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Foreword

The solution of time dependent equations of hydrodynansiessiubject
of great importance. Except for some very particular cabessolution
cannot be obtained in an analytic form which, in passingsesuti-
culties when onw wishes to test a numerical method becaus®miy
has very few solutions, chiefly related to 2-dimensionabjgms.

For the 1-dimensional problems, the numerical methodsexdud
these notes are the method of characteristics and the mefHuote
differences. Unfortunately, we had not much time to treat 2-dgioaal
problems. But the last chapter is an introduction of the weibf finite
elements which one can utilise for solving them.

Here we have essentially restricted ourselves to non-usdoids
and we have especially studied the cases of propagationooksh To
resolve this problem, we have presented a method of “shidahgfi if
one uses the method of characteristics and a method of ps&asity
if one wants to use the method of finiteférences.

The course is mainly concentrated on the study of the diabilihe
various schemes. We have considered only the stabilityirfieatised
problems. A rigorous analysis in the nonlinear case is irsiptes at the
present moment.

In the first part of the course, we have chosen to study thevsehe
for the three particularly simple model equations (in opacg variable
and in one time-variable): the heat equation, the wave @quatnd the
advection equation.

To do this, we have first introduced the mathematical notafrike
hyperbolic system of equations, weak solutions of the eégustenergy
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Vi 0. Foreword

inequalities and the boundary conditions for the problenbdowell-
posed.

Next, we have studied the consistency and stability @icantly
large number of schemes by obtaining energy inequalitiésguhe
Fourier transform.

In the second part of the course, we have shown the practical a
plication of these numerical methods to the solution of tipgat¢ions of
hydrodynamics.

Thereforem, this course covers only a very small portiorhefiast
subject of the Numerical approximation of the equations lafdFMe-
chanics. The interested reader can refer to the varioudesmtind works
given in the references. He can also find a very completedujidphy
in the book of ROACHE. Every two years, a Congress on the Numer
cal methoda of Fluid mechanics takes place whose Proceeflingsh
precise details. Numerous articles on this subject areighda in the
following 2 reviews:

Physics of Fluids and especially Journal of Computatiohgisies.

| thank all those who have enabled me to deliver this course, i
particular Professor K.G. Ramanathan and Professor Rh&ead of
T.I.LF.R., Bombay. My thanks go to Messrs. Kesavan and Vathan
who have written these notes with great clarity and withireeyshort
time. | appreciate the discussions | had with them and withesof their
collegues at the Indian Institute of Science, Bombay.

I conclude by saying that India is a wonderful country whigs h
won my heart and | hope to have another opportunity to vigigéin.

P. Lascaus
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Chapter 1

The equations of fluid
dynamics

1.1 Introduction

In this section we merely write down the basic equations o fiynam- 1
ics involving one space variable and time. (This occursijrfstance, in
the study of the flow of a gas in a narrow cylindrical tube whire
state of flow is constant across any cross section and sodepaty on
the linear coordinate measured along the axis of the tulskoartime).
From these general equations, we write down three simplecyplar
eqguations whose properties will then be studied in the deiue will
return to the general equations in secfibn 9.

1.2 Notations

To start with we put down the various notations which will sed in

writing these equations. We will denote pythe density of the fluid;
1 -

by V = =, the specific volume; by, the pressure; by, the pseudo-

viscosity term; bye, the internal energy per unit of mass; Bythe total
energy per unit of mass; hy the velocity of the fluid; byl the absolute
temperature.



2 1. The equations of fluid dynamics

One has the relation

1
E:s+§u2 (1.1)

We denote by, the codficient of viscosity and bk, the codficient
of conductivity of the relevant fluid,

The quantitiep, p, e andT are thermodynamical quantities and they
are related by thequations of state:

p= p(p,T)}
e=¢€(p,T)

For instance, in the case of a perfect fluid the equations ésime the
form

(1.2)

p=RpT
RT (1.3)

=21

whereRis the universal gas constant apthe constant ratio of specific
heats.

1.3 Coordinate systems

In writing down the equations of fluid dynamics we express uthe-
matical form the following three laws: the law of consergatbf mass,
the law of conservation of quantity of movement (i.e. mormeantand
the law of conservation of energy.

One way write these equations in several equivalent forrgefly,
one uses the two types of coordinate systems described.below

() The Eulerian System. Here the independent variables arand
t, wheret is the time andk is the position of a point in space with
reference to a frame fixed in the laboratory.

(i) The Lagrangian System. We now have the independent vari-
ablesa andt wheret is as in (i). Nowa is the position at time
t = 0, of the particle which is at position= x(a, t) at timet.



1.4. The equations in eulerian system 3

One assumes that the particles do not cross one another at-any
stant. In other words, for every the transformatiora — x(a,t) is
invertible. If we denote byl the Jacobian of the transformation, i.e.

oX

J:a—a.

(1.4)
thenJ # 0 everywhere.

Given any physical quantity in one system we can always ssjte
in the other using this transformation. Thus we have

f(xt) = f(x@t),t) = f(at). (1.5)

The derivative off w.r.ttis given in terms of the derivatives éfby the 3

relation _
of ot  of

— = — 4+ U—

ot at  ox
whereu, the derivative ok w.r.t. t, is the velocity of the fluid particle at
timet which is at positiorx. The relation[[116) leads to the following

(1.6)

Definition 1.1. The Lagrangian (or particular) time derivative of a func-
tion f(x,t) is given by

Df of of
ﬁ_ E+U& (17)

1.4 The equations in eulerian system

We now write down the equations of fluid dynamics in Euleriamf,
in the slab symmetric case. The equations of one-dimerisiytia-
drical or spherical symmetric flows will assumefdrent forms. The
derivations of these equations can be found in any standatram fluid
dynamics.

E1. Conservation of Mass

op 0 3
E + a_X(pU) =0 (18)



4 1. The equations of fluid dynamics

E2. Conservation of Momentum

9 o( , 4 ou_
%o + ax(p” o ax)—gp (L.9)

whereg is the volume acceleration applied from the exterior of Y& s
tem.

E3. Conservation of Energy

0 0 4 ou 0 (, oT
a(pE) + a—x (pUE + pu-— §uua—)() = pgu+ a—x (k&) . (110)

Exercise 1.1. (a) Starting from (E1) and (E2) show that one can write
(E2) also as

ou ou 190 4 ou
2o-4-a )

a " Yax T pax\P T 3Hax
(b) Using (E1) and (E2 show that one can rewrite (E3) as

ou 4 (au)2 d (kaT

0 0
a(ps) + a—x(pUS) + p(’)_x — §,u (’)_x = a—x &) E3

or as

gs  Oe L 4 dujou_ 19 (o7 .
ot PUax T 5 \PT3Max) ax ~ pax\“ax)

Remark 1.1.Equations (E3 and (E3) give the law of conservation
of energy in terms of thénternal energy while (E3) gives the same in

terms of the total energy.
_ 1Y
U=|pu
E

Remark 1.2. Setting




1.5. The equations in the lagrangian system 5

one can put the equatiosl, E2 andE3 into a single vector equation

oU 9 (=(~ 0U -
Y.L (F (u, 5)) - G(U). (1.12)
where
pu
= | o2+ p- 2,
F=|p p 3H9x
4 ou . aT
E — Ju— —k—
pUE+ U= Sl ~Kax
and

|0
G=|pg].
gu

This is known as th&€onservation fornof the equations and is quites
useful.

1.5 The equations in the lagrangian system

For problems with free surfaces or for solution with shodke La-
grangian form of the equations is more useful. As we will sesently,
the Largrangian form of the equations does not contain didrecterms
like aix(puz) and aix(puE) which have been found fiicult to approxi-

mate in numerical methods.
We now give the Lagrangian form of these equations.

L1. Conservation of Mass

Dp  du
— — =0. 1.12
Dt +pax 0 ( )
. 1DJ ou . .
Since one can check thgtﬁ = 55 Wecan write [[T12) equivalently

as D
5P =0 (1.12)
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(Note: To be strictly Lagrangian in our formulation, we must omiage
0 10

of —. One should replace it by —).
ox ) P I b?aa)

L2. Conservation of Momentum

Du o 4 du
Pot t ax (p— é/la—x) =9 (1.13)

L3. Conservation of Energy
De 4 ou\ D (1\ 19 ( OT
ERA L T 1P A

Exercise 1.2 Starting from the Eulerian form of the equations, derive
the equations.1, L2, andL3.

Having written down these general equations we write doweeth
model equations which arise out of these.

1.6 The advection equations

This is the law of conservation of mass all over again:

dp dpu)
ot ox =0

As a particular case, supposés a constat. Then the equation be-
comes 5 5
o o
—+u—=0. 1.15
ot i ox ( )

Then one can readily check that
p(xt) = p(x—ut,0), (1.16)

satisfies [[T.15). Thus the value pfat any point k&, t) is determined
by the value at the pointx(— ut, 0). Thusp is constant along the lines
X — ut = constant and these are ttigaracteristic curvesf (LI3). (Cf.
Sec.2).



1.7. The wave equations 7

CHARACTERISTIC
CURVE

0 (x — ut, 0) X
Figure 1.1:

Exercise 1.3Find an analytic expression fg(x, t) in terms ofp(x,0) 7
andu(x, t) whenu is not longer constant.

Remark 1.3. As such that advection equation is ndffidult to solve ex-
actly. However when coupled with the other equations of ftlyidamics
difficulties arise and one looks for affieient numerical scheme of ap-
proximation. But one must be cautious in the choice of suctharae

or else a “difusion process” is likely to be introduced into the approx-
imate equation while no such thing exists in the exact casewilV se
this later.

1.7 The wave equations

We specialize to the case whegn-= k = 0, and assume thatis negligi-
ble. Then L3 becomes

De D /(1

— —|-]=0. 1.17

Dt Pbt (p) (1.17)
This together with the equation of state (Gf_{1.2)) can legrated to
give a relationship betwegmandp. For instance, in the case of a perfect
gas, we gepo™” = ¢(a), ¢(a) being a constant if the initial state of the
fluid is constant. In this case the equations L1 and L2 read as

D
B+ 05 =0
o (1.18)

10
it /—)a—x(p(/?)) =0.
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Writing in vector form, we get

0 p|a
ﬁ]+[@ g]a_x[ﬁ] =0 (1.19)

As such this equation is non-linear. If one wants to studylisma
perturbations around a constant state of the fluid at reshatt= 0, on
e can linearize the state equation as

p—po = CZ(p - po) (1.20)

wherep., p., C, are respectively the pressure, density and sound-speed
of the constant state &= 0. By neglecting second order terms one can

D
Dt

then write
D 1p 0 p.| 8 |p|_
Dt [U] ’ [Cg/po 0] X [u] =0. (1.21)
Setting
_p LU
ARG
_p_ U
¥= po  C,’

we get, on substitution int@ {T.R1),

((99—":+C06—90 =0

px (1.22)
W _ Wy,
at Ttox

which are of the advective type. We know tlat) assume the form

¢(x,1) = p(x - Cat, 0) }

(1.23)
Y(x 1) = y(x + C.t, 0).

We now have two characteristic curves- C,t = constant and +
C.t = constant. The value ax(t) is now dependent on the values over
thefinite interval [x — C.t, x + C.t] on the real axis (Cf. Fid_112).



1.8. The heat equation 9

t

CHARACTERISTIC
CURVES

(x— C/”t, 0) (x+Cot, ON X

Figure 1.2:

1.8 The heat equation

We assume to be constant andto be zero. Then using an equation of
state like [I.B), L3 will read as

orT o (, aT

In particular ifk is a constant then we have

—(x—y)?

1 +00
T(xt) = m_ !; exp( K )T(y, 0)dy.

This shows that unlike the advective or the wave equatitresydlue
at (x, t) of the solution of the heat equation depends on the inidale,
on theentirereal line.

Our immediate aim is to study the mathematical propertigbede
three types of equations and methods of approximating them.

References:General references for the entire course are Richtmyer and
Morton [32], Potter[[3D], Ames’[2] and Mitchel[ [27]. For thequa-
tions of fluid dynamics and their properties one can referdar@nt and
Friedrichs [9].






Chapter 2

Hyperbolic System

2.1 Introduction

In this section we define a first order hyperbolic system anchiiracter- 10

istic cruves. We study the characteristic form of a first otugoerbolic
system and apply these ideas to the equations of hydrodgeami
Consider a system af equations given by

au; du; .
a—t'+;aij(u,x,t)5:0, l<i<n (2.2)
By setting
A=(&j), 1<i,j<n
- (aj) J 2.2)
U' = (ui(X),...,un(X)
we can write[[Z11) in the vector form as
oU oU
E + A(U, X, t)& =0. (23)

Given a system of equations of the forin{2.1) or equivale(#[4)
with A depending orx, U andt, we look for a curveC parametrised by
X = X(9), t = t(s) so that alondC some kind of dfferential relationship
holds forU.

11
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2.2 Characteristic form of a first order hyperbolic
system

In the study of first order systems as[in{2.1), the eigensadunel eigen-
vectors of the matriA play an important role. We start our discussion
with the following:

Definition 2.1. The system of equationE_(2.1) is strictly hyperbolic if,
and only if, for all values of its arguments, the matfixalways has
real and distinct eigenvalues.

We will henceforth consider only such systems which aretyyri
hyperbolic.

Remark 2.1.1f A depends oJ then the system of equations is non-
linear.

Let us now study the various cases involved in equafion .(2.3)

Case (i). Let us assume that the matmxis constant. Lep' be a left-
eigen vector ofj, i.e.

prA=ap'. (2.4)
SinceA is a constant matrix} is a constant ang@’ is a constant row-
vector. Using these facts and multiplyifg{2.3) on the lsftdd, we
get

o . d 1o
Z(PTU) + A (pTU) = 0. (2.5)

If we now define a plane curv€ (which is easily seen to be a
straight line in this case) by

dt dx
i Pl (2.6)

or, equivalently,
dx
Pl Pl (2.6)

We then get
d
d_s(p U)=0 (2.7)
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where the derivative w.r.sindicates diferentiation alon@. Thusp' U
is constant alon@ and is called thé&riemann Invarianof the system
(Z1). The curveC is acharacteristic curveof the system.

Case (ii). Let us assum@d\ is purely a function ofx andt. Again we 12
choosep’ so that[ZK) holds. Note that nohandp’ are also functions
of xandt. If U is a solution of[[Z13), we have

R PRl 0"
P VAP U)=p & ax ot Ot e

T T
o (% +A8U) ap ap

roJ | op'

+ Ap U

+—U+21—U

oX ot oX
_ apT apT
=t 0 A

Thus if we again defin€ by (Z8) or [(2.6), (observe thaC is no
longer a straight line) we get the relation

dis(pTU) = R'U, alongC (2.8)
where . .
0 0
R = a_pt ; aa—'[;. (2.9)

The relation [[ZB) is the ferential relation along the characteristic
curveC.

Case (iii). Let A depend explicitly orJ alone.
Let us choos' andA to satisfy Z#). Then = A(U), p' = p' (V).
We then get from[{Z]3) that

ouU
+ A&)
ouU
45)

ou
0=p' (=
P (at
ou

_ 7Y
- P (at
le'sj, alongC

=p
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whereC is again given by[{Z16). Thus we get théfdrential relation

du
T = -_-—
p' = s 0 alongC. (2.10)

We do not treat the most general case wheee A(x, t, U).

Remark 2.2.1f n = 2, one can always find a functid® = R(U) such
that [Z1ID) takes the form

d
d—S(R(U)) =0, alongC. (2.11)

Thus a Riemann invariant always exists in case (iii) whea 2. (Cf.
ExercisdZR).

Remark 2.3.Evern though it is not always possible to get a Riemann

invariant in case (iii), nevertheless a relation of the tf&0) is always
useful. There are numerical methods based on such relaijznas will
be seen later. Instead of working on the original set of égnatwe can
work on these equations in numerical schemes (Cf. Section 8)

2.3 Application to the hydrodynamic equations

Let us now turn to the hydrodynamic equations. We will workhie
Lagrangian form. The parallel derivations in the Euleriaafework
will be left as an exercise.

We take the special case where= 0,k = 0, g = 0. The Lagrange
eguations assume the form

. Do ou D B

(l) a +pa—x =0, or, Dt(pJ) =0,

. Du 10
(||) a + ;a—s = O, and (212)
De D /1
(iii) Dt + pa (/—)) =0.

From [Z1) it follows thajpJ is free oft and sincel = 1 att = 0, we
have
pd =p(a,0) = po(a). (2.13)
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We now introduce a functiom = m(a) which gives the total massi4
betweera and a fixed poina at timet = 0. In other words

a

m(a) = f po(@)da, (2.14)
or, equivalently g
o = @) (2.15)

Using the relatiorVV = 1 we rewrite equation§ (211 2) with indepen-
P
dent variables andm. Dividing (Z12), (i) byp?, we get

1Dp 1loul

:—2—+———

p¢ Dt poald
__b(1), 1d6udm
Dt\p/ p.0dmda

D ou

——E(V)-Fa—rn.

Thus the equation§{Z112) become

. DV du
0] Dt am - 0,
. Du odp
_— Zr _ 2.16
(ii) 5t 3m 0, and (2.16)
De DV
("l) Ft + th = 0,

(In the equation[{Z16), (ii) we have used
1 19 149gdm_ 9

pdx plda p.émda  om’

. DV . ou , .
Again we may replaceﬁ in (Z.18) (iii) by am by virtue of [ZI6) (i).
We further assume that the state equatien f(p, V) can be inverted to
give p = g(&, V).
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Thus if we set 15

U' =(Vue), (2.17)

on gets the equation§{2]16) in the form

0O -1 0
DU ouU
o p o|M

wheregy, g. are the corresponding partial derivativesgof Thus the
equations have been put in a form similar[iol(2.3).

The characteristic polynomial of the matrix [D{2.18) is
-2(2% + (gv - pg.)) = 0. (2.19)

From physical considerations it is known thag. — gv > 0. In fact
one has a relation of the type

C2
PG —9v =3 (2.20)

0 . : L
whereC? = op along an adiabatic transformation, is the square of the
&

0
velocity of sound. (Along an adiabatic we hade + pdV = 0. Since
p = 9(& V), dp = g.de + gvdV = (gv — pg:)dV and sinceV = 1/p,

dp_ —1dp _dp__ldp_CP o
&b - v Thuspg. - gv = v - TVEd T Ve by definition of
C?).

- . C
Thus we get three distinct and real eigen values% and -y
or, equivalently, 0+Cp. We then have three characteristic curves, one

vertical line, corresponding td = 0, and two curves on either side of it,
in thex — t plane, (Cf. FigCZ1).
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(z:1)

Figure 2.1:
16

Remark 2.4.1n the fluid dynamic case the equations are non-linear and
we cannot know beforehand the characteristic values. Hexydveir
signs are known and these already give some insight intordpegies

of the solution.

Exercise 2.1 Perform the same analysis in the Eulerian framework and
show that the eigenvalues argu + C.

Remark 2.5.In fact the characteristics in the—t plane are defined by

dm e dt 1

ds 7 ds 7
In the x — t plane, the images of the characteristic curves will be the
curves

x = x(m(s), t(9)); t =t(9),

and

%—%d_rn+a_)(g—i/l+u—£+u
ds om ds ot ds  p, p

dt

— =1

ds

Hence the eigenvalues angu + C.

Exercise 2.2In the euqationd{2.16), assuming we can integrate (jii)1D
getpin terms ofV, we are then left with only two equations. Thus for a
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perfect gas we ggiV? = aconstant. For the systeln (2116) (i) and (ii) in
this case compute the eigenvalues and eigen vectors. Farigig#mann
invariant for each characteristic curve. (They exist byudarof remark

23).

Reference. The reader is referred to Courant and Friedri¢hs [9] for a
detailed exposition of characteristics of a hyperbolidesysand appli-
cations to hydrodynamic equations.



Chapter 3

Discontinuous solutions of
hyperbolic systems-shocks

3.1 Introduction

We illustrate the notion of a solution with shocks via a vérg@e equa- 18
tion known as the Burger's equation. We derive the Rankingdtiot
relation to determine the curve across which a discongiragturs. We
then generalise these ideas to a system of equations.

