Lectures on
 The Theorem of Browder And Novikov And Siebenmann's Thesis

By

M.A. Kervaire

Lectures on
 The Theorem of Browder And Novikov And Siebenmann's Thesis

By

M.A. Kervaire

Notes by
K. Varadarajan

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5

Tata Institute of Fundamental Research, Bombay
 1969

Contents

I Theorem of Browder and Novikov 1
1 3
1 Preliminaries 3
2 The main Theorem 9
3 Surgery or Spherical modification 16
4 Effect of surgery on homology 23
5 Proof of the main theorem for $n=4 d>4$ 31
6 Proof of the main theorem for $n=2 q+1$ 38
II Siebenmann's Theorem 51
2 53
1 The Assumption of simple-connectedness... 53
2 The existence of arbitrary small. 58
3 The Existence of Arbitrary small. 66
4 The existence of arbitrary small. 77
5 Completion of the proof of siebenmann's theorem 86

Part I

Theorem of Browder and Novikov

1 Preliminaries

1.1 The cap-froduct The homology and the cohomology groups we use are the singular ones. Let \mathbb{Z} denote the ring of integers and \wedge an arbitrary commutative ring with $1 \neq 0$. For any topological space X and any integer $n \geq 0$ the set of singular n-simplices of X is denoted by $S_{n}(X)$. For any $s \in S_{n}(X)$ and any integer i satisfying $0 \leq i \leq n$ let $s(0, \ldots i)$ (resp. $s(i, \ldots, n)$) denote the element of $S_{i}(X)$ (resp. $\left.S_{n-i}(X)\right)$ got by restricting s to the front i-dimensional (resp. The rear ($n-i$)-dimensional) face of the standard n-simplex Δ_{n}. Let $C(X)$ denote the singular chain complex of X^{\prime} over \mathbb{Z} and $C=C(X) \otimes_{\mathbb{Z}} \wedge$ the chain complex of X over \wedge. The cochain complex of X over \wedge which is defined as $\operatorname{Hom}_{\mathbb{Z}}(C(X), \wedge)$ is canonically isomorphic to $\operatorname{Hom}_{\wedge}\left(C(X) \otimes_{\mathbb{Z}} \wedge, \wedge\right)$. The boundary homomorphism δ in $C^{*}=\operatorname{Hom}_{\wedge}(C, \wedge)$ is given by $f=(-1)^{n-1} f \circ \partial$ for every $f \in C^{n}(X, \wedge)=\operatorname{Hom}\left(C_{n}, \wedge\right)$ where $\partial: C_{n} \rightarrow C_{n-1}$ is the boundary homomorphism in C. As usual C^{*} is considered as a chain complex with $C_{-n}^{*}=C^{n}(X, \wedge)$. The evaluation map $e: C^{*} \otimes_{\wedge} C \rightarrow \wedge$ is defined by $e(f \otimes c)=f(c) \forall f \in C_{-n}^{*}$ and $c \in C_{n}$ and $e \mid C_{-p}^{*} \otimes C_{q}=0$ whenever $p \neq q$. Considering \wedge as a chain complex (with all its elements of degree zero) it is easily seen that $e: C^{*} \otimes_{\wedge} C \rightarrow \wedge$ is a chain homomorphism.

For any two chain complexes A and B over \wedge let $\alpha: H(A) \otimes_{\wedge} H(E) \rightarrow \quad \mathbf{2}$ $H(A \otimes B)$ be the natural map. If $x \in H_{p}(A)$ and $y \in H_{q}(B)$ and if z and z^{\prime} are respectively cycles of A and B representing x and y, then $z \otimes z^{\prime}$ is a cycle of $A \otimes B$ and the homology class of $z \otimes z^{\prime}$ is by definition $\alpha(x \otimes y)$. Let $T: A \otimes_{\wedge} B \rightarrow B \otimes_{\wedge} A$ be the chain isomorphism given by $T(a \otimes b)=(-1)^{p q} b \otimes a \forall a \in A_{p}, b \in B_{q}$.

The Alexander-Whitney diagonal map $m_{0}: C \rightarrow C \otimes_{\wedge} C$ is defined to be the unique \wedge-homomorphism satisfying $m_{0}(s)=\sum_{i=0}^{n} s(0, \ldots, i) \otimes_{\wedge}$ $s(i, \ldots, n) \forall s \in S_{n}(X)$. It is well-known and is not hard to check that m_{0} is a chain map. We denote the composition of the chain homomorphism indicated in the following diagram

by $\cap: C^{*} \otimes_{\wedge} C \rightarrow C$. More explicitly this map is given by

$$
\bigcap(f \otimes s)=f \cap s=\left\{\begin{array}{l}
(-1)^{q(n-q)} f(s(n-q, \ldots, n)) . s(0, \ldots, n-q) \text { if } n \geq q \\
o \text { if } n<q
\end{array}\right.
$$

for every $f \in C^{q}(X, \wedge)$ and $s \in S_{n}(X)$. Let $H(\cap): H\left(C^{*} \otimes_{\wedge} C\right) \rightarrow$ $H(C)$ be the homomorphism induced by ' \cap '. For any $a \in H^{q}\left(C^{*}\right)=$ $H_{-q}\left(C^{*}\right)=H^{q}(X, \wedge)$ and $u \in H_{n}(C)=H_{n}(X, \wedge)$ the element $H(\bigcap) o \alpha(a \otimes$ $u)$ is called the cap-product of a by u and is denoted by $a \cap u$.

The chain map $e: C^{*} \otimes_{\wedge} C \rightarrow \wedge$ induces a homomorphism $H(e):$ $H\left(C^{*} \otimes_{\wedge} C\right) \rightarrow \wedge$. For any $a \in H^{q}(X, \wedge)$ and $u \in H_{q}(X, \wedge)$ the image $H(e) o \alpha(a \otimes u)$ is known as the value of the cohomology class a on the homology class u and is denoted by $a(u)$.
1.2 The following properties of the cap-product will be needed later.
(1) $(a \cup b) \cap u=a \cap(b \cap u) \forall a \in H^{p}(X, \wedge), b \in H^{q}(X, \wedge)$ and $u \in$ $H_{n}(X, \wedge)$ with p, q, n arbitrary integers. Here $a \cup b$ denotes the Cup product of a and b.
(2) For any continuous map $f: Y \rightarrow X$, if the induced homomorphisms in homology and cohomology are denoted by $f_{*}: H(Y$, $\wedge) \rightarrow H(X, \wedge)$ and $f^{*}: H^{*}(X, \wedge) \rightarrow H^{*}(Y, \wedge)$, then for any $a \in H^{q}(X, \wedge)$ and $v \in H_{n}(Y, \wedge)$

$$
f_{*}\left(f^{*} a \cap v\right)=a \cap f_{*}(v)
$$

1.3 Poincar'e Duality When we refer to homology and cohomology groups without mentioning the coefficients we mean integer coefficients. Let M be a compact, connected, orientable manifold (without boundary) of dimension n. Then it is known that $H_{n}(M) \simeq \mathbb{Z}$. A choice of a generator u for $H_{n}(M)$ is known as an orientation for $M . M$ together with a chosen orientation is called an oriented manifold and the distinguished element of $H_{n}(M)$ is called the fundamental class of M and is denoted by $[M]$.

Let $h: \mathbb{Z} \rightarrow \wedge$ be the obvious ring homomorphism (which sends 1 of \mathbb{Z} into 1 of $\wedge)$. Let $v=h_{*}([M])$ where $h_{*}: H_{n}(M) \rightarrow H_{n}(M, \wedge)$ is
the homomorphism induced by h. Then Poincare duality can be stated as follows:

The $\operatorname{map} \Delta: H^{q}(M, \wedge) \rightarrow H_{n-q}(M, \wedge)$ given by $\Delta(x)=x \cap v$ is an isomorphism for all q.

In case M is not necessarily orientable it is true that $H_{n}\left(M ; \mathbb{Z}_{2}\right) \simeq$ \mathbb{Z}_{2} and if v denotes the non zero element of $H_{n}\left(M ; \mathbb{Z}_{2}\right)$ then $\cap v$: $H^{q}\left(M ; \mathbb{Z}_{2}\right) \rightarrow H_{n-q}\left(M ; \mathbb{Z}_{2}\right)$ is an isomorphism for all q.

When M is compact and not necessarily connected M is orientable if and only if each of its connected components is orientable. M being compact, the number of connected components is finite and denoting them by $\left\{M_{j}\right\}_{j=1}^{r}$ we have $H_{n}(M) \simeq \oplus_{j=1}^{r} H_{n}\left(M_{j}\right)$. If each M_{j} is oriented and if $\left[M_{j}\right]$ is the fundamental class of M_{j} then $[M]=\sum_{j=1}^{r}\left[M_{j}\right] \in$ $H_{n}(M)=\oplus_{j=1}^{r} H_{n}\left(M_{j}\right)$ is defined to be the fundamental class of M.
1.4 All the vector bundles we consider are real vector bundles. For any
X the trivial vector bundle of rank ℓ over X will be denoted by \mathscr{O}_{X}^{l}. The total space and the base space of any vector bundle ξ will be denoted by $E(\xi)$ and B_{ξ} respectively. To denote that ξ is of rank k we just write ξ^{k}. If $f: Y \rightarrow X$ is a continuous map and ξ any vector bundle over X the pull back bundle on Y is denoted by $f^{\prime}(\xi)$. If ξ carries a Riemannian metric, for any $\varepsilon>0$ the subspace of $E(\xi)$ consisting of vectors of length $\leq \varepsilon$ is denoted by $E_{\varepsilon}(\xi)$ and the boundary consisting of vectors of length ε is denoted by $\dot{E}_{\varepsilon}(\xi)$. When B_{ξ} is compact the Thom space ξ denoted by $T(\xi)$ is defined to be the one point compactification of $E(\xi)$. Let ' ∞ ' denote the point at infinity of $T(\xi)$. When ξ carries a Riemannian metric we can describe the Thom space alternatively as follows. Let $T_{\varepsilon}(\xi)$ be the quotient space got from $E_{\varepsilon}(\xi)$ by collapsing $\dot{E}_{\varepsilon}(\xi)$ to a point. The $\operatorname{map} \beta: E_{\varepsilon}(\xi) \rightarrow T(\xi)$ defined by $\beta\left(v^{\rightarrow}\right)=\frac{v^{\rightarrow}}{\varepsilon-\|v \rightarrow\|}$ for $v^{\rightarrow} \in E_{\varepsilon}(\xi)-\dot{E}_{\varepsilon}(\xi)$ and $\beta\left(v^{\rightarrow}\right)=\infty$ for $\vec{v} \in \dot{E}_{\varepsilon}(\xi)$ passes down to a homeomorphism $\Theta: T_{\varepsilon}(\xi) \rightarrow T(\xi)$. Compactness of B_{ξ} is essential for Θ to be a homeomorphism.

For any differential $\left(=C^{\infty}\right)$ manifold M the tangent bundle of M will be denoted by τM. The word differentiable will always mean dif-
ferentiable of class C^{∞} for us. For the rest of this sections M denotes a compact, connected, oriented differential manifolds of dimension $n \geq 0$ with $[M]$ as the fundamental class. By Whitney's imbedding theorem M can be differentially imbedded in \mathbb{R}^{n+k}. Except when $n=0$ the compactness of M automatically implies that $k \geq 1$. Even when $n=0$ we can assume $k \geq 1$. Let v be the normal bundle of this imbedding. Then $\tau_{M} \oplus v \simeq \mathscr{O}_{M}^{n+k}$. Since τ_{M} and \mathscr{O}_{M}^{n+k} are both orientable it follows that v is an orientable vector bundle. Identifying the tangent space to \mathbb{R}^{n+k} at any point with \mathbb{R}^{n+k} in the usual way and taking the usual Riemannian metric on $\tau_{\mathbb{R}^{n+k}} \simeq \mathscr{O}_{\mathbb{R}^{n+k}}^{2 n+2 k}$ any element of $E(v)$ can be thought of as a pair $\left(x, \frac{\mathbb{R}}{v}\right)$ with $x \in M$ and $v^{\rightarrow} \in \mathbb{R}^{n+k}$ in a directional normal to M at x. Let $e: E(v) \rightarrow \mathbb{R}^{n+k}$ be defined by $e(x, v)=x+v$. \exists an $\varepsilon>0$ such that e is a diffeomorphism of the set $E_{\varepsilon}(v)$ on to a neighbourhood A of M. A is called a closed tabular neighbourhood of M. Let $\dot{A}=e\left(\dot{E}_{\varepsilon}(v)\right)$. Considering S^{n+k} as the one point compactification of \mathbb{R}^{n+k} we can define a $\operatorname{map} C: S^{n+k} \rightarrow T(v)$. This is the map got by collapsing the complement of $A-\dot{A}$ in S^{n+k} to a point. More precisely, $C \mid A=\beta o e^{-1}$ and $C \mid\left(S^{n+k}-A\right)=\infty$.

Let $\Phi: H_{n}(M) \rightarrow H_{n+k}(T(v))$ be the Thom isomorphism [5].
Proposition 1.5. $\Phi([M])=C_{*}(\iota)$ for a generator ι of $H_{n+k}\left(S^{n+k}\right)$.
Proof. We have only to show that $C_{*}: H_{n+k}\left(S^{n+k}\right) \rightarrow H_{n+k}(T(v))$ is an isomorphism. We abbreviate $E_{\varepsilon}(v)$ by E_{ε} etc. Let $A_{\frac{1}{2}}=e\left(E_{\varepsilon / 2}\right)$. Clearly $\beta \left\lvert\, E_{\frac{\varepsilon}{2}}\right.$ is a homeomorphism of $E_{\frac{\varepsilon}{2}}$ onto the image Γ^{2} (say). Let x be any point in M (such a point exists because $\operatorname{dim} M \geq 0$ by assumption) and $i_{x}: S^{n+k} \rightarrow\left(S^{n+k}, S^{n+k}-x\right)$ and $j_{x}:\left(S^{n+k}, S^{n+k}-M\right) \rightarrow\left(S^{n+k}, S^{n+k}-x\right)$ the respective inclusions. Consider the following commutative diagram.

The homomorphism indicated as β_{*} is an isomorphism since β : $E_{\frac{\varepsilon}{2}} \rightarrow \Gamma$ is a homeomorphism. It follows that the monomorphism numbered (1) is an isomorphism. The space $T(v)-M$ is contractible in itself to ∞. Hence the map $H_{n+k}(T(v)) \rightarrow H_{n+k}(T(v), T(v)-M)$ is an isomorphism. (The assumption $k \geq 1$ is used here). Since $H_{n+k}(T(v)) \simeq$ $H_{n}(M) \simeq \mathbb{Z}$ we have $H_{n+k}\left(S^{n+k}, S^{n+k}-M\right)$. Since $\left(i_{x}\right)_{*}$ is an isomorphism it follows that j_{*} is a monomorphism and that image of j_{*} is a direct summand of $H_{n+k}\left(S^{n+k}, S^{n+k}-M\right)$. The groups $H_{n+k}\left(S^{n+k}\right)$ and

$H_{n+k}\left(S^{n+k}, S^{n+k}-M\right)$ being both isomorphic to \mathbb{Z} it follows that j_{*} is an isomorphism. It now follows that $C_{*}: H_{n+k}\left(S^{n+k} \rightarrow H_{n+k}(T(v))\right.$ is an isomorphism.
1.6 The index of A 4d-dimensional manifold Let M be a compact, connected, oriented manifold of dimensional $4 d$ with d an integer ≥ 0 and let $[M]$ be the fundamental class of M. The image $h_{*}([M])$ of the fundamental class of M under the inclusion $h: \mathbb{Z} \rightarrow \mathbb{Q}$ is called the fundamental class with coefficients in \mathbb{Q} and is also denoted by [M]. The $\operatorname{map}(x, y) \rightsquigarrow(x \cup y)[M]$ of $H^{2 d}(M, \mathbb{Q}) \times H^{2 d}(M, \mathbb{Q}) \rightarrow \mathbb{Q}$ gives a symmetric, non degenerate bilinear form $H^{2 d}(M, \mathbb{Q})$. Symmetry is clear from $x \cup y=(-1)^{2 d \cdot 2 d} y \cup x=y \cup x$. That it is non degenerate is a consequence of Poinecare duality together with the fact that $(a, u) \leadsto a(u)$ is a bilinear non degenerate pairing of $H^{2 d}(M, \mathbb{Q}) \times H_{2 d}(M, \mathbb{Q}) \rightarrow \mathbb{Q}$. This latter fact is embodied in the universal coefficient theorem $H^{2 d}(M, \mathbb{Q})=$ hom $_{\mathbb{Q}}\left(H_{2 d}(M, \mathbb{Q}), \mathbb{Q}\right)$. The signature (i.e. the number of $+v e$ diagonal elements minus the number of $-v e$ general elements when diagonalised over \mathbb{Q}) of the bilinear form $(x, y) \leadsto(x \cup y)[M]$ on $H^{2 d}(M, \mathbb{Q})$ is defined to be the index of M and is denoted by $I(M)$.

In case M is also differentiable we have the following Theorem of Hirzebruch's [1].

Theorem 1.7. Let $L_{k}\left(p_{1}, \ldots, p_{k}\right)$ be the multiplicative sequence of polynomials corresponding to the power series

$$
\frac{\sqrt{t}}{\tanh \sqrt{t}}=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots+(-1)^{k-1} \frac{2^{2 k}}{(2 k)!} B_{k} t^{k}+\cdots
$$

(Here B_{k} is the $k^{\text {th }}$ Bernouilli number). Then the index $I(M)$ is equal to the L-genus of M defined as $\left\{L_{d}\left(p_{1}\left(\tau_{M}\right), \ldots, p_{d}\left(\tau_{M}\right)\right\}([M])\right.$, where $p_{i}\left(\tau_{M}\right)$ is the $i^{\text {th }}$ Pontrjagin class of τ_{M}.

For more information about the formalism of multiplicative sequences and the correspondence between power series and multiplicative sequence the reader is referred to [1], [5].

We just content ourselves with the remark that $L_{k}\left(p_{1}, \ldots, p_{k}\right)$ are
universally defined polynomials (i.e. independent of M) with coefficients in the indeterminates p_{1}, p_{2}, \ldots... The total weight of each term of $L_{k}\left(p_{1}, \ldots p_{k}\right)$ is $4 k$ when p_{j} is alloted the weight $4 j$. The first two of these polynomials are $L_{1}\left(p_{1}\right)=\frac{1}{3} p_{1} ; L_{2}\left(p_{1}, p_{2}\right)=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)$.
1.8 We will be mainly concerned with a space X which is a finite simplicial complex. Given any vector bundle ξ^{k} over X there exists a vector bundle η over X with $\xi \oplus \eta \simeq \mathscr{O}_{X}$ (of some rank). In fact \exists a map $f: X \rightarrow G_{k+\ell, k}$ (the Grassmann manifold of k-planes in $\mathbb{R}^{k+\ell}$) for some ℓ such that $f!\left(\gamma^{k}\right)=\xi$. Here γ^{k} is the universal bundle on $G_{k+\ell, k}$. The space $E\left(\gamma^{k}\right)$ is the subspace of $G_{k+\ell, k} \times \mathbb{R}^{k+\ell}$ consisting of elements $\left(y, v^{\rightarrow}\right)$ with $\vec{v} \in y$. Let $\tilde{\gamma}^{\ell}$ be the vector bundle on $G_{k+\ell, k}$ consisting of elements (y, \vec{w}) with $\vec{w} \in \mathbb{R}^{k+\ell}$ orthogonal to y. Then $\eta=f!\left(\tilde{\gamma}^{\ell}\right)$ satisfies $\xi \oplus \eta \simeq \mathscr{O}_{x}^{k+\ell}$. Two vector bundles ξ and ξ^{\prime} over X are said to be stably equivalent if $\xi \oplus \mathscr{O}_{X}^{\ell} \simeq \xi^{\prime} \oplus \mathscr{O}_{X}^{\ell^{\prime}}$ for some ℓ and ℓ^{\prime}. The stable class of ξ is denoted by $[\xi]$. If ξ and ξ^{\prime} are stably equivalent and if η and η^{\prime} are such that $\xi \oplus \eta \simeq \mathscr{O}^{n}$ and $\xi^{\prime} \oplus \eta^{\prime} \simeq \mathscr{O}^{n^{\prime}}$ for some n and n^{\prime} it is easy to see that η and η^{\prime} are stably equivalent. The class of η is denoted by-[$\left.\xi\right]$. It is known that the Pontrjagin classes of a vector bundle depend only on the stable class of the bundle. If $\bar{p}_{1}(\xi), \bar{p}_{2}(\xi), \ldots$ denote the Pontrjagin classes of some η belonging to the class $-[\xi]$ it follows that the elements $L_{k},\left(\bar{p}_{1},(\xi), \ldots, \bar{p}_{k}(\xi)\right)$ depend only on the class [ξ] of ξ.

Referring to the situation where $M^{4 d}$ is differentiably imbedded in $\mathbb{R}^{4 d+k}$ with normal bundle v we see that $L_{k},\left(\bar{p}_{1}(v), \ldots, \bar{p}_{K}(v)\right)=L_{k}$, $\left(p_{1}\left(\zeta_{M}\right), \ldots, p_{k}\left(\zeta_{M}\right)\right) \in H^{4 k^{\prime}}(M, \mathbb{Q})$. Thus Hirzebruch's theorem can be rephrased in terms of the normal bundle v as $\left\{L_{d}\left(\bar{p}_{1}(v), \ldots, \bar{p}_{d}(v)\right)\right\}$ $([M])=I(M)$.

2 The main Theorem

Let X be a connected finite simplicial complex with $\prod_{1}(X)=0$. The theorem of Browder and Novikov deals with conditions under which X will be of the same homotopy type as a compact differentiable manifold M without boundary. Since X is simply connected if such an M exists it
has to be orientable. We first state the theorem, which actually consists of two parts.

Theorem 2.1. Let X be a connected finite simplicial complex with $\prod_{1}(X)=0$. Suppose that the following two conditions are satisfied.
i) X satisfies Poincaré duality i.e. to say \exists some integer n with $H_{n}(X) \simeq \mathbb{Z}$ and if u is a generator, $\cap u: H^{q}(X) \rightarrow H_{n-q}(X)$ is an isomorphism for all q.
ii) \exists an oriented vector bundle ξ^{k} over X such that $\Phi(u) \in H_{n+k}(T(\xi))$ is spherical, $\Phi: H_{n}(X) \rightarrow H_{n+k}(T(\xi))$ being the Thom isomorphism.

Then if n is odd X is of the same homotopy type as a compact differentiable manifold M of dimension n under a homotopy equivalence $f: M \rightarrow X$ satisfying $[f!(\xi)]=-\left[\tau_{M}\right]$.

The second part of the theorem is concerned with the case $n=4 d$ with d an integer >1.
X being a finite complex we have $H^{q}(X, \mathbb{Q})=H^{q}(X) \otimes \mathbb{Q}$ and $H_{i}(X$, $\mathbb{Q})=H_{i}(X) \otimes \mathbb{Q}$. Denoting the image of u in $H_{n}(X, \mathbb{Q})$ under h_{*} : $H_{n}(X) \rightarrow H_{n}(X, \mathbb{Q})$ where $h: \mathbb{Z} \rightarrow \mathbb{Q}$ is the inclusion of \mathbb{Z} into \mathbb{Q} by v we have $\cap v: H^{q}(X, \mathbb{Q}) \rightarrow H_{n-q}(X, \mathbb{Q})$ an isomorphism for all q. Actually $\bigcap v$ can be identified with $(\bigcap u) \otimes \mathbb{Q}$. Thus assumption i) actually implies Poincare duality for coefficients in \mathbb{Q}. Actually, it is true that assumption i) implies Poincare duality for any arbitrary commutative coefficient ring $\wedge($ with $1 \neq 0)$. The procedure adopted to define the index $I\left(M^{4 d}\right)$ in $\$ 1.6$ can now be used to define the index $I(X)$ of X.

Assume in addition to i) and ii) we have the following valid for ξ.
iii) $I(X)=\left\{L_{d}\left(\bar{p}_{1}(\xi), \ldots, \bar{p}_{d}(\xi)\right)\right\}(v)$.

Then X is of the same homotopy type as a compact differentiable manifold M of dimension $4 d$ under an equivalence $f: M \rightarrow X$ satisfying $[f!(\xi)]=-\left[\tau_{M}\right]$.

Part I of these lectures is devoted to the proof of this theorem. From $\$ 1$ at actually follows that the conditions i), ii), and iii) when $n=4 d$, are necessary for the validity of the Theorem.

From the assumption $\prod_{1}(X)=0$ it follows that the integer n satisfying condition i) of Theorem 2.1 has to be ≥ 3 whenever n is odd. But for $n=3$ the condition i) itself implies that X is of the same homotopy type as S^{3}. Moreover every vector bundle on S^{3} is trivial since $\prod_{2}(S o(k))=0$ for every integer $k \geq 0$. Thus for any vector bundle ξ over X and any homotopy equivalence $f: S^{3} \rightarrow X$ we have $[f!(\xi)]=-\left[\tau_{S^{3}}\right]$. This shows that Theorem 2.1] is trivially valid for $n=3$ and hence it only remains to prove the Theorem for $n \geq 5$. But some of the Lemmas and propositions that will be proved here are valid for $n \geq 4$, and it will be clear later when exactly we need the assumption $n>4$.
2.2 Realizing X as a subcomplex of a simplex Δ_{N} for some integer N and imbedding Δ_{N} affinely in \mathbb{R}^{N} we get an open set $U \supset X$ of \mathbb{R}^{N} such that X is a deformation retract of U. Let $j: X \rightarrow U$ be the inclusion and $r: U \rightarrow X$ the retraction (i.e. $\left.\operatorname{roj}=I d_{x}\right)$ with jor $\sim I d_{U}(\sim=$ 'homomorphic to'). Let ξ be a vector bundle on X satisfying condition ii) of Theorem 2.1 Let $\xi^{\prime}=r!(\xi)$. It is easy to see that ξ^{\prime} can be made into a differentiable vector bundle. Actually ξ^{\prime} is induced by a certain map $g: U \rightarrow G_{k+\ell, k}$ for some integer ℓ, form the universal bundle γ^{k} on $G_{k+\ell, k}$. Since the map g can be approximated by a differentiable map $g: U \rightarrow G_{k+\ell, k}$ with $g \sim g^{\prime}$, it follows that ξ^{\prime} can be made into a differentiable vector bundle. The Thom space $T\left(\xi^{\prime}\right)$ of ξ^{\prime} is defined as follows. Introducing a fixed C^{∞} Riemannian matric on ξ^{\prime}, let $E_{1}\left(\xi^{\prime}\right)$ be the subspace of $E\left(\xi^{\prime}\right)$ consisting of vectors of length ≤ 1 and $\dot{E}_{1}\left(\xi^{\prime}\right)$ the boundary of $E_{1}\left(\xi^{\prime}\right)$ consisting precisely of vectors of length 1 . The space $T\left(\xi^{\prime}\right)$ is defined as the quotient space $E_{1}\left(\xi^{\prime}\right) / \dot{E}_{1}\left(\xi^{\prime}\right)$. In this case $T\left(\xi^{\prime}\right)$ is not the one point compactification of $E\left(\xi^{\prime}\right)$. Still we denote the point of $T\left(\xi^{\prime}\right)$ to which $\dot{E}_{1}\left(\xi^{\prime}\right)$ is collapsed by ${ }^{\prime \prime} \infty^{\prime \prime}$. Clearly $T\left(\xi^{\prime}\right)-\infty$ is a differentiable manifold.

Since $\operatorname{roj}=I d_{X}$ we have $\xi^{\prime} / X=\xi$. Taking the restriction to ξ of the Riemannian metric on ξ^{\prime}, and realizing $T(\xi)$ as $E_{1}(\xi) / \dot{E}_{1}(\xi)$ we see that the inclusion map $h: E(\xi) \rightarrow E\left(\xi^{\prime}\right)$ induces a map $T(h): T(\xi) \rightarrow$ $T\left(\xi^{\prime}\right)$. The symbol Φ denotes throughout the Thom isomorphism. Let $f: S^{n+k} \rightarrow T(v)$ be a map such that $f^{*}(\iota)=\phi(u), \iota$ being a generator
of $H_{n+k}\left(S^{n+k}\right)$. By condition ii) such a map exists. The naturality of the Thom isomorphism yields $(T(h) o f)_{*}(\iota)=\Phi\left(j_{*}(u)\right)$. Denoting $T(h) o f$ by f^{\prime} we see that $f^{\prime}: S^{n+k} \rightarrow T\left(\xi^{\prime}\right)$ is a map satisfying $f_{*}^{\prime}(\iota)=\Phi\left(j_{*}(u)\right)$. By the transverse regular approximation theorem [4], \exists a differentiable $\operatorname{map} f^{\prime \prime}: S^{n+k} \rightarrow T\left(\xi^{\prime}\right)$ (whenever it makes sense i.e. on $f^{\prime \prime-1}\left(T\left(\xi^{\prime}\right)-\right.$ $\infty)$) with $f^{\prime \prime} \sim f^{\prime}$ and $f^{\prime \prime}$ transverse regular on U. Clearly $f^{\prime \prime-1}(U) \neq \emptyset$ for if $f^{\prime \prime}\left(S^{n+k}\right) \cap U=\emptyset$ the $\operatorname{map} f_{*}^{\prime \prime}: H_{n+k}\left(S^{n+k}\right) \rightarrow H_{n+k}\left(T\left(\xi^{\prime}\right)\right)$ would factor through $H_{n+k}\left(T\left(\xi^{\prime}\right)-U\right)=0$ (since $T\left(\xi^{\prime}\right)-U$ is contractible to $" \infty$ "). But $f_{*}^{\prime \prime}(\iota)=f_{*}^{\prime}(\iota)=\Phi\left(j_{*}(u)\right) \neq 0$. Hence $M=f^{\prime \prime-1}(U)$ is a differentiable manifold of codimension k in S^{n+k} with normal bundle $v_{M} \simeq f^{\prime \prime}!\left(\xi^{\prime}\right)$. But M need not necessarily be connected. Since $f^{\prime \prime}\left(\xi^{\prime}\right)$ and $\tau_{S^{n+k}}$ are orientable and since $\tau_{S^{n+k}} \mid M \simeq \tau_{M} \oplus f^{\prime \prime}!\left(\xi^{\prime}\right)$ we see that τ_{M} is orientable. Since U is closed in $T(\xi)$ we have $M=f^{\prime \prime-1}(U)$ closed in S^{n+k} and hence M is a compact, orientable differentiable manifold of dimensional n. Choose some C^{∞} Riemannian metric for v_{M}. It is known that \exists a tubular neighbourhood i.e. a diffeomorphism D of $E_{\varepsilon}(v)$ for some $\varepsilon>0$ onto a closed neighbourhood B of M in S^{n+k}, and map $\bar{f}: S^{n+k} \rightarrow T\left(\xi^{\prime}\right)$ satisfying the following conditions:

1) \bar{f} is differentiable on $\bar{f}^{-1}\left(T\left(\xi^{\prime}\right)-\infty\right)$ and transverse regular on U
2) $\bar{f}=f^{\prime \prime}$ on M and $\bar{f}^{-1}(U)=f^{\prime \prime-1}(U)=M$
3) $\bar{f} o D$ is a bundle map of $E_{\varepsilon}(v)$ onto the image (i.e. maps the fibre of $E_{\varepsilon}(v)$ at $x \in M$ homeomorphically onto the image portion of the fibre at $f(x)$ in $E(\xi)$)
4) $\bar{f} \sim f^{\prime \prime}: S^{n+k} \rightarrow T\left(\xi^{\prime}\right)$.

For a proof refer to steps 1 and 2 of the proof of Theorem 3.16 in [4].

From the compactness of M it follows that \exists a $\delta>0$ with $\bar{f} o D$ $\left(E_{\varepsilon}(v)\right) \supset E_{\delta}\left(\xi^{\prime}\right) \mid \bar{f}(M)$. Let $\left\{M_{i}\right\}_{i=1,, r}$ be the connected components of M and let $A_{i}=\bar{f}^{-1}\left(E_{\delta}\left(\xi^{\prime}\right)\right) \mid M_{i}$ and $\dot{A}_{i}=\bar{f}^{-1}\left(\dot{E}_{\delta}\left(\xi^{\prime}\right)\right) \mid M_{i}$. We will write the same symbols A_{i}, \dot{A}_{i} to denote $D^{-1}(A i), D^{-1}(A i)$ etc. In otherwords we identify $E_{\varepsilon}(v)$ and the tubular neighbourhood B.

We now introduce the following changes in notation. We write ξ, f and u for ξ, \bar{f} and $j_{*}(u)$. With this altered notation $f: S^{n+k} \rightarrow T(\xi)$ is a map satisfying $\Phi(u)=f_{*}(\iota)$, differentiable on $f^{-1}(T(\xi)-\infty)$, transverse regular on U and is also a bundle map covering $f \mid M: M \rightarrow U$ on a $\mathbf{1 7}$ tubular neighbourhood of M in S^{n+k}.
2.3 We choose ι as the fundamental class $\left[S^{n+k}\right]$. Then each $\left(A_{i}, \dot{A}_{i}\right)$ receives the induced orientation $\left[A_{i}, \dot{A}_{i}\right]$. Denoting by v_{i} the restriction of v to M_{i} and by $\Phi_{i}: H_{n}\left(M_{i}\right) \rightarrow H_{n+k}\left(T\left(v_{i}\right)\right)$ the Thom isomorphism, let $\psi_{i}: H_{n}\left(M_{i}\right) \rightarrow H_{n}\left(A_{i}, A_{i}-M_{i}\right)$ be the unique isomorphism making the following diagram commutative.

The homomorphisms $\left(j_{i}\right)_{*}: H_{n+k}\left(A_{i}, \dot{A}_{i}\right) \rightarrow H_{n+k}\left(A_{i}, A_{i}-M_{i}\right)$ induced by inclusions are isomorphisms (since \dot{A}_{i} is a deformation retract of $A_{i}-M_{i}$). We choose orientations [M_{i}] for M_{i} by the requirement that $\psi_{i}\left(\left[M_{i}\right]\right)=\left(j_{i}\right)_{*}\left(\left[A_{i}, \dot{A}_{i}\right]\right)$
Lemma 2.4. The map $f: M \rightarrow U$ is of degree 1 i.e. to say $f_{*}([M])=u$ with $[M]=\sum\left[M_{i}\right]$.

