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Introduction

These lectures are devoted to the proof of two theorems (Theorem 8.1,
the first main theorem and Theorem 9.3). Taken together these theorems
provide evidence for the following conjecture:

Let Y andY′ be complete locally symmetric Riemannian spaces of
non-positive curvature having finite volume and having no direct factors
of dimensions 1 or 2. IfY andY′ are homeomorphic, thenY andY′ are
isometric upto a constant factor (i.e., after changing the metric onY by
a constant).

The proof of the first main theorem is largely algebraic in nature,
relying on a detailed study of the restricted root system of an algebraic
group defined over the fieldR of real numbers. The proof of our second
main theorem is largely analytic in nature, relying on the theory of quasi-
conformal mappings inn-dimensions.

The second main theorem verifies the conjecture above in caseY and
Y′ have constant negative curvature under a rather weak supplementary
hypothesis.

The central idea in our method is to study the induced homeomor-
phismϕ of X, the simply covering space ofY and in particular to inves-
tigate the action ofϕ at infinity. More precisely our method hinges on
the question: Doesϕ induce a smooth mappingϕ◦ of the (unique) com-
pact orbitX◦ in a Frustenberg-Stake compactification of the symmetric
Riemannian spaceX?

There are good reasons to conjecture that not only isϕ◦ smooth, but
thatϕ◦G◦ϕ−1

◦ = G◦ whereG◦ denotes the group of transformations ofX◦
induced byG, provided of course thatX has no one or two dimensional
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factors. The boundary behaviour ofϕ thus merits further investigation.
It is a pleasure to acknowledge my gratitude to Mr. Gopal Prasad

who wrote up this account of my lectures.

G.D. Mostow
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Chapter 0

Preliminaries

We start with two definitions. 1

Symmetric spaces.

A Riemannian manifoldX is said to be symmetric if∀x ∈ X, there
is an isometryσx such thatσx(x) = x and∀t ∈ Tx σ◦x(t) = −t, where
Tx is the tangent space atx andσ◦x denotes the differential ofσx.

Locally symmetric spaces.

A Riemannian manifoldX is locally symmetric if∀x ∈ X, is a neigh-
borhoodNx which is a symmetric space under induced structure.

Remark. Simply connected covering of a locally symmetric complete
Riemannian space is a symmetric space (see Theorem 5.6 and Cor 5.7
pp.187-188 [8]).

Now we give an example which suggests that the last condition (that
is there are no direct factors of dimensions 1 or 2 in the statement of the
conjecture given in the introduction is in a sense necessary).

0.1 Example.Y,Y′ Compact Riemann surfaces of the same genus> 1
and which are not conformally equivalent. By uniformization theory,
the simply connected covering space of such Riemann surfaces is an-
alytically equivalent to the interiorX of the unit disc in the complex
plane. ThenY = Γ\X,Y′ = Γ′\X whereΓ, Γ′ are fundamental groups
of Y, Y′ respectively. The elements ofΓ, Γ′ operate analytically onX.

1



2 0. Preliminaries

Letting G denote the group of conformal mappings ofX into itself, we
haveΓ, Γ′ ⊂ G. It is well known thatG is also the group of isometries
of X with respect to the hyperbolic metricds2

=
dz2

1−z2 and with respect2

to this metricX is symmetric Riemannian space of negative curvature.
HenceY, Y′ are locally symmetric spaces of negative curvature.

If Y, Y′ were isometric then they would be conformally equivalent,
which would bea contradiction.

We list some facts about linear algebraic groups, these are standard
and the proofs are readily available in literature. Perhaps the use of
algebraic groups is not indispensable, however we hope that this will
simplify the treatment.

Let K be an algebraically closed field. For our purpose, we need
only consider the caseK = C, the field of complex numbers,

Definitions.

Algebraic set: A subsetA of Kn is said to be algebraic if it is the set
of zeros of a set of polynomials inK[X1, . . . ,Xn].

If A is a subset ofKn, thenI (A) will denote the ideal ofK[X1,X2, . . . ,

Xn] consisting of the polynomials which vanish at every point ofA.
Zariski topology on Kn: The closed sets are algebraic sets.
Field of definition of a set: Let k be a subfield ofK andA a subset

of Kn. If I (A) is generated overK by polynomials ink[X1, . . .Xn] then
A is said to be defined overk or k is a field of definition ofA.

A subgroup of the groupGL(n,K) of non-singularn × n matrices
over K is algebraic if it is the intersection withGL(n,K) of a Zariski
closed subset of the set of alln× n matricesM(n,K).3

An algebraic groupG is ak-group ifG is defined overk, wherek is
a subfield ofK.

Terminology.

If k = R or C, we shall refer to the usual euclidean space topology
as theR-topology forGR or for GC.

For ak-groupG we write,

Gk = G∩GL(n, k).
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0.2 Theorem.G be an algebraic group then the Zariski connected com-
ponent of identity is a Zariski-closed, normal subgroup of G of finite
index. ([5] Th 2, Chap. II, pp.86-88).

0.3 Theorem(Rosenlicht). If k is a infinite perfect field, G a connected
k-group then Gk is Zariski dense in G ([18] pp.25-50).

0.4 Proposition. If k is a perfect field, any x∈ GL(n, k) can be written
uniquely in the form [Jordan normal form] x= s · u where s is semi-
simple and u is unipotent; s, u commute. (use Th. 7, pp.71-72 [72])

0.5 Theorem. If k is a field of characteristic zero and G an algebraic
k-group then there is a decomposition G= M.U (semi-direct product)
where U is a normal unipotent k-subgroup, M is a reductive k-subgroup.
Moreover any reductive k-subgroup of G is conjugate to a subgroup of
M by an element in Uk. (Th.7.1, pp.217-218, [15]).

0.6 Proposition. If U is a unipotent algebraic subgroup of an algebraic
group defined over a field k of characteristic zero, then

1. U is connected ([2] §8, p.46). 4

2. U is hypercentral [Engel-Kolchin] (see LA 5.7 [22]).

3. UR is connected in theR-topology if k⊆ R.

0.7 Proposition. An abelian reductive group over algebraically closed
field is diagonalizable.

Definition. A connected abelian reductive group is called atorus.

0.8 Theorem. Let G be an algebraic k-group. Then

1. The maximal tori are conjugate by an element of G.

2. Every reductive element of Gk lies in a k-torus.

3. A maximal k-torus is a maximal torus.

4. Any maximal torus is a maximal abelian subgroup if G is connected
and reductive.
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Definitions. A reductive elementx ∈ GL(n, k) is calledk − split (or k-
reductive) ify ∈ GL(n, k) such thatyxy−1 is diagonal, this is equivalent
to saying that all the eigen-values ofx are ink.

A torusT is calledk − split if y ∈ GL(n, k) with yTy−1 diagonal,
equivalently if each element ofTk is k− split.

Let G be a reductive group,̊G its Lie algebra andT be a maximal
torus.

Consider the adjoint representation

G→ Aut G̊

x 7→ Adx

thenG̊ =
∑G̊

α α ∈ Hom(T,C∗)5

where G̊α =

¶
y|y ∈ G̊ Adx(y) = α(x) y∀x ∈ T

©
Hom(T,C∗) being

abelian we will use additive notation.

0.9 Theorem. Letφ = {α|α ∈ Hom(T,C), G̊α , 0, α , 0} then is called
the set of roots of G on T and we have

1. α ∈ φ⇒ −α ∈ φ

2. α ∈ Φ⇒ dimεα = 1.

3.
î
G̊α, G̊β

ó
= G̊α+ if α, β, α| ∈ φ

î
G̊α, G̊β

ó
= 0 if α + β < φ

4. There exists a linearly independent set△ ∈ φ such that the roots
are either non-negative integral linear combination or a non positive
integral linear combination of elements in△. Such a subset is called
a fundamental system of roots on T.

Remark. A fundamental system of roots can be obtained as follows.
Take any linear ordering of Hom(T,C∗) compatible with addition. Let
△ be the set{α

∣∣α ∈ φ, α not a sum of two positive elements inφ}.

Notations.Let G be a group andA a subset ofG, thenZ(A) will denote
the centralizer and Norm (A) the normalizer ofA.
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If A andB are two subsets ofG

A[B] = {aba−1 ∈ A,b ∈ B}.

Definition. Let T be a maximal torus a of a connected reductive group6

G. Z(T) operates trivially onφ. The groupW = Norm(T)
Z(T) is called the

Weyl groupof G.

0.10 Theorem. The Weyl group operates simply transitively on the set
of fundamental systems of roots.

Definitions. A reductive elementx ∈ G is k− regular if ∀y ∈ k - reduc-
tive, dimZ(x) ≤ dimZ(y).

A reductive element is calledsingular if it is not R-regular.
Let V be aK-subspace ofKm and letk be a subfield ofK, thenV is

ak− subspaceif V = K(V∩ km)i.e.,V∩ km generates the space overK.
Let G be a connected reductivek-group andkT a maximalk-split

torus. Consider the adjoint representation ofkT onG.
ThenG̊ =

∑

α

G̊α Hom(kT,C∗).

EachG̊α is ak-subspace.
The following analogue of the Theorem 0.9 is true.

0.11 Theorem.Let kφ = {α
∣∣G̊α , 0, α , 0}. Then

1. αǫkφ⇒ −αǫkφ

2.
î
G̊α, G̊β

ó
= G̊α+β if α, β, α + βǫkφî

G̊α, G̊α

ó
= 0 if α + βǫkφ

3. There exists a linearly independent subsetk△ ⊂ kφ such that the roots
are either non-negative integral linear combination or non-positive7

integral linear combination of elements fromk△ · k△ is called a fun-
damental system of restricted roots.

Let G be a connected reductivek-group, letkT be a maximalk-split
torus in G and letT be a maximalk-torus containingkT. Let △ be
a fundamental system of roots onT and k△ a fundamental system of
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restricted roots onkT. We call△ andk△ Coherentif the elements ink△
are restriction of roots in△. If one introduces ordering of the setsφ and
kφ via lexicographic ordering with respect to△ andk△ respectively, the
resulting orders are Coherent the sense: Ifα ∈ φ andα

∣∣
kT > 0 then

α > 0.
The existence of Coherent△ and k△ can be seen as follows. Let

X = Hom(T,C∗), the group of rational characters ofT. ThenX is a free
abelian group. AnnkT, the subgroup of characters which are trivial on
kT is a direct summand ofX sincekT is connected. Therefore, one can
choose a basisχ1, . . . χr for X such thatχ1, . . . , χs is a base for AnnkT.
Now introduce lexicographic ordering onX with respect to this base.
The resulting order onφ clearly has the property: Ifα andβ have the
same restrictions tokT and if α > 0, thenβ > 0. Consequently, there
is induced an order onkφ compatible with addition. The corresponding
fundamental systems△ andk△ are Coherent.

Notations.Let △′ ⊂ k△

{△′} = Z − linear span of△′

α△′ =
⋂

α∈△′
kerα ⊂ kT

8
Choose an ordering such thatk△ consists of positive roots.
Put

N̊(△′) =
∑

α>0
α<{△′}

G̊α

N(△′) be the complex analytic subgroup ofG with Lie algebra
N̊(△′). Since∀x ∈

∑

α>0

G̊α is nilpotent,N(△′) is a unipotent group.

Let

G(△′) = Z(⊥△′)
P(△′) = Norm (N(△′))

N = N(φ) P = P(φ) φ = empty set.

M′k = norm (kT) Mk = Z(kT) = G(φ)

kW
= M′k/Mk.
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The groupkW is calledLittle Weyl Groupor relative Weyl groupand
this operates transitively on the set of fundamental systems of restricted
roots.

0.12 Lemma.
P(△′) = G(△′) · N(△′).

G(△′) is a maximal reductive subgroup of P(△′) and N(△′) is a maximal
normal unipotent subgroup (called unipotent radical of P(△′)).

0.13 Theorem(Bruhat’s decomposition). Let G be a connected reduc-9
tive k-group. Then

1. Gk = Nk · M′k · Nk

2. The natural map M′/M → Pk\Gk/Pk is bijection.

3. Any unipotent k-subgroup of G is conjugate to a subgroup of N by an
element in Gk.

4. Any k-subgroup containing P equals P(△′) for some△′ ⊂ △ (P is
minimal parabolic k-subgroup). (see [4] or [21]).

Remark. Z(T) is a connected subgroup. More generally ifS is any torus
in G thenZ(S) is connected.

Now we consider for a moment the special case thatk is algebrai-
cally closed.

In this caseG(φ) = Z(T) = T. SinceT is a maximal abelian sub-
group andP = T N is solvable. ClearlyP is connected. It follows at
once from assertion 4 of the previous theorem that the connected com-
ponent of the identity inP(△′) containsP and therefore it is seen to
coincide withP(△′). In particular, every subgroup ofG containingT N
is connected, andT N is a maximal connected solvable subgroup.

Definition. A maximal connected solvable subgroup of an algebraic
group is called aBorel subgroup. A subgroup containing aBorel sub-
group is calledParabolic.
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0.14 Theorem. The Borel subgroups of an algebraic group are conju-10

gate under an inner automorphism.

0.15 Theorem. If G is a connected reductive k-group andk△ is a fun-
damental system of restricted roots on a maximal k-split toruskT, then
P(△′) is parabolic for any△′ ⊂ k△.

Proof. Let T be a maximalk-torus containingkT. Since all fundamen-
tal systems are conjugate under the Weyl group, it is possible to find a
fundamental system△ on T which is coherent withk△. Let φ+ denote
the set of positive roots onT defined by a lexicographic ordering with
respect to△. Then for any△′ ⊂ k△, the Lie algebra ofP(△′) contains
G̊α for all α ∈ φ+. It follows directly thatP(△′) is parabolic. �

Remark. A subgroupQ is parabolic iff G/Q is a complete variety;
equivalently, in casek = C if G/Q is compact in theR-topology.

From the conjugacy of Borel subgroups and the theorem above, it
is seen that any parabolick-subgroup is conjugate toP(△′) for some
△′ ⊂ k△. Also any parabolic subgroup containing the maximalk-split
toruskT isω[P(△′)]ω−1 with ω ∈ N(kT).

Since a reductive element of a connected reductive group isk-regular
iff it lies in a single maximal torus, we see

0.16 Proposition.A reductive element of a connected reductive k-group
G is k regular iff it lies in at least one and at most finitely many parabolic
k-subgroups of G, not equal to G.



Chapter 1

Complexification of a real
Linear Lie Group

Let G be a Lie subgroup of the Lie group of all automorphisms of a11

real vector spaceV. Let VC denote the complexification ofV (i.e.,
VC = V ⊗ C) we identify the elements oḟG, the lie algebra ofG, with
endomorphisms ofV. We letĠC denote the complification of the Lie
algebraĠ and letG◦

C
denote the analytic group of automorphisms ofVC

that is determined bẏGC. We identify the endomorphisms ofV with
their unique endomorphism extension toVC, so that we havėG ⊂ ĠC
andG◦ ⊂ G◦

C
. WhereG◦ is connected component of identify inG.

Definitions. By the complexification of a real linear Lie group Gis
meantG◦

C
. G, it will be denoted byGC.

By a f.c.c. groupwe mean a topological group with finitely many
connected components.

