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Preface

OUR BASIC AIM has been to presentsomeof the mathematical as-
pects of the finite element method, as well assomeapplications of the
finite element method for solving problems in Elasticity. This is why
important topics, such as curved boundaries, mixed and hybrid meth-
ods, time-dependent problems, etc..., are not covered here. No attempt
has been made to give an exhaustive bibliography.
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Chapter 1

The Abstract Problem

SEVERAL PROBLEMS IN the theory of Elasticity boil down to the1
solution of a problem described, in an abstract manner, as follows:

Let V be a normed linear space overR. Let J : V → R be a func-
tional which can be written in the form

(1.1) J(v) =
1
2

a(v, v) − f (v) for all v ∈ V,

wherea(·, ·) is a continuous, symmetric bilinear form onV and f is an
element ofV′, the dual ofV. Then the problem consists in finding an
elementu ∈ V such that

(1.2) J(u) = Min
v∈V

J(v).

Usually J represents theenergyof some physical system.
More often, instead of minimisingJ over the entire spaceV, we do

so over a non-empty convex subsetK of V and find a elementu ∈ K
such that

(1.3) J(u) = Min
v∈K

J(v).

Henceforth we shall denote this abstract problem by the symbol (P).
One can ask immediately whether this problem admits of a solution and
if so, is the solution unique? We present in this section the essential
results regarding existence and uniqueness.

1



2 1. The Abstract Problem

Definition 1.1. Let V be a normed linear space. A bilinear forma(·, ·)
onV is said to beV-elliptic if there exists a constantα > 0 such that for
all v ∈ V.

(1.4) a(v, v) ≥ α||v||2.

2

Theorem 1.1. Let V be a Banach space and K a closed convex subset
of V. Let a(·, ·) be V-elliptic. Then there exists a unique solution for the
problem(P).

Further this solution is characterised by the property:

(1.5) a(u, v− u) ≥ f (v− u) for all v ∈ K.

Remark 1.1.The inequalities (1.5) are known asvariational inequali-
ties.

Proof. TheV-ellipticity of a(·, ·) clearly implies that ifa(v, v) = 0 then
v = 0. This together with the symmetry and bilinearity ofa(·, ·) shows
thata(·, ·) defines an inner-product onV. Further the continuity and the
V-ellipticity of a(·, ·) shows that the norm

(1.6) v ∈ V → a(v, v)
1
2

defined by the inner-product is equivalent to the existing norm on V.
ThusV acquires the structure of a Hilbert space and we apply the Riesz
representation theorem to obtain the following: for allf ∈ V′, there
existsσ f ∈ V such that

(1.7) f (v) = a(σ f , v) for all v ∈ V.

The mapσ : V′ → V given by f 7→ σ f is linear. Now,

J(v) =
1
2

a(v, v) − f (v)

=
1
2

a(v, v) − a(σ f , v)
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=
1
2

a(v− σ f , v− σ f ) − 1
2

a(σ f , σ f ).

The symmetry ofa(·, ·) is essential in obtaining the last equality.
For a given f , sinceσ f is fixed, J is minimised if and only ifa(v −3

σ f , v − σ f ) is minimised. But this being the distance betweenv and
σ f , our knowledge of Hilbert space theory tells us that sinceK is a
closed convex subset, there exists a unique elementu ∈ K such that this
minimum is obtained. This proves the existence and uniqueness of the
solution, which is merely the projection ofσ f overK.

We know that this projection is characterised by the inequalities:

(1.8) a(σ f − u, v− u) ≤ 0 for all v ∈ K.

Geometrically, this means that the angle between the vectors (σ f−u)
and (v− u) is obtuse. See Fig. 1.1.

Figure 1.1:

Thus,a(σ f , v− u) ≤ a(u, v− u) which by virtue of (1.7) is precisely
the relation (1.5). This completes the proof. �

We can state the following

Corollary 1.1. (a) If K is a non-empty closed convex cone with ver-
tex at origin0, then the solution of(P) is characterised by:

(1.9)


a(u, v) ≥ f (v) for all v ∈ K

a(u, u) = f (u).
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(b) If K is a subspace of V then the solution is characterised by 4

(1.10) a(u, v) = f (v) for all v ∈ K.

Remark 1.2.The relations (1.5), (1.9) and (1.10) are all calledvaria-
tional formulationsof the problem (P).

Proof. (a) If K is a cone with vertex at 0, then foru, v ∈ K, u+v ∈ K.
(cf. Fig. 1.2). Ifu is the solution to (P), then for allv ∈ K applying
(1.5) to (u + v) we geta(u, v) ≥ f (v) for all v ∈ K. In particular
this applies tou itself. Settingv = 0 in (1.5) we get−a(u, u) ≥
− f (u) which gives the reverse inequality necessary to complete
the proof of (1.9). Conversely, if (1.9) holds, we get (1.5) by just
subtracting one inequality from the other.

Figure 1.2:

(b) Applying (a) toK, since any subspace is a cone with vertex at 0,
we get (b) immediately. For ifv ∈ K, then−v ∈ K and applying
(1.9) both tov and−v we get (1.10).

This completes the proof. �

Remark 1.3.The solutionu of (P) corresponding tof ∈ V′ (for a fixed
a(·, ·)) defines a mapV′ → V. Since this solution is the projection of
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σ f on K, it follows that the above map is linear if and only if K is
a subspace.The problems associated with variational inequalities are
therefore nonlinear in general.

Exercise 1.1.Let V be as in Theorem 1.1. Forf1, f2 ∈ V′, let u1, u2 5

be the corresponding solutions of (P). If || · ||∗ denotes the norm inV′,
prove that

||u1 − u2|| ≤
1
α
|| f1 − f2||∗.

Remark 1.4.The above exercise shows, in particular, the continuous
dependence of the solution off , in the sense described above. This
together with the existence and uniqueness establishes that the problem
(P) is “well-posed” in the terminology of partial differential equations.

Exercise 1.2.If V is a normed linear space,K a given convex subset ofV
andJ : V → R any functional which is once differentiable everywhere,
then (i) if u ∈ K is such thatJ(u) = Min

v∈K
J(v), u satisfies,J′(u)(v−u) ≥ 0

for all v ∈ K. (ii) Conversely, ifu ∈ K such thatJ′(u)(v − u) ≥ 0 for
all v ∈ K, andJ is everywhere twice differentiable withJ′′ satisfying
J′′(v)(w,w) ≥ α||w||2, for all v, w ∈ K and someα ≥ 0, thenJ(u) =
Min
v∈K

J(v).

Exercise 1.3(1). Apply the previous exercise to the functional

J(v) =
1
2

a(v, v) = f (v)

with a(·, ·) and f as in Theorem 1.1. IfK is a subspace ofV, show that
J′(u)(v) = 0 for all v ∈ K. In particular ifK = V, J′(u) = 0.

It was essentially the symmetry of the bilinear form which provided
the Hilbert space structure in Theorem 1.1. We now drop the symmetry
assumption ona(·, ·) but we assumeV to be a Hilbert space. In addition
we assume thatK = V.

Theorem 1.2(LAX-MILGRAM LEMMA) . Let V be a Hilbert space.6

1Exercises (1.2)(i) and 1.3 together give relations (1.5)



6 1. The Abstract Problem

a(·, ·) a continuous, bilinear, V-elliptic form, f∈ V′. If (P) is the prob-
lem: to find u∈ V such that for all v∈ V,

(1.11) a(u, v) = f (v),

then(P) has a unique solution in V1.

Proof. Sincea(·, ·) is continuous andV-elliptic, there are constantsM,
α > 0 such that

|a(u, v)| ≤ M||u|| ||v||,
a(v, v) ≥ α||v||2,

(1.12)

for all u, v ∈ V. Fix anyu ∈ V. Then the mapv 7→ a(u, v) is continuous
and linear. Let us denote it by Au∈ V′. Thus we have a mapA : V → V′

defined byu 7→ Au.

(1.13) ||Au ||∗ = sup
v∈V
v,0

|Au(v)|
||v|| = sup

v∈V
v,0

|a(u, v)|
||v|| ≤ M||u||.

ThusA is continuous and||A|| ≤ M.
We are required to solve the equation

(1.14) Au= f .

Let τ be the Riesz isometry,τ : V′ → V so that

(1.15) f (v) = ((τ f , v)),

where ((·, ·)) denotes the inner product inV. Then, Au= f if and only
if τAu = τ f or equivalently.

(1.16) u = u− ρ(τAu−τ f ),

whereρ > 0 is a constant to be specified. We chooseρ such that7

g : V → V is a contraction map, whereg is defined by

(1.17) g(v) = v− ρ(τAv− τ f ) for v ∈ V.

1cf. Corollary 1.1(b).
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Then the solution to (P) will be the unique fixed point of this con-
traction map, which exists by the contraction mapping theorem.

Let v1, v2 ∈ V. Setv = v1 − v2. Then

||g(v1) − g(v2)|| = ||(v1 − v2) − ρτA(v1 − v2)||
= ||v− ρτAv||.

But,

||v− ρτAv||2 = ((v− ρτAv, v− ρτAv))

= ||v||2 − 2ρ((τAv, v)) + ρ2||τAv||2

= ||v||2 − 2ρAv(v) + ρ2||Av||∗2

≤ ||v||2 − 2ρα||v||2 + ρ2M2||v||2

= (1− 2ρα + ρ2M2)||v||2

sinceAv(v) = a(v, v) ≥ α||v||2 and ||A|| ≤ M. Choosingρ ∈]0,
2α

M2
[, we

get that

(1.18) 1− 2ρα + ρ2M2 < 1

and henceg is a contraction, thus completing the proof. �

Remark 1.5.The problem (P) of Theorem 1.2 is well-posed. The ex-
istence and uniqueness were proved in the theorem. For the continuous
dependence ofu on f , we have

(1.19) α||u||2 ≤ a(u, u) = f (u) ≤ || f ||∗ · ||u||.

8

REFERENCE. For Variational Inequalities, see Lions and Stampac-
chia [18].





Chapter 2

Examples

WE GIVE IN this section several examples of the abstract problem for- 9

mulated in Sec. 1. We interpret the solutions of these problems as so-
lutions of classical boundary value problems which often occur in the
theory of Elasticity.

Before we proceed with the examples, we summarize briefly the
results (without proofs) on Sobolev spaces which will proveto be very
useful in our discussion.

HenceforthΩ ⊂ Rn will denote an open set (more oftenΩ will
be a bounded open set with a specific type of boundary which will be
described presently). Amulti-indexαwill denote ann-tuple (α1, . . . , αn)
of non-negative integers, and we denote

(2.1) |α| = α1 + · · · + αn,

and call it thelengthof the multi-index. Ifv is a real-valued function on
Ω for which all derivatives upto orderm exist, for a multi-indexα with
|α| ≤ m we define

(2.2) ∂αv =
∂|α|v

∂
α1
x1 . . . ∂

αn
xn

.

The space oftest functionsonΩ is given by

(2.3) D(Ω) =
{
v ∈ C∞(Ω); supp(v) is a compact subset ofΩ

}
.

9



10 2. Examples

where

(2.4) supp(v) = {x ∈ Ω; v(x) , 0}.

Definition 2.1. Let m≥ 0 be an integer. Then the Sobolev spaceHm(Ω)10

is given by

(2.5) Hm(Ω) =
{
v ∈ L2(Ω); ∂αv ∈ L2(Ω) for all |α| ≤ m

}
,

where all derivatives are understood in the sense of distributions.

On Hm(Ω) one can define a norm by means of the formula

(2.6) ||v||m,Ω =

∑

|α|≤m

∫

Ω

|∂αv|2dx



1
2

, v ∈ Hm(Ω).

It is easy to check that|| · ||m,Ω defines a norm onHm(Ω), which
makes it a Hilbert space. One can also define a semi-norm by

(2.7) |v|m,Ω =

∑

|α|=m

∫

Ω

|∂αv|2dx



1
2

, v ∈ Hm(Ω).

Note that since for allm≥ 0, D(Ω) ⊂ Hm(Ω), we may define,

(2.8) Hm
0 (Ω) = D(Ω),

the closure being taken with respect to the topology ofHm(Ω). Since
Hm

0 (Ω) is a closed subspace ofHm(Ω), it is also a Hilbert space under
the restriction of the norm|| · ||m,Ω. We also have a stronger result:

Theorem 2.1. Assume thatΩ is a bounded open set. Then over Hm
0 (Ω)

the semi-norm| · |m,Ω is a norm equivalent to the norm|| · ||m,Ω.

This result is a consequence of the following:

Theorem 2.2(POINCARÉ-FRIEDRICHS’ INEQUALITY). If Ω is a
bounded open set, there exists a constant C= C(Ω) such that, for all
v ∈ H1

0(Ω),

(2.9) |v|0,Ω ≤ C|v|1,Ω.
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Henceforth, unless specified to the contrary, the followingwill be11

our standing assumptions:Ω is a bounded open subset ofRn. If Γ is the
boundary ofΩ, thenΓ is Lipschitz continuous in the sense of Nečas[20].
(Essentially,Γ can be covered by a finite number of local coordinate
systems, such that in each, the corresponding portion ofΓ is described
by a Lipschitz continuous function).

If L2(Γ) is defined in the usual fashion using the Lipschitz continuity
of Γ, one has the following result:

Theorem 2.3. There exists a constant C= C(Ω) such that, for all v∈
C∞(Ω),

(2.10) ||v||L2(Ω) ≤ C||v||1,Ω.

By virtue of Theorem 2.3 we get that ifv ∈ C∞(Ω), then its restric-
tion to Γ is an element ofL2(Γ). Thus we have a map from the space
C∞(Ω) equipped with the norm|| · ||1,Ω into the spaceL2(Γ) which is
continuous. We also have:

Theorem 2.4. The space C∞(Ω) is dense in H1(Ω), for domains with
Lipschitz continuous boundaries.

Consequently, the above map may be extended to a continuous map
H1(Ω) → L2(Γ) which we denote by trΓ. It is called thetrace operator.
An important result on the trace is the characterization:

(2.11) H1
0(Ω) =

{
v ∈ H1(Ω); trΓ v = 0

}
.

When no confusion is likely to occur we will merely writev instead
of trΓ v. In fact if v is a “smooth” function then trΓ v is the restriction of
v to Γ.

Retaining our assumption onΩ andΓ, the unit outer normal−→ν is 12

defined a.e. onΓ. Let −→ν = (ν1, . . . , νn). If v is smooth then we may

define theouter normal derivative
∂v
∂ν

by

(2.12)
∂v
∂ν
=

n∑

i=1

νi
∂v
∂xi

.
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We extend this definition tov ∈ H2(Ω). If v ∈ H2(Ω), then
∂v
∂xi
∈

H1(Ω) and hence trΓ
∂v
∂xi
∈ L2(Γ). We now define

(2.13)
∂v
∂ν
=

n∑

i=1

νi trΓ
∂v
∂xi

.

However when there is no confusion we write it in the form of
(2.12). Then one has the following characterization:

(2.14) H2
0(Ω) =

{
v ∈ H2(Ω); v =

∂v
∂ν
= 0 on Γ

}
.

Theorem 2.5(GREEN’S FORMULA IN SOBOLEV SPACES). Let u,
v ∈ H1(Ω). Then we have

(2.15)
∫

Ω

u
∂v
∂xi

dx= −
∫

Ω

∂u
∂xi

v dx+
∫

Γ

u vνi dγ,

for all 1 ≤ i ≤ n.

If we assumeu ∈ H2(Ω), we may replaceu in (2.15) by
∂u
∂xi

; sum-

ming over all 1≤ i ≤ n, we get foru ∈ H2(Ω), v ∈ H1(Ω),

(2.16)
∫

Ω

n∑

i=1

∂u
∂xi

∂v
∂xi

dx= −
∫

Ω

∆u v dx+
∫

Ω

∂u
∂ν

v dγ,

where∆ =
∑n

i=1
∂2

∂x2
i

is the Laplacian.

If both u andv are inH2(Ω), we may interchange the roles ofu and
v in (2.16). Subtracting one formula from the other, we get

(2.17)
∫

Ω

(u∆v− ∆uv)dx =
∫

Γ

(
u
∂v
∂ν
− ∂u
∂ν

v

)
dγ,

for u, v ∈ H2(Ω).13
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Finally replacingu by ∆u in (2.17) we get, foru ∈ H4(Ω), v ∈
H2(Ω),

(2.18)
∫

Ω

∆u∆v dx=
∫

Ω

∆
2u v dx+

∫

Γ

∆u
∂v
∂ν

dγ −
∫

Γ

∂(∆u)
∂ν

vdγ.

The formulae (2.15) through (2.18) are all known asGreen’s formu-
lae in Sobolev spaces.

We derive two results from these formulae. These results will be
useful later.

Lemma 2.1. For all v ∈ H2
0(Ω),

(2.19) |∆v|0,Ω = |v|2,Ω.

Consequently over H20(Ω), the mapping v7→ |∆v|0,Ω is a norm equiv-
alent to the norm|| · ||2,Ω.

Proof. SinceD(Ω) is dense inH2
0(Ω), it suffices to prove (2.19) for

v ∈ (Ω). Let v ∈ D(Ω). Then

|∆v|2 =
n∑

i=1


∂2v

∂x2
i


2

+ 2
∑

1≤i< j≤n

∂2v

∂x2
i

∂2v

∂x2
j

.

By Green’s formula (2.15),

(2.20)
∫

Ω

∂2v

∂x2
i

∂2v

∂x2
j

dx= −
∫

Ω

∂v
∂xi

∂3v

∂xi∂x2
j

dx=
∫

Ω

(
∂2v
∂xi∂x j

)2

dx

for, the integrals overΓ vanish forv ∈ D(Ω). (cf. (2.11)). Now (2.19)
follows directly from (2.20). This proves the lemma. �

Lemma 2.2. LetΩ ⊂ R2. Then for u∈ H3(Ω), v ∈ H2(Ω), 14

∫

Ω

2
∂2u

∂x1∂x2

∂2v
∂x1∂x2

− ∂
2u

∂x2
1

∂2v

∂x2
2

− ∂
2u

∂x2
2

∂2v

∂x2
1

dx

=

∫

Γ

(
−∂

2u

∂τ2

∂v
∂ν
+
∂2u
∂τ∂ν

∂v
∂τ

)
dγ,

(2.21)

where
∂

∂τ
denotes the tangential derivative.
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Proof. Let −→ν = (ν1, ν2), −→τ = (τ1, τ2) be the unit vectors along the outer
normal and the tangent respectively. Without loss in generality we may
assumeτ1 = −ν2, τ2 = ν1. Also note thatν2

1 + ν
2
2 = 1. The second

derivatives occurring in the right hand side are defined by

(2.22)



∂2u

∂τ2
=
∂2u

∂x2
1

τ2
1 + 2

∂2u
∂x1∂x2

τ1τ2 +
∂2u

∂x2
2

τ2
2

∂2u
∂τ∂ν

=
∂2u

∂x2
1

ν1τ1 +
∂2u

∂x1∂x2
(ν1τ2 + ν2τ1) +

∂2u

∂x2
2

ν2τ2.

Using all these relations we get

−∂
2u

∂τ2

∂v
∂ν
+
∂2u
∂τ∂ν

∂v
∂τ
=


∂2u

∂x1∂x2

∂v
∂x2
− ∂

2u

∂x2
2

∂v
∂x1

 ν1

+


∂2u

∂x1∂x2

∂v
∂x1
− ∂

2u

∂x2
1

∂v
∂x2

 ν2

=
−→
X · −→ν ,

(2.23)

where,
−→
X = (X1,X2) and

(2.24)



X1 =
∂2u

∂x1∂x2

∂v
∂x2
− ∂

2u

∂x2
2

∂v
∂x1

X2 =
∂2u

∂x1∂x2

∂v
∂x1
− ∂

2u

∂x2
1

∂v
∂x2

Also note that,

(2.25) divX =
∂X1

∂x1
+
∂X2

∂x2
= 2

∂2u
∂x1∂x2

∂2v
∂x1∂x2

− ∂
2u

∂x2
1

∂2v

∂x2
2

− ∂
2u

∂x2
2

∂2v

∂x2
1

.

15

Now by Green’s formula (2.15) applied to functionsvi ∈ H1(Ω) and
to the constant function 1,

∫

Ω

∂vi

∂xi
dx=

∫

Γ

viνidγ.
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Hence summing over alli, if −→v = (v1, . . . , vn),

(2.26)
∫

Γ

div−→v dx=
∫

Γ

−→v · −→ν dγ.

(This is known as theGauss’ Divergence Theoremand also as theOs-
trogradsky’s formula). From (2.23), (2.25) and (2.26) the result fol-
lows. �

With this background, we proceed to examples of the abstractprob-
lem of Sec. 1.

Example 2.1.Let K = V = H1
0(Ω). Let a ∈ L∞(Ω) such thata ≥ 0 a.e.

in Ω. Let f ∈ L2(Ω). Define the bilinear forma(·, ·) and the functional
f (·), by

(2.27)


a(u, v) =

∫
Ω

(∑n
i=1

∂u
∂xi

∂v
∂xi
+ auv

)
dx,

f (v) =
∫
Ω

f v dx.

The continuity ofa(·, ·) and f (·) follows from the Cauchy-Schwarz
inequality. For instance

(2.28) | f (v)| ≤ | f |0,Ω|v|0,Ω ≤ | f |0,Ω||v||1,Ω.

We now show thata(·, ·) is V-elliptic.

a(v, v) =
∫

Ω


n∑

i=1

(
∂v
∂xi

)2

+ av2

dx

≥
∫

Ω

n∑

i=1

(
∂v
∂xi

)2

dx (since a ≥ 0 a.e. inΩ)

= |v|21,Ω.

16

Since|·|1,Ω is equivalent to||·||1,Ω overV, this proves theV-ellipticity.
Hence by our results in Sec. 1 there exists a unique functionu ∈ V such
thata(u, v) = f (v) for all v ∈ V.
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Interpretation of this problem: Using the above equation satisfied by
u, we get

(2.29)
∫

Ω


n∑

i=1

∂u
∂xi

∂v
∂xi
+ auv

 dx=
∫

Ω

f v dx, for all v ∈ H1
0(Ω).

From the inclusionD(Ω) ⊂ H1
0(Ω), we get thatu satisfies the equa-

tion −∆u+ au= f in the sense of distributions.
If we assume thatu is “sufficiently smooth”, for exampleu ∈ H2(Ω),

then we may apply Green’s formula (2.16), which gives

(2.30)
∫

Ω

auv dx−
∫

Ω

∆uv dx+
∫

Γ

∂u
∂ν

v dγ =
∫

Ω

f v dx.

Sincev ∈ H1
0(Ω), trΓ v = 0. Hence the integral overΓ vanishes.

Thus we get

(2.31)
∫

Ω

(−∆u+ au− f )v dx= 0 for all v ∈ H1
0(Ω).

Varyingv overH1
0(Ω), we get thatu satisfies the equation−∆u+au=

f in Ω. Further sinceu ∈ H1
0(Ω), we get the boundary conditionu = 0

onΓ. Thus we may interpretuas the solution of the “classical” boundary
value problem:

(2.32)


−∆u+ au= f in Ω,

u = 0 on Γ.

17

This is known as thehomogeneous Dirichlet problemfor the opera-
tor −∆u+ au.

