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Introduction

These lectures are devoted to the proof of two theorems (Theorem 8.1,
the first main theorem and Theorem 9.3). Taken together these theorems
provide evidence for the following conjecture:

Let Y andY’ be complete locally symmetric Riemannian spaces of
non-positive curvature having finite volume and having no direct factors
of dimensions 1 or 2. I andY’ are homeomorphic, theviandY’ are
isometric upto a constant factor (i.e., after changing the metri¢ bp
a constant).

The proof of the first main theorem is largely algebraic in nature,
relying on a detailed study of the restricted root system of an algebraic
group defined over the field of real numbers. The proof of our second
main theorem is largely analytic in nature, relying on the theory of quasi-
conformal mappings in-dimensions.

The second main theorem verifies the conjecture above invcasd
Y’ have constant negative curvature under a rather weak supplementary
hypothesis.

The central idea in our method is to study the induced homeomor-
phismg of X, the simply covering space dfand in particular to inves-
tigate the action op at infinity. More precisely our method hinges on
the question: Doeg induce a smooth mapping, of the (unique) com-
pact orbitX, in a Frustenberg-Stake compactification of the symmetric
Riemannian spac¥?

There are good reasons to conjecture that not onpy Emooth, but
thaty,G.¢:! = G, whereG, denotes the group of transformations<f
induced byG, provided of course thaX has no one or two dimensional



v

factors. The boundary behaviour@thus merits further investigation.
It is a pleasure to acknowledge my gratitude to Mr. Gopal Prasad
who wrote up this account of my lectures.

G.D. Mostow
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Chapter 0
Preliminaries

We start with two definitions. 1
Symmetric spaces.

A Riemannian manifolX is said to be symmetric ifx € X, there
is an isometryry such thaivy(x) = xandVt € Tx o§(t) = —t, where
Ty is the tangent space ataindoy denotes the dierential ofoy.

Locally symmetric spaces.

A Riemannian manifolX is locally symmetric itvx € X, is a neigh-
borhoodNy which is a symmetric space under induced structure.

Remark. Simply connected covering of a locally symmetric complete
Riemannian space is a symmetric space (see Theorem 5.6 and Cor 5.7
pp.187-188([8]).

Now we give an example which suggests that the last condition (that
is there are no direct factors of dimensions 1 or 2 in the statement of the
conjecture given in the introduction is in a sense necessary).

0.1 Example.Y, Y’ Compact Riemann surfaces of the same genuds

and which are not conformally equivalent. By uniformization theory,
the simply connected covering space of such Riemann surfaces is an-
alytically equivalent to the interioK of the unit disc in the complex
plane. ThenY = I'\X, Y’ = I"\X whereTI, I are fundamental groups

of Y, Y’ respectively. The elements Bf I” operate analytically oiX.

1



2 0. Preliminaries

Letting G denote the group of conformal mappings»into itself, we
havel', T” c G. Itis well known thatG is also the group of isometries
of X with respect to the hyperbolic metrits® = f_—z; and with respect
to this metricX is symmetric Riemannian space of negative curvature.
HenceY, Y’ are locally symmetric spaces of negative curvature.

If Y, Y’ were isometric then they would be conformally equivalent,
which would bea contradiction

We list some facts about linear algebraic groups, these are standard
and the proofs are readily available in literature. Perhaps the use of
algebraic groups is not indispensable, however we hope that this will
simplify the treatment.

Let K be an algebraically closed field. For our purpose, we need
only consider the cad¢ = C, the field of complex numbers,

Definitions.

Algebraic set A subsetA of K" is said to be algebraic if it is the set
of zeros of a set of polynomials IR[ X, ..., Xq].

If Ais asubset ok", thenl (A) will denote the ideal oK[ Xy, Xo, .. .,
Xn] consisting of the polynomials which vanish at every poinfof

Zariski topology on R: The closed sets are algebraic sets.

Field of definition of a setLet k be a subfield oK andA a subset
of K". If I(A) is generated oveK by polynomials ink[ Xy, ... X,] then
Alis said to be defined ovéror k is a field of definition ofA.

A subgroup of the grou@L(n, K) of non-singulam x n matrices
over K is algebraicif it is the intersection withGL(n, K) of a Zariski
closed subset of the set of alik n matricesM(n, K).

An algebraic grous is ak-group if G is defined ovek, wherek is
a subfield oK.

Terminology.

If k = R or C, we shall refer to the usual euclidean space topology
as theR-topology forGg or for Ge.
For ak-groupG we write,

Gk = G N GL(n, k).
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0.2 Theorem. G be an algebraic group then the Zariski connected com-
ponent of identity is a Zariski-closed, normal subgroup of G of finite
index. ([5] Th 2, Chap. I, pp.86-88).

0.3 Theorem(Rosenlicht) If k is a infinite perfect field, G a connected
k-group then G is Zariski dense in G [([18] pp.25-50).

0.4 Proposition. If k is a perfect field, any x GL(n, k) can be written
uniquely in the form [Jordan normal form] x s- u where s is semi-
simple and u is unipotent; s, u commute. (use Th. 7, pp.71-72 [72])

0.5 Theorem. If k is a field of characteristic zero and G an algebraic
k-group then there is a decomposition£M.U (semi-direct product)
where U is a normal unipotent k-subgroup, M is a reductive k-sulygrou
Moreover any reductive k-subgroup of G is conjugate to a subgroup of
M by an elementin |d (Th.7.1, pp.217-218, [15]).

0.6 Proposition. If U is a unipotent algebraic subgroup of an algebraic
group defined over a field k of characteristic zero, then

1. U is connected ([2] 88, p.46). 4
2. U is hypercentral [Engel-Kolchin] (see LA 5.7 122]).
3. Ug is connected in th&-topology if kC R.

0.7 Proposition. An abelian reductive group over algebraically closed
field is diagonalizable.

Definition. A connected abelian reductive group is calledras
0.8 Theorem. Let G be an algebraic k-group. Then

1. The maximal tori are conjugate by an element of G.

2. Every reductive element ofi@es in a k-torus.

3. A maximal k-torus is a maximal torus.

4. Any maximal torus is a maximal abelian subgroup if G is connected
and reductive.
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Definitions. A reductive elemenk € GL(n, k) is calledk — split (or k-
reductive) ify € GL(n, k) such thatyxy ! is diagonal, this is equivalent
to saying that all the eigen-valuesxére ink.

A torusT is calledk — split if y € GL(n,k) with yTy! diagonal,
equivalently if each element df is k — spilit.

Let G be a reductive group(oa its Lie algebra and be a maximal
torus.

Consider the adjoint representation

G — AutG
X = Ady

thenG = Y-« € Hom(T,C")
where G, = {ylyeG Adx(y) = a(X)y¥xe T} Hom(T,C*) being
abelian we will use additive notation.

0.9 Theorem. Let¢ = {a|la € Hom(T, C),éa # 0, # 0} then is called
the set of roots of G on T and we have

l.aep=>-aeg

2. e ®=>dimg, = 1.

3. [Goa,élg] = éa+ if o,B,a| € ¢
[Go.Gp] =0ifa+p¢ ¢

4. There exists a linearly independent gete ¢ such that the roots
are either non-negative integral linear combination or a non positive
integral linear combination of elements in Such a subset is called
a fundamental system of rootson T.

Remark. A fundamental system of roots can be obtained as follows.
Take any linear ordering of Hori(C*) compatible with addition. Let
A be the sefe|a € ¢, @ not a sum of two positive elementsih.

Notations. Let G be a group and a subset o6, thenZ(A) will denote
the centralizer and NornmA) the normalizer ofA.
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If AandB are two subsets d@b
AlB] = {abale Abe B}

Definition. Let T be a maximal torus a of a connected reductive groéip

G. Z(T) operates trivially ons. The groupw = N9 is called the

Weyl groupof G.

0.10 Theorem. The Weyl group operates simply transitively on the set
of fundamental systems of roots.

Definitions. A reductive elemenk € G is k — regularif Yy € k - reduc-
tive, dimZ(x) < dimZ(y).

A reductive element is callesingularif it is not R-regular.

LetV be aK-subspace oK™ and letk be a subfield oK, thenV is
ak—subspacé V = K(VnkMi.e.,VNk™generates the space over

Let G be a connected reductikegroup andkT a maximalk-split
torus. Consider the adjoint representatiog bon G.

ThenG = ZGQ Hom(T, C*).

Eaché,, is ak-subspace.
The following analogue of the Theorem 0.9 is true.

0.11 Theorem. Letyg = {a|éa #0,a # 0}. Then
1. o = —aed
2. [éa, éﬁ} = éa+ﬁ if @, B, a + Bekd

G,.G,] = 0if @ + Bes

3. There exists a linearly independent suhget k¢ such that the roots
are either non-negative integral linear combination or non-positive
integral linear combination of elements frai - A is called a fun-
damental system of restricted roots.

Let G be a connected reductikegroup, letyT be a maximak-split
torus inG and letT be a maximak-torus containingT. Let A be
a fundamental system of roots dnandya a fundamental system of
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restricted roots opT. We callA andga Coherentf the elements ina
are restriction of roots im. If one introduces ordering of the sets&nd
k¢ via lexicographic ordering with respect toandgA respectively, the
resulting orders are Coherent the senser ¥ ¢ ande|T > 0 then
a> 0.

The existence of Coherent andgA can be seen as follows. Let
X = Hom(T, C*), the group of rational charactersdf ThenX is a free
abelian group. AniRT, the subgroup of characters which are trivial on
«T is a direct summand of sinceyT is connected. Therefore, one can
choose a basijg, ...y, for X such thaj,..., ysis a base for AnRT.
Now introduce lexicographic ordering ox with respect to this base.
The resulting order o clearly has the property: i andg have the
same restrictions tT and if@ > 0, theng > 0. Consequently, there
is induced an order ogp compatible with addition. The corresponding
fundamental systems andya are Coherent.

Notations.Let A’ C kA

{7"} = Z — linear span of’
= () kera c T

aen’

Choose an ordering such that consists of positive roots.
Put
N@)= > Ga
a>0
ag{r)
N(a) be the complex analytic subgroup Gf with Lie algebra
N(A ). Sincev¥x € ZG is nilpotent,N(2") is a unipotent group.

a>0

Let
G(a") = Z(*»")
P(A") = Norm (N(2"))
N = N(¢) P = P(¢) ¢ = empty set
My = norm (T) My = Z(kT) = G(¢)
KV = M/My.
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The groupk" is calledLittle Weyl Groupor relative Weyl grouand
this operates transitively on the set of fundamental systems of restricted
roots.

0.12 Lemma.
P(a") = G(a") - N(a").

G(4") is a maximal reductive subgroup of{#) and N(A") is a maximal
normal unipotent subgroup (called unipotent radical ¢hP).

0.13 Theorem(Bruhat's decomposition)Let G be a connected reduc9
tive k-group. Then

1. Gy = Ng- My - N
2. The natural map N\YM — Py \Gy/Px is bijection.

3. Any unipotent k-subgroup of G is conjugate to a subgroup of N by an
elementin G.

4. Any k-subgroup containing P equalgA?) for somea’” c A (P is
minimal parabolic k-subgroup). (seel[4] dr [21]).

Remark. Z(T) is a connected subgroup. More generallg i any torus
in G thenZ(S) is connected.

Now we consider for a moment the special case khatalgebrai-
cally closed.

In this caseG(¢) = Z(T) = T. SinceT is a maximal abelian sub-
group andP = TN is solvable. ClearlyP is connected. It follows at
once from assertion 4 of the previous theorem that the connected com-
ponent of the identity irP(A’) containsP and therefore it is seen to
coincide withP(A’). In particular, every subgroup @ containingT N
is connected, and N is a maximal connected solvable subgroup.

Definition. A maximal connected solvable subgroup of an algebraic
group is called @8orel subgroup A subgroup containing Borel sub-
groupis calledParabolic
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0.14 Theorem. The Borel subgroups of an algebraic group are conjae
gate under an inner automorphism.

0.15 Theorem. If G is a connected reductive k-group apd is a fun-
damental system of restricted roots on a maximal k-split teiughen
P(2") is parabolic for anya’ c gA.

Proof. Let T be a maximak-torus containingT. Since all fundamen-

tal systems are conjugate under the Weyl group, it is possible to find a
fundamental system on T which is coherent witha. Let ¢* denote

the set of positive roots on defined by a lexicographic ordering with
respect toa. Then for anya” c kA, the Lie algebra oP(a’) contains

éa for all « € ¢*. It follows directly thatP(a’) is parabolic. |

Remark. A subgroupQ is parabolic ff G/Q is a complete variety;
equivalently, in cas& = C if G/Q is compact in th&-topology.