Suppose thatG∗ is a semisimple f.c.c. Lie subgroup ofGL(n,R).
ThenĠ∗⊗RC = ĠC is semisimple. HencėGC = [ĠC, ĠC] is an algebraic
Lie algebra [Th. 15, pp. 177-179 [5]]. Since a Zariski-connected sub-
group ofGL(n,C) is topologically connected, it follows that the complex
analytic analytic semisimple groupG◦

C
is algebraic, and thereforeG∗ ·G◦C

is algebraic. Thus we have

1.1 Theorem. The Zariski closure in GL(n,C) of the semisimple f.c.c.
Lie subgroup of GL(n,R) is its complexification.

9



10 1. Complexification of a real Linear Lie Group

Definition. A subsetS of GL(n,R) is said to beselfadjoint if tS = S
wheretS = {g

∣∣tg ∈ S, (tg transpose ofg) }.

1.2 Theorem. Let G∗ be a semisimple f.c.c. Lie subgroup of GL(n,R)12

then∃x ∈ GLn,R) such that xG∗x−1 is self adjoint. (for a proof see
[12]).

Notations.S(n) will denote the set of all realn× n symmetric matrices
andP(n) the set of real positive definite symmetric matrices.

For anyg ∈ GL(n,R) g = (gtg)
1
2 (gtg)−

1
2 · g with (gtg)

1
2 ∈ P(n) and

(gtg)−
1
2 g ∈ 0(n,R).

1.3 Theorem.Let G∗ be a self adjoint Lie subgroup of GL(N,R). If G∗ is
of finite index in FR, F an algebraicR group (equivalently G◦∗ = (FR)◦).
Then

1. G∗ = {G∗ ∩ P(n)} · {G∗ ∩ 0(n,R)}

2. G∗ ∩ 0(n,R) is a maximal compact subgroup of G∗

3. G∗ ∩ P(n) = exp(Ġ∗ ∩ S(n)) (see [12]).

1.4 Lemma. Let G∗ be a real analytic self adjoint subgroup of GL(n,R),
G its Zariski closure in GL(n,C). Let A be a maximal connected abelian
subgroup in G∗ ∩ P(n). Let T be the Zariski closure of A in GL(n,C),
then T is a maximalR-split torus in G and A= (TR)◦.

Proof. A being a commutative group ofR-diagonalizable matrices, is
R-diagonalizable. ThereforeT, its Zariski closure isR-diagonalizable
and hence an abelian subgroup ofG. �

SinceA is self adjoint, the centralizerZ(A) of A in G and therefore
alsoG∗ ∩ Z(A) are self adjoint.

By the previous theorem13

G∗ ∩ Z(A) = {G∗ ∩ Z(A) ∩ P(n)} ◦ {G∗ ∩ Z(A) ∩ 0(n,R)}

By maximality ofA

G∗ ∩ Z(A) ∩ P(A) = A.
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Hence
Z(A) ∩G∗ = A · {G∗ ∩ Z(A) ∩ 0(n,R)

SinceT ⊂ Z(A), we have

(TR)◦ = A ◦ {(TR)◦ ∩ 0(n,R)}

Also since (TR)◦ is diagonalizable overR, (TR)◦ ∩ 0(n,R) is finite
and as (TR)◦ is connected, this consists of identity matrix alone.

Thus (TR)◦ = A.

1.5 Lemma. Let G∗ be a semi-simple self adjoint analytic subgroup
of GL(n,R) and let G be its Zariski-closure. Let KR = G ∩ 0(n,R),
E = G∗ ∩ P(n) and A as above, then

KR[A] = E.

Proof. EvidentlyKR[A] ⊂ E. We will prove the other inclusion. �

First we show that ife, p ∈ P(n) and epe−1 ∈ P(n) then epe−1
= p.

By the theorem 1.3 we have 14

Z(p) = {Z(p) ∩ P(n)} · {Z(p) ∩ 0(n,R)}
and Z(p) ∩ P(n) = exp{Z(p) ∩ S(n)}

whereZ(p) is centralizer ofp.
Since

epe−1 ∈ P(n) epe−1
=

t(epe−1) = e−1p e

so e2p = pe2 i.e.,e2 ∈ Z(p)

Since

e2
= Exp(X) for someX ∈ Z̊(p) ∩ S(n)

e= Exp
1
2

X thereforee ∈ Z(p) ∩ P(n).

∴ ep= pe i.e.epe−1
= p, as asserted.

Now if p ∈ E p= ExpX for someX ∈ Ġ∩ S(n).
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The Zariski closure of one parameter group ExptX is a torus which
is contained in a maximalR-split torus (sayS).

By conjugacy of maximalR-split tori, ∃x ∈ G with x(TR)◦x−1
=

(SR)◦ whereT is the Zariski closure ofA in G. By the previous lemma
(TR)◦ = A and hencep ∈ xAx−1.

As
G = E ◦ KR (see Th 1.3)

we havex = ekwith e ∈ E, k ∈ KR.

xax−1
= p for somea ∈ A.

Thusekak−1e−1
= p butkak−1 ∈ P(n) hencekak−1

= p.

Remark. If B is a maximal connected abelian subgroup inK∗ = (KR)◦15

then an argument similar to the one used in the above proof yields:
K∗[B] = K∗.

Weyl chambers. The connected components ofA−
⋃

α∈φ
kerα, whereφ

is a restricted root system onT, are called the Weyl chambers associated
with G∗ andA.

If △ is a fundamental system of restricted roots, thenA△ = {a
∣∣a ∈

A, α(a) > 1∀α ∈ △} is a Weyl chamber. Observe that (NormT)R oper-
ates onA, for (NormT)R operates onTR and hence on (TR)◦ = A.

If 0 , Xα ∈ Ġα then∀h ∈ T

Ad h(Xα) = h Xαh−1
= α(h)Xα

t(hXαh−1) = (h−1)tXαh = α(h)tXα

i.e. htXαh−1
= (α(h))−1tXα

this proves thattXα ∈ Ġ−α.
Let hα = [Xα, tXα] thenhα, Xα, tXα is a base for 3 dimensional split

Lie algebra overR. By taking a suitable multiple ofXα, we can assume
that

[hα,Xα] = 2Xα, [hα,
tXα] = −2tXα

then Expπ/2(Xα − tXα) ∈ (NormT).
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SinceXα − tXα is skew symmetric it actually belongs to (NormT)∩16

K∗.
AdExpπ/2(Xα − tXα) is reflection in the Wall corresponding toα ,

of the Weyl chamber.
This shows thatAd[(Norm T)R ∩ K∗] contains the reflections in all

the Walls of the Weyl chambers.

1.6 Theorem. E = K∗[Ā△].

Proof. K∗[Ā△] = K∗[(Norm A∩ K∗)[Ā△]] �

SinceAd(Norm A ∩ K∗) contains the reflections in all the walls of
Weyl chambers (NormA∩ K∗)[Ā△] = A.

∴ K∗[Ā△] = K∗[A].

Let X ∈ Ė and letY be anR-regular element inA, then sinceK∗ is
compact,∃k ∈ K∗ such that

d(X, k[Y]) = d(X,K∗[Y])

where d(X̃, Ỹ) = Tr (X̃ − Ỹ)2

then d(k[X],Y) = d(X, k[Y]) ≤ d(k[X], l[Y]),∀l ∈ K∗

therefore∀Z ∈ K̇∗ the real valued function

fZ : t 7→ d(k[x],ExptZ[Y])

= Tr [h[X] − Exp(tZ)YExp(−tZ)]2

is minimum att = 0.

∴

∂ f2
∂t t=0

= 0.

which gives 17

Tr (h[X] − Y)[Y,Z] = 0 but since TrY[Y,Z] = 0

we have

= Tr Z[k[X],Y] = Tr k[X][Y,Z] = 0,∀Z ∈ K∗
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hence

[k[X],Y] = 0.

R-regularity ofY implies

Z(Y) ∩ Ġ∩ S(n) = Ȧ

∴ k[X] ∈ Ȧ

this proves that

K∗[A] ⊃ E. The other inclusion is obvious.

Definition. An algebraick-group is said to bek-compact if it contains
no k-split connected solvable subgroup, that is a connected group that
can be put in triangular form overk.

Remark. If G is a reductive algebraick-group then the following three
conditions are equivalent.

1. G is k-compact18

2. Gk has no unipotent elements

3. the elements ofGk are reductive.

Exercise.Prove the above equivalences.
[Hint (1) ⇒ (2)⇒ (3) is obvious prove (3)⇒ (1) by showing: not

(1)⇒ not (3).]

The following digression is included just for fun, we need it only in
the casek = R.

1.7 Theorem. Let k be a loc. compact field of characteristic 0. Then G
is k-compact iff it is compact in the k-topology.

Proof. (⇒) Let V be the underlying vector space [i.e.G is a subgroup
of Aut v] �
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Let Ed be the set ofd dimensional subspaces ofV. Then there
is a canonical imbeddingEd ֒→ P(∧d(V)) which makesEd a closed

subvariety of the projective varietyP(∧d(V)). The product
n∏

d=1

Ed is a

closed subvariety of
n∏

d=1

(∧d(V)) (which, by Segre imbedding, itself is

a closed subvariety of a projective spaceP of sufficiently large dimen-

sion). Hence
n∏

d=1

Ed is a compact set.

The setW =

{
(ω1, . . . ωn)

∣∣∣(ω1, . . . , ωn)
n∏

d=1

Ed

}
ω1 ⊂ ω2, . . . αωn is

a closed subvariety (it is called the Flag manifold) of
n∏

1

Ed.

G operates onW. For ak-rational pointω ∈ Wk. Let Tω be the
stabalizer ofω in G thenG/Tω = G.ω. SinceTω is k-triangularizable 19

(hence solvable) and asG is k-compact (Tω)◦ = {e}. HenceTω is finite
[In an algebraic group the connected component of identity is of finite
index see Th. 0.2]. ThereforeG. = G/T has dimension equal to that of
G.

Let D ∩
g∈Gk

Tgω sinceTgω = gTωg−1. D is a finite (therefore discrete)

normal subgroup and so it is central.
SinceTω is finite we can chooseg1 · · ·gr such that

D =
r⋂

i=1

Tgiω

let ui = gi · ω andWi be the Zariski closure ofG · ui in the projective
variety.

G acts on
r∏

i=1

G.ui

(
⊂

r∏

i=1

wi

)
.

Since D acts trivially we get a faithful action ofG′ = G/D on
r∏

i=1

(G.ui).
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Let v = (u1 · · ·ur ) and letV be the Zariski closure of theG′ orbit
G′.v of v. Then sinceV is a irreducible closed set andG′v is open (by
Chevalley’s theorem in algebraic geometry) dim(Ṽ − G′v) ≤ dim Ṽ =
dim (G′ orbit of a k-rational element). ThereforẽV − G′v has nok-
rational points.

SoṼk = (G′v)k = G′kv
∴ Ṽk is compact ink-topology.
Since the differential of the mapG′k → G′k.v is surjective by the20

implicit function theorem for loc. compact fields, this map is compact.
But Gk → G′k is open (again by implicit function th.) and soGk

D =

Image ofGk in G′k is open (and therefore a closed subgroup). This
proves thatGk

D is compact, but sinceD is finite Gk is compact ink-
topology.

The converse is also true. For ifGk is compact ink-topologyG
cannot have a unipotent subgroup. (Any unipotent group is isomorphic
as an algebraic variety toKr and its set ofk-rational point iskr which is
not compact). This proves that any element ofGk is reductive and this
by the preceding remark implies thatGk is k-compact.



Chapter 2

Intrinsic characterization of
K∗ and E

K∗ is a maximal compact subgroup ofG∗, equivalently the complexifi- 21

cationK of K∗ is a maximalR-compact subgroup ofG.

E = Exp(Ġ∗ ∩ S(n))

Ġ∗ ∩ S(n) = logE.

logE is the orthogonal complement tȯK∗ in Ġ∗ with respect to the
Killing form (see [13]).

2.1 Theorem.The maximal compact subgroups in a f.c.c. Lie group are
conjugate by inner automorphism ([13] or Chapter XV [9]).

For gGL(n,R) we have a linear automorphism ofS(n)s 7→ gstg
which leavesP(n) stable. This operation ofGL(n,R) on S(n) is called
thecanonical action.

Now letG∗ be an analytic semi-simple group with finite center and
let ρ be a finite dimensional representation ofG with finite kernel. By
Theorem 1.2 we can assume, after conjugation thatρ(G∗) is self adjoint.

We set
K∗ = ρ

−1(ρ(G∗) ∩ 0(n,R))

K∗ is then a maximal compact subgroup ofG∗, letϕ : G 7→ P(n) denote
the map

g 7→ ρ(g)tρ(g)

17
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then22

ϕ(g1g2) = ρ(g1)ϕ(g2)tρ(g1).

Thus underϕ, left translation byg corresponds to the canonical ac-
tion byρ(g) on P(n). In addition

ϕ(gk) = ϕ(g) for k ∈ K∗
and ϕ(g1) = ϕ(g2) iff g1K∗ = g2K∗

thereforeϕ induces an injection

ϕ : X = G∗/K∗ → P(n).

Let [S] denote the projective space of lines inS(n) and let

Π : S(n) − 0→ [S]

be the natural projection and letψ = π ◦ ϕ and be the composite

G∗ → G∗/K∗ → [S]

thenψ is injective because ifp1, p2 ∈ ϕ(X) with πp1 = πp2, then since
p1, p2 are positive definite matrices,∃ c > 0 such that

p1 = cp2

so |p1| = cn|p2| where|p| = detp.

But sincep1, p2 ∈ ϕ(G∗) |p1| = |p2| = +1.

[for G∗ being semi-simple, the commutator [G∗,G∗] = G∗ and so there
does not exist a non-trivial homomorphism ofG∗ into an abelian group.23

Thusg 7→ |ρ(g)| is a trivial homomorphism ofG∗ intoR∗].
This implies thatc = +1 i.e.,p1 = p2. The mapψ is aG-map that is

ψ(gx) = gψ(x) for all g ∈ G, x ∈ Xs thusψ(X) is stable underG.

Definition. If ρ is irreducible overR thenψ(X) is called the stable com-
pactification ofX. This of course depends onρ.

Remark. The above compactification was arrived in a measure theoretic
way by Frusentenberg [7].
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We shall now show thatX has the structure of a symmetric Rie-
mannian space and shall obtain a decomposition forψ(X) in terms of
symmetric Riemannian spaces.

On P(n) we introduce a infinitesimal metric

ds2
= Tr (p−1ṗ)2

wherep(t) is a differentiable curve inP(n) and ṗ(t) = dp
dt

∣∣∣
t
.

It is easy to check that this metric is invariant under the action of
GL(n,R) on P(n) and also under the mapp 7→ p−1. This implies that
P(n) is a symmetric Riemannian space. (see [14]).

LetG∗ be a semi-simple analytic subgroup ofGL(n,R), then by The-
orem 1.3.

G∗ = (G∗ ∩ P(n) · (G∗ ∩ 0(n))).

Let A be a maximal connected abelian subgroup ofP(n) ∩G∗.
Since any abelian subgroup ofP(n) can be (simultaneously) diago-24

nalized, we can assume thatA ⊂ D(n) the set of real diagonal matrices.
Let T be the Zariski closure ofA in GL(n,C) then by Lemma 1.4,

T is a maximalR-split tours in the Zariski closureG of G∗ in GL(n,C)
and

A = (TR)◦.

