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Preface

These are notes of lectures which I gave at the Tata Instituteof Funda-
mental Research in the Winter 1965.

Most of the material of these notes may be found in the papers [1],
[2] and [16] listed in the Bibliography at the end of this book.

My thanks are due to M.S. Raghunathan for the preparation of these
notes and to R. Narasimhan and M.S. Narasimhan for many helpful sug-
gestions.

E. Vesentini
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Chapter 0

Prerequisites

In this chapter we collect together some well known results which will 1

be used in the course of these lectures.

1. Let X be a connected, paracompact complex manifold of (com-
plex) dimension we denote byΩ The sheaf of germs of homo-
morphic p-foxes end by∧x,q the sheaf of germs of 0∞ forms of
type (P,F ). Further{overset−∂ will denote the exterior differen-

tiation with respect to
−
∂ Then we have one.

Proposition. The sequence

0→ ΩP→ Ap,0 ∂̄→ Ap,1 . . .
∂̄→ Ap,n→ 0

is exact. Similarly if Kp,q denotes the sheaf of germs of(p, q)
currents, the sequence

0→ Ωp→ Kp,c ∂̄→ Kp,1→ . . .
∂̄→ Kp,n→ 0

is exact.

We point out that the exactness of the first step of the second se-
quence:

0→ Ωp→ Kpo

1



2 0. Prerequisites

is equivalent to the fact that every
−
∂ closed distribution is a holo-

morphic function1

(For a proof see for instance [5], Exposé XVIII, [22])2

The sheavesAp,q being fine, the cohomology groupHq(X,Ωp) is
canonically isomorphic to the qth cohomology group of either one
of the complexes

0 // H◦(X,Ap,o) //

∂̄
// H◦(X,Ap,1)

∂̄
// . . . ∂̄

// H◦(X,Ap,n) // 0

0 // H◦(X,Kp,o) //

∂̄
// H◦(X,Kp,1)

∂̄
// . . . ∂̄

// H◦(X,Kp,n) // 0.

2. We need the following theorem due to Leray.

LetG = {Ui}i∈I be a locally finite open covering of a paracompact
spaceX. Let F be a sheaf of abelian groups onX such that for
everyq > 0, Hq(Uio ∩ . . . ∩Uip,F ) = 0 for every set (i0, . . . ip) of
p-elements in I. Then the canonical map

Hq(G,F )→ Hq(x,F )

is an isomorphic for allq ≥ o

For a proof see for instance [13] 209-210

3. The following result enables us to apply the above theorem to
locally free sheaves over homomorphic function on a complex
manifold.

Let X be a (para compact) complex manifold of complex dimen-
sion n. Given a vector bundleE an X and any coveringG =
{Ui}iǫ I there is a refinement{V j} jǫJ such that forj1, . . . , jk with
V j1 ∩ . . . ∩ V jk , φ, for 0 ≤ p ≤ n, the sequence

1The idea of the proof is the following. Letα be any compactly supported function

of classCk with k > 0. Since
−
∂(T ∗ α) = 0, T ∗ α is a homomorphic function hence it is

C∞. ThenT itself is aC∞ function [30, Vol. II, Theorem XXI, 50]. But
−
∂T = 0. Then

T is holomorphic.
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0→ H0(V j1,... jk,Ω
p ⊗

O

E
−
→ H0(V j1... jkA

−
p1 ⊗

O

E
−

)
∂̄⊗1−→ . . .

. . .
∂̄O1

→ H0 (V j1... jk,A
pn⊗

O

E
−

)→ 0

whereO is the structure sheaf, is exact, andV j1... jk is the intersec- 3

tion V j1∩ . . .∩V jkand E is the locally freeO sheaf associated to
E. (Since the sheaves,Api ⊗

O

E are fine sheaves, this implies that

Hp(V ji . . . jk′ Ω
p ⊗

O

E) = 0

4. Let Π : E → X be a holomorphic vector bundle on the complex
manifoldX. LetG = (Ui)i∈I be a covering ofX andei j : Ui∩U j →
G = GL(n,C) be transition functions with respect toG′ such that
{G, ei j } defineE. This means that we are given isomorphisms

ϕi : E/Ui → Ui × Cn,

for i ∈ I such thatei j are the maps defined by

(ϕ j ◦ ϕ−1
i )(x, v) = (x, ei j (x)(v))

for x ∈ Ui ∩U j . In particular, we have fori, j, k ∈ I

eik(x) = ei j (x)ejk(x)

provided thatx ∈ Ui ∩U j ∩ Uk.

For a vector bundleπ : E→ X, we denote, as before by EorΩ(E)
the sheaf of germs of holomorphic section ofE. Ω(E) is a locally
free sheaf over the sheaf of germs of holomorphic functions on X
(we denote this latter sheaf byO). Then, in the above notation,

Ω(E)
∣∣∣∣∣
Ui

≃ O
n

We fix moreover the following notation:

Ω
p(E) = E⊗O Ω

p, in particular Ω◦(E) = Ω(E);

Apq(E) = E⊗O Apq;

Kpq(E) = E⊗O Kpq.
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Ω
p(E) (resp. Apq(E), resp. Kpq(E)) is the sheaf of germs of holo-4

morphicE-valuedp-forms (resp. differentiable (p, q) forms with
values inE, resp. (p, q) currents with values inE ;

Γ(X,Apq(E)) = Global(p, q)C∞ forms with values inE;

Γ(X,Kpq(E)) = Global(P, q) currents with values inE.

There is a one-one correspondence between global sections of
Apq(E) and collections (ϕi)i∈I where eachϕi is a vector valued
form,

ϕi =



ϕ′i
...

ϕm
i



eachϕk
i being a scalarC∞ (p, q) forms onUi such that forx ∈ Ui∩

U j we haveϕi(x) = ei j (x)ϕ j(x). One can set up a similar one-one
correspondence between sections ofKpq(E) and families (ϕi)i∈I
of currents, each{ϕk

i }i being defined onUi , satisfyingei jϕ j = ϕi

on Ui ∩U j .

We denote bȳ∂ the operators

1⊗ ∂̄ :E⊗
O

Apq −→ E⊗ Ap,q+1

and 1⊗ ∂̄ :E⊗
O

Kpq −→ E⊗ Kp,q+1.

Then the sequences

0→ Ωp(E)→ Ap,o(E)
∂̄→ . . .

∂̄→ Ap,n(E)→ 0

and 0→ Ωp(E)→ Kp,o(E)
∂̄→ . . .

∂̄→ Kp,n(E)→ 0

are exact. Moreover the sheaves Apq(E) and Kpq(E) are fine.

Hence ifΦ denotes either the family of all closed subsets ofX5
or the family of all compact subsets ofX, (more generally, any
paracompactifying family) and we set,

ΓΦ(X,Apq(E)) =
{
σ|σ a section ofApq(E) overX,Suppσ ∈ Φ}

,

then Hq
Φ
(X,Ωp(E)) ≃

{
ϕ|ϕ ∈ ΓΦ(X,Ap,q(E)); ∂̄ϕ = 0

}
|
{
∂̄ΓΦ(X,Ap,q−1(E))

}



5

and similarly with the obvious notation,

Hq
Φ

(X,Ωp(E)) ≃
{
ϕ|ϕ ∈ ΓΦ(X,Kp,q(E)); ∂̄ϕ = 0

}
|
{
∂̄ΓΦ(X,Kp,q−1(E))

}





Chapter 1

Vanishing theorems for
hermitian manifolds

1 The spaceLp,q

All manifolds considered are assumed to be connected and paracompact. 6

Let π : E → X be a holomorphic vector bundle on a paracompact
complex manifoldX of complex dimensionn.

LetG =
{
Ui

}
iǫ I be a locally finite open coordinate covering ofX and{

ei j : Ui ∩ U j → GL(mC)
}
i j∈I×I transition functions definingE.

A hermitian metric along the fibres ofE is a collection
{
hi : Ui →

GL(m,C)
}
iǫ I of C∞ -maps such that forxǫUi , hi(x) is a positive definite

hermitian matrix and forxǫUi ∩ U j , h j(x) =t ei j (x)hi (x)ei j (x).

Lemma 1.1. Every holomorphic vector bundle on a complex manifold
admits a hermitian metric.

Proof. Let
{
ρk

}
k∈I be aC∞-partition of unity subordinate to

{
Uk

}
k∈I (=

G). Let
{
ho

i : Ui → GL(m,C)
}
i∈I be any family ofC∞-functions such

that for i ∈ I , x ∈ Ui , ho
i (x) is a positive definite hermitian matrix. Then

the family
{
ho

i

}
i∈I defined by

hi(x) =
∑

k

ρk(x)teki(x)ho
k(x)eki(x)

7



8 1. Vanishing theorems for hermitian manifolds

is a metric along the fibres ofE. �

In particular, the holomorphic tangent bundleH → X admits a7

hermitian metric. LetG =
{
Ui

}
i∈I be a covering ofX by means of

coordinate open sets. LetZ1
i , . . . ,Z

n
i be any system of coordinates inUi .

Then H → X is defined with respect toG by means of the transition
functionsJi j : Ui ∩U j → GL(n,C) defined by

Ji j (x) =


∂Zαj
∂Zρl β

(x)


αβ

for x ∈ Ui ∩ U j .

A hermitian metric onH is then a family ofC∞-hermitian -positive
definite matrix-valued functionsgi : Ui → GL(n,C) such that

g =t Ji j gi Ji j

Identifying hermitian matrices with hermitian bilinear forms on the tan-

gent spaces through the basis
∂

∂Z1
. . .

∂

∂Zn of the holomorphic tangent

space, we may writegi as
∑

αβ

giαβ̄dZαi dZ̄βα.

A hermitian metric onX defines onX (regarded as a differentiable
manifold), a Riemannian metric: in fact, ifzαi = xαi + iyαi , then we have

ds2
=

∑
giαβ dZαi · dIβi =

∑
Re giαβ(dxαi dxβi + dyαi dyβi )

in the coordinate open setUi, in terms of the local real coordinatesxi , yi .
SinceX carries a complex structure, it has a canonical orientationde-
fined by this structure. HenceX has a canonical structure of an oriented
Riemannian manifold. We denote byℓ the volume form onX with re-
spect to this oriented Riemannian structure.

Let Cr(X), 0 ≤ r ≤ 2n (n= complex dimension ofX) denote the8

space of complex valued exterior differential forms of degreer. It is
a module over the algebra,F, (over the complex numbers) of complex
valuedC∞ function onX
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Definition 1.1. The “star operator” ∗ : Cr(X) → Cm−r (X) on an ori-
ented Riemannian manifold X of (real) dimension m is defined by the
formula

(∗ϕ)(t1, . . . , tm−r).ℓ = ϕ ∧ τ(t1) ∧ . . . ∧ τ(tm−r)

whereϕ ∈ Cr(X), t1, . . . , tm−r are tangent vectors to X at a point P andτ
is the canonical isomorphism of the F-module of tangent vector fields on
X onto the F-module of 1-forms. Clearly * is a real operator, i.e. ∗ϕ =
∗ϕ (the bar denoting conjugation of complex numbers). Furthermore we
have

Lemma 1.2. Let (X, g) be an oriented Riemannian manifold of dimen-
sion m. Then

∗ ∗ ϕ = (−1)r(m−1)ϕ for ϕ ∈ Cr(X). (1 I)

Proof. ([18]) Let x ∈ X and t1, . . . , tm be an orthonormal basis of the
tangent space atx with respect to the Riemannian metric. Then it is
enough to check that

∗ ∗ (τ(ti1) ∧ . . . ∧ τ(tir )) = (−1)r(m−1)τ(ti1) ∧ . . . ∧ τ(tir )

for every 0< i1 < i2 < . . . < ir ≤ m, or again that for every sequence
0 < j1 < . . . < jr ≤ m,

(∗∗)ττ(ti1) ∧ . . . ∧ τ(tir )(t j1, . . . t jr )

=

{
τ(ti1) ∧ . . . ∧ τ(tir )

}
(t j1, . . . t jr ) · (−1)r(m−1).

�

Suppose now that (j1, ..., jr) , (i1, ..., ir). then 9

(∗∗)(τ(ti1) ∧ ...,∧τ(tir )(t j1 , ..., t jr ).l

= ∗ {τ(ti1) ∧ ... ∧ τ(tir )
} ∧ τ(t j1) ∧ · · · ∧ τ(t jr )

and the right hand side is zero because,

{
τ(ti1) ∧ · · · ∧ τ(tir )

}
(tλ1, . . . , tλm−r )l
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= τ(ti1) ∧ ... ∧ τ(tir ) ∧ τ(tλ1) ∧ ... ∧ τ(tλm−r )

and here the right side is zero unless
{
i1, .., ir , λ1, .., λm−r

}
=

{
1, 2, ...,m

}
.

t1, ..., tm are so chosen thatτ(t1)∧ ...∧ τ(tm) give the natural orienta-
tion,

∗(τ(ti1) ∧ ... ∧ τ(tir ))(tλ1 , ..., tλm−r ) = 0

if ( i1, ..., ir , λ1, ..., λm−r) , (1, 2, ..m) and

∗(τ(ti1) ∧ ... ∧ τ(tir ))(tλ1, ...tm−r)l =

= τ(ti1) ∧ τ(tir ) ∧ τ(tλ1)...(tλm−r ).

Now, the right side is clearlyε · l whereε is the signature of the
permutation

(1, 2, ..., n) (ti1, ..., tir , tλ1, ...tλm−r ).

It follows that

∗(τ(ti1) ∧ ... ∧ τ(tir )) = ετ(tµ1) ∧ ... ∧ τ(tµm−r )

where 0< µ1 < . . . < µm−r ≤ mare so chosen that10

{
ti1, ..., tir , tµ1, .., tµm−r

}
= (1, 2, ..,m).

Hence

(∗∗)(τ(ti1)∧), ∧ (ti1, ..., tir )

= ετ(tµ1) ∧ .. ∧ τ(tµr ) ∧ τ(ti1) ∧ ... ∧ τ(tir )
= εε′ · ℓ

whereε′ is the signature of the permutation

(1, 2, ...,m) (tµ1, .., tµr , ti1, .., tir ).

Hence εε′ = (−1)r(m−r)
= (−1)r(m−1). It follows that

(∗∗)(τ(ti1)∧...∧τ(ti)(ti1 , .., tir ) = (−1)r(m−1) {τ(ti1) ∧ ... ∧ τ(tir )
}
(ti1, ..., tir ).
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For (j1, j2, .., jr) , (i1, .., ir) we have already seen

(∗∗)τ(ti1) ∧ .. ∧ τ(ti))(t j1, ..., t jr ) = 0.

Evidently, {
τ(ti1) ∧ ... ∧ τ(ti)

}
(t j1 , .., t jr ) = 0.

Hence the lemma.
The isomorphismsτ between theF-module ofC∞ tangent vector

fields onX onto theE-moduleC1 extends to an isomorphism between
ther-th exterior power of these modules.

Let U be a coordinate open set on the differentiable manifoldX.
Let x1, ..., xm be a coordinate system onU. Then for the fixed basis
dx1, ..., dxm for the space of differentials at every point ofU, anyr-form 11

ϕ ∈ Cr can be represented inU by

φ = φIdxI ,

whereφI is aC∞ function onU, I = (i1, ..., ir) is anr-tuple of indices
1 ≤, i1 < . . . < ir ≤ m= dimRX, anddxI

= dx1i ∧ . . . ∧ dx1r .
Let gi j be the metric tensor inU, and letgi j (i, j = 1, ...,m) be the

elements of the inverse matrixg−1
= (gi j )−1. Thenτ−1φ is defined inU

by its components (with respect to the basis
∂

∂x1
, ...,

∂

∂xm)

ϕi1...ir = gi1k1 . . .gir krϕk1...kr .

If
(∗ϕ)J dxJ

is the local representation inU of the (m− r)-form ∗ϕ, J being the multi-
index J = ( j1, . . . , jm−r)(1 ≤ j1 < . . . < jm−r ≤ m), then

(∗ϕ)J = ℓIJϕ
I .

whereℓ = ℓ1...mdx′ ∧ ... ∧ dxm is the representation of the volume ele-
ment inU(ℓ1...m =

√
det(gi j )) andℓIJ = εℓ′1...mε being the sign of the

summation (1, ...m) (IJ).
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The proof is straightforward. It follows that forϕ,ψ ∈ Cr ,

ϕ ∧ ∗ψ = 1
r!


∑

I

ϕIψ
I

 ℓ (1, II)

the summation being over all multi-indicesI = (i1, ..., ir) or

ϕ ∧ ∗ψ =
∑

ϕIψ
I

if we extend the summation only to the multi-indicesI = (i1, ..., ir),
l ≤ i1 < . . . < ir ≤ mclearly,

clearly, ϕ ∧ ∗ψ = ψ ∧ ∗ϕ
and ∗ϕ∧ ∗ ∗ψ = ϕ ∧ ∗ψ

 . . . (1, III)

We now revert to the situation when the manifoldX is a complex12

manifold and the Riemannian structure is the one canonically associated
to a hermitian structure onX . Let Cpq(X) be the complex vector space
of C∞ forms of type (p, q) on X .

Lemma 1.3. The∗-operator maps Cpq(X) into Cn−q,n−p(X).

Proof. The isomorphismτ of the (real) tangent space toX at xǫX onto
space of differentials extends to a complex linear isomorphism of the
“complexified” tangent space onto the space of complex valued differ-
entials. Denoting the extension again byτ and noting the fact that every
complex valued differential form may be regarded as a multilinear form
on the complexified tangent space, we see that the formula

(∗ϕ)(t1, . . . , tm−r )ℓ = ϕ ∧ τ(t1) ∧ · · · ∧ τ(tm−r )

holds for complex tangent vectors (t1, . . . , tm−r ) as well. Moreover from
the definitions of the associated Riemannian structure, we see easily that

for everyα, τ

(
∂

∂zαi

)
is a linear combination of thedzβi while τ

(
∂

∂z̄αα

)
is

a linear combination of thedzβi . Our assertion now follows from the
definitions of forms of type (p, q). �
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Now, let E be a holomorphic vector bundle onX defined by (G =
{Ui}i∈I ; ei j : Ui ∩ U j → GL(n,C)).

Let h = (hi )i∈I be a hermitian metric along the fibres. LetCp,q(X,E)
denote the space ofC∞ - forms of type (p, q) on X with values inE
. The operator * of the associated Riemannian structure defines also a
canonical isomorphism

∗ : Cp,q(X,E)→ Cn−p,n−p(X,E)

as follows. If a formϕ in Cp,q(X,E) is represented inUi by a column 13
...
ϕ1

i

ϕm
i

 where eachϕk
i is a scalar (p, q) form, then∗ϕ is represented by


...
∗ϕ1

i

∗ϕm
i

 in Ui. Next, the hermitian metric h enables us to define an operator

# : Cp,q(X,E)→ Cq,p(X,E∗),

whereE∗ is the dual-bundle toE.(E∗ is defined by the transition func-
tions {x  t−1

ei (x)} with respect to the coveringG = {Ui}i∈I ). In fact if

we represent a (p, q)-form ϕ in Ui by a column


...
ϕ1

i

ϕm
i

, where eachϕk
i

is a scalar form of type (p, q), then #ϕ in Ui is given by the column of
(p, q)-forms

(#ϕ)i =


hiϕ

1
i

hiϕ
2
i

hiϕ
m
i



That{(#ϕ)i}i∈I define forms with values inE∗ follows from the fact

hiϕi = (teji h jeji ei jϕ j) = (teji hj
ϕ j)
−

= et−1
i j

h jϕ j

Remark . Cp,q(X,E) has a structure of anF-module whereF is the 14

ring of global complex-valuedC∞-functions. For this structure ofF-
modules on theCp,q(X,E)

∗ : Cp,q(X,E)→ Cn−q,n−p(X,E)
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is anF-linear isomorphism, while the operator

# : Cp,q(X,E)→ Cq,p(X,E∗)

satisfies the condition

#( f .ϕ) = f (#ϕ) where f ∈ F, ϕ ∈ Cp,q(X,E).

It follows that the operators * and # define actually homomorphisms

∗ : Ap,q(E)→ An−q,n−p(E) (resp. Ap,q(E)
♯
→ Aq,p(E∗)

where Ars(E)(resp. Ars(E∗))

is the vector-bundle of exterior differential forms of type (r, s) with val-
ues inE (resp.E∗); here * isC-linear while # is anti linear.

In the special case whenE is trivial bundle, the map # :C◦◦(X,E)→
C◦◦(X,E∗) is simply the map

f  − f .

Let α ∈ Cp,q(X,E) andβ ∈ Crs(E∗). Then (α ∧ β) is defined as a
scalar form of type (p+ r, q+ s). Forϕ, ψ ∈ Cpq(X,E) we set

AE(ϕ, ψ)l = ϕ∧ (#∗ψ). (We note that #∗ = ∗#.) If (suppϕ∩ suppψ)
is compact, then


X

|ϕ ∧ ∗#ψ| =


X

|AE(ϕ, ψ)| < ∞

Let U be an open coordinate set inX and letϕ, ψ be represented in
U by

ϕ =

{
1

p!q!
ϕa

AB̄
dzA ∧ dzB

}
, ψ =

{
1

p!q!
ψa

AB
dzA ∧ dzB

}
,

where: a = 1, . . . ,m = rankE, A = (α1, . . . , αp), B = (β1, . . . , βq),15

1 ≤ αi , βi ≤ n, dzA
= dzα1 ∧ . . . ∧ dzαp, dzβ = dzβ1 ∧ . . . ∧ dzβq.

Then it follows from (1 II) that

A(ϕ, ψ) =
1

p! q!
hbaϕ

a
AB
φψ

bAB
,
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(hba)a,b=1,...,m being the local representation inU of the metric along the

fibres ofE. We shall callA(ϕ, ϕ)
1
2 the “length of the formϕ.

Sometimes it will be denoted also by|ϕ|.
Let ϑp,q(X,E), be the space ofC∞ − (p − q)− forms with compact

support. Then forϕ, ψǫD pq(X,E) we can define a scalar product:

(ϕ, ψ) =
∫

X

ϕ ∧ (∗#ψ) =
∫

X

AE(ϕ, ψ).

Also, we denote (ϕ, ϕ) by ‖ϕ‖2; ‖ ‖ is in fact a norm: the hermitian
bilinear form (ϕ, ψ) defines onD p,q(X,E) the structure of a prehilbert
space overC. The completion ofDp,q(X,E) is denotedLp,q(X,E).
This latter space is referred to in the sequel also as the space of square
summable forms. Because of the Riesze-Fisher theoremLpq(X,E) can
be identified with the space of square forms of type (p, q)-i.e. the space
of ϕ such that

∫

X

A(ϕ, ϕ) < ∞.

2 The spaceWp,q

The operator∂ : Ap,q(E) → Ap,q+1(E) defines homomorphisms (again
denoted by the same symbol)

∂ : Cp,q(X,E)→ Cp,q+1(X,E)

∂ : D
p,q(X,E)→ D

p,q+1(X,E).

