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1 Preliminaries
1

1.1 The cap-froduct The homology and the cohomology groups we use
are the singular ones. LetZ denote the ring of integers and∧ an arbi-
trary commutative ring with 1, 0. For any topological spaceX and any
integern ≥ 0 the set of singularn-simplices ofX is denoted bySn(X).
For anys ∈ Sn(X) and any integeri satisfying 0≤ i ≤ n let s(0, . . . i)
(resp.s(i, . . . , n)) denote the element ofSi(X) (resp.Sn−i (X)) got by re-
strictings to the fronti-dimensional (resp. The rear (n− i)-dimensional)
face of the standardn-simplex∆n. Let C(X) denote the singular chain
complex ofX′ overZ andC = C(X)⊗Z∧ the chain complex ofX over∧.
The cochain complex ofX over∧ which is defined as HomZ(C(X),∧)
is canonically isomorphic to Hom∧(C(X) ⊗Z ∧,∧). The boundary ho-
momorphismδ in C∗ = Hom∧(C,∧) is given by f = (−1)n−1 f ◦ ∂ for
every f ∈ Cn(X,∧) = Hom(Cn,∧) where∂ : Cn → Cn−1 is the bound-
ary homomorphism inC. As usualC∗ is considered as a chain complex
with C∗−n = Cn(X,∧). The evaluation mape : C∗⊗∧C→ ∧ is defined by
e( f ⊗c) = f (c)∀ f ∈ C∗−n andc ∈ Cn ande|C∗−p⊗Cq = 0 wheneverp , q.
Considering∧ as a chain complex (with all its elements of degree zero)
it is easily seen thate : C∗ ⊗∧ C→ ∧ is a chain homomorphism.

For any two chain complexesAandBover∧ letα : H(A)⊗∧H(E)→ 2

H(A ⊗ B) be the natural map. Ifx ∈ Hp(A) andy ∈ Hq(B) and if z and
z′ are respectively cycles ofA and B representingx andy, thenz⊗ z′

is a cycle ofA ⊗ B and the homology class ofz ⊗ z′ is by definition
α(x⊗ y). Let T : A⊗∧ B→ B⊗∧ A be the chain isomorphism given by
T(a⊗ b) = (−1)pqb⊗ a ∀a ∈ Ap, b ∈ Bq.

The Alexander-Whitney diagonal mapm0 : C → C ⊗∧ C is defined

to be the unique∧-homomorphism satisfyingm0(s) =
n∑

i=0
s(0, . . . , i) ⊗∧

s(i, . . . , n) ∀s ∈ Sn(X). It is well-known and is not hard to check thatm0

is a chain map. We denote the composition of the chain homomorphism
indicated in the following diagram

C∗ ⊗∧ C
IdC∗⊗m0// C∗ ⊗∧ C ⊗∧ C

T⊗IdC // C ⊗∧ C∗ ⊗∧ C
IdC⊗e // C ⊗∧ ∧ = C

3



4 I. Theorem of Browder and Novikov

by
⋂

: C∗ ⊗∧ C→ C. More explicitly this map is given by

⋂

( f ⊗ s) = f ∩ s=






(−1)q(n−q) f (s(n− q, . . . , n)).s(0, . . . , n− q) if n ≥ q

o if n < q

for every f ∈ Cq(X,∧) and s ∈ Sn(X). Let H(∩) : H(C∗ ⊗∧ C) →
H(C) be the homomorphism induced by ‘

⋂

’. For any a ∈ Hq(C∗) =3

H−q(C∗) = Hq(X,∧) andu ∈ Hn(C) = Hn(X,∧) the elementH(
⋂

)oα(a⊗
u) is called the cap-product of a byu and is denoted bya∩ u.

The chain mape : C∗ ⊗∧ C → ∧ induces a homomorphismH(e) :
H(C∗ ⊗∧ C) → ∧. For anya ∈ Hq(X,∧) andu ∈ Hq(X,∧) the image
H(e)oα(a ⊗ u) is known as the value of the cohomology class a on the
homology classu and is denoted bya(u).

1.2 The following properties of the cap-product will be needed later.

(1) (a ∪ b) ∩ u = a ∩ (b ∩ u)∀a ∈ Hp(X,∧), b ∈ Hq(X,∧) andu ∈
Hn(X,∧) with p, q, n arbitrary integers. Herea ∪ b denotes the
Cup product ofa andb.

(2) For any continuous mapf : Y → X, if the induced homomor-
phisms in homology and cohomology are denoted byf∗ : H(Y,
∧) → H(X,∧) and f ∗ : H∗(X,∧) → H∗(Y,∧), then for any
a ∈ Hq(X,∧) andv ∈ Hn(Y,∧)

f∗( f ∗a∩ v) = a∩ f∗(v).

1.3 Poincar’e Duality When we refer to homology and cohomology
groups without mentioning the coefficients we mean integer coefficients.
Let M be a compact, connected, orientable manifold (without boundary)
of dimensionn. Then it is known thatHn(M) ≃ Z. A choice of a gen-
eratoru for Hn(M) is known as an orientation forM. M together with a4

chosen orientation is called an oriented manifold and the distinguished
element ofHn(M) is called the fundamental class ofM and is denoted
by [M].

Let h : Z → ∧ be the obvious ring homomorphism (which sends 1
of Z into 1 of ∧). Let v = h∗([M]) whereh∗ : Hn(M) → Hn(M,∧) is
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the homomorphism induced byh. Then Poincare duality can be stated
as follows:

The map∆ : Hq(M,∧) → Hn−q(M,∧) given by∆(x) = x ∩ v is an
isomorphism for allq.

In caseM is not necessarily orientable it is true thatHn(M;Z2) ≃
Z2 and if v denotes the non zero element ofHn(M;Z2) then

⋂
v :

Hq(M;Z2)→ Hn−q(M;Z2) is an isomorphism for allq.
WhenM is compact and not necessarily connectedM is orientable

if and only if each of its connected components is orientable. M being
compact, the number of connected components is finite and denoting
them by {M j}rj=1 we haveHn(M) ≃ ⊕r

j=1Hn(M j). If each M j is ori-

ented and if [M j] is the fundamental class ofM j then [M] =
r∑

j=1
[M j] ∈

Hn(M) = ⊕r
j=1Hn(M j) is defined to be the fundamental class ofM.

1.4 All the vector bundles we consider are real vector bundles. For any 5

X the trivial vector bundle of rankℓ overX will be denoted byO l
X. The

total space and the base space of any vector bundleξ will be denoted
by E(ξ) andBξ respectively. To denote thatξ is of rankk we just write
ξk. If f : Y → X is a continuous map andξ any vector bundle overX
the pull back bundle onY is denoted byf ′(ξ). If ξ carries a Rieman-
nian metric, for anyε > 0 the subspace ofE(ξ) consisting of vectors of
length≤ ε is denoted byEε(ξ) and the boundary consisting of vectors
of lengthε is denoted byĖε(ξ). WhenBξ is compact the Thom spaceξ
denoted byT(ξ) is defined to be the one point compactification ofE(ξ).
Let ‘∞’ denote the point at infinity ofT(ξ). Whenξ carries a Rieman-
nian metric we can describe the Thom space alternatively as follows.
Let Tε(ξ) be the quotient space got fromEε(ξ) by collapsingĖε(ξ) to

a point. The mapβ : Eε(ξ) → T(ξ) defined byβ(v→) =
v→

ε − ||v→|| for

v→ ∈ Eε(ξ) − Ėε(ξ) andβ(v→) = ∞ for −→v ∈ Ėε(ξ) passes down to a
homeomorphismΘ : Tε(ξ) → T(ξ). Compactness ofBξ is essential for
Θ to be a homeomorphism.

For any differential (= C∞) manifold M the tangent bundle ofM
will be denoted byτM. The word differentiable will always mean dif-
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ferentiable of classC∞ for us. For the rest ofthis sectionsM denotes a
compact, connected, oriented differential manifolds of dimensionn ≥ 06

with [M] as the fundamental class. By Whitney’s imbedding theorem
M can be differentially imbedded inRn+k. Except whenn = 0 the com-
pactness ofM automatically implies thatk ≥ 1. Even whenn = 0 we
can assumek ≥ 1. Letν be the normal bundle of this imbedding. Then
τM ⊕ ν ≃ On+k

M . SinceτM andOn+k
M are both orientable it follows thatν

is an orientable vector bundle. Identifying the tangent space toRn+k at
any point withRn+k in the usual way and taking the usual Riemannian
metric onτRn+k ≃ O2n+2k

Rn+k any element ofE(ν) can be thought of as a

pair (x,
R

v
) with x ∈ M andv→ ∈ Rn+k in a directional normal toM at

x. Let e : E(ν) → Rn+k be defined bye(x, v) = x+ v. ∃ anε > 0 such
thate is a diffeomorphism of the setEε(ν) on to a neighbourhoodA of
M. A is called a closed tabular neighbourhood ofM. Let Ȧ = e(Ėε(ν)).
ConsideringSn+k as the one point compactification ofRn+k we can de-
fine a mapC : Sn+k → T(ν). This is the map got by collapsing the
complement ofA − Ȧ in Sn+k to a point. More precisely,C|A = βoe−1

andC|(Sn+k − A) = ∞.
LetΦ : Hn(M)→ Hn+k(T(ν)) be the Thom isomorphism [5].

Proposition 1.5. Φ([M]) = C∗(ι) for a generatorι of Hn+k(Sn+k).

Proof. We have only to show thatC∗ : Hn+k(Sn+k) → Hn+k(T(ν)) is an
isomorphism. We abbreviateEε(ν) by Eε etc. LetA1

2
= e(Eε/2). Clearly

β|E ε
2

is a homeomorphism ofE ε
2

onto the imageΓ (say). Letx be any7

point in M (such a point exists because dimM ≥ 0 by assumption) and
ix : Sn+k → (Sn+k,Sn+k−x) and jx : (Sn+k,Sn+k−M)→ (Sn+k,Sn+k−x)
the respective inclusions. Consider the following commutative diagram.

The homomorphism indicated asβ∗ is an isomorphism sinceβ :
E ε

2
→ Γ is a homeomorphism. It follows that the monomorphism num-

bered① is an isomorphism. The spaceT(ν) − M is contractible in itself8

to ∞. Hence the mapHn+k(T(ν)) → Hn+k(T(ν), T(ν) − M) is an iso-
morphism. (The assumptionk ≥ 1 is used here). SinceHn+k(T(ν)) ≃
Hn(M) ≃ Z we haveHn+k(Sn+k,Sn+k − M). Since (ix)∗ is an isomor-
phism it follows that j∗ is a monomorphism and that image ofj∗ is a
direct summand ofHn+k(Sn+k,Sn+k − M). The groupsHn+k(Sn+k) and
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Hn+k(Sn+k,Sn+k − x)

Hn+k(Sn+k)
j∗

//

(ix)∗
66llllllllllllll

C∗
��

Hn+k(Sn+k,Sn+k − M)

( jx)∗

OO

C∗①

��

Hn+k(A1
2
,A1

2
− M)

(e−1)∗
��

Excision
≈

oo

Hn+k(T(ν)) ≈ // Hn+k(T(ν),T(ν) − M) Hn+k(Γ, Γ − M)≈
Excision
oo Hn+k(E ε

2
,E ε

2
− M)≈

β∗
oo
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Hn+k(Sn+k,Sn+k−M) being both isomorphic toZ it follows that j∗ is an
isomorphism. It now follows thatC∗ : Hn+k(Sn+k → Hn+k(T(ν)) is an
isomorphism.

�

1.6 The index of A 4d-dimensional manifold LetM be a compact, con-
nected, oriented manifold of dimensional 4d with d an integer≥ 0 and
let [M] be the fundamental class ofM. The imageh∗([M]) of the fun-
damental class ofM under the inclusionh : Z → Q is called the fun-
damental class with coefficients inQ and is also denoted by [M]. The
map(x, y) (x∪y)[M] of H2d(M,Q)×H2d(M,Q)→ Q gives a symmet-
ric, non degenerate bilinear formH2d(M,Q). Symmetry is clear from
x ∪ y = (−1)2d·2dy ∪ x = y ∪ x. That it is non degenerate is a conse-
quence of Poinecare duality together with the fact that (a, u)  a(u) is
a bilinear non degenerate pairing ofH2d(M,Q) × H2d(M,Q)→ Q. This
latter fact is embodied in the universal coefficient theoremH2d(M,Q) =9

homQ(H2d(M,Q),Q). The signature (i.e. the number of+ve diagonal
elements minus the number of−vegeneral elements when diagonalised
overQ) of the bilinear form (x, y) (x∪y)[M] on H2d(M,Q) is defined
to be the index ofM and is denoted byI (M).

In caseM is also differentiable we have the following Theorem of
Hirzebruch’s [1].

Theorem 1.7.Let Lk(p1, . . . , pk) be the multiplicative sequence of poly-
nomials corresponding to the power series

√
t

tanh
√

t
= 1+

1
3

t − 1
45

t2 + · · · + (−1)k−1 22k

(2k)!
Bkt

k
+ · · ·

(Here Bk is the kth Bernouilli number). Then the index I(M) is equal

to the L-genus of M defined as
{

Ld(p1(τM), . . . , pd(τM)
}

([M]), where

pi(τM) is the ith Pontrjagin class ofτM .
For more information about the formalism of multiplicativesequen-

ces and the correspondence between power series and multiplicative
sequence the reader is referred to [1], [5].

We just content ourselves with the remark that Lk(p1, . . . , pk) are10
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universally defined polynomials (i.e. independent of M) with coeffi-
cients in the indeterminates p1, p2, . . .. The total weight of each term
of Lk(p1, . . . pk) is 4k when pj is alloted the weight4 j. The first two of

these polynomials are L1(p1) =
1
3

p1; L2(p1, p2) =
1
45

(7p2 − p2
1).

1.8 We will be mainly concerned with a spaceX which is a finite
simplicial complex. Given any vector bundleξk over X there exists a
vector bundleη over X with ξ ⊕ η ≃ OX (of some rank). In fact∃ a
map f : X → Gk+ℓ,k (the Grassmann manifold ofk-planes inRk+ℓ) for
someℓ such thatf !(γk) = ξ. Hereγk is the universal bundle onGk+ℓ,k.
The spaceE(γk) is the subspace ofGk+ℓ,k × Rk+ℓ consisting of elements
(y, v→) with −→v ∈ y. Let γ̃ℓ be the vector bundle onGk+ℓ,k consisting of
elements (y,−→w) with −→w ∈ Rk+ℓ orthogonal toy. Thenη = f !(γ̃ℓ) satisfies
ξ ⊕ η ≃ Ok+ℓ

x . Two vector bundlesξ andξ′ overX are said to be stably
equivalent ifξ ⊕ Oℓ

X ≃ ξ
′ ⊕ Oℓ′

X for someℓ andℓ′. The stable class of
ξ is denoted by [ξ]. If ξ andξ′ are stably equivalent and ifη andη′ are
such thatξ⊕ η ≃ On andξ′ ⊕ η′ ≃ On′ for somen andn′ it is easy to see
thatη andη′ are stably equivalent. The class ofη is denoted by−[ξ]. It 11

is known that the Pontrjagin classes of a vector bundle depend only on
the stable class of the bundle. If ¯p1(ξ), p̄2(ξ), . . . denote the Pontrjagin
classes of someη belonging to the class−[ξ] it follows that the elements
Lk, (p̄1, (ξ), . . . , p̄k(ξ)) depend only on the class [ξ] of ξ.

Referring to the situation whereM4d is differentiably imbedded in
R4d+k with normal bundleν we see thatLk, (p̄1(ν), . . . , p̄K(ν)) = Lk,
(p1(ζM), . . . , pk(ζM)) ∈ H4k′ (M,Q). Thus Hirzebruch’s theorem can
be rephrased in terms of the normal bundleν as

{
Ld(p̄1(ν), . . . , p̄d(ν))

}

([M]) = I (M).

2 The main Theorem

Let X be a connected finite simplicial complex with
∏

1(X) = 0. The
theorem of Browder and Novikov deals with conditions under which X
will be of the same homotopy type as a compact differentiable manifold
M without boundary. SinceX is simply connected if such anM exists it
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has to be orientable. We first state the theorem, which actually consists
of two parts.

Theorem 2.1. Let X be a connected finite simplicial complex with
∏

1(X) = 0. Suppose that the following two conditions are satisfied.

i) X satisfies Poincaré duality i.e. to say∃ some integer n with12

Hn(X) ≃ Z and if u is a generator,
⋂

u : Hq(X) → Hn−q(X) is
an isomorphism for all q.

ii) ∃ an oriented vector bundleξk over X such thatΦ(u) ∈ Hn+k(T(ξ))
is spherical,Φ : Hn(X) → Hn+k(T(ξ)) being the Thom isomor-
phism.

Then if n is oddX is of the same homotopy type as a compact dif-
ferentiable manifoldM of dimensionn under a homotopy equivalence
f : M → X satisfying [f !(ξ)] = −[τM ].

The second part of the theorem is concerned with the casen = 4d
with d an integer> 1.

X being a finite complex we haveHq(X,Q) = Hq(X) ⊗ Q andHi(X,
Q) = Hi(X) ⊗ Q. Denoting the image ofu in Hn(X,Q) under h∗ :
Hn(X) → Hn(X,Q) whereh : Z → Q is the inclusion ofZ into Q
by v we have∩v : Hq(X,Q) → Hn−q(X,Q) an isomorphism for allq.
Actually

⋂
v can be identified with (

⋂
u) ⊗ Q. Thus assumptioni) ac-

tually implies Poincare duality for coefficients inQ. Actually, it is true
that assumptioni) implies Poincare duality for any arbitrary commuta-
tive coefficient ring∧ (with 1 , 0). The procedure adopted to define the
index I (M4d) in §1.6 can now be used to define the indexI (X) of X.

Assume in addition to i) and ii) we have the following valid for ξ.13

iii) I (X) =
{

Ld(p̄1(ξ), . . . , p̄d(ξ))
}

(v).

Then X is of the same homotopy type as a compact differentiable
manifold M of dimension 4d under an equivalencef : M → X satisfy-
ing [ f !(ξ)] = −[τM ].

PartI of these lectures is devoted to the proof of this theorem. From
§1 at actually follows that the conditionsi), ii ), and iii ) whenn = 4d,
are necessary for the validity of the Theorem.
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From the assumption
∏

1(X) = 0 it follows that the integern sat-
isfying condition i) of Theorem 2.1 has to be≥ 3 whenevern is odd.
But for n = 3 the conditioni) itself implies thatX is of the same homo-
topy type asS3. Moreover every vector bundle onS3 is trivial since
∏

2(S o(k)) = 0 for every integerk ≥ 0. Thus for any vector bun-
dle ξ over X and any homotopy equivalencef : S3 → X we have
[ f !(ξ)] = −[τS3]. This shows that Theorem 2.1 is trivially valid for
n = 3 and hence it only remains to prove the Theorem forn ≥ 5. But
some of the Lemmas and propositions that will be proved here are valid
for n ≥ 4, and it will be clear later when exactly we need the assumption
n > 4.

2.2 RealizingX as a subcomplex of a simplex∆N for some integerN 14

and imbedding∆N affinely inRN we get an open setU ⊃ X of RN such
that X is a deformation retract ofU. Let j : X → U be the inclusion
and r : U → X the retraction (i.e.ro j = Idx) with jor ∼ IdU (∼=
‘homomorphic to’). Letξ be a vector bundle onX satisfying condition
ii ) of Theorem 2.1. Letξ′ = r!(ξ). It is easy to see thatξ′ can be made
into a differentiable vector bundle. Actuallyξ′ is induced by a certain
map g : U → Gk+ℓ,k for some integerℓ, form the universal bundle
γk on Gk+ℓ,k. Since the mapg can be approximated by a differentiable
mapg : U → Gk+ℓ,k with g ∼ g′, it follows that ξ′ can be made into
a differentiable vector bundle. The Thom spaceT(ξ′) of ξ′ is defined
as follows. Introducing a fixedC∞ Riemannian matric onξ′, let E1(ξ′)
be the subspace ofE(ξ′) consisting of vectors of length≤ 1 andĖ1(ξ′)
the boundary ofE1(ξ′) consisting precisely of vectors of length 1. The
spaceT(ξ′) is defined as the quotient spaceE1(ξ′)/Ė1(ξ′). In this case
T(ξ′) is not the one point compactification ofE(ξ′). Still we denote the
point of T(ξ′) to which Ė1(ξ′) is collapsed by′′∞′′. ClearlyT(ξ′) − ∞
is a differentiable manifold.

Sincero j = IdX we haveξ′/X = ξ. Taking the restriction toξ of
the Riemannian metric onξ′, and realizingT(ξ) asE1(ξ)/Ė1(ξ) we see 15

that the inclusion maph : E(ξ) → E(ξ′) induces a mapT(h) : T(ξ) →
T(ξ′). The symbolΦ denotes throughout the Thom isomorphism. Let
f : Sn+k → T(ν) be a map such thatf ∗(ι) = φ(u), ι being a generator
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of Hn+k(Sn+k). By condition ii) such a map exists. The naturality of the
Thom isomorphism yields (T(h)o f)∗(ι) = Φ( j∗(u)). DenotingT(h)o f
by f ′ we see thatf ′ : Sn+k → T(ξ′) is a map satisfyingf ′∗ (ι) = Φ( j∗(u)).
By the transverse regular approximation theorem [4],∃ a differentiable
map f ′′ : Sn+k → T(ξ′) (whenever it makes sense i.e. onf ′′−1(T(ξ′) −
∞)) with f ′′ ∼ f ′ and f ′′ transverse regular onU. Clearly f ′′−1(U) , ∅
for if f ′′(Sn+k)∩U = ∅ the mapf ′′∗ : Hn+k(Sn+k)→ Hn+k(T(ξ′)) would
factor throughHn+k(T(ξ′) − U) = 0 (sinceT(ξ′) − U is contractible to
“∞”). But f ′′∗ (ι) = f ′∗ (ι) = Φ( j∗(u)) , 0. HenceM = f ′′−1(U) is a
differentiable manifold of codimensionk in Sn+k with normal bundle
νM ≃ f ′′!(ξ′). But M need not necessarily be connected. Sincef ′′(ξ′)

andτSn+k are orientable and sinceτSn+k

∣
∣
∣
∣M ≃ τM⊕ f ′′!(ξ′) we see thatτM

is orientable. SinceU is closed inT(ξ) we haveM = f ′′−1(U) closed
in Sn+k and henceM is a compact, orientable differentiable manifold
of dimensionaln. Choose someC∞ Riemannian metric forνM. It is16

known that∃ a tubular neighbourhood i.e. a diffeomorphismD of Eε(ν)
for someε > 0 onto a closed neighbourhoodB of M in Sn+k, and map
f̄ : Sn+k → T(ξ′) satisfying the following conditions:

1) f̄ is differentiable onf̄ −1(T(ξ′) −∞) and transverse regular onU

2) f̄ = f ′′ on M and f̄ −1(U) = f ′′−1(U) = M

3) f̄ oD is a bundle map ofEε(ν) onto the image (i.e. maps the fibre
of Eε(ν) at x ∈ M homeomorphically onto the image portion of the
fibre at f (x) in E(ξ))

4) f̄ ∼ f ′′ : Sn+k → T(ξ′).

For a proof refer to steps 1 and 2 of the proof of Theorem 3.16 in
[4].

From the compactness ofM it follows that ∃ a δ > 0 with f̄ oD

(Eε(ν)) ⊃ Eδ(ξ′)
∣
∣
∣
∣
∣
f̄ (M). Let {Mi}i=1,,r be the connected components of

M and letAi = f̄ −1(Eδ(ξ′))
∣
∣
∣
∣
∣
Mi andȦi = f̄ −1(Ėδ(ξ′))

∣
∣
∣
∣
∣
Mi. We will write

the same symbolsAi , Ȧi to denoteD−1(Ai), D−1(Ai) etc. In otherwords
we identifyEε(ν) and the tubular neighbourhoodB.
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We now introduce the following changes in notation. We writeξ, f
andu for ξ, f̄ and j∗(u). With this altered notationf : Sn+k → T(ξ) is a
map satisfyingΦ(u) = f∗(ι), differentiable onf −1(T(ξ) −∞), transverse

regular onU and is also a bundle map coveringf
∣
∣
∣
∣
∣
M : M → U on a 17

tubular neighbourhood ofM in Sn+k.

2.3 We chooseι as the fundamental class
[

Sn+k
]

. Then each (Ai , Ȧi)

receives the induced orientation
[

Ai , Ȧi

]

. Denoting byνi the restriction
of ν to Mi and byΦi : Hn(Mi) → Hn+k(T(νi)) the Thom isomorphism,
let ψi : Hn(Mi) → Hn(Ai ,Ai − Mi) be the unique isomorphism making
the following diagram commutative.

