytic sets. More over by Propo-

sition 2 of Chapter 1, dimWr+1 < nr . HenceSnr
ν = Mnr

ν − Wr+1 are
connected manifolds andS

nr

ν = M
nr

ν andṠnr
ν = (Wr+1 ∩ M̄nr

ν ) ∪ Ṁnr
ν are

analytic sets. Also if in an open setU we haveU ∩ Snr
ν,ν′
∩ S

k
µ,µ′ , φ

for k ≥ nr then dimU ∩ S
nr

ν,ν′ ∩ S
k
µ,µ′ = nr by definition ofW′r+1. Hence

Snr
ν,ν′
⊂ S

k
µ,µ′ i.e. the property (2) is satisfied fork = r. Moreover if

Snr
ν ∩M

k
µ , φ for somek, it follows in the same way from the definition

of W2
r+1, that dimS

nr

ν ∩ M
k
µ = nr and henceSnr

ν ⊂ M
k
µ. Hence we prove

by induction the existence of a sequencen0 > n1 > · · · > nk satisfy-
ing the above three properties and hence there is a norrow stratification
V = ∪Sk

µ which in fact satisfies the condition of Lemma 4 and hence it
is a refinement of (Mk

µ).

Remark. (3) Let ∧1, . . . ,∧k be strict partitions ofν,∧i given byV =⋃
h,ν

Mi,h
ν for eachi. Then there exists a stratificationV = ∪Sk

µ of V21

which is a refinement of∧i for eachi. In the above proof we have
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only to changeW2
r+1 to

i⋃
i=1

W′ir+1, whereW′ir+1 is the set of points

z in M
nr for which there is a neighbourhoodUz and a connected

∑

component of someUz∩ M
i,h
ν such that 0≤ dimz

∑
∩M

nr
< nr .

(4) Proposition 2 can also be proved without using Lemma 4. We

have only to changeW2
r+1 to W′2r+1 =

{
zǫM

nr
| There is a neigh-

bourhoodU of z and a component
∑

1 in U of someM
k
µsuch that

0 ≤ dimz M
nr
∩

∑
1 < nr or a comnonent

∑′
1 in U of someṀk

µ such

that 0≤ dimz
∑′

1∩M
nr
< nr

}
. Then it follows immediately that if

V =
⋂

Sk
ν is the stratification obtained as in the proof of Proposition

2, Sk
ν ∩ Mh

µ , φ⇒ Sk
ν ⊂ Mh

µ

Lemma 5 (Whitney). Let V be an analytic set of constant dimension
p,V ⊂ Cn and let aǫV. Then there exists a neighbourhood U of a and
finite number of vector fields v1, . . . , vq defined on U such that

(i) vk(z) = 0, 1 ≤ k ≤ q, if z is a singular point of V∩ U and

(ii) v1(z), . . . , vq(z) span the tangent space T(V, z) if z is a simple point
of V∩ U. We give here two proofs of this lemma.

1st Proof. By Cartan’s coherence theorem, there exists a neighbour-
hood U of a and a finite number of holomorphic functionsf1, . . . , fq
such that the germs off1, . . . , fq at any pointb in U, generate the ideal
of germs of holomorphic functions atb, vanishing onVb. It follows
from Lemma 1 thatz in V is a simple point ofV if and only if rank(
∂ fi
∂zj

)

z

= n− p = r. 22

In what follows λ = (λ1, . . . , λn), 1 ≤ λ1 < · · · < λr ≤ n ν =

(ν1, . . . , νr), 1 ≤ ν1 < ν2 < · · · < νr ≤ r, andµ = (µ1, . . . , µr+1),

1 ≤ µ1 < µ2 < · · · < µr+1 ≤ n. Also, we putDλν = det

[(
∂ fλ j

∂zνi

)]
and

µ(i) = (µ1, . . . , µ̂i , . . . , µr+1) [a hat over a term means that the term is
omitted].
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We now define vectorsvλµ as follows

vλµ = (vλµk )ǫCn where

vλµk = 0 if k < µ

and = (−1)i−1Dλµ(i) if k = µi .

Then obviouslyvλµ(z) = 0 for anyzwhere rank

(
∂ fi
∂zj

)

z

< r i.e. for any

z in the set of singular points ofV ∩U.
We shall prove the condition (ii) for the vectors (vλµ). Let z be a

simple point ofV. Thenvλµ ∈ T(V, z) if and only if 〈d f j (z), vλµ(z)〉 = 0
for 1 ≤ j ≤ q.

But 〈d f j (z), vλµ(z)〉

=

n∑

k=1

(
∂ f j

∂zk

)
(z)vλµk (z)

=

r+1∑

i=1

∂ f j

∂zµi
(z)(−1)i−1Dλµ(i)

and this is nothing but the determinant



∂ f j

∂zµ1

∂ f j

∂zµ2
· · ·

∂ f j

∂zµr+1

∂ fλ1

∂zµ1

∂ fλ1

∂zµ2
· · ·

∂ fλ1

∂zµr+1
...

...
...

∂ fλr

∂zµ1

∂ fλr

∂zµ2

∂ fλr

∂zµr+1


23

If j ∈ λ this is clearly zero and ifj < λ this is the determinant of a

submatrix of order (r + 1) of the matrix

(
∂ fi
∂zj

)
and hence is zero. Thus

(vλµ)ǫT(V, z) for each pair (λ, µ). It now remains to prove that these
vectors spanT(V, z). The dimension ofT(V, z) = dimz V = p. Now there
exists a pair (λ, ν) and a neighbourhoodU′ of zsuch thatDλν(ζ) , 0 for
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ζǫU′. Then define for eachρ < ν, µρ as the (r + 1)-tuple which contains
the integers (ν1, . . . , νr , ρ). Thenvλµ

ρ

ρ = ±Dλν. Hence ifv1, . . . , vp are the
vectors defined byvλµ

ρ

, ρ < ν, v1, . . . vp are linearly independent since
their projections onCzλ′1

, . . . , zλ′n−r
λ′i < ν are independent and hence span

T(V, z).

2nd Proof (R. Narasimhan). We use hero the properties of sheaves of
germs of holomorphic functions on a manifold. LetV be an analytic set
of constant dimension in an open setΩ in Cn. Let S ⊂ V be the set of
singular points ofV. Let F be the sheaf (onΩ) of germs of holomorphic
mappingsg = (g1, . . . , gn) into Cn such that a)g(y) = 0 for y ∈ S and

b)
∑

gi(y)
∂

∂zi
∈ T(V, y) for y ∈ V − S. We have only to prove that

F is coherant. By H. Cartan’s coherence theorem, i.e. Theorem6 of
chapter 1, for anya ∈ V, there is a neighbourhoodW(⊂ Ω) of a and
holomorphic functionsf1, . . . fr on W such that the germs off1, . . . , fr 24

at any pointb in W generate the idealIb of Vb. Then for a holomorphic
mapg : W→ Cn, gb ∈ Fb (the stalk ofF at b)for everyb if and only if

(1)
n∑

i=1
gi(z)

∂ f j

∂zi
(z) = 0, j = 1, 2, . . . , r, if zǫV ∩W and (2)gi (z) = 0, i =

1, 2, . . . , n if zǫS ∩W.
Now, if ϕ1, . . . , ϕk are holomorphic, then the sheaf of (α1, . . . , αk)

such that
∑
αiϕi = 0 on an analytic setA is a quotient of the sheaf

of relations between (ϕ1, . . . , ϕk, ψ1, . . . , ψl) where the (ψ j) generate the
ideal sheaf ofA and so is coherent. Since the intersection of finitely
many coherent sheaves is again coherent, our lemma follows.

Proposition 3. Let V be an analytic set, W, aC-analytic manifold and
f : V → W a holomorphic map. Then there exists a narrow stratifi-
cation V = ∪Sk

ν of V such that if fk,ν = f | Sk
ν, rank d fk,ν constant on

Sk
ν.

Such a stratification will be called a stratification consistent with f .

Proof. We assume that there exist integers dimV = n0 > n1 > · · · > nk

such that for eachi ≤ k, there an analytic setVi+1 ⊂ V with the following
properties.

(1) dimVi+1 < ni and dimVi+1 = ni+1 if i < k.
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(2) V−Vi+1 = ∪Sh
ν, h ≥ ni , Sh

ν being connected manifolds of dimension
h, Sh

ν ∩ Sk
µ = φ if (h, ν) , (k, µ) for which Sh

ν, Ṡh
ν are analytic sets;

furthermore,

Sh
ν ∩ S

k
µ , φ⇒ Sh

ν ⊂ S
k
µ.

(3) if fh,ν = f | Sh
ν , rank ofd fhν is constant anSh

ν . The above statement25

is trivial for k = 0.

Assuming the existence of the above sequence fork = r−1, we shall
prove it fork = r. Let dimVr = nr andMnr = the set of simple points
of Vr of dimensionnr , and letMnr − ∪Mnr

ν ,M
nr
ν being the connected

components ofMnr . By Lemma 3 above,M
nr

ν , Ṁnr
ν andVr − Mnr are

analytic sets. We defireW1
r+1,ν andW2

r+1,ν as follows.W1
r+1,ν =

{
zǫM

nr

ν |

There exists a neighbourhoodU of z and a connected component
∑

of

Sk
µ with k ≥ nr such that 0≤ dimz U ∩

∑
∩M

nr

ν < nr

}
.

Let f nr
ν = f | Mnr

ν and let the maximum rank ofd fnr
ν = kr on Mnr

ν .

ThenW2
r+1,ν =

{
zǫMnr

ν | rank(d fnr
ν )(z) < kr

}
.

Clearly by the same argument as in Proposition 2,W1
r+1,ν is an an-

alytic subset ofMnr
ν and dimW1

r+1,ν < nr . We shall now prove that

(W2
r+1,ν ∪ Mnr

ν ) and henceW2
r+1,ν is an analytic set of dimension< nr .

Since this problem is local we assumeV ⊂ Cn. By Lemma 5 above,
for everyaǫMnr

ν there exists a neighbourhoodU ⊂ Cn and vector fields
v1, . . . , vq onU such thatvi(z) = 0 for z in Ṁnr

ν U and (vi) spanT(Mnr
ν , z),

if z is a simple point ofMnr
ν ∩ U. Further, ifz is a simple point ofM

nr

ν

we may chooseU sufficiently small so that after a holomorphic change
of coordinates, if f = ( fi) and d f(z), the transformationT(V, z) →
T(W, f (z)). then if

〈d f(z), v j (z)〉 = w j(z) are vectors in T(W, f(z)), then

rank (d fnr
ν )(z) = dimension of the space spanned byw j(z).

Since (w j
i (z)) are holomorphic functions onU, there exist holomor-26
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phic functionsh1, . . . , hk on U such that

U ∩W2
r+1,ν =

{
zǫMnr

ν

∣∣∣h1(z) = · · · = hk(z) = 0
}

where (hi) are holomorphic onU. Let U ∩ Ṁnr
ν =

{
zǫU | g1(z) = . . . =

gl(z) = 0
}

where (gi) are holomorphic onU. Then

U ∩ (W2
r+1,ν ∪ Ṁnr

ν ) =
{
zǫM

nr

ν ∩
∣∣∣hi(z)g j (z) = 0, i ≤ k, i ≤ l

}

and thereforeW2
r+1,ν ∪ Ṁnr

ν is analytic. AlsoṀnr
ν is an analytic set and

henceW2
r+1,ν = clos(W2

r+1,ν∪Ṁnr
ν −Ṁnr

ν ) is an analytic set by Proposition

4 of Chapter 1. LetWr+1,ν = W1
r+1,ν ∪ W2

r+1,ν and letSnr
ν = Mnr

ν −

Wr+1,ν. ThenSnr
ν = Mnr

ν andṠnr
ν = Ṁnr

ν ∪Wr+1,ν are analytic sets and
by the definition ofW1

r+1,ν, condition (2) of the induction hypothesis is

satisfied. Further it follows from the definition ofW2
r+1,ν that rankd fnr

ν =

constant onSnr
ν where f nr

ν = f | Snr
ν and hence the proposition is proved

by induction. �

Remark 6. If V is an analytic set,W an analytic manifold andf : V →
W a holomorphic map and ifb ∈ W, Z = V ∩ f −1(b) is an analytic
set. Moreover ifV = ∪Mi

ν is a stratification ofV. consistent with the
restrictions off , then the connected componentsSi

ν, j of Z ∩ Mi
ν form a

strict partition ofZ.