A particular case of this equation arises in the theory of Elasticity,
for whichΩ ⊂ R2 anda = 0. Thus−∆u = f in Ω andu = 0 onΓ. This
corresponds to themembrane problem:

Consider an elastic membrane stretched overΩ and kept fixed along
Γ. Let Fdx be the density of force acting on an elementdx of Ω. Let
u(x) be the vertical displacement of the pointx ∈ Ω ⊂ R2, measured
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in the x3-direction from the (x1, x2)-plane. If t is the ‘tension’ of the
membrane, thenu is the solution of the problem

(2.33)


−∆u = f in Ω

u = 0 on Γ

where f = F/t.

Figure 2.1:

Remark 2.1.To solve the problem (2.32) by the classical approach, one
needs hard analysis involving Schauder’s estimates. By theabove pro-
cedure viz. the variational method, we have got through withit more
easily.

The above problem is a typical example of a second-order problem. 18

Exercise 2.1.The obstacle problem. Let Ω, Γ be as in example (2.1).
LetX be an “obstacle” in this region. LetX ≤ 0 onΓ. Let F dx be the
density of the force acting on a membrane stretched overΩ, fixed along
Γ. The displacementu(x) at x in the vertical direction is the solution of
the following problem:

If V = H1
0(Ω), K =

{
v ∈ H1

0(Ω); v ≥ X a.e. inΩ
}
,
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let a(u, v) =
∫

Ω

n∑

i=1

∂u
∂xi

∂v
∂xi

dx, f (v) =
∫

Ω

f v dx, f ∈ L2(Ω),

X ∈ H2(Ω), X ≤ 0 on Γ.

Show thatK is a closed convex set and hence that this problem ad-
mits of a unique solution. Assuming the regularity resultu ∈ H2(Ω) ∩
H1

0(Ω), show that this problem solves the classical problem,



u ≥ X in Ω,

−∆u = f when u > X, ( f = F/t)

u = 0 · Γ

(We will discuss the Obstacle Problem in Sec. 9).

Figure 2.2:

Exercise 2.2.Let V = H1(Ω). Definea(·, ·), f (·) as in example 2.1.19

Assume further that there exists a constanta0 such thata ≥ a0 > 0 inΩ.
If u0 is a given function inH1(Ω), define

K =
{
v ∈ H1(Ω); v− u0 ∈ H1

0(Ω)
}

=

{
v ∈ H1(Ω); trΓ v = trΓ u0

}
.
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Check thatK is a closed convex subset. Interpret the solution to be
that of theNon-homogeneous Dirichlet problem,


−∆u+ au= f in Ω.

u = u0 on Γ.

Example 2.2.Let K = V = H1(Ω). Leta ∈ L∞(Ω) such thata ≥ a0 > 0,
f ∈ L2(Ω). Definea(·, ·) and f (·) as in example (2.1). The continuity
of a(·, ·) and f (·) follow as usual. For theV-ellipticity, we can no longer
prove it with the semi-norm| · |1,Ω as we did earlier. It is here we use the
additional assumption ona, since

a(v, v) =
∫

Ω


n∑

i=1

(
∂v
∂xi

)2

+ av2

 dx

≥ min(1, a0)||v||21,Ω.

Thus we have a unique solutionu to the abstract problem satisfying
a(u, v) = f (v). If we assume again thatu is “sufficiently smooth” to
apply the Green’s formula (2.16), we get

(2.34)
∫

Ω

(−∆u+ au)v dx+
∫

Γ

∂u
∂ν

v dγ =
∫

Γ

f v dx.

If v ∈ D(Ω), then the integral overΓ will vanish. Thusu satisfies
the equation−∆u+ au = f as in Example 2.11. However we now get a20

different boundary condition. In example (2.1) the boundary condition
was built in with the assumptionu ∈ V = H1

0(Ω). Now from (2.34), we
may write:

(2.35)
∫

Ω

(−∆u+ au− f )v dx= −
∫

Γ

∂u
∂ν

v dγ

for all v ∈ H1(Ω).
But the left hand side of (2.35) is zero sinceu satisfies the differen-

tial equation as above so that for allv ∈ H1(Ω),
∫
Γ

∂u
∂ν

v dγ = 0. Thus

1As in Example 2.1, the equation−∆u + au = f is always satisfied in the sense of
distributions sinceD(Ω) ⊂ H1(Ω).
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∂u
∂ν
= 0 onΓ, and we may interpret this problem as the classical prob-

lem:

(2.36)


−∆u+ au= f in Ω
∂u
∂ν
= 0 on Γ.

This is ahomogeneous Neumann problem.

Exercise 2.3.With K, V, a(·, ·) as in example 2.2., define

f (v) =
∫

Ω

f v dx+
∫

Γ

gv dγ,


f ∈ L2(Ω),

g ∈ L2(Ω).

Show that the abstract problem leads to a solution of thenon-homo-
geneous Neumann problem


−∆u+ au= f in Ω
∂u
∂ν
= g on Γ.

Remark 2.2. In these examples one may use the more general bilinear21

from defined by

(2.37) a(u, v) =
∫

Ω


n∑

i, j=1

ai j
∂u
∂x j

∂v
∂xi
+ auv

 dx,

where the functionsai j ∈ L∞(Ω) satisfy the condition that for some
ν > 0,

(2.38)
n∑

i, j=1

ai j ξiξ j ≥ ν
n∑

i=1

ξ2
i

for all ξ ∈ Rn and a.e. inΩ. This is the classical ellipticity condition for
second order partial differential operators. One should check (exercise!)
in this case that the abstract problem leads to a solution of the boundary
value problem

(2.39) −
n∑

i, j=1

∂

∂xi

(
ai j

∂u
∂x j

)
+ au= f in Ω
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with the boundary condition

(2.40)



u = 0 on Γ if K = V = H1
0(Ω),

n∑
i, j=1

ai j
∂u
∂xj
νi = 0 on Γ if K = V = H1(Ω).

The latter boundary operator in (2.40) is called theconormal deriva-
tive associated with the partial differential operator,

−
n∑

i, j=1

∂

∂xi

(
ai j

∂

∂x j

)
.

Notice that the term (+ au) contributes nothing.

Example 2.3.System of Elasticity.Let Ω ⊂ R3, with Lipschitz con-
tinuous boundaryΓ. Further assume thatΓ can be partitioned into two
portionsΓ0 andΓ1 such that thedγ-measure ofΓ0 is > 0. Let

K = V =
{
−→v = (v1, v2, v3); vi ∈ H1(Ω), 1 ≤ i ≤ 3 and−→v = −→0 onΓ0

}
.

Define 22

(2.41)


ǫi j (
−→v ) =

1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
,

σi j (
−→v ) = λ

(∑3
k=1 ǫkk(

−→v )
)
δi j + 2µǫi j (

−→v ),

for 1 ≤ i, j ≤ 3. The latter relation is usually known asHooke’s law.
The constantsλ(≥ 0) andµ(> 0) are known asLame’s coefficients. We
define the bilinear forma(·, ·) by,

a(−→u ,−→v ) =
∫

Ω

3∑

i, j=1

σi j (
−→uǫi j (−→v )dx

=

∫

Ω

(λdiv−→v + 2µ
3∑

i, j=1

ǫi j (
−→u )ǫi j (

−→v )dx.

(2.42)

Let
−→
f = ( f1, f2, f3), fi ∈ L2(Ω), and−→g = (g1, g2, g3), gi ∈ L2(Γ), be

given.
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Define the linear functionalf (·), by,

(2.43) f (−→v ) =
∫

Ω

−→
f · −→v dx+

∫

Γ1

−→g · −→v dγ.

The continuity ofa(·, ·) and f (·) follow from the Cauchy-Schwarz
inequality. For theV-ellipticity of a(·, ·) one uses the inequality

a(−→v ,−→v ) ≥ 2µ
∫

Ω

3∑

i, j=1

(ǫi j (
−→v ))2dx

and the fact that the square root of the integral appearing inthe right
hand side of the above inequality is a norm over the spaceV, equivalent
to the norm−→v = (v1, v2, v3) 7→ (

∑3
i=1 ||vi ||21,Ω)

1
2 . This is a nontrivial fact

which uses essentially the fact thatΓ0 has measure> 0 and an inequality
known asKörn’s inequality. We omit the proof here.

Again the problema(−→u ,−→v ) = f (−→v ) admits a unique solution. As-
suming sufficient smoothness, we may apply Green’s formula:23

∫

Ω

3∑

i, j=1

σi j (
−→u )ǫi j (

−→v )dx=
1
2

∫

Ω

3∑

i, j=1

σi j (
−→u )

(
∂vi

∂x j
+
∂v j

∂xi

)
dx

=

∫

Ω

3∑

i, j=1

σi j (
−→u )

∂vi

∂x j
dx

(sinceǫi j (v) is symmetric ini and j)

= −
∫

Ω

3∑

i, j=1

∂

∂x j
(σi j (
−→u ))vidx+

∫

Γ1

3∑

i, j=1

σi j viν jdγ.

Thus, the abstract problem leads to a solution of

(2.44)



−
3∑

j=1

∂
∂xj

(σi j (
−→u )) = fi(1 ≤ i ≤ 3) in Ω

−→u = −→0 on Γ0 and
3∑

j=1
σi j (
−→u )ν j = gi on Γ1(1 ≤ i ≤ 3).



2. Examples 23

Note also that

−
3∑

j=1

∂

∂x j
(σi j (
−→u)) = −

3∑

j=1

∂

∂x j

λ
3∑

k=1

ǫkk(
−→u )δi j + 2µǫi j (

−→u )



= −
3∑

j=1

∂

∂x j

λ
3∑

k=1

∂uk

∂xk

 δi j −
3∑

j=1

∂

∂x j

(
2µ

(
∂ui

∂x j
+
∂u j

∂xi

))

= −(λ + µ)(grad div−→v )i − µ∆ui .

Thus the first equation of (2.44) is equivalent to

(2.45) −µ∆−→u − (λ + µ) grad div−→u = −→f in Ω.

The equations (2.44) constitute thesystem of linear Elasticity.

Figure 2.3:
24

If we have an elastic three-dimensional body fixed alongΓ0, acted
on by an exterior force of densityf dx and force of densityg dγ along
Γ1 and ifσi j is the stress tensor, the displacementu satisfies (2.44); cf.
Fig. 2.3.

The relationa(−→u ,−→v ) = f (−→v ), viz.,

(2.46)
∫

Ω

3∑

i, j=1

σi j (
−→u )ǫi j (

−→v )dx=
∫

Ω

−→
f · −→v dx+

∫

Γ1

−→g · −→v dγ



24 2. Examples

for all −→v ∈ V is known as theprinciple of virtual work. The tensorǫi j
is the strain tensorand the tensorσi j the stress tensor. The expression
1
2a(−→v ,−→v ) is thestrain energy, and the functionalf (−→v ) is thepotential
energy of exterior forces.This example is of fundamental importance in
that the finite element method has been essentially developed for solving
this particular problem or some of its special cases (membranes, plates,
shells, etc.,) and generalizations (nonlinear elasticity, etc. . . ).
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Remark 2.3.The above problems are all examples oflinear problems2: 25

The map from the right-hand side of the equation and of the boundary
conditions to the solutionu is linear. The non-linearity may occur in
three ways:

(i) WhenK is not a subspace ofV. (e.g. Exercises 2.1 and 2.4);

(ii) If in Example 2.3 we have, instead of the first equality in(2.41):

ǫi j (
−→v ) =

1
2


(
∂vi

∂x j
+
∂v j

∂xi

)
+

3∑

k=1

∂vk

∂xi

∂vk

∂x j

 .

This is the case for instance when one derives the so-called Von
Karmann’s equations of a clamped plate;

(iii) We may replace Hooke’s law (the second relations in (2.41)) by
non-linear equations connectingǫi j andσi j , which are known as
non-linear constitutive equations. (e.g.Hencky’s law).

Exercise 2.4.Let V = H1(Ω), anda(·, ·) and f (·) be as in example 2.2,
and let

K =
{
v ∈ H1(Ω); v ≥ 0 a.e. onΓ

}
.

Show thatK is a closed convex cone with vertex 0. Using the results
of Sec. 1 show that the interpretation is

−∆u+ au= f in Ω,

u ≥ 0,
∂u
∂ν
≥ 0, u

∂u
∂ν
= 0 on Γ.

(This is called theSIGNORINI problem).

We now examine fourth-order problems.

Example 2.4.Let K = V = H2
0(Ω). Define

(2.47)


a(u, v) =

∫
Ω
∆u∆v dx,

f (v) =
∫
Ω

f v dx, f ∈ L2(Ω),

2Except in Exercise 2.1.
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for all u, v ∈ V. The continuity follows as usual. For theV-ellipticity26

of a(·, ·) we have,

(2.48) a(v, v) =
∫

Ω

(∆v)2dx= |∆v|20,Ω = |v|
2
2,Ω.

(by Lemma 2.1. Since| · |2,Ω and || · ||2,Ω are equivalent onH2
0(Ω), the

V-ellipticity follows from (2.48).
Hence there exists a unique functionu ∈ H2

0(Ω) such that
∫

Ω

∆u∆v dx=
∫

Ω

f v dx for all v ∈ H2
0(Ω).

Assumingu to be sufficiently smooth (say,u ∈ H4(Ω)), then by
Green’s formula (2.18),

(2.50)
∫

Ω

(∆2u− f )v dx=
∫

Γ

∂(∆u)
∂ν

v dγ −
∫

Γ

∆u
∂v
∂ν

dγ,

for all v ∈ H2
0(Ω). Hence by varyingv overH2

0(Ω), we get thatu satisfies
∆

2u = f in Ω. Sinceu ∈ H2
0(Ω), the boundary conditions are given by

(2.14). Thus we interpret this problem as the classical problem

(2.51)


∆

2u = f in Ω,

u =
∂u
∂ν
= 0 on Γ.

This is thehomogeneous Dirichlet problemfor the operator∆2.
Whenn = 2, this is an important problem in Hydrodynamics. Here

u is known as the stream function and−∆u is thevorticity.
A slight modification ofa(·, ·) leads to an important problem in Elas-27

ticity. Again letn = 2. Let f ∈ L2(Ω) and if K = V = H2
0(Ω), define

(2.52)

f (v) =
∫
Ω

f v dx,

a(u, v) =
∫
Ω

[
∆u ∆v+ (1− σ)

(
2

∂2u
∂x1∂x2

∂2v
∂x1∂x2

− ∂
2u

∂x2
1

∂2v

∂x2
2

− ∂
2u

∂x2
2

∂2v

∂x2
1

)]
dx.

The integrand occurring in the definition ofa(u, v) may also be writ-
ten as

(2.53) σ∆u∆v+ (1− σ)


∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+
2∂2u
∂x1∂x2

∂2v
∂x1∂x2

 .
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Usually, from physical considerations, 0< σ <
1
2

.

Note that

(2.54) a(v, v) = σ|∆v|20,Ω + (1− σ)|v|22,Ω
by (2.53) and this leads to theV-ellipticity of a(·, ·). By virtue of (2.21)
in Lemma 2.2, we get that the relationsa(u, v) = f (v) read as

(2.55)
∫

Ω

∆
2uv dx=

∫

Ω

f v dx,

assuming sufficient smoothness ofu. Thus again we get the same equa-
tion as in (2.51). Notice that the additional term in the definition of a(·, ·)
has contributed nothing towards the differential equation.

This latter problem is known as theclamped plate problem:
Consider a plate of “small” thicknesse lying on thex1x2-plane. Let

E be its Young’s modulus andσ its Poisson coefficient. Let there be a
loadF acting on the plate. The displacementu is the solution of (2.51),
where f is given by (cf. Fig. 2.4):

(2.56) F =
Ee3 f

12(1− σ2)
.

28

Figure 2.4:

We will return to this problem in Sections 10 and 11.
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Exercise 2.5.Let K = V = {v ∈ H2(Ω); v = 0 on Γ} = H2(Ω)∩H1
0(Ω),

and definea(·, ·) and f (·) as in the case of the clamped plate. Assuming
theV-ellipticity of a(·, ·) show that the solution of the abstract problem
satisfies∆2u = f in Ω andu = 0 on Γ. What is the other boundary
condition? This is known as the problem of thesimply supported plate.

Exercise 2.6.Let K = V = H2(Ω) ∩ H1
0(Ω), and

a(u, v) =
∫

Ω

∆u∆v dx;

f (v) =
∫

Ω

f v dx−
∫

Γ

λ
∂v
∂ν

dγ, where f ∈ L2(Ω), λ ∈ L2(Γ).

Show that we may apply the result of Sec. 1 and give an interpreta-
tion of this problem.

REFERENCES. For details on Sobolev spaces, see Nečas [20] and
Lions and Magenes [17]. For the theory of Elasticity, one mayrefer to
Duvaut and Lions [10] and Landau and Lipschitz [14].



Chapter 3

The Finite Element Method
in its Simplest Form

MAINTAINING OUR ASSUMPTIONS as in the Lax-Milgram Lemma29

(Theorem 1.2 we concentrate our attention on the following problem
(P):

(P): To find u ∈ V such thata(u, v) = f (v) for all v ∈ V.

Let Vh be a finite-dimensional subspace ofV. Then we may state
the following problem:

(Ph): To find uh ∈ Vh such thata(uh, vh) = f (vh) for all vh ∈ Vh.

Vh, being a finite-dimensional subspace, is a Hilbert space forthe
norm of V. Hence by Theorem 1.2,uh exists and is unique. We try
to approximate the solutionu of (P) by means of solutionsuh of the
problem (Ph) for various subspacesVh. This is known as theinternal
approximation method.

As a first step in this direction, we prove a most fundamental result:

Theorem 3.1. There exists a constant C, which is independent of Vh,
such that

(3.1) ||u− uh|| ≤ C inf
vh∈Vh
||u− vh||.

29
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Proof. If wh ∈ Vh, then

a(u,wh) = f (wh) = a(uh,wh).

Thus for allwh ∈ Vh

(3.2) a(u− uh,wh) = 0.

Using this and theV-ellipticity of a(·, ·), we get, for allvh ∈ Vh,

α||u− uh||2 ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

= a(u− uh, u− vh) by (3.2)

≤ M||u− uh|| ||u− vh||.

30

Hence,||u − uh|| ≤ M/α ||u − vh|| for all vh ∈ Vh. SettingC = M/α
and taking infimum on the right-hand side the result follows. �

The above result estimates the ‘error’ in the solution of (P) when
instead we solve (Ph). To get an upper bound for the error, we only need
to compute inf

vh∈Vh

||u − vh|| which is the distance ofu from the subspace

Vh. This is a problem inapproximation theory.

Remark 3.1. If a(·, ·) is also symmetric then we observe the following:

(i) J(uh) = inf
vh∈Vh

J(vh) by Corollary 1.1 (b)

(ii) We saw thata(u− uh,wh) = 0 for all wh ∈ Vh. Sincea(·, ·) is now
an inner product, we get thatuh is the projection ofu to the closed
subspaceVh in the sense of this inner-product. Therefore,

√
α||u− uh|| ≤

√
a(u− uh, u− uh) ≤

√
a(u− vh, u− vh) ≤

√
M||u− vh||

for all vh ∈ Vh. Hence the constantC in theorem 3.1 can be taken
to be here

√
M/α ≤ M/α, since the continuity andV-ellipticity

imply jointly that M ≥ α.
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We may now describe thefinite element method(f.e.m.) in its sim-
plest terms. The method consists in makingspecial choices for the sub-
spaces Vh such that the solutionsuh of the problems (Ph) converge to
u.

We will outline the procedure for obtaining the spacesVh by consid- 31

ering, for example, a second-order problem.
LetV = H1

0(Ω) or H1(Ω). Let us assumeΩ to be apolygonal domain

in Rn. That is,Ω is a polygon inRn. We then have the following step-
by-step procedure:

(i) We first establish a finite triangulationkh of the domainΩ such
thatΩ =

⋃
K∈kh

K. The setsK are calledfinite elements. If n = 2,

they will be, in general, triangles. They will be tetrahedral in n =
3 and ‘n-simplices’ in anyRn. These have the further property that
any side of a finite elementK is either a portion of the boundary
or the side of an adjacent finite element. (See Fig. 3.1).

Figure 3.1:

(ii) The spaceVh is such that for eachvh ∈ Vh, its restrictionvh|K to
eachK belongs to some finite-dimensional spacePk of real valued
functions overK which are preassigned. In practice we choosePK

to be a space ofpolynomials.

(iii) We then need inclusions such asVh ⊂ H1
0(Ω) or H1(Ω). We es-

tablish a simple criterion to realise this.
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Theorem 3.2. If for every K= kh, PK ⊂ H1(K), and Vh ⊂ C0(Ω), then32

Vh ⊂ H1(Ω). If in addition v= 0 onΓ for all v ∈ Vh, then Vh ⊂ H1
0(Ω).

Proof. Let v ∈ Vh. Sincev|K ∈ L2(K) for everyK ∈ kh, it follows that
v ∈ L2(Ω). Hence to complete the proof it only remains to show that for
1 ≤ i ≤ n, there existvi ∈ L2(Ω) such that for eachϕ = D(Ω), we have,

(3.3)
∫

Ω

ϕvidx= −
∫

Ω

∂ϕ

∂xi
v dx. (1 ≤ i ≤ n).

Then it will follow that
∂v
∂xi
= vi and hencev ∈ H1(Ω).

However, v|K ∈ PK ⊂ H1(K) implies that
∂(v|K)
∂xi

∈ L2(K) for

1 ≤ i ≤ n. Let ϕ ∈ D(Ω). Since the boundary∂K of any K of the tri-
angulation is Lipschitz continuous, we apply the Green’s formula (2.15)
to get

(3.4)
∫

K

∂(v|K)
∂xi

ϕdx= −
∫

K
(v|K)

∂ϕ

∂xi
dx+

∫

∂K
(v|K)ϕνi,KdγK ,

wheredγK is the measure on∂K and−→ν K = (ν1,K , . . . , νn,K ) is the outer
normal on∂K. Summing over all the finite elementsK, we get

∫

Ω

ϕvidx=
∑

K∈kh

∫

K
ϕ
∂(v|K)
∂xi

dx

= −
∫

Ω

∂ϕ

∂xi
v dx+

∑

K∈kh

∫

∂K
ϕ(v|K)νi,KdγK ,

(3.5)

wherevi is the function whose restriction to eachK is
∂(v|K)
∂xi

.

The summation on the right-hand side of the above equation iszero
for the following reasons:

On the boundaryΓ, sinceϕ ∈ D(Ω), the integral corresponding to
∂K ∩ Γ is zero. So the problem, if any, is only on the other portions
of the boundary of eachK. However, these always occur as common
boundaries of adjacent finite elements. The value ofv|K on the common33

boundary of two adjacent finite elements is the same (Vh ⊂ C0(Ω)). But
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the outer normals are equal and opposite from orientation considera-
tions. (See Fig. 3.2).

Figure 3.2:

Hence the contributions from eachK along the common boundaries
cancel one another. Thus the summation yields only zero. Hence vi

satisfies (3.3) for 1≤ i ≤ n, and clearlyvi ∈ L2(Ω). The last part of the
theorem follows the characterization (2.11). �

Exercise 3.1.If for all K ∈ kh, PK ⊂ H2(K) and Vh ⊂ C1(Ω), then

show thatVh ⊂ H2(Ω). Also if v =
∂v
∂ν
= 0 onΓ, for all v ∈ Vh, then

Vh ⊂ H2
0(Ω).