Proof. Let $\psi: H_{n}(U) \rightarrow H_{n+k}\left(E_{\delta}(\xi), E_{\delta}(\xi)-U\right)$ be the isomorphism making the square.

commutative. Naturality of the Thom isomorphism together with the fact that $f \mid B$ is a "bundle map" yield the following commutative diagram.

Diagram 2.

Let $f_{*}[M]=d u$. We have to show that $d=1$. We have $\left(e_{*}^{-1}\right) j_{*} \mathbf{1 9}$ $\left[S^{n+k}\right]=\sum_{i}\left(j_{i}\right)_{*}\left(\left[A_{i}, \dot{A}_{i}\right]\right)$. To show that $d=1$ it suffices to show that $\psi f_{*}[M]=\psi(u)$. From Diagram 2 we have

$$
\begin{aligned}
\psi f_{*}[M] & =f_{*}\left(\sum \psi_{i}\left[M_{i}\right]\right)=f_{*}\left(\sum\left(j_{i}\right)_{*}\left(\left[A_{i}, \dot{A}_{i}\right]\right)\right) \\
& =f_{*}\left(e_{*}\right)^{-1} j_{*}\left[S^{n+k}\right]=\left(e_{\xi_{*}}\right)^{-1}\left(j_{\xi}\right)_{*}\left(f_{*}\left[S^{n+k}\right]\right) \\
& =\left(e_{\xi_{*}}\right)^{-1}\left(j_{\xi}\right)_{*}(\Phi(u))
\end{aligned}
$$

But by definition of ψ we have $\psi(u)=\left(e_{\xi_{*}}\right)^{-1}\left(j_{\xi}\right)_{*} \Phi(u)$.
We change our notations again and write $f: M \rightarrow X$ for the map of rof where $r: U \rightarrow X$ is the homotopy equivalence chosen already and write u for the original generator of $H_{n}(X)$. Then f is of degree 1 . The homomorphism $H_{q}(M) \rightarrow H_{q}(X)$ induced by f is denoted by f_{q}.

Lemma 2.5. There exist homomorphism $g_{q}: H_{q}(X) \rightarrow H_{q}(M)$ with $f_{q} o g_{q}=I d_{H_{q}(X)}$ and hence $H_{q}(M)=\operatorname{Kar} f_{q} \oplus g_{q}\left(H_{q}(X)\right)$.

Proof. For any $x \in H_{q}(X)$ let $\gamma \in H^{n-q}(X)$ be the element $\Delta^{-1}(x)$ where $\Delta: H^{n-q}(X) \rightarrow H_{q}(X)$ is the Poincare isomorphism. Setting $g_{q}(x)=$ $f^{*}(\gamma) \cap[M]$ we have $f_{q} g_{q}(x)=f_{*}\left(f^{*}(\gamma) \cap[M]\right)=\gamma \cap f_{*}[M]=\gamma \cap u=$ x.

The proof of this lemma uses only two facts : © X satisfies Poincare duality and (b) $f: M \rightarrow X$ is a map of degree 1 .

Let η^{\prime} be a bundle over X (of rank ℓ^{\prime} say) such that $\xi \otimes \eta^{\prime} \simeq \mathscr{O}_{X}^{k+\ell^{\prime}}$. Let $\eta=\eta^{\prime} \otimes \mathscr{O}_{X}^{k+n}$. Then $[\eta]=\left[\eta^{\prime}\right]=-[\xi]$ and

$$
\begin{aligned}
& f!(\eta)=f!\left(\eta^{\prime}\right) \oplus \mathscr{O}_{M}^{k+n} \simeq f!\left(\eta^{\prime}\right) \oplus \tau_{M}^{n}+v_{M}^{k} \simeq \oplus f!\left(\eta^{\prime}\right) \oplus f!(\xi) \\
& \simeq \tau_{M}^{n} \oplus f!\left(\eta^{\prime} \oplus \xi\right) \simeq \tau_{M}^{n} \oplus \mathscr{O}_{M}^{k+\ell^{\prime}}
\end{aligned}
$$

Denoting $k+\ell^{\prime}$ by ℓ we have the following situation: \exists a vector bundle η of rank $n+\ell$ on X with $[\eta]=-[\xi]$ and a map $f: M \rightarrow X$ of degree 1 satisfying $f!(\eta) \approx \tau_{M}^{n} \otimes \mathscr{O}_{M}^{\ell}$. Without loss of generality we can assume $\ell^{\prime} \geq 1$. Our aim is to surgerize M finitely many times and obtain a connected simply connected manifold M^{\prime} together with a map $f^{\prime}: M^{\prime} \rightarrow X$ inducing isomorphisms in homology and further satisfying
$f^{\prime}!(\xi) \approx \tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$. In this is done the theorem is proved since f^{\prime} will then be a homotopy equivalence by a theorem of J.H.C. Whitehead and the relation $f^{\prime}!(\xi)=\tau_{M^{\prime}}^{n} \otimes \mathscr{O}_{M^{\prime}}^{\ell}$ implies $\left[f^{\prime}!(\xi)\right]=-\left[\tau_{M^{\prime}}^{n}\right]$. In case n is odd and ≥ 5 we will be able to achieve this using conditions i) and ii) and when $n=4 d$ with d an integer >1 we will also need condition iii) to do the same.

3 Surgery or Spherical modification

The unit disk $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}$ in \mathbb{R}^{n} is denoted by D^{n} and the unit open ball $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2}<1\right\}$ by B^{n}. For any real number $t>0$ the closed disk and the open ball of radius t are denoted by $t D^{n}$ and $t B^{n}$ respectively. All the manifolds we consider are oriented C^{∞} manifolds. We use the letter V to denote a compact manifold without boundary, of dimension $n \geq 1$.

Definition 3.1. Given an orientation preserving differentiable imbedding $\varphi: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow V$ with $n>q \geq 0$ let $\chi(V, \varphi)$ denote the quotient manifold obtained from the disjoint union $V-\varphi\left(S^{q} \times \frac{1}{2} D^{n-q}\right) U \frac{3}{2} B^{q+1} \times$ S^{n-q-1} by identifying $\varphi(x, t, y)$ with $(t x, y) \forall x \in S^{q}, y \in S^{n-q-1}$ and $\frac{1}{2}<t<3 / 2$.

It is easy to check that $\chi(V, \varphi)$ is Hausdorff. Since $\varphi(x, t y) \leadsto(t x, y)$ is a diffeomorphism for $x \in S^{q}, y \in S^{n-q-1}$ and $\frac{1}{2}<t<3 / 2$ it follows that $\chi(V, \varphi)$ is a C^{∞}-manifold. It is clearly compact and oriented. The manifold $\chi(V, \varphi)$ is said to be got from V by a surgery of type $(q+1, n-q)$.

Two compact if oriented manifolds V and V^{\prime} are said to be χ-equivalent if \exists a finite sequence of manifolds $V_{1}=V_{1}, V_{2}, \ldots, V_{r}=V^{\prime}$ such that V_{i+1} is got from V_{i} by a surgery.

Lemma 3.2. Suppose V has s connected components with $s \geq 2$ and $\varphi: S^{o} \times D^{n} \rightarrow V$ an orientation preserving imbedding which carries the
two components of $S^{o} \times D^{n}$ into distinct components of V. Then $\chi(V, \varphi)$ has exactly $(s-1)$ connected components.

Proof. Trivial for $n \geq 2$. For $n=1$ we have to use the fact that every component of V is diffeomorphic to S^{\prime}.

Using conditions i) and ii) of Theorem 2.1 we obtained a compact oriented manifold M of dimension n, a vector bundle η of rank $(n+\ell)$ on X with $[\eta]=-[\xi]$ and a map $f: M \rightarrow X$ of degree 1 satisfying $f!(\eta) \approx \tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$. Let $\varphi: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow M$ be an orientation preserving imbedding with $n>q \geq 0$. Assume further that $f \circ \varphi\left(S^{q} \times \frac{3}{2} D^{n-q}\right)=x^{*}$, a chosen base point for X. Let $M^{\prime}=\chi(M, \varphi)$ and let $f^{\prime}: M^{\prime} \rightarrow X$ be defined as follows. Setting $M_{o}=M-\varphi\left(S^{q} \times B^{n-q}\right)$ the map f^{\prime} is given by $f^{\prime}\left|M_{o}=f\right| M_{o}$ and $f^{\prime} \mid \varphi^{\prime}\left(D^{q+1} \times S^{n-q-1}\right)=x^{*}$ where $\varphi^{\prime}: D^{q+1} \times$ $S^{n-q-1} \rightarrow M^{\prime}$ denotes the imbedding induced by the inclusion $D^{q+1} \times$ $S^{n-q-1} \rightarrow \frac{3}{2} B^{q+1} \times S^{n-q-1}$. Clearly f^{\prime} is well defined and continuous.

Lemma 3.3. The map $f^{\prime}: M^{\prime} \rightarrow X$ is of degree 1 .
Proof. Consider the following commutative diagram.

Diagram 3.

Here $j_{*}, j_{*}^{\prime}, e_{*}$ and e_{*}^{\prime} are homomorphisms induced by the respective inclusions. The maps e_{*} and e_{*}^{\prime} are isomorphisms by excision and homotopy. That f^{\prime} is of degree 1 now follows from $e_{*}^{\prime-1} j_{*}^{\prime}\left[M^{\prime}\right]=e_{*}^{-1} j_{*}[M]$.

Suppose M is not connected. Choosing $\varphi: S^{o} \times \frac{3}{2} D^{n}$ such that the two components of $S^{o} \times \frac{3}{2} D^{n}$ go into distinct components of M let $M^{\prime}=\chi(M, \varphi)$. Since X is connected it follows that $f \circ \varphi: S^{o} \times \frac{3}{2} D^{n} \rightarrow X$ is homotopic to constant map. By homotopy extension property we can choose a map $g: M \rightarrow X$ with $g \sim f$ and $g \left\lvert\, \varphi\left(S^{o} \times \frac{3}{2} D^{n}\right)=x^{*}\right.$. Then clearly g is of degree 1 and $g!(\eta) \approx \tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$. Thus we can without loss of generality assume that f itself satisfies the condition $f \varphi\left(S^{o} \times \frac{3}{2} D^{n}\right)=$ x^{*}. Let $f^{\prime}: M^{\prime} \rightarrow X$ be the associated map i.e. $f^{\prime}\left|M_{o}=f\right| M_{o}$ and $f^{\prime} \mid \varphi^{\prime}\left(D^{\prime} \times S^{n-1}\right)=x^{*}$.

Lemma 3.4. $f^{\prime}: M^{\prime} \rightarrow X$ is of degree 1 and $f^{\prime}!(\eta) \approx \tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$.
Proof. That f^{\prime} is of degree 1 follows from Lemma3.3 Let $T_{M}=\tau_{M}^{n} \oplus$ $\mathscr{O}_{M^{\prime}}^{\ell}$ and $T_{M},=\tau_{M^{\prime}}^{n} \otimes \mathscr{O}_{M^{\prime}}^{\ell}$ and $\psi: T_{M} \rightarrow f!(\eta)$ a bundle isomorphism. Our aim is to get a bundle isomorphism $\psi^{\prime}: T_{M^{\prime}} \rightarrow f^{\prime}!(\eta)$. Since $T_{M^{\prime}}\left|M_{o}=T_{M}\right| M_{o}$ and $f^{\prime}\left|M_{o}=f\right| M_{o}$ we can take $\psi^{\prime}=\psi$ on $T_{M^{\prime}} \mid M_{o}$. We denote the image of $S^{o} \times D^{n}$ by φ in M by $\operatorname{im} \varphi$ and the image of $D^{1} \times S^{n-1}$ under φ^{\prime} in M^{\prime} by im φ^{\prime}. We identify $T_{M^{\prime}} \mid \operatorname{im} \varphi=\tau_{\varphi},\left(D^{1} \times S^{n-1}\right)$ with $\left(\left.\tau_{\frac{3}{2} B^{1} \times \frac{3}{2} B^{2}} \right\rvert\, D^{1} \times S^{n-1}\right) \oplus \mathscr{O}_{D^{\prime} \times S^{n-1}}^{\ell-1}$. Let $w_{1}, \ldots, w_{n+\ell}$ be a trivialization of $\tau_{\frac{3}{2} B^{1} \oplus \frac{3}{2} B^{n}} \oplus \mathscr{O}_{\frac{3}{2} B^{1} \times \frac{3}{2} B^{n}}^{\ell-1}$ and take the induced trivialization of $T_{M}^{\prime} \mid \operatorname{im} \varphi^{\prime}$ to identify it with $D^{1} \times S^{n-1} \times \mathbb{R}^{n+\ell}$. Let $e_{1}, \ldots, e_{n+\ell}$ be a basis of the fibre of η at x and let $u_{1}, \ldots, u_{n+\ell}$ be the pull back trivialisation of $f^{\prime}!(\eta) \mid \operatorname{im} \varphi^{\prime}$. Using this trivialization we identify $f^{\prime}!(\eta) \mid \operatorname{im} \varphi^{\prime}$ with $D^{1} \times S^{n-1} \times \mathbb{R}^{n+\ell}$. The map $\psi: T_{M^{\prime}} \mid$ Bdry $M_{o} \rightarrow f^{\prime}!(\eta) \mid$ Bdry M_{o} then corresponds to an orientation preserving bundle map $\psi: S^{o} \times S^{n-1} \times \mathbb{R}^{n+\ell} \rightarrow S^{o} \times S^{n-1} \times$ $\mathbb{R}^{n+\ell}$ and thus to a continuous map $\Theta: S^{o} \times S^{n-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ given by $\psi(x, \vec{v})=(x, \Theta(x) \vec{v}) \forall \vec{v} \in \mathbb{R}^{n+\ell}$. To get a bundle map $T_{M^{\prime}} \rightarrow$ $f^{\prime}!(\eta)$ extending $\psi^{\prime}: T_{M^{\prime}}\left|M_{o} \rightarrow f^{\prime}!(\eta)\right| M_{o}$ it suffices to get a continuous extension of Θ into a map $D^{1} \times S^{n-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$. But we know that ψ comes from a bundle map $T_{M}|\operatorname{im} \varphi \rightarrow f!(\eta)| \operatorname{im} \varphi$. Since $f \mid \varphi\left(S^{o} \times\right.$ $\left.D^{n}\right)=x^{*}$ the trivialization $u_{1}, \ldots, u_{n+\ell}$ of $T_{M}^{\prime} \mid$ Bdry $M_{o}=T_{M} \mid$ Bdry M_{o} extends to a trivialization of $f!(\eta) \mid \operatorname{im} \varphi$. Also $T_{M} \mid \operatorname{im} \varphi=\tau_{\varphi\left(S^{\circ} \times D^{n}\right)} \oplus$
$\mathscr{O}_{\varphi\left(S^{o} \times D^{n}\right)}^{\ell}$ can be identified with $\left.\left(\tau_{\frac{3}{2} B^{1} \times \frac{3}{2} B^{n}} \oplus \mathscr{O}_{\frac{3}{2} B^{1} \times \frac{3}{2} B^{n}}^{\ell-1}\right) \right\rvert\, S^{o} \times D^{n}$. Thus the trivialization $w_{1}, \ldots, w_{m+\ell}$ extends to a trivialization of $T_{M} \mid \operatorname{im} \varphi$. Using these trivializations we see that ψ corresponds to a bundle map $S^{o} \times D^{n} \times \mathbb{R}^{n+\ell} \rightarrow S^{o} \times D^{n} \times \mathbb{R}^{n+\ell}$. In otherwords \exists an extension $\bar{\Theta}$ of Θ into a map $S^{o} \times D^{n} \rightarrow G L_{+}(n+\ell, \mathbb{R})$. Since $G L_{+}(n+\ell, \mathbb{R})$ is connected and D^{n} contractible it follows that \exists a map $D^{1} \times D^{n} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ extending $\bar{\Theta}$. This complete the proof of Lemma 3.4

As an immediate consequence of lemmas 3.2 and 3.4 we get the following:

Proposition 3.5. There exists a connected, compact, oriented C^{∞} man-
ifold M^{\prime} which is χ-equivalent to M and a map $f^{\prime}: M^{\prime} \rightarrow X$ of degree 1 with $f^{\prime}!(\eta) \approx T_{M^{\prime}}=\tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$.

We now change our notations. We replace M^{\prime} by M and f^{\prime} by f. Thus M is connected and $f: M \rightarrow X$ is of degree 1 with $f!(\eta) \approx$ $\tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$.

Let $\varphi: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow M$ be an orientation preserving imbedding where $n>q \geq 1$ and let us assume $f \varphi\left(S^{q} \times \frac{3}{2} D^{n-q}\right)=x^{*}$. Let f^{\prime} : $M^{\prime}=\chi(M, \varphi) \rightarrow X$ be the associated map. In general $f^{\prime}!(\eta)$ need not be isomorphic to $\tau_{m}^{n}, \oplus \mathscr{O}_{M^{\prime}}^{\ell}$. Consider the following alteration of the map φ. Let $\alpha: S^{q} \rightarrow S o(n-q)$ be a C^{∞} map and let $\varphi_{\alpha}: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow$ M be given by $\varphi_{\alpha}(x, y)=\varphi(x, \alpha(x) y) \forall(x, y) \in S^{q} \times \frac{3}{2} D^{n-q}$. Clearly φ_{α} is an imbedding, also satisfying, $f \varphi_{\alpha}\left(S^{q} \times \frac{3}{2} D^{n-q}\right)=x^{*}$. Let f_{α}^{\prime} : $M_{\alpha}^{\prime}=\chi\left(M, \varphi_{\alpha}\right) \rightarrow X$ be the associated map. The sets $\varphi\left(S^{q} \times D^{n-q}\right)$ and $\varphi^{\prime}\left(D^{q+1} \times S^{n-q-1}\right)$ (and similarly $\varphi_{\alpha}\left(S^{q} \times D^{n-q}\right)$ and $\varphi_{\alpha}^{\prime}\left(D^{q+1} \times\right.$ $\left.S^{n-q-1}\right)$) are denoted by $\operatorname{im} \varphi$ and $\operatorname{im} \varphi^{\prime}$ respectively (similarly by $\operatorname{im} \varphi_{\alpha}$ and $\operatorname{im} \varphi_{\alpha}^{\prime}$ respectively). Let ψ^{\prime} be defined to be ψ on $T_{M^{\prime}}\left|M_{o}=T_{M}\right| M_{o}$ into $f^{\prime}!(\eta)\left|M_{o}=f!(\eta)\right| M_{o}$. Let $e_{1}, \ldots, e_{n+\ell}$ be a fixed basis of the fibre of η at x^{*} and $u_{1}, \ldots, u_{n+\ell}$ the pull back trivialization of $f!(\eta) \mid \operatorname{im} \varphi$. Then $v_{i}=\psi^{-1}\left(u_{i}\right)$ constitute a trivialization of $T_{M^{\prime}}\left|\operatorname{im} \varphi=T_{M}\right| \operatorname{im} \varphi$ and there exists a bundle isomorphism $T_{M^{\prime}} \rightarrow f^{\prime}!(\eta)$ extending ψ^{\prime} if and only if
the trivialization $v_{1}, \ldots, v_{n+\ell}$ of $T_{M^{\prime}} \mid B d r y M_{o}$ extends to a trivialization of $T_{M^{\prime}} \mid \operatorname{im} \varphi^{\prime}$. We identify $T_{M^{\prime}} \mid \operatorname{im} \varphi^{\prime}$ with

$$
\left.\left(\tau_{\frac{3}{2} B^{q+1} \times \frac{3}{2} B^{n-q}} \oplus \mathscr{O}_{\frac{3}{2} B^{q+1} \times \frac{3}{2} B^{n-q}}^{\ell-1}\right) \right\rvert\, D^{q+1} \times S^{n-q-1}
$$

Let $w_{1}, \ldots, w_{n+\ell}$ be any trivialization of
$\mathscr{L}_{\frac{3}{2} B^{4+1} \times \frac{3}{2} B^{n-q}}=\left(\tau \oplus \mathscr{O}^{l-1}\right)_{\frac{3}{2} B^{q+1} \times \frac{3}{3} B^{n-4}}$. Then we get a continuous map $\Theta: S^{q} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ given by $v(x, y)=\Theta(x, y) w(x, y)$ $\forall(x, y) \in S^{q} \times S^{n-q-1}$. If there is an extension of Θ into a continuous map $D^{q+1} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ then $v_{1}, \ldots, v_{n+\ell}$ can be extended to a trivialization of $T_{M^{\prime}} \mid \operatorname{im} \varphi^{\prime}$. But since $T_{M} \mid \operatorname{im} \varphi$ is identifiable with $\left(\tau \oplus \mathscr{O}^{\ell-1}\right)_{\frac{3}{2} B^{q+1} \times \frac{3}{2} B^{n-q}}$ we see that Θ admits of an extension $\bar{\Theta}: S^{q} \times$ $D^{n-q} \rightarrow G L_{+}(n+\ell, \mathbb{R})$. Hence $\Theta: S^{q} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ admits of an extension $D^{q+1} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ whenever $\bar{\Theta}$ admits of an extension $D^{q+1} \times D^{n-q} \longrightarrow G L_{+}(n+\ell, \mathbb{R})$. Choosing a fixed point $y_{0}=S^{n-q-1}$ the obstruction to the existence of such an extension is given by the homotopy class of the map $\gamma: S^{q} \longrightarrow G L_{+}(n+\gamma, \mathbb{R})$ where $\gamma(x)=\Theta\left(x, y_{0}\right)$. Let us denote this obstruction class by $\gamma(\varphi) \in$ $\Pi_{q}\left(G L_{+}(n+\ell, \mathbb{R})\right)$. Let the obstruction class for the imbedding φ_{α} be denoted by $\gamma\left(\varphi_{\alpha}\right)$.

Lemma 3.6. The obstruction $\gamma\left(\varphi_{\alpha}\right)$ depends only on $\gamma(\varphi)$ and the homotopy class (α) of α in $\Pi_{q}(S O(n-q))$. More precisely identifying $\pi_{q}(S O(n-q))$ with $\pi_{q}\left(G L_{+}(n-q), \mathbb{R}\right)$ we have $\gamma\left(\varphi_{\alpha}\right)=\gamma(\varphi)+s_{*}(\alpha)$ where $s_{*}: \pi_{q}\left(G L_{+}(n-q, \mathbb{R})\right) \rightarrow \pi_{q}\left(G L_{+}(n+\ell, \mathbb{R})\right)$ is the map induced by the inclusion $s: G L_{+}((n-q), \mathbb{R}) \rightarrow G L_{+}(n+\ell, \mathbb{R})$.

Proof. Suppose $\varepsilon_{1}, \ldots, \varepsilon_{n+\ell}$ is any trivialisation of $T_{M^{\prime}} \mid \operatorname{im} \varphi^{\prime}$ and suppose $\lambda: S^{q} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ the map given by $v(x, y)=$ $\lambda(x, y) \in(x, y) \forall(x, y) \in S^{q} \times S^{n-q-1}$. Then \exists a counts map P : $D^{q+1} \times S^{n-q-1} \rightarrow G L_{+}(n+\ell, \mathbb{R})$ such that $\Theta(x, y)=\lambda(x, y) p(x, y)$. Actually P is the transformation relating the frame $\varepsilon(x, y)$ to $v^{\prime}(x, y)$. Hence the homotopy class of $A \mid S^{q} \times y o$ is the same as that of $\lambda \mid S^{q} \times y o$. Now let $\Phi^{\prime}: D^{q+1} \times\left(D^{n-q}-\{0\}\right) \rightarrow M^{\prime} \times \mathbb{R}$ be the map given by $\Phi^{\prime}(x, y)=$ $\left(\varphi^{\prime}\left(x, \frac{y}{\|y\|}\right),\|y\|-1\right)$. Choosing some trivialisation $C_{0}, C_{1} \ldots, C_{\ell-1}$ of
$\mathscr{O}_{\operatorname{im} \varphi^{\prime}}^{\ell}$, we see that

$$
\frac{\partial \Phi^{\prime}}{\partial \xi}=\left(\frac{\partial \Phi^{\prime}}{\partial x_{1}}, \ldots, \frac{\partial \Phi^{\prime}}{\partial x_{q+1}}, \ldots, \frac{\partial \Phi^{\prime}}{\partial y_{n-q}}, C_{1}, \ldots, C_{\ell-1}\right)
$$

can be chosen as a trivialization for $T_{M^{\prime}} \mid \operatorname{im} \varphi^{\prime}$. Thus the obstruction $\gamma(\varphi)$ is the class of the continuous map $\gamma(x)$ given by $\gamma(x)=\left\langle\frac{\partial \Phi^{\prime}}{\partial \xi}, \nu\right\rangle(x)$, the matrix of v w.r.t the basis $\frac{\partial \Phi^{\prime}}{\partial \xi}$. The obstruction $\gamma\left(\varphi_{\alpha}\right)$ is the homotopy class of the map $\gamma_{\alpha}(x)=\left\langle\frac{\partial \Phi_{\alpha}^{\prime}}{\partial \xi}, v\right\rangle(x)$ where Φ_{α}^{\prime} is defined similar to Φ^{\prime} using φ^{\prime}. It is easily seen that we have $\frac{\partial \Phi^{\prime} \alpha}{\partial x_{i}}=\frac{\partial \Phi^{\prime}}{\partial x_{i}}+\sum_{k} \frac{\partial \Phi^{\prime}}{\partial y_{k}} a_{k i}$ (for some $\left.a_{k i}\right) \frac{\partial \Phi_{\varepsilon}^{\prime}}{\partial y_{j}}=\sum_{k} \frac{\partial \Phi^{\prime}}{\partial y_{k}} A_{k j}$ where $\left(A_{k j}(x)\right)=\alpha(x)$. If, for every $0 \leq t \leq 1$ the frame $\left(\frac{\partial \Phi_{\alpha}^{\prime}}{\partial \xi}\right)_{t}$ is defined by $\left(\frac{\partial \Phi_{x}^{\prime}}{\partial x_{i}}\right)_{t}=\frac{\partial \Phi^{\prime}}{\partial x_{i}}+t \sum_{k} \frac{\partial \Phi^{\prime}}{\partial y_{k}} a_{k i}(i=1,2, \ldots q+1)$ $\left(\frac{\partial \Phi_{x}^{\prime}}{\partial y_{j}}\right)_{t}=\frac{\partial \Phi_{p}^{\prime}}{\partial y_{j}}(j=1,2, \ldots n-q)$ and $\left(C_{\mu}\right)_{t}=C_{\mu}(=1,2, \ldots \ell-1)$.

We see that $\gamma_{\alpha}^{t}(x)=\left\langle\left(\frac{\partial \Phi_{\alpha}^{\prime}}{\partial \xi}\right)_{t}, v\right\rangle(x)$ gives a homotopy between the map $\gamma_{\alpha}^{0}(x)=\gamma(x) . s(x)$ where $s: G L_{+}(n-q, \mathbb{R}) \rightarrow G L_{+}(n+\ell, \mathbb{R})$ is the inclusion and $\gamma_{\alpha}^{1}(x)=\gamma_{\alpha}(x)$. Thus the homotopy class $\left[\gamma_{\alpha}\right]$ is the same as $[\gamma]+s_{*}(\alpha)$. Thus is to say $\gamma\left(\varphi_{\alpha}\right)=\gamma(\varphi)+s_{*}(\alpha)$.

Perhaps we should have remarked earlier that while dealing with oriented bundles the trivializations are supposed to be those belonging to the orientation class. Since $s_{*}: \prod_{q}(S O(n-q)) \rightarrow \prod_{q}(S O(n+\ell))$ is surjective for $q<n-q$ we have the following:

Proposition 3.7. If $q<\frac{n}{2} \exists a C^{\infty}$ map $\alpha: S^{q} \rightarrow S O(n-q)$ such that $f_{\alpha}^{\prime}: M_{\alpha}^{\prime}=\chi\left(M, \varphi_{\alpha}\right) \rightarrow X$ satisfies $f_{\alpha}^{\prime}!(\eta) \approx \tau_{M_{\alpha}^{\prime}}^{n} \oplus \mathscr{O}_{M_{\alpha}^{\prime}}^{\ell}$.

Let now V be connected of dimension $n \leq 4$ and v^{*} some chosen base point in V. Choose some base point P^{*} in S^{1} and let $\varphi: S^{1} \times \frac{3}{2} D^{n-1} \rightarrow V$ be an orientation preserving imbedding such that $\varphi\left(p^{*}, 0\right)=v^{*}$ and $\varphi \mid S^{1} \times 0$ represents $\lambda \in \Pi_{1}\left(V, v^{*}\right)$. Let $V^{\prime}=\chi(V, \varphi)$ and let V_{0} and $\varphi^{\prime}: D^{2} \times S^{n-2} \rightarrow V^{\prime}$ have their usual meanings i.e. $V_{\circ}=V-\varphi\left(S^{1} \times B^{n-1}\right)$ and φ^{\prime} is the imbedding of $D^{2} \times S^{n-2}$ into V^{\prime} induced by the inclusion
of $D^{2} \times S^{n-2}$ in $\frac{3}{2} B^{2} \times S^{n-2}$. Choose some fixed $z^{*} \in S^{n-2}$ and choose $v^{\prime *}=\varphi\left(p^{*}, z^{*}\right)=\varphi^{\prime}\left(p^{*}, z^{*}\right)$ as the base point of V^{\prime}. Let σ be the path in V given by $\sigma(t)=\varphi\left(p^{*}, t z^{*}\right)$; it is a path joining v^{*} to v^{*} in V and let $\sigma_{*}: \prod_{1}\left(V, v^{*}\right) \rightarrow \prod_{1}\left(V, v^{*}\right)$ be the isomorphism induced by σ.
Lemma 3.8. Let $N(\lambda)$ be the normal subgroup of $\prod_{1}\left(V, v^{\prime *}\right)$ generated by $\sigma_{*}(\lambda)$. Then $\prod_{1}\left(V^{\prime}, v^{\prime *}\right)$ is isomorphic to $\prod_{1}\left(V, v^{* *}\right) / N(\lambda)$.
Proof. Let $j_{*}:\left(V_{\circ}, v^{\prime *}\right) \rightarrow\left(V, v^{* *}\right)$ be the inclusion. We claim that $j_{*}: \prod_{1}\left(V_{0}, v^{*}\right) \rightarrow \prod_{1}\left(V, v^{* *}\right)$ is an isomorphism.

In fact if $\Theta:\left(S^{1}, p^{*}\right) \rightarrow\left(V, v^{*}\right)$ is any map and $\bar{\Theta}:\left(S^{1}, p^{*}\right) \rightarrow$ $\left(V, v^{\prime *}\right)$ a map homotopic to Θ and transverse regular on $\varphi\left(S^{1} \times 0\right)$ (such a map exists since $v^{*} \notin \varphi\left(S^{1} \times 0\right)$), since $\operatorname{Codim} \varphi\left(S^{1} \times 0\right)$ in V is ≥ 2 (actually $\operatorname{Codim} \varphi\left(S^{1} \times 0\right)$ in $V \geq 3$). We see that $\bar{\Theta}\left(S^{1}\right) \cap \varphi\left(S^{1} \times 0\right)=\phi$. Choosing a deformation retraction $r: S^{1} \times\left(D^{n-1}-0\right) \rightarrow S^{1} \times S^{n-2}$ we see that $r^{\prime}=\varphi r \varphi^{-1}: \varphi\left(S^{1} \times\left(D^{n-1}-0\right)\right) \rightarrow \varphi\left(S^{1} \times S^{n-2}\right)$ is a deformation retraction and that $r^{\prime} \bar{\Theta}$ is a map homotopic to $\bar{\Theta}$ and satisfying $r^{\prime} \bar{\Theta}\left(S^{1}\right) \subset$ V_{\circ}. Thus j_{*} is onto. Also if $\psi:\left(S^{1}, p^{*}\right) \rightarrow\left(V_{\circ}, \nu^{* *}\right)$ is a map such that $j \psi$ is homotopic to a constant map then \exists an extension (also denoted by ψ) of ψ into a map $\psi: D^{2} \rightarrow V$ with $\psi(0)={v^{\prime}}^{*}$. We can get a map $\bar{\psi}$ with $\bar{\psi}\left|S^{1} \cup 0+\psi\right| s^{1} \cup 0$ and $\bar{\psi}$ transverse regular on $\varphi\left(S^{1} \times 0\right)$. Since Codim of $\varphi\left(S^{1} \times 0\right)$ in $V \geq 3$ we see that $\bar{\psi}\left(D^{2}\right) \cup \varphi\left(S^{1} \times 0\right)=\phi$ and an argument similar to the one above yields a homotopy of $\psi:\left(S^{1}, p^{*}\right) \rightarrow\left(V_{\circ}, v^{*}\right)$ with the constant map, taking place on V_{\circ} itself. This show that j_{*} is a monomorphism.

We have $V^{\prime}=V_{\circ} \cup \operatorname{im} \varphi^{\prime}$ (as usual $\operatorname{im} \varphi^{\prime}=\varphi^{\prime}\left(D^{2} \times S^{n-2}\right)$) with $V_{\circ} \cap \operatorname{im} \varphi^{\prime}=\varphi\left(S^{1} \times S^{n-2}\right)=\varphi^{\prime}\left(S^{1} \times S^{n-2}\right)$. Clearly V_{\circ}, $\operatorname{im} \varphi^{\prime}$ and $V_{\circ} \cap \operatorname{im} \varphi^{\prime}$ are connected. Lemma 3.8 follows immediately from Van Kampen theorem. also, clearly V^{\prime} is connected.

As already remarked earlier by us Theorem 2.1 needs to be proved only when $n \geq 5$. We have already obtained a compact, connected, oriented C^{∞} manifold M of dimension n and a map $f: M \rightarrow X$ of degree 1 with $f!(\eta) \simeq \tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$. (Refer Proposition 3.5)

Proposition 3.9. There exists a connected simply connected manifold M^{\prime} which is χ-equivalent to M and map $f^{\prime}: M^{\prime} \rightarrow X$ of degree 1 satisfying $f^{\prime}!(\eta) \simeq \tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$.