We can now define the adjoint of∂ with respect to hermitian metric16

on X and a hermitian metric along the fibres of the vector bundleπ :
E→ X, i.e. an operator

ϑ : Cp,q(X,E)→ Cp,q−1(X,E)

satisfying
(∂ϕ, ψ) = (ϕ, ϑψ) (1.1)

for ϕǫD p,q(X,E), ψǫD p,q+1(X,E). Such an operator, if it exists is
immediately seen to be unique. For the existence we have the
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Lemma 1.4. If ϕǫD p,q(X,E), ψǫD p,q+1(X,E) are Lipschitz continuous
forms with compact support, then(∂ϕ, ψ) = (ϕ,− ∗ #−1∂ ∗ #ψ).

Proof. We note first that the scalar products on both sides are defined.
Firstly, the∗ and # beingC-linear (resp.C-anti linear) bundle homomor-
phisms, these can also be defined on arbitrary forms - that is arbitrary
sections of the vector bundleAp,q(E). Secondly, sinceϕ andψ are Lips-
chitz continuous∂ϕ and−∗#−1∂ ∗ # are defined almost every where and
are bounded measurable forms with compact support. We have more-
over,

d(ϕ ∧ ∗#ψ) = ∂(ϕ ∧ ∗#ψ)

=

{
∂ϕ ∧ ∗#ψ

}
+ {(−1)p+qϕ ∧ ∂ ∗ #ψ}

=

{
∂ϕ ∧ ∗#ψ

}
− {ϕ ∧ ∗#ϑψ}

since ∗ ∗ = (−1)(p+q)(2n−p−q)
= (−1)p+q

(heren is the complex dimension ofX). Applying Stoke’s formula, we
obtain (sinceϕ andψ are compact support),

0 =
∫

X

(∂ϕ ∧ ∗#ψ) −
∫

X

ϕ ∧ ∗#ϑψ

i.e. (Jϕ, ψ) = (ϕ, ϑψ), which proves the lemma. �

The operatorϑ depends on the hermitian metric onX and on the17

hermitian metric along the fibres ofE. To emphasise this fact, we may
write sometimesϑE for ϑ.

We have already introduced the norm‖ ‖ onD p,q(X,E) and denoted
the corresponding completion byLp,q(X,E). We will now introduce
another norm onD p,q(X,E).

Definition 1.2. For ϕ, ψǫD p,q(X,E).

a(ϕ, ψ) = (∂ϕ, ∂ψ) + (ϑψ, ϑψ) + (ϕ, ψ).

and N(ϕ)2
= a(ϕ, ϕ).

As before we see that the hermitian scalar product a(ϕ, ψ) defines a
complex prehilbert-space structure onD p,q(X,E). We denote by Wp,q
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(X,E) the corresponding completion. Clearly, we have forϕ, ψǫD p,q

(X,E) the inequality‖ϕ‖ ≤ N(ϕ), so that the identity

D
p,q(X,E)→ D

p,q(X,E)

extends uniquely to a continuous linear map,

i : Wp,q(X,E)→ Lp,q(X,E).

Proposition 1.1. i is injective.

Proof. Let ϕνǫD p,q(X,E) be a Cauchy sequence inN and assume that
‖ϕν‖ → 0. Sinceϕν is a Cauchy-sequence inN, ∂ϕν andϑϕν are Cauchy
sequences in the norm‖ ‖. Hence∂ϕν and ϑϕν tend to a limit in
Lp,q+1(X,E) andLp,q−1(X,E) respectively.

We denote these limits byu and v. By our identification ofLp,q

(X,E) as the space of square summableE-valued forms,u andv may be
regarded as forms onX with values onE. �

Now for anyψ ∈ D p,q+1(X,E) 18

(u, ψ) = lim
ν→∞

(∂ϕν, ψ) = lim
ν→∞

(ϕν, ϑψ) = 0

since‖ϕν‖ → 0. Sinceψ is arbitrary inD p,q+1(X,E),U = 0. Similarly
v = 0. That is,∂ϕν → 0 andϑϕν → 0 inLp,q+1(X,E) andLp,q−1(X,E)
respectively. ThusN(ϕν) −→ 0 asν −→ ∞, hence the proposition.

By continuity we obtain from (1.1) that, ifϕ ∈ Wp,q(X,E), ψ ∈
Wp,q+1(X,E), then

(∂ϕ, ψ) = (ϕ, ϑψ)

Clearly, we may now regardWp,q(X,E) also as a space of measur-
ableE-valued forms onX. From the definitions, it is moreover clear that
if f ∈Wp,q(X,E), ∂ f andϑ f in the distribution sense are currents repre-
sentable by square summable (p, q+1) and (p, q−1) forms respectively.
In generalWp,q(X,E) is not the space of all square summable formsω of
type (p, q) whose∂ andϑ (in the sense of distributions) are again square
summable. We have however, the
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Theorem 1.1. If the Riemannian metric (associated to the hermitian
metric) on X is complete, then

Wp,q(X,E) =
{
ϕ | ϕ ∈ Lp,∧q(X,E); ∂ϕ ∈ Lp,q+1(X,E);ϑϕ ∈ Lp,q−1(X,E)

}

Proof. We will first establish three lemmas which are needed for the
proof. �

Lemma A. There exists C◦ > 0 depending only on the dimension of X
such that for any scalar form u and any v∈ Cp,q(X,E),

AE(u∧ v, u∧ v)(x) ≤ {C◦ | u |2 AE(v, v)}(x)

where | u |2 denotes the length of the scalar form a). (We recall that19

AE(ϕ, ψ)ℓ = ϕ ∧ ∗#ψ). This is simply a lemma on finite dimensional
vector space with scalar products. We omit the proof.

Lemma B. Let p◦ ∈ X be any point. The functionρ(x) = d(p◦, x) =
distance from0 of x, is locally Lipschitz continuous and whereverρ has
partial derivatives,| dρ |2≤ 2n.

Proof. We have by the triangle inequality

| ρ(x) − ρ(y) |≤ d(x, y).

Now if U is a coordinate open set with coordinates (X1, . . . ,Xm) (X
considered as a differentiable manifold of dimensionm = 2n) and the
Riemannian metric is given onU by

∑
gi j dxi x j then for anyV ⊂ 0 ⊂ U,

there existsλ andµ such that

λ
∑

dxi2 ≤
∑

gi j dxidxj ≤ µ
∑

dxi2

so that ifV is a ball about the origin inU, there exist constantsC1C2 > 0
such that

C1 | x− y |≤ d(x, y) ≤ C2 | x− y | for x, y ∈ V.

Thus | ρ(x) − ρ(y) |< C2 | x − y | for x, y ∈ V. Hence the first
assertion. �
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For the second assertion consider about a pointpa neighbourhoodU
in which we can introduce geodesic polar-coordinates. Let (x1, . . . , xm)
be a coordinate system such thatxi(p) = 0 for 1≤ i ≤ m.

For ε > 0 we can chooseU so small that| gi j |< δi j + ε, i.e.
d(x, p)2 ≤ (1 + ε)

∑
x2

i . In such a coordinate system, we have setting
ei = (0, . . . , 1 . . . , 0) (1 at theith place)

∂̺

∂xi
(ρ) = Lt

h→0

ρ(hei ) − ̺(0)
h

On the other hand we have 20

| ρ(hei ) − ρ(0) |≤ d(0, h, ei ) ≤ (1+ ε)h

Since we are working with a coordinate system such thatd(x, 0) ≤
(1+ε

(∑
x2

i

) 1
2 . Henceρ is Lipschitz continuous and, if the derivatives ex-

ist,
∂ρ

∂xi
(p) ≤ 1. Now, by definition| dρ |2= ∑

gi j
∂ρ

∂Xi
∂ρ

∂X j and in the coor-

dinate system introduced above,gi j (0) = δi j so that| ρ |2=
m∑

1=1

 ∂ρ

∂xi

2 ≤
m. WhenX is a complex manifold of complex dimensionn, we have,

| dρ |2≤ 2n.

Lemma C. Let

Ḋ
p,q

∂
(X,E) =

{
ϕ | ϕ ∈ Lp,q(X,E), ∂ϕ ∈ Lp,q+1(X,E),Suppϕ ⊂⊂ X

}

Ḋ
p,q
ϑ

(X,E) =
{
ϕ | ϕ ∈ Lp,q(X,E),

ϑϕ ∈ Lp,q(X,E), ϑϕ ∈ Lp,q−1(X,E), suppϕ ⊂ X
}

(where∂ andϑ are in the sense of distributions) and finally

Ḋ
p,q(X,E) = Ḋ

p,q

∂
(X,E) ∩ Ḋ

p,q
ϑ

(X,E).

Then
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(i) D p,q(X,E) is dense inḊ p,q

∂
(X,E) w.r.t. the norm

P(ϕ) : P(ϕ)2
= ‖ϕ‖2 + ‖∂ϕ‖2

and

(ii) D p,q(X,E) is dense inḊ p,q
ϑ

(X,E) with the norm

Q(ϕ) : Q(ϕ)2
= ‖ϕ‖2 + ‖ϑϕ‖2

(iii) D p,q(X,E) is dense inḊ pq(X,E) with the norm

N : N(ϕ)2
= ‖ϕ‖2 + ‖∂ϕ‖2 + |ϑϕ‖2.

Proof. We will prove (i) ; the proofs for the other two cases are similar.21

LetG = {Ui}i∈I be a locally finite covering ofX such thatE |Ui is trivial.
Let mbe the rank ofE. Assume further that eachUi is a coordinate open
set. Let{Vi | Vi ⊂⊂ Ui}i∈I be a shrinking ofUi. Let (ρi)i∈I be a partition
unity subordinate to{Vi}i∈I . Let ϕ ∈ ˙mathscrD

p,q(X,E)
σ . E |Ui being

trivial, we may takeρiϕi to be aCm-valued from onCn with compact
support inVi. For anyε > 0, we can find aCm valuedC∞ from ψi

with compact support inVi ⊂ Cn, such that|| ∂ρiϕi − ∂ψi ||< ε and
‖ρiϕi−ψi‖ < ε. This can be secured by the usual regularisation methods.
Since the support ofϕ is compact, we may takeψi = 0 except for a
finite number ofi. SinceE |Ui is trivial andρiϕi were regarded as scalar
forms through suitable trivialisations, we may now revert the process
and considerψi as E-valuedC∞-forms with support inVi. It follows
thatψ =

∑
ψi is aC∞-form with compact support and

‖ϕ − ψ‖ = ‖
∑

ρiϕi −
∑

ψi‖ ≤
∑

i

‖ρiϕi − ψi‖ < Mε

and similarly‖∂ϕ − ∂ψ‖ < Mε whereM is the number of indices of the
finite set

{i | i ∈ I ,Ui ∩ support ϕ , φ}.

Since M is fixed for a givenϕ and ε is at our choice, the lemma is
proved. �
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Lemma C enables us to prove the following more general statement.

Theorem 1.1. If the Riemannian metric (associated to the hermitian22

metric) of X complete, then

i) D p,q(X,E) is dense in the space
{
ϕ | ϕεLp,q(X,E), ∂ϕ ∈ Lp,q+1(X,E)

}
,

with respect to the norm P(ϕ);

ii) D p,q(X,E) is dense in the space
{
ϕ | ϕ ∈ Lp,q(X,E), ϑϕ ∈ Lp,q−1(X,E)

}
,

with respect to the norm Q(ϕ);

iii) D p,q(X,E) is dense in the space
{
ϕ | ϕ ∈ Lp,q(X,E), ∂ϕ ∈ Lp,q+1(X,E), ϑϕ ∈ Lp,q−1(X,E)

}
,

with respect to the norm N(ϕ).

Proof. We will prove i). The proofs of ii) and iii) are similar.
In view of Lemma C it is sufficient to prove that every distributive

form ϕ in Lp,q(X,E) such that∂ϕ ∈ Lp,q+1(X,E) can be approximated
as closely as we want by formsψ such thatψ, ∂ψ are square summable
and suppψ,⊂⊂ X.

Let µ :| R1→ [0, 1] be aC∞ function such that
(i) µ(t) = 1 if t < 1 and (ii)µ(t) = 0 if t > 2.
Let M = Supp

t
| dµ

dt |. Let d(x, y) be the distance function defined by

the complete Riemannian metric ofX. Then we fix a pointp◦ ∈ X and 23

setρ(x) = d(x, p◦) for x ∈ X, the function

ων(x) = µ

(
ρ(x)
ν

)
ν > 0

is locally Lipschitz, and where the derivatives∂ρ
∂xi exist, then

| dων |2≤|
1
γ

∂µ

∂t

(
ρ(x)
ν

)
dρ |2≤ 2nM2

ν2
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in view of Lemma B. Since the metric is complete the ball of centre p
and radiusc,

Bc = {p | d(p, p◦) < c}

is relatively compact inX for all c > 0.
Consider now the formων.ϕ = ϕν; ϕν has compact support. It is

easily seen thatων.ϕ = ϕν is in Ḋ p,q(X,E). We will now prove that
ϕν → ϕ in the normN asν→ ∞. In fact, we have first of all

‖ϕ − ϕν‖ = ‖(1− ων)ϕ‖X−Bν ≤ ‖ϕ‖X−Bν → 0 as ν→ ∞.

Secondly

‖∂ϕ − ∂ϕν‖ = ‖∂ϕ − ων∂ϕ − ∂ων ∧ ϕ‖
≤ ‖∂ϕ‖X−Bν + ‖∂ων ∧ ϕ‖

Now, ‖∂ων ∧ ϕ‖ = A(∂ων ∧ ϕ, ∂ων ∧ ϕ)

≤| ∂ων |2 ·A(ϕ, ϕ) by Lemma A.

On the other hand, one checks easily that almost everywhere

| ∂ων |2≤| dων |2≤
2nM2

ν2
,

so that, we obtain

‖∂ϕν − ∂ϕ‖ ≤ ‖∂ϕ‖X−Bν +
C′

ν
‖ϕ‖.

Hence|| ∂ϕν−∂ϕ ||→ 0 asν→ ∞. This completes the proof of Theorem24

1.1 (i). �

Definition 1.3. � : Cp,q(X,E) → Cp,q(X,E) is the operator∂ϑ + ϑ∂.
The following result is easily checked.

Lemma 1.5. The operator� defined above is strongly elliptic.

The operator� depends on the metric onX and on the metric along
the fibres ofE. To emphasize this fact we may write�E for �.

For the operator� we have the following result.
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Theorem 1.2 (Stampacchia Inequality). We assume the Riemannian
metric on X (associated to the hermitian structure) to be complete. Let
po ∈ X and forν > 0, let Bν = {x | d(x, po) < ν}. Then there exists a
constant A> 0 such that for everyσ > 0, for every choice r< R of a
pair of positive reals r, R and everyϕ ∈ Cp,q(X,E),

|| ∂ϕ ||2Br
+ || ∂ϕ ||2Br

≤ σ || �ϕ‖2Br
+

( 1
σ
+

A

(R− r)2

)
‖ϕ‖2BR

Proof. Let us choose as before aC∞ functionµ : R1 → [0, 1] such that
µ(t) = 1 for t < 1 andµ(t) = 0 for t > 2.

Let M = sup|dµdt |. consider the function defined by

W(x) = µ

{
ρ(x) + R− 2r

R− r

}

whereσ(x) = d(po, x). Evidently then,ω has support inBR andw ≡ 1
on Br(BR ⊂⊂ X). �

Moreover,|dω|2 = | 1
R−r

∂µ
∂t

{
ρ(x)+R−2r

R−r

}
· dρ|2. It follows that |dω|2 ≤ 25

2nM2

(R−r)2 .
Suppose now thatϕ ∈ Cpq(X,E) andψ is any Lipschitz continuous

form with compact support inBR, then

(∂ϕ, ∂ψ)BR + (ϑϕ, ϑψ)BR = (�ϕ, ψ)BR.

Setψ = ω2ϕ. We have then

∂ψ = ω2∂ϕ + 2ω∂ωΛϕ

ϑψ = ω2ϑϕ − ∗(2ω∂ωΛ ∗ ϕ).

This leads to

(ω∂ϕ, ω∂ϕ)BR + (ωϑϕ, ωϑψ)BR

= (�ϕ, ω2ϕ) − (ω∂ϕ, 2∂ωΛϕ) + (ωϑϕ, ∗(2∂ωΛ ∗ ϕ)).

Now, by Schuarz inequality,

| (�ϕ, ω2ϕ)BR |≤
1
2
σ‖�ϕ‖2BR

+
1

2σ
‖ω2ϕ‖BR 6

σ

2
‖�ϕ‖2BR

+
1

2σ
‖ϕ‖2BR
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| (ω∂ϕ, 2∂ωΛϕ)BR |6
1
2
‖ω∂ϕ‖2BR

+
4conM2

(R− r)2
‖ϕ‖2BR

and | (ωϑϕ, ∗(2∂ωΛ ∗ ϕ)) |6 1
2
‖ωϑϕ‖2BR

+
4conM2

(R− r)2
‖ϕ‖2BR

(whereco is the positive constant which has been introduced in lemma
A)

If follows that26

‖ω∂ϕ‖2BR
+ ‖ωϑϕ‖2BR

≤ σ‖�ϕ‖2BR
+ σ‖ϕ‖2BR

+
8conM2

(R− r)2
‖ϕ‖2BR

.

The inequality follows now from

‖ω∂ϕ‖2BR
> ‖∂ϕ‖2B and ‖ωϑϕ‖2BR

> ‖ϑϕ‖2BR

This completes the proof of theorem 1.2.

Corollary 1. For ϕ2 ∈ Cp,q(X,E) and for anyσ > 0,

‖∂ϕ‖2 + ‖ϑϕ‖2 ≤ σ‖�ϕ‖2 + 1
σ
‖ϕ‖2.

Proof. SetR= 2r in stampachia inequality and letr → ∞. �

Corollary 2. If ϕ ∈ Cp,q(X,E), ‖ϕ‖ < ∞ and‖�ϕ‖ < ∞, then‖∂ϕ‖ < ∞,
‖ϑϕ‖ < ∞. If squareϕ = 0, then∂ϕ = ϑϕ = 0.

Proof. The first assertion follows from corollary 1. The second again
from corollary 1 sinceσ is arbitrary. �

Remark . On any (paracompact) complex manifoldX there exists a
complete hermitian metric. More exactly we shall prove that, given any
hermitian metricds2 on X, there exists aC∞ function F : X → R such
thatF · ds2 is a complete metric.

Proof. Let {Bν}ν∈N be a sequence of compact sets such that

Bν ⊂
o
Bν+1,∪Bν = X.
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Let fν : X → R be aC∞ function onX, satisfying the following27

conditions:

0 6 fν 6 1,

fν = 1 onBν+1 − Bν,

Supp fν ⊂ Bν+2 − Bν−1

Let d(x, y) (x, y ∈ X) be the distance function determined by the
hermitiands2, and let

εν = inf
x∈Bν

y∈∂Bν+1

d(x, y).

Thenεν > 0. Consider the positiveC∞ function

F(x) =
+∞∑

ν=0

fν(x)
εν

and the hermitian metric̃ds
2
= F(x)ds2. Let d̃(x, y) be the distance

function determined byds2. We have

∽

d(Bν, Bν+1) >

> x ∈ inf
Bν+1 − Bν

F(x)d(Bν, Bν+1)

>
1
εν
εν = 1.

This implies that every Cauchy sequence for the distanced̃(x, y) con-

verges. Hencẽds
2

is a complete hermitian metric. �

3 W-ellipticity and a weak vanishing theorem
28

We now introduce a seminorm onWp,q(X,E) as follows: forϕ, ψǫWp,q

(X,E), letb(ϕ, ψ) = (∂ϕ, ∂ψ)+(ϑϕ, ϑψ); thenb is a positive semi definite
form andb(ϕϕ) defines a semi-norm onWp,q(X,E). the map

j : Wp,q(X,E)→Wp,q
b (X,E)
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where the latter space isWp,q(X,E) provided with the (not necessarily
Hausdorff) topology defined by the seminormb(ϕ, ϕ) and j is the iden-
tity is clearly continuous: in fact,b(ϕ, ϕ) 6 N(ϕ).

Definition 1.4. We say that E is Wp,q elliptic with respect to the hermi-
tian metric on X and the and the hermitian metric along the fibres of E,
if j admits a continuous inverse.

In particular, the Wp,q-ellipticity of E implies that b(ϕ, ϕ)
1
2 is actu-

ally a norm. In fact, there is a K> 0 such that N(ϕ)2
6 Kb(ϕ, ϕ). Since

by definition, N(ϕ) = b(ϕ, ϕ) + ‖ϕ‖2,Wpq-ellipticity is equivalent to fol-
lowing: there is a constant C> 0(= K − 1 when K is as above) such
that

‖ϕ‖2 6 Cb(ϕ, ϕ) = C(‖∂ϕ‖2 + ‖ϑϕ‖2). (1.2)

We shall call C a Wp,q-ellipticity constant.

Proposition 1.2. Assume given a hermitian metric on X and a hermitian
metric along the fibres ofπ : E → X. Suppose further that E is Wpq

-elliptic with reference to these hermitian metrics. Then there is a linear
map G : Lp,q(X,E) → Wp,q(X,E) such that, for f ∈ Lp,q(X,E), ϕ ∈
Wp,q(X,E), we have

( f , ϕ) = (∂ G f, ∂ϕ) + (ϑG f, ϕ).

The linear mapG is continuous more exactly:29

b(G f,G f) 6 C‖ f ‖2 (1.3)

C being the constant which appears in (1.2). MoreoverG f is uniquely
determined by the above formula.

Proof. ϕ  (ϕ, f ) defines a linear form onWp,q(X,E) which is evi-
dently continuous. By the Riesz representation theorem (sinceE is Wp,q

elliptic, b(ϕ, ψ) defines a Hilbert space structure onWp,q(X,E) equiva-
lent to that defined byN), there is a unique elementG f ∈ Wp,q(X,E)
such that

( f , ϕ) = b(G f, ϕ) = (∂G f, ∂ϕ) + (ϑG f, ϑϕ).
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We have, now

b(G f,G f) = (∂G f, ∂G f) + (ϑG f, ϑG f).

= ( f ,G f) by the above equation.

Henceb(G f,G f)2
6 ‖ f ‖2.‖G f‖2 6 C‖ f ‖2b(G f,G f) in view of Wpq-

ellipticity. That is,
b(G f,G f) 6 C‖ f ‖2.

We obtain
N(G f)2

6 (C + 1)‖ f ‖2.

This completes the proof of Proposition 1.2. �

Corollary. G f = f (in the sense of distributions).

Proof. Foru ∈ D p,q(X,E), we have (f , u) = (∂G f, ∂u) = (ϑG f,�u).
This proves the lemma. �

Proposition 1.3. Let E be Wp,q-elliptic with respect to a given metric30

along the fibers and to a complete hermitian metric on X. In thenotation
of Proposition 1.2 we have the following.

(i) If f ∈ Lp,q(X,E) and∂ f ∈ Lp,q+1(X,E), then

∂G f ∈Wp,q+1(X,E);�∂G f = ∂ f ;

‖ϑ∂G f‖2 6 1
σ
‖∂ f ‖2 + σ‖∂G f‖2 for σ > 0.