Proof. By the constant rank therorem in Chapter 1,Si
ν, j is a manifold.

Let Z ∩ M
i
ν = ∪Vα, Vα being irreducible components ofZ ∩ M

i
ν.

Then if Vα ∩ Si
ν, j , φ, thenVα ∩ Ṁi

ν is proper analytic subset ofVα 27

andVα∩ Ṁi
ν = Vα−Vα∩ Ṁi

ν is connected and dense inVα. HenceS
i
ν, j =⋃

Vα
∩Si

ν, j , φVα is an analytic set and so iṡSi
ν, j = S

i
ν, j ∩ (

⋃
k, j

S
i
ν,k ∪ Ṁi

ν).

But theSi
ν, j do not, in general, form a stratification ofZ, as shown by

the following: �
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Example 3.Let V be the analytic set inC3
xyt given byV =

{
zǫC3

xyt

∣∣∣y =

x2
}
. Consider the stratificationM1 = Ct andM2 = V−Ct. It is consistent

with the restrictions of the holomorphic mapf : C3
xyt → C given by

f (z) = vt. f −1(0) = Z = Ct ∪ (M2 ∩ t = 0) and this is clearly not a
stratification.

Definition 2. If V is an analytic set inΩ ⊂ Cn, a function f : V → C is
said to be strongly holomorphic if for everyaǫV, there is a neighbour-
hoodU ⊂ Cn and a holomorphic functionF onU such thatF | V∩U =
f | V ∩U.

Proposition 4. Let V and W be analytic manifolds and f: V → W a
strongly holomorphic map. Then there exists a stratification V = ∪Sk

µ

of V such that rank df= constant on Skµ.

Proof. Let L◦ = V and let max rank df onV = r◦. Let L1 = the set of
points ofV such that rankd f < r◦ on L1. Then if dimV = n◦, L1 is an
analytic set of dimensionn1 < n0. Let max rankd f = r1 < r◦ on L1 and
so on. We get a finite sequence

V = L0 ⊃ L1 ⊃ · · · ⊃ Lk, dim Lk = 0.

max rankd f = r i on Li , dimLi = ni ,

n0 > n1 > · · · > nk = 0, r0 > r1 > · · · > rk.

Let∧i be a strict partition ofV as follows.28

(V − Li) is an analytic set andLi is an analytic set. Let(V − Li) =
∪Mi

ν andLi = ∪Si
ν be the respective stratifications of(V − Li) andLi .

ThenV = (∪Mi
ν − Li) ∪ (∪Si

ν) is a strict partition ofV and we define
∧i to be that strict partition. Then, by Remark 2 following Proposition
2 above, we have a stratificationV = ∪Sk

µ which is a refinement of each
∧i . If Sk

µ ⊂ Li and ifSk
µ∩Li+1 , φ, thenSk

µ ⊂ Li+1 since the stratification
is a refinement of∧i+1. If Sk

µ ⊂ Li . andSk
µ ∩ Li+1 = φ. rankd f ≤ r i

on Sk
µ and sinceSk

µ ∩ Li+1 = φ, rankd f = r i on Sk
µ, i.e. V = ∪Sk

µ is a
stratification with the required properties. �
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Remark 7. The above proposition can also be proved directly by chang-
ing W2

r+1,ν in the proof of Proposition 3, to

W
′2
r+1,ν =

{
zǫMnr

ν

∣∣∣ rank (d f)(z) < max rank (d f) on Mnr
ν

}

and then by defining

Wr+1,ν =W′r+1,ν ∪W′2r+1,ν andSnr
r = Mnr

ν −Wr+1,ν.

We expect to prove in the next chapter the following important the-
orem of Whitney.

Theorem.Let V be an analytic set of dimension k and M manifold of
dimension m< k such that M⊂ V andM is an analytic set. Then there
exist analytic sets Wa,Wb of dimensions< m,Wa,Wb ⊂ M such that if
zǫM −Wa. the pair(M,V) satisfies the condition (a) [stated in Chapter
1] of Whitney at az and if a z∈ M −Wb, the pair (M,V) satisfies the 29

condition(b) of Whitney at z.

If we assume the above theorem it is easy to prove the Whitney’s
theorem stated in Chapter 1. We use the same reduction process as
above.

Theorem.For an analytic set V, there exists stratification V= ∪Sk
µ

which is(a) and(b) regular.

Proof. We prove by induction the existence ofa someone of positive
integers

n0 > n1 > · · · > nk

such that for eachi ≤ k, there exists an analytic setVi+1 in V such
that dimVi+1 < ni and dimVi+1 = ni+1 if i < k. which have. further
following properties.

(1) V − Vi+1 = ∪Sk
µ, k ≥ ni whereSk

µ are connected manifolds with
Sk
µ ∩ Sh

ν = ∅ if (kµ) , (h, µ), Sk
µ ∩ S̄h

ν , ∅ ⇒ Sk
µ ⊂ S−h

ν , andS̄k
µ and

Ṡk
µ are analytic sets.

(2) Forh > k ≥ ni , if Sh
ν ⊂ S̄k

µ, the pair (Sh
ν , S̄

k
µ) is (a) and (b) regular.
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Assuming the existence of sucha sequance forK = r − 1. let the di-
mension ofVr = nr < nr−1. Let Mnr = ∪Mnr

ν be the set of simple points
of Vr of dimensionnr , Mnr

ν being its connected of components. Define
the setW1

r+1,ν as in proposition 3. Now ifMnr
ν ⊂ S̄k

µ, there are analytic

setsWk,µ
a,ν andWk,µ

b,ν in Mnr
ν such that for anyz ∈ Mnr

ν −Wk,µ
a,ν , (Mnr

ν , S̄−k
µ )

is (a) regular atzand forz ∈ Mnr
ν −Wk,µ

b,ν (Mnr
ν , S̄

k
µ) is (b) regular atz. Let30

W2
r+1,ν =

⋃
Mnr
ν ⊂S̄k

µ

(Wk,µ
a,ν ⊂ Wk,µ

b,ν ). ThenW2
r+1,ν is an analytic set of dimen-

sion< nr . Let Wr+1,ν = W1
r+1,ν ∪W2

r+1,ν andSnr
ν = Mnr

ν −Wr+1,ν. Then
clearly conditions (1) and (2) of the induction hypothesis are satisfide
and the theorem is proved by induction. �

Proposition 3′. In proposition 3 we can form a stratification which is
also a whitney stratification.

We have only to take, forWr+1,ν, Wr+1,ν ∪W2
r+1,ν, whereW2

r+1,ν is as
in the above proof.



Chapter 3

Whitney’s Theorems

1 Tangent Cones
31

In what followsGn,r will denote the Grassmann manifold ofr − planes
throughO in Cn. We shall assume the classical result thatGn,r is a com-
pactC-analytic manifold.Gn,1 = P

n−1 is the complex proiective space.
If T is anr-plane inCn, T∗ = K(T) will denote the corresponding point
in Gn,r and for a vectorv , 0 in Cn, K(v) will denote the corresponding
point in Pn−1. If α ∈ Gn,r ,T(α) will denote ther-plane inCn such that
K · T(α) = α. If r1 < r2 and ifα1 ∈ Gn,r1, α2 ∈ Gn,r2, α1 ⊂ α2 will mean
thatT(α1) ⊂ T(α2).

Definition 1. Let V be an analytic set anda, a point in V; the tangent
cone ata, denoted byC(V, a) is difined to be

{
v ∈ Cn|. There is a se-

quence (bν) in V, bν , a, andλν in C such that Lim
ν→∞

λν(bν − a) = v
}
.

Remark 1. It follows trivially that if a is a simble point ofV, C(V, a) =
T(V, a), i.e. the tangent space toV ata.

Definition 2. With the above notation, we defineC∗(V, a) = K[C(V, a)−
0] ⊂ Pn−1.

(3) If v1, . . . , vr are vectors inCn we write dep. (v1, . . . , vr ) whenv1, . . . ,

vr areC-linearly dependent.

25
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(4) If a ∈ Cn, we defineC̃n
a = {(z, v) | z ∈ Cn, v ∈ Pn−1 and if K(ω) = v,

dep. (ω, z− a)}. ClearlyCn × Pn−1 ⊃ C̃n
a ⊃ {a} × P

n−1 andΠ1 :
(C̃n

a−{a}×P
n−1)→ Cn is injective. AlsoC̃n

a = clos(C̃n
a−{a}×P

n−1).

Remark 2. C̃n
a is an analytic manifold of dimensionn and{a} × Pn−1 is32

a submanifold of dimensionn− 1 of C̃n
a.

Proof. If (ω1, . . . , ωn) denote homogeneous coordinates onPn−1, C̃n
a =

{(z, ω) ∈ Cn × Pn−1 | ziω j = ωizj}. Let (z0, ω0) ∈ C̃n
a. We may assume

ω0 = (ω0
1, . . . , ω

0
n) whereω0

1 , 0, Choose a neighbourhoodU of (z0, ω0)

such that if (z, ω) ∈ U, thenω1 , 0. Then for any (z1, ω) ∈ U ∩ C̃n
a, we

have

z1
ω j

ω1
= zj , j ≥ 2, i.e. U ∩ C̃n

a = {(z1, ω) ∈ Cn × Pn−1 | zj =
ω j

ω1
· z1, j ≥ 2},

and (z1,
ω2
ω1
, . . . ,

ωn
ω1

) give the local coordinages inU ∩ C̃n
a and this proves

the remark. �

Definition 5. If V is an analytic set anda ∈ V, we defineV∗∗a = C̃
n
a ∩

(V × Pn−1).

(6) V∗a = closure of [V∗∗a − {a} × P
n−1] in Cn × Pn−1.

Remark 3. Since{a} × Pn−1 ∩ V∗∗a is an analytic set, it follows from
Proposition 4, Chapter 1 thatV∗a is an analytic set.

Remark 4.Π1 : (V∗∗a − {a} × P
n−1) → V is injective and dim(a,v) V∗a =

dima V, where (a, v) ∈ V∗a This is obvious since

V∗∗a − {a} × P
n−1 = {(z,K(z, a)) | z, a, z ∈ V} .

Proposition 1. V∗a ∩ {a} × P
n−1 = a×C∗(V, a).

Proof. Let v ∈ C∗(V, a) andv = K(ω). Then there is a sequence{zν} in
V, zν , a andzν → a and a sequence{λν} in C such thatλν(zν −a)→ ω.
Consider the sequence (zν,K(zν −a)) in V∗a. Obviously (zν,K(zν −a))→33

(a, v). Conversels if (zν, vν) → (a, v).vν = K(ων), then dep (zν − a, ων)
and hence we have a sequence{λν} in C such thatλν(zν−a)→ ω, where
K(ω) = v. �
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Proposition 2. C∗(V, a) is an analytic set anddima V = dimΩ∗(V, a)+1.

Proof. Since the problem is local, we may assume dim.V = dima V =
p. Then by Remark 4 above, dimV∗a = p and dimC∗(V, a) ≤ p − 1, by
Proposition 4 of Chapter 1. Also dim{a} × Pn−1 = n − 1 and hence it
follows from Proposition 3 of Chapter 1 that dimC∗(V, a) ≥ p+ (n−1)−
n = p− 1, i.e. dim.C∗(V, a) = p− 1 and this proves the Proposition.

In fact we shall use the following theorem and prove thatC∗(V, a)
is an algebraic variety inPn−1. [See [2] for a proof of the following
theorem.] �

Theorem (Remmert-Stein)..If Ω ⊂ Cn is an open set and if A⊂ Ω is
an analytic set,dim A ≤ k − 1 and if B ⊂ Ω − A is an analytic set of
constant dimension k, then̄B is an analytic set inΩ anddim B = k.

Theorem (Chow)..Any analytic set inPn−1 is an algebraic set.

Proof. Let Π : Cn − {0} → Pn−1 be the natural map. Then ifV is an
analytic set inPn−1, dimV ≥ 0, thenW = Π1(V) is an analytic set
in Cn − {0} and dimW = dimV + 1 > 0. Hence by the theorem of
Remmert and Stein stated above,W̄ is analytic inCn. Obviously 0∈ W̄.
Let U be a convex neighbourhood of 0 andf 1, . . . , f k be homomorphic
functions onU such thatU ∩ W̄ = {z ∈ U | f i(z) = 0, 1 ≤ i ≤ k}. Let
f i(z) =

∑∞
r=1 Pi

r (z), wherePi
r (z) is a homogeneous polynomial of degree34

r. Sincez∈W⇒ λz ∈ W̄, we have,

U ∩W =
{
z ∈ U | λz ∈ U ∩W, | λ |≤ 1

}

=

{
z ∈ U |

∞∑

r=1

λr Pi
r(z) = 0, 1 ≤ i ≤ k, |λ| ≤ 1

}
.