Proof. Choose some base point $m^{*} \in M$. We can without loss of generality assume that $f\left(m^{*}\right)=x^{*}$ for otherwise we can change f to a homotopic map satisfying this condition. Since M is a compact manifold $\prod_{1}\left(M, m^{*}\right)$ is finitely generated. Let $\lambda_{1}, \ldots, \lambda_{r}$ be generators for $\prod_{1}\left(M, m^{*}\right)$. We can get an imbedding $\varphi: S^{1} \rightarrow M$ representing λ_{1} (for this $n \geq 3$ is sufficient). Since M is oriented the normal bundle of φ in M is trivial and hence it can be extended into an orientation preserving diffeomorphism $\varphi: S^{1} \times \frac{3}{2} D^{n-1} \rightarrow M$. Since X is simply connected we have $f \circ \varphi$ homotopic to the constant map. By changing f if necessary to a homotopic map we can assume $f \varphi\left(S^{1} \times \frac{3}{2} D^{n-1}\right)=x^{*}$. Now let $M_{\varphi}^{\prime}=\chi(M, \varphi)$ and $f_{\varphi}^{\prime}: M_{\varphi}^{\prime} \rightarrow X$ be the map associated to f. By proposition 3.7 ヨ a C^{∞} map $\alpha: S^{1} \rightarrow S O(n-1)$ such that $f_{\alpha}^{\prime}: M_{\alpha}^{\prime}=M_{\varphi_{\alpha}}^{\prime}=\chi\left(M, \varphi_{\alpha}\right) \rightarrow X$ satisfies $f_{\alpha}^{\prime}!(\eta) \simeq \tau_{M_{\alpha}^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime} \alpha}^{\ell}$ and is of degree 1. The map $\varphi_{\alpha} \mid S^{1} \times 0$ is the same as $\varphi \mid S^{1} \times 0=\varphi: S^{1} \rightarrow M$. Hence $\varphi_{\alpha} \mid S^{1}$ represents the same element as φ i.e. λ_{1}. By Lemma 3.8 it follows that $\prod_{1}\left(M_{\alpha}^{\prime}\right)$ is isomorphic to $\prod_{1}(M) /$ (Normal $s \cdot g$ generated by λ_{1}) and hence $\prod_{1}\left(M_{\alpha}^{\prime}\right)$ is generated by $(r-1)$ elements. It now follows that after a finite number of surgeries we can get a connected, simply connected manifold M^{\prime} and a map $f^{\prime}: M^{\prime} \rightarrow X$ satisfying the requirements of the proposition.

Remark. For applying lemma 3.8 we only nee that $\operatorname{dim} M=n \geq 4$. Moreover we have so far used only conditions i) and ii) of Theorem 2.1.

4 Effect of surgery on homology

Let A and B be any two connected, simply connected topological spaces and q an integer ≥ 2. Suppose $h: A \rightarrow B$ is a continuous map such that $h_{*}: H_{i}(A) \rightarrow H_{i}(B)$ is an isomorphism for $i<q$ and an epimorphism for $i=q$. Denote the Kernel of $h_{q}: H_{q}(A) \rightarrow H_{q}(B)$ by K_{q}.

Lemma 4.1. Any $x \in K_{q}$ can be represented by a map $\Theta: S^{q} \rightarrow A$ (i.e.
$\Theta_{*}\left(i_{q}\right)=x$ where i_{q} is a generator of $H_{q}\left(S^{q}\right)$) with ho Θ homotopic to a constant map.

Proof. Without loss of generality we can assume h to be an inclusion map, for otherwise, we replace h by the inclusion of A into the mapping cylinder of h. For the proof of Lemma4.1 we use the Relative Hurewicz Theorem. Since $h_{*}: H_{i}(A) \rightarrow H_{i}(B)$ is an isomorphism for $i<q$ and an epimorphism for $i=q$ it follows from the exact homology sequence of the pair (B, A) that $H_{i}(B, A)=0$ for $i \leq q$. Hence by the relative Hurewicz Theorem $\prod_{i}(B, A)=0$ for $i \leq q$ and $\rho: \prod_{q+1}(B, A) \xrightarrow{\approx}$ $H_{q+1}(B, A)$ where ρ is the Hurewicz homomorphism. Now consider the following diagram.

Diagram 4
The maps indicated by ρ are the Hurewicz homomorphisms. If $x \in$ K_{q} then $\exists y \in H_{q+1}(B, A)$ such that $\partial y=x$.

Let $y^{1} \in \prod_{q+1}(B, A)$ be given by $\rho^{-1}(y)$. The element $z \in \prod_{q}(A)$ given by $z=\partial y^{1}$ satisfies $\rho(z)=x$ and $h_{*}(z)=h_{*}\left(\partial y^{1}\right)=0$. Hence if $\Theta: S^{q} \rightarrow A$ represents $z \in \prod_{q}(A)$ then Θ satisfies the requirements of the Lemma.

Lemma 4.2. Suppose v is a vector bundle of rank $(n-q)$ over S^{q} which is stably trivial. If $2 q<n$ then v itself is trivial.

Proof. Let v be determined by the element μ of $\prod_{q-1}(S O(n-q))$. Stable triviality of v implies that \exists an integer $r \geq n-q$ such that $s_{*}(\mu)=0$ where $s_{*}: \prod_{q-1}(S O(n-q)) \rightarrow \prod_{q-1}(S O(r))$ is the homomorphism induced by the inclusion $S O(n-q) \rightarrow(S O(r))$. But if $2 q<n$ the map s_{*} is an isomorphism. Hence $\mu=0$.

Let V be a compact, connected, oriented C^{∞} manifold with $\prod_{1}(V)=$ 0 of dimension n and let B be any connected, simply connected space. Let $h: V \rightarrow B$ be a continuous map with $h_{*}: H_{i}(V) \rightarrow H_{i}(B)$ an isomorphism for $i<q$ and an epimorphism for $i=q$ where $q \geq 2$.

Further assume \exists a vector bundle ζ on B with $[h:(\zeta)]=\left[\zeta_{V}\right]$. Denote the Kernel of h_{q} by K_{q}.

Lemma 4.3. If $2 q<n$ any $x \in K_{q}$ can be represented by a C^{∞} imbedding $\varphi: S^{q} \rightarrow V$ whose normal bundle v_{φ} is trivial and which further satisfies $h \circ \varphi \sim$ constant map.

Proof. By Lemma4.1 \exists a map $\Theta: S^{q} \rightarrow V$ representing x such that $h \circ \Theta$ is homotopically trivial. If $2 q<n \exists$ a C^{∞} imbedding $\varphi: S^{q} \rightarrow V$ with $\Theta \sim \varphi$. We have $\tau_{V} \mid \varphi\left(S^{q}\right) \simeq \tau_{\varphi\left(S^{q}\right)} \oplus v_{\varphi}$ where v_{φ} is the normal bundle of the imbedding φ. Since $\tau_{\varphi\left(S^{q}\right)} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)} \simeq \mathscr{O}_{\varphi\left(S^{q}\right)}^{q+1}$, we see that $\left[\tau_{V} \mid \varphi\left(S^{q}\right)\right]=\left[v_{\varphi}\right]$. But $\left[\tau_{V} \mid \varphi\left(S^{q}\right)\right]=\left[h!(\zeta) \mid \varphi\left(S^{q}\right)\right]$. Since $h \circ \varphi$ is homotopically trivial by construction we see that v_{φ} is stably trivial. Now Lemma 4.2 yields that v_{φ} itself is trivial.

Assume $2 q<n$. Let $x \in K_{q}$ and let $\varphi: S^{q} \rightarrow V$ be a C^{∞} imbedding representing x. Since the normal bundle v_{φ} is trivial we can extend φ into a orientation preserving imbedding $\varphi: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow V$. Since $h \circ \varphi$ is homotopic to the constant map, changing h in its homotopy class we may assume $h \circ \varphi=$ Const b^{*}. Let $V^{\prime}=\chi(V, \varphi)$ and $h^{\prime}: V^{\prime} \rightarrow B$ the associated map i.e. to say $h^{\prime}\left|V_{\circ}=h\right| V_{\circ}$ and $h^{\prime} \mid \operatorname{im} \varphi^{\prime}=b^{*}$ where $V_{\circ}, \operatorname{im} \varphi$ and $\operatorname{im} \varphi^{\prime}$ have their customary meanings.

Proposition 4.4. $h_{*}^{\prime}: H_{i}\left(V^{\prime}\right) \rightarrow H_{i}(B)$ is an isomorphism for $i<q$ and the Kernel K_{q}^{\prime} of $h_{q}^{\prime}=H_{q}\left(V^{\prime}\right) \rightarrow H_{q}(B)$ is isomorphic to $K_{q} \mid(x)$, whenever $2 q<n-1$.

Proof. Consider the following commutative diagram.

I. Theorem of Browder and Novikov

Since by assumption $2 q<n-1$, whenever $1 \leq i \leq q$ we have $H_{i}\left(S^{q} \times D^{n-q}\right)=0=H_{i}\left(D^{q+1} \times S^{n-q-1}\right)$ and hence
$j_{*}^{-1} \circ e^{-1} \circ e^{\prime} j_{*}^{\prime}=H_{i}\left(V^{\prime}\right) \rightarrow H_{i}(V)$ will then be an isomorphism satisfying commutativity in

This shows that h^{*} is an isomorphism for $i<q$. When $i=q$ Diagram 5 yields the following diagram.

Diagram 6.

The map φ_{*} is given by $\varphi_{*}(1)=x$. We get an isomorphism of $\left.H_{q}(V)\right) /(x)$ (induced by j_{*}) with $H_{q}(V, \operatorname{im} \varphi)$ and then we see that \exists an isomorphism $H_{q}(V) /(x) \xrightarrow{\approx} H_{q}\left(V^{\prime}\right)$ making

This proves that $K_{q}^{\prime} \approx K_{q} /(x)$.
Assuming conditions i) and ii) of Theorem 2.1 with $n \geq 4$ we have obtained a compact, connected oriented C^{∞} manifold M of dimension n with $\prod_{1}(M)=$ and a map $f: M \rightarrow X$ of degree 1 satisfying $f!(\eta) \approx$ $\tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$.

Proposition 4.5. There exists a connected, simply connected manifold M^{\prime} which is χ equivalent to M and a map $f^{\prime}=M^{\prime} \rightarrow X$ of degree 1 such that $f^{\prime}!(\eta) \approx \tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$, and $\left.f_{*}^{\prime}: H_{i}\left(M^{\prime}\right) \rightarrow H\right)_{i}(X)$ an isomorphism for $i<\frac{n}{2}$.

Proof. For $n=4$ there is nothing to prove for $f: M \rightarrow X$ already satisfies the requirements of the proposition. Since M is compact the homology groups $H_{i}(M)$ are all finitely generated. For $n \geq 5$ Proposition 4.5 is a consequence of this fact, Lemma 4.3 and Propositions 4.4 and 3.7

Remark 4.5'. If $f_{*}^{\prime}: H_{q}\left(M^{\prime}\right) \rightarrow H_{q}(X)$ also is an isomorphism for $q=$ $\left[\frac{n}{2}\right]$ then $f^{\prime}: M^{\prime} \rightarrow X$ will be a homotopy equivalence. To show this we have only to show that $f_{*}^{\prime}: H_{i}\left(M^{\prime}\right) \rightarrow H_{i}(X)$ is an isomorphism for every i. As already proved (Lemma 2.5) the fact that f^{\prime} is of degree 1 implies that $f_{*}^{\prime}: H_{i}\left(M^{\prime}\right) \rightarrow H_{i}(X)$ is onto for every i. Let $a \in H_{i}\left(M^{\prime}\right)$ be such that $f_{*}^{\prime}(a)=0(i>q)$. Let $\alpha=\Delta^{-1}(a) \in H^{n-1}\left(M^{\prime}\right)$. Since $i>q$ we have $n-i \leq q$. Since $f_{*}^{\prime}: H_{j}\left(M^{\prime}\right) \rightarrow H_{j}(X)$ is an isomorphism for $j \leq q$ we have $f^{\prime *}: H^{j}(X) \rightarrow H^{j}\left(M^{\prime}\right)$ an isomorphism for $j \leq q$ by the Universal Coefficient Theorem. Hence α can be written as $f^{\prime *}(\beta)$ for a unique $\beta \in H^{n-i}(X)$. Then if $x=\beta \cap u \in H_{i}(X)$ by the definition of g given in Lemma 2.5 we have $g(x)=a$. But $H_{i}\left(M^{\prime}\right)=\operatorname{ker} f_{*}^{\prime} \oplus g_{i} H_{i}(X)$ (direct sum). This implies $a=0$ and hence f_{*}^{\prime} an isomorphism for all i.

Let A be any connected topological space satisfying Poincare duality with $u \in H_{n}(A) \simeq \mathbb{Z}$ as the fundamental class.

Definition 4.6. Let $a \in H_{i}(A)$ and $b \in H_{n-i}(A)$. The homology intersection of a and b, denoted by $a . b$ is defined as follows: We identify $H_{0}(A)$ with \mathbb{Z} with any element (i.e. $p t$) w of A as a generator. Let $\alpha=\Delta^{-1}(a)$ and $\beta=\Delta^{-1}(b)$ where Δ is the Poincare isomorphism. Then $\alpha \cup \beta \in H^{n}(A)$. The homology intersection a. b is that integer which satisfies $(\alpha \cup \beta) \cap u=(a . b) w$. Because of $(1) \$ 1.2$ we see that a. b can also be defined as the value $(\alpha \cup \beta)[u]$ of $\alpha \cap \beta$ on the homology class u.

Let V be a compact, connected, simply connected C^{∞} manifold of dimension $n \geq 4$ and let $q=\left[\frac{n}{2}\right]$.

Lemma 4.7. Let $a \in H_{q}(V)$ and suppose $\exists b \in H_{n-q}(V)$ such that a.b $=1$. Suppose also that a is represented by an imbedding $\phi: S^{q} \times$ $\frac{3}{2} D^{n-q} \rightarrow V\left(\right.$ i.e. $\varphi \mid S^{q} \times 0$ represents $\left.a\right)$.

Let $V^{\prime}=\chi(V, \varphi)$. Then Rank $H_{q}\left(V^{\prime}\right)<\operatorname{Rank} H_{q}(V)$ and $H_{i}\left(V^{\prime}\right) \approx 41$ $H_{i}(V)$ for $i<q$.

Proof. Let $V_{\circ}, \operatorname{im} \varphi$ and $\operatorname{im} \varphi^{\prime}$ have their customary meanings. By excision and homotopy we have $H_{i}\left(V, V_{\circ}\right) \underset{\approx}{\stackrel{\varphi_{*}}{\approx}} H_{i}\left(S^{q} \times D^{n-q}, S^{q} \times S^{n-q}\right)$.

Also

$$
H_{i}\left(S^{q} \times D^{n-q}, S^{q} \times S^{n-q-1}\right)=\left\{\begin{array}{l}
\mathbb{Z} \text { if } i=n-q \text { or } n \\
0 \text { otherwise }
\end{array}\right.
$$

From the homology exact sequence of the pair $\left(V, V_{\circ}\right)$ we see that $H_{i}\left(V_{\circ}\right) \xrightarrow{\left(i_{\circ}\right)_{*}} H_{i}(V)$ is an isomorphism whenever $i \neq n-q$ and n. (Here $i_{\circ}: V_{\circ} \rightarrow V$ denotes the inclusion). Also we have the following exact sequence:

$$
0 \rightarrow H_{n-q}\left(V_{\circ}\right) \rightarrow H_{n-q}(V) \xrightarrow{j_{*}} H_{n-q}\left(V, V_{\circ}\right) \simeq \mathbb{Z} \xrightarrow{\partial} H_{n-q-1}(V) \rightarrow \cdots
$$

The homomorphism $j_{*}: H_{n-q}(V) \rightarrow H_{n-q}\left(V, V_{\circ}\right)$ can more explicitly be described as follows. Identifying $H_{n-q}\left(V, V_{\circ}\right)$ with $H_{n-q}\left(S^{q} \times\right.$ $\left.D^{n-q}, S^{q} \times S^{n-q-1}\right)$ we see that $\varphi\left(x_{0} \times D^{n-q}\right)$ with x_{0} some fixed base point in S^{q}, is a generator for the group $H_{n-q}\left(V, V_{\circ}\right) \simeq \mathbb{Z}$. Denoting this generator by 1 we have $j_{*}(y)= \pm a$. $y 1$. In fact the intersection number of $\varphi\left(S^{q} \times 0\right)$ with $\varphi\left(x_{0} \times D^{n-q}\right)$ being clearly ± 1 we have $j_{*}(y)= \pm a$. $y 1$.

The existence of an element $b \in H_{n-q}(V)$ with $a \cdot b=1$ ensures that $j_{*}: H_{n-q}(V) \rightarrow \mathbb{Z}$ is an epimorphism and hence we have the exact sequence

$$
0 \rightarrow H_{n-q}\left(V_{\circ}\right) \rightarrow H_{n-q}(V) \xrightarrow{j_{*}} \mathbb{Z} \rightarrow 0
$$

In particular Rank $H_{n-q}\left(V_{\circ}\right)<\operatorname{Rank} H_{n-q}(V)$

We have $V^{\prime}=V_{\circ} \cup D^{q+1} \times S^{n-q-1}$ with $V_{\circ} \cap D^{q+1} \times S^{n-q-1}=$ $S^{q} \times S^{n-q-1}$. Letting $j_{1}: S^{q} \times S^{n-q-1} \rightarrow D^{q+1} \times S^{n-q-1}$ and $i^{\prime}=V_{\circ} \rightarrow V^{\prime}$ denote the respective inclusions we have the Mayer-Vietais sequence.

$$
\begin{aligned}
H_{i}\left(S^{q} \times S^{n-q-1}\right) & \xrightarrow{\left(-j_{1}\right)_{*} \oplus \varphi_{*}} H_{i}\left(D^{q+1} \times S^{n-q-1}\right) \oplus H_{i}\left(V_{\circ}\right) \\
& \xrightarrow{\varphi_{*}^{\prime}+i_{*}^{\prime}} H_{i}\left(V^{\prime}\right) \rightarrow H_{i-1}\left(S^{q} \times S^{n-q-1}\right)
\end{aligned}
$$

It follows that if $1<i<n-q-1$ we have

$$
H_{i}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{i}\left(V^{\prime}\right)
$$

Also if $i=1$ and $i<n-q-1$ we have the exact sequence

$$
0 \rightarrow 0 \oplus H_{1}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{1}\left(V^{\prime}\right) \rightarrow \mathbb{Z} \xrightarrow{\left(-j_{1}\right)_{*} \oplus \varphi_{*}} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\varphi_{*}^{\prime}+i_{*}^{\prime}} \mathbb{Z}
$$

The map $\left(-j_{1}\right)_{*} \oplus \varphi_{*}$ carries $1 \in \mathbb{Z}=H_{0}\left(S^{q} \times S^{n-q-1}\right)$ into $(-1,1)$ of $\mathbb{Z} \oplus \mathbb{Z}$ and hence a monomorphism. Therefore $H_{1}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{1}\left(V^{\prime}\right)$ is also an isomorphism in this case. Thus we see that if $i<n-q-1$ then $H_{i}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{i}\left(V^{\prime}\right)$ is an isomorphism. We now consider the two cases $n=2 q+1$ and $n=2 q$ separately.
Case (1) $n=2 q+1$. Then $q=n-q-1$. We have already proved that $H_{i}\left(V_{\circ}\right) \xrightarrow{\left(i_{\circ}\right)_{*}} H_{i}(V)$ is an isomorphism for $i \neq n-q$ and n. The Mayer-Victoris sequence for $i=q$ yields the exact sequence $H_{q}\left(S^{q} \times\right.$ $\left.S^{q}\right) \xrightarrow{(-j)_{*} \oplus \varphi_{*}} H_{q}\left(D^{q+1} \times S^{q}\right) \oplus H_{q}\left(V_{\circ}\right) \rightarrow H_{q}\left(V^{\prime}\right) \rightarrow 0$. Writing $H_{q}\left(S^{q} \times\right.$ S^{q}) as $\mathbb{Z} \oplus \mathbb{Z}$ we see that $\left(-j_{1}\right)_{*} \oplus \varphi_{*}$ carries $(1,0)$ of $\mathbb{Z} \oplus \mathbb{Z}$ into $\left(i_{\circ_{*}}^{-1},(a)\right.$ of $H_{q}\left(D^{q+1} \times S^{q}\right) \oplus H_{q}\left(V_{\circ}\right)$ and $(0,1)$ into $(-1,0)$. Since the intersection number $a \cdot b=1$ we see that a has to be of infinite order and the above sequence now yields $H_{q}\left(V^{\prime}\right) \simeq H_{q}\left(V_{\circ}\right) /(a)$. Observing that $\left(i_{\circ}\right)_{*}: H_{q}\left(V_{\circ}\right) \rightarrow H_{q}(V)$ is an isomorphism we see that Rank $H_{q}\left(V^{\prime}\right)<$ Rank $H_{q}(V)$. Actually $H_{q}\left(V^{\prime}\right) \simeq H_{q}(V) /(a)$.
Case (2) $n=2 q$. As already verified $H_{i}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{i}\left(V^{\prime}\right)$ is an isomorphism for $i<n-q-1=q-1$. Also $H_{i}\left(V_{\circ}\right) \xrightarrow{\left(i_{0}\right)_{*}} H_{i}(V)$ is an isomorphism for $i \neq q$ and n. Combining these $H_{i}(V) \xrightarrow{i_{*}^{\prime} \circ\left(i_{0}\right)_{*}^{-1}} H_{i}\left(V^{\prime}\right)$ is an
isomorphism for $i<q-1$. For $i=q-1$ the Mayer-Victoris sequence yields the exact sequence

$$
\begin{aligned}
H_{q-1}\left(S^{q} \times S^{q-1}\right) & \xrightarrow{\left(-j_{1}\right)_{*} \oplus \varphi_{*}} H_{q-1}\left(D^{q+1} \times S^{q-1}\right) \oplus H_{q-1}\left(V_{\circ}\right) \\
& \rightarrow H_{q-1}\left(V^{\prime}\right) \rightarrow 0 .
\end{aligned}
$$

But $H_{q-1}\left(S^{q} \times S^{q-1}\right) \simeq \mathbb{Z}, H_{q-1}\left(D^{q+1} \times S^{q-1}\right) \simeq \mathbb{Z}$ and the map $\left(-j_{1}\right)_{*} \oplus \varphi_{*}$ carries 1 of $H_{q-1}\left(S^{q} \times S^{q-1}\right)$ into $(-1,0)$. Hence $i_{*}^{\prime}: H_{q-1}$ $\left(V_{\circ}\right) \rightarrow H_{q-1}\left(V^{\prime}\right)$ is an isomorphism. Since $\left(i_{\circ}\right)_{*}: H_{q-1}\left(V_{\circ}\right) \rightarrow H_{q-1}(V)$ is also an isomorphism we have $H_{q-1}(V) \xrightarrow{i_{*}^{\prime} \cdot\left(i_{0}\right)_{*}^{-1}} H_{q-1}\left(V^{\prime}\right)$ an isomorphism. For $i=q$ the Mayer-Victoris sequence yields

$$
H_{q}\left(S^{q} \times S^{q-1}\right) \rightarrow 0 \oplus H_{q}\left(V_{\circ}\right) \rightarrow H_{q}\left(V^{\prime}\right) \rightarrow H_{q-1}\left(S^{q} \times S^{q-1}\right) \xrightarrow{\text { 'mono' }}
$$ $H_{q-1}\left(D^{q+1} \times S^{q-1}\right) \oplus H_{q-1}\left(V_{\circ}\right)$.

The map $H_{q-1}\left(S^{q} \times S^{q-1}\right) \xrightarrow{\left(-j_{1}\right)_{*} \oplus \varphi_{*}} H_{q-1}\left(D^{q+1} \times S^{q-1}\right) \oplus H_{q-1}\left(V_{\circ}\right)$ which carries the generator 1 of $H_{q-1}\left(S^{q} \times S^{q-1}\right)$ into $(-1,0)$ is clearly a monomorphism. Hence $H_{q}\left(S^{q} \times S^{q-1}\right) \rightarrow H_{q}\left(V_{\circ}\right) \xrightarrow{i_{*}^{\prime}} H_{q}\left(V^{\prime}\right) \rightarrow 0$ is exact. It follows that Rank $H_{q}\left(V^{\prime}\right)<\operatorname{Rank} H_{q}\left(V_{\circ}\right)$. The map composite $H_{q}\left(S^{q} \times S^{q-1}\right) \rightarrow H_{q}\left(V_{\circ}\right)$ carries the generator of $H_{q}\left(S^{q} \times S^{q-1}\right)$ into ' a ', an element of infinite order. As already verified Rank $H_{q}\left(V_{\circ}\right)<$ Rank $H_{q}(V)$ (since $q=n-q$, and we actually verified Rank $H_{n-q}\left(V_{\circ}\right)<$ Rank $\left.H_{n-q}(V)\right)$.

This completes the proof of Lemma 4.7

5 Proof of the main theorem for $n=4 d>4$

We have already obtained a compact, connected, simply connected C^{∞} manifold M of dimension $4 d$ and a map $f: M \rightarrow X$ of degree 1 satisfying $f!(\eta) \simeq \tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$ and $f_{*}: H_{i}(M) \rightarrow H_{i}(X)$ an isomorphism $\forall i<2 d$. (Proposition 4.5).

Let $K_{2 d}=\operatorname{Ker} f_{2 d}: H_{2 d}(M) \rightarrow H_{2 d}(X)$.
Lemma 5.1. $K_{2 d}$ is a free abelian group.
Proof. Since $H_{2 d}(M)$ is finitely generated and $K_{2 d}$ a direct summand of $H_{2 d}(M)$ (Lemma 2.5) it follows that $K_{2 d}$ is finitely generated. To
prove that $K_{2 d}$ is free it therefore suffices to prove that $K_{2 d}$ is torsion free. We write g for $2 d$ for simplicity. If possible let $x \in K_{q}$ be any torsion element and let $x^{1} \in H^{q}(M)$ correspond to x under Poincare duality i.e. $x^{1} \cap[M]=x$. x^{1} is then a torsion element of $H^{q}(M)$. By the Universal Coefficient Theorem for cohomology we have the following commutative diagram.

Diagram 7
Clearly, $\operatorname{Hom}\left(H_{q}(M), \mathbb{Z}\right)$ is torsion free. Also for any finitely generated abelian group A the $\operatorname{group} \operatorname{Ext}(A, \mathbb{Z})$ is a torsion group. It follows that $\beta\left(\operatorname{Ext}\left(H_{q-1}(M), \mathbb{Z}\right)\right)$ is precisely the torsion subgroup of $H^{q}(M)$. Hence \exists an element $y^{1} \in \operatorname{Ext}\left(H_{q-1}(M), \mathbb{Z}\right)$ with $\beta\left(y^{1}\right)=x^{1}$. Since f_{*} : $H_{i}(M) \rightarrow H_{i}(X)$ is an isomorphism for $i \leq q-1$ we have

$$
\operatorname{Ext}\left(f_{*}, I d_{\mathbb{Z}}\right): \operatorname{Ext}\left(H_{q-1}(X), \mathbb{Z}\right) \rightarrow \operatorname{Ext}\left(H_{q-1}(M), \mathbb{Z}\right)
$$

an isomorphism. Let $z^{1} \in H^{q}(X)$ be given by $z^{1}=\beta \circ\left(\operatorname{Ext}\left(f_{*}, I d_{\mathbb{Z}}\right)^{-1}\left(y^{\prime}\right)\right)$. Then clearly $f^{*}\left(z^{1}\right)=x^{1}$. Our aim is to show that K_{q} has no torsion, or that $x=0$. For this it suffices to show that $x^{1}=0$ since $\cap[M]=\Delta: H^{q}(M) \rightarrow H_{q}(M)$ is an isomorphism. Now consider the element $z^{1} \cap u \in H_{q}(X)$. Since f is of degree 1 we have $f_{*}([M])=u$. We have

$$
0=f_{*}(x)=f_{*}\left(x^{1} \cap[M]\right)=f_{*}\left(f^{*}\left(z^{1}\right) \cap[M]\right)=z^{1} \cap f_{*}[M]=z^{1} \cap u
$$

But by assumption $\cap u: H^{q}(X) \rightarrow H_{q}(X)$ is an isomorphism. Hence $z^{1}=0$ and therefore $x^{1}=f^{*}\left(z^{1}\right)=0$. This completes the proof of Lemma 5.1

For the rest of $\S 5$ we denote $2 d$ by q.
Let $H_{q}(M)=K_{q} \oplus g H_{q}(X)$ be the splitting given by Lemma 2.5

Lemma 5.2. For any $a \in K_{q}$ and any $b \in g H_{q}(X)$ the intersection number $a \cdot b=0$. Also if $b_{1}=g\left(c_{1}\right)$ and $b_{2}=g\left(c_{2}\right)$ with $c_{1}, c_{2} \in H_{q}(X)$ then the intersection number $b_{1} \cdot b_{2}$ is the same is $c_{1} \cdot c_{2}$.

Proof. Let $b=g(c)$ with $c \in H_{q}(X)(c$ is unique since g is a mono).
Let $\gamma \in H^{q}(X)$ be such that $\gamma \cap u=c$. Then by the very definition of g we have $b=f^{*}(\gamma) \cap[M]$. To prove that $a \cdot b=0$ it suffices to verify that $f_{*}\left(\left(\alpha \cup f^{*}(\gamma)\right) \cap[M]\right)=0$ with $\alpha \in H^{q}(M)$ satisfying $\alpha \cap[M]=a$. Since $q=2 d$ we have $\alpha \cup f^{*}(\gamma)=f^{*}(\gamma) \cup \alpha$. Hence $f_{*}\left(\left(\alpha \cup f^{*} \gamma\right) \cap[M]\right)=(-1)^{q \cdot q} f_{*}\left(\left(f^{*} \gamma \cup \alpha\right)[M]\right)=f_{*}\left(f^{*} \gamma \cap(\alpha \cap[M])\right)$ (since $q=2 d)=f_{*}\left(f^{*} \gamma \cap a\right)=\gamma \cap f_{*}(a)=0$ since $f_{*}(a)=0$. Choosing γ_{1}, γ_{2} in $H^{q}(X)$ with $\gamma_{1} \cap u=c_{1}, \gamma_{2} \cap u=c_{2}$ we have $b_{1}=f^{*}\left(\gamma_{1}\right) \cap[M]$ and $b_{2}=f^{*}\left(\gamma_{2}\right) \cap[M]$. Now

$$
\begin{aligned}
f_{*}\left(\left(f^{*} \gamma_{1} \cup f^{*} \gamma_{2}\right) \cap[M]\right) & =f_{*}\left(f^{*}\left(\gamma_{1} \cup \gamma_{2}\right) \cap[M]\right)=\left(\gamma_{1} \cup \gamma_{2}\right) \cap f_{*}([M]) \\
& =\left(\gamma_{1} \cup \gamma_{2}\right) \cap u .
\end{aligned}
$$

From this the equality $b_{1} \cdot b_{2}=c_{1} \cdot c_{2}$ follows.
Denoting by $T_{q}(M)$ and $T_{q}(X)$ respectively the torsion subgroup of $H_{q}(M)$ and $H_{q}(X)$ we have $H_{q}(M) /_{q^{(}(M)} \simeq K_{q} \oplus \frac{H_{q}(X)}{T_{q}(X)}$. (because of Lemma 5.1. Lemma 5.2 precisely states that we can find bases for K_{q} and $\frac{H_{q}(X)}{T_{q}(X)}$ such that the matrix A_{M} of the intersection bilinear form on $H_{q}(M) / T_{q}(M)$ take the form $\left(\begin{array}{cc}A_{K} & 0 \\ 0 & A_{X}\end{array}\right)$ where A_{K} and A_{X} are the matrices of the form restricted to K_{q} and $H_{q}(X) / T_{q}(X)$. Also the lemma asserts that the restriction of the intersection bilinear form on $H_{q}(M) / T_{q}(M)$ to $H_{q}(X) / T_{q}(X)$ agrees with the intersection bilinear form on $H_{q}(X) / T_{q}(X)$ got from the fact that X satisfies Poincare duality. Since intersection by definition corresponds to cup-product under Poincare duality we see that the signature of A_{M} is the same as the index of the manifold $I(M)$ defined in 1.6 and similarly signature if A_{X} is $I(X)$. Let us denote the signature of A_{K} by $I(K)$. Then we have $I(X)+I(K)=I(M)$.

Lemma 5.3. $I(K)$ is zero.
Proof. The assumption iii) of Theorem 2.1 is actually used in concluding that $I(K)=0$. We have a map $f: M \rightarrow X$ of degree 1 with
$f!(\eta)=\tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$. Also $[\eta]=-[\xi]$. By Hirzobruch's Index Theorem $I(M)=\left\{L_{d}\left(p_{1}\left(\tau_{M}^{n}\right), \ldots, p_{d}\left(\tau_{M}^{n}\right)\right)\right\}[M]$.

But $L_{d}\left(p_{1}\left(\tau_{M}^{n}\right), \ldots, p_{d}\left(\tau_{M}^{n}\right)\right)=L_{d}\left(p_{1}(f!(\eta)), \ldots, p_{d}(f!(\eta))\right.$ (since $L_{k}\left(p_{1}(\lambda), \ldots, p_{k}(\lambda)\right)$ for any vector bundle λ depends only on the stable class of λ). Hence

$$
\begin{aligned}
I(M) & =\left\{L _ { d } \left(p_{1}\left(f!(\eta), \ldots, p_{d}(f!(\eta))\right\}[M]\right.\right. \\
& =\left\{L_{d}\left(p_{1}(\eta), \ldots, p_{d}(\eta)\right)\right\}\left(f_{*}[M]\right) \\
& =\left\{L_{d}\left(\overline{p_{1}}(\xi), \ldots, \overline{p_{1}}(\xi)\right)\right\}(u) \\
& =I(X) \text { by assumption }(i i i) .
\end{aligned}
$$

This proves that $I(K)=0$.
Denote the group $H^{q}(M) / T^{q}(M)$ (where $T^{q}(M)$ is the torsion of $H^{q}(M)$) By $B^{q}(M)$ and similarly the group $H_{q}(M) / T_{q}(M)$ by $B_{q}(M)$. Choosing any basis x_{1}, \ldots, x_{r} for B^{q} we see that $y_{i}=x_{i} \cap[M]$ (actually $\cap[M]: H^{q}(M) \rightarrow H_{q}(M)$ gives a well determined isomorphism also denoted by $\cap M$ of $B^{q}(M)$ onto $\left.B_{q}(M)\right)$ form a basis for $B_{q}(M)$. Since $B^{q}(M) \simeq \operatorname{hom}\left(B_{q}(M), \mathbb{Z}\right)$ we can get elements $y_{i}^{1}, \ldots, y_{r}^{1}$ in B^{q} such that $y_{i}^{1}\left(y_{j}\right)=\delta_{i j}$. The bilinear form $(x, y) \rightsquigarrow(x \cup y)[M]$ on B^{q} is easily seen to have determinant ± 1, for $\left(y_{j}^{1} \cup x_{i}\right)[M]=y_{j}^{1}\left(y_{i}\right)=\delta_{i j}$. It follows that A_{M} has determinant ± 1. Similarly A_{X} has determinant ± 1. It follows that A_{K} has determinant ± 1.