3.2 Burger’s equation

Burger’s equation is given by

ou  ou
E + Ua—x =0. (31)

62
(In the literature one also finds at times an extra terem— on the left

hand side, but we consider the limiting casecas 0). ThIS equation
is trivially a hyperbolic “system” (a system with a matrixafder 1 and
the single eigen valua!). If we set

dt dx

go= 1 g = Uk, (3.2)

19



19

20 3. Discontinuous solutions of hyperbolic systems-shocks

then [31) will read as

du oudt Jdudx
— == —+——7= 3.3
ds 6tds+8xds (3.3)
Henceuis constant along the characteristic cuBrehose slope is given

by
dx

i u(x t). (3.4)

Thus from [3}) and the fact thatis constant along we see that all
the characteristics di{3.1) are straight lines.

In the following figure, the lower graph indicates the ifit@lue
u(x, 0) as a function ok. The characteristics through, Q) in thex —t
plane are shown in the upper graph. These are lines whosesstop
given by [34).

- (R pr——
8
i
o
=
N
8
w
1

8
w

&_-
=
[ /A

Figure 3.1:

(Sinceu(xy,0) > 0, the characteristic a{,0) has positive slope
and so on).

Note, however, that for an arbitrary initial value functia(x, 0), it is
possible that the various characteristics intersect. TWeshave a contr-
diction because the point of intersection lies on twidedent character-
istics and must possess twdtdrent values ofi, which is impossible.
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So we try to find a discontinuous solution to this problem. fhis
we need the notion of the weak form of the equation.
To do this we first rewrite the equatidn{B.1) in {w@perconserva-

tive form: 5 5 (1
u 2| _
0 + ax(zu ) =0. (3.5)

(The importance of the proper conservative form cannot ber-ow0
emphasized. Cf. Remalk’B.2).

Let ¢ be a test-function (i.e. a function ovRg x R; with compact
support which is as smooth as we please). We mult[plyl (3.5) bnd
integrate by parts over the domd) where

Q=Ryx{teR|t> 0}

Thus we get

B ou 9 (1,
0= f¢[at+ax(2u)]dxdt

¢ °° W 9y
fu—dx dt+f u(x,0)¢(x,0)dx+f > Ix % dx dt

whereu(x, 0) is given to us already. The weak form is then the problem
of finding u such that

2 00
fg uP ax dt+ fg 2% g dt+ f _U(x 0)p(x.0)dx=0  (36)

for any test-functionp.

Note that ifu is smooth and satisfieE_(B.6) we can reverse the inte-
gration by parts and show thatsatisfies[(315) as well.

Let us now assume thatis piecewise continuously filerentiable.
LetT be a curve across which a discontinuity occurs.idssume thal
is smooth. Lel" divide the domai into two parts2; andQ,. Denote
by n = (ny, ny) the unit normal alond’ directed fromQ; into Q,. Thus
u| Q; is smooth i = 1, 2) andu satisfies[(316). By choosingto have
support completely contained either( or in Q, we see immediately
thatu | Q; satisfies[(35) ii(i = 1, 2).
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Now choosep so that supg c Q, and sup NT is non-empty. We 21
set down the following notations:

Di
F

(3.7)

supp.e NQ;, i=1,2
suppp NT.

Figure 3.2:

Using this particular test-function in (2.8) and splitting the inte-
grals oveD;(i = 1, 2), we get

u? u?
0= f (u<,0t + —gox)dx dt+ f (UQot + —gox) dx dt
D 2 D, 2
1 2
= —f Ypdx dt+f upnds— f (@) edx dt
Dq F Dy 2 X

where,ds denotes integration alorig, andu = u | Qi, 2u = u | Q.
The change of sign in the integrals o¥efor the second set of terms is
due to the fact that the outer normal@® is the negative of the tQ;.
Sincelu and?u are smooth inside their domains, they sati§fyl(3.5) in
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these domains and hence in the above expression the isteyeiD,
andD-, vanish. Thus we are left with

fgo [(1u —2u)n + (g - @) nx] dx=0 (3.8)
F

for all test-functionsy with support inQ. Therefore if we define the
jump in a functionf acrosd" by

[f] =1f - 2f, (3.9)
we then get
2
[u]n; + > |™= 0. (3.10)
Ldx -
If we assumd’ to be the curvex = x(t), we can wrltea = Hence
@@10) can be rewritten as *
dx [u?
— == A1
g -|5) (3.11)

The relation [37111) is most fundamental in determining It is
known as théRankine-Hugoniot relation

We illustrate these ideas by means of examples.

Example 3.1.Let

1, x<0

U(X’O):{O x>0

We then draw the characteristics as we did in Eigl 3.1.
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t
5 X
u(x,0)
u=1
u=0
5 X
Figure 3.3:

23
Thus we look for a discontinuous (weak) solution of the Bumge
equation which will be as in the following figure.

t r
S e
------------- A

Figure 3.4:

The region shaded horizontally (to the leftigfhasu = 1 and to the
right of " (shaded vertically) has = 0.
24 To determine the curvE we use[[311). The jump] = 1 acrosg”

2
and ] = %. Thus by [311L) one has

u
2

dx_l

53 (3.12)
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as the slope of. ThusT is the straight line through origin with slope

given by [31PR).

Remark 3.1. This case has a parallel in the case of solution with shocks
in fluid dynamics. In gas dynamic§, is the curve where the shock

occurs and—X is the speed of the shock. This speed is ‘supersonic’

(i.e. larger than the slopes of characteristics) w.r.t. stage ahead and
‘subsonic’ (i.e. smaller than the slope of characterijties.t. the state
behind.

Exercise 3.1 Perform a similar analysis for the solution of the Burger’s
eqguation when(x, 0) is of the following form:

1, if x<-1,
u(x,0)=<9-x, if —1<x<0,
0, if x> 0.

Example 3.2.Consider the solution of Burger's equation when the ini-
tial value is given by

0, ifx<O

0) =
H(x.0) {1, if x> 0.

We then draw the characteristics.
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t

I S
[u=0] }[-----/lu=1
§) x
u(z, 0)
u=1
u=0
) x
Figure 3.5:

It is clear that in the region to the left of thexis (i.e. forx < 0) we
must haveu(x, t) = 0. Similarly if (x, t) lies to the right of the linex = t
(i.e. the characteristic through the origin) we must hawet) = 1. The
problem is in the (shaded) region in between. Here we now hawe
possibilities.

First we may search for a straight liiepassing throught origin so
that to its left,u = 0 and to its rightu = 1. Using [3I1) it is easy to

. . X
check that this line has slope given By = 3.

On the other hand, we see that the functigh satisfies Burger's
eqguation. The solution tends to zeroxas> 0 and to 1 a< — t. Thus
if we defineu to be x/t in this region, we get a continuous solution to
Burger’s equation. Thus we now have two solutions to the gouéCf.
Fig. 3.6).
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u(z,t)

Figure 3.6: (a)Discontinuous solution
26

u(z,t)

u=t

_____ -
<

1
= 1
u=20 Y, '
0 t T

(b): Continuous solution

We therefore need one more condition to fix up uniquely thetimi
for Burger’s equation in this case. Such a condition conm® finalogy
with physical considereations of admissibility of a saati We demand

thata—:]( # +oo. Using this we see that ttentinuoussolution alone is
admissible. The “velocity’u in case of a shock cannot step up in the
positive direction of thex-axis.

This latter example is the analogue of a rarefaction waveudiidl fl
dynamics. Here the functiomis continuous while its derivative is not,
whereas in the case of a shocks iteself discontinuous. 27

Remark 3.2.We now reiterate the need for a cautious choice of the con-
servative form. As an example consider the equafiod (3.1iitipying
by 2u throughout and setting= u?, we get

ov 0,2
- -\ /2 =
5 + 8x(3V3 ) =0, (3.13)

which is in conservative form. If we apply the relatidn_(3).1d get the
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slope of the curvé for the case of example=3.1, we get

dx |2
/2
M - [3v3],
dx |2
21dx _[2 5
or [u]dt [3u],
" x_2
dt 3

which contradicts the result of examplel3.1.

Thus one must make the right choice of the conservative fdm.
general, changes in thiependenvariable are inadmissible unless the
solution is continuous. But one can change the independsgighbles;
one can work with Lagrangian or Eulerian coordinates.

3.3 Rankine-Hugoniot relations for a system

We now turn to the case of a system of equations. Consider#ters

ou 0

— +—(F —

5t PN =0

whereU = U(x t) is a column vector and the vectBi(U) has no ex-
plicit dependence on the derivativesléf This is in conservative form.

The above system may also be written as

au. 6fJ 6uJ ofi E)uJ
= = A
ax Z (3.15)

ot 4 guj ax
We assume the system to be strlctly hyperbolic. In other wotide
. fi . - :
matrix (%) is assumed to havedistinct and real eigen values.
j

U; Lo
1<i, j<n
The weak form is now formulated in terms of “test-vectods’ whose

components are test-functions:

f((U, Oy) + (F(U), Dy))dx dt+
Q

~ (3.16)
+f<U(x, 0), ®(x,0))dx=0
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for every test-vectos.
Proceeding as in the scalar case we get the Rankine-Hugetaset
tion for the slope of the curve of discontinuity:

dx
[Vl = [FU)IL (3.17)
This is a vector relation which holds componentwise.

Remark 3.3.In this linear casef(U)] = A[U] and thus%( has to be

an eigenvalue oA. Thus the discontinuities can only be across charac-
teristic curves.

3.4 Application to the hydrodynamic system

We now give the Rankine-Hugoniot relations for the hydrawit sys-
tem of equations considered in sectiod 2.3. The equatians ar

. DV ou
0) Dt am- 0,
.. Du oap
— P _ 3.18
(ii) ot " am 0, and (3.18)
De ou
(iii) Dt + pa—m =0

29
This is not in conservative form. We multipl{z{3118) (ii) lwyand
add it to [3IB) (iii). Using the fact thd = ¢ + %uz, one has

) DV du
(i) Dt am - 0,
. Du odp
—_—_ Zr _ 3.19
(ii) 5t " am 0, and (3.19)
DE o
(i) i + a—m(pu) =0,

which is in conservative form. Setting
UT = (V,uE) }

3.20
F(U)T = (—U, P, pU) ( )
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one gets[(3.19) in the vector form

DU 0
ot * smFU) =0. (3.21)

Hence, if we look for a discontinuous solution, the Rankikiugo-
niot relations[[3.717) take the form
0 MEV-'v)=-Cu-tu)
(i)  MCu-1u)=(p-1p), and (3.22)
(iii) MCE - 'E) = *p°u-*p'u),
dm
dt

Exercise 3.20btain the Rankine-Hugoniot relations in the Eulerian
framework and show that they are equivalent to the relalZoZ2).

whereM = along the line of discontinuity, calleshock

References:The reader is referred to Lax [21],]22] and to Conway and
Smoller [8].



Chapter 4

Energy Inequalities

4.1 Introduction

The question of well-posedness of a system of partiédintial equa- 31

tions with given initial or boundary conditions is fundantedn This
question is often answered using what are called energmasts or
energy inequalities. From these estimates one obtainsxibtemce,
uniqueness and continuous dependence on the data of th®salb
the problem, thus establishing well-posedness.

In this section, we take up the threee types of equationsatiose
1-the advection, wave and heat equations - and obtain eestgyates
in the linear case. We do not talk about the existence of isolitas it
entails some work in functional analysis. We only briefly tskehow
existence is proved, at the end of this section.

Before we go forth, it is useful to put down our notations foe t
various norms that we will be using. We wrille ||, for the norm in
LP(—o0, o) where 1< p < +oo. If U is a vector withn components, its
Euclidean norm is denoted by

UP =" . (4.1)
i=1

31
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We also define

00 oo N
||U||2=f |U|2dx=f > uRdx, (4.2)
- =1

when each component is in L2(—co0, c0). We also consider only those
functions inL?(—oo, c0) which vanish attco.

4.2 The advection equation

We consider the simplest case wharie aconstant Then we have

Qo %% _

ot ox (4.3)

with ¢(X, 0) = ¢o(X), given,
Multiplying (B3) by ¢ and integrating w.r.t.x over the entire real

line, we get
<0 (1, <0 (1, 3
Im 8t(2(’0 )dx+u\[oo 8x(2(’0 )dx_O. (4.4)

Since we look for a solutiog such thatp(-,t) € L2(—c0, o) for each
t > 0 and which vanishes at= +o, the above equation gives

|

(e, t)lI3) = 0 (4.5)

NI -
o

t

which gives theenergy equality

lleC, Oll2 = lloll2- (4.6)

Observe that the uniqueness of the solution for giyefis imme-
diate from [45B). Indeed ifp1, ¢» are two solutions to[{413) then so
is 1 — @2 With (¢1 — ¢2)(X,0) = 0 for all x. Then [4®6) shows that
ll(e1 — @2)(-, V)ll2 = O for all t and hence the uniqueness follows.
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Exercise 4.1 Consider the equation

. . ou
whereu is not a constant. Assuming thatand I are bounded and

looking for a solutionp(x, t) such thatp(-, ) is in L3(—co, c0) for eacht,
vanishing forx = +c0, derive the energy inequality 33

(-, t)ll2 < Clle(-, O)ll2, O<t <t

Remark 4.1.We have derived the energy inequality in the homogeneous
case. It can be shown that in case of linear equations, theatstin the
homogeneous case also implies the existence of such aryerstimate

in the non-homogeneous case. For example, consider thdagua

a—"o+u6—¢—f

= f, uconstant. 4.7
ot X (4.7)

Multiplying by ¢ and integrating w.r.tx, we get

%%(”‘p(.,t)”%) = I: f (X o(x, )dx < [, Dll2lle(, 2.

Hence g
giUleC, DlI2) < 11T C, Dl (4.8)

Integrating [£B) we get the energy inequality in the nomhgeneous
case as

2
IeC-Bll2 < llp, O)ll2 + f 1£(. Sllzds (4.9)

Again, this is a key-step in the proof of well-posedness effifob-
lem.

Remark 4.2.0ne can also seek such ‘a priori’ estimates in other spaces.
For instance in case of equatidn{4.3) we know from sectiéritiat the
solution is given by

o(X, 1) = po(X — ut). (4.10)
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Thus we can get the estimate in th&-norm, assuming, € L*®
(—o0, ), as

34

4.3 The wave equation

We will follow Friedrichs’ argument for symmetric systemgve will
deal with the hyperbolic case. The system

ou AGU

A= (4.12)

whereU is ann-vector, is said to be symmetric if the matrxis sym-

metric. For instance iA = [0 1], we get the wave equation.

00
First of all we observe that
Zua”' —}Zn:a(u)z 12(|U|) (4.13)
ot T 24 20t° 7 '

One also has

(%[Za;juiu,] ZG—J iUj +Za”a—uj+za”ulauj _
i

Z u.uJ +2.Z u,a,,(;u

i

by the symmetry ofA. Hence one has

Zajui% = 1[—(U AU) — (U, a—Au>] (4.14)
]

where(, -y denotes the scalar producti®.
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Using these, we get, by taking the scalar product Withf the equa-
tion @.12).

oA
S(UD+ 5| A - 2w =0 (@15)

Integrating w.r.t.x, and using the notation of sectibnl4.1, we get

2y _
S5ueoR =3 [ (4.16)
(9 ..
Assume that the% are all bounded, we get the inequality 35
d 2 2
d—t(IIU(-,t)II ) < ClIU(, I~ (4.17)

It is a simple step to get the energy inequality fram(¥.17& [éave
itas an

Exercise 4.2 Starting from [4.1]7) deduce the inequality

IUC DI < IUC, O)ll expCH).

4.4 The heat equation

We take the simplet case:

ou  d%u

Again, multiplying byu and integrating w.r.tx, we get

00 2

> Olt(IIU( ti3) - foo u%dx =0. (4.19)

Integrating the second term by parfs. {4.19) becomes

SlueoB+ [ Ehax=0 (4.20)
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Since the second term is non-negative, we can write
d 2
iU OlI) < 0 (4.21)

which gives the energy inequality

U, Hll2 < [lu(:, O)ll2. (4.22)

4.5 Remarks on existence of solutions

A word about the existence of solutions. As is readily selem unique-
ness of the solution and its continuous dependence on tadalktws
easily from the energy estimates. However, for the exigtafcsolu-
tions more work is necessary. In the linear case we have therkda
method. We take a basig,, ... Vy, . ..} for L?(—co, o0) and then consider
the finite dimensional spacé&,, spanned byvy,...,v,}. We approxi-
mate the initial value function(x, 0) by un(x, 0) in S, and in the space
Sh, the partial diferential equations give a system of ordinarffatien-
tial equations. To this we apply we existence theory avhilaind get
an approximate solution,(x, t). We then use the energy inequalities to
show thatu,(-,t) are bounded and we can extract a subsequence con-
verging (weakly) to a function which can be shown to be a solution of
the equations.
In the non-linear case,

ou 9

st a—X(F(u)) =0, (4.23)
one not only has to show that, — u but also that~(u,) — F(u) for
which a single ‘a priori’ estimate is not enough. One does hte
general techniques for non-linear systems. Work has beaa olaly on
a few specific examples.

Reference:Lions [26].



Chapter 5

Boundary conditions and
well-posedness

5.1 Introduction

We have considered, so far, only initial value probelms. \&l& turnto 37
the situation when we have to solve a system of equations omeaih
which is bounded w.r.t.x, say 0 < x < 1, and are given a certain
initial-value function. In this case, we look for appropecboundary
conditions onx = 0 andx = 1 which will lead to the well-posedness
of the problem. More precisely, we look for boundary cortii which
enable us to get energy estimates.

We illustrate the relevant ideas in the case of the thredapegua-
tions of sectioffll.

5.2 The heat equation
Consider the simplest case of the heat equation given by

ou %

E—ﬁzO, O<x<l1 (51)

with the initial conditionu(x, 0) = u,(X) being given.

37
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We need boundary conditions on the lines 0 andx = 1. If nis the

outer normal on the boundary, we shall try to maintain theeshound-
2

" . . - . 07u
ary conditions which work for the stationary elliptic eqoatﬁ =0,
i.e. we write

ou
k— =0, k> 2
u+ P 0, k>0, (5.2)
in case we look for a homogeneours boundary condition. N@tedn
0 0 0 -0 :
x=1, 3= x and onx = 0, = % Thus [5.R) can also be written

as P
ULY) + k(L) =0, ky >0
ox 5.3)
ou ®.
U(O,t)—koa—x(o,t)zo, ko > 0.

We now obtain an energy inequality. Multiplying(b.1) byand
integrating w.r.t.x from 0 to 1, one has

1 1 2
ou 0°u
o Uadx— o Uﬁdx—o
or,

1d [ 9 3 ;o

20 [ Rdx— ou ou U _
2dtfu dx u(l,t)ax(l,t)+u(O,l)aX(O,t)+f(aX) dx = 0.

0 0

Incorporating the condition§(3.3), we get

1 1
1d (, au\? 1 , 1 -
Eafu dX+f(a—X) dx+ k—lU(l,t) +EU(0,t) —0,
0 0

and, since the last three terms are non-negative, one gets,
1

dgtfuzdxs 0,

0
which leads to the energy estimate

lu-, Oll2 < u(-, 0)ll2 (5.4)
where|| - ||> denotes the norm ih?(0, 1).



5.3. The advection equation 39

5.3 The advection equation

We study the linear case wheawés a constant. The equation is

dp ~ dp _
E-FU&—O, O<x<1 (55)

with given initial conditiong(x, 0) = ¢.(X).

We now ask ourselves if we can impose boundary conditions on
x = 0 andx = 1 freely. The answer comes from a consideration of the
characteristics.

Let us first consider the case where- 0. Then the characteristics
have positive slope. (Cf. Fig5.1).

t
r=1

P Characteristic

12 coming from inside

Characteristic he domain

coming from i
outside the domain
e

Figure 5.1: ¢ > 0)
39
Since we know thap(x, t) = ¢.(x—ut), if we take any pointorx = 1,
withO <t < ﬁ then the value o at this point is already determined,
by the corresponding value an= 0, on the same characteristic and we
have no freedom of imposing boundary conditionsxea 1.

On the other hand, if we impose a boundary conditionxca 0,
then for a pointP as in Fig.[5.IL, we can determiggP) = ¢(P’). Thus
¢ will be completely determined in the domain starting witk thitial
valueg, and the boundary condition on= 0.