We finally describe the system of linear equations associated with
the spaceVh. Suppose{w j; 1 ≤ j ≤ M} is a basis forVh. Let uh be the
solution of (Ph). If uh is given by

(3.6) uh =

M∑

j=1

u jw j .

then we have, sincea(uh,wi) = f (wi) for 1 ≤ i ≤ M,

(3.7)
M∑

j=1

a(w j ,wi)u j = f (wi), 1 ≤ i ≤ M.

To finduh, the above system of linear equations must be solved. The
matrix for this system has for its (i, j)-coefficient the valuea(w j ,wi). 34
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Note that the symmetry ofa(·, ·) implies the symmetry of the matrix
and theV-ellipticity says that the matrix is positive definite. In practical
computations these observations are important.

Since we have to handle the matrix of the system, it would be ideal
of course to have a diagonal matrix. We could in principle achieve this
through a Gram-Schmidt orthogonalisation procedure applied to the ba-
sis functions. However such a process is not feasible since it is highly
“numerically unstable”. So the best we may hope for is a matrix with “a
lot of” zeros in it - what is known as asparse matrix.

For example in the problem given by


−∆u+ au= f in Ω

u = 0 on Γ

the (i, j)-coefficient of the matrix is

(3.8) a(w j ,wi) =
∫

Ω


n∑

k=1

∂w j

∂xk

∂wi

∂xk
+ awjwi

 dx.

The matrix will be sparse if the supports of the basis functions are
as “small” as possibleso that their inner-products will be most often
zero. We will study subsequently methods to achieve this. This trivial
criterion extends, of course, to all types of problems.
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Examples of Finite Elements

WE SUMMARIZE BELOW our requirements regarding the “finite el-35

ement subspaces” Vh

(i) Let Ω ⊂ Rn be a polygonal domain. Letkh be a triangulation of
Ω as in Sec. 3. ThenVh is a finite-dimensional vector space such
that for all v ∈ Vh, v|K ∈ PK for every finite elementK, where
PK is a vector space of finite dimension. Usually,PK is a space
of polynomials. This is of practical importance in computing the
matrix of the system. We shall see later that it is of theoretical
importance as well. Observe for the moment that ifPK consists
of polynomials, then we automatically have thatPK ⊂ H1(K) or
PK ⊂ H2(K).

(ii) By Theorem 3.2,Vh ⊂ C0(Ω) implies thatVh ⊂ H1(Ω) and by
Exercise 3.1Vh ⊂ C1(Ω) implies thatVh ⊂ H2(Ω). Thus we must
choose aproper basis for the “local” spaces PK such that these
“global” inclusions hold.

(iii) There must exist at least one basis{w j} of Vh which consists of
functions with “small” support.

We bear these points in mind when constructing examples of finite
elements. Before we proceed we need a few definitions.

35
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Definition 4.1. An n-simplex is the convex hull inRn of (n + 1) points
{a j}n+1

j=1 such that ifa j = (ak j)n
k=1 andA is the matrix

(4.1) A =



a11 a12 . . . a1,n+1
...

...
...

an1 an2 . . . an,n+1

1 1 . . . 1



then detA , 0.36

The above definition generalises the notion of a triangle ton dimen-
sions. Geometrically the condition detA , 0 simply means that the
points {a j}n+1

j=1 do not lie in the same hyperplane. For detA is equal to,
by elementary column operations, the determinant of the matrix



(a11− a1,n+1) . . . (a1,n − a1,n+1)
...

...

(an1 − an,n+1) . . . (an,n − an,n+1)



and that this is non-zero means that (a1 − an+1), . . . , (an − an+1) are
linearly independent vectors inRn, which is the same as saying that
a1, . . . , an+1 do not lie in the same hyperplane.

Definition 4.2. Let {a j}n+1
j=1 be (n + 1)-points inRn satisfying the condi-

tions of definition 4.1. The barycentric coordinates of anyx ∈ Rn with
respect to these points are numbers{λ j}n+1

j=1 such that

(4.2)



x =
n+1∑
j=1
λ ja j ,

1 =
n+1∑
j=1
λ j .

The barycentric coordinates exist because they are merely the com-

ponents of the unique solution vector
−→
λ of the system of (n + 1) linear

equations in (n+ 1) unknowns given by

A
−→
λ =

(−→x
1

)
where −→x =



x1
...

xn
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The functionsλ j = λ j(x) are all affine functions ofx. Also λ j(ai ) =
δi j , whereδ is the Kronecker symbol. 37

Remark 4.1.Given points{a j}n+1
j=1 as in the definition (4.1), the corre-

spondingn-simplex is given by

K =


x =

n+1∑

j=1

λ ja j ; 0 ≤ λ j ≤ 1;
n+1∑

j=1

λ j = 1


.

Definition 4.3. Let k ≥ 0 be an integer. Then,Pk is the space of all
polynomials of degree≤ k in x1, . . . , xn.

We now proceed withexamples of finite elements.

Example 4.1.Then-simplex of type (1).

Let K be ann-simplex. LetPK = P1. We define a set
∑

K =

{p(ai); 1 ≤ i ≤ n + 1} of degrees of freedomfor p ∈ PK, where{ai}n+1
i=1

are the vertices ofK: The set
∑

K determines every polynomial p∈
PK uniquely. For, note that dimPK = dim P1 = n + 1. Consider
λ1, . . . , λn+1 ∈ P1, the barycentric coordinate functions. These are lin-
early independent since

∑
αkλk = 0 implies that its value at each vertex

is zero. Sinceλk(a j ) = δk j we get thatα j = 0 for all j. Thus these
functions form a basis forP1. Let us write

p =
n+1∑

i=1

αiλi .

Then

p(a j ) =
n+1∑

i=1

αiλi(a j) =
n+1∑

i=1

αiδi j = α j .

Thus,

(4.4) p =
n+1∑

i=1

p(ai)λi .
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Example 4.2.Then-simplex of type (2).
Let K be ann-simplex with vertices{ai}n+1

i=1 . Let ai j (i < j) be the 38

mid-points of the line joiningai anda j , i.e.ai j =
1
2(ai + a j).

Figure 4.1:

Let PK = P2. We define forp ∈ P2, the set
∑

K = {p(ai), 1 ≤ i ≤
n + 1; p(ai j ), 1 ≤ i < j ≤ n + 1} of degrees of freedom.Again

∑
K

determinesp ∈ P2 completely. To see this note that dimPK =
(
n+2

2

)
and

there are as many functions in the set{λi(2λi −1), 1 ≤ i ≤ n+1;λiλ j , 1 ≤
i ≤ j ≤ n+ 1}. There are all functions inP2. Further since

λi(a j ) = δi j , λi(ak j) =


1
2 if i = k or j,

0 otherwise,

we see again that these are linearly independent inP2. Let us write

p =
n+1∑

i=1

αiλi(2λi − 1)+
∑

1≤i< j≤n+1

βi jλiλ j .

Then

p(ak) =
n+1∑

i=1

αiδik(2δik − 1) = αk.

Further,

p(akl) =
n∑

i=1

αi(2λ
2
i (akl) − λi(akl))
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+

∑

1≤i< j≤n+1

βi jλi(akl)λ j(akl).

But sinceλi(akl) = 0 or 1
2, the first sum

n∑
i=1

is zero. Further, 39

λi(akl)λ j(akl) =


1
4 if ( i, j) = (k, l) or (l, k),

0 otherwise.

Henceβkl = 4p(akl). Thus we have

(4.5) p =
n+1∑

i=1

λi(2λi − 1)p(ai ) +
∑

1≤i< j≤n+1

4λiλ j p(ai j ).

Example 4.3.Then-simplex of type (3).

Let K be ann-simplex with vertices{ai}n+1
i=1 . Let aii j =

2ai + a j

3
,

i , j. Let ai jk =
ai + a j + ak

3
for i < j < k.

Figure 4.2:

SetPK = P3. Definethe set of degrees of freedom
∑

K

=

{
p(ai ), 1 ≤ i ≤ n+ 1; p(aii j ), 1 ≤ i , j ≤ n+ 1;

p(ai jk ), 1 ≤ i < j < k ≤ a+ 1
}
.
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Note thatλi(aii j ) =
2
3

; λ j(aii j ) =
1
3

; λ1(aii j ) = 0 if 1 , i, 1 , j;

λ1(ai jk ) =
1
3

if 1 = i, j or k and 0 otherwise, etc. Using these, one

checks the linear independence of the functions
{
λi(3λi − 1)(3λi − 2), 1 ≤ i ≤ n+ 1; λiλ j(3λi − 1), 1 ≤ i , j ≤ n+ 1;

λiλ jλk1 ≤ i < j < k ≤ n+ 1
}
.

These then form a basis forP3, for there are as many functions in the
above collection as dimPK. Using the values ofλi at the special points
described above, we get

p =
n+1∑

i=1

λi(3λi − 1)(3λi − 2)
2

p(ai )

+

∑

1≤i, j≤n+1

9
2
λiλ j(3λi − 1)p(aii j )

∑

1≤i< j<k≤n+1

27λiλ jλkp(ai jk ).

(4.6)

40

Thus
∑

K completely determinesp ∈ P3.

The points ofK at which the polynomials are evaluated to get
∑

K

are known as thenodes of the finite element. The set
∑

K is the set of
degrees of freedom of the finite element.

Exercise 4.1.Generalize these ideas and describe then-simplex of type
(k) for any integerk ≥ 1.

We now show how these finite elements may be used to define the
spaceVh.

First of all we show the inclusionVh ⊂ C0(Ω). Consider for instance
a triangulation byn-simplices of type (1). Number all the nodes of the
triangulation by{b j}. Let us define

∑
h = {p(b j); b j is a node.}: This is

theset of degrees of freedom of the space Vh : A functionv in the space
Vh is, by definition, determined over eachK ∈ kh by the valuesv(b j) for
those nodesb j which belong toK.
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Let us examine the two-dimensional case, for simplicity. IfK1 and
K2 are two adjacent triangles with common sideK′ (cf. Fig. 4.3), we
need to show thatv|K1 = v|K2 along K′ for any v ∈ Vh. Let t be an
abscissa alongK′.

Figure 4.3:

41

Now v|K1 alongK′ is a polynomial of degree 1 int. So isv|K2 along
K′. But these two agree at the nodes b1 and b3. Therefore, they must be
identical and hence the continuity ofv follows.

This argument can be extended to any simplex of type (k). These
simplices, by Theorem 3.2 yield the inclusionVh ⊂ H1(Ω) and hence
we may use them for second order problems.

Exercise 4.2.The triangle of type (3′).

Let K be a triangle inR2. Define
∑

K to be the values ofp at the
points{ai , 1 ≤ i ≤ 3}, and the points{aii j , 1 ≤ i , j ≤ 3}. If we define
P′3 = {p ∈ P3; 12p(a123) + 2

∑3
i=1 p(ai ) − 3

∑
i, j p(aii j ) = 0}, then show

that
∑

K uniquely determinesp ∈ P′3 = PK . Further show thatP2 ⊂ P′3.

We now relax our terminological rules about “triangulations” and
admit rectangles (and in higher dimensions, hyper rectangles or hyper-
cubes) in triangulations. We describe below some finite elements which
are rectangles.

We need another space of polynomials.
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Definition 4.4. Let k ≥ 1 be an integer. Then

Qk =


p; p(x) =

∑

0≤i j≤k
1≤ j≤n

ai1,...in xi1
1 . . . x

in
n


.

42

We have the inclusionsPk ⊂ Qk ⊂ Pnk.

Example 4.4.The Rectangle of type (1).
Let K be the unit square inR2, i.e., K = [0, 1]n. Let PK = Q1.

The set of degrees of freedom is given by
∑

K = {p(ai), 1 ≤ i ≤ 4}; cf.
Fig. 4.4 in the casen = 2.

Figure 4.4:

To show that
∑

K indeed determinesp ∈ Q1 uniquely we adopt a
different method now. (There are essentially two methods to showthat∑

K completely determinesPK ; the first was used in the previous ex-
amples where we exhibited a basis forPK such that the corresponding
coefficients in the expansion ofp in terms of this basis came from

∑
K;

the second is illustrated now).
Observe first that dimPK = card

∑
K = 2n. To determine a polyno-

mial completely in terms of the elements of
∑

K we must solve 2n linear
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equations in as many unknowns. That every polynomial is determined
this way is deduced from the existence of a solution to this system. But
for such a system the existence and uniqueness of the solution are equiv- 43

alent, and one establishes the latter. Thus we show that ifp ∈ PK such
that all its degrees of freedom are zero, thep ≡ 0.

Returning to our example, consider a polynomialp ∈ Q1 such that
p(ai) = 0 for all 1 ≤ i ≤ 4. On each sidep is a polynomial of degree
1 either inx1 alone or inx2 alone. Since it vanishes at two points, the
polynomialp vanishes on the sides of the square. Now consider various
lines parallel to one of the axes. Here toop is a polynomial of degree 1
in one variable only. Since it vanishes at the points where the line meets
the side, it also vanishes on this line. Varying the line we get p ≡ 01.

Example 4.5.The Rectangle of type (2).
Again consider the unit square (or hypercube inRn) to be the finite

elementK. SetPK = Q2, and
∑

K = {p(ai ), 1 ≤ i ≤ 9} where theai are
as in the figure below.

Figure 4.5:

Here again one can prove the unisolvency as above. Now letp ∈ Q2

be given such thatp(ai ) = 0 for all 1 ≤ i ≤ 9; thenp = 0 on the four

1It is not necessary to restrict ourselves to a square. Any rectangle with sides parallel
to the coordinate axes would do.
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sides and on the two central (dotted, in Fig. 4.5) lines. Now take lines
parallel to one of the axis andp vanishes on each of these. Thusp ≡ 044

on K and we get that
∑

K uniquely determinesp ∈ Q2.

Exercise 4.3.Describe the rectangle of type (3) and generalize to hyper-
rectangles of type (k).

Exercise 4.4.Prove that in all the preceding examples, we getVh ⊂
C0(Ω).

Exercise 4.5.The Rectangle of type (2′).
Let K be as in example 4.5. However omit the nodea9 (the centroid

of K). Let
∑

K = {p(ai), 1 ≤ i ≤ 8} and show that this determines
uniquely a function in the space

PK =

p ∈ Q2; 4p(a9) +
4∑

i=1

p(ai ) − 2
8∑

i=5

p(ai) = 0

 .

and thatP2 ⊂ PK.

We now turn to different types of finite elements. They differ from
the preceding ones in the choice of degrees of freedom as willbe seen
presently.

Example 4.6.The Hermite Triangle of Type (3).
Let K ⊂ R2 be a triangle with vertices{a1, a2, a3}. Let λi , 1 ≤ i ≤ 3,

be the barycentric coordinate functions. Then one can checkthat any
polynomialp ∈ P3 = PK can be expanded as

p =
3∑

i=1

(−2λ3
i + 3λ2

i − 7λ1λ2λ3)p(ai ) + 27λ1λ2λ3p(a123)

+

3∑

i=1

∑

j=1
j,i

λiλ j(2λi + λ j − 1) Dp(ai)(a j − ai).

Thus,
∑

K = {p(ai), 1 ≤ i ≤ 3; Dp(ai)(a j −ai), 1 ≤ i , j ≤ 3; p(a123)}
is the corresponding set of degrees of freedom.
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Note that Dp(ai ) is the Frechet derivative ofp evaluated atai : If45

(e1, . . . , en) is the standard basis forRn, then forv : Rn → R, we have,

(Dv)(x)(ei ) =
∂v
∂xi

(x), the usual partial derivative.

Notice that we may replace
∑

K by the set

′∑

K

=

{
p(ai ), 1 ≤ i ≤ 3; p(a123);

∂p
∂x1

(ai),
∂p
∂x2

(ai), 1 ≤ i ≤ 3

}
.

Remark 4.2.The term “Hermite” means that we assume knowledge of
derivatives at some of the nodes. If only the values ofp at the nodes ap-
pear in the set of degrees of freedom, as was the case upto Example 4.5,
we refer to the finite elements as of “Lagrange” type. These ideas will
be made precise in Sec. 5. We usually indicate degrees of freedom in-
volving derivatives by circling the nodes - one circle for first derivatives,
two for first and second derivatives and so on. Thus the finite element
of example 4.6 may be pictured as in Fig. 4.6.

Figure 4.6:

Exercise 4.6.The Hermite Triangle of Type (3′).
This is also known as theZienkiewicz trianglein Engineering lit-

erature. Set
∑

K =

{
p(ai ),

∂p
∂x1

(ai ),
∂p
∂x2

(ai), 1 ≤ i ≤ 3

}
. Show that

∑
K

uniquely determines a function in the space

PK =

p ∈ P3; 6p(a123) − 2
3∑

i=1

p(ai ) +
3∑

i=1

Dp(ai)(ai − a123) = 0

 .
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All examples cited upto now yield the inclusionVh ⊂ C0(Ω) and 46

consequently are useful to solve second-order problems. Inorder to
solve problems of fourth order, we need the inclusionVh ⊂ C1(Ω). Our
subsequent examples will be in this direction.

Remark 4.3.Consider a 1-simplexK ⊂ R1. A triangulation is merely
a subdivision ofΩ into subintervals. In any subintervalK not onlyv|K
but also

d(v|K)
dx

must be continuous at both end points. Thus we get

4 conditions onv|K. ConsequentlyPK must contain all polynomials
of degree 3 in it. The analogous result (which is non-trivial) is due
to A. Ženišek [24] that is case ofR2, andK a triangle ofR2, at least
polynomials of degree 5 must be contained inPK .

Example 4.7.The Argyris triangle.
This is also known as the21-degree-of-freedom-triangle.We set

PK = P5 and

∑

K

=

p(ai),
∂p
∂x1

(ai ), . . . ,
∂2p

∂x2
2

(ai ), 1 ≤ i ≤ 3;

∂p
∂ν

(ai j ), 1 ≤ i ≤ j ≤ 3

}
.

Figure 4.7:

The knowledge of the normal derivative
∂p
∂ν

is indicated by a line47

perpendicular to the side at the appropriate point; cf. Fig.4.7.
We now show that anyp ∈ PK is uniquely determined by

∑
K . Let

p ∈ PK = P5 be given such that all its degrees of freedom are zero. IfK′
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is any side ofK andt is an abscissa alongK′ thenp|K′ is a polynomial

p1(t) of degree 5. The vanishing ofp,
dp
dt

,
d2p

dt2
at the end points, sayb,

b′, of K′ imply that all the 6 coefficients ofp1 are 0 and hencep1 ≡ 0.

Thusp = 0 =
dp
dt

on K′. The polynomialr(t) =
∂p
∂ν

(t) is of degree 4 on

K′ and we also haver(b) = r(b′) =
dr
dt

(b) =
dr
dt

(b′) = r

(
b+ b′

2

)
= 0

which imply thatr ≡ 0 on K′. Hencep,
∂p
∂x1

,
∂p
∂x2

all vanish on the

sides of the triangleK. The sides ofK are defined by the equations
λi(x1, x2) = 0, (i = 1, 2, 3) whereλi are the barycentric coordinate func-
tions. We claim thatλ2

i dividesp for i = 1, 2, 3. To see this it is enough

to prove that ifp is a polynomial such thatp,
∂p
∂x1

,
∂p
∂x2

vanish on any

straight lineL = {(x1, x2); λ(x1, x2) = 0} thenλ2 dividesp. In the special
case, whenλ(x1, x2) = x1 writing p(x1, x2) =

∑5
j=0 a j(x2)x j

1 (with deg.

a j ≤ 5 − j) it follows that a0(x2) = a1(x2) = 0 sincep =
∂p
∂x1
= 0 on

L. Thusx2
1 dividesp. The general case reduces to this case by an affine

transformation. In fact, by translating the origin to a point P, fixed ar-
bitrarily on L and by rotation of the coordinate axes we can assume that
L = {(X1,X2); X1 = 0} in the new coordinates. Ifp′ is the image ofp
under this transformation thenp′ is also a polynomial (of degree 5) and

p′,
∂p′

∂X1
,
∂p′

∂X2
vanish onL by chain rule for differentiation. HenceX2

1 di-

videsp′. This is the same thing as sayingλ2 dividesp which proves the
claim. Sinceλi are mutually coprime we may now writep = qλ2

1λ
2
2λ

2
3.

Then we necessarily haveq(x1, x2) ≡ 0 for, otherwise deg.p ≥ 6 which
is impossible sincep ∈ P5. Hencep ≡ 0 on K which proves that

∑
K

determinesp ∈ P5.
To define the corresponding spaceVh, we number all the vertices of

the triangles by{b j} and all midpoints of the sides by{ck}. The the set
of degrees of freedom of the space Vh is 48

∑

h

=

v(b j),
∂v
∂x1

(b j ),
∂v
∂x2

(b j ),
∂2v

∂x2
1

(b j),
∂2v

∂x1∂x2
(b j),

∂2v

∂x2
2

(b j ),
∂v
∂νk

(ck)
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where
∂

∂νk
is one of the two possible normal derivatives at the mid-point

ck.
We now show thatVh ⊂ C1(Ω). Consider two adjacent Argyris trian-

glesK1 andK2 with common boundaryK′ along whicht is an abscissa
(Fig. 4.8). Letv ∈ Vh. Nowv|K1 andv|K2 are polynomials of degree 5 in
t alongK′ and they agree together with their first and second derivatives
at the end points. Thusv|K1 = v|K2 on K′, proving continuity.

Now
∂(v|K1)
∂ν

and
∂(v|K2)
∂ν

along K′ are polynomials of degree 4

agreeing in their values with first derivatives at end pointsand agree at

the mid-point in their values. Thus
∂(v|K1)
∂ν

=
∂(v|K2)
∂ν

on K′. Similarly,

∂(v|K1)
∂t

=
∂(v|K2)
∂t

on K′ and hencev ∈ C1(Ω). ThusVh ⊂ C1(Ω).

Figure 4.8:

Exercise 4.7.The 18-Degree-of-Freedom-Triangle
Let K be a triangle inR2. Let PK consist of those polynomials of

degree≤ 5 for which, along each side ofK, the normal derivative is
a polynomial of degree≤ 3, in one variable of course. Show that a
polynomial inPK is uniquely determined by the following set of degrees
of freedom:

∑

K

=

p(ai ),
∂p
∂x1

(ai), . . . ,
∂2p

∂x2
2

(ai), 1 ≤ i ≤ 3

 .

49

Note thatP4 ⊂ PK and dimPK = 18.
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Exercise 4.8.The HCT-Triangle.
This element is due to Hsieh, Clough and Tocher. Leta be any inte-

rior point of the triangleK with verticesa1, a2, a3. With a as common
vertex subdivide the triangle into trianglesK1, K2, K3; cf. Fig. 4.9. De-
fine

PK =
{
p ∈ C1(K); P|Ki ∈ P3, 1 ≤ i ≤ 3

}
.

Obviously,P3 ⊂ PK . The degrees of freedom are given by

∑

K

=

{
p(ai),

∂p
∂x1

(ai ),
∂p
∂x2

(ai ), 1 ≤ i ≤ 3;
∂p
∂ν

(ai j ), 1 ≤ i < j ≤ 3

}
.

Figure 4.9:

Show that
∑

K uniquely determinesp ∈ PK .

Note: Since we have to determine 3 polynomialspi = p|Ki each of
degree≤ 3, we need to determine 30 coefficients on the whole. For this
we have the following conditions:

(i) The values at the vertices together with first derivatives and also
the normal derivative at the mid points give 7 conditions foreach
pi = p|Ki . Thus we have 21 conditions from these.

(ii) p1(a) = p2(a) = p3(a) gives 2 conditions.