(ii) If f ∈ Lp,q−1(X,E) andϑ f ∈ Lp,q+1(X,E), then

ϑG f ∈Wp,q−1(X,E);�ϑG f = ϑ f ;

||∂̄ϑG f ||2 6 σ||ϑ f ||2 + σ||ϑ G f ||2 f orσ > 0.

Proof. Since the metric is complete, by Theorem 1.1’Dp,q(X,E) is
dense in the space

{
ϕ | ϕ ∈ Lp,q(X,E), ∂ϕ ∈ Lp,q+1(X,E)

}
provided with

the normP(ϕ)2
= ‖ϕ‖2 + ‖∂ϕ‖2. Let f ∈ Lp,q (X,E) and∂ f ∈ Lp,q+1

(X,E). Then there is a sequencefn ∈ Dp,q(X,E) such that‖ fn − f ‖ →
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0, ‖∂ fn − ∂ f ‖ → 0 asn→ ∞. We have moreover, from Proposition 1.2,
that

N(Gϕ)2
6 K‖ϕ‖2 for ϕ ∈ L p,q(X,E). Hence

‖G fn −G fm‖ 6 K‖ fn − fm‖
and ‖∂G fn − ∂G fn‖ + ‖ϑG fn − ϑG fn‖ 6 K‖ fn − fm‖.

Applying now Stampachia inequality (Corollary 2, Theorem 1.2) to
∂G fn, and taking into account the fact that� and∂ commute, we obtain,
for σ > 0,

‖ϑ∂(G fn −G fm)‖2 6 1
σ
∂̄( fν − fµ)‖2 + σ‖(∂G( fν − fµ)‖2

Since the right hand side tends to 0 asn,m → ∞, it follows that{
ϑ∂ fn

}
is a Cauchy-sequence inLp,q(X,E). It is immediate then that31

ϑ∂G f = lim
n→∞

ϑ∂G fn ∈ Lp,q(X,E). On the other hand∂(∂G f) = 0.

Hence∂G f ∈ Wp,q+1(X,E). The equation�∂G f = ∂ f follows from
the fact that∂ and � commute and the fact that�G f = f . The last
inequality is the Stampachia inequality applied to∂G f . The proof of
Part (ii) of the proposition is entirely analogous. �

Theorem 1.3. Let π : E → X be a holomorphic vector-bundle which
is Wp,q-elliptic with respect to a complete hermitian metric on X and
a hermitian metric along the fibres of E. Then if q> 0, given f ∈
Lpq(X,E) with ∂ f = 0, there is a unique x∈ Wpq(X,E) such that f=
∂ϑx and∂x = 0. Moreover, we have‖ϑx‖2 6 C‖ f ‖2, C being a Wp,q-
ellipticity constant.

Proof. We setx = G f . We have then�G f = f . (Corollary to Propo-
sition 1.2). Clearly∂ f = 0 ∈ Lp,q+1(X,E). Hence by (i) of proposition
1.3, we have∂G f ∈ Wp,q+1(X,E) and further‖ϑ∂G f‖2 6 σ‖�∂G f‖2 +
1
σ‖∂G f‖2. On the other hand since� and∂ commute, it follows again

from the Corollary to Proposition 1.2, that�∂G f = 0. Sinceσ is ar-
bitrary, ϑ∂x = 0. It follows that (∂x, ∂x) = (x, ϑ∂x) = 0 (note that
∂x ∈ Wp,q+1(X,E): Proposition 1.3). Hence∂x = 0. Now� = ∂ϑ + ϑ∂
so that�G f = f leads to (∂ϑ + ϑ∂)G f = f that is,∂ϑG f = f . �
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Finally (1.3) yields 32

‖ϑx‖2 6 C‖ f ‖2.

The uniqueness ofx satisfying ∂ϑx = f and ∂x = 0 is easily
checked.

This completes the proof of the theorem.
It follows from the regularity theorem for elliptic systemsthat , if f

∈ Cp,q (X,E) ∩ Lp,q thenG f (can be modified on a null set so that it)
will be of classC∞ on X.

In particular we have the

Corollary . If f ∈ Dp,q(X,E) and∂ f = 0 then there existsψ ∈ Cp,q−1

(X,E) such that∂ψ = f

Remark. The corollary above clearly implies the following.

If E is Wpq-elliptic with respect to a complete hermitian metric, then
the natural map

Hq
k(X,Ωp(E))→ Hq(X,Ωp(E))

where the left-side stands for theqth cohomology with compact supports
of X with values inΩp(E), is the trivial mapα  0 for everyα ∈
Hq

k(X,Ωp(E)).

Remark . Let G =
{
Ui

}
be a covering ofX such thatπ : E → X is

defined with respect toG by holomorphic transitionsei j : Ui ∩ U j →
GL(m,C)(m= rank of E).

Let
{
hi

}

i∈I
be a hermitian metric along the fibers ofE; thenhi is a

C∞ function onUi whose values are positive definite hermitian matrices.
We have onUi ∩ U j 33

hi =
t
eji

h jeji ,

and therefore th−1
i
=

t (te−1
ji )th−1

j
te−1

ji
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That means that
{
th−1

i

}
defines a matric along the fibres of the dual

bundleE∗.
We note here for future reference the following identities,holding

with respect tot he metrics{hi} on E and {th−1
i
} on E∗. They follow

immediately from the definitions of the operators involved.

AE∗(∗#ϕ, ∗#ψ) = AE(ϕ, ψ) (1.4)

∂ ∗ #ϕ = (−1)p+q ∗ #ϑEϕ, (ϕ, ψ ∈ Cpq(X,E)) (1.5)

ϑE∗ ∗ #ϕ = (−1)p+q+1 ∗ #∂ψ, (1.6)

�E∗ ∗ #ϕ = ∗#�Eϕ. (1.7)

As a corollary we have that∗# defines an isometry ofLpq(X,E) onto
Ln−p n−q(X,E) which mapsWpq isometrically ontoWn−p n−q(X,E∗).

Furthermore, ifE is Wpq-elliptic with respect to the metric{hi} on
E, thenE∗ is Wn−p n−q- elliptic with respect to the metric{th−1

i
} on E∗

theW-ellipticity constants being the same.

4 Carleman inequalities

We will now formulate certain further conditions on the vector bundles34

and show how these more stringent conditions lead to stronger vanishing
theorems than the one above.

We assume always that the hermitian metric denoted ds2 on X is
complete.Let the given metric onE be denoted byh.

C1. There is given aC∞ functionφ : X→ R+.

C2. For every non decreasing convexC∞-functionλ : R→ R.

E is Wpq-elliptic with respect to (ds2, eλφh ).

C3. TheWpq-ellipticity constant is independent of.

That is, there isC > 0 independent ofλ such that

‖ f ‖2λ6 C
{
‖ ∂ f ‖2λ + ‖ ϑλ f ‖2λ

}
for f ∈ D pq(X,E) where‖ ‖λ stands

for the norm with respect to (ds2, eλ(φ). h), andϑλ denotes theϑ-operator
with respect to these metrics.
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ConditionsC1,C2,C3 imply C′1,C
′
2,C

′
3 below. This weaker set of

conditions are sufficient for the “vanishing theorems” we will now prove.

C′1. There is given aC∞ functionφ : X→ R+ (this is the same asC1).

C′2. GivenCo > 0, there is a non-decreasingC∞-function λ : R → R
thatλ(t) = 0 for t 6 Co andλ(t) > 0 for t > Co, such that,E is
Wpq elliptic with respect to (ds2, eνλ(φ)h) for every positive integer
ν.

C′3. The Wpq ellipticity constant is independent ofν that is, there is a 35

C > 0 such that forf ∈ D pq(X,E)

‖ f ‖2ν≤ C
{
‖ ∂ f ‖2ν + ‖ ϑν f ‖2ν

}
,

where‖ ‖ν stands for‖ ‖νλ andϑν for ϑνλ.

Lemma 1.6. Assume given a constant Co > 0 and that the condition
C′1,C

′
2,C

′
3 above are satisfied (Co in condition C′2 is taken as the above

constant). Forλ as in condition C′2, let Lp,q
ν (X,E) denote the space

of E-valued forms on X which are square-summable with respect to
(ds2, eνλ(φ).h). Then for f∈ ∩

ν
Lp,q
ν (X,E)(q > 0) such that∂ f = 0, there

existΨν for every integerν ≥ 0 such thatΨν ∈ Lp,q−1
ν (X,E), ∂Ψν = f

and‖ Ψν ‖ν≤ C ‖ f ‖ν (We assume that ds2 is complete).

Proof. This follows from Theorem 1.3. �

Theorem 1.4. Assume that conditions C′1,C
′
2,C

′
3 are satisfied. Then

for every square-summable form f of type(p, q)(q > 0) having compact
support such that∂ f = 0, there existsΨ ∈ Lp,q−1(X,E) such that, f=
∂Ψ, ‖ Ψ ‖2≤ C ‖ f ‖2 and (support ofΨ)

⊂ {x‖φ(x) < (supφ(y)) y ∈ support f)}.

Proof. Let Co = supφ(x), x ∈ support f . Then we have

‖ f ‖2ν=
∫

X
eνλ(φ)A( f , f )dx=

∫

Supp. f

eνλ(φ)A( f , f )dX
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=

∫

Suppf

A( f , f )dx=
∫

X

A( f , f )dX =‖ f ‖2

Since νλ(ϕ(x)) = 0 on the support off . It follows that f ǫ ∩
ν

36

Lp,q
ν (X,E) for every integerν > 0. Hence by Lemma 1.6, we can find

ψνǫ Lp,q−1
ν2

(X,E) for everyνǫZ+ such that
−
∂ψν = f and|| ψ ||2ν≤ C || f ||2.

On the other hand, we have|| ψν ||ν≥|| ψν || so that,|| ψν ||2≤|| ψν ||2ν≤
C || f ||2= C1 say. It follows that we can assume (by passing to a subse-
quence if necessary) thatψν converges weakly inLp,q−1(X,E) to a limit
ψ. We have|| ψ ||< C || f ||. On the other hand, for everyε > 0,

∫

φ(x)>c0+ε
eνλ(φ)A(ψν, ψν)dX ≤ C1

and sinceλ is non-decreasing, we have,

eνλ(C0+ε)
∫

ϕ≥C0+ε

A(ψν, ψν)dX ≤ C1.

It follows that
∫

ϕ≥C0+ε

A(ψν, ψν)dX tends to zero and henceψν → 0

almost everywhere inϕ ≥ C0 + ε. (The integrand is positive for all
ν.) Henceψ = 0 on {x | ϕ(x) ≥ C0 + ε} for everyε. Hence support
ψ ⊂ {x | φ′(x) ≤ C0}. Finally for

u ∈ D
n−p,n−q(X,E∗), (−1)p+q〈ψ,

−
∂u〉 = (−1)p+q

∫
ψ ∧

−
∂u

= Lt(−1)p+q
∫

ψν ∧
−
∂u

=
〈

f , u
〉
.

Hence∂̄ψ = f in the sense of distributions. This completes the proof
of the theorem. �

Remark . The proof contains the following lemma (which has no con-37

nection withWp,q-ellipticity.
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Lemma 1.7. Suppose given a C∞ non-decreasing functionλ : R → R
such thatλ(t) = 0 for t ≤ C0, λ(t) > 0 for t > C0, and a C∞ function
ϕ : X → R. Suppose further that there is given an f∈ Lpq(X,E) such
that supϕ(x) on the support of f is C0. If for every integerν > 0 there
existsψν such that∂̄ψν = f and || ψν ||2ν≤ C || f ||2 for a constant C
independent ofν, then there existsψ ∈ Lp,q−1(X,E) such that∂̄ψ = f , ||
ψ ||2≤ C || f ||2 and supportψ ⊂ {x | ϕ(x) ≤ C0}. (Here by)|| ψν ||2ν we
mean

∫
eνλ(φ)A(ψν, ψν)dX).

Suppose now that the functionφ in C′1 satisfies the following addi-
tional condition.

C′4. For everyC > 0, the set{x | φ(x) < C} ⊂⊂ X.

Remark. If C′4 is satisfied in addition toC′1,C
′
2 andC′3 then in Theorem

1.4, we can assert that the support ofψ is compact.

Here we can state, as a corollary to Theorem 1.4 the followingThe-
orem 1.4′. If the hypothesis of Theorem 1.4 are fulfilled and ifC′4 holds,
then

Hq
k(X,Ωp(E)) = 0.

Lemma 1.8. Let V ⊂ Lp,q(X,E) be the set V= Vp,q(X,E) = {ϕ ∈
Lpq(X,E)

∣∣∣∣∣ there existsψ ∈ Lp,q−1(X,E) such that
−
∂ψ = ϕ} and N = 38

Np,q(X,E) = {ϕ ∈ Lp,q(X,E) | ϑϕ = 0}. Then N is the orthogonal
complement of V provided that the metric is complete.

Proof. Let ρ ∈ Lp,q(X,E). Then ρ ∈ { orthogonal complement of

V} if and only if (ρ,
−
∂ψ) = 0 for everyψ ∈ Lp,q−1(X,E) with

−
∂ψ ∈

Lp,q−1(X,E). Since the metric is complete, this is equivalent to (ρ,
−
∂ψ) =

0 for everyψ ∈ D p,q−1(X,E). Hence the lemma. �

Theorem 1.5. Assume conditions C′1,C
′
2,C

′
3 to hold forπ : E→ X. Let

f ∈ Lp,q+1(X,E) be such that supϕ(x) on the support of f is C0. Suppose
further that ( f , g) = 0 for all g which belong to someLp,q+1

ν , and are
such thatϑνg = 0(ν = 1, 2, ....)(1). Then there existsψ ∈ Lp,q(X,E) such

that
−
∂ψ = f and supportψ ⊂ {X | ϕ(X) ≤ C0}.

1In view of the choice ofλ, we have (f ,g) = ( f ,g)ν.
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Let Vp q+1
ν be the spaceVp q+1 constructed with respect to the met-

rics
(eνλ(φ)h, ds2). Sinceλ = 0 on suppf , then f ǫLpq

ν (X,E) for all ν > 0.
By the previous lemma

f ∈ V p,q+1
ν for ν = 1, 2, ...

First assume that

f ∈ Vp q+1
ν for a particularν.

In this case, there existsϕν ∈ Lp,q
ν (X,E) such thatf =

−
∂ϕν Now by

Proposition 1.3, there is anXν = Gνϕν ∈Wp,q
ν (X,E).

Such that�νxν = ϕν. We now setψν = ϑν∂̄. By Proposition 1.3ψν ∈39

Lpq
ν (X,E). Further we havē∂ψν = ∂̄ϑν∂̄xν = ∂̄(∂̄ϑν + ϑ∂̄)xν = ∂̄ϕν = f .

Sinceϑνψν = 0 , then by Theorem 1.1ψν ∈ Wpq
ν (X,E). On the other

hand, in view ofWp,q
ν -ellipticity,

‖ψν‖2ν ≤ C(‖∂̄ψν‖2ν + ‖ϑνψν‖2ν) = C‖ f ‖2ν = C1

sayC1 is independent ofν sinceλ(ϕ(x)) = 0 for x ∈ support f .

Suppose nowf ∈ Vpq+1
ν , then there exists a sequence fi

ν ∈ Vpq+1
ν

such that‖f i
ν - f ‖ν → 0. Then choosingψi

ν ∈ Wpq
ν (X,E) is above for

eachf i
ν(∈ Vpq+1

ν ) we have

∂̄ψi
ν = f i

ν

‖ψi
νψ

2
ν 6 C‖ f i

ν‖2ν and ‖ψi
ν − ψ

j
ν‖2ν 6 C‖ f i

ν − f l
ν‖2ν.

Henceψi
ν converge to a limitψν in Lp,q

ν (X,E). Clearly ∂̄ψν = F.
Further, from‖ψi

ν‖2ν 6 C‖ f i
ν‖2ν, we deduce that‖ψν‖2ν 6 C‖ f ‖2. Now the

proof follows from Lemma 1.7.
The conditionsC∗1 , C∗2 , C∗3 below are dual toC′1 , C′2 , C′3 : that is

if C∗1 , C∗2 , C∗3 hold for E-valued (p, q)-forms, thenC′1, C′2 , C′3 hold for
E∗ valued (n− p, n− q) forms.

C∗1. (= C′1 = C1) There is given aC∞ functionφ : X→ R+.
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C∗2. For everyCo > 0, there exists a non-decreasingC∞-function,λ :
R → R such thatλ(t) = 0 if t 6 C0 andλ(t) > 0 for t > C0 andE
is Wpq-elliptic with respect to (ds2, eνλ(φ)h)

C∗3. TheWp,q ellipticity constant is independent ofν = 1, 2, . . .

Then we have analogous to Theorem 1.5, the following 40

Theorem 1.6. Assume C∗1 , C∗2 , C∗3. Then if f ∈ Lp,q−1(X,E), is such
that supφ(X) on support of f= C0, and if further( f , u) = 0 for every u
∈ Lp,q−1

−ν (X,E), such that∂̄u = 0, then there existsχ ∈ Lp,q(X,E) such
that f = ϑχ and supportχ ⊂ {X|φ(X) ≤ C}.

Theorem 1.7. Let T = Tp,q−1 be a distribution valued form type(p, q−
1) (that is a current of type(p, q − 1)). Suppose further that̄∂T ∈
Cp,q(X,E) and let K = support of T. Then for any neighbourhood U
of K, there is a formη ∈ Cp,q−1(X,E) such that∂̄T = ∂̄η and support
η ⊂ V. In particular if K is compact, we can find anη with the above
property.

Proof. We recall (Prerequisites, 4) that we have fine resolutions

0→ Ωp→ Ap,o ∂̄−→ Ap,1→ . . .
∂̄−→ Ap,n→ 0

and 0→ Ωp→ Kp,o ∂̄−→ Kp,1→ . . .
∂̄−→ Kp,n→ 0.

Further there is canonical injectionAp,q → Kp,q which is compatible
with the operator∂̄. Hence by a standard result on cohomology of
sheaves the induced map of complexes

∑

q>0

ΓΦ(X,Ap,q)→
∑
ΓΦ(X,Kp,q)

is a homotopy equivalence of complexes for any para compactifying
family Φ of closed sets onX. We consider in particular the family of
all closed sets ofX which are contained inU. This is evidently a para-
compactifying family and theorem follows from the general result stated
above (for a more detailed proof, see [2], 97-99).

Theorems 1.5 and 1.7 together enable us to prove � 41
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Theorem 1.8. Letπ : E→ K be a holomorphic vector bundle. Assume
that for a suitable complete hermitian metric ds2 on X and a suitable
hermitian metric h along the fibres of E, conditions C′1, C′2, C′3 and
C′4 hold. Then the imagē∂D pq(X,E) of ∂̄ in D p,q+1(X,E) is a closed

subspace for the usual topology onD pq(X,E). Hence Hq+1
k (X,Ωp(E))

has a structure of a separated topological vector space.

Proof. The “usual” topology onD pq(H,E) may be described as fol-
lows. Let {Kν} be an increasing sequence of compact sets such that

K̄ν ⊂
o
Kν + 1 andUKν = K. Further, letG = {Ui}i∈I be a locally finite

covering ofX by open sets such that eachUi is a relatively compact open
subset of a coordinate open setVi on X. LetGν = {Ui |Ui ∩ Kν , φ}. We
topologize eachD pq(Kν,E) = {ϕ|ϕ ∈ D pq(X,E), suppϕ ⊂ν} as follows:
for Ui ∈ Gν, ϕ|Ui may be regarded as aC∞ vector-valued functionϕi on
Ui ; a fundamental system of neighbourhoods of zero inD pq(Kν,E) is
given by,

{
ϕ ∈ D

pq(Kν,E)
∣∣∣|ᾱϕi

∣∣∣ < εα, for every Ui ∈ Gν

}

where{εα} is an arbitrary family of positive reals.
D pq(Kν,E) is a Frechet space. There is a natural injection

D
pq(Kν,E)→ D

pq(Kν+1,E).

�

The image ofD pq(Kν,E) is a closed subset ofD pq(Kν+1,E). The in-42

duced topology on the image coincides with the topology ofD pq(Kν,E).
This shows thatD pq(X,E) is a strict inductive limit of the Frechet spaces
D pq(Kν,E) [8] 66-67; [9] (225-227). The “usual” topology ofD pq(X,E)
is the inductive limit topology.

A subset ofD pq+1(X,E) is closed if, and only if, it is sequentially
closed ([19], 228). Therefore it will be sufficient to prove that̄∂D pq

(X,E) is sequentially closed inD pq+1(X,E).
Let {ϕi}i∈N be a sequence of (p, q)- forms of D pq(X,E). Such that

the sequence{∂ϕi}i∈N ⊂ ∂D pq(X,E) converges to an elementϕ of D pq+1

(X,E). The sequence{ξϕi} is a bounded set inD pq+1(X,E).
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Hence there exists a compactKs such that∂ϕi ∈ D pq+1(Ks,E) for
i = 1, 2, . . ., andϕ ∈ D pq+1(Ks,E) ([8], 70; [19], 226).

Let co = supφ(x) on Ks. Let λ : R → R be a non decreasingC∞

function such that

λ(t) = 0 for t 6 co,

λ(t) > 0 for t > co,

and let us consider the spacesLpq+1
ν (X,E) = Lpq+1

νλ(ϕ)(X,E) for ν =
1, 2, . . ..

Let g ∈ Lpq+1
ν (X,E) be such that

ϑνg = 0.

Then we have

(ϕ, g) = (ϕ, g)ν = lim(∂ϕi , g)ν = lim(ϕi , ϑνg) = 0.

Thus by theorem 1.5 there exists aψ ∈ Lpq(X,E) with compact
support (since we have assumedc′4), such that 43

ϕ = ∂ψ.

Now, since in additionϕ is C∞, ψ may be assumed to be aC∞ form,
i.e. ψ ∈ D pq(X,E). Hence∈ ∂D pq(X,E). This completes the proof of
theorem 1.8.





Chapter 2

W-ellipticity on Riemannian
manifolds

5 W-ellipticity on Riemannian manifolds

We carry over the results proved for∂ on a complex manifold to the44

operatord-exterior differentiation of ordinary forms. In the sequel until
further notice we consider only real valued forms. Through all this chap-
ter X will be a connected orientable Riemannian manifold. We choose
an orientation forX, and we denote byCq

= Cq(X) (resp.Dq(X) = Dq)
the space ofC∞ q-forms (resp.C∞ forms with compact support). We
defined in Chapter 1 the operator

∗ : Cq→ Cn−q

and the scalar product,

(ϕ, ψ) =
∫

A(ϕ, ψ)dX =
∫

X

ϕ ∧ ∗ψ

of two formsϕ, ψ in Dq(X).
We define the operator

δ : Cq −→ Cq−1

39
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as the linear differential operator

ϕ (−1)q ∗−1 d(∗ϕ)

(ϕ ∈ Cq(X)). If ϕ ∈ Cq(X), ψ ∈ Cq+1(X), and if suppϕ ∩ suppψ is
compact, then (dϕ, ψ) = (ϕ, δψ). We also introduce the Laplace operator

△ = dδ + δd;

△ is a strongly elliptic operator.
We have then45

(△ϕ, ψ) = (dϕ, dψ) + (δϕ, δψ)

for ϕ, ψ ∈ Dq(X).
On the spaceDq(X), we define another scalar product: forϕ, ψ ∈

Dq(X),
a(ϕ, ψ) = (ϕ, ψ) + (dϕ, dψ) + (δϕ, δψ).

