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Preface

OUR BASIC AIM has been to presesbmeof the mathematical as-
pects of the finite element method, as wellsasneapplications of the
finite element method for solving problems in Elasticity. iSTis why
important topics, such as curved boundaries, mixed andichybeth-
ods, time-dependent problems, etc..., are not covered Nerattempt
has been made to give an exhaustive bibliography.
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Chapter 1

The Abstract Problem

SEVERAL PROBLEMS IN the theory of Elasticity boil down to tha
solution of a problem described, in an abstract manner,lsvi

Let V be a normed linear space over LetJ : V — R be a func-
tional which can be written in the form

(1.1) J(v) = %a(v, v)— f(v) forall veV,

wherea(:, -) is a continuous, symmetric bilinear form &hand f is an
element ofV’, the dual ofV. Then the problem consists in finding an
elementu € V such that

(1.2) 3(W) = Min J).

Usually J represents thenergyof some physical system.

More often, instead of minimising over the entire spacé, we do
S0 over a hon-empty convex subgetof V and find a element € K
such that

(1.3) 3(W) = Min J).

Henceforth we shall denote this abstract problem by the sy().
One can ask immediately whether this problem admits of disaland
if so, is the solution unique? We present in this section geemtial
results regarding existence and unigueness.
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2 1. The Abstract Problem

Definition 1.1.Let V be a normed linear space. A bilinear foafy, -)
onV is said to be/-elliptic if there exists a constanat> 0 such that for
allve V.

(1.4) a(v,v) > a||vI%.

Theorem 1.1. Let V be a Banach space and K a closed convex subset
of V. Let &, -) be V-elliptic. Then there exists a unique solution for the
problem(P).

Further this solution is characterised by the property:

(1.5) a(u,v—u) > f(v—u) forall veKkK

Remark 1.1.The inequalities[{1]5) are known ®ariational inequali-
ties

Proof. TheV-ellipticity of a(-, -) clearly implies that ifa(v,v) = 0 then
v = 0. This together with the symmetry and bilinearityagf, -) shows
thata(-, -) defines an inner-product dh Further the continuity and the
V-ellipticity of a(-, -) shows that the norm

(1.6) veV — a(y, v)%

defined by the inner-product is equivalent to the existingmon V.
ThusV acquires the structure of a Hilbert space and we apply thezRie
representation theorem to obtain the following: for &l V’, there
existso f € V such that

2.7) f(v) =a(ocf,v) forall veV.

The mapsr : V' — V given by f — o f is linear. Now,
1
J(v) = Ea(v, V) — f(v)

= %a(v, V) —a(of,v)



1. The Abstract Problem 3

1 1
= Ea(v_ of,v—of) - Ea(o-f,o-f).

The symmetry ofa(-, ) is essential in obtaining the last equality.
For a givenf, sinceof is fixed, J is minimised if and only ifa(v —
of,v— of)is minimised. But this being the distance betweeand
o f, our knowledge of Hilbert space theory tells us that siKcés a
closed convex subset, there exists a unique elemerk such that this
minimum is obtained. This proves the existence and unicgseenéthe
solution, which is merely the projection off overK.

We know that this projection is characterised by the indtjeai

(1.8) alcf-uv-u<0 forall vekK.

Geometrically, this means that the angle between the \@etdru)
and { — u) is obtuse. See Fig1.1.

af

u

Figure 1.1:

Thus,a(o f,v—u) < a(u, v - u) which by virtue of [1.¥) is precisely
the relation[[TB). This completes the proof. m|

We can state the following

Corollary 1.1. (@) If K is a non-empty closed convex cone with ver-
tex at origin0, then the solution ofP) is characterised by:

(1.9) {a(UN) > f(v) forall vekK

a(u,u) = f(u).



4 1. The Abstract Problem

(b) If K is a subspace of V then the solution is characterised by 4
(1.10) a(u,v) = f(v) forall veKkK.

Remark 1.2.The relations[(115) [{119) an@{1]10) are all calleatia-
tional formulationsof the problem P).

Proof. (a) If Kis acone with vertex at 0, then farv e K, u+v e K.
(cf. Fig.[T.2). Ifuis the solution tol), then for allv € K applying
(@3) to U+ v) we geta(u,v) > f(v) for all v € K. In particular
this applies tau itself. Settingv = 0 in (I.B) we get-a(u, u) >
—f(u) which gives the reverse inequality necessary to complete
the proof of [I.P). Conversely, if{1.9) holds, we det]1.g)jist
subtracting one inequality from the other.

Figure 1.2:

(b) Applying (a) toK, since any subspace is a cone with vertex at 0,
we get (b) immediately. For ¥ € K, then—v € K and applying

(@9) both tov and-v we get [1.ID).
This completes the proof. m|

Remark 1.3.The solutionu of (P) corresponding td € V’ (for a fixed
a(-,-)) defines a mapy’ — V. Since this solution is the projection of
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of on K, it follows thatthe above map is linear if and only if K is
a subspace.The problems associated with variational inequalities are
therefore nonlinear in general.

Exercise 1.1LetV be as in Theoreri1.1. Fdi, fo € V/, letus, up 5
be the corresponding solutions &)( If || - ||* denotes the norm iN’,
prove that

1
llup — ugfl < E”fl - foll".

Remark 1.4.The above exercise shows, in particular, the continuous
dependence of the solution éf in the sense described above. This
together with the existence and uniqueness establishethéproblem

(P) is “well-posed” in the terminology of partial fierential equations.

Exercise 1.2If Vis a normed linear spack,a given convex subset bf
andJ : V — R any functional which is once fierentiable everywhere,
then (i) ifu € K is such thatl(u) = I}//éll? J(Vv), u satisfies, Y (u)(v—u) > 0
for all v € K. (ii) Conversely, ifu € K such that)’ (u)(v — u) > 0 for
all v € K, andJ is everywhere twice dlierentiable with]” satisfying
J’(V)(w,w) > a|w|?, for all v, w € K and somer > 0, thenJ(u) =
Min J(v).

veK

Exercise 1.3(%). Apply the previous exercise to the functional
JV) = %a(v, v) = f(v)

with a(-,-) and f as in Theoreri I11. IK is a subspace df, show that
J'(U)(v) = 0forallv e K. In particular ifK = V, J'(u) = 0.

It was essentially the symmetry of the bilinear form whicbypded
the Hilbert space structure in Theoréml1.1. We now drop thensstry
assumption om(-, -) but we assum¥ to be a Hilbert space. In addition
we assume tha& = V.

Theorem 1.2(LAX-MILGRAM LEMMA) . Let V be a Hilbert space.6
LExercises[[T]2)(i) arld]l.3 together give relatidnsl(1.5)
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a(-, -) a continuous, bilinear, V-elliptic form, € V’. If (P) is the prob-
lem: to find ue V such that for all v V,

(1.11) a(u,v) = f(v),
then(P) has a unique solution infl/

Proof. Sincea(-, ) is continuous an&/-elliptic, there are constantd,
a > 0 such that
[a(u, V)| < M{jull v,

1.12
(1.12) awv,v) > alMf?,

forall u, ve V. Fix anyu € V. Then the mapy — a(u, v) is continuous
and linear. Letus denote it by AuV’. Thuswe haveamap:V — V’
defined byu — Au.

Au(v a(u, v
(1.13) |Au|* = supM =su u

veV | |V| | veV | |V| |
v#£0 v£0

< Mjull.

ThusA is continuous andA|| < M.
We are required to solve the equation

(1.14) Au= f.
Let 7 be the Riesz isometry,: V' — V so that
(1.15) f(v) = (=1, V),

where ((, -)) denotes the inner product Vo Then, Au= f if and only
if T Au = 7f or equivalently.

(1.16) u=u-p(rAu-rf),

wherep > 0 is a constant to be specified. We chogseuch that
g:V — Vis acontraction map, whergis defined by

.17 gVv) =v-p(rtAv-7f) for veV.
1cf. CorollaryTA (b).
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Then the solution toR) will be the unique fixed point of this con-
traction map, which exists by the contraction mapping tasor
Letvq, Vo € V. Setv =v; — vo. Then

llg(va) — g(v2)ll = lI(va — V2) — ptA(v1 — V)|
= IV — pTAM|.
But,
IV — pTAVI? = (v - pTAV,V — pTAV))
= [MI? = 20((tAV, V) + p?llT AV

*2
= [MI? = 20AWV) + p?l|AV|
< V1?2 = 20alM[? + p2M?||vi[?
= (1 - 2pa + p*MA)|VI[?

. . 2
sinceAVv) = a(v,Vv) > a|vi|* and||A]| < M. Choosingp €]0, M—az[, we
get that
(1.18) 1- 200 + p°M? < 1
and hence is a contraction, thus completing the proof. ]

Remark 1.5.The problem P) of Theoren IR is well-posed. The ex-
istence and unigueness were proved in the theorem. For tiggous
dependence af on f, we have

(1.19) allull® < a(u,u) = f(u) < If]I* - llull.

REFERENCE. For Variational Inequalities, see Lions and Stampac-
chia [18].






Chapter 2

Examples

WE GIVE IN this section several examples of the abstract lproldor- 9
mulated in Sed]1. We interpret the solutions of these problas so-
lutions of classical boundary value problems which ofteouodn the
theory of Elasticity.

Before we proceed with the examples, we summarize briefly the
results (without proofs) on Sobolev spaces which will pravée very
useful in our discussion.

HenceforthQ c R" will denote an open set (more often will
be a bounded open set with a specific type of boundary whidhbeil
described presently). Aulti-indexa will denote am-tuple @z, .. ., an)
of non-negative integers, and we denote

(2.1) la| = a1+ -+ an,

and call it thelengthof the multi-index. Ifvis a real-valued function on
Q for which all derivatives upto orden exist, for a multi-indexx with
|| < mwe define

2.2) 9 =

The space ofest function®n Q is given by

(2.3)  2(Q) ={veC®(Q);suppy) is a compact subset ap}.

9
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where

(2.4) suppy) = {x € Q; v(x) # 0}.

Definition 2.1. Letm > 0 be an integer. Then the Sobolev spa¥Q)
is given by

(25)  HM™Q) ={ve L%(Q);6"ve L%(Q) forall |of <m],
where all derivatives are understood in the sense of digibits.

On H™(Q) one can define a norm by means of the formula

1
2
> f |6"v|2dx} . ve HM(Q).
Q

lal<m

(2.6) HWhmz={

It is easy to check that - ||mq defines a norm omH™(Q2), which
makes it a Hilbert space. One can also define a semi-norm by

1
2
> f |6“v|2dx} . ve HM(Q).
Q

lal=m

(2.7) Mma = {

Note that since for aln > 0, 2(Q2) c H™(Q2), we may define,
(2.8) Hp(Q) = 2(Q),

the closure being taken with respect to the topologH®{Q2). Since
HE'(Q) is a closed subspace BIM(Q), it is also a Hilbert space under
the restriction of the norr - [|mq. We also have a stronger result:

Theorem 2.1. Assume tha® is a bounded open set. Then ovel(€)
the semi-norm- |nq is a norm equivalent to the norfin [lmq.

This result is a consequence of the following:

Theorem 2.2(POINCARE-FRIEDRICHS’ INEQUALITY). If Q is a
bounded open set, there exists a constant €(Q) such that, for all
Ve H3(Q),

(2.9 Moo < CM10.
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Henceforth, unless specified to the contrary, the followivily be
our standing assumption€ is a bounded open subset®f. If I is the
boundary of, thenI" is Lipschitz continuous in the sense of NefZ&3.
(Essentially,I" can be covered by a finite number of local coordinate
systems, such that in each, the corresponding portidhisfdescribed
by a Lipschitz continuous function).

If L?(T") is defined in the usual fashion using the Lipschitz continui
of I, one has the following result:

Theorem 2.3. There exists a constant € C(Q) such that, for all ve
C=(Q),

(2.10) Ml 2() < ClVIlLa.

By virtue of TheoreniZ]3 we get thatife C*(Q), then its restric-
tion to T is an element of 2(I'). Thus we have a map from the space
C*(Q) equipped with the nornjj - || into the space.?(I") which is
continuous. We also have:

Theorem 2.4. The space €(Q) is dense in H(Q), for domains with
Lipschitz continuous boundaries.

Consequently, the above map may be extended to a continuapis m
H(Q) — L2(I") which we denote by ¢« It is called thetrace operator
An important result on the trace is the characterization:

(2.11) H3(Q) = {ve HY(Q); trrv=0}.

When no confusion is likely to occur we will merely writenstead
of trrv. In fact if vis a “smooth” function then frv is the restriction of
vior.

Retaining our assumption af andT, the unit outer normay is 12
defined a.e. of. LetV = (va,...,vn). If vis smooth then we may

define theouter normal derivativ% by
14
N _ oV

2.12 — = i—.
( ) 9y - Vlc'“)Xi
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We extend this definition to € H2(Q). If v € H?(Q), theng—)\: €

H1(Q) and hence tr € L("). We now define

n

ov ov
(2.13) > = > vt o— %

However when there is no confusion we write it in the form of
(Z12). Then one has the following characterization:

(2.14) H3(Q) = {ve H?(Q); v= g—\vl =0 on r}.

Theorem 2.5(GREEN’S FORMULA IN SOBOLEV SPACES)Let u,
v e HY(Q). Then we have

ou
(2.15) fua—ld —fga—xivdx+fru wi dy,

forall1<i<n.

If we assumau € H?(Q), we may replacer in 13) by ; sum-
I

ming over all 1< i < n, we get foru € H3(Q), v e HY(Q),

(2.16) fzg_:%dx__fAUVdHf_de

whereA = 31, a — is the Laplacian.

If both u andv are inH2(Q), we may interchange the roleswand
vin (Z18). Subtracting one formula from the other, we get

(2.17) L(uAv—Auv)dx: f(ug—\:—% )dy

13 foru, ve H3(Q).
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Finally replacingu by Au in @I1) we get, fou € H*Q), v €
H3(Q),

(2.18) fAUAVdX:fAZUVdX+fAua—de—fa(Au)vdy.
Q Q r Ov r Ov

The formulael(Z5) through{ZI18) are all knownGreen'’s formu-
lae in Sobolev spaces.

We derive two results from these formulae. These resultsbeil
useful later.

Lemma 2.1. For all v € H3(Q),

(2.19) |AVip.o = M20.

Consequently overg-qg), the mapping ¥ |Av|gq IS @ norm equiv-
alent to the norm| - [|2.q.

Proof. Since 2(Q) is dense ian(Q), it suffices to prove[(Z19) for
Ve (Q). Letve 2(Q). Then

n 2
R 0 0%
2 _
mi=3(5) <2 3 Sate
J

i=1 i 1<i<j<n

By Green'’s formulal(Z15),

2\, 42 3 2y, \2
(2.20) fa—\zla—\zldX:—fﬂ aVZdX:f( v ) dx
Q 0% 09X 9% 9x0x: o \0%0X;
for, the integrals over vanish forv € 2(Q). (cf. (ZI1)). Now [ZI0)
follows directly from [Z2D). This proves the lemma. O

Lemma 2.2. LetQ c R?. Then for ue H3(Q), ve H3(Q), 14
f u 0V JPuov  0*udv
Q

OX10% OX10% X OX2  9X2 OX2
(2.21) 10% 0X10%2  9%5 %5 0X5 0%4
d2udv  6%u dv

- fr(‘ﬁa : ma)dy’

0 . L
wherea— denotes the tangential derivative.
T
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Proof. LetV = (v1,v2), T = (11, 72) be the unit vectors along the outer
normal and the tangent respectively. Without loss in gditgrae may
assumer; = —vo, T2 = v1. Also note thab? + v3 = 1. The second
derivatives occurring in the right hand side are defined by

@_G_ZUTZ_’_Z du 1T +(9_2uT2
5 99 a2 o2 1 Toxo% 1z axg 2
(2.22) d%u 94U d%u du

(vito +vor1) + ——V2T2.
9%

- = +
grav o T Gxadxe
Using all these relations we get

Puv Fuov (P v Puov),
a2dv  gravdr  \Oxdxe 0% 920X 1

(2.23) u v d%u dv
t——— |
0X10%2 0% (')Xi 0Xo
=XV,

where,? = (X1, X2) and

v pumw
B 0X10X%2 OXo 8x% 0X1
d%u v H%u v

2= i 92 I

1
(2.24)

Also note that,

. X X 2 2 2,1 52 201 92
(225) divx= X e _, Fu v i dudtv
oxy 0% 0X10%2 0X10%2 axi 3X§ axg 92

Now by Green’s formuld{Z.15) applied to functionss H(Q) and
to the constant function 1,

8vi
—dx= vidy.
o X X ﬁv.v. 9%
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Hence summing over all if V = (v4,...,Vn),

(2.26) frdivT/’dx= frV-_v’dy.

(This is known as th&auss’ Divergence Theoreand also as th®s-

trogradsky’s formula From [22ZB), [[Z.25) and_(Z.P6) the result fol-
lows. O

With this background, we proceed to examples of the abgbratk
lem of Sec[L.

Example 2.1.LetK =V = Hcl)(Q). Leta e L*(Q) such thaa > 0 a.e.
in Q. Let f € L?(Q). Define the bilinear forna(-, -) and the functional

f(), by
(2.27)

The continuity ofa(:, -) and f(:) follows from the Cauchy-Schwarz
inequality. For instance

(2.28) If(V) < [floaMoa < IfloalViLe.

We now show thaa(-, -) is V-elliptic.

a(v,v):f[zn:(av) +av2)dx

2
zf (ﬂ) dx (sincea>0 a.e. inQ)
Q iz \9A

3_

0%
= M o-

16
Sincel-|1. o is equivalent tdl-||1 o overV, this proves th&/-ellipticity.
Hence by our results in Sdd. 1 there exists a unique functiev such
thata(u,v) = f(v) forallve V.



17

16 2. Examples

Interpretation of this problem: Using the above equation satisfied by
u, we get

n
ou ov
2.29 f ——+auvdx:ffvdx forall ve HX(Q).
(2.29) Q(i:1 % 0% ] , H(®)

From the inclusiorz(Q) c Hé(Q), we get thau satisfies the equa-
tion —Au + au = f in the sense of distributions

If we assume that is “sufficiently smooth”, for example € H?(Q),
then we may apply Green'’s formul@{2116), which gives

(2.30) fauv dx—fAuvdx+f%vdy: fvdx
Q Q r ov Q

Sincev € Hcl)(Q), trrv = 0. Hence the integral ovdr vanishes.
Thus we get

(2.31) f(—Au +au- fjvdx=0 forall veH(Q).
Q

Varyingv overH}(Q), we get thati satisfies the equatiorAu+au =
f in Q. Further sinceu € Hcl)(Q), we get the boundary conditian= 0
onI'. Thus we may interpretas the solution of the “classical” boundary
value problem:
(2.32) {—Au +au=f in Q,
u=0onT.

This is known as thbomogeneous Dirichlet problefar the opera-
tor —Au + au.