(iii)
∂p1

∂xi
(a) =

∂p2

∂xi
(a) =

∂p3

∂x1
(a) for i = 1, 2, gives 4 more conditions. 50
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(iv)
∂p1

∂ν
=
∂p2

∂ν
along a1a and two more similar conditions give 3

conditions.

Thus we have 30 conditions to determine the 30 coefficients. But,
of course this is no proof, which is left as an exercise!

Exercise 4.9.The Bogner-Lox-Schmidt Rectangle; cf. Fig. 4.10.

Figure 4.10:

Let PK = Q3, the degrees of freedom being given by

∑

K

=

{
p(ai),

∂p
∂x1

(ai),
∂p
∂x2

(ai),
∂2p

∂x1∂x2
(ai), 1 ≤ i ≤ 4

}
.

Show that
∑

K determines uniquely a polynomialp ∈ Q3 (a double
dotted arrow indicates that the mixed second derivative is adegree of
freedom). Show also that in this caseVh ⊂ C1(Ω).

So far, we have verified requirements (i) and (ii) mentioned at the
beginning of this Section. Let us now examine requirement (iii), which
will be fulfilled by a “canonical” choice for the basis functions. Let

∑
h

be the set of degrees of freedom of the spaceVh derived in an obvious
way from the sets

∑
K , K ∈ kh; Examples of such sets

∑
h have been

given forn-simplices of type (k) and for Argyris triangles. Then if51
∑

h

=

{
ϕ jh, 1 ≤ j ≤ M

}
,
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we let the basis functionsw j , 1 ≤ j ≤ M, be those functions in the space
Vh which satisfies

ϕi(w j) = δi j , 1 ≤ i ≤ M.

Then it is easily seen that this choice will result in functions with
“small” support: in Fig. 4.11, we have represented there types of sup-
ports encountered in this fashion, depending upon the position of the
node associated

support of basis 

function associated

with node 

support of basis 

function associated

with node 

support of basis 

function associated

with node 

Figure 4.11:

with the degree of freedom.





Chapter 5

General Properties of Finite
Elements

IT WOULD HAVE been observed that upto now we have not defined fi-52

nite elements in a precise manner. Various polygons like triangles, rect-
angles, etc. were loosely called finite elements. We rectifythis omission
and make precise the ideas expressed in the previous sections.

Definition 5.1. A finite element is a triple (K,Σ,P) such that

(i) K ⊂ Rn with a Lipschitz continuous boundary∂K and IntK , φ.

(ii) Σ is a finite set of linear forms overC∞(K). The setΣ is said to be
the set of degrees of freedom of the finite element.

(iii) P is a finite dimensional space of real-valued functions overK
such thatΣ is P-unisolvent: i.e. ifΣ = {ϕi}Ni=1 andαi , 1 ≤ i ≤ N
are any scalars, then there exists a unique functionp ∈ P such that

(5.1) ϕi(p) = αi , 1 ≤ i ≤ N.

Condition (iii) of definition (5.1) is equivalent to the conditions that
dimP = N = cardΣ and that there exists a set of functions{p j}Nj=1 with
ϕi(p j) = δi j (1 ≤ i, j ≤ N), which forms a basis ofP overR. Given any

53
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p ∈ P we may write

(5.2) p =
N∑

i=1

ϕi(p)pi .

Instead of (K,
∑
,P) one writes at times (K,

∑
K ,PK) for the finite

element.
In the various examples we cited in Sec. 4 our set of degrees offree-

dom for a finite elementK (which was ann-simplex or hyper-rectangle)
had elements of the following type:53

Type 1: ϕ0
i given byp 7→ p(a0

i ). The points{a0
i } were the vertices, the

mid-points of sides, etc...

Type 2: ϕ1
i,k given by p 7→ Dp(a1

i )(ξ1
i,k). For instance, in the Hermite

triangle of type (3) (cf. Example 4.6), we hada1
i = ai , ξ1

i,k = ai−ak,
wherea1, a2, a3 were the vertices.

Type 3: ϕ2
i,kl given by p 7→ D2p(a2

i )(ξ2
i,k, ξ

2
i,l). For example, in the 18-

degree-of-freedom triangle,a2
i = ai , ξ2

i,k = e1 = ξ
2
i,1, the unit vec-

tor in thex1-direction so that we haveD2p(ai )(e1, e1) =
∂2p

∂x2
1

(ai)

as a degree of freedom. (cf. Exercise 4.7).

In all these cases the points{as
i } for s = 0, 1 and 2, are points ofK

and are called thenodes of the finite element.

Definition 5.2. A finite element is called a Lagrange finite element if its
degrees of freedom are only of Type 1. Otherwise it is called aHermite
finite element. (cf. Remark 4.2)

Let (K,Σ,P) be a finite element andv : K → R be a “smooth”
function onK. Then by virtue of theP-unisolvency ofΣ, there exists a
unique element, say,πv ∈ P such thatϕi(πv) = ϕi(v) for all 1 ≤ i ≤ N,
whereΣ = {ϕi}Ni=1. The functionπv is called theP-interpolate function
of v and the operatorπ : C∞(K) → P is called theP-interpolation
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operator. If{p j}Nj=1 is a basis forP satisfyingϕi(p j) = δi j for 1 ≤ i,
j ≤ N then we have the explicit expression

(5.3) π(·) =
N∑

i=1

ϕi(·)pi .

Example 5.1.In the triangle of type (1) (see Example 4.1),P = P1,
Σ = {ϕi;ϕi(p) = p(ai ), 1 ≤ i ≤ 3} andpi = λi , the barycentric coordinate54

functions. Thus we also have

(5.4) πv =
3∑

i=1

v(ai )λi .

Exercise 5.1.Let K be a triangle with verticesa1, a2 anda3. Let ai j (i <
j) be the mid-point of the side joiningai anda j . DefineΣK = {p 7→
p(ai j ), 1 ≤ i ≤ j ≤ 3}. Show thatΣ is P1-unisolvent and that in general
Vh 1 C0(Ω) for a triangulation made up of such finite elements.

Exercise 5.2.Let K be a rectangle inR2 with verticesa1, a2, a3, a4. Let
a5, a6, a7, a8 be the midpoints of the sides as in Fig. 4.5. IfΣ = {p 7→
p(ai), 5 ≤ i ≤ 8}, show thatΣ is notQ1-unisolvent.

Let us now consider afamily of finite elements of a given type. To
be more specific, we will consider for instance a family of triangles of
type (2) (see Example 4.2), but our subsequent descriptionsextend to all
types of finite elements in all dimensions.

Pick, in particular, a trianglêK with vertices{â1, â2, â3} from this
family. Let the mid-points of the sides be{â12, â23, â13}. SetP̂ = PK̂ =

P2 and define accordingly the associated set of degrees of freedom for
K̂ as

∑̂
=

∑

K̂

= {p 7→ p(âi ), 1 ≤ i ≤ 3; p 7→ p(âi j ), 1 ≤ i < j ≤ 3}.

In as much as we consider the finite element (K̂, Σ̂, P̂) as fixed in the
sequel, it will be called thereference finite elementof the family.

Given any finite elementK with verticesa1, a2, a3 in this family,
there exists a unique invertible affine transformation ofR2 i.e. of the
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form FK(x̂) = BK x̂ + bK , whereBK is an invertible 2× 2 matrix and
bK ∈ R2, such thatFK(K̂) = K and FK(âi) = ai , 1 ≤ i ≤ 3. It is55

easily verified thatFK(âi j ) = ai j for 1 ≤ i < j ≤ 3. Also, the space
{p : K → R; p = p̂ ◦ F−1

K , p̂ ∈ P̂} is precisely the spacePK = P2. Hence
the family {(K,Σ,P)} is equivalently defined by means of the following
data:

(i) A reference finite element (̂K, Σ̂, P̂),

(ii) A family of affine mappings{FK} such thatFK(K̂) = K, ai =

FK(âi ),

1 ≤ i ≤ 3, ai j = FK(âi j ), 1 ≤ i < j ≤ 3, and

ΣK = {p 7→ p(FK(âi)); p 7→ p(FK(âi j ))},
PK = {p : K → R; p = p̂ ◦ F−1

K , p̂ ∈ P̂}.

This special case leads to the following general definition.

Definition 5.3. Two finite elements (̂K, Σ̂, P̂) and (K,Σ,P) are affine
equivalent if there exists an affine transformationF onRn such that

(i) F(x̂) = Bx̂+ b, b ∈ Rn, B an invertiblen× n matrix,

(ii) K = F(K̂),

(iii) as
i = F(âs

i ), s= 0, 1, 2,

(iv) ξ1
i,k = Bξ̂1

i,k, ξ
2
i,k = Bξ̂2

i,k, ξ
2
i,l = Bξ̂2

i,l′

and

(v) P{p : K 7→ R; p = p̂ ◦ F−1, p̂ ∈ P̂}.

This leads to the next definition.

Definition 5.4. A family {(K,ΣK ,PK)} of finite elements is called an
affine family if all the finite elements (K,ΣK ,PK) are equivalent to a
single reference finite element (K̂, Σ̂, P̂).
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Let us see why the relations given by (iv) must be precisely ofthat56

form. We have by (v),p(x) = p̂(x̂). This must be valid when we use the
basis functions as well. We have:

p̂(x̂) =
∑

i

p̂(â0
i )p̂0

i (x̂) +
∑

i,k

Dp̂(â1
i )(ξ̂1

i,k)p̂
1
i,k(x̂)

+

∑

i,k,l

D2 p̂(â2
i )(ξ̂2

i,k, ξ̂
2
i,l)p̂

2
i,kl(x̂).

Now Dp̂(â1
i )(ξ̂1

i,k) = Dp(a1
i )Bξ̂1

i,k by a simple application of the chain
rule and therefore

Dp̂(â1
i )(ξ̂1

i,k) = Dp(a1
i )ξ1

i,k, by (iv).

By a similar treatment of the second derivative term, we get

p̂(x̂) =
∑

i

p(a0
i )p0

i (x) +
∑

i,k

Dp(a1
i )(ξ1

i )(ξ1
i,k)pi,k(x)

+

∑

i,k,l

D2p(a2
i )(ξ2

ik, ξ
2
il )pikl (x) = p(x).

Thus the relations (iv) and (v) are compatible.

Theorem 5.1. Let (K,Σ,P) and (K̂, Σ̂, P̂) be affine equivalent with FK
as theaffine transformation. Ifv : K → R induces ˆv : K̂ → R by
v̂(x̂) = v(x) for x̂ ∈ K̂, (x = FK(x̂)), thenπ̂v = π̂v̂.

Proof. Let Σ̂ = {ϕ̂i}Ni=1,Σ = {ϕi}Ni=1. By definition,

ϕ̂i(π̂v) = ϕi(πv) = ϕi(v), 1 ≤ i ≤ N. ϕ̂i(π̂v̂) = ϕ̂i(v̂) = ϕi(v), 1 ≤ i ≤ N.

Thus,ϕ̂i(π̂v̂) = ϕ̂i(π̂v) for 1 ≤ i ≤ N. Hence ˆπv̂ = π̂v by uniqueness
of the functionπ̂v̂. � 57

Let us consider a polygonal domainΩ with a triangulationth. Sup-
pose to eachK ∈ th is associated a finite element, (K,ΣK ,PK), ΣK being
the set of degrees of freedom, andPK the finite dimensional space such
thatΣK is PK-unisolvent. Then we have defined the interpolation opera-
tor πK . All these make senselocally i.e. at a particular finite elementK.
We now define theglobal counterparts of these terms. The comparison
is given in the following table.
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Table 5.1.

Local definition Global definition

1. Finite elementK. 1. The setΩ =
⋃

K=tn
K

2. The boundary ofK, ∂K. 2. The boundary ofΩ, ∂Ω = Γ.

3. The spacePK of functions
K → R, which is finite-
dimensional.

3. The spaceVh of functions
Ω → R, which is also finite-
dimensional.

4. The set
∑

K = {ϕi,K}Ni=1 of
degrees of freedom ofK.

4. The set of degrees of free-
dom

∑
h = {ϕi}Ni=1, where

ϕi(p|K) = ϕi,K(p|K).

5. Basis functions ofPK are
{pi,K }Ni=1.

5. Basis function ofVh are{w j}.

6. The nodes of K are
{a0

i , a
1
i , a

2
i , . . .}.

6. The nodes ofth are by def-
inition,

⋃
K∈th
{Nodes ofK} =

∪{b j } say.

7. πK is the PK-interpolation
operator, defined by
ϕi,K(πKv) = ϕi,K(v), for all
ϕi,K ∈

∑
K.

7. The Vh interpolation opera-
tor πh is defined byπhv ∈
Vh such that,ϕi,K(πhv|K) =
ϕi,K(v|K) for all ϕi,K ∈

∑
K .

58
Notice that, by definition,

(5.5) (πhv)|K = πK(v|K) for all K ∈ th.

It is this property and the conclusion of theorem 5.1 that will be
essential in our future error analysis.

Definition 5.5. We say thata finite element of a given type is of class
C0, resp. of class C1, if, whenever it is the generic finite element of a
triangulation, the associated spaceVh satisfies the inclusionVh ⊂ C0(Ω),
resp.Vh ⊂ C1(Ω). By extension, atriangulation is of class C0, resp.of
class C1 if it is made up of finite elements of classC0, resp. of classC1.

Reference:A forthcoming book of Ciarlet and Raviart [5].



Chapter 6

Interpolation Theory in
Sobolev Spaces

WE OUTLINED THE internal approximation method in Sec. 3. We are 59

naturally interested in the convergence of the solutionsuh ∈ Vh to the
global solutionu ∈ V. As a key step in this analysis we obtained the
error estimate (cf. Theorem 3.1):

(6.1) ||u− uh|| ≤ C inf
vh∈Vh

||u− vh||.

To be more specific let us consider an example. GivenΩ ⊂ R2 a
polygon, consider the solution of the following problem, which is there-
fore posed in the spaceV = H1

0(Ω):

(6.2)


−∆u+ au= f in Ω,

u = 0 on Γ.

Let th be a triangulation ofΩ by triangles of type (1), (2) or (3).
Thenuh ∈ Vh ⊂ H1

0(Ω) and (6.1) reads as

(6.3) ||u− uh||1,Ω ≤ C inf
vh∈Vh

||u− vh||1,Ω.

We know ‘a priori’ thatu ∈ H1
0(Ω). Let us assume for the moment

that u ∈ C0(Ω). (Such assumptions are made possible by the various

59
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regularity theorems. For instance,u ∈ H2(Ω) ⊂ C0(Ω) if f ∈ L2(Ω)
andΩ is a convex polygon). Ifu ∈ C0(Ω), then we may define the
Vh-interpolate ofu, i.e.,πhu by πhu(b j ) = u(b j ) for the nodesb j of the
triangulation. Note also thatπhu|K = πKu (cf. (5.5)). Now from (6.3)
we get,

||u− uh||1,Ω ≤ C||u− πhu||1,Ω

= C


∑

K∈th
||u− πhu||21,K



1
2

= C


∑

K∈th
||u− πKu||21,K



1
2

60

Thus the problem of estimating||u−uh||1,Ω is reduced to the problem
of estimating||u− πKu||1,K . This is one central problem in the finite ele-
ment method and motivates the study of interpolation theoryin Sobolev
spaces.

We consider more general types of Sobolev spaces for they areno
more complicated for this purpose than those defined in Sec. 2.

Definition 6.1. Let m ≥ 0 be an integer, and 1≤ p ≤ +∞. Then the
Sobolev spaceWm,p(Ω) for Ω ⊂ Rn, open, is defined by

Wm,p(Ω) = {v ∈ Lp(Ω); ∂αv ∈ Lp(Ω) for all |α| ≤ m}.

Remark 6.1.Hm(Ω) =Wm,2(Ω).

On the spaceWm,p(Ω) we define a norm|| · ||m,p,Ω by

(6.4) ||v||m,p,Ω =

∫

Ω

∑

|α|≤m

|∂αv|pdx


1/p

and the semi-norm| · |m,p,Ω by

(6.5) |v|m,p,Ω =

∫

Ω

∑

|α|=m|
|∂αv|pdx


1/p
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If k ≥ 1 is an integer, consider the spaceWk+1,p(Ω)/Pk. If v̇ stands
for the equivalence class ofv ∈Wk+1,p(Ω) we may define the analogues
of (6.4) and (6.5) respectively by

(6.6) ||v̇||k+1,p,Ω = inf
p∈Pk

||v+ p||k+1,p,Ω

and 61

(6.7) |v̇|k+1,p,Ω = |v|k+1,p,Ω.

These are obviously well-defined and|| · ||k+1,p,Ω defines the quotient
norm on the quotient space above. We then have the following key
result, whose proof may be found in Nečas [20] for instance.

Theorem 6.1. In Wk+1,p(Ω)/Pk, the semi-norm|v̇|k+1,p,Ω is a norm
equivalent to the quotient norm||v̇||k+1,p,Ω, i.e., there exists a constant
C = C(Ω) such that for allv̇ ∈Wk+1,p(Ω)/Pk

(6.8) |v̇|k+1,p,Ω ≤ ||v̇||k+1,p,Ω ≤ C|v̇|k+1,p,Ω.

Equivalently, we may state

Theorem 6.2. There exists a constant C= C(Ω) such that for each
v ∈Wk+1,p(Ω)

(6.9) inf.
p∈Pk

||v+ p||k+1,p,Ω ≤ C|v|k+1,p,Ω.

(Note: This result holds ifΩ has a continuous boundary and if it is
bounded so thatPk ⊂Wk+1,p(Ω).)

We now prove the following

Theorem 6.3. Let Wk+1,p(Ω) and Wm,q(Ω) be such that Wk+1,p(Ω) ֒→
Wm,q(Ω) (continuous injection). Letπ ∈ L (Wk+1, ρ(Ω),Wm,q(Ω)), i.e.
a continuous linear map, such that for each p∈ Pk, πp = p. Then there
exists C= C(Ω) such that for each v∈Wk+1,p(Ω)

|v− πv|m,q,Ω ≤ C||I − π||L (Wk+1,P(Ω),Wm,q(Ω))|v|k+1,p,Ω

62
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Proof. For eachv ∈Wk+1,p(Ω) and for eachp ∈ Pk, we can write

v− πv = (I − π)(v+ p).

Thus,

|v− πv|m,q,Ω ≤ ||v− πv||m,q,Ω
= ||I − π||L (Wk+1,p(Ω),Wm,q(Ω))||v+ p||k+1,p,Ω,

for all p ∈ PK . Hence,

|v− πv|m,q,Ω ≤ ||I − π||L (Wk+1,p(Ω),Wm,q(Ω)) inf
p∈Pk

||v+ p||k+1,p,Ω

≤ |C||I − π||L (Wk+1,p(Ω),Wm,q(Ω))|v|k+1,p,Ω

By theorem 6.2, this completes the proof. �

Definition 6.2. Two open subsetsΩ, Ω̂ of Rn are said to be affine equiv-
alent if there exists an invertible affine mapF mappingx̂ to Bx̂+b, B an
invertible (n× n) matrix andb ∈ Rn, such thatF(Ω̂) = Ω.

If Ω, Ω̂ are affine equivalent, then we have a bijection between their
points given by ˆx↔ x = F(x̂). Also we have bijections between smooth
functions onΩ andΩ̂ defined by (v : Ω → R) ↔ (v̂ : Ω̂ → R) where
v(x) = v̂(x̂).

The following theorem gives estimates of|v|m,p,Ω and |v̂|m,p,Ω̂ each
in terms of the other.

Theorem 6.4. Let Ω, Ω̂ ⊂ Rn be affine equivalent. Then there exist63

constants C,̂C such that for all v∈Wm,p(Ω)

(6.11) |v̂|m,p,Ω̂ ≤ C||B||m||detB|−1/p|v|m,p,Ω

and for all v̂ ∈Wm,p(Ω̂)

(6.12) |v|m,p,Ω ≤ C||B−1||m|detB|1/p|v̂|m,p,Ω̂.

Note:
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(i) It suffices to prove either (6.11) or (6.12). We get the other by
merely interchanging the roles ofΩ and Ω̂. We will prove the
former.

(ii) ||B|| is the usual norm of the linear transformation defined byB,

viz. ||B|| = sup
x∈Rn

x,0

||Bx||
||x||

. (Recall thatF(Ω̂) = Ω, F(x̂) = Bx̂+ b).

Proof. Let {e1, . . . , en} be the standard basis forRn. Let α be a multi-
index with |α| = m. By choosing a suitable collection{e1α, . . . , emα}
with appropriate number of repetitions from the basis, we may write,

(∂αv̂)(x̂) = (Dmv̂)(x̂)(e1α, . . . , emα),

whereDmv̂ is themth order Fréchet derivative of ˆv andDmv̂(x̂) is conse-
quently anm-linear form onRn. Thus,

|∂αv̂(x̂)| ≤ ||Dmv̂(x̂)|| = sup
||ξi ||=1
1≤i≤m

|Dmv̂(x̂)(ξ1, . . . , ξm)|.

Since this is true for all|α| = m, we get

(6.13) |v̂|m,p,Ω̂ ≤ C1

(∫

Ω̂

||Dmv̂(x̂)||pdx̂

)1/p

≤ C2|v̂|m,p,Ω̂.

The first inequality is a consequence of our preceding argument.
The second follows by a straightforward argument. By composition of
functions in differentiation:

(6.14) Dmv̂(x̂)(ξ1, . . . , ξm) = Dmv(x)(Bξ1, . . . , Bξm);

This gives 64

(6.15) ||Dmv̂(x̂)|| ≤ ||Dmv(x)|| ||B||m.

Hence the first inequality in (6.13) may be rewritten as

|v̂|p
m,p,Ω̂

≤ Cp
1 ||B||

mp
∫

Ω̂

||Dmv(F(x̂))||pdx̂
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= Cp
1 ||B||

mp|detB|−1
∫

Ω

||Dmv(x)||pdx

≤ Cp||B||mp|detB|−1|v|m,p,Ω.

by an inequality similar to the second inequality of (6.13).Raising to
power 1/p on either side we get (6.11). This completes the proof.�

We now estimate the norms||B|| and||B−1|| in terms of the ‘sizes’ of
Ω andΩ̂. More precisely, ifh, (resp.ĥ) the supremum of the diameters
of all balls that can be inscribed inΩ, (resp.Ω̂), we have the following:

Theorem 6.5. ||B|| ≤ h/ρ̂, and ||B−1|| ≤ ĥ/ρ.

Proof. Again it suffices to establish one of these. Now,

||B|| = sup
||ξ||=ρ̂

(
1
ρ̂
||Bξ||

)
.

Let ξ ∈ Rn with ||ξ|| = ρ̂. Choose ˆy, ẑ ∈ Ω̂ such thatξ = ŷ− ẑ. Then
Bξ = Bŷ− Bẑ= y− z, whereF(ŷ) = y, F(ẑ) = z. But y, z ∈ Ω and hence
||y − z|| ≤ h. Thus ||Bξ|| ≤ h. Hence||B|| ≤ h/ρ̂, which completes the
proof. �

We conclude this section with animportant, often used, result.