Let △ be a fundamental system of restricted roots onT. There is
a natural faithful representation ofGL(n,C) and therefore ofG on Cn.
In this section the complex vector spaceCn considered as aG-module
under this representation will be denoted byV.

From the representation theory of semi-simple Lie algebras we have

V = ⊕
∑

Vµ

whereµ′s are “weights” (more precisely, restricted weights) onT. The
highest weight will be denoted byµ◦. Also we know that any other
weight is of the formµ = µ◦ −

∑
nαα, where eachnα is a non-negative

integer.
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Forh ∈ A△ we have clearly

ψ(h) = π

Ü
. . . 0

(µ(n))2

0
. . .

ê

After a conjugation we can assume that the first diagonal entry is25

(µ ◦ (h))2.
So

ψ(h) = π

Ü
1
. . . 0

((µ − µ◦)(h))2

0
. . .

ê

Let {hn} be a sequence inA△ such that the sequenceψ(hn) is con-
vergent in the projective space [S(n)]. If necessary by passing to a sub-
sequence, we can assume that∀α ∈ △ lim

n→∞
α(hn) exists inR ∪ {∞} and

is equal toℓα. For a weightµ = µ◦ −
∑

nαα, if we define Suppµ =
{α
∣∣hα , 0}, then clearly the diagonal entry in lim

n→∞
ψ(hn), corresponding

to the weightµ is zero iff Suppµ contains someα with Iα = ∞.

Notations.For a non-empty subset△′ of △, we write

V(△′) =
∑

Suppµ⊂△′
Vµ

p△′= the projection ofV onV(△′) with kernal
∑

Suppµ1△′
Vµ

π△′ = π(p△′hp△′) for h ∈ S(n) and letψ△′ be the compositeG∗ →
G∗/K∗ → P(n)

P△′−−−→ [S(n)]. (K∗ = G∗ ∩ 0(n,R)).

SinceV(△′) is stable underA, we note thatp△′h = hp△′ = p△′hp△′ .26

The preceding remarks establish

2.2 Lemma.
ψ(A△′) =

⋃

△′⊂△
ψ△(A△)
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Also, if
K∗ = G∗ ∩ 0(n,R)

we have by theorem 1.6

E = K∗[Ā△]

G∗ = E · K∗
= K∗[Ā△] · K∗

∴ ψ(X) = ψ(G∗) = ψ(K∗[Ā△] · K∗) = ψ(K∗[Ā△])

= ψ(K∗[A△]) = πψK∗[A△] = π(K∗[ϕA△])

= K∗ · (πϕA△) = K∗ · πϕ(A△)

For h, h′ ∈ Ṫ < h,h′ >= Tr (hh′) is a inner product oṅT. This inner
product induces an inner product on Hom(Ṫ,C) and hence its restriction
on Hom(T,C∗) ֒→ Hom(Ṫ,C). This restriction will again be denoted
by <, >.

2.3 Lemma. If ĠαVµ = 0, then the following two conditions are equiv-
alent.

1. Ġ−αVµ = 0.

2. < µ, α >= 0.

Proof. We can chooseXα ∈ Ġα such that Tr (XαtXα) = 1 set 27

[Xα,
tXα] = h′α, then forh ∈ Ṫ we have

< h,h′α > = Tr hh′α = Tr h[Xα,
tXα]

= Tr [h,Xα]tr Xα = α(h) · Tr Xα
tXα = α(h)

∴ h′α = hα wherehα is the dual ofα in the inner product. Therefore
for any weightµ, < µ, α >= µ(hα). �

By considering the representation of 3-dimensional simple Lie al-
gebra generated by{Xα,hα, tXα} on

∑

n∈Z
Vµ+nα the result follows immedi-

ately. (see [10] or pp. IV-3 to IV-6 of [23]).
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Definition. Let Eρ = {α
∣∣α ∈ △ < α, µ◦ >= 0

A subset△′ of △ is said to beρ− connectedif △′ ∪ {µ◦} is connected
in the sense of Dynkin’s diagram of△′ lies in Eρ.

For △′ ⊂ △ we set△̃′ = △′ ∪ {α
∣∣α ∈ Eρα

∣∣β for ∀β ∈ △′}. The
following is an easy consequence of the previous lemma.

2.4 Lemma. A subset△′ of△ is ρ-connected iff there is a weightµ with
supportµ = △′.

Proof. By induction ons = the cardinality of△′. If s = 1 the result
follows at once from lemma 2.3. Ifs> 1 then△′ contains aρ-connected
subset△′′ of cardinals−1, and hence there is a weight△′′ = µ◦−n1α1−
·ns−1αs−1, where△′′ = α1, . . . , αs−1. �

Letαs ∈ △′ −△′′. Then< µ, αs >=< µ◦, αs > −
∑

nk < αk, αs >≥ 028

and is not zero since△′′ ∪ {αs} is ρ-connected. Henceµ−αs is a weight
of support△′.

2.5 Corollary. V(△′) = V (largestρ-conn. subset in△′) and

ψ(A△) =
⋃

△′⊂△
△′−ρ conn.

ψ△′(A△)

2.6 Lemma.
π(E) =

⋃

△′⊂△
△′ρ−conn.

G∗ · π△′(1).

Proof.

π(E) = ψ(E) = πK∗[A△]

= ψK∗[A△] = K∗ · ψ(A△)

= K∗ ·
⋃

△′⊂△
△′ρ−conn

ψ△′(Ā△) =
⋃

△′⊂△
△′ρ−conn.

K∗ · ψ△′(Ā△)

=

⋃

△′ρ−conn

K∗(Ā△ψ△′(1)) =
⋃

△⊂△
△′ρ−conn.

(K∗Ā△)ψ△′(1)
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=

⋃

△′⊂△
△′ρ−conn.

G∗ · π△′(1).

Since△ is finite there are only finitely many subsets△′ ⊂ △. So this
lemma in particular shows thatψ(X) = π(E) consists of a finite number29

of G∗ orbits. �

2.7 Lemma. (i) For h ∈⊥△′ and v: V(△′), hv= µ◦(h)v

(ii) ĠαV(△′) = 0 if α > 0 andαψ{△}

(iii) ĠαV(△′) = 0 if α ∈ {△̃′ − △}

Proof. Parts (i) and (ii) are immediate. (iii) follows from Lemma 2.3
and (ii) of this lemma. �

For each restricted rootα, setGα the group generated by{ExpX,X ∈
Ġα}. For a subset△′ of △ let G′(△′) be the group generated byGα,
α ∈ {△′} and letK(△′) be the subgroup generated by Exp(X − tX)X ∈
Ġα, α ∈ {△′} and maximumR-compact subgroup ofZ(T). G′(△′) is
semisimple.

We write

G∗(△′) = G(△′) ∩G∗; K∗(△′) = K(△′) ∩G∗
G′∗(△′) = G′(△′) ∩G∗; K∗ = K∗(△) = K(△) ∩G∗

and K′∗(△′) = K∗ ∩G′(△′).

It is easy to see thatG(△′) = G′(△′) · Z(T); G′∗(△′) = (G′(△′)R)◦

butG∗(△′) need not be connected. AlsoK∗(△′) andK′∗(△′) are maximal
compact subgroups ofG∗(△′) andG′∗(△′) respectively.

Remarks.

(i) Sinceg ∈ Gα impliesZ−1gZ ∈ Gα∀Z ∈ Z(T) we haveGα · Z(T) =
Z(T) ·Gα.

(ii) Since (̃△ − △′) ⊥ △′, roots in ({△̃′} − {△′}) = roots in{△̃′ − △′}.
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(iii) The Lie algebras ofG(△′) andP(△′) are respectively 30

Z(T) +
∑

α∈{△′}
Ġα andZ(T) +

∑

α>0

Gα +

∑

α<0
α∈{△̃′}

Gα

(iv) P(△′) is connected and for△′ ⊃ △′′ we haveP(△′)P(△′′). Now we
prove following results, which allow us to determine theG∗ orbits
in ψ(X).

2.8 Lemma.

(i) The stabalizer of V(△′) is P(△̃′)

(ii) The stabalizer of P(△′) · π△′ (1) is P(△̃′).

(iii) The stabalizer of the pointπ△′ (1) in G∗ is

G∗(△̃′ − △′) · K∗(△′)N∗(△′) · (⊥△′ ∩ A).

Proof.

(i) It is clear that the stabalizer ofV(△′) containsP(△′) hence is a
parabolic group and therefore it is connected.V(△′) is stable under
a connected subgroupH iff it is stable underḢ. From this it can
be easily proved that the stabalizer isP(△̃′).

(ii) Let S be the Stabalizer ofP(△′)π△′ (1) andS△′ the Stabalizer of
π△′ (1)

�

Clearly S ⊃ P(△′). If x stabalizerP(△′)π△′ (1) x.π△′ (1) for some
p ∈ P(△′), this implies thatp−1x.π△′ (1) = π△′ (1) i.e. p−1x ∈ S△′ .

HenceS = P(△′) · (S△′ ∩ S).
We first prove thatS△′ ⊂ P(△̃′).
If g ∈ S△′ thengp△′ tg = cp△′ for somec ∈ R31

i.e. gp△′ = cp△′(
tg)−1
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So gV△′ = gp△′V△′ = cp△′(
tg)−1V△′ ⊂ V△′

∴ g the stabalizer ofV(△′) = P(△̃′).
∴ S△′ ⊂ P(△̃′)
∴ S ⊂ P(△′).P(△̃′) = P(△̃′).

From parts (ii) and (iii) of Lemma 2.7 it follows almost immediately
that N(△′) ⊂ S△′ andGα ⊂ S′△ andGα ⊂ S△′ , ∀α ∈ {△̃′ − △′} (& So
G′(△̃′−△′) ⊂ S△′) i.e.,N(△′). π△′ (1)= π△′ (1)=G′(△̃′−△′)π△′ (1). Also
from the remark (ii) after §2.7, we getGα ⊂ Z(G′(△′))∀α ∈ {△̃′ − △′}.

Now we prove thatG′(△̃′ − △′) ⊂ S.
Forα ∈ {△̃′ − △′}

Gα · P(△′)π△′(1)Gα ·G(△′)N(△′).π△′(1)

= GαG(△′)π△′(1)

= GαG
′(△′)Z(T)π△′(1)

= GαG
′(△′)GαZ(T)π△′(1)

= G′(△′)Z(T) ·Gαπ△′(1) = G′(△′)Z(T)π△′(1)

⊂ P(△′)π△′(1).

This proves that∀α ∈ {△̃′−△′}Gα ⊂ S and thereforeG′(△̃′−△′) ⊂ S. 32

From the Lie algebra considerations it is easy to see that the group
given byG′(△̃′ − △′) andP(△′) is P(△̃′).
∴ P(△̃′) ⊂ S. This proves thatS = P(△̃′).

(iii) In (ii) we proved

S△′ ⊂ P(△̃′).
As P(△̃′) = N(△̃′) ·G(△̃′)
and S△′ ⊃ N(△′) ⊃ N(△̃′)
we have S△′ = N(△̃′) · (S△′ ∩G(△̃′))
since G(△̃′) = G′(△̃′ − △′) ·G(△′) and since

G′(△̃′ − △′) ⊂ S△′

G(△̃′) ∩ S△′ = G′(△̃′ − △′) · {G(△′) ∩ S△′}
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clearly S△′ ⊃ K(△′)R and S△′ ∩ T = ⊥△′

(G(△′)S△′)R = (S△′)R ∩ (G(△′))R = (S△′)R(K(△′)RAK(△′)R)

= K(△′)R · (⊥△′ ∩ A)

∴ (S△′) ∩G∗ = N∗(△̃′) · (S△′ ∩G(△′))
= N∗(△̃′) ·G′∗(△̃′ − △′) · K∗(△′)

(⊥△′ ∩ A
)
.

33

2.9 Lemma.

(1) G∗ = K∗P∗(△′) ∀△′ ⊂ △

(2) dimension of K∗(△′) · N(△′) is independent of△′.

Proof. (i) Since K∗ · P∗(△′) ⊂ G∗ and since for△′ ⊂ △′′P∗(△′) ⊂
P∗(△′′) it is sufficient to prove that

G∗ = K∗ · P∗(φ).

As a vector space
K∗(̇△) + P∗(̇φ) = Ġ∗

By implicit function theoremK∗P∗(φ) is open inG∗. Also it is
closed, sinceK∗ is compact. Connectedness ofG∗ implies the re-
sult.

(ii) For a positive rootα, let {Xi
α}, be a basis oḟGα then the set

⋃

α∈{△′}
α>0

{Xi
α − tXi

α} ∪
⋃

α>0
α<{△′}

{Xi
α}

is a basis for the Lie algebra ofK∗(△′) · N(△′). This shows that

dim(K∗(△′)N(△′)) = dim

(∑

α>0

Ġα

)
.

�
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Definition. If A is a rightH-set andB a left H-set, whereH is a group,34

thenA×HB denotes the set (A×B)/R whereR is the equivalence relation
(ah,h−1b) ∼ (a,b), ∀h ∈ H.

By the previous lemma

G∗ = K∗P∗(△′) ∀△′ ⊂ △

So theG∗ orbit of

π△′(1) = G∗ · π△′(1)

= K∗ · P∗(△′)π△′(1)

= K∗(P∗(△′)π△′(1))

≈ P∗(△′)
K∗(△′)N∗(△′)(⊥△′ ∩ A)

.K∗ (by part (iii) of Lemma 2.8).

=
G∗(△′)
K∗(△′)

× K∗.

SinceP∗(△′) = G′∗(△′) · N∗(△′) · (Z(T) ∩G∗). If we put

G′∗(△′)
K∗(△′)

= X(△′)

we have theG∗ orbit of π△′ (1) ≈ X(△′) × K∗
K∗(△′)

This is compact iff X(△′) is a single point set, equivalently iff
G′∗(△′) = K′∗(△′) i.e., iff △′ = φ.

Then the orbit is the compact setX◦ =
K∗

K∗(φ) · π△′ (1). Also from part 35

(iii) of Lemma 2.8 it is clear that dimS△′ ≥ dimS△′′ if △′ ⊂ △′′.
So we have proved.

Theorem (Satake).ψ(X) consists of a finite number ofG∗ orbits. Among
these there is a unique compact orbit X◦, also characterized as the orbit
of minimum dimension.





Chapter 3

R-regular elements

When k = R andG is a semi-simple algebraicR-group we can give 36

another description ofreductiveR-regular elements.
Let G be a semi-simpleR-group without loss of generality we can

(and we will) assume thatG is self adjoint (cf. [13]). LetT be a maximal
R-split torus inG. Let A = (TR)◦.

We can assume thatA ⊂ P(n) [see Lemma 1.4]. Let△ be a funda-
mental system of restricted roots onT, let

At
= {x

∣∣x ∈ A α(x) > t ∀α ∈ △}
then A1

= A△.

Z(T)R = Z(A)R = A.(Z(A) ∩ 0(n,R))

we put Z(A) ∩ 0(n,R) = L.