Hn(Mi)
Φi //

ψi

��

Hn+k(T(νi ))

(incln)∗≈
��

Hn+k(Ai ,Ai − Mi)
≈

Excision
// Hn+k(T(νi),T(νi) − Mi)

The homomorphisms (j i)∗ : Hn+k(Ai , Ȧi) → Hn+k(Ai ,Ai − Mi) in-
duced by inclusions are isomorphisms (sinceȦi is a deformation retract
of Ai −Mi). We choose orientations [Mi] for Mi by the requirement that
ψi([Mi]) = ( j i)∗

([

Ai , Ȧi

])

Lemma 2.4. The map f: M → U is of degree 1 i.e. to say f∗([M]) = u
with [M] =

∑
[Mi].

Proof. Let ψ : Hn(U) → Hn+k(Eδ(ξ),Eδ(ξ) − U) be the isomorphism 18

making the square. �

Hn(U)
ψ //

Φ

��

Hn+k(Eδ(ξ),Eδ(ξ) − U)

excision≈
��

Hn+k(T(ξ)) ≈ // Hn+k(T(ξ),T(ξ) − U)

commutative. Naturality of the Thom isomorphism together with the
fact thatf

∣
∣
∣Bis a “bundle map” yield the following commutative diagram.
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Hn+k(Sn+k)
f∗ //

j∗
��

Hn+k(T(ξ))

( jξ)∗
��

Hn+k(Sn+k,Sn+k − M)
f∗ // Hn+k(T(ξ),T(ξ) − U)

r⊕

i=1
Hn+k(Ai , Ȧi)

(⊕ ji )∗ //
r⊕

i=1
Hn+k(Ai ,Ai − Mi) = Hn+k(

r⋃

i=1
Ai ,

r⋃

i=1
(Ai − Mi))

e∗(excision)

OO

f∗ // Hn+k(Eδ(ξ),Eδ(ξ) − U)

≈ (eξ)∗(excis)

OO

r⊕

i=1
Hn(Mi)

⊕ψi

OO

f∗ // Hn(U)

ψ

OO

Diagram 2.
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Let f∗[M] = du. We have to show thatd = 1. We have (e−1
∗ ) j∗ 19

[Sn+k] =
∑

i
( j i)∗(

[

Ai , Ȧi

]

). To show thatd = 1 it suffices to show that

ψ f∗[M] = ψ(u). From Diagram 2 we have

ψ f∗[M] = f∗
(∑

ψi[Mi]
)

= f∗
(∑

( j i)∗([Ai , Ȧi])
)

= f∗(e∗)
−1 j∗[S

n+k] = (eξ∗)
−1( jξ)∗( f∗[S

n+k])

=

(

eξ∗
)−1 (

jξ
)

∗
(Φ(u)) .

But by definition ofψ we haveψ(u) = (eξ∗ )
−1( jξ)∗Φ(u).

We change our notations again and writef : M → X for the map of
ro f wherer : U → X is the homotopy equivalence chosen already and
write u for the original generator ofHn(X). Then f is of degree 1. The
homomorphismHq(M)→ Hq(X) induced byf is denoted byfq.

Lemma 2.5. There exist homomorphism gq : Hq(X) → Hq(M) with
fqogq = IdHq(X) and hence Hq(M) = Kar fq ⊕ gq(Hq(X)).

Proof. For anyx ∈ Hq(X) let γ ∈ Hn−q(X) be the element∆−1(x) where
∆ : Hn−q(X) → Hq(X) is the Poincare isomorphism. Settinggq(x) =
f ∗(γ) ∩ [M] we havefqgq(x) = f∗( f ∗(γ) ∩ [M]) = γ ∩ f∗[M] = γ ∩ u =
x. �

The proof of this lemma uses only two facts :a©X satisfies Poincare20

duality andb© f : M → X is a map of degree 1.
Let η′ be a bundle overX (of rankℓ′ say) such thatξ ⊗ η′ ≃ Ok+ℓ′

X .
Let η = η′ ⊗ Ok+n

X . Then [η] = [η′] = −[ξ] and

f !(η) = f !(η′) ⊕ O
k+n
M ≃ f !(η′) ⊕ τn

M + ν
k
M ≃ ⊕ f !(η′) ⊕ f !(ξ)

≃ τn
M ⊕ f !(η′ ⊕ ξ) ≃ τn

M ⊕ O
k+ℓ′
M .

Denotingk + ℓ′ by ℓ we have the following situation:∃ a vector
bundleη of rank n + ℓ on X with [η] = −[ξ] and a mapf : M → X
of degree 1 satisfyingf !(η) ≈ τn

M ⊗ Oℓ
M . Without loss of generality we

can assumeℓ′ ≥ 1. Our aim is to surgerizeM finitely many times and
obtain a connected simply connected manifoldM′ together with a map
f ′ : M′ → X inducing isomorphisms in homology and further satisfying
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f ′!(ξ) ≈ τn
M′ ⊕ Oℓ

M′ . In this is done the theorem is proved sincef ′ will
then be a homotopy equivalence by a theorem of J.H.C. Whitehead and
the relationf ′!(ξ) = τn

M′ ⊗ Oℓ
M′ implies [f ′!(ξ)] = −[τn

M′ ]. In casen is
odd and≥ 5 we will be able to achieve this using conditions i) and ii)
and whenn = 4d with d an integer> 1 we will also need condition iii)
to do the same.

3 Surgery or Spherical modification

The unitdisk

{

(x1, . . . , xn) ∈ Rn
∣
∣
∣

n∑

i=1
x2

i ≤ 1

}

in Rn is denoted byDn and21

the unit open ball

{

(x1, . . . , xn) ∈ Rn
∣
∣
∣
∣
∣

n∑

i=1
x2

i < 1

}

by Bn. For any real

numbert > 0 the closed disk and the open ball of radiust are denoted
by tDn andtBn respectively. All the manifolds we consider are oriented
C∞manifolds. We use the letterV to denote a compact manifold without
boundary, of dimensionn ≥ 1.

Definition 3.1. Given an orientation preserving differentiable imbed-

dingϕ : Sq× 3
2

Dn−q→ V with n> q ≥ 0 let χ(V, ϕ) denote the quotient

manifold obtained from the disjoint union V−ϕ(Sq× 1
2

Dn−q)U
3
2

Bq+1×
Sn−q−1 by identifyingϕ(x, t, y) with (tx, y)∀x ∈ Sq, y ∈ Sn−q−1 and
1
2
< t < 3/2.

It is easy to check thatχ(V, ϕ) is Hausdorff. Sinceϕ(x, ty) (tx, y)

is a diffeomorphism forx ∈ Sq, y ∈ Sn−q−1 and
1
2
< t < 3/2 it follows

thatχ(V, ϕ) is aC∞-manifold. It is clearly compact and oriented. The
manifoldχ(V, ϕ) is said to be got fromV by a surgery of type (q+1, n−q).

Two compact if oriented manifoldsV andV′ are said to beχ-equi-
valent if∃ a finite sequence of manifoldsV1 = V1,V2, . . . ,Vr = V′ such
thatVi+1 is got fromVi by a surgery.

Lemma 3.2. Suppose V has s connected components with s≥ 2 and22

ϕ : So×Dn→ V an orientation preserving imbedding which carries the
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two components of So × Dn into distinct components of V. Thenχ(V, ϕ)
has exactly(s− 1) connected components.

Proof. Trivial for n ≥ 2. Forn = 1 we have to use the fact that every
component ofV is diffeomorphic toS′.

Using conditions i) and ii) of Theorem 2.1. we obtained a compact
oriented manifoldM of dimensionn, a vector bundleη of rank (n + ℓ)
on X with [η] = −[ξ] and a mapf : M → X of degree 1 satisfying

f !(η) ≈ τn
M⊕Oℓ

M. Letϕ : Sq× 3
2

Dn−q→ M be an orientation preserving

imbedding withn > q ≥ 0. Assume further thatf ◦ϕ(Sq× 3
2

Dn−q) = x∗,

a chosen base point forX. Let M′ = χ(M, ϕ) and let f ′ : M′ → X be
defined as follows. SettingMo = M − ϕ(Sq × Bn−q) the mapf ′ is given
by f ′|Mo = f |Mo and f ′|ϕ′(Dq+1 × Sn−q−1) = x∗ whereϕ′ : Dq+1 ×
Sn−q−1 → M′ denotes the imbedding induced by the inclusionDq+1 ×
Sn−q−1 → 3

2
Bq+1 × Sn−q−1. Clearly f ′ is well defined and continuous.

�

Lemma 3.3. The map f′ : M′ → X is of degree 1.

Proof. Consider the following commutative diagram. 23

Hn(M)
j∗ // Hn(M, ϕ(Sq × Dn−q))

f∗ // Hn(X, x∗)

Hn(Mo, ϕ(Sq × Sn−q−1))

e∗ ≈

OO
f∗

44jjjjjjjjjjjjjjjjj

e′∗≈
��

Hn(M′)
j′∗ // Hn(M′, ϕ′(Dq+1 × Sn−q−1))

f ′∗

::uuuuuuuuuuuuuuuuuuuuuuuuu

Diagram 3.

Here j∗, j′∗, e∗ ande′∗ are homomorphisms induced by the respective
inclusions. The mapse∗ ande′∗ are isomorphisms by excision and homo-
topy. That f ′ is of degree 1 now follows frome′−1

∗ j′∗[M
′] = e−1

∗ j∗[M].
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SupposeM is not connected. Choosingϕ : So × 3
2

Dn such that

the two components ofSo × 3
2

Dn go into distinct components ofM let

M′ = χ(M, ϕ). SinceX is connected it follows thatf ◦ϕ : So× 3
2

Dn→ X

is homotopic to constant map. By homotopy extension property we can

choose a mapg : M → X with g ∼ f andg|ϕ(So × 3
2

Dn) = x∗. Then

clearlyg is of degree 1 andg!(η) ≈ τn
M ⊕Oℓ

M. Thus we can without loss24

of generality assume thatf itself satisfies the conditionfϕ(So× 3
2

Dn) =

x∗. Let f ′ : M′ → X be the associated map i.e.f ′|Mo = f |Mo and
f ′|ϕ′(D′ × Sn−1) = x∗. �

Lemma 3.4. f ′ : M′ → X is of degree 1 and f′!(η) ≈ τn
M′ ⊕ Oℓ

M′ .

Proof. That f ′ is of degree 1 follows from Lemma 3.3 LetTM = τ
n
M ⊕

Oℓ
M′ andTM ,= τ

n
M′ ⊗ Oℓ

M′ andψ : TM → f !(η) a bundle isomorphism.
Our aim is to get a bundle isomorphismψ′ : TM′ → f ′!(η). Since
TM′ |Mo = TM |Mo and f ′|Mo = f |Mo we can takeψ′ = ψ onTM′ |Mo. We
denote the image ofSo×Dn byϕ in M by imϕ and the image ofD1×Sn−1

underϕ′ in M′ by imϕ′. We identifyTM′ | imϕ = τϕ, (D1 × Sn−1) with

(τ 3
2 B1× 3

2 B2

∣
∣
∣
∣D1 × Sn−1) ⊕ Oℓ−1

D′×Sn−1. Let w1, . . . ,wn+ℓ be a trivialization of

τ 3
2 B1⊕ 3

2 Bn ⊕ Oℓ−1
3
2 B1× 3

2 Bn
and take the induced trivialization ofT′M | imϕ′ to

identify it with D1×Sn−1×Rn+ℓ. Lete1, . . . , en+ℓ be a basis of the fibre of
η at x and letu1, . . . , un+ℓ be the pull back trivialisation off ′!(η)| im ϕ′.
Using this trivialization we identifyf ′!(η)| im ϕ′ with D1×Sn−1×Rn+ℓ.
The mapψ : TM′ | Bdry Mo → f ′!(η)| Bdry Mo then corresponds to an
orientation preserving bundle mapψ : So×Sn−1 ×Rn+ℓ → So ×Sn−1 ×
Rn+ℓ and thus to a continuous mapΘ : So × Sn−1 → GL+(n + ℓ,R)25

given byψ(x,−→v ) = (x,Θ(x)−→v ) ∀−→v ∈ Rn+ℓ. To get a bundle mapTM′ →
f ′!(η) extendingψ′ : TM′

∣
∣
∣
∣Mo→ f ′!(η)

∣
∣
∣Mo it suffices to get a continuous

extension ofΘ into a mapD1 × Sn−1 → GL+(n + ℓ,R). But we know
thatψ comes from a bundle mapTM | im ϕ→ f !(η)| im ϕ. Sincef |ϕ(So×
Dn) = x∗ the trivializationu1, . . . , un+ℓ of T′M | Bdry Mo = TM | Bdry Mo

extends to a trivialization off !(η)| im ϕ. Also TM | imϕ = τϕ(So×Dn) ⊕
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Oℓ
ϕ(So×Dn) can be identified with

(

τ 3
2 B1× 3

2 Bn ⊕ Oℓ−1
3
2 B1× 3

2 Bn

) ∣
∣
∣
∣So × Dn. Thus

the trivialization w1, . . . ,wm+ℓ extends to a trivialization ofTM | im ϕ.
Using these trivializations we see thatψ corresponds to a bundle map
So×Dn×Rn+ℓ → So×Dn×Rn+ℓ. In otherwords∃ an extension̄Θ of Θ
into a mapSo × Dn→ GL+(n+ ℓ,R). SinceGL+(n+ ℓ,R) is connected
andDn contractible it follows that∃ a mapD1 × Dn → GL+(n + ℓ,R)
extendingΘ̄. This complete the proof of Lemma 3.4. �

As an immediate consequence of lemmas 3.2 and 3.4 we get the
following:

Proposition 3.5. There exists a connected, compact, oriented C∞ man- 26

ifold M′ which isχ-equivalent to M and a map f′ : M′ → X of degree
1 with f′!(η) ≈ TM′ = τ

n
M′ ⊕ Oℓ

M′ .

We now change our notations. We replaceM′ by M and f ′ by f .
Thus M is connected andf : M → X is of degree 1 withf !(η) ≈
τn

M ⊕ Oℓ
M .

Let ϕ : Sq × 3
2

Dn−q → M be an orientation preserving imbedding

wheren > q ≥ 1 and let us assumefϕ(Sq × 3
2

Dn−q) = x∗. Let f ′ :

M′ = χ(M, ϕ)→ X be the associated map. In generalf ′!(η) need not be
isomorphic toτn

m,⊕Oℓ
M′ . Consider the following alteration of the map

ϕ. Let α : Sq → S o(n − q) be aC∞ map and letϕα : Sq × 3
2

Dn−q →

M be given byϕα(x, y) = ϕ(x, α(x)y) ∀(x, y) ∈ Sq × 3
2

Dn−q. Clearly

ϕα is an imbedding, also satisfying,fϕα(Sq × 3
2

Dn−q) = x∗. Let f ′α :

M′α = χ(M, ϕα) → X be the associated map. The setsϕ(Sq × Dn−q)
and ϕ′(Dq+1 × Sn−q−1) (and similarlyϕα(Sq × Dn−q) and ϕ′α(Dq+1 ×
Sn−q−1)) are denoted by imϕ and imϕ′ respectively (similarly by imϕα
and imϕ′α respectively). Letψ′ be defined to beψ on TM′ |Mo = TM |Mo

into f ′!(η)|Mo = f !(η)|Mo. Let e1, . . . , en+ℓ be a fixed basis of the fibre27

of η atx∗ andu1, . . . , un+ℓ the pull back trivialization off !(η)| im ϕ. Then
vi = ψ

−1(ui) constitute a trivialization ofTM′ | imϕ = TM | im ϕ and there
exists a bundle isomorphismTM′ → f ′!(η) extendingψ′ if and only if



20 I. Theorem of Browder and Novikov

the trivializationv1, . . . , vn+ℓ of TM′ |BdryMo extends to a trivialization
of TM′ | imϕ′. We identifyTM′ | im ϕ′ with

(

τ 3
2 Bq+1× 3

2 Bn−q ⊕ O
ℓ−1
3
2 Bq+1× 3

2 Bn−q

) ∣∣
∣
∣
∣
Dq+1 × Sn−q−1.

Let w1, . . . ,wn+ℓ be any trivialization of
L 3

2 Bq+1× 3
2 Bn−q = (τ ⊕ Oℓ−1) 3

2 Bq+1× 3
2 Bn−q. Then we get a continuous

mapΘ : Sq × Sn−q−1 → GL+(n+ ℓ,R) given byv(x, y) = Θ(x, y)w(x, y)
∀(x, y) ∈ Sq × Sn−q−1. If there is an extension ofΘ into a continuous
mapDq+1 × Sn−q−1 → GL+(n + ℓ,R) thenv1, . . . , vn+ℓ can be extended
to a trivialization ofTM′

∣
∣
∣ imϕ′. But sinceTM | imϕ is identifiable with

(τ ⊕ Oℓ−1) 3
2 Bq+1× 3

2 Bn−q we see thatΘ admits of an extension̄Θ : Sq ×
Dn−q→ GL+(n+ ℓ,R). HenceΘ : Sq×Sn−q−1→ GL+(n+ ℓ,R) admits
of an extensionDq+1 × Sn−q−1 → GL+(n+ ℓ,R) wheneverΘ̄ admits of28

an extensionDq+1 × Dn−q −→ GL+(n + ℓ,R). Choosing a fixed point
y0 = Sn−q−1 the obstruction to the existence of such an extension is
given by the homotopy class of the mapγ : Sq −→ GL+(n + γ,R)
whereγ(x) = Θ(x, y0). Let us denote this obstruction class byγ(ϕ) ∈
Πq(GL+(n + ℓ,R)). Let the obstruction class for the imbeddingϕα be
denoted byγ(ϕα).

Lemma 3.6. The obstructionγ(ϕα) depends only onγ(ϕ) and the ho-
motopy class(α) of α in Πq(S0(n − q)). More precisely identifying
πq(S O(n − q)) with πq(GL+(n − q),R) we haveγ(ϕα) = γ(ϕ) + s∗(α)
where s∗ : πq(GL+(n−q,R)) → πq(GL+(n+ ℓ,R))is the map induced by
the inclusion s: GL+((n− q),R)→ GL+(n+ ℓ,R).

Proof. Supposeε1, . . . , εn+ℓ is any trivialisation ofTM′
∣
∣
∣ imϕ′ and sup-

poseλ : Sq × Sn−q−1 → GL+(n + ℓ,R) the map given byv(x, y) =
λ(x, y) ∈ (x, y) ∀(x, y) ∈ Sq × Sn−q−1. Then ∃ a counts mapP :
Dq+1×Sn−q−1 → GL+(n+ ℓ,R) such thatΘ(x, y) = λ(x, y)p(x, y). Actu-
ally P is the transformation relating the frameε(x, y) to v′(x, y). Hence
the homotopy class ofA|Sq × yo is the same as that ofλ

∣
∣
∣Sq × yo. Now

let Φ′ : Dq+1 × (Dn−q − {0}) → M′ × R be the map given byΦ′(x, y) =
(ϕ′(x, y

||y|| ), ||y|| − 1). Choosing some trivialisationC0,C1 . . . ,Cℓ−1 of29
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Oℓ
im ϕ′ we see that

∂Φ′

∂ξ
=

(

∂Φ′

∂x1
, . . . ,

∂Φ′

∂xq+1
, . . . ,

∂Φ′

∂yn−q
,C1, . . . ,Cℓ−1

)

can be chosen as a trivialization forTM′
∣
∣
∣ imϕ′. Thus the obstruction

γ(ϕ) is the class of the continuous mapγ(x) given byγ(x) =
〈
∂Φ′

∂ξ
, v

〉

(x),

the matrix ofv w.r.t the basis∂Φ
′

∂ξ
. The obstructionγ(ϕα) is the homotopy

class of the mapγα(x) =
〈
∂Φ′α
∂ξ
, v

〉

(x) whereΦ′α is defined similar toΦ′

usingϕ′. It is easily seen that we have∂Φ
′α

∂xi
=

∂Φ′

∂xi
+

∑

k

∂Φ′

∂yk
aki (for some

aki)
∂Φ′α
∂yj
=

∑

k

∂Φ′

∂yk
Ak j where (Ak j(x)) = α(x). If, for every 0≤ t ≤ 1 the

frame
(
∂Φ′α
∂ξ

)

t
is defined by

(
∂Φ′α
∂xi

)

t
=

∂Φ′

∂xi
+ t

∑

k

∂Φ′

∂yk
aki(i = 1, 2, . . . q+ 1)

(
∂Φ′α
∂yj

)

t
=

∂Φ′α
∂yj

( j = 1, 2, . . . n− q) and (Cµ)t = Cµ(= 1, 2, . . . ℓ − 1).

We see thatγt
α(x) =

〈(

∂Φ′α
∂ξ

)

t
, v

〉

(x) gives a homotopy between the

mapγ0
α(x) = γ(x). s(x) wheres : GL+(n− q,R)→ GL+(n+ ℓ,R) is the

inclusion andγ1
α(x) = γα(x). Thus the homotopy class [γα] is the same 30

as [γ] + s∗(α). Thus is to sayγ(ϕα) = γ(ϕ) + s∗(α).
Perhaps we should have remarked earlier that while dealing with

oriented bundles the trivializations are supposed to be those belonging
to the orientation class. Sinces∗ :

∏

q(S O(n− q)) → ∏

q(S O(n+ ℓ)) is
surjective forq < n− q we have the following: �

Proposition 3.7. If q <
n
2
∃ a C∞mapα : Sq → S O(n − q) such that

f ′α : M′α = χ(M, ϕα)→ X satisfies f′α!(η) ≈ τn
M′α
⊕ Oℓ

M′α
.

Let now V be connected of dimension n≤ 4 and v∗ some chosen base

point in V. Choose some base point P∗ in S1 and letϕ : S1×3
2

Dn−1→ V

be an orientation preserving imbedding such thatϕ(p∗, 0) = v∗ and
ϕ
∣
∣
∣S1 × 0 representsλ ∈ ∏

1(V, v∗). Let V′ = χ(V, ϕ) and let V◦ and
ϕ′ : D2×Sn−2→ V′ have their usual meanings i.e. V◦ = V−ϕ(S1×Bn−1)
andϕ′ is the imbedding of D2 × Sn−2 into V′ induced by the inclusion
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of D2 × Sn−2 in
3
2

B2 × Sn−2. Choose some fixed z∗ ∈ Sn−2 and choose

v′∗ = ϕ(p∗, z∗) = ϕ′(p∗, z∗) as the base point of V′. Letσ be the path in
V given byσ(t) = ϕ(p∗, tz∗); it is a path joining v∗ to v′∗ in V and let31

σ∗ :
∏

1(V, v∗)→∏

1(V, v′∗) be the isomorphism induced byσ.

Lemma 3.8. Let N(λ) be the normal subgroup of
∏

1(V, v′∗) generated
byσ∗(λ). Then

∏

1(V′, v′∗) is isomorphic to
∏

1(V, v′∗)/N(λ).

Proof. Let j∗ : (V◦, v′∗) → (V, v′∗) be the inclusion. We claim that
j∗ :

∏

1(V◦, v′∗)→
∏

1(V, v′∗) is an isomorphism.
In fact if Θ : (S1, p∗) → (V, v′∗) is any map and̄Θ : (S1, p∗) →

(V, v′∗) a map homotopic toΘ and transverse regular onϕ(S1 × 0) (such
a map exists sincev′∗ < ϕ(S1 × 0)), since Codimϕ(S1 × 0) in V is ≥ 2
(actually Codimϕ(S1×0) in V ≥ 3). We see that̄Θ(S1)∩ϕ(S1×0) = φ.
Choosing a deformation retractionr : S1 × (Dn−1 − 0)→ S1 × Sn−2 we
see thatr′ = ϕrϕ−1 : ϕ(S1×(Dn−1−0))→ ϕ(S1×Sn−2) is a deformation
retraction and thatr′Θ̄ is a map homotopic tōΘ and satisfyingr′Θ̄(S1) ⊂
V◦. Thus j∗ is onto. Also ifψ : (S1, p∗)→ (V◦, v′∗) is a map such thatjψ
is homotopic to a constant map then∃ an extension (also denoted byψ)
of ψ into a mapψ : D2 → V with ψ(0) = v′∗. We can get a map̄ψ with
ψ̄|S1 ∪ 0+ ψ|s1 ∪ 0 andψ̄ transverse regular onϕ(S1× 0). Since Codim
of ϕ(S1×0) in V ≥ 3 we see that̄ψ(D2)∪ϕ(S1×0) = φ and an argument
similar to the one above yields a homotopy ofψ : (S1, p∗) → (V◦, v∗)32

with the constant map, taking place onV◦ itself. This show thatj∗ is a
monomorphism.

