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Preface

Until recently the structure theory of Jordan algebras dealt exclusively
with finite dimensional algebras over fields of characteristic , 2. In
1966 the present author succeeded in developing a structuretheory for
Jordan algebras of characteristic, 2 which was an analogue of the
Wedderburn-Artin structure theory of semi-simple associate rings with
minimum condition on left or right ideals. In this the role ofthe left
or right ideals of the associative thory was played by quadratic ideals
(new called inner ideals) which were defined as subspacesZ of the Jor-
dan algebraJ such thatJ Ub ⊆ Z whereUb = 2R2

b − mRb2,Ra the
multiplication by b in J . The operatorUb (P(b) in the notation of
Braun and Kocher), which in an associative algebra isx → bxb, was
introduced into abstract Jordan algebras by the author in 1955 and it has
playedan increasingly important role in the theory and litsapplications.
It has been fairly clear for some time that an extension of thestructure
theory which was to encompass the characteristic two case would have
to be “quadratic” in character, that is, would have to be based on the
compositionyUx rather than the usualx, y (which is 1

2(xy+ yx) in asso-
ciative algebras). The first indication of this appeared already in 1947 in
a paper of Kaplansky’s which extended a result of Ancocheas’s on Jor-
dan homomorphisms (then called semi-homomorphisms) of associative
algebras to the characteristic two case by redefining Jordanhomomor-
phisms using the productxyx in place ofxy+ yx.

a completely satisfactory extension of the author’s structure theory
which include characteristic two or more precisely algebras over an ar-
bitrary commutative ring has been given by McCrimmon in [5] and [6],

iii



iv 0. Preface

McCrimmon’s theory begins with a simple and beautiful axiomatiza-
tion of the compositionYUx. In addition to the quadratic character of
the mappingxøUx of into its algebra of endomorphisms and the exis-
tence of unit 1 such thatU1 = 1 one has to assume only the so-called
“fundamental formula”UxUyUx = UyUx, one additional indentity, and
the linearizations of these. Instead of assuming the linearizations it is
equivalent and neater to assume that the two identities carry over on ex-
tension of the coefficient ring. If the coefficient ringΦ contains1

2 then
the notion of a quadratic Jordan algebra is equivalent to theclassical
notion of a (linear) Jordan algebra there is a canonical way of passing
from the operatorU to the usual multiplicationR and back. Based on
these fundations one can carry over the fundamental notions(inverses,
isotopy, powers) of the linear theory to the quadratic case and extend
the Artin like structure theory to quadratic Jordan algebras. In particu-
lar, one obtains for the first time a satisfactory Jordan structure theory
for finite dimensional algebras over a field of characteristic two.

In these lectures we shall detailded and self-contained exposition of
McCrimmon’s structure theiry including his recently developed theory
of radicals and absolute zero divisors which constitute an important ad-
dition even to the classical linear theory. In our treatmentwe restrict
attention to algebras with unit. This effects a sybstantial simplication.
However, it should be noted that McCrimmon has also given an axiom-
atization for quadratic Jordan algebras withour unit and has developted
the structure theory also for these. Perhaps the reader should be warned
at the outsetthat he may find two (hopefully no more) parts of the expo-
sition somewhat heavynamely, the derivation of the long list of identities
in §1.3 and the proof of Osborn’s thorem on algebras of capacity two.
The first of these could have been avoided by proving a generaltheo-
rem in identities due to Macdonald. However, time did not permit this.
The simplification of the proof of Osborn’s theorem remains an open
problem. We shall see at the end of our exposition that this difficulty
evaporates in the important special case of finite dimensional quadratic
Jordan algebras over an algebraically closed field.

Nathan Jacobson
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Chapter 0

Artinian Semi-simple Rings
with Involution

In this chapter we shall determine the Artinian semi-simplerings with 1

involutions. The results are all well known. The final formulation in
terms of matrix rings (in§2) will be particularly useful in the sequel.
The results which we shall state without proof can be found inany stan-
dard text on associative ring theory.

1 Determination of the semi-simple artinian rings
with involution.

Throughout these notes associative rings and algebras willbe assumed
to beunital, that is to contain a unit 1 such thata1 = a = 1a for all a in
the ring. We recall that such a ring is calledright artinian if it satisfies
one of the following equivalent conditions:

Minimum Condition:Any non-vacuous set of right ideals of the ring
contains a minimal element.

Desending chain condition:There exist no properly descending in-
finite chain of right idealsI1 ⊃ I2 ⊃ I3 · · ·

A right artinian ring is calledsemi-simpleif it contains no non-zero
nilpotent (two-sided) ideal. An idealN is nilpotent if there exists a pos-
itive integerN such that every product ofNzi in N is 0. Equivalently, if

1



2 0. Artinian Semi-simple Rings with Involution

Z L is defined to be the ideal generated by all be,b ∈ Z , c ∈ L andZ m

for m= 1, 2, . . . is defined byZ 1
= Z ,Z k

= Z k−1Z thenNN
= 0.

We recall the fundamental Wedderburn-Artin structure theorems on2

semi-simple (right) artinian rings.

I. If a is semi-simple artinian (, 0) thena = a1 ⊕ a2 ⊕ · · · ⊕ a3 where
ai is an ideal which regarded as a ring is simple artinian. (A ring a
is simple ifa , 0 and 0 anda are the only ideals ina.) Conversely,
if a has the indicated structure then it is semi-simple artinian.

II. A ring a is simple artinian if and only ifa is isomorphic to a com-
plete ring∆n of n × n matrices over a division ring∆. This is
equivalent to isomorphism to the ring End∆V of linear transfor-
mations of ann dimensional (left) vector spaceV over a division
ring ∆.

It is easily seen that thesimple componentsai in the first structure
theorem are uniquely determined. In the second structure theorem,
nand the isomorphism class of∆ are determined bya. This follows
from the following basic isomorphism theorem.

III. Let Vi, i = 1, 2, be a vector space over a division ring∆i and
let ρ be an isomorphism of End∆1V1 onto End∆2V2. Then there
exists a semi-linear isomorphismS ofV1 ontoV2 with associated
isomorphismsof ∆1 onto∆2 such that

Aσ = S−1AS, A ∈ EndV1. (1)

We now consider semi-simple artinian rings with involution. First,
we give the basic definitions, which we formulate more generally
for rings which need not be associative. As in the associative case,3

we assume the rings are unital. Also homorphisms are assumedto
map 1 into 1 and subrings contain 1.

Definition 1. A ring with involution is a pair (a, J) wherea in a
ring (with 1) andJ is an involution (= anti-automorphism such
that J2

= 1) in a. A homomorphismσ of (a, J) into a second ring
with involution (Z ,K) in a homomorphism ofa into Z (sending
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1 into 1) such thatJσ = σk. A subringof (a, J) is a subringZ
(containing 1) ofa which is stable underJ. An ideal of (a, J) is an
ideal ofa which is J-stable. ( , ) issimpleif a , 0 anda and 0 are
the only ideals of (a, J).

Let (a, J) be simple and assumeZ is an ideal, 0 in a. Then
Z +Z J is an ideal in (a, J). HenceZ +Z J

= a. Also Z ∩Z J

is an ideal in (a, J) soZ ∩ Z = 0. Thusa = Z ⊕ Z . If L is an
ideal in Z thenL + LJ is an ideal in (a, J). It follows thatZ is
simple. This shows that if (a, J) is simple then eithera is simple or
a = Z ⊕Z J whereZ is simple.

An associative ring with involution (a, J) is artinian semi-simple
if a is artinian semi-simple. It follows from the first Wedderburn-
Artin structure theorem that such a ring with involution is adirect
sum of ideals which are artinian simple rings with involution and
conversely. An artinian simple ring with involution is of one of the
following types:a = Z ⊕Z J whereZ � ∆n, ∆ a division ring or
a � ∆n (or � EndV whereV is n dimensional vector space over a4
division ring∆). We now consider the latter in greater detail.

Thus consider EndV whereV is ann-dimensional vector space
over∆. Assume EndV has an involutionJ. LetV∗ be the right
vector space of linear functions onV. We denote the elements of
V∗ as x∗, y∗ etc. And write the value ofx∗ at y by 〈y, x∗〉. This
gives abilinear pairing of the left vector spaceV/∆ with the right
vector spaceV∗/∆ in the sense that

〈y1 + y2, x
∗〉 = 〈y1, z

∗〉 + 〈y2, x
∗〉

〈y1x∗1 + x∗2〉 = 〈y, x
∗
1〉 + 〈y, z

∗
2〉 (2)

〈αy, x∗〉 = α〈y, x∗〉, 〈y, x∗α〉 = 〈y,∗ 〉α, α ∈ ∆

Also the pairing isnon-degeneratein the sense that if〈y, x∗〉 = 0
for all x∗ ∈ V∗ theny = 0 and if 〈y, x∗〉 = 0 for all y ∈ V then
x∗ = 0. Let∆◦ be the opposite ring of∆ : ∆◦ is the same additive
group as∆ and has the multiplicationα ◦ β = αβ. Then if we put
αx∗ = x∗α,V∗ becomes a(left) vector space over∆◦ and the last
equation in (2) becomes〈y, αx∗〉 = 〈y1, x∗〉α.
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Let A ∈ EndV. Then we have a uniquely determined linear trans-
formationA∗ in EndV∗ satisfying

〈yA, x∗〉 = 〈y1, x
∗A∗〉, y ∈ V, x∗ ∈ V∗ (3)

This is called thetransposeof A. If we use the usual functional
notation x∗(y) for 〈y, x∗〉 then x∗A∗(y) = x∗ is the resultant ofA5

followed by x∗(yA) or x∗A∗. It follows directly that

(A+ B)∗ = A∗ + B∗, (AB)∗ = B∗A∗ (4)

andA→ A∗ is bijective from EndV to EndV∗. ThusA→ A∗ is
an anti-isomorphism of EndV onto EndV∗.

Now suppose EndV has an involutionJ. SinceA→ AJ andA→
A∗ are anti-isomorphisms,AJ → A∗ is an isomorphism of EndV
onto EndV∗ (considered as left vector space over∆◦). Hence by
the isomorphism theorem III we have a semi-linear isomorphism
(S, s) (S with associated division ring isomorphisms) ofV/∆ onto
V∗/∆◦ such that

A∗ = S−1AJS, A ∈ EndV (5)

Now put
g(x, y) = 〈x, yS〉, x, y ∈ V. (6)

Theng is additive in both factors,g(αx, y) = αg(x, y) and

g(x, αy) = 〈x, (αy)S〉 = 〈x, αs(ys)〉

= 〈x, (yS)αs〉 = 〈x, yS〉αs

The mappingα → αs is an isomorphism of∆ onto∆◦; hence an
anti-automorphism in∆. The conditions just noted forg are thatg
is a sesquilinear form onV/∆ relative to the anti-automorphisms
in ∆. Since the pairing〈 , 〉 is non-degenerate it follows thatg is a6

non-degenerate form:g(x,V) = 0 impliesx = 0 andg(V, x) = 0
implies x = 0. We have

g(x, yAJ) = g(x, yS A∗S−1) = 〈x, yS A∗〉
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= 〈xA, yS〉 = g(xA, y).

HenceAJ is the uniquely determinedadjoint of A relative tog in
the sense thatg(x, yAJ) = g(xA, y), x, y ∈ V.

So far we have not used the involutorial characterJ2
= 1 of J. We

note first that the sesquilinear character ofg implies that ifv ∈ V
thenx→ g(v, x)s−1 is a linear function onV. Hence there exists a
v′ ∈ V such that

g(v, x)s−1
= g(x, v′), x ∈ V. (7)

Next we consider the linear mappingx → g(x, u)v in V where
u, v ∈ V. Since

g(g(x, u)v, y) = g(x, u)g(v, y)

= g(x, g(v, y)s−1
u),

it is clear that if we putA : x→ g(x, u)v thenAJ is y→ gA(v, y)s−1

u = g(y, v′)u. SinceAJ2
= A this givesg(x, u′)v′ = g(x, u)v for all

x, u, v. This implies thatv′ = γv, γ , 0, in∆, (independent ofv) so
by (7), we have

g(x, y)s
= δg(y, x), δ , 0 in∆. (8)

By (8) we haveg(x, y)s2
= δg(x, y)δs. We can choosex, y so that 7

g(x, y) = 1. Then we getδs = δ−1. If δ = −1 we haveg(x, y)s
=

−g(y, x). Theng(x, y)s2
= g(x, y) and g(αx, y)s2

= αs2
g(x, y) =

g(αx, y) = αg(x, y). Thenαs2
= α. So s is an involution in∆ and

g is a semi-degenerate skew hermitian form relative to this invo-
lution. If δ , −1 then we putρ = δ + 1 andh(x, y) = g(x, y)ρ.
Thenh is sesquilinear relative to the anti-automorphismt : α →
ρ−1αsρ andh(x, y)t

= (g(x, y)ρ)t
= ρtg(x, y)t

= ρtρ−1g(x, y)sρ =

ρtρ−1δg(y, x)ρ = ρtρ−1δh(y, x). Also ρtρ−1
= ρ−1ρs so ρtρ−1δ =

(1+ δ)−1(1+ δs)δ = 1 sinceδsδ = 1. Henceh(x, y)t
= h(y, x). Then

αt2
= α so t is an involution in∆ andh is a non-degenerate hermi-

tian form relative to this involution. Clearlyh(xA, y) = h(x, yAJ)
soA→ AJ is the adjoint mapping determined byh. We have now
proved.
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IV. Let V be a finite dimensional vector space over a division ring
∆ and assume that EndV has an involutionJ. Then∆ has an
involution j : δ → δ and there exists a non-degenerate hermitian
or skew-hermitian formh on V such thatJ is the adjoint mapping
determined byh.

The converse ofIV is trivial. Given a non-degernate hermitian or
skew-hermitian formh on V/∆ then the adjoint mapping relative
to h is an involution in EndV. We recall next how such forms are
constructed. Let (∆, j) be a division ring with involution and letV
be ann-dimensional vector space over∆. Let (v1, v2, . . . , vn) be a8

base forV/∆ andH = (ηi j ) ∈ ∆n be hermintian or skew hermitian,

that is,H
t
= ±H whereH = (ηi j ) and thet denotes the transpose.

If x =
∑
ξivi , y =

∑
ηivi then we define

h(x, y) =
n∑

i, j=1

ξiηi jη j . (9)

Then direct verification shown thath is a hermitian or skew hermi-
tian form accordings asH is hermitian or skew hermitian. More-
over,h is non-degernate if and only ifH is invertible in∆n. Since
it is clear that there exist hermitian invertible matrices for any in-
volution j and anyn (e.g the matrix 1) it follows that EndV has
an involution if and only if∆ has an involution. We remark that
there exist∆ which have no involutions. For example, any finite
dimensional central division algebra over the rationalsQ of dimen-
sionality> 4 has no involution. We remark also that if∆ = Φ is
field then j = 1 is an involution.

The construction we gave yields all hermitian and skew hermi-
tian forms onV/∆. Supposeh is a hermitian or skew hermitian
form on V/∆ and, as before, (v1, v2, . . . , vn) is a base forV/∆.
Then the matrixH = (h(vi , v j)) of h relative to the given base
is hermitian or skew hermitian and if=

∑
ξivi , y =

∑
ηivi then

h(x, y) =
∑
ξih(vi1v j)η j as before.

Let h have the matrixH = (ηi j ) relative to the base (v1, v2, . . . , vn)
and assumeh is non-degenerate or, equivalently,H is invertible.
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Let A ∈ End V and writeviA =
∑
αi j v j , so (α) = (αi j ) in the 9

matrix of A relative to this base. LetAJ be the adjoint ofA rel-
ative to h and writeviAJ

=
∑
βi j v j . It is clear that the defin-

ing conditions: h(xA, y) = h(x, yAJ) are equivalent to the con-
ditions h(viA, v j) = h(vi , v jAJ), i, j = 1, . . . , n. Using the ma-
trices (α) and (β) theren2 conditions give the matrix condition
(α)H = H(β)t,H = (h(vi j v j)), where (β)t is the transposed of the
matrix (β) = (βi j ). For,h(vi A, v j) = h(ikvk, v j) = h(

∑
αikvk, v j) and

h(v j , v jAJ) = h(vi ,
∑
β jkvk) =

∑
k

h(vi , vk)β jk and
∑
k
αikh(vk, v j) =

∑
k

h(vi , vk)β jk, i, j = 1, . . . , n are equivalent to the matrix condition

we noted. Then the matrix ofAJ is

(β) = H(α)tH−1. (10)

Now the mappingK : (α) → H(α)tH−1 is an involution in∆n.
Also A→ (α) is an isomorphism of EndV onto∆n and since this
mapsAJ → (α)k it is an isomorphism of (EndV, J) onto (∆n,K).

We note next that unlessj = 1 then we may normalizeh to be her-
mitian. Then supposej , 1 andh is skew hermitian. Choosej so
that j , j and putρ = j − j , 0. Thenh′ = hρ is sesquilinear rela-
tive to the involutionα→ β−1αρ andρ−1h′(x, y)ρ = ρ−1h(x, y)ρρ =
−(−h(y, x)ρ) = h′(y, x). Henceh′ is hermitian. Clearly the adjoint
mappings determined byh andh′ are identical. Ifj = 1 then∆ = Φ
is commutative and againh is hermitian unless the characteristic is
, 2 andh(x, y) = −h(y, x). Hence the two two cases we need10

consider are 1)h is hermitian, 2)∆ = Φ a field of characteristic
, 2, j = 1, h, skew symmetric.

It is easily seen that in the first case unless∆ , Φ a field of
characteristic 2, j = 1 andh( , ) ≡ 0 then there exists a base
(u1, u2, . . . , un) such that the matrix (h(ui , u j)) is a diagonal matrix
γ = diag{γ1, γ2, . . . , γn} whereγi = γi , 0. This is proved on
pp. 152-157 and pp. 170-171 of Jacobson’sLectures in Abstract
Algebra, Vol. II. The foregoing argument shows that (EndV, J) is
isomorphic to (∆n,K) whereK is the involution (α)→ γ(α)tγ−1 in
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∆n. If we take into account to the case omitted in 1) and 2) we see
that it remains to assume that∆ = Φ a field, j = 1 andh(x, x) ≡ 0.
In this casen = 2r is even and as is well known, there exists a base
(u1, u2, . . . , un) such that the matrix (h(ui , u j)) is

s= diag{Q,Q, . . . ,Q} where Q =

(
0 1
−1 0

)
. (11)

Then (EndV, J) is isomorphic to (Φn,K) whereK is (α) → S−1

(α)tS. 2. Standard and canonical involutions in matrix rings. Let

(O , j) be an associative ring with involution and letOn be the ring
of n× n matrices with entries inO. As usual, we denote byei j the
matrix whose (i, j) entry is 1 and other entries are 0 and we identify
O with the set of scalar matricesd = diag{d, . . . , d}, d ∈ O. Then
dei j = ei j d and every element ofOn can be written in one and only
one way as

∑
di j ei j , di j ∈ O. Also we have the multiplication table

ei j ekl = δ jkeil (12)

and11
n∑

1

eii = 1. (13)

Write d = d j and consider the mappingJl : D = (di j )→ D
t
. As is

well-known and redily verified,J1 is an involution inOn. We shall
call this thestandard involution(associated withj) in On. More
generally, letC = diag{c1, c2, . . . , cn} be a diagonal matrix with
inverteble diagonal elementci = ci ,C−1

= diag{c−1
1 , c

−1
2 , . . . , c

−1
n }.

The the mapping

JC : D→ CD
t
C−1
= CDJ1C−1 (14)

is an involution. We shall call such an involution acanonical invo-
lution (associated withj).

We shall now show that we have the following matrix form of the
determination of simple artinian rings with involution given in§1.
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V. Any artinian simple ring with involution is isomorphic toa matrix
ring with canonical involution (On, Jc) whereO is of one of the
following types:

1. O = ∆⊕∆◦,∆ a division ring,j theexchangeinvolution (a, b)→
(b, a).

2. O = ∆ a division ring, j an involution in∆.

3. ∆ = Φ2 the ring of 2× 2 matrices over a fieldΦ the involution

X→ Q−1XtQ whereQ =

(
0 1
−1 0.

)

The first possibility we noted for an artinian simple ring with in- 12

volution is∆n ⊕ ∆
J
n are ideals LetO = ∆ ⊕ ∆◦ and consider the

matrix ring On with the standard involutionJl determined by the
involution j : (a, b) → (b, a) in O. Let (ai j ), (bi j ) ∈ ∆n and con-
sider the element (ai j ) + (vi j )J of ∆n ⊕ ∆

J
n. We map this into the

element ofOn whose (i, j) entry is (ai j , b ji ). Then direct verifica-
tion shows that this mapping is an isomorphism of (∆n ⊕ ∆

J
n, J)

onto (On, J1). Thus these artinian simple rings with involution are
matrix rings with standard involution with coefficient rings of the
form 1 above.

It remains to consider the simple artinian rings with involution
(a, J) such thata is simple. The considerations of the last part of
§1 show that such an (a, J) is isomorphic either to a (∆n, Jc) where
(∆, J) is a division ring with involution andJc is a correspond-
ing canonical involution or to (Φ2r , JS) whereJS is the involution

A→ S−1AtS,S = diag{Q,Q, . . . ,Q},Q =

(
0 1
−1 0

)
.

The first possibility is the case 2 listed above. Suppose we have the
second possibility. We consider the standard isomorphism of Φ2r

onto (Φ2)r which maps a 2r × 2r matrix onto the corresponding
r × r matrix of 2× 2 blocks. It is easy to check that this is an
isomorphism of (Φ2r , JS) onto ((Φ2)r , Jl) whereJ1 is the standard
involution based on the involutionX → Q−1Xtl Q in Φ2. Thus we
have the case 3.
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We shall show later (Theorem of Herstein-Kleinfold-Osborn-13

McCrimmon, Chap.III) that the three possibilities for the coeffi-
cient ring (O , J) we noted have a uniform characterization as the
simple rings with involution whose non-zero symmetric elements
are invertible. It is easy to check that the rings with involution
listed in 1, 2, 3, have these properties. The converse ofV is clear
by re-tracing the steps.

We remark finally that the considerations of matrix rings with in-
volutions can be generalized to the case in which the coefficient
ring is not necessarily associative. If (O , J) is such a ring then
the matrix ringOn has the standard involutionD → D

t
. Also the

notion of canonical involutionJc can be generalized. Here it is
required that the entriesci of the diagonal matrixC are the nucle-
ous ofO, that is, there associate with all pairs of elelmentsa, b of
O((a, b)c = a(bc), (ac)b = a(cb), (ca)b = c(ab)).



Chapter 1

Basic Concepts

In this chapter we give the basic definitions and general results for 14

quadratic Jordan algebras. These algebras areΦ-modules for a commu-
tative ringΦ equipped with a multiplicative composition which is linear
in one of the variables and quadratic in the other. If the basering Φ
contains 1

L then the notion of aquadratic Jordan algebra is equivalent
to the usual notion of a (linear) Jordan algebra (see§4). The results of
this chapter parallel those of Chapter I and a part of ChapterII of the
author’s book [4].

1 Special Jordan and quadratic Jordan algebras

It will be convenient from now on to deal with algebras over a (unital)
commutative ringΦ. An associative algebraa overΦ is a left (unital)
Φ-module together with a productxy which isΦ-bilinear and associa-
tive. The results of chapter 0 carry over without change to algebras. We
remark that rings are just algebras overΦ = Z the ring of integers.

Let (a, J) be an associative algebra with involution and letH (a, J)
denote the subset of symmetric elements (aJ

= a) of. It is clear that
H (a, J) is aΦ-submodule. What other closure proportions doesH (a,
J) have? Clearly ifa ∈ H (a, J) andn = 1, 2, 3, . . . thenan ∈ H =

H (a, J). In particular,a2 ∈H and henceab+ba= (a+b)2−a2−b2 ∈

H if a, b ∈ H . We note also that if,a, b ∈ H thenaba∈ H . We now
observe that this last fact implies all the others sinceH isaΦ-module

11
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and contains 1∈ a. For, letJ be anyΦ-submodule ofa containing 1
andaba for everya, b ∈ J . ThenJ containsabc+ cba= (a + c) −15

aba− cba, a, b, c in J . Hence containsab+ ba= ab1+ 1ba. Also J
containsa2

= a1a, a3
= aaaandan

= aan−2a, n ≥ 4. In view of this it
is natural to considerabaas the primary composition inH besides the
module composition and the property thatH contains 1.

There is one serious drawback in using the compositionaba, namely,
this is quadratic ina. It is considerably easier to deal with bilinear
compositions. We now note that ifΦ contains an element12 such that
1
2 +

1
2 = 1 (necessarily unique)then we can replaceababy the bilinear

producta · b = 1
2(ab+ ba). More precisely, letJ be aΦ-submodule of

the associative algebraa such that 1∈J . ThenJ is closed undera.b
if and only if it closed underaba. We have see that ifJ is closed under
aba then it is closed underab+ ba, hence, undera · b = 1

2(ab+ ba).
Conversely, ifJ is closed undera · b then it is closed underabasince

2(a, b), a =
1
2

(ba2
+ a2b) + aba

so
2(b, a) · a− b, a2

= aba. (1)

These observations lead us to define (tentatively) aspecial quadratic
Jordan algebraJ as aΦ-submodule of an associative algebraa/Φ,
Φ a commutative associative ring (with 1) containing 1 andaba for
a, b ∈ J . We callJ a special (linear) Jordan algebraif Φ contains
1
2. In this case the closure conditions are equivalent to : 1∈ J and
a · b = 1

2(ab+ ba) ∈ J if a, b ∈ J . We have seen that ifa, J) is an
associative algebra with involution thenH (a, J) the set ofJ-symmetric
elements is a special qudratic Jordan algebra. Of course,a itself is a spe-16

cial quadratic Jordan algebra. We now give another important example
as follows.

Let V be a vector space over a fieldΦ, Q a quadratic form onV and
C(V,Q) the corresponding Clifford algebra. Thus ifT(V) is the tensor
algebraΦ⊕V⊕(V⊗V)⊕ . . .⊕V(i) . . . ,V(i)

= V⊗V⊗ . . .⊗V (i times) with
the usual multiplication thenC(V,Q) = T(V)/k wherek is the ideal in
T = T(V) generated by the elementsx⊗ x−Q(x), x ∈ V. It is known that
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the mappingα + x→ α + x+ k of Φ ⊕ V into C = C(V,Q) is injective.
Hence we may identifyΦ ⊕ V with the corresponding subspace ofC.
ThenC is generated byΦ⊕V and we have the relationx2

= Q(x), x ∈ V,
in C. We claim thatJ ≡ Φ+V is a special quadratic Jordan algebra in
C. Let a = α+ x, b = β+y, α, β ∈ V. Thenaba= (α+ x)(β+y)(α+ x) =
α2β + 2αβx + α2y + α(xy + yx) + βx2

+ xyx. Now x2
= Q(x) gives

xy+yx= (x+y)2−x2y2
= Q(x, y) whereA(x, y) = Q(x+y)−Q(x)−Q(y)

is the symmetric bilinear form associated withQ. Hencexyx= −yx2
+

Q(x, y)x and

aba= (α2β + αQ(x, y) + βQ(x)) + (2αβ + Q(x, y))x

+ (α2 − Q(x))y (2)

∈ J = Φ + V. SinceJ ⊕ 1 and is a subspace ofC/Φ it is clear that
J is a special quadratic Jordan algebra.

2 Definition of Jordan and quadratic Jordan alge-
bras

These notions arise in studying the properties of the compositions a, b = 17
1
2(ab+ ba) andaba is an associative algebra, overΦ where in the first
caseΦ ∋ 1

2. We note thata · b = b · a and if a2
= a.a then (a2, b) · a =

1
4[(a2b+ba2)a+a(a2b+ba2)] = 1

4(a2ba+aba2
+ba3

+a63b), a2 · (b·a) =
1
4a2(ab + ba) + (ab + ba)a2

=
1
4(a3b + ba3

+ a2ba + aba2). These
observations and the fac, which can be verified by experimentation, that
other simple identities ona · b are consequences ofa · b = b · a and
(a2 · b) · a = a2 · (b · a) lead to the following

Definition 1′. An algebraJ overΦ is called a(unital linear) Jordan
algebra if 1)Φ contains1

2, 2)J contains an element 1 such thata · 1 =
a = 1 · a, a ∈J , 3) the producta · b, satisfiesa · b = b · a, (a2 · b) · a =
a2 · (b · a) wherea2

= a · a.
It is clear that ifJ is a special Jordan algebra thenJ is a Jordan

algebra witha · b = 1
2(ab+ ba). If a is an associative algebra overΦ ∋ 1

2
thena defines the Jordan algebraa+ whose underlyingΦ-module isa
and whose multiplication composition isa · b = 1

2(ab+ ba).



14 1. Basic Concepts

If J is Jordan we denote the mappingx → x · a by Ra. This is
aΦ-endomorphism ofJ . We can formulate the Jordan conditions on
a ·b in terms ofRa and this will give our preferred definition of a Jordan
algebra as follows:

Definition 1. A(unital linear)Jordan algebraover a commutative ringΦ
(with 1)containing1

2 is a triple (J ,R, 1) such thatJ is a (unital) left
Φ-module,R is a mapping ofJ into EndJ (the associativeΦ-algebra
of endomorphisms ofJ ) such that

J1 R : a→ Ra is aΦ-homomorphism.18

J2 R1 = 1

J3 RaRaRa = RaRaRa

J4 If La is defined byxLa = aRx thenLa = Ra.

Definitions 1 and 1′ are equivalent: IfJ is Jordan in the sense of
Defintion 1′ then we defineRa as x → x · a and obtainJl − J4 of
definition 1. Conversely, ifJ is Jordan in the sense of definition
1 then we definea · b = aRb. Then the conditions of Definition 1′

hold. Moreover, the passage from the bilinear compositiona · b to
the mappingR is the inverse of that fromR to a · b.

Let J be Jordan in the sense of the second definition and write
a·b = aRb = bRa, a2

= a·a. Then [RaRa2] = 0 where [AB] = AB−BA
for theΦ-endomorphismsA, B. Let (a) = [Ra,Ra2] and consider the
identity

0 = f (a+ b+ c)− f (a+ b)− f (b+ c)− f (a+ c)+ f (a)+ f (b)+ f (c).

This gives

[RaRb·c] + [RaRc·b] + [RbRa·c] + [RbRc·a]

+ [RcRa·b] + [RcRb·a] = 0,

as is readily checked. Sincea·b = b·a we get 2[RaRb·c]+2[RbRa·c]+
2[RcRa·b] = 0. SinceΦ contains1

2 we obtain19
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J5 [RaRb·c] + [RbRa·c] + [RcRa·b] = 0.

Let ρ be a commutative associative algebra overΦ (= commutative
associative ring extension ofΦ). If m is aΦ-module we writemρ =
ρ ⊗Φ m regarded as (left unital)ρ-module in the usual way. We have the
Φ -homomorphismν : x → 1 ⊗ x of m into mρ asΦ-module. In the
cases in which this is injective we shall identifyx and 1⊗ x andm and
its image 1⊗m(= mν). In any case 1⊗m generatesmρ asρ-module. If
n is a secondΦ-module andη is a homorphism ofm into n then there
exists a unique homorphismηρ of mρ into nρ such that

m

ν
��

η
// n

ν
��

mρ
ηρ

// nρ

(3)

is commutative. It follows that ifγ Endmandγ̃ denotes the resultant of
ν: Endm→(Endm)ρ and the canonical mapping of (Endm)ρ into End
mρ. Then we have a unique homomorphism̃η of mρ into Endmρ such
that

m

ν

��

η
// Endm

ν̃
��

mρ
η̃

// Endmρ

(4)

is commutative. 20

Now suppposeΦ ∋ 1
2 and (J ,R, 1) is a Jordan algebra overΦ. Let

R̃be homomorphism ofJρ into EndJρ determined as in (4) byRand

put 1̃ = 1⊗ 1. If we use the definition ofJ J5, and the fact that 1⊗J
generatesJρ it is straight forward to check that (Jρ, R̃, 1̃) is a Jordan
algebra.

We formulate next the notion of a (unital) quadratic Jordan algebra.
This is arrived at by considering the properties of the product aba in an
associative algebra or, equivalently, the mappingUa : x→ a× a. Note
thatUa ∈ Enda wherea the given associate algebra. AlsoU : a→ Ua

is quadratic is in the sense of the following
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Definition 2. Let m and n be left (unital)Φ-modules,Φ-modules,Φ
an arbitrary (unital) commutative associative ring. Then amapping
Q : a → Q(a) (or Qa) of n into m is calledquadratic if 1)Q(αa) =
α2Q(a), α ∈ Φ, a ∈ m, 2)Q(a, b) ≡ Q(a+ b) −Q(a) −Q(b) isΦ -bilinear21

from m to n. The kernel of Q is the set ofz such thatQ(z) = 0 =
Q(a, z), a ∈ m.

The associatedΦ-bilinear mappingQ(a, b) is symmetric:Q(a, b) =
Q(b, a). The kernel kerQ is a submodule. IfQ and Q′ are quadratic
mappings ofm into n then so isQ + Q′ andβQ, β ∈ Φ. Hence the set
of these mappings is aΦ-module. The resultant of a quadratic mapping
and aΦ -homomorphism and of aΦ -homomorphism and a quadratic
mapping is a quadratic mapping. IfQ is a quadratic mapping ofm into
n andR is contained in kerQ thenQ(a+ R) = Q(a) defines a quadratic
mapping ofm = m/R into n. If Q andQ′ are quadratic mappings and
Q(ai) = Q′(ai),Q(ai , a j) = Q′(ai , a j) for all ai , a j on a set of generators
{ai} thenQ = Q′. In particular, ifQ(ai) = 0, A(ai , a j) = 0 thenQ = 0.
Let F be a free left module with base{xi |i ∈ I } and leti → bi , {i, j} →
bi j be mappings of the index setI and of the setI2 of distinct unordered
paris of elementsi1 j , i1 j I into n.

If x ∈ F andx =
∑
ξi xi (finite sum) then we defineQ(x) =

∑
ξ2i bi +∑

i< j

ξiξ jbi j . Then it is easy to check thatQ is a quadratic mapping ofF

into n. It F is free with base{xi} andρ is a commutative associative
algebra overΦ thenFρ is free with base{1⊗ xi}. It follows the remark
just made that the following lemma holds form= F free:

Lemma . Let Q be a quadratic mapping ofm into n where these are left22

modules overΦ and letρ be an associative commutative ring extension
of Φ. Then exists a unique quadratic mappings Qρ of mρ into nρ such
that the following diagram is commutative

m

ν
��

Q
// n

ν

��
mρ

Qρ
// n

(5)
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Proof. Let F
η
−→ m → 0 be an exact sequence of modules whereF is

free and putK = kerη the kernel ofη. Then we have the corresponding
homomorphismηρ of Fρ onto mρ (as in (3)) and, as is well-known,
kerηρ = ρ(1⊗ K) theρ -submodule generated by 1⊗ K = {1⊗ k|k ∈ K}.

We have the isomorphism̃x + ρ(1 ⊗ K) → x̃ηρ of F/ρ(1 ⊗ k) ontomρ.
We defineQη of F to η by Q(x) = Q(xη), x ∈ F . Since this is the
resultant ofη andQ it is aquadratic mapping. Also kerQη ⊇ K. Since
Fρ is ρ -free Qη determines the quadratic mappingQηρ of F into η so

that (5) is commutative form= F . We have kerQηρ ⊇ ρ(1⊗ K). Hence

x̃ + ρ(1 ⊗ K) → Qηρ(x̃) is a quadratic mapping ofFρ/ρ(1 ⊗ K) into nρ.
Using the isomorphism ofFρ/ρ(1 ⊗ K) andmρ this can be transferred

to the quadratic mappingQρ : xηρ → Qρ(x) of mρ into n. If x ∈ F then

1 ⊗ xη = (1 ⊗ x)ηρ → Qηρ(1 ⊗ x) = 1 ⊗ Qη(x) = 1 ⊗ Q(xη). HenceQρ
satisfies the commutativity in (5). The uniqueness ofQρ is clear since 23

1⊗m generatesmρ.
Let n = Endm. Then it is immediate from the lemma that ifQ is a

quadratic mapping ofm into Endm then there exists a unique quadratic
mappingQ̃ of mρ into Endmρ such that commutativiy holds in:

m

ν

��

Q
// Endm

ν̃
��

mρ
Q̃

// Endmρ

(6)

where ˜nu is A→ 1⊗ A and (ρ × A) = ρ ⊗ xA.
We are now ready to define a quadratic Jordan algebra. We have two

objectives in mind: first, to give simple axioms which will beadequate
for studying the compositionaxa= xUa in associative algebras and sec-
ond, to characterize the mappingUa ≡ 2R2

a−Ra2 in Jordan algebras. We
recall that in an associative algebraxUa = x(2R2

a − Ra2). The following
definiion is due to McCrimmon [5]. �

Definition 3. A (unital) quadratic Jordan algebraover a commutative
associative ringΦ (with 1) is a triple (J ,U, 1) whereJ is a (unital)
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left Φ -module, 1 a distinguished element ofJ andU is a mapping of
J into EndJ such that

24

QJ1 U is quadratic

QJ2 U1 = 1

QJ3 UaUbUa = UbUa

QJ4 IfUa,b = Ua+b−Ua−Ub andVa,b is defined byxVa,b = aUx,b then
UbVa,b = Vb,aUb.