ThenN(ϕ) = a(ϕ, ϕ)
1
2 defines a norm onDq(X). We denote the comple-

tion of Dq(X) underN by Wq. If Lq denotes the completion ofDq(X)
with respect to the norm,‖ ϕ ‖2= (ϕ, ϕ), then the identity extends canon-
ically to a continuous map

i : Wq −→ Lq.

We have then the following result.

Proposition 2.1. i is an injection.
The proof is analogous to that of proposition 1.1. As in theorem

1.1 (Chapter 1), we have the following characterisation of Wq (rather
i(Wq)) when the Riemannian metric on X is complete.

Theorem 2.1. If the Riemannian metric on X is complete, then

Wq(X) = {ϕ | ϕ ∈ Lq(X), dϕ ∈ Lq+1(X), δϕ ∈ Lq−1(X)}.

MoreoverDq(X) is dense in the space{ϕ | ϕ ∈ Lq, dϕ ∈ Lq−1},
with respect to the norm(‖ ϕ ‖2 + ‖ dϕ ‖2)

1
2 , and in the space{ϕ | ϕ ∈

Lq, δϕ ∈ Lq+1} with respect to the norm(‖ ϕ ‖2 + ‖ δϕ ‖2)
1
2 .

Once again, we omit the proof which is analogous to that of Theorem
1.1 (Chapter 1). We state also, without proof, the analogue of Corollary
1 to Theorem 1.2 of Chapter 1.
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Proposition 2.2. For ϕ ∈ Cq and for anyσ > 0 46

‖ dϕ ‖2 + ‖ δϕ ‖26 σ ‖ ∆ϕ ‖2 + 1
σ
‖ ϕ ‖2 .

Definition 2.1. The Riemannian manifold X is Wq-elliptic if there is a
constant C> 0 such that

‖ ϕ ‖26 C
{
‖ dϕ ‖2 + ‖ δϕ ‖2

}
.

We shall call such a constant C a Wq-ellipticity constant.
In further analogy to Chapter 1, we have finally the following

Theorem 2.2. If X is Wq elliptic, then for f ∈ Lq, there is a unique
x ∈Wq such tht f= △x (in the sense of distributions). Further,

‖ x ‖6 c ‖ f ‖
‖ dx ‖2 + ‖ δx ‖26 C ‖ f ‖2,

C being a Wq− ellipticity constant. If f is C∞, then x∈ Cq ∩Wq. If the
metric on X is complete and‖ d f ‖< ∞, then, forσ > 0,

‖ δdx ‖2≤ 1
σ
‖ d f ‖2 +σ ‖ dx ‖2 .

In particular, if df=0 , f=dδx and dx=0.
Except for obvious modifications, the proof is contained in Proposi-

tions 1.2 and 1.3 and Theorem 1.3 (Chapter 1).
Before we give criteria for Wpq-ellipticity, on a complex manifold,

we give sufficient conditions for Wq-ellipticity, on an orientable Rie-
mannian manifold X. In order to do this we first write down explicitly in 47

a coordinate open set the effect of the Laplacian∆ on a C∞ − p−form.
Let (x, . . . xn) be a coordinate system on an open set U in X. Let the
Riemannian metric be ∑

gi j dxidxj

in this open set. We denote▽ the covariant derivation with respect to
the Riemannian metric. For a tensorϕ,▽αϕ denotes the tensor

(▽ϕ)(
∂

∂xα
).
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(▽ϕ is regarded as a 1-form with values in the tensor bundle). In the
local-coordinate system, a formϕ ∈ Cq(X) may be written in the form.

ϕ =
∑

1

1
q!
ϕIdxI

where I runs over all q-tuples(i1, . . . , iq) of integers with0 < i j 6 n and
if I = (i1, . . . , iq) is a permutation(σ( j i), . . . , σ( jq)) of I′ = ( j1, . . . , jq),
then

ϕI = εσϕI ′ .

(In particular, if I has repeated indices,ϕI = 0). We have

A(ϕ, ψ) =
1
q!
ϕIψ

I (ϕ, ψ ∈ Cq)

For ϕ ∈ Cq and a q-tuple I= (i1, . . . , iq),

dϕiI =
∂ϕI

∂xi
+

∑

r

(−1)r
∂ϕi

∂xir
i1, . . . , ir , . . . iq

= ▽iϕI +

∑

r

(−1)r▽irϕii1, . . . ir . . . , iq (2.1)

as is seen by a direct computation. Similarly we have48

δϕJ = −Σ▽iϕ
i
J (2.2)

where J is a(q− 1)-tuple andϕi is the(q− 1)-form defined by

ϕi
J =

∑
gi jϕiJ

for any(q− 1)-tuple J= ( j1, ... jq−l).
From (2.1) and (2.2), it follows that

δdϕI = −
n∑

i=1

▽i(dϕ)i
I

= −
n∑

i=1

▽i▽
iϕI −

q∑

i=1

(−1)r▽i(▽irϕ
i)i i ...îr ...iq (2.3)
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(where▽i
=

∑
j gi j
▽ j) and

dδϕI =

q∑

r=I

n∑

i=I

(−1)r▽ir▽iϕ
i
i1...îr ...iq

(2.4)

Hence (▽δ)I = −
∑
▽i▽

iϕI + (κϕ)I (2.5)

In the equation (2.5)

(κϕ)I =

∑

i

∑

r

(−1)r (▽ir▽i − ▽i▽ir )ϕ
i
i1...îr ...iq

=

q∑

r=1

∑

j

(−1)r−1Rj
ir
ϕ ji1...îr ...iq +

q∑

r,s=1

(−1)r+sR
i j

ir is
ϕi. j.i. .îr .îs

In the special case whenϕ is a function,

▽ϕ = −▽i▽
iϕ (2.6)

Lemma 2.1. For everyϕ ∈ Dq we have 49

‖ ▽ϕ ‖2 +(Kϕ, ϕ) =‖ dϕ ‖2 + ‖ δϕ ‖2 (2.7)

Proof. From (2.6) above, we have setting|ϕ|2 = A(ϕ, ϕ) = 1
ϕϕIϕ

I ,

∆(|ϕ|2) = −
∑
▽i▽

i |ϕ|2 = −
∑ 1

q!
▽i▽

iϕIϕ
I

= − 2
q!

∑
▽i(▽

iϕI .ϕ
I )

= −−2
q!

∑
▽i▽

iϕI .ϕ
I − 2|▽ϕ|2

=

∑

I

{ 2
q!
▽ϕIϕ

I − 2
q!

(Kϕ)Iϕ
I
}
− 2|▽ϕ|2

That is
▽|ϕ|2 = 2A(▽ϕ, ϕ) − 2A(Kϕ, ϕ) − 2A(▽ϕ,▽ϕ)...

If ϕ has compact support,
∫
▽|ϕ|2dx=

∫
dδ|ϕ|2dX = 0
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by Stokes formula.
On the other hand,

∫
A(▽ϕ, ϕ)dX =‖ dϕ ‖2 + ‖ δϕ ‖2 .

Hence

(Kϕ, ϕ)+ ‖ ▽ϕ ‖2=‖ dϕ ‖2 + ‖ δϕ ‖2: (ϕ ∈ D
q(X)).

If there exists a positive constant C such that
A(Kϕ, ϕ) ≥ C|ϕ|2 for everyϕ ∈ Cq and at each point ofX, then

||ϕ||2 ≤ C′(Kϕ, ϕ) ≤ C′
{
||dϕ||2 + ||δϕ||2

}

whereC′ =
1
C

. Hence the following. �

Lemma 2.2. If there is a positive constant C such that50

A(Kϕ , ϕ) ≥ C A(ϕ, ϕ)

for everyϕ ∈ Cq and at each point of X, then the Riemannian manifold
X is Wq-elliptic.

6 A maximum principle

In the sequel we consider weaker condition on the expressionA(κϕ , ϕ).
We shall deal with the case where the quadratic fromA(κϕ , ϕ) is positive
semi- definite outside of a compact.

From now on we shall always assumeX to be oriented and con-
nected, and the Riemannian metric ofX to be complete.

Lemma 2.3. Assume A(κϕ , ϕ) ≥ 0 (i.e. A(κϕ, ϕ) positive semi-definite),
outside a compact set K in X. Then forϕ ∈Wq, ‖ ▽ϕ ‖2< ∞ and (2.7)
holds.
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Proof. By Lemma 2.1 we have forϕ ∈ Dq(X),

‖ ▽ϕ ‖2 +(κϕ, ϕ) = (dϕ , dϕ) + (δϕ, δϕ).

SinceK is compact, there isC ≥ 0 such that (Kϕ, ϕ) > −CC|ϕ|−2

for everyϕǫCq and each point ofK . Hence,

‖ ▽ϕ ‖2 +
∫

X
A(kϕ, ϕ) ≤ C ‖ ϕ ‖2k + ‖ dϕ ‖2 + ‖ δϕ ‖2 .

SinceA(κϕ, ϕ) ≥ 0 onX − K we have forϕ ∈ Dq,

‖ ▽ϕ ‖2≤ C
{
‖ ϕ ‖2 + ‖ dϕ ‖2 + ‖ δϕ ‖2

}

The lemma follows now from the fact thatDq is dense inWq. (Theorem
2.1.) �

Remark. We have proved more: there is aC > 0 such that 51

‖▽ϕ‖2 6 C
{
‖ϕ‖ 2

K + ‖dϕ‖2 + ‖δϕ‖2
}

Let X be a manifold as in the above lemma.

Let ϕ ∈ Cq. Identity (2.8) shows that△|ϕ|2 6 0 at each point of the
setY where△ϕ = 0 andA(Kϕ, ϕ) > 0

Applying a classical lemma ofE. Hopf ([36], 26-30) we see that
|ϕ|2 cannot have a relative maximum at any point ofY. Thus, if X is
compact,|ϕ|2 takes its, maximum in the set Suppf ∪ K.

If X is not compact we cannot draw the same conclusion. However
the following proposition will provide an estimate of|ϕ|2 on X in terms
of Sup|ϕ|2 on Suppf ∪ K .

Proposition 2.3. Let X be a connected oriented and complete Rieman-
nian manifold. Assume give a compact setK on X such that for X<
K ,A(Kϕ, ϕ)(x) ≥ 0 for everyϕ ∈ Cq. Suppose thatϕ ∈ Cq∩Lq is such
that△ϕ = f ∈ Lq. Thenϕ ∈Wq andsup

x∈X
|ϕ(x)|2 6 C0 where

C0 =
Sup
x∈suppf∪K |ϕ(x)|2.
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For the proof of this proposition we utilise the following result

Lemma 2.4(Gaffney [12]). LetK be an oriented complete Riemannian
manifold andω a C∞ 1-form. Then if

∫
X
|ω|dX < ∞ and

∫
X
|δω|dX < ∞,

we have ∫

X
δωdX = 0.

Proof. Let λ be a real valueC∞ function on� such thatλ(t) = 1 for52

t 6 0 andλ(t) = 0 for t > 1. Let p0 ∈ X be a fixed point andρ = ρ(x)
denote the distance function (fromp0). Thenρ(x) is locally Lipchitz as
was remarked earlier (Lemma B of Chapter 1). Let 0< r < R and let us
consider the form

λ

{
ρ(x) − r
R − r

}
· ω

This form is locally Lipchitz and has compact support in the ball

{x|ρ(x) 6 R}.

Hence by Stoke’s formula (which is applicable to Lipchitz continu-
ous form), ∫

X
d ∗ λ

(ρ(x) − r
R− r

)
· ω = 0;

We have,
∫

X

1
R− r

λ
(
ρ(x) − r
−r

)
· dρΛ ∗ ω +

∫

X
λ
(
ρ(x) − r
R− r

)
· d ∗ ω = 0.

Now setR= 2r. Then
∫

X

1
r
λ′

(
ρ(x) − r

r

)
dρΛ ∗ ω +

∫

X
λ
(
ρ(x) − r

r

)
· d ∗ ω = 0

Now |dρ|2 6 (lemma B of Chapter 1).
Hence, since∗ω is integrable, we have53

∫

X
|dρΛ ∗ ω|dX < ∞.

�
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Hence, using the fact thatλ′ is bounded, we see that

1
r

∫

X
λ′

(
ρ(x) − r

r

)
dρΛ ∗ ω→ 0 as → ∞.

It follows that

Lt
r → ∞

∫

X
λ

(
ρ(x) − r

r

)
d ∗ ω = 0

On the other hand, since
∫
|d ∗ ω|dX < ∞ andλ

(
ρ(x)−r

r

)
is bounded

and tends to 1 asr → ∞,

r
Lt→ ∞

∫
λ

(
ρ(X) − r

r

)
d ∗ ω =

∫
d ∗ ω.

This proves the lemma.

Proof (of Proposition 2.3) Let C0 andC1 be two positive constants,
0 < C0 < C1, and letλ : R→ R be aC∞ function such that

λ(t) > 0, λ′(t) > 0, λ′′(t) > 0,

λ(t) = 0, for t 6 C0

λ′(t) > 0, for t > C0

λ′′(t) = 0, for t < C0 and fort > C1,

and such thatλ′(t) be bounded. Sinceλ′′(t) has compact support, it is
bounded. We have then forϕ as in the proposition,

∆λ(| ϕ |2) = δd(λ(| ϕ |2))

= δ
{
λ′(| ϕ |2).d | ϕ |2

}

= − ∗ d ∗
{
λ′(| ϕ |2)d | ϕ |2

}

= − ∗ d
{
λ′(| ϕ |2) ∗ d | ϕ |2

}

= − ∗
{
dλ′(| ϕ |2) ∧ ∗d | ϕ |2 +λ′(| ϕ |2)d ∗ d | ϕ |2

}

= − ∗
{
λ′′(| ϕ |2)d | ϕ |2 ∧ ∗ d | ϕ |2 +λ′ | ϕ |2 d ∗ d | ϕ |2

}

= −λ′′ | ϕ |2| d | ϕ |2|2 + λ′ | ϕ |2 .∆(| ϕ |2).
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In the view of (2.8), 54

△(λ|ϕ|2) = −λ′′(|ϕ|2)|d|ϕ|2|2 + 2λ′|ϕ|2{A(△ϕ, ϕ) − A(�ϕ, ϕ) − A(▽ϕ,▽ϕ)}
On the other hand by proposition 2.2 we have forϕ ∈ Cq,

||∂ϕ||2 + ||δϕ||2 6 ||∆ϕ||2 + ||ϕ||2

In particular, if∆ϕ ∈ Lq andϕ ∈ Cq ∩ Lq then ||dϕ||2 < ∞ as also
||δϕ||2 < ∞. In the view of theorem 2.1 this proves thatϕ ∈Wq.

Now ∫

x
∆λ(|ϕ|2)dX =

∫

X
∗d ∗ dλ(|ϕ|2)

We shall show that these integrals vanish.
Using Schwartz inequality, one checks that there exists a positive

constantC2 such that

|d|ϕ|2| 6 C2|ϕ||▽ϕ| at each point ofX. (2.10)

Hence, since|λ′(t)| is bounded it follows that
∫

X
|dλ(|ϕ|2)|dX < ∞.

We will prove now that
∫

X
|∆λ(|ϕ|2)|dX < ∞.

LettingC3 = Sup λ′′(t), we have, by (2.10),

∫

X
λ′′(|ϕ|2)|d|ϕ|2|2dX =

∫
λ:(|ϕ|22)|d|ϕ|2|2

C◦<|ϕ|2<C1
dX 6 C3

∫
|d|ϕ|2|2

C◦<|ϕ|2<C1
|d|ϕ|2|2dX

6 C2Cc3

∫
|ϕ|2|▽ϕ|2

C◦<|ϕ|2<C1
dX 6 C1C2C3

∫

X
|▽|2dX = C1C2C3||▽ϕ||2

Sinceϕ ∈Wq, then by Lemma 2.3||▽ϕ||2 < ∞, and therefore55

∫

X
λ′′(|ϕ|2)|d|ϕ|2|2dX < ∞
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SinceK is compact, there is a constantC4 > 0 such that

|A(Ku, u)| 6 C4A(u, u)

for anyu ∈ Cq and at each point ofK . Then we have
∫

X
|A(Kϕ, ϕ)|dX =

∫

X−K
A(Kϕ, ϕ)dX+

∫

K
|A(Kϕ, ϕ)|dX

6

∫

X
A(Kϕ, ϕ)dX+ 2

∫

K
|A(Kϕ, ϕ)|dX

6 (Kϕ, ϕ) + 2C||ϕ||2 6 2C||ϕ||2 + ||dϕ||2 + ||δϕ||2 < ∞.

Finally we have
∫

X
|A(△ϕ, ϕ)|dX ≤ 1

2

∫

X
A(△ϕ,△ϕ)dX+

1
2

∫

X
A(ϕ, ϕ)dX < ∞.

Then, it follows from (2.9) and from the fact that|λ′| and |λ′′| are
bounded, that ∫

X
|△λ(|ϕ|2)|dX < ∞.

Hence, by Lemma 2.4,
∫

X
△λ(|ϕ|2)dX = 0, i.e. by (2.9)

∫

X
λ′′(|ϕ|2)2(d|ϕ|2)2dX+ 2

∫

X
λ′(|ϕ|2).A(Kϕ, ϕ)dX+ 2

∫

X
λ′(|ϕ|2)|▽ϕ|2dX =

∫

X
2λ′(|ϕ|2)A(△ϕ, ϕ)dX. (2.11)

Let us consider now sup|ϕ| on Suppf ∪ k. If it is not finite there is 56

nothing to prove. If it is finite, we setC0 = Sup|ϕ|2 on K
⋃

Support f .
In view of our choice of the functionλ all the terms on the left hand side
of (2.11) are non negative. We obtain

0 6 2
∫

X
λ′(|ϕ|2)|▽ϕ|2dX 6

∫

X
2λ′(|ϕ|2)A(△ϕ, ϕ)
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= 2
∫

X
λ′(|ϕ|2).A( f , ϕ).

Once again since|ϕ|2 6 C0 on supportf , the integral on the right is
zero. Hence ∫

X
λ′(|ϕ|2)|▽ϕ|2dX = 0

By consequences we have alsod|ϕ|2 = 0, i.e. |ϕ| is a constant, on the
open set{|ϕ|2 > Co}. Hence|ϕ|2 ≤ Co on X. This concludes the proof.

Corollary. If ϕ ∈ Lq ∩Cq and△ϕ ∈ Dq (in particular, if △ϕ = 0), then
|ϕ| is bounded on X.

7 Finite dimensionality of spaces of harmonic forms

Let γ be a real number and letMq
γ be the vector space

M
q
γ = {ϕ|ϕ ∈ Lq,△ϕ = γϕ}.

we setMq
= H

q

Lemma 2.5. Mγ ⊂Wq andγ > 0.

Proof. If ϕ ∈ Mq
γ, then△ϕ ∈ Lq. Thus, by the first part of Proposition

2.3,ϕ ∈Wq. Sinceϕ is a solution of the elliptic equation∆− γ, we may57

assumeϕ ∈ Cq. We have moreover (since the metric is complete)

‖δdϕ‖2 6 ‖∆dϕ‖2 + ‖dϕ‖2 6 (γ2
+ 1)‖dϕ‖2,

‖dδϕ‖2 6 ‖∆δϕ‖2 + ‖δϕ‖2 6 (γ2
+ 1)‖δϕ‖2.

Hencedϕ ∈Wq+1, δϕ ∈Wq−1 and therefore

γ‖ϕ‖2 = (∆ϕ, ϕ) = ‖dϕ‖2 + ‖δϕ‖2 (2.12)

This proves thatγ > 0 �

It follows from (2.12) that, ifγ = 0, i.e. if ϕ ∈ Hq, thendϕ = 0,
δϕ = 0.
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Theorem 2.3.Let X be a connected, oriented and complete Riemannian
manifold and assume that A(Kϕ, ϕ) > C|ϕ|2 for all ϕ ∈ Cq for some
C > 0, outside a compact set K⊂ X. Then forγ < C, Mq

γ is finite
dimensional. In particular dimHq < ∞.

Proof. Let ϕ ∈ Mq
γ. Sinceϕ ∈Wq, then by Lemma 2.3

‖▽ϕ‖2 + (Kϕ, ϕ) = ‖dϕ‖2 + ‖δϕ‖2

and by (2.12)

‖▽ϕ‖2 + (Kϕ, ϕ) = ‖dϕ‖2 + ‖||δϕ‖2 = γ‖ϕ‖2

NowK being compact, there is a constantC2 > 0 such that (Ku, u) >
−C2|u|2 for everyu ∈ Cq and at each point ofK . Since (Kϕ, ϕ) > C2|ϕ|2
on the complementX − K we have

‖▽ϕ‖2 +C‖ϕ‖2X−K 6 C2‖ϕ‖2K + γ‖ϕ‖
2

or again,
‖▽ϕ‖2 +C‖ϕ‖2 6 (C +C2)‖ϕ‖2K + γ‖ϕ‖

2

Hence, 58

(C − γ)‖ϕ‖2 6 (C +C2)‖ϕ‖2K (2.13)

Suppose now thatMq
γ is infinite dimensional forγ < C, then the evalu-

ation map
ω ω(x) (x ∈ K)

(which associates to a formω, the element of theqth exterior power of
the tangent space atx which is defined byω) is a linear map into a finite
dimensional space. Hence the kernel of this map is of finite codimen-
sion. Since the finite intersection of subspaces of finite codimension
is non-zero (over an infinite field !) it follows that given anysequence
x1, . . . , xν, . . . of points of K, we can find formsϕ∈ ∈ M

q
γ such that

ϕν(xi) = 0 for i 6 ν. We may further assume that‖ϕν‖ = 1. It follows
then that we can choose a subsequenceψk = ϕνk of {ϕν} such thatψk

converges weakly to a limitψ in Lq. Now this implies thatψ ∈ Mq
γ,

since for anyϕ ∈ Dq,

(ψ,∆ϕ) = Lt(ψk,∆ϕ) = Lt(∆ψk, ϕ) = γ(ψ, ϕ).
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Hence we can assumeψ ∈ Cq. Now theψk are solutions of the elliptic
equation∆ − γ = 0. Hence the weak convergence ofψk implies thatψk

converge uniformly together with all partial derivatives on every com-
pact set. Clearly we have Ltψk(xν) = 0 for everyν. If we choosexν to
be dense inK thenψ ≡ on K sinceψ ∈ Cq. Hence it follows that

|ψk| < ε on K.

for any givenε > 0 and all largek. We conclude that59

‖ψk‖2K 7−→ 0

ask→ ∞. On the other hand sinceψk ∈ Mq
γ, we have by (2.13),

(C − γ)‖ψk‖2 6 (C +C2)‖ψK‖2K .

SinceC − γ > 0 and‖ψk‖2 = 1, we arrive at contradiction. Hence
M

q
γ is finite dimensional for everyγ < C. This proves Theorem 2.1

completely. �

Theorem 2.4. Under the hypothesis of Theorem 2.3 we have the fol-
lowing. Let Sq denote the orthogonal complement ofHq in the Hilbert
space Wq. Then there is a C> 0 such that

‖ϕ‖2 6 C{‖dϕ‖2 + ‖δϕ‖2} for ∀ϕ ∈Wq

For the proof of the theorem we need the following result due to
Rellich.