We haveV′ = V◦ ∪ imϕ′ (as usual imϕ′ = ϕ′(D2 × Sn−2)) with
V◦ ∩ imϕ′ = ϕ(S1 × Sn−2) = ϕ′(S1 × Sn−2). Clearly V◦, imϕ′ and
V◦ ∩ imϕ′ are connected. Lemma 3.8 follows immediately from Van
Kampen theorem. also, clearlyV′ is connected.

As already remarked earlier by us Theorem 2.1 needs to be proved
only whenn ≥ 5. We have already obtained a compact, connected,
orientedC∞ manifold M of dimensionn and a mapf : M → X of
degree 1 withf !(η) ≃ τn

M ⊕ Oℓ
M . (Refer Proposition 3.5.) �

Proposition 3.9. There exists a connected simply connected manifold
M′ which is χ-equivalent to M and map f′ : M′ → X of degree 1
satisfying f′!(η) ≃ τn

M′ ⊕ Oℓ
M′ .
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Proof. Choose some base pointm∗ ∈ M. We can without loss of gen-
erality assume thatf (m∗) = x∗ for otherwise we can changef to a
homotopic map satisfying this condition. SinceM is a compact man-
ifold

∏

1(M,m∗) is finitely generated. Letλ1, . . . , λr be generators for
∏

1(M,m∗). We can get an imbeddingϕ : S1 → M representingλ1

(for this n ≥ 3 is sufficient). SinceM is oriented the normal bundle
of ϕ in M is trivial and hence it can be extended into an orientation33

preserving diffeomorphismϕ : S1 × 3
2

Dn−1 → M. SinceX is simply

connected we havef ◦ϕ homotopic to the constant map. By changingf

if necessary to a homotopic map we can assumefϕ(S1 × 3
2

Dn−1) = x∗.

Now let M′ϕ = χ(M, ϕ) and f ′ϕ : M′ϕ → X be the map associated to
f . By proposition 3.7∃ a C∞ mapα : S1 → S O(n − 1) such that
f ′α : M′α = M′ϕα = χ(M, ϕα) → X satisfiesf ′α!(η) ≃ τn

M′α
⊕ Oℓ

M′α and is

of degree 1. The mapϕα|S1 × 0 is the same asϕ|S1 × 0 = ϕ : S1→ M.
Henceϕα

∣
∣
∣S1 represents the same element asϕ i.e. λ1. By Lemma 3.8

it follows that
∏

1(M′α) is isomorphic to
∏

1(M)/ (Normal s · g gener-
ated byλ1) and hence

∏

1(M′α) is generated by (r − 1) elements. It now
follows that after a finite number of surgeries we can get a connected,
simply connected manifoldM′ and a mapf ′ : M′ → X satisfying the
requirements of the proposition. �

Remark . For applying lemma 3.8 we only nee that dimM = n ≥ 4.
Moreover we have so far used only conditions i) and ii) of Theorem 2.1.

4 Effect of surgery on homology

Let A andB be any two connected, simply connected topological spaces
andq an integer≥ 2. Supposeh : A→ B is a continuous map such that
h∗ : Hi(A) → Hi(B) is an isomorphism fori < q and an epimorphism
for i = q. Denote the Kernel ofhq : Hq(A)→ Hq(B) by Kq.

Lemma 4.1. Any x∈ Kq can be represented by a mapΘ : Sq→ A (i.e. 34

Θ∗(iq) = x where iq is a generator of Hq(Sq)) with hoΘ homotopic to a
constant map.
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Proof. Without loss of generality we can assumeh to be an inclusion
map, for otherwise, we replaceh by the inclusion ofA into the mapping
cylinder ofh. For the proof of Lemma 4.1 we use the Relative Hurewicz
Theorem. Sinceh∗ : Hi(A) → Hi(B) is an isomorphism fori < q and
an epimorphism fori = q it follows from the exact homology sequence
of the pair (B,A) that Hi(B,A) = 0 for i ≤ q. Hence by the relative

Hurewicz Theorem
∏

i(B,A) = 0 for i ≤ q and ρ :
∏

q+1(B,A)
≈−→

Hq+1(B,A) whereρ is the Hurewicz homomorphism. Now consider the
following diagram.

∏

q+1(B,A) ∂ //

ρ≈
��

∏

q(A) h∗ //

ρ

��

∏

q(B) //

ρ

��

∏

q(B,A) = 0

ρ

��
Hq+1(B,A) ∂ // Hq(A)

h∗ // Hq(B) // Hq(B,A) = 0

Diagram 4

The maps indicated byρ are the Hurewicz homomorphisms. Ifx ∈
Kq then∃ y ∈ Hq+1(B,A) such that∂y = x.

Let y1 ∈ ∏

q+1(B,A) be given byρ−1(y). The elementz ∈ ∏

q(A)35

given byz = ∂y1 satisfiesρ(z) = x andh∗(z) = h∗(∂y1) = 0. Hence if
Θ : Sq → A representsz ∈ ∏

q(A) thenΘ satisfies the requirements of
the Lemma. �

Lemma 4.2. Supposeν is a vector bundle of rank(n−q) over Sq which
is stably trivial. If2q < n thenν itself is trivial.

Proof. Let ν be determined by the elementµ of
∏

q−1(S O(n−q)). Stable
triviality of ν implies that∃ an integerr ≥ n−q such thats∗(µ) = 0 where
s∗ :

∏

q−1(S O(n − q)) → ∏

q−1(S O(r)) is the homomorphism induced
by the inclusionS O(n− q) → (S O(r)). But if 2q < n the maps∗ is an
isomorphism. Henceµ = 0.

Let V be a compact, connected, orientedC∞ manifold with
∏

1(V) =
0 of dimensionn and letB be any connected, simply connected space.
Let h : V → B be a continuous map withh∗ : Hi(V) → Hi(B) an
isomorphism fori < q and an epimorphism fori = q whereq ≥ 2.
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Further assume∃ a vector bundleζ on B with [h : (ζ)] = [ζV]. Denote
the Kernel ofhq by Kq. �

Lemma 4.3. If 2q < n any x∈ Kq can be represented by a C∞ imbed-
ding ϕ : Sq → V whose normal bundleνϕ is trivial and which further
satisfies h◦ ϕ ∼ constant map.

Proof. By Lemma 4.1∃ a mapΘ : Sq → V representingx such that 36

h ◦ Θ is homotopically trivial. If 2q < n ∃ aC∞ imbeddingϕ : Sq→ V
with Θ ∼ ϕ. We haveτV |ϕ(Sq) ≃ τϕ(Sq) ⊕ νϕ whereνϕ is the normal
bundle of the imbeddingϕ. Sinceτϕ(Sq) ⊕ Oϕ(Sq) ≃ O

q+1
ϕ(Sq), we see

that [τV |ϕ(Sq)] = [νϕ]. But [τV |ϕ(Sq)] = [h!(ζ)|ϕ(Sq)]. Sinceh ◦ ϕ
is homotopically trivial by construction we see thatνϕ is stably trivial.
Now Lemma 4.2 yields thatνϕ itself is trivial.

Assume 2q < n. Let x ∈ Kq and letϕ : Sq → V be aC∞ imbedding
representingx. Since the normal bundleνϕ is trivial we can extendϕ

into a orientation preserving imbeddingϕ : Sq × 3
2

Dn−q → V. Since

h◦ϕ is homotopic to the constant map, changingh in its homotopy class
we may assumeh ◦ ϕ = Constb∗. Let V′ = χ(V, ϕ) andh′ : V′ → B the
associated map i.e. to sayh′|V◦ = h|V◦ andh′| im ϕ′ = b∗ whereV◦, imϕ

and imϕ′ have their customary meanings. �

Proposition 4.4. h′∗ : Hi(V′) → Hi(B) is an isomorphism for i< q
and the Kernel K′q of h′q = Hq(V′) → Hq(B) is isomorphic to Kq|(x),
whenever2q < n− 1.

Proof. Consider the following commutative diagram. 37
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Hi(Sq × Dn−q)
ϕ∗ // Hi(V)

j∗ //

h∗
��

Hi(V, imϕ) ∂ //

e≈
��

Hi−1(Sq × Dn−q)

Hi(B) Hi(Vo, BdryVo)oo

Hi(Dq+1 × Sn−q−1) // Hi(V′) j′∗
//

h′∗

OO

Hi(V′, imϕ′) ∂ //

≈ e′

OO

Hi−1(Dq+1 × Sn−q−1)

Diagram 5
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Since by assumption 2q < n − 1, whenever 1≤ i ≤ q we have
Hi(Sq × Dn−q) = 0 = Hi(Dq+1 × Sn−q−1) and hence

j−1
∗ ◦ e−1 ◦ e′ j′∗ = Hi(V′) → Hi(V) will then be an isomorphism

satisfying commutativity in

Hi(V′)
≈ //

h′ $$IIIII
IIII

Hi(V)

h∗zzvvv
vv

vv
vv

Hi(B)

This shows thath′∗ is an isomorphism fori < q. Wheni = q Dia- 38

gram 5 yields the following diagram.

Z1
ϕ∗
 x

// Hq(V)
j∗ //

hq

��

Hq(V, imϕ) //

e≈
��

0

Hq(B) Hq(Vo, Bdry Vo)

0 // Hq(V′)
j′∗

//

h′q

OO

Hq(V′, imϕ′) //

≈ e′

OO

0

Diagram 6.

The mapϕ∗ is given byϕ∗(1) = x. We get an isomorphism of
Hq(V))/(x) (induced byj∗) with Hq(V, imϕ) and then we see that∃ an

isomorphismHq(V)/(x)
≈−→ Hq(V′) making

Hq(V)/(x) ≈ //

got from h∗ %%KKKKKKKKKK
Hq(V′)

h′∗ commutativezzuuuu
uu

uuu

Hq(B)

This proves thatK′q ≈ Kq/(x).
Assuming conditions i) and ii) of Theorem 2.1 withn ≥ 4 we have 39

obtained a compact, connected orientedC∞ manifold M of dimension
n with

∏

1(M) = and a mapf : M → X of degree 1 satisfyingf !(η) ≈
τn

M ⊕ Oℓ
M . �
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Proposition 4.5. There exists a connected, simply connected manifold
M′ which isχ equivalent to M and a map f′ = M′ → X of degree 1 such
that f′!(η) ≈ τn

M′ ⊕ Oℓ
M, and f′∗ : Hi(M′) → H)i(X) an isomorphism for

i <
n
2

.

Proof. For n = 4 there is nothing to prove forf : M → X already
satisfies the requirements of the proposition. SinceM is compact the
homology groupsHi(M) are all finitely generated. Forn ≥ 5 Proposition
4.5 is a consequence of this fact, Lemma 4.3 and Propositions4.4 and
3.7. �

Remark 4.5′. If f ′∗ : Hq(M′) → Hq(X) also is an isomorphism for q=

[
n
2

] then f′ : M′ → X will be a homotopy equivalence. To show this

we have only to show that f′∗ : Hi(M′) → Hi(X) is an isomorphism for
every i. As already proved (Lemma 2.5) the fact that f′ is of degree 1
implies that f′∗ : Hi(M′) → Hi(X) is onto for every i. Let a∈ Hi(M′)
be such that f′∗(a) = 0(i > q). Letα = △−1(a) ∈ Hn−1(M′). Since i> q
we have n− i ≤ q. Since f′∗ : H j(M′) → H j(X) is an isomorphism for
j ≤ q we have f′∗ : H j(X) → H j(M′) an isomorphism for j≤ q by the40

Universal Coefficient Theorem. Henceα can be written as f′∗(β) for a
uniqueβ ∈ Hn−i(X). Then if x= β ∩ u ∈ Hi(X) by the definition of g
given in Lemma 2.5, we have g(x) = a. But Hi(M′) = ker f ′∗ ⊕ giHi(X)
(direct sum). This implies a= 0 and hence f′∗ an isomorphism for all i.

Let A be any connected topological space satisfying Poincare dual-
ity with u ∈ Hn(A) ≃ Z as the fundamental class.

Definition 4.6. Let a ∈ Hi(A) and b ∈ Hn−i(A). The homology inter-
section of a and b, denoted by a. b is defined as follows: We identify
H0(A) with Z with any element (i.e. pt) w of A as a generator. Let
α = ∆−1(a) andβ = ∆−1(b) where∆ is the Poincare isomorphism. Then
α ∪ β ∈ Hn(A). The homology intersection a. b is that integer which
satisfies(α ∪ β) ∩ u = (a.b)w. Because of (1)§1.2 we see that a. b can
also be defined as the value(α∪ β)[u] of α∩ β on the homology class u.

Let V be a compact, connected, simply connected C∞ manifold of

dimension n≥ 4 and let q= [
n
2

].
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Lemma 4.7. Let a ∈ Hq(V) and suppose∃ b ∈ Hn−q(V) such that
a.b = 1. Suppose also that a is represented by an imbeddingφ : Sq ×
3
2

Dn−q→ V (i.e.ϕ|Sq × 0 represents a).

Let V′ = χ(V, ϕ). Then Rank Hq(V′) < Rank Hq(V) and Hi(V′) ≈ 41

Hi(V) for i < q.

Proof. Let V◦, imϕ and imϕ′ have their customary meanings. By exci-

sion and homotopy we haveHi(V,V◦)
ϕ∗←−−
≈

Hi(Sq × Dn−q,Sq × Sn−q).

Also

Hi(S
q × Dn−q,Sq × Sn−q−1) =






Z if i = n− q or n

0 otherwise

�

From the homology exact sequence of the pair (V,V◦) we see that

Hi(V◦)
(i◦)∗−−−→ Hi(V) is an isomorphism wheneveri , n− q andn. (Here

i◦ : V◦ → V denotes the inclusion). Also we have the following exact
sequence:

0→ Hn−q(V◦)→ Hn−q(V)
j∗−→ Hn−q(V,V◦) ≃ Z

∂−→ Hn−q−1(V)→ · · ·

The homomorphismj∗: Hn−q(V) → Hn−q(V,V◦) can more explic-
itly be described as follows. IdentifyingHn−q(V,V◦) with Hn−q(Sq ×
Dn−q,Sq × Sn−q−1) we see thatϕ(x0 × Dn−q) with x0 some fixed base
point in Sq, is a generator for the groupHn−q(V,V◦) ≃ Z. Denoting this
generator by 1 we havej∗(y) = ±a. y1. In fact the intersection number
of ϕ(Sq × 0) with ϕ(x0 × Dn−q) being clearly± 1 we havej∗(y) = ±a.
y1.

The existence of an elementb ∈ Hn−q(V) with a.b = 1 ensures that 42

j∗ : Hn−q(V) → Z is an epimorphism and hence we have the exact
sequence

0→ Hn−q(V◦)→ Hn−q(V)
j∗−→ Z→ 0.

In particular RankHn−q(V◦) < RankHn−q(V)
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We haveV′ = V◦ ∪ Dq+1 × Sn−q−1 with V◦ ∩ Dq+1 × Sn−q−1
=

Sq×Sn−q−1. Letting j1: Sq×Sn−q−1 → Dq+1×Sn−q−1 andi′ = V◦ → V′

denote the respective inclusions we have the Mayer-Vietaissequence.

Hi(S
q × Sn−q−1)

(− j1)∗⊕ϕ∗−−−−−−−→ Hi(D
q+1 × Sn−q−1) ⊕ Hi(V◦)

ϕ′∗+i′∗−−−−→ Hi(V
′)→ Hi−1(Sq × Sn−q−1)

It follows that if 1< i < n− q− 1 we have

Hi(V◦)
i′∗−→ Hi(V

′).

Also if i = 1 andi < n− q− 1 we have the exact sequence

0→ 0⊕ H1(V◦)
i′∗−→ H1(V′)→ Z

(− j1)∗⊕ϕ∗−−−−−−−→ Z ⊕ Z
ϕ′∗+i′∗−−−−→ Z

The map (− j1)∗ ⊕ ϕ∗ carries 1∈ Z = H0(Sq × Sn−q−1) into (−1, 1) of

Z ⊕ Z and hence a monomorphism. ThereforeH1(V◦)
i′∗−→ H1(V′) is also

an isomorphism in this case. Thus we see that ifi < n − q − 1 then

Hi(V◦)
i′∗−→ Hi(V′) is an isomorphism. We now consider the two cases43

n = 2q+ 1 andn = 2q separately.

Case (1)n = 2q + 1. Thenq = n − q − 1. We have already proved

that Hi(V◦)
(i◦)∗−−−→ Hi(V) is an isomorphism fori , n − q andn. The

Mayer-Victoris sequence fori = q yields the exact sequenceHq(Sq ×
Sq)

(− j)∗⊕ϕ∗−−−−−−−→ Hq(Dq+1×Sq)⊕Hq(V◦)→ Hq(V′)→ 0. Writing Hq(Sq×
Sq) asZ ⊕ Z we see that (− j1)∗ ⊕ ϕ∗ carries (1, 0) of Z ⊕ Z into (i−1

◦∗ , (a)
of Hq(Dq+1 × Sq) ⊕ Hq(V◦) and (0, 1) into (−1, 0). Since the intersec-
tion numbera · b = 1 we see that a has to be of infinite order and
the above sequence now yieldsHq(V′) ≃ Hq(V◦)/(a). Observing that
(i◦)∗ : Hq(V◦) → Hq(V) is an isomorphism we see that RankHq(V′) <
RankHq(V). Actually Hq(V′) ≃ Hq(V)/(a).

Case (2)n = 2q. As already verifiedHi(V◦)
i′∗−→ Hi(V′) is an isomor-

phism for i < n − q − 1 = q − 1. Also Hi(V◦)
(i◦)∗−−−→ Hi(V) is an iso-

morphism fori , q andn. Combining theseHi(V)
i′∗◦(i◦)−1

∗−−−−−−→ Hi(V′) is an
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isomorphism fori < q − 1. For i = q − 1 the Mayer-Victoris sequence
yields the exact sequence

Hq−1(Sq × Sq−1)
(− j1)∗⊕ϕ∗−−−−−−−→ Hq−1(Dq+1 × Sq−1) ⊕ Hq−1(V◦)

→ Hq−1(V′)→ 0.

But Hq−1(Sq × Sq−1) ≃ Z,Hq−1(Dq+1 × Sq−1) ≃ Z and the map 44

(− j1)∗ ⊕ ϕ∗ carries 1 ofHq−1(Sq × Sq−1) into (−1, 0). Hencei′∗ : Hq−1

(V◦)→ Hq−1(V′) is an isomorphism. Since (i◦)∗ : Hq−1(V◦)→ Hq−1(V)

is also an isomorphism we haveHq−1(V)
i′∗·(i◦)−1

∗−−−−−−→ Hq−1(V′) an isomor-
phism. Fori = q the Mayer-Victoris sequence yields

Hq(Sq×Sq−1)→ 0⊕Hq(V◦)→ Hq(V′)→ Hq−1(Sq×Sq−1)
‘mono’−−−−−→

Hq−1(Dq+1 × Sq−1) ⊕ Hq−1(V◦).

The mapHq−1(Sq × Sq−1)
(− j1)∗⊕ϕ∗−−−−−−−→ Hq−1(Dq+1 × Sq−1) ⊕ Hq−1(V◦)

which carries the generator 1 ofHq−1(Sq × Sq−1) into (−1, 0) is clearly

a monomorphism. HenceHq(Sq × Sq−1) → Hq(V◦)
i′∗−→ Hq(V′) → 0 is

exact. It follows that RankHq(V′) < RankHq(V◦). The map composite
Hq(Sq×Sq−1)→ Hq(V◦) carries the generator ofHq(Sq×Sq−1) into ‘a’,
an element of infinite order. As already verified RankHq(V◦) < Rank
Hq(V) (sinceq = n− q, and we actually verified RankHn−q(V◦) < Rank
Hn−q(V)).

This completes the proof of Lemma 4.7

5 Proof of the main theorem forn = 4d > 4

We have already obtained a compact, connected, simply connectedC∞ 45

manifoldM of dimension 4d and a mapf : M → X of degree 1 satisfying
f !(η) ≃ τn

M ⊕ Oℓ
M and f∗ : Hi(M) → Hi(X) an isomorphism∀i < 2d.

(Proposition 4.5).
Let K2d = Ker f2d : H2d(M)→ H2d(X).

Lemma 5.1. K2d is a free abelian group.

Proof. SinceH2d(M) is finitely generated andK2d a direct summand
of H2d(M) (Lemma 2.5) it follows thatK2d is finitely generated. To
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prove thatK2d is free it therefore suffices to prove thatK2d is torsion
free. We writeg for 2d for simplicity. If possible letx ∈ Kq be any
torsion element and letx1 ∈ Hq(M) correspond tox under Poincare
duality i.e. x1 ∩ [M] = x. x1 is then a torsion element ofHq(M). By the
Universal Coefficient Theorem for cohomology we have the following
commutative diagram. �

0 // Ext(Hq−1(M),Z)
β // Hq(M) α// Hom(Hq(M),Z) // 0

0 // Ext(Hq−1(X),Z)
β //

≈Ext( f∗,IdZ)

OO

Hq(X) α //

f∗

OO

Hom(Hq(X),Z) //

Hom(f∗,IdZ)

OO

0

Diagram 7

Clearly, Hom(Hq(M),Z) is torsion free. Also for any finitely gener-46

ated abelian groupA the group Ext(A,Z) is a torsion group. It follows
that β(Ext(Hq−1(M),Z)) is precisely the torsion subgroup ofHq(M).
Hence∃ an elementy1 ∈ Ext(Hq−1(M),Z) with β(y1) = x1. Since f∗:
Hi(M)→ Hi(X) is an isomorphism fori ≤ q− 1 we have

Ext( f∗, IdZ) : Ext(Hq−1(X),Z)→ Ext(Hq−1(M),Z)

an isomorphism. Letz1 ∈ Hq(X) be given byz1
= β◦(Ext( f∗, IdZ)−1(y′)).

Then clearly f ∗(z1) = x1. Our aim is to show thatKq has no tor-
sion, or thatx = 0. For this it suffices to show thatx1

= 0 since
∩[M] = ∆ : Hq(M) → Hq(M) is an isomorphism. Now consider the
elementz1 ∩ u ∈ Hq(X). Since f is of degree 1 we havef∗([M]) = u.
We have

0 = f∗(x) = f∗(x
1 ∩ [M]) = f∗( f ∗(z1) ∩ [M]) = z1 ∩ f∗[M] = z1 ∩ u.

But by assumption∩u: Hq(X) → Hq(X) is an isomorphism. Hence
z1
= 0 and thereforex1

= f ∗(z1) = 0. This completes the proof of
Lemma 5.1.

For the rest of§5 we denote 2d by q.
Let Hq(M) = Kq ⊕ gHq(X) be the splitting given by Lemma 2.5
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Lemma 5.2. For any a ∈ Kq and any b∈ gHq(X) the intersection
number a· b = 0. Also if b1 = g(c1) and b2 = g(c2) with c1, c2 ∈ Hq(X)
then the intersection number b1 · b2 is the same is c1 · c2.

Proof. Let b = g(c) with c ∈ Hq(X) (c is unique sinceg is a mono). 47

Let γ ∈ Hq(X) be such thatγ ∩ u = c. Then by the very definition
of g we haveb = f ∗(γ) ∩ [M]. To prove thata · b = 0 it suffices
to verify that f∗((α ∪ f ∗(γ)) ∩ [M]) = 0 with α ∈ Hq(M) satisfying
α ∩ [M] = a. Sinceq = 2d we haveα ∪ f ∗(γ) = f ∗(γ) ∪ α. Hence
f∗((α ∪ f ∗γ) ∩ [M]) = (−1)q·q f∗(( f ∗γ ∪ α)[M]) = f∗( f ∗γ ∩ (α ∩ [M]))
(sinceq = 2d) = f∗( f ∗γ ∩ a) = γ ∩ f∗(a) = 0 sincef∗(a) = 0. Choosing
γ1, γ2 in Hq(X) with γ1∩u = c1, γ2∩u = c2 we haveb1 = f ∗(γ1)∩ [M]
andb2 = f ∗(γ2) ∩ [M]. Now

f∗(( f ∗γ1 ∪ f ∗γ2) ∩ [M]) = f∗( f ∗(γ1 ∪ γ2) ∩ [M]) = (γ1 ∪ γ2) ∩ f∗([M])

= (γ1 ∪ γ2) ∩ u.