A particular case of this equation arises in the theory oftddy,
for whichQ c R? anda = 0. Thus-Au = f in Q andu = 0 onT. This
corresponds to themembrane problem

Consider an elastic membrane stretched 6vand kept fixed along
I'. Let Fdx be the density of force acting on an elemdmtof Q. Let
u(x) be the vertical displacement of the poite Q c R?, measured
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in the xz-direction from the X1, xo)-plane. Ift is the ‘tension’ of the
membrane, then is the solution of the problem

-Au=f in Q
(2.33) {
u=0onrl
wheref = F/t.
X3
Fdx
—>» X,
I
[]
X1
Figure 2.1:

Remark 2.1. To solve the problen.{ZB2) by the classical approach, one
needs hard analysis involving Schauder’s estimates. Bwltbge pro-
cedure viz. the variational method, we have got through withore
easily.

The above problem is a typical example of a second-ordetgmrob 18

Exercise 2.1The obstacle problemLet Q, I" be as in exampld{2.1).
Let X be an “obstacle” in this region. L& < 0 onT'. Let F dx be the
density of the force acting on a membrane stretched Qyéixed along
I'. The displacemeni(x) at x in the vertical direction is the solution of
the following problem:

If V=H)Q), K={ve H}(Q); v> X ae. inQ},
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n
ou ov
let au,v:f ——dva:ffvdxfeLZQ,
() anmam W= (@)
X eH?Q), X<0 onT.
Show thatK is a closed convex set and hence that this problem ad-

mits of a unique solution. Assuming the regularity resut H2(Q) N
Hé(Q), show that this problem solves the classical problem,

u>X in Q,
-Au=f when u>X, (f=F/t)
u=0-T

(We will discuss the Obstacle Problem in Jdc. 9).

Figure 2.2:

19  Exercise 2.2LetV = HY(Q). Definea(-,-), f(-) as in examplé_2]1.
Assume further that there exists a const@ysuch that > ag > 0in Q.
If ug is a given function irH(Q), define
K = {ve HY(Q); v-up € H{(Q)]
= {v e HY(Q); trrv = trp uo} .
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Check thaK is a closed convex subset. Interpret the solution to be
that of theNon-homogeneous Dirichlet problem,

-Au+au=f in Q.
u=up on T.

Example 2.2.LetK = V = HY(Q). Leta € L*(Q) such thaga > ag > 0,

f € L%Q). Definea(-,-) and f(-) as in example[{Z11). The continuity
of a(-,-) and f() follow as usual. For th&/-ellipticity, we can no longer
prove it with the semi-norm: |1  as we did earlier. Itis here we use the
additional assumption o& since

a(v,v) = fg [i (3—)\;)2 + avz] dx

io1
> min(L, ao)|VIIZ o

Thus we have a unique solutiarto the abstract problem satisfying
a(u,v) = f(v). If we assume again thatis “sufficiently smooth” to
apply the Green’s formul&(Z116), we get

(2.34) f(—Au+au)vdx+f@vdy:ffvdx
Q r ov r

If v e 2(Q), then the integral over will vanish. Thusu satisfies
the equation-Au+ au= f asin ExamplEZﬂ However we now get a20
different boundary condition. In exampl[eZ2.1) the boundanditiom
was built in with the assumptiome V = Hcl)(Q). Now from (Z3%), we
may write:

(2.35) f(—Au+au— fvdx= - [ Yy dy
Q r ov
for all ve H{(Q).

But the left hand side of {2.85) is zero singsatisfies the dieren-
tial equation as above so that for alle HY(Q), [ %v dy = 0. Thus

1As in ExampldZ1L, the equatiorAu + au = f is always satisfied in the sense of
distributions since?(Q) c HY(Q).
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ou . . .

v 0 onT', and we may interpret this problem as the classical prob-
4

lem:

(2.36) { -Au+au=f in Q

M -0 onT.

This is ahomogeneous Neumann problem.

Exercise 2.3With K, V, a(-, -) as in exampl&2]2., define

fel?Q
F(V) = f fv dx+ fgv a, | €U
Q r g€ LY(Q).
Show that the abstract problem leads to a solution ohtirehomo-
geneous Neumann problem

ou
— = r.
™ g on

Remark 2.2.1n these examples one may use the more general bilinear
from defined by

(2.37) a(u,v) = f [Z a,,a—a—v + auv]dx

where the functions;; € L*(Q) satisfy the condition that for some
y >0,

(2.38) Z aijié) > VZf.

i,j=1

{—Au+au:f in Q

for all £ e R" and a.e. iM2. This is the classical ellipticity condition for
second order partial fierential operators. One should check (exercise!)
in this case that the abstract problem leads to a solutiomedboundary
value problem
n
0 ou
2.39 - —lai—|+au=f in Q
( ) ijZ=1 X (a” (9Xj)



2. Examples 21

with the boundary condition

u_o onT if K=V =H}Q),

2 aj ax =0 onT if K=V =HYQ).
I]_

(2.40)

The latter boundary operator I0{2140) is called ¢baormal deriva-
tive associated with the partialféierential operator,

- Z 0% (ajaxj)

i,j=1

Notice that the term+ au) contributes nothing.

Example 2.3.System of ElasticityLet Q ¢ R3, with Lipschitz con-
tinuous boundary. Further assume thatcan be partitioned into two
portionsI'g andI’; such that thely-measure of g is > 0. Let

K=V-= {T/’ = (Vi, Vo, V3); Vi e HY(Q), 1<i<3andV =0 onro}.

Define
av; 0V
ai(V) = (axJ ax,)
ij(V) = (2, aw(V)) i + 2ue; (V),
for 1 < i, j < 3. The latter relation is usually known &ooke’s law

The constantd(> 0) andu(> 0) are known asame’s cogicients We
define the bilinear forna(:, -) by,

a(d, V) = fQZ oij(Uaj(V)dx

(2.41)

(2.42)

f(/ldlvT/’ +2u Z &j()a;(V)dx

i,j=1

Let T = (f1, f, fa), fi € LX(Q), and§ = (91, Gz, 93), i € LX), be
given.



23

22 2. Examples

Define the linear functional (-), by,
(2.43) f(V):f_f’.de+ g Vdy.
Q Iy

The continuity ofa(-,-) and f(:) follow from the Cauchy-Schwarz
inequality. For thev-ellipticity of a(-, -) one uses the inequality

a(v.V)z 2 [ 3 (e (TP

i,j=1

and the fact that the square root of the integral appearirtgdrright
hand side of the above inequallty is & norm over the spa@smuivalent
to the normv = (v, Vo, V3) (Z 1 ||v,||m)2 This is a nontrivial fact
which uses essentially the fact thathas measure 0 and an inequality
known askKorn’s inequality We omit the proof here.

Again the problema(U, V) = f(V) admits a unique solution. As-
suming stfficient smoothness, we may apply Green’s formula:

fZO'.J(ﬁ)E,J Ydx = = fZUu(_d)(aV' GVJ)

i,j=1 i,j=1
fzrfu(_lj)av'
i,j=1

(sincesj(v) is symmetric in and j)

fz (a.l(ﬁ))v|dx+f Zo-.lv.vjdy

i,j=1 1Ijl

Thus, the abstract problem leads to a solution of

3 7% L (oij(U) = fi(l<i<3) in Q
1—1

(2.44) W=0 onTlp and
3 -
_Zlo-ijm)vj =g onTy(l<ix<?3).
i=
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Note also that

DI TCICREDY

3
j=1 j

3 3
— (1) a(@)sij + 2ue; ()
= 6Xj =
3 3 3
0 OUy 0 oy 0

= — JE— - A — 12 s '}

,Z; 9% [AZ 5Xk]6” ,Z; 0% ( ”(axj " ox ))
= —(A+p)(grad divV)i - pAu;.

Thus the first equation of {Z}14) is equivalent to
(2.45) —uAT - (A +p)graddiv = T in Q.

The equationd{Z.44) constitute thygstem of linear Elasticity.

o

A

Figure 2.3:

24
If we have an elastic three-dimensional body fixed albggacted
on by an exterior force of densitfydx and force of densitg dy along
I'1 and if oy; is the stress tensor, the displacemesatisfies[[Z.44); cf.
Fig.[Z3.
The relationa(d, V) = f(V), viz.,

3 -
(2.46) fgz ai,-(ti)eij(T/’)dx=L f . Vdx+ rl@-T/’dy

i,j=1
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for all V € V is known as therinciple of virtual work The tensolk;

is the strain tensoland the tensowj the stress tensorfThe expression
1a(V,V) is thestrain energy and the functionaf (V) is the potential
energy of exterior forcesThis example is of fundamental importance in
that the finite element method has been essentially dewveéfopsolving
this particular problem or some of its special cases (mends,gplates,
shells, etc.,) and generalizations (nonlinear elastieity. . . ).
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Remark 2.3. The above problems are all exampledinéar problemE: 25
The map from the right-hand side of the equation and of thendary
conditions to the solutiomw is linear. The non-linearity may occur in
three ways:

(i) WhenK is not a subspace &f. (e.g. ExerciseS 2.1 and2.4);
(ii) If in Example[Z3 we have, instead of the first equality@l):

61(7)=%

oxj 0% = 0% 90X '

This is the case for instance when one derives the so-catled V
Karmann’s equations of a clamped plate;

(iii) We may replace Hooke’s law (the second relations[1@{R}) by
non-linear equations connectirg andoj, which are known as
non-linear constitutive equationge.g.Hencky’s lavy.

Exercise 2.4LetV = HY(Q), anda(-,-) and f(-) be as in examplE2.2,
and let
K ={veHYQ); v= 0 ae. onT}.

Show thal is a closed convex cone with vertex 0. Using the results
of Sec[1 show that the interpretation is

-Au+au=f in Q,
ou ou
u>0, — >0, u—=0onT.
T oy v
(This is called thesSIGNORINI problem
We now examine fourth-order problems.
Example 2.4.LetK =V = H3(Q). Define

a(u,v) = fQ AUAV dx

(2.47) {f(v) = [, fvdx fe L),

2Except in ExercisE2 1.
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for all u, v € V. The continuity follows as usual. For théellipticity
of a(-, -) we have,

(2.48) a(v,v) = fg (AV)?dx = [AV3 , = M3 6

(by Lemm&Z1L. Since- |2 and|| - |l are equivalent orh-lg(Q), the
V-ellipticity follows from (Z43).
Hence there exists a unique functior HS(Q) such that

fAuAvdx:ffvdxforaII v e H3(Q).
Q Q

Assumingu to be sdficiently smooth (sayu € H*Q)), then by
Green's formulal(Z18),

(2.50) L(Azu— f)v dx:fr%vdy—frmg—‘v’dy,

for all v e H3(Q). Hence by varyiny overH3(€), we get that satisfies
A%u = f in Q. Sinceu € H3(€), the boundary conditions are given by
(Z7I32). Thus we interpret this problem as the classicallprob

{Azu =fin Q,

(2.51) ou

u=—=0onT.
ov
This is thehomogeneous Dirichlet problefar the operaton?.
Whenn = 2, this is an important problem in Hydrodynamics. Here

uis known as the stream function andu is thevorticity.

A slight modification ofa(-, -) leads to an important problem in Elas-
ticity. Again letn = 2. Let f € L?(Q) and ifK = V = H3(Q), define
(2.52)

{f(v):fgfvdx

a(u,v) = [, [Au AV+(1-0) (2

u v Pudv  Pudv
IX10% O%10%  OX2 9%5 9% 0X2

The integrand occurring in the definition afu, v) may also be writ-
ten as

(2.53) o-AuAv+(l—a-)(aua_V duov 20U (’)v).

4 ——
X OX2  OXOXe  O%10%2 0%10%;
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. . . 1
Usually, from physical consideration8 < o < >
Note that

(2.54) a(v,v) = olAV§ , + (1 - o)M3

by (Z53) and this leads to thé-ellipticity of a(-, -). By virtue of (Z21)
in LemmdZ2, we get that the relatioa@, v) = f(v) read as

(2.55) fAzuvdx=ffvdx
Q Q

assuming sfficient smoothness af. Thus again we get the same equa-

tion as in[[Z8AIL). Notice that the additional term in the dé&én of a(-, -)
has contributed nothing towards théfdrential equation.
This latter problem is known as ttibamped plate problem
Consider a plate of “small” thicknegdying on thex; x-plane. Let
E be its Young’'s modulus ang its Poisson ca@cient. Let there be a
load F acting on the plate. The displacemeris the solution of [Z.81),
wheref is given by (cf. FigCZ}):

Eef

X3

Fdx

X
Figure 2.4:

We will return to this problem in Sections 10 and 11.

28
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Exercise 2.5LetK =V = {ve H3(Q); v=0 on I'} = H(Q)nH} (%),
and definea(-, -) and f(:) as in the case of the clamped plate. Assuming
the V-ellipticity of a(-, -) show that the solution of the abstract problem
satisfiesA?u = f in Q andu = 0 onI". What is the other boundary
condition? This is known as the problem of gieply supported plate.

Exercise 2.6LetK =V = H3(Q) n H}(€), and

a(u,v) = f AUAV dx
Q
ov 2 2
f(v) = fvdx— | A—dy, where f € L9(Q), 4 € L4(I).
Q r v

Show that we may apply the result of SEc. 1 and give an intexpre
tion of this problem.

REFERENCES. For details on Sobolev spaces, see Nefak [20] and
Lions and Magenes$ [17]. For the theory of Elasticity, one medgr to
Duvaut and Lions[[1/0] and Landau and Lipschiizi[14].



Chapter 3

The Finite Element Method
In its Simplest Form

MAINTAINING OUR ASSUMPTIONS as in the Lax-Milgram Lemma29
(Theorem_ZILR we concentrate our attention on the followirablem

(P):
(P): Tofindu e V such that(u,v) = f(v) forallve V.

Let V}, be a finite-dimensional subspace\6f Then we may state
the following problem:

(Py): Tofind uy € Vj, such tha&a(un, vi) = f(vy) for all vy, € V.

Vh, being a finite-dimensional subspace, is a Hilbert spacdhior
norm of V. Hence by Theoreri 1.2y, exists and is unique. We try
to approximate the solution of (P) by means of solutionsi, of the
problem @) for various subspaceg,. This is known as thénternal
approximation method.

As a first step in this direction, we prove a most fundamersiiit:

Theorem 3.1. There exists a constant C, which is independentpf V
such that

(3.1) lu=unll < C inf [lu— vyl
VheVh

29
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Proof. If wy € Vi, then
a(u, wh) = f(wh) = a(un, Wh).
Thus for allwy, € Vq
(3.2) a(u— up, W) = 0.
Using this and thé&/-ellipticity of a(., -), we get, for allv, € Vj,,

allu = unl? < a(u = up, u—Uup)
= a(U — Un, U — Vh) + a(u — U, Vh — Up)

=a(u-up,u-Vvy) by @2)
< MIju = Ul [u = vpl|.

Hence,|lu — uy|| £ M/a |lu— w| for all vy € Vj. SettingC = M/a
and taking infimum on the right-hand side the result follows. o

The above result estimates the ‘error’ in the solution Bf hen
instead we solveR},). To get an upper bound for the error, we only need
to compute iof||u — Vhll which is the distance af from the subspace

VhE€Vh

Vh. This is a problem impproximation theory

Remark 3.1.If a(;, -) is also symmetric then we observe the following:
@ JI(un) = vihr;f/h J(vn) by CorollanylI1 (b)
(i) We saw thata(u — up, W) = O for all wy € V4. Sincea(, -) is now

an inner product, we get tha, is the projection ofito the closed
subspacé/y, in the sense of this inner-product. Therefore,

Vallu - unll < va(u—un, u=up) < va(u— Vo, U= vh) < VMJju— v

for all vy € ;. Hence the consta@ in theorenZ3.11 can be taken
to be herezv/M/a < M/a, since the continuity an®-ellipticity
imply jointly that M > «.
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We may now describe thinite element methofd.e.m.) in its sim-
plest terms. The method consists in makapgcial choices for the sub-
spaces Y such that the solutions;, of the problems ) converge to
u.

We will outline the procedure for obtaining the spa®dgdy consid- 31
ering, for example, a second-order problem.

LetV = Hcl)(Q) orHY(Q). Let us assume to be apolygonal domain

in R". That is,Q is a polygon inR". We then have the following step-
by-step procedure:

(i) We first establish a finite triangulatiofy of the domainQ such

thatQ = U K. The setK are calledfinite elementsif n = 2,
Kethp

they will be, in general, triangles. They will be tetrahédnan =

3 and h-simplices’ in anyR". These have the further property that
any side of a finite elemer is either a portion of the boundary
or the side of an adjacent finite element. (SeelEg. 3.1).

Figure 3.1:

(i) The spacévy is such that for eacty, € Vy, its restrictionvy|K to
eachK belongs to some finite-dimensional sp&gef real valued
functions oveK which are preassigned. In practice we choége
to be a space gdolynomials

(i) We then need inclusions such &g c Hé(Q) or HY(Q). We es-
tablish a simple criterion to realise this.
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Theorem 3.2. If for every K = t,, Px ¢ HY(K), and \, ¢ C%(Q), then
Vi ¢ HY(Q). If in addition v= 0onT for all v € Vi, then , ¢ H3(Q).

Proof. Letv € V;. SinceviK e L?(K) for everyK ¢ 1, it follows that
v € L%(Q). Hence to complete the proof it only remains to show that for
1 <i < n, there exisy; e L2(Q) such that for each = 2(Q), we have,

(3.3) fgavidx= —f 6_gov dx (1<i<n).
Q a 0%
L ov 1
Then it will follow thata_x; =v; and hencer € H*(Q).
9(vIK)

However,viIK € Px c HYK) implies that o L2(K) for

1<i<n Letp € 2(Q). Since the boundargK of any K of the tri-
angulation is Lipschitz continuous, we apply the Green'snida [Z.15)
to get

d(VIK) f Op f
3.4 f dx=— VIK)—dx + VIK)pvi kdyk,
(3.4) % ¢ K( | )E)xi aK( IK)evi k dyk

wheredyx is the measure 08K andV, = (v,,....,v,,) is the outer
normal ondK. Summing over all the finite elemerks we get

o(VIK)
fgwidx:Zngo ox dx

Ketp

o f
=— | —vdx+ VIK)!  dyk,
[ FEvee 3 [ otikyene

Kef, Y ¢

(3.5)

. . - . O(vIK
wherey; is the function whose restriction to eakhis (6| ).

The summation on the right-hand side of the abO\i('e equatineres
for the following reasons:

On the boundary’, sincey € 2(Q), the integral corresponding to
0K NT is zero. So the problem, if any, is only on the other portions
of the boundary of eacK. However, these always occur as common
boundaries of adjacent finite elements. The valugkfon the common
boundary of two adjacent finite elements is the save{ C°(Q2)). But
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the outer normals are equal and opposite from orientatiorsidera-

tions. (See Fid312).