From the conjugacy of Borel subgroups and the theorem above, it
is seen that any parabolliecsubgroup is conjugate tB(»’) for some
A’ C ka. Also any parabolic subgroup containing the maxitkablit
torusiT is w[P(A")]w™ with w € N(T).

Since areductive element of a connected reductive grdupagular
iff it lies in a single maximal torus, we see

0.16 Proposition. A reductive element of a connected reductive k-group
Giskregular ffit lies in at least one and at most finitely many parabolic
k-subgroups of G, not equal to G.



Chapter 1

Complexification of a real
Linear Lie Group

Let G be a Lie subgroup of the Lie group of all automorphisms ofia
real vector spac&/. Let V¢ denote the complexification of (i.e.,

Ve = V ® C) we identify the elements d&, the lie algebra o6, with
endomorphisms of/. We letG¢ denote the complification of the Lie
algebraG and letG¢ denote the analytic group of automorphism/ef
that is determined bgs-. We identify the endomorphisms &f with
their uniqgue endomorphism extension\tg, so that we hav& c Gc
andG® c Gg. WhereG® is connected component of identify @G

Definitions. By the complexification of a real linear Lie group &
meantGg. G, it will be denoted byGc.

By af.c.c. groupwe mean a topological group with finitely many
connected components.

Suppose tha, is a semisimple f.c.c. Lie subgroup &fL(n,R).
ThenG,®xC = G¢ is semisimple. Heno¢ = [Ge, Gc] is an algebraic
Lie algebra [Th. 15, pp. 177-178I[5]]. Since a Zariski-connectdd su
group ofGL(n, C) is topologically connected, it follows that the complex
analytic analytic semisimple grof.is algebraic, and therefo@, -Gz
is algebraic. Thus we have

1.1 Theorem. The Zariski closure in G(n, C) of the semisimple f.c.c.
Lie subgroup of G[n, R) is its complexification.

9
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Definition. A subsetS of GL(n,R) is said to beselfadjointif ts = S
wherets = {g|tg € S, (t transpose ofj) }.

1.2 Theorem. Let G, be a semisimple f.c.c. Lie subgroup of @IR)
thendx € GLnR) such that xGx ! is self adjoint. (for a proof see

[22]).

Notations. S(n) will denote the set of all real x n symmetric matrices
andP(n) the set of real positive definite symmetric matrices.

For anyg € GL(n,R) g = (gtg)%(gtg)‘% - g with (gtg)% € P(n) and
t—2
(9'9) 2g € O(n,R).

1.3 Theorem.Let G, be a self adjoint Lie subgroup of G, R). If G, is
of finite index in lg, F an algebraicR group (equivalently G = (Fg)°).
Then

1. G, = {G. N P(n)} - {G. N O(n,R)}
2. G, n0(n,R) is a maximal compact subgroup of G
3. G, N P(n) = expG. N S(n)) (see [12]).

1.4 Lemma. Let G, be a real analytic self adjoint subgroup of GL.R),

G its Zariski closure in G[n, C). Let A be a maximal connected abelian
subgroup in G N P(n). Let T be the Zariski closure of A in G, C),
then T is a maximak-split torus in G and A= (TR)°.

Proof. Abeing a commutative group @&-diagonalizable matrices, is
R-diagonalizable. Therefor€, its Zariski closure iR-diagonalizable
and hence an abelian subgroupzof |

SinceA is self adjoint, the centralizeZ(A) of A in G and therefore
alsoG, N Z(A) are self adjoint.
By the previous theorem

G. NZ(A) = {G. N Z(A) N P(n)} o {G.. N Z(A) N O(n,R)}
By maximality of A
G.NnZ(A)NPA) = A
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Hence
ZANG, =A-{G.NZ(A)NO(N,R)

SinceT c Z(A), we have
(Tr)” = Ao {(Tr)° N O(N,R)}

Also since r)° is diagonalizable oveR, (Tg)° N O(n,R) is finite
and as (r)° is connected, this consists of identity matrix alone.
Thus (Tr)° = A.

1.5 Lemma. Let G, be a semi-simple self adjoint analytic subgroup
of GL(n,R) and let G be its Zariski-closure. LetgK= G n 0(n,R),
E = G, n P(n) and A as above, then

Kgr[A] = E.
Proof. EvidentlyKg[A] c E. We will prove the other inclusion. 0O

First we show that i&, p € P(n) and epe’ € P(n) then epe! = p.
By the theoreri 113 we have 14

Z(p) = {Z(p) N P(n)} - {Z(p) N O(n, R)}
and Z(p) N P(n) = exgZ(p) N S(n)}

whereZ(p) is centralizer ofp.
Since

epeleP(n) epel=‘epel)=elpe

SO €p=pie.&cz(p
Since
& = Exp(X) for someX e Z(p) N S(n)
e= Exp%X thereforee € Z(p) N P(n).
ep= pei.e.epe?! = p, as asserted

Nowif pe E p= ExpX for someX € G n S(n).
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The Zariski closure of one parameter group EXfs a torus which
is contained in a maxim&-split torus (says).

By conjugacy of maximaR-split tori, 3x € G with x(Tz)°xt =
(Sr)° whereT is the Zariski closure oA in G. By the previous lemma
(Tr)° = Aand hence € xAx 2.

As

G=EoKg (see TH.1B)

we havex = ekwith e € E, k € K.
xaxl=p forsomeacA.
Thusekakle™ = p butkak? e P(n) hencekak™ = p.

Remark. If B is a maximal connected abelian subgrougin= (Kg)°
then an argument similar to the one used in the above proof yields:
K.[B] = K..

Weyl chambers. The connected components Af- U kera, whereg
aEP

is a restricted root system dn are called the Weyl chambers associated
with G, andA.

If A is a fundamental system of restricted roots, tihen= {a]a €
A a(a@) > Ya € A} is a Weyl chamber. Observe that (Noiim oper-
ates onA, for (NormT)g operates offg and hence onlg)° = A.

IfO # X, € G, thenvhe T

Ad h(X,) = h X,h™! = a(h)X,
‘(hX.h™) = (") Xeh = a(h)'X,
ie. h'X.h™t = (a(h) ™',
this proves thatX, € G_,.
Leth, = [X,,'X,] thenh,, X,, 'X, is a base for 3 dimensional split
Lie algebra oveR. By taking a suitable multiple oX,, we can assume

that
[ha’ x(l] = 2Xd/’ [ha’ tX(l] = _ztxa

then Expr/2(X, — X,) € (NormT).
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SinceX, —'X, is skew symmetric it actually belongs to (Non
K..
AdExprn/2(X, — 'X,) is reflection in the Wall corresponding to,
of the Weyl chamber.
This shows thaAd[(Norm T)r N K,] contains the reflections in all
the Walls of the Weyl chambers.

1.6 Theorem. E = K*[A_\A].
Proof. K.[A.] = K.[(Norm An K,)[A.]] O

SinceAd(Norm A n K,) contains the reflections in all the walls of
Weyl chambers (Normh N K,)[A,] = A

K.[AL] = K.[A].

Let X € E and letY be anR-regular element i, then sinceK, is
compactdk € K, such that

d(X, K[Y]) = d(X, K.[Y])
where d(X,Y) =Tr (X-Y)?
then d(k[X],Y) = d(X, k[Y]) < d(K[X],I[Y]), VI € K.

thereforevZ € K, the real valued function
fz .t — d(k[X], ExptZ[Y])
= Tr[h[X] - Exp(Z)Y Exp(-tZ)]?
iS minimum att = 0.

A
©oOt=o
which gives 17

Tr (h[X] = Y)[Y,Z] = 0 but since TrY[Y,Z] =0
we have

= Tr Z[K[X], Y] = Tr KIX][Y,Z] = 0,VZ € K,
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hence

[K[X]. Y] =0.
R-regularity ofY implies

Z(Y)NnGNS() =A
K[X] € A

this proves that
K«[A] o E. The other inclusion is obvious.

Definition. An algebraick-group is said to bé&-compact if it contains
no k-split connected solvable subgroup, that is a connected group that
can be put in triangular form ovér

Remark. If G is a reductive algebraic-group then the following three
conditions are equivalent.

1. Gisk-compact

2. Gk has no unipotent elements

3. the elements dBy are reductive.
Exercise.Prove the above equivalences.

[Hint (1) = (2) = (3) is obvious prove (3} (1) by showing: not
(1) = not (3).]

The following digression is included just for fun, we need it only in
the cas&k = R.

1.7 Theorem. Let k be a loc. compact field of characteristic 0. Then G
is k-compactffit is compact in the k-topology.

Proof. (=) LetV be the underlying vector space [i.6.is a subgroup
of Autv] |
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Let Eq be the set od dimensional subspaces ®f Then there
is a canonical imbeddingyg — P(AY(V)) which makesEy a closed
n

subvariety of the projective varie®(A%(V)). The productHEd is a
d=1

n
closed subvariety OH(/\d(V)) (which, by Segre imbedding, itself is
d=1
a closed subvariety of a projective spatef suficiently large dimen-
n

sion). Hence | Eq is a compact set.
d=1

n
The setW = {(wl, .. .wn))(wl,...,wn)HEd} w1 C way,...qwn IS
d=1

n
a closed subvariety (it is called the Flag manifold)l—c[fEd.

G operates orW. For ak-rational pointw € Wkl. Let T, be the
stabalizer ofw in G thenG/T,, = G.w. SinceT,, is k-triangularizable 19
(hence solvable) and &is k-compact T,)° = {e}. HenceT,, is finite
[In an algebraic group the connected component of identity is of finite
index see Th[_0]2]. Therefofé. = G/T has dimension equal to that of
G.

Let Dg EmG ) Tgw SinCeTy, = gT,g L. Dis afinite (therefore discrete)

normal subgroup and so it is central.
SinceT,, is finite we can choosg; - - - gr such that

.
D = () Tgw
i=1

let u = g - w andW' be the Zariski closure dB - u; in the projective
variety.

r r
Gactson][[G.u (c HW) .
i1 i1

Since D acts trivially we get a faithful action o&” = G/D on
r

H(G-Ui)-

i=1
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Letv = (ur---u) and letV be the Zariski closure of th&’ orbit
G’.vof v. Then sinceV is a irreducible closed set at&lv is open (by
Chevalley’s theorem in algebraic geometry) dif{ G’v) < dimV =
dim (G’ orbit of ak-rational element). Thereford — G’'v has nok-
rational points.

SoVk = (G'V)k = Gjv

~. Vi is compact irk-topology.

Since the dferential of the mafis;, — G;.v is surjective by the
implicit function theorem for loc. compact fields, this map is compact.
But Gx — G is open (again by implicit function th.) and % =
Image ofGk in G; is open (and therefore a closed subgroup). This
proves that% is compact, but sinc® is finite Gk is compact ink-

topology.

The converse is also true. For@ is compact ink-topology G
cannot have a unipotent subgroup. (Any unipotent group is isomorphic
as an algebraic variety #€" and its set ok-rational point isk” which is
not compact). This proves that any elemenGgfis reductive and this
by the preceding remark implies thag is k-compact.



Chapter 2

Intrinsic characterization of
Ki and E

K. is a maximal compact subgroup @f, equivalently the complexifi- 21
cationK of K, is a maximalR-compact subgroup @&.

E = Exp(G. N S(n))
G, N S(n) = logE.

log E is the orthogonal complement t6, in G, with respect to the
Killing form (see [13]).

2.1 Theorem. The maximal compact subgroups in af.c.c. Lie group are
conjugate by inner automorphism_(J13] or Chapter XV [9]).

For gGL(n,R) we have a linear automorphism 8{n)s — gsg
which leavesP(n) stable. This operation @&L(n,R) on S(n) is called
thecanonical action

Now letG, be an analytic semi-simple group with finite center and
let p be a finite dimensional representation®fvith finite kernel. By
Theoreni_ 1R we can assume, after conjugationd{@t) is self adjoint.

We set

K. = p(p(G.) N O(n, R))

K. is then a maximal compact subgroup®f, lety : G — P(n) denote
the map
g~ p(9)'p(0)

17
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then
@(9192) = p(91)¢(92)' ().

Thus undeip, left translation byg corresponds to the canonical ac-
tion by p(g) on P(n). In addition

©(gK) = ¢(9) for keK.
and  ¢(01) = ¢(92) iff  g1K. = 92K,

thereforeyp induces an injection
g X =G,/K. - P(n).
Let [S] denote the projective space of lines3(n) and let
IT: S(n)—0—[S]
be the natural projection and lgt= 7 o g and be the composite
G. - G,/K, = [9]

theny is injective because i1, p2 € @(X) with 7p; = npy, then since
p1, p2 are positive definite matriced,c > 0 such that

P1=Cp
so|p1| = c"|p2l where|p| = detp.
But sincepy, p2 € 3(G.) |pal = [p2| = +1.