From this the equalityb1 · b2 = c1 · c2 follows.
Denoting byTq(M) andTq(X) respectively the torsion subgroup of

Hq(M) and Hq(X) we haveHq(M)/Tq(M) ≃ Kq ⊕
Hq(X)

Tq(X)
. (because of

Lemma 5.1). Lemma 5.2 precisely states that we can find bases for Kq

and
Hq(X)

Tq(X)
such that the matrixAM of the intersection bilinear form on

Hq(M)/Tq(M) take the form
(

AK 0
0 AX

)

whereAK andAX are the matrices 48

of the form restricted toKq andHq(X)/Tq(X). Also the lemma asserts
that the restriction of the intersection bilinear form onHq(M)/Tq(M) to
Hq(X)/Tq(X) agrees with the intersection bilinear form onHq(X)/Tq(X)
got from the fact thatX satisfies Poincare duality. Since intersection
by definition corresponds to cup-product under Poincare duality we see
that the signature ofAM is the same as the index of the manifoldI (M)
defined in 1.6 and similarly signature ifAX is I (X). Let us denote the
signature ofAK by I (K). Then we haveI (X) + I (K) = I (M). �

Lemma 5.3. I (K) is zero.

Proof. The assumption iii) of Theorem 2.1 is actually used in conclud-
ing that I (K) = 0. We have a mapf : M → X of degree 1 with
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f !(η) = τn
M ⊕ Oℓ

M . Also [η] = −[ξ]. By Hirzobruch’s Index Theorem

I (M) =
{

Ld(p1(τn
M), . . . , pd(τn

M))
}

[M].
But Ld(p1(τn

M), . . . , pd(τn
M)) = Ld(p1( f !(η)), . . . , pd( f !(η)) (since

Lk(p1(λ), . . . , pk(λ)) for any vector bundleλ depends only on the sta-
ble class ofλ). Hence

I (M) = {Ld(p1( f !(η), . . . , pd( f !(η))} [M]

= {Ld(p1(η), . . . , pd(η))} ( f∗[M])

= {Ld(p1(ξ), . . . , p1(ξ))} (u)

= I (X) by assumption (iii ).

This proves thatI (K) = 0.
Denote the groupHq(M)/Tq(M) (where Tq(M) is the torsion of49

Hq(M)) By Bq(M) and similarly the groupHq(M)/Tq(M) by Bq(M).
Choosing any basisx1, . . . , xr for Bq we see thatyi = xi ∩ [M] (actually
∩[M] : Hq(M) → Hq(M) gives a well determined isomorphism also
denoted by∩M of Bq(M) onto Bq(M)) form a basis forBq(M). Since
Bq(M) ≃ hom(Bq(M),Z) we can get elementsy1

i , . . . , y
1
r in Bq such that

y1
i (y j) = δi j . The bilinear form (x, y) (x∪ y)[M] on Bq is easily seen

to have determinant±1, for (y1
j ∪ xi)[M] = y1

j (yi) = δi j . It follows that
AM has determinant±1. Similarly AX has determinant±1. It follows
thatAK has determinant±1. �

Lemma 5.4. If B is a symmetric non-degenerate bilinear form on a
finitely generated free abelian group H. with determinant±1 and if the
signature of B is Zero then∃x , 0 in H such that B(x, x) = 0.

A proof of this can be found in [6]. As a corollary we see that if
Kq , 0∃ an element a, 0 in Kq such that a. a= 0. Moreover we can
choose ‘a’ to be indivisible in Kq. Then Kq|(a) is free and hence we can
find a basis of the form a, b2, . . . , br for Kq. Since Ak has determinant±1
and a. a= 0 we cannot have a· b j = 0 ∀ j. If j 1, . . . , jr , are the indices
in (2, . . . , r) with a.b j , 0 then g.c.d

i=1,...r ′
(a.b ji ) has to be 1 for otherwise

this greatest common divisor will divide determinant of AK .

Hence∃ integers mji such that
r ′∑

i=1
mji (a.b ji ) = 1. The element b∈ Kq50



5. Proof of the main theorem forn = 4d > 4 35

given by b=
r ′∑

i=1
mji (b ji ) satisfies a. b= 1.

Lemma 5.5. If d > 1 there exists an imbeddingϕ: Sq → M4d(q = 2d)
representing a and further satisfying f◦ϕ ∼ x̃∗ (wherex̃∗ is the constant
map Sq→ x carrying the whole of Sq into x∗.)

Proof. It is for the proof of this lemma that we needd to be 1. By
Lemma 4.1∃ a continuous mapΘ : Sq → M representing ‘a’ and
satisfying f ◦Θ ∼ x̃∗. We use the fact thatM is simply connected. Also
sinceM is of dimension 4d with d an integer> 1 it follows from Lemma
6 of [6] that∃ a C∞ imbeddingϕ : Sq → M with ϕ ∼ Θ. This proves
Lemma 5.5. �

Remark. It is not true that a continuous mapΘ: S2→ V4 is homotopic
to aC∞ imbedding even ifV4 is a compact, simply connectedC∞ man-
ifold (if dimension 4). An example is given by Kervaire and Milnor in
[3].

Lemma 5.6. For any C∞ imbeddingϕ : Sq → M representing ‘a’ and
satisfying f◦ ϕ ∼ x̃∗ the normal bundleνϕ is trivial.

Proof. We haveτM |ϕ(Sq) ≃ τq
ϕ(Sq)⊕ν

q
ϕ. SinceM andSq are orientable it

follows thatνϕ in orientable. Also fromf !(η)|ϕ(Sq) ≃ (τn
M ⊕Oℓ

M)|ϕ(Sq), 51

we have

f !(η)|ϕ(Sq) ≃ τqϕ(Sq) ⊕ νq
ϕ ⊕ O

ℓ
ϕ(Sq) ≈ τϕ(Sq) ⊕ Oϕ(Sq) ⊕ νq

ϕ ⊕ O
ℓ−1
ϕ(Sq)

≃ O
q+1
ϕ(Sq) ⊕ νϕ ⊕ O

ℓ−1
ϕ(Sq) ≃ νϕ ⊕ O

q+ℓ
ϕ(Sq).

But sincef ◦ ϕ ∼ x̃∗ we havef !(η)|ϕ(Sq) ≃ O
2q+ℓ
ϕ(Sq).

Thusνϕ⊗O
q+ℓ
ϕ(Sq) ≃ O

2q+ℓ
ϕ(Sq). Thusνϕ is stably trivial. Ifν ∈ Πq−1(S Oq)

is the element corresponding to the bundleνϕ on Sq we haveS∗(ν) = 0
wheres∗: Πq−1(S Oq) → Πq−1(S O2q+ℓ) is the homomorphism induced
by the inclusion. SinceΠq−1(S Oq+1) → Πq−1(S O2q+ℓ) is an isomor-
phism it follows thati∗(ν) = 0 wherei∗: Πq−1(S Oq) → Πq−1(S Oq+1)
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is induced by the inclusion. SinceS Oq+1/S Oq = Sq we have a fibra-
tion of S Oq+1 by S Oq as the fibre andSq as the base. Consider the
corresponding exact sequence

Πq(Sq)
∂−→ Πq−1(S Oq)

i∗−→ Πq−1(S Oq+1).

∂ carries a generator ofΠq(Sq) into the elementτ of Πq−1(S Oq) corre-
sponding to the tangent bundle ofSq. Sincei∗(ν) = 0 it follows that52

ν − kτ for some integerk. The map which assigns to an isomorphism
classλ of an orientable vector bundle of rankq overSq its Euler class
χ(λ) defines a homomorphismχ: Πq−1(S Oq) → Hq(Sq). For the tan-
gent bundleτ of Sq the classχ(τ) is known to be twice a generator of
Hq(Sq). (That q = 2d is even, we use here). Thus the composition

Πq(Sq)
∂−→ Πq−1(S Oq)

χ
−→ Hq(Sq) is a monomorphism and any element

in the image of∂ is zero if and only if its Euler class is zero. The Euler
class of the normal bundle of the imbeddingϕ representing ‘a’ can be
identified witha · a times a generator ofHq(Sq). For, given a normal
vector field with a finite number of zeros onϕ(Sq) we can deformϕ(Sq)
along these vectors to obtain a new imbedding which intersects ϕ(Sq)
at only finitely many places. The multiplicity of each such intersection
is equal to the index of the corresponding zero of the normal vector
field. �

Remark. A more ‘formal’ proof for the fact thatχ(νϕ) = a · a times a
generator ofHq(Sq) can be given as follows.

Denoting the imbedded manifoldϕ(Sq) by Sq itself, let Φ: Hi

(Sq)→ Hq+i(T(ν)) be the Thom isomorphism. IfU = Φ(1) ∈ Hq(T(ν))
then the Euler class ofν can be defined byχ(ν) = Φ−1(

⋃∪⋃
). [5].

Taking a tubular neighbourhoodA of Sq in M and collapsing the exte-
rior of A to a point we get a mapC : M → T(ν). If γ ∈ Hq(M) is the53

class which corresponds to ‘a’ under Poincare duality (i.e.γ∩ [M] = a)
it is known thatC∗(∪) = γ [9]. HenceC∗(

⋃∪⋃
) = γ ∪ γ = a · a[M] by
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the definition of the intersection number. But from the diagram

Hq(Sq) Φ

≈
// H2q(T(ν))

C∗

{{vvvvvvvvvvvvvvv
H2q(T(ν),T(ν) − Sq)

excision≈

��

≈oo

H2q(M) H2q(M,M − Sq)
excision
≈

//
j∗

oo H2q(A,A− Sq)

We see thatH2q(M,M − Sq) ≃ Z. Taking anypt x ∈ Sq we have the
triangle:

Z ≃ H2q(M) H2q(M,M − Sq)
j∗oo

H2q(M,M − x)

OO

≈

eeJJJJJJJJJJJJJJJJ

HenceH2q(M,M−x) ≃ Z has to be a direct summand ofH2q(M,M−
Sq) which is also≃ Z. It follows that j∗ : H2q(M,M − Sq) ≈ H2q(M).
Examining the diagram again we see thatC∗ = H2q(T(ν)) ≈ H2q(M).
Hence

⋃

∪
⋃

= a · a times a generator ofH2q(T(ν)) andΦ−1(
⋃

∪
⋃

) =
a · a times a generator ofHq(Sq).

We ar now almost at the end of the proof of Theorem 2.1 for the case
n = 4d. Choosing an indivisiblea , 0 in Kq with a · a = 0 we saw that 54

∃ b ∈ Kq with a · b = 1. The existence of such an ‘a’ was guaranteed
by Lemma 5.4. From Lemma 5.5 and 5.6 we see that∃ an orientation

preserving imbeddingϕ : Sq × 3
2

Dq → M with f ◦ ϕ ∼ x̃∗ and repre-

senting ‘a’. Let now M′ = χ(M, ϕ) and f ′ : M′ → X the associated map
which is constructed after alteringf in its homotopy class so as to satisfy
f ◦ϕ = x∗. By Lemma 3.3f ′ is of degree 1. To get an isomorphismτn

M,
⊕Oℓ

M,→ f ′!(η) we had an obstructionγ ∈ Πq(S On+ℓ) and whenϕ was
replaced byϕα given byϕα(x, y) = ϕ(x, α(x)y) with α : Sq → S Oq a
C∞ map then the new obstructionγα satisfied the relationγα = γ+ s∗(α)
where S∗ : Πq(S Oq) → Πq(S On+ℓ) is the homomorphism induced
by the inclusion. (Lemma 3.6). Sinceq is even the homomorphism
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Πq(S Oq) → Πq(S Oq+1) is onto [8]. AlsoΠq(S Oq+1) → Πq(S On+ℓ) is
onto. Thus there exists anα such thatf ′α : M′ = χ(M, ϕα)→ X satisfies
the conditionf ′α!(η) ≃ τn

M ,⊕Oℓ
M, in addition to being of degree 1. Thus

without loss of generality we can assume thatf ′ itself was ‘good’ in the
sense thatf ′!(η) ≃ τn

M, Oℓ
M . Denoting the inclusions ofMo in M and

M′ respectively byi andi′ we have the following commutative diagram
for every integerj.

H j(M)

f∗

##GG
GG

GGG
GGG

GGG
GG

H j(Mo)

i∗

OO

i′∗

��

H j(X)

H j(M′)

f ′∗

;;wwwwwwwwwwwwwww

By Case 2 of Lemma 4.7 we havei∗ : H j(Mo) → H j(M) and i′∗ :55

H j(Mo) → H j(M′) to be isomorphisms forj < q. Since f∗ : H j(M) →
H j(X) is an isomorphism forj < q it follows that f ′ : H j(M′)→ H j(X)
is an isomorphism forj < q. Also by the same lemmaRK Hq(M′) <
RKHq(M). If K′q denotes the Kernel off ′q = Hq(M′) → Hq(X) we
haveK′q free and of rank< rank of Kq. It follows that after a finite
number of spherical modifications we can obtain a manifoldM′′ and
a map f ′′ : M′′ → X with deg f ′′ = 1, f ′′!(η) ≃ τn

M′′ ⊕ Oℓ
M′′ and

K′′q = ker f ′′q = 0. It follows from the Remark 4.5′ that f ′′ : M′′ → X is
a homotopy equivalence. This completes the proof of the maintheorem
for n = 4d > 4.

6 Proof of the main theorem forn = 2q+ 1

Throughout§6 we will assumen = 2q+1 with q an integer≥ 2. LetW =
W2q+2 be a compact orientable topological manifold of dimension 2q+256

with boundarybW. Let F be any fixed field. The semi-characteristic
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e∗(bW; F) of bW with respect toF is defined to the residue class
q∑

i=0
RankHi(bW; F) modulo 2. LetρF be the rank of the bilinear pairing
Hq+1(W; F) ⊗ Hq+1(W; F) → F given by the intersection number and
e(W) the Euler characteristic ofW,

Lemma 6.1. We have e∗(bW; F) + e(W) ≡ ρF( mod 2).

Proof. Consider the homology exact sequence of the pair (W, bW) with
coefficients inF,

Hq+1(W; F)
j∗−→ Hq+1(W, bW; F)
∂−→ Hq(bW; F)

→ · · · → H0(W; bW; F)→ 0.

�

By Poincare-Lefschetz duality ifz ∈ Hq+1(W, bW; F) is such that
x · Z = 0 ∀ x ∈ Hq+1(W; F) thenZ = 0. It follows from this remark
and the relationx · y = x · j∗(y) for any x, y ∈ Hq+1(W; F) that kerj∗
is precisely the nullity of the intersection bilinear form on Hq+1(W; F).
Hence

ρF = dim Hq+1(W; F) − dim ker j∗ = dim im j∗ = dim ker∂

= dim Hq+1(W, bW; F) − dim im∂

Denoting the dimensions ofH j(W : F) andH j(W, bW; F) by b j(W; F)
andb j(W, bW; F) respectively we have

ρF = bq+1(W, bW; F) − bq(bW; F) + bq(W; F) − bq(W, bW; F) + · · · .

But bi(W, bW; F) = b2q+2−i (W; F) by Poincare-Lefschetz duality.57

ThusρF ≡ e∗(bW; F) + e(W)( mod 2).
Let V be a compact connected orientedC∞ manifold of dimension

n = 2q + 1 and leta ∈ Hq(V) be any torsion element, 0. Suppose

further ϕ : Sq × 3
2

Dn−q → V is an orientation preserving imbedding

representing the homology class ‘a’. Let V′ = χ(V, ϕ).
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Lemma 6.2. If q is even we have an exact sequence

0→ Z→ Hq(V′)→ Hq(V)/(a) → 0

where(a) is the subgroup generated by a in Hq(V)

Proof. As usual letV◦ = V − ϕ(Sq × Bq+1) and letϕ′: Dq+1 × Sq→ V′

be the imbedding induced by the inclusion ofDq+1 ×Sq in
3
2

Bq+1 ×Sq.

We then have the following commutative diagram with exact horizontal
rows. �

Z ≃ Hq(Sq × Dq+1)
ϕ∗ // Hq(V) // Hq(V, ϕ(Sq × Dq+1)) // 0

Hq(V◦, ϕ(Sq × Sq))

≈

OO

Z ≃ Hq(Dq+1 × Sq)
ϕ′∗ // Hq(V′) // Hq(V′, ϕ′(Dq+1 × Sq)) // 0

Diagram 8

Sinceϕ∗(1) = a by assumption it follows thatHq(V′, ϕ′(Dq+1 ×58

Sq))Hq(V, ϕ(Sq × Dq+1)) ≃ Hq(V)/(a). To prove Lemma 6.2 we have
only to show thatϕ′∗ : Z → Hq(V′) is a monomorphism. Since ‘a’
is a torsion element to show thatϕ′∗ is a monomorphism we have only
to prove thatbq(V′,Q) . bq(V,Q)( mod 2) wherebq(V,Q) is the qth

Bettinumber ofV i.e. the rank ofHq(V,Q). SinceHi(V) ≃ Hi(V, ϕ(Sq ×
Dq+1)) ≃ Hi(V◦, ϕ(Sq ×Sq)) ≃ Hi(V′, ϕ′(Sq+1 ×Sq)) ≃ Hi(V′) for i < q
the statementbq(V′,Q) . bq(V,Q)( mod 2) will follow if we show that
q∑

i=0
bi(V′,Q) +

q∑

i=0
bi(V,Q) . 0( mod 2).

Let W = I × V
⋃

ϕ
Dq+1 × Dq+1 be the topological manifold got as

follows. We take the disjoint union ofI×V andDq+1×Dq+1 and identify
the points ofSq × Dq+1 with their images underϕ in V × 1. ThenW
is a compact orientable manifold of dimension 2q + 2 with boundary
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consisting of the disjoint union ofV and V′. Hence by Lemma 6.1
we havee∗(bW;Q) + e(W) ≡ ρ( mod 2) whereρ is the rank of the
intersection bilinear pai ringHq+1(W,Q) × Hq+1(W,Q) → Q. Sinceq is
even, this intersection bilinear pairing is skew symmetricand henceρ is
even. But

e∗(bW;Q) ≡
q∑

i=0

bi(V
′,Q) +

q∑

i=0

bi(V,Q) (mod 2).

Also W is of the same homotopy type as the space got fromV by
attachingDq+1 by means ofϕ|Sq × 0 and hencee(W) = e(V) + (−1)q+1.
SinceV is of dimension 2q + 1 by Poincare duality we havee(V) ≡ 0 59

( mod 2) and hence the relatione∗(bW;Q) + e(W) ≡ 0( mod 2) yields
q∑

i=0
bi(V′Q) +

q∑

i=0
bi(V,Q) + (−1)q+1 ≡ ( mod 2) or

q∑

i=0
bi(V′Q) +

q∑

i=0
bi(V,

Q) . 0( mod 2). This completes the proof of Lemma 6.2.
We now consider the case whenq is odd. Letd be the order of ‘a’.

Sincea , 0 and is a torsion element ofHq(V), d is an integer> 1. Now

suppose the imbeddingϕ: Sq× 3
2

Dq+1→ V representing ‘a’ is replaced

by ϕα given byϕα(x, y) = ϕ(x, α(x).y) with α : Sq → S Oq+1 a C∞

map satisfyings∗(α) = 0 wheres∗ : Πq(S Oq+1) → Πq(S O2q+1+ℓ) is the
homomorphism induced by the inclusions : S Oq+1→ S O2q+1+ℓ. Lety∗

be a base point chosen once for all and letj : S Oq+1 → Sq be the map
given by j(w) = wy∗. (We considery∗ as a column vector inRq+1 and the
matrixwoperates on the right ony∗). We want to study theqth homology
of V′α = χ(V, ϕα). Clearly the manifoldV◦ = V − ϕα(Sq × Bq+1) is
independent ofα and the meridianϕα(y∗×Sq) of the torusϕα(Sq×Sq) =
Bdry V◦ as a point set does not depend onα, hence its homology classε′

in Hq(V◦) does not depend onα. On the other hand the homology class
εα of ϕα(Sq × y∗) in Hq(V◦) does depend onα. Let ε be the homology
class ofϕ(Sq × y∗) in Hq(V◦). Then we have

εα = ε + j∗(α)ε′ where j∗ : Πq(S Oq+1)→ Πq(Sq) ≃ Z

is the homomorphism induced byj. 60
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We claim that∃ an integerd′α such thatdεα = d′αε
′ in Hq(V◦). Ac-

tually in the homology exact sequence

→ Hq+1(V◦)
i∗−→ Hq+1(V)→ Hq+1(V,V◦)

∂−→ Hq(V◦)
i∗−→ Hq(V)→

identifying Hq+1(V,V◦) with Z ≃ Hq+1(Sq × Dq+1,Sq × Sq) by excision
we saw that the homomorphismHq+1(V) → Hq+1(V,V◦) was given by
x  ± a.x(Refer to the proof of Lemma 4.7). Since ‘a’ is a torsion
element we havea.x = 0 and hence

0→ Z ≃ Hq+1(V,V◦)
∂−→ Hq(V◦)

i∗−→ Hq(V)→ · · ·

is exact. ∂ carries the generatorϕ(y∗ × Dq+1) of the relative group
Hq+1(V,V◦) into ε′ in Hq(V◦). The elementdε of Hq(V◦) gets mapped
into da = 0 by i∗ and hence∃ an integerd′ such thatdε = d′ε′. From
εα = ε + j∗(α)ε′ we havedεα = dε + d j∗(α)ε′ = (d′ + d j∗(α))ε′. Thus
d′α = d′ + d j∗(α) satisfies the requirementdεα = d′αε

′. Let a′α be the
element (i′α)∗(ε′) ∈ Hq(V′α) wherei′α : V◦ → v′α is the inclusion. Then
from the exact sequence

Hq+1(V′,V◦)
∂−→ Hq(V◦)

( j′α)∗−−−→ Hq(V′α)→ 0

we see that (i′α)∗(dαε′) = (i′α)∗(dεα) = 0 since∂ carries the generator61

ϕ′α(Dq+1 × y∗) of the relative groupHq+1(V′,V◦) into the elementεα ∈
Hq(V◦) represented byϕα(Sq × y∗). It follows thata′α is of order|d′. +
d j∗(α)| with d′ = the order ofa′ ∈ Hq(V′) represented byϕ′(y∗ × Sq).

Identifying the stable groupΠq(S O2q+1+ℓ) with Πq(S Oq+2) there is
an exact sequence associated with the fibrationS Oq+2/S Oq+1 = Sq+1:

Πq+1(Sq+1)
∂−→ Πq(S Oq+1)

s∗−→ Πq(S Oq+2).

The compositionΠq+1(Sq+1)
∂−→ Πq(S Oq+1)

j∗−→ Πq(Sq) (for q odd) car-
ries a generator ofΠq+1(Sq+1) into twice a generator ofΠq(Sq). It fol-
lows that j∗(α) with α ∈ kers∗ can take any even value. (+ ve or− ve).
Thus ifd′ is not divisible byd we can choose anα ∈ Ker s∗ such that the
order|d′α| of a′α satisfies|d′α| < d. Thus we have proved the following
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Lemma 6.3. Let q be odd and> 1 and ϕ : Sq × 3
2

Dq+1 → V an

orientation preserving imbedding representing a torsion element a∈
Hq(V) of order d > 1. Then the element a′ ∈ Hq(V′) represented by
ϕ′(y∗ × Sq) is of finite order; moreover if d′ is the order of a′ and if 62

d′ is not divisible by d then∃ an α ∈ Ker s∗ such that the element a′α
in Hq(V′α) = Hq(χ(V, ϕα)) represented byϕ′α(y∗ × Sq) has order strictly
less than that of a in Hq(V).

Next we deal with the case whend′ is divisible byd. We recall the
definition of linking numbers [Siefert-Threlfall [7]] Letλ ∈ Hp(V) and
µ ∈ Hn−p−1(V) be torsion classes in the respective groups. Associated
with the coefficient sequence

0→ Z h−→ Q→ Q/Z→ 0

we have the exact homology sequence

→ Hp+1(V;→ Q/Z)
∂−→ Hp(V)

h∗−−→ Hp(V;Q)→ · · ·

(h is the inclusion ofZ in Q). Sinceλ is a torsion element we have
h∗(λ) = 0. Therefore∃ν ∈ Hp+1(V;Q/Z) such that∂(ν) = λ. The
pairing (Q/Z)⊗Z→ Q/Z defined by multiplication gives an intersection
pairing Hp+1(V;Q/Z) ⊗ Hn−p−1(V) → Q/Z. We denote this pairing by
a dot′.′ .

Definition 6.4. The linking number L(λ, µ) is the rational number mod-
ulo 1 defined by L(λ, µ) = ν.µ. This linking number is well-defined
and satisfies the relation L(µ, λ) + (−1)p(n−p−1)L(λ, µ) = 0 [Ref: Siefert-
Threlfall [7]].