Lemma 2.6. Let X be a Riemannian manifold andΩ ⊂⊂ X Letϕν ∈
Lq(Ω) be a sequence such that

‖ϕν‖2 < ∞ and ‖▽ϕν‖2Ω < ∞

(We denote
∫
Ω
|▽ϕν|2dX by ‖▽ϕν‖2Ω). Suppose that||ϕν||2Ω+ ||▽ϕν||

2
Ω
6

M for a fixed constantM > 0. Then if∂Ω is smooth, we can find a
subsequenceψk = ϕνk of ϕν such that||ψk − ψk′ ||Ω → 0 ask, k′ → ∞.

If ϕνǫLq
2(X) is a sequence such that‖ ϕν ‖2 + ‖ ▽ϕν ‖2≤ M for a60

fixed constantM > 0, then we can find a subsequenceψk = ϕνk such
that for each compactK′ ⊂ X,

‖ ψk − ψk′ ‖K→ 0 as k, k′ → ∞.
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Proof. The setΩ being relatively compact, it is sufficient to prove the
lemma in the caseq = 0, i.e. in the case ofL2 functions. For this proof
see e.g. [7], 339. �

Proof of Theorem 2.4.Suppose that the theorem is false. Then we can
find a sequenceϕνǫWq such that

‖ dϕν ‖2 + ‖ δϕν ‖2 +‖ϕν‖2 = 1

while ‖dϕν‖ + ‖δϕν‖2 ≤ 1
ν ‖ϕν‖2. In view of Remark under Lemma 2.3

this implies that
‖▽ϕν‖2 ≤ C1

for someC1 > 0. By Rellich’s Lemma (Lemma 2.6) we can find aϕǫLq

(by passing of a subsequence if necessary) such that

‖ϕν − ϕ‖Ω → 0

for every relatively compactΩ ⊂ X.
In particular, we have

‖ϕν − ϕ‖2K → 0.

We assert thatϕ is harmonic, that is△ϕ = 0. In fact foru ∈ Dq, we 61

have

(ϕ,△u) = Lt(ϕν,△u)

= Lt(dϕν, du) + (δϕν, δu)

≤ Lt(‖dϕν‖ ‖du‖ + ‖δϕν‖.‖δu‖)

≤ lim
1
√

2
‖ϕν‖(‖du‖ + +‖δu‖) = 0

since‖ϕν‖2 is bounded. HenceϕǫWq ∩ Hq.
Now we have forf ǫWq,

‖▽ f ‖2 + (K f , f ) = ‖df‖2 + ‖δ f ‖2.
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We have (K f , f ) ≥ C| f |2 on X − K . On the other hand there is a
C2 ≥ 0 such that (K f , f ) > −C2| f |2 on K. Since‖▽ f ‖2 ≥ o, we obtain,

C‖ f ‖2 ≤ (C +C2)‖ f ‖2k + ‖d f‖2 + ‖δ f ‖2.

Setting f = ϕ − ϕν, we obtain,

C‖ϕ − ϕν‖2 ≤ (C +C2)‖ϕ − ϕν‖2k + ‖d(ϕ − ϕν)‖2 + ‖δ(ϕ − ϕν)‖2.

Now ϕǫH q ∩Cq so that

(dϕ, dϕ) + (δϕ, δϕ) = (△ ϕ, ϕ) = 0.

Hence

C‖ϕ − ϕν‖2 ≤ (C +C2)‖ϕ − ϕν||2k + ||dϕν||
2
+ ||δϕν||2

≤ (C +C2)||ϕ − ϕν||2k +
1
ν
‖ϕν‖2.

It follows thatϕν → ϕ in Lq on the whole ofX. On the other hand62

since

‖dϕν‖2 + ||δϕν||2 ≤
1
ν
‖ϕν||2

dϕν andδϕν converge to zero. Henceϕν converges inWq to a limit ϕ
satisfyingdarphi = 0, δϕ = 0, i.e.ϕǫHq. But ϕνǫSq andSq is a closed
subspace. HenceϕǫSq and thereforeϕ = 0. But thenϕν → 0 in Wq, and
this is absurd, since||ϕν||2 + ||dϕν||2 + ||δϕν||2 = 1. It follows that there
existsC′ > 0 such that forϕǫSq

C
′{||dϕ||2 + ||δϕ||2} ≥ ||ϕ||2

Remark . Since forϕǫHq, dϕ = 0, δϕ = 0, Sq is also the orthogonal
complement ofHq with respect to the scalar product onWq induced by
Lq.

The hypothesis of Theorem 2.3 can be weakened, further the space
H

q.
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Theorem 2.5. Let X be an oriented, connected and complete Rieman-
nian manifold and let A(Kϕ, ϕ) ≥ 0 outside a compact setK for every
ϕ ∈ Cq. ThendimHq < ∞.

Proof. If dim Hq
= ∞, then given any dense sequence{xν} of points

xνǫX, we can find a sequence{ϕν} of formsϕνǫHq such that

ϕν(xi) = 0 for i ≤ ν, ||ϕν||2 = 1.

We assert now that||ϕν||Ω > 0 for any relatively compact open subset
Ω ⊃ K. In fact, we have

||▽ϕν||2 + (Kϕνϕν) = ||dϕν||2 + ||δϕν||2 = o sinceϕνǫH
q.

Hence from the Remark under Lemma 2.3 it follows that there isa 63

constantC > 0 such that

‖ ▽ϕν ‖2< C ‖ ϕν ‖2K (2.14)

Hence if‖ ϕν ‖Ω= 0, then‖ ϕν ‖2K= 0 so that▽ϕν = 0. But in the
case,| ϕν |2 is a constant. Hence‖ ϕν ‖Ω> 0, a contradiction.

We may therefore assume that for a fixedΩ ⊃ K ‖ ϕν ‖Ω= 1. From
(2.14),‖ ϕν ‖2Ω + ‖ ▽ϕν ‖

2
Ω
< C′ for someC′ > 0. Hence by Rellich’s

Lemma (Lemma 2.6), we can, by passing to a subsequence, if necessary,
assume that‖ ϕν − ϕµ ‖2Ω→ 0 asν, µ → ∞ provided that∂Ω is smooth.
Hence{ϕν} converges to a limitϕ in Lq(Ω).

But since {ϕν} is a sequence of solutions of an elliptic operator,
ϕν converges toϕ uniformly on every compact subset ofΩ. Since
ϕν(xi) = 0 for i 6 ν, we see thatϕ ≡ 0 onΩ. Hence‖ϕν‖Ω → 0 as
ν → ∞, a contradiction. It follows thatHq is finite dimensional. Hence
the theorem. An estimate for the dimension ofHq is provided by the
following. �

Proposition 2.3. Assume that, under the same hypotheses for X,K ≡ 0
on X. Then forϕǫHq, ▽ϕ = 0. Hence,dimHq

6

(
n
q

)
. Moreover, if

dimHq > 0, then vol X< ∞.
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Proof. Since now 64

‖ ▽ϕ ‖2= ‖dϕ‖2 + ‖δϕ‖2 = 0 for ϕǫHq

we have▽ϕ = 0 for ϕǫHq. A form invariant under parallel translation
is determined by its value at one point. Hence dimHq

6

(
n
q

)
. If ϕǫHq

is non-zero, then‖ϕ‖2 < ∞; on the other hand since▽ϕ = 0, | ϕ |2 is a
constant and the last assertion follows. �

Lemma 2.7. Under the hypotheses of Theorems 2.3 and 2.4, for every
sǫSq there exists a unique xǫSq such that

s= △x

in the sense of distributions. Moreover

‖ x ‖ 6 C′ ‖ s ‖,
‖dx|2 + ||δx‖2 ≤ C′ ‖ s ‖2

C′ being the constant which appears in Theorem 2.4. If sǫCq∩Sq, then
(x can be modified on a null set in sch a way that) xǫCq ∩ Sq and the
equation△x = s holds in the ordinary sense.

Proof. Sq as a (closed) subspace of the Hilbert spaceWq is a Hilbert
space. By theorem 2.4 the normN is equivalent onSq to the norm
(||d||2+ ||δ||2)

1
2 . f  (s, f ) is a continuous linear form onSq. Thus there

is a uniquex ∈ Sq such that

(s, f ) = (dx, d f) + (δx, δ f )for all f ǫSq.

Let nowϕ be any element ofWq and let h andψ be its orthogonal
projections intoHq andSq. They are uniquely defined, and furthermore

ϕ = h+ ψ

Sinceh is orthogonal tosanddh= 0, δh = 0, then65

(s, ϕ) = (s, ψ) = (dx, dψ) + (δx, δψ) = (dx, dϕ) + (δx, δϕ).

This proves the lemma. �
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Since
Wq
= H

q ⊕ Sq

we can state the following.

Proposition 2.4. Under the hypotheses of Theorem 2.3, for everyϕǫWq

there exists a unique hǫHq and a unique xǫSq such that

ϕ = h+ △x

(in the sense of distributions). Moreover

||x|| 6 C′||ϕ||
||dx||2 + ||δx||2 6 C′||ϕ||2

8 Orthogonal decomposition inLq

Let X be an oriented, complete and connected Riemannian manifold.
Assume that there exists a compact setK ⊂ X and a positive constantC
such that

A(Kϕ, ϕ) > CA(ϕ, ϕ)

outsideK, for eachϕǫCq.
The spaceLq can be decomposed as direct sum of orthogonal sub-

spaces

Lq
= H

q ⊕ dDq−1 ⊕ δDq+1,

wheredDq−1 and δDq+1 are the closure of dDq−1 andLDq+1 with 66

respect to the norm‖ ‖.
Let ϕ ∈ Lq; - if dϕ = 0, then the orthogonal projection ofϕ into

δDq+1 is zero; ifδϕ = 0, then the orthogonal projection intodDq−1 is
zero (see [17] 602-605; [29], 165).

Lemma 2.8. For everyφ ∈ dDq−1 there is a unique form x∈ Sq such
that

φ = dδx, dx= 0.
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Moreover

‖ x ‖≤ C′ ‖ φ ‖,
‖ δx ‖2≤ C′ ‖ φ ‖2

(C′ being the constant introduced in Theorem 2.4)

Proof.
s (φ, s)

is a continuous form onSq . Then there exists a uniquex ∈ Sq such that

(φ, s) = (dx, ds) + (δx, δs) for all s∈ Sq.

Moreover, by Theorem 2.4,

‖ x ‖2≤ C′(‖ dx ‖2 + ‖ δx ‖2) = C′(φ, x) ≤ C′ ‖ φ ‖ . ‖ x ‖,
‖ dx ‖2 + ‖ δx ‖2 = (φ, x) ≤‖ φ ‖ . ‖ x ‖≤ C′ ‖ φ ‖2 .

Let nowu ∈ Dq · u can be written

u = h+ s, h ∈ Hq, s∈ Sq.

Sinceh⊥ dDq−1 in Lq anddh = 0, δh = 0, then (ϕ, u) = (ϕ, s) =67

(dx, ds) + (δx, δs) = (dx, du) + (δx, δu) = (x,△u) i.e.

ϕ = △x

in the sense of distributions. �

Let φ ∈ Cq∩dDq−1. By the regularity theorem, we can modifyx on
a null set in such a way thatx ∈ Cq ∩ Sq , and that the latter equation
holds in the ordinary sense. Thus, by proposition 2.2

‖ δdx ‖2≤ 1
σ
‖ dφ ‖2 +σ ‖ dx ‖2= σ ‖ dx ‖2 for all σ > 0.

Hence
δdx= 0, ϕ = dδx.
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But then, by Theorem 2.1,δx ∈Wq−1, and therefore

‖ dx ‖2= (x, δdx) = 0 i.e. dx= 0.

If ϕ is notC∞, there exists a sequence{uν} of formsuν ∈ Dq−1 such
that ‖ duν − ϕ ‖−→ 0. Clearlyduν ⊥ Hq; henceduν ∈ Sq. Setting
ϕν = duν and applying toϕν the above argument, we can find, for each
ϕν, a uniquexν ∈ Sq ∩Cq such that

ϕν = dδxν, dxν = 0

‖ xν ‖≤ C′ ‖ ϕν ‖,
‖ δxν ‖2≤ C′ ‖ ϕν ‖2

Hence{xν} is a Cauchy sequence inSq. Let 68

x = lim xν.

Then

dx= 0,

‖ x ‖ ≤ C′ ‖ ϕ ‖,
‖ δx ‖2 ≤ C′ ‖ ϕ ‖2,

and finally
ϕ = dδx,

in the sense of distributions. This proves the lemma.
An analogous argument yields

Lemma 2.9. For anyψ ∈ δDq+1 there is a unique form y∈ Sq such that

ψ = δ dy δ y = 0

Moreover

‖ y ‖ ≤ C′ ‖ ψ ‖
‖ dy ‖2 ≤ C′ ‖ ψ ‖2
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Theorem 2.6. Every current f∈ Lq can be decomposed as the sum of
three currents

f = h+ dϕ1 + δψ1

with h∈ Hq, ϕ1 ∈Wq−1, ψ1 ∈Wq+1. Moreover

N(h)2
=‖ h ‖2≤‖ f ‖2,N(ϕ1)2 ≤ (C′+1) ‖ ϕ ‖2,N(ψ1)2 ≤ (C′+1) ‖ ψ ‖2

Proof. First of all any elementf ∈ Lq can be expressed in a unique way
as the sum

f = h+ ϕ + ψ

of three formsh ∈ Hq, ϕǫ dDq−1, ψǫδDq+169

|| f ||2 = ||h||2 + ||ϕ||2 + ||ψ||2.

Next we apply toϕ andψ Lemma 2.8 and 2.9 setting then

ϕ = δϕ1, ψ = dψ1;

ϕ1 ∈Wq−1 ψ1 ∈Wq+1.

Moreover

N(ϕ1)2
= ||ϕ1||2 + ||ϕ||2 ≤ (C′ + 1)||ϕ||2 ≤ (C′ + 1)|| f ||2

N(ψ1)2
= ||ψ1||2 + ||ψ||2 ≤ (C′ + 1)||ψ||2 ≤ (C′ + 1)|| f ||2

�

Remark. If the hypotheses of Theorem 2.3 are satisfied, not only for the
forms of degreeq, but also for those degreeq− 1 andq+ 1 then spaces
H

q−1, Hq+1, Sq−1 andSq+1 can be introduced and one checks that

ϕ1 ⊥ Hq−1, i.e. ϕ1 ∈ Sq−1

ϕ1 ⊥ Hq+1, i.e. ψ1 ∈ Sq+1.
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Local expressions for� and
the main inequality

9 Metrics and connections

We now go back to the case of holomorphic vector bundles on a complex 70

manifold.
Let x be a complex manifold andπ : E → X a holomorphic vector

bundle. LetU = {Ui}iǫ I be a covering ofX such thatπ : E → X is
defined with respect toU by transition functionsei j : Ui ∩ U j → GL
(m, C) (E is of rankm).

Let (hi)iǫ I be a hermitian metric along the fibres ofE: thenhi areC∞

functionsUi whose values are positive definite hermitian matrix such
that.

hi =
t−
e ji h jeji =

te−1
i j h je

−1
i j on Ui ∩ U j .

Consider the 1-forml i = h−1
i ∂hi where∂ is the exterior differentia-

tion with respect holomorphic coordinates. We have for thisfamily of
forms the following.

Lemma 3.1. If l i = h−1
i ∂hi , then li are (1, 0) forms with values in Mm(C)

and on Ui ∩ U j we, have

l i = e−1
ji l jeji + e−1

ji ∂eji .

61
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In other wordsl i are the local representations of a connection of type71

(1, 0) on the principal bundle associated toE.

Proof. We have

e−1
ji l j eji + e−1

ji ∂eji = e−1
ji ∂h jeji + e−1

ji ∂eji

Now hi =
teji h j eji , so that

h−1
i ∂hi = e−1

ji h−1
j

tē−1
ji

{
∂teji · h jeji +

teji ∂h jeji +
t eji h j∂eji

}
.

Since theei j are holomorphic functions,

∂tēji = 0.

Hence h−1
i ∂hi = e−1

ji h−1
j ∂h jeji + e−1

ji ∂ei j . �

The principal bundles
⌣
ω : P −→ X associated toE is defined, with

respect to the coveringU = {Ui}, by the transition function{ei j } acting
on the fibreGL(m,C) as follows:

Zi = ei j Z j (Zi ,Z j ∈ GL(m,C)).

The computations above shows that

Z−1
i (l iZi + dZi) = Z−1

j (l jZ j + dZj) on
⌣
ω
−1

(Ui ∩
⌣
ω(U j)

Henceωi = Z−1
i (l iZi + dZi) is the local representation on

⌣
ω
−1

(Ui) of
a global 1-formω with values in the Lie algebra ofGL(m,C).

Let Pξ be the tangent space toP at a pointξ ∈ P. Let Qξ ⊂ Pξ be72

the subspace annihilated byω. The family of these subspaces defines a
connection inP [26]. This proves the lemma.

The covariant derivation associated to the connection defined above
is a map

▽ : Γ(X,A(E))→ Γ(X,A(E ⊗ Θ∗)

where for a vector-bundleF,A(F) denotes the sheaf of germs of differ-
entiable sections ofF, andΘ∗ is the bundle of 1-forms with value inC.
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(In the above we regardE as a differentiable vector bundle).▽ is defined
in an open set{Ui} of the coveringU as follows.

Let z1, . . . , zn be a system of local coordinates onUi . Since we are
given a local trivialisation overUi of E, a sectionσ overUi of E may
be regarded as function onX with values inCm (rankE = m). We then
have

▽α(σ) = ▽(σ)

(
∂

∂zα

)
= ∂σ

(
∂

∂zα

)
+ l i

(
∂

∂zα

)
(σ)

and ▽α(σ) = ▽(σ)

(
∂

∂zα

)
= ∂σ

(
∂

∂zα

)
.

It is easy to check that these local representation defined a global
map▽ as above.

We consider next the curvature form of the connection.
LetΩ be the curvature form of the connection formω in the princi- 73

pal bundleP associated toE. The values ofΩ on a pair,u1, u2, of tangent
vector fields toP is given by the structure formula ([26], 34-35):

Ω(u1, u2) = dω(u1, u2) +
1
2

[ω(u1), ω(u2)].

Hence the component of type (1,1) ofΩ is given onω̄−1(Ui) by

∂ωi = Z−1
i siZi ,

where si = ∂l i .

We shall call s the curvature form of the (connection{l i} defined by the)
metric{hi} along the fibers ofE. OnUi ∩ U j

si = ei j sj eji .

Hence we have

Lemma 3.2. The curvature form of the connection defined above is
given in Ui by the matrix valued 2-form

(sa
t )i = si = ∂l i

Hence it is a form of type (1,1) with values in the “adjoint” bundle End
(E).
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The bundleΘ∗ decomposes canonically as a direct sum

Θ
∗
⋍ Θ

∗
◦ ⊕ Θ̄∗◦

whereΘ◦ (resp.Θ◦) is the holomorphic tangent bundle (resp. anti holo-74

morphic tangent bundle) ofX. (The two bundles in the above decompo-
sition are regarded as differentiable bundles. As a differentiable bundle
Θ
∗
◦ (resp. (Θ

∗
◦), is simply the bundle ofC∞− forms onX of type (1,0)

(resp. type (0,1)). The decomposition above gives a direct-sum repre-
sentations

A(Θ∗) ⋍ A(Θ∗◦) ⊕A(Θ
∗
◦),

and for any holomorphic vector bundleE on X,

Γ(X,A(E ⊗ Θ∗)) ⋍ Γ(X,A(E ⊗ Θ∗◦)) ⊕ Γ(X,A(E ⊗ Θ∗◦)).

Now if we are given a connection onE, it defines as we have re-
marked a covariant derivation

▽ : Γ(X,A(E))→ Γ(X,A(E ⊗ Θ∗));

composing with the natural projections defined by the directsum de-
composition above we obtain maps

▽
′ : Γ(X,A(E))→ Γ(X,A(E ⊗ Θ∗◦))

and ▽
′′ : Γ(X,A(E))→ Γ(X,A(E ⊗ Θ∗◦)).

Remarks. (1) As it has been remarked at the end of§3, the metric{hi}
on E induces a metric on the dualE∗: this is simply given by the
family of positive definite matrix-valued functions

{
th−1

i

}
i∈I . The

corresponding connection is given locally onUi by the form−tl i .75

It is also easy to see that the curvature form of this connection is
given by{−tsi}i∈I

(2) Let Ē denote the “anti holomorphic” bundle associated toE. Ē
is the bundle with transition functions ¯ei j . Thenthi = h̄i define a
metric onĒ as well. In this case, the local forms

l̄ i = h̄−1
i ∂̄ h̄i



9. Metrics and connections 65

define a connection of type (0,1). When we speak of a connection
on Ē without further comment, it will always be of this connection
(of course, it is necessary to assume given a metric or at least a
connection onE.)

(3) Suppose thatE andF are holomorphic vector bundles onX and
that we given hermitian metrics{h1

i }i∈I and{h2
i }i∈I on E andF re-

spectively. (We assume here, as we may, thatE andF are defined
by means of transition function{ei j }{ fi j } with respect to the same
coveringU = {Ui}i∈I ). Then the family of matrix valued functions
{h1

i ⊗ h2
i } defines a metric{hi} along the fibres ofE ⊗ F. We have

then

∂(hi) = ∂(h1
i ⊗ h2

i ) = ∂h1
i ⊗ h2

i + h1
i ⊗ ∂h2

i

so that l i = h−1
i ∂hi = h−1

i ∂h1
i ⊗ Ir2 + Ir1 ⊗ h2−1

i ∂h2
i

wherer1 (resp. r2) is the rank ofE (resp. rankF) and for an 76

integerm, Im denotes the (m× m) identity matrix. One sees im-
mediately then that the curvature formsi is given by the formula

si = ∂l i = s1
i ⊗ Ir2 + Ir1 ⊗ s2

i .

It is clear that the above considerations can be carried overto the
case when one or both ofE andF are anti holomorphic.

In the sequel, we call a connection on a (differential) vector bundle
(with complex fibres) a∂−connection (resp.∂- connection) if the associ-
ated connection form is of type (1,0) (resp. type (0,1)). Theconnection
l i on a holomorphic bundleE defined with respect to a metrichi is then a
∂− connection while that on the conjugate bundleE is a∂− connection.

Now if {hi}i∈I is a hermitian metric along the fibres ofE, then it
can be regarded as a sectionh of the bundleE∗ ⊗ Ē∗. We have also a
canonical connection onE∗ ⊗ Ē∗. We denote the covariant derivative on
section ofE∗ ⊗ Ē∗ again by▽:

▽ : Γ(X,A(E∗ ⊗ Ē∗))→ Γ(X,A(E∗ ⊗ Ē∗ ⊗ Θ∗)).
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Proposition 3.1. ▽h = 0

Proof. Let z1, .., zn be a coordinate system onU1. In this proof we write
l for l i andh for hi .