QJ5 If ρ is any commuatative associative algebra overΦ andŨ is the

quadratic mapping ofJρ into EndJρ as in (6), theñU satisfies
QJ3 and 5.

It is clear fromQJ5 that (Jubρ, Ũ, 1̃), 1̃ = 1⊗1 is a quadratic Jordan
algebra overρ. We remark also thatQJ4 states thatbUa,xUb = aUb,xUb·.
Since the left side is symmetric ina and so is the right. HenceaUb,xUb =

xUb,aUb·. This gives the following addendum toQJ4:

UbVa,b = Vb,aUb = UaUb,b · QJ4′

Let a be an associative algebra overΦ and defineUa to bex→ axa.
ThenUa ∈ End a andQJ1 andQJ2 are evidently satisfied sinceUa,b

is the mappingx→ axb+ bxa. We havexUaUbUa = a(b(axa)b)a and
xUbUa = xUaba = (aba)x(aba) so QJ3 holds by the associative law.
Now xVa.b = aUx,b = xab+ bax. HencexUbVa,b = b(xba+ abx)b =
bxbab+ babxbandVb,aUb = b(xba+ abx)b = bxbab+ babxb. Thus25

QJ4 holds. NowQJ5 is clear sinceaρ is an associative algebra and the

mappingŨ of aρ is ã→ Ũa wherexUã = ã x̃ ã. We denote (a,U, 1) by
a.

If (J ,U, 1) is a quadratic Jordan algebra, asubalgebraB of J is
aΦ-submodule containing 1 and everyaUb, a, b ∈ B, a homomorphism
η of J into a second quadratic Jordan algebra is a module homomor-
phism such that 1η = 1, (aUb)η = aηUηb. Monomorphism, isomorphism,
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automorphism are defined in the obvious way. A quadratic Jordan al-
gebraJ will be calledspecialif there exists a monomorphism ofJ
into algebraa(q), a associative. It is immediate that this is essentially the
same definition we gave before.

If a is an associative algebra overΦ ∋ 1
2 then we can form the Jordan

algebraa+ and the quadratic Jordan algebraa(q). Fora+, xRa =
1
2(a+a)

and fora(q), xUa = axa. The relation (1) : 2(x, a), a− xa2
= axashows

that
Ua = 2R2

a − Ra2 (7)

is the formula expressingU in terms ofR. Conversely, we can express
R in terms ofU by noting thatUa,b = Ua+b−Ua−Ub is x→ axb+ bxa
soVa ≡ Ua,1 = U1,a is x→ ax+ xa. Hencec

Ra =
1
2

Va,Va = Ua,1 = U1,a. (8)

Now let (J ,R, 1) be any Jordan algebra (overΦ ∋ 1
2) and defineU 26

by (7). Then we claim that (J ,U, 1) is a quadratic Jordan algebra. It is
clear thata→ Ua = 2R2

a−Ra2 is quadratic ina andR1 = 1 givesU1 = 1.
Also, sinceJρ is Jordan for any commutative associative algebraρ over
Φ, it is enough to prove thatQJ3 andQJ4 hold. We need to recall some
basic identities, namely,

J6 RaRbRc + RcRbRa + R(a·c)·b = Ra·bRc + Rb·cRa + Rc·aRc

J7 [Rc[RaRb]] = Rc[RaRb].

The first of these is obtained by writingJ5 in element form: (d·a), (b·
c) − (d · (b · c))a+etc., interchangingb andd and re-interpreting this as
operation identity. This givesRaRbRc + RcRbRa + R(a·c)·b = RaRb·c +

RbRa·c + RcRa·b. This andJ5 give J6. To obtainJ7 we interchangea
andb in J6 and subtract the resulting relations frmJ6. Special cases of
J5 andJ6 are

J5′ [Ra2Rb] + 2[Ra,bRa] = 0

J6′ R2
aRb + RbR2

a + R(a,b),b = Ra2Rb + 2Ra,bRa.
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using (7) we obtainUa,b = 2(RaRb +RbRa) − 2Ra,b. ThenxVa,b = aUx,b

gives
Va,b = 2(RaRb − RbRa + Ra·b) (9)

We shall now proveQJ4, which is equivalent to:27

(2R2
a−Ra2)(Ra·b + RbRa − RaRb)−

(Ra·b + RaRb − RbRa)(2R2
a − Ra2) = 0

The left hand side of this after a little juggling becomes

2[R2
aRb + RbR

2
a,Ra] + 2Ra[Ra + Ra·b] + 2[RaRa·b]Ra

−[Ra2Rb]Ra + Ra[RbRa2] + [RaRa2 + Ra2Ra,Rb]

+ [Ra·ba2]

= 2[R2
aRb + RbR2

a,Ra] + [RaRa2 + Ra2RaRb]

+ [Ra·bRa2] · (byJ5′)

= 2[Ra2Rb + 2Ra·bRa − R(a·b)·a′Ra] + 2[RaRa2,Rb]

+ 2[R(a·b)·a,Ra](J6′ andJ5′ with b→ a · b)

= 4[Ra·bRa]Ra + 2[Ra2Rb]Ra = 0(J5′).

HenceQJ4 holds.
For the proof ofQJ3 we begin with the following identity28

J8. [Va,bVc,d]Va,bVc,d − VaVd,c, b

(cf. the author’s book [2], (5) on p.325). To derive this we note that
J7 shows that [RaRb] is a derivation inJ . For any derivationD we
have directly : [Va,bD] = VaD,b + Va,bD. Also [Va,bRc] = Va,bRc − VaRc,b

follows directly fromJ5 andJ7. ThenJ9, is a consequence of these two
relations. We note next that the left hand side ofJ8 is skew in the pairs
(a, b), (c, d). Hence we have the consequence

J9 Va,bVc,d − VaVd,c,b = VcVb,a, d − Vc,dVa,b.

We now use the formulaxVa,b = aUx,b definingVa,b to write J8 andJ9
in the following equivalent forms:
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J8′ UaUc,b,d − Uc,dVa,b = Ub,dVa,c − Vd,aU − c, b

J9′ Vc,dVa,b − VdUa,c,b = Va,cUb,d − Ua,dVc,d.

Takingd = aUb, c = b in J8′ gives

2UaUb = Ub,aUbVa,b − VaUb,aUb (10)

Replacinga→ b, c→ b,b→ a, d→ a in J9′ gives 29

VaUb,a = V2
b,a − 2UbUb (11)

If we substitute this in the last term of (10) we get 2UaUb = Ub,aUb

Va,b − V2
b,aUb + 2UbUaUb. Since QJ4 has the consequenceQJ4′ :

UbVa,b = Vb,aUb = UaUb, b (as above) the foregoing reduces toQJ31

3 Basic identities

In this section we shall derive a long but of identities whichwill be
adequate for the subsequent considerations. No attempt hasbeen made
to reduce the set to a minimal one. On the contrary we have tried to list
almost every identity which will occur in the sequel.

Let (J ,U, 1) be a quadratic Jordan algebra overΦ. We writeaba=
bUa, abc = bUa,c so b → aba is theΦ -endomorphismUa for fixed
a and a → aba is a quadratic mapping ofJ into itself for fixed b.
We put a2

= 1Ua, a ◦ b = (a + b)2 − a2 − b2
= 1Ua,b = aV1,b and

Va = Ua,1 = U1,a. We havea ◦ b = b ◦ a, a ◦ a = 2a2, Ua,a = 2Ua,V1 =

V1,1 = 2. Takingb = 1 in QJ4 givesVa,1 = V1,a so 1Ua, = aU1,x.
Thena ◦ x = aVx. Sincea ◦ x = x ◦ a we havexVa = aVx : Also 30

xV1,a = 1Ua,x = a ◦ x = xVa so Va = V1,a = Va,1. We shall now
apply a process of linearization to deduce consequences ofQJ3 and
QJ4. This method consists of applyingQJ3 andQJ4 to Jρ = Φ[λ]
the polynomial algebra overΦ in the indeterminateλ. Sinceρ isΦ -free

1The proof we have given ofQJ4 was communicated to us by McCrommon, that of
QJ3 by Meyberg. The first direct proof ofQJ3 was given by Macdonald. Subsequently
he gave a general theorem on identities from whichQJ3 andQJ4 are immediate con-
sequences. See Macdonald [1] and the author’s book [2] pp.40-48).
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the canonical mapping ofJ into Jρ is injective so we may identify

J with its image 1⊗J in Jρ and regard̃U as the unique extension

of U to a quadratic mapping ofJρ into EndJρ. We writeU for Ũ.
The elements ofJρ can be written in one and only one way in the form

ao + λa1 + λ
2a2 + · · · + λ

nan, ai ∈ J , and the endomorphism ofJρ

can be written in one and only way asAo + λA1 + · · · . whereAi is the
endomorphism inJρ which extends the endomorphismAi of J . Now
let a, b, c ∈J and consider the identityUa+λcUbUa+λc = UbUa+λc

which
holds inJρ by QJ5. Comparing coefficients ofλ andλ2 we obtain

QJ6 UaUbUa,c + Ua,cUbUa = UbUa = UbUa,bUa,c

QJ7 UaUbUc + UcUbUa + Ua,cUbUa,c = UbUa,bUc + Ub,Ua,c.

The same method applied to the variablea in QJ6 andb in QJ4 gives

UaUbUc,d + Ua,cUbUa,d + Uc,dUbUa + Ua,dUbUa,c

QJ8 = UbUa,c,bUa,d + UbUa,bUc,d

QJ9 Vb,aUb,c + Vc,aUb = Ub,cVa,b + UbVa,c

31
We remark that comparison of the coefficients of the other powers

of λ in the foregoing identities yields identitites which we have already
displayed. Also, if the method is applied to a variable in which the
identity is quadratic, sayQ(a) = 0 (e.g.QJ3 and the variablea) then we
obtain in this way the bilinerizaationQ(a, b) = Q(a+b)−Q(a)−Q(b) =
0. We shall usually not display these bilinearizations.2.

We shall now show that if (J ,U, 1) satisifiesQJ1−4, 6−9 thenQJ5
holds, so (J ,U, 1) is a quadratic Jordan algebra. HenceQJ1− 4, 6− 9
constitute an intrinsic set of conditions defining quadratic Jordan alge-
bras. Letρ be any commutative associative algebra overΦ and consider
Jρ where it is assumed that (J ,U, 1) satisfiesQJ1−4, 6−9. If a ∈J
we puta′ = 1 ⊗ a. ThenQJ1 − 4, 6 − 9 hold inJ ρ for all choices of

2An exception to this rule inQJ8 which is the bilinerization ofQJ7 with respecet
to c
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the arguments inJ ′
= 1 ⊗J . Also the bilinearizations of these con-

ditions hold for all values of the argument inJ ′. SinceQJ7 − QJ9
are eitherΦ-linear (= Φ. endomorphisms) orΦ -quadratic in their argu-
ments these hold for all choices of the arguments inJρ. Similarly, QJ6
holds for alla ∈J ′ and allb, c in Jρ. The validity ofQJ8 in Jρ now
implies that ifQJ6 holds for the arguments (a = a1, b, c) and (a2, b, c)
in Jρ then it holds for (a = a1 + ρa2, b, c) for anyρ ∈ ρ.

It follows from this thatQJ6 holds inJρ. A similar argument using 32

QJ9 shows thatQJ4 holds inJρ. Similarly, usingQJ6 andQJ7 in Jρ

one sees that ifQJ3 holds forb in Jρ anda = a1, a = a2 in Jρ then it
holds forb anda = a1 + ρa2. It follows thatQJ3 holds inJρ. We have
therefore proved.

Theorem 1. Let J be a leftΦ -module, U a mapping ofJ into End
J satisfying QJ1 − QJ4,QJ6 − QJ9. Then QJ5 holds soJ is a
quadratic Jordan algebra.

The same argument implies the following result

Theorem 2. LetJ be a leftΦ -module, U a quadratic mapping ofJ
into EndJ such that U1 = 1 and QJ3, 4, 6−9 and all their bilineariza-
tions hold for all choices of the arguments in a set of generators of the
Φ -moduleJ . ThenJ is a quadratic Jordan algebra.

It is easy to prove by a Vandermonde determinant argument that if Φ
is a field of cardinality|Φ| ≥ 4 thenQJ6−9 follows fromQJ3, 4 without
the intervention ofQJ5. Hence in this caseQJ1 − 4 are a defining set
of conditions for a quadratic Jordan algebra overΦ.

If we put b = 1 in QJ3, 6 and 7 we obtain respectively

U2
a = Ua2 QJ 10

UaUa,c + Ua,cUa = Ua2,aoc QJ 11

Ua2,c2 + Uaoc = UaUc + UcUa + U2
a,c QJ 12

If we replaceb by b+ 1 in QJ3, 6, 7 and use the foregoing we obtain 33

UaVbUa = UbUa,a2 QJ13
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UaVbUa,c + Ua,cVbUa = UbUa,aoc+ Ua2,bUa,c
QJ14

Ua2,bUc
+ UbUa,c2 + UbUa,c,aoc QJ15

= UaVbUc + UcVbUa + Ua,cVbUa,c

Puttingc = 1 in QJ6,QJ7 andQJ9 gives

UaUbVa + VaUbUa = UbUa,boa QJ16

UbUa,b + Uboa = UaUb + UbUa + VaUbVa (QJ17)

UbVa + VbVa,b = Vb,aVb + VaUb. QJ18

If we put a = 1 in QJ6 we get

UbVc + VcUb = Ub,boc. QJ19

Puttingc = 1 in QJ12 and replacingbbyb+1 in QJ17 give respectively:

2Ua = V2
a − Va2 QJ20

VbUa + Ua2,b + 2Ua,aob = UaVb = VbUa + VaVbVa. QJ21

If we apply the two sides ofQJ3 to 1 we obtain

a2UbUa = (bUa)2 QJ22

which for b = 1 is34

a2Ua = (a2)2 QJ23

Next we puta = 1 in QJ4′ to obtain

VbUb = UbVb = Ub,b2 QJ24

Puttingb = 1 in QJ9 gives

VaVc + Vc,a = VcVa + Va,c QJ25

or
(x ◦ a) ◦ c+ cUa, = (x ◦ c) ◦ a+ aUc, QJ 25’
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putting x = c we obtain

(c ◦ a) ◦ c+ cUa,c = (c ◦ c) ◦ a+ aUc,c

= 2c2 ◦ a+ 2aUc

which can be simplified byQJ20 to give

{acc} = c2 ◦ a. QJ26

It is useful to list also the bilinearization of this:

{abc} + {bac} = (a ◦ b) ◦ c QJ 27

which has the operator form 35

Vb,c = VaVc − Ub,c QJ 27′

If we operate with the two sides ofQJ17 on 1 we obtain

(a ◦ b)2
= a2Ub + b2Ua + 2aUb ◦ a− bUa ◦ b.

Also, if we replace a bya+ λb in QJ24 and compare coefficients of
λ we obtain

Ua,bVa + UbVb = Ua,a◦b + Ub,a2

VaUa,b + VbUa. QJ28

Applying the first and last of these tob gives

bUa ◦ b = −{abb} ◦ a+ {ab◦ ab} + 2b2Ua

= −b2V2
a + 2b2Ua + {aa◦ bb} QJ 26

= −b2 ◦ a2
+ {aa◦ bb} QJ 20

which is symmetric ina andb. Hence we have

bUa ◦ b = aUb ◦ a QJ29

Using this and the foregoing formula for (a ◦ b)2 we obtain

(a ◦ b)2
= a2Ub + b2Ua + aUb ◦ a QJ 30
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= a2Ub + b2Ua + bUa ◦ b

We wish to prove next 36

VaUb,a = Vb,bUa QJ 31

In element form this is{caUba} = {cbbUa}. Using QJ27 this is
equivalent to (c ◦ aUb) ◦ a− {aUbca} = (c ◦ b) ◦ bUa − {bcbUa} which
is equivalent to

VaUbVa − UaUb,a = VbVbUa − Ub,bUa QJ 32

If we interchangea andb in QJ17 and subtract we obtainVaUbVa−

VbUaVb = UbUa,b − UaUb,a which implies thatQJ32 is equivalent to
VaUbVa − VbUaVb = VbVbUa − VaUbVa. Hence it suffics to prove

(VaUb + VaUb)Va = Vb(VbUa + UaVb) QJ33

We note next that bilinearization ofQJ29 relative tob givesbUa ◦

c+ cUa ◦ b = aUb,c ◦ a = cVa,b ◦ a. hence

VbUa + UaVb = Va,bVa QJ 34

Using this on the right hand side ofQJ33 givesVbVa,bVa also, by
QJ34,VaUb = Vb,aVb−UbVa soVaUb+VaUb = Vb,aVb−UbVa+VaUb =

VbVa,b(QJ18). Hence the left hand side ofQJ33 reduces toVb,Va,bVa

also . This provesQJ33 and with itQJ32 and 31.37

We shall now define the powers ofa by a◦ = 1, a1
= a, a2

= 1Ua,
as before, andan

= an−2Ua, n2. ThenQJ3 implies thatUan = Un
a. Also

by induction onn we have

(am)n
= amn

(QJ 35)

We shall now prove
am ◦ an

= 2am+n (QJ 36)

by induction onm+ n. This clear ifn + m ≦ 2. Moreover, we may
assumem ≦ n. We now note thatQJ36 will follow if we can show
that UaVan = VanUa. for thenam ◦ an

= bmVan = am−2UaVan (since
m ≧ 2)= an−2VanUa = 2an+n−2Ua = 2am+n. To prove the required
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operation commutativity we shall show thatVan is in the subalgebraa
of EndJ generated by the commuting operationsUa,Va(QJ24). More
genrally, we shall prove thatUam,an and Vam,an ∈ a. SinceVam,an =

VamVan−Uam,an(QJ27′) = Uam,1Uan,1−Uam,an it suffices to show this for
Uam,an. We use induction onm+ n. The result is clear form+ n ≦ 2 by
QJ20 andUa,a = 2Ua so we assumem ≧ n,m ≧ 2. If n ≧ 2,Uan,an =

UaUan−2,an−2Ua by QJ3, so the result holds by induction in this case if
n = 1,Uam,a = Uam−2Ua,a

= Va,am−2Ua by QJ4′, so the result is valid
in this case. Finally, ifn = 0,Uam,1 = Vam = Vam−2Ua

= Va,am−2Va −

UaVam−2(QJ34). Hence the result holds in this case also. This completes38

the proof thatUam,an,Vam,an ∈ a and consequently ofQJ36.
We shall now prove a general theorem on operator identities involv-

ing the operatorsUam,an,Vam,an

Theorem 3. If f (λ1, λ2, . . .) is a polynomial in indeterminatesλ1, λ2, . . .

with coefficients inΦ such that f(Uan1 , Uan2 , . . . ,Uann,amn , . . ., Van1 ,am1 ,
. . .) = 0 is an identity for all special quadratic Jordan algebras then this
is an identity for all quadratic Jordan algebras.

Proof. If X is an arbitrary non-vacuous set then there exists a free
quadratic Jordan algebraF(X) overΦ (freely) generated byX whose
characteristic property is thatF(X) containsX and every mappingX→
J of X into a quadratic Jordan algebra (J ,U, 1) has a unique exten-
sion to a homomorphism ofF(X) into (J ,U, 1).3 Let X contain more
than one element one of which is denoted asx. It is clear from the
universal property ofF(X) that of f (Un1,Un2, . . . , . . .) = 0 holds in
F(X) then f (Uan1,Uan2, . . .) = 0 holds in every quadratic Jordan alge-
bra. Hence it suffices to provef (Un1,Un2, . . . , . . .) = 0. Let Y be a set
of the same cardinality asX and supposex→ y is a bijective mapping
of X onto Y. Let Φ{Y} be the free associative algebra (with 1) gener-39

ated byY and letFs(Y) be the subalgebra ofφ{y}(q) generated byY.
We have a homomorphism ofF(X) onto Fs(Y) such thatx → y. If

3This is a special case of a general result proved in Cohn,Universal Algebra, pp.116-
121 and p.170. A simple construction of free Jordan algebrasand more generally of
(linear) algebras defined by identities is given in Jacobson[2], pp.23-31. It is not diffi-
cult to modify this so that it applies to quadratic Jordan algebras.
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J is a quadratic Jordan algebra then we denote the subalgebra of End
J generated by theUa, a ∈ J , as EnvU(J ). It is clear that Env
U(J ) contains allUa,b and allVa,b. Moreover it is easily seen that if
a → aη is a homomorphism of (J ,U, 1) onto a second quadratic Jor-
dan algebra (J ′,U′, 1′) then there exists a (unique) homomorphism of
Env U(J ) onto EnvU(J ′) such thatUa → U′aη , a ∈ J . Then also
Ua,b → U′aη,bη andVa,b → V′aη,bη . In particular we have such a homoor-
phism of EnvU(F(X)) onto EnvU(Fs(Y)). Let X andY respectively
denote the subalgebra of EnvU(F(X)) and EnvU(Fs(Y)) generated by
all Uxn,Uxn,xm,Vxn,xm andUyn,Uyn,ym,Vyn,ym. Then the restriction of our
homomorphism of EnvU(F(X)) onto EnvU(F(Y)) toX is a homomor-
phism ofX onto Y such thatUxn → Uyn,Uxn,xm → Uyn,ym,Vxn,xm →

Vyn,ym. SinceF(y) is special, f (Uyn1,Uyn2 , . . . , . . .) = 0 holds. It will
follow that f (Uxn1,Uxn2, . . .) = 0 holds inF(X) if we can show that the
homomorphism ofX onto Y is an isomorphism. We have seen that
X is generated byUx andVx andY is generated byUy andVy. Since
Ux→ Uy andVx→ Vy the isomorphism will follow by showing thatUy

andVy are algebraically independent overΦ. Now inΦ{Y}(q) we have
Uy = yRyL,Vy = yR = yL whereaR is b → ba andaL is ab → ab and
yL andyR commute and are algebraically independent overΦ since if40

z ∈ Y, z , y, thenzkk
Ryl

L = ylzyk and the elementsylzyk, l, k = 0, 1, 2, . . .
areΦ -independent. NowVy = yR + yL and Uy = yRyL are the “el-
ementary symmetric” functions ofyR and yL. The usual proof of the
algebraic independence of the elementary symmetric function (e.g. Ja-
cobson,Lectures in Abstract Algebra, p.108) carries over to show that
Uy andVy are algebraically independent operators inΦ{Y}(q). It follows
that they are algebraically independent operators also inFs(Y). This
completes the proof of the theorem.

We now give two important instances of Theorem 3 which we shall
need. Let f (λ) ∈ Φ[λ]. an indeterminate and letf (a) be defined in
the obvious way ifa ∈ J a quadratic Jordan algebra. SupposeJ
is a subalgebra ofa(q), a associative. Then we claim thatU f (a)Ug(a) =

U( f g)(a) holds ina(q), hence inJ . For, xu( f g)(a) = f (a)g(a)x f(a)g(a) =
g(a) f (a)x f(a)g(a) = xU f (a)Ug(a). It follows from Theorem 3 that

U f (a)Ug(a) = U( f g)(a) QJ 37
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in any quadratic Jordan algebra. Another application of thetheorem is
the proof of

Van,an = Vam+n QJ 38

This follows since ina(q), a associative, we havexVam,an = xaman
+

anamx = xam+n
+ am+nx = xVam+n. Similarly, one proves

VanUan = Uan,am+n (QJ 39)

and 41

Van = Van−1Va − Van−2Ua, n ≥ 2 QJ 40

The list of identities we have given will be adequate for the results which
will be developed in this monograph. Other aspects of the theory re-
quire additional identities. Nearly all of these are consequences of the
analogues for quadratic Jordan algebras of Macdomalli theorem. This
result, which states that the extension of Theorem 3 to subalgebras with
two generators is valid, has been proved by McCrimmon in [7]. �

4 Category isomorphism forΦ ∋ 1
2. Characteristic

two case.

We shall show first that ifΦ ∋ 1
2 then the two notions of Jordan algebra

and quadratic Jordan algebra are equivalent. LetCJ(CQJ) denote the
category whose objects are Jordan algebras (quadratic Jordan algebras)
overΦwith morphisms as homomorphisms. We have the followingCat-
egory Isomorphism Theorem. Let (J ,R, 1) be a Jordan algebra over a
commutative ringΦ containing1

2. DefineU by Ua = 2R2
a − Ra2. Then

(J ,U, 1) is a quadratic Jordan algebra. Let (J ,U, 1) be a quadratic
Jordan algebra overΦ and defineR by Ra =

1
2Va,Va = Ua,1. Then

(J ,R, 1) is a Jordan algebra. The two constructions are inverses. More-
over, a mappingη of J is a homomorphism of (J ,R, 1) if and only
if it is a homomorphism of (J ,U, 1). Hence (J ,R, 1) → (J ,U, 1),
η→ η is an isomorphism of the categoryCJ ontoCQJ. 42

Proof. Let (J ,R, 1) be unital jordan overΦ ∋ 1
2 andUa = 2R2

a − Ra2.
Then we have shown in§2 that (J ,U, 1) is a quadratic Jordan algebra.
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We haveUa,b = 2(RaRb+RbRa−Ra,b) soVa = Ua,1 = 2Ra and1
2Va = Ra.

Next let (J ,U, 1) be a quadratic Jordan algebra overΦ ∋ 1
2 and letRa =

1
2Va. By QJ24, 20, [Va,Va2] = 0 so [RaRa2] = 0. Moreover,a2

= 1Ua =
1
2(a ◦ a) = aRa. Also aVb = bVa givesaRb = bRa and we haveR1 = 1
anda→ Ra is aΦ -homomorphism ofJ into EndJ . Hence (J ,R, 1)
is a linear Jordan algebra. ByQJ20, UA =

1
2V2

a −
1
2Va2 = 2R2

a − Ra2.
This proves the assertions on the passage from (J ,R, 1) to (J ,U, 1)
and back. The rest is clear.

We consider next the opposite extreme of the foregoing, namely, that
in which 2Φ = 0 or, equivalently, 2(1)= 1+ 1 = 0. Let (J ,U, 1) be a
quadratic Jordan algebra overΦ. We claim thatJ is a 2 -Lie algebra
(= restricted Lie algebra of characteristic two) if we define [ab] = a ◦ b
anda[2]

= a2. We have [aa] = a ◦ a = 2a2
= 0 and [[ab]c] + [[bc]a] +

[[ca]b] = (a ◦ b) ◦ c = (b ◦ c) ◦ a+ (c ◦ a) ◦ b = {abc} + {bac} + {bca} +
{cba} + {cab} + {acb}(QJ27) = 2{abc} + 2{bca} + 2{cab} = 0. Also
(a + b)2

= a2
+ b2

+ [a, b] andba2
= [[ba]a] sinceVa2 = V2

a by QJ20.
Hence the axioms for a 2-Lie algebra hold (Jacobson, Lie Algebras P.
6). This proves �

Theorem 4. Let (J ,U, 1) be a quadratic Jordan algebra overΦ such
that 2Φ = 0. ThenJ is a 2 lie algebra relative to[ab] = a ◦ b and
a[2]
= a2.

5 Inner and outer ideals. Difference algebras.

Definition 4. Let (J ,U, 1) be a quadratic Jordan algebra. A subset43

L of J is called aninner (outer) idealsif L is a sub-module and
bab= aUb(aba= bUa) ∈ L for all a ∈J , b ∈ L L is anideal if it is
both an inner and an outer ideal.

The condition can be written symbolically asJ UL ⊆ L for an
ideal, L UJ ⊆ L for an outer ideal. IfL is an inner ideal anda ∈
J thenLUa is an inner ideal since forc = bUa,J Uc = J UbUa =

J UaUbUa ⊆ J UbUa ⊆ L Ua. In particular,J Ua is an inner ideal
called theprincipal inner ideal determined by a. This need not contain
a. The inner ideal generated by a isΦa + J Ua. For this contains
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a, is contained in every inner ideal containinga and is an inner ideal,
since a typical element ofΦa+J Ua is αa+ bUa, α ∈ Φ, b ∈J , and
Uαa+bUa = α

2Ua + αUa,bUa + UaUbUa. SinceUa,bUa = Va,bUa by QJ4′

we see thatJ Uαa+bua ⊆ J Ua, soΦa +J Ua is an inner ideal. The
outer ideal generated by a is the smallest submodule ofJ contianing a
and stable under allUb, b ∈ J . The principal inner ideal detrermined
by 1 isJ U1 = J . On the other hand, as we shall see, the outer ideal
generated by 1 need not beJ . We shall call this the cone ofJ .

If L is an outer ideal then{a1ba2} = bUa1,a2 = bUa1+a2 − bUa1 −

bUa2 ∈ L for b ∈ L , ai ∈ J . In particular,b ◦ a = bua,1 ∈ L ,
b ∈ L , a ∈ L . By QJ27 it follows that{ba1a2} ∈ L , b ∈ L , ai ∈J .
If Φ contains1

2 thenL is an outer ideal if and only if it is an ideal and
if and only if L is an ideal in (J ,R, 1) where (J ,R, 1) is the Jordan 44

algebra corresponding to (J ,U, 1) in the usual way. For, ifL is an
outer ideal thenb · a = 1

2b ◦ a ∈ L , a ∈J , b ∈ L . On the other hand,
if L is an ideal of (J ,R, 1) thenbRa = aRb ∈ L and this implies that
bUa andaUb ∈ L .

It is clear that the intersection of inner (outer) ideals is an inner
(outer) ideal and the sum of outer ideals is an outer ideal. Itis easily
checked that the sum of an inner ideal and an ideal is an inner ideal.

Let L be an ideal inJ ,U, 1), bi ∈ L , ai ∈J . Then we have seen
thata1Ua2,b2 = {a2a1b2} ∈ L . Hence

(a1 + b1)Ua2+b2 = (a1 + b1)(Ua2 + Ua2,b2 + Ub2)

≡ a1Ua2( mod L )

It follows that if we define inJ = J /L = {a + L |a ∈ J }, a1

Ua2 = a1Ua2 then this is single valued. It is immediate that (J ,U, 1)
is a quadratic Jordan algebra and we have the canonical homomorphism
a→ a of (J ,U, 1) onto (J ,U1). Conversely, ifη is a homomorphism
of (J ,U, 1) thenL = kerη is an ideal and we have the isomorphism
η : a → aη of (J = J /L ,U, 1) onto (J η,U, 1). This fundamental
theorem has its well-known consequences.

Examples. (1) Let J = H (Zn) the quadratic Jordan algebra (over
the ring of integersZ) of n × n integral symmetric matrices. Let
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E = diag {1, . . . , 1, 0, . . . , 0}. Then E is an idempotent (E2
=

E) and the principal inner idealsJ UE = EH E is the set of
matrices of the form45 (

A 0
0 0

)
,

A ∈ Zr . Next letB = (bi j ) ∈H (Zn) have even diagonal elements
and letA ∈H (Zn). Then (i, i) -entry ofC = ABA is

cii =

∑

j,k

ai j b jkaki =

∑

j,k

ai j b jkaik

=

∑

j

a2
i j b j j + 2

∑

j<k

ai j b jkaik

HenceC has even diagonal elements. Thus the setL of inte-
gral symmetric matrices with even diagonal elements is an outer
ideal inH (Zn). If m ∈ Z the setmH (Zn) of integral symmetric
matrices whose entries are divisible bym is an ideal inH (Zn).

(2) Letρ = Φ(λ) the filed of rational expressions in an indeterminate
λ over a fieldΦ of characteristic two. letH (ρn) be the set of
n × n symmetric matrices with entries inρ. This is a quadratic
Jordan algebra overΦ (with ABAas usual). LetL be the subset
of matrices with diagonal entries inΦ(λ2). ThenL is an outer
ideal containing 1. It is easy that this is the cone ofH (ρn).

(3) LetΦ be a field of characteristic two,a = Φ[λ], λ an indetermi-
nate. Considera(q) and the subspaceL = Φλ2

+
∑
i≧4
Φλi .

It is readily checked thatL is an ideal ina(q). Let J = a(q)/L46

and putλ = λ + L . Then λ = λ + L . Then λ
2
= 0 but

λ
3
, 0 in J . If J is a special Jordan algebra, say,J is

a subalgebra ofL(q),L, associative, then the Jordan powerXn

of X ∈ J coincides with the associative powerXn in L since
Xn
= Xn−2UX = XXn−2X. Hence it is clear that in a special Jor-

dan algebraXn
= 0 impliesXn+1

= 0. It follows thatJ = a(q)/L
is not special.
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We have defined kerU = {z|Uz = 0 = Uz,a, a ∈ J }. This is
an ideal since it is a submodule and ifa ∈ J , z ∈ kerU, then
aUz = 0, andUzUa = UaUzUa = 0. Also we can show that for
b ∈ J , UzUa,b = 0. To see this we note thatUz,a = 0, a ∈ J
implies Vz = Uz,1 = 0. ThenVz,a = 0 = Va,z by QJ27′. By
QJ9, we have{b{zba}c} + b{zca}b = {{bzc}ab} + {(bzb)ac} which
gives (usinga as operand):Vb,zUb,c + Vc,Ub = Ub,bVz,c + Uc,zUb.
This impliesUc,zUb = 0 or Ub,zUa = 0. HencezUa ∈ker U. The
argument we have used show that every{ } and−U− with one
of the argumentsz ∈ ker U is 0, with the exception ofzUa. In
particular 2z = z · 1 = 0 which show that kerU = 0 if J has no
two torsion. We callJ nondegenerateif ker U = 0.

6 Special universal envelopes

A homomorphism of (J ,U, 1) intoa(q) wherea is associative is called
anassociative specialization ofJ into a. A special universal envelops
for J is a pair (S(J ), σu) whereS(J ) is an associative algebra and
σu is an associative specilalization of intoS(J ) such that ifσ is an-
associative specialisation ofJ into an associative algebraa then there 47

exists a unique homomorphismη of s(J ) into a such that

J

��

σu
// S(J )

η
{{ww

w
w
w
w
w
w
w

a

(12)

is commutative. To construct an (S(J ), σu) let T(J ) be the tensor
algebra defined by theΦ -moduleJ : T(J ) = Φ⊕ (J ⊕ (J ⊗J )⊕
. . . . . . where all these tensor products are taken overΦ. Multiplication
in T(J ) is defined by (x1⊗ . . .⊗ xr)(xr+1⊗ . . .⊗ xs) = x1⊗ · · · ⊗ xs, xi ∈

J , and the rule that the unit elementΦ of 1Φ is unit for T(J ). Then
T(J ) is an associative algebra overΦ. Let k be the ideal inT(J )
generated by the elements 1− 1Φ(1 ∈ J ), aba− a ⊗ b ⊗ a, a, b ∈ J .
PutS(J ) = T(J )/K andaσu

= a+ K, a ∈J . Then it is readily seen
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that ((J ), σu) is a special universal envelope for (J ,U, 1).4. It is clear
that we have an involutionπ′ of T(J ) such that (x1 ⊗ x2 . . . ⊗ xr)π

′

=

xr ⊗ xr−1⊗ . . .⊗ x1, xi ∈J . Since (aba− a⊗ b⊗ a)π
′

= aba− a⊗ b× a
it is clear thatKπ

′

⊆ K. Henceπ′ induces an involutionπ in S(J )/K.
We haveaσu π = aσu, a ∈J , and since theaσu generateS(J ) it is clear
thatπ is the only involution satisfyingaσuπ = aσuπ. We shall callπ the
main involutionof S(J ). If ξ is a homomorphism of (J ,U, 1) into
(J ′,U′, 1′) then we have a unique homomorphismξu of S(J ) into
S(J ′) such that

J

σu

��

ξ
// J ′

σu

��

S(J )
ξ

// S(J ′)

(13)

It is immediate that (J ,U, 1) in special if and only if the mappingσu48

of J into S(J ) is injective. In this case it is convenient to identify
J with its image inS(J ) and so regardJ as a subset ofS(J ), σu

as the injection mapping. ThenJ is a sub-algebra of the quadratic
Jordan algebraS(J )(q) and the universal property ofσu states that any
homomorphism ofJ into ana(q), a associative, has a unique extension
to a homomorphism ofS(J ) into a.

7 Quadratic Jordan algebras of quadratic forms
with base points.

We consider a class of quadratic Jordan algebras (J ,U, 1) over a field
Φ satisfying the following conditions:

1. There exists a linear functionT and a quadratic formQ onJ (to
Φ) such that

X2 − T(X)X + Q(X) = 0 (14)

4cf. Jacobson [2],pp. 65-72, for the corresponding discussion for Jordan algebras
1This condition is superfluous ifΦ contains1

2 since in this caseXK · X = Xk+1 so
(14) implies (15).
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X3 − T(X)X2
+ Q(X)X = 01 (15)

2. The same conditions hold forJρ whereρ is any extension field
of Φ andT andQ for Jρ are the extenstions of these functions49

on J to a linear function and a quadratic form onJρ respec-
tively. (We assumeJ imbedded inJρ and write,U, 1 for the
U-operator and unit inJρ).