Lemma 6.5. L(a, a) = ±d′d( mod 1). (This lemma is valid even if d′ 63

is not divisible by d. In fact when d′ is divisible by d this lemma asserts
that L(a, a) = 0).

Proof. We havedε − d′ε′ = 0 in Hq(V◦). Therefore the cycledϕ(Sq ×
y∗) − d′ϕ′(y∗ × Sq) bounds a chainC in V◦. Let C1 = ϕ(y∗ × Dq+1) be
the cycle inϕ(Sk × Dk+1) ⊂ V with boundaryϕ(y∗ × Sq). The chain
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C + d′C1 has boundarydϕ(Sq × y∗). Hence
C + d′C1

d
has boundary

ϕ(Sq × y∗). Also ϕ(Sq × 0) represents the same classa ∈ Hq(V) as

ϕ(Sq × y∗). Taking the intersection of
C + d′C1

d
with ϕ(Sk × 0) we get

±d′/d sinceC is disjoint fromϕ(Sk×0) andC1 has intersection number
±1 with ϕ(Sk × 0). ThusL(a, a) = ±d′/d( mod 1). �

Lemma 6.6. Let V = V2q+1 be a compact oriented C∞ manifold with
q > 1 odd, and f= V → X a map of degree 1 satisfying the following
conditions.

(1) f∗ : Hi(V)→ Hi(X) is an isomorphism for i< q

(2) kq = ker f∗ : Hq(V) → Hq(X) is a torsion group. Suppose further
that L(a, a) = 0 ∀ a ∈ kq. Then Kq is a direct sum of a finite number
of copies ofZ2 = Z/2Z.

Remark. When stating this lemma we have a complexX satisfying the64

conditions of Theorem 2.1 in our mind. In particularX satisfies Poincare
duality and it is only this that is needed for the validity of Lemma 6.6.

Proof. SinceX satisfies Poincare duality for integer coefficients it fol-
lows thatX satisfies Poincare duality for coefficients in any arbitrary
commutative ring. Using the fact thatf is of degree 1, monomorphisms
g j : H j(X) → H j(V) were constructed satisfyingH j(V) = ker f j ⊕
g j(H j(x)) for every j [Lemma 2.5]. The same procedure can be adopted
to define monomorphismsg j,∧ : H j(X,∧)→ H j(V,∧) for any commuta-
tive coefficient ring and we still haveH j(V,∧) = ker f j,∧⊕g j,∧(H j(X,∧)).
Also the exact sequences in homology corresponding to the exact coef-
ficient sequence 0→ Z → Q → Q/Z → 0 give rise to a commutative
diagram. �

Hq+1(V,Q/Z) ∂ // Hq(V;Z)
h∗ // Hq(V,Q) //

Hq+1(X,Q/Z) //

gq

OO

Hq(X,Z)
h∗ //

gq

OO

Hq(X,Q) //

gq

OO



6. Proof of the main theorem forn = 2q+ 1 45

Let Tq(V) and Tq(X) denote the torsion subgroups ofHq(V) and 65

Hq(X) respectively. Then from assumption (2) we haveTq(V) = Kq ⊕
gTq(X). For anyb, b1Tq(V) let L(b, b1) denote their linking number.
Then sinceq is odd we haveL(b, b1) = L(b1, b). According to Poincaré
duality theorem for torsion group [7, p. 245]L defines a non degenerate
pairing Tq(V) ⊗ Tq(V) → Q/Z. We claim thatL|Kq ⊗ Kq gives a non
degenerate pairingKq ⊗ Kq → Q/Z. Let b ∈ Kq satisfy L(b, b1) =
0 ∀ b1 ∈ Kq. We have to show thatL(b, c) = 0∀c ∈ Tq(V). Since
Tq(V) = Kq ⊕ gTq(X) we have only to prove thatL(b, y) = 0 ∀ y ∈
gTq(X). Let y1 ∈ Tq(X) be such thatg(y1) = y. Then h∗(y1) = 0
(sincey1 is a torsion element) and therefore∃Z1 ∈ Hq+1(X,Q/Z) such
that ∂Z1

= y1. The elementZ ∈ Hq+1(V,Q/Z) given by Z = g(Z1)
satisfies∂Z = y. Now L(b, y) = L(y, b) = Z.b (this intersection is the
one corresponding to the pairing (Q/Z)⊗Z→ Q/Z). Thus we have only
to verify Kq.g(Hq+1(X,Q/Z) = 0. This can be proved in a way similar
to Lemma 5.2. ThusL|Kq ⊗ Kq→ Q/Z gives a nondegenerate pairing.

We now claim that every elementa ∈ Kq is of order 2. In fact for
anyb ∈ Kq we have 0= L(a + b, a + b) = L(a, b) + L(b, a) = L(2a, b).
Hence 2a = 0. This completes the proof of Lemma 6.6.

Lemma 6.7. Let f : V → X be of degree 1 satisfying the following66

conditions.

1) f∗ : Hi(V)→ Hi(X) an isomorphism for every i< q

2) Kq = ker fq : Hq(V) → Hq(X) a direct sum of a finite number of
copies ofZ2 and that∀ a ∈ Kq the linking number L(a, a) = 0.

Supposeϕ : Sq × 3
2

Dq+1 → V is an imbedding representing a, 0 in

Kq. Then for the manifold V′ = χ(V, ϕ) the Bettinumber bq(V′;Z2) (i.e.
the dimension of Hq(V′;Z2)) satisfies bq(V′;Z2) . bq(V;Z2)( mod 2).

Proof. Let W = l × V ∪ϕ Dq+1 × Dq+1 as in the proof of Lemma 6.2.
By Lemma 6.1 we havee∗(V′ : Z2) + e∗(V;Z2) + e(W) ≡ ρ( mod 2)
whereρ is the rank of the intersection bilinearHq+1(W;Z2). If we show
that ρ is even then as in the proof of Lemma 6.2 it will follow that
bq(V′;Z2) . bq(V;Z2)( mod 2). Thus we have only to show thatρ
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is even. If for everyx ∈ Hq+1(W;Z2) the intersectionx · x is zero thenρ
will be even. Thus we have only to show thatx·x = 0∀ x ∈ Hq+1(W;Z2).
In the homology exact sequence for the pair (W,V) with Z2 coefficients

Hq+1(V;Z2)
j∗−→ Hq+1(W;Z2)→ Hq+1(W,V;Z2)

∂−→→ Hq(V;Z2)

the groupHq+1(W,V;Z2) ≃ Z2 with ϕ(Dq+1 × y∗) as generator and∂67

carries it intoa , 0 in Hq(V;Z2). Actually if we useZ2 coefficients
and take the kernelKq(Z2) of f∗ : Hq(V;Z2) → Hq(X,Z2) it will be
isomorphic toKq sinceKq is a direct sum of a finite number of copies
of Z2 and f∗ : H j(V) → H j(X) is an isomorphism forj < q. Hence
∂ : Hq+1(W,V;Z2) → Hq(V;Z2) is a monomorphism and thereforej∗ :
Hq+1(V;Z2)→ Hq+1(W;Z2) is onto. It is clear thatx.x = 0 for elements
of the formx = j∗(y) with y ∈ Hq+1(V;Z2) because a cycle representing
y can be deformed inW so as not to intersectV. This completes the
proof of Lemma 6.7. �

Now we go to the proof of Theorem 2.1 whenn = 2q+ 1 with q ≥
2. We have already obtained a connected simply connected, compact
orientedC∞manifoldM of dimensionnand a mapf : M → X of degree
1 satisfying f : (η) ≃ τn

M ⊕ Oℓ
M and f∗ : H j(M) → H j(X) isomorphism

for j < q. Let Kq be the Kernel offq : Hq(M) → Hq(X). Let Kq =

FqOT(Kq) with Fq free andT(Kq) the torsion subgroup ofKq. Choose
an element ‘a’ forming part of a basis forFq. As an easy consequence of
Poincare duality we get an elementb ∈ Hq+1(M) such thata.b = 1. By
Lemma 4.3∃aC∞ imbeddingϕ : Sq → M representing ‘a’ with trivial
normal bundleνϕ and further satisfyingf ◦ ϕ ∼ x̃∗ (the constant map).

Extendingϕ to an orientation preserving imbeddingϕ : Sq × 3
2

Dq+1 →
M and performing survey we get a manifoldχ(M, ϕ) = M′ and a map68

f ′ : M′ → X of degree 1 withf ′∗ : H j(M′) → H j(X) isomorphisms
for j < q andK′q = ker f ′q : Hq(M′) → Hq(X) isomorphic toKq/(a).
(Refer to case (i) of Lemma 4.7). Changingϕ to ϕα if necessary for a
suitableC∞ mapα : Sq → S Oq+1 we may assumef ′!(η) ≃ τn

M′ ⊕ Oℓ
M′

(Proposition 3.7). Applying surgery successively to ‘kill’ elements of
a basis ofFq we get a connected, simply connected compact oriented
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C∞ manifold M′′ and a mapf ′′ : M′′ → X of degree 1 satisfying the
following conditions:

1) f ′′∗ : H j(M′′)→ H j(X) is an isomorphism∀ j < q andK′′q = ker f ′′q :
Hq(M′′)→ Hq(X) is precisely the torsion subgroup ofKq.

2) f ′′!(η) ≃ τn
M′′ ⊕ Oℓ

M′′ .

Thus changing notations we may assume that the originalf : M → X
itself satisfied the condition thatKq is a torsion group. Now assumeq
even. Choosing an elementa , 0 in Kq and applying surgery to ‘kill’
a′ (this is possible because of Lemma 4.3) we introduce an additional
Z to the kernel, but the torsion subgroup of the Kernel becomesKq/(a).
(Refer to Lemma 6.2) But by our earlier remarks we can successfully
apply surgery to killZ. In other words by two suitable surgeries on
M we can get a compact, oriented, connected, simply connectedC∞ 69

manifold M′ and a mapf 1 : M1 → X of degree 1 withf ′ : (η) ≈
τn

M′ ⊕ Oℓ
M1, f 1

∗ : H j(M) → H j(X) isomorphism for j < q and K′q =

ker f ′q : Hq(M1) → Hq(X) definitely smaller thanKq. Iteration of this
procedure a finite number of times proves Theorem 2.1 forn = 2q + 1
with q even.

We have still to consider the caseq odd. If a , 0 in Kq is of orderd

when we perform surgery by means of an imbeddingO : Sq× 3
2

Dq+1→
M representing ‘a’ and get f 1 : M1

= χ(M, ϕ)→ X we introduce a new
element of finite order in the kernel off 1. To get f 1 : (η) ≃ τn

M1 ⊕ Oℓ
M1

we may have to alterϕ into ϕα for a suitableα : Sq → S Oq+1 and this
can be done by Proposition 3.7. We can assume thatϕ itself satisfied
this requirement also. However if we change againϕ to ϕα with α ∈
Ker s∗ there is no obstruction to getting an isomorphism off 1

α! (η) with

τn
M′α
⊕ Oℓ

M1
α

. It is this freedom of choice ofα in Ker s∗ that helps in

proving Theorem 2.1 forn = 2q + 1 with q odd> 1. If the orderd1

of a1 ∈ Hq(M1) represented byϕ1(y∗ × Sq) is not divisible byd then
for a suitableα ∈ Ker s∗ the elementa1

α ∈ Hq(M1
α) will have order

strictly less thand (Lemma 6.3). It follows now from Lemma 6.5 and70

6.6 that we can get a manifoldM′′ which isχ−-equivalent toM and a
map f ′′ : M′′ → X satisfying the following conditions.
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1. M′′ is connected, simply connected andf ′′ is of degree 1.

2. f ′′∗ : H j(M′′) → H j(X) is an isomorphism forj < q; the kernel
K′′q of f ′′q : Hq(M′′) → Hq(X) is a direct sum of a finite number
of copies ofZ2.

3. f ′′!(η) ≃ τn
M′′ ⊕ Oℓ

M′′ .

Lemma 6.7 coupled with the observations made above helps in get-
ting a manifoldM′′′ which is connected and simply connected andχ-
equivalent toM′′ and a mapf ′′′ : M′′′ → X with f ′′′∗ : H j(M′′′) →
H j(X) isomorphism forj q and f ′′′!(η) ≃ τn

M′′′ ⊕ Oℓ
M′′′ . From the re-

mark 4.5 it follows thatf ′′′ is a homotopy equivalence. This completes
the proof of Theorem 2.1.
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1 The Assumption of simple-connectedness in the
browder-novikov theorem

72

In this section we will illustrate by examples that simple connectedness
of X and condition (iii) are essential for the validity of Theorems 2.1
of Part I. We first construct a compact, connected combinational mani-
fold Y of dimension 12 withπ1(Y) = 0 and satisfying condition (ii) of
Theorem 2.1 which however is not of homotopy type of any closeC∞

manifold. SinceY is an orientable (π1(Y) = 0) compact manifold con-
dition (i) is automatically satisfied. This example thus illustrates that
condition (iii) of theorem 2.1 (part I) is not redundant. Letk be any inte-
ger≥ 1 andπkS1 the cartesian product ofk copies of the circle. We will
show thatX = Y× πkS1 satisfies condition (ii), and in casek is divisible
by 4 satisfies condition (iii) as well. However form Siebenmann’s Theo-
rem (which will be stated later) it follows thatX is not of the homotopy
type of any closedC∞ manifold.

1.1 The symmetric 8×8 matrix given below is a unimodular matrix of
signature 8.





2 1 0 0 0 0 0 0
1 2 1 0 −1 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 −1 0 1 2 1 0 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2





Denote the (i, j) th entry of this matrix byCi j . It is known that one 73

can chooseC∞ imbeddingsfi : S5× 0→ bD12
= S11(i = 1, . . . , 8) with

disjoint images such that the linking numberL( fi(S5 × 0), f j(S5 × 0))
of fi(S5 × 0) and f j(S5 × 0) in bD12 for i , j areCi j . Moreover, for
eachi we can choosefi so that≡ a differentiably imbedded diskD′6i
in D12 which boundsfi(S5 × 0). A tubular neighbourhood offi(S5) in
bD12 can be got as the restriction of a tubular neighbourhood ofD′6i in
D12. In otherwords≡ C∞ imbeddingsgi : D6 × D6 → D12 such that

53
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gi(S5 × D6) ⊂ bD12, gi(S5 × 0 = fi) and D′6i = gi (D6 × 0). We can
choose thesegi such thatgi(S5×D6) are pair-wise disjoint inbD12. Let
∧ : S5 → S06 be aC∞ map representing the element∂i6 ∈ π5(S06)
where∂i6 ∈ π6(S6) is a generator andλ is the boundary homomorphism
in the exact sequenceπ6(S6) → π5(S06) → π5(S07) corresponding to
the fibrationS07/S06 = S6. Let ϕi : S5 × D6 → bD12 be defined by
ϕi(x, y) = gi(x, α(x)y). Let D6

i × D6
i (i = 1, . . . 8) be eight disjoint copies

of D6×D6 and letS5
i ×D6

i be the submanifoldS5×D6 of D6
i ×D6

i . Let
W12
= D12

+(ϕ6
1)+· · ·+(ϕ6

8) be the compactC∞ manifold with boundary
got from the disjoint unionD12U(UiD6

i × D6
i ) by identifying points of

S5
i ×D6

i with their images underϕi and then rounding off the corners. We
claim thatW12 is a manifold with boundary, withH6(W12) free of rank 8
and having the given matrix as intersection matrix for a suitable choice
of a basis forH6(W12). In W12 the image ofD6

i ×0 also a disk bounding
fi(S5 × 0) and

∑6
i = D′6i U(D6

i × 0) is a differentiably imbedded sphere74

in W12 whose normal bundle corresponds to the element∂i6 ∈ π5(S06).
The classes corresponding to

∑6
i form a basis forH6(W12) since the

classes corresponding toD6
i × 0 form a basis forH6(W12,D12). The

intersections of
∑6

i and
∑6

j in W12 are precisely those ofD′6i andD′6j in

D12 which by definition are the linking numbersL( fi(S5×0), f j(S5×0)).
Hence

∑6
i .

∑6
j = Ci j for i , j. Also if k∗ : π5(S06) → π5(S5) is the

map induced byϕ
k−→ x◦.ρ(x◦ a fixed element inS5) of S06 in S5 then

it is known thatk∗∂ι6 = ±2ι5 (i5 a generator forπ5(S5)). Also k∗(∂ι6)
is precisely the Euler class of the normal bundle of each

∑6
i in W12,

and this as we have seen already (Refer to proof of Lemma 5.6, Part
I) is the self intersection

∑6
i ·

∑6
i times a generator ofπ5(S5). Thus by

proper choice ofι6 ∈ π6(S6) we see that
∑6

i ·
∑6

i can be made equal to
2. Since the matrix we started with is a unimodular matrix it follows
that the boundary∂W is a homotopy sphere [12]. Hence by Smale [10]
W is actually a combinatorialS11. By attaching the cone overS11 to
W by a PL-isomorphism we get a closed combinatorial manifoldY12.
Clearly W is 5-connected and sinceY12 is got by attaching a 12-cell
to W it follows that Y is also 5-connected and thatH6(W) ≃ H6(Y12)
under the map induced by the inclusionW → Y. It follows thatY is a
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5-connected combinatorial manifold of dimension 12, having the given
matrix as intersection matrix for a suitable choice of basisfor H6(Y). 75

Lemma 1.2. Y is not homotopy type of any compact C∞ manifold.

Proof. For if Y were of the homotopy type a compactC∞ manifold there
should exist classespiH4i(Y;Z)(i = 1, 2, 3) such that{L3(p1, p2, p3)}

[Y] =

{

1

33.5.7
(62p3 − 13p2p1 + 2p3

1)

}

[Y] = 8. SinceH4(Y;Z) = 0 and

H8(Y;Z) = 0 the above implies that∃ a classp3 ∈ H12(Y;Z) ≃ Z such

that
1

33.5.7
62p3[Y] = 8. This in turn means the existence of an integer

ℓ3 such that 62ℓ3 = 33.5.7.8. This is impossible since the prime 31 does
not divide 33.5.7.8. �

Lemma 1.3. Letξ be the tr ivial line bundle over Y. Then for the Thom
space T(ξ) of ξ the homology H13(T(ξ)) has a spherical generator.

(This observation is due to A. Vasqez.)

Proof. Y is a 5-connected polyhedron withH6(Y) free abelian of rank
8,H12(Y) ≃ Z; H j(Y) = 0 for all other j ≥ 1. Thus a ‘homology de-
composition’ [2] for Y will be (S6V . . .VS6)U

h
E12 where the wedge

is a 8 fold wedge and to it is attached a 12-cell by means of a map
h : S11 → S6 . . .VS6 representing the so calledk-invariant or the dual
Postnikov invariant. The Thom spaceT(ξ) of ξ is homotopy equiv-
alent to the suspension

∑
(YU ‘a’) of the disjoint union ofY and a

point ‘a’. HenceT(ξ) ∼ S1V(S7V . . .VS7)U
g

e13 (we use ‘∼’ to mean

homotopy equivalence) whereg : S12 → S1VS7V . . .VS7 is some
map. It is known thatπ12(S7) = 0 [4]. By a theorem of Hilton [3] 76

it follows that π12(S1VS7V . . .VS7) = 0. This shows thatg is homo-
topically trivial and henceT(ξ) ∼ S1V(S7V . . .VS7)VS13. The inclu-
sion of S13 in S1V(S7V . . .VS7)VS13 followed by a homotopy equiv-
alence f : S1V(S7V . . .VS7)VS13 → T(ξ) represents a generator of
H13(T(ξ)). �

Lemma 1.4. Let V be a closed, connected, orientable combinatorial
manifold satisfying condition (ii) of Theorem 2.1 (Part I).Then V× S1
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also satisfies condition (ii). Ifdim .V = 4d − 1 then VS1 also satisfies
condition (iii).

Proof. Let dimV = n and letξk be an orientable vector bundle of rankk
onV with Hn+k(T(ξ)) ≃ Zwith a spherical generator, say represented by
the mapf : Sn+k → T(ξ). Choose any orientable vector bundleη of rank
ℓ overS1 with a spherical generator forHℓ+1(T(η)) ≃ Z represented by
g : Sℓ+1 → T(η). Such a bundle exists sinceS1 is aC∞ manifold. (In
fact the trivial line bundle itself satisfies this condition). Let ζ × η be the
cartesian product bundle onV×S1. Choosing fixed Riemannian metrics
for ζ andη denote the associated unit disk bundles byAξ andAη and let
Ȧξ and Ȧη be the boundaries ofAξ and Aη respectively. ThenT(ξ) =
Aξ/Ȧξ andT(η) = Aη/Ȧη. For the bundleξ×ηwith the cartesian product
Riemannian metric we haveAξ×η = Aξ×Aη andȦξ×η = Aξ×Ȧη∪Ȧξ×Aη.
Choosing the respective points at∞ as base points inT(ξ) andT(η) let

T(ξ)#T(η) =
T(ξ) × T(η)
T(ξ)VT(η)

. The canonical projectionsεξ : Aξ → T(ξ)

andεη : Aη → T(η) yield the mapεξ × εη : Aξ × Aη → T(ξ) × T(η). If77

p : T(ξ) × T(η) → T(ξ)#T(η) is the canonical map thenpo(εξ × εη) :

Aξ×Aη → T(ξ/#)Tmyields a (1−1) onto map of
Aξ × Aη

Aξ × Ȧη ∪ Ȧξ × Aη
→

T(ξ)#T(η). The compactness of the spaces involved shows that the map
T(ξ × η) → T(ξ)#T(η) thus obtained is a homeomorphism. Clearly the
map f #g : Sn+k#Sℓ+1

= Sn+1+k+ℓ → T(ξ)#T(η) represents a generator
of Hn+1+k+ℓ(T(ξ × η)). �

Supposen = 4d− 1. Choose a basisX1, . . . ,Xr for H2d−1(V;Q). By
Poincare duality∃ a basisY1, .,Yr for H2d(V;Q) such thatXi. Yj = δi j .
Then forH2d(V×S1;Q) the elementsX1⊗s, . . . ,Xr⊗s; Y1⊗1, . . . ,Yr⊗1
wheres ∈ H1(S1,Q) is a generator form a basis. With respect to this

basis the intersection matrix is 2d

2d
︷    ︸︸    ︷
{(

0 I
I 0

)

. Hence the signature of the

manifoldV × S1 is 0. Choosingη to be the trivial line bundle onS1 we
haveLd(p̄1(ξ × η), . . . , p̄d(ξ × η))[V × S1] = Ld(p̄1(ξ) ⊗ 1, . . . , p̄d(ξ) ⊗
1)[V × S1] = 0.

It follows from Lemmas 1.3 and 1.4 thatX12+k
= Y12×πkS1 satisfies
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conditions (i) and (ii) of Theorem 2.1 (Part I) and also (iii)in casek ≥ 1
is divisible by 4. From Siebenmann’s Theorem stated below and Lemma
1.2 it will follow that none of the manifoldsX12+k(k ≥ 0) is of the
homotopy type of a compactC∞ manifold.

Let π be any multiplicative group andZ(π) the group ring ofπ over
Z. Two finitely generated projectiveZ(π)-modulesP1 andP2 are said to
be equivalent if∃ finitely generated freeZ(π) -modulesF1 andF2 with 78

P1 ⊕ F1 ≃ F2 ⊕ F2. The set of equivalence classes of finitely gener-
ate a projective modules is denoted byK̃◦(Z(π)); it is an abelian group
under the operation induced by the direct sum operation on projective
modules.

Theorem 1.5(Siebenmann). Let X be a finite complex such that X×S1 is
of the homotopy type of a compact, connected, C∞ manifold Vn+1 with-
out boundary of dimension n+1 with n≥ 5. SupposeZ(π) is Noetherian
and thatK̃◦(Z(π)) = 0 whereπ = π1(X). Choosing a homotopy equiva-
lenceθ : V → X×S1 and denoting the projection onto the second factor
X×S1→ S1 by p2 let W be the covering of V got as the pull back of the

coveringR
(Exp2πi)
−−−−−−→ S1 by means of the map p2.θ : V → S1. Then W

with the natural differential structure it acquires as a covering manifold
of V, is diffeomorphic to Nn × R with N = Nn a compact C∞ manifold
without boundary, of dimension n.

Remark. As W is of the homotopy type ofX × R or X it follows thatX
is of the homotopy type ofN. If π is free abelian of rankℓ < ∞ we have
Z(π)≃Z[x1, . . . , x, x−1

1 , . . . , x−1
ℓ

] wherex1, x2, . . . xℓ areℓ-indeterminates
overZ and in this caseZ(π) is Noetherian and̃K◦Z(π)) = 0. It is now
clear that none of the manifoldsX12+k

= Y12× πkS1 is of the homotopy
type of any compactC∞ manifold without boundary.

