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Preface

These lectures contain the material presented in a course given at the
Tata Institute during the period December 1964 - February 1965. The
purpose of these lectures was to give an introduction to Grothendieck’s
theory of the fundamental group in algebraic geometry with,as appli-
cation, the study of the fundamental group of an algebraic curve over
an algebraically closed field of arbitrary characteristic.All of the ma-
terial (and much more) can be found in the “Séminaire de géométrie
algébrique” of Grothendieck, 1960-1961 Exposé V, IX and X.

I thank Mr. S. Anantharaman for the careful preparation of the notes.

J.P. Murre
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Prerequisites

We assume that the reader is somewhat familiar with the notion and
elementary properties of preschemes. To give a rough indication: Chap.
I, § 1-6 and Chap. II, pages 1-14, 100-103 and 110-114 of the EGA
(“Éléments de Géometrie Algébrique” of Grothendieck and Dieudon’e).
We have even recalled some of these required elementary properties in
Chap. I and II of the notes but this is done very concisely.

We need also all the fundamental theorems of EGA, Chap. III (first
part); these theorems are stated in the text without proof. We do not
require the reader to be familiar with them; on the contrary,we hope
that the applications which have been made will give some insight into
the meaning of, and stimulate the interest in, these theorems.
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Chapter 1

Affine Schemes

1.1
1

Let A be a commutative ring with 1 andS a multiplicatively closed

set inA, containing 1. We then form fractions
a
s
, a ∈ A, s ∈ S; two

fractions
a1

s1
,

a2

s2
are considered equal if there is ans3 ∈ S such that

s3(a1s2−a2s1) = 0. When addition and multiplication are defined in the
obvious way, these fractions form a ring, denoted byS−1A and called the
ring of fractions ofA with respect to the multiplicatively closed setS.
There is a natural ring-homomorphismA → S−1A given bya 7→ a/1.
This inducesa(1 − 1) correspondence between prime ideals ofA not
intersectingS and prime ideals ofS−1A, which is lattice-preserving. If
f ∈ A andS f is the multiplicatively closed set{1, f , f 2, . . .}, the ring of
quotientsS−1

f A is denoted byAf . If p is a prime ideal ofAandS = A−p,

the ring of quotientsS−1A is denoted byAp; Ap is a local ring.

1.2

Let A be a commutative ring with 1 andX the set of prime ideals ofA.
For anyE ⊂ A, we defineV(E) as the subset{p : p a prime ideal⊃ E}
of X. Then the following properties are easily verified:

(i)
⋂
α

V(Eα) = V(
⋃
α

Eα) 2

1



2 1. Affine Schemes

(ii) V(E1) ∪ V(E2) = V(E1 · E2)

(iii) V(1) = ∅

(iv) V(0) = X.

Thus, the setsV(E) satisfy the axioms for closed sets in a topology
on X. The topology thus defined is called theZariski topologyon X; the
topological spaceX is known as SpecA.

Note.SpecA is a generalisation of the classical notion of an affine alge-
braic variety.

Supposek is an algebraically closed field and letk[X1, . . . ,Xn] =
k[X] be the polynomial ring inn variables overk. Let a be an ideal of
k[X] andV be the set inkn defined byV = {(α1, . . . , αn) : f (α1, . . . , αn)
= 0∀ f ∈ a}. ThenV is said to be an affine algebraic variety and the
Hilbert’s zero theorem says that the elements ofV are in (1− 1) corre-
spondence with the maximal ideals ofk[X]/a.

Remarks 1.3. (a) If a(E) is the ideal generated byE in A, then we
have:V(E) = V(a(E))

(b) For f ∈ A, defineXf = X −V( f ); then theXf form a basis for the
Zariski topology onX. In fact,X − V(E) =

⋃
f∈E

Xf by (i).

(c) X is not in general Hausdorff; however, it isT0.3

(d) Xf ⊂
⋃
α

Xfα ⇐⇒ ∃ ann ∈ Z+ such thatf n is in the ideal generated

by the f ′αs.

For any ideala of A, define
√
a = {a ∈ A : an ∈ a for some

n ∈ Z+}.
√
a is an ideal ofA and we assert that

√
a = ∩{p :

p a prime ideal⊃ a}. To prove this, we assume, (as we may, by

passing toA/a) that a = (0). Clearly,
√

(0) ⊂ ∩p. On the other

hand, ifa ∈ A is such thatan
, 0∀n ∈ Z+, thenS−1

a A = Aa is a
non-zero ring and so contains a proper prime ideal; the liftp of
this prime ideal inA is such thata < p.



1.4. The Sheaf associated to SpecA 3

It is thus seen thatV(a) = V(
√

a) andV( f ) ⊃ V(a) ⇐⇒ f ∈
√
a.

Hence:

Xf ⊂
⋃

α

Xfα ⇐⇒ V( f ) ⊃
⋂

α

V( fα) = V(
⋃

α

{ fα})

and this proves (d).

(e) The open setsXf are quasi-compact.

In view of (b), it is enough to consider coverings byX′gs; thus, if

Xf ⊂
⋃
α

Xfα , then by (d), we havef n
=

r∑
i=1

ai fαi (say); again by

(d), we obtainXf = Xf n ⊂
r⋃

i=1
Xfαi

.

(f) There is a (1− 1) correspondence between closed sets ofX and 4

roots of ideals ofA; in this correspondence, closed irreducible
sets ofX go to prime ideals ofA and conversely. Every closed
irreducible set ofX is of the form (x) for somex ∈ X; such anx is
called ageneric pointof that set, and is uniquely determined.

(g) If A is noetherian, SpecA is a noetherian space (i.e. satisfies the
minimum condition for closed sets).

1.4 The Sheaf associated to Spec A

We shall define a presheaf of rings on SpecA. It is enough to define
the presheaf on a basis for the topology onX, namely, on theX′f s; we
setF (Xf ) = Af . If Xg ⊂ Xf , V(g) ⊃ V( f ) and sogn

= a0 · f for some

n ∈ Z+ anda0 ∈ A. The homomorphismAf → Ag given by a
f q 7→

a · aq
0

gqn

is independent of the wayg is expressed in terms off and thus defines
a natural mapρ f

g : F (Xf ) → F (Xg) for Xg ⊂ Xf . The transitivity
conditions are readily verified and we have a presheaf of rings on X.
This defines a sheaf̃A = OX of rings onX. It is easy to check that the
stalkOp,X of OX at a pointp of X is the local ringAp.
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If M is an A-module and if we define the presheafXf 7→ M f =

M ⊗A Af , we get a sheaf̃M of Ã-modules (in short, añA-Module M̃),
whose stalk atp ∈ X is M ⊗A Ap = MP.

Remark. The presheafXf 7→ M f is a sheaf, i.e. it satisfies the axioms5

(F1) and (F2) of Godement, Théorie des faisceaux, p. 109.

1.5

In this section, we briefly recall certain sheaf-theoretic notions.

1.5.1 Let f : X → Y be a continuous map of topological spaces. Sup-
poseF is a sheaf of abelian groups onX; we define a presheaf of abelian
groups onY by U 7→ Γ( f −1(U),F ) for any openU ⊂ Y; for V ⊂ U,
open inY, the restriction maps of this presheaf will be the restriction ho-
momorphismsΓ( f −1(U),F )→ Γ( f −1(V),F ). This presheaf is already
a sheaf. The sheaf defined by this presheaf is called thedirect image
f∗(F ) of F under f .

If U is any neighbourhood off (x) in Y, the natural homomorphism
Γ( f −1(U),F ) → Fx given a homomorphismΓ(U, f∗(F )) → Fx; by
passing to the inductive limit as “U shrinks down tof (x)”, we obtain a
natural homomorphism:

fx : f∗(F ) −−−→
f (x)

Fx.

If OX is a sheaf of rings onX, f∗(OX) has a natural structure of a
sheaf of rings onY. If F is anOX-Module, f∗(F ) has a natural structure
of an f∗(OX)-Module.

The direct imagef∗(F ) is a covariant functor onF .

1.5.2 Let f : X → Y be a continuous map of topological spaces andg6

be a sheaf of abelian groups onY. Then it can be shown that there is a
unique sheafF of abelian groups onX such that:

(a) there is a natural homomorphism of sheaves of abelian groups

ρ = ρg : g→ f∗(F )
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and

(b) for any sheafH of abelian groups onX, the homomorphism
HomX(F ,H ) → HomY(g, f∗(H )) given byρ 7→ f∗(ϕ) ◦ ρg is
an isomorphism. The unique sheafF of abelian groups onX
with these properties is called theinverse image f−1(g) of g under
f .

It can be shown that canonical homomorphism

(*) fx ◦ ρ f (x) : g f (x) → f −1(g)x

is an isomorphism, for everyx ∈ X.
The inverse imagef −1(g) is a covariant functor ong and the isomor-

phism (∗) shows that it is an exact functor.
If OY is a sheaf of rings onY, f −1(OY) has a natural structure of a

sheaf of rings onX. If g is anOY-Module, f −1(g) has a natural structure
of an f −1(OY)-Module.

1.5.3 A ringed spaceis a pair (X,OX) whereX is a topological space7

andOX is a sheaf of rings onX, called the structure sheaf of (X,OX). A
morphismΦ : (X,OX) → (Y,OY) of ringed spaces is a pair (f , ϕ) such
that

(i) f : X→ Y is a continuous map of topological spaces, and

(ii) ϕ : OY → f∗(OX) is a morphism of sheaves of rings onY.

Ringed spaces, with morphisms so defined, form a category. Ob-
serve that condition (ii) is equivalent to giving a morphismf −1(OY) →
OX of sheaves of rings onX (see (1.5.2)).

If F is a sheaf ofOX-modules, we denote byΦ∗(F ) the sheaf
f∗(F ), considered as anOY-Module throughϕ. If g is anOY-Module,
f −1(g) is an f −1(OY)-Module and the morphismf −1(OY) → OX, de-
fined byϕ, gives anOX-Module f −1(g) f −1 ⊗(OY) OX; the stalks of this
OX-Module are isomorphic tog f (x) ⊗O f (x) Ox, under the identification
f −1(g)x ≃ g f (x). We denote thisOX-Module byΦ∗(g). In general,Φ∗ is
not an exact functor ong.
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1.6 Affine Schemes

A ringed space of the form (SpecA, Ã), A a ring, defined in (1.4) is
called anaffine scheme.

1.6.1 Let ϕ : B→ A be a ring-homomorphism;ϕ defines a map8

f = aϕ : X = SpecA→ SpecB = Y

p 7→ ϕ−1(p).

Sinceaϕ−1(V(E)) = V(ϕ(E)) for anyE ⊂ B, aϕ is a continuous map.
Let s∈ B; ϕ defines, in a natural way, a homomorphism

ϕs : Bs→ Aϕ(s).

In view of the remark at the end of (1.4), this gives us a homomor-
phism:

Bs = Γ(Ys, B̃)→ Aϕ(s) = Γ(Xϕ(s), Ã) = Γ(Ys, f∗(Ã))

and hence a homomorphism̃ϕ : B̃ → f∗(Ã). If x ∈ X the stalk map
defined bỹϕ, namely

ϕ̃x : O f (x) ≃ Bf (x) → Ox ≃ Ax

is a local homomorphism (i.e. the image of the maximal ideal in Bf (x) is
contained in the maximal ideal ofAx).

Definition 1.6.2.A morphismΦ : (SpecA, Ã) → (SpecB, B̃) of two9

affine schemes, is a morphism of ringed spaces with the additional prop-
erty thatΦ is of the form (aϕ, ϕ̃) for a homomorphismϕ : B → A of
rings.

It can be shown that a morphismΦ = ( f , ϕ) of ringed spaces is
a morphism of affine schemes (specA, Ã)(specB, B̃) if and only if the
stalk-maps

O f (x) → Ox defined by Φ(rather, byϕ)

are local homomorphisms.
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Remarks 1.6.4. (a) If M is an A-module, M̃ is an exact covariant
functor onM.

(b) For anyA-modulesM, N, HomÃ(M̃, Ñ) is canonically isomorphic
to HomA(M,N).

(c) If (X,OX) = (specA, Ã), (Y,OY) = (specB, B̃) are affine, there is
a natural bijection from the set Hom(X,Y) of morphisms of affine
schemesX → Y onto the set Hom(B,A) of ring-homomorphisms
B→ A.

(d) Let (X,OX) = (SpecA, Ã) be an affine scheme andF an OX-
module. Then one can show thatF is quasi-coherent (i.e. for
every x ∈ X, ∃ an open neighbourhoodU of x and an exact se-

quence (OX|U)
(I)−−→ (OX|U)

(J)−−→ F |U → 0) ⇔ F ≃ M̃ for an
A-moduleM. If we assume thatA is noetherian, one sees thatF
is coherent⇔ F is ≃ to M̃ for a finite typeA-moduleM.

(e) Let X
Φ−→ Y be a morphism of affine schemes andF (resp. g) 10

be a quasicoherentOX-Module (resp.OY-Module). Then one can
define a quasi-coherentOY-Module (resp.OX-Module) denoted
by Φ∗(F ) (resp. Φ∗(g)) just as in (1.5.3); ifX = SpecA, Y =
SpecB andΦ = (aϕ, ϕ̃) for aϕ : B→ A and if F = M̃, M anA-
module (resp.g = Ñ, N a B-module) thenΦ∗(F ) (resp.Φ∗(g)) is
canonically identified with˜[ϕ]M , where [ϕ]M is the abelian group
M considered as aB-module throughϕ (resp.M̃ ⊗B A).

(For proofs see EGA Ch. I)





Chapter 2

Preschemes

Definition 2.1. A ringed space (X,OX) is called apreschemeif every 11

point x ∈ X has an open neighbourhoodU such that (U,OX|U) is an
affine scheme.

An open setU such that (U,OX|U) is an affine scheme is called an
affine open set ofX; such sets form a basis for the topology onX.

Definition 2.1.1.A morphismΦ : (X,OX) → (Y,OY) of preschemes
is a morphism (f , ϕ) of ringed spaces such that for everyx ∈ X, the
stalk-mapϕx : O f (x) → Ox defined byΦ is a local homomorphism.

Preschemes then form a category (Sch). In referring to a prescheme,
we will often suppress the structure sheaf from notation anddenote
(X,OX) simply byX.

2.1.2 SupposeC is any category andS ∈ ObC . We consider the pairs
(T, f ) whereT ∈ Ob·C and f ∈ HomC (T,S).

If (T1, f1), (T2, f2) are two such pairs, we define Hom((T1, f1),
(T2, f2)) to be the set ofC -morphismsϕ : T1 → T2, making the dia-
gram

T1
ϕ //

f1 ��@
@@

@@
@@

T2

f2��~~
~~

~~
~

S

9



10 2. Preschemes

commutative.
This way we obtain a category, denoted byC |S. In the special case12

C = (Sch), the category (Sch/S) = (Sch)|S is called the category ofS-
preschemes; its morphisms are calledS-morphisms.S itself is known
as the base prescheme of the category.

Remark 2.1.3.Let SpecA be an affine scheme andY any prescheme.
Then Hom(A, Γ(Y,OY)) is naturally isomorphic to Hom(Y,SpecA).

In fact, let (Ui) be an affine open covering ofY and ϕ ∈ Hom
(A, Γ(Y,OY)). The composite maps

ϕi : A
ϕ
−→ Γ(Y,OY)

restriction−−−−−−−→ Γ(Ui ,OY)

give morphismsaϕi : Ui → SpecA, for everyi, since theUi are affine.
It is easily checked thataϕi =

aϕ j on Ui ∩ U j , ∀ i, j. We then get
a morphismaϕ : Y → SpecA; the mapϕ 7→ aϕ is a bijection from
Hom(A, Γ(Y,OY)) onto Hom(Y,SpecA) (cf. (1.6.4)(c)).

It follows that every preschemeX can be considered as a SpecZ-
prescheme in a natural way:

(Sch)= (Sch/SpecZ) = (Sch/Z).

Remark 2.1.4.Let (X,OX) be a prescheme andF anOX-module. Then
it follows from (1.6.4)(d) thatF is quasi-coherent⇔ for every x ∈ X13

andanyaffine open neighbourhoodU of x, F |U ≃ M̃U , for aΓ(U,OX)
- moduleMU .

We may take this as our definition of a quasi-coherentOX-module.

2.2 Product of Preschemes

2.2.0 Suppose (X, f ), (Y, g) are S-preschemes. We say that a triple
(Z, p, q) is a product ofX andY overS if:

(i) Z is anS-prescheme

(ii) p : Z→ X, q : Z→ Y areS-morphisms and
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(iii) for any T ∈ (Sch/S), the natural map:

HomS(T,Z)→ HomS(T,X) × HomS(T,Y)

f 7→ (p. f , q. f )

is a bijection.

The product ofX andY, being a solution to a universal problem, is
obviously unique upto an isomorphism in the category. We denote the
product (Z, p, q), if it exists by X×

S
Y and call it thefibre-productof X

andY overS; p, q are called projection morphisms.

Theorem 2.2.1. If X, Y ∈ (Sch/S), the fibre-product of X and Y over S
always exists.

We shall not prove the theorem here. However, we observe thatif 14

X = SpecA, Y = SpecB andS = SpecC are all affine, then Spec(A⊗
C

B)

is a solution for our problem. In the general case, local fibre-products
are obtained from the affine case and are glued together in a suitable
manner to yield a fibre productX×

S
Y.

(For details see EGA, Ch. I, Theorem (3.2.6)).

Remarks. (1) The underlying set ofX×
S

Y is not the fibre-product of

the underlying sets ofX andY over that ofS. However if x ∈ X,
y ∈ Y lie over the sames ∈ S, then there is az ∈ X×

S
Y lying over

x andy. (For a proof see Lemma (2.3.1)).

(2) An open subsetU of a preschemeX can be considered as a pres-
cheme in a natural way. SupposeS′ ⊂ S, U ⊂ X, V ⊂ Y are open
sets such thatf (U) ⊂ S′, g(V) ⊂ S′; we may considerU, V as
S′-preschemes. When this is done, the fibre-productU×

S′
V is iso-

morphic to the open setp−1(U)∩ q−1(V) in Z = X×
S

Y, considered

as a prescheme.

This follows easily from the universal property of the fibre-product.
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2.2.2 Change of base:Let X, S′ be S-preschemes. Then the fibe-
productX×

S
S′ can be considered as anS′-prescheme in a natural way:

X

��

X×
S

S′oo

��
S S′oo

When this is done, we say thatX×
S

S′ is obtained fromX by the base-15

changeS′ → S and denote it byX(S′). Note that, in the affine case, this
corresponds to the extension of scalars.

If X is any prescheme, by itsreduction mod p, p ∈ Z+, (resp.
mod p2 and so on) we mean the base-change corresponding toZ →
Z/(p) (resp.Z→ Z/(p2) and so on).

If f : X → X′., g : Y → Y′ areS-morphismsf andg define, in
a natural way anS-morphism: X×

S
Y → X′×

S
Y′, which we denote by

f×
S

g or by (f , g)S. Wheng = IS′ : S′ → S′, we get a morphism:

f×
S

IS′ = f(S′) : X(S′) → X′(S′).

2.3 Fibres

Let (X, f ) be anS-prescheme ands ∈ S be any point. LetU ⊂ S be
an affine open neighbourhood ofsandA = Γ(U,OS). If ps is the prime
ideal ofA corresponding tos, Os,S is identified withAps. Denote byk(s)
the residue field ofOs,S = Aps. The compositeA→ Aps → k(s) defines
a morphism Speck(s)→ SpecA = U ⊂ S; i.e. to say, Speck(s) is anS-
prescheme in a natural way. Consider now the base-change Speck(s)→
S:

X

f

��

X′ = X×
S

Speck(s)poo

q

��
S Speck(s)oo

The first projectionp clearly mapsX′ into the setf −1(s) ⊂ S. We16
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claim thatp(X′) = f −1(s) and further that, when we providef −1(s) with
the topology induced fromX, p is a homomorphism betweenX′ and
f −1(s).

To prove this, it suffices to show that for every open setU in a cover-
ing of X, p is a homeomorphism fromp−1(U) ontoU ∩ f −1(s). In view
of the remark (2) after Theorem (2.2.1) we may then assume that X, S
are affine sayX = SpecA, S = SpecC. That p(X′) = f −1(s) will follow
as a corollary to the following more general result.

Lemma 2.3.1. Let X = SpecA, Y = SpecB be affine schemes over
S = SpecC. Suppose that x∈ X, y∈ Y lie over the same element s∈ S .
Then the set E of elements z∈ Z = X×

S
Y lying over x, y is isomorphic to

Spec(k(x) ⊗
k(S)

k(y)) (as a set).

Proof. One has a homomorphismψ : A⊗
C

B → k(x) ⊗
k(s)

k(y) which gives

a morphismaψ : Speck(x) ⊗
k(s)

k(y) → Z; clearly the image ofaψ is

contained in the setE = p−1(x) ∩ q−1(y). That aψ is injective is seen
by factoringψ as follows: A⊗

C
B → Ax⊗

Cs

By → k(x) ⊗
k(s)

k(y). In order

to see thataψ is surjective one remarks that forz ∈ E the homomor-
phismA→ A⊗

C
B→ k(z) factors throughk(x), similarly for B, therefore

we have forA⊗
C

B → k(z) a factorisationA⊗
C

B → k(x) ⊗
k(s)

k(y) → k(z).

Q.E.D. �

In the above lemma if we takeB = k(s) it follows that in the diagram 17

X′ = X×
S

Speck(s) = Spec(A⊗
C

k(s))

p

xxqqqqqqqqqqqqqqqqqq

q

&&MMMMMMMMMMMMMMMMMM

X = SpecA

f

''NNNNNNNNNNNNNNNNNNN
Y = SpecB

g

wwppppppppppppppppppp

s∈ S = SpecC
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the mapp : X′ → f −1(s) is a bijection.

2.3.2 Returning to the assertion thatX′ is homeomorphic to the fibre
f −1(s) (with the induced topology fromX) we note that ifϕ : C→ k(s)
is the natural map, thenp : X′ → X is the morphism corresponding to
1 ⊗ ϕ : A → A⊗

C
k(s). To show thatp carries the topology over, it is

enough to show that any closed set ofX′, of the formV(E′), is also of
the formV((1⊗ ϕ)E) for someE ⊂ A.

Now, any element ofA⊗
C

k(s) can be written in the form
∑
i

ai⊗
(
ci

t

)
=

(∑
i
(ai ⊗ ci)

)
·
(
1⊗ 1

t

)
with ai ∈ A, ci , t ∈ C. Since

(
1⊗ 1

t

)
is a unit18

of A⊗
C

k(s), we can take forE ⊂ A, the set of elements
∑
i

aici where
∑
i

ai ⊗
(
ci/t

)
is an element ofE′. Q.E.D.

Note.The fibre f −1(s) can be given a prescheme structure through this
homeomorphismp : X′ → f −1(s). If, in the above proof, we had taken
Os/M

n+1
s , instead ofk(s) = Os/Ms we would still have obtained home-

omorphismspn : X×
S

Spec
(
Os/M

n+1
s

)
→ f −1(s). The prescheme struc-

ture on f −1(s) defined by means ofpn, is known as thenth-infinitesimal
neighbourhood of the fibre.

2.4 Subschemes

2.4.0 Let X be a prescheme andJ a quasi-coherent sheaf of ideals of
OX. Then the supportY of theOX-Module OX/J is closed inX and
(Y,OX/J |Y) has a natural structure of a prescheme. In fact, the question
is purely local and we may assumeX = SpecA. ThenJ is defined
by an idealI of A and Y corresponds toV(I ) which is surely closed.
The ringed space (Y,OX/J |Y) has then a natural structure of an affine
scheme, namely, that of Spec(A/I ).

Such a prescheme is called aclosed subschemeof X. An open sub-
schemeis, by definition, the prescheme induced byX on an open subset
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in a natural way. Asubschemeof X is a closed subscheme of an open
subscheme ofX.

2.4.1 A subscheme may have the same base-space asX. For example, 19

one can show that there is a quasi-coherent sheafN of ideals ofOX

such thatNx = nil-radical ofOx. N defines a closed subschemeY of
X, which we denote byXred and which isreduced, in the sense that the
stalksOy,Y of Y haveno nilpotent elements. X andY have the same base
space (A andAred have the same prime ideals).

Consider a morphismf : X → Y of preschemes. SupposeϕX :
Xred→ X, ϕY : Yred→ Y are the natural morphisms. Then∃ a morphism
fred : Xred→ Yred making the diagram

X
f // Y

Xred

ϕX

OO

fred

// Yred

ϕY

OO

commutative. This corresponds to the fact that a homomorphism ϕ :
A→ B of rings defines a homomorphismϕred : Ared→ Bred such that

A
ϕ //

ηA

��

B

ηB

��

�

Ared
ϕred // Bred

2.4.2 A morphism f : Z → X is called animmersionif it admits a 20

factorizationZ
f ′
−→ Y

j
−→ X whereY is a sub-scheme ofX, j : Y → X

is the canonical inclusion andf ′ : Z → Y is an isomorphism. The
immersionf is said to beclosed(resp.open) if Y is a closed subscheme
(resp. open subscheme) ofX.
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Example .Let X
f
−→ S be anS-prescheme. Then, there is a natural

S-morphism∆ : X→ X×
S

X such that the diagram

X
IX=idX

uullllllllllllll

IX

��

∆

����
��
��
��
��
��

X

f

��

X×
S

X
p1

``BBBBBB

p2   B
BB

BB
B

X

fuullllllllllllll

S

is commutative.∆ is called the diagonal off . It is an immersion.

Definition 2.4.2.1.A morphism f : X→ S is said to beseparated(or X
is said to be anS-scheme) if the diagonal∆ : X→ X×

S
X of f is aclosed

immersion.

A preschemeX is called aschemeif the natural mapX→ SpecZ is
separated.

Remark . Let Y be an affine scheme,X any prescheme and (Uα)α an
affine openc over forX. One can then show that a morphismf : X→ Y21

is separated if and only if∀ α, β,

(i) Uα ∩ Uβ is also affine

(ii) Γ(Uα ∩ Uβ,OX) is generated as a ring by the canonical images of
Γ(Uα,OX) andΓ(Uβ,OX).

(For a proof see EGA, Ch. I, Proposition (5.5.6)).

2.4.3 Example of a prescheme which is not a scheme.Let B = k[X],
C = k[Y] be polynomial rings over a fieldk. Then SpecBX and SpecCY

are affine open sets of SpecB and SpecC respectively; the isomorphism
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f (X)
Xm 7→ f (Y)

Ym of BX onto CY defines an isomorphism SpecCY
∼−→

SpecBX. By recollement of SpecB and SpecC through this isomor-
phism, one gets a preschemeS, which isnot a scheme; in fact, condi-
tion (ii) of the proceding remark doesnot hold: for, Γ(SpecB,OS) ≃
B = k[X] andΓ(SpecC,OS) ≃ C = k[Y]; the canonical maps from these
into Γ(SpecB∩SpecC,OS) ≃ k[u, u−1] are given byX 7→ u, Y 7→ u and
the image in each case is precisely= k[u].