=

{
z ∈ U | Pi

r (z) = 0, 1 ≤ i ≤ k, r ≥ 1
}
.

Now by Hilbert’s basis theorem, there exist a finite number ofpoly-

nomials,P1, . . . ,Pm among
{
Pi

r

}
, 1 ≤ r < ∞, 1 ≤ i ≤ k, such that

{
z ∈ U | Pi

r(z) = 0, 1 ≤ i ≤ k, r ≥ 1
}
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=

{
z∈ U | P j(z) = 0, 1 ≤ j ≤ m

}
.

ThusU ∩ W̄ is the set of zeros of a finite number of homogeneous
polynomials. HenceΠ(W) = V is an algebraic set inPn−1. �

Corollary. In particular, C∗(V, a) is an algebraic set inPn−1.

Definition 7. If f is a holomorphic function in a neighbourhood ofa ∈
Cn, we have the series

f (a+ z) = f 0 + f 1(z) + f 2(z) + · · ·

where f i(z) is a homogeneous polynomial of degreej in z1, . . . , zn. if m
is the smallest number such thatf m(z) ≡ 0, then f is said to have order
m ata and for any suchf , we definef ∗a (z) = f m(z) wherem is the order
of f ata.

Remark 5. In fact Whitney [6] has proved that ifa ∈ V. V being an
analytic set inCn and if Ia is the ideal of holomorphic germs vanishing35

on Va, then there is a neighbourhoodU of a such that

{
z ∈ U | f ∗a ( f ) = 0 for f ∈ fa

}
= C(V, a) ∩ U.

2 Wings

Definition 8. Let V be an analytic set,M, a manifold, M ⊂ V. Let
W ⊂ V be an analytic set with dimW < dimV andU, an open set inM
and l, a positive real number. Let̃Z = U × [0, 1[Z = U×]0, 1[. Then
we define a wing stretching fromU into V −W to be a setB ⊂ V and
a homeomorphismF of Z̃ onto B for same 1> 0, whereF satisfies the
following conditions.

(1) For everyλ, 0≤ λ < l, Fλ(z) = F(z, λ) is a biholomorphic map from
U ontoFλ(U).

(2) F is differentiable inλ and
∂F
∂λ

is continuous inz.
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(3) If z1, . . . , zm are local coordinates inU, zj = x j + iy j , wherex j and

y j are real, then the vectors
∂F
∂x1

,
∂F
∂y1

, . . . ,
∂F
∂xn

,
∂F
∂yn

,
∂F
∂λ

in Z are

linearly independent overR.

(4) F0 | U = identity map andFλ(U) ⊂ V −W for λ > 0.

Remark 6. If F̃ : U × [0, 1[→ V defines a wing and if (z1, . . . , zm) are

local coordinates inU,
∂F
∂zk

is continuous iñZ, for 0≤ λ < l.

Proof. We have only to check the continuity at points onU × {0}. Since
F̃ is continuous onU × [0, 1[, it is uniformly continuous onU′ × [0, δ],
where Ū′ ⊂ U and 0 < δ < l, i.e. Fλ → F0 uniformly on U′ as

λ → 0. Hence by Weierstrass’ theorem it follows that
∂Fλ

∂zk
→

∂F0

∂zk
for

1 ≤ k ≤ n. �

Remark 7. Let zi ∈ Fλi (U) andzi → z ∈ F0(U). ThenT(Fλi (U), zi ) → 36

T(F0(U), a).

Proof. It follows from conditions (1) and (4) in the definition of a wing,
that

T(Fλi (U), zi) = dFλ j

[
T(U, z′i )

]

whereFλi (z
′
i ) = zi .

From the Remark 6 above, it follows thatdFλ is continuous on [0, l[
and hence follows the proof. �

Lemma 1. Let V be an analytic set,0 ∈ W ⊂ V, W being an ana-
lytic subset of V, such that W0, V0 are irreducible anddim0 W = m <

dim0 V = r. Then there exists a neighbourhood U of0 and a basis
(z1, . . . , zn) in U such that the basis is proper for V0 as well W0.

Proof. Recalling Proposition 3 of Chapter 1, we have only to find a
basis (z1, . . . , zm, . . . , zr , . . . , zn) in a neighbourhoodU of 0 such that

(1)


{z ∈ U | z1 = 0, . . . , zm = 0} ∩W = {0}

and {z∈ U | z1 = 0, . . . , zr = 0} ∩ V = {0}.
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Let a0 ∈ V, b0 ∈ W, a0
, 0, b0

, 0 anda0, b0 simple points ofV
andW respectively. Choose a linear forml1(z)(=

∑n
j=1 λizj) such that

l1(a0) , 0, l1(b0) , 0. Then by a holomorphic change of coordinates,
we may supposel1(z) = z1 and we have for some neighbourhoodU1 of
0, W1 = {z ∈ U1 | z1 = 0} ∩W is an analytic set of dimensionm− 1 and37

V1 = {z ∈ U1 | z1 = 0} ∩ V} is an analytic set of dimensionn − 1. Let
W1 =

⋃
α W1

α, V1 =
⋃
β V1

β
, W1

α andV1
β

being irreducible components

of W1 and V1 respectively. Choosea1
α, b1

β
, simple points ofW1

α, V1
β

respectively and a linear forml2(z) such thatl2(a1
α) , 0, l2(b1

β
) , 0

for all α andβ andz1 andl2(z) are linearly independent. By a change of
coordinates letl2(z) = z2 and then there exists a neighbourhoodU2 ⊂ U1

of 0 such thatW2 = {z ∈ U2 | z1 = z2 = 0} ∩W is an analytic set of
dimensionm− 2 and{z ∈ U2 | z1 = z2 = 0} ∩ V is an analytic set of
dimensionr−2. Proceeding this way, we finally have a basis (z1, . . . , zn)
in a neighbourhoodU of 0 such that conditions (1) are satisfied. �

Remark 8. In the above lemma, if 0 is a simple point ofW, then there
exists a basis (zi , . . . , zn) in a neighbourhoodU of 0 such that the basis
is proper forV0 and

U ∩W =
{
z ∈ U | zm+1 = . . . = zn = 0

}
.

Lemma 2. Let 0 ∈ M ⊂ V, where M is a manifold of dimension m, V
is an analytic set with the germ V0 irreducible anddim0 V = r > m.
Let W ⊂ V be an analytic set withdimW < r. Then there exists a
neighbourhood U of0, an analytic set V′ ⊂ V in U such that

(1) U ∩ M ⊂ U ∩ V′

(2) dimV′ = m+ 1

(3) dimV′ ∩W ≤ m.

Proof. By Remark 8, there is a neighbourhoodU and coordinates (z1,38

. . . , zn) which are proper forV0 and all irreducible components ofW0

and M ∩ U =
{
z ∈ U | zm+1 = . . . = zn = 0

}
. Let Πr denote the

projection (z1, . . . , zn) → (z1, . . . , zr ). Let z0 ∈ Πr(U) be such thatz0 <
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M, z0 < Πr(W). (This is possible since dimW < r, m< r). Let N be the
(m+ 1)-plane spanned byM and the complex line defined by 0 andz0.
ThenΠ−1

r (N) ∩ V is an analytic set. Also sinceΠ−1
r (a) ∩ V is finite for

everya in Πr(U), dimΠ−1
r (N) ∩ V ≤ m+ 1. Hence ifV′ = Π−1

r (N) ∩ V,
dimV′ = m+ 1 and clearlyV′ satifies the conditions (1), (2) and (3) of
the lemma. �

Proposition 3. Let a∈ M ⊂ V, M being a manifold of dimension m and
V, an analytic set with Va irreducible anddima V = r > m. Let W⊂ V
be an analytic set,dimW < r. Then for any neighbourhoodΩ of a in M,
there is an open set U⊂ Ω ⊂ M (U note necessarily a neighbourhood
of a) and a wing stretching from U into V−W.

Proof. For simplicity, we may assumea to be 0, By Remark 8 and
Lemma 2 above, there is neighborhoodUn

1 of 0 and coordinatesz1, . . . ,

zn in U, which are proper forV0 such thatM ∩ Un
1 = {z ∈ Un

1 | zm+1 =

. . . = zn = 0}, and an analytic setV′ in Un
1 such that

(1) dimV′ = m+ 1,

(2) Un
1 ∩ M ⊂ Un

1 ∩ V′ ⊂ Un
1 ∩ V and

(3) dimV′ ∩W ≤ m.

We shall prove that there is a wing stretching from an open setin Ω
into V′ −W.

We assume thatV′0 is irreducible and that the basis (z1, . . . , zn) is
proper forV′0 and satisfies the condition of Remark 8. ThenUn

1 ∩ M
is the analytic set given by{z ∈ Un

1 | zm−1 = . . . = zn = 0}. Let I be 39

the ideal of germs at 0 of holomorphic functions vanishing onV′0 and
let η : θn → θn/I be the natural projection. Then with the notation of
Theorem 5 of Chapter 1, there exists a distinguished polynomial Pm+2[x]
in θm+1[x] such thatPm+2 is the minimal polynomial ofη(zm+2) over
θm+1, η(zm+2) generating the quotient field ofθn/I over the quotient field
of θm+1. Let δ be the discriminant ofPm+2. Let C in Πm−1(Un

1) be the
analytic set given by

C =

{
z ∈ Πm+1(Un

1) | δ(z) = 0 or z ∈ Πm+1(V′ ∩W∩Un
1)

}
.
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Then dimension ofC = m and if D = (C − M) ∩ M, by Proposition
4 of Chapter 1, dimD < m. Hence given an open setΩ < M, there is an
open setUm

1 ⊂ Ω such thatUm
1 ∩ D = φ, i.e. (Um

1 × {0}) ∩ (C − M) = φ.
Hence there is an open setU1

1 in C, 0 ∈ U1
1, such that (Um

1 × U1
1) ∩

(C − M) = φ. This implies that (i) if (z1, . . . , zm+1) ∈ Um
1 × U1

1 and
zm+1

, O, thenδ(z1, . . . , zm+1) , 0 and (z0
1, . . . , zm+1) < (C − M).

Let z̃0 = (z0
1, . . . , z

0
m) ∈ Um

1 . Let z0 = (z0
1, . . . , z

0
m,O, . . . ,O) ∈ Cn.

By Proposition 1 of Chapter 1,V′z0
=

⋃k
i=1 Vi

z0
whereVi

z0
are irreducible

germs of analytic sets andVi
z0
1

⋃
j,i V j

z0
for any i. We assume thatVi

z0

are germs of analytic sets, defined by analytic setsVi in a neighbourhood
Un

2 of z0, Πm=1(Πn) ⊂ Πm
1 × Π

1
1 and thatΠm+1(V′ ∩ Un

2) = Πm+1(Πn
2).

Now z0 is an isolated point ofUn
2 ∩ V1 ∩ Π−1

m+1(̃z0,O). Hence there is
an open setΠn−m−1

1 in Cn−m−1, 0 ∈ Un−m−1
1 , such that (Um

1 × U1
1× ⊃

Πn−m−1
1 ) ∩ V1 ∩ Π−1

m+1(̃z0, 0) is empty and hence there is an open set40

Um
2 × Π

1
2 = Um

1 × U1 such that

(i) (̃z0, 0) ∈ Um
2 ×U1

2 andΠ−1
m+1(z) ∩ (Um

2 ×U1
2 × ∂Un−m−1

1 ) ∩ V1 = φ

if z∈ Um
2 × U1

2,

(ii) Πm+1; (Um
2 × U1

2 × Un−m−1
1 ) ∩ V1 → Um

2 × U1
2 is surjective. It

follows thatΠm+1 : (Um
2 × U1

2 × Un−m−1
1 ) ∩ V1 → Um

2 × U1
2 is

proper and surjective.

Let

X = (Um
2 × U1

2 × Un−m−1
1 ) ∩ V1 and

Um
2 × U1

2 = Um+1 =

{
z ∈ Cm+1

∣∣∣
∣∣∣zi − z0

i

∣∣∣ < ρi , 1 ≤ i ≤ m,
∣∣∣zm+1

∣∣∣ < ρm+1

}
.