Lemma 5.4. If B is a symmetric non-degenerate bilinear form on a finitely generated free abelian group H. with determinant ± 1 and if the signature of B is Zero then $\exists x \neq 0$ in H such that $B(x, x)=0$.

A proof of this can be found in [6]. As a corollary we see that if $K_{q} \neq 0 \exists$ an element $a \neq 0$ in K_{q} such that $a . a=0$. Moreover we can choose ' a ' to be indivisible in K_{q}. Then $K_{q} \mid(a)$ is free and hence we can find a basis of the form a, b_{2}, \ldots, b_{r} for K_{q}. Since A_{k} has determinant ± 1 and $a . a=0$ we cannot have $a \cdot b_{j}=0 \forall j$. If j_{1}, \ldots, j_{r}, are the indices in $(2, \ldots, r)$ with a. $b_{j} \neq 0$ then g.c.d (a. $\left.b_{j_{i}}\right)$ has to be 1 for otherwise this greatest common divisor will divide determinant of A_{K}.

Hence \exists integers $m_{j_{i}}$ such that $\sum_{i=1}^{r^{\prime}} m_{j_{i}}\left(\right.$ a. $\left.b_{j_{i}}\right)=1$. The element $b \in K_{q}$
given by $b=\sum_{i=1}^{r^{\prime}} m_{j_{i}}\left(b_{j_{i}}\right)$ satisfies $a . b=1$.
Lemma 5.5. If $d>1$ there exists an imbedding $\varphi: S^{q} \rightarrow M^{4 d}(q=2 d)$ representing a and further satisfying $f \circ \varphi \sim \tilde{x}^{*}$ (where \tilde{x}^{*} is the constant map $S^{q} \rightarrow x$ carrying the whole of S^{q} into x^{*}.)

Proof. It is for the proof of this lemma that we need d to be 1. By Lemma $4.1 \exists$ a continuous map $\Theta: S^{q} \rightarrow M$ representing ' a ' and satisfying $f \circ \Theta \sim \tilde{x}^{*}$. We use the fact that M is simply connected. Also since M is of dimension $4 d$ with d an integer >1 it follows from Lemma 6 of [6] that \exists a C^{∞} imbedding $\varphi: S^{q} \rightarrow M$ with $\varphi \sim \Theta$. This proves Lemma 5.5

Remark. It is not true that a continuous map $\Theta: S^{2} \rightarrow V^{4}$ is homotopic to a C^{∞} imbedding even if V^{4} is a compact, simply connected C^{∞} manifold (if dimension 4). An example is given by Kervaire and Milnor in [3].

Lemma 5.6. For any C^{∞} imbedding $\varphi: S^{q} \rightarrow M$ representing ' a ' and satisfying $f \circ \varphi \sim \tilde{x}^{*}$ the normal bundle ν_{φ} is trivial.

Proof. We have $\tau_{M} \mid \varphi\left(S^{q}\right) \simeq \tau_{\varphi\left(S^{q}\right)}^{q} \oplus v_{\varphi}^{q}$. Since M and S^{q} are orientable it follows that v_{φ} in orientable. Also from $f!(\eta)\left|\varphi\left(S^{q}\right) \simeq\left(\tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}\right)\right| \varphi\left(S^{q}\right)$, we have

$$
\begin{aligned}
& f!(\eta) \mid \varphi\left(S^{q}\right) \simeq \tau^{q} \varphi\left(S^{q}\right) \oplus v_{\varphi}^{q} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)}^{\ell} \approx \tau_{\varphi\left(S^{q}\right)} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)} \oplus v_{\varphi}^{q} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)}^{\ell-1} \\
& \simeq \mathscr{O}_{\varphi\left(S^{q}\right)}^{q+1} \oplus v_{\varphi} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)}^{\ell-1} \simeq v_{\varphi} \oplus \mathscr{O}_{\varphi\left(S^{q}\right)}^{q+\ell} .
\end{aligned}
$$

But since $f \circ \varphi \sim \tilde{x}^{*}$ we have $f!(\eta) \mid \varphi\left(S^{q}\right) \simeq \mathscr{O}_{\varphi\left(S^{q}\right)}^{2 q+\ell}$.
Thus $v_{\varphi} \otimes \mathscr{O}_{\varphi\left(S^{q}\right)}^{q+\ell} \simeq \mathscr{O}_{\varphi\left(S^{q}\right)}^{2 q+\ell}$. Thus v_{φ} is stably trivial. If $v \in \Pi_{q-1}\left(S O_{q}\right)$ is the element corresponding to the bundle v_{φ} on S^{q} we have $S_{*}(v)=0$ where $s_{*}: \Pi_{q-1}\left(S O_{q}\right) \rightarrow \Pi_{q-1}\left(S O_{2 q+\ell}\right)$ is the homomorphism induced by the inclusion. Since $\Pi_{q-1}\left(S O_{q+1}\right) \rightarrow \Pi_{q-1}\left(S O_{2 q+\ell}\right)$ is an isomorphism it follows that $i_{*}(v)=0$ where $i_{*}: \Pi_{q-1}\left(S O_{q}\right) \rightarrow \Pi_{q-1}\left(S O_{q+1}\right)$
is induced by the inclusion. Since $S O_{q+1} / S O_{q}=S^{q}$ we have a fibration of $S O_{q+1}$ by $S O_{q}$ as the fibre and S^{q} as the base. Consider the corresponding exact sequence

$$
\Pi_{q}\left(S^{q}\right) \xrightarrow{\partial} \Pi_{q-1}\left(S O_{q}\right) \xrightarrow{i_{*}} \Pi_{q-1}\left(S O_{q+1}\right)
$$

∂ carries a generator of $\Pi_{q}\left(S^{q}\right)$ into the element τ of $\Pi_{q-1}\left(S O_{q}\right)$ corresponding to the tangent bundle of S^{q}. Since $i_{*}(v)=0$ it follows that $v-k \tau$ for some integer k. The map which assigns to an isomorphism class λ of an orientable vector bundle of rank q over S^{q} its Euler class $\chi(\lambda)$ defines a homomorphism $\chi: \Pi_{q-1}\left(S O_{q}\right) \rightarrow H^{q}\left(S^{q}\right)$. For the tangent bundle τ of S^{q} the class $\chi(\tau)$ is known to be twice a generator of $H^{q}\left(S^{q}\right)$. (That $q=2 d$ is even, we use here). Thus the composition $\Pi_{q}\left(S^{q}\right) \xrightarrow{\partial} \Pi_{q-1}\left(S O_{q}\right) \xrightarrow{\chi} H^{q}\left(S^{q}\right)$ is a monomorphism and any element in the image of ∂ is zero if and only if its Euler class is zero. The Euler class of the normal bundle of the imbedding φ representing ' a ' can be identified with $a \cdot a$ times a generator of $H^{q}\left(S^{q}\right)$. For, given a normal vector field with a finite number of zeros on $\varphi\left(S^{q}\right)$ we can deform $\varphi\left(S^{q}\right)$ along these vectors to obtain a new imbedding which intersects $\varphi\left(S^{q}\right)$ at only finitely many places. The multiplicity of each such intersection is equal to the index of the corresponding zero of the normal vector field.

Remark. A more 'formal' proof for the fact that $\chi\left(v_{\varphi}\right)=a \cdot a$ times a generator of $H^{q}\left(S^{q}\right)$ can be given as follows.

Denoting the imbedded manifold $\varphi\left(S^{q}\right)$ by S^{q} itself, let Φ : H^{i} $\left(S^{q}\right) \rightarrow H^{q+i}(T(v))$ be the Thom isomorphism. If $U=\Phi(1) \in H^{q}(T(v))$ then the Euler class of v can be defined by $\chi(v)=\Phi^{-1}(\cup \cup \cup)$. [5]. Taking a tubular neighbourhood A of S^{q} in M and collapsing the exterior of A to a point we get a map $C: M \rightarrow T(v)$. If $\gamma \in H^{q}(M)$ is the class which corresponds to ' a ' under Poincare duality (i.e. $\gamma \cap[M]=a$) it is known that $C^{*}(\cup)=\gamma[9]$. Hence $C^{*}(\cup \cup \cup)=\gamma \cup \gamma=a \cdot a[M]$ by
the definition of the intersection number. But from the diagram

We see that $H^{2 q}\left(M, M-S^{q}\right) \simeq \mathbb{Z}$. Taking any pt $x \in S^{q}$ we have the triangle:

Hence $H^{2 q}(M, M-x) \simeq \mathbb{Z}$ has to be a direct summand of $H^{2 q}(M, M-$ S^{q}) which is also $\simeq \mathbb{Z}$. It follows that $j^{*}: H^{2 q}\left(M, M-S^{q}\right) \approx H^{2 q}(M)$. Examining the diagram again we see that $C^{*}=H^{2 q}(T(v)) \approx H^{2 q}(M)$. Hence $\cup \cup \bigcup=a \cdot a$ times a generator of $H^{2 q}(T(v))$ and $\Phi^{-1}(\cup \cup \bigcup)=$ $a \cdot a$ times a generator of $H^{q}\left(S^{q}\right)$.

We ar now almost at the end of the proof of Theorem 2.1for the case $n=4 d$. Choosing an indivisible $a \neq 0$ in K_{q} with $a \cdot a=0$ we saw that $\exists b \in K_{q}$ with $a \cdot b=1$. The existence of such an ' a ' was guaranteed by Lemma 5.4 From Lemma 5.5 and 5.6 we see that \exists an orientation preserving imbedding $\varphi: S^{q} \times \frac{3}{2} D^{q} \rightarrow M$ with $f \circ \varphi \sim \tilde{x}^{*}$ and representing ' a '. Let now $M^{\prime}=\chi(M, \varphi)$ and $f^{\prime}: M^{\prime} \rightarrow X$ the associated map which is constructed after altering f in its homotopy class so as to satisfy $f \circ \varphi=x^{*}$. By Lemma $3.3 f^{\prime}$ is of degree 1 . To get an isomorphism τ_{M}^{n}, $\oplus \mathscr{O}_{M}^{\ell}, \rightarrow f^{\prime}!(\eta)$ we had an obstruction $\gamma \in \Pi_{q}\left(S O_{n+\ell}\right)$ and when φ was replaced by φ_{α} given by $\varphi_{\alpha}(x, y)=\varphi(x, \alpha(x) y)$ with $\alpha: S^{q} \rightarrow S O_{q}$ a C^{∞} map then the new obstruction γ_{α} satisfied the relation $\gamma_{\alpha}=\gamma+s_{*}(\alpha)$ where $S_{*}: \Pi_{q}\left(S O_{q}\right) \rightarrow \Pi_{q}\left(S O_{n+\ell}\right)$ is the homomorphism induced by the inclusion. (Lemma 3.6. Since q is even the homomorphism
$\Pi_{q}\left(S O_{q}\right) \rightarrow \Pi_{q}\left(S O_{q+1}\right)$ is onto [8]. Also $\Pi_{q}\left(S O_{q+1}\right) \rightarrow \Pi_{q}\left(S O_{n+\ell}\right)$ is onto. Thus there exists an α such that $f_{\alpha}^{\prime}: M^{\prime}=\chi\left(M, \varphi_{\alpha}\right) \rightarrow X$ satisfies the condition $f^{\prime} \alpha!(\eta) \simeq \tau_{M}^{n}, \oplus \mathscr{O}_{M}^{\ell}$, in addition to being of degree 1 . Thus without loss of generality we can assume that f^{\prime} 'itself was 'good' in the sense that $f^{\prime}!(\eta) \simeq \tau_{M}^{n}, \mathscr{O}_{M}^{\ell}$. Denoting the inclusions of M_{o} in M and M^{\prime} respectively by i and i^{\prime} we have the following commutative diagram for every integer j.

By Case 2 of Lemma 4.7 we have $i_{*}: H_{j}\left(M_{o}\right) \rightarrow H_{j}(M)$ and $i_{*}^{\prime}:$ $H_{j}\left(M_{o}\right) \rightarrow H_{j}\left(M^{\prime}\right)$ to be isomorphisms for $j<q$. Since $f_{*}: H_{j}(M) \rightarrow$ $H_{j}(X)$ is an isomorphism for $j<q$ it follows that $f^{\prime}: H_{j}\left(M^{\prime}\right) \rightarrow H_{j}(X)$ is an isomorphism for $j<q$. Also by the same lemma $R K H_{q}\left(M^{\prime}\right)<$ $R K H_{q}(M)$. If K_{q}^{\prime} denotes the Kernel of $f_{q}^{\prime}=H_{q}\left(M^{\prime}\right) \rightarrow H_{q}(X)$ we have K_{q}^{\prime} free and of rank < rank of K_{q}. It follows that after a finite number of spherical modifications we can obtain a manifold $M^{\prime \prime}$ and a map $f^{\prime \prime}: M^{\prime \prime} \rightarrow X$ with $\operatorname{deg} f^{\prime \prime}=1, f^{\prime \prime}!(\eta) \simeq \tau_{M^{\prime \prime}}^{n} \oplus \mathscr{O}_{M^{\prime \prime}}^{\ell}$ and $K_{q}^{\prime \prime}=\operatorname{ker} f_{q}^{\prime \prime}=0$. It follows from the Remark 4.5] that $f^{\prime \prime}: M^{\prime \prime} \rightarrow X$ is a homotopy equivalence. This completes the proof of the main theorem for $n=4 d>4$.

6 Proof of the main theorem for $n=2 q+1$

Throughout §6e will assume $n=2 q+1$ with q an integer ≥ 2. Let $W=$ $W^{2 q+2}$ be a compact orientable topological manifold of dimension $2 q+2$ with boundary $b W$. Let F be any fixed field. The semi-characteristic
$e^{*}(b W ; F)$ of $b W$ with respect to F is defined to the residue class $\sum_{i=0}^{q}$ Rank $H_{i}(b W ; F)$ modulo 2. Let ρ_{F} be the rank of the bilinear pairing $H_{q+1}(W ; F) \otimes H_{q+1}(W ; F) \rightarrow F$ given by the intersection number and $e(W)$ the Euler characteristic of W,

Lemma 6.1. We have $e^{*}(b W ; F)+e(W) \equiv \rho_{F}(\bmod 2)$.
Proof. Consider the homology exact sequence of the pair $(W, b W)$ with coefficients in F,

$$
\begin{aligned}
H_{q+1}(W ; F) & \xrightarrow{j_{*}} H_{q+1}(W, b W ; F) \\
& \xrightarrow{\partial} H_{q}(b W ; F) \\
& \rightarrow \cdots \rightarrow H_{0}(W ; b W ; F) \rightarrow 0 .
\end{aligned}
$$

By Poincare-Lefschetz duality if $z \in H_{q+1}(W, b W ; F)$ is such that $x \cdot Z=0 \forall x \in H_{q+1}(W ; F)$ then $Z=0$. It follows from this remark and the relation $x \cdot y=x \cdot j_{*}(y)$ for any $x, y \in H_{q+1}(W ; F)$ that ker j_{*} is precisely the nullity of the intersection bilinear form on $H_{q+1}(W ; F)$. Hence

$$
\begin{aligned}
\rho_{F} & =\operatorname{dim} H_{q+1}(W ; F)-\operatorname{dim} \operatorname{ker} j_{*}=\operatorname{dim} \operatorname{im} j_{*}=\operatorname{dim} \operatorname{ker} \partial \\
& =\operatorname{dim} H_{q+1}(W, b W ; F)-\operatorname{dim} \operatorname{im} \partial
\end{aligned}
$$

Denoting the dimensions of $H_{j}(W: F)$ and $H_{j}(W, b W ; F)$ by $b_{j}(W ; F)$ and $b_{j}(W, b W ; F)$ respectively we have

$$
\rho_{F}=b_{q+1}(W, b W ; F)-b_{q}(b W ; F)+b_{q}(W ; F)-b_{q}(W, b W ; F)+\cdots .
$$

But $b_{i}(W, b W ; F)=b_{2 q+2-i}(W ; F)$ by Poincare-Lefschetz duality. Thus $\rho_{F} \equiv e^{*}(b W ; F)+e(W)(\bmod 2)$.

Let V be a compact connected oriented C^{∞} manifold of dimension $n=2 q+1$ and let $a \in H_{q}(V)$ be any torsion element $\neq 0$. Suppose further $\varphi: S^{q} \times \frac{3}{2} D^{n-q} \rightarrow V$ is an orientation preserving imbedding representing the homology class ' a '. Let $V^{\prime}=\chi(V, \varphi)$.

Lemma 6.2. If q is even we have an exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow H_{q}\left(V^{\prime}\right) \rightarrow H_{q}(V) /(a) \rightarrow 0
$$

where (a) is the subgroup generated by a in $H_{q}(V)$
Proof. As usual let $V_{\circ}=V-\varphi\left(S^{q} \times B^{q+1}\right)$ and let $\varphi^{\prime}: D^{q+1} \times S^{q} \rightarrow V^{\prime}$ be the imbedding induced by the inclusion of $D^{q+1} \times S^{q}$ in $\frac{3}{2} B^{q+1} \times S^{q}$. We then have the following commutative diagram with exact horizontal rows.

Diagram 8
Since $\varphi_{*}(1)=a$ by assumption it follows that $H_{q}\left(V^{\prime}, \varphi^{\prime}\left(D^{q+1} \times\right.\right.$ $\left.\left.S^{q}\right)\right) H_{q}\left(V, \varphi\left(S^{q} \times D^{q+1}\right)\right) \simeq H_{q}(V) /(a)$. To prove Lemma 6.2 we have only to show that $\varphi_{*}^{\prime}: \mathbb{Z} \rightarrow H_{q}\left(V^{\prime}\right)$ is a monomorphism. Since ' a ' is a torsion element to show that φ_{*}^{\prime} is a monomorphism we have only to prove that $b_{q}\left(V^{\prime}, \mathbb{Q}\right) \not \equiv b_{q}(V, \mathbb{Q})(\bmod 2)$ where $b_{q}(V, \mathbb{Q})$ is the $q^{\text {th }}$ Bettinumber of V i.e. the rank of $H_{q}(V, \mathbb{Q})$. Since $H_{i}(V) \simeq H_{i}\left(V, \varphi\left(S^{q} \times\right.\right.$ $\left.\left.D^{q+1}\right)\right) \simeq H_{i}\left(V_{\circ}, \varphi\left(S^{q} \times S^{q}\right)\right) \simeq H_{i}\left(V^{\prime}, \varphi^{\prime}\left(S^{q+1} \times S^{q}\right)\right) \simeq H_{i}\left(V^{\prime}\right)$ for $i<q$ the statement $b_{q}\left(V^{\prime}, \mathbb{Q}\right) \not \equiv b_{q}(V, \mathbb{Q})(\bmod 2)$ will follow if we show that $\sum_{i=0}^{q} b_{i}\left(V^{\prime}, \mathbb{Q}\right)+\sum_{i=0}^{q} b_{i}(V, \mathbb{Q}) \not \equiv 0(\bmod 2)$.

Let $W=I \times V \bigcup_{\varphi} D^{q+1} \times D^{q+1}$ be the topological manifold got as follows. We take the disjoint union of $I \times V$ and $D^{q+1} \times D^{q+1}$ and identify the points of $S^{q} \times D^{q+1}$ with their images under φ in $V \times 1$. Then W is a compact orientable manifold of dimension $2 q+2$ with boundary
consisting of the disjoint union of V and V^{\prime}. Hence by Lemma 6.1 we have $e^{*}(b W ; \mathbb{Q})+e(W) \equiv \rho(\bmod 2)$ where ρ is the rank of the intersection bilinear pai ring $H_{q+1}(W, \mathbb{Q}) \times H_{q+1}(W, \mathbb{Q}) \rightarrow \mathbb{Q}$. Since q is even, this intersection bilinear pairing is skew symmetric and hence ρ is even. But

$$
e^{*}(b W ; \mathbb{Q}) \equiv \sum_{i=0}^{q} b_{i}\left(V^{\prime}, \mathbb{Q}\right)+\sum_{i=0}^{q} b_{i}(V, \mathbb{Q})(\bmod 2)
$$

Also W is of the same homotopy type as the space got from V by attaching D^{q+1} by means of $\varphi \mid S^{q} \times 0$ and hence $e(W)=e(V)+(-1)^{q+1}$. Since V is of dimension $2 q+1$ by Poincare duality we have $e(V) \equiv 0$ $(\bmod 2)$ and hence the relation $e^{*}(b W ; \mathbb{Q})+e(W) \equiv 0(\bmod 2)$ yields $\sum_{i=0}^{q} b_{i}\left(V^{\prime} \mathbb{Q}\right)+\sum_{i=0}^{q} b_{i}(V, \mathbb{Q})+(-1)^{q+1} \equiv(\bmod 2)$ or $\sum_{i=0}^{q} b_{i}\left(V^{\prime} \mathbb{Q}\right)+\sum_{i=0}^{q} b_{i}(V$, $\mathbb{Q}) \not \equiv 0(\bmod 2)$. This completes the proof of Lemma6.2.

We now consider the case when q is odd. Let d be the order of ' a '. Since $a \neq 0$ and is a torsion element of $H_{q}(V), d$ is an integer >1. Now suppose the imbedding $\varphi: S^{q} \times \frac{3}{2} D^{q+1} \rightarrow V$ representing ' a ' is replaced by φ_{α} given by $\varphi_{\alpha}(x, y)=\varphi(x, \alpha(x) . y)$ with $\alpha: S^{q} \rightarrow S O_{q+1}$ a C^{∞} map satisfying $s_{*}(\alpha)=0$ where $s_{*}: \Pi_{q}\left(S O_{q+1}\right) \rightarrow \Pi_{q}\left(S O_{2 q+1+\ell}\right)$ is the homomorphism induced by the inclusion $s: S O_{q+1} \rightarrow S O_{2 q+1+\ell}$. Let y^{*} be a base point chosen once for all and let $j: S O_{q+1} \rightarrow S^{q}$ be the map given by $j(w)=w y^{*}$. (We consider y^{*} as a column vector in \mathbb{R}^{q+1} and the matrix w operates on the right on $\left.y^{*}\right)$. We want to study the $q^{\text {th }}$ homology of $V_{\alpha}^{\prime}=\chi\left(V, \varphi_{\alpha}\right)$. Clearly the manifold $V_{\circ}=V-\varphi_{\alpha}\left(S^{q} \times B^{q+1}\right)$ is independent of α and the meridian $\varphi_{\alpha}\left(y^{*} \times S^{q}\right)$ of the torus $\varphi_{\alpha}\left(S^{q} \times S^{q}\right)=$ Bdry V_{\circ} as a point set does not depend on α, hence its homology class ε^{\prime} in $H_{q}\left(V_{\circ}\right)$ does not depend on α. On the other hand the homology class ε_{α} of $\varphi_{\alpha}\left(S^{q} \times y^{*}\right)$ in $H_{q}\left(V_{\circ}\right)$ does depend on α. Let ε be the homology class of $\varphi\left(S^{q} \times y^{*}\right)$ in $H_{q}\left(V_{\circ}\right)$. Then we have

$$
\varepsilon_{\alpha}=\varepsilon+j_{*}(\alpha) \varepsilon^{\prime} \text { where } j_{*}: \Pi_{q}\left(S O_{q+1}\right) \rightarrow \Pi_{q}\left(S^{q}\right) \simeq \mathbb{Z}
$$

is the homomorphism induced by j.

We claim that \exists an integer d_{α}^{\prime} such that $d \varepsilon_{\alpha}=d_{\alpha}^{\prime} \varepsilon^{\prime}$ in $H_{q}\left(V_{\circ}\right)$. Actually in the homology exact sequence

$$
\rightarrow H_{q+1}\left(V_{\circ}\right) \xrightarrow{i_{*}} H_{q+1}(V) \rightarrow H_{q+1}\left(V, V_{\circ}\right) \xrightarrow{\partial} H_{q}\left(V_{\circ}\right) \xrightarrow{i_{*}} H_{q}(V) \rightarrow
$$

identifying $H_{q+1}\left(V, V_{\circ}\right)$ with $\mathbb{Z} \simeq H_{q+1}\left(S^{q} \times D^{q+1}, S^{q} \times S^{q}\right)$ by excision we saw that the homomorphism $H_{q+1}(V) \rightarrow H_{q+1}\left(V, V_{\circ}\right)$ was given by $x \leadsto \pm \operatorname{a.x}($ Refer to the proof of Lemma 4.7). Since ' a ' is a torsion element we have $a \cdot x=0$ and hence

$$
0 \rightarrow \mathbb{Z} \simeq H_{q+1}\left(V, V_{\circ}\right) \xrightarrow{\partial} H_{q}\left(V_{\circ}\right) \xrightarrow{i_{*}} H_{q}(V) \rightarrow \cdots
$$

is exact. ∂ carries the generator $\varphi\left(y^{*} \times D^{q+1}\right)$ of the relative group $H_{q+1}\left(V, V_{\circ}\right)$ into ε^{\prime} in $H_{q}\left(V_{\circ}\right)$. The element $d \varepsilon$ of $H_{q}\left(V_{\circ}\right)$ gets mapped into $d a=0$ by i_{*} and hence \exists an integer d^{\prime} such that $d \varepsilon=d^{\prime} \varepsilon^{\prime}$. From $\varepsilon_{\alpha}=\varepsilon+j_{*}(\alpha) \varepsilon^{\prime}$ we have $d \varepsilon_{\alpha}=d \varepsilon+d j_{*}(\alpha) \varepsilon^{\prime}=\left(d^{\prime}+d j_{*}(\alpha)\right) \varepsilon^{\prime}$. Thus $d_{\alpha}^{\prime}=d^{\prime}+d j_{*}(\alpha)$ satisfies the requirement $d \varepsilon_{\alpha}=d_{\alpha}^{\prime} \varepsilon^{\prime}$. Let a_{α}^{\prime} be the element $\left(i_{\alpha}^{\prime}\right)_{*}\left(\varepsilon^{\prime}\right) \in H_{q}\left(V_{\alpha}^{\prime}\right)$ where $i_{\alpha}^{\prime}: V_{\circ} \rightarrow v_{\alpha}^{\prime}$ is the inclusion. Then from the exact sequence

$$
H_{q+1}\left(V^{\prime}, V_{\circ}\right) \xrightarrow{\partial} H_{q}\left(V_{\circ}\right) \xrightarrow{\left(j_{\alpha}^{\prime}\right)_{*}} H_{q}\left(V_{\alpha}^{\prime}\right) \rightarrow 0
$$

we see that $\left(i_{\alpha}^{\prime}\right)_{*}\left(d_{\alpha} \varepsilon^{\prime}\right)=\left(i_{\alpha}^{\prime}\right)_{*}\left(d \varepsilon_{\alpha}\right)=0$ since ∂ carries the generator $\varphi_{\alpha}^{\prime}\left(D^{q+1} \times y^{*}\right)$ of the relative group $H_{q+1}\left(V^{\prime}, V_{\circ}\right)$ into the element $\varepsilon_{\alpha} \in$ $H_{q}\left(V_{\circ}\right)$ represented by $\varphi_{\alpha}\left(S^{q} \times y^{*}\right)$. It follows that a_{α}^{\prime} is of order $\mid d^{\prime} .+$ $d j_{*}(\alpha) \mid$ with $d^{\prime}=$ the order of $a^{\prime} \in H_{q}\left(V^{\prime}\right)$ represented by $\varphi^{\prime}\left(y^{*} \times S^{q}\right)$.

Identifying the stable group $\Pi_{q}\left(S O_{2 q+1+\ell}\right)$ with $\Pi_{q}\left(S O_{q+2}\right)$ there is an exact sequence associated with the fibration $S O_{q+2} / S O_{q+1}=S^{q+1}$:

$$
\Pi_{q+1}\left(S^{q+1}\right) \xrightarrow{\partial} \Pi_{q}\left(S O_{q+1}\right) \xrightarrow{s_{*}} \Pi_{q}\left(S O_{q+2}\right)
$$

The composition $\Pi_{q+1}\left(S^{q+1}\right) \xrightarrow{\partial} \Pi_{q}\left(S O_{q+1}\right) \xrightarrow{j_{*}} \Pi_{q}\left(S^{q}\right)$ (for q odd) carries a generator of $\Pi_{q+1}\left(S^{q+1}\right)$ into twice a generator of $\Pi_{q}\left(S^{q}\right)$. It follows that $j_{*}(\alpha)$ with $\alpha \in \operatorname{ker} s_{*}$ can take any even value. (+ ve or -ve). Thus if d^{\prime} is not divisible by d we can choose an $\alpha \in \operatorname{Ker} s_{*}$ such that the order $\left|d_{\alpha}^{\prime}\right|$ of a_{α}^{\prime} satisfies $\left|d_{\alpha}^{\prime}\right|<d$. Thus we have proved the following

Lemma 6.3. Let q be odd and >1 and $\varphi: S^{q} \times \frac{3}{2} D^{q+1} \rightarrow V$ an orientation preserving imbedding representing a torsion element $a \in$ $H_{q}(V)$ of order $d>1$. Then the element $a^{\prime} \in H_{q}\left(V^{\prime}\right)$ represented by $\varphi^{\prime}\left(y^{*} \times S^{q}\right)$ is of finite order; moreover if d^{\prime} is the order of a^{\prime} and if 62 d^{\prime} is not divisible by d then \exists an $\alpha \in \operatorname{Ker} s_{*}$ such that the element a_{α}^{\prime} in $H_{q}\left(V_{\alpha}^{\prime}\right)=H_{q}\left(\chi\left(V, \varphi_{\alpha}\right)\right)$ represented by $\varphi_{\alpha}^{\prime}\left(y^{*} \times S^{q}\right)$ has order strictly less than that of a in $H_{q}(V)$.

Next we deal with the case when d^{\prime} is divisible by d. We recall the definition of linking numbers [Siefert-Threlfall [7]] Let $\lambda \in H_{p}(V)$ and $\mu \in H_{n-p-1}(V)$ be torsion classes in the respective groups. Associated with the coefficient sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{h} \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

we have the exact homology sequence

$$
\rightarrow H_{p+1}(V ; \rightarrow \mathbb{Q} / \mathbb{Z}) \xrightarrow{\partial} H_{p}(V) \xrightarrow{h_{*}} H_{p}(V ; \mathbb{Q}) \rightarrow \cdots
$$

(h is the inclusion of \mathbb{Z} in \mathbb{Q}). Since λ is a torsion element we have $h_{*}(\lambda)=0$. Therefore $\exists v \in H_{p+1}(V ; \mathbb{Q} / \mathbb{Z})$ such that $\partial(v)=\lambda$. The pairing $(\mathbb{Q} / \mathbb{Z}) \otimes \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ defined by multiplication gives an intersection pairing $H_{p+1}(V ; \mathbb{Q} / \mathbb{Z}) \otimes H_{n-p-1}(V) \rightarrow \mathbb{Q} / \mathbb{Z}$. We denote this pairing by a dot ${ }^{\prime}$.'.

Definition 6.4. The linking number $L(\lambda, \mu)$ is the rational number modulo 1 defined by $L(\lambda, \mu)=v . \mu$. This linking number is well-defined and satisfies the relation $L(\mu, \lambda)+(-1)^{p(n-p-1)} L(\lambda, \mu)=0$ [Ref: SiefertThrelfall [7]].

Lemma 6.5. $L(a, a)= \pm d^{\prime} d(\bmod 1)$. (This lemma is valid even if d^{\prime} is not divisible by d. In fact when d^{\prime} is divisible by d this lemma asserts that $L(a, a)=0)$.

Proof. We have $d \varepsilon-d^{\prime} \varepsilon^{\prime}=0$ in $H_{q}\left(V_{\circ}\right)$. Therefore the cycle $d \varphi\left(S^{q} \times\right.$ $\left.y^{*}\right)-d^{\prime} \varphi^{\prime}\left(y^{*} \times S^{q}\right)$ bounds a chain C in V_{\circ}. Let $C_{1}=\varphi\left(y^{*} \times D^{q+1}\right)$ be the cycle in $\varphi\left(S^{k} \times D^{k+1}\right) \subset V$ with boundary $\varphi\left(y^{*} \times S^{q}\right)$. The chain
$C+d^{\prime} C_{1}$ has boundary $d \varphi\left(S^{q} \times y^{*}\right)$. Hence $\frac{C+d^{\prime} C_{1}}{d}$ has boundary $\varphi\left(S^{q} \times y^{*}\right)$. Also $\varphi\left(S^{q} \times 0\right)$ represents the same class $a \in H_{q}(V)$ as $\varphi\left(S^{q} \times y^{*}\right)$. Taking the intersection of $\frac{C+d^{\prime} C_{1}}{d}$ with $\varphi\left(S^{k} \times 0\right)$ we get $\pm d^{\prime} / d$ since C is disjoint from $\varphi\left(S^{k} \times 0\right)$ and C_{1} has intersection number ± 1 with $\varphi\left(S^{k} \times 0\right)$. Thus $L(a, a)= \pm d^{\prime} / d(\bmod 1)$.

Lemma 6.6. Let $V=V^{2 q+1}$ be a compact oriented C^{∞} manifold with $q>1$ odd, and $f=V \rightarrow X$ a map of degree 1 satisfying the following conditions.
(1) $f_{*}: H_{i}(V) \rightarrow H_{i}(X)$ is an isomorphism for $i<q$
(2) $k_{q}=\operatorname{ker} f_{*}: H_{q}(V) \rightarrow H_{q}(X)$ is a torsion group. Suppose further that $L(a, a)=0 \forall a \in k_{q}$. Then K_{q} is a direct sum of a finite number of copies of $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$.