2.5 Some formal properties of morphisms

(i) every immersion is separated

(ii) f : X→ Y, g : Y→ Z separated⇒ g ◦ f : X→ Z separated.

(iii) f : X → Y a separatedS-morphism⇒ f(S′) : X(S′) → Y(S′) is
separated for every base-changeS′ → S.

(iv) f : X → Y, f ′ : X′ → Y′ are separatedS-morphisms⇒ f×
S

f ′ : 22

X×
S

X′ → Y×
S
Y′ is separated.

(v) g ◦ f separated⇒ f is separated

(vi) f separated⇔ fred separated.

The above properties arenot all independent. In fact, the following
more general situation holds:

Let P be a property of morphisms of preschemes.
Consider the following propositions:

(i) every closed immersion hasP

(ii) f : X→ Y hasP, g : Y→ Z hasP⇒ g ◦ f hasp

(iii) f : X → Y is anS-morphism havingP ⇒ f(S′) : X(S′) → Y(S′)

hasP for any base-changeS′ → S.

(iv) f : X → Y hasP, f ′ : X′ → Y′ hasP ⇒ that f×
S

f ′ : X×
S

X′ →
Y×

S
Y′ hasP
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(v) g ◦ f hasP, g separated⇒ f hasP.

(vi) f hasP⇒ fred hasP.

If we suppose that (i) and (ii) hold then (iii)⇔ (iv). Also, (v), (vi)
are consequences of (i), (ii) and (iii) (or (iv)).

Proof. Assume (ii) and (iii). The morphismf×
S

f ′ admits a factorization:

X × X′

f×
S

IX′ ""E
EE

EE
EE

EE
E

f×
S

f ′

// Y×
S
Y′

Y×
S

X′
IY×

S
f ′

==zzzzzzzz

By (iii), the morphismsf×
S

TX′ and IY×
S

f ′ haveP and so by (ii) f×
S

f ′23

also hasP. �

On the other hand, assume (i) and (iv).IS′ being a closed immersion,
hasP by (i) and sof(S′) = f×

S
IS′ hasP by (iv).

Now assume (i), (ii) and (iii). Ifg : Y→ Z is separated,Y
∆−→ Y×

Z
Y

is a closed immersion and hasP by (i); by making a base-changeX
f
−→ Y

we get a morphismX ≃ Y×
Y

X
∆Y×IX−−−−−→ Y×

Z
Y×

Y
X ≃ X×

Z
Y which, by (iii) has

propertyp. The projectionp2 : X×
Z
Y→ Y satisfies the diagram:

X
ϕ //

g◦ f

��

X×
Z
Y

p2

��

�

Z oo g
Y

i.e. to say,p2 is obtained fromg ◦ f by the base-changeY→ Z and so,
by (iii) hasP.
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Finally, f : X → Y is the composite ofX
∆Y×IX−−−−−→ X×

Z
Y and p2 :

X×
Z
Y→ Y and so by (ii) hasP.

To prove (vi) from (i), (ii), (iii) use the diagram 24

Xred
fred //

ϕX

��

Yred

ϕY

��

'

X
f // Y

and the facts that the canonical morphismsϕX, ϕY are closed immersions
and so haveP, thatϕY ◦ fred = f ◦ g hasP and that a closed immersion
is separated, then use (v). Q.E.D.

We now remark that if we replace (i) of the above propositionsby
(i)′ every immersion hasP, then (i), (ii), (iii) imply (v)′ g ◦ f hasP,

g hasP⇒ f hasP.

2.6 Affine morphisms

Definition 2.6.1.A morphism f : X → S of preschemes is said to be
affine (or X affine over S) if, for every affine openU ⊂ S, f −1(U) is
affine inX.

It is enough to check that for an affine open cover (Uα) of S, the
f −1(Uα) are affine.

2.6.2 Suppose thatB is a quasi-coherentOS-Algebra. Let (Uα) be
an affine open cover ofS; set Aα = Γ(Uα,OS), Bα = Γ(Uα,B) and
Xα = SpecBα. The homomorphismAα → Bα defines a morphism25

fα : Xα → Uα; theX′αs then patch up together to give anS-prescheme

X
f
−→ S; this preschemeX is affine overS, is such thatfα(OX) ≃ B,

and is determined, by this property, uniquely upto an isomorphism. We
denote it by SpecB. conversely, every affineS-prescheme is obtained
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as SpecB, for some quasi-coherentOS-AlgebraB. (For details, see
EGA Ch. II, Proposition (1.4.3)).

Remarks. (a) Any affine morphism is separated. (Recall the remark
at the end of (2.4.2).)

(b) If S is an affine scheme, a morphismf : X → S is affine⇔ X is
an affine scheme.

(c) The formal properties (i) to (vi) of (2.5) hold, whenP is the prop-
erty of being affine.

(d) SupposeX
h−→ Y is anS-morphism. If f , g are the structural mor-

phisms ofX, Y resply, the homomorphismOY → h∗(OX) defined
by h, given anOS-morphism

A (h) : g∗(OY)→ g∗(h∗(OX)) = f∗(OX);

then we have a natural map: HomS(X,Y) → HomOS(g∗(OY) →
f∗(OX)) (the latter in the sense ofOS-Algebras) defined byh 7→
A (h). If Y is affine overS, it can be shown that this natural
map is abijection. (EGA Ch II, Proposition (1.2.7)). (Also, com-
pare with remark (1.6.4) (c) for affine schemes, and with remark
(2.1.3)).

2.7 The finiteness theorem
26

Definition 2.7.0.A morphism f : X→ Y of preschemes is said to be of
finite type, if, for every affine open setU of Y, f −1(U) can be written as

f −1(U) =
n⋃

α=1
Vα, with eachVα affine open inX and eachΓ(Vα,OX) a

finite typeΓ(U,OY)-algebra.

It is again enough to check this for an affine open cover ofY. An

affine morphismf : X → Y is of finite type⇐⇒ the quasi-coherent
OY-Algebra fα(OX) is an OY-Algebra of finite type. In particular, a
morphism f : SpecB→ SpecA is of finite type⇐⇒ B is a finite type
A-algebra (i.e. is finitely generated asA-algebra).
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Definition 2.7.1.A morphism f : X → S is universally closedif, for
every base-changeS′ → S, the morphismf(S′) : X×

S
S′ → S′ is a closed

map in the topological sense.

Definition 2.7.2.A morphism f is proper if

(i) f is separated

(ii) f is of finite type and

(iii) f is universally closed.

The formal properties of (2.5) hold thenP is the property of being
proper.

Definition 2.7.3.A preschemeY is locally noetherian, if every y ∈ Y
has an affine open neighbourhood SpecB, with B noetherian. It is said

to benoetherian, if it can be written asY =
n⋃

i=1
Yi where theYi are affine 27

open sets such that theΓ(Yi ,OY) are noetherian rings.

If f : X→ Y is a morphism of finite type andY is locally noetherian,
thenX is also locally noetherian.

2.7.4 Let (X,OX) and (Y,OY) be ringed spaces andf a morphism from
X to Y. Let F be anOX-Module. We then define, for everyq ∈ Z+, a
presheaf of modules onY by defining:U 7→ Hq( f −1(U),F ) for every
openU ⊂ Y (See EGA Ch 0, III§ 12). The sheaf that this presheaf de-
fines onY is called theqth-direct imageof F and is denoted byRq f∗(F ).

Theorem 2.7.5.Let X, Y be preschemes, Y locally noetherian, and f a
propermorphism from X to Y. Then, ifF is any coherentOX-Module,
the direct images Rq f∗(F ) are all coherentOY-Modules.

(For a proof see EGA Ch. III, Theorem (3.2.1)). This is thetheorem
of finitenessfor proper morphisms.





Chapter 3

Étale Morphisms andÉtale
Coverings

Throughout this chapter, by a prescheme we will mean a locally noethe- 28

rian prescheme and by a morphism, a morphism of finite type (unless
it is clear from the context that the morphism isnot of finite type, e.g.,
S← SpecOs,S, SpecA← SpeĉA, A a noetherian local ring).

Definition 3.1.0.A morphism f : X → S is said to beunramifiedat a
point x ∈ X if (i) M f (x)Ox = Mx, (ii) k(x)/k( f (x)) is a finite separable
extension.

Definition 3.1.1.A morphism f : X→ S is said to beflat at a pointx ∈
X if the local homomorphismO f (x) → Ox is flat (i.e.,Ox, considered as
anO f (x)-module is flat; note that since the homomorphismO f (x) → Ox

is local,Ox will be faithfully O f (x)-flat).

Definition 3.1.2.A morphism f : X → S is said to béetaleat a point
x ∈ X if it is both unramified and flat atx.

We say thatf : X→ S is unramified (resp. flat, étale) if it is unram-
ified (resp. flat, étale) at everyx ∈ X.

Remarks 3.1.3. (1) An unramified morphismX
f
−→ S is étale atx ∈

X⇔ Ô f (x) → Ôx is flat.

23



24 3. Étale Morphisms and́Etale Coverings

(2) A morphism f : X→ S is unramified at29

x ∈ X⇐⇒ fSpeck( f (x)) : X×
S

Speck( f (x)) → Speck( f (x))

is unramified at the corresponding point; in other words,it is
enough to look at the fibre for nonramification.

(3) If f : X → S is unramified atx ∈ X and k( f (x))
֒→
=k(x) then

Ô f (x) → Ôx is surjective; if f is étale in addition, then̂O f (x)
∼−→

Ôx.

3.2 Examples and Comments

(1) A morphism f : SpecA → Speck (k a field) is étale⇔ it is

unramified⇔ A =
r⊕

i=1
Ki , Ki/k finite separable extensions.

(2) Let X andS be irreducible algebraic varieties,S normal. Then it
can be shown that a dominant morphismX → S is étale=⇒ it is
unramified.

(3) If S is non-normal, an unramified dominant morphismX → S
need not be étale; for instance, letc be an irreducible curve over
an algebraically closed filed with an ordinary double pointx, c̃ its
normalisation andp : c̃→ c the natural map.

(i) p is unramified. One has to prove this only at the points
a, b ∈ c̃ sitting over x. Now Ma is generated inOa by
a function with a simple zero ata, but such a function we
can find already inOx, for instance a function induced by a30

straight line throughx not tangent toc at x.

(ii) p is not étale: otherwise,Ôx
∼−→ Ôa but we know thatÔx is

not a domain, whileÔa is.

(4) A connected étale variety over an irreducible algebraic variety
need not be irreducible.
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For instance, in the previous example we may take two copiesc̃
andc̃′ of the normalisation ofc and fuse them together in such a
way that the pointsa, b on c̃ are identified with the pointsb′, a′

on c̃′. We then get aconnectedbut reducible varietyX and the
morphismp : X → c defined in the obvious manner is surely
étale.

(5) Let X andS be irreducible algebraic varieties and suppose that31

S is normal andf : X → S a dominant morphism. Assume, in
addition, that the function fieldR(X) of X is a finite extension of
degreen of the function fieldR(S) of S. If x ∈ X is such that the
number of points in the fibref −1( f (x)) equalsn, then it can be
shown thatf is étale in a neighbourhood ofx.

3.3

Our aim now is to give a necessary and sufficient condition for a mor-
phism to be unramified.

3.3.0 Some algebraic preliminaries.Let A
ϕ
−→ B be a homomorphism

of rings defining anA-algebra structure onB. ThenB⊗
A
B is anA-algebra
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in a natural way and

p1 : B→ B⊗
A
B given by b 7→ b⊗ 1

p2 : B→ B⊗
A
B given by b 7→ 1⊗ b

andµ : B⊗
A
B → B given byb1 ⊗ b2 7→ b1b2 are allA-algebra homo-

morphisms. We may makeB⊗
A
B a B-algebra throughp1 i.e. by defining

b(b1⊗b2) = bb1⊗b2 and the kernelI of µ is then aB-module. Since we
haveµ◦p1 = Id . and the equalityb1⊗b2 = (b1b2⊗1)−b1(b2⊗1−1⊗b2)
is follows thatB⊗

A
B = (B⊗

A
1)⊕ I , as aB-module.

We define the spaceΩB/A of A-differentials ofB as theB-module32

I/I2. We note that theB-module structure onΩB/A = I/I2 is natural, in
the sense that it does not depend on whether we makeB⊗

A
B, aB-algebra

throughp1 or throughp2.

Some properties ofΩB/A

(1) The mapd : b 7→ (1 ⊗ b − b ⊗ 1) (mod I2) from B to ΩB/A is
A-linear. Also, since

(1⊗ b1b2 − b1b2 ⊗ 1) = b1(1⊗ b2 − b2 ⊗ 1)+ b2(1⊗ b1 − b1 ⊗ 1)

= +(1⊗ b1 − b1 ⊗ 1)(1⊗ b2 − b2 ⊗ 1),

we have:d(b1b2) = b1db2 + b2db1 ∀ b1, b2 ∈ B.

(2) SinceI is generated as aB-module by elements of the form (1⊗
b1 − b1 ⊗ 1), it follows thatΩB/A is generated by the elementsdb.

(3) Let W be theB-submodule ofB⊗
A
B, generated by elements of the

form (1⊗bb′−b⊗b′−b′⊗b); ΩB/A is then isomorphic to (B⊗
A
B)/W.

In fact,

ΩB/A = I/I2
� (B⊗

A
1⊕ I )/(B⊗

A
1⊕ I2)
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= (B⊗
A
B)/(B⊗

A
1⊕ I2)

and clearlyW ⊃ B⊗
A
1; soW = B⊗ 1⊕ (W∩ I ).33

On the other hand, we have

(1⊗bb′−b⊗b′−b′⊗b) = −bb′⊗1+ (1⊗b−b⊗1)(1⊗b′ −b′⊗1)

and hence:W ⊂ B×
A
1 ⊕ I2. Also clearly,I2 ⊂ W. It follows that

W∩ I − I2, W = B⊗
A
1⊕ I2 andΩB/A � (B⊗

A
B)/W.

(4) If V is anyB-module andD : B→ V anyA-derivation ofB in V,
then there is aB-linear mapHD : ΩB/A→ V such that

B
D //

d

��-
--

--
--

--
--

--
--

--
--

V

$

ΩB/A

HD

HH�������������������

In fact, D defines anA-linear mapB⊗
A
B→ V given byb1 ⊗ b2 7→

b1Db2. This is certainlyB-linear and is trivial onW. We then ob-
tain aB-linear mapHD : ΩB/A→ V such thatHD(db) = Db∀ b ∈
B. Also the correspondenceD 7→ HD is a B-isomorphism from
theB-module ofA-derivationsB→ V, onto theB-module HomB

(ΩB/A,V). (This is the universal property ofΩB/A). In particu-
lar, the B-module ofA-derivations ofB is isomorphic to HomB
(ΩB/A, B); and even more in particular, ifA = k, B = K are fields, 34

we see that the space ofk-differentialsΩK/k is the dual of the
space ofk-derivations ofK and therefore is trivial ifK/k is sepa-
rably algebraic.

(5) Consider a base-changeA→ A′ and the extension of scalarsB′ =
B⊗

A
A′. From the universal property of the space of differentials, it
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follows that
ΩB′/A′ ≃ ΩB/A⊗

B
B′ΩB/A⊗

A
A′.

3.3.1 The sheaf of differentials of a morphism.
Let f : X → S be a morphism. Our aim now is to define a sheaf

ΩX/S on X. Assume, to start with, thatX = SpecB, S = SpecA; then
ΩB/A is a B-module in a natural way and we defineΩX/S = Ω̃B/A on
X. In the general case, consider the diagonal∆ of f in X×

S
X. Then∆

is a closed subscheme of an open subschemeU of X×
S

X andX → ∆ is

an isomorphism. LetIX be the sheaf of ideals ofOU defining∆. Then
IX/I2

X
is a sheaf ofOU-modules whose support is contained in∆. By

means of the isomorphismX → ∆, we can lift this sheaf to a sheaf of
abelian groups onX. Clearly the lift is independent of the choice ofU.
It remains to show that this sheaf is anOX-Module. To do this, we can
assume again thatX × S are affine and in this case,IX is the sheaf̃I on35

X×
S

X (whereI is the ideal ofB⊗
A
B defined in 3.3.0) and therefore, our

sheaf is̃ΩB/A considered above.
The OX-Module thus obtained will be called thesheaf of differen-

tials of f (or of X overS) and will be denotedΩX/S. The stalkΩx,X/S of
this sheaf at a pointx ∈ X is canonically isomorphic toΩOx/O f (x) . This is
seen either from the universal property or by observing thatthe natural
mapΩx,X/S → ΩOx/O f (x) given by

∑

i

bi

si
db′i 7→

∑

i

bi

si
d(b′i/1) (with X = SpecB, bi , b

′
i , si ∈ B, si < p

x
)

is an isomorphism.
Since, by assumptions,S is locally noetherian andf is of finite type

it is cler from the definition thatΩX/S is coherent.

Proposition 3.3.2. For a morphism f: X → S and a point x∈ X the
following are equivalent:

(i) f is unramified at x

(ii) Ωx,X/S = (0)
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(iii) ∆ : X→ X×
S

X is an open immersion in a neighbourhood of x.

Proof. We may assumeX = SpecB, S = SpecA. 36

(i) ⇒ (ii): Consider the base change:

x ∈ X

��

X′ = XS×
S

Speck(s)oo

��
s= f (x) ∈ S Speck(s) = S′oo

If x′ ∈ X′ is abovex, then we have:Ωx,X/S⊗
Ox

Ox′ = Ωx′,X′/S′ ; this

follows from property (5) of 3.3.0; furthermore,Ox′ = Ox/MsOx = k(x)
since f is unramified atx. ThereforeΩx,X/S⊗

Ox

k(x) = Ωx′,X′/S′ and by

Nakayama it suffices to show that the latter is (0). By the remark made
above,Ωx′,X′/S′ = Ωk(x)/k(s) and this is zero ask(x)/k(s) is separably
algebraic.

(ii) ⇒ (iii)
Let z be the image ofx in X×

S
X under the diagonal∆ : X → X×

S
X ·

∆(X) is a closed subscheme of an open subschemeU of X×
S

X, and is

defined, therefore, by a sheafI of OU-ideals. IfΩx,X/S = (0), then, we
will have Iz = I2

z = . . .; henceIz = (0) (Krull’s intersection theorem).37

However, I is a sheaf of ideals of finite type and soI vanishes in a
neighbourhood ofz i.e. to say∆ : X → X×

S
X is an open immersion in a

neighbourhood ofx ∈ X.

(iii) ⇒ (i)
The question being local, we may assume that∆ : X → X×

S
X is

an open immersion everywhere. An open immersion remains an open
immersion under base-change, and since we only have to look at the
fibre over f (x), for non-ramification atx, we may takeX = SpecA,
S = Speck, k a field andA ak-algebra of finite type.

We are to show thatA =
⊕
finite

Ki, whereKi/k are finite separable field

extensions; for this, we have to show thatA is artinian and, ifk is the
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algebraic closure ofk, A⊗
k
k is radical-free. It is thus enough to show that

A⊗
k
k =

⊕
finite

k. By making the base-changek → k, we may assumek is

algebraically closed.
Let a ∈ X be any closed point ofX. Sincek is algebraically closed,

k(a) ≃ k and we have then

X
∼←−
i

X ×
Speck

Speck(a) = X × (a) (say).

X × (a) is canonically imbedded inX×
S

X

and letϕ be the composite of the morphisms:

X
i−1

−−→ X × (a) ֒→ X×
S

X.

Thenϕ−1(∆) = (a) is open inX, since, by assumption,∆ is open in38

X×
S

X; i.e. any closed point ofX is also open. ButX = SpecA is quasi-

compact and this implies thatA has only finitely many maximal ideals.
But A is a k-algebra of finite type and so the set of closed points ofX

is dense inX. It follows thatA is artinian and we may writeA =
ṅ⊕

i=1
Ai

where theAi are artinian local rings. We may then assumeA = Ai; the
open immersion∆ : X → X×

S
X then gives an isomorphismA⊗

k
A → A.

This however meansA = k. Q.E.D. �

3.3.3 Some properties of́etale morphisms.

(1) An open immersion is étale.

(2) f , g étale⇒ g ◦ f étale.

(3) f étale⇒ f(S′) étale foranybase changeS′ → S

(not necessarily of finite type), S′, S locally noetherian.

This follows from condition (iii) of Proposition 3.3.2, thefacts
that an open immersion remains an open immersion and that a
flat morphism remains flat under base change.
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(4) f1, f2 étale⇒ f1×
S

f2 étale.

Follows from (2), (3) and the equality

f1×
S

f2 = ( f1×
S

IY2) ◦ (IX1×S f2).

(5) g ◦ f étale,g unramified⇒ f étale. 39

Let f : X→ Y andg : Y→ Z. The question being local, we may
assume from (iii) Proposition 3.3.2 that∆ = ∆(Y) : Y → Y×

Z
Y is

an open immersion, hence étale. By the base-changeX
f
−→ Y we

get∆(X) : X→ X×
Z
Y which again is étale by (3). The diagram:

X

g◦ f

��

X×
Z
Yoo

p2

��

�

Z oo
g Y

shows that the second projectionp2 : X×
Z
Y → Y is given by

(g◦ f )(Y); so, again by (3),p2 is also étale and from (2) we obtain

that f = p2 ◦ ∆(X) : X
∆(X)−−−→ X×

Z
Y −−→

p2
Y is étale.

(6) g ◦ f étale, f étale⇒ g étale.

The composite:Og f(x) ⇒ O f (x) → Ox is flat andO f (x) → Ox

is faithfully flat, and thusOg f(x) → O f (x) is flat. It is clear that
k( f (x))/k(g· f (x)) is a finite separable extension. FinallyM f (x)Ox = 40

Mx andMg· f (x)Ox =Mx = (Mg· f (x)O f (x))Ox; sinceO f (x) → Ox

is faithfully flat, it follows thatMg· f (x)O f (x) =M f (x).

(7) An étale morphism is an open map.

In fact, we prove more generally:

Proposition 3.3.4. A flat morphism is an open map.
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The proposition will follow as a consequence from the lemmasbe-
low. We first make the

Definition. A subsetE of a noetherian topological spaceX is said to be
constructibleif E is a finite union of locally closed sets inX.

Lemma 3.3.5. Let X be a noetherian topological space and E any set
in X. Then, E is constructible⇔ for every irreducible closed set Y of X,
E ∩ Y is either non-dense in Y or contains an open set of Y.

Proof. ⇒: SupposeE =
n⋃

i=1
(Oi ∩ Fi), Oi open,Fi closed inX. Then

E ∩ Y ∩ Y ⊂
n⋃

i=1
(Fi ∩ Y) for any closedY ⊂ X; if Y is irreducible with

E ∩ Y dense inY, this meansY ⊂ Fi ∩ Y for somei, i.e., Fi ⊃ Y; then
Y∩ E ⊃ (Oi ∩ Y) open inY.
⇐: We shall prove this by noetherian induction. LetE be the set of41

all closed setsF in X such thatE ∩ F is not constructible. IfE , ∅
choose a minimalF0 ∈ E . By replacingX by F0, we may assume that
for every closed setF properly contained inX, E ∩ F is constructible.
If X is reducible, sayX = X1 ∪ X2, X1, X2 both proper subsets ofX
and closed, thenE ∩ X1, E ∩ X2 are both constructible and hence so is
E = (E ∩ X1) ∪ (E ∩ X2). If X is irreducible, either

(i) E , X and soE = E ∩ E is constructible or

(ii) E ⊃ U , ∅, U open, so thatE = U ∪ (E ∩ (X − U)) is still
constructible. This contradiction shows thatE = ∅. Q.E.D.

�

Lemma 3.3.6. Let S be a noetherian prescheme and f: X → S a
morphism. Then the image, under f , of any constructible set is con-
structible.

Proof. Using the preceding lemma, the fact thatS is noetherian and by
passing to subschemes, irreducible components and so on, weare read-
ily reduced to proving the following assertion: ifX, S are both affine,
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reduced, irreducible and noetherian and iff : X → S is a morphism of
finite type such thatf (X) = S, then f (X) contains an open subset ofS.

If X = SpecB, S = SpecA, our assumptions mean thatA, B are42

noetherian integral domains and the ring-homomorphismA→ B defin-
ing f is then easily checked to be an injection. The lemma will then
follow from the following purely algebraic result. �

Lemma 3.3.7. Let A be an integral domain and B= A[x1, . . . , xn] an
integral A-algebra containing A. Then there exists a g∈ A such that for
every prime ideal pof A with g< p, there is a prime idealP of B such
thatP ∩ A = p.

Proof. Choose a transcendence baseX1, . . . ,Xk of B/A. Then the exten-
sionB = A[x1, . . . , xn] is algebraic overA′ = A[X1, . . . ,Xk]. By writing
down the minimal polynomials of thexi over A′ and by dividing out
these polynomials by a suitably choseng ∈ A, g , 0, we can make the
xi integral overA′

[
1
g

]
. Consider now the tower of extensions.

B
[

1
g

]

A′
[

1
g

]

A
[

1
g

]

A

If p is a prime ideal ofA such thatg < p then there is a primep′ of

A
[

1
g

]
lying over p. The prime idealp′ + (X1, . . . ,Xk) of A′

[
1
g

]
lies over

p. Now
[

1
g

]
is a finite extension ofA′

[
1
g

]
and by Cohen-Seidenberg,∃

a prime idealP′ of B
[

1
g

]
lying over p. The restrictionP of P′ to B

then sits overp. Q.E.D. �
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Lemma 3.3.8. Let f : X→ S be a morphism (of finite type) and T⊂ X 43

be an open neighbourhood of a point x∈ X. Assume that for every
s1 ∈ S such that f(x) ∈ (s1), there is a t1 ∈ T such that f(t1) = s1. Then
f (T) is a neighbourhood of f(x).

Proof. Since the question is local, we may assumeS noetherian and
then by lemma 3.3.6 it follows thatf (T) is constructible. We may then
write f (T) =

⋃
i=1

(Oi ∩ Fi); and by choosing only thosei, for which

f (x) ∈ Oi, we may say thatf (T) is closed in a neighbourhood off (x).
The hypotheses show thatf (T) is also dense in a neighbourhood off (x).
It follows that f (T) is itself a neighbourhood off (x). Q.E.D. �

Proof of Proposition 3.3.4.