Since

z ∈ (Um+1 − M) ⇒ δ(z) , O,Πm+1 :
[
X − Π−1

m+1

(
M ∩Um+1

) ]
→ (Um+1 − M)

is a covering ofp sheets say. Moreover, sinceV1
z0 is irreducible, we may

assume that
[
X − Π−1

m+1

(
M ∩Um+1

) ]
is connected.

Let

Y0 =

{
z ∈ Cm+1

∣∣∣
∣∣∣zi − z0

i

∣∣∣ < ρi , 1 ≤ i ≤ m, 0 <
∣∣∣zm+1

∣∣∣ < ρ1/p
m+1

}
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and Y =
{
z∈ Cm+1

∣∣∣
∣∣∣zi − z0

i

∣∣∣ < ρi , 1 ≤ i ≤ m,
∣∣∣zm+1

∣∣∣ < ρ1/p
m+1

}
,

and consider the covering (Π′
∣∣∣Y0) : Y0→ (Um+1 − M), whereΠ′ : Y→

Um+1 is given by

Π′(z1, . . . , zm+1) = (z1, . . . , zm, z
p
m+1).

Then there is a mapf0 : Y0 → X − Π−1
m+1(Um+1 ∩ M) such that

Π′ = Πm+1 ◦ f0 on Y0. By Riemann’s extension theorem,f0 : Y0 →

Um+1 × Un−m−1
1 can be extended to a holomorphic function onY, the

extention being denoted byf , and sinceX is closed inUm+1 × Un−m−1
1

andY0 is dense inY, it follows that f (Y) ⊂ X andΠ′ = Πm+1 ◦ f on Y.
Also, sinceΠ′ andΠm+1|X are proper,f is proper andf (Y) = X. this 41

implies that

X ∩Π−1
m+1(z1, . . . , zm, 0) = (z1, . . . , zm, 0, . . . , 0) = f (z1, . . . , zm, 0) in X.

Now considerUm
2 × [0, δm+1) and letg : Um

2 × [0, δm+1) → Y be
given byg(z1, . . . , zm, λ) = (z1, . . . , zm, λ

1/p) whereλ1/p is the positive
pth root ofλ0 for λ > 0.

Let Z̃ = Um
2 × (0, δm+1) andZ = Um

2 × (0, δm+1) andF̃ · Z̃ → V′ be
defined byF̃ = f ◦ g. Then we claim that̃F defines the wing with the
required properties. It is obvious that̃F is a homeomorphism and that
F̃(z1, . . . , zm, 0) = (z1, . . . , zm, 0, . . . , 0). Also for everyλ ≥ 0F̃λ : Um

2 →

Fλ(Um
2 ) is biholomorphic. In fact,̃F is analytic inλ onZ and hence

∂F
∂λ

is continuous onZ. AlsoΠm+1(F(z, λ)) = (z, λ), hence condition 3 in the
definition of wing is trivially verified. Also because of (1),for λ > 0,
Fλ(Um

2 ) ⊂ V′ −W. �

Remark 9. If the open neighbourhoodΩ ⊂ M of a contains a simple
point of (V′ −W), the proposition is trivial.

Remark 10. In fact the wing that we obtained in Proposition 3 stretches

into
{
z ∈ V′ | z is a simple point ofV′ andz < W

}
i.e. Fλ(Um

2 ) ⊂ {z ∈

V′ | z is a simple point ofV′ andz <W} for λ > 0.
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3 The singular setSa

Let Ω be an open set inCn andV ⊂ Ω be an irreducible analytic set of
dimensionr. LetW ⊂ V be an irreducible analytic set and dimW = m<

r. We shall prove that there is an analytic setSa &W such that for every
simple pointzof W with z < Sa, the pair (W,V) is (a) regular atz.

In what followsG will denote the Grassmann manifoldGn,r , G′ will42

denote the Grassmann manifoldGn,m and
◦

V,
◦

W will denote the sets of
simple points ofV andW respectively and

.

V,
.

W, the sets of singular
points of V and W respectively. Ifα ∈ G, T(α) will be the r-plane

corresponding toα. ConsiderC∗(
◦

V) = {(z, α) | z ∈
◦

V,T(α) = T(V, z)}.

ClearlyC∗(
◦

V) ⊂
◦

V ×G is an analytic set. LetC∗(V) = closure ofC∗(
◦

V)
in Ω ×G. Forz∈ V, we defineC∗(V, z) as follows.

z×C∗(V, z) = C∗(V) ∩ {z} ×G.

Proposition 4. C∗(V) is an analytic set inΩ × G and C∗(V, z) is an
analytic subset of G.

Proof. Let z ∈ V. By Lemma 5 of Chapter 2 there exists a neighbour-
hoodU ⊂ Cn of z and holomorphic vector fieldsv1, . . . , vq on U such
thatvi(z) = 0, 1 ≤ i ≤ q, for z ∈

.

V ∩ U and{vi(z)}, 1 ≤ i ≤ q generate

T(V, z) if z∈
◦

V ∩ U.
Now for anyα ∈ G, the r-planeT(α) defines upto a complex non-

zero factor, anr-vectorα̂ in the exterior algebra ofCn. Moreover there
exists a neighbourhoodU′ of α such that the co-ordinates of̂α are
holomorphic onU′. For any vectorv, if α̂ = (α1, . . . , αr), we define
v∧ α̂ = v∧ α1 ∧ . . . ∧ αr and the equationv∧ α̂ = 0 is independent of
the choice of holomorphic coordinates ofα̂. Hence if we define

C∗∗U (V) =
{
(z, α) | z∈ V ∩ U, α ∈ G, vi(z) ∧ α̂ = 0, 1 ≤ i ≤ q

}

where α̂ has the above meaning,C∗∗U (V) is an analytic set inU × G.43

Further,vi(z) ∧ α = 0, 1 ≤ i ≤ q, if and only if all the vectorsvi(z) ∈

T(α). Since{vi(z)}, 1 ≤ i ≤ q spanT(V, z) if z ∈
◦

V and dimT(V, z) =
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dimT(α) = r, we have, forz ∈
◦

V, (z, α) ∈ C∗∗U (V) if and only if T(α) =
T(V, z). It follows from Proposition 4 of Chapter 1 thatU ∩ C∗(V) =
closure of [C∗∗U (V) −

.

V ×G] in U ×G is an analytic set and further,

dimC∗(V) = dimV = r

and dimC∗(V) ∩ (
.

V ×G) ≤ r − 1.

It follows thatC∗(V, z) for anyz∈ V is an analytic set inG. �

Lemma 3. If z is a simple point of W, then the following are equivalent

(1) α ∈ C∗(V, z)⇒ T(α) ⊃ T(
◦

W, z)

(2) (W,V) is (a) regular at z.

Proof. The proof is trivial. We assume that condition (1) holds. Ifqi ∈
◦

V, qi → zand ifT(
◦

V, qi)→ T, then clearlyT∗ ∈ C∗(V, z) whereT∗ is the

element inG, corresponding toT. It follows from (1) thatT ⊃ T(
◦

W, z),
i.e. (W,V) is (a) regular atz. Conversely, if we assume that (W,V) is

(a) regular atz and if α ∈ C∗(V, z), then there is a sequence{qi} in
◦

V,

qi → z andT∗(
◦

V, qi) → α. ThenT(α) ⊃ T(
◦

W, z) and the condition (1)
is satisfied.

Consider the setC∗ in Ω ×G×G′, given by

C∗ =
{
(z, α, α′) | z ∈W, α ∈ C∗(V, z), α′ ∈ T∗(W, z)

}
.

Then if

A =
{
(z, α, α′) | z ∈W, α ∈ C∗(V, z), α′ ∈ G′

}

and B =
{
(z, α, α′) | z ∈W, α ∈ G, α′ ∈ C∗(W, z)

}
,

it follows from Proposition 1 above, thatA andB and henceC∗ = A∩B 44

are analytic sets. Let

R∗ =
{
(z, α, α′) | z∈W, α ∈ C∗(V, z), α′ ∈ C∗(W, z),T(α′) ⊂ T(α)

}
.
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ThenR∗ is an analytic set and it follows from Proposition 4 of Chap-
ter 1 thatS∗a = closure of (C∗ − R∗) in Ω × G × G′ is an analytic set.
Let Π1 : Ω × G × G′ → Ω be the projectionΠ1(z, α, α′) = z, and let
Π1(S∗a) = Sa. We shall prove in the following two propositions thatSa

is an analytic set with

(1) dimSa < dimW and

(2) if z∈ (
◦

W− Sa), (W,V) is (a) regular atz.

�

Proposition 5. With the above definition of Sa, if z ∈ (
◦

W − Sa), (W,V)
is (a) regular at z.

Proof. If z ∈ (
◦

W − Sa) and if α ∈ C∗(V, z), then (z.α, α′) ∈ C∗ where

T(α′) = T(
◦

W, z). Sincez < Sa, (z, α, α′) < S∗a and hence (z, α, α′) ∈ R∗,

i.e. T(α′) = T(
◦

W, z) ⊂ T(α). The Proposition now follows from Lemma
1 above. �

To prove the next proposition, we shall use the following

Theorem (Remmert)..If V is an analytic space and f· V → Ω′ ⊂ Cm

is a holomorphic, proper map, then

(1) f (V) is an analytic set inΩ′

(2) dim f (V) = max
z simple

point of V

(rank (d f) (z)).

Proposition 6. Sa is an analytic set anddimSa < dimW = m.45

Proof. SinceG andG′ are compact,Π1 : Ω×G×G′ → Ω is proper and
henceSa = Π1(S∗a) is an analytic set by (1) of the theorem above. Also
if dim Sa = m, it follows from (2) of the same theorem that there exists
a simple pointz∗∗0 of S∗a such that rank (dΠ1)(z∗∗0 ) = m and hence by the
constant rank theorem stated in Chapter 1, there is neighbourhoodU∗∗

of z∗∗0 such thatU∗∗ = U0 × U × U′ andΠ1(U∗∗ ∩ S∗a) is a submanifold
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of dimensionm, i.e. if z∗∗0 = (z0, α0, α
′
0), z0 is a simple point ofSa,

of dimensionm. Sincez0 is a simple point ofW, we may assume that
Π2 : U∗∗ ∩ C∗ is an isomorphism ontoΠ2(U∗ ∩ C∗) = Ĉ whereΠ2 :
Ω×G×G′ → Ω×G is the projectionΠ2(z, α, α′) = (z, α). LetΠ2(U∗∗∩
S∗a) = S̃a.

(1) Sincez∗∗0 < R∗, there is a vectorv0 ∈ T(
◦

W, z0) such thatv0 < T(α0).
Let for simplicity z0 = 0.

With a suitable change of coordinates we can assume thatSa∩U0 =

{(z1, . . . , zn) | zm+1 = . . . = zn = O} andV0 =
∂

∂z1
. Consider the

analytic setL∗ = {(z, α) | α = α0, z2 = . . . = zn = 0} in U0 × U.
This is of dimension 1 and rank (dΠ1)(z∗0) = 1. It follows from (1)
and from the constant rank theorem that there is a neighbourhood
U∗2 = U1 × U2 of z∗0, U1 andU2 being neighbourhoods of 0 andα0

respectively such that

(2) (Π1 | (U∗2 ∩ L∗) : L∗ → U1 ∩ L is an analytic isomorphism and

(3) if z∗ ∈ L∗ ∩ U∗2 andz∗ = (z, α), we have

T(L, z) 1 T(α).

Now U∗2 ∩ L∗ ⊂ C∗(V) and 46

dim(
.

V ×G) ∩C∗(V) < dimC∗(V) = r.

Hence by Proposition 3 of §2, there is an open setU∗3 ⊂ U∗2 ∩ L∗

and a wingB∗ defined byF∗ : U∗3 × [O, δ) → C∗(V) such thatF∗
λ
(t) ∈

(C∗(V) −
.

V × G) for λ > O. Let Π1(U∗3) = U3. Define F : U3 ×

(0, δ) → V by F = Π1 ◦ F ◦ Π−1
1 (since by (2),Π1 : U∗2 ∩ L∗ is an

analytic isomorphism). Since, forλ > 0, F∗
λ
(U∗3) ⊂ (C∗(V) −

.

V × G),
Fλ : U3→ Fλ(U3) is an analytic isomorphism forλ > 0 and it is easy to
varify that B = F(U3 × [0, δ)) is a wing which is homeomorphice with
B∗. SetBλ = FλU3. Choose a sequenceqi in Bλi such thatqi → p in
U3 = B0. Then by remark 7 of §2,T(Bλi , qi)→ T(B0, p) = T(L, p). Let
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qi = F(ti , λi) and letq∗i = (qi , αi) = F∗(ti , λi). Thenq∗i → (p, α) ∈ U∗3.