3. J , Φ

Takingρ = Φ(λ), an indeterminate and replacingx by x + y in (14) we
obtain

x ◦ y = T(x)y+ T(y)x− Q(x, y) (16)

whereQ(x, y) is the symmeteric bilinear form associated with the qua-
dratic formQ(Q(x, y) = Q(x + y) − Q(x) − Q(y)). Similarly, (15) and
X3
= xUx give

yUx = T(x)x ◦ y+ T(y)x2 − Q(x)y− Q(x, y)x− x2 ◦ y (17)

Puttingy = 1 in (16) gives 2x = T(x)1 + T(1)x − Q(x, 1)1. If we take
x < Φ1

T(1) = 2 (18)

Thenx = 1 in (14) gives
Q(1) = 1 (19)

Also using the formulas forX2 andx ◦ y, (17) becomes

yUx = Q(x)y+ T(y)T(x)x − Q(x, y)x− T(y)Q(x)1 (20)

We can write this in a somewhat more compact form by introducing
x = T(x)1− x. Then (20) becomes 50

yUx = Q(y, x)x− Q(x)y 20’

Conversely, suppose we are given a quadratic formQ on a vector
spaceJ with a base point1 such thatQ(1) = 1. DefineT(x) =
Q(x, 1), x = T(x)1 − x and Ux by (20′) (or (20)). Then one can ver-
ify by direct calculation that (J ,U, 1) is a quadratic Jordan algebra
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satisfying condition 1 and 2. We proceed to prove more that this by
showing that (J ,U, 1) is a special quadratic Jordan algebra satisfying
1 and 2. For this purpose we introduce the Clifford algebra ofQ with
base point 1 which is defined as follows. LetT(J ) be the tensor al-
gebra overJ and letL be the ideal inT(J ) generated by 1Φ − 1
and all x ⊗ x − T(x)x + Q(x)1 where 1,x ∈ J andT(x) = Q(x, 1).
Then we definethe clifford algebra C(J ,Q, 1) of the quadratic form
Q will base point(such thatQ(1) = 1) to beT(J )/L . If x ∈ J we
put xσu = x + L . Then we have (xσu)2 − T(x)xσu + Q(x)1 = 0. This
implies thatxσuyσy + yσu xσu = T(x)yσu + T(y)xσu −Q(x, y)1 = 0. Since
yσuUxσu = xσuyσu xσu we obtain

yσuuxσu = Q(x)yσu + T(y)T(x)xσu − Q(x, y)xσu − T(y)Q(x)1. (21)

Also we have 1σu = 1. This and (21) show thatJ σu = {xσu|x ∈ J }
is a subalgebra ofC(J ,Q, 1)(q). We shall thatσu is injective. Then it
will follow from (20) and (21) that (J ,U, 1) is a quadratic Jordan al-51

gebra andσu is an associative specialization ofJ in C = C(J ,Q, 1).
It is clear from the definition ofC(J ,Q, 1) that if x → xσ is a lin-
ear mapping ofJ into an associative algebraa suchthat 1σ = 1 and
(xσ)2 − T(x)x+Q(x)1 = 0 then there exists a unique homomorphism of
C(J ,Q, 1) into a such thatxσu → xσ, x ∈J .

We consider first the case in which (Q, 1) is pure in the sense that
J = Φ1 + V whereV is a subspace such thatT(v) = 0, v ∈ V. If
the characteristic is, 2 then T(1) = Q(1, 1) = 2 , 0 andJ =

Φ1⊕(Φ1)⊥(1Φ1)⊥ the orthogonal complement ofΦ1 relative toQ(x, y)).
ThenT(v) = Q(1, v) = 0 for v ∈ (Φ1)⊥ and (Q, 1) is pure. If the char-
acteristic is two thenT(1) = 0 so (Q, 1) is pure if and only ifT ≡ 0.
In this caseV can be taken to be any subspace such thatJ = Φ1 ⊕ V.
Now letC(V,−Q) be the Clifford algebra ofV relative to the restriction
of −Q to V. The canonical mapping ofΦ1 + V into C(V,−Q) is injec-
tive so we can identifyJ = Φ1 ⊕ V with the corresponding subset of
C(V,−Q). Let x = α1 + v, α ∈ Φ, v ∈ V. ThenT(x) = 2α,Q(x) =
α2
+ Q(v) and inC(V,−Q), x2

= α21+ 2αv+ v2
= (α2 − Q(v))1 + 2αv.

Hencex2 − T(x) + Q(x) = 0. It follows from the universal property of
C(J ,Q, q) that we have a homomorphism ofC(J ,Q, 1) intoC(V,−Q)
such thatxσv → x. Clearly this implies thatσu is injective.
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Suppose next that (Q, 1) isnot pure so the characteristic is two and
T , 0. We can choosed so thatT(d) = 1 and writeJ = Φd ⊕ W 52

whereW is the hyperplane inJ defined byT(x) = 0. Then 1∈ W and
W = Φ1 ⊕ V,V a subspace. We again considerC(V,Q)(Q = −Q) since
char= 2) and we identifyW = Φ1+ V with the corresponding subset of
C(V,Q). Let D′ be the derivation in the tensor algebraT(V) such that
vD′ = v + Q(v, d)1. Since this mapsv ⊗ v + Q(V) into 0 it maps the
idealK definingC(V,Q) into itself. Hence this induces a derivartionD
in C(V,Q) such thatvD = v + Q(v, d)1. Now putL = C(V,Q) and let
L [t,D] be the algebra of differential polynomials in an indeterminatet
with coefficients inL such that

ct+ tc = cD, c ∈ L (22)

since the characteristic is two,D2 is a derivation. SincevD2
= vD, v ∈

V, andV generatesL ,D2
= D. Also ct2 + t2c = cD2 so c(t2 + t) =

(t2 + t)c, c ∈ L . Sincet2 + t commutes witht also, it is clear that this
polynomial is in the center ofL [t,D]. Hence alsog(t) = t2 + t +Q(d)1
is in the center. Let (g(t)) be the ideal inL [t,D] generated byg(t)
and putO = L [t,D]/(g(t)). It is clear from the division algorithm
(which is applicable tog(t) since its leading coefficient is 1) that every
element ofL [t,D] is congrument modulo (g(t)) to an element of the
form co+c1t, ci ∈ L . Also co+c1t ≡ 0( modg(t)) impliesco = c1 = 0.
Hence we can identifyO with the set of elements of the formco+c1t, ci ∈

L , and we have the realtionsvt + tv = v + Q(v, d), t2 + t + Q(d) = 0.
We have the injective linear mappingx = α1+ v+ βd → y = α1+ v+ 53

βt, , αβ ∈ Φ, v ∈ V, of J = Φ1+V+Φd into O. Moreover,T(x) = β,
Q(x) = α2

+ Q(v) + β2Q(d) + βQ(v, d) + αβ and

y2
= α2

+ Q(v) + β2t2 + β(vt+ tv)

= α2
+ Q(v) + β2(t + Q(d)1) + β(v+ Q(v, d))

= T(x)y+ Q(x)1 = T(x)y− Q(x)′.

Hence by the universal property ofC(J ,Q, 1) we have a homomor-
phism ofC(J ,Q, 1) intoO such that (α1+v+βd)σu → y = α1+v+βt.
Clearly this implies thatσu is injective.
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We have now proved that (J ,U, 1) is a special quadratic Joradan
algebra andσu is an associative specialization ofJ into, C(J ,Q, 1).
We now takey = 1 in (20) to obtainx2

= Q(x)1+2T(x)x−T(x)x−2Q(x)1
(SinceT(x) = Q(x, 1),T(1) = Q(1, 1) = 2) = T(x)x − Q(x). SinceJ
is special we havex3 − T(x)x2

+ Q(x)x = 0 in J . If ρ is an extension
field ofΦ then it is clear that the extension ofU to a quadratic mapping
of Jρ into EndJρ is given by (20) whereQ andT are the extensions
of Q andT to a quadratic form a linear function onJρ. It follows as in

J that we havex2 − T(x)x + Q(x)1 = 0 = x3 − T(x)x2
+ Q(x)x also

Jρ. Thus conditions 1 and 2 hold.
Now letσ be an associative specialization ofJ into a. Sinceσ is

a homomorphism ofJ into a(q) we have (xk)σ = (xσ)k, k = 0, 1, 2, . . .
Sincex2 − T(x)x+Q(x)1 = 0 in J we have (xσ)2 − T(x)xσ +Q(x)1 =
0. By the universal property ofC(J ,Q, 1) we have a unique homo-54

morphism ofC(J ,Q, 1) into a such thatxσu → xσ. It follows that
(C(J ,Q, 1), σu) is a special universal envelope for (J ,U, 1).

We shall call (J ,U, 1) the(quadratic Jordan) algebra of the form
Q with base point1. If we to indicateQ and 1 then we use the notation
Jord (Q, 1) for this (J ,U, 1).

8 The exceptional quadratic Jordan algebra

H (O3), O an Octonion algebra. A quadratic Jordan algebra which
is not special will be calledexceptional. We have already given one
example of this sort, example (3) of§5. We shall now give the most
important examples of exceptional quadratic Jordan algebra. These are
based on Octonion algebras. We proceed to define these for an arbitrary
basic field.

Let Φ be a field and letρ = Φ[u] be the algebra overΦ with base
(1, u) overΦ where 1 is unit and

u2 − y+ ρ (ρ = ρ1), (23)

ρ ∈ Φ, 4ρ , −1. This is a commutative associative algebra which has
the involution

x = α + βu→ x = α + β(1− u), α, β ∈ Φ (24)
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Next we define aquaternion algebraoverΦ which asΦ -module is
a direct sum of two copies ofΦ[u], so its elements are pairs (a, b), a, b ∈
Φ[u] with the usual vector space structure. We define a product inO = 55

Φ[u] ⊕ Φ[u] by

(a, b)(c, d) = (ac+ σdb, da+ bc) (25)

wherea, b, c, d ∈ Φ[u] andσ is a fixed non-zero element ofΦ. ThenO is
an associative algebra with 1= (1, 0) andσ/ has the standard involution.

x(a, b) → x = (a,−b). (26)

Finally, letO = σ/⊕σ/ as vector space overΦ and define a product
in O by (25) whereσ replaced byτ , 0 inΦ and the elements are now
in O. The resulting algebraO is called anOctonion algebraoverΦ. It
has the standard involution (26). These algebras are not associative but
arealternativein the sense that they satisfy the following weakening of
the associative law called thealternative laws:

x2y = x(xy), yx2
= (yx)x (27)

In O we havex+ x = t(x) wheret is a linear funtion andxx = n(x) =
xx wheren(x) is quadratic form onO (values inΦ). t andn are called
respectively thetraceandnorm.

We writev = (0, 1) in O. Thenu andv generateO and we have the
basic rules:vu = uv = (1 − u)v, u2

= u + ρ, v2
= σ. Similarly, we put

w = (0, 1) in O and we havewu = uw, wv = vw = −vw, w2
= τu, v,w

generateO and every element ofO can be written in one and only one56

was asa+bw, a, b ∈ O. Suppose the base fieldΦ is algebraically closed.
ThenΦ[u] is a direct sum of two copies ofΦ since the polynomialλ2 −

λ − ρ is a product of distinct linear factors. ThenΦ[u] = Φ[e] where
e2
= e, e = 1− e. Thus in this case we may takeρ = 0. Also replacing

v andw by mutliples of these elements we may supposev2
= 1, w2

= 1.
Then (1, u, v, uv,w, uw, vw, (uv)w) is a base forO whose multiplication
table has coefficients which are 0,±1. For arbitraryΦ we shall say that
O is asplit Octonion algebra ifρ = 0, σ = 0 = τ = 1, or equivalently
the base (1, u, v, . . .) has the multiplication table just indicated.
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Now supposeΦ is of characteristic, 2,O an octonion algebra over
Φ. Let O3 be the set of 3× 3 matrices with entries inO. This is an
algebra overO with the usual vector space compositions and matrix
multiplication. We have the standard involution in this algebra: A →
A

t
whereA = (ai j ) for A = (ai j ). Let H (O3) be theΦ -subspace of

matrices satisfyingA
t
= A. This is closed under the bilinear product

A · B = 1
2(AB+ BA) and it is well-known that (H (O3),R, 1) is a Jordan

algebra ifXRA = X·A (See Jacobson’s book [2], p.21). We now consider
the quadratic Jordan algebra (H (O3),U, 1) whereUa = 2R2

a − Ra2 and
we wish to analize theU operator in this algebra. For this we introduce
the following notation.

α[ii ] = αeii , α ∈ Φ

a[i j ] = aei j + aei j , a ∈ O, i , j (29′)

Here theei j are the usual matrix unitsei j has 1 in the (i, j) -position57

0’s elsewhere. We have
a[ ji ] = a[i j ] (27′)

and ifHii = {α[ii ], α ∈ Φ},Hi j = {a[i j ]|i , j, a ∈ O}, then

H = (O3) =H11⊕H22⊕H33⊕H12⊕H23⊕H13 (28)

The Hii are one dimensional and theHi j , i , j, are eight dimen-
sional so dimH = 27. Any AUB,A, B ∈ H is a sum of elementsxUy

wherex, y are in the spacesHi j and xUy,z wherex, y, z are in theHi j

andy andz are not in the same subspace. It is easily checked that the
non-zeroxUy, xUy,z of the type just indicated are the following:

(i) β[ii ]Uα[ii ] = αβα[ii ]

(ii) α[ii ]Ua[i j ] = aαa[ j j ]

(iii) b[i j ]Ua[i j ] = aba[i j ]

(It is easily seen that (ax)a = a(xa) in any alternative algebra. Hence
this is abbreviated toaxa.)

(iv) {α[ii ]a[i j ]b[ ji ]} = (αab+ α(ab))[ii ]
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(v) {α[ii ]β[ii ]a[i j ]} = αβa[i j ]

(vi) {α[ii ]a[i j ]β[ j j ]} = αβa[i j ]

(vii) {α[ii ]a[i j ]b[ jk]} = αab[ik]

(viii) {a[i j ]α[ j j ]b[ jk]} = αab[ik] 58

(ix) {a[i j ]b[ ji ]c[ik]} = a(bc)[ik]

(x) {a[i j ]b[ jk]c[ki]} = (a(bc) + a(bc))[ii ].

Now letΦo be a subring ofφ containing 1. Then (H ,U, 1) can be
regarded as a quadratic Jordan algebra overΦ0. The foregoing formulas
show that ifOo is a subalgebra of (O/Φo, j), that is, a subalgebra of
O/Φo stable underj, then the subsetHo of H of matrices having entries
in Oo is a subalgebra of (H ,U, 1). This is clear sinceHo is the set of
sums ofα[ii ], a[i j ] whereα, a ∈ Oo. It is clear also that ifK is an ideal
in (Oo, j) then the setZ of matrices with entries inK is an ideal in
(Ho,U, 1). Hence we have the quadratic Jordan algebra (Ho/Z ,U, 1).

If Φ has characteristic, 2 thena = a in O if and only if a = α ∈ Φ.
This is not the case for characteristic two accordingly, in this case we let
H (O3) denote the set of 3×3 matrices with entries inO such thatA

t
= A

andthe diagonal entries are inΦ. (ForΦ of characteristic, 2 the latter

condition is implied by the former.) ThenH = H (O3) =
3∑

i≤ j=1
Hi j

whereHi j is as before. Then it is easily seen that there is a unique
quadratic mapping ofH into End H such that the formulas (i)-(x)
hold and all otherxUy, xUy,z are 0 wherex, y, z are in the subspaces
Hi j , y andznot in the same subspace. For any characteristic we have

Theorem 5. (H ,U, 1) is a quadratic Jordan algebra.
59

Proof. The case in which the characteristic, 2 has been settled before,
so we assume the characteristic is 2. Assume first thatΦ = Z2 the field
of two elements andO is the split octonion algebra overΦ. Let O′ be
the split octonion algebra over the rationalsQ,Oo theZ -subalgebra of
(O′ j) of integral linear combinations of the base (1, u, v, . . .) Then we
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have theZ -quadratic Jordan algebra (H (Oo3),U, 1)/2H (O03) which
can be regarded as aZ2 -quadratic Jordan algebra. Moreover, it is clear
that (H (O3),U, 1) (overZ2) is isomorphic to this. HenceH (O3,U, 1)
is a quadratic Jordan algebra overZ2. Now letΦ be arbitrary of char-
acteristic two,O an arbitrary octonion algebra. To prove (H (O3),U, 1)
is Jordan it is enough to show that the conditionsQJ3, 4, 6 − 9 hold for
the U -operator (Theorem 1). These hold if and only if they hold for
(H (O3)Ω,U, 1) whereΩ is the algebraic closure ofΦ. Also we may
identify H (O3)Ω with H (OΩ)3. Hence it suffices to assumeΦ alge-
braically closed. ThenO is split. Now it is clear from the definition
of a split algebra that ifOo is the split octonion algebra overZ2 then
O = OoΦ = Φ ⊗Z2 O0 so (H (O3),U1) = (H (Oo3)Φ,U, 1). Since we
have just seen that the latter is a quadratic Jordan algebra it follows that
(H (O3),U, 1) is a quadratic Jordan algebra.

We have seen in Theorem 3 that a quadratic Jordan algebra overΦ

with 2Φ = 0, is a 2-Lie algebra relative to [a, b] = a◦b = (a+b)2−a2−b2

anda[2]
= a2. In particular, this holds for (H (O3),U, 1) whereO is an60

octonion algebra over a field of characteristic two. We now note that
in this caseA2

= 1UA is the same as the square of the matrixA ∈
H as defined inO3. To see this it is sufficient to show that 1Ua[i j ] =

(aei j + a · eji )(aei j + aeji ) = n(a)(eii + ej j ) = n(a)[ii ] + n(a)[ j j ], 1Uα[ii ] =
(αeii )(αeii ) = α2[ii ], {x1y} = xy+ yx if x, y are in different spacesHi j .
By the defining formulas 1Ua[i j ] = 1[ii ]Ua[i j ] + 1[ ji ]Ua[i j ] = n(a)[ j j ] +
n(a)[ii ] (by (ii )), 1Uα[ii ] = 1[ii ]Uα[ii ] = 1[ii ]Uα[ii ] = α2[ii ] (by (i)). By
(v),{α[ii ]1c[i j ]} = {α[ii ]1[ii ]c[i j ]} = αc[i j ] = αcei j +αceji . On the other
hand,αeii (ceii + ceji ) + (cei j + ceji )(αeii ) = αcei j + αceji . By (Viii ).
{a[i j ]1c[ jk]} = ac[ik]. Also a[i j ]c[ jk] + c[ jk]a[i j ] = (aei j + aeji )(cejk +

cek j) + (cejk + cek j)(aei j + aeji ) = aceik + caeki = ac[ik]. The remaining
{x1y} and xy+ yx are 0. Hence we have proved our assertion and we
have the following consequence of Theorems 4 and 5: �

Corollary . LetO be an octonion algebra over a field of characteristic
two, H (O3) the set of3 × 3 hermitian matrices inO3 with diagonal
entries inΦ. ThenH (O3) is a2-Lie algebra relative to AB= AB+ BA
and A[2]

= A2.
Theorem 5 has an important generalization in which the octonion
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algebra is replaced by an alternative algebra with involution (O, j) such
that all norms dd = ddj , d ∈ O, are in the nucleus. We recall that the
nucleus of a non-associative algebra is the set of elementsα such that
[α, x, y] = (αx)y − α(xy) = 0, [x, α, y] = 0, [x, y, α] = 0 for all x, y in 61

the algebra. In an alternative algebra the associator[x, y, z] ≡ (xy)z−
x(yz) is an alternating function in the sense that[x, y, z] is unchanged
under even permutation of the arguments and changes sign under odd
permutation. Henceα ∈ N(O) the nucleus of the alternative algebraO
if and only if[α, x, y] = 0, x, y ∈ O. Now suppose(O, j) is an alternative
algebra satisfying the condition that norms are in the nucleous N(O).
Let No be theΦ -submodule of N(O) generated by the norms. If x, y ∈ O
then (x + y)(x + y) − xx − yy = xy + yx ∈ No. In particular, t(x) =
x+ x ∈ No. It follows that ifΦ contains1

2 thenH (O, j) ⊆ N(O) so the
condition in this case is that the symmetric elements ofO are contained
in the nucleus. Again supposeO arbitrary and (O, j) satisfies the norm
condition. Then we have the following results (McCrimmon):

1) xNox ⊆ No, x ∈ O

2) xNx ⊆ N

3) If N′ = N ∩H (O, j)then xN′x ⊆ N′

Proof. 1. We shall use (xa)x = x(ax) which we write asxax. Also
we shall need Moufang’s identity: (ax)(ya) = a(xy)a which holds
in any alternative algebra. It is enough to provex(yy)x ∈ No, x, y ∈
O. We havex(yy) = x(y(t(y) − y)) = x(yt(y)) − xy2

= (xy)t(y) −
(xy)t(y) − (xy)y = (xy)y. Hencex(yy)x = (x(yy))(t(x) − x) =
(x(yy))t(x) − (x(yy))x = ((xy)y)t(x) − (xy)(yx) (by Moufang)=
(xy)(yt(x) − yx) = (xy)(yx) = (xy)(xy) ∈ No.

2. (2) We useα[x, y, z] = [αx, y, z] = [xα, y, z] = [x, y, z]α for 62

x, y, z ∈ O, α ∈ N, and (xyx)z = x(y(xz)) (see the author’s book
[2], pp. 18-19). We have to show that [xαx, y, z] = 0 if α ∈
N, x, y, z ∈ O. Sincexx ∈ N this will follow by showing that
[xαx, y, z] = [xx, y, z]α. For this we have the following calcula-
tion:

[xαx, y, z] = [xαt(x), y, z] − [xαx, y, z]
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= t(x)[x, y, z]α + (x(α(x(yz))) − (x(α(xy)))z

= t(x)[x, y, z]α − (xα)[x, y, z] + (xα)((xy)z)

− [xα, xy, z] = (xα)((xy)z)

= g(x, y, z)α

whereg(x, y, z) = t(x)[x, y, z] − x[x, y, z] − [x, xy, z]. Takingα = 1
we haveg(x, y, z) = [xx, y, z]. Hence [xαx, yz, z] = [xx, y, z]α = 0.

3. is an immediate consequence of this.
Now consider the algebraO3 of 3 × 3 matrices with entries inO.

By H (O3) we shall now understand the set of hermitian matrices of
O3(A

t
= A)with diagonal entries inN′ = N ∩H ( , j). If O is asso-

ciative thenH (O3) is just the set of hermitian matrices. In any case the
elements ofH (O3) are sums of elementsα[ii ], α ∈ N′, anda[i j ], a ∈
O, i , j. SinceNo ⊆ N′ and all traces are inNo it is clear from (1)− (3)
that the right hand sides of (i) − (x) are contained inH (O3). Hence we
can define a unique quadratic mapping ofH (O3) into EndH (O3) such
that (i) − (x) hold and the remainingxUy, xUy,z = 0 for x, y of the form
α[ii ] or a[i j ]. It has been proved by McCrimmon thatH (O3,U, 1) is a63

quadratic Jordan algebra.
The algebrasH (O3) with O not associative are exceptional. In fact,

we have the following stronger result: �

Theorem 6. If (H (O3),U, 1) is a homomorphic image of a special
quadratic Jordan algebra thenO is associative.

Proof. The proof we sketch is due to Glennie and is given in detail on
p.49 of the author’s book [2]. One can show that the followingidentity
holds in everya(q), a associative:

xzx◦ {y(zy2z)x} − yzy◦ {x(zy2z)y}

= x(z{x(yzy)y}z)x − y(z{y(xzx)x}z)y. (29)

On the other hand, if one takes

x = 1[12], y = 1[23], z= a[21] + b[13] + c[32]
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then one can see that the (1, 3) entry in the matrix on the left side of
(29) isa(bc) − (ab)c while the (1, 3) -entry on the right hand side is 0.
Hence if (29) is to hold inH (O3) thena(bc) = (ab)c for all a, b, c ∈ O
so O is associative. Clearly this identity holds if (H (O3),U, 1) is a
homomorphic image of a special quadratic Jordan algebra. �

9 Quadratic Jordan algebras defined by certian cu-
bic forms.

In this section we assume the base ringΦ is an infinite field. We shall
give another definition of the quadratic Jordan structure onH (O3), O
an octonion algebra overΦ. As before,H (O3) denotes the set of 3× 64

3 hermitian matrices with entries inO, diagonal entries inΦ. If a =
3∑
1
αi [ii ] +

3∑
i=1

ai [ jk], where (i, j, k) is a cyclic permutation of (1, 2, 3) and

the notations are as in§8, then we define a “determinant” by

N(a) = deta = α1α2α3 −

3∑

1

αin(ai ) + t((a1a2)a3) (30)

Heren(a) = aa, t(a) = a + a in O. It is known thatt((a1a2)a3) =
t(a1(a2a3)) so we write this ast(a1a2a3). Also it is known thatt(a1a2a3)
is unchanged under cyclic permutation of the arguments. Iff is a ratio-
nal mapping ofH into a second finite dimensional space then we let
∆

b
a f denote the directional derivative off ata in the directionb (see the

author’s book, pp, 215-221). In particular, iff is a polynomial function
then we havef (a+ λb) ≡ f (a) + (∆b

a f )λ(modλ2) and∆b
a f is determined

by this condition. SinceN is polynomial mapping which is homoge-
neous of degree three we have

N(a+ λb) = N(a) + (∆b
aN)λ + (∆a

bN)λ2
+ N(b)λ3 (31)

By (30) we have fora =
∑
αi [ii ] +

∑
ai [ jk], b =

∑
βi [ii ]

∑
bi [ jk]

that

∆
b
aN =

∑

i

βiα jαk −
∑

i

βin(ai ) −
∑

i

αit(ai , bi) +
∑

i

t(bia j , ai) (32)
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We defineT(a, b) = −∆a
1∆

blogN = (∆a
1N)(∆b

1N) − ∆a
1(∆bN) soT is65

a symmetric bilinear form ina andb. By (32), we have

T(a, b) =
(∑
αi

) (∑
βi

)
−

∑

i

βi(α j + αk) −
∑

t(ai , bi)

=

∑
αiβi −

∑
t(ai , bi) (33)

Sincet(a, b) is non-degenerate onO, T(a, b) is non-degenerate on
H . If we define the “adjoint matrix”,a♯ by

a♯
∑

i

(α jαk − n(ai )[ii ] +
∑

i

(a jak − αiai)[ jk] (34)

it is easy to check that
∆

b
aN = T(a♯, b) (35)

A straight forward verifiction using Moufang’s identity shows that
we have

a♯♯ = N(a)a. (36)

It is clear from the definition ofN that N(1) = 1. We now de-
fine T(a) = T(a, 1) = T(a, 1♯) since 1♯ = 1 by (34). Then (33) gives
T(a) =

∑
αi. We definea× b = (a + b)♯ − a♯ − b♯. We haveT(a, b) =

(∆a
1N)(∆b

1N)−∆a
1(∆bN) = T(a)T(b)−∆a

1(∆bN) (by (35)). SinceN is cu-
bic form (=homogeneous polynomial function of degree three we have
∆

a
i (∆bN) = ∆c

x(∆
a(∆b(bN))) is independent ofx and is symmetric in

a, b, c. Hence∆a
1(∆bN) = ∆a

b(∆aN) = ∆a
bT(a♯) (by (35))= T(a × b).

Hence we have
T(a× b) = T(a)T(b) − T(a, b) (37)

66

We define thecharacteristic polynomial fa(λ)N(λ1 − a). By (31)
and the definition ofT(a) we have

fa(λ) = N(λ1− a) = λ3 − T(a)λ2
+ S(a)λ − N(a) (38)

whereS(a) = T(a♯). Direct verification, using (34) and the foregoing
definitions shows that

a♯ = a2 − T(a)a+ S(a)1 (39)
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wherea2 is the usual matrix square. SinceS(a) = T(a♯) andT is linear
and satisfiesT(1) = 3 this gives

2T(a♯) = T(a)2 − T(a2) (40)

We now suppose thatH = H (O3) is endowed with the quadratic Jor-
dan structure given in§8. Thena2

= 1Ua is the usual square of a and
a3
= aUa. We shall now establish the following formula for theU-

operator inH :
bUa = T(a, b)a − a♯ × b (41)

We shall establish this using the foregoing formulas and theHamil-
ton-Cayley type theorem that

fa(a) = a3 − T(a)a2
+ S(a)a− N(a)1 = 0, (42)

which we prove first. Suppose first that the characteristic is, 2. Then 67

a3aUa =
1
2(aa2

+ a2a). Then one can verify (42) by direct calculation
(see the author’s book [2], p.232). Next assume char.= 2. Then we shall
establish (42) by a reduction mod 2 argument similar to that used in
§8. We note first that we may assume the base field is algebraically
closed. ThenO is split and has a canonical base (u1, u2, . . . , u8) with
multiplication table inZ2 as in§8. We obtain a corresponding canon-
ial base (v1, . . . , v27) for O/Φ wherevi = i[ii ], i = 1, 2, 3 andv j , for
j > 3, has the formuk[12], uk[13] or uk[23], k = 1, 2, . . . , 8. Now
let ξ1, ξ2, . . . , ξ27 be indeterminates and consider the “generic” element

x =
27∑
1
ξ jv j in Hρ, ρ = Φ(ξ), ξ = (ξ1, . . . , ξ27). By specialization it suf-

fices to prove (42) fora = x. Let ρ
o
= Z2(ξ),Ho =

∑
ρ

o
v j , soHo is

quadratic Jordan algebra overρ
o

andx ∈ Ho. The functionsS,T,N on
Ho are the restriction of the corresponding ones onHo are the restric-
tion of the corresponding ones onH . Hence it suffices to prove the
result forx in Ho. This follows by applying aZ -homomorphism of an
algebraH ′

=
∑
ρ′v′j whereρ′ = Z(ξ) and thev′j are obtained from a

canonical base of the split octonion algebraO′/Q as in§8.
We now begin with (42). A linearization of this relation by replacing

a bya+ λb and taking the coefficient ofλ gives

bUa = −a2 ◦ b+ T(a)(a ◦ b) + T(b)a2 − T(a× b)a− T(a♯)b+ T(a♯, b)1
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= −(a♯ + T(a)a− T(a)a− T(a♯)1) ◦ b+ T(b)(a♯+

T(a)a− T(a♯)1)+ T(a)a× b− T(a♯)b

− (T(a)T(b) − T(a, b))a + T(a♯, b) ((39), (37))

= −a♯ ◦ b+ T(a♯)b+ T(b)a♯ − (T(b)T(a♯) − T(a♯, b))

+ T(a, b)a

= T(a, b)a− a♯ × b

using (37) anda × b = a ◦ bT(a)b − T(b)a + T(a × b)1 which is the68

linearization of (39). Hence (41) holds.
We now assume we have a finite dimensional vector spaceJ over

an infinite fieldΦ equipped with a cubic formN, a point 1 satisfying
N(1) = 1, such that:

(i) T(a, b) = −∆a
1∆

b logN = (∆a
1N)(∆b

1N) − ∆a
1(∆bN)

is a non-degenerate symmetric bilinear form ina andb.

(ii) If a♯ is defined byT(a♯, b) = ∆b
aN thena♯♯ = N(a)a.

We define

(iii) bUa = T(a, b)a − a♯ × b

wherea× b = (a+ b)♯ − a♯ − b♯. Then we have

Theorem 7. (J ,U, 1) is a quadratic Jordan algebra.

Proof. We can linearize (ii) to obtain

a× (a× b) = N(a)b+ T(a♯, b)a (43)

a♯ × b♯ + (a× b)♯ = T(a♯, b)b+ T(b♯, a)a (44)

we haveT(1, b) = (∆′1N)(∆b
1N)−∆′1(∆bN) = 3N(1)∆b

1N−2∆b
1N (by Eu-

ler’s theorem on homogeneous polynomial functions)= ∆
b
1N = T(1♯, b).

Hence69

1♯ = 1 (45)
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by the non-degeneracy ofT. SinceN is a cubic form∆c
x(∆

a
∆

bN) is
independent ofx and symmetric ina, b, c. By (ii ) we haveT(a× c, b) =
∆

a
c∆

b
N = ∆

c
x(∆

a
∆

bN). HenceT(a × c, b) is symmetric ina, b, c and in
particular we haveT(a, b× 1) = T(a× b, 1) = ∆a

1∆
bN = (∆a

1N)(∆b
1N) −

T(a, b) = T(a)T(b) − T(a, b) whereT(a) = T(a, 1♯) = T(a, 1). This and
the non-degeneracy ofT imply

b× 1 = T(b)1− b (46)

By (43) and the symmetry ofT(a × c, b) we haveT(b, (c × a♯) × a) =
T(b × a, c × a♯) = T(b × a) × a♯,C = T(N(a)b, c) + T(T(a♯, b)a, c) =
T(b,N(a)c) + T(b,T(a, c)a♯). Hence

(c× a♯) × a = N(a)c+ T(a, c)a♯ (47)

SinceT(bUa, c) = T(a, b)T(a, c) − T(a♯ × b, c) is symmetric inb andc
we have

T(bUa, c) = T(b, cUa) (48)

Next we note thatT(bUa)♯, c) = T((T(a, b)a − a♯ × b)♯, c) = T(T(a,
b)2 a♯+ (a♯×b)♯−T(a, b)(a♯×b)×a, c) = T9(a, b)2T(a♯, c)−T(N)(a)a×
b♯−N(a)T(a, b)b−T(a♯ , b♯)a♯, c−T(a, b)T(N(a)b+T(a, b)a♯ , c) (by (44),
(47) and (ii))= T(a♯, b♯)T(a♯, c)−N(a)T(a×b♯, c) = T(b♯Ua♯, c). Hence

(bUa)♯ = b♯Ua♯ (49)

70

Linearization of this relative tob gives

bUa × cUa = (b× c)Ua♯ (50)

We can now provceQJ3. For this we considerT(xUbUa,y) = T(T
(bUa, x)bUa−(bUa)♯×x, y). SinceT(bUa,x) = T(b, xUa) andT((bUa)♯×
x, y) = T(b♯Ua♯×x, y) = T(b♯Ua♯ , x×y) = T(b♯, (x×y)Ua♯) = T(b♯, xUa×

yUa) (by (50))= T(b♯ × xUa, yUa) = T((b♯ × xUa)Ua, y) the foregoing
relation becomesT(xUbUa, y) = T(T(b, xUa)bUa − (b♯ × xUa)Ua, y) =
T(xUaUbUa, y). HenceQJ3 holds. To proveQJ4 we note that the
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definition ofUa andVa,b give xVa,b = T(x, a)b+ T(a, b)x− (x× b) × a.
Hence

xVa,bUa − xUaVb,a = T(x, a)bUa − ((x× b) × a)Ua

− T(xUa, b)a+ (xUa × a) × b

Using the symmetry ofT(x× y, z) and (48) we obtain

T(T(x, a)bUa − ((x× b) × a)Ua − T(xUa, b)a+

(xUa × a) × b, y) = T(b,T(x, a)yUa−

T(b, ((yUa × a) × x) − T(b,T(a, y)xUa + T(b, y× (xUa × a)).

It suffices to show this is 0 and this will follows by showing that
T(x, a)yUa−(yUa×a)×x is symmetric inx andy. We haveT(x, a)yUa−71

(yUa×a)×x = T(x, a)T(y, a)a−T(x, a)a♯×y−T(a, y)(a×a)×x+((a♯×y)×
x = T(x, a)T(y, a)a−T(x, a)a♯×y−2T(a, y)a♯×x+N(a)(y×x)+T(a, y)a♯×
x = T(x, a)T(y, a)a−T(x, a)a♯×y−T(a, y)a♯×x+N(a)(y×x). Since this is
symmetric inx andy we haveQJ4. Also we havexU1 = T(x)1−1× x =
x by (46). To proveQJ5 we observe that ifρ is an extension field ofΦ
then QJ3 andQJ4 are valid forJρ since the hypothesis made onN
carry over to the polynomial extension ofN to Jρ. In particular, there
hold if ρ = Φ(λ). Then the argument in§3 shows thatQJ6 − 9 hold in
J . HenceJ is a quadratic Jordan algebra by Theorem 1.

A cubic formN and element 1 withN91)= 1 satisfying (i)-(iii) will
be calledadmissible. We shall now give another imporatant example
of an admissible (N, 1) which is due to Tits (see the author’s book [2],
pp.412-422). Leta be a central simple associative algebra of degree
three (so dima = q) and letn be the generic (= reduced) norm ona, t
the generic trace. LetJ = a ⊕ a ⊕ a a direct sum of three copies ofa.
We write the elements ofJ as triplesx = (a0, a1, a2), ai ∈ a. Let µ be
a non-zero element ofΦ and define

N(x) = n(ao) + µn(a1) + µ−1n(a2) − t(aoa1a2) (51)

If we put 1= (1, 0, 0) we haveN(1) = 1. It is not difficult to verify that
(N, 1) is admissible. HenceJ with theU-operator defined by (iii) is a
quadratic Jordan algebra. It can be shown that these algebras are of the72

form H (O3) and hence are exceptional also. �
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10 Inverses

If a, b are elements of an associative algebra such thataba= a, ab2a = 1
thena is invertiable by the second condition, soab= 1 = baby the first.
Thusa is invertible with inverseb = a−1. Conversely, ifa is invertible
thenaa−1a = a andaa−2a = 1. This motivates the following:

Definition 5. An elementa of a quadratic Jordan algebra (J ,U, 1) is
invertible if there existsab in J such thataba= a, ab2a = 1. Thenb
is called aninverseof a.