ThenL is the unique maximum compact-subgroup ofZ(A)R. The
only R-regular elements inA are those in (NormA) [A△]. More gener-
ally theR-regular elements inZ(T)R are of the form m.a withm ∈ L and
a ∈ (Norm A)[A△]. For given such an element it lies inP(△′) for any
△′ ⊂ △. Moreover ifP is parabolic andm.a ∈ P thenZ(m.a) ⊂ P

∴ T ⊂ P&P = P(△′) for some△′ ⊂ △

This implies thatm.a isR-regular.
Since all the maxR-split tori are conjugate by an element fromGR 37

it follows that the set of reductiveR-regular elements inG is GR[L.A△].

29
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3.1 Lemma (Polar decomposition). If x is a reductive element of GL
(n,R) then x can be written uniquely in the form x= p.k with p, k ∈
GL(n,R), the eigenvalues of p are positive, the eigenvalues of k are of
absolute value 1 and pk= kp.

Proof. Let V be the underlying complex vector space. �

V = ⊕
∑

λ

Vλ, wheeλ varies over the eigenvalues ofx.

Let

p : v 7→ |λ|V for v ∈ Vλ

and k : v 7→ λ

|λ|
v. for v ∈ Vλ.

Thenp, k satisfy the requirements of the lemma.

Definition. p is called thepolar part of x.

The polar decomposition provides the following characterization of
R-regular elements.

Proposition. A reductive element isR−regular iff its polar part isR-
regular.

The rest of this section will be devoted to the proof of the

3.2 Theorem. Let G be a semi-simpleR−group and y be anR-regular
reductive element in GR. Then there is an algebraic subset Sy, not
containing 1, such that for all large n, xyn is R-regular, provided x∈
GR − Sy.

We introduce the following new notations:38

N+ = The unipotent analytic subgroup with Lie algebra
∑

α>0

Ġα

N− = The unipotent analytic subgroup with Lie algebra
∑

α<0

Ġα

LC = The Zariski closure ofL= maximalR-compact subgroup ofZ(T).
F = N−

R
· N+
R
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we have Bruhat’s decomposition

G = N−(NormT)N+

GR = N−RN+R .

we need following Lemmas.

3.3 Lemma. Let V be a finite dimensional vector space and let vi ∈ V
and di ∈ GL(V)i = 1,2, . . .

Assume

(i) lim
i→∞

vi = v = lim
i→∞

divi and

(ii) (di − 1)−1 are bounded uniformly in i then v= 0.

Proof. Setwi = (di − 1)vi thenwi → 0 asi → ∞

∴ vi = (di − 1)−1wi → 0 i.e.,v = 0.

�

3.4 Lemma. Let K be a compact subset of GR, let W and UA be neigh-
bourhoods of 1 in GR and A respectively. Let t> 1, then there is a nbd. 39

U of 1 in G such that

(kW)[LaUA] ⊃ k[La].U ∀k ∈ K,a ∈ At.

Proof. Since the rank of the map (g,b) → g(b) of (W ∩ F) × LA1 into
GR at (1,b) equals the dimension of [ĠR, L̇+ Ȧ] + L̇+ Ȧ = Ġ the map is
open in a nbd. of (1,b). By taking a open subset ofUA we can assume
that∀a′ ∈ UA t−1 < α(a′) < t ∀α ∈ △ andUA is compact. Then∀a ∈ At

aUA ⊂ A1. If necessary, by passing to a open subset, we can assume
that the above map has maximal rank on (W∩ F) × LA1, W is compact
andW∩ Norm A ⊂ Z(A)◦. Then the setkW[LaUA] is a nbd. of identity.
It remains only to show that

⋂

a∈At ,k∈K
m∈L

(k[ma])−1(kW)[LaUA] is a nbd. of identity.

�



32 3. R-regular elements

Since for any nbd.U of 1,∩k∈Kk[U], for K compact, is a nbd. of 1,
it is sufficient to show that

(*)
⋂

a∈At ,m∈L
(ma)−1W[LaUA] is a nbd. of 1.

Let

π : GR → GR/A
set ‹W = π(W)

define fm,a : ‹W× UA × L→ G

fm,a : (WA,a′,m′) 7→ (ma)−1(w(m′aa′))

then (*) is equivalent to40

(**)
⋂

a∈At ,m∈L
Image fm,a is a nbd. of 1.

It is easy to see that the condition (**) fails iff there is a sequence of
pointsxi ∈ W× UA × L and a sequence (mi ,ai) ∈ L × At such thatxi 7→
boundary of= ‹W×UA×L in GR/A×A×L and lim

i→∞
fmi ,ai (xi) = 1. Hence

to prove (**) it suffices to show that if lim
i→∞

fmi ,ai (wiA,a′i ,m
′
i ) = 1 with

a′i ∈ UA,m′i ∈ L and if lim(wi ,a′i ,mi ,m′i ) = (w,a′,m,m′) thenw = 1 and
a′ = 1. For then it will follow that

(wiA,a
′
i ,m
′
i )→ (A,1,m)

which is not a boundary point of‹W× UA × L.
The previous statement is equivalent to

(***)





If (miai)−1(wi [m′i aia′i ]) 7→ 1 and if

(wi ,a′i ,mi ,m′1)→ (w,a′,m,m′) ∈ (W∩ F) × UA × L × L

thenw = 1 anda′ = 1.

We prove (***)
From the uniqueness of Bruhat’s decomposition it follows thatN−

R

LAN+
R

, being the image ofN−
R
× LA × N+

R
under a homeomorphism, is

open (invariance of domain).



3. R-regular elements 33

Let b ∈ A be close enough to the identity 1, so that41

w[b] ∈ N−RLAN+R ∀w ∈W.

Then

wi [b] = piciqi pi ∈ N−R , ci ∈ LA,qi ∈ N+R
and w[b] = pcq p∈ N−R c ∈ LA,q ∈ N+R .

Set bi = miai thenb−1
i = vi(wi [(m

′
i aia

′
i )
−1])

where vi = b−1
i (wi [m

′
i aia

′
i ])

∴ (b−1
i wi)[b] = vi(wi [(m

′
i aia

′
i )
−1])wibw−1

i (wi [m
′
i aia

′
i ])v
−1
i .

= viwi [b].

Sincevi → 1 andwi → w we have

lim
i→∞

(b−1
i wi)[b] = w[b]

i.e., lim
i→∞

b−1
i wi [b] = lim

i→∞
wi [b]

but b−1
i [wi [b]] = b−1

i [pi ] · ci · b−1
i [qi ]

so

lim b−1
i [wi [b]] = lim b−1

i [pi ] · ci · b−1
i [qi ]

= lim pi · ci · qi

∴ lim b−1
i [pi ] = p = lim pi

and limb−1
i [qi ] = q = lim qi .

SinceN+, N− are nilpotent. By induction on the lengths of the de-42

scending central series ofN−, N+ and using the previous lemma we get

lim pi = p = 1 = q = lim qi .

∴ w[b] = c ∈ LA
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sinceA is connected any nbd. of 1 inA generatesA we have

w[A] ⊂ LA

∴ w[A] = A

w ∈W∩ Norm A ⊂ Z(A)

∴ w ∈W∩ LA∩ F.

But from Bruhat’s decompositionW∩ LA∩ F = {1}.
∴ w = 1.

From (***)
b−1

i (wi [m
′
i aia

′
i ]) → 1.

Sincewi → 1 we have

b−1
i m′1aia

′
i → 1

∴
m−1

i m′i︸    ︷︷    ︸
∈L

a′i → 1

∴ a′i → 1 sinceL ∩ A = {1}.
i.e., a′ = 1.

This proves the Lemma.43

3.5 Lemma. Let C be a compact subset of N−
R

and let t> 1. Then there
exists a compact subset K⊂ N−

R
such that

Cb⊂ K[b] b ∈ LAt.

Proof. (By induction on the length of the derived series ofN−
R

).
Set

N◦ = N−R Ni+1 = [Ni ,Ni ]

SupposeN◦ is abelian. �

Then

ub= v[b] iff ub= vbv−1b−1b

i.e., u = vb v−1 b−1
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= v− ad b v (written in additive from)

= (1− adb)v.

Iff v = (1− adb)−1v whereadb(x) = bxb−1.44

Since (1− adb)−1 is uniformly bounded for

b ∈ LAt,
⋃

b∈LAt

(1− adb)−1C

is a subset of a compact setK. This proves the statement for the case
whenN◦ is abelian.

In general, given a fixedb ∈ LAt, by applying the above argument
to N◦/N1, we can find elementsv ∈ N◦ andn ∈ N1 such thatnub= v[b];
moreover sinceN◦ = N−

R
, asu varies over compact setC, n andv vary

over compact sets.
ub= n−1v[b] = v[n1b] wheren1 ∈ N1 and varies over a compact set

K1.
By inductionn1b = v1[b] and v1 varies over a compact set asn1

varies over compact setK1 andb overLAt.
We have

ub= v[n1b] = v[v1[b]] = vv1[b]

as bothv, v1 vary over compact setsv · v1 varies over a compact set
proving the Lemma.

Now we prove Theorem 3.2.
We can assume (see pp. 36-37) thaty ∈ LAt, t > 1. Let Sy =

G − N−Z(A)N+. Then sinceSy

∣∣∣Z(A)N+ is union ofN− orbits of lower
dimensions inGZ(A)N, Sy is Zariski closed inG. Let

x ∈ GR − Sy = N−RZ(Z)RN+R

then 45

x = u−bu+ with b ∈ LA,u− ∈ N−R &u+ ∈ N+R
xyn
= u−bu+yn

= (u−byn)(y−nu+yn)

= v[byn](y−nu+yn) for somev ∈ K (by Lemma 3.5).
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Sincey isR-regular reductive element, given a nbd.U of 1,∃n◦(U)
such that (y−nu+yn) ∈ U for n > n◦(U). Hence by Lemma 3.4,∃n◦(y, x)
such thatxyn ∈ G[LAt] if n > n◦(y, x).

3.6 Lemma. Sy contains no conjugacy class of G.

Proof. SupposeE ⊂ Sy with G[E] = E. SinceSy is Zariski closed we
can also assume thatE = E∗. Let 0= G − E, then forg ∈ N+

g[N−Z(A)N+] = g[G− Sy] ⊂ g[G− E] ⊂ G− E = 0

∴ N+[N−Z(A)N+] = N+N−Z(A)N+ ⊂ 0.

�

But

N+N−Z(A)N+ = N+N−Z(A)Z(A)N+ = N+Z(A)N−Z(A)N+

= N+Z(A)N+ N−Z(A)N+ = JJ−1 ⊂ 0

whereJ = N+Z(A)N+

SinceJ is Zariski open inG, for anyg ∈ G, gJ∩J, being intersection
of two Zariski open (hence dense) sets, is nonempty.

Therefore

g ∈ JJ−1 ⊂ 0.

∴ 0 = G

∴ E = G = 0 = φ.

This proves the assertion.46
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Discrete Subgroups

In this and the following sections we will use the following notations.47

G will denote a semi-simple (complex analytic) algebraicR−group.
GR = G ∩GL(n,R) andG∗ = G◦

R
. For any subsetS of G, S∗ andS̄ are

respectively the Zariski closure and the closure inR-topology ofS in G.
We state the following useful Theorem, for a proof the reader is

referred to [3] or [16].

4.1 Theorem. Let G be a connected algebraicR−group with noR-
compact factors and letΓ be aR-closed subgroup of GR. If GR/Γ has an
GR-invariant finite measure, thenΓ is Zariski dense in G.

Here after we assume thatΓ is a closed subgroup ofGR such that
GR/Γ has anGR invariant finite measure andG has noR-compact factors.

Now we prove a few “density” results.

4.2 Lemma. If Γ◦ is the set of reductiveR-regular elements inΓ then
Γ
∗
◦ = G.

Proof. We first show thatΓ◦ is non-empty. �

Fix an elementx of LAt, t > 1, letU be a symmetric nbd. of 1 inG.
Then since the settxnUΓ. **** have same non zero measure and since
the total measure is finite, at least two of them intersect 48

let xmUΓ ∩ xkUΓ , φ for k > m

then Γ ∩ Uxk−mU , φ

37
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i.e. for some n ≥ 1

Γ ∩ UxnU , φ.

but UxnU ⊂ U[xn] · U2.

If U is sufficiently small by Lemma 3.4U[xn] · U2 ⊂ G[LAt]. This
implies that

Γ ∩G[LAt] , φ

∴ Γ◦ ⊃ Γ ∩G[LAt] is non-empty.
Let γ◦ ∈ Γ◦, if γ ∈ Γ − Sy◦ then by Theorem 3.2,

γγn
◦ ∈ G[LAt] for all n > n◦(γ).

Set

B◦ =
{
γn
◦; n > n◦(γ)

}

then B◦ · B◦ ⊂ B◦ henceB∗◦ · B∗◦ = B∗◦.

Since the ideal of polynomials vanishing onB◦ is stable under trans-
lation by x ∈ B∗◦ and therefore under translation byx−1 for x ∈ B∗◦ (see
Lemma 1 on p. 80 [50]), we have

(B∗◦)
−1 ⊂ B∗◦

Therefore49

(B∗◦)
−1(B∗◦) ⊂ B∗◦.

∴ 1 ∈ B∗◦.

Also since

γB◦ ∈ Γ◦
γB∗◦ ⊂ Γ∗◦

∴ γ1
= γ ∈ Γ∗◦.

This proves thatΓ − Sy◦ ⊂ Γ∗◦. But sinceSy◦ is a Zariski closed
proper subset ofG, Γ − Sy◦ is Zariski dense and thereforeΓ∗◦ = G.
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4.3 Lemma. Letγ1 ∈ Γ, set

Γ1 =
{
γ
∣∣γ ∈ Γ, γ, γn ∈ Γ◦ for n > n◦(γ)

}

and Γ2 =
{
γn∣∣γ ∈ Γ1 n ≥ n◦(γ)

}

then Γ
∗
◦ = Γ

∗
◦ = G.

Proof. Since the Zariski closure of{xn,n ≥ n◦} for x ∈ G is a group (see
the proof of previous lemma)x : {xn,n ≥ n∗◦}. �

This shows that
Γ1 ⊂ Γ∗2.

Hence it is sufficient to prove thatΓ1 is Zariski dense inG. Given
y ∈ Γ◦, since by Lemma 3.6,Sy does not contain any conjugacy classes,50

∃γ such thatγ[γ1] < Sy.
∴ Ty =

{
γ, γ|γ1| ∈ Sy

}
is a proper algebraic subset ofG.

For anyγ ∈ Γ − Ty, γ[y1] < Sy so

γ[γ1]yn ∈ Γ◦ for all n > m◦(γ)

γγ1γ
−1yn ∈ γ◦ ∴ γ1γ

−1ynγ ∈ γ−1
Γ◦γ = Γ◦

i.e. γ1(γ−1[y])n ∈ Γ◦ for n > m◦(γ))

i.e. γ−1[y] ∈ Γ1 if γ < Ty

∴ γ < T−1
y impliesγ[y] ∈ γ1

∴ Γ
∗
1 ⊃ (Γ − T−1

y )∗[y].

Bur Γ − T−1
y is dense inG, so

y ∈ G∗[y] ⊂ Γ∗1
∴ Γ◦ ⊂ Γ∗1.

By the previous lemma we haveΓ∗1 = Γ
∗
◦ = G.