If u< 0, the roles ofx = 0 andx = 1 are reversed.

More generally, for a point on the boundary, if the charaster
through that point comes from inside the domain, we canngiosa
any condition there. If it comes from outside (i.e. cuts 0 outside the
domain) we can impose a suitable condition there.
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By our above arguments we showed that a boundary condition on
x = 0 determinedp uniquely wheru > 0. We now show how to obtain
an energy estimate as well. Let us set the boundary condition

¢(0.1) = g(t) (5.6)

40 on the linex = 0.
Multiplying (&8) by ¢ and integrating w.r.tx over [Q 1], we get

NI =

1
d 2 u 2 2 _
G [ Fdx 56ay - 2o =o
0

Integrating this w.r.tt, we get

1 1 t t

f (%, )dx — f (%, 0)dx + u f ¢?(1, s)ds—u f ¢?(0,9)ds= 0.
0 0 0 0

Thus

t t

1 1
f ©?(x, )dx+u f ¢?(1, 9)ds= f ©?(x, 0)dx + u f ©?(0, 9)ds
0 0

0 0

where the right-hand side is known and so is bounded. Thenddeom
on the left is non-negative and one can omit it to get an eriegpuality
for |l¢(-, 1)]l2 in terms of known quantities.

5.4 The wave equation-method of characteristics

We write down the wave equation as a system of two first ordea€q

tions:
ou ov
—+—=0
g\t/ gé in 0<x<1 (5.7)
=0

at " ax
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with the initial conditions,u(x, 0) = u,(x), andv(x, 0) = v.(X). Adding
these two equations we get

0 0

a(u+v)+ a—x(u+v) =0, (5.8)
and subtracting, one has

0 0

a(u—v)— a—x(u—v) =0. (5.9)

Thus, through each point we have two characteristics aldmighw 41
u+vandu - v are respectively constants, (Cf. Hig.15.2).

t r=1
N

)

M ——

~Tu— v = Const.
) P N QN

xT

Figure 5.2:

For a pointM as in the above figure, both+ v andu — v are known
from the corresponding values RtandQ, and hence, v can also be
uniquely computed at1. On the other hand consider the poihtsand
N’. For these one only knows — v from the initial conditions. If we
impose a boundary condition or= 0 so that we can solve far+ v and
u—v, thenu andv can also be uniquely computed.

To this end we impose a boundary condition of the type

u©0,t) + av(0,t) =0, a# -1 (5.10)

onx = 0. Then knowingi—v atN’, together with[(5.10) we can compute
uandvatN’. Hence we know+vandu-vatN’ and atN, from which
we calculateu andv at N, uniquely.
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Similar arguments show that the boundary conditiorkenl could

be
ult)+8v(L,t) =0, 1 (5.11)

Thus the conditiond(5.10) and{5l11) help us to compute dhe s
tion uniquely in the entire domain.

More generally, to get the boundary conditions by thethod of
characteristics we take any point on the boundary and drawnlohar-
acteristics (for a hyperbolic systemmgquations) through the point. If
p of them come from outside, we may impopdéoundary conditions
in such a way as to be independent of each other, as well as-the
relations already given by the characteristics from inswl¢hat, we can
solve for the solution in the entire domain.

However it must be noted that by this method we do not get any
energy estimate which is a key step in the study of well-posssl

5.5 The wave equation-Friedrichs’ method

In order to get an energy estimate to study the well-poseximes turn
to Friedrichs’ method for symmetric systems to find the appate
boundary conditions. We specialize to the simplest caserefier the
interested reader to Friedrichs]10].

Consider the system ofequations
ou oU
E-FAW_O’ O<x<1 (5.12)
with the initial conditionU(x,0) = U,(X), and such that the matrix
A(X, t) is symmetric.
Define a matrixB(t) by

Bi(t) = AL, t)
B.(t) = —A(O, 1)

on the boundary. We introduce also a matvxt) (which is M4(t) on
x = 1 andM,(t) on x = 0) which has the following properties:

(i) M + MT is positive semi-definit,
(i) Ker(B + M) @ Ker(B— M) =R".

(5.13)

(5.14)
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43
Then the Friedrichs’ boundary condition is that Ker(B — M) on
the boundary. Assuming to be a constant matrix, we derive an energy
inequality. Taking the scalar product ¢f(5.12) withand integrating
w.r.t. x over [Q 1], one has

fl (<U%>+<U’ A%)d“ J (5.15)
0

Using the symmetry oA and the fact thaA is constant,[[5.15) can be

written as
d A 1 2 0
— 2 —_— — =
OItf|U| dx+ 2f8x<U’AU>dX 0.
0 0

NI =

Or,

1
dgt flUlde+ (U, AU)x=1 — (U, AU)y=0 = 0. (5.16)
0

Using the relationd{5.13) and the fact that ker(B — M), one has

(U, AU)x=1 = (U, AU)x=0 = (U, ByU) + (U, B.U)
(U, M1U) + (U, M,U).

But
(U,MU) = (MTU,U) = (U,MTU)
= %(U, MU) + %<U, MTU)
= %(U,(M +MHU)
>0
by virtue of [&I#) (i).

Using this in [56) (i), we get the condition
1

d%f|U|2dxs 0
0



44

45

44 5. Boundary conditions and well-posedness

or, following the notation of Se€. 4.1,
UG DI < IUC0)IP, (5.17)
which is an energy inequality.

Remark 5.1.We have not used the conditidn{3.14) (i) at all. This is
used in proving the existence of solution, for which one basdrk with
the adjoint problem.

5.6 Comparison of the preceding methods

Observe that the case of the wave equatiod (5.7) falls witiérframe-
work of Friedricns’ theory if we take

01

a0 Y]

Exercise 5.1Find all matricesM which satisfy the conditiond{5.114)
w.r.t. the above matriA and compare the Friedrichs’ boundary condi-
tion with the boundary conditionE{5110) and (3.11).

The solution of exercise3.1 will reveal that the Friedriotsndi-
tions are more restrictive. The advantage of Friedrichshoe lies in
the fact that we get an energy estimate in this case while wi got
get one by the method of characteristics.

Another interesting question is whether Friedrich’s bamydondi-
tions, though restrictive, ar equal in number to those gahleymethod
of characteristics.

We show that this is the case in a very particular situatiohhe(
general case is still open, to the best of the knowledge cétitieor).

Assume thatB is symmetric and regular. Diagonalizing it by an
orthogonal matrixQ, one has

B; = QDQ'.
ChooseM = Q|D|Q". Thus,
B1+ M =Q(D+D)Q"
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B;-M=Q(D-|D)Q".
If D = diag {11,...d, —Ak:1,...,—4An} Whered; > O for alli, then

Ker(By — M) = QKer(D — |D)Q"
={UIV = QU with Vi1 = ... = Vp = 0}.

Similarly,

Ker(B; + M) = QKer(D + |D))Q"
={UIV = QU, with Vi1 = ... = Vs = 0}.

On the boundarx = 1, B(= +A) hask eigenvalues- 0. Thusn — k
characteristics come from outside and we should mavé conditions.
One the other hand € Ker(B — M) = Ker(D — |DJ) also givesn — k
conditions.

Similarly one can argue fd8, = -B; onx = 0.

A final word on the wave equation. One can also write the equoati
as one of second order in the form

Pw 0w
W_W:O’ O<x<1 (518)
By the substitutions
ow ow
=—; V=——, 5.19
YT YT T ox (5.19)
we can retrieve the systeln(b.7). 46

One of the types of boundary conditions one can imposé&_of)5.1
is the same as for the stationary elliptic problems, i.e.

ow
k— =0, k>0 5.20
wk=s =0, k>0, (5.20)
wheren'is the outer normal on the boundary.

Exercise 5.2 Find an energy estimate for the solution[of (%.18) with the
boundary condition{5.20).
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However there is one other boundary condition which we state

Exercise 5.3.Using the boundary condition

ow | ow

— tkg-=0.k>0, (5.21)
find an energy estimate for the solution[of (8.18). Using thessitutions
(&.19) compare this boundary condition with that of Frieldsi or that
got by the method of characteristics for the systend (5.7).

All this work has been done only when the equations are linear
and involve one space variable. Kreiss has done some wohei2+t
dimensional case.

For non-linear problems, one linearizes the problem arch@dou-
ndary to find out appropriate boundary conditions. As ughalnumber
of characteristics from outside give as many boundary ¢mmdi which
must be chosen independent of themselves as well as of tht@onsl
given by those characteristics from inside.



Chapter 6

Finite Difference Schemes,
Stability

6.1 Introduction

In this section we define what we mean by the stability dfedence 47
schemes and view some conditions which are necessafgranfiicient

for stability. In the study of stability, the Fourier transf is a useful
tool and so is it also in the study of well-posedness.

6.2 The Fourier Transform

For a well-posed problem we have a correspondence betweenitigl
datag,(X) and the solutiorp(x, t). For a givert, define

o(t) 1 X (X 1). (6.1)
If the problem is linear, then there exists a linear oper&igy such that
¢(t) = G(t)¢(0). (6.2)

The operatorG(t) acts on the space where we seek the solution and
where the initial data is also given. For instance we may g

a7
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L2(R) and we may look for the solution in the same space. Then
G(t) : L2R) — L2(R). (6.3)

A fundamental question arising in the study of well-posednis
whether the induced noritG(t)llL(x x) (whereX is the space on which
G(t) operates) is bounded or not.

One way to answer this question is via the energy inequalty.
second method, which is essentially the same but more camtees-
pecially when working ir_?(R)), is that of the Fourier transform.

The Fourier transformyp, of a functiony € LR) is defined by

o L [
5(6) = @i ¢ p(x)dx (6.4)

That this can be extended to the spaé€R) and that the map
Z L’(R) - L2(R)

which mapsy to ¢ is an isometry ofL(R) are all well-known results
of functional analysis. (See, for instance, Rudiunctional Analysis
McGraw-Hill). The invers. Fourier transform is given by

1 (e
o) = ﬁi (e de. (6.5

Now considery(-, t) ande(-, 0) to be inL2(R). Then.# maps them
to ¢(-,t) and (-, 0) respectively irL?(R). The correspondence defined
by (€2) induces a relation between their Fourier transfowhich we
denote by

&(t) = G(1)@(0). (6.6)

Since.Z is an isometry fromL2(R) onto L?(R) we see thafG(t)|| =
IG@®)I. Thus it is equivalent to checking either the boundedness of
||G(t)|| or that of||G(t)||. The former is often easier to apply when we are
in the case of partial fierential equations with constant ¢heients.
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Example 6.1.Consider the advection equation witltonstant:
¢+ Upx = 0. (6.7)

Applying the Fourier transform w.r.x, we have, for fixe& € R,

S (@0 - ugpen =0 ©.8)
Integrating this equation, we get
@£, 1) = @(¢, 0) exp(ist). (6.9)
ThusG(t) is merely the multiplication by exp(igt).
Example 6.2.In the heat equation
@t —oxx =0, (6.10)

we get, on applying the Fourier transform,

SN + 2 =0 611)

which gives
P(€.1) = @(£, 0) exp-£). (6.12)
ThusG(t) is just multiplication by exp{&2t) .

Exercise 6.1Find G(t) for the wave equation system

u+vy =0
Vi+Ux =0.

To compute the norms of these we need two simple results:

Lemma 6.1. Let &¢) be a bounded function di and let A: L?(R) -
LZ(R) be multiplication by &). Then

1Al 2.2 = supl a@) | (6.13)

49
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Proof. Letu(¢) e L?(R). Then

AUE) = a(§)u(s).

One has

AU = f AP u(E)Pde

< (Sgpla(f)l)z f |u(&)1dé.
Thus||Aul2 < (supla(@)llull.. HenceA is bounded and its norm is
3

< s?pla(f)l = ||al]co-

To complete the proof, we show that for asiy O, ||Al] > ||all. — &.
Consider the set

E={{eR[lal)l > lallo — &}

By definition of|| - ||, the above set has positive Lebesgue measure. By
properties of the Lebesgue measure one can find a sklseE which
is measurable and such that

0 < u(F) < u(E)

whereu is the Lebesgue measure. Now take yr/ +/u(F) whereyr
is the characteristic function &. This is clearly inL?(R) and||ul» = 1.
Hence

(xe(9))?
u(F)

_ 1 2
-5 Ff ale)Pae

A2 > |AU3 = fR EGE dé,
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1 )2
> Ff (Ial ~ e’ae

> (lalle — £)2.
Thus||Al| > |lall. — & for eache > 0 and this establisheE{6113). O

We can extend this to the case of a finite produdI?QR) with itself.
We omit the proof and merely state the result; ‘

Lemma 6.2. If UT = (uy(&), ..., un(¢)) where yé) e Lg(R) and B is
defined by

BU(¢) = A()U (&) (6.14)

A(¢) being an nx n matrix, then the norm of B induced by the vecter
norm

U2 = f U (6)2ce (6.15)
is given by
B = SUPIAG) (6.16)

where|A(£)| is the Euclidean norm of the matrix(@.

By virtue of these lemmas it is easy to see that in exanipléargl
B2, |IG(t)|| = 1. The case of exerci§eb.1 for the wave equation is again
left as an exercise.

6.3 Stability of two-level schemes

We now turn to finite dference schemes. Given a system dffetlen-
tial equations over a domain, we discretize the system tabksting
ameshof discrete points over the region and replacing théedential
operators by dierence operators involving these points.

Let us consider ainiform mesh of step\ x in the x-direction and
stepA t in thet-direction. The nodes of this mesh are thus the points
(jAx, kat) wherej, k € Z, the set of integers withk > 0. The aim
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of a difference scheme would be to express the value of the solution at
u(x, nAt) in terms ofu(y, kAt) wherek < n. Let us denote byu((x))

the valueu(x, nAt). Then a gener&-levelfinite difference scheme will
take the form

D bju™Hx+ jAY) = Y ciu(x+ | AX). (6.17)
jez jez
Remark 6.1. Though these summations range overzaih theory, we

only have, in practicej ranging over a finite set of values.

If bj = 0 for all j # 0, then we can explicitly computa™(x) in
terms ofu". Such a scheme is called explicit. Otherwise the scheme is
implicit.

Remark 6.2. Though, on the face of it, it looks as if an explicit scheme
is more desirable compared to an implicit one, this is notagbwvthe
case. As we shall see in later examples, explicit schemeasoaways
“unconditionally stable” (i.e. stable for all values afX, At)) while
implicit schemes may have this important property.

In general, starting with a 2-level scheme, we can writeeast in
theory.
u™(x) = G(Ax, AHU"(X), (6.18)

whereG(Ax, At) : X — X, X being the space where th8,s belong.
Recursively, one has

u™(x) = G ue(%). (6.19)
Then we have

Definition 6.1. The scheme given bf {6117) is stable w.r.t. a given norm
Il - lIx if and only if

IG"lLx x) < a constant (6.20)

the constant being independentrdbr all n > 0.
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The simplest case, because of the use of the Fourier tramsifothe
study of thel-stability of a scheme.

Starting from equation{6.17) and applying the Fourier gfamm,
we get

Zfbju”+1(x+ ij)e‘fde:chju”(x+ jAX)EE*dx

J J —c

Replacingx + jAx by y;, we have 53

Z bj e—ifjAXOn+1(§) — Z C; e—ifjAXon(é;).
i i

Setting
b(¢) = ) bje I
j o 6.21
@) = ), cje I .
i
we have
b(E)IM ) = @) (E). (622)

ThusG is merely multiplication bya(¢) = cgg)/b(g), known as the
cogficient of amplificationof the scheme, an@" is multiplication by

@™
Thus the schem&I(&117) is stable if and only if there existnatant
C, independent ofi, such that

mfaXI(a(f))”I <C

ie. (mfax]a(g)l)n <C.

or equivalently,
m?x|a(§)l <1l (6.23)

Thus [6.2B) is aecessary and gicient condition for thel? - sta-
bility when we have a singlecalar equation and a scheme given by

©I11).
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6.4 Extension of systems

In the case of a system of equations, th&J¥ are alln-vectors. The
quantitiesb; and ¢j of (&I4) must now be replaced by matrices and
hence we will have, on applying the Fourier transform, niasB(¢)
andC(£0 playing the roles ob(¢) andc(é) in (&22). Thus the condition
for stability is

mfaXI(B‘l(f)C(f))”I <C, (6.24)

C being a constant independentrof

One cannot reduce this to a neat condition which is necessaty
suficient as in the scalar case. However, using the fact thiata matrix
norm, asyficientcondition would be that

m‘faxlB‘lC(f)l <1 (6.25)

One can obtain a hecessary condition by argueing with thetrsphe
radius. Since, we have for any matéx

(e(A)" < IAT,
wherep(A) is the spectral radius,rrecessargondition would be

m£Xp(B‘1C(§)) <1 (6.26)

Since for a normal matrix, the spectral radius is equal toEhe
clidean norm, we see that,B1C(¢) is normalthen the condition{6.26)
is necessary and gficient

A host of necessary afat suficient conditions under various hy-
potheses can be found in Richtmyer and Morfori [32].

Thomeel[35] has studied the’-stability for 2 < p < +oo0 using the
Fourier transform.

Remark 6.3.1t must be observed that one can use Fourier transform

only when the cofficients of the partial dierential equation are con-
stants and when the mesh is uniform.
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Our subsequent study will be of numerical schemes for thedreh
advection equations. We will then turn to the general equatof hy-
drodynamics in Sectidd 9.






Chapter 7

Finite Difference Schemes for
the Heat Equation

7.1 Introduction

In this , we view various examples of finitefifirence schemes for th&e6
heat equationp; — uxx = 0. We study the stability and consistency
of these schemes. We sketch the proof of convergence, usihijtg
and consistency. Finally we sketch briefly how to deal withalzde
codficients and with non-linearity.

7.2 Four Schemes for the Heat Equation

Let us assume henceforth a uniform mesh of stepsndAt. We use
the notation
u' = u(iAx, nAt). (7.1)

We now proceed to give four fierent schemes for the heat equation.

Example 7.1.An explicit scheme
The scheme reads as

url oy 1
# - E(Uﬂ_l - 2U|n + uin—l) =0. (72)

57
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This scheme is clearly explicit. Applying the Fourier trimmen as in
Sec[6.B, we get

1
b(¢) =
1 2 1 i
_ - _ = _ = (dEAX —IEAX
o) = A AR AR (& + e

which gives the cfiicient of amplification

a() = % =1- % sinz(%(). (7.3)
Hence
0™ (£, 1) = a(@)U"(E 1) (7.4)

with a(¢) as in [Z.8).
Using the stability criteria of Sed_8.3, vifa(¢)| < 1 for all £, we
see that this scheme is stable if and only if

2At

o<l (7.5)

Expanding the left-hand side &f{¥.2), for the exact sotutiof the
heat equation, by means of a Taylor expansion akidutriAt), we get

du AtdPu o fofu Ao
a2 T e 2ae

and sinceu satisfies the heat equation, we see that, for the explicit
scheme, therror of discretizationis the ordelO(At + AX?).

Note that by[[ZF), in order to get a stable scheme, one n&etls
be of the order ofAx? and then the overall error of discretization is of
orderO(At). However, when we combine the heat equation with other
equations, one needd to be of the order oAx. Thus one feels the need
for other schemes. As already remarked in §€¢. 6.3, explibitmes are
not generally unconditionally stable while implicit schesnare. Thus
one generally uses an implicit scheme.
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Example 7.2.An implicit scheme
This scheme reads as

un+1 un
i [u?jll 20+ U] =0 (7.6)
Again one has the relatiof {T.4) wid{) defined by 58
At (enx)\] T
a(é‘:) = + ? Slnz(%)] (77)

and as this always has absolute vatug, the scheme isnconditionally
stable i.e. there is no relation betweetx and At for stability. Once
again, using a Taylor expansion, one finds the error of digetén to
be of orderO(AX? + At).