The foregoing remark shows that ifJ = a(q), a associative thena
is invertible inJ with inverseb if and only if ab= 1 = ba in a. If σ is
a homomorphism ofJ into J ′ anda is invertible with inverseb then
aσ is invertible inJ ′ with inversebσ. In particular ifJ ′

= a(q) then
aσbσ = 1 = bσaσ.

We have the following

Theorem on Inverses 1.The following conditions are equivalent: (i)
a is invertible, (ii) Ua is invertible in EndJ , (iii) 1 ∈ J Ua(2) If
a is invertible the inverseb is unique andb = aU−1

a . Also Ub = U−1
a .

and if we putb = a−1 thena−1 is invertible and (a−1)−1
= a. (3) We have

a ◦ a−1
= 2, a2 ◦ a−1

= 2a,V = VaU−1
a = U−1

a Va. (4) aba is invertibel if
and only ifa andb are invertible, in which case (aba)−1

= a−1b−1a−1.
73

Proof. (1) If b2Ua = 1 then 1= U1 = Ub2Ua
= UaUb2Ua so Ua is

invertible. Then (i)⇒.(ii). Evidently(ii)⇒ (iii). Now assume (iii).
Then there exists ac such that 1= cUa. Then 1= UaUcUa so
Ua is invertible. Then there existsab such thatbUa = a. Hence
UbUbUa = Ua and sinceUa is invertible, UaUb = 1 = UbUa.
Then b2Ua = 1UbUa = 1 so a is invertible with b as inverse.
Thus (iii)⇒ (i).

(2) If a is invertible withb as inverse thenbUa = a and sinceU−1
a

exists,b = aU−1
a is unique. AlsoUaUbUa = Ua givesUaUb =

1UbUa so Ua−1 = U−1
a . Also Ub -invertible implies thatb is in-

vertible and its inverse isbU−1
b = bUa = a. This completes the
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proof of (2).

(3) By QJ24 we haveUaVa = Ua,a2 = VaUa. Hence (a−1 ◦ a)Ua =

a−1VaUa = a−1UaVa = aVa = 2a2
= 2Ua. SinceU−1

a exists
this givesa−1 ◦ a = 2. By QJ20 we havea−1 ◦ a2

= a−1Va2 =

a−1(V2
a−2Ua) = 4a−2a = 2a. Also, byQJ13 and 24,UaVa−1Ua =

Ua−1Ua,a2
= Ua,a2 = UaVa = VaUa. HenceVa−1 = U−1

a Va =

VaU−1
a (4). The first assertion is clear sinceUaba = UaUbUa.

Also if a andb are invertible then (aba)−1
= (aba)U−1

aba = bUaU−1
a

U−1
b U−1

a = b−1U−1
a = b−1Ua−1 = a−1b−1a−1.

Remark by M.B. Rege. There are two other conditions fora to be
invertible withb as inverse which can be added to those given in

(1): (iv) aba= a andba2b = 1, (v)aba= a andb is the only element
of J satisfying this condition. These are well-known for associative74

algebras. The associative case of (iv) applied toUa andUb given (iv) in
the Jordan case. (v) is an immediate consequence.

If n is a positive integer then we definea−n
= (a−1)n. Then it is easy

to extendQJ32, 33 to all integral powers. It is easy to see also that for
arbitrary integralm, n,Uam,an,Vam,an are contained in the (commutative)
subalgebra of EndJ generated byUa,Va andU−1

a .
A quadratic Jordan algebraJ is called adivision algebraif 1 , 0

in J and every non-zero element ofJ is invertible. If is an associative
division algebra thena(q) is a quadratic Jordan division algebra. Also if
(a, J) is an associative division algebra with involution thenH (a, J) is
a quadratic Jordan division algebra since if 0, h ∈ H then (h−1)J

=

(hJ)−1
= h−1 ∈ H . If Q is a quadratic form with basic point 1 on a

vector spaceJ then we have seen that the quadratic Jordan algebra
J =Jord (Q, 1) is special and can be identified with a subalgebra of
C(J ,Q, 1)(q) whereC(J ,Q, 1) is the Clifford algebra ofQ with base
point 1. InC we have the equationx2 − T(x)xQ(x) = 0, x ∈J . Hence
xx = Q(x)1 = xx for x = T(x)1 − x. This shows thatx is invertible
in C if and only if Q(x) , 0 in which casex−1

= Q(x)−1x. It follows
that x is invertible inJ if and only if Q(x) , 0. HenceJ =Jord(Q, 1)
is a division algebra if and onky ifQ is unisotropic in the sense that
Q(x) , 0 if x , 0 in J .

The existence of exceptional Jordan division algebras was first es-75
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tablished by Albert. Examples of these can be obtained by using Tits
construction of algebras defined by cubic forms as in§9. In fact, it can
be seen that if the algebraa used in Tits construction is a division alge-
bra andµ is not a generic norm ina then the Tits’ algebra defined bya
andµ is a division algebra.

An elementa ∈ J is called azero divisorif Ua is not injective,
equivalently, there existsab , 0 in J such thatbUa = 0. Clearly,
if a is invertible then it is not a zero divisor. An elementz is called an
absolute zero divisorif Uz = 0 andJ is calledstrongly non-degenerate
if J contains no absolute zero divisors, 0. This condition is stronger
than the condition thatJ is non-degenerate which was defined by: ker
U = 0, where kerU = {z|Uz = 0 = uz,a, a ∈J }.

LetΦ be a field. An elementa ∈ (J /Φ,U, 1) is calledalgebraic if
the subalgebraΦ[a] generated by a is finite dimensional. ClearlyΦ[a] is
theΦ-subspace spanned by the powersam,m= 0, 1, 2, . . ., and we have
the homomorphism ofΦ[λ](q), λ an indeterminate, ontoΦ[a] such that
λ→ a. Let ka be the kernal of this homomorphism. If the characteristic
is, 2 then the ideals ofΦ[λ](q) are the same as those ofΦ[λ]+, which is
the Jordan algebra associated withΦ[λ](q) by the category isomorphism.
Sinceab = 1

2(ab + ba) = a · b in Φ[λ] we haveΦ[λ]+ = Φ[λ] as
algebras. Hence the ideals ofΦ[λ](q) are ideals of the assoicative algebra
Φ[λ] if char Φ , 2. If charΦ = 2, Example (3) of§5 shows that 76

there exist ideals ofΦ[λ](q) which are not ideals ofΦ[λ]. Let K be
an ideal, 0 in Φ[λ](q), f (λ) , 0 an element ofK. Theng(λ) f ()2

=

g(λ)U f (λ) ∈ K. HenceK contains the ideal (f (λ)2) of Φ[λ]. The sum of
all such ideals is an ideal (m(λ)) of Φ[λ]. We may assumem(λ) monic.
In particular, ifa is an algebraic element ofJ thenKa contains a unique
ideal (ma(λ)) ofΦ[λ] maximal inKa wherema(λ) is monic. We shall call
ma(λ) theminimim polynomialof the algebraic elementa. If ma(0) = 0
soma(λ) = λh(λ) thenh(λ) < (ma(λ)) so these existsag(λ) ∈ Φ[λ] such
that h(λ)g(λ) ∈ Ka. Henceh(a)g(a) , 0 andh(a)g(a)Ua = 0. Thus
ma(0) = 0 implies thata is a zero divisor. On the other hand, suppose
there exists a polynomialf (λ) such thatf (a) = 0 and f (0) , 0. Then
we have a relation 1= g(a) whereg(0) = 0. Then 1= g(a)2 and
g(λ)2

= λ2h(λ). Then 1= h(a)Ua anda is invertible by the Theorem
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on Inverses. Hence an algebraic elementa is either a zero divisior or is
invertible according asma(0) = 0 or ma(0) , 0. It is easily seen also
that if a is algebraic thenΦ[a] is a quadratic Jordan division algebra if
and only ifKa = (ma(λ)) wherema(λ) is irreducible. We have it to the
reader to prove this.

If J is strongly non-degenerate thenKa = (ma(λ)) for every alge-
braic elementa. For, if g(λ) ∈ Ka and f (λ) ∈ Φ[λ] thenU( f g)(a)Ug(a) =

0(QJ34). Hence (f , g)(a) = 0 and f (λ)g(λ) ∈a. ThusKa is an ideal of
Φ[λ] andKa = (ma(λ)) by definition of (ma(λ)). �

11 Isotopes

This is an important notion in the Jordan theory which, like inverses, has77

an associative back ground.
Let a be an associative algebra,c an invertible elementa. Then we

can define a new algebraa(c) which is the sameΦ-module asa and
which has the productxcy = xcy. We have (xcy)c = xcyczandxc(ycz) =
xcyczsoa(c) is associative. Alsoxcc−1

= xcc−1
= x andc−1

c x = c−1cx=
x soc−1 is unit for a(c). The mappingcR : x → xc is an isomorphism
of a(c) onto a since (xcy)cR = xcyc = (xcR)(ycR). An elementu is
invertible in a if and only if, it is invertiable ina(c) sinceuv = 1 = vu
is equivalent touc(c−1vc−1) = c−1

= (c−1vc−1)cu. If d is invertible in
a (or a(c)) then we can form the algebra (a(c))(d). The product here is
xc,dy = xcdcy = xcdcy. Hence (a(c))(d)

= a(cdc). In particular, if we
takedd = c−2 then we see that (a(c))c−2

= a. Finally, we consider the
quadratic Jordan algebrasa(q) anda(c)(q). TheU-operator in the first is
Ua : x→ axaand in the second it isU(c)

a : x→ acxca = acxca. Hence
we haveU(c)

a = UcUa.
The considerations lead to the definition and basic properties of iso-

topy for quadratic Jordan algebras. Let (J ,U, 1) be a quadratic Jordan
algebrac an invertible element ofJ . We define a mappingU(c) of J
into EndJ by

U(c)
a = UcUa (52)

and we put 1(c)
= c−1. EvedentlyU(c) is a quadratic mapping we have78
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U(c)
1(c) = UcUc−1 = 1. Hence the axiomsQJ1 andQJ2 for quadratic

Jordan algebras hold. Also

U(c)

aU(c)
b

= UcUaUcUb = UcUbUcUaUcUb

= U(b)
b U(c)

a U(c)
b

HenceQJ3 holds. Next we defineV(c)
a,b by xV(c)

a,b = aU(c)
x,b where

U(c)
a,b = U(c)

a+b − U(c)
a − U(c)

b = UcUa+b − UcUa = UcUb = UcUa,b. Then

xV(c)
a,b = aUcUx,b = xVaUc,b. ThusV(c)

a,b = VaUcb. Now we have

xV(c)
b,aU(c)

b = bU(c)
x,aU(c)

b = bUcUx,aUcUb

= bUxUc,aUcUb(bilinearization ofQJ3)

= xUcUb,aUcUb

= xUcUbVaUc,b (QJ4)

= xU(c)
b V(c)

a,b

HenceQJ4 holds for (J ,U(c), 1(c)). It is clear also that these prop-
erties carry over toJρ for ρ any commutative associative algebra over

Φ. Hence (J ,U(c), 1(c)) is a quadratic Jordan algebra.

Definition 6. If c is an invertible element of (J ,U, 1) then the quadratic79

Jordan algebraJ (c)
= (J ,U(c), 1(c)) whereU(c)

a = UcUa, 1(c)
= c−1 is

called thec-isotopeof (J ,U, 1).

It is clear from the formulaU(c)
a = UcUa and the fact thata is invert-

ible in J if and only if Ua is invertible in EndJ that a is invertible
in J if and only if it is invertible in the isotopeJ (c). If d is another
invertible element then we can form thed-isotope (J (c))(d) of J (c). Its
U operator isU(c)(d) where

U(c)(d)
a = U(c)

d U(c)
a = UcUdUcUa = UcdcUa

= U(cdc)
a

Also we recall thatcdc is invertible and 1(c)(d)
= (cdc)−1 since

d(U(c)
d )−1

= d(UcUd)−1
= dU−1

d Uc−1 = c−1d−1c−1
= (cdc)−1. Hence
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(J (c))(d)
= J (cdc). In this sense we have transitivity of the construc-

tion of isotopes. Also sinceJ (1)
= J ,J is its own isotope. Finally,

we have (J (c))(c−2)
=J (cc−2c)

=J (1)
=J soJ is thec−2 -isotope

of thec -isotope (J , c). In this sence the construction is symmetric.

Unlike the situation in the associative case isotopic quadratic Jor-
dan algebras need not be isomorphic. An important instance of isotopy
whihc gives examples of isotopic, non-isomorphic algebrasis obtained
as follows. Let (a, J) be an associative algebra with involution,h an in-80

vertible element ofH (a, J). Then the mappingK : x→ h−1xJh is also
an involution ina. We claim that the quadratic Jordan algebraH (a,K)
is isomorphic to theh-isotope ofH (a, J). Let x ∈ H (a, J) thenxhR =

xh ∈ H (a,K) since (xh)K
= h−1(xh)Jh = h−1(hx)h = xh. It follows

that hR is aΦ -isomorphism ofH (a, J) onto H (a,K). Moreover, if
x, y ∈ H (a, J) then xU(h)

y hR = (xUhUy)hR = yhxhyh = (xhR)UyhR.
HencehR is an isomorphism of the quadratic Jordan algebraH (a, J)(h)

ontoH (a,K).

It is easy to give examples such thatH (a, J) andH (a,K) are not
isomorphic. This gives examples ofH (a, J) which is not isomorphic to
the isotope to the isotopeH (a, J)(h) For example, leta = R2 the algebra
of 2 × 2 matrices over the realsR, J the standard involution inR2. If
a ∈H (R2) saya = (ai j ) then tra2

=
∑

a2
i j , 0. Hencea is not nilpotent.

Let h =diag{1,−1} and consider the involutionK : x → h−1xh in R2.

Then

(
1 −1
1 −1

)
=

(
1 1
1 1

) (
1 0
0 −1

)
∈ H (R2,K). Also

(
1 −1
1 −1

)2

= 0.

HenceH (R2,K) contains non-zero nilpotent elements. ThusH (R2) is
not isomorphic toH (R2,K) and the latter is isomorphic to the isotope
H (R2)(h).

It is convenient (as in the foregoing discussion) to extend the notion
of isotopy to apply to different algebras and to define isotopic mappings.
Accordingly we give

81

Definition 7. Let (J ,U, 1), (J ′,U′, 1) be quadratic Jordan algebras.
A mappingη of J into J ′ is called anisotopyif η is an isomorphism
of (J ,U, 1) onto an isotopeJ ′(c′) of J ′. If such a mapping exists
then (J ,U, 1) and (J ′,U′, 1′) are calledisotopic(or isotopes)
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Usingη = 1 we see that the isotopeJ (c) andJ are isotopic in the
sense of the present definition. Also it is clear that isomorphic algebras
are isotopic. The definition gives 1η = (c′)−1 and (xUa)η = xηU′aη(c

′) =
xηU′c′U

′
aη or Uaη = ηU′c′U

′
aη . Hence we have

U′aη = η
∗Uaη (53)

whereη∗ = U′−1
c′ η

−1U′
(c′)−1η

−1 is a module isomorphism ofJ ′ onto
J . Conversely, letη be a module isomorphism ofJ onto J ′ such
that there exists a module isomorphismη∗ of J ′ onto J satisfying
(53). Then (53) implies thata is invertible inJ if and only if aη is
invertible onJ ′. Also U′1η = η

∗η so η∗ = U′1ηη
−1
= U′−1

c′ η
−1 where

c′ = (1η)−1. ThenUηa = ηU
′
c′U
′
aη = ηU

′

a(c′) andη is an isomorphism

of (J ,U, 1) onto (J ′,U′(c
′), 1′(c

′), 1′(c
′)) soη is an isotopy ofJ onto

J ′. Hence we have shown that a module isomorphismη of J onto
J ′ is an isotopy if and only if there exists a module isomorphismη∗

of J ′ onto J satisfying (53). It is cleat r that the isotopyη is an
isomorphism ofJ ontoJ ′ if and only if η∗ = η−1 and 1η = 1′. The
latter condition implies the former since we haveη∗ = U′1η

−1. Hence an 82

isotopyη is an isomorphism if and only if 1η = 1′.
If η is an isotopy ofJ onto J ′ and (53) holds thenUa′η

−1
=

(η∗)−1U′a′η−1 which shows thatη−1 is an isotopy ofJ ′ ontoJ . If J
is an isotopy ofJ ′ ontoJ ′′ andU′′a′ζ = ζUa′ζ, a′ ∈J ′, thenU′′

aηζ
=

ζ∗η∗Uaηζ. Henceηζ is an isotopy ofJ ontoJ ′′ and (ηζ)∗ = ζ∗η∗. It
is clear from this that isotopy is an equivalence relation. Sinceη−1 is an
isotopy it is an isomorphism ofJ ′ onto an isotope ofJ . Henceη is
also an isomorphism of an isotope ofJ ontoJ ′ (as well as ofJ on
an isotope ofJ ′).

The set of isotopies ofJ onto J is a group of transformations
of J . Following Koecher, we call this thestructure groupof J and
we denote it as StrJ . Clearly StrJ contians the group of automor-
phisms AutJ as a subgroup. Moreover, AutJ is the subgroup of
StrJ of such that 1η = 1. If c is invertible thenUc is a module iso-
morphism ofJ onto J andUaUc = UcUaUc. Hence (53) holds for
η = Uc, η

∗
= Uc soUc ∈ StrJ . It is clear from the foregoing discussion

thatUc is an isomorphism of (J ,U, 1) onto thec−2
= (1Uc)−1 isotope
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(J ,U(c−2), c2). In particular, ifc2
= 1 thenUc is an automorphism of

(J ,U, 1). The subgroup of StrJ generated by theUc, c invertible is
called theinner structure group. We denote this as Instr.J . If η ∈ Str
J , Uaη = U1ηη

−1Uaη soη−1Uaη = (U1η)−1Uaη which implies that Instr
J is a normal subgroup of StrJ . It follows also that AutJ∩ Instr
J is normal in StrJ . We call this the group ofinner automorphisms.83

We have seen that ifη is an isotopy ofJ onJ ′ thenη∗ = (U1η )−1

η−1. since (U1η)−1 ∈ StrJ ′ andη−1 is an isotopy ofJ ′ ontoJ . We
see thatη∗ is an isotopy ofJ ′ onto J . In particular, ifη ∈Str J
thenη∗ ∈ Str J . We have (ηζ)∗ = ζ∗η∗ andU∗c = Uc for invertible
c. Henceη∗ = (η∗)−1U−1

1η = ηU1ηU−1
1n = η Thusη → η∗ is an anti-

automorphism of StrJ such thatη∗∗ = η and this stabilzes InstrJ .If
η is an automorphism thenUaη = η

−1Uaη soη∗ = η−1.
Let c be invertible and consider the isotope (‖mathscrJ, c). Let

η ∈Str J , soUaη = η
∗Uηa, a ∈ J . ThenU(c)

aη = UcUaη = Ucη
∗Uaη =

(Ucη
∗U−1

c )UcUaη = (Ucη
∗U−1

c )U(c)
a η. Henceη ∈Str J (c). By symme-

try, StrJ (c)
=StrJ . Similarly, one sees that InstrJ (c)

=Instr J .
If Z is an inner(outer) ideal inJ thenZ is an inner (outer) ideal

of the isotopeJ (c). For, if Z is inner andb ∈ Z then J U(c)
b =

J UcUb = J Ub ⊆ Z and if Z is outer anda ∈ J thenZ U(c)
a =

Z UcUa ⊆ Z . Since an isotopy ofJ into J ′ maps an isotope ofJ
ontoJ ′ it is clear that ifZ is an inner (outer) ideal inJ thenZ η is
an inner (outer) ideal ofJ ′.



Chapter 2

Pierce Decompositions.
Standard Quadratic Jordan
Matrix Algebras

In this chapter we shall develop two of the main tools for the structure 84

theory: Peirce decomposition and the strong coordinatization Theorem.
The corresponding discussion in the linear case is given in the author’s
book [2], Chapter III.

1 Idempotents. Pierce decompositions

An elemente of J = (J ,U, 1) is idempotentif e2
= e. Thene3

=

eUe = e2Ue = (e2)2(QJ23) = e2
= e. Thenen

= en−2Ue = e for
n ≧ 1, by induction. AlsoUn

e = Uen = Ue. The idempotentse and f
are said to beorthogonal(e⊥ f ) if e◦ f = f Ue = eUf = 0. If we apply
QJ12 with a = e, c = f to 1 we see thate◦ f = 0 and f Ue = 0 imply
eUf = 0. Hencee and f are orthogonal ife◦ f = 0 and eithereUf = 0
ar f Ue = 0. If e and f are orthogonal thene+ f is idempotent since
(e+ f )2

= e2
+ e◦ f + f 2

= e+ f . If e, f , g are orthogonal idempotents
(that is,e⊥ f , g and f⊥g) then (e+ f ) ◦ g = (e+ f )Ug = 0 so (e+ f )⊥g.
It follows that if e, f , g, h are orthogonal idempotents thene + f and
g + h are orthogonal idempotents. Ife is idempotent thenf = 1 − e

59



60 2. Pierce Decompositions. Standard Quadratic...

is idempotent sincef 2
= (1 − e)2

= 1 = −e ◦ 1 + e = 1 − e. Also
e◦ f = e◦ 1− e◦ e= 2e− 2e= 0 and f U◦ = (1− e)Ue = e− e= 0 soe
and f are orthogonal.

We recall that an endomorphismE of a module is called a projection85

if E is idempotent:E2
= E, and the projectionsE andF are orthogonal

if EF = 0 = FE. If E is a projection andX is an endomorphism
satisfying the Jordan conditions:EXE= EX+ XE = 0 then it clear that
EX = 0 = XE. We now prove

Lemma 1. If e and f are orthogonal idempotents inJ then Ue, U f and
Ue, f are orthogonal projections. If e, f , g are orthogonal idempotents
then the projections Ue, Ue, f and Uf ,g are orthogonal. If e, f , g, h are
orthogonal idempotents then Ue, f and Ug,h are orthogonal.

Proof. We have seen thatU2
e = Ue2, soU2

e = Ue is a projection. We
haveUeUe, f Ue = Ue2.eo f(QJ11) = 0 andUeUe, f Ue = UeUe, f Ue(QJ3) =
0. Hence

UeUe, f = 0 = Ue, f Ue (1)

Also UeU f + U f Ue = U2
eU f + U f Ue2 = −Ue, f UeUe, f + UeUe,eUf +

UeUe, f (QJ7) = 0 by (1), eUf = 0 andeUe, f = ee f = e2 ◦ f = 0. Since
UeU f Ue = U f Ue = 0 we have

UeU f = 0 = U f Ue. (2)

Now e+ f is idempotent soUe+ f = Uc + Ue, f + U f is idempotent.
By (1) and (2) this givesUe+ U2

e, f + U f = Ue+ Ue, f + U f . Hence

U2
e, f = Ue, f (3)

Sincee⊥ f , g, e⊥ f + g, soUeU f+g = 0 = U f+gUe. By (2) this gives86

UeU f ,g = 0 = U f ,gUe. (4)

we haveUe+ f U f ,gUe+ f = U f Ue+ f , gUe+ f = 0 sinceg and e + f are
orthogonal. SinceUe+ f = Ue+U f +Ue, f this, (1) and (4) givesUe, f U f ,g

Ue, f = 0. AlsoUe, f U f ,g+U f ,gUe, f+U f Ue,g+Ue,gU f = Ue◦ f f og+U f 2,eog.
(takingb = 1, a = f , c = e, d = g in QJ8)= 0. Hence

Ue, f U f ,g = 0 = U f ,gUe, f . (5)
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Finally, e⊥g, h and f⊥g, h soe+ f⊥g, h. Hence, by (4),Ue, f Ug,h =

(Ue+ f − Ue− U f )Ug,h = 0 andUg,hUe, f = 0.
A set of orthogonal idempotents{ei |i = 1, 2, . . . , n} will be called

supplementeryif
∑

ei = 1. Then this gives

1 = U1 =

n∑

1

Uei +

∑

1< j

Uei ,ej . (6)

The foregoing lemma shown that then(n+ 1)/2 operatorsUei ,Uei ,ej

with distinct subscripts are orthogonal projections. Since they are sup-
plementary in EndJ in the sense that their sum is 1 we have

J =

∑

i≤ j

⊕
Ji j ,Jii =J Uei ,Ji j =J Uei ,ej , i < j (7)

which we call thepierce decompositionof J relative to the ei . We shall
call Ji j thepierce(i, j)-componentof J relative to theei . Jii = Uei is 87

an inner ideal called thePierce inner ideal determined by the idempotent
ei .

We shall now derive a list of formulas for the productsai j Ubkl where
ai j ǫJi j , bklǫJkl. For this purpose we require �

Lemma 2. If ai j ǫJi j then

Uei Uaii Uei = Uaii (8)

Uai j = Uei Uai j Uej + Uej Uai j Uei + Ueiej ,Uai j Uei ,ej , i , j (9)

Vaii = Uei Uaii ,ei Uei +

∑

j,i

(Uei VaiiUej + Uej Vaii Uei+

Uei ,ej Vaii Uei ,ej ) (10)

Uaii ,ci j = Uei Uaii ,ci j Uei ,ej + Uei ,ej Uaii ci j Uei i , j (11)

Proof. The first is clear fromQJ3 andai j Uei = aii . The second fol-
lows by takinga = ei , b = ai j , c = ej in QJ7. For (1) we have
Vaii = U1,aii = Uei ,aii +

∑
j,i

Uejaii . ThenUei ,aii = Uei Uei ,aii Uei by QJ3

andUej ,aii = Uei Vaii Uej +Uej Vaii Uei +Uei ,ej Vaii Uei ,ej follows by putting
a = ei , b = aii , c = ej in QJ15. Hence (10) holds. To obtain (11)
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we belinearrizeQJ6 relative tob to obtainUaUb.dUa,c + Ua,cUb,dUa =

UbUa,dua,c + UdUa,bUa,c and puta = ei , b = ai j , c = ej , d = ci j in this.
To formulate the results on the productsai j Ubkl of elements in Pierce88

components in a compact from we consider triples of unordered pairs
of induced taken from{1, 2, . . . , n} : (pq, rs, uv). In any pair pq we
allow p = q and we assumepq = qp. Also we identify (pq, rs, uv) =
(uv, rs, pq). We shall call such a tripleconnectedif it can be written as

(pq, qr, rs)

It is easily seen that the only triples which are not connected are those
of one of the following two forms:

(pq, rs,−) with {p, q} ∩ {r, s} =

(pq, qr, qs) with r , p, q, s.

We can now state the important �

Pierce decomposition theorm. Let {ei |i = 1, 2, . . . , n} be a supple-
mentary set of orthogonal idempotents,J =

∑
Ji j the corresponding

Pierce decomposition ofJ . Let apqǫJpq etc. Then for any connected
triple (pq, qr, rs) we have

{apqbqrcrs}ǫJps PD 1

bqrUapq = apqbqrapqǫJPS if pq= rs PD 2

If ( pq, rs, uv) is not connected then

{apqbrscuv} = 0 and brsUapq = apqbrsapq PD 3

= 0 for pq= uv

89

Also

{apqbqrcrs} = (apq ◦ bqr) ◦ crs

if(qr, pq, rs) is not connected PD 4

{apqbqrcrp} = ((apq ◦ bqr) ◦ crp)Uep if p , r.
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If p , q then

apqVep = apq, apqVappUbpp = apqVbppVappVbpp. PD 5

(In other words, ifVapp denotes the restriction ofVapp to Jpq then

app → Vapp is a homomorphism of the quadratic Jordan algebra
(Jpp,U, ep) into (EndJpq)(q). Finally, we have

eqUapq = a2
pqUep, p , q. PD 6

Proof. We prove firstPD1 − 3. The formulas in this set of{apqbrscuv}

with pq = ur are obtained by bilinearization ofbrsUapq. Hence we
may drop{apqbrscuv} for pq = uv. Then the only formula inPD1 − 3
involving just one index that we have to prove isbii Uaii ǫJ . This is
clear from (8). Next we consider the formulas in PD 1−3 which involve
two distinct inducesi, j. These are: 90

bii Uai j ǫJ j j (12)

bi j Uai j ǫJi j (13)

{ai j b ji cii }ǫJii (14)

{aii bii ci j }ǫJi j (15)

{aii bi j c j j }ǫJi j (16)

b ji Uaii = 0, bi j Uaii = 0, {aii b j j ci j } = 0, {aii b j j c j j } = 0 (17)

(12) and (13) follow from (9), and the first two equations in (17) follow
from (8). (14) and (15) and the third part of (17) follow from (11). To
prove (16) and the last part of (17) we note first thatJii ◦Ji j ⊆Ji j and
Jii ◦J j j = 0 if i , j. The first of these is an immediate consequence of
(10). Also (10) implies thatJii ◦J j j ⊆Jii . By symmetry,Jii ◦J j j ⊆

J j j and sinceJii ∩J j j = 0 we haveJii ◦J j j = 0. By QJ27, we
have{aii bi j c j j } = −{bi j aii c j j } + (aii ◦ bi j ) ◦ c j j = (aii ◦ bi j ) ◦ c j j (third
of (17)) ǫJi j . Also {aii b j j c j j } = −{b j j aii c j j } + (aii ◦ b j j ) ◦ c j j = 0, by
the first of (17) andJii ◦J j j = 0. Next we considerPD1− 2 for three
distinct indicesi, j, k. The formulas we have to establish are

{ai j bi j c jk}ǫJik (18)
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{ai j b j j c jk}ǫJik (19)

{ai j b ji cik}ǫJik (20)

{ai j b jkcki}ǫJii (21)

To prove these we make the following observation. LetS and T91

be non-vacaous disjoint subsets of the index set{1, 2, . . . , n} and put
es =

∑
iǫS

ei , eT =
∑
jǫT

ej . It follows easily, as before, thateS andeT are or-

thogonal idempotents. AlsoJ UeS =J U∑
ei ⊆

∑
iǫS

Uei +
∑

i,i′′ǫS
J Uei ei

and since theUei andUei ,ei′
are orthogonal projections with sumUeS ,J

Uei = J Uei UeS andJ Uei ,e′i
= J Uei ,e′i

UeS . Hence
∑
iǫS

J Uei +
∑

i,i′ǫS
J Uei ,ei ⊆ J UeS and we have the equalityJ UeS =

∑
iǫS

J Uei +

∑
i,i′ǫS

J Uei ,e′i
=

∑
i,i′ǫS

Jii ′ . Similary, we haveUeS,eT =
∑
iǫS
jǫT

Ji j . We

now consider the supplementary set of orthogonal idempotents {ej +

ek, el , l , j, k}. Sinceaii ǫJ Uei , ai j , bi j , cik, ckiǫJ Uei ,es, es = ej +ek and
b j j , c jk, b jkǫJ UeS (14)-(16) imply that the left hand sides of (18)-(21)
are contained inJi j +Jik,Ji j +Jik,Ji j +Jik,Jii respectively.
Similarly, if we use the set of orthogonal idempotents{ei +ej , el , l , i, j}
we see that the left hand sides of (18)-(20) are contained inJik +Jik.
Since (Ji j +Jik) ∩ (Jik +J jk) = Jik we obtain (18)-(20). Next
we consider the case of four distinct inducesi, j, k, l. The only con-92

nected triple here is (i j, jk, kl). If we use the set of orthogonal idem-
potents{ei + ej + ek, em,m , i, j, k} as just indicated we obtain that
{ai j b jkckl}ǫJil +J jl +Jkl. Similarly, using{ej +ek+el , em,m, j, k, l}
we get that{ai j b jkckl}ǫJi j +Jk j +Jil . Taking the intersection of the
right hand sides gives{ai j b jkckl} ∈Jil . Since a connected triple cannot
have more than four distinct induces this concludes the proof of PD1
andPD2. We consider next the triples which are not connected. The
first possibility is (pq, rs,−) with {p, q} ∩ {r, s} = φ. Choose a subsetS
of the index set so thatp, qǫS, r, s < S and puteS =

∑
iǫS

ei , eT =
∑
j<S

ej .

Then we can conclude{apqbrs−} = 0 andbrsUaPq = 0 from (17) ap-
plied to the set of orthogonal idempotents{eS, eT} sinceapqǫJ UeS and
brsǫJ UeT . Finally suppose we have (pq, qr, qs) wherer , p, q, s. In



1. Idempotents. Pierce decompositions 65

this case we obtain{apqbqrcqr} = 0 by applying the second part of (17)
to the two orthogonal idempotentser and e′r = 1 − er . This proves
PD3. To provePD4 we note that the hypothesis that (qr, pq, rs) is
not connected andPD3 imply that {bqrapqcrs} = 0. The first part of
PD4 follows from this andQJ27. For the second part ofPD4 we note
that {apqbqrcrp}ǫJpp by PD1 so{apqbqrcrp} = {apqbqrcrp}. By QJ27,
{apqbqrcrp} = −{bqrapqcrp} + (apq ◦ bqr) ◦ crp. Since{bqrapqcrp}ǫJrr

and r , p, applyingUep to the two sides of the foregoing equations
gives PD4. If p , q we haveapqVep = apqU1,ep = apqUeq, ep +∑
l,q

apqUel , ep = apqUep, eq +
∑

m,q,p
apqUem,ep + 2apqUep = apq sinceapq

sinceapqǫJpq and theUei ,Uei ,ej are orthogonal projections. This is93

the first part ofPD5. The second part follows directly fromQJ21 and
apqUapp = 0 = apqUapp,bpp. To obtianPD6 we usea2

pqUep = 1UapqUep =

epUapqUep+eqUapqUep+eqUapqUep (by PD 3). SinceepUapq ∈Jpp and
qqUapq ∈Jpp this reduced toeqUapq, which provesPD6.

The formaulasPD4 4 imply some uesful associatively formulas for
◦. Suppose we have a connected triple (pq, qr, rs) such that (qr, pr, rs)
and (pq, rs, qr) are note connected. Then we can applyPD also to
{cpsbqrapq} to obtain.

(apq ◦ bqr) ◦ crs = apq ◦ (bqr ◦ crs) (22)

If (qr.pr.rs) and (pq, rs, qr) are not connected. Special cases of this
are

(aii ◦ ai j ) ◦ a j j = aii ◦ (ai j ◦ a j j ), i , j (23)

(ai j ◦ a j j ) ◦ a jk = ai j ◦ (a j j ◦ a jk), i, j, k , (24)

(ai j ◦ a jk) ◦ akl = ai j ◦ (a jk ◦ akl, i, j, k, l , . (25)

Similarly we have the following consequece of the second part of PD4:

((apq ◦ bqr) ◦ crp)Uep = (apq ◦ (bqr◦crp))Uep, p , q, r (26)

We note also that thePD theorem permits us to deduce the following94

formulas for the squaring composition and its bilinearization:

a2
pqǫJpp+Jqq, apq ◦ aqrǫJpr if {p, q}Φ{qr} (27)
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apq ◦ ars = 0 if {p, q} ∩ {r, s} = ∅.

We leave this to the reader to check. It is easily verified alsothat

Ji j {x|xVei = x = xVej }, i , j (28)

�

2 Standard quadratic Jordan matrix algebras

Let (O , j) be a (unital) non-associative algebra with involution,Oo aΦ-
submodule ofH (O , j) containing all thenorms aa(a = a j).aǫO. Then
Oo contains everyab + ba, a, bǫO hence all thetracis a+ a. It follows
that, if Φ contains 1

2 then Oo = H (O , j).On the other hand, as the
example of an octonian algebra with standard involution of afield of
characteristic two shows, we may haveOo ⊂H (O , j). We consider the
algebraOn of n×nmatrices with entries inO and the standard involution
J1 : A → A

t
in On. Let H (On,Oo) be the set of matrices with entries

in O satisfyingA
t
= A and having diagonal entries inOo. We use the

notation we introduced in consideringH (O3) ≡H (O3Φ) and write

α[ii ] = αeii , αǫOo (29)

a[i j ] = aei j + aei j , aǫO , i , j.