Now T(L, p) = LimT(Bλi , qi) and T(Bλi , qi) ⊂ T(αi ), sinceqi ∈
◦

V;
henceT(L, p) ⊂ T(α), (p, α) ∈ U∗3. But this contradicts the condition
(3) above and hence it follows that

dimSa < m.

From Proposition 2 and Proposition 3 follows the �

Theorem (a)(Whitney).. If V is an irreducible analytic set in an open
setΩ ⊂ Cn and if W ⊂

,
V is an irreducible analytic subset, then there

exists an analytic set Sa ⊂
,

W such that for any z∈
◦

W−Sa, (W,V) is (a)

regular at z.

4 Theorem (b)
47

Lemma 4. Let z0 ∈ W ⊂ V,W,V being analytic sets such that Wz0 and
Vz0 are irreducible anddimz0W = m < dimz0V = r. Then there exists a
neighbourhood U of z0 and an analytic set X of dimension1 in U such
that z0 ∈ X and

U ∩ (X − {z0}) ⊂ U ∩ (V −W).

Proof. Let for the sake of simplicityz0 = 0. We have only to recall the
proof of Lemma 1, §2. We have linear formsl1, . . . , lm and a neighbour-
hoodU′ of 0 such that{z ∈ U′ | l i(z) = 0, 1 ≤ i ≤ m} ∩W is an analytic
set of dimension 0 andV′ = {z ∈ U′ | l i(z) = 0, 1 ≤ i ≤ m} ∩ V is an
analytic set of dimensionr − m. Let X be a one dimensional analytic
subset ofV′, 0 ∈ X. Then clearly there exists a neighbourhoodU of 0
such thatU ⊂ U′ andU ∩ [X − {z0}) ⊂ V −W.

In what follows,V is an irreducible analytic set of dimensionr in
Ω, Ω an open set inCn, W is an analytic subset ofV. For any anlytic

set A,
◦

A is the set of simple points ofA and
.

A is the set of singular
points ofA. G will denote the Grassmann manifold ofr planes inCn

andPn−1 = Rwill denote the complex projective space. Let 0∈W ⊂ V,
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dim0W = m < r. By Lemma 5 of Chapter 2, there is a neighbourhood
U of 0 and holomorphic vector fieldsv1, . . . , vk in U such thatvi(z) = 0,
1 ≤ i ≤ k, if z ∈ U is a singular point ofV and (vi (z)) spanT(v, z) is z is
a simple point ofV. We now define an analytic setC0 ⊂W×V × P ×G
as follows.

C0 =

{
(ζ, z, v∗, α) | ζ ∈W, z∈ V, v∗ ∈ P, α ∈ G. if K(v) = v∗,

dep. (z− ζ, v) and vi(z) ∧ α = 0, 1 ≤ i ≤ k
}
.

(For notation, see §1) 48

ClearlyC0 is an analytic set. LetC∗∗ = closure of
[
C0 − (W × V̇ ∪

W×W) × P ×G
]

in W×V × P ×G. By Proposition 4 of Chapter 1,C∗∗

is an analytic set and (ζ, z, v∗, α) ∈ C∗∗ if and only if there are sequences

zν ∈
◦

V, zν <W, ζν ∈W, λν ∈ C such thatzν → z, ζν → ζ, λν(ζν−zν)→ v
whereK(V) = V∗ andT(V, ζν)→ T(α).

Let∆ be the diagonal in the setW×W and letC̃∗ = C∗∗∩∆×P×G.
If Π2 : W × V × P ×G → V × P ×G is the projectionΠ2(ζ, z, v∗, α) =
(z, v∗, α), letC∗ = Π2C̃∗ ClearlyC∗ is an analytic set inΩ×P×G. Now,
let 0 ∈ W ⊂ V andW0 andV0 be irreducible such that 0 is a simple
point of W, dim0 W = m < dim0 V = r. Then we remark that we can
choose a neighbourhoodU of 0 and a basis (z1, . . . , zn) in U such that

W ∩ U
{
z ∈ U | zm+1 = . . . = zn = 0

}
and moreover, ifΠm : Cn → Cm

is the projectionΠm(z1, . . . , zn) = (z1, . . . , zm) thenΠ−1
m (z) ∩ V 1 V̇

for z ∈ Πm(U). We have only to choose a basis (z1, . . . , zn) such that

W ∩ U =
{
z ∈ U | zm+1 = . . . = zn = 0

}
andΠ−1

m (∩) ∩ V 1 V̇. (Since

the set of simple points is open inV, by shrinkingU if necessary, we
then have,Π−1

m (z) ∩ V 1 V̇ for z ∈ Πm(U)). Such a choice of basis is
possible since the set of simple points is dense inV. With respect to
such a basis ifz0 = (z0

1, . . . , z
0
m, 0, . . . , 0) ∈ U ∩W = M, Mz0 will denote 49

the transverse plane atz0, i.e {z ∈ U | zi = z0
i , 1 ≤ i ≤ m}. Let P′ denote

the projective space ofCn−m =

{
(zm+1, . . . , zn) | (z1, . . . , zn) ∈ Cn

}
. We
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then defineσ0 ⊂ (V ∩U) × P′ ×G as follows

σ0 =

{
(z,K(z− Πmz), α) | z ∈

◦

V ∩ U, z<W,T(α) = T(V, z)
}
.

Letσ = closure ofσ0 in U × P′ ×G.
In the proof of the Theorem (b) we shall use the sets and notations

introduced above. �

Theorem Whitney. If V is an analytic set, W its analytic subset, V, W
being irreducible anddimW = m < r = dimV, then there exists an

analytic subset Sb of W such thatdimSb < dimW and if z∈
◦

W, z< Sb,
then the pair(W,V) is (b) regular at z.

Proof. Consider the analytic setC∗ as defined above. LetR∗ ⊂ V×P×G

be the analytic set defined byR∗ =
{
(z, v∗, α) | z ∈ V, v∗ ∈ P, α ∈ G,V∗ ⊂

α

}
. Herev∗ ⊂ α means that ifv ∈ Cn such thatK(v) = v∗, v ⊂ T(α).

Then by proposition 4 of Chapter 1,S∗b = closure ofC∗−R∗ in V×P×G is
an analytic set. LetΠ : V × P×G→ V be the projectionΠ(z, v∗, α) = z.
ThenΠ is proper and hence by Remmert’s proper mapping theorem
stated in §3,Π(S∗b) = Sb is an analytic set,Sb ⊂ W. We claim that if

z ∈
◦

W andz < Sb then (W,V) is (b) regular atz. This is obvious for if

(W,V) is not (b) regular atz, there are sequencesζν ∈ W, zν ∈
◦

V −W,
λν ∈ C such thatζν → z, zν → z, λν(zν − ζν) → v, T(V, zν) → T and
v < T. But thenz∗ = (z,K(v),K(T)) ∈ C∗ − R∗ andz = Πz∗ ∈ Sb, a
contradiction. �

We now proceed to prove that dimSb < m. If possible let dimSb =50

m. SinceΠ : S∗b → Sb is proper, by Remmert’s theorem stated in §3,
there exists a simple pointz∗0 of S∗b (in particularz∗0 ∈ C∗ − R∗) and a
neighbourhoodU∗0 of z∗0 such thatΠ(U∗0∩S∗b) is a manifold of dimension
mandΠ(U∗0 ∩ S∗b) = U0 ∩W = U0 ∩ Sb, Πz∗0 = z0 being a simple point
of Sb andΠ(U∗0) = U0.

By Theorem (a) of Whitney, there exists an analytic setSa ⊂ W

such that dimSa < mand ifz ∈ (
◦

W−Sa), then (W,V) is (a) regular atz.
Hence we may assume that forU∗0 obtained above,U0 ∩ Sa = ∅.
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We assume, without loss of generality, thatV̇ ⊂ W and thatVz0 is
irreducible. By the remark made above we putz0 = 0 and obtain a
neighbourhoodU ⊂ U0 of 0 and a basis (z1, . . . , zn) such thatU ∩W =
M = {z ∈ U | zm+1 = . . . = zn = 0} and for anyz ∈ Πm(v), if Nz is
the transverse plane,Nz∩ V 1 V. We not constructσ0 andσ as above.
Consider the holomorphic mapψ : V × P′ ×G→W× V × P ×G given
by ψ(z, v∗, α) = (Πmz, z, v∗, α). Now, (z, v∗, α) ∈ σ ⇒ (Πmz, z, v∗, α) ∈
C∗. Henceψ−1(C∗) = σ andσ is an analytic set. Moreover, the set
{(z,K(z− Πmz),T(V, z)) | z is a simple point ofV in U} is a connected
set of simple points ofσ and is dense inσ. Henceσ is irreducible.

We now prove thatΠ(σ − R∗) ⊃ M ∩ U. If z ∈ M, z = Π(z∗),

z∗ = (z, v∗, α) ∈ C∗ − R∗, then there are sequencesζν ∈ W, zν ∈ (
◦
−W),

λν ∈ C such thatzν, ζν → z, λν(zν − ζν) → v and K(v) = v∗ and
T(V, zν) → T(α). Considerzν − ζν = zν − Πmzν + Πmzν − ζn. Since 51

|Πmzν − ζν| ≤ |zν − ζν|, there exists a subsequence{λνk} of {λν} such
thatλνk(Πmzνk − ζνk) converges tov′′ say. (v′′ may be the zero vector).
Clearlyv′′ ∈ T(M, z) and since by our assumption (W,V) is (a) regular
at any point inM, v′′ ∈ T(α). Hence ifλνk(zνk −Πmzνk)→ v′, v′ ∈ T(α),
i.e. v′ , 0 and (z,K(v′), α) ∈ σ − R∗. Hence we have proved that
Π(σ − R∗) ⊃ M ∩ U.

Let σ′ = closure of (σ ∩ Π−1(M) − R∗) in V × P′ × G. Thenσ′ is
an analytic set andΠσ′ = M. Again, using Remmert’s proper mapping
theorem, there exists a simple pointz∗1 of σ′ (in particularz∗1 < R∗) and
a neighbourhoodU′1 of z∗1 in the set of simple points ofσ′(U′1 ∩R∗ = ∅)
such that ifΠ1 = Π|σ

′, rank(dΠ1)(z∗1) = m for z∗ ∈ U′1 andΠ1(U′1) =
M1, M1 being an open set inM. Hence, using the constant rank theorem
and assumingU′1 to be sufficiently small, we obtain an analytic setM′ ⊂
U′1, z∗1 ∈ M′ such that (Π1|M′) : M′ → M1 is an analytic isomorphism.
ConsiderW1 = Π

−1(W). Then dimW1 < r = dimσ. Hence by Lemma
2, there exists a neighbourhoodU∗1 of z∗1 in Cn×P′×G, U∗1∩R∗ = ∅, and
an irreducible analytic set

∑∗ ⊂ U∗1,
∑∗ ⊂ σ such that dim

∑∗ = m+ 1,∑∗ ⊃ M′ and dim
∑∗ ∩W1 = m. Now consider a pointz∗2 in M′ such

tht z∗2 does not lie on other components of
∑∗ ∩W1. If Π2 = Π|

∑∗,
there exists a neighbourhoodU∗2 of z∗2 such thatz∗ is an isolated point of
Π−1

2 (Π2z∗) if z∗ ∈ U∗2. In factΠ−1
2 (Π2z∗) = z∗. HenceΠ2(

∑∗ ∩U∗2) =
∑



42 3. Whitney’s Theorems

is an irreducible analytic set inΠ2U∗2 = U2 if U∗2 is sufficiently small.52

Also
∑
⊂ V and dim

∑
= m + 1. Now Nz2 ∩

∑
∩W = {z2} and if

B = Nz2 ∩
∑

, dimB ≥ 1 by Proposition 5 of Chapter 1.
If A = Nz2 ∩

∑
∩W, then, if A∗ = Π−1

2 (A), B∗ = Π−1
2 (B) then

dim A∗ = 0 and dimB∗ ≥ 1. In fact A∗ = {z∗2}. [If dimz∗2
B∗ < 1, we

may chooseU∗2 sufficiently small and then dimB∩ Π(U∗2) < 1, which
is a contradiction. Hence dimz∗2 B∗ ≥ 1.] Hence there exists a point
z∗3 in A∗ ⊂ B∗, such that dimz∗3 B∗ ≥ 1 and since we assumed above that
U∗1∩R∗ = ∅, z∗2 ∈ σ−R∗. We may assume thtB∗z∗2

is irreducible and then,

by Lemma 4 above, there exists a neighbourhoodU∗3 of z∗2 and a one-
dimensionla analytic setX∗ in U∗3, z∗2 ∈ X∗, such thatX∗ − z∗2 ⊂ B∗ − A∗.
Then ifΠX∗ = X, X is an analytic set inΠU∗3 such that dimX = 1 and

X−z2 ⊂ (
◦

V−W). Letz∗2 = (z2, v∗, α), thenv∗ < α sincez∗2 < R∗. Letζ∗ν be
a sequence inB∗ − A∗, ζ∗ν simple points ofB∗, ζ∗ν → z∗3, ζ∗ν = (zν, v∗ν, αν).
Thenzν → z2, K(zν − Πmzν) = K(zν − z2) = vν andT(V, zν) = T(αν)
wherev∗ν → v∗ and T(V, zν) → T(α). Hencev∗ ∈ C(X, z2). Also
dimC∗(X, z2) = 1 (see §1 for notation). Hencev∗ = C∗(X, z2). Also
since dimX = 1, andzν are simple points ofX, if KT(X, zν) → T∗,
T∗ = C∗(X, z2). Hencev∗ ∈ Lim

ν→∞
K(T(X, zν)) ⊂ Lim

ν→∞
K(T(V, zν)) = α.

