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Chapter 1

The differential equations of
mechanics

1 The Euler-Lagrange equations

We shall begin with some introductory remarks on thedéntial equa- 1
tions of mechanics; we shall indicate their connection whth calculus
of variatinos and discuss briefly the transformatin thearg tb Hamil-
ton and Jacobi.

Let n be a positive integer and let= (X1,..., Xn), X = (X1,..., Xn)
andt be 2h + 1 independent real variables. Suppose that x, t) is a
real twice continuously dlierentiable function of ther+ 1 variables
(x, % 1) fort; <t <ty and &, X) belonging to an open s& of 2n-

dimensional Euclidean space. Next, let us suppose that xadh=
1,...,n,is atwice continuously ffierentiable real-valued functiog(t)

: , . dx(t .
of the variableg int; <t < tp; we setxi(t) = L() We also writex(t) =

(a(®), -, %), X(1) = (Xa(D), ..., Xa(t)), and assume thak(), x(t)) €
Gfort; <t < to. Then f(x(t), x(t),t) is a continuous (in fact, twice
continuously diferentiable) function of the variabtén t; <t < t, and

1
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2 1. The diferential equations of mechanics

so we can form the integral

t2
f F(x(t), X(t), )dt. (1.1.1)
t1

The classical problem of the calculus of variations comsistietermin-
ing a twice continuously dlierentiable functiorx = x(t) of the variable
tint; <t <ty with (X(t), x(t)) € G and satisfying prescribed initial
conditionsx(t;) = a andx(t2) = b, wherea andb are given points in
n-dimensional Euclidean space, such that the intefraldjjlid a mini-
mum. Let us assume that this minimising problem has a solutiie
derive a necessary condition for the existence of such sicoba= Xx(t).
Lety = y(t) = (y1(t),...,yn(t)) be a fixed twice continuously fieren-
tiable function of the variablein t; <t < t, with y(t;) = 0 andy(tz) = 0.
SinceG is open, ifx = X(t, €) = X(t) + ey(t), then &, x) € G for all real
€ with suficiently small absolute value. Moreover, we hayg, €) = a
andx(ty, €) = bfor all . Then the integral

t2
f f(X(t, €), X(t, €), 1) dt,
t

wherex(t, €) denotesdgt X(t, €), defines a real-valued functiah= J(e)

of the parametee. Sincef(x, X, t) is twice continuously dferentiable
in all the 2h + 1 variables X, X, t) and x(t, €) is linear ine, the function
J(e) is a twice continuously dlierentiable function oé. Further, since
X = X(t,0) is a minimising function for the integrdl{1.1.1)(0) is a
minimum value of the functiod(e) A necessary condition thd(e) has
a minimum value a¢ = 0 is thatw = 0 ate = 0. From this one gets
€

the Euler-Lagrange equations in the following way. We have

dJ o

dJe = f — f(x(t, e), X(t, €), t)dt,

de Oe

t1

and if, for any fixed value of the parameter fy, and fy, denote the
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fuxd  9f(x %)

. . .0 . .
partial derivatives of the functionf, consid-

ered as a function of then2+ 1 variables X, X, t), then we have, by the
chain-rule for dfferentiation,

9 . Lot €) I%(t, €)
ggmmpgp& — + i )

o Oe
= > (e (% X DY) + i (06 X DY)
k=1

Hence we obtain

to

dJ(e 4 . o

S [ 3l O+ e DN
=

and this gives, on integration by parts,

)
die) (< N
de _!é(ka(x, X,t)—d—tka(x, X’t))yk(t)dt+

t
d [ .
+ f g [Z i (% %, t)yk(t)] dt.
Y k=1
The second term on the right side vanishes sip€g) = 0 = y(t2).
Therefore a necessary condition f%j(eli) to vanish at = O is that all 4

d _ _
the fy, — —tka, k = 1,...,n, vanish forx = x(t,0) = x(t). Thus we
obtain a system of flierential equations

Ak(f)zka-dﬂtf-xkzo, k=1,...,m (1.1.2)

these are th&uler-Lagrange dferential equations.

We can rewrite the systefl (1.11.2) offdrential equations more ex-
plicitly using the fact that the functiof is twice continuously dferen-
tiable in all its 2h + 1 independent variablex, (X, t). Carrying out the
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differentiation with respect towe get

n
AR(F) = Ty = > (g X + Figa¥a) = fie = 0,
1=1

where

c_ P PRkt PRkt o BPReox )
de XAt T T axO% YT T %X

k,1 =1,...,n. This is a system of partial diferential equations of the
second order im unknown functionx(t), k = 1,...,n.

If f = f(x x1t) is an arbitrary twice continuously fierentiable
function of 2h + 1 independent real variables, &, t) int; <t < t, and
(%, X) € G, and ifx = x(t) is a twice continuously dierentiable function

oftinty <t < ty such that (1), Xx(t)) € G (wherex(t) = dgtxk(t)’
k=1,...,n), then we can form the expression

n
M) = Ty = D (Froa X + fia¥a) = fr k=1,
1=1

this is called thd_agrangian derivativeof f.
We can try to simplify the Euler-Lagrange equations by mexrss
suitably chosen substitution. We introduce new independarables

&=(&4,...,&) and set
X = X(&,1), k=1,...,n, (1.1.3)

wherexy (&, t) are twice continuously étierentiable functions of the+ 1
independent real variableg, ), and we assume that the Jacobiarnxof
with respect to¢ does not vanish anywhere in the region under con-
sideration, so that the transforrr})ation frgnto x is locally one-to-one

Xk

everywhere. Thus, writing;, = E we assume that the determinant
1

X, | # O everywhere. Then we can invert the transformatfon {jL.1.3)
locally and determiné; as a functior¢;(x, t) of then + 1 independent
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variables & t), | = 1,...,n. We can write, by the chain-rule forfir-
entiation,

n
X = Z Xig &r + Xt (12.1.4)
r=1
r n o . )
X= Z Z Xigr£26161 + Xt + X & [ + Xty (1.1.5)
r=1\I=1
where
L P PPXEN)
gr = d_tfr(t)afr = ﬁfr(t), Xktt = T’
IX(E, 1) 02X (£. 1)
- —_ d —
T T HE108, and X A& ot

(We may also consideh, &1 as independent variables and defipesi 6

in terms oféy, & by means of the equatiorlSTII1.4) aRd(1.1.5)).
We suppose thatt(¢) varies in an open sd&b, in 2n-dimensional
Euclidean space so that,&) € G. Then we define the functiog =

g(¢.¢.1) by _ :
9(é.&.1) = F(X(E. 1), X(¢.£.0).1).

The functiong is again twice continuously fierentiable in the vari-
ables £, £,t). We shall now obtain the relation between the Lagrangian
derivativesag(f) andAg(g) of f andg. We have, by definition,

d
/\l(g) =0 — agélv

and by the chain-rule for fierentiation, usind{1.11.4), we get

Qs = Z (kaxkfl + ka(z kar&ér + thgl)),
r=1

k=1
n . n
O, = kZ fio (R)éx = kZ fio X
=1 =1

d " (d L :
gt = Z [d_t Fiu Xz + i Z(kalfrfr * kalt))
r=1

k=1
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Sincexy = xk(&,1) is twice continuously dferentiable in{,t),

Xktgy = Xt and Xegrgy = Xigrérs

and consequently,

n d n
M@ = 3~ g X = D M)
k=1 k=1

As aresult, ifA(f) =0, k=1,...,n, and ifxx = x«(&,t) are twice con-
tinuously diferentiable functions of¢(t) with the determinantx, | #

0, then the functiom(¢, &, 1) = f(x, X, t) satisfies the relation,(g) = O,

| = 1,...,n, and conversely. This relation could also be obtained di-
rectly by considering the integral

2 to
[ote.é0t= [ rocx e
t1 ty

and diferentiating partially.
We can write the relation obtained above:

M@ = D A%y, (1.1.6)
k=1

in a simpler way as follows. If we denote the Jacobian matgx ) by
M and write

A(F) = (A1(F), ..., An(F))s A@) = (Aa(9). - - -, An(9)),

then
A(Q) = A(F)M.

This is the covariance property of the Lagrangian derieativ

The Lagrangian derivative(f) of a functionf can be considered
as a function of 8 + 1 independent real variableg, &, X,t). Now we
investigate the condition under which the relatiog(f) = Ak(h) holds
identically in all the 3 + 1, independent variables for two functions



1. The Euler-Lagrange equations 7

f(x, %, t) andh(x, %, t) which are twice continuously fierentiable in the
2n+ 1 variables ¢, x,t) fort; <t <tpand §, x) € G.

Since the Lagrangian derivatives are linear homogeneosiatus,
it is enough, settingg = h — f, to investigate whemg(s) = 0, k =
1,...,n, identically in the & + 1 independent variables x, X, t. Since

n
AKS) = S = D (St Xa + Siia %) — it
=1
it follows that the cofficient of X; vanishes identically, i.e.

S =0, Kl=1,...,n,

which means thasis a linear function of X1, ..., X,). Hences has the
form

n
(X 1) = oo (6 1) + > (X s,
=1

whereo (X, 1), o1(X, t) are twice continuously fierentiable functions
of (x,1). SoAk(s) = 0 gives

n n
Oox + Z Tix X — Z(Tkx15<| ok =0.
=1 =

This implies that 9
Oox, =0kt and oi1x, = okx, K1 =1,...,n

If we define for the momenx, = t, then the first condition becomes
Oox, = Okx,, K= 1,...,n, which is of the same form as the other con-
ditions. These are necessary anflisient conditions in order that there
exist a functiono(x, t), twice continuously dferentiable in then + 1
independent variables{, x1, . . . X»), such that

0o (X, Xo)

, k=0,1,...n
OX«

aKk(X %) =
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Hence, under these condition there exists a funatifm t), twice con-
tinuously diferentiable in then + 1 independent variable, ), such
that

do(x,1) do(x, 1)
and ) = —,
at Tt = —5
Thenscan be written in the form

_dr(xt) < do(xt) .  do(x1)

X, X, t) = = ,
XD =5 2 o T

oo (X 1) = k=1,...,n.

which means that a necessary condition thgtf) = Ax(h) is that there
exists a twice continuously fierentiable functionr(x,t) of n+ 1 inde-
pendent variables«(t) such that

do (%, 1)
dt

Conversely, if there exists a twice continuouslytetientiable function
o(x t) and if f andh are connected by the relatidn{1]1.7), the«f) =
Ak(h) identically, k = 1,...,n. This assertion could also have been
proved starting from the original problem of the Calculu&/afiations.

We proceed to derive the canonical equations of Hamiltoris iBh
done by means of the ‘Legendre transformation’. We set

h=f+

(1.1.7)

Yk = f (X % 1), kK=1,...,n, (1.1.8)

and consideffy, as functions ok = (Xy, ..., X»). If we suppose that the
Jacobian fy x| # 0 everywhere in the region under consideration, then
we can solve the system of equatiofs_(1.1.8) locally andrate X

as functions of 8 + 1 independent variables,(y,t). If f satisfies the
Euler-Lagrange equations

ka—dﬂtf-xkzo, k=1,....n,

then it follows thatyy = fyx, k = 1,...,n. Therefore, we obtain by
the substitution[{T.118) a system af differential equations of the first
order,

X = X(X, Y, 1),
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Vi = F (6 X 1) = i (6 XX, Y1), 1), k=1,....n.

Thus the Euler-Lagrange systemroéquations of the second order has
been reduced to a system af @quations of the first order.

This system of dterential equations can be written in gfdrent 11
way as follows. Consider the functidg(x, y, X, t) of 3n+ 1 independent
real variables, defined by

n
EOCY, %) = ) Mk — FO6 % 1); (1.1.9)
k=1

this is twice continuously dlierentiable in all the variables. Then

n n
dE = > (Xedyk + ykd%) — > (FedXc + fidX) — fedlt
k=1 k=1

Now if we assume thajk = fy,k=1,...,n, and|fy x| # O everywhere,
then

n
D O — i dd) = 0,
k=1

and hence

n
dE = ) (S — fudx) — ficlt
k=1

which means thak is a functionE(x, y, t), twice continuously dferen-
tiable in the 2 + 1 independent variables,fy, t). Therefore we get

a—E— f a—E—' and a—E— f
o % Gy K ot ©

If now f satisfies the Euler-Lagrange equations, so that

d .
kazakazyk, k= 1,...,n,

then we get a system ofh2lifferential equations satisfied &y

X = Eyo Yk = —Ex k= 1,...,0. (1.1.10)
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JE(X, y,t JE(Xx,y,t .

OE(xy.Y) andEy, = & These equations are12
0% . Yk

called thecanonical equations of Hamiltorif we assume thay, | =

Iy | # O, then we see from the relatign = fy, (consideringfy, as a
function ofX) that

whereEy, =

n
Ay = > Fiyiq .
=1
n
Sincedxc = Y, Eyydyi, it follows that (fys) and Ey,y) are matri-
=1

ces which are inverses of each other. We hlyg = X, and hence
Xy | # 0. Conversely, suppose that= E(x,y,t) is O given twice con-
tinuously diferentiable function of all ther8+ 1 independent variables
and|Ey,y | # 0 everywhere, then the system offdrential equations

X = By Vi = —Exo. k=1,....n,

can be reduced to the system of Euler-Lagrange equationsedthis
we put

n
FOCY %) = " Xy — E(x y, 1) (1.1.11)
k=1

and considerf as a function of 8 + 1 independent variables. Then
n n
df = = > (Exd%+ By dyi) — Brdt+ > (Xedyk + yed5).
k=1 k=1
If the equations[{I.1.10) are satisfied, then
n n
df == > Eydx— Eidt+ >y,

k=1 k=1

and if |Ey,y,| # 0, then we can solve locally foy as a function of
X = (Xg,...,X%n). Substituting this in the expressidn {1.1.11) forwe

may considerf as a function of A + 1 independent variable, (X, t).

Consequently,

ka:—EXk, ka:yk, k=1,,n,
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which, together, with the system of equations= —E, of (LID),

implies that

ka—dﬂtf-xkzo, k=1,....n

2 The transformation theory of Hamiltonian equa-
tions

We have shown i [ that the system of Hamiltonianftérential equa-
tions can be obtained from the Euler-Lagrangfedéntial equations
(by means of the Legendre transformation) and converselg. skl
now show that the Hamiltonian equations can also be obtaiiredtly
from the variational problem, without using the Legendensforma-
tion. This is done in the following way. Suppose that a twioatmu-
ously diferentiable functiorE(x,y,t) of 2n + 1 independent real vari-
ables &, vy, t) is given. We generalize slightly and consider the function

f of 4n + 1 independent variableg,(y, X, y, t) defined by 14
n
POy %31 = D%y = E(uy,b). (1.2.1)
r=1

(The variabley' = (y1,...,Y¥n)) does not really appear on the right hand
side.) It is clear that the functiohis twice continuously dferentiable

in all its variables. Then the Lagrangian derivativesfofcalculated
with respect to Xk, X«) and i, yx) and denoted by, (f) and Ay, (f)
respectively, are given by

d .
Ax () = fy - E[fkk = —Ex = Yk (1.2.2)

d .
Ay (F) = Ty — d_tfyk =X—-Ey, k=1,...,n
Hence the Euler-Lagrange equations fdsecome

which are precisely the Hamiltonian equations. Convertiedysystem
([TZ3) of equations implies thdt satisfies the Euler-Lagrange equa-
tions. Thus the Hamiltonian equations can be considereadesseary
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conditions for the existence of a twice continuouslifatientiable func-

tion (x(t), y(t)) = (Xa(t), ..., Xa(t), y2(t), ..., yn(t)) which is a solution of
the problem of minimising the integral

t2
f f(xy, X, y, t)dt
t1

with the prescribed initial condition(ty), y(t1)) and (t2), y(t2)).

We proceed to discuss the transformation theory of the Hamil
nian equations. We considen Z2iew independent real variablés=
(&1,...,&) andn = (71, ..., nn) and the transformation

X = k(& m 1), Ye=vEmt), k=1,....n, (1.2.4)
wheregyx andyy are twice continuously elierentiable functions of the
X))

2n + 1 independent variables,(,t) with the Jacobian——— non-

vanishing. In general such a transformation does not |cavariant
the Euler-Lagrange equations in the Hamiltonian form:

Ex = Yk Ey =X k=1,....n (1.2.5)

We wish to investigate conditions under which a transforomaof the
type [I.Z1) leaves the equations in the Hamiltonian far@.HR) invari-
ant. For this purpose we consider the functioof 4n + 1 independent
variables &, v, x, y, 1) defined by[[L.Z]1):

n
Ty 19,0 = D %Y — EQGY,b).
r=1

We have seen that the Lagrangian derivative$,afomputed formally
relative to &, k) and /i, Yk) respectively, are
Ax(f) = —EXk —yk and Ay (f) = Xg — Eyk,k =1...,n

These are in the Hamiltonian form. We substitutés, n, t) andyy(&,
n, ) for xc andyi respectively in the expressidn (1]2.1) foand we con-
sider f as a function of the#+1 new independent variables g, &, 1, t).
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We then obtain the Lagrangian derivatives in the new vagibl

d d
/\gk(f) = f‘fk - d—tf)'(k,/\,]k(f) = fn,k - d—tf,'?k,k =1,...,n

Now if the transformation of the variables from §) to (X, y) is to leave
invariant the Lagrangian derivative in the Hamiltoniamfigmwe have to
determine a twice continuouslyftérentiable functiorE = E(¢, n, t) of
the 2h + 1 independent real variableg f, t) such that

Ae(F) = =Eg = iiko Ap(F) = & =By k=1,...,10. (1.2.6)

On the other hand, if we consider the functior= h(&, n, &,1,1) of the
4n + 1 independent variableg, @, £, 1, t) defined by

hem &, t) = ) & —E(En,b), (1.2.7)
k=1

then the Lagrangian derivatives lofare again given by
Ae(h) = =Bg — i, Ap(h) = & — By k=1,....n. (1.2.8)

The systems[{1.2.6) anf{LP.8) together mean that theidmnst =
f — his twice continuously dferentiable in the variableg,, &, n,1)
and satisfies the Euler-Lagrange equations

Ae(8) =0, Ap(9) =0, k=1,...,n

We have shown ir§ [ that in such a case there exists a twice contin-

uously diferentiable functiorr = o (&, n,t) of the 2h + 1 independent 17

variables £, n,t) such thats = d—ta(g, n,t). This means that = h+ (jj—(:

and hencef considered as a function of the variablésr( &, 7,t) has
the form

. 0 d
fEemént = szknk ~EEnY+ gony).  (1.29)
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If we denote byor, o, oy, the partial derivatives of with respect to
t, & andny respectively, then we have

d S .
d_to-(f’ n, t) = é(o-xfkfk + 0'm<77k) + Ot

n .
SinceX; = Y (Xralk+ Xendlk) + %, the expressioi{1.d.1) fdrbecomes
k=1

f= —E(X(f, n, t)’ y(‘f? n, t)’ t) + Z((erkgk + Xrnki]k) + Xrt)yr-
r=1

Then we get
d n .
€N =f-h=EEnt)-Exy.t- kz; Gt

n (n
+ Z Z(erké:k + Xrnki]k) + Xt | Yr»

r=1\k=1

and therefore, comparing the ¢beients oféy andrj, and the remaining
terms, we have

n
O—fk = Z erkYr - Tk
r=1
n
One= ) XY K=1...n, (1.2.10)
r=1

n
and  or= ) Xayr + E(En.1) - E(G Y, ).
r=1

The functionE(£, n, t) is therefore determined by the last identity if the
functiono (¢, i, t) is known. However, the first two identities i {1.2.10)
give the partial derivatives aof- with respect tofx and . Hence a
necessary and fiicient condition that there exist a twice continuously
differentiable functioro- of 2n + 1 independent variableg,, t) with
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do

% and— given by the first two equations iR {1.2]110) is thasatisfy
k

I
the integrability conditions:

Ta&r = Terbr Téan = Tméio T = O K1 =1,

Using the expressions far; ando,, from (LZID) the integrability
conditions become

n n
Z XeeYr — nk] = (Z X Yr — 771] )
= & r=1 &k
n
= [Z xn,lyr) :
r=1 &

-
N
X
M
=~
<
[
=
=~
[

Sincex; is twice continuously dferentiable in all the variableg,@, t),
we have

Xrégr = Xeargio Xedan = Xeméio Xemann = Xepupeo

k,1=1,...,n and we get

Z XrYre = Z Xré1 Yréis
r=1

n

> Xt Yom, = 0 = Z XY (1.2.11)
r=1 r=1
n n
Z X”]kyr?]l = Z Xrnl)’qu,
r=1 r=1

k.1 =1,...,n, wheredy = 1 anddy = 0, k # 1. These integrability 19
conditions can best be written in matrix form. Denoting/AyB, C, D
respectively the-rowed square matrices

A= (Xk‘fl)’ B= (Xkﬂl)’c = (ykfl)’ D= (ykﬂl)’
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we can write the equationS{1.2111) in the form
AC=CA AD-E=C'B, BD = D'B, (1.2.12)

whereE is then-rowed unit matrix §y). We denote byM the Zr-rowed
matrix
A B
a-(2 8)

M is precisely the Jacobian matrix of the transformation fi@rm) to

(%y) given byx¢ = ¢(&,1,1), Yk = y«(é.n,1), k = 1,...,n. Denoting
by J the 2h-rowed matrix
0 E
=% o)

where 0 stands for therowed zero-matrix, the integrability conditions
([TZ12) can be condensed into the single condition:

M’IM = J. (1.2.13)

A 2n-rowed matrixM satisfying the conditiol TT.Z13) is callecsgm-

E O
o E
shows thatl itself is a symplectic matrix. We recall that the symplectic
matrices form a group under matrix multiplication; this gpas called
the real symplectic group.

Thus the integrability conditions expressed by (1P.1&)sthat the
Jacobian matrix of the transformation from §) to (x,y) defined by
([Z3) is symplectic. Since the integrability conditiare derived from
the first two equations il I.Z110) which are independenheftinction
E(x Y, 1), it follows that the conditiorM’JM = J is also independent of
the choice of the functio&(x, y, t) in the expressior{1.2.1) fdr.

A transformationxy = ¢k(&,1,1), Yk = wk(&, n, 1) wheregy, Yy, k =
1,...,n, are twice continuously ffierentiable functions of ther2+ 1
independent variables,(,t) such that the Jacobian matri of the
transformation is non-singular, is callednonicalif the matrix M is
symplectic.

plectic matrix We observe thal’ = -J and that)? = , which
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Under a canonical transformation then the Hamiltonian ggos
preserve their form. We consider now the question of det@ngiall
canonical transformations, or, equivalently, the probtefinsolving the
matrix equationg’JM = J in M. We do this first under an additionab1
restriction. Suppose thak = ¢k(&,n,1), Yk = uk(& n ), k=1,...,n,
is a given transformation with the additional property ttregt determi-
nantB = [x,| # O; |B| is precisely the Jacobian of the transforma-
tion x« = (&, n,t), kK = 1,...,n, wheregy are considered as func-
tions of the independent variablgs= (71, ...,nn) alone. Now by the
implicit function theorem we can slove locally for as functions of
(X&) n1 = nu(x &,t) and substituting this inyx = ¥k(&,n,t), we
haveyx = y(x &, t). Sincegy andyy are twice continuously elier-
entiable in all the variablest(n,t), it follows thatn;, and hencey,
are twice continuously dierentiable functions ofx &,t). Substituting
n=mXx&t),l=1...,nino = o(& n,t), we get a new function

W= W(X¢,t) = o(&,n(x &, 1), 1),
which is again twice continuously fiigrentiable in %, &,t). Then we

have the identity

d 5 o
GOEnD = %y —E(y.) = 3 &+ EEn.1),
r=1 r=1
from which we obtain
d n
aW(X7 é:, t) = Z Xryr (X’ ‘f? t) - E(Xv y(X’ ‘f? t)’ t)_
r=1

= DL Em (1) + E(E (% £,0,0).
r=1

But since

d n , .
VD =W+ k;(kaxk + Wi i),

we get, comparing the cfigients ofx, & and the remaining terms, 22
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Yk = Wy, ik = =W, K=1,...,n,
E(xy,t) = E( n,t) - W (1.2.14)

Since|B| = [Xq,| # 0 and the matrixfxy, ) is the inverse of the ma-
trix (Xi,), it follows that |y, | # 0. Therefore we havéWgy,| =
(=1)"Imkx,| # 0. Thus, given the transformation = k(& 7.1), Yk =
k(& n,t), kK = 1,...,n, with x| # 0, there exists a twice continu-
ously diferentiable functioW = W(x, £, t) such thaiWg,,,| # 0. Con-
versely, suppose that we are given an arbitrary twice coatisly dif-
ferentiable functionW(x, &,t) of 2n + 1 independent variables(, t)
with [W,x | # 0. Then we set

(% &, 1) = =W (X.£,1), Yk = Wi (X &, 1).

The first of these can be considered as a functior ofily and since
Weal = (=1)"kx| # O by assumption, we can solve locally and
obtain x as a functiongy(¢, n,t) of (£,7n,t). Substituting this iny, =
Wy (X, &, 1), we define the transformation

X = o€ m, 1), Yk = (&, 1), k=1,...,n.

Further, since the matrixxg,,) is the inverse of the matrixngy,) =
—(Wg,x,), it follows that|B| = [, | # O.

Let us consider the identity transformatiggn = &, yx = nk, whose
Jacobian matriM = (& ) is the Zrrowed identity matrix (evidently
symplectic); herdd = 0, so that the conditiofB| # 0 is not satisfied and
the theory above does not apply. However, even this casescaoMered
in the following way. We use the fact that neverthelggs- |E| # O.

Suppose that we are given a transformatiQqn= ¢x(&,n,1), Yk =
k(€. n,t) wheregy, vy are twice contin(;;(ousl)y tlierentiable functions

Y

aE.n
that M has the additional property tha@¥ = x| # 0. We consider the

transformatior¢y = ny, nx = —¢;, k = 1,...,n, from the independent
variables £,n) to (£,n). The Jacobian matrix of this transformation is
(£ 5) = JandJitself is a symplectic matrix. The Jacobian matrix of
the composite transformation of the variablgs{’) to (x, y) defined by

of (&, n, t) with the Jacobian matri = non-singular. Suppose

Xk = QDk(é:, , t) = Sﬂk(ﬂ/’ _‘f/’ t)
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Yk = l,[/k(f, n, t) = l//k(n/v _é:” t)? k= 1L....n

is the product matrix
A B\(0O E\ (-B A
CcC D/\-E 0) \-D C/°

SinceJ is symplectic and the symplectic matrices form a group under
matrix multiplication, we see that il = (4 B) is symplectic, then 24

(:B é) is also symplectic and conversely. Thus the Jacobian matrix
of the composite of the two transformations is of the formvymesly
considered sincgd # 0, and hence our argument can be applied to
prove that there exists a twice continuouslffelientiable functioW’ =
W(x,&,1) such thalW)’(kg,l| # 0 andyx = Wy, = —Wé;,k, k=1,...,n.

We remark that the transformation = nx, Yk = —& whose Ja-
cobian matrix is( o g) = J belongs to the type we have considered
and moreoved is symplectic. This proves the existence of non-trivial
canonical transformations with the property tf&jt= [Xq,,| # O.

If both |A] and|B| are zero we can still proceed using the fact that
a symplectic matrix can be expressed as a product of two ®atigpl
matrices in each of which either the conditioghf # 0 or |B| # O is
satisfied.

We now come to the partialfierential equation of Hamilton-Jacobi.
Consider the system of Hamiltonianfidirential equations

Xk:Eyk,yk:_EXk, k::l.,...,n,

whereE = E(x,y,t) is a twice continuously dierentiable function of
n

the 2h + 1 variables . y,t). Takingf = > XYk — E we can write this
k=1

in the form
/\Xk(f)E_yk_EXk :O, /\yk(f)EXk_Eyk :O, k:]_,...,n.

Let xx = ok(&, 1, 1), Yk = wk(&, 1, 1) be a transformation of the variablegs

(&,n) to (x,y), wheregy, ¥ are twice continuously flierentiable func-

tions of all the variables&(n, t) with JacobianM # 0. If thisis a

a.m)
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canonical transformation, then there exists a twice canotisly difer-
entiable functiorE = E(£, n, t) such that

Ne(f) = =1 = Bg, Ay () = é:k —Ep.k=1,....n,

wheref is considered as a function of the variablésy(¢, 7,t). Since
the Lagrangian derivatives are invariant under a canomieasforma-
tion, this would imply thatns (f) = 0, A, (f) =0,k=1,...,n.

Now suppose that the canonical transformation aboye= ¢«(é,
1), Yk = yk(&, n, 1), is such thatE(£, n,t) = 0; then the Hamiltonian
differential equations take the trivial for&q = 0, 75 = 0, which has a
trivial solution&y = constanty = constantk = 1,...n.

We have constructed a canonical transformation startiog fa
‘generating function’, i.e. a twice continuouslyfidirentiable function
W = W(x,n,t) of the Zh + 1 variables X, &, t) with Wy | # 0. Then
we have seen thal satisfies the relatiof®(£,n,t) = E(XY,t) + W
Hence, in order thaE(¢,n,t) = 0 it is necessary and ficient that
E(x y, t)+W; = 0. We obtained the canonical transformation by defining
Yk = Wy,. Then this condition becomes

E(X, Wy, t) + W = 0, (1.2.15)

and this is theHamilton-Jacobi partial dferential equatiorsatisfied by
W. Thus, if the canonical transformation constructed fronemaegating
function W transforms the Hamiltonian flierential equations into the
trivial form & = 0, 7, = 0,k = 1,...,n, thenW satisfies the Hamilton-
Jacobi partial dterential equation.

Conversely, suppose thét satisfies the Hamilton-Jacobi partial dif-
ferential equation; then we obtain a canonical transfaionah the fol-
lowing way. Definenx = —Wg,, Yk = Wy SincelWgx| = Wye| # 0,
we can solve the equatiop = —W,, locally and expressy as a func-
tion ¢k(&, n, t) which, on substitution ity = Wy, givesyi = yk(&, 1, t).
Moreover, since under this transformatiB(e, n,t) = E(X, Y, t) + W =
E(x, Wy, t) + Wy = 0, it follows that the transformation thus obtained
reduces the Hamiltonian system offdrential equations into the trivial
form & =0, iy = 0.
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3 Cauchy’s theorem on the existence of solutions of
a system of ordinary differential equations

Suppose that we are givenreal-valued functiondy = fu(Xa, ..., Xm),
k = 1,...,m, of mindependent real variables(..., Xn) andm real
numbersty, ..., &m. Let nowxy = X(t) bemreal-valued functions of a

. , . ... d
real variablet in some interval; denote by the derlvatlved—txk(t). We 27

shall consider the system of ordinanftfdrential equations

Xk: fk(xlvvxm)’ k:la---ama

in them unknown functions¢(t) taking the initial valuegy at the point

t = 7 %) = & Itis well known that if fi are, for instance,
Holder continuous in a real neighbourhood of the pait.(. ., &m) in
m-dimensional Euclidean space, then there exists a solutiaf the
system of diferential equations in a real neighbourhoodr o$atisfying
the initial conditionxk(r) = &. We shall consider the system of dif-
ferential equations in the complex domain and seek compkxrisns
Xk. More precisely, lef, ..., &nbemgiven complex numbers. We shall
assume that th& are complex valued regular analytic functiongraih-
dependent complex variableg, (..., Xn) in a complex neighbourhood
of (é1,...,&m):

Xk — &l < rk, rk > 0,k = 1,...,m. To simplify the notation we
shall assume that thig are regular analytic functions in the region —
&l <r=min(ry,...,rm). Let us suppose further that there is a positive
constantC such thatf(xy,..., Xm)| < C for xin the regionx, — &l < r.
We shall prove the following existence theorem due to Cauchy

Theorem . If fy are regular analytic functions of m complex variables
(X1,...,%m) in a complex neighbourhootkx — &l < r of the point
(&1,...,&m) and |fy] < C in this region, then the system offdrential
equations

X = f(Xe,..., %m), k=1,....m, (1.3.1)

has a solution x= X(t) in the complex neighbourhood 28

t—7|<r/(m+1)C (1.3.2)
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of the pointr, such that the t) are regular analytic functions of the
variable t in this region with 1) = & and

IX(t) —&l<r, k=1,...,m

in the region [1.31).

Proof. The idea used by Cauchy is the following. One writesxthas
power-series with undertermined c¢heients, inserts these into the dif-
ferential equationd{1.3.1) and equates thefoments on both sides; the
codficients of the power-series fag are now determined and one then
proves the convergence of the resulting power-series bynttithod of
majorization. We shall first of all simplify the notation ihd following
way. Define new variableg:, ..., x;, andt* by means of the substitu-
tions

" ., C
X =Xe—&)/r, k=1,...,mt :F(t_T)’
: r
ie. X = X, + &, and t:Et*+T.

Then|x| < 1 and|t*] < 1/(m+ 1) for (Xq,..., Xm,1) in the region
X« — &l < rand|t — 7] < r/(m+ 1)C. Now the system of dierential
equations[(1.311) becomes

d)i * *
CW = fil(rxy + &1 .., X + Em).
Settingfy (X7, ..., Xy = é fi(rX] +£1,. .., IX+&m), this takes the form
d)q: £ *
e fe(X,....xn), k=1,...,m (1.3.3)

where f; are regular analytic functions of the new complex variables
(X, ..., Xy) in the region|x| < 1 and further,f7| < 1 in this region.
This is again of the fornf{1.3.1). Now the statement of thetbm reads

as follows: there exists a complex regular analytic sofutp = x(t*)

in the complex regiort*| < 1/(m+ 1) of the system[{1.3 3) with the
initial condition x;(0) = 0 and with|x (t*)] < 1 for [t"] < 1/(m+ 1). It
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is clear that every solutior(t*) of this problem gives a solution of the
original problem[[1.3]1) and vice versa. Hence it is enougbonsider
the system[{1.3l1) in the situation in whigh = 0, r = 0, fi regular
analytic in the complex regiom| < 1, and|fy| < 1.

We shall, first of all, construct a formal solution of the syst{T.31)
with the initial conditionx(0) = 0. Since we seek regular analytic
solutionsxy, = x«(t) with x(0) = 0, we shall consider the formal power-
series

X = Xi(t) = Z aint™, (1.3.4)
n=1

where the cofficientsay, are complex numbers, to be determined. We
introduce the following notation in order to simplify the itimg. If

(o0
¢ = Y gt is a formal power-series in one variable with complex cee
1=0

n
efficients, for each integar > 0 we shall denote the partial supp ¢t

by ¢n, and the cofficient oft" by (p)n. Itis clear that ¢,), = ((,o)nl. (I):ur-
ther, ify is another formal power series, then we haye §), = on+ ¥
and @y¥)n = (enn)n- Since eachy is a complex regular analytic func-
tion of the variables X, ..., Xm), is has a power-series expansion with
complex cofficients:

fk = Z ak,|l_._|mx'11 ... X|n"11 (1.3.5)

For the moment we shall not be interested in the convergnétiiso
series. Substitutind{1L.3.4) fak(t) and Y, (n+ 1)ak ns+1t" for X (t) in the
n=0

differential equationsy = fy(Xq,..., xm)_and comparing the cdiicients
of t" on the two sides, we obtain, usiig(1]3.5),

(o)

N+ Dakna = Y &y 1nOF - XDh. (1.3.6)

l1..Im=0

We observe that the power-series ft) contains no constant term and
consequently, there is no contribution to the tefron the right side in
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@38) ifly + ... + I, > n; hence, for eac, the right side of[[1.316)
contains only finitely many terms. Then, with the notatiotraduced
earlier, [1.3.b) becomes

(o0

N+ Daknsr = > Akl i ((a0)" - )™ (13.7)

l1..Im=0

This is a recurrence formula for determining theftieeentsay n, k =
1,....mn=12,.... We show now by induction on that theay, are
polynomials ina, 1, with non-negative rational céigcients. In fact,
we havey, 1 = axo_ofork=1,...,m, sothat we can start the induction.
Suppose thaty 1, ...,akn, k= 1,...,m, have already been determined
as polynomials iray, |, With non-negative rational cdigcients. Since
eachxgn = ilak,qtq, andl,, ..., Iy, are non-negative integers, it fol-

q:
lows that (&in)' . . . (Xmn)'™)n is @ polynomial ing, p, . and hence, by
([@I3), soisyns1. Thus the cofficientsay, in the formal power-series
expansion[(1.3]4) foxk are determined.

Next we shall prove the convergence of the formal powekeseri
[@33) forxx = x«(t). For this we make use of the method of majo-
rants and this idea is due to Cauchy. Suppose that

f = Zoall...lmxlll...xlrrﬁ', g= Zobh_]mx'll...x',{\“

l1..0m= l1../m=

are two formal power-series im variables with the cd&cientsay, |
complex andj, j,, non-negative real numbers. We shall say thas
majorized by gor g is amajorantof f) if

|a|1...|m| S bl]_...lma Il? s Im = Ov la s
and we denote this b§ < gorg > f. If fi andgg are formal power-
series withfy < gk, then the system of fierential equations
yk = gk(yl’aYm), k: 17~~~7m’

wheregk = Y b, iYy ...y, is called amajorant system This
|l---m:

system of diferential equations with the initial conditiopx(0) = O,
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k=1,...,m can be solved as above and one obtains a formal solution
yk(t) in a formal power-series in one varialite

V() = Y Bint™ k=1,....m
n=1

Once again the cdicientspgy, are determined by means of the recur-
rence formula

N+ Denet = D bty 1n((an)"™ - Yir) ™ (1.3.8)
l1..Im=0

As before one can show by induction that g, are polynomials in
br,..1,, With non-negative rational cdécients. Sincey,, . are them-
selves non-negative, we see thatfhg are non-negative.