In view of the lemma 3.3.8, it suffices to show that ifU ⊂ X is
an open neighbourhood ofx ∈ X, f (U) contains all generisations of
f (x). The generisations off (x) are the points of SpecO f (x) and those
of x are points of SpecOx. But Ox is O f (x)-faithfully flat and then it
is well-known for any prime idealp of O f (x), there is a prime-idealP
of Ox contracting top. U being open we have SpecOx ⊂ U. Hence
SpecO f (x) ⊂ f (U) (cf. Bourbaki, Alg. Comm. Ch. II,§ 2, n◦5, Cor. 4
to Proposition 11). Q.E.D.

3.4

A morphism f : S′ → S is said to be aneffective epimorphismif the44

sequence

S′′ = S′×
S

S′
p1 //
p2

// S′
f // S is exact

i.e., if the sequenceHom(S,Y) // Hom(S′,Y)
p∗1 //

p∗2

// Hom(S′′,Y) is

exact, as a sequence of sets,∀Y.

(We say that a sequence of setsE1
h1 // E2

h2 //

h′2

// E3 is exact ifh1

is an injection andh1(E1) = {x ∈ E2 : h2(x) = h′2(x)}).
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A morphism f : S′ → S is faithfully flat if it is flat and surjec-
tive. Our aim now is to show that any such morphism is an effective
epimorphism.

3.4.1 Some algebraic preliminaries; the Amitsur complex.A homo-
morphism of ringsf : A→ A′ defines a sequence:

A
f // A′

p1 //
p2

// A
′⊗

A
A′ = A′′

p21 //
p32 //
p31

//
A′⊗

A
A′⊗

A
A′ = A′′′

////
//
//

where p1(a′) = a′ ⊗ 1; p2(a′) = 1 ⊗ a′, p21(a′ ⊗ b′) = a′ ⊗ b′ ⊗ 1;
p31(a′ ⊗ b′) = a′ ⊗ 1⊗ b′; p32(a′ ⊗ b′) = 1⊗ a′ ⊗ b′ and so on.

We may then define homomorphisms ofA-modules: 45

∂0 = p1 − p2

∂1 = p21− p31+ p32

∂2 = p321− p421+ p431− p432 . . .

and so on. One then checks that∂i+1∂i = 0∀i; we thus get an augmented
cochain complex:

A −→
f

A′
∂0−−→ A′′

∂1−−→ A′′′
∂2−−→ A′′′′

∂3−−→ . . . .

This complex is called theAmitsur complex A′/A.

Lemma 3.4.1.1.If A
f
−→ A′ is faithfully flat, then

(i) A
∼−→ H0(A′/A)

(ii) Hq(A′/A) = (0)∀q > 0.

Proof. SupposeB is any faithfully flatA-algebra.
Consider then the complex

B′/B ≡ B⊗
A
(A′/A) ≡ B −−−→

1⊗ f
B′ = B⊗

A
A′

1⊗∂0−−−−→ B′′ = B′⊗
B

B′ = B⊗
A
A′′ →
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SinceB is A-faithfully flat, it is enough to prove thatH0(B′/B)
∼←− B 46

andHq(B′/B) = (0)∀q > 0. As a particular choice we may takeB = A′.

Then the homomorphismA′
f ′=1⊗ f
−−−−−−→ A′⊗

A
A′ = A′′ admits a section, i.e.,

∃σ : A′′ → A′ such thatσ ◦ f ′ = 1A′ , namely, the homomorphism:
a′ ⊗ b′ 7→ a′b′.

We may thus assume, without any loss of generality that the homo-

morphismA
f
−→ A′ admits a sectionσ : A′ → A such thatσ ◦ f = 1A:

A
f // A′

∂0 // A′′
∂1 // A′′′ . . .

∂2 // .

σ

]]

We construct now a homotopy operator in this complex, as follows:

A
f //

1A

��9
99

99
99

99
9 A′

p1 //
p2

//

σ

��

A′⊗
A
A′ = A′′

1⊗σ
��

p32
//

p21 //

p31
//
A′⊗

A
A′⊗

A
A′ = A′′′

1⊗1⊗σ
��

////////

A
f // A′⊗

A
A
∼−→ A′

p1 //
p2

// A′⊗
A
A′⊗

A
A
∼−→ A′′ // ////

(i) H0(A′/A) = ker∂0
∼←− A.

Let a′ ∈ A′ be such thatp1(a′) = p2(a′). Applying 1⊗ σ we get47

(1⊗ σ)(a′ ⊗ 1) = (1⊗ σ)(1⊗ a′) i.e. a′ ⊗ 1 = 1⊗ σ(a′) in A′⊗
A
A.

Under the canonical identificationA′⊗
A
A
∼−→ A′, this means that

a′ = f (σ(a′)) i.e. a′ ∈ f (A).

On the other hand,f (A) ⊂ ker∂0 and f being faithfully flat, is
injective. It follows that ker∂0

∼←− A.

(ii) By using the homotopy operator, one can show thatHq(A′/A) =
(0)∀q > 0; the proof is omitted. (We do not need it).

�
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3.4.2

Proposition 3.4.2.1.A faithfully flat morphism is also an effective epi-
morphism.

Proof. Case (a).S′ = SpecA′, S = SpecA are affine.

From local algebra, it follows that the ring homomorphismA
ϕ
−→ A′

defining f : S′ → S, is also faithfully flat. We have to show that, for
anyY, the sequence

(*) Hom(S,Y)→ Hom(S′,Y)⇉ Hom(S′×
S

S′,Y) is exact inEns.

(i) SupposeY = SpecB is affine.

Then the sequence (*) is equivalent to a sequence: 48

(∗)′ Hom(B,Z)→ Hom(B,A′)⇉ Hom(B,A′⊗
A
A′).

The exactness of this sequence (∗)′ now follows from assertion (i)
of lemma 3.4.1.1.

(ii) Let Y be arbitrary.

Let ϕ1 : S→ Y, ϕ2 : S→ Y be two morphisms such thatϕ1◦ f =
ϕ2◦ f . Sincef is a surjection, it is clear thatϕ1(s) = ϕ2(s)∀s ∈ S.

Choose a points ∈ S and a points′ ∈ S′ with f (s′) = s; let
y = ϕ1(s) = ϕ2(s) ∈ Y. Choose an affine open neighbourhood
SpecB of y ∈ Y and an elementθ ∈ A such thats ∈ SpecAθ and
ϕ1(SpecAθ) ⊂ SpecB, ϕ2(SpecAθ) ⊂ SpecB.

Set θ1
= ϕ(θ) ∈ A′. Then s′ ∈ SpecA′

θ′ , and f (SpecA′
θ′) ⊆

SpecAθ; and by (i) it follows thatϕ1 andϕ2, when restricted to
SpecAθ, define the same morphism of preschemes. Sinces ∈ S
was arbitrary, this proves that Hom(S,Y) → Hom(S′,Y) is injec-
tive.

Now, suppose thatϕ′ : S′ → Y is a morphism such that in 49
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S′′ = S′×
S

S′
p1 //
p2

// S1

ϕ′
��>

>>
>>

>>
>

f // S

Y.

We haveϕ′ ◦ p2 = ϕ
′ ◦ p1. We want to find a morphismψ : S→ Y

such thatϕ′ = ψ ◦ f .
In view of the injectivity established above, it is enough todefineψ

locally. Let s ∈ S and s′ ∈ S′ with f (s′) = s. Choose an affine open
neighbourhoodV of ϕ′(s′) in Y. Then the open neighbourhoodϕ′−1(V)
of s′ in S′ is saturated underf : in fact, let x1 ∈ ϕ′−1(V) and x2 ∈ S′

such thatf (x1) = f (x2). Then, there is ans′′ ∈ S′′ = S′×
S

S′ such that

p1(s′′) = x1 andp2(s′′) = x2; so

ϕ′(x1) = ϕ′ ◦ p1(s′′) = ϕ′ ◦ p2(s′′) = ϕ′(x2) and x2 ∈ ϕ′−1(V).

Now, f is flat and hence an open map (Prop. (3.3.4)) and so
f (ϕ′−1(V)) is an open neighbourhood ofs ∈ S. Choose an element
θ ∈ A such thats ∈ SpecAθ ⊂ f (ϕ′−1(V)); if θ1

= ϕ(θ) ∈ A′ then
f (SpecA′

θ′) = SpecAθ, and SpecA′
θ′ = f −1(SpecAθ) ⊂ ϕ′−1(V) since

ϕ′−1(V) is saturated underf .
We then have a diagram50

Spec(A′
θ′×Aθ

A′
θ′)

p2

��

p1

��
SpecA′

θ′

ϕ′

{{vvvvvvvvvvvvvvvv

f

��
V SpecAθ = f (SpecA′

θ′)

The problem of definingψ : SpecAθ → V is now a purely affine
problem and we are back to (i).
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Case (b). The general case.

Without loss of generality, we may assumeS affine. Sincef is a
morphism of finite type, there is a finite affine open covering (S′α)n

α=1
of S′. Consider the disjoint unionS∗ =

∐n
α=1 S′α. S∗ is affine and the

morphismS∗ → S defined in the obvious way is again faithfuly flat.
Let Y be an arbitrary prescheme andF be the (contravariant) functor
X 7→ Hom(X,Y). We have a commutative diagram:

F(S)OO

identity

��

// F(S′) // //

��

F(S′′)

��

F(S) // F(S∗) // // F(S∗×
S

S∗)

The lower sequence is exact by case (a); the first vertical mapis the 51

identity and the second vertical map is clearly injective. Usual diagram
- chasing shows that the upper sequence is also exact. Q.E.D.�

3.5 Étale coverings

Definition . A morphism of preschemes,f : X → S, is said to befi-
nite if, for every affine openU ⊂ S, f −1(U) is also affine and the ring
Γ( f −1(U),OX) is aΓ(U,OS)-moduleof finite type.

It is again enough to check the conditions for an affine open cover
of S.

(1) If S is locally noetherian andf : X → S is a finite morphism,
f∗(OX) is a coherentOS-Module.

(2) A finite morphism remains finite under a base-change.

In particular, if f : X → S is finite ands ∈ S any point, the
morphism fSpeck(s) : X×

S
k(s) → k(s) is finite and this means that

the fibre f −1(s) is finite, discrete.
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(3) A finite morphism is proper.

In face, a finite morphism is affine and is hence separated; it re-
mains finite under any base-change and so it is enough to show
that a finite morphism is closed.

By obvious reductions, we may takeX, S affine reduced and52

f (X) = S. If X = SpecB andS = SpecA, the corresponding
homomorphismA→ B is an injection andB is a finiteA-module.
Cohen-Seidenberg then shows thatf (X) = S.

(4) The following result holds:

Lemma 3.5.1(Chevalley). Let S be (as always) locally noetherian and
f : X → S a morphism of preschemes. Then the following conditions
are equivalent:

(a) f is finite

(b) f is proper and affine

(c) f is proper and f−1(s) is finite ∀s∈ S .

(For a proof see EGA Ch.III (a) Proposition (4.4.2)).

Definition. A morphism f : X → S is said to be ańetale coveringif it
is both étale and finite.

Let X
f
−→ S be an étale covering. Thenf∗(OX) is a locally freeOS-

Algebra of finite rank. For anys ∈ S, the fibre f∗(OX)⊗
S

k(s) is a finite

direct sum
ns∑
i=1

Ki of finite separable field extensionsKi of k(s). The rank

of f∗(OX) at s ∈ S is then given by
ns∑
i=1

[Ki : k(s)] which equals the

number of geometric points in the fibref −1(s). This is constant in each
connected component ofS; if S is connected, this constant rank is called53

thedegreeor therank of the coveringf . In this case, if this rank equals
1, then f is an isomorphism.
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Note .For étale coverings we have properties similar to (2), (3) (with
S′ → S notnecessarily of finite type) (4), (5) and (6) from 3.3.3; this
follows immediately from 3.3.3 and properties of coverings.

A word of caution:

This concept of an “étale covering” (French: revêtement ´etale)
should not be confused with the concept of a “covering in the étale
topology” (French: famille couvrante). The latter conceptis not treated
in this course. We also note that an étale covering, as defined here, is
not necessarily surjective ifS is not connected.





Chapter 4

The Fundamental Group

Throughout this chapter, we shall denote byS a locally noetheriancon- 54

nectedprescheme and byC = (E t/S) the category of étale coverings of
S. We note that the morphisms ofC will all be étale coverings.

(See 3.3.3 and the note at the end of Ch. 3).

4.1 Properties of the categoryC

(C0) C has an initial object∅ (the empty prescheme) and a final object
S.

(C1) Finite fibre-products exist inC , i.e., if X → Z andY → Z are
morphisms inC , thenX×

Z
Y exists inC (see (3.3.3))

(C2) If X, Y ∈ C , then the disjoint unionX
∐

Y ∈ C (obvious).

(C3) Any morphismu : X→ Y in C admits a factorisation of the form

X
u //

ui

��@
@@

@@
@@

@@
@ Y

Y1

/�
j

??����������

whereu1 is an effective epimorphism,j is a monomorphism and
Y = Y1

∐
Y2, Y2 ∈ C .

43
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In fact, u is an étale covering sou is both open and closed; if we55

write u(X) = Y1 we haveY = Y1
∐

Y2 andu = u1 : X → Y1 is then an
effective epimorphism

(see (3.4.2.1)).

Further, this factorisation ofu into an epimorphism and a monomor-
phism isessentially uniquein the sense that if

X
u //

u′1 ��@
@@

@@
@@

@@
@ Y

Y1

/�
j′

??����������

is another such factorisation, then there exists an isomorphismω : Y1→
Y′1 such thatu′1 = ω ◦ u1 and j = j′ ◦ ω.

(Because a factorisation into a product of an effective epimorphism
and a monomorphism is unique).

(C4) If X ∈ C andg is a finite group of automorphisms ofX acting,
say, to the right onX, then the quotientX/g of X by g exists inC

and the natural morphismX
η
−→ X/g is an effective epimorphism.

The quotient, if it exists, is evidently unique upto a canonical iso-
morphism; alsoX is affine overS and therefore the existence ofX/g has
only to be proved in the caseX, S affine, sayX = SpecA, S = SpecB
andG = the group ofB-automorphisms ofA corresponding tog. Then
SpecAG (AG is the ring ofG-invariants ofA) is the quotient we are look-
ing for. (Compare with Serre, Groupes algébriques et corpsde classes,
p. 57). Our aim now is to show thatX/g is actually inC . The ques-
tion is again local and we may assumeX = SpecA, S = SpecB, with56

B noetherian, andX/g = SpecAG as above.X → S is finite and so
X/g → S is also finite. It remains to show that this morphism is étale.
In order to do this, we first make some simplifications.

Suppose thatS′ → S is a flat affine base-change. We have a com-
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mutative diagram:

X′ = X×
S
S′

��

// Y′ = Y×
S
S′

��

// SpecB′ = S′

��
SpecA = X // X/g = SpecAG

= Y // SpecB = S.

g acts onX′ in the obvious way, as a group ofS′-automorphisms ofX′.
We assert thatY′ = Y×

S
S′ is the quotient ofX′ with respect to this action.

Indeed, we have an exact sequence ofB-algebras: 0→ AG → A →⊕
σ∈G

A, whereA→
⊕
σ∈G

A is the map given byA 7→ ∑
σ∈G

(a−aσ). SinceB′

is B-flat, we get an exact sequence: 0→ AG⊗
B

B′ → A⊗
B

B′ →
⊕
σ∈G

(A⊗
B

B′)

and this proves that the subring of invariants ofA⊗
B

B′ is AG⊗
B

B′; hence

our assertion.
Let y ∈ Y = X/g ands ∈ S be its image. Take forB′ the local ring

Os,S. Then there is a unique pointy′ ∈ Y′ = Y×
S
S′ overy and one has

Oy′,Y′ = Oy,Y; henceY → S is étale atY ⇔ Y′ → S′ is étale aty′. We 57

may thus assume thatS = SpecB, B a noetherian, local ring. In view of
the following lemma, we may assumeB complete.

Lemma 4.1.1. Let X
f
−→ S be a morphism and S′

ϕ
−→ S a faithfully flat

base-change. Then f is étale⇔ f(S′) is étale.

Proof. ⇒: is clear.
⇐: flatness off is straightforward. To prove non-ramification one

observes that in view of (5) (3.3.0), one hasΩX′/S′ = ϕ∗(ΩX/S); but ϕ
being faithfully flat,ΩX′/S′ = 0⇔ ΩX/S = 0; one now applies proposi-
tion 3.3.2. Q.E.D. �

Let x1, . . . , xn be the points ofX over s. By hypothesis eachk(xi)/
k(s) is a finite separable extension. We choose a sufficiently large finite
galois extensionK of k(s) such that eachk(xi) is imbedded inK. We
now need the
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Lemma 4.1.2. Let B be a noetherian local ring with maximal idealM
and residue field k. Let K be an extension field of k. Then∃ a noetherian
local ring C and a local homomorphismϕ : B → C such that (i)ϕ is
B-flat and (ii) C/MC � K. (see EGA. Ch. 0III , Prop. (10.3.1)).

In addition if [K : k] < ∞, we can chooseC to be a finiteB-algebra.58

(EGA. Ch. 0III , Cor. (10.3.2)).

By making such a base-changeB
ϕ
−→ C we may assume that each

k(xi) is trivial overk(s). Under these assumptions we getA =
r⊕

i=1
B, a fi-

nite direct sum of copies ofB. Under the action ofg, the set{x1, . . . , xn}
splits into disjoint subsets{x1, . . . , xl}, {xl+1, . . . , xm}, . . ., on each of
which g acts transitively. The corresponding decomposition ofA will

then be given byA = (
l⊕

i=1
B)

⊕
(

m⊕
i=l+1

B)
⊕

. . .. The action ofG on each

block, for instance, on a (b1, . . . , bl) ∈
l⊕

i=1
B, will then be just a permu-

tation. The subringAG will then be the direct sum∆1 ⊕ . . . ⊕ ∆α ⊕ . . .

where∆1 is the diagonal of the block
l⊕

i=1
B and so on. Each∆ is ev-

idently isomorphic toB. Our assertion thatX/g → S is étale is now
clear.

ThusX/g ∈ C ; the natural morphismX
η
−→ X/g is also then an étale

covering. Thereforeη will be an open map and thus ifη is not surjective
one could replaceY by the image ofη; this is clearly impossible. Hence
η is surjective and thus an effective epimorphism 3.4.2.1.

4.2

We shall now define a covariant functorF from C (E t/S) to the cate-59

gory of finite sets. We shall fix once and for all a points ∈ S and an
algebraically closed fieldΩ ⊃ k(s).

For any X ∈ C , F(X), by definition, will be the set of geomet-
ric points of X over s ∈ S, with values inΩ, i.e., is the set of allS-
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morphisms SpecΩ→ X for which the diagram is commutative.

SpecΩ //

��

X

��
Speck(s) // S

We observe that ifx ∈ X sits aboves ∈ S, then giving anS-
morphism SpecΩ → X whose image isx ∈ X is equivalent to giving a
k(s)-monomorphism ofk(x) intoΩ. Also note that for anyX ∈ C , F(X)
is a finite set whose cardinality equals the rank ofX overS.

Properties of the functor F.

(F0) F(X) = ∅ ⇔ X = ∅.

(F1) F(S) = a set with one element;

F(X×
Z
Y) = F(X) ×

F(Z)
F(Y), ∀X, Y, Z ∈ C .

(F2) F(X1
∐

X2) = F(X1)
∐

F(X2).

(F3) If X
u−→ Y is an effective epimorphism inC , the mapF(u) : 60

F(X)→ F(Y) is onto.

In fact, if y ∈ Y is a point aboves ∈ S and y = u(x), x ∈
X, then anyk(s)-monomorphism ofk(y) to Ω extends to ak(s)-
monomorphism ofk(x) toΩ.

(F4) Let X ∈ C andg a finite group ofS-automorphisms ofX (acting
to the right onX). Theng acts in a natural way (again to the right)
on F(X) as expressed by

SpecΩ→ X
σ∈g−−−→ X.

The natural mapη : X → X/g (see (C3)) defines a surjection
F(η) : F(X) → F(X/g) (see (F3)). In view of the commutativity
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of the diagram

SpecΩ // X

η
  A

AA
AA

AA
A

σ∈g // X
η

~~}}
}}

}}
}}

X/g

it follows thatF(η) descends to a surjectioñη : F(X)/g → F(X/g).
We claim that̃η is actually a bijection.This follows immediately
from the

Lemma 4.2.1. (i) g acts transitively on the fibres ofη.

(ii) Suppose y∈ Y = X/g and x∈ η−1(y). Let gd(x) be the subgroup61

{σ ∈ g : σ(x) = x} (called thedecomposition group ofx). Then
we have:

(a) k(x)/k(y) is a galois extension.

(b) the natural mapgd(x) → the galois group G(k(x)/k(y)) is
onto.

Proof. (i) We may assumeX = SpecA, Y = X/g = SpecAG as
before (both noetherian); also one knows thatA is finite onAG.
Let P, P1 be prime ideals ofA (i.e., points ofX) such thatP1 ,

σP ∀ σ ∈ G, while P ∩ AG
= P1 ∩ AG

= p. We may assume
P andP1 maximal (otherwise apply the flat base changeY ←
SpecOy,Y, wherey ∈ Y corresponds top). Then there is ana ∈
P1 such thata < σP∀σ (Chinese Remainder Theorem). Thus
b =

∏
σ
σ(a) < P; but b ∈ AG, so b ∈ AG ∩P1 = AG ∩P-

contradiction.

(ii) We have a diagram:

A // A/P ≃ k(x)

AG

OO

// AG/p ≃ k(y),

OO
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and we know thatk(x)/k(y) is a finite, separable extension. Let62

θ ∈ A be such thatk(x) = k(y)(θ). The polynomialf =
∏
σ

(T −σθ)

is in AG[T], hasθ as a root and splits completely inA[T]. The
reduction f of f mod p is in k(y)[T], hasθ as a root and splits
completely ink(x)[T]. It follows that k(x)/k(y) is normal, hence
galois.

Consider now the subgroupGd(P) of G corresponding togd(x).
We haveP , σ−1P ∀ σ < Gd(P) and by the Chinese Remain-
der Theorem we can choose aθ1 ∈ A such thatθ1 ≡ θ(modP)
andθ1 ≡ 0(modσ−1P), ∀σ < Gd(P).

We havek(x) = k(y)(θ1). Consider now the polynomialg =∏
σ

(T − σθ1) ∈ k(y)[T]. As θ1 is a root of g, for every ϕ ∈

G(k(x)/k(y)), ϕ(θ1) is also a root ofg; henceϕ(θ1) = σ(θ1) for
someσ ∈ G. But ϕ(θ1) , 0 and, by the choice ofθ1, σ(θ1) = 0
if σ < Gd(P); henceϕ(θ1) = σ(θ1) for someσ ∈ Gd(P), i.e.,
ϕ = σ for someσ ∈ Gd(P). Q.E.D.

�

(F5) If u : X → Y is a morphism inC such thatF(u) : F(X) → F(Y)
is a bijection, thenu is an isomorphism

From the fact thatF(u) is a bijection it follows (see the remark at63

the end of Ch. 3) that the rank ofu : X → Y is 1 at everyy ∈ Y, hence
(again by the same remark)u is an isomorphism.

A category which has the properties (C0), . . . , (C4) of 4.1 and from
which there is given a functorF into finite sets with the above properties
(F0), . . . , (F5) is called agalois category; the functorF itself is known
as afundamental functor.

4.3

Before we start our construction of the fundamental group ofa galois
category we motivate our procedure by two examples.
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Example 1.Let S be a connected, locally arcwise connected, locally
simply connected topological space andC the category of connected

coverings ofS; the morphisms ofC are covering maps. LetX
p
−→ S be

such a covering. Fix a points ∈ S; we defineF(X) = p−1(s). Then
(X, p) 7→ p−1(s) is a covariant functorF : C → Ens.

Each member ofC determines (upto conjugacy) a sub-group of the
fundamental groupΠ1(S, s); and to each subgroupH of Π1(S, s) there
corresponds a member ofC determiningH. To the subgroup{e} corre-
sponds, what is known as, the universal coveringS̃ of S; andΠ1(S, s) is
isomorphic to the group ofS-automorphisms of̃S, i.e., to the group of
covering transformations of̃S overS. Further we have the isomorphism
(in Ens):

HomC (S̃,X)
∼−→ F(X), ∀X ∈ C .

The functorF : C → Ens is thusrepresentablein the following64

sense.

Definition 4.3.1.A covariant functorG from a categoryC to Ens is
representableif ∃ an objectY ∈ C such that:

HomC (Y,X)
∼−→ G (X) ∀ X ∈ C .

Example 2.Let k be a field andΩ a fixed algebraically closed field
extension ofk. SetS = Speck andC = the category of connected étale
coverings ofS; any member ofC is of the form SpecK, whereK/k is a
finite separable field extension. For anyX ∈ C we defineF(X) = the set
of geometric points ofX with values inΩ. Then,F(X) ≃ Homk(K,Ωs)
is X = SpecK, whereΩs is the separable closure ofk inΩ. If Ωs is finite
overk, we can further writeF(X) ≃ HomC (SpecΩs,X) and the functor
F : C → (finite sets), defined above, will be representable. However
this isnot the case in general; out we can find an indexed, filtered family
(Ni)i∈I of finite galois extensions ofk, (namely, the set of finite galois
extensions contained inΩs) such that for anyX ∈ C , we can find an
i0 = i0(X) such thatF(X) ≃ HomC (SpecNi ,X), ∀i ≥ i0(X). In other
words, we may write

F(X) ≃ lim−−→
i∈I

HomC (SpecNi ,X), ∀X ∈ C



4.3. 51

and the family (SpecNi)i∈I is in fact a projective family of objects inC . 65

Suppose now thatC is any category andG : C → Ens is a covariant
functor. If X ∈ C and ξ ∈ G (X), we write, as a matter of notation,

G
ξ
−→ X. If G

ξ
−→ X, andG

η
−→ Y andX

u−→ Y is aC -morphism, we say
that the diagram

G
ξ //

η

��?
??

??
??

X

u
����

��
��

�

Y

is commutative ifG (u)(ξ) = η.

If G
ξ
−→ X, then for anyZ ∈ C , we have a natural map HomC (X,Z)

→ G (Z) defined byu 7→ G (u)(ξ).

Definition 4.3.2.We say thatG is pro-representableif ∃ a projective
system (Si , ϕi j )i∈I of objects ofC and elementsτi ∈ G (Si) (called the
canonical elements ofG (Si)) such that

(i) the diagrams

G
τi //

τ j ��?
??

??
??

Si

S j

ϕi j ( j≥i)

??~~~~~~~

are commutative.