Though this scheme is unconditionally stable, one wouldepran
error of discretization of orde®(Ax? + At?). To this end, we present
two such schemes

Example 7.3.Richardson’s Schem@&his is, in truth, a 3-level scheme
given by

n+1 n-1
U =Y

1
At Ax2[ H+1

One reduces this to systemof two equations by the substitution
v = ui”‘1 for alli. By applying the Fourier transform, one finds that the
spectral radius of the matri®@1C(¢) is always larger than 1, (Exercise
1) and hence the schemedhvays unstable

—2uM+ U, | =0 (7.8)

Example 7.4.The Crank-Nicolson Scheme. The scheme is given by

uin+1_uin 5 un+l_'_un
- VvV |——1]=0 7.9
) 79
where
1
VAV = ——(Vis1 — 2Vi + Vi_1). (7.10)

A2
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Once again one has the relatien{7.4) with
1o A sinz(@)

AR 2

A8 = =8 (gAx) (7.11)
1+ —— sir?|2==
AX2 2

and this scheme is seen to be unconditionally stable. Ther aftthe
error of discretization is easily checked to®@AX? + At?).

7.3 Consistency

The consideration of the order of the error of discretizatemads to the
following definitions.

Definition 7.1. Let L be a finite dfference operator approximating a par-
tial differential equation. Then, ifis the exact solution of the equation,
the quantity

Lu=¢

is called the error of discretization.

Definition 7.2. A finite difference scheme is said to be consistent with
the (partial) diferential equation it approximates if, for the exact solu-
tion u, the error of discretization satisfies

lim e=0 (7.12)

Ax—0

At—0

Observe that by virtue of the orders of errors of discreitiratom-

puted for the examplds_J.1[a 1.4 we see that all those schammesn-
sistent with the heat equation. We now give an example of amseh
which is not always consistent.

Example 7.5.The Du Fort and Frankel SchemAgain this is a 3-level
scheme defined by
n+1 _  n-1 n+l

o= e [ ] - 2 [ -] =0 (719)
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This scheme is explicit and is unconditionally stable. Hesvehe
2
. L At . .
error of discretization is of orded [(B() ] and hence will be consistent

only if At — O faster tham\x (for instanceAt = O(Ax?)). This scheme 60
is not very much in use now.

7.4 The codficient of amplification

For the schemes described above one gets, on applying theRoans-

form, the coéicient of amplificationa(¢). It is interesting to compare
this with the exact case. Applying the Fourier transformhe é&xact

equation, one has (Cf. Examjilel6.2)

aex(¢) = exp.(-£2At). (7.14)

It can be proved that if one imposes a relation of the faim= AX? in
case of the heat equation and the error of discretizatiof asder p in
At, then

aex(€) — a¢) = O(AtPH).

Thus in the explicit and implicit schemes the error of ditizegion
is of orderO(At) andp = 1. In the Crank-Nicolson schenge= 2.

If we plot a against‘Ax, we get the graphs shown in FIg17.1.

If we have a small wave number, i.&, then we see thai(-) for
any of these systems is almost the same. However, clos&xoe= r,
i.e. for large wave number, we have widdfdiences and through the
Crank-Nicolson scheme is of second order one cannot usesitdirece

, . At
we will get a wrong solution whem >> 1.
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ENx =

+1 fesg -

> a implicit
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Figure 7.1:

7.5 Convergence

Given afinite dfference scheme we would like to study the convergence
of the approximate solutions to the true solution as the nieshade
more and more fine. In other words, one has to study how the erro
between the approximate and true solutions behavesL betthe ap-
proximation of the dierential operatoft) the approximate solution and

u the exact solution. One then has

LU=0
} (7.15)
Lu =g,

whereeg is the error of discretization. The error in the solutioreis
u— U and by virtue of[ZT5) on has

Le=¢ (7.16)

Let us assume that the scheme defined_hy stable, i.e.||G"|| is
bounded for alh by a constantC(Ax, A). We are interested in the case
whereC is freee ofAx andAt as well. This leads us to
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Definition 7.3. A given scheme is said to be uniformly stable, if the
constantC while bounds||G"|| for all n, is independent ofAx and At
whenAx < Ax andAt < At and (Ax, At) belonging to the subspace of
R? which gives the stability of the scheme.

Let us assume that gives a uniformly stable scheme in the sense
above and that it is consistent as well. Let us fix any tiniEhen divide
[0,1] into n equal parts so thdt= nAt. Let€" be the error at time level
nAt. (Since initial condition is assumed to be given, one ¢fas 0).
One can then prove that

€ < Cllell. (%)

Let us makeAx, At — 0. Then automaticallyp — oo for nAt =t
fixed. Furthers — 0, by consistency. This implies thgd"|| — 0. In
other words for each timg the approximate solutions converge to the
exact solution in whatever norm we have stability.

This is a sketch of the proof of the fact that (uniform) stigpiind
consistency imply the convergence of the scheme. This isgbahe
Lax’s equivalence theorem which states that stability amusistency 63
are together equivalent to convergence of a scheme.

For details of this theorem and for moreffdrence schemes, the
reader can refer to Richtmyer and Mortbnl[32].

7.6 The energy method

We now describe another technique for studying stabilitdiference
schemes. This is know as tkeergy methad

Example 7.6.Consider the following scheme for the heat equation:

Y-y
At AX2

1This is the analogue of remafK#.1 about the fact that an grieegjuality in the
homogieneous case always implies the same in the inhomogemase. Here energy
inequality has to be replaced by stability.
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1+1

ot - 20t + UM + (L- (U, - 20! + Ul )] =0 (7.17)

for0< 6 < 1. (If 9 = 0, we get the explicit scheme; fr= 1 we get the
implicit scheme and fo# = % we have the Crank-Nicolson scheme).

We study stability on the spadd, of square summable sequences.
On this space we define the inner product

{u,v) = AX Z Ui Vi (7.18)

|=—00

whereu = (U), v = (V). ThenA: 2 — (2 is defined by
1
(Au)i = "o [Uis1 — 205 + Ui_q] . (7.19)

We may write the equatiol {Z117) in vector form as
un+1 _n
T + A(@Un+l + (l - H)Un) =0. (720)
Let us denote by* the vectou™?! + (1 — #)u". Then we notice that
2ut = (U™ 4+ UM + (20 - 1)UM - u). (7.21)
One also recalls the familiar identity

(@a+b, a—b) =|a® - |bJ (7.22)

where]| - | is the norm induced by the scalar product.
Taking the scalar product di{7]20) withr'2 one has, usind (Z.P1)

and [Z2P)
|un+l|2 _ |un|2 (29 -1
+

o o )|un+l —Uu"? + 2(AU*, Uy = 0.

Again, using [ZZ20) we get
|un+1|2 _ |un|2

o + (20 - DAYAU? + 2(AU", u*) = 0. (7.23)
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A moment’s reflection will show that

(Au, U = AxZ(”‘+1 ) >0 (7.24)

Thusifé > % i.e. -1 > 0, we get from[Z.23) that™?!| < |u"|
which gives¢?-stability of the scheme unconditionally. In particular,
this is the case of the implicit and the Crank-Nicolson soe&nin case

0<o< % the middle term of[[Z22) is negative and thus one cannot

expect unconditional stability.
At this stage one needs the following

4
Lemma 7.1. |Au? < —(Au, u).
AX?

Proof.

IAU? = sz ﬁ(um - 2U; + Ui_1)?
03, o (-
2[5 (e >z< ;3-1>2
2y Bt

Applying the Cauchy-Schwarz inequality to the last terne bas

4 & Uir1 — Ui o
AU < — ) Ax(=—-
| l_szg ( AX )

4
= E(/A\U, u, by (ZZ3).
This proves the lemma. O 65

Using this lemma we find the condition for stability. In ordethave
stability, one needsi™12 — |u"? < 0. In other words, we need

(1 - 20)AtAU [ < 2(AU°, U")
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ANt
But (1 - 20)AtjAu 2 < (1 - ze)mmu*, u*), by lemmeZIL. Thus the
stability condition is

AN(1-26) _ )

v (7.25)

Remark 7.1.1f 6 = 0, we get back, fronl{Z.25), our originif-stability
condition for the explicit scheme. Thus we see that for atlsmhemes
the L2 and¢? stability coditions are the same. However, this is not sur-
prising, for under the correspondenieg} «— (piecewise linear func-
tion with valueu; atiAX), the£?- norm is equivalent to the2-norm.

All our preceding work has been under the basic assumptiah th
the mesh is uniform. The case where the mesh is non-uniforthein
x-direction is described in the following exercises.

Exercise 7.1Let {x} be the nodes of the mesh. Let: denote the
midpoint of [x;, x.1] and %1 that of [x_1, X]. Define A by

-1 Usr — U Ui — Ui
X1 =X 1 [ X=X X=X

(Au); =

If AX = max(X.1 — %), show that
|

2
(A ~ 2-5(6) + (A%

Exercise 7.2 Define thef?-inner product by
WV = D (%3 = X_)uivi
i

Then show that

|AU? AU, U).

< MG = %2
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Remark 7.2.In the case of an explicit scheme, viz.= 0, we get the
stability condition for the non-uniform mesh aat2< min(x.1 — x)?
by virtue of exercis€_712. In general it is found that wherkiog for
stability criteria in a non-uniform mesh, one can adopt tiloWig rule
of the thumb:

Find out the condition for the uniform mesh case. Then inmmgpsi
this condition locally on each interval of the non-unifornesh, pick out
the strongest of these as the required stability criterion.

Thus for the explicit scheme, one hastX (x;,1—x;)? starting from
a uniform mesh. This leads to the ‘worst’ condition

2At < min(X1 — X))
|

which was deduced from the preceding exercises.

A word of caution! This method is purely heuristic, but geailgr
works. In some cases one can rigorously prove this heustaigility
criterion (as in the case of the explicit scheme above) hstithnot
always possible.

Before closing our discussion of the heat equation, we sawa f
words about the variable cfiient case and the non-linear case.

7.7 Heat equation with variable codficients

The heat equation with variable d@eients reads as 67
ou 0 ou
E - a—x (O'(X)a—x) =, (726)

whereo(X) > @ > 0.
This may be also written as

_____ ou_, 7.27
ot “axox a2 ° (7.27)

To set up a discrete scheme, the problem is essentially t@@pp
ou .
mate the terms other thag-. To do this we have two approaches, based

on (Z26) and{Z27).
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The first is the ‘conservative’ scheme based on the farmy7\2@
approximate the terms involving derivatives w.xty

W = 5 [o w0 y-un| @29

and this is of ordeO(AX?).
The second scheme usES(Y.27) to approximate the dervativée
X. This is the ‘non-coservative’ scheme given by

+ oi(Uis1 — 20 + Ui—1)
(7.29)

(U|+1 Ul—l) (0'i+1_0'i—1)
e _

which is also of second order accuracy.

Remark 7.3.The equation[{Z.26) is essentially a conservation law. In-
tegrating between andb w.r.t. X, we have

0 ( ou

b
f_a_x(ga_)dx__"(b e (b t)+U(at)_(at)

and replacing the term involving by summation, one has

+ Alx[ |——(ul ui—l)_ .

1=lg

Axi(Acu)i = —A—lx [O’H%(Unl - Ui)]_ _

i=i
i=i, 1

(7.30)

which turns our to be the discreate analogue[0f {7.30). If sethe

non-conservative scheme to replace the terms involvinthe summa-
tion will not be ‘telescopic’ to resemble equatidn_(4.30hu§ the con-
servation scheme gives the discrete analogue of the canncase and
is used in general.

One can prove a lemma analogous to lenima 7.1 and exérclse 7.2.
We state it below.

Lemma 7.2. If A : (2 — ¢? is defined by[{Z.28), then,

4
IAUP < — Maxio 1 KAWL U) (7.31)
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Remark 7.4.1f o(X) = 1, we get back lemm@=1.1. We observe that
the stability conditions can be made to follow from a hetgiatgument
similar to that enunciated in remdkd7.2. The stability dbad for the
explicit scheme will then be

2At
E miaX|O'i+%| < 1

which, in this case, can be proved using lenima 7.2.

7.8 A non-linear example
The non-linear heat equation is of the form

ou o0 ou
= 7 (o-(u)a—x) = 0. (7.32)

If o > 0,0 e Cland 0< o < o(U) < 8, then one can imitate
the analysis of Sectidn1.7. of the linear case. However,=f 0, then
such techniques do not extend to the non-linear equatiovereless,
particular forms otr(u) have been studied. 69

We consider the case whesgu) = mu™?%, u > 0,m > 1. The
conditionu > 0 is the one that is encountered in physics siné® the
temperature. Then the equation can be written as

ou o2uM
E - W = 0, (733)

with the initial condition, sayi(x, 0) = 0, and boundary condition given
m

by prescribing eitheu(0, t) or aain(o’ t) = —‘%"(O, t) (the normal deriva-
tive onx = 0), both non-negative so as to ensure, by the maximum prin-
ciple, that the solutioru will be > 0 everywhere. For a givep the
solution will take the form as shown in Fig.2.
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u(z,t)

R . =

Figure 7.2:

In the casem > 2, the derivative ofu at A is infinite. However
there is a result due to Aronsdn [3] which states tifatt has bounded
derivatives. Hence to set up an approximate scheme we ee{/if3)

as -
ou 4 ( mu ou™
— - — =0. 7.34
ot 8x(m—1 ax) 0 (7.34)
70 Now we approximate the term involving derivatives w.x by
1
Auy = " e e L T U N
' Ax(m-1) 2 AX

1

. uim—l + uinlil m-1 uim—l _ uin:_l (7 35)

2 AX ) '

Notice that we use again the “almost linearity” @ to define a
vaIueuH% interpolated between, andu;, 1. From this we can generate
various implicit and explicit schemes. For example, thelioifpscheme

will read as
n-1

U - uin +1y,
A + (AU =0 (7.36)

which is, w.r.t. the unknown at timen(+ 1)At, of the form

Fi(ud u™t u™h = 0. (7.37)

i+1° i
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So we get a non-linear (“tridiagonal”) system to solve arns tiould
be done by Newton’s method of linearising locally, so thaaath itera-
tion one has to solve a linear tridiagonal system, which sy.ea

If one wants to use the explicit scheme (givenylgfgt_—uin + (AU =
0), in order to avoid solving linear systems one would getitberistic
stability condition

At
2m max|u|”F1E <1 (7.38)

which can be very drastic.
For non-linear examples see also Graveleau and Jamet [14].






Chapter 8

Numerical Methods for the
Advection Equation and
Hyperbolic systems

8.1 Introduction

We now study numerical schemes for the advection equatiaohwbl 71
a scalar equation. We consider the equation with constastlicents

in order to apply Fourier transform techniques to study iktab We

do this for the pure initial value problems and give modifimas for
problems with boundary conditions. Later we shall exterebs¢hideas
to simple non-linear cases like Burger's equation and alsystems of
linear equations.

The advection equation with constant ffagents is given by

ou ou
E + aa—x =0. (81)

To start with we establish a uniform mesh of st&p over R and
stepAt in time. As usuali® will denote the valuai(iAx, nAt). We now
proceed to give various numerical schemes for the equdidh). (

73
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8.2 Explicit Schemes for the Advection Equation

Example 8.1.The simplest shceme to approximate equatlonl (8.1) is
given by
uMtl — 0 u -
i i +a i+1 i—1 =0 8.2
At 2AX (8.2)
It is obvious from expanding by a Taylor series ab@Ak( nAt) this
scheme has an error of discretization of or@Ax? + At). However

setting

—a— 8.3
a an (8.3)

and using the Fourier transform, the fic@ent of amplification turns
out to be
a(¢) = 1+ ia SinE¢AX). (8.4)

Hencela(¢)| > 1, which means that this extremely simple explicit
shceme is always unstable and is thus never used!

Example 8.2.Lax’s Scheme This is an explicit scheme of first order
accuracy, given by

n+1 1/ 0 n n n
Ut - s, +uly) N a(ui+1 -uly)

| —
At oA =0. (8.5)
Again, from the Fourier transform, we get
a(¢) = Cos¢AX) + ia SINEAX) (8.6)

wherea is as in [8B). The criteriofa(¢)| < 1 for all £, gives the stability
condition,|a| < 1, which is

At
— <1 8.7
Chv 8.7)
This scheme has an error of discretization of or@¢AX? + At +

sz)
At
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Example 8.3.0ne-sided schem@&he scheme is defined by

ut —un
Uin+1—Uin a%zQ ifa>0 ( )
_— + n n 8.8
ud =
At a%:o, if a<0.

To motivate this, one can argue with characteristics. Asstimat
a > 0. Then the characteristics have positive slope. The vafitreis
then the value at the point where the characteristic thrqigk (n +
1)At) meets the levehAt, (Cf. Fig. 8.1) which we assume lies between
((i — 1)AX, nAt) and ({ + 1)AX, nAt) (Cf. RemarZ8.R on stability con-
dition).

CHARACTERISTIC
/—/ (n+1)At

PN

L P L n\t
i_lﬁ—aﬁt—»jk—ﬁl‘ — 7+ 1

Figure 8.1:

To get the value oP, we interpolate it linearly between the valug's 73
andu’ ;. Writing this out we get precisely(8.8) (multiplied thrduaur
by At). Similarly we can treat the case< 0.

This scheme has error of discretization of or@Ax + At).

Exercise 8.1.Show that the stability conditio{8.7) holds in the case of
the 1-sided scheme as well.

Example 8.4.The Lax-Wendiy SchemeThis is a second order scheme.
We motivate the scheme by the following arguments. Expa_nq?hl



74

76 8. Numerical Methods for the Advection Equation...

by a Taylor expansion w.r.t, we get

E)u Atz 82u n
1_

Using the fact thati satisfies the advection equation, we get

u

u__ o
at T ox
du o ou 282
—_ = —a—
o2~ o\ Cax X2’
Substituting, we get
OUn At?2 ?un
1 a2
Ut =t - ant—— |+ > 3X2| (8.10)

We use[[8.10) as the guideline for forming the scheme whigjivien
by

2
N+l _ |+1 1) a At
y; — aAt AT 2A 5

(u'; —2u"+u,).

Equivalently, we can write

ui””—ui” (U.+1 Uty  aAt
At 2AX  2AX2 Ui

—2M+u' ) =0 (8.11)

The error of discretization is of ord€(AX? + At?).

Exercise 8.2 Find the coéicient of amplificatiora(¢) for the Lax-Wen-
droff scheme and show that the stabilitity condition is again ryilg

@.2).

Remark 8.1.We may rewrite the scheme of Lax and the one-sided

scheme as follows:

Lax’s shceme:

n+l _ (n n 2 _ n n
ui ui (u|+1 ui—l) _AX ( i+1 2U +U

= A2
At 2AX 2At AX? ) 0 ®12)
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One-Sided scheme:

o ) jaiax ( -2y
At 2AX 2

i+1 i—1
-0 (813
- ) (8.13)

In writing both [BI2) and[(8.13) we see that we have esdbntia
approximated to second order accuracy, the perturbediequat

ou AtU  u P
! U a2 (8.14)

ot 292 Tk T o

wheree is the codficient occuring in the last term di{8112) ¢r(8.13).
Since the solution satisfids{B.1), we can rewflie(8.14) as 75

(8.14)y

o, (@A
ot ox 2 | ox2

2
o . . . a“At
A criterion of stability due to Hirt[[15] and Yanenko is thee —— > 0.

This last term involvinge is called the dissipative term. In all cases
2

AX .
€ — 0 asAx, At — 0 (and, |th — 0in case of Lax’s scheme).

Remark 8.2.Interpretations with characteristicslust as the one-sided
scheme was interpreted to be a linear interpolation betwegnand
xi(a < 0) or betweerx; andx;_1(a > 0), we can interpret the Lax scheme
as linear interpolation betweeg,; andx;_;. The Lax-Wendr& scheme
is the quadratic interpolation betweenq, x; and x_1. All these three
interpolations are for the same polof Fig.[8.].

We may also interpret the stability condition in terms of retwder-
istics.
Consider the mesh given in FigB.2.
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P1 Py Py 'Py 'Ps P 'Pr Py 'Py 'Pro! Piy

Figure 8.2:

The stability condition implies thatt cannot be too large compared
to Ax. Note that for the approximate schemes given above the atlue
P depends on the values on the 3 nodes immediately below agd the
in terms of the 5 nodes below them and so on. Thus we define the
approximate domain of dependence frt any time level to be that
portion of the grid betweei;P and P1;P. However, if the stability
condition is violated, then the characteristic througwill lie outside
the region between these two lines and the exact domain ehdence,
which is a single point for the advection equation Rif (x,t) then the
exact domain of dependencetat 0 is the point & — ut, 0), Cf. 1.6),
will lie outside this region. This will violate the CouraRtiedrichs-
Lewy convergence condition thtte exact domain of dependence must
be contained in the approximate domainagpendence and we will not

. At
get convergence whetx, At — 0 keepmg& constant.