64 Remark. When stating this lemma we have a complex X satisfying the conditions of Theorem 2.1 in our mind. In particular X satisfies Poincare duality and it is only this that is needed for the validity of Lemma 6.6

Proof. Since X satisfies Poincare duality for integer coefficients it follows that X satisfies Poincare duality for coefficients in any arbitrary commutative ring. Using the fact that f is of degree 1 , monomorphisms $g_{j}: H_{j}(X) \rightarrow H_{j}(V)$ were constructed satisfying $H_{j}(V)=\operatorname{ker} f_{j} \oplus$ $g_{j}\left(H_{j}(x)\right)$ for every j [Lemma 2.5]. The same procedure can be adopted to define monomorphisms $g_{j, \wedge}: H_{j}(X, \wedge) \rightarrow H_{j}(V, \wedge)$ for any commutative coefficient ring and we still have $H_{j}(V, \wedge)=\operatorname{ker} f_{j, \wedge} \oplus g_{j, \wedge}\left(H_{j}(X, \wedge)\right)$. Also the exact sequences in homology corresponding to the exact coefficient sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ give rise to a commutative diagram.

Let $T_{q}(V)$ and $T_{q}(X)$ denote the torsion subgroups of $H_{q}(V)$ and $H_{q}(X)$ respectively. Then from assumption (2) we have $T_{q}(V)=K_{q} \oplus$ $g T_{q}(X)$. For any $b, b^{1} T_{q}(V)$ let $L\left(b, b^{1}\right)$ denote their linking number. Then since q is odd we have $L\left(b, b^{1}\right)=L\left(b^{1}, b\right)$. According to Poincaré duality theorem for torsion group [7] p. 245] L defines a non degenerate pairing $T_{q}(V) \otimes T_{q}(V) \rightarrow \mathbb{Q} / \mathbb{Z}$. We claim that $L \mid K_{q} \otimes K_{q}$ gives a non degenerate pairing $K_{q} \otimes K_{q} \rightarrow \mathbb{Q} / \mathbb{Z}$. Let $b \in K_{q}$ satisfy $L\left(b, b^{1}\right)=$ $0 \forall b^{1} \in K_{q}$. We have to show that $L(b, c)=0 \forall c \in T_{q}(V)$. Since $T_{q}(V)=K_{q} \oplus g T_{q}(X)$ we have only to prove that $L(b, y)=0 \forall y \in$ $g T_{q}(X)$. Let $y^{1} \in T_{q}(X)$ be such that $g\left(y^{1}\right)=y$. Then $h_{*}\left(y^{1}\right)=0$ (since y^{1} is a torsion element) and therefore $\exists Z^{1} \in H_{q+1}(X, \mathbb{Q} / \mathbb{Z})$ such that $\partial Z^{1}=y^{1}$. The element $Z \in H_{q+1}(V, \mathbb{Q} / \mathbb{Z})$ given by $Z=g\left(Z^{1}\right)$ satisfies $\partial Z=y$. Now $L(b, y)=L(y, b)=Z . b$ (this intersection is the one corresponding to the pairing $(\mathbb{Q} / \mathbb{Z}) \otimes \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z})$. Thus we have only to verify $K_{q} \cdot g\left(H_{q+1}(X, \mathbb{Q} / \mathbb{Z})=0\right.$. This can be proved in a way similar to Lemma[5.2. Thus $L \mid K_{q} \otimes K_{q} \rightarrow \mathbb{Q} / \mathbb{Z}$ gives a nondegenerate pairing.

We now claim that every element $a \in K_{q}$ is of order 2. In fact for any $b \in K_{q}$ we have $0=L(a+b, a+b)=L(a, b)+L(b, a)=L(2 a, b)$. Hence $2 a=0$. This completes the proof of Lemma 6.6

Lemma 6.7. Let $f: V \rightarrow X$ be of degree 1 satisfying the following $\mathbf{6 6}$ conditions.

1) $f_{*}: H_{i}(V) \rightarrow H_{i}(X)$ an isomorphism for every $i<q$
2) $K_{q}=\operatorname{ker} f_{q}: H_{q}(V) \rightarrow H_{q}(X)$ a direct sum of a finite number of copies of \mathbb{Z}_{2} and that $\forall a \in K_{q}$ the linking number $L(a, a)=0$.

Suppose $\varphi: S^{q} \times \frac{3}{2} D^{q+1} \rightarrow V$ is an imbedding representing $a \neq 0$ in K_{q}. Then for the manifold $V^{\prime}=\chi(V, \varphi)$ the Bettinumber $b_{q}\left(V^{\prime} ; \mathbb{Z}_{2}\right)$ (i.e. the dimension of $\left.H_{q}\left(V^{\prime} ; \mathbb{Z}_{2}\right)\right)$ satisfies $b_{q}\left(V^{\prime} ; \mathbb{Z}_{2}\right) \not \equiv b_{q}\left(V ; \mathbb{Z}_{2}\right)(\bmod 2)$.

Proof. Let $W=l \times V \cup_{\varphi} D^{q+1} \times D^{q+1}$ as in the proof of Lemma 6.2, By Lemma 6.1 we have $e^{*}\left(V^{\prime}: \mathbb{Z}_{2}\right)+e^{*}\left(V ; \mathbb{Z}_{2}\right)+e(W) \equiv \rho(\bmod 2)$ where ρ is the rank of the intersection bilinear $H_{q+1}\left(W ; \mathbb{Z}_{2}\right)$. If we show that ρ is even then as in the proof of Lemma 6.2 it will follow that $b_{q}\left(V^{\prime} ; \mathbb{Z}_{2}\right) \not \equiv b_{q}\left(V ; \mathbb{Z}_{2}\right)(\bmod 2)$. Thus we have only to show that ρ
is even. If for every $x \in H_{q+1}\left(W ; \mathbb{Z}_{2}\right)$ the intersection $x \cdot x$ is zero then ρ will be even. Thus we have only to show that $x \cdot x=0 \forall x \in H_{q+1}\left(W ; \mathbb{Z}_{2}\right)$. In the homology exact sequence for the pair (W, V) with \mathbb{Z}_{2} coefficients

$$
H_{q+1}\left(V ; \mathbb{Z}_{2}\right) \xrightarrow{j_{*}} H_{q+1}\left(W ; \mathbb{Z}_{2}\right) \rightarrow H_{q+1}\left(W, V ; \mathbb{Z}_{2}\right) \xrightarrow{\partial} \rightarrow H_{q}\left(V ; \mathbb{Z}_{2}\right)
$$

the group $H_{q+1}\left(W, V ; \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2}$ with $\varphi\left(D^{q+1} \times y^{*}\right)$ as generator and ∂ carries it into $a \neq 0$ in $H_{q}\left(V ; \mathbb{Z}_{2}\right)$. Actually if we use \mathbb{Z}_{2} coefficients and take the kernel $K_{q}\left(\mathbb{Z}_{2}\right)$ of $f_{*}: H_{q}\left(V ; \mathbb{Z}_{2}\right) \rightarrow H_{q}\left(X, \mathbb{Z}_{2}\right)$ it will be isomorphic to K_{q} since K_{q} is a direct sum of a finite number of copies of \mathbb{Z}_{2} and $f_{*}: H_{j}(V) \rightarrow H_{j}(X)$ is an isomorphism for $j<q$. Hence $\partial: H_{q+1}\left(W, V ; \mathbb{Z}_{2}\right) \rightarrow H_{q}\left(V ; \mathbb{Z}_{2}\right)$ is a monomorphism and therefore j_{*} : $H_{q+1}\left(V ; \mathbb{Z}_{2}\right) \rightarrow H_{q+1}\left(W ; \mathbb{Z}_{2}\right)$ is onto. It is clear that $x . x=0$ for elements of the form $x=j_{*}(y)$ with $y \in H_{q+1}\left(V ; \mathbb{Z}_{2}\right)$ because a cycle representing y can be deformed in W so as not to intersect V. This completes the proof of Lemma 6.7

Now we go to the proof of Theorem [2.1] when $n=2 q+1$ with $q \geq$ 2. We have already obtained a connected simply connected, compact oriented C^{∞} manifold M of dimension n and a map $f: M \rightarrow X$ of degree 1 satisfying $f:(\eta) \simeq \tau_{M}^{n} \oplus \mathscr{O}_{M}^{\ell}$ and $f_{*}: H_{j}(M) \rightarrow H_{j}(X)$ isomorphism for $j<q$. Let K_{q} be the Kernel of $f_{q}: H_{q}(M) \rightarrow H_{q}(X)$. Let $K_{q}=$ $F_{q} \mathscr{O} T\left(K_{q}\right)$ with F_{q} free and $T\left(K_{q}\right)$ the torsion subgroup of K_{q}. Choose an element ' a ' forming part of a basis for F_{q}. As an easy consequence of Poincare duality we get an element $b \in H_{q+1}(M)$ such that $a \cdot b=1$. By Lemma4.3 $\exists a C^{\infty}$ imbedding $\varphi: S^{q} \rightarrow M$ representing ' a ' with trivial normal bundle v_{φ} and further satisfying $f \circ \varphi \sim \tilde{x}^{*}$ (the constant map). Extending φ to an orientation preserving imbedding $\varphi: S^{q} \times \frac{3}{2} D^{q+1} \rightarrow$ M and performing survey we get a manifold $\chi(M, \varphi)=M^{\prime}$ and a map $f^{\prime}: M^{\prime} \rightarrow X$ of degree 1 with $f_{*}^{\prime}: H_{j}\left(M^{\prime}\right) \rightarrow H_{j}(X)$ isomorphisms for $j<q$ and $K_{q}^{\prime}=\operatorname{ker} f_{q}^{\prime}: H_{q}\left(M^{\prime}\right) \rightarrow H_{q}(X)$ isomorphic to $K_{q} /(a)$. (Refer to case (i) of Lemma 4.7). Changing φ to φ_{α} if necessary for a suitable C^{∞} map $\alpha: S^{q} \rightarrow S O_{q+1}$ we may assume $f^{\prime}!(\eta) \simeq \tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{\prime}}^{\ell}$ (Proposition 3.7). Applying surgery successively to 'kill' elements of a basis of F_{q} we get a connected, simply connected compact oriented
C^{∞} manifold $M^{\prime \prime}$ and a map $f^{\prime \prime}: M^{\prime \prime} \rightarrow X$ of degree 1 satisfying the following conditions:

1) $f_{*}^{\prime \prime}: H_{j}\left(M^{\prime \prime}\right) \rightarrow H_{j}(X)$ is an isomorphism $\forall j<q$ and $K_{q}^{\prime \prime}=\operatorname{ker} f_{q}^{\prime \prime}$: $H_{q}\left(M^{\prime \prime}\right) \rightarrow H_{q}(X)$ is precisely the torsion subgroup of K_{q}.
2) $f^{\prime \prime}!(\eta) \simeq \tau_{M^{\prime \prime}}^{n} \oplus \mathscr{O}_{M^{\prime \prime}}^{\ell}$.

Thus changing notations we may assume that the original $f: M \rightarrow X$ itself satisfied the condition that K_{q} is a torsion group. Now assume q even. Choosing an element $a \neq 0$ in K_{q} and applying surgery to 'kill' a^{\prime} (this is possible because of Lemma 4.3) we introduce an additional \mathbb{Z} to the kernel, but the torsion subgroup of the Kernel becomes $K_{q} /(a)$. (Refer to Lemma 6.2) But by our earlier remarks we can successfully apply surgery to kill \mathbb{Z}. In other words by two suitable surgeries on M we can get a compact, oriented, connected, simply connected C^{∞} manifold M^{\prime} and a map $f^{1}: M^{1} \rightarrow X$ of degree 1 with $f^{\prime}:(\eta) \approx$ $\tau_{M^{\prime}}^{n} \oplus \mathscr{O}_{M^{1}}^{\ell}, f_{*}^{1}: H_{j}(M) \rightarrow H_{j}(X)$ isomorphism for $j<q$ and $K_{q}^{\prime}=$ $\operatorname{ker} f_{q}^{\prime}: H_{q}\left(M^{1}\right) \rightarrow H_{q}(X)$ definitely smaller than K_{q}. Iteration of this procedure a finite number of times proves Theorem 2.1 for $n=2 q+1$ with q even.

We have still to consider the case q odd. If $a \neq 0$ in K_{q} is of order d when we perform surgery by means of an imbedding $\mathscr{O}: S^{q} \times \frac{3}{2} D^{q+1} \rightarrow$ M representing ' a ' and get $f^{1}: M^{1}=\chi(M, \varphi) \rightarrow X$ we introduce a new element of finite order in the kernel of f^{1}. To get $f^{1}:(\eta) \simeq \tau_{M^{1}}^{n} \oplus \mathscr{O}_{M^{1}}^{\ell}$ we may have to alter φ into φ_{α} for a suitable $\alpha: S^{q} \rightarrow S O_{q+1}$ and this can be done by Proposition 3.7 We can assume that φ itself satisfied this requirement also. However if we change again φ to φ_{α} with $\alpha \in$ Ker s_{*} there is no obstruction to getting an isomorphism of $f_{\alpha^{\prime}}^{1}(\eta)$ with $\tau_{M_{\alpha}^{\prime}}^{n} \oplus \mathscr{O}_{M_{\alpha}^{1}}^{\ell}$. It is this freedom of choice of α in Ker s_{*} that helps in proving Theorem 2.1 for $n=2 q+1$ with q odd >1. If the order d^{1} of $a^{1} \in H_{q}\left(M^{1}\right)$ represented by $\varphi^{1}\left(y^{*} \times S^{q}\right)$ is not divisible by d then for a suitable $\alpha \in \operatorname{Ker} s_{*}$ the element $a_{\alpha}^{1} \in H_{q}\left(M_{\alpha}^{1}\right)$ will have order strictly less than d (Lemma 6.3). It follows now from Lemma 6.5 and 6.6 that we can get a manifold $M^{\prime \prime}$ which is χ--equivalent to M and a map $f^{\prime \prime}: M^{\prime \prime} \rightarrow X$ satisfying the following conditions.

1. $M^{\prime \prime}$ is connected, simply connected and $f^{\prime \prime}$ is of degree 1 .
2. $f_{*}^{\prime \prime}: H_{j}\left(M^{\prime \prime}\right) \rightarrow H_{j}(X)$ is an isomorphism for $j<q$; the kernel $K_{q}^{\prime \prime}$ of $f_{q}^{\prime \prime}: H_{q}\left(M^{\prime \prime}\right) \rightarrow H_{q}(X)$ is a direct sum of a finite number of copies of \mathbb{Z}_{2}.
3. $f^{\prime \prime}!(\eta) \simeq \tau_{M^{\prime \prime}}^{n} \oplus \mathscr{O}_{M^{\prime \prime}}^{\ell}$.

Lemma 6.7 coupled with the observations made above helps in getting a manifold $M^{\prime \prime \prime}$ which is connected and simply connected and χ equivalent to $M^{\prime \prime}$ and a map $f^{\prime \prime \prime}: M^{\prime \prime \prime} \rightarrow X$ with $f_{*}^{\prime \prime \prime}: H_{j}\left(M^{\prime \prime \prime}\right) \rightarrow$ $H_{j}(X)$ isomorphism for $j q$ and $f^{\prime \prime \prime}!(\eta) \simeq \tau_{M^{\prime \prime \prime}}^{n} \oplus \mathscr{O}_{M^{\prime \prime \prime}}^{\ell}$. From the remark 4.5 it follows that $f^{\prime \prime \prime}$ is a homotopy equivalence. This completes the proof of Theorem 2.1

Bibliography

[1] F. Hirzebruch: Neue topologische methoden in der algebraischen geometrie, Springer 1962.
[2] M.A. Kervaire \& J.W.Milnor: Groups of homotopy spheres, 1 Ann. Math. Vol. 77, 1963 pp.504-537.
[3] M.A. Kervaire \& J.W.Milnor: On 2-spheres in 4 -manifolds, Proc. Nat. Acad. Sci. Vol. 47 (1961) pp. 1651-1657.
[4] J.W. Milnor: Lectures on differential topology, Princeton University, 1958.
[5] J.W. Milnor: Lectures on characteristic topology, Princeton University, 1957.
[6] J.W. Milnor: A procedure for killing homotopy groups of differentiable manifolds, Soc. 1961, pp. 39-55.
[7] Siefert \& Threlfall: Lehrbuch der topologie, Chelsea, 1947.
[8] N.E. Steenrod: Topology of fibre bundles, Princeton University Press, 1951.
[9] R. Thom: Quelques proprietes globales des varietes differentiables, Comm. Math. Helv. 1954, pp. 17-85.
[10] H. Whitney: The self-intersections of a smooth n-manifold in 2nspace, Ann. Math., Vol.45, 1944, pp. 220-246.

Part II

Siebenmann's Theorem

1 The Assumption of simple-connectedness in the browder-novikov theorem

In this section we will illustrate by examples that simple connectedness of X and condition (iii) are essential for the validity of Theorems 2.1 of Part【 We first construct a compact, connected combinational manifold Y of dimension 12 with $\pi_{1}(Y)=0$ and satisfying condition (ii) of Theorem 2.1] which however is not of homotopy type of any close C^{∞} manifold. Since Y is an orientable $\left(\pi_{1}(Y)=0\right)$ compact manifold condition (i) is automatically satisfied. This example thus illustrates that condition (iii) of theorem 2.1 (part is not redundant. Let k be any integer ≥ 1 and $\pi^{k} S^{1}$ the cartesian product of k copies of the circle. We will show that $X=Y \times \pi^{k} S^{1}$ satisfies condition (ii), and in case k is divisible by 4 satisfies condition (iii) as well. However form Siebenmann's Theorem (which will be stated later) it follows that X is not of the homotopy type of any closed C^{∞} manifold.
1.1 The symmetric 8×8 matrix given below is a unimodular matrix of signature 8 .

$$
\left(\begin{array}{cccccccc}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Denote the (i, j) th entry of this matrix by $C_{i j}$. It is known that one can choose C^{∞} imbeddings $f_{i}: S^{5} \times 0 \rightarrow b D^{12}=S^{11}(i=1, \ldots, 8)$ with disjoint images such that the linking number $L\left(f_{i}\left(S^{5} \times 0\right), f_{j}\left(S^{5} \times 0\right)\right)$ of $f_{i}\left(S^{5} \times 0\right)$ and $f_{j}\left(S^{5} \times 0\right)$ in $b D^{12}$ for $i \neq j$ are $C_{i j}$. Moreover, for each i we can choose f_{i} so that \equiv a differentiably imbedded disk $D_{i}^{\prime 6}$ in D^{12} which bounds $f_{i}\left(S^{5} \times 0\right)$. A tubular neighbourhood of $f_{i}\left(S^{5}\right)$ in $b D^{12}$ can be got as the restriction of a tubular neighbourhood of $D_{i}^{\prime 6}$ in D^{12}. In otherwords $\equiv C^{\infty}$ imbeddings $g_{i}: D^{6} \times D^{6} \rightarrow D^{12}$ such that
$g_{i}\left(S^{5} \times D^{6}\right) \subset b D^{12}, g_{i}\left(S^{5} \times 0=f_{i}\right)$ and $D_{i}^{\prime 6}=g_{i}\left(D^{6} \times 0\right)$. We can choose these g_{i} such that $g_{i}\left(S^{5} \times D^{6}\right)$ are pair-wise disjoint in $b D^{12}$. Let $\wedge: S^{5} \rightarrow S 0_{6}$ be a C^{∞} map representing the element $\partial i_{6} \in \pi_{5}\left(S 0_{6}\right)$ where $\partial i_{6} \in \pi_{6}\left(S^{6}\right)$ is a generator and λ is the boundary homomorphism in the exact sequence $\pi_{6}\left(S^{6}\right) \rightarrow \pi_{5}\left(S 0_{6}\right) \rightarrow \pi_{5}\left(S 0_{7}\right)$ corresponding to the fibration $S 0_{7} / S 0_{6}=S^{6}$. Let $\varphi_{i}: S^{5} \times D^{6} \rightarrow b D^{12}$ be defined by $\varphi_{i}(x, y)=g_{i}(x, \alpha(x) y)$. Let $D_{i}^{6} \times D_{i}^{6}(i=1, \ldots 8)$ be eight disjoint copies of $D^{6} \times D^{6}$ and let $S_{i}^{5} \times D_{i}^{6}$ be the submanifold $S^{5} \times D^{6}$ of $D_{i}^{6} \times D_{i}^{6}$. Let $W^{12}=D^{12}+\left(\varphi_{1}^{6}\right)+\cdots+\left(\varphi_{8}^{6}\right)$ be the compact C^{∞} manifold with boundary got from the disjoint union $D^{12} U\left(U_{i} D_{i}^{6} \times D_{i}^{6}\right)$ by identifying points of $S_{i}^{5} \times D_{i}^{6}$ with their images under φ_{i} and then rounding off the corners. We claim that W^{12} is a manifold with boundary, with $H_{6}\left(W^{12}\right)$ free of rank 8 and having the given matrix as intersection matrix for a suitable choice of a basis for $H_{6}\left(W^{12}\right)$. In W^{12} the image of $D_{i}^{6} \times 0$ also a disk bounding $f_{i}\left(S^{5} \times 0\right)$ and $\sum_{i}^{6}=D_{i}^{\prime 6} U\left(D_{i}^{6} \times 0\right)$ is a differentiably imbedded sphere in W^{12} whose normal bundle corresponds to the element $\partial i_{6} \in \pi_{5}\left(S 0_{6}\right)$. The classes corresponding to \sum_{i}^{6} form a basis for $H_{6}\left(W^{12}\right)$ since the classes corresponding to $D_{i}^{6} \times 0$ form a basis for $H_{6}\left(W^{12}, D^{12}\right)$. The intersections of \sum_{i}^{6} and \sum_{j}^{6} in W^{12} are precisely those of $D_{i}^{\prime 6}$ and $D_{j}^{\prime 6}$ in D^{12} which by definition are the linking numbers $L\left(f_{i}\left(S^{5} \times 0\right), f_{j}\left(S^{5} \times 0\right)\right)$. Hence $\sum_{i}^{6} \cdot \sum_{j}^{6}=C_{i j}$ for $i \neq j$. Also if $k_{*}: \pi_{5}\left(S 0_{6}\right) \rightarrow \pi_{5}\left(S^{5}\right)$ is the map induced by $\varphi \xrightarrow{k} x_{\circ} . \rho\left(x_{\circ}\right.$ a fixed element in $\left.S^{5}\right)$ of $S 0_{6}$ in S^{5} then it is known that $k_{*} \partial \iota_{6}= \pm 2 \iota_{5}\left(i_{5}\right.$ a generator for $\left.\pi_{5}\left(S^{5}\right)\right)$. Also $k_{*}\left(\partial \iota_{6}\right)$ is precisely the Euler class of the normal bundle of each \sum_{i}^{6} in W^{12}, and this as we have seen already (Refer to proof of Lemma 5.6, Part \square is the self intersection $\sum_{i}^{6} \cdot \sum_{i}^{6}$ times a generator of $\pi_{5}\left(S^{5}\right)$. Thus by proper choice of $\iota_{6} \in \pi_{6}\left(S^{6}\right)$ we see that $\sum_{i}^{6} \cdot \sum_{i}^{6}$ can be made equal to 2. Since the matrix we started with is a unimodular matrix it follows that the boundary ∂W is a homotopy sphere [12]. Hence by Smale [10] W is actually a combinatorial S^{11}. By attaching the cone over S^{11} to W by a PL-isomorphism we get a closed combinatorial manifold Y^{12}. Clearly W is 5 -connected and since Y^{12} is got by attaching a 12-cell to W it follows that Y is also 5-connected and that $H_{6}(W) \simeq H_{6}\left(Y^{12}\right)$ under the map induced by the inclusion $W \rightarrow Y$. It follows that Y is a

5-connected combinatorial manifold of dimension 12, having the given matrix as intersection matrix for a suitable choice of basis for $H_{6}(Y)$.

Lemma 1.2. Y is not homotopy type of any compact C^{∞} manifold.
Proof. For if Y were of the homotopy type a compact C^{∞} manifold there should exist classes $p_{i} H^{4 i}(Y ; \mathbb{Z})(i=1,2,3)$ such that $\left\{L_{3}\left(p_{1}, p_{2}, p_{3}\right)\right\}$ $[Y]=\left\{\frac{1}{3^{3} .5 .7}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right)\right\}[Y]=8$. Since $H^{4}(Y ; \mathbb{Z})=0$ and $H^{8}(Y ; \mathbb{Z})=0$ the above implies that \exists a class $p_{3} \in H^{12}(Y ; \mathbb{Z}) \simeq \mathbb{Z}$ such that $\frac{1}{3^{3} .5 .7} 62 p_{3}[Y]=8$. This in turn means the existence of an integer ℓ_{3} such that $62 \ell_{3}=3^{3}$.5.7.8. This is impossible since the prime 31 does not divide 3^{3}.5.7.8.

Lemma 1.3. Let ξ be the tr ivial line bundle over Y. Then for the Thom space $T(\xi)$ of ξ the homology $H_{13}(T(\xi))$ has a spherical generator.
(This observation is due to A. Vasqez.)
Proof. Y is a 5-connected polyhedron with $H_{6}(Y)$ free abelian of rank $8, H_{12}(Y) \simeq \mathbb{Z} ; H_{j}(Y)=0$ for all other $j \geq 1$. Thus a 'homology decomposition' [2] for Y will be $\left(S^{6} V \ldots V S^{6}\right) U E_{h}^{12}$ where the wedge is a 8 fold wedge and to it is attached a 12 -cell by means of a map $h: S^{11} \rightarrow S^{6} \ldots V S^{6}$ representing the so called k-invariant or the dual Postnikov invariant. The Thom space $T(\xi)$ of ξ is homotopy equivalent to the suspension $\sum(Y U$ ' a ') of the disjoint union of Y and a point ' a '. Hence $T(\xi) \sim S^{1} V\left(S^{7} V \ldots V S^{7}\right) U_{g} e^{13}$ (we use ' \sim ' to mean homotopy equivalence) where $g: S^{12} \rightarrow S^{1} V S^{7} V \ldots V S^{7}$ is some map. It is known that $\pi_{12}\left(S^{7}\right)=0$ [4]. By a theorem of Hilton [3] it follows that $\pi_{12}\left(S^{1} V S^{7} V \ldots V S^{7}\right)=0$. This shows that g is homotopically trivial and hence $T(\xi) \sim S^{1} V\left(S^{7} V \ldots V S^{7}\right) V S^{13}$. The inclusion of S^{13} in $S^{1} V\left(S^{7} V \ldots V S^{7}\right) V S^{13}$ followed by a homotopy equivalence $f: S^{1} V\left(S^{7} V \ldots V S^{7}\right) V S^{13} \rightarrow T(\xi)$ represents a generator of $H_{13}(T(\xi))$.

Lemma 1.4. Let V be a closed, connected, orientable combinatorial manifold satisfying condition (ii) of Theorem[2.1](Part []). Then $V \times S^{1}$
also satisfies condition (ii). If $\operatorname{dim} . V=4 d-1$ then $V S^{1}$ also satisfies condition (iii).

Proof. Let $\operatorname{dim} V=n$ and let ξ^{k} be an orientable vector bundle of rank k on V with $H_{n+k}(T(\xi)) \simeq \mathbb{Z}$ with a spherical generator, say represented by the map $f: S^{n+k} \rightarrow T(\xi)$. Choose any orientable vector bundle η of rank ℓ over S^{1} with a spherical generator for $H_{\ell+1}(T(\eta)) \simeq \mathbb{Z}$ represented by $g: S^{\ell+1} \rightarrow T(\eta)$. Such a bundle exists since S^{1} is a C^{∞} manifold. (In fact the trivial line bundle itself satisfies this condition). Let $\zeta \times \eta$ be the cartesian product bundle on $V \times S^{1}$. Choosing fixed Riemannian metrics for ζ and η denote the associated unit disk bundles by A_{ξ} and A_{η} and let \dot{A}_{ξ} and \dot{A}_{η} be the boundaries of A_{ξ} and A_{η} respectively. Then $T(\xi)=$ A_{ξ} / \dot{A}_{ξ} and $T(\eta)=A_{\eta} / \dot{A}_{\eta}$. For the bundle $\xi \times \eta$ with the cartesian product Riemannian metric we have $A_{\xi \times \eta}=A_{\xi} \times A_{\eta}$ and $\dot{A}_{\xi \times \eta}=A_{\xi} \times \dot{A}_{\eta} \cup \dot{A}_{\xi} \times A_{\eta}$. Choosing the respective points at ∞ as base points in $T(\xi)$ and $T(\eta)$ let $T(\xi) \# T(\eta)=\frac{T(\xi) \times T(\eta)}{T(\xi) V T(\eta)}$. The canonical projections $\varepsilon_{\xi}: A_{\xi} \rightarrow T(\xi)$ and $\varepsilon_{\eta}: A_{\eta} \rightarrow T(\eta)$ yield the map $\varepsilon_{\xi} \times \varepsilon_{\eta}: A_{\xi} \times A_{\eta} \rightarrow T(\xi) \times T(\eta)$. If $p: T(\xi) \times T(\eta) \rightarrow T(\xi) \# T(\eta)$ is the canonical map then $p o\left(\varepsilon_{\xi} \times \varepsilon_{\eta}\right):$ $A_{\xi} \times A_{\eta} \rightarrow T(\xi / \#) T m$ yields a (1-1) onto map of $\frac{A_{\xi} \times A_{\eta}}{A_{\xi} \times \dot{A}_{\eta} \cup \dot{A}_{\xi} \times A_{\eta}} \rightarrow$ $T(\xi) \# T(\eta)$. The compactness of the spaces involved shows that the map $T(\xi \times \eta) \rightarrow T(\xi) \# T(\eta)$ thus obtained is a homeomorphism. Clearly the map $f \# g: S^{n+k} \# S^{\ell+1}=S^{n+1+k+\ell} \rightarrow T(\xi) \# T(\eta)$ represents a generator of $H_{n+1+k+\ell}(T(\xi \times \eta))$.

Suppose $n=4 d-1$. Choose a basis X_{1}, \ldots, X_{r} for $H^{2 d-1}(V ; \mathbb{Q})$. By Poincare duality \exists a basis $Y_{1}, ., Y_{r}$ for $H^{2 d}(V ; \mathbb{Q})$ such that $X_{i} . Y_{j}=\delta_{i j}$. Then for $H^{2 d}\left(V \times S^{1} ; \mathbb{Q}\right)$ the elements $X_{1} \otimes s, \ldots, X_{r} \otimes s ; Y_{1} \otimes 1, \ldots, Y_{r} \otimes 1$ where $s \in H^{1}\left(S^{1}, \mathbb{Q}\right)$ is a generator form a basis. With respect to this basis the intersection matrix is $2 d \overbrace{\left\{\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)\right.}^{2 d}$. Hence the signature of the manifold $V \times S^{1}$ is 0 . Choosing η to be the trivial line bundle on S^{1} we have $L_{d}\left(\bar{p}_{1}(\xi \times \eta), \ldots, \bar{p}_{d}(\xi \times \eta)\right)\left[V \times S^{1}\right]=L_{d}\left(\bar{p}_{1}(\xi) \otimes 1, \ldots, \bar{p}_{d}(\xi) \otimes\right.$ 1) $\left[V \times S^{1}\right]=0$.

It follows from Lemmas 1.3 and 1.4 that $X^{12+k}=Y^{12} \times \pi^{k} S^{1}$ satisfies
conditions (i) and (ii) of Theorem 2.1 (Part【) and also (iii) in case $k \geq 1$ is divisible by 4. From Siebenmann's Theorem stated below and Lemma 1.2 it will follow that none of the manifolds $X^{12+k}(k \geq 0)$ is of the homotopy type of a compact C^{∞} manifold.

Let π be any multiplicative group and $\mathbb{Z}(\pi)$ the group ring of π over \mathbb{Z}. Two finitely generated projective $\mathbb{Z}(\pi)$-modules P_{1} and P_{2} are said to be equivalent if \exists finitely generated free $\mathbb{Z}(\pi)$-modules F_{1} and F_{2} with $P_{1} \oplus F_{1} \simeq F_{2} \oplus F_{2}$. The set of equivalence classes of finitely generate a projective modules is denoted by $\tilde{K}_{\circ}(\mathbb{Z}(\pi))$; it is an abelian group under the operation induced by the direct sum operation on projective modules.

Theorem 1.5 (Siebenmann). Let X be a finite complex such that $X \times S^{1}$ is of the homotopy type of a compact, connected, C^{∞} manifold V^{n+1} without boundary of dimension $n+1$ with $n \geq 5$. Suppose $\mathbb{Z}(\pi)$ is Noetherian and that $\tilde{K}_{\circ}(\mathbb{Z}(\pi))=0$ where $\pi=\pi_{1}(X)$. Choosing a homotopy equivalence $\theta: V \rightarrow X \times S^{1}$ and denoting the projection onto the second factor $X \times S^{1} \rightarrow S^{1}$ by p_{2} let W be the covering of V got as the pull back of the covering $\mathbb{R} \xrightarrow{(\text { Exp } 2 \pi i)} S^{1}$ by means of the map $p_{2} . \theta: V \rightarrow S^{1}$. Then W with the natural differential structure it acquires as a covering manifold of V, is diffeomorphic to $N^{n} \times \mathbb{R}$ with $N=N^{n}$ a compact C^{∞} manifold without boundary, of dimension n.

Remark. As W is of the homotopy type of $X \times \mathbb{R}$ or X it follows that X is of the homotopy type of N. If π is free abelian of rank $\ell<\infty$ we have $\mathbb{Z}(\pi)_{\simeq} \mathbb{Z}\left[x_{1}, \ldots, x, x_{1}^{-1}, \ldots, x_{\ell}^{-1}\right]$ where $x_{1}, x_{2}, \ldots x_{\ell}$ are ℓ-indeterminates over \mathbb{Z} and in this case $\mathbb{Z}(\pi)$ is Noetherian and $\left.\tilde{K}_{\circ} \mathbb{Z}(\pi)\right)=0$. It is now clear that none of the manifolds $X^{12+k}=Y^{12} \times \pi^{k} S^{1}$ is of the homotopy type of any compact C^{∞} manifold without boundary.

The theorem remains true if we drop the assumption that $\mathbb{Z}(\pi)$ is Noetherian. We give some more details on this in $\$ 3$ The assumption $\left.\tilde{K}_{\circ} \mathbb{Z}(\pi)\right)$ is however essential. An example of a group with $\left.\tilde{K}_{\circ} \mathbb{Z}(\pi)\right) \neq 0$ is the cyclic group or order 23. (See D.S. Rim [9]).