Then it is clear thatH (On,Oo) is the set of sums of the matrices95

α[ii ] anda[ii ]. Let Hii (Oo) = {α[ii ]|αǫOo}, Hi j = {a[i j ]|aǫO} for i , j.
Then we have

H (On, o) =
∑

i

Hii (Oo) +
∑

i< j

Hi j (30)

and the sum is direct. LetA2 denote the usual square of the matrixAǫOn

and putA ◦ B = AB+ BA. Then we have the following formulas:

α[ii ]2
= α2[ii ] M1

a[i j ]2
= aa[ii ] + aa[ j j ], i , j M2
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α[ii ] ◦ a[i j ] = αa[i j ], i , j M3

a[i j ] ◦ b[ jk] = ab[ik], i, j, k , M4

α[ii ] ◦ β[ j j ] = 0, α[ii ] ◦ a[ jk] = 0

a[i j ]◦b[kl] = 0, i, j, k, l , M5

It is clear that these formulas together witha[i j ] = a[ ji ] determine
A2 for AǫH (On,Oo) and they show thatA2ǫH (On,Oo) if AǫH (On,

Oo). Hence alsoA ◦ BǫH (On,Oo) if A, BǫH (On,Oo).
Let VA in H (On,Oo) denote the endomorphismX → X ◦ A, and

suppose from now on thatn ≥ 3. Suppose we have the following identity
in H (On,Oo):

[VA,VB◦C] + [VBVA◦C] + [VCVA◦B] = 0 (31)

If we write [A, B,C]o for the associator (A◦B)◦C−A◦ (B◦C) then 96

(31) is the same as

[A,D, B ◦C]o + [B,D,A◦C]o + [C,DA ◦ B]o = 0 (31′)

Assume firstn ≥ 4 and takeA = a[i j ], B = b[ jk], C = c[kl], D = 1[ll ]
wherei, j, k, l ,. This gives [a, b, c][ il ] = 0 where [a, b, c] = (ab)c −
a(bc) the associator inO. Hence [a, b, c] = 0, a, b, cǫO, soO must be
associative ifn ≥ 4 and (31) holds. Next letn = 3. LetαǫOo and take
A = α[ii ], B = b[ jk], C = l[kk], D = d[i j ] in (25’) wherei, j, k ,. This
gives [α, d, b][ ik] = 0 so

[α, a, b] = 0, αǫOo, a, bǫO (32)

Assume next that in addition to (25) we have the identity

[VAVA◦B] + [VBVA2] = 0 (33)

or
[A,D.A ◦ B]0 + [B,D,A2]o = 0 (33’)

Taking A = a[i j ],D = 1[kk], B = b[ jk], i, j, k ,, we obtain [a, a, b]
[ jk] = 0 so [a, a, b] = 0, a, bǫO. SinceOo contians all the traces
a + a we have by (33), [a + a, a, b] = 0 and, by the result just proved,
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[a, a, b] = 0. Applying the involution we obtain [b, a, a] = 0. ThusO
must be alternative. Then (33) implies thatOo ⊆ N(O) the nucleus of
O. In particular, we see that we have the conditions onO we noted in 97

§1.8, namely,O is alternative and all normsxxǫN(O). We saw also
that if these conditions hold then theΦ -module No spanned by the
norms andN′ = N(O) ∩H (O , j) have the property thatxNox ⊆ No,
xN′x ≡ No, xǫO. We note also that the two conditions (31) and (33)
are consequences of [VAVA2] = 0 and the hypothesis that this carries
overOρ whereρ is commutative associative algebra over the base ring
Φ. Our results give the following

Lemma . Let (O , j) be an algebra with involution overΦ,Oo a Φ-
submodule ofO containing all xx, xǫO. Let H (On,Oo) be theΦ-
module of matrices AǫOn such thatA

t
= A and the diagonal elements

of A are inOo. If AǫH (On,Oo) let A2 be usual square of A,A ◦ B =
AB+BA. Assume n≧ 3.Then the identities (31) and (33) inH (On,Oo)
imply thatO is associative if n≧ 4 andO is alternative andOo ⊆ N(O)
if n = 3.

We can now prove the following

Theorem 1. Let (O , j) be an algebra with involution,Oo aΦ -sub mod-
ule of H (O . j) containing all the norms xx, xǫO. Let H (On,Oo) be
the set of n× n matrices with entries inO such thatA

t
= A and the

diagonal elements are inOo. Assume n≥ 3. Then there exists at
most one quadratic Jordan structure onH (On,Oo) satisfying the fol-
lowing conditions: 1UA = A2 the usual matrix square, the elements
ei = 1[ii ] = eii , i = 1, 2, . . . , n are a supplementary set a orthogonal
idempotents inH (On,Oo), the submoduleHi j = {a[i j ]|aǫO}, i , j98

is the pierce(i, j) -module andHii (Oo) = {α[i, i]|αǫOo} is the pierce
(i, i)-module relative to the set{ei}. Necessary condition for the exis-
tence of such a structure are:O associative if n> 3, O alternative with
Oo ⊆ NO if n = 3 and xOox ⊆ O, xǫO.

Proof. Suppose we have a quadratic mappingU so that (J ,U, 1) is
quadratic Jordan and the given conditions hold. Then we shall establish
the following formulas for theU operator, in whichi, j, k, l ,, α, βǫOo,

a, b, ǫO:
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QM 1 β[ii ]Uα[ii ] = (α(β)α[ii ]

QM 2 α[ii ]U[i j ] = a(αa)[ j j ]

QM 3 b[i j ]Ua[i j ] = a(ba)[i j ]

QM 4 {α[ii ]a[i j ]b[ ji ]} = ((αa)b+ (αa)b)[ii ]

QM 5 {α[ii ]β[ii ]a[ii ]} = α(βa)[i j ]

QM 6 {α[ii ]a[i j ]β[ j j ]} = α(aβ)[i j ]

QM 7 {α[ii ]a[i j ]b[ jk]} = α(ab)[ik]

QM 8 {a[i j ]α[ j j ]b[ jk]} = a(αb)[ik]

QM 9 {a[i j ]b[ ji ]c[ik]} = a(bc)[ik]

QM 10 {a[i j ]b[ jk]c[ki]} = (a(bc) + a(bc))[ii ]

QM 11 {a[i j ]b[ jk]c[kl] = a(bc)[il ].

�

The formulasQM4 − QM11 are immediate consequences ofPD4 99

andM1−M4. To proveQM1 we note thatβ[ii ]Uα[ii ]ǫH (Oo) so this has
the formγ[ii ], γǫOo. Thenγ[i j ] = β[ii ]Uα[ii ]o1[i j ] = 1[i j ]Vβ[ii ]Uα[ii ] =

1[i j ]Vα[ii ]Vβ[ii ](PD6) = (αβ)α[i j ](M3) HenceQM1 holds. ForQM2 we
recall the identity

UbVa = Vb,aVb + VaVb − VbVa,b (QJ 18)

Let k , i, j. Thenα[ii ]Ua[i j ] ◦ 1[ jk] = α[ii ]Ua[i j ]V1[ jk] = α[ii ]
Va[i j ],1[ jk] ,Va[i j ] + α[ii ]V1[ jk]Ua[i j ] − α[ii ]Va[i j ]V1[ jk],a[i j ] = a(αa)[ jk] by
PD4 andM1 − 4. Sinceα[ii ]Ua[i j ]ǫJ j j this provesQM2. To prove
QM3 we again useQJ18 to writeb[i j ]Ua[i j ] ◦1[ jk] = b[i j ]Ua[i j ]V1[ jk] =

b[i j ]Va[i j ],1[ jk]Va[i j ] since the other two terms given byQJ18 are 0 be
PD3. Also the first term is{1[ jk]b[i j ]a[i j ]} ◦ a[i j ] = ((1[ jk] ◦ b[i j ]) ◦
a[i j ]) ◦ a[i j ] = a(ba)[ik]. HenceQM3 holds. ThePD theorem and the
argument just used shows thatU is unique. Since the identity (VAVA2) =



70 2. Pierce Decompositions. Standard Quadratic...

0 holds inH (On,Oo) and in extensions obtained by extending the ring
Φ, the Lemma implies that is associative ifn > 3 and alternative with
O0 ⊆ N(O) if n = 3. It is clear fromQM2 that xOox ⊆ Oo. This
completes the proof.

The conditions forn > 3 given in this theorem are clearly sufficient
since in this caseOn is associative andH (On,Oo) is a subalgebra of
O (q)

n . Moreover, it is easy to see that the square 1UA in H (On,Oo) co-
incides with the usualA2 (cf. the proof of the Corollary to Theorem 1.5100

(§1.8)) and the conditions on theei1[ii ] hold. The unique quadratic Jor-
dan structure given in this case is that defined byBUA = ABA. We
now consider the casen = 3. SupposeO is an alternative algebra
such that all normsxxǫN(O). Let No be the submodule generated by
all norms,N′ = H (O , j) ∩ N(O). Then we have shown in§1.8 that
xNox ⊆ No and xN′x ⊆ N′. Hence we can take these as choices for
the submoduleOo. It is clear also that anyOo satisfying the condi-
tions of the theorem satisfiesN′ ⊇ Oo ⊇ No. It can be verified by a
rather lengthy fairly direct calculation thatH (O3,N′) with the usual 1
and theU operator defined byQM1 − 11 is a quadratic Jordan alge-
bra. We omit the proof of this (due to McMrimmon). In the associative
caseN′ = H (O , j) ∩ N(O) = H (O , j) andH (On,N′) = H (On) the
complete set of hermitian matrices with entries inO. Accordingly, we
shall now define astandard quadratic Jordan matrix algebrato be any
algebra of the formH (On), n = 1, 2, 3, . . . , to be any algebra of the
form H (On), n = 1, 2, 3, . . ., where (O , j) is an associative algebra with
involution or an algebraH (O3,N′) where (O , j) is alternative with in-
volution such that all normsxxǫN(O) andN′ = H (O , j) ∩ N(O). For
the sake of uniformity we abbreviateH (O3,N′) = H (O3). It is easily
seen that ifn ≧ 3 andNo is the submodule ofH (O , j) spanned by the
norms thenH (On,No) is the come ofH (On).

Theorem 2. LetH (On), n ≧ 3, be a standard quadratic Jordan matrix101

algebra. A subsetJ of H (On) is an outer ideal containing1 if and
only ifJ =H (On,Oo) whereOo is aΦ-submodule of N′ =H (O , j)∩
N(O) such that1ǫOo and xOox ⊆ Oo, xǫO. J =H (On,Oo) is simple
if and only if(O , j) is simple.

Proof. Let Oo be a submodule ofN′ containing 1 and everyxαx,
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xǫO, αǫOo. ThenOo contains all the normsxx and all the tracesx +
x. It is therefore clear fromQM1 − 11 (especiallyQM1, 2, 4, 10) that
H (On,Oo) is an outer ideal. Since 1ǫOo, H (On,Oo) contains 1=
n∑
1

1[ii ]. Conversely, letJ be an outer ideal ofH (On) containing 1.

ThenJ containsei = 1Uei , ei = 1[ii ] and everya[i j ] = {eieia[i j ]},
aǫO, i , j. Also, if β[ii ]ǫJ thenβ[ j j ] = β[ii ]U1[i j ]ǫJ for j , i.
If bǫJ andb =

∑
i≦ j

bi j , bi j ǫHi j , thenbii = bUei ǫJ . It is clear from

these results thatJ = H (On,Oo) whereOo is a submodule ofN′

containing 1. Sinceα[ii ]Ua[i j ] = aαa[ j j ]ǫJ if αǫOo, aǫO , i , j, it
is clear thataOoa ⊆ Oo, aǫO. Let Z be an ideal in (O , j) and letk
be the subset ofJ = H (On,Oo) of matrices all of whose entries are
in Z . Then inspection ofQM1 − QM11 shows thatk is an ideal of
J . Hence simplicity ofJ implies simplicity of (O , j). Conversely,
suppose (O , j) is simple and letk be an ideal, 0 in J . If bǫk and
b =

∑
i≦ j

bi j , bi j ǫHi j , then operating onb with Uei or Uei ,ej shows that ev- 102

ery bi j ǫk. Let Z = {bǫO |b[12]ǫk}. We now use the formulasM1− M5
for the squaring operator, which are consequences ofQM1 − QM11.
Sincek is an ideal it follows fromM4 thatZ = {b|b[i j ]ǫk, i , j} andZ
is an ideal of (O , j). Also, by M3, if β[ii ]ǫk thenβǫZ . It is clear from
these results thatZ , 0 soZ = O, hencea[i j ]ǫk for all aǫO, i , j.
Now let αǫOo. Then, byQM2, α[ j j ] = α[ii ]U1[i j ]ǫk if i , j. Hence
k =J andJ is simple.

It is clear from the first part of Theorem 2 thatH (On.No), No the
submodule generated by the norms is the core ofH (On) (=outer ideal
generated by:1). �

3 Connectedness and strong connectedness of or-
thogonal idem-potents

In this section we shall give some lemmas on orthogonal idem-potents
which will be used to prove the Strong Coordinatization Theorem (in
the next section) and will play a role in the structure theoryof chapter
III.
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Definition 1. If e1 and e2 are orhtogonal idempotents inJ then e1

ande2 areconnected(stronglyconnected) in J if the Pierce submod-
ule J12 = J Ue1,e2 contains an elementu12 which is invertible in
J Ue, e = e1 + e2 (satisfiesu2

12 = e1 + e2). Then we say also that
e1 ande2 areconnected(strongly connected) by U12.

Note thatu2
= 1 impliesU2

u = 1 sou is invertible. Thus strong con-
nectedness implies connectedness. Moreover, ife1 ande2 are strongly
connected byu12 thenu12 is its own inverse inJ Ue. For, u12Uu12 =103

u12Ue1,e2Uu12 = e1Vu12,e2Uu12 = e1Uu12Ve2,U12(QJ4) = u2
12Ue2Ve2,u12

(PD6) = e2Ve2,u12 = {e2e2u12} = e2
2 ◦ u12 = u12.

If U12 connectse1 ande2 thenJ11Uu12 ⊆ J22,J22Uu12 ⊆ J11,
J12Uu12 ⊆ J12 by PD2. Hence ifU′ is the inverse of the restriction
of Uu12 to Ue thenJ12U′ = J12. Hence the inverseu21 = u12U′ of
u12 in J Ue is contained inJ12. If f = 1− e then f ande are orthog-
onal idempotents and sinceeiǫJ Ue, {e1, e2, f } is a supplementary set
of orthogonal idempotents inJ . It is clear also from thePD formulas
thatJ Ue +J U f is a subalgebra ofJ , thatUe andU1 are ideals in
this subalgebra andJ Ue +J U f = J Ue ⊕J U f . If follows that if
xǫJ Ue, yǫJ U f thenx+ y is invertible inJ Ue +J U f if and only
if x is invertible inJ Ue andy is invertible inJ U f . In this case, the
definition of invertibility shows thatx+ y is invertible inJ . Also if x′

andy′ respectively are the inverse ofx andy in J Ue andJ U f then
x′ + y′ is the invese ofx+ y in J Ue +J U f and so inJ . In particu-
lar, if u12ǫJ12 = J Ue1,e2 is invertible inJ Ue with inverseu21ǫJ12

thenc12 = f + u12 is invertible inJ with inversec21 = f + u21. We
have the Pierce decompositionJ = J Ue ⊕J Ue, f ⊕J U f relative
to {e, f } and we have the following usefull formulas for the action of
Uc12 = Uu12 + uf + uf ,u12 on these submodules:

xUc12 = xUu12, xǫJ Ue(PD3)

104

yUC12 = y ◦ u12, yǫJ Ue, f (PD3, 4, 5) (34)

zUc12 = z, zǫJ U f (PD3)

If U2
12 = esou21 = u12 thenc2

12 = 1 andUc12 is an automorphism ofJ
such thatUc2

12
= 1 (see§1.11).
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Lemma 1. Let e1, e2, e3 be pairwise orthogonal idempotents inJ such
that e1 and e2 are connected (strongly connected) by u12 and e2 and e3
are connected (strongly connected) by u23. Then e1 and e3 are connected
(strongly connected) by u13 = u12 ◦ u23 In the strongly connected case
c12 = u12 + 1− e1 − e2, c23 = u23 + 1− e2 − e3, c13 = u13+ 1− e1 − e3

satisfy c2i j = 1, Uci j is an automorphism such that U2
ci j
= 1 and we have

c13 = c12Uc23 = c23Uc12 (35)

Uc13 = Uc23Uc12Uc23 = Uc12Uc23Uc12 so

Proof. Pute4 = 1− e1 − e2 − e3 so {ei |i = 1, 2, 3, 4} is a supplementary
set of orthogonal idempotents. LetJ =

∑
Ji j be the corresponding

Pierce decomposition. Thenc12 = u12+e3+e4, c23 = u23+e1+e4. Since
u12 is invertible inJ11 +J12 +J22 with inverseu21, c12 is invertible
in J with inversec21 = u21 + e3 + e4. Similarly, c23 is invertible with
inversec32 = u32+ e1 + e4. By the Theorem on inversec13 = c23Uc12 is 105

invertible with inversec31 = c32Uc21. We have

c13 = c23Uc12 = u23uc12 + e1Uc12 + e4Uc12

= u13+ u2
12 + e1Uu12 + e4 (by(34))

= u13+ u2
12Ue2 + e4(PD6).

Similarly, c31 = u31 + e1Uu21 + e4. Sinceu2
12Ue2 and u2

21Ue2ǫJ22 it
follows that u13 is invertible in J11 + J13 + J31 with inverseu31.
Hencee1 ande3 are connected byu13 = u12 ◦ u23. If u2

12 = e1 + e2

andu2
23 = e2 + e3 thenc2

12 = 1 andc2
23 = 1. ThenUc12,Uc23 are au-

tomorphisms with square 1. Alsoc13 = c23Uc12 satisfiesc2
13 = 1 so

Uc13 is an automorphism andU2
c13
= 1. The formula forc13 now be-

comesc13 = u23 ◦ u12 + e2 + e4. A similar calculation givesc12Uc23 =

u12◦u23+ c2+ c4. Hencec12Uc23 = c23Uc12 so (35) and its consequence
Uc23Uc12Uc23 = Uc12Uc23Uc12 hold.

The following lemma is of technical importance since it permits the
reduction of considerations on connected idempotents to strongly con-
nected idempotents. �
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Lemma 2. Let {ei i = 1, . . . , n} be a supplementary set of orthogonal
idempotents inJ ,J =

∑
Ji j the corresponding Pierce decompos-

tion. Assume e1 and ej , j > 1, are connected by u1 j with inverse uji in
J11+J1 j +J j j . Then

u j = u2
i j Uej and vj = u2

j1Uej , j > 1 (36)

are inverses inJ j j and if we put u1 = e1 = v1 then u=
n∑
1

ui , v =
n∑
1

vi106

are inverses inJ . The set{ui} is a supplementry set of orthogonal
idempotents in the v-isotopeJ = J (v) and uj is strongly connected

by u1 j to u1 in J . The Pierce submodulẽJi j of J̃ relative to the ui
coincides withJi j . Moreover,J11 = J̃11 are algebras andJ j j and

J̃ j j , j > 1, are isotpic. Also, if j> 1, x11ǫJ11, x1 jǫJ1 j , x1 jVx11 =

x1 jṼx11 whereṼ is the V-operator inJ̃ .

Proof. It is clear thatu2
1 j , u

2
j1ǫJ11+J j j and these are inverses inJ11+

J j j . It follows that u j = u2
1 jUe j andv1 = u2

jl Uej are inverses inJ j j

andu =
n∑
1

ui , v =
n∑
1

vi(u1 = e1 = v1) are inverses inJ . Now consider

the isotopeJ̃ = J (v) with unit elementu. We haveU(v)
ui
= UvUui =∑

j Uvi Uui +
∑
j<k

Uvj ,vkUui . It is clear from thePD. Theorem (PD1 − 3)

that J Uvj ⊆ J j j ,J Uvj ,vk ⊆ J jk andJ jk andJpqUui = 0 unless
p = q = i. HenceUu(v)

i
= Uvi Uui andJ Uvi Uui = Jii Uvi Uui . Also

since the restrictions ofUvi andUui to Jii are inverses we have

U(v)
ui
= Uei . (37)

Similarly, replacingei by ei + ej , ui by ui + u j , vi by vi + v j , i , 1.
We obtainU(v)

ui+uj
= uei+ej . This and (37) imply

U(v)
ui ,uj = Uei ,ej , i , j (38)

Now uU(v)
ui

(
n∑
1

uk

)
Uei = ui , uU(v)

ui ,uj
=

∑
k

ukUei ,ej = 0 anduiU
(v)
U j
=107

uiUej = 0 if i , j. These shows that theui are orthogonal idempotents
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in the isotopeJ̃ =J (v). Since their sum isu they are supplementary.
Then (37) and (38) show that̃Jii =Jii , J̃i j =Ji j for the correspond-
ing Pierce submodules. Sinceu1 jǫJi j , u jǫJ1 j . More over,uU(v)

u1 j
=

uUvUul j = vUul j = (e1+v j)Uu1 j = e1Uu1 j +v1Uu1 j = u2
1 jUej +u2

j1Uej Uu1 j

(PD 6 and ((36)))= u j + e1Uujl Uul j = u j + e1. Henceu1 j strongly con-

nectse1 andui in J̃ . Let xi , yiǫJii = J̃ii , xǫJl j = J̃l j , j > 1. Then
xiU

(v)
yi
= xiUvUyi = xiUvi Uyi . If i = 1, v1 = e1 so x1U(v)

y1
= xiUy1. Thus

Jii andJ̃ii are isotopicJ11 andJ̃11 are identical as algebras. Finally,

xṼx1 = uU(v)
x,x1 = uUvUx,x1 = vUx,x1 = {xvx1} = {xe1x1} = {x

n∑
1

ei x1} =

xVx1. This completes the proof. �

Lemma . Let{ei | = i = 1, 2, . . . , n} be a supplementary set os orthogonal
idempotents inJ such that e1 is strongly connected to ej , j > 1, by u1 j .
Put c1 j = u1 j + 1− e1 − ej as above and U(1 j) = Uc1 j .Then there exists
a unique isomorphismπ → Uπ of the symmetric group Sn into Aut J
such that(1 j) → U(i j ). Moreover, eiUπ = eiπ and if iπ = iπ′, jπ = jπ′

then Uπ = Uπ′ onJi j (i = j allowed).

Proof. We have seen thatU(1 j) is an automorphism of period two. Now
it is known that the symmetric groupSn is generated by the transposi-
tions (1j) and that the defining realations for there is (1j)2

= 1, ((1 j)
(1k)3

= 1, ((1j)(1k)(1 j)1l))2
= 1, j, k, l ,. By lemma 1, we have

U(1 j)U(1k)U(1 j) = U(1k)U(1 j)U(1k). Hence (U(1 j)U(1k))3
= U(1 j)U(1k) 108

U(1 j)U(1k)U(1 j)U(1k) = U(1 j)U(1k)U(l j )U(1 j)U(1k)U(1 j) = 1. Also, if j, k,
l ,, thenU(1 j)U(1k)U(1 j) U(1l)U(1 j) U(1 j)U(1k)U(1 j)U(1l) = Uc1l Uc1 j

Uc1 j

Uc11
= Uc11

Ucjk Uc1l wherec jk = clkUc1 j . The form ofc jk derived in
Lemma 1 and (34) imply thatc1lUcjk = c1l . HenceUc1l Ucjk Uc1l = 1.
These relations imply that we have a unique monpmorphism ofSn into
Aut J such that (1j) → U(1 j) = Uc1 j . By (34) e1U(1 j) = e1Uc1 j =

e1UU1 j = u2
1 jUej (PD6) = ej . HenceeiUπ = eiπ for πǫSn. Now sup-

poseπ andπ′ satisfyeiπ = eiπ
′, ejπ

′
= ejπ

′. Putπ′′ = π′π−1. Then
eiπ
′′
= ei , ejπ

′′
= ej soπ′′ is a product of transpositions which fixi and

j. If (kl) is such a transposition thenU(kl) = U(1l)U(1k)U(1l). By (34) this
acts as identity onJi j . Henceπ′′ is 1 onJi j andπ = π′′ onJi j . �
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4 Strong coordinatization theorem

We shall now obtain an important characterization of the quadratic Jor-
dan algebrasH (On,Oo), n ≧ 3, or equivalently, in view of Theorem
2, of the outer ideals containing 1 in standard quadratic Jordan algebras
H (On), n ≧ 3. We shall call a triple (O , j,Oo) a coordinate algebra, if
(O , j) is an alternative algebra with involution andOo is aΦ -submodule
of N′(O) = H (O , j) ∩ N(O) suchthat 1ǫOo and xOox ⊆ Oo, xǫO.
We call (O , j,Oo) associativeif O is associative. We shall show that
J = H (On,Oo), n ≧ 3, is characterised by the following two condi-
tions: (1)J containsn ≧ 3 supplementary strongly connected orthog-
onal idempotents, (2)J is non-degenerate in the sense that kerU = 0.109

Consider anH (On,Oo), n ≧ 3. Let ei = 1[ii ], u1 j = 1[1 j], j > 1 (no-

tation as in§2). Then theei are orthogonal idempotents and
n∑
1

ei = 1.

Also u1 j is in the Pierce (i, j) component ofH (On,Oo) relative to theei

andu2
1 j = e1 + ej so e1 andej are strongly connected byu1 j . Hence

(1) holds. To prove (2) we recall that kerU is an ideal (§1.5) so if
z=

∑
1≦ j

zi j [i j ]ǫ kerU thenzii [ii ] = zUei ǫ kerU andzi j [i j ] = zUei ,ej , i , j,

kerU. We recall also that all products involving an element of kerU
are 0 except those of the formzUa, z ∈ kerU. Hencezi j [i j ] = 0 and
zii [i j ] = zii [ii ] ◦ 1[i j ] = 0. Thenzii = 0 andz = 0. ThusH (On,Oo) is
non-degenerate.

We shall now prove that the conditions (1) and (2) are sufficient for
a quadratic Jordan algebra to be isomorphic to an algebraH (On.Oo),
n ≧ 3. We have the following

Strong coordinatization Theorm. Let J be a quadratic Jordan alge-
bra satisfying:(1)J is non-degenerate, (2)J containsn ≧ 3 supple-
mentary strongly connected orthogonal idempotents. Then there exists
a coordinate algebra (O , jOo) which is associative ifn ≧ 4 such that
J is isomorphic toH (On,Oo). More precisely, let{ei |i = 1, . . . , n} be
a supplementary set of strongly connected orthogonal idempotents and
let e1 be strongly connected toej , j > 1, by u1 j . Then there an iso-
morphismη of J onto H (On,Oo) such thateηi = 1[ii ], i = 1, . . . , n,,
uη1 j = 1[1 j], j = 2, . . . , n.
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Proof. Putci j = ui j + 1 − e1 − ej . By lemma 3 of§3 we have an iso- 110

morphismπ → Uπ of Sn into Aut J such thatU(i j ) = Uc1 j , eiUπ = eiπ.
Then for the Pierce moduleJpq (relative to theei) we haveJpqUπ =
JpqUpπ,qπ. Also if π, π′ǫSn satisfy pπ = pπ′, qπ = qπ′ thenUπ and
Uπ′ have the same restrictions toJpq. This implies that ifpπ = p and
qπ = q thenUπ is the identity onJpq. By Lemma 1 of§3, c jk = c1 jUc1k,
for i, j, k , satisfiesc jk = ck j = c1kUc1 j = u jk + 1 − ej − ek where
u jk = u1 j ◦u1k alsou2

jk = ej+ek,U( jk) = U(1k)U(1 j)U(1k) = Ucjk . By (34),

if i, j, k , thenxi j U( jk) = xi j ◦u jk. Hence (xi j ◦u jk)◦u jk = xi j U2
( jk) = xi j .

In particular, if 1, j, k , thenu jk ◦ u1k = (u1 j ◦ ulk) ◦ ulk = u1 j . We note
also that

U−1
π Uei Uπ = Ueiπ (39)

since forπ = (1 j) we haveU(1 j)Uei U(1 j) = Uc1 j Uei Ue1 j = Uei Uc1 j =

Uei U1 j = Uei(1 j) andU−1
ππ′Uei Uππ′ = U−1

π′ U−1
π Uei UπUπ′ . Let O = J12

and define forx, y
xy= xU(23) ◦ yU(13) (40)

SincexU(23)ǫJ13 andyU(13)ǫJ23, xyǫO =J12. Also the product
isΦ -bilinear. Define forxǫO.

j : x→ x = xU(12) (41)

SinceU(12) mapsJ12 into itself andU2
(12) = 1, j is aΦ-isomorphism 111

of J12 such thatj2 = 1. Also if x, yǫO,

xy= (xU(23) ◦ yU(13))U(12)

= xU(23)U(12) ◦ yU(13)U(12)

= yU(12)U(23) ◦ xU(12)U(13)

= yx

xu12 = xU(23) ◦ 12U (13)

= xU(23) ◦ U23

= xU2
23

= x

u12 = u3
12 = u12 (see§3)
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These relations imply thatu12 acts as the unit element ofO relative
to its product andj is an involution inO.

We now definen2 “coordinate mappings”ηpq, p, q = 1, 2, . . . , n of
J into O as follows:

ηi j = Uei ,ej Uπ if i , j, iπ = 1, jπ = 2 (42)

ηii = Uei UπVc12 if iπ = 1 (43)

It is clear from the preliminary remark that this is independent of the112

choice ofπ. Also ηpq = 1 on all the Pierce submodules exceptJpq. If
i , j, Uπ is aΦ isomorphism ofJi j onto O = J12. Henceηi j is a
Φ-isomorphism ofJi j ontoO. SinceJii Uei Uπ = J11 it is clear also
thatηii is aΦ homomorphism ofJii ontoOo ≡ J η11

11 = J11Vc12. We
now prove forxǫJ

xηpq = xηpq. (44)

If i , j, we havexηi j = xUei ,ej UπU(12) = xUej ,ei Uπ′ , whereiπ′ =

2, jπ′ = 1. Hencexηi j = xη ji . To provexηii = xηii we require

Vc12Uc12 = Vc12 = Uc12Vc12 (45)

We haveVc12Uc12Uc2
12,c12

= UC12Vc12 by QJ24. Sincec2
12 = 1 and

U1,c12 = Vc12 we have (45). Nowxηii = xUei UVc12 = xUei UVc12 = Xηii .
Define the mappingη of J ontoH (On,Oo) by

x =
∑

p≦q

xηpq[pq]. (46)

This is aΦ-homomorphism ofJ ontoH (On,Oo) since, ifxǫJpq,
x = xηpq[pq]. It is clear thatJ η

pq = Hpq where these are defined
as usual. We haveeηi = eiUei UπVc12[ii ] = e1Vc12[ii ] = e1Vu12[ii ] =
U12[ii ] = 1[ii ](U12 = 1 in O). Hence 1η = 1 also. Alsouη12 = n12[12]
and if 1, 2, j , then uηi j = u1 jU(2 j)[i j ] = (U1 j = (u1 j ◦ u2 j)[1 j] =113

u12[1 j] = 1[1 j] (sinceu1 j ◦ u2 j = u12 was shown in the first paragraph).
We now considerJ relative to the squaring operation (a2

= 1Ua)
and we shall prove fori, j, k ,, xi j ǫJi j etc:

(xi j ◦ y jk)η = xηi j ◦ yηjk (47)
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(xii ◦ yi j )
η
= xηii ◦ yηi j (48)

(x2
ii )
η
= (xηii )

2 (49)

(x2
i j )
η
= (xηi j )

2 (50)

For (47) letπ be a permutation such thatiπ = 1, jπ = 3, kπ = 2 and
put xi j Uπ = xǫJ13, y jkUπ = yǫJ23. Then

xηi j ◦ yηjk = xU(23)[i j ] ◦ yU(13)[ jk]

(xU(23))(yU(13))[ik]

= (xU2
(23) ◦ yU2

(13))[ik]

= (x ◦ y)[ik]

= (xi j ◦ y jk)Uπ[ik]

= (xi j ◦ y jk)η.

For (48) letπ be a permutation such thatiπ = 1, jπ = 2. Putxii Uπ = 114

xǫJ11, yi j Uπ = yǫJ12. Then

xii ◦ yi j = xVc12[ii ] ◦ y[i j ]

= ((xVc12)y)[i j ]

= (xVc12U(23) ◦ yU(13))[i j ].

SincexǫJ11, xU(23) = x (see first paragraph) andxVc12 = x ◦ u12.
HencexVc12U(23) = (x ◦ u12)U(23) = x ◦ u12U(23) = x ◦ (u12 ◦ u23) =
x ◦ u13 = xVc13 = xVc13Uc13(cf. (45))= (x ◦ u13)Uc13. ThenxVc12U23 ◦

yU(13) = ((x ◦ u13) ◦ y)U(13) = ((x ◦ y) ◦ u13)U13 = x ◦ y = (xii ◦ yii )Uπ.
Hencexii ◦ yii j = (xii ◦ yi j )Uπ[i j ] = (xii ◦ yi j )η.

For (49) chooseπ so thatiπ = 1 and putx = xii UπǫJ11. Then

(xi j )
2
= (xVc12[ii ])

2
= (xVc12)

2[ii ]

= (xVc12U(23) ◦ Vc12U(13)[ii ]

= (xVc13 ◦ xVc12)U(13)[ii ] (proof of(48))

= ((x ◦ u13) ◦ (x ◦ u12))U(13)[ii ]

= ((x ◦ (x ◦ U12)) ◦ u13)U(13)[ii ]
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= (x2 ◦ u12)U
2
(13)[ii ]

= (x2 ◦ u12)[ii ]

= x2
ii UπVc12[ii ]

= (x2
ii )
η.

For (50) letπ satisfyiπ = 1, jπ = 2 and putx = xi j UπǫJ12. Then115

(xi j )
2
= xi j Uπ[i j ]

2
= (x[i j ])2

= xx[ii ] + xx[ j j ].

Now xx = xU(23) ◦ xU(12)U(13) = xU(23) ◦ xU(13)U(23) = (x ◦
xU(13))U(23) = (x◦(x◦u13))U(23) = (x2◦u13)U(23) = (x2Ue1◦u13)U(23) =

x2Ue1 ◦ u12 = x2Ue1Vc12 = x2
i j UπUe1Vc12. Similary, xx = x2

i j UπUe2Vc12.
Hence

(xi j )
2
= (x2

i j UπUe1Ue12)[ii ] + (x2
i j UUe2Vc12)[ j j ].

On the other hand,x2
i j = x2

i j Uei + x2
i j Uej so (x2

i j )
η
= (x2

i j Uei UπVc12)

[ii ] + (x2
i j Uej UπU(12)Vc12Vc12)[ j j ] and x2

1Uei UπVc12 = x2
i j Uπ Ue1Vc12,

x2
i j Uej Uπ U(12)Vc12 = x2

i j UπUe2Uc12Vc12 = x2
i j UπUe2Vc12. Hence (50)

holds.
It is clear from these formulas that (x2)η = (xη)2 for xǫJ and

H (On,Oo) is closed under squaring. We now introduce a 0-operator in
H (On,Oo) by QM1− 11 and the formulas giving 0. ClearlyAUBǫOn

but it is not immediately clear thatAUgǫH (On,Oo). We claim that
xUη) = xηUyη , x, y, ǫJ . It is sufficient to prove this and{xyz}η =116

{xηyηzη} for x, y, z in Pierce components. We note first that sinceηmaps
Jpq into Hpq we have (xUei )

η
= xηU1[ii ] , (xUei ,ej )

η
= xηU1[ii ],1[ j j ] .

From this it follows that we can carry over the proof of theorem 1. For
the relation corresponding toQM4 we have{xii yz}η = (((xii ◦ yi j ) ◦
zi j )Uei )

η
= ((xii ◦ zi j ) ◦ zi j )U1[ii ] and{xηii y

η
i j z
η
i j } = ((xii ◦ yi j ) ◦ zi j )U1[ii ] by

the formulas inH (On,Oo). Hence{xii yi j zi j }
η
= {xηii y

η
i j z
η
i j } holds. The

formulas corresponding toQM5− 11 are obtained in a similar manner.
For QM2 we note thatuηjk = 1[ jk], j , k andV1[ jk] is injective onHi j if

i, j, k ,. Hence it suffices to prove (xii Uyi j )
η ◦ uηjk = xηii U

η
yi j ◦ uηjk. Now

(xii Uyi j )
η ◦ uηjk = (xii Uyi j Vujk)

η
= (xii Vyi j ,ujkVyi j )

η as in the proof ofQM2
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in Theorem 1)= ({xii yi j u jk} ◦ yi j )η = {x
η
ii y
η
i j u
η
jk} ◦ yηi j = xηii U

η
yi j ◦ uηjk by

the formulas inH (On,Oo). A similar argument applies toQM1, 3.
Hence (xUy)η = xηUyη which with J η

= H (On,Oo) implies that
AUBǫH (On.Oo) for A, BǫH (On.Oo). It follows that (H (On,Oo),U, 1)
is Jordan andη is a homomorphism. It now follows from Theorem 1 that
O is associative ifn ≧ 4 and alternative withOo ⊆ N(O) if n = 3. Also
xOox ⊆ Oo if xǫO.