Now we shall show that ifx = yk(t) is a solution of a majorant
system

Yk = Ok(Y1,--->Ym), k=1,...,m, (1.3.9)

of the system[{1.311), with initial conditiong(0) = 0, thenx, < Yk,
k=1,...,m, as power-series in the variatleln other words, we show
that

laknl < Bkn, kK=1,....m; n=1,2,... (1.3.10)

This is done by induction on. Since forn = 1 we have 33

lak 1] = lako...ol < bko.o = Bk1

we can start the induction. Suppose tfiat {113.10) has bemmgifor
n = 1,...,q; then by the recurrence formuldS{1]3.7) ahd (1.3.8) we
have

@+ Diegeal =1 D @ty 1n((ag)™ - . (mg) gl
l1..Im=0

[o9)

< Z Aty 1l 1((Xag)'" - - - (Xmg) ™)ql

l1..Im=0
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Z Bicty. 1 ((Y10)"™ - - - (Ymg)™)g

I1..1m=0
=(g+ l)ﬂk,q+1-

This proves the assertion that< yx, k=1,...m

Thus, in order to prove that the(t) are regular analytic functions
of the variablg, it is enough to determine a suitable majorant system of
differential equation${1.3.9) and solve it §@(t), with initial condition
yk(0) = 0, as a power-series convergent in some region. This is aone i
the following way. If fx are regular analytic functions of the complex
variablesx, . .., Xn in a complex regiomxy| < r, k=1,..., m, then by
Cauchy’s integral formula we have

Ayl = (27r|)mf f |1+1 Im+ldxl...dxm,

whereCy denotes the circle| = px < e, k= 1,...,m. If [f(xq, ...,
Xm)| < M, then it follows that

iy 1ol < M/PE . om e, lm=0,1,2, ..

Since in our caseM = 1 andr = 1, we havela), ;| < 1 for all
l1,...,Im=0,1,2,.... Hence we choosby, |, =1fork=1,...,m
and alllq,...,In = 0,1,2.... Thus for eachyi, k = 1,...,m, we take
the power-series

.....

which is the product ofm geometrlc series with sum

1
(1-y)---(Q-ym)

This is independent dfand hence a majorant system for(1.3.1) is given
by

1
Vik = ,k=1,....m
*= Ty A-vm
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with the initial conditionyy(0) = 0. A solution of this system is given by
the solutiony; = ... = ym = ¥ = y(t) of the single diferential equation

y(t) = 1/1-y)™,
with the initial conditiony(0) = O; integrating this we get 35
y(t) = 1— (1 - (m+ Lty

Expanding the right side as a binomial series we get

(o9

0 = 3 () i e

n=1

The codficients in this expansion are all positive and the poweeseri
converges foft| < 1/(m+ 1). Sinceyy > X, this proves that the power-
seris [L.3K) forx(t) converges foit| < 1/(m+ 1), so that the(t) are
regular analytic functions in this region of the comptgxane.

It now remains only to show th&t(t)| < 1 in the regiorit| < 1/(m+
1). This is an immediate consequence of the fact that/ferl/(m+ 1),
we have

(O] < y(It) = 1 (1— (m+ D)jt)™ < 1.

This completes the proof of the theorem.

We have so far assumed that tfiedo not contain the variable
explicitly. However, the case in which thig are regular analytic func-
tions of them+ 1 complex variablesq, . . ., Xm, t) in the neighbourhood
X« — &l < r, |t = 7| < r of the point £,...,&m,t) can be covered as
follows. We takexm1 = t and consider the system wf+ 1 differential
equations

).(k: fk(xla,xm’Xm+1)7 k:l,...,m,
Xn'H—l:l’

with initial conditionsxk(r) = &, k= 1,...,m, andXmn,1(r) = 7. Thus 36
we obtain Cauchy’s theorem in this more general case also.
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For our applications to Celestial Mechanics we need considky
areal variable. Let us suppose thaté, . .., &marem+ 1 real numbers
and that thefy are real:

(9]

| |
fk = Z Ay dmX] -+ - XM

1. dm=0
with the codficientsay, _,, real; then by the recurrence formula{1l3.7),
the codficientsay in the power-series expansio(t) = >, axn(t—7)"

0

of the solution of the system of equatiois{11.3.1) Wit?\ aligondition
Xk(7) = &k, being polynomials i, |, with non-negative cdécients,
are themselves real.

Consider the half-open intervél < t < t; and suppose tha§ =
xk(t) are real-valued regular analytic functions of the vagdhh this
interval. We have therefore a regular analytic curvenidimensional
Euclidean space. Assume thiat= fi(Xs,..., Xm) are regular analytic
functions in a bounded closed point $&bf m-dimensional Euclidean
space containing this curudt), t; <t < t, and suppose that the func-
tions xx = x«(t) satisfy the diferential equationsy = fx(Xq,..., Xm) in
the intervalt; < t < t,. Then we claim that the solutiong(t) of the
system[[T.3]11) which are regular analytic in the intetyat t < t, can
be continued analytically as anlytic functions regulaoaltt = t,. This
can be proved in the following way. i

For every point£,, ..., &mn) of D there exists a complex neighbour-
hood|xc—&« < rk, k = 1,..., m, in which fy is a regular analytic function
of them complex variablesXg, ..., Xm). AS (£1,...,&m) runs through
the point setD such neighbourhoods cover. The union of all these
neighbourhoods is an open point et Then by the idea of the proof
of the Heine-Borel theorem we can choose fiisiently small positive
numberr such that a finite uniofs of the neighbourhoodisy — & < r,

k =1,...,mcontainsD and is contained ir. SinceG is closed and
bounded and then functions fi are regular analytic everywhere @)

it follows that eachfy is bounded ors. Therefore we can assume that
|fil < Cinthe regionxx — &l < r, k=1,...,m, whereC is a positive
constant independent of the poinin D.
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Now take any real number in the intervalt; < t < t,. Then
by Cauchy’s existence theorem there exists a regular énalgtution
X(t) = (X](1),...,xn(1) in the complex regiont — 7| < r/(m+ 1)C,
taking the initial valuesq(r) = &. If we now taker inty <t <t such
that|t, — 7| < r/(m+ 1)C andé&y = Xk(7), then it follows that the solution
X(t) is regular analytic at = t;, k = 1,...,m. Sincex(t) and x(t)
are regular analytic functions of the variablie the (connected) region3s
t—1 <r/(m+1)C, 7 <t <ty andx(r) = & = X(7), we conclude
that x«(t) = x(t) for all t in this region. This shows thak(t) can be
continued analytically on the real intervak t < t; so as to be regular
att = to.

In the following we shall be interested in applying the Cauekis-
tence theorem to a Hamiltonian system dfeliential equations. We ob-
serve that in this case the functiofigin the system = fx(X1, . . ., Xm),
k=1,...,m, are obtained starting from a single functibn= E(x, Y, t)
which is twice ontinuously dierentiable in all its variables(y, t). (We
have used the obvious notatiom= 2n andxy, ..., Xm stand for the
independent variables y). In fact, the functionsfy are the derivatives
Ey, and -E,, and so in order to apply the Cauchy existence theorem we
need estimates fork,, andE,. If the functionE is a regular analytic
function of its variablesx, y, t) in some complex region and is bounded
by a constanM there, then one can obtain a bound&tbr E,, andEy,
in terms ofM by using the Cauchy integral formula. Since the domain
of existence of the solution depends on this constrit follows that
this domain can be determined in termd\fitself in our case.

In order to make this more precise we begin with the followiag
mark. Letf(x) be a regular analytic function of are complex variable in
the disc|x| < r and let|f(X)| < Cin |x < r. If £is any point in the disc,
then by the Cauchy integral formula we have

1 £(x)

FO=21 ) x-ep
r

dx

whereT is a simple closed curve arougdand contained in the disc39
X < r. We however assume now thétis regular analytic in a larger
disc|x| < 2r and restrict ourselves to poingsan the closed dis¢| < r.
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We take for the curvé& the circle|x — £] = p where O< p < r. Then we
get, from the formula above, the estim@tgé)| < C/r.

Now we takem = 2n and the 2 variables & y) = (X1,..., Xn, Y1,

..,Yn). Leté&, nk, k= 1,...,n, be 2h given complex constants. Sup-

pose thatt = E(x,Y) is a regular analytic function of thenZomplex
variables &, y) in the region|xx — &l < 2r, [yk —mxl < 2r, k=1,...,n,
and is independent of the variatileThen, by the remarks made above,
consideringE as a function of the variableg andyy in turn, it fol-
lows immediately that for all pointsx(y) in the region|xx — &l <
Ly« —mkl < r,k = 1,...,n, we have the estimatéE(x,y)| < C/r,
| - Ex.(x,y)] < C/r. Consequently, by the existence theorem we see
that if 7 is a given complex number, then there exists a regular ana-
lytic solution xx = x(t), Yk = Yk(t) of the Hamiltonian system of equa-
tions X = Ey,, Yk = —Ex, k= 1,...,n, in the complex neighbourhood
t—7] < r2/(m+ 1)C and that the initial conditions(r) = &, Yk(t) = 1«
are satisfied anpk(t) — &kl < r, [yk(t) =l <r, k=1,...,n.

We remark that the case in whi¢his a regular analytic function of
all the 2h + 1 variables %, y,t) can be considered exactly in the same
way by takingt to be the (2 + 1) variablez and the system ofrg+ 1
differential equations

szEyk,S/kZ—Exk,kZ1,...,n,z=1,

with the initial conditionsxk(r) = &k, Yk(r) = n andz(r) = 7. The
remark on the continuation of the solution to the right-hand-point
of a realt-interval we made earlier is valid in this case also.



Chapter 2

The three-body problem :
simple collisions

1 The n-body problem

We shall intorduce the problem of bodies in three-dimensional Eu41
clidean space and study its singularities in the case3.

Let n be an integee 2. (The casen = 1 will be seen to be triv-
ial). Suppose thaPs, ..., P, aren point-masses in three-dimensional
Euclidean space, with the rectangular cartesian coorinatPy de-
noted by &, Yk, z), k = 1,...,n. For simplicity we writegx for any
one of the three coordinates, y«, z, kK = 1,...,n, andq for any one of
the 3 coordinategy. The distancey between the pointBx andP, is
given by

r2 = (% — x1) + (Vi = Y1)? + (2 — 21)% 2.1.1)

We shall suppose th# has a massy > 0,k =1,...,n, and that >

0,k # I. Suppose that the point-masses attract each other according to
Newton’s law of gravitation. Then we can write down the edpret of
motion of the system afi point-masses. For this we set

MMy
U= 2.1.2
PNy (21.2)

1<k<l<n

31
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with defines the Newtonian gravitational potential of thateyn ofn
point-masse$x. The sum on the right if{Z.1.2) containgh — 1)/2
terms. We have assumed that the gravitation constant is thedan
always be done by choosing the unit of mass properly. Therithe
ferential equations of motion of the systemropoint-masses have the
form

mek = Ug. k=1,....n, (2.1.3)

wheregg are considered as functions of the real (time) variataed
2

Gk denotes the second derivati\agiez—qk(t), while U, denotes the partial

derlvatlvea—U(xl, ...,Zn). This is a system ofr8ordinary diferential

k
equations of the second order in the dhknown functionsy = q(t) of
the variablet; we can write them symbolically in the form

mg = U, (2.1.4)

wherem denotes the mass associated wjthWe can also write this
as a system ofrbordinary diferential equations of the first order by

: . : . d
introducing the velocity componenig = Gk = aqk(t):
q=v, mv= U, (2.1.5)

These are 1 ordinary diferential equations inrbunknown functions
ak(t), w(t) of the variablet. We shall start from the initial time= 7, a
real number, and we prescribe the initial valup&) = gk, for q(t) at

t = 7 in such a way thaby = ri, > 0; the initial velocitiesv(r) = Vi,

may be 3 arbitrary real numbers.

Sincepy > 0 and the distance functiomg are continuous functions
of the 3 coordinates, ry # 0 in a complex neighbourhood of the point
g = g, and hencdJ is a regular analytic function of then3sariables
Ok in this neighbourhood. Consequentlyy, are also regular analytic
functions of thegx andmy > 0, so that we can apply Cauchy’s existence
theorem to the system of equatiofs(2.1.5), provided trebtdunded-
ness assumptions are verified; it would then follow thatefer regular
analytic solutiong = q(t), v = v(t) of the system in a neighbourhood of
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the pointt = 7, taking the initial valueg|(r) = g, andv(r) = v;. The
problem is to study the behaviour of the solutions for insieg time

t > 7. (We could also consider the past and study the solutiondder
creasing timd < 7, but this would not make any flierence, since the
differential equation§(2.1.3) remain invariant whésreplaced by-t).
We shall study, in particular, the possible singularitiéthe solutions.

Starting from the dterential equations we first obtain some ‘inte-

grals’. From [Z.I.R) we have, onftirentiation,

Z m<m1(ql - Qk)

Ik

n
which, on summation ovesfrom 1 ton, gives }, Ug = 0. The system
k=1

of equations[[Z.T13) can then be written as

in’quZEW\'/kzo, szqk, k=1,...,n

k=1 k=1
Integration with respect t with gx = X, then yields 44
n n
D, M= ) mak = a, (2.1.6)
k=1 k=1

wherea is a constant of integration; and similarly,
n n
D imdk=4 D mac=7, (2.1.7)
k=1 k=1

with constants of integratiof andy. Integrating both sides of{2.1.6)
and [Z1F) once again with respectttave obtain, with new constants
of integrationa’, 8, v/,

n n n
D M= at+a’, ) myk=pt+B, ) ma=yt+y. (2.18)
= k=1 k=1
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This means that the centre of gravity of th@oint-masses moves in a
straight line in three-dimensional Euclidean space withstant veloc-
ity. We can eliminate the constanisg, y between[([2.116)[(Z71.7) and

E13) and obtain

n n
DUmdx - 156 = @, )" ik — ) = 4
k=1 k=1

> mda-tz)=y.m  (2.1.9)
k=1

Next, if px is a coordinate of the ponPy different formgy, k =
1,...,n, then we get from(Z112),

PkUq — Up, = Z mm(a — G Pk Z mem (P1 — Pr)dk

12k ry 2K ry
MMy
=)~ (P - PG,
== Tk

and this gives, on summation ovefrom 1 ton,

n
Z(pkUQk - qupk) =0.
k=1

In this taking the coordinate, for px andyy for gk, we get, on using the

equation[[ZT13),

n
D Mk - Vi) = 0.
k=1
Integration with respect tbyields, with a constant of integratioh

n
D7 Mk = Yk = A. (2.1.10)
k=1

Similarly, taking . z) and (&, xx) in turn for (px, g«), we obtain

n n
DM - 2 = 1, | MR~ %) = v, (2.1.11)
k=1 k=1



1. Then-body problem 35

whereu andv are constants of integration. These integrals are called
the ‘integrals of angular momentum’. Finally we obtain tlemergy
integral”: multiplying the system of equations{211.3) iy = ¢« and
adding up, we have

n
Z(mkaQk - UgW) =0,
]

n
ie. D (M = Ug, ) = 0.

k=1
This gives, on integration with respecttto 46
1 n
Ekz;m(\,ﬁ_u =h, (2.1.12)

h being a constant of integration. We define the ‘kinetic eyleiig of

: 1n . .
the system oh point-masse®x by T = > > nwﬁ; -U is the ‘potential
k=1
energy’ of the system and we have the total enetgf — U = h, a

constant. Thus we have obtained 10 integrals and 10 coagtéirite-
gration given by[([Z.116)[(21.7Y(21.8), (Z1. 10, (Z1) and [Z112),
starting from the equations of motidn (Z]1.5) of the systév.can then
eliminate 10 of the coordinategv by means of these 10 integrals from
the equations of motion and thus reduce the system to ona of1®
ordinary diferential equations.

We introduce the following definition. Given a systermobrdinary
differential equations of the first orderxc = fk(Xg,...,Xm,t), in m
unknown functionsxx = x«(t), a continuously dferentiable function
g=9(Xs,...,Xm,t) of m+ 1 independent variablegy( . .., xm, t) is said
to be anintegral of the system if for every solutior(t) of the system,
g(xa(t), ..., Xm(t),t) is a constant (depending on the solution). This is
equivalent to saying that

d . .
d—tg(xl(t), cons Xm(1), 1) = O X1+ .o+ Oy Xm + Gt =0
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which means thag satisfies the partial flierential equation of the first
order inm+ 1 variables %, t);

If g1,...,0r areintegrals of the system ofttirential equationsy =
fu(X, ..., Xm, 1), kK = 1,...,m, then they are said to bhadependentf

their Jacobian matrix
o9\ (99
ox ]\ ot
has maximal rank r.

Itis easy to verify that the integrals given iy (Z11.4) - (3)1({Z.1.10)
- (Z112) are independent integrals of the system (2.b.®His sense.

Moreover, these integrals are algebraic functions of the B variables

gk andt. (They are not necessarily rational functions since tha-coo
dinates appear as squarerootsi. Now there is a theorm of Bruns
which states that these are the only independent integirtite aystem

of differential equationd(Z2.1.5) of thebody problem which are alge-
braic functions ofg, t) and any other algebraic integral can be expressed
as an algebraic function of these 10 integrals. The prodiisftheorem

of Bruns is interesting in itself but very long, and sincestbibes not
have much bearing on the problem we shall be interested irshat

not give it here.

In order to apply the Cauchy existence theorem to the sysfem o
equations[{Z.115), it is necessary first of all to determh@edonstants
andC (see Ch[1L§ B). For this we make use of the remarks made at the
end of Chaptdrll§ @ and use Cauchy’s theorem in the form given there.

We shall suppose thatis a real number and thet, v; are the initial
values ofg, v atv = 7 and thatoy = r, > 0. Denote byU, the initial
value of the potential functiob att = 7:

MM

U, =
okl

1<k<l<n

Sincepy > 0 there exists a positive constafatsuch that, < A. We
shall express the constartsandr in Cauchy’s existence theorem in
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terms of A. Letm, = min mg andp = m|n Pl Then it follows

thatmg/pn < U, Aand hencenﬁ/p < A orp > mg/A. Denoting
the initial values oqu andvg by gk, andvy, respectively, we consider
complex numbers, v arbitrarily near tag, andv,. More precisely, we
chooseg andv as follows. Foik # 1, denote @ — k) — (01 — qi-) for
q= XY, zby ¢, andy respectively. Then we get—X1 = ¢+ (Xir—Xi7),
Yk =Y = ¥ + (Ykr — Yir) @NdZ — 21 = x + (Z- — 2-), SO that

r2 = (% — %)%+ (k - y1)? + (z - 2)?
= P2+ (@2 + U2 + X7 + 2((% — X0 + (Ve = Vi)W + (Ze — Zie)).

By the Schwarz inequality the last term on the right is maguli by
20k (le? + 1Y% + |v1?)Y? and hence we have

ral? = p2 = (el + W2 + ®) = 20u(lel + W2 + (D2 (2.1.13)

Now we assume thadl — gk.| < p/14. Then we see thag|, ||, [y| are 49
each< p/7 and consequently,

o2 + W% + 1% < 302/49 < 2/16, (gl + [y + W1D)? < p/4.
Then we get from{Z.1.13)
Inal® > pf — p?/16 = 201 - p/4 > pi /4, Il > pia/2.

Thus the denominators in the system dfeliential equation§(2.1.5) do
not vanish and hence the right hand sides are regular funsctity. If
we assume thaty — k.| < MZ/14A = r, say, then since z me/A, we
have|gk — Gk:| < r < p/4 and therefore we still havgq| > 2;O|<| To get
an estimate for the derivativés,, it is enough to estimatey, — q1|rkI ,

k # 1. For this, sincéy|, |¢| and|y| arep/7 and|Qk: — Qi-| < Pk, We
observe that

_ 64 67
|qk—q||rk.3z(2/pk|)3-8/7-pk|=7pk. < Az/mo k#1,

and so,

3|Q1 -0l < &A%,
#k
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whereC; is a positive constant which depends only on the massgss
and this estimate holds in the regifgR — Ok.| < MZ/14A = r. We take
the complex neighbourhood of the velocity vechy — vi.| < r; then
Vkl < r + |Vie|- Sincew, = Ok, We have an estimate for the kinetic

energyat=71:T, = %vaﬁ = U, + h, given by
q

1
EnnkvﬁTgTT:U,+th+h,

and hence )
IVir] < C2(A+h)2 <Cy VA + Cs,

whereC, andCj3 are positive constants depending only on the masses
my and the energy constantconsequently

VKl < T + [Vikr] < Co/A+Co VA + Cs,

whereC, = mg/14. If we putC = Co/A + C1A% + C, +/Q + C3, then we
have the estimates

1
vl < C, |—=Uq| < C,
M < |m ql

in the regioniq — q.| < Mg/14A, |v— v, | < mZ/14A.
Now applying Cauchy’s theorem in the original form to theteys
of 6n ordinary diferential equations of the first order:

. . 1
k=Vk, k= —Uq, k=1,...,n,
q My Ok

we see that there exists a regular analytic soludidb), vi(t) = gk(t) in
the complex variable in the region|t — 7| < r/(6n + 1)C, with initial
conditionsok(r) = Or, V(1) = Vi and with|g () —Oc| < 1, V(1) —Vie| <
r in this region.

We are interested in the case of a real variablés = r/(6n + 1)C,
thent <t < 1+ 4§ is aregion of existence and regularity of the solution.
In this initerval all the point-masses remain distinct ahdré are no
‘collisions’. For, nory can be zero; if it were, thed would be infinite
and sinceU — T is constant,T would also be infinite. Then song
would be infinite, and this is impossible singés analytic.
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Now we may start a fresh with another initial pointin the interval
T <t < 7+ 6 and seek to continue the solution. Then there are two
possibilities. Either all the coordinates are regular fort & =, which
means there are no singularities, or there exists a leasbeum >
7 such that all the coordinates are regular for t; and at least one
coordinate ceases to be regulat as t; through an increasing sequence
of real values. We should like to investigate the nature efsingularity
att =t;.

We shall study in particular the case= 3. Forn = 2 the theory
already goes back to Kepler and Newton. Ros 3 the nature of the
singularity has still not been discussed completely.

2 Collisions

We have seen il that if Ais an upper bound for the initial value of the
potential functionU(t) att = 7, U, < A, andh is the energy constant,
then there is a positive numbér= 6(A, m, h) such thag(t) andv(t) are
regular analytic functions dfin the complex neighbourhodtl— 7| < 6
of 7. In particular, all they(t) andv(t) are regular analytic functions fors2
realt in the intervalr <t < r + ¢, and further all they(t) > 0,k # |, in
this interval. Starting from a new initial time in the intaihe <t < 7+§
we wish to continug(t) analytically along the real axis.

Let us suppose thét is the least upper bound of all real numbeks
7 such that all coordinateg(t) admit analytic continuations as regular
analytic functions of in the initervalr < t < tq, but at least one of the
coordinateqy(t) has a singularity at = t;. Then we have the following
theorem.

Theorem 2.2.1. The potential function () is finite in the intervalr <
t <ty and U(t) — oo as t— t; through values of timr <t < 5.

Proof. Since all the coordinateg(t) are regular analytic functions in
T <t < tg, so are the derivativeg(t) and consequnetly the kinetic

1 P
energyT (t) = > > mif is finite forr < t < t;. But the energy constant
h is determined by the initial valuesh = T, — U,, so thatU(t) =
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T(t) — his also finite forr < t < tg; this proves the first assertion. Next,
suppose thalt (t) does not tend to infinity as— t;; then we can find
a suficiently large numbeA and an increasing sequencgof points
in the interval f,t;) with 7, — t; asr — oo, such thatU(r;) < A,
r=1273,.... Sincehis determined by the initial valueg,= 6(A, m, h)

is independent of, and we choose & so neart; thatt; — r, < 6/2.
Then, by the remark made on the analytic continuation oftewls in
Chaptefdl§ B, all the coordinateq are regular analytic functions in the
neighbourhoodt — 7.| < 6 and hence, in particular, &t t;, which is a
contradiction to the assumption thats a singularity for at least org
HenceU (t) — 0 ast—t; and this completes the proof of the theorenm

By the definition of the potential function we see thit) — ~ as
t — t; implies that the smallest of the distanaggt) — 0 ast — t;
and hence there is a “collision”. In order to analyse the meatf the
collision we proceed as follows. First of all, we may assuire the
centre of gravity of the point-mass&g remains fixed for alt at the
origin. In fact, it has been shown §fIl that the centre of gravity moves
in a straight line with constant velocity. Thus the coordisaof the
centre of gravity are linear functions bénd are proportional to

n n n
D mok = at+a’, Y myo=pt+ L) Ma =ty
k=1 k=1 k=1
wherea, o/, 8,8, v,y are constants. The transformation of coordinates

defined by

By at + o’ Bt+ 5 yt+vy
Xe =X~ = —> Y = Yk~ A A

2 My 2 Mg 2 Mg
takes the centre of gravity at tint¢o the origin. Moreover, under this
transformation of coordinates the equations of motionioometto be

mg = Uy, (2.2.1)

becauséJq depends only on the flierencegy — g of the corresponding

n

coordinates oPy andP;. Thus we may assume that mygx = 0, gk =
k=1

Xis Yicr Zi-
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Let pk(t) denote the distance & from the origin (which is the
centre of gravity) at time : p2 = X2 +y2 + Z2, k = 1,...,n. We define
the “moment of inertia” of the system ofpoint-masses:

o=o(t) = Z mg? = Z mcf. (2.2.2)

k=1 q

Theno(t) > 0 and we have, from the equations of motibn{2.2.1),
1. .
50 = ; mqgq,
1. . .
50 = Zq: m(ef + qi) = 2T + Zq: qUsg. (2.2.3)

But U is by definition a homogeneous function of degrek in all
the coordinatesi(t) and therefore, by Euler’'s theorem, it follows that
2. qUq = —U, so that we get

q

1
E(j- =2T - U.
Since the total energy at any timbds constant,T(t) — U(t) = h, we

obtain the “Lagrange formula”:
1.
EU:T +h=U+2h. (2.2.4)

Now if t; is the first singularity of at least one of the coordinates, by
Theorem 2.1.1J(t) —» « ast — t; through values imr < t < t; and
there is a collision at = t;. HenceU + 2h — oo and then there is a real
numbert, with T < ty < t3 such thatU(t) + 2h > O for allt, < t < ty;

in other wordsg(t) > O fort, <t < t;. Moreover,o being regular in
[7,t1), o andg are regular in the intervatdt;). Theno(t) is a monotone
increasing function ot in [ty, t1). Sincet; is the first singularity for
some coordinatg(t), there is no collision in the interva) <t < t; and

so at least one distangg(t) > 0, i.e. o(t) > 0inty, <t < t;. There
are now two possibilities. Either(f) is always negative, or it remains
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positive in some interval’ < t < t; wheret’ > t,. Without loss of
generality we may take = t,. Hence, either- is monotone increasing,
or it is monotone decreasing everywhere in the intetyak t < t;
according ag(t) > 0 oro(t) < 0. In the case in whichr(t) is monotone
increasing it follows, in view of the fact that there is nol=ibn in the
interval T < t < t; and in particular at = t; so thato(ty;) > 0, that
o(t) = o(ty) > 0 everywhere ing < t < t5.

On the other hand, i# is monotone decreasing, thetft) > 0 ev-
erywhere int, <t < t;. In either caser(t) admits a limito; ast — t;
this limits o1 is positive, possibly inifinite, itr is increasing, while it is
finite and non-negative it is decreasing. We consider the case= 0;
this is the case in which all thepoint-masses collide at tinte= t; and
this situation can arise only whenis decreasing. In this case we have
the following theorem due to Sundman. (The result had ajrdetn
stated by Weierstrass but he did not give a proof).

Theorem 2.2.2(Sundman) If o1 = 0, i.e. if all the n pointmasses
Py collide at the origin at t= t;, then all three constants of angular
momentag, u, v vanish.

Proof. We shall use the following simple algebraic identity due & L
grange. If¢1,...,&p andny,. .., np are J real numbers then

P P P
O O D=0 amd*+ > (Gan - &md
k=1 k=1

k=1 1<k<l<p

Taking &k = gvmandnk = g+/min the sum%é— = Y. mq@, we obtain,
q

with p = 3n,
Q- ma) (O mip) = 62/4+ > (Gan - )’
q q 1<k<l<p
- 1 - 2
and so, sincd = > > mg,
q

2To =6%/4+ > (G — )
1<k<l<p
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It we take in the second term on the right only those terms iicknx, 771
correspond to the coordinates.(yk), (Yk» Z), (z, X) of the some point
in turn, we can write

2T 2 62 /4+ ) M {06k — Vi) W — 2)° + (@ — %7
k=1

From the equation§ {2.T]10) add (2.1.11) defining the cotstaf an- 57
gular momentun, u, v, we have, by the Schwarz inequility,

n n
A2 <0 MR - )% P < n > Rk — 22,
k=1 k=1
n
v2<n Z I'T'ﬁ(Zka ~ Xz
k=1

(Recall that the constants i, v depend only on the initial valuasg, v,
of g andv respectively). So, setting= (12 + 4% + v?)/n, we obtain

. 1 .
2To > o?/4+ ﬁ(az + 2 +v2) =% /h+ .

Sinceo? > 0, 2To > 5, and substitution in the Lagrange formula

EZ3): o1 = 5 - 2h, yields the diferential inequality
o(c—-2h)>n, or o> £+2h, in to <t<ty.
a

Sinceo; = 0, o is monotone decreasing and< 0, and on multiplying
both sides of the preceding inequality by the positive gtarto, we
get

—00 = —(no/o + 2ho), in to<t<ty.

Integrating both sides frory to t and denoting the values of awndat
t = t, by oo ando, respectively, we have the inequality

1., . .
S(68-67 > Iog(@)+2h(ao—a), in to<t<ty.
g

Sinceo > 0 ando < 0, this implies that 58
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1.
nlogoo/o < Eag + 2|hloo.

Hence

(2.2.5)

303+ 2lhlo
; .

o 20g exp[—

This gives a positive lower bound forif n is positive and hence; > 0
if n > 0. Then ifo; = 0 we necessarily hawg= 0, thatist = u=v =
0. This completes the proof. m|

If o1 = 0, Y mf = 0 att = t;. In this case all the points (with
q
limiting coordinategy(t;) att = t;) collide at the centre of gravity which

is the origin. As a consequence we have the following

Corollary. If not all of A, u, v are zero, then there cannot be a collision
of all the n massesP

We make a further remark. Let us denotefby R(t) the maximum
of the distance functionsg(t) at timet : R = maxrid. If 2+ u2+v?> 0,
+

thenR(t) is bounded below by a positive constantrig t < t;. In fact,
n
since the centre of gravity remains fixed at the origin fot,af, mygx =
k=1

n n
0 and soy, mk(q —ak) = Mg, whereM is the total masg, my. By the
k=1 k=1

n

Schwarz inequality applied to this relatidfg = >, /Mg A/M(— ),
k=1

we have

n
Ma? < > mi(ar - o).

k=1

Multiplying both sides bym and summing over all we get

n
Mo < > mam(an - g0)? < MR,
kl=1

so thatR? > o-/M, and this proves the assertion.
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3 Simple collisions in the casa = 3

From now one we shall consider the case of only three poirssega
P1, Py, P3(n = 3). In this case we shall prove the following theo-
rem which corresponds to the situation in whieh > 0. Letr(t) =

min(r2(t), raa(t), raz(t)).

Theorem 2.3.1.1If o1 > 0, then exactly one of the three distance func-
tions ro(t), ras(t), rai(t), tends to zero as t> t; and the other two
remain above a positive lower bound.

Proof. Sinceo; > 0 andR(t) = max(12(t), r2s(t), rai(t)) is bounded
below by (T/M)% ast — ty, there is a positive number such that
R(t) > € > 0 ast — t;. Since by assumption there is a collision, we
can find a numbet, such that(t) < ¢/2 forty <t < ty; this is possible
sincer(t) is a continuous function dfin 7 < t < t;. Furthermore, let
R(t) > einty <t < t;. Suppose for the moment thdt) = ri3(t)(< €/2)

for somet. Then necessarily;, > €/2 andr,3 > €/2. For, otherwise,

if one of these, say»s, is not greater tham/2, then we have by the
triangle equalityR(t) = rio(t) < roz + ri3 < €, which contradicts the
fact thatR(t) > € for t, < t < t;. It follows from the continuity of the 60
three distances thaft) = rq3(t) for t, < t < t3, and this proves the
assertion. m|

If all the point masses collide, we say there gpgemeral collisionand
if only two of them collide we say there issimple collision

Suppose that there is a simple collisiontat t;, the masse®,
andPs colliding. Then we shall prove that the collision takes plat a
definite point.

Theorem 2.3.2.1f o1 > 0, the coordinate functionscpf P, k = 1,2, 3,
tend to finite limits as t> t;. Moreover, the velocity componerts of
P, tend to finite limits as t t;.

Proof. ConsiderP,. From the equations of motiamyg, = Ug, we get

o My — ) | ms(ds - G2)
o 3
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whereg, = Xo, Y2, 2 in turn. Sinc&ql—q2| <rypand|gz— 0| < rp3, we
get from this|p| < myri2 + mgr,3. By TheoreniZ31r15(t) andras(t)

are bounded below by a positive number fok t < t; : rio(t) > p,

ra3(t) > p, T <t <ty wherep is a positive number, shiciently small.
Thusdp is a bounded (bounded, for instance, My ~2) regular analytic
function oft in r <t < t;. Integrating fromr to t < t; we get

t
O2(t) — O2(7) = f o(t) dt, (2.3.1)

and henceqz(t) is also a bounded regular analytic functiong of t, <

t <ty Slncef go(t)dt converges, it follows thatp(t) tends to a finite

t1
limit ast — t;. Integrating once more, sincﬁqz(d)dt converges, we

see thatp(t) also tends to a finite limits as—>Tt1.

We next show thaP; and Pz collide at a definite point, i.eq(t)
tend to the same finite limit &s— t;. We observe that since the centre
of gravity remains fixed at the origimyg1 + b + Mgz = 0 and this
may be rewritten asify + M)z + Mg + Mp(gz — g1) = 0. Butmygp
tends to a finite limit a$ — t; and sinceP; and P3 collide att = t4,

Oz — 1 tends to zero, so thaﬁ(t) tends to a limit, denoted; (t1):

Qu(t1) = O2(t1) = da(ta),

g+ mg
which is the assertion. This completes the proof of the #mmor m|

In the caser; > 0 when there is a simple collision between the
massesP; and P3 at timety, r(t) = ri3(t) — 0 ast — t; while
R(t) = max(12(t), ra3(t), r3a(t)) is bounded away from zero so thias
stays away from the colliding masses. We know that all thedinates
ak(t), k = 1,2,3, tend to finite limits, as also the velocity components
G2(t) of P,. We shall now examine the behaviour of the velocity compo-
nents of the colliding massé% andP3 near the singularity = t;. We
observe, first of all, that the velocities Bfi and Pz become infinite as
t — ty. For, letVy denote the norm of the velocity &, k= 1,2, 3;
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VE=X+Vo+Z (2.3.2)

By TheorenTZZI1U(t) — oo ast — t; and sincel — U = h, (m V2 +

MpVZ + mgV3) = 2T = 2(U + h) also tends to infinity as — t;. But

by TheorenfZZ:312V/, has a finite limit ag — t; and soV, is bounded
in every neighbourhood df= t;. It follow that mlvf + mgV§ — o0 as
t — t;. We obtain the following more precise estimates\prandVs.

Theorem 2.3.3.1f o1 > 0, then as t— ty,

5 2mg 27
VI —

Proof. Sinceryz = r(t) — 0 andr,(t) androz(t) are bounded away
from zero ag — t;, we have, from the definition df,

MM + m2m3) + MMz — M.
r2 23

rOU() = r(t)(
SinceT — U = h, we have
%(mlvf +mMpV3 + mgV3) = 1T =r(U + h) — mumg

ast — t;. ButV; is bounded by Theoremm2.8.2 and) — 0, hence
rmpV3 — 0 ast — t. This implies that as — t;,

r
E(lef +MgV3) — mymg,

and, in particularrVZ andrV3 are bounded as— t; andrVz — 0. On 63
the other hand, since the centre of gravity remains fixedeabtfygin,
Mg +Mpge+Megs = 0 and it follows thatm @y = —mpf—ms@s. Taking
the sums of the squares @sruns throuh the coordinateg, yx, z, we
get

MEVZ = MaVZ + mBV3 + 2mpmg(SaXs + VaVa + 2223).

The Schwarz inequality applied to the last term gives

[XoX3 + YoV3 + 2273] < VoV,
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Multiplying both sides of this inequality bg(t) and using the facts that
r(t) — 0,V is bounded andV; — 0, we see that, as— t;, r(méVz —
ngvg) — 0. Hence we can write, fdrneart;,

2\/2 2\/2
rmsVs = rmiVy + €(t),

wheree(t) — 0 ast — t1; consequently, fot neart,,

1 1
Er(mlvf +mgV3) = Er(mlvf + M3V3/mg)
1 1
= Er(lef + m§V12/m3) + Ef(t)/m?,

1 o ,o(1 1)\ 1
= 2rmlvl(ml + mg)+ 2€(t)/m3.