The rest of Part Π deals with the Proof of Theorem 1.5] Let $f: V \rightarrow$ S^{1} pe a C^{∞} approximation to $p_{2} \circ \theta$ with $f \sim p_{2} \circ \theta: V \rightarrow S^{1}$ (we use
' \sim ' to mean 'homotopic'). We denote the map $\operatorname{Exp}(2 \pi i): \mathbb{R} \rightarrow S^{1}$ by q and let $p: W \rightarrow V$ denote the covering mapping. By definition W is the inverse image of the covering $q: \mathbb{R} \rightarrow S^{1}$ by means of the map $p_{2} \circ \theta: V \rightarrow S^{1}$. Since $f \sim p_{2} \circ \theta \exists$ a map $F: W \rightarrow \mathbb{R}$ making the following diagram commutative. Moreover F is C^{∞}.

Diagram 1

By Sard's Theorem \exists a regular value $a \in S^{1}$ for f and without loss of generality we can assume $1 \in S^{1}$ to be a regular value for f. Then any integer is a regular value of F.

2 The existence of arbitrary small 0 and 1-Neighbourhood of ' ∞ ' and ' $-\infty$ '

Definition 2.1. A C^{∞} sub-manifold $M=M^{n+1}$ of dimension $n+1$ with boundary bM, of W is said to be a 0 -nbd of ∞ (respy " $-\infty$ ") if
(1) M is a closed subset of W
(2) ヨ integers $m_{1}<m_{2}$ with $F^{-1}\left[m_{1}, \infty\right) \supset M \supset F^{-1}\left[M_{2}, \infty\right)$
$\left\{\operatorname{respy} F^{-1}\left(-\infty, M_{1}\right] \subset M \subset F^{-1}\left(-\infty, M_{2}\right]\right\}$
(3) $b M$ is compact; M and $b M$ are connected.
M is said to be a $1-n b d$ of ∞ (respy " $-\infty$ ") if it is already a $0-n b d$ of ∞ (respy " $-\infty$ ") and the maps $\pi_{1}(b, M) \rightarrow \pi_{1}(M), \pi_{1}(M) \rightarrow \pi_{1}(W)$ induced by the respective inclusions are isomorphisms.

Definition 2.2. By the statement "arbitrary small 0 (or 1)-nbds of ∞ (respy $-\infty$)" we mean that given any compact set $K \subset W \exists a 0$ (or 1) $-n b d M$ of $\infty($ respy $-\infty)$ with $M \subset W-K$.

Let J denote an infinite cyclic group and let x be a generator of J. The Deck transformation group of the covering $\mathbb{R} \xrightarrow{q} S^{1}$ can be identified with J with x acting as the homeomorphism $r \rightarrow r+1$ of \mathbb{R} onto itself. Since $W \xrightarrow{p} V$ is the pull back of the covering space $\mathbb{R} \xrightarrow{q} S^{1}$ the Deck transformation group of the covering $W \xrightarrow{p} V$ is also J and we denote the homeomorphism of W which corresponds to the generator x by α.

Lemma 2.3. Let σ be any are in V and $w_{\circ} \in W$ any point with $p\left(w_{\circ}\right)=$ $\sigma(0)$. Let $\tau^{w_{0}}$ be the unique lift of σ such that $\tau^{w_{0}}(0)=w_{\mathrm{o}}$. The variation $\operatorname{Max}_{t, t^{\prime} \in[0,1]}\left|F \tau^{w_{o}}(t)----F \tau^{w_{o}}\left(t^{\prime}\right)\right|$ of F on $\tau^{w_{\circ}}$ depends only on σ and not on the lift w_{\circ} of $\sigma(0)$.

This quantity which depends only on σ we refer to as the "variation of F on σ " and denote it by $V_{F}(\sigma)$.

Proof. Suppose w_{\circ}^{\prime}, is any other element of W with $p\left(w_{\circ}^{\prime}\right)=\sigma(0)$, then $w_{\circ}^{\prime}=\alpha^{k} w_{\circ}$, for some integer k. The unique lift $\tau^{w_{\circ}^{\prime}}$ of such that $\tau^{w_{\circ}^{\prime}}=w_{\circ}^{\prime}$ is given by $\tau^{w_{\circ}^{\prime}}(t)=\alpha^{k} \tau^{w_{\circ}}(t)$. Because of the commutativity of diagram 1 we have

$$
F \tau^{w_{\circ}^{\prime}}(t)=k+F \tau^{w_{o}}(t)
$$

for all $t \in[0,1]$. The lemma follows.
Lemma 2.4. There exists a constant $C>0$ such that any two points of V can be joined by means of an are σ such that the variation $V_{F}(\sigma)$ of F on σ is less than C.

Proof. For any $v \in V \exists$ an arcwise connected open $n d b U_{v}$ of v in V such that $p^{-1}(U)_{v}$ decomposes into a disjoint union of open sets $\left\{W_{v}^{j}\right\}$ each of which gets mapped homeomorphically onto U_{v} by the restriction of p. We can choose another arcwise connected open set U_{v}^{\prime} containing v such that $\bar{U}_{v_{j}}^{\prime} \subset U_{v}$. Then each of the sets
$W_{v}^{\prime j}=W_{v}^{j} \cap p^{-1}\left(U_{v}^{\prime}\right)$ gets mapped homeomorphically by p onto U_{v}^{\prime} and $W_{v}^{\prime j}=p^{-1}\left(U_{v}^{\prime}\right) \cap W_{v}^{j}$ is compact since \bar{U}^{\prime} is compact, being a closed
subset of the compact space V. The argument used in lemma 2.3 can be used to show that $\operatorname{Max}_{w, w^{1} \in \bar{w}^{\prime} j}\left|F(w)-F\left(w^{1}\right)\right|$ is finite and depends only on U^{\prime} (finiteness being a consequence of the compactness of $\bar{W}^{\prime j}$). We may call the above quantity the variation of F on U^{\prime} or \bar{U}^{\prime}. Compactness of V implies the existence of a finite number of sets $U_{v_{1}}^{\prime}, \ldots, U_{v_{r}}^{\prime}$ covering V. Writing U_{i}^{\prime} for $U_{v_{i}}^{\prime}$ and denoting the variation of F on U_{i}^{\prime} by C_{i} let C be any constant $>C_{1}+\cdots+C_{r}$. Then C satisfies the requirement of the Lemma. For if v_{0}, v_{1} are any two points of V, since V is arcwise connected we can find distinct indices j_{1}, \ldots, j_{s}, in $1,2, \ldots, r$ such that $v_{\circ} \in U_{j_{1}}^{\prime}$ and $v_{1} \in U_{j_{\ell}}^{\prime}$ and $U_{j_{\mu}}^{\prime} \cap U_{j_{\mu+1}}^{\prime} \neq \mid \phi$. Choosing point $v_{\mu}^{\prime} U_{\mu+1}^{\prime}$ and joining v_{0} tov v_{1}^{\prime} by an arc in $U_{j_{1}} ; v_{1}^{\prime}$ to v_{2}^{\prime} by an arc in $U_{j_{2}}^{\prime}$ and so on we get an are σ joining v_{\circ} to v_{1} such that $V_{F}(\sigma) \leq C_{j_{1}}+. .+C_{j}<C$.

Lemma 2.5. a constant $\alpha>0$ with the following property: For every $v \in V \exists$ a loop θ_{v} at v in V such that the loop $f \theta_{v}$ represents the positive generator of $\pi_{1}\left(S^{1}, f(v)\right)$, and $V_{F}(\theta)<d$.

Proof. Choose a point $v_{\circ} \in V$ and any loop $\theta_{v_{\circ}}$ at v_{\circ} such that $f \theta_{v_{0}}$ represents the positive generator of $\pi_{1}\left(S^{1}, f\left(v_{0}\right)\right)$. Let e be the variation of F on $\theta_{v_{\circ}}$ and $C>0$ the constant of Lemma 2.4 Then $d=2 C+e$ satisfies the requirement of Lemma 2.5 For given any $v \in V \exists$ a path σ^{v} in V such that $\sigma^{v}(0)=v, \sigma^{v}(1)=v_{\circ}$ and $V_{F}\left(\sigma^{v}\right)<C$. If we define θ_{v} for any $v \neq v_{\circ}$ by $\theta_{v}=\sigma^{v} \theta_{v_{\circ}}(\sigma)^{v-1}$ then clearly $f \theta_{v}$ represents the positive generator of $\pi_{1}\left(\left(S^{1}\right), f(v)\right)$ and $V_{F}(\theta)_{v}<C+e+C=2 C+e=d$.

According to our choice of d we have $d>c$.
Lemma 2.6. Let w be any element of $F^{-1}[\ell+d, \infty)$ with ℓ any real number and $v=p(w)$. For any integer $k \geq 0$ let τ_{k} be the unique lift of θ_{v}^{k} satisfying $\tau_{k}(0)=w$. Then the path τ_{k} lies in $F^{-} 1[\ell, \infty)$ and $F\left(\tau_{k}(1)\right)=k+F(w)$.

Proof. The $F\left(\tau_{k}(1)\right)=k+F(w)$ follows from the fact that $f \circ \theta_{v}^{k}$ represents the element k. (+ ve generator) of $\pi_{1}\left(S^{1} f(v)\right)$. The τ_{k} lies in $F^{-1}[\ell, \infty)$ is proved by induction on k. For $k=0$ there is nothing to prove. Assume $k \geq 1$ and the lemma valid for $(k-1)$ instead of k. Let μ be the lift of θ_{v} with initial point $\mu(0)=\tau_{k-1}(1)$. Then
$F_{\mu}(0)=(k-1)+F(w) \geq(k-1)+\ell+d$. Since the variation of F on $\theta_{v}<d$ we have $F \mu(t) \geq(k-1)+\ell \forall t \in[0,1]$. Since $k \geq 1$ this implies $F \mu(t) \geq \ell$. Now τ_{k} is precisely the product $\tau_{k-1} \cdot \mu$ and whenever $t \leq \frac{1}{2}, F \tau_{k}(t)=F \tau_{k-1}(2 t) \geq \ell$ (by induction hypothesis) and if $t \leq \frac{1}{2}$, $F \tau_{k}(t)=F \mu(2 t-1) \geq(k-1)+\ell$ (by what is proved above). This shows that τ_{k} lies in $F^{-1}[\ell, \infty)$.

Proposition 2.7. There exist arbitrary small 0-neighbourhoods of ' ∞ ' (resp. $-\infty$) in W.

Proof. We prove the assertion for ∞, the proof for " $-\infty$ " being similar is left out. Let K be any compact subset of W. \exists an integer ℓ such that $F^{-1}[\ell, \infty) \subset W-K$. Since ℓ is a regular value of F we see that $F^{-1}[\ell, \infty)$ is a C^{∞} submanifold of W, with boundary $F^{-1}(\ell)$. Let d be the constant of Lemma 2.5 (which as commented earlier has been chosen to be $>C$ the constant of Lemma 2.4)

Claim: Any two points w_{0}, w_{1} of $F^{-1}[\ell+2 d, \infty)$ can be joined by means of a path in $F^{-1}[\ell, \infty)$.

Let $p\left(w_{0}\right)=v_{0}, p\left(w_{1}\right)=v_{1}$. By Lemma 2.4 \exists an arc σ in V such that $\sigma(0)=v_{0}, \sigma(1)=v_{1}$ and $V_{F}(\sigma)<C$. Let τ be the unique lift of σ with initial point $\tau(0)=w_{0}$. The $\tau(1)$ and w_{1} are points on the same fibre of W and hence $F\left(w_{1}\right)=k+F(\tau(1))$ for a certain integer k. It follows that $\sigma^{1}=\theta_{v_{\circ}}^{k}$. σ is a path joining v_{\circ} to v_{1} in V whose lift τ^{1} with initial point $\tau^{1}(0)=w_{\circ}$ satisfies $\tau^{1}(1)=w_{1}$. We now consider the cases $k \geq 0$ and $k<0$ separately. Case (i) $k \geq 0$. Since $V_{F}(\sigma)<C<d$ and $F(\tau(0))=F\left(w_{\circ}\right) \geq \ell+2 d$ it follows that $F(\tau(t))>\ell+d$. From Lemma 2.6 we now have $F\left(\tau^{1}(t)\right) \geq \ell \forall t \in[0,1]$. Case (ii) $k<0$. The path $\left(\tau^{1}\right)^{-1}$ is the composition $\left(\tau_{-k}\right) . \tau^{-1}$ where τ_{-k} is the lift of $\theta_{v_{o}}^{k}$ having as initial point $\tau_{-k}(0)=w_{1}$. Now, by assumption $F\left(w_{1}\right) \geq \ell+2 d$ and $-k>0$. From Lemma 2.6 we see that τ_{-k} is an arc in $F^{-1}[\ell, \infty$). Since τ (and hence τ^{-1} also) is an arc in $F^{-1}[\ell+d, \infty)$ we see that $\left(\tau^{1}\right)^{-1}=\tau_{-k} . \tau^{-1}$ is an arc in $F^{-1}[\ell, \infty)$ and hence τ^{1} too is an $F^{-1}[\ell, \infty)$.

This completes the proof of the claim. Now it is clear that $F^{-1}[\ell, \infty)$ has only one non-compact connected component say M^{\prime} and a finite number of compact connected components. Since $M^{\prime} \supset F^{-1}[\ell+2 d, \infty)$
it follows that the boundary $b M^{\prime}$ of M^{\prime} lies in $F^{-1}[\ell, \infty)-F^{-1}(\ell+2 d, \infty)$ and is therefore compact. If $b M^{\prime}$ were connected then M^{\prime} itself would be a $0-n b d$ of ∞. Suppose $b M^{\prime}$ is not connected. Choosing a smooth path in M^{\prime} from one component of $b M^{\prime}$ to another meeting $b M^{\prime}$ orthogonally and only at the end points and removing the interior of a tubular neighbourhood of the path we get a connected C^{∞} submanifold $M^{\prime \prime}$ of W with

Diagram 2
$b M^{\prime \prime}$ compact and $b M^{\prime \prime}$ having one component less than $b M^{\prime}$. Refer to Diagram 2. Since there are only a finite number of components after a finite number of such operations we get a connected C^{∞} submanifold M of W with $b M$ compact and connected. Further $M \supset F^{-1}[m, \infty)$ for some integer m since the original M^{\prime} contained $F^{-1}[\ell+2 d, \infty)$. Thus M is a $0-n b d$ of ∞.

Lemma 2.8. Let M^{n+1} be a C^{∞} submanifold of W^{n+1} with boundary $b M=N$ and let M and N be connected. Let M be a closed subset of W. Suppose the homomorphism $\pi_{1}(N) \rightarrow \pi_{1}(W)$ induced by the inclusion is an isomorphism. This $\pi_{1}(M) \rightarrow \pi_{1}(W)$ induced by the inclusion of M in W is also an isomorphism.

Proof. Let $i: N \rightarrow M$ and $j: M \rightarrow W$ be the respective inclusions. Then $j \circ i: N \rightarrow W$ induced an isomorphism $(j \circ i)_{*}: \pi_{1}(N) \rightarrow \pi_{1}(W)$ by our hypothesis. Since $(j o i)_{*}=j_{*} \circ i_{*}$ it follows that $j_{*}: \pi_{1}(M) \rightarrow$ $\pi_{1}(W)$ is an epimorphism. To show that $j_{*}: \pi_{1}(M) \rightarrow \pi_{1}(W)$ is an isomorphism it therefore suffices to prove that j_{*} is a monomorphism. Since $\operatorname{dim} M=n+1$ and $n \geq 5$ any element of $\pi_{1}(M)$ can be represented by a C^{∞} imbedding $\varphi: S^{1} \rightarrow$ Int M (in fact for this assertion to be valid
it suffices that $n+1 \geq 3$). Suppose $\alpha \in \pi_{1}(M)$ is such that $j_{*}(\alpha)=0$ and suppose $\varphi: S^{1} \rightarrow$ Int M represents α. From $j_{*}(\alpha)=0$ it follows that \exists a map $h: D^{2} \rightarrow W$ extending φ. Since $\phi\left(S^{1}\right) \cap N=\phi$ we can approximate h by a C^{∞} map $\theta: D^{2} \rightarrow W$ such that $\theta / S^{1}=\varphi$ and θ is transverse regular on N. Then $D^{2} \cap \theta^{-1}(N)$ consists of a finite number of disjoint simple closed curves (each one of them is a C^{∞} imbedded S^{1}) in the interior of D^{2}. Take an inner most curve C. Now $\theta \mid C \rightarrow W$ admits of an extension $\theta: \Delta \rightarrow W$ where Δ is the closed region (inner most) bounded by C. Thus $\theta \mid C$ represents the trivial elements of $\pi_{1}(W)$ and $\theta(C) \subset N$. Since $\pi_{1}(N) \rightarrow \pi_{1}(W)$ is an isomorphism it follows that \exists a map $\lambda: \Delta \rightarrow N$ with $\lambda|C=\theta| C$. (Refer to diagram 3). Now using the fact that N is collared in M it is easy to get a map $\theta^{\prime}: D^{2} \rightarrow W$ with the following properties:

Diagram 3
(1) $\theta^{\prime} \mid S^{1}=\varphi$
(2) \exists a $n b d A$ of \triangle in D^{2} with A disjoint from the curves of $\theta^{-1}(N) \cap D^{2}$ different from C such that $\theta^{\prime}(A) \cap=\phi$ and $\theta^{\prime}\left|D^{2}-A=\theta\right| D^{2}-A$.

For this θ^{\prime} we have $\theta^{-1}(N) \cap D^{2}$ consisting precisely of the curves in $\theta^{-1}(N) \cap D^{2}$ excepting C. Repeating this argument a finite number of times we finally get a map $\Phi: D^{2} \rightarrow W$ such that $\Phi S^{1}=\varphi$ and $\Phi^{-1}(N) \cap$ $D^{2}=\emptyset$. Since $\varphi\left(S^{\prime}\right) \subset$ Int M and since D^{2} is connected we should have $\Phi\left(D^{2}\right) \subset \operatorname{Int} M$, for otherwise $D^{2} \cap \Phi^{-1}($ Int $M)$ and $D^{2} \cap \Phi^{-1}(W-M)$
will be non void disjoint open sets of D^{2}. This means that $\alpha \in \pi_{1}(M)$ is the zero element and hence $\pi_{1}(M) \rightarrow \pi_{1}(W)$ is a monomorphism.

Proposition 2.9. There exist arbitrary small 1-neighbourhoods of " ∞ ".
In the proof of this lemma we use a result in group theory which we state below without proof.

Lemma 2.10. Suppose G and H are finitely presentable group and $G \xrightarrow{h} H \rightarrow 1$ is an exact sequence. Then the Kernel of h is the normal subgroup in G generated (as a normal subgroup) by a finite number of elements.

We now go to the proof of proposition 2.9 We have $\pi_{1}(W) \simeq \pi_{1}(X)$ and by assumption X is a finite polyhedron. It follows that $\pi_{1}(W)$ is finitely presentable. Let M^{\prime} with $N^{\prime}=b M^{\prime}$ be a zero neighbourhood of ∞ with $M^{\prime} \subset W-K$. Choosing a base point $w_{\circ} \in \operatorname{Int} M^{\prime}$ and a small "contractible open set 0 " in Int M^{\prime} as the "new base point" we can represent a finite system of generators $\alpha_{1}, \ldots, \alpha_{r}$ of $\pi_{1}(W)$ by disjoint C^{∞} imbeddings $\varphi_{i}: S^{1} \rightarrow W(i=1, \ldots r)$ with the base point of S^{1} going into 0 . To represent each α_{i} by a C^{∞} imbeddings we need that $\operatorname{dim} W \geq 3$ and also to get the imbedding to have disjoint images we need $\operatorname{dim} W \geq 3$. But hypothesis $\operatorname{dim} W \geq 6$. By choosing w_{\circ} properly we can assume that $\varphi_{i}\left(S^{1}\right) \subset \operatorname{Int} M^{\prime}$ for every i.

The normal bundle of φ_{i} has a section for every i. Let U_{i} be an open tubular neighbourhood of $\varphi_{i}\left(S^{1}\right)$ for every i such that $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$. Define $M^{\prime \prime}=M^{\prime}-U_{i} U_{i}$. Then $M^{\prime \prime}$ is still connected though
$b M^{\prime \prime}=N^{\prime \prime}$ is not in general. By choosing C^{∞} paths in $M^{\prime \prime}$ meeting the components of $b M^{\prime \prime}$ only at the end points and orthogonally and removing the interiors of tubular neighbourhoods of these paths one gets a zero -neighbourhood $M^{\prime \prime \prime} \subset W-K$. Sections of the normal bundles $b U_{i} \rightarrow \varphi_{i}\left(S^{1}\right)$ yield elements $\alpha_{1}^{\prime}, \ldots, \alpha_{r}^{\prime} \in \pi_{1}\left(b M^{\prime \prime}\right)$ which map onto $\alpha_{1}, \ldots, \alpha_{r} \in \pi_{1}(W)$. (Refer to diagram 4). Thus $\pi\left(N^{\prime \prime} / \rightarrow \pi_{1}(W)\right.$ is onto, where $N^{\prime \prime \prime}=b M^{\prime \prime \prime}$. We denote $\left(M^{\prime \prime \prime}, N^{\prime \prime \prime}\right)$ again by (M, N) and may assume(by Lemma 2.10) that $\pi_{1} N \rightarrow \pi_{1} W$ is the normal closure in $\pi_{1} N$ of a finite number of elements $\beta_{1}, \ldots, \beta_{k}$. Choose C^{∞} imbedding $\varphi_{i}: S^{1} \rightarrow N$ with base point of S^{1} going into some contractible open set B of N such that φ_{i} represents β_{i}. $(i=1, \ldots, k)$. It is given that φ_{i} represents the zero element in $\pi_{1} W$. Hence there exists a map which can be assumed to be a C^{∞} imbedding $\varphi_{i}: D^{2} \rightarrow W$ extending $\varphi_{i}: S^{1} \rightarrow N$. By translating M if necessary by a deck transformation we can assume that the images $\varphi_{i}\left(D^{2}\right)$ all lie in $W-K$. We can get a tubular neighbourhood of $\varphi_{i}(S)^{1}$ in N as the restriction to $\varphi_{i}(S)^{1}$ of a tubular neighbourhood of $\varphi_{i}(D)^{2}$ in W. We may assume that these tubular neighbourhood are disjoint, and that their intersections with N are tubular neighbourhood of $\varphi_{i}(D)^{2} \cap N$. Let $C \subset D^{2}$ be an inner most simple closed component curve of $\varphi_{i}^{-1}(N)$ for some i, and let D be the region of D^{2} bounded by C. Then $\varphi_{i}($ int $D) \cap N=\theta$.

There are two cases :
If $\varphi_{i}($ Int $D) \subset W-M$ then add the tubular neighbourhood of $\varphi_{i}(D)$ to M. That is to say, a handle $D^{2} \times D^{n-1}$ is attached to M. (Refer to diagram 5^{\prime}).

If $\varphi_{i}($ Int $D) \subset$ int M delete from M the tubular neighbourhood of 90
$\varphi_{i}(D)\left(\right.$ Refer to diagram $\left.5^{\prime \prime}\right)$.

The new manifold M^{\prime} with boundary N^{\prime} is still a 0-neighbourhood of α. Moreover, $\pi_{1} N^{\prime}$ is a quotient of $\pi_{1} N$ and the kernel of $\pi_{1} N^{\prime} \rightarrow$ $\pi_{1} W$ is still (normally) generated by the classes of $\varphi_{j}\left(S^{1}\right), j=1, \ldots, K$ with $j \neq i$ if $C=b D^{2}$ for φ_{i}. But the φ_{j} extend to $\varphi_{j}=D^{2} \rightarrow M^{\prime}$ with $\varphi_{j} \varphi_{j}(D)^{2} \cap N^{\prime}$ consisting of one less component curve than the original intersection. After a finite number of such steps, one reaches a 0-neighbourhood $M, b M=N$, such that $\pi_{1} N \rightarrow \pi_{1} W$ is an isomorphism. By Lemma 2.8, (M, N) is then a 1-neighbourhood.

3 The Existence of Arbitrary small k. Neighbourhoods of " ∞ " and " $-\infty$ " for $2 \leq k \leq n-2$

Definition 3.1. Let k be an integer ≥ 2. A k-neighbourhood of ∞ (respy $-\infty$) in W is a 1-neighbourhood M of $\infty($ respy $-\infty)$ satisfying the following additional condition:

Denoting the universal covering of M by \tilde{M} with $p: \tilde{M} \rightarrow M$ the projection, let $\tilde{N}=p^{-1}(N)$ where $N=b M$. The condition to be satisfied is : $H_{i}(\tilde{M}, \tilde{N})=0$ for $i \leq k$.

Remark. Since $\pi_{1}(N) \rightarrow \pi_{1}(M)$ induced by the inclusion is an isomorphism it follows that $p: \tilde{N} \rightarrow N$ is the universal covering of N.

Proposition 3.2. There exist arbitrary small k-neighbourhoods of ∞ (respy ' $-\infty$ ') for any integer k such that $2 \leq k \leq n-2$.

We prove this proposition for $k=2$ first and then proceed by induction on k. It will be clear from the proof why we are forced to give a proof for $k=2$ separately.

Lemma 3.3. If M is a (respy 1) neighbourhood of ' ∞ ' then $M_{\circ}=$ $\overline{W-M}$ is a 0 (respy 1) neighbourhood of ' $-\infty$ '.

Proof. Clearly the boundary of M_{\circ} is the same as that of M. Thus $b M_{\circ}=b M=N$ is compact and connected. If $m_{1}<m_{2}$ are integers such that $F^{-1}\left[m_{1}, \infty\right) \supset M \supset F^{-1}\left[m_{2}, \infty\right)$ then clearly $F^{-1}\left(-\infty, m_{1}\right] \subset$ $M_{\circ} \subset F^{-1}\left(-\infty, m_{2}\right]$. Let a, b be any two points in M_{\circ}. We will show that there is an arc in M_{\circ} joining a and b. Since W is arcwise connected \exists an arc σ in W with $\sigma(o)=a$ and $\sigma(1)=b$. If the arc σ lies in M_{\circ} there is nothing to prove. If not \exists real numbers t_{\circ} and t_{1} such that $\tau(t) \in M_{\circ}$ $\forall t \leq t_{\circ}$ and $\sigma(s) \in M_{\circ} \forall s \geq t_{1}$ and $\sigma\left(t_{\circ}\right) \in N, \sigma\left(t_{1}\right) \in N$. Choosing an arc in N joining $\sigma\left(t_{\circ}\right)$ and $\sigma\left(t_{1}\right)$ we see that a and b can be joined by means of an arc in M_{\circ}. Thus M_{\circ} is a 0-neighbourhood of ' $-\infty$ '. If M is a 1-neighbourhood of ∞ then $\pi_{1}(b M)=\pi_{1}\left(b M_{\circ}\right)=\pi_{1}(N) \rightarrow$ $\pi_{1}(W)$ is an isomorphism and from Lemma 2.8 it follows that M_{\circ} is a 1-neighbourhood.

Lemma 3.4. If M is a l-neighbourhood of ∞ in W, then $H_{j}(\tilde{M})$ is a finitely generated $\mathbb{Z}(J)$-module.

For this we shall use assumption that $\mathbb{Z}(\pi)$ is a noetherian ring. By an example of J. Stallings the above lemma is definitely false without this hypothesis. However, we really only need that if (M, N) is a $(k-1)$ neighbourhood, then $H_{k}(\tilde{M}, \tilde{N})$ is finitely generated. In the general case $(\mathbb{Z}(\pi)$ not necessarily noetherian) one proved that (M, N) is dominated by a finite complex pair. It is then an exercise to deduce from this the finite generation of $H_{k}(\tilde{M}, \tilde{N})$.

Proof. Let $N=b M$ and $M_{\circ}=\overline{W-M}$. By lemma 3.3, M_{\circ} is a $1-$ neighbourhood of " $-\infty$ ". If W is the universal covering of W with $p: \tilde{W} \rightarrow W$ the projection there $\tilde{M}=p^{-1}(M) . \quad \tilde{M}_{\circ}=p^{-1}\left(M_{\circ}\right)$ and $\tilde{N}=p^{-1}=p^{-1}\left(M \cap M_{\circ}\right)=\tilde{M} \cap \tilde{M}_{\circ}$ are respectively the universal covering of M, M_{\circ} and N. This is so because $\pi_{1}(N) \rightarrow \pi_{1}(W)$,
$\pi_{1}(M) \rightarrow \pi_{1}(W)$ and $\pi_{1}\left(M_{\circ}\right) \rightarrow \pi_{1}(W)$ induced by the respective inclusions are isomorphisms. From the Mayer-Vietoris sequence

$$
H_{j}(\tilde{N}) \rightarrow H_{j}\left(\tilde{M}_{\circ}\right) \oplus H_{j}(\tilde{M}) \rightarrow H_{j}(\tilde{W})
$$

which is sequence of $\mathbb{Z} \pi$-modules it will follow that $H_{j}(\tilde{M})$ is finitely generated over $\mathbb{Z}(\pi)$ if we show that $H_{2}(\tilde{N})$ and $H_{2}(\tilde{W})$ are finitely generated over $\mathbb{Z}(\pi)$. Since N is smooth and compact, choosing a triangulation of N we see that the chain groups of \tilde{N} with the lifted triangulation are finitely generated over $\mathbb{Z} \pi$. From the fact that $\mathbb{Z} \pi$ is noetherian again it follows that all the homology groups of \tilde{N} are finitely generated $\mathbb{Z} \pi$ modules. Also W is of the homotopy type of the finite polyhedron X and the same argument as above yields that all the homology groups of W are finitely generated $\mathbb{Z} \pi$-modules.

Lemma 3.5. There exist arbitrary small 2- neighbourhoods of " ∞ ".
Proof. Let M^{\prime} with $b M^{\prime}=N^{\prime}$ be a 1-neighbourhood of ∞ with $M^{\prime} \subset$ $W-K$. By Lemma 3.4, $H_{2}\left(M^{\prime}\right)$ is finitely generated over $\mathbb{Z}(\pi)$. Let $\alpha_{1}, \ldots, \alpha_{r}$ be a system of generators over $\mathbb{Z}(\pi)$ for $H_{2}\left(\tilde{M}^{\prime}\right)=\pi_{2}\left(\tilde{M}^{\prime}\right) \sim$ $\pi_{2}\left(M^{\prime}\right)$. Choosing a small contractible open set in Int M^{\prime} as the base point represent the elements α_{i} by C^{∞} imbeddings $\varphi_{i}: S^{2} \rightarrow \operatorname{Int} M^{\prime}$, with disjoint images and the base point of S^{2} going into the chosen contractible open set. For this to be possible we need that $\operatorname{dim} M^{\prime} \geq 5$ but by assumption $\operatorname{dim} M^{\prime}=n+1 \geq 6$. Let M be formed from M^{\prime} as explained below: Choose closed tubular neighbourhoods T_{i} of $\varphi_{i}\left(S^{2}\right)$ in Int M^{\prime} with $T_{i} \cap T_{j}=\phi$ whenever $i \neq j$. Choose C^{∞} paths σ_{i} from N^{\prime} to $b T_{i}$ (the boundary of T_{i}) meeting N^{\prime} and $b T_{i}$ transversally and at the end points only. These paths can be chosen to be mutually disjoint, and tubular neighbourhoods Γ_{i} of σ_{i} can be chosen to be mutually disjoint. Let $M=M^{\prime}-\bigcup_{i=1}^{r} \operatorname{Int} \cup T_{i} \operatorname{Int} \Gamma_{i}$. Then clearly M is a 0-neighbourhood of ∞. We claim that M is a 2-neighbourhood of ∞. First of all, if $N=b M$ it is clear that $N=N^{\prime} \# b T_{1} \# \cdots \# b T_{r}$ (connected sum). Also $b T_{1}$ is an ($n-2$) sphere bundle over S^{2} with $n \geq 5$ and hence $\pi_{1}\left(b T_{i}\right)=1$. By Van Kampen we see that $\pi_{1}(N) \simeq \pi_{1}\left(N^{\prime}\right)$, under an isomorphism making the following diagram commutative:

Diagram 6
Here the homomorphisms indicated by $i_{*}, j_{*}, i_{*}^{\prime}, j_{*}^{\prime}$ and μ_{*} are all induced by inclusions and the isomorphism $\pi_{1}(N) \rightarrow \pi_{1}\left(N^{\prime}\right)$ is got from Van Kampen's theorem. It follows that $i_{*} o j_{*}$ is an isomorphism since i_{*}^{\prime} and j_{*}^{\prime} are. Lemma 2.8 now implies that M is a 1 -neighbourhood of ∞.
Assertion: $\pi_{2}(N) \xrightarrow{j_{*}} \pi_{2}(M)$ is an epimorphism.
To prove this it suffices to show that $\pi_{2}(N) \xrightarrow{\mu_{*} j_{z}} \pi_{2}\left(M^{\prime}\right)$ is an epimorphism and that $\mu_{*}: \pi_{2} \rightarrow \pi_{2}\left(M^{\prime}\right)$ is an isomorphism. Let $v_{i} \in \pi_{1}$ ($S o(n-1)$) be the element corresponding to the normal bundle of $\varphi_{1}\left(S^{2}\right)$ in Int M^{\prime}. As $S_{*}: \pi_{1}(S o(n-2)) \rightarrow \pi_{1}(S O(n-1))$ is an isomorphism for $n \geq 5$ we see that γ_{i} can be written as $\gamma_{i}+\mathscr{O}^{1}$ is a trivial line bundle. Hence there exists a non zero cross-section for the associated sphere bundle. Using this cross-section we see that \exists an element in $\pi_{2}\left(b T_{i}\right)$ which represents the element $\alpha_{i} \in \pi_{2}\left(M^{\prime}\right)$ under the inclusion $b T_{i} \rightarrow M^{\prime}$. It now follows that $\pi_{2}(N) \xrightarrow{\mu_{*} \circ j_{s}} \pi_{2}\left(M^{\prime}\right)$ is an epimorhism.