Figure 3.2:

Hence the contributions from ea&halong the common boundaries
cancel one another. Thus the summation yields only zero.céien
satisfies[[313) for k i < n, and clearly; € L?(Q). The last part of the
theorem follows the characterizatidn (2.11). O

Exercise 3.1lf for all K € f, Px ¢ H2(K) andVy c CY(Q), then
show thatVy, ¢ H2(Q). Also if v = g_v = 0 onT, for all v € Vj, then
4
Vi € H3(9).
We finally describe the system of linear equations assatiaith

the spacevh. Supposdwj; 1 < j < M} is a basis folvy. Letu, be the
solution of Py). If uy, is given by

M
(3.6) Unh = Z ujw;.
=1
then we have, sinca(u,, w;) = f(w;) for 1 <i < M,
M
(3.7) Za(Wj,Wi)Uj =f(w), 1<i<M

=1

To find up, the above system of linear equations must be solved. The
matrix for this system has for itg, ()-codficient the valuea(w;j, w;). 34
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Note that the symmetry ddy(-,-) implies the symmetry of the matrix
and theV-ellipticity says that the matrix is positive definite. Inggtical
computations these observations are important.

Since we have to handle the matrix of the system, it would balid
of course to have a diagonal matrix. We could in principlei@ghthis
through a Gram-Schmidt orthogonalisation procedure agpb the ba-
sis functions. However such a process is not feasible strisehighly
“numerically unstable”. So the best we may hope for is a matiih “a
lot of” zeros in it - what is known as sparse matrix

For example in the problem given by

-Au+au="f in Q
u=0onT

the (, j)-codificient of the matrix is

5 OW;j Ow;
(3.8) a(w;, w) = fg{m a_x;ia_x;l +aw;w; |dx

The matrix will be sparse if the supports of the basis fumgtiare
as “small” as possibleso that their inner-products will be most often
zero. We will study subsequently methods to achieve thigs fivial
criterion extends, of course, to all types of problems.
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Examples of Finite Elements

WE SUMMARIZE BELOW our requirements regarding the “finite el-35
ement subspaces”yV

() Let Q c R" be a polygonal domain. Léf be a triangulation of
Q as in Sed13. TheW, is a finite-dimensional vector space such
that for allv € Wy, VIK € Px for every finite elemenK, where
Pk is a vector space of finite dimension. Usual is a space
of polynomials This is of practical importance in computing the
matrix of the system. We shall see later that it is of theoakti
importance as well. Observe for the moment thadf consists
of polynomials, then we automatically have tiat ¢ H(K) or
Pk c H2(K).

(i) By Theorem[ZR\V, c C(Q) implies thatVy, c H(Q) and by
Exercisd 31V, c CLQ) implies thatV, ¢ H(Q). Thus we must
choose groper basis for the “local” spaces P such that these
“global” inclusions hold.

(iif) There must exist at least one bagig} of Vi, which consists of
functions with “small” support.

We bear these points in mind when constructing examples ité fin
elements. Before we proceed we need a few definitions.

35
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Definition 4.1. An n-simplex is the convex hull iR" of (n + 1) points

{aj)*] such that ifa; = (aj);_, andAis the matrix

a1 &2 ... AQn+l
(4.1) A=| :
anl Gn2 ... ann+l
1 1 ... 1
then detA # 0.

The above definition generalises the notion of a triangledonen-
sions. Geometrically the condition det# O simply means that the
points{aj}'j‘:l1 do not lie in the same hyperplane. For Ads equal to,
by elementary column operations, the determinant of theixnat

(au1—ain+1) --. (Bun—aine1)

(@ —ann+1) .- (Bnn—annea)
and that this is non-zero means that ¢ an.1),...,(@8, — ans1) are
linearly independent vectors IR", which is the same as saying that
ai,...,ans1 do not lie in the same hyperplane.

Definition 4.2. Let {aj}’j‘:i be ( + 1)-points inR" satisfying the condi-
tions of definitiorZ1L. The barycentric coordinates of any R" with
respect to these points are numbp!rﬁ?ﬁ such that

n+1
X= 3 4jaj,
j=1
(4.2) ey
1=3 24;.

=1
The barycentric coordinates exist because they are mérelgam-

ponents of the unique solution vectarof the system ofrf + 1) linear
equations inff + 1) unknowns given by

Al = (71) where X =

X1

Xn
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The functionst; = 1j(x) are all dfine functions of. Also 1j(a;) =
dij, wheres is the Kronecker symbol. 37

Remark 4.1.Given points{aj}?:% as in the definition[{4]1), the corre-

spondingn-simplex is given by

n+1 n+1
K= x:Z/ljaj; Oﬁﬂjgl; Z/lj:l .
=1 j=1

Definition 4.3.Let k > 0 be an integer. TherRy is the space of all
polynomials of degre& kin x,. .., Xn.

We now proceed witlexamples of finite elements.
Example 4.1.Then-simplex of type (1).

Let K be ann-simplex. LetPx = Pi. We define a sepx =
{p(&);1 <i < n+ 1} of degrees of freedoffior p € Py, where{ai}{jll
are the vertices oK: The set} x determines every polynomial ¢
Pk uniguely. For, note that dinfPk = dimP; = n+ 1. Consider
A1, ...,Ans1 € P1, the barycentric coordinate functions. These are lin-
early independent sincg axAx = 0 implies that its value at each vertex
is zero. Sincelx(aj) = dk; we get thatej = O for all j. Thus these

functions form a basis fdP;. Let us write

n+1

p= Z aid;.
i=1

Then

n+1 n+1

p(a;) = Zaiﬂi(aj) = Za/iéij = aj.
i=1 i=1

Thus,

(4.4) p=> p@)a.
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Example 4.2.Then-simplex of type (2).
Let K be ann-simplex with verticeqa;};. Letajj(i < j) be the 38

mid-points of the line joiningy anday, i.e.ajj = %(a; +aj).

a

a

azs
az

Figure 4.1:

Let Px = P,. We define forp € P, the set),x = {p(&),1 <i <
n+1;p@j).1 <i < j < n+ 1} of degrees of freedomAgain 3«
determinesp € P, completely. To see this note that d = (";7) and
there are as many functions in the §8{24; 1), 1 <i < n+1;44;,1 <

i < j<n+1}. There are all functions iR,. Further since

sif i=kor j,
Ai@) = 6ii, Ai(agi) = 2 .
@) = 9ij. (@) {0 otherwise,
we see again that these are linearly independeRg.iet us write
n+1
p= Zaifli(zfii -1+ Z BijAid;.
i=1 I<i<j<n+1l
Then
n+1
p(ax) = Z @ioik(20ik — 1) = ax.
i=1
Further,

plaw) = ) ai(243(aw) — 4i(a))
i=1



i # ]. Letgjk =

. Examples of Finite Elements

+ Z Bij i (@) A (a)-

I<i<j<n+1

n

But sinceqi(ay) = 0 or % the first sum}, is zero. Further,
i=1

2 if (i,)) = (k1) or (.,K),

0 otherwise.

Ai(a)dj(aa) = {

HenceBy = 4p(ayx). Thus we have

n+1

(4.5) p= Z (24 - L)p(ay) + Z 42, p(a;).
i-1

I<i<j<n+1

Example 4.3.Then-simplex of type (3).

Let K be ann-simplex with vertices{a;}i”;fll. Let ajj =
a +aj + a
3

fori<j<Kk.

Figure 4.2:

SetPk = P3. Definethe set of degrees of freedom

Z={p(a;),1sign+1; paij), 1<i#j<n+1;
K

p(aijk). 1Si<j<ksa+1}.

39

2a; + a;

39
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Note thatl;(ajj) = %: Aj(&ij) = %; Maij) =0if 1 #i0,1# j;
(@) = 1 if 1 =1i,jorkand O otherwise, etc. Using these, one
checks the linear independence of the functions
{BH-1EU-2), 1<i<n+1; 4B -1), 1<i#j<n+1;

AAd<i<j<ksn+1f.

These then form a basis fB%, for there are as many functions in the
above collection as difRgx. Using the values aof; at the special points
described above, we get

n+l o o o
p= 3 A 12)(34. 2,

()
i=1

(46) b3 SAEN - Dptay)

I<i#j<n+l
2744 A p(aijk)-
I<i<j<k<n+1

Thus x completely determinep € Ps.

The points ofK at which the polynomials are evaluated to §&t
are known as thaodes of the finite elemenThe set) k is the set of
degrees of freedom of the finite element.

Exercise 4.1 Generalize these ideas and describertisanplex of type
(k) for any integek > 1.

We now show how these finite elements may be used to define the

spacevi,.

First of all we show the inclusio, c C°(Q). Consider for instance
a triangulation byn-simplices of type (1). Number all the nodes of the
triangulation by(b;}. Let us definey, = {p(b;); b; is a node.: This is
the set of degrees of freedom of the spage ¥ functionv in the space
Vh is, by definition, determined over eakhe t, by the values/(b;) for
those nodes; which belong toK.
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Let us examine the two-dimensional case, for simplicityK{fand
K, are two adjacent triangles with common side (cf. Fig.[43), we
need to show that|K; = v|K; alongK’ for anyv € V,. Lett be an
abscissa along.’.

b3

b, t b

Figure 4.3:

41
Now v|K1 alongK’ is a polynomial of degree 1 in So isv|K; along
K’. Butthese two agree at the nodesdnd k. Therefore, they must be
identical and hence the continuity wfollows.
This argument can be extended to any simplex of tye These
simplices, by Theorerid.2 yield the inclusidf ¢ H1(Q) and hence
we may use them for second order problems.

Exercise 4.2 The triangle of type (3.

Let K be a triangle inR2. DefineY« to be the values op at the
points{a;, 1 < i < 3}, and the pointga;j,1 <i # j < 3}. If we define
P, = {p € P3; 12p(aszs) + 232 ; p(&) — 3 %ix P(aij) = O}, then show
that} x uniquely determineg € P; = Px. Further show thaP, c P%.

We now relax our terminological rules about “triangulagbrand
admit rectangles (and in higher dimensions, hyper rectsngt hyper-
cubes) in triangulations. We describe below some finite efeémwhich
are rectangles.

We need another space of polynomials.
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Definition 4.4.Letk > 1 be an integer. Then

Q=P = > &, i .. x]
O<ij<k
1<j<n

42
We have the inclusionBy ¢ Qx C Pnk.

Example 4.4.The Rectangle of type (1).

Let K be the unit square i&®?, i.e., K = [0,1]". LetPx = Q.
The set of degrees of freedom is given By = {p(a;),1 < i < 4}; cf.
Fig.[Z3 in the casa = 2.

(x2)

a4 /613
/
ral ,02‘ > (x1)
Figure 4.4:

To show that} k indeed determinep € Qi uniquely we adopt a
different method now. (There are essentially two methods to shatv
>k completely determinePy; the first was used in the previous ex-
amples where we exhibited a basis Ry such that the corresponding
codficients in the expansion gf in terms of this basis came frok;
the second is illustrated now).

Observe first that difRx = card} x = 2". To determine a polyno-
mial completely in terms of the elements ¥k we must solve 2linear
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equations in as many unknowns. That every polynomial isrohéted
this way is deduced from the existence of a solution to thétesy. But
for such a system the existence and uniqueness of the soargaequiv- 43
alent, and one establishes the latter. Thus we show thmat iPx such
that all its degrees of freedom are zero, the 0.

Returning to our example, consider a polynonpa¢ Q1 such that
p(a) = 0forall 1 <i < 4. On each sidg is a polynomial of degree
1 either inx; alone or inx; alone. Since it vanishes at two points, the
polynomial p vanishes on the sides of the square. Now consider various
lines parallel to one of the axes. Here tpds a polynomial of degree 1
in one variable only. Since it vanishes at the points whezditie meets
the side, it also vanishes on this line. Varying the line weme dl.

Example 4.5.The Rectangle of type (2).
Again consider the unit square (or hypercub&i to be the finite

elementK. SetPx = Qo, andYx = {p(&),1 < i < 9} where theg; are
as in the figure below.

(x2)

as ® o8
:
1
1
Iag
A3 @ ========= -?- --------- @ o
1
1
1
1
r ¢ o——> (1))
a as a
Figure 4.5:

Here again one can prove the unisolvency as above. Nowde,
be given such thap(a)) = 0 forall 1 < i < 9; thenp = 0 on the four

Litis not necessary to restrict ourselves to a square. Arigmgte with sides parallel
to the coordinate axes would do.
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sides and on the two central (dotted, in Fig] 4.5) lines. Naketlines
parallel to one of the axis anglvanishes on each of these. Thus 0
onK and we get thaf x uniquely determineg € Q.

Exercise 4.3 Describe the rectangle of type (3) and generalize to hyper-
rectangles of typek].

Exercise 4.4Prove that in all the preceding examples, we Yggtc
Cco(Q).

Exercise 4.5.The Rectangle of type (R

LetK be as in example4.5. However omit the naddthe centroid
of K). Let Yk = {p(&),1 < i < 8} and show that this determines
uniquely a function in the space

4 8
Pk = {p € Qo 4p(ae) + ) p@) -2 ) plai) = 0}-
i=1 i=5

and thatP, c Pk.

We now turn to diferent types of finite elements. Theyfdr from
the preceding ones in the choice of degrees of freedom adevidleen
presently.

Example 4.6.The Hermite Triangle of Type (3).

Let K c R? be a triangle with verticegay, ay, ag). LetAj, 1 <i < 3,
be the barycentric coordinate functions. Then one can ctieatkany
polynomial p € P3 = Pk can be expanded as

3
p= (=247 + 317 - TA1oAg) (&) + 271 A2 A3pP(229)
=

3
+ > D Aidi(24i + 4; - 1) Dp(@)(@; - &).
i
Thus,Yx = {p(&),.1<i < 3;Dp@)(aj—a),1<i# j<3;p(as)}
is the corresponding set of degrees of freedom.
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Note that Dp§) is the Frechet derivative gb evaluated ag;: If
(e1,...,€n) is the standard basis f&", then forv : R" — R, we have,

DV)(X)(g) = g—)\:i(x), the usual partial derivative.
Notice that we may replacgy by the set

S [y 1<ica P, 0P, .
ZK: = {p(a.), 1<i<3;p(arz3); (9_X1(a')’ 6_X2(a')’ 1<i< 3}.

Remark 4.2.The term ‘Hermit€ means that we assume knowledge of
derivatives at some of the nodes. If only the valuep af the nodes ap-
pear in the set of degrees of freedom, as was the case uptooiefd,
we refer to the finite elements as dfdgrangé type. These ideas will
be made precise in Sdd. 5. We usually indicate degrees afdineén-
volving derivatives by circling the nodes - one circle fosfiderivatives,
two for first and second derivatives and so on. Thus the fihément

of exampld_416 may be pictured as in Higl4.6.

ai

®ayn3

®q,
a

Figure 4.6:

Exercise 4.6.The Hermite Triangle of Type (B
This is also known as thgienkiewicz trianglein Engineering lit-

erature. Sepx = {p(aa),@(ai),@(a;),ls i < 3}. Show that ¢
0X1 %o

uniquely determines a function in the space

3 3
Pk = {p € P3; 6p(aszs) ~2 ) pla) + ) Dp(@)(a - auz3) = 0}.

i=1 i=1
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All examples cited upto now yield the inclusiafy, ¢ C(Q) and 46
consequently are useful to solve second-order problemsorder to
solve problems of fourth order, we need the inclusigre C1(Q). Our
subsequent examples will be in this direction.

Remark 4.3.Consider a 1-simpleK c RL. A triangulation is merely

a subdivision o2 into subintervals. In any subintervil not only viK

d(viK . .
but also% must be continuous at both end points. Thus we get

4 conditions onviK. ConsequentlyPx must contain all polynomials
of degree 3 in it. The analogous result (which is non-trjvial due

to A. Zenidek [24] that is case @2, andK a triangle ofR?, at least

polynomials of degree 5 must be containedPjn

Example 4.7.The Argyris triangle.
This is also known as th21-degree-of-freedom-triangleWe set
Pk = Ps and

; —{p(a), 8X1(a')""’axg(a')’ 1<i<3;

a—p(a”-), 1sisj§3}.
ov

Figure 4.7:

47 The knowledge of the normal derivativ%E is indicated by a line
perpendicular to the side at the appropriate Eoint; cf.BElg.
We now show that anp € Py is uniquely determined by . Let
p € Px = Ps be given such that all its degrees of freedom are zedg! If
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is any side oK andt is an abscissa alorl§’ thenp|K” is a polynomial
2
p1(t) of degree 5. The vanishing @f %) d—f at the end points, say,

b’, of K’ imply that all the 6 cofficients ofp; are 0 and hencp; = 0

Thusp=0= %’ onK’. The polynomiak(t) = g—p(t) is of degree 4 on
4
, N dr o dr o (b+b)
K’ and we also have(b) = r(b') = dt(b) = dt(b) = r( > ) =0

which imply thatr = 0 onK’. Hencep, (;97p (;97p all vanish on the

sides of the triangl&k. The sides oK are hefinczed by the equations
Ai(x1, %2) = 0, (i = 1,2, 3) wherey; are the barycentric coordinate func-
tions. We claim thaﬁ? dividespfori = 1,2,3. To see this it is enough
ap ap
' 0%z

straight lineL = {(X1, X2); A(X1, X2) = then/l2 d|V|desp In the special
case, whem(xy, xo) = X1 writing p(xl, X2) = ¥3_0aj(x2)x; (with deg.
a; < 5-j) it follows thatag(x2) = a1(x2) = 0 sincep = ;9_)2 =0on
L. Thusxi divides p. The general case reduces to this case byffamea
transformation. In fact, by translating the origin to a gdh fixed ar-
bitrarily on L and by rotation of the coordinate axes we can assume that
L = {(X1, X2); X1 = 0} in the new coordinates. I is the image ofp
under this transformation thepi is also a polynomial (of degree 5) and

, ap/ Cf)pl

"Xy 9%
videsp'. This is the same thing as sayingdivides p which proves the
claim. Sincel; are mutually coprime we may now wrie= 151513.
Then we necessarily haggx;, x2) = 0 for, otherwise degp > 6 which
is impossible sincg € Ps. Hencep = 0 on K which proves thaf
determine9 € Ps.

To define the corresponding spagg we number all the vertices of

the triangles byb;} and all midpoints of the sides Hg«}. Thethe set
of degrees of freedom of the spageiy/ 48

ov 0%V 0%V 0%V ov
;—{vao) g O g 1) G0 ZoT 00 S50 5 (k)}

to prove that ifp is a polynomial such thab vanish on any

vanish orL by chain rule for diferentiation. Hence(f di-
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Whereaivk is one of the two possible normal derivatives at the mid-poin
Ck.

We now show that,, c C1(Q). Consider two adjacent Argyris trian-
glesK; andK, with common boundarK’ along whicht is an abscissa
(Fig.[£3). Letv € V. NowV|K; andv|Ks are polynomials of degree 5 in
t alongK’ and they agree together with their first and second deramtiv
at the end points. ThugK; = v|K, onK’, proving continuity.

A(VIK o(VIK i
Now (\(/9|v 1) and (Vlv 2) along K’ are polynomials of degree 4

agreeing in their values with first derivatives at end poartd agree at

the mid-point in their values. ThidVKL) _ IK2)

IMK1) _ H(vIK2)
ot ot

onK’. Similarly,
y ov

onK’ and hencer € C1(Q). ThusV;, c C1(Q).