(ii) for any Z ∈ C , the (natural) map 66

lim−−→
i∈I

HomC (Si ,Z)→ F(Z)

is bijective.

In addition, if theϕi j areepimorphismsof C , we say thatG is strictly
pro-representable.

Thus, our functorF in Example 2 is pro-representable. Example 1
and 2 show that representable and pro-representable functors arise nat-
urally in the consideration of the fundamental group.
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4.4 Construction of the Fundamental group

4.4.1 Main theorem

(1) Let C be a galois category with a fundamental functorF. Then
there exists a pro-finite groupπ (i.e., a groupπ which is a projec-
tive limit of finite discrete groups provided with the limit topol-
ogy) such thatF is an equivalence betweenC and the category
C (π) of finite sets on whichπ acts continuously.

(2) If C
F′−−→ C (π′) is another such equivalence, thenπ′ is continu-

ously isomorphic toπ and this isomorphism betweenπ andπ′ is
canonically determined upto an inner automorphism ofπ.

The profinite groupπ, whose existence is envisaged in assertion (1)67

above will be called thefundamental groupof the galois categoryC .
The theorem is a consequence of the following series of lemmas.

Definition 4.4.1.1.A categoryC is artinian if any “decreasing” se-
quence

T1←֓ j1 T2←֓ j2 T3←֓ j3 . . .

of monomorphisms inC is stationary, i.e., thejr are isomorphisms for
larger.

A (covariant) functorF : C → Ens isleft-exactif it commutes with
finite products i.e., ifF(X × Y) = F(X) × F(Y) and if, for everyexact

sequenceX
u // Y

u1 //
u2

// Z in C , the sequence

F(X)
F(u) // F(Y)

F(u1) //
F(u2)

// F(Z)

is exact as a sequence of sets.

If Y
u1 //
u2

// Z are morphisms inC , akernelfor u1, u2 in C is a pair

(X, u) with X ∈ C andu : X → Y in C such that X
u // Y

u1 //
u2

// Z
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is exact inC . Clearly a kernal is determined uniquely upto an isomor-
phism inC .

Lemma 4.4.1.2. Let C be a category in which finite products exists.68

Then finite fibre-products exist inC ⇔ kernels exist inC .

Proof. ⇒ : Let Y
u1 //
u2

// Z be morphisms inC . We have a commutative

diagram:
Z

Y

u1

88ppppppppppppp
Y

u2

ddIIIIIIIIII

Y×
Z
Y

p1

eeLLLLLLLLLLLL p2

;;xxxxxxxxx

(p1,p2)

!!C
CC

CC
CC

CC

(Y×
Z
Y) ×

(Y×Y)
Y

::uuuuuuuuuu

%%KKKKKKKKKKK
Y× Y

Y

diagonal

<<xxxxxxxxxx

and it easily follows that (Y×
Z
Y ×

(Y×Y)
Y is a solution for the kernal ofu1

andu2.

⇐ : SupposeX
f
−→ Z andY

g
−→ Z are morphisms in . Ifp andq are

the canonical projectionsX × Y
p
−→ X, X × Y

q
−→ Y, we have an exact

sequence:

ker(f p, gq) // X × Y
fp //
gq

// Z.

It follows that ker(f p, gq) is a solution for the fibre-productX×
Z
Y. 69

Q.E.D. �

In fact, we have shown that finite fibre products and kernels can be
expressed in terms of each other. Hence,F commutes with finite fibre-
products⇔ it is left-exact.
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Corollary . A fundamental functor is left-exact (see (F1))

Lemma 4.4.1.3.A galois category is artinian.

Proof. Let

T1←֓ j1 T2←֓ j2 . . .←֓ jr−1 Tr ←֓ jr Tr+1 . . .

be a decreasing sequence of monomorphisms inC . We have then:

Tr+1
jr−→ Tr is a monomorphism

⇔ Tr+1
∼−→
∆

Tr+1×
Tr

Tr+1

⇒ F(Tr+1)
∼−→
∆

F(Tr+1) ×
F(Tr )

F(Tr+1) (by (F1), (F5))

⇔ F(Tr+1)
F( jr )
−−−−→ F(Tr ) is a monomorphism.

Since theF(Tr ) are finite, this implies that theF( jr ) are isomor-
phisms for larger; we are through by (F5). Q.E.D. �

Lemma 4.4.1.4.LetC be a galois category with a fundamental functor70

F. Then F is strictly pro-representable.

Proof. With the notations of 4.3.2, consider the setE of pairs (X, ξ) with

F
ξ
−→ X. We orderE as follows:

(X, ξ) ≥ (X′, ξ′)⇔ ∃ a commutative diagram:

F
ξ //

ξ′   @
@@

@@
@@

@ X

~~~~
~~

~~
~~

X′

We claim thatE is filtered for this ordering; in fact, if (X, ξ), (X′, ξ′)



4.4. Construction of the Fundamental group 55

∈ E , in view of (F1) we get a commutative diagram:

X

F

ξ

66mmmmmmmmmmmmmmmmmmmmmmmmmm (ξ,ξ′) //

ξ′

((QQQQQQQQQQQQQQQQQQQQQQQQQQ X × X′

p′

!!D
DD

DD
DD

DD
DD

DD
D

p

==zzzzzzzzzzzzzz

X′

wherep andp′ are the natural projections.
We say that a pair (X, ξ) ∈ E is minimal in E if for any commutative 71

diagram

F
ξ //

η

��?
??

??
??

??
? X

Y
/�

j

??����������

with a monomorphismj, one necessarily has thatj is an isomorphism.

(*) Every pair inE is dominated, in this ordering, by a minimal pair
in E .

Observe thatC is artinian (Lemma 4.4.1.3).

(**) If ( X, ξ) ∈ E is minimal and (Y, η) ∈ E then au ∈ HomC (X,Y) in
a commutative diagram

F
ξ //

η

��?
??

??
??

??
? X

u
����

��
��

��
��

Y

is uniquely determined.
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In fact, if u1, u2 ∈ HomC (X,Y) such that the diagrams 72

F
η //

ξ ��?
??

??
??

Y

X

u1

??�������
and

F
η //

ξ ��?
??

??
??

Y

X

u2

??�������

are commutative then by (C1) and Lemma 4.4.1.2 ker(u1, u2) exists;
sinceF is left exact we get a commutative diagram

F
η //

ξ

��
ξ

##G
GGGGGGGGGGGG

GGG Y

ker(u1, u2) � �

j
// X

u1

OO

u2

OO

with a monomorphismj. As (X, ξ) is minimal j must be an isomor-
phism, i.e.,u1 = u2.

From (*), (**) it follows that the systemI of minimal pairs ofE is
directed.

If (X, ξ) ∈ I , (Y, η) ∈ E andu ∈ HomC (Y,X) appears in a commuta-
tive diagram

F
ξ //

η

��?
??

??
??

??
? X

Y

u

??����������

thenu must be an effective epimorphism.73

In fact, be (C3) we get a factorisation

Y
u //

u1

��?
??

??
??

??
??

X1
∐

X2 = X

X1
, �

j

::ttttttttttttt
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with an effective epimorphismu1 and a monomorphismj. By (F2) and
(F3) we then obtain a commutative diagram:

F
ξ //

ξ

''OOOOOOOOOOOOOO

η

��.
..

..
..

..
..

..
..

X = X1
∐

X2

X1
+ �

j

99rrrrrrrrrrr

Y

u1

??~~~~~~~

By minimality of (X, ξ), it follows that j is an isomorphism; thusu
is an effective epimorphism. In particular:

*** The structure morphisms occurring in the projective family I are
effective epimorphisms.

Consider now the natural map

lim−−→
i∈I

HomC (Si ,X)→ F(X), X ∈ C .

By (*) this is onto; by (**) it is injective. From (***) it thusfollows 74

thatF is strictly pro-representable. Q.E.D. �

Definition 4.4.1.5.Let C be a category with zero (∅) in which disjoint
unions exist inC . An X ∈ C is connectedin C ⇔ X , X1

∐
X2 in C

with X1, X2 , ∅.

Note. In (E t/S), a prescheme is connected⇔ it is connected as a topo-
logical space.

With the notations of the preceding lemma, we have:

Lemma 4.4.1.6. (i) (X, ξ) ∈ E is minimal⇔ X is connected inC .

(ii) If X is connected inC , then any u∈ HomC (X,X) is an automor-
phism.
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(iii) For any X∈ C , Aut X acts on F(X) as follows:

F
ξ
−→ X

σ∈Aut X−−−−−−→ X. It X ∈ C is connected, then for anyξ ∈ F(X)
the mapAut X → F(X) defined by u7→ F(u)(ξ) = u ◦ ξ, is an
injection.

Proof. (i) SupposeX = X1
∐

X2 in C , X1, X2 , ∅ and that (X, ξ) ∈
E ; thenξ ∈ F(X) = F(X1)

∐
F(X2) say,ξ ∈ F(X1).

We then have a commutative diagram

F
ξ //

ξ
  @

@@
@@

@@
@@

@ X

X1

/�
j

??~~~~~~~~~~

with a monomorphismj which isnotan isomorphism. Thus (X, ξ)75

is not minimal.

On the other hand, letX ∈ C be connected and (X, ξ) ∈ E . Sup-
pose we have a commutative diagram:

F
ξ //

η

��?
??

??
??

??
? X

Y
/�

j

??����������

with a monomorphismj. By (C3) we get a factorisation:

Y
j //

j1
��?

??
??

??
??

??
X = X1

∐
X2

X1
, �

j2

::ttttttttttttt

with an effective epimorphismj1 and a monomorphismj2. As
j is a monomorphism, so isj1 and thus j1 is an isomorphism;
sinceX is connected,X2 = ∅ and one gets thatj = j2 ◦ j1 is an
isomorphism.
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(ii) As X is connected, it follows by (C3) that u is an effective epi-
morphism; by (F3), F(u) : F(X) → F(X) is onto and thus is a
bijection (F(X) finite). By (F5) it follows thatu ∈ Aut X.

(iii) Let u1, u2 ∈ Aut X such thatF(u1)(ξ) = F(u2)(ξ), i.e., ξ ∈ 76

ker(F(u1), F(u2)) = F(ker(u1, u2)) (F is left-exact). We thus have
a commutative diagram

F
ξ //

ξ′
!!D

DD
DD

DD
DD

DD
X

u1 //
u2

// X

ker(u1, u2)
.
�

j

==zzzzzzzzzzz

with a monomorphismj; as (X, ξ) is minimal by (i), j is an iso-
morphism, in other words,u1 = u2. Q.E.D.

�

We briefly recall now the example 2 of 4.3. Assertion (iii) of the
above lemma simply says in this case that ifK/k is a finite separable ex-
tension field and ifξ ∈ Homk(K,Ω), then the map AutK → Homk(K,Ω)
given byu 7→ ξ ◦ u is injective. We know thatK/k is galois⇔ this map
is also onto. Following this, we now make the

Definition 4.4.1.7.A connected-objectX ∈ C is galois if for any ξ ∈
F(X), the map AutX → F(X) defined byu 7→ u ◦ ξ is a bijection.
Note that this is equivalent to saying that the action of AutX on F(X) is
transitive. Also observe that this definition is independent ofF because
the cardinality ofF(X) is the degree of the coveringX overS; the action
is already effective sinceX is connected (by (iii), Lemma 4.4.1.6). 77

Lemma 4.4.1.8. If F
η
−→ Y, then there is a galois object X∈ C , a

ξ ∈ F(X) and a u∈ HomC (X,Y) such that the diagram

F
ξ //

η

��?
??

??
??

??
? X

u
����

��
��

��
��

Y
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is commutative. In other words, the system I1 of galois pairs ofE is
cofinal in E .

Proof. Let (Si)i∈I be a projective system of minimal objects ofC such
that

F
∼←− lim←−−

i∈I
HomC (Si , ∗).

Letη1, . . . , ηr be the elements ofF(Y). We can choosei large enough
such that asu varies over HomC (Si ,Y), theu ◦ τi give all theη′s (τi is
the canonical element ofF(Si)). We then get:

F
τi−→ Si

α−→ Yr
= Y × . . . × Y︸       ︷︷       ︸

r times

pj−−→ Y

wherep j is the jth canonical projectionYr → Y; the elementsp j ◦α◦τi ,
1 ≤ j ≤ r, are precisely the elementsη1, . . . , ηr of F(Y). By (C3) we get78

a factorisation:
Si

α //

α1

��?
??

??
??

??
? Yr

X
/�

β

??~~~~~~~~~~

with a monomorphismβ and an effective epimorphismα1. We claim
thatX is galois.

(i) X is connected.

SupposeX = X1
∐

X2, X1, X2 in C , , ∅; the elementα1 ◦ τi ∈
F(X1), say. We can then choose aj large enough for us to get a
commutative diagram:

Si
α1 // X = X1

∐
X2

F

τi

??��������

τ j ��?
??

??
??

? X1
+ �

α′

99rrrrrrrrrrr

S j

α′

>>~~~~~~~

ϕi j

OO
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Henceβ′ ◦ α′ = α1 ◦ ϕi j is an epimorphism, which is absurd.

(ii) Setξ = α1◦τi ∈ F(X). We shall prove that the map AutX→ F(X) 79

defined byu 7→ u ◦ ξ is onto.

Let ξ′ ∈ F(X); we may assumei is so large that we get a commu-
tative diagram:

X

F

ξ

77pppppppppppppppppppppp τi //

ξ′

''NNNNNNNNNNNNNNNNNNNNNN Si

α′1

��>
>>

>>
>>

>>
>>

>

α1

@@������������

X

Our aim is to find aσ ∈ Aut X such thatα′1 = σ ◦ α1. Since
X is connected,α′1 is also an effective epimorphism. Since the
manner in which a morphism inC is expressed as the composite
of an effective epimorphism and a monomorphism is essentially
unique, we will be through if we find aρ ∈ Aut Yr such that the
diagram

X � � β // Yr

ρ

��

F

ξ

77pppppppppppppppppppppp τi //

ξ′

''NNNNNNNNNNNNNNNNNNNNNN Si

α′1

��>
>>

>>
>>

>>
>>

>

α1

@@������������

X � � β // Yr

is commutative. By assumption the elementsp1 ◦β ◦ ξ, 1 ≤ j ≤ r, 80
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are all the distinct elements ofF(Y); so the morphismsp j ◦ β ◦α1

are all distinct. This means that thep j ◦ β are all distinct; since
α′1 is an effective epimorphism thep j ◦ β ◦ α′1 are all distinct; and
asX is connected andβ is a monomorphism, it follows that the
p j ◦ β ◦ ξ′ are all distinct and therefore form the setF(Y).

If we setp j◦β◦ξ = η j , 1 ≤ j ≤ r, andp j◦β◦ξ′ = ηρ( j), 1 ≤ j ≤ r, we
get a permutationρ of the set{1, 2, . . . , r}; this permutation determines
an automorphism ofYr with the required property. Q.E.D. �

By this lemma we may clearly assume now thatF is strictly pro-
represented by a projective system (Si) of galois objects ofC .

Let gi = Aut Si andθi be the bijectiongi → F(Si ) defined byu 7→
u ◦ Ci whereCi is the canonical element ofF(Si). For j ≥ i, we define
ψi j : g j → gi as the composite

g j
θ j−→ F(S j)

F(ϕi j )−−−−→ F(Si)
θ−1

i−−→ gi .

For anyu ∈ g j , ψi j (u) is the uniquely determined automorphism of
Si which makes either one (and hence also the other) of the diagrams81

Si
ψi j (u)

// Si

F

τi
88qqqqqqqq

τ j &&LLLLLLLL

S j u
// S j

ϕi j

OO Si
ψi j (u)

// Si

S j

ϕi j

OO

u
// S j

ϕi j

OO

commutative. It follows from this easily that theψi j are group homo-
morphisms.

We thus obtain a projective system{gi , ψi j }i∈I of finite groups with
eachψi j surjective. Denote by{πi , ψi j }i∈I the projective system of the
opposite groups. The groupπ = lim←−−i∈I

πi with the limit topology is pro-
finite and we shall prove that it is the fundamental group of the galois
categoryC ; we denote it byπ1(S, s) whenC andF are as in 4.1 and
4.2.
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πi acts on HomC (Si ,X) to the left and henceπ acts continuously on
the set lim−−→i

HomC (Si ,X)
∼−→ F(X), to the left. SinceF(X) is finite, the

action ofπ on F(X) comes from the action of someπi on F(X).

4.4.1.9 We shall find it convenient now to introduce informally the no- 82

tion of the procategory ProC of C . An object of ProC = (called a
pro-object ofC ) will be a projective system̃p = (Pi)i∈I in C . If P̃,
P̃′ = (P′j) j∈J are pro-objects ofC , we define Hom(̃P, P̃′) as the double
limit lim←−− j∈J

lim−−→i∈I
HomC (Pi ,P′j). An object ofC will be considered an

object of ProC in a natural way.
We may look at a pro-representable functor onC , as a functor “rep-

resented” in a sense by a pro-object ofC . For instance, in the case of
4.4.1.4, we have:

F(X)
∼←− lim−−→

i∈I
HomC (Si ,X), ∀X ∈ C

≃ HomProC (S̃,X)

whereS̃ is the pro-object (Si)i∈I of C .
Also for any i ∈ I , HomProC (S̃,Si) ≃ HomC (Si ,Si) = gi and we

may then write:

g = lim←−−
i

gi = lim←−−
i

HomC (Si ,Si)

= lim←−−
i

HomProC (S̃,Si) = HomProC (S̃, S̃)

and hence= AutProC S̃.
If we call S̃ a pro-representative ofF (in the caseC = (E t/S) we 83

call it a universal coveringof S) thenπ is the opposite of the group of
automorphisms of̃S.

Lemma 4.4.1.10.Let E ∈ C (π); then ∃ an object G(E) ∈ C , and a
C (π)-isomorphismγE : E→ FG(E) such that the mapHomC (G(E),X)
→ HomC (π)(E, F(X)) given by u7→ F(u)◦γE is a bijection for all X∈ C .
The assignment E7→ G(E) can be extended to a functor G: C (π)→ C
such that F and G establish an equivalence ofC andC (π).
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Proof. If E =
∐

Ei is a decomposition ofE into connected sets inC (π)
and ifG(Ei) are defined we may defineG(E) =

∐
G(Ei). We may thus

assume thatπ acts transitively onE. Fix an elementE ∈ E and consider
the surjectionπ → E defined byσ 7→ σ · E . As E is finite, there is ani
such that the diagram

π //

��?
??

??
??

??
??

E

πi

??~~~~~~~~~~

(π → πi is the natural projection andπi → E is the mapσ 7→ σ · E ) is
commutative. LetHi ⊂ πi be the isotropy group ofE in πi. It is easily
proved that the setπi/Hi of left-cosets ofπimod·Hi is C (π)-isomorphic
to E. We then define:G(E) = G(πi/Hi) = Si/H0

i , the quotient ofSi by84

the oppositeH0
i of Hi (remark: H0

i ⊂ gi ⊂ Aut Si). By (F4) we have:

F(G(E)) = F(Si/H0
i )

∼←− F(Si)/H0
i ≃ πi/Hi ≃ E, and hence aC (π)-

isomorphismγE : E → FG(E). If j ≥ i andH j ⊂ π j is the isotropy
group ofE in π j, then we have aC -morphismS j/H0

j → Si/H0
i ; since

F(S j/H0
j ) → F(Si/H0

i ) is a C (π)-isomorphism, it follows from (F5)

that S j/H0
j

∼−→ Si/H0
i and thatG(E) is independent of the choice ofi

(upto aC -isomorphism).
Let X ∈ C . Consider the map

ω : HomC (G(E),X)→ HomC (π)(E, F(X))

u 7→ F(u) ◦ γE

(i) ω is an injection:

Let u1, u2 ∈ HomC (G(E),X) be such thatF(u1)◦γE = F(u2)◦γE.
But γE : E→ FG(E) is an isomorphism and so ker(F(u1), F(u2))
֒→
�

FG(E), i.e., F(ker(u1, u2))֒→
≃

FG(E) (F is left-exact). It fol-

lows from (F5) that ker(u1, u2)֒→
≃

G(E), in other words,u1 = u2.

(ii) ω is a surjection.85
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Let E
α−→ F(X) be anyC (π)-morphism; putδ = α(E ) ∈ F(X).

The ProC (π)-morphismδ : S̃→ X can be factored through some
Si :

S̃
δ //

τi

��>
>>

>>
>>

>>
> X

Si

δi

??����������

Let H′i be the isotropy group ofδi in πi thenH′i ⊃ Hi whereHi

is as before (takei large enough). By the construction ofG(E) =

Si/H0
i , we have a morphism

Si

H0
i

→ X making the diagram

S̃
τi // Si

δi //

!!C
CC

CC
CC

CC
CC

X

Si/H0
i

==|||||||||||

commutative; one easily checks that this morphism goes toα un-
derω. It only remains to show that the assignmentE 7→ G(E)
can be extended to a functor. LetE, E′ ∈ C (π) andθ ∈ HomC (π)

(E,E′). To the compositeγE′ ◦θ : E→ FG(E′) there corresponds86

auniqueθ ∈ HomC (G(E),G(E′)) such that the diagram

E
θ //

γE

��

E′

γE′

��
FG(E)

F(θ)
// FG(E′)

is commutative. We setG(θ) = θ. It follows easily thatG is a
covariant functor fromC (π) to C .

One now checks that there are functorial isomorphisms

Φ : IC → G ◦ F
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and Ψ : IC (π) → F ◦G,

such that, for anyX ∈ C andE ∈ C (π),

F(X)
F(Φ(X))−−−−−−→ FGF(X)

Ψ
−1(F(X))−−−−−−−−→ F(X)

and G(E)
G(Ψ(E))−−−−−−→ GFG(E)

Φ
−1(G(E))−−−−−−−−→ G(E)

and the identity maps.
This completes the proof of assertion (1) of Theorem (4.4.1). �

Lemma 4.4.1.11.Let C be a galois category and F, F′ be two funda-87

mental functorsC → (finite sets). Supposeπ, π′ are the profinite groups
defined by F, F′ respectively as above; thenπ andπ′ are continuously
isomorphic and this isomorphism is canonically determinedupto an in-
ner automorphism ofπ.

Proof. We know thatF : C → C (π) is an equivalence. ReplacingF′

by F′ ◦G (with G as before) we can assume thatC = C (π), thatF is the
trivial functor identifying an object ofC (π) with its underlying set and
π itself is the pro-object pro-representing this functor. Let T̃ ∈ ProC (π)
pro-representF′; first we show thatπ

∼−→ T̃ in ProC .
In order to do this, let (T j) j∈J be a projective family of galois objects

(with respect toF′) of C such that̃T = lim←−− j
T j; we denote the canonical

mapsT j → Ti by qi j andT̃ → T j by q j . Let t j ∈ T j be a coherent system
of points and consider the continuous mapsα j : π ∈ T j determined by
α j(e) = t j ; there exists a continuousα : π→ T̃ such that

π
α //

α j

��>
>>

>>
>>

>>
>> T̃

qj

����
��

��
��

��

T j

is commutative. We haveα(e) = t̃ = (t j) ∈ T̃. TheT j are connected,
henceα j transitive and asπ is compact it follows thatα is onto. Let88

H be the isotropy group of̃t, then we haveπ/H
∼−→ T̃. (π/H is the set
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of left-cosets ofπmod.H) and this is an isomorphism of topological
spaces (it is a continuous map of compact Hausdorff spaces). However
F′ = HomProC (T̃, ∗) and then clearlyF′(X) = XH (the points ofX
invariant underH). We know thatF′(X) = ∅ ⇔ X = ∅; from this it
follows thatH = (e) (take forX the πi for larger and largeri). Hence
α : π

∼−→ T̃ is an isomorphism of topological spaces. Our aim is to show
that this is an isomorphism in ProC .

For this it is enough to show the following: ifβ : T̃ → π isα−1 and if
pi : π→ πi are the canonical maps then everyβi = pi ◦ β : T̃ → πi must
factor through someT j . In other words, we must find some morphism
T j → πi making the diagram

T̃

βi

��>
>>

>>
>>

>>
>>

β //

qj

��

π

pi

��
T j // πi

commutative. For this we must show that giveni, ∃ j ∈ J such that 89

for every t ∈ T j, ∃ an s ∈ πi such thatq−1
j (t) ⊂ β−1

i (s). Since the

setsβ−1
i (s) are open we can find for every pointx ∈ β−1

i (s) an open
neighbourhoodUx of the formq−1

j (tx) for somejx ∈ J andtx ∈ T jx, such

thatUx ⊂ β−1
i (s). SinceT̃ is compact,∃ a finite coveringUx1, . . . ,UxN

of T̃ of this type andj > max(jx1, . . . , jxN ) satisfies our requirements.
This shows thatπ

∼−→ T̃ in ProC , and hence the map

π′0 = AutProC T̃ → AutProC π = π
0

ρ 7→ β ◦ ρ ◦ α
is a group isomorphism; it remains to be shown that this map iscontin-
uous and hence a homeomorphism. Take a fixedγ0

= β ◦ ρ0 ◦ α in π,
somei ∈ I and consider the commutative diagram

π

pi

��

γ0
// π

pi

��
πi

γ0
i // πi
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Let U be the neighbourhood ofγ0 consisting of allγ ∈ π such that90

pi ◦ γ = γ0
i ◦ pi . We want to find a neighbourhoodV of ρ0 such that

β ◦ ρ ◦ α ∈ U ∀ ρ ∈ V. There is an indexj ∈ J andl ∈ I and morphisms
making all the following diagrams

π
α //

p1

��

T̃
ρ0

//

qj

��

T̃

qj

��

β // π

pi

��

πl

pl

��

// T j
ρ0

j // T j

��@
@@

@@
@@

@@
@

πi
γ0

i // πi

commutative.
Consider allρ : T̃ → T̃ such thatq j ◦ ρ = ρ0

j ◦ q j ; theseρ form a

neighbourhoodV of ρ0 andβ◦ρ◦α ∈ U ∀ ρ ∈ V. Hence we are through.
Finally we observe that the isomorphismπ → π′ is fixed as soon

asα : π → T̃ is fixed and this is in turn fixed by the choice oft̃ =
(t j) ∈ T̃. By a different choice of̃t we obtain an isomorphismπ → π′

which differs from the first one by an inner automorphism ofπ (or π′).
Q.E.D. �

Remark 4.4.1.12.One can, in fact, show that ProC (π) is precisely the91

category of compact, totally disconnected (Hausdorff) topological spa-
ces on whichπ acts continuously.



Chapter 5

Galois Categories and
Morphisms of Profinite
Groups

5.1
92

Supposeπ andπ′ are profinite groups andu : π′ → π a continuous ho-
momorphism. Thenu defines, in a natural way, a functorHu : C (π) →
C (π′); andHu being the identity functor on the underlying sets is fun-
damental.

On the other hand, letC , C ′ be galois categories,π′ a profinite group
andH : C → C ′, F′ : C ′ → C (π′) be functors such thatF = F′ ◦ H
is fundamental. Then we can choose a pro-objectS̃ = {Si , ϕi j }i∈I of C

such that,∀X ∈ C , F(X)
∼←− HomProC (S̃,X). Moreover we may assume

that theSi are galois objects ofC , therefore theF(Si) are principal ho-
mogeneous spaces under the action of theπi (on the right) (notations
from Ch. 4) and if we identifyF(Si ), by means of the canonical el-
ementτi , with πi then the mapsF(ϕi j ) = ψi j : F(S j) → F(Si) are
group homomorphisms (see Ch. 4). However, in the present situation
theF(Si) are not merely sets but are objects ofC (π′); as such, the group
π′ acts continuously upon the sets to the left, and this action commutes
with the right-action of theπi. This gives a continuous homomorphism

69
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ui : π′ → πi determined by the condition that forσ′ ∈ π′ theui(σ′) is
the unique element ofπi such thatσ′ · τi = τi · ui(σ′) (τi is the canonical93

element ofF(Si)); for j ≥ i we clearly have:ψi j ◦ u j = ui ; thus, we
obtain a continuous homomorphism thus, we obtain a continuous ho-
momorphismu : π′ → lim←−−i

πi = π andu corresponds toH if we identify
C with C (π).

Example.We shall apply the above to the particular caseC = (E t/S),
C ′ = (E t/S′) whereS, S′ are, as usual locally noetherian, connected
preschemes. Supposeϕ : S′ → S is a morphism of finite type and
s′ ∈ S′, s = ϕ(s′) ∈ S. LetΩ be an algebraically closed field contain-
ing k(s′). We define functorsF : C → {Finite sets} and F′ : C ′ →
{Finite sets} by defining:

F(X) = HomS(SpecΩ,X),X ∈ C ,

F′(X′) = HomS′(SpecΩ,X′),X′ ∈ C ′.

Denote byπ andπ′ the fundamental groupsπ1(S, s) andπ1(S′, s′).
Corresponding to the morphismϕ : S′ → S, we obtain a functor

Φ : C → C ′ given byX 7→ X×
S

S′. We then have:

F′(X×
S

S′) = Homs′(SpecΩ,X×
S
S′)

≃ Homs(SpecΩ,X) = F(X).

ThusF = F′ ◦ Φ; in view of the fact thatF is fundamental and the94

equivalencesC F∼C (π), C ′
F∼C (π′), we obtain a continuous homomor-

phismπ′ → π.

5.2

In this section, we shall correlate the properties of a homomorphism
u : π′ → π and those of the corresponding functorHu : C (π)→ C (π′).

5.2.1 Supposeu : π′ → π is onto; for any connected objectX of C (π)
(i.e., π acts transitively onX) anyπ-morphismπ → X defined by, say,
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e 7→ x is onto and therefore so is the mapπ′ → X defined bye′ 7→ x; in
other words,Hu(X) is a connected object ofC (π′).

Conversely, suppose that for any connectedX ∈ C (π), the object
Hu(X) is again connected inC (π′). Write π = lim←−−i

πi where theπi are
finite groups and the structure-homomorphismsπ j → πi, j ≥ i, are all
onto; this implies that theπ → πi are all onto and by our assumption
then all theπ′ → πi are onto. Sinceπ andπ′ are both profinite it follows
thatu : π′ → π is onto. Thus:u : π′ → π is onto⇔ for any connected
X ∈ C (π), the object Hu(X) is connected inC (π′).

5.2.2 A pointed objectof C (π) is, by definition, a pair (X, x) with X ∈ 95

C (π) andx ∈ X. By the definition of the topology onπ, it is clear that
giving a pointed, connected object ofC (π) is equivalent to giving an
open subgroupH of π; the object isπ/H = set of left-cosets ofπmodH
and the point is the classH. A final object ofC (π) is a pointec on which
π acts trivially. We say that anX ∈ C (π) has a section if there is aC (π)-
morphism from a final objectec to X; giving a section ofX is equivalent
to giving a point ofX, invariant under the action ofπ. A pointed object
(X, x) of C (π) admits a pointed section (i.e.,ec is mapped ontox)⇔ x
is invariant underπ.

Supposeu : π′ → π is a homomorphism andH is an open subgroup
of π such thatu(π′) ⊂ H. Let (X, x) be the pointed, connected object of
C (π) determined byH. Then, in the action ofπ′ on Hu(X), x remains
invariant, i.e., to say, the pointed object (Hu(X), x) of C (π′) admits a
pointed section. The converse situation is clear. Thus:

For an open subgroup H ofπ, one has u(π′) ⊂ H ⇔ Hu(π/H) admits
a pointed section inC (π′).

5.2.3 We say that anX ∈ C (π) is completely decomposedif X is a
finite disjoint sum of final objects ofC (π), i.e., if the action ofπ on X is
trivial.

Supposeu : π′ → π is trivial, then for anyX ∈ C (π), Hu(X) is 96

completely decomposed inC (π′). Conversely, assume that for anyX ∈
C (π)Hu(X) is completely decomposed inC (π′). Write π = lim←−−i

πi as
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usual; by assumption, each compositeπ′ → π → πi is trivial. Hence
u : π′ → π is also trivial. Thus:

u : π′ → π is trivial ⇔ for any X ∈ C (π), Hu(X) is completely
decomposed inC (π′).

5.2.4 Let H′ be an open subgroup ofπ′ and X′ ∈ C (π′) the con-
nected, pointed object defined byH′. Assume that keru ⊂ H′; then
u(π′)/u(H′) ≃ π′/H′ in C (π′). This means thatu(H′) is a subgroup
of finite index of the pro-finite groupu(π′) and hence is open inu(π′).
Sinceπ′ is compact andπ Hausdorff we can find an open subgroupH of
π such thatH ∩ u(π′) ⊂ u(H′).

Consider now the connected, pointed objectX = π/H of C (π). De-
note byHu(X)0 the C (π′)-component of the pointed objectHu(X) of
C (π′), containing the distinguished point ofHu(X). There exists then an
open subgroupH′1 of π′ such thatHu(X)0 ≃ π′/H′1 in C (π′). We claim
that H′1 ⊂ H′; in fact, u(H′1) ⊂ H and sou(H′1) ⊂ H ∩ u(π′) ⊂ u(H′),
henceH′1 ⊂ u−1(u(H′1)) ⊂ u−1(u(H′)) = H′, since, by assumption,H′ is
saturated underu.

Thus, there is a pointedC (π′)-morphismHu(X)0 ≃ π′/H′1→ π′/H′97

≃ X′. If, on the other hand, we assume that∃ a pointed, connected
objectX of C (π) such that we have a pointedC (π′)-morphismHu(X)0 ≃
π′/H′1 → X′ ≃ π′/H′, then, we must haveH′1 ⊂ H′ and hence keru ⊂
H′1 ⊂ H′. If u is surjective, then we can say thatHu(X) ≃ X′ (see
5.2.1). Also keru ⊂ H′ is a relation independent of the choice of the
distinguished point inX′ ≃ π′/H′. Thus:

keru ⊂ H′ ⇔ ∃ a connected object X ofC (π) and aC (π′)-mor-
phism of a connectedC (π′)-component of Hu(X) to X′ = π′/H′. If u is
onto then X′ = π′/H′ ≃ Hu(X) for a connected object X∈ C (π).

In particular:
u is injective⇔ for every connected X′ ∈ C (π′), there is a connected

X ∈ C (π) and aC (π′)-morphism from aC (π′)-component of Hu(X) to
X′.

5.2.5 Let π′
u′−→ π

u′′−−→ π′′ be a sequence of morphisms of profinite
groups. From 5.2.3 and 5.2.4 we obtain the following necessary and
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sufficient conditions for the sequence to be exact:

(a) u′′ ◦ u′ is trivial ⇔ for any X′′ ∈ C (π′′), Hu′ ◦ Hu′′(X′′) is com- 98

pletely decomposed inC (π′).

(b) Imu′ ⊃ keru′′ ⇔ for any open subgroupH of π, with H ⊃ Im u′,
we also haveH ⊃ keru′′ ⇔ for any connected pointed object X
of C (π) such that Hu′(X) admits a pointed section inC (π′), there
is a connected object X′′ ∈ C (π′′) and aC (π)-morphism of a
C (π)-component of Hu′′(X′′) to X.

5.2.6 Let C be a galois category with a fundamental functorF. Let
S̃ = (Si)i∈I be a pro-object ofC with usual properties (in particular,Si

are galois) pro-representingF. Let π be the fundamental group ofC

determined byF. We know then thatC F∼C (π).
Let now T ∈ C be a connected object andt ∈ F(T) be fixed for

our considerations. We form the categoryC ′ = C |T; it is then readily
checked thatC ′ satisfies the axioms (C0), . . . , (C4) of Ch. IV. We have
an exact functorP : C → C ′ defined byX 7→ X × T. We now define
a functorF′ : C ′ → {Finite sets} by setting, for anyX ∈ C ′, F′(X) =
inverse image oft under the mapF(X) → F(T). Again it is easily