Now passing to the limit as— ty,

2mg

m +mg’

1 1 1
Emi(ﬁ + E) rVZ — mumg, or rvVi —

ot
and thereforeV§ -
m +

. This proves the theorem. The theorem
states thaV, andV; are O(‘%) ast — ty. O

Since in a simple collisiof?, stays away from the colliding masses
P1 and P3, one might conjecture that the nature of the collision could
be studied more closely by supposing that the system belm@agsthe
singularityt = t; almost in the same way as #, were not present.
Hence, neat = t; the problem may be considered as a two-body prob-
lem. In this case, according to Kepler's lal4, and Pz describe conic
sections around the centre of gravity which remains fixeti@wrigin.
If the two masses collide at tinte= t;, the conic sections degenerate
into straight lines through the origin. In this one-dimemsil case we
can easily write down the fierential equations of motion and find out
the (single) coordinate d¥; andP3 andx; (t) andxz(t) can be explicitly
studied ad — t;. Itis known in this case that the singularities of the
coordinatesy = q(t) of P, andP3 att = t; are simple in nature; they
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are algebraic singularities and in fay{t) can be expanded in fractional
powers of { —t;):

qt) =citti - )73 +...,c1 > 0.

On differentiating this it is seen that the velocity behaves liket()~/3
neart = t;.

In the case of the three-body problem we have been that atiahe
ordinatesq(t) have finite limits ag — t1: hence the singularity = t; 65
is not a pole. Howevet, = t; is not a point of regularity of the coordi-
nate functiongy(t) because, otherwisgy andds, and hencé/;(t) and
V3(t) would be bounded near= t1, which is not the case since we have
shown thai/,(t), V3(t) — oo ast — t;. One might conjecture that in this
case alst = t; is an algebraic branch-point for the coordinaggd) and
gs(t). Suppose thdt=t; is an algebraic branch-point of order 1 for
all the coordinates; then we can develpt), gsz(t) as power-series in
the fractional powert(- t;)/# and we can conjecture that= 3. Weier-
strass claimed to have proved this result in a letter to ifittaffier, but
gave no indication of his proof. The result was proved explifor the
first time by Sundman.

We have already seen thdt) — 0 ast — t;. In the one-dimensional
th

T . dt
caser(t) behaves near a collision liké (- t)* and so the integraf -
J
exists. In our case we have the following

Theorem 2.3.4(Sundman) If o1 > 0, then the integral

t
s= th (2.3.3)

Y
1 t

converges, as+b t, to a finite limit g = fT.
T

Proof. Since, by definitionlJ (t) = mympr 3 + mpmgr3 + mumgr; 3, and
the first two terms are bounded fas- ty, it is enough to prove that
f
the integraIfU(t)dt converges. For this we use the Lagrange formwa

T
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}6- = U + 2h. Sincehis a constant determined by the initial conditions,
it is enough to prove that
t
ot) = f a(t)dt + o(7)

has a finite limit ag — t;. We have

—ff(t) Z mqg = Z (X% + Vi + 22,
k=1

and since the centre of gravity remains fixed at the origin,
MgXg = —My Xy — MpXp, MY = —Myy1 — Moy, MeZg = —MZ3 — Mp2p.

Multiplying these byxs, y3, zz respectively and substituting into the ex-
pression above far(t), we get

1. . . )
50' = my (X (X1 — X3) + Y1(Y1 — Ya3) + 21(z1 — Z3))+
+ Mp(X2(X2 — X3) + Y2(Y2 — ¥3) + 22(22 — 23)).

By TheoremZZ312 x5, o, o have finite limits ag — t; and so have
Xo — X3, Y2 — V3, Z» — Z3, SO that the second term on the right has a finite
limit ast — t;. By the Schwarz inequality the first term is majorized by
murV1. But by TheoreriZ313V2 is bounded as— t, whiIe V] — oo,

1
and sorV; = rV2 V_ — 0 ast — t;. This proves thatio- has a finite
limitast — t; and the theorem is proved. m|

Using this theorem we shall try to construct a local unifcginm
variable at the branch-point. First of all, assuming that t; is an
algebraic branch-point of the same orger 1 for all the coordinates
01 and gz of the pointsP; and P3, we shall determing.. Suppose,
for instance, thatyy(t) and gz(t) can be expanded into power-series in
fractional powers of — t; in a neighbourhood df=t;. Sincet; -t > 0
it would be more convenient to expand in power$;0f t:

Ok = Ok(t) = a(ty) + Gt — )P +..., k=1,3,
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wherecy,, evidently depending on the choice of the coordinatey, z«
for g, is the first non-vanishing cfiécient. Thenp is of the formp =
n/u. Differentiating with respect towe have

k() = capts —t)P 1 +..., k=13

so that
VZ =0t —t)2P Y4 k=13

Since P; and Pz collide, gi1(t) and gs(t) have the same limit as —
t1 : qu(t) = ga(ty). Hence, if we form the dierenceq;(t) — gs(t),
its fractional power-series expansion contains no cohstam and we
have

1
r = {(at) - xa®)® + (a(t) - ya(t))? + (@ (t) - zs(t)?}?
=C3(t1—t)p+...
Suppose that;1, ¢z # 0. Then we get
I’Vf = C1oC3(t; — t)3p_2 +...,C10C3 # 0.

Sincervl2 has a finite limit as — t1, we see that necessarilp32 =0, 68
which givesp = 2/3. Thus we see that if there are fractional power-
series expansions fo (t) andgz(t), then perhaps we can take  t)1/3

as a local uniformising variable. To obtain a uniformisirayiable we

" dt
proceed as follows. We have shown tﬁa{r— < o0, Then
T

11 11
efelf 1,
e N R O Er T
t t

which gives a fractional power-series expansiongor s of the form

s1—S=Colts — )3+ ...

Thus we see that the coordinatedPafandP3; have power-series expan-
sions in the uniformising variables — s; that is,q; andqgz are regular
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analytic functions ofs; — s in a neighbourhood 0§ = s;. Now one
might further conjecture that the coordinaiggt) of P, are also reg-
ular analytic functions of the variabls, — s in some neighbourhood

of s = 5. These results were proved by Sundman and we proceed to

describe these.

For this purpose we shall introduce new independent vasall
place ofg and we take the variabkin place oft. Then we transform the
differential equations of motion into a system ofteliential equations
in the new variableg) ands. We remark that even if is regular in
s, it is not necessarily true thatis regular. So we have to introduce,
instead ofg, new variables in such a way that there will be no additional
singularities. The introduction of the paramesaiready appears in the
two-body problem; it is the ‘eccentric anomaly’ of Kepler.

4 Reduction of the diferential equations of motion

We consider now the problem of uniformising the solutionhaf three-
body problem in a neighbourhood of the singulatity t; in the case
o1 > 0, that is, the case of a simple collision. For this purposdrwto
find a suitable transformation of the variables such thatr dfte trans-
formation the solution can be uniformised by means of th&abée s in-
troduced earlier. We shall first write down the equations ofiam in the
Hamiltonian form and then carry out a canonical transfoiomatLet us
denote the coordinates of the three mass-p®Rtsy (Qak_2, G3k_1, 03k),

k = 1,2 3, and associate with eagha massu, k=1,...,q, such that
U3k-3 = H3k_2 = M3k, K= 1,2, 3. If we introduce now the ‘components
of momenta’py defined bypx = uklk, k= 1,...,9, then the equations of
motion can be written as a system of 18 ordinayedential equations
of the first order:

) 1 _
O = =P Ppc=Ugo k=1,....9 (2.4.1)
Hk
The total energfe = T — U is given by

o+ oy 1 2 y_o1v1,
E(pg)=T U—Zqumq U—zzplﬂp u.
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The right side does not contairexplicitly and E is thus a function of
18 independent variableg p. The equationd{2.4.1) then take the form

Ok = Ep Pk = —Eq k=1,....0. (2.4.2)

We thus have a Hamiltonian system of 18feliential equations with

9 degrees of freedom. We now seek a canonical transformafitime
variables ¢, p) into new variables, y) so that the coordinate functions
(X, Y«), considered as functions sf become regular analytic in some
neighbourhood o = s,. We recall from Chaptéil 2, that a canonical
transformations ofd, p) to (x,y) can be obtained by means of a gener-
ating functionsWV = W(q, y, t). We setWg, = px, Wy, = X, k=1,...,9,
and if (W, q | = [Wgy | # 0, we can solve the second equation locally for
gk as a functionpk(x, y, t), which, on substitution in the first equation,
expressegy as a functionyk(x, y, t). We have the following

Theorem 2.4.1.Suppose that the centre of gravity of the system remains
fixed at the origin. Then there exists a canonical transfdromaof the
variables(q, p) to (x, y) which reduces the Hamiltonian systdm (2.4.2)
to one with six degrees of freedom in the new variafiey).

Proof. We shall denote the relative coordinatesRafand P, with re- 71
spect toP3 by (X1, X2, X3), (X4, X5, Xg) respectively, and the coordinates
of Pz itself by (x7, xg, Xg). Hence,

Xk = Ok — Ok+6> Xk+3 = Ok+3 — Ok+6> Xk+6 = Uk+6, k=123 (2-4-3)

This can be extended into a canonical transformation in eHeviing
way. Consider the functiow/ = W(q, y) defined by

3
W = (0 — Ok+6)Yk + (Gkss — Okr6)Ykos + Ckr6Yks6).
k=1

This is twice continuously dierentiable in ¢,y) and it is clear that
Wy, = X, k = 1,...,9, because of{Z4.3), and thalty,y | # 0. (In
fact, Wy, = 1 andWg,y, = 0 if | > k, so thatWg,y | = 1). HenceW is a
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generating function and determines a canonical transtiomd we set
Pk = W, K= 1,...,9. Then it follows immediately that

Pk = Vs Pre3 = Va3, Pies = =Yk — Yia3 + Yies, K=1,2,3.

Adding these we ge¥i.6 = Pk + Pre3 + Pxre @and so we obtain the
canonical transformation

Xk = Ok — Ok+65 Xk+3 = Ok+3 — Ok+6, Xk+6 = Ok+6;
Yk = P> Y3 = Pke3> Yke6 = Pk + Pa3 + Pras, K=1,2,3. (2.4.4)

Under this transformation the Hamiltonian system takeddha
X< = Ey,, Yk = —Ex. k=1,...,9, (2.4.5)

whereE(x,y) is the total energyl — U expressed in the new variables
(%, y). To obtain the expression f& in terms of the new variables, we
observe that, first of all,

1 1
T=35)— Z( Vi3 + " —— (Yicr6 = Yk — Yks3)?),

and this is a homogeneous function of degree 2 in the vadghleOn
the other hand,

mmy N mymg N mm
r2 23 rs

U=

wherer, = (x; — X4)? + (X2 — X5)% + (Xa — Xe)%, I35 = X4 + X& +
2 andr?, = x2 + X2 + X2. ThusU is independent ok, xg, X9 and
X5 13 1 X5+ X

thereforeE(x,y) = T — U is also independent o, Xg, Xg. Then from

the Hamiltonian systenfi(2.4.5) we see that

yk:_Eszoa k:778’99

and hencey, yg, yo are constants. Now if we solve the systém (2.4.5) for
k=1...,6, then we can substitute, ..., Xs; V1,...,Ys and arbitrary
constantsy,, yg, Yo in the expression foE and solvexc = Ey,, k =
7,8,9, to obtain the solution of the problem. We shall now use the
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assumption that the centre of gravity remains fixed at thgiroriThen
Pk + Pxe3 + Pee = O for k = 1,2,3 and, in particularyx,g = O for
k = 1,2, 3. ThusE is independent ok;, Xg, Xg andyz, ys, Yg. Hence it
is suficient to consider the Hamiltonian systdm (2.4.5) with sigrdes
of freedom, and this completes of proof. O

Our assumption is that; > 0 and that the mass®; andP; collide

at timet = t;. Denote the distances by x,x = (¢ + X3 + x%)%. By
Ldt
Theoreni 2.3} the integral= f; converges to a finite limit as— tj,

T

" dt
so thats; = f; < 0. The functionx = x(t) # 0int <t < t; and is

s
regular analytic there. Consequengl(yis a regular analytic function of
tint <t < tgands = g(t), being its integral, is also regular analytic
. . s 1 L .
function oftin r <t < t;. Moreover,— = = > 0 implies thats is

monotone increasing in< t < t1, so that we h)éve g 5(t) < s1. By the
inverse function theorem, we can solve the equasiens(t) locally and
obtain the inverse function= ¢(s), which is a regular analytic function
of sin some neighbourhood of each point of the intervat & < s;.
We see therefore thais a regular analytic function afin 0 < s< s;.

. dt . : . .
Again, smceas = x> 0, tis also a monotone increasing functionsof
in0< s< s

We shall denote the derivative with respectstof a functionf =

f(s) by f’. Since%; = X, we get from[Z.415)

_dt . dt
X = Xegg = XByo Y = Vg
This system of equations is no longer in the Hamiltonian fokow-
ever, it can be transformed into a Hamiltonian system in tewing 74
way. We recall that along each orbit, i.e. a solution of thetesy [Z.45),
the total energy remains constant, equahtand therefore the system
(Z43) remains unchangedHfis replaced by — h. Now consider the
function F = x(E - h). Then for the particular solution df{2.4.5) under

= —xEy.k=1,...,6 (2.4.6)
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consideratiorE = handF = 0 and we see that
dx
X = XEy, = Fy Y = =XEx = —Fx + (E - h)d_s = —Fx
Conversely, suppose thai(yk) satisfy the system of equations

Then the total derivative

dF &
ds = Z(FXka +FyYi) =0,
ke

which implies thatF is a constant. I+ = 0, we have eithex = 0 or
E = h. Since up to the collision, i.e. far < t < ty, or, equivalently,
0 < s< s, we havex # 0, we see thaE = h. It is now easy to check,

by differentiating = h+ )}(F, that the systeni{2.4.6), and herice(2.4.5),
is satisfied by, v, k= 1,...,6 if F = 0. However, wherr # 0, the
solutions of [Z.4]7) may not have any direct relation to thieittons of
the original systen{(Z.4.5).

We know that the potential functiod — ~ ast — t, that is, as
s — g;. Also the velocity components, and therefore the companent
of momentay, y», y3, become infinite. The kinetic enerdy, being a
homogeneous function of positive degregyjinis also unbounded near
t = t1. But sinceo; > 0, it follows from TheorenlZ3l1 that »(t) and
ro3(t) remain bounded away from zero, white— 0, ast — t;. Hence,
ast — tq,

+
ro 23

xU= (mlmz mzms)x+ mms — Mnk.

Also, by TheorerﬁZElS;Vf ande32 have finite limits a$ — t;, and so
have the velocity components Bf. Thus the advantage of introducing
the functionF is that it is bounded in the whole interval< t < tj.
Moreover, all the derivativeBy, are bounded since is a homogeneous
function of degree 2 iryx and xyx — 0. On the other hand, we see
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L 1 .
that the derivativd=y,, k = 1,2, 3, contain— as a factor which becomes

unbounded ak— t;. In order to apply Caﬁchy’s theorem on the analytic
continuation of solutions we need the right-hand sides®flifierential
equations to be bounded in a closed bounded point set comgaime
curve ((t),y(t)), T <t < t;. Hence the introduction of the function
F is not quite enough to apply Cauchy’s theorem. We shall shaw t
by yet another canonical transformation we can reduce catesy of
differential equations to one with bounded right-hand sides.

In his proof of the uniformisation of the solutions near tivegslar-
ity t = t3, Sundman did not write the equation of motion in the candnica
form, but found a transformation which made the right-haddsof the
system of ordinary dierential equations

. 1 .
qk:_pk? pk:qu,k:]-,...,G,
m

regular analytic functions of the new variables. It was pablater by 76
Levi-Civita that one can find the transformations of Sundtmawriting

the equations in the canonical form and by using canonieakforma-
tions. This simplifies the more complicated proof given by&uan.

5 Approximate solution of the Hamilton-Jacobi
equation

We shall make use of the theory of the Hamilton-Jacobi fdatiieren-
tial equation. We wish to find a twice continuouslyffdrentiable func-
tion W = W(x, ¢, s) of the independent variablesé, s, with Wy« | # 0,
satisfying the Hamilton-Jacobi partialfférential equation (ChaptEl 1,

§ )
F(x, W) + W = 0. (2.5.1)

If we find such a functioiW, then we set
Wy =Yk, W, = -1, k=1,...6,

solve the second set of equations locally, using the fadt|Wig, | =
Wyl # 0, and findx as a functionpy(é,7,s). We substitute this
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for x in Wy, = yx and getyi as a functionyy(&,n, S) and thus obtain
the canonical transformation. Moreover, sintesatisfies[(Z.511), the
Hamiltonian system{Z.4.7) will be transformed into thei&i system

& =0, =0, k=1,...,6. Hencef = constanty = constant, will

give, on substitution ik = ¢k(&, 7, 9), Yk = ¥k(&, 1, S), the solution of

our problem.

However, we cannot hope to obtain a complete solution of thb-p
lem of finding awW with [W,4 | # 0 satisfying Z511) since, if we could,
a solution of this would solve the three-body problem exthicBut as
we are interested in the analysis of the solution meat;, equivalently,
s= s, we shall find an approximate solution. For this purpose vedl sh
use the fact that all the coordinates and velocity companeif®, have
finite limits ast — t; and thatP, remains at a distance bounded below
by a positive number from the colliding masses. Hence} fogart,
we ignore the pressence B$ so that the coordinates,, x5, Xs and the
components of momenta, ys, ys do not enter into the discussion. (This
amounts to supposing that the mas®efis zero). Thus we are led to
consider the two-body problem. In this case we have

_ M it (AL 2
U= and T= 33 i = () G B+

so that

FoxT-U-h=1

1 1
Z(E + E) Xy2 —hx- mpmg,

wherey? = y2 + y2 + y3. Since the dierential equations involve only
the derivativesy,, Fy,, we may drop the constant;mg in the expres-
sion for F. By suitably choosing the unit of mass we can also take
1/1 1
> (F + —) = 1. We shall also assume that= 0 and therF has the

18

form

F = xy°, y2:y§+y§+y§. (2.5.2)
Then we want to find a twice continuouslyfidirentiable function with
real valuesW = W(Xy, X2, X3, £1, €2, €3, S), With Wy 4| # 0 such that

08 +3 + )2 (W2 + W2 +W2) +Ws = 0. (2.5.3)
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It would be simpler if we could tak@ to be independent of. But this
is not possible, sinc@/s = 0 would imply thatx(Wz, + W2 + W2) = 0.
Sincex # 0 for 0 < s < s; thenWZ + W2 + W2 = 0. AndW is real
so thatWy, = Wy, = Wy, = 0 and hencéW,| = 0. ConsequentlyV
does not determine a canonical transformation. So the eshpbssible
choice we can make fa# is thatW is linear inS. Hence we take

W(X, &, 9) = V(X, &) — A(E)s. (2.5.4)

ThenWs = —A(£1,£2,&3). We need only a particular solution of the
equation [[Z.5]13) wheréy, &, &3 are arbitrary constants with the only
condition|Wy4| # O.

It is known that the orbits of the mass-points in the two-bpdyb-
lem are conic sections. Hence the two-body problem is a rolih the
plane. This plane problem can be solved in the following wsingithe 79
theory of complex analytic functions.

We shall find the functior in (Z5.3) by using[[Z.5]3). Let;, xo de-
note the coordinates in the plane of the orbit. We introdheecomplex
variablez = X1 +iXz, 2= (X8 + xg)%. Let f = u+iv be a regular analytic
function ofz in some region of the complex plane. Sintés regular
analytic, we have the Cauchy-Riemann equatiogs= Vy,, Uy, = —Vy,,
so that

AP 2 42
dZ - ¥X1 Xo T VXq X2

If we take the functiorv in (Z53) forW, we see thatVy, = vx,, Wy, =
2

df . . .
vy, and henc%d—z‘ = WZ + WZ,. Thus the Hamilton-Jacobi equation
Z5.3) takes the form

df?
i ‘d—z A

. (df\*
Thus the absolute value of the regular analytic funcmé%—z) is a

2
constantl. It follows from the open-mapping theorem tm(td—z) isa

2
constant, say(?j—;) = £, With & = &1 +i&, |¢] = A. Integrating the
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1
equation% = (%)2 we getf(2) = 2(¢2). Hence we have(x, Xo) =

Im f(2) = i"X¢z- ¢2) - &1 andé, are two parameters such thif) =
2((¢1 — i£2)2)2. Inserting thisv and the two parametets, & in (25.4)
we get

W= T (@~ 1800 + )~ (@ +i6) (o))~ s\ JE2 + 3.

Moreover, we havélNys = Vx4 and it can be easily verified that

1
Wi | = ——

We wish to extend this argument to the case of the three-bamty p
lem. But in this case we cannot use the theory of complex toaly
functions. A possible solution of the Hamilton-Jacobi drain three-

dimensional space is suggested by the functi\qu - \/4“_2 defining
v = V(X €) in two-dimensional space. In the following we show that a
suitable generalization of this function to three-dimenal space does
indeed satisfy the Hamilton-Jacobi equation and the cmdjty, | #
0. Hence this provides a canonical transformation. We sisdl see
that this canonical transformation is the one found by Stardmamely
the inversion with respect to the unit sphere in three-dsimral space.

In the two-dimensional case we h&(x,&,9) = V(X &) — A(&)s
where

iv = \E— ViZ 2= +iXa. = & + &2, |l = A.
Squaring both sides we get? = ¢z + (Z— 2|¢Z, that is
1
5V = 08+ XHE + D)2 - (g + o).
We try to generalize this to three-dimensional space aral tak
1
§V2 = (0 +8 + X033+ 82+ E2)E — (xaf1 + Xobo + Xaf3) (2.5.5)

In order to ensure thalV = W(X,&,9) = V(X &) — A(£)s satisfies the
Hamilton-Jacobi equation, it is enough to fiid&,, £3 such thaw given



5. Approximate solution of the Hamilton-Jacobi... 61

by (Z5.5) with these&, &, &3 satisfies the partial fierential equations
08 +3+X0)F (2 +\2, +12) = 4, 1= A(¢) (2.5.6)

If we find &1, &2, &3 satisfying this condition together with the condition
Vx| # 0, then we obtain a canonical transformation by setipg- y,
Vs = -1, K= 1,2,3. The latter set of equations can be solved locally
to give X, as functionspi(é, 7) which, on substitution iny, = Yk, giveyk
on a functiony(¢, 7). Thus we obtain the canonical transformatiqn=
ok(€, 1), Yk = yk(é, ), k=1, 2, 3. Since the function is independent of
the variables, the functionspy, Y« do not contairs explicitly. Hence the
Hamiltonian equations are unaltered and we tﬁve Fopeo e = —Fer
k=1,2,3, whereF(£,n) = F(xy) = F(e(& n), (£, )

We proceed then to verify thatdefined by [[Z.5]5) satisfieE (2.5.6)
and the conditiorvy,4| # O for a suitable choice afy, £, £3. Denoting

E+&+ §§)% by &, we can write[[Z5]5) in the form

3
1
§V2 = X — Z Xk (2.5.7)
k=1
Differentiating this with respect ¢ andé&, respectively, we obtain
V Vg = %g — &k V Vg = x% - X, k=1,2,3. (2.5.8)

Multiplying the first of these byx, squaring and summing ovér =
1,2, 3, we get, on usind(2.3.7), 82

3
V(G +V5, +15) = D (X = 6
k=1

3 3
= 262X — 2§XZ Xeék = 2EX(EX — Z Xi€i) = EXVP.
k=1 k=1

If x# 0, v # 0, then dividing throughout byvwe have

X(V5, + Vg, +V%,) = &,
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which means that if we choosi¢) = &, thenv(x, &) defined by [(Z515)
satisfies[[2.5]6). Moreover, the condition thaf| # 0 is also satisfied.

1
ey
We now use the fact that+ 0,¢ # 0,v # 0. (Actuallyv = 0 if and only
if the two vectors X, X2, X3) and €1, &, £3) are in the same direction,
that is, are linearly dependent. Since we assumewvtgad andx # 0O,
we may suppose thdt# 0). We have then found a generating function
v = V(x,&). The canonical transformation defined by meany id
explicitly determined as follows. Let us set

In fact, it is easy to check by direct computation thgf| =

Vi = Yio Vg = Tk K=1,2,3. (2.5.9)

Multiplying these byxvand-£v respectively and using the expressions

Z538) we find that
XV = XVW = EXi — X = —EWVek = Vi (2.5.10)
Sincev # 0, we can divide by and obtain
Xy = &, k=1,2,3. (2.5.11)
Lety = (y5 + 3 + y2)2 andn = (75 + 75 + n3)"/2. Squaring both sides
of the relationxvy, = éxx — x& and summing ovek = 1, 2, 3, we obtain

3 3
VY = ) (Exc— X6 = 267 = 26 ) i
k=1 k=1

3
= (X — ) X = XV,
k=1

Once again, sincg # 0 andv # 0, dividing by xv* we get
Xy = & (2.5.12)
Similarly from the relatiorfvny = £x¢ — X« we obtain

&n? =x (2.5.13)
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Sincex # 0 andé # 0, it follows from [Z51IP) and({2.513) thgt= O
andn # 0. Substituting[(Z.5.12) if(Z5111) we have

Xyk = XY°1lk,

so that nk = ill—'; k=1273;

this implies that;? = iz and hencey = Y21 = n—'; k =1,2,3. Multi-
n
plying both sides of the relations

XV = EXk — Xk, EVIK = EXk — Xk

by x« and& respectively and summing ovkr= 1,2, 3, we see that 84

3 3
1
XV - kz_; XYk = X — xkz_; Xdic = 5XV,

3 3
1
_ _yg2 - _Z
=) =€ ) Xk X = 287,
k=1 k=1
from which we get, sinca& # 0,¢ # 0, andv # 0,
3 3
1 1
DU Xk= SV D G = —5V. (2.5.14)
2 2
k=1 k=1
We can solvevr = Exx — X& and expressy as a function of, n and
obtain

&k
X = Vi + X2,
3

2
which, under the substitution= £5%, v= -2 ¥, &1 gives
I=1

3
X = 06— 29 ) &, k=1,2,3, (2.5.15)
1=1

Similarly we can show that

3
€= Y X~ 2% )y, k=1,2.3 (2.5.16)
=1
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Thus we have obtained the canonical transformation fraiy) to (£, n);
it is given by
2 1k
X = nPéc— 20 ) Emis Ve = k=123 (2.5.17)
=1
and the inverse transformation is given by

3
§k=y2Xk—ZYkZ XYi, Nk = é k=123 (2.5.18)
-1

It follows from Z51T) and{Z.518) that the canonicahsformation
from (X, y) to (£,n) is involutory and, moreover, that it is a birational
transformation. The second equation [N {2.5.17) definesnegrsion
with respect to the unit sphere in three-dimensigrgbace and is actu-
ally the transformation used by Sundman.

It is clear that the equationg = n—; Kk = y—;,k = 1,23, will

be valid whenever; # 0 andy # 0. We shall now show that we can
obtain the transformationE{2.5117) directly frdm (Z.5.0th the only
assumption thag # 0 and that it is no longer necessary to assume that
the vectors X1, X2, X3), (€1, &2, £3) are linearly independent. We have the
following

Theorem 2.5.1.1f n # 0, then the relationd{Z.518) define a canonical
transformation of the variableéx, yk) to (&, k), k = 1,2, 3, with the

inverse [Z5.117).

Proof. First we definegyy, y», y3 by settingyx = 77_; k=123. Then
n

n # 0 is equivalent toy # 0. From [Z5.16) we get

3 3 3 3 3
kaYk = YZZ XYk — ZZyﬁz Xy = —YZZ XYk
k=1 k=1 kel =1 k=1

Yk

Dividing throughout byy?(y # 0) and usingy = ¥ we get

3

3
Z &k = — Z XYk
k=1

k=1
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which, on substitution in the expressidn (2.5.16)4dargives 86

3
1 2nk

k= ZX+— E &,
n U

that is,

3
X = € — anZéﬁm, k=123
I=1

This proves that we can solve the set of equatiéns (4.5.18ptain
(ZX5.1IT) and the same method can be employed to olhfain @ o
(Z51T) on making use of the fact that: 0. Thus [Z5.17) is an invo-
lutory transformation of the variableg( yx) to (£, k). It now remains
only to prove that the transformation thus obtained is carabn For
this purpose we recall that a transformati= ¢k(&, 1), Yk = Yk(&, 1)
is canonical if and only if the Jacobian matrix of the tramsfation is
symplectic. We shall show that the Jacobian matrix in oue ¢gasym-
plectic. On diferentiating[[Z.5.17) we have, farl = 1,2, 3,

Xeg = 26k — 211, Yke = 0,

Ok 2k
m ot

3
Xy = 2mék — 20k — 20k Zfrnr = 2015 Yy =
r=1

Hence the elements of the Jacobian matrix are rational imtof

&, nk with non-vanishing denominators, and so continuous (esdjul
functions ofé&, k. On the other hand, we know that when the vectors
(X1, X2, X3) and €1, &>, £3) are linearly independent, the transformatiosvy
defined by[[Z5.17) is canonical and so the Jacobian matsiyrigplec-

tic. In the general case, xo, X3) and €1, &2, £3) can be considered as
limits of linearly independent vectorsig, Xon, Xan) and €in, Eon, £3n) @S

N — oo. If (Xn), (£kn) Satisfy [Z5.117), then the limit vectors also satisfy
@E&51IT). In other words, in the general case, the canomiaakfor-
mations corresponding to the linearly independent veg€tqrs Xon, Xan)

and €1n, £2n, £3n) tend to a transformation defined hy {2.3.17). Since the
elements of the Jacobian matrix are continuous functionhefvari-
ableséy, nk, the Jacobian matrix of the transformation corresponding t



88

66 2. The three-body problem : simple collisions

(X1n, X2n, Xan) and €1, £on, £3n) tends to that corresponding tay( Xo, X3)
and ¢, £, &3) in the topology of the group of all six-rowed invertible
matrices. Since the symplectic matrices form a closed swipgof this
group, it follows that the Jacobian matrix of the transfotiovadefined
by (x1, X2, X3) and €1, &2, £3) is symplectic, so that the transformation
(Z5.1Y) is again canonical. This completes the proof. o

6 Regularisation of the solution of the three-body
problem near a simple collision

We use the canonical transformation obtained in the prevseation to
uniformize the solution of three-body problem in the neighuthood of

the singularityt = t; at which there is a simple collision. We recall that
(X1, X2, X3) and 4, X5, Xg) are the relative coordinates Bf andP, with
respect tdP3. We assume that the centre of gravity remains fixed at the
origin. (y1,Y2,y3) and §a4,Ys, ys) denote the components of momenta
of P, and P, respectively. We have seen thatyk, k = 1,...,6, are
obtained from the absolute coordinatgsand the corresponding com-
ponents of momentgy by means of a canonical transformation. We
now prove

Theorem 2.6.1. The canonical transformation of the variablé, yk)
to (&, k), k=1, 2, 3, defined by

3
X = nPék = 20 ) Ems Yk = % k=123, (2.6.1)
=1

wheren? = n3 +n5+n3 # 0, can be extended to a canonical transforma-
tion of the twelve independent variableg, yk) to (¢k,nk), k=1,...,6.

Proof. By TheorenZ5]1,[{2.6.1) is a canonical transformatiorhin t
six variablesx, yk, k = 1,2, 3. Let

A= (Xk&)’ B= (ka),C = (ykfl)’ D= (YKm)-
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C D
symplectic. We extend the transformati@n(2.6.1) to a fansation of

(% Yk) 10 ¢k, 7). k = 1,...., 6, by defining

X = £k, Yk = Tk K= 4,5,6. (2.6.2)

Then,M = (A B), the Jacobian matrix of the transformatién{2.6.1) is

Then the Jacobian matrix of the extended transformation is

A 0O B 0
o E3 0 0
Mi=lg 0 D o
0 0 0 E;

where Ez is the three-rowed unit matrix. Denoting klythe twelve-
Es 3 0)itis easy to 89

-Eg O 0 Eg3)

verify thatM]JM; = J, using the fact thal is symplectic. This proves

the fact that[[Z.6]1) an@{2.6.2) together define a canoiiaasforma-

tion which extendd{2.6.1).

rowed square matrid = whereEg =

L dt
Now we recall thats = f; converges, ak — tj, to a finite limit
T

" dt
S = f;. We consider the variable&, nx as functions of the real

variabTIes in the interval 0< s < 5. We know thatx, yx are regular
analytic functions of in 7 < t < t; and henceé, nk, defined by[Z6]1)
and [Z&.PR), are regular analytic functionssdh 0 < s < s;. Then we
have the following O

Theorem 2.6.2. The functionstk = &(s) andnx = nk(s), k=1,...,6,
can be continued analytically as regular analytic funcgoof s to a
neighbourhood of s s;.

Proof. Since the canonical transformation definedby(2.6.1) r&idp
is independent of the variabkg the Hamiltonian equations keep their
form and therefore the Hamiltonian systegn= Fy,, Vi = —Fx. k =
1,...6, where

F=xT-U-=h) (2.6.3)
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goes over into the system
& =Py =-Fg, k=1,...,6, (2.6.4)

whereF(£,7) = F(xy) = X(T — U = h). In order to prove the the-
orem it is sdficient to prove thakny, F, are bounded regular analytic
functions of the twelve variable§,(;) in some bounded closed region of
12-dimensionald, n)-space. For this purpose we expré&sss a function
of the variablesgy, nk). From the definition, we have

T:%(milJri)sz”%(i*i)(yﬁJngJfYé)

ms m m

1
+ P (YrYa + Y2Y5 + YaYe) »
Cmym, mpmg mymg
= + + ,
r2 23 X

U

wherex? = x¢ +35 + 3, y* = y; + Y5 + Y5, I35 = X5 + X + X and
r2, = (X1—Xa)* +(X2— X5)? + (X3 — Xg)?. On the other hand, we have from

1 .
SBY = 5 x= 67 Xy = EWIth &2 = 4 5 465, 0° = my + 3 + 115
Then we can write, by{2.8.1),

3 3 3
;= Z(Xk — &a)’s 153 = Z &6,z Where X« = € — 21k Z &m.
kel P =1

Denoting byb the positive constan%(l/ my + 1/mg), we have

1(1 1
F=be¢+ > (E + E) (77421 + 1% + 77%)5772 + % (1114 + n215 + N4ne)
MMy Np
hen? - (_1 + _”‘3)5772 — . (2.6.5)
Mo 23

In order to apply Cauchy’s theorem on analytic continuatizenneed
to prove thatFg,, F,, are bounded regular functions of the twelve in-
dependent variablegi( k), k = 1,...,6. We have proved i§ [ that
Xy? — 2(mmg)2(my + mg)~t = ¢ > 0. In other words,

£—>c>0 ass— s (2.6.6)
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Alson = Yy 2 — 0 ast — ty, i.e. ass — s;. Sincey — oo ast — ty,
it follows that in a stficiently small neighbourhood df= t; we have
y # 0. Lets, be a number in < s < s; such thaty = y(s) # 0 in
S LS< 5.

We know already thagx, nk, k = 1, ..., 6, are regular analytic func-
tions ofsin 0 < s< s;. By TheoreniZ312, we know th& stays away
from the colliding pointd,, Pz and that its velocity components have fi-
nite limits ast — t; and hence as — s;. Then it follows thaty4, 5 and
ne have finite limits ass — s;. Moreover, all the absolute coordinates
Ok tend to finite limits ag — t1, and henc&y. 3z = X«;3 = Gk+3 — ks 6,

k = 1,2 3, tend to finite limits as — s;. By (Z686),é — ¢ > 0 as
s — s, and it will appear later thaty, &2, £&3 themselves tend to finite
limits.

We choose the numbeg, in the interval 0< s < s; so close to
s that for sin the intervals, < s < s1,& = &(9) lies in the interval
c/2 < £(s) < 2c. We have also seen that, andr,3 remain bounded
below by positive constants i < s< ;.

We now considel, nk. k = 1,...,6, as twelve independent varig2
ables. LetD be a bounded closed region in the 12 dimensioAaf)¢
space defined as follows. Lefi(&o,&3) be restricted to the annular
regionD; : ¢/2 < £ < 2cin 3 - dimensionak-space. Sincéy, &s, &,
na, ns, N have finite limits as — s;, andny, 2,73 —» 0 ass — s, we
can enclose the point§4 &, 6,11, - . ., ng), for s suficiently close to
s1, in a bounded closed regiddy in 9-dimensional space such tHag
contains all the limit values afs, &5, &6, 171, . . . , 6 N its interior. More-
over we can choosP, so small tha'qzl andr53l are bounded. Then we
takeD = D1 x D».

Consider the functioff in the regionD. F containsri, andryz in
the denominator. On fferentiation we observe that, is a function of
(&x, mk) With £, 112, rog occuring in the denominator. Sinées bounded
away from zero for4y, &, £3) € Dy andr 3, 153 are bounded, it follows
that theF,, are regular analytic functions &f, 7.k = 1,...,6, in D.
For the same reason tlfg, are regular analytic ib. Consider the orbit
(&x(9), 7k(9), So < S < S1-(&k(S), nk(9)) is a curve in twelve-dimensional
Euclidean space. K, is so chosen that the interva,[ s;] is suficiently



93

94

70 2. The three-body problem : simple collisions

small, then this curve lies completely in the regidnThus the hypothe-
ses ensuring the existence of analytic continuation ottswis (Chapter
[, § ) are satisfied for the system ofidirential equations

& = Fponi = —Fg, k=1,...6.

It follows that the solutiorFy = &k(S), nk = nk(S) can be continued ana-
lytically on regular analytic functions afin a neighbourhood of = 5.
(Acutally it is possible to continue analytically even toamplex neigh-
bourhood ofs = s;). This neighbourhood can be determined explicitly
by obtaining estimates for the derivativgg andF,,; itis quite straight-
forward to compute these estimates and we shall not do tHisis Tt
follows, in particular, thaty tend to finite limitsé, ass — s and the
theny are regular analytic & = s; withnpy > 0ass— s, k=1,2,3.
This completes the proof of the theorem. m|

TheorenZ.6]2 implies that we can expafdyx as power-series in
s — s in a neighbourhood 0§ = s;. Substituting the expansions in
the diferential equations we obtain the ¢@gents of the power-series

for é«(s) andnk(s). We consider firsty, k = 1,2,3. Sinceég, = %(
k=1,2 3, we find on diferentiatingF with respect t&, that

héy

N = —Fx = i + terms vanishing fos = s;.