Hence we have a contradiction and this proves that the assumption that
dimSb = m is false.



Chapter 4

Whitney Stratifications and
pseudofibre bundles

1 Pseudo fibre spaces
53

The situation we with to consider is suggested by the following example.
Let V be aC-analytic manifold with a narrow stratification{Mi} sat-

isfying conditions (a) and (b) of Whitney. LetV be the tangent bundle of
V andMi the tangent bundle ofMi. Mi can be identified naturally with a
subset ofV , and letV ′ = ∪M1. V ′ consists of vectors at pointsx ∈ V
which are tangent to theMi containingx. V ′ has a topology induced
from that ofV (under which it is not necessarily locally compact).V ′,
with its natural projection onV is called the (complex) tangent pseudo
fibre bundle (or pseudo bundle) of the stratification.

Real tangent pseudo bundles are similarly defined.
Remark that the homotopy lifting theorem is not in general valid, as

shown by the following example.
Let V = S2 be the two dimensional sphere, andV = M1

1∪M2
2 ∪M2

3,
whereM1

1 is a great circle andM2
2, M3

3 the two (open) hemispheres of
V−M1

1. LetΓ be half of a great circle orthogonal toM1
1 as shown. Then

Γ is homotopic semicircle ofM1
1. This homotopy cannot be lifted toV ′

such that in initial curve is lifted to the field of tangent vectors to M2
2 54

orthogonal toΓ (as shown in the figure).

43
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We now proceed to the general definition of a pseudo fibre space(or
pseudo fibration).

Let V be a manifold of classC1 and dimensionN. Let {Mi} be a
narrow stratification ofV into connectedC1 locally closed submanifolds
Mi such that eachM̄i is a union of strata and suppose that{Mi} is a
locally finite family.

Let K be a triangulation ofV consistent with the above stratifi-
cation, i.e. each open simplexKi is contained inM j for some j, and
suppose that the open simplices areC1 submanifolds ofV. We suppose
that the following fineness condition is satisfied.

(∗) If K j ⊂ Mi thenK j ∩ Ṁi is a single closed simplexKh contained
in the boundaryK̇ j of K j (unlessK j ∩ Ṁi = ∅).

This condition can always be ensured by passing to a sufficiently
fine barycentric subdivison ofK .

Finally we suppose given a piecewise differentiable cell decompo-
sition D = (Di) of V (into open cellsDi; the decomposition is not con-
sistent with (Mi)) which is dual toK . This dual cell decomposition is
obtained as follows. IfK is a simplicial complex whose supportV is
a combinatorial manifold, letK1 be the barycentric subdivision ofK .
Let pi be the barycentre ofKi ∈ K . Theq-simplices ofK1 have for
vertices the sets (piq, . . . ,Piq) with Ki j ⊃ K i j+1( j = 0, . . . , q − 1); we
denote thisq-simplex by (pi0, . . . , piq) and callpi0 the first, andpiq the55

last vertex. We haveKiq =
⋃

(pi0, . . . , piq), the union being over those
simplices withpiq as last vertex. For anyi, let

Di =
⋃

(pi , pi1, . . . , piq)
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the union being taken over all the simplices (pi , . . . , piq) of K1 for which
pi (the barycentre ofKi) is the first vertex. Then, ifV is a combinatorial
manifold of dimensionN, eachDi is a cell and ifKi has dimensionk, Di

is of dimensionN − k. FurtherDi is a cell decomposition ofV and has
the following two properties:

(i) EachKi of dimensionk meets exactly oneD j of dimensionN − k
(viz. theDi described above).

(ii) If Ki ∩ D j , ∅, then dim(Ki ∩ D j) = dim Ki + dim D j − N. The
definitions that we now give will depend,a priori, on K andD .
Note also that we could give the definitions below whenV is a
manifold with boundary andK is a cell decomposition.

We begin with a lemma.

Lemma 1. Given Ki ⊂ Mk, the strata which meet the closed simplexKi

can be arranged so that they give rise to a sequence

(1) M1 $ . . . $ Mh = M̄k, dim M j+1 > dim M j .

Further K i ∩ M j form a strictly increasing sequence of simplices

(2) K
1
$ . . . $ K

h
= K i .

Proof. Because of the fineness condition, it is sufficint to prove (1). Let 56

Mq, Mq′, q , q′ be distinct strata of dimensionsq, q′ respectively (with
q ≥ q′) meetingK̄i . If q = k, thenMq = Mk ⊂ Ki; henceMq′ ∩ M̄q , ∅,
and henceM̄q′ ⊂ M̄q; sinceMq, Mq′ are distinct, we haveq′ < q.

If q ≤ k − 1, thenMq ⊂ Ṁk, Mq′ ⊂ Ṁk. By our fineness condition,
there is a simplexK ⊂ Mk′ , k′ < k such thatṀk∩ K̄i = K̄. Thus, we may
replacek by k′ < k. Proceeding thus, we reach aK′ lying in a stratum
Ml of dimensionl = q and the previous argument applies.

In the whole of this chapter, we suppose thatK , D are given satis-
fying the hypotheses made above.

The local coordinates (or charts) of our pseudo-fibration will be de-
fined on subsets of the following type.
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Let K̄ be a closed simplex ofK andK0 one of its vertices. Let

(3) L = K̄ ∩
◦

St(K0)

where
◦

St(K0) is the open star ofK0 in K . If K0 ∈ Mp, then, by Lemma
1,

(4) L =
k⋃

q=p

L ∩ Mq (where K ⊂ Mk),

Mq being, as usual, a stratum of dimensionq.
We suppose given, for each dimensionk such that there is anMk

,57

∅, 0 ≤ k ≤ N, a fibre typeFk, i.e. a locally compact topological space
Fk. We suppose that ifh ≤ k, we are given a familyMk,h of continuous
injectionsµkh : Fh → Fk; we suppose that this family of injections is
non-empty ifFh, Fk are. We suppose that forh ≤ k ≤ l, andµkh ∈Mkh,
µlk ∈Mlk, we haveµlk ◦ µkh ∈Mlh.

We now construct the models for our pseudo-fibrations on setsof
the typeL (in (3) above).

Let

L = K̄ ∩ St0(K0) =
k⋃

q=p

L ∩ Mq.

We findµq ∈ Mkq (whenL ∩ Mq
, ∅), such thatµk = idFk and if

αq = µq(Fq), thenαq′ ⊂ αq if q′ ≤ q (so thatαq ⊂ αk = Fk); further, we
suppose that ifq′ ≤ q, there isµqq′ ∈Mqq′ such thatµq′ = µq ◦ µqq′ . Let

(5) L =

k⋃

q=p

(L ∩ Mq) × αq :

then
L × αq ⊂ L ⊂ L × Fk

and we put onL the topology induced from that ofL × Fk. �

Remark. It would be possible to work with setsL′ = L̄ ∩St(K0), where
St(K0) is the closure of St0(K0), instead of the setsL above in view of
our fineness condition.
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Definition 1. A pseudo-fibre space, or a pseudo-fibrationξ on aC1 man-58

ifold V with the data of a stratification, a triangulation and a dual cell de-
composition as above is a hausdorff spaceξ and a projection ¯ω : ξ → V
(not necessarily surjective) such that for each setL as in (3), there is a
homeomorphismg of L ontoξ(L) = ω−1(L). The pair (g,Z ) is called
a chart ofξ.

Lemma 2. ω̄ is an open map.

We omit the proof (see [3])

Definition 2. A pseudo-fibration is called a pseudo vector bundle (or
pseudo-bundle) if eachFk is a finite dimensional vactor space overR or
C, andMkh consists of all linear injections ofFh into Fk.

Let ξ be a pseudo-bundle such thatFK = R
k (resp.F2k = C

k,M2k+1

= ∅). Let Wr,k be the set of allr-frames inFk, i.e. the set of all ordered
r-tuples of vectors linearly independent overR (resp.C). of course, if
k < r (resp.k < 2r) thenWr,k = ∅.

Let Mr,k,h be the set of injections ofWr,h into Wr,k induced by linear
injections ofFh in Fk. Then we may construct a pseudo-fibration with
Wr,k as fibre type (andMr,k,h as given injections) for which charts are
obtained as follows.

Let (L , g) be a chart ofξ. Let αr,q be the space ofr-frames inαq,
and let

Lr =
⋃

q

(L ∩ Mq) × αr,q.

Let ξr be the union
⋃

x∈V ξr(x), ξr(x) being the space ofr-frames in 59

ξ(x) = ω̄−1(x). Clearly, the map

g : L → ξ(L)

induces a bijection

gr : Lr → ξr(L) =
⋃

x∈L

ξr(x).

It is clear that there is a unique topology onξr making ξr into a
pseudo-fibration for which the (Lr , gr ) are charts.

ξr is called the associated pseudo-fibration of r-frames inξ.
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2 Obstructions in pseudo-fibrations

Let ξ be a pseudo-fibration with fibre typeFk. Let νk be the smallest
integerν ≥ 0 such thatπν(Fk) , 0. We will make the following hypoth-
esis:ρ = k − νk is apositive integer independent of k.(Here of coursek
runs over those integers withMk

, ∅ for some stratumMk).
In the example given above, we haveFk = Wr,k; hereρ = r − 1 in

the case of real bundles,ρ = 2r − 1 in the case of complex bundles.
The problem we consider is that of the existence and homotopyof

continuous sections ofξ (i.e. continuous mapss : U → ξ, U ⊂ V, such
thatω̄ ◦ s= idU .)

Proposition 1. The obstruction dimension to skeleton-wise extension of60

a section overD is N− ρ+ 1; i.e. if Dq is the q-skeleton ofD , then any
section s ofξ overDN−ρ−1 can be extended toDN−ρ.

Proof. We begin by remarking that ifN ≥ ρ, every vertexD0 of D0 lies
in aKN, and sinceN ≥ ρ, FN ≥ ∅, so that a sectionsof ξ overD0 exists
if N−ρ ≥ 0. Letm≤ N−ρ, and suppose that the sections is constructed
on the (m− 1)-skeletonDm−1. To extends to Dm, we choose anym-cell
Dm of Dm. Let Tn ∈ K ∩ D̄m. We proceed by induction onn. We have
Tn = DN−h+n ∩ Kh, Kh ⊂ Mk; hereN − h + n ≤ m ≤ N − ρ so that
n ≤ h − ρ ≤ k − ρ = νk. By our induction hypothesis (onn) s|Ṫn is
already constructed; further, ifn = 0, scan be extended toTn. Suppose
therefore thatn ≥ 1.

Choose now anL such thatT̄n ⊂ L ⊂ K̄h∩St(K0). [Such anL exists:
there is a uniqueKN−m such thatDm∩ KN−m = T0 is a vertex. Then, by
Lemma 1,KN−m ⊂ K̄h, and we choose forK0 a vertex ofK̄h ∩ KN−m.]
Consider the chartg : L → ξ(L). Theng−1s defines a section ofL
on Ṫn, i.e. a maps′ : Tn → αh ⊂ αk (sinceKh ⊂ Mk); sinceνk ≥ n,
this can be extended to a continuous maps′ : Tn → αk, and so gives
rise to a sectiong(s′) = s : Tn → ξ(L). Proceeding thus, we obtain an
extension of the sections to Dm. Since this can be done form≤ N − ρ,
the proposition is proved.