Figure 4.8:

Exercise 4.7.The 18-Degree-of-Freedom-Triangle
Let K be a triangle inR?. Let Pk consist of those polynomials of
degree< 5 for which, along each side df, the normal derivative is
a polynomial of degreec 3, in one variable of course. Show that a
polynomial inPg is uniquely determined by the following set of degrees
of freedom:
2
3 - {p(eu),%p(aa),---,a—g(a),ls i< 3}.
K 1 9%,

Note thatP, c Px and dimPx = 18.
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Exercise 4.8.The HCT-Triangle.

This element is due to Hsieh, Clough and Tocher.d ¢ any inte-
rior point of the triangleK with verticesa;, ap, az. With aas common
vertex subdivide the triangle into triangl&s, K, Ks; cf. Fig.[49. De-
fine

Pk = {pe CYK); PIKj e P3, 1<i<3].

Obviously,P3 c Px. The degrees of freedom are given by

_oay 2Py 9P S o
ZK: = {p(a), axl(al), axz(a),ls i <3; av(aj),ls i<j< 3}.

Figure 4.9:

Show that} k uniquely determineg € Pg.

Note: Since we have to determine 3 polynomigds= p|K; each of

degree< 3, we need to determine 30 dheients on the whole. For this
we have the following conditions:

() The values at the vertices together with first derivatiead also
the normal derivative at the mid points give 7 conditionsdach
pi = pIK;. Thus we have 21 conditions from these.

(i) p1(a) = p2(a) = ps(a) gives 2 conditions.

ops
0%

op2
0%

ops
aX]_

(i) —>=(a) = —-=(a) =

(a) fori = 1,2, gives 4 more conditions. 50
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.0 0 . i .
(iv) % = % alonga;a and two more similar conditions give 3
conditions.

Thus we have 30 conditions to determine the 30flotients. But,
of course this is no proof, which is left as an exercise!

Exercise 4.9.The Bogner-Lox-Schmidt Rectangle; cf. Hig.-4.10.

p
aq N as

ay a
Figure 4.10:

Let Pk = Qs, the degrees of freedom being given by

%p
(9X18X2

_Loa). 2Py 9P . -
> —{p(eu), 7 @ @) (@), 1sus4}.

K

Show that)x determines uniquely a polynomiale Q3 (a double

dotted arrow indicates that the mixed second derivativedegree of
freedom). Show also that in this cagec C1(Q).

So far, we have verified requirements (i) and (i) mentionetha
beginning of this Section. Let us now examine requiremeni \(thich
will be fulfilled by a “canonical” choice for the basis funatis. Let},
be the set of degrees of freedom of the spég@eerived in an obvious
way from the set$ k, K € f,; Examples of such setg;, have been

51 given forn-simplices of typeK) and for Argyris triangles. Then if

Zz{gojh,lﬁjSM},

h
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we let the basis functions;j, 1 < j < M, be those functions in the space
Vi, which satisfies
(,Di(Wj) = 0jj, 1< i <M.

Then it is easily seen that this choice will result in funogowith
“small” support: in Fig[ZTl1, we have represented theresypf sup-
ports encountered in this fashion, depending upon theipositf the
node associated

support of basis
function associated
with node b,

support of basis
function associated
with node b

2

support of basis
function associated
with node b3

Figure 4.11:

with the degree of freedom.






Chapter 5

General Properties of Finite
Elements

IT WOULD HAVE been observed that upto now we have not defined¥
nite elements in a precise manner. Various polygons lieagles, rect-
angles, etc. were loosely called finite elements. We retttisffomission
and make precise the ideas expressed in the previous section

Definition 5.1. A finite element is a tripleK, Z, P) such that
(i) K c R"with a Lipschitz continuous bounda#K and IntK # ¢.

(i) X is afinite set of linear forms ov&>(K). The sek is said to be
the set of degrees of freedom of the finite element.

(i) P is a finite dimensional space of real-valued functions d<er
such that is P-unisolvent: i.e. iff = {¢}}Y, ande;, 1<i <N
are any scalars, then there exists a unique fungiierP such that

(5.1) ei(p) =ai, 1<i<N.

Condition (iii) of definition [51) is equivalent to the catidns that
dimP = N = cardX and that there exists a set of functic{rpﬁ}'.\':l with
¢i(p;) = 6ij(1 < i, ] < N), which forms a basis dP overR. Given any

53



53

54 5. General Properties of Finite Elements

p € P we may write

N
(5.2) p= > ¢i(Pp.
i=1

Instead of K, >, P) one writes at timesK, Y.k, Px) for the finite
element.

In the various examples we cited in Sgc. 4 our set of degrefesaf
dom for a finite elemeriK (which was am-simplex or hyper-rectangle)
had elements of the following type:

Type 1: ¢? given byp — p(a°). The points{a’} were the vertices, the
mid-points of sides, etc...

Type 2: ¢}, given by p — Dp(&')(&l,). For instance, in the Hermite
triangle of type (3) (cf. Examp[e4.6), we hati= a;, fil’k = gj—a,
whereay, ay, ag were the vertices.

Type 3: ¢, given by p = D?p(a?)(é7, 7). For example, in the 18-
degree-of-freedom trianglef = &, &7, = e = £, the unit vec-

2

tor in the x;-direction so that we hav®?p(a)(ey, 1) = %(ai)
X

as a degree of freedom. (cf. Exerdisd 4.7).

In all these cases the poirﬂaf} for s= 0,1 and 2, are points df
and are called throdes of the finite element.

Definition 5.2. A finite element is called a Lagrange finite element if its
degrees of freedom are only of Type 1. Otherwise it is callefamite
finite element. (cf. Remaik3.2)

Let (K,Z, P) be a finite element and : K — R be a “smooth”
function onK. Then by virtue of thé>-unisolvency of%, there exists a
unigue element, sagyv € P such thatpj(nv) = ¢ij(v) forall1 <i < N,
whereX = {goi}i'\i 1+ The functionzv is called theP-interpolate function
of v and the operatorr : C*(K) — P is called theP-interpolation
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operator. If{pj}g\‘:1 is a basis forP satisfying¢i(p;) = ¢ for 1 < i,
j < N then we have the explicit expression

N
(53) ()= > @l)p.
i=1

Example 5.1.In the triangle of type (1) (see Examfile4.P,= Py,
Y =A{¢i;¢i(p) = p(a), 1 <i < 3} andp; = 4, the barycentric coordinates4
functions. Thus we also have

3
(5.4) V=) V@)

i=1
Exercise 5.1LetK be a triangle with verticea, a, andag. Leta;;(i <
J) be the mid-point of the side joining anda;. DefineXx = {p —
p(aj), 1 <i < j < 3}. Show that is Pi-unisolvent and that in general
Vi ¢ CO(Q) for a triangulation made up of such finite elements.

Exercise 5.2Let K be a rectangle ii? with verticesay, a,, ag, as. Let
as, ag, a7, ag be the midpoints of the sides as in HIgJ4.5X1E {p —
p(a),5 < i < 8}, show tha is notQ:-unisolvent.

Let us now consider gamily of finite elements of a given type. To
be more specific, we will consider for instance a family cérigles of
type (2) (see Example4.2), but our subsequent descriptxtesnd to all
types of finite elements in all dimensions.

Pick, in particular, a triangldﬁ with vertices{&y, &, 3} from this
family. Let the mid-points of the sides B o, &3, 813} SetP = P =
P> and define accordingly the associated set of degrees ofoireéar
K as

Z:ZZ{pHp(ai),lsis& p- p&j).1<i<j<3h.
R

In as much as we consider the finite elemdty, P) as fixed in the
sequel, it will be called thesference finite elemenf the family.

Given any finite elemeniK with verticesay, ap, ag in this family,
there exists a unique invertiblefme transformation oR? i.e. of the
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form Fx(X) = BkX + bk, whereBg is an invertible 2x 2 matrix and

55 bk € R?, such thatFx(K) = K andFx(&) = &, 1 <i < 3. Itis
easily verified thaFg(&;) = a&; for 1 <i < j < 3. Also, the space
(p:K>R;p=po Fgl, p € P} is precisely the spadex = P,. Hence
the family {(K, X, P)} is equivalently defined by means of the following
data:

(i) A reference finite element( <, P),

(i) A family of affine mappinggFk} such thatFx(K) = K, a =
Fr (&),

1<i<3 & =Fk(&),1l<i<j<3 and
Zk = {p p(Fk(&)); p— p(Fk (&)},
P« ={p:K >R, p=poFzt, peP).
This special case leads to the following general definition.

Definition 5.3. Two finite elements K, X, P) and K,X,P) are dfine
equivalent if there exists arffane transformatiorr onR" such that

() F(X) = BX+ b, beR", Ban invertiblen x n matrix,
(i) K =F(K),
(i) a¥=F(&),s=0,12,
(V) &y = Bély, & = Bé, & = B&,
and
(v) Pip:K—R; p=poFL peP)
This leads to the next definition.

Definition 5.4. A family {(K, Zk, Px)} of finite elements is called an
affine family if all the finite elerr)entsI(,ZK, Px) are equivalent to a
single reference finite elemer (X, P).
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Let us see why the relations given by (iv) must be preciselthaf
form. We have by (v)p(x) = p(X). This must be valid when we use the
basis functions as well. We have:

Aoy a0y a0/¢ araly 2l Vol (o
BR) = > AR + > DPENE)PL()
i ik
+ > D?PE))ER E2) PR
ik

Now Dp(a!)(l,) = Dp(a!)BE}, by a simple application of the chain

rule and therefore

DPA@E)(EL) = Dp@E)& by (V).
By a similar treatment of the second derivative term, we get

PR = > PP’ + > Dp@ENEEI P
i,k

+ > D?p(a)(Ex £8P (X) = PY.

ikl
Thus the relations (iv) and (v) are compatible.

Theorem 5.1. Let (K, £, P) and (K, £, P) be gfine equivalent with g
as theaffine transformation. I : K — R inducesv': K — R hy
U(X) = v(x) for X € K, (X = Fk(X)), thenav = 70.

Proof. LetS = {¢i}N,, 2 = {gi}N,. By definition,
Gi@V) = ¢i(av) = ¢i(v), L<i <N §i(@0) = ¢i(¥) = ¢i(v), 1<i <N.

Thus,¢i(7V) = ¢i(7Vv) for 1 < i < N. HencerV = 7v by uniqueness
of the functiona¥. o 57

Let us consider a polygonal domanhwith a triangulationt,. Sup-
pose to eacK e ty, is associated a finite elemenk, £k, Pk), Zk being
the set of degrees of freedom, aPd the finite dimensional space such
thatXk is Pk-unisolvent. Then we have defined the interpolation opera-
tor k. All these make sendecally i.e. at a particular finite elemet.
We now define thglobal counterparts of these terms. The comparison
is given in the following table.
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Table 5.1.

Local definition

Global definition

1. Finite elemenkK.

2. The boundary oK, oK.

3. The spacd’k of functions
K — R, which is finite-
dimensional.

4. The setyx = {giklY, of
degrees of freedom df.

5. Basis functions oPx are
{pi,K}i’\il'
6. The nodes of K are

{&,al,a2,.. ).

7. nk is the Pg-interpolation

operator,  defined by
vik (V) = @ik (V), for all
PiK € 2k-

Theseb= |J K
K=ty

The boundary of2, 0Q =T.
The spaceV, of functions
Q — R, which is also finite-
dimensional.

The set of degrees of free-
dom ¥ = {@i}Y,, where
#i(PIK) = @ik (PIK).

Basis function oW, are{w;}.

The nodes ofy, are by def-

inition, |J {Nodes ofK} =
Keth

U{b;} say.

The Vy, interpolation opera-

tor m, is defined byryv €

V} such '[hat,goi,K(ﬂhV|K) =

@ik (VIK) for all ¢jk € Y-

Notice that, by definition,

(5.5) V)K= 7k (VIK)  for all

K € th.

It is this property and the conclusion of theor€éml5.1 that
essential in our future error analysis.

Definition 5.5. We say that finite element of a given type is of class
C, resp. of class G, if, whenever it is the generic finite element of a
triangulation, the associated spagesatisfies the inclusiod;, ¢ CO(Q),
resp.Vi, ¢ C1(Q). By extension, driangulation is of class €, resp.of
class C if it is made up of finite elements of clag¥, resp. of clas€?.

Reference:A forthcoming book of Ciarlet and Raviaftl[5].



Chapter 6

Interpolation Theory Iin
Sobolev Spaces

WE OUTLINED THE internal approximation method in SEL. 3. We as59
naturally interested in the convergence of the solutighg Vj, to the
global solutionu € V. As a key step in this analysis we obtained the
error estimate (cf. TheorelnB.1):

(6.1) lu=unll < C inf [ju— vyl
VheVh

To be more specific let us consider an example. GiRea R? a
polygon, consider the solution of the following problem,igis there-
fore posed in the spasé = H}(Q):

(6.2)

-Au+au=f in Q,
u=0onT.

Let t, be a triangulation of2 by triangles of type (1), (2) or (3).
Thenup € Vi, € H3(Q) and [E1) reads as

(6.3) lu—UnllLe < C inf JJlu—VhllLa.
VheVh

We know ‘a priori’ thatu € Hcl)(Q). Let us assume for the moment
thatu € C%(Q). (Such assumptions are made possible by the various

59
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regularity theorems. For instance,e H2(Q) c CO(Q) if f e L2(Q)
and Q is a convex polygon). I € Co(Q), then we may define the
Vh-interpolate ofu, i.e., mmu by mu(b;) = u(b;) for the nodes; of the
triangulation. Note also thathulx = mxu (cf. (&3)). Now from [G.B)
we get,

lu = Unll1.o < Cllu—mullLe

2
=C| " lu—mul

| Ketp

_ 1
2
-C _ 2
= llu 7TKU||1’K

| Keth

1
2

Thus the problem of estimatifig— unl|1.c is reduced to the problem
of estimating|u — g Ull1.k. This is one central problem in the finite ele-
ment method and motivates the study of interpolation theo8obolev
spaces.

We consider more general types of Sobolev spaces for thegcare
more complicated for this purpose than those defined in[$ec. 2

Definition 6.1.Letm > 0 be an integer, and ¥ p < +oo. Then the
Sobolev spac®/™P(Q) for Q c R", open, is defined by

W™P(Q) = {ve LP(Q); °ve LP(Q) forall |of <mj.
Remark 6.1. H™(Q) = W™2(Q).
On the spac&V/™P(Q2) we define a nornff - [lnp.o by

1/p
(6.4) IMImpa = [L Z |5aV|de}

lal<m

and the semi-norm: |mp.o by

1/p
(6.5) Mmpo = [ fg Z |a“v|de}

|er|=mm)
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If k > 1 is an integer, consider the spad&+-P(Q)/Py. If v stands
for the equivalence class ufe WK*1-P(Q) we may define the analogues

of €4) and[[6b) respectively by

(6.6) IMlks1,p0 = Inf [IV+ Plikszpo

pePk
and 61
(6.7) |V|k+1,p,Q = [VIk+1,p,0-

These are obviously well-defined alhd|.1,p.o defines the quotient
norm on the guotient space above. We then have the followiyg k
result, whose proof may be found in NeCas [20] for instance.

Theorem 6.1. In W*LP(Q)/Py, the semi-normvix,1,p.0 iS @ Norm
equivalent to the quotient noriivll;1p.0, i.€., there exists a constant
C = C(Q) such that for allv e WKLP(Q) /Py

(6.8) |V|k+l,p,Q < ||V||k+1,p,Q < C|\./|k+1,p,Q-
Equivalently, we may state

Theorem 6.2. There exists a constant € C(Q2) such that for each
v e WKLp(Q)

(6.9) inf. IV + pllk+1,p.e < CViksizpa-
pe Pk

(Note: This result holds if2 has a continuous boundary and if it is
bounded so tha®, c WK1P(Q).)
We now prove the following

Theorem 6.3. Let WLP(Q) and W™9(Q) be such that W1P(Q) —
W™M4(Q) (continuous injection). Let € .Z(WKL, p(Q), W™4(Q)), i.e.
a continuous linear map, such that for eack Px, 7p = p. Then there
exists C= C(Q) such that for each ¥ WK*1P(Q)

IV —Vimg.a < Clll = 7tll ook, pry wmagay) Vike1,p,.0

62
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Proof. For eachv € WK*LP(Q) and for eactp € Py, we can write
v—nv=(-n)(v+ p).
Thus,
IV—7mVimge < [IV- Vlnga
= Il = 7ll zowisr.p (@) wmagy IV + Pllk+1,p.02;

for all p € Pk. Hence,

IV —7Vimge < Il = 7l 2 owk1p() wma(q) gQFf’k IV + Pllk+1,p.e
< |CIII = 7l w1y wmaga)) Mk 1,p.o
By theoren{ &P, this completes the proof. |

Definition 6.2. Two open subsetq, Q of R" are said to beffine equiv-
alent if there exists an invertibldfane mapF mappingxto BX+b, B an
invertible (h x n) matrix andb € R", such thaf(Q) = Q.

If Q, Q are dfine equivalent, then we have a bijection between their
points given byx’e x = F(X). Also we have bijections between smooth
functions onQ andQ defined by ¢ : Q@ — R) & (¥ : Q — R) where
v(X) = U(X).

The following theorem gives estimates [@fn p.0 andl\“/lmpﬁf2 each
in terms of the other.

Theorem 6.4. Let Q, QO c R" be gfine equivalent. Then there exist
constants CC such that for all v« W™P(Q)

(6.11) Umpa < CIIBIMIdetB ™ Pivimpo

and for all ¥ € W™P(Q))

(6.12) Mmpa < CIIB™HI™ detBl"Plil,, ,a-

Note:
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(i) It suffices to prove eithe{E1L1) dr{E]12). We get the other by
merely interchanging the roles 6f andQ. We will prove the
former.

(i) |BJ is the usual norm of the linear transformation definedghy

viz. ||B|| = supM. (Recall thatF (Q) = Q, F(X) = B+ b).

xeR" [IX]|
x#0

Proof. Let {ey, ..., &4} be the standard basis f&". Leta be a multi-
index with |a| = m. By choosing a suitable collectiof@y,, ..., emn}
with appropriate number of repetitions from the basis, wg mate,

@*9(R) = (D™ (N)(E1a: - - - » €ma):

whereD™ is them™ order Fréchet derivative afdndD™(X) is conse-
quently anm+linear form onR". Thus,

10U < IDTUR)| = ”?llll_lii ID™R)(1s - - - Em)l.

1<ism

Since this is true for alk] = m, we get

1/p
613 fnga<Cs( [[IDN@IPAR) < Catt o

The first inequality is a consequence of our preceding argtime
The second follows by a straightforward argument. By coritjposof
functions in diferentiation:

(6.14) D™(R)(L, - - -, €m) = D™V(X)(Béy, . .., Bém);

This gives 64
(6.15) IR < ID™)I 1B]I™.

Hence the first inequality if.{6.]13) may be rewritten as

917 o < C1IBI™ fg ID™V(F (R))IPdS
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=CfI|BIImpIdetBI‘1fIIDmV(X)IIde
Q
< CP||B|™P detB| Vim p.o-

by an inequality similar to the second inequality BE(6.1Baising to
power 1 p on either side we gef{6.111). This completes the proofo

We now estimate the norni8)|| apd||B‘1|| in terms of the ‘sizes’ of
Q andQ. More precisely, i, (resp.h) the supremum of the diameters
of all balls that can be inscribed @, (resp.Q2), we have the following:

Theorem 6.5. B < h/p, and |IB™Y| < h/p.