Theorem 6.6. Let (K̂, Σ̂, P̂) be a finite element. Let s(= 0, 1 or 2) be
the maximal order of derivatives occurring inΣ̂. Assume that:

(i) Wk+1,p(K̂) ֒→ Cs(K̂)65

(ii) Wk+1,p(K̂) ֒→Wm,q(K̂)

(iii) P k ⊂ P̂ ⊂Wm,q(K̂)

Then there exists a constant C= C(K̂, Σ̂, P̂) such that for all affine
equivalent finite elements(K,Σ,P) we have

(6.16) |v− πKv|m,q,K ≤ C(meas K)
1
q−

1
p
hk+1

K

ρm
K

|v|k+1,p,K

for all v ∈ Wk+1,p(K), where hK is the diameter of K andρK is the
supremum of diameters of all balls inscribed in K.
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Proof. SincePk ⊂ P̂, for any polynomialp ∈ Pk we have ˆπp = p. We
may write

π̂v̂ =
∑

i

v̂(â0
i )p̂0

i +

∑

i,k

(Dv̂(â1
i )(ξ̂1

i,k))p̂
1
i,k

= +

∑

i,k,l

(D2v̂(â2
i )(ξ̂2

i,k, ξ̂
2
i,l))p̂

2
i,k,l ,

.(6.17)

all these sums being finite (the second and third may or may notbe
present). We claim that ˆπ ∈ L (Wk+1, p(K̂),Wm,q(K̂)). Since P̂ ⊂
Wm,q(K̂) all the basis functions in (6.17) are inWm,q(K̂). Thus,

||π̂v̂||m,q,K̂ ≤
∑

i

|v̂(â0
i )| ||p̂0

i ||m,q,K̂

+

∑

i,k

|Dv̂(â1
i )(ξ1

i,k)| ||p̂
1
ik ||m,q,K̂

+

∑

i,k,l

|D2v̂(â2
i )(ξ̂2

i,k, ξ̂
2
i,l)| ||p̂

2
ikl ||m,q,K̂

(6.18)

SinceWk+l,p(K̂) ֒→ Cs(K̂) and all the numbers ˆv(â0
i ), etc. . . , are

bounded by their essential supremum overK̂,

||π̂v̂||m,q,K̂ ≤ C||v̂||k+1,p,K̂ .
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Hence the claim is valid. Now by virtue of (ii) and also our obser-
vation on preservation of polynomials, we may apply theorem6.3 to π̂.
Hence there existsC = C(K̂, Σ̂, P̂) such that

|v̂− π̂v̂|m,q,K̂ ≤ C|v̂|k+1,p,K̂ for v̂ ∈Wk+1,p(K̂).

Notice thatπ̂v̂ = π̂Kv by Theorem 5.1. Thus ˆv− π̂v̂ = ̂v− πKv. Thus
if FK(K̂) = K whereFK(x̂) = BK x̂+ bK , we get

(6.19) |v− πKv|m,q,K ≤ C1||B−1
K ||

m|detBK |1/q|v̂− π̂v̂|m,q,K̂ ,

by Theorem 6.4. Also by the same theorem

(6.20) |v̂|k+1,p,K̂ ≤ C2||BK ||k+1|detBK |−1/p|v|k+l,p,K .
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Further|detBK | being the Jacobian of the transformation, we have

|detBK | =
measK

measK̂
and ||BK || ≤

hK

ρ̂
, ||B−1

K || ≤ ĥ/ρK by theorem 6.5.

Sinceĥ, ρ̂, measK̂ are constants, combining (6.19), (6.20) and the pre-
ceding observation we complete the proof of the theorem. �

References:See Bramble and Hilbert [28], Bramble and Zlq́mal [2],
Ciarlet and Raviart [7], Ciarlet and Wagschal [8], Strang [21], Ženišek
[23, 24] and Zlámal [25, 32].



Chapter 7

Applications to
Second-Order Problems
Over Polygonal Domains

WE APPLY THE results of the preceding section in studying theconver- 67

gence of the finite element method, i.e. the convergence of the solutions
uh of (Ph) to the solutionu of a problem (P) which corresponds to the
choiceV = H1(Ω) or H1

0(Ω), which we saw in Sec. 2 led to second-order
problems.

LetΩ be a polygonal domain throughout.

Definition 7.1. A family (th) of triangulations ofΩ is regular is

(i) for all th and for eachK ∈ th, the finite elements (K,Σ,P) are
all affine equivalent to a single finite element, (K̂, Σ̂, P̂) called the
reference finite element of the family;

(ii) there exists a constantσ such that for allth and for eachK ∈ th
we have

(7.1)
hK

ρK
≤ σ

wherehK , ρK are as in Theorem 6.6;

67
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(iii) for a given triangulationth if

(7.2) h = max
K∈th

hK ,

thenh→ 0.

Remark 7.1.The condition (ii) in definition 7.1 assures us that ash→ 0
the triangles do not become “flat”; cf. Exercise 7.1.

Exercise 7.1.If n = 2 and the setsK are triangles, show that condition
(ii) of definition 7.1 is valid if and only if there existsθ0 > 0 such that
for all th andK ∈ th, θK ≥ θ0 > 0, θK being the smallest angle inK.68

Exercise 7.2.Consider the spaceVh associate withth. SinceVh is finite
dimensional all norms are equivalent and hence

|vh|0,∞,Ω ≤ Ch|vh|0,Ω for all vh ∈ Vh,

for some constantCh, a priori dependent uponh, which we may evaluate
as follows: If (th) is a regular familyof triangulations, show that there
exists a constantC, independent ofh, such that

(7.3) |vh|0,∞,Ω ≤
C

hn/2
|vh|0,Ω for vh ∈ Vh.

Also show that there exists a constantC such that

(7.4) |vh|1,Ω ≤
C
h
|vh|0,Ω for all vh ∈ Vh.

We now obtain an estimate for the error||u− uh||1,Ω when the family
of triangulations is regular, which also gives convergence.

Theorem 7.1. Let (th) be a regular family of triangulations onΩ of
class C0 (i.e. Vh ⊂ C0(Ω)) with reference finite element(K̂, Σ̂, P̂). We
assume that there exists an integer k≥ 1 such that

(i) PK ⊂ P̂ ⊂ H1(K̂)

(ii) Hk+1(K̂) ֒→ Cs(K̂) where s(= 0, 1, or 2) is the maximal order of
derivatives in

∑̂
.
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(iii) u ∈ Hk+1(Ω) (Regularity assumption).

Then there exists a constant C (independent of Vh) such that

(7.5) ||u− uh||1,Ω ≤ Chk|u|k+1,Ω.

Proof. SinceVh ⊂ C0(Ω), PK ⊂ H1(K), we haveVh ⊂ V. By (ii) and 69

(iii) of the hypothesis we have that theVh-interpolate ofu, viz. πhu is
well-defined. Sinceπhu ∈ Vh, by our fundamental result (see Theo-
rem 3.1 or relation (6.1)), it suffices to estimate||u− πhu||1,Ω. Now,

Hk+1(K̂) ֒→ Cs(K̂),

Hk+1(K̂) ֒→ H1(K̂) (k ≥ 1),

Pk ⊂ P ⊂ H1(K̂),

and we may apply Theorem 6.6 withp = q = 2, m= 1 to get

|u− πKu|1,K ≤ C|u|k+1,K
hk+1

K

ρK

≤ C|u|k+1,Khk
K (Since

hK

ρK
≤ σ).

(7.6)

Similarly with m= 0 we get

(7.7) |u− πKu|0,K ≤ C|u|k+1,Khk+1
K .

These together give

(7.8) ||u− πKu||1,K ≤ Chk
K |u|k+1,K .

Now sincehK ≤ h,

||u− πhu||1,Ω =

∑

K∈th
||u− πKu||21,K



1
2

≤ C hk


∑

K∈th
|u|2k+1,K



1
2

= C hK |u|k+1,Ω.

This completes the proof. �
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Example 7.1.Consider triangulations by triangles of type (1). Then70

k = 1, P̂ = P1 and if n = 2 or 3, H2(K̂) ֒→ C0(K̂). If u ∈ H2(Ω),
Theorem 7.1 says that

||u− uh||1,Ω ≤ C h|u|2,Ω.

We conclude the analysis of convergence in the norm|| · ||1,Ω with
the following result.

Theorem 7.2. Let (th) be a regular family of triangulations ofΩ, of
class C0. Let s = 0 or 1 and let P1 ⊂ P̂ ⊂ H1(K̂). Then (with the
assumption that u∈ V = H1(Ω) or H1

0(Ω)) we have

(7.9) lim
h→0
||u− uh||1,Ω = 0

Proof. Let V = V ∩ W2,∞(Ω). Sinces ≤ 1, W2,∞(·) ֒→ Cs(·) and
W2,∞(·) ֒→ H1(·). The second inclusion follows ‘a fortiori’ from the
first with s = 1. Also, P1 ⊂ P̂ ⊂ H1(K̂). Thus we may apply Theorem
6.6 withk = 1, p = ∞, m= 1, q = 2. Then for allv ∈ V ,

||v− πKv||1,K ≤ C(measK)
1
2 h|v|2,∞,K

≤ C(measK)
1
2 h|v|2,∞,Ω.

Summing overK, we get

||v− πhv||1,Ω ≤ C h|v|2,∞,Ω


∑

K∈th
meas K



1
2

= C h|v|2,∞,Ω,

since
∑

K∈th measK = measΩ, a constant. Thus, for allv ∈ V ,

(7.10) lim
h→0
||v− πhv||1,Ω = 0

71

Notice thatV = V. Hence choosev0 ∈ V such that||u−v0||1,Ω ≤ ǫ/2
whereǫ > 0 is any preassigned quantity. Then oncev0 is chosen, by
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(7.10) chooseh0 such that for allh ≤ h0, ||v0 − πhv0||1,Ω ≤ ǫ/2. Now, by
(6.1)

||u− uh||1,Ω ≤ C||u− πhv0||1,Ω
≤ C

(||u− v0||1,Ω + ||v0 − πhv0||1,Ω
)

≤ Cǫ, for h ≤ h0.

This gives (7.9) and completes the proof. �

We now have, by Theorem 7.1,|u − uh|0,Ω ≤ ||u − uh||1,Ω = 0(hk).
We now show, by another argument that|u − uh|0,Ω = 0(hk+1), (at least
in some cases) there by giving a more rapid convergence than expected.
This is done by theAubin-Nitsche argument(also known as theduality
argument). We describe this in an abstract setting.

Let V be a normed space with norm denoted by|| · ||. Let H be a
Hilbert space with norm| · | and inner product (·, ·) such that

(7.11)


(i) V ֒→ H, and

(ii) V = H.

For second-order problems:V = H1(Ω) or H1
0(Ω) andH = L2(Ω).

SinceH is a Hilbert space, we may identify it with its dual. Further
sinceV is dense inH, we have thatH may be identified with a subspace
of V′, the dual ofV. For, if g ∈ H, defineg̃ ∈ V′ by g̃(v) = (g, v) · g̃ ∈ V′

since|g̃(v)| ≤ C|g| ||v||. If g̃(v) = 0 for all v ∈ V, then (g, v) = 0 for all
v ∈ H as well sinceV = H. Thusg = 0. This proves the identification.
In the sequel we will setg = g̃. 72

Recall thatu anduh are the solutions of the problems:

a(u, v) = f (v) for all v ∈ V,(P)

a(uh, vh) = f (vh) for all vh ∈ Vh ⊂ V,(Ph)

and that the assumptions on (P) are as in the Lax-Milgram lemma. Then
we have the following theorem.
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Theorem 7.3. Let the spaces H and V satisfy(7.11). Then with our
above mentioned notations,

(7.12) |u− uh| ≤ M||u− uh||
sup
g∈H

{
1
|g| inf

ϕh∈Vh

||ϕ − ϕh||
} ,

where for each g∈ H, ϕ ∈ V is the corresponding unique solution of the
problem

(P∗) a(v, ϕ) = (g, v) for all v ∈ V,

and M the constant occurring in the inequality giving continuity of
a(·, ·).

Remark 7.2.Note that unlike in (P), we solve for thesecondargument
of a(·, ·) in (P∗). This is called theadjoint problemof (P). The existence
and uniqueness of the solution of (P∗) are proved in an identical manner.
Note that ifa(·, ·) is symmetric, then (P) is self-adjointin the sense that
(P) = (P∗).

Proof. From the elementary theory of Hilbert spaces, we have

(7.13) |u− uh| = sup
g∈H
g,0

|(g, u− uh)|
|g| .

For a giveng ∈ H,

(7.14) (g, u− uh) = a(u− uh, ϕ)

Also if ϕh ∈ Vh we have,73

(7.15) a(u− uh, ϕh) = 0.

Thus (7.14) and (7.15) give

(7.16) (g, u− uh) = a(u− uh, ϕ − ϕh),

which gives us

|(g, u− uh)| ≤ M||u− uh|| ||ϕ − ϕh||,
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and hence

|u− uh| ≤ M||u− uh| sup
g∈H
g,0

(
||ϕ − ϕh||
|g|

)
.

by (7.13). Since this is true for anyϕh ∈ Vh we may take infimum over
Vh to get (7.12), which completes the proof. �

For dimensions≤ 3 and Lagrange finite elements we now show that
|u− uh|0,Ω = 0(hk+1). For this we need one more definition.

Definition 7.2. Let V = H1(Ω) or H1
0(Ω), H = L2(Ω). The adjoint

problem is said to be regular if the following hold:

(i) for all g ∈ L2(Ω), the solutionϕ of the adjoint problem forg
belongs toH2(Ω) ∩ V;

(ii) there exists a constantC such that for allg ∈ L2(Ω)

(7.17) ||ϕ||2,Ω ≤ C|g|0,Ω,

whereϕ is the solution of the adjoint problem forg.

Theorem 7.4. Let (th) be a regular family of triangulations onΩ with
reference finite element(K̂, Σ̂, P̂). Let s= 0 and n≤ 3. Suppose there
exists an integer k≥ 1 such that u∈ Hk+1(Ω), Pk ⊂ P̂ ⊂ H1(K̂). Assume 74

further that the adjoint problem is regular in the sense of Definition 7.2.
Then there exists a constant C independent of h such that

(7.18) |u− uh|0,Ω ≤ C hk+1|u|k+1,Ω.

Proof. Sincen ≤ 3, H2(·) ֒→ C0(·). Also, H2(·) ֒→ H1(·) andP1 ⊂ P̂ ⊂
H1(Ĥ). Thus forϕ ∈ H2(Ω), by Theorem 7.1,

||ϕ − πhϕ||1,Ω ≤ C h|ϕ|2,Ω.

Hence

(7.19) inf
ϕh∈Vh

||ϕ − ϕh||1,Ω ≤ C h|ϕ|2,Ω.
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By (7.12) and (7.19).

|u− uh|0,Ω ≤ M||u− uh||1,Ω sup
g∈L2(Ω)

(
1
|g|0,Ω

Ch|ϕ|2,Ω
)
.

By the regularity of (P∗),

(7.20)
|ϕ|2,Ω
|g|0,Ω

≤
||ϕ||2,Ω
|g|0,Ω

≤ constant.

Thus,|u− uh|0,Ω ≤ C h||u− uh||1,Ω

≤ C h(hk|u|k+1,Ω) (by theorem 7.1).

This gives (7.18) and completes the proof. �

We finally give an estimate for the error in theL∞-norm.

Theorem 7.5. Let (th) be a regular family of triangulations onΩ ⊂ Rn,
where n≤ 3. Assume further that for allth and K ∈ th.

(7.21) 0< τ ≤ hK

h
≤, f rm[o]−−, τ being a constant.

Let u ∈ H2(Ω) and P1 ⊂ P̂ ⊂ H1(K̂) ∩ L∞(K̂). If (P∗) is regular,75

then there exists a constant C independent of h such that

(7.22)


|u− uh|0,∞,Ω ≤ C h|u|2,Ω; if n = 2

|u− uh|0,∞,Ω ≤ C
√

h|u|2,Ω if n = 3.

Proof. Assumen = 2. Now

(7.23) |u− uh|0,∞,Ω ≤ |u− πhu|0,∞,Ω + |πhu− uh|0,∞,Ω.

Note that since (uh − πhu) ∈ Vh, we may apply Exercise 7.1 to get

(7.24) |uh − πhu|0,∞,Ω ≤
C
h
|uh − πhu|0,Ω.

Thus,

|uh − πhu|0,∞,Ω ≤
C
h

[
|uh − u|0,Ω + |u− πhu|0,Ω

]
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≤ C
h

[
C1h2|u|2,Ω +C2h2|u|2,Ω

]

≤ C h|u|2,Ω (by Theorem 7.4 and Theorem 6.6).

Also H2(·) ֒→ C0(·); H2(·) ֒→ L∞(·) andP1 ⊂ P̂ ⊂ L∞(K̂). Thus,
by Theorem 6.6 withk = 1, p = 2, m= 0, q = ∞,

|u− πKu|0,∞,K ≤ C(measK)−
1
2 h2|u|2,K .

Sincen = 2,

measK ≥ Cρ2
K ≥

C

σ2
h2

K ≥
Cτ2

σ2
h2

by (7.1), so that (measK)−
1
2 ≤ C h−1 and therefore,

|u− πKu|0,∞,K ≤ C h|u|2,K .

Hence we obtain (7.22) forn = 2 since

|u− πhu|0,∞,Ω = max
K∈th
|u− πKu|0,∞,K ≤ C h|u|2,Ω.

76

Forn = 3, the only variation in the proof occurs in the fact that

|uh − πhu|0,∞,Ω ≤
C

h3/2
|uh − πhu|0,Ω

as in Exercise 7.1 and that now

measK ≥ Cρ3
K ≥

C

σ3
· h3

K ≥
Cτ3

σ3
· h3.

This completes the proof. �

References: One may refer to Ciarlet and Raviart [6] for 0(h) conver-
gence in the norm| · |0,∞,Ω for any n. See also Bramble and Thomée
[1].





Chapter 8

Numerical Integration

LET US START with a specific problem. LetΩ be a polygonal domain77

in Rn. Consider the problem

(8.1)



−
n∑

i, j=1

∂
∂xi

(
ai j

∂u
∂xj

)
= f in Ω,

u = 0 on Γ = ∂Ω.

where the (ai j ) and f are functions overΩ which are smooth enough.
Let us further assume that there existsα > 0 such that, for allξ ∈ Rn,

(8.2)
n∑

i, j=1

ai j ξiξ j ≥ α
n∑

i=1

ξ2
i .

It has been seen earlier (cf. Remark 2.2) that the above problem (8.1)
is obtained from a problem (P) with a(·, ·) and f (·) being defined by

(8.3)


a(u, v) =

∫
Ω

∑n
i, j=1 ai j

∂u
∂xj

∂v
∂xi

dx

f (v) =
∫
Ω

f v dx

for u, v ∈ V = H1
0(Ω).

Approximating the solution by the finite element method, i.e. by
constructing a regular family of triangulations (th) with reference finite

77
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element (̂K, Σ̂, P̂), we get the problems (Ph), i.e., to finduh ∈ Vh such
that

(8.4) a(uh, vh) = f (vh), for all vh ∈ Vh.

If we choose a basis{wk}Mk=1 for Vh, then we may write

(8.5) uh =

M∑

k=1

ukwk.

Thus to solve (Ph) we have to solve the linear system

(8.6)
M∑

k=1

a(wk,wm)uk = f (wm), 1 ≤ m≤ M.

78

Notice that

a(wk,wm) =
∑

K∈th

∫

K

n∑

i, j=1

ai j
∂wk

∂x j

∂wm

∂xi
dx

f (wm) =
∑

K∈th

∫

K
f wmdx.

(8.7)

Thus we have ended up with the computations of integrals overK ∈
th. These are, in general, difficult or impossible to evaluate exactly and
one thus has to resort to numerical methods. We now study briefly how
this may be done.

Let us assumeFK(K̂) = K, where,FK(x̂) = BK x̂+bK , with detBK >

0. There is no loss in generality in the last assumption. Thenif ϕ is a
function overK, we have

(8.8)
∫

K
ϕ(x)dx= (detBK)

∫

K̂
ϕ̂(x̂)dx̂

the functionsϕ and ϕ̂ being in the usual correspondence. We then re-
place the expression in the right-hand side by the following:

(8.9)
∫

K̂
ϕ̂(x̂)d̂x∼

L∑

1=1

ω̂1ϕ̂(b̂1).
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In this section∼ will denote the right-hand side replacing the ex-
pression in the left hand side in similar relations). In (8.9) the quan-
tities ω̂1 are called theweightsand the pointŝb1 are called thenodes
of the quadrature scheme. While in general we may assume ˆω1 ∈ R
andb̂1 ∈ Rn, we will restrict ourselves to the most common case where
ω̂1 > 0 andb̂1 ∈ K̂, 1≤ l ≤ L.

We may now define theerror functionalÊ by

(8.10) Ê (ϕ̂) =
∫

K̂
ϕ̂(x̂)dx̂−

L∑

1=1

ω̂1ϕ̂(b̂1).

79

We will be interested in finding spaces ofpolynomialsfor which
Ê (ϕ̂) = 0, i.e., again we need “polynomial invariance”, an idea already
found in interpolation theory.The above quadrature scheme forK̂ in-
duces one on K as well since if we set

(8.11)


ω1,K = (detBK)ω̂1,

b1,k = FK(b̂1),

we then deduce the numerical quadrature scheme

(8.12)
∫

K
ϕ(x)dx∼

L∑

1=1

ω1,Kϕ(b1,K).

We shall therefore define the error functional

(8.13) EK(ϕ) =
∫

K
ϕ(x)dx−

L∑

l=1

ω1,Kϕ(b1,K).

Notice that the following relation holds:

(8.14) EK(ϕ) = (detBK)Ê (ϕ̂).

Example 8.1.ConsiderK̂ to be ann-simplex inRn. Let âbe its centroid.
Let ∫

K̂
ϕ̂(x̂)dx̂ ∼ (measK̂)ϕ̂(â).
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Exercise 8.1.Show thatE (ϕ̂) = 0 for ϕ̂ ∈ P1 in Example 8.1.

Example 8.2.Let K̂ be a triangle inR2. With the usual notations, set
∫

K̂
ϕ̂(x̂)dx̂ ∼ 1

3
(measK̂)

∑

1≤i< j≤3

ϕ̂(âi j ).

Exercise 8.2.Show thatÊ (ϕ̂) = 0 for ϕ̂ ∈ P2 in Example 8.2.80

Example 8.3.Let K̂ be as in Example 8.2. Let (cf. Fig. 8.1):

∫

K̂
ϕ̂(x̂)dx̂ ∼ 1

60
(measK̂)

3
3∑

i=1

ϕ̂(âi ) + 8
∑

1≤i< j≤3

ϕ̂(âi j ) + 27ϕ̂(â)

 .

Figure 8.1:

Exercise 8.3.Show thatÊ (ϕ̂) = 0 for ϕ̂ ∈ P3, in Example 8.3.

Let us now review the whole situation. We had the “original” ap-
proximation problem (Ph): To find uh ∈ Vh such thata(uh, vh) = f (vh)
for all vh ∈ Vh.

This led to the solution of the linear system (8.6). By virtueof the
quadrature scheme we arrive at a solution of a “modified” approximation
problem (P∗h): To solve the linear system

(8.15)
M∑

k=1

ah(wk,wm)u∗k = fh(wm), 1 ≤ m≤ M,
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where

(8.16)



ah(wk,wm) =
∑

K∈th

∑L
l=1ω1,K

(
n∑

i, j=1
ai j

∂wk
∂xj

∂wm
∂xi

(b1,K)

)

fh(wm) =
∑

K∈th

(
L∑

l=1
ω1,K( f wm)(b1,K)

)
.

While uh was given by (8.5) we now obtain

(8.17) u∗h =
M∑

k=1

u∗kwk.