It remains to prove thatη is an isomorphism. LetK = kerη. Since
K = is an ideal,K =

∑
Ki jK = K ∩Ji j also sinceηi j is injective if

i , j we haveKi j = 0, if i , j. HenceK =
∑
Kii and it suffices to show

Kii = 0, i = 1, . . . , n. Let zǫKii and consider the products{xyz}, x, y in 117

Pierce modulesJpq. Such a product is 0 sinceKpq = K ∩Jpq = 0
Unlessx, yJi j , i , j or x, y, ǫJii . In the first case we note thatx ◦ z =
0 sinceKi j = 0 so {xyz} = 0 by PD4. In the second case we write
x = wUui j (ui j as above),wǫJ j j where j , i. This can be done since
J j j Uui j =J j j U(i j ) =Jii . Then{xyz} = wUui j Vy,z = 0 by QJ9, the PD
relations andKi j = 0. Our result implies that{xyz} = 0 for all x, yǫJ
soUx,z = 0 for all x. We show thatUz = 0. For this it suffices to show
that xUz = 0 if xǫJii or wUui j uz = 0 for wǫJ j j , i , j. This follows
from QJ17 and the PD relations. We have now shown thatKii ⊆ kerU.
HenceKii = 0 and the proof is complete. �

Remarks .The hypothesis thatJ is non-degenerate is used only at
the last stage of the proof. If this is dropped the argument shows that
K = kerη ⊆ kerU. The converse inequality holds since (kerU)η is
contained in the radical ofU in J η

= H (On,Oo). SinceH (On,Oo)
is non-degenerate we have (radU)η = 0 so kerU ≡ K andK = kerU
in any case. This gives a characterization of the algebras satisfying the
first hypothesis of the S.C.T. IFJ has no two torsion keru = 0 so in
this case we can drop the second hypothesis and obtain the conclusion
of S.C.T.

The S.C.T can be strenghtened to give a coordinatization Theorem
in which the second hypothesis is replaced by the weaker one that the
ei are connected. In this case we get an isomorphism onto a “canonical
matrix algebra” (cf. Jacobson [3], p.137).





Chapter 3

Structure Theory

In this chapter we shall develop the structure theory of quadratic Jor- 118

dan algebras which is analogous to and is intimately connected with the
structure with the structure theory of semi-simple Artinion associative
rings. We consider first the theory of the radical of a quadratic Jordan
algebra which was given recently by McCrimmon in [5]. McCrimmon’s
definition of the radical is analogous to that of the Jacobsonradical in
the associative case and is an important new notion even for Jordan alge-
bras. We shall determine the structure of the quadratic Jordan algebras
which are semi-simple (that is have 0 radical) and satisfy the minimum
condition for principal inner ideals. Such an algebra is a direct sum
of simple ones satisfying the same minimum condition. The simple
quadratic Jordan algebras satisfying the minimum condition are either
division algebras, outer ideals containing 1 in algebrasH (a, J) where
(a, J) is simple Artinian with involution, outer ideals containing 1 in
quadratic Jordan algebras of quadratic forms with base points (§1.7), or
certain isotopesH (O3, Jc) of algebrasH (O3), O an actonion algebra
over a field (§1.8, 1.9). The only algebras in this list which are of capac-
ity ≧ 4 (definition in§6) are outer ideals cintaining 1 inH (a, J), (a, J)
simple Artinian with involution. In this sense the general case in the
classification of simple quadratic Jordan algebras satisfying the mini-
mum condition is constituted by the algebras defined by the (a, J) we 119

determined in Chapter0.

83
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These results reduce in the case of (linear) Jordan algebrasto those
given in Chapter IV of the author’s book [2].

1 The radical of a quadratic Jordan algebra

As in the associative ring theory the notation of the radicalwill be based
on the Quasi-invertiblity which we define as follows:

Definition 1. An elementz of a quadratic Jordan algebraJ is called
quasi-invertibleif 1 − z is invertible. If the inverse of 1− z is denoted as
1− w thenw is calledthe quasi-inverseof z.

The condition thatzbe quasi-invertible with quasi-inversew are

(1− w)U1−z = 1− z, (1− w)2U1−z = 1. (1)

SinceU1−z = 1+Uz−Vz the conditions are 1+z2−2z−w−wUz+w◦z=
1− z, 1+ z2 − 2z− 2w− 2wUz+ 2w◦ z+w2

+w2Uz−w2 ◦ z= 1. These
reduce to

w+ z− z2 − w ◦ z+ wUz = 0 (2)

2w− z2
+ 2wUz− w2Uz+ 2z− 2w ◦ z− w2

+ w2 ◦ z= 0. (3)

The quasi-inverse ofz is

w = (z2 − z)U−1
1−z (4)

since (1−z)−1
= (1−z)U−1

1−z = (1−z)2U−1
1−z−(z2−z)U−1

1−z = 1−(z2−z)U−1
1−z.

Also (1− z) ◦ (1− w) = 2 which gives120

z◦ w = 2(z+ w) (5)

Then 1− z = (1 − w)U1−z = 1 − w + (1 − w)Uz − (1 − w) ◦ z =
1− w+ (1− w)Uz− 2z+ 2z+ 2w = 1+ w+ (1− w)Uz. Thus

w+ z+ (1− w)Uz = 0 (6)

An immediate consequence of this is
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Lemma 1. If Z is an inner ideal and zǫZ is quasi-invertible then the
quasi-inverse w of z is in Z.

We prove next

Lemma 2. If zn is quasi-invertible then z is quasi-invertible.

Proof. We have 1− λn
= (1 − λ)(1 + λ + . . . + λn−1). HenceU1−zn =

U1−zUy = UyU1−z wherey = 1 + z+ . . . + zn−1 (QJ37). Sincezn is
quasi-invertible,U1−zn is invertible. Hence 1− z is invertible andz is
quasi-invertible. �

Remarks.The argument shows also that−(z+ z2
+ . . . + zn−1) is quasi-

invertibel. The converse of lemma 2 is false since−1 is quasi-invertible
in any (linear) Jordan algebra. On the other hand, 1= (−1)2 is not
quasi-invertible.

An immediate corollary of Lemma 2 is: Any nilpontent elementis
quasi-invertible. By anilpotent zwe mean an element such thatzn

= 0
for somen. Thenzn

= 0 for all m > 2n. Since no idempotent, 1 is 121

invertibel andc idempotent implies 1− e idempotent it is clear that no
idempotent, 0 is quasi-invertible.

Definition 2. An ideal (inner ideal, outer ideal)Z is calledquasi - invert-
ible if very zǫZ is quasi-invertibleZ is callednil if everyzǫZ is nilpotent.

The foregoing result shows that ifZ is nil thenZ is Quasi-invertible.

Lemma 3. If Z is a quasi-invertible ideal and uǫJ is invertible then
u− z is invertible for every z.

Proof. u−z is invertible if and only if (u−z)2U−1
u is invertible. We have

(u− z)2U−1
u = (u2−u◦ z+ z2)U−1

u = 1−w wherew = (u◦ z− z2)U−1
u ǫZ.

Thenw is quasi-invertible andu− z is invertible. �

Lemma 4. If Z andL are quasi-invertible ideals then Z+ c is a quasi-
invertible ideal.

Proof. Let xǫZ, yǫc. Then 1−(x+y) = (1−x)−y is invcertible by lemma
3 since 1− x is invertible andyǫc. Hencex+ y is quasi-invertible. Thus
every element ofZ + c is quasi-invertible. �
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Lemma 5. If z is quasi-invertible inJ and η is a homomorphism of
J into J ′ then zη is quasi-invertible inJ ′. If Z is a quasi-invertible
ideal andz = z+ Z is quasi invertible inJ = J /Z then z is quasi
invertible inJ .

Proof. The first statement is clear since invertible elements are mapped
into invertible elements by a homomorphism. To prove the second result
consider 1− z wherez wherez is quasi-invertible inJ = J /Z. We
have awǫJ such that (1− w)2U1−z = 1 − y, yǫZ. SinceZ is quasi-122

invertible, 1− y is invertible. Hence 1− z is invertible (Theorem on
inverses). Thusz is quasi-invertible.

We are now in position to prove our first main result. �

Theorem 1. There exists a unique maximal quasi-invertible idealR in
J .R contains every quasi-invertible ideal andJ =J /R contains no
quasi-invertible ideal, 0.

Proof. Let {Zα} be the collection of quasi-invertible ideals ofJ and put
R = ∪Zα. If x, yǫR, xǫZα, yǫZβ for someα, β. By lemma 4,Zα+Zβ = Zγ.
Hencex+ yǫR andx+ y is quasi-invertible. It follows thatR is a quasi-
invertible ideal. ClearlyR contains every quasi-invertible ideal soR
is the unique maximal quasi-invertible ideal. Now letZ be a quasi-
invertible ideal ofJ = J /R. ThenZ = Z/R whereZ is an ideal of
J containingR. Let zǫZ. Thenz = z+ R is quasi invertible inJ .
Hence by Lemma 5,z is quasi-invertible inJ . HenceZ is a quasi-
invertible ideal ofJ . ThenZ ⊆ R,Z = R andZ = Z/R = 0.

The idealR is called the (Jacobson)radical of J and will be de-
noted also as radJ ·J is calledsemi-simpleif radJ = 0. The second
statement of Theorem 1 isJ = J / radJ is semi-simple. Since nil
ideals are quasi-invertible radJ contains every nil ideal. �

2 Properties of the radical

We show first that radJ is independent of the base ringΦ. This is a
consequence of
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Theorem 2. LetJ be a quadratic Jordan algebra overΦ,R = radJ123

andγ the radical ofJ regarded as a quadratic Jordan algebra overZ.
ThenR = γ.

Proof. It is clear thatR ⊆ γ. The reverse inequality will follow if we
can show thatΦγ theΦ-submodule generated byγ is a quasi-invertible
ideal. The elements ofΦγ have the form

∑
αizi , αiǫΦ, ziǫγ. If aǫJ then

(
∑
αizi)Ua =

∑
αi(ziUa)ǫΦγ sinceziUaǫγ. Also aU∑

αizi =
∑
i
α2

i aUzi +

∑
i< j
αiα j(aUzi ,zj ) sinceaUzi , aUzi ,zj ǫγ for any aǫJ . Next we show that

z =
∑
αizi is quasi-invertible. The result just proved show thatz3

=

zUzǫγ. Hence this is quasi-invertible andz is quasi-invertible by lemma
2. HenceΦγ is a quasi-invertible ideal, which completes the proof.�

Definition 3. An elementaǫJ is calledregular if aǫJ UaJ is called
regular if every aǫJ is regular.

If Φ is a field anda is an algebraic element ofJ thenΦ[a] is fi-
nite dimensional (§1.10). ThenΦ[a]Φ[a]Ua ⊇ Φ[a]Ua2(Ua2 = U2

a) ⊇
Φ[a]Ua3 . . . Hence we have ann such thatΦ[a]Uan = Φ[a]Uan+1 = . . .

Thena2nǫΦ[a]Uan = Φ[a]Ua2n. Hencea2n is regular. Thus ifa is alge-
braic (Φ a field) then there exists a power of a which is regular.

Theorem 3. (1) radJ contains no non-zero regular elements. (2) IfΦ
is a field and zǫ radJ is algebraic then z is nilpotent.

Proof. (i) Let zǫ radJ be regular, soz= xUz for somexǫJ . Suppose 124

first thatx is invertible. SincezUxǫ radJ , x−zUx is invertible by lemma
3. HenceUx−zUx = Ux−Ux,zUx +UxUzUx is invertible in EndJ . Now

zUx−zUx = zUx − zUx,zUx + zUxUzUx

= zUx − zVx,zUx + zUxUzUx (QJ4′)

= zUx − xUz,zUx + zUxUzUx

= zUx − 2zUx + xUzUx

SincexU2 = z this is 0 and sinceUx−zUx is invertible,z = 0. Now
let x be arbitrary. Sincez = xUz = xUxUz = xUzUxUz. We may
replacex by xUzUx and thus assumex ∈ radJ . Now z2(xUz)2

=
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z2UxUz(QJ22) = yUz wherey = z2Uxǫ radJ . Thenu = 1 + x − y is
invertible by lemma 3. AlsouUz = z2

+ z− z2
= z. Hencez= 0 sinceu

is invertible by the first case. (2) Ifzǫ radJ is algebraic then we have
seen thatz2n is regular for somen. Sincez2nǫ radJ , (1) implied that
z2n
= 0. Hencez is nilpotent. �

Theorem 4. If u is an invertible element ofJ thenradJ (u)
= radJ .

Proof. Since radJ is an ideal inJ it is ideal in the isotopeJ (u).
If z ∈ radJ then u−1 − z is invertible by lemma 3. Thenu−1 − z
is invertible inJ (u). Sinceu−1 is the unit ofJ (u) this states thatz
is quasi-invertible inJ (u). Thus radJ is a quasi-invertible ideal of
J (u). Hence radJ ⊆ radJ (u). By symmetry radJ = radJ (u). �125

3 Absolute zero divisors.

We recall thatz is an absolute zero divisor (§1.10) if Uz = 0. We shall
now show that such azgenerates a nil ideal ofJ . For the proof we shall
need some information on the ideal (inner ideal, outer ideal) generated
by a non-vacuous subsetS of J . Clearly the outer ideal generated
by S is the smallest submodule containingS which is stable under all
Ux, xǫJ . This is the set ofΦ-linear combinations of the elements of the
form sUx1Ux2 · · ·Uxk s ∈ S, xi ∈ J . We have seen also that the linear
ideal generated by a single elements isΦs+J Us (§1.5). Beyond this
we have no information on the inner ideal generated by a subset. We
now prove

Lemma 6. If Z is an inner ideal then the outer idealc generated by Z is
an ideal.

Proof. The elements ofc are sums of elments of the formbUx1Ux2 . . .

Uxk, bǫZ, xiǫJ . We have to show thatc is an inner ideal. For this
it suffices to prove that ifa, xiǫJ , bǫZ thenaUbUx1 . . .Uxkǫc and for
c, dǫc, aUc,dǫc. SinceaUc,d = {cad} the second is clear sincecǫc andc is
an outer ideal (§1.5). For the first we use

aUbUx1 ...Uxk
= aUx . . .Ux1UbUx1 . . .Ux.
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SinceZ is an inner idealaUx · · ·Ux1UbǫZ. HenceaUbUx1 ···Uxǫc.
Let zbe an absolute zero divisor. Then the inner ideal generated by z

isΦz. Hence the last result shows that the ideal generated byz is the set
of Φ linear combinations of elments of the formzUx1Ux2 · · ·Uxk , xiǫJ . 126

Since the ideal generated by a set of elements is the sum of theideals
generated by the individual elements we see that the idealM = zerJ
generated by all the absolute zero divisors is the set ofΦ -linear com-
binations of elementszUx1Ux2 · · ·Ux, z an absolute zero divisor,xiǫJ .
Since forαǫΦ, αzUx1Ux2 · · ·Uxk is an absolute zero divisor we have the
following �

Lemma 7. The idealM = zerJ generated by the absolute zero divisors
is the set of sums z1+ z2+ · · ·+ zk where the zi are absolute zero divisors

We prove next

Lemma 8. If z is an absolute zero divisor and y is nilpotent then x= y+z
is nilpotent.

Proof. We show first that forn = 0, 1, 2, . . .

xn
= yn
+ zMn−1 (7)

where
M−1 = 0,Mo = 1,Mn+1 = Vyn+1 + Mn−1Uy, n ≧ 0. (8)

We note that by (8) we haveM1 = Vy,M2 = Vy2 +Uy and in general

M2k = Vy2k + Vy2k−2Uy + Vy2k+1Uy2 + · · · + Uyn,≥ 1 (9)

M2k+1 = Vy2k+1 + Vy2k−1Uy + · · · + VyUyk, k ≧ 1

Now (7) is clear ifn = 0, 1. Assume it forn. Thenxn+2
= xnUx = 127

xn(Uy + Uy,z) (sinceUz = 0)= ynUy + zMn−1Uy + ynUy,z + zMn−1Uy,z.
Now ynUy = yn+2 andynUy,z = {zyny} = zVyn,y = zVyn+1 (QJ38). Hence

xn+2
= yn+2

+ z(Mn−1Uy + Vyn+1) + zMn−1Uy,z

Thus we shall have (7) by induction if we can show thatzMn−1Uy,z =

0. By (9), this will follow if we can show thatzVyi Uyj Uy,z = 0 for



90 3. Structure Theory

i > 0, j ≧ 0 andzUyj Uy,z = 0 for j ≧ 0. For the second of these
we usezUyj Uy,z = yzUyj z = yVzUyj ,z

= yVyj ,yjUz
(QJ31) = 0 since

Uz = 0. For the first we use the bilinearization ofQJ31 relative to
a: VbUa,c,b = VaUb,c + VcUb,a in zVyi Uyj Uy,z = yzVyi Uyj z = yzUyj ,yi+ j z
(QJ39) = yVzUyj ,yi, j,z = y(VyjUz,yi+ j + Vyi+ jUz,yi ) = 0. This proves (7).
Sincey is nilpotent it is clear from (9) thatyn

= 0 and Mn = 0 for
sufficiently largen. Hencexn

= 0 by (7).
Repeated application of Lemma 8 shows that if thezi are absolute

zero sivisors thenz1 + z2 + · · · + zk is nilpotent. Hence, by lemma 7, we
have �

Theorem 5. The idealkerJ generated by the absolute zero divisors is
a nil ideal.

It is clear from this that kerJ ⊆ radJ . It clear also that a simple
quadratic Jordan algebra contains no absolute zero divisors, 0.

4 Minimal inner ideals

An inner idealZ in J is calledminimal (maximal)if Z , 0(Z , J )128

there exists no inner idealc in J such thatZ ⊃ c ⊃ 0(Z ⊂ c ⊂ J ). If
Z is a minimal inner ideal thenJ Ub = 0 or J Ub = Z for everybǫZ
sinceJ ub is an inner ideal contained inZ. Similarly, eitherZUb = 0
or ZUb = Z, bǫZ. We shall now prove a key result on minimal inner
ideals which will serve as the starting point of the structure theory. As a
preliminary to the proof we note the following

Lemma . Let a, bǫJ satisfy aUb = b. Then E= UaUb and F = UbUa

are idempotent elements of EndJ and if d = bUa then b and d are
relatedin the sense that dUb = b and bUd = d.

Proof. SinceaUb = b,UbUaUb = Ub. ThenUaUbUaUb = UaUb and
UbUaUbUa = UbUa soE andF are idempotents. Ifd = bUa thendUa =

bUaUb = aUaUaUb = aUb = aUb = b and bUd = aUbUaUbUa =

aUbUa = bUa = d. We shall now prove the following �
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Theorem on Minimal Inner Ideals. Any minimal inner idealZ of J
is of one of the following types:IZ = Φzwherez is a non-zero absolute
zero divisor, IIZ =J Ub for everyb , 0 in Z but ZUb = 0 andb2

= 0
for everyb ∈ Z, III Z is a Pierce inner idealJ Ue, e2

= e, such that
(Z,U, e) is a division algebra. Moreover, ifJ contains no idempotent
, 0, 1 and contains a minimal inner idealZ of type II then 2J = 0 and
for everyb , 0 in Z there exists an elementdǫJ such that

(i) dUb = b, bUd = d, b2
= 0 = d2, b◦d = 1,O =J Ud is a minimal 129

inner ideal of type II.

(ii) c = b + d satisfiesc2
= 1, c−1

= c and in the isotopeJ (c), b
andd are supplementary strongly connected orthogonal idempo-
tents such that the Pierce inner idealsJ U(c)

b Z,J U(c)
d = O are

minimal of type III.

Proof. Suppose first thatZ contains an absolute zero divisorz, 0. Then
Φz is a non-zero inner ideal contained inZ soZ = Φz, by the minimality
of Z. From now on we assume thatZ contains no absolute zero divisor
, 0. ThenZ =J Ub for everyb , 0 in Z. Also ZUb = 0 or ZUb = Z.
SupposeZ containsab , 0 such thatZUb = 0 and letyǫZ. Then there
exists anaǫJ such thataUb = y. ThenZUy = ZUbUaUb = 0. Thus
eitherZUb = 0 for everybǫZ orZUb = Z for everyb , 0 inZ. In the first
caseJ Ubi =J U2

b =J UbUb ⊂ ZUb = 0,bǫZ and sinceb2
= 1UbǫZ

andZ contains no absolute zero divisors, 0 we haveb2
= 0, bǫZ. Thus

Z is of type II. Now assumeZUb = Z for everyb , 0 in Z. Let b be
such an element and letaǫZ satisfy aUb = b. By the lemma,b and
d = bUa are related. AlsodǫZ and E = UbUd and F = UdUb are
idempotent operators. We haveJ E = J UbUd = Z andJ F = Z so
the restrictionsE andF of E andF to Z areZ the identiy onZ. Pute=
d2UbǫZ, f = b2UdǫZ. Thene , 0 sinceJ Ue = J UbU2

dUb = Z and
similarly f , 0. Also e2

= (d2Ub)2
= b2U2

dUb = b2UdF = b2Ud = f .
Similarly, f 2

= e. Thene2
= ( f 2)2

= f 2U f (QJ23) = f 2UdU2
bUd =

f 2FE = f 2
= e. Thene is a non-zero idempotent inZ,Z = J Ue and

this is a division algebra sinceZUb = Z for every non-zerob henceZ is 130

type III.



92 3. Structure Theory

Now supposeJ contains no idempotents, 0, 1 and contains the
minimal inner idealZ of type II. Let b , 0 in Z and letaǫJ satisfy
aUb = b. We claim thatc = a2Ub = 0. Otherwisec is a non-zero
element ofZ and there existbo, coǫJ suchthatboUc = b, coUc = c. Put
e = coUbUa. Thene2

= (coUbUa)2
= a2UcOUbUa = a2UbUcoUbUa =

cUcoUbUa = cUcoUcUboUcUa = cUboUcUa (sincecUcoUc = c by the
Lemma)= coUcUboUcUa = coUboUcUa = coUbUa = e. SinceeUaUb =

coUbU2
aUb = coUbUa2Ub = coUa2Ub

= coUc = c , 0. More over, if
e = 1 then 0= b2Ua = 1UbUa = eUbUa = coUbUaUbUa = coUbUa

(Lemma)= e. Hencee is an idempotent, 0, 1 contrary to hypothesis.
Thus we have shown thata2Ub = 0 for everyaǫJ such thataUb = b.
Put d = bUa. ThenbUd = d, dUb = b andd2Ub = 0. Thend2

=

(bUd)2
= d2UbUd = 0. By QJ30, (b◦d)2

= b2Ud+d2Ub+d2Ub+bUd◦

b = b ◦ d. By QJ17,bUb◦d = −bUd,b + bUdUb + bUbUd + bVaUbVd =

−b2 ◦ d + b + 0 + dVbUbVd = b (sincedVbUb = dUbVb = b ◦ b = 0).
Henceb ◦ d is an idempotent, 0 and sob ◦ d = 1. We have now
established all the relations onb, d in (i). Now put c = b + d. Then
c2
= b2
+b◦d+d2

= 1. HenceUc is an automorphism such thatU2
c = 1

andbUc = bUb+bUb,d+bUd = d. ThusUc maps the minimal inner ideal
Z = J Ub onto the minimal inner idealO = J Ud. Next we consider
(d + 1)Ub = dUb + b2

= b. As before, this implies (d + 1)2Ub = 0
so 0 = 2dUb = 2b. Then 4Z = 4J Ub = J U2b = 0. Since 2Z is
an inner ideal contained inZ, which is minimal, this implies 2Z = 0.131

Applying the automorphismUc shows that 2O = 2ZUc = 0. Also
2b = 0 implies 2J Ub,d = U2b,d = 0. We now have 2J = 2J Uc =

2J Ub + 2J Ub,d + 2J Ud = 0.

Next we consider the isotopeJ (c). We havec−1
= cUc = (b +

d)Ub+d = bUb + bUb,d + bUd + dUbdUb,d + dUd = b+ d = c. Hencec
is the unit ofJ (c). SincecU(c)

b = cUcUb = cUb = (b + d)Ub = b, b is
idempotent inJ (c). Henced = c− b is an idempotent orthogonal tob
in J (c). We havecU(c)

1 = cUcU1 = c and 1= b ◦ d = 1Ub,dǫJ U(c)
b,d.

Henceb andd are strongly connected by 1 inJ (c). Finally, J U(c)
b =

J UcUb = J Ub = Z andJ U(c)
d = O , so Z andO are the Pierce

inner ideals determined by the idempotentsb andd in J (c). SinceZ
andO are minimal inner ideals ofJ they are minimal inner ideals of
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J (c). Clearly they are of type III inJ .
All the possibilities indicated in the theorem can occur. Tosee this

considerΦ(q)
2 the special quadratic Jordan algebra of 2×2 matrices over

a fieldΦ. ThenΦe11 is a minimal inner ideal of type III andΦe12 is a
minimal iner ideal of type II inJ = Φ

(q)
2 . Next letJ = Φ1 + Φe12.

This is a subalgebra ofΦ(q)
2 ande12 is an absolute zero divisor inJ .

HenceΦe12 is a minimal inner ideal of typeI . Finaly, assumeΦ has
characteristic two. ThenJ = Φ1 + Φe12 + Φe21 is a subalgebra of
Φ

(q)
2 since x = α1 + βe12 + γe21, α, β, γǫΦ, then x2

= (α2
+ βγ)1 so

x2 andxy+ yxǫΦ1 for x, yǫJ . Thenxyx+ yx2ǫΦx andxyxǫΦx + Φy.
The formula forx2 shows thatJ contains no idempotents, 0, 1. Also 132

Z = Φe12,O = Φe21 are minimal inner ideals of type II inJ and
b = e12, d = e21 satisfy (i). �

5 Axioms for the structure theory.

We shall determine the structure of the quadratic Jordan algebras which
satisfy the following two conditions: (1) strong non-degeneracy (=non-
existance of absolute zero divisors, 0), (2) the descending chain condi-
tion (D C C) for principal inner ideals.The latter is equivalent to the min-
imum condition for principal inner ideals. We have called a quadratic
Jordan algebraJ regular if for everyaǫJ there existsxǫJ such that
xUa = a (§1.10, Definition 3 of§2). Clearly this implies strong non-
degeneracy.

Lemma 1. If J is strongly non-degenerate and satisfies the DCC for
principal inner ideals then every non-zero inner ideal Z ofJ contains
a minimal inner ideal ofJ .

Proof. If b , 0 is in Z thenJ Ub is a principal inner ideal contained
in Z andJ Ub , 0 by the strong non-degeneracy. By the minimum
condition (= D C C) for principal inner ideals contained in contains a
minimal elementK. We claim thatK is a minimal inner ideal ofJ .
Otherwise, we have an inner idealZ such thatK ⊃ Z ⊃ 0. The argument
used forZ shows thatZ contains a non-zero principal inner idealJ Uc

andK ⊃J Uc contrary to the choice ofK.
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As a first application of this result we note that the foregoing condi-
tions (1) and (2) are equivalent to : (1) and (2′) J is semi-simple. For,
we have �

Theorem 6. If a quadratic Jordan algebraJ satisfies the DCC for133

principal inner ideals thenJ is semi-simple if and only ifJ is strongly
non-degenerate.

Proof. If z is an absolute zero divisor then the ideal generated byz is nil
and so is contained in radJ . Hence isJ is semi-simple, so radJ =

0, thenJ contains no absolute zero divisors, 0. Conversely, suppose
radJ , 0. Then we claim thatJ contains non-zero absolute xero
divisors. Otherwise, we can apply lemma 1 to conclude that radJ
contains a minimal inner idealK of J . K is not of type III since radJ
contains no non-zero idempotents. AlsoK is not of type II since in this
case the Theorem on Minimal Inner Ideals shows that every element of
K is regular. HenceK is os typeI andJ contains an absolute zero
divisor, 0, contrary to hypothesis.

It is immediate that ifJ satisfies the DCC for principal inner ideals,
or is strongly non-degenerate, or is regular then the same condition holds
for every isotopeJ (c). The same is true of the quadratic Jordan algebra
(J Ue,U, e) if e is an idempotent inJ . This follows from �

Lemma 2. Let e be an idempotent inJ . Then any inner (principal
inner) ideal of(J Ue,U, e) is an inner(principal inner) ideal ofJ and
any absolute zero divisor ofJ Ue is an absolute zero divisor ofJ .
Moreover, ifJ is regular thenJ Ue is regular.

Proof. If Z is an inner ideal ofJ Ue andb ∈ Z thenb = bUe. Hence
J Ub = J UbUe = (J Ue)UbUe ⊆ ZUe = Z. HenceZ is an inner
ideal of J . If Z is principal inJ Ue,Z = J UeUb, bǫJ Ue. Then
b = bUe so Z = J UeUeUbUe = J UeUbUe = J Ub is a principal134

inner ideal ofJ . Let zǫJ Ue be an absolute zero-divisor inJ Ue.
Thenz = zUe. Hence ifxǫJ then xUz = (xUe)UzUe = 0. Thusz is
an absolute zero divisor inJ . FInally, supposeJ is regular and let
a = aUeǫJ Ue. Thena = xUa for somexǫJ . Hencea = xUa =
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xUeUaUe = (γUe)UeUaUe = x(Ue)Ua. SincexUeǫJ Ue this shows
thatJ Ue is regular. �

We shall now give the principal examples of quadratic Jordanalge-
bras which are strongly non-degenerate and satisfy the DCC for princi-
pal inner ideals.

Examples. 1. If a is asemi-simple right Artinian algebra then it is
well-known thata is left Artinian and every right (left) ideal of
a has a complementary right (left) ideal. Letaǫa. Thena a is a
left ideal so there exists a left idealJ such thata = aa⊕ J. Then
1 = e+ e′ whereeǫaa, e′ǫJ. It follows thataa = ae ande2

= e.
Thenae= a ande= xa. Henceaxa= a soaǫa(q)Ua. Thusa(q) is
regular and consequently strongly non-degenerate. We notethat
aaa = aa ∩ aa. Clearly aaa ⊆ aa ∩ aaa. On the other hand, if
x = au = va then, by regularity,x = xyx, yǫa so x = auyvaǫaaa.
Henceaa ∩ aa ⊆ aaa. If aaa ⊇ bab thenb = bzb = awaǫaaa.
Then aa ⊇ ba and aa ⊇ ab. Sincea satisfies the descending
chain condition on both left and right ideals it is now clear that
a(q) satisfies the descending chain condition for principal inner
ideals.

2. Let (a, J) be an associative algebra with involution. Supposea(q) 135

is regular. ThenH (a, J) is regular. For ifhǫH (a, J) there exists
an aǫa such thathah = a. ThenhaJh = h so h = ha(haJh) =
h(ahaJ)h andahaJǫH . HenceH is regular. We note next that
if a(q) is regular and satisifies the descending chain condition for
principle inner ideals thenH satisfies these conditions. We have
seen thatH is regular. Now supposeH Ub1 ⊇ H Ub2 ⊇ H
Ub3 . . . wherebiǫH . Thenbi+1 ∈H Ubi+1 by regularity sobi+1 ∈

H Ubi and sobi+1 = bihibi , hi ∈ H . ThenaUbi Ubi Ubi ⊆ abi .
HenceaUb1 ⊇ aUb2 ⊇ . . . is a descending chain of principal inner
ideals ofa(q). Hence we have anmsuch thataUbm = aUbm+1 = . . .

By regularity, biǫaUbi so if n ≧ m, bn = bn+1an+1bn+1, an+1ǫa.
Thenbn = bn+1a j

n+1bn+1. Also, by regularity ofH , bn = bnknbn,

knǫH . Thenbn = (bn+1an+1bn+1)kn(bn+1a j
n+1bn+1) = bn+1ln+1
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bn+1 whereln+1 = an+1bn+1knbn+1a j
n+1 ∈ H . HencebnǫH Ubn+1

andH Ubn ⊆ H Ubn+1. ThusH Ubm = H Ubm+1 = . . . andH
satisfies the DCC for principal inner ideals.

It is clear from (1) and the foregoing results that if (a, J) is semi-
simple Artinian with involution thenH (a, J) is regular and satis-
fies the DCCfor principal inner ideals.

3. If J is a quadratic Jordan algebra overΓ andΦ is a subringΓ
thenJ /Φ andJ /Γ have the same principal inner ideals. Hence
J /Φ has DCC on these if and only if this holds forJ /Γ. It
is clear also thatJ /Φ is regular if and only ifJ /Γ is, and is136

strongly non-degenerate if and only ifJ /Γ is. Now letΓ be a
field and letJ = Jord (Q, 1),Q a quadratic form onJ /Γ with
vase point 1 (cf.§1.7). We have the formulasyUx = Q(x, y)x −
Q(x)y, x = T(x)1 − x,T(x) = Q(x, 1) in J . If Q(x) , 0 thenx
is invertible andJ Ux = J (§1.7). If Q(x) = 0 the Q(x) = 0
the formula forUx shows thatJ UX ⊆ Γx. This implies that
J /Γ, henceJ /Φ, satisfies the DCC for principal inner ideals.
If xǫJ satisfiesQ(x) = 0, Q(x, y) = 0, yǫJ , then Ux = 0.
On the other hand, supposeQ is non-degenerate. Then forxǫJ
eitherQ(x) , 0 there exists ay such thatQ(x, y) , 0. In either
casexǫJ Ux. HenceJ = Jord (Q, 1) has non-zero absolute zero
divisors or is regular according asQ is degenerate or not.

We remark that the formula forU shows that ifK is a subspace
such thatQ(k) = 0, kǫK, thenK is an inner ideal. This can be used
to construct examples of algebras which are regular with DCCon
principal inner ideal but not all inner ideals.

4. LetO be an octonion algebra over a fieldΓ,Φ a subring ofΓ. We
considerH (O3) as quadratic Jordan algebra overΦ(cf. §§1.8,
1.9).sinceH (O3) is a finite dimensional vector space overΓ,
H /Γ satisfies the DCC for principal inner ideals. HenceH /Φ
satisfies this condition. We proceed to show thatH is strong non-
degenerate. Letei = 1[ii ], fi = 1− ei (notations as in§1.7). Then
H U f3 =H11⊕H12⊕H22 = {α[11]+β[22]+a[12]|α, βǫΦ, aǫO}.
If xα[11]+β[22]+a[12] the Hamilton-Cayley theorem inH (O3)
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shows thatx3 − T(x)x2
+ S(x)x = 0 (sinceN(x) = 0, see§1.9).

HereT(x) = α+β andS(x) = T(x♯) = αβ−n(a) by direct calcula- 137

tion. Also, direct calculation using the usual matrix square shows
that x2 − T(x)x+ S(x) f3 = 0. Hence (H U f3,U, f3) =Jord (S, f3)
(see§1.7). Since the symmetric formn(a, b) of the norm form
n(a) of O is non-degenerate the same is trur of the symmetric bi-
linear form ofS(x) = αβ− n(a). HenceS(x) is non-degenerate so
H U f3 = Jord (S, f3) is strongly non-degenerate. By symmetry,
H U fi is strongly non-degenerate fori = 1, 2 also. Now letǫH
be an absolute zero divisor inH . ThenzUfi is an absolute zero
divisor inH U fi sozUfi = 0, i = 1, 2, 3. Clearly this impliesz= 0
soH is strongly non-degenerate.

5. It is not difficult to shows by an argument similar to that used in
2 that if J is regular then any idealZ andJ contianing 1 is
regular and ifJ is regular and satisfies the minimum condion
then the same is true ofZ. We leave the proofs to the reader.

6 Capacity

An IdempotenteǫJ is calledprimitive If e , 0 ande is the only non-
zero idempotent ofJ Ue. If e is not primitive ande′ is an idempotent
, 0, e in J Ue thene = e′ + e′′ wheree′ ande′′ are orthogonal idem-
potents, 0. Conversely ife = e′ + e′′ wheree′ ande′′ are orthogonal
idempotents thene′, e′′ǫJ Ue (cf. §2.1) soe is not primitive. Hencee is
primitive if and only if it is impossible to writee= e′ + e′′ wheree′ and
e′′ are non-zero orthogonal idempotents. An idempotente is calledcom-
pletely primitiveif (J Ue,U, e) is a division algebra. Since a division
algebra contains no idempotents, 0, 1 it is clear that ife is completely
primitive thene is primitive.

Lemma 1. If J , 0 satisfies the DCC for Pierce inner ideals then138

J contains a (finite) supplementary set of orthogonal primitive idem-
potents.

Proof. Consider the set of non-zero Pierce inner ideals ofJ . By the
DCC on these there exists a minimal elementJ Ue1 in the set. Clearly
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e1 is primitive. If e1 = 1 we are done. Otherwise, putf1 = 1 − e1 so
f1 , 0 and considerJ U f1. Since f1 is an idempotent the hypothesis
carries over toJ U f1. HenceJ U f1 contains a primitive idempotente2

and this is orthogonal toe1. If 1 = e1 + e2 we are done. Otherwise, put
f2 = 1−e1−e2 and apply the argument to obtain a primitive idempotent
e3 in J U f2. Also J U f1 ⊇J U f2 since f1 = e2+ f2, e2 , 0. Nowe3 is
orthogonal toe1 ande2 so if 1= e1+e2+e3 we are done. Otherwise, we
repeat the argument withf3 = 1−e1−e2−e3. ThenJ U f2 ⊃ U f2 ⊃ U f3 ⊃

. . . Since the DCC holds for Pierce inner ideals this process terminates
with a supplementary set of orthogonal primitive idempotents. �

Definition 4. A quadratic Jordan algebraJ is said tohave a capacity
if it contains a supplementary set of orthogonal completelyprimitive
idempotents. Then the minimum number of elements in such a set is
calledthe capacityof J .