[for G, being semi-simple, the commutat@s.] G.] = G. and so there
does not exist a non-trivial homomorphism@®f into an abelian group.
Thusg — |o(g)| is a trivial homomorphism o&. into R*].

This implies that = +1i.e.,p; = p2. The mapy is aG-map that is
U(gX) = gy(X) for all g € G, x € Xs thusy(X) is stable unde@.

Definition. If p is irreducible oveR theny(X) is called the stable com-
pactification ofX. This of course depends @n

Remark. The above compactification was arrived in a measure theoretic

way by Frusentenber@l[7].
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We shall now show thakK has the structure of a symmetric Rie-
mannian space and shall obtain a decompositions{2%) in terms of
symmetric Riemannian spaces.

On P(n) we introduce a infinitesimal metric

ds? = Tr(pip)?

wherep(t) is a diferentiable curve ifP(n) andp(t) = %’ v

It is easy to check that this metric is invariant under the action of
GL(n,R) on P(n) and also under the map— p~1. This implies that
P(n) is a symmetric Riemannian space. (see [14]).

Let G, be a semi-simple analytic subgroup®i(n, R), then by The-
orem[L.3.

G. = (G, N P(n) - (G, N 0(n))).

Let A be a maximal connected abelian subgroup@f) N G..

Since any abelian subgroup Bfn) can be (simultaneously) diago24
nalized, we can assume thatc D(n) the set of real diagonal matrices.

Let T be the Zariski closure oA in GL(n, C) then by Lemma 114,
T is a maximalR-split tours in the Zariski closur& of G, in GL(n, C)
and

A= (Tp).

Let A be a fundamental system of restricted rootsTonThere is
a natural faithful representation &L(n, C) and therefore o6 on C".
In this section the complex vector spac® considered as &-module
under this representation will be denoted\by

From the representation theory of semi-simple Lie algebras we have

V=a) V,

whereu’s are “weights” (more precisely, restricted weights)TanThe
highest weight will be denoted hy,. Also we know that any other
weight is of the formu = p, — >° Ny, where each, is a non-negative
integer.



20 2. Intrinsic characterization &, andE

Forh e A, we have clearly

0
y(h)=n (u(n)?
0
25 After a conjugation we can assume that the first diagonal entry is
(o ().
So
1. 0
y(h)=n (1 = po)(h))?

0

Let {hy} be a sequence iA, such that the sequenggh,) is con-
vergent in the projective spac8(n)]. If necessary by passing to a sub-
seguence, we can assume tiate A r!l_r)rgo a(hy) exists inR U {co} and
is equal tof,. For a weighty = u, — > n,a, if we define Supp =
{a|h, # 0}, then clearly the diagonal entry ri]rlogm(hn), corresponding
to the weighiu is zero tf Suppu contains some with 1, = co.

Notations. For a non-empty subset of A, we write

vVia)= >V,

Suppuca’

p. = the projection o/ onV(a") with kernal  »~ V,

Suppuga’
nma = n(parhpa) for h € S(n) and lety,, be the composit&,. —
G./K, — P(n) = [S()]. (K. = G. N 0(n, R)).

26 SinceV(a’) is stable undeA, we note thap,-h = hpy = parhpy.
The preceding remarks establish

2.2 Lemma.
Y(Ay) = U lﬁA(ﬂA)

ANcCa
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Also, if
K. =G, N0 R)

we have by theorefn 1.6

E = K.[A]
G. = E-K,
= K*[A_A] K.

¥(X) = ¢(G.) = y(K.[AL] - Ki) = w(K.[ALD)
= Y(K[AL]) = myK[AL] = m(K.[pAL])
= K, - (mpA,) = K, - mp(A,)

Forh, " e T < h,i >= T, (hl) is a inner product off . This inner
product induces an inner product on HAmMC) and hence its restriction
on Hom({,C*) — Hom(T,C). This restriction will again be denoted
by <, >.

2.3 Lemma. If Gavﬂ = 0, then the following two conditions are equiv-
alent.

1. GV, =0.
2. <u,a>=0.
Proof. We can choos,, € G, such that TrK.'X,) = 1 set 27

[Xa'X,] = h,, then forh e T we have
<hh, >=Trhi, = Tr h[X,,'X,]
= Tr[h, Xo]" X, = a(h) - Tr X,'X, = a(h)

h, = h, whereh, is the dual ofa in the inner product. Therefore
for any weightu, < u, @ >= u(hy). O

By considering the representation of 3-dimensional simple Lie al-
gebra generated ¥, h,, X, } on ZVMW, the result follows immedi-

nezZ
ately. (se€l[10] or pp. IV-3 to IV-6 of [23]).
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Definition. LetE, = {a|e € A < @, >=0

A subsetr’ of A is said to bep — connectedf A’ U {u,} is connected
in the sense of Dynkin’s diagram af lies in E,,.

For A’ c A we setA” = A’ U {a|a € Eya|B for VB € a’}. The
following is an easy consequence of the previous lemma.

2.4 Lemma. A subsel’ of A is p-connectedff there is a weight: with
supportu = A".

Proof. By induction ons = the cardinality ofa”. If s = 1 the result
follows at once from lemma2.3. §> 1 thenA’ contains g-connected
subset” of cardinals—1, and hence there is a weighlt = u, —hja1 -
‘Ng_1s-1, WhereA” = aq, ..., as 1. O

Letase A" —A”. Then< p,as >=< po,as > — > Nk < a, as >> 0
and is not zero since” U {as} is p-connected. Henge— as is a weight
of supporta’.

2.5 Corollary. V(2”) =V (largestpo-conn. subset in”) and

Y(AL) = U l/’A’(ﬁA)

A'ca
A'—pconn
2.6 Lemma.
n(E) = U G*-ir,(l).
A'ca
A p—conn.
Proof.

7(E) = ¥(E) = nK.[A,]
= yKJAL] = K. - y(AL)
=K, - U War(As) = U Ki - g (AL)

AN'CA AN'CA

A’p—conn A’p—conn
= U KAwe@)= U KAWL
A’p—conn ACA

A’p—conn
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= U G
A'CA
A’p—conn

Sincea is finite there are only finitely many subsets c A. So this
lemma in particular shows tha{X) = n(E) consists of a finite number29
of G, orbits. O

2.7Lemma. (i) ForheLl, andv:V(a"), hv= u.(h)v
(i) GoV(2) =0if @ > 0anday{a}
(i) GoV(2') = 0if @ € (2" — )
Proof. Parts (i) and (ii) are immediate. (iii) follows from Lemrha2.3

and (ii) of this lemma. O

For each restricted roat, setG,, the group generated Bigxp X, X €
G,). For a subsen’ of A let G’(2") be the group generated Iy,,
« € {4’} and letK(a’) be the subgroup generated by Exp{ X)X €
G, @ € {2’} and maximumR-compact subgroup cZ(T). G’(2’) is
semisimple.

We write

G.(2") = G(2") N G,; Ki(2) = K(A) NG,
G.(a") =G (&) N G,; K, = Ki(a) = K(a) NG,
and Ki(a") = K.nG'(a).
It is easy to see thdb(a’) = G'(a") - Z(T); GL(»") = (G'(a")r)°

butG.(A") need not be connected. Al&q(a”) andK/(a") are maximal
compact subgroups @.(a") andG.(a’) respectively.

Remarks.

(i) Sinceg e G, impliesZ™1gZ € G,VZ € Z(T) we haveG, - Z(T) =
Z(T) - G,.

(i) Since (2 — A’) L A%, roots in {A’} — {A’}) = roots in{A” — A"}.
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(iii) The Lie algebras of5(a’") andP(a”) are respectively

Z(M+ > GeandZ(T)+> Gy + > Ga

ae{r’} a>0 a<0

ae{n’}

(iv) P(a’)is connected and far’ > A” we haveP(A’)P(a”). Now we
prove following results, which allow us to determine tBeorbits

in y(X).
2.8 Lemma.
(i) The stabalizer of Ya") is P(2A")
(i) The stabalizer of ') - 7, (1) is P(A").
(i) The stabalizer of the poiat,: (1) in G, is

G.(2" = 2") - K (A)N(2) - (F2" N A).

Proof.

() It is clear that the stabalizer of(»”) containsP(2”) hence is a
parabolic group and therefore it is connecté(a’) is stable under
a connected subgrouy iff it is stable undeH. From this it can
be easily proved that the stabalizeP&").

(i) Let S be the Stabalizer odP(a")r, (1) andS,, the Stabalizer of
T (l)

O

ClearlyS o> P(a’). If x stabalizeP(A")r, (1) Xs (1) for some
p € P(a"), this implies thap™tx.x, (1) = 7, (1) i.e. p7tx e Sy
HenceS = P(2") - (S, N S).
We first prove thaB, c P(A").
31 If g€ S, thengp,'g = cp, for somec e R

ie. gp. = cpy('g)?
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So gV =gpaVy = CpA/(tg)_lva’ C Vu

g the stabalizer ofvV(a’) = P(2").
SA’ C P(Z’)
S c P(a").P(2) = P(2").

From parts (ii) and (iii) of Lemmga 27 it follows almost immediately
thatN(a’) ¢ S, andG, ¢ S, andG, C Sy, Ya € {A" — A’} (& So
G'(a'-n") € Sy)ie,N(@). ma (1)=7p (1) = G/ (2" —2")m, (1). Also
from the remark (i) after §2.7, we g&, c Z(G'(a"))Va € {A’ — A"}.

Now we prove thaG’(A’ — A”) C S.

Fora e {A" — A’}

Gy - P(A")mar(1)Gy - G(A")N(A").7rar (1)
= G,G(2)ma (1)
= G,G'(2")Z(T)mw (1)
= G,G'(2")Go Z(T)rx (1)
= G/'(2")Z(T) - Gomrpr (1) = G'(2")Z(T)7r (1)
c P(a")m (1)

This proves tha¥a € {A'-A"}G, c Sandtherefor&’(a’-a") ¢ S. 32
From the Lie algebra considerations it is easy to see that the group
given byG’(2a’ — A’) andP(2") is P(a").
P(»A") c S. This proves thas = P(2").
(iii) In (ii) we proved

S, c P(2).
As P(2") = N(&") - G(&")
and S, D N(a”) o N(2")
we have S,y =N(&") - (Sy NG(2%))
since G(a") = G/'(2" - A") - G(2") and since
G'(A' - a')C Sy

G(A) NSy =G'(& - a") - {G(A") N Su)
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clearly Sy DK(A)r and S,y NT =14’

(G(2")Sa)r = (Sa)r N (G(A")r = (Sa)r(K(2)zAK(2)r)
=K@ )R- (2" nA)
(Sa) NG, = No(2) - (Sy NG(2"))
=N.(2")-Gi(a" = 2") - K(2") (Fa' N A) .
33

2.9 Lemma.

1) G, =K,P.(a") VA CcA

(2) dimension of K(A") - N(»”") is independent of’.

Proof. (i) SinceK, - P.(a") c G, and since fora” c A”P.(a") C
P.(A”) it is suficient to prove that

G. = K, - P.(¢).

As a vector space
Ki(2) + P.(¢) = G,

By implicit function theoremK,P,(¢) is open inG,. Also it is
closed, sinc. is compact. Connectedness®@f implies the re-
sult.

(i) For a positive rootr, let{X}}, be a basis of, then the set

U 6 =%3u U %)
ae{r’} a>0
a>0 ag{a’}

is a basis for the Lie algebra ¢f.(~") - N(2”). This shows that

dim(K.(a)N(a")) = dim [ Y G, |.

a>0
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Definition. If Ais a rightH-set andB a left H-set, whereH is a group,
thenAx B denotes the sefx B),r whereR is the equivalence relation
(ah,htb) ~ (a,b), Yh e H.

By the previous lemma
G. = K.P.(n") VA" Ca
So theG., orbit of

ma (1) =Gy - mar(1)

=K, - P.(a)mu (1)
Ke(P:(a")ms (1))
N P.(a")
T K(2)NL(2) (A N A)
_G(a)
= K.() X K.

K. (by part (iii) of Lemmd2.B)

SinceP.(2") = GL(A") - N.(2") - (Z(T) N G,). If we put

GL(A") _ (o
k(o) X(a")

we have thés, orbit of 7, (1) » X(A”) X KK(*)
«(27
This is compact ff X(a’) is a single point set, equivalentlyfi
G.(a") = Ki(a)i.e., iff A" = ¢.
Then the orbit is the compact 961 = %@0 -t (1). Also from part 35
(i) of Lemmal2.8 it is clear that dirB, > dimS,~ if A" Cc A”.
So we have proved.