The theorem remains true if we drop the assumption thatZ(π) is
Noetherian. We give some more details on this in§3. The assumption
K̃◦Z(π)) is however essential. An example of a group withK̃◦Z(π)) , 0 79

is the cyclic group or order 23. (See D.S. Rim [9]).
The rest of Part II deals with the Proof of Theorem 1.5. Letf : V →

S1 pe aC∞ approximation top2 ◦ θ with f ∼ p2 ◦ θ : V → S1 (we use
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‘∼’ to mean ‘homotopic’). We denote the mapExp(2πi) : R → S1 by
q and letp : W → V denote the covering mapping. By definitionW
is the inverse image of the coveringq : R → S1 by means of the map
p2 ◦ θ : V → S1. Since f ∼ p2 ◦ θ∃ a mapF : W → R making the
following diagram commutative. MoreoverF is C∞.

W
F //

p

��

R

q
��

V
f // S1

Diagram 1

By Sard’s Theorem∃ a regular valuea ∈ S1 for f and without loss
of generality we can assume 1∈ S1 to be a regular value forf . Then
any integer is a regular value ofF.

2 The existence of arbitrary small 0 and
1-Neighbourhood of ‘∞’ and ‘−∞’

Definition 2.1. A C∞ sub-manifold M= Mn+1 of dimension n+ 1 with
boundary bM, of W is said to be a 0-nbd of∞ (respy “−∞”) if

(1) M is a closed subset of W

(2) ∃ integers m1 < m2 with F−1[m1,∞) ⊃ M ⊃ F−1[M2,∞)
{

respy F−1(−∞,M1] ⊂ M ⊂ F−1(−∞,M2]
}

(3) bM is compact; M and bM are connected.80

M is said to be a1−nbd of∞ (respy “−∞”) if it is already a 0−nbd
of∞ (respy “−∞”) and the mapsπ1(b,M) → π1(M), π1(M) → π1(W)
induced by the respective inclusions are isomorphisms.
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Definition 2.2. By the statement “arbitrary small 0 (or 1)-nbds of∞
(respy−∞)” we mean that given any compact set K⊂ W ∃ a 0 (or 1)
−nbd M of∞ (respy−∞) with M ⊂W− K.

Let J denote an infinite cyclic group and let x be a generator of

J. The Deck transformation group of the coveringR
q
−→ S1 can be

identified with J with x acting as the homeomorphism r→ r + 1 of R

onto itself. Since W
p
−→ V is the pull back of the covering spaceR

q
−→ S1

the Deck transformation group of the covering W
p
−→ V is also J and we

denote the homeomorphism of W which corresponds to the generator x
byα.

Lemma 2.3. Letσ be any are in V and w◦ ∈W any point with p(w◦) =
σ(0). Letτw◦ be the unique lift ofσ such thatτw◦(0) = w◦.The variation
Maxt,t′∈[0,1] |Fτw◦ (t)−−−−Fτw◦ (t′)| of F onτw◦ depends only onσ and
not on the lift w◦ of σ(0).

This quantity which depends only onσ we refer to as the “variation
of F onσ” and denote it by VF(σ).

Proof. Supposew′◦, is any other element ofW with p(w′◦) = σ(0), then
w′◦ = α

kw◦, for some integerk. The unique liftτw′◦ of such thatτw′◦ = w′◦
is given byτw′◦ (t) = αkτw◦(t). Because of the commutativity of diagram81

1 we have
Fτw′◦(t) = k+ Fτw◦ (t)

for all t ∈ [0, 1]. The lemma follows. �

Lemma 2.4. There exists a constant C> 0 such that any two points of
V can be joined by means of an areσ such that the variation VF(σ) of
F onσ is less than C.

Proof. For anyv ∈ V ∃ an arcwise connected openndb Uv of v in V such
that p−1(U)v decomposes into a disjoint union of open sets{W j

v} each of
which gets mapped homeomorphically ontoUv by the restriction ofp.
We can choose another arcwise connected open setU′v containingv such
thatŪ′v ⊂ Uv. Then each of the sets

W′ jv = W j
v ∩ p−1(U′v) gets mapped homeomorphically byp ontoU′v

andW′ jv = p−1(U′v)∩W j
v is compact sincēU′ is compact, being a closed
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subset of the compact spaceV. The argument used in lemma 2.3 can be
used to show that Max

w,w1∈w̄′ j
|F(w)−F(w1)| is finite and depends only onU′

(finiteness being a consequence of the compactness ofW̄′ j). We may
call the above quantity the variation ofF on U′ or Ū′. Compactness of
V implies the existence of a finite number of setsU′v1

, . . . ,U′vr
covering

V. Writing U′i for U′vi
and denoting the variation ofF on U′i by Ci let

C be any constant> C1 + · · · + Cr . ThenC satisfies the requirement
of the Lemma. For ifv◦, v1 are any two points ofV, sinceV is arcwise
connected we can find distinct indicesj1, . . . , js, in 1, 2, . . . , r such that
v◦ ∈ U′j1 andv1 ∈ U′jℓ andU′jµ ∩U′jµ+1

, 6 φ. Choosing pointv′µU
′
µ+1 and82

joining v◦tov′1 by an arc inU j1; v′1 to v′2 by an arc inU′j2 and so on we
get an areσ joining v◦ to v1 such thatVF(σ) ≤ C j1 + .. +C j < C. �

Lemma 2.5. a constantα > 0 with the following property: For every
v ∈ V ∃ a loopθv at v in V such that the loop fθv represents the positive
generator ofπ1(S1, f (v)), and VF(θ) < d.

Proof. Choose a pointv◦ ∈ V and any loopθv◦ at v◦ such that f θv◦
represents the positive generator ofπ1(S1, f (v◦)). Let e be the variation
of F on θv◦ andC > 0 the constant of Lemma 2.4. Thend = 2C + e
satisfies the requirement of Lemma 2.5. For given anyv ∈ V∃ a pathσv

in V such thatσv(0) = v,σv(1) = v◦ andVF(σv) < C. If we defineθv for
anyv , v◦ by θv = σ

vθv◦ (σ)v−1 then clearlyf θv represents the positive
generator ofπ1((S1), f (v)) andVF(θ)v < C + e+C = 2C + e= d. �

According to our choice ofd we haved > c.

Lemma 2.6. Let w be any element of F−1[ℓ + d,∞) with ℓ any real
number and v= p(w). For any integer k≥ 0 let τk be the unique
lift of θk

v satisfyingτk(0) = w. Then the pathτk lies in F−1[ℓ,∞) and
F(τk(1)) = k+ F(w).

Proof. The F(τk(1)) = k + F(w) follows from the fact thatf ◦ θk
v rep-

resents the elementk. (+ ve generator) ofπ1(S1 f (v)). The τk lies in
F−1[ℓ,∞) is proved by induction onk. For k = 0 there is nothing83

to prove. Assumek ≥ 1 and the lemma valid for (k − 1) instead of
k. Let µ be the lift of θv with initial point µ(0) = τk−1(1). Then
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Fµ(0) = (k − 1) + F(w) ≥ (k − 1) + ℓ + d. Since the variation ofF
on θv < d we haveFµ(t) ≥ (k − 1) + ℓ∀t ∈ [0, 1]. Sincek ≥ 1 this
impliesFµ(t) ≥ ℓ. Now τk is precisely the productτk−1.µ and whenever

t ≤ 1
2

, Fτk(t) = Fτk−1(2t) ≥ ℓ (by induction hypothesis) and ift ≤ 1
2

,

Fτk(t) = Fµ(2t−1) ≥ (k−1)+ ℓ (by what is proved above). This shows
thatτk lies in F−1[ℓ,∞). �

Proposition 2.7. There exist arbitrary small 0-neighbourhoods of ‘∞’
(resp.−∞) in W.

Proof. We prove the assertion for∞, the proof for “−∞” being similar
is left out. LetK be any compact subset ofW. ∃ an integerℓ such that
F−1[ℓ,∞) ⊂W−K. Sinceℓ is a regular value ofF we see thatF−1[ℓ,∞)
is aC∞ submanifold ofW, with boundaryF−1(ℓ). Let d be the constant
of Lemma 2.5 (which as commented earlier has been chosen to be> C
the constant of Lemma 2.4) �

Claim: Any two pointsw◦, w1 of F−1[ℓ+2d,∞) can be joined by means
of a path inF−1[ℓ,∞).

Let p(w◦) = v◦, p(w1) = v1. By Lemma 2.4∃ an arcσ in V such
thatσ(0) = v◦, σ(1) = v1 andVF(σ) < C. Let τ be the unique lift of
σ with initial point τ(0) = w◦. Theτ(1) andw1 are points on the same
fibre of W and henceF(w1) = k + F(τ(1)) for a certain integerk. It
follows thatσ1

= θk
v◦ . σ is a path joiningv◦ to v1 in V whose liftτ1 with

initial point τ1(0) = w◦ satisfiesτ1(1) = w1. We now consider the cases84

k ≥ 0 andk < 0 separately. Case (i)k ≥ 0. SinceVF(σ) < C < d and
F(τ(0)) = F(w◦) ≥ ℓ + 2d it follows thatF(τ(t)) > ℓ + d. From Lemma
2.6 we now haveF(τ1(t)) ≥ ℓ∀t ∈ [0, 1]. Case (ii)k < 0. The path (τ1)−1

is the composition (τ−k). τ−1 whereτ−k is the lift of θk
v◦ having as initial

point τ−k(0) = w1. Now, by assumptionF(w1) ≥ ℓ + 2d and−k > 0.
From Lemma 2.6 we see thatτ−k is an arc inF−1[ℓ,∞). Sinceτ (and
henceτ−1 also) is an arc inF−1[ℓ + d,∞) we see that (τ1)−1

= τ−k.τ
−1

is an arc inF−1[ℓ,∞) and henceτ1 too is anF−1[ℓ,∞).
This completes the proof of the claim. Now it is clear thatF−1[ℓ,∞)

has only one non-compact connected component sayM′ and a finite
number of compact connected components. SinceM′ ⊃ F−1[ℓ + 2d,∞)
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it follows that the boundarybM′ of M′ lies inF−1[ℓ,∞)−F−1(ℓ+2d,∞)
and is therefore compact. IfbM′ were connected thenM′ itself would
be a 0− nbdof ∞. SupposebM′ is not connected. Choosing a smooth
path inM′ from one component ofbM′ to another meetingbM′ orthog-
onally and only at the end points and removing the interior ofa tubular
neighbourhood of the path we get a connectedC∞ submanifoldM′′ of
W with

Diagram 2

bM′′ compact andbM′′ having one component less thanbM′. Refer85

to Diagram 2. Since there are only a finite number of components after
a finite number of such operations we get a connectedC∞ submanifold
M of W with bM compact and connected. FurtherM ⊃ F−1[m,∞) for
some integermsince the originalM′ containedF−1[ℓ+2d,∞). ThusM
is a 0− nbdof∞.

Lemma 2.8. Let Mn+1 be a C∞ submanifold of Wn+1 with boundary
bM = N and let M and N be connected. Let M be a closed subset of W.
Suppose the homomorphismπ1(N) → π1(W) induced by the inclusion
is an isomorphism. Thisπ1(M)→ π1(W) induced by the inclusion of M
in W is also an isomorphism.

Proof. Let i : N → M and j : M → W be the respective inclusions.
Then j ◦ i : N → W induced an isomorphism (j ◦ i)∗ : π1(N) → π1(W)
by our hypothesis. Since (joi)∗ = j∗ ◦ i∗ it follows that j∗ : π1(M) →
π1(W) is an epimorphism. To show thatj∗ : π1(M) → π1(W) is an
isomorphism it therefore suffices to prove thatj∗ is a monomorphism.
Since dimM = n+1 andn ≥ 5 any element ofπ1(M) can be represented
by aC∞ imbeddingϕ : S1→ Int M (in fact for this assertion to be valid
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it suffices thatn + 1 ≥ 3). Supposeα ∈ π1(M) is such thatj∗(α) = 0
and supposeϕ : S1 → Int M representsα. From j∗(α) = 0 it follows
that∃ a maph : D2 → W extendingϕ. Sinceφ(S1) ∩ N = φ we can
approximateh by aC∞ mapθ : D2 → W such thatθ/S1

= ϕ andθ is 86

transverse regular onN. ThenD2 ∩ θ−1(N) consists of a finite number
of disjoint simple closed curves (each one of them is aC∞ imbedded
S1) in the interior ofD2. Take an inner most curveC. Now θ|C → W
admits of an extensionθ : △ → W where△ is the closed region (inner
most) bounded byC. Thusθ|C represents the trivial elements ofπ1(W)
andθ(C) ⊂ N. Sinceπ1(N) → π1(W) is an isomorphism it follows that
∃ a mapλ : △ → N with λ|C = θ|C. (Refer to diagram 3). Now using
the fact thatN is collared inM it is easy to get a mapθ′ : D2→W with
the following properties:

Diagram 3

(1) θ′|S1
= ϕ

(2) ∃ anbdAof △ in D2 with A disjoint from the curves ofθ−1(N)∩D2

different fromC such thatθ′(A)∩ = φ andθ′|D2 − A = θ|D2 − A.

For thisθ′ we haveθ′−1(N) ∩ D2 consisting precisely of the curves in
θ−1(N) ∩ D2 exceptingC. Repeating this argument a finite number of
times we finally get a mapΦ : D2→W such thatΦS1

= ϕ andΦ−1(N)∩
D2
= ∅. Sinceϕ(S′) ⊂ Int M and sinceD2 is connected we should have

Φ(D2) ⊂ Int M, for otherwiseD2 ∩ Φ−1 (Int M) andD2 ∩ Φ−1(W − M) 87



64 II. Siebenmann’s Theorem

will be non void disjoint open sets ofD2. This means thatα ∈ π1(M) is
the zero element and henceπ1(M)→ π1(W) is a monomorphism. �

Proposition 2.9. There exist arbitrary small 1-neighbourhoods of “∞”.

In the proof of this lemma we use a result in group theory whichwe
state below without proof.

Lemma 2.10. Suppose G and H are finitely presentable group and

G
h−→ H → 1 is an exact sequence. Then the Kernel of h is the nor-

mal subgroup in G generated (as a normal subgroup) by a finite number
of elements.

We now go to the proof of proposition 2.9. We haveπ1(W) ≃ π1(X)
and by assumptionX is a finite polyhedron. It follows thatπ1(W) is
finitely presentable. LetM′ with N′ = bM′ be a zero neighbourhood
of ∞ with M′ ⊂ W − K. Choosing a base pointw◦ ∈ Int M′ and a
small “contractible open set 0” in IntM′ as the “new base point” we can
represent a finite system of generatorsα1, . . . , αr of π1(W) by disjoint
C∞ imbeddingsϕi : S1 → W(i = 1, . . . r) with the base point ofS1

going into 0. To represent eachαi by a C∞ imbeddings we need that
dimW ≥ 3 and also to get the imbedding to have disjoint images we
need dimW ≥ 3. But hypothesis dimW ≥ 6. By choosingw◦ properly
we can assume thatϕi(S1) ⊂ Int M′ for everyi.

88

The normal bundle ofϕi has a section for everyi. Let Ui be an open
tubular neighbourhood ofϕi(S1) for every i such thatUi ∩ U j = ∅ for
i , j. Define M′′ = M′ − UiUi. Then M′′ is still connected though
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bM′′ = N′′ is not in general. By choosingC∞ paths inM′′ meeting
the components ofbM′′ only at the end points and orthogonally and re-
moving the interiors of tubular neighbourhoods of these paths one gets
a zero -neighbourhoodM′′′ ⊂ W − K. Sections of the normal bundles
bUi → ϕi(S1) yield elementsα′1, . . . , α

′
r ∈ π1(bM′′) which map onto

α1, . . . , αr ∈ π1(W). (Refer to diagram 4). Thusπ(N′′/ → π1(W) is
onto, whereN′′′ = bM′′′. We denote (M′′′,N′′′) again by (M,N) and
may assume(by Lemma 2.10) thatπ1N → π1W is the normal closure
in π1N of a finite number of elementsβ1, . . . , βk. ChooseC∞ imbed-
ding ϕi : S1 → N with base point ofS1 going into some contractible89

open setB of N such thatϕi representsβi . (i = 1, . . . , k). It is given
thatϕi represents the zero element inπ1W. Hence there exists a map
which can be assumed to be aC∞ imbeddingϕi : D2 → W extending
ϕi : S1 → N. By translatingM if necessary by a deck transformation
we can assume that the imagesϕi(D2) all lie in W − K. We can get a
tubular neighbourhood ofϕi(S)1 in N as the restriction toϕi(S)1 of a
tubular neighbourhood ofϕi(D)2 in W. We may assume that these tubu-
lar neighbourhood are disjoint, and that their intersections with N are
tubular neighbourhood ofϕi(D)2 ∩ N. Let C ⊂ D2 be an inner most
simple closed component curve ofϕ−1

i (N) for somei, and letD be the
region ofD2 bounded byC. Thenϕi (int D) ∩N = θ.

There are two cases :
If ϕi (Int D) ⊂ W− M then add the tubular neighbourhood ofϕi(D)

to M. That is to say, a handleD2 × Dn−1 is attached toM. (Refer to
diagram 5′).

If ϕi(Int D) ⊂ int M delete fromM the tubular neighbourhood of90
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ϕi(D) (Refer to diagram 5′′).

The new manifoldM′ with boundaryN′ is still a 0-neighbourhood
of α. Moreover,π1N′ is a quotient ofπ1N and the kernel ofπ1N′ →
π1W is still (normally) generated by the classes ofϕ j(S1), j = 1, . . . ,K
with j , i if C = bD2 for ϕi. But theϕ j extend toϕ j = D2 → M′

with ϕ jϕ j(D)2 ∩ N′ consisting of one less component curve than the
original intersection. After a finite number of such steps, one reaches
a 0-neighbourhoodM, bM = N, such thatπ1N → π1W is an isomor-
phism. By Lemma 2.8, (M,N) is then a 1-neighbourhood.

3 The Existence of Arbitrary small k. Neighbour-
hoods of “∞” and “ −∞” for 2 ≤ k ≤ n− 2

Definition 3.1. Let k be an integer≥ 2. A k-neighbourhood of∞ (re-
spy−∞) in W is a 1-neighbourhood M of∞ (respy−∞) satisfying the
following additional condition:

Denoting the universal covering of M bỹM with p : M̃ → M the91

projection, letÑ = p−1(N) where N= bM. The condition to be satisfied
is : Hi(M̃, Ñ) = 0 for i ≤ k.

Remark. Sinceπ1(N) → π1(M) induced by the inclusion is an isomor-
phism it follows thatp : Ñ→ N is the universal covering ofN.

Proposition 3.2. There exist arbitrary small k-neighbourhoods of∞
(respy ‘−∞’) for any integer k such that2 ≤ k ≤ n− 2.
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We prove this proposition fork = 2 first and then proceed by induc-
tion on k. It will be clear from the proof why we are forced to give a
proof for k = 2 separately.

Lemma 3.3. If M is a 0 (respy 1) neighbourhood of ‘∞’ then M◦ =
W− M is a 0 (respy 1) neighbourhood of ‘−∞’.

Proof. Clearly the boundary ofM◦ is the same as that ofM. Thus
bM◦ = bM = N is compact and connected. Ifm1 < m2 are integers
such thatF−1[m1,∞) ⊃ M ⊃ F−1[m2,∞) then clearlyF−1(−∞,m1] ⊂
M◦ ⊂ F−1(−∞,m2]. Let a, b be any two points inM◦. We will show that
there is an arc inM◦ joining a andb. SinceW is arcwise connected∃
an arcσ in W with σ(o) = a andσ(1) = b. If the arcσ lies in M◦ there
is nothing to prove. If not∃ real numberst◦ andt1 such thatτ(t) ∈ M◦
∀ t ≤ t◦ andσ(s) ∈ M◦ ∀ s ≥ t1 andσ(t◦) ∈ N, σ(t1) ∈ N. Choosing
an arc inN joining σ(t◦) andσ(t1) we see thata andb can be joined
by means of an arc inM◦. Thus M◦ is a 0-neighbourhood of ‘−∞’. 92

If M is a 1-neighbourhood of∞ thenπ1(bM) = π1(bM◦) = π1(N) →
π1(W) is an isomorphism and from Lemma 2.8 it follows thatM◦ is a
1-neighbourhood. �

Lemma 3.4. If M is a 1-neighbourhood of∞ in W, then Hj(M̃) is a
finitely generatedZ(J)-module.

For this we shall use assumption thatZ(π) is a noetherian ring. By
an example of J. Stallings the above lemma is definitely falsewithout
this hypothesis. However, we really only need that if(M,N) is a (k− 1)-
neighbourhood, then Hk(M̃, Ñ) is finitely generated. In the general case
(Z(π) not necessarily noetherian) one proved that(M,N) is dominated
by a finite complex pair. It is then an exercise to deduce from this the
finite generation of Hk(M̃, Ñ).

Proof. Let N = bM and M◦ = W− M. By lemma 3.3,M◦ is a 1-
neighbourhood of “−∞”. If W is the universal covering ofW with
p : W̃ → W the projection thereM̃ = p−1(M). M̃◦ = p−1(M◦) and
Ñ = p−1

= p−1(M ∩ M◦) = M̃ ∩ M̃◦ are respectively the univer-
sal covering ofM, M◦ and N. This is so becauseπ1(N) → π1(W),
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π1(M) → π1(W) andπ1(M◦) → π1(W) induced by the respective inclu-
sions are isomorphisms. From the Mayer-Vietoris sequence

H j(Ñ)→ H j(M̃◦) ⊕ H j(M̃)→ H j(W̃)

which is sequence ofZπ-modules it will follow thatH j(M̃) is finitely
generated overZ(π) if we show thatH2(Ñ) andH2(W̃) are finitely gen-
erated overZ(π). SinceN is smooth and compact, choosing a triangula-93

tion of N we see that the chain groups ofÑ with the lifted triangulation
are finitely generated overZπ. From the fact thatZπ is noetherian again
it follows that all the homology groups of̃N are finitely generatedZπ-
modules. AlsoW is of the homotopy type of the finite polyhedronX
and the same argument as above yields that all the homology groups of
W are finitely generatedZπ-modules. �

Lemma 3.5. There exist arbitrary small 2- neighbourhoods of “∞”.

Proof. Let M′ with bM′ = N′ be a 1-neighbourhood of∞ with M′ ⊂
W − K. By Lemma 3.4,H2(M′) is finitely generated overZ(π). Let
α1, . . . , αr be a system of generators overZ(π) for H2(M̃′) = π2(M̃′) ∼
π2(M′). Choosing a small contractible open set in IntM′ as the base
point represent the elementsαi by C∞ imbeddingsϕi: S2 → Int M′,
with disjoint images and the base point ofS2 going into the chosen
contractible open set. For this to be possible we need that dim M′ ≥ 5
but by assumption dimM′ = n + 1 ≥ 6. Let M be formed fromM′ as
explained below: Choose closed tubular neighbourhoodsTi of ϕi(S2) in
Int M′ with Ti ∩ T j = φ wheneveri , j. ChooseC∞ pathsσi from N′

to bTi (the boundary ofTi) meetingN′ andbTi transversally and at the
end points only. These paths can be chosen to be mutually disjoint, and
tubular neighbourhoodsΓi of σi can be chosen to be mutually disjoint.

Let M = M′−
r⋃

i=1
Int ∪Ti Int Γi. Then clearlyM is a 0-neighbourhood of94

∞. We claim thatM is a 2-neighbourhood of∞. First of all, if N = bM
it is clear thatN = N′#bT1# · · · #bTr (connected sum). AlsobT1 is an
(n−2) sphere bundle overS2 with n ≥ 5 and henceπ1(bTi ) = 1. By Van
Kampen we see thatπ1(N) ≃ π1(N′), under an isomorphism making the
following diagram commutative: �
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π1(N) ≃ //

j∗

��

π1(N′)

j′∗

��
π1(M)

µ∗ //

i∗

��?
??

??
??

??
??

??
π1(M)

i′∗
����

��
��

��
��

��
�

π1(W)

Diagram 6

Here the homomorphisms indicated byi∗, j∗, i′∗, j′∗ andµ∗ are all
induced by inclusions and the isomorphismπ1(N)→ π1(N′) is got from
Van Kampen’s theorem. It follows thati∗o j∗ is an isomorphism sincei′∗
and j′∗ are. Lemma 2.8 now implies thatM is a 1-neighbourhood of∞.

Assertion: π2(N)
j∗−→ π2(M) is an epimorphism.