Proof. Again it sufices to establish one of these. Now,

Bl = SUP(%IIBfll)-
léli=p \P
Let¢ € R" with ||€]| = p. Choosey;'2 € Q such that = §— 2 Then
B¢ = By— Bz=y—z whereF(9) =y, F(2) = z Buty, ze Q and hence
Ily — 2| < h. Thus||B¢|| < h. Hence||B|| < h/p, which completes the
proof. m|

We conclude this section with amportant, often used, result.

Theorem 6.6. Let (K, £, P) be a finite element. Le(s 0,1 or 2) be
the maximal order of derivatives occurring Ih Assume that:

(i) WKLP(K) < C¥(K)
(i) WKEP(K) < WMI(K)
(i) Py c P c W™I(K)
Then there exists a constant-€C(K, £, P) such that for all #ine

equivalent finite element, =, P) we have

k+1
K
m |V|k+1, p.K

K

for all v e WKLP(K), where Ix is the diameter of K angy is the
supremum of diameters of all balls inscribed in K.

(6.16) IV — mkVimgk < C(meas Iﬁé‘%
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Proof. SincePy c P, for any polynomialp € Py we haverp = p. We
may write

70 = Z W) PP + Z(Dv(a})(f, )P

(6.17)
=+ Z:(Dzﬂ\/(a1 )(f, k"f| |))p| kI
ikl

all these sums being finite (the second gnd thirdA may or mfil)baot
present). We claim that ‘e LWk, p(K),W’“q(AK)). SinceP c
WMA(K) all the basis functions if.{€.117) are W™4(K). Thus,

i¥llmgk < ZM O 1Bmqk
(6.18) +Z|Dv( LG [ oA

+ Z ID?U(&)Ex e ) 1Bl
ikl

SinceWKLP(K) — CS(K) and all the numbers(&), etc..., are
bounded by their essential supremum oer

”ﬁ-va,q’R < C||\7||k+l’p’R'

66
Hence the claim is valid. Now by virtue of (ii) and also our ebs
vation on preservation of polynomials, we may apply thed&gto.
Hence there exist8 = C(K, X, P) such that

9 _ 20 9 5 e WKHLP(R
V= 20k < Cli, g pg for e WEHP(K).

Notice thatrV = mxv by TheoreniB]1l. Thug= 2V = v = V. Thus
if Fx(K) = K whereFg(X) = BkX + bk, we get

(6.19) V- mkVimgk < CallBHI™ detBy Y90 — 70, &
by TheoreniL.&M. Also by the same theorem

(6.20) Ve1pk < Coll Bl detBi|™P M1 pk.-
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Further| detBk| being the Jacobian of the transformation, we have

measK h ~
| detBy| = = and||B|l < =, Bl < h/pk by theoreni6l5.
measkK P

Sinceh, 5, measK are constants, combining{6]19).{8.20) and the pre-
ceding observation we complete the proof of the theorem. m|

References:See Bramble and Hilberf[28], Bramble and %Idma.l [2],
Ciarlet and Raviart 7], Ciarlet and Wagschal [8], Stran#j][ZeniSek
[23,[24] and Zlamal25,°32].



Chapter 7

Applications to
Second-Order Problems
Over Polygonal Domains

WE APPLY THE results of the preceding section in studyingdtwever- 67
gence of the finite element method, i.e. the convergencesafdhutions
un of (Py) to the solutionu of a problem P) which corresponds to the
choiceV = HY(Q) or H3(Q2), which we saw in Se€] 2 led to second-order
problems.

Let Q be a polygonal domain throughout.

Definition 7.1. A family (t,) of triangulations of is regular is

() for all t, and for eachK € t, the finite elementsK, %, P) are
all affine equivalent to a single finite elemerk, &, P) called the
reference finite element of the family;

(i) there exists a constamt such that for altty, and for eactK € ty
we have
h
(7.1) =<0
PK

wherehy, pk are as in Theorein 8.6;

67
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(i) for a given triangulationty, if

(7.2) h = maxhg,
Ketp

thenh — 0.

Remark 7.1. The condition (i) in definitiod_Z11 assures us thahas 0
the triangles do not become “flat”; cf. Exercisel7.1.

Exercise 7.1If n = 2 and the set& are triangles, show that condition
(ii) of definition[Z] is valid if and only if there exist% > 0 such that
for all t, andK € ty, 0k > 6y > 0, 6k being the smallest angle K.

Exercise 7.2 Consider the spacé, associate withy,. SinceV, is finite
dimensional all norms are equivalent and hence

IVhlo,o.0 < ChlVhloo forall vy € Vi,

for some constary, a priori dependent updm which we may evaluate
as follows: If ¢y) is aregular family of triangulations, show that there
exists a constar, independent ofi, such that

C
(7.3) Vhlowo < o5 Vhlo for vy € Vh.
Also show that there exists a const@hsuch that
C
(7.4) IVhl1.q < F|Vh|0,(2 forall vy e Vh.

We now obtain an estimate for the erfior— up||1.o when the family
of triangulations is regular, which also gives convergence

Theorem 7.1. Let (tn) be a regular family of triangulations o of
class @ (i.e. i, ¢ C%(Q)) with reference finite elemeK, >, P). We
assume that there exists an integer & such that

(i) Pk c Pc HY(K)

(i) H¥(K) & CS(K)where ¢= 0,1, or 2)is the maximal order of
derivatives in}..
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(i) ue H*1(Q) (Regularity assumption).
Then there exists a constant C (independentypiuch that

(7.5) U= Unllzo < CHUlks10.

Proof. SinceVy c CO(Q), Px c H(K), we haveVy, c V. By (ii) and 69
(i) of the hypothesis we have that thég-interpolate ofu, viz. mhu is
well-defined. Sincerpu € Vy, by our fundamental result (see Theo-
rem[31 or relation{6]1)), it $hices to estimatéu — wpull1.o. Now,
HY(K) — C¥(K),
HY(K) = HY(K) (k> 1),
Pk c P c HY(K),
and we may apply Theoreln®.6 wigh= g =2, m= 1 to get

hk+1
K
lu— kUl k < Clulke1,k

(7.6)
K : hk
< C|U|k+1,KhK (Since — < o).
PK
Similarly with m = 0 we get
(7.7) u—mkulok < Clulke1k i
These together give
(7.8) lu— Uk < Ch Uik

Now sincehk < h,

1

2
2
lu - Uil = [Z lu- nKunLK}
Ketp
2
Z |u|k+1,K}

Ketp

K
= C h*|ulk+1,0.

Nl

<CHh

This completes the proof. O
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Example 7.1.Consider triangulations by triangles of type (1). Theto
k=1P=Prandifn = 2 or 3, H3(K) — CYK). If u e HX(Q),
TheorenZIl says that

lu—UunllLo < C hulzq.

We conclude the analysis of convergence in the nprrify. o with
the following result.

Theorem 7.2. Let (t,) be a regular family of triangulations af, of
class @. Lets=0orlandlet R c P c HY(K). Then (with the
assumption that & V = HY(Q) or H}(©)) we have

(7.9 r!gg)llu —Upllie =0

Proof. Let ¥ = V n W2®(Q). Sinces < 1, W?>®(-) — CS() and
W2*(.) — H(-). The second inclusion follows ‘a fortiori’ from the
first with s = 1. Also, P; ¢ P ¢ HY(K). Thus we may apply Theorem
B8 withk=1,p=co,m=1,q=2. Thenforallve 7,

1
IV -7k VllLk < C(measK)zhVlz . k

< C(meas K)% hiVi2.c0.02-
Summing oveK, we get

1
2
IV—mVllpo <C h|v|2,oo,g{ g meas K}

Ketp
=C h|V|2,oo,Qa

since) ke, measK = measQ, a constant. Thus, for alle 7/,
(7.10) h""(]llV — Vo =0

Notice that? = V. Hence choose, € ¥ such thatlu—vollLa < €/2
wheree > 0 is any preassigned quantity. Then omngds chosen, by
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(Z10) chooséng such that for alh < hg, [[vo — mhVoll1a < €/2. Now, by
(o))

lu—UnllLe < Cllu—mvollLo

< C(Jlu—wvolla + Vo — mhVollno)
< Ce, for h<hg.

This gives [Z.B) and completes the proof. O

We now have, by TheorefT.lU — Uhloo < [lu - UpllLa = O(hK).
We now show, by another argument that- unjoq = 0(hk*1), (at least
in some cases) there by giving a more rapid convergence Kpated.
This is done by théubin-Nitsche argumerfalso known as thduality
argumen). We describe this in an abstract setting.

Let V be a normed space with norm denoted|byl|. LetH be a
Hilbert space with norm- | and inner product{-) such that
(7.11) {(') VeH, and

(i) V=H.

For second-order problem¥: = H1(Q) or H}(Q) andH = L%(Q).
SinceH is a Hilbert space, we may identify it with its dual. Further
sinceV is dense irH, we have thaH may be identified with a subspace
of V’, the dual oiV. For, ifg € H, defineg'e V' by §(v) = (g,Vv)-§ € V’
since|g(v)| < Clg| M. If §(v) = 0 for all v € V, then @,v) = O for all
v € H as well sincé/ = H. Thusg = 0. This proves the identification.
In the sequel we will seg = @. 72
Recall thatu andu, are the solutions of the problems:

(P au,v) = f(v) forall veV,
(Pr) a(un, vh) = f(vy) forall v,eVycV,

and that the assumptions dP)(@re as in the Lax-Milgram lemma. Then
we have the following theorem.
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Theorem 7.3. Let the spaces H and V satisfg.T1) Then with our
above mentioned notations,

1.
(7.12) [u— up| < M[Ju— u|l [SUp{— inf o — 90h||}] ,
geH |0 eneVh

where for each g H, ¢ € V is the corresponding unique solution of the
problem

(P aiv,¢) =(g,v) forall veV,
and M the constant occurring in the inequality giving cootty of
a(-,-).

Remark 7.2.Note that unlike in P), we solve for thesecondargument
of a(-,-) in (P*). This is called thedjoint problemof (P). The existence
and uniqueness of the solution &f] are proved in an identical manner.
Note that ifa(-, -) is symmetric, thenR) is self-adjointin the sense that

P) = (P).

Proof. From the elementary theory of Hilbert spaces, we have

(7.13) U—upl = supw.
geH |g|
g0
For a giveng € H,
(7.14) ©.u—up) = a(u - un, ¢)
Also if ¢n, € Vi, we have,
(7.15) a(u — up, ¢n) = 0.
Thus [ZI%) and{Z.15) give
(7.16) ©. u—un) = a(u - un, ¢ — ¢n),

which gives us

(9, u — un)| < MIju— unll lle — enll,
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and hence

[U—un| < MJlu—un| sup(
geH
g+0

llp —sohll)
[/

by (ZI3). Since this is true for any, € V,, we may take infimum over
V to get [ZZIP), which completes the proof. m|

For dimensions 3 and Lagrange finite elements we now show that
[U— Unloo = 0(h**1). For this we need one more definition.

Definition 7.2.Let V. = HY(Q) or H}(Q), H = L*Q). The adjoint
problem is said to be regular if the following hold:

(i) for all g € L%(Q), the solutiony of the adjoint problem fog
belongs taH?(Q) N V;

(ii) there exists a constaf such that for ally € L%(Q)
(7.17) llellza < Cldlo.qs
wherey is the solution of the adjoint problem fgr

Theorem 7.4. Let (tn) be a regular family of triangulations of with
reference finite elemerK, £, P). Let s= 0 and n< 3. Suppose there
exists an integer k 1 such that u.e H**1(Q), P, ¢ P c H1(K). Assume 74
further that the adjoint problem is regular in the sense ofibigon [Z.2.
Then there exists a constant C independent of h such that

(7.18) lu— Unloo < C K Y ulks1.0.

Proof. Sincen < 3, H%() < C(). Also, H(-) — H(:) andP; c P ¢
HY(H). Thus fore € H3(Q), by Theoreni7]1,

llp — mellia < C hel2g.

Hence

(7.19) inf [l — ¢nllia < C Hylog.
¥h€Vh
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By (Z12) and[[Z.19).
1
U= Unloo < M|lu—Upllo Sup (—Chlwlz,g)-
gel2(Q) |g|0,§2
By the regularity of P*),

(7.20) lelo.a < llellz,0
oo~ Idloo

Thus,|u - Unhloo < C hju - Unll10

< constant

< C h(hulks10)  (by theorenizll)
This gives [ZIB) and completes the proof. m|
We finally give an estimate for the error in th&-norm.

Theorem 7.5. Let (tp) be a regular family of triangulations of2 c R",
where n< 3. Assume further that for at}, and K € ty,.

h .
(7.21) O<t< TK <, frm[o]-—, 1 being a constant.
75 Let ue HZQ) and P, c P c HY(K) n L®(K). If (P*) is regular,

then there exists a constant C independent of h such that

- 00 <Chupq; fn=2
(7.22) {lu Uh0,00,0 Ul2.0

U= Uploc.o < CVhlulpq if n=3.
Proof. Assumen = 2. Now
(7.23) U — Unlo,co,0 < U — TThUlg,c0,0 + [7ThU — Unl0,00.02-
Note that sincey, — mnu) € Vi, we may apply Exercide_1.1 to get
(7.24) un — ThUlo.co.0 < %|Uh — mhulo.q-

Thus,

C
U = oo < = [lun — Ulo,q + lu - mhuloq]
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C
< +[CaPluza + Cohlulza
< Chulzq (by Theoreni-ZK¥ and TheordmB.6).

Also H2(:) < CO(); H2(:) — L®(-) andP; c P c L®(K). Thus,

by TheoreniL 616 withkk =1, p=2,m=0,q = oo,
|u— 7k Ulp,cok < C(measK)‘%h2|u|2,K.
Sincen = 2,

Cr2

C
mea > Cpg > —hg > —h
O'

a
by (Z), so that (meas)~2 < C h~! and therefore,
|U— 7k Ulg,cok < C hulok.
Hence we obtair {7.22) for = 2 since

|U— 7mhUlg,c0,0 = TétIXIU — kUlp.eok < C hul2q.
et

Forn = 3, the only variation in the proof occurs in the fact that

C
|Up — mhUlg,c0,0 < =75 |Un — hUlo,q
h3/2

as in Exercis€_ 711 and that now

CT

O'

meaX > Cpy > E he > —-h®

This completes the proof. O

References: One may refer to Ciarlet and Ravialri [6] forH)(conver-
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gence in the norm- |p. o for anyn. See also Bramble and Thomée

[].






Chapter 8

Numerical Integration

LET US START with a specific problem. L€ be a polygonal domain77
in R". Consider the problem

Y 2 (aj2)=fin 0
- - | &j .)= in £2,
(81) i,jZ:1 O0X ( ) ox;
u=0 onT =9Q.

where the §;) and f are functions ovef2 which are smooth enough.
Let us further assume that there exists 0 such that, for alf € R",

(8.2) > ajsgiza ) €
=1 =

It has been seen earlier (cf. Rem@arK 2.2) that the abovegnofi.1)
is obtained from a problenP] with a(-, -) and f(-) being defined by

_ . 0du 9
3 feed Mo

f(v) = [, fvdx
foru,veV = HY(Q).
Approximating the solution by the finite element method, bg

constructing a regular family of triangulation)(with reference finite

77
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element K, X, P), we get the problemsP,), i.e., to findup € V;, such
that

(8.4) a(un, vh) = f(vy), forall w, e V.

If we choose a basi{srvk}&il for Vj, then we may write

M
(8.5) Un = Z U W.
k=1
Thus to solve Py) we have to solve the linear system
M
(8.6) Z a(Wi, Wm)ug = f(wy), L<m< M.
k=1

Notice that

a(Wk’Wm)_;f Zl 1%, %
(8.7) st b
f(Wm) = ffwmdx

Ketp

Thus we have ended up with the computations of integralswer
th. These are, in general,fiicult or impossible to evaluate exactly and
one thus has to resort to numerical methods. We now studffybiniew
this may be done.

Let us assumEx (K) = K, where Fk(X) = BxX+bk, with detBx >
0. There is no loss in generality in the last assumption. Thenis a
function overK, we have

(8.8) j; o(X)dx = (detBy) fK P(R)dK

the functionsy and¢ being in the usual correspondence. We then re-
place the expression in the right-hand side by the following

—_— L ~
(8.9) p(R)dx ~ w1p(b1).
fk Y ;wl‘ﬁ 1
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In this section~ will denote the right-hand side replacing the ex-
pression in the left hand side in similar relations). D&% quan-
tities 1 are called thaveightsand the pointd; are called thenodes
of the quadrature schemeWhile in general we may assunag € R
andb; € R", we will restrict ourselves to the most common case where
&1>0andb eK,1<1<L.

We may now define therror functional& by

L
(8.10) £@) = [ #090%-), oni(or).
1=1

79
We will be interested in finding spaces pblynomialsfor which
&(¢) = 0, i.e., again we need “polynomial invariance”, an ideaase
found in interpolation theoryThe above quadrature scheme rin-
duces one on K as well since if we set

(8.11) {wl,K = (detBk)ws,

bik = F(by),

we then deduce the numerical quadrature scheme

L
(8.12) o(dx~ " wike(bL).
j; 122; 1,K 1,K

We shall therefore define the error functional

L
(8.13) Gcle) = [ e09dx= Y wrcplbue).
K I=1

Notice that the following relation holds:
(8.14) 8(¢) = (detBx)E ().

Example 8.1.ConsiderK to be am-simplex inR". Letabe its centroid.
Let

fk H(R)dX ~ (meaK)H(d).
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Exercise 8.1.Show that€’(¢) = 0 for ¢ € P1 in ExampldElL.
Example 8.2.LetK be a triangle irR2. With the usual notations, set
PP | 5 R
P(Rd%~ Z(meaK) > 3(&).
K —
1<i<j<3

Exercise 8.2.Show that?(@) = 0 for ¢ € P, in Exampld8.P.
Example 8.3.LetK be as in ExamplE®8.2. Let (cf. Fig_8.1):

j; H(R)dK ~ é)(meask)

3
3 G@)+8 > @&y +276()|.
i=1

1<i<j<3

Figure 8.1:

Exercise 8.3Show that(3) = 0 for ¢ € Ps, in ExampldBB.

Let us now review the whole situation. We had the “origingt- a
proximation problemR®y): To find uy € Vi such tha@(up, Vi) = f(vh)
for all v, € V.

This led to the solution of the linear systefn{8.6). By virafehe
quadrature scheme we arrive at a solution of a “modified” exipration
problem @}): To solve the linear system

M
(8.15) D, (Wi W)U = fa(Wer), 1< m< M,
k=1
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where

an(Wi, Wm) = 3 S wik (En] aij%?&”(bm))
(8.16) . b=
fa(Wm) = X (I 1w1,K(me)(b1,K))-

Keth

While u, was given by[(8]5) we now obtain

M
(8.17) un = Z Uy Wk
k=1
Thus the problenfP;) (not to be confused with any adjoint prob-
lem!) consists in finding i€ Vi, such that, for all w € Vj, 81
(8.18) an(Up, Wh) = fr(Wh)
where

L n

anho W) = 3 % wr| 2 a5 5oL

Xi

(8 19) Keth I=1 i,j=1 ]
' L

fh(vh) = X X wik(fvn)(brk),
Kety =1

for v, Wh € Vh.