Following is a refinement of the above result

4.4 Lemma. Let S be a proper algebraic subset of G, let n be a positive
integer andγ1 ∈ Γ. Then∃ γ◦ ⊂ Γ◦ − S such thatγ◦, γ2

◦, . . . , γ
n
◦ and

γ1γ◦, γ1γ
2
◦, . . . , γ1γ

n
4 ∈ Γ◦ − S .
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Proof. ∀m,Sm = {x
∣∣x ∈ G, γ1xm ∈ S} ∪ {x

∣∣x ∈ G, xm ∈ S} is a proper 51

algebraic subset ofG. �

HenceS1 ∪ S2 ∪ . . . ∪ Sn is a proper algebraic subset. SinceΓ2 is
Zariski dense, we can find aγ◦ in Γ2−S1∪S2 · · · ∪Sn. Obviously such
aγ◦ satisfies the requirements of the lemma.

4.5 Lemma. Let G be a semi-simpleR-group and letRT be a maximal
R−split torus. Let T be a maximalR−torus containingRT. Set A=
(RT)◦R, H = (TR)◦. Then

(G∗[Γ] ∩ H)∗ = T.

Proof. Z(A)R = Z(RT)R = L.A. �

Since

H = (H ∩ L) · A
L◦[H] = L◦[H ∩ L] = L◦.A

and G∗[G∗[Γ] ∩ H] = G∗[Γ ∩G∗[H]]

= G∗[Γ ∩G∗[L
◦.A]]

⊃ G∗[Γ◦] ⊃ Γ◦.

By taking Zariski closure we get, sinceG∗∗ = G

G = Γ∗◦ = (G∗[G∗[Γ] ∩ H])∗ = G[(g∗[Γ] ∩ H∗)].

Therefore

dimG = dimG[(G∗[Γ] ∩ H)∗] = dimG/Z(x) + dim(G∗[Γ] ∩ H)∗

for somex ∈ H.

Since dimZ(x) ≥ dimT, we find dim(G∗(Γ)∩H)∗ = dimT and thus52

(G∗[Γ] ∩ H)∗ = T.
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Some Ergodic Properties of
Discrete Subgroups

5.1 Lemma(Mautner). Given a group B·A, where B is an additive group53

of reals or complex numbers and A is an infinite cyclic subgroup of the
multiplicative group of complex numbers a with|a| < 1 and assume that

0 is group operation is
a ◦ b ◦ a−1

= a.b
ordinary multiplication inC

Let V be a Hilbert space and letρ be a unitary representation ofB·A
on V, then any elementv ∈ V whose line is fixed underA is fixed under
B.

Proof. Sinceρ is unitary

ρ(a)v = αv with |a| = 1 for b ∈ B

< ρ(b)v, v > =< ρ(a)ρ(b)v, ρ(a)v >

=< ρ(a)ρ(b)ρ(a−1)ρ(a)v, ρ(a)v >

=< ρ(a ◦ b ◦ a−1)αv, αv >=< ρ(a ◦ b ◦ a−1)v, v >

So for∀n positive

< ρ(b)v, v > =< ρ(an ◦ b ◦ a−n)v, v >

=< ρ(an.b)v, v >

41
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asn→ ∞
< ρ(b)v, v > =< v, v >

∴ ρ(b)v = v.(use Schwarz’s inequality).

This proves the assertion. �54

5.2 Lemma. Let G be an analytic semis-simple group having no com-
pact factors. Letρ be a unitary representation of G on a Hilbert space
V, let x be a reductiveR-regular element in G, if for some element v∈ V,
ρ(x)v = αv thenρ(G)v = v.

Proof. Take the decomposition ofG with respect tox. Let A be the
group generated byx andB a root space. The previous Lemma applies.

�

Remark. The above result holds for anyx not contained in a compact
subgroup (see [11]).

5.3 Theorem. Let x be a reductiveR−regular element of G. Then x
operates ergodically on G∗

∣∣Γ, i.e. any measurable subset of G∗
∣∣Γ stable

under left translation by x is either of measure zero or its complement
has measure zero.

Proof. Let V = L 2(G∗/Γ). �

Since the measure onG∗/Γ is G∗-invariant, the canonical action of
G∗ onV is unitary.

Let Z ⊂ G∗/Γ with xZ ⊂ Z and letv be the characteristic function of
Z. Then since measure ofx−1Z − Z is zero

x.v = v.

Therefore by the previous lemma55

G∗ · v = v.

∴ v = 1 almost every where

or v = 0 almost every where.

This implies that eitherZ or G/Γ − Z has zero measure.
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Remark. Let M be a separable topological measure space [i.e. the open
sets are measurable and have positive measure] and letf : M → M be
a measurable transformation. LetA+ = { f n,n = 1,2, . . .}. Then if f is
ergodic, for almost allp ∈ M, A+p is dense inM.

[Proof: Let {Ui} be a denumerable base of open sets. Let{Wi = p|p ∈
M,A+p ∩ Ui = φ} thenWi is measurable. Alsop ∈ Wi ⇒ f p ∈ Wi

therefore f Wi ⊂ Wi . Since f is ergodic andUi ⊂ M − Wi ,Wi is of
measure zero.

∴ E =
∞⋃

i=1

Wi has measure 0

p < E impliesA+p∩Ui , φ ∀i and this proves that for almost allp ∈ M,
A+p is dense].

5.4 Theorem. Let G∗ be a semi-simple analytic linear group. LetΓ
be a subgroup such that G∗/Γ has a finite invariant measure. Let P
be aR-parabolic subgroup of G∗∗ (= the complexification of G∗). Set
P∗ = P∩G∗ thenΓP∗ = G∗.

Proof. Let T be a maximalR−split torus inP. Let x ∈ T◦
R

such that 56

for any restricted rootα on T with Gα ⊂ U+ the unipotent radical of
P, α(x) > 1. �

Let U− be the opposite (i.e.U̇− =
∑

Ġ−α whereU̇+ =
∑

Ġα) of
U+ andK∗ a maximal compact subgroup ofG∗. Also let W− be a nbd.
of 1 in U− ∩G∗ whose logarithm is a convex set. SinceW−P∗ is a nbd.
of 1 in G∗, andK∗ is compact∃ a nbd.W of 1 in G∗ with W ⊂ W−P∗
andK∗[W] =W.

UxnWΓ is stable underx and contains an non-empty open set, hence
by Theorem 5.3 it differs fromG

∣∣Γ in a set of measure zero. Therefore
∃ n = n(k) such that

W−1k−1
Γ ∩ xnWΓ , φ

∴ Γ ∩ kWxnW , φ,

but xnW ⊂ xnW−P∗ = xnW−x−n · P∗ ⊂W−P∗
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(using the convexity of logarithm ofW−)

∴ Γ ∩ kWW−P∗ , φ

∴ ΓP∗ meetskWW−.

This proves thatK∗ ⊂ ΓP∗. ∴ K∗P∗ ⊂ ΓP∗ ⊂ G∗.
But we know thatK∗ · P∗ = G∗.
ThereforeG∗ = ΓP∗.



Chapter 6

Real Forms of Semi-simple
Algebraic Groups

In this and the following sections,G will denote a semi-simpleR-groups 57

RT a maximalR-split Torus,T a maximalR−torus containingRT; R△ a
fundamental system of restricted roots onRT, a fundamental system of
roots onT whose restriction toRT consists ofR△ ∪ {0} (such a△ can
always be found).Φ,Φ+ will denote respectively the set of roots and the
set of positive roots andΦ∗ the set of positive roots whose restriction to
RT is non-zero.△◦ will denote the subset of△ consisting of those roots
which are constant onRT.

Givenα ∈ Φ we defineα′ ∈ Φ by the formulaα′(x̄) = α(x)∀x ∈ T,
x̄ is complex conjugate ofx. Then for anyα ∈ △◦ α′ = −α on△ − △◦.
We can define a permutationσ by

α′ = σ(α) +
∑

nββ
β∈△◦ nβ non-negative integers.

Satake’s Diagrams of semi-simpleR−groups.

In Dynkin’s diagram every root in△◦ is denoted by a back circle•
and every root of△−△◦ by a white circle◦. If α ∈ △−△◦ then the white
circles corresponding toα andσ(x) are joined by a arrow}} "" .

Definition. GR is said to beR-simple if (GR)◦ has no proper normal
subgroups of positive dimension.

45



46 6. Real Forms of Semi-simple Algebraic Groups

If GR is R-simple, butG is not simple thenĠ = restriction Ḣ = 58

Ḣ ⊗R C, whereḢ is a simple Lea algebra overC/R
Thus Ġ = Ḣ ⊕ Ḣ, and the diagram oḟG consists of two copies

of Dynkin’s diagram ofḢ, with vertices corresponding under complex
conjugation joined by arrows

0 0 0 0

0 0 0 0

...

...

Real forms of semi-simple Lie groups have been determined byF-
Gautmacher (cf. Matsbornik (47) V. 5 (1939) pp. 217-249).

The following is a complete list ofC-simpleR-groups (cf. [1], [20]
& [24]).

1 = ♯ △ p = ♯R△

Group △ Type of
R△

p

A I S L(l + 1,R) 0-0-0-0-...-0 A1 p = 1
A II S U∗(l + 1) 0-0-0-0-0-0----0000 Ap p = l−1

2

A III S U(p,q)

(p < q, p+ q = l + 1)

0 0 0 0

0 0 0 0

Bp p ≤ 1/2

S U
(

l+1
2 ,

l+1
2

)
0 0 0 0

0 0 0 0

...

...

0 Cp p = l+1
2

B I S0(p,2l + 1− p) 0-0-0-...-0-0-0-...00 0 0 0 Bp p ≤ 1
C I Sp(n,R) 0-0-0-----0 0 Cl

C II Sp(p, l − p) 0-0-0-0----0-0-0-0 000000 Bp p ≤ l−1
2 , l

odd
Sp(l/2, l/2) 0-0-0-...- 0000 Cp p = l/2, l

even

D I S O(p,2l − p) 0-0-0-0...-0-0-...0
0

0
00 Bp p ≤ l − 2

S O(l.l) 0-0-0-...-
0

0
0 D1
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S O(l − 1, l + 1) 0-0-0-0-...-
0

0
0 Bl−1

D III S O∗(21) 0-0-0-...-0-0-

0

0

0 Bp p = l−1
2

S O∗(21) Cp p = l/2

E6 A2

B2

E6

E7 C3

E7 F4

E8 F4

F4 F4

∨1

G2 G2

59

Definition. R-rank of an algebraic group is the dimension of a maximal60

R-split torus.

From the diagrams above, we can excerpt the diagrams of groups of
R-rank 1 and we list the dimension of the restricted root spaces.

Let △ − △◦ = {α}
Associated symmetric space diagram dimĠ2 dimĠ

0 0 1
Hyperbolic





... 0 2l − 1
......

0 2l − 2
Hermitian hyperbolic ...... 1 2l − 2
Quaternianic hyperbolic ... 3 4l − 8
Cayley hyperbolic 7 8

Now we collect some results whose proof require examining these61

diagrams.
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6.1 Lemma. If N is the set of automorophisms of G stablizing T andT
R
,

then any automorphismτ of restricted root systemRΦ is induced by an
element of N.

Proof. The result is true for inner automorphisms (i.e. elements in little
Weyl group). For given any elementσ ∈ N(RT), bothσTσ−1 andT are
contained inZ(RT) and therefore are maximalR-tori of the connected
algebraic groupZ(RT). By the conjugacy of maximal tori,∃z ∈ Z(RT)
such that

zσTσ−1z−1
= T i.e., zσ ∈ N(T)

The inner automorphism given byzσ is the desired element ofN. �

In caseτ, is an outer automorphism we can without loss of generality
assume thatτ(R△) = R△.

From the usual root diagrams it is clear that only the restricted root
systems of typeA, E andD1 admit an outer automorphism.

In caseA andE the automorphism is an inner automorphism com-
posed with the “opposition” mapα 7→ −α; since each of these extend to
Φ, then so does the outer automorphism.

If the restricted diagram is of typeDl then the Satake diagram shows
that△ = R△; that is the group splits overR and hence the conclusion is
hypothesis.

6.2 Lemma. If [Z(RT),Z(RT)] = J thenJ̇ = J̇1 + J̇2 is simple (possibly62

zero) andJ̇1 is sum of compact Lie algebras of rank 1.

Proof. We remark first that△◦ is a fundamental system of roots forJ.
Now simply observe that the diagram of△◦ satisfies the condition re-
quired by the conclusion. �

Note. J̇2 is of rank 1 only if the group isS p(1,2).

6.3 Lemma. Let W∗ be the subgroup of the Weyl group of T, which
stabalizerRT. Then W∗ is irreducible onJ̇1 ∩ Ṫ andJ̇2 ∩ Ṫ .

Proof. J̇2 ∩ Ṫ is a cartan subalgebra of the simple Lie algebraJ̇2 and,
as is well known, the Weyl group of a simple Lie algebra operates ir-
reducibly of its associated Cartan subalgebra. It remains only to prove
thatW∗ is irreducible onJ̇1 ∩ Ṫ. �
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Inspection of the position of△◦ in △, as pictured in the diagrams
shows thatJ̇1 is contained in a subalgebra of typeA2p−1 with the dia-
gram .

As is known, the Weyl group ofA2p−1 ≈ S L(2p) is the group of
permutations of the standard basis vectorse1, . . . ,e2p in C2p. The roots
△◦;1 of J̇1 become identified with{α2i−1 − α2i , i = 1, . . . p} whereαi

denotes theith matrix coefficient. Clearly the stabalizer oḟJ1 contains
the conjugation by the matrix sending each.e2i−1 → e2π(i)−1 ande2i →
e)2π(i), for any permutationπ of {1, . . . , p}. Since these automorphisms
of J̇1 induce the full symmetric group on the elements of the set△◦,1,
we conclude thatW∗ is irreducible onJ̇1 ∩ Ṫ.

6.4 Lemma. Let G1, G2 be twoC-simpleR-groups. Assumeτ : T1 → 63

T2 is an isomorphism sendingRT1→ RT2 andΦ∗1→ Φ∗2. ThenĠ1 ≈ Ġ2

andτ|RṪ1 can be induced by an isomorphism ofĠ1 andĠ2.

Proof. Suppose first thatp, theR-rank ofG1 andG2 is one. Then the
τ-corresponding restricted root spaces must have the same dimension.
The listed values in our table for dimGα and dimG2α show that these
determine the group ofR-rank 1. ThusĠ1 ≈ Ġ2 in the rank 1 case.
Moreover, the isomorphismθ of Ġ1 to Ġ2 can be taken so as to map the
restricted root spaces oḟG1,α of Ġ1 to the restricted root spacėG2,τ(α) of
Ġ2. It follows at once thatθ andτ induce the same map onRṪ and thus
the lemma is proved forp = 1. �

Suppose now that♯R△ > 1. We need only consider the case that
the groups are not split overR (i.e.,△ , R△), otherwise the result is a
well-known theorem of Weyl. Assuming therefore that△ , R△ we find
that the restricted root diagrams are of typeA, B,C, F4. In neither of
these cases does the Dynkin diagram ofR△ have a branch point. There-
fore given a Satake diagram△ of a nonR-split group, one can form a
sequence of the subdiagrams△(1) ⊂ △(2) . . . ⊂ △(p)

= △ such that

(a) ♯R△(k)
= k

(b) △(k+1)
= △(k) ∩ Dk+1 where♯RDk+1

= 1.