Before we proceed to the next proposition, we make a few remarks.
Let I = [0, 1], and letV̂ = V × I , M̂i = Mi × I . Let K̂ be thecell-

decompositionof V̂ (whose (closed) cells are the setsK̄i × {0}, K̄i × {1},61
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K̄i × I . Let ξ̂ = ξ × I and ̂̄ω = ω̄ × idI . We define the structure of
pseudo-fibration (on the manifoldV with boundary, and corresponding
to the cell-decompositionK ; cf. remark on page 45) on̂ξ as follows.

If L = K̄∩St0(K0) ⊂ V is a set defining a chart ofξ, let L̂ = L×I , and

ĝ the bijection ofL̂ = L × I onto ξ̂(L̂) = ̂̄ω−1
(L̂) given byĝ = g× idI .

The fibre type of̂ξ and the injections between the fibres are the same as
for ξ.

Let sN−ρ, s′N−ρ be two sections ofξ over DN−ρ, the N − ρ skele-

ton of D . We identify them with sections onDN−ρ × {0}, DN−ρ × {1}
respectively, of̂ξ. �

Proposition 2. Two sections sN−ρ, s′N−ρ of ξ on DN−ρ are homotopic

on DN−ρ−1; in fact a given homotopy onDN−ρ−2 can be extended to
DN−ρ−1.

Proof. We do not consider the case whenFN is not connected, for we
would then haveρ > N. If FN is connected, any two sections ofξ over
D0 are homotopic.

Let m ≤ N − ρ − 1. By induction onm, suppose given a homotopy
betweens, s′ on Dm−1. Let Dm be anm-cell of Dm. Then, with the
notations as above,

Tn = DN−h+m∩ Kh,Kh ⊂ Mh; N − h+ n ≤ m≤ N − ρ − 1

so that
νk ≥ n+ 1 ≥ 1.

This implies thatFk is connected, so that (ifn = 0) any two sections 62

on T0 are homotopic. Suppose (by induction onn) that, forn ≥ 1, the
homotopy betweens, s′ on Dm−1 is extended to all theTλ ⊂ D̄m for
whichλ < n. ThensonTn× {0}, s′ onTn× {1} and the given homotopy
on Ṫn × I define a section of̂son the whole boundary ofTn × I and we
have only to show that this section can be extended toT̄n × I .

To prove this, we chooseL with T̄n ⊂ L ⊂ M̄k and a chart̂g : L̂ →

ξ̂(L̂) as above. Clearlŷg−1ŝ is a section ofL̂ on the boundary ofTn× I ,
hence gives rise to a map of the boundary ofTn × I into Fk. Since
k ≥ h ≥ n + ρ + 1, so thatνk ≥ n + 1, this can be extended to a map
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of T̄n × I into Fk, and so gives rise to a section of̂L on T̄n × I , and its
image bŷg is a section of̂ξ on T̄n × I extendinĝs. This proves that the
given homotopy onDm−1 can be extended toDm if m≤ N − ρ − 1. The
proposition follows. �

Proposition 3. Suppose Fp , ∅ and K0 ∈ Mp. Thenξ has a section on
the open star U of K0 in K . Moreover, if Fp is arcwise connected, any
two sections over U are homotopic.

Proof. To construct a sections on U, we proceed by induction on the
dimensionh of simplicesKh ⊂ U. Clearly, sinceFp , ∅, s|K0 exists.
Supposes|K l given for all l < h, and Kh ⊂ U ∩ Mk, L = U ∩ K̄h.
Consider a chartg : L → ξ(L). We are given a section ofξ on L̇ ∩ U,
hence a section ofL on L̇∩U, a fortiori a map ofL̇∩U into Fk. Since
L̇ ∩ U is a hemisphere on the boundary ofL, this can be extended to63

a mapL → Fk. Since the interior ofL, which is Kh, has the property
that Kh × Fk ⊂ L , this gives us a section ofL on L extending the
given section onL ∩ U, and the image byg gives us a section ofξ on L
extending the given section oṅL ∩ U.

Suppose now thatFp is connected. We use the notation before
Proposition 2. Given sectionss0, s1 of ξ̂ on U × {0} andU × {1}, we
have to extend it to a section̂s of U × I . Let Kh × I ⊂ U × I and sup-
poseŝ given onK l × I for all l < h. Let Kh ⊂ U ∩ Mk, L = U ∩ K̄h

and letĝ : L̂ → ξ̂(L̂) be a chart. As before, this leads to a map of
L × {0} ∪ L× {1} ∪ (L̇∩U)× I into Fk, and ifh ≥ 1, this union is not the
whole of the boundary ofL × I , and the map therefore extends toL × I ,
which, as before gives us a section ofξ̂ on L× I extendings0|L× {0} and
s1|L × {1} (and the section defining the homotopy onL × I ). If h = 1,
sinceFp is arcwise connected, the problem is trivial. Our proposition
follows by induction onh. �

3 Local structure of pseudo vector bundles

Let {Mi} be a stratification of the complex manifoldV. Let ξ be a topo-
logical space ¯ω : ξ → V a continuous map such that forx ∈ Mk, ω̄−1(x)
is homeomorphic toFk = C

k. We look for conditions that ¯ω : ξ → V be
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a pseudo-fibration. We shall apply these considerations to the tangent
fibration of a Whitney stratification in §4.

In this section, ifKi ⊂ Mp, we write pKi or simply pK for Ki. Let 64

pU = St0(pK) andŨp = pU ∩
⋃

q≥p Mq.
The conditions that we impose on our spaceξ are the following.
Φ1. To eachPK ⊂ Mp, we can associate a non-empty familyΦ(p)

of mappings
ϕp : Ũp × Fp→ ξ(Ũp) = ω̄−1(Ũp)

such thatϕp is continuous, andϕp | {x} × Fp is aC-linear injection into
ξ(x).
Φ2. Suppose thatPK ⊂ mK,mK ⊂ Mm, p ≤ m. Then, clearly,

pU ⊃ mU, andŨp ⊃ Ũm.
Let µ be a linear injection ofFp in Fm. Then, given aϕp as inΦ1,

there is aϕm ∈ Φ(m)

ϕm : Ũm× Fm→ ξ(Ũm)

such that
ϕp | Ũm× Fp = ϕm(idŨm

×µ),

i.e. ϕp(x, ζ) = ϕm(x, µ(ζ)) for x ∈ Ũm, ζ ∈ Fp.

Proposition 4. If ξ is a topological space with a map̄ω : ξ → V for
which a family of maps{ϕ} = {Φ(p)}p≥0 satisfyingΦ1 andΦ2 exist, then
ξ carries a natural structure of pseudo-vector bundle.

Proof. It is clearly sufficient to construct charts for ¯ω : ξ → V. 65

Let L = K̄m∩ St0(K0), K0 ∈ Mp, Km ⊂ Mk.
Let αp ⊂ . . . ⊂ αk = Fk be a family of subspaces ofFk = C

k such
thatαq ≈ Fq, and let

L =

k⋃

q=p

(L ∩ Mq) × αq ⊂ L × Fk.

Let πF, πL be the projections ofL into Fk, L respectively. Let
e1, . . . , ek be ak-frame inFk such thate1, . . . , eq ∈ Fq (and so spanFq).
By our fineness condition, there exists, for eachq, aqK = Kh such that

Kh ⊂ L ∩ Mq ⊂ K̄h, i.e. qK ⊂ L ∩ Mq ⊂ qK.
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Thus

π−1
F (αq) =

⋃

h≥q

(L ∩ Mh) × αq = (L ∩
⋃

h≥q

Mh) × αq = (L ∩ Ũq) × αq.

We will construct an isomorphismg : L → ξ(L) inductively by
constructing maps

gq : π−1
F (αq)→ ξ(L ∩ Ũq).

Whenq = p, π−1
F (αq) = (L ∩ Ũp) × αp; now, byΦ1, there is a map

gp : π−1
F (αp)→ ξ(L ∩ Ũp),

which is the restriction toL ∩ Ũp of a mapŨp × αp → ξ(Ũp). gp is an
injection on each fibre{x} × αp. Now suppose that

gq : π−1
F (αq)→ ξ(L ∩ Ũq)

is determined as the restriction toL∩Ũq of a mapϕq : Ũq×αq→ ξ(Ũq).66

Let h be the smallest integer> q occurring among theαq, . . . , αk. By
Φ2, there is a mapϕh : Ũh × αh → ξ(Ũh) such thatϕh|Ũh × αq = ϕq |

Ũh × αq; we may takegh = ϕh | L ∩ Ũh. This gives us finally a map
g of L = ∪π−1

F (αq) into ξ(L) which is injective on the fibres. Since
the fibres ofL andξ(L) at any point have the same dimension,g is an
isomorphism. �

Remark. If ξ is a complex pseudo vector bundle as above, two mapping
ϕp, ϕ′p ∈ Φ(p) [cf. Φ1] are isotonic, i.e. there is a continuous family
ϕp(t), 0 ≤ t ≤ 1 of maps inΦ(p) on pU with ϕp(0) = ϕp, ϕp(1) = ϕ′p.

If pK = K0 ∈ Mp is a vertex, we remark, using a chart, thatϕp, ϕ′p
correspond to sections of the associated bundleξp of p-frames overpU,
and two such sections are homotopic by Proposition 3.

In the general case, one proceeds by induction, as in the proof of
Proposition 3.
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4 Pseudo-fibration corresponding to a Whitney
stratification

We prove in this section the following

Theorem.Let {Mi} be a Whitney stratification of a complex manifold V
andV ′ the space of tangent vectors to the strata(see beginning of §1).
ThenV ′ carries a natural structure of pseudo-vector bundle.

Proof. By the triangulation theorem for analytic sets, there is a triangu- 67

lation K of V compatible with{Mi}. We suppose (by suitable subdi-
vision) thatK satisfies the fineness condition of §1 (Condition (*) on
p. 45), and that the open star of any simplex is contained in a coordinate
neighbourhood ofV.

Let K l ⊂ Mp (p is the complex dimension ofMp). Then, by the
finenss condition, there is a vertexK0 of K̄ l , K0 ∈ Mp. ThenŨl ⊂ Ũ0,
and we shall construct the mapsϕ ∈ Φ(p) onŨ0×C

p, i.e.ϕ : Ũ0×C
p→

V ′(Ũ0). This means, of course, that there is a continuous field ofp-
frames inŨ0 compatible with the stratification; further, sinceK0 is a
vertex,Ũ0 is the star ofK0.

We will use the following lemma; its proof is to be found in [5]. �

Lemma 2. Let X be a Euclidean complex, Y a subcomplex. Then Y has
a fundamental system of tubular neighbourhoodsΘ in X such that the
segments]y, ẋ], y ∈ Y, ẋ ∈ Θ, form a partition ofΘ − Y.

We consider a Euclidean complex homeomorphic toK ; we use
the same notation in this euclidean complex as inV. Let U = U0 be
as above; letU̇ be its boundary andM j a stratum of dimension> p
with Ṁ j ∩ U , ∅. Consider the subcomplexX = M̄ j ∩ U̇ of U̇, and
the subcomplexY = Ṁ j ∩ U̇ of X. Let Θ be a tubular neighbourhood
as in Lemma 2, andt ∈ [0, 1] the parameter for the directed segment
[y, x] (parametrized linearly). Foru ∈ [0, 1], let λu be the homothesy
havingy0 = K0 as centre, the dilatation beingu. Let T be the complex 68

generated by theλu(Θ), 0 ≤ u ≤ 1, and letyu = λu(y) (and similr
notation for other points). clearly, the segments ]yu, xu] form a partition
of T − Ṁ j ∩ U̇. T is called a “conical neighbourhood” oḟM j ∩ U̇ in



54 4. Whitney Stratifications and pseudofibre bundles

M̄ j ∩ U̇. T is called a “conical neighbourhood” oḟM j ∩ U̇ in M̄ j ∩ U̇.
We also speak of conical neighbourhoods inK on the original manifold
V. Remark it is not a real neighbourhood since it is not a neighbourhood
at K0.

We now proceed to the construction of a field ofp-frames inŨ. We
may suppose thatV is an open set inCN because of our hypothesis that
the star of any simplex is contained in a co-ordinate neighbourhood.