We have77

▽αh = (▽h)

(
∂

∂zα

)
= ∂αhab−

∑

c

lcbαhac

= ∂xhab−
∑

(h−1)cd∂αhdbhac

= ∂αhab−
∑

δd
a∂αhdb = ∂αhab− ∂αhab = 0.

Similarly one shows that

▽αh = ▽h(
∂

∂zα
) = 0.

Hence the proposition.

(Hereh is regarded as a function fromUi into
{
C

m⊗Cm
}∗

using the

given trivialisation ofE | Ui. A vector t ∈ Cm is anm-tuple denoted
(ta)1≤a≤m andtǫC

n
is again anm-tuple but is denoted (ta)1≤a≤m. Further

conventions are as follows: a vector in the dual ofCm is anm-tuple but
with subscripts instead of super scripts. In other words we write

t =
∑

taea for t ∈ Cm

t =
∑

taea for t ∈ C̄m

t =
∑

tae∗a for t ∈ Cm∗

t =
∑

tae∗a for t ∈ Cm∗

where{ea} (resp.{ea}, {e∗a}, {e∗a} is the canonical (resp. conjugate of the
canonical, dual of the canonical, conjugate dual of the canonical) basis
of Cm). �

Proposition 3.2. Let z1, . . . , zn be a coordinate system on Ui . Then in78

Ui , the curvature form can be written as

ai = (sa
bβ̄α

)abdz̄β ∧ dzα,
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where
(sa

bβ̄α)ab = ▽β̄▽α − ▽α▽β̄ (3.1)

Proof. Let t = (ta) be a section of the bundle overUi.
Then

▽β̄t = ∂β̄t = (∂β̄t
a)

Hence
(▽α▽β̄t)

a
= ∂α∂ ta

β
+

∑

b

labα∂β̄t
b

wherel =
∑

labβ dzα is the connection form.

▽αt = ∂αt + (labα)(t) = ∂αta +
∑

b

labα tb

so that

▽β̄▽αt = ∂β̄∂αta +
∑

b

∂β̄l
a
bαtb +

∑

b

labα∂β̄t
b

= ∂β̄∂αta + sa
bβ̄αtb +

∑

b

labα∂β̄t
b.

Hence−(▽α▽β̄t − ▽β̄▽αt)a
=

∑
b

sa
bβ̄α

tb.

This proves the proposition.
The equation (3.1) is known as theBianchi Identity.
(We remark thats is a form of type (1,1).).
The following lemma is easy to prove. � 79

Lemma 3.3. ▽# = #▽.
Next we specialize the preceding considerations to the caseE = Θo

the homomorphic tangent bundle. Let z1, . . . , zn be a local coordinate
system in an open set U⊂ X. Let

g =
∑

gᾱβdz−αdzβ

be the expression for the hermitian metric in this coordinate system. The
associated∂-connection is then given in U by the (1,0)- form

∑
Cα
βγdzγ
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where Cαβγ =
∑

gτ̄α
∂gτ̄β
∂zγ

.

(here, as is usual, ḡαβ is defined by (ḡαβ)(gᾱβ) = Identity).

That means that

▽β

(
∂
∂zα

)
=

∑
Cα
βγ

∂
∂zγ

▽β̄
∂
∂zα = 0

(3.2)

where
▽ : Γ(X,A(Θ))→ Γ(X,A(Θo ⊗ Θ∗))

is the covariant derivation.
The∂- connection defined above is not in general symmetric:Cγ

αβ ,80

Cγ
βα; in fact this connection is symmetric if and only if the hermitian

metricg is Kahler. We set then

S =
∑ 1

2
(Cγ

βα −Cγ
αβ)dzβ ∧ dzα.

ClearlyS is an alternating (2,0) form with values in the tangent bun-
dleΘ0. It is called the torsion form of the∂- connection. Its vanishing
characterises the Kahler metrics.

A hermitian metric on the holomorphic tangent bundle definesa Rie-
mannian metric as well onX. We have corresponding to this metric a
Riemannian connection onX. The associated covariant derivative is a
map

D : Γ(XA(Θ))→ Γ(X,A(Θ ⊗ Θ∗)).

In particular, we have

D : Γ(XA(Θ0))→ Γ(X,A(Θ0 ⊗ Θ∗)).

Denoting, as is usual, the Riemann-Christofel symbols byΓ
γ
αβ, Γ

γ
αβ,..

etc, one can prove easily that these are related to theCγ
αβ as follows:

Γ
α
βγ =

1
2

(Cα
βγ +Cα

γβ)
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∑

γ

Γ
γ̄
βγ̄ = −

∑

r

Sγ
βγ

SinceΘ ⋍ Θ◦⊕Θ◦ as a differentiable vector bundle, we have a direct
sum decomposition

Γ(X,A(Θ ⊗ Θ∗)) ⋍ Γ(X,A(Θ ⊗ Θ∗◦)) ⊗ Γ(X,A(Θ ⊗ Θ∗◦))

and hence a natural projection 81

Γ(X,A(Θ ⊗ Θ∗))→ Γ(X,A(Θ ⊗ Θ∗));

composing this projection withD and▽, we obtain two linear maps
▽
′′ : Γ(X,A(Θo))→ Γ(X,A(Θo ⊗ Θ

∗
o))

and D′′ : Γ(X,A(Θo))→ Γ(X,A(Θo ⊗ Θ
∗
o)).

If the metric is Kahler, these two maps coincide. In a similarway,
composing the natural projection

Γ(X,A(Θ ⊗ Θ∗))→ Γ(X,A(Θ ⊗ Θ∗o))

with ▽ andD we define two linear maps,

▽
′ : Γ(X,AΘo))→ Γ(X,A(Θo ⊗ Θo

∗))

D′ : Γ(X,AΘo))→ Γ(X,A(Θo ⊗ Θ∗o))

which coincide if the hermitian metric ofX is a Kahler metric.
Suppose now that we are given a vector bundleE onX and hermitian

metrics onX and along the fibres ofE. We then have canonical∂ -
connections on the bundleE andΘo and a∂- connection onΘo. These
connections extend canonically to connections on each of the bundles

p
ΛΘ
∗
o ⊗

q
ΛΘ
∗
o ⊗ E

We denote by▽ the covariant derivation in any of these bundles: 82

▽ : Γ(X,A(
p
∧Θ∗o ⊗

q
∧Θ∗o ⊗ E))→ Γ(X,A(

p
∧Θ∗o ⊗

q
∧Θ∗ ⊗ E ⊗ Θ∗))
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Once again, composing with the natural projections, we can define

△′′ : Γ(X,A(
p
∧Θ∗o ⊗

q
∧Θo

∗
⊗ E))→ Γ(X,A(

p
∧Θ∗o ⊗

q
∧Θ∗o ⊗ E ⊗ Θ∗o)),

△′ : Γ(X,A(
p
∧Θo

q
∧ Θo ⊗ E))→ Γ(X,A(

p
∧Θo

q
∧Θo ⊗ E ⊗ E ⊗ Θ∗o),

Let s=
∑
α,β

sa
bᾱβdz̄α ∧ dzβ be the curvature form of the∂ -connection

on E in a co-ordinate open setY over which the bundleE is trivial, the
complex analytic coordinates inU being (z1, . . . , zn) : if (rank E)= m,
a, b run through 1 tomand for fixedα, β, (sa

bαβ) is an (m×m)-matrix.
In the same coordinate neighborhood, let

L =
∑

σ,τ

Lαβσ̄τdz̄σ ∧ dzτ

be the curvature form of the∂-connection on the holomorphic tangent
bundleΘo. For fixedσ, τ, (Lαβσ̄τ) is an (n× n)-matrix.

10 Local expressions for∂, ϑ and �

We will now obtain a local expression for the operator

� = ∂ϑ + ϑ∂

in terms of▽α, ▽̄α and the formsL andsabove.
We adopt the following notation : for ap- tupleA = (α1, . . . αp), we83

setdzA
= dzα1 ∧ . . . ∧ dzαp (resp.dz−A

= dz̄α1 ∧ . . . ∧ dz̄αp). Then if for
φǫCpq(X,E), we set

ϕ

(
∂

∂zα1
, . . . ,

∂

∂zαp
,
∂

∂z̄β1
, . . . , . . .

∂

∂z̄βq

)
= ϕa

AB̄

we have ϕ =
∑

A,B

1
p!q!

ϕa
AB̄dzA ∧ dz̄B

whereA = (α1, . . . , αp) andB = (β1, . . . , βq) for a p-tupleA and a (q+1)-
tuple (β1, . . . , βq+1) we have

(∂̄ϕ)a
Aβ̄1 . . . β̄q+1 = (−1)p

q+1∑

r=1

(−1)r−1∂̄β̄r
ϕa

Aβ̄1...βr ...βq+1
.
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On the other hand

∇β̄r
ϕa
β̄1...

ˆ̄βr ...βq+1
= ∂β̄r

ϕa
Aβ̄1...

ˆ̄βr ...β̄q+1
−

∑

i,r

Cᾱ
βiβr

ϕa
Aβ̄1...β̄i−1ᾱβ̄i+1...

ˆ̄βr ...β̄q+1

= ∂β̄rϕ
a
Aβ̄1...

ˆ̄βr ...β̄q+1

−
∑

i,r

Bαβiβr
+ S

α

βiβr
ϕa

Aβ̄1...β̄i−1ᾱβi+1...
ˆ̄βr ...βq+1

whereCγ
αβ has been defined before and 84

Bγαβ =
1
2

(Cγ
αβ +Cγ

βα)

while Sγ
αβ =

1
2

(Cγ
αβ −Cγ

βα)

so that S =
∑

Sγ
αβdzα ∧ dzβ

is the torsion of the connection onΘ◦.
We have therefore

(∂̄ϕa)Aβ̄1...β̄q+1
= (−1)p

∑
(−1)r−1∇β̄rϕ

a
Aβ̄1...

ˆ̄βr ...β̄q+1

+ (−1)p
∑

i,r

(−1)r−1S̄α
βiβr

ϕa
Aβ̄1...(α)1...

ˆ̄βr ...β̄q+1
.

Let 85

S : Cpq(X,E)→ Cp,q+1(X,E)

be the operator defined by

(Sϕ)a
Aβ̄1...β̄q+1

= (−1)p
∑

i,r

(−1)r−1S̄α
βiβr

ϕa
Aβ1...βi−1αβi+1βγβ̄−−q−1

(3.4)

and set
∂̄ = ∂̃ + S, (3.5)

so that
(∂̃ϕ)a

Aβ̄1... ¯βq+1
= (−1)p

∑
(−1)r−1∇β̄r

ϕα
Aβ̄1...

ˆ̄βr ...βq−1
(3.6)

Let
ϑ̃ = − ∗ #−1∂̃ ∗ # : Cpq(X,E)→ Cp,q−1(X,E) (3.7)
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and
T = − ∗ #−1S ∗ # : Cpq(X,E)→ Cp,q−1(X,E) (3.8)

so that
ϑ = θ̃ + T. (3.9)

Finally let
�̃ = ∂̃ϑ̃ + ϑ̃∂̃

If the hermitian metric onX is a Kahler metric, then86

∂̄ =
∼

∂, ϑ =
∼

ϑ, � =
∼

�.

For ϕ ∈ Cpq(X,E)
(
ϑ̃ϕ

)a

AB′
= (−1)p−1∇αϕa

AαB′ , (3.10)

so that, exactly as in the case of the Laplacian△ in Chapter 2, we have

(∼
�ϕ

)a

AB
= −∇α∇αϕa

AB
+

q∑

r=1

(−1)r−1(∇α∇βr
− ∇βr

∇α)ϕa
AαB′r

(3.11)

where

∇α = gαβ∇β,
and A = (α1, ........αp), B = (β1, ......βq), B

′
r = (β1, ......., β̂r , ...., βq).

In view of the Ricci identity, the summand of (3.11) can be ex-
pressed by

q∑

r=1

(−1)r−1(∇α∇βr
− ∇βr

∇α)ϕa
AαB′r

= (
∼

Kϕ)aAB (3.12)

where
∼

K is a mapping

∼

K : Cpq(X,E)→ Cpq(X,E),

which is linear overC∞ functions, whose local expression involves lin-
early (with integral coefficients) only the coefficients of the curvature87
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forms,sandL, of E andΘ◦.
By Remark (3) after Lemma 3.2 we have

(
∼

Kϕ
)a

AB
=

q∑

r=1

(−1)r sa
bβrα

ϕb
AαB′r

+

(
∼

K◦ϕ
)a

AB
, (3.13)

where
∼

K◦ involves only the curvature tensor ofΘ◦, and is completely
independent ofE.

Formula (3.11) can be also written as

(
∼

�ϕ)a
AB
= −∇α∇αϕa

AB
+ (
∼

Kϕ)a
AB
. (3.14)

Now

� = (∂̄ϑ + ϑ∂̄) = (∂̄ + S)(
∼

ϑ + T) + (
∼

ϑ + T)(
∼

∂ + S)

=
∼

� +

∼

∂T + T
∼

∂ +
∼

ϑS + S
∼

ϑ + S T+ TS.

It follows that

Lemma 3.4. For anyϕǫCpq(X,E)

(�ϕ)a
AB
= (
∼

�ϕ)a
AB
+ (F1ϕ)a

AB
+ (F2∇′ϕ)a

AB
+ (F3∇′′ϕ)a

AB

where

F1 : Cpq(X,E)→ Cpq(X,E),

F2 : Cpq(X,E ⊗ Θ∗o)→ Cpq(X,E),

F3 : Cpq(X,E ⊗ Θ∗o)→ Cpq(X,E),

are linear over C∞ functions. Their local expression involves the tensor88

tensor and its first derivatives.

If the metric onX is a Kahler metric, thenF1 ≡ 0, F2 ≡ 0, F3 ≡ 0.
Applying proposition 3.1 to the hermitian metric onX we have that

∇∗ = ∗∇.
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Hence, by (3.14),

∼

� − ∗−1∼
�∗ =

∼

K− ∗−1
∼

K ∗ . (3.15)

If the metric onX is Kahler, this identity becomes

� − ∗−1
�∗ =

∼

K − ∗−1
∼

K ∗ .

A direct computation shows that, in this case,
∼

K − ∗−1
∼

K∗ does not
depend on the curvature form of the Kahler metric. We have in fact (see
[2], 103)

((
∼

K − ∗−1
∼

K∗))a
AB
=

q∑

i=1

(−1)i sa
bβiβ

ϕ
bβ

AB′i
+

p∑

j=1

(−1) j sa
bαα j

ϕbα
A′j B̄
+ sa

bβ
βϕb

AB

whereA′j = (α1, . . . , α̂ j , ...., αp).
Starting from this formula, it is easy to check that

∼

K − ∗−1
∼

K∗ = e(s)Λ − Λe(s),

where89

e(s) : Cpq(X,E)→ Cp+1,q+1(X,E)

is the linear mapping locally defined by

(e(s)ϕ)i =
√
−1sa

ib ∧ ϕ
b,

andΛ is the classical operator of the Kahler geometry (see e.g. [35],
42). Thus we have, in the Kahler case,

� − ∗−1
�∗ = e(s)Λ − Λe(s)

which, by (1.7), can also be written

�E − #−1
�E ∗ # = e(s)Λ − Λe(s).

This formula, which was first obtained in [4], 483, yieldsW-ellipti-
city conditions on Kähler manifolds (see [2], ).
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If the metric onX is not Kahler, then it follows from Lemma 3.4 and
from (3.15) that

� − ∗−1
�∗ =

∼

K − ∗−1
∼

K ∗ +G1ϕ +G2▽
′ϕ +G3∇′′ϕ

where

G1 : Cpq(X,E)→ Cpq(X,E),

G2 : Cpq(X,E ⊗ Θ∗◦)→ Cpq(X,E),

G3 : Cpq(X,E ⊗ Θ∗◦)→ Cpq(X,E),

are linear overC∞ functions. Their local expressions involve the torsion
tensor and its first covariant derivatives. If the hermitianmetric is a 90

Kähler metric, thenG1 ≡ 0, G2 ≡ 0, G3 ≡ 0.

11 The main inequality

We shall now establish an integral inequality which, under convenient
hypotheses, yields a sufficient condition for theWpq- ellipticity of E.

Let ϕ ∈ Cpq(X,E)(q > 0). Let ξ andη be two tangent vector fields
to X, defined by

ξ = (ξβ = hb̄a▽γ̄ϕ
a
AβB̄′ϕ

bĀγB′ , ξβ̄ = 0)

η = (ηγ = 0, ηγ̄ = hb̄a▽βϕ
a
AβB̄′ .ϕ

bĀγB′)

We have (η being the complex dimension ofX)

divξ =
2n∑

i=1

Diξ
i
=

n∑

β=1

▽βξ
β −

∑

α,β

Sβ
αβξ

α,

where

▽βξ
β
= hb̄a▽β▽γ̄ϕ

a
AβB̄′ .ϕ

bāγB′ + hb̄a▽γ̄ϕ
a
AβB̄′ .▽B̄ϕ

bĀγB′

= hb̄a▽γ̄▽βϕ
a
AβB̄′ .ϕ

bāγB′ + hb̄a▽γ̄ϕ
a
AβB̄′ .▽B̄ϕ

bĀγB′

+ hb̄a(▽β▽γ̄ − ▽γ̄▽β)ϕa
AβB̄′ .ϕ

bĀγB′ .
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The last summand can be evaluated using the Ricci identity. We 91

have, by (3.12).

hb̄a(▽β▽γ̄−▽γ̄▽β)ϕa
AβB̄′ .ϕ

bĀγB =
1
q

hba(K̃ϕ)a
AB̄
ϕbĀB = p!(q−1)!A(K̃ϕ, ϕ).

Furthermore a direct computation, starting from (3.6), shows that

A(∂̃ϕ, ∂̃ϕ) = A(▽′′ϕ,▽′′ϕ) − 1
p!(q− 1)!

hb̄a▽γ̄ϕ
a
AβB̄′ .▽β̄ϕ

bĀγB′ .

Hence we have

▽βξ
β
= hb̄a▽γ̄▽βϕ

a
AβB̄′ .ϕ

bĀγB′ + p!(q− 1)!
{
A(K̃ϕ, ϕ) + A(▽′′ϕ,▽′′ϕ) − A(∂̃ϕ, ∂̃ϕ)

}
.

Now

div η =
2n∑

i=1

Diη
i
=

∑
▽γ̄η

γ̄ − 2
∑

γ,β

Sβ
γβη

γ̄,

▽∂̄η
γ̄
= hb̄a▽γ̄▽βϕ

a
AβB̄′ .ϕ

bĀγB′ + hb̄a▽βϕ
a
AβB̄′ .▽γϕ

bĀγB′

= hb̄a△γ̄△βϕa
AβB̄′ .ϕ

bĀγB′ + p!(q− 1)!A(ϑ̃ϕ, ϑ̃ϕ), by (3.10).

Thus92

div ξ − div η = p!(q− 1)!
{
A(
∼

Kϕ, ϕ) + A(▽′′ϕ,▽′′ϕ)

−A(
∼

∂ϕ,
∼

∂ϕ) − A(
∼

ϑϕ,
∼

ϑϕ)
}
− 2

(
Sαββξ

α − Sβ
γβη

γ
)
.

Let ϕǫD pq(X,E). Then by Stokes’ theorem we have

‖▽′′ϕ‖2+ (
∼

Kϕ, ϕ) = ‖
∼

∂ϕ‖2+ ‖
∼

ϑϕ‖2+ 2
p!(q− 1)!

∫

X

(
Sβ
αβξ

α − Sβ
γβη

γ

)
dX.

(3.16)
Let | S | be the length of the torsion form. Applying lemma A of

Chapter 1 and the Schwartz inequality we get from (3.4), (3.5) and from
(3.8), (3.9) the following estimates

‖
∼

∂ϕ‖2 ≤ 2(∂ϕ‖2 + ‖Sϕ‖2) ≤ 2‖∂ϕ‖2 + c
∫

X
| S |2 A(ϕ, ϕ)dX
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= 2‖∂ϕ‖2 + +c(| S |2 ϕ, ϕ),

‖
∼

ϑϕ‖2 ≤ 2(‖ϑϕ‖2 + ‖Tϕ‖2) ≤ 2‖ϑϕ‖2 + c
∫

X
| S |2 A(ϕ, ϕ)dX

= 2‖ϑϕ‖2 + c(| S |2 ϕ, ϕ),

c being a universal positive constant (depending only on the dimension
of X).

Furthermore, again by the Schwartz inequality, we have 93

1
p!(q− 1)!

|
∑

Sαββξ
β | ≤ 1

p!(q− 1)!
| S‖ξ |≤ q | S | A(▽′′ϕ,▽′′ϕ)

1
2 A(ϕ, ϕ)

1
2

≤ qε
2
| S |2 A(ϕ, ϕ) +

q
2ε

A(▽′′ϕ,▽′′ϕ),

1
p!(q− 1)!

|
∑

Sβγβη
γ̄ | ≤ 1

p!(q− 1)!
| S‖η |≤ q | S | A(

∼

ϑϕ,
∼

ϑϕ)
1
2 A(ϕ, ϕ)

1
2

≤ q
ε

2
| S |2 A(ϕ, ϕ) +

q
2ε

A(
∼

ϑϕ,
∼

ϑϕ),

for anyε > 0.
Substituting these estimates in (3.16) we obtain for anyε > 0

(
1− q

ε

)
‖ ▽′′ ϕ‖2 +

(
∼

Kϕ −
(
2c+ 2qε +

qc
ε

)
| S |2 ϕ, ϕ

)

≤ 2‖∂ϕ‖2 + +2
(
1+

q
ε

)
‖ϑϕ‖2.

Setting, for instanceε = 2q , and

K =
∼

K −
(
5
2

c+ 4n2
)
| S |2 .Id : Cpq(X,E)→ Cpq(X,E) (3.17)

we obtain the following

Proposition 3.3. For anyϕǫD pq(X,E) (q > 0) we have

1
2
‖▽′′ϕ‖2 + (Kϕ, ϕ) ≤ 3

(
‖∂ϕ‖2 + ‖ϑϕ‖2

)
.
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If the hermitian metric on X is a Kähler metric, the above proposition
can be considerably sharpened. In fact, in this case, S≡ 0, ∂ = 0, 94
∼

ϑ = ϑ. It follows from (3.16) that for everyϕǫD pq(X,E) (q > 0) satisfies
the identity

‖▽′′ϕ‖2 + (Kϕ, ϕ) = ‖∂ϕ‖2 + ‖ϑϕ‖2 (Kähler) (3.18)

where we have setK =
∼

K . Also in the hermitian case the choice of the
numerical constants can be improved.

As a corollary to proposition 3.1 we have the following

Theorem 3.1. If there exists a positive constant C2 such that

A(Kϕ, ϕ) ≥ C2A(ϕ, ϕ)

for everyϕǫCpq(X,E) (q > 0) and at each point of X, then E is Wp,q-
elliptic.

Remark. Effect onK of a change of the hermitian metric onE.