(c) Dk ∩ Dk+1
= Dk+1 ∩ △(k).
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Given now the two groupsG1 andG2 and the mapτ, we decompose64

the Satake diagram△i of Gi as above, getting△i = △(p−1)
i ∪ Dp

i . By
induction there are isomorphismsθ(p−1) : △(p−1)

1 → △(p−1)
2 and θp :

Dp
1 → Dp

2 induced by isomorphisms of the corresponding Lie algebras
Ġ(p−1)

i andFp
i . Letϕ denote the restriction ofθ−1

p · θp−1 to Ġ(p−1)
1 ∩ Ḟp

i .

Set△p
i,◦ = △

(p−1)
i ∩Dp

i . Then△p
i,◦ is connected since the root diagram

△ has no loops. In fact by property (c) △p
i,◦ = Dp−1

i ∩ Dp
i and is in fact

a connected component in△i,◦, the diagram of theR-compact part of
Z(Ti). An additional inspection of the diagrams shows that no connected
component of the diagram ofZ(T1) admits an (outer) automorphisms.
Henceϕ is an inner automorphisms oḟG(p−1)

1 ∩ Ḟp
1 and thus extends to

an automorphismsχ of Ġ1. Replacingθp by θp ·χ, we obtain the derived
isomorphisms ofĠ1 ontoĠ2.

The following is an easy consequence of previous lemma.

6.5 Theorem. Let G be a semisimpleR-group having no compact fac-
tors. Letτ : T → T be an isomorphism which stabilizesRT andΦ∗.
Then there exists an automorphismθ of G such thatθ ·τ stabilizes T and
onRT it is identity.

6.6 Lemma. Let G be a semisimpleR-group with noR-compact factors.
We also assume that GR is simple ofR-rank 1. Ifτ is an automorphisms
of T stabilizingRT andΦ∗, then it stabilizesJ̇ ∩ Ṫ , J̇1 ∩ Ṫ andJ̇2 ∩ Ṫ .65

Proof. Let
B∗ =

∑

α∈Φ∗
α2

Thenτ preservesB∗. Let B, B◦ denote the killing forms ofG andZ(T)
respectively thenB = B◦ + 2B∗. So any two subspaces ofṪ orthogonal
with respect to bothB andB◦ are orthogonal with respect toB∗. �

Let X,X′ ∈ J̇1 andY ∈ J̇2, then

B([X,X′],Y) = −B(X′, [X,Y]) = 0

and since [̇J2, J̇2] = −J̇2, we haveB(J̇1, J̇2) = 0 similarly B◦(J̇1, J̇2) = 0

∴ B∗(J̇1 ∩ Ṫ, J̇2 ∩ Ṫ) = 0.
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Composingτ with an automorphisms oḟG, we can assume by the
Theorem 6.5 thatτ induces identity onRT. Thusτ stabilizes the set
of all roots having a non-trivial restriction onRT and we can assume
accordingly thatR△ consists of a single element, and that the set of
positive roots inRΦ is either{ᾱ} or {ᾱ,2ᾱ}. Let S denote the set of
roots restricting to ¯α · τ stabilizesΦ∗ and therefore also the setS − S of
differences of roots inS. These differences clearly lie in linear span of
{△◦}, conversely, given any rootβ ∈ {△◦} we shall show thatβ occurs in
S − S. We can assumeβ > 0.

The hypothesis thatG contains noR- compact factors is tantamount66

to the hypothesis that{Gα,±α ∈ S} generatesG. Hence< β,S >, 0.
Let α be the least root inS for which < β, α >, 0. Thenσβ(α) =
α + q(α, β)β is a root whereq(α, β) = −2<α,β>

<β,β> is a positive integer. Thus
α + q(α, β)β ∈ S andβ ∈ S − S. Hence{S − S} = {△◦} as asserted.

Thereforeτ stabilizes the intersection of the kernels of the linear
functions in△◦ e.g.τ stabilizesZ(J) ∩ Ṫ. Now J̇ ∩ Ṫ is the orthogonal
complement ofZ(J)∩ Ṫ with respect to both killing formsB andB◦ and
therefore with respect toB∗ = B−2B◦. Sinceτ stabilizesB∗, it stabilizes
J̇ ∩ Ṫ.

Having assumed thatG hasR-rank 1, we see thatτ is simple in all
cases exceptG = Cl(l = 3) orG = D3. In the second casėJ = J̇1, J̇2 = 0
and the Lemma is established. In caseG = Cl(l = 3) the diagram is

and the roots inΦ∗ having the same restriction toRT as 2α2 are 2α2 +

. . .+2αl−1+αl ; α1+2α2+. . .2αl−1+α1, 2α1+2α2+. . .+2αl−1+αl . Since
τ permutes this set, it permutes the differences and thereforeτα1 = ±α1.
Henceτ stabilizesṪ2 = kerα1 ∩ J̇, and therefore stabilizeṡT1 which is
the orthogonal complement ofṪ2 in Ṫ ∩ J̇ with respect toB∗. The proof
of the Lemma is now complete.





Chapter 7

Automorphisms ofΦ∗

7.1 Lemma. Let G be anR-group with no compact factors. Letτ : Ṫ → 67

Ṫ be a automorphism stabilizingRT andΦ∗ thenτ preserves the Killing
form.

Proof.
Ṫ = (J̇1 ∩ Ṫ) + (J̇2 ∩ Ṫ) + (Z(J̇) ∩ Ṫ)

we know that (i)τ preservesB∗ =
∑

α∈Φ∗
α2 (ii) the three subspaceṡJ1 ∩

Ṫ, J̇2∩ Ṫ andZ(J̇)∩ Ṫ are stable underτ and (iii) if W∗ is the subgroup
of Weyl group stabilizingRT then J̇1 ∩ Ṫ and J̇2 ∩ Ṫ are irreducible
underW∗. �

SinceB∗ andB are preserved byW∗, Bi = Ci B∗i i = 1,2. ci , 0.
HereBi , B∗i (i = 1,2) are restrictions tȯJi ∩ Ṫ of B, B∗ respectively. Let
B3, B∗3 are restrictions toZ(J̇)i ∩ Ṫ of B, B∗ respectively, thenB3 = B∗3.

Hence onT, B = B∗3 + C1B∗1 + C2B∗2. As τ preservesB∗1, B
∗
2& B∗3 it

also preservesB.

7.2 Lemma. Let G be an R-group without compact factors and letτ :
Ṫ → Ṫ be an automorphism stabilizingRṪ andΦ∗ thenτ is restriction
to Ṫ of an automorphism oḟG.

Proof. Let W′ be the subgroup of Weyl group ofT generated by{σα,
α ∈ Φ∗}. We shall first prove thatW = W′. GivenB ∈ {△◦}, < β,Φ∗ >,
0 sinceG has noR-compact factors and hence{G±α, α ∈ Φ∗} generates
G. �

53
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We can findα ∈ Φ∗ with < β, α >< 0.
As68

σα(β) = β + q(β, α)α whereq(β, α) =
−2 < β, α >
< α, α >

> 0

σσα(β) ∈ Φ∗

∴ σσα(β) ∈W′ butσσα(β) = σασβσ
−1
α

∴ σβ = σ
−1
α σσα(β)σα ∈W′ for all β ∈ {△z}

∴ W′ =W.

τσατ
−1
= στ(α) is a reflection since forα ∈ Φ∗τ(α) ∈ Φ∗

τW′τ−1
=W′

∴ τWτ−1
=W.

Thusτ permutes reflections inW, i.e. τ permutes the set{σα, α ∈
Φ}.

∴ τΦ = Φ

∴ τ extends to an automorphisms oḟG.



Chapter 8

The First Main Theorem

This section is devoted to the proof of 69

8.1 Theorem. Let G∗ be a semi-simple analytic group with no compact
factors and no center. K be a maximal compact subgroup. Let X=
G/K and letΓ,Γ′ be two discrete subgroups of G∗, isomorphic under
an isomorphismθ : Γ → Γ′. We assume that G∗

∣∣Γ,G∗
∣∣Γ′ have finite

Haar measure. Let X◦ be the unique compact G∗ orbit in some Satake-
compactification of X. Letϕ : X→ X be a homeomorphism such that (i)
ϕ(γx) = θ(γ)ϕ(x) ∀γ ∈ Γ, x ∈ X: (ii) ϕ extends to a homeomorphism of
X∪X◦ whose restriction to X◦ is a diffeomorphism of X◦, thenθ extends
to an automorphisms of G∗.

[Conjecture. Condition (ii) is superfluous ifG has no factors iso-
morphic toPS L(2,R).]

For the proof of the theorem we need following lemmas.

8.2 Lemma. Let G be a connected reductive linear algebraic group. Let
kT be a maximal k-split torus and T be a maximal k-torus containing kT .
Let t1, t2 be elements in kT conjugate in G. Then t1, t2 are conjugate by
an element in Norm(KT)∩ Norm T.

Proof. From Bruhat’s decomposition

G = N+(Norm kT)N+.

Suppose

xt1x−1
= t2 with x ∈ G

55
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and x = u w v u, v ∈ N+,w ∈ NormkT

then70

uwvt1 = t2uwv

∴ uwt1t−1
1 [v] = t2[u]t2wv.

�

By the uniqueness of Bruhat’s decompositionwt1 = t2w. Thust1, t2
are conjugate byw (Norm kT). SinceT andwTw−1 are contained in
Z(kT), by the conjugacy of maximal tori,∃λ ∈ Z(kT) such thatλTλ−1

=

wTw−1 i.e.,λ−1wTew−1λ = T i.e.,λ−1w ∈ Norm (kT) ∩ NormT.
It is clear thatt1 andt2 are conjugate byλ−1w.

8.3 Lemma. Let G be the Zariski closure of a real linear algebraic
group G∗, let RT be a maximalR-split torus in G and T be a maximal
R-torus containingRT. WA

= NormRT. P∗ be the stabalizer in G∗ of
a point in X◦, P the Zariski closure of P∗,U the unipotent radical of P.
We assume that P⊃ T. RU the set of roots occurring in U,RN+ the set
of roots occurring in N+, then

WA(RU) = ±RN+ .

Proof. From our description of Satake compactfication in § 2, we know
thatP = P(△′) for some△′ ⊂ R△. Indeed in the notation of § 2,△′ = Eρ

whereρ is anR-irreducible representation with finite kernel, and thus
P(△′) contains no normal subgroup of positive dimension, equivalently,
the subset△′ contains no connected component of the fundamental sys-
tem of restricted rootsR△. �

We haveP(△′) = G(△′). N(△′), U = N(△′) and N+ = N(φ). It71

is easy to see that ifR△ is connected, thenRU contains a root whose
restriction toRT has length equal to the length of any restricted root in
R△. We recall that the Weyl group of a connected root system permutes
transitively all roots having the same length. Applying this observation
to each connected component ofR△, we findWA (restriction ofRU to
RT)= all restricted roots. Hence

WA(RU) = ±RU+ .
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8.4 Lemma. Let A = (RTR)◦ and let b ∈ L.A = Z(RT)R. Then b is
R-regular iff b keeps fixed exactly m/m◦ points [here m= ♯WA and m◦=
order of the Weyl group of G(△′)] and on the tangent space at these
points, the eigenvalues are different from 1 in absolute value.

Proof. Let U− denote the opposite ofU. Supposeb is R-regular then
the eigenvalues ofb on tangent spaces at the points fixed underb are the
values ofWA(RU−) on b. Conversely ifb ∈ LA has only finitely many
fixed points onX◦, thenb isR-regular. The Lemma is now clear. �

8.5 Lemma. Let G∗, Γ, Γ′ be as in the hypothesis of the Theorem 8.1.
Letγ be a reductiveR-regular element ofΓ. Thenθ(γ) is also reductive
R-regular.

Proof. Let p◦ ∈ X◦ and letP∗ be the stabilizer ofp◦ in G∗. Forg ∈ P∗ 72

we denote by ˆg the operation ofg on Ġ∗/Ṗ∗. An elementg ∈ P∗ is re-
ductiveR-regular iff AdN+g has eigenvalues different from 1 in absolute
value; this will be true ifg keeps fixedm/m◦ points ofX◦ = G∗/P∗ and
on each of the tangent spaces at the fixed points, takes eigenvalues, 1
in absolute value. �

Thusg ∈ G is reductiveR-regular iff it keeps fixedm/m◦ points in
X◦ and on the tangent space each point has eigenvalues, 1 in absolute
value. From this it will follow that ifγ is R-regular thenθ(γ) is also
R-regular.

Remark. If G is a reductive algebraic group over any fieldk, then it
follows immediately from definitions that an element ofG is k-regular
iff it keeps only a finite number of points inG/p fixed for∀P = P(△′).
△′ ⊂ k△. It can be proved that the element is reductive iff the number
of fixed points is order of the Weyl group ofG

order of the Weyl group of P(i.e. ofC(△′)) ; it is unipotent iff the
number of fixed points is precisely 1.

8.6 Lemma. If H = T◦
R
, there exists an automorphismτ of H and a

Zariski dense subset Hτ ofR-regular elements in H such that∀h ∈ H, h
andτ(h) operate equivalently on X◦, i.e., there exists a diffeomorphism
Φ◦ of X◦ such that h= Φ−1

◦ τ(h)Φ◦.
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Proof. Let A1
= {a; a ∈ A α(a) > 1∀α ∈ R△}. Let K be a maximal

compact subgroup ofG∗. RecallZ(RT)R = L.A. We can assume tht
K ⊃ L. Let (1) be the projection of 1 inX = G∗/K. �

Let p◦ = lim
n→∞

an(1), a ∈ A1 and letP∗ be the stabilizer ofp◦.73

P = P(△′) = P(Φ).

SetV = tangent space toX◦ at p◦, thenV ≈ Ġ∗/Ṗ∗. Let g ∈ P∗ and
let ĝ denote the operation ofg on V. If H ⊂ P∗, Ĥ ⊂ C; whereC is a
Cartan subgroup ofGL(V).

Let W = N(C)
Z(C) be the Weyl group ofC. For any elementγ ∈ Γ set

γ′ = θ(γ).
Given a reductiveR-regular elementγ of Γ, there exists ag ∈ G∗

such thatg[γ] belongs toH ∩ LA′. The elementθ(γ) is also reductive
R-regular. Therefore∃g′ ∈ G∗ such thatg′[γ′] ∈ H ∩ LA1.

Since

ϕ(γp) = θ(γ)ϕ(p)m, we can write

θ(γ) = ϕγϕ−1(= ϕ[γ])

g′[γ′] = g′[ϕ[γ]] = g′[ϕ[g−1g[γ]]]

∴ g′(γ′) = g′ϕg−1[g[γ]]

g′ [̂γ′] = σyg[γ]̂(σy)−1

whereσγ is the differential ofg′ϕg−1 at p◦.
Therefore there is an elementτγ in W, the Weyl group ofC such that

g′ [̂γ′] =ÿ�τγ(g[γ]).

For any elementw ∈W, let Hw denote the subset ofH∩LA′∩G∗[Γ]74

on which the mapγ → τγ is constant. SinceH ∩ LA′ ∩G∗[Γ] is Zariski
dense inH andW is finite, there exists aτ ∈ W such thatHτ is Zariski
dense inH. Denoting Zariski closure by superscript∗, we can write

H∗τ = H∗
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since

τ(Hτ) ⊂ H

∴ τ(H∗) = H∗ and thereforeτ(H) = H.