Theorem 7. If J is strongly non-degenerate and satisfies the DCC
for principal inner ideals thenJ has an isotopeJ (c) which has a
capacity. IfJ has no two torsion thenJ itself has a capacity.

Proof. Let {ei} be a supplementary set of orthogonal primitive idem-139

potents inJ (Lemma 1). Suppose for somei, {ei} is not completely
primitive. Since the hypothesis carry over toJ Uei ,Uei contains a min-
imal inner idealZ (Lemmas 1, 2 of§5). SinceJ Uei is not a division
algebraZ ⊂J Uei Now Z is not of typeI by the strong non-degeneracy
and it is not of type III sinceZ ⊂J Uei andei is primitive. HenceZ is
of tyoe II. Also sinceJ Uei contains no idempotent, 0, ei the Theorem
on Minimal Inner Ideals implies that 2J Uei = 0 andJ Uei contains
an elementci such thatc2

i = ei , c−1
i = ci (in J Uei ) and in the isotope

(J Uei )
(ci ), ci = bi+di wherebi , di are orthogonal idempotents such that

the corresponding pierce inner ideals are minimal of type III. Let c1 = ej

if ej is completely primitive; otherwise letc j be as just indicated. Put
c =

∑
c j . Thenc is invertible and it is clear thatJ (c) has a capacity.

It is clear from the definition thatJ has capacity 1 is and only if
J is a division algebra. We consider next the algebras of capacity two
and we shall prove the following usefull lemma for these �
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Lemma 2. Let J have capacity two, so1 = e1 + e2 where the ei are
orthogonal completely primitive idempotents,J =J11⊕J12⊕J22

the corresponding Pierce decomposition. If xǫJ12 either x2 = 0 or x
invertible. The set of absolute zero divisors ofJ is the set of xǫJ12

such that x2 = 0 and x◦ y = 0, yǫJ12 and this set is an ideal. Either
e1 and e2 are connected or every element ofJ12 is an absolute zero 140

divisor. J is simple if and only ifJ12 , 0 and J is strongly non-
degenerate. IfJ is simple e1 and e2 are connected and every outer
ideal containing1 in J is simple of capacity two.

Proof. If xǫJ12, x2
= x1 + x2, xiǫJii . SinceJii is a division algebra,

eitherxi = 0 or xi is invertible inJii . Clearly if x , 0 andx2 , 0 thenx2

and hencex is invertible. Supposex1 = 0 sox2
= x2ǫJ22. Then since

e1◦x = x, andVxVx2 = Vx2Vx we havex2◦x = x2◦(e1◦x) = (x2◦e1)◦x =
(x2 ◦ e1) ◦ x = 0. By PD 5, if a2ǫJ22 the mappinga2 → Va2 the
restriction ofVa2 to J12 is a homomorphism of (J22,U, e2) into (End
J12)(q). SinceJ22 is a division algebra this is a monomorphism and
the image is a division subalgebra of (EndJ12)(q). We recall also that
invertibility in (End J12)(q) is equivalent to invertibility in EndJ12.
Since we hadxVx2 = 0 it now follows that eitherx2 = 0 or x = 0. In
either casex2

= x2 = 0. Thusx1 = 0 impliesx2
= 0 and, by symmetry,

x2 = 0 impliesx2
= 0. It is now clear that eitherx2

= 0 or x is invertible.
Let xǫJ12 satisfyx2

= 0, x◦ y = 0 for all yǫJ12. Let aǫJ11. Then
aUxǫJ22 and (aUx)2

= x2UaUx = 0. SinceJ22 is a division algebra
this implies thataUx = 0. Similarly bUx = 0 if bǫJ22. By QJ17,
Ux = Ux◦e1 = UxUe1 +Ue1Ux+VsxUe1Vx−Ue1Vx−Ue1Ux,e1 = UxUe1 +

Ue1Ux+VxUe1Vx sincee1Ux = 0 by the PD theorem. IfyǫJ12 we have
yUe1 = 0 = y12Vx. HenceyUx = yUxUe1ǫJ11. By symmetryyUxǫJ22

soyUx = 0 ThusUx = 0 andx is an absolute zero divisor. Conversely141

supposex is an absolute zero divisor. ThenxUei is an absolute zero
divisor in the division algebraJii so xUei = 0. Thenx = xUe1,e2ǫJ12.
ALso x2

= 1Ux = 0 and ifyǫJ12 theny ◦ xǫJ11+J22 and (y ◦ x)2
=

y2Ux+ x2Uy+ yUx ◦ y(QJ30)= 0. As before, this implies thaty◦ x = 0.
Hence the set of absolute zero divisors coincides with the set of xǫJ12

such thatx2
= 0 andx ◦ y = 0, yǫJ12. To see that this set is an ideal it

is enough to prove that it is closed under addition. This is immediate.
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Supposee1 ande2 are not connected. Thenx2
= 0 for all xǫJ12.

Thenx◦ y = (x+ y)2− x2− y2
= 0. for all x, yǫJ12. Then the preceding

result shows that everyxǫJ12 is an absolute zero divisor.
Now supposeJ12 , 0 andJ is strongly non-degenerate. Let

Z be an ideal, 0 in J . We haveZ = ZUe1 ⊕ ZUe2 ⊕ ZUe1,e2 and
Zii ≡ ZUei = Z ∩Jii ,Z12 ≡ ZUe1,e2 = Z ∩J12. SinceJii is a division
algebra andZii is an ideal inJii eitherZii = 0 orZii =Jii . SinceZ , 0,
Z22 , 0. If Z11 , 0 soZ11 =J11 thenZ ⊇ e1 ◦J12 =J12. Similarly,
if Z22 , 0 thenZ ⊇ J12. Next supposeZ12 , 0 and letx , 0 in
Z12. Sincex is not an absolute zero divisor eitherx2

, 0 or there exists
ayǫJ12 such thatx◦y , 0. In either case, sincex2 andx◦yǫJ11+J22

we obtain eitherZ11 , 0 or Z22 , 0. Then, as before,Z12 = J12.
ThusZ ⊇J12. SinceJ12 , 0 andJ is strongly non-degenerateJ12

contains as invertible element. ThenZ contains an invertible element
and soZ =J . HenceJ is simple. IfJ12 = 0 thenJ =J11⊕J22

and theJii are ideals. Hence in this caseJ is not simple. Also ifJ142

contains absolute zero divisors, 0 then the set of these is an ideals and
J is not simple. Hence simplicity ofJ impliesJ12 , 0 andJ is
strongly non-degenerate.

If J is simpleJ12 contains an invertible element. Thene1 ande2

are connected. IfZ is an outer ideal containing 1 then contains theei

andJ12 =J12◦ ei (of. the proof of Theorem 2.2) Clearly, this and the
previous results imply thatZ is simple of capacity two. �

7 First structure theorem

The results of the last section have put us into position to prove rather
quickly the
First structure Theorem. Let J be a strongly non-degenerate quadra-
tic Jordan algebra satisfying the DCC for principal inner ideals (equiv-
alently, by Theorem 6J is semi-simple with DCC for principal inner
ideals). ThenJ is a direct sum of ideals which are simple quadratic
Jordan algebras satisfying the DCC on principal inner ideals. Con-
versely, if J = J1 ⊕ . . . ⊕Js where theJi are ideals which are
simple quadratic Jordan algebras with DCC on principal inner ideals



7. First structure theorem 101

thenJ is strongly non-degenerate with DCC on prinicipal inner ideals.

Proof. By Theorem 7,J has an isotopeJ̃ =J (c) whose unitc−1
=

c is a sum of completely primitive orthogonal idempotenetsei . Let
J

∑
J̃i j be the corresponding Pierce decompostion. It is clear that

J̃ and hence every Pierce inner ideal ofJ is strongly non-degenerate.
If c = e1 soJ̃ = J11 thenJ is a division algebra and the result is
clear. Hence assume the number ofei is > 1. Let i , j and consider 143

the Pierce inner idealJ Uei+ej = Jii + J̃ii + J̃i j + J̃ j j . By lemma
2 of the proceding section, eitherJ̃i j = 0 or ei andej are connected
and J̃ii + J̃i j + J̃ j j is simple. Since connectedness of orthogonal
idempotents is a transitive relation (§2.3) we may decompose the set of
indicesi into non over-lapping subsetsI1, I2, . . . , Is such that ifi, jǫIk,
i , j, the ei and ej are connected but ifiǫIk and jǫI l , k , l, thenei

andej are not connected soJi j = 0. Put 1k =
∑
iǫ Ik

ei , J̃k = J̃ U(1)
1k

.

J̃k = J̃1 ⊕ . . . ⊕ J̃s and the Pierce relations show that̃Jk is an ideal.
We claim thatJk is simple. We may supposeIk = {1, 2, . . . ,m},m> 1.

ThenJ̃k =
m∑

i≧ j=1
J̃i j andei andej are connected ifi , jǫ{1, . . . ,m}.

Also J̃ii +J̃i j +J̃ j j is simple. LetZ be a non-zero ideal inJ̃k. Then,
as before,Z =

∑
Zi j whereZi j = J̃i j ∩Z. SinceJ̃ii +J̃i j +J̃ j j is sim-

ple eitherZ contains this orZii = Zi j = Z j j = 0. ClearlyZ , 0 implies
that for somei , j we haveZii ,Z j j or Zi j , 0. ThenZ ⊇ J̃ii , J̃ j j and
consequentlyZ ⊇ J̃ll , J̃lr for all l, rǫ{1, . . . ,m}. ThenZ = J̃k andJ̃k

is simple. SinceJ is an isotope ofJ̃ we haveJ = J1 ⊕ . . . ⊕Js

whereJi = J̃i as module, id an ideal ofJ which is a simple algebra
(since any ideal ofJi is an ideal ofJ because of the direct decompo-
sition) SinceJi is a Pierce inner ideals ofJ it satisfies the DCC for
principal inner ideals.

Conversely, supposeJ =J1⊕J2⊕ . . .⊕Js whereJ is an ideal
and is a simple quadratic Jordan algebra with unit 1i , satisfying the DCC 144

in principal inner ideals. Since the absolute zero divisorsgenerate a nil
idealJi is strongly non-degenerate. Ifz is an absolute zero divisor in
J in J thenz =

∑
zi , zi = zU1i , andzi is an absolute zero divisor of

Ji. Hencezi = 0, i = 1, 2, . . . , s andz = 0. ThusJ is strongly non-
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degenerate. LetaǫJ and writea =
∑

ai , ai = aU1i , then it is immediate
that J Ua =

∑
J Uai =

∑
JiUai . Also if b =

∑
bi , bi = bU1i then

J Ua ⊇ J Ub if and only if J Uai ⊇ J Ubi , i = 1, 2. It follows from
this that the minimum condition for principal inner ideals carries over
from theJi to J .

It is easy to show that ifZ is an ideal ofJ thenZ = Ji1 +Ji2 +

. . .+Jik for some subset{i1, . . . , ik} of the index set. Clearly this implies
that the decompostionJ =J1 ⊕J2 ⊕ . . . ⊕Js into simple ideals is
unique. We shall call theJi the simple componentsof J . �

8 A theorem on alternative algebras with involu-
tion.

Our next task is to determine the simple quadratic Jordan algebras which
satisfy the DCC for principal inner ideals. By passing to an isotope we
may assumeJ has a capacity. If the capacity is 1,J is a division
algebra. We shall have nothing further to say about this. Thecase of
capacity two will be treated in the next section by a rather lengthy direct
analysis. The determination for capacity 3 will be based on the Strong
coordinatization Theorem supplemented by information by information
on the coordinate algebra. Both for this and for the study of the capacity
two case we shall need to determine the coordinate algebra (O , j,Oo)
(§2.4 for the definition) such that (O , j) is simple and the non-zero ele-145

ments ofOo are invertible. We now consider this problem.
We define anabsolute zero divisorin an altenative algebraO to be

an elementzsuch thatzaz= 0 for all aǫO.

Definition 5. An alternative algebra with involution (O , j) is called a
composition algebraif 1 O has no absolute zero divisors, 0 and 2) for
any xǫO ,Q(x) = xxǫΦ1.

A complete determination of these algebras over a field is given in
the following.

Theorem 8. Let (O , j) be a composition algebra over a fieldΦ. Then
(O , j) is of one of the following types: I a purely is separable field P/Φ
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of exponent one and charateristic two, j= 1. II (O , j) = (Φ, 1). III
(O , j) a quadratic algebra with standard involtion (§1.8).IV. (O , j) =
(a, j), a a quaternion, j the standard involution. V.(O , j) an octonion
algebra with standard involution.

Proof. We havexx = Q(x)ǫΦ, from which it is immediate thatQ is a
quadratic form onO/Φwhose associated bilinear form satisfiesQ(x, y)1
= xy+ yx. Hence

T(x) ≡ x+ x = Q(x, 1)1ǫΦ1. (10)

Also [x, x, y] = [x; x + x, y] − [x, x, y] = 0 for all yǫO andQ(x)x =
xQ(x) = x(xx) = (xx)x = Q(x)x. Hence

Q(x) = Q(x)Q(x, y) = Q(x, y) (11)

Next we note thatQ(xz, y)−Q(x, yz) = (xz)y+y(zx)−x(zy)−(yz)x = 146

[x, z, y] − [y, z, x] = −[x, y, z] − [y, z, x] = [x, y, z] − [x, y, z] = 0 (by
x + xǫN(O) and the alternating character of [x, y, z]. HenceQ(xz, y) =
Q(x, yz) andQ(xz, y) = Q(zx, y) = Q(z, yx) = Q(z, xy)). Thus

Q(xz, y) = Q(x, yz) = Q(z, xy). (12)

We havex(xy) = Q(x)y = (yx)x so by bilinearization we have

x(zy) + z(xy) = Q(x, z)y = (yz)x+ (yx)z (1)

We suppose first thatQ(x, y) is generate which means that we have a
non-zerozsuch thatQ(x, z) = 0 for all x. Thenxz+ zx = 0 andz+ z= 0
so xz = zx. Also z2

= −zz = −Q(z)1. Hencezxz= −Q(z)x, xǫO. If
Q(z) = 0, z is an absolute zero divisor contrary to hypothesis. Hence

Q(z) , 0 andx = αzxz, α = −Q(z)−1, xǫO. Thenxy = yx = αz(y x)z =
α(zy(xz) = α(yz)(zx). In particular,xz= αz2(zx) = zxand consequently
x = αzxz= αz2x = x. Thus j = 1 and consequentlyxy = y x given
xy= yx soO is commutative. Alsoz+ z= 0 gives 2z= 0 andx = αzxz
gives 2x = 0. Hence 2O = 0. This implies thatO has no 3 torsion.
Then

3[x, y, z] = [x, y, z] + [y, z, x] + [y, z, x] + [z, x, y]
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= (xy)z− x(yz) + (yz)x− y(zx) + (zx)y− z(xy)

= [xy, z] + [yz, x] + [zx, y] = 0

and commutativity imply thatO is associative. Sincex2
= xx = Q(x)1147

and xyx = Q(x)y it is clear thatQ(x) , 0 if x , 0 soO is a purely
inseparable extension field of exponent one overΦ.

Now assumeQ(x, y) is non-degenerate. IfO = Φ1 we have type
II. Hence assumeO ⊃ Φ1. If xǫO we havex2 − T(x)x + xx = x2 −

(x+ x)x+ xx = 0 sox2 − Q(x, 1)x+ Q(x)1 = 0. If Φ has characteristic
two thenQ(1) = 1 andQ(1, 1) = 2 = 0. Hence we can choose auǫO
such thatQ(1, u) = 1. Thenu2u + ρ1 and 4ρ + 1 = 1 , 0 soΦ[u] is a
quadratic algebra. IfΦ has characteristic, 2 thenQ(1, 1) , 0 and we
can chooseqǫO such thatQ(1, q) = 0 andQ(q) = β , 0. Putu = q+ 1

21.
ThenT(u) = 1 andQ(u) = 1

4 + β, u2
= u + ρ1, ρ = −β −

1
4. Since

4ρ + 1 = −4β , 0,Φ[u] is a quadartic algebra. Hence in both cases we
obtian a quadratic subalgebraΦ[q] which is a subalgebra of (O , j) since
u = 1 − u. Thus the induced involution is the standard one inΦ[q]. It
is clear also thatΦ[u] is non-isotropic as a subspace relative toQ(x, y).
Now let Z be any finite deminsional non-isotropic subalgebra of (O , j)
and assumeZ ⊂ O. As is well-known,O = Z ⊕ Z⊥ andZ⊥ , 0 is non-
isotropic. Hence there existsa vǫZ⊥ such thatQ(v) = −σ , 0. Since
1ǫZ,Q(1, v) = 0 sov = −v andv2

= σ1. If aǫZ thenQ(a, v) = av+ va =
−av+ va = 0 so

av= va, aǫZ (14)

If a, bǫZ,Q(av, b) = Q(v, ab)(by (12))= 0. HenceZ v = {xv|xǫZ }
⊆ Z ⊥ andL = Z + Z v = Z ⊕ Z v has dimensionality= 2dimZ .148

Also Q(av, bv) = Q((av)v, b) = Q(a(vv), b) = −σQ(a, b). It follows
that x → xv is a linear isomorphism ofZ ontoZ v andZ v andL are
non-isotropic. By (13) withz= v we obtain

a(bv) = (ba)v, (av)b = (ab)v, a, b, ǫZ . (15)

Also (av)(bv) = v(ab)v (Moufang identity)= (ba)v2. Hence

(av)(bv) = σba, a, bǫZ . (16)
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We havea+ bv= a− vb = a− bv. We apply these considerations to
the quadratic subalgebraΦ[u]. If O = Φ[u] we have case III. Otherwise,
we takeZ = Φ[u] and obtian the quaternion algebraa = Φ[u] + Φ[u]v.
If O = a we have caseIV. Otherwise, we takeZ = a and repeat the
argument. ThenL = O is an octonion algebra. We now claim that
O = O so we have case V. Otherwise, we can apply the construction
to Z = O and obtainL = Z + Z v such that (15) and (16) hold. Put
x = a + bv, y = dv, a, b, dǫO. Then we have [x, x, y] = 0 andx(xy) =
(a − bv)(σdb+ (da)v). Since (xy)y is a multiple ofy = dv this implies
thata(db) = (ad)b. Since this holds for alla, b, dǫO we see thatO we
see thatO must be associative. Since it is readily verified that it is not
we have a contradiction. This completes the proof that onlyI − V can
occur.

It is readily seen that the algebras with involutionI − V are compo-
sition algebras. We prove next � 149

Theorem 9 (Herstein-Kleinfeld-Osborn-McCrimmon). Let (O , j,
Oo) be a coordinate algebra (over anyΦ) such that(O , j) is simple
and every non-zero element ofOo is invertible inOo. Then we have one
of the following alternatives:

I. O = ∆ ⊕ ∆◦,∆ an associative division algebra j the exchange
involution,Oo =H (O , j).

II. an associative division algebra with involution.

III. a split quaternion algebraΓ2 over its centerΓ which is a field
overΦ, standard involution,Oo = Γ.

IV. an algebra of octonions over its centerΓ which is a field overΦ
standard involution,Oo = Γ.

Proof. We recall that the hypothesis that (O , jOo) is a coordinate alge-
bra means that (O , j) is an alternative algebra with involution,Oo is aΦ
submodule ofO contianed inH (O , j) ∩ N((O)) and containing 1 and
everyxdx, dǫOo, xǫO. HenceOo contains all the normsxx and all the
tracesx + x. Then [x, x, y] = 0, x, yǫO. We recall also the following
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realtion in any alternativfe algebra

n[x, y, z] = [nx, y, z] = [xn, y, z] = [x, y, z]n (17)

for nǫN(O), x, y, zǫO (see the author’s book pp. 18-19).
Suppose first thatO is not simple. ThenO = ∆ ⊕ ∆(∆ = ∆ j) where

∆ is an ideal. The elements ofH (O , j) are the elementsa + a, aǫ∆.
HenceH (O , j) = Oo. Since these are inN(O) everyaǫN(O) so∆ and
∆ ⊆ N(O). ThenO = N(O) is associative. Also ifa , 0 is in∆ then150

a + a is invertible which impliesa is invertible. Hence∆ is a division
algebra and we have case I.

From now on we assumeO simple. Then its centerC(O)(defined
as the subset ofN(O) of elements which commute with everyxǫO)
is a field overΦ (see the author’s book p.207). It follows thatΓ =
H (O , j) ∩C(O) is a field overΦ. We can regardO as an algebra over
Γ when we wish to do so. We note first that the following conditions on
aǫO are equvalent: (i)aa , 0, (ii) as has a right inverse (iii)aa , 0, (iv)
a has a left inverse, Asssume (i). Thenaa is invertible inN(O) so we
haveab such that (aa)b = 1. Thena(ab) = 1 and a has a right inverse.
Hecne (i) ⇒ (ii ). Next assumeaa = 0. Then 0=(a, a)b = a(ab) and
ab , 1.Hence (ii ) → (iii ). By symmetry, (iii ) → (iv) → and (iv) → (i).
Let zǫz, aǫO. Then (az)(az) = (az)(za) = (az)(z(a + a)) − (az)(za) =
((az)z)(a+ a) − a(zz)a = 0. Henceazǫz. Also z = z sozaǫz . Moreover,
z is closed under multiplication by elements ofΦ and 1< z. Hence ifz
is closed under addition it is an ideal, O, of (O , j) and soz = 0. Then
every non-zero element ofO has a left and a right inverse inO.

Supposez = 0. If O is associative (O , j) is an associative alge-
bra with involution and we have case II. Next assumeO = N(O).
We claim that in this caseN(O) = C(O). By (17), if nǫN(O), xǫO,
[nx] = nx− xnǫN(O) andn commutes with all associators Direct verifi-
cation shows that ifx, yǫO , nǫN(O) then [xy, n] = [xn]y + x[yn] where
[ab] = ab− baandx[x, y, z] = [x2, y, z] − [x, xy, z]. The last implies that151

0 = [x[x, y, z], n] = [xn][ x, , y, z]. Hence we have

[xn][ x, y, z] = 0, nǫN(O), x, y, z, ǫO (18)
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Bilinearization of this gives

[xn][w, y, z] + [wn][ x, y, z] = 0 (19)

Supposex < N(O). Then we can choosey, zsuch that [x, y, z] , 0 so
this has a right inverse. Since [x, n]ǫN(O) this and (18) imply [xn] = 0.
If xǫN( ), (19) gives [x, n][w, y, z] = 0. SinceN(O) , O we can
choose [w, y, z] , 0 and again conclude [xn] = 0. Hence [xn] = 0 for
all x andN(O = C(O) if z = 0 andO is not associative. In this case
xxǫC(O) ∩H (O , j) = Γ. Also we have no absolute zero divisors since
O is a division algebra. Treating (O , j) as a algebra overΓ we have a
composition algebra. SinceO is not associative we have the octonion
case and we shall have case IV if we can show thatOo = Γ. Since
N(O) ⊆ Γ for an actonion algebra over a field,Oo ⊆ Γ. To prove the
opposite inequality it is enough to show that every element of Γ is a
trace. NowO contains a quadratic algebraΦ[u] in whixh u2u + ρ1 and
u = 1− u. Thusu+ u = 1 and ifγǫΓ thenγ = γu+ γu is a trace.

It remains to consider the situation in whichz is not closed under
addition. Then we havez1, z2ǫz such thatz1+z2 = u is invertible. Hence
e1 + e2 = 1, ei = ziu−1ǫz and e1 + e2 = 1. Also eiei = 0 ande1 =

e1(e1 + e2) = e1e2 = (e1 + e2)e2 = e2, Thene2e1 = 0, e1 + e2 = 1 152

so theei are orthongonal idempotents ande1 = e2, e2 = e1. Let O =
O11⊕O12⊕O21⊕O22 be the corresponding Pierce decomposition (see
shafer [1] pp. 35-37 and the author’s [2’ pp. (165-166). Since O is
simpleO12 + O21 , 0 and SinceO12O21 + O12 + O21 + O21O12 is an
ideal, O12O21 = O11, O21O12 = O22. Also sincee1 = e2, e2 = e1

we haveO11 = O22, O22 = O11, O12 = O12, O21 = O21. Let x =
x11+ x12+ x21+ x22 wherexi j ǫOi j . Then the Pierce relations give

x11x11 = x22x22 = x11x21 = x22x12 = x12x22 = x21x11 = 0.

Also x12 = e1xe2ǫz sinceeiǫz so x12x12 = 0. Similarly, x21x21 = 0.
If yǫO12, y+ yǫO12 ∪ Oo ⊆ z ∩ Oo = 0. Similarly, if yǫO21, y+ y = 0.
Hencex11x12+ x12x11 = 0 = x22x21+ x21x22. Combining we see that

xx = x11x22+ x22x11+ x12x21+ x21x12 = y+ y
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wherey = x11x22+x12x21ǫO11. We show next that ifyǫO11 theny = yǫΓ.
Sincey + yǫOo ⊆ N(O) it is enough to show thaty+ y commutes with
every xǫO. We have seen that ifxi j ǫOi j then xi j = −xi j if i , j so
xii xi j = −xi j xii = xi j xii . Hence ifyǫO11 then (y + y)xi j = yxi j + yxi j =

xi j y+ xi j y = xi j (y+ y). Also

(y+ y)(x12x21) = ((y+ y)x12)x21 = (x12(y+ y))x21

= x12((y+ y)x21) = x12(x12(x21(y+ y))

= x12x21(y+ y).

Similarly, [y+y, x21x12] = 0 soy+y commutes with everyx andy+yǫΓ.153

Thus we havexxǫΓ. We claim that ifQ(x, y) = xy + yxǫΓ then this
is non-degenerate. The formulas (12) show that the set ofz such that
Q(z, x) = 0 for all xǫO is an ideal of (O , j). Hence if this is not 0 it
contains 1. ButQ(1, e1) = e1+e1 = 1. HenceQ(x, y) is non-degenerate.
Then the proof of Theorem 7 shows that we have one of cases II-V
of that theorem, one sees easily that the only possibilitiesallowed here
are (O , j) is split quaternion or split octoion overΓ. As before, we have
Oo = Γ in the octonion case and we are in case IV. In the split quaternion
case,O = Γ2, the argument used before shows thatOo ⊇ Γ. If the
characteristic is, 2Γ = H (O , j) , hence,Oo = Γ. If the characteristic
is two then it is easily seen that we have a base of matrix unitsei j such
that e11 = e22, e22 = c11, e12 = e12, e21 = e21. If aǫOo, aǫH (O , j)
so a = α1 + βe12 + γe21, α, β, γǫΓ. Sincee12ae12 = γe21ǫO0 and the
non-zero elements ofOo are invertible,γ = 0. Similarlyβ = 0 so again
Oo = Γ. Thus we have case III. �

9 Simple quadratic Jordan algebras of capacity
two

Let J be of capacity two, so 1= e1 + e2 where theei are completely
primitive orthogonal idempotents,J = J11 ⊕J12 ⊕J22 the cor-
responding Pierce decomposition. ThenJii is a division algebra. Put
m = J12. If xiǫJii thenνi : xi → Vxi the restricition ofVxi to m is a
homomorphism ofJii into (Endm)(q). SinceJii is a division algebra,
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νi is a monomorphism. HenceJii is special so this can be indentified154

with a subalgebra ofS(Jii )(q) whereS(Jii ) is the special universal en-
velope ofJii (see§1.6). If π is the main involution ofS(Jii ) then
Jii ⊆ H (S(Jii ), π) and s(Jii ) is generated byJii . The homomor-
phism νi has a unique extension to a homomorphism ofS(Jii ). The
latter permits us to considerm as a rights(Jii ) module in the natural
way. If mǫm andxiǫJii then the definitions givemxi = mVxi = m◦ xi

and if xi , yi , . . . , ziǫJii then

m(xiyi . . . zi) = (. . . ((m◦ xi) ◦ yi) ◦ . . . ◦ zi) (20)

Also by the associativity conseqences of the PD theorem (m◦ x1) ◦
x2 = (m◦ x2) ◦ x1 from which follows

(ma1)a2 = (ma2)a1, aiǫS(Jii ). (21)

We recall that ifmǫm, eitherm2
= 0 or m is invertible (Lemma 2

of §6). Supposem2
= 0. ThenxiUm = 0 for xiǫJIii (proof of Lemma

2 §6). Then (xi ◦ m)2
= x2

i Um + m2Uxi + xiUm ◦ xi(QJ30) = 0. This
implies that ifm is invertible andx , 0 thenmxi is invertible. Otherwise
(mx2)2

= 0 and (mxiyi)2
= (mxi ◦ y)2

= 0 for all yiǫJii . If we choose
yi to be the inverse ofxi andJii we obtain the contradictionm2

= 0. If
m is invertible and, as in Lemma 2 of§2.3. we putu = c1 +m2Ue2, ·v =
e1 + m−2Ue2 then we have seen that in the isotopẽJ = J (v), u1 =

e1 and u2 = m2Ue2 are supplementary orthogonal idempotents which
are strongly connected bym. The Pierce submoduleJi j relative to
theui coincides withJi j . Moreover,J11 = J̃11 as quadratic Jordan155

algebras, and formǫm =J12 = m = J̃12 andx1ǫJ11 we havemVx1 =

mVx1. Hence theS(J11) module structure onm is unchanged in passing
from J to J̃ . Also J22 andJ̃22 are isotopic soJ̃22 is a division
algebra andu1 andu2 are completely primitive inJ̃ . Clearly,J is of
capactiy two. Since the isotopeJ̃ is determined by the choice of the
invertible elementm it will be convenient to denote this asJm.

We shall now assumeJ simple and we shall prove the following
structure theorem which is due to Osborn [11] in the linear case and to
McCrommon in the quadratic case.
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Theorem 10. LetJ be a simple quadratic Jordan algebra of capacity
two. Then eitherJ is isomorphic to an outer ideal∋ 1 of a quadratic
Joradan algebra of a non-degenerate quadratic form on a vector space
over a field P/Φ or J is isomorphic to an outer ideal∋ 1 of an algebra
H (O2, JH) where(O , J) is either an associative division algebra with
involution orO = ∆ ⊕ ∆ j ,∆ an associative division algebra and JH is
the involution X→ H−1X−1H, HǫH (O2).

We have seen in§1.11 thatH (O2, JH) is isomorphic to the H-
isotope ofH (O2). Now consider Jord(Q, 1) the quadratic Jordan al-
gebra of a quadartic form Q with base point1 on a vector space over a
field P. Let u be an invertible elements so Q(u) , 0. Then Q′ = Q(u)Q
is a quadratic form which has the base point u−1

= Q(u)−1u since
Q(u)Q(u−1) = Q(Q(u)−1u) = Q(Q(u, 1)1− u) = Q(u)−1Q(u) = 1. Now
consider Jord(Q(u)Q, u−1). Put x′ = Q(u)Q(x, u−1)u−1 − x and let U′156

denote the U-operator in this algebra. A straight forward calculation
shows that xU′a = Q(a, xUu)a − Q(a)xUu = xUvUa. It follows that
Jord (Q(u)Q, u−1) is identical with the u-isotope of Jord(Q, 1). These
remarks show that to prove Theorem10 it suffices to show that there ex-
ists an isotope ofJ which is isomorphic to an outer ideal containing1
in a Jord(Q, 1) with non-degenerate Q(over a field) or to an outer ideal
containing1 in an H(O2). By passing to an isotope we may assume at
the start that1 = e1 + e2 where the ei are orthogonal completely prim-
itive and are strongly connected by an element uǫJ12. The proof will
be divided into a series of lemmas. An important point in the argument
will be that except for trivial casesm = J12 is spanned by invertible
elements. This fact is contained in

Lemma 1. SupposeJ11 , {0,±e1} (that is, J11 , Z2 or Z3). Let
m, nǫγm, m invertible. Then there exist x1 , 0, y1 , 0 in J11 such that
x1 ◦ m+ y1 ◦ n is invertible. Any element ofm is a sum of invertible
elements.

Proof. Sincexǫm is either invertible orx2
= 0, if the result is false, then

x1 ◦m+ y1 ◦ n)2
= 0 for all x1 , 0, y1 , 0 in J11. By QJ30 and the PD

theorem the component inJ22 of this element is

x2
1Um + y2

1Un{x1 ◦m, e1, y1 ◦m} = 0 (22)
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Take (x1, y1) = (x1, e1), (e1, y1), (e1, e1), (x1, y1) and add the first two
equations thus obtained to the negative of the last two. Thisgives

{z1 ◦me1w1 ◦ n}, z1 = x1 − e1,w1 = y1 − e1 (23)

157

Using this and (22) we obtain

z2
1Um + w2

1Un = 0 if z1,w1 , 0,−e1 in J11. (24)

In particular,w2
1Um + w2

1Un = 0, so, by (24) (z2
1 − w2

1)Um = 0 and
sincem is invertible, z2

1 = w2
1 is z1,w1 , 0, −e1. Let z1 , 0, ±e1 so

z1 − e1 , 0,−e1 and soz2
1 = (z1 − e1)2

= z2
1 − 2z1 + e1. Hence 2z1 = e1.

Also since−z1 , 0,±e1 we have also−2z1 = e1. Then 4z1 = 0 and since
J11 is a quadratic Jordan division algebra, 2z1 = 0. This givese1 = 0
contrary toJ11 , 0. Hence the first statement holds. For the second
we note thatm contains an invertible elementm and if n is any element
of m then there existx1, y1 , 0 in J11 such thatp = x1 ◦m+ y1 ◦ n is
invertible. Then ifz1 is the inverse ofy1 in J11, n = z1◦ p−z1◦ (x1◦m)
andz1 ◦ p and−z1 ◦ (x1 ◦m) are invertible elements ofm.

We are assuming thate1 ande2 are strongly corrected byuǫm. Then
η = Uu is an automorphism of period two inJ , η mapsm onto itself
and exchangeJ11 andJ22. Henceη defines an isomorphism ofJ11

onto J22. This extends uniquely to an isomorphismη of (S(J11), π)
onto (S(J22), π). We haveu3

= u(§2.3). Henceuη = uUu = u3
= u.

We shall now derive a number of results in whichu plays a distinguished
roles. These will be applied later to any invertiblemǫm by passing to
the isotopeJm(=J (v) as above). LetxǫJ . Then (x◦n)η = xη ◦uη ◦u.
Also xη ◦ u = xUuVu = xUu,u2 = xUu,1 = xVu = x ◦ u. Thus we have

(x ◦ u)η = xη ◦ u = x ◦ u, xǫJ (25)

We prove next � 158

Lemma 2. Let mǫm. Then m+mη = ux1, x1 = (u◦m)Ue1. If m+mη = 0
then u◦m= 0.
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Proof. Let m, nǫm. ThenmUn = mUe1,e2Un = ejVm,ei Un = −ejVn,ei

Um,n+ejUnVei ,m+e1Um,nVei , n (by QJ9) = −{nnm}+{n2Uei eim}+{(m◦
n)Uei ein} (PD 6 and its bilinearization). HencemUn = −n2◦m+n2Uei ◦

m+ (m◦ n)Uei ◦m (replacingei by ei + ej). Since 1= Uei +Uej +Uei ,ej

this gives

mUn = −n2Uej ◦m+ (m◦ n)Uei ◦m, n, ∈ m (26)

Takingn = u we getmη = mUn = −nµn = −m+ux1, x1 = (m◦u)Ue1.
This is the first statment of the lemma. Ifm+ mη = 0 we havex1 =

(u◦m)Ue1 = 0. Applyingη gives (u◦mη)Ue2 = 0 = (u◦m)Ue2, by (25).
Sinceu ◦ mǫJ11 +J22 the realtions (u ◦ m)Uei = 0, i = 1, 2, imply
u ◦m= 0. �

Lemma 3. If mǫm satisfies mx1 = mx1 for all x1ǫJ11 then maπ =
maη, aǫS(J11).

Proof. Since J11 generatesS(J11) it suffices to prove the conclu-
sion for a = x1, x2 . . . xk, xi ∈ J11. We use induction onk. As-
sumem(x1, x2 . . . xk)π = m(x1 . . . xk)η. Thenm(x1 . . . xk+1)π = mxηk+1
(x1 . . . xk)π = m(x1 . . . xk)πxn

k+1 (by (21))= m(x1 . . . xk)ηx
η
n+1 = m

(x1 . . . xk+1)η which proves the inductive step. We haveux1 = uxη1, x1ǫ159

J11, by (25). Hence Lemma 3 and (25) give

uaπ = uaη = (ua)η, aǫS(J11). (27)

Now supposeua = 0 for anaǫS(J11). Then forbǫS(J11), uba=
ubηπa = ubπηa = uabπη (by (21))= 0. Hence we have �

Lemma 4. If ua = 0 for aǫS(J11) then uba= 0 for all bǫS(J11). We
prove next

Lemma 5. Let nǫn = uS(J11), aǫS(J1). Then n(a + aπ) = nx1, x1 =

(u ◦ ua)Ue1. Also if y1ǫJ11 then n(aπy, a) = nz1 where z1 = yη1UuaJ11.