Let ϕ : XR be anyC∞- function. We wish to examine how the
operatorK above changes when we replace the hermitian metrich onE
by h′ = eϕh. (The hermitian metric on the baseX remains undisturbed).
First, the curvature forms′ of h′ is given by

s′ = s+
∑

α,β

∂2ϕ

∂zα∂zβ
dzα ∧ dzβ.Im,

wheres, as above, is the curvature form ofh; (zα)1≤α≤n is a local coordi-
nate system in an open setU ⊂ X on which a local trivialization ofE is
assumed given; the symbolIm stands for the (m×m) identity matrix. It
is immediate from (3.13) that

(K ′ϕ)a
AB
= (Kϕa)AB +

∑

i

(−1)i
∂2ϕ

∂zα∂zβi
ϕaα

AB′i
.

whereK ′ is the analogue ofK , defined now with respect to the new95

hermitian metrich′.



Chapter 4

Vanishing Theorems

12 q-complete manifolds

Let X be a complex manifold andφ : X → R aC∞-function. The Levi 96

form L (φ) of φ is the hermitian quadratic differential form onX defined
as follows: letz1, ..., zn be a coordinate system on an open setU ⊂ X;
then

L (φ)

(
∂

∂zα
,
∂

∂zβ

)
=

∂2ϕ

∂zα∂zβ
.

(L (ϕ) is thus a hermitian form on the holomorphic tangent space).

Definition 4.1. A C∞ functionφ : X → R is strongly q-pseudo-convex
if the Levi formL (φ) has at least(n− q) positive eigen-values at every
point of X.

Definition 4.2. A complex manifold X is q-complete if there exists a C∞

functionφ : X→ R such that

(i) φ is strongly q-pseudo-convex

(ii) for c ∈ R, the set
{
x | x ∈ X, φ(x) < c

}
is relatively compact in X.

Lemma 4.1 (E. Calabi). Let H be a hermitian quadratic differential
form on X and G a hermitian metric on X. Assume that H has at least p

79
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positive eigen values. Letε1(x), ..., εn(x) be the eigen values of H (w.r.t.
G) at x in decreasing order:εr(x) ≥ εr+1(x)

Then given c1, c2 > 0, G can be so chosen that97

lH(x) = c1εp(x) + c2 Inf(0, εn(x)) > 0 for all x ∈ X.

Proof. LetG be any complete hermitian metric whatever. Letσ1(x), . . . ,
σn(x) be the eigen-values ofH with reference toG arranged in de-
creasing order. We construct now a metricG on X whose eigen val-
ues are functions of

{
σi(x)

}
1≤i≤n as follows: letλ : X→ R be aC∞−

function (we will impose conditions onλ letter); let U be a coordi-
nate open set inX with holomorphic coordinates (z1, ..., zn); in U, we
haveG = GUαβdzαdzβ so that (GUαβ)αβ is a function whose values
are positive definite hermitian matrices; then the matrix valued function
ĜU = (ĜUαβ)αβ whereĜ =

∑
ĜUαβdzαdzβ in U is defined by

Ĝ−1
U = G−1

U

∞∑

=
r=0

λ(x)r

(r + 1)!
(HUG−1

U )r

whereHU is the matrix valued function (HUαβ) defined by

H =
∑

HUαβdzαdz̄β

in U. �

We now assert that̂GU define a global hermitian defferential form on
X and under a suitable choice ofλ, it is positive definite. To see that̂GU

defines a global hermitian differential form onX, we need only prove
the following. LetV be another coordinate open set with coordinates

complex (w1, ...,wn). Let J =
∂(z1, ..., zn)
∂(w1, ...,wn)

be the Jacobian matrix. As98

before letGV = (GVαβ) be defined byG =
∑

GVαβdwαdw̄β in V. Then

if ĜV is defined starting fromGV asĜU from GU , we have

JĜt
U J = ĜV.
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We have in fact, writingJ∗ for t J̄−1,

J∗Ĝ−1
U J−1

= G−1
V J


∞∑

r=0

λ(x)1

(r + 1)!
(HUG−1

U )r

 J−1, since JGU
t J̄ = GV.

It follows from the above that

J∗Ĝ−1
U J−1

= G−1
V

∞∑

r=0

λ(x)r

(r + 1)!
(JHUG−1

U J−1)r

= G−1
V

∞∑

r=0

λ(x)r

(r = 1)!
(HVJ∗G−1

U J−1)r

sinceJHt
U JHV. Hence we obtain

J∗Ĝ−1
U J−1

= G−1
V

∑

r=0

(λ(x))r

(r + 1)!
(HVG−1

V )r

= Ĝ−1
V

This proves that̂GU defines onX a global hermitian differential. We
next show that̂G is positive definite. For this we look for the eigen-
values ofĜ with reference toG. TO compute these, we may assume, in
the above formula for̂GU , thatGU is the identity matrix

Then we have 99

ĜU =

+∞∑

r=0

λ(x)r

(r + 1)!
Hr

U

It follows that the eigen values of̂GU are


+∞∑

r=0

λ(x)r

(r + 1)!
σq(x)r


1≤q≤n

.

It is easily seen that these are all strictly greater than zero: this as-

sertion simply means this:f (t) = et−1
t =

∞∑
r=0

tr

(r+1)! for t , 0, f (0) = 1

(which is continuous int) is everywhere greater than 0.
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We will now look for conditions onλ such thatĜ satisfies our re-
quirements. From the formula for̂G, we have

HUĜ−1
U =

+∞∑

r=0

λ(x)r

(r + 1)
(HUG−1

U )r+1.

Now the eigen values ofH with respect toĜ (resp.G) are simply
those of the matrixHUĜ−1

U (resp.HUG−1
U ), Hence these eigen-values

εq(X) of H with reference tôG are

f (λ(x), σq(x))

where f (s, t) is the function onR2 defined by

f (s, t) =
t∞∑

r=0

Sr

(r + 1)
tr+1

Since∂ f (s,r)
∂t = est > 0 for any, f (s, t) is monotone increasing int.

Hence we have100

εr (x) > εr+1(x) for 1 6 r 6 n− 1.

Moreover f (s, t) > t for s > 0. Thus , if we chooseλ(x) > 0 for
everyxǫX, thenεq(x) > σq(x) > 0.

The choice ofλ(x) is now made as follows . Let , for every integer

ν > 0. Bν =
{
x | d(x, x0) 6 γ

}
for somex0ǫX, the distance beingi the

metricG. TheBν are then compact. Letbν = Inf
x∈Bγ

(σp(x)).

Thenb1 > b2 > . . . > bν+1 > . . ..
Let b(x) be aC∞ function onX such thatb(x) > 0 for x ∈ X and

b(x) < bν in Bν − Bν−1. Then clearlyb(x) ≤ σp(x).
Finally letρ(x) be aC∞ function onX such thatρ(x) > d(x, x0), and

k >
√

C2
C1

b1 be a real constant. Setλ(x) = 2keρ(x)

b2(x) . We have then

εq(x) = f (λ(x), σp(x)) = σp(x) +
λ(x)
2!

σp(x)2
+ · · ·
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so that εp(x) >
keρ(x)

b2(x)
σp(x)2

> keρ(x)
> k.

On the other hand,

εn(x) = f (λ(x), σn(x)) =
1
λ(x)

{
eλ(x)σn(x)−1

}
>
−1
λ(x)

= − b2(x)

2keρ(x)
> −

b2
1

k
,

C1εp(x) +C2 Inf(0, εn(x)) > C1k−C2
b2

1

k
>

1
k

(C1k2 −C2b2
1) > 0.

This proves the lemma.
Combining this with the Remark at the end of§2, we can assert101

moreover thatG can be chosen to be complete and satisfy the condition
of Lemma 4.1.

Let φ : X → R be a stronglyq-pseudoconvex function onX. As-
suming as a formH in the above lemma the Levi formL (φ), and taking
p = n− q, c1 = 1, c2 = n, we obtain

Lemma 4.2. Letφ : X → R be a strongly q-pseudoconvex function on
X. Then there exists a complete hermitian metric on X such that at each
point of X.

lL (φ)(x) = εn−q(x) + n Inf (0, εn(x)) > 0.

Let u∈ Crs(X,E) and let

L (φ){u, u} = 1
p!q!

hb̄a
∂2φ

∂zα∂zβ
ua

A
α

B
′ubĀβB′

Lemma 4.3. If φ : X → R is strongly q-pseudoconvex then for any
u ∈ Crs(X,E), with s≥ q+ 1 the following inequality holds at any point
of X

L (φ){u, u} ≥ lA(u,u)
L (φ) .

Proof. At any pointx ∈ X, we have

L (φ){u, u} = hb̄a

∑

β

εβ(x)uAβB′u
ĀβB′
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Since 102

s≥ q+ 1, i.e s+ n− q ≥ n+ 1,

then everys-tuple of indices contains at least one the indices 1, 2 . . . , n−
q of the positive eigenvaluesε1(x), . . . , εn−q(x). Hence

1
p!q!

hba

n−q∑

β=1

uAβB
′uĀβB′ ≥ A(u, u),

and therefore

L (φ){u, u} ≥ εn−q(x)A(u, u) +
1

p!q!{
ε

n−q+1
(x)uAn−q+1B′u

An−q+1B1} + εn(x)uAnB
′ uĀnB′

}

≥ εn−q(x)A(u, u) + Inf(o, εn(x))A(u, u).

This proves our lemma. �

Lemma 4.4. φ be a strongly q-pseudo convex function on X andµ a
positive real valued function onR such thatµ′(t) ≥ 0, µ′′(t) > 0.

Then

L (µ(φ))(u, u) = µ′(φ)L (φ)(u, u) + (µ′′)(φ)

∣∣∣∣∣∣
∂φ

∂zα
uα

∣∣∣∣∣∣
2

Hence

L (µ(φ))(u, u) ≥ µ′(φ)L (ϕ)(u, u),

and lL (µ(φ)) ≥ µ′(φ)lL (φ).

The Lemma follows from a direct computation of the Levi form

L (µ(φ)) and from the fact sinceµ′′(φ)

∣∣∣∣∣∣
∂φ

∂zα
uα

∣∣∣∣∣∣
2

is positive semi definite,

the eigenvalues ofL (µ(φ)) are not than the corresponding eigenvalues103

of µ′(ϕ)L (ϕ).
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Lemma 4.5. Let X be a hermitian manifold andφ a strongly q-pseudo
convex proper function such that at each x∈ X

lL (φ)(x) = εn−q(X) + n Inf(0, εn(x)) > 0,

where{εp} are the eigen values ofL (ϕ) with respect to the metric on
X arranged in decreasing order. Then given any continuous function
g : X→ R there exists a sequence{aν}1≤ν<∞ of real constants such that
for any C∞ functionµ : R→ R satisfying (i)µ′(t) > 0 (ii) µ′′(t) ≥ 0 and
(iii) µ′(t) ≥ aν for ν ≤ t < ν + 1, we have

lL (µ(φ))(x) > g(x).

Proof. Since the setsKν = {x|ν ≤ φ(x) ≤ ν + 1} are compact and
lL (φ)(x) > 0 for all x ∈ X, we can findaν such that

aνlL (φ)(x) > g(x) for x ∈ Kν

the lemma now follows from Lemma 4.4 �

13 Holomorphic bundles over q-complete
manifolds

Lemma 4.6. Let E be a holomorphic vector bundle on a q-complete
complex manifold. Letϕ : X → R be a strongly q-pseudo-convex C∞

function on X such that{x|φ(x) < c} ⊂⊂ X for every c∈ R. Let ds2 be a
hermitian metric on X such that lL (φ)(x) > 0 with respect to this metric.
Let h be any hermitian metric on X. Then there is a sequence(aν)1≤γ<∞
of real constants such that the following property holds.

Letµ be any C∞ functions onR such thatµ′(t) ≥ aν for ν ≤ t ≤ ν+1 104

andµ′(t) > 0, µ′′(t) ≥ 0 for all t. LetK and (resp.K−µ′) be the opera-
tors (linear over C∞ functions) from Crs(X,E) −→ Crs(X,E) defined in
chapter 3. (See (3.12) and (3.17)) with respect to the hermitian metrics
ds2 and h (resp. h= e−µ(φ)h. Then forψ ∈ Cr,s(X,E) with s > q, we
have

A−µ(K−µψ, ψ) ≥ e−µ(φ)A(ψ, ψ).
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Proof. From the Remark at the end of Chapter 3,

K−µψ = Kψ −
∑

(−1)i
∂2µ(φ)

∂
β
z∂zβi

ϕa
A
β

B′i
.

It follows that

A−µ(K−µψ, ψ) = e−µ(φ){L (µ(φ))(ψ, ψ)} + e−µ(φ)A(Kψ, ψ)

≥ e−µ(φ){lL (µ(φ) + f }A(ψ, ψ),

Where f : X −→ � is a continuous function depending onK . By
Lemma 4.4. (aν)1≤ν<∞ can be so chosen that for any convexµ satisfying

(i) µ′(t) > 0, (ii) µ′′(t) ≥ 0 (iii) µ′(t) > aν for ν ≤ t < ν+1,
we have

c1lL (µ(ϕ) + f ≥ 1.

Hence
A−µ(ϕ)(K−µψ, ψ) ≥ e−µ(ϕ)A(ψ, ψ).

�

Theorem 4.1. Let X be a q-complete manifold so that there existsϕ :105

X −→ � satisfying : (i)ϕ is strongly q-pseudoconvex and (ii), for c∈
�, {x | ϕ(x) ≤ c} is compact X. Let E be a holomorphic vector bundle
on X. Then there exists a complete hermitian metric ds2 on X and a
hermitian metric h along the fibres of E and real constants{aν}1≤ν<∞
and c> 0 such that for every C∞ functionµ : � −→ � satisfying

(i) µ′(t) > 0, (ii) µ′′(t) ≥ 0 and(iii) µ′(t) ≥ aν for v ≤ t < ν+1
we have

3(‖∂ψ‖−µ + ‖ϑ−µψ‖2−µ) ≥ ‖ψ‖2−µ for every ψ ∈ D
r,s(X,E), s> q.

Hence E is Wrs-elliptic for s> q, with respect to the metric e−µ(ϕ)h.

Proof. From proposition 3.1., we have

(K−µψ, ψ) ≤ 3
{
‖∂ψ‖2−µ + ‖ϑ−µψ‖2

}
.

(The subscript−µ means that the operators scalar product etc. are
defined with reference to the metricds2 on the base ande−µ(ϕ)h along
the fibres ofE). The theorems then follow from Lemma 4.2, Lemma 4.6
and the above inequality. �
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Remark . If we choose aµ satisfying the conditions of Theorem 4.1,
then for any functionλ : � −→ � such thatλ′(t) ≥ 0, λ′′(t) ≥ 0 for
t ∈ �, µ + λ again satisfies the conditions of the theorems.

Consequently if we denote the metric on the base byds2 and the
hermitian metrice−µ(ϕ)h by h′, with respect to (ds2, h′) we have the fol- 106

lowing properties fors> q:

1) There is aC∞ functionφ : X→ R such thatφ(x) ≥ 0

2) For everyC∞ non decreasing convex functionλ : R → RE is Wrs−
elliptic with respect to (ds2, e−λ(φ)h′)

3) TheWrs− ellipticity constant is independent ofν.

4) The setBc = {x | x ∈ X, ϕ(x) ≤ c} is compact inX for everyc ∈ R.
These conditions imply conditionsC∗1,C

∗
2,C

∗
3,C

∗
4 of §4.

From Theorem 4.1 and from Theorem 1.3 we have the following
corollary.

Theorem 4.2. Let X be a q-complete complex manifold and E a holo-
morphic vector bundle on X. Then for

s≥ q+ 1, r ≥ 0,Hs(X,Ωr(E)) = 0.

Proof. In fact, for ϕ ∈ Crs(X,E)(s > q), there is a suitableµ as in
Theorem 4.1 above (i.eµ : � −→ � is aC∞ function such thatµ′(t) >
0, µ′′(t) ≥ 0 andµ′(t) > aν for ν ≤ t < ν + 1, {aν}1≤ν<∞ being chosen so
that Theorem 4.1 holds for this sequence of real constants) such that

‖ϕ‖2−µ =
∫

X
e−µ(φ)A(ϕ, ϕ)dX < ∞.

On the other hand, Theorem 4.1. ensures us that with respect to the
metrice−µ(ϕ)h (h as in Theorem 4.1.) and the complete hermitian metric
ds2 (as in Theorem 4.1.) onX, we haveWrs− ellipticity for s > q. We
deduce Theorem 4.2. from Theorem 1.3 of Chapter 1. �
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Theorem 4.3. The cohomology groups Hsk(X,Ωr(E)) (cohomology with 107

compact supports) vanish for s≤ n− q − 1 for any vector bundle E on
the q-complete complex manifold X. Moreover, Hp−q

k (X,Ωr(E)) has a
structure of a separated topological vector space.

Proof. The theorem can be proved by applying Serre’s duality to Theo-
rem 4.2. It can also be given the following direct proof, which is based
on the results of§4.

Let us choose a metrich′ along the fibres of the dual bundleE∗ in
such a way that conditions 1), 2), 3), 4) of the Remark after Theorem
4.1. be satisfied (byE∗). Corresponding to the metrice−λ(φ)h′ on E∗,
we choose the “dual” metrict(e−λ(φ)h′)−1

= eλ(φ)t
h′−1 on E. Let ϕ ∈

Crs(X,E), with s ≤ n − q − 1. Then∗#ϕ ∈ Cn−rn−s(X,E∗). Since
n− s≥ q+ 1, ∗#ϕ satisfies the inequality

AE∗,−λ(KE∗ ,−λ ∗ #ϕ, ∗#ϕ) ≥ AE∗,−λ(∗#ϕ, ∗#ϕ),

i.e. AE∗,−λ(KE∗ ,−λ ∗ #ϕ, ∗#ϕ) ≥ AE,λ(ϕ, ϕ).

�

Hence, for anyϕ ∈ D rs(X,E), with s≤ n− q− 1 we have

‖ϕ‖2E,λ ≤ 3(‖∂ ∗ #ϕ‖2E∗ ,−λ + ‖ϑE∗ ,−λ ∗ #ϕ‖2E∗ ,−λ)

i.e. by (1.4), (1.5), (1.6),

‖ϕ‖2E,λ ≤ 3(‖∂ϕ‖2E,λ + ‖ϑE,λϕ‖2)

This inequality holds for anyϕ ∈ D rs(X,E), with s≤ n− q− 1, and108

for anyC∞, nondecreasing, convex functionλ : �→ �.
Our theorem follows from Theorem 1.4. of§4 and from Theorem

1.8.
Let now X be aq-complete manifold andφ : X → R+ a strongly

q-pseudo convex function onX such that for

c ∈ �, Bc = {x|x ∈ X, φ(x) < c} ⊂⊂ X. We set Bc = Y for some c ∈ �.

Lemma 4.7. Bc is q-complete.
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Proof. Let µ be aC∞, nondecreasing convex function on (−∞, c) such
that {t | t ∈ �, µ(t) < t◦} is relatively compact in (−∞, c) for every
t◦ ∈ �. Then the two conditions of Definitions 4.2 are satisfied by the
functionµ(φ). This proves the lemma

We adopt the following notation

Frs(X,E) =
{
ψ ∈ L

rs
loc(X,E); ∂ψ = 0

}
.

Qrs(X,E) =
{
ψ ∈ L

rs
−νφ(X,E) for positive integerν, ∂ψ = 0

}
.

Finally ρ : Frs(X,E) → Frs(Y,E) is the restriction map. Clearly
Qrs(X,E) ⊂ CFrs(X,E) and we have �

Theorem 4.4. If s ≥ q, ρ(Qrs(X,E)) is dense in Frs(Y,E). (The metric
on X and that along the fibres are chosen as ds2 and h respectively in
the Remark after Theorem 4.1.)

Proof. We denoteQrs(X,E) simply byQ. Let µ be a continuous linear
functional onFrs(Y,E) which vanishes onr(Q). It is sufficient to prove
thatµ vanishes on all ofFrs(Y,E).

First, we extendµ to a continuous linear form onL rs
loc(Y,E) (Hahn- 109

Banach extension theorem). By the representation theorem it follows
that there is aψ ∈ L rs(Y,E) with compact support inY such thatµ(u) =
(ψ, u) for everyu ∈ L rs

loc(Y,E).
Let c◦ = sup{ϕ(x) | x ∈. Supportψ}. Since Supportψ is compact in

Y = Bc, then
c◦ < c.

Now, let λ : � → � be a realC∞ nondecreasing, convex function
such that

λ(t) = 0 for t ≤< c◦
λ(t) = 0 for t < c◦,

0 ≤ λ′ (t) ≤ 1.

Then, fort > c◦,
λ(t) ≤ t − c◦ ≤ t.
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Let
u ∈ L

rs
−νλ(φ)(X,E) for some ν > 0, ∂u = 0.

Thenu ∈ Q, because

‖u‖2−νφ =
∫

X
e−νφA(u, u)dX ≤

∫
e−νλ(φ)A(u, u)dX = ‖u‖2−νλ(φ)

Thus we have
(ψ, u) = µ(ρ(u)) = 0

Now under these conditions, it follows from Theorem 1.6, taking110

into account the remark after Theorem 4.1 that there existsX ∈ L r,s+1

such that
(i) ψ = ϑX and (ii) supportX ⊂ {

x|ϕ(x) 6 c◦
}
.

Let c◦ < c1 < c and introduce a complete hermitian metric onY
which coincides with the given oneB1. With respect to the new metric,

ψ ∈ L
rs(Y,E),X ∈ L

r,s+1(Y,E)

Now let u ∈ Frs(Y,E) be an arbitrary form such that∂u = 0. Then
there is aC∞, nondecreasing functionσ : (−∞, c)→ � such thatσ(t) =
0 for t 6 c1, and

u ∈ L
rs
−σ(φ)(Y,E).

We have then

(ψ, u) = (ϑX, u) = (ϑ−σ(φ)X, u)−σ(φ) = (X, ∂u)−σ(φ) = 0.

Hence the linear formµ vanishes onFrs(Y,E). This proves the the-
orem. �

Corollary 1. Qrs(X,E) is dense in Frs(X,E) (in the topology of L2−
convergence on compact sets).

Proof. This is simply the caseX = Y (note that in the proof of Theorem
4.4, the casec = ∞ is covered). �

Corollary 2. ρ(Frs(X,E)) is dense in(Frs(Y,E).111
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Proof. In factΩ ⊂ Frs(X,E). �

Suppose now thatX is a stein manifold. ThenX is is 0-complete.
Hence we can find aC∞ functionφ : X → R such thatL (φ) is positive
definite and such that forc ∈ R,

{
x|x ∈ X, φX < c

} ⊂ αX. If then E
is a holomorphic vector bundle onX, we obtain from Corollary 1, the
following result.

Corollary 3. Let Q(X,E) denote the space of holomorphic sections of
E over the Stein manifold X. There exists a complete hermitian metric
on X and a hermitian metric along the fibres of E such that the set
{ f | f ∈ Q(X,E);

∫
X

e−νφ| f |2 < ∞ for some integerν} is dense in Q(X,E)
in the topology of uniform convergence on compact sets.