Sinceé — candé — & ass — s, we can expané;—k as a power
series ins— s in a neighbourhood of = s, and obtain

b ,
Nk = —Egkl + terms of degree> 1ins— s, k=1,2,3.

Integrating fromsto s, for sin a neighbourhood o$;, and using the
fact thatyy — 0 ass — sy, i.e.nk(s1) = 0, we see that

b :
Nk = —E§k|(s— s1)+ terms of degree> 2ins—s;, k=1,2,3. (2.6.7)
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ot (8] (8" (£ (54)7 - 1. squaring botn sices o

c c c
(Z5.1) and adding up fdt = 1,2, 3, we have
n° = b?(s— s1)? + terms of higher ordeb # 0 (2.6.8)
which gives the following expansions fgy, k = 1, 2, 3:
Yk = '7—'; = —bicgkl(s— s1)71 + terms of degree> 0ins—s;. (2.6.9)
n

This shows that at least one of the velocity componentB,chnd P3
has a simple pole & = s; and hence becomes inifinite of the order of
(s— 1)t ass — 5. On the other hand, we have

&(X) = &a + terms of degree> 1ins— g, k=1,2,3, (2.6.10)
so that

&(s) = ¢+ terms of degree> 1in s— g, (2.6.11)

wherec? = &2, + £, + £3,. Substituting [Z617) [(26.8) and{28.10) in
(Z5.11) we obtain

3
Xk = N — 21k Z &an
=1

= b2&a(s— s1)° +... - 2(—2&1(3— s) +...) (bo(s—s1) +...)
or 95

X = —b?&a(s— s1)? + terms of degree> 3in (s— 1), k=1,2,3.
(2.6.12)
Squaring and summing ovkr= 1, 2, 3, we get

X = b’c(s - s1)? + terms of degree> 3ins— s. (2.6.13)
_ dt : .
By the definition ofs we havet’ = — = x. Integrating this over a
suficiently small interval §, s;) we get

2
t—t; = %(s— s1)% + terms of degree> 3in (s—5).  (2.6.14)
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Sinceb # 0, ¢ # 0, we can invert this power-series in a neigh bourhood
of s= 5 and obtain

1/3
S —S= (b%c(tl - t)) + terms of higher order int{ — t)%. (2.6.15)

As a consequence @f(Z.6115) and the expans[ons12.6.7[¢andd) for
&, Tk, it follows thaté&y, n have power-series expansionstin-¢;)Y2 in

some neighbourhood df = t;. Similarly the expansion{2Z.6112) for
X« shows thatx, also has a power-series expansiontin- ¢1)¥/2 in a
neighbourhood of = t1, k = 1, 2, 3. But from [Z.6.D) we see that

S PSR |
yk_772_ bc.fkl(s S1) T+

1 3 _1
= a:é‘:kl(%(t—tl)) 3 +...,k= 1,2,3,

contains also negative powers of(t;)Y/3. This proves our conjecture
thatt = t; is an algebraic branch-point for some coordinate function
X, K = 1,2, 3, and that there are three sheets at the branch-peit.

As we mentioned earlier, Weierstrass had already assértedxt
istence of power-series expansions for the solution of hineetbody
problem in cube-roots df—- t;. However, a proof was given explicitly
for the first time by Sundman. Sundman’s method wakedint from
the one we have described. He did not use canonical tranafioms.
They were first used by Levi-Civita. Sundman also showed ithae
introduce the variabls, then we can get analytic continuations of the so-
lutions even beyond = s;. As we pass the singularity= s, it follows
from Z&.1%), since the power-series starts with an oddep@fis — s,
that we can go beyond= t; through real values. Because bf(Z2.6.12),
the collision thus means only a reflection of the collidingsses. The
same system of ffiereential equations continues to be satisfied after the
collision and so we are led back to the old problem. We carethes
continue the orbit and there are only two possibilitieshé&itno further
collision occurs, or there is a next singularigyat which there is a colli-
sion which cannot be a general collisiomff+u? +v? > 0. This second
collision may, however, not be between the same two masdesfae.
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And this process may continue. Suppose thap, ... are the times of
the successive simple collisions. Then, either this sezpienfinite, in
which case all the coordinates are regular analytic funstizeyond the 97
last singularity, or there is an infinite sequence of simjpllisions. In
the latter case Sundman proved that> o necessarily as — co. This

is done in the following way. Suppose, if possible, thahas a finite
limit point t,, asn — oo. We know that the potential functid(t) — oo

ast — t, for eachn = 1,2,..., and thatU(t) is finite between any
two successive collision timdg_1,t,,n = 2,3,.... We now assert that
U(t) —» o ast — t,. For, if not, letU(t) < A for t arbitrarily neart.,.
Then by the Cauchy existence theorem the coordinate fursxiio) are
regular analytic functions in a neighbourhgbdt,| < B of t, whereBis

a constant depending @ the masses and the energy constant. Hence
the g(t) are regular at = t, and soU = T — his regular att = t..
However, this is not possible since in any neighbourhood..ofhere
exists at, at whichU becomes infinite. Thubl(tf) —» o ast — t..
Consequentlyt (t) = min(rio, ros, r13) tends to zero as— t.,. Now, by
the Lagrange formular > 0 in a suficiently small interval, <t < t..
However,o" is infinite at eaclt = t,, n = 1,2,.... We have seen that
o is continuous from the left at = t; and we see similarly this is so
at eacht = t,, and we conclude from our earlier discussion that it is
also continuous on the right at eath: t,. Thuso is continuous and
monotone increasing iy <t < t,,. From this it follows as before that
o has a positive lower bound tg < t < t., if 2+ u?+v? > 0. And now
repeating our earlier argument we see thdt-ast.,, exactly one side of 98
the triangleP,, Py, P3, sayr(t) = ri3, tends to zero, and the other sides
remain bounded away from zero. By the continuity of the distsefunc-
tions we see that the collision is always between the sam@ppoints

P,1, Ps for all largen and hence we can také) = ry3 for all largen. By
our earlier arguments we can uniformize the coordinatetfons g(t)
neart = t, for eachn = 1, 2, ... by means of the uniformising variable

the integral converging for eagh Repeating our earlier argument we
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see that-'is bounded as — t., and the integral

converges and sg, tends to a finite limits,, ast — t,,. We can then
prove that the coordinate functiogé) are regular analytic functions of
sin a neighbourhood of = s.,. Moreover,sandt are regular functions

of each other andj—; = r(t). Thereforer(t) = r(t(s)) is regular in a

neighbourhood o6 = s,,. Butr(t) = O for eacht,, so that the analytic
function r(t) has an infinity of zeros in a neighbourhood ®f= s..
Thusr(t) = 0 in a neighbourhood of = s, and this is impossible. This
proves the assertion that the times of successive simgisionst, do
not have a finite limit point.

Hereafter we shall deal with the general collision atts, in which
case the singularity terms out, in general, to be an esseirtgularity.



Chapter 3

The three-body problem:
general collision

1 Asymptotic estimates

In this chapter we shall be concerned with the problem ofrdeténg 100
the nature of the first singularity of the three-body probighen there is
a general collision, that is when all the mass-points celétt = t;. We
shall show that in this casé= t; is in general an essential singularity
for at least one of the coordinate functions of the masses.

Let us denote as before the coordinates of the three mastspRi
by (X, Yk, ), k = 1,2, 3, and their masses byk. Also let g denote
any one of the nice coordinate functiors ..., z3. We recall that ifU
denotes the potential function

y - MM | Moms  Mils (3.1.1)
2 ra23 iz
then the equations of motion are given by
mq = Ug. (3.1.2)

We have the ten algebraic integrals associated with thersysamely,
the six integrals of the centre of gravity, the three intégd angular

75
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momenta and the energy integral these are given by
3 3 3
D imo=at+a’, Y My=pt+f, Y Mac=yt+y
k=1 k=1 k=1

3 3
DMk = Vi) = 4, > MYk — 2 = s

k=1 k=1
101
3
D M@K~ %) = Vi (3.1.3)
k=1
T-U=h (3.1.4)

We may assume, by changing the coordinates by linear furectibthe
variablet, that the centre of gravity remains fixed at the origin thioug
out the motion, so that

3 3 3

D imoe= D mykc= > maz =0, (3.1.5)
k= k= k=1

1 1

Lett = t; be the first singularity. So all the coordinaig$) are regular
analytic functions in the interva < t < t1, and at least one coordinates
ceases to be regulartat Letpy denote the distance of the poft from
the centre of gravity 0:

pE=X+Ye+Z, k=123 (3.1.6)

We introduced in Chaptéi 2 the moment of inertie

3
o= Z md = Z Myo?. (3.1.7)
q =]

Differentiating this twice in succession with respect to we have

q
%ef = mag, %("r = > mf + > maa. (3.1.8)
q q
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102  Then we obtain the Lagrange formula

%&:H—U, (3.1.9)

which can be written, by means ¢f{311.4), also as
%&:T+h:U+2h (3.1.10)

By TheorenZZI1 we know thal(t) —» o ast — t;, so that fort
suficiently close td;, U +2h > 0 and s> 0 and hence is a convex
function oft and has a limit (non-negative) s~ t;. We may assume
thato is convex in the intervat < t < t; itself. We observe that = 0
if and only if all the coordinateq vanish, that isP;, P,, , P3 are all at 0.
Since by assumption is the first singularity, there is no collision in the
intervalt <t <ty and sar(t) > 0int <t < t;. Furthero(t) is a regular
analytic function in this interval. We have seen in Chapi¢ha o(t)
has a limito; ast — t; - o3 > 0 or> 0 according ag- is monotone in
monotone increasing or monotone decreasing in a smallvaltéy the
left of ty, that is, according as(f) > 0 or o(t) < O in this interval. If
o1 > 0 there is only a simple collision at= t;. We have studied this
cased in Chaptdld 2. So we shall consider only the ease 0 (which
can happen only whem(t) < 0) and study the nature of the singularity
more closely in this case.

We shall now change our notation and introduce the varigble 103
t instead oft. It is clear that the equations of motion {3]1.2) remain
invariant under this change of variable. Thert @sries in the interval
T <t < t1, the variabet; —t varies in the interval & t; -t < t; — 7 and
t; — t tends to O through decreasing values as t; through increasing
values. From now on we shall writén place of the variablég —t andr
in place oft; — 7. Thus in the new notation @ t < r andt — 0 through
decreasing real values. We consider the coordirg#asfunctions of the
new variablet and write agairg = q(t). Now U(t) —» o ast —» 0 and
hence in a sficiently small interval O< t < t, with 0 < t, < 7, we have
U(t) + 2h > 0 so thato{t) > 0in 0 < t < tg. Thereforeo(t) is again a
convex function ot in 0 < t < t;. Moreover,o(t) > 0 implies thato(t)
is monotone increasing aslecreases to 0 and is positive i@ < t,.
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We shall now study the asymototic behaviourodt) and o(t) as
t — 0. First of all we have the following inequality:

Theorem 3.1.1.6° < 80T for0 < t < t,.
Proof. By the definition ofc- and T we have 2T = ¥, mcf ¥qmé?.
q

For arbitrary real numbersy, Sk, k = 1,...,r, we have the following
identity of Lagrange (see Chapiér§ld):

2
r r r
Dot Br= [Z akﬁk} + ) (B - 1B
1<k<l<r
Takingr = 9 anday = Ok /M, Bk = Ok Mk, We obtain

1.\? . .
20T = (—0') + Z MMy (G@l — 01 Gk)? (3.1.11)
2 1<k<I<9

But
Z mam (k@ — aiG)? > 0.

1<k<I<9

1. . . .
Hence from [31.11) we getod > (50-)2, i.e. 0% < 80T, which
completes the proof. m|

Theorem 3.1.2. There is a positive constartsuch that
o(t) ~ xt*3 as t— 0; (3.1.12)

. 4
o (t) ~ §Kt1/3 as t— 0. (3.1.13)

Proof. By TheoremZ3.1]1, 8T — &2 > 0. By the Lagrange formula
B1I0),0°= 2T + 2h and this can be written

1 . .
5 =7(80T - 72+ 2o+ 2h,
and hence,

1. 1 .
& — 2020—1 = 60T - dd)ot + 2h, (3.1.14)
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Multiplying both sides by~ we find that
) 1. 1 i
(0'0'_1/4) =go V4 - 10'20'_5/4 = Z(BO’T — )4 4 2ho YA,

If we denote by, oo the values otr(t) ando(t), att = ty, we obtain,
on integration fromt to t,

to to

T 1 .

Gooe =t = 2 f (80T -2 5/4dt+2h f o V4dt, (3.1.15)
t t

Hereo(t) ando(t) are positive and henaeos~4 > 0 ast — 0, so it 105
can only becomer if it has no finite limit ast — 0. Consequently
the left side can at worst becomeo ast — 0. On the right side,

to
(80T -?)0~5/* > 0 by TheorenZ 11 and A8 T —2)o~>“dt > 0.

t
This has either a finite positive limit &s- 0, or it tends torco ast — 0.
We shall, however, show that this integral converges antlcthal/

tends to a finite limit. For this it is ghicient to prove that the integral
to

[ o~Y4dt converges as— 0.

t

We shall get a lower estimate fer. In the following w1, uo, . ..
denote positive constants which depend only on the masges,, ms.
Letu = kr_nligsrn(, so thate > u(p? + p3 + p3) and by the Schwarz

inequality this givesr > %(pl + po + p3)?. By the triangle inequality we
havery, < p1 + p2 and hence

. 1
&> %rfz, or > 102, (3.1.16)

This gives a lower estimate for the potential functidh(t) > poo1/2.
1 .
Moreover,éc"r = U + 2h so that, fort suficiently near O,

o (t) > pgo Y2, (3.1.17)
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and on multiplication throughout by2 (0%)" < 4us(c¥/?)". Integrating
this from O tot we have

72 — (07 > pa(o¥? — o(0)/?).

Sincec — 0 ast — 0, o(0) = 0 and further,c(0)*> > 0, so that
2 > usot’?, and hence
o > uso4, (3.1.18)
Then ¢3/4) = i—:é-o-‘l/“ > 2;15, which on integration from 0 t& with
o(0) = 0, giveso3/* > ugt, or
o(t) > urt*3, 0 <t <to. (3.1.19)
t

Thus we obtain an upper estimate for the integrai-*/“dt:
t

to to

f o V4dt < g f t~1/3dt,

t t

t
and the last integral converging s> 0, the convergence of o=/4dt
t

follows.

Now we shall show thair(t) actually behaves liké*/3 asymptoti-
cally ast — 0. Consider the indentitf (3.T115). Since the second inte-
gral on the right converges, it follows thatr~1/# tends to a finite limit

3. 3
a>0ast — 0. So ¢%/4) = Zcm‘l/“ - 72 ast — 0. In other words.

3 . .
(% = 73+ o(1) ast — 0. Integrating this from 0 tbwe see that

0_3/4

3
= -—at t
2 at + ot),
which implies that, as — O,

o(t) ~ (ga)4/3t4/3. (3.1.20)
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The constana is necessarily positive as= 0 would imply thato-(t) —
0 more rapidly thart*? ast — 0, which is not possible because of

3
@II9). Sa > 0; letk = (Za)4/3. Then we haver ~ «t*3 ast — 0,

. . . 3. 3
which proves the first assertion. Further, frglmr‘l/“ = z3+ o(1),
we have

. 4
o= a0_1/4 + 0(0_1/4) -~ §K3/4K1/4t1/3,

.. 4 .
that is,o ~ §Kt1/3 ast — 0. This completes the proof of the theorem.
O

We remark that the asymptotic estimatedgproved directly in The-
oremZ.LP is an improvement over the asymptotic estimatext*3, in
the following sense. If we could “ffierentiate” the asymptotic relation
@BI12) foro with respect tat, we would have obtained the asymp-
totic relation [3.I.113) forr. But in general such a filerentiation is not
permissible and so the direct proof above is an improvement.

We conjecture that we can again flidirentiate” the relatiof (3.1.113)
formally and obtain an asymptotic estimate fointhe form

4
o= §Kt_2/3 ast— 0. (3.1.21)

We shall see later thdf{3.1]21) in fact holds. For provirig te shall 108

again use the Lagrange formuia‘% = U + 2h. So we proceed first to

determine the asymptotic behaviourléft) itself ast — 0.
Consider the function

g(t) = (8o T — FA)t72/3. (3.1.22)

In the course of the proof of Theordm—3]1.2 we have shown tiat t
integral

to
f (80T — %o >/*dt
t
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to
converges as— 0. This means that the integrfilg(t)t?3c—>/4dt con-
t

verges ag — 0. But we have proved above that ~ «t*° and so
o4 ~ k74753 Hence

to o
f gt 3= 4dt = f g (>4t + o(t™1))dt
t t

converges as— 0. In particular, the integral

f g(t)d—t (3.1.23)

converges as — 0. But by Theoreni-3.I11g(t) > 0 and therefore it
follows that

lim g(t) =0,
t—0

to
for lim g(t) > O would imply that the integrafg(t)th diverges. We
t—0 t
shall next prove that

limg(t) = O.

Suppose if possible thﬁg(t) > 3¢, 0 < € < 1. We shall prove that
this leads to a contradiction. By the continuity gft) in the interval
0 <t < 7, we can find a decreasing sequence of numberd; > t, >
... > 0 such that
€< g(t) <3¢, tox <t <tokg, (3.1.24)
g(tak) = €, 9(tak-1) = 3e. (3.1.25)
By Theoreniz3.112 we know that there exists a positive numbepend-

. ) 4
ing only on the three masses such i) ~ «t*2 ando(t) ~ §Kt1/3 as
t — 0. Hence

o (t) = kY31 + So(1)), o(t) = g tY3(1 + 81(t)), (3.1.26)
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wheredq(t), 51(t) — 0 ast — 0. If an asymptotic estimate far were
known we could then get an estimate farBt%/2 and hence also for
g(t). But we do not have such an estimate Toas yet. However, we can
get an upper estimate fdras follows. From the definition af we have

T= (0P + 2
By B1.23),9(t) < 3¢, tx <t < ty_1. On the other hand, bI{3.1126), 110
o=k U3+ 5o() 7 P = (gk)2t2/3(1 +61(1))>.
Hence we obtain
T< %(342/3 + (gk)2t2/3(1 +61(0)) 31 + 5o(1)) L.
It follows thatT < constantt~%/3, that is
T = 0t )tk <t <ty 1,k — oo (3.1.27)

SinceT = %z mig, @T27) implies, in particular, thaf ‘= 0(t-23)
q

ast — 0, tx <t < ty_1, so that we have an estimate for the velocity
components oPy, Py, P3:

q=0¢t"3) ast — 0. (3.1.28)
In view of the energy integral — U = h then we have
U=T-h=0t?%3%ast— 0. (3.1.29)
By the definition ofU, (31.29) implies that
rt = 0?3 ast — 0. (3.1.30)

From these estimate we can get upper estimates for the tlezivh)
andT in the following way. We have

. mmy . .
U=- § —5— (%= %) (X = %)
r
1<k<I<3 Tkl
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Xk = X||
Ikl

But < 1 and so we have

: mam .
Ul< D) =5 (% +1%).
1<k<I<3 'K
Then the estimateE{3.1128) afid (3.1.30) show that

U =03 ast — 0. (3.1.31)
Once again, by the energy integréll= U, so that
T =03 ast - 0. (3.1.32)

The asymptotic formuld(3.1.P6) together with the estinf@&.2T) and
(B132) enables us to calculate the total variatiog(tfin the interval
tok <t <ty 1. Infact, on diferentiation with respect towe have

(Tot ™3y =Tot™2P + Tot™2/8 - gTO't_5/3 =0(t™?), ast » 0
and fty <t <ty
Hence we have the inequality
8(Tot 23y <uttast - 0,

and on integration fronty to tyk_1 we have

tox-1 t2k—ldt
8 f(Tcrt‘z/?’)'dtsu f n ask — co. (3.1.33)

tok tok
On the other hand, using the asymptotic estimate (3.1.26){), we
find that the total variation of2t=%/2 in the intervalty, < t < ty_j is
0o(1) ask — oo. Thus there exists a positive integey such that for
k > ko, the variation of2t=2/3 in the intervalty < t < ty_1 is smaller
thane and also the estimatE{3.1133) for the variatiorT oft=%/3 holds.
So the variation o§(t) in the intervalty, <t < ty_1 is estimated by

tok-1

dt
2e = g(tk-1) — 9(tax) < €+ u f R K > Ko.

tox

111
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tok-1
Hence [ <2 £, from which it follows that fork > k,
tok

=

Since corresponding to> k, there are infinitely many disjoint intervals
tox < t < ta_1, each of which gives a contribution exceeditgu to the

integral, it follows thatf g(t)dTt diverges, which is a contradiction. This
0

means that necessar%g(t) = 0. and hencg(t) — 0 ast — 0, which

proves the required assertion.
As a consequence di(3.1122) and the fact ti{fgit —» 0 ast — O,
we have
85T — &2 = 0(t?3) ast — 0, (3.1.34)

and hence 113
14 /320 431 _ 2 23
T~ §(§Kt ) (W) = gt T ast— 0. (3.1.35)
By the energy integrdl = T — h it follows now that

2
U~ §Kt—2/3 ast — 0. (3.1.36)

We have already proved in Chaplér 2 the theorem of Sundman tha
if there is a general collision at = 0, then the constants of angular
momental, u, v all vanish. This can also be proved with the help of the
estimates we have obtained, in the following way.

Theorem 3.1.3(Sundman) If there is a general collision at+ 0, then
A=pu=v=0.

Proof. We denote by, ..., ge the nine coordinatex,, ..., z3, and by
U1, ..., Mg the corresponding masses. Takimg = Ok +/ux andpx =
Ok v/Hk in the Lagrange identity

9

9 2
ZQEZ/B%[ZMK] EPICERLIE

9
k=1 k=1 k=1 1<k<l<q
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we obtain

8T —0%=4 > mgu(okth — Q&)
1<k<I<9

Since by [31.34), 8T — o = o(t?/3) ast — 0, it follows that

Z i (Okar — giG)? = o(t?3) ast — 0.
1<k<I<9

Since all the quantitiegy, g, Gk are real, we see immediately that
af — gk =0t ast >0, k 1=1,...,9, k1.

(This estimate would naturally not be valid in the complesaa If
we change our notation and denote pyq two distinct coordinates
X1, ..., 23, then we can write

pa - ap = o(t”®) ast — 0, (3.1.37)

We recall that the integrals of angular momenta are given by
3 3
DM = Yk = A, Y MYk — 2K) =
k=1 k=1

3
D M@ - X&) = v.
k=1

If there is a general collision at= 0, theno(t) — 0 ast — 0 and the

estimates[{3.1.27) hold. Consequently, taking ffog the coordinates
Xk» Yk Yk» Z; Zks Xk In turn, we see that = u = v = 0, and this completes
the proof. m|

We remark that the converse of Theorlem3.1.3 is not in getreial
that is to sayd = u = v = 0 does not necessarily imply that there is a
general collision at the singularity= 0.
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2 The limiting configuration at a general collision

We shall now prove a result due to Sundman that in the caseerieral
collision the three mass-points always lie in a fixed plameugh the

115 centre of gravity (which is assumed to be fixed fixed at theimyig-or
this purpose we shall proceed as follows.

It may happen that at the initial tinte= t the three poinPy, Py, P3
lie on the same straight line. We assume for the moment tisaistinot
the case. Hence at tinte= 7 the area of the triangle,P,P3 is different
from zero. This plane can be taken to be the/)-plane, by means of an
orthogonal transformation, if necessary, applied to taa@ldetermined
by Py, Py, P3. We verify first that the dferential equations of motion
remain invariant under a fixed orthogonal transformatioet A.= (ay)
denote the three-rowed matrix of the orthogonal transftiona Then
we have

ajayj =0k, K1=1,23, (3.2.1)
1

j
whered = 1 andéy = 0 if k # I. Let (x, Yk, z) denote the origi-
nal coordinates of the poirR and (X, Yk, Z) its coordinates after the
orthogonal transformation. Then,

3

Xk = a11Xk + anoYk + a13%,
Yk = @1 Xk + A22Yk + a3Z, Zx = ag1Xk + agoYk + a33Z.

Differentiating Xk twice with respect td and using the equations of
motion mlk = Uq,, Ok = Xk, Y. Z, K = 1,2, 3, we have

MX = ag1Mick + a1oMiYk + agaMiZ
= a.]_lUXk + alzuyk + a13Uzk. (322)

On the other hand, we have, by the chain-rule,
Uy, = Ux (Xk)x + Uy (Yi)x + Uz (Zk)x = a11Ux, + a21Uy, + az1Uz,,

and we have similar relations faty, andU,,. Therefore, usind(3.2.1)116
and [3ZP) we gemXy = Uy, k = 1,2,3, and similarly,mYy =
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Uy,, mZy = Uz, k = 1,2,3. Thus the dierential equations remain
unchanged by the orthogonal transformation. Moreovehgfibtegrals
of angular momenta, y, v, vanish in the original coordinate system,
they vanish also in the new coordinate system. This followslibect
computation. For instance,

3 3
Z M (X Yk — YiXk) = (ar1822 — a12821) Z M (XY — YkZk)+
k=1 k=1

3
+ (a10823 — A13322) Z M(YiZk — ZYi)+
k=1

3
+ (21331 — B11823) )| M@k — X&) = 0.
k=1

Then we have the following

Theorem 3.2.1(Sundman) If the centre of gravity remains fixed at the
origin and there is a general collision at£ 0, then the three mass-
points R, P», Pz remain in a fixed plane throughout the motion.

Proof. Suppose thaP;, P,, Pz are not in the same straight linetat .
We perform an orthogonal transformation and assumeRhad,, P3 lie
in the (x, y)-plane att = 7. Thenz(zr) = 0,k = 1,2, 3. Since the area of
the triangle formed byP,, P,, P3 att = 7 is not zero, we have

X1 X2 X3
Yi Y2 ys|#0att=r (3.2.3)
1 1 1

117  Since the centre of gravity remains fixed at the origin, weshav

3
> mac=0att=r. (3.2.4)
k=1
Moreover, sincey(r) = 0,k = 1, 2, 3, and there is a general collision at
t = 0, we have from the integrals of angular momentura(u = v = 0),

3 3
> M =0, ) myia =0, att=1. (3.2.5)
k=1 k=1
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Equations [[3:2]14) and(3.2.5) form a system of three lingaiatons
satisfied byz,k = 1,2,3, att = 7. Since the matrix of this system
of linear equations has, bff{3.2.3), a determinand, it follows that
Z(7) = 0,k =1, 2, 3. From the equations of motion we have

; mmp mmg
Mz =Uy = ——(@2-2)+ —5—(-2)
M2 M3
. _ ms
or h=—=(2Z-za)+5(z-2)

12 13

and similarly,

Lo ms L M e
b=5@-+5@B-2)8=F5@A-B)+5(2-25)
r r r r
12 23 13 23

At the initial timet = 7, r12(7), r23(r), r13(r) # 0. But sincez(r) = 0, 118
it follows from the equations above that() = 0, k = 1,2, 3. Dif-
ferentiating the equations successively and using thetifiattz, z, Z
vanish att = 7, we find that all the derivatives dof vanish att = ,

k = 1,2, 3. Since there is no collision in the intervak® < 7, we know
that all the coordinate functionz(t) are regular analytic functions in

0 <t < 7. It then follows thatz(t) = 0forO <t < 7, k = 1,2 3.

We could also prove this fact directly without making use laf aina-
Iyticity of zin 0 < t < 7. In fact, consider the system offtérential
equationmglx = Ug, Ok = X Yk Z K = 1,2,3. We prove as before
that Z(r) = 0. Then we use the fact that if we fix(r), (1), z(7)

and %x(7), Yk(1), Z(7), then this system of ffierential equations has a
unique solution. If we now fix(t) andyk(t), the diferential equations
for z with initial conditionsz(r) = 0 = z(7) is identically satisfied by
z(t) = 0, 0< t < 7, because the fferential equations contain the dif-
ferencesy — z in the numerator. Then by uniqueness the two solutions
coincide.

Next we consider the case in whi€h, P,, P3 lie on a straight line
at the initial timet = 7. Choose this line as the-axis and choose as
(%, y)-plane the plane determined by this line and the directibthe®
velocity vector ofP3 at the initial time, that iszz = 0 att = 7. Thus
we havey; (1) = y»(r) = y3(r) = 0. Sinced = u = v = 0, the condition
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z3(t) = 0 implies thatm;z;(r) and nyzy(7) satisfy the homogeneous
119 linear equationsmz; (7)+mpzy(7) = 0 andmy Xy (1)1 (7)+moXo(1) 2(7) =
0. The matrix of this system of homogeneous linear equai®ns

(le) XZY)) .

Since there is no collision dt= , it follows that x;(7) # x»(r) and
hence this matrix has a non-vanishing determinant. One dbésins
Z(t) = 0,k = 1,2, 3. Repeating the argument used in the earlier case
one haw; =2 =2z3=0foralltin 0 <t < 7. This completes the proof

of the theorem. m]

In view of TheorenZ3.Z2]1 we may assume tRatP,, P3 remain in
the fixed plane = 0 throughout the motion, so thai(t) = 0,k = 1,2, 3,
forall t,0 < t < . We wish to determine the behaviour of the six
coordinates, Yk, k = 1,2, 3, neart = 0. Letg denote any of these six
coordinates. By Theore3.1.2 we have= Y, m¢ ~ «t*3 ast — 0,

q

which implies thatg = 0(t?3) ast — 0. One would conjecture that
every one of the six coordinatgscan be expanded as a power-series in
the variable/3, starting with the ternt?/3, in a neighbourhood df= 0.
This was the case when there was a simple collision, as sh@apter
B. It is no longer so in the case of a general collision. Howewre
can get an expansion forin the variablet'/3, this time with irrational
exponents.

If g denotes any ofy, Yk, k = 1, 2, 3, we set

q=qt?3. (3.2.6)
120  Sinceq = 0(t*/3), we haveg* = 0(1) ast — 0. Differentiating [3.216)
with respect td one obtains
. 2
q=qt?3+ §q*t‘1/3. (3.2.7)
Similarly, if p denotes a coordinate distinct fragnlet p = p*t%3, then
p* = 0(1) and
. 2
p=pt?e+ §p*t‘1/3. (3.2.8)
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From [327) and{3.2.8) we obtain
pa—ap = (p'q - g'p)te.
By @1.31),pq - gp = 0(tY/3) ast — 0 and hence we have
p'a — g p = o(t™) ast — 0. (3.2.9)

We introduce the following notation. If is a homogeneous function
of degreemin the variablesy, .. ., gg, let f* denote the function of the
variablesqy, . . ., o defined by the relatiori*(q*) = f(g"). Thenf and
f* are related by the equatidn= f*t*"3, Sinceco is a homogeneous
function of degree 2 imy, . .., g, we haves = ¢*t¥3. On the other
hand,o ~ «t*2 and so we have* ~ k ast — 0, that is

o*(t) =«k+0(1l) ast — 0. (3.2.10)
From the relationr = o*t*3 we have, by dterentiation, 121
. . 4
o(t) = 48 + éa*tm, (3.2.11)

Again by TheoreniL3 1127 ~ % t1/2 and [32ID) and{3.2111) imply
thato*t*3 = o(t/3) ast — 0, or

a*(t) = o(t™Y) ast — 0. (3.2.12)

Sinceqis regular analytic in 6 t < 7, g* is also regular analytic in this
interval and on dterentiatingo™, as we may, we have

1., »
50" = Zq: mq'q. (3.2.13)
The estimate® = 0(1) together with[{3.2]19) an@(3.2]113) implies
l'** sk ko k Sk ok -k *2
0P =Pl = ) mEdp - pg”)

q
=Y mg(@p - pg’) =oft ™) ast - 0.
q
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Using once agaip* = 0(1),c* = O(t™1), the last formula givep*o* =
o(t™1) ast — 0, from which it follows, by [3.2.10), that

p* = o(t™1) ast — 0.

We have seen that* = qt~%3 = 0(1) ast — 0 and we want to
determine the exact behaviour gf(t) ast — 0. For this purpose we
consider the triangle determined by the poin@;s{(&), k=12, 3, which
will be referred to hereafter as the “big triangle”. We olveethat the
centre of gravity of the system with respect to theoordinates also
remains fixed at the origin: in fact,

i MX; = t‘mi MX = 0, i My}, = t‘mi myyk = O.
=] kel kel kel

All the coordinatesy* are bounded as— 0 and we expect thaf* will
have finite limit values at — 0, so that the big triangle has a limiting
position as — 0. This will be proved only at the end. At present we
have the following

Theorem 3.2.2. Let the centre of gravity remain fixed at the origin and
let there be a general collision at# 0. Then the figure of the big trian-
gle has a limiting configuration as+ 0, and this limiting configuration
is either an equilateral triangle or a set of three collingawints.

Proof. We shall, first of all, write down the equations of motioi| =
Ug, 0 = X, Yk, K = 1,2, 3, in terms of the variableg®. By definition

we havel = mkmr;ll, andry being a homogeneous function
1<k<I<3
of degree 1 ingy, U is a homogeneous function of degre& in the

six variablesx, yx, k = 1,2,3. ThenUq is a homogeneous function of
degree-2. Using the notation introduced earliebly = Ua*(q*)t‘4/3.

Differentiatingg = q*t%2 with respect td, we obtain

13_ 2
9

= (qt*3) %3 - gq*t‘4/3 (3.2.14)

g =123 + gq*t_ qit43
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123 The equations of motion now become

2 1 1
s8N .1—2/3 L sl A3 =~y
(gt7°)t 9qt _q_qu_qu*t ,

or 1
2 . o)
q* (q*t /3)~t2/3 = —Ux*. (3.2.15)

We shall replace each term in{3.2.15) by its average oveintieeval
(t,2t), 0 < t < 2t < 7. We shall first prove that

2t
% f (@3 t¥3dt = o(1) ast — 0. (3.2.16)
t

In fact, integrating the left side by parts, we obtain
1 2t 1 5 2t
4 c08/31 12/3qx _ © | [a4d/3 12/3]1R £ #14/3  1-1/3
tf(qt )t dt_t[[qt t ]t 3fqt t dt]
t t

= 2HE - of),

ast — 0, sinceq® = o(t™!) ast — 0, and so the right side is 0(1)
ast — 0, which proves[(3.Z2.16). Next, we consider the two terms in
BZ1I). Ift; andt, are real numbers such that t; < t, < 2t, then we
have

t2
Tt - () = [ @)
t1
Sinceq* = o(t™1) ast — 0 and 0< t, — t; < t, it follows that the right 124
side is 0(1) and therefore we see that
g(t2) = g°(t1) +o(t) ast— 0 (3.2.17)

We also have

t2
U (t2) — Ul (ta) = f (U )dt
t1
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But (U;*)' = %U;p* p*, wherep* denotes any one oq;, Yier k=12 3.

Once again, sinct is homogeneous of degred ing, U = U*t=%/3,
2
By (31.36),U ~ §/<t‘2/3 ast — 0 and so we have

2
U= §,<t—2/3(1 +5(t)), 8(t) - 0 ast — 0.

From this it follows thatU* = gk(l + 6(t)), that is,
U* = 0(1) ast — O. (3.2.18)
If we denote by () the sides of the big triangle, then
fa(® = (% = %)% + % - ¥)*,
and we deduce fronl.{3:Z118) and the definitiorddfthe estimate
(ri)"t=0(1) ast — 0. (3.2.19)

SinceU* = rmm.r;l‘l, on differentiation with respect tp* and
1<k<I<3
g* in succession, and then usifig (3.2.19), we get

U = 0(1) ast — 0.

Since ) = o(t™!) ast — 0, we conclude that(;,) = o(t™), so that
we have as before
t2

U (t2) = U () = f (U )dt

t1

This implies that
Ug (t2) = Ug(t2) + o(1) ast — 0. (3.2.20)

We take the average of(3.2]115) over the interiaRtf, and using
BZI%), [3Z217) and{3.Z120) we obtain, for every fikgd t < t; < 2t,

2 1
5 (t) +0(1) = —Ug.(t) + o(1) ast 0.
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Hence, fort suficiently near 0 we have
Z “(t) = EU* (t)+o(l)ast - 0 (3.2.21)
9q =—Uq ) 2.

This is no longer a system of fierential equations, but a system of
six algebraic equations satisfied asymptotically by thecsigrdinates
g (t) = xg(0), yx(), k = 1,2,3. The system{3.2.P1) can now be used to
determine the behaviour gf more closely as — 0.