To prove this it suffices to show thatπ2(N)
µ∗◦ j∗−−−−→ π2(M′) is an epi-

morphism and thatµ∗: π2 → π2(M′) is an isomorphism. Letνi ∈ π1 95

(S o(n−1)) be the element corresponding to the normal bundle ofϕ1(S2)
in Int M′. As S∗ : π1 (S o(n − 2)) → π1 (S O(n − 1)) is an isomor-
phism for n ≥ 5 we see thatγi can be written asγi + O1 is a trivial
line bundle. Hence there exists a non zero cross-section forthe associ-
ated sphere bundle. Using this cross-section we see that∃ an element in
π2(bTi) which represents the elementαi ∈ π2(M′) under the inclusion

bTi → M′. It now follows thatπ2(N)
µ∗◦ j∗−−−−→ π2(M′) is an epimorhism.

This in particular gives:π2(M)
µ∗−−→ π2(M′) is an epimorphism.

To complete the proof of the assertion we only to show thatµ∗ is a
monomorphism. Letx ∈ π2(M) be such thatµ∗(x) = 0 and letθ : S2→
M be aC∞ imbedding representingx. The fact thatµ∗(x) = 0 implies
that∃ a C∞ mapϕ : D3 → M′ extendingθ. We can getϕ so as to be
transverse regular on∪ϕi(S2) (sinceθ(S2) ∩ ϕi(S2) = φ). The condi-
tion n+ 1 ≥ 6(n + 1 = dim M′) implies thatϕ(D3) is then disjoint from
∪ϕi(S2). By a further deformation we can makeϕ(D3) go into M.
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Now, π2(N)
j∗−→ π2(M) being an epimorphism we haveπ2(Ñ)

j∗−→
π2(M̃) also an epimorphism and henceπ2(M̃, Ñ) = 0. The simply con-
nectedness of̃M andÑ now yields by the Relative Hurewicz Theorem
H2(M̃, Ñ) = π2(M̃, Ñ) = 0. This completes the proof thatM is a 2-
neighbourhood.

We now proceed to the proof of proposition 3.2 for an arbitrary k96

satisfying 3≤ k ≤ n − 2. Assume by induction that arbitrary small
(k − 1) neighbourhoods of∞ exist.

Lemma 3.6. Suppose M is any(k − 1)-neighbourhood of∞. Let N =
bM. Then

(1) Hk(M̃Ñ) is a finitely generatedZ(π)-module.

(2) ∃ another(k − 1)-neighbourhood M1 of∞ with M1 ⊂ M satisfying
the following additional condition:

The homomorphism Hk(Ũ, Ñ)→ Hk(M̃.Ñ) induced by the inclusion
(Ũ, Ñ) ⊂ (M̃, Ñ) is an epimorphism, where U= M − M1 andŨ is the
inverse image of U by the covering map p:M̃ → M.

Proof of (1). By Lemma 3.4 we haveH j(M̃) finitely generated overZ(π)
for every j. Also sinceN is compactH j(Ñ) is finitely generated over
Z(π). The exactness ofHk(M̃) → Hk(M̃, Ñ) → Hk−1(Ñ) together with
Noetherian nature ofZ(π) now yield the finite generation ofHk(M̃, Ñ)
overZ(π).

Proof of (2). Let C1, . . . ,Cλ be a finite set of generators forHk(M̃, Ñ).
There exists a compact setK̃1 in M̃ such that∃ integral singular cycles
representingC1, . . . ,Cλ with their supports contained iñK1. Let K1 =

p(K̃1). By the inductive assumption regarding existence of arbitrary
small (k−1)-neighbourhoods of∞ we can find a (k−1)-neighbourhood
M1 of ∞ with M1 ⊂ W − K1 andM1 ⊂ M. Then clearlyU = M − M1

satisfies the conditionU ⊃ K1 and thus the chosen cycles representing
C1, . . . ,Cλ are cycles of (̃U, Ñ). HenceHk(Ũ, Ñ)→ Hk(M̃, Ñ) is onto.97

Remark A. For the pair(Ũ , Ñ) we have Hi(Ũ , Ñ) = 0 for i < k− 1.
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Proof. Let N1 = bM1. We haveHi(M̃, Ũ) ←→
≃

Hi(M̃i , Ñi) by excision.

Now from the homology exact sequence of the triple (M,U,N) written
below:

. . . // Hi+1(M̃, Ũ) // Hi (Ũ, Ñ) // Hi (M̃, Ñ) // Hi(M̃, Ũ) // . . .

Hi+1(M1,N1)

≈ excision

OO

Hi (M̃1, Ñ1)

≈ excision

OO

and the fact thatMi is a (k − 1)-neighbourhood of∞ we see thatHi(Ũ,
Ñ)→ Hi(M̃, Ñ) for i < k− 1. SinceM itself is a (k− 1)-neighbourhood
we haveHi(Ũ, Ñ) = 0 for i < k− 1. �

Remark B. The homomorphismsπ1(N)→ π1(U) andπ1(N1)→ π1(U)
induced by the inclusions are isomorphisms.

The proof of this is similar to the proof of Lemma 2.8 and henceis
omitted.

For completing the proof the proposition 3.2 we need the following
two propositions which we state without proof.

Proposition 3.7. Suppose U is a compact orientable C∞ manifold of
dimension n+1 with n≥ 5 and suppose bU= N∪N1 a disjoint union of
two open and closed, connected submanifolds of bU. If the homomor-
phismsπ1(N) → π1(U) andπ1(N1) → π1(U) induced by the inclusions
are isomorphisms and if Hi(Ũ, Ñ) = 0 for i ≤ k − 2 < n− 2 then(U,N) 98

has a handle decomposition with handles of type k− 1, k, . . . , n− 1.

In other words U has a presentation of the form

U = I × N + ϕk−1
1 + · · · + ϕk−1

αk−1
+ ϕk

1 + ϕ
k
αk
+ · · · + χn−1

1 + · · · + χn−1
αn−1

.

The proof is essentially given in [5], Lemma 1.

Proposition 3.8. Let X and Y be closed C∞ submanifolds of a C∞ man-
ifold N, wheredim X+dimY = dim N > 4, and2 < dimY ≤ dimN−2.
Suppose thatπ1(N − Y) → π1N induced by the inclusion is an isomor-
phism. (This is a restriction only ifdimY = dim N − 2). Suppose that X
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and Y can be lifted to closed submanifoldsX̃ andỸ of Ñ, the universal
covering of N, and that

X̃i .τỸj = 0

(where denotes the homology intersection number) for allτ ∈ π and all
connected components̃Xi , Ỹj of X̃ andỸ. Then X is isotopic in N to a
submanifold X1 such that X1 ∩ Y = φ, or equivalently Y is isotopic in N
to a submanifold Y1 such that X∩ Y1 = φ.

This proposition is essentially due to Whitney.
As remarked already proposition 3.2 is proved by induction on k

for k in the range 3≤ k ≤ n − 2. Assume arbitrary small (k − 1)-
neighbourhoods of∞ exist. LetK be any compact subset ofW and let
M be any (k − 1)-neighbourhood of∞ with M ⊂ W − K. By Lemma
3.6∃ a (k − 1)-neighbourhood of∞ sayM1 with M1 ⊂ M such that the99

homomorphismHk(Ũ, Ñ) → Hk(M̃, Ñ) induced by inclusion is onto,
whereU = M − M1 andbM = N, bM1 = N1. From Remark A fol-
lowing Lemma 3.6 we haveHi(Ũ, Ñ) = 0 for i < k − 1 and by Remark
B the homomorphismsπ1(N) → π1(U), π1(N1) → π1(U) induced by
the respective inclusions are isomorphisms. Hence by proposition 3.7
we have a handle decomposition for (U,N) with handles of typek − 1,
k, . . . , n− 1. LetU◦ be the union ofI × N together with handles of type
k − 1 (Refer to diagram 7) andN◦ the right hand boundary ofU◦. Let
U1 = U − U◦.

handles

of 

types
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Convention: In future when we are in a situation of the formA ⊂ B
or (A,A′) ⊂ (B, B′) with A, A′, B, B′ topological spaces by the homo-
morphismπ1(A) → π1(B) or H j(A) → H j(B) or H j(A,A′) → H j(B, B′)
we mean the one induced by the inclusion. Whenk > 3 we see from 100

Van Kampen theorem thatπ1(N) → π1(U◦) is an isomorphism. When
k = 3 we first observe that the 2-handlesϕ2

i are attached by means of
trivial maps to 1× N. In factϕ2

1(S1 × 0) bounds a disk inW and asM
is a 1-neighbourhood we haveπ1(N) → π1(W) an isomorphism. Now
an application of Van Kampen immediately yieldsπ1(N) → π1(U◦) is
an isomorphism. Using the ‘dual’ handle decomposition forU◦ and the
fact thatk ≤ n − 2 we see thatπ1(N◦) → π1(U◦) is an isomorphism,
again by applying Van Kampen. To getU1 we attach handles of type
k, . . . , n − 1 to U◦. It follows that wheneverk ≥ 3 the homomorphism
π1(N◦) → π1(U1) is actually an isomorphism. Now choose anyα in
Hk(M̃, Ñ). By our choice ofM1 we haveHk(Ũ, Ñ)→ Hk(M̃, Ñ) epimor-
phism. Choose anyβ ∈ Hk(Ũ , Ñ) getting mapped ontoα. By excision
Hk(Ũ, Ũ◦) ≃ Hk(Ũ1, Ñ◦) the isomorphism being aZ(π)-isomorphism
since the maps induced by the various inclusions, namelyN → U◦;
N◦ → U◦ andN◦ → U1 are isomorphisms onπ1. Let γ be the image of
β under the composition of the maps

Hk(Ũ, Ñ)
( inc ln)∗−−−−−−→ Hk(Ũ, Ũ◦)

≃←−−−−−−
excision

Hk(Ũ1, Ñ◦).

Since (U1,N◦) has a handle decomposition with handles of typek, . . . ,
n − 1 we thatHi(Ũ1Ñ◦) = 0 for i ≤ k − 1 and by Relative Hurewicz
theoremπk(Ũ1, Ñ◦) ≃ Hk(Ũ1, Ñ◦). But πk(Ũ1, Ñ◦) ≃ πk(U1,N◦). Thus
πk(U1,N◦) ≃ Hk(Ũ1, Ñ◦).

Claim: The elementγ can be represented by aC∞ imbeddingϕ : 101

(Dk,Sk−1)→ (U1,N◦).
Now, γ is homologous to

∑
aiDk

i with ai ∈ Z(π) andDk
i the k-cell

of the i-th hankle of typek. Dk
i is a differentiably imbeddedk-cell in U1

with boundarySk−1
i in N◦. Let ai =

∑

σ∈π
aσi σ with a(σ)

i ∈ Z anda(σ)
i = 0

for almost allσ. We can assume that all theSk−1
i Dn−k+1 intersect a

contractible open set inN◦ which can be chosen as the “base point” for
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homotopy considerations. Letℓi =
∑

σ
|aσi |. Let us takeℓi distinct points

x1, . . . , xℓi in Dn−k+1
i . Form connected sum ofDk

i × x1, . . . ,Dk
i × xℓi along

paths inN◦ representing theσ′s for which a(σ)
i , 0. This operation

will give a C∞ imbeddingθi: (Dk,Sk−1) → (U1,N◦) representingaiDk
i .

Forming connected sum of the variousθi(Dk) along trivial arcs inN◦
gives aC∞ imbeddingϕ : (Dk,Sk−1)→ (U1,N◦) representingγ.

Let (Dk,Sn−k+1
j ) be the boundaries of the right hand disksDn−k+2

j
corresponding to he handles of type (k − 1).

Claim: Let ϕ̃(Sk−1) andS̃n−k+1
j be arbitrary lifts ofϕ(Sk−1) andSn−k+1

j

to N◦. Then for anyτ ∈ π the homology intersection ˜ϕ(Sk−1). τS̃n−k+1
j

in Ñ◦ is zero.
Actually ϕ̃(Sk−1) ˙̃

◦N
τSn−k+1

j is the sameβ.τ{S̃n−k+1
j , this later inter-102

section being the one associated to the pairHk(Ũ, Ñ) and Hn−k+1(Ũ).
But

{

S̃n−k+1
j

}

= 0 in Hn−k+1(Ũ) sinceS̃n−k+1
j bounds a disk inŨ.

We now want to apply proposition 3.8 toϕ(Sk−1) = X and Y =
USn−k+1

j which are submanifolds ofN◦. To be able to apply proposition
3.8 we need to haven− k+ 1 ≤ n− 2 andπ1(N◦ − Y)→ π1(N◦) an iso-
morphism. The conditionn−k+1 ≤ n−2 givesk ≥ 3. This is precisely
the reason why we had to prove the existence of 2-neighbourhoods sepa-
rately. We have already seen thatπ1(N)→ π1(U◦) andπ1(N◦)→ π1(U◦)
are isomorphisms. Sinceπ1(N◦)→ π1(W) is an isomorphism, it follows
thatπ1(U◦) → π1(W)is an isomorphism and henceπ1(N◦) → π1(W) an
isomorphism. Letϕ j(Dk−1 × Dn−k+2) denote the handles of typek − 1.
Then the inclusionN◦−Uϕ j(Bk−1×Sn−k+1)→ N◦−USn−k+1

j is a homo-

topy equivalence, andN−Uϕ j(Sk−2×Bn−k+2) = N◦−Uϕ j(Bk−1×Sn−k+1).
Consider the following commutative diagram:

π1(N − Uϕ j(Sk−2 × Bn−k+2)) //

||

π1(N)

&&LLLLLLLLLLL

π1(W)

π1(N − Uϕ j(Bk−1 × Sn−k+1)) // π1(N◦ − Y) // π1(N◦)

OO
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Diagram 8

The map 103

π1(N − U jϕ j(S
k−2 × Bn−k+2))→ π1N

is an isomorphism because it factors throughπ1(N − U j ϕ j(Sk−2 ×
Bn−k+2)) → π1(N − U jϕ j(Sk−2 × 0)) → π1N, where the first map is
induced by a homotopy equivalence, and the second is also an isomor-
phism since codimSk−2

= n− k+ 2 ≥ 3.
Thus proposition 3.8 can be applied and it yields the following con-

clusion. The imbeddingϕ can be so chosen thatϕ(Sk−1) ∩ Y = φ.
It now follows from Morse theory thatϕ(Sk−1) is diffeotopic inU◦ to
an imbeddingϕ′ : Sk−1 → N. Actually one gets aC∞ imbedding
Φ: Sk−1 × I → U◦ extendingϕ i.e Φ|Sk−1 × 0 = ϕ and satisfying
Φ(Sk−1 × I ) ⊂ N. Taking the diffeotopy together with the imbedding
ϕ: (Dk,Sk−1)→ (U1,N◦) we get an imbeddingϕ: (Dk,Sk−1) → (U,N).
(See diagram 9).

The homology class inHk(Ũ, Ñ) represented byϕ clearly gets ma-
pped into the homology classγ represented byϕ in Hk(Ũ1, Ñ◦) under

the compositionHk(Ũ, Ñ) → Hk(Ũ, Ũ◦)
excision←−−−−−−
≃

Hk(Ũ1, Ñ◦). From the

exact sequence of the triplẽU, Ũ◦, Ñ we have

Hk(Ũ◦, Ñ)→ Hk(Ũ, Ñ)→ Hk(Ũ, Ũ◦) exact.
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But Hk(Ũ◦, Ñ) = 0 since the handle decomposition of (U◦,N) we have, 104

consists only of handles of type (k− 1). ThusHk(Ũ , Ñ)→ Hk(Ũ, Ũ◦) is
a monomorphism and henceβ is the only element ofHk(Ũ, Ñ) getting
mapped intoγ. It follows that the class inHk(Ũ, Ñ) represented byϕ:
(Dk,Sk−1)→ (U,N) is β.

Let A be the union of a tubular neighbourhood ofϕ(Dk) in M to-
gether with a tubular neighbourhood ofN in M. DefineM′ to beM − A.
Let N′ = bM′.
Claim: M′ is a (k − 1)-neighbourhood of∞ with Hk(M̃′, Ñ′) ≃ Hk(M̃,

Ñ)/(α) as a Z(π)-module. Here (α) denotes theZ(π)-submodule of
Hk(M̃, Ñ) generated byα.

Clearly M′ is a 0-neighbourhood of∞ and from Van Kampen’s the-
orem we see that fork satisfying 3≤ k ≤ n − 2 π1(N′) → π1(N) and
π1(M′) ≃ π1(M) where the latter isomorphism is induced by the inclu-
sion. Also the isomorphismπ1(N′)→ π1(N) makes the diagram

π1(N′) ≃ //

(incln)∗

��

π1(N)

(incln)∗≈

��
π1(M′) ≈

(incln)∗
// π1(M)

commutative and henceπ1(N′)→ π1(M′) is an isomorphism. It follows
tht M′ is a 1-neighbourhood of∞ . From the homology sequence of the
triple (M̃, Ã, Ñ) whereÃ = p−1(A) with p : M̃ → M the covering map,105

we have the following diagram with the horizontal row exact.

Hi+1(M̃, Ã) // Hi(Ã, Ñ) // Hi(M̃, Ñ) // Hi(M̃, Ã) //

Hi+1(M̃′, Ñ′)

≈ excision

OO

Hi(M̃′, Ñ′)

excison≈

OO

Diagram 10
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Now, Hi(Ã, Ñ) = 0 for i , k and Hk(Ã, Ñ) = Z(π) and the map
Hi(Ã, Ñ) → Hi(M̃, Ñ) carries 1 ofZ(π) into α. It follows that Hi(M̃′,
Ñ′) = 0 for i ≤ k− 1 and thatHk(M̃′, Ñ′) ≃ Hk(M̃, Ñ)/(α).

By Lemma 3.6 we haveHk(M̃, Ñ) finitely generated overZ(π).
Choose a finite system of generatorsα1, . . . , αr and apply the above
procedure toα = α1. Then we get a (k − 1)- neighbourhoodM′ such
that Hk(M̃′, Ñ′) is generated by the images ofα2, . . . , αr under the iso-
morphismH2(M̃′, Ñ′) ≃ H2(M,N)/(α1). By interating this procedure a
finite number of times we finally arrive at ak-neighbourhoodM′′ of ∞.
ClearlyM′′ ⊂ M ⊂ W−K. This completes the proof of Proposition 3.2.

4 The existence of arbitrary small (n − 1)- neigh-
bourhoods of “∞”

So far we have not used the hypothesisK̃◦(Z(π)) = 0 any where. It is in
the construction of arbitrary small (n− 1)-neighbourhoods of∞ that we
use this hypothesis.

Lemma 4.1. Let M be any(n−2)-neighbourhood of∞ and let N= bM. 106

Then the homology. H∗(M̃, Ñ) is the homology of aZ(π)-chain complex
of the form

0→ C̃n−1
d−→ C̃n−2→ 0

whereC̃n−1 andC̃n−2 are free but not necessarily finitely generatedZ(π)-
modules.

Proof. Pick a sequence of (n− 2)-neighbourhoods

M = M◦ ⊃ M1 ⊃ ..Mr ⊃ Mr+1 . . . .

such that
⋃

r≥1
Ur = M whereUr = Mr−1 − Mr . �

We know that∃ Morse functionsλr : Ur → [r − 1, r] with critical
points of index (n−2) and (n−1) only, having the components ofbUr for
level manifoldsλ−1

r (r − 1) andλ−1
r (r) of λr . ThusU1 is homotopically

equivalent to a space of the formN U
{ fi }

en−2
i
i∈I1

U
{gj }

en−1
j

j∈J1

means of attaching a
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finite number of (n − 2) cells and then a finite number of (n − 1) cells,
under a homotopy equivalence which is the identity onN. Choose a
triangulationL of N. By the cellular approximation theorem to each
of the characteristic mapsfi corresponds a homotopic cellular mapf ′i :
Sn−3 → Ln−3 ⊂ L. Thus N U

{ fi }i∈I1

en−2
i is homotopy equivalent to the

CW-complexF = N U
{ f ′i }

en−2
i
i∈I1

under an equivalenceθ which is identity

on N. Replacing the mapsθ ◦ g j by cellular mapsg′j : Sn−2 → F we107

get aCW-complexK1 = F U
{g′j } j∈ j1

en−1
j and a homotopy equivalenceh1 :

U1 → K1 which is identity onN. Also K1 containsL as a subcomplex.
Using the Morse functionλ2 we see thatU1 ∪ U2 is of the homotopy
type of a space of the formU1U

{ fi }i∈I2

en−2
i U
{gj } j∈I2

en−1
j under an equivalence

which is identity onU1. Taking cellular approximationsf ′i to h1 ◦ fi
and attachingn − 2 cells by means off ′i to K1 we get aCW-complex

F2 and a homotopy equivalenceU1U
{ fi }i∈I2

en−2
i

θ2−→ F2 = K1U
{ fi }i∈I2

en−2
i

extendingh1. Taking cellular approximationsg′j to θ2 ◦ g j and attaching
(n − 1) cells toF2 by means of the mapsg′j we get aCW-complexK2

containingK1 as a subcomplex and a homotopy equivalenceh2: U1 ∪
U2 → K2 extendingh1. Proceeding thus we construct a sequence of
CW-complexesL ⊂ K1 ⊂ K2 ⊂ K3 . . . and homotopy equivalences
hr
1

: U
j
U j
r
→ Kr such thathr is an extension ofhr−1 andh1 = Id on

N = L. LetK = U
r

Kr
1

provided with the “union topology” i.e. to say a set

in K is closed if and only if its intersection with eachKr is closed inKr .
Thenh: M → K defined byh|U1 . . .Ur = hr is seen to be a homotopy
equivalence, because fo J.H.C. Whitchead’s theorem. In fact it is easy to108

see thath induces isomorphisms of homotopy groups and Whitehead’s
theorem asserts that a map ofCW-complexes inducing isomorphisms of
homotopy groups is a homotopy equivalence. Since the cells of K that
are not inL are either of dimensionn−2 or of dimensionn−1, we have
proved Lemma 4.1.

Corollary 4.2. Hn−1(M̃, Ñ) is a finitely generated projectiveZ(π) - mod-
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ule.

The proof for the finite generation ofHn−1(M̃, Ñ) overZ(π) is the
same as that of (1) of Lemma 3.6. SinceHn−1(M̃, Ñ) = 0 for i ≤ n−2 we
see thatd : C̃n−1→ C̃n−2 has to be onto. The free nature ofCn−2 implies
C̃n−1 Kerd⊕ C̃n−2. Now Hn−1(M̃, Ñ) ≃ Kerd is a direct summand of the
free moduleC̃n−1 hence projective.

For any integere ≥ 0 let
∑

e
Z(π) denote the direct sum ofe copies

of Z(π). SinceK̃◦(Z(π)) = 0 it follows that∃ an integere ≥ 0 such that
Hn−1(M̃, Ñ) ⊕

∑

e
Z(π) is a freeZ-module of finite rank. Let the rank of

Hn−1(M̃, Ñ) +
∑

e
Z(π) ber.

Lemma 4.3. Given any compact set K of W∃ an (n−2) neighbourhood
M of∞ with M ⊂W−K such that Hn−1(M̃, Ñ) is a freeZ(π)-module of
finite rank, where N= bM.

Proof. Choose any (n− 2)-neighbourhoodM′ of ∞ with M′ ⊂ W− K,
and letN′ = bM′. �

By corollary 4.2, Hn−1(M′,N′) is a finitely generated projective
Z(π)- module and hence∃ an integere ≥ 0 such thatHn−1(M̃′, Ñ′) +
∑

e
Z(π) is free overZ(π) of finite rank sayr. We can find an (n − 2)- 109

neighbourhoodM′′ of ∞ with M′′ ⊂ M′ andHn−1(Ũ, Ñ′) → Hn−1(M̃′,
Ñ′) onto, whereU = M′ − M′′(see 2, Lemma 3.6). By Proposition
3.7, (U,N′) has a handle decomposition consisting of handles of type
(n − 2) and (n − 1) only. Without even changingM′ we can introduce
e pairs of mutually cancelling handles of type (n − 2) and (n − 1). Let
M be formed by removing fromM′ the union of the interiors of tubular
neighbourhoods of thee newly introduced handles of typen − 2 and a
tubular neighbourhood ofN′, and letN = bM.

Claim: M is an (n− 2)-neighbourhood of∞ such thatHn−1(M̃, Ñ) is a
freeZ(π)-module of rankr.

Let A be the union of the closures of the tubular neighbourhoods
removed and letÃ = p−1(A). Using Van Kampen and the fact that
n− 2 ≥ 3 we see thatM is a 1-neighbourhood of∞. Also Hi(Ã, Ñ′) = 0
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for i , n − 2 andHn−2(Ã, Ñ′) =
∑

e
Z(π). From the homology exact

sequence of the triple (̃M′, Ã, Ñ′),

H j(Ã, Ñ′) // H j(M̃′, Ñ′) // H j(M̃′, Ã) // H j−1(Ã, Ñ′) // . . .