checked thatC ′, equipped withF′, is galois. A cofinal subsystem̃S′

of S̃ is defined by the condition:Si ∈ S̃′ ⇔ (Si , τi) dominates (T, t) in
the sense of Ch. 4. AnSi ∈ S̃′ can be considered in the obvious way99

as an object ofC ′; it is then easily shown that they are galois inC ′ and
the pro-object̃S′ of C ′ pro-representsF′ (To do the checking one may
identify C andC (π)).

Let H be the isotropy group oft ∈ F(T) in π; let alsoNi be the
isotropy groups ofτi ∈ F(Si), Si ∈ S̃′. We have a diagram of the form

π //

##G
GGG

GGG
GG

GGG
G F(T) ∋ t

τi ∈ F(Si)

99rrrrrrrrrrrrrr

which is commutative and thusNi ⊂ H, ∀i. Since theF(Si) andF(T)
are all connected objects ofC (π), we haveπ

Ni
≃ F(Si) andπ/H ≃ F(T).
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The mapsF(Si) → F(T) are then the natural mapsπ/Ni → π/H and it
follows thatF′(Si) ≃ H/Ni in C (π). But as we have already remarked
the Si in S̃′ form a system of galois objects with respect toF′, pro-
representingF′ and one thus obtains:

π′ ≃ lim←−−
Si∈S̃′

F′(Si) = lim←−−
Ni⊂H

H/Ni ≈ H.

Finally we remark that the composite functorF′ ◦P is isomorphic
with F and therefore fundamental; following the procedure of 5.1 we
see that the corresponding continuous homomorphismu : π′ → π is
nothing but the canonical inclusionH ֒→ π.



Chapter 6

Application of the
Comparison Theorem an
Exact Sequence for
Fundamental Groups

6.1
100

As usual we make the convention that the preschemes considered are
locally noetherian and the morphisms are of finite type (withthe same
remark as in the beginning of Ch. 3).

Definition 6.1.1. (a) A morphismX → Speck, k a field, is said to be
separableif, for any extension fieldK/k, the preschemeX⊗

k
K is

reduced.

(b) A morphismX
f
−→ Y is separable iff is flat and for anyy ∈ Y,

X⊗
Y

Speck(y) is separable overk(y).

We shall now state a few results which we will need for our next
main theorem. Proofs can be found in EGA.

Theorem 6.1.2.Let f : X→ Y be a proper morphism andF a coherent

75
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OX-Module. If Y1
q
−→ Y is a flat base-change

X

f

��

X1 = X×
Y
Y1

q1oo

f1

��
Y Y1

qoo

then we have the isomorphisms

Rn f1∗(q
∗
1(F ))

∼←− Rn f∗(F )⊗
OY

OY1

for any n∈ Z+. (Prop. (1.4.15), EGA, Ch. III).

6.1.3 SupposeY is a noetherian prescheme and f: X → Y a proper101

morphism. Let Y′ ֒→ Y be a closed subscheme ofY, defined by a
coherent IdealT of OY. The “inverse image” ofY′ by f , namely the
fibre-productX×

Y
Y′ = X′ is then a closed subscheme ofX, defined by

theOX-IdealT = f ∗(T )OX.
Let F be anycoherentOX-Module; for n ∈ Z+, considerFn =

F ⊗
OX

OX/T
n+1 (this is a coherentOX-Module, concentrated on the pre-

schemeXn = (X′,OX/T
n+1) and may also be considered as anOXn-

Module). ConsiderRq f∗(Fn); this is a coherentOY-Module (finiteness
theorem), is concentrated on the preschemeYn = (Y′,OY/T

n+1) and is
in fact anOYn-Module. From the homomorphismF → Fn we obtain
a homomorphismRq f∗(F ) → Rq f∗(Fn) and since the latter is anOYn-
Module, we get a natural homomorphism:

(*) Rq f∗(F )⊗
OY

OY/T
n+1→ Rq f∗(Fn).

As n varies, we get a projective system of homomorphisms. With
the assumptions we have made aboutX, Y, f , thecomparison theorem
(EGA, Ch. III, Theorem (4.1.5)) states that in the limit, this gives an
isomorphism:

(**) lim←−−
n

Rq f∗(F )⊗
OY

OY/T
n+1 ∼−→ lim←−−

n

Rq f∗(Fn).
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(Note: Both sides of (**) are concentrated onY′ and they are also equal102

to Rq f̂∗(lim←−−n
F ⊗

OX

OX/T
n+1) where f̂ is the morphism of theringed

spaceŝX = (X′, lim←−−n
OX/T

n+1) → Ŷ = (Y′, lim←−−n
OY/T

n+1) obtained
from the morphismsfn : Xn→ Yn, induced byf ).

We shall now “specialise” the above comparison theorem to the case
Y affine, sayY = SpecA. ThenY′ is defined by an idealI of A. The first
member of (**) corresponds to lim←−−n

Hq(X,F )⊗A
A

In+1 which is precisely
the completion ofHq(X,F ) under theI -adic topology, while the second
member of (**) corresponds to lim←−−n

Hq(X,Fn) and thus:

(***) Hq(X,F )̂
∼−→ lim←−−

n

Hq(X,Fn).

6.2 The Stein-factorisation

Let X
f
−→ Y be a proper morphism. Then the coherentOY-Algebra

f∗(OX) (finiteness theorem) defines aY-preschemeY′
q
−→ T, finite on Y.

To the identityOY-morphismq∗(OY′) = f∗(OX) → f∗(OX) corresponds
aY-morphism f ′ : X→ Y′, i.e., we have a commutative diagram

X

f
��>

>>
>>

>>
>>

>
f ′ // Y′ = Specf∗(OX)

q

yyrrrrrrrrrrrrrrr

Y

The morphismf ′ is again proper. This factorisationf = q ◦ f ′ is 103

known as theStein-factorisationof f . For details the reader is referred
to EGA Ch. III.

We shall now prove a theorem, which is of great importance to us.

Theorem 6.2.1.Let f : X → Y be a separable, proper morphism. Let

X
f ′
−→ Y′ = Specf∗(OX)

q
−→ Y be the Stein-factorisation of f . Then

Y′
q
−→ Y is an étale covering.
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Proof. We have only to show thatq is étale; this is a purely local prob-
lem and we may thus assume thatY is affine, say,Y = SpecA.

We shall make a few simplifications to start with. SupposeX1 → Y
is a flat base-change; then from 6.1.2 one gets:

f(Y1)∗(OX⊗
OY

OY1) ≃ f∗(OX)⊗
OY

OY1

This means that in the commutative diagram

X

f ′

��

X1 = X×
Y
Y1oo

f ′(Y1)
��

Specf∗(OX) = Y′

q

��

Y′1 = Y′×
Y
Y1 = Specf(Y1)∗(OX ⊗

OY

OY1)oo

q(Y1)

��
Y Y1oo

the second vertical sequence is the Stein-factorisation off(Y1).
In view of this and the fact that it is enough to look at SpecOy,Y for104

étaleness overy ∈ Y we may make the base changeY← SpecOy,Y and
assume thatA is a local ring. Again, in view of the same remark and
Lemma 4.4.1 we may assume thatA is complete.

Consider now the functorT on the category of finite typeA-modules
M, defined byM 7→ T(M) = Γ(X,OX ⊗A M). We shall show thatthe
assumption“T is right-exact” implies the theorem.

We remark that theright-exactness of T is equivalent to the assump-
tion that the natural map

(+) Γ(X,OX)⊗
A

M → Γ(X,OX⊗
A

M)

is an isomorphism. Denote byT′ the right-exact functor

M 7→ Γ(X,OX)⊗
A

M.
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SupposeT is right exact. Then for any exact sequenceAn → Am →
M → 0 we have a commutative diagram of exact sequences:

T′(An) //

≀

��

T′(Am) //

≀

��

T′(M) //

��

0

T(An) // T(Am) // T(M) // 0

the first two vertical maps are isomorphisms; hence the thirdis also an 105

isomorphism. Conversely, if (+) is an isomorphism, clearlyT is right-
exact.

Now from the flatness off and the assumed right exactness ofT it
follows thatΓ(X,OX⊗

A
M) is exact inM and thus [from the above remark]

Γ(X,OX) is A-flat. ButY′ = SpecΓ(X,OX) and thereforeq : Y′ → Y is
flat. It remains to show thatq is unramified.

Let y ∈ Y be the unique closed point ofY; denote byk the residue
field A/M = k(y). ThenT(k) = Γ(X,OX⊗

A
k) = Γ(Xy,OXy) whereXy is

the fibreX⊗
Y
k(y). But asX is Y-proper,T(k) = Γ(X,OX⊗

A
k) is an artinian

k-algebra which, by the separability ofX overY, is radical-free for any

base-changeK/k, K an extension field ofk. HenceT(k) =
r⊕

i=1
Ki where

theKi are finite separable field extensions ofk. Also, by our assumption,
T(k) = Γ(X,OX)⊗

A
k = Γ(X,OX)/MΓ(X,OX). Let y′ ∈ Y′ be a point

abovey. From the equalityΓ(X,OX)/MΓ(X,OX) =
r⊕

i=1
Ki, (Ki/k are

separable) it follows that the maximal idealM of Oy. generates the
maximal ideal ofOy′ and moreover thatOy′ is unramified overOy. �

The proof of the theorem is thus complete modulo the assumption 106

thatT is right-exact. Before proceeding to prove this we may make some
more simplifications. First we may assume thatT(k) = Γ(Xy,OXy) =

r⊕
i=1

k (this can be done as in Lemma 4.1.2 by making a faithfully flat

base-change which “kills” the extensionsKi/k). Then finally we may
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assumeΓ(Xy,OXy) = k, i.e.,Xy connected, because the connected com-
ponents ofX over y correspond bijectively with the connected compo-
nents ofXy and it is enough to prove the theorem separately for each
component overy.

Case (a). AssumeA artinian.
Our aim is to show that for any finite typeA-moduleM, T′(M)

∼−→
T(M). We shall first show thatT′(M)→ T(M) is surjective.

For n large, one hasM nM = 0 so thatT′(M nM) → T(M nM) is
onto. Assume now thatT′(M i+1M) → T(M i+1M) is onto, and con-
sider the exact sequence: 0→ M i+1M → M i M → M i M

M i+1M
→ 0 of

A-modules.
We get a commutative diagram

T′(M i+1M) //

��

T′(M i M)

��

// T′
(

M i M
M i+1M

)

��

// 0

T(M i+1M) // T(M i M) // T
(

M i M
M i+1M

)

of exact sequences (the second row is exact at the spotT(M i M) because107

T is semi-exact, i.e., for 0→ M′ → M → M′′ → 0 exact, the sequence
T(M′) → T(M) → T(M′′) is exact at the spotT(M)). The first vertical

map is a surjection by assumption, the last is a surjection since
M i M

M i+1M
is a finite direct sum of copies ofk and by our assumptionΓ(Xy,OXy) ≃
k, we haveT′(k)

∼−→ T(k). It follows thatT′(M) → T(M) is onto, by
a downward induction. Finally consider an exact sequence 0→ R →
Ap→ M → 0. We then obtain a commutative diagram

T′(R) //

onto

��

T′(Ap)

≃

��

// T′(M)

��

// 0

T(R) // T(Ap) // T(M)

of exact sequences. If follows easily thatT′(M) → T(M) is also injec-
tion. Thus, the theorem is completely proved in the case (a).
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Case (b). The general case

Let A be a complete noetherian local ring. Denote byY′1 the closed
subscheme ofY defined by the maximal idealM . As in the comparison
theorem we may define the functors

Tn(Mn) = Γ(Xn,OX⊗
A

M⊗
A
A/M n+1)

= Γ(X,OX⊗
A

M⊗
A
A/M n+1)

where Mn = M⊗
A
A/M n+1. If M is an A-module of finite type, so 108

is Γ(X,OX⊗
A

M); as A is complete under theM -adic topology, so is

Γ(X,OX⊗
A

M) and from 6.1.3 we obtain:

Γ(X,OX⊗
A

M)
∼−→ lim←−−

n

Tn(Mn).

To show thatT is right-exact it is enough to show that for any exact

sequenceM
u−→ N → 0 of finite typeA-modules,T(M)

T(u)−−−→ T(N) → 0
is again exact. But as eachA/M n+1 is a complete artinian local ring, it

follows from case (a) thatTn(Mn)
Tn(u)−−−−→ Tn(Nn) → 0 is exact; also for

eachn, kerTn(u) is a module of finite length overA. Thus, it is enough
now to prove the

Lemma 6.2.2. Let (Kn, ϕnm), (Mn, ψnm), (Nn, θnm), n ∈ Z+, be projec-
tive systems of abelian groups and u= (un), v = (vn) be morphisms

such that, for every n∈ Z+ 0 → Kn
un−−→ Mn

vn−→ Nn → 0 is ex-
act. Assume, in addition, that for each n,∃m0 = m0(n) such that
ϕnm(Km) = ϕnm0(Km0) ∀ m ≥ m0(n) > n (this is the so-called Mittag-
Leffler (ML) condition; it is certainly satisfied if thekerun = Kn are of
finite length). Then the sequence of projective limits is also exact.

Proof. The only difficult point is to show that lim←−−n
vn is onto. By hy- 109

pothesis, for eachn, ∃m0(n) > n with ϕnm(Km) = ϕnm0(Km0) ∀ m ≥
m0(n). By passing to a cofinal subsystem we may suppose, that, for any
n ∈ Z+

ϕnm(Km) = ϕn,n+1(Kn+1) ∀m≥ n+ 1.
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Let now (yn) ∈ lim←−−n
Nn. Choosex′0 ∈ M0 with v0(x′0) = y0. Assume

inductively that we have chosen (x0, x1, . . . , xn−1, x′n) with (i) ψr,r+1(xr+1)
= xr for 0 ≤ r ≤ n − 2, andψn−1,n(x′n) = xn−1. (ii) vr(xr ) = yr for
0 ≤ r ≤ n− 1, andvn(x′n) = yn.

Our aim now is to find (x0, x1, . . . , xn−1, xn, x′n+1) for which the above
properties (i), (ii) hold whenn is replaced byn+1. Choosex′′n+1 ∈ Mn+1

such thatvn+1(x′′n+1) = yn+1; then,vn(ψn,n+1(x′′n+1)− x′n) = yn−yn = 0 i.e.
to say,ψn,n+1(x′′n+1) − x′n ∈ Kn. By assumption, we can findzn+1 ∈ Kn+1

such that:

ψn−1,n+1(zn+1) = ϕn−1,n+1(zn+1)

= ϕn−1,n(ψn,n+1(x′′n+1) − x′n)

= ψn−1,n+1(x′′n+1) − ψn−1,n(x′n).

We now setx′n+1 = (x′′n+1 − zn+1) andxn = ψn,n+1(x′n+1).
We then have:110

ψn−1,n(xn) = ψn−1,n+1(x′′n+1) − ψn−1,n+1(zn+1)

= ψn−1,n(x′n) = xn−1.

vn+1(x′n+1) = vn+1(x′′n+1) = yn+1

and finallyvn(xn) = vn(ψn,n+1(x′n+1)) = yn. Q.E.D. �

6.3 The first homotopy exact sequence

6.3.1 Some properties of the Stein-factorisation of a proper mor-
phism. Let Y be locally noetherian andf : X→ Y beproper. Suppose

X
f ′
−→ Y′

q
−→ Y is the Stein factorisation off . By using the comparison

theorem one can prove the

6.3.1.1 (Zariski’s connection theorem).
The morphismf ′ : X → Y′ is also proper. And for anyy′ ∈ Y′ the

fibre f ′−1(y′) is non-void and geometrically connected(i.e., for any field
k′ ⊃ k(y′) the preschemeX×

Y′
Speck′ is connected).
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(For a proof see EGA Ch. III§ (4.3)).
One can then easily draw the following corollaries.

Corollary 6.3.1.2. For any y∈ Y, the connected components of the fibre
f −1(y) are in a(1− 1) correspondence with the set of points of the fibre
q−1(y) (which is finite and discrete).

Corollary 6.3.1.3. For any y ∈ Y, let k(y) be the algebraic closure of111

k(y) andXy be the prescheme X×
Y
k(y). The connected components ofXy

(known as the geometric components of the fibre over y) are in(1 − 1)
correspondence with the geometric points of Y′ over y.

6.3.2 Now, in addition, suppose that

(i) Y is connected.

(ii) f is separable

(iii) f∗(OX)
∼←− OY.

Assumption (iii) implies thatX
f
−→ Y is its own Stein-factorisation.

From??, it follows that the fibresf −1(y) are (geometrically) connected.
f is a closed map and thereforeX is also connected. Similarly, for any
y ∈ Y, Xy is also connected.

Fix y ∈ Y. We have a commutative diagram:

a ∈ X

f

��

Xy ∋ aoo

f

��
y ∈ Y k(y)oo

Let Ω be an algebraically closed field⊃ k(y) and leta ∈ Xy be a
geometric point overΩ; let a ∈ X be the image ofa in X. We have the
fundamental groupsπ1(Xy, a), π1(X, a), π1(Y, y) and continuous homo-112

morphisms:π1(Xy, a)
ϕ
−→ π1(X, a), π1(X, a)

ψ
−→ π1(Y, y) (See 5.1). We

now have the following:
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Theorem 6.3.2.1.The sequence

π1(Xy, a)
ϕ
−→ π1(X, a)

ψ
−→ π1(Y, y)→ 0

is exact.

Proof. (a) ψ is surjective.

In view of 5.2.1 it is enough to show that, ifY′/Y is connected
étale covering, then the étale coveringX′ = X×

Y
Y′ overX is con-

nected.

X

f

��

X×
Y
Y′ = X′oo

f ′ (proper)

��
Y Y′ (connected)oo

But OY = f∗(OX) and therefore, we have (from 6.1.2)

f ′∗ (OX′) = f ′∗ (OX⊗
OY

OY′) = f∗(OX )⊗
OY

OY′ = OY′ .

It follows that the fibres off ′ are connected, and henceX′ = X×
Y
Y′

is also connected.

(b) ψ ◦ ϕ is trivial.

In view of 5.2.3 it is enough to show that ifY′/Y is any étale cov-
ering, the étale covering (Y′×

Y
Xy)/Xy is completely decomposed.113

But Y′×
Y
k(y) =

∐
finite

k(y) and hence:Y′×
Y

Xy � X×
=
(Y′×

γ
k(y))

∐
finite

Xy.

(c) Im ϕ ⊃ ker ψ.

In view of 5.2.4 it is enough to prove that: SupposeX′
g
−→ X is

a connected étale covering ofX and X
′
y

g
−→ Xy admits a section

σ (over Xy). Then∃ a connected étale coveringY′/Y such that

X′
∼−→ X×

Y
Y′. We need, for proving this, the following

�
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Lemma 6.3.2.2.The composite h: X′
g
−→ X

f
−→ Y is proper and separa-

ble.

Proof. h is obviously proper and flat. We have only to show that the
fibres ofh are reduced, and remain reduced after any base-changeY←
SpecK, K a field. For this, it is enough to prove that:

X′/X étale covering,X reduced⇒ X′ reduced.

We may assumeX = SpecA, X′ = SpecA′; we haveA = Ared and
we want to show that,A′ = A′red.

Let (Pi)n
i=1 be the minimal prime ideals ofA. By assumption, the

natural mapA →
n∏

i=1
(A/Pi) is an injection. So,A′ →

n∏
i=1

(A′/PiA′) 114

is also injective and it is enough then to show that eachA′/PiA′ is
reduced. By making the base-changeA → A/Pi, we may then as-
sume thatA is an integralldomain. Leta ∈ X = SpecA be the generic
point of X; thenk(a) = K the field of fractions ofA. The fibre over
a is = Spec(A′⊗

A
K) and since this is non-ramified overk(a) = K, we

haveA′⊗
A
K =

r∑
i=1

Ki, Ki/K finite separable field extensions. In particular,

A′⊗
A
K is reduced and hence for eachx′ ∈ X′, Ox′ ⊗

Og(x′)
K is reduced and

hence so isOx′ ⊂ Ox′ ⊗
g(x′)

K. It follows thatA′ = A′red.

Coming back to the proof of the assertion, let nowX′
h′−→ Y′ → Y

be the Stein-factorisation ofh : X′ → Y. From the above lemma 6.3.2.2
and Theorem 6.2.1 it follows thatY′ → Y is an étale covering. We have
a commutative diagram

X′

α

��

h′

��

yysssssssssssssssss

X

f

��

X′′ = X×
Y
Y′

p1
oo

f ′

��
Y Y′ = Spech∗(OX′)oo
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Our assertion will follow if we show thatα : X′ → X′′ = X×
Y
Y′ is115

an isomorphism. We do this by showing that:

(i) α is an étale covering.

(ii) X′′ is connected.

(iii) rank of α is 1 atsomepoint of X′′.

(see the remark at the end of Ch. 3).

(i) Y′ → Y is an étale covering and soX′′ → X is an étale covering.
The compositeX′ → X′′ → X is the étale coveringg and soα is
an étale covering.

(ii) We know thath′ is onto (6.3.1.1) andX′ is connected (hypothe-
sis). HenceY′ is connected and (ii) follows now from (a).

(iii) We make the base-changeY← k(y) and obtain:

X′y

α

����
��

��
��

��

h
′

����
��
��
��
��
��
��
��
��
��
�

g

wwooooooooooooooooooooo

Xy

f

��

σ
--

X
′′
yp1

oo

��

k(y) Y
′
y

oo

It is enough to show that rankα = 1 atsomepoint ofX
′′
y . SinceY′/Y116

is an étale covering,Y
′
y =

n∐
i=1

ki eachki = k(y) and soX
′′
y = Xy ×

k(y)
Y
′
y =

n∐
i=1

Xyi eachXyi = Xy. The sectionσ : Xy→ X
′
y is an étale covering and

Xy is connected and henceσ(Xy) is a componentZ of X
′
y; α(Z) must

then be someXyi . Also the projectionp1 is an isomorphism fromXyi
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to Xy; it follows that Z
α // Xyi

(σ◦p1)
oo are inverses of one another. Also

we know that the number of components ofX
′
y is equal to the number

of geometric points ofY′ over y, i.e., isn. It follows that the number
of connected components ofX

′
y and X

′′
y are the some.α is surjective

because it is both open and closed andX′′ is connected, thereforeα is
surjective and étale and we get rankα = 1 at every pt. ofX

′′
y .Q.E.D. �

Remark 6.3.2.3.One may drop the assumptionsf∗(OX) = OY and Y
connected, in the above theorem; the assertion of the theorem will then
be:

Denote byπ0(Xy, a), π0(X, a), π0(Y, y) the (pointed) sets of (con-
nected) components of the preschemesXy, X, Y. Then, if f is proper 117
and separable, we have the following exact sequence:

π1(Xy, a)→ π1(X, a)→ π1(Y, y)→ π0(Xy, a)→ π0(X, a)→ π0(Y, y)→ (1)

Proof. Assume to start with thatX, Y are connected, dropping only the
assumptionf∗(OX)

∼←− OY. We have then the Stein-factorisation:

X
f //

f ′
&&LLLLLLLLLLLLLLL Y

Y′ = Specf∗(OX).

q

88rrrrrrrrrrrrrrr

Applying the above theorem tof ′ we obtain an exact sequence:
π1(Xy, a) → π1(X, a) → π1(Y′, y′) → (e) wherey′ ∈ Y′ is the image
of a ∈ X. We know then thatπ1(Y′, y′)→ π1(Y, y) is an injection (5.2.6)
and the quotientπ1(Y, y)/π1(Y′, y′) (set of left cosets modπ1(Y′, y′)) is
isomorphic to the set of geometric points ofY′ over y. By corollary
6.3.1.3 this is isomorphic toπ0(Xy, a). We thus obtain the exact se-
quence:

π(Xy, a)→ π1(X, a)→ π1(Y, y)→ π0(Xy, a)→ (1).

Now the assumptions about the connectivity ofX andY are dropped
in turn to get the general exact sequence.

The procedure is obvious and the proof is omitted. �





Chapter 7

The Technique of Descents
and Applications

7.1

Before stating the problem with which we shall be concerned in this 118

section, in its most general form, we shall look at it in threeparticular
cases of interest.

Example 1.Let A, A′ be rings andϕ : A→ A′ be a ring-homomorphism.
Let CA (resp. CA′) be the category ofA-(resp. A′-) modules. ϕ de-
fines a covariant functorϕ∗ : CA → CA′, viz., ϕ∗(M) = M⊗

A
A′ = M′.

SupposeM, N ∈ CA and u : M → N is an A-linear map. Then
ϕ∗(u) = u⊗

A
1A′ : M′ → N′ is anA′-linear map.

Problem 1.Supposeu′ : M′ = ϕ∗(M) → ϕ∗(N) = N′ is anA′-linear
map. When can we say thatu′ = ϕ∗(u) for anA-linear mapu : M → N?

Problem 2.SupposeM′ ∈ CA′. When can we say thatM′ = M⊗
A
A′ for

anM ∈ CA?

Example 2.Let S, S′ be preschemes andϕ be a morphismϕ : S′ → S.
Let CS (resp. CS′) be the category of quasicoherentOS-(resp. CS′-)
Modules. ϕ defines a (covariant) functorCS → CS′ given byF 7→

89
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ϕ∗(F ). We again have:

Problem 1. If u′ : F ′
= ϕ∗(F ) → g′ = ϕ∗(g) is anOS′-morphism when

can we say thatu′ = ϕ∗(u) for anOS-morphismu : F → g?

Problem 2. If F ′ is any quasi-coherentOS′-Module, when can we say119

thatF ′
= ϕ∗(F ) for a quasi-coherentOS-Module?

Example 3.Let S, S′ be preschemes and letCS = (Sch/S), CS′ =

(Sch/S′). Supposeϕ : S′ → S is a morphism;ϕ defines a (covariant)
functorϕ∗ : CS → CS′ given by

X 7→ ϕ∗(X) = X′ = X×
S

S′.

We may again pose the two problems as in the previous examples.
It is clear that the two problems posed are of the same nature in the

different examples and admit a generalisation in the following manner:
Let C be a category and suppose that for everyS ∈ C , we are given

a categoryCS such that for every morphismϕ : S′ → S in C , we are
given a covariant functorϕ∗ : CS → CS′ . Assume, in addition that

(1) If S′′ −→
ψ

S′ −→
ϕ

S is a sequence inC , there is a natural isomor-

phism:ψ∗ ◦ ϕ∗ ≃ (ϕ ◦ ψ)∗.

(2) If S′′′ −−→
ϕ3

S′′ −−→
ϕ2

S′ −−→
ϕ1

S is a sequence inC , the diagram,

obtained from (1),

(ϕ1ϕ2ϕ3)∗

ϕ∗3 ◦ (ϕ1ϕ2)∗

∼

88ppppppppppppppp
(ϕ2ϕ3)∗ ◦ ϕ∗1

∼

ffNNNNNNNNNNNNNNN

ϕ∗3 ◦ ϕ
∗
2 ◦ ϕ

∗
1

∼
ffMMMMMMMMMMMMMMM

∼
88qqqqqqqqqqqqqqq

is commutative.120
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(3) (Id)∗ = Id.

(4) The isomorphismψ∗ ◦ ϕ∗ ∼−→ (ϕ ◦ ψ)∗ of (1) has the property that
if eitherψ or ϕ is the identity, the isomorphism also becomes the
identity.

Problem 1.Givenξ, η ∈ CS and a morphism

u′ : ξ′ = ϕ∗(ξ)→ ϕ∗(η) = η′ in CS′

when can we say thatu = ϕ∗(u) for a morphismu : ξ → η in CS?

Problem 2.Givenξ′ ∈ CS′ , when isξ′ of the formϕ∗(ξ) for a ξ ∈ CS?

We shall now obtain certain conditions necessary for the above two
questions to have an answer in the affirmative.

For Problem 1. Suppose∃ u : ξ → η in CS such thatu′ = ϕ∗(u) : ξ′ →
η′. Assume thatS′×

S
S′ = S′′ exists inC ; consider the sequence:

S S′ϕ
oo S′′

p1oo
p2

oo

Let ϕ ◦ p1 = ϕ ◦ p2 = ψ and denote byξ′′, η′′ the elementsψ∗(ξ),
ψ∗(η) of CS′′ . Consider the morphismp∗1(u) : p∗1(ξ′) → p∗2(ξ′); accord-

ing to our assumptionp∗i ◦ ϕ∗
∼−→ ψ∗. There is then a (dotted) morphism121

making the diagram

p∗1(ξ′)
p∗1(u′)

//

≀

��

p∗1(η′)

≀

��
ξ′′ = ψ∗(ξ) //____ ψ∗(η) = η′′

commutative. In the following we also denote this morphism by p∗1(u′),
i.e., we identifyp∗1(ξ′) with ξ′′ and p∗1(η′) with η′′. We introduce simi-
larly p∗2(u′). It is clear that with these notations we must have

p∗1(u′) = p∗2(u′);



92 7. The Technique of Descents and Applications

in factα: both equalψ∗(u).
If this necessary condition is also sufficient (as they turn out to be in

some cases) we say thatϕ : S′ → S is amorphism of descent.

For Problem (2). Suppose∃ ξ ∈ CS, with ϕ∗(ξ) = ξ′. Then, with the
above notations, we have:

p∗1(ξ′)
∼−→ ψ∗(ξ)

∼←− p∗2(ξ′),

i.e., an isomorphismα : p∗1(ξ′)→ p∗2(ξ′) making the diagram122

p∗1(ξ′)

∼

##F
FF

FF
FF

FF
FF

F
α // p∗2(ξ′)

∼

||xx
xx

xx
xx

xx
xx

ψ∗(ξ)

commutative. We shall now get conditions onα. Assume thatS′′′ =
S′×

S
S′×

S
S′ exists inC ; let qi be theith projectionS′′′ → S′; also let

p ji ( j ≥ i) be the morphism (qi , q j)S : S′′′ → S′′. Consider the se-
quence:

S S′ϕ
oo S′′

p1oo
p2

oo S′′′.
p21oo
p31

oo

p32
oo

Let λ = ϕ ◦ p1 ◦ p21 = ϕ ◦ p1 ◦ p31 = · · · : S′′′ → S. We then have
commutative diagrams of the type:

q∗1(ξ′)

∼

{{xx
xx

xx
xx

x
p∗21p∗1(ξ′)

p∗21(α)

��

∼oo

∼

%%LLLLLLLLLL

λ∗(ξ) p∗21ψ
∗(ξ)

∼ll

q∗2(ξ)

∼
ccFFFFFFFFF

p∗21p∗2(ξ′)∼oo

∼
99rrrrrrrrrr

We also denote byp∗21(α) the (dotted) morphismq∗1(ξ′) → q∗2(ξ′)123
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which will make the diagram

q∗1(ξ′)

���
�
�
�

p∗21p∗1(ξ′)∼oo

p∗21(α)

��
q∗2(ξ′) p∗21p∗2(ξ′)∼oo

commutative. Using this diagram and the “large” diagram above we see
that

q∗1(ξ′)

p∗21(α)

��

∼

xxqqqqqqqqqq

λ∗(ξ)

q∗2(ξ)

∼
ffMMMMMMMMMMM

is commutative. We make similar conventions and get similarcommu-
tative diagrams forp∗32(α) andp∗31(α). Then we must have

p∗32(α)p∗21(α) = p∗31(α)

(the so-called “cocycle” condition). Finally, if∆ : S′ → S′′ = S′×
S

S′ is

the diagonal, by the assumptions made at the beginning we must have 124

∆
∗(α) = identity.

If these necessary conditions are also sufficient and ifϕ is also a
morphism of descent, we say thatϕ is amorphism of effective descent.
An α of the above type is then called adescent-datumon ξ′.

Remark. Let C be the category of preschemes; if we agree that we take
S andS′ locally noetherian but if wedon’t assumeS′ → S of finite type
then it may very well happen thatS′′ = S′×

S
S′ is not locally noetherian

(e.g.S = SpecA, S′ = SpeĉA, A a noetherian local ring). We shall deal
with this difficulty in the sections 7.2.1.3, 7.2.1.4, 7.2.1.5.
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Example (1).

Proposition 7.1.1. A faithfully flat ring-homomorphismϕ : A → A′ is
a morphism of effective descent.

Proof. A (a) We shall first show thatϕ is a morphism of descent. LetM,
N beA-modules andu′ : M⊗

A
A′ → N⊗

A
A′ be anA′-linear map. Consider

the commutative diagram

M // M⊗
A
A′ = M′

u′

��

p1 //
p2

// M⊗
A
A′⊗

A
A′ = M′′

p∗2(u′)

��

p∗1(u′)

��

N // N⊗
A
A′ = N′

p1 //
p2

// N⊗
A
A′⊗

A
A′ = N′′

We have to show that ifp∗1(u′) = p∗2(u′) then∃ an A-linear map125