Proof. We haveuaπ + ua= (ua)η + (ua) (by (5))= ux1, x1 = (u◦ ua)Ue1

(by Lemma 1). Henceu(aπ+a−x1) = 0 so, by Lemma 4,n(aπ+a−x1) =
0 for all nǫuS(J11). This proves the first statment. To prove the second
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it suffices to show thatn(aπy1a) = n(yη1Uua) and n(aπy1b + bπy1a) =
n(yηUua,ub) for a = t1 . . . z1, y1, t1, . . . , z1ǫJ11, bǫS(J11, bǫ(J11). For
mǫm, we haveyη1Umt1 = yη1Um◦t1 = yη1UmUt1 by QJ17 and the PD the-
orem. Iteration of this givesy1Uua = yη1Uut1 . . . z1 = yη1Uuut1 . . .Uz1 =

y1Ut1 . . .Uz1 = z1 . . . t1y1t1 . . . z1 (in A(J11)) = aπy1a. Next we use the
first statement of the lemma to obtain

n(aπuy1b+ bπy1a) = n((u ◦ uaπy1b)Ue1, nǫn (28)

If m, nǫm, y1ǫJ11 then{my1n} = ((m ◦ y1) ◦ n)Ue2 (PD theorem)=
((m ◦ y1) ◦ (n ◦ e1)Ue2 = {m ◦ y1e1n}. Since{my1n} is symmetric in
m andn we have{m◦ y1e1, n} = {me1n ◦ y1}. If we takea = t1 . . . z1, 160

t1, . . . , z1ǫJ11 then we can iterate this to obtain

{my1ae1n} = {m, y1, naπ} = {my1e1na} (29)

SinceJ11 generatesS(J11) this holds for allǫS(J11). In particu-
lar, we have

{u.e1ubπy1a} = {uaπy1ubπ} (30)

Now (u ◦ uaπy1b)Ue1 = {ue1uaπy1b}Ue1 + {ue2uπay1b}Ue1 = {ue2uaπ

y1b}Ue1 (PD theorem)= {ue2uaπy1b} = {ue1ubπy1a}η (by (27))=
{uaπy1ub}η (by (30))= {uay1ub} (by (27)). Going back to (28) we obtain
n(aπy1b+ bπy1a) = n{uayη1ub} = nyη1Uua,ub as required. This completes
the proof. We obtain next an important corollary of Lemma 5 nam-
ley �

Lemma 6. Letn be as in Lemma 5 and let ua be invertible, aǫS(J11).
Then there exists abǫS(11). Such that nab= n = nba, n.

Proof. The hypothesis implies thatUua is a invertible. Hencez1 =

e2Uua , 0 in J11. Thenz−1
1 exits in S(J11). Applying the second

part of Lemma 5 toy1 = e1 shows thatnaπa = nz1 holds for allnǫn.
Hence replacingn by nz−1

1 givesnba= n for b = z−1
1 a. Also (ua)η = uaπ

is invertible sow1 = e2Uuaπ invertible inS(J11) andnaaπ = nw1, nǫn. 161

Multiplying by w−1
1 on the right givesnac = n, c = aπw−1

1 . It now
follows thatnb= na andnab= n = nba, nǫn. �
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Lemma 7. If x2ǫJ22 and mǫm is invertible then mx2 = mx1m1, x1 =

x2U−1
m ,m1 = m2Ue2.

Proof. We havex2 = x1Um, wherex1 = x2U−1
m . Thenmx2 = x2 ◦m =

x1UmVm = x1Um,m2 = {mx1m2} = {mxx1m2Ue1} = {mx1m1} = (m◦ x1) ◦
m1 = mx1m1. We prove next �

Lemma 8. If mo = {mǫm|mη = −m}, m∗ = {mǫm|mx1 = mxη1, x1ǫJ11}

thenmo ⊆ m
∗ ∪ n, n = u ∈ s(J11).

Proof. Let mǫmo and assumemǫm∗. Then we have anx1ǫJ11 such that
n = mx1 −mxη1 , 0 and we have to show thatmǫn. Sincemη = −m, n =
mx1+(mx1)η = uy1, y1 = (u◦mx1)Ue1, by Lemma 2. Nowm is invertible
since otherwise,m2

= 0 and hencexUm = 0 andx2Um = 0 for x = x1 −

xη1ǫJ11+J22. Thenn2
= (m◦ x)2

= 0 by QJ 30. However,n = uy1 and
Sincey1ǫJ11 is , 0 u is invertible,n is invertible. This contradiction
provesm invertible. We haven = mx1−mxη1 = mx1−m(xη1U−1

m )(m2Ue1)
(by Lemma 7)= a = x1 − (xη1U−1

m )(m2Ue1ǫ(J11). Thus

n = uy1 = ma, y1 , 0 in J11, aǫsu(J11) (31)

We now apply lemma 6 tom(replacingu) in the isotopeJm. Since
ma= n is invertible inJ , hence inJm, and since theS(J11) module
structure onm is unchanged in passing fromJ to Jm it follows from162

Lemma 6 that there existsab ∈ S(J11) such thatmab = m. Then
m= nb= uy1bǫn as requried.

As before, Letν1 be the monomorphismx1 → Vx1 of J11 into
(Endm(q). Also let ν1 denote the (unique) extension of this to a homo-
morphism ofs(J11) into Endm and letE1 = S(J11)ν1. ThenS(J11)ν1

is the algebra of endomorphisms generated by theVx1,x1ǫJ11.
We shall now prove the following important result onE1. �

Lemma 9. The involutionπ in S(J11) induces an involutionπ in E1. If
we identityJ11 with its imageJ ν1

11 in E1 thenJ11 ⊆ H (E1π), J11

contians1 and every aπx1a, x1ǫJ11, aǫE1. Also (E1, π) is simple and
the nonzero elements ofJ11(⊆ E1) are invertible.
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Proof. If J11 = {0,±e1} thenE1 = Z2 or Z3 and the result is clear.
From now on we assumeJ11 , {0,±e1} so lemma 1 is applicable.
In particular,m is spanned by invertible elements. To show thatπ in-
duces an involution inE1 we have to show that (kerν1)π ⊆ ker ν1 and
for this it suffices to show that ifkǫ ker ν1 andmǫm is invertible then
mkπ = 0. Let Jm be the isotope ofJ defined bym as before. By
(27) applied tom (in place ofu) we havemkπ = (mk)η = 0. Hence the
first statement is proved. It is clear thatJ11 ⊆ H (E1, π) and 1ǫJ11.
Let x1ǫJ11, aǫS(J11), man invertible element ofm. Then, by Lemma
5, there exists an elementymǫJ11 such thatxaπx1a = xym for all x in
mS(J11). Letnbe a second invertible element of and letynǫJ11 satisfy
xaπx1a = xyn, xǫnS(J11). As in Lemma letu1 , 0, v1 , 0 be elements
of J11 such thatp = mu1 + nv1 is invertible and letypǫJ11 satisfy
xaπx1a = xyp, xǫpS(J11). Supposeym , yn. Thend1 = ym − yn , 0
is invertible inJ11 with inversed−1

1 . Thennv1d−1
1 (aπx1a − yn) = 0 so 163

pd−1
1 (aπx1a − yn) = mu1d−1

1 (aπx1a − yn) = mu1d−1
1 (ym − yn) = mu1.

HencemǫpS(J11) and, similarly,nǫpS(J11). Thenmaπx1a = myp

andnaπy1a = nyp. This impliesyp = ym = yn contradictingym , yn.
Hence there exists an elementy1ǫJ11 such thatmaπx1a = my1 for all
invertiblemǫm. Sincem is spanned by invertible elements this gives the
second statement of the Lemma. We note next that the non-zeroele-
ments ofJ11 are invertible inE1 sinceJ11 is a division subalgebra of
E

(q)
1 .

It remains to show that (E1, π) is simple. LetaǫE1 thenaπa, aaπǫ
J11 and the non-zero element ofJ11 are invertible; the proof of the
theorem of Herstein-Kleinfeld. Osbon-McCrimmon shows that either
aaπ = 0 = aπaor a is invertible. Letube an element strongly connecting
e1 ande2, as before. By Lemma 5, we haveuaπa = ueη1Uua = ue2Uua =

u((ua)2Ue1). Henceaπa = 0 implies (ua)2Ue1 = 0. Since (ua)2ǫJ11 +

J22 this implies (ua)2 not invertible. Thenua is not invertible and
(ua)2

= 0. Thus we see that ifaǫE1 then eitheraπa andaaπ are invertible
on (ua)2

= 0.

Now letZ be a proper ideal of (E1, π) and letzǫZ. Thenz+zπ, zπzǫZ∩
J11. SinceZ contains no invertible elements, we havez+ zπ = 0 = zzπ.
Hencez2

= 0 and (uz)2
= 0. By Lemma 2, ifmǫm, m+mη = ux1, x1 =
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(u◦m)Ue1. Then f (m) = x1 = (u◦m)Ue1 defines aΦ-homomorphism of
m into J11. Sinceη is an automorphism ofJ mappingm ontom and
J11 ontoJ22 it is clear thatη defines an isomorphism ofE1 onto the164

subalgebraE2 of Endm generated byJ ν2
22 extending the isomorphism

of J11 ontoJ22. Moreover, we have (ma)η = mηaη, mǫm, aǫE1. Iter-
ation of the result of Lemma 7 shows that ifm is an invertible element
of m then for anyaǫE1 there existsabǫE1 such thatmaη = mb. Then
u f(ma) = ma+(ma)η = ma+mηaη = m(a−aη)+(m+mη)+(m+mη)aη =
m(a − b) + u f(m)aη = m(a − b) + uaη f (m) = m(a − b) + uaπ f (m) (by
(27)). Hence

m(a− b) = u( f (ma) − aπ f (m)) (32)

In particular, takinga = zǫZ we obtainw so thatmzη = mw and
m(z−w) = ur, r = f (mz)+z f(m)ǫE1. SincewzǫZ we havewπz+zπw =
0. Alsomw2

= mzηw = mwzη = m(zη)2
= 0 sincez2

= 0. Hencew is not
invertible and consequentlywπw = 0. Then (z−w)π(z−w) = zπz−zπw−
wπz+wπw = 0. This relation and the second part of Lemma 5 applied to
the isotopeJn imply thatm(z−w) is not invertible in this isotope. Hence
m(z−w) is not invertible inJ and consequently (ur)2

= (m(z−w))2
= 0.

Then a reversal of the argument shows thatrπr = 0. Thenr is not
invertible and sincer = f (mz)+z f(m) andz is in Z which is a nil ideal,
f (mz) is not invertible. Sincef (mz)ǫJ11 it follows that f (mz) = 0.
Hence we havemz+ (mz)η = 0. By the second part of Lemma 2, this
impliesmz◦ u = 0. Then 0= (mz◦ u)Ue2 = {ue1mz} (by linearization
of x2Ue2 = e1Ux, xǫm)= {uzπe1m} (by (29))= −{uze1m} = −(uz◦m)Ue2.
If we replacem by mη in this and applyη we obtian (uz◦ m)Ue1 = 0.
Hence we have proved thatuz◦m= 0 for all invertiblem. It follows that
this holds for allmǫm and since (uz)2

= 0, Lemma 2 of§6, shows that165

this is an absolute zero divisor. SinceJ is simple we haveuz= 0. On
passing to the isotpem we can replaceu by any invertiblemǫm. Then
mz = 0 for all invertible mǫm so z = 0. HenceZ = 0 and (E1, π) is
simple.

Lemma 9 shows that (E1, π,J11) is an associative coordinate alge-
bra satisfying the hypotheses of the Herstein-Kleinfeld-Osborn-
McCrimmon theorem. Also in the present caseJ11 generatesE1. This
excludes case III given in that theorem so we have only the possibilities
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I and II given in the theorem. It is convenient to separate thecases in
whichE1 is a division algebra into the subcases:π non-trivial andπ = 1
in which caseE1 is field.

Accordingly, the list of possibilities for (E1, π,J11) we

I E1 = ∆ ⊕ ∆
π,∆ an assoiative division algebra,H (E1, π) =J11.

II E1 an associative division algebra,π , 1

III E1 a field,π = 1.

�

Lemma 10. If E1 is of thye I or II thenm = uE1(= uS(J11)) and ifE1

is of type III thenm = m∗ = {mǫm|mX1 = mXη1,X1ǫJ11} (as in Lemma
7).

Proof. We show first that in types I and II anymǫm such thatmη = −m
as contained inuE1. By Lemma 7, it is enough to show this for form
with mη = −m andmxη1 = mx1, x111. Then, by Lemma 3,maπ = maη =
ma, aǫS(J11). Now in types I and II there exists an invertible element166

a in E1 such thata = +b− bπ. In the case I we chooseb invertible in∆
thenbπ is invertible in∆π anda = b − bπ, is invertible inEi = ∆ ⊕ ∆

π.
in case II we choose an elementb is the division algebraE1 such that
bπ , b. This can be done sinceπ , 1. Thena = b− bπ , 0 is invertible.
Now let m be as indicated (mη = −m,maπ = maη, aǫS(J11)). Then
ma= mb−mbπ = mb−mbη = mb+mηbη = ma+ (ma)η = ux1, x1ǫJ11.
Thenm= ux1a−1 ∈ uS(J11).

Suppose we have type I and letmǫm. Thenm+mη = ux1, x1ǫJ11.
Since the type isI , x1 = a+ aπ, aǫS(J11). Thenm+mη = ua+ uaπ =
ua+ (ua)η (by (27)). Hence (m− ua)η = mη − (ua)η = ua− m. Then
m− uaǫuS(J11) andmǫUS(J11) = uE1.

Suppose we have type II. ThenJ11 , {0,±e1} som is spanned by
invertible elements. Hence it suffices to show that ifmǫm is invertible
then mǫuE1. By Lemma 2,m + mη = u f(m) where f (m)ǫJ11. By
Lemma 6, ifaǫE1 there existsa bǫE1 such thatmaη = mb. By (31),
m(a − b) = u( f (ma) − aπ f (m)) where f (m), f (ma)ǫJ11. If a − b is
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invertible for somea this impliesmǫuE1. Otherwise, sinceE1u a di-
vision algebra,a = b for all a. Then f (ma) = aπ f (m) and applying
II, f (ma)π = f (ma) = f (m)a. Henceaπ f (m) = f (m)a. In particu-
lar, x1 f (m) = f (m)x1, x1ǫJ11 and sinceJ11 generatesE1, f (m) is in the
center ofE1. Then (aπ − 1) f (m) = 0. Since we can choosea so that
aπ −a is inverible, f (m) = 0. Thenm+mπ = 0. andmǫuE1 by the result
proved before.

Now suppose we have type III. The caseJ11 = {0,±e1} is trivial167

so we may assumem is spanned by invertible elements. It suffices to
show that ifmǫm is invertible thenmx1 = mxη1, x1ǫJ11. As in the last
case,m + mη = u f(m) and if aǫE1 then there existsbǫE1 such that
m(a− b) = u( f (ma) − a f(m)) (sinceπ = 1). If a− b , 0, m= uc, cǫE1

andmx1 = ucx1 = ux1c (by commutativity ofE1)= uxη1c = ucxη1 = mxη1
(by (27) and (21)). Hence the result holds in this case. It remains to
conisder the case in whicha = b for all a. Then f (ma) = a f(m) =
f (m)a, aǫE1. Thenmx1 + (mx1)η = u f(mx1) = u f(m)x1 = (m+mη)x1.
Then (mx1)η = mηx1 andmx1 = mxη1, x1ǫJ11 as required. We can now
complete the �

Proof of Theorem 10. Suppose first (E1, πJ11) is of type I or II. Since
m = uE1 andJ η

11 =J22 any element ofJ can be written in the form
x1 + yη1 + ua, x1, y1ǫJ11, aǫE1. Also a is unique sinceua = 0 implies
ma = (uE1)a = 0 (Lemma 4). Hence the mapaping

ζ : x1 + yη1 + ua→ x1[11] + y1[22] + a[21] (33)

is a module isomorphism ofJ onto H ((E1)2,J11). It is clear that
the mappingη′ : X → 1[12]X1[12] = XU1[12] is an automorphism in
H ((E1)2,J11) and by inspection we have (Xη)ζ = (xζ)η

′

. We shall now
show thatζ is an algebra isomorphism. Because of the properties of the
Pierce decomposition, the relation betweenη andη′ and the quadratic
Jordan matrix algebra propertiesQN1−QM6 this will follow if we can
establish the following formulas:168

(i) (x1Uy1)
ζ
= Y1x1y1[11]

(ii) ( x1Uua)ζ = (aπx1a)[11]
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(iii) (( ua)Uub)ζ = baπb[21]

(iv) {x1uaπub}ζ = (X1ab+ 1(X1ab)π)[11]

(v) {x1y1ua}ζ = (ay1x1)[21]

(vi) {yη1uax1}
ξ
= y1ax1[21].

Sincex1Uy1 = y1x1y1 in E1, (i) is clear. For (ii) we use Lemmas 5
and 10 to obtainaπx1a = xη1Uua. For (iii) we have

(ua)Uab = −(ub)2Ue1 ◦ ua+ (ua◦)ubUe2 ◦ ub (by(26))

= −e1Uub ◦ ua+ e1Uua,ub ◦ ub (PD)

= −eη1Uub ◦ ua+ ((eη1Uuaπ,ubπ) ◦ ubπ)η

= −uabπb+ (u(bπabπ + bπbaπ))η

= −uabπb+ ubaπb+ uabπb

= ubaπb.

This implies (iii). For (iv), we use{x1uaπub} = ((x1◦uaπ)◦ub))Ue1 =

(uaπx1 ◦ ub)Ue1 = eη1Uuaπx1,ub = x1ab+ bπaπx1. This gives (iv). For (v)
we have{x1y1ua} = (ua◦y1)◦x1 = uay1x1. (vi) follows from {yη1uax1} =

(ua◦ yη1) ◦ x1 = uyη1ax1 = uy1ax1 This completes the proof of the first
part. Now suppose we have type III. Thenmx1 = mxη1,mǫm, x1ǫJ11. 169

Also E1 is a field andπ = 1. Hence, by Lemma 3,ma= maη, aǫE1. We
consider the mappingQ : m→ −m2Ue1 of m into E1. We claim thatQ
is quadratic mapping ofm asE1 module intoE1. If mǫm, x1ǫJ11 then
(mx1)2Ue1 = (m ◦ x1)2Ue1 = m2Ux1Ue1 = m2Ue1Ux1 = x1(m2Ue1)x

2
1

sinceE1 is commutative. It follows that fora = x1 . . . z1, x, . . . z1ǫJ11,
we have (ma)2Ue1 = (m2Ue1)a

2. We show next that ifm, nǫm and
y1ǫJ11 then (mx1 ◦ n)Ue1 = ((mon)Ue1 x1. Since this is clear forn = 0
and both sides are inE1 it suffices to show that (mx1 ◦ n)Ue1 ◦ n =
(((m ◦ n)Ue1)x1) ◦ n. SinceE1 is commutative (((m ◦ n)Ue1)x1) ◦ n =
(n ◦ x1) ◦ ((m◦ n)Ue1) = {nx1(m◦ n)Ue1} (PD theorem)= {nx1m◦ n} =
x1Un,m◦n = x1(UnVm+VmUn) (QJ19)= m(x1Un)η+(mx1)Un. By QJ33,
we have (mx1)Un = (mx1)ve1UnVe1 = (mx1)VnUe1Vn − (mx1)Ve1Un =
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(mx1)VnUe1Vn− (mx1)Vn2Ue2
(PD 6)= ((mx1 ◦ n)Ue1) ◦ n− (mx1)Vn2Ue2

.
This and the following relation give

(((m◦ n)Ue1)x1) ◦ n− (mx1 ◦ n)Ue1) ◦ n (34)

= m(x1U − n)η − (mx1)Vn2Ue2

The left hand side is a multiple (inE1) of n and the right hand side
is a multiple ofm. Hence ifm andn areE1 independent then we obtian
(((m◦ n)Ue1)x1) ◦ n = (((mx1)Ue1)x1) ◦ n which gives the required rela-
tion. Now supposem = na, aǫE1. Then again (34) will yield the result
provided we can prove thatn(x1Un)η = (nx1)Vn2Ue2

. This follows since170

n(x1Un)η = n(x1Un) = x1UnVn = x1Un,n2 = {nx1n2} = {nx1n2Ue2} =

(n ◦ x1) ◦ n2Ue2 = (nx1)Vn2Ue2
.

We have now proved that forQ(m) = −m2Ue1 we haveQ(ma) =
a2Q(m) for all a = x1 . . . z1, x1, . . . , z1ǫJ11 andQ(mx1, n) = x1Q(m, n).
The latter implies thatQ(ma, n) = aQ(m, n) m, nǫm, aǫE1. This and
the first result imply thatQ(m) = a2Q(m) for all aǫE1. Then Q is
a quadratic mapping. We note next thatm2Ue2 = (m2Ue1)

η. Since
m(m2Ue1) = m(m2Ue1)η it suffices to show thatm(m2Ue1) = m(m2Ue2).
We havem(m2Ue1) = m2Ue1 ◦m= {m

2Ue1e1m} = {m2e1m} = e1Um,m2 =

e1UmVm = m2Ue2Vm = m ◦ m2Ue2 = mm2Ue2 = mm2Ue2. Thus
m2
= m2Ue1 + m2Ue2 = m2Ue1 + (m2Ue1)

η. Since the elementsmǫm
such thatm2

= 0 andm◦ n = 0, nǫn, are absolute zero divisors it now
follows thatQ is non-degenerate.

We now introduceK = f1ǫ1⊕ f2ǫ1⊕ma direct sum ofm and two one
dimensional (right) vector spaces overE1 and extendQ toK by defining
Q( f1a + f2b +m) = ab+ Q(m), a, b ∈ E1. ThenQ is a non-degenerate
quadratic form onK andQ( f ) = 1 for f + f1 + f2. Hence we can form
Jord (Q, f ). It is immediate thatJ ′ ≡ f1J11 + f2J11+ m is an outer
ideal containingf in K = Jord (Q, f ). We now define the mappingζ of
=J ontoK by x1 + yη1 +m→ f1x1 + f1y1 +m. It is easy to check that
this is a monomorphism.
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10 Second structure theorem.

Let J be a simple quadratic Jordan algebra satisfying the minimum
condition (for principal inner ideals). ThenJ contains no absolute
zero divisors, 0 since these generate a nil ideal (Theorem 5). By The-
orem 7. J has an isotopeJ̃ which has a capacity. If the capacity171

is one thenJ̃ , henceJ , is a division algebra. If the capacity is two
then the structure ofJ is given by Theorem 10. This implies thatJ
itself has the form given in Theorem 10. Now assume the capacity of

J̃ is n ≧ 3 and let1̃ =
n∑
1

fi be decomposition of the unit̃1 of J̃

into orthogonal completely primitive idempotents. SincẽJ is simple
the proof of the First structure Theorem shows that everyf j , j > 1, is
connected tof1. Since we can replaceJ̃ by an isotope, by Lemma
2 of §2.3, we may assume the connectedness is strong. Then we can
apply the strong coordinatization Theorem to conclude thatJ̃ is iso-
morphic to an algebraH (On,Oo) with the coordinate algebra (O, j,Oo).
By Theorem 2.2,H (On,Oo) is an outer ideal inH (On) and the sim-
plicity of H (On,Oo) implies that (O, j) is simple. The Pierce inner
ideal determined by the idempotent 1[11] inH = H (On,Oo) is the
set of elementsα[11], αǫO0 ⊆ N(O). Since this Pierce inner ideal is a
division algebra it follows that every non-zero element ofOo is invert-
ible in N(O). Hence (O, j,Oo) satisfies the hypothesis of the Herstein-
Kleinfeld-Osborn-McCrimmon theorem. Hence (O, j,Oo) has one of
the typesI − V given in theH − K −O− M theorem. If the type is I-IV
then the consideration of chapter 0 show thatOn with its standard invo-
lution J1 is a simple Aritinian algebra with involution. SinceH (On,Oo)
is an outer ideal containing 1 inH (On) it follows thatH is isomorphic
to an outer ideal containing 1 in anH (a, J), (a, J) simple Artinian with
involution. ThenJ also has this form. The remaining type of coordi-
nate algebra allowed in theH−K−O−M theorem is an octoion algebra172

with standard involution over a fieldΓ with Γ = O. In this case we
must haven = 3. Thus if we take into account the previous results we
see thatJ is of one of the following types. 1) a division algebra, 2) an
outer ideal containing 1 in a Jord (Q, 1) where (Q, 1) is a non-degenerate
quadratic form with base point on a vector space, 3)an outer ideal con-
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taining 1 in anH (a.J) where (a, J) is simple Artinian with involution,
4)an isotope of an algebraH (O3) whereO is an octonian algebra over
a fieldΓ/Φ with standard involution.

We now consider the last possibility in greater detail. Letc
∑
γi [ii ],

γi , 0 in Γ. Sincec is an invertible element ofN(O3) it determines
an involution Jc : X → c−1Xtc in O3. Let H (O3, Jx) denote the set
of matrices inO3 which are symmetric underJc and have diagonal el-
ements inΓ. If αǫΓ we putα{ii } = α[ii ] = αeii and if aǫO we put
a{i j } = aei j + γ

−1
j γiaeji , i , j. Thenα[ii ], a{i j }ǫH (O3, Jc) and ev-

ery element ofH (O3, Jc) is a sum ofα[ii ] and a{i j }. If XǫH (O3)
then XcǫH (O3Jc) sincec−1(Xc)tc = Xc. In view of the situation for
algebrasH (a, J), a associative, it is natural to introduce a quadratic
Jordan structure inH (O3, Jc) so that bijective mappingX → Xc of
H (O3)(c) onto H (O3, Jc) becomes an isomorphism of quadratic Jor-
dan algebras. We shall callH (O3, Jc) endowed with this structure
a cononical quadratic Jordan matrix algrbra. It is easy to check that
the elementsei = 1{ii } are orthogonal idempotents inH (O3, Jc) and173 ∑

ei is the unit ofH (O3, Jc). The pierce spaces relative to these are
H (O3, Jc)ii = {α{ii }|ǫΓ,H (O3, Jc)i j = {a{i j }|aǫO}, i , j. It is easy to
verify that the formulas for theU-operator for elements in these sub-
modules are identical with (i)-(x) of§1.8 with the exceptions that (ii )
and (iii ) become

α{ii }Ua{i j } = γ
−1
j γiaγa{i j } (ii )′

b{i j }Ua{i j } = γ
−1
j γiaba{i j } (iii )′

It is clear from these formulas that ifρ , 0 in Γ thenH (O3, Jρc) =
H (O3, Jc). We note next that ifaiǫO, n(ui ) , 0, δi = n(ui )γi and
d =diag{γ1, γ2, γ3} then there exists an isomorphism ofH (O3, Jc) onto
H (O3, Jd) fixing the eii . First, one can verify directly that ifuǫO,
n(u) , 0, then theΓ -linear mapping ofH (O3, Jc) ontoH (O3, Jd), d =
diag{γ1, n(u)γ2, n(u)γ3} such thateii → eii , a{12} → au{12}′, a{23} →
u−1au{23}′, a{13} → au{13}′ where a{i j }′ = aei j + δ

−1
j δiaeji , δ1 =

γ1, δi = n(u)γi , i = 2, 3, is an isomorphism. (Because of the Pierce rela-
tions it is sufficent to verifyQM(ii )], (iii )′ andM4,§2.2). Similarly, one
can define isomorphism ofH (O3, Jc) onto H (O3, Jd), d =diag{n(u)
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γ1, γ2, n(u)γ3} or diag{n(u), γ1n(u)γ2, γ3}. Combining these and taking
account the fact thatH (O3, Jρc) = H (O3, Jc) we obtain an isomor-
phism ofH (O3, Jc) ontoH (O3,d ) fixing theeii , d as above. We shall
now prove the following

Lemma . Let J be a quadratic Jordan algebra which is an isotope of174

H (O′3),O′ octonian over a fieldΓ. ThenJ is isomorphic to a canonica
Jordan matrix algebraH (O3, Jc) whereO is an octonian algebra.

Proof. It is easily seen that if (O′, j) is an octonion algebra with standard
involution then (O′, j) is simple. Hence, by Theorem 2.2, H (O′3) and
every isotopeJ of H (O′3) is simple. Lete1, e2, . . . , ek be a supplemen-
tary set of primitive orthogonal idempotents inJ (Lemma 1 of§6). We
show first thatk = 3 and theei are completely primitive. SinceJ is not
a division algebra 1 is not completely primitive. Hence if 1 is primitive
then the Theorem on Minimal Inner Ideals shows that an isotope of J
has capacity two. Since this is simple it follows. from Theorem 10 that
this algebra is special. Since an isotope of a special quadratic Jordan al-
gebra is special this implies thatH (O′3) is special. Since this is not the
case (§1.8), 1 is not primitive, sok > 1. If k > 3 ork = 3 and one thee0

is not completely primitive then the Minimal Inner Ideal Theorem im-
plies thatJ has an isotope containingl > 3 supplementary orthogonal
completely primitive idempotents. Then the foregoing results show that
this isotope, henceH (O′3) is special. Since this is ruled out we see tjhat
k = 2 or 3 and ifk = 3 then theei are completely primitive. It remains
to exclude the possibilityk = 2. In this case the arguments just used
show that we may assumee1 completely primituve,e2 not. By theMII
theorem and Lemma 2 of§2.3 we have an isotopeJ̃ = J (v) where
v = e1 + v2, v2ǫJ Ue2 such that the unit ofJ̃ is e1 + u2, u2ǫJ Ue2 and
u2 is a sum of two completley primitive strongly connected orthogonal 175

idempotents inJ̃ . ThenJ Uu2 = J Ue1+v2Uu2 = J Ue2 andJ̃ Uu2

is an isotope ofJ Ue2. SinceJ̃ is exceptional the foregoing results
show that we can identifyJ̃ with an algebraH (O′′3 ) whereO′′ is an
octonion algebra. Moreover, we can identifye1 with 1[11]. Then, as
we saw in§5,J̃ Ũu2 is the quadratic Jordan algebra of a quadratic form
S with base point such that the associated symmetric bilinearform is
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non-degenerate. SinceJ Ue2 is an isotope ofJ̃ Ũu2 it is the quadratic
Jordan algebra of a quadratic formQ with base point such thatQ(x, y)
is non-degenerate. Moreover,J Ue2 is not a division algebra sincee2

is not completely primitive. Hence we can choosex , 0 in J Ue2 such
that Q(x) = 0. Thenx2

= T(x)x, T(x) = Q(x, 1), and if T(x) , 0,
e = T(x)−1x is an idempotent, 0, e2, contrary to the primitivity ofe2.
HenceT(x) = 0. SinceQ is non-degenerate there existsa y in J Ue2

such thatQ(x, y) = 1 and we may assume also thatQ(y) = 0. Then, as
for x, we haveT(y) = 0. SinceQ(a, b) is non-degenerate there exists aw
such thatT(w) = Q(w, 1) = 1. Thenz= w−Q(x,w)y−Q(y,w)x sarisfies
Q(x, z) = 0 = Q(y, z), T(z) = 1. Pute = z+ x− Q(z)y. ThenT(e) = 1
and Q(e) = 0. Hencee is an idempotent, 0, e2. This contradiction
proves our assertion on the idempotents.

Now lete1, e2, e3 he supplementary completely primitive orthogonal
idempotents inJ . These are connected so we have an isotopeJ =

J (v) wherev = e1 + v2 + v3, viǫJ Uei and the unitu is a sum of three
strongly connected primitive orthogonal idempotents.

As before, we can identifyJ̃ with an H (O3). O an octonian al-176

gebra over a field,e1 with 1[11]. ThenJ is the isotope ofH (O3)
determined by an element of the forme1 + e2 + e3, eiǫH (O3)U1[ii ].
Thenei = γi [ii ]. ThenJ is isomorphic toH (O3, Jc).

The foregoing lemma and previous results prove the direct part of
the �

Second structure Theorem. LetJ be a simple quadratic Jordan algebra
satisfying DCC for principal inner ideals. ThenJ is of one of the
follwing types: 1) a quadratic Jordan division algebra, 2) an outer ideal
containing 1 in a quadratic Jordan algebra of a non-degenerate quadratic
form with base point over a fieldΓ/Φ, 3 ) an outer ideal containing in
H (a, J) where (a, J) is simple associative ArtinianO with involution,
4) a canonical Jordan matrix algebraH (O3, Jc) where is an octonion
algebra over a fieldΓ/Φ andc =diag{1, γ2, γ3}, γi , 0 in Γ. Conversely,
any algebra of one of the types 1)-4) satisfies the DCC for principal inner
ideals and all of these are simple with the exception of certian algebras
of type 2) which are direct sums of two division algebras isomorphic to
outer ideals ofΩ(q).
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We consider the exceptional case indicated in the foregoingstate-
ment. LetJ =Jord(Q, 1) whereQ is a non-degenerate quadratic form
on J /Γ with base point 1. We have seen in§5 thatJ satisfies the
DCC for principal inner ideals andJ is regular, hence, strongly non-
degenerate. HenceJ =J1⊕J2⊕ . . .⊕Js whereJi is an ideal and
is simple with unit 1. Ife is an idempotent, 0, 1 in J thenQ(e) = 0 177

sincee is not invertible, andT(e) = 1 sincee2 − T(e)e + Q(e) = 0.
Then the formulayUx = Q(x, y)x − Q(x)y in shows thatJ Ue = Ωe.
In particularJi = J U1i = Ω1i. If s > 1 we putu = 11 − 12. Then
T(u) = T(11) − T(12) = 0 sou2

+ Q(u) = 0. But u2
= 11 + 12. Hence

Q(u) = −1 and 11 + 12 = 1 =
∑

1i , which implies thats = 2. Thus
eitherJ =Jord(Q, 1), Q non-degenerate, is simple orJ = Ω11⊕Ω12.
SupposeJ is simple and not a division algebra. Suppose first that
J contians an idempotente , 0, 1. ThenJ Ue = Ωe so e is com-
pletely primitive. The same is true of 1− e. HenceJ is of capcity two.
Next supposeJ contains no idempotent, 0, 1 (and is simple and not
a division algebra). Then the Theorem on Minimal Inner Ideals shows
that there exists an isotope ofJ which is of capacity two. Thus we
have the following possibilities forJ =Jord (Q, 1), Q non-degenerate I
J = Ω11⊕Ω12, II J is a division algebra IIIJ is simple and has an
isotope of capacity two. Now letK be an outer ideal inJ containing 1.
In caseI it is immediate thatK = Ω111⊕Ω212 whereΩi is an outer ideal
containing 1i in Ω soΩi is a division algebra. In case IIK is a division
algebra. In case IIIK is simple by Lemma 2 of§6.

If J is of types 1), 3) or 4) then we have seen in§5 that satisfies
the DCC for pricipal inner ideals. Also in there cases it follows from
Theorem 2.2 and lemma 2 of§6 thatJ is simple. This completes the
proof of the second statement of the second structure Theorem.

We now consider a special case of this theorem, namely, that in 178

which J is finite dimensional over algebraically closed fieldΦ. The
only finite dimensional quadratic Jordan division algebra over Φ is Φ
itself (see§1.10). It is clear also that the fieldΓ in the statement of the
theorem is finite dimensional overΦ, soΓ = Φ. The simple algebra
with involution overΦ are:Φn ⊕ Φn with exchange involution,Φn with
standard involution,Φ2m with the involution J : X → S−1XtS where
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S =diag{Q,Q . . . ,Q},Q =

(
0 1
−1 0

)
. In all cases it is easy to check that

any outer ideals ofH )(a, J) containing 1 inH (a, J) coincides with
H (a, J). The same is true of Jord (Q, 1) for a non-degenerateQ. There
is only one algebra of octonion’sO overΦ (the split one). Since the
norm form for this represents everyρ , 0 in Φ it is clear that there is
only one exceptional simple quadratic Jordan algebra overΦ, namely,
H (O3).

The determination of the simple quadratic Jordan algebras of capac-
ity two, which was so arduous in the general case, can be done quickly
for finite dimensional algebras over an algebraically closed field. In this
caseJ = Φe1 ⊕ Φe2 ⊕ m where theei are supplementary orthogonal
idempotents andm = J12. If mǫm, m2

= µe1 + νe2, µ, νǫΦ. As be-
fore, µm = µei ◦ m = {Γe1e1m} = {m2e1m} = e1Um.m2 = e1UmVm =

m2Ue2Vm = νm. Henceµ = ν andm2
= µ1 = −Q(m)1 whereQ is a

quadratic form onm. We extend this toJ by definingQ(αe1 + βe2 +

m) = αβ + Q(m). It is easy to check that ifx = αe1 + βe2 + m and
T(x) = Q(x, 1) thenx2

= T(x)x+Q(x)1 = 0 andx3−T(x)x2
+Q(x) = 0.179

HenceJ =Jord (Q, 1). SinceJ is simple,Q is non-degenerate.
There remains the problem of isomorphism of simple quadratic Jor-

dan algebras with DCC for principal inner ideals. This can bediscussed
as in the linear case considered on pp 183− 187 and 378− 381 of Ja-
cobson’s book [2].
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