Theorem (Satake)(X) consists of a finite number 6f orbits. Among
these there is a unique compact orbit, dlso characterized as the orbit
of minimum dimension.






Chapter 3
R-regular elements

Whenk = R andG is a semi-simple algebraiR-group we can give 36
another description akductiveR-regular elements.

Let G be a semi-simpl@®-group without loss of generality we can
(and we will) assume th& is self adjoint (cf. [13]). LeT be a maximal
R-split torus inG. Let A = (Tg)°.

We can assume thdt c P(n) [see Lemm&1]4]. Let be a funda-
mental system of restricted roots dnlet

A= {x]xe A a(X)>t Vaea}

then Al=A,.
Z(T)r = Z(A)x = A(Z(A) N O(n,R))
we put Z(A) N O(n,R) = L.

ThenL is the unique maximum compact-subgroupZgf)z. The
only R-regular elements i@ are those in (Norm®) [A,]. More gener-
ally theR-regular elements id(T)r are of the form m.a witim € L and
a € (Norm A)[A,]. For given such an element it lies P(a") for any
A’ C A. Moreover ifP is parabolic anan.a € P thenZ(m.a) c P

T c P&P = P(a") for somea’ c a

This implies thaim.a is R-regular.
Since all the maR-split tori are conjugate by an element fraky 37
it follows that the set of reductivR-regular elements i is Gg[L.A,].

29
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3.1 Lemma (Polar decomposition)If x is a reductive element of GL
(n,R) then x can be written uniquely in the form=x p.k with pk €
GL(n,R), the eigenvalues of p are positive, the eigenvalues of k are of
absolute value 1 and pk kp.

Proof. LetV be the underlying complex vector space. |

V=@ Z V,, wheea varies over the eigenvalues xf

A
Let

p:ve AV forveV,

A
and k:VHmv.forveVﬂ.

Thenp, k satisfy the requirements of the lemma.
Definition. pis called thepolar part of x.

The polar decomposition provides the following characterization of
R-regular elements.

Proposition. A reductive element iR—regular iff its polar part isR-
regular.

The rest of this section will be devoted to the proof of the

3.2 Theorem. Let G be a semi-simple—group and y be aiR-regular
reductive element in £ Then there is an algebraic subsey, $iot
containing 1, such that for all large n, Xys R-regular, provided xe
G]R - Sy.

We introduce the following new notations:

N* = The unipotent analytic subgroup with Lie algeya G,
a>0
N~ = The unipotent analytic subgroup with Lie algefya G,

a<0

Lc = The Zariski closure oE= maximalR-compact subgroup &(T).
F =Nz -Ni
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we have Bruhat's decomposition

G = N"(NormT)N*
Gr = NI@N]%—.

we need following Lemmas.

3.3 Lemma. Let V be a finite dimensional vector space and |et W
anddeGL(V)i=12,...
Assume

(@) |I|_r)1;10 Vi=V= iIi_)rg divi and
(i) (di — 1)~ are bounded uniformly in i then 0.
Proof. Setw; = (d; — 1)v; thenw; — 0 asi —
vi=(-1)'w >0 iey=0.
i

3.4 Lemma. Let K be a compact subset of@et W and U, be neigh-
bourhoods of 1 in @ and A respectively. Lett 1, then there is a nbd. 39
U of 1 in G such that

(kwW)[LaUa] o k[La].U Yk € K,a € A,

Proof. Since the rank of the mag,(b) — g(b) of (W n F) x LAl into

Gr at (1, b) equals the dimension oB, L + A] + L + A = G the map is

open in a nbd. of (1b). By taking a open subset tf we can assume
thatvVa’ € Uat™ < a(a) <t Ya € o andU 4 is compact. TheiWa e Al

aUpa c Al If necessary, by passing to a open subset, we can assume
that the above map has maximal rank W F) x LA, W is compact
andWn NormA c Z(A).. Then the sekW[LaU,] is a nbd. of identity.

It remains only to show that

ﬂ (Kmd) ~1(kW)[LaUa] is a nbd. of identity

acAl keK
melL
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Since for any nbdU of 1, nkexk[U], for K compact, is a nbd. of 1,
it is suficient to show that

*) (| (ma'W[LaUa]is anbd. of 1

acAl,meL

Let

T GR - GR/A
set W = (W)
define fna: WxUaxL — G
fma : (WA &, M) > (ma) " (w(m'ad))

then () is equivalent to

*) (| Imagefnaisanbd. of 1

acAlmelL

It is easy to see that the condition**) failf§ there is a sequence of
pointsx € W x Ua x L and a sequencen(, &) € L x Al such thatx; -
boundary o= WxUaXxLinGgaxAxLand lim fy, (%) = 1. Hence

|—00
to prove [*) it suffices to show that if limfy 5 (WA, &, nY) = 1 with
|—o00
al € Ua,m € L and if lim(w;, &, m, m{) = (w, &, m,m’) thenw = 1 and
a = 1. For then it will follow that

(WA, &, ) — (A 1, m)

which is not a boundary point & x Ua x L.
The previous statement is equivalent to

If (ma)~t(wi[n¥aa{]) — 1 and if
(%) (Wi, &, m,my) — (w,a,mm)e(WNF)xUaxLxL
thenw =1 anda’ = 1.

We prove [F%)
From the uniqueness of Bruhat's decomposition it follows tidat

LANg, being the image oy x LA x Ng under a homeomorphism, is
open (invariance of domain).
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Letb € A be close enough to the identity 1, so that

wib] € N\LAN;  VYwe W.

Then
Wi[b] = pPiCigd P € Nﬂg,ci e LA, g e Nﬁ{
and wb] = pcq pe Nz ce LA ge Nf.
Set bi =ma thenb ! = vi(w[(maa))™])
where vi = b (wi[m{aa])

(b 'wi)[b] = vi(wi[(mYaa)) ) wibwi H(wi[miaaT)vi .
= viw;i[b].

Sincev; — 1 andw; — wwe have

lim (b5 “wi)[b] = w{b]

ie., lim by *wi[b] = lim w[b]
out b [wi[bl] = b *[pi] - ci - b *{ai]
SO

i by fw[b]] = lim b *[pi] - ¢ - by ]
=limpi-c-q

lim b [p] = p=limp
and limb[qg] = q = lim g.

SinceN*, N~ are nilpotent. By induction on the lengths of the dez2
scending central series Bf, N* and using the previous lemma we get

Iimpi=p=1=qg=Iimg.
wib] =ce LA
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sinceA is connected any nbd. of 1 lhgenerate®\ we have

W[A] c LA
W[A] = A
weWn NormA c Z(A)
we WNLANF.

But from Bruhat's decompositioW N LAN F = {1}.
w=1.
From (%)
b (wilmiaia]) — 1.

Sincew; — 1 we have
bimaa — 1
m—l

00 g1
eL

a—-1 sinceL N A = {1}.

ie., a =1
43  This proves the Lemma.

3.5 Lemma. Let C be a compact subset of ldnd let t> 1. Then there
exists a compact subset&Ny such that

CbcK[b] belLA.

Proof. (By induction on the length of the derived seried\gf).
Set
No =Nz Niyg = [Ni, N

Suppose\, is abelian. |
Then

ub = v[b]iff ub=vbvib~lb

ie., u=vbvlip?



3. R-regular elements 35

=v-—adbv (written in additive from)
= (1-adbv.

44 Iff v = (1 - adb)~tvwhereadh(x) = bxb™.
Since (1- adb)~! is uniformly bounded for

belLA, |J@-adh'C
beL Al

is a subset of a compact g€t This proves the statement for the case
whenN, is abelian.

In general, given a fixetd € LA!, by applying the above argument
to N./Nz, we can find elementse N, andn € N1 such thahub= v[b];
moreover sincéN, = Ny, asu varies over compact s€t, n andv vary
over compact sets.

ub = n~tv[b] = v[n;b] wheren; € N; and varies over a compact set
Ki.

By inductionn;b = vy[b] and v; varies over a compact set ag
varies over compact s&t; andb overLA',

We have

ub = vimb] = v{va[b]] = vvi[b]

as bothv, v, vary over compact sets- v, varies over a compact set
proving the Lemma.

Now we prove Theorein 3.2.

We can assume (see pp. 36-37) that LA, t > 1. LetSy =

G - N"Z(A)N*. Then sinceSy|Z(A)N* is union of N~ orbits of lower
dimensions irGZ(A)N, Sy is Zariski closed irG. Let

x € Gr — Sy = N Z(Z)r Nz
then 45

x=ubu"withbe LAu e Nz &u"eNg
xy" = ubu'y" = (uTby")(y "uy")
= v[by"](y "u*y") for somev € K (by Lemmd3.5)
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Sincey is R-regular reductive element, given a ntdiof 1, In,(U)
such thaty"u*y") € U for n > n,(U). Hence by Lemma_3l4n,(y, X)
such thaixy” € G[LA! if n > n,(y, X).

3.6 Lemma. Sy contains no conjugacy class of G.

Proof. SupposeE c Sy with G[E] = E. SinceSy is Zariski closed we
can also assume tht= E*. Let 0= G - E, then forg € N*

gIN"Z(AN*] = g[G-S,] cg[G-E] cG-E =0
N*[N"Z(A)N*] = N*N"Z(AN* c 0.

But

N*N"Z(AN* = N*N"Z(A)Z(AN* = N*Z(AN~Z(A)N*
= N*Z(AN* N"Z(AN* =JJ1co
whereJ = N*Z(A)N*

SinceJ is Zariski open irG, for anyg € G, gJnJ, being intersection
of two Zariski open (hence dense) sets, is nonempty.

Therefore
geJdrlico.
0=0G
E=G=0=¢.

46  This proves the assertion.
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Discrete Subgroups

In this and the following sections we will use the following notations .47
G will denote a semi-simple (complex analytic) algebrgiegroup.
Gr = GNGL(n,R) andG, = G;. For any subséb of G, S* andS are
respectively the Zariski closure and the closur&itopology ofS in G.
We state the following useful Theorem, for a proof the reader is
referred to[[3] or([16].

4.1 Theorem. Let G be a connected algebrak—group with noR-
compact factors and lét be aR-closed subgroup of & If Gg,r has an
Gr-invariant finite measure, thenis Zariski dense in G.

Here after we assume thhtis a closed subgroup @g such that
Gr,r has arGy invariant finite measure ar@has ndR-compact factors.
Now we prove a few “density” results.

4.2 Lemma. If T, is the set of reductiv®-regular elements it then
I:=G.

o]

Proof. We first show thaf’, is non-empty. O

Fix an elemenk of LA',t > 1, letU be a symmetric nbd. of 1 i6.
Then since the sei’UT". **** have same non zero measure and since

the total measure is finite, at least two of them intersect 48
let X"UT N XXUT # ¢ for k> m
then rnuUx<mu ¢

37
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i.e. for some n>1
rnuUx'U # ¢.
but Ux"U c U[X"] - U2

If U is suficiently small by Lemm&a3l[x"] - U% c G[LA']. This
implies that
I NG[LAY # ¢

I, > I' N G[LA!] is non-empty.
Lety, eI, if y eI =Sy, then by Theorem 312,

yy? € G[LA' for all n > n,(y).

Set

B, = {yo:n>n.(y)}
then B. - B, ¢ B, henceB; - B. = B;.

Since the ideal of polynomials vanishing Bpis stable under trans-
lation by x € B: and therefore under translation &y* for x € B! (see
Lemma 1 on p. 80 [50]), we have

(B) " c B

49 Therefore
(B:)™'(B:) c B:.
leB:.
Also since
vBs €T,
yBs C T3
y =yell

This proves thal' — Sy, c I';. But sinceSy, is a Zariski closed
proper subset db, I' — Sy, is Zariski dense and thereforg = G.
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4.3 Lemma. Lety; €T, set

Iy ={y|yel,y,y" el forn>n.(y)}
and Io={y"lyel nxn.(y)}
then [F=T:=0G.

Proof. Since the Zariski closure ¢k, n > n,} for x € G is a group (see
the proof of previous lemma): {x",n > n}}. O

This shows that
Fl C FE.

Hence it is skicient to prove thaf'; is Zariski dense ir. Given
y € I, since by Lemma 31&y does not contain any conjugacy classex)
Jy such thaty[y1] ¢ Sy.

o Ty = {7.7ly1l € Sy} is a proper algebraic subset®f

Foranyy e I' — Ty, y[y1] ¢ Sy so

ylyily" € T, for alln > my(y)

iy Y €ve Loyiy Yyey Ty =T,
ie.  yiy 'YD" e T. forn> my(y))
le.  yleliityeT,

y ¢ T, impliesy[y] € 1

I > =T, D).