8.3 Implicit Schemes for the Advection Equation

We will now look at a few implicit schemes for the advectioruation.
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Example 8.5.The SNG-Schemd his scheme was devised by Carlson
for the neutron transport equation. It is a method of firseomf accu-
racy and is essentially an extension of the oen-sided scheme

Let us assuma > 0. (The details whea < 0 follow a parallel line
of thought).

When%): < 1, one uses the one-sided scheme which was only a
linear interpolation between the pointandi + 1 at timenAt.

aAt - :
If A > 1, then the characteristic throughk, (n+ 1)At) meets the
line x = (I — 1)Ax before it meets$ = nAt (See FigC813).

CHARACTERISTIC
(n+1)At
Ax
At
n/At
1—1 i i+1
Figure 8.3:

Hence we now have the vallué+1 equal to the value af at P which 77
we interpolate linearly betweerni {1)Ax, nAt) and ((—-1)AX, (n+1)At),
to get

u_n+1 — (l— ﬁ un+1 AX n

| aapdi-n t aui—l

or equivalently,

un+1 —un (u_n+1 _ un+1

2L ] 2 -0 (8.15)
At AX

The SNG scheme consists bf{d.15) as well as the one-sidethsch
. aAt .
depending on the value af = i In case of [[815) being used one
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has
a®) = (1 + a(e - 1))? (8.16)

andla()| < 1if @ > 1, which is indeed true. Thus the scheme is
unconditionally stable

Suppose we have to work in a bounded interval, say, @ < 1.
Then, whera > 0, one can impose a boundary conditionxoa O.

t

Ro Rl RQ
Qo| Q1] Q-
x
Bl P| P
Figure 8.4:
78 Then to calculate:, we know the values af),, P, and P; and

hence the value &; can be calculated explicitly from the scheme. Now
for Qy, since we know the values @4, P; andP,, we can calculate the
value atQ, and so on. This can be done at any law&t. Thus though
the scheme iformally implicit, one can, with the aid of the initial value
and the boundary condition, solve for the value at each eagécitly,
step by stepSuch a scheme is called quasiexplicit.

Remark 8.3.1n case of the neutron transport equation, one has to solve
the equation[{8]1) when a take its values over an interval A], using

the sametime stepAt for all ain this interval. Hence it is here that the
SNG scheme is very useful, it being unconditionally stable.
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Example 8.6.The Crank-Nicolson Schem&he scheme is given by

1 1 1
urt - La Uy - Uty U, -y -0 (8.17)
At 2 2AX 2AX '

This scheme is of second order and is also unconditionadlylest How-
ever, it is purely an implicit scheme unlike the SNG-scheme. 79
In this linear case, this leads to a system with a tridiagomairix

which is easy to solve by Gauss’ method adapted to a tridelgystem.
But in using this scheme for the non-linear equation, within the
second term of[{8.17) being replaced by a functign), the solution
becomes more complicated. Thus one devises iterative chethioet
uP denote the value off! at the p-iteration. We can use then the
following methods.

n+1,p

n+1,p+1 n
Ui — U i+1

At

p

n-1, n n
—U_ Ui — U

2AX * 2AX

u

+ =0

NI ©

where we assume all value8 to be known. IfUT = (uf*%, .. ul*d),
we get

0 10- - - 0
-1 0 1 . . . O
aAt
U(|o+1):_K . U L F (8.18)
X -1 0 1
0 -1 0

whereF is known. The convergence of this iterative method implies$ a

is implied byp(H) < 1, whereH is the matrix occurring as the ciie

. . At . .
cient ofU(P in BI8). Herep(H) ~ %B( Thus in the non-linear case

we have to resort to an iterative method which ends up withnaition
similar to the stability condition and this undoes all ouvaatages of
achieving unconditional stability.

Of course, one can devise better iterative methods but derssi
tions like computer time etc. do not make this worthwhiletolfsolve
the Crank-Nicolson scheme witiivt, N times larger than the time step
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- AX . .
allowed for an explicit sche t < H) one needd > N iterations,
then obviously the scheme is not worthwhile. Moreover atersition

of accuracy usually prohibits takintt large compared telAeTT .

Example 8.7.This scheme was used by Robert and Weiss [34] in fluid
dynamics. The scheme is of second order accuracy and isexjaliit
when we have a boundary condition. It is also unconditignstéble.
(Exercise: check these assertions!) To put down the scheeapprox-
imate the derivative w.r.tx by using the mid-points of the diagonals,
shown in Fig[(8b. whea > 0.

(n+1)At
S R N A R .. (n+1/2)At
nAt
7 —1 1 ’L+ ].
Figure 8.5:
ut—u g [umt e, UMD
i i + i i+l ~i-1 I 0. (8.19)

At AX 2 2

whena > 0.

If a < 0, we use the other two diagonals of these rectangles. This
scheme is rarely used.

Example 8.8.The DSN-Schem@ his was also devised by Carlson for
the neutron transport equation. In each rectangle of tlik gnie evalu-
ates the values afat the four mid-points of the sides and at the centroid.
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(n+1)At
. (n+1/2)At
n/A\t
(i+1/2) .4
Figure 8.6:

For this we use the set of three equations given below:

N+l _yn n+1 n+2
X X 2 2
(|) H—% H—% a(ui+l - ui ) — O
At AX ' (8.20)
- n+3 n+3 n+3
(i) 2u Z=u"l+u =u ?+u ?
i+3 i+3 i+35 I+ !

This scheme is quasi explicit for the following reasons.r (oota-
tions are based on Fig—8.7).

t

R | Ro
Pl ]\./[1 P2Z\.42 P3
xr
Ol Q1| Q2

Figure 8.7:

Assumea > 0. We then can have a boundary condition>os 0.
Hence from the boundary and initial conditions, we know takigs of
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u at P; andQ;. Using equationd{8.20) (ii) we can express the values at
R; andP5 in terms of that aiM;. Now (8.20) (i) reduces to an equation
in one unknown, viz., the value &; and we can solve for this explicitly
and from this get back the valuesRtandPs.

Thus step by step we can evaluate, explicitly, all the unkmow he
scheme is therefore quasi-explicit. The scheme is of seocothel ac-
curacy. However, for the stability one cannot use the Fotnaasform.

But one can get an energy inequality and we leave this as anisxe

Exercise 8.3.Using an energy inequality show that the DSN-scheme is
unconditionally stable.

8.4 Comparison of the Schemes Above

We summarize the main features of the preceding schemesiing4..



Possibility
Type Name of the 1(%) Stabi- of extension Comments
scheme lity to systems
Explicit Centred Always un- - Never used
scheme. stable
At
Lax’s |a|§( < 1for Yes
Scheme. stability L*=-stable as well
One-sided .
No
scheme
Lax-Wendrdt . This is the best
Yes
scheme. among the
explicit schemes.
But it is not
L>-stable.
Implicit Crank-Nicolson  Unconditionally Yes Rarely used
scheme stable
Quasi- SNG-Scheme " By method of Used for neutron
explicit characteristics ~ transport equation
DSN-Scheme " Yes, but exten-

Robert-Weiss'
scheme

sion is purely
implicit

Rarely used

”

€8

aA0qYy SaWayds ay) Jo uosLedwo) g

G8
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Remark 8.4.As mentioned in Table 8.1, the Lax-Wenfiracheme is
not L*-stable. (Cf. Themée [36]). If the initial value of the sibdun of
the advection equation has a shock, soufast) for any timet. If one
uses the Lax-Wendfbscheme, the approximate solution has a lot of
oscillations about such a discontinuity. This behaviouelated to the
L*-instability of the scheme. The Lax and the one-sided schemthe
other hand, are*-stable but their approximate solutions are too smooth
around the point of discontinuity of the true solution anid thoes not
represent the ture situation either. In practice one hagdmise one’s
own judgement as to which behaviour is preferable! One cem adld

a non-linear dissipative term to the equatibnl(8.1) whichegligible
everywhere except at a shock where it has to smooth out thitsos.
See Boris and Book[4] and Van de Lekrl[37].

8.5 The non-linear equations

The non-linear equation takes the form

ou o0
a + a—x(f(u)) =0. (8.21)

If one wants to imitate the Lax-Wendtcscheme, one again moti-
vates this by the Taylor expansion:

At?
u”*lzu”+Atut+7utt+...

2
0= AR + %%(f’(u)a;(xu)) ..

again using[{831). In case of a non-lineystem the matrix f’(u)
might be very dificult to compute. Hence one modifies the Lax - Wen-
droff scheme to avoid this fliculty and permit generalization to sys-
tems. This is called thg-step Lax-Wendgschemenvhich is described
as follows:

"

Step I. Usingu’ ; andu’, one obtains, say, by the Lax’s schemine_ :

= pie

NIl

. .o+l .
Usingu, ul, one obtainsi_ ? in the same fashion.
T2
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Step Il. Using the results of step |, we write the scheme

1 1
uin+1 _ uin f (Uin:rf) - f (Unj%z)
=0. .22
At AX 0 (8.22)

In the linear case whel(u) = au, this reduces to the usual Lax-
Wendrdf scheme (check!).

The scheme we have just described is a memeber of class ofieshe
known asS?-schemes, all of which reduce to the Lax-Werfiisztheme
in the linear case. These have been studied by Lerat andtf&}e

All these schemes give oscillations about a shock. To trestte
can add a dissipative term to thdfdrential equation so that this term is
small where the gradient of the solution is small and actg whiere the
gradient is large i.e. at a shock. One such term is the pseisdosity
term and in this case the equation reads as

ot + E)_x(f(u)) T €%
One uses the Lax-Wendtascheme for the first two terms and add

an explicit approximation to the dissipative term. 85
There is no rigorous rule for the choice of the dissipativenteHow-

ever, one can apply a dimension analysis to get some ided ibou
Raviart [31] has studied the convergence whenAt — 0O of three

schemes for the equatioi{8l23) wittu) = Zu?, but with  fixed. This

of course, is not exactly the state dfairs since we requireto be small

and— 0. How ever, this is a step in the right direction.

8.6 Boundary conditions

Let us consider the following problem with boundary corudis:

ou ou
E+aa—x_0, a>0 0O<x<1
u(x, 0) = u.(X), (initial value)

u(0,t) = 0 (boundary value)

(8.24)



86

88 8. Numerical Methods for the Advection Equation...

We have seen that when there is no conditiorxenl, this problem
is well posed. (Cf. Se€.3.3).

The various numerical schemes cited for the purely init@ite
problems are all three point schemes involvirg., i andi+1 of the pre-
vious level. However, in case of the bounded domain,4f0< I, then
the equation f0|u?+l will involve U}, ; which lies outside the domain
and hence we do not know it. Thus one feels the need for eXatapg
u" to the pointl + 1 as well. One such interpolation is provided by

U+ =U. (825)

However, this is not a sficiently accurate choice. A much better
choice
U1 = 2Up — Uj_1. (826)

One could, of course, give better extrapolation formulag,ds all
schemes are of atmost second order accuracy, the formH®) {8.quite
suficient for our purposes.

Exercise 8.4 Apply the formulael[(8.25) an@{8.R6) to the Lax-Wenttiro
scheme and show thdf{8125) gives an inconsistent schenie thht
given by [B:2Zb) is consistent.

Remark 8.5. The stability of problems with boundary conditions is usu-
ally studied by the energy method. This problem has beenestud
deeply by kreiss119].

8.7 The leap-frog scheme
This scheme is given by

u*t gt W, - )
i i +a i+1 i—1 —

2At 2AX

0. (8.27)

This is a 3-level scheme which, though not widely used foratte
vection equation, is very useful for systems of hyperboticiaions,
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especially for the wave equation. It is easy to see that themse has
an error of discretization, of ord€@(Ax? + At?) and hence is of second
order of accuracy.

Settingv! = U™, we get the system

v e e P e [

which gives

[0’”1(5)] _ [ZiA 1] [0”(6)]
O of[¥E)

At .
whereA = aB( SINEAX. 87
The eigenvalues are given by the roots of the equation
P -2iA-1=0.

If1 — A2> 0, then
A=A+ V1-A?

and if 1- A2 < 0, then
A=iA+iVvAZ-1

In the latter cas@l| > 1 for at least onel and in the former case
|| = 1 for both eigen values. Thus we get the stability conditigre 1
for all £, which is the condition

At
ol <1 (8.28)

Note that this condition isecessary
We can get asyficient condition if the matrix of amplification is
diagonalizable. Let

A€) = SE)DE)S™ ().

Then A"(¢) = SD'SY(¢). By the preceding necessary condition for
stability, one ha§D"|| bounded. Thus a fiicient condition is

m§a><(||S(§)|| +1IS7X)I) < constant (8.29)
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Applying this to the Leap-frong scheme, df = |aj%( < 1, then

|A?> < 1 and the eigenvalues are distinct. Théisient condition [8.29)
is indeed satisfied. (Check!).

On the other hand, i = 1 andéAXx = /2, thend; = A, andAis
not diagonalizable. Thus thefigient condition is not satisfied. Though
this is no proof of instability, we give below an example dbthituation
where the scheme is indeed unstable.

Exercise 8.5In the leap-frog scheme witla = 1, givenu? = exp(m)

] 2
andujl = exp(#), show that

uj = (2n- 1)exp.(|§(j +2- n)), n>1,
and hence the scheme is unstable.

Finally, when dealing with bounded domains, we need to prtee
at the pointl +1, where 0< i < | are the nodes of the mesh. The follow-
ing procedure of extrapolation can be proved (by the energghad) to
be stable although it is probably not the best one w.r.t. raoyu

1 _
U, = §(u|”+l +urt). (8.30)

One can show, by energy methods, the stability of the schewieru

the suficient condition t
— <1 8.31
|aj " < ( )

We demonstrate this when the domaifRisind leave the boundary
condition case as an exercise.

Multiplying the equation[[827) byx(uM?! + uM1) and summing
over alli, we get

|un+l|2 _ |un—l|2 a -
i DY AR Ui W (PRI Vi B¢
i i
(8.32)
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where| - | is thef?-norm induced by the innerproduct defined in §ed 7.6
(Cf. equatiori_Z.T8). Now, one can easily verify that thedwihg holds
(by a simple)

Z(U{h —ul )t = - Z(ui";ll —u~hul. (8.33)
[ i
We now define 89

1 12 o  aAt 1
XS T A i @39

Using [B3B) and(8:34)[{8.B2) becomes
X2 = X3,
Proceeding recursively, one gets
X2 = X" = = X2, (8.35)

Note th?tx% is expressed in terms of andu® and hence is known.
FurtherX™2 is bounded.

Observe that
n n n+1 n n |2 1
|AXZ(Ui+1 —Uu Iy < \/AXZ u =l 2 untd
i i
n n+1
<2u - ut
S |un|2 + |un+1|2’

by using the Cauchy-Schwarz and the Minkowski inequalif@sthe
innerproduct and norm respectively and also the fact thatnemative
aandb, 2ab < a? + b%. Thus

1
|Xn+§| S |un+1|2 + |un|2 + |a,|(|un+1|2 + |un|2)
1,2 2
= (1+ lal)(Iu™ % + U
Also

1 1,2 2 1
IXT2] > (™2 4+ U)ol [AX D (Ul — Ul )l
i
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But 90
U U = fellAX Y (U — Ul )l
i
> UM 4 P~ el (U + ')
= (1 —la)u™ 2+ u"P) > 0if |of < 1.
Thus one has

(1= (U + UP) < IX™2] < (1+ e)(U LR + U, (8.36)

If o] < 1 (asin[8.3N)), we get

1 1 1 1+|af 1,2 2
U™+ U < X2 = ———|X?] s( ) Ut + (U P?).,
@) =)™ =1l )
. 1+ . . .
Slncel :a: is a constant, we get the energy inequality
—|@

Iu"? < (const.) [u°? + Ju*P).

for all n. This implies the stability of the scheme.

Exercise 8.6.Generalize this to the case when the domain 4s0< 1,
with a > 0 and the boundary conditiam(c,t) = 0 onx = 0.

8.8 The phase error

We saw in Sed 714 the importance of comparing thefament of am-
plification a(¢) with the exact cofficient of amplification of the given
eqguation. In general these are complex humbers and one o#race
either their moduli or their arguments.

The error in the modulus of the cieient of amplification is related
to the dissipativity of the scheme.

Thephase erroiis the error in the argument of the dbeient of am-
plification and this is related to the error in the velocityppbpagation
of the wave. For instance, in case of the advection equationis the
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initial value, then there is a phase lag of - at in the solufishena s a
constant) at timé. When we set up a numerical scheme one would like
to know how much the error in the phase lag will be. Genergilyen
a particular scheme it may turn out that it is satisfactorgtwone of
these errors but not w.r.t. the other and we seek to modifistheme
so as not to spoil the good behaviour w.r.t. one error andeatime
time improve the behaviour w.r.t. the other. We illustrdies with the
following example.

Given the advection equation, one has the exacffictent of am-
plification (Cf. equation[{§]19))

aex(é, 1) = exp. (iast). (8.37)
In the case of the Lax-Wendiffcscheme one has

a() = 1+ a?(cosfAX) — 1) + ia SinEAX) (8.38)
aAt .
wherea = X and for stability one must have| < 1. We note that

laex(é)l = 1
EAX

8.39
la@)l? = 1 - 4a?(1 - a?)si 4(7) (8.39)
and the errofagx(&)| — |a(£)| at time At is of third order (i.e. of order
O((£AX)*) for small¢). Hence the Lax-Wendfbscheme is satisfactory
as far as the error in modulus is concerned.
However, the phase in the exact case §gaawhile in the scheme it

a SiNEAX)
1+ a?(cos¢AX) — 1)] )

is
tan !

Hence the phase error is

1 a SINEAX)
aAt—tam™| o= @?(COSEAX) — 1)]
= M@:AX)C% +0EAX* >0 (8.40)

6
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when|a| < 1, which is only of second order accuracy and is not vesy
satisfactory. One thus tries to devise schemes which retthic@hase
error.

A method due to Fromme [ILL, 112] is to set up a scheme with the
same order of phase error, but whichdi® and then take a linear com-
bination of these two schemes.

We take S1 as the Lax-Wendf@cheme and the scheme S2 defined
analogously as follows:

By Remar 8. on the interpretation of the scheme S1 viaachar
teristics, one saw that it was got by quadratic interpofabetween the
points { — 1)AX), iAxand { + 1)Ax of the point where the characteristic
through (AX, (n + 1)At) meets the levehAt. To get the scheme S2, we
interpolate this same point quadratically between 2)Ax, (i — 1)Ax
andiAx. Explicitly, the scheme reads as

el _ aAt a’At?

utt = - — (- 4u +3u) + e

; Ax (u',—2u'; +u). (8.41)

Then on computing as before we get the phase error,

—a(a - 1D)(a-2)

5 (EAX)3 + 0(EAX)Y) < 0

whenla| < 1.
Using these two shcemes, Fromm defined zbm average phase
error scheme (SO) by

1 1
SO= 3(S1) + 5(S2). (8.42)

More generally one can devise the scheme

2-— 1
sO= (T“) (S1) + %(sz) (8.43)
Note that whenr takes the average value of its range viz % we
get [8.22) [B.43) to give the same scheme.
The scheme{8.43) is of third order of accuracy and can bedons
ered (whera is a constant) as a cubic interpolation between the points
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i—2,i—1,iandi + 1 of the point we are interested in. By taking this
linear combination, we cancel theéAx)3 term in the phase error and
improve our accuracy.

This scheme is als&*-stable. Rusanow_[35] and Burstein and
Mirin [5] have given third order schemes in the non-linesseca

8.9 Hyperbolic systems

We now describe briefly how some of these schemes could bedede
to a hyperbolic system of equations
If UT = (uy(x 1), ...,un(x 1)) is & vector andA is ann x n matrix,
the equation reads as
oU oU
— +A—=0. 8.44
at " ox (8.44)
We assume, for simplicity, th& is a constant matrix.
In this case the schemes of Lax, Crank-Nicolson and Lax-V\éghd
all generalize very easily. For instance, the Lax-Weffdsoheme will

be

Un+1 Un ALA |+1 |1) At

2
2AX ZA e (U

2U"+U" ). (8.45)

i+1

This scheme is of second order of accuracy.
In general, 2-level schemes assume the form

DTPIAUT (x+ jAX) = > Qj(AUN(X + jAX) (8.46)
j j

where the matriceB;(A) andQ;(A) are all polynomials in the matri&.
For instance, in the Lax-Wendfescheme, 94

P.(A) =1;P|(A)=0,. j#0

2
QuA) = SR+ A

MMﬂ—MM



96 8. Numerical Methods for the Advection Equation...