We observe that the system {3.2.21) is left invariant by émogjo-
nal transformation of the variable§,y’|;, k = 1,2 3. As in the case of
the proof of Theoreriz3.2.1 this can be verified by a direct adatfon
of Ug., in terms of the new variables. An orthogonal transfornratio
corresponds to a rotaion of the axes (in the plane ofitheodinates).
We apply an orthogonal transformation (depending)an the plane of 126
motion and assume that the nafvaxis is parallel to the direction of the
vector P3P, (at timet). Let Xk = Xk(t), Yk = Yk(t) be the new coordi-
nates of the pointBy, k = 1, 2, 3, attimet. ThenY; = Yz by assumption.
Writing down the equationd_(3.Z121) for the coordina¥esY,, Y3, we
have

2, m
-sY1= Q(Yz - Y1) + —%(Ys = Y1) +o(1),
12 13
2 m ms
—5Yo =g (1= Y2) + — (Y3 = Vo) + (1),
12 3
2 m my
—SYa3= — (Y1 - Ya) + ——= (Y2 — Ya) + o(1),
9 R§3 3

ast — 0, whereRy denotes(t), which is clearly left invariant by the
orthogonal transformation. One can also write down sinalgebraic
equations foiXy, X, X3. SinceY; = Y3 the preceding equations become

_2y - me(Y2 - Y1) 2y M M
V1= =3 +o(l), —5Y2 = [ =3 + Rg3) (Y1—Y2) + 0(1),
_ 2y, oMo Y1) gy (3.2.22)
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ast — 0. It is not immediate thaYy, Ys, Y3 have limit values as — 0.
Since|Yx — VIR ! < 1 andR 2 = (r;)~% = 0(1) ast — 0 by (3Z19),

it follows from (ZZZ2) thatYyi(t), Ya(t), Yz(t) are all 0(1) ag — O.
Hence, by the Weierstrass theorem, we can find a sequenckief\at

t which tends to zero such that the corresponding sequenauafs/of
Yk(t) converges to a finite limit value ds— 0 through this sequence.
We shall see later on that these limit valuesYgft) are independent
of the sequence of values bthosen. We denote also the limit values
of the coordinates{y(t),. .., Ys(t) by Xy, ..., Y3 respectively, the limit
values ofRy(t) by Ry, k # |, and we can then omit the error tew(l)

in BZ22). Once again, sindg = Y3, we get from[[3:222),
(Y2- Y1) (Ri; ~ Ry3) = 0,

which means that eithéf, — Y; = 0 orR:}:g -R3=0.

Suppose for the moment tlﬁ{g—Rga # 0. ThenY; = Y, and hence
Y1 = Yo = Y3. Since the centre of gravity remains fixed at the origin,
m Y1+ MmpYs + MYz = 0 and so it follows thaY; = Y, = Y3 = 0, which
means that the three points representedXyt), Yk(t)), k = 1,2, 3, tend
to points situated on a straight line, tas> 0.

Suppose on the other hand that# Ys; then necesarilyR;» = Rys.
If the three points are not collinear in the limiting positjiaghen one can
interchangdP,, P, P3 (which means on orthogonal transformation with
matrix independent df) and repeat this argument and gt = R;3.

Hence, only two possibilities can occur, namely, either tiiree
points represented by, Yi), k = 1,2, 3, are collinear, or they lie at
the vertices of an equilateral triangle,tas> 0. We shall refer to these
alternatives as theollinear caseand theequilateral caseespectively.
This is equivalent to saying that either all the angles aw#réces tend

to g or two of the angles tend to 0 and the thirdrtoast — 0. This

argument involves the choice of a sequence of valugso€h that the
correspondingrk(t), k = 1, 2, 3, tend to finite limits. If we consider an-
other sequence of values bfending to 0 such that the corresponding
sequences of values ¥f(t) also converge to finite limits, then it may
happen that the above alternatives get interchanged. $hatsay, the
points represented byg(t), Yk(t)) may tend to the vertices of an equi-
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lateral triangle as — 0 through one sequence of values, while they way
tend to collinear points through another sequence. Butedime angles

of the triangle are determined by the sidggt) which are continuous
functions oftin 0 < t < 7, and are bounded away from zeraas 0, we
see that the angles are also continuous functidriro® < t < r. Hence
the above possibility canont happen and we conclude thdirnttigng
positions of the points in the plane determined B i), k = 1,2,3,

are either at the vertices of an equilateral triangle or neahcollinear
points. This completes the proof of TheorEm3.2.2. O

Theorem 3.2.3. If the limiting configuration of the big triangle is an
equilateral triangle, then the side of the triangle is givgnthe positive
cube root of

re = g(ml + My + mMy). (3.2.23)
Proof. If the sides of the big triangle ag(t), k # I, thenRq(t) —» 129
Ra =1,k #1 kIl =123, Once again denoting by the limiting
values ofXy(t) ast — 0, we have from[{3Z21) the following algebraic
eqguation satisfied b¥(1, X, X3:

2 mp m3

—§X1 = r_3(X2 - X1) + r—3(X3 - —X1),
2 my mg

—§X2 = r_3(X1 - Xo) + r_3(X3 - X2),
2

m m
~5%e = (X = X) + 3 (% ~ Xa).

Sincem; X; + mpX, + mpX3 = 0, we obtain from these equations
2
—§Xk = —(M + My + me)Xer 3, k=1,2,3.

Similarly we have foryy,

2
—gYe=—(m+mp+ me)Yr 3, k=1,2,3.

Since by [Z2Z19), Ru(t)) ™ = (r;;(t)~* = 0(1) ast — 0, it follows
that Rq(t) is bounded away from zero. Thus at least one ofXheYy,
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k=1,2, 3, is diferent from zero and we obtain

9
r3 = E(m1+ mp + M),

which proves the assertion.
Theoren-3.2]3 can also be used to determine explicitly thetaat
k > 0 in the asymptotic estimates fqt(t), g*(t),... in the equilateral

. 2
case. SincéJ ~ §Kt_2/3 ast — 0 andU*(g")t~%3 = U(q), we have

2
Uu(g’) ~ o~ ast — 0. (3.2.24)
The distance®Ry(t) are invariant under orthogonal transformations an
sinceRy» = Ry3 = Riz =, it follows that ag — 0,

N MMy + MMz + MM
r

BZ23) andl(3.2.25) together imply that

U*

(3.2.25)

2 -1
gk = (Mumz + mpmg + Myumg)r—,
which determineg explicitly in terms of the masses.

Next we consider the collinear case. Then the limiting dists
Ri12, Ro3, R31 are no longer equal. Let = max(Ri2, Re3, Ra1). Suppose
thatP; andP;3 are at the distangeatt = 0: p? = (X3—X1)?+ (Y3 - Y1)2.
P, lies betweenP, and P3; let Ry3 = wp where O0< w < 1. Then
Rio = (1 - w)p. So

Rs1=p,Re3 = wp, Ri2=(1-w)p. (3.2.26)

Once again we make use of the equatidns{312.21). Since e a&f
gravity remains fixed at the origin, it follows that the eqoas satisfied

by X1, Xo, X3 are not linearly independent. We obtain as in Theorem
BZ23,

M, M, m__ s
02 w202 (1-w)2p?  p2°

2 2
Z(X1— Xa) = 2p =
9(1 3) 3°
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2 2 my m mp ms
ZXo— Xa) = Zwp = — —
9( 2= X3) 9“P 2 (- w)p? + 022 + 022
(3.2.27)
2
5/03 =my +Mp(w 2+ (1-w)?) +mg
or 5 (3.2.28)
§wp3 =m(l-(1-w)™2) + Mmw 2+ mgw 2.
Eliminating p between[(3:2.27) anf{3.2]128) we get 131

ml-w-1-w)2)+m((l-w)w?-(1-w)2w)+m(w?-w) = 0.
Hencew satisfies the equation

my((1-w)* - Do + mp((1 - 0)° -~ %) + Mp((1- w)? - 0 (1~ w)?) = O,

(3.2.29)
which is an algebraic equation of the fifth degree. This @qoatas
only one roow in 0 < w < 1. This can be seen as follows: we can write
BZ229) in the form

M +Mw Mg+ mp(l-w)
M +Mw=2 Mg+ mp(l-w)2

Both sides of[(3.2.30) are continuous functionswifh 0 < w < 1. As

w increases from 0 to 1, the left side &I (3.2.30) increases féoto

1, while the right side decreases from 1 to 0. Hence therdseiist
one real numbew in 0 < w < 1 satisfying [3:22.30). This unique root
is completely determined by the massas m,, mg. Substituting this
value ofw in (32Z2ZT) we obtaip as the positive cube root and hence we

(3.2.30)

. o . . 2
obtain also the constartexplicitly in the asymptotic relatio* ~ o~
ast — 0, since
mmy Mg Mg

+ + .

U —
(1-wp  wp P

This corresponds to the case in whiehlies betweerP; andP3. The 132
other two possibilities are obtained by cyclic permutatidiil,2,3).

Thus, if there is a general collision, we get as the limitirogfig-
uration either an equilateral triangle or three collineaints. It is a
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remarkable fact that the fifth degree equation (312.29).faiready ap-
pears in the work of Euler (1767). Euler considered the armmeedsional
problem in which all the points are collinear and studiedphgicular
solution giving a general collision in this case. m|

3 A particular solution

While we have proved that the limiting configuration of thg biangle
is either an equilateral triangle or a set of three collinaznts, we have
not as yet proved that the triangle itself haknaiting positionrelative
to the old fixed coordinate system. We do not also know yet dret
the two limiting possibilities can actually be realized ghiemaining
in a fixed coordinate system. We shall now show that the twes;dke
equilateral case and the collinear case, do in fact occuis Whl be
done by giving an explicit particular solution of the thrieedy problem
neart = 0, the time of a general collision.
We consider the case in which

at) =q" - gt), 9= %Yk k=123, (3.3.1)

where theg* are unknown constants, not all zero, @f is an unknown
twice continuously dferentiable function of in the interval O< t < 7,

and since(t) should tend to zero d@s— 0, we assume thaft) — 0 as
t — 0. Then the dierential equations of motion take the form

mo'g = Ug.g~%, or, mggg” = Ug, (3.3.2)

whereU*(g*) = U(Q"), so that by the homogeneity bf, we haveU, =
U;*g‘z. Sinceq* are constants, not all zero, the right side41n(3.3.2) are
constants and hence 1

6 = —Ug

mg &

is a constant (we takeg@ # 0). This constant cannot be zero as other-
wiseU;* = 0 for all coordinatesgj and from the relatiory; Ugq" =-U",
T

it would follow thatU* is the constant O and this is not the case, by def-
inition of U*. In view of the considerations of the last section, we take
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. 2
this constant to be§ so that we have

. 2
9f=:—§, (3.3.3)
and hence the system of equatidns (3.3.2) becomes
2 1
——q = _U**,
91 =

which is of the same form as the system of algebraic equaf®BA21) 134
satisfied by the variableg' in § . Since the equations of motion are
invariant under an orthogonal transformation in the plaite@motion,
we can take the-axis to be parallel to the direction of the vector deter-
mined by the pointsx;, y;) and ], y;) and passing through the centre
of gravity, which is assumed fixed at the origin. Hence in the/ 1©o-
ordinate systenY; = Y3 and one can show, using the argument given
earlier, that the points defined by (y;), k = 1, 2,3, are either collinear
or at the vertices of an equilateral triangle. Hence in otdgarove that
the two limiting possibilities occur, we shall determine flanctiong(t)
explicitly.

First of all, we observe that the functigrcannot vanish anywhere in

the interval O< t < 7 by (Z.3.3). Integrating the equatiog@= —ggng

we obtain 41
2
=-|=+C|,
? 9(g+ )
whereC is a constant of integration. From this we get
3.9 _, ., 3.9v8

=9 ot 2oy
2,\c+gt 2,/[1+Cg

and this, on integration from 0 gusing the fact thag(t) — 0 ast — 0,
gives

g
20 J1+Cg

Once again, ag(t) — 0, it follows that 1+ Cg — 1 and hence, fot 135
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SLfﬁcienEIy small in O< t < 7, Cg(t) is also small. Then we can expand
(1 + Cg)2 as a power-series ig(t) (with parametelC) which converges
for sufficiently smallt and we have

39 o
Ef 10 (1 + power-series irg without constant termgig = t, that
0

is, sinceg(t) — 0 ast — 0,
g*? (1 + power-series irg without constant term¥ t. Hence by
inversion we have

g = t?® + power-series in?3 with term of degree> 2,  (3.3.4)

and the power-series converges fauficiently small. The integration
above could also be carried out by using trigopnometric orehyplic
functions (according a€ is negative or positive) and we could obtain
o(t).

The simplest solution fog(t) is the one corresponding @ = 0. In

this caseg V@9 = 1 and on integrationg(t) = t#* and hence we have

q = g*t¥2. This proves that both the alternatives can occur in thisiape
case. We have already mentioned that the one-dimensioolallepn in
which the three points situated on a straight line have argéoellision
on the line was treated by Euler in 1767.

We now proceed to determine the constagitof 331) in some
cases. We have assumed throughout that the centre of gramigins

3 3
fixed at the origin and s, myx; = 0 = 3 nyy;. We apply an or-
k= k=1

thogonal transformation in the plane of motion and choosé&thxis to
be parallel to the direction of the vector defined By, {;) and 3, y;)
and passing through the centre of gravity. Hence in the n@rdotates
X, Y, we haveY; = Yz andX; > X3, where ¥y, Yx) are the new coordi-
nate of the pointsx, y;), k = 1,2, 3. First consider the equilateral case.
Then we have proved that the side of the equilateral triaisgiésen by

2 . .
§r3 =M + My + mg. Letm = my + mp + mg. Since the centre of gravity
is at the origin,

D mXe=0, > mYi=0. (3.3.5)
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Since the triangle is equilateral, we have
1 r
X1—X3z=r, X2—X3=§r, Y1-Y3=0, Y2—Y3=§\/§. (336)

Using [3:35) we get

3
1

Z MXx = Mu(Xy — X3) + Mp(Xo — X3) + mXg = mer + Emzr +mXs =0,

k=1

3

1
kaYkzmYl—(mz+ms)Y1+mzY2+ng3=mY1+§mzr\/§=0.
k=1

From these and{3.3.6) we obtain

1 1
my + 3mp Im, +mg 1mg—my
Xg=——=—1, Xy = 5=——1, Xo= = r, 3.3.7
3 p 1 -~ 2= 5 (3.3.7)
1mp Img+mg
Yi=Ys=—2—2rV3 Yo == : 3.
1=Y3 Zmr\/é, 2= 55— rva3 (3.3.8)
Thus, ifg(t) = t¥3, the original coordinates are given by 137
Xit?3, Y23, k=1,2,3. (3.3.9)

Differentiating with respect towe get

A mAms s

NE

Y3 (Yat23) =

1 —
M~ M (3.3.10)
m

Xot?3) =
(Xat?) 3

3
In the collinear case, we hag = Y, = Yz and since}. myXyx = 0
k=1
andX; — X3 = p, Xo — X3 = wp, we getmp + mwp + mXg = 0, so that

m; + Nbw
m

Mgw — My (1 — w)
_ o

X3 = Xp =

~Mmp(l-w)+mg
P> Xl_TP’

(3.3.11)
The originale coordinates in this case are

Xt?3, Yit?2 =0, k=1,2,3.
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4 Reduction to a rotating coordinate system

We shall now go back to the general problem of collision. Weetal-
ready exhibited particular solutions which involve onegpaeter (name-

ly, the constanC) to show that both the alternatives can be realized for
the limiting configuration of the big triangle. The solut®n

a=q9=qt3+....q" = X, Y K =123,

suggests that in the general case we may expect to get forq(t)
power-series in the variabi/? starting with the ternt?3. However,
this is not true; the general solution involves many moreapeaters.
The dificulty of the problem consists in the fact that we cannot yeter
(this will be proved only at the end) that the big triangleereéd to a
fixed coordinate system has a limiting positiontas> 0; all that we
have proved so far is the existence of a limiting configuratielative
to a rotating coordinate system. The triangle itself may goatating
above its centre of gravity, assumed fixed at the origin, leean our
proof we have made use of an orthogonal transformation ipltree of
motion dependeing on the time varialbtleNVe cannot yet determine the
limiting position of the big triangle. In order to study tipsoblem more
closely we proceed as follows.

We use a fixed coordinate system relative toittigal position of
the big triangle. We shall first reduce the system €fedéential equations
of motion to one containing a smaller number of equation iflba is
to introduce relative coordinates Bf andP, with respect tdP3 as we
did in the case of simple collisions in Chaplér 2 and to maleeafishe
general theory of transformations.

Let (X, Yk), kK = 1,2, 3, be the coordinates d? at timet with re-
spect to the fixed coordinate system through the origin. hetrélative
coordinates oP; and P, with respect tdP3 be €, &) and €3, &4) re-
spectively; that is,

E1=X1-X3, E2=Y1-Y3, §3=X—X3, é4=Y2— Y3 (3.4.1)

Since the centre of gravity remains fixed at the origin, weshea&; +
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Mpéz+mXg = 0, Més + Mpés+mYs = 0 wherem = my + mp + . Then
we have

my my
X = ——— - — y
3 mfl m€3

__ M, m
y3 = mfz m€4,

X1 =81+ X3 = mzr-;msé’l - %53,
Xp=&3+ X3 = —%fl + ;mgé%,
V=g tys= g - D,
Yo=é4+Y3= —%52 LY ;m354. (3.4.2)
If we set
M= MuXe, 172 = My, 73 = MpXe, 14 = MpYo, (3.4.3)

then, since the centre of gravity remains fixed at the origin,

MgXg = —My X1 — MpX2 = — (171 + 773),

mgy3 = —Myy1 — MYz = —(172 + 174). (3.4.4)
Sincer?, = €2+ £3, 15, = £2+ &5, 12, = (é1- &3)° + (£2— £4)?, it follows
that the potential functiol) is now a function of the variables, ..., &,
alone. On the other hand,

3
T=%Zm<(>'<§+3i)
k=1

1 1 1/1 1
() 0+ )+ 5 (5 3+ )

+ 1 ( + 12 +14)
— (71173 + M2 + 1M4) .
mg

NI

If E denotes the total enerdy— U, then the equations of motion can be4o
written as a Hamiltonian system of eight equations:

é=Ep k= —Eg.k=1,...,4 (3.4.5)
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We observe thaE does not depend on the variablexplicitly. If there
is a general collision at= 0, we have already seen that yi = 0(t%°)

and X, Yk = 03, k = 1,...,4, ast — 0. Since thet are linear
functions ofxy andyx, and theyy linear functions ofx, andyk, it follows

that, ag — 0,

& =0@3), =03, k=1,...,4. (3.4.6)

If we setxc = X;t%3, yi = Yit?3, & = £1%3, pi = m;tY/3, then we see
thatx, vy & m, are 0(1) ag — 0.

Now we introduce a rotating coordinate system with origirPat
andx-axis along the direction of the vectBgP, i.e. at any instantwe
translate the origin t&3 with the direction of thex, y-axes in the plane
of the triangle preserved. We want to consider the limifogition of
the big triangle with respect to the fixed coordinate systear.this pur-
pose, suppose that at timéd < t < 1, the vectorP3P; makes an angle
ps = pa4(t) (positively oriented) with the direction of theaxis in the old
fixed coordinate system. The mairffaiulty is to obtain the behaviour
of ps ast — 0. The introduction of the new rotating coordinate system
means a transformation of the variablésn) into new variables which
can be described as follows. Let us set

C = COSp4, S=Sinpy, (3.4.7)

and let 1, 0), (p2, p3) denote the coordinates Bf, P, respectively in
the new coordinate systen®z is (0,0). Herepx = p«(t), k = 1,2, 3.

Then the relative coordinate; (&;) and €3, £4) of P, andP; in the old
system are given by

£1=P1C—0-S &2 = P1S+0C &3 = P2C—PsS, 4 = P2S+ psC. (3.4.8)

The equationd(3.4.8) define a transformation of the vaeshl ..., &,

to p1,..., ps, and we claim that this can be extended to a canonical
transformation of the eight independent varialadtes. ., &4, 11, .. ., 14

The extension can be done by means of the generating function

W = 11 p1C + 72Pp1S + 173(P2C — P3S) + n4(P2S+ P3C). (3.4.9)
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It is clear thatW is linear inn and|Wp,, | = p1 # 0. By our general
theory (Chaptebll§ B), the full transformation is obtained by setting
W, = & Wy, = Ok, K = 1,...,4. Itis clear from the definition of
W that the first set of conditions is satisfied and hence thergealo
transformation thus obtained extends{3.4.8). Then we have

O =mC+n2S Q2 = n3C+n4S, O3 = —13S+1n4C,
Qs = P1(—11S+ 172C) + P2(—12S+ n4C) — P3(m3C +1ma9).  (3.4.10)

We shall introduce an auxiliary variabig defined by 142
Qo = —mS+ n2C, (3.4.11)

and then we can write

G4 = P10o + P203 — P3db. (3.4.12)

The last equation can be solved fgy sincep; # 0, and we can write
Oo = (0a — P203 + P302) pll. We could also take this as the definition
of go. We can expressy,...,n4 in terms ofqo, ..., g3, using [3.4.10),
@Z11) and(3Z12):

N1 = Q1C—0oS, 772 = (1S+0oC, 73 = 02C—03S, 174 = CpS+03C. (3.4.13)

Then we haveas = (£ + £5)Y2 = py, a3 = (65 + EDY? = (p5 + p3)Y/2,

andraz = ((é1 - £3)° + (€2 = é)?)% = (1~ P2)* + P3)Y/?. So we can
expresdJ as a function ofy, py, p3 alone. Also

B S N P N N A A A PPN |
T‘E(E*E)(qo+q1)+E(E+E)(QZ+%)+E(‘W+%%)'

This shows that the total enerdy— U expressed in terms of the new
variables p, q) does not contaimps. We already know the asymptotic
behaviour ofpy, p2, ps3; alsoqo, .. ., gz behave nicely. We do not know
the behaviour ofy, but this bad coordinate disappears from the function
E.

SinceW does not contain the variabi@xplicitly, we haveE(é, ) =
E(p, ) and we denot&(p, q) by E(p, q) itself.



144

108 3. The three-body problem: general collision

The Hamiltonian systeni {3.3.5) now becomes 143
Pk = Eq 0k = —Epok=1,2,3,py = Eg,, Gu = 0. (3.4.14)

Henceq, is a constant. We shall now prove that when there is a general
collision, this constant has necessarily to be zero.

Theorem 3.4.1.If there is a general collision at+ 0, then g(t) =0
Proof. By Sundman’s theorem (TheoréEZ]Z.Z), the constants of-angu
lar momental, u, v, all vanish. In particulard = Z Mk (XkYk — YkXk) = O.

g4 is given by [3.471R). But from{3.4.8), anﬂm 183y - &om =

P10o, 314 — 4113 = P20i3 — P30z, SO that we can write
Qa = (&1m2 — Eom1) + (314 — Eana).
Moreover, from the definition§(3.4.1) arld (314.3)}pfnk, we have
&1 — Eomy = My (Xq — X3)y1 — Mu(Y1 — Ya) X1
= mMy(X1Y1 — Y1X1) — M (Xay1 — YaX),
&3na — Eanz = Mp(X2 — X3)Y2 — Mp(Y2 — Y3) X2
= Mp(XaY2 — YoXo) — Mp(XaY2 — Y3Xo).

Hence we have

Ga = D MXk — Yiekd) = (Mua + MaY2)Xa + (Mukg + Mae)ys.
k=1
Since the centre of gravity remains fixed at the origin of therdinate
system K, y), we havemy Xq + MpXo = —MgXa, MY + Mpys = —mgys and
SO,

3
Ga= ) M4k — Vi) = A
k=1
and we know thaf = 0. This completes the proof of the theorem.
Thus the hamiltonian systein (3.41.14) takes the form

pk = (Eqk)q4:0, qk = —(Epk)q4:0, k = l, 2, 3, p4 = (Eq4)q4:0 (3415)
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We shall now introduce the variabl@g by setting
Pk = pit?3, k=123 (3.4.16)
Since we know by[(3.411) anf{3.%.8) that

P1 = &1C+ E25= (X1 — X3)C+ (Y1 — Y3)S
P2 = £3C+ 1S = (X2 — X3)C+ (Y2 — Y3)S
P3 = —£3S+ €4C = —(X2 — X3)S+ (Y2 — ¥3)C,

and &, yi), k = 1,2,3, are the vertices of the big triangle with respect
to the original system of coordinates with origin at the cewff gravity,
we can take the coordinates of these vertices in the new icabedsys-
tem with origin atP3 andx-axis parallel toP3P1, to be (7, 0), (p5, P3),
(0,0). We know by Theorerh3.2.2, that the big triangle has a dimius
ing configuration which is either an equilateral triangleacaget of three
collinear points. (In the latter case, of course, there lareet possibili-
ties, but we restrict ourselves to one of them, namely the ag/hich

P, is betweenP; and P3; the two other cases are similar). In other
words, we have proved that relative to the rotating cootdirsgstem,
P, kK = 1,2,3, tends to a finite limit as — 0. We shall denote these
limits by ps1, p2 and ps. We have also determined the limiting mutual
distances, in fact, in the equilateral case we have

_ _ 1 _ 1
PL=r P2=3r P3=73 Var, (3.4.17)
and in the collinear case,
P1=p, P2 =wp,P3=0. (3.4.18)

Herer, p, w are given byl(3.2.23)[{3.2.P7) arld (3.3.30); they are wHqu
ly determined by the masses. On the other hand, we know theg si
X Vi (k = 1,2, 3), are 0{"Y3) ast — 0, alsorny = 0(t™Y3) ast — 0,

k = 1,2,3,4. Hencegk,k = 0,...,3, given by [3.4.710), being linear
in n1,...,74, are also a(Y3) ast — 0, and moreoveq, = 0. If we
introduce the new variableﬁ, k=0,...,3, by setting

Gk = gt ™3, (3.4.19)
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theng; = 0(1) ast — 0. We would expect thaj, tend to finite limits as
t — 0. We show that this is in fact the case. m|

146 Theorem 3.4.2.If there is a genral collision at & 0, then q tend to
finite limitsgg as t— 0.

3
Proof. We consider the functiorr = ¥, m(x2 + y2) which, on difer-
k=1

- . 1. 3 . . L
entiation with respect tg glvesza = Y me(XXk + YkYk). This gives,
k=1

in view of the fact that the centre of g_ravity remains fixedhag origin
and somgXg = —(My X1 + MpXp) andmgys = —(Miys + Mpyy),

2
50 = D M4k + Vi) — Xa(MiSa + M%) — ya(Muya + Maya)
k=1

2
- Z Mi((X — %3) Xk + (Y — Y3)¥k)-
k=1

Using [341),[[3213)[13.4.8) and(3.4.13) we obtain fribis

1.
50 = &1 + Eomz + E3n3 + ana = P01 + P22 + P3Qs.

.4 o
By Theorenl3.112, we have ~ §Kt1/3. If we write ¢ in terms ofp;, o,
k=123, weget,as — 0,

S0 = (pia; + Pods + pagyt® ~ §Ktl/3.

Hence it follows that, as— O,
gk gk koK 2
P1d; + POy + P03 — §K- (3.4.20)

(The constank has already been explicitly determined in terms of the
masses in both the equilateral and collinear cases). $jnee0, we

also have froml{3.4.12)100 + P203 — P30z = G4 = 0 and hence
P10 + P50z — P33 = O. (3.4.21)
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We consider first the equilateral case. By (3.1.3), if theregeneral
collision att = 0 andu, v are two distinct coordinates among the Yk,
k=1,2,3 then ag — 0, uv — vi = o(t'/3), and so in particular,

my(XaY1 — Y1xa) = o(tY3), mp(xay2 — yaXo) = o(tY3). (3.4.22)

But

L. L L LI
= r;ms(fmz —&am) - ﬁ(é’3772 — &),

Ml ~ ¥zke) = (_%& * mlmgf3) n4— (_—62 m * mg€4)

= —%(51774 — &21713) L (§3774 — &413).

m
Now passing to the variablgx, gk using the transformation given by

B43) and[(3:4.13), we find frori(3.4]122) thattas O,
mp + ms

P10o — —(pzqo P301) = my(Xay1 — y1%) = o(tY3),

- E Pacls + 2 (P20 — PaCl) = Ma(Xe¥z — Ya3) = o(t).

Hence we have the following two additional relations pQrk =123,
andg, k=0,...,3: ast — 0,

(Mg + Mg) Pids — Mp(Pa05 — P3d;) = o(1), (3.4.23)
— My pid; + (M + Mg) (Pa03 — P30;) = o(1). (3.4.24)
The four equations (34 P0), (3.4121), (3.4.23) dAnd (Fyr@main valid 148

ast — 0; sinceqg* = 0(1) ast — 0 we can therefore writgy in place of
p; and obtain the equations in the unknovegs. . ., g;: ast — 0,

P10 — P30 + P203 = O,
2
P10 + P20, + P3d; = 3¢t o(1),
(M + M) p1 — M P2)Qg + mzpsqi =0(1),
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—(mMy + mg) paf; + ((My + Mg) P2 — My Ppa)f; = o(1).

Instead of the above asymptotic relationsdowe shall consider for the
moment the associated system of linear equatioreg wvith the error
terms omitted; we writg in place ofg* and we have
P10o — P30z + P203 = O,
- ——  __ 2
P1Q1 + P202 + P33 = 3%
((Mz + mg) p1 — Mz P2)do + MpP3thy = 0,
— (Mg + mg) Padz + ((My + Mg) p2 — My p1)gz = 0. (3.4.25)

149 A solution of this system of linear equations provides a tofuof the
problem in the special case in whigh = pct?3, gk = gkt™Y3. The
special solution is given by:

P = pet?3 k=1,2,3;p4 = 0,61 = p1, é2=0, &3 = Po.é4 = P3;

_Mp+mg  mp
m m +
m=~ﬁm+l ™ .
__ﬁ M+ mg
Y1 = mp3,Y2— m P3;
k=t 3 k=0,123;
_ . _ﬁ . _mlmz.
Q1= MXg = m(mz+ms)p1 P2,
. mnp .
%=mw=—% Pa.
minmp .

O = MpXo = — p1+%(m1+mg)p2,

m
Oz = Mpys = %(ml + Mg) Pa.

The determinant of the systefn(3.4.25) of linear equatiomg,iq,
02, s is seen to be

— P1.Pa(Myumg Py 2+ My ma(P1— P2) +Memg P+ (My +Me)Mp p3). (3.4.26)
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In the equilateral case, using the values fprk = 1,2, 3, given by

. 1
@Z1D), this is seen to beé V3(mump + mpmg + mgmy)r # 0, and so
we obtain the solution of{3.Z.P5):

Go = — T2,

°T Vam
_ My(m + 2mg)

>

_ mz(m1+ms)r
V3m

In the collinear case, singg = p, P2 = wp, p3 = 0, it turns out that the 150
determinant[(3.4.26) is zero. However, we may, in this case nstead

of the asymptotic relation§ (3.4122), the relatiork, — xox; = o(t'/3),

y1y2 - Y2¥1 = o(t"/?) leading to

(3.4.27)

o]
w

MMp(Xg % — XoXa + Y1V — Y2y1) = o(t*?) ast — 0. (3.4.28)
Using the values given above fay, .. ., Yo, this gives

m + mg
gp Q2 - —(pzqz + P303 — P101)

L mS)(pqu + pat) = o(t™3)
or

Mp(My + Mg) P30o — Mp(MLP1 — (M1 + M) P2) 01 + My (M P2
— (M + M) p1)g2 + MMy psgs = o(1).

Now we consider the systeiin (3.41.25) with the fourth equatépiaced
by this, without the error term on the right. The system is mfwank
4, the determinant is seen to be

—w(Mp(1 - w) + mg) (MiMp(1 — w)* + MyMg + Mpmgw?)p? # 0,
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and we can solve the system as we did earlier and we obtainltitess

_ _ 2 ml-w)+mg
=0 - m—— =
qO aql 3ml m 5
— 2  -m(l-w)+mw
Q2 = 3mz m o2
g3 =0. (3.4.29)

We have thus proved the theorem in the special case of tHeyart
solutionp = pit?/3, g = Gkt=#3, wherepy, are constants. We now take

up the general case. From the relatidns (314.20), (3.4@1.23) and
(E.4.23) we have the asymptotic equations satisfiedipy..,q;: as
t—0,

P10o + P50z — P30 = 0,
gk 5k gk I 2
P01 + PG, + P30z = §K +0(1),
((Mz + mg) py — Mp3)q, + Mpp3d; = o(1),
—my pid3 + (Mg + mMg)(P303 — P30) = o(1). (3.4.30)
Since p;(t) - P, k=1,2 3, ast —» 0, we can write, fot suficiently
near 0,pi(t) = px + &(t), e(t) = o(1) ast — 0. In the equilateral case,

then, recalling the values @i given by [34.1I7), we can replagg in
the system[{3.4.30) by

1 1
p}ﬂ+qm,@:?+qm,@:?V§mﬁ)

The determinant of the system of linear equatidns (314 8@) quartic
polynomial in p; and hence a continuous function of the varialges

k =1,2 3. Hence, a$ — 0, this determinant tends to the determinant
of the system[{3.4.30) witly; replaced bypx. We have seen that the

latter determinant is?(mlmz + mpmg + mmy)r* # 0. Hence, fort

suficiently close to 0, the determinant §f(3.4.30) is alsdedent from
zero, by continuity. Let be small enough for this condition to hold.
Then we consider the system of linear equations

P10o — P30 + P23 = 0
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> £ > * t3 £ 2
P10; + P20, + P303 = éK +01(t),

(M2 + mg) py — M P5) 0l + Mppsd; = (1)
(=myp] + (M + Mg)P5)af; — (M + Me) P50, = 63(1), (3.4.31)

wheredi(t) — 0 ast — 0. The determinant of the system(3.4.31) is 152
1 4
-5 V3(mum, + Mpmg + mgmy)r® + 6a(t) # 0, S4(t) — 0 ast — 0.

Hence we can solve the systein (3.%.31) and olggims rational func-
tions of P> Oks with the non-vanishing determinant in the denominator.
Henceq tend to finite limitsgx ast — 0, and these limits are the same
as the solutions of the system {3.4.31) withreplaced by their limits

px anddy replaced by their limit 0. We have already obtained these par
ticular solutions. Hence, in the equilateral case, we fiadl éist — O,

r 1
p1 ~ 1?3, pp ~ §t2/3, p3 ~ > Vart?3,

.M 13, M ~1/3
of] 3m(mz+2mz)rt No7, 3m(ms my)rt="2,

LM 13 o
a3 m(ml +m)rt™°, s = 0.
Next, in the collinear casgy = p, p2 = wp, p3 = 0, wherew, p
andx are uniquely determined by the masses. It turns out, as we hav

seen earlier, that the determinant of the sysfem (3.4.8dpstwo zero as

t — 0, but we can replace the last of the equations suitably, adigve
for the particular solution (namely, by using the relatiogmy(xg %o —
XoX1 + YiVo — Yoy1) = o(t¥®) ast — 0), and obtain a linear system in
Ogs - - - » O3 With determinant= 0. An argument on the same lines as in
the equilateral case applied to the new system now provegiftatend

to finite limitsgx ast —» 0,k =0, ..., 3, and we have

_2m — _2 &
Qi = 3_ml(m2(1 — w) +Mg)p, G = %(msw - (1-w)m)p, gz =0.

Hence we have, in the collinear caset as 0, 153

2
G ~ S (mp(L - ) + et V2,
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2mp _
G ~ 3 (Mew = (1= w)my)pt ™, g3 = 0,
This completes the proof of the theorem. m|

We have proved thay, = 0 for a collision orbit. If we now substitute
s = 0in Ep, andEg,, k = 1,2, 3, then we get a Hamiltonian system

pk = (Eqk)(]4:0a qk = —(Epk)q4:0, k = 19 2a 39

with six degrees of freedom. If we solve this system fRrox, k =
1,2, 3, and substitute in the remaining equati@= (Eg,)q,-0, then we
get a diferential equation fops. We can integrate this to obtam. But
we cannot prove thap,(t) has a limit ag — 0 until we have proved
that the integral of the functiorig,)q,-0 converges as— 0. Hence we
cannot determine the behaviour pf as yet. However, in the case of
the particular solutiony = x't?/3, yi = y;t?3, k = 1,2,3, wherex', y
are unknown constants, it is clear thatis a constant. By a rotation
of the coordinate system we may then assume ph@) = 0. For the
particular solution with this choice of coordinates, weédgy = 0, i.e.
(Eq)au-0 = 0.

We had introduced the variablqag,q;, k=123, by settingpx =
pit?3, ak = g;t~/3 and we now set formally} = pa, g;t/3 = qs. With
this definition,

K fk * ok ok * _ ~*t-1/3
0o = (O — P23 + P3d)/P1. Go = Gt~
We shall now express the total eneiigyn terms of the variablepy, dj.
If fis afunction of the variablepy, gk, we shall denote by* the func-
tion of the variablesp, o defined by f*(p*,q*) = f(p*,q"). Since
Pk = Pit?3, g = gitY3, k= 1,2, 3, anddg, = grot /3, we see that

T 200) = 5 + )E + )
A

2'mp g

= TG B,

1
)(G5 + ) + E(Chqz + Gola)
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m m
U(p1, P2, P3) = L PRI T ;mg
JPL—p2?+p5  P5+P3 !
= U*(p;, P, P23
So we have

E(p1. P2, P3, o, - - - O3) = E*(P5, Py Phs Gy -, Gt 23, (3.4.32)

and the diferential equationd{3.4115) can be written down in terms of
the variablesp;, g

o 2 d
P = Pt + Spt Y = Bg, = U213 E .t k=123

Qﬁdq<
C s 1.
G = Gt 1/3—§Q|<t 4/3
a2
_ _ * _VKe=2/3 _ _px +=4/3 |, _ .
_—Epk——Epﬁdptt =-E " k=123,
. 49

Sk -2/3 _ Ex +-1
Ps =Py = qu_dcht = qut ,
1
S awdl/3 L w273 s -2/30
Qs = qut7° + 3q4t = Epzt (= 0).
Finally, then, the equations of motion take the form 155
tpk_ qi_épk!tqk__ p;+§q ] = Ay &y Iy
ok E R 1 *
tp4 = qu,tq4 = —§q4. (3433)

Thus we have a system offliirential equations of the first order in
which the right sides are explicitly determined functiorfs g,k =
1,2,3,andg;, k=1,...,4. Now we claim that the right sides ¢f{3.41 33)
can be expanded into power-series in the seven independgables
P, i in some neighbourhood qi.k = 1,2,3, andge. k = 1,2,3,4.
In order to see this, we observe tiats a homogeneous polynomial of
the second degree in the variabtgsk = 0,. .., 3 alone and that is a
homogeneous function of degreé in px, k = 1,2, 3, alone. Therr* is
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a homogeneous polynomial of degree 2jjrandU* is a homogeneous
function of degree-1 in p;. Sincer;, = ((P;—P5)%+p32) Y2, 155 = (p32+
ps2)Y2, 13, = p; are the sides of the big triangle and hence do not vanish
ast — 0, the denominators id* = MMy /r},+mpmg/r;.+mmg/r;, do

not vanish as — 0. Moreover,pi(t) — px, k= 1,2,3,, andg(t) — q,
k=1...,4, ast » 0. Hence we can expand* as a power-series in

P in a suitable neighbourhood @,k = 1,2,3. Thusg* = T* - U*,

and hence the right sides [113.4.33) can be expanded as-sewes in

all the seven variables in a neighbourhoodb@fpz, ps, Gz, . . . g4 Which
proves our assertion.