If K0 ∈ Mp with p = 0, the statement is trivial; let thenp ≥ 1. Let
y0 = K0 ∈ Mp = M. Let ei(y0), 1 ≤ i ≤ p be a basis ofT(M, y0).
We shall extend thep-frame Z = {ei(y0)} to the complexesMq

j ∩ Ũ

by induction onq = dim Mq
j . Suppose this to be done for allMq

j of
dimensionq < m, and letN be a stratum of dimensionm such thatN ∩
Ū , ∅. We suppose furthermore that all the vectors already constructed
on Mq

j ∩ Ũ tend to zero at a point of̄U − Ũ which is subcomplex oḟU

by the definition ofŨ. For a pointx in the closure of the complement
of the conical neighbourhoodT of Ṅ ∩ Ū in N ∩ Ū, let ei(x) be the
orthogonal projection (with respect to the metric induced on U from
CN) on the tangent spaceT(N, x) of the translate ofei(y0) to x. If x ∈ T,
x < Ṅ, thenx is on a unique segment [y, x1] corresponding to parameter
valuet ∈ [0, 1]. Let ξ(x) [resp.η(x)] be the projection onT(N, x) of the69

translate ofei(x) [resp.ei(y)]. (Note that, by induction, theei are defined
on Ṅ∩Ũ). We have already supposed that these can be extended toṄ∩Ū
and vanish onŪ − Ũ). We set

ei(x) = tξ(x) + (1− t)η(x).

The fieldei is continuous onN ∩ Ū (it may have zeros). We prove
that it is continuous on̄N ∩ Ū. Let y ∈ Ṅ ∩ Ū, and lety ∈ M j. In fact,
by Whitney’s condition (a),if x is neary, then the orthogonal projection
v = η(x) of the translate ofei(y) , 0 to x on T(N, x) is nearv. In fact,
if this were not true, we could find a sequence of pointsxi ∈ N tending
to y such that (the Grassmannian being compact)κT(xi ,N) converges to
a limit κT such thatT is transverse toT(y,M j); this is impossible since
our stratification is, by assumption, a Whitney stratification. Since, asx
tends toy, the parameter value tends to zero,ei(x) = η(x)+ t(ξ(x)−η(x))
is near the translate ofei(y) to x.
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It is clear from the above construction that we may find continuous
fieldse1, . . . , ep in N̄ ∩ Ū extending the fields oṅN ∩ Ū (which form a
p-frame onṄ∩Ũ). There is a neighbourhoodW of y0 such that theei(x)
form a p-frame atx for x ∈ W. By induction, theei(x) form a p-frame
at points ofṄ∩ Ũ. Consequently, there is a neighbourhoodT′ of all the
points ofṄ∩ Ũ in N̄∩ Ũ on which theei remain ap-frame (T′ may not
be a neighbourhood in̄N∩ Ū). It is immediate that we may takeT′ ⊂ T
and suppose thaṫN ∩ Ũ is a retract ofT′. 70

In T′′ = T′ ∪W, theei form a p-frame. LetH = N ∩ Ũ − T′′ ⊂ N.
Moreover, ifT′ andW are suitably chosen, then eachK l ∩ H is a cell.
(This is obvious for the euclidean complexes, and the general case can
be reduced to this by a homeomorphism.)

We now extend thep-frame fromT′′ to H by doing this stepwise on
the cellsK l ∩ H. Let Tp be the (locally trivial) fibre space ofp-frames
tangent toN. We suppose, by induction onl, that the frame is extended
to the complexK l−1 ∩ H and consider a cellK l ∩ H.

First suppose that̃U = Ū (i.e. thatU̇ ∩ Mp = ∅). In this case,
T′′ being suitably chosen,K l ∩ H is a hemisphere on the boundaryK̇ l.
Hence, the following lemma implies that any section ofTp on K̇ l ∩ H
can be extended toK l ∩ H, and our result would follow.

Lemma. Let ∆ be a convex polyhedron inRl and T a locally trivial
fibre space on∆. Let S be an open linear simplex contained in∆̇. Then
any section ofT on ∆̇ − S can be extended to∆.

Proof. Since the pair (∆, ∆̇ − S) is homeomorphic to the pair (I l , I l−1 ×

{0}) [I being the unit interval onR], we replace∆ by I l andS by İ l −

I l−1 × {0}. If s is a section ofT on I l−1 × {0}, by the homotopy lifting
theorem (lift the trivial homotopy ofI l−1 × {0}), there is a mapF : I l(=
I l−1×I )→ T with p·F(x, t) = (x, t) andF(x, 0) = s(x) [herep : T → I l 71

is the projection]. ClearlyF is a section ofT on I l extendings. �

In the case wheñU , Ū, let Y = K̇ l ∩ (Ū − Ũ). ThenY ⊂ U̇. We
consider a sequence{Yν} of neighbourhoods ofY in K l such that (Yν −Y
is a subcomplex of a suitable subdivision ofK l − Y and) Ȳν+1 ⊂ Yν,⋂∞
ν=1 Yν = Y.
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The argument used above shows that the givenp-frame can be ex-
tended toK l ∩H−Yν. For a suitable choice of the{Yν}, we can apply the
lemma above to extend any section ofTp onK l∩H−Yν to K l∩H−Yν+1.
Thus, in both cases, the givenp-frame can be extended toK l ∩ H.

This proves that we can construct continuousp-frames onŨ, and
Φ1 is proved.

To proveΦ2, we have only to prove that ifpK ⊂ mK̄, mK ⊂ Mm, and
if {ei}1≤i≤p is a continuousp-frame onŨp, these can be extended to an
m-frame onŨm.

The proof is exactly similar to that given above: we choose a vertex
y′0 of mK̄ in Mm, and vectorsep+1(y′0), . . . , em(y′) at y′0 linearly inde-
pendent ofe1(y′0), . . . , ep(y′0) and apply the above reasoning; one has
to consider neighbourhoods where the fields constructed onN̄ ∩ Ũ,
{U = St0(y′0)} are independent of theei(1 ≤ i ≤ p) and replace the
fibre spaceTp by the spaceTp,m(e1, . . . , ep) of m− p vectors which are
independent of thee1, . . . , ep.

Fields of frames tangent to a Whitney stratification72

From the results of §1 and the above theorem, it follows that the
r-frames of the fibres ofV ′ form a pseudofibre spaceV ′r . The fibre
type of V ′r over a stratumMk (of complex dimensionk) is empty for
k ≤ r and, fork ≥ r, is the manifold ofr-frames inCk, which has the
homotopy type of the Stiefel manifoldU(k)/U(k − r).

Hence the first non-zero homotopy group of the fibreFk,r over Mk

is π2k−2r+1(Fk,r ); henceρ = 2r − 1. If N is the complex dimension ofV,
we deduce from the results of §2 the following

Proposition. With the notation of §2, the obstruction dimension to skele-
tonwise extension, overD , of a continuous field of r-frames “tangent to
the strata” is 2p = 2(N − r + 1). Two such fields, defined onD2p−1,
are homotopic onD2p−2. Further, if y0 ∈ Mp, p ≥ r, then, on the open
star of y0 in K , there exists a continuous field of r-frames tangent to the
strata.

Whitney has posed the following question: Can one find locally,
families of (real) analytic or semi-analytic fields of vectors which are
linearly independent and consistent with the stratification?
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Our proposition shows thatcontinuousfields of this kind exist.
Whitney has also shown that, in general, holomorphic fields with

this property do not exist (see [6]).

Obstruction classes. 73

Let us consider first the simple example when the stratification of
V consists of a (closed) submanifoldM of complex dimensionk and
M′ = V−M. Letµ be the homomorphism ofHi(M,Z) into Hi+N−k(V,Z)
which is the Thom-Gysin isomorphism followed by the canonical map
H∗(V,V − M;Z) → H∗(V,Z). Then one can define classescq(M) ∈
H2q(M,Z) which coincide with the Chern classes of the tangent bundle
of M whenM is a closed submanifold ofV, and define

ĉp(M) = µ(cq(M)) ∈ H2q(V,Z),N − p = k − q(= r − 1),

ĉp(M′) = cp(V) − ĉp(M) ∈ H2p(V,Z).

[One hascp(M′) = ĉp(M′).] It can be shown that there is a section of
V ′r overD2p(N − p = r − 1) if and only if

cq(M) = 0, cp(M′) = 0.

The definition of these classescp(M) can be generalized to any strat-
ification; they depend, in general, one the dual complexD (see [5]).
However, the definition of the classes ˆcp(M) can be generalized in such
a way as to be independent ofD [5]. If Mi is a stratum of dimensionk,
we have

ĉp(Mi) ∈ H2P(V,Z), ĉp(Mi) =
∑

p

ĉp(Mi) =
N∑

p=N−k

ĉp(Mi).

These classes have the property that
∑

i

ĉp(M) = cp(V),
∑

i

ĉ(Mi) = c(V).

74

Relationship with a stratification consistent with a mapping.
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Let f be a holomorphic mapping of a complex manifoldV into an-
otherW (of the same dimensionN). We have seen in Chapter 2 (Proposi-
tion 3 and Remark 6) that there exist Whitney stratificationsof V andW
consistent withf (the restriction off to any stratumM of V has constant
rank). It can be shown that the local topological degree off [which is
the limit, whenU shrinks to a pointx, of the maximum number of points
in a fibreg−1g(y) of the restrictiong of f to a neighbourhoodU of x]
is constant onMi; we denote this constant bym(Mi). If we denote by
cp(Mi ,Q), ĉp(Mi ,Q), . . . the images ofcp(Mi), ĉp(Mi) under the natural
mapH∗∗(V,Z) → H∗∗(V,Q)(H∗∗ =

∑
p≥0 H2p) then one can prove the

following result:

f ∗c(W,Q) =
∑

i

m(Mi)ĉ(Mi ,Q).

This result is far from trivial even when the stratification of V con-
tains only two strata as in the example above.

We end these notes with the following proposition concerning the
existence of holomorphic fields of vectors tangent to the strata, which
may however admit zeros (unlike in the theorem above withr = 1).

Proposition (R. Narasimhan)..If V ′ is, as in the above theorem, the
pseudovector bundle defined by a stratification of V, the sheaf of germs
of holomorphic sections ofV ′ is coherent.

More generally we have75

Proposition. Let V be a complex manifold,{Mi} a locally finite family
of locally closed analytic submanifolds such thatM̄i is analytic for each
i. Let F be the sheaf of germs of holomorphic vector fieldsξx such that
ξx ∈ Fx if and only ifξx(y) ∈ T(Mi , y) for all y near x and all i such that
y ∈ Mi. ThenF is coherent. [Fx = germsTx(V) of all vector fields on
V is x< ∪M̄i .]

Proof. Let F i be the sheaf of germs of holomorphic vector fieldsξx

such thatξx ∈ F i
x if and only if ξx(y) ∈ T(Mi , y) for all y nearx such

thaty ∈ Mi. ThenF = ∩F i and every point ofV has a neighbourhood
U such thatTx(V) = F i

x for x ∈ U and all but finitely manyi. Hence
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the intersectionF = ∩F i is locally finite, and it suffices to prove the
proposition when the family{Mi} contains only one element, sayM;
further, the theorem being local, we may suppose thatV is an open set in
Cn, so that the sheafT (V) of germs of holomorphic vector fields can be
identified naturally withOn. Moreover (by choosingV small enough),
we may suppose that there are holomorphic functionsg1, . . . , gq in V
which generate the ideal of holomorphic functions vanishing on M̄ at
any point ofV. Then, clearly, an elementξ = (a1, . . . , an) ∈ On

x belongs
to Fx if and only if, in a neighbourhoodΩ of x,

∑
ai
∂gk

∂zi
= 0 on Ω ∩ M, for each k,

hence, if and only if
∑

ai
∂gk
∂zi
= 0 onΩ ∩ M̄. For eachk = 1, . . . , q, let 76

Gk denote the subsheaf ofOn consisting of germs (a1, . . . , an) such that

n∑

i=1

ai
∂gk

∂zi
= 0 on M̄.

Then, clearly,F =
⋂q

k=1 Gk. Further, if

Rk = Rλ(
∂gk

∂z1
, . . . ,

∂gk

∂zn
, g1, . . . , gq)

is the sheaf of relations between the functions in parantheses, Rk is
coherent andGk is a quotient ofRk. HenceGk is of finite type. Since
furtherGk is a subsheaf ofOn, it is coherent and hence so isF . �
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