2
A2 o AL,

2AX2 2AX

To study the stability of the scheme{8.46) we assume diagonaliz-
able, i.e.

Qu(A) = A

A=SDS?, (8.47)

with D diagonal. Defining/ = S~*U, and multiplying [8:2}) on the left
by S1, we get

oV oV
from which we get then scalar equations
oV oV .
a—t'uia—)i:o, 1<i<n (8.49)

The stability condition for each of theseequations would be
At
Al— <1 8.50
| IlAX _ =y ( )

for those scheme${8146) which are generalised from therscake.
Taking the most restrictive of these, we get

p(A)%( <1 (8.51)

To see that we do indeed get the same condition starting frem t
scheme[[8.26) we s&t" = S~tU" and multiply [8:Z5) on the left by
S~1. Then using the fact that

S™'P;(A)S = P{(D).
we get

D TPIDIVTHx+ jAX) = > QiDIV(x + jAX)
j j

which again splits intm scalar scheme equations

DUPIANTH X+ JAX) = > QANI(x+ jAXY), 1<isn.
,- j
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Once again the scalar case demands |thb§7t( < 1, which gives the
stability condition [8.511).

The one-sided or the SNG-schemes do not generalise in ghdtrai
forward manner to the case of a system. However, as in thésenss
one can set up schemes involving characteristics. Thisds/kras the
Method of characteristics

If the system is strictly hyperbolic, we can find the lefterigvectors
px corresponding to the eigenvalug of A such that

A= kpr, l<k<n (8.52)

If Cy is the characteristic defined I:%)'{( = A, and if% stands for

the diferentiation alongCy, we have
du
.
=~ -0
Py ds. ,

(Cf. Sec[ZP., equatiof{Z110)). Our subsequent notatidihbe based
on Fig. 8.8.

l<k<n (8.53)

My (n+1)At

Figure 8.8:

We choose a grid such that all the characteristics throMgh= 96
(IAX, (n+ 1)At) meet the linenAt betweeni(— 1)Ax and {+ 1)Ax. These
two nodes have been denotediyandN, . The points where the char-
acteristics (1)..., (n) meetnAt are denoted b, ... My, respectively.
Finally N, = (iAX, nAt).
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From the relation[{8.33), we write the approximate scheme
Pr(UMs) —UMW)) =0, 1l<k<n (8.54)

To computeU (My), we use linear interpolation betwedii andN, or
betweernN, andN_ according asly is < 0 or > 0. Thus we geh equa-
tions for then-components of) (M,) and we can solve this, in principle.
This generalises the SNG-scheme.

Remark 8.6.1f we use quadratic interpolation betwelin, N, andN,
we get an analogue of the Lax-Wenffrecheme.

The stability condition is the same as conditi@n (8.51). Trtier-
pretation of this condition is thatM1, M,)] c [N_, N;] got from the
Courant-Friedrichs-Lewy convergence condition, vize, éixact domain
of dependence must lie within the approximate domain of ddpnce.
Again to get condition[[831) we take the case for each chexiatic
and choose the strongest inequality amongst them.

8.10 Non-linear systems-method of characteristics

If we have a pure dependence bnof the matrixAi.e. A = A(U),
we generalise the method of characteristics. The appraximaf the
equation [[8.33) will have to be centred betwednand M for eachk.
We write

Pe (U(My)) + pg (U(M.))
2

(U(Mo) —U (M) = 0. (8.55)

and At
MiN, = E[Jk(U(Mo)) + AU (M)l (8.56)

The unknowns arg, the abscissa d¥lx, which can be got from the
evaluation ofMyN,, and also thex-components otJ (M,) occurring in
equation [[8.55).

We usually solve the systen{8155)-(d.56) by iterative rodsh We
assumdJ°(M,) to start with. We assume all values at lemat. Then



8.10. Non-linear systems-method of characteristics 99

setting
v 1 v v
A = SAUIM)) + AU M))

T 1 (8.57)
P = S(ALU(M)) + PLUMY))
the iterative method could be
MOIN, = At
pl(v)(u(wl)(Mo) _ U(Ml((v+l))) _ O.} (8.58)

Now we use this to get "*D(M.) and MU*PN,. Thus we can again

get2"*D andp ! and proceed.
The convergence of these iterations depends upon the radttire 98

non-linearity but is usually valid for small enough.

Remark 8.7.Whenn = 2, and when we have one positive and one
negative eigenvalue, we can modify the method of charatitesi

We fix a Ax and draw both the characteristics through each point
iIAX. Through the intersections of these we draw two more and so on

(Cf. Fig.[89).

Figure 8.9:
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If UT = (u,V), then the unknowns at 0, are its coordinates)(and
the values ofu andv. Then we use the following set of equations to
obtain these values.

Xo— X1 41(0) + A1(1)

e > (8.59)

Xo =%  42(0)+ 22(2)
o - 5 (8.60)
S(L0) + PLAN.UO - V(W) = 0 (8.61)
210 + P U(O) - V@) = 0 (8.62)

We solve these, step by step at each node. Note that the nodes n
longer form a regular mesh K is not constant.
99 Itis this form of the method of characteristics which hasbeglely
used in supersonic flow calculation. Its main advantagesisitdoes not
need interpolation of the values ofandv which might be inaccurate.

REFERENCES: Apart from the references cited in the text, the reader
could also look at the following papers: Lax[21]. Lax and \tfeff
[23,[24], Boris and Book14], Hirt[15], Hoskin [16], Kot [18Kasahara
[17] and Gourlay and Morrig [13].



Chapter 9

Numerical Methods for the
System of Equations of
Hydrodynamics -
Lagrangian Coordinates

9.1 Introduction

We now study the approximation of the system of equationsydfdx 100
dynamics in the slab-symmetric, 1-dimensional case, inigrangian
framework. We will esentially use the leap-frog scheme stdtizing
these equations. We will also discuss the question of bayrmandi-
tions and the pseudo-viscosity term and present a heudistiassion of
stability criteria.

With 4 = 0 andg = 0, the equations fo hydrodynamics assume the
form

Dp du
or, equivalently,
D
—(pJ) = 1
59 =0 1)

101
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Du 19dp
-r_ 2
Dt+p6x 0, and (9.2)
De D(1\ 119 ( 0T
— +p=|-|]-===|k—|=0 9.3
Dt+th(p) ppﬁx( é)x) ©-3)

(Note: We recall our comments on the Lagrangian form of theaggn
made in sectiof1l5. To be strictly Lagrangian in formulatiomust be
expressed in terms aj.

9.2 Leap-Frog scheme for the isentropic case

We assume for the time being thlat= 0 and also that{913) can be
integrated to gep in terms ofp, i.e. p = p(p). (Example: The isentropic
case of a perfect gas gives= co¥) Then we are left withH[9]1) anf{9.2)
to discretize.

Recalling our definition ofm (Cf. Sec.[ZB) one can take as space
variable eitherm or m. In using the leap-frog scheme one notes an es-
sential property of this scheme: when dealing with a hypertsystem
such as[{28]1) anf[{9.2) one need not compute all the unknavatisttze
nodes of the mesh. One case compute certain unknowns on $ohee o
nodes and the others at the remaining nodes. Thus here omeitasm
andp at the nodesi + 3,n) and the velocity at the nodesi(n + 3).

dx

We approximate the equation definings ar

by.

1 n+3
X =+ U 2AL (9.4)

wherex?, is the same as the chosen at the horizontal axis. (Note that
@.4) merely gives discretization of the relation betwelea Eulerian
and Lagrangian coordinates). Then the equafior{(J9says that the
mass contained betwee{ijll and xin+1 is independent of time, i.en.
Hence we can write

n+l

Pr:§(><i+1 X"*!) = Const. = Am,; = pi”Jr%(xi”Jr1 -x)  (9.5)

as a discretization of ((27) assuming constant in this interval.
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Actually (@:4) and[[2)5) which are the discretizations[&T()) im-
ply the following which can be thought as a discretizatiorf®il)

Pln++11 _pin 11 (un+% - u.n+%)
2 *t32 1 i+1 i _
At -’-E(pln;rl +pin+l Leyn+1l o yn y _ Legnel ny 0. (9.6)
2 TGO+ k) = 3(T 4 9)
If we define 1
Am = S(Am, 4 +AM_y) 9.7)
one can discretizé (9.2) by
n+3 n-31 no_ N
Ui ’ — U ’ p”% pi_%
=0 9.8
At Am (0-8)

102
This completes the discretization of the first two equatioitsydro-
dynamics using the leap-frog scheme.

9.3 Boundary conditions

Let us examine the question of boundary conditions. Onellyseia-
counters one of the following types of boundary conditions:

() uis known on the boundary,
or (i) pis known on the boundary.

For instance, if we consider a gas enclosed in a tube on oaeéid
which a piston is working, then we encounter the problem ofoaing
boundary. However, since the same particles remain on gterpithis
boundary is fixed in the Lagrangian system.

1
Let us assume that the velocity is known on the boundaryu?fe?.
is known for alln. Since by equatiori.{d.8), knowing all quantitites upto

1
and inclusive of leveh, one can computelin+2 foralli < I, we have
complete knowledge af™*, for all i. Knowing these, one immediately
uses[[TW) to get™* for all i. Then one can use eithér(P.5)lr{9.6) to get
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pM1Lforalli, and sincepis a known function op, we can computqa)’”1

as weII Thus we can sucessfully deal with the first type ofriniamy
condition.

Given the pressure on the boundary, the situation is notraight-
forward. Of course, knowing all quantities upto levelone can com-

1 1
puteu? for i < I using [EB). But in order to computg 2, i.e. the
velocity on the boundary, we are obliged to use a one-sidédreince

. .0 . . :
guotient to approxmat%r—z. Thus for the index above, we discretize

@2) by .
un+§ _ u”‘? p? - p?_

+
At m —m,

1
2 =0 (9.9)
1

1
Knowing pf' (given by boundary condition) we can compmféz.
Now the rest of the unknowns are calculated as in the previass.

9.4 Discretization of the energy equation

Let us now return to the original equations of hydrodynamicet us
continue to assume thlat= 0, but now suppose that we connot integrate
equation [[3B) to gep as a function ofp. Then we bring in the state
equatione = f(p, p) and discretize this together wifa(P.3). We compute
ealsoat{+ % n) like p andp. Thus our discretization will read as

1 1 11
i+5 i+5
— (IO”Hl o, )[ — - ]— 0.  (9.10)

At e opl | At

i+5 I+5

and
€n+11 — f(pn+11, n+1) (9.11)
2 2
Now assuming knowledge of all quantities upto lenebne can get
1
TRERP S andpn+1 for all i. Then substituting if{9.10) anE{9]111), we

get a system of two non-linear equations to solveelfg1 and p|”++1l for
2 2
eachi.
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However, if the temperature term is also preserifid (9.3),Ki= 0),

. d ( oT . .
one can approximate the terma—x (k&) by a 3-point formula. Again,
T is also computed i + ,n) andT = T(e, p) is a known function of

€ andp. The discretization of{913) assumes the form

2 i el 1 2 21l —ni1 o _
AL + = (p.:_ '+;)A_t( n+1 p 1)—mv 5(-|- LT 20
+ 1+3 i+3

(9.12)
. L g, 0T, . ,
where,V?(T) is the usual approximation fma_x(k&) involving the 104
valuesTi,3/2, Ti+% andTi_%.

Py S PRLIE Il LS SIS ] S
T e x) | Xi+3/2 = %1 Xo1-%1 |

Now equations[[9.11)[(9.]12) get coupled and we have to salve
system which is non-linear and “tridiagonal” in the followi sense: if
=(eT ,o)n+ then the system of equations is in the form

Fir1(Ziv32.Z,1,.2_1) =0

These will have to be linearized by Newton’s method or solwgdome
type of Gauss-Seidel iteration techniques.

We now say a few words about the use of internal and total &erg
in our equations. We gave_(9.3) in terms of the internal gnerddow-
ever as was done in Sec.13.4 we can multiplyl(9.2uland add it to

@3) to get

D( 1, a9, .
ﬁ (E+ EU )+ a—rn(pU) =0 (914)

which, in view of the relatiorE = 3u? + ¢, gives the equation in terms
of the total energy. One can do the same thing in the disceste as
well. One can discretizé {9.2) arld (9.3) and by multiplyihg former

by “something likeu” and adding to the latter, we can get a proper dis-
cretization of [Q.1K).
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We show how this is done only one the semi-discrete form of the
equation (i.e. discretization w.r.t. the space variablly amd keeping
all derivatives w.r.t. time). Descritizing only w.r.mn, we can write the
semi-discrete analogue @i (P.8) as

dy P+l =P}
—+——==0. 9.15
dt Amy ( )
105 We can also write
ks S C S (9.16)
i+5 - ’
dt 2 AmH%
because fron[{914) and(®.5),
1 1
11 1) uy-u
- e ,
At Pin:% Pisi Am, s

thus giving [3.IB) as the semi-discrete analogu€_0f19.10).
Writing (@.18) again at + 1 as well and multiplying the former by

% and the latter byuizLl and adding to[{9.16) one gets
d 1,5, P (U1 — PrU;
(e (U : = = =0 9.17
dt(€I+% + 4(ul + ul+1)) + Am+% ’ ( )
as the semi-discrete form @ {9114), where
o = Pi_iAM, 1 + P 1AM g (9.18)

Am g +Am_g

One can now use a time discretization to get a numerical seliem
terms ofE.

All this was just to show that the discrete form of the enermgyagion
in terms of one ot or E, implies the discrete form in terms of the other.
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9.5 The pseudo-viscous term

The pseudo-viscous term is very important when one wantsrigpate
solutions with shocks. However, it is not obvious as to wiyaetof
term should be added. We discuss here, the pseudo-visconsofe
Richtmyer and von Neumann (Séel[31]).

We add the pseudo-viscous term in the following form to theaeq 106
tion of conservation of momentum, so that the modified equatiew

reads as
Du ap 0 au

For the problem to be well-posed in the time increasing caseneed
o > 0. Also the role of this term being “killing” oscillations abt a
shock, it must be small when the gradient is small and act whigre

L . ou
the gradient is large. Generally, one takeas a function Ofa_xl' The
preudo-viscous term of Richtmyer and von Neumann is

o = pl? max(O, —%). (9.20)

ou . .
Remark 9.1.Note thato- > 0 Whena—X < 0 i.e. at a compression or a

shock and is zero whe%i—l( > 0, i.e. in case of a rarefaction wave.

We generally compute at the pointsi(+ % n). Thus
o, ”+% a?(x", - X )2|uI+l uln_%| (9.21)
wherea? is a codficient which determines the amount of reduction of

the oscillations. (See Richtmyer and Mortonl[32]).
Thus the discretization of{9.119) reads as
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1
n_l n_% (un_i _ un_i)
n

1 n ui+12 - U i i—1 _
“am Tl o i g g |0 022
Xipq % X X_q

Since this is a viscous term, one must add the work done by the
viscous stress to the energy equation. We write

__
9= "%
107 so [@.I9) reads as
DU, 9 g+p=0 (9.23)
Pot T ax TP = '

Thus, in discretising the energy equation, we must repgianequa-
tions [@.I0D) byp + g. Only then will we get the correct equivalence
between the usage of the internal energy and the total eserghar to
what we saw at the end of Sectionl9.4.

9.6 Stability

In the Lagrangian case the mesh lines are not uniform. Hawéye
locally linearising the problem we deduce some heuristitdd@@ns for
stability.

In the continuous case one has the two equation$ (9.1)[abd)(9.
We now assume that we linearise the problem locally and take

p-p=2C-p). (9.24)
Then diferentiating [3.719) w.r.t.t and using[[3]1) and{2.P4) one

gets (assuming locally),

d2u d%u 8% o du
2 2 &)= 9.25
ot? X2 8x<9t(p (ax)) (9.25)

We imitate this in the discrete case. One has the discrietiz.8)

(or, equivalently,[[915)) of the equation(P.1) abhd (9.22)he equation
©.19). Writing [3.2R) at times andn— 1 subtracting these and dividing
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by At, we perform the discrete analogue offdientiating [[9.119) w.r.t.
t. Now using [@.B) and linearising locally and assuming aamif mesh
(locally) of stepAx, and constant values of andp (again, locally), we
get the discretization of(9.25) as

n+1 n-3 n-3 1
u 2-2u 2+u 2 2 - 32
: i L 2yyi e U)o (9.26)
At2 p At
where 1 108
VZU = E(Uhl - 2u + ui—l)- (927)

1

This is a 3-level scheme. Settintj*% = u™2, we get a 2-level
system of two equations whose matrix of amplification is

i (1 i (1
AL A = (2 — 4@ + ﬁl) SiP(36A%) —1+4 S|(|)'12(§§Ax)) (9.28)
where oAt At
a:E,ﬁ:%m (9.29)

The characteristic polynomial of this matrix is
p(A) = (1% — 22 + 1) + 4a? sir? (:—2L§Ax) A+ 4B sin? (:—2L§Ax) (1-1).

If we havea + B/a < 1, then the equatiop(1) = 0 will have two
roots which are complex conjugates of each other. Then thdupt of
the roots (which is merely the square of the modulus of €jtban also
be checked to be 1 and hence(A) < 1 giving stability.

However, in order to have + 8/a < 1, one sees that one must have
1- 48 > 0. Thus the heuristic stability criteria are

i p<>
=2 (9.30)
(i) a+pla<l

Remark 9.2.The condition [[3.30) (i) resembles the stability condition
for the heat equation and the condition @wviz. (@30) (i) is like the
wave equation condition.
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Remark 9.3.1f o = 0, this gives the usual Courant-Friedrichs-Lew309
condition.

Remark 9.4.1n the Richtmyer-von Neumann pseudo-viscosity tegm,

, ou N . ,
is of the order ofazAt|6—X | Hence by[[3.30) (i), in case of solutions with
shocks, one cannot take to be very large.

Remark 9.5.0ne can use other schemes such as the Lax-W#&nhdro
schemes. One should note that in each case, to “kill” thdlaseons,

a pseudo-viscous term is dependent not only on the equatibaldo

on the scheme used. For the term to be used with the Lax-We&ndro
scheme, see Richtmyer and Mortonli[32].

9.7 The Method of Characteristics (without shocks)

. 1 : . .
SettingV = —, the equations of hydrodynamics can be written as (Cf.
See[ZB),

: DV du
O Br-am°
.. Du oap
B 9.31
(i) Dt * om 0 ( )
(iii) De + bv_
Dt P Dt

We have seen in SeE_P.3 that the slopes of the characteristc
0, xc/V. If C,, C, andC_ are the corresponding characteristic curves
through a point, one can write thefidirential relations along these
curves (Cf. Sed22). We get

Du c ou V (Dp cap)
(Ft + Eva—rn) + EE (Ft + Eva_rn) = 09 (932)

as the diferential relation along, or C_ according ag = +1 or -1.
The diferential relation alon@, turns out to be exactlf (9.B1) (iii).

To give a numerical scheme based on characteristics, inabe ¢
where the points at which the variables are computed arenmtik in
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advance (Cf. Sed_8110), we proceed as usual. We take aal migish
along themraxis. Through each node we draw the two characteristics
C, andC_. We then do the same for the point of intersection of these
two characteristics and so on. Thus we get various levelaefriesh
defined by the characteristics.

Our subsequent discussion is based on notation of F1g. 9.1.

C- D C+
A
F
Co B
Figure 9.1:

Let A, B be two nodes at which all quantities are known. We wish
to calculate the various quantities@twhere theC, of A andC_ of B
meet.

First we assume tha® = C(p, V) is a known function ofp and
V. Also observe that ifrfy, ty) denotes the position of a point then,
Mp = Mg.