Sincep; — px.0g; — Ok k = 1,2,3, andq; — g4, we can write
p; = P+ 0k + o, k= 123; q; = Ok + Oks3, K = 1,...4 where
ok(t) —» O ast — 0. Then it follows that the right sides &f(3.4133) can be
expanded as power-series in the seven independent varéable., 57
for |6k suficiently small fork = 1,2, 3, and for arbitrarydy,s, k =
1,...,4. We may also writgy, = 64, but this variable does not actually
appear on the right sides @f(3.41.33).

We now assert that the power-series expansion for the rigess
in (3433) in the variables§y do not contain constant terms. This can
be proved in the following way. We observe that the particatdution
pp = Pt?3, g = at™/3, k = 1,2, 3, of the three-body problem satisfies
the system of dferential equationg = Eq,, Ok = —Ep,, k = 1,2,3,
and in addition,ps = 0 by assumption and, = O for a collision orbit.
Thenp;, g; also satisfy the dierential equationd {3.4.83}, g; being
constants for the particular solution, the left sides[ofL{&3) are zero
for this solution and hence the right sides vanish. Thus

= o 2o _ . 1_
Eq (P @) — 5P = 0. ~Ep (P 8 + 50k = 0.
N P
Eg; (P G = 0, —Ep, (P ) — 504 = 0.

But these are precisely the constant terms in the expansigmaver-
series of the right sides df(3.4133) and so our assertioroigepl.

We observe that the variabteappears explicitly on the left side in
B433) and so we shall transform the system into one in aveeiv
able s so thats does not appear explicitly on the left side. For this we
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introduce the new variablgby means of the substitution

1
t=€° ors=log T (3.4.34)

Thends = —d—t. We shall denote the derivative of a functid(s) with
respect tas by f’(s). Then

., w0ds 1 . ¥ » .
Pk = Py P —ka, ortpy = —p;, andtfy = —q,

so that the systenh [3.4133) is transformed into the new syste

’

« 2 * * « * 1 * .

P = 3P~ Eqr & =Ep — éqk’k: 123

o % « 1 «

Py = ~Ejpo 0 = 5% (3.4.35)

Now we introduce the variablg + ok, k = 1,2, 3, andgx + ki3, K =
1,...,4. We havep; =6, ¢ = 6,4 k=123,q; =6, and the
right sides of[[3.4.35) do not contain constant terms irr fh@iver-series
expansions and the variabfg does not occur. So the systefn (3.4.35)
takes the form

8
Se= > a0 +¢k(01,...,07), k=1,....8, (3.4.36)
I=1

wheregy(d1, . . ., 57) are power-series in the seven variablesk = 1,
..., [ starting with terms of degree 2. For a collision orbit we know 158
thatgs = 0, and henc&; = 0; and P — Pk, q — O k = 1,23,
ast —» 0, sothatsy —» 0,k = 1,...,6, ast — O or, equivalently, as
s — oo. Moreover, the ca@icientsay of the linear parts of the equations
in the system[{3.4.36), being functions pf, qx, k = 1,2, 3, alone, are
functions determined uniquely by the three masses. Alse= 0,k =
1,...8.

The nature of the solutions of the system (3.3.36) is reltdetthe
solution of the associated linear system

8
Sy = Z a6
=1
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in view of the stability theory of solutions of ordinaryffirential equa-
tions and so we shall first study this simpler system. In otdestudy
this system closely it is necessary to study the charaiteygtiation of

. , : ;1
the 8-rowed square matrix = (ax) of the codficients. Sincef; = §qj1,

1
we haves’, = 567. Thus

1
= =0,k=1,...,8.
3ak8

So the matrixA of the codficients of the linear part in (3.3.36) is

0
0],
0

whereB is the 6-rowed square matrix of the ¢heientsay, k, | = 1,
..,6. If Ey denotes then-rowed unit matrix, then the characterstic
polynomial ofA is given by

as =0, | #7;a77 =

B
0

*

A=

* Wi %

1
|zEg — Al = z(z - §)|ZE5 - Bl. (3.4.37)

In order to simplify the computation of the characterstitypomial of
A, we make a transformatiafy = Z Ckie + ..., with |C| = det(cq) # O,
so that the system (3.3.36) is transformed into the systedifiefential
equations (in matrix form):

€ =ClACe+ (e, ..., &),

whereyg are again power-series starting with quadratic terms. Veb wi
to choose the transformation in such a way that the m&trbAC has a
simple form. (Let us recall that the characteristic polyieirof A is the
same as that € *AC:

IzZE— C™*AC| = |IC"1(zE- A)C| = |zE- Al.

We shall now show that such a transformation can be obtaired f
the canonical transformation of the variablég, ) to (p«, g«), in the
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following way. Let us recall that under this transformatitime variable
p4 does not appear in the new expressionEor

We consider the inverse of the canonical transformatiomftbe
variables £, nx) to the variablesgk, gk). This again is a canonical trans-
formation and its Jacobian matrix is symplectic and hasaitiqular, a
non-zero determinant. The transformation is given explieis follows:

&1 = P1C, &2 = P1S 3 = P2C— P3S §4 = P2S+ P3G

M1 =q1C— QoS 172 = 1S+ (oC, 173 = (2C — O3S, 174 = (2S+ (3C,
(3.4.38)

wherego = (G4 — P203 + P3d)P;*, C = COSPa, S = Sinpy. 160
Since the system of fierential equation§(3.4.135) was obtained by

the substitution:p, = pt?3, o = gt™/3, k= 1,23, ps = pj, tu =

a3, we haveg, = gst=/3. We introduce the variableg, ; by setting

=B g =t B k=14 (3.4.39)

Under these substitutions we obtain from (3.3.38) the Valg trans-
formation of the variablesy, g to &, n;:

&1 = PiC & = P1S &3 = PC— PaS &y = PaS+ psc,
M = 01C— GoS 75 = 1S+ GoC, 773 = O5C — O3S, 74 = G5S+ G5C.
(3.4.40)
Then the substitutionpy, = Pk + 6k, g = Ok + dk+3, K= 1,2, 3, p; = Js,

g, = Q4 + 67, imply that&, ; are functions of the variabley, ..., dg
andé, nx are obtained by settingy = 0,k = 1,...,8. So we have

£1=P1, £2=0, &3 = Pp, &4 = P3;
N1 =101, 72 = 0o, 713 =02, 74 = 0. (3.4.41)

These values have been determined explicitly in both theatgral and 161
the collinear cases. It is also clear tﬁgt—> & g — nwk=1,...,4,
assy — 0,...,06g — 0. Since to say thap;, g satisfy the system of
differential equationd(3.4.835) is equivalent to saying thaty satisfy
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the Hamiltonian system, it follows tha, nk satisfy the Hamiltonian
system
¢k = Enkyi]k = _Efk,k: 1....,4

By means of the substitution (3.4]139) and e, we obtain the follow-
ing system of dierential equations faf,, 5y, considered as functions of
the variables:

s« 2 % * « 1 * * _
& = éfk - Enii’nk = -3+ Effi’k =1...,4 (3.4.42)

On differentiatingE” with respect toy, we get

1 1 1
AU W

Enp = ”Il ”f' ”13 (3.4.43)
(E + E)n; + En;_z, k=34
We take
b= & Gua=—Er k=14 (3.4.44)

Thenwe cansolvgg , = -E., k= 1,....4, and use[(3.4.43) to express
k
Ny interms off, ,, k=1,...4. We obtain

m . mmp _
LT Mt me) t — e k=12
Te=y{mm . .
T§k+2 - %(ml + m'3’)§k+4’ k=34,

(3.4.45)

162  wherem= m; + mp + mg. The system (3.3.42) then becomes

* 2 * s« * 1 i« *
G = 3%t et bia = ~3ba — Fio k=14, (3.4.46)

where
m
:1+nbnbEZ* + %E** , k=12
* h k k+2
Pk= met e + LEr  Kk=34 (3.447)
MMz % M 4o’ ’
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By the definition of¢; it is clear that the; tend to finite Iimitsg_k(k =
1,...,8) and we have

=P &=0,{=P2 la= P, (3.4.48)

where thepy, have already been determined. We now introduce the vari-
ableseg by setting

Gi=lc+ao k=1,....8. (3.4.49)

Then the system of fferential equationd (3.4.46) faf; implies that
the g, considered as functions of the varialdesatisfy the system of
differential equations

4

’ 2 ’ 1

€ = :—%ék t €k+d, € q = _§€k+4 - Z hk|6| +..., k= 1,...,4, (3.4.50)
=1

where the cofficientshy are calcultated from (3.3.47) using the rela63
tions E} = —US;Z, k=1...,4, and substitutingf; = = b+ &
k k

k =1,...,4. Using the values oy given by [3Z.4B), we find that the
matrix H = (hy), k.| = 1,...,4, is given, in the equilateral case, by

m 3V3 3v3
7 2(my + mg) M 0 - ™
33 - 33 o
H = 3 M My +mg - Zm, > M
9 3v3 My + M + Mg 33
-Zm -~ —_— — (Mg - mp — mg)
4 4 4
3% o VB S s m e m)
2 M 2 2 L — My — Mg, 2 My + e + Mg
and in the collinear case, by
~2(my +mg) - 2mpw™3 0 2mp(w 3 - (1-w)3) 0
H _ -3 0 my +mg + mzu)_3 0 my((1- m)‘3 - m‘3)
=p —2my(1-w3) 0 23 - 2(mp + mg)(1 - w) 3 0
0 m(1-w™3) 0 M3+ (mp + mg)(1 - w)~3

Then the matrix of the cdBcients of the linear part of the system

B415D) is given by
2
§E4 E4
1 s
-H -ZE
34
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and the characteristic polynomial of this matrix is 164

2 1
(Z— §) (Z+ §) Eq+ H‘,

which is also the characteristic polynomial of the matixHence we
have, recalling[{3.4.37),

(z— %) (z+%)E4+ H’ =[zBg - Al = (z—%)|zEe— Bl.

Denoting(z— g) (z+ %) by x, this gives

|XE4 + H| :(x+§)|zE6—B|.

Explicit calculation of the left side shows that, in the dgtgral case,

2 4 2 8 1
Hi={x+Z]| [x- <] [¥-Zx-=+32
IXE4 + H| (x+ 9) (x 9) (x 9x 81+ Sa),

where
a= (MM + MpMg + Mymg) (My + My + Mg) ™2, (3.4.51)

and in the collinear case,

2 4 2 2 4 4
|XE4+H|:(X+ 5) (X—§) (X+§+§b) (X—§—§b),

where

_m(1+(@- W) T+(1-wd)+ml+wt+w?d

b m +Mp(w2+(1-w)?)+nmg

(3.4.52)
Thus we obtain

4 2 1 . .
|zEs — B| = (x— 5) (x2 - §x— 821 + éa), in the equilateral case.
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X i" x+g+gb X ﬂ ilb in the collinear case
9 9 9 9 9o '

It is clear from [3:4.H1) thaa is positive, and since & w < 1, bis
also positive. The characteristic polynomial®fs a cubic inx and we
shall determine all the roots. Consider first the equildtesige. Since

1 2
X=(z+ §) (z- 5), we have

—gzzz—%z—gz(z—l)(z+§).
2 8 1 1 1
The roots ofx? — X~ g1 t32 " 0 arex = gt §V1—3a, and

1 1 1 .
hence we gez2 - :—%z— 3 F 3 VY1 -3a = 0, of which the roots are

zZ= :—é + %\/131 12V1-3a. Here 0< 1 - 3a < 1 because we have

2(1-3a) = (M1 —mp)® + (Mp — mg)? + (Mg — My) ) (My + M +mg) 2 > 0,
and 1- 3a = O if and only ifmy = mp = mg. So it follows that all the
eigen values of the matri® are real and are given by

\13+12V1 - 3a,
V13-12V1- 3a,

13-12V1-3a,

\V13+12V1-3aa5 = 1. (3.4.53)

Since 0< 1-3a < 1, we have-a, > —a; > —a,, and all these are
negative whileas > a4 > ag > 0. All the six roots are distinct except
when 1- 3a=0, i.e.my = mp, = mg, and therp; = ap, ag = as.

Next we consider the collinear case. As before we get the 8-equ
tions

_z2 . _1
9 = 3 a =g

ol

|
S
|

&
!

+

I
ol Ol ol
+
Ol Ol Ol

4 2 2 2 1 2
X—§—(Z—1)(Z+§)—O, X+§+§b—22—§z+§b—0,
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x—§—§b:22—§z—§——b 0. Hence the eigen values of the matrixe6
Barez=1,z= —% z% é 1-8b,z= :—éiéz: V25+ 16b. Here

1-8b < 1and 1- 8b can be negative, and in this case two of the eigen

values are complex, complex conjugates of each other. Btarine, if

1
m = Mg, thenw = > and 1- 80b = 0 if @575 If 8b 1, all the eigen

values are real and distinct. 1b8& 1, all the eigen values are real and
there is a multiple root. Finally, then, the eigen valueshaf matrixB
in the collinear case are given by:

—bo——é 1:———«/25 160 bz_———\/l 8b,

3—é+ Vi—s8b b4_—+ \/25+16b,b5:1. (3.4.54)

It is clear that-b, and—b; are two negative roots aneb; < —b,. There
are four distinct positive roots iftB< 1, and four positive roots, two of

them equallf, = bs = :—é) if 8b = 1, and two positive roots and a pair of
complex conjugate roots with positive real partshf:8 1.

In order to see how to utilize the knowledge of the eigenalioe
a study of the solutions of the system of equatidns (314i8&) neces-

sary to investigate in some detail the theory of stabilitysolutions of
systems of ordinary ffierential equations.

5 Stability theory of solutions of differential equa-
tions

We shall now study the problem of the stability of the solsicof a
system of ordinary diierential equations of the first order. Lsdbe areal
variable and, . . ., Xm independent real variables. fifis a continuously
differentiable function of, we denote the derivative df with respect
to sby f’. We consider the system of ordinary diferential equations
of the first order inm unknown real functionsy = x(s), k=1,...,m,
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of the variables;

m

X =Y auX + X, o Xn) k=1, m (3.5.1)
=1

where theyy are power-series in then real variablesx,, ..., Xy with
real codficients and starting with quadratic terms. Tdaeare real con-
stants and we assume that theconverge foixy| suficiently small. Let
&1, ... &m be given real numbers. We want to consider the problem of
finding all solutionsxx = x«(s), k = 1,..., mof (Z51), taking the ini-
tial valuesx(0) = & and studying their behaviour as— oo. This
is nearly the same as the equilibrium problem in mechanitéctwis
the following. Suppose that we have a mechanical system evimas
tion is governed by the system of equatidns (3.5.1). Sineeitint side
of 5.1) contains no constant termg(s) = 0 is a particular solu-
tion. The solutionx(s) = 0 is called arequilibrium solutionof (Z.5.1).
If the right sides of[[3.5]1) were power-series, possiblyhvagonstant
terms, therxy(s) = ¢, wherecg, k = 1,...,m, are constants would bel6s
called an equilibrium solution if the, are a set of common zeros of
the right sides. However, one sees easily that by taking sinehles
Xk = X — Ck in place ofxy, one can reduce the system to one in the
new variables, which is of the same form BS{3.5.1), suchXhat 0
is an equilibrium solution for the new system. The solutiQr= x«(9),
k =1,...,m, of (Z&1) with initial valuesx(0) = & defines a curve
in mdimensional Euclidean space, starting from the paint.( ., &m).
The problem of equilibrium consists in finding the behaviofithe so-
lution when the initial values are varied in afsciently small neigh-
bourhood of £&,...,4m). Let s be a large positive number such that
the solutionsx(s) of (3.5.1) have the property thpg(s)l, k=1,...,m,
are stficiently small fors > s, so that when these values are inserted
in the power-series, the latter converge. Since the riglhe of [35.1)
does not contain the variabexplicitly, the system remains unchanged
if sis replaced by the variable— s,. We may assume thathas been
replaced bys— s, and we then consider solutions in the half-limz O.

We have the following definition of stability of the solut®rof
@51). If for a given neighbourhood of 0 in m-dimensional Euclidean
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space we can find a neighbourhdatbf 0 with W c V, such that for any
point ¢1,...,&m) in W, the solutions(s) of the system[{3.511) taking
initial valuesxx(0) = &,k = 1,...,m, exist for alls > 0 and remain in
the neighbourhoo¥ ass — o, then the equilibrium solution of{3.5.1)
is calledstable If the equilibrium is not stable, we would also like to
find for what initial conditions the solutions tend to zerosas «. The
problem of stability of solutions of ordinary fiiérential equations was
first discussed by Poincaré by the method of power-seriparesions,
and independently by Liapouffo But neither gave a method for ob-
taining all stable solutions. Bohl, and subsequently, dtefMath. Zeit.
(1928)) considered the problem of determining all stabletsms. Bohl
studied the problem of stability also for systems dfatiential equations
more general than the ones we consider, in the sense that there
assumed to be functions which satisfied certain growth tiondi Per-
ron’s method was simpler. We shall, however, give a treatrdigferent
from both these. .

Consider the bally, X2 < €, wheree is a sifficiently small positive
number. Instead of I1§inlding all solution ¢f{3.b.1) which asgraptotic

to 0 ass — oo, we consider the more general problem of finding all
m
solutionsx(s) of &5.1) which, for alls > 0, belong to the bally; x2 <
k=1

e. For this we start by simplifying the linear terms on the tighle of

@51) by a suitably chosen linear substitution. Ret (ax) denote the
mrowed square matrix of the real ddeientsay, k,1 = 1,...,m, of the

linear terms in[(3.5]1) and we write (3.5.1) in the vectoration as

X = AX+ ¢(X). (3.5.2)
We now apply the linear substitution
X =Cy (3.5.3)

to x, whereC is a realmrowed square matrix witlC| # 0. Then the
system[(3:4]12) is transformed into the system

y = CIACY+ y(Ya, . ... Ym), (3.5.4)
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wherey is the column vector whose componenisare power-series in
the m independent variableg, . .., ym with real codficients and start-
ing with quadratic terms. Under the substituti@n(3.5.3pick is not

necessarily orthogonal, the beﬂ] 2 < eis transformed into a bounded
1

domain inm-dimensionaly-space. Since > 0 can be chosen it
ciently small, We may assume that this transformed domaiongained

in the y-spherez yk < e. We choose the substitutioh (315.3) in such

a way that the matrnC LAC is in the normal form. (The reduction of
a matrix to the normal form was first done by Weierstrass in8186
is what has subsequently been called the Jordan canoniod). f@hen
the system of dierential equations is reduced to a simpler form. For
the moment we consider only the special cas€of(B.5.2) zonggonly
linear terms on the right:

X = AX (3.5.5)

If all the eigenvaluesty, ..., A, of the matrixA are real and distinct,
then the matrixC~1AC is a diagonal matrix

A1 0
0 Am
and [3.5.b) is reduced to the simple form 171
Ve = Ak kK=1,...,m (3.5.6)

This can be integrated immediatelyl to give the solution
Vi =ce™s k=1,....m, (3.5.7)

where thecy are constants of integration. Since the substitufion-8p.5.
is linear, it is clear that ifx(s) — Ok = 1,...,m) ass — oo, then
yk(s) = Ok = 1,...,m) too ass — oo, and conversely. Since we seek
solutions which tend to zero &s— oo, we should have

¢k = 0if A = 0 andc arbitrary real ifA, < 0. (3.5.8)
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Hence we find that the general solution 6f{3.5.5) which goe=eto as
s — oo contains exactly the same number of arbitrary indepencieadt r
parameters as the number of negative eigen-values of thixmafT his
motivates the conjecture that this result can be genedalizéhe system
52): suppose that all the eigen-valuesAadre real and distinct and
exactly n of them are negative then there exist exactlindependent
arbitrary real parameters in a general solution asymptotaero. This,
however, is not in general true. It is true if zero is not areaigalue
of A. For the moment we shall consider only the case in whidias
only real eigen-values. Later we shall generalize the téstihe case in
which some eigen-values are even complex.

We proceed to the following general theorem.

Theorem 3.5.1. Suppose that all the eigen-values of the real matrix A
area real, distinct and dferent from zero. If there are exactly @, <
n < m, negative eigen-values, then a general solutiofi of [Bvitich is

m
such that}; xﬁ(s) < e for all s > 0 contains exactly n independent real
parameters.

Proof. Let 1,4, ..., Am be the eigen-values & and suppose that
/11<O,...,/ln<0,/1n+1>0,...,/1m>0. (359)

It may happen that = 0 orn = m. By a suitable choice of the substitu-
tion (Z5.3), we transform the system (3]5.2) into the syste
Vi = AYk + YY1, .- Ym), k=1,....m, (3.5.10)

where theyy are power-series with real dbeients and starting with

quadratic terms in the variablgs, . . ., ym and convergent for small val-

ues oflyx|. We may assume thatis so small that théy converge in the
m

y-sphere}’ yﬁ < e. In order to simplify the systeni (3.5110) further, we
k=1
introduce a non-linear substitution of the form

Uk = Yk — Fk(V1,---»¥n), k=1,....m, (3.5.11)

where theF are power-series with real dbeients in then independent
variablesys, . .., yn only, starting with quadratic terms and convergent
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for smalllyx|. We remark that it is essential for our method that fiye
are functions of the variableg, ..., y, alone. Ifn =0, then allF, = 0
and if n = m, thenFy are power-series in all the variablgs .. ., ym.
It is immediately seen that the Jacobian matrix of the tamsétion
@B511) of the variableg,, . . ., ym to the variablesis, . . ., uy, at the ori-
gin is the identity and hence the transformation is locatlertible at
the origin. By local inversion we obtaiyx as power-series in the vari-
ablesuy, ..., un. In fact, if one considers the substitutidn {3.%.11) only
fork=1,...,n, it defines a transformation of the variabigs. .., y, to
Ug,...,Un. We can expresg, k = n+1,...,m, in terms ofuy,...,uy
by inserting inFy the values ofyy, ..., Yy, in terms ofuy, ..., u, got by
inversion from the firsh equations in[(3.5.11). Hence the inverse trans-
formation of [35.Il1) has the same form. It is clear that if make
two such substitutions in succession, then the compositheofwo is
again such a substitution. So the substitutions of the fE&B11) form
a group.

Differentiating [3.5.711) with respect to the variabjeve get

n
U= Yi— D, Fio¥f
I=1
Substituting fory, from (3.4.1D) we obtain

n
Ui = Ak + UYL > Ym) = D Fioy (.- Yo) (s + 1 (9).
=1
Once again it follows from{3.511) thst = ux + Fx,k=1,...,m, so
that we have, fok=1,..., m,

n

m
U = AUy + APk + Yk — Z A FiyYi — Z Fry ¥, (3.5.12)
=1 =1

where the terms on the right can all be considered as fursctidn 174
Ui, ..., Un after substituting fory, ..., ym the values obtained by the
inverstion of [(35.11). We set, fér=1,...,m,

Xk(u].? ) Um) = Aka(YL ey Yn) + wk(ylv ceey Ym)_
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n n
- Z AV Fry (Y1, ... Yn) — Z iYL, - Ym)Fry (V1o - - -5 Yn),
- - (3.5.13)
so that we can write the system(3.3.12) in the form
U = Akl + xk(Ug,....um) k=1,...,m. (3.5.14)

From the definitions[{3.5.13) of the functiong, it is clear that they
are power-series with real ddeients, starting with quadratic terms in
the variableau, . .., un, and convergent for small|. The idea of the
proof now is to try to find the power-seri€k(y1, . .., Yyn) in (G&I1) in
such a way that the power-serigg have simple forms. (If in[(3.5.11)
we tookFy as power-series in all the variablgs. . ., ym, then we could
secureyk = 0, but it would be diicult to prove the convergence Bf.
However, with our choice oF, the yx may not all vanish identically,
but the proof of convergence would be simpler). We takeFippower-
series inyy,..., Yy with undetermined cd#cients and try to find the
codficients in such a way that every termyi contains at least one of
the variablesi,1, ..., Un as a factor. That is, fap,1 = ... = Uy = 0,
we have

xk(ug,...,un, 0,...,00=0,k=1,...,m. (3.5.15)

175  In other words, we seek power-seriggys, . . ., Yn) S0 that the substitu-
tion (3511) leads to the identity (3.5115) forail . . ., u, when we put
Ups1 = ... = Uy = 0 in the power-seriegk. We shall show that, under
an additional condition, the power-serieg are uniquely determined
by the requiremen{{3.5115). Then the system dfedential equations
@5.13) takes a simpler form in which it can be integratadally. We
shall later prove the convergence of the power-sdfjgthus obtained.

Sincee > 0 can be chosen as small as we want, the neighbourhood

m
> yﬁ <eofy; =0,...,ym = 0 is transformed by the substitution
k=1

@511) into a neighbourhood of = O,...,un = 0. Once again we
may assume that this transformed neighbourhood is cowtaméehe

m
2
ball 3, 12 < e.
k=1
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The conditionduy,, = 0,...,uyn = 0 mean thayy, 1, . .., Ym satisfy
the relations

Yk = Fk(Y1, ..., ¥n), kK=n+1,....m (3.5.16)

Substituting these power-series with undeterminediaients in the ex-
pressionl(3.5.13) defining as a power-series in the variabigs. . ., yn,
we get the functions

xk(Ug,...,Un,0,...,00k=1,....m,

where u; denotes the power-serias(yi,...,¥n, Fnsi(Ya, ... Yn)s ...
Fon(Y1,....¥n), | = 1,...,n, in the variablesy,...,y,. Since all the
power-seriesFi and yi start with quadratic terms, it follows thati7e
xk(ug,...,un,0,...,0) is a power-series starting with quadratic terms
in the variablesy,,...,yn. We thus get power-series i, ...,y and
these can be replaced, by local inversion of the substityB&b.11), by
series inuy, ..., Un. It is however not necessary to use the inversion of
@511), and so not necessary to use the variallest all. Instead,
one can direectly consider the conditién {3.5.15) to hothtitally as
power-series ityy, ..., yn. This implies certain polynomial relations for
the codficients ofF. The codficients can then be determined by induc-
tion from these relations, in the following way.

Letgbe an integep 2. Suppose that the cfieients of all terms of
total degrees ., 8,...,g— 1 in F(k = 1,...,m) have been determined.
Then we show that the cfiients of the terms of total degrgecan be
determined. Consider a term of total deggge Fy, of the form

CYy .Y (3.5.17)

whereg;, ..., g are non-negative integers such tlat+ ... + g, =

g > 2. The (real) cofficientscy in 85.1IT) is determined by equating
to zero the cofficient of the terrry?l ...Y¥ in the power-seriegy ob-
tained on replacing;,| = n+ 1,...,m, by the power-serie§|. Then
c@ys...y3 7t .yd is a term of total degreg - 1 in Fyy, so that the
codficient of y¥* ...y in yiFiy is cgi. Then in view of [Z513) the 177
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condition [3.5.7b) implies that

n n
ok( Ak — Z ad) = codficient ofyd" ...y in (—yx + Z Fiyt)-

I=1 =1
(3.5.18)
Sinceyy starts with quadratic terms i, ..., y, and

wk(yl,,ym) = wk(yl,...,yn, Fn+1,...,Fm), k: 1,...,m,

where agairF|,| = n+1,..., m, are power-series starting with quadratic
terms inya, ..., yn, the codficient of yJ*...ya" in y involves only the
codficients inFy of total degrees ,3,...,g — 1, which are known by
the induction assumption, and is actually a polynomial esthknown
codficients of total degrees g — 1. The same is the case with the

n
codficient ofyi" ...y in ¥, Fiyyr. Thus the right side of{3.5.18) is
=1

known by the induction assumption.

In the particular casg = 2, we have only to consider the con-
tribution from the quadratic terms iy, becauseFyyy is a power-
series starting with cubic terms in the variabigs...,y,. Moreover,
the quadratic terms iryy in the variablesy, . . ., y, give contributions
only from the termsypyq, P, = 1,...,n, and not from the terms in-
volving ypFq, p,g = n+1,...,m. Hence in this case the right side of
B5I8) is completely determined by the fit@ents ofyy itself, and
hence we can start the induction.

The codficientsc, can then be determined froln(3.5.18) whenever

Ak # oA, k=1,...,m, (3.5.19)

n

I=1

whereg, are non-nagative integers with + ... + g, = g > 2. We

see that[(3.5.19) is actually only a finite set of conditianbé satisfied
n

by A1,...,Am. Infact,-4, > 0, 1= 1,...,n, implies that- } g4, —

=1
o asg — oo. This means that for integers, ..., gy = 0 such that

O1+...+0n = 0 = 0o, Whereg, is suficiently large, the condition
B5.19) is automatically satisfied, and so we need asdurad @3 only
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for a finite set ofn-tuples of integersy, ..., gn, all non-negative, with
2<09<0o k=1,...,n Ontheother hand, K= n+1,...,m we know

thatAx > 0 and- Z g4 > 0, so thatl[(35.79) is always satisfied. Then it

follows that all the cofficients in the power-serids, can be determined
by induction, provided that the finite set of conditios (% holds.
(If the condition [3.5.719) does not hold, there are compilices which,
however, can be overcome, as we shall show later).

We remark that if we had takeRy to be power-series in all the

m
variablesy, . .., ym, thendg — 3. g4 would become arbitrarily small if
|

0 < n<m,and so we would hallve arbitrarily small denominators for the
codficientscy to be determined fron{3.5118), which would make the
proof of convergence morefticult.

We shall prove the convergence of the power-sefgbtained 179
above later by the Cauchy method of majorants. We procedutht
proof of the theorem assuming for the moment the convergehtiee
power-series-y for suficiently smallly;|,l = 1,...,n

We shall now determine the general solution of the systeniftered

ential equationd(3.5.14):

U’k=ﬂkuk+)(k, k=1,...,m
where the power-serieg are determined b[(B:_S_'.]l?») after inserting
the power-serie§y = Fi(y1(u),...,Ya(Nn)), k =n+1,...,m, obtained
above; we seek only solutiong such thatz u2 < eforall s> 0. First

k=1
we show thaty = 0 fork=n+1,..., m. For this we set

v= ) u (3.5.20)
If n = m, this sum is empty and there is nothing to prove. Saletm.

Now, if ux = uk(s) are solutions of the systemf = AxUk + xk, K =
n+1,...,m, then we obtain fow the diferential equation

m m m
V=2 Z Ul = 2 Z U2 + 2 Z Uk k-

k=n+1 k=n+1 k=n+1
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We estimate the right side from below. Let min(An,1,...,4m). Then

A>0and?2 § AUZ > 2av. Sinceyk(ug, ..., U, O,...,0) = 0 iden-
tically in ul,k. .n.+ ,1un, andy starts with quadratic terms, at least one of
Un:1,...,Un OCCUrs as a factor in each termyaf{uy, .. ., uy). Sinceuy

is real,uﬁ <v,k=n+1...,m and solul < +V. Consequently,
each term ofugyk, kK = n+1,...,m, has a factor of the fornup, ug,
p,g=n+1,...,m and hence of absolute valgev whereas the remain-
ing factor of the term is a product of powersugf . . ., u, at least of total

degree 1. As they are unlformly convergent, one can choese 0 so
small thatz u2 < € implies|2 Z Ugykl < Av. Hence, in particular,

k= 1 k=n+1
we have 2 Z Ukyk = —Av, so that we obtain the fierential inequality
k=n+1

v > Avand henceg %) > 0. Sove s is a non-decreasing function

m
of sin s> 0. Ass — oo, V(S) remains bounded sinags) < 2 w<e
But A > 0, soes and henceve*® — 0 ass — oo. Smceve 18 s
non-negative and non-decreasmg, we should av® = 0 and hence
v = 0. This means thaik(s) = 0,k = n+ 1,...,m, which proves our
assertion.

Now in view of (35.18), then systern (3.5114) reduceste AxUy,
k = 1 ,n. On integration we obtain a general solution [of (3.5.14)

with 2 uk < € and this is given by
k=1

u=ce™* k=1,....m =0 k=n+1,....,m
n
Sinceck = uk(0), it follows that >, cﬁ < e. Conversely, given the initial
k=1
n
conditionsug(0) = ¢k with Z 02 < g sincely < 0fork =1,...,n,
k=1

any general solution of (3.5114) necessarily sat|s®$12 < e On

the other hand, by the unigueness of the solutlons of syst#ndf-
ferential equations with prescribed initial conditions; see that, given

n
c = W(0) with 3 cﬁ < € we have determined the unique solution
k=1
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of (35.13) with these initial values asymptotic to zero. uEﬂwe have
determined all solutions of (3.5114) with the property t@tuk <€
for all s > 0. Going back to the dierential equations satlsfled by

the unknown functiongi(s) by means of the inverse of the substitu-
tion (Z5.IB) we can expresg in the formyy = ugx + Gy(uy, .. ., Up),

k =1,...,m, where theGy are power-series inq, ..., Uy without lin-
ear terms. In fact, ley, denote the initial values ofi, k = 1,...,m
Thenu(0) = 0,k =n+1,...,m, is equivalent td = Fx(by,...,by),
k=n+1...,m We can choosé;,...,by, arbitrarily with the only
condition that ifcy = by — Fi(by,...,bn), k=1,...,n, then Z 02 < e

k=1
Thus the initial value®;, ..., by have to satisfyn — n conditionshy =

Fr(by,...,bn), k = 1,...,m. If we prove that the~¢ are convergent
power-series, then it follows that the initial values ¥Rfs) satisfym-—n

analytical relations. So the solutiogg(s) with 2 yk <eforalls>0

lie on an (- n)-dimensional analytic manlfold deflned by the equations
Vk = Fk(ys,....¥n), k=n+1,...,m and we have a (local) parametric
representation for this manifold. The solutions are givelieitly by

Vi = €S + G(creMs, ... ched), k=1,...,nm;
Vi = Gr(cie®s, ... ce™), k=n+1,....m

Finally we go back to the variableg by means of the inverse of theig2
linear substitutionx = Cy, |C| # 0. We see therefore thatad, ..., an
denote the initial valueg;(0),.. ., Xxn(0) of the solution asymptotic, as
S — oo, to the equilibrium solution of the systefn {315.1), thenalso
satisfym — n analytic relations. Thus the solutiomg(s), k = 1,...,m,
asymototic to the equilibrium solution fill am(— n)-dimensional ana-
lytic manifold in m-dimensional Euclidean space. The general solution
then involves real parameters and we have proved the theorem, but for
the convergence of the power-series, subject to the condE.5.18).