In view of Corollary 1, to prove Corollary 3, we need only prove the
following

Lemma 4.8. Let D be a domain inCn and{ fm} a sequence of holomor-
phic functions on D such that for every compact K⊂ D, { fm} converges
in L2(K) (= space of square summable functions on K). Then{ fm} con-
verges uniformly on every compact set K.

Proof. Let K be a compact set contained in D. Then there is a constant
c = c(K) > 0 such that for every pointz◦ ∈ K. The poly-discPz◦
= {z

∣∣∣|zi − zi
o |≤ c} of radius c is contained inD and

⋃
z◦∈K

Pzo ⊂⊂ D. We

have then from the Cauchy-integral formula,
f (z◦) = 1

(πc2)n

∫
Pzo

f (z)dv. (dv= Lebesque measure inCn)

It follows on applying this tof 2, that 112

| f (z◦) |26
1

volPz◦

∫

Pzo

| f |2 dv6
1

volPz◦

∫

Pzo

‖ f ||2K′

whereK′ is the (compact) closure of
⋃

z◦∈K
Pzo

. The lemma is immediate

from the above inequality. �

In the special caseq = 0, Corollary 2 together with the lemma above
yields the following result.
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Theorem 4.5. Let X be a Stein manifold andϕ : X → R a strongly
0-pseudo convex C∞ function on X such that for

c ∈ R, {X | φ(X) < c
} ⊂⊂ X. Then the pair(X, Bc), c ∈ R is

a Runge pair. In other words, the set of holomorphic functions on Bc

which are restrictions of global holomorphic functions on Xis dense in
the space of all holomorphic functions on Bc in the topology of uniform
convergence on compact subsets (of Bc).

14 Examples ofq-complete manifolds

Let X be anm-complete manifold andf1, . . . , fq+1 be anyq+1 holomor-
phic functions onV. Let Z =

{
x| fi(x) = 0 for 16 i 6 q+ 1

}
.

Assertion Y = V − Z is (m+ q)-complete.

Proof. Let ϕ : V → R be a stronglym-pseudo-convex functionV such
that for everyc ∈ R,

Bc =
{
x | x ∈ V, ϕ(x) < c

} ⊂⊂ X.

Because of the second condition, we can choose aC∞ function113

λ : R→ R such thatλ′(t) > 0, λ′′(t) ≥ 0,

λ(t) > 0 for t ∈ R, λ(t)→ ∞ ast → ∞ and further

λ(ϕ) >
q+1∑

i=1

fi f i on Y.

Setψ = λ(ϕ) − log
q+1∑
i=1

fi f̄i. SinceL (log
q+1∑
i=1

fi f̄i) is positive semi-

definite with at mostq positive eigen-values,ψ strongly (m+ q)-pseudo
convex. It remains to prove that

B′c = {X | x ∈ Y, ψ(x) < c} ⊂⊂ y
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for everyc ∈ R. Nowψ(x) ≤ c implies that

λ(ϕ) −
q+1∑

i=1

log fi f̄i ≤ c

or again that

eλ(φ)

q+1∑
i=1

fi fi

≤ ec,

i,e.,
q+1∑

i=1

fi f i ≥ eλ(ϕ)−c > δ > 0.

�

Hence Bc ⊂ X − U, whereU is a neighborhood ofZ. On the other

hand; sinceλ(ϕ) >
q+1∑
i=1

fi f i , e
λ(ϕ)/λ(ϕ) < ec, henceλ(ϕ) < ec

= C, on B′c. 114

HenceB′c ⊂ Bc. On the other hand sinceB′c is closed inX − Z in
X −U, it is closed inX. HenceB′c is compact. This concludes the proof
of our assertion.

In particular, ifX is a Stein manifold, thenY is q-complete.
If Z is a complete intersection, thenq+1 is the complex codimension

of the submanifoldZ of X. Let nowZ be any analytic subset of the Stein
manifoldX, of complex codimensionq+ 1 at each point. ToY = X − Z
q-complete?

If q = 0, and if Z is a divisor, then the answer to this question is
positive i.e. Y = X − Z is a Stein manifold as it was shown by Serre
([6] p. 50) R.R. Simha [31] has proved that, ifq = 0, if X is a complex
codimension 2 and ifZ is an analytic set inX of complex codimension
1 at each point, thenY = X − Z is a Stein space. Examples ([23] Satz
12, 17; [14]) show that this result is false when dimC X > Z.

An example, due to G. Sorani and V. Villani [33] , shows that if
q > 0 thenY is not necessarilyq-complete. Before discerning that
example, we shall establish the following
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Theorem 4.6([32]). Let X be q-complete of complex dimension n. Let
Ω

n denote the sheaf of germs of holomorphic n-forms on X. The natural
map

Hq(X,Ωn)→ Hn+q(X,C)

is surjective.

Proof. For any complex manifold, we have spectral sequence (Est
r )o ≤115

r ≤ ∞ such thatE∞ is the associated graded group ofH∗(X,C), and
Est

1 = Ht(X,Ωs) [11]. In the case whenX is q-complete,Ht(X,Ωs) = 0
for t > q. In particular fort+s= n+q, Est

t = 0 for all (s, t) different from
(n, q). HenceEs,t

r = 0 for (s, t) , (n, q), s+ t = n + q. Moreover, all of
En,q

1 are cycles ford1 sinceΩn+1
= 0. HenceEn,q

1 → En,q
2 is surjective.

For r ≥ 2, En−r,q+r−1
r = 0 sinceq+ r − 1 > q andEn+r,q+r+1

= 0. Hence
En,q

2 ∽En,q
∞ . HenceHn+q(X,C) ≃ En,q

∞ = En,q
2 . (We note thatEs,t

∞ = 0 for
s+ t = n+ q, (s, t) , (n, q)). This proves the theorem. �

We consider now the subsets ofC2n

Z1 =
{
z∈ C2n

∣∣∣zi = 0 for i > n
}
, X1 = C

2n − Z1,

Z2 =
{
z∈ C2n

∣∣∣zi = 0 for i ≤ n
}
, X2 = C

2n − Z2,

Z = Z1 ∪ Z2, Y = C2n − Z = X1 ∩ X2.

The analytic setZ ⊂ C2n has complex codimension n at each point.
We shall prove thatY is not (n− 1)-complete, whenn ≥ 2.

Since the point{0} is a complete intersection of codimension 2n in
C

2n, thenU = C2n − {0} is (2n − 1)-complete. LetΩ2n be the sheaf of
group of holomorphic 2n-forms. Then by Theorem 4.6.

H2n−1(U,Ω2n)→ H2n−1(U,C)

is surjective. On the other hand, sinceU is contractible on the unit116

sphere ofC2n, thenH2n−1(U,C) ≈ C. Hence

H2n−1(U,Ω2n) , 0.

The exact cohomology sequence of Mayer-Victoris yields
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→ Hr(U,Ω2n)→ Hr(X1,Ω
2n) ⊕ Hr (Xz,Ω

2n)

→ Hr(X1∩X2,Ω
2n)→ Hr+1(U,Ω2n)→ (4.1)

SinceZi(i = 1, 2) is a complete intersection of codimensionn,Xi is
(n− 1)-complete.

Hence
Hr(Xi ,Ω

2n) = 0 f or r ≥ n(i = 1, 2).

It follows from (4.1) that

Hr (X1 ∩ X2,Ω
2n) ≈ Hr+1(U,Ω2n) for r ≥ n.

Then
H2n−2(X1 ∩ X2,Ω

2n) , 0.

If n ≥ 2, then 2n − 2 ≥ n. This shows thatX1 ∩ X2 is not (n − 1)-
complete.

15 A theorem on the supports of analytic function-
als

We shall apply the methods developed above to obtain-following the
ideas of [16],§2.5 with minor technical changes - a generalization, due
to Martinean [23] of a theorem originating with Pólya [27].We first
prove two propositions which are of independent interest.

Proposition 4.1. Let φ be a C∞ plurisubharmonic function onCn. Let 117

‖ω‖−ϕ denote the norm of a C∞ form ω of type(p, q) with respect to
the Euclidean metric on the base and the metric e−φ on the trivial line
bundle. Letψ = φ + 2 log(1+ |z|2). Then there is a constant C> 0 such
that for any C∞ formω of type(p, q), q ≥ 1, with ∂̄ω = 0, ‖ω‖φ < ∞,
there is a C∞ formω′ of type(p, q−1) with ∂̄ω′ = ω, ‖ω′‖−ψ ≤ C‖ω‖−φ.

Proof. Consider the operatorK−ψ with respect to the metrice−ψ. We
have, since the Euclidean metric is flat,

Aψ(K−ψu, u) = e−ψL (ψ){u, u}
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≥ 2e−ψ(1+ |̄z|2)−2A(u, u) = 2(1+ |z|2)−2AA−ψ(u, u),

sinceL (ψ){u, u} ≥ 2L (log(1+ |z|2)){u, u} ≥ 2(q+ |z|2)−2A(u, u). Hence
K−ψ is positive definite with eigenvalues≥ 2(1+ |z|2)−2 at the pointz;
K−1
−ψ is also positive definite, and its eigenvalues are≤ 1

2(1 + |z|2)2. By
consequence we have

|A−ψ(u, v)| ≤ A−ψ(K−1
−ψu, u)A−ψ(K−ψv, v)

≤ 1
2

A−ψ((1+ |z|2)2u, u)A−ψ(K−ψv, v).

Hence, for formsu, v of type (p, q), we have

|(u, v)−ψ |2 ≥
1
2
‖(1+ |z|2)u‖2−ψ(K−ψv, v)−ψ, (4.2)

whenever the formsu, v are such that the norms on the right are finite.
�

OnD p,q(Cn), we introduce the normM by118

M(u)2
= (K−ψu, u)−ψ + ‖∂̄u‖2−ψ + ‖ϑ−ψu‖2−ψ,

and letVp,q be the completing ofD p,q with respect to this norm. Obvi-
ouslyVpq ⊂ L

pq
loc . Foru ∈ D p,q, we have, by (3.18),

(K−ψu, u) ≥ ‖∂̄u‖2−ψ + ‖ϑ−ψu‖2−ψ.

Thus the normM onD p,q is equivalent to that defined by

M′(u)2
= ‖∂̄u‖2−ψ + ‖ϑ−ψu‖2−ψ.

Let ω ∈ L
p,q

loc , and let‖ω‖−ϕ < ∞. Then, foru ∈ D p,q, we have, by
(4.2) (dropping the factor12 as we may)

|(u, ω)−ψ|2 ≤ ‖(1+ |z|2)ω‖2−ψM′(u)2

= ‖ω‖2−φM′(u)2 (4.3)
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Thus, the linear formu  (u, ω)−ψ is continuous onVp,q so that
there exists a uniquex ∈ Vp,q with

(u, ω)−ψ = (∂̄u, ∂̄x)−ψ + (ϑ−ψu, ϑ−ψ x)−ψ
= (�−ψu, x)−ψ, u ∈ D

p,q.

Thus we have
ω = �−ψx

and, moreover, by (4.3) 119

M′(x)2
= (x, ω)−ψ 6‖ ω ‖−φ M′(x),

so that ‖ ∂x ‖2−ψ + ‖ ϑ−ψx ‖2−ψ6‖ ω ‖2−φ .

Let us assume now thatω is C∞ and that ∂ω = o. Then by Corol-
lary 1 to Theorem 1.2, we have, for anyσ > 0,

‖ ϑ−ψ∂x ‖ψ6
1
σ
‖ ∂ω ‖2ψ +σ ‖ ∂x ‖2−ψ

= σ ‖ ∂x ‖−ψ,

and lettingσ→ 0, we obtain

ϑ−ψ∂x = 0,

so that �−ψx = ∂ϑ−ψ x;

since, as proved above,‖ ϑ−ψx ‖−ψ≤‖ ω ‖−φ, we obtain the proposition
on settingω′ = ϑ−ψx.

We point out that the above proposition depends on a weaker condi-
tion thanWp,q-ellipticity, in fact, proposition 4.1 is a particular caseof
the following general statement, which can be established by a similar
argument.

Proposition 4.2. Let X be a complex manifold endowed with a complete120

hermitian metric. Letπ : E → X be a holomorphic vector bundle on X
and let h be a hermitian metric along the fibres of E. Assume that

A(Kϕ, ϕ) > 0
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at each point of X and for everyϕ ∈ Cpq(X,E). Let ε(x) be the least
eigenvalue of the (positive definite) hermitian from A(Kϕ, ϕ)x(x ∈ X)
acting on the space of the(p, q)-form with values in E. Thenε(x) > 0.

If ϕ ∈ Cpq(X,E), ∂ϕ = 0 is such that
∫

X

1
ε(x)

A(ϕ, ϕ)dX < ∞,

there exists a fromψ ∈ Cp,q−1(X,E) such that

∂ψ = ϕ,∫

X
A(ψ, ψ)dX ≤ 3

∫

X

1
ε(x)

A(ϕ, ϕ)dX.

Proposition 4.3. Letφ be a plurisubharmonic function onCn such that
there exists a constant C> 0 for which |φ(z) − φ(z′)| ≤ C whenever
|z − z′| ≤ 1. Let V be a (complex) subspace ofCn of codimension k,
and f a holomorphic function on V such that

∫
| f |2e−ϕdVv < ∞ (dVv =

Lebesgue measure on V). Then, there exits a holomorphic function F on
C

n with F|V = f and
∫

Cn
|F |2e−ϕ(1+ |z|2)3kdv6 M

∫

V
| f |2e−ϕdVv,

where M is a constant independent of f ; here dv= dCnv is the Lebesgue121

measure inCn

Proof. We may clearly suppose thatV has codimension 1 inCn. We
assume thatV is the subspacezn

= 0.
Then f is a holomorphic function inCn, depending only onz1, . . . ,

zn−1. Let λ : R→ R be aC∞ function onR, such that

0 6 λ(t) 6 1,

λ(t) = 1 for t 6
1
4

λ(t) = 0 for t > 1.

Let C1 = Sup
∣∣∣∣∣
dλ
dt

∣∣∣∣∣.
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We will construct a functionµ in such a way that

F(z1, . . . , zn) = λ(|zn|2) f (z1, . . . , zn−1) − znµ(z1, . . . , zn)

satisfies all the requirements of the lemma.
Let

σ = ∂λ(|zn|2) f ,

σ is aC∞, ∂-closed form, such that|zn| ≤ 1
2. Thus the formω = 1

znσ

is a (0, 1)- from which isC∞ and∂-closed onCn, i.e. ω ∈ C01(Cn,C).
Moreover

Suppω ⊂
{
z= (z1, . . . , zn)| 6 |zn|1

2
6 1

}
.

Since 122

| φ(z, ..., zn−1, zn) − φ(z, ..., zn−1, 0) |≤ C for | zn |6 1,

then
∫

|zn|<1

e−ϕ
′ | f |2 dv6 πeC

∫

V

e−ρ | f |2 dvV

On the other hand

‖ω‖2−φ =
∫

1
2<|zn|<1

e−φA(ω,ω)dv6 (2)2
∫

1
2<|zn|<1

e−φ | f |2 d 6 C2

∫

V

e−φ | f |2 dvV

(C2 = 4C2
1πeC). In particular,‖ω‖2−φ < ∞

Assume now thatφ is C∞. By Proposition 4.1, there exists aC∞

functionµ : Cn→ C such that

= ∂µ
∫

Cn

e−φ

(1+ | z |2)n
| µ |2 dv6 ‖ω‖2−φ 6 c2

∫

V

e−φ | f |2 dv.

If φ is notC∞, we introduce a regularising function, i.e. aC∞ func-
tion α(z) = α(| z |) > 0, onCn, with support⊂ {| z |6 1}, and such that∫

Cn

αdv= 1. Given 0< ε < 1, the function

ϕε(z) =
∫

Cn

φ(z− εz′)α(z′)dv(z′)
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is aC∞ plurisubharmonic function onCn, such that

φε(z)→ φ(z) as ε→ 0.

Moreover123

| φε(z) − φ(z) |6
∫

Cn

α(z′) | φ(z− εz′) − φ(z) | d(z′) 6 C,

and therefore | φε(z) − φε(z′) |6 3C for | z− z′ |6 .

Hence there exists aC∞ functionµε : Cn→ C, such that

∂µε = ω∫

εn

e−φ

(1+ | z |2)2
| µε |2 dv6 ec

∫

Cn

e−φε
(1+ | z |2)2

| µε |2 dv6 C3

∫

V

e−φ | f |2 dvV.(C3 = C2
1πe5c)

Letting ε→ 0, we can find a distributionµ such that

∂µ = ω1∫

Cn

e−φ

(1+ | z |2)2
| µ |2 dv6 C3

∫

V

e−φ | f |2 dvV.

Consider now the distribution

F = λ(| zn |2) f − znµ.

We have
∂F = ∂λ · f − zn∂µ = 0.

HenceF is a holomorphic functionCn.
Furthermore124

∫

Cn

e−φ

(1+ | z |2)3
− | F |2 dv
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6 2
∫

|zn|<|

e−φ

(1+ | z |2)3
− | f |2 dv+ 2

∫

C

| zn |2 e−φ

(1+ | z |2)3
| µ |2 dv

6 2πeC
∫

V

e−φ | f |2 dvV + 2
∫

Cn

e−φ

(1+ | z |2)2
| µ |2 dv

6 C4

∫

V

e−φ | f |2 dvV(C4 = 2πeC
+ 2C3).

This proves our proposition. �

Lemma 4.9. Let φ be as in Proposition 4.2. Let F: Cn → C be a
holomorphic function such that

∫

C

e−2φ

(1+ | z |2)N
| F |2 dv= M2 < ∞,

for some N> 0. Then there exists a positive constant C5 depending only
on C and on N such that

| F(z) |6 C5Meφ(z)(1+ | z |)Neφ(z).

Proof. Let z0 ∈ Cn and letP(z0) be the poly-disc with centrez0 and
radius 1. Then by Cauchy’s formula we have

F(z0)2
=

1
πn

∫

P(z0)
F(z)2dv,

whence 125

| F(zo)2 |6 1
πn

∫

P(zo)

| F |2 d.

Furthermore

e−φ(zo)
6 eεe−φ(z) for z ∈ P1(zo)

and
1

(1+ | zo |)2
6

( 1+ 2n
1+ | z |

)2
6

(1+ 2n)2

1+ | z |2
f or z ∈ P1(zo)
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In conclusion

e−2φ(zo)

(1+ | zo)2N
| F(zo) |2 6 e2ε(1+ 2n)2N

πn

∫

P(zo)

e−2φ

(1+ | z |2)
| F2 | dv

6
e2ε(1+ 2n)2N

πn M2.

This concludes the proof of our lemma. �

Before going on to state the theorem of Martinean-pólya, weneed
some definitions.

Let H = H (Cn) denote the vector space of holomorphic function
on Cn with the topology of compact convergence. Ananalytic func-
tional µ is a continuous linear functional onH ·µ is said to besupported
by a compact set Kif for any open setU ⊃ K there is a constantMU

such that sort anyf ∈H we have

| µ( f ) |≤ MUsup
z∈U
| f (z) | .

For z = (z1, . . . , zn), ζ = (ζ1, . . . , ζn) ∈ Cn, let 〈z, ζ〉 = ∑
ziζi . For126

ζ ∈ Cn, let eζ ∈ H be defined byeζ(z) = e〈z,ζ〉. TheLaplacetransform
of µ is the holomorphic function

∽

µ onCn defined by

∽

µ(ζ) = µ(eζ).

Let K be compact andH the function defined byHK(ζ) = sup
z∈K

Re

〈z, ζ〉. Clearly HK is continuous, and hence, being the supremum of
plurisubharmonic functions, is itself plurisubharmonic.If Kε denotes
the set{z∈ Cn | d(z,K) ≤ ε}, we haveHKε(ζ) = HK(ζ) + ε | ζ |

Theorem 4.7(Martineao-Polya). In order that the analytic functionalµ
be supported by the convex compact set K, it is necessary and sufficient
that for everyε > 0, there exist a constant Cε > 0 such that

| ∽µ(ζ) |6 Cεe
HK (ζ)+∈|ζ |.



15. A theorem on the supports of analytic functionals 103

Proof. Suppose thatµ is supported byK. Then, by definition

|µ̃(ζ)| = |µ(eζ)| ≤ Cε sup
z∈Kε

|eζ(z)| = Cεe
{sup

Kε
〈z,ζ〉}
≤ Cεe

HK (ζ)+ε|ζ |

To prove the converse, we proceed as follows.H is a closed sub-
space of the spaceC of continuous function onCn; hence (Hahn - Ba-
nach)µ extends to a linear functionalµ : C → C, hence defines a
measure. It is clearly sufficient to prove that anyε > 0, there exists
distributionν with support inKε such that

µ( f ) = ν for all f ∈H .

Let ξ′ be the space of distributions with compact support inCn. For 127

ν ∈ ξ′, let ν̂ denote the Fourier transform ofν considered as a function
of 2n real variablesu1, . . . , u2n:

ν̂(u1, . . . , u2n) = ν(e′u),

where e′u(z) = exp (−i(u1 Rez1 + u2 Im z1 + . . . + u2n Im zn)).

�

Clearlyν̂ has an extension to a holomorphic function onC2n; further
since linear combination of the functioneζ are dense inH , we have
ν(g) = µ(g) for all g ∈ H if and only if µ(eζ) = ν(eζ) for all ζ, i.e. if
and only if

∽

µ(ζ) = ν̂(iζ1,−ζi , ..., iζn,−ζn). (4.4)

Therefore, because of the Paley-Wiener theorem, it is sufficient to
construct an entire function̂ν on C2n satisfying (4.4), for which, we
have further,

| ν̂(u) |6 Cε(1+ | u | |)Nφ(u). (4.5)

for someN > 0; hereφ(u) = sup
x∈Kε

(x1 Im u1 + . . . + x2n Im u2n) andzj =

x2 j−1 + ix2 j .
Consider the subspaceV of C2n consisting of points (iζi ,−ζ1, ..., i

ζn,−ζn), whereζ = (ζ1, ..., ζn) ∈ Cn. If u = (iζ1, ...,−ζn), we have
φ(u) = HKε(ζ) = HK(ζ) + ε|ζ |.
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Further,φ(u) is plurisubharmonic inC2n and there exists a constant128

C > 0 such that|φ(u) − φ(u′)| 6 C for |u − u′| 6 1. Clearly
∽

µ defines
a holomorphic functionf on V if we set f (iζ1, ...,−ζn) =

∽

µ(ζ1, ..., ζn).
Since for anyδ > 0, |∽µ(ζ)| 6 CδeHK (ζ)+δ|ζ | by hypothesis andφ(u) =
HK(ζ) + ε|ζ | on V, we have

| f (u)| 6 Cδe
φ(u)+(δ−ε)|u| on V.

If δ < ε, we clearly have therefore
∫

V
| f (u)|2e−2φ(u)dVv < ∞.

By Proposition 4.2 there existsF, holomorphic inC2n such that
F |V = f , and

∫

C2n

|F(u)|2e−2φ(u)(1+ |u|2)−3ndv< ∞.

By Lemma 4.9 this implies that there exists a constantC > 0 such
that

|F(u)| 6 M(1+ |u|)3neφ(u),

so that if we set̂ν(u) = F(u), the conditions (4.4) and (4.5) are satisfied.
This completes the proof of the theorem.
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