u : M → N such thatu′ = u⊗
A
IA′ . This will follow, if we show that

(i) for any M ∈ CA, M → M⊗
A
A′ is an injection,

(ii) for any N ∈ CA, N // N′
p1 //
p2

// N′′ is exact, and

(iii) u′(M) ⊂ ker(N′, p1, p2).

(i) We know thatA′ is a direct factor ofA′⊗
A
A′ by means of the map

a′ 7→ a′ ⊗ 1; thus, for anyM ∈ CA, M⊗
A
A′ → M⊗

A
A′⊗

A
A′ makes

M⊗
A
A′ a direct summand ofM⊗

A
A′⊗

A
A′ and is in particular an in-

jection. AsA′ is faithfully A-flat it follows thatM → M⊗
A
A′ is an

injection.

(ii) We have to prove that the sequence

N // N′
p1 //
p2

// N′′
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is exact.

It suffices to prove this after tensoring the sequence with a ringB
faithfully flat overA; note that we get a similar situation with the
pair B → B′ = B⊗

A
A′ as withA → A′. Take forB the ring A′

itself. But thenA′ → A′⊗
A
A′ = A′′ admits a sectionλ : A′′ → A′

given byλ(a′1 ⊗ a′2) = a′1a′2. We may thus assume without loss of
generality thatϕ : A → A′ itself admits a sectionλ : A′ → A. 126

Consider then the commutative diagram:

N
ψ=1⊗ϕ //

bb

Id .

""E
EE

EE
EE

EE
EE

EE
E

N⊗
A
A′

µ=1⊗λ

��

p1 //
p2

// N⊗
A
A′⊗

A
A′

µ⊗1

��

N ⊗ A
∼−→ N // N⊗

A
A⊗

A
A′

∼−→ N⊗
A
A′

Let x′ =
∑

(xi⊗a′i ) be an element ofN′ = N⊗
A
A′ such thatp1(x′) =

p2(x′); that is,
∑

(xi ⊗ a′i ⊗ 1) =
∑

(xi ⊗ 1⊗ a′i ). On applyingµ ⊗ 1
we obtain:

∑
(x1 ⊗ λ(a′i ) ⊗ 1) =

∑
(xi ⊗ 1⊗ a′i );

under the identificationN⊗
A
A⊗

A
A′
∼−→ N⊗

A
A′, this means that

∑
(xi ⊗ a′i ) =

∑
(λ(a′i )xi ⊗ 1), i.e., x′ = ψ(µ(x′)) ∈ ψ(N).

(iii) By the commutativity of the diagram at the beginning ofthe proof,
we have: p∗1(u′) ◦ p1 = p1 ◦ u′, p∗2(u′) ◦ p2 = p2 ◦ u′ and by
assumptionp∗1(u′) = p∗2(u′) while for m ∈ M one hasp1(m) =
p2(m) = m⊗1⊗1 ∈ M′′. Thus, form ∈ M, p1◦u′(m) = p2◦u′(m)
and (iii) is proved.

(b) It remains to show thatϕ is effective. SupposeN ∈ CA′ and we have 127
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a commutative diagram:

N′⊗
A
A′ = p∗1(N′)

≀α

��

N′

p1
77pppppppppppp

p2 ''NNNNNNNNNNNN

A′⊗
A
N′ = p∗2(N′)

whereα is anA′-isomorphism satisfying the “cocycle” condition. We
want to find anN ∈ CA such thatN⊗

A
A′
∼−→
ρ

N′ and such that

N⊗
A
A′⊗

A
A′

≀(natural)

��

p∗1(ρ)
// N′⊗

A
A′

≀α

��
A′⊗

A
N⊗

A
A′ p∗2(ρ)

// A′⊗
A
N′

commutes.
SetN = ker(α ◦ p1 − p2) ∈ CA (this choice ofN is motivated by (ii)

of (a)). We always have anA′-linear mapN⊗
A
A′

ρ
−→ N′. To show thatρ

is anA′-isomorphism, it is enough to show thatρ is anA-isomorphism;
and for this, we may assume, as in (a), that there is a sectionλ : A′ → A
for ϕ : A→ A′.

For the sake of clarity and ease, we now go back to the general case128

and prove: �

Lemma 7.1.2. If ϕ : S′ → S admits a sectionσ : S → S′, thenϕ is a
morphism of effective descent.

Proof. Let ξ′ ∈ CS′ andα : p∗1(ξ′) → p∗2(ξ′) be an isomorphism such
that p∗32(α)p∗21(α) = p∗31(α) (notations as before). Our aim is to find an
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η ∈ CS and an isomorphismη′ = ϕ∗(η)
ρ
−→ ξ′ such that the diagram

p∗1(η′) ∼
p∗1(ρ)

//

∼

yyrrrrrrrrrrr
p∗1(ξ′)

≀α

��

η′′

p∗2(η′)

∼
eeLLLLLLLLLLL

∼
p∗2(ρ)

// p∗2(ξ′)

is commutative.

We have the diagram:

S S′
ϕoo S′×

S
S′

p2
oo

p1oo

S

Id.

]];;;;;;;;;;;;;;

σ

OO

S×
S
S′

∼−→ S′Poo

σ×
S

1

OO

with p1◦ (σ×1) = σ◦ϕ andp2◦ (σ×1) = identity. Hence, ifη = σ∗(ξ′) 129

we haveη′ = ϕ∗σ∗(ξ′) = (p1◦(σ×1))∗(ξ′) = (σ×1)∗p∗1(ξ′) and (∗∗∗∗∗)∗

(σ × 1)∗p∗2(ξ′) = ξ′. We then get aθ : η′
∼−→ ξ′, namely,θ = (σ × 1)∗(α).

We obtain thus aβ : p∗1(η)→ p∗2(η′) which makes the diagram

p∗1(ξ′) ∼
α

// p∗2(ξ′)

p∗1(η′)

p∗1(θ)≀

OO

∼
β

// p∗2(η′)

≀p∗2(θ)

OO

commutative. However, we donot, in general, have a commutative dia-
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gram
p∗1(η′) ∼

β
// p∗2(η′)

η′′ = (p1 ◦ ϕ)∗(η)

∼
(natural)

ccHHHHHHHHHHHHHHH

∼
(natural)

;;vvvvvvvvvvvvvvv

Therfore, we want to modifyθ : η′ → ξ′ to aρ : η′
∼−→ ξ′ by means130

of an automorphismγ : η′ → η′ (i.e.,ρ = θ ◦ γ) such that the diagram

p∗1(η′) ∼
β

// p∗2(η′)

p∗1(η′)

p∗1(γ)

OO

p∗2(η′)

p∗2(γ)

OO

(natural)

η′′

∼

]]<<<<<<<<<<<<<<<<<<

∼

AA������������������

is commutative. Thisρ will satisfy our requirements. We first observe
that β : p∗1(η′) → p∗2(η′) also satisfies the cocycle condition. We may
considerβ as an element of Aut(η′′). To find aγ in Aut η′ such as above,
i.e., such thatβ = p∗2(γ) ◦ p∗1(γ)−1 we have only to prove the following:

�

Lemma 7.1.3. Letη ∈ CS and consider the “complex”

(Aut) Aut η′
p∗1 //
p∗2

// Aut η′′
p∗31 //
p∗21 //
p∗32

// Aut η′′′

(notations as before). If there is a sectionσ : S→ S′ then

H1(Aut) = (e).
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Proof. By definition, the 1-cocycles are elementsβ ∈ Aut η′′ for which131

the cocycle condition is satisfied and the 1-coboundaries are thoseβ ∈
Aut η′′ which are of the formβ = p∗2(γ) ◦ p∗1(γ)−1, for a γ ∈ Aut η′.
Consider now the corresponding complex inC ; the sectionσ : S→ S′

defines a homotopy operator for this complex in the followingmanner:

S S′
ϕoo S′′

p1oo
p2

oo S′′′· · · · · ·· · · · · ·
p21oo
p31oo
p32

oo

S

Id.

\\:::::::::::::

σ

OO

S×
S
S′

∼−→ S′ϕoo

σ×1

OO

S×
S

S′×
S
S′

∼−→ S′′
p1oo
p2

oo

σ×1×1

OO

with p1 ◦ (σ × 1) = σ ◦ ϕ, p2 ◦ (σ × 1) = Id.,

(σ × 1) ◦ p1 = p21 ◦ (σ × 1× 1), (σ × 1) ◦ p2 = p31 ◦ (σ × 1× 1),

and
p32 ◦ (σ × 1× 1) = Id .

If β is a 1-cocycle, setγ = (σ × 1)∗(β). We then have:

p∗2(γ) ◦ p∗1(γ)−1
= p∗2(σ × 1)∗(β) ◦ (p∗1(σ × 1)∗(β))−1

= (((σ × 1)p2)
∗(β)) ◦ (((σ × 1)p1)

∗(β))−1

= (σ × 1× 1)∗p∗31(β) ◦ ((σ × 1× 1)∗p∗21(β))−1

= (σ × 1× 1)∗(p∗31(β) · p∗21(β)−1)

= (σ × 1× 1)∗p∗32(β) = β.

Q.E.D. �

Example 2.C = (Sch),S, S′ ∈ (Sch);CS(resp.CS′) is the category of 132

quasi-coherentOS-(resp.OS′-)-Modules.

Proposition 7.1.4. If ϕ : S′ → S is faithfully flat, quasi compact thenϕ
is a morphism of effective descent.
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(A morphism f is quasi-compact iff −1(U) is quasi-compact for ev-
ery quasi-compact:U).

(Note:We donotassume here thatϕ is a morphism of finite type-our
hypothesis is much weaker).

Proof. Case (a)S , S′ both affine. The proposition in this case follows
from Proposition 7.1.1.

Case (b)S affine. There is a finite affine open cover (S′i )i∈I of S′

(ϕ quasi-compact). Set̃S =
∐
i∈I

S′i . ThenS̃ is affine and the morphism

S̃
ψ
−→ S (composite of the natural mapθ : S̃ → S′ and ϕ) is also

faithfully flat. Now consider the diagram:

S̃
ψ

}}{{
{{

{{
{{

{{

θ (natural)

��

S̃×
S

S̃
q1oo
q2

oo

��

S̃×
S

S̃×
S
S̃

q31oo
q32oo
q21

oo

S

S′
ϕ

aaDDDDDDDDD
S′×

S
S′

p1oo
p2

oo S′×
S

S′×
S

S′
p31oo
p32oo
p21

oo

If ξ, η ∈ CS andu′ : ξ → η′ is a CS′-morphism thenu′ defines a133

CS̃-morphism̃u : ψ∗(ξ)→ ψ∗(η). And from the equalityp∗1(u′) = p∗2(u′)
and the commutativity of the above diagram followsq∗1(̃u) = q∗2(̃u). By
case (a),∃ a u : ξ → η, a CS-morphism, such that̃u = ψ∗(u); it is
immediate thatu′ = ϕ∗(u); in fact this holds in every open setS′i .

If ξ′ ∈ CS′ andα is a descent-datum forξ′, α̃ defined in the obvious
way is a descent-datum forθ∗(ξ′) = ξ̃ and again by case (a),∃ξ ∈ CS

such that̃ξ
∼←− ψ∗(ξ). It is easy to see thatξ′

∼←− ϕ∗(ξ).

Case (c).S , S′ arbitrary. Let (T j ) be an affine open cover ofS and
T′j = ϕ−1(T j). Then theT′j form an open cover ofS′. Let T =

∐
j

T j

andθ : T → S the natural map. IfF andG are quasi-coherentOS-
Modules denote byΦ(S) the group HomS(F ,G ), by Φ(S′) the group
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HomS′(F ′,G ′) and so on. If we setT′ =
∐

j
T′j andθ : T′ → S′ is the

natural map, we have a commutative diagram:

Φ(S)

��

ϕ∗ // Φ(S′)

��

p∗1 //
p∗2

// Φ(S′′)

Φ(T) //

����

Φ(T′)
p∗1 //
p∗2

//

����

Φ(T′′)

Φ(T×
S

T) // Φ(T′×
S′

T′)

By case (b), the morphismsT′j → T j are morphisms of effective 134

descent and therefore clearly so isT′ =
∐

j
T′j →

∐
j

T j = T. It follows

that the second row is exact whileΦ(T×
S

T)→ Φ(T′×
S′

T′) is an injection.

As it is clear thatθ : T → S is a morphism of (effective) descent, the
first column is also exact. Usual diagram-chasing shows thatthe first
row is also exact, in other words, thatϕ is a morphism of descent. We
show similarly thatϕ is also effective. Q.E.D. �

Example 3.We shall not discuss the problems (1) and (2) in their gen-
eral form, in this case. However, if we restrict ourselves tothe case
of preschemes affine over S, S′ then a faithfully flat, quasi-compact
morphism S′ → S is a morphism of effective descent.In fact, such
preschemes are defined by quasi-coherentOS-and OS′-Algebras and
we are essentially back to example (2). [It is not difficult to see that
u (resp. F ) in example (2), problem (1) (resp. problem (2)) is an
OS-Algebra homomorphism (resp. anOS-Algebra) provided we start
with OS-Algebras and homomorphisms ofOS-Algebras instead ofOS-
Modules (look at the proof of Proposition 7.1.1)].

7.2

Let S be a locally noetherian prescheme andX, Y be étale coverings of
S. Let S0 ֒→ S be a closed subscheme ofS defined by a Nil-IdealF
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of OS (F is a Nil-Ideal ofOS ⇔ Fs ⊂ nil-radical of OsS, ∀s ∈ S;
this is equivalent to saying thatS0 andS have the same base space or135

(S0)red = Sred). We then have an obvious functor (E t/S)
Φ−→ (E t/S0)

given byX 7→ X×
S
S0 = X0. We assert thatΦ defines an equivalence of

categories in the sense of the following

7.2.1 Main Theorem

(a) HomS(X,Y)
∼−→ HomS0(X0,Y0)

(b) If X0 ∈ (E t/S0), then∃ X ∈ (E t/S)

and an isomorphismX×
S

S0
∼−→ X0.

The theorem will follow from the series of lemmas below.

Lemma 7.2.1.1.Let S be locally noetherian and f: X→ S a separated
morphism of finite type. Then f is an open immersion⇔ f is étale and
universally injective.

(Note:Universally injective - radiciel= injective+ radiciel residue field
extensions).

Proof. ⇒ clear.
⇐: f is an open map and thus by passing to an open sub-scheme

of S, we may assume thatf (X) = S. Clearly f is then a homeomor-
phism onto. Since étale remains étale under base-change,f(S′) is still a
homeomorphism onto, for any base-changeS′ → S; it follows that f
is universally closed and thus proper. By Chevalley’s lemmawe deduce
that f is finite. Suppose then thatX = SpecA , whereA is a coherent
OS-Algebra. As f is étale and universally injective, it follows thatA is136

locally free of rank 1 at every point ofS, henceX
∼−→ S. Q.E.D. �

Lemma 7.2.1.2.Let f : X→ S be a separated étale morphism of finite
type (S locally noetherian). Suppoe Y→ S is a morphism of finite type
and Y0 = V(F ) is a closed subscheme of Y defined by a Nil-IdealF of
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OY. Letα0 : Y0 → X be an S -morphism. Then∃ a uniqueS -morphism
α : Y→ X making the diagram

X

f

��

Y0
α0oo

_�

��
S Yoo

α

__@@@@@@@@@@@

commutative.

Proof. By making the base-changeY → S and considering the mor-
phism Y0 → X×

S
Y we are reduced to proving the lemma in the case

S = Y. That is, given aY-morphismY0
α0−−→ X, we want to extendα0 to

a sectionα of X→ Y.

Now supposeσ : Y→ X is a section ofX
f
−→ Y; f · σ = identity is

étale andf is étale, henceσ is étale. Alsof · σ is a closed immersion
and f is separated and thusσ is a closed immersion.Y being locally
noetherian its connected components are open and we may thenassume
Y connected.σ(Y) will then be a connected component ofX, isomorphic
to Y underσ; in view of lemma 7.2.1.1 then, the sections off are in
(1 − 1) correspondence with the componentsXi of X such thatf |Xi is 137

surjective and universally injectiveon Xi to Y.
Now Y0, Y have the same base-space and hence so haveX0 = X×

Y
Y0

and X; also, the morphismf(Y0) : X0 → Y0 obtained from f by the
base-changeY0 → Y is topologically the same map asf ; hence, f is
universally injective and surjective onXi to Y ⇔ f(Y0) is so on (Xi)0 to

Y0, i.e., the set of sections ofX
f
−→ Y is the same as the set of sections of

X0

f(Y0)
−−−→ Y0 and the (1− 1) correspondence is given in the obvious way.

The lemma now follows from the fact thatY0
α0−−→ X can be considered

as a section forX0

f(Y0)
−−−→ Y0. Q.E.D. �

This lemma proves part (a) of Theorem 7.2.1. To prove part (b)we
need a generalisation of the lemma.
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Warning. In the following sections 7.2.1.3–7.2.1.5 until the proof of
(b) of Theorem 7.2.1, we drop the assumptions made in 6.1 thatthe
preschemes are locally noetherian and the morphisms are of finite type.
We begin by making the

Definition 7.2.1.3.A morphism f : X → Y of preschemes is offinite
presentationif

(i) f is quasi-compact

(ii) ∆ : X→ X×
Y

X is quasi-compact,

(iii) for every x ∈ X, ∃ a nbd.Ux of x ∈ X and a nbd.Vf (x) of f (x) in
Y such thatf (Ux) ⊂ Vf (x) andΓ(Ux,OX) is aΓ(Vf (x),OY)-algebra138

of finite presentation; i.e.,Γ(Ux,OX) � Γ(Vf (x),OY)[T1, . . . ,Ts]/a
where a is a finitely generated ideal of a polynomial algebra
Γ(Vf (x),OY)[T1, . . . ,Ts].

An example of a morphism of finite presentation is a finite typesep-

arated morphismX
f
−→ Y with Y locally noetherian.

Lemma 7.2.1.4.Let U be anoetherianprescheme and(Aα)α∈I an in-
ductive family of quasi-coherentOU-Algebras. Let Vα be the U-affine
preschemeSpecAα defined byAα, ∀α∈I , and V= SpecA whereA =

lim−−→α
Aα.

(a) Suppose we have a diagram:

Xα

��0
00

00
00

00
Yα

����
��
��
��
�

Xβ

��/
//

//
//

/
Xβ

����
��
��
��

X

��.
..

..
..

..
Y

����
��
��
��
�

U Vαoo Vβoo V′oo

where Xα, Yα are finitely presented preschemes over Vα∀ α ∈ I
such that∀β ≥ α, Xβ = Xα×

Vα
Vβ

Yβ = Yα×
Vα

Vβ; let X = Xα×
Vα

V, Y = Yα×
Vα

V
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Then,lim←−−α HomVα(Xα,Yα)
∼−→ HomV(X,Y).

(b) Suppose is a finitely presented prescheme over V. Then, for all 139

large α ∈ I, ∃ Xα/Vα, finitely presented, such that (i)∀β ≥ α,
Xβ ≃ Xα×

Vα
Vβ and (ii) X ≃ Xα×

Vα
V.

(c) With assumptions as in (a), if the Y′αs and Y are locally noethe-
rian, X/Y étale covering⇒ Xα/Yα étale covering already, for
someα ∈ I.

Proof. (a) We shall be content with merely observing that it is clear
how to prove this in case everything is affine.

(b) SinceU is noetherian, in view of (a) we may assume thatU =
SpecC′, Vα = SpecAα, V = SpecA whereA = lim←−−α Aα.

Case (1).Assume X= SpecB.
X/V finitely presented⇒ B/A finitely presented; let

B � A[T1, . . . ,Ts]/a, a

finitely generated, say, byP1, . . . ,Pn ∈ A[T1, . . . ,Ts]. Chooseα so
large that the coefficients of thePi come fromAα. Consider the ideal
aα = (P1, . . . ,Pn) of Aα[T1, . . . ,Ts] and setBα = Aα[T1, . . . ,Ts]/aα and
Xα = SpecBα; for β ≥ α, setXβ = Xα×

Vα
Vβ.

Case (2).X arbitrary.
Let (Xi)r

i=1 be a finite affine open cover ofX. In view of case (1) and
(a), it is enough now to show that eachXi ∩ X j is quasi-compact. But
the underlying space ofXi ∩ X j is that ofX ×

(X×
V

X)
(Xi×

V
X j) as is seen from

the commutative diagram: 140

X ×
(X×

V
X)

(Xi×
V

X j) //

��

Xi×
V

X j

(natural)

��

X
∆ // X×

V
X
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As ∆ is a quasi-compact morphism the “top”-morphism is also
quasi-compact; sinceXi×

V
X j is quasi-compact, our result follows.

(c) Here again we give only some indications and leave the details
to the reader. To start with we may assume everything affine. SayU =
SpecC, Vα = SpecAα, V = SpecA, Xα = SpecBα1, Yα = SpecBα2,
X = SpecB1, Y = SpecB2. We also note that we can assumeVα = Yα,
andV = Y. One checks thatΩB1/B2

∼←− lim←−−αΩBα1/B
α
2
, say. Now ifX/Y is

unramified thenΩB1/B2 = 0. But sinceΩB
α0
1 /B

α0
2

is a finiteBα0
1 -module

one hasΩBα1/B
α
2
= 0 for largeα. Also, if X/Y is finite and flat thenB1 is

a locally freeB2-module of finite rank but then the same is true forBα1
with respect toBα2 for largeα. Assertion (c) follows. Q.E.D. �

Lemma 7.2.1.5.Suppose we have a commutative diagram:141

X

f

��

X(T) = X×
S

Too

��

Y0 = V(F )
_�

��

α0oo

S Too Yoo

with: S noetherian, f étale and separated, T→ S affine, Y → T
finitely presented and Y0 = V(F̃ ) whereF is a Nil-Ideal ofOY. Then∃
a uniqueα : Y→ X(T) keeping the diagram still commutative.

Proof. SinceT → S is affine,T = SpecB, whereB is a quasi-coherent
OS-Algebra. WriteB = lim←−−λ Bλ where theB′

λ
s areOS-sub-Algebras,

of finite type, ofB. SetTλ = SpecBλ. By (a) and (b) of Lemma 7.2.1.4
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we have, for largeλ, a situation of the following type:

X×
S

Tλ

zzvvvvvvvvvv
kk

αλ?

T P L
H

C

��

Y0,λ
α0,λoo

��

S X

��

X×
S
Too

��

;

H
R V

Y0 = V(F ) = Y0,λ×
Yλ

Y

ffLLLLLLLLLLL

� _

��

SpecBλ = Tλ

zzuuuuuuuuuu
Yλoo

S S SpecB = Too

ffMMMMMMMMMMMM
Y = Yλ×

Tλ
Too

ffMMMMMMMMMMM

For largeλ, ∃ inductive families (Yλ), (Y0,λ) and morphismsα0,π : 142

Y0,λ → X×
S
Tλ such that lim−−→λ

α0,λ = α0 (see diagram). Also it is not

very difficult to see (using arguments similar to those in Lemma 7.2.1.4)
that theY0,λ are subschemes defined by Nil-IdealsF0,λ of OYλ . Now
Tλ is of finite type overS and is therefore noetherian; also, sinceY →
T is of finite presentation so isYλ → Tλ and is in particular of finite
type. Hence Lemma 7.2.1.2 applies and we get a (dooted) morphism
αλ : Yλ → X×

S
Tλ keeping the diagram commutative. Passing to the

limit with respect toλ we get anα : T → X×
S
T making the diagram

commutative. The uniqueness ofα follows from Lemma 7.2.1.2 and (a)
of Lemma 7.2.1.4. Q.E.D. �

7.2.1.6 Proof of (b) of Theorem 7.2.1

Case 1.AssumeS = SpecA, A a noetherian, complete local ring;S0 is

then given by Spec(A/J) = SpecA0, J a nil-ideal ofA. Let X0
f0−→ S0

be the given étale covering; assume that ifs0 ∈ S0 is the unique closed
point, the residual extensions at the points off −1

0 (s0) are all trivial.
ThenX0 is given by SpecB0 whereB0 is a finite direct-product of

copies ofA0, sayB0 =
⊕r

i=1 A0; X = SpecB, with B =
⊕r

i=1 A is then
a solution for our problem.

Case 2.From among the assumptions in case 1, drop completeness ofA 143



108 7. The Technique of Descents and Applications

and the triviality of residual extensions along the fibref −1
0 (s0).

S = SpecA SpecA′ = S′
faithfully flat

quasi-compact
oo

X0

f0

��

X′0 = X0×
S0

S′0

f ′0
��

oo

SpecA0 = S0
K+

YY3333333333333333333333333333

S′0 = Spec
(

A′

JA′

)
oo

In this case we can choose a complete, noetherian, local overring A′

of A such that the following situation holds:and such thatif s′0 ∈ S′0
is the unique closed point, then the residual extensions along the fibre
f ′−1

0 (s′0) are all trivial. By case 1,∃ an étale coveringX′/S′ such that

X′0
∼←− X′×

S′
S′0.

We have then the following situation:144
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X′

��

p∗1(X′)

""F
FF

FF
FF

FF
FF

p∗2(X′)

yytttttttttttt

S S′oo S′′ = S′×
S

S′
p1oo
p2

oo S′′′ = S′×
S

S′×
S

S′
p1oo
p31

oo

p2
oo

X0

f0

��

X′0

f ′0

��

oo p∗1(X′0)

%%JJJJJJJJJJJJ
p∗2(X′0)

xxrrrrrrrrrrrrr

S0
E%

SS&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

S′0oo S′′0 = S′0×S0
S′0

p1oo
p2

oo S′′′0 = S′′′0 ×S0
S′0×S0

S′′0

p21oo
p31

oo

p32
oo
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SinceX′0/S
′
0 “comes from below”, it clearly has a descent-datum

α0 : p∗1(X′0)
∼−→ p∗2(X′0) satisfying the cocycle condition. We want to

“lift” this isomorphism α0 to anα : p∗1(X′) → p∗2(X′). For this one
may be tempted to use part (a) of Theorem 7.2.1 which we already have
proved. But observe that we are now in a type of situation we anticipated
while making the remark preceding Proposition 7.1.1 – wecannotmake
sure thatS′′, S′′0 are locally noetherian and hencecannotapply part (a).
It is here that Lemma 7.2.1.5 comes to our rescue.By using this lemma
in the obvious way we get an isomorphismα : p∗1(X′)

∼−→ p∗2(X′); the145

assertion of uniqueness in this lemma proves that theα we obtained
satisfies the cocycle condition. AsS′ → S is faithfully flat and quasi-
compact, it is a morphism of effective descent for étale coverings (an
easy corollary to Proposition 7.1.4) and thus∃ an étale coveringX/S
such thatX′

∼←− X×
S

S′. Therefore

X′0
∼←− X′×

S′
S′0 ≃ X×

S
S′×

S′
S′0 ≃ (X×

S
S0)×

S0
S′0.

Also, by construction, the descent-datum forX′/S′ goes down to
that forX′0/S

′
0. It follows thatX×

S
S0

∼−→ X0.

Case 3.S arbitrary.

By part (a), which we have already proved, it is enough to prove the
existence of an étale coveringX/S (with the required property)locally.

Let s∈ S andU = SpecA be an affine open neighbourhood ofs. We
may assumeS = SpecA, A noetherian. The local ringAs is given by
As = lim−−→ f∈A

f (s),0
Af ; we then haveS← SpecAf ← SpecAs and the given

étale coveringX0 over S0 = Spec(A/J), J a nil-ideal, defines an étale
coveringXs,0 over Spec(As/JAs) = Spec(A/J)s and then, by case 2, an
étale coveringXs over SpecAs. By (b) and (c) of lemma 7.2.1.4,∃ f ∈ A,
f (s) , 0 and an étale coveringXf /SpecAf such thatXs

∼←− Xf ⊗
Af

As. The146

coveringXf is a solution for our problem in the neighbourhood SpecAf

of s. Q.E.D.

Remark. The Theorem 7.2.1 shows that ifS0 ֒→ S is such that (S0)red

= Sred then the natural functor (E t/S)
Φ−→ (E t/S0) is an equivalence; in
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particular, it proves thatπ1(Sred, s)
∼−→ π1(S, s).

Proposition 7.2.2.Let S′
f
−→ S be a faithfully flat, quasi-compact, radi-

ciel morphism. Then the natural functor(E t/S)
Φ−→ (E t/S′) is an equiv-

alence.

Proof. Consider the diagonalS′
∆−→ S′′ = S′×

S
S′.

Since f is radiciel∆(S′) = S′′ (Cor. (3.5.10) – EGA, Ch.I), i.e.S′

is a closed subscheme ofS′′, having the same base-space.

(a) GivenX, Y ∈ (E t/S), setX′ = X×
S

S′, Y′ = Y×
S

S′.

To prove HomS(X,Y)
∼−→ HomS′(X′,Y′).

Since f : S′ → S is faithfully flat, quasi-compact it is a mor-
phism of descent for étale coverings. We have thus only to show that

if u′ ∈ HomS′(X′,Y′), and if S′ S′′ = S′×
S

S′
p1oo
p2

oo are the canoni-

cal projections, then, considered as morphisms fromX′′ = X′×
S′

S′′ to

Y′′ = Y′×
S′

S′′, p∗1(u) andp∗2(u) are equal. We have the diagram: 147

S S′oo S′′ = S′×
S

S′oooo S′
∆oo

X′

GG���������� u′ // Y′

WW..........

X′′
p∗1(u′)

//
p∗2(u′)

//

AA�����������
Y′′

]];;;;;;;;;;;

X′
u′ //

GG����������
Y′

WW..........

In view of our remarks about∆, and Theorem 7.2.1, it is enough to
show that∆∗(p∗1(u′)) = ∆∗(p∗2(u′)). But each of∆∗(p∗1(u′)), ∆∗(p∗2(u′)) is
equal tou′ considered as morphisms formX′ to Y′.

(b) GivenX′ ∈ (E t/S′), to show that∃ X ∈ (E t/S) such thatX′
∼←−

X×
S

S′.
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For this, again it is enough to find a descent-datumα : p∗1(X′)
∼−→

p∗2(X′). We have the diagram:

S S′oo S′′
p1oo
p2

oo S′′′

p31oo
p32oo
p21

oo

p∗1(X′)

DD								
p∗2(X′)

ZZ55555555

S′
∆1

diagonal

jjUUUUUUUUUUUUUUUUUUUUUUUUUUU

∆2
diagonal

eeLLLLLLLLLLLLLL

X′

OO

X′ = ∆∗1p∗1(X′) = ∆∗1p∗2(X′)

OO

in view of our remarks about∆1 : S′ → S′′ and Theorem 7.2.1, the148

identity morphismi : X′ = ∆∗1p∗1(X′) → ∆∗1p∗2(X′) = X′, lifts to an
isomorphismα : p∗1(X′) → p∗2(X′). The other diagonal morphism∆2 :
S′ → S′′′ = S′×

S
S′×

S
S′ also imbedsS′ as a closed subscheme ofS′′′

having the same base-space. Then one checks easily thatα satisfies the
cocycle condition again by using Theorem 7.2.1. Q.E.D. �

Proposition 7.2.2 simply says that ifS′ → S is faithfully flat, quasi-
compact and radiciel,s′ ∈ S′ and s ∈ S its image, thenπ1(S′, s′)

∼−→
π1(S, s).

7.3

Let k be an algebraically closed field andX, Y be connectedk-presche-
mes. SupposeX is k-proper andY locally noetherian. Leta ∈ X, b ∈ Y
be geometric points with values in an algebraically closed field exten-
sion K of k. Consider a geometric pointc = (a, b) ∈ X×

k
Y over a and

b. We claim first thatX×
k
Y is connected. SinceY is connected and
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X×
k
Y → Y is proper, it is enough to show that the fibres ofX×

k
Y → Y

are connected and for this one has only to show that for any field k′ ⊃ k

(*) X×
k
k′ is connected.

The question is purely topological and we may assumeX = Xred.
Looking at the Stein-factorisationX → SpecΓ(X,OX) → k it follows 149

(by making use of 6.3.1.1 and the finiteness theorem) thatΓ(X,OX) = k,
sinceX is connected andk algebraically closed. On the other hand, if
X′ = X×

k
k′, one hasΓ(X′,OX′) = Γ(X,OX)⊗

k
k′ (flat base-change) hence

= k′; again looking at the Stein-factorisation we see thatX′ is connected
6.3.1.1.

We can then formπ1(X×
k
Y, c) and form the product of the natural

mapsπ1(X×
k
Y, c) → π1(X, a), andπ1(X×

k
Y, c) → π1(Y, b). We then have

the

Proposition 7.3.1. With the assumptions made aboveπ1(X×
k
Y, c)

∼−→
π1(X, a) × π1(Y, b).

Proof. We may assumeX = Xred.

Case (1).Assume K= k.

The morphismX×
k
Y→ Y is proper and separable and the fibre over

b ∈ Y is ≃ to X×
k
k = X. We then get the exact sequence:

π1(X, a)→ π1(X×
k
Y, c)→ π1(Y, b)→ e (Theorem 6.3.2.1).

But the fibre overb, namely,X×
k
k = X is imbedded inX×

k
Y and

the compositeX = X×
k
k ֒→ X×

k
Y

p1−−→ X is identity. This means that

∃ continuous sections for the homomorphismπ1(X, a) → π1(X×
k
Y, c).

Thus, we get:

(i) e→ π1(X, a)→ π1(X×
k
Y, c)→ π1(Y, b)→ e

is exact,



114 7. The Technique of Descents and Applications

(ii) and the sequence splits (alsotopologically). 150

Case (2).K arbitrary.

The reasoning as in case (1) gives an isomorphism

π1(X×
k
Y×

k
K, c′)

∼−→ π1(X×
k
K, a′) × π1(Y×

k
K, b′)

wherec′, a′, b′ are points of (X×
k
Y)×

k
K,X×

k
K,Y×