This in particular gives: $\pi_{2}(M) \xrightarrow{\mu_{*}} \pi_{2}\left(M^{\prime}\right)$ is an epimorphism. To complete the proof of the assertion we only to show that μ_{*} is a monomorphism. Let $x \in \pi_{2}(M)$ be such that $\mu_{*}(x)=0$ and let $\theta: S^{2} \rightarrow$ M be a C^{∞} imbedding representing x. The fact that $\mu_{*}(x)=0$ implies that \exists a C^{∞} map $\varphi: D^{3} \rightarrow M^{\prime}$ extending θ. We can get φ so as to be transverse regular on $\cup \varphi_{i}\left(S^{2}\right)$ (since $\theta\left(S^{2}\right) \cap \varphi_{i}\left(S^{2}\right)=\phi$). The condition $n+1 \geq 6\left(n+1=\operatorname{dim} M^{\prime}\right)$ implies that $\varphi\left(D^{3}\right)$ is then disjoint from $U \varphi_{i}\left(S^{2}\right)$. By a further deformation we can make $\varphi\left(D^{3}\right)$ go into M.

Now, $\pi_{2}(N) \xrightarrow{j_{*}} \pi_{2}(M)$ being an epimorphism we have $\pi_{2}(\tilde{N}) \xrightarrow{j_{*}}$ $\pi_{2}(\tilde{M})$ also an epimorphism and hence $\pi_{2}(\tilde{M}, \tilde{N})=0$. The simply connectedness of \tilde{M} and \tilde{N} now yields by the Relative Hurewicz Theorem $H_{2}(\tilde{M}, \tilde{N})=\pi_{2}(\tilde{M}, \tilde{N})=0$. This completes the proof that M is a $2-$ neighbourhood.

We now proceed to the proof of proposition 3.2 for an arbitrary k satisfying $3 \leq k \leq n-2$. Assume by induction that arbitrary small $(k-1)$ neighbourhoods of ∞ exist.

Lemma 3.6. Suppose M is any $(k-1)$-neighbourhood of ∞. Let $N=$ $b M$. Then
(1) $H_{k}(\tilde{M} \tilde{N})$ is a finitely generated $\mathbb{Z}(\pi)$-module.
(2) \exists another $(k-1)$-neighbourhood M_{1} of ∞ with $M_{1} \subset M$ satisfying the following additional condition:

The homomorphism $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}(\tilde{M} \cdot \tilde{N})$ induced by the inclusion $(\tilde{U}, \tilde{N}) \subset(\tilde{M}, \tilde{N})$ is an epimorphism, where $U=\overline{M-M_{1}}$ and \tilde{U} is the inverse image of U by the covering map $p: \tilde{M} \rightarrow M$.

Proof of (1). By Lemma 3.4 we have $H_{j}(\tilde{M})$ finitely generated over $\mathbb{Z}(\pi)$ for every j. Also since N is compact $H_{j}(\tilde{N})$ is finitely generated over $\mathbb{Z}(\pi)$. The exactness of $H_{k}(\tilde{M}) \rightarrow H_{k}(\tilde{M}, \tilde{N}) \rightarrow H_{k-1}(\tilde{N})$ together with Noetherian nature of $\mathbb{Z}(\pi)$ now yield the finite generation of $H_{k}(\tilde{M}, \tilde{N})$ over $\mathbb{Z}(\pi)$.

Proof of (2). Let $C_{1}, \ldots, C_{\lambda}$ be a finite set of generators for $H_{k}(\tilde{M}, \tilde{N})$. There exists a compact set \tilde{K}_{1} in \tilde{M} such that \exists integral singular cycles representing $C_{1}, \ldots, C_{\lambda}$ with their supports contained in \tilde{K}_{1}. Let $K_{1}=$ $p\left(\tilde{K}_{1}\right)$. By the inductive assumption regarding existence of arbitrary small $(k-1)$-neighbourhoods of ∞ we can find a $(k-1)$-neighbourhood M_{1} of ∞ with $M_{1} \subset W-K_{1}$ and $M_{1} \subset M$. Then clearly $U=\overline{M-M_{1}}$ satisfies the condition $U \supset K_{1}$ and thus the chosen cycles representing $C_{1}, \ldots, C_{\lambda}$ are cycles of (\tilde{U}, \tilde{N}). Hence $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}(\tilde{M}, \tilde{N})$ is onto.

Remark A. For the pair (\tilde{U}, \tilde{N}) we have $H_{i}(\tilde{U}, \tilde{N})=0$ for $i<k-1$.

Proof. Let $N_{1}=b M_{1}$. We have $H_{i}(\tilde{M}, \tilde{U}) \longleftrightarrow H_{i}\left(\tilde{M}_{i}, \tilde{N}_{i}\right)$ by excision. Now from the homology exact sequence of the triple (M, U, N) written below:

and the fact that M_{i} is a $(k-1)$-neighbourhood of ∞ we see that $H_{i}(\tilde{U}$, $\tilde{N}) \rightarrow H_{i}(\tilde{M}, \tilde{N})$ for $i<k-1$. Since M itself is a $(k-1)$-neighbourhood we have $H_{i}(\tilde{U}, \tilde{N})=0$ for $i<k-1$.

Remark B. The homomorphisms $\pi_{1}(N) \rightarrow \pi_{1}(U)$ and $\pi_{1}\left(N_{1}\right) \rightarrow \pi_{1}(U)$ induced by the inclusions are isomorphisms.

The proof of this is similar to the proof of Lemma 2.8 and hence is omitted.

For completing the proof the proposition 3.2 we need the following two propositions which we state without proof.

Proposition 3.7. Suppose U is a compact orientable C^{∞} manifold of dimension $n+1$ with $n \geq 5$ and suppose $b U=N \cup N_{1}$ a disjoint union of two open and closed, connected submanifolds of bU. If the homomorphisms $\pi_{1}(N) \rightarrow \pi_{1}(U)$ and $\pi_{1}\left(N_{1}\right) \rightarrow \pi_{1}(U)$ induced by the inclusions are isomorphisms and if $H_{i}(\tilde{U}, \tilde{N})=0$ for $i \leq k-2<n-2$ then $(U, N) \mathbf{9 8}$ has a handle decomposition with handles of type $k-1, k, \ldots, n-1$.

In other words U has a presentation of the form

$$
U=I \times N+\varphi_{1}^{k-1}+\cdots+\varphi_{\alpha_{k-1}}^{k-1}+\varphi_{1}^{k}+\varphi_{\alpha_{k}}^{k}+\cdots+\chi_{1}^{n-1}+\cdots+\chi_{\alpha_{n-1}}^{n-1} .
$$

The proof is essentially given in [5], Lemma 1.
Proposition 3.8. Let X and Y be closed C^{∞} submanifolds of a C^{∞} manifold N, where $\operatorname{dim} X+\operatorname{dim} Y=\operatorname{dim} N>4$, and $2<\operatorname{dim} Y \leq \operatorname{dim} N-2$. Suppose that $\pi_{1}(N-Y) \rightarrow \pi_{1} N$ induced by the inclusion is an isomorphism. (This is a restriction only if $\operatorname{dim} Y=\operatorname{dim} N-2$). Suppose that X
and Y can be lifted to closed submanifolds \tilde{X} and \tilde{Y} of \tilde{N}, the universal covering of N, and that

$$
\tilde{X}_{i} \cdot \tau \tilde{Y}_{j}=0
$$

(where denotes the homology intersection number) for all $\tau \in \pi$ and all connected components $\tilde{X}_{i}, \tilde{Y}_{j}$ of \tilde{X} and \tilde{Y}. Then X is isotopic in N to a submanifold X_{1} such that $X_{1} \cap Y=\phi$, or equivalently Y is isotopic in N to a submanifold Y_{1} such that $X \cap Y_{1}=\phi$.

This proposition is essentially due to Whitney.
As remarked already proposition 3.2 is proved by induction on k for k in the range $3 \leq k \leq n-2$. Assume arbitrary small $(k-1)$ neighbourhoods of ∞ exist. Let K be any compact subset of W and let M be any $(k-1)$-neighbourhood of ∞ with $M \subset W-K$. By Lemma $3.6 \exists$ a $(k-1)$-neighbourhood of ∞ say M_{1} with $M_{1} \subset M$ such that the homomorphism $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}(\tilde{M}, \tilde{N})$ induced by inclusion is onto, where $U=\overline{M-M_{1}}$ and $b M=N, b M_{1}=N_{1}$. From Remark $⿴$ following Lemma 3.6 we have $H_{i}(\tilde{U}, \tilde{N})=0$ for $i<k-1$ and by Remark B the homomorphisms $\pi_{1}(N) \rightarrow \pi_{1}(U), \pi_{1}\left(N_{1}\right) \rightarrow \pi_{1}(U)$ induced by the respective inclusions are isomorphisms. Hence by proposition 3.7 we have a handle decomposition for (U, N) with handles of type $k-1$, $k, \ldots, n-1$. Let U_{\circ} be the union of $I \times N$ together with handles of type $k-1$ (Refer to diagram 7) and N_{0} the right hand boundary of U_{0}. Let $U_{1}=\overline{U-U_{0}}$.

Convention: In future when we are in a situation of the form $A \subset B$ or $\left(A, A^{\prime}\right) \subset\left(B, B^{\prime}\right)$ with $A, A^{\prime}, B, B^{\prime}$ topological spaces by the homomorphism $\pi_{1}(A) \rightarrow \pi_{1}(B)$ or $H_{j}(A) \rightarrow H_{j}(B)$ or $H_{j}\left(A, A^{\prime}\right) \rightarrow H_{j}\left(B, B^{\prime}\right)$ we mean the one induced by the inclusion. When $k>3$ we see from Van Kampen theorem that $\pi_{1}(N) \rightarrow \pi_{1}\left(U_{\circ}\right)$ is an isomorphism. When $k=3$ we first observe that the 2-handles φ_{i}^{2} are attached by means of trivial maps to $1 \times N$. In fact $\varphi_{1}^{2}\left(S^{1} \times 0\right)$ bounds a disk in W and as M is a 1-neighbourhood we have $\pi_{1}(N) \rightarrow \pi_{1}(W)$ an isomorphism. Now an application of Van Kampen immediately yields $\pi_{1}(N) \rightarrow \pi_{1}\left(U_{\circ}\right)$ is an isomorphism. Using the 'dual' handle decomposition for U_{\circ} and the fact that $k \leq n-2$ we see that $\pi_{1}\left(N_{\circ}\right) \rightarrow \pi_{1}\left(U_{\circ}\right)$ is an isomorphism, again by applying Van Kampen. To get U_{1} we attach handles of type $k, \ldots, n-1$ to U_{0}. It follows that whenever $k \geq 3$ the homomorphism $\pi_{1}\left(N_{\circ}\right) \rightarrow \pi_{1}\left(U_{1}\right)$ is actually an isomorphism. Now choose any α in $H_{k}(\tilde{M}, \tilde{N})$. By our choice of M_{1} we have $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}(\tilde{M}, \tilde{N})$ epimorphism. Choose any $\beta \in H_{k}(\tilde{U}, \tilde{N})$ getting mapped onto α. By excision $H_{k}\left(\tilde{U}, \tilde{U}_{\circ}\right) \simeq H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)$ the isomorphism being a $\mathbb{Z}(\pi)$-isomorphism since the maps induced by the various inclusions, namely $N \rightarrow U_{0}$; $N_{\circ} \rightarrow U_{\circ}$ and $N_{\circ} \rightarrow U_{1}$ are isomorphisms on π_{1}. Let γ be the image of β under the composition of the maps

$$
H_{k}(\tilde{U}, \tilde{N}) \xrightarrow{(\text { inc } l n)_{*}} H_{k}\left(\tilde{U}, \tilde{U}_{\circ}\right) \underset{\text { excision }}{\simeq} H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)
$$

Since $\left(U_{1}, N_{\circ}\right)$ has a handle decomposition with handles of type k, \ldots, $n-1$ we that $H_{i}\left(\tilde{U}_{1} \tilde{N}_{\circ}\right)=0$ for $i \leq k-1$ and by Relative Hurewicz theorem $\pi_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right) \simeq H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)$. But $\pi_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right) \simeq \pi_{k}\left(U_{1}, N_{\circ}\right)$. Thus $\pi_{k}\left(U_{1}, N_{\circ}\right) \simeq H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)$.

Claim: The element γ can be represented by a C^{∞} imbedding $\varphi: 101$ $\left(D^{k}, S^{k-1}\right) \rightarrow\left(U_{1}, N_{\circ}\right)$.

Now, γ is homologous to $\sum a_{i} D_{i}^{k}$ with $a_{i} \in \mathbb{Z}(\pi)$ and D_{i}^{k} the k-cell of the i-th hankle of type $k . D_{i}^{k}$ is a differentiably imbedded k-cell in U_{1} with boundary S_{i}^{k-1} in N_{\circ}. Let $a_{i}=\sum_{\sigma \in \pi} a_{i}^{\sigma} \sigma$ with $a_{i}^{(\sigma)} \in \mathbb{Z}$ and $a_{i}^{(\sigma)}=0$ for almost all σ. We can assume that all the $S_{i}^{k-1} D^{n-k+1}$ intersect a contractible open set in N_{\circ} which can be chosen as the "base point" for
homotopy considerations. Let $\ell_{i}=\sum_{\sigma}\left|a_{i}^{\sigma}\right|$. Let us take ℓ_{i} distinct points $x_{1}, \ldots, x_{\ell_{i}}$ in D_{i}^{n-k+1}. Form connected sum of $D_{i}^{k} \times x_{1}, \ldots, D_{i}^{k} \times x_{\ell_{i}}$ along paths in N_{\circ} representing the σ^{\prime} s for which $a_{i}^{(\sigma)} \neq 0$. This operation will give a C^{∞} imbedding $\theta_{i}:\left(D^{k}, S^{k-1}\right) \rightarrow\left(U_{1}, N_{\circ}\right)$ representing $a_{i} D_{i}^{k}$. Forming connected sum of the various $\theta_{i}\left(D^{k}\right)$ along trivial arcs in N_{\circ} gives a C^{∞} imbedding $\varphi:\left(D^{k}, S^{k-1}\right) \rightarrow\left(U_{1}, N_{\circ}\right)$ representing γ.

Let $\left(D^{k}, S_{j}^{n-k+1}\right)$ be the boundaries of the right hand disks D_{j}^{n-k+2} corresponding to he handles of type $(k-1)$.

Claim: Let $\tilde{\varphi}\left(S^{k-1}\right)$ and \tilde{S}_{j}^{n-k+1} be arbitrary lifts of $\varphi\left(S^{k-1}\right)$ and S_{j}^{n-k+1} to N_{\circ}. Then for any $\tau \in \pi$ the homology intersection $\tilde{\varphi}\left(S^{k-1}\right) . \tau \tilde{S}_{j}^{n-k+1}$ in \tilde{N}_{\circ} is zero

Actually $\tilde{\varphi}\left(S^{k-1}\right) \dot{\sim}_{N} \tau S_{j}^{n-k+1}$ is the same $\beta . \tau\left\{\tilde{S}_{j}^{n-k+1}\right.$, this later intersection being the one associated to the pair $H_{k}(\tilde{U}, \tilde{N})$ and $H_{n-k+1}(\tilde{U})$. But $\left\{\tilde{S}_{j}^{n-k+1}\right\}=0$ in $H_{n-k+1}(\tilde{U})$ since \tilde{S}_{j}^{n-k+1} bounds a disk in \tilde{U}.

We now want to apply proposition 3.8 to $\varphi\left(S^{k-1}\right)=X$ and $Y=$ $U S_{j}^{n-k+1}$ which are submanifolds of N_{\circ}. To be able to apply proposition 3.8 we need to have $n-k+1 \leq n-2$ and $\pi_{1}\left(N_{\circ}-Y\right) \rightarrow \pi_{1}\left(N_{\circ}\right)$ an isomorphism. The condition $n-k+1 \leq n-2$ gives $k \geq 3$. This is precisely the reason why we had to prove the existence of 2-neighbourhoods separately. We have already seen that $\pi_{1}(N) \rightarrow \pi_{1}\left(U_{\circ}\right)$ and $\pi_{1}\left(N_{\circ}\right) \rightarrow \pi_{1}\left(U_{\circ}\right)$ are isomorphisms. Since $\pi_{1}\left(N_{\circ}\right) \rightarrow \pi_{1}(W)$ is an isomorphism, it follows that $\pi_{1}\left(U_{\circ}\right) \rightarrow \pi_{1}(W)$ is an isomorphism and hence $\pi_{1}\left(N_{\circ}\right) \rightarrow \pi_{1}(W)$ an isomorphism. Let $\varphi_{j}\left(D^{k-1} \times D^{n-k+2}\right)$ denote the handles of type $k-1$. Then the inclusion $N_{\circ}-U \varphi_{j}\left(B^{k-1} \times S^{n-k+1}\right) \rightarrow N_{\circ}-U S_{j}^{n-k+1}$ is a homotopy equivalence, and $N-U \varphi_{j}\left(S^{k-2} \times B^{n-k+2}\right)=N_{\circ}-U \varphi_{j}\left(B^{k-1} \times S^{n-k+1}\right)$. Consider the following commutative diagram:

Diagram 8

The map

$$
\pi_{1}\left(N-U_{j} \varphi_{j}\left(S^{k-2} \times B^{n-k+2}\right)\right) \rightarrow \pi_{1} N
$$

is an isomorphism because it factors through $\pi_{1}\left(N-U_{j} \varphi_{j}\left(S^{k-2} \times\right.\right.$ $\left.\left.B^{n-k+2}\right)\right) \rightarrow \pi_{1}\left(N-U_{j} \varphi_{j}\left(S^{k-2} \times 0\right)\right) \rightarrow \pi_{1} N$, where the first map is induced by a homotopy equivalence, and the second is also an isomorphism since codim $S^{k-2}=n-k+2 \geq 3$.

Thus proposition 3.8 can be applied and it yields the following conclusion. The imbedding φ can be so chosen that $\varphi\left(S^{k-1}\right) \cap Y=\phi$. It now follows from Morse theory that $\varphi\left(S^{k-1}\right)$ is diffeotopic in U_{\circ} to an imbedding $\varphi^{\prime}: S^{k-1} \rightarrow N$. Actually one gets a C^{∞} imbedding $\Phi: \quad S^{k-1} \times I \rightarrow U_{\circ}$ extending φ i.e $\Phi \mid S^{k-1} \times 0=\varphi$ and satisfying $\Phi\left(S^{k-1} \times I\right) \subset N$. Taking the diffeotopy together with the imbedding $\varphi:\left(D^{k}, S^{k-1}\right) \rightarrow\left(U_{1}, N_{\circ}\right)$ we get an imbedding $\varphi:\left(D^{k}, S^{k-1}\right) \rightarrow(U, N)$. (See diagram 9).

The homology class in $H_{k}(\tilde{U}, \tilde{N})$ represented by φ clearly gets mapped into the homology class γ represented by φ in $H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)$ under the composition $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}\left(\tilde{U}, \tilde{U}_{\circ}\right) \stackrel{\text { excision }}{\simeq} H_{k}\left(\tilde{U}_{1}, \tilde{N}_{\circ}\right)$. From the exact sequence of the triple $\tilde{U}, \tilde{U}_{\mathrm{o}}, \tilde{N}$ we have

$$
H_{k}\left(\tilde{U}_{\circ}, \tilde{N}\right) \rightarrow H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}\left(\tilde{U}, \tilde{U}_{\circ}\right) \text { exact } .
$$

But $H_{k}\left(\tilde{U}_{\mathrm{o}}, \tilde{N}\right)=0$ since the handle decomposition of $\left(U_{\mathrm{o}}, N\right)$ we have, consists only of handles of type $(k-1)$. Thus $H_{k}(\tilde{U}, \tilde{N}) \rightarrow H_{k}\left(\tilde{U}, \tilde{U}_{\circ}\right)$ is a monomorphism and hence β is the only element of $H_{k}(\tilde{U}, \tilde{N})$ getting mapped into γ. It follows that the class in $H_{k}(\tilde{U}, \tilde{N})$ represented by φ : $\left(D^{k}, S^{k-1}\right) \rightarrow(U, N)$ is β.

Let A be the union of a tubular neighbourhood of $\varphi\left(D^{k}\right)$ in M together with a tubular neighbourhood of N in M. Define M^{\prime} to be $\overline{M-A}$. Let $N^{\prime}=b M^{\prime}$.
Claim: M^{\prime} is a $(k-1)$-neighbourhood of ∞ with $H_{k}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right) \simeq H_{k}(\tilde{M}$, $\tilde{N}) /(\alpha)$ as a $\mathbb{Z}(\pi)$-module. Here (α) denotes the $\mathbb{Z}(\pi)$-submodule of $H_{k}(\tilde{M}, \tilde{N})$ generated by α.

Clearly M^{\prime} is a 0 -neighbourhood of ∞ and from Van Kampen's theorem we see that for k satisfying $3 \leq k \leq n-2 \pi_{1}\left(N^{\prime}\right) \rightarrow \pi_{1}(N)$ and $\pi_{1}\left(M^{\prime}\right) \simeq \pi_{1}(M)$ where the latter isomorphism is induced by the inclusion. Also the isomorphism $\pi_{1}\left(N^{\prime}\right) \rightarrow \pi_{1}(N)$ makes the diagram

commutative and hence $\pi_{1}\left(N^{\prime}\right) \rightarrow \pi_{1}\left(M^{\prime}\right)$ is an isomorphism. It follows tht M^{\prime} is a 1-neighbourhood of ∞. From the homology sequence of the triple $(\tilde{M}, \tilde{A}, \tilde{N})$ where $\tilde{A}=p^{-1}(A)$ with $p: \tilde{M} \rightarrow M$ the covering map, we have the following diagram with the horizontal row exact.

Diagram 10

Now, $H_{i}(\tilde{A}, \tilde{N})=0$ for $i \neq k$ and $H_{k}(\tilde{A}, \tilde{N})=\mathbb{Z}(\pi)$ and the map $H_{i}(\tilde{A}, \tilde{N}) \rightarrow H_{i}(\tilde{M}, \tilde{N})$ carries 1 of $\mathbb{Z}(\pi)$ into α. It follows that $H_{i}\left(\tilde{M}^{\prime}\right.$, $\left.\tilde{N}^{\prime}\right)=0$ for $i \leq k-1$ and that $H_{k}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right) \simeq H_{k}(\tilde{M}, \tilde{N}) /(\alpha)$.

By Lemma 3.6 we have $H_{k}(\tilde{M}, \tilde{N})$ finitely generated over $\mathbb{Z}(\pi)$. Choose a finite system of generators $\alpha_{1}, \ldots, \alpha_{r}$ and apply the above procedure to $\alpha=\alpha_{1}$. Then we get a $(k-1)$ - neighbourhood M^{\prime} such that $H_{k}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right)$ is generated by the images of $\alpha_{2}, \ldots, \alpha_{r}$ under the isomorphism $H_{2}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right) \simeq H_{2}(M, N) /\left(\alpha_{1}\right)$. By interating this procedure a finite number of times we finally arrive at a k-neighbourhood $M^{\prime \prime}$ of ∞. Clearly $M^{\prime \prime} \subset M \subset W-K$. This completes the proof of Proposition 3.2

4 The existence of arbitrary small ($n-1$)- neighbourhoods of " ∞ "

So far we have not used the hypothesis $\tilde{K}_{\circ}(\mathbb{Z}(\pi))=0$ any where. It is in the construction of arbitrary small $(n-1)$-neighbourhoods of ∞ that we use this hypothesis.

Lemma 4.1. Let M be any ($n-2$)-neighbourhood of ∞ and let $N=b M$.
Then the homology. $H_{*}(\tilde{M}, \tilde{N})$ is the homology of a $\mathbb{Z}(\pi)$-chain complex of the form

$$
0 \rightarrow \tilde{C}_{n-1} \xrightarrow{d} \tilde{C}_{n-2} \rightarrow 0
$$

where \tilde{C}_{n-1} and \tilde{C}_{n-2} are free but not necessarily finitely generated $\mathbb{Z}(\pi)$ modules.

Proof. Pick a sequence of $(n-2)$-neighbourhoods

$$
M=M_{\circ} \supset M_{1} \supset . . M_{r} \supset M_{r+1} \ldots
$$

such that $\bigcup_{r \geq 1} U_{r}=M$ where $U_{r}=\overline{M_{r-1}-M_{r}}$.
We know that \exists Morse functions $\lambda_{r}: U_{r} \rightarrow[r-1, r]$ with critical points of index $(n-2)$ and $(n-1)$ only, having the components of $b U_{r}$ for level manifolds $\lambda_{r}^{-1}(r-1)$ and $\lambda_{r}^{-1}(r)$ of λ_{r}. Thus U_{1} is homotopically equivalent to a space of the form $N U_{f i} e_{i}^{n-2} U e_{j}^{n-1}$ means of attaching a

$$
\left\{f_{i}\right\}{ }_{i \in I_{1}}\left\{g_{j}\right\}_{j \in J_{1}}
$$

finite number of $(n-2)$ cells and then a finite number of $(n-1)$ cells, under a homotopy equivalence which is the identity on N. Choose a triangulation L of N. By the cellular approximation theorem to each of the characteristic maps f_{i} corresponds a homotopic cellular map f_{i}^{\prime} : $S^{n-3} \rightarrow L^{n-3} \subset L$. Thus $N \underset{\left\{f_{i}\right\}_{i \in I_{1}}}{ } e_{i}^{n-2}$ is homotopy equivalent to the $C W$-complex $F=N \underset{\left\{f_{i}^{\prime}\right\}}{U} e_{i \in I_{1}}^{n-2}$ under an equivalence θ which is identity
on N. Replacing the maps $\theta \circ g_{j}$ by cellular maps $g_{j}^{\prime}: S^{n-2} \rightarrow F$ we get a $C W$-complex $K_{1}=F \underset{\left\{g_{j}^{\prime}\right\}_{j \in j_{1}}}{U} e_{j}^{n-1}$ and a homotopy equivalence h_{1} : $U_{1} \rightarrow K_{1}$ which is identity on N. Also K_{1} contains L as a subcomplex. Using the Morse function λ_{2} we see that $U_{1} \cup U_{2}$ is of the homotopy type of a space of the form $U_{1} \underset{\left\{f_{i}\right\}_{i \in I_{2}}}{ } e_{i}^{n-2}{\underset{\left\{g_{j}\right\}_{j \in I_{2}}}{ } e_{j}^{n-1} \text { under an equivalence }}^{\prime}$ which is identity on U_{1}. Taking cellular approximations f_{i}^{\prime} to $h_{1} \circ f_{i}$ and attaching $n-2$ cells by means of f_{i}^{\prime} to K_{1} we get a $C W$-complex F_{2} and a homotopy equivalence $U_{1} U \int_{\left\{f_{i}\right\}_{i \in I_{2}}} e_{i}^{n-2} \xrightarrow{\theta_{2}} F_{2}=K_{1} U{ }_{\left\{f_{i}\right\}_{i \in I_{2}}} e_{i}^{n-2}$ extending h_{1}. Taking cellular approximations g_{j}^{\prime} to $\theta_{2} \circ g_{j}$ and attaching $(n-1)$ cells to F_{2} by means of the maps g_{j}^{\prime} we get a $C W$-complex K_{2} containing K_{1} as a subcomplex and a homotopy equivalence $h_{2}: U_{1} \cup$ $U_{2} \rightarrow K_{2}$ extending h_{1}. Proceeding thus we construct a sequence of $C W$-complexes $L \subset K_{1} \subset K_{2} \subset K_{3} \ldots$ and homotopy equivalences $h_{r}: U U_{j} \rightarrow K_{r}$ such that h_{r} is an extension of h_{r-1} and $h_{1}=I d$ on $N=L$. Let $K=\underset{r}{U} K_{r}$ provided with the "union topology" i.e. to say a set in K is closed if and only if its intersection with each K_{r} is closed in K_{r}. Then $h: M \rightarrow K$ defined by $h \mid U_{1} \ldots U_{r}=h_{r}$ is seen to be a homotopy equivalence, because fo J.H.C. Whitchead's theorem. In fact it is easy to see that h induces isomorphisms of homotopy groups and Whitehead's theorem asserts that a map of $C W$-complexes inducing isomorphisms of homotopy groups is a homotopy equivalence. Since the cells of K that are not in L are either of dimension $n-2$ or of dimension $n-1$, we have proved Lemma4.1

Corollary 4.2. $H_{n-1}(\tilde{M}, \tilde{N})$ is a finitely generated projective $\mathbb{Z}(\pi)$ - mod-
ule.
The proof for the finite generation of $H_{n-1}(\tilde{M}, \tilde{N})$ over $\mathbb{Z}(\pi)$ is the same as that of (1) of Lemma3.6 Since $H_{n-1}(\tilde{M}, \tilde{N})=0$ for $i \leq n-2$ we see that $d: \tilde{C}_{n-1} \rightarrow \tilde{C}_{n-2}$ has to be onto. The free nature of C_{n-2} implies $\tilde{C}_{n-1} \operatorname{Ker} d \oplus \tilde{C}_{n-2}$. Now $H_{n-1}(\tilde{M}, \tilde{N}) \simeq \operatorname{Ker} d$ is a direct summand of the free module \tilde{C}_{n-1} hence projective.

For any integer $e \geq 0$ let $\sum_{e} \mathbb{Z}(\pi)$ denote the direct sum of e copies of $\mathbb{Z}(\pi)$. Since $\tilde{K}_{\circ}(\mathbb{Z}(\pi))=0$ it follows that \exists an integer $e \geq 0$ such that $H_{n-1}(\tilde{M}, \tilde{N}) \oplus \sum_{e} \mathbb{Z}(\pi)$ is a free \mathbb{Z}-module of finite rank. Let the rank of $H_{n-1}(\tilde{M}, \tilde{N})+\sum_{e} \mathbb{Z}(\pi)$ be r.

Lemma 4.3. Given any compact set K of $W \exists$ an $(n-2)$ neighbourhood M of ∞ with $M \subset W-K$ such that $H_{n-1}(\tilde{M}, \tilde{N})$ is a free $\mathbb{Z}(\pi)$-module of finite rank, where $N=b M$.

Proof. Choose any ($n-2$)-neighbourhood M^{\prime} of ∞ with $M^{\prime} \subset W-K$, and let $N^{\prime}=b M^{\prime}$.

By corollary 4.2, $H_{n-1}\left(M^{\prime}, N^{\prime}\right)$ is a finitely generated projective $\mathbb{Z}(\pi)$ - module and hence \exists an integer $e \geq 0$ such that $H_{n-1}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right)+$ $\sum_{e} \mathbb{Z}(\pi)$ is free over $\mathbb{Z}(\pi)$ of finite rank say r. We can find an $(n-2)$ neighbourhood $M^{\prime \prime}$ of ∞ with $M^{\prime \prime} \subset M^{\prime}$ and $H_{n-1}\left(\tilde{U}, \tilde{N}^{\prime}\right) \rightarrow H_{n-1}\left(\tilde{M}^{\prime}\right.$, \tilde{N}^{\prime}) onto, where $U=\overline{M^{\prime}-M^{\prime \prime}}$ (see 2, Lemma 3.6). By Proposition 3.7 (U, N^{\prime}) has a handle decomposition consisting of handles of type $(n-2)$ and $(n-1)$ only. Without even changing M^{\prime} we can introduce e pairs of mutually cancelling handles of type $(n-2)$ and $(n-1)$. Let M be formed by removing from M^{\prime} the union of the interiors of tubular neighbourhoods of the e newly introduced handles of type $n-2$ and a tubular neighbourhood of N^{\prime}, and let $N=b M$.

Claim: M is an $(n-2)$-neighbourhood of ∞ such that $H_{n-1}(\tilde{M}, \tilde{N})$ is a free $\mathbb{Z}(\pi)$-module of rank r.

Let A be the union of the closures of the tubular neighbourhoods removed and let $\tilde{A}=p^{-1}(A)$. Using Van Kampen and the fact that $n-2 \geq 3$ we see that M is a 1-neighbourhood of ∞. Also $H_{i}\left(\tilde{A}, \tilde{N^{\prime}}\right)=0$
for $i \neq n-2$ and $H_{n-2}\left(\tilde{A}, \tilde{N}^{\prime}\right)=\sum_{e} \mathbb{Z}(\pi)$. From the homology exact sequence of the triple ($\left.\tilde{M^{\prime}}, \tilde{A}, \tilde{N}^{\prime}\right)$,

we see that $H_{i}(\tilde{M}, \tilde{N})=0$ for $i \leq n-2$ and that $H_{n-1}(\tilde{M}, \tilde{N})=H_{n-1}+$ $\sum_{e} \mathbb{Z}(\pi)$. But by the choice of e, this is a free $\mathbb{Z}(\pi)$-module of rank r. This completes the proof of Lemma 4.3

Remark 4.4. If M is any ($n-2$)-neighbourhood of ∞ and if M_{1} is another ($n-2$)-neighbourhood of ∞ with $M_{1} \subset M$ and $H_{n-1}(\tilde{U}, \tilde{N}) \rightarrow$ $H_{n-1}(\tilde{M}, \tilde{N})$ onto, $\left(\right.$ where $\left.\mathrm{U}=\overline{M-M_{1}}\right)$ then $H_{n-1}(\tilde{U}, \tilde{N}) \rightarrow H_{n-1}(\tilde{M}, \tilde{N})$ and $H_{n-1}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)=H_{n-2}(\tilde{U}, \tilde{N})$.

Proof. In the homology exact sequence of the triple $(\tilde{M}, \tilde{U}, \tilde{N})$ we have $H_{n}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)=0$ by Lemma4.1 By assumption $H_{n-1}(\tilde{U}, \tilde{N}) \rightarrow H_{n-1}(\tilde{M}, \tilde{N})$ is an epimorphism. It is now immediate that $H_{n-1}(\tilde{U}, \tilde{N}) \simeq H_{n-1}(\tilde{M}, \tilde{N})$ and that $H_{n-1}\left(\tilde{M}_{1}, \tilde{N}_{1}\right) \simeq H_{n-2}(\tilde{U}, \tilde{N})$.