We now discretize the fierential relations[{9.32) an@{9131) (iii)
and also approximate the slopes of the characteri€ticandC_ to get
the following equations

0 (o-u+3(g 2o p =0

mD—mA_l CA+CD
tD—tA _2 VA VD

(9.33)
(i)
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for the characteristi€, ;

. 1/(V, V,
(i) (UD—UB)+§(C—B+C—D)(DD—DB)=0
5 D (9.34)
Gy To-Mme_l1(Ce, Co
tD — tB h 2 VB VD
for the characteristi€_;
1
€ — €F + E(pD +Pe)(Vb —VE) =0 (9.35)
for the characteristi€,; and,
ep = f(Vpb, pp) (9.36)

from the equation of state.

The equationd{9.33) tb{9136) give six equations to detegrtiie six
unknowns viz.,mp, tp, Up, Pp, VD, ep. This non-linear system can be
solved iteratively. Assumingg)), pg)) and hence knowing:g)) as well,
equations[[2.33) (ii) and(2.B4) (ii) givmg) andt(Dl). Simultaneously,
©@33) (i) and[[T34) (i) giveu(Dl) and p(Dl). We now use[(9.35) an@{2136)
to geteg) andVI(Dl). UsingVI(Dl) and p(Dl) we proceed to the next iteration
and so on.

One can also use the ‘variant’ form where the points at whieh t
solution is sought are known in advance (Cf. $ed. 8.9).

9.8 The Method of Characteristics (with shocks)

Here we shall use the variant form where the points are knowadi

vance. We assume that there is only one shock travellingayiibsitive

velocity of propagation through the medium. Then to soheegtoblem
one must not only compute the values of the various quatitis the
grid points but also immediately before and after the sho@aah level
nAt. The shock is pictured as the cuvén fig. [3.2.
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t

T
e
DL (n+1)At
¢ At
AB|/D "
// m
Figure 9.2:

112

To compute the various quantities at an interior grid poire draws
the three characteristics through this point. If none ofithraeets the
shock before meeting the leveAt then we can use our previous meth-
ods for these points. If we have a point liReon the other hand, where
the characteristi€_ meets the shock at a poi@ then one has to use
the pointsA, B andC in the methods of Sectidn 9.7. For the values at
C we can interpolate these betwderandE and thus all the grid points
are tackled.

To tackle the poinE where the shock meets ¢ 1)At we proceed
as follows. Our notations are now based on Fig. 9.3.

E—
s (n+1)At
STATE 2. STATE 1.
1 T 7 H G \ n/At
Cx Ci cl ct

Fig. 9.3
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The shock meets the levaiat and f + 1)At at mg andmg respec-
tively. The state shead is the state 1 and the state behihd state 2.
Throughmy the only characteristic in state 2d$. In state 1, on the
other hand, all the three characteristies, Ct andC! exist. This is a
feature of the shock.

We then have the fferential relations

du Vdp
d—S+EEd—S—O (937)
alongC, andC_ according ag = +1 or—1, and
de dv

alongC,. We now discretize these equations.
We use the superscript 1 or 2 on the left to indicate the statdich
we evaluate the various quantities. Alo@§ we have

0 =[5k

y v (9.39)
M Cus-ue)-[1(Z), +(g)|Cre -por =0
Along C! we have
o e ()
@M Cur-ur)+5]H(g), +(g)|Cre - P =0
Along C! we have
g~ + 2P+ 1ps)(Vs ~ Vi) = 0 (0.41)
Along C? we have
0 PR 2RE) ()

() 2us-ue+3[2(z), +(g). ] Ces - po) =0
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IfM = dm is the speed of the shock, we have the Rankine-Hugoniot
relations (Cf. Sed34)

()  M[V]+[u =0
(i)  M[ul-[p]=0 (9.43)
(iii) M[e + %uz] —[pu =0

where [p] = 2¢s — g for any functiong. Also the slope of the shock
is approximated by

My — Mg

1
N E[Ms+ M¢] (9.44)

We also have the state equations

() teg = f(*ps, 1Vy)
(if) %es = T(*ps, ?Vs).

The relations[[9.39) td(9.%5) give 13 non-linear equatiod$e 115
number of unknowns is also 13, viz., the positiong mg, mg, My, the
velocity of the shockMg, and the variables, p, V, € at s in states 1 and
2. This system can be solved iteratively knowing all quaditat time
nAt. We assumeM? and all the quantities)©. Then [2.4H) gives
m(s,l). Then [@.3B) (i) and[{2.20) (i) givmg) and m(Fl). We can inter-
polate between the grid points at timat for the valuesug) and pg).
Using these in[{339) (ii) and(IK0) (i) we ghtl? and1pl’. Then
@41) and[345) (i) givée’ and V. The relation [T42) (i) gives
mg) and then by interpolation we gaple), ug) which we use in[[2.42)
(i) and (I2B) (ji) to ge?pl and2u?. Then [IAB) (iii) giveel) and
finally ©@43) (i) givesMS). Now that we haveMS) and both states of
(£)®, we can use these in the next iteration and so on.

(9.45)

Remark 9.6.We have dealt with the case of only one shock travelling
through the medium with a positive velocity. One can perfaimilar
analysis on other types of shocks but these become very mataal. If
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there is an interface of two media, then a shock is transthitte the
second medium from the first and, depending on the ratio ofl¢mesi-
ties of the media, a shock may be reflected back into the firgiume
In such a situation to keep track of all the shocks becomeasocmmmpli-
cated from the logical point of view of a computer programme.

REFERENCE. The reader is referred to the papers of Hoskin in the
Proceedings of the Conferences on Numerical Methods ird FDyi-
namics (1969, 1971, 1973 and 1975). See Rodche [33] for dedkta
bibliography.



Chapter 10

Numerical Methods for the
System of Equations of
Hydrodynamics-Eulerian
Coordinates

10.1 Introduction

In the slab symmetric, one dimensional case, the Eulerian fioe equa- 116
tions of hydrodynamics is

op 0 3
ot T 2V =0 (10.1)
pu) 0, 5 _
5 * 6_x(pu +p+0g =0 (10.2)
0 0 ou
a(pe) + (9—)((pUE) +(p+ q)a—x =0 (10.3)

assumingt, k andgto be zero. Herq s the pseudo-viscous term given
by
ou\ au

= 20A%? max(O, —6—)() o (10.4)

117
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for a mesh of stepAx. Note that the equatiol {10.3) can be written in
terms of the total energlf as

B 0 B ,
S0E) + 5= (pUE) + (P + Gu) = O (103)

The only interesting problem in the 1-dimensional Eulegase is
that of a moving boundary (i.e. due to a piston or free surftce).
Unlike the Lagrangian system where, due to the same pariigileg on
the free surface, the boundary is fixed, in the Eulerian desbaundary
moves with time. We will discuss this presently. To starthwite see
how we can discretize the equatiqn (10.1)[[0{]L0.3) at amiarteode
of the mesh. One could use characteristic, methods or thep2tsix-
Wendrdf scheme. We study here the problems connected with the use
of the leap-frog scheme.

10.2 Discretization at interior nodes

Assuming a uniform mesh with steps< and At, we compute as usual
117 the quantities, p ande at the pointsi(+ % n). We try to compute the
quantitypu at (i, n + %) so that we can discretize the equatibn{lL0.1) by
n+l _ n

I Y 1

i+3 i+5 n+3 n+3
3 p
" 3 2

Uy - U] = 0 (10.5)
Now we setp = p + g. Then the equatiori.{10.3) can be discretized
by
n+1 n 1 1
(pe)”% - (pG)H_% 4 1—(5n+1 +p ) uin:f B uim2 +
At 2\Miv3  Ties AX

1
n+3

N A—lx | e - uin+%(pe);k] -0, (10.6)

where we set

ey, ifu<o
(el = (09" . if u>0. (10.7)



10.2. Discretization at interior nodes 119

This is a 1-sided scheme and hence only of first order. Howkiger
not as dissipative as Lax’s scheme.

1
Notice however that due to the second ternfIn{[10.6) one ngéds

as well. This means that we nepﬁ% also (since we know,o@)im%).
Thus dfectively this method demands computatiorpofot only at the
points { + 3,n) but also at the points,(n + 3).

We now discretise equatiof (ID.2). We write

(U - U 1 7,7,
i B i n 5 2 n « 2 I+3 -3 _
At * E((pn%(un%) _pi—%(ui—%) )+ T Ax
(10.8)
where
n-s .
u.., ifu<O
U, =q ) (10.9)
2 |u % ifu>0,
is again a one-sided approximation.
We also have 118
N (" n-3 n-3
qi_,_% - (pi+%(ui+l - ui )) (1010)

As already remarked, the major problem is the additional e

1
tion of the valuesoimz. Of course, one has the immediate (but rather
crude) approximation

11
p 2= E(pi”_% + pp+%). (10.11)

One could use a more sophisticated formula by applying Lax’
scheme to the equation of conservation of mass (Le_J(1@1define

1
p." 2. Thus we

n+3 _1— n n ﬂ n ,n n ,n
i =l ey T opligtiy Tagty) (012)

But then, we are faced with the need of compuilili‘i+gl as well. Thus
we end up by computing botlhandp at all nodes!
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n+3 n-1 n-1 n-1 n-1
Noh [29] computegb; * from p, * andp,, > orp; ? andp, ,* (ac-
cording asu < 0 or > 0) using the one-sided scheme. The only draw

1
back here is that" , is computed on the nodeis(3, n) andp;""? on the
2

nodes i,n + %) and these two grids are unconnected. On each grid one
could get a good solution. But unless the mesh is very finenwieeput
these values together the resulting function is not a gopdoxpmation
of p.

However, all these methods give fairly satisfactory result

10.3 Treatment of boundary nodes

We will illustrate the discretization of the equation of sernvation of
mass ((I011)) in case of a moving boundary. One can do the fame
the other equations as well. It can be seen that the schentigis tase
are fairly complicated.

119 To start with, let us assume that the moving nodenat {)At falls
within the same grid-intervals as thatrait (See Fig[ZI0l1).

i —1 Ji +1 (n+1)At

n/t

i—1 1 / i+ 1
Figure 10.1:

One then has to computeat the mid-point of i(,i + 1) in the last
interval. To discretisd {10.1) we imitate the following pedlure for the
continuous case:
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Integrateo betweenx; andx;,1(t) and diferentiate w.r.tt. Thus

d Xit1(t) Xi+l(t)a d (t) d
_ _,0 ) Xi+1 _ _Xl
a ) rIx= f o P g T
Xi Xi

SinceX; is fixed andS;j,; moves with velocityu;,1, we get, on using
equation[[I0]1),

Xit1 Xit1

d 0
d_tf dX:Pi+1Ui+1—fa—X(pU)dX
Xi

Xi
= Pi+1Ui+1 — Pi+1Ui+1 + pili = pjU;.

We use this to discretisE{ID.1). We write (at the boundary)

1 *
A (OF7 ="y = Oy = X)pl, 1) = Uiy (10.13)
where 120
n,ifu<o
pi=3 "7 (10.14)
i” ., ifu>0.
2

Let us now consider the case where the moving node is not in the
same grid interval at timasAt and f1+ 1)At. Again, this splits into two
cases one where the boundary has a forward slope and thesatteer
more nodes atn(+ 1)At than atnAt (Cf. Fig. [I0.2 (a)) and the other
where the boundary has a backward slope and there are legs poi
(n + 1)At than atnAt (Cf. Fig.[IO2 (b))
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/ \ (n+1)At

/ nAt

Figure 10.2:

We observe that as a result of these, the final mesh length etapb
small and for stability reasons, this is not a satisfactéayesof dfairs.
Hence we choose our nodes such that the final mesh lengtfiesatise
condition

1
EAX < (X1 —X) < gAX. (10.15)

Let us consider the case of FI[g._10.2 (a) where we have momsnod
at (n + 1)At. We base our discussion on Hig.10.3.

A B c/ (n+1)At

nAt

Figure 10.3:
121
In order to discretise equation_(ID.1) one must computethe mid-
points of the mesh lengths. One can do this for the interiantpaas
before. Now one can ignore the noBend treat AC as the last interval
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and using previous methods one can compuethe mid-point of AC.
. 3
Let us call th|Spi°+'0'l. However, the lengthxc — xa > SAX and so one

2
must split this as AB and BC and computeat the mid-points of these
two intervals. If we call these valuep’?“fév and pi”fg’yz respectively, we

write

p_old

1
I+5

new

(xc = xa) = P53 %6 = Xa) + P[]0 — Xe). (10.16)
This together with another equation will help us to comm}ltg"
2
andp{‘fg"/’z. For instance, one can taloléf‘l"’ to be linearly interpolated
2
betweerp?d (= p"") andp®!d .
|—§ |—§ |+§

In the other case (Cf. FifI0.4) we haxg— Xg < 2Ax.

A B| \C (n+1)At

n\t

Figure 10.4:
122
Here one can treat BC as a separate mesh length and thus we have
equal number of nodes atand at o + 1). Hence we can computeat
the midpoints of AB and BC. However a8 — xg < %Ax, one must take
AC as a whole interval. lblnf‘_%’" is the value op at the mid-point of AC,

andpa'd% andpﬂ%/z those at the mid-points of AB and BC, we write
old
i+3

P0G = Xa) = P13 (X8 = Xa) + P25 5(%c — Xg) (10.17)

and we immediately gei?f‘l"’.
2
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Note that [I0.76) and{I0117) merely approximate the faait tie
mass contained in AC is the same as the total mass contairdsiamd
BC.

The problem of a moving boundary is complicated essentladly
cause (i) the mesh is not longer uniform and (iii) the numberaales
involved in the computation varies as time proceeds. Hehee iare
able to choose a coordinate system, i.e. rewrite the equatiterms
of new variables, so that one can choose the nodes to movetheith
boundary, the situation will improve. We discuss this ploifigy in the
next subsection.

10.4 The ale-method

In this method, we rewrite the equation in terms of a new typeoe
ordinates which is neither Lagrangian nor Eulerian. Thénegue is
comparatively new and has not yet been widely used.

Let us assume that for eattve have a homeomorphisg : R - R
with the following properties: the mappira— x(a,t)(= ¢i(a)) (where
X = ¢.(@) at time 0) is such that the Jacobian

oX

I=— (10.19)

is defined and is non-zero. We denote the derivativewf.t. t, whena
is fixed, by

v Dx

- Dt’

That s to say, a point initially at position a moves with \@tg v and
its position at time is given byx = x(a, t). The various ‘trajectories’ do
not cross one another and this is meaning of the conditianJhaO.
Note that for the Lagrangian coordinate system we have u, the
velocity of the fluid. In case of the Eulerian systemever changes and
henceJ = 1 andv = 0. Thus this type of coordinate system contains
both the Lagrangian and Eulerian systems as particulascase

(10.20)

1Arbitrarily Lagrangian-Eulerian
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If one knows a functionX, t) — ¢(x, t) we definep(a, t) by

pat) = p(x(a1).1) (10.21)
and one has De 8 5
¢ _9 O
5 = ot " Vax (10.22)

D o — . .
Here—~ means the derivative gfwith respect td whenais kept fixed. 124
We now rewrite the equatiof {I0.1) in terms of this systems: ¢

D DJ .Dp
e
~oa ot Ox
v P .
P (v(9X ax(pu)) (using [TIL))
v, 0

9
P32 Va7V = 5 W)

Thus [I01) now takes the form

D 0
Et(pJ) + %(p(u -v) =0. (10.23)
By doing the same thing for the other two equations one has
D 0
Et(pu‘]) + %(pu(u -V)+p) =0, (10.24)
and b p 3
u
ﬁ(pEJ) + %‘(pf(u - V)) + p%. =0. (1025)

Remark 10.1.In view of our comments made previously, the above
equations contain the Lagrangian and Eulerian equatioqsuisular
cases.

Let us now take a fixeda(—t) grid. We definex at the pointsi(n), u
at the pointsi(n + 1), andJ, p at the pointsi(+ 3, n), thus we write the
discrete equations

1
XL = VAL (10.26)
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n+1 _ _n+1
A a Lt Sk Bl (10.27)
*3 11—
and
i n+1Jn+1_ n_jn N
At ’Oi+% i+3 pi+% i+l
1 n+l * ﬂ+l %
T Ga-a) [(U—V)i+fpi+1— (u-v), %pf[=0  (10.28)

with, for example,

(10.29)

. pi”+3/2, ifu-v<0
Pea=p0 ifu-v>0
|+§

if one uses a one-sided scheme. This discretizes the equaiiaZs).
One can similarly discretise the other equations of hydnadyics as
well.

Remark 10.2.The equationd{10.27) and (10.28) give

n+1

PR = X = 0 0 = )|

n+i n+i
= At [—(U - V)i+12pi+l +(u- V)i pi |

This merely states that If/llr‘:ll is the mass at time + 1 between the
2
nodes andi + 1, then
n+1 n _
IVli+% B Mi+% -

= [Inflow into the cell {,i + 1)] — [Outflow from the cell ;i + 1)].

The use of the one-sided scheme to defihéhen says, that one ought
to define the density at the boundary of the cell to be the osiddrthe
cell from which the fluid is flowing through that boundary. $ts why
the above equation is some times calledBtomor-cell equation



10.4. The ale-methéd 127

At each timen + 1, we have to definaim% or, equivalentlyx"?.
One can, for example, definessuch that the mesh is always uniform. To
avoid the free surface crossing the grid one can tade the surface to
be the velocity of the surface itself. This is the merit obthiethod.

For most of the 1-dimensional problems, the Lagrangiandinate
system is good enough (i.e. the preceding method with u), be- 126
cause there is no problem of distortion of the mesh. This itonger
true in the 2-dimensional problems where the generalizaifahe ALE
method may come in very useful when dealing with boundariegimg
w.r.t. a frame fixed in the laboratory.

As for comparing the Lagrangian and Eulerian systems, iteiarc
that the Lagrangian method is preferable. In pseduo-vigcosethods
Eulerian methods involve fine meshes about a shock. In cata-of
grangian systems the mesh will be automatically fine neamapoes-
sion or shock without increasing the number of nodes. Thissnitore
feasible from the point of view of computers.

This brings us to a close of the discussion of one dimensitma!
dependent equations. In the next section we will take up tdionen-
sional problems.






Chapter 11

The 2-Dimensional Problem

11.1 Introduction

We now consider the approximation of the equations of fluidedyics 127
in 2 dimensions, in the plane symmetric case. Once again wetia
coordinate systems-the Lagrangian coordinageb)(and the Eulerian
coordinatesX, y). These are connected by the transformation

x=X@&b,t), y=y(ab,t) (11.1)
where x(a, b, t) andy(a, b, t) are the coordinates at tinteof the fluid
particle located atg b) at timet = 0. We denote byl the Jacobian of
the transformatiorl{11l.1). One defines the time deriva%%e(so called
“particular derivative”) by

Df _af af ot

ﬁ = E + U& +Va/ (112)

whereu andv are the velocity components. The Lagrangian form of the
equation of motion is as follows:

Conservation of mass:

%’? +pdiv.0=0, G=(u,V) (11.3)

129
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or, equivalently,
D
= =0. 113
Dt(pJ) 0] (11.3)

Conservation of momentum.

Du o
+6—X(p+q)—0

0 =
Dt
) Du 4 (11.4)
(i) POt @(FH q) =0.
whereq is the pseudo-viscous term given by
g = o(-div.0) (11.5)
128  with
0, if divi> 0
e s (11.6)
pl?|divdl, if divd < 0.
Conservation of energy.
De D 1

One also has the equation of state

e = f(p,p). (11.8)

Remark 11.1.0ne reiterates our comments of SEC] 1.5, regarding the

. . : 0
Lagrangian form of the equations. In the equations abg)*(/eand ay
must be expressed in terms of derivatives wardndb via the Jacobian

J.

11.2 The weak form

We use the finite element method to discretise the equatibhgdvo-
dynamics w.r.t. the space variables. For this we need teewhi¢ése
equations in the weak form.
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Let Q be the domain of consideration ad€ its boundary. Let
V = (vx, vy) be the unit outer normal alorgf2.

To write the equations in the weak form, we multiply our equa-
tions by suitable test-functions and integrate deekVe write equations

([@TI3) in the form

Do . B
f(?t +pd|v.U) edx dy= 0. (11.9)
Q

for all suitablegp.