Thus the problem(P∗h) (not to be confused with any adjoint prob-
lem!) consists in finding u∗h ∈ Vh such that, for all wh ∈ Vh, 81

(8.18) ah(u∗h,wh) = fh(wh)

where

(8.19)



ah(vh,wh) =
∑

K∈th

L∑
l=1
ω1,K

(
n∑

i, j=1
ai j

∂vh
∂xj

∂wh
∂xi

(b1,K)

)

fh(vh) =
∑

K∈th

L∑
l=1
ω1,K( f vh)(b1,K),

for vh, wh ∈ Vh.

Remark 8.1.The bilinear formah(·, ·) : Vh × Vh → R and the linear
form fh : Vh → R arenot defined overV in general. For instance if
V = H1

0(Ω)(n = 2) in one of the examples, then as they require point
values of the nodes, we see that they are not in general definedoverV.

Having obtained the approximate solutionu∗h by numerical integra-
tion, we are naturally interested in its efficacy. Thus we require to know
the error||u−u∗h||. We now carry out the error analysis, first in an abstract
setting.

Let us maintain our assumptions as in the Lax-Milgram lemma and
consider the problem (P). Then we have problems (P∗h) to findu∗h ∈ Vh ⊂
V such that for allvh ∈ Vh, ah(u∗h, vh) = fh(vh) where fh ∈ V′h andah(·, ·)
is a bilinear form onVh. Then we would like to answer the following
questions:
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(i) What are sufficient conditions such that (P∗h) have unique solu-
tions?

(ii) Can we find an abstract error estimate for||u− u∗h||?

(iii) If ||u−uh|| = 0(hk), i.e., without numerical quadrature, under what
conditions is this order of convergence preserved, i.e. when can
we say||u− u∗h|| = 0(hk)?

The assumption ofVh-ellipticity of the bilinear formsah(·, ·) answers82

the first question (by the Lax-Milgram lemma) and we will see in The-
orem 8.2 under which assumptions it is valid. The following theorem
answers the second question.

Theorem 8.1.Let the bilinear forms ah(·, ·) be Vh-elliptic uniformly with
respect to h, i.e., there exists a constantα̃ > 0, independent of h, such
that for all h and for all vh ∈ Vh,

(8.20) ah(vh, vh) ≥ α̃||vh||2.

Then the approximate problems(P∗h) all have unique solutions u∗h,
and further we have the estimate:

||u− u∗h|| ≤

≤ C

(
inf

vh∈Vh

{
||u− vh|| + sup

wh∈Vh

|a(vh,wh) − ah(vh,wh)|
||wh||

}
+ sup

wh∈Vh

| f (wh) − fh(wh)|
||wh||

)
.

(8.21)

Remark 8.2. If a = ah, f = fh then we get our original estimate (3.1).
Thus (8.21) generalizes our previous result.

Remark 8.3.The terms involvinga, ah and f , fh merely mean that ifu∗h
is to converge tou, thenah and fh must be “close to”a and f respec-
tively. Their convergence to 0 withh may be viewed as “consistency
conditions” which are so often found in Numerical Analysis.

Proof. The existence and uniqueness of theu∗h are obvious by the Lax-
Milgram lemma applied to theVh. Since, for allvh ∈ Vh, we have

ah(u∗h, u
∗
h − vh) = fh(u∗h − vh),
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a(u, u∗h − vh) = f (u∗h − vh),

we have the identity83

ah(u∗h − vh, u
∗
h − vh) = a(u− vh, u

∗
h − vh) + {a(vh, u

∗
h − vh)

− ah(vh, u
∗
h − vh)} + { fh(u∗h − vh) − f (u∗h − vh)}.(8.22)

Hence by (8.20) we get

α̃||u∗h − vh||2 ≤ M||u− vh|| ||u∗h − vh||
+ |a(vh, u

∗
h − vh) − ah(vh, u

∗
h − vh)|

+ | fh(u∗h − vh) − f (u∗h − vh)|.

Thus,

α̃||u∗h − vh|| ≤ M||u− vh|| +
|a(vh, u∗h − vh) − ah(vh, u∗h − vh)|

||u∗h − vh||

+
| fh(u∗h − vh) − f (u∗h − vh)|

||u∗h − vh||

≤ M||u− vh|| + sup
wh∈Vh

|a(vh,wh) − ah(vh,wh)|
||wh||

+ sup
wh∈Vh

| f (wh) − fh(wh)|
||wh||

since (u∗h − vh) ∈ Vh. Hence,

||u− u∗h|| ≤ ||u− vh|| + ||u∗h − vh||

≤
(
1+

M
α̃

)
||u− vh|| +

1
α̃

sup
wh∈Vh

|a(vh,wh) − ah(vh,wh)|
||wh||

+
1
α̃

sup
wh∈Vh

| f (wh) − fh(wh)|
||wh||

.

Varyingvh overVh and taking the infimum, and replacing (1+M/α̃), 84

(1/α̃) by a larger constantC, we get (8.21), which completes the proof.
�
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The following theorem tells us when the uniformVh-ellipticity as-
sumption of Theorem 8.1 is satisfied in the example we startedwith.

Theorem 8.2. Let ah(·, ·) and fh(·) be as in(8.19). Assume further that

(i) ω̂1 > 0, 1 ≤ l ≤ L, (ii) P̂ ⊂ Pk, and (iii)
L⋃

l=1
{b̂l} contains a Pk′−1

unisolvent subset. Then the ah(·, ·) are Vh-elliptic uniformly with respect
to h.

Proof. We must produce an ˜α > 0, free ofh, such thatah(vh, vh) ≥
α̃|vh|21,Ω for all vh ∈ Vh. We have

ah(vh, vh) =
∑

K∈th

L∑

l=1

ω1,K


n∑

i, j=1

ai j
∂vh

∂x j

∂vh

∂xi

 (bl,K)

≥ α
∑

K∈th

L∑

l=1

ωl,K


n∑

i=1

(
∂pK

∂xi
(bl.K)

)2

(8.23)

where pK = vh|K . The inequality (8.23) is a result of the ellipticity
condition (8.2) on the matrix (ai j ) and the fact thatωl,K > 0, sincẽω1 >

0 and we assumed without loss in generality that detBK > 0. Now let
p̂K(x̂) = pK(x), wherex = BK x̂+ bK . Let BK = (bi j ), so that

x j =

n∑

l=1

b jl x̂l + bK, j .

Then
∂p̂K

∂x̂i
=

n∑

j=1

∂pK(x)
∂x j

∂x j

∂x̂i
=

n∑

j=1

∂pK(x)
∂x j

b ji .

Thus is

D̂ =

(
∂p̂K(x̂)
∂x̂1

, . . . ,
∂p̂K(x̂)
∂x̂n

)
and D =

(
∂pK(x)
∂x1

, . . . ,
∂pK(x)
∂xn

)
,

we haveD̂ = DBK. Hence||D̂||2 ≤ ||D||2||BK ||2. Thus,

(8.24)
n∑

i=1

(
∂pK

∂xi
(bl,K)

)2

≥ ||BK ||−2
n∑

i=1

(
∂p̂K

∂x̂i
(b̂1)

)2

.
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85

Now suppose ˆp ∈ P̂ is such that

(8.25)
L∑

l=1

ω̂1

n∑

i=1

(
∂p̂
∂x̂i

(b̂1)

)2

= 0.

Then since ˆω1 > 0, we have
∂p̂
∂x̂i

(b̂l) = 0 for all 1≤ l ≤ L and 1≤ i ≤

n. SinceP̂ ⊂ Pk′ , we have
∂p̂
∂x̂i
∈ Pk′−1 and hence

∂p̂
∂x̂i
= 0 by thePk′−1-

unisolvency. Thus ˆp ∈ P0, and on the finite dimensional spaceP̂/P0

(in practice we always haveP0 ⊂ P̂) we have a norm defined by the
square-root of the left hand side of (8.25). By the finite dimensionality
this is equivalent to the norm defined by the| · |1,K̂ norm onP. Hence we
have a constant̂β > 0 such that

(8.26)
L∑

l=1

ω̂l

n∑

i=1

(
∂p̂
∂x̂i

(b̂l )

)2

≥ β̂|p̂|2
l,K̂
.

We will apply this top̂K . We also have

(8.27) |p̂K |2l,K ≥ C||B−1
K ||−2(detBK)−1|pK |2l,K ,

by Theorem 6.4. Combining the inequalities (8.23), (8.24),(8.26) and
(8.27), we get

ah(vh, vh) ≥ α
∑

K∈th

(detBK)||BK ||−2β̂C||B−1
K ||
−2(detBK)−1|pK |2l,K

= αβ̂C
∑

K∈th
(||BK || ||B−1

K ||)
−2|pK |2l,K

≥ αβ̂Cγ
∑

K∈th
|pK |2l,K

= αβ̂Cγ|vh|21,Ω = α̃|vh|2l,Ω

since (||BK || ||B−1
K ||)

−2 ≥ γ by Theorem 6.5. This proves the theorem.�
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Let us now review our Examples 8.1 through 8.3 to see if the condi- 86

tions of Theorem 8.2 are satisfied.
Let n = 2 and consider Example 8.1. Clearly ˆω = measK̂ > 0. Also

P̂ = P1 for triangles of type (1). Since
∑

K = {p(â)} is P0-unisolvent, we
have that for triangles of type (1) and the quadrature schemeof Example
8.1 the correspondingah(·, ·) areVh-elliptic uniformly with respect toh.

For triangles of type (2),̂P = P2. The weights ˆω1 are all> 0 in
Example 8.2. Further we saw in Exercise 5.1 that{âi j }1≤i< j≤3 is P1-
unisolvent. Hence Theorem 8.2 is valid for this quadrature scheme as
well.

For triangles of type (3), consider the quadrature scheme ofExam-
ple 8.3. We have ˆω1 > 0 andP̂ = P3. It was seen in Example 4.2 that
the set{ai ; 1 ≤ i ≤ 3} ∪ {ai j ; 1 ≤ i < j ≤ 3} is P2-unisolvent. Hence
the corresponding bilinear formsah(·, ·) areVh-elliptic uniformly with
respect toh.

Exercise 8.4.Let (H, | · |) be a Hilbert space andV a subspace with norm
|| · || such thatV ֒→ H and V = H cf. Sec. 7. Then with the usual
notations show that

|u− u∗h| ≤ sup
g∈H

{ 1
|g|

inf
ϕh∈Vh

(M||u− u∗h|| ||ϕ − ϕh|| + |a(u∗h, ϕh) − ah(u∗h, ϕh)|

+| f (ϕh) − fh(ϕh)|)
}

whereϕ is the solution of adjoint problem forg.

We now turn our attention to the evaluation of the bound for||u−u∗h||
given by (8.21). For second-order problems, for which the norm is || ·
||1,Ω, we will take as usual forvh ∈ Vh the elementπhu ∈ Vh so that we
now get the bound

||u− u∗h||1,Ω ≤ C

[
||u− πhu||1,Ω + sup

wh∈Vh

|a(πhu,wh) − ah(πhu,wh)|
||wh||1,Ω

+ sup
wh∈Vh

| f (wh) − fh(wh)|
||wh||1,Ω

]
.

(8.28)

Let us assume that we may apply Theorem 7.1, so that87
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(8.29) ||u− πhu||1,Ω ≤ C hk|u|k+1,Ω.

In order to keep the same accuracy, we will therefore try to obtain
estimates of the following form:

(8.30)



sup
wh∈Vh

|a(πhu,wh) − ah(πhu,wh)|
||wh||1,Ω

≤ C(u)hk,

sup
wh∈Vh

| f (wh) − fh(wh)|
||wh||1,Ω

≤ C( f )hk,

and these will in turn be obtained from “local” estimates. (cf. Theo-
rem 8.4 and Exercise 8.5).

As a preliminary step, we need two results which we prove now.
The first of these is a historically important result in the interpolation

theory in Sobolev spaces.

Theorem 8.3 (BRAMBLE-HILBERT LEMMA; cf. Bramble and
Hilbert [27]). Let Ω ⊂ Rn be open with Lipschitz continuous bound-
ary Γ. Let f ∈ Wk+1,p(Ω)) which vanishes over Pk. Then there exists a
constant C= C(Ω) such that, for all v∈Wk+1,p(Ω),

(8.31) | f (v)| ≤ C|| f ||∗k+1,p,Ω |v|k+1,p,Ω.

Proof. Forv ∈Wk+1,p(Ω) and allp ∈ Pk, we have

f (v) = f (v+ p),

so that
| f (v)| = | f (v+ p)| ≤ || f ||∗k+1,p,Ω ||v+ p||k+1,p,Ω,

and thus, 88

| f (v)| ≤ || f ||∗k+1,p,Ω inf
p∈Pk

||v+ p||k+1,p,Ω

≤ C|| f ||∗k+1,p,Ω|v|k+1,p,Ω,

by Theorem 6.2, which completes the proof. �
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Lemma 8.1. Letϕ ∈Wm,q(Ω), w ∈Wm,∞(Ω). Thenϕw ∈Wm,q(Ω), and
there exists a numerical constant C, independent ofϕ and w such that

(8.32) |ϕw|m,q,Ω ≤ C
M∑

j=0

|ϕ|m− j,q,Ω|w| j,∞,Ω.

Proof. The result is an immediate consequence of the Leibniz formula:
For any|α| = m,

∂α(ϕw) =
m∑

j=0

∑

|β|= j

Cα,β∂
α−β(ϕ)∂β(w)

which yields (8.32). �

We may now apply Lemma 8.1 and Theorem 8.3 to get the estimates
(8.30). We do this in two stages (Theorem 8.4 and Exercise 8.5) in
which, for the sake of simplicity, we present our results forthe special
casePK = P2.

Theorem 8.4.Let PK = P2 and consider a quadrature scheme such that
for all ϕ̂ ∈ P2, ξ̂(ϕ̂) = 0. Then there exists a constant C, independent of
K, such that for all ai j ∈W2,∞(K) and for all p, p′ ∈ PK we have

(8.33) |EK

[
(ai j )

∂p
∂x j

∂p′

∂xi

]
| ≤ C h2

K ||ai j ||2,∞,K ||
∂p
∂x j
||1,K |

∂p′

∂xi
|0,K .

Proof. Since we have
∂p
∂x j

,
∂p′

∂xi
∈ P1, it suffices to find a suitable esti-

mate forEK(avw), for a ∈W2,∞(K), v, w ∈ P1. Further, since

(8.34) EK(avw) = (detBK)Ê (âv̂ŵ),

we will first find an estimate forÊ (âv̂ŵ), with â ∈ W2,∞(K̂) and v̂,89

ŵ ∈ P1. Let π̂0ŵ be the orthogonal projection of ˆw onto the subspaceP0

in the sense ofL2(K̂). Then we may write

(8.35) Ê (âv̂ŵ) = Ê (âv̂π̂0ŵ) + Ê (âv̂(ŵ− π̂0ŵ)).
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(i) Estimate forÊ (âv̂π̂0ŵ).

Consider the functional̂E : W2,∞(K̂)→ R defined by

ψ̂ 7→ Ê (ψ̂) =
∫

K̂
ψ̂(x̂)dx̂ =

L∑

l=1

ω̂1ψ̂(b̂1).

|Ê (ψ̂)| ≤ Ĉ|ψ̂|0,∞,K̂ ≤ Ĉ||ψ̂||2,∞,K̂. Thus Ê is a continuous linear func-

tional onW2,∞(K̂). Hence by Theorem 8.3, sincêE vanishes onP1(⊂
P2)1, we have a constant̂C such that

(8.36) |Ê (ψ̂)| ≤ Ĉ|ψ̂|2,∞,K̂.

Thus

|Ê (âv̂π̂0ŵ)| ≤ Ĉ|âv̂π̂0ŵ|2,∞,K̂
≤ Ĉ|âv̂|2,∞,K̂ |π̂0ŵ|0,∞,K̂

sinceπ̂0ŵ ∈ P0 is a constant function. By Lemma 8.1 (recall that ˆv ∈
P1),

|Ê (âv̂π̂0ŵ)| ≤ Ĉ|π̂0ŵ|0,∞,K̂
[
|â|1,∞,K̂ |v̂|1,∞,K̂ + |â|2,∞,K̂ |v̂|0,∞,K̂

]
.

By the equivalence of theL2 and L∞ norms onP0, and since the
projection has norm less than that of the vector itself in anyHilbert
space we have the chain of inequalities

|π̂0ŵ|0,∞,K̂ ≤ Ĉ|π̂0ŵ|0,K̂ ≤ Ĉ|ŵ|0,K̂ .

90

Similarly we may replace|v̂|1,∞,K̂ by |v̂|1,K̂ and|v̂|0,∞,K̂ by |v̂|0,K̂ since
theL2 andL∞ norms are equivalent onP1. Thus we get

(8.37) |Ê (âv̂π̂0ŵ)| ≤ Ĉ(|â|1,∞,K̂ |v̂|1,K̂ + |â|2,∞,K̂ |v̂|0,K̂)|ŵ|0,K̂ .

1In this estimate, we do not use the “full” polynomial invariance of the quadrature
scheme.
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(ii) Estimate forÊ (âv̂(ŵ− π̂0ŵ)).

Let ŵ ∈ P1 be fixed and let ˆϕ ∈W2,∞(K̂). Then

|Ê (ϕ̂(ŵ− π̂0ŵ))| ≤ Ĉ|ϕ̂(ŵ− π̂0ŵ)|0,∞,K̂
≤ Ĉ|ϕ̂|0,∞,K̂ |ŵ− π̂0ŵ|0,∞,K̂
≤ Ĉ|ŵ− π̂0ŵ|0,∞,K̂ ||ϕ̂||2,∞,K̂.

Thus the functional onW2,∞(K̂) defined by ˆϕ 7→ Ê (ϕ̂(ŵ − π̂0ŵ)) is
continuous, linear with norm≤ Ĉ|ŵ− π̂0ŵ|0,∞,K̂. Since forϕ̂ ∈ P1, ϕ̂(ŵ−
π̂0ŵ) ∈ P2, we have that the functional vanishes onP1. By Theorem 8.3,

|Ê (ϕ̂(ŵ− π̂0ŵ))| ≤ Ĉ|ŵ− π̂0ŵ|0,∞,K̂ |ϕ̂|2,∞,K̂.

Setϕ̂ = âv̂. Now,

|âv̂|2,∞,K̂ ≤ Ĉ(|â|2,∞,K̂ |v̂|0,∞,K̂ + |â|1,∞,K̂ |v̂|1,∞,K̂).

Again we may use the equivalence between theL∞-norms ofv̂ and
ŵ− π̂0ŵ and theL2-norms of the same functions as in (i) since they be-
long to the finite dimensional spaceP1. Also, by the triangle inequality,

|ŵ− π̂0ŵ|0,K̂ ≤ Ĉ|ŵ|0,K̂ .

Thus we get

(8.38) |Ê (âv̂(ŵ− π̂0ŵ))| ≤ Ĉ(|â|2,∞,K̂ |v̂|0,K̂ + |â|1,∞,K̂ |v̂|1,K̂)|ŵ|0,K̂ .

91

(iii) We can now complete the proof. Recall thatEK(avw) = (detBK)
Ê (âv̂ŵ). Also,

|â|m,∞,K̂ ≤ C hm
K |a|m,∞,K

|v̂|2−m,K̂ ≤ C h2−m
K (detBK)−

1
2 |v|2−m,K .

|ŵ|0,K̂ ≤ C(detBK)−
1
2 |w|0,K ,

(8.39)
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by Theorems 6.4 and 6.5. Combining (8.37), (8.38) and (8.39),
we get

|EK(avw)| ≤ C h2
K(|a|1,∞,K |v|1,K + |a|2,∞,K |v|0,K)|w|0,K

≤ C h2
K ||a||2,∞,K ||v||1,K |w|0,K .

Settinga = Ai j , v =
∂p
∂x j

, w =
∂p′

∂xi
we obtain (8.33), thus completing

the proof. �

We leave the second stage as an exercise:

Exercise 8.5.Let PK = P2 and let the quadrature scheme be such that
Ê (ϕ̂) = 0 for all ϕ̂ ∈ P2. Then show that forq such thatW2,q(K) ֒→
C0(K), there existsC independent ofK such that for allf ∈ W2,q(K)
and allp ∈ PK,

|EK( f p)| ≤ C h2
K(detBK)

1
2−

1
q || f ||2,q,K ||p||1,K .

[Hint: If π̂1 is the orthogonal projection toP1 in theL2-sense then write

Ê ( f̂ p̂) = E ( f̂ π̂1p̂) + Ê ( f̂ (p̂− π̂1p̂))].

Remark 8.4.The inclusionW2,q(K) ֒→ C0(K) is true if, for instance,
2− n

q > 0, by the Sobolev imbedding theorem.

We now come to the final stage in the estimation of||u− u∗h||.

Theorem 8.5. Let (th) be a regular family of triangulations onΩ by 92

n-simplices of type (2). Let us assume that the Vh-ellipticity is uniform
with respect to h. Let̂E (ϕ̂) = 0 for all ϕ̂ ∈ P2. Then if u∈ H3(Ω) ֒→
C0(Ω)(n ≤ 5), ai j ∈ W2,∞(Ω) and f ∈ W2,q(Ω) for some q≥ 2, we have
the estimate

(8.40) ||u− u∗h||1,Ω ≤ C h2[||u||3,Ω + || f ||2,q,Ω].

Proof. We estimate the various quantities in (8.28). We have:

|a(πhu,wh) − ah(πhu,wh)| ≤
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≤
∑

K∈th

n∑

i, j=1

|EK(ai j
∂(πhu|K)
∂x j

∂(wh|K)
∂xi

|

≤
∑

K∈th

n∑

i, j=1

C h2
K ||ai j ||2,∞,K ||

∂(πhu|K)
∂x j

||1,K |
∂(wh|K)
∂xi

|0,K

≤ h2
n∑

i, j=1

||ai j ||2,∞,Ω


∑

K∈th

||∂(πhu|K)
∂x j

||21,K



1
2

∑

K∈th

||∂(wh|K)
∂xi

||20,K



1
2

(sincehK ≤ h, and we may apply the Cauchy-Schwarz inequality)

≤ C h2||πhu||2,Ω||wh||1,Ω

Now,

||πhu||2,Ω ≤ ||u||2,Ω + ||u− πhu||2,Ω ≤ C||u||2,Ω,

using Theorem 6.3 withP1 ⊂ PK = P2. Therefore, for allwh ∈ Vh, we
have

(8.41)
|a(πhu,wh) − ah(πhu,wh)|

||wh||1,Ω
≤ Ch2||u||2,Ω.

Similarly, we have

| f (wh) − fh(wh)| ≤
∑

K∈th
|EK( f wh|K)|

≤
∑

K∈th
C h2

K(measK)
1
2−

1
q || f ||2,q,K ||wh||1,K .
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Sinceq ≥ 2, 1
2 −

1
q
≥ 0 and by the general Hölder’s inequality,

∑

K∈th

(measK)
1
2−

1
q || f ||2,q,K ||wh||1,K

≤

∑

K∈th
measK



1
2−

1
q

∑

K∈th
|| f ||q2,q,K



1
q

∑

K∈th
||wh||21,K



1
2
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= C|| f ||2,q,Ω||wh||1,Ω.

Hence we get, fot allwh ∈ Vh,

(8.42)
| f (wh) − fh(wh)|
||wh||1,Ω

≤ Ch2|| f ||2,q,Ω.