Remark 8.1.The bilinear forman(-,-) : Vh X Vi — R and the linear
form f, : Vh — R arenot defined ovelV in general. For instance if
V = Hé(Q)(n = 2) in one of the examples, then as they require point
values of the nodes, we see that they are not in general defused .

Having obtained the approximate solutighby numerical integra-
tion, we are naturally interested in itfieacy. Thus we require to know
the errofju—ui|l. We now carry out the error analysis, first in an abstract
setting.

Let us maintain our assumptions as in the Lax-Milgram lemnth a
consider the problenR). Then we have problem®{) to findu; € Vi C
V such that for alv € Vi, an(U, vh) = fr(vh) wherefy € V[ andan(, )
is a bilinear form onv},. Then we would like to answer the following
questions:
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() What are sdicient conditions such thaPf) have unique solu-
tions?

(i) Can we find an abstract error estimate ffar- uj||?

(iii) If |lu—upl| = O(h¥), i.e., without numerical quadrature, under what
conditions is this order of convergence preserved, i.e.rmdas
we sayllu — uf|| = 0(h¥)?

The assumption ofy-ellipticity of the bilinear formsay (-, -) answers
the first question (by the Lax-Milgram lemma) and we will se& he-
orem[8.2 under which assumptions it is valid. The followihgdrem
answers the second question.

Theorem 8.1.Let the bilinear forms g(-, -) be \-elliptic uniformly with
respect to h, i.e., there exists a constant 0, independent of h, such
that for all h and for all y, € Vj,

(8.20) an(Vi, Vi) > @lIVhll.

Then the approximate probleniB;) all have unique solutions;u
and further we have the estimate:

fu—ull <

(8.21) )
< Clinf {|lu—wl+ sup
VheVh

[a(Vh, Wh) = an(Vh, Wh)l } [T (Wh) = fr(wh)|
WheVh ||Wh||

+ sup
WheVh ||Wh||

Remark 8.2.1f a = an, f = f}, then we get our original estimate(B3.1).
Thus [B8.21l) generalizes our previous result.

Remark 8.3.The terms involvingy, a, and f, f, merely mean that ifi;
is to converge tay, thena, and f, must be “close toa and f respec-
tively. Their convergence to 0 with may be viewed ascbnsistency
condition$ which are so often found in Numerical Analysis.

Proof. The existence and uniqueness of tiieare obvious by the Lax-
Milgram lemma applied to th&,. Since, for allv, € Vy, we have

an(Uy, Up = Vh) = (U — Vh),
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au, Uy — vh) = (U — W),
83 we have the identity
an(Uy, — Vh, U, = Vh) = a(u — Vh, Uy, = Vi) + {a(Vh, U, — V)
(8.22) = an(Vh, Uy = Vh)} + { Th(up — vh) — F(up — )}
Hence by[[820) we get

allur = vill? < Milu— vill lIuf, = Vil
+ [a(Vh, Uy = Vh) = an(Vh, Uy, = V)|
+ [ fa(ur — Vi) — (U, — Vi)l

Thus,

|a(Vh, U, = Vi) — an(Vh, Uy, — V)|
lluf, = Vil

[ fa(ul — vih) = F(U; = vh)l

lluf, = Vall

alluy, = Vhll < M[lu — vi| +

a(Vh, W) — an(Vh, W
< Milu—wil + Sup| (Vh, Wh) — 8n(Vh, Wh)|
WheVh (Wil
f(wh) — fr(w,
N SupI (Wh) = fn(wh)l
WheVh ”WhH

since (b}, — Vh) € Vh. Hence,

[lu—ugll < [ju— V|l + lluf, — vhll

M 1 a(Vh, Wh) — an(Vh, W,
§(1+:)|lu—vh||+: sup| (Vh, Wh) = 8n(vh, Wh)|
@ @ wheVp (W[

1 f - f
o 1 gup 10— fatwn)
@ w,eVh ||Wh||

Varying v, overVy and taking the infimum, and replacing{M/a), 84
(1/@) by a larger constar, we get [8.211), which completes the proof.
m|
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The following theorem tells us when the unifoivii-ellipticity as-
sumption of Theorefi 8.1 is satisfied in the example we stavitd

Theorem 8.2. Let a,(-,-) and #(-) be as inMQ) Assume further that
() @1 >0,1<1 <L, (i) Pc Py and i) U {b} contains a R_1

unisolvent subset. Then thg(a-) are W,- eII|pt|c umformly with respect
to h.

Proof. We must produce an > 0, free ofh, such thatay(vh, Vi) >
&vnl? , for all vy € V. We have

L
an(Vh, Vn) = Z Z w1K [Z ajj g\)/(h g\)/:] (b k)

Ketp I=1 i,j=1

>a Z Z Wik [Z (%(bm))z]

Kety 1=1

(8.23)

where px = Whlk. The inequality [B:23) is a result of the ellipticity
condition [E2) on the matrixa(;) and the fact thai k > 0, sincew; >

0 and we assumed without loss in generality thatBjet- 0. Now let
Pr (X) = pk(X), wherex = BxX + bk. Let Bk = (Ijj), so that

n
XjZij|)A(|+bK,j.
=1
Then
dpk apk(X) 0%} _ aDK(X)
0% ; ox; 0% ; OX; Oji-
Thus is
~ (0Px(X) ok (X) _ (9pk(X) opk(X)
D_( 0% ok and D= o o )

we haveD = DBg. Hence||D|I? < |ID||?|Bk||%. Thus,

(8.24) Z(apK (b K)) > |1Bxll” ZZ( e

-
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Now suppose ¢ P is such that

L n af) ~ 2
(8.25) |Z o1 Z (a—)zi(bl)) - 0.
=1 i=1
Then sincev > 0, we haveg—;i(&) =0foralll<l<Landl<i<
n. SinceP c Py, we have;()—)l?i € Py_1 and hence%z = 0 by thePy_1-

unisolvency. Thug € Pp, and on the finite dimensional spaB¢P,
(in practice we always havBy c P) we have a norm defined by the
square-root of the left hand side &f{8.25). By the finite disienality
this is equivalent to the norm defined by {hg ¢ norm onP. Hence we
have a constartt > 0 such that

L n A 2
- op PR
(8.26) Do), (a—g(bl)) > By
=1 =1
We will apply this topk. We also have

(8.27) PklZx > ClIBMI2(detBy) ™ plPx

by Theoren&4. Combining the inequaliti€s(8.2B), (B.44Y6) and
EZ1), we get

an(vih Vi) > @ > (detBy)IIBxI-25CI B I (detBk) ™ pxZ

Ketp
= aBC " (IBkIl 1B Pkl
Ketp
2 CL’BC’)/ Z |pK|EK
Ketp

) 2 ~ 2
= a’ﬂc')’lvhll’g = alvhlLQ

since (|Bk|| ||B§1||)‘2 > v by TheoreniL6l5. This proves the theorenm
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Let us now review our Exampl&s 8.1 throdghl 8.3 to see if thelicorse
tions of Theoreni 8]2 are satisfied.

Letn = 2 and consider Example®8.1. Cleary="mea > 0. Also
P = P, for triangles of type (1). SincEx = {p(d)} is Po-unisolvent, we
have that for triangles of type (1) and the quadrature schfiagample
the corresponding,(-, -) areVp-elliptic uniformly with respect td.

For triangles of type (2)P = P,. The weightswi are all> 0 in
Example[BR. Further we saw in Exerclsel5.1 tf&f}i<i<j<3 is P1-
unisolvent. Hence Theoren 8.2 is valid for this quadratateeme as
well.

For triangles of type (3), consider the quadrature schentexaim-
ple[3. We haves; > 0 andP = P3. It was seen in Examp[E2.2 that
the set{a;; 1 < i < 3} U{aj;1 <i < j < 3} is Py-unisolvent. Hence
the corresponding bilinear fornegg(-,-) are Vy-elliptic uniformly with
respect td.

Exercise 8.4Let (H, |-]) be a Hilbert space and a subspace with norm
|| - |l such thatV — H andV = H cf. Sec[¥. Then with the usual
notations show that

< 1 . & * *
Ju—upl < sup{=inf (Milu— upll llp — @nll + (U, on) — an(Up, @n)|
geH 19 eneVh

+1f(en) = flen)))

whereg is the solution of adjoint problem fay.

We now turn our attention to the evaluation of the bound)or uy ||
given by [821L). For second-order problems, for which themis || -
ll1.0, we will take as usual fov, € Vj, the elemenirhu € Vy, so that we
now get the bound

[a(rrhu, Wh) — an(hu, Wh)
lu-upllLe < Clllu—mullyo + Sup

Wi
(8.28) T ll (wliT
+ sup — M7

WheVh [IWhil1.0

87 Let us assume that we may apply Theofenh 7.1, so that



8. Numerical Integration 87

(8.29) lu—7hulla < C Mulks1a.

In order to keep the same accuracy, we will therefore try ttaiob
estimates of the following form:

[a(7mhu, Wh) — an(hu, Wh)|

sup < C(u)hk,
(8.30) WheVh f |.|fWh||l,Q

SupI (Wh) = fn(wh)l < C(f)hK,

WheVh IWhllz,0

and these will in turn be obtained from “local” estimatesf. {theo-
rem[B.4 and Exercide8.5).
As a preliminary step, we need two results which we prove now.
The first of these is a historically important result in thieipolation
theory in Sobolev spaces.

Theorem 8.3 (BRAMBLE-HILBERT LEMMA; cf. Bramble and
Hilbert [24]). LetQ c R" be open with Lipschitz continuous bound-
aryI. Let f € WKLP(Q)) which vanishes over® Then there exists a
constant C= C(Q) such that, for all ve W<LP(Q),

(8.31) FO)I < ClIflly 1 poMieLpo.
Proof. Forv e WKLP(Q) and allp € Py, we have
f(v) = f(v+p),

so that
[V =I[f(v+p)I < IIfII§+1,p,QIIV+ Pllk+1,p.05

and thus, 88
fV) < |If]lE inf [|v+
1TV <l ||k+1,p,g pepk|| Pllk+1,p.0
< C”f”;+1’p,g|v|k+l,p,§2a

by Theoreni.&12, which completes the proof. O
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Lemma 8.1. Letp € W™I(Q), w e W™*(Q). Thenpw € W™4(Q), and
there exists a numerical constant C, independent afid w such that

M
(8.32) leWimga < C Z lelm-j.q.0/Wj.co.02-
=0

Proof. The result is an immediate consequence of the Leibniz famul
For any|a| = m,

P(ew) = Y " Capd* Ple) (W)

=0 Bl=]
which yields [B3P). o

We may now apply Lemnia8.1 and Theoren] 8.3 to get the estimates
@30). We do this in two stages (Theor€ml 8.4 and ExelCiSpiB.5
which, for the sake of simplicity, we present our resultstfar special
casePk = Ps.

Theorem 8.4.Let P« = P, and consider a quadrature scheme such that
for all ¢ € Py, £(¢) = 0. Then there exists a constant C, independent of
K, such that for all § € W2*(K) and for all p, g € Px we have

ap ap’ op,  op
8.33 & (@i — < C R laiill2.00 kIl — .
(8.33) | K[(au 7% Gxi]l < C hellaijllz, ,K||axj||1,K|6Xi lo.x
. op ap . . . .
Proof. Since we hav%Y, a € P4, it sufices to find a suitable esti-
J. .

mate forék (avw), for a e W>*(K), v, w € P;. Further, since

(8.34) Sk (avw) = (detBk )& (ai),

we will first find an estimate foé’(avw), with & € W2*(K) andV,
W € P;. Let7gW be the orthogonal projection of dhto the subspadey
in the sense of2(K). Then we may write

(8.35) &(@EMW) = &(@URoW) + & (AU(W — 7W)).
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() Estimate foré (aroW).

Consider the functionaf’ : W2*(K) — R defined by
~ ~ ~ ~ L A A~
I E0) = [ I0R= Y udEr).
I=1

6@ < Clilgwi < Cldll,e - Thusé is a continuous linear func-
tional onW2>(K). Hence by Theorefig.3, sine vanishes orPy(c
Pzﬂ, we have a consta@ such that

(8.36) G < Cldly oo k-
Thus
|6 (&roW)| < Cladiol, ., ¢
< Cladl, , gloWlg o g

sincemgW € Pg is a constant function. By LemniaB.1 (recall that ~
P1),

1€ @07W)| < ClRoWig o & [18l1 0 1711 0% + 181300 & 1Vl0.00.2 -

By the equivalence of the? and L* norms onPg, and since the
projection has norm less than that of the vector itself in Biilpert
space we have the chain of inequalities

90
Similarly we may replacé/; ., g by [Vl; ¢ and[Vly , g by [Vl since

theL? andL*™ norms are equivalent d®,. Thus we get

(8.37) |6 (8070W)| < C(18ly o0 g1 g + 185 oo & IVl 2 )W & -

n this estimate, we do not use the “full” polynomial invaré@ of the quadrature
scheme.
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(i) Estimate for@;@(é\“/(v“v — 7oW)).
LetW € P; be fixed and let e W2*(K). Then

6@ — 2oW))| < CIBW — A0W)|g, 00 ¢
< Cl@lg oo kW — ToWg 00
< Clw - ﬁo\Mo,oo,RH@”z,oo,R-

Thus the functional oNV2’°°(R) defined by @;@(gz(v“v — W) is
continuous, linear with norms Cl\W— oWy , - Since forg € Py, o(W-
oW) € Py, we have that the functional vanishesPn By Theoreni 813,

6@ — 7oW))| < CN — oWl o, g1l 00 k-

Sety = av. Now,

|év|2,c>o,R < é(|é|2,w,R|v|O,w,R + |a|1,w,klv|l,w,R)'

Again we may use the equivalence betweenlifienorms ofvand
W — oW and theL.2-norms of the same functions as in (i) since they be-
long to the finite dimensional spa&g. Also, by the triangle inequality,

Thus we get
(8.38)  1&@UW — 7oW))| < C(18p00 g Vg g + 181,00 g VI & )IWg -
91

(i) We can now complete the proof. Recall thét(avw) = (detBk)
&(anw). Also,
ek < C hlalme.k
(8.39) [p_mi < C P& ™(detBr) 2 [Vlz-m.

- 1
Wlo g < C(detBk) 2[wiok,
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by Theorem§Bl4 arld®.5. Combinifg(8.37(B.38) 4nd18.39)
we get

|6 (@W)] < C hE (jal ek M1k + [8l2.00 k Vo) Wlok
< C R Jlall2.c0.k M1k Wlok-

Settinga = Ajj, v = g—xp w= gz we obtain[[8:33), thus completing
j :

the proof. O

We leave the second stage as an exercise:

Exercise 8.5Let Pk = P, and let the quadrature scheme be such that
éA"@) = 0 for all ¢ € P,. Then show that fog such thatW?9(K) —
CO(K), there existsC independent oK such that for allf € W29(K)

and allp € Py,

1

1 1
16k (fp)l < C h(detBk)2™a| fllzqklIpllik.
[Hint: If 71 is the orthogonal projection 1, in the L?>-sense then write
E(fp) = &(fr1p) + E(F(p - 71))]-

Remark 8.4.The inclusionW?9(K) — CO(K) is true if, for instance,
2- g > 0, by the Sobolev imbedding theorem.

We now come to the final stage in the estimatiorfjwof u|.

Theorem 8.5. Let (t,) be a regular family of triangulations o by 92
n-simplices of type (2). Let us assume that theeNipticity is uniform
with respect to h. Le&?(@) = Ofor all € P,. Then if ue H3(Q) —
Co(Q)(n < 5), & € W2*(Q) and f e W29(Q) for some g 2, we have
the estimate

(8.40) lu-uillLe < C Mllulze + [Ifllzgal-
Proof. We estimate the various quantities [0 (8.28). We have:

[a(7mhU, Wh) — an(rhU, Wh)| <
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Z (@ Ja(ﬂhUIK) 5(Wh|K)

Z = 0Xj 0%
n
5(7ThU|K) 5(Wh|K)
Z Z & lauj 2o I % 1ok
O(mnulK o(wh|K
|a,||zwg(2|| oot )an] [Zn (%] )nOK]
hj=1 Ketn Ketn

(sincehk < h, and we may apply the Cauchy-Schwarz inequality)
< C PPllanullz.olwhll1o
Now,
Irhull2.0 < [lUllz.o + U = mhull2.0 < Cllull2.q,

using Theorerl 613 witlP; ¢ Pk = P,. Therefore, for alw, € V;,, we

have
(8.41) (Al Wh) = Bn(mnth Wh)l _ iy, .
[IWhllz,0
Similarly, we have
|FWh) = f(wn)l < > 1&k(Fwhl)]
Ketp
1.1
< Z C hg (measK)2 || fl|2.qx WhllLk-
Keth

93
, 1 . .
Sinceq> 2, 1 - a > 0 and by the general Holder’s inequality,

11
Z(meaSK)2 a|| fll2,0,k [IWhllLk

Keth

1_1 1

2749 2

< [Z measK] [Z ||f||2qK} [Z ||wh||iK]
Ketp Keth

Ketp
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= C|Ifll2g0lWhllLq-
Hence we get, fot alv, € V,

|f(Wh) = fn(Wh)|
[IWhll1,0

Combining [B.2B) [[8.29)[(841) arld(8142) we ¢ei(B. 4ﬂ)stcom-
pleting the proof.

(8.42) < CH|fll2q0-

Remark 8.5.The conditionn < 5 (needed for the continuous inclusion
H3(Q) — C°(Q)) was already necessary for the definitiontgi.

References: For a survey on numerical quadrature in general one may
refer to Haber's survey article [IL3]. For application to fimite element
method, the Sec. 4.2 of the book by Strang and [Eik [22] or Ghidpof

the forthcoming book of Ciarlet and Raviari [5].






Chapter 9

The Obstacle Problem

In Sec[2 we cited the Obstacle Problem as an example of aimear| 94
abstract problem of Sefl 1. Let us recall a few facts aboasttthstart
with.

Consider an elastic membrane (cf. Hig]9.1) stretched avepan
setQ c R? and fixed along the boundaiy which is assumed to be
Lipschitz continuous. Let a force of densi®dx act on the membrane.
Let us assume the existence of an obstacle givep(k), for x € Q.
Then vertical displacement given lyis the solution of the abstract
problem where

2 Ju ov
= ——d
(9.1) au.v) fgigl % 0%

f(v) = [, fvdx f € L(Q)

foru, v e V = H(Q), wheref = F/t, t being the tension. The subgét
is given by
K ={ve Hj(Q); v> x a.e.inQ}.