H j(M̃, Ñ)

a excision

OO

we see thatHi(M̃, Ñ) = 0 for i ≤ n − 2 and thatHn−1(M̃, Ñ) = Hn−1 +
∑

e
Z(π). But by the choice ofe, this is a freeZ(π)-module of rankr. This110

completes the proof of Lemma 4.3.

Remark 4.4. If M is any (n − 2)-neighbourhood of∞ and if M1 is an-
other (n − 2)-neighbourhood of∞ with M1 ⊂ M and Hn−1(Ũ , Ñ) →
Hn−1(M̃, Ñ) onto, (where U=M − M1) thenHn−1(Ũ, Ñ) → Hn−1(M̃, Ñ)
andHn−1(M̃1, Ñ1) = Hn−2(Ũ, Ñ).

Proof. In the homology exact sequence of the triple (M̃, Ũ, Ñ) we have
Hn(M̃1, Ñ1) = 0 by Lemma 4.1. By assumptionHn−1(Ũ, Ñ)→ Hn−1(M̃, Ñ)
is an epimorphism. It is now immediate thatHn−1(Ũ, Ñ) ≃ Hn−1(M̃, Ñ)
and thatHn−1(M̃1, Ñ1) ≃ Hn−2(Ũ, Ñ).

Let M be an (n − 2)-neighbourhood of∞ with Hn−1(M̃, Ñ) a free
Z(π)-module of finite rank (sayr). We can find a translateM1 of M by a
Deck transformation such thatM1 : M andHn−1(Ũ, Ñ) → Hn−1(M̃, Ñ)
onto, whereU = M − M1. We have to only choose the translateM1

so as not to intersect the compact set got as the projection byp of the
union of supports of singular cycles (integral) representing a basis for
Hn−1(M̃, Ñ) over Z(π) (See 2 of Lemma 3.6). Corresponding to any
handle decomposition of (U,N) with only handles of type (n − 2) and

n− 1 we get a chain complex 0→ C̃n−1
d→ C̃n−2→ 0 whose homology

will precisely beH∗(ŨÑ).
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Hn(M̃, Ũ)
∂ // Hn−1(Ũ, Ñ) // Hn−1(M̃, Ñ) // Hn−1(M̃, Ũ) // Hn−2(Ũ, Ñ) // 0

Hn(M̃1, Ñ1)

a excision

OO

Hn−1(M̃1, Ñ1)

aexcision

OO



82 II. Siebenmann’s Theorem

�

For the modulesC̃n−1, C̃n−2 the cells corresponding to handles of111

type (n− 1) and (n− 2) respectively form a basis overZ(π).

Proposition 4.5. There exists a handle decomposition for(U,N) with
2m handles of type(n − 2) and2m handles of type(n − 1) (where m is

a certain integer≥ r) such that the boundary operator Cn−1
d−→ Cn−2

with reference to the basis given by the handles has a matrix of the form
(

X 0
0 S−1T

)

, where S and T are m×m invertible matrices overZ(π) and X

is the m×m matrix
(

0 0
0 Im−r

)

.

Proof. By remark 4.4 we haveHn−1(Ũ, Ñ) ≃ Hn−1(M̃, Ñ) andHn−2(Ũ,
Ñ) ≃ Hn−1(M̃1, Ñ1). SinceM1 is a translate ofM we haveHn−1(M̃, Ñ) ≃
Hn−1(M̃1, Ñ1) and by our choice ofM, Hn−1(M̃, Ñ) is a freeZ(π)-module
of rankr. The pair (U,N) has a handle decomposition with only handles

of typen− 2 andn− 1. Choose one such and let 0→ B̃n−1
d−→ B̃n−2 →

0 be the complex corresponding to the chosen handle decomposition,
giving the homology of the pair (̃U, Ñ). Here B̃n−1 and B̃n−2 are free
Z(π)-modules of finite rank. Since the homology of the complexB is
the same asH∗(Ũ, Ñ) we get the following exact sequence.

0→ Imd→ B̃n−2→ Hn−2(Ũ, Ñ)
≃−→
r
Z(π)→ 0.

It follows that Imd is finitely generated andZ(π)-projective. Adding a
finite number of pairs of mutually cancelling handles if necessary we
can assume thatimd is a freeZ(π)-module. (Here we use the fact that
Imd is stably free sincẽBn−2 is free of finite rank). Also we have the112

exact sequence 0→ Hn−1(Ũ, Ñ) ≃ ∑

r
Z(π) → B̃n−1

d−→ Imd → 0. If

the rank of the freeZ(π)-moduleImd is k then it follows that bothB̃n−1

and B̃n−2 have rankm wherem = k + r and that∃ basesu1, . . .um of
B̃n−1 andv1, . . . vm of B̃n−2 satisfyingdu1 = · · · = dur = 0; dur+1 =

vr+1, . . . , dum = vm. Thus the matrix ofd with reference to the bases
u1, . . .um andv1, . . . , vm of B̃n−1 and B̃n−2 respectively isX =

(
0 0
0 Im−r

)

.

Let en−1
1 , . . . en−1

m and en−2
1 , . . . , en−2

m be the natural bases for̃Bn−1 and
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B̃n−2 given by the handles and let the matrix ofd with reference to this
natural pair of bases beA. Now addmpairs of mutually cancelling han-
dles of typesn− 2 andn− 1. With respect to the handle decomposition
of (U,N) thus obtained the chain modulesC̃n−1 andC̃n−2 are both free
Z(π)-modules of rank 2m and the matrix ofd with reference to the nat-
ural pair of bases constituted by the handles is

(
A 0
0 Im

)

. If en−1
m+1, . . . , e

n−1
2m

anden−2
m+1, . . . , e

n−2
2m are the elements of̃Cn−1 andC̃n−2 respectively, corre-

sponding to the newly attachedm pairs of mutually cancelling handles
then u1, . . . um; en−1

m+1, . . . , e
n−1
2m and v1, . . . vm; en−2

m+1, . . .e
n−2
2m form bases

for C̃n−1 and C̃n−2 with reference to which the matrix ofd is
(

X 0
0 Im

)

.

Now, there exist elementsS, TGL(m,Z(π)) such thatX = S AT−1. The
matrices

(
S 0
0 S−1

)

and
(

T−1 0
0 T

)

are products of elementary matrices in113

GL(2m,Z(π)), and we have
(

S 0
0 S−1

) (

A 0
0 I

) (

T−1 0
0 T

)

=

(

X, 0
0 S−1T

)

Thus to prove proposition 4.5 it suffices to prove the following. �

Lemma 4.6. One can change the matrix
(

A 0
0 I

)

of d by left or right mul-
tiplication by elementary matrices by performing an isotopy of the at-
taching map of the handles.

Proof. Let U = I ×N+ϕn−2
1 + · · ·+ϕn−2

2m +ϕ
n−1
1 + ..+ϕn−1

2m be the handle

decomposition which gives the matrix
(

A 0
0 I

)

for d. For eachi such that

1 ≤ i ≤ 2m let Yi be the right hand boundary ofI ×N+ϕn−2
1 + · · ·+ϕn−2

2m +

all the handles of type (n− 1) except thei th. First we prove the lemma
for left multiplication by elementary matrices. We actually show that
by an isotopy ofϕi into Yi one can changeden−1

i by any
∑

j,i
x jden−1

j with

arbitrary x j ∈ Z(π). For this it suffices to prove the same assertion for
x jden−1

j for a particular j , i and x jǫ ± π. Now ϕ j(Sn−2 × ∗) with ∗
any point onbD2, is isotopic to the trivial imbedding inYi for i , j,
becauseϕ j(Sn−2 × ∗) bounds a cell on the boundary of the handleϕ j.
Perform “connected sum” ofϕi andϕ j along an arc representingx j and
take it as the newϕ′j. For proving the lemma for multiplication on the
right by an elementary matrix we look at the dual handle decomposition. 114
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Let U = I × N1 + ϕ
∗2
1 + · · · + ϕ

∗2
2m + ϕ

∗3
1 + · · · + ϕ

∗3
2m be the dual handle

decomposition. Let 0→ C̃3
d∗−−→ C̃2 → 0 be the chain complex corre-

sponding to this handle decomposition. With respect to the canonical
bases ofC̃3 andC̃2 constituted by the handles of type 3 and 2 respec-
tively, the matrix ofd∗ is the same as±

(
A∗ 0
0 Im

)

whereA∗ = (a∗i j ) with
a∗i j = ā ji . . .. Here (ai j ) is the matrixA and for eacha ∈ Z(π), ā is the ele-
ment which corresponds toa under the map which carries anyx ∈ π into
the dement±x−1. (The sign depending on whetherx preserves (+) or re-
verses (−) an orientation ofŨ ). Choose listings of 3 and 2 cells for the
dual decomposition ˜ε3

1, . . . ε̃
3
2m; ε̃2

1, . . . , ε̃
2
2m so as to satisfy ˜en−2

i .ε̃3
j = δi j ;

ẽn−1
i .ε̃2

j = δi j andẽn−1
i . σε̃2

j = δi jδσ,1 for everyσ ∈ π. Using the formula

ε̃3
k.dẽn−1

i = d∗ε̃3
k.ẽ

n−1
i (up to a sign which depends only onn and not oni

andk) it is easy to see that the matrix ofd∗ with reference to the pair of
bases constituted by ˜ε3

1, . . . , ε̃
3
2m andε̃2

1, . . . , ε̃
2
2m is precisely

(
A∗ 0
0 I

)

(up to
sign). Now, by what we have proved already, this handle decomposition
of (U,N1) can be altered so as to alter the matrix

(
A∗ 0
0 I

)

be left multi-
plication by an elementary matrix. Now, taking the dual of the altered115

handle decomposition we get a handle decomposition for (U,N) which
alters the matrix

(
A 0
0 I

)

be right multiplication by an elementary matrix.
This proves Lemma 4.6. �

We choose a handle decomposition for (U,N) of the type mentioned
in Proposition 4.5. Then the Kernel ofd: C̃n−1→ C̃n−2 is the freeZ(π)-
module of rankr with the elements ˜en−1

1 , . . . , ẽn−1
r corresponding to the

first r handles of type (n− 1).

Assertion. Any one of the elementsẽn−1
i (1 ≤ i ≤ r) can be represented

by a C∞ imbeddingθi : (Dn−1,Sn−2)→ (U,N).
In factden−1

i = 0 implies that any lifting ˜ϕi(Sn−2×∗) of ϕi(Sn−2×∗)
has trivial homology intersection inN◦ with any lifting ϕ̃ j(∗ × S2) of
any of the transverse 2-spheres of the handles of typen − 2. (HereN◦

is the right hand boundary ofI × N +
2m∑

j=1
ϕn−2

j ). Now use Proposition

3.8 with X =
2m∑

j=1
ϕ j(∗ × S2) andY =

2m∑

i=1
ϕi(Sn−2 × ∗). The condition

π(N◦ −Y)→ π1N◦ an isomorphism is satisfied because of the following
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diagram (where as aboveN1 is the right boundary ofU):

π1(N◦ − Y) ≃ //

��

π1(N1 − U2m
i=1ϕ

∗
i (D

n−1 × S1)) ≃ π1N1

≃
��

π1N◦ ≃
// π1W

The “upper” horizontal isomorphisms are obvious. The isomor- 116

phismπ1N1 → π1W follows from the fact that (M1,N1) is a 1-neigh-
bourhood. The “bottom” horizontal map is also an isomorphism be-
causeπ1N◦ → π1U1 is an isomorphism (U1 = I × N◦+ (handles of type
n − 1).) π1U1 → π1U is also an isomorphism sinceU = U1+ (han-
dles of type 3), andπ1U → π1W has been noted to be an isomorphism
before. (Recall Lemma 2.8.) Using proposition 3.8 as beforewe see
that we can findC∞ imbeddingsθi : (Dn−1,Sn−2) → (U,N) represent-
ing ẽn−1

i ∈ Hn−1(Ũ, Ñ). Let B the union of tabular neighbourhoods of
θi(Dn−1) andN in M and letM′ = M − B. By Van Kampen it is easy to
see that∃ an isomorphismπ1(N) → π1(N′) whereN′ = bM′ and that
the inclusionM′ → M induces an isomorphismπ1(M′)→ π1(M). Also
the isomorphismπ1(N)→ π1(N′) makes the diagram.

π1(N) //

≈

��

π1(M)
≃

$$JJJJJJJJJ

≃

��

π1(W)

π1(N′) // π1(M′)

::ttttttttt

commutative. It follows thatM′ is a 1-neighbourhood. Now from the
homology exact sequence of the triplẽM, B̃, Ñ it follows that Hi(M̃′,
Ñ′) = 0 for i ≤ n− 2 andHn−1(M̃′, Ñ′) ≃ Hn−1(M̃, Ñ)/(e1, . . . , er ) = 0.
Thus starting from any (n− 2) neighbourhoodM of∞ with Hn−1(M̃, Ñ)
free of rankr overZ(π) we have constructed a (n − 1) neighbourhood 117

M′ of ∞ with M′ ⊂ M.

Proposition 4.7. There exist arbitrary small(n− 1)-neighbourhoods of
∞.
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5 Completion of the proof of siebenmann’s theorem

Lemma 5.1. Suppose M and M1 are two (n − 1) neighbourhoods of
∞ with M ⊃ M1 and bM1 = φ. Then U= M − M1 is a h-cobordism
between bM and bM1.

Proof. DenotebM andbM1 by N andN1 respectively. Then as already
observedπ1(N)→ π1(U), π1(N1)→ π1(U) are isomorphisms. (Remark
B after Lemma 3.6). SinceM and M1 are (n − 1)-neighbourhoods we
have Hi(M̃, Ñ) = 0 = Hi(M̃1, Ñ1) for all i. In fact by Lemma 4.1,
H∗(M̃, Ñ) or H∗(M̃1, Ñ1) is the homology of a complex of the formC→
B̃n−1→ B̃n−2→ 0. ThusHi(M̃, Ñ) = 0 for i > n and by definition of an
(n− 1)-neighbourhood of∞ we haveHi(M,N) = 0 for i ≤ n− 1. From
the homology exact sequence of the triple (M̃, Ũ, Ñ) we see immediately
thatH j(Ũ, Ñ) = 0 for every j. Thus to prove Lemma 5.1 it only remains
to show thatHi(Ũ, Ñ1) = 0 for every j.
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Hi(Ũ, Ñ) // Hi(M̃, Ñ) // Hi(M̃, Ũ) // Hi−1(Ũ, Ñ) // Hi−1(M̃, Ñ) // . . .

Hi(M̃1, Ñ1)

excision u
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�

For the pair (U,N) we have a handle decomposition with handles of118

typen−2 andn−1 only. If 0→ C̃n−1
d−→ C̃n−2→ 0 is the corresponding

complex given the homology of (̃U, Ñ), from the fact thatHi(Ũ, Ñ) = 0
∀i it follows thatd is an isomorphism. If we use the dual handle decom-
position for (U,N1) the homologyH∗(Ũ, Ñ1) will be the homology of a

complex of the form 0→ C̃3
d∗−−→ C̃2 → 0. If A = (ai j ) is the matrix

of d with respect to the bases constituted by the handles of type (n− 2)
and (n − 1), then as already seen the matrix ofd∗ with respect to the
bases constituted by the handles of type 3 and 2 in the dual decomposi-
tion is A∗ = (a∗i j ) (up to sign) wherea∗i j = a ji . It follows that if d is an

isomorphism so isd∗. HenceH∗(Ũ, Ñ1) = 0.

Proposition 5.2. Let M be any(n− 1)-neighbourhood of∞ in W. Then
M is diffeomorphic to N× [0,∞) where N= bM.

The proof of this proposition uses theS-cobordism theorem of
Barden-Mazur-Stallings [5], [6] or [8]. LetU be ah-cobordism between
two compact, connected orientedC∞ manifoldsVn andV′n of dimen-
sion n ≥ 5. Using the isomorphismsπ1(V) → π1(U) andπ1(V′) →
π1(U) we identify all the three groupsπ1(V), π1(U) andπ1(V′) and ab-
stractly denote any one of them byπ. Let τ(U,V) ∈ Wh(π) denote the
torsion of the pair (U,V). We now state theS-cobordims theorem which
actually consists of two parts.

S-Cobordism Theorem: (1) The inclusion of V in U cab be extended119

into a diffeormorphism of V× I onto U if and only ifτ(U,V) = 0.

(2) Given a compact, connected C∞ manifold Vn of dimension n≥ 5 and
anyτ ∈ Wh(π) whereπ = π1(V), there exists a h-cobordism U between
V and a certain V′ such thatτ(U,V) = τ.

For more information about torsion and the Whitehead groupWh(π)
refer to [1], [5] or [13]. We list below some known propertiesof torsion
that we need for the proof of Proposition 5.2.

The symbolsV, V′, V1, V′1 etc. are used to denote connected, com-
pact,C∞ manifolds. LetU1 be ah-cobrdism betweenV1 andV′1, and
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U2 a h-cobordism betweenV2 andV′2. Let g : V2 → V′1 be a diffeo-
morphism ofV2 ontoV′1. Let U = U1 .

g
U2 be the differential manifold

got from the union ofU1 andU2 by identifying V2 with V′1 by means
of the diffeomorphismg. The groupsπ1(V1), π1(U1) andπ1(V′1) are all
identified as explained already and letπ1 denote any one of them. Letπ2

have a similar meaning with respect toV2,U2 andV′2 (i.e. π2 = π1(V2)
etc.). The diffeomorphismg induces an isomorphismg∗: π2 → π1. If
τ1 = τ(U1,V1) ∈Wh(π1) andτ2 = τ(U2,V2) ∈Wh(π2) thenU = U1ġU2

is ah-cobordism betweenV1 andV′2 satisfyingτ(U,V1) = τ1 + g∗(τ2).
In particular ifU1 is ah-cobordism betweenV andV′ and if U2 is ah-
cobordism betweenV′ and a certainV′′ such thatτ(U′,V′) = −τ(U,V)
thenU1. U2 is diffeomorphic toV× I whenever dimV(= dimV′) ≥ 5. If 120

U is ah-cobordism betweenV andV′ with torsionτ(U,V), we can con-
struct ah-cobordismU−1 from V′ to someV′′ with torsionτ(U−1,V′) =
−τ(U,V). (Use part (2) of theS-cobordism theorem). Then, pasting
U andU−1 alongV′ by the identity mapping, theh-cobordismUU−1

form V to V′′ has torsionτ(U,V) + τ(U−1,V′) = 0. It follows by
part (1) of theS-cobordism theorem thatU ∪ U−1 is diffeomorphic
to V − I and in particular thatV andV′′ are diffeomorphic. The for-
mation of products ofh-cobordisms satisfies the following associativity
rule. Let Ui(i = 1, 2, 3) be ah-cobordism betweenVi andV′i and let
g : V2 → V′1; h : V3 → V′2 be diffeomorphisms. Then∃ a diffeomor-
phismα : (U1 ·

g
U2) ·

h
U3 → U1 ·

g
(U2 ·

h
U3) extending the identity map

of V1. Also if U is ah-cobordism betweenV andV′∃ a diffeomorphism
β: U → U.V′ × I with β|V = IdV andβ(v′) = (v′, 1) ∀ v′ ∈ V′. (This
is a consequence of the fact thatV′ is differentiably collared inU). For
the proof of Proposition 5.2 we need the following Lemma on infinite
products ofh-cobordisms.

Lemma 5.3. For every integer k≥ 1 let Uk be a h-cobordism between
Vk and V′k and let V′k = Vk+1. If dim V1 ≥ 5 then the infinite product
U1.U2.U3. . . . is diffeomorphic to V1 × [0,∞).

Proof. As observed already∃ diffeomorphismsβk: Uk → UK .V′kI with 121
βk|Vk = IdVk andβk(v′) = (v′, 1) ∀ v′ ⊂ V′k. Hence the infinite product
U1.U2.U3. . . .. is also diffeomorphic to the infinite productU1.V′1 × I .



90 II. Siebenmann’s Theorem

U2. V′2 × I . U3. V′3 × I . . . .. For every integerk ≥ 1 the product
U−1

k .U−1
k−1. . . .U

−1
1 . U1. . . .Uk is ah-cobordism with torsion zero. There-

fore∃ a diffeomorphism.θk: V′k × I → U−1
k . . . .U−1

1 . U1. . . .Uk satisfy-
ing θk(v′, 0) = v′ of the left hand boundary ofU−1

k . . . . .U−1
1 . U1 . . .Uk.

The mapv′ → θk(v′, 1) is a diffeomorphismgk of V′k onto the right hand
boundary ofU−1

k . . . .U−1
1 . U1. . . .Uk. Now it is clear that the product

U1. V′1 × I . U2. V′2 × I . U3. V′3 × I . U4. . . . . is diffeomorphic to the
product

U1.(U−1
1 .U1) ·

g1

U2.(U−1
2 .U−1

1 .U1.U2) ·
g2

U3.(U−1
3 .U−1

2 .U−1
1 .U1.U2.U3) ·

g3

U4 . . . .

Also it is clear that the diffeomorphismgk: V′k→ V′k is homotopic to
the identity map ofV′k and hencegk∗: π → π is the identity map. Since
product formation ofh-cobordisms is an associative operation we have

U1.(U
−1
1 .U1) ·

g1
U2.(U

−1
2 .U−1

1 .U1.U2) ·
g2
. . . . diffeomorphic to

U1.U
−1
1 .(U1 ·

g1
U2.U

−1
2 .U−1

1 ).(U1.U2 ·
g2

U3.U
−1
3 .U−1

2 .U−1
1 ). . . . .

Denoting the productsU1. . . .Uk; U1 . . .Uk ·
gk

Uk+1.U−1
k+1 . . .U

−1
1 and122

Uk+1. U−1
k+1. U−1

k . . . .U−1
1 by Ak; Bk andCk respectively we haveτ(Bk,

V1) = τ(Ak,V1) + (gk)∗ (τ(Ck,Vk+1)) = τ(Ak,V1) + τ(Ck,Vk+1) sincegk∗
is the identity map. Butτ(Ak,V1)+τ(Ck,Vk+1) = 0. Hence the inclusion
of V1 into Bk as the left hand boundary extends to a diffeomorphism of
V1 × I ontoB. It follows that the product

(U1.U
−1
1 ).(U1 ·

g1
U2.U

−1
2 .U−1

1 ).U1.U2 ·
g2

U3.U
−1
3 .U−1

2 .U−1
1 . . . .

is diffeomorphic toV1 × [0,∞). This completes the proof of Lemma
5.3. We now take up the proof of Proposition 5.2. LetM be any (n −
1)-neighbourhood of∞ in W. The Deck transformation group of the

coveringW
p
−→ V is the same as that ofR

q
−→ S1. Let α denote the

diffeomorphism ofW which corresponds to translation by+1 of R on
itself, under the isomorphism between the Deck transformation groups.
Choose an integerℓ > 1 such thatN ∩ αℓN = φ(N = bM). Let Mk =
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αkℓM for each integerk ≥ 0 andNk = bMk. We haveM◦ = M, Mk ⊃
Mk+1 andNk ∩ Nk+1 = φ. Let Uk = Mk−1 − Mk for anyk ≥ 1. We then
haveU

k 1
Uk = M. By Lemma 5.1,Uk is ah-cobordism betweenNk−1 and

Nk. By Lemma 5.3 it now follows thatM is diffeomorphic toN× [0,∞).
Actually the inclusion ofN into M extends to a diffeomorphism ofN ×
[0,∞) onto M. �

Theorem 5.4. Let M be any(n− 1)-neighbourhood of∞ in W. Then W
is diffeomorphic to N× R where N= bM.

Proof. For the integerℓ having the same meaning as above we see that123

α−ℓN ∩ N = φ. It follows that for every integerk ≥ 0 if we defineM−k

by M−k = α−kℓM thenN−k ∩ N−k−1 = φ∀k ≥ 0, whereN−k = bM−k.
Also M−k ⊃ M−k−1. Now, if U′k = Mk−1 − Mk for eachk ≥ 1, by
Lemma 5.1,U′k is a h-cobordism betweenN−k and N−k+1. It is clear
that if M′ =W− M, thenM′ is the infinite product of theh-cobordisms
U′−1

k and by arguments used in the proof of Lemma 5.3 we see that
the inclusion map ofN into M′ can be extended into a diffeomorphism
of N × (−∞, 0] onto M′. This, combined with Proposition 5.2 gives
Theorem 5.4. �

This completes the proof of Siebenmann’s Theorem.
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