Now we shall proceed to prove the convergence of the powesse
Fx by Cauchy’s method of majorants. We have used this methdiérear
to prove Theoreri_L3.1. It is a little morefiditult in the present case,
since the equation§ (3.5113) definigg involve the partial derivatives
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Fky and hence the condition{3.5115) will give a system of phdiiigier-
ential equations foFy, k = 1,..., m. For determining the power-series
Fy, we use the conditioh{3.4115) leading to
n
AFk= > AYiFky = =¥k(Y1, .- ¥n Frets. .., Fm)+
I=1

n
+ Fky| (yl7 s 7yn)17[’| (yl7 s ’yl"l’ Fn+1, R} Fm), (3521)
=1

which implies recurrence relations for the @o@ents inFy, k = 1,
..., m. Comparing the cdficients of a typical ternays ...y of total
degreeg = g1 + ... + On > 2, we obtained the relatiof {3.5]118), which
may be re-written as

Ck(Ak — Z gd) = {—Ll’k + gqukM} (k=1,...,m), (3.5.22)
=1 =1

01...0n

.....

power-seried in yi,...,y,. Under the assumptiof (3.5119), the five
cients inFy are determined recursively by (3.9.22). In order to obtain
majorants forFy, we estimategy in the following way. From[(3.5.22)
we have

n n
|Cill Ak — Z gl = ‘{—l//k + l//leM} Jk=1,...m (3.5.23)
I=1 01...0n

1=1

Leta = min(-A4,...,—-4n). Thena > 0 and we can write

A= > AQ = Ak+a(gr+...0n) = Ak+c—2y(g1+. . .+gn)+c—2y(g1+. ..+0n).

n
=1

For suficiently largeg = g1 + ... + gn, We havely + %g > 0 and hence
n

for suchgy,...,gn, Ak — > g4 > %(gl + ...+ 0n). Since by[35.19),
I=1

n 1
A= X gd # 0andag + Eag < 0 for only finitely manyn-tuples
=1
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(g1,...,0n), we can find a dfficiently large positive constant; such
that always

|k —
|

We shall hereafter denote by, vs, ... suficiently large positive con- 184
stants. It follows now from{3.5.23) that

gl >yilg, k=1,....m

n
=1

n
ICkl(G1 + ...+ gn) < |71{_¢’k+ Z‘/"Fky'} L k=1...,m
91.-Gn

I=1
(3.5.24)

We know thatyy are power-series starting with quadratic terms and con-

verging in a complex neighbourhood wf = 0,...,ym = 0, say,ly1| <

01, ., Yml < pm. Suppose thatyy| < y» in this regionk = 1,...,m. If

hy, ..., hy are non-negative integers, then by Cauchy’s formula

[Wdne ] < 7207™ - om™

So we can write

D I e d
hi+...+hm>2 pl"'pm

If h=hy +...hy then

S i\ v\ S (i Y\

m m
< — A < —_— ... — .
v Z)’Z Z (,01) (Pm) ;72(1)1 Pm)

h=2 hi+...+hm=h
(3.5.25)
Lety;' = minos, ..., pm). Thenys > 0 and

£+...+y—m<y3(y1+...+ym),
P1 Pm

so that the right side of{3.5.R5) is majorized)IQyE YL+ Ym),
h=2
which is the formal power-series 185

, Y31 + ... + Ym)?
2T ya(y1 + - Ym)

=Y(y1,...,Ym), say.
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Thenyy < ¥,k =1,...,m. Let Fr denote the power-series obtained
by replacing the cd@cients inFy by their absolute values. Now substi-
tuting ¥ for eachyx andF; for Fx we obtain a majorant for the power-
series on the right side di{3.5]21). In fact, since thefiicients inF;
are non-negative, the cfhieients inFljyI are also non-negative and hence
the right side of[(3.5.24) is majorized by

n
{y4(l £ Py O YD ¥V Yo F F,*n)} :
=1 91.--On

which implies that
n

lCl(g1+...0n) < {y4 [1 + F;M] lI’(yl, ceo Y Frogs o, F;‘n)} .
I=1 01...0n

Sincelcy| is the codicient of ' ...ya" in Fy, we see thalcdg is the
codficient ofy" .. .y?l‘l L yin Fp» and hence ofyt...yminy, Fry-
In other words,

n
{Z ylFf;M} = lod(gr + .- + On),
1=1

01...0n

and thus we get the majorization

n n
3 wF, {Z
1=1 =1

LetGy,...,Gm bem power-series with non-negative undetermined co-
efficients, starting with quadratic terms, in the variabtes. ., yn, sat-
isfying them partial diferential equations

YY1, Y Frigseo s Fr). (3.5.26)

\P(y]n oo ’yl"l’ Gn+1, DR} Gm),

n n
Z YiGky = 4 {1 + ) Gy
=1 =1

k=1...,m (3.5.27)
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Let dc = {Gklg,.q,- Then comparing the céiicients ofyd ...y on
both sides of[(3.5.27), we have

n
k(91 +...0n) =4 {(1 + Z Gry)¥(Y1.-- > ¥ns Gnitsos Gm)}
I=1 01---On
(3.5.28)

As before, the relatiod{3.5.28) is a recurrence relatiagrdégermining
the codficientsdy of Gx. Forg = 2, the right side ofl{3.5.28) contains
only codficients of quadratic terms of the formyq, p.q = 1,...,n,
alone in¥, sinceY starts with quadratic terms so that all the terms of
Gy?,¥pGq, p=1,....mg=n+1,...,morGyGqy, p.q=n+1,...,m,
are of total degree 2. Hence the right side df{3.5128) is known in this
case, and therefore also the fiaments of the quadratic terms @y. For
g > 2, we see, as in the determination of thefioents ofFy, that the
right side of [35.2B) involves céicients inGi of terms of total degrees
2,...,0- 1, which are already determined, and thus all theftments
in Gk are uniquely determined by induction. So the power-sésjeare
uniquely determined by (3.5P7).

We next prove by induction thaﬁl’; <G,k=1....m Ifg= 187
01+ ...+ 0n = 2, then we see immediately frofn_(3.5.26) that

2l .=

= {74‘1’()/1, s Y Frags oo F;‘)}gl...gn ’

n
1+ F;M}\P(yl, Y B F;;)}

I=1 J1.-.0n

But by the above construction, the right side is precisetydbdficient
2{Gx}g,..g.- Suppose that for all non-negative integgis. . ., g, With
2<0g1+...+0,<09-1we have

Then we shall show that for all non-negative integbys. .., hy with
hy + ...+ h, =g, we have

{Fethi by < {Gythy..hy-



188

142 3. The three-body problem: general collision

By 3.5.36) we have

{F;}hl...hn(hl +...+hy) <

n
{y4 [1+ F;M)\I‘(yl,...,yn, F,’;+l,...,F,’;)} . (3.5.30)
=1 hy...hn

On the right side only cdg&cients of terms of total degreeg— 1 occur,
and for these cdicients, [3.5.29) holds. In other words, the right side
of (G.5.50) is majorized by the ctiient

n
{’)/4 [1 + GkM}"P(yl, ey yn, Gn+l, ooy Gm)}
=1 hy...hy

But by the construction of the power-serigg, this is equal tdGy}n, . n,
(hy + ... + hy) and this, by induction, proves our assertion. So in order
to prove the convergence 6%, and hence oFy, it is enough to prove
the convergence d@&y.

It is easy to see thab; = ... = Gp. In fact, consider the power-
seriesG with non-negative undetermined dheients starting with qua-
dratic terms, satisfying the partialftérential equation

n
Z YIGy| =7a

=1

n
1+ ) Gy,
I=1

Y(Y1,....¥n,G,...,G). (3.5.31)

The codficients ofG can be determined by induction as in the case of
Gk. We have already remarked that the fiiméents of the quadratic
terms are the same in all th& and they are obtained by the contri-
butions from the quadratic terms of the typg/q, p,g = 1,...,n, in

¥ alone, and that there is no contribution either from termgheftype
YpGg, P =1,....,mg=n+1...,m or from terms of the typ&,Gq,
p,g = n+1,...,m But these are exactly the d@ieients of the cor-
responding quadratic terms &. Then using the recurrence formula
B5.28), we see by induction that all the correspondingtments of
Gk are equal, and equal to those®f Hence,G = G1 = ... = Gy is
uniquely determined by (3.5131).
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If we sety; = ... = y, = yin the power-serie§(ys, ..., Yn), we
obtain a power-series with non-negative fméents in one variablg,
starting with quadratic term; we shall denote thisHd{y). If H(y) con-
verges for some positive value gf then it is clear thaG(y,...,yn) 189
converges fofy1| <VY,...,|lynl <. Infact,

|{G(yl’ cees Yn)}gl...gn| < {H(Y)}gl+...+gn-

SinceH(y) = G(y,...,Y), it follows from (35.31) and the definition of
Y that we have

yHy:’y4(1+ Hy)\P(y,...,y, H,,H)

i (ny -+ (m— nH)?
= T Ty s = nr)

The right side of this can be majorized further as followsc8i

—-nH 2 S
Sy

we have

(ny + (M- MH)?
1-y3(ny+(m-n)H)

o (yam)3(y + H)?
3 1-ysmy+H)

<752 ) (ysm)(y+ H) =y
1=2

(y +H)?
1-vye(y+H)

yHy < y7(1 + Hy)®(y, H).

Puttingysm = yg and = @(y, H), we get the majorization

Let J = J(y) be the power-series ip starting with the second degree
term, satisfying the dierential equation

y &, = y7(1+ J)0(y. J). (3.5.32)

The codficients in the power-serie can be determined by inductionso
on comparing ca@cients on both sides. It is easy to see, as in the case
of GandH, thatJ > H, and hence it is enough to prove the convergence
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of J. One can integrat€ (3.5132) and obtdidirectly. However, one can
majorizeJ by the following simple method. Let

NUEDIENS (35.33)
k=2

2(y1 + ...+ Ym)?
J starts with quadratic terms sined 301 Ym)
T 9301+ + Yim)

alsoH does. Then on comparing the d¢eients ofyk on both sides of

B532), we obtain

does and hence

k&={w[r+§ymf4}Myn} (k=23..). (3.5.34)
=2

k

The right side of[[3.5.34) has contributions only from Gméents g
of terms of degree at mokt— 1. In other words, it involves only the

. [
codlicientsay, . .., ax_1 and so O« K < 1. From [Z534),

1 S
a = {77[E + y Ealyl_l} O(y, J)} .

I= k

If we take

k-1
8 = {77 [l + Z af‘y"l} D(y, J)} . k=23,..., (3.5.35)
=2

k
then again by inductiomy < & for all k > 2. We get a power-series

in one variabley with non-negative cdécients and starting with the
second degree term by setting

KO) = 8 Vi
k=2

ThenJ < K. We see that the relations{3.5.35) definajgnductively
imply that
(y + K)?

K = ’)/7(1 + y_lK)m
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SinceK starts with quadratic termk; = y XK is a power-series starting
with linear terms and moreover satisfies the identity

3
Kq = Y@+ Ky (3.5.36)

1-yey(1+Kyp)

This is again obtained in a constructive way, and it is nhowughoto
prove the convergence &, which implies the convergence Kf, and
so that ofJ and hence o6y, Fi also.

In order to obtain a solution of the algebraic equation G8bfor K1
in a convergent power-series, one may use the implicit fon¢heorem.
(Itis easily verified that the conditions of this theorem saiisfied). We
shall, however, prove the convergencekafdirectly without determin-
ing a majorant oKy explicitly. For this purpose we construct a simpler
power-series which majorizd§;. We can write

K1 =y7y(1+K1)® > () (1 + Kn)! = 77y > () (1 + K1)'**
1=30 1=0

) 1+3 |+3
=77YZ()’6Y)IZ( . )KL
1=0 r=0
1+3

by the binomial theorem. Since the binomial ﬁ‘méents( r ) are sma- 192

ller than 23 forr =0,1...,1+3andall =0,1,..., we can write for
each term on the right

1+3 | +3 1+3 1+3
Z( r )(yay)'Ka < > 2%3(yey)' K] = 8 ) (2yey)'K}.
r=0 r=0 r=0

Settingl + r = h, it follows that

00 1+3 o h
Do) > (' . 3)K£ <8 > (2ye))"K}
1=0 r=0

h=0 r=0

00 h )
h _
<8y (r)(ZYGV)h "Ki=8) (2yey +Ka)",
h=0 r=0 h=0
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again by the binomial theorem, so that we have the majooizati

K 2yey + K) = —XY 3.5.37
1 < 8y7y;( vy + K = T s (35.37)
Now let L be a power-series with indeterminate fiméents satisfying
the algebraci equation

8y7y

L= ————. 3.5.38
1= Cry+ D) (3:5.38)

Once again, as in the casekf, one can use the implicit function theo-
rem to obtainL. Since we are interested only in finding a majorant for
K1, we shall first show that majorizesk; and then find a majorant for

L itself. The coéficients ofK; andL can be determined inductively by
comparing cofficients ofyX, k = 0, 1,..., on both sides in(3.5.86) and
B5.38) respectively. It is clear that bath andL lack constant terms
and also that the céigcient ofy in Ky is y7, while in L it is 8y7. Sup-
pose that the cdicients ofy, ...,y in K; are majorized by those in

L. Then by [(35.37) we have

8y7y _ S h
{Kih < {—l eyt Kl)}k = {8Y7yh2()(276y+ K1) } :

k

It is easy to see that the right side involves only thefitcients of
Y, .. .,yk‘1 in K1 and hence is smaller than

o0 B 8y7y
{8)/7)/;)(27634 L)h} = {m}k‘

k

Then it follows by induction thaK; < L. We majorizeL further in the
following way. Since

2yey
2yey < T Zreyr D)’ (3.5.39)

if we write M = 2ygy + L, then by [3.5.38) and (3.5.139),

(2ve +8y7)y _ _vsy
1-M 1-M’

M =2ygy+ L <
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Let us denote byN the power series ig with undetermined cdicients
satisfying the algebraic equation
v8y
N = . 3.5.40
Then it is easily seen as before thdt < N. From [35.4D) it follows 194
thatN satisfies the equatioN?— N +ygy = 0, which can also be written
as

AN? — 4N + 1 = 1 - dygy, or, (1- 2N)? = 1 — 4ygy.
From this we get
144N <144N+... = (1= 2N)? = (1 - 4ygy) L,
and hence,
AN < (1- 4ygy) ™t — 1= dygy(1 — dygy) "
In other words, we have the majorization

K1 < N < (1 - 4ygy) ysy,

. . o : 1
and the last is a geometric series y@converging folty| < e Hence
we conclude that the power-seriegdys, ..., ¥n), k=1,...,m, converge
1 .
for |yl < v which completes the proof of the convergence. We have

thus prove)(;lSTheorem.l under the restriction (315.19).

We shall now remove the restriction (3.9.19). The eigereslaf
A are again all real, distinct and non-zero but need no lormeatisfy
the restriction [[3.5.19). We shall show that in this case, gblutions
yk(s) of (B5.I0), and hence the solutiorgs) of (3.5.2), will be now
power-series in the variables €15, ..., e'S, and not power series in
theeS k = 1,...,n, alone. We shall give only the construction of the
solution and the proof of convergence will be on exactly time lines 195
as in the previous case.

First of all we remark that we can no longer use the relafidh.22):

Ck[/lk—zgvh} = {—lﬁl + kaﬁl} ,
I=1 1 01...0n

n
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to determine the cdicients in the power-seriesy. If for a givenk =
1,...,n, we have

n
A = Z g, (3.5.41)
I=1

for a finite set oh-tuples @, . . ., g,) of non-negative integeiy, . . ., On
with g1 + ...0gn = g > 2, then unless the right side df(3.3.22) van-
ishes for each of thesetuples, we would get a contradiction. Since the
right side of [3.5.2R) may not necessarily vanish for allhsnguples
(91, . .., gn) for which (35:41) holds, we cannot use the argument above
for determining the cd@cientscy of yglJl ...y¥ for this exceptional set
(91,...,9n). Hence it is not possible to determine the power-sefigs
from the requiremenf{3.5115), namely thdti;, ..., u,,0,...,0)=0in
Ui, ..., U,. We therefore modify the proof in the following way.

We replace the requiremefi(3.3.15) by a weaker conditioa.alt/
low x(U1,...,Un,0,...,0)to be a polynomial i, . .., u, for just those
k for which (35.41) holds. Le¥k(us,...,u,) be polynomials in then

196 variablesuy, ..., u,, with real undetermined cflicients such that

xk(ug,...,Un,0,...,0) = Vi(ug,...,un), k=1,....,m (3.5.42)
n
Sincedg # >, g4 fork=n+1,...,m we may assume that
=1

Vk(Ug,...,u)) =0, k=n+1,...,m, (3.5.43)

and consider[(3542) only fdc = 1,...,n. In this case we assume
that every term itV is of the formeyud* ... u3", g1, . . ., gn NON-Negative
integers withg; +. ..+ g, > 2 for which [3.5.41L) holds. There exist only
finitely many suchn-tuples €, ..., 9n), and hence only finitely many
ak, which determine the polynomiadlk. In order to determiney we
observe that, since il.(3.5]11) the power-seRgstart with quadratic
terms, the coicients ofygl...ﬁ” in Vi, considered as a function of
Y1,...,Yn after substitutingl{3.5.11) fan, .. ., uy, is preciselyay and

akugl...u%”:akyﬁl...ﬁ”+....

Hence we can determing by equating the cdicients ofy?1 Ly
on both sides of[[3.5.32), considering and yx as power-series in
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Y1.....Yn. We define the cdcient ¢ of y*...ya" in Fy for which
01, ...,0n satisfy [3.5.411) to be zero. Then we have

ak = {lﬁk(yls . ,Yn, Fn+l, ceey Fm)

n
- ka(Yl,---’yn)‘//I(YI,---,Yn’ Fn+1,---, Fm)
=1

toyf W VY- Froe-Fo)f o (35.44)

for all gy,...,gn satisfying [3.5.411) for thé in question. In[(3.5.44) 197
ak can be determined explicitly provided that the right sid&riswn.

The codificients ofyy*...yx" wheregs,..., g, satisfy [3Z541) are by
assumption zero, while for all othe, . . ., g, we have[[3.5.19), so that
the codficients can be determined as before frim (315.22) where new th
term {Vk(y1 — F1,...,¥n — Fn)lg,..g, N@s to be added on the right side.
Then the polynomial¥y are completely determined. The convergence
of Vi as power-series i, . . ., ¥, can be proved without muchficulty.

To obtain all solutions of{3.514)y = Akuk + xk, k=1,...,m, we

m
set as beforey = uﬁ, and then usind{3.5.114), we have
k=n+1

m m
V=23 Ul=2 ) (AR + Uon).
k=n+1 k=n+1
SinceVx =0fork=n+1,...,m, and in each term gfx for suchk we
get one ofun,1, ..., Un as afactor, our previous argument goes through.
We have, as before” > 1v and sinceve™*s > 0 and nondecreasing, we
havev = 0, so thatun,1 = ... = uy = 0. Substituting in[(3.5.14) we
obtain the system of flierential equations

U = AkUic + Vi(ug, ..., up), kK=1,....n,

where eachv is a polynomial with real cdécients containing only
terms of the formud* ... u" wheregy, ..., g, satisfy [35.41). We ar-
rangeds,..., A, in decreasing order and assume that

0>A1>...> A
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Then we claim that for evedy= 1, ..., n, Vk is a polynomial only in the 198
variablesus, ..., Ux_1. To see this, consider the typical tenr(u%l .ud
in V. We shall prove thatk = gks1 = ... = gn = 0. Suppose, if
possible, that for somek + 1 < | < n, we haveg, # 0, sog, > 0. Since

n

@B54)) is satisfied, we havely = Y gr(-4;). But0O< -1; < ... <

r=1
—An by our ordering of the eigenvalues and so egdh4;) > 0. Since
g > 0 and-2, > 0, it follows that

== g(=A) > -, or A < 4y,

which is impossible since> k. Hencegy;1 = ... = gn = 0 necessarily,
and it only remains to prove thag = 0. Suppose, if possible, that
Ok > 0. Sinceg1 +...+ 0 = 01 +...+0n = 2, we have only two
possibilities, eitheigx = 1 orgy > 2. If gk = 1, then at least one of
Oi,...,0k 1 IS anintegee 1 and hence-Ax > gk(—Ak) = —Ak, which is
a contradiction. Iigx > 2, thengk(—Ak) > —Ak, SO—Ak > —Ak, Which is
again a contradiction. Henag = 0.

So finally we obtain the following system offtkrential equations
forug, ..., Un:

U = AkUic + Vi(Uug, ..., uk-1), kK=1,....n,
U =AU =0 k=n+1....m (3.5.45)

199 We determine the general solution Bf(3.5.45) inductivBiyceV; = 0,
u; = A1u; and hencey; = c,e1S, wherec, is a constant of integration.
Next, V, contains only terms of the forraazu%1 whereg; > 2 andi; =
A101. There is only one integral solutiapy of 1, = gi4;, so that we
have

V2(U1) = azufl.

Insertingu; = c;e'8 in V,(uy), we get the dferential equation
U’2 = AUy + anglJle/llgls = Aol + azcgleﬂzs,

which is the same asife™25) = V,(c;) = a»>c¥, and on integration this
gives
W€ 2% = s+ Cp, OF Up = (C2 + Vo(C1)9)E™®.
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If we denote the polynomial,(ci)s by &2»(cy, 9), then
Uz = (G2 + Po(cy, 9))e2.
Let us suppose that we have already proved that
Uk-1 = (Cke1 + Pi1(Ca. Cas .- ., Oz, )15,

where % _1 is a polynomial in thek — 1 real variablescy, ..., ck2
ands, and vanishes fos = 0 : 2%, is uniquely determined by &
V1, Vo, ..., Vike1. Since&?; = 0, we have seen that this holds for=
2, 3. We now prove that

Uc = (G + Zi(Ca, . . ., Ce1, 9)ES,
We set 200
q+ A(c,...,¢.1,9 = Qlcy,...,q,9, I =1,...,k=1.
Then from [3.5.45), we have thefiirential equation
U, = AUk + Vi(QreM5, ..., Q_18%19).
We recall once again that all the terms \&f are of the 1‘0rmozku%l

k-1

...ugf‘ll, wheregs, . .., 0, satisfy the relationgy = El 01. Hence

Vi(Que™s, .., Qu-18%1%) = Vi(Q1, . .., Qu-1)€"S,
so that we have the filerential equation

U’k = AUk + Vk(Q4, .. ., Qk_l)e’lks,
or, e %) = Vi(Q1, . . ., Qu-n),

which, on integration from O tg gives,
Uc = (G + Zi(Ca, . . ., Ce1, 9)E*S).

S
where Z(c1,...,Ck-1,9) = ka(Ql, ..., Qx_1)ds This proves our as-
0

sertion. Herecy,...,ck are constants of integration and are uniquely
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determined by the initial valuesc(0). We observe that sincé(Qx,
..., Qk_1) is a polynomial incy, . .., ck_1, S, and each contains a positiveo1
power ofs, it follows that Z(cy, ..., ck_1, 0) = 0. Henceuy(0) = ¢, so

m

that if the solutionsly, ..., u, are to satisfy the relatiory, ux(s)? < e,
k=1
m
then we should necessarily haye cﬁ < e. However, ifug(0) = ¢
k=1

m m
where Y, ¢Z < ¢, then this may not imply thaf, u(s)> < e for all
k=1 k=1
s> 0. In the previous case, all th# were zero andy, ..., 1, < 0 and

m
we had Y uk(s)? < e. But in the present case, this is not in general true
k=1

for all s> 0. However, sincei(s) = Qk(C1, ..., Ck_1, 9e*s andQx is a

polynomial whiledy < 0, it follows that for stfficiently larges, ux(s) are
m

so small thaty ux(s)? < e, and moreoveny(s) — 0 ass — oo. This

k=1
again is a constructive method of determining the solutions

In order to obtain the solution of the original system of dapres in
the unknown functionsy, k = 1,..., m, we first solve forys, ..., ym in
terms ofuy, . .., um. We have, by inversion of{3.5111),

Vk = U + Gi(ug,...,Un), k=1,...,n,
Vk = Gk(U1,...,Un), kK=n+1...,m,

whereGy are power-series with real dieients, starting with quadratic
terms. Hence thg(l = 1,..., m) are power-series irc + Z(cy, .. .,
c-1, 9e*S k= 1,...,n. Since thex are linear functions ofj, the same
assertion holds fax also and thus we obtain all the asymptotic solutions
of the original systenx’ = Ax+ ¢(X). They involven real parameters
C1,...,Cn. This completes the proof of Theorém315.1. O

We shall now consider the situation in which the eigenvahfate
matrix A = (ax) are not necessarily real. We have

Theorem 3.5.2. Suppose that the eigen-values of the matrix £ay))
are distinct, some possibly complex, and that all eigenteghave non-
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zero real parts. Then the general solutiongsxin s > 0 of the system

m
=1

which satisfy the condltlorE X«(5)? < € for smalle > 0, involve as
k=1

many real parameters as the number of eigen-values withtivegaal
parts.

Proof. Let 1;,..., Ay, be the distinct eigen-values of the real matrix
A = (an), and letdy = px + itk, K = 1,...,m. SinceA is real, its
characteristic polynomial has real ¢eients and so its complex roots
occur in pairs of complex conjugates. Hencaifis a complex eigen-
value, the conjugate complel is also an eigen-valug, wherel = |y;
S0 = A for | = lx. Thena, = A¢ and sd,, = kfor all k. If Ay is a real
eigen-value, theny = Ax = 4 and since the eigen-values are simple,
| =1k = k. Hencely,...,|y) is a permutation of (1.., m) and since the
Ak are simple, the permutation consists entirely of transioosi. O

We consider a linear transformatioms= Cy, C being a complex 203
matrix with |C| # 0. Since all the eigen-values &f are distinct and
different from zero, we can find @ such thatC™*AC = D is in the
normal diagonal form:

A1 0
D= .. .
0 Am
ThenAC = CD and we can determine the mat@xfrom this condition.
LetCy, k = 1,...,m, denote the columns @&. Then we haveACy =
ACk, k=1,...,m, and this can be seen immediately by comparing the
elements on both sides &fC = CD. HenceCy is an eigen-vector of
the matrixA belonging to the eigen-valug. Since thely are distinct,
the eigen-vector€y are all distinct. These eigen-vectors are uniquely
determined up to constant scalar factors, in general commpigain
using our earlier notation,

ACk = ACk = ACx = 4Cy, | = I,
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o) tha@ is an eigen-vector belonging to the eigen-valuerherel = Iy.
HenceCy is a scalar multiple o€, and so by a suitable normalization
we may assume that

6k=C|,d=Ck, =1, k=1,...,m (3.5.46)

Since the matrixC is complex,y is a complex vector. Sinceis real,
x = Xand saCy = Cy. It follows from this, by [3.5.46), that

Ciyk + Civi = Cik + Ciyi = Ci + G-
Buty = C1xis a uniquely determined vector and so we should have
Vi =)7k, yk=)7|, | = Ik, k:l,...,m.

As we have to deal with formal power-series, we shall dropagsimp-
tion thatx is real. The relatiorx = Cy = Cy can be given a sense even
whenx is not real if we define formally the indeterminatgs. . ., ym by
setting

y|=)7k, yk=37|,I=Ik,k=1,...,m. (3.5.47)

(Thusys, ..., ym is just a permutation of the indeterminatgs. . ., ym,
this permutation consisting entirely of transpositions).

By the substitutionx = Cy, the given system of flierential equa-
tionsx’ = Ax+ ¢(X) goes over into the system

y = Dy +C (%), (3.5.48)

whereC1p(x) is a column vectorr(x) of power-seriesr(x). The co-
efficients ofo are complex and they are obtained in the following way.

If & denotes the cdicient ofxJ* ... oy of degreey = g1 +...+gm > 2

m
in ¢(X), then the coficient of x5* ... xar in o(X) is given byE1 dual,

C1 = (dw).

If f = f(xg,...,Xm) is a formal power-series with complex co-
efficients in them indeterminatesxy, . .., Xm, then we denote by =
f(x1,...,X%m) the power-series obtained by replacing thefioients in
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f by their complex conjugates and by that obtained by replacing the
codficients inf by their absolute values: thus

{Flar..gm = {Flor..gm ANA{F g, g, = [{ Flgs.gul-

Because ofp(x) = ¢(x) = Co(X) we haveo(X) = (). SinceCy =

x = Cy, we have alsar¢(Cy) = o1(Cy). Denotingok(Cy) by vk(y),
we have, by the last formulay(y) = y«(y). Hence we can rewrite the
system of diferential equation§d {3.518) in the form

y = Dy + y(y), (3.5.49)

wherey(y) is a column-vector whose components are power-sgrigs
with complex cofficients and starting with quadratic terms.

Let A4,..., A, denote the eigen-values whose real parts are negative
andAn,1, ..., dm those whose real parts are positive; so

01<0,...,0n<0; pns1>0,...,0m> 0. (3.5.50)

Since forl = I, 4 = Ik = pk — i1y, it follows that as the indek runs
through 1...,n, lx also runs through,l..,n, and if k runs through
n+1,...,m so doesy.

As in the proof of Theorefi34.1, we now make a non-linearstran
formation of the variableys, ..., yn to the variabledu, ..., u, of the
form 206

uk:yk_Fk(yla,yn), k=1,...,m,

where theFy are power-series in the variablgs, ..., y, alone, with
complex cofficients and starting with quadratic terms. As in the case
of real eigen-values, theftierential equationd (3.5.49) are transformed
into

U = AUk + xi(Ug, ..., Um), k=1,...,m, (3.5.51)

whereyk(uy, . .., Uy) is defined by

n

Xk = AFi + Y — Z Fiy (Y1 + ). (*)
=1
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Our argument for the construction of the power-sekggoes through
as in the real case.

First suppose thaty # Z g4, for all n-tuples of non-negative in-

tegersgs, ..., gy With g = gl + .+ 0n = 2. This is only a finite set
of conditions on thely, as in the real case. We determiRg again by
requiring thatyy(us,...,Un,0,...,0) =0, i.e.

/lka + lﬁk(Yl, LECIR ,Yn, Fn+l, ] Fm)
n
- Z Fiy (Y + iy, ...,
1=1

yn, Fn+1, ey Fm)) = O (**)

k=1,...,m, and we get as before a recurrence formula for finding the
codficients inFy. If cyd ...y is a term of total degreg = g1 +
..On > 2in Fy, then comparing the céiecients ofy ... y¥", we have

n n
Ck [/lk - Z gl/ll} = {_lﬁk(y1, s Yn, Fnits. .-, Fm) + Z Fkyllﬁl}gl...gn-
=1

I=1
We find ¢« by induction as in the real case. The convergence of the
power-serieg-y thus obtained is proved as in the real case. d.et
min(—p1,...,—pp) > 0. Then there exists a positive numbegrdepend-

ing only one, such that

n n
|k — Z gl > |ReQ - Z g >y g1 + . .. + On).
1=1 =1

On the other hand, they are power-series convergent in a complex
neighbourhoodyi| < p1,....lyml < pmOf y1 = 0,...,ym = 0. We
shall denote byy»,y3. .. large positive constants. Ixf/k| v2 in this
neighbourhood, then by Cauchy’s theorem,

.l < v201™™ . pm ™,

for all n-tuples of non-negative integdns, ..., hpwithhy+...+hy, > 2.
So we have

PP O it Zy(y_y_]

hy+...+hm>2 ,01 ---Qm hz 1 P
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o i+ +ym?
=Y
SV a e+ V) 01, - Y.

wherey;! = min(py, ... .p,) > 0. Then we have

n
CKI(@1 + - + Gn) < ¥1lYn + D Fioptilgy g
1=1

We replaceF by F andyy, ¢ by ¥ and we see thdty < Fy; and 208

n
[Ckl(Q1 + ...+ On) < lya4 {(1 + Z FfQM)‘P} l
01...0n

1=1

The rest of the proof is the same as before and we concludehthat
power-serie$y, k = 1,..., m, converge for complex values gf, ..., yn
in a complex neighbourhood off = 0,...,y5 = 0. (TheFy can
now be regarded as convergent power-series in the compteables
Yi,..., Ym)-

We can now obtailyy in terms ofuy by locally inverting the substi-
tution uk = Yk — Fk(Y1,...,¥n), k=1,...,m, and we find that

Yk = U + Gy(ug,...,um), k=1,...,m, (3.5.52)

where theGy are uniquely determined power-series with complex co-
efficients. Since th&y converge as functions of the complex variables
Y1,...,Y¥Yn, We can now look upomiy,..., Uy also as complex variables
and Gy are therefore convergent power-series in the complex hlagsa
ui,...,Un. Since we are interested in real solutioggs) of the orig-
inal system, we have to find out under what conditionsugr.. ., Un,

we shall haveyx = yi, | = I, k = 1,...,m, so thatx, ..., xy all are
real. We might conjecture that this condition is again= uj, | = I,
k=1,...,m and conversely. This is true and it is enough to prove this
in the following formal situation. Suppose we introduce igetermi-
natesyk = yi, | = Ix; we shall prove that ifiy, ..., Uy andu, ..., Un

are defined by = yk — Fk(Y1,....¥n), Uk = Yk — Fk(Y1,...,¥n) then
u=u,l =l k=1...,m And for this purpose it is enough to proveos
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that F(Vi, . ... Y)n = Fi(Y1, . .., Yn), OF equivalently, that

FeWigs V) = Froa . .yn), k=1,....m.

For this we observe that the conditigR(uy,...,un, 0,...,0) =0,k =
1,...,m, gives the following identity in the formal power-series:

n
A F YY) = DAY FL YL (- Yn) (3.5.53)
r=1

n
= _lﬁlk(yla -5 Yns I:n+1, e Fm) + Z FIkYIr(YL cee ,Yn)
r=1

er(yl, .. ’yl"l’ Fn+1, ey Fm)

By replacing the cd@cients on both sides by their complex conjugates
we have the identity

n
AP Y, ¥n) — Z A Y, Py, V15 - - -5 Yn) (3.5.53])
r=1

= _l%k(yla LY 7yn7 F_n+1, LY Fm)

n
+ Z Flky|r (yl7 L ’yn)l//Ir(YL KRR Yn’ Fn+1, KRR Fm)
r=1

(Recall thatf denotes the power-series whoseftiogents are the com-
plex conjugates of those df). The permutatiory,, ...,y of the inde-
terminatesyy, . . ., ym introduces the indeterminatgs . .., ym. We have
seen that sinck, =k, k=1,....m ¥k(y1,....Ym) = ¥i(Y1,....Ym) =
iy, --->W,,)- Now using the fact that;, = A« andy;, = y;, we get

from[(3.5.53] the following identity:

n
AFL G- V0) = DAY Fiy (1, Vo)
r=1
= —l,l/|(y1, ce s Yns F|n+1()71, e ,)7n), e, F|m()71, . ,)7n))

n
+ Z Flkyr ()71’ ce ’%)wr(yl’ tet yn, F|n+1
r=1
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7R TN T (Z IO ) (3.5.54)

because the passage from...,ym t0 y1,...,¥m iS nothing but the 210
permutationy;,, ..., ¥, and moreover, whek runs through 1..,n,

so doeslk and whenk runs throughn + 1,...,m, so doedy. Hence
Fi(ys,....yn), | = Ik, k = 1,..., msatisfy the functional equation:)
for Fe(ys,...,¥n). On the other handsk(ya, . .., Yn) iS uniquely deter-
mined by éx). Hence by the uniquenes of the solution €, (ve have,
forl = I, k =21,....m F(y,,....¥n) = Fr(yr,...,yn). It is also
clear that if Fx converges as a power series in the complex variables
Y1,...,Yn in @ complex neighbourhood gf = 0, ...,y, = 0 and we re-
placeys,...,¥n in Fk(y1,...,yn) by the complex conjugates, ..., Yn,
then the corresponding variahlg defined byux = yk — Fk(Y1,...,Yn)
goes over into the conjugate varialie This proves the assertion that
Ukzq,| :Ik,k:l,...,m.

Now it follows from the definition £) that also

Thus we have the reduced system dfatiential equations

U'k=/lkuk+)(k, U=uU =1l k=1,...,m,

under the assumption th@ lud?® < e for all s > 0 and sificiently 211

smalle. In order to obtain the explicit solutions we consider thection

v(s) defined by
V= Z lul® = Z Uk U
k=n+1 k=n+1

Differentiating with respect tewe have

m
V = Z (U + UglT).
k=n+1
It is clear thatV is real; sincel| = /Tb U = Uy, x1(u) = yk(u) for I = Iy,
we see thaty = u' = 41U + y1(u) = Akl + xk(U). Hence

V= D (kAU + Y (Uk(@) + Gork(W)

k=n+1 k=n+1
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=2 ) pdud®+2 ' Re@in(u)).

k=n+1 k=n+1

Letp = min(ony1, ..., 0om) > 0. Sinceyy starts with quadratic terms and
each term ofyk contains at least one of,,1, ..., Uy as a factor, angy

is uniformly convergent, we show as in the real case thatuficgently
smalle,

m
2 > Reliu(u) = —pv.
k=n+1

So we havey > pv and henceve*s)’ > 0 andve** is non-decreasing.
Sinceve s > 0 it follows thatv = 0, oru(s) = 0 for all s > O,
k=n+1,...,m Thus the system of fferential equations is further
reduced to

U’kZ/lkUk, k=1,...,n

Hence _
Ul' =Aqu, =1, k=1,...,n A= A.

Integrating these we obtain
uk:ckeﬂks, Ui =c|e’“s,l = |k,k= 1,....n

Sinced; = Ax andu, = U for | = I, k= 1,...,n, and alls> 0, we have
alsoc, = ck. Thus we get exactly real parameters in the real solution
Xk = Xk(9) of the original system asymototic to the equilibrium simint

n
This proves Theorelnz3.4.2 under the restrictigrz Y, 1,9.
=1

n
It is easy to extend the argument to the case in whick ) A9
I=1

for some giverk, by imposing the same condition as in the real case,
namely, yk(Uz,...,Un, O,...,0) = Vi(ug,...,Uun), a polynomial with
complex cofficients inuy,..., U, consisting entirely of terms of the
form exud ... U3 wheregy, ..., g, are non-negative integers with +

n
...+0n = 2, satisfyingly = >, 41g,. Once again, if &< p1 < ... < pn, we
I=1

m
can show thaVy is actually a polynomial i, . .., u_1 only, > |ug? <
k=1
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€ for e suficiently small. We have now, in additior\_/,|(LTl, ..Uy =
Vi(ug, ..., un), | = lk. Then the solution are given by

Uc = Qu(Cr, ...,k 9e% S k=1,...,n;
U =0 k=n+1,....,m,

where Qx are polynomials ins with complex coéicients, gk(cy, .. .,
Cx, 0) = ¢ andg = ¢, Qk((?l, .., G, S) = Q(Cy, ..., Ck S). Once again,
the general solution asymptotic to the equilibrium solut@ntainsn
real parameters, and this completes the proof of Thebrem.3.5

It remains now to consider the solutions in the case in whigh t
matrix A = (ax) may have multiple eigen-values. The problem is more
complicated in this case, thefitulty being that the matriA cannot
now be reduced to the diagonal form. We can neverthelessdkxtigr
earlier results to this case. We have

Theorem 3.5.3. Suppose that the matrix A has eigen-values which are,
in general, complex, all with non-zero real parts, some efittpossibly
multiple. Then the general solution of the systém Ax+¢(X) such that

m

D xﬁ < € for smalle > 0 contains exactly n arbitrary real parameters,

k=1
n being the number of eigen-values with negative real parts.