k
K respectively, above

c, a, b. The theorem then is a consequence of the following: �

Proposition 7.3.2. Let k be an algebraically closed field and X→ k
a proper connected k-scheme. Let k′ be an algebraically closed field
extension of k and let a′ ∈ X×

k
k′ be any geometric point. If a∈ X be the

image of a′, then
π1(X×

k
k, a′)

∼−→ π1(X, a).

Proof. That X×
k
k′ is connected follows from assertion (*) of 7.3; the

same assertion also proves that ifZ is a connected étale covering ofX
thenZ′ = Z×

k
k′ is a connected étale covering ofX′ = X×

k
k′. In other

words,π1(X×
k
k′, a′) → π1(X, a) is surjective(cf. 5.2.1). We shall prove

that it is injective by showing that every connected étale coveringZ′ of
X′ = X×

k
k′ is of the formZ×

k
k′ for someZ ∈ (E t/X).

By Lemma 7.2.1.4∃ a k-algebraA of finite type, A ⊂ k′, andZA ∈
(E t/(X×

k
A)) such thatZ′

∼←− ZA×
A
k. If Y = SpecA, ∃ y ∈ Y such that151

k(y) = k [sinceA is of finite type over (the algebraically closed)k]. One
can apply case (1) of Theorem 7.3.1 to thek-rational point (a, y) ∈ X×

k
Y

to obtain
π1(X×

k
Y, (a, y))

∼−→ π1(X, a) × π1(Y, y).

If ZA is defined by an open subgroupH of π1 = π1(X×
k
Y, (a, y))

this means that∃ open (normal) subgroupsG ⊂ π1(X) andG′ ⊂ π1(Y)
(defining galois coverings̃X/X, Ỹ/Y respectively) such thatH ⊃ G×G′

(i.e. such thatZA is obtained as a quotient of the galois coveringX̃×
k
Ỹ
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of X × Y). Let ZA be the lift of the coveringZA/(X×
k

Y) to X×
k
Ỹ; we than

have the commutative diagram:

X̃×
k
Ỹ

��=
==

==
==

~~}}
}}

}}

��
X×

k
Ỹ

  B
BB

BB
B

ZA
oo // ZA

����
��

��
��

X×
k
Y

We claim thatZA is connected. 152

In fact, lety ∈ Y = SpecA be the generic point ofY; thenk(y) =
field of fractions ofA ⊂ k. For anyỹ ∈ Ỹ lying abovey ∈ Y we thus
havek(̃y) ⊂ k′ sincek′ is algebraically closed. If we then apply the base-
changeX×

k
Ỹ×̃

Y
k′ → X×

k
Ỹ to the étale coveringZA → X×

k
Ỹ, we obtain

the étale covering
ZA×

Y
k′ = Z′ → X′

which is connected. It follows thatZA is connected. Thus the mor-
phism X̃×

k
Ỹ → ZA is surjective andZA is sandwiched betweeñX×

k
Ỹ

andX×
k
Ỹ; this implies thatZA/(X×

k
Ỹ) is defined by an open subgroup

of π1(X×
k
Ỹ) = π1(X) × G′ which containsπ1(X̃×

k
Ỹ) = G × G′; i.e.

ZA = X̃1×
k
Ỹ for an X̃1 ∈ (E t/X). We now obtain

(ZA)̃y = the fibre ofZA over ỹ

= X̃1×
k
Ỹ×̃

Y
k(̃y) = X̃1×

k
k(̃y)

and Z′ = ZA×
Y
k′ = (ZA)y ×

k(y)
k′

= (ZA)̃y ×
k(̃y)

k = X̃1×
k
k′

Q.E.D. �





Chapter 8

An Application of the
Existence Theorem

8.1 The second homotopy exact sequence
153

Let A be acomplete noetherian local ringandS = SpecA; let s0 ∈ S be
the closed point ofS. LetX be aproper S -schemeand setX0 = X×

S
k(s0).

Let a0 ∈ X0 be a geometric point ofX0 (over some fixed alge-
braically closed fieldΩ ⊃ k(s0)) anda0 ∈ X be its image inX. Assume
thatX0 is connected.

a0 ∈ X

fproper

��

X0 ∋ a0
oo

��
s0 ∈ SpecA k(s0)oo

Theorem 8.1.1.The sequence

e→ π1(X0, a0)→ π1(X, a0)→ π1(S, s0)→ e

is exact; and we have the isomorphism

π1(S, s0) � G(k(s0)/k(s0)).

117
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(Note: Compare with Theorem 6.3.2.1).
The proof of the theorem is a consequence of the following results. 154

Proposition 8.1.2. In the above Theorem 8.1.1 assume A is an artinian
local ring. With the same notation, the same assertions hold.

Proof. Since the introduction of nilpotent elements does not affect the
fundamental groups (Theorem 7.2.1). We may assume thatA = k(s0).

In this case, the assertionπ1(S, s0) � G(k(s0)/k(s0)) is clear. Next,
if characteristick(s0) = p and if k′ = (k(s0))p−∞ , then the morphism
Speck(s0) ← Speck′ is faithfully flat, quasi-compact and radiciel and
hence by Proposition 7.2.2, we may replacek(s0) by (k(s0))p−∞ , i.e., we
may assumek(s0) is perfect. In this case,k(s0) is the inductive limit
lim−−→i∈I

ki of finite galois extensionski of k(s0); setXi = X ×
k(s0)

ki andai =

image ofa0 in Xi.

a0 ∈ X

��

Xi ∋ aioo

��

X0 ∋ a0

��

oo

k(s0) ki
oo k(s0)oo

By Lemma 7.2.1.4 an étale covering ofX0 is determined by an étale155

covering of someXi and the latter is uniquely determined modulo pas-
sage toX j, j ≥ i.

One thus gets the isomorphism:

π1(X0, a0)
∼−→ lim−−→

i

π1(Xi , ai)

[The injectivity follows from the fact that for any open subgroup H of
π = π1(X0, a0) there exists, by Lemma 7.2.1.4 an indexi and an open
subgroupH(i) of π(i)

= π1(Xi , ai) such thatπ/H ≃ π(i)/H(i). The sur-
jectivity follows because otherwise there would exist a setE ∈ C (π(i))
with two pointsa andb in Ė such thata andb are in the same connected
component ofE with respect to the action of allπ( j)( j ≥ i) but a and
b lie in different components with respect to the action ofπ; again by
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7.2.1.4 this is impossible because a connected component ofE in C (π)
can be realised in someC (π( j))].

On the other hand, we assert that eachXi/X is galois andG(ki/k(s0))
∼−→ Aut(Xi/X).

In fact, suppose we have a situation of the following type:

a0 ∈ X

��

X′ = X×
k
k′ ∋ a′ϕoo

��
k k′oo

with X universally connected overk. ThenX′/X is a connected étale156

covering. Also, we have: deg(X′/X) = rankϕ = number of geometric
points in the fibreϕ−1(a0) = deg(k′/k) = number of automorphisms of
k′/k ≤ number of automorphisms ofX′/X ≤ number of geometric points
in the fibreϕ−1(a0) (becauseX is connected- see the proof of Lemma
4.4.1.6). Hence Aut(k′/k)

∼−→ Aut(X′/X) andX′/X is galois. Now for
everyi ∈ I we have an exact sequence:

(e)→ π1(Xi , ai)→ π1(X, a0)→ Aut(Xi/X)→ (e)

(see 5.2.6). Since eachπ1 is pro-finite, by passing to the projective limit
we obtain anexactsequence:

(e)→ π1(X0, a0)→ π1(X, a0)→ G(k(s0)/k(s0)) = π1(S, s0)→ (e)

�

Proposition 8.1.3. Let A be a complete, noetherian local ring and S=
SpecA. Let X be aproperS -scheme such that if s0 ∈ S is the closed
point of S the fibre X0 = X×

S
k(s0) is universally connected. Let a′0

be a geometric point of X0 with values in some algebraically closed
Ω ⊃ k(s0). If a0 ∈ X is the image of a′0 then canonicallyπ1(X, a0)

∼←−
π1(X0, a′0).

Proof. This will come from the fact that the natural functor (E t/X)
Φ−→

(E t/X0) is an equivalence.
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(a) If Z, Z′ ∈ (E t/X) then

HomX(Z,Z′)
∼−→ HomX0(Z×XX0,Z

′×
X

X0).

In fact, letA (Z), A (Z′) be the coherent, locally freeOX-Algebras157

defining Z, Z′ over X. If M is the maximal ideal ofA, set An =

A/M n+1, Xn = X×
A
A/M n+1, Zn = Z×

X
Xn and so on,n ∈ Z+. We then

have:
HomX(Z,Z′)

∼−→ HomOX−Alg.(A (Z′),A (Z)).

Now for theOX-Modules, we have:

HomOX(A (Z′),A (Z)) = Γ(X,H omOX(A (Z′),A (Z)))
∼−→ lim←−−

n

Γ(Xn,H omOX(A (Z′),A (Z))⊗
A
A/M n+1)

by the Comparison theorem, (whereH omMX is the sheaf of germs of
OX-homomorphisms); since theA (Z′), A (Z) are coherent and locally
free, we have:

H omOX(A (Z′),A (Z))⊗
A

A/M n+1
=H omOXn

(A (Z′n),A (Zn));

therefore,

HomOX(A (Z′),A (Z))
∼−→ lim←−−

n

HomOXn
(A (Z′n),A (Zn)).

However, this holds also for homomorphisms ofOX-Algebras, because
the condition for anOX-Module homomorphism to be anOX-Algebra
homomorphism can be expressed by means of commutativity in dia-
grams ofOX-Modules. Therefore, HomX(Z,Z′)

∼−→ lim←−−n
HomXn(Zn,Z′n).

But by Theorem 7.2.1, the natural map HomXn(Zn,Z′n)→ HomX0(Z0,Z′0)
is an isomorphism; therefore one obtains:158

lim←−−
n

HomXn(Zn,Z
′
n)
∼−→ HomX0(Z0,Z

′
0).

Q.E.D. �

(b) If Z0 is an étale covering overX0, then there exists an étale cover-
ing Z/X such thatZ0

∼←− Z×
X

X0.

For proving this we need another powerfull theorem from the EGA.
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8.1.4 The Existence Theorem for proper morphismsLet A be a noe-
therian ring andI and ideal ofA such thatA is complete for theI -adic
topology. LetY = SpecA and f : X → Y be aproper morphism. Set
An = A/In+1, n ∈ Z+, andYn = SpecAn, Xn = X×

Y
Yn. Suppose, for every

n, Fn is a coherentOXn-Module such thatFn−1 ≃ Fn ⊗
OXn

OXn−1. Then

∃ a coherentOX-ModuleF such that, for eachn, Fn
∼←− F ⊗

OX

OXn.

(For a proof see EGA, Ch. III, (5.1.4).)
Coming back to the proof of (b), the étale coveringZ0 → X0 is

defined by a coherent locally freeOX0-AlgebraB0. By Theorem 7.2.1,
for eachn, we get a coherent locally freeOXn-Algebra such thatBn−1

∼←−
Bn ⊗

OXn

OXn−1. By the existence theorem,∃ a coherentOX-Algebra B

such thatBn
∼←− B ⊗

OX

OXn. SetZ = SpecB. We claim thatZ/X is the 159

étale covering we are looking for. It is clear thatZ×
X

X0
∼−→ Z0. It remains

to show thatZ/X is étale.
We first observe that sinceA is a local ring andf is closed any (open)

neighbourhood of the fibref −1(s0) is the whole ofX. Also, if Z/X is
étale over the points of the fibreX0 = f −1(s0), thenZ is étale overX
at points of an open neighbourhood ofX0; for, if x0 ∈ X0 thenBx0 is
free overOx0,X and henceB is a freeOX-Module in a neighbourhood
of x0; and similarly for non-ramification (use Ch. 3, Proposition3.3.2).
Therefore it is enough to prove thatZ → X is étale at points ofZ lying
over the fibreX0 = f −1(s0).

Let thenx0 ∈ X0; choose an affine open neighbourhoodU of x0 in
X such thatB0 is OX0-free overU0 = U ∩ X0. SetΓ(U,OX) = C and
J =MC, the ideal generated byM ; then, forn ∈ Z+, Cn = C/Jn+1 ∼−→
Γ(U,OXn). Similarly, if M = Γ(U,B) then

Mn = M/Jn+1M
∼−→ Γ(U,Bn).

We know thatM0 = Γ(U,B0)
∼−→ Γ(U0,B0) is free as aC0 =

Γ(U0,OX0)-module. Choose a basis forM0 overC0. Lift this basis toM
and letL be the freeC-module on these elements andϕ : L→ M be the
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naturalC-linear map; then we have an exact sequence ofC-modules:

0→ kerϕ→ L→ M → cokerϕ→ 0.

For n ∈ Z+, set Ln = L/Jn+1L and letϕn be theCn-linear map160

Ln
ϕn−−→ Mn defined byϕ. We claim that eachϕn is an isomorphism.
Thatϕ0 is an isomorphism is clear from the construction. Assume

thatϕ0, . . . , ϕn−1 are all isomorphisms and consider the exact sequence

0→ Jn/Jn+1→ Cn→ Cn−1→ 0

of Cn-modules. SinceLn, Mn areCn-flat (recall thatBn is OXn-flat)
we get the following commutative diagram of exact sequencesof Cn-
modules:

0 // Jn/Jn+1⊗
Cn

Mn // Mn
// Mn−1 // 0

0 // Jn/Jn+1⊗
Cn

Ln //

OO

Ln
//

ϕn

OO

Ln−1 //

ϕn−1

OO

0.

But

Jn/Jn+1 ≃ M n

M n+1
⊗
A

C �
r⊕

i=1

Γ(U,OX0),

Jn/Jn+1 ⊗
Cn

Mn ≃
r⊕

i=1

Γ(U,B0) =
r⊕

i=1

M0,

and Jn/Jn+1 ⊗
Cn

Ln ≃
r⊕

i=1

L0.

It follows that the first vertical map is an isomorphism; so isϕn−1 by161

inductive assumption. Henceϕn is an isomorphism.
If Ĉ, L̂, M̂ are theJ-adic completions ofC, L, M and if ϕ̂ is the

Ĉ-linear map defined byϕ, it follows that ϕ̂ is an isomorphism. Thus,
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one obtains: (cokerϕ)̂ = 0 and kerϕ ⊂ ker(L→ L̂). It follows then that
B is locally free atx0 ∈ X0, i.e.,Z → X is flat at points overX0. It is
also unramified at points aboveX0 sinceZ0 → X0 is unramified and for
non-ramification it suffices to look at the fibre.

The proof of Proposition 8.1.3 is complete.

Proof of Theorem 8.1.1.The isomorphismπ1(S, s0)
∼←− G(k(s0)/k(s0))

follows from Proposition 8.1.3 whenX = S.
Consider now the diagram

a0 ∈ X

��

X0 ∋ a′0oo

��

X0 ∋ a0
oo

��
s0 ∈ S k(s0)oo k(s0)oo

By Proposition 8.1.2 we get the exact sequence:

(e)→ π1(X0, a0)→ π1(X0, a
′
0)→ G(k(s0)/k(s0))→ (e).

One now uses the isomorphismsπ1(X0, a′0)
∼−→ π1(X, a0) (Propo-

sition 8.1.3) andG(k(s0)/k(s0))
∼−→ π1(S, s0) to get he required exact

sequence. Q.E.D.





Chapter 9

The Homomorphism of
Specialisation of the
Fundamental Group

9.1
162

With the notations and assumptions of Chapter 8, lets1 be an arbitrary
point of S = SpecA andX1 = X×

S
k(s1). If a1 is a geometric point ofX1

anda1 its image inX and if X1 is connected we get a sequence

π1(X1, a1)→ π1(X, a1)→ π1(S, s1)→ (e)

such that the composites are trivial. We have continuous isomorphisms
β : π1(X, a1) → π1(X, a0) andα : π1(S, s1) → π1(S, s0). Consider now
the diagram:

π1(X1, a1) // π1(X, a1)

β

��

// π1(S, s1)

α

��

// (e)

(e) // π1(X0, a0) // π1(X, a0) // π1(S, s0) // (e).

This isnot necessarily commutative; but it iscommutative upto an
inner automorphism ofπ1(S, s0). (It is readily seen in the example of

125
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section 5.1 that, with the notation therein, the continuoushomomor-
phism there, is determined upto an inner automorphism ofπ1(S, s) if we
take forsa point different fromϕ(s′)-see Ch. 4.)

Now the lower row isexact. This implies that there is a continuous
homomorphismπ1(X1, a1) → π1(X0, a0) which is clearly determined163

upto an inner automorphism ofπ1(X). This is called thehomomorphism
of specialisation of the fundamental group.

9.2

With the same assumptions as above further supposeX/S separable.
Since we have assumedX0 connected, the conditionf∗(OX) = OS is
automatically satisfied and then the upper sequence in the diagram of
9.1 is also exact. In this case the homomorphism of specialisation is
surjective.

9.3

Let Y be locally noetherian andX→ Y be a separable, proper morphism
with fibres universally connected. Supposey0, y1 ∈ Y with y0 ∈ (y1).
Let a0, a1 be geometric points ofX0 = X×

Y
k(y0) and X1 = X×

Y
k(y1)

respectively. Then there is a (natural) homomorphism of specialisation
π1(X1, a1)→ π1(X0, a0) which issurjective.

In fact, in view of Proposition 7.3.2 we may make the base-change
Y ← SpecÔy0,Y and apply the above considerations to points abovey0

andy1.
This is the so-calledsemi-continuity of the fundamental group.
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Appendix to Chapter IX

The Fundamental Group of an Algebraic
Curve

Over an Algebraically Closed Field
Let k be an algebraically closed field andX a proper, nonsingular,164

connected algebraic curve overk (i.e., ak-scheme of dimension 1).

Case 1.Charac. k= 0.

We computeπ1(X) in this case by assuming results of transcendental
geometry.

In view of Lemma 7.2.1.4 and Proposition 7.3.2 one can assumethat
k = C, the field of complex numbers. Then one has an analytic structure
on X and on everyX′ ∈ (E t/X) (see GAGA - J.P. Serre); one can then
show that the natural functor

(E t/X)→
{

Finite topological coverings of the
analytic spaceXh defined byX

}

is an equivalence [cf. GAGA and Espaces fibrés algébriques- Śeminair
Chevally 1958, (Anneaux de Chow) - See especially Prop. 19, Cor. to
Prop. 20 and Cor. to Theorem 3].

One thus obtains:
π1(X, a) ≃ πt̂op

1 (Xh, a), the completion of the topological fundamen-
tal groupπtop

1 (Xh, a) with respect to subgroups of finite index. This
groupπtop

1 (Xh, a) is “known” if X is a nonsingular, proper, connected
curve of genusg. It is a group with 2g generatorsui , vi(i = 1, . . . , g)
subject to one relation, namely

(u1v1u−1
1 v−1

1 )(u2v2u−1
2 v−1

2 ) . . . (ugvgu−1
g v−1

g ) = 1.

Before going to the case charac.k = p , 0, we shall briefly recall 165

some evaluation-theoretic results. (Ref. S. Lang-Algebraic Numbers or
J.P. Serre-Corps Locaux).

Let V be a discrete valuation ring with maximal idealM and field
of fractionsK. Let K′/K be a finite galois extension andV′ the integral
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closure ofV in K′. Choose any maximal idealM ′ of V′ and consider
the decomposition group ofM ′, i.e., the subgroupgd(M ′) of G(K′/K)
of elements leavingM ′ stable. Then there is a natural homomorphism
gd(M ′) → G(k(M ′)/k(M )); the kernelgi(M ′) of this homomorphism
is called theinertial groupof M ′. The maximal ideals ofV′ are trans-
formed into each other by the action of the galois groupG(K′/K) and
the various inertial groups are conjugates to each other (Compare with
Lemma 4.2.1). For the following definition it is irrelevant which of the
M ′ we take and therefore we shall writegi , or sometimesgi(K′/K) in-
stead ofgi(M ′). We say thatK′ is tamely ramifiedoverV if the order of
gi is prime to the characteristic ofk(M ) and thatK′ is unramifiedover
V if gi is trivial.

One has then the following:

(1) If K′/V is tamely ramified then the inertial groupgi(K′/K) is
cyclic.

(2) If K′′ ⊃ K′ ⊃ K is a tower of finite galois extensions and ifV′ is a
localisation of the integral closure ofV in K′ and if K′/V, K′′/V′

are tamely ramified thenK′′/V is tamely ramified.

In addition, one has an exact sequence:166

(e)→ gi(K′′/K′)→ gi(K′′/K)→ gi(K′/K)→ (e)

(cf. Corps Locaux, Ch. I, Propostion 22).

(3) Let τ ∈ M be a uniformising parameter andn ∈ Z+ be prime
to charac.k(M ). If K contains thenth roots of unity, thenK′ =

K[X]
(Xn − τ) is a finite galois extension, tamely ramified, with galois

group= gi(K′/K) ≃ Z/nZ.

Lemma (Abhyankar). Let L, K′ be finite galois extensions of K, tamely
ramified over V with ordergi(L/K) (= n) dividing ordergi(K′/K)(= m).
Let L′ be the composite extension of L and K′. Then L′ is unramified
over the localisations of the integral closure V′ of V in K′.
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Proof. One checks that∃ a monomorphismgi(L′/K) → gi(K′/K) ×
gi(L/K) such that the projectionsgi(L′/K)→ gi(K′/K) andgi(L′/K)→
gi(L/K) are onto (see 2)). Since the orders ofgi(L/K) and gi(K′/K)
are prime top = charac.k(M ), so is the order ofgi(L′/K), i.e., L′/V
is tamely ramified; hencegi(L′/K) is cyclic (1)). Asn|m, it follows
that each element ofgi(L′/K) has order dividingm. But gi(L′/K) →
gi(K′/K) is onto. Thus,gi(L′/K)

∼−→ gi(K′/K). From (2) the kernel of
this map isgi(L′/K′) which is therefore trivial. Q.E.D. �

Case 2.Charac. k= p , 0. 167

Definition. We say that aY-preschemeX is smoothat a pointx ∈ X (or
X → Y is simpleat x) if ∃ an open neighborhoodU of x such that the
natural morphismU → Y admits a factorisation of the form

U
étale−−−→ SpecOY [T1, . . . ,Tn] → Y

(theTi are indeterminates).

Note.Smoothness is stable under base-change.

Definition . For aY-preschemeX, thesheaf of derivationsof X overY
is the dual of theO-ModuleΩX∤Y; it is denoted bygX∤Y.

We shall assume the following

Theorem 1. (SGA, 1960, III, Theorem (7.3)).

Let A be a complete noetherian local ring with residue fieldk. If
X0/k is a projective, smooth scheme such that

H2(X0, gX0|k) = (0)

and H2(X0,OX0) = (0);

then∃ a projective, smoothA-schemeX such thatX⊗
A
k ≃ X0.

Let k be an algebraically closed field of charac.p , 0 andX0 a 168

nonsingular (= smooth in this case) connected curve, proper (hence, as
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is well-known projective) overk. Consider the ringA = W(k) of Witt-
vectors; this is a complete, discrete valuation ring with residue fieldk; if
K is the field of fractions ofA, then charac.K = 0, andK is complete for
the valuation defined byA. The conditions of Theorem 1 are satisfied by
X0. Therefore∃ a projective smoothA-schemeX such thatX0

∼←− X⊗
A
k.

TheX0 is universally connected; but then it follows that the generic fibre
is also universally connected (Use Stein-factorisation; Note that SpecA
has only two points). Furthermore, asX is smooth overA, the local
rings of X are regular (one has to show that ifX → Y is étale andY is
regular thenX is regular). Finally we mention the important fact that by
Proposition 8.1.3, we have:π1(X)

∼←− π1(X0).
We may thus replaceX0 by X. Let a0 be the closed point of SpecA

anda1 the generic point; setXK = X⊗
A
K, XK = X⊗

A
K, where as usual

K is the algebraic closure ofK. If a0 ∈ Xk = X⊗
A
k is a geometric

point overa0 anda1 ∈ XK, a geometric point overa1 then we have the
homomorphism of specialisation

π1(XK , a1)→ π1(Xk, a0) ≃ π1(X)

which is surjective (9.2).
From case 1 one already “knows” aboutπ1(XK , a1) (charac.K = 0).169

Thus it only remains to study the kernel of the above epimorphism.
This amounts by 5.2.4 to studying the following question: Given a con-
nected étale coveringZ of XK which isgalois, when does there exist a
Z ∈ (E t/X) such thatZ

∼←− Z⊗
A
K. [Remember: a connected étale cov-

ering is galois if the degree of the covering equals the number of auto-
morphisms. Also note: we have integral schemes because, forinstance,
our schemes are connected and regular. Therefore we may consider the
function fieldsR(Z) andR(XK) of Z andXK . Clearly if Z is galois over
XK thenR(Z) is a galois extension ofR(XK).].

By Lemma 7.2.1.4,∃ a finite subextensionK1 of K and aZK1 ∈
(E t/XK1

= X⊗
A
K1) such thatZ

∼←− ZK1⊗
K1

K. Then the above question takes the

form: Given a connectedZ ∈ (E t/XK), which is galois when does
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there exist aZ ∈ (E t/X) and a finite extensionK2 of K1 such that
ZK2 = ZK1⊗

K1

K2
∼←− Z⊗

A
K2?

Now, for any finite extensionK′ of K, let A′ be the integral closure
of A in K′; then by a corollary to Hensel’s lemma it follows thatA′

is again a discrete valuation ring whose residue field is again k (recall
that k is algebraically closed). Thusπ(X) ≃ π1(Xk) ≃ π1(XA′) where
XA′ = X⊗

A
A′, again by Proposition 8.1.3. Thus the question becomes:

Given ZK1 ∈ (E t/XK1), universally connected and galois, when does170

there exist a finite extensionK2 of K1 such thatZK2 = ZK1⊗
K1

K2 comes

from aZA2 in (E t/XA2
= X⊗

A
A2) (whereA2 is the integral closure ofA in

K2)?
Consider any finite extensionK′ of K1 and letA′ be the integral

closure ofA in K′. We are given a situation of the form:
ZK′

XK′

+ p′- generic point of the fibre over the closed point.

generic point

∼ SpecK′ − 0 ·︸︷︷︸
SpecA′

-closed point (residue fieldk).

TheZK1 (resp.ZK′ = ZK1⊗
K1

K′) are connected and hence, as we have

already remarked, integral. LetR(ZK1), R(ZK′), R(XK1) andR(XK′) be
the function fields ofZK1, ZK′, XK1 and XK′ . ThenR(ZK1) is a finite
galois extension ofR(XK1) and

R(ZK′) = R(ZK1)⊗
K1

K′ = R(ZK1) ⊗
R(XK1)

R(XK′).

Our aim now is to choose, if possible, the fieldK′ ⊃ K1 such thatR(ZK′)
is unramifiedover XA′. By this we mean the following: consider the
normalisationZ′ of X′ = XA′ in R(ZK′); we wantZ′ to be unramified 171

overX′.
(Note: SinceZK′ is regular, so certainly normal, we have thatZ′⊗

A′
K′

∼−→ ZK′ , because the process of normalisation is unique. – See EGA, II,
§ (6.3) and also S. Lang, Introduction to Algebraic Geometry,Ch. V).
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We can also express this as follows: we wantZ′ to be unramified over
the whole ofX′ and not merely on the open subschemeXK′ = X′⊗

A′
K′.

Consider the integral closureA1 of A in K1. Let p be the generic
point of the fibre inXA1 = X⊗

A
A1 over the closed point (as a space, this is

nothing butX0). Thenp is a point of codimension 1 inXA1; furthermore
XA1/A1 is smooth and therefore the local ringO1 of p (as a point inXA1)
is regular. ThereforeO1 is a discrete valuation ring inR(XA1) = R(XK1).
Similarly defineO′ in R(XK′) = R(XA′) for any K′ ⊃ K1. It is easily
checked thatO′ is the integral closure ofO1 in R(XK′). Now, any open
set inXA′ , containingXK′ and the generic pointp′ of the fibre over the
closed point of SpecA′ is such that its complement is of codimension
≥ 2 in X′A. We have the following theorem depending on the so-called
purity of the branch locus:

Theorem 2. (SGA, 1960-1961 expose X, Cor (3.3))

Let P be a locally noetherian regular prescheme andU the comple-
ment of a closed set of codimension≥ 2 in P. Then the natural functor172

(E t/P)
Φ−→ (E t/U) is an equivalence. (For a proof see SGA, X, 1962).

[For the special case of the theorem which we need, there is a direct
proof in SGA, X, 1961, p. 16. However even for that proof one needs
the following result (which we havenot proved in these lectures). An
unramified covering of a normal prescheme is étale. (SGA, I,1960-
1961, Theorem (9.5)).]

Thus, it is enough to prove that∃K′ ⊃ K1 such thatR(Z′) is unrami-
fied overX′ at the pointp′ becauseZ′ is clearly flat overX′ = XA′ at the
point p (the local ringO′ of p′ in X′ is a discrete valuation ring).

If τ is a uniformising parameter ofA1, it is also a parameter ofO1.
Let thenn ∈ Z+ be such that (n, p) = 1 and setK′ = K1[T]/(Tn − τ).
ThenK′/K1 is a finite galois extension andR(XK′) ≃ R(XK1)[T]/(Tn−e).
HenceR(XK′) is tamely ramified overO1, and has an inertial group of
ordern.

Assume now that the degree of the galois coveringZ over XK is
prime to p = charac.k. Then one may taken equal to this degree. By
Abhyankar’s lemma one then has thatR(Z′) is unramified overX′ above
the pointp′. Thus one has “proved” the
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Proposition 3. The kernel of the (surjective) homomorphism of special-
isationπ1(XK , a1) → π1(X0, a0) is contained in the inter-section of the
kernels of continuous homomorphisms fromπ1(XK) to finite groups of
order prime to p.

Therefore if, for a profinite groupG , we denote byG (p) the profinite 173

group lim←−−Gi where the limit is taken over all quotientsGi of G which
are finite of order prime top, then we have:

π
(p)
1 (XK , a1)

∼−→ π
(p)
1 (X0, a0).

(One can also say:G (p) is the quotient ofG by the closed normal sub-
group generated by thep-Sylow subgroups ofG ). Since we “know”, by
topological methods, the groupπ1(XK, a1) we obtain:

Theorem 4. If X is a nonsingular, connected, proper curve of genus g
over an algebraically closed field k of charac. p, 0, thenπ(p)

1 (X)
∼−→

G (p) whereG is the completion with respect to subgroups of finite index
of a group with2g generators u, ui , vi(i = 1, 2, . . . , g) with one relation:

(u1v1u−1v−1
1 )(u2v2u−1

2 v−1
2 ) . . . (ugvgu−1

g v−1
g ) = 1.
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