Bur r- T;l is dense irG, so
ye Gyl cI7
I, cI7.

By the previous lemma we ha¥g =T7; = G.
Following is a refinement of the above result

4.4 Lemma. Let S be a proper algebraic subset of G, let n be a positive
integer andy; € I'. Thendy, c I, — S such that,,y2,...,y" and

Y1Yos Y172 .., y1¥ €0 = S.



40 4. Discrete Subgroups
Proof. Ym, S = {X|x € G,y1X™ € S} U {x|x € G, x™ € S} is a proper 51
algebraic subset @&. m|

HenceS; U S, U ... U S, is a proper algebraic subset. Siriceis
Zariski dense, we can findyg inT'>, —S; US, - -- U S,,. Obviously such
avy, satisfies the requirements of the lemma.

4.5 Lemma. Let G be a semi-simplR-group and letx T be a maximal
R-split torus. Let T be a maximd@—torus containingrT. Set A=
(RT)°R, H = (Tr)°. Then

G.TINH) =T.
Proof. Z(A)r = Z(rT)r = L.A. O
Since

H=MHnNL)-A
L°[H] =L°[HnL]=L°.A
and G.[G.i[I] N H] = G.[T' N G.[H]]
= G.[I' N G,[L°.A]]
D Gy[T.] o T.

By taking Zariski closure we get, sin€ = G
G =TT = (G.[G.[TTNH])" = G[(g.[I'T N H)].

Therefore

dimG = dimG[(G.[T'] n H)*] = dimG/Z(X) + dim(G.[I'] n H)*
for somex € H.

Since dimZ(x) > dimT, we find dimG..(I') "H)* = dim T and thus
(GiITINH) =T.



Chapter 5

Some Ergodic Properties of
Discrete Subgroups

5.1 Lemma(Mautner) Given a group BA, where B is an additive groups3
of reals or complex numbers and A is an infinite cyclic subgroup of the
multiplicative group of complex numbers a wih< 1 and assume that

0 is group operation is
aoboal=ab
ordinary multiplication inC

LetV be a Hilbert space and Igtbe a unitary representation Bf A
onV, then any element € V whose line is fixed undek is fixed under
B.

Proof. Sincep is unitary

p(@v=avwith|al=1forbe B
< p(b)v,v > =< p(a)p(b)v, p(a)v >
=< p(a)p(b)p(@ )o@V, p(a)v >
=< p(acboat)av,av>=<p(@acboa?)yv>
So forV¥n positive
<pb)v,v>=<p@ oboav,v>
=< p(@".b)v,v >

41
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42 5. Some Ergodic Properties of Discrete Subgroups

asn — oo
<p(bv,v>=<v,v>
p(b)v = v.(use Schwarz’'s inequality)

This proves the assertion. ]

5.2 Lemma. Let G be an analytic semis-simple group having no com-
pact factors. Lep be a unitary representation of G on a Hilbert space
V, let x be areductiv®-regular elementin G, if for some elemenrt W,
p(X)V = av thenp(G)v = v.

Proof. Take the decomposition & with respect tox. Let A be the
group generated byandB a root space. The previous Lemma applies.
o

Remark. The above result holds for anynot contained in a compact
subgroup (see [11]).

5.3 Theorem. Let x be a reductiviR—regular element of G. Then x
operates ergodically on GI', i.e. any measurable subset of|G stable
under left translation by x is either of measure zero or its complement
has measure zero.

Proof. Let V = .Z?G,/I). O

Since the measure dB, /T is G.-invariant, the canonical action of
G, onV is unitary.

LetZ c G,/T" with xZ c Z and letv be the characteristic function of
Z. Then since measure &f1Z — Z is zero

XV = V.
Therefore by the previous lemma

G.-v=V.
v = 1 almost every where
or v =0 almost every where

This implies that eitheZ or G/T" — Z has zero measure.
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Remark. Let M be a separable topological measure space [i.e. the open
sets are measurable and have positive measure] afd Ist — M be

a measurable transformation. L&t = {f"'n=1,2,...}. Theniff is
ergodic, for almost alp € M, A*pis dense irV.

[Proof: Let {U;} be a denumerable base of open sets.{W\ét= p|p €
M,A*pn U; = ¢} thenW, is measurable. Alsp e W, = fp e W
thereforefW, c W,. Sincef is ergodic andJ; ¢ M — W, W is of
measure zero.

E=(JW hasmeasure 0
i=1
p ¢ EimpliesA*pnU; # ¢ Vi and this proves that for almost gle M,
A*pis dense].

5.4 Theorem. Let G, be a semi-simple analytic linear group. LEt
be a subgroup such that, @ has a finite invariant measure. Let P
be aR-parabolic subgroup of G(= the complexification of 3. Set
P. = PN G, thenI'P, = G..

Proof. Let T be a maximaR-split torus inP. Let x € Ty such that 56
for any restricted rootr on T with G, c U™ the unipotent radical of
P, a(x) > 1. O

Let U~ be the opposite (i.eU~ = S G_, whereU* = 3" G,) of
U* andK, a maximal compact subgroup &f. Also letW~ be a nbd.
of 1 in U~ N G, whose logarithm is a convex set. Sinde P, is a nbd.
of 1in G,, andK, is compactd a nbd.W of 1 in G, with W c WP,
andK.[W] = W.

UX"WT is stable undex and contains an non-empty open set, hence
by Theoreni 513 it dfers fromG|I in a set of measure zero. Therefore
dn = n(k) such that

Wk N X"WI # ¢
L NKWXW # ¢,
but X'W c X"W P, = X"W x". P, c WP,
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(using the convexity of logarithm afvV™)

I'NKWWP, # ¢
I'P. meetskWW".

This proves thak, cTP,. .. K.P, cTP, cG..
But we know thak, - P, = G,.
ThereforeG, = T'P,.



Chapter 6

Real Forms of Semi-simple
Algebraic Groups

In this and the following section§ will denote a semi-simpl&-groups 57
r T @ maximalR-split Torus,T a maximalR—torus containing:T; A @
fundamental system of restricted rootsoh, a fundamental system of
roots onT whose restriction t@ T consists ofzA U {0} (such aa can
always be found)®, ®* will denote respectively the set of roots and the
set of positive roots and* the set of positive roots whose restriction to
r T iS non-zero.a, will denote the subset af consisting of those roots
which are constant ogT .

Givena € @ we definea’ € @ by the formulaa’(X) = a(X)Vx € T,
X is complex conjugate af. Then for anya € A, @ = —@ 0N A — A..
We can define a permutatienby

o =o(a)+ zﬂ:ezﬂﬁ ng non-negative integers

Satake’s Diagrams of semi-simpl&—groups.

In Dynkin’s diagram every root in, is denoted by a back circle
and every root oh — A, by a white circles. If @ € A— A, then the white
circles corresponding t@ ando(X) are joined by a arrow”™ .

Definition. Gy is said to beR-simple if (Gg)° has no proper normal
subgroups of positive dimension.

45



46 6. Real Forms of Semi-simple Algebraic Groups

If Gg is R-simple, butG is not simple therG = restrictionH = 58
H ®x C, whereH is a simple Lea algebra oveyR

ThusG = H & H, and the diagram o6 consists of two copies
of Dynkin's diagram ofH, with vertices corresponding under complex
conjugation joined by arrows

Real forms of semi-simple Lie groups have been determineld-by
Gautmacher (cf. Matsbornik (47) V. 5 (1939) pp. 217-249).
The following is a complete list of-simpleR-groups (cf. [1], [20]
& [24])).
1=4aA p=fra

Group A Type of p
RA
Al SUI+1R) 0-0-0-0-...-0 A p=1
All  SU(+1) 0-0-0-0-0-0-—-0 A, p="Lt
Alll SU(p,q)
0—0—0—————0
(p<gp+a=1+1) ‘ ‘ ‘ ‘ Bp p<1/2
0—0—0—————0
0—0—0— -
suezz) ||| l>0 & pet
0—0—0— ... —
Bl SO(p2l+1-p) 0-0-0-..-0-0-0-..0=0 B, p<1
Cl Sy(n,R) 0-0-0-----0<=0 C
Cll Sy(p,I-p) 0-0-0-0-—-0-0-0-0<—0 By p< i
odd
Sp(1/2,1/2) 0-0-0-..0<—0 Co p=1/21
even
DI SAp.2-p 0-0-0-0...-0-0-...o<: By p<l-2

sql.l) 0-0-0-...-o<8 D,
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Sal-1,1+1) 0-0-0-0-...-o<§ Bs

0
DIl SOQ21) 0-0-0-...-0-0-o<(t) B, p='3
SO(21) e0.--. o Cp p=1/2
( ]
Es o-o-I-o-o A
l B2
i Es
E; o-o-o-i-o-o Cs
E7 O-O-O-I-O-O |:4
Eg O-O-O-I-O-O F4
F4 O0-0—0-0 Fa
*-0—>0-O Vi
G, o0=o0 G,

59

Definition. R-rank of an algebraic group is the dimension of a maxine
R-split torus.

From the diagrams above, we can excerpt the diagrams of groups of
R-rank 1 and we list the dimension of the restricted root spaces.
Let A-A,={a}

Associated symmetric space diagram Gm dimG
0 0 1
Hyperbolic o-eee..0=0 0 2-1
o = XOT < 0 Z _ 2
Hermitian hyperbolic 0-0-0------8-0 1 2A-2
Quaternianic hyperbolic o0ee..0=0 3 4 -8
Cayley hyperbolic o-ec—e-o 7 8

Now we collect some results whose proof require examining these
diagrams.
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6.1 Lemma. If N is the set of automorophisms of G stablizing T &nd
then any automorphismof restricted root system® is induced by an
element of N.

Proof. The result is true for inner automorphisms (i.e. elements in little
Weyl group). For given any elemeate N(zT), bothoTo~! andT are
contained inZ(z T) and therefore are maxim&l-tori of the connected
algebraic grouZ(zT). By the conjugacy of maximal torgz € Z(gT)
such that

wTolzt=T ie, zreN()

The inner automorphism given lay- is the desired element of. m]

In caser, is an outer automorphism we can without loss of generality
assume that(zA) = rA.

From the usual root diagrams it is clear that only the restricted root
systems of typé\, E andD; admit an outer automorphism.

In caseA andE the automorphism is an inner automorphism com-
posed with the “opposition” map — —«; since each of these extend to
®, then so does the outer automorphism.

If the restricted diagram is of ty®, then the Satake diagram shows
thata = rA; that is the group splits ovét and hence the conclusion is
hypothesis.

6.2 Lemma. If [Z(=T), Z(zT)] = J thend = J; + Jz is simple (possibly
zero) andJ; is sum of compact Lie algebras of rank 1.

Proof. We remark first thah, is a fundamental system of roots far
Now simply observe that the diagram of satisfies the condition re-
quired by the conclusion. m]

Note. J; is of rank 1 only if the group i$ (1, 2).

6.3 Lemma. Let W be the subgroup of the Weyl group of T, which
stabalizerr T. Then W is irreducible onJ; N T andJo, N T.

Proof. J, N T is a cartan subalgebra of the simple Lie algelrand,

as is well known, the Weyl group of a simple Lie algebra operates ir-
reducibly of its associated Cartan subalgebra. It remains only to prove
thatW* is irreducible onJ; N T. O
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Inspection of the position ok, in A, as pictured in the diagrams
shows that); is contained in a subalgebra of typep-1 with the dia-
gram e-oe———-- -o-e.

As is known, the Weyl group ofxp-1 = SL(2p) is the group of
permutations of the standard basis vectars. ., e in C2P. The roots
Ao:1 Of J1 become identified witHazi_1 — azi,i = 1,... p} whereq;
denotes thé" matrix codficient. Clearly the stabalizer ak contains
the conjugation by the matrix sending eaeh.1 — €xq()-1 andey —
€)2x(i), for any permutationr of {1,. .., p}. Since these automorphisms
of J; induce the full symmetric group on the elements of thessat
we conclude thatV* is irreducible onJ; N T.

6.4 Lemma. Let G, G, be twoC-simpleR-groups. Assume: T; — 63
T» is anisomorphism sendind’; — rT> andCD1 - O, ThenG1 ~ Gy
and |z T1 can be induced by an isomorphism@f andGs.