Proof. We transform the matriA in the following way. We can find
a matrix C with |C| # 0 such thalC"*AC = D breaks up into boxes
along the main diagonal. More precisely, the mabix= (dy) has the
following property: ifd4,..., An are the eigen-values &, 214

Okk = A, dg = Ofork = landk # | + 1, (3.5.55)
Oq=0fork=1+21if 4 #A41,dqg=00r1fork=1+1if 4} = A41.
Letey = 0,6 = 0if Ak # Ak, & = 0o0r1ifAx = A1, k =

2,...,m. Then the transformed systeyh= Dy + ¢(ya,...,Ym) can be
written in the form

y’k = WYk + &VYke1 + Uk(Y1, .. .. Ym), K=1,...,m, (3.5.56)
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wherey again are power-series with complex fitments starting with
guadratic terms and converging in a neighbourhoog 6£ 0, ...,ym =
0. LetAg = pk + itk and let us suppose that

O<—-p1<—p2<...<—pmpk>0k=n+1,...,m, (3.5.57)

so thatls, ..., A, are all the eigen-values with negative real parts. As
before we perform the non-linear transformation

Uc = Yk — Fk(ys, ..., yn), k=1,....m, (3.5.58)

whereFy are power-series iy, . .., Yo With complex coéficients to be

determined, starting with quadratic terms. We restricselwes to the
n

case in whichty # >, g4y, k = 1,...,m, for non-negative integers
1

r=
O1,.-.,0n With g1 +...0, = 2. When this is not the case the proof can
be modified as in the earlier situations.

From [3.5.5B), by dferentiation, on usind(3.5.56), we have

n
U = Ak(Uk + Fi) + i1 + Yk — Z Fiy (ArYr + & Yr-1+ ),
r=1

which can be written in the form
U = AUk + &1 + xk(Ug, ..., Um), K=1,...,m,

where

n n n
xk = AkFk — Z ArYrFry, + &Fy1 — Z &Yr-1Fky + ¥k — Z UrFky, -

r=1 r=1 r=1
(3.5.59)
Once again we determine the power-sekgdy requiring that

xk(ug,...,un,0,...,00=0 k=1,...,m.
Sinceuk = 0 implies thatyy = Fr(y1,....¥n), K = n+1,...,m, this

condition implies the following identity:

n n
AFk — Z ArYrFry = —&Fk-1 + Z & Yr-1Fky
r=1 r=1
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n
- l,l’k(y17 “ee 7yl"l’ Fn+17 e Fm) + Z l//r(y1, SR Yny Fn+1, e Fm)Fkyr
r=1
(3.5.60)

Let Ck,gl,...,gny(i:l_l ...y denote a term of total degree= g1 +...+0n > 2
in the power-seriefx. Comparing the cdécients ofygl ...y¥ on both
sides of [3.5.60), we have

n n
K,O1,...,0n (ﬁk - gr/ir) ={-vk + Z Fry¥rlgr....on — &Ck-1g1,...00
r=1 r=1
n
+ e((gr + 1)Ck,gl,...,gr,1—l, or+1,....0n- (3561)

r=1

.....

.....

cannot carry out the induction construction for thefGo&nts as in the
previous cases. However, we can argue by induction on intind a
lexicographic ordering for the indices in the subscripts.

First of all, suppose that the dfieientscy_1g,,. g, Of total degree
01+ ...+ gn = g have already been determined. Then the second term
on the righ side of (3.5.%1) is known. Fkr= 1 the term corresponding

.....

.....

r=
only these coficients, it follows that it is known. Thus we have to deal
only with the term

r=1
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For this we introduce the lexicographic ordering for the ssuipts 217
(91,...,9n)- If(91,...,0n) and by, ..., hy) aren-tuples of non-negative
integers, then we say thag(...,gn) is lower than [y, ..., h,), writ-
ten @1,....9n) < (ha,...,hy) if the first of the non-vanishing fier-
encesg; — hy,...,gn — hy is negative. It is clear that this ordering is
transitive: if @1,...,0n) < (hy,....hy) and fy,...,.hy) < (Ke, ..., Kn),
then @1,...,0n) < (Ki,...,Kkn). In this ordering we find that each set
(9, ..., 0r1-Lg+1,..., gn) of the subscripts ofcg, ..g_1-1.g+L...gn:
r=2,...,n islowerthan¢i,...,gn). (Sincee; = 0 by definition, the
caser = 1 is taken care of). We carry out the induction in the follogvin
manner. Givends, ..., gn), Suppose that we have already determined

(i) all coefficients inF,..., Fy of total degrees,2..,g-1;
(i) the codficientci_1g,..g, Of yJ*...yo" in Fi_1; and

(iii) all the codficientscyp,...h, Of y'l11 ...y in Fy of total degreéy +
..+hy=gwhere fi,....h) < (01,...,0n).

Then we can determine the dbeientcyg, g, Of 3 ...ya" in Fy from
the recurrence formul@{3.5161).
If k=21and @1,...,0n) =(0,...,0,2), then the colicientcs o 02
is determined by the c@iécient ofy? in ¢1 and so is known. Then we can
determine all the cdBcients of the quadratic terms F, k= 1,...,n,
218 successively from the recurrence relatim 61). Heveean begin

the induction. Thus, wheneveg # 2 oA, k=1,...,m, all the codi-

cientsinF,...,F,can be determlned by induction on the lexicographic
ordering of the subscripts. If this condition is not satidffer somek,
then we set, as beforgy(u, ..., un,0,...,0) = Vi(uy, ..., Uy), whereVg
are ponnomiaIs consisting only of terms of the fonmu L ud with

Ak = Z or4r. The proof is easily modified to suit this case and we shall

not go |nto the detalils.

Before discussing the condition in order that the solutigfs) be
real, we shall prove the convergence of the power-sdfjesbtained
above. This presents somdidtiulty; the estimates we obtained in the
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case of simple eigen-values do noffste. The cofficientscyg,, . g, are
determined from the recurrence formuUla(3.5.61) and we hasamed

n
thatdx — > g4 #0,k=1,...,m. We have
r=1

n n n
=" Grdel = pk= D Gl = pc= ) Gepr, k=1,...,m
r=1 r=1 r=1
If @ = min(—py,...,—pn) > 0, we can write

n
Mk‘Z Or el = prta(Gr+. . .+0n) = Pk+%(gl+~ : .+gn—1)+%(gl+. ..+gn+1).
r=1

There are at most finitely manytuples €, ..., d,) for which px +
%(gl +...+0n-1) <0,k=1....mags+...+0y = 2. Forall

n
othern-tuples we haveély — > gr ;| = C—;(gl +...+0n+1). Since
r=1

n n
|- > or 4| > 0, we can find a constami > 1 such thafiy— >, g- 4| > 219
=1 r=1

r= =
yil(gl +...+0h+1),k=1,...,mfor all ntuples @a,...,gn). Hence,

from (35.61),

(3.5.62)

Denoting byF, the formal power-series obtained by replacing the coef-
ficients inFy by their absolute values, we hat/¢ < F, k=1,...,m.

We denote byy,,v3, ... suficiently large positive constants. As in the
case of real eigen-values we have the majorizationyfor

VoY1 + ... +Ym)?
1-vyo(yr+...+Ym)

k< D Y30+ ym)® =
g=2

We define

_ B0 A Yt Py O Ye) + o+ PO Y)Y
1-yoya+ ...+ Yn+F (V... Vo) + .o+ Fi(Ya,- . Yn))
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and we have

wk(ylv D) Yn, Fn+l(y17 D) Yn), ey Fm(Yl, cee 7yn)) < \P(ylv sy Yn)

We next observe that the dieient ofy3" ...y in F} is cg,
while its codficient iny, Fy is grlCg,....g,|» SO that

n
(L+Q1+...+On)lCkg..qnl = {F; +> yrF;yr}
g1

r=1

Now (3.4.62) implies the majorization

n n n
vt [F;; > yrF[zyr) <eFig+ ) eyraFy, + [1 +> F;;Yr)\y
r=1 r=2 r=1
(3.5.63)
From this we want to obtain a majorization similar to what vae im the
case of simple eigen-values. In order to achieve this wecephll the

Fy by just one functiorf, which majorizes all th&,, independently of
k. Letus,...,un be positive numbers 1 which we shall choose suit-

ably later. LetF = 2 ukFy, so thatFy < Fp < wtF k= 1,.

It would thus be sﬁiuent to prove the convergence of the power-series
F, with non-negative cd&cients, starting with quadratic terms. Mul-
tiplying both sides of[[3.5.63) byx and summing ovek = 1,...,m

m

and making use of the facts thai #kaﬁy = Fy,, e = 0Oandg < 1,
k=1 '

k=2,...,n, we have
n m m n n
71 (F + Z yiFy,) < ZukFi_l + Z eyraFy + ) ¥+ ) Fy ¥
k=1 r=1
< Z,uka L+ Zyr 1Fy, + [ Zn: Fyr] (3.5.64)

r=1

We now choosegy in such a way that all the ratiq&/ux_1 are indepen-
dent ofk: letus = 1, u/pk-1 = y7+ k= 2,...,m, then ally < 1. Since
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Uk = ﬂ “MUk-1 = ’yIlﬂk_l, k= 2, ...,M, we see that

Mk-1

m m

* -1 * -1
Zﬂka_l =71 Z“k—le—l <y, F
k=2 k=2

Substituting this in[(3.5.64) we have

n n n
yIl Z yr Fyr < Z yr_]_Fyr + (m + Z er )‘I’
r=1 r=2 r=1

Once again we use the fact that e&gh< y;lF to obtain a majorant for
Y. From the definition off we have

‘I‘(yl,...,ym):Zyg(y1+...+yn+F;§+1+...+F;§1)9
g=2
<Zyg(y1+...+yn+(p;+11+...+y;11)F)g.
g=2

Takingys = ut, +... + ppit, we have
Yit+.o.+¥n+F +. .+ Fn<yayi+...+¥n+F),

and hence, withys = y,y3,

M¥(Y1,...,Ym) < mZ yf{(yl +...¥n+F)? = ®, say
g=2

Hence we have
n n n
Yt D Wiy < Y yeaFy + (14 ) Fy)0. (3.5.65)
r=1 r=2 r=1

Letvi,..., vy be positive numbers, to be chosen suitably later. Setting

Ve =wY, k=1,...,n, andF(y1,....¥n) = F(v1y,...,vny) = G(Y), we
have 222
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n

n
Gy = ; Fy, ?jyr = Y vy,

y r=1

n n
so thatyG, = ZlvryFyr = Zlyr Fy,. Then from [3.5.85) we have
r= r=

n n
Yi'YGy < ) ViaFy, + [1 > Fy,)qx
r=2

r=1

Slnce, by deflnltlon,yr_l/yr = Vr_l/Vr, yr_ler = yrFerr_l/Vr, r =
2,...,nwe obtain

iyr—llzyr = i Vr_lyr I:yr~
r=2

V
r=2 r

Now choosev; = 1 andv;_1/v, to be independent of, say,v,_1/v
(2y) L r=2...,n Then

n

n
Z Yr-1Fy < (2')’1)_1 Z yrFy, = (271)_1yGy-

r=2 r=1

On the other hand, sincg = 2y1v_1 = (2y1)"1v1 > 1, we have
Fy. < vFy,, so that we have

n n
Z I:yr < Z Vr FYr = Gy,
r=1 r=1

n
which implies that &+ 3} Fy < 1+Gy. Letys = mys(vy+...+v,) and
r=1

0 2 2
¥5(y +G)
= g g__’5
=AY S T e

Then itis clear tha® < A. Thus finally we obtain the majorization

Y11YGy < (2y1)'YGy + (L + Gy)A,
223 Or,
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yGy < 2y1(1+gy) A

This is of the same form as the majorization we had for the pasdes
H in the case of simple eigen-values. We proceed exactly dmtrcase
and prove thaG(y) converges foty| < ¢ for suficiently small positive
d. Then it follows that~; andFy converge folys, ..., yn in the complex
regionlyi| < vi6,...,|¥nl < vad. We have thus proved the convergence
of Fx in a complex neighbourhood of (Q., 0).

We shall inidicate briefly the construction 5f< and the proof of its

convergence in the case in which for sokpey = Z Or4r. As we have

=1
mentloned already, thiy in this case are so chosen thatus, ..., Un,
., 0) = We(ug,...,up), k=1,...,m whereVy is a polynomlal with
complex coﬁiments containing onIy terms of the foray g,

ud for thosegy, ..., gn With g1 +. . . +0n > 2 which satisfyly, = 2 ArOr.
=1
(We recall that there are only finitely many sunhuples) Ian we

.....

r=1

stitutinguk = yx — Fk(Y1, . . ., Yn) in the polynomialsvy, we can express
Vi as a power-series in the complex variabjes . ., y, with complex
codficients and starting with quadratic terms. Also, sifgestart with
quadratic terms, we have

u? = (yi = Fi(ys, ..., yn))® = y* + terms of degree> g,

.....

01+ ...+ gn. Now substitutinguy = y; — Fi(y1,...,¥n), | = 1,...,nin
the condition)(k(ul,...,un,O,...,O) = Wi(uy,...,u,) and comparing
codficients ofy" ...y on both sides, we find that

and hencerg, . g,U ... U = akg, .g.Ys ... Yo + terms of degree> 224

r=1

kgy,..gn = {lﬁk - Z Fiy ‘ﬁr} + &Ck-1,91,....0n
01

- Z & (o +1)Ckgi,..g1-1, g+1..g» + @ polynomial in the
r=2

coeﬁicients inFl,.. ,FnandVq,...,V, of degree% g-1. We deter-

.....
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induction on the lexicographic ordering of the subscrits . ., g, and
the natural ordering df; the codficientscyp, ., are determined from
n

@BXL5561) in the same way whety # >, g 4. There remains the proof
I=1

of the convergence d¥fx andV as p6wer—series iff1, ..., Yo Which is
trivial for the polynomialVy. Since

— g1
Vk(ul,,Un) = Z (YKgl ..... gnul ... Un,
91500, A=2 9

(o)

h h h

Vik(ug,...,un) < ve E ull...unm<y65(u1+...+un).
hy+...+hp>2 h=2

Sinceu; =y - Fi(y1,...,Yn) and sou < y; + F', we have

Vk(ul,...,un)<y62(y1+...+yn+FI+...+F;)“.
h=2

n
If we defineF = 3 ukF;, uk positive constants as before, we have
k=1

Fr<u'F,k=1,...,nand

ya(Y1 + ...+ Yn + F)?
1-9ygyr+... +Yn+F)’

Vi< Y6 ) Yhya+ ...+ Yo+ F)" <
h—2

which is of the same form ab and again we get a majorization of the
type

YyGy < 2y1(1+ Gy) A
The proof of the convergence Bf proceeds in the same way.

We consider next the problem of finding a condition in ordat the
solutionx, = x«(8) of X' = Ax+ ¢(x) be real. When all the eigen-values
were simple we found thal, = 4, for a uniquely determinetl= I, and
in that case it was enough to prove that

F_k(%.?'“’%):F|(y1a---’yn),| :Ik,k:l,...,m’
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whereyx = u;. In the case in whichly has multiplicity> 1, /Tk also has
the (same) multiplicity> 1, A being a real matrix. It is clear that= I
is not uniquely determined for tho&dor which Ax has multiplicity> 1.
However, we can rearrange the eigen-val@eand defindy in such a
way that for eaclk, Ik is uniquely determined. We shall illustrate this in26
the case in whicle = 1. Then, by[3.5.836)}x = Ax-1. We now arrange
the A in such a way thaty = A; andAx_1 = 4_1; so thatl, = 4,_1. This
means that we now defig k = 1,...,n, in such a way that if for some
k, Ak = Ak_1, thenlk_l = |k — ];

Sincexis real,x = Cy = Cy. If Cx denotes the columns of the matrix
C, we can choose agafty = Cy, Cx = C; wherel = I corresponds to
the above ordering ofy, and hence

Cok+Cly =Cw+Ciy, kI1=1,...,m,

so that once agaip = y;, wherel = Ix is uniquely defined as above.
Then we apply the method used in the case of simple eigersdtu
prove that

FrkVis -2 Yn) = FkWips - oo W1) = FiYa. - yn) | = e

Formally, if we writeuy = uj, | = Iy, after the proof of the convergence
of Fx in a complex neighbourhood gf = 0,...,y, = 0, it would follow
thatu is the complex conjugate of the complex variablevhenl = Iy
defined uniquely as above.

Now we proceed to find explicitly the solutions of

U = kUi + &Uk-1 + xk(Ug, ..., Um), kK=1,...,m
For this we apply a method similar to the one used in the casamngfle
eigen-values. Given a fliciently smalle > 0, if we seek a complex
m
solutionug such that |u? < €, we prove thatln,, = ... = Uy = 0. 227

k=1
Lethn,1, ..., hm bem—npositive constants, to be chosen later. Consider

the positive functiorv = v(s) defined fors > 0 by

m m
2 —
V= Z hk|uk| = Z hkukuk.

k=n+1 k=n+1



172 3. The three-body problem: general collision

Suppose that & v(s) < e for all s> 0. Then

V() [e |
|Uk|§ h_k< h—k,k—n+1,...,m.
m

We havev' = 3 he(u ik + ucly). From the diferential equations we
k=n+1
have

U = AUk + Bclk-1 + xk(U), T = Ak + a1 + k(D).

So

m
vV = Z hic (Ui (AkUk + &1 + xk(U)) + Uk(AkUk + &Uk-1 + xk(U)))
k=n+1

m m
=2 Z hiokUkUx + Z hiex(UkUk-1 + UkUi—1)
k=n+1 k=n+1

£ (U@ + Tiovk(W)).

k=n+1

On the other hand,

m m
Z hiokUKUx + Z hex(UkUk-1 + UkUk-1)

k=n+1 k=n+1
. & & & hy
= Z ok (Uk + — Uk-1)(Uk + —Uk-1) — Z — € U1 U1
k=n+1 Pk Pk k=n+1 k

Sinceeﬁ = g ande,;; = 0 (becausel, has negative real part ang, 1
positive real part, so thal, # An1), We have

m m m-1
hi _ h _ O he _
—eﬁuk—luk—l = — &Uk-1Uk-1 = €+ 1 Uk Uk
k=n+1 Pk k=n+1 Pk k=n k+1
m-1
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228 Hence we obtain

Vo= Z ok U + Z o (Uk + p_Uk 1)(u + p—kUk 1)-

k_n+1 h=n+1
- Z 2 62 Ukl + Z (U@ + Uiek(W)
k=n+1 P+l k=n+1
m-1 h
>, (o= @)Ul + it
k=n+1 P+
+ Z hi(Ukc(@) + Tiork(W)).
k=n+1

1
Now we choosé, = Ehkpk/)k+1, k=n+1,....m-1,h,;1 =1, so

1
thathyox — = Ehkpk whenec,; = 1 and= hyox wheng 1 = 0.

hk+1

Pk+1
(ashmom is positive). Hence

In any case we havapy — Sl > 2hkpk ans alsdhyom > thpm

1 m _ m _ _
25 2, Mot 2 A(UB(@ + ()
k=n+1

Lets = min(ons1, - . .,om) > 0. Then we have

m

1 _ _
vz BV D U@ + Ork(u).
k=n+1
As in our previous discussion, singg(us,...,Un,0,...,0) = 0 implies
that each term of«(uy, ..., uy) contains at least one of,1,...,Un as

€
h—l, and

the yk are uniformly convergent, we have, forfBaiently larges.

a factor andyy starts with quadratic terms, and sinog <

| Z hi(Uixk(U) + Uy i(U))] < —ﬂV

k=n+1
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Thus we obtain the flierential inequality 229
1
V> s (ve 148y > 0,

1

L . ——Bs . . . .
which implies thatve 4 is non-decreasing, and since it is non - nega-
tive, we necessarily hawe= 0. This means that

Un+1: ZUmZO
The system of dferential equations is therefore reduced to

U = Al + &1, k=1....mu =0, k=n+1....m

n
in casely # Y, grAr and to
1

r=
Up = AkUk + &Uk-1 + Vi(Ug, . .., Uk-1),

k=1...,mu =0 k=n+1...,m

in the contrary case. Consider the first case. Smce 0, we have
u; = A1ug, or (e %) = 0, which on integration from 0 te gives

U = cle’“s, CL = Ul(O).

We insert this ini, = AU +€xu; wheree; = 0, if 22 # A3 ande; = 0 or
1, if 2 = 11 and integrate from 0 ts. We can continue this procedure
n
230 and obtain all thel. In the second case, when for sokay = > o 4;,
r=1
once again since; = 0 andVy = 0, we havey] = 1;u; from we obtain
u; = e;e1S, Suppose that we have already proved that
U = (¢ + Zr(Ca,...,C_1, 9" = Q(Cy, ..., G, 5)ENS),

forr = 1,...,k -1, where¢; = u(0) and & is a polynomial in
C1,...,C—1 ands, which vanishes fos = 0. Then we show that

U = (Ck + Z(ca, . . ., Ce1, 9)e™S = Qu(cy, . . ., Ck, S)E™S.



6. Application to the three-body problem 175

If & = 0, U = AUk + Vi(Uy, ..., Uk-1) and insertingls, . .., U1 already
found, and integrating from 0 tg we getuy as above, as in the case of
simple eigen-values. Hy = 1, then necessarilyx_1 = Ax and hence

Uy = AkUk + &clk-1 + ViU, . . ., Uk-1)
= AUk + Qe_1(C1, - - -, Gkt 9™ 5+ Vi(Uy, - . ., Uk1)
= AUk + Qe1(Crs - - - Cke1, €% + Vi(Q, - - ., Quen)e™S,

and we can integrate this to obtaig Thus all theuy are determined by
induction.
As in the case of simple eigenvalues, it follows thatif= uk(0),

m m
then Y |cl? < e. However, if 3 |cf? < €, it may no longer be true
k=1 k=1

m
that 3 |uk(s)l® < e for all s > 0, because of the presence of the terzm1

P(Cy, ..., C1, 9) in ug. However,ug(s) — 0 ass — .

Finally, if we arrange the eigen-values ans defip& = 1,...,m,
in such away thally_1 = A, k.1 = Ik — 1, and sQl_1 = -1, Ak = 4y,
then we can prove as in the case of simple eigen-valuesughat uT,
| =1, k=1,....,m Then it follows thatck__ o, =, k=1,.

and therefore a general solution such tﬁalluklz < € contains exactly

nreal parameters. This completes the proof of Thedreml3.5.3.

6 Application to the three-body problem

We shall now apply the general theory of stability of solnfaf sys-
tems of ordinary dferential equations to the special case of the system
of differential equations of the three-body problem near a genelial
sion.

We obtained ir§ H the system of dierential equation§{3.5.36) near
the general collision dt= 0 or, equivalently, as = co, wheres = e

6
5 = Zak|6| +o(01,...,06), k=1,...,6. (3.6.1)
=1



232

176 3. The three-body problem: general collision

whereay are real constants determined uniquely by the masses and the
@k are power-series ity, . .., d¢ with real codficients, also determined
uniquely by the masses, starting with quadratic terms andergent for
small values ofé4), ..., |ds]. We consider the corresponding normalized
system of diferential equations in the unknown functiongs), k =

., 6, and shall the general theory 8 of solutions asymptotic to
the equilibrium solution.

We have to discuss the two cases, the equilateral case andllihe
near case, and we had computed, at the englHf the eigen-values
A1, ..., of the matrixA = (ay) in both the cases. In the equilateral
case there are three negative eigen-values:

1
/11=—a2=——6 13-12V1-3a,

1 1 2
/122—8.1:6—6 13+12 1—38.,/13:—30:—5

1
wherea = (MM + Mpmg + MyMg) (Mg + Mp + mg)‘z; O<acx 3 and
1
0< —1; £ —-122 < =13, 41 = Ap only whena = 3 orm =mp =mg. In
the collinear case, there are two negative eigen-values:

2 1 1
/llz—boz—é,/lzz—b]_: 6_6 V25 + 16b,

MmA+(1l-w)l+1l-w)?)+ml+wt+w?
m +Mp(w 2+ (1-w)?) +mg
>0;0<-21,< -1

whereb =

We first consider the case in whiclh # Z g4 for non-negative

integersgy,...,gpWithgr +...+9p > 2 (p = 2 in the collinear case
andp = 3 in the equilateral case) In the equilateral case,

Up = C1€ 25 Uy = Cpe 5, ug = cze 5, (3.6.2)
provided that not aling, mp, Mg are equal, and in the collinear case,

u; = C]_e_bos, U = Cze_bls. (3.6.3)
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From [3.6.2) and[{3.613) we find that the essentiflledénce between
the equilateral and collinear cases consists in the fattttigageneral
solution asymptotic to the equilibrium solution &is»> co contain 3 real
parameters in the former case and only 2 in the latter. Werebdbat

. N 2. :
ai, ap andb; are in general irrational, whereag = by = 3 is rational.
Sincee s = t, we have from[(3.6]12) an@(3.6.3),

Up = Cit®2, up = Got™, uz = cat®  in the equilateral case, (3.6.4)
Uy = ¢t Uy = et in the collinear case. (3.6.5)

We have to examine the possibility of multiple eigen-valugsice
in the collinear case, the possible double rds{ds have positive real
parts and the solution depends only on the eigen-values neigative

real parts, it follows that the only solutions are those giby (36.5)
P
wheneverlk # Y, g:A;. In the equilateral case, the only possible double
r=1

3
eigen-value is;y = ap. Thendy = ) oA, is satisfied withg; = 0,

r=1
02=03=0.
We now consider the case in which for sokewe havel, =

p
2. Ordr, 01+ ...+ 0p > 2. We take the equilateral case first. We have to
r=1

discuss the possibility of the existence of nhon-negatitegersg:, g, g3
with g1+ g2+03 = 2 such that-Ax = gi1a2+0pa1 +gza,, Where—1; = a,
-2 = a1, —A3 = ag(ap > a1 > a). Since the polynomial/; = 0 al-
ways, it is enough to consider only the two cakes?2, 3 corresponding
to -1, = a; and-A13 = a,.
If k = 2, then-1, = & andg, = g3 = 0, so thatv(u;) = aul’. We 234
a1 . .
havea; = giap, or ol 01 = 2. Denoting this integer bly, we have
?)

VI3Fw-1
h=2_ Y22 Wo 2 herew = 12VI-3a (3.6.6)
2  V13-w-1

For each integen = 2,3, ..., we can determing/ anda from this equa-
tion andV(uy) = aull.
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If k=3, then—13 = a, = g1a + gpag With g1 + g» > 2, since in this
casegs = 0. We observe thats > a,, sog, = 0 or 1. Hence, either
01 >2(ifg =0)orgs > 1(if g2 = 1). We show thag, cannot be 1,
s0Q; > 2 necessarily. In fact, since we see thatr a; > ag, we have
02> = 0 and sag; > 2. Henceay, = giap or?; = g1 > 2. Denoting this

integer byg we have

_% _ 4
a2 V13-w-1
Again we can determines and a from[[3.6]7) for each > 2. In this

caseVa(Uy, W) = Auf.
We next prove that only one of the possibilitie

g wherew = 12V1 - 3a. (3.6.7)

Va(up) = aUll, Va(ug, Up) = 0; Va(ur) = 0, Va(ug, up) = AU,

can occur. (It cannot happen that(uy) = o andV3(ur, Up) = ud). In
order to prove this, we show th&f({316.6) ahd (3.6.7) canaatatisfied
simultaneously for integerg h > 2. We have, from[(3.616) and{3.6.7),

Vl3—w=l+:—;, V13+w= 1+4Eh.

Eliminatingw by squaring and adding we get
26g° = (g + 4)° + (g + 4h)%.

So it is enough to prove that this diophantine equation dathave
integer solutiongy,h > 2. We can write this as (26— 4)° = 416 +
25(g + 4h)? from which we have
416 = (259 — 4)? — 25(g + 4h)? = (30g + 20h — 4) (20g — 20h — 4)
or (159 + 10h - 2) (59— 5h— 1) = 52

Settingp = 159 + 10h — 2, g = 5g — 5h — 1, we have to show that there
are no integer, g such that

pg=52 p-3q-1=25h, (3.6.8)



6. Application to the three-body problem 179

By definition of p, p > 0 and sincepq = 52, > 0. The only integer
factorisationspq of 52, withq < p, arep =52,q=1,p = 26,9 =2
andp = 13,qg = 4. It is easy to check that none of these factorisations
satisfies [[3.6]18) with integdr > 1. This proves that only one of the
exceptional cases
Va(up) = aul), Va(ug, up) = 0; (3.6.9)
Va(up) = 0, Va(up, Up) = Buf, (3.6.10)
can occur.
Suppose that the possibilify {3.5.9) holds. Then:= c;e!1s = cit®, 236
sinced; = —a ande™® = t, ¢; = uy(0). Inserting this inu, = Aoup +
V>(u1) we get

W = —aqlp + el = —aqUp + aCle" = —ayup + acle™®s,
SO [e™S) = ac'l‘, and integrating from 0 tg and puttingu,(0) = ¢y,
WS = ¢, + acls, orup = (Cp + aclg)e ™S,
Thus, if (38.9) holds, then
ug = C1t?, Uy = (2 — acll log t)t?, ug = cst™.(h integer > 2)
Similarly, if @&.10) holds, we have

Uy = Cot®, Uy = Cot™, Ug = (Cz — AcS log t)t®. (g integer > 2)

In the equilateral case, if we have a double rapt= a, (whenm; =
np = mg), we haveh = 1. SoV,(u;) = au and hence

U = Cltaz, Uy = (C2 —aC Iog t)tal, Uz = C3ta°.

The value ofx will be justex(= 0 or 1) sincel; = —ap = —a; = A».
Finally we consider the collinear case. In this case thermenlg

2
conditionAg = 3 gr iy, i.e. by = jb, j integer> 2, becausel; = —by,
r=1
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Ao = —by and 0< —1; < -1, this givesb = j% + J;. Moreover, we

haveV,(up) = yui so that we have
Up = €121% = c1e7%% = ¢t up = (cz + ycl 92 = (cz — yc! log tyt:.

We collect together the results in the two cases. 237

Equilateral case.

. a .
@) If % anda—1 are not integersi; = C1t®, U, = Cpt¥, uz = cst,
2 >
u =0,k=4,56.

(i) If 2 = anintegerg > 2,
az
U = Cltaz, Uy = Cztal, Uz = (C3 - CXC? Iog t)tao, uc=0,k=45,6,

(III) U = Cltaz, Uy = (C2 —ﬂC?_ Iog t)tal, Uz = C3ta°, ux =0,k=45,6,

a :
wherea—l = an integeth > 1.
7)

Collinear case.

@ If % is not integral then
1

u; = CltbO, U = Cztbl, u =0, k=3,4,5,6.
.. by . .
(i) If = =anintegerj > 2,
bo
U = cit®, up = (¢ — yci logt)t™, ug = 0,k = 3,4, 5, 6.
The constants of integratias have small absolute values.

By taking the inverse of the transformatiop= yx — Fx(y1,...,Yn),
k=1,...,m we haveyy = ux + Gk(Us,...,un), kK = 1,...,m, where
Gy are power series, with cicients complex in general, starting with
quadratic terms and converging for smalll. In our casem = 6 and
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n = 3 or 2 according us we are in the equilateral or in the collinea
case. So we see after inserting the above solutignghatys, ..., Vs
are power-series, without constant termsyinu,, uz in the equilateral
case, and i, Uy in the collinear case. Singg are obtained frondy
by a linear transformatiod = Cy, |C| # O, it follows thatés,...,ds
are power-series without constant termsuinu,, in the collinear case
and inug, Uy, Uz in the equilateral case; these power-series converge for
small|uy|, and hence for dficiently smallt. Since the power-series do
not have constant terms angt) — 0 ast — 0, it follows thatsy — 0
ast — 0.

We recall thatpy, = px + ok, O = Ok + dk+3, K= 1,2, 3, wherepy, Ok
are uniquely determined by the masses. We also Ipave 0. Since
ds = O for a collision orbit, we havé; = 0. We have by definition
P4 = P, = 6g anddg satisfies the dierential equation

6
5= 3@ +¢g(61,. ., 56), (3.6.11)
=1

whereag are real constants determined uniquely by the masseggand
is a power-series with real cfiients, again uniquely determined by
the masses, and starting with quadratic terms. Hence thegside of
B&11) is a power-serie® = Q(d1, .. .,ds) With real codficients and
without constant terms. We have determirded . ., 6 as power-series

in ug(k = 3 or 2) without constant terms and converging for smuail
HenceQ is also a power-series i without constant term and converg-
ing for small|uk|. Sops = s can be obtained by integrating from 0 239
to s. In order to study the behaviour pf, ast — 0 (or, equivalently, as

s — ), we have to prove the convergencesas o, of the integral

f Q©1, ..., 66)ds

p
(We do this only in the case in which the relatigp # . gr A, holds;
1

r=
the discussion in the other case is similar). A typical tem(Qis
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Bh... hnu?l .. uﬂ”, wheren = 3 or 2 according as we are in the equi-

lateral or collinear case. In the equilateral casg,u,, Uz are given
by (3.64) whenay, a3, a, are distinct and so a typical term @ is
Bhahoh Cy Oy Cie(Maerhzai+hs2o)s  This term is integrable in & s < oo
and we have

S
f o (g hoay +hsae) Sy g
0

g (mag+haa+hzao)s _ 1

—(haz + hpay + hzap)

and this tends tohga, + hoa; + hsa,)™ ass — . Since the con-
stantscy, ¢y, ¢z have small absolute values, so haveu,, uz. Since

Q converges uniformly for smalli|,k = 1,2, 3, we can integrate the
power-series and obtain

s
p4:63:fQ(61,...,66)ds+ P4

wherepy is a constant of integration, and so we haye= ps+ a unique
power-seires i, Uy, Uz withtout constant term. The power-series con-
verges for smalluy| and so for smalt. This proves thap, tends to a
finite limit ps ast — 0.

Since the dierential equations of motion remain invariant under
an orthogonal transformation of coordinates, we can perfarfixed
orthogonal transformation in the plane of motion, so thabecomes
0 in the new coordinate system. In other words, we may asshate t
ps — 0 ast — 0. A similar argument can be carried out in the case of
double eigen-values, and also in the collinear case, ancce/¢hatp,
tends to a finite limit, which may be assumed to be O as 0, in all
cases.

We shall now go back to the original coordinate system andxjind
Yk, K= 1,2, 3, the coordinates d?y, P,, P3. First we have

e = pit?’® = (P + )23, P> 0,
Ok = Gt ™3 = (G + Skea)t V3, k= 1,2,3,
Ps=pP; =080 =0,=0.
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Hencepy are power-series ik, k = 1,2,3 ork = 1,2 according as
we are in the equilateral or collinear case, which conveogsrmalljuy|.
And py = p(uNt?’3, ge = gi(u)t™/3, k = 1,2,3. We can also calculate
C = cosps ands = sinp4 as power-series in which converge for small
|u]. Since

&1 = P1C, &2 = P1S 3 = P2C— P3S §4 = P2S+ P3G,
N1 =01C— QoS 172 = 1S+ (oC, 1713 = (C— (35,174 = (2S+ (3C,

we see that the relative coordinatég £2) and €3, £4) of P andP, with 241
respect td’3 and the corresponding components of momenia. . , 14,
are also given by convergent power-seriesyn

& = &x(ug, Uz, U)t?3, i = (U, U, ug)t™3

in the equilateral case, and

k= E(u, W3, i = mp(ug, wp)t 3
in the collinear case. We can now go back to the absolute twies
Xk, Yk. If v denotes any of the six coordinates yk, k = 1,2, 3, then we
have

v = t23P(uy, Up, u3) andv = t23P(uy, up)

in the equilateral and collinear cases respectively, wReiea power-
series convergent for small|, and hence for smaltx|. The compo-
nents of momenta also have power-series expansions

w = t3H(Ug, Up, Ug), W = t3H(Ug, Wp),

H converging for smalluy| and hence for smalty|.

We consider now the manifold of all the collision orbits. €r
sponding to dterent values of the real parametetsc,, c3 in the equi-
lateral case andy, c; in the collinear case, we obtainfiirent colli-
sion orbits in a neighbourhood of= 0. Let us determine the dimen-
sions of this manifold in the neighbourhoodtof 0. The coordinates 242
X Yk, K = 1,2, 3, being power-series iog (k = 1,2,3 ork = 1,2), we
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have three real parameters in the equilateral case and dlpasme-
ters in the collinear case. We have proved that the moticgstplace in
a fixed plane, chosen as the ¥)-plane in our discussion. Its position
is determined by the three angles of a normal to it: this veslthree
extra independent real parameters in both the limitingsca¥ée have
assumed that the centre of gravity remains fixed at the gragid the
centre of gravity integrals involve six real parametersiahy, the points
on a orbit are parametrised by the real variablEhus in the equilateral
case we have 13 independent real parameters, and in theeenltase
12. Since the coordinate functions are regular analytictfans of these
parameters, we conclude that the manifold of all collisiduits is a real
analytic manifold, of dimension 13 in the equilateral casé &2 in the
collinear case, in a neighbourhood to 0. Further, in the collinear
case there are three distinct orderings of the pdi#, P; and hence,
corresponding to these, there are three distinct real i2mional ana-
lytic manifolds. (In the case of a simple collision we haverséhat we
have power-series expansions for the coordinates in theblat'/3; the
manifold of collision orbits is there a real analytic maif@f dimen-
sion 16 in the neighbourhood of a simple collision).

We remark that since our solutions are described onlytned, the
above description of the collision orbits is purely localisinot possible
to describe the manifold of collision orbits in the largeattis, for allt,
by our method.

We consider the nature of the singularity when there is argéne
collision att = 0. Since the coordinates are power-seriesiiny,, us
or in uy, Uy, the nature of the singularity depends on the arithmetical
nature of the eigen-valueg, a;, a, in the equilateral case arg, by in
the collinear case. Hy, a; in the equilateral case attd in the collinear
case are rational, then we have an algebraic branch potntad, so
that the solutions of the three-body problem can be unifeeghiin a
neighbourhood of = 0. If ap,a; are irrational anct;,c; # 0 in the
equilateral case, ang irrational andc, # O in the collinear case, we
have an essential singularity atE 0. In this case it is not possible to
continue the solutions analytically beyond the generdisioh.

i
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