If vi, vo are inK andy; < y in A; with measA; = 0 fori = 1, 2, then
vy + (1 - Ave > y on (A U Ap)¢i.e. the complement of; U A, and
meas A, U Ay) = 0. ThusK is convex. Ifv € K, letv, € K such that
Vn = Vin H3(Q). Letv, > y in A5, meash, = 0. Then all thev, are
> y on (UpAn)© and measy,A,) = 0. Hencev > y a.e. as well. Thus

95
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v € K andK is closed as well. We have the regularity assumption that
x € H(Q). Of course itis

Figure 9.1:
95
The solutionu satisfies
(9.2) J(u) = min J(v),
veK

whereJ(v) = %a(v, v) — f(v) and is also characterized by the variational
inequalities (cf. Theoref1.1):

(9.3) a(u,v—u) > f(v—u), forall veKkK

We proposed as a problem to show that this problem is intiegbre
as the following classical problem (assuming Hé(Q) N H2(Q)).

u>y in Q,
(9.4) -Au=f whereu> y,
u=0onT.

We have a few regularity results which are listed below:
(i) If Qis convex and” is aC2-boundary them € H3(Q) N H(€).
(i) If f =0andQ a convex polygon then alape H}(Q) N H*(Q).

(iii) The norm ||ull2o is bounded above by a function {f|lpo and
96 llxll2. in cases (i) and (ii).
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Our aim in this section is to use the finite element method po@p
imate this problem and obtain error estimates. We list osu@ptions
now:

Let Q be a convex polygonf € L%(Q), v € H?(Q) and letu e
HA(Q) N H().

Remark 9.1.We cannot assume any more smoothness other than
H2(Q). For instance in the 1-dimensional casefit= 0, and even if
the function is very smooth the points of contactuofiith y will have
discontinuous second derivatives in general; cf. [Eig. 9.2.

X

Figure 9.2:

With the above assumptions we proceed to the approximate pro
lems, first in the abstract setting, as usual.

We have the problem#?() associated with the subspadégsc V =
Hcl)(Q). We now choose closed convex subsdgi{s- V. One has to bear
in mind that, in generaKy ¢ K (we will see that this is the case in our
approach, sub-sequently).

We findu, € Kj such that for allv, € Kp,

(9.5) a(Up, Vh — Up) = f(Vh — Up).

The existence and uniqueness of tiydollow from Theoren_T11.

Let H be a Hilbert space with norin | and inner-product-{-). Let 97
(V.|| - |]) be a subspace such that— H, V = H. Then, as usual, if we
identify H” andH, thenH will be identified with a subspace &f. (We
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will take V = Hcl)(Q) andH = L%(Q)). Also as in Sed]1 (cf. proof of
TheorenLR), for all, v € V we have

(9.6) a(u,v) = (AU)(v),

whereA : V — V' is a linear map. We now pass on to an abstract error
bound.

Theorem 9.1(FALK). Assume that € H, Aue H. Then there exists a
constant C, independent of,¥¥nd K, such that

1

2

. u-—uhll < i U—whllc+|u—wvn|) +inf |up — v

9.7 I <C|inf (I I+ ) +inf | I
vheKn veK

(Note: The conditionAu € H = L?(Q) is satisfied ifu € H?(Q) since
Au= -Au € L%(Q))

Proof. Let a stand for thevy-ellipticity constant. Then

a|lu = upll? < a(u = U, u— Up)
(9.8) = a(u, u) + a(un, Un) — a(u, up) — a(un, u).

For anyv € K and anyw, € Ky, by (@.3) and[(9)), we have

(9.9) a(u,u) < a(u,v) + f(u-v),
a(un, Un) < a(un, Vi) + f(Up — V).

Substituting in[[218) we get

allu = unl? < a(u,v) + f(u—V) + a(Un, Vi)
+ f(unh — vn) — a(u, up) — a(un, U)
=a(u,v—up) — f(v—up) +a(u,vy — u) — f(vy — u)
+ a(up — U, Vi — U)
=(f—Auu-wv) + (f = Au,up — V) + a(up — U, vy — U)
<|f = Ad Ju—Vh| + |f = AUl [Uy — V| + Mljun = ul| [IVn — ull.
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. . M
Notice that since ( /%Hu — Unll = 4/—Ilu—wnl)? > 0, we have
a

l/a > M 2
lu—=Unll lu=whll < 5 (—IIU — Up||” + —I|u = Vil )
2\M a
and hence
2
2 a 2 M 2
a|lu = upl|* < C[Ju = Vp| + [un — V] + Ellu — Upl|” + leu — Vil

Or,
llu = UnlIZ < C[(Iu = Vhl + llu = Vhl[%) + Jun = v].

Varying v, € K, andv € K and extracting the square root after
taking the infima we gef{39.7). This completes the proof. O

Remark 9.2.If we have a linear problem thein= Augives the solution
and we get the original bound(8.1).

Remark 9.3.From [@.8) we see that this estimate holds eveaf-if) is
not symmetric.

We now apply this to the specific membrane problem. Maintgini
our assumptions of, let t;, be a triangulation by triangles of type (1),
and letV}, be the corresponding subspace/of Hcl)(Q).

Remark 9.4.1tis of no practical use if we go to more sophisticated finite
elements, unlike the linear problerBinceu € H?(Q) is the maximum
smoothness, we may atmost use our abstract estimate treorgyrmon
the space®;.

One may be tempted to try fét;, thosev,, which are> y a.e. inQ.
However this is not of value fromumerical and computational points
of viewfor we do not easily know where exactly our piecewise linego
solution functions would touch. We set instead

(9.10) Kh = {Vh € Vi,; Atall nodesb of t, vn(b) > x(b)}.
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Remark 9.5.

@-----mmennat
@ ---mmmemeeaes

-
(=]
S
>
)
>
(98]

Figure 9.3:

As seen in FiglZ813, though for nodbsvi(b) > x(b), it does not
guarantee thaty, > y a.e. Thus we see thii, ¢ K. Now the relation
(@.10) is very easy to implement using the computer.

We now have our main result on the error bound.

Theorem 9.2(FALK). There exists a constant C depending|(dtio o
and|lyll2.o such that for a regular family of triangulatior($,) as above
we have

(9.11) lu—unllzeo <Ch

Remark 9.6. The order of convergence is therefore the same as that for
the linear problems when we use piecewise linear approomesat

Proof. By Theoren{ G,

Nl

. 2 .
lu= tnllo < C [ inf (Ilu— vnll3 ¢, + Iu— Vhlog) + inf |un - V|O,Q] :
VheKp ” veK

(i) We first estimate the infimum ovég,. Note that ifw, = mhu, then
Vh € Vh. Also for all nodesh, vi(b) = mhu(b) = u(b) > x(b). Thus
Vh € Ky as well. Thus,

; 2 2
Jnf (Ilu=wliE g +1u=Vhlog) < llu = Ul ¢ +u — mnulo
h&Rh

< C P (luq + lul2).
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(i) Forthe infimum ovelK, consideiv; = max(n, x). Clearlyvy > y
andv belongs toH(Q) becausas, andy also belong tH(Q)
(this is a non-trivial result which we assume here). Hance K,
and thus,

inf up — Vip.o < |Uh — Viloq.
veK

We have

lun — vl = f lup — x?dx  where Ap = {X; x(X) > Un(X)}.
An

If mhy is theVy-interpolate ofy, then for all node®, un(b) > y(b) =
mhy(b). Since bothuy, andryy are piecewise linear, we may now assert
thatu, > mhy everywhere. Thus, — mmy = 0 onQ. Thus for allx € Ap,
we have

0 < 1(r = un)(X) = (x = un)(¥) < (x — 7)(X)
<10 = ) (X
and forx e Q — Ay, (v — up)(X) = 0, so that

2

lUnh — Valoo < [fl)( — apyl?dx| =y - mhyl—0a < C Plyl2o.
Q

Hence .
lu—unllLa < C(h??2 = Ch

whereC depends oiy|2.o and|ulz. However the regularity result (jii) 101
helps us to bountlz, above by a constar@ depending onfloq and
Ilxll2.o which completes the proof of the theorem. O

References: Two important references are Falk[11] andl[12]. For
regularity results refer Brezis and Stampacchia [3] andyLamd Stam-
pacchial[15].

Another references is Mosco and Strangd [19].






Chapter 10

Conforming Finite Element
Method for the Plate
Problem

In Sec[2 (cf. ExamplE2.4), as an example of fourth-ordeblpro, we 102
describedhe plate problemin abstract terms it is to find the solution of

a(u,v) = f(v), forall veV,

where
(10.2)
K=V =HXQ), QCcR?
a(u,v) = f(Au-Av+ (1—0-){2

f(v) = f?v dx f e L3(Q).
Q

u v udv 82U v
OX0% X1 0%; X2 0%2 X2 O%2

The problem was interpreted as the classical boundary ymile
lem

10.3
( ) u—@:OOnF:aQ.

{Azu =fin Q,
- Oy
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Remark 10.1.1t was commented in Sefl 2 that the second term of the
integrand in the definition dd(-, -) does not contribute to theftigrential
eqguation. Our method here will be equally applicable to hbéhcases.
viz. with the second term present (the plate problem) or ittt term
absent (as it happens in Hydro-dynamics). In our next sectin non-
conforming methods, we will see that the second term is éasén
order that we may apply that method.

We assume tha® is a polygonal domain iiR2. We saw in Sed]3
that for fourth-order problems we need the inclusignc CX(Q). (cf.
ExerciseC311). Thus we need to use finite elements of €assuch as
the Argyris triangle, the Bogner-Fox-Schmidt rectangld ao on (cf.
Sec[®).

When such finite elements can be imbedded iaffame family, then
we have the approximation theory, for regular families d@drtgula-
tions, available to us. We show that this is the case for thegnBo
Fog-Schmidt rectangle. However for the Argyris triangldarthe 18-
degree-of-freedom triangle such an imbedding is not ptessibd we
have to modify the usual argument to obtain error estimathe.“min-
imal assumptions” for @) convergence in th¢ - [,o norm are that
P, c P and thatu € H3(Q) N H3(Q). We have that i is a convex
polygon and iff € L2(Q), thenu € H3(Q) N H3(Q). This result is due
to Knodratév.

We will go through the various examples of triangulationslass
C! and study convergence in these cases.

Example 10.1.The Bogner-Fog-Schmidt rectanglef. Exercise[Z19).
Let Pk = Qz(dimPk = 16). We then have (cf. Fig_10.1):

d°p
0X10%2

g Y- {p(eu), D). So(@)

@), 1sis4}.
K
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®

ay as

7\

ay a
Figure 10.1:

Equivalently, one may also use tRg-unisolvent set

’

(10.5) ZK: = {p(ai), Dp(ai)(ai+1 — &), Dp(a)(ai-1 — &),

D?p(a)(ais1 — .81 —a); 1<i <4}

(all indices being read modulo 4). 104
Recall that for an fiine family of finite elements, the degrees of
freedomp(a®), Dp(al)(&:), (D?p(ad)(£2, £7) are such that (cf. Seld 5):

Q¥ =F@),...,a2 = F(&),
10.6 . .
(10.6) {fﬁk = Bl - -» €7 = Brély

for thenzxv = 7V which is essentially what we need for the abstract
error analysis.
In } note that

(10.7) a1 - & = F(&41) - F(&) = Bk (&i+1 - &),

and so on. Thus it is clear that this rectangle can be imbetided
affine family of finite elements. Nowyx c P c Q3 for k = 3. By our
abstract error analysis, we therefore have

(10.8) U = Unllzo < CHPlUlzq.

assuming sfficient smoothness amas usual.
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A word about the boundary conditions. As in Exerdisd 3.1, @& g
. ov . .
thatV, c HS(Q) if v= 5 = 0 onT, for v € V. Thus in choosing our
4
basis functions we must assure ourselves that this condgisatisfied.
This in turn depends on the values at the boundary nodes dradc be

two nodes ofl” such that the line joining them is parallel to (say) #ie
axis. Since we need= 0 on this line, and since will be a polynomial

in x; of degree< 3 on this line we must hawgb) = v(c) = 0, %’(b) =
1
ov
(9X2
. - v ov
is a polynomial inx; of degree< 3, we need to sega?(b) = a—X(C) =0
2 2

v Y,

(b) =
0%X10X%2 X, 0%o

boundary nodes must be zero. The only “free” or “unknown’apagters

are the degrees of freedom at the interior nodes. This takesaf the
boundary conditions.

ﬂ(c) = 0. Also since we neegx = 0 on this line and sinc%l/ =
X1 % v

and

(c) = 0. Thus the degrees of freedom on all

Let us now turn to thé\rgyris triangle (cf. Exampld4l7).

aj
as ais
|
a a3 as
Figure 10.2:
We recall thatPx = Ps, dimPx = 21, and} k is given by (cf.
Fig.[1I0.2)
(10.9)

B ap op .. 0p o
ZK:—{p(ai),a—xl(aa),...,a—)%(a;),lsl33,E(a”),1g|<133 ,
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We may replace the first and second derivative values at ttiee®
by Dp(a)(ais1 — &), Dp(@)(ai-1 — &), D?p(ai)(@1 — &, a1 — &),
D?p(a)(ai+1 — &, ai-1 — &), D’p(a)(&i-1 — &, a-1 — &) in order to get
degrees of freedom for which the relations of the type {1én&y be
satisfied. Howevepne cannot replace the normal derivativ%g(ai i)

1 <i < j < 3, by such quantities sincefime transformationsV do not
preserve orthogonality.

In order to estimate the errors we describe an “intermetifamite
element:

Example 10.2.The Hermite Triangle of Type (5).
Let Px = P5(dim Pk = 21). Define

> ={p(@). Dp(a)(ai1 - &). Dp(a)(@-1 - &),

K
D’p(ai)(ai+1 — &, ai+1 — &), D*p(ai)(ai1 — &, &1 — &),
D?p(a)(ai-1 — &, 81 — &), 1< i < 3;
Dp(aij)(ax — &), 1 <i< j<3k#1#j}

That is to say, the only change compared to the Argyris tt@aig
that we have replaced the normal derivatives;atoy the derivatives
along the line joiningp;j to ay, the opposite vertex.

Symbolically we can represent such a triangle as in[F1gl 10.3

Figure 10.3:

This element can be put in affiae family as is readily seen. Kg

106
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is the associated interpolation operator, our error aisijslds

hG
(10.10) V= AkVimk < Cp—,f,|v|6,K, 0<m<6,
K

for v e H8(K).

Remark 10.2.Though the Hermite triangle of type (5) yields affirze
family, one cannot use it sind&, c C%(Q) but, in generalVy, ¢ CY(Q)

as is necessary for fourth-order problems. This is so bectugsadja-

cent triangles will not patch up, in general, in their detiiv@s along the
medians; cfl_10l4.

Figure 10.4:

Again we show how to take care of the boundary conditions én th

L .oV
Argyris triangle. We need again= — = 0 onI'. Let us have two nodes

4
b, by, the vertices of a triangle lying dnwith mid-pointc. On this line
v will be a polynomial of degre& 5 in 7, an abscissa along this line.

ov . o .
g will be a polynomial inr of degree< 4 on this line. Hence fov = 0

2
onT we need to sety(b) = v(b’) = 0, a—v(b) = a—v(b’) =0, a—v(b) =
or or 02

2
OV 1y = 0. Forg—‘v’ — 0 onT we set,g—‘v’(b) - g—‘v’(b') - %’(c) _ 0,

02

v A,

——(b) = ——(b) = 0. Thus the only free or unknown parameters
aravz otoy

o°v . . .
areﬁ at vertices ol and the degrees of freedom at all interior nodes.
V'
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We now get an error estimate when we have triangulations of Ar
gyris triangles. We use our usual terminology more Ioosebﬂn By a
regular familyof triangulations made up of Argyris triangles we mean
that allt, consist only of Argyris triangles and that for &l X <o a

PK
constant. We also assume that i& r}?ethhK’ thenh — 0.
€th

Theorem 10.1. For a regular family(t,) of triangulations made up of
Argyris triangles

(10.112) IV —mVima < C P MVlg0,0 < m< 6.

108

Proof. Let us denote the opposite vertex&f(i < j) by ax. Let_v>K
be the unit outernormal a; and?—’K be the unit vector along the line
[a, aj], atay; (cf. Fig.[I0B).

Ay

Figure 10.5:

Let nrx be the interpolation operator for the Argyris triand{eand
let Ak be that for the corresponding Hermite triangle of type (5).

1Because we have to drop the assumption that all the finitesglienare fiine equiv-
alent to a reference finite element.
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Setd = nxV — AkV. Thené € Ps. Now

06

o (ay) = %(wv— Acv)(@i) = %(v— AkV)(@)).

Also sincenrgv = AgV along any side oK (since the values of
these polynomials of degree 5 as well as those of their fidtsagond

derivatives agree at the end-points), we hg(?fe =0.
TK
Since

96 95
Dé(aij)(ax — &j) = M(aijxak_aij,_\/)@ + H(aajxak—aj,?m,

where(., -) is the Euclidean inner-product, substituting fg(li andﬁ
VK

0 0Tk
ata;j, we get

(1012)  Da(ay)(@ - aj) = 5 (v~ Av)(@;)a - a;, 70

Sinced € Ps, using the unisolvency in the Hermite triangle we may
express’ in terms of its basis functions. Since all degrees of freedom
except those of the typ@s(aj)(ax — &;) are zero fow, we have

0
(10.13) 6= Z G_(V_ AxV)(@j )3 — &j, VK Pijk-
et vV
1<i<j<3
ki ks |
Now
(10.14) Kaw — aj, Vi)l < llax — aijll IVl < hk,
and

13}
|—(9 (V= AkV)(@ij)l < IV = AkVl1e0.k
VK

,he
< C(meaK) 2—|Vigk.
PK
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(TheorenIEb withn = 1,k = 5, p = 2, q = ). Also, mea¥ > Cpz,
and we have

0 hy
(10.15) |5V = AkV)(@))] < C—Mexk-
K PK

Finally, by Theoreni6l4 ard 8.5

he .
(10.16) IPijklmk < Cp—ﬁlpijklm»z-
K

Combining [10.1¥) [{10.15) and(10116), we get

0
Blmk < D 1= (v = Akv)(@ij)! e~ a3, Vil IPrikmi
e VK
1<i<j<3
ket ket |

hi
(10.17) < CWMQK,
K

and hence,

[V—mkVimk < V= AkVimk + [0lmk

hS h2
<% 1+ % |ex - (Using [IIID) ancTIma )

K Pk

. h
<C h6‘m|v|6,K (since hg < h, X < o).
PK

110

This on summing oveK gives [I0.II), thus completing the proof.
m|

Exercise 10.1Perform the same analysis for the 18-degree-of freedom
triangle. (cf. ExercisE4l7).

For the interpolation theory of the HCT-triangle (cf. Exeef4.8),
the normal derivatives are handled as in the present casgewdo the
arbitrariness of the interior point is an obstacle to be comre. For a
discussion of this, see Ciarléd [4].
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Another finite element, similar in its principle to the HOTangle
used in the conforming finite element method for the platédlem is
the Fraeijs de Veubeke and Sander Quadrilateral. See Ciavaldini and
Nédelec[[9].

These are all essentially the finite elements used in thef6cming”
methods to approximate the plate problem (we will define snethods
at the beginning of SeE111).