Proof. Suppose first thap, theR-rank ofG; andG; is one. Then the
T-corresponding restricted root spaces must have the same dimension.
The listed values in our table for di@®, and dlmGZQ show that these
determine the group dk-rank 1. ThusGl ~ Gz in the rank 1 case.
Moreover, the isomorphisi#of Gl to G, can be taken so as to map the
restricted root spaces G‘l » Of G1 to the restricted root spa@z (a) Of

G.. It follows at once tha# andr induce the same map e and thus

the lemma is proved fop = 1. m]

Suppose now thalra > 1. We need only consider the case that
the groups are not split ové (i.e., A # rA), otherwise the result is a
well-known theorem of Weyl. Assuming therefore tha A we find
that the restricted root diagrams are of typeB, C, F4. In neither of
these cases does the Dynkin diagram @tave a branch point. There-
fore given a Satake diagram of a nonR-split group, one can form a
sequence of the subdiagram® c A@ ... c AP = A such that

(@) tra® =k
(b) al+D = A0 N D1 whereflz D1 = 1.

(C) Dk N Dk+l Dk+l N A(k)
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Given now the two group&; andG, and the map, we decompose
the Satake diagram; of G; as above, getting; = A" U DP. By
induction there are isomorphisng®2 : AP - AP andg, :
DY — DY induced by isomorphisms of the corresponding Lie algebras
GP™ andF}. Lety denote the restriction af;! - 6P~ to G n FP.

SetaP, = AP DP. ThenaP, is connected since the root diagram

A has no loops. In fact by propertg)(a, = DP™* n DP and is in fact
a connected component i) ., the diagram of th&k-compact part of
Z(T;). An additional inspection of the diagrams shows that no connected
component of the diagram @(T1) admits an (outer) automorphisms.
Hencey is an inner automorphisms @ﬁp_l) N F} and thus extends to
an automorphismg of G;. Replacing, by 6, - x, we obtain the derived
isomorphisms 06, ontoGs,.
The following is an easy consequence of previous lemma.

6.5 Theorem. Let G be a semisimplR-group having no compact fac-
tors. Letr : T — T be an isomorphism which stabilize$ and ®*.
Then there exists an automorphigrof G such that - r stabilizes T and
ongT itis identity.

6.6 Lemma. Let G be a semisimplR-group with naR-compact factors.
We also assume that:G3s simple ofR-rank 1. If‘r_ is_an a_utomqrphi_sms
of T stabilizingg T and®*, then it stabilizesd N T,Jy;NT andJ,NT.

Proof. Let

B*zzaz

acd*

Thent preserved8™. Let B, B, denote the killing forms o6 andZ(T)
respectively theB = B, + 2B*. So any two subspaces bforthogonal
with respect to botlB andB, are orthogonal with respect &'. m]

Let X, X’ € J; andY € Jy, then
B([X, X'],Y) = -B(X,[X,Y]) =0
and since J, Jo] = —Jo, we haveB(J1, J,) = 0 similarly B,(J1, J2) = 0

B*(j]_ N T, jz N T) =0.
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Composingr with an automorphisms dB, we can assume by the
Theoreni 6.6 that induces identity ok T. Thust stabilizes the set
of all roots having a non-trivial restriction ogil and we can assume
accordingly thatzA consists of a single element, and that the set of
positive roots ing® is either{a} or {a,2a}. Let S denote the set of
roots restricting tar - v stabilizesd* and therefore also the s&t- S of
differences of roots i6. These diterences clearly lie in linear span of
{A.}, conversely, given any rogte {A.} we shall show thas occurs in
S - S. We can assumg > 0.

The hypothesis th& contains ndR- compact factors is tantamounéé
to the hypothesis thdG,, +a € S} generate$. Hence< 3,S ># 0.

Let @ be the least root irfs for which < g, ># 0. Thenog(a) =
a + q(a, B)B is a root wherey(a, 8) = ‘i;f;'? is a positive integer. Thus
a+((a,B)B € SandB € S - S. Hence(S — S} = {A,} as asserted.

Thereforer stabilizes the intersection of the kernels of the linear
functions ina, e.g. stabilizesZ(J) N T. Now J N T is the orthogonal
complement oZ(J) N T with respect to both killing form8 andB, and
therefore with respect tB* = B—2B,. Sincer stabilizesB*, it stabilizes
JnT.

Having assumed th& hasR-rank 1, we see thatis simple in all
cases exceffs = C/(I = 3) orG = D3. Inthe second cask= Ji, J, = 0
and the Lemma is established. In c&e C(I = 3) the diagram is

0o ————-0—0

and the roots ib* having the same restriction taI' as 2v, are 2vo +

21t a1+ 2a0+. . 201+ a1, 2a1+2a0+. . .+ 2a1-1+a). Since
T permutes this set, it permutes thé&eiences and therefore; = +a1.

Hencer stabilizesT, = kera; N J, and therefore stabilizeg, which is
the orthogonal complement @ in T N J with respect tB*. The proof
of the Lemma is nhow complete.






Chapter 7
Automorphisms of ®*

7.1 Lemma. Let G be arR-group with no compact factors. Let T— 67
T be a automorphism stabilizing™ and®* thent preserves the Killing
form.

Proof.
T=@GnT)+@GnT)+@3)NT)

we know that (i)r preserves8* = Y a? (ii) the three subspacek N
acd*

T,J,nT andZ(J) N T are stable underand (iii) if W™ is the subgroup
of Weyl group stabilizingsT thenJ; N T and J, N T are irreducible
underW*. O

SinceB* andB are preserved bW*, B; = CiBf i = 1,2. ¢; # 0.
HereB;, B/ (i = 1, 2) are restrictions td; N T of B, B* respectively. Let
Bs, B; are restrictions t&@(J) N T of B, B* respectively, thelBs = Bs.

Hence onT, B = B3 + C1B] + C;B5. As t preserved3], B;&B; it
also preserveB.

7.2 Lemma. Let G be an R-group without compact factors anddet
T > Tbhean automorphism stabilizing” and®* thenr is restriction
to T of an automorphism .

Proof. Let W' be the subgroup of Weyl group af generated byo,,
a € ®*}. We shall first prove thatV = W’. GivenB € {A,}, < 8, ®* >#
0 sinceG has naR-compact factors and hen¢@..,a € ®*} generates
G. |
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We can finde € ®* with < 8, @ >< 0.
68 As

-2<B,a>

<a,a >

oo(B) = B+ d(B, a)a whereq(B, a) = >0

oo, (B) € O*

Toup) € W bBULT 4 (5) = Taopoy*

05 =0, T, pTe € W forall g e {az)
W =W

10,7 L = 0+(e) IS a reflection since far € ®*7(a) € O

Wrtl=wW
Wrl=W

Thust permutes reflections iW, i.e. T permutes the sdtr,,a €
O}

TO=0
7 extends to an automorphisms @3.



Chapter 8
The First Main Theorem

This section is devoted to the proof of 69

8.1 Theorem. Let G, be a semi-simple analytic group with no compact
factors and no center. K be a maximal compact subgroup. Let X
G/K and letl',T” be two discrete subgroups of.Gsomorphic under
an isomorphisn® : I' — I". We assume that @, G, |I” have finite
Haar measure. Let Xbe the unique compact.&rbit in some Satake-
compactification of X. Let : X — X be a homeomorphism such that (i)
o(yX) = 0(y)e(X) Yy € T, x € X: (ii) ¢ extends to a homeomorphism of
XU X, whose restriction to Xis a diffeomorphism of X theng extends

to an automorphisms of G

[Conjecture. Condition (i) is superfluous @ has no factors iso-
morphic toPS L(2,R).]
For the proof of the theorem we need following lemmas.

8.2 Lemma. Let G be a connected reductive linear algebraic group. Let
k™ be a maximal k-split torus and T be a maximal k-torus containing k
Let t,to be elements inchonjugate in G. Then {t, are conjugate by
an element in Nornk T)Nn Norm T.

Proof. From Bruhat's decomposition
G = N*(NormT)N™.
Suppose

xt;x 1 =t, with xe G
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and X=uwvV uveN" we Normk"
then
UWVE = touwv
uwtty[v] = to[ultpw.
O

By the uniqueness of Bruhat's decompositiofa = t,w. Thusty, to
are conjugate by (Norm k'). SinceT andwTw? are contained in
Z(kT), by the conjugacy of maximal torfild € Z(,T) such thatTA ! =
wTwlie, A twTew!i=Tie., A1 'we Norm k') n NormT.

It is clear that; andt, are conjugate by ~1w.

8.3 Lemma. Let G be the Zariski closure of a real linear algebraic
group G, letg T be a maximaR-split torus in G and T be a maximal
R-torus containingsT. WA = NormT. P, be the stabalizer in Gof

a point in X,, P the Zariski closure of RU the unipotent radical of P.
We assume that B T. %y the set of roots occurring in \#y-+ the set
of roots occurring in N, then

WA(%U) = +ZN+.

Proof. From our description of Satake compactfication i § 2, we know
thatP = P(a”) for somea” c rA. Indeed in the notation of § 2 = E,
wherep is anR-irreducible representation with finite kernel, and thus
P(2’) contains no normal subgroup of positive dimension, equivalently,
the subset’ contains no connected component of the fundamental sys-
tem of restricted rootgA. O

We haveP(2a”) = G(a”). N(a"), U = N(a’) andN* = N(¢). It
is easy to see that {fA is connected, theg?y contains a root whose
restriction tog T has length equal to the length of any restricted root in
rA. We recall that the Weyl group of a connected root system permutes
transitively all roots having the same length. Applying this observation
to each connected componentzaf, we find WA (restriction ofRy to
r T)= all restricted roots. Hence

WA(RU) = +Ry-+.
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8.4 Lemma. Let A= (gTr)° and letbe L.A = Z(zkT)z. Then b is
R-regular iff b keeps fixed exactly/m, points [here m= fWA and m=
order of the Weyl group of (3’)] and on the tangent space at these
points, the eigenvalues areféirent from 1 in absolute value.

Proof. Let U~ denote the opposite &f. Suppose is R-regular then
the eigenvalues df on tangent spaces at the points fixed uridiare the
values ofWA(Ry-) onb. Conversely ifb € LA has only finitely many
fixed points onX,, thenb is R-regular. The Lemma is now clear. O

8.5 Lemma. Let G,, I', I” be as in the hypothesis of the Theorem 8.1.
Lety be a reductiveR-regular element of. Thend(y) is also reductive
R-regular.

Proof. Let p, € X, and letP, be the stabilizer of, in G,. Forge P, 72
we denote byg the operation ofj on G, /P,. An element € P, is re-
ductiveR-regular it Ady +g has eigenvaluesfiierent from 1 in absolute
value; this will be true ifg keeps fixedn/m, points ofX, = G,/p, and

on each of the tangent spaces at the fixed points, takes eigenyalues
in absolute value. O

Thusg € G is reductiveR-regular ff it keeps fixedm/m, points in
X, and on the tangent space each point has eigenvaldeis absolute
value. From this it will follow that ify is R-regular therd(y) is also
R-regular.

Remark. If G is a reductive algebraic group over any figddthen it
follows immediately from definitions that an element®fis k-regular
iff it keeps only a finite number of points @/ p fixed for VP = P(A").
A C kA, It can be proved that the element is reductifehie number
of fixed points is-—2rder of the Weyl group ob it is unipotent if the

) order of the Weyl grour of P(i.e. @(a")) '
number of fixed points is precisely 1.

8.6 Lemma. If H = Tg, there exists an automorphismof H and a
Zariski dense subset Hf R-regular elements in H such thah € H, h

andt(h) operate equivalently onXi.e., there exists a gfleomorphism
®, of X, such that h= ®;1r(h)®,.
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Proof. Let Al = {a;a € A (d) > 1Va € ra}). Let K be a maximal
compact subgroup db,.. RecallZ(rT)zx = L.A. We can assume tht
K o L. Let (1) be the projection of 1 iX = G, /K. ]

Letp, = r!g)n a'(1), a e Al and letP, be the stabilizer ops,.
P =P(a") = P(®).

SetV = tangent space t¥, at p., thenV ~ G, /P,. Letg € P, and
let § denote the operation afonV. If H c P,, H c C; whereC is a
Cartan subgroup d&L(V).

LetW = % be the Weyl group o€. For any elemeny € I' set
Y =6(y).

Given a reductiveR-regular elemeny of I', there exists @ € G.
such thafg[y] belongs toH N LA’. The element(y) is also reductive
R-regular. Thereforélg’ € G, such thag'[y’] € H n LAL

Since

@(yp) = 0(y)e(p)m, we can write
() = eye (= ¢ly))

oY1 = glely]] = glelg gVl

g(/) = geggly]]

g1 = alyl(e")™

whereo” is the diferential ofg’ gt at ps.
Therefore there is an elemeritin W, the Weyl group oC such that

g[y'] = dly).