Thusτ induces an automorphism ofH, and by definition,h andτ(h)
operate equivalently onx◦ for all h ∈ Hτ.

Proof of the Theorem 8.1.

Let S1 =
⋃

w∈W
Hw not Zariski dense

Hw and letS = S∗1∪ nonR-regular ele-

ments inH.
Then clearly

S∗ , H∗.

Let τ be an automorphism ofH given by the previous lemma. Then
τ permutes the rootsΦ∗, that is

{α(h); h ∈ Hτ, α ∈ Φ∗} = {α(τ(h));α ∈ Φ∗,h ∈ Hτ}

By the lemma 8.3τ permutesΦ. Hence TrAdg[γ] = Tr Ad(g′[γ′]) 75

that is, TrAdγ = Tr Adγ′ ∀g ∈ Γ ∩ G∗[Hτ]. It follows that Tr Adγ =
Tr Adγ′ for all γ ∈ Γ ∩G∗[H − S1].

SinceG is without center we can identify it withAdG.
Given γ ∈ Γ andS ⊂ H with S∗ , H∗ andn any positive inte-

ger, by Lemma 4.4.∃γ◦ ∈ Γ ∩ G[H − S] such thatγ◦, γ2
◦, . . . γ

n
◦, γγ◦,

γγ2
◦, . . . γγ

n
◦ ∈ G[H − S].

Let n = dimG. Then Tr (γγm
◦ ) = Tr θ(γγm

◦ ) = Tr θ(γ)θ(γ◦)m for
m = 1, . . .n. We can write 1= c1γ◦ + c2γ

2
◦ + · · · + cnγ

n
◦ = f (γ◦) by

setting the characteristic polynomial ofγ◦ equal to zero.
Then

Tr γ = Tr γ f (γ◦) =
n∑

m=0

Tr (cmγγ
n
◦)

=

n∑

m=0

cm Tr θ(γ)θ(γ◦)
m
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= Tr θ(γ) f (θ(γ◦)).

But Tr γm
◦ = Tr θ(γ◦)m for m = 1, . . . ,n and thusγ◦ andθ(γ◦) have

the same characteristic polynomial, by Newton’s formulae.
Hencef (θ(γ◦)) = 1 and Trγ = Tr θ(γ) for all γ ∈ Γ.

Suppose
∑

γ∈Γ
Cγγ = 0). Then 0= Tr

Ñ
∑

γ∈Γ
Cγγ

∑
dγ∗γ

∗

é
∀dγ∗ ∈ C

∀γ∗ ∈ Γ. This will imply

Tr

Ñ
∑

γ∈Γ
Cγθ(γ) ·

∑

γ∗∈Γ
dγ∗θ(γ

∗)

é
= 0

Let E denote theC linear span ofΓ. ClearlyE is an associative76

matrix algebra. By the density theorem (that the Zariski closure ofΓ is
G), the linear span ofΓ s linear span ofG∗. Thus Tr

∑

γ∈Γ
Cγθ(γ)e= 0 for

all e ∈ E.
We can (and we will) assume thatAdG is self adjoint. The we can

assert
Tr (
∑

Cγθ(γ))t
∑

Cγθ(γ) = 0

This implies thatt
∑

Cγθ(γ) = 0. Thereforeθ induces a linear iso-
morphism ofE ontoE, since

∑
Cγγ = 0 implies

∑
Cγθ(γ) = 0. Clearly

θ is anR-algebra automorphismθ(Γ∗) ∩ ER = (θ(Γ))∗ ∩ ER implies that
G∗ = G◦

R
= (G ∩ ER)◦ = θ((G ∩ ER)◦) = θ(G∗), sinceΓ andθ(Γ) are

Zariski dense inG.
Thus we have proved thatθ extends to an automorphism ofG∗.



Chapter 9

The Main Conjectures and
the Main Theorem

Let G be a real analytic semi-simple group with no center and no com-77

pact factors, and letK be a maximal compact subgroup. LetX = G/K
and letΓ, Γ′ be two discrete subgroups ofG, isomorphic under an iso-
morphismθ : Γ→ Γ′. We assume thatG/Γ, G/Γ′ have finite Haar mea-
sure. Letϕ : X → X be a homeomorphism such thatϕ(γx) = θ(γ)ϕ(x)
to ∀γ ∈ Γ andx ∈ X. Then

Conjecture 1.θ extends to an analytic automorphism ofG providedG
contains no factor locally isomorphic toS L(2,R).

Conjecture 2.Let X◦ be the unique compactG-orbit of a Satake com-
pactification ofX. Thenϕ extends to a homeomorphism ofX ∪ X◦.
Let ϕ◦ be the restriction toX◦ of the extension, thenϕ◦Gϕ−1

◦ = G as
transformation ofX◦, providedG has no factor locally isomorphic to
S L(2,R).

It is not difficult to see that Conjecture 2 implies Conjecture 1. In-
deed we remark first thatG operates faithfully onX◦, sinceG has no
compact factors and no center. SinceX is topologically dense inX∪ X◦
we haveϕ◦(γx) = θ(γ)ϕ◦(x) for all x ∈ X◦ and allγ ∈ Γ; that is,θ(γ) =
ϕ◦γϕ

−1
◦ as transformations ofX◦. If ϕ◦Gϕ−1

◦ = G, theng 7→ ϕ◦gϕ−1
◦

is a continuous automorphism ofG with respect to the compact open

61
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topology ofG as a transformation group ofX◦. As is well-known; this
implies thatg 7→ ϕ◦gϕ−1

◦ is a continuous automorphism of the analytic
groupG and hence an analytic automorphism.

The following example shows thatS L(2,R)/ ± 1 violates the con-78

jecture.

9.1 Example.Let G = S L(2,R)/ ± 1, K = S O(2,R)/ ± 1. ThenX is
the upper half plane withG operating as linear fraction transformations
z→ az+b

cz+d . Alternatively, we may identifyX with the interior of the unit
ball in the plane.

Let S andS′ be two compact Riemann surfaces of genus> 1 which
are diffeomorphic but not conformally equivalent. LetΓ = π1(S) and
Γ
′
= π1(S′) be the fundamental groups ofS andS′. Let ψ : S → S′

be a diffeomorphism, letθ : Γ → Γ′ be the induced isomorphism of
fundamental groups, and letϕ : X → X be the lift ofψ to the simply
connected covering spaces ofS andS′; by uniformization theory, the
latter may be identified withX. Thenϕ(γx) = θ(γ)ϕ(x) for all γ ∈ Γ, x ∈
X. As transformation groups onX we can therefore writeΓ′ = ϕγϕ−1.
HoweverG , ϕGϕ−1 unlessϕ is a Mobius transformation ofX.

Pursuing the example further, the mapϕ is a so-called quasiconfor-
mal map (cf. next sections for definitions and properties) and therefore
induces a homeomorphismϕ◦ of the boundaryX◦ of the unit ball. Then
ϕ◦Γ

′ϕ−1
◦ = Γ

′ as transformations ofX◦ sinceX is dense inX∪X◦. How-
everG , ϕ◦Gϕ−1

◦ unlessϕ◦ is a Moebius transformation of the circle
X◦.

The following trivial example serves to illustrate that onceθ is given79

ϕ◦ is uniquely determined by contrast withϕ which is not unique; and
thatϕGϕ−1

= G is not necessary even whenϕ◦Gϕ−1
◦ = G.

9.2 Example.Let Γ = Γ′, θ = Identity, ψ a homeomorphism which is
the identity map except on some small neighbourhood ofX/Γ. Then
ϕGϕ−1

, G since otherwiseϕ would have to be the identity map. How-
everϕ◦ is the identity map and in particularϕ◦Gϕ−1

◦ = G.

In these lectures we prove a slightly modified form of conjecture 2
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for the groupG = 0(1,n)/ ± 1 wheren > 2. More precisely

9.3 Theorem. Let G= 0(1,n)/ ± 1, n > 2, and let X be the associated
Riemannian space. LetΓ, Γ′ be discrete subgroups such that G/Γ and
G/Γ′ have finite Haar measure. Letϕ : X → X be a homeomorphism
andθ : Γ→ Γ′ an isomorphism such thatϕ(γx) = θ(γ)ϕ(x) for all γ ∈ Γ,
x ∈ X. Assume thatϕ is quasi-conformal (cf. below for definition) then
ϕ induces a diffeomorphismϕ◦ of the boundary component X◦ of the
Satake compactification of X and moreoverϕ◦Gϕ−1

◦ = G.

Note.The condition thatϕ be quasi-conformal is automatically fulfilled
if G/Γ andG/Γ′ are compact andϕ is diffeomorphism.

The proof of this theorem is based on the theory of quasi conformal
mappings cf. [17]. In the following section we present a summary of
our proof.





Chapter 10

Quasi-conformal Mappings

Definition. Möbiusn-space is the one point compactification of eucli-80

deann-spaceRn, it will be denoted byRn ∪ {∞}.

GM(n) the Möbius group of M̈obiusn-space is the group of trans-
formations generated by “inversion” in the sphereSn

η2
1 + η

2
2 + · · · + η2

n+1 = 1.

If we setηi =
yi
yi

(i = 1, . . . ,n+1) thenSn is realized as the projective

varietyy2
◦−y2

1−−−−−y2
n+1 = 0, and one can prove thatGM(n) becomes

identified with 0(1,n+ 1)/ ± 1([17]p.57).

10.1 Theorem. The subgroup G′ of GM(n) which stabilizes the hemi-
sphere S−(ηi+1 < 0) is isomorphic to GM(n − 1) under the restriction
homomorphism into its action on the equatorial n− 1 sphereηn+1 = 0.
Moreover G′ operates transitively on S− and keeps invariant a positive
definite quadratic differential form dS2. Under stereographic projection
from (0,0, . . . ,0,1), S− maps onto the unit ball x21 + · · · + x2

n < 1 and its

invariant metric dS2 upto a constant factor becomesdx2

1−|x|2 , where dx is
usual euclidean metric. (loc. cit. pp. 58-59)

The unit ball|x| < 1 with metric dx2

1−|x|2 wheredx is euclidean met-
ric, is a Riemannian space called the hyperbolicn-space, the isotropy
subgroup at a point is 0(n) (In this realization of hyperbolic space, the
isometries of hyperbolic metric preserve euclidean angles).

65
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Hence the spaces have constant curvature. 81

We introduce following notations:
Let V, W be two Riemannian spaces and letϕ : V → W be a home-

omorphism.
Let

Lϕ(p, r) = sup
d(p,q)=r

d(ϕ(p), ϕ(q))

lϕ(p, r) = inf
d(p,q)=r

d(ϕ(p), ϕ(q))

Hϕ(p) = lim
r→0

Lϕ(p, r)
lϕ(p, r)

Iϕ(p) = lim
r→0

Lϕ(p, r)
r

.

Jϕ(p) = lim
r→0

m(ϕ(Tr (p)))
(mTr (p))

m is the Hausdorff measure. *** and *** where for any subsetE of V,
Tr (E) denotes the tubulor neighbourhood ofE of radiusr.

Tr E = {v; v ∈ V d(v,E) ≤ r}

Definitions. *** is said to bequasi-conformaliff there exists a constant
B with Hϕ(p) ≤ B ∀p ∈ V.

A quasi-conformal is said to bek-quasi-conformaliff Hϕ(p) ≤ k for
almost allp ∈ V.

The foregoing definition is not well-suited for proving some of the
basic theorems concerning quasi-conformal mappings. The develop-
ment below leads to an alternative definition of quasi-conformal map-
ping in terms of the modulus of a shell.

Definitions. A shell Din Möbiusn-spaceRn∪{∞} is an open connected82

set whose complement consists of two connected componentsC◦ and
C1. A shell not containing the point∞ is called ashell inRn. The com-
ponentC1 of its complement which contains∞ is the unboundedcom-
ponent and the other componentC◦ will be referred to as thebounded
component.
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For a shellD in Möbius-n space, we define itsconformal capacity

C(D) = inf
u

∫

D
|▽u|ndD

whereu varies overC1-functions withu(c◦) = 0u(c1) = 1 C◦,C1 being
connected components of the complement ofD. We will call such a
function u a smooth admissible function. It is easy to see thatC(D)
is invariant under conformal mapping, since the integral

∫
D |▽u|ndD is

invariant.
Let Cn−1 denote the area of the surface of the unitn-ball. Then we

define

mod D =
Å

Cn−1

C(D)

ã 1
n−1

.

10.2 Example.If Da,b = m{x, x ∈ Rna < |x| > b} then

C(Da,b) = Cn−1

Å
log

b
a

ã−(n−1)

and modDa,b = log
b
a
.

Proof. Let u be a smooth admissible function forDa,b then 83

1 ≤
∫ b∫

a

|▽u|dr =

b∫

a

|▽u|r
n−1

n r−
n−1

n dr.

�

By Hölder’s inequality

1 ≤
b∫

a

|▽u|dr <

Ñ b∫

a

|▽u|nrn−1dr

é1/nÇ∫ b

a
r−1dr

å n−1
n

raising to the powern, and integrating over all rays

cn−1 ≤
Å∫

D
|▽u|ndD

ãÅ
log

b
a

ã(n−1)

∴ C(Da,b) ≥ cn−1

Å
log

b
a

ã−(n−1)

.
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On the otherhand by taking smooth admissible approximations of
the function

u =





0 |x| ≤ a
log x−loga
logb−loga a ≤ |x| ≤ b

1 b ≤ |x|
we get

C(Da,b) ≤
∫
|▽u|ndD = Cn−1

Å
log

b
a

ã−n ∫ b

a

Å
1
r

ãn

rn−1dr

= Cn−1

Å
log

b
a

ã−(n−1)

∴ C(Da,b) = Cn−1

Å
log

b
a

ã−(n−1)

.

Therefore84

mod (Da,b) = log
b
a
.

Definition. Let D, D′ be two shells withC′◦ ⊃ C◦ andC′1 ⊃ C1 then
we say “D′ separates the boundary of D”. Clearly in this caseC(D′) ≥
C(D) and modD′ ≤ mod D.

10.3 Lemma. Let Sr = {x|x ∈ Rn, |x| = r} and let u be a C1 function on
Sr then there exists a constant A depending only on n such that

(CSCSr u)n ≤ A.r
∫

Sr

|▽u|ndSr

(For a proof see p.69 [17]).

10.4 Lemma(Loewner). Let D be a shell in Möbius n-space and let
C◦, C1 denote the connected components of the complement of D, then
C(D) > 0 if neither C◦ nor C1 consists of a single point.

Proof. Choose a pointp in Rn such thatSr , the sphere with center atp
and radiusr meetsC◦ andC1 for all r with 0 < r1 < r < r2 then

∫

D
|▽u|ndD =

∫

n
|▽u|ndx≥

∫

Dr1,r2

|▽u|ndx
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=

r2∫

r1

∫

Sr

|▽u|ndσdr wheredσ is n− 1 measure onSr .

�

By the previous lemma 85

∫

Sr

|▽u|ndσ ≥ A−1r−1(CSCSr u)n
= A−1r−1.

Thus
∫
D
|▽u|ndD A−1

r2∫
r1

dr
r = A−1 log r2

r1
for all smooth admissible

functionsu. HenceC(D) ≥ A−1 log r2
r1
> 0.