If (¢,y) is a test-vector, then an multiplying_(I1L.4) (i) kyand
([@XI32) (ii) byy and integrating by parts, we get the weak form:

. Du o B
0] fpﬁgodx dy+fp¢vxds—fp&dx dy=0

Q 0Q Q
W [ Rucoye [ pias- [ paxay=o (1149
Q 0Q Q

for all suitabley andy.. Thus we have got rid of all the derivatives29
of p in (II4). Since the third equation viz[_{I11.7) does nobive
derivatives w.r.t. space variables we keep it as it is.

From these equations it is clear that itffszes to takep, p, € €
L2(Q) while we needx,y,u,v, o, € HLY(Q). We shall use the finite
element method with quadrilateral elements and trial fionst which
are piecewise polynomials. Thus we need to have these urnatibns
continuous across the inter element boundaries (Cf. C{&lflein order
that these functions may be ki'(Q).

We now proceed to describe the simplest element known.

11.3 An isoparametric quadrilateral element
Let us assume that the domdhmis such that it can be subdivided into

quadrilaterals. Since we only negdp, € € L?(Q), one can take as trial
functions the spac¥, of piecewise constant (which are, in particular,
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discontinuous) functions. Thusyk, is the characteristic function of the
guadrilateralQ, then one can write

V, = Z“QXQ | @q = aq(t), a constant w.r.taandb} c L(Q).
Q

Now to achieve a space of approximants containetiQ), as
already mentioned, we use continuous piecewise polynsmial

This is most easily achieved if we can define these functioesich
quadrilateralQ in such a way so that they depend only on their values at
the four nodes o), and along each boundary their restriction is a linear
interpolation of the values at the end vertices. Then, alshg given
two adjacent element® and Q?, if the values of a piecewise polyno-
mial, f, are prescribed at the nodes then the restrictiohtofthat com-
mon edge from botl® andQ* will be the same and hence continuity is
established.

If Qis a rectangle whose sides are parallel to the axes (saynihe u
square) then the definition of such polynomials is easy (EIgl).

n
a +1 ay
-1 0O +1 ¢
as -1 aq

Figure 11.1:
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We define the space of polynomials to be

Q1 = {p(.n) | p¢.n) = a+ b +cn+dén}.

Then restricted to each sidp(£, n) is a polynomial of degreg 1
either in£ or in n alone. Further itis linearly interpolated on each edge
between the values at the end-points. In fact one can givsia foaQ;
by four polynomialsti(i = 1,2, 3,4) such that; € Q; and{; takes the
value 1 at the verteg and zero at the other vertices. Thus

(. = 51+ O+ 1)

ol ) = 71~ 1+ )

1 (11.11)
e = - L= 1)
e = 5@+ HA-1)

If pe Qq,0ne has 131

4

pE7) = ) p@E)G(E ).

i+1

ThusQ; has all the properties we need.

Let us go to a general quadrilateral with vertides Ao, Az and A4
in the @ b)-plane.
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Ay

A2 A4

As

Figure 11.2:

We now define a transformation

4
a.m) = ) aEn)
=1 (11.12)

4
b, m) = > biti(.n)
i=1

so thatay — Ag, a2 = Ay, a3 — Az andas — A4 It is routine
checking to see that the four edges of the square map lingsothe
corresponding edges of the quadrilateral, i.e. €O < 1, then the
point 2a + (1 — 2)a;1 maps to the poinflA; + (1 — A)Ai11. Further,
the transformation can be inverted. i.e. for every painb) € Q, there
exists a unique pointé(n) in the unit square which maps inte, p)

under the transformatiof (11]12). We use this corresparalendefine
a space/q of polynomials oveQ:

Vo ={u(@b) [u@b) = » u(A)i(s, )} (11.13)

4
=1



11.4. Discretization of the equations 135

Then it is easy to see thatis completely determined by its values
on the nodes and that on each boundary it is a linear interpolaf the
values at the end-points.

Now given a subdivision of2 into quadrilaterals, we defing, by

Vi={u|u|Qe Vol (11.14)

ThenV; satisfies the continuity condition and hence is a subspace of
H(Q). Also every function inVv, is completely described by its values
at all the nodes. Indeed if we number all the nodes of the sigiain
suitably and ify; is that function ofV; whose value at thé" node is 1
and it takes the value 0 at other nodes, far iL< I, then such functions
form a basis fov;1. Every functionu € V; may be written as

|
u= > ug (11.15)
i=1

whereu; = ui(t) is the value oli at the i-th node.

Another important property of the functiopsis, thaty; is non-zero
only on atmost four quadrilaterals of which tienode is a vertex. (We
will come to the question of boundary nodes later).

Such finite elements as described in this section are caltgzhia-
metric because we use teametypes of functions both for the space
of approximants as well as for the transformations from thiesquare.
(See Ciarlet and Raviaifl[7] for a complete discussion opdasametric
finite elements).

11.4 Discretization of the equations

We now discretise the weak forms of the equations. Thus wstitute 133
in the equationd(I11.9), (TT]10) and (11.7) the trial fuoretiand look for
solutions in spaces of these trial functions. Thus we takee € V, and

uv, Xy, ¢, € V1 and demand that the equatioS_(T1.10) are satisfied
for all ¢,y € V1 and [TID) for allyq. Of course, it is enough to satisfy
[@I10) for the basis functiong;. In order to make these statements
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precise and to obtain the discrete equations, we first write

p=> palhro. €= ealtq
3 Q

| (11.16)

|
P= ), Polxo. u= ) Ui, v= ) Vil
Q i=1

i=1

where the nodes are numbered from 1l toNow equation [[1T19) be-
comes

f(% +pdivU)Xde dy= 0 for all Q.
Q

or

f(%‘t’ +pdivU)dx dy= 0 for all Q.
Q

Using [I1.I6) we get (by setting to be the area of the quadrilateral
Q), the discretization of {1119) w.r.t. the space variabkes a

Dpq [ Oy [ ¢ B
So Dt +pQZu.f axdx dy+pQZv.f aydx dy=0 (11.17)
Q Q

for all Q.
Since in the equatiorf{11.7) everything is constant w.né gpace
variables. we get

Deg

2+ (p D )(i) =0 for all Q. (11.18)

Dt/ \pq

We now show how to discretise{11110) (i). (The method oI}
(ii) is identical).

Substituting in[[TT10) (i) fron{1116), we get

DUj 0pi
Zﬁfpgojgoidx dy+fpg0ivde—ZprXQa—deX dy:O
J Q Pro Q 9
(11.19)
forall1<i <.
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Using the fact thapJ = p,, we get

Dy A
Zﬁfpowjda db+fpgpivxds—z pr&dx dy (11.20)
J Q 80 Q9
=0, 1<i<l.

We see that the last term (111 20), which is similar to tisetlerms
of (CIIT), will be non-zero only if thé" node is a vertex of). Thus
for everyi, the last term expounds into at most four non-zero terms.

The middle term of [[TT.20) survives only @ corresponds to a
boundary node. We will turn to the question of boundary nddeec.
IT3.

Coming to the first term we see thaty; is non-zero only ifi and
j are vertices of the same quadrilateral. Thus the mgﬁﬁiwigajda db

Q

has got at most 9 non-zero terms in each row. However in splinu-
merical scheme inverting such a matrix is still expensivews replace
this term by an approximation which yields a diagonal matrix

We set

4
ffpoda db~ >’ f(Ak)a/kfpoda db (11.21)
Q

k=1 o)

where{Ak}f(‘:l are the four nodes of the quadrilatef@l We define the
ak So that on replacing by the basis functions corresponding to the
vertices ofQ, the relation[[II.41) is an equality. Thusdf is the basis
function corresponding téy, we have

fgakpoda db
Q

K (11.22)

" [p.dadb
Q

We now have 135

4
fS"iSDiPodade Z(SDjsoi)(Ak)akfpoda db
Q i=1 o)
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The left-hand-side terms will be non-zero only i j andy; = ¢, the
function which takes the value 1 at the nole

. . DU
Now to get the matrix in the cdigcient of Dt where

UT = (uy,...,u) we compute it over eacl) and assemble these to-
gether to get a diagonal matrii.
Thus in case we do not have the boundary term, the disclietizat

@T10) (i) reads as
M % -ATP=0, (11.23)

where, if we number the quadrilaterals &, ...,Qn, PT = (pq,., - - -
Pay) andAT is thel x N matrix whose element in thié' row andnt"
column is 5
Ppi
—dx dy
ox ¥
Cn

Similarly, if B is the matrix of ordet x N whose {, n)th-element is

Opi

% 4 d
f ay
On

the discretization of{I110) (ii) is

DV
Mo - B'P=0. (11.24)

11.5 The Boundary terms

Let us assume tha&? is a bounded domain. One essentially encounters
136 two types of boundary conditions. viz., (i) with prescribed on the
boundary or (ii) with the normal velocity-v prescribed on the boundary.
Note that we impose only one boundary condition and not ook ea
bothu andv as would be the case for a viscous fluid.
In the first case wherp is given, one has no problem with the term

[ peivxdsof the equation[IT20).
0Q
Let us come to the second case. Let us assum@itiiat gis given.

We now define a new unknowps, the pressure on the boundary. We
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choose thigps to be approximated by trial functions in the same space
H. For exampleH could be the spackl, of piecewise constants on
the boundary oH1, the space of continuous piecewise linear functions
on the boundary, where, by the work “piecewise” we mean.wthé
subdivision of the boundary induced by the subdivisiofafself. Let

{xk} be a basis foH. Then we write

f(U- v —g)xkds= 0 for all k.
oQ

This expands as

> f(UiSDiVx + Vigivy — Qxkds =0, (11.25)
b0
for eachk and this gives u&K equations wher& is the dimension oH.
Also writing

k
Ps = > (Ps)kric (11.26)
k=1
we substitute in[(T1.20) to get the equations
ME—ATP+CPS =0
Dt (11.27)

DV
M— - B'P+DPs = 0.
Dt TS

wherePs has as its components thgs)k indexed byk.
One also checks easily th&f{11.25) takes the form 137

C'U+D'V-G=0 (11.28)

whereG is a known vector.

11.6 Time discretization

As regards the time discretization, we evalublte/ at (n + %)At and
p, p, € at timenAt. For instance, equatign (BI)] can be discretized by

Pyt f J™tda db= p f J'da db (11.29)
Q Q
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for all Q.

The equation[[I117) can be discretized exactly as in the e
sional case. The discretization for the momentum equaiinrves
the details described before. For instance, in the caseedbdiindary
pressure being zero one has

1 1
MWZA;'[UM —ATP" =0
yneh_ynd (11.30)
I\/IT -B™P"=0.

11.7 Stability Criteria

We now sketch the procedure to get heuristic stability Gate
Let us assume thaf{11.7) arid (11.8) together can be inéegtat
give p as a function op. Let us also have

op =2
r_T
dp ’

by linearising about some constant state definedchy)( Then [TI.B)
gives

(11.31)

/%% +divi=0 (11.32)

where( = (u, V). Also the equationd{11.4) give
p_g—ltj + grad. p+q) =0. (11.33)

Locally the derivatives it and inx,y commute and hence one gets

from (I1.32) and{11.33)

1D%p
=D divgrad. p+qg) =0 (11.34)
where by [IT.B) and{11.5)
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We imitate this procedure in the discrete case. One getsegetim-
tion of (T1.3%) from those of(111.3) and_(1Il.4) and then ssidhe sta-
bility conditions. Now that we have div grad, which is nothibut the
Laplacian, we are in a situation similar to that of the waveatipn.

Let us assume that we do not have the surface pressure.

Proceeding as we did in Se¢_11.4, we get the discretization o

([I132) as
pn+1 —pn
N+ AU™Z + BV™2 = 0 (11.36)
for all n whereA, B are defined as in SeE_TlL.4 and the mdifils an

(N x N) matrix defined by

(11.37)

where the sflix Q denotes the diagonal elementidfcorresponding to
the quadrilateraQ andMq is given by

Mg = fpoda dh (11.38)
Q
The discretization of {I1.38) gives 139

un - pn_ pr-1
) M—— = AT Y. oo
U At [ * ]

v _ynd pn_ pr-1
i) M— " BTp+ Y. |=0
® At [ *
(11.39)

whereM is the diagonal matrix of SeE._T1.4 apgis aN x N diagonal
matrix whose diagonal element corresponding to the quadrdl Q is
given by

3 = 7o (11.40)
q rlq
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Now ([I1.39) (i) and (ii) give

1 1
) (Un+§ _ Un_i) AT 0 pn _ pn—l

- L - P -
N A m AM™IA + § m

pn— Pn—l
p" -
* ]
(11.41)

Substituting the dierence of the equatiof {11136) betwaem % and
n-— % and assuming\ andB constant (locally) w.r.t. time we get

) Vg _yn-d
(il B% - BM BT

Pn+l —pn Pn—l
N At; +[AMIAT + BM1BT] [P” Py

ph— Pn—l
— =0

At
(11.42)

which is a discretization of equation (111 34).

Remark 11.2.The matrixk = AM™IAT + BM~1BT must give an ap-
proximation of the Laplacian. On doing these calculationsaaegu-
lar mesh one finds that instead of getting the usual 5-pomtdita for
the Laplacian (involving the points ¢ 3/2, j+ 3), (i + 3, j+ 3),
(i+3/2, j+13)), for thex-derivative andi(+ 3, j—3/2), (+ 3. | +3)
and { + % j + 3/2) for they-derivative) we get a 9-point formula in-
140 volthough the 5-point formula is iciently accurate and the 9-point
formula does nothing to improve it on a regular mesh, theddtas the

advantage of extensions to arbitrary meshes while the fodmes not.

In case}. = 0, one can perform an analysis similar to the Fourier
transform. Lefu,} be the spectrum af relative toK with eigenvectors

{Yatie.
Ko = paN¢q. (11-43)
Decomposind®" over the eigen spaces, we can write
P"= " Pl (11.44)
a

We are now reduced to studying the stability of the scalantous

1

A—tz(Pg+1 —2P" + Py 4 P =0 (11.45)
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for eacha.
One knows that a necessary andfisient condition for stability is
that both roots of the equation

1
P(r2 —2r + 1)+ of =0 (11.46)

have moduli< 1 for eache.

When} # 0, we cannot do this. However, if we assuixido be a
scalar matrix, i.e.y} = o.l, then since it commutes witN andK one
uses[(IT.44) and is then reduced to studying the stability of

1 o _

(Pt = 2P0+ P 4 1P + %(P{; ~P™) =0 (11.47)

for which a necessary andffigient condition is that the roots of

r2—2r+1

(O
< [r 22 - 1)] -0 (11.48)

have moduli 1.

We now quote a lemma due to Lascaux|[20].

Lemma 11.7.1.Let Q be any quadrilateral of the subdivision. LepM
be its mass (Cf[TI1.B8)). Let the vertices be numbered byt < k <

141

4}. Let M be the diagonal term of M corresponding to the vertex k. Let

Lok be the length of the diagonal of Q opposite to the vertex knbefi

1

Figure 11.3:
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4
1M

2_2 Q2

LQ_klekLQK

and

where &, is the area of Q. Then the eigenvalugs} defined previously
obey the inequality.
Ho <4 man.TQ (11.49)

Remark 11.3.The numbeSq/Lq defines the “thickness” of the cell to
be used in the Courant-Friedrichs-Lewy condition.

Remark 11.4.The bound [[I1:49) is quite realistic. In the case of a
regular rectangular mesh, one can compute exacthyughs and the
exact bound can be shown to be

1 1
4max| —, —|.
AXZ" Ay?

By the lemma the bound appears as

1 1
41—+ — .
AXZ  Ay?
These two are generally of the same order.

Now if 3, = 0, we get a necessary andistient condition for stabil-
ity as u,At?> < 4 (which implies that the roots are complex conjugates
of each other with modulus 1) or equivalently,

1
Té -At < 1forall Q. (11.50)

If > # 0, but a scalar matrix as above, then we repeat what we
did in Sec.[3b for the 1-dimensional case and we only givicsent
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conditions for the roots to be complex conjugates of eachrahd for
their modulus to bes 1; namely

aq +BQjaq < 1forallQ (11.51)

(henceBq < %), where

o _Coht
Q =
(Sq/Lq)
oont (11.52)
Q- (Sq/Lg)?

. 1 " .
Thus againBg < 2 resembles the condition for the heat equation.

For a detailed discussion of stability criteria see Lasq20%

11.8 Concluding Remarks

Remark 11.5.In using the finite element method for the space dist3
cretization we use quadrilateral elements and not triaargellements.
We illustrate the dficulties involved when using a triangular mesh by a
very particular example.

Consider an incompressible fluid in a square domain wherddhe
main has been subdivided ini? equal squares. (Fid_11.4 (a). One
can also have a triangular mesh by subdividing each square abto
two triangles by drawing a diagonal of each sgaure. (E14 14)).
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Figure 11.4:

In either case we hav&li1)? nodes and hence computingndv at
these nodes gives!2¢1)? unknowns. Since the fluid is incompressible,
we get the equation of conservation of mass as

divi=0 (11.53)
which is discretised as

f div ddx dy= 0 for all Q (11.54)
Q

Since we havé\? squares this givesl? equations in the first case.

However in the second case, we hai? 2quations and then to approx-
144 imate one equation alone we have taken & 2inknowns out of the

available 22 + 1). This does not leave many more unknowns for the
equation of conservation of momentum.

The finite element method which has been used can be named a
‘mixed’ method because one approximates both the displectni, y)
and the stresseg). In order for such a method to work, there must
be some compatibility conditions between the correspandpaces of
approximates. (Cf. Raviart, to be published). We have usedpacé/,
for p, p, e and a diferent space foX andd. For quadrilateral elements
we use the spacé; and for triangular elements we have to use another
spaceV;. Itcan be shown that the spadésandV; do not work together
while V, andV; are compatible.



11.8. Concluding Remarks 147

These are some of the reasons for using quadrilateral etsriren
stead of triangular ones.

Remark 11.6.We remarked earlier (Cf. RemdrkZll.2) that our mode of
approximation yielded the 9-point formula for the Laplaci®ne asks
immediately whether ther is a finite element or finitdelience scheme
which gives the 5-point formula instead. The answer is yest tBis

is very complicated when using Lagrangian variables (Cfrld#g. In
case of the Eulerian variable we have the MAC method whichjuets
been devised for this reason. Hgrg, € are computed at the centre of
each cell whileu is computed at the mid-points of two opposite edges
andv at the mid-points of the other two edges. (CF. Eig.111.5).

v

Figure 11.5:
145

Remark 11.7.0ur final comments are on the advantages of the La-
grangian coordinates over the Eulerian coordinates. Timeipal ad-
vantage lies in the tackling of the moving boundary problemhe in-
terface problem. To illustrate how messy the Eulerian eqostcan
become we give an example of an interface between two media.

Given a fixed Eulerian grid, let us examine a cell through Whio
interface passes and which contains both the media (1 afith&h, we
must not only know now the boundary moves and where the baynda
meets the grid, but also writeftérent equations for the two media. Thus
the energy and state equations may be written for the meifiual, 2)
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as

i+l | inn
i n+tl _i_n p tP 1 _i =
(‘e ") + ( 5 )(ipml ipn) =0 (11.55)

Pl _ f(i pn+1 i n+1) (11.56)

where the superscripindicates the medium for which the equations are
written. We also have the pressure equality

lpn+1 — 2pn+l. (1157)

If Vol.1 and Vol.2 are the volumes occupied by the media &hd
their masses, we have
Mrl1+1 — 1pn+1(V0|.1)n+1
|V|2+1 — an+l(VO|.2)n+l
(Vol.1)™?! + (Vol.2)™? = vol. of cell =
= AXAyY

(11.58)

The equationd{I1.55) t&(11158) are eight in number anc: ther
as many unknowngx p, €, Vol for each material, assumirig; and M,
are known) and we must solve such a system.

Moreover the reader is asked to think of how to define the maifo
the interface on the grid and how to provide tests to know wdesl
contains both the media or when it does not.

A frailty of the Lagrangian method is that when the motionds t
distorted, the quadrilaterals lose their shape and theegulesit equa-
tions will not be meaningful compared to the true situatibmthis re-
gard the ALE method is very useful in two dimensions. One Hasaf
results on this method published by the Los Alamos groupl@iaet
al). The reader is referred to Roachel[33] for its extensisidgraphy
where references to these papers can be found.
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