For any elemeniv € W, let H,, denote the subset &f N LA’ N G.[I]
on which the map — 77 is constant. Sincel N LA’ N G,[I is Zariski
dense inH andW is finite, there exists a € W such thatH, is Zariski
dense irH. Denoting Zariski closure by superscrigtwe can write

HY = H*
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since

7(H;) c H
7(H*) = H* and therefore(H) = H.
Thust induces an automorphism &f, and by definitionh andr(h)
operate equivalently or, for all h € H.
Proof of the Theorem 8.1.

LetS; = U Hw and letS = Sju nonR-regular ele-
weW
) Hy not Zariski dense
ments inH.
Then clearly

S* + H".

Let r be an automorphism d¢f given by the previous lemma. Then
T permutes the roo®*, that is

{a(h);h e H, @ € @} = {a(r(h);a € ®*,he H,}

By the lemma 813 permutesb. Hence TrAddy] = Tr Ad(g’[y’]) 75
that is, TrAdy = Tr Ady’ Vg € I' n G,[H,]. It follows that Tr Ady =
Tr Ady’ forally e T N G,[H - S1].

SinceG is without center we can identify it witAdG.

Giveny € T'andS c H with S* # H* andn any positive inte-
ger, by Lemm&4l43y, € I' N G[H — S] such thaty,, 2, ... Y%, vy,
¥¥3....yy) € G[H - S].

Let n = dimG. Then Tr{yT) = Tr 0(yy™ = Tr 68(y)6(y,)™ for
m=1,...n. We can write 1= C1y, + Cpy2 + -+~ + Cny? = f(y.) by
setting the characteristic polynomial@af equal to zero.

Then

n
Try=Tryf(yo) =D Tr(Cmyy?)
m=0

= e Tr 0()o(y.)™
m=0
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=Tr 6(y)£(6(y-)).

But Tr y™ = Tr (y,)™ for m = 1,...,n and thusy, andé(y,) have
the same characteristic polynomial, by Newton’s formulae.
Hencef(8(y,)) = 1 and Try = Tr 6(y) for all y € T.

Supposed Cyy =0). ThenO0=Tr | > C,y ) _ dy*y*> vd,. € C

yell yell
Vy* e I'. This will imply

Tr <Z o) Y dy*é’(y*)> =0

yell y*el’

Let & denote theC linear span ofl’. Clearly & is an associative
matrix algebra. By the density theorem (that the Zariski closuiéisf
G), the linear span df s linear span o&... Thus Trz C,0(y)e = 0O for

yell
allee &.
We can (and we will) assume thAdG is self adjoint. The we can

assert
Tr (Z C,6())' Z Co(y) =0

This implies that - C,6(y) = 0. Therefored induces a linear iso-
morphism of& ontoé&, since}" C,y = 0 implies}" C,0(y) = 0. Clearly
0 is anR-algebra automorphisé(I'™*) N Eg = (6(1))* N Eg implies that
G, = Gp = (GNé&r)® = 6((G N E)°) = 6(G,), sincel’ and(I') are
Zariski dense irG.

Thus we have proved théatextends to an automorphism @f.



Chapter 9

The Main Conjectures and
the Main Theorem

Let G be a real analytic semi-simple group with no center and no corm-
pact factors, and ldt be a maximal compact subgroup. ét= G/K

and letl’, T” be two discrete subgroups @&f isomorphic under an iso-
morphismd : T’ — I'". We assume th&/I", G/I"” have finite Haar mea-
sure. Letp : X —» X be a homeomorphism such thatyx) = 6(y)¢(X)
toVy eI"andx € X. Then

Conjecture 1.6 extends to an analytic automorphism®frovidedG
contains no factor locally isomorphic ®L(2, R).

Conjecture 2.Let X, be the unique compa@-orbit of a Satake com-
pactification ofX. Theng extends to a homeomorphism BfU X,.
Let ¢, be the restriction toX, of the extension, thep,Gy;! = G as
transformation ofX,, providedG has no factor locally isomorphic to
S L2, R).

It is not difficult to see that Conjectuté 2 implies Conjecfure 1. In-
deed we remark first tha& operates faithfully orX,, sinceG has no
compact factors and no center. Sin¢es topologically dense ilX U X,
we havep,(yX) = 0(y)p.(X) for all x € X, and ally € T; that is,d(y) =
oypst as transformations oX,. If ¢,Get = G, theng — ¢.ge:t
is a continuous automorphism &f with respect to the compact open

61
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topology ofG as a transformation group of,. As is well-known; this
implies thatg — ¢.gp;! is a continuous automorphism of the analytic
groupG and hence an analytic automorphism.

The following example shows th&L(2,R)/ = 1 violates the con-
jecture.

9.1 Example.LetG = SL2,R)/ +1,K = SQ2,R)/ + 1. ThenX is
the upper half plane wits operating as linear fraction transformations
Z— "g—jg Alternatively, we may identifyX with the interior of the unit
ball in the plane.

LetS andS’ be two compact Riemann surfaces of gesuswhich
are diteomorphic but not conformally equivalent. LEt= 71(S) and
I = m1(S’) be the fundamental groups 8fandS’. Lety : S —» &
be a difeomorphism, let : ' — I” be the induced isomorphism of
fundamental groups, and let: X — X be the lift ofy to the simply
connected covering spaces ®fandS’; by uniformization theory, the
latter may be identified wit)X. Theng(yx) = 6(y)e(X) forally e T, x €
X. As transformation groups oM we can therefore writ€” = gyp~1.
HoweverG # ¢Gy~! unlessy is a Mobius transformation of.

Pursuing the example further, the majs a so-called quasiconfor-
mal map (cf. next sections for definitions and properties) and therefore
induces a homeomorphism of the boundaryX, of the unit ball. Then
@.I" ¢! = I” as transformations of, sinceX is dense inX U X,. How-
everG # ¢,Gg:! unlessy, is a Moebius transformation of the circle
Xs.

The following trivial example serves to illustrate that odae given
¢, IS uniquely determined by contrast wighwhich is not unique; and
thateGy™! = G is not necessary even whenGe;! = G.

9.2 Example.LetI" = I, 6 = Identity, ¥ a homeomorphism which is
the identity map except on some small neighbourhooXaf. Then
¢Gyp! # G since otherwise would have to be the identity map. How-
every, is the identity map and in particulagt Gy ;! = G.

In these lectures we prove a slightly modified form of conjedtlire 2
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for the groupG = 0(1, n)/ + 1 wheren > 2. More precisely

9.3 Theorem.Let G= 0(L, n)/ + 1, n> 2, and let X be the associated
Riemannian space. L& I be discrete subgroups such thatlGand
G/T” have finite Haar measure. Let: X — X be a homeomorphism
andd : T’ — I'” anisomorphism such tha(yx) = 6(y)¢(X) forall v € T,

x € X. Assume thap is quasi-conformal (cf. below for definition) then
@ induces a dfeomorphismp, of the boundary component, %f the
Satake compactification of X and moreoyeGy;* = G.

Note. The condition thap be quasi-conformal is automatically fulfilled
if G/T"andG/I"”" are compact and is diffeomorphism.

The proof of this theorem is based on the theory of quasi conformal
mappings cf. [[1[7]. In the following section we present a summary of
our proof.






Chapter 10
Quasi-conformal Mappings

Definition. Mdbiusn-space is the one point compactification of eucko
deann-spaceR", it will be denoted byR" U {co}.

GM(n) the Mobius group of Mbiusn-space is the group of trans-
formations generated by “inversion” in the sph&fe

M+ g = 1

If we sety; = %(i =1,...,n+1) thenS" is realized as the projective
varietyy2—y2 — ———— y2,1 = 0, and one can prove th&tM(n) becomes

identified with O(1n + 1)/ + 1([17]p.57).

10.1 Theorem. The subgroup Gof GM(n) which stabilizes the hemi-
sphere S(i;1 < 0) is isomorphic to GMn — 1) under the restriction
homomorphism into its action on the equatoriat i spheren,,1 = 0.
Moreover G operates transitively on Sand keeps invariant a positive
definite quadratic dferential form d$. Under stereographic projection
from(0,0,...,0,1), S_ maps onto the unit ball?+ - - - + X2 < 1 and its
invariant metric d$ upto a constant factor becomgﬁ_ﬁ%, where dx is
usual euclidean metric. (loc. cit. pp. 58-59)

The unit ball|x] < 1 with metric 1‘3‘;2 wheredx is euclidean met-

ric, is a Riemannian space called the hyperbaolgpace, the isotropy
subgroup at a point is Q) (In this realization of hyperbolic space, the
isometries of hyperbolic metric preserve euclidean angles).

65
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Hence the spaces have constant curvature. 81
We introduce following notations:
LetV, W be two Riemannian spaces and¢etV — W be a home-

omorphism.
Let
Ly(p,r) = sup d(e(p), ¥(d))
d(p.g)=r
lo(p.) = inf_ d(e(p). ¢(a))
_w—— Lg(p.1)
Hy(p) = !'L‘% I;(p, r)
lo(p) = E w-
_ i M(e(Tr ()
P = 10 (T, ()

mis the Hausddf measure. *** and *** where for any subsé& of V,
T, (E) denotes the tubulor neighbourhoodbdf radiusr.

TE={v,veV dV,E)<r}

Definitions. *** is said to be quasi-conformaiff there exists a constant
B with Hp(p) < BVpe V.

A quasi-conformal is said to de-quasi-conformaiff H,(p) < k for
almostallpe V.

The foregoing definition is not well-suited for proving some of the
basic theorems concerning quasi-conformal mappings. The develop-
ment below leads to an alternative definition of quasi-conformal map-
ping in terms of the modulus of a shell.

Definitions. A shell Din Mdbiusn-spaceR"U{co} is an open connected
set whose complement consists of two connected compoQerasd
C;. A shell not containing the poinrt is called ashell inR". The com-
ponentC; of its complement which contains is the unboundedcom-
ponent and the other componée2y will be referred to as théounded
component.
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For a shellD in Mobiush space, we define itsonformal capacity
C(D) = inf / Ivu"dD
u.Jp

whereu varies overC!-functions withu(c,) = Ou(cy) = 1 C,, C; being
connected components of the complemenDof We will call such a
function u a smooth admissible functionlt is easy to see that(D)

is invariant under conformal mapping, since the integgalvul"dD is

invariant.

Let C-1 denote the area of the surface of the umiall. Then we
define

o)

10.2 Example.lf Dap = m{x, x € R"a < |x| > b} then

modD:<

b\ (-1 b
C(Dab) = Cn1 (Iog 5) and modD,p = log o

Proof. Letu be a smooth admissible function fDg, then 83

b b
-1 n-l
1§//|vu|dr:/|vu|rnTr‘anr.
a a

By Holder’s inequality

b b v 1
1< /lvu|dr < (/Wul”r”‘ldr) (/ r‘ldr)
a
a a

raising to the powen, and integrating over all rays

b\ (-1
Ch1 < (/ |vu|”dD> (Iog 7)
D a

b\ (-1
C(Dap) = Cn-1 (Iog 5) .



84

68 10. Quasi-conformal Mappings

On the otherhand by taking smooth admissible approximations of
the function

0 X <a
U= ooiregs as<iX<b
1 b<|x
we get
b -n (b 1\ "
C(Dap) < /|VUI”dD =Cn1 (Iog ,) / (7) r1gr
a a r
b\ —(-1)
= Cn_]_ |Og a
b\ ~(-1)
C(Dap) = Cn-1 (Iog 3 .
Therefore

mod Dap) = log :

Definition. Let D, D’ be two shells withiC, > C, andC] > C; then
we say ‘D’ separates the boundary of'DClearly in this case€C(D’) >
C(D)and modD’ < modD.

10.3 Lemma. Let S = {x]x € R", |X| = r} and let u be a & function on
St then there exists a constant A depending only on n such that

(CSGU)" < A.r/ [vu"dS,
S

(For a proof see p.69[17]).

10.4 Lemma(Loewner) Let D be a shell in Modbius n-space and let
C,, C1 denote the connected components of the complement of D, then
C(D) > 0if neither G, nor C; consists of a single point.

Proof. Choose a poinp in R" such thatS;, the sphere with center at
and radiug meetsC, andC, for allr withO < rq <r < r, then

/lvu|”dD:/|vu|”dx2/ |vu"dx
D n D

r1.r2
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r2
= //|vu|”dadr wheredo is n — 1 measure 0i%;.
r S

By the previous lemma 85

/ vuldo > A {(CS G )" = AL L,
Sy

r2
Thus [|vu"dD A [ 4 = A llog for all smooth admissible
D i

functionsu. HenceC(D) > A~*log 2 > 0.