Definition. A continuous functionf on the interval 0≤ x ≤ b is called
absolutely continuousif its derivative d f

dx exists almost everywhere and

is integrable and
x1∫
x◦

d f
dxdx= f (x1) − f (x◦) for all a ≤ x◦, x1 ≤ b.

A functionu on an open subsetD of Rn is calledACL in D, if in any
closed ball lying inD it is absolutely continuous on almost all lines in
the ball parallel to the coordinate axes.

Notations.

E+ =
{

x; x ∈ Rn xn > 0
}

S+r = Sr ∩ E+.

10.5 Lemma. If u is an ACL function on E+ then

b∫

a

Ä
OSC
S+r

u
än dr

r
≤ 2A

∫

E+
|▽u|ndx.

This is a slight generalization of Lemma 10.3, for a proof see pp.
72-73 [17].
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86
10.6 Lemma.

In
ϕ(p) ≤ (Hϕ(p))nJϕ(p)

and Inϕ−1(ϕ(p)) (Hϕ(p))nJϕ−1(ϕ(p)).

Proof. The first inequality comes from

Å
Lϕ(p, r)

r

ãn

=

Ç
Lϕ(p, r)
lϕ(p, r)

ånÅ lϕ(p, r)
r

ãn

.

The proof of the second inequality is similar. �

Remark. It can be proved that ifϕ is differentiable atp then

In
ϕ(p) ≤ (Hϕ(p))n−1Jϕ(p).

10.7 Lemma. Letϕ be a quasi-conformal mapping thenϕ exists almost
everywhere.

Proof. By the previous lemma

In
ϕ(p) ≤ (Hϕ(p))nJϕ(p).

By hypothesisHϕ(p) < B ∀p. By Lebesgue’s theorem (Saks [19] p.
115)

Jϕ(p) < ∞ a.e.

∴ Iϕ(p) < ∞ a.e.

i.e. lim
q→p

ϕ(q) − ϕ(p)
|q− p|

< ∞ a.e.,

By the Radamacher-Stepnoff theorem ([19] pp. 310-312) ˙ϕ exists
a.e., �

10.8 Lemma. Let D, D′ be open inRn and letϕ : D → D′ be homeo-87

morphism of D into D′. Let p be a hyperplane inRn, if Hϕ(p) < k for
p ∈ D − p, thenϕ in ACL on D andϕ−1 is ACL onϕ−1(D). (See [17]
for a proof.)
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Definition. Given a shellD; a continuous functionu on D̄, ACL in D is
said to beadmissibleif u(L◦ ∩ D̄) = 0 andu(C1 ∩ D̄) = 1, C◦,C1 being
connected components of the complement ofD.

10.9 Lemma.
C(D) = inf

u admissible

∫

D
|▽u|ndD

(See [17] pp. 64 for a proof).

10.10 Lemma. Let ϕ : D → D′ be a homeomorphism of shells, if
is ACL and Inϕ ≤ kn−1Jϕ almost everywhere, thenmodϕ(D) ≤ k
mod D.

Proof. Givenu an admissible function onD, setu′ = u ◦ ϕ−1 thenu↔
u′ is bijective correspondence between admissible functions onD and
D′. �

▽(u)(p) = lim
q→p

|u(q) − u(p)|
|q− p|

=
u(q) − u(p)
|ϕ(q) − ϕ(p)|

· |ϕ(q) − ϕ(p)|
|q− p|

= |▽(u′)ϕ(p)|Iϕ(p).

∴ C(D)
∫
|(▽(u′))(ϕ(p))|nkn−1Jϕ(p).

= kn−1
∫

D′
|▽u′|ndD

∴ C(D) ≤ kn−1C(D′)

∴ mod D′ ≤ k mod D.

We now define thespherical symmetrizationof a shell for the pur- 88

pose of obtaining a rough quantitative estimate for the modulus of a
shell.

Let L denote the ray{(t,0, . . .0)− ∞ < t ≤ 0} in Rn, and letE be a
set, open or closed, inRn. For each sphereSr = {x, x ∈ Rn, |x| = r} place
alongSra spherical cap (of dimensionn−1) with center atSr ∩E. Take
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the cap open ifE is open closed ifE is closed, and equal toSr if Sr ⊂ E.
The resulting set is denoted byE∗. Clearly E∗ is open resp. closed,
resp. connected) ifE is open (resp. closed, resp. connected).

Definition. Let D be a shell inRn. The spherical symmetrization ofD
is the setD◦ = (D ∪C◦)∗ −C∗◦.

whereC◦ is the bounded component ofD. It is clear thatD◦ is a
shell.

10.11 Theorem.C(D) ≥ C(D◦)

The proof of this theorem makes use of the isoperimetric inequalities
for both euclidean and spherical space (cf. Mostow, loc. cit, p.87).
Intuitively the result is plausible because the spherical symmetrization
of D is a “smoothing” ofD and hence admissible function forD◦ need89

to be “twist less”, accordinglyC(D◦) ≤ C(D).
In the proof of next lemma, we will estimate the modules of a shell

by comparing it with a special shell which generalizes a special slit plane
domain considered by Teichmuller.

Definition. TheTeichmuller shell D+(b) is the shell inRn whose com-
plementary components consist of the segment−1 ≤ x1 ≤ 0, x2 = · · · =
xn = 0 and the rayb ≤ x1 < ∞, x2 = x3 = · · · − xn = 0 whereb > 0.

10.12 Lemma.ϕ : R → R′ be a homeomorphisms of domains inRn,
assume modϕ(D) ≤ k mod D, then Hϕ < Ck, where C depends only
on n.

Proof. For p ∈ R, we consider the spherical shellDlϕ(p,r),Lϕ(p,r) centered

at ϕ(p). Let D = ϕ−1(Dlϕ(b,r),Lϕ(p,r)) then logLϕ(p,r)
lϕ(p,r) =

mod Dl(p,r),L(p,r) ≤ k mod D ≤ k mod D◦ (by 10.11) [D◦ is spheri-
cal symmetrization ofD]

≤ k mod Dτ(1).

SinceD◦ separates the boundaries of Dτ(1). �



10. Quasi-conformal Mappings 73

SetC = mod Dτ(1).
Then Lϕ(p,r)

lϕ(p,r) = Ck

∴ Hϕ(p) ≤ Ck∀p ∈ R.

Note.The idea of comparing modD with mod Dτ(1) is due toA.
Mori cf. his posthumous paper in the Transaction of the AKS V. 84
(1957) pp. 56-77.

Putting together Lemmas 10.8, 10.10 and 10.12, we can now assert90

10.13 Theorem.Let ϕ : E → E′ be a homeomorphism of domains in
R

n n. Thenϕ is quasi-conformal iff

(1) ϕ is ACL in E.

(2) For all shells D⊂ E, k−1 mod D ≤ modϕ(D) ≤ k mod D, for
some constant k.

We now prove two theorems that are of central importance for our
main theorem.

10.14 Theorem.Let ϕ be a quasi-conformal mapping of an open ball
in Rn onto itself. Thenϕ extends to a homeomorphism of the closed ball.

Proof. Mapping the domain ofϕ onto the upper half spaceX =

{(x1 . . . xn), xn > 0} via a Möbius transformation, the theorem is seen
to be equivalent to the assertion a quasi conformal mappingϕ : X →
Y = {y : |y| < 1} extends to a continuous mapping at any pointx of the
boundary ofX. for convenience, we takex = 0. �

The proof is by contradiction. If lim
p→0

ϕ(p) (p ∈ X) does not ex-

ist, we can find two sequences{pk} and {qk} in X approaching 0 with
lim
k→∞

ϕ(pk) = p′, lim
k→∞

ϕ(qk) = q′ and |q′ − p′| = a > 0. Denoting bypq

the line segment joining two pointsp andq, we select pointsp′◦ andq′◦
in Y such thatd(p′◦p

′
k,q
′
◦qk) > a for all largek, wherep′k = (pk),q′k =

(qk). Set p◦ = ϕ−1(p′◦), q◦ = ϕ−1(q′◦). Then for sup(|pk|, |qk|) < r <

inf(p◦,q◦), the hemisphereS+r = {x; |x| = r, xn > 0 meets the curves91
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ϕ−1(p′◦p
′
k) andϕ−1(q′◦q

′
k). For each suchr at least one of the coordinate

functions ofϕ(x) = (ϕ1(x), . . . ϕn(x)) satisfies

OSC
S+r

ϕi > a/
√

n.

Hence ∑

i

∫ ∞

◦

Ä
OSC
S+r
+ ϕi

än dr
r
= ∞.

By Lemma (10.8),ϕi is ACL in X. Applying Lemma 10.5, we get
for eachi = 1, . . . ,n

∫ ∞

◦

Ä
OSC
S+r

ϕi

än dr
r
≤ 2A

∫

X
|▽ϕi |ndx≤ 2A

∫

X
In
ϕdx

≤ 2A
∫

X
Kn−1Jϕdx≤ 2AKn−1

∫

Y
dy.

This yields a contradiction.

10.15 Theorem.Letϕ be a k-quasi conformal mapping of an open ball
Bn in Rn, onto itself, n≥ 2, and letϕ◦ denote the boundary home-
omorphism induced byϕ. Thenϕ◦ is Ck-quasi conformal where c=
mod Dτ(1) depends only on n.

Proof. By mappingBn onto upper half spaceE+ via Möbius transfor-
mation we can replaceBn by E+ in the theorem. By previous theoremϕ
extends to the boundary. Letϕ also denote its extension by symmetry to92

R
n. ϕ is k-quasi conformal inRn-hyperplanexn = 0. Henceϕ is ACL in
R

n by Lemma 10.8. �

We haveHϕ(p) ≤ k a.e. inRn.
By Lemma 10.6 and the remark following it

(Iϕ(p))n ≤ kn−1Jϕ(p) a.e.

Therefore for any shellD in Rn modϕ(D) ≤ k mod D by Lemma
10.10. Applying Lemma 10.12, we get thatϕ◦ is Ck-quasi conformal.

The following two Lemmas round out prerequisites for our main
theorem
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10.16 Lemma.Letϕ : Sn → Sn be a 1-quasi conformal map thenϕ is
a Mb̈ius transformation if n> 2 (See [17] pp. 101-102.)

10.17 Lemma.Letϕ be a quasi conformal mapping of a domain ofRn

intoRn,n > 1. Then m(ϕ(E)) =
∫

E Jϕdx for any measurable set E in the
domain ofϕ. (cf. loc. cit. p. 94).

Now we prove theorem 9.3.

Theorem.Let G= 0(1,n)/ ± 1, n > 2 and let X be the associated sym-
metric Riemannian space. LetΓ, Γ′ be discrete subgroups such that G/Γ
and G/Γ′ have finite Haar measure. Letϕ : X → X be a homeomor-
phism andθ : Γ → Γ′ an isomorphism such thatϕ(γx) = θ(γ)ϕ(x) for
all γ ∈ Γ, x ∈ X. Assume thatϕ is quasi-conformal. Thenϕ induces 93

a diffeomorphismϕ◦ of the boundary component X◦ of the Satake com-
pactification of X and moreoverϕ◦Gϕ−1

◦ = G as transformations of X◦.

Proof. The symmetric spaceX is the hyperbolicn-space which we iden-
tify with the open unit ballBn : |x| < 1 in Rn with metricds2

H =
|dx|2

1−|x|2 .
the Satake compactification ofX then can be identified with the closed
unit ball andX◦ is its bounding sphereSn−1. �

Quasi-conformality ofϕ with respect todSH implies thatϕ is quasi-
conformal with respect to|dx|. so in view of Theorem 10.14,ϕ extends
to a homeomorphism of the closed ball. Letϕ◦ be the restriction of this
extension to the boundaryX◦ = Sn−1. By Theorem 10.15 and Lemma
10.7, ϕ◦ is almost everywhere differentiable. Furthermore sinceX is
dense inX ∪ X◦, ϕ◦(γx) = θ(γ)ϕ◦(x),∀γ ∈ Γ andx ∈ X◦. Also note that
G which is the full group of isometriese ofX acts canonically onX◦ and
conversely from the identification ofGM(n− 1) with G (cf. [17] p. 57
and p. 98), it follows that each M̈obius transformation ofSn−1 extends to
a unique isometry ofX. We replaceX◦ byRn−1 ∪ {∞} via stereographic
projection. Letψ denote the homeomorphism ofRn−1 ∪ {∞} onto itself
induced byϕ◦. LetA be the 1-parameter subgroup ofG corresponding to
the 1-parameter subgroup of Möbius transformations ofSn−1 obtained
from the homothetiesx 7→ λx (with λ ∈ R+, x ∈ Rn−1) and∞ 7→ ∞ of
R

n−1 ∪ {∞}.
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Let p be a point at which the differentialψ exists; we can assume
that p = 0 for convenience. We identify the tangent space toRn−1 at 094

with Rn−1 in the usual way.
Define

f : G→ HomR(Rn−1,Rn−1) by

f (g) = (ψg)(0)

SetF(g) = (t f (g) f (g))(dett f (g) f (g))−1/m whosem= n− 1. Since a
linear mapL is conformal iff

< L(x), L(y) >
||L(x)|| · ||L(y)||

=
< x, y >
||x|| · ||y||

For any two orthogonal unit vectorsx, y we deduce from< x+y, x−
y >= 0 that 0=< L(x− y), L(x+ y) >= ||L(x)||2 − ||L(y)||2. ThusL maps
the unit ball into a ball and

tLL = (dettLL)1/m · Id where m= dimension of the vector space.

Thus if L is conformal we have (tLL)(dettLL)−1/m
= Id. Moreover

L is K-quasi-conformal iff the ratio of largest to the smallest eigenvalue
of tLL is K2.

From the above it follows thatf (g) is a conformal mapping of the
tangent space at 0 iff F(g) = identity. One can check thatF(ga) = F(g),
∀a ∈ A and F(γg) = F(g) for γ ∈ Γ. MoreoverF is a measurable
mapping ofG into Hom(Rn−1,Rn−1). It has bounded (byK2 for some
K) entries almost everywhere sinceψ is k-quasi-conformal for some
K. ThereforeF gives rise to an element ofL 2(G/Γ,Hom(Rn−1,Rn−1));
which we again denote byF. For an element∧ ∈ L 2(G/Γ,Hom(Rn−1,

R
n−1)) let norm|| ∧ ||2 =

∫
G/Γ Tr (t ∧ (g) · ∧(g))dµ.

G operates onL 2(G/Γ,Hom(Rn−1,Rn−1)) via (Z. f )(g) = f (gz) uni-95

tarily and we haveA.F = F.
Hence by Lemma 5.2,
G.F = F i.e. F is constant almost everywhere. In particular

F(gk) = F(g),∀k ∈ 0(n− 1)
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i.e., the group of rotations about 0.tk = k−1 implies by the special
choice ofF that

F(g) = F(gk) = k−1G(g)k.

SinceF(g) commutes with 0(n− 1), we conclude

F(g) = const.Id.

Since the matrixF(g) is positive definite and of determinant 1, the
constant must equal 1.

Thereforeψ is 1-quasi-conformal and thereforeψ is Möbius trans-
formation by Lemma 10.16.

In particular ϕ◦Gϕ−1
◦ = G.
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