Combining (8.28), (8.29), (8.41) and (8.42) we get (8.40), thus com-
pleting the proof. �

Remark 8.5.The conditionn ≤ 5 (needed for the continuous inclusion
H3(Ω) ֒→ C0(Ω)) was already necessary for the definition ofπhu.

References: For a survey on numerical quadrature in general one may
refer to Haber’s survey article [13]. For application to thefinite element
method, the Sec. 4.2 of the book by Strang and Fix [22] or Chapter 2 of
the forthcoming book of Ciarlet and Raviart [5].





Chapter 9

The Obstacle Problem

In Sec. 2 we cited the Obstacle Problem as an example of a non-linear 94

abstract problem of Sec. 1. Let us recall a few facts about this to start
with.

Consider an elastic membrane (cf. Fig. 9.1) stretched over an open
setΩ ⊂ R2 and fixed along the boundaryΓ which is assumed to be
Lipschitz continuous. Let a force of densityFdx act on the membrane.
Let us assume the existence of an obstacle given byχ(x), for x ∈ Ω.
Then vertical displacement given byu is the solution of the abstract
problem where

(9.1)


a(u, v) =

∫
Ω

2∑
i=1

∂u
∂xi

∂v
∂xi

dx

f (v) =
∫
Ω

f v dx, f ∈ L2(Ω)

for u, v ∈ V = H1
0(Ω), where f = F/t, t being the tension. The subsetK

is given by
K = {v ∈ H1

0(Ω); v ≥ χ a.e. inΩ}.

If v1, v2 are inK andvi < χ in Ai with measAi = 0 for i = 1, 2, then
λv1 + (1 − λ)v2 ≥ χ on (A1 ∪ A2)c i.e. the complement ofA1 ∪ A2 and
meas (A1 ∪ A2) = 0. ThusK is convex. Ifv ∈ K, let vn ∈ K such that
vn → v in H1

0(Ω). Let vn ≥ χ in Ac
n, measAn = 0. Then all thevn are

≥ χ on (∪nAn)c and meas (∪nAn) = 0. Hencev ≥ χ a.e. as well. Thus

95
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v ∈ K andK is closed as well. We have the regularity assumption that
χ ∈ H2(Ω). Of course it is

Figure 9.1:
95

The solutionu satisfies

(9.2) J(u) = min
v∈K

J(v),

whereJ(v) = 1
2a(v, v) − f (v) and is also characterized by the variational

inequalities (cf. Theorem 1.1):

(9.3) a(u, v− u) ≥ f (v− u), for all v ∈ K.

We proposed as a problem to show that this problem is interpreted
as the following classical problem (assumingu ∈ H1

0(Ω) ∩ H2(Ω)).

(9.4)



u ≥ χ in Ω,

−∆u = f where u > χ,

u = 0 on Γ.

We have a few regularity results which are listed below:

(i) If Ω is convex andΓ is aC2-boundary thenu ∈ H1
0(Ω) ∩ H2(Ω).

(ii) If f = 0 andΩ a convex polygon then alsou ∈ H1
0(Ω) ∩ H2(Ω).

(iii) The norm ||u||2,Ω is bounded above by a function of|| f ||0,Ω and
||χ||2,Ω in cases (i) and (ii).96
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Our aim in this section is to use the finite element method to approx-
imate this problem and obtain error estimates. We list our assumptions
now:

Let Ω be a convex polygon,f ∈ L2(Ω), χ ∈ H2(Ω) and letu ∈
H2(Ω) ∩ H1

0(Ω).

Remark 9.1.We cannot assume any more smoothness onu other than
H2(Ω). For instance in the 1-dimensional case iff = 0, and even if
the function is very smooth the points of contact ofu with χ will have
discontinuous second derivatives in general; cf. Fig. 9.2.

Figure 9.2:

With the above assumptions we proceed to the approximate prob-
lems, first in the abstract setting, as usual.

We have the problems (Ph) associated with the subspacesVh ⊂ V =
H1

0(Ω). We now choose closed convex subsetsKh ⊂ Vh. One has to bear
in mind that, in general,Kh 1 K (we will see that this is the case in our
approach, sub-sequently).

We finduh ∈ Kh such that for allvh ∈ Kh,

(9.5) a(uh, vh − uh) ≥ f (vh − uh).

The existence and uniqueness of theuh follow from Theorem 1.1.
Let H be a Hilbert space with norm| · | and inner-product (·, ·). Let 97

(V, || · ||) be a subspace such thatV ֒→ H, V = H. Then, as usual, if we
identify H′ andH, thenH will be identified with a subspace ofV′. (We
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will take V = H1
0(Ω) andH = L2(Ω)). Also as in Sec. 1 (cf. proof of

Theorem 1.2), for allu, v ∈ V we have

(9.6) a(u, v) = (Au)(v),

whereA : V → V′ is a linear map. We now pass on to an abstract error
bound.

Theorem 9.1(FALK) . Assume that f∈ H, Au∈ H. Then there exists a
constant C, independent of Vh and Kh, such that

(9.7) ||u− uh|| ≤ C

[
inf

vh∈Kh

(||u− vh||2 + |u− vh|) + inf
v∈K
|uh − v|

] 1
2

.

(Note: The conditionAu ∈ H = L2(Ω) is satisfied ifu ∈ H2(Ω) since
Au= −∆u ∈ L2(Ω).)

Proof. Let α stand for theVh-ellipticity constant. Then

α||u− uh||2 ≤ a(u− uh, u− uh)

= a(u, u) + a(uh, uh) − a(u, uh) − a(uh, u).(9.8)

For anyv ∈ K and anyvh ∈ Kh, by (9.3) and (9.5), we have

(9.9)


a(u, u) ≤ a(u, v) + f (u− v),

a(uh, uh) ≤ a(uh, vh) + f (uh − vh).

Substituting in (9.8) we get

α||u− uh||2 ≤ a(u, v) + f (u− v) + a(uh, vh)

+ f (uh − vn) − a(u, uh) − a(uh, u)

= a(u, v− uh) − f (v− uh) + a(u, vh − u) − f (vh − u)

+ a(uh − u, vh − u)

= ( f − Au, u− vh) + ( f − Au, uh − v) + a(uh − u, vh − u)

≤ | f − Au| |u− vh| + | f − Au| |uh − v| + M||uh − u|| ||vh − u||.

98
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Notice that since (

√
α

M
||u− uh|| −

√
M
α
||u− vh||)2 ≥ 0, we have

||u− uh|| ||u− vh|| ≤
1
2

(
α

M
||u− uh||2 +

M
α
||u− vh||2

)
,

and hence

α||u− uh||2 ≤ C[|u− vh| + |uh − v|] + α
2
||u− uh||2 +

M2

2α
||u− vh||2

Or,
||u− uh||2 ≤ C[(|u− vh| + ||u− vh||2) + |uh − v|].

Varying vh ∈ Kh and v ∈ K and extracting the square root after
taking the infima we get (9.7). This completes the proof. �

Remark 9.2. If we have a linear problem thenf = Augives the solution
and we get the original bound (3.1).

Remark 9.3.From (9.8) we see that this estimate holds even ifa(·, ·) is
not symmetric.

We now apply this to the specific membrane problem. Maintaining
our assumptions onΩ, let th be a triangulation by triangles of type (1),
and letVh be the corresponding subspace ofV = H1

0(Ω).

Remark 9.4. It is of no practical use if we go to more sophisticated finite
elements, unlike the linear problem.Sinceu ∈ H2(Ω) is the maximum
smoothness, we may atmost use our abstract estimate theorems only on
the spacesP1.

One may be tempted to try forKh thosevh which are≥ χ a.e. inΩ.
However this is not of value fromnumerical and computational points
of view for we do not easily know where exactly our piecewise linear99

solution functions would touchχ. We set instead

(9.10) Kh = {vh ∈ Vh; At all nodes b of th, vh(b) ≥ χ(b)}.
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Remark 9.5.

Figure 9.3:

As seen in Fig. 9.3, though for nodesb, vh(b) ≥ χ(b), it does not
guarantee thatvh ≥ χ a.e. Thus we see thatKh 1 K. Now the relation
(9.10) is very easy to implement using the computer.

We now have our main result on the error bound.

Theorem 9.2(FALK) . There exists a constant C depending on|| f ||0,Ω
and ||χ||2,Ω such that for a regular family of triangulations(th) as above
we have

(9.11) ||u− uh||1,Ω ≤ C h.

Remark 9.6.The order of convergence is therefore the same as that for
the linear problems when we use piecewise linear approximations.

Proof. By Theorem 9.1,

||u− uh||1,Ω ≤ C

[
inf

vh∈Kh

(
||u− vh||21,Ω + |u− vh|0,Ω

)
+ inf

v∈K
|uh − v|0,Ω

] 1
2

.

(i) We first estimate the infimum overKh. Note that ifvh = πhu, then100

vh ∈ Vh. Also for all nodesb, vh(b) = πhu(b) = u(b) ≥ χ(b). Thus
vh ∈ Kh as well. Thus,

inf
vh∈Kh

(
||u− vh||21,Ω + |u− vh|0,Ω

)
≤ ||u− πhu||21,Ω + |u− πhu|0,Ω

≤ C h2
(
|u|22,Ω + |u|2,Ω

)
.
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(ii) For the infimum overK, considerv1 = max(uh, χ). Clearlyv1 ≥ χ
andv belongs toH1(Ω) becauseuh andχ also belong toH1(Ω)
(this is a non-trivial result which we assume here). Hencev1 ∈ K,
and thus,

inf
v∈K
|uh − v|0,Ω ≤ |uh − v1|0,Ω.

We have

|uh − v1|20,Ω =
∫

Λh

|uh − χ|2dx, where Λh = {x;χ(x) ≥ uh(x)}.

If πhχ is theVh-interpolate ofχ, then for all nodesb, uh(b) ≥ χ(b) =
πhχ(b). Since bothuh andπhχ are piecewise linear, we may now assert
thatuh ≥ πhχ everywhere. Thusuh−πhχ ≥ 0 onΩ. Thus for allx ∈ Λh,
we have

0 < |(χ − uh)(x)| = (χ − uh)(x) ≤ (χ − πhχ)(x)

≤ |(χ − πhχ)(x)|

and forx ∈ Ω − Λh, (χ − uh)(x) = 0, so that

|uh − v1|0,Ω ≤



∫

Ω

|χ − πhχ|2dx



1
2

= |χ − πhχ|=0,Ω ≤ C h2|χ|2,Ω.

Hence
||u− uh||1,Ω ≤ C(h2)

1
2 = Ch,

whereC depends on|χ|2,Ω and|u|2,Ω. However the regularity result (iii) 101

helps us to bound|u|2,Ω above by a constantC depending on| f |0,Ω and
||χ||2,Ω which completes the proof of the theorem. �

References: Two important references are Falk [11] and [12]. For
regularity results refer Brezis and Stampacchia [3] and Lewy and Stam-
pacchia [16].

Another references is Mosco and Strang [19].





Chapter 10

Conforming Finite Element
Method for the Plate
Problem

In Sec. 2 (cf. Example 2.4), as an example of fourth-order problem, we 102

describedthe plate problem. In abstract terms it is to find the solution of

a(u, v) = f (v), for all v ∈ V,

where
(10.2)

K = V = H2
0(Ω), Ω ⊂ R2,

a(u, v) =
∫

Ω

(
∆u · ∆v+ (1− σ)

{
2

∂2u
∂x1∂x2

∂2v
∂x1∂x2

− ∂
2u

∂x2
1

∂2v

∂x2
2

− ∂
2u

∂x2
2

∂2v

∂x2
2

})
dx,

f (v) =
∫
Ω

f v dx, f ∈ L2(Ω).

The problem was interpreted as the classical boundary valueprob-
lem

(10.3)


∆

2u = f in Ω,

u =
∂u
∂ν
= 0 on Γ = ∂Ω.

103
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Remark 10.1.It was commented in Sec. 2 that the second term of the
integrand in the definition ofa(·, ·) does not contribute to the differential
equation. Our method here will be equally applicable to boththe cases.
viz. with the second term present (the plate problem) or withthat term
absent (as it happens in Hydro-dynamics). In our next section, on non-
conforming methods, we will see that the second term is essential in
order that we may apply that method.

We assume thatΩ is a polygonal domain inR2. We saw in Sec. 3
that for fourth-order problems we need the inclusionVh ⊂ C1(Ω). (cf.
Exercise 3.1). Thus we need to use finite elements of classC1, such as
the Argyris triangle, the Bogner-Fox-Schmidt rectangle and so on (cf.
Sec. 4).

When such finite elements can be imbedded in anaffine family, then103

we have the approximation theory, for regular families of triangula-
tions, available to us. We show that this is the case for the Bogner-
Fog-Schmidt rectangle. However for the Argyris triangle orfor the 18-
degree-of-freedom triangle such an imbedding is not possible and we
have to modify the usual argument to obtain error estimates.The “min-
imal assumptions” for 0(h) convergence in the|| · ||2,Ω norm are that
P2 ⊂ P and thatu ∈ H3(Ω) ∩ H2

0(Ω). We have that ifΩ is a convex
polygon and if f ∈ L2(Ω), thenu ∈ H3(Ω) ∩ H2

0(Ω). This result is due
to Knodratév.

We will go through the various examples of triangulations ofclass
C1 and study convergence in these cases.

Example 10.1.The Bogner-Fog-Schmidt rectangle(cf. Exercise 4.9).
Let PK = Q3(dim PK = 16). We then have (cf. Fig. 10.1):

(10.4)
∑

K

=

{
p(ai ),

∂p
∂x1

(ai),
∂p
∂x2

(ai),
∂2p

∂x1∂x2
(ai ); 1 ≤ i ≤ 4

}
.
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Figure 10.1:

Equivalently, one may also use thePK-unisolvent set

′∑

K

=
{
p(ai ),Dp(ai )(ai+1 − ai),Dp(ai )(ai−1 − ai),

D2p(ai )(ai+1 − ai , ai−1 − ai); 1 ≤ i ≤ 4
}

(10.5)

(all indices being read modulo 4). 104

Recall that for an affine family of finite elements, the degrees of
freedomp(a0

i ), Dp(a1
i )(ξ1

ik), (D2p(a2
i )(ξ2

ik, ξ
2
il ) are such that (cf. Sec. 5):

(10.6)


a0

i = F(â0
i ), . . . , a2

i = F(â2
i ),

ξ1
i,k = BKξ̂

1
i,k, . . . , ξ

2
i,1 = BKξ̂

2
i,1

for then π̂Kv = π̂v̂ which is essentially what we need for the abstract
error analysis.

In
∑′

K note that

(10.7) ai+1 − ai = F(âi+1) − F(âi) = BK(âi+1 − âi),

and so on. Thus it is clear that this rectangle can be imbeddedin an
affine family of finite elements. NowPK ⊂ P̂ ⊂ Q3 for k = 3. By our
abstract error analysis, we therefore have

(10.8) ||u− uh||2,Ω ≤ Ch2|u|4,Ω.

assuming sufficient smoothness onu as usual.
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A word about the boundary conditions. As in Exercise 3.1, we get

thatVh ⊂ H2
0(Ω) if v =

∂v
∂ν
= 0 onΓ, for v ∈ Vh. Thus in choosing our

basis functions we must assure ourselves that this condition is satisfied.
This in turn depends on the values at the boundary nodes. Letb andc be
two nodes onΓ such that the line joining them is parallel to (say) thex1-
axis. Since we needv = 0 on this line, and sincev will be a polynomial

in x1 of degree≤ 3 on this line we must havev(b) = v(c) = 0,
∂v
∂x1

(b) =

∂v
∂x1

(c) = 0. Also since we need
∂v
∂ν
= 0 on this line and since

∂v
∂ν
=

∂v
∂x2

is a polynomial inx1 of degree≤ 3, we need to set
∂v
∂x2

(b) =
∂v
∂x2

(c) = 0

and
∂2v

∂x1∂x2
(b) =

∂2v
∂x, ∂x2

(c) = 0. Thus the degrees of freedom on all105

boundary nodes must be zero. The only “free” or “unknown” parameters
are the degrees of freedom at the interior nodes. This takes care of the
boundary conditions.

Let us now turn to theArgyris triangle(cf. Example 4.7).

Figure 10.2:

We recall thatPK = P5, dimPK = 21, and
∑

K is given by (cf.
Fig. 10.2)
(10.9)
∑

K

=

p(ai ),
∂p
∂x1

(ai), . . . ,
∂3p

∂x2
2

(ai), 1 ≤ i ≤ 3;
∂p
∂ν

(ai j ), 1 ≤ i < j ≤ 3

 .
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We may replace the first and second derivative values at the vertices
by Dp(ai)(ai+1 − ai), Dp(ai)(ai−1 − ai), D2p(ai )(ai+1 − ai , ai+1 − ai),
D2p(ai )(ai+1 − ai , ai−1 − ai), D2p(ai )(ai−1 − ai , ai−1 − ai) in order to get
degrees of freedom for which the relations of the type (10.6)may be

satisfied. However,one cannot replace the normal derivatives
∂p
∂ν

(ai j ),

1 ≤ i < j ≤ 3, by such quantities since affine transformations do not
preserve orthogonality.

In order to estimate the errors we describe an “intermediary” finite
element:

Example 10.2.The Hermite Triangle of Type (5).
Let PK = P5(dim PK = 21). Define
∑

K

=

{
p(ai),Dp(ai )(ai+1 − ai),Dp(ai )(ai−1 − ai),

D2p(ai )(ai+1 − ai , ai+1 − ai),D
2p(ai )(ai+1 − ai , ai−1 − ai),

D2p(ai )(ai−1 − ai , ai−1 − ai), 1 ≤ i ≤ 3;

Dp(ai j )(ak − ai j ), 1 ≤ i < j ≤ 3, k , 1,, j
}
.

106

That is to say, the only change compared to the Argyris triangle is
that we have replaced the normal derivatives atai j by the derivatives
along the line joiningai j to ak, the opposite vertex.

Symbolically we can represent such a triangle as in Fig. 10.3.

Figure 10.3:

This element can be put in an affine family as is readily seen. IfΛK
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is the associated interpolation operator, our error analysis yields

(10.10) |v− ΛKv|m,K ≤ C
h6

K

ρm
K

|v|6,K , 0 ≤ m≤ 6,

for v ∈ H6(K).

Remark 10.2.Though the Hermite triangle of type (5) yields an affine
family, one cannot use it sinceVh ⊂ C0(Ω) but, in general,Vh 1 C1(Ω)
as is necessary for fourth-order problems. This is so because the adja-
cent triangles will not patch up, in general, in their derivatives along the
medians; cf. 10.4.

Figure 10.4:
107

Again we show how to take care of the boundary conditions in the

Argyris triangle. We need againv =
∂v
∂ν
= 0 onΓ. Let us have two nodes

b, b′, the vertices of a triangle lying onΓ with mid-pointc. On this line
v will be a polynomial of degree≤ 5 in τ, an abscissa along this line.
∂v
∂ν

will be a polynomial inτ of degree≤ 4 on this line. Hence forv = 0

on Γ we need to set,v(b) = v(b′) = 0,
∂v
∂τ

(b) =
∂v
∂τ

(b′) = 0,
∂2v

∂τ2
(b) =

∂2v

∂τ2
(b′) = 0. For

∂v
∂ν
= 0 onΓ we set,

∂v
∂ν

(b) =
∂v
∂ν

(b′) =
∂v
∂ν

(c) = 0,

∂2v
∂τ∂ν

(b) =
∂2v
∂τ∂ν

(b′) = 0. Thus the only free or unknown parameters

are
∂2v

∂ν2
at vertices onΓ and the degrees of freedom at all interior nodes.
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We now get an error estimate when we have triangulations of Ar-
gyris triangles. We use our usual terminology more loosely here1. By a
regular familyof triangulations made up of Argyris triangles we mean

that allth consist only of Argyris triangles and that for allK,
hK

ρK
≤ σ, a

constant. We also assume that ifh = max
K∈th

hK , thenh→ 0.

Theorem 10.1. For a regular family(th) of triangulations made up of
Argyris triangles

(10.11) |v− πhv|m,Ω ≤ C h6−m|v|6,Ω, 0 ≤ m≤ 6.

108

Proof. Let us denote the opposite vertex ofai j (i < j) by ak. Let −→ν K

be the unit outernormal atai j and−→τ K be the unit vector along the line
[ai , a j ], at ai j (cf. Fig. 10.5).

Figure 10.5:

Let πK be the interpolation operator for the Argyris triangleK and
letΛK be that for the corresponding Hermite triangle of type (5).

1Because we have to drop the assumption that all the finite elements are affine equiv-
alent to a reference finite element.
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Setδ = πKv− ΛKv. Thenδ ∈ P5. Now

∂δ

∂νK
(ai j ) =

∂

∂νK
(πKv− ΛKv)(ai j ) =

∂

∂νK
(v− ΛKv)(ai j ).

Also sinceπKv = ΛKv along any side ofK (since the values of
these polynomials of degree 5 as well as those of their first and second

derivatives agree at the end-points), we have
∂δ

∂τK
= 0.

Since

Dδ(ai j )(ak − ai j ) =
∂δ

∂νK
(ai j )〈ak − ai j ,

−→
ν K〉 +

∂δ

∂τK
(ai j )〈ak − ai j ,

−→
τ K〉,

where〈·, ·〉 is the Euclidean inner-product, substituting for
∂δ

∂νK
and

∂δ

∂τK
at ai j , we get

(10.12) Dδ(ai j )(ak − ai j ) =
∂

∂ν
(v− ΛKv)(ai j )〈ak − ai j ,

−→ν K〉

Sinceδ ∈ P5, using the unisolvency in the Hermite triangle we may109

expressδ in terms of its basis functions. Since all degrees of freedom
except those of the typeDδ(ai j )(ak − ai j ) are zero forδ, we have

(10.13) δ =
∑

1≤i< j≤3
k,i,k, j

∂

∂νK
(v− ΛKv)(ai j )〈ak − ai j ,

−→ν K〉pi jk .

Now

(10.14) |〈ak − ai j ,
−→ν K〉| ≤ ||ak − ai j || ||−→ν K || ≤ hK ,

and

| ∂
∂νK

(v− ΛKv)(ai j )| ≤ |v− ΛKv|1,∞,K

≤ C(measK)−
1
2
h6

K

ρK
|v|6,K .
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(Theorem 6.6 withm = 1, k = 5, p = 2, q = ∞). Also, measK ≥ Cρ2
K,

and we have

(10.15) | ∂
∂νK

(v− ΛKv)(ai j )| ≤ C
h6

K

ρ2
K

|v|6,K .

Finally, by Theorem 6.4 and 6.5

(10.16) |pi jk |m,K ≤ C
hK

ρm
K

|p̂i jk |m,K̂ .

Combining (10.14), (10.15) and (10.16), we get

|δ|m,K ≤
∑

1≤i< j≤3
k,i,k, j

| ∂
∂νK

(v− ΛKv)(ai j )| |〈ak − ai j ,
−→
ν K〉| |pi jk |m,K

≤ C
h8

K

ρm+2
K

|v|6,K ,(10.17)

and hence,

|v− πKv|m,K ≤ |v− ΛKv|m,K + |δ|m,K

≤ C
h6

K

ρm
K

1+
h2

K

ρ2
K

 |v|6,K (Using (10.10) and (10.17))

≤ C h6−m|v|6,K (since hK ≤ h,
hK

ρK
≤ σ).
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This on summing overK gives (10.11), thus completing the proof.
�

Exercise 10.1.Perform the same analysis for the 18-degree-of freedom
triangle. (cf. Exercise 4.7).