Definition. A continuous functiorf on the interval 0< x < b is called
absolutely continuous its derivative%( exists almost everywhere and

X
is integrable andl%(dx: f(x1) — f(x,) foralla < x,,x1 < h.
Xo

Afunctionu on an open subsé&t of R" is calledACL in D, if in any
closed ball lying inD it is absolutely continuous on almost all lines in
the ball parallel to the coordinate axes.

Notations.

Ei ={X;xeR" x,>0}
S?:SrmE+.

10.5 Lemma. If u is an ACL function on Ethen

b
/(OSS+ )ng < ZA/ [vul"dx
r r E,

a

This is a slight generalization of Lemrha 1I0.3, for a proof see pp.
72-73 [17].
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86

10.6 Lemma.

12(P) < (He(0)"Jp(P)
and D-1(e(P)  (He(P)"3,-1(e(p)).

Proof. The first inequality comes from
(Lw(p, r))” _ (Lep.D)Y" (l¢(p, r))”
r lo(p,T) r ’

The proof of the second inequality is similar. m]

Remark. It can be proved that ip is differentiable ap then

12(0) < (Hy(P)™ 1 3,(P)-

10.7 Lemma. Lety be a quasi-conformal mapping therexists almost
everywhere.

Proof. By the previous lemma
12(P) < (Ho(P)"Je(P).

By hypothesidH,(p) < B Vp. By Lebesgue’s theorem (Saks [19] p.
115)

J,(p) < 0 a.e.

l,(p) < 0 a.e.
ie. lim (@) ~ #(p) <o a.e.,
a-p |o—pl
By the Radamacher-Stepffidheorem ([19] pp. 310-312) éxists
a.e., i

10.8 Lemma. Let D, D' be open irR" and lety : D — D’ be homeo-
morphism of D into D1 Let p be a hyperplane iR", if H,(p) < k for

pe D - p, thengin ACL on D andytis ACL onp™(D). (Seel[17]
for a proof.)
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Definition. Given a shelD; a continuous function on 5, ACLIinDis
said to beadmissiblef u(L, N D) = 0 andu(Cy n D) = 1, C,, C; being
connected components of the complemenof

10.9 Lemma.
CD)= inf e/|vu|”c|D
D

u admissibl

(Seel[17] pp. 64 for a proof).

10.10 Lemma. Lety : D — D’ be a homeomorphism of shells, if
is ACL and ¢ < k"1J, almost everywhere, thenmod ¢(D) < k
mod D.

Proof. Givenu an admissible function oB, setu’ = uo 90‘1 thenu <
U is bijective correspondence between admissible functiond and
D’. O

7)) = im '“(‘lﬂj:fp)'
_u@-u(p) le(e) - ¢(p)
lp(a) — @(P)I g - pl

= [v()e(P)lle(P).
CO) [ (@RI 3,(p)

=k [ |vu|"dD
D/

C(D) < k™1c(D)
mod D’ <k modD.

We now define thepherical symmetrizatioaf a shell for the pur- 88
pose of obtaining a rough quantitative estimate for the modulus of a
shell.

Let L denote the ray(t,0,...0) — o < t < 0} in R", and letE be a
set, open or closed, iR". For each spherg; = {x, x € R", |x| = r} place
alongS;a spherical cap (of dimension- 1) with center a5, N E. Take
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the cap open iE is open closed iE is closed, and equal @ if S, c E.
The resulting set is denoted /. Clearly E* is open resp. closed,
resp. connected) E is open (resp. closed, resp. connected).

Definition. Let D be a shell inR". The spherical symmetrization &f
is the seD° = (DU C,)* — C..

whereC, is the bounded component Bf. It is clear thatD, is a
shell.

10.11 Theorem.C(D) > C(D°)

The proof of this theorem makes use of the isoperimetric inequalities
for both euclidean and spherical space (cf. Mostow, loc. cit, p.87).
Intuitively the result is plausible because the spherical symmetrization
of D is a “smoothing” ofD and hence admissible function fbf need
to be “twist less”, accordinglZ(D°) < C(D).

In the proof of next lemma, we will estimate the modules of a shell
by comparing it with a special shell which generalizes a special slit plane
domain considered by Teichmuller.

Definition. The Teichmuller shell Q(b) is the shell inR" whose com-
plementary components consist of the segmdnk x; <0,x =--- =
Xn=0andtherap < X1 < 00, Xp = X3 = -+ — Xy = 0 whereb > 0.

10.12 Lemma. ¢ : R — R be a homeomorphisms of domainsRif,
assume mod ¢(D) < k modD, then H, < Ck, where C depends only
onn.

Proof. For p € R, we consider the spherical shBll ) L,(pr) cENtered

- Ly (p,
at ¢(p). Let D = ¢ YDy pnLpn) then |09|:((§,rr))

mod Dypn,Lpr) < kK modD < k modD° (by[10.11) P° is spheri-
cal symmetrization oD]

<k modD,(1).

SinceD° separates the boundaries of,(@). |
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SetC = modD,(1).

Lo(pr) _ ~k
Then |f(p,r) =C

H,(p) <C*peR

Note. The idea of comparing moD with mod D.(1) is due toA.
Mori cf. his posthumous paper in the Transaction of the AKS V. 84
(1957) pp. 56-77.

Putting together Lemmas_10[8, 10.10 and 1I0.12, we can now assert

10.13 Theorem.Lety : E —» E’ be a homeomorphism of domains in
R" N, Theny is quasi-conformalf

(1) ¢isACLINE.

(2) For all shells Dc E, k! modD < modg(D) < k mod D, for
some constant k.

We now prove two theorems that are of central importance for our
main theorem.

10.14 Theorem.Let ¢ be a quasi-conformal mapping of an open ball
in R" onto itself. Thewp extends to a homeomorphism of the closed ball.

Proof. Mapping the domain ofp onto the upper half spacX =
{(X1... %), Xn > O} via a Mdbius transformation, the theorem is seen
to be equivalent to the assertion a quasi conformal mappingX —
Y = {y: |yl < 1} extends to a continuous mapping at any peiof the
boundary ofX. for convenience, we take= 0. m]

The proof is by contradiction. If Iigna(p) (p € X) does not ex-
pP—

ist, we can find two sequencépx} and{qx} in X approaching 0 with
lim ¢(p) = p', lim ¢(aq) = o andig’ - 'l = a > 0. Denoting bypq
the line segment joining two poingsandg, we select pointp. anddq,
in Y such thatd(p; p;. g,ax) > a for all largek, wherep; = (pk). o =

(@) Setp, = ¢7*(pt), G = ¢~X(qt). Then for supul, lakl) < r <
inf(po, 0o), the hemispher&; = {x;|x| = r,x, > 0 meets the curveso1
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¢ 1(p, p) andeg~1(qsqp). For each such at least one of the coordinate
functions ofp(X) = (¢1(X), . . . ¢n(X)) satisfies

0sc
st % >a/ Vn.

Hence - q
> (&) e
i o

By Lemma [I0.B) ;i is ACL in X. Applying Lemmd_105, we get
foreachi=1,...,n

o d
/ (%) < 2A/ Vi "dx < ZA/ I"dx
o r r X X
< 2A / K™1J,dx < 2AK™t / dy.
X Y

This yields a contradiction.

10.15 Theorem.Let ¢ be a k-quasi conformal mapping of an open ball
B" in R", onto itself, n> 2, and lety, denote the boundary home-
omorphism induced by. Theng, is Ck-quasi conformal where &
mod D.(1) depends only on n.

Proof. By mappingB" onto upper half spacE, via Mobius transfor-
mation we can replac®” by E, in the theorem. By previous theorem
extends to the boundary. Letalso denote its extension by symmetry to
R". ¢ is k-quasi conformal irR"-hyperplanex, = 0. Hencep is ACLin

R" by Lemmd10.8. i

We haveH,(p) < ka.e. inR".
By Lemmd10.6 and the remark following it

(lo(P)" <k Jy(p) ae

Therefore for any shelD in R" mod ¢(D) < k mod D by Lemma
[10.10. Applying Lemm&10.12, we get thatis Ck-quasi conformal.

The following two Lemmas round out prerequisites for our main
theorem
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10.16 Lemma. Lety : S" — S" be a 1-quasi conformal map thenis
a Mbius transformation if n> 2 (Seel17] pp. 101-102.)

10.17 Lemma. Let ¢ be a quasi conformal mapping of a domainrdf
intoR",n > 1. Then nfp(E)) = [¢ J,dx for any measurable set E in the
domain ofe. (cf. loc. cit. p. 94).

Now we prove theorein 9.3.

Theorem.Let G=0(1,n)/ + 1, n> 2 and let X be the associated sym-
metric Riemannian space. LEtI” be discrete subgroups such thatlG
and G/T” have finite Haar measure. Let: X — X be a homeomor-
phism andd : I' — I an isomorphism such thai(yx) = 6(y)¢(x) for

all y e T, x € X. Assume thap is quasi-conformal. Thep induces 93
a diffeomorphisny, of the boundary component Xf the Satake com-
pactification of X and moreover,Gy;! = G as transformations of X

Proof. The symmetric spac¥ is the hyperboli®-space which we iden-
tify with the open unit balB" : |x| < 1 in R" with metricd, = 2%

= 12
the Satake compactification #fthen can be identified with the closed
unit ball andX, is its bounding spherg"-1. O

Quasi-conformality ofp with respect ta@ Sy implies thaty is quasi-
conformal with respect tfmx. so in view of Theorerh 10.14; extends
to a homeomorphism of the closed ball. kgtbe the restriction of this
extension to the boundapy, = S™*. By Theoreni 10.15 and Lemma
[10.7, ¢, is almost everywhere flerentiable. Furthermore sincéis
dense iNX U X, ©.(¥X) = 0(y)p.(X), Yy € T andx € X,. Also note that
G which is the full group of isometriese of acts canonically oiX, and
conversely from the identification & M(n — 1) with G (cf. [17] p. 57
and p. 98), it follows that each &bius transformation &"-* extends to
a unique isometry oK. We replaceX, by R"* U {co} via stereographic
projection. Lety denote the homeomorphism&f-1 U {0} onto itself
induced byp,. Let Abe the 1-parameter subgroup®torresponding to
the 1-parameter subgroup ofddius transformations d&8"* obtained
from the homotheties - Ax (with 1 € R*, x € R™1) andoo +— oo of
R™1 U {oo}.
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Let p be a point at which the fferentialy exists; we can assume
thatp = 0 for convenience. We identify the tangent spac&'to at 0
with R"1 in the usual way.

Define

f : G - Homp(R"1,R"Y) by
f(9) = (v9)(0)

SetF(g) = (tt(g) f(g))(det' f(g) f(g)) Y™ whosem = n— 1. Since a
linear mapL is conformal it

<L(X,Lly)> <xy>
LGN LI 114l - livil
For any two orthogonal unit vectorsy we deduce from x+y, X—

y >= 0 that O=< L(x - Y), L(x + y) >= [IL(X)|I> = IL(Y)|[>. ThusL maps
the unit ball into a ball and

'LL = (dett, )Y™- Id where m = dimension of the vector space.

Thus if L is conformal we have'l(L)(det'LL)~Y/™ = |d. Moreover
L is K-quasi-conformalft the ratio of largest to the smallest eigenvalue
of 'ILL is K2.

From the above it follows that(g) is a conformal mapping of the
tangent space at @fiF(g) = identity. One can check th&t(ga) = F(g),
Ya € AandF(yg) = F(g) for y € T. MoreoverF is a measurable
mapping ofG into Hom®"*, R"-1). It has bounded (bK? for some
K) entries almost everywhere singeis k-quasi-conformal for some
K. ThereforeF gives rise to an element &#%(G/T’, HomR"1, R"1));
which we again denote by. For an element € .#%(G/T’, Hom(R",
R™1) let normil Al = fo,r Tr (A (9) - A(@))die

G operates oiZ?(G/T", Hom®"1, R" 1)) via (Z.f)(g) = f(g2) uni-
tarily and we havé\.F = F.

Hence by LemmBa5l2,

G.F = F i.e. F is constant almost everywhere. In particular

F(gk) = F(9), Yk e O(n—- 1)
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i.e., the group of rotations about 0k = k™! implies by the special
choice offF that
F(g) = F(gK = k'G(g)k

SinceF(g) commutes with O{ — 1), we conclude
F(g) = const.Id.

Since the matriX-(g) is positive definite and of determinant 1, the
constant must equal 1.

Thereforey is 1-quasi-conformal and therefogeis Mobius trans-
formation by Lemma10.16.

In particular .Gyt = G.
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