Let M be an $(n-2)$-neighbourhood of ∞ with $H_{n-1}(\tilde{M}, \tilde{N})$ a free $\mathbb{Z}(\pi)$-module of finite rank (say r). We can find a translate M_{1} of M by a Deck transformation such that $M_{1}: M$ and $H_{n-1}(\tilde{U}, \tilde{N}) \rightarrow H_{n-1}(\tilde{M}, \tilde{N})$ onto, where $U=\overline{M-M_{1}}$. We have to only choose the translate M_{1} so as not to intersect the compact set got as the projection by p of the union of supports of singular cycles (integral) representing a basis for $H_{n-1}(\tilde{M}, \tilde{N})$ over $\mathbb{Z}(\pi)$ (See 2 of Lemma 3.6). Corresponding to any handle decomposition of (U, N) with only handles of type $(n-2)$ and $n-1$ we get a chain complex $0 \rightarrow \tilde{C}_{n-1} \xrightarrow{d} \tilde{C}_{n-2} \rightarrow 0$ whose homology will precisely be $H_{*}(\tilde{U} \tilde{N})$.

$$
\begin{aligned}
& H_{n}(\tilde{M}, \tilde{U}) \xrightarrow{\partial} H_{n-1}(\tilde{U}, \tilde{N}) \longrightarrow H_{n-1}(\tilde{M}, \tilde{N}) \longrightarrow H_{n-1}(\tilde{M}, \tilde{U}) \longrightarrow H_{n-2}(\tilde{U}, \tilde{N}) \longrightarrow 0 \\
& \text { a excision } \\
& H_{n}\left(\tilde{M}_{1}, \tilde{N}_{1}\right) \\
& \text { excision } \uparrow a \\
& H_{n-1}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)
\end{aligned}
$$

111 For the modules $\tilde{C}_{n-1}, \tilde{C}_{n-2}$ the cells corresponding to handles of type $(n-1)$ and $(n-2)$ respectively form a basis over $\mathbb{Z}(\pi)$.

Proposition 4.5. There exists a handle decomposition for (U, N) with $2 m$ handles of type $(n-2)$ and $2 m$ handles of type $(n-1)$ (where m is a certain integer $\geq r$) such that the boundary operator $C_{n-1} \xrightarrow{d} C_{n-2}$ with reference to the basis given by the handles has a matrix of the form $\left(\begin{array}{cc}X & 0 \\ 0 & S^{-1} T\end{array}\right)$, where S and T are $m \times m$ invertible matrices over $\mathbb{Z}(\pi)$ and X is the $m \times m$ matrix $\left(\begin{array}{cc}0 & 0 \\ 0 & I_{m-r}\end{array}\right)$.

Proof. By remark 4.4 we have $H_{n-1}(\tilde{U}, \tilde{N}) \simeq H_{n-1}(\tilde{M}, \tilde{N})$ and $H_{n-2}(\tilde{U}$, $\tilde{N}) \simeq H_{n-1}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)$. Since M_{1} is a translate of M we have $H_{n-1}(\tilde{M}, \tilde{N}) \simeq$ $H_{n-1}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)$ and by our choice of $M, H_{n-1}(\tilde{M}, \tilde{N})$ is a free $\mathbb{Z}(\pi)$-module of rank r. The pair (U, N) has a handle decomposition with only handles of type $n-2$ and $n-1$. Choose one such and let $0 \rightarrow \tilde{B}_{n-1} \xrightarrow{d} \tilde{B}_{n-2} \rightarrow$ 0 be the complex corresponding to the chosen handle decomposition, giving the homology of the pair (\tilde{U}, \tilde{N}). Here \tilde{B}_{n-1} and \tilde{B}_{n-2} are free $\mathbb{Z}(\pi)$-modules of finite rank. Since the homology of the complex B is the same as $H_{*}(\tilde{U}, \tilde{N})$ we get the following exact sequence.

$$
0 \rightarrow \operatorname{Imd} \rightarrow \tilde{B}_{n-2} \rightarrow H_{n-2}(\tilde{U}, \tilde{N}) \underset{r}{\simeq} \mathbb{Z}(\pi) \rightarrow 0
$$

It follows that Imd is finitely generated and $\mathbb{Z}(\pi)$-projective. Adding a finite number of pairs of mutually cancelling handles if necessary we can assume that imd is a free $\mathbb{Z}(\pi)$-module. (Here we use the fact that Imd is stably free since \tilde{B}_{n-2} is free of finite rank). Also we have the exact sequence $0 \rightarrow H_{n-1}(\tilde{U}, \tilde{N}) \simeq \sum_{r} \mathbb{Z}(\pi) \rightarrow \tilde{B}_{n-1} \xrightarrow{d}$ Imd $\rightarrow 0$. If the rank of the free $\mathbb{Z}(\pi)$-module Imd is k then it follows that both \tilde{B}_{n-1} and \tilde{B}_{n-2} have rank m where $m=k+r$ and that \exists bases $u_{1}, \ldots u_{m}$ of \tilde{B}_{n-1} and $v_{1}, \ldots v_{m}$ of \tilde{B}_{n-2} satisfying $d u_{1}=\cdots=d u_{r}=0 ; d u_{r+1}=$ $v_{r+1}, \ldots, d u_{m}=v_{m}$. Thus the matrix of d with reference to the bases $u_{1}, \ldots u_{m}$ and v_{1}, \ldots, v_{m} of \tilde{B}_{n-1} and \tilde{B}_{n-2} respectively is $X=\left(\begin{array}{cc}0 & 0 \\ 0 & I_{m-r}\end{array}\right)$. Let $e_{1}^{n-1}, \ldots e_{m}^{n-1}$ and $e_{1}^{n-2}, \ldots, e_{m}^{n-2}$ be the natural bases for \tilde{B}_{n-1} and
\tilde{B}_{n-2} given by the handles and let the matrix of d with reference to this natural pair of bases be A. Now add m pairs of mutually cancelling handles of types $n-2$ and $n-1$. With respect to the handle decomposition of (U, N) thus obtained the chain modules \tilde{C}_{n-1} and \tilde{C}_{n-2} are both free $\mathbb{Z}(\pi)$-modules of rank $2 m$ and the matrix of d with reference to the natural pair of bases constituted by the handles is $\left(\begin{array}{cc}A & 0 \\ 0 & I_{m}\end{array}\right)$. If $e_{m+1}^{n-1}, \ldots, e_{2 m}^{n-1}$ and $e_{m+1}^{n-2}, \ldots, e_{2 m}^{n-2}$ are the elements of \tilde{C}_{n-1} and \tilde{C}_{n-2} respectively, corresponding to the newly attached m pairs of mutually cancelling handles then $u_{1}, \ldots u_{m} ; e_{m+1}^{n-1}, \ldots, e_{2 m}^{n-1}$ and $v_{1}, \ldots v_{m} ; e_{m+1}^{n-2}, \ldots e_{2 m}^{n-2}$ form bases for \tilde{C}_{n-1} and \tilde{C}_{n-2} with reference to which the matrix of d is $\left(\begin{array}{cc}X & 0 \\ 0 & I_{m}\end{array}\right)$. Now, there exist elements $S, T G L(m, \mathbb{Z}(\pi))$ such that $X=S A T^{-1}$. The matrices $\left(\begin{array}{cc}S & 0 \\ 0 & S^{-1}\end{array}\right)$ and $\left(\begin{array}{cc}T_{-1}^{-1} & 0 \\ 0 & T\end{array}\right)$ are products of elementary matrices in $G L(2 m, \mathbb{Z}(\pi))$, and we have

$$
\left(\begin{array}{cc}
S & 0 \\
0 & S^{-1}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
0 & T
\end{array}\right)=\left(\begin{array}{cc}
X, & 0 \\
0 & S^{-1} T
\end{array}\right)
$$

Thus to prove proposition 4.5 it suffices to prove the following.
Lemma 4.6. One can change the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right)$ of d by left or right multiplication by elementary matrices by performing an isotopy of the attaching map of the handles.

Proof. Let $U=I \times N+\varphi_{1}^{n-2}+\cdots+\varphi_{2 m}^{n-2}+\varphi_{1}^{n-1}+. .+\varphi_{2 m}^{n-1}$ be the handle decomposition which gives the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right)$ for d. For each i such that $1 \leq i \leq 2 m$ let Y_{i} be the right hand boundary of $I \times N+\varphi_{1}^{n-2}+\cdots+\varphi_{2 m}^{n-2}+$ all the handles of type $(n-1)$ except the i th. First we prove the lemma for left multiplication by elementary matrices. We actually show that by an isotopy of φ_{i} into Y_{i} one can change $d e_{i}^{n-1}$ by any $\sum_{j \neq i} x_{j} d e_{j}^{n-1}$ with arbitrary $x_{j} \in \mathbb{Z}(\pi)$. For this it suffices to prove the same assertion for $x_{j} d e_{j}^{n-1}$ for a particular $j \neq i$ and $x_{j} \epsilon \pm \pi$. Now $\varphi_{j}\left(S^{n-2} \times *\right)$ with $*$ any point on $b D^{2}$, is isotopic to the trivial imbedding in Y_{i} for $i \neq j$, because $\varphi_{j}\left(S^{n-2} \times *\right)$ bounds a cell on the boundary of the handle φ_{j}. Perform "connected sum" of φ_{i} and φ_{j} along an arc representing x_{j} and take it as the new φ_{j}^{\prime}. For proving the lemma for multiplication on the right by an elementary matrix we look at the dual handle decomposition.

Let $U=I \times N_{1}+\varphi_{1}^{* 2}+\cdots+\varphi_{2 m}^{* 2}+\varphi_{1}^{* 3}+\cdots+\varphi_{2 m}^{* 3}$ be the dual handle decomposition. Let $0 \rightarrow \tilde{C}_{3} \xrightarrow{d^{*}} \tilde{C}_{2} \rightarrow 0$ be the chain complex corresponding to this handle decomposition. With respect to the canonical bases of \tilde{C}_{3} and \tilde{C}_{2} constituted by the handles of type 3 and 2 respectively, the matrix of d^{*} is the same as $\pm\left(\begin{array}{cc}A^{*} & 0 \\ 0 & I_{m}\end{array}\right)$ where $A^{*}=\left(a_{i j}^{*}\right)$ with $a_{i j}^{*}=\bar{a}_{j i} \ldots$. Here $\left(a_{i j}\right)$ is the matrix A and for each $a \in \mathbb{Z}(\pi), \bar{a}$ is the element which corresponds to a under the map which carries any $x \in \pi$ into the dement $\pm x^{-1}$. (The sign depending on whether x preserves $(+)$ or reverses (-) an orientation of $\tilde{U})$. Choose listings of 3 and 2 cells for the dual decomposition $\tilde{\varepsilon}_{1}^{3}, \ldots \tilde{\varepsilon}_{2 m}^{3} ; \tilde{\varepsilon}_{1}^{2}, \ldots, \tilde{\varepsilon}_{2 m}^{2}$ so as to satisfy $\tilde{e}_{i}^{n-2} . \tilde{\varepsilon}_{j}^{3}=\delta_{i j}$; $\tilde{e}_{i}^{n-1} . \tilde{\varepsilon}_{j}^{2}=\delta_{i j}$ and $\tilde{e}_{i}^{n-1} . \sigma \tilde{\varepsilon}_{j}^{2}=\delta_{i j} \delta_{\sigma, 1}$ for every $\sigma \in \pi$. Using the formula $\tilde{\varepsilon}_{k}^{3} \cdot d \tilde{e}_{i}^{n-1}=d^{*} \tilde{\varepsilon}_{k}^{3} \cdot \tilde{e}_{i}^{n-1}$ (up to a sign which depends only on n and not on i and k) it is easy to see that the matrix of d^{*} with reference to the pair of bases constituted by $\tilde{\varepsilon}_{1}^{3}, \ldots, \tilde{\varepsilon}_{2 m}^{3}$ and $\tilde{\varepsilon}_{1}^{2}, \ldots, \tilde{\varepsilon}_{2 m}^{2}$ is precisely $\left(\begin{array}{cc}A^{*} & 0 \\ 0 & I\end{array}\right)$ (up to sign). Now, by what we have proved already, this handle decomposition of $\left(U, N_{1}\right)$ can be altered so as to alter the matrix $\left(\begin{array}{cc}A^{*} & 0 \\ 0 & I\end{array}\right)$ be left multiplication by an elementary matrix. Now, taking the dual of the altered handle decomposition we get a handle decomposition for (U, N) which alters the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right)$ be right multiplication by an elementary matrix. This proves Lemma4.6

We choose a handle decomposition for (U, N) of the type mentioned in Proposition 4.5. Then the Kernel of $d: \tilde{C}_{n-1} \rightarrow \tilde{C}_{n-2}$ is the free $\mathbb{Z}(\pi)$ module of rank r with the elements $\tilde{e}_{1}^{n-1}, \ldots, \tilde{e}_{r}^{n-1}$ corresponding to the first r handles of type $(n-1)$.
Assertion. Any one of the elements $\tilde{e}_{i}^{n-1}(1 \leq i \leq r)$ can be represented by a C^{∞} imbedding $\theta_{i}:\left(D^{n-1}, S^{n-2}\right) \rightarrow(U, N)$.

In fact $d e_{i}^{n-1}=0$ implies that any lifting $\tilde{\varphi}_{i}\left(S^{n-2} \times *\right)$ of $\varphi_{i}\left(S^{n-2} \times *\right)$ has trivial homology intersection in N_{\circ} with any lifting $\tilde{\varphi}_{j}\left(* \times S^{2}\right)$ of any of the transverse 2 -spheres of the handles of type $n-2$. (Here N 。 is the right hand boundary of $I \times N+\sum_{j=1}^{2 m} \varphi_{j}^{n-2}$). Now use Proposition 3.8 with $X=\sum_{j=1}^{2 m} \varphi_{j}\left(* \times S^{2}\right)$ and $Y=\sum_{i=1}^{2 m} \varphi_{i}\left(S^{n-2} \times *\right)$. The condition $\pi\left(N_{\circ}-Y\right) \rightarrow \pi_{1} N_{\circ}$ an isomorphism is satisfied because of the following
diagram (where as above N_{1} is the right boundary of U):

The "upper" horizontal isomorphisms are obvious. The isomorphism $\pi_{1} N_{1} \rightarrow \pi_{1} W$ follows from the fact that $\left(M_{1}, N_{1}\right)$ is a 1-neighbourhood. The "bottom" horizontal map is also an isomorphism because $\pi_{1} N_{\circ} \rightarrow \pi_{1} U_{1}$ is an isomorphism ($U_{1}=I \times N_{\circ}+$ (handles of type $n-1$).) $\pi_{1} U_{1} \rightarrow \pi_{1} U$ is also an isomorphism since $U=U_{1}+$ (handles of type 3), and $\pi_{1} U \rightarrow \pi_{1} W$ has been noted to be an isomorphism before. (Recall Lemma 2.8) Using proposition 3.8 as before we see that we can find C^{∞} imbeddings $\theta_{i}:\left(D^{n-1}, S^{n-2}\right) \rightarrow(U, N)$ representing $\tilde{e}_{i}^{n-1} \in H_{n-1}(\tilde{U}, \tilde{N})$. Let B the union of tabular neighbourhoods of $\theta_{i}\left(D^{n-1}\right)$ and N in M and let $M^{\prime}=\overline{M-B}$. By Van Kampen it is easy to see that \exists an isomorphism $\pi_{1}(N) \rightarrow \pi_{1}\left(N^{\prime}\right)$ where $N^{\prime}=b M^{\prime}$ and that the inclusion $M^{\prime} \rightarrow M$ induces an isomorphism $\pi_{1}\left(M^{\prime}\right) \rightarrow \pi_{1}(M)$. Also the isomorphism $\pi_{1}(N) \rightarrow \pi_{1}\left(N^{\prime}\right)$ makes the diagram.

commutative. It follows that M^{\prime} is a 1-neighbourhood. Now from the homology exact sequence of the triple $\tilde{M}, \tilde{B}, \tilde{N}$ it follows that $H_{i}\left(\tilde{M}^{\prime}\right.$, $\left.\tilde{N}^{\prime}\right)=0$ for $i \leq n-2$ and $H_{n-1}\left(\tilde{M}^{\prime}, \tilde{N}^{\prime}\right) \simeq H_{n-1}(\tilde{M}, \tilde{N}) /\left(e_{1}, \ldots, e_{r}\right)=0$. Thus starting from any $(n-2)$ neighbourhood M of ∞ with $H_{n-1}(\tilde{M}, \tilde{N})$ free of rank r over $\mathbb{Z}(\pi)$ we have constructed a $(n-1)$ neighbourhood M^{\prime} of ∞ with $M^{\prime} \subset M$.

Proposition 4.7. There exist arbitrary small ($n-1$)-neighbourhoods of ∞.

5 Completion of the proof of siebenmann's theorem

Lemma 5.1. Suppose M and M_{1} are two $(n-1)$ neighbourhoods of ∞ with $M \supset M_{1}$ and $b M_{1}=\phi$. Then $U=\overline{M-M_{1}}$ is a h-cobordism between $b M$ and $b M_{1}$.

Proof. Denote $b M$ and $b M_{1}$ by N and N_{1} respectively. Then as already observed $\pi_{1}(N) \rightarrow \pi_{1}(U), \pi_{1}\left(N_{1}\right) \rightarrow \pi_{1}(U)$ are isomorphisms. (Remark B after Lemma 3.6. Since M and M_{1} are $(n-1)$-neighbourhoods we have $H_{i}(\tilde{M}, \tilde{N})=0=H_{i}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)$ for all i. In fact by Lemma 4.1 , $H_{*}(\tilde{M}, \tilde{N})$ or $H_{*}\left(\tilde{M}_{1}, \tilde{N}_{1}\right)$ is the homology of a complex of the form $C \rightarrow$ $\tilde{B}_{n-1} \rightarrow \tilde{B}_{n-2} \rightarrow 0$. Thus $H_{i}(\tilde{M}, \tilde{N})=0$ for $i>n$ and by definition of an ($n-1$)-neighbourhood of ∞ we have $H_{i}(M, N)=0$ for $i \leq n-1$. From the homology exact sequence of the triple $(\tilde{M}, \tilde{U}, \tilde{N})$ we see immediately that $H_{j}(\tilde{U}, \tilde{N})=0$ for every j. Thus to prove Lemma 5.1 it only remains to show that $H_{i}\left(\tilde{U}, \tilde{N}_{1}\right)=0$ for every j.

For the pair (U, N) we have a handle decomposition with handles of type $n-2$ and $n-1$ only. If $0 \rightarrow \tilde{C}_{n-1} \xrightarrow{d} \tilde{C}_{n-2} \rightarrow 0$ is the corresponding complex given the homology of (\tilde{U}, \tilde{N}), from the fact that $H_{i}(\tilde{U}, \tilde{N})=0$ $\forall i$ it follows that d is an isomorphism. If we use the dual handle decomposition for $\left(U, N_{1}\right)$ the homology $H_{*}\left(\tilde{U}, \tilde{N}_{1}\right)$ will be the homology of a complex of the form $0 \rightarrow \tilde{C}_{3} \xrightarrow{d^{*}} \tilde{C}_{2} \rightarrow 0$. If $A=\left(a_{i j}\right)$ is the matrix of d with respect to the bases constituted by the handles of type $(n-2)$ and $(n-1)$, then as already seen the matrix of d^{*} with respect to the bases constituted by the handles of type 3 and 2 in the dual decomposition is $A^{*}=\left(a_{i j}^{*}\right)$ (up to sign) where $a_{i j}^{*}=\overline{a_{j i}}$. It follows that if d is an isomorphism so is d^{*}. Hence $H_{*}\left(\tilde{U}, \tilde{N}_{1}\right)=0$.

Proposition 5.2. Let M be any $(n-1)$-neighbourhood of ∞ in W. Then M is diffeomorphic to $N \times[0, \infty)$ where $N=b M$.

The proof of this proposition uses the S-cobordism theorem of Barden-Mazur-Stallings [5], [6] or [8]. Let U be a h-cobordism between two compact, connected oriented C^{∞} manifolds V^{n} and $V^{\prime n}$ of dimension $n \geq 5$. Using the isomorphisms $\pi_{1}(V) \rightarrow \pi_{1}(U)$ and $\pi_{1}\left(V^{\prime}\right) \rightarrow$ $\pi_{1}(U)$ we identify all the three groups $\pi_{1}(V), \pi_{1}(U)$ and $\pi_{1}\left(V^{\prime}\right)$ and abstractly denote any one of them by π. Let $\tau(U, V) \in W h(\pi)$ denote the torsion of the pair (U, V). We now state the S-cobordims theorem which actually consists of two parts.

119 S-Cobordism Theorem: (1) The inclusion of V in U cab be extended into a diffeormorphism of $V \times I$ onto U if and only if $\tau(U, V)=0$.
(2) Given a compact, connected C^{∞} manifold V^{n} of dimension $n \geq 5$ and any $\tau \in W h(\pi)$ where $\pi=\pi_{1}(V)$, there exists a h-cobordism U between V and a certain V^{\prime} such that $\tau(U, V)=\tau$.

For more information about torsion and the Whitehead group $W h(\pi)$ refer to [1], [5] or [13]. We list below some known properties of torsion that we need for the proof of Proposition 5.2

The symbols $V, V^{\prime}, V_{1}, V_{1}^{\prime}$ etc. are used to denote connected, compact, C^{∞} manifolds. Let U_{1} be a h-cobrdism between V_{1} and V_{1}^{\prime}, and
U_{2} a h-cobordism between V_{2} and V_{2}^{\prime}. Let $g: V_{2} \rightarrow V_{1}^{\prime}$ be a diffeomorphism of V_{2} onto V_{1}^{\prime}. Let $U=U_{1}{ }_{g} U_{2}$ be the differential manifold got from the union of U_{1} and U_{2} by identifying V_{2} with V_{1}^{\prime} by means of the diffeomorphism g. The groups $\pi_{1}\left(V_{1}\right), \pi_{1}\left(U_{1}\right)$ and $\pi_{1}\left(V_{1}^{\prime}\right)$ are all identified as explained already and let π_{1} denote any one of them. Let π_{2} have a similar meaning with respect to V_{2}, U_{2} and V_{2}^{\prime} (i.e. $\pi_{2}=\pi_{1}\left(V_{2}\right)$ etc.). The diffeomorphism g induces an isomorphism $g *: \pi_{2} \rightarrow \pi_{1}$. If $\tau_{1}=\tau\left(U_{1}, V_{1}\right) \in W h\left(\pi_{1}\right)$ and $\tau_{2}=\tau\left(U_{2}, V_{2}\right) \in W h\left(\pi_{2}\right)$ then $U=U_{1 \dot{g}} U_{2}$ is a h-cobordism between V_{1} and V_{2}^{\prime} satisfying $\tau\left(U, V_{1}\right)=\tau_{1}+g_{*}\left(\tau_{2}\right)$. In particular if U_{1} is a h-cobordism between V and V^{\prime} and if U_{2} is a h cobordism between V^{\prime} and a certain $V^{\prime \prime}$ such that $\tau\left(U^{\prime}, V^{\prime}\right)=-\tau(U, V)$ then $U_{1} . U_{2}$ is diffeomorphic to $V \times I$ whenever $\operatorname{dim} V\left(=\operatorname{dim} V^{\prime}\right) \geq 5$. If U is a h-cobordism between V and V^{\prime} with torsion $\tau(U, V)$, we can construct a h-cobordism U^{-1} from V^{\prime} to some $V^{\prime \prime}$ with torsion $\tau\left(U^{-1}, V^{\prime}\right)=$ $-\tau(U, V)$. (Use part (2) of the S-cobordism theorem). Then, pasting U and U^{-1} along V^{\prime} by the identity mapping, the h-cobordism $U U^{-1}$ form V to $V^{\prime \prime}$ has torsion $\tau(U, V)+\tau\left(U^{-1}, V^{\prime}\right)=0$. It follows by part (1) of the S-cobordism theorem that $U \cup U^{-1}$ is diffeomorphic to $V-I$ and in particular that V and $V^{\prime \prime}$ are diffeomorphic. The formation of products of h-cobordisms satisfies the following associativity rule. Let $U_{i}(i=1,2,3)$ be a h-cobordism between V_{i} and V_{i}^{\prime} and let $g: V_{2} \rightarrow V_{1}^{\prime} ; h: V_{3} \rightarrow V_{2}^{\prime}$ be diffeomorphisms. Then \exists a diffeomorphism $\alpha:\left(U_{1} \cdot U_{2}\right) \cdot U_{3} \rightarrow U_{1} \cdot\left(U_{2} \cdot U_{3}\right)$ extending the identity map of V_{1}. Also if U is a h-cobordism between V and $V^{\prime} \exists$ a diffeomorphism $\beta: U \rightarrow U . V^{\prime} \times I$ with $\beta \mid V=I d_{V}$ and $\beta\left(v^{\prime}\right)=\left(v^{\prime}, 1\right) \forall v^{\prime} \in V^{\prime}$. (This is a consequence of the fact that V^{\prime} is differentiably collared in U). For the proof of Proposition 5.2 we need the following Lemma on infinite products of h-cobordisms.

Lemma 5.3. For every integer $k \geq 1$ let U_{k} be a h-cobordism between V_{k} and V_{k}^{\prime} and let $V_{k}^{\prime}=V_{k+1}$. If dim $V_{1} \geq 5$ then the infinite product $U_{1} \cdot U_{2} \cdot U_{3} \ldots$ is diffeomorphic to $V_{1} \times[0, \infty)$.

Proof. As observed already \exists diffeomorphisms $\beta_{k}: U_{k} \rightarrow U_{K} . V_{k}^{\prime} I$ with $\beta_{k} \mid V_{k}=I d_{V_{k}}$ and $\beta_{k}\left(v^{\prime}\right)=\left(v^{\prime}, 1\right) \forall v^{\prime} \subset V_{k}^{\prime}$. Hence the infinite product $U_{1} \cdot U_{2} \cdot U_{3} \ldots \ldots$ is also diffeomorphic to the infinite product $U_{1} \cdot V_{1}^{\prime} \times I$.
$U_{2} . \quad V_{2}^{\prime} \times I . \quad U_{3} . \quad V_{3}^{\prime} \times I \ldots .$. For every integer $k \geq 1$ the product $U_{k}^{-1} \cdot U_{k-1}^{-1} \ldots U_{1}^{-1} \cdot U_{1} \ldots U_{k}$ is a h-cobordism with torsion zero. Therefore \exists a diffeomorphism. $\theta_{k}: V_{k}^{\prime} \times I \rightarrow U_{k}^{-1} \ldots U_{1}^{-1} . U_{1} \ldots U_{k}$ satisfying $\theta_{k}\left(v^{\prime}, 0\right)=v^{\prime}$ of the left hand boundary of $U_{k}^{-1} \ldots . . U_{1}^{-1} . U_{1} \ldots U_{k}$. The map $v^{\prime} \rightarrow \theta_{k}\left(v^{\prime}, 1\right)$ is a diffeomorphism g_{k} of V_{k}^{\prime} onto the right hand boundary of $U_{k}^{-1} \ldots U_{1}^{-1} . U_{1} \ldots U_{k}$. Now it is clear that the product $U_{1} . V_{1}^{\prime} \times I . \quad U_{2} . V_{2}^{\prime} \times I . U_{3} . \quad V_{3}^{\prime} \times I . \quad U_{4} \ldots$. is diffeomorphic to the product
$U_{1} \cdot\left(U_{1}^{-1} \cdot U_{1}\right) \cdot U_{g_{1}} \cdot\left(U_{2}^{-1} \cdot U_{1}^{-1} \cdot U_{1} \cdot U_{2}\right) \cdot{ }_{g_{2}} \cdot U_{3} \cdot\left(U_{3}^{-1} \cdot U_{2}^{-1} \cdot U_{1}^{-1} \cdot U_{1} \cdot U_{2} \cdot U_{3}\right) \cdot U_{g_{3}} \ldots$

Also it is clear that the diffeomorphism $g_{k}: V_{k}^{\prime} \rightarrow V_{k}^{\prime}$ is homotopic to the identity map of V_{k}^{\prime} and hence $g_{k *}: \pi \rightarrow \pi$ is the identity map. Since product formation of h-cobordisms is an associative operation we have

$$
\begin{aligned}
& U_{1} \cdot\left(U_{1}^{-1} \cdot U_{1}\right) \cdot U_{g_{1}} \cdot\left(U_{2}^{-1} \cdot U_{1}^{-1} \cdot U_{1} \cdot U_{2}\right) \stackrel{g_{2}}{.} \ldots \text { diffeomorphic to } \\
& U_{1} \cdot U_{1}^{-1} \cdot\left(U_{1}{ }_{g_{1}} U_{2} \cdot U_{2}^{-1} \cdot U_{1}^{-1}\right) \cdot\left(U_{1} \cdot U_{2} \cdot{ }_{g_{2}} U_{3} \cdot U_{3}^{-1} \cdot U_{2}^{-1} \cdot U_{1}^{-1}\right) \ldots .
\end{aligned}
$$

Denoting the products $U_{1} \ldots U_{k} ; U_{1} \ldots U_{k} \cdot U_{k+1} \cdot U_{k+1}^{-1} \ldots U_{1}^{-1}$ and $U_{k+1} \cdot U_{k+1}^{-1} \cdot U_{k}^{-1} \ldots . U_{1}^{-1}$ by $A_{k} ; B_{k}$ and C_{k} respectively we have $\tau\left(B_{k}\right.$, $\left.V_{1}\right)=\tau\left(A_{k}, V_{1}\right)+\left(g_{k}\right)_{*}\left(\tau\left(C_{k}, V_{k+1}\right)\right)=\tau\left(A_{k}, V_{1}\right)+\tau\left(C_{k}, V_{k+1}\right)$ since $g_{k *}$ is the identity map. But $\tau\left(A_{k}, V_{1}\right)+\tau\left(C_{k}, V_{k+1}\right)=0$. Hence the inclusion of V_{1} into B_{k} as the left hand boundary extends to a diffeomorphism of $V_{1} \times I$ onto B. It follows that the product

$$
\left(U_{1} \cdot U_{1}^{-1}\right) \cdot\left(U_{1} \cdot U_{g_{1}} \cdot U_{2}^{-1} \cdot U_{1}^{-1}\right) \cdot U_{1} \cdot U_{2} \cdot U_{g_{2}} \cdot U_{3}^{-1} \cdot U_{2}^{-1} \cdot U_{1}^{-1} \cdots
$$

is diffeomorphic to $V_{1} \times[0, \infty)$. This completes the proof of Lemma 5.3 We now take up the proof of Proposition 5.2 Let M be any ($n-$ 1)-neighbourhood of ∞ in W. The Deck transformation group of the covering $W \xrightarrow{p} V$ is the same as that of $\mathbb{R} \xrightarrow{q} S^{1}$. Let α denote the diffeomorphism of W which corresponds to translation by +1 of \mathbb{R} on itself, under the isomorphism between the Deck transformation groups. Choose an integer $\ell>1$ such that $N \cap \alpha^{\ell} N=\phi(N=b M)$. Let $M_{k}=$
$\alpha^{k \ell} M$ for each integer $k \geq 0$ and $N_{k}=b M_{k}$. We have $M_{\circ}=M, M_{k} \supset$ M_{k+1} and $N_{k} \cap N_{k+1}=\phi$. Let $U_{k}=\overline{M_{k-1}-M_{k}}$ for any $k \geq 1$. We then have $U_{k 1} U_{k}=M$. By Lemma5.1] U_{k} is a h-cobordism between N_{k-1} and N_{k}. By Lemma 5.3 it now follows that M is diffeomorphic to $N \times[0, \infty)$. Actually the inclusion of N into M extends to a diffeomorphism of $N \times$ $[0, \infty)$ onto M.

Theorem 5.4. Let M be any $(n-1)$-neighbourhood of ∞ in W. Then W is diffeomorphic to $N \times \mathbb{R}$ where $N=b M$.

Proof. For the integer ℓ having the same meaning as above we see that $\alpha^{-\ell} N \cap N=\phi$. It follows that for every integer $k \geq 0$ if we define M_{-k} by $M_{-k}=\alpha^{-k \ell} M$ then $N_{-k} \cap N_{-k-1}=\phi \forall k \geq 0$, where $N_{-k}=b M_{-k}$. Also $M_{-k} \supset M_{-k-1}$. Now, if $U_{k}^{\prime}=\overline{M_{k-1}-M_{k}}$ for each $k \geq 1$, by Lemma 5.1, U_{k}^{\prime} is a h-cobordism between N_{-k} and N_{-k+1}. It is clear that if $M^{\prime}=\overline{W-M}$, then M^{\prime} is the infinite product of the h-cobordisms $U_{k}^{\prime-1}$ and by arguments used in the proof of Lemma 5.3 we see that the inclusion map of N into M^{\prime} can be extended into a diffeomorphism of $N \times\left(-\infty, 0\right.$] onto M^{\prime}. This, combined with Proposition 5.2 gives Theorem 5.4

This completes the proof of Siebenmann's Theorem.

Bibliography

[1] H. Bass : K-Theory and stable algebra, I. H. E. S. Publications 124 No. 22 .
[2] B. Eckmann \& P. J. Hilton : Decomposition homologique d'un polyedre simply connexe C. R. Acad. Sci. Paris 248 (1959) pp. 2954-2056.
[3] P. J. Hilton : On the homotopy groups of unions of spheres, Jour. Lond. Math. Soc. Vol. 30, 1955 pp. 154-172.
[4] S. T. Hu : Homotopy theory, Academic Press.
[5] M. A. Kervaire : Le Theoreme de Baarden-Mazur-Stallings, Comm. Math. Helv.Vol. 40, 1965, pp. 31-42.
[6] B. Mazur : Relative Neighbourhood Theorems and Theorems of Smale, Ann. of Math., Vol. 77, 1963, pp. 232-249.
[7] J. W. Milnor : Lectures on h-cobordism, Notes by L. Siebenmann \& J. Sondow, Prineceton Mathematical Series.
[8] G. de Rham : Seminaire G. de Rham 1963-64 Torsion et type simple d' homotopic Faculty of Sciences of Lausanne University.
[9] D. S. Rim : Modules over finite groups, Ann. of Math., Vol. 69, pp. 700-712.
[10] S. Smale : Generalised Poincare Conjecture, Ann. of Math. Vol. 74, 1961, pp. 391-406.
[11] S. Smale : On the structure of 5-manifolds, Ann. of Math. Vol. 75, 1962, pp. 38-46.
[12] C. T. C. Wall : Classification of ($\mathrm{n}-1$) connected 2 n -manifolds, Ann. of Math. Vol. 75, 1962, pp. 163-189.
[13] J. H. C. Whitehed : Simple homotopy types, Amer. J. of
[14] L. Siebenmann : Thesis (To appear).