For the interpolation theory of the HCT-triangle (cf. Exercise 4.8),
the normal derivatives are handled as in the present case. However the
arbitrariness of the interior point is an obstacle to be overcome. For a
discussion of this, see Ciarlet [4].
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Another finite element, similar in its principle to the HCT-triangle
used in the conforming finite element method for the plate problem is
the Fraeijs de Veubeke and Sander Quadrilateral. See Ciavaldini and
Nédélec [9].

These are all essentially the finite elements used in the “conforming”
methods to approximate the plate problem (we will define suchmethods
at the beginning of Sec. 11).



Chapter 11

Non-Conforming Methods
for the Plate Problem

WE START WITH a brief classification of finite element methods. The 111

first class of methods are calledconforming methods, which we have
described upto now, except when we considered numerical integration.
The second class consists of methods other than conforming.In the
latter class we have theNon-conformingmethods included:

Given the abstract problem, theconforming methodsdeal with the
finding of subspacesVh ⊂ V and solving the problems

(Ph) ah(uh, vh) = fh(vh), for all vh ∈ Vh,

whereah = a and fh = f for all h anduh ∈ Vh is the required solution.
When we employ methods other than conforming we commit, in

the terminology of G. Strang, “Variational Crimes”. (See Strang and
Fix [22]). These may occur in the following ways:

(i) When performing numerical integration, we may haveah and fh
different froma and f respectively. However,Vh is a subspace of
V;

(ii) The boundaryΓ of Ω may be curved. In this case triangles lying
in the interior will be triangles of straight edges while those meet-
ing the boundary will have curved edges like parabolas. These are

113
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the so-called “isoparametric” finite elements. Hence ifΩh is the
union of the finite elements of the triangulationth, then, in gen-
eral,Ωh , Ω and consequentlyVh 1 V (whereVh is a space of
functions defined overΩh), ah , a, fh , f ; for a discussion of
these, see Ciarlet and Raviart [30], [31].

(iii) When employingnon-conforming methods(which will be dealt
with subsequently) thoughΩh = Ω, fh = f , we will haveVh 1 V
andah , a.

(iv) One may employ any combination of the above three.112

Let us return to the plate problem. For a conforming method we
need the inclusionVh ⊂ H2

0(Ω) which essentially results from the in-

clusion Vh ⊂ C1(Ω). Because of this necessity, when compared with
second-order problems, we either have the dimension ofPK “large” (as
in the case of the Argyris triangle) or that the structure ofPK is compli-
cated (as in the HCT-triangle). Also one would like to have justPK = P2

sinceu is only in H3(Ω) in most cases, but this is impossible by the
Ženišek result (cf. Remark 4.3) which stresses that at least polynomials
of degree 5 must be present inPK .

Hence the desire to surmount these difficulties led to the devising of
non-conforming methods, essentially developed by the Engineers.

Since the root of all trouble is the inclusionVh ⊂ H2
0(Ω), we drop

this condition. Thus we start withVh ⊂ C0(Ω) and it is much easier
from the computer programme view point. This of course, works only
for a few finite elements, and we describe one of them.

Example 11.1.The Adini’s rectangle; cf. Fig. 11.1.
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Figure 11.1:

The elementK consists of a rectangle with vertices{ai , 1 ≤ i ≤ 4};
the spacePK is given byPK = P3 ⊕ {x1x3

2} ⊕ {x
3
1x2}, by which we mean

polynomials of degree≤ 4 whose only fourth-degree terms are those
involving x1x3

2 andx3
1x2. ThusP3 ⊂ PK . We have the set of degrees of

freedom:

∑

K

=

{
p(ai ),

∂p
∂x1

(ai),
∂p
∂x2

(ai), 1 ≤ i ≤ 4

}
.

113

Of course this element can be used only for plates with sides parallel
to the coordinate axes, such as rectangular plates.

Exercise 11.1.Show that in Example 11.1,
∑

K is PK-unisolvent and
that Adini’s rectangle is a finite element of classC0, and, in general, not
of classC1.

Thus we get ‘a priori’ thatVh ⊂ H1(Ω). For the boundary condition,
we set all degrees of freedom on the boundary nodes as zero. This gives
us thatVh ⊂ H1

0(Ω). Thus the only ‘unknown’ or ‘free’ parameters are

the degrees of freedom at the interior nodes. Note that
∂vh

∂ν
is zero only

at the boundary nodes, in general.
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In the abstract problem, we havea(·, ·) and f (·) given by
(11.1)

a(u, v) =
∫

Ω

∆u∆v+ (1− σ)

2
∂2u

∂x1∂x2

∂2v
∂x1∂x2

− ∂
2u

∂x2
1

∂2v

∂x2
2

− ∂
2u

∂x2
2

∂2v

∂x2
1


 dx,

f (v) =
∫

Ω

f vdx, f ∈ L2(Ω).

The second integral is defined overVh as well. Thus for the discrete
problem (Ph) we may setfh = f . However while foru, v ∈ Vh the first
integral is defined over eachK ∈ th, we cannot define it overΩ, since
we get Dirac measure-like terms along the boundary. To get over this,
we now define

ah(uh, vh) =
∑

K∈th

∫

K

[
∆uh∆vh + (1− σ)

(
2
∂2uh

∂x1∂x2

∂2vh

∂x1∂x2
− ∂

2uh

∂x2
1

− ∂
2uh

∂x2
2

∂2vh

∂x2
1

)]
dx

=

∑

K∈th

∫

K

[
σ∆uh∆vh + (1− σ)

(
∂2uh

∂x2
1

∂2vh

∂x2
1

+
∂2uh

∂x2
2

∂2vh

∂x2
2

+ 2
∂2uh

∂x1∂x2

∂2vh

∂x1∂x2

)]
dx,

(11.2)

and we have the discrete problem (Ph): To finduh ∈ Vh such that for all
vh ∈ Vh

(11.3) ah(uh, vh) = f (vh).

114

We now prove the existence and uniqueness of the solutionuh for
(Ph). We define onVh the seminorm

(11.4) ||vh||h =

∑

K∈th
|vh|22,K |

2
2,K



1
2

.

Notice that this may be defined overV = H2
0(Ω) as well and for

v ∈ V, ||v||h = |v|2,Ω. In the same way foru, v ∈ V, ah(u, v) = a(u, v).
We now show that theseminorm|| · ||h is indeed a normon Vh. Let

vh ∈ Vh with ||vh||h = 0. This gives that
∂vh

∂x1
= constant over anyK. But

given adjacent finite elements the value of
∂vh

∂x1
at the common vertices

coincide and hence
∂vh

∂x1
is constant overΩ. But this is zero on the
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boundary nodes. Hence
∂vh

∂x1
= 0 onΩ. Similarly

∂vh

∂x2
= 0 onΩ. Since

Vh ⊂ C0(Ω) andvh = 0 onΓ, the above conditions give thatvh = 0 over
Ω. Thus (11.4) defines a norm onVh.

To show the existence and uniqueness of the solution of (Ph), we
show thatah(·, ·) is Vh-elliptic. In fact we do more than this. We show
that theah(·, ·) areVh-elliptic uniformly with respect toh.

Recall that from physical considerations, 0< σ < 1
2 (see Sec. 2).

Now

a(vh, vh) =
∑

K∈th

∫

K

σ(∆vh)2dx+ (1− σ)||vh||2h

≥ (1− σ)||vh||2h.
(11.5)

Remark 11.1.It was mentioned in passing in Sec. 10 that in order to
apply non-conforming methods one needed the second term involving
σ in the integral defininga(·, ·). The uniformVh-ellipticity could not be
got in the Hydrodynamical case where this term is absent.

We now proceed with the abstract error analysis. 115

Theorem 11.1(STRANG). Let ah(·, ·) be Vh-elliptic uniformly with re-
spect to h with̃α > 0 so that for all vh ∈ Vh

(11.6) ah(vh, vh) ≥ α̃||vh||h.

Let in addition, there exist̃M such that for all uh, vh ∈ Vh

(11.7) |a(uh, vh)| ≤ M̃||uh||h||vh||h.

Assume that ah = a and || · ||h = || · || on V. (These are needed to
extend the definition of ah and || · ||h to V). Then there exists a constant
C, independent of h, such that

(11.8) ||u− uh||h ≤ C

{
inf

vh∈Vh
||u− vh||h + sup

wh∈Vh

| f (wh) − ah(u,wh)|
||wh||h

}

uh being the solution of(Ph).
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Proof. For all vh ∈ Vh we have

(11.9) ||u− uh||h ≤ ||u− vh||h + ||uh − vh||h.

Now for anyvh ∈ Vh, f (uh − vh) = ah(uh, uh − vh), so that we may
write

α̃||uh − vh||2h ≤ ah(uh − vh, uh − vh)

= ah(u− vh, uh − vh) + f (uh − vh) − ah(u, uh − vh)

≤ M̃||u− vh||h||uh − vh||h + | f (uh − vh) − ah(u, uh − vh)|,

and thus,

||uh − vh||h ≤
M̃
α̃
||u− vh||h +

1
α̃

| f (uh − vh) − ah(u, uh − vh)|
||uh − vh||h

≤ M̃
α̃
||u− vh||h +

1
α̃

sup
wh∈Vh

| f (wh) − ah(u,wh)|
||wh||h

.

116

Substituting in (11.9) and varyingvh ∈ Vh and taking the infimum
we get (11.8). This completes the proof. �

Remark 11.2.In case the method is conforming, thenah(u,wh) = a
(u,wh) = f (wh) and the second term disappears in (11.8), leaving us
with the original bound (3.1).

We note that for theah(·, ·) defined for the plate problem by (11.2),
the conditions of Theorem 11.1 are satisfied. The condition (11.6) is
embodied in (11.5). The condition (11.7) follows from the similar (con-
tinuity) condition ona(·, ·) and an application of the Cauchy-Schwarz
inequality.

Exercise 11.2.Let (H) be a Hilbert space with innerproduct (·, ·) and
norm | · |. Let (V, || · ||) be a subspace such thatV ֒→ H andV = H. Let
Vh ⊂ H. Define

Eh(u, v) = ( f , v) − ah(u, v), for all u, v ∈ Vh ∪ V.
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Then show that

|u− uh| ≤ M̃||u− uh||h
sup
g∈H

1
|g|

inf
ϕh∈Vh

||ϕ − ϕh||h


+ sup
g∈H

[
1
|g| inf

ϕh∈Vh

(Eh(u, ϕ − ϕh) + Eh(ϕ, u− uh))

]

where for allv ∈ V, a(v, ϕ) = g(v).

We now go on with the error analysis and study the order of conver-
gence. We assume thatu ∈ H3(Ω)∩H2

0(Ω) which is quite realistic from
the regularity results.

Now, sinceπhu ∈ Vh, we have that

inf
vh∈Vh

||u− vh||h ≤ ||u− πhu||h.

117

Again applying error bounds for eachK and then summing over all
K we get

||u− πhu||h ≤ Ch|u|3,Ω.

Thus

(11.10) inf
vh∈Vh
||u− vh||h ≤ Ch|u|3,Ω.

Our aim is to get a similar estimate for the second term in (11.8). In
fact we show that

(11.11) sup
wh∈Vh

| f (wh) − ah(u,wh)|
||wh||h

≤ Ch||u||3,Ω.

This entails more work. We define

(11.12) Eh(u,wh) = f (wh) − ah(u,wh)

for u ∈ H3(Ω) ∩ H2
0(Ω), wh ∈ Vh. Sincewh ∈ H1

0(Ω), there exists a
sequence{wn

h} in D(Ω) converging towh in H1
0(Ω). Hence,

∫

Ω

f wn
hdx=

∫

Ω

[
∆u∆wn

h + (1− σ)

(
2

∂2u
∂x1∂x2

∂2wn
h

∂x1∂x2
− ∂

2u

∂x2
1

∂2wn
h

∂x2
2

− ∂
2u

∂x2
2

∂2wn
h

∂x2
1

)]
dx
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= −
∫

Ω

(grad∆u)(gradwn
h)dx,

by Green’s formula. The term involving (1− σ), by Lemma 2.2, can
be converted to an integral overΓ. All integrals overΓ vanish since
wn

h ∈ D(Ω). Since both sides of the above relation are continuous linear
functionals onH1

0(Ω), we can pass to the limit to obtain

(11.13) f (wh) =
∫

Ω

f whdx= −
∫

Ω

(grad∆u)(gradwh)dx

for all wh ∈ Vh. Now,

ah(u,wh) =
∑

K∈th

∫

K

(
∆u∆wh + (1− σ)

[
2

∂2u
∂x1∂x2

∂2wh

∂x1∂x2
− ∂

2u

∂x2
1

∂2wh

∂x2
2

− ∂
2u

∂x2
2

∂2wh

∂x2
1

])
dx

=

∑

K∈th

−
∫

K

grad∆ugradwhdx

+

∮

∂K

∆u
∂wK

h

∂νK
dγ + (1− σ)

∮

∂K

(
− ∂

2u

∂τ2
K

∂wh

∂νK
+

∂2u
∂νK∂τK

∂wh

∂τK

)
dγ

 ,(11.14)

by Green’s formula (2.15) and Lemma 2.2 again. Notice however that118

by standard orientation arguments and the continuity ofwh overΩ,

(11.15)
∑

K∈th

∮

∂K

∂2u
∂νK∂τK

∂wh

∂τK
dγ = 0.

Using (11.13), (11.14) and (11.15), we substitute in (11.12) to get

(11.16) Eh(u,wh) =
∑

K∈th

∮

∂K

−∆u+ (1− σ)
∂2u

∂τ2
K


∂wh

∂νK
dγ.
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Figure 11.2:

Splitting the boundary into four parts as in Fig. 11.2, we get

(11.17) Eh(u,wh) =
∑

K∈th

(
∆1,K

(
u,
∂wh

∂x1

)
+ ∆2,K

(
u,
∂wh

∂x2

))
,

where for j = 1, 2, we define

∆ j,K

(
u,
∂wh

∂x j

)
=

∫

K′j

−∆u+ (1− σ)
∂2u

∂τ2
K


(
∂wh

∂x j
− ΛK

(
∂wh

∂x j

))
dγ

−
∫

K′′j

−∆u+ (1− σ)
∂2u

∂τ2
K


(
∂wh

∂x j
− ΛK

(
∂wh

∂x j

))
dγ,

(11.18)

ΛK being theQ1-interpolation operator associated with the values at the119

four vertices.
Note that (11.17) is the same as (11.15). This is evident provided

we show that the contribution of the terms involvingΛK is zero. This is
so becausewh = 0 on the boundaryΓ and on the common boundaries,

ΛK

(
∂wh

∂x j

)
is linear and equal in value for both adjacent finite elements

since it agrees at the vertices, but occurs with opposite signs as is obvi-
ous from Fig. 11.3 (K1′

1 = K2′′
1 ).



122 11. Non-Conforming Methods for the Plate Problem

Figure 11.3:

We also record that
∂wh

∂x j

∣∣∣∣
K
∈ ∂ jPK where

(11.19) ∂ jPK =

{
∂p
∂x j

: K → R; p ∈ PK

}
.

We now prove a result analogous to the Bramble-Hilbert lemma
which will help us to estimate that∆ j,K ’s and henceEh(u,wh).

Theorem 11.2(BILINEAR LEMMA) . LetΩ ⊂ Rn be open with Lip-
schitz continuous boundaryΓ. Let W be a subspace of Wl+1,q(Ω) such
that P1 ⊂ W. Let b be a continuous bilinear form over Wk+1,p(Ω) ×W
such that


b(p,w) = 0 for all p ∈ Pk, w ∈W

b(v, q) = 0 for all v ∈Wk+1,p(Ω), q ∈ P1.

Then there exists a constant C= C(Ω) such that for all v∈ Wk+1,p120

(Ω), w ∈W,

(11.21) |b(v,w)| ≤ C||b|| |v|k+1,p,Ω |w|l+1,q,Ω.

Proof. For a givenw ∈ W, b(·,w) : v 7→ b(v,w) is a continuous lin-
ear form onWk+1,p(Ω) vanishing onPk. Hence by the Bramble-Hilbert
lemma,

(11.22) |b(v,w)| ≤ C||b(·,w)||∗k+1,p,Ω|v|k+1,q,Ω.
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However for allq ∈ P1, b(v,w) = b(v,w+ q) so that

|b(v,w)| ≤ ||b|| ||v||k+1,p,Ω ||w+ q||l+1,q,Ω

and hence

|b(v,w)| ≤ ||b|| ||v||k+1,p,Ω inf
q∈P1
||w+ q||l+1,q,Ω

≤ C||b|| ||v||k+1,p,Ω |w|l+1,q,Ω, by the theorem 6.2,

so that
||b(·,w)||∗k+1,p,Ω ≤ C||b|| |w|l+1,q,Ω.

and substituting in (11.22), we get (11.21), which completes the proof.
�

We may now prove the theorem on our error estimate and order of
convergence.

Theorem 11.3. For a regular family(th) of triangulations made up of
Adini’s rectangles

(11.23) ||u− uh||h ≤ C h||u||3,Ω.

Proof. Let us first estimate|∆ j,K | for j = 1, 2. Set



ϕ = −∆u+ (1− σ)
∂2u

∂τ2
K

∈ H1(K), since u ∈ H3(Ω),

v =
∂wh

∂x1
∈ ∂1PK .

Define 121

(11.24) δ1,K(ϕ, v) =
∫

K′1

ϕ(v− ΛKv)dγ −
∫

K′′1

ϕ(v− ΛKV)dγ,

for v ∈ ∂1P, ϕ ∈ H1(K). If h2 is the length ofK′1 (andK′′1 ) andh1 is that
of K′2 (andK′′2 ) we have by a simple change of variable

(11.25) δ1,K(ϕ, v) = h2δ1,K̂(ϕ̂, v̂),
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whereK̂ is the reference finite element. SinceP0 ⊂ Q1 which is pre-
served byΛK we have that for all ˆv ∈ P0, ϕ̂ ∈ H1(K̂), δ1,K̂(ϕ̂, v̂) = 0.

Now let ϕ̂ ∈ P0 andv̂ ∈ ∂̂1P. We wish to show thatδ1,K̂(ϕ̂, v̂) = 0:
We may take forK̂, the unit square. Since ˆϕ ∈ P0, its value onK̂ is

a constant, say,b0. Now let v̂ ∈ ∂̂1P. Thenv̂ is of the form

(11.26) v̂ = a0 + a1x1 + a2x2 + a3x2
1 + a4x1x2 + a5x2

2 + a6x2
1x2 + a7x3

2.

Taking the values at the four vertices we get

(11.27) ΛK v̂ = a0 + (a1 + a3)x1 + (a2 + a5 + a7)x2 + (a4 + a6)x1x2.

Now K′1 is the linex1 = 1 andK′′1 is the linex1 = 0. Thus

v̂− ΛK v̂
∣∣∣∣
x1=0
= −(a5 + a7)x2 + a5x2

2 + a7x3
2,

v̂− ΛK v̂
∣∣∣∣
x1=1
= −(a5 + a7)x2 + a5x2

2 + a7x3
2.

Hence,

∫

K′1

ϕ̂(v̂− ΛKv̂)dγ =

1∫

0

b0(−(a5 + a7)x2 + a5x2
2 + a7x3

2)dx2

=

∫

K′′1

ϕ̂(v̂− ΛKv̂)dγ.

(11.28)

Thusδ1,K̂(ϕ̂, v̂) = 0 for ϕ̂ ∈ P0, v̂ ∈ ∂̂1P.122

Note further that the bilinear formδ1,K̂ is continuous, for

|δ1,K̂(ϕ̂, v̂)| ≤ C||ϕ̂||L2(∂K̂)||v̂||L2(∂K̂).

≤ C||ϕ̂||1,K̂ ||v̂||1,K̂ , by the Trace theorem (cf. Th. 2.3).

Thus we may apply the bilinear lemma to the bilinear formδ1,K̂ with
l = k = 0 to get

(11.29) |δ1,K̂(ϕ̂, v̂)| ≤ C|ϕ̂|1,K̂ |v̂|1,K̂ .
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We also have the relations

(11.30)


|ϕ̂|1,K̂ ≤ C||BK || |detBK |−

1
2 |ϕ|1,K ,

|v̂|1,K̂ ≤ C||BK || |detBK |−
1
2 |v|1,K .

Now ||BK || ≤ C hK and|detBK | = measK/measK̂ ≥ Cρ2
K, and thus

||BK || |detBK |−
1
2 ≤ C hK

ρK
≤ C. Also h2 ≤ hK , so that

(11.31) |∆1,K(ϕ, v)| ≤ C hK ||u||3,K ||wh||2,K

where 
ϕ = −∆u+ (1− σ) ∂

2u
∂τ2

K
,

v = ∂wh
∂x1
,

and similarly,

(11.32) |∆2,K(ϕ, v)| ≤ C hK ||u||3,K ||wh||2,K .

These inequalities lead us to the estimate

(11.33) | f (wh) − ah(u,wh)| ≤ Ch||u||3,Ω ||wh||h,

for a regular family of triangulations made up of Adini’s rectangles.123

Thus varyingwh overVh and taking the supremum, we get the estimate
(11.11).

Using (11.10) and (11.11) and substituting in (11.8) we get the re-
quired estimate as given in (11.23). This completes the proof. �

Remark 11.3.By the Duality Argument, Lesaint and Lascaux [15] have
proved that||u − uh||1,Ω ≤ Ch2||u||4,Ω assumingu ∈ H4(Ω). They have
also got an improved 0(h2) convergence order in the|| · ||h norm, when
all the rectangles are equal - a “superconvergence” result.

We close this section with a brief description of other typesof finite
elements used in non-conforming methods.
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Example 11.2.The Zienkiewicz triangle(cf. Exercise 4.6)cf. Fig. 11.4.

Figure 11.4:

We getVh ⊂ C0(Ω) only and hence the method is non-conforming.
It does not always yield convergence. The method works if thesides of
all triangles are parallel to three directions only, as in Fig. 11.5.

Figure 11.5:

This is not so if the number of directions is four, as in Fig. 11.6.124

(The Union Jack Problem).
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Figure 11.6:

Example 11.3.Morley’s Triangle (cf. Fig. 11.7).

Figure 11.7:

HerePK = P2. We alwaysget convergence for regular families, of
course. In fact ifu ∈ H4(Ω), then

(11.34) ||u− uh||h ≤ Ch||u||4,Ω.

What is astonishing is that this finite element is not even of classC0.

Example 11.4.Fraeijs de Veubeke triangle.This finite element is again
a triangle. Apart from the values of the polynomials at the vertices and
the mid-points of the sides, we also take the average normal derivative
along the sides. Here the spacePK, which we will not describe, satisfies
the inclusion

P2 ⊂ PK ⊂ P3,
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and

∑

K

=


p(ai ), 1 ≤ i ≤ 3; p(ai j ), 1 ≤ i < j ≤ 3;

∫

K′i

∂p
∂ν

dγ, 1 ≤ i ≤ 3


.

The finite element is shown symbolically in Fig. 11.8.125

Figure 11.8:

Here also the finite element is not of classC0 in general, but the
method always yields convergence.

References:For general reference on non-conforming methods, see
Strang and Fix [22], for the bilinear lemma, see Ciarlet [29]. For a de-
tailed study of the Zienkiewicz triangle, Moreley’s triangle and Fraeijs
de Veubeke triangle, see Lascaux and Lesaint [15]. For a nonconform-
ing method with penalty, see Babuska and Zlámal [26].
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