Chapter 11

Non-Conforming Methods
for the Plate Problem

WE START WITH a brief classification of finite element methodée 111
first class of methods are callednforming methodswhich we have
described upto now, except when we considered numericairiation.
The second class consists of methods other than conformimghe
latter class we have tHdon-conformingmethods included:

Given the abstract problem, tlwenforming methoddeal with the
finding of subspace¥y, c V and solving the problems

(Pn) an(Un, Vh) = fa(vh), forall vy e Vp,

wherea, = aand f,, = f for all handuy, € V;, is the required solution.

When we employ methods other than conforming we commit, in
the terminology of G. Strang, “Variational Crimes”. (SeeaBg and
Fix [22]). These may occur in the following ways:

(i) When performing numerical integration, we may hayeand f;,
different froma and f respectively. Howevel, is a subspace of
Vv,

(i) The boundant” of Q may be curved. In this case triangles lying
in the interior will be triangles of straight edges while seaneet-
ing the boundary will have curved edges like parabolas. &hes

113
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the so-called “isoparametric” finite elements. Henc&ifis the

union of the finite elements of the triangulatian then, in gen-
eral, Qn # Q and consequently,, ¢ V (whereV, is a space of
functions defined ove®dy), an # a, f, # f; for a discussion of
these, see Ciarlet and Raviart|[30].1[31].

(i) When employingnon-conforming methodavhich will be dealt
with subsequently) thougfd;, = Q, f, = f, we will haveV;, ¢ V
anday # a.

(iv) One may employ any combination of the above three.

Let us return to the plate problem. For a conforming method we
need the inclusiotvy, c HS(Q) which essentially results from the in-
clusionV,, c CYQ). Because of this necessity, when compared with
second-order problems, we either have the dimensid?diarge” (as
in the case of the Argyris triangle) or that the structur®gfis compli-
cated (as in the HCT-triangle). Also one would like to hast Rx = P,
sinceu is only in H3(Q) in most cases, but this is impossible by the
Zenisek result (cf. Remafk3.3) which stresses that at fezignomials
of degree 5 must be presenty .

Hence the desire to surmount thesgidulties led to the devising of
non-conforming methods, essentially developed by thertewsgs.

Since the root of all trouble is the inclusiafy, c HS(Q), we drop

this condition. Thus we start witkf, ¢ C°(Q) and it is much easier
from the computer programme view point. This of course, \saykly
for a few finite elements, and we describe one of them.

Example 11.1.The Adini’s rectangle; cf. Fid_T1l.1.
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C O
K
® ®
ai a
Figure 11.1:

The elemenK consists of a rectangle with verticég, 1 < i < 4};
the spacdk is given byPx = P33 @ {xp@} ® {xfxz}, by which we mean
polynomials of degree 4 whose only fourth-degree terms are those
involving x1)3 andx3x,. ThusP3 c Px. We have the set of degrees of
freedom:

op ap .
ZK: = {p(ai), a—xl(ai), a—xz(ai), 1<i< 4}.

113

Of course this element can be used only for plates with sidesIpl
to the coordinate axes, such as rectangular plates.

Exercise 11.1Show that in Exampl&_Il.1}  is Pk-unisolvent and
that Adini's rectangle is a finite element of cla8% and, in general, not
of classC?.

Thus we get ‘a priori’ tha¥, ¢ H1(Q). For the boundary condition,
we set all degrees of freedom on the boundary nodes as zarsgivés
us thatvy, c Hé(Q). Thus the only ‘unknown’ or ‘free’ parameters are

S Vi ..
the degrees of freedom at the interior nodes. Note%h%hs zero only
4
at the boundary nodes, in general.



116 11. Non-Conforming Methods for the Plate Problem

In the abstract problem, we hagé, -) and f(:) given by
(11.1)

auv) = [

f(v) = f?vdx f e L2(Q).
Q

°u 0V Pudv dPudv
AN+ (L-0) 12— - S S 5
(1-0) ( OX10% OX10%  OX2 9%5  OXS 0% )}

The second integral is defined owgras well. Thus for the discrete
problem @) we may setfy, = f. However while foru, v € V, the first
integral is defined over eadk € t,, we cannot define it ove®, since
we get Dirac measure-like terms along the boundary. To get iws,
we now define

Puy P &u, AU, 8P,
Un, Vi =§ AUAV, + (1 — 2 _07Un dx
() Kef f[ i U)( 00X 00X OXG 9% X

(11.2) "K

= Z f[aAuhAvh +(1- 0')(

Ketp K

U @ . 2up, @ o 8u, v,
X X2 OXE 9% 0%10% OX10%0

and we have the discrete probleRy,): To find u, € Vi such that for all
Vh € Vh

(11.3) an(Un, Vi) = f(Vh).

114
We now prove the existence and uniqueness of the solutjdor
(Pr). We define ornv;, the seminorm

1
2
(11.4) [IVhlln = {Z |Vh|%,K|%,K] .

Keth

Notice that this may be defined over = H3(Q) as well and for
veV, |Vl = V2. Inthe same way fou, v e V, ay(u,v) = a(u, v).
We now show that theeminorm| - ||, is indeed a nornon V;,. Let

. . oV
Vh € Vi with [wy|ln = 0. This gives thataTh = constant over ani. But
1

: . i oV :
given adjacent finite elements the value(—gexiEl at the common vertices
1

. oVh . — L
coincide and henc%yh is constant ovef). But this is zero on the
1
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oV — . ov — .
boundary nodes. Henc;g:x—h = 0 onQ. Similarly a_xh = 0 onQ. Since
1 2

Vi c CO(Q) andv;, = 0 onT, the above conditions give that = 0 over
Q. Thus [TT}) defines a norm &.

To show the existence and uniqueness of the solutioPg)f (ve
show thatay(:, -) is Vh-elliptic. In fact we do more than this. We show
that theay (-, -) areVh-elliptic uniformly with respect tdn.

Recall that from physical considerations,<0o- < % (see Sed]2).
Now

a(Vh, Vi) = o (Avh)2dX + (1 — o)| Va2
(11.5) hs Vh é! h hilh

> (1 - o)IIVhll2.

Remark 11.1.1t was mentioned in passing in S&c] 10 that in order to
apply non-conforming methods one needed the second teiiviing

o in the integral defining(-, -). The uniformV-ellipticity could not be
got in the Hydrodynamical case where this term is absent.

We now proceed with the abstract error analysis. 115

Theorem 11.1(STRANG) Let a,(-, ) be \4-elliptic uniformly with re-
spect to h witle > 0 so that for all y € Vy

(11.6) an(Vh, Vh) = al[Vhllh.
Let in addition, there exisM such that for all w, W, € Vi,
(11.7) |a(Un, Vi)l < MilunlInlIVilln.

Assume thatia= aand| - ||, = || - || on V. (These are needed to
extend the definition ofyaand]|| - ||, to V). Then there exists a constant
C, independent of h, such that

. f(Wh) — an(u,
(11.8)  [lu— Unlln < C{ inf Il = il + sup L) = @n(U Wh)'}
Vh€Vh WheVh | |Wh | | h

up being the solution ofPy).



116

118 11. Non-Conforming Methods for the Plate Problem

Proof. For allv, € V, we have
(11.9) llu = Unllh < [lu = Vhllh + [lUn = Vhllh.

Now for anywy, € Vh, f(Uh — Vi) = an(Uh, Un — V), SO that we may
write

@llun — Vhl[2 < @n(Un — Vh, Un — Vi)
= @n(U = Vh, Un — Vh) + f(Unh = Vh) — an(u, Up — Vi)
< M||u = Vhllhlluh = Vhllh + 1T (Un = Vi) = @n(U, Un — Vi),

and thus,

M 1|f(un = Vi) — an(u, Un — Vh)|
[lun = Vhllh < =|lu = Vhlln + = ( ) ( )

a lun = Vhlln

M 1 | f (Wh) — an(u, wh)|
< =|lu—Vhl|lh + = sup

@ @ \wheVp ||Wh||h

Substituting in[[IT19) and varying, € V;, and taking the infimum
we get [I1.B). This completes the proof. m|

Remark 11.2.In case the method is conforming, theg(u,w,) = a
(u,wh) = f(w,) and the second term disappearsin{l11.8), leaving us
with the original bound{3]1).

We note that for they (-, -) defined for the plate problem by {1lL.2),
the conditions of Theorefn_I1.1 are satisfied. The condifidn®) is
embodied in[[TT]5). The conditioh{IlL.7) follows from thengar (con-
tinuity) condition ona(-,-) and an application of the Cauchy-Schwarz
inequality.

Exercise 11.2Let (H) be a Hilbert space with innerproduct -§ and
norm|-|. Let (V,|| - ||) be a subspace such that— H andV = H. Let
Vj, c H. Define

Eh(u,v) = (f,v) —an(u,v), forall uveV,UV.
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Then show that

_ 1.
[u— un| < M[lu— un|ln [sur)— inf o — ‘Ph”h]
geH 19l eneVi

1 .
+ sup[— inf (&h(U, © — ¢n) + Eh(p, u— uh))]
geH | 19l eneVh

where for allv € V, a(v, ¢) = g(v).

We now go on with the error analysis and study the order ofeenv
gence. We assume that H3(Q) N H3(Q) which is quite realistic from
the regularity results.

Now, sinceryu € V;, we have that

inf [Ju— Vhllh < [Ju—mUullh.
VheVh

117
Again applying error bounds for ea¢ghand then summing over all
K we get
lu = mhullh < Chiulz .

Thus
(11.10) inf ||u — Vhllh < Chulag.
VheVh
Our aim is to get a similar estimate for the second terriaig)1 1n
fact we show that

(11.11) SUIOIf(Wh) = an(U, Wh)|
WheVh ”WhHh

< Chjullz .

This entails more work. We define

for u € H3(Q) N H3(Q), Wy € Vh. Sincew, € HJ(Q), there exists a
sequencéwp} in Z(Q) converging toa in Hcl)(Q). Hence,

2 P! 2y 02w 2y G2

ffwﬂdx:fAuAW"h+(1—o-)(2 ou_ oWy _@_h_@_h) dx
OX10% Ox10%;  OX2 9x2  9X2 OX

Q Q
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= —f(gradAu)(gradV\f‘h)dx
Q

by Green’s formula. The term involving @ o), by LemmdZR, can
be converted to an integral ovér All integrals overl” vanish since
wj € 2(Q). Since both sides of the above relation are continuousdine
functionals orHcl)(Q), we can pass to the limit to obtain

(11.13) f(wp) = | fwhdx= - [ (gradAu)(gradw,)dx
]

for all wy € Vj. Now,

2u Pw,  PudPw, 62U dPw,
u,wp) = AUAW, + (1 — —_— —— - ———]dx
(U h) = K;hf( h+( a-)[ OX10% 0% 0% O 0X5 9% O3 ])

= Zl fgradAugradthx

Ketp

(11.14) 9€Au—dy+(1 0)95( ow P awh) "

6vK aTK aTK

118 by Green's formula[{2.15) and Lemrhal?.2 again. Notice howthat
by standard orientation arguments and the continuityodverQ,

(92U GWh
11.15 =0.
( ) é § avKaTK aTK 7

Using [IT.IB),[[TT714) an@{11]15), we substitutdn (Iltd2yet

ae)  auw =Y § [ Au+ (- U)_)%

KEthﬁK aVK
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®

ay as

ARG

ay Ké' a

Figure 11.2:

Splitting the boundary into four parts as in Hig.11.2, we get

(11.17) éh(U, Wh) = Z (Al,K (U, %) + Aok (u, %))

ket 0Xq 0%

where forj = 1, 2, we define

OWh OWh OWh
AJK( 5XJ) f( Au (L= (r) )(5XJ AK(GXJ))dy
K’
(11.18) :

L

K//

Ak being theQ;-interpolation operator associated with the values at thi®
four vertices.

Note that [IT17) is the same & (11.15). This is evidentigeov

we show that the contribution of the terms involving is zero. This is
so becaus@y, = 0 on the boundar¥ and on the common boundaries,

OWh
Ak ( I ) is linear and equal in value for both adjacent finite elements
i

since it agrees at the vertices, but occurs with oppositessag is obvi-
ous from FigCIIBK] = K2").
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1 2
Kz Kz
” 1 g1’ 2" g2 /
K| K'K| | Kl K K}
% >
KZ KZ
Figure 11.3:

gw
We also record tha&h|K € djPx where
i

P
(11.19) ajPKz{a—f:KﬁR; pe PK}.
J

We now prove a result analogous to the Bramble-Hilbert lemma
which will help us to estimate that; x's and hencesi(u, wh).

Theorem 11.2(BILINEAR LEMMA) . LetQ c R" be open with Lip-
schitz continuous boundaty. Let W be a subspace of ¥#9(Q) such
that P, ¢ W. Let b be a continuous bilinear form ove*#P(Q) x W

such that

b(pw)=0 forall pePx, weW
b(v,q)=0 forall veW<LP(Q) qePy.

Then there exists a constant-£C(Q) such that for all ve W<+1-P
(Q),we W,

(11.21) Ib(v, )| < CI[bl| Viks1,p.0Wi+1,9.0-
Proof. For a givenw € W, b(-,w) : v — b(v,w) is a continuous lin-
ear form onW*+*1-P(Q) vanishing orPy. Hence by the Bramble-Hilbert

lemma,

(11.22) Ib(v, W) < ClIb(, Wll; 1. p oM+ Lg.0-
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However for allg € Py, b(v, w) = b(v,w + @) so that

Ib(v, W)| < [Ibll [Mli+1,p.0lIW + A+ 1,60

and hence

Ib(v, w)| < [Ib]] IMlks1,p.0 INf [IW+ Qlli+100
gePy
< Clbll IMlk+1,poWi+1,q0. by the theorerfilGl2,
so that
IIb(-,W)IILLpQ < Clibll Wii+1,g.0-

and substituting iN[(TT.22), we g€ {111.21), which cometes proof.
m|

We may now prove the theorem on our error estimate and order of
convergence.

Theorem 11.3. For a regular family(t,,) of triangulations made up of
Adini’s rectangles

(11.23) Ilu = Unllh < C Hlulzq.

Proof. Let us first estimat@\ k| for j = 1,2. Set

2
o=-Au+(1- o-)g—lzJ e HY(K), since ue H3(Q),
T

K
GWh
v=— € d1Pk.
% 1Pk

Define 121

1128) oo = [ otv-Acvidy - [ el Ay,
K] Ky

forv e 0,P, ¢ € HY(K). If hy is the length oK] (andKy’) andh is that
of K} (andKZ’) we have by a simple change of variable

(1125) 51,K(QD’ V) = h261’|2(¢9 0),
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whereK is the reference finite element. SinBg ¢ Q; which is pre-
served byAx we have that for all"e Po, ¢ € HY(K), 6, ¢(,9) = 0.
Now let € P andv' e 31P. We wish to show that, ¢ (¢,V) = O:

We may take folK, the unit square. Sinag € Py, its value orK is
a constant, say. Now letV € 8,P. Thenvis of the form

(11.26) V=ag+aiXs + X + a.3X§ + agX1 Xo + a5x§ + a(;Xin + a7xg.
Taking the values at the four vertices we get
(12.27) AxV=ag+ (a1 + ag)xy + (ap + a5 + a7) %o + (a4 + ag) Xy Xo.

Now K7 is the linex; = 1 andKi’ is the linex; = 0. Thus

= —(a5 + a7) X2 + 85X + a7,

_, = (@5 +an)xe + asx; + arx.

Hence,

1
f 5(0— AxO)dy = f bo(—(8s + a7)%2 + a8 + and)dx,
0

(11.285
- f 50— Ac)dy.

”
Kl

122 Thuss, z(@,9) = 0 for ¢ € Po, ¥ € 41P.
Note further that the bilinear fory ; is continuous, for

|51,R(¢, V)| < C||¢|||_2(,9R)||\7|||_2(a|2)-
< Cligll gy g, by the Trace theorem (cf. TR 2.3).

Thus we may apply the bilinear lemma to the bilinear ferm with
| =k =0to get

(11.29) 161 g (@, V)| < Clgly g1Vl k.-
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We also have the relations

ol ¢ < ClIBkll | detBk| 2l¢l1 k.
(11.30) {ml,K_ 1Bkl | detBx|~2l¢lyk

o 1
Wiy g < ClIBkll | detBk|™2|Vl1 k-

Now [|Bk|| < C hx and|detBk| = measK/ meaK > Cp?2, and thus

Ch
IBk|| | detBk|~2 < —= < C. Alsoh, < hg, so that
PK
(11.31) |A1k (, V)| < C hllullz klIWhll2 k
where
p=-Au+(1- 0')%,
o aty
V= m,
and similarly,
(11.32) A2k (@, V)| < C hllullz kIWhll2k -

These inequalities lead us to the estimate
(11.33) | f(Wh) — an(u, wn)| < Chilullz ollwhllh,

for a regular family of triangulations made up of Adini’s rectanglesL23
Thus varyingw;, overV;, and taking the supremum, we get the estimate
@1I11).

Using [I1.ID) and{IT11) and substitutingin {11.8) we betre-
quired estimate as given iR (11123). This completes thefproo O

Remark 11.3.By the Duality Argument, Lesaint and Lascalx|[15] have
proved thatfju — unll1o < CH|ullsq assumingu € H4(Q). They have
also got an improved 6f) convergence order in tHe ||, norm, when
all the rectangles are equal - a “superconvergence” result.

We close this section with a brief description of other typenite
elements used in non-conforming methods.



126 11. Non-Conforming Methods for the Plate Problem

Example 11.2.The Zienkiewicz trianglécf. Exercisé416¢f. Fig.[TT.3.

a

as

as

Figure 11.4:

We getV;, c CO(Q) only and hence the method is non-conforming.
It does not always yield convergence. The method works iktties of
all triangles are parallel to three directions only, as ig. BEL5.

r
Figure 11.5:
124 This is not so if the number of directions is four, as in Fig.al1l

(The Union Jack Problem).
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Figure 11.6:

Example 11.3.Morley’s Triangle (cf. FigCZITI7).

ap

[ — | ay

as

Figure 11.7:

HerePx = P,. We alwaysget convergence for regular families, of
course. In fact ilu € H4(Q), then

(11.34) llu = upllh < Chijullaq.

What is astonishing is that this finite element is not everasscP.

Example 11.4.Fraeijs de Veubeke triangl&his finite element is again
a triangle. Apart from the values of the polynomials at theiges and
the mid-points of the sides, we also take the average noreralative
along the sides. Here the spd@ge, which we will not describe, satisfies
the inclusion

P2 C PK C P3,
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and

E = P(ai),lsis3;p(aij),1si<j§3;fg—pdy,1sis3 .
4
K K’

125 The finite element is shown symbolically in Fig.111.8.

Figure 11.8:

Here also the finite element is not of cla88 in general, but the
method always yields convergence.

References:For general reference on non-conforming methods, see
Strang and Fix([22], for the bilinear lemma, see Ciaillei [29¢r a de-
tailed study of the Zienkiewicz triangle, Moreley’s tridagand Fraeijs

de Veubeke triangle, see Lascaux and Lesairit [15]. For aomboien-

ing method with penalty, see Babuska and